AUnit Cookbook

AUnit - version 1.04

Document revision level $Revision: 1.2 $
Date: 22 May 2006

AdaCore

http://www.adacore.com

http://www.adacore.com

Copyright (©) 2000-2006, AdaCore

This document may be copied, in whole or in part, in any form or by any means, as is or with
alterations, provided that (1) alterations are clearly marked as alterations and (2) this copyright
notice is included unmodified in any copy.

Table of Contents

1 Introduction.............ccoiuiuuiiiiinnnnnnnnnn. 1
2 Simple Test Case......covviiiiinneinneeeenneneeennnns 3
3 Fixtureoiiiniiii ittt itteeneenneannnns 7
S 1 1 < 9
5 Composition of Suites, 11
6 Reportingc..iiiiiiiiiiiiiiiinnnnnnnnnns 13

T GPS Supportovii it 15

ii

AUnit Cookbook

Chapter 1: Introduction 1

1 Introduction

This is a short guide for using the AUnit test framework. AUnit is an adaptation of the Java
JUnit (Kent Beck, Erich Gamma) unit test framework for Ada code. This document is adapted
from the JUnit Cookbook document contained in the JUnit release package.

AUnit Cookbook

Chapter 2: Simple Test Case 3

2 Simple Test Case

How do you write testing code?

The simplest way is as an expression in a debugger. You can change debug expressions
without recompiling, and you can wait to decide what to write until you have seen the running
objects. You can also write test expressions as statements which print to the standard output
stream. Both styles of tests are limited because they require human judgment to analyze their
results. Also, they don’t compose nicely- you can only execute one debug expression at a time
and a program with too many print statements causes the dreaded "Scroll Blindness".

AUnit tests do not require human judgment to interpret, and it is easy to run many of them
at the same time. When you need to test something, here is what you do:

1. Declare a package for a test case - a set of logically related test routines. A template for
such a package is in /AUnit/Template/pr_xxxx_xxx.ad*. GPS provides an Edit -> Unit
Testing menu to generate template code.

2. Derive from AUnit.Test_Cases.Test_Case in the new package.
3. The new derived type must provide implementations of Register_Tests and Name.

4. Write each test routine (see below) and register it with a line in routine Register-Tests, of
the form:

LRegister_Routine (T, Test_Name’Access, "Description of test routine"); J

5. When you want to check a value, use:

‘AUnit.Assertions.Assert (Boolean_Expression, String_Description); ’

6. Create a suite function to gather together test cases and sub-suites. Alternatively, you
can call the Run routine of a single test case directly, and then call Test_Results.Test_
Reporter.Report on its Result parameter. This eliminates step 7.

7. At any level at which you wish to run tests, create a harness instantiating Aunit.Test_
Runner with a suite function collecting together test cases and sub-suites to execute.

8. AUnit includes a GNAT project file that should be included into your application project
to access the framework. For other compilation systems, be sure to include the
subdirectories of aunit in your list of source directories.

9. Build the harness routine using gnatmake. The GNAT project file aunit-
1.04 /aunit_tests.gpr contains all the necessary links and switches for building test cases.
When testing a new compiler, as opposed to incremental unit tests, the GNAT "-f" switch
should be set for gnatmake. One can then use GNAT to build and run the tests.

For example, to test that the sum of two Moneys with the same currency contains a value which
is the sum of the values of the two Moneys, the test routine would look like:

procedure Test_Simple_Add

(T : Aunit.Test_Cases.Test_Case’Class) is

X, Y: Some_Currency;
begin

X :=12; Y := 14;

Assert (X + Y = 26, "Addition is incorrect");
end Test_Simple_Add;

/

The package spec (taken almost directly from ‘pr_xxxx_xxx.ads’) looks as follows. The only
modification was to remove support for a test fixture (next section), and to provide a name for
the unit. Changes to "boilerplate code" are in bold:

4 AUnit Cookbook

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with AUnit.Test_Cases; use AUnit.Test_Cases;

package PR_xxxx_xxx is
type Test_Case is new AUnit.Test_Cases.Test_Case with null record;

procedure Register_Tests (T: in out Test_Case);
-- Register routines to be run

function Name (T: Test_Case) return String_Access;
-- Provide name identifying the test case:

end PR_xxxx_xxXx;

The package body, constructed by modifying ‘pr_xxxx_xxx.adb’ is:

with AUnit.Test_Cases.Registration; use AUnit.Test_Cases.Registration;
with AUnit.Assertions; use AUnit.Assertions;

-- Template for test case body.
package body PR_xxxx_xxx is
-- Simple test routine

procedure Test_Simple_Add

(T : Aunit.Test_Cases.Test_Case’Class) is
X, Y : Some_Currency;
begin

X :=12; Y := 14;
Assert (X + Y = 26, "Addition is incorrect");
end;

-- Register test routines to call

procedure Register_Tests (T: access Test_Case) is
begin

-- Repeat for each test routine:

Register_Routine (T, Test_Simple_Add’Access, "Test Addition");
end Register_Tests;

-- Identifier of test case. Just change the string
-- result of the function.

function Name (T: Test_Case) return String_Access is
begin

return new String’("Money Tests");
end Name;

end PR_xxxx_xxX;

The corresponding harness code, adapted from ‘aunit-1.04/template/harness.adb’ is:

Chapter 2: Simple Test Case

with AUnit.Test_Cases; use AUnit.Test_Cases;
with AUnit.Test_Results.Test_Reporter; use AUnit.Test_Results.Test_Reporter;
-- Test case to run:
with PR_XXXX_XXX;
procedure Harness is

Test : PR_XXXX_XXX.Test_Case;

Result : AUnit.Test_Results.Result;
begin

Run (Test, Result);

Report (Result);
end Harness;

AUnit Cookbook

Chapter 3: Fixture 7

3 Fixture

Tests need to run against the background of a known set of objects. This set of objects is called
a test fixture. When you are writing tests you will often find that you spend more time writing
the code to set up the fixture than you do in actually testing values.

To some extent, you can make writing the fixture code easier by paying careful attention to
the constructors you write. However, a much bigger savings comes from sharing fixture code.
Often, you will be able to use the same fixture for several different tests. Each case will send
slightly different messages or parameters to the fixture and will check for different results.

When you have a common fixture, here is what you do:

1. Create a package as in the previous section, starting from the templates ‘pr_xxxx_xxx.ad*’.
2. Add fields for elements of the fixture into the package body.

3. Override Set_Up_Case to initialize the fixture for all test routines.

4. Override Set_Up to initialize the variables before the execution of each routine.

5. Override Tear_Down to release any resources you allocated in Set_Up - to be executed after
each test routine.

6. Override Tear_Down_Case to release any permanent resources you allocated in Set_Up_Case
- executed after all test routines.

For example, to write several test cases that want to work with different combinations of 12
Euros, 14 Euros, and 26 US Dollars, first create a fixture. The package spec is now:

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with AUnit.Test_Cases; use AUnit.Test_Cases;

package PR_xxxx_xxx is
type Test_Case is new AUnit.Test_Cases.Test_Case with null record;

procedure Register_Tests (T: in out Test_Case);
-- Register routines to be run

function Name (T: Test_Case) return String_Access;
-- Provide name identifying the test case

Procedure Set_Up (T: in out Test_Case);
-- Preparation performed before each routine

end PR_xxxx_xxX;

The body becomes:

8 AUnit Cookbook

with AUnit.Test_Cases.Registration; use AUnit.Test_Cases.Registration;
with AUnit.Assertions; use AUnit.Assertions;

with Currencies; use Currencies;

package body PR_xxxx_xxx is

-- Fixture elements

EU_12, EU_14 : Euro;
US_26 : US_Dollar;

-- Preparation performed before each routine

Procedure Set_Up (T: in out Test_Case) is

begin
EU_12 := 12; EU_14 := 14;
US_26 := 26;

end Set_Up;

-- Simple test routine

procedure Test_Simple_Add
(T : Aunit.Test_Cases.Test_Case’Class) is
begin
Assert
(EU_12 + EU_14 /= US_26,
"US and EU currencies not differentiated");
end Test_Simple_Add;

-- Register test routines to call

procedure Register_Tests (T: in out Test_Case) is
begin

-- Repeat for each test routine:

Register_Routine (T, Test_Simple_Add’Access, "Test Addition");
end Register_Tests;

-- Identifier of test case. Just change the string
-- result of the function.

function Name (T: Test_Case) return String_Access is
begin

return new String’("Money Tests");
end Name;

end PR_xxxx_xxX;

/

Once you have the fixture in place, you can write as many test routines as you like. Calls to
Set_Up and Tear_Down bracket the invocation of each test routine.

Note that as of AUnit 1.01 a parameter of type AUnit.Test_Cases.Test_Case’Class has
been added to test routines. This parameter allows access to the current Test_Case instance,
so that a test routine can access per-instance (rather than package body global) data. This can
be useful when part of the data to be used depends on a particular test case instance, while
another part is global data of the test fixture.

Once you have several test cases, organize them into a Suite.

Chapter 4: Suite 9

4 Suite

How do you run several test cases at once?

As soon as you have two tests, you'll want to run them together. You could run the tests
one at a time yourself, but you would quickly grow tired of that. Instead, AUnit provides an
object, Test_Suite which runs any number of test cases together.

For test routines that use the same fixture (i.e. those declared in the same package), the
Register_Routine procedure is used to collect them into the single test case.

A single Test_Case and its collection of routines can be executed directly in a harness like
so:

Test : PR_XXXX_XXX.Test_Case;
Result : AUnit.Test_Results.Result;

Run (Test, Result);
Report (Result);

To create a suite of two test cases and run them together, execute:

with AUnit.Test_Suites; use AUnit.Test_Suites;
with AUnit.Test_Runner;

-- List of tests and suites to run
with Test_Case_1, Test_Case_2;
procedure Harness is

function Suite return Access_Test_Suite is
Result : Access_Test_Suite := new Test_Suite;

begin
-- You may add multiple tests or suites here:
Add_Test (Result, new Test_Case_1.Test_Case);
Add_Test (Result, new Test_Case_2.Test_Case);
return Result;

end Suite;

procedure Run is new AUnit.Test_Runner (Suite);
begin

Run;
end Harness;

10

AUnit Cookbook

Chapter 5: Composition of Suites 11

5 Composition of Suites

Typically, one will want the flexibility to execute a complete set of tests, or some subset of them.
In order to facilitate this, we can reorganize the harness so that the composition of test cases
and suites is done in a separate library function, and each composition level can have its own
harness:

-- Composition function:
with AUnit.Test_Suites; use Aunit.Test_Suites;

-- List of tests and suites to compose:
with Test_Case_1;
with Test_Case_2;

function This_Suite return Access_Test_Suite is
Result : Access_Test_Suite := new Test_Suite;

begin
Add_Test (Result, new Test_Case_1.Test_Case);
Add_Test (Result, new Test_Case_2.Test_Case);
return Result;

end Suite;

—-— More general form of harness for a given level:
with AUnit.Test_Runner;
-- Composition function for this level:
with This_Suite;
procedure Harness is
procedure Run is new AUnit.Test_Runner (This_Suite);
begin
Run;
end Harness;

At a higher level, we may wish to combine two suites of units tests that are composed with
functions This_Suite and That_Suite.

The corresponding composition function and harness would be:

-- Composition function:
with AUnit.Test_Suites; use Aunit.Test_Suites;

-- List of tests and suites to compose:
with Suite_1;
with Suite_2;

function Composition_Suite return Access_Test_Suite is
Result : Access_Test_Suite := new Test_Suite;
begin
Add_Test (Result, Suite_1);
Add_Test (Result, Suite_2);
return Result;
end Composition_Suite;

-- More general form of harness for a given level:
with AUnit.Test_Runner;
-- Composition function for this level:
with Composition_Suite;
procedure Harness is
procedure Run is new AUnit.Test_Runner (Composition_Suite);
begin
Run;
end Harness;

12 AUnit Cookbook

As can be seen, this is a very flexible way of composing test cases into execution runs.

Note that the Aunit.Test_Runner.Run routine has a defaulted parameter to control whether
timing information is reported. Its speficiation is:

E}rocedure Run (Timed : Boolean := True); J

By default the execution time for a harness is reported. If you are running some number of
harnesses from a scripting language, and comparing the result to an existing file, using Timed
-> False ensures that the output will be identical across successful runs.

Chapter 6: Reporting

6 Reporting

Currently test results are reported using a simple console reporting routine:

13

‘Test_Results.Text_Reporter.Report (Result);

J

A sample run on a set of problem reports submitted to ACT prints the following to the
console when executed:

[efalis@dogen AUnit]$./harness
Total Tests Run: 10
Failed Tests:
PR 7503-008.Allocation_Test:: Bad discriminant check
Unexpected Errors: 0

1

The switch "-v" may be used with any harness to cause the list of successful tests to be
printed along with any failures or errors:

PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR

8010-001
7522-012
7617-011
7624-003
7813-010
8010-009

Failed Tests:
Unexpected Errors: O
Time: 0.001011000 seconds

[efalis@dogen AUnit]$./harness -v

Total Tests Run: 17

Successful Tests: 17
7112-001:
7210-005:
7210-005:
7210-005:
7210-005:
7210-005:
7210-005:
7210-005:
7210-005:
7503-008:
7605-009:

Record_Initialization

Test_1

Test_2

Test_3

Test_4

Test_b

Test_6

Test_A

Test_B

Allocation_Test

Modular_Bounds

b: Test calculation of constant with modular sub-expression
: Subtype not recognized in initialization

: Test renaming in instantiation I

: Use of multi-dimensional aggregate as generic actual parameter
: Test -gnatc for bogus semantic error

: Overload resolution with enumeration literals

0

14

AUnit Cookbook

Chapter 7: GPS Support 15

7 GPS Support

Note that the GPS IDE has a menu Edit -> Unit Testing to generate the template code for test
cases, test suites and harnesses.

16

AUnit Cookbook

	Introduction
	Simple Test Case
	Fixture
	Suite
	Composition of Suites
	Reporting
	GPS Support

