
BurrTools

Andreas Röver, Ronald Kint-Bruynseels

Email: roever@users.sf.net

Table of contents

Table of contents . 3

Prologue . 7

I User Guide . 9

1 Getting Started . 11

1.1 Introduction . 11
1.2 Installing BurrTools . 11

1.2.1 Downloading BurrTools . 11
1.2.2 Installation of BurrTools . 11

1.2.2.1 Microsoft Windows . 11
1.2.2.2 Mac OS X . 12
1.2.2.3 Linux / Unix . 12

Using the Pre compiled Binary . 12

Compiling from Source . 12

1.2.3 Files and Folders . 12
1.3 Concepts and Definitions . 13

1.3.1 Definitions . 13
1.3.2 Concepts . 14

1.3.2.1 Voxel States . 14
1.3.2.2 Colour Constraints . 14

1.4 Notes for PuzzleSolver3D Users . 15
1.4.1 Importing PuzzleSolver3D files . 15

2 The BurrTools Interface . 17

2.1 The BurrTools Menus . 17
2.1.1 The File Menu . 17
2.1.2 The Configuration Menu . 19

2.2 The Status Line . 19
2.3 The Tools Section . 19

2.3.1 The Puzzle People . 19
2.3.2 Resizing the Elements . 20

2.4 The 3-D Viewer . 20

3 Creating Shapes . 23

3.1 Spacegrids . 23
3.2 Creating Shapes . 23
3.3 Grid Functions . 24

3.3.1 Adjusting the Grid Size . 25
3.3.2 Advanced Grid and Scaling Functions . 25
3.3.3 Adjusting All Shapes . 26

3.4 Building and Editing Shapes . 27
3.4.1 Navigating in 2-D and 3-D . 27
3.4.2 Basic Drawing Tools . 28
3.4.3 Drawing Styles . 28
3.4.4 Compound Drawing Tools . 28

3

3.5 Adding Colour . 29
3.5.1 The Neutral Colour and Custom Colours . 30
3.5.2 Creating and Editing Custom Colours . 30
3.5.3 Applying Colours . 30

3.6 Representations . 31
3.7 Transformation Tools . 31
3.8 Miscellaneous Editing Tools . 32

3.8.1 Constraining Tools . 32
3.9 Managing Shapes and Colours . 33
3.10 Shape Information . 33
3.11 Tips and Tricks . 34

3.11.1 Voxel State and Size Tips . 34
3.11.2 Colouring Tips . 35

3.12 Simulating non-cubic spacegrids . 35
3.12.1 Two-Sided Pieces . 36
3.12.2 Diagonally Cut Cubes and Squares . 36
3.12.3 Cairos . 36
3.12.4 Squares with Cuts of Slope 0.5 . 36
3.12.5 Edge Matching . 36
3.12.6 Other possibilities . 37

4 Defining Puzzles . 39

4.1 Defining Simple Problems . 39
4.1.1 Initialising Problems . 40
4.1.2 Piece Assignment . 40

4.2 Grouping Pieces . 41
4.2.1 Concept . 41

4.2.1.1 Complete Disassembly . 41
4.2.1.2 Basic Piece Grouping . 41
4.2.1.3 Grouping Multipieces . 42
4.2.1.4 Example . 42

4.2.2 Creating Piece Groups . 42
4.3 Setting Colour Constraints . 43
4.4 Managing Problems . 44
4.5 Tips and Tricks . 44

4.5.1 Grouping Tips . 44
4.5.2 Constraint Tips . 44

5 Solving Puzzles . 45

5.1 Solver Settings . 45
5.2 Solving Puzzles . 46

5.2.1 Automatic Solving . 47
5.2.1.1 Solver Progress Information . 47
5.2.1.2 Solver State Information . 47

5.2.2 Manually Solving . 48
5.3 Browsing Placements . 48
5.4 Inspecting Results . 49

5.4.1 Selecting Solutions and Animating Disassemblies . 49
5.4.2 Handling Solutions . 50
5.4.3 Visibility of Pieces . 50

6 Reporting with BurrTools . 51

6.1 Adding Comments . 51
6.2 Exporting Images . 51
6.3 Exporting to STL . 52

4 Table of contents

7 Future Plans . 55

7.0.1 Burr Design Tools . 55
7.0.1.1 Burr Constructing . 56
7.0.1.2 Destruction . 56
7.0.1.3 Burr Growing . 57

II Advanced User Guide . 58

8 The Internals . 59

8.1 The Puzzle File Format . 59
8.1.1 Voxel Space . 59

8.2 The Library . 59
8.2.1 Class Voxel . 59
8.2.2 Class Puzzle . 60
8.2.3 Class assembler . 60
8.2.4 Class Disassembler . 60
8.2.5 Class Assembly . 60
8.2.6 Class Disassembly . 61
8.2.7 Example . 61

8.3 The Algorithms . 61
8.3.1 Assembly . 61

8.3.1.1 How to Avoid Finding Multiple Assemblies . 61
8.3.1.2 The Dancing Link Algorithm . 63

8.3.2 Disassembly . 64
8.4 Adding to the Library . 64

III Appendices . 65

Appendix A Examples . 67

A.1 Al Packino . 67
A.2 Ball Room . 67
A.3 Bermuda . 67
A.4 MINE’s CUBE in CAGE . 67
A.5 Dracula’s Dental Disaster . 68
A.6 Level 98 Burr ’The Pelican’ . 68

Table of contents 5

Prologue

to my mother (1950-2005)

What are BurrTools? BurrTools contain two main parts. On the one hand there is a pro-
gram that assembles and disassembles burr-type puzzles. That program contains a graphical user
interface (GUI) which allows creation and editing puzzle definitions, solving the puzzle and the
display and animation of the found solutions. This is probably the most interesting part for most
people. On the other hand there is a C++ library that may help with the search for and design
of new puzzles. This library contains all the necessary tools to write programs that do the things
that the graphical interface does (and more).

The first part of this document describes the graphical program. It should contain descriptions
of all concepts and explain how to use them in the GUI program. The second section will contain
a description of the library and some internals. Also, some of the used algorithms are explained.
This section is probably only interesting for people wanting to use the library for their own puzzle
design explorations.

But first a little bit of history of this program. There are already two programs that do
the same that BurrTools can do. One is BCPBox/Genda written by Bill Cutler. Cutler’s
programs are very versatile, they even can handle space grids different from cubes. The other one
is PuzzleSolver3D by André van Kammen. I had bought this program a while ago and have
generally been quite satisfied with it. I have taken over quite some ideas from the GUI that André
developed. So why another program you might ask. Here are a few reasons:

1. The available programs are not for Linux, which is my operating system of choice,

2. the available programs are binary only programs and hence it is quite hard to do more
interesting things like burr growing in an automated way,

3. the programs do cost money,

4. PuzzleSolver3D seems to be abandoned. There hasn’t been any update for quite a while,
and

5. PuzzleSolver3D has some nasty limits to the shape sizes and the number of possible
placements.

Anyway, I was not completely satisfied with the available software. Then in summer 2003 a German
computer magazine, started a competition to write a program that counts the number of solutions
to a merchandising puzzle of them as fast as possible. My program wasn’t the fastest but it was
the starting point for the BurrTools.

As there are many people out there that are a lot more creative than I am and that could use
a program like this to design nice puzzles I decided to make it public and free1.

I added a GUI that can work on many operating systems, including Linux and Windows.
This has the disadvantage that the GUI looks a bit different from what the normal Windows
user is used to, so stay calm if things look a bit unusual, they behave in fact quite similar to how
a normal Windows-program behaves.

Lately 2 people played important roles in the development of the program. These 2 are Ronald
Kint-Bruynseels and Derek Bosch. Ronald has rewritten the first part of this manual and has
generally contributed lots of well organized suggestions. Derek is responsible for the OSX port of
the program. Without him there would be no binary for this operating system available.

1. Free as in free speech and as in free beer (see http://www.gnu.org)

7

I want to thank both of them for their work. I also want to thank all the other people that
have sent in bug reports, suggestions and praise. Their input is very welcome and crucial to the
further development of the program.

All this work has taken nearly 3 years to reach the current state, I hope it was worth it and
you have a lot of fun with the program.

Andreas Röver

8 Prologue

Part I

User Guide

Chapter 1

Getting Started

1.1 Introduction

The first part of this user guide is written from a procedural approach. Rather than sequentially
describing the elements of the GUI and their functions, this manual guides you through the program
the way you should create your first design. Terms may be briefly repeated in several places of the
text. Although too much redundancy has been avoided.

Throughout the text the following fonts and notations are used:

Roman This font is used for the main text.
Roman Italics Italics are used to emphasis words or sentences in the main text.
Roman Bold Used for titles, subtitles and concepts .

Sans Serif Used for elements of the GUI. The same wording is used as in the GUI.
Sans Serif Bold Used for elements of the GUI and indicating that an in-depth explanation

follows.
Small Capitals Used for program names and puzzle names.

Typewriter Used for file names, directories, URL’s and code examples.
[Typewriter] Between square brackets. Denotes a keyboard command.

⊲ Followed by a number. A reference to another part in the text that provides
more detailed information on the subject. To be read as ’see (also) ...’.

1.2 Installing BurrTools

1.2.1 Downloading BurrTools

BurrTools is an Open Source software project. The most recent release of the program is always
available for free download at the BurrTools website:

http://burrtools.sourceforge.net

At the bottom of that page you can select the proper download for your operation system. This will
bring you to the download page where you have to select a mirror site to start the downloading.
It’s highly recommended to select the mirror site on the server nearest to your location.

Microsoft Windows users can either download the Windows Binary (a zipped file which
needs manual extraction and installation) or the self-extracting Windows Installer. Unless you
have a slow connection to the internet downloading the installer is probably the best option. To
use BurrTools on a Linux platform you can either download provided pre compiled version or
the Source files and compile the program on your system (see installation guidelines below).

1.2.2 Installation of BurrTools

1.2.2.1 Microsoft Windows

If you downloaded the Widows Binary, just extract the file into the directory of your choice and
the GUI is ready to be used. When you opted for the Windows Installer, start the executable
and follow the instructions on your screen.

11

1.2.2.2 Mac OS X

For detailed installation instructions please refer to the manual or help files of your operating
system.

1.2.2.3 Linux / Unix

For Linux users BurrTools comes in two versions: a pre compiled binary and source code.
The binary is provided in the hope that it is working on many variants of the Linux OS. It

is compiled for Intel processors and requires a more or less modern Linux system. As distinct
versions of Unixes differ widely it is likely that the binary will not work for your system. In that
case you need to compile BurrTools yourself.

Using the Pre compiled Binary
If you want to try the binary, just download the archive with the current version. Decompress

the archive into a directory of your choice and start burrGui within that directory. It either works
or it doesn’t.

If it doesn’t make sure you have at least the following libraries installed on your system:
zlib, libpng, libxml2 and libxslt. Of course you also need a working X windowing system.
If the program still doesn’t work call ldd burrGui from the console within the path where you
decompressed the files. This will list all libraries required by the binary and where the system could
find them. If one of the listed binaries is not available try to install that. If all that doesn’t work
you should consider compiling on your own or mail me.

Compiling from Source
These installation instructions just contain some hints for the compilation of BurrTools. As

BurrTools requires a few not so widespread libraries it is not the easiest task to do this.
To install BurrTools for Unix you first need to make sure you have the following libraries

installed: zlib, libpng, libxml2 and libxslt. These libraries are usually installed on every Linux
system. You just have to make sure that you have installed the development packages, otherwise it
is not possible to compile a program that use these libraries, but just start programs that use them.

Additionally the following libraries are required: flkt and xmlwrapp.
Fltk is the library used for the GUI of BurrTools. It may be included in your Linux

distribution or it may not.
The problem is that we need a version of this library that is not compiled with the default

switches. This library must be compiled with C++ exceptions enabled. If you don’t do this the
program will simply shut down when an internal error occurs instead of displaying an error message
and making an emergency save. To compile flkt with exceptions enabled you have to do the
following:

• Download and decompress as usual

• Run configure just as usual

• Remove -fno-exceptions from the file makeinclude

• Finish normally be calling make and make install

It is of course possible to use a normal version of the fltk library, you just don’t get the emergency
save feature if there is a bug in the GUI of BurrTools. But as the number of bugs is hopefully
quite small right now that should not be such a big problem.

The last library, xmlwrapp, can be hard to find, so here a link
xmlwrapp.sf.net

This library is compiled and installed in the usual Unix way, read their installation document-
ation.

Now BurrTools can be compiled and installed the usual way with configure, make, make
install.

1.2.3 Files and Folders

After installing BurrTools the following files should be on your system:

12 Getting Started

burrGui.exe The graphical user interface (GUI) to create puzzle files for BurrTools.
UserGuide.pdf This user guide.

COPYING A text file containing the GNU General Public Licence. This file may be deleted
to save on disk space, but should always be included when sharing the program.
Read it carefully before sharing or modifying the program.

AUTHORS A text file containing information about the contributors to the development of
BurrTools. This file may be deleted to save on disk space.

ChangeLog An automatically created text file containing an overview of the changes made
to the program since version 0.0.6. This file may be deleted to save on disk space.

NEWS A more readable version of ChangeLog. Here all (more or less important) changes
to the different versions are collected in a comprehensive list. This is probably
the place to look for what changed when downloading a new version. This file
may be deleted to save on disk space.

uninstall.exe The uninstall program will only be added after installing BurrTools with the
Windows Installer.

Also a new folder, examples, is created. This subdirectory contains a few examples of existing
puzzles that illustrate the capabilities and functions of BurrTools. A brief overview of the
examples is presented in Appendix A.

1.3 Concepts and Definitions

Before we start describing the functions of BurrTools, let’s synchronise our use of vocabulary
and explain a few concepts that are crucial to the way BurrTools works.

1.3.1 Definitions

Voxel. A voxel (volume pixel) is a space unit in the 3-D space. The shape of the voxels is
defined by the space grid type. Currently BurrTools only supports cubic voxels. Each
voxel has one of the following three states: Empty , Fixed (Filled) and Variable (⊲ 1.3.2).
Additional to that each voxel can also contain supplementary information in the form of
colours that are attached to the whole or parts of that voxel. Currently BurrTools can
only attach one single colour to the voxel as a whole.

Spacegrid. The spacegrid defines the shape and orientation and arrangement of the voxels.
Right now there are 3 space grids available in BurrTools: cubes, prisms with a equilateral
triangle as base and tightly packed spheres. Spacegrids are always fixed and periodic. That
means that a voxel in a certain position will always have the same shape and orientation. So
a spacegrid defining, for example, all Penrose patters is not possible because this is neither
a fixed nor a periodic pattern.

Shape. This is a definition of a 3-dimensional object. Shapes are assembled out of voxels.

Piece. A piece is a shape that is used as a part of the puzzle.

Multipiece. Some pieces may have the same shape. BurrTools requires you to tell it that
two or more pieces do have the same shape, otherwise it will find all solutions with all
permutations. So a multipiece is a piece that’s used more than once in the problem.

Group (also Piece Group). A collection of pieces (and/or multipieces) than can move with
respect to each other, but cannot be separated from one another. Denoted with {}.

Result. This is the shape that the pieces of the puzzle are supposed to assume once the puzzle
is assembled.

Problem. A problem in BurrTools consists of a list of pieces and/or multipieces, a result
shape and possibly some constraints. You can have more than one problem in a file as it
may be possible to have more than a single task with the same set of pieces (e.g. Piet Hein’s
Soma Cube). In other words, a problem is a statement about what to do with the pieces.

1.3 Concepts and Definitions 13

Puzzle. A puzzle is either a single problem or a collection of problems.

Identifier. A unique code to identify a shape, colour or problem. This consists of an auto-
matically assigned prefix to which a custom name may be added. The prefix is already
unique. It is a letter followed by a number. The letter is different for all items that required
identifiers, e.g. it is S for shapes, P for problems and C for colours.

Assembly. An assembly is a physically possible (meaning the pieces do not overlap in space)
arrangement of pieces so that the resulting shape is formed. It is not guaranteed that it is
actually possible to get the pieces into the positions of the assembly without using advanced
technologies like Star Trek beaming.

Solution. A Solution is an assembly with instructions how to assemble/disassemble the pieces.

Assembler. The part of the program or algorithm that tries to assemble the puzzle.

Disassembler. The part of the program that tries to find out how the pieces must be moved
to assemble the puzzle. It does this by trying to disassemble an assembly. Some puzzles like
Pentominoes don’t require checking for disassemblability, they are always constructible.
That’s why these two tasks are separated.

Solver. A short name to refer to the assembler and disassembler as a unit or just one of these
without specifying which one.

1.3.2 Concepts

As described above BurrTools works with shapes which are merely a collection of voxels that
each can have either one of three different states: empty , fixed or variable. Particularly the differ-
ence between fixed and variable voxels has a great impact on the way the solver works and which
assemblies are considered to be valid and which are not. Besides that, the validity of solutions can
be further restricted by imposing colour constraints.

1.3.2.1 Voxel States

Empty. The empty state is rather superfluous as it can also be regarded as the absence of any
voxel. It is just used in the result shape to indicate the spots that can’t be filled at all (holes).

Fixed (or Normal). The normal or fixed voxels need to be filled in the final result, otherwise
it is not considered to be a valid assembly.

Variable. The variable state is used to instruct the program that for a particular voxel it
is unknown whether it will be filled or empty in the final assembly. This is required for
puzzles that have holes in undetermined places (like all the higher level six-piece burrs). All
voxels that might be empty must have the variable state in the result shape. Right now the
variable state can only be used in result shapes and the solver will pop up an error message
whenever it encounters a variable state in a normal piece.
Later on variable voxels might be used in piece shapes as well to define voxels in the shape that
the program might alter to create interesting puzzles.

The question now is: why not always use variable voxels in the result shape? This is a matter of
speed. When the program tries to find assemblies and encounters a voxel that it is unable to fill
with the available shapes it can immediately abort, if that voxel has the filled state in the result
shape as the algorithm is instructed that it must fill this particular voxel but it cannot do so, so
something is wrong. On the other hand, if the state of that voxel is variable the algorithm knows
nothing and has to carry on.

1.3.2.2 Colour Constraints

Colours allow you to add constraints to the possible placement of pieces. This is done by assigning
a colour to one or more voxels of the piece(s) and the result shape (⊲ 3.5). Then you can set
some colour placement conditions for each problem (⊲ 4.3). The program will place pieces only at
positions that fulfil the colour conditions defined.

14 Getting Started

These colour conditions currently allow the definition of what coloured voxels of the pieces may
go into what coloured voxels in the result shape. The neutral colour is different, since it always
fits. Voxels in a piece that are in the neutral colour fit everywhere and neutral coloured voxels in
the result shape can accommodate for every piece voxel, independent of its custom colour.

Currently the assigned colour is used just like painting the whole voxel with this colour, but in
the future more advanced possibilities for colouring and conditions may be added.

1.4 Notes for PuzzleSolver3D Users

BurrTools was initially very much based on PuzzleSolver3D by André van Kammen but
diverged quite a bit from that. We strongly advise you to read this user guide since there are some
features in BurrTools that work somewhat different as their counterparts in PuzzleSolver3D
and there are also some functions that PuzzleSolver3D doesn’t have. Below are the most prominent
differences that need your attention:

1. BurrTools doesn’t handle holes automatically as PuzzleSolver3D does. This may at
first sound like a disadvantage but in fact it isn’t. Unless you select ’Outer limits of result
must be filled’ on the solve tab, PuzzleSolver3D treats all cubes of the target shape as
cubes that might be filled but don’t need to be. Cubes that must be filled however speed up
the search process. The more there are of these (as compared to the total number of cubes),
the faster the solver will run as fewer possibilities are left to test. BurrTools requires you
to specify exactly which cubes in the result shape must be filled and which ones may be
empty.

2. The BurrTools solver doesn’t automatically detect multiple identical pieces. You need
to specify, if a piece is used more than once. If you just copy them the way you do in
PuzzleSolver3D the program will find way too many solutions. For example, with Bruce
Love’s Lovely 18 Piece Burr it will find nearly 40,000,000 times as many solutions as
there really are. So be careful.

3. BurrTools allows you to define multiple problems in a single session. So you can, for
example, save all the Soma Cube (Piet Hein) problems within one single file.

4. BurrTools has no limits to the number and size of pieces. You can have as many pieces
as you want and they are not confined to a grid of 24× 24× 24.

5. There is no limit to the number of possible positions for the pieces. So it won’t happen that
BurrTools complains about too many placements. As long as your computer has sufficient
memory the program will merrily continue working – even if it would take longer than the
universe exists – to complete the search.

6. BurrTools supports another gridspace besides the cube space supported by Puzzle-
Solver3D. This allows the design and analysis of completely new puzzles

1.4.1 Importing PuzzleSolver3D files

BurrTools also has capabilities for importing PuzzleSolver3D files. So there’s no need to redo
your designs from scratch, although some postediting may be required because of the differences
in handling duplicates of pieces and holes in the puzzle.

There are 2 possibilities for the holes. Depending on whether the option “Fill outer Cubes” is
enabled or not when you solve the puzzle with PuzzleSolver3D you must either make the inner
cubes of the result shape or the whole shape variable when you want to get the same results with
BurrTools. This can be done with the tools described in section 3.8.1. With these tools you can
make inner and outer cubes of a shape variable.

The duplicate pieces are handled automatically. BurrTools adds all shapes to the new puzzle
but does not add duplicates to the problem instead the counter for the original is increased. The
unused shapes are marked as unused and can be deleted when they are not required.

1.4 Notes for PuzzleSolver3D Users 15

Chapter 2

The BurrTools Interface

When BurrTools is started for the very first time the GUI will look like Figure 2.1 which shows
the main window. Although some small variations may occur depending on your operating system,
screen resolution and display preferences settings. The GUI has four major parts. On top there is
a menu bar that allows handling of files and offers extra functionality as well as some preferences
settings for the program. At the bottom there is a traditional status line presenting relevant
information about the task at hand. In between there is a tools section on the left and a 3-D
viewport on the right.

2.1 The BurrTools Menus

Below is a brief overview of the main menu entries with references to the places in the text where
a more detailed explanation is provided.

File. This menu holds the procedures for handling files within BurrTools and for exiting the
program (⊲ 2.1.1).

Toggle 3D. Swaps the 2-D and the 3-D grids for the Entities tab (⊲ 3.4.1).

Export. Contains a submenu with 2 entries. One allows you to export the contents of the 3-D
viewer that can be used to create high quality solution sheets (⊲6.2). The other allows you
to create STL files for 3-D printers (⊲ 6.3)

Grid Parameters. This menu entry will allow you to change parameters for the currently used
space grid. These parameters include things like scaling of axes or skew. Not all space grids
support parameters.

Status. This opens up a window containing lots of maybe useful information about the shapes
of the puzzles (⊲ 3.10).

Edit Comment. Allows appending textual information to the puzzle file (⊲ 6.1).

Config. This menu item provides some preferences settings (⊲ 2.1.2).

About. Shows a window with some information about the program.

2.1.1 The File Menu

The File menu has all the traditional entries for handling files. Many of these are well known from
other software and need not much explanation. Some of the items also have keyboard short cuts
as indicated in the menus. Prior to executing most of these commands a warning (and option to
cancel) is given whenever changes to the current design haven’t been saved yet.

New. Starts a new design after removing all the information of the current one. The first thing
that happens when you start a new puzzle is that you will be asked which spacegrid to use.
When BurrTools is started it always starts with a puzzle that uses the cubes spacegrid,
so when you want to use another grid you need to use this menu.

Load. Opens a BurrTools *.xmpuzzle file. A notification will pop up when a partially solved
design is loaded. Short cut: [F3].

17

Import. This entry opens a traditional file dialogue that allows importing PuzzleSolver3D
files (*.puz) into BurrTools. Although these imported designs often can be subjected
to the solver right away, some postediting may be required because of the differences in
the way BurrTools handles holes in the result and uses duplicates of pieces. BurrTools
will import all the pieces from the *.puz file and assign them to the shapes S1 to Sn-1.
Accordingly, the result from the PuzzleSolver3D file will be assigned to the last shape
(Sn). Also a problem definition is automatically created (⊲Chapter 4).
Since all imported shapes consist only of fixed voxels, the result shape may need some
editing (puzzles that have internal holes or pieces not filling the outskirts of the result shape)
to make the solver run. Also duplicated pieces are preferably deleted from the Shapes list
(⊲ 3.2) but certainly from the Piece Assignment list (⊲ 4.1.2), otherwise BurrTools will
find way too many solutions as it will differentiate between all the possible permutations of
these identical pieces.

Save. Saves your work into a *.xmpuzzle file. If the design had not been saved before (indic-
ated with ’Unknown’ in the BurrTools windows title bar) the Save As command will be
activated. Short cut: [F2].

Save As. Allows you to save any changes to a new file and thus keeping the original design the
way it was.

Quit. Shuts down BurrTools.

Except when the solver is actually running , saving your work is always possible. This means that
after stopping (pausing) the solver it is possible to save the results found thus far. Later on these
partially solved puzzles can be loaded again and the solving process may be resumed. This allows
you to subject ’huge’ problems (e.g. 25 Y-pentominoes in a 5×5×5 cube assembly) to BurrTools
and have them solved in several sessions overnight or whenever you don’t need your computer for
other tasks.

Figure 2.1. The main window on start-up

18 The BurrTools Interface

2.1.2 The Configuration Menu

The Config item on the menu bar opens a new window (Figure 2.2) to set some options for the
GUI. These settings will be stored in a file that is either in your home directory (Unix) or in your
profile (Windows). The program will use these settings each time it is started.

Fade Out Pieces. This option affects the way pieces that become separated from the rest are
depicted. Hence, the effects are only visible after running the solver (⊲ 5.4.3).

Use Lights in 3D View. This option toggles the use of a spotlight in the 3-D viewer. When
disabled the items in the 3-D viewport get a uniform (high) illumination, whereas enabling
this option provides a more rendered appearance of the objects by adding a spotlight in
the upper right corner of the 3-D viewport and shading the faces of the objects. However,
on some systems this may result in a relatively dark left bottom corner that can hamper a
clear view on the objects.

Use Tooltips. By default BurrTools shows tooltips for most of its controls, but to the more
experienced user these become soon very annoying. This option allows you to switch these
tooltips off.

2.2 The Status Line

The status line has two parts. On the left information about the task at hand is given and on
the right are some tools to alter the 3-D view. Currently you can select there how the 3-D view
show the shapes. You have the choice between the normal view where each piece is drawn with
its neutral colour, a view where each piece is drawn with its colour constraint colour (if it has one
assigned ⊲ 3.5). The third option is an anaglyph called mode (see figure 2.3). In this mode the
pieces are drawn using the red-cyan method to display real 3-D. You can view these with a red-
green, red-blue or red-cyan glasses. The red glass must be in front of your r ight eye.

2.3 The Tools Section

In between the menu bar and the status line is the most important part of BurrTools. The
section that allows you to submit existing puzzles to the solver, but more even important lets you
create and test your own designs.

2.3.1 The Puzzle People

The tools section has three major tabs that somewhat can be compared with real people in the
world of mechanical puzzles. First there is the Entities tab, which can be seen as the craftsman
who creates different shapes but hasn’t to bother about the purpose of these (⊲ Chapter 3). As
long as his saw blade is sharp he’s the happiest man in the whole wide world. Next, we have the
Puzzle tab. This is the weirdo who thinks it’s fun to come up with completely insane problems
to be solved with the otherwise very innocent objects of our craftsman (⊲Chapter 4). However,
his contribution to the preservation of our planet is considerable... by saving a lot of wood scraps
from the incinerator. And last we have the Solver, the poor guy who spends not only a great deal
of his money on these finely crafted puzzles but almost all of his leisure time on solving them
(⊲Chapter 5), only to feel very euphoric when he finally succeeds. But scientists are still breaking
their heads over the question whether this is caused by the sweet smell of success, or is merely due
to severe sleep deprivation.

Figure 2.2. The configuration window

2.3 The Tools Section 19

Figure 2.3. Disassembler in Anaglyph Mode

2.3.2 Resizing the Elements

Although the layout of the GUI is designed to suit the needs of most users, it sometimes may be
useful to resize some elements to enhance the comfort in using BurrTools. Besides the traditional
resizing of the main window, BurrTools has a couple of features to alter the relative importance
of its controls.

First, the tools tabs can be made wider or narrower (thus making the 3-D viewport more or
less important) by dragging the right edge of the tools section. Hovering your mouse pointer over
that edge will make it change into a left-right arrow, indicating that you can start dragging it.

Second, within each of the three main tabs some sections (panels) can be resized as well. For
example, if you have a design with many different shapes but no colour constraints at all, reducing
the size of all colour related controls and maximising those concerning shapes could be very
advantageous. The panels on the tool tabs are separated by so called resize handles (Figure 2.4).
The separators that allow resizing are easily recognised by a little bevelled square on their right
end. Hover your mouse pointer over the lines until it changes into an up-down arrow, indicating
that you can drag the separator up or down to resize the panel.

Note that each section has a minimum size. It is not possible to make it smaller than that
minimum size.

2.4 The 3-D Viewer

Normally the biggest part of the GUI is reserved for the 3-D viewport. In fact this 3-D viewer is
threefold and has different properties for each of the tabs of the tools section. For the Entities tab
the 3-D viewport shows the currently selected shape and reflects all editing operations performed
on that shape. Also the x-, y- and z-axes are shown to assist navigating in space. With the Puzzle
tab activated an overview of the current problem is presented: the result shape (double sized) on
top and a single instance of each shape used as pieces below it. Finally, for the Solver tab, the 3-D
viewer can be used to browse all found assemblies and/or show an animation of the moves involved
in the disassembly of the puzzle.

20 The BurrTools Interface

Figure 2.4. Resize handles

Any object in the 3-D view can be rotated by simply dragging it and the scrollbar on the right
allows zooming in or out on that object by respectively moving the slider down or up. Note that
the zoom settings are independent for each of the three tools tabs.

Extra options for the 3-D viewer are available in the Config menu (⊲ 2.1.2).

2.4 The 3-D Viewer 21

Chapter 3

Creating Shapes

The key concept of BurrTools is shapes . A shape is simply a definition of an object in 3-D
space and consists of a collection of voxels (space units). These voxels in turn may have their own
characteristics such as state and colour . Note that this definition also includes shapes made out of
voxels that are only attached to each other by a single edge, just a corner or even are completely
separated in space. The solver certainly won’t bother... but how these shapes could be crafted in
the workshop is beyond the scope of the program.

All functions and tools for creating and editing shapes - once the grid type is set - are located
on the Entities tab (shapes are the physical entities that can make a puzzle when subjected to
certain rules) which has - from top to bottom - three main sections (Figure 3.1):

The Shapes panel. This section is mainly a list of the available shapes and has the tools for
creating and managing the shapes. Shapes to be edited can be selected in this list (⊲ 3.2).

The Edit panel. This section provides the tools to build or edit the currently selected shape.
This panel contains a series of subtabs with several tools for adjusting the Size of the shapes,
Transform them in 3-D space and some extra editing Tools. Below these subtabs there’s a
toolbar with the devices for actually constructing the shapes in the 2-D grid at the bottom
of the panel (⊲ 3.4).

The Colours panel. This panel contains - besides a list of the available colours - the tools to
create and edit custom colours which can be assigned to the voxels of the shapes. These
colours can be merely ornamental or can have a serious impact on the way the solver will
work by imposing restrictions on the possible placements of the pieces (⊲ 3.5).

3.1 Spacegrids

Currently BurrTools handles cubic grids, grids that use prisms with a base shape that is a
equilateral triangle and tightly packed spheres. The spacegrid is used for all shapes that are used
within a puzzle so you can not have one shape made out of cubes and one using another grid.
The spacegrid needs to be set before you start with the puzzle. It can not be changed later on.
The gridtype is selected when you use the New option. Some gridtypes support it to set some
parameters of the grid, like scaling or skew. These parameter can be used to suppress certain
orientations for shapes but not to create new puzzle shapes. E.g the sphere grid might some time
support a switch to turn it into a space of rhombic dodecahedra. This space is very similar except
that some orientations that are possible with spheres can not be done with the dodecahedra.

Same for cubes: there might be a parameter that scales the cubes in y-direction. If that values
differs from the x-direction value it will be only possible to turn the cubes by 180ř when rotated
around the x-axis.

3.2 Creating Shapes

The very first step is to initialise the shapes that can be used in your puzzle design. All the tools to
do so are just below the Shapes caption (Figure 3.1). Clicking the New button starts a completely
new one with an empty grid, while Copy allows you to edit a previously entered shape without
destroying the first. Obsolete and redundant shapes can be discarded with the Delete button.

23

Figure 3.1. Creating shapes on the Entities tab

All shapes are identified with an ’Sx ’ prefix. This prefix serves as a unique identifier for the
shape throughout the GUI and cannot be removed or altered, but Label allows you to add a more
meaningful name. Note that on the status line the shapes will only be referred to by their prefixes.

By clicking an identifier in the list the shape becomes selected and ready to be edited. Also a
short description of that shape appears on the status line. The currently selected shape is indicated
with a white border around its identifier in the shapes list.

The buttons with the arrows pointing left and right allow you to change the position of the
shape in the list. The first one moves the selected shape toward the front of the list, whereas the
other button moves the shape toward the end of the list. Note that rearranging shapes will cause
to change their prefix but not the additional name.

Unlike the pieces in PuzzleSolver3D shapes don’t need to be part of the puzzle. This means
that you can build a file that contains a vast number of shapes, e.g. all 59 notchable six-piece burr
pieces, of which you assign only 6 to the pieces of your puzzle design.

Finally the shapes have an additional parameter: the weight. This value is used when con-
structing the disassembly animations. When the disassembler has found 2 groups of pieces that can
be moved against each other it needs to decide which group to actually move and which to keep
where it is. This decision can be influenced with the weight. The program searches the maximum
weight in both groups and the one group that has the bigger maximum weight will be kept in place
and the other group will be moved. If both groups have the same maximum weight the group with
the smaller number of pieces will be used.

3.3 Grid Functions

Since shapes are defined as objects in 3-D space and theoretically 3-D space is unlimited in size,
it’s convenient somehow to be able to define a more feasible subspace to work with. This, and some
more advanced scalings of the shapes, can be accomplished with the functions on the Size subtab
(Figure 3.2) of the Edit panel.

24 Creating Shapes

Figure 3.2. Grid and scaling functions

Note that the tab might look slightly different for different gridtypes. For example the sphere
grid doesn’t have the shape buttons as those are useless with this grid.

3.3.1 Adjusting the Grid Size

When the very first shape is initialised it has a default grid size of 6 × 6 × 6, but all other new
shapes will inherit the grid size of the currently selected shape. This feature can be very useful in
creating a series of shapes that are restricted with respect to certain dimensions (e.g. all pentacubes
that fit in a 3× 3× 3 grid). Selecting the proper shape before creating a new one often can save a
considerable amount of time by avoiding otherwise necessary grid adjustments.

Adjusting the grid size to your needs can be done either by entering values in the input boxes
next to the axis labels or by dragging the spin wheels. When you enter values the grid will be
updated as soon as you select one of the other input boxes (either by a mouse click or by the [Tab]
key) or when you press the [Return] key. Note that the grid is also updated by simply clicking
in or next to the 2-D grid. To avoid unexpected results it’s recommended always to confirm the
entered values with the [Return] key. Increasing any grid dimension is completely harmless, but
decreasing them needs some caution since it can destroy parts of the shape.

The checkboxes for linking adjustments - to the right of the spin wheels - allow you to adjust
two or all dimensions simultaneously. All linked dimensions will increase or decrease by the same
absolute amount. However, none of the dimensions can be made smaller than 1 unit. Linked
dimensioning is very useful in creating bigger and complex shapes such as the result shape of
No Nukes! (Ronald Kint-Bruynseels), which is easily done by first creating the central burr in a
6×6×6 grid and adding the extensions after resizing the grid to 14×14×14 and centring the ’core’
in that enlarged grid.

3.3.2 Advanced Grid and Scaling Functions

BurrTools has some powerful time saving functions to manipulate the position of the shape in
its grid or to rescale a shape together with the grid. These features are grouped below the captions
Grid and Shape on right side of the Size subtab. The first set of three will only affect the grid
and/or the position of the shape in the grid, the other procedures however will have an impact on
the shape as such by scaling it up or down.

Below is an overview of these functions, explaining what they precisely do and with an indica-
tion of the purpose they were introduced inBurrTools. No doubt you’ll soon find other situations
in which these tools can prove to be valuable.

Grid tools. Most of these tools are somewhat extended versions of the more general transformation
tools (⊲ 3.7) and have the advantage that they can act on all shapes at once (⊲ 3.3.3).

3.3 Grid Functions 25

Minimise the grid - This function will minimise the grid to fit the dimensions of
the shape it contains. Use it to reduce the disk space occupied by your puzzle files.
Note that the result of this function is strictly based on the contents of the grid and
will have no effect whatsoever on empty grids.

Centre the shape in the grid - This function centres the shape in the surrounding
grid thus allowing you to edit all sides of the shape. In some cases this will also
increase one or more dimensions of the grid by a single unit to provide truly centring.
The function is most useful in editing symmetrical shapes in combination with the
compound drawing methods (⊲ 3.4.4).

Align the shape to the origin - This function brings the shape as close as
possible to the origin of the grid. It can very useful if you want to make a descending
series of rectangular blocks by copying the shape and manually adjusting the grid
dimensions.

Shape tools. Use the following functions wisely because unnecessary and extreme scaling up of the
shapes will bear a heavy load on your system resources and can increase solving time dramatically.
Also, trying to undo such ’ridiculous’ upscalings with the 1:1 tool can take a considerably long
time. So, think twice, click once...

These tools only make sense for spacegrids where a group of voxels can be group to make a
upscaled shape that looks like a voxel of the grid, e.g. a group of 2x2x2 cubes looks like a bigger
cube. As this is not working with spheres, those tools are not available there.

Minimise the size of the shape (1:1 tool) - This function tries to make the
shape as small as possible without any loss of information and at the same time scales
down the grid by the same factor. Use this function to check the design for oversized
shapes which would slow down the solver. Note that although this function can undo
the effects of both the next scaling functions, the result cannot be guaranteed since
the algorithm may scale down beyond the initial size.

Double the scale - This function will double the scale of the shape (and its grid).
In other words, it will replace every voxel in the shape with a group of voxels that
all have the same characteristics (state and colour) as the original voxel. This can
be very useful to introduce half-unit notches or colouring into the design without
having to redraw the shape(s).

Triple the scale - This function is similar to doubling the scale. Only now a scaling
factor of 3 is used and hence every voxel in the shape will be replaced by 27 identical
voxels. This can be very useful if you want to introduce ’pins and holes’ into your
design.

3.3.3 Adjusting All Shapes

A last, but certainly not least, item to mention is the Apply to All Shapes checkbox. When checked
all shapes, whether they are selected or not, will be affected by the settings and procedures on the
Size subtab. This is very useful and time saving when a certain adaptation needs to be done to all
the shapes, e.g. transforming a six-piece burr with length 6 into one with length 8.

However, some precautions are build in to prevent unnoticed destroying of shapes. Manually
reducing any grid dimension will still only be performed on the currently selected shape, whereas
increasing (which is completely harmless to the shapes) will affect all grids. On the other hand,
minimising the grids will be applied to all shapes since it is content related. The 1:1 tool won’t
affect any shape unless all shapes can be scaled down by the same factor . This to prevent ending
up with an unintended mixture of differently scaled shapes.

26 Creating Shapes

3.4 Building and Editing Shapes

Once a shape has been initialised the 2-D grid wherein it can be build becomes accessible on the
Edit panel. Basically one needs only three tools to create any shape, but some more features are
added to make life easy. All these are on the toolbar right above the 2-D grid (Figure 3.3). The

Figure 3.3. Toolbar and 2-D grid

first four buttons are the basic drawing tools and colouring tool . These are all toggle buttons,
meaning that enabling one will disable the others. They affect the presence and/or the state and
colour of the voxels by clicking in, or dragging over the cells in the 2-D grid.

Next come two toggle buttons that allow you to select the drawing style. This is the way the
basic drawing tools will respond to dragging the mouse over the grid cells. Finally, a series of
compound drawing tools follows. These extend the range of the basic drawing tools and can all be
cumulatively added to them.

3.4.1 Navigating in 2-D and 3-D

Building and editing takes almost exclusively place in the 2-D grid to which the 3-D viewport only
acts as a visual aid. Both have their corresponding axes in the same colour: red for the x-axis, green
for the y-axis and blue for the z-axis. For the 2-D grid, which actually can show only a single layer
at a time, the z-axis is represented with a scrollbar (Figure 3.3). By default every new shape starts
on the bottom layer and the scrollbar allows you to move up and down through the different layers
along the z-axis (the number of z-layers is always indicated with the proper number of ticks along
the scrollbar). Another way to navigate these z-layers is by pressing [+] (moves up one layer) or
[-] (moves down one layer) on the keyboard.

Figure 3.4. Selections of grid cells in 2-D an 3-D

Moving the mouse cursor over the 2-D grid gives an indication of the cell(s) - depending on
the state of the compound drawing tools - that will be affected by clicking. These indications are
also reflected in the 3-D viewer. Furthermore, to facilitate positioning on different layers every
non-empty voxel on the 2-D layer just below the current one ’shines through’ in a very light shade
of the neutral colour associated with that shape (Figure 3.4). This makes building shapes from
bottom to top very easy.

3.4 Building and Editing Shapes 27

With larger grid sizes the cells of the 2-D grid can become very small, even when the available
area for the grid on the Entities tab is maximised. To overcome this inconvenience the 2-D grid
and the 3-D viewport can be exchanged. To do so, click the Toggle 3D item on the menu bar or
press [F4]. Note that this only affects the position of the 3-D viewport for the Entities tab.

3.4.2 Basic Drawing Tools

The basic drawing tools affect only the presence and/or the state of a particular voxel in the shape.
In fact they’re - together with the brush tool (⊲ 3.5.3) - all that’s needed to create any shape in
BurrTools. The following is a description of these tools. Note that each is also accessible through
a keyboard short cut.

Fixed pen - Use this tool to draw normal or fixed voxels. Fixed voxels are repres-
ented by completely filled cells in both the 2-D and the 3-D grid (⊲3.6). Remember
that these fixed voxels must be filled in the final result. Keyboard short cut: [F5].

Variable pen - This tool allows you to draw variable voxels. In the 2-D grid these
variable voxels do not completely fill the cells, but have a narrow border showing
the background of the grid. In the 3-D viewport the variable voxels have a black
inset (⊲ 3.6). Variable voxels instruct the solver that these particular places may
be either filled or empty in the final result. So variable voxels are only allowed in
result shapes and the solver will give a warning whenever it encounters any variable
voxels in a shape used as a piece. Short cut: [F6].

Eraser - The eraser will remove voxels from the shape. Note that clicking or drag-
ging with the right mouse button has the same effect of erasing voxels. The eraser
tool however proves its use in minute adaptations of shapes. Short cut: [F7].

3.4.3 Drawing Styles

BurrTools has two different drawing styles. These styles affect the way voxels are drawn/erased
or colours are added by dragging with the mouse. In drawing shapes by simply clicking ’cell-by-cell’
both are equivalent.

Rectangular dragging style (’rubber band’) - On dragging over the 2-D grid
with the mouse just a rectangular selection of cells will be made. This is shown
with a heavy border around the selected cells and the voxels will only be altered
on releasing the mouse button. Releasing the mouse button outside the actual grid
however will make the whole operation void and can serve as some kind of ’undo’.
This style not only proves its use in drawing rectangular shapes or parts, but is
extremely useful for adding colour to (large areas of) the shape.

Free dragging style - All drawing and colouring operations will be performed on
a single cell basis and as soon as the mouse cursor is dragged over that particular
cell. This drawing style is very useful for creating complex and irregular shapes and
colour patterns.

The status of these drawing styles is remembered by BurrTools so that it always defaults to the
drawing style that was active on the last shut down of the program.

3.4.4 Compound Drawing Tools

Although the basic drawing tools are all that is needed for creating shapes, some compound drawing
tools are added to speed up the process. The compound drawing tools can be added cumulatively
to the basic drawing tools and only extend the range of action for the latter ones.

28 Creating Shapes

Note that these tools always go along the 3 orthogonal axes, so they are very useful for cubes
but might needs a bit getting use to for the other spaces as they might behave differently along
the 3 axes. The triangular prisms for for example are stacked along the z-axis, side by side along
the x-axis and tip by tip along the y-axis.

Symmetrical drawing methods - For every voxel drawn, erased or coloured its
symmetrically placed counterpart (with respect to the centre of the grid and along
one of the space axes) will be affected as well. Activating only one of these options
will double the number of edited cells, whereas activating two or all three will affect
respectively four times and eight times as many cells simultaneously. These options
are not only useful for drawing symmetrical shapes, but they are also very well suited
for finding the centre of the grid and (temporarily) setting the extends of a shape.

Column drawing methods - These options - possibly combined with the sym-
metrical drawing tools - can really speed up drawing shapes as they will affect all
voxels that are in the same row or column along one of the space axes. The number
of voxels that will be affected depends on the size settings of the grid. Hence, to take
fully advantage of these functions the grid should be first adjusted to the proper
dimensions.

3.5 Adding Colour

There are basically two reasons for using colours in your puzzle designs. The first is merely aesthet-
ically and colours are only used to explore the looks of the puzzle. This can help you selecting the
proper species of woods or stains before taking your design to the workshop. The second however
is far more important as it uses colours to force c.q. prevent certain positions of particular pieces
in the assembly. These constraining techniques can be very useful to pursue a unique solution
for a puzzle design. Of course one can try to achieve both the aesthetic and constraining goals at
the same time. Figure 3.5 shows an example of Dracula’s Dental Disaster (Ronald Kint-

Figure 3.5. A shape with custom colours

3.5 Adding Colour 29

Bruynseels) in which colours serve both. The red and black voxels are meant to impose constraints
on the placements of the pieces, whereas the white colour of the parts on the inside of the pieces
is only used to make them look nice.

3.5.1 The Neutral Colour and Custom Colours

Even when no ’special’ colours at all are used, all created shapes do look different with respect to
their ’colour’. This is the so called neutral colour and is only there to distinguish the shapes from
one another. These neutral colours are standard for each newly created shape (the first one in the
shapes list is always blue, the second one green, the third one red, etc...) and cannot be altered.

As far as the solver is concerned, the neutral colour doesn’t even exist as all appearances of it
are fully interchangeable. So any voxel in the pieces that has only the neutral colour can go into
any voxel of the result shape and every voxel in the result that has no other colour than the neutral
can accommodate for any voxel of the pieces, independent of its colour.

Independent from their neutral colour, voxels can have customised colours as extra attributes.
To avoid confusion, it’s recommended to have these colours well distinguishable from the neutral
colours in use, since a custom colour that is identical to one of the neutral colours will have a
completely different effect on the way the solver behaves. Almost without exceptions custom colours
need some constraint settings (⊲ 4.3) to make the solver run.

3.5.2 Creating and Editing Custom Colours

The tools for creating and editing colours are located on the Colours panel of the Entities tab. This
panel also has a list in which the colours can be selected to be used in the design or to become
edited. The New button allows you to create a custom colour. A dialogue will pop up and present
you the necessary tools to create the colour you need. Accordingly the Edit button allows you to
transform an already existing colour using a similar dialogue. This dialogue also shows the currently
selected colour for comparison (unless the neutral colour is selected, which makes the dialogue to
show the default medium grey). Note that the neutral colour can be neither removed or changed.
It’s important to realise that the BurrTools engine only discriminates custom colours by number
as indicated in their prefix ’Cx ’ and not by the actual colours themselves. Hence it is possible
to create identical colours that nevertheless will be treated as different colours. So, it’s strongly
advised to introduce only colours for which the difference can easily be discerned. Otherwise,
finding out why a puzzle has no solutions can be very hard. The Remove button will not only
discard the colour from the list, but will also remove it from any voxel that has it as an attribute
by replacing it with the neutral colour.

When you add a colour BurrTools automatically add a constraint rule that pieces of this
colour can be placed into result voxels of this colour. This is done so because this is the most often
used usage case of colours. If you don’t want this you have to explicitly remove the rules (see ⊲4.3).
Also when a new problem is created BurrTools automatically adds one rule for each colour that
will allow placement.

3.5.3 Applying Colours

Colours can be applied while drawing the shape. Just select a colour and it will become an extra
attribute of the fixed pen or the variable pen. Additional colouring can be done by using the Brush
tool.

Brush tool - This is a ’colouring only’ device and merely adds the selected colour
to the voxels without altering their state. The brush tool can also be activated by
pressing [F8] on the keyboard.

The behaviour of this brush tool is similar to that of the drawing pens. So it obeys the drag styles
and can be extended with the compound drawing tools. Note that the right mouse button will still
completely erase the voxel.

30 Creating Shapes

3.6 Representations

Voxels can either be fixed or variable and each of these can come with or without an additional
custom colour. In BurrTools all of these have their own specific representations in the 2-D grid
as well as in the 3-D viewport. Figure 3.6 shows an overview of these. In this picture the neutral
colour is red (= shape S3) and the custom colour is green (RGB = 0.600, 0.753, 0).

Fixed voxels always fill the cell completely in the 2-D grid as well as in the 3-D grid. In all
the pictures of Figure 3.6 the voxels on the left are fixed voxels. Variable voxels only fill the cell
partially in 2-D and have a black inset in 3-D (the voxels on the right in Figure 3.6).

Voxels that have a custom colour added (the yellow voxels in Figure 3.6) show this colour as
an inset in the 2-D grid, whereas in the 3-D viewer they are completely painted with this colour
(provided that the Colour 3D View on the status line is checked, otherwise they will be painted
in the neutral colour). Note that in both grids the neutral colours also have a slightly checkered
pattern which can assist navigating in space (except for the spheres, they have no checkering).

3.7 Transformation Tools

Editing complex shapes can be very cumbersome and requires often a lot of navigating through the
2-D grid. So, properly positioning and/or orientating the shape in the 2-D grid can save a lot of
time. BurrTools comes with a set of functions that help you adjust the position and orientation
of the shapes. These functions are grouped on the Transform subtab of the Edit panel (Figure 3.7).
The first thing to see is that the transform tab looks quite different for all 3 available gridtypes. On
the top of the figure you see the tab for cubes, blow for the triangles and at the bottom for spheres.

Flip - These ’three’ functions are merely one single mirroring tool and the only
difference is the orientation of the mirrored shape they provide. The first will mirror
the shape along the x-axis (or in a plane through the centre of the grid and parallel to
the YZ-plane). The other do perform the same task, but along the y-axis (XZ-plane)
or the z-axis (XY-plane) respectively. Note that each button can either undo its own
action as well as the actions of the other buttons since the result of each function
can be obtained by simply rotating the outcome of any other. However, there are
three buttons to provide some control over the orientation of the mirrored shape in
the grid space, which can have a time saving effect if the shape needs further editing.

and more

Nudge - These functions provide translations (along the x-axis, y-axis or z-axis
for the cubes or along different axes for other gridtypes) of the shapes in their
surrounding grids. These buttons have two parts, of which the left part will shift the
shape towards the origin of the grid and the right part will move it away from the
origin. Note that shifting a shape beyond the boundaries of the grid will (partially)
destroy it. So these nudging operations can also be used to erase unwanted parts
on the outer limits of the shapes.

Rotate - These functions allow you to rotate the shapes around an axis parallel to
the x-axis, y-axis or the z-axis. Again, these buttons have two parts, of which the
left rotates the shape 90ř anti-clockwise (viewed towards the origin) and the right
button turns the shape 90ř clockwise. To avoid destroying shapes by rotating them
the grid may become rotated as well.
The triangle space has only one rotation button for the x and y-axis because it is
only possible to rotate by 180ř around these axes.

3.7 Transformation Tools 31

Figure 3.6. Representations in 2-D and 3-D

3.8 Miscellaneous Editing Tools

The Tools subtab (Figure 3.8) offers extra editing tools. Currently only some constraint related
tools are available.

3.8.1 Constraining Tools

These tools are mass editing tools that somehow have an impact on the possible placements of the
pieces in the final result. They act either on the inside or the outside of the shape. Voxels that

Figure 3.7. Transformation tools

Figure 3.8. Extra editing tools

32 Creating Shapes

are considered to be on the inside are voxels that have another voxel adjacent to all of their faces.
Consequently, outside voxels have at least one empty voxel neighbouring.

Fixed Inside/Outside - These functions allow you to change the state of the
voxels that are either on the inside (left button) or on the outside (right button) of
the shape into fixed voxels. Although one can think of situations in which these can
be useful as such, they are mostly used to undo the effects of the next two functions.

Variable Inside/Outside - These functions will respectively make all the voxels
on the inside or the outside of the shape variable. Making the inside variable is very
useful for puzzles with internal holes in undetermined places. On the other hand
making the outside variable can prove its use in a lot of design situations (e.g. adding
extensions to the pieces). Clicking both buttons will make the shape completely
build out of variable voxels. Use these wisely as the more variable voxels there are,
the slower the solver will run.

Colour Remover - These buttons will remove any custom colours from the voxels
that are either on the inside or the outside of the shape and replaces them with the
neutral colour. Removing the colour from the inside can prevent having to apply
complex colouring to the result shape in situations were the colour constraints are
only relevant to the overall appearance of the puzzle.

3.9 Managing Shapes and Colours

Currently only the shapes can be rearranged with the left and right arrow buttons of the Shapes
section, but more advanced managing procedures will be added in the future.

3.10 Shape Information

When using the main menu entry Status a window (Figure 3.9) like the one above opens and
displays all kinds of information about all the shapes available inside the puzzle. The table columns
have the following meanings:

Units Normal. Contains the number of voxels inside the shape that have the state fixed.

Units Variable. Contains the number of voxel inside the shape that have the state variable.

Units Sum. Contains the number of voxels inside the shape that are either fixed or variable.

Identical. If the shape is identical to another shape with smaller number the first one of these
number is displayed, so if shape 3, 4 and 5 are identical shape 4 and 5 will point to shape
3 but shape 3 will show none. So the table only points to a shape above.

Identical Mirror. A shape is entered, if the shapes can somehow be transformed into the
other including the mirror transformation

Identical Shape. A shape is entered, if the shape is identical without including mirrored
shapes.

Identical Complete. In this case shapes must be completely identical including colours and
not only the appearance of the shape.

Connectivity. This part of the table shows if the shape is completely connected and doesn’t
contain any separate voxels

Connectivity Face. This part is marked with an X when all parts of the shape are connected
via the faces of the voxels

Connectivity Edge. This part is marked with an X when all parts of the shape are connected
via an edge or a face of the voxel

3.10 Shape Information 33

Connectivity Corner. This part is marked with an X when all parts of the shape are con-
nected via a corner, an edge or a face

Holes. This part of the table contains information about possible holes inside the shapes.

Holes 2D. A 2D hole is a hole in the shape, if the shape would be 2 dimensional. So the o-
octomino has a 2D hole.

Holes 3D. A 3D hole is a completely surrounded region inside a shape.

Sym. This is a column that is mainly there for my help. BurrTools needs to know about all
kinds of symmetries a shape can have. If a shape turns up that has a kind of symmetry yet
unknown to the program it can not solve puzzles with this shape. So here is a tool to check
beforehand and without the need to create a problem. If you ever see a coloured mark in
the last column send me the shapes where it turns up. As long as this last column contains
only numbers without a color mark everything is fine.

Because calculating all this information can take a considerable amount of time BurrTools pops
up a window when it is working on accumulating this table. The window contains a progress bar
to guess how much longer it will take. There is also a Cancel button at the bottom that lets you
abort this calculation and view the already gathered results.

3.11 Tips and Tricks

Below are some tips and tricks that can be useful to simplify your designs, speed up the designing
and/or solving process, or can be used as workarounds for some limitations of BurrTools. We
encourage the reader to share his own tips and tricks with us so that we can incorporate them in
a future update of this document.

3.11.1 Voxel State and Size Tips

State and Solver Speed. The more variable voxels (as compared to the total number of
voxels) there are in the result shape the slower the solver will run. Also the number of pieces
has an impact on the solving time. Hence, replacing variable voxels with empty spaces for
determined holes in the puzzle is to be considered. Also leaving out a piece in complex
packing puzzles (and making its position in the result empty) can reduce the solving time
considerably.

Size and Solver Speed. Also the size of the shapes has an effect on the solving speed, since
bigger shapes inevitably lead to more possibilities: for a 1 × 1 × 1 cube there’s only one
possible placement in a 2×2×2 grid (excluding symmetries), but for a 2×2×2 cube there
are four of them in a 4×4×4 grid. So trying to minimise all shapes with the 1:1 tool before
taking the puzzle to the solver is highly recommended for complex designs.

Figure 3.9. The Status window

34 Creating Shapes

Complete sets. Often complete sets of pieces (e.g. the hexacubes in Haubrich’s Cube) can
be easily made by repeatedly copying the current shape and editing it with the properties
of left and right clicking.

Symmetry. A detailed treatment of some symmetry issues will be added to the next update
of this document.

3.11.2 Colouring Tips

Colouring Shapes. Colouring shapes as a whole is easily done with the brush tool in com-
bination with the rectangle dragging style and z-columns switched on.

Aesthetic Colours. When colours are solely used for aesthetic reasons make sure that the
result shape has only the neutral colour. This will prevent having to set a lot of constraint
conditions.

One-Sided Polyominoes. Polyominoes can be made one-sided by having them two layers
high and adding different constraint colours to both the layers. The constraint settings
(⊲ 4.3) should simply be a ’one-to-one’ relationship.

Hiding Pieces. For puzzles in which the goal is to hide a certain piece on the inside of the
assembly (e.g. Trevor Wood’s Woodworm) two constraint colours should be used. One for
the exterior and one for the voxels on the inside of the result shape. Also colour the piece
that must be hidden with this ’inside’ colour and apply the ’outside’ colour to all other
pieces. The constraint settings (⊲ 4.3) must then be such that the piece to be hidden is
only allowed to go into the ’inside’ colour and the other pieces may go into either colour.

3.12 Simulating non-cubic spacegrids

It is possible to emulate spacegrids different from cubes by just using cubes. This way BurrTools

can solve different kind of puzzles. This section will give hints of how to things. It will not contain
obvious emulation possibilities like hexagons with 6 triangles or x by y rectangles using several
squares, but rather the more complicated possibilities. The chapter can not be complete but it
rather wants to show what can be done and give you some initial ideas. If you come up with a
cool idea you are welcome to send it to me and I will include it in here.

Generally this emulation requires to use more cubes for one basic unit. This will probably result
in a slowdown of the solving process. But this slowdown is not always that grave. BurrTools
knows how to merge voxels that are always occupied by the same piece into one, so if there is for
example a puzzle that uses hexagonal pieces made out of the triangular prisms and these hexagons
are always within a hexagonal grid BurrTools will merge the 6 triangle together and work with
the resulting shapes. This only takes some time at the initialisation phase. On the other hand
there might be many placements of pieces that fit the underlying cube to triangle grid that are not
proper placements and that need to be sorted out first. This can take a long time. Major Chaos

by Kevin Holmes for example has a lot of illegal placements for pieces that need to be sorted out.
That takes a very long time, but once that is done the solving is actually very fast.

3.12 Simulating non-cubic spacegrids 35

3.12.1 Two-Sided Pieces

If you have pieces that have a top and a bottom there are several possibilities to model that in
BurrTools. One possibility is to use colours. Make the piece and the result 2 layers thick. The
bottom layer of both will get a special colour.

Another possibility is to add an additional layer that has voxels only in certain places as seen
in the picture. The additional voxel prevents the rotation of the shape. But you have to make sure
that the allowed rotations are still possible, e.g. if you place the notches in different places rotation
around the z-axis is also no longer possible. An example can be seen in Figure 3.10

3.12.2 Diagonally Cut Cubes and Squares

Cubes can be cut in many different ways, the cut that results in shapes such as given in Figure

Figure 3.10. Emulate 2 Sided Piece

Figure 3.11. Diagonally cut cube

3.11 can be emulated using cubes as seen in the image.
It is, of course, also possible to simulate diagonally cut squares this way. The squares need to

be 2 layers thick.

3.12.3 Cairos

Cairos are pentagons but luckily they have only 4 rotations, so it is possible to emulate them using
squares. Figure 3.12 demonstrates how that can be done.

3.12.4 Squares with Cuts of Slope 0.5

3.12.5 Edge Matching

Sometimes it is possible to emulate edge matching problems by using notches and dents at the
outside of the shapes.

36 Creating Shapes

Figure 3.12. Emulation of Cairos using squares

3.12.6 Other possibilities

There are many other shapes that can be emulated. As one example I will show 2 ways to emulate
William Waites Knit Pagoda (see Figure 3.13). Additionally to the shape the pieces have an

Figure 3.13. The Knit Pagoda

upside and a bottom. Figure 3.14 shows 2 possible ways to emulate these pieces. Both shapes
emulate the T-shaped piece seen on the right bottom.

It is quite easy to see that the pink shape working. It is constructed starting with a 3x3x1
square and adding a cube at the centre of one shape if that side is bulged outward and removing
one cube, when the side is bulging inwards. Finally add a cube at the centre of the 3x3 square to
make it unflippable.

The second is quite a bit more complicated to understand. Here the starting point is a 2x2
square. A cube is added or removed for the bulges just as in the other case but those cubes can
not be in the middle. They are at one side so that the cube from an outer bulge can go into a gap
created by an inner bulge. The resulting shape for one unit contains 4 cubes along a zig-zag line.

3.12 Simulating non-cubic spacegrids 37

Figure 3.14. Emulation for one of the Knit Pagoda Pieces

You can see it by looking for the lighter cubes in the turquoise shape above. This ways has the
additional advantage of avoiding flips because when the piece is flipped over the orientation of the
bulges changes and the cubes do not mesh.

38 Creating Shapes

Chapter 4

Defining Puzzles

Typically a puzzle problem in BurrTools consists of a collection of pieces (shapes) and a goal,
say another shape that the pieces should form when correctly assembled. This is what we call a
simple problem definition. Note that it may well be not that ’simple’ to solve it in real life. More
elaborated or complex puzzle problems contain also colour constraints and/or grouped pieces.

As stated before, a puzzle can be a collection of problems, either simple, complex or a mixture
of both. The Puzzle tab (Figure 4.1) provides all the tools needed to build a variety of puzzle
problems that are suited for the Solver.

4.1 Defining Simple Problems

As defined above, a simple puzzle problem consists only of a collection of pieces and a result shape
that can be assembled (and preferably also be disassembled) with these pieces (Figure 4.2). Bear in
mind that a simple problem also implicates that all the pieces can be separated from one another.
It takes only two steps (which are also required for complex problems) to create such a problem:
initialising the problem and assigning shapes to the pieces and the result.

Figure 4.1. Defining problems on the Puzzle tab

39

4.1.1 Initialising Problems

The first step is to initialise the problem(s). All the tools to do so are just below the Problems
caption. Just like with shapes this can be done by clicking the New button to start a completely
new one, or by using Copy to edit a previously created problem definition without destroying the
first. Accordingly, problems can be removed with the Delete button. All problems find their place
in the problems list below these buttons and are identified with a ’Px ’ prefix to which a more
meaningful description can be added by clicking the Label button. Also the methods for selecting
and rearranging problems are similar to their counterparts on the Entities tab and need no further
explanation here.

4.1.2 Piece Assignment

Until now we dealt with shapes as rather abstract concepts. Only by assigning these shapes to the
pieces or the goal of a puzzle they become meaningful. All available shapes are presented in the
top list of the Piece Assignment panel in which they can be selected and be given their purpose
in the puzzle. Since a strict distinction is made between shapes and pieces, it’s not necessary that
all shapes are used in a single problem or in any problem at all.

Although not mandatory, it’s probably best to assign the result shape first: select the appro-
priate shape and click Set Result. The result shape is then depicted in the top left part of the
3-D viewport (which also shows a smaller example of the currently selected shape) and the status
line shows some information about the problem at hand. Next, any other shape can be assigned
to the pieces of the puzzle by selecting it and clicking +1. This adds a single copy of the shape to
the second list which holds all the shapes used as pieces. If multipieces are involved, just add as
many instances of the shape as required by the same means. In the list of pieces any multipiece has
an instance counter added - between brackets - to its identifier. A single instance of every shape
used in the puzzle is shown in the lower part of the 3-D viewer. To make corrections, pieces can
be removed from the puzzle by selecting them (they also can be selected by clicking them in the
pieces list) and clicking -1. Again, this only removes a single instance and needs to be repeated
for removing multipieces.

Figure 4.2. A simple puzzle problem with multipieces

40 Defining Puzzles

Most of the time it is necessary to add one instance of all defined shapes to the puzzle. If there
are a lot of them this can take while. This is what the +1 each button is for. It increases the piece
counter for each shape (except the one assigned for the result) by one. Or it adds a first instance
of the shape to the problem. The Clr button removes all pieces from the problem.

Since it doesn’t make sense to have a certain shape to be result and piece at the same time, the
shape set as result cannot be added to the list of pieces. Consequently, assigning a shape that’s
already in the list of pieces to the result will remove it from the list.

Whenever the total number of cubes in the pieces is within the boundaries set by the result
shape (which can be inspected on the status line) this kind of simple puzzle problems can be taken
to the solver. Note that the solver won’t run when one or more pieces contain any variable voxels.

4.2 Grouping Pieces

Something we deliberately haven’t mentioned in the description above is the fact that the solver
will halt whenever it is unable to separate some pieces from each other. In other words, the
solver will attempt to separate all the pieces from each other and reports that no solution exists
when it fails to do so. This is just what is required for most puzzles as you need to have single
pieces as a starting point. But there are a few puzzles for which you have groups of pieces that
are movable but not separable. Here the piece groups come in handy. Probably everyone familiar
with PuzzleSolver3D ever experienced the futile attempts of that program trying to solve such
designs by nearly endlessly shifting the entangled pieces back and forth. Not so with BurrTools
as piece groups allow you to tell the disassembler that it is OK when it cannot separate a few
pieces from one another.

4.2.1 Concept

When the disassembler finds two or more pieces that cannot be taken apart it checks whether all
of the involved pieces are in the same group. If that’s the case it rests assured and continues. If the
pieces are not in the same group the disassembler aborts its work and reports that the assembly
can not be disassembled. This is the basic idea, but there is a bit more to it.

4.2.1.1 Complete Disassembly

A special case is ’Group-0’ . All pieces in this group need to be separated from each other. This group
is included so that it is not required to place all the pieces into their own group, when you want
to completely disassemble the puzzle. Pieces automatically go into Group-0, so you don’t need to
take care of that. As a matter of fact you won’t even find any reference to that Group-0 in the GUI.

4.2.1.2 Basic Piece Grouping

On the other hand, when dealing with puzzles of which is known that certain pieces (say Sa and
Sb) can’t be separated from each other, grouping these pieces will cause the solver to report a valid
disassembly for which the grouped pieces are treated as a single piece. Be it not a rigid piece since
the parts can freely (within certain boundaries) move with respect to each other.

{Sa, Sb}
Group-1 → Sa+Sb

Of course this technique can also be used (in a truly designing situation) for pieces that may
be entangled. If these pieces are indeed inseparable the solver will report so, but if they can be
separated the solver may report the complete disassembly as well:

{Sa, Sb} ?
Group-1 → Sa+Sb

Result: {Sa, Sb} and/or Sa, Sb
Now for the hard part: pieces can be in more than one group. If you have e.g. a puzzle for which

you know that piece Sa either interlocks with piece Sb or piece Sc and cannot be separated from
it, but you don’t know which of those (Sb or Sc) piece Sa is attached to, you can assign Group-1
to Sa+Sb and Group-2 to Sa+Sc:

4.2 Grouping Pieces 41

{Sa, Sb} or {Sa, Sc}
Group-1 → Sa+Sb
Group-2 → Sa+Sc

This way the disassembler detects that both pieces are in Group-1 when Sa and Sb are insep-
arable and it finds that both pieces are in Group-2 when Sa and Sc cannot let go from each other.
In both cases the solver will report a valid disassembly. However, if Sb and Sc are entangled the
solver is not able to find a valid disassembly.

4.2.1.3 Grouping Multipieces

All instances of a multipiece need to have the same group assignment, but you can instruct how
many of these may be in a group maximally . That means you can make statements like ’not more
than 3 pieces of Sn may be in Group-1’:

Sa1, Sa2, ... San

Group-1 → Sa1+Sa2+Sa3

Now how does it all come together? The disassembler starts to do its work. For each subproblem
(a subproblem is a few pieces that it somehow has to get apart) it first checks if there is a unique
group assignment for all involved pieces - i.e. all pieces have exactly one group assigned and that
group is the same for all of them - it doesn’t even attempt to disassemble that subproblem.

If this is not the case it tries to disassemble. In case of a failure it adds the pieces that are
in this subproblem to a table of lists of pieces. This is an array and each entry contains a list of
pieces. Once done with the disassembler the program comes back to this table and tries to assign
a group to each of the lists of pieces in the array. It just checks all possibilities by comparing the
entries of the table with the group assignments made by the user. Whenever the sum of pieces (of
a certain shape Sx) in such a ’problematic’ table entry is bigger than the value the user designated
to that particular piece, no valid group assignment can be made. If the program can find a valid
assignment the puzzle is disassembled, if it can not the puzzle is assumed to be not disassemblable.

4.2.1.4 Example

Assume we have a puzzle that contains (among others) 5 pieces of shape Sa. Three of them might
go into Group-1 and another 2 into Group-2. There is also a piece Sb that might go into Group-1:

Group-1 → Sa1+Sa2+Sa3+Sb
Group-2 → Sa1+Sa2

After the disassembler ran we have the following lists of pieces in the table:

1. Sa, Sa

2. Sa, Sa, Sb

Now the program has to assign Group-2 to the first set of pieces and Group-1 to the second set
of pieces. Because otherwise piece Sb would be in the wrong group, it can only be in Group-1. If
there would be another piece Sa in the first set it would not be possible to assign groups because
we can only have two pieces Sa in Group-2. But it would be possible to have another piece Sa in
the second set.

We have no idea how useful this might be with puzzles as most of the currently available puzzles
require a complete disassembly. But who knows, maybe this feature will help in the design of lots
of puzzles new and crazy ideas.

4.2.2 Creating Piece Groups

Although the above may sound complicated, implementing piece groups is actually very simple. All
actions take place in the Group Editor (Figure 4.3) which becomes activated by clicking the Group
button. Initially the Group Editor shows a tabulated overview of the pieces used in the problem.
The first column (Shape) lists the pieces by their prefix and name, the second (n) enumerates the
instances of each. Note that it is possible to add or remove instances by changing these n-values.

42 Defining Puzzles

Figure 4.3. The Group Editor

Creating piece groups is straightforward as the Add Group button simply adds a new group to
the problem. Each new group gets its own column (Gr 1, Gr 2, etc...) in which one can specify the
maximum number of instances of a certain piece that can go in that particular group. Just click
on a cell and it will become an input box. Cells that contain a value > 0 will receive the neutral
colour of the corresponding shape, cells with zero are grey and no number is shown. Any group
that has no values at all in its column will be deleted on closing the Group Editor. Hence, deleting
all the values of a previously made group will remove the group even if its column stays present
in the Group Editor.

4.3 Setting Colour Constraints

BurrTools automatically adds the probably most used rules for colour constrains when you add
a new colour or when a new problem is created. That rule is that each colour can be placed into
itself, e.g. a piece with colour Cx can go into a Result of colour Cx . If you don’t want that or if
you need additional placement possibilities you can change the colour constraint rules in the colour
assignment section.

The Colour Assignment panel (Figure 4.4) also has two lists. The first one shows all the
available custom colours and allows selecting a certain colour for which then some relations can
be set. These relations simply indicate which colour(s) in the result can accommodate for which
colour(s) in the pieces. By allowing certain combinations (which is in fact prohibiting all other
combinations) constraints are imposed on the theoretically possible placements of the pieces. These
relationships are shown and constructed in the second list. This list has three columns of which
the first shows the ’piece colours’, the last shows the ’result colours’ and the one in between clearly
depicts the relationships by a series of arrows pointing from the piece colours to the result colours.
The list is either sorted by the piece colours or by the result colours. The buttons Sort by Piece
and Sort by Result switch between these two views.

Figure 4.4. Colour assignment

4.3 Setting Colour Constraints 43

When sorted by piece (the left part of Figure 4.4), the bottom list is showing you that every
voxel of the pieces with colour Cx can go into every voxel of the result that has one of the colours
on the end points of the arrows starting from Cx. When sorted by result (on the right in Figure
4.4), the list shows which piece colours will be allowed to go in a particular colour of the result.

To set these relationships, first click the piece colour (or result colour, depending on the sorting
method) for which you want to set the constraints. This will activate the ’relations line’ for that
particular colour which is indicated with a dark surrounding box (note that clicking anywhere on
this relations line has the same effect). Next, the down and up pointing arrows will respectively
add or remove the colour selected in the top list to or from the constraint settings.

4.4 Managing Problems

Currently puzzle problems can only be rearranged with the left and right arrow buttons of the
Problems section, but more advanced managing procedures may be added in the future.

4.5 Tips and Tricks

Some tricks and tips will be added to the next update of the user guide.

4.5.1 Grouping Tips

4.5.2 Constraint Tips

44 Defining Puzzles

Chapter 5

Solving Puzzles

Solving puzzles is what BurrTools is really about. Without its solving engine the program would
be nothing more than a simple tool for drawing a very specific kind of 3-D objects... a task a lot
of other software is no doubt even better suited for.

Solving puzzles is very straightforward with BurrTools even if the Solver tab (Figure 5.1) has
quite a some controls. On top there is the Parameters panel, that contains a list allowing you to
select a specific problem to be solved, provides option settings for the solver and has a series of
buttons to direct the solving process. Finally, some information of the ongoing solving process is
presented.

A second panel (Solutions) has the tools to browse the different solutions found, animate the
moves to disassemble the puzzle to inspect the solutions in detail and to organize found solutions.

5.1 Solver Settings

In order to make the solver run a problem must be selected first. A list of all previously defined
problems is available right below the Parameters caption. Selecting problems to be solved is similar
to selecting shapes, colours or problems on the other tabs. Note that only the selected problem will
be solved and that solving one problem will preserve the results of any already solved or partially

Figure 5.1. Solving puzzles

45

solved problem. Currently there are the following options for the solver. All deal with the kind of
information the solver will report.

Solve Disassembly. When checked the solver will also try to disassemble the assemblies found
and only those that indeed can be disassembled will be added to the list of solutions. If
this option is left unchecked, the solver will merely search for all theoretically possible
assemblies, i.e. assemblies for which the pieces do not overlap. Since solving disassemblies
takes time (and often far more than assembling), it’s recommended to leave this option
unchecked for puzzles that always can be disassembled (e.g. Pentomino problems and
other packing problems). For that kind of puzzles running the disassembler would only slow
down the process without any gain in information. Also saving and loading the disassembly
instructions takes a lot of time and memory, so if they are not really needed they are just
a waste of time.

Just Count. When checked the solver will only count the number of solutions it will drop the
found solutions right after they were found. Check this option if you’re only interested in
the number of solutions and not in the solutions themselves.

Drop Disassm. When checked the program checks, if the found assembly is disassembable and
discards the solution if it is not disassembable. But the disassembly is not stored, only the
assembly and some information about the disassembly (like its level). This is useful if you
have a problem that has many solutions and you want to find the most interesting solutions.
Disassemblies take up a lot of memory within the computer so it is useful to just save
some information while solving the puzzle and then later on, when everything is finished
recalculate the disassemblies for the interesting solutions.

Sort by. This option lets you choose in which way the found solutions are ordered. There are
3 possibilities:

1. Unsorted: The solutions are sorted into the list in the order in they are found.

2. by Level: The solutions are sorted by the level. First the number of moves to remove
the first piece, if that is identical then by the moves for the second piece, and so on.

3. by number of moves to disassemble: The solutions are sorted by the sum of all moves
required to completely disassemble the puzzle.

Drop. If a puzzle has very many solutions it might not be possible or even necessary to save
all of them. E.g for polyomino-like puzzles it might be nice to keep just every 1000 of the
millions of solutions to have a profile of the possible solutions. Here you can specify every
how many-th solution you want to keep. A 1 means you keep every solution, a 100 means
you keep the first and the 101st and the 201st and so on.

Limit. Limits the number of solutions to be saved. There will never be more than the specified
amount of solutions in the list. When the list is full the program has 2 choices:

1. Solutions are sorted: The programs throws away the solutions at the end. So low
level solutions are removed

2. Solutions are unsorted: The program starts to throw away every second solution. So
when you started with a drop-value of one and the list is full the program starts to
drop every 2nd solution is finds and only adds every 2nd solution to the list. But for
each added solution it also removes every 2nd solution that already has been added
to the list. After a while the list contains only every 2nd solution then the program
only adds every fourth solution and removes again every 2nd solution in the list which
result in only every fourth solution ending in the list. This sounds complicated but
what is does is that is makes sure you have an nice crossection of all the solutions
found until then and not just the first or last.

5.2 Solving Puzzles

Next to the solver options are some buttons to direct the solving process. Problems can be solved
either in an automatic way or in a (manually) step-by-step manner.

46 Solving Puzzles

5.2.1 Automatic Solving

An automatic search will proceed until all solutions, i.e. assemblies and disassemblies (when
requested) are found. To begin an automated search click the Start button. Typically the solving
process consists of a preparation phase followed by several cycles of assembling and disassembling.
The latter one is of course omitted when the Solve Disassembly option is left unchecked.

The automatic solving process can also be interrupted by clicking Stop, but often the solver
needs to finish some tasks first before it can actually halt (⊲ 5.2.1.2). Any interrupted solving
process can be saved to the puzzle file and be resumed in another session with BurrTools. In
fact, on loading such a partially solved puzzle BurrTools will inform you about the possibility
to continue with the search for solutions. When the solver is interrupted the shapes (⊲ Chapter
3) and/or the problems (⊲Chapter 4) can be edited. If no editing whatsoever of these has been
done the solving process can be simply resumed (Continue), otherwise you need to start all over
again. But keep in mind the this saving of the internal state of the solver is very version dependent.
So it is likely that a new version of BurrTools can not resume solving a puzzle saved with an
older version. So it is good practice to finish solving jobs with one version of BurrTools before
updating to the next.

When the solver is running it provides a lot of information about its current state (what it is
doing) and an estimate of the time it will need to finish the search. All this information is presented
on six lines immediately below the solver control buttons (Figure 5.2).

Figure 5.2. The solver information

5.2.1.1 Solver Progress Information

The first line of the solver information is a progress bar indicating the percentage of work it has
done. The fifth (Time Used) and the sixth (Time Left) line respectively show the time already
spend on the search and an estimate of the time still needed to finish the solving process. Note
that the latter one and also the information about the percentage done are very rough estimates
since these are based on the possible placements of the pieces already tested and still to test.
However, the possible placements to be tested are constantly fluctuating as they are determined
by the positions of previously placed pieces (⊲ 5.3).

5.2.1.2 Solver State Information

Probably most important is the Activity and result information provided by the solver. The Activity
line not only tells you what the solver is currently doing, but it also whether the solver can be
interrupted or not. The following is an overview of the activities of the solver:

nothing. This indicates that the solver is ready to be started (provided a valid problem is
selected) and that no information is available about earlier attempts to solve the selected
problem.

prepare. The solver is creating the internal data structure for the assembler. This structure
is more or less a listing of all the possible places that all the pieces can go to.

5.2 Solving Puzzles 47

optimize piece n . In this second stage of the preparation the placements for each piece are
tested for plausibility. Some placements are just nonsense in a way that they result in
unfillable holes or prevent the placement of other pieces. These placements are removed
from the data structure (⊲ 5.3).

assemble. The program is currently searching for assemblies.

disassemble. An assembly was found and is now tested for disasembability.

pause. A search was started and interrupted.

finished. The search was completed, all found solutions, ordered by the set up sorting cri-
terium, can be inspected (⊲ 5.4).

please wait. The user wanted to stop the search, but the program still has to finish what it
is doing right now. Only the assembler is interruptible. The preparation and optimisation
stages need to be finished. The disassembly search also has to be finish first.

error. Something is wrong with the puzzle and an error message, providing more specific
information on the error, is usually displayed.

Finally the solver gives information about the thus far found Assemblies (i.e. assemblies for which
the pieces do not overlap in 3-D space) and Solutions or disassemblies (i.e. assemblies that also
can be constructed in real life using the particular pieces of the puzzle). Note that the Solutions
are only reported (and in fact tested) when the Solve Disassembly option is enabled.

5.2.2 Manually Solving

Besides the automated search BurrTools allows you to run the solver step-by-step. Note that this
feature is still under construction and that it has a lot of shortcomings. For instance, it won’t
add the found solutions to the list or update the solver information. So it certainly needs a lot of
improvements in a future release of the program. For the time being it is only useful to check the
assembly process when something went wrong with the automated search.

A manual search needs the initial preparation phase as well as an automatic search. This can be
accomplished by clicking Prepare. The solver will halt after this initial phase and the subsequent
steps of the assembler can be seen in the 3-D viewer by clicking the Step button.

5.3 Browsing Placements

The Browse Placements button opens a window (Figure 5.3) that lets you examine the positions
for each piece that will by tried by the assembler. The placements displayed in this window are the
possible positions left in the current state of the assembler. So if the assembler has placed a piece
Sa and this prevents placing another piece Sb at some positions, these positions of piece Sb will not
be visible in the list. If you want to see every placement tried you either have to initialise a manual
search (click the Prepare button), stop the assembler before is starts to do anything (click Stop while
in preparation or optimisation stage) or you have to wait until the assembler has finished its work.

The Placement Browser window (Figure 5.3) has a very simple layout and consist mainly of a
3-D viewer and some additional scrollbars. This 3-D viewport, that shows the outline of the result
shape and therein the shape for which the possible positions are to be analysed, behaves similar
to the one of the main window. Drag the piece to rotate it in space and use the scrollbar on the
right to zoom in or out.

Each piece in the problem (note that each instance of a multipiece is available) can be selected
with the scrollbar on top of the window. The left scrollbar allows browsing all the different place-
ments for the selected piece. Both these scrollbars can also be controlled with the cursor keys on
the keyboard: [Up] and [Down] for the left scrollbar and [Left] and [Right] to select the piece.
Be careful though, the first stroke on the keyboard that doesn’t fit the current scrollbar will just
select the other one and the following keystroke will start to move the slider.

48 Solving Puzzles

Figure 5.3. Placement browser

5.4 Inspecting Results

As soon as any result is found the solutions list becomes available on the Solutions panel and the
3-D viewer shows the first solution in the list. Note that subsequent solutions are simply added to
that list and that they only can get sorted by the total number of moves (in case disassembly was
requested) after the search is completed. Already found solutions can at any time be inspected
and this does not interfere with the ongoing solving process, but bear in mind that on completing
the search resetting the scrollbar for browsing the solutions may be needed to show the solutions
properly ordered.

This panel has four components: a scrollbar (Solution) to browse the different solutions, a
second scrollbar (Move) to view the moves involved in the disassembly, an array of buttons with
very short labels to organize the solution list and a list of all instances of the pieces in the puzzle
problem, which allows you to alter the visibility of particular pieces in the solution(s).

5.4.1 Selecting Solutions and Animating Disassemblies

By moving the slider of the top scrollbar (Solution) any solution from the list can be selected as is
indicated by its number in the text box left of the it. Above the scrollbar there is an indication of
the total number of solutions in the list. When the scrollbar is active it can also be controlled by
the [Left] and [Right] cursor keys. Keep in mind that the number of solutions in the list may
be different from the real number of solutions. The correct number of solutions for the problem is
shown in the solver progress section.

The second scrollbar (Move) also has a text box on the left, this time reflecting the stage of
disassembly (i.e. the number of moves executed in the disassembling process) of the currently
selected solution. Moving the slider to the right will animate the disassembly, moving it to the left
will reassemble the pieces in the 3-D viewer. Again, when activated the scrollbar can be controlled
by the [Left] and [Right] cursor keys. Above this scrollbar the total number of moves required for
the disassembly is shown followed by the level(s) of the selected solution. Note that this scrollbar
is only visible for solutions which have disassembly instructions available.

The position of the Move scrollbar isn’t affected by selecting any other solution and thus allows
easily comparing the different solutions at a particular stage in the disassembly process.

5.4 Inspecting Results 49

Below the Move scrollbar are 2 fields that show you 2 numbers associated with the currently
selected solution. The first is the assembly number and the second is the solution number. Both
numbers define when a solution was found. The first found assembly gets assembly number one.
But that one might not be disassembable so it gets thrown away. The second found assembly gets
assembly number two and if it is also disassembable it gets solution number 1. So you will see
assembly 2 and solution 1 in these 2 fields for the given example.

5.4.2 Handling Solutions

The big button group below the Solution selector and animator lets you modify the solutions. They
are only activated when no solver is running.

With the buttons in the first row you can resort the found solutions by the same criteria as you
can select for the solver. You can sort them in the order they were found (unsorted) or by level or
by sum of moves to completely disassemble.

The second row buttons allows the deletion of certain solutions from the list.

Del All. removes all solutions

Del Before. removes all solution before the currently selected solution. The selected solution
is the first one in the list that is not removed

Del At. removes the currently selected solution

Del After. removes all solutions behind the currently selected one. The selected on is the last
one that is kept

Del w/o DA. remove all solutions that have no disassembly

The last row of buttons allow the addition or removal of disassemblies to the list of puzzles.

D DA. deletes the disassembly of the currently selected solution. The disassembly is replaced
by a something containing only information about the disassembly, so you can still sort the
solutions

D A DA. deletes all disassemblies

A DA. adds the disassembly to the currently selected solution

A A DA. add the disassembly to all solutions. Already existing disassemblies are thrown away

A M DA. add the disassembly to all solutions that do not have one. Solutions that already
have a disassembly are left unchanged

5.4.3 Visibility of Pieces

In the list at the bottom of the Solutions panel all pieces used in the problem are represented by
their identifier. Instances of multipieces have a counter added to their prefix which now takes the
form ’Sx.n’ and their neutral colour may be slightly modified to tell them apart.

By clicking an identifier the visibility state of that particular piece is altered in the 3-D viewer.
Each piece can have three states: visible, outlined or invisible. Clicking an identifier repeatedly just
cycles through these states and also alters the way the identifiers are depicted in the list. These
features are very useful in designs for which the pieces are packed in a box, since the box would
hide most of the action that is going on inside (e.g. Al Packino, ⊲Appendix A). Also they are
very useful for inspecting the interaction of a few pieces and allow comparison between different
solutions as the visibility states remain invariant in selecting solutions.

By default the pieces that become separated from the rest gradually fade out during the final
move. Sometimes this is unwanted as it may hinder a clear view on what’s going on. This can be
avoided by unchecking Fade Out Pieces on the options window (activated through Config on the
menu bar).

50 Solving Puzzles

Chapter 6

Reporting with BurrTools

BurrTools comes with some extra features to assist you in making puzzle solution sheets, either
for your personal archives or to be issued with your exchange puzzles and commercially produced
puzzles. Currently, these capabilities are very basic and need to be improved in a future update
of the program. So, don’t expect too much from them right now, but rather consider them to be
merely a preview or a teaser to stick to BurrTools.

6.1 Adding Comments

The Edit Comment entry on the menu bar opens a new window that allows you to add textual
information to the puzzle file. It can be used to append extra information to the puzzle such as
the name of the designer, or a ’to do’ list for your own designs.

6.2 Exporting Images

The Export - Images entry on the menu opens a window that allows you to export a portion of
the current puzzle in to (a list of) images (see Figure 6.1). The window has a 3D view on the right
and input elements that control what is being created on the left. On the very bottom of these
controls you can select what you want to create images of. Depending on what is present in the
puzzle, the following things can be exported:

Shape. An image of a single shape is created. You can select which shape with the shape
selector below.

Figure 6.1. The image export window

51

Problem. An image containing all shapes that are used for a problem is created. Again you
will find the problem selector below that is used to select which problem you are going to
create images of.

Assembly. An image showing the positions of the pieces in an assembly is created. You can
select the problem. Of that problem the first assembly is exported.

Solution. An image containing all steps necessary to disassemble a problem is created. In this
case you also select the problem with the selector below. The images will be created for the
last solution of that problem.

This is the first thing that you have to select. Naturally only the choices are available to which the
puzzle has data. So if you have not run the solver on the current puzzle it is impossible to export
solutions or assemblies.

Above these selector you find the file output parameters. First the name and the path to where
the images are supposed to be created. If you give no path the images are put into the working
directory of the program. The file name is just a prefix, so if you keep ’test’ as file name you get
files of the form ’test000.png’, ’test001.png’, � .

Finally you can say how many images you intend to create. BurrTools will try to do so, but
might use less. If you only have one assembly to export, only one page can be created.

The Number of images entry is ignored by the software for the time being, it will be used later on.
Above these input elements you find the last section that defines how you want to output, what

you output. You can define the quality and some additional parameters that influence how the
images look, but not what is to be seen.

In the top left corner you find the definition of the background of the image. You can choose
between transparent or white. Transparent is useful if you want to have a background with patterns
or want to further edit the images.

Below you find the settings for the oversampling factor. The higher that is the smoother the
images will look, but the more memory and calculation time is required.

Below you can select if you want to use the constraint colours for the output or rather the
neutral colour of the shapes.

The checkbox Dim static pieces makes BurrTools draw pieces that are not involved in the
current move in a lighter colour, so that the actually moving pieces are easier to spot. This, of
course, only works when exporting solutions.

Finally there are the parameters for the image size that the program creates. You have 2
possibilities. Either define the pixel size directly, or define the size of the image in millimetres and
the DPI printer resolution. If you want to create A4 or letter sized images for printing you can use
the predefined sizes.

To position the shapes in the output images you can use the 3D view at the right of the export
window. All images exported will use the same settings for angle and zoom as in that 3D view.
If the shapes reach above or below the 3D view they will be cut. Left and right is different. The
width of the images to generate is not fixed. So the program will make them quite a bit wider to
accommodate the horizontal spread of the pieces.

If you have finished with all settings press Export Image(s). You will see a flurry of images in the
3-D view. The program draws the shapes there and grabs the content from the display. This may
take a while. First the size of the images is determined then the images are drawn in the required
high resolution for the output. The progress can be seen on the left besides the 2 buttons. You
will see how many images are finished and how many there are overall.

Hint: If you get unexpected results and broken images try to do nothing while the images are
exported. On Linux it is forbidden to change the virtual desktop because then nothing is drawn.

The export is far from what we want it to be, many important features are missing, so you can
expect some progress in later versions of BurrTools.

6.3 Exporting to STL

STL, which stands for Standard Triangulation Language or Standard Tesselation Language is a file
format used by stereolithography software. STL-Files describe the surface of 3-dimensional objects.

52 Reporting with BurrTools

BurrTools can export single shapes into STL files so that 3D printer can quickly fabricate
prototypes of them.

The main menu entry Export - STL opens the window seen in Figure 6.2. The window has shape
selector, a 3-D view of the selected shape and some parameters that control the created shapes.

Filename and Path control the name and position of the generated file. Cube Size controls the
base length of the created cubes. Bevel controls the size of the bevel and Shrink allows to have a
gap between different pieces, so that it is actually possible to assemble them. If the shapes were
make to correct sizes they would touch and movement impossible.

The STL-Export does right now only work for cubes. Triangles and spheres are not working.
Also the shapes to export must not contain any variable voxels.

Figure 6.2. The STL-Export window

6.3 Exporting to STL 53

Chapter 7

Future Plans

So, what are our future plans? There are a lot of things still missing (or in need of improvements)
from the current program. A list of things that might be interesting to implement are the following:

• Add some special algorithms that are faster for certain kind of puzzles. The current
algorithm is quite good for nearly all puzzles, but it’s not the fastest.

• Add more colour constraint possibilities, e.g. edge matching, ...

• Add different more space grids, add parameters to some grids (lengths and angles).

• Add rotation checks to the disassembler.

• Add a shape generator: create all piece shapes that fulfil certain rules (shape, colours, union
of two shapes, ...)

• Libraries of shapes to import pieces from.

• Add tools for puzzle design (see below).

• Make it possible to divide problems so that they can be solved parallel on several computers
and then the solutions are merged back together in one file.

• Improve multi threading so that multi-core CPUs are better used.

• Improve assembler to cope with ranges of piece numbers (e.g. 1-5 of piece x) and doesn’t
need to place all pieces. So that is is possible to solve piece sets and also to create puzzles
by defining a set of pieces and let the program find out which of them results in a nice puzzle.

• Better tool for colourization of a piece. E.g. checkering, but it needs to be more general
than just checkering.

• Create a debug window to make it possible to find out why there is no assembly or why an
assembly can not be taken apart.

• Speed improvements.

• ”Unificator” a tool that makes it easy to check the results of adding color constraints. For
example: suppose you have designed a puzzle with one interesting solutions and many
uninteresting and you want now, by adding color constrains, make that one solution unique.
It can be a labor intensive task to do that. The unificator would help here by quickly showing
the resulty of adding color here or making a piece that color, ...

We would be very happy to get contributions from other people. After all there are quite a few
people out there that have their own puzzle solving programs, maybe they have some nice additions.
There is one important thing to keep in mind: the additions have to run on Linux. So you can
not use any proprietary library that is not available for Linux.

7.0.1 Burr Design Tools

The following paragraphs are written as if the features were already implemented, but this is only
done so that the text can be copied into the real book without having to rewrite a lot of it.

There are 3 possible design methods implemented in BurrTools

1. BurrGrowing after Dic Sonnevelds ideas

55

2. Constructing, the natural approach

3. Destructing, the inverse way, take the assembled puzzle and try to assign cubes to one of
the pieces

The following sections will describe these methods

7.0.1.1 Burr Constructing

The idea behind Constructing is to create new puzzles out of a set of pieces, try all possibilities
and select the best found. To give the designer a great number of possibilities there are loooots of
options here beginning with the design of the pieces ending with the method of how to solve the
generated puzzle and how to save them.

The basis for the Burr Construction is a normal puzzle file containing some shapes. These
shapes are then taken by the constructor and made into many puzzles that are solved.

So lets start with the piece generation. Each piece for the puzzle that needs to be generated
may be assembled out of the following possibilities: a fixed piece, a list of pieces, a merger of 2
or more pieces, a piece containing variable cubes. The whole possibilities can be stacked on one
another, so you can specify a list of 2 pieces where is piece is the merger of 3 pieces containing
variable cubes... . All this can result in many possibilities, so be careful if you want a full analysis
this side of eternity. Because of the complexity the program also might encounter the same puzzle
several times. It will also be possible to let the program select puzzles out of the definition space
by chance instead of doing a full analysis.

So what do the possibilities mean.

fixed piece. a shape containing no variable cubes. This shape is directly used

variable piece. a shape containing n (n>0) variable cubes. All shapes are used that have one
of the 2n possible conditions for the variable cubes are used

list of pieces. the pieces in the list are taken one after the other

merger of n pieces. a new piece is constructed containing the union of both pieces, where
the union is set, if one of more of the shapes to merge is set and the others are not set and
variable is at least one is variable.

At the end of the process it is possible to define the type of connection that must exists inside the
shapes, shapes that do not fulfil this requirement are dropped

All these possibilities may lead to a huge number of shapes, so be careful.
Now it is possible to select the way the puzzle is solved. This includes disassembly (if or if not),

also reduction and parameters for reduction can be set
Finally it is possible to select the way the created puzzles are saved.

• All / only Solvable / only uniquely

• keep best with least number of solutions

• keep best with highest disassembly level

• keep best with biggest disassembly tree (most branches on the way out)

• keep best with highest number of not disassembable solutions

Save puzzles with solution(s) or without to save space
The puzzles are all saved into single directory, that must be selected
It would be nice to be able to stop the search process and continue later on, the parameters for

the constructor should be saved into the source puzzle file (including the current state)

7.0.1.2 Destruction

Destruction is in some way the inverse process of construction. Here you start with the finished
assembly and you assign the outer voxels to certain pieces. Now the search process starts by
assigning the not yet assigned cubes to pieces or to voids. All possibilities are tried and the best
are kept.

56 Future Plans

Additionally it is possible to pose certain requirements on the piece shapes. You can say in
which way the pieces must be connected (by faces, edges, corners), if the pieces need to be machine
makable.

Also it is possible to do the whole process randomly instead of completely

7.0.1.3 Burr Growing

This method has been pioneered by Dic Sonneveld. It is suitable to create extremely high level
burrs. The algorithm works by adding cubes to pieces to prevent certain moves and hope that the
puzzle will still be disassembable in a different way.

Future Plans 57

Part II

Advanced User Guide

Chapter 8

The Internals

This chapter explains some of the internals. It is still quite incomplete, probably out of date and
might even be wrong...

8.1 The Puzzle File Format

For those people that want to do things that the GUI is not supporting the exact file format of
the files used by the GUI and the library may be of interest.

The format is actually a gzip compressed XML-File. The program can read both, compressed
and uncompressed files transparently so you don’t need to zip them before loading into the program.
The GUI always writes compressed files so if you want to change something in them you first need
to decompress it.

I wont describe all the elements of the XML-File, it’s easier if you enter something similar to
what you need in the GUI and look in which way the program saves these information.

8.1.1 Voxel Space

Because this is probably the most complicated part of the format here is a description of how the
voxel spaces are saved. The size of the space is saved inside the attributes of the node and the
contents of the node is saved in text of the node.

The 3 voxel states are saved with 3 characters:

• ’_’ for empty voxels

• ’#’ for filled voxels

• ’+’ for variable voxels.

Colours can not be attached to empty voxels but to voxels with the other 2 states. Currently colours
are just a number (up to 2 digits) that are simply written as a decimal number and are appended
to the voxel state. If the colour number is 0 (which is the neutral colour) nothing is appended.

8.2 The Library

The library is available for all people who want to do an analysis that would be too much work to
do by hand with the GUI. A bit of C++ programming experience is necessary to handle the task.

There are 4 important classes in the library. The class voxel_řřřc handles a 3 dimensional
array. Each position inside the array corresponds with one cube inside the piece. The class
puzzle_c is responsible for the whole puzzle containing a set of pieces and a solution. The classes
assembler_x_c and disassembler_x_c (where x is a number which may be available to select
different algorithms that do the same task) are responsible to find assemblies and to disassemble
the found assemblies. The important aspects of these classes will be explained in the next sections.

8.2.1 Class Voxel

This class contains functions to organise, modify, transform 3-dimensional arrays of cubes. Each
entry inside the array contains 2 values:

• The type of voxel (is it empty VX_EMPTY, filled VX_FILLED or a variable cube VX_VARIABLE

59

• The colour constraint colour. Here values between 0 and 64 are possible. 0 is the neutral
colour.

The class provides a set of functions to rotate, translate, mirror, resize and minimise the shape.
The transform function allows to generate all possible rotations — also including mirroring, if
wished. The function selfSymmetries calculates which of these transformations result in the same
shape. Connected finds out the all the cubes in the shape are connected in one big piece (neither
the assembler nor the disassembler requests that this is the case).

If all this is not enough then there are functions that return the value of the different cubes
inside the shape and also to set the value of the cubes. These functions exists in different versions.
One requires the x, y and z coordinate of the cube requested. The other just takes one number.
For this function all the cubes are in one long row. This function is efficient to use if all cubes are
traversed and an action is done that is independent of the exact position of this cube inside the
shape. Finally there is a set of get functions that also work with coordinates outside the box of
the shape. These function always return VX_EMPTY for cubes outside the bounding box.

Then there is a bounding box that encloses all non empty voxels. This box is used by the
selfSymmetry function. It only transforms the part inside of the box and then compares. There
are 2 comparison functions: one compares the voxel space one by one the other one compares the
space inside the bounding box, so the content may be shifted and still they are considered identical.

8.2.2 Class Puzzle

This class contains all the information of the puzzle including the shapes, the result shape and
piece shapes and number, the colour constraints, the solutions, the grouping information and some
statistics. This class contains all the information that gets saved in hard disc.

The class contains a huge amount of functions that allow you to set and get the contained
information.

8.2.3 Class assembler

As already explained this class tries to find assemblies for a puzzle. It uses the dancing link
algorithm explained later.

The caller is informed about found solution via a class that the caller has to provide. This
class contains a function. This function is called for each found assembly with the found solution
as parameter.

The caller can then do whatever he pleases. He can just count the number of solutions by
increasing a counter. He can save the found solutions. He can analyse, if the found solution is
disassembable. If the caller is not interested in the solution he has to delete it.

8.2.4 Class Disassembler

The disassembler tries to find out if an assembly can be taken apart. And if it can be taken apart
it will return a shortest disassembly sequence. The class contains some datastructures to make it
possible to quickly check multiple assemblies of the same problem. So it is possible to chreate one
instance of this class and disassemble a whole set of puzzles and then destroy it.

8.2.5 Class Assembly

This class contains an assembly of a puzzle. The assembly is always connected to a specific problem
of a puzzle because it takes reference to the piece numbers defined in the problem and also to the
shapes of the pieces defined within the puzzle.

The assembly itself contains just a list of positions and transformations. What shape is behind
that must be asked from the puzzle class

Assemblies can be transformed. This changes to placement and transformation of all the
included pieces so that the resulting piece arrangement is rotated.

Assemblies can also be compared. This is required for the rotation avoiding technique describes
below for the assembler.

60 The Internals

8.2.6 Class Disassembly

This class contains all the information to completely (or with piece grouping not completely)
disassemble the puzzle. It contains a tree. On each branch of the tree the puzzle separates into 2
parts. If one part can not be further assembled (e.g only one piece is in that part or the grouping
makes is not necessary to disassemble that part) the pointer to the subtree is NULL. Each node of
the tree contains a list of piecepositions that are the steps to take the problem apart.

8.2.7 Example

A very simple example can be found within the source code of the project. Check the burrTxt
sources. They just check a few command line options, load the puzzle and then solve it, no fuzz
with user interface, multi threaded application, ...

8.3 The Algorithms

There are only two algorithms of interest inside this program. One is the assembly algorithm. This
one is based on the “Dancing Link” algorithm from D.E.Knuth. I needed to update the algorithm
in 2 ways:

1. We require cubes that may be filled as well as cubes that must be filled . The original
algorithm only provides the 2nd type of cubes.

2. We need to do something about multiple identical pieces. The original algorithm will find∏
s∈shapes

num(s)! as many solutions as there really are.

The 2nd interesting algorithm is the disassembler. This is mainly a breadth first tree search over
all possible placements of the pieces.

8.3.1 Assembly

As already said this algorithm is based on the Dancing link algorithm. This algorithm is mainly
a very efficient and elegant backtracking method that stops much more early than many other
algorithms. It stops when is finds that a piece can not be placed any more. It stops when it finds
that a cube of the solution shape can not be filled any more. These recursion stops don’t need to
be implemented separately, but they are part of the algorithm. But bevore we go on describing the
details, there is one mayor problem that needs to be solved: avoid finding solutions multiple times.

8.3.1.1 How to Avoid Finding Multiple Assemblies

Now this is a complicated problem. There is the naïve approach which would be to save all found
assemblies and check new found assemblies against this list. This has major problems. You need
to save all assemblies and there can be many. You need to check against all those save assemblies
and that can get slow. If you want to make a break and later on continue you need to save all those
solutions on harddisc and load them again. An of course the worst problem is that you waste a lot
of time. If it just would be possible to not find those solutions in the first place.

To solve this problem let us first analyze what kind of double solutions exist

Identical assemblies. These are solutions that do look completely identical (they are not
even rotated). There are 2 possible reasons for this to happen:

1. Two or more identical pieces that are exchanged

2. One piece has symmetries and the (invisible) difference between the 2 found solutions
is that this piece is rotated

3. A bug in the code that makes the program find really identical assemblies. Lets
assume that this is a rare event.

Rotated assemblies. These are solutions that are identical but need to be rotated first to
find that out.

8.3 The Algorithms 61

The first kind of assemblies can be avoided relatively easily by removing rotations from pieces
that result in the same piece. And by being careful with identical pieces and avoid finding the
permutations of these pieces. With these precausions it can be assured that no identical looking
assemblies are found.

The second kind is very hard. The recursive part of the program will find them. It is possible
to avoid finding a few of the rotations and in some puzzles is even possible to avoid finding any
of them but there are puzzles where the program will find some or even all possible rotation, so a
solution needs to be found that can detect rotations when they are found.

But first let’s see how we can avoid as many of the possible rotations as possible. This is done
by selecting one piece and dropping a few of the rotations that are possible with this piece. As
this piece can not only be inside the solution in certain positions all solutions that would require
that piece to be rotated will not be found. If we can be sure that all solutions that are dropped
also exist as a rotation inside the solutions that we find we are lucky. But which piece to select?
And what rotations to drop?

To find out which piece it helps to think of the perfect piece. Lets assume our target is a cube
and it has only one solution. A cube has 24 symmetries so we would normally find 24 solutions
(maybe even more, due to mirror solutions, but let’s forget about this for a while). With each
rotation that we drop from our selected piece one of the possible rotations for the solutions wont be
found until we have only one possible rotation left for the selected piece and so we find only that
solution where this piece is in that left over rotation. All other rotations would require the piece to
be in another rotation, which is not in our list to try. But this only works, if the piece really has
24 differen rotations from which we can drop 23. If the piece is symmetric in one way or another it
will not have that many different rotations as a few of them will result in the same piece and thus
can not be considered. So the best choice is always a piece with no symmetries. What to do if there
is none such piece? Select one has has the least overlap with the symmetries of the result shape.

Before we make clear what that means we have to see which rotations need to be dropped. We
need to drop those rotations that might result in a rotated solution. A rotated solution is one that
has the same exterior appearance. So the possible rotations result from the shape of the result. If
all these rotations do exist in the selected piece we can supress the rotations from the solutions by
dropping them.

And now back to the clean and general solution. Here Bill Cutler came to my help. He told
me what he did and that is something very ingenious.

The first thing to do it to be able to compare two assemblies that are the same but one is a
rotation of the other and be able to say assembly a1 is smaller or larger or equal to assembly a2.
This comparison can be implemented by comparing piece positions and transformations. It can be
completely arbitrary. It just must be assured that the rotation suppression with the pivot piece
does not remove the one transformation that is the smallest when compared with the comparison.

Now the following is done for each assembly found. At first all rotions of this assembly are
generated that result in the same shape for the assembled shape. These assemblies are compared
with the found one. If there is one that is smaller than the found one drop the found assembly and
go on searching. If the found assembly is the smallest one do whatever needs to be done with it.

There are 2 left open the question. What to do if the found assembly is the smallest but there
is another assembly just as small? And how can be assured that the rotation selected by the
comparions function is not removed by the rotation avoiding method.

First to the first question. When does this happen? This happens then when solution itself (not
only the shape of the result but the also the construction) has some symmetry. That means that
there are 2 indetical looking solutions that differ in exchanged pieces ore a rotation of a piece that
does result in an identical looking piece. This kind of identical solution has already been successfully
avoided, so there is no need to take special precautions, that case is ignored. If the found assembly
is one of the smallest it is taken, if there is one ore more smaller assembly, it is dropped.

Now on to the 2nd problem. Here we need to make sure that the rotation avoiding method
knowns about the comparison function and makes sure that the smallest of the assemblies is kept.
Here is one possibility:

If the comparison function looks like this:

for (p = 0 up to number of pieces the assembly) {

62 The Internals

if (rotation of piece p in assembly 1 < rotation of piece p in assembly 2)

return assembly 1 is smaller

elseif (rotation of piece p in assembly 1 > rotation of piece p in assembly 2)

return assembly 2 is smaller

elseif (pos x of piece p in assembly 1 < pos x of piece p in assembly2)

return assembly 1 is smaller

and so on

}

For this function an assembly with a piece 1 with a smaller rotation number is always smaller
that one with a bigger rotation number.

So if we chose a rotation avoiding technique that always selects piece one as pivod piece and
always removed the bigger rotation number, we should be on the save side.

8.3.1.2 The Dancing Link Algorithm

I will describe the only the basics for the original dancing link algorithm. For further
information read the document available on Mr. Knuths web page (http://www-cs-
faculty.stanford.edu/~knuth/musings.html).

The algorithm represents the puzzle as a matrix. In this matrix the first columns represent the
pieces and the last columns represent one voxel of the result shape each.

Each line of the matrix corresponds to one possible placement of one piece inside the result.
The column of the piece and the columns the represent the places inside the solution that the piece
occupies with the placement are 1 inside the matrix. All the other cells are 0.

The search itself runs on this matrix. It searches for a set so that all the lines in this set taken
together contain exactly one 1 in each column. This means that each piece must be used and each
cube in the result must be filled.

The algorithm does 2 operations on the matrix:

1. Cover column n and uncover column n. This means that the column is removed from the
matrix and no longer taken into account for the search. When a column is removed all the
rows that contain a 1 in this column will also be removed.

2. Cover and uncover row n. This means that we select this row for the set of rows that we
search. The row covering also removes and re-includes all the columns that contain a 1 in
this row. On these columns operation 1 is performed.

The 2nd operation can be interpreted as. Taking one piece and putting it inside the result at one
possible place. This results in the fact that a few cubes of the result don’t need to be observed
any longer and all placements of all other pieces that collide with this placement don’t need to be
checked further.

The cover and uncover operations are the inversion of one another. If we first cover something
and then uncover it again the matrix is in exactly the same state.

The algorithm is now recursively trying all possibilities. It selects one column and then tries
covers all rows that contain a 1 in this columns and then calls itself.

It finished when there are either no more columns left. Then we have found a solution or there
is one column with no rows. Then we have found a dead end and backtrack.

This algorithm is per se not dependent on square cubes it is not dependent on any shape.
You only need to transfer your puzzle into the matrix. Even William Waites8.1 puzzles should be
possible. But as the square and cubes are most common I have for now only implemented this
transformation.

Now to the changes that I have done to this basic algorithm. There is first the matter with
the 2 types of cubes. This is easily solved by removing the columns of the cubes that may be filled
from the list of columns that need to be covered. They are still in the matrix, they just don’t need
to be covered to find a solution.

8.1. see www.puzzlemist.com

8.3 The Algorithms 63

The 2nd problem was much harder. How handle multiple identical pieces? The solution that
I finally implemented is to enforce an order. All pieces get a number and all the placements get a
number. If we now have 2 identical pieces a and b with a <b I force that the placement of a, p(a)
is also smaller than the placement of b so p(a)< p(b). This is done by always placing all identical
pieces in one go. The moment the algorithm decides to place one of the pieces that occur multiple
times it will also place all the others and always check that these have larger placement numbers.

8.3.2 Disassembly

The disassembly algorithm is a breadth first tree search. In this tree every node represents one
possible relative position of the pieces. To find out what can be moved in this node the algorithm
Bill Cutler used for his 6 Piece Burr analysis is used. His algorithm anaylzes for 2 pieces how
far the first piece piece can be moved in the positive direction of each of the 3 axis if the other
piece is fixed. This results in 3 matrixes each square with as many rows and columns as there are
pieces. The values for negative directions can be taken from transposed matrixes. To make these
matrixes useful they need to contain not pairwise information but for the whole state. To get this
information the following property is used:

If piece A can be moved x units when B is fixed and piece C can be moved y units
whan piece C is fixed then piece C can not be moved more than x+y units when B
is fixed.

With this property the 3 matrixes are treated again and again until all values have reached a
stable value. The resulting values tell you exactly how far each piece can be moved when some
other pieces are fixed.

Now all possible new states are generated with the aid of these calculated values.
This worked nice but it has been quite slow. Slower than PuzzleSolver3D at least. So I

started to optimize. The slowest part has been te pairwise analysis of all piece pairs. Initially I
implemented more and more complicated schemes that were supposed to speed up thing. But
the code got more and more complicated and due to the usage of preprocessor macors utterly
undebuggable. And it was still slower than PuzzleSolver3D.

Finally I came up with a new scheme that solved the speed issues: a cache. This cache contains
the values calculated for the movement possibilities of 2 pieces. Once they are calculated they are
put into the cache and used from there later on. The cache contains the 3 calculated values. The
key is calculated from the piece numbers, their relative positions and their transformations. The
incorporation of the transformations made it possible to used the cache over the whole process of
a puzzle analysis and not to restart it for each assembly. This has a mayor impact: the number of
cache hits is for some puzzles way over 90%.

This cache also has another nice property. It is possible to remove information for a certain
piece from it. This comes in handy when burrgrowing is used, as the information for changed pieces
can be removed from the cache but the rest is still intact and useful information.

8.4 Adding to the Library

There is currently one useful thing besides the normal improvements that might be added to the
library: Other puzzle types. The assembly algorithms is so abstract that it can cope with many
different types of assembly puzzles, as long as they have some kind of pattern. Currently the
assembler only supports puzzles made out of cubes but there is nothing that prevents solving puzzle
where the base unit is a hexagon. Of course the disassembler can not do work with this kind of
puzzles.

To add other geometries the assembler is split into 2 parts. The dancing link algorithm and the
algorithm that prepares the matrix for the dancing link algorithm. This preparation part is called
the front end.

64 The Internals

Part III

Appendices

66 The Internals

Appendix A

Examples

BurrTools comes with some examples that illustrate the capabilities and functions of the pro-
gram. We’d like to thank the designers for allowing us to include their designs in the BurrTools
package.

A.1 Al Packino

Design. Ronald Kint-Bruynseels, 2003, Belgium.

File. AlPackino.xmpuzzle

Remarks. This puzzle shows how to properly make packing puzzles. You always should
include the box as a piece so that the program can also check if the pieces can be moved
into or out of the box. You can also see how to handle multipieces. When looking at
the solution it is useful to display the box as a wire frame. This can be done by clicking
at the blue rectangle at the lower end of the tools. The rectangle with the text “S1-Box” in it.

A.2 Ball Room

Design. Stewart Coffin, #197-A, USA

File. BallRoom.xmpuzzle

Remarks. This puzzle shows off the sphere gridspace. It also demonstrates that is is possible
and useful to include more than one problem within one file.

A.3 Bermuda

Design. Bill Cutler, 1992, USA

File. Bermuda.xmpuzzle

Remarks. This puzzle demonstrates the triangle space grid. You can see that you can stack
many layers on top of each other.

A.4 MINE’s CUBE in CAGE

Design. Mineyuki Uyematsu, 2002, Japan.

File. CubeInCage.xmpuzzle

Remarks. This file contains MINE’s CUBE in CAGE 333, cube g. This puzzle demonstrates
how to use the grouping capabilities. The puzzle contains 3 interlocked pieces that construct
a cage. These pieces move but can not be taken apart. It needs to be told to the program
that this is intentional. So here you have an example of how to do that.

67

A.5 Dracula’s Dental Disaster

Design. Ronald Kint-Bruynseels, 2003, Belgium.

File. DraculasDentalDisaster.xmpuzzle

Remarks. This puzzle demonstrates the use of colour contraints. Halve of the result must be
red and the other halve black. You can see the colours if you enable the checkbox in the
status line at the bottom right.

A.6 Level 98 Burr ’The Pelican’

Design. Dic Sonneveld, 2000, The Netherlands.

File. PelikanBurr.xmpuzzle

Remarks. This is a very high level burr. It takes 98 moves to get the first piece out of the
box. This is just a demonstration of what is possible.

68 Examples

