
Tutorial to Locales and Locale Interpretation
2nd revision, for Isabelle 2009

Clemens Ballarin

Abstract

Locales are Isabelle’s mechanism for dealing with parametric the-
ories. We present typical examples of locale specifications, along with
interpretations between locales to change their hierarchic dependencies
and interpretations to reuse locales in theory contexts and proofs.

This tutorial is intended for locale novices; familiarity with Isabelle
and Isar is presumed. The second revision accommodates changes
introduced by the locales reimplementation for Isabelle 2009. Most
notably, in complex specifications (locale expressions) renaming has
been generalised to instantiation.

1 Introduction

Locales are based on contexts. A context can be seen as a formula schema∧
x1. . . xn. [[A1; . . . ;Am]] =⇒ . . .

where variables x1, . . . , xn are called parameters and the premises A1, . . . , Am

assumptions. A formula C is a theorem in the context if it is a conclusion∧
x1. . . xn. [[A1; . . . ;Am]] =⇒ C.

Isabelle/Isar’s notion of context goes beyond this logical view. Its contexts
record, in a consecutive order, proved conclusions along with attributes,
which may control proof procedures. Contexts also contain syntax informa-
tion for parameters and for terms depending on them.

2 Simple Locales

Locales can be seen as persistent contexts. In its simplest form, a locale
declaration consists of a sequence of context elements declaring parameters
(keyword fixes) and assumptions (keyword assumes). The following is the
specification of partial orders, as locale partial_order.

locale partial_order =

1

definition definition through an equation
inductive inductive definition
primrec primitive recursion
fun, function general recursion
abbreviation syntactic abbreviation
theorem, etc. theorem statement with proof
theorems, etc. redeclaration of theorems
text, etc. document markup

Table 1: Isar commands that accept a target.

fixes le :: "’a ⇒ ’a ⇒ bool" (infixl "v" 50)
assumes refl [intro, simp]: "x v x"

and anti_sym [intro]: "[[x v y; y v x]] =⇒ x = y"
and trans [trans]: "[[x v y; y v z]] =⇒ x v z"

The parameter of this locale is le, with infix syntax v. There is an implicit
type parameter ’a. It is not necessary to declare parameter types: most
general types will be inferred from the context elements for all parameters.
The above declaration not only introduces the locale, it also defines the
locale predicate partial_order with definition partial_order_def:

partial_order ?le ≡
(∀ x. ?le x x) ∧
(∀ x y. ?le x y −→ ?le y x −→ x = y) ∧
(∀ x y z. ?le x y −→ ?le y z −→ ?le x z)

The specification of a locale is fixed, but its list of conclusions may be ex-
tended through Isar commands that take a target argument. In the follow-
ing, definition and theorem are illustrated. Table 1 lists Isar commands
that accept a target. There are various ways of specifying the target. A tar-
get for a single command may be indicated with keyword in in the following
way:

definition (in partial_order)
less :: "’a ⇒ ’a ⇒ bool" (infixl "@" 50)
where "(x @ y) = (x v y ∧ x 6= y)"

A definition in a locale depends on the locale parameters. Here, a global
constant partial_order.less is declared, which is lifted over the locale pa-
rameter le. Its definition is the global theorem partial_order.less_def:

partial_order ?le =⇒
partial_order.less ?le ?x ?y = (?le ?x ?y ∧ ?x 6= ?y)

At the same time, the locale is extended by syntax transformations hiding

2

this construction in the context of the locale. That is, partial_order.less
le is printed and parsed as infix @.

Finally, the conclusion of the definition is added to the locale, less_def:

(?x @ ?y) = (?x v ?y ∧ ?x 6= ?y)

As an example of a theorem statement in the locale, here is the derivation
of a transitivity law.

lemma (in partial_order) less_le_trans [trans]:
"[[x @ y; y v z]] =⇒ x @ z"
unfolding less_def by (blast intro: trans)

In the context of the proof, assumptions and theorems of the locale may be
used. Attributes are effective: anti_sym was declared as introduction rule,
hence it is in the context’s set of rules used by the classical reasoner by
default.

When working with locales, sequences of commands with the same target
are frequent. A block of commands, delimited by begin and end, makes a
theory-like style of working possible. All commands inside the block refer
to the same target. A block may immediately follow a locale declaration,
which makes that locale the target. Alternatively the target for a block may
be given with the context command.
This style of working is illustrated in the block below, where notions of
infimum and supremum for partial orders are introduced, together with
theorems.

context partial_order begin

definition
is_inf where "is_inf x y i =
(i v x ∧ i v y ∧ (∀ z. z v x ∧ z v y −→ z v i))"

definition
is_sup where "is_sup x y s =
(x v s ∧ y v s ∧ (∀ z. x v z ∧ y v z −→ s v z))"

theorem is_inf_uniq: "[[is_inf x y i; is_inf x y i’]] =⇒ i = i’"
〈proof 〉

theorem is_sup_uniq: "[[is_sup x y s; is_sup x y s’]] =⇒ s = s’"
〈proof 〉

end

Two commands are provided to inspect locales: print locales lists the
names of all locales of the current theory; print locale n prints the pa-

3

rameters and assumptions of locale n; print locale! n additionally outputs
the conclusions.
The syntax of the locale commands discussed in this tutorial is shown in
Table 4. The grammer is complete with the exception of additional context
elements not discussed here. See the Isabelle/Isar Reference Manual [6] for
full documentation.

3 Import

Algebraic structures are commonly defined by adding operations and prop-
erties to existing structures. For example, partial orders are extended to
lattices and total orders. Lattices are extended to distributive lattices.
With locales, this inheritance is achieved through import of a locale. Import
is a separate entity in the locale declaration. If present, it precedes the
context elements.

locale lattice = partial_order +
assumes ex_inf: "∃ inf. is_inf x y inf"

and ex_sup: "∃ sup. is_sup x y sup"
begin

These assumptions refer to the predicates for infimum and supremum defined
in partial_order. We may now introduce the notions of meet and join.

definition
meet (infixl "u" 70) where "x u y = (THE inf. is_inf x y inf)"

definition
join (infixl "t" 65) where "x t y = (THE sup. is_sup x y sup)"

end

Locales for total orders and distributive lattices follow. Each comes with an
example theorem.

locale total_order = partial_order +
assumes total: "x v y ∨ y v x"

lemma (in total_order) less_total: "x @ y ∨ x = y ∨ y @ x"
〈proof 〉

locale distrib_lattice = lattice +
assumes meet_distr: "x u (y t z) = x u y t x u z"

lemma (in distrib_lattice) join_distr:
"x t (y u z) = (x t y) u (x t z)"
〈proof 〉

4

partial_order

lattice

distrib_lattice

total_order

(a) Declared hierachy

partial_order

lattice

distrib_lattice total_order

(b) Total orders are lattices

partial_order

lattice

distrib_lattice

total_order

(c) Total orders are
distributive lattices

Figure 1: Hierarchy of Lattice Locales.

The locale hierachy obtained through these declarations is shown in Fig-
ure 1(a).

4 Changing the Locale Hierarchy

Total orders are lattices. Hence, by deriving the lattice axioms for to-
tal orders, the hierarchy may be changed and lattice be placed between
partial_order and total_order, as shown in Figure 1(b). Changes to the
locale hierarchy may be declared with the sublocale command.

sublocale total_order ⊆ lattice

This enters the context of locale total_order, in which the goal

1. lattice op v

must be shown. First, the locale predicate needs to be unfolded — for example
using its definition or by introduction rules provided by the locale package. The
methods intro_locales and unfold_locales automate this. They are aware of
the current context and dependencies between locales and automatically discharge
goals implied by these. While unfold_locales always unfolds locale predicates
to assumptions, intro_locales only unfolds definitions along the locale hierarchy,
leaving a goal consisting of predicates defined by the locale package. Occasionally
the latter is of advantage since the goal is smaller.

5

For the current goal, we would like to get hold of the assumptions of lattice, hence
unfold_locales is appropriate.

proof unfold_locales

Since both lattice and total_order inherit partial_order, the assumptions of
the latter are discharged, and the only subgoals that remain are the assumptions
introduced in lattice

1.
∧
x y. ∃ inf. is_inf x y inf

2.
∧
x y. ∃ sup. is_sup x y sup

The proof for the first subgoal is

fix x y
from total have "is_inf x y (if x v y then x else y)"

by (auto simp: is_inf_def)
then show "∃ inf. is_inf x y inf" ..

The proof for the second subgoal is analogous and not reproduced here.

qed

Similarly, total orders are distributive lattices.

sublocale total_order ⊆ distrib_lattice
〈proof 〉

The locale hierarchy is now as shown in Figure 1(c).

5 Use of Locales in Theories and Proofs

Locales enable to prove theorems abstractly, relative to sets of assumptions.
These theorems can then be used in other contexts where the assumptions
themselves, or instances of the assumptions, are theorems. This form of
theorem reuse is called interpretation.
The changes of the locale hierarchy from the previous sections are examples
of interpretations. The command sublocale l1 ⊆ l2 is said to interpret locale
l2 in the context of l1. It causes all theorems of l2 to be made available in l1.
The interpretation is dynamic: not only theorems already present in l2 are
available in l1. Theorems that will be added to l2 in future will automatically
be propagated to l1.
Locales can also be interpreted in the contexts of theories and structured
proofs. These interpretations are dynamic, too. Theorems added to locales
will be propagated to theories. In this section the interpretation in theories
is illustrated; interpretation in proofs is analogous.
As an example, consider the type of natural numbers nat. The relation
≤ is a total order over nat, divisibility dvd is a distributive lattice. We

6

start with the interpretation that ≤ is a partial order. The facilities of the
interpretation command are explored in three versions.

5.1 First Version: Replacement of Parameters Only

In the most basic form, interpretation just replaces the locale parameters by
terms. The following command interprets the locale partial_order in the
global context of the theory. The parameter le is replaced by op ≤.

interpretation nat: partial_order "op ≤ :: nat ⇒ nat ⇒ bool"

The locale name is succeeded by a parameter instantiation. This is a list of terms,
which refer to the parameters in the order of declaration in the locale. The locale
name is preceded by an optional interpretation qualifier, here nat.
The command creates the goal1

1. partial_order op ≤

which can be shown easily:

by unfold_locales auto

Now theorems from the locale are available in the theory, interpreted for
natural numbers, for example nat.trans:

[[?x ≤ ?y; ?y ≤ ?z]] =⇒ ?x ≤ ?z

The interpretation qualifier, nat in the example, is applied to all names
processed by the interpretation. If a qualifer is given in the interpretation
command, its use is mandatory when referencing the name. For example,
the above theorem cannot be referred to simply by trans. This prevents
unwanted hiding of theorems.

5.2 Second Version: Replacement of Definitions

The above interpretation also creates the theorem nat.less_le_trans:

[[partial_order.less op ≤ ?x ?y; ?y ≤ ?z]]
=⇒ partial_order.less op ≤ ?x ?z

Here, partial_order.less op ≤ represents the strict order, although < is the
natural strict order for nat. Interpretation allows to map concepts intro-
duced by definitions in locales to the corresponding concepts of the theory.

1Note that op binds tighter than functions application: parentheses around op ≤ are
not necessary.

7

This is achieved by unfolding suitable equations during interpretation. These
equations are given after the keyword where and require proofs. The revised
command that replaces @ by < is:

interpretation nat: partial_order "op ≤ :: [nat, nat] ⇒ bool"
where "partial_order.less op ≤ (x::nat) y = (x < y)"

proof -

The goals are

1. partial_order op ≤
2. partial_order.less op ≤ x y = (x < y)

The proof that ≤ is a partial order is as above.

show "partial_order (op ≤ :: nat ⇒ nat ⇒ bool)"
by unfold_locales auto

The second goal is shown by unfolding the definition of partial_order.less.

show "partial_order.less op ≤ (x::nat) y = (x < y)"
unfolding partial_order.less_def [OF ‘partial_order op ≤‘]
by auto

qed

Note that the above proof is not in the context of a locale. Hence, the
correct interpretation of partial_order.less_def is obtained manually with
OF.

5.3 Third Version: Local Interpretation

In the above example, the fact that ≤ is a partial order for the natural
numbers was used in the proof of the second goal. In general, proofs of the
equations may involve theorems implied by the fact the assumptions of the
instantiated locale hold for the instantiating structure. If these theorems
have been shown abstractly in the locale they can be made available con-
veniently in the context through an auxiliary local interpretation (keyword
interpret). This interpretation is inside the proof of the global interpreta-
tion. The third revision of the example illustrates this.

interpretation nat: partial_order "op ≤ :: nat ⇒ nat ⇒ bool"
where nat_less_eq: "partial_order.less op ≤ (x::nat) y = (x < y)"

proof -
show "partial_order (op ≤ :: nat ⇒ nat ⇒ bool)"

by unfold_locales auto
then interpret nat: partial_order "op ≤ :: [nat, nat] ⇒ bool" .
show "partial_order.less op ≤ (x::nat) y = (x < y)"

unfolding nat.less_def by auto
qed

8

The inner interpretation does not require an elaborate new proof, it is im-
mediate from the preceding fact and proved with “.”. It enriches the local
proof context by the very theorems also obtained in the interpretation from
Section 5.1, and nat.less_def may directly be used to unfold the definition.
Theorems from the local interpretation disappear after leaving the proof
context — that is, after the closing qed — and are then replaced by those
with the desired substitutions of the strict order.

5.4 Further Interpretations

Further interpretations are necessary to reuse theorems from the other lo-
cales. In lattice the operations u and t are substituted by min and max.
The entire proof for the interpretation is reproduced in order to give an
example of a more elaborate interpretation proof.

interpretation nat: lattice "op ≤ :: nat ⇒ nat ⇒ bool"
where "partial_order.less op ≤ (x::nat) y = (x < y)"

and nat_meet_eq: "lattice.meet op ≤ (x::nat) y = min x y"
and nat_join_eq: "lattice.join op ≤ (x::nat) y = max x y"

proof -
show lattice: "lattice (op ≤ :: nat ⇒ nat ⇒ bool)"

We have already shown that this is a partial order,

apply unfold_locales

hence only the lattice axioms remain to be shown:

1.
∧
x y. ∃ inf. partial_order.is_inf op ≤ x y inf

2.
∧
x y. ∃ sup. partial_order.is_sup op ≤ x y sup

After unfolding is_inf and is_sup,

apply (unfold nat.is_inf_def nat.is_sup_def)

the goals become

1.
∧
x y. ∃ inf≤x. inf ≤ y ∧ (∀ z. z ≤ x ∧ z ≤ y −→ z ≤ inf)

2.
∧
x y. ∃ sup≥x. y ≤ sup ∧ (∀ z. x ≤ z ∧ y ≤ z −→ sup ≤ z)

which can be solved by Presburger arithmetic.

by arith+

For the first of the equations, we refer to the theorem shown in the previous inter-
pretation.

show "partial_order.less op ≤ (x::nat) y = (x < y)"
by (rule nat_less_eq)

In order to show the remaining equations, we put ourselves in a situation where the
lattice theorems can be used in a convenient way.

9

nat.less_def from locale partial_order:
(?x < ?y) = (?x ≤ ?y ∧ ?x 6= ?y)

nat.meet_left from locale lattice:
min ?x ?y ≤ ?x

nat.join_distr from locale distrib_lattice:
max ?x (min ?y ?z) = min (max ?x ?y) (max ?x ?z)

nat.less_total from locale total_order:
?x < ?y ∨ ?x = ?y ∨ ?y < ?x

Table 2: Interpreted theorems for ≤ on the natural numbers.

from lattice interpret nat: lattice "op ≤ :: nat ⇒ nat ⇒ bool" .
show "lattice.meet op ≤ (x::nat) y = min x y"

by (bestsimp simp: nat.meet_def nat.is_inf_def)
show "lattice.join op ≤ (x::nat) y = max x y"

by (bestsimp simp: nat.join_def nat.is_sup_def)
qed

Next follows that ≤ is a total order.

interpretation nat: total_order "op ≤ :: nat ⇒ nat ⇒ bool"
where "partial_order.less op ≤ (x::nat) y = (x < y)"

and "lattice.meet op ≤ (x::nat) y = min x y"
and "lattice.join op ≤ (x::nat) y = max x y"

proof -
show "total_order (op ≤ :: nat ⇒ nat ⇒ bool)"

by unfold_locales arith
qed (rule nat_less_eq nat_meet_eq nat_join_eq)+

Since the locale hierarchy reflects that total orders are distributive lattices,
an explicit interpretation of distributive lattices for the order relation on
natural numbers is only necessary for mapping the definitions to the right
operators on nat.

interpretation nat: distrib_lattice "op ≤ :: nat ⇒ nat ⇒ bool"
where "partial_order.less op ≤ (x::nat) y = (x < y)"

and "lattice.meet op ≤ (x::nat) y = min x y"
and "lattice.join op ≤ (x::nat) y = max x y"

by unfold_locales [1] (rule nat_less_eq nat_meet_eq nat_join_eq)+

Theorems that are available in the theory at this point are shown in Table 2.

5.5 Lattice dvd on nat

Divisibility on the natural numbers is a distributive lattice but not a total
order. Interpretation again proceeds incrementally.

10

interpretation nat_dvd: partial_order "op dvd :: nat ⇒ nat ⇒ bool"
where nat_dvd_less_eq:
"partial_order.less op dvd (x::nat) y = (x dvd y ∧ x 6= y)"

〈proof 〉

Note that in Isabelle/HOL there is no symbol for strict divisibility. Instead,
interpretation substitutes x dvd y ∧ x 6= y.

interpretation nat_dvd: lattice "op dvd :: nat ⇒ nat ⇒ bool"
where "partial_order.less op dvd (x::nat) y = (x dvd y ∧ x 6= y)"

and nat_dvd_meet_eq: "lattice.meet op dvd = gcd"
and nat_dvd_join_eq: "lattice.join op dvd = lcm"

〈proof 〉

Equations nat_dvd_meet_eq and nat_dvd_join_eq are used in the main part
the subsequent interpretation.

interpretation nat_dvd:
distrib_lattice "op dvd :: nat ⇒ nat ⇒ bool"
where "partial_order.less op dvd (x::nat) y = (x dvd y ∧ x 6= y)"

and "lattice.meet op dvd = gcd"
and "lattice.join op dvd = lcm"

proof -
show "distrib_lattice (op dvd :: nat ⇒ nat ⇒ bool)"

apply unfold_locales

1.
∧
x y z.
lattice.meet op dvd x (lattice.join op dvd y z) =
lattice.join op dvd (lattice.meet op dvd x y)
(lattice.meet op dvd x z)

apply (unfold nat_dvd_meet_eq nat_dvd_join_eq)

1.
∧
x y z. gcd x (lcm y z) = lcm (gcd x y) (gcd x z)

apply (rule gcd_lcm_distr)
done

qed (rule nat_dvd_less_eq nat_dvd_meet_eq nat_dvd_join_eq)+

Theorems that are available in the theory after these interpretations are
shown in Table 3.

The syntax of the interpretation commands is shown in Table 4. The gram-
mar refers to expression, which stands for a locale expression. Locale ex-
pressions are discussed in the following section.

11

nat_dvd.less_def from locale partial_order:
(?x dvd ?y ∧ ?x 6= ?y) = (?x dvd ?y ∧ ?x 6= ?y)

nat_dvd.meet_left from locale lattice:
gcd ?x ?y dvd ?x

nat_dvd.join_distr from locale distrib_lattice:
lcm ?x (gcd ?y ?z) = gcd (lcm ?x ?y) (lcm ?x ?z)

Table 3: Interpreted theorems for dvd on the natural numbers.

6 Locale Expressions

A map ϕ between partial orders v and ¹ is called order preserving if x v y

implies ϕ x ¹ ϕ y. This situation is more complex than those encountered
so far: it involves two partial orders, and it is desirable to use the existing
locale for both.
Inspecting the grammar of locale commands in Table 4 reveals that the im-
port of a locale can be more than just a single locale. In general, the import
is a locale expression, which enables to combine locales and instantiate pa-
rameters. A locale expression is a sequence of locale instances followed by
an optional for clause. Each instance consists of a locale reference, which
may be preceded by a qualifer and succeeded by instantiations of the pa-
rameters of that locale. Instantiations may be either positional or through
explicit mappings of parameters to arguments.
Using a locale expression, a locale for order preserving maps can be declared
in the following way.

locale order_preserving =
le: partial_order le + le’: partial_order le’

for le (infixl "v" 50) and le’ (infixl "¹" 50) +
fixes ϕ :: "’a ⇒ ’b"
assumes hom_le: "x v y =⇒ ϕ x ¹ ϕ y"

The second and third line contain the expression — two instances of the
partial order locale where the parameter is instantiated to le and le’, re-
spectively. The for clause consists of parameter declarations and is similar
to the context element fixes. The notable difference is that the for clause is
part of the expression, and only parameters defined in the expression may
occur in its instances.
Instances define morphisms on locales. Their effect on the parameters is
lifted to terms, propositions and theorems in the canonical way, and thus
to the assumptions and conclusions of a locale. The assumption of a locale
expression is the conjunction of the assumptions of the instances. The con-
clusions of a sequence of instances are obtained by appending the conclusions

12

of the instances in the order of the sequence.
The qualifiers in the expression are already a familiar concept from the
interpretation command (Section 5.1). Here, they serve to distinguish
names (in particular theorem names) for the two partial orders within the
locale. Qualifiers in the locale command (and in sublocale) default to
optional — that is, they need not occur in references to the qualified names.
Here are examples of theorems in locale order_preserving:

le.less_le_trans: [[?x @ ?y; ?y v ?z]] =⇒ ?x @ ?z

hom_le: ?x v ?y =⇒ ϕ ?x ¹ ϕ ?y

The theorems for the partial order ¹ are qualified by le’. For example,
le’.less_le_trans:

[[partial_order.less op ¹ ?x ?y; ?y ¹ ?z]]
=⇒ partial_order.less op ¹ ?x ?z

This example reveals that there is no infix syntax for the strict operation
associated with ¹. This can be declared through an abbreviation.

abbreviation (in order_preserving)
less’ (infixl "≺" 50) where "less’ ≡ partial_order.less le’"

Now the theorem is displayed nicely as le’.less_le_trans:

[[?x ≺ ?y; ?y ¹ ?z]] =⇒ ?x ≺ ?z

Qualifiers not only apply to theorem names, but also to names introduced
by definitions and abbreviations. For example, in partial_order the name
less abbreviates op @. Therefore, in order_preserving the qualified name
le.less abbreviates op @ and le’.less abbreviates op ≺. Hence, the equa-
tion in the abbreviation above could have been written more concisely as
less’ ≡ le’.less.

Readers may find the declaration of locale order_preserving a little awk-
ward, because the declaration and concrete syntax for le from partial_order

are repeated in the declaration of order_preserving. Locale expressions
provide a convenient short hand for this. A parameter in an instance is
untouched if no instantiation term is provided for it. In positional instanti-
ations, a parameter position may be skipped with an underscore, and it is
allowed to give fewer instantiation terms than the instantiated locale’s num-
ber of parameters. In named instantiations, instantiation pairs for certain
parameters may simply be omitted. Untouched parameters are implicitly
declared by the locale expression and with their concrete syntax. In the
sequence of parameters, they appear before the parameters from the for
clause.

13

The following locales illustrate this. A map ϕ is a lattice homomorphism if
it preserves meet and join.

locale lattice_hom =
le: lattice + le’: lattice le’ for le’ (infixl "¹" 50) +
fixes ϕ
assumes hom_meet: "ϕ (x u y) = le’.meet (ϕ x) (ϕ y)"

and hom_join: "ϕ (x t y) = le’.join (ϕ x) (ϕ y)"

abbreviation (in lattice_hom)
meet’ (infixl "u’’" 50) where "meet’ ≡ le’.meet"

abbreviation (in lattice_hom)
join’ (infixl "t’’" 50) where "join’ ≡ le’.join"

A homomorphism is an endomorphism if both orders coincide.

locale lattice_end = lattice_hom _ le

In this declaration, the first parameter of lattice_hom, le, is untouched and
is then used to instantiate the second parameter. Its concrete syntax is
preserved.

The inheritance diagram of the situation we have now is shown in Fig-
ure 2, where the dashed line depicts an interpretation which is introduced
below. Renamings are indicated by v7→¹ etc. The expression imported by
lattice_end identifies the first and second parameter of lattice_hom. By
looking at the inheritance diagram it would seem that two identical copies
of each of the locales partial_order and lattice are imported. This is not
the case! Inheritance paths with identical morphisms are detected and the
conclusions of the respective locales appear only once.

It can be shown easily that a lattice homomorphism is order preserving. As
the final example of this section, a locale interpretation is used to assert
this:

sublocale lattice_hom ⊆ order_preserving 〈proof 〉

Theorems and other declarations — syntax, in particular — from the locale
order_preserving are now active in lattice_hom, for example hom_le:

?x v ?y =⇒ ϕ ?x ¹ ϕ ?y

7 Further Reading

More information on locales and their interpretation is available. For the
locale hierarchy of import and interpretation dependencies see [1]; interpre-
tations in theories and proofs are covered in [2]. In the latter, we show

14

partial_order

order_preserving

v7→v

v7→¹

lattice

lattice_hom

v7→v

v7→¹

lattice_end

v7→v

¹7→v

Figure 2: Hierarchy of Homomorphism Locales.

how interpretation in proofs enables to reason about families of algebraic
structures, which cannot be expressed with locales directly.
Haftmann and Wenzel [3] overcome a restriction of axiomatic type classes
through a combination with locale interpretation. The result is a Haskell-
style class system with a facility to generate ML and Haskell code. Classes
are sufficient for simple specifications with a single type parameter. The
locales for orders and lattices presented in this tutorial fall into this category.
Order preserving maps, homomorphisms and vector spaces, on the other
hand, do not.
The original work of Kammüller on locales [5] may be of interest from a
historical perspective. The mathematical background on orders and lattices
is taken from Jacobson’s textbook on algebra [4, Chapter 8].

Acknowledgements. Alexander Krauss, Tobias Nipkow, Christian Ster-
nagel and Makarius Wenzel have made useful comments on a draft of this
document.

15

Miscellaneous
attr-name ::= name | attribute | name attribute
qualifier ::= name [“?” | “!”]

Context Elements
fixes ::= name [“::” type] [“(” structure “)” | mixfix]
assumes ::= [attr-name “:”] proposition
element ::= fixes fixes (and fixes)∗

| assumes assumes (and assumes)∗

Locale Expressions
pos-insts ::= (term | “ ”)∗

named-insts ::= where name “=” term (and name “=” term)∗

instance ::= [qualifier “:”] qualified-name (pos-insts | named-inst)
expression ::= instance (“+” instance)∗ [for fixes (and fixes)∗]

Declaration of Locales
locale ::= element+

| expression [“+” element+]
toplevel ::= locale name [“=” locale]

Interpretation
equation ::= [attr-name “:”] prop
equations ::= where equation (and equation)∗

toplevel ::= sublocale name (“<” | “⊆”) expression proof
| interpretation expression [equations] proof
| interpret expression proof

Diagnostics
toplevel ::= print locale [“!”] locale

| print locales

Table 4: Syntax of Locale Commands.

16

References

[1] C. Ballarin. Interpretation of locales in Isabelle: Managing dependencies
between locales. Technical Report TUM-I0607, Technische Universität
München, 2006.

[2] C. Ballarin. Interpretation of locales in Isabelle: Theories and proof
contexts. In J. M. Borwein and W. M. Farmer, editors, Mathemati-
cal knowledge management, MKM 2006, Wokingham, UK, LNCS 4108,
pages 31–43. Springer, 2006.

[3] F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In
T. Altenkirch and C. McBride, editors, Types for Proofs and Programs,
TYPES 2006, Nottingham, UK, LNCS 4502, pages 160–174. Springer,
2007.

[4] N. Jacobson. Basic Algebra, volume I. Freeman, 2nd edition, 1985.

[5] F. Kammüller, M. Wenzel, and L. C. Paulson. Locales: A section-
ing concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin, and L. Théry, editors, Theorem Proving in Higher Order Log-
ics: TPHOLs’99, Nice, France, LNCS 1690, pages 149–165. Springer,
1999.

[6] M. Wenzel. The Isabelle/Isar reference manual. Part of the Isabelle
distribution, http://isabelle.in.tum.de/doc/isar-ref.pdf.

17

http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Simple Locales
	Import
	Changing the Locale Hierarchy
	Use of Locales in Theories and Proofs
	First Version: Replacement of Parameters Only
	Second Version: Replacement of Definitions
	Third Version: Local Interpretation
	Further Interpretations
	Lattice dvd on nat

	Locale Expressions
	Further Reading

