ASIS-for-GNAT User’s Guide

Document revision level $Revision: 1.23 $
Date: $Date: 2005/06/14 10:30:38 $

GNAT version 2006

AdaCore

Copyright (© 2000-2005, AdaCore

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

About This Guide

This guide has two aims. The first one is to introduce you to the Ada
Semantic Interface Specification (ASIS) and show you how you can build
various useful tools on top of ASIS. The second is to describe the ASIS
implementation for the GNAT Ada 95 compiler.

What This Guide Contains
This guide contains the following chapters:

Chapter 1 [Introduction], page 5, contains the general definition of
ASIS and gives some examples of tools which can be built on top of
ASIS.

Chapter 2 [Getting Started], page 7, contains a short guided tour
through the development and use of ASIS-for-GNAT-based tools.

Chapter 3 [ASIS Overview], page 15, gives an overview of ASIS,
allowing an ASIS newcomer to navigate through the ASIS definition
(readers already familiar with ASIS can skip this section).

Chapter 4 [ASIS Context], page 23, defines the ASIS Context con-
cept in ASIS-for-GNAT and explains how to prepare a set of Ada
components to be processed by an ASIS application.

Chapter 6 [ASIS Application Templates], page 39, describes a set of
Ada source components provided by the ASIS-for-GNAT distribution
that may be used as a basis for developing ASIS applications.

Chapter 7 [ASIS Tutorials], page 41, describes some examples in-
cluded in the ASIS-for-GNAT distribution.

Chapter 8 [How to Build Efficient ASIS Applications], page 43, de-
scribes how to deal with “tree swapping”, a potential performance
issue with ASIS applications.

Chapter 9 [Processing an Ada Library by an ASIS-Based Tooll,
page 47, shows how to use an ASIS tool on pre-compiled Ada li-
braries.

Chapter 10 [Compiling Binding and Linking Applications with
ASIS-for-GNAT], page 49, explains how to compile an ASIS applica-
tion with ASIS-for-GNAT and how to create the resulting executable.
Chapter 11 [ASIS-for-GNAT Warnings], page 51, describes the
warnings generated by the ASIS implementation.

Chapter 12 [Exception Handling and Reporting Internal Bugs],
page 53, explains what happens if an ASIS implementation inter-
nal problem is detected during the processing of an ASIS or ASIS
Extensions query

ASIS-for-GNAT User’s Guide

e Chapter 13 [File Naming Conventions and Application Name
Spacel, page 55, explains which names can and cannot be used as
names of ASIS application components.

What You Should Know Before Reading This
Guide

This User’s Guide assumes that you are familiar with Ada 95 language,
as described in the International Standard ANSI/ISO/TEC-8652:1995
(hereafter referred to as the Ada Reference Manual), and that you have
some basic experience in Ada programming with GNAT.

This User’s Guide also assumes that you have ASIS-for-GNAT prop-
erly installed for your GNAT compiler, and that you are familiar with
the structure of the ASIS-for-GNAT distribution (if not, see the top ASIS
README file).

This guide does not require previous knowledge of or experience with
ASIS itself.

Related Information

The following sources contain useful supplemental information:
e GNAT User’s Guide, for information about the GNAT environment
o ASIS-for-GNAT Installation Guide
e The ASIS-for-GNAT Reference Manual

e The ASIS 95 definition, available as ISO/IEC International Stan-
dard 15291.

e The Web site for the ASIS Working Group:
http://www.acm.org/sigada/wg/asiswg

Conventions

Following are examples of the typographical and graphic conventions
used in this guide:
e Functions , utility program names , standard names , and classes .
e ‘Option flags ’
e ‘File Names ’, ‘button names ’, and ‘field names ’
e Variables
e Emphasis.
e [optional information or parameters]
e Examples are described by text

http://www.acm.org/sigada/wg/asiswg

and then shown this way.

Commands that are entered by the user are preceded in this manual by
the characters “$ ” (dollar sign followed by space). If your system uses
this sequence as a prompt, then the commands will appear exactly as
you see them in the manual. If your system uses some other prompt,
then the command will appear with the $ replaced by whatever prompt
character you are using.

Full file names are shown with the “/ ” character as the directory sep-
arator; e.g., ‘parent-dir/subdir/myfile.adb >, If you are using GNAT
on a Windows platform, please note that the “\ ” character should be used
instead.

ASIS-for-GNAT User’s Guide

Chapter 1: Introduction

1 Introduction

1.1 What Is ASIS?

The Ada Semantic Interface Specification (ASIS) is an open and pub-
lished callable interface that allows a tool to access syntactic and seman-
tic information about an Ada program, independent of the compilation
environment that compiled the program.

Technically, ASIS comprises a hierarchy of Ada packages rooted at
the package Asis . These packages define a set of Ada private types that
model the components of an Ada program (e.g., declarations, statements,
expressions) and their interrelationships. Operations for these types,
called ASIS queries, give you statically determinable information about
Ada compilation units in your environment.

You may use ASIS as a third-part Ada library to implement a number
of useful program analysis tools.

1.2 ASIS Scope — Which Kinds of Tools Can Be
Built with ASIS?

The following ASIS properties define the ASIS scope:
e ASIS is a read-only interface.

e ASIS provides only statically-determinable information about Ada
programs.

e ASIS provides access to the syntactic and basic semantic proper-
ties of compiled Ada units. If some semantic property of a program
cannot be directly queried by means of ASIS queries, an ASIS appli-
cation can compute the needed piece of information itself from the
information available through ASIS queries.

e ASIS provides information from/about Ada units in high-level terms
that conform with the Ada Reference Manual and that are Ada/ASIS-
implementation-independent in nature.

Examples of tools that benefit from the ASIS interface include, but are
not limited to: automated code monitors, browsers, call tree tools, code
reformators, coding standards compliance tools, correctness verifiers, de-
buggers, dependency tree analysis tools, design tools, document gener-
ators, metrics tools, quality assessment tools, reverse engineering tools,
re-engineering tools, style checkers, test tools, timing estimators, and
translators.

ASIS-for-GNAT User’s Guide

Chapter 2: Getting Started

2 Getting Started

This section outlines the ASIS application development and usage cycle.
We first take a sample problem and present an ASIS application that
offers a solution; then we show how to build the executable with ASIS-
for-GNAT and how to prepare an ASIS “Context” to be processed by the
program; and finally we show the output produced by our program when
it is applied to itself.

2.1 The Problem

We wish to process some set of Ada compilation units as follows: for every
unit, print its full expanded Ada name, whether this unit is a spec!, a
body or a subunit, and whether this unit is a user-defined unit, an Ada
predefined unit or an implementation-specific unit (such as a part of a
Run-Time Library).

2.2 An ASIS Application that Solves the Problem

with Ada.Wide_Text_I0; use Ada.Wide_Text_I0;
with Ada.Characters.Handling; use Ada.Characters.Handling;

-- ASIS-specific context clauses:
with Asis;

with Asis.Implementation;

with Asis.Ada_Environments;

with Asis.Compilation_Units;

with Asis.Exceptions;

with Asis.Errors;

procedure Examplel is
My_Context : Asis.Context;
-— ASIS Context is an abstraction of an Ada compilation environment,
-- it defines a set of ASIS Compilation Units available through
-- ASIS queries

Loy may seem that an Ada unit such as

package Pack is
type T is array(Positive range <>) of Float;
procedure Proc(X : in out T);

end Pack;

is a package specification, but in fact the “specification” (as defined in the Ada Refer-
ence Manual) comprises all but the final semicolon. The form with the final semicolon
is known as a “package declaration”. Since this official term is not familiar to most
Ada users, the GNAT documentation uses the term “spec” (for a unit) to mean that
unit’s declaration — thus a package spec includes the final semicolon.

ASIS-for-GNAT User’s Guide

begin
-- first, by initializing an ASIS implementation, we make it
-- ready for work
Asis.Implementation.Initialize ("-ws");
-- The "-ws" parameter of the Initialize procedure means
-- "turn off all the ASIS warnings"

-- then we define our Context by making an association with
-- the "physical" environment:
Asis.Ada_Environments.Associate
(My_Context, "My Asis Context", "-CA");
-- "-CA" as a Context parameter means "consider all the tree
-- files in the current directory"
-- See ASIS-for-GNAT Reference Manual for the description of the
-- parameters of the Associate query, see also chapter
-- "ASIS Context" for the description of different kinds of
-- ASIS Context in case of ASIS-for-GNAT

-- by opening a Context we make it ready for processing by ASIS
-- queries
Asis.Ada_Environments.Open (My_Context);

Processing_Units: declare
Next_Unit : Asis.Compilation_Unit;
-- ASIS Compilation_Unit is the abstraction to represent Ada
-- compilation units as described in RM 95

All_Units : Asis.Compilation_Unit_List :=

-- ASIS lists are one-dimensional unconstrained arrays.

-- Therefore, when declaring an object of an ASIS list type,
-- we have to provide either a constraint or explicit

-- initialization expression:

Asis.Compilation_Units.Compilation_Units (My_Context);
-- The Compilation_Units query returns a list of all the units
-- contained in an ASIS Context
begin
Put_Line
("A Context contains the following compilation units:");
New_Line;
for I in All_Units’Range loop
Next_Unit := All_Units (I);
Pllt (ll n) ;

-- to get a unit name, we just need a Unit_Full_Name
-- query. ASIS uses Wide_String as a string type,
-- that is why we are using Ada.Wide_Text_IO

Put (Asis.Compilation_Units.Unit_Full_Name (Next_Unit));

-— to get more info about a unit, we ask about unit class

Chapter 2: Getting Started

-- and about unit origin

case Asis.Compilation_Units.Unit_Kind (Next_Unit) is
when Asis.A_Library_Unit_Body =>
Put (" (body)");
when Asis.A_Subunit =>
Put (" (subunit)");
when others =>
Put (" (spec)");
end case;

case Asis.Compilation_Units.Unit_Origin (Next_Unit) is
when Asis.An_Application_Unit =>

Put_Line (" - user-defined unit");
when Asis.An_Implementation_Unit =>
Put_Line (" - implementation-specific unit");

when Asis.A_Predefined_Unit =>
Put_Line (" - Ada predefined unit");
when Asis.Not_An_Origin =>
Put_Line
(" - unit does not actually exist in a Context");
end case;

end loop;
end Processing_Units;

-- Cleaning up: we have to close out the Context, break its
-- association with the external environment and finalize

-- our ASIS implementation to release all the resources used:
Asis.Ada_Environments.Close (My_Context);
Asis.Ada_Environments.Dissociate (My_Context);
Asis.Implementation.Finalize;

exception
when Asis.Exceptions.ASIS_Inappropriate_Context |
Asis.Exceptions.ASIS_Inappropriate_Compilation_Unit |
Asis.Exceptions.ASIS_Failed =>

-- we check not for all the ASIS-defined exceptions, but only
-- those of them which can actually be raised in our ASIS
-- application.

-- If an ASIS exception is raised, we output the ASIS error
-- status and the ASIS diagnosis string:

Put_Line ("ASIS exception is raised:");

Put_Line ("ASIS diagnosis is:");

Put_Line (Asis.Implementation.Diagnosis);

Put ("ASIS error status is: ");

Put_Line
(Asis.Errors.Error_Kinds’Wide_Image

ASIS-for-GNAT User’s Guide

(Asis.Implementation.Status));
end Examplel;

2.3 Required Sequence of Calls

An ASIS application must use the following sequence of calls:

1.

10

Asis.Implementation.Initialize (...);

This initializes the ASIS implementation’s internal data struc-
tures. In general, calling an ASIS query is erroneous unless the
Initialize procedure has been invoked.

Asis.Ada_Environments.Associate (...);

This call is the only means to define a value of a variable of the ASIS
limited private type Context . The value represents some specific
association of the ASIS Context with the “external world”. The way
of making this association and the meaning of the corresponding
parameters of the Associate query are implementation-specific, but
as soon as this association has been made and a Context variable
is opened, the ASIS Context designated by this variable may be
considered to be a set of ASIS Compilation_Unit s available through
the ASIS queries.

Asis.Ada_Environments.Open (...);

Opening an ASIS Context variable makes the corresponding
Context accessible to all ASIS queries.

After opening the Context , an ASIS application can start ob-
taining ASIS Compilation_Unit s from it, can further analyze
Compilation_Unit s by decomposing them into ASIS Element s, etc.

ASIS relies on the fact that the content of a Context remains “frozen”
as long as the Context remains open. It is erroneous to change
through some non-ASIS program any data structures used by an
ASIS implementation to define and implement this Context while
the Context is open.

Now all the ASIS queries can be used. It is possible to access
Compilation_Unit s from the Context , to decompose units into syn-
tactic Element s, to query syntactic and semantic properties of these
Element s and so on.

Asis.Ada_Environments.Close (...);

After closing the Context it is impossible to retrieve any informa-
tion from it. All the values of the ASIS objects of Compilation_Unit ,
Element and Line types obtained when this Context was open be-
come obsolete, and it is erroneous to use them after the Context

was closed. The content of this Context need not be frozen while

Chapter 2: Getting Started

the Context remains closed. Note that a closed Context keeps its
association with the “external world” and it may be opened again
with the same association. Note also that the content (that is, the
corresponding set of ASIS Compilation_Unit s) of the Context may
be different from what was in the Context before, because the “ex-
ternal world” may have changed while the Context remained closed.

6. Asis.Ada_Environments.Dissociate (...);

This query breaks the association between the corresponding ASIS
Context and the “external world”, and the corresponding Context
variable becomes undefined.

7. Asis.Implementation.Finalize (...);
This releases all the resources used by an ASIS implementation.

An application can perform these steps in a loop. It may initialize and
finalize an ASIS implementation several times, it may associate and dis-
sociate the same Context several times while an ASIS implementation
remains initialized, and it may open and close the same Context several
times while the Context keeps its association with the “external world”.

An application can have several ASIS Context s opened at a time
(the upper limit is implementation-specific), and for each open Context |,
an application can process several Compilation_Unit s obtained from
this Context at a time (the upper limit is also implementation-specific).
ASIS-for-GNAT does not impose any special limitations on the number
of ASIS Context s and on the number of the ASIS Compilation_Unit s
processed at a time, as long as an ASIS application is within the general
resource limitations of the underlying system.

2.4 Building the Executable for an ASIS
application

The rest of this section assumes that you have ASIS-for-GNAT properly
installed as an Ada library.

To get the executable for the ASIS application from Section 2.2 [An
ASIS Application that Solves the Problem], page 7 (assuming that
it is located in your current directory as the Ada source file named
‘examplel.adb ’), invoke gnatmake as follows?:

$ gnatmake examplel.adb -largs -lasis
For more details concerning compiling ASIS applications and building
executables for them with ASIS-for-GNAT see Chapter 10 [Compiling
Binding and Linking Applications with ASIS-for-GNAT], page 49.

2 The ‘.adb’ is optional

11

ASIS-for-GNAT User’s Guide

2.5 Preparing Data for an ASIS Application —
Generating Tree Files

The general ASIS implementation technique is to use some information
generated by the underlying Ada compiler as the basis for retrieving
information from the Ada environment. As a consequence, an ASIS
application can process only legal (compilable) Ada code, and in most of
the cases to make a compilation unit “visible” for ASIS means to compile
this unit (probably with some ASIS-specific options)

ASIS-for-GNAT uses tree output files (or, in short, tree files) to cap-
ture information about an Ada unit from an Ada environment. A tree
file is generated by GNAT, and it contains a snapshot of the compiler’s
internal data structures at the end of the successful compilation of the
corresponding source file.

To create a tree file for a unit contained in some source file, you should
compile this file with the “-gnatc ’ and ‘-gnatt ’ compiler options. If you
want to apply the program described in section Section 2.2 [An ASIS
Application that Solves the Problem], page 7 to itself, compile the source
of this application with the command:

$ gcc -c -gnatc -gnatt examplel.adb

and as a result, GNAT will generate the tree file named ‘examplel.adt
in the current directory.

b

For more information on how to generate and deal with tree files,
see Chapter 4 [ASIS Context], page 23, and Chapter 7 [ASIS Tutorials],
page 41.

2.6 Running an ASIS Application

To complete our example, let’s execute our ASIS application. If you have
followed all the steps described in this chapter, your current directory
should contain the executable ‘examplel ’ (‘examplel.exe ’on a Windows
platform) and the tree file ‘examplel.adt ’. If we run our application,
it will process an ASIS Context defined by one tree file ‘examplel.adt ’
(for more details about defining an ASIS Context see Chapter 4 [ASIS
Context], page 23, and the ASIS-for-GNAT Reference Manual). The
result will be:

A Context contains the following compilation units:

Standard (spec) - Ada predefined unit

Examplel (body) - user-defined unit

Ada (spec) - Ada predefined unit
Ada.Wide_Text_IO (spec) - Ada predefined unit
Ada.I0_Exceptions (spec) - Ada predefined unit
Ada.Streams (spec) - Ada predefined unit

12

Chapter 2: Getting Started

System (spec) - Ada predefined unit
System.File_Control_Block (spec) - implementation-specific unit
Interfaces (spec) - Ada predefined unit
Interfaces.C_Streams (spec) - implementation-specific unit
System.Parameters (spec) - implementation-specific unit
System.WCh_Con (spec) - implementation-specific unit
Ada.Characters (spec) - Ada predefined unit
Ada.Characters.Handling (spec) - Ada predefined unit

Asis (spec) - user-defined unit

A4G (spec) - user-defined unit

A4G.A_Types (spec) - user-defined unit
Ada.Characters.Latin_1 (spec) - Ada predefined unit

GNAT (spec) - implementation-specific unit

GNAT.0S_Lib (spec) - implementation-specific unit
GNAT.Strings (spec) - implementation-specific unit
Unchecked_Deallocation (spec) - Ada predefined unit

Sinfo (spec) - user-defined unit

Types (spec) - user-defined unit

Uintp (spec) - user-defined unit

Alloc (spec) - user-defined unit

Table (spec) - user-defined unit

Urealp (spec) - user-defined unit

A4G.Int_Knds (spec) - user-defined unit
Asis.Implementation (spec) - user-defined unit

Asis.Errors (spec) - user-defined unit
Asis.Ada_Environments (spec) - user-defined unit
Asis.Compilation_Units (spec) - user-defined unit
Asis.Ada_Environments.Containers (spec) - user-defined unit
Asis.Exceptions (spec) - user-defined unit
System.Unsigned_Types (spec) - implementation-specific unit

Note that the tree file contains the full syntactic and semantic infor-
mation not only about the unit compiled by the given call to gcc, but
also about all the units upon which this unit depends semantically; that
is why you can see in the output list a number of units which are not
mentioned in our example.

In the current version of ASIS-for-GNAT, ASIS implementation
components are considered user-defined, rather than implementation-
specific, units.

13

ASIS-for-GNAT User’s Guide

14

Chapter 3: ASIS Overview

3 ASIS Overview

This chapter contains a short overview of the ASIS definition as given in
the ISO/IEC 15291:1999 ASIS Standard. This overview is aimed at help-
ing an ASIS newcomer find needed information in the ASIS definition.

For more details, please refer to the ASIS definition itself. To gain
some initial experience with ASIS, try the examples in Chapter 7 [ASIS
Tutorials], page 41.

3.1 Main ASIS Abstractions

ASISis based on three main abstractions used to describe Ada programs;
these abstractions are implemented as Ada private types:

Context An ASIS Context is a logical handle to an Ada environment,
as defined in the Ada Reference Manual, Chapter 10. An
ASIS application developer may view an ASIS Context as a
way to define a set of compilation units available through the
ASIS queries.

Compilation_Unit

An ASIS Compilation_Unit is a logical handle to an Ada
compilation unit. It reflects practically all the properties of
compilation units defined by the Ada Reference Manual, and
it also reflects some properties of “physical objects” used by an
underlying Ada implementation to model compilation units.
Examples of such properties are the time of the last update,
and the name of the object containing the unit’s source text.
An ASIS Compilation_Unit provides the “black-box” view
of a compilation unit, considering the unit as a whole. It
may be decomposed into ASIS Element s and then analyzed
in “white-box” fashion.

Element An ASIS Element is a logical handle to a syntactic component
of an ASIS Compilation_Unit (either explicit or implicit).

Some ASIS components use additional abstractions (private types)
needed for specific pieces of functionality:

Container
An ASIS Container (defined by the Asis.Ada_
Environments.Containers package) provides a means for
structuring the content of an ASIS Context ; i.e., ASIS
Compilation_Unit s are grouped into Container s.

15

ASIS-for-GNAT User’s Guide

Line An ASIS Line (defined by the Asis.Text package) is the
abstraction of a line of code in an Ada source text. An ASIS
Line has a length, a string image and a number.

Span An ASIS Span (defined by the Asis.Text package) defines
the location of an Element , a Compilation_Unit , or a whole
compilation in the corresponding source text.

Id An ASIS|d (defined by the Asis.Ids package) provides a way
to store some “image” of an ASIS Element outside an ASIS
application. An application may create an Id value from an
Element and store it in a file. Subsequently the same or
another application may read this Id value and convert it
back into the corresponding Element value.

3.2 ASIS Package Hierarchy

ASIS is defined as a hierarchy of Ada packages. Below is a short descrip-
tion of this hierarchy.

Asis The root package of the hierarchy. It defines the main ASIS
abstractions — Context , Compilation_Unit and Element —
as Ada private types. It also contains a set of enumera-
tion types that define the classification hierarchy for ASIS
Element s (which closely reflects the Ada syntax defined in
the Ada Reference Manual) and the classification of ASIS
Compilation_Unit s. This package does not contain any
queries.

Asis.Implementation
Contains subprograms that control an ASIS imple-

mentation: initializing and finalizing it, retrieving
and resetting diagnosis information. Its child package
Asis.Implementation.Permissions contains boolean

queries that reflect how ASIS implementation-specific
features are implemented.

Asis.Ada_Environments
Contains queries that deal with an ASIS Context : associat-
ing and dissociating, opening and closing a Context .

Asis.Compilation_Units
Contains queries that work with ASIS Compilation_Unit S:
obtaining units from a Context , getting semantic dependen-
cies between units and “black-box” unit properties.

16

Chapter 3: ASIS Overview

Asis.Compilation_Units.Relations
Contains queries that return integrated semantic depen-
dencies among ASIS Compilation_Unit s; e.g., all the units
needed by a given unit to be included in a partition.

Asis.Elements

Contains queries working on Element s and implementing
general Element properties: gateway queries from ASIS
Compilation Units to ASIS Element s, queries defining the
position of an Element in the Element classification hierar-
chy, queries which define for a given Element its enclosing
Compilation_Unit and its enclosing Element . It also con-
tains queries for processing pragmas.

Packages working on specific Element s
This group contains the following packages:

Asis.Declarations , Asis.Definitions , Asis.Statements
Asis.Expressions and ASIS.Clauses . Each of these
packages contains queries working on Element s of
the corresponding kind — that is, representing Ada

declarations, definitions, statements, expressions and
clauses respectively.

Asis. Text
Contains queries returning information about the source rep-
resentation of ASIS Compilation_Unit s and ASIS Element s.

Asis.Exceptions
Defines ASIS exceptions.

Asis.Errors
Defines possible ASIS error status values.

3.3 Structural and Semantic Queries

Queries working on Element s and returning Element s or Element lists
are divided into structural and semantic queries.

Each structural query (except Enclosing_Element) implements one
step of the parent-to-child decomposition of an Ada program according to
the ASIS Element classification hierarchy. Asis.Elements.Enclosing_
Element queryimplements the reverse child-to-parent step. (For implicit
Element s obtained as results of semantic queries, Enclosing_Element
might not correspond to what could be expected from the Ada syntax
and semantics; in this case the documentation of a semantic query also
defines the effect of Enclosing_Element applied to its result).

A semantic query for a given Element returnsthe Element or the list of
Element s representing some semantic property — e.g., a type declaration

17

ASIS-for-GNAT User’s Guide

for an expression as the expression’s type, a defining identifier as a
definition for a simple name, etc.

For example, if we have Element El representing an assignment state-
ment:
X := A + B;

then we can retrieve the structural components of this assignment state-
ment by applying the appropriate structural queries:
El_Var
El_Expr :
Then we can analyze semantic properties of the variable name rep-
resented by El Var and of the expression represented by El Expr by
means of appropriate semantic queries:
El_Var_Def =
Asis.Expressions.Corresponding Name_Definition (El_Var);
El_Expt_Type :=
Asis.Expressions.Corresponding_Expression_Type (El_Expr);
As aresult, EI_Var_Def will be of A_Defining_ldentifier kind and will
represent the defining occurrence of X, while EI_Expt_Type ofakind An_
Ordinary_Type_Declaration will represent the declaration of the type
of the expression A + B.

If we apply Asis.Elements.Enclosing_Element to El_Var or to El_
Expr , we will get back to the Element representing the assignment state-
ment.

Asis.Statements.Assignment_Variable_Name (E1); -- X
Asis.Statements.Assignment_Expression (E1); -- A+ B

An important difference between classifying queries working on
Element s as structural versus semantic is that all the structural queries
must be within one ASIS Compilation_Unit , but for semantic queries
it is typical for the argument of a query to be in one ASIS Compilation_
Unit , while the result of this query is in another ASIS Compilation_
Unit .

3.4 ASIS Error Handling Policy

Only ASIS-defined exceptions (and the Ada predefined Storage_ Error
exception) propagate out from ASIS queries. ASIS exceptions are defined
in the Asis.Exceptions package.

When an ASIS exception is raised, ASIS sets the Error Status
(the possible ASIS error conditions are defined as the values of the
Asis.Errors.Error_Kinds type) and forms the Diagnosis string. An
application can query the current value of the ASIS Error Status by
the Asis.Implementation.Status query, and the current content of the
Diagnosis string by Asis.Implementation.Diagnosis query. An appli-
cation can reset the Error Status and the Diagnosis string by invoking
the Asis.Implementation.Set_Status procedure.

18

Chapter 3: ASIS Overview

Caution: The ASIS way of providing error information is not tasking
safe. The Diagnosis string and Error Kind are global to an entire
partition, and are not “per task”. If ASIS exceptions are raised in more
then one task of a multi-tasking ASIS application, the result of querying
the error information in a particular task may be incorrect.

3.5 Dynamic Typing of ASIS Queries

The ASIS type Element covers all Ada syntactic constructs, and
Compilation_Unit covers all Ada compilation units. ASIS defines an
Element classification hierarchy (which reflects very closely the hierar-
chy of Ada syntactic categories defined in the Ada Reference Manual, and
ASIS similarly defines a classification scheme for ASIS Compilation_
Unit s. For any Element you can get its position in the Element classifi-
cation hierarchy by means of classification queries defined in the package
Asis.Elements . The classification queries for Compilation_Unit s are
defined in the package Asis.Compilation_Units

Many of the queries working on Element s and Compilation_Unit s
can be applied only to specific kinds of Element s and Compilation_Unit s
respectively. For example, it does not make sense to query Assignment_
Variable_ Name for an Element of An_Ordinary Type_ Declaration
kind. An attempt to perform such an operation will be detected at run-
time, and an exception will be raised as explained in the next paragraph.

ASIS may be viewed as a dynamically typed interface. For any
Element structural or semantic query (that is, for a query having an
Element as an argument and returning either an Element or Element
list as a result) a list of appropriate Element kinds is explicitly defined
in the query documentation which immediately follows the declara-
tion of the corresponding subprogram in the code of the ASIS pack-
age. This means that the query can be applied only to argument
Element s being of the kinds from this list. If the kind of the argument
Element does not belong to this list, the corresponding call to this query
raises the Asis.Exceptions.ASIS Inappropriate_Element exception
with Asis.Errors.Value_Error error status set.

The situation for the queries working on Compilation_Unit s is sim-
ilar. If a query lists appropriate unit kinds in its documentation, then
this query can work only on Compilation_Unit s of the kinds from this
list. The query should raise Asis.Exceptions.ASIS_Inappropriate_
Compilation_Unit with Asis.Errors.Value_Error error status set
when called for any Compilation_Unit with a kind not from the list
of the appropriate unit kinds.

If a query has a list of expected Element kinds or expected
Compilation_Unit kinds in its documentation, this query does not raise
any exception when called with any argument, but it produces a mean-

19

ASIS-for-GNAT User’s Guide

ingful result only when called with an argument with the kind from this
list. For example, if Asis.Elements.Statement_Kind query is called for
an argument of A_Declaration kind, it just returns Not_A_Statement
but without raising any exception.

3.6 ASIS Iterator

ASIS provides a powerful mechanism to traverse an Ada unit, the generic
procedure Asis.lterator. Traverse_Element . This procedure makes a
top-down left-to-right (or depth-first) traversal of the ASIS tree (that is,
of the syntax structure of the Ada code viewed as the hierarchy of ASIS
Element s). In the course of this traversal, it applies to each Element
the formal Pre_Operation = procedure when visiting this Element for the
first time, and the formal Post_Operation = procedure when leaving this
Element . By providing specific procedures for Pre_Operation and Post_
Operation when instantiating the generic unit, you can automatically
process all ASIS Element s found in a given ASIS tree.

For example, suppose we have an assignment statement:
X :=F (V);

When called for an Element representing this statement, a Traverse_
Element instantiation does the following (below Pre_Op and Post Op
stand for actual procedures provided for formal Pre Operation and
Post_Operation , and numbers indicate the sequence of calls to Pre_
Opand Post_Op during traversal):

(1 Pre_Op) X :=F (Y) (10 Post_Op)
|
|

| |
(2 Pre_0Op) X (3 Post_0Op) |
|
(4 Pre_Op) F(Y) (9 Post_Op)
|
|
| |
(5 Pre_Op) F (6 Post_Op) (7 Pre_Op) Y (8 Post_Op)

To see in more detail how Traverse Element may be used for rapid
development of a number of useful ASIS applications, try the examples
in Chapter 7 [ASIS Tutorials], page 41.

20

Chapter 3: ASIS Overview

3.7 How to Navigate through the Asis Package
Hierarchy

The following hints and tips may be useful when looking for some specific
information in the ASIS source files:

e Use the short overview of the ASIS packages given in Section 3.2
[ASIS Package Hierarchyl], page 16, to limit your browsing to
a smaller set of ASIS packages (e.g., if you are interested in
what can be done with Compilation_Unit s then look only in
Asis.Compilation_Units ; if you are looking for queries that can
be used to decompose and analyze declarations, limit your search to
Asis.Declarations).

e Inside ASIS packages working with particular kinds of Element s
(Asis.Declarations , Asis.Definitions , Asis.Statements ,
Asis.Expressions and ASIS.Clauses) queries are ordered
according to the order of the description of the corresponding
constructions in the Ada Reference Manual (e.g., package
Asis.Statements starts from a query retrieving labels and ends
with the query decomposing a code statement).

e The names of all the semantic queries (and only ones) start from
Corresponding_... or Implicit_...

e Use comment sentinels given in the specification of the ASIS pack-
ages. A sentinel of the form “-|ER ” (from “Element Reference”)
introduces a new Element kind, and it is followed by a group of
sentinels of the form “--|CR ” (from “Child Reference”), which list
queries yielding the child Element s for the Element just introduced.

21

ASIS-for-GNAT User’s Guide

22

Chapter 4: ASIS Context

4 ASIS Context

From an ASIS application viewpoint we may view an ASIS Context as
a set of ASIS Compilation_Unit s accessible through ASIS queries. The
common ASIS implementation technique is to base an implementation
of an ASIS Context on some persistent data structures created by the
underlying Ada compiler when compiling Ada compilation units main-
tained by this compiler. An ASIS Context can only contain compilable
(that is, legal) compilation units.

4.1 ASIS Context and Tree Files

The ASIS-for-GNAT implementation is based on tree output files, or,
simply, tree files. When called with the special option ‘-gnatt ’, GNAT
creates and outputs a tree file if no error was detected during the com-
pilation. The tree file is a kind of snapshot of the compiler internal data
structures (basically, of the Abstract Syntax Tree (AST)) at the end of
the successful compilation. ASIS then inputs tree files and recreates in
its internal data structures exactly the same picture the compiler had at
the end of the corresponding successful compilation.

An important consequence of the GNAT source-based compilation
model is that the AST contains full information not only about the unit
being compiled, but also about all the units upon which this unit de-
pends semantically. Therefore, having read a tree file, ASIS can in
general provide information about more than one unit. By processing
a tree file, a tool can provide information about the unit for which this
tree was created and about all the units upon which it depends semanti-
cally. However, to process several units, ASIS sometimes has to change
the tree being processed (in particular, this occurs when an application
switches between units which do not semantically depend on each other,
for example, two package bodies). Therefore, in the course of an ASIS
application, ASIS may read different tree files and it may read the same
tree file more then once.

The name of a tree file is obtained from the name of the source file
being compiled by replacing its suffix with *.adt ”. For example, the tree
file for ‘foo.adb ’is named ‘foo.adt .

4.2 Creating Tree Files for Use by ASIS

Neither gcc nor gnatmake will create tree files automatically when you
are working with your Ada program. It is your responsibility as a user
of an ASIS application to create a set of tree files that correctly reflect
the set of the Ada components to be processed by the ASIS application,

23

ASIS-for-GNAT User’s Guide

as well as to maintain the consistency of the trees and the related source
files.

To create a tree file for a given source file, you need to compile the
corresponding source file with the ‘-gnatc ’ and ‘-gnatt ’ options (these
may be combined into the ‘-gnatct ’option. Thus

$ gcc -c -gnatc -gnatt foo.adb

will produce ‘foo.adt ’, provided that foo.adb ’ contains the source of a
legal Ada compilation unit. The ‘-gnatt ’ option generates a tree file,
and ‘gnatc ’ turns off AST expansion. ASIS needs tree files created
without AST expansion, whereas to create an object file, GNAT needs an
expanded AST. Therefore it is impossible for one compilation command
to to produce both a tree file and an object file for a given source file.

The following points are important to remember when generating and
dealing with tree files:

e ASIS-for-GNAT is distributed for a particular version of GNAT. All
the trees to be processed by an ASIS application should be generated
by this specific version of the compiler.

e A tree file is not created if an error has been detected during the
compilation.

e In contrast with object files, a tree file may be generated for any
legal Ada compilation unit, including a library package declaration
requiring a body or a subunit.

e A set of tree files processed by an ASIS application may be incon-
sistent; for example, two tree files may have been created with dif-
ferent versions of the source of the same unit. This will lead to
inconsistencies in the corresponding ASIS Context . See Section 4.4
[Consistency Problems], page 28, for more details.

e Do not move tree, object or source files among directories in the
underlying file system! ASIS might assume an inconsistency be-
tween tree and source files when opening a Context , or you may
get wrong results when querying the source or object file for a given
ASIS Compilation_Unit

e When invoking gcc or gnatmake to create tree files, make sure that
all file and directory names containing relative path information
start from ‘/ *or ../ ’ (‘\ > and ‘.\ ’respectively in MS Windows).
That is, to create a tree file for the source file ‘foo.adb ’ located in
the inner directory named ‘inner ’, you should invoke gcc (assuming
an MS Windows platform) as:

$ gcc -c -gnatc -gnatt .\inner\foo.adb
but not as

$ gcc -c -gnatc -gnatt inner\foo.ads

Otherwise ASIS will not perform correctly.

24

Chapter 4: ASIS Context

e When reading in a tree file, ASIS checks that this tree file was
created with the “-gnatc ’ option, and it does not accept trees created
without this option.

e If called to create a tree, GNAT does not destroy an ‘ALI’ file if the
‘ALl file already exists for the unit being compiled and if this ‘ALI’
file is up-to-date. Moreover, GNAT may place some information from
the existing ‘ALI’ file into the tree file. If you would like to have both
object and tree files for your program, first create the object files,
and then the tree files.

e There is only one extension for tree files, namely ‘.adt ’, whereas
the standard GINAT name convention for the Ada source files uses
different extensions for a spec (‘.ads ’) and for a body (“.adb ’). This
means that if you first generate a tree for a unit’s body:

2

$ gcc -c -gnatc -gnatt foo.adb

and then generate the tree for the corresponding spec:

$ gcc -c -gnatc -gnatt foo.ads

then the tree file foo.adt ’ will be created twice: first for the body,
and then for the spec. The tree for the spec will override the tree for
the body, and the information about the body will be lost for ASIS.
If you first create the tree for a spec, and then for a body, the second
tree will also override the first one, but no information will be lost
for ASIS, because the tree for a body contains full information about
the corresponding spec.

To avoid losing information when creating trees for a set of Ada
sources, try to use gnatmake whenever possible (see Section 8.4 [Us-
ing gnatmake to Create Tree Files], page 45 for more details). Oth-
erwise, first create trees for specs and then for bodies:

$ gcc -c -gnatc -gnatt *.ads
$ gcc -c -gnatc -gnatt *.adb

¢ Reading tree files is a time-consuming operation. Try to minimize
the number of tree files to be processed by your application, and try
to avoid unnecessary tree swappings. (See Chapter 8 [How to Build
Efficient ASIS Applications], page 43, for some tips).

e It is possible to create tree files “on the fly”, as part of the process-
ing of the ASIS queries that obtain units from a Context . In this
case there is no need to create tree files before running an ASIS
application using the corresponding Context mode. Note that this
possibility goes beyond the ASIS Standard, and there are some lim-
itations imposed on some ASIS queries, but this functionality may
be useful for ASIS tools that process only one Compilation_Unit at
a time. See the ASIS-for-GNAT Reference Manual for more details.

25

ASIS-for-GNAT User’s Guide

Note that between opening and closing a Context , an ASIS application
should not change its working directory; otherwise execution of the ap-
plication is erroneous.

4.2.1 Creating Trees for Data Decomposition Annex

Using the ASIS Data Decomposition Annex (DDA) does not require any-
thing special to be done by an ASIS user, with one exception. The
implementation of the ASIS DDA is based on some special annotations
added by the compiler to the trees used by ASIS. An ASIS user should be
aware of the fact that trees created for subunits do not have this special
annotation. Therefore ASIS DDA queries do not work correctly on trees
created for subunits (and these queries might not work correctly if a set
of tree files making up a Context contains a tree created for a subunit).

Thus, when working with the ASIS DDA, you should avoid creating
separate trees for subunits. Actually, this is not a limitation: to create
a tree for a subunit, you should also have the source of the parent body
available. If in this situation you create the tree for the parent body, it
will contain the full information (including DDA-specific annotation) for
all the subunits that are present. From the other side, a tree created for
a single subunit has to contain information about the parent body, so it
has about the same size as the tree for the parent body.

The best way to create trees when using ASIS DDA is to use gnatmake :
it will never create separate trees for subunits.

4.3 Different Ways to Define an ASIS Context in
ASIS-for-GNAT

The Asis.Ada_Environments.Associate query that defines a Context
has the following spec:

procedure Associate
(The_Context : in out Asis.Context;
Name : in Wide_String;
Parameters : in Wide_String := Default_Parameters);
In ASIS-for-GNAT, Name does not have any special meaning, and the
properties of the Context are set by “options” specified in the Parameters
string:
e How to define a set of tree files making up the Context (-C’ options);
e How to deal with tree files when opening a Context and when pro-
cessing ASIS queries (‘-F’ options);
e How to process the source files during the consistency check when
opening the Context (‘-S’ options):

e The search path for tree files making up the Context (‘-T’ options);

26

Chapter 4: ASIS Context

e The search path for source files used for calling GNAT to create a
tree file “on the fly” (I ’ options);

The association parameters may (and in some cases must) also contain
the names of tree files or directories making up search paths for tree
and/or source files. Below is the overview of the Context association pa-

rameters in ASIS-for-GNAT; for full details refer to the ASIS-for-GNAT
Reference Manual.

4.3.1 Defining a set of tree files making up a Context

The following options are available:

“C1’ “One tree” Context , defining a Context comprising a single
tree file; this tree file name should be given explicitly in the
Parameters string.

“CN’ “N-trees” Context , defining a Context comprising a set of
tree files; the names of the tree files making up the Context
should be given explicitly in the Parameters string.

“CA’ “All trees” Context , defining a Context comprising all
the tree files in the tree search path given in the same
Parameters string; if this option is set together with “FM’
option, ASIS can also create new tree files “on the fly” when
processing queries yielding ASIS Compilation_Unit s.

The default option is -CA’.

Note that for -C1’, the Parameters string should contain the name of
exactly one tree file. Moreover, if during the opening of such a Context
this tree file could not be successfully read in because of any reason, the
Asis_Failed exception is raised.

4.3.2 Dealing with tree files when opening a Context and
processing ASIS queries

The following options are available:

“FT’ Only pre-created trees are used, no tree file can be created
by ASIS.
“FS’ All the trees considered as making up a given Context are

created “on the fly”, whether or not the corresponding tree file
already exists; once created, a tree file may then be reused
while the Context remains open. This option can be set only
with ‘-CA’ option.

“FM’ Mixed approach: if a needed tree does not exist, the attempt
to create it “on the fly” is made. This option can only be set
with -CA’ option.

27

ASIS-for-GNAT User’s Guide

The default option is “FT .

Note that the -FT’ and ‘-FM’ options go beyond the scope of the official
ASIS standard. They may be useful for some ASIS applications with
specific requirements for defining and processing an ASIS Context , but
in each case the ramifications of using such non-standard options should
be carefully considered. See the ASIS-for-GNAT Reference Manual for a
detailed description of these option.

4.3.3 Processing source files during the consistency check
when opening a Context

The following options are available:

“SA’ Source files for all the Compilation_Unit s belonging to the
Context (except the predefined Standard package) have to
be available, and all of them are taken into account for con-
sistency checks when opening the Context .

‘-SE’ Only existing source files for all the Compilation_Unit s be-
longing to the Context are taken into account for consistency
checks when opening the Context .

SN’ None of the source files from the underlying file system are
taken into account when checking the consistency of the set
of tree files making up a Context .

The default option is “SA’. See Section 4.4 [Consistency Problems],
page 28, concerning consistency issues in ASIS-for-GNAT.

4.3.4 Setting search paths

>

Using the ‘I °, “gnatec ’ and ‘gnatA ’ options for defining an ASIS
Context 1is similar to using the same optionsfor gcc. The T’ option
is used in the same way, for tree files. For full details about the T’ and
I ’ options, refer to the ASIS-for-GNAT Reference Manual. Note that
the ‘T’ option is used only to locate existing tree files, and it has no effect
for ‘-FS’ Context s. On the other hand, the I ’ option is used only to con-
struct a set of arguments when ASIS calls GNAT to create a tree file “on
the fly”; it has no effect for ‘-FT’ Context s, and it cannot be used to tell
ASIS where it should look for source files for ASIS Compilation_Unit S.

4.4 Consistency Problems

There are two different kinds of consistency problems existing for ASIS-
for-GNAT, and both of them can show up when opening an ASIS Context .

First, a tree file may have been created by another version of GNAT
(see the README file about the coordination between the GNAT and

28

Chapter 4: ASIS Context

ASIS-for-GNAT versions). This means that there is an ASIS-for-GNAT
installation problem.

Second, the tree files may be inconsistent with the existing source
files or with each other.

4.4.1 Inconsistent versions of ASIS and GNAT

When ASIS-for-GNAT reads a tree file created by the version of the com-
piler for which a given version of ASIS-for-GNAT is not supposed to be
used, ASIS treats the situation as an ASIS-for-GNAT installation prob-
lem and raises Program_Error with a corresponding exception message.
In this case, Program_Error is not caught by any ASIS query, and it
propagates outside ASIS.! Note that the real cause may be an old tree
file you have forgotten to remove when reinstalling ASIS-for-GNAT. This
is also considered an installation error.

ASIS uses the tree files created by the GNAT compiler installed on
your machine, and the ASIS implementation includes some compiler
components to define and to get access to the corresponding data struc-
tures. Therefore, the version of the GNAT compiler installed on your
machine and the version of the GNAT compiler whose sources are used
as a part of the ASIS implementation should be close enough to define
the same data structures. We do not require these versions to be exactly
the same, and, by default, when ASIS reads a tree file it only checks
for significant differences. That is, it will accept tree files from previous
versions of GNAT as long as it is possible for such files to be read. In
theory, this check is not 100% safe; that is, a tree created by one version
of GNAT might not be correctly processed by ASIS built with GNAT
sources taken from another version. But in practice this situation is
extremely unlikely.

An ASIS application may set a strong GNAT version check by provid-
ing the “-vs ’ parameter for the ASIS Initialize procedure, see ASIS-for-
GNAT Reference Manual for more details. If the strong version check
is set, then only a tree created by exactly the same version of GNAT
whose sources are used as a part of the ASIS implementation can be
successfully read in, and Program_Error will be raised otherwise.

Be careful when using a when others exception handler in your ASIS
application: do not use it just to catch non-ASIS exceptions and to ignore
them without any analysis.

1 This is not a violation of the requirement stated in the ASIS definition that only ASIS-
defined exceptions are allowed to propagate outside ASIS queries, because in this case
you do not have ASIS-for-GNAT properly installed and therefore you do not have a
valid ASIS implementation.

29

ASIS-for-GNAT User’s Guide

4.4.2 Consistency of a set of tree and source files

When processing a set of more then one tree file making up the same
Context , ASIS may face a consistency problem. A set of tree files is
inconsistent if it contains two trees representing the same compilation
unit, and these trees were created with different versions of the source
of this unit. A tree file is inconsistent with a source of a unit represented
by this tree if the source file currently available for the unit differs from
the source used to create the tree file.

When opening a Context (via the Asis.Ada_Environments.Open
query), ASIS does the following checks for all the tree files making up
the Context :

e Ifthe -SA’ option is set for the Context , ASIS checks that for every
Compilation_Unit represented by a tree, the source file is available
and it is the same as the source file used to create the tree (a tree

file contains references to all the source files used to create this tree
file).

e Ifthe -SE’ option is set for the Context , then if for a Compilation_
Unit represented by a tree a source file is available, ASIS checks
that this source is the same as the source used to create the tree.
If for a Compilation_Unit belonging to a Context a source file is
not available, ASIS checks that all the tree files containing this unit
were created with the same version of the source of this unit.

e If the “SN’ option is set for the Context , ASIS checks that all the
trees were created from the same versions of the sources involved.

If any of these checks fail, the Asis_Failed exception is raised as
a result of opening a Context . If the Context has been successfully
opened, you are guaranteed that ASIS will process only consistent sets
of tree and source files until the Context is closed (provided that this set
is not changed by some non-ASIS actions).

4.5 Processing Several Context s at a Time

If your application processes more then one open Context at a time, and
if at least one of the Context s is defined with an -FS’ or ‘-FM’ option, be
aware that all the tree files created by ASIS “on the fly” are placed in
the current directory. Therefore, to be on the safe side when processing
several opened Context s at a time, an ASIS application should have at
most one Context defined with an -FS’ or “-FM’ option. If the application
has such a Context , all the other Context s should not use tree files
located in the current directory.

30

Chapter 4: ASIS Context

4.6 Using ASIS with a cross-compiler

If you would like to use ASIS with a cross-compiler, you should use this
cross-compiler to create the tree files to be used for the ASIS Context
defined with -FS’ option. If you would like to use trees created on the fly
(that is, to use a Context defined with the -FS’ or ‘-FM’ option), you have
to tell ASIS which compiler should be called to perform this function.
There are two ways to do this.

e You can use the --GCC’ option in the Context definition to specify
explicitly the name of the command to be called to create the trees
on the fly

e You may use the prefix of the name of your ASIS tool to indicate
the name of the command to be used to call the compiler. If the
name of your tool contains a hyphen character “-”, for example
some_specific-foo , then ASIS will try to call the command with
the name created as a concatenation of the tool name prefix pre-
ceding the rightmost hyphen, the hyphen character itself, and gcc .
For example, for some_specific-foo , ASIS will try to call some_
specific-gcc to create the tree file.

The algorithm for defining the name of the command to be used to
create trees on the fly is as follows. If the --GCC’ option is used in the
Context definition and if the name that is the parameter of this option
denotes some executable existing in the path, this executable is used.
Otherwise ASIS tries to define the name of the executable from the
name of the ASIS application. If the corresponding executable exists on
the path, it is used. Otherwise the standard gcc installation is used.

31

ASIS-for-GNAT User’s Guide

32

Chapter 5: ASIS Interpreter asistant

5 ASIS Interpreter asistant

This chapter describes asistant , an interactive interface to ASIS
queries.

5.1 asistant Introduction

The asistant tool allows you to use ASIS without building your own
ASIS applications. It provides a simple command language that allows
you to define variables of ASIS types and to assign them values by calling
ASIS queries.

This tool may be very useful while you are learning ASIS: it lets you
try different ASIS queries and see the results immediately. It does not
crash when there is an error in calling an ASIS query (such as passing
an inappropriate Element); instead asistant reports an error and lets
you try again.

You can also use asistant as a debug and “ASIS visualization” tool
in an ASIS application project. If you have problems finding out which
query should be used in a given situation, or why a given query does not
work correctly with a given piece of Ada code, you may use asistant to
reconstruct the situation that causes the problems, and then experiment
with ASIS queries.

Though primarily an interactive tool, asistant also can interpret
sequences of commands written to a file (called a “script file” below).
The asistant tool can also store in a file the log of an interactive session
that can then be reused as a script file.

The full documentation of asistant may be found in the asistant
Users’ Guide (file ‘asistant.ug ’in the asistant source directory). Here
is a brief overview of asistant usage.

The executable for asistant is created in the asistant source direc-
tory as a part of the standard procedure of installing ASIS-for-GNAT
as an Ada library (or it is placed in the ‘GNATPRO/bin’ directory when
installing ASIS from the binary distribution). Put this executable some-
where on your path!, and then type “asistant ” to call asistant in an
interactive mode. As a result, the program will output brief information
about itself and then the asistant prompt “>” will appear:

ASIStant - ASIS Tester And iNTerpreter, vi1.2

(C) 1997-2002, Free Software Foundation, Inc.
Asis Version: ASIS 2.0.R

>

1 You do not have to do this if you have installed ASIS from the binary distribution,
because the executable for asistant has been added to other GNAT executables

33

ASIS-for-GNAT User’s Guide

Now you can input asistant commands (asistant supports in its com-
mand language the same form of comments as Ada, and names in
asistant are not case-sensitive):

>Initialize ("") -- the ASIS Initialize query is called with an
-- empty string as a parameter

>set (Cont) -- the non-initialized variable Cont of the ASIS
-- Context type is created

>Associate (Cont, "", "") -- the ASIS Associate query with two empty
-- strings as parameters is called for Cont

>0Open (Cont) -- the ASIS Open query is called for Cont

>set (C_U, Compilation_Unit_Body ("Test", Cont)) -- the variable C_U
-- of the ASIS Compilation_Unit type is created and initialized as
-- the result of the call to the ASIS query Compilation_Unit_Body.
-— As a result, C_U will represent a compilation unit named "Test"
-- and contained in the ASIS Context named Cont

>set (Unit, Unit_Declaration (C_U)) -- the variable Unit of the ASIS
-- Element type is created and initialized as the result of calling
-- the ASIS Unit_Declaration query

>print (Unit) -- as a result of this command, some information about
-- the current value of Unit will be printed (a user can set
-- the desired level of detail of this information):

A_PROCEDURE_BODY_DECLARATION at (1 : 1)-(9 : 9)

-- suppose now, that we do make an error - we call an ASIS query for
-- an inappropriate element:

>set (Elem, Assignment_Expression (Unit))

-- ASIS will raise an exception, asistant will output the ASIS debug
-- information:

Exception is raised by ASIS query ASSIGNMENT_EXPRESSION.

Status : VALUE_ERROR

Diagnosis

Inappropriate Element Kind in Asis.Statements.Assignment_Expression

-- it does not change any of the existing variables and it prompts
-- a user again:

34

Chapter 5: ASIS Interpreter asistant

5.2 asistant commands

The list of asistant commands given in this section is incomplete; its
purpose is only to give a general idea of asistant ’s capabilities. Stan-
dard metalanguage is assumed (i.e., “[construct] ” denotes an optional
instance of “construct”).

Help [(name)]

Set (hame)

Outputs the profile of the ASIS query “name”; when called
with no argument, generates general asistant help infor-
mation.

Creates a (non-initialized) variable “name” of the ASIS
Context type.

Set (hame, expr)

Print (expr)

Evaluates the expression “expr ” (it may be any legal
asistant expression; a call to some ASIS query is the most
common case in practice) and creates the variable “name” of
the type and with the value of “expr ”.

Evaluates the expression “expr ” and outputs its value (some
information may be omitted depending on the level specified
by the PrintDetail command).

Run (‘filename’)

Pause

Run

Browse

Launches the script from a file ‘filename ’, reading further
commands from it.

Pauses the current script and turns asistant into interactive
mode.

Resumes a previously Paused script.

Switches asistant into step-by-step ASIS tree browsing.

Log (‘filename’)

Log

PrintDetail

Opens the file filename ’ for session logging.

Closes the current log file.

Toggles whether the Print command outputs additional in-
formation.

Quit [(exit-status)]

Quits asistant

35

ASIS-for-GNAT User’s Guide

5.3 asistant variables

The asistant tool lets you define variables with Ada-style (simple)
names. Variables can be of any ASIS type and of conventional Integer ,
Boolean and String type. All the variables are created and assigned
dynamically by the Set command; there are no predefined variables.

There is no type checking in asistant : each call to a Set command
may be considered as creating the first argument from scratch and ini-
tializing it by the value provided by the second argument.

5.4 Browsing an ASIS tree

You perform ASIS tree browsing by invoking the asistant service func-
tion Browse . This will disable the asistant command interpreter and
activate the Browser command interpreter. The Browser Q command
switches back into the asistant environment by enabling the asistant
command interpreter and disabling the Browser interpreter.

Browse has a single parameter of Element type, which establishes
where the ASIS tree browsing will begin. Browse returns a result of type
Element , namely the Element at which the tree browsing was stopped.
Thus, if you type:

> set (e0, Browse (el))
you will start ASIS tree browsing from el; when you finish browsing, e0
will represent the last Element visited during the browsing.

If you type:

> Browse (el)
you will be able to browse the ASIS tree, but the last Element of the
browsing will be discarded.

Browser displays the ASIS Element it currently points at and expects
one of the following commands:

u Go one step up the ASIS tree (equivalent to calling the ASIS
Enclosing_Element query);

D Go one step down the ASIS tree, to the left-most component
of the current Element

N Go to the right sibling (to the next Element in the ASIS tree
hierarchy)

P Go to the left sibling (to the previous Element in the ASIS

tree hierarchy)

\k1k2 where k1 is either Dor d, and k2 is either T or t . Change the
form of displaying the current Element : D turns ON display-

36

Chapter 5: ASIS Interpreter asistant

ing the debug image, d turns it OFF. T turns ON displaying
the text image, t turns it OFF.

<SPACE><query>
Call the <query> for the current Element .

Q Go back to the asistant environment; the Browser com-
mand interpreter is disabled and the asistant command
interpreter is enabled with the current Element returned as
a result of the call to Browse .

Browser immediately interprets the keystroke and displays the new cur-
rent Element . If the message "Cannot go in this direction.” appears,
this means that traversal in this direction from current node is impossi-
ble (that is, the current node is either a terminal Element and it is not
possible to go down, or it is the leftmost or the rightmost component of
some Element , and it is not possible to go left or right, or it is the top
Element in its enclosing unit structure and it is not possible to go up).

It is possible to issue some ordinary ASIS queries from inside the
Browser (for example, semantic queries). These queries should accept
one parameter of type Element and return Element as a result.

When you press <SPACE3 you are asked to enter the query name. If
the query is legal, the current Element is replaced by the result of the
call to the given query with the current Element as a parameter.

5.5 Example

Suppose we have an ASIS Compilation_Unit Demo in the source file
‘demo.adb ’:

procedure Demo is
function F (I : Integer) return Integer;

function F (I : Integer) return Integer is
begin

return (I + 1);
end F;

N : Integer;

begin
N :=F (3);
end Demo;
Suppose also that the tree for this source is created in the current di-
rectory. Below is a sequence of asistant commands which does process
this unit. Explanation is provided via asistant = comments.

initialize ("")

37

ASIS-for-GNAT User’s Guide

-- Create and open a Context comprising all the tree files
-- 1in the current directory:

Set (Cont)

Associate (Cont, "", "")

Open (Cont)

-- Get a Compilation_Unit (body) named "Demo" from this Context:

Set (CU, Compilation_Unit_Body ("Demo", Cont))

-- Go into the unit structure and get to the expression
-- in the right part of the assignment statements in the unit body:

Set (Unit, Unit_Declaration (CU))

Set (Stmts, Body_Statements (Unit, False))
Set (Stmt, Stmts (1))

Set (Expr, Assignment_Expression (Stmt))

-- Output the debug image and the text image of this expression:

Print (Expr)
Print (Element_Image (Expr))

-- This expression is of A_Function_Call kind, so it’s possible to ask
-- for the declaration of the called function:

Set (Corr_Called_Fun, Corresponding_Called_Function (Expr))

-- Print the debug and the text image of the declaration of the called
-- function:

Print (Corr_Called_Fun)
Print (Element_Image (Corr_Called_Fun))

—-- Close the asistant session:

Quit

38

Chapter 6: ASIS Application Templates

6 ASIS Application Templates

The subdirectory ‘templates ’ of the ASIS distribution contains a set of
Ada source components that can be used as templates for developing
simple ASIS applications. The general idea is that you can easily build
an ASIS application by adding the code performing some specific ASIS
analysis in well-defined places in these templates.

Refer to the ASIS tutorial’s solutions for examples of the use of the
templates.

For more information see the ‘READMEfile in the ‘templates ’ subdi-
rectory.

39

ASIS-for-GNAT User’s Guide

40

Chapter 7: ASIS Tutorials

7 ASIS Tutorials

The subdirectory ‘tutorial ’ of the ASIS distribution contains a simple
hands-on ASIS tutorial which may be useful in getting a quick start
with ASIS. The tutorial contains a set of simple exercises based on the
asistant tool and on a set of the ASIS Application Templates provided
as a part of the ASIS distribution. The complete solutions are provided
for all the exercises, so the tutorial may also be considered as a set of
ASIS examples.

For more information see the ‘READMEfile in the ‘tutorial > subdirec-
tory.

41

ASIS-for-GNAT User’s Guide

42

Chapter 8: How to Build Efficient ASIS Applications

8 How to Build Efficient ASIS
Applications

This chapter identifies some potential performance issues with ASIS
applications and offers some advice on how to address these issues.

8.1 Tree Swapping as a Performance Issue

If an ASIS Context comprises more then one tree, then ASIS may need to
switch between different trees during an ASIS application run. Switch-
ing between trees may require ASIS to repeatedly read in the same set
of trees, and this may slow down an application considerably.

Basically, there are two causes for tree swapping:

e Processing of semantically independent units. Suppose in Context
Cont we have units P and Qthat do not depend on each other, and
Cont does not contain any third unit depending on both P and Q
This means that P and Qcannot be represented by the same tree. To
obtain information about P, ASIS needs to access the tree ‘p.adt ’,
and to get some information about Q, ASIS needs ‘g.adt ’. Therefore,
if an application retrieves some information from P, and then starts

processing Q ASIS has to read ‘g.adt .

e Processing of information from dependent units. A unit U may be
present not only in the tree created for U, but also in all the trees cre-
ated for units which semantically depend upon U. Suppose we have
a library procedure Proc depending on a library package Pack, and
in the set of trees making up our Context we have trees ‘pack.adt ’
and ‘proc.adt ’. Suppose we have some Element representing a com-
ponent of Pack,, when ‘pack.adt ’was accessed by ASIS, and suppose
that because of some other actions undertaken by an application
ASIS changed the tree being accessed to ‘proc.adt ’. Suppose that
now the application wants to do something with the Element rep-
resenting some component of Pack and obtained from ‘pack.adt .
Even though the unit Pack is represented by the currently accessed
tree ‘proc.adt ’, ASIS has to switch back to ‘pack.adt ’, because all
the references into the tree structure kept as a part of the value of
this Element are valid only for ‘pack.adt ’

8.2 Queries That Can Cause Tree Swapping

In ASIS-for-GNAT, tree swapping can currently take place only when
processing queries defined in:

Asis.Elements

43

ASIS-for-GNAT User’s Guide

Asis.Declarations
Asis.Definitions
Asis.Statements
Asis.Clauses
Asis.Expressions
Asis.Text

but not for those queries in the above packages that return enumeration
or boolean results.

For any instantiation of Asis.lterator.Traverse_ Element , the
traversal itself can cause at most one tree read to get the tree appropriate
for processing the Element to be traversed, but procedures provided as
actuals for Pre_Operation = and Post_Operation = may cause additional
tree swappings.

8.3 How to Avoid Unnecessary Tree Swapping

To speed up your application, try to avoid unnecessary tree swapping.
The following guidelines may help:

e Trytominimize the set of tree files processed by your application. In
particular, try to avoid having separate trees created for subunits.

Minimizing the set of tree files processed by the application also cuts
down the time needed for opening a Context . Try to use gnatmake
to create a suitable set of tree files covering an Ada program for
processing by an ASIS application.

e Choose the Context definition appropriate to your application. For
example, use “one tree” Context (-C1’) for applications that are lim-
ited to processing single units (such as a pretty printer or gnatstub).
By processing the tree file created for this unit, ASIS can get all the
syntactic and semantic information about this unit. Using the “one
tree” Context definition, an application has only one tree file to read
when opening a Context , and no other tree file will be read during
the application run. An “N-trees” Context is a natural extension
of “one tree” Context for applications that know in advance which
units will be processed, but opening a Context takes longer, and
ASIS may switch among different tree files during an application
run. Use “all trees” Context only for applications which are not tar-
geted at processing a specific unit or a specific set of units, but are
supposed to process all the available units, or when an application
has to process a large system consisting of a many units. When us-
ing an application based on an “all trees” Context , use the approach
for creating tree files described above to minimize a set of tree files
to be processed.

e In your ASIS application, try to avoid switching between processing

44

Chapter 8: How to Build Efficient ASIS Applications

units or sets of units with no dependencies among them; such a
switching will cause tree swapping.

e If you are going to analyze a library unit having both a spec and a
body, start by obtaining an Element from the body of this unit. This
will set the tree created for the body as the tree accessed by ASIS,
and this tree will allow both the spec and the body of this unit to be
processed without tree swapping.

e To see a “tree swapping profile” of your applica-
tion wuse the “dt’ debug flag when initializing ASIS
(Asis.Implementation.Initialize ("-dt")). The information
returned may give you some hints on how to avoid tree swapping.

8.4 Using gnatmake to Create Tree Files

To create a suitable set of tree files, you may use gnatmake . GNAT
creates an ‘ALl ’ file for every successful compilation, whether or not code
has been generated. Therefore, it is possible to run gnatmake with the
‘gnatc ’ and ‘-gnatt ’ options; this will create the set of tree files for all
the compilation units needed in the resulting program. Below we will
use gnatmake to create a set of tree files for a complete Ada program
(partition). You may adapt this approach to an incomplete program or
to a partition without a main subprogram, applying gnatmake to some
of its components.

Using gnatmake for creating tree files has another advantage: it will
keep tree files consistent among themselves and with the sources.

There are two different ways to use gnatmake to create a set of tree
files.

First, suppose you have object, ‘ALI’ and tree files for your program
in the same directory, and ‘main_subprogram.adb ’ contains the body of
the main subprogram. If you run gnatmake as

$ gnatmake -f -c ... main_subprogram.adb -cargs -gnatc -gnatt
or simply as
$ gnatmake -f -c -gnatc -gnatt ... main_subprogram.adb

this will create the trees representing the full program for which main_
subprogram is the main procedure. The trees will be created “from
scratch”; that is, if some tree files already exist, they will be recreated.
This is because gnatmake is being called with the “f ’ option (which
means “force recompilation”). Usng gnatmake without the -f ’ option for
creating tree files is not reliable if your tree files are in the same directory
as the object files, because object and tree files “share” the same set of
‘ALl files. If the object files exist and are consistent with the ‘ALI’ and
source files, the source will not be recompiled for creating a tree file
unless the -f ’ option is set.

45

ASIS-for-GNAT User’s Guide

A different approach is to combine the tree files and the associated
‘ALl files in a separate directory, and to use this directory only for keep-
ing the tree files and maintaining their consistency with source files.
Thus, the object files and their associated ‘ALl ’ files should be in another
directory. In this case, by invoking gnatmake through:

$ gnatmake -c ... main_subprogram.adb -cargs -gnatc -gnatt
or simply:
$ gnatmake -c -gnatc -gnatt ... main_subprogram.adb

(that is, without forcing recompilation) you will still obtain a full and
consistent set of tree files representing your program, but in this case
the existing tree files will be reused.

See the next chapter for specific details related to Ada compilation
units belonging to precompiled Ada libraries.

46

—— Chapter 9: Processing an Ada Library by an ASIS-Based Tool

9 Processing an Ada Library by an
ASIS-Based Tool

When an Ada unit to be processed by some ASIS-based tool makes use

of an Ada library, you need to be aware of the following features of using
Ada libraries with GNAT:

e An Ada library is a collection of precompiled Ada components. The
sources of the Ada components belonging to the library are present,
but if your program uses some components from a library, these com-
ponents are not recompiled by gnatmake (exceptin circumstances de-
scribed below). For example, Ada.Text IO is not recompiled when
you invoke gnatmake on a unit that with s Ada.Text_IO

e According to the GNAT source-based compilation model, the spec of
a library component is processed when an application unit depend-
ing on such a component is compiled, but the body of the library
component is not processed. As a result, if you invoke gnatmake to
create a set of tree files covering a given program, and if this pro-
gram references an entity from an Ada library, then the set of tree
files created by such a call will contain only specs, but not bodies for
library components.

e Any GNAT installation contains the GNAT Run-Time Library (RTL)
as a precompiled Ada library. In some cases, a GNAT installation
may contain some other libraries (such as Win32Ada Binding on a
Windows GNAT platform).

e In ASIS-for-GNAT, there is no standard way to define whether a
given Compilation_Unit belongs to some precompiled Ada library
other than the GNAT Run-Time Library (some heuristics may be
added to Asis.Extensions). ASIS-for-GNAT classifies (by means
of the Asis.Compilation_Units.Unit_Origin query) a unit as A_
Predefined_Unit , ifitis from the Run-Time Library and if it is men-
tioned in the Ada Reference Manual, Annex A, Paragraph 2 as an
Ada 95 predefined unit; a unit is classified as An_Implementation_
Unit if is belongs to Run-Time Library but is not mentioned in the
paragraph just cited. Components of Ada libraries other than the
Run-Time Library are always classified as An_Application_Unit ;

e It is possible to recompile the components of the Ada libraries used
by a given program. To do this, you have to invoke gnatmake for this
program with the -a’ option. If you create a set of tree files for your
program by invoking gnatmake with the “-a’ option, the resulting
set of tree files will contain all the units needed by this program to
make up a complete partition.

47

ASIS-for-GNAT User’s Guide

Therefore, there are two possibilities for an ASIS-based tool if processing
(or avoiding processing) of Ada libraries is important for the functionality
of the tool:

e If the tool is not to process components of Ada libraries, then a

set of tree files for this tool may be created by invoking gnatmake
without the “a’ option (this is the usual way of using gnatmake).
When the tool encounters a Compilation_Unit which represents
a spec of some library unit, and for which Asis.Compilation_
Units.ls_Body_Required returns True , but Asis.Compilation_
Units.Corresponding_Body yields a result of A_Nonexistent_Body
kind, then the tool may conclude that this library unit belongs to
some precompiled Ada library.

If a tool needs to process all the Ada compilation units making up a

program, then a set of tree files for this program should be created
by invoking gnatmake with the ‘-a’ option.

You can use Asis.Compilation_units.Unit_Origin to filter out Run-
Time Library components.

48

Chapter 10: Compiling, Binding and Linking Applications with ASIS-for-GNAT

10 Compiling, Binding and Linking
Applications with ASIS-for-GNAT

If you have installed ASIS-for-GNAT as an Ada library and added the
directory containing all source, ‘ALl ’ and library files of this library to the
values of the ADA_INCLUDE_PATHand ADA_OBJECTS_PATHnvironment
variables (which is a recommended way to install ASIS-for-GNAT), you
do not need to supply any ASIS-specific options for gcc or for gnatbind
when working with your ASIS applications. However for gnatlink you
have to provide an additional parameter ‘lasis
$ gnatlink my_application -lasis

When using gnatmake , you also have to provide this linker parameter
whenever a call to gnatmake invokes gnatlink

$ gnatmake ... my_application -largs -lasis

You do not need these linker parameters if a call to gnatmake is not
creating the executable:

$ gnatmake -c ... my_application

If you have installed ASIS-for-GNAT without building an ASIS library,
then you have to do the following when working with your ASIS appli-
cation code:

e When compiling, you have to put catalogs with ASIS-for-GNAT
implementation sources (asis-[version#]-src/asis and asis-
[version#]-src/gnat) in the search path for the source files. You
may do this either by the ‘-1 ’ option to gcc or by adding these direc-
tories to the ADA_INCLUDE_PATHnvironment variable.

e When binding, you have to put the directory where all the object and
‘ALl files for the ASIS-for-GNAT components were created (asis-
[version#]-src/obj , if you followed the manual installation pro-
cedure described in the top-level ASIS ‘READMEfile) in the search
path for gnatbind . You can do this either with the ‘a0’ option
to gnatbind or by adding this directory to the ADA_OBJECTS_PATH
environment variable.

If you have added directories with ASIS-for-GNAT source, object and
‘ALl files to the values of the GNAT-specific environment variables, you
do not have to provide any ASIS-specific parameter when using gnatmake
for your ASIS application.

49

ASIS-for-GNAT User’s Guide

50

Chapter 11: ASIS-for-GNAT Warnings
11 ASIS-for-GNAT Warnings

The ASIS definition specifies the situations when certain ASIS-defined
exceptions should be raised, and ASIS-for-GNAT conforms to these rules.

ASIS-for-GNAT also generates warnings if it considers some situation
arising during the ASIS query processing to be potentially wrong, and if
the ASIS definition does not require raising an exception. Usually this
occurs with actual or potential problems in an implementation-specific
part of ASIS, such as providing implementation-specific parameters to
the queries Initialize , Finalize and Associate or opening a Context .

There are three warning modes in ASIS-for-GNAT:
default Warning messages are output to Standard_Error
suppress Warning messages are suppressed.

treat as error
A warning is treated as an error by ASIS-for-GNAT: instead
of sending a message to Standard Error , ASIS-for-GNAT
raises Asis_Failed and converts the warning message into
the ASIS Diagnosis string. ASIS Error Status depends on
the cause of the warning.
The ASIS-for-GNAT warning mode may be set when ini-
tializing the ASIS implementation. The ‘“ws’ parameter of
Asis.Implementation.Initialize query suppresses warnings, the
‘we’ parameter of this query sets treating all the warnings as errors.
When set, the warning mode remains the same for all Context s
processed until ASIS-for-GNAT has completed.

51

ASIS-for-GNAT User’s Guide

52

— Chapter 12: Exception Handling and Reporting Internal Bugs

12 Exception Handling and Reporting
Internal Bugs

According to the ASIS Standard, only ASIS-defined exceptions can be
propagated from ASIS queries. The same holds for the ASIS Extensions
queries supported by ASIS-for-GNAT.

If a non-ASIS exception is raised during the processing of an ASIS or
ASIS extension query, this symptom reflects an internal implementation
problem. Under such a circumstance, by default the ASIS query will
output some diagnostic information to Standard_Error and then exit to
the OS; that is, the execution of the ASIS application is aborted.

In order to allow the execution of an ASIS-based program to con-
tinue even in case of such internal ASIS implementation errors, you
can change the default behavior by supplying appropriate parameters
to Asis.Implementation.Initialize . See ASIS-for-GNAT Reference
Manual for more details.

53

ASIS-for-GNAT User’s Guide

54

— Chapter 13: File Naming Conventions and Application Name Space

13 File Naming Conventions and
Application Name Space

Any ASIS application depends on the ASIS interface components; an
ASIS application programmer thus needs to be alert to (and to avoid)
clashes with the names of these components.

ASIS-for-GNAT includes the full specification of the ASIS Standard,
and also adds the following children and grandchildren of the root Asis
package:

e Asis.Extensions hierarchy (the source file names start with
‘asis-extensions ’) defines some useful ASIS extensions, see ASIS
Reference Manual for more details.

e Asis.Set Get (the source files ‘asis-set _get.ad(b|s) > respec-
tively) contains the access and update subprograms for the imple-
mentation of the main ASIS abstractions defined in Asis .

e Asis.Text.Set Get (the source files ‘asis-text-set_get.ad(b|s)
respectively) contains the access and update subprograms for the
implementation of the ASIS abstractions defined in Asis.Text ;

All other ASIS-for-GNAT Ada implementation components belong to
the hierarchy rooted at the package A4G (which comes from “ASIS-for-
GNAT”).

ASIS-for-GNAT also incorporates the following GNAT components as
a part of the ASIS implementation:

Alloc
Atree
Casing
Csets
Debug
Einfo
Elists
Fname
Gnatvsn
Hostparm
Krunch
Lib
Lib.List
Lib.Sort
Namet
Nlists
Opt
Output
Repinfo
Scans
Sinfo
Sinput

b

55

ASIS-for-GNAT User’s Guide

Snames
Stand
Stringt
Table
Tree_In
Tree_To
Types
Uintp
Uname
Urealp
Widechar

Therefore, in your ASIS application you should not add children at any
level of the Asis or A4G hierarchies, and you should avoid using any
name from the list of the GNAT component names above.

All Ada source files making up the ASIS implementation for GNAT
(including the GNAT components being a part of ASIS-for-GNAT) follow
the GNAT file name conventions without any name “krunch”ing.

56

Index

‘=GCC’ option 31
‘-gnatc’ option............ 12, 24, 25, 45
‘—gnatct’ option..................... 24
‘-gnatt’ option............ 12, 23, 24, 45
‘~lasis’option...................... 49

A

MG package 55
Ada predefined library (processing by an
ASIS tool) ... 47
Ada_Environments.Close procedure... 10
ADA_INCLUDE_PATH environment variable
................................ 49
ADA_OBJECTS_PATH environment variable
................................ 49
‘adt’ extension for tree files........... 23
All trees Context 27
ASIS application templates........... 39
ASIS Example 7,37
ASIS Tterator. ..., 20
ASIS overview 15
Asis package 5, 16, 55
ASIS package hierarchy 16
ASIS Performance 43
ASIS queries 5,15, 16, 17, 23, 33
ASIS queries (dynamic typing)........ 19
ASIS Tutorials. 41
ASIS-for-GNAT 11, 23, 24, 26, 29, 33,
49
Asis.Ada_Environments package...... 16
Asis.Ada_Environments.Associate query
................................ 26
Asis.Ada_Environments.Associate query
(example) 8
Asis.Ada_Environments.Close procedure
(example) 9
Asis.Ada_Environments.Containers
package.................. .. 15
Asis.Ada_Environments.Dissociate
procedure....................... 11
Asis.Ada_Environments.Dissociate
procedure (example) 9
Asis.Ada_Environments.Open procedure
................................ 10

Chapter 13: Index

Asis.Ada_Environments.Open procedure

(example) 8
Asis.Ada_Environments.Open query .. 30
ASIS.Clauses package 17
Asis.Compilation_Units package.... 16,

19

Asis.Compilation_
Units.Corresponding_Body function

................................ 48
Asis.Compilation_Units.Is_Body_
Required function............... 48
Asis.Compilation_Units.Relations
package........... ... L 17
Asis.Compilation_Units.Unit_Full_
Name query (example)............. 8
Asis.Compilation_Units.Unit_Kind
query (example) 9
Asis.Compilation_units.Unit_Origin
................................ 48
Asis.Compilation_Units.Unit_Origin
QUETY «voee e e e 47
Asis.Compilation_Units.Unit_Origin
query (example) 9
Asis.Declarations package.......... 17
Asis.Definitions package........... 17
Asis.Elements package........... 17,19
Asis.Elements.Enclosing_Element query
................................ 17
Asis.Elements.Statement_Kind query
................................ 20
Asis.Errors package................. 17
Asis.Errors.Error_Kinds type....... 18
Asis.Errors.Value_Error error status
................................ 19
Asis.Exceptions package......... 17, 18
Asis.Exceptions.ASIS_Failed exception
(example) 9
Asis.Exceptions.ASIS_Inappropriate_
Compilation_Unit exception 19
Asis.Exceptions.ASIS_Inappropriate_
Compilation_Unit exception
(example) 9
Asis.Exceptions.ASIS_Inappropriate_
Context exception (example) 9
Asis.Exceptions.ASIS_Inappropriate_
Element exception............... 19
Asis.Expressions package 17

57

ASIS-for-GNAT User’s Guide

Asis.Extensions package......... 47, 55
Asis.Ids package.................... 16
Asis.Implementation package........ 16
Asis.Implementation.Associate
procedure 10
Asis.Implementation.Diagnosis query
................................ 18
Asis.Implementation.Finalize
procedure....................... 11
Asis.Implementation.Finalize
procedure (example) 9
Asis.Implementation.Initialize
procedure 10, 45, 51
Asis.Implementation.Initialize
procedure (example) 8
Asis.Implementation.Permissions
package........ L 16
Asis.Implementation.Set_Status
procedure....................... 18
Asis.Implementation.Status function
(example)....................... 10

Asis.Implementation.Status query .. 18
Asis.Iterator.Traverse_Element generic

procedure.................... 20, 44
Asis.Set_Get package 55
Asis.Statements package 17
Asis.Text package 16, 17
Asis.Text.Set_Get package.......... 55
Asis_Failed exception........ 27, 30, 51
asistant............. 33
asistant commands................. 35
asistant variables................... 36
AST (Abstract Syntax Tree) 23, 24
B
Browse (asistant command)......... 35
Browser (asistant utility) 36

C

Compilation_Unit type.... 10, 15, 16, 19
Compilation_Unit type (example_ 8
Consistency problems 28
Container type...................... 15
Context type.... 10, 11, 12, 15, 16, 23, 26
Context type (example) 7

58

D

Data Decomposition Annex (DDA).... 26
Diagnosis string 18, 51

E

Element type.............. 10, 15, 16, 19
Enclosing_Element query......... 17, 36
Erroneous execution 10, 26
Error Handling 18

G

gnatmake (for creating tree files) 45

H

Help (asistant command) 35

Linetype..................... ... 10, 16
Log (asistant command) 35

N

N-trees Context 27

(0]

One-tree Context 27

P

Pause (asistant command).......... 35
Print (asistant command).......... 35
PrintDetail (asistant command).... 35
Program_Error exception............. 29

Q

Quit (asistant command) 35

R

Run (asistant command) 35

S

Script file (for asistant).......... 33, 35
Semantic ASIS queries 17
Set (asistant command) 35
Spantype........... 16
Spec (definition of term)............... 7
Storage_Error (propagated from ASIS
qQUETies)ooviiiiii 18
Structural ASIS queries 17

Chapter 13: Index

Subunits and the Data Decomposition

Annex ... 26
T
Tasking and error information 19
Templates (for ASIS applications). 39
Tools (that can use ASIS) 5
Tree file. 12, 13, 23, 24, 25, 26, 29, 30
Tree swapping (ASIS performance issue)

......................... 95, 43, 44
Warnings (from ASIS-for-GNAT) 51

59

ASIS-for-GNAT User’s Guide

60

Table of Contents

About ThisGuide......cccvivriiriiriireeeeneeennnns 1
What This Guide Contains. ..., 1
What You Should Know Before Reading This Guide 2
Related Information. 2
CONVENEIONS . & ottt e ettt e e e e e e e 2

1 Introduction.......c.covviiiviirieieeeneeneneeees D

1.1 What Is ASIS? ..o 5
1.2 ASIS Scope — Which Kinds of Tools Can Be Built with ASIS?

.. 5
2 Getting Started...........coiiiiiiiiiiiiiiinnnn. 7
2.1 TheProblem............oiiiiiii e 7
2.2 An ASIS Application that Solves the Problem................ 7
2.3 Required Sequenceof Calls........................cooiii.. 10
2.4 Building the Executable for an ASIS application............ 11
2.5 Preparing Data for an ASIS Application — Generating Tree

Files. o 12
2.6 Running an ASIS Application............................... 12
3 ASISOVervieW.....ooeeeeeeeososossssassasanns 15
3.1 Main ASIS Abstractions...............ccoiiiiiiiiii ... 15
3.2 ASIS Package Hierarchy 16
3.3 Structural and Semantic Queries...................ccoiiun... 17
3.4 ASIS Error Handling Policy.....................oiiii.t. 18
3.5 Dynamic Typing of ASIS Queries............................ 19
3.6 ASISTIterator.............oiuiiiiiii i, 20
3.7 How to Navigate through the Asis Package Hierarchy...... 20
4 ASIS CONtEXt tiviveeeeeeeeeeeeeeeasasassassannns 23
4.1 ASISContext andTreeFiles.....................oiiii.l. 23
4.2 Creating Tree Files for Use by ASIS.............. 23
4.2.1 Creating Trees for Data Decomposition Annex......... 26

4.3 Different Ways to Define an ASIS Context in ASIS-for-GNAT
... 26
4.3.1 Defining a set of tree files making up a Context 27

ASIS-for-GNAT User’s Guide

9

4.3.2 Dealing with tree files when opening a Context and

processing ASIS queries...........c.oviiiiiiiiininnnn.n. 27
4.3.3 Processing source files during the consistency check when
opening a CONtEXE ...ttt eiii it iiiieeeiieeennns 28
4.3.4 Settingsearchpaths.................................... 28
4.4 Consistency Problems................... ... 28
4.4.1 Inconsistent versions of ASIS and GNAT............... 29
4.4.2 Consistency of a set of tree and source files............. 30
4.5 Processing Several Context sataTime...................... 30
4.6 Using ASIS with a cross-compiler........................... 30
ASIS Interpreter asistant cccceeeeeeeenn. 33
5.1 asistant Introduction.................. 33
5.2 asistant commands............. ... 34
5.3 asistant variables.............. i 36
5.4 Browsingan ASIStree.............ccoiiiiiiiiiiiiiiiiiii. 36
5.5 Example..... ..o 37
ASIS Application Templates.................. 39
ASISTutorials........cceiiiiiiiieeeeeennnnnnn. 41
How to Build Efficient ASIS Applications... 43
8.1 Tree Swapping as a Performance Issue...................... 43
8.2 Queries That Can Cause Tree Swapping.................... 43
8.3 How to Avoid Unnecessary Tree Swapping.................. 44
8.4 Using gnatmake to Create Tree Files........................ 45
Processing an Ada Library by an ASIS-Based

H 0 Y 0) - ¥ |

10 Compiling, Binding and Linking Applications

11

12

ii

with ASIS-for-GNATccceiiiiiiiinnnn. 49
ASIS-for-GNAT Warnings.......cccoeeeeeeens 51

Exception Handling and Reporting Internal

13 File Naming Conventions and Application
Name SPpaceccoeeeeeeeneeeecccessaancenns

iii

ASIS-for-GNAT User’s Guide

	About This Guide
	What This Guide Contains
	What You Should Know Before Reading This Guide
	Related Information
	Conventions

	Introduction
	What Is ASIS?
	ASIS Scope -{} Which Kinds of Tools Can Be Built with ASIS?

	Getting Started
	The Problem
	An ASIS Application that Solves the Problem
	Required Sequence of Calls
	Building the Executable for an ASIS application
	Preparing Data for an ASIS Application -{} Generating Tree Files
	Running an ASIS Application

	ASIS Overview
	Main ASIS Abstractions
	ASIS Package Hierarchy
	Structural and Semantic Queries
	ASIS Error Handling Policy
	Dynamic Typing of ASIS Queries
	ASIS Iterator
	How to Navigate through the Asis Package Hierarchy

	ASIS Context
	ASIS Context and Tree Files
	Creating Tree Files for Use by ASIS
	Creating Trees for Data Decomposition Annex

	Different Ways to Define an ASIS Context in ASIS-for-GNAT
	Defining a set of tree files making up a Context
	Dealing with tree files when opening a Context and processing ASIS queries
	Processing source files during the consistency check when opening a Context
	Setting search paths

	Consistency Problems
	Inconsistent versions of ASIS and GNAT
	Consistency of a set of tree and source files

	Processing Several Contexts at a Time
	Using ASIS with a cross-compiler

	ASIS Interpreter asistant
	asistant Introduction
	asistant commands
	asistant variables
	Browsing an ASIS tree
	Example

	ASIS Application Templates
	ASIS Tutorials
	How to Build Efficient ASIS Applications
	Tree Swapping as a Performance Issue
	Queries That Can Cause Tree Swapping
	How to Avoid Unnecessary Tree Swapping
	Using gnatmake to Create Tree Files

	Processing an Ada Library by an ASIS-Based Tool
	Compiling, Binding and Linking Applications with ASIS-for-GNAT
	ASIS-for-GNAT Warnings
	Exception Handling and Reporting Internal Bugs
	File Naming Conventions and Application Name Space
	Index

