
Crypto Application

version 1.5

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 Crypto User’s Guide 1

1.1 Licenses . 1

1.1.1 OpenSSL License . 1

1.1.2 SSLeay License . 2

2 Crypto Reference Manual 5

2.1 crypto . 8

2.2 crypto . 10

iiiCrypto Application

iv Crypto Application

Chapter 1

Crypto User’s Guide

The Crypto application provides functions for computation of message digests, and functions for
encryption and decryption.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses [page 1].

1.1 Licenses

This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.1.1 OpenSSL License

/* ==
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*

1Crypto Application

Chapter 1: Crypto User’s Guide

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ‘‘AS IS’’ AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

1.1.2 SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young’s, and as such any Copyright notices in
* the code are not to be removed.

2 Crypto Application

1.1: Licenses

* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word ’cryptographic’ can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

3Crypto Application

Chapter 1: Crypto User’s Guide

4 Crypto Application

Crypto Reference Manual

Short Summaries

� Application crypto [page 8] – The Crypto Application

� Erlang Module crypto [page 10] – Crypto Functions

crypto

No functions are exported.

crypto

The following functions are exported:

� start() -> ok
[page 10] Start the crypto server.

� stop() -> ok
[page 10] Stop the crypto server.

� info() -> [atom()]
[page 10] Provide a list of available crypto functions.

� info lib() -> [fName,VerNum,VerStrg]
[page 10] Provides information about the libraries used by crypto.

� md5(Data) -> Digest
[page 11] Compute an MD5message digest from Data

� md5 init() -> Context
[page 11] Creates an MD5 context

� md5 update(Context, Data) -> NewContext
[page 11] Update an MD5 Contextwith Data, and return a NewContext

� md5 final(Context) -> Digest
[page 11] Finish the update of an MD5 Contextand return the computed
MD5message digest

� sha(Data) -> Digest
[page 11] Compute an SHAmessage digest from Data

� sha init() -> Context
[page 11] Create an SHA context

� sha update(Context, Data) -> NewContext
[page 12] Update an SHA context

5Crypto Application

Crypto Reference Manual

� sha final(Context) -> Digest
[page 12] Finish the update of an SHA context

� md5 mac(Key, Data) -> Mac
[page 12] Compute an MD5 MACmessage authentification code

� md5 mac 96(Key, Data) -> Mac
[page 12] Compute an MD5 MACmessage authentification code

� sha mac(Key, Data) -> Mac
[page 12] Compute an MD5 MACmessage authentification code

� sha mac 96(Key, Data) -> Mac
[page 12] Compute an MD5 MACmessage authentification code

� des cbc encrypt(Key, IVec, Text) -> Cipher
[page 12] Encrypt Textaccording to DES in CBC mode

� des cbc decrypt(Key, IVec, Cipher) -> Text
[page 13] Decrypt Cipheraccording to DES in CBC mode

� des3 cbc encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher
[page 13] Encrypt Textaccording to DES3 in CBC mode

� des3 cbc decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text
[page 13] Decrypt Cipheraccording to DES in CBC mode

� aes cfb 128 encrypt(Key, IVec, Text) -> Cipher
[page 13] Encrypt Textaccording to AES in Cipher Feedback mode or Cipher
Block Chaining mode

� aes cbc 128 encrypt(Key, IVec, Text) -> Cipher
[page 13] Encrypt Textaccording to AES in Cipher Feedback mode or Cipher
Block Chaining mode

� aes cfb 128 decrypt(Key, IVec, Cipher) -> Text
[page 13] Decrypt Cipheraccording to AES in Cipher Feedback mode or Cipher
Block Chaining mode

� aes cbc 128 decrypt(Key, IVec, Cipher) -> Text
[page 13] Decrypt Cipheraccording to AES in Cipher Feedback mode or Cipher
Block Chaining mode

� erlint(Mpint) -> N
[page 14] Convert between binary multi-precision integer and erlang big integer

� mpint(N) -> Mpint
[page 14] Convert between binary multi-precision integer and erlang big integer

� rand bytes(N) -> binary()
[page 14] Generate a binary of random bytes

� rand uniform(Lo, Hi) -> N
[page 14] Generate a random number

� mod exp(N, P, M) -> Result
[page 14] Perform N ^ P mod M

� rsa sign(Data, Key) -> Signature
[page 14] Sign the data using rsa with the given key.

� rsa sign(DigestType, Data, Key) -> Signature
[page 14] Sign the data using rsa with the given key.

� rsa verify(Data, Signature, Key) -> Verified
[page 15] Verify the digest and signature using rsa with given public key.

6 Crypto Application

Crypto Reference Manual

� rsa verify(DigestType, Data, Signature, Key) -> Verified
[page 15] Verify the digest and signature using rsa with given public key.

� rsa public encrypt(PlainText, PublicKey, Padding) -> ChipherText
[page 15] Encrypts Msg using the public Key.

� rsa private decrypt(ChipherText, PrivateKey, Padding) -> PlainText
[page 15] Decrypts ChipherText using the private Key.

� rsa private encrypt(PlainText, PrivateKey, Padding) -> ChipherText
[page 16] Encrypts Msg using the private Key.

� rsa public decrypt(ChipherText, PublicKey, Padding) -> PlainText
[page 16] Decrypts ChipherText using the public Key.

� dss sign(Data, Key) -> Signature
[page 16] Sign the data using dsa with given private key.

� dss verify(Data, Signature, Key) -> Verified
[page 16] Verify the data and signature using dsa with given public key.

� rc4 encrypt(Key, Data) -> Result
[page 17] Encrypt data using RC4

� dh generate key(DHParams) -> fPublicKey,PrivateKeyg
[page 17] Generates a Diffie-Hellman public key

� dh generate key(PrivateKey, DHParams) -> fPublicKey,PrivateKeyg
[page 17] Generates a Diffie-Hellman public key

� dh compute key(OthersPublicKey, MyPrivateKey, DHParams) ->
SharedSecret
[page 17] Computes the shared secret

� exor(Data1, Data2) -> Result
[page 17] XOR data

7Crypto Application

crypto Crypto Reference Manual

crypto
Application

The purpose of the Crypto application is to provide message digest and DES encryption
for SMNPv3. It provides computation of message digests MD5 and SHA, and
CBC-DES encryption and decryption.

Configuration

The following environment configuration parameters are defined for the Crypto
application. Refer to application(3) for more information about configuration
parameters.

debug = true | false <optional> Causes debug information to be written to
standard error or standard output. Default is false.

OpenSSL libraries

The current implementation of the Erlang Crypto application is based on the OpenSSL
package version 0.9.7 or higher. There are source and binary releases on the web.

Source releases of OpenSSL can be downloaded from the OpenSSL1 project home
page, or mirror sites listed there.

The same URL also contains links to some compiled binaries and libraries of OpenSSL
(see the Related/Binaries menu) of which the Shining Light Productions Win32 and
OpenSSL2 pages are of interest for the Win32 user.

For some Unix flavours there are binary packages available on the net.

If you cannot find a suitable binary OpenSSL package, you have to fetch an OpenSSL
source release and compile it.

You then have to compile and install the library libcrypto.so (Unix), or the library
libeay32.dll (Win32).

For Unix The crypto drv dynamic driver is delivered linked to OpenSSL libraries in
/usr/local/lib, but the default dynamic linking will also accept libraries in /lib and
/usr/lib.

If that is not applicable to the particular Unix operating system used, the example
Makefile in the Crypto priv/obj directory, should be used as a basis for relinking the
final version of the port program.

For Win32 it is only required that the library can be found from the PATH environment
variable, or that they reside in the appropriate SYSTEM32 directory; hence no particular
relinking is need. Hence no example Makefile for Win32 is provided.

1URL: http://www.openssl.org
2URL: http://www.shininglightpro.com/search.php?searchname=Win32+OpenSSL

8 Crypto Application

Crypto Reference Manual crypto

SEE ALSO

application(3)

9Crypto Application

crypto Crypto Reference Manual

crypto
Erlang Module

This module provides a set of cryptographic functions.

References:

� md5: The MD5 Message Digest Algorithm (RFC 1321)

� sha: Secure Hash Standard (FIPS 180-2)

� hmac: Keyed-Hashing for Message Authentication (RFC 2104)

� des: Data Encryption Standard (FIPS 46-3)

� aes: Advanced Encryption Standard (AES) (FIPS 197)

� ecb, cbc, cfb, ofb: Recommendation for Block Cipher Modes of Operation (NIST
SP 800-38A).

� rsa: Recommendation for Block Cipher Modes of Operation (NIST 800-38A)

� dss: Digital Signature Standard (FIPS 186-2)

The above publications can be found at NIST publications3, at IETF4.

Types

byte() = 0 ... 255
ioelem() = byte() | binary() | iolist()
iolist() = [ioelem()]
Mpint() = <<ByteLen:32/integer-big, Bytes:ByteLen/binary>>

Exports

start() -> ok

Starts the crypto server.

stop() -> ok

Stops the crypto server.

info() -> [atom()]

Provides the available crypto functions in terms of a list of atoms.

info lib() -> [fName,VerNum,VerStrg]

3URL: http://csrc.nist.gov/publications
4URL: http://www.ietf.org

10 Crypto Application

Crypto Reference Manual crypto

Types:

� Name = binary()
� VerNum = integer()
� VerStr = binary()

Provides the name and version of the libraries used by crypto.

Name is the name of the library. VerNum is the numeric version according to the library’s
own versioning scheme. VerStr contains a text variant of the version.

> info lib().
[f<<"OpenSSL">>,9469983,<<"OpenSSL 0.9.8a 11 Oct 2005">>g]

md5(Data) -> Digest

Types:

� Data = iolist() | binary()
� Digest = binary()

Computes an MD5 message digest from Data, where the length of the digest is 128 bits
(16 bytes).

md5 init() -> Context

Types:

� Context = binary()

Creates an MD5 context, to be used in subsequent calls to md5 update/2.

md5 update(Context, Data) -> NewContext

Types:

� Data = iolist() | binary()
� Context = NewContext = binary()

Updates an MD5 Context with Data, and returns a NewContext.

md5 final(Context) -> Digest

Types:

� Context = Digest = binary()

Finishes the update of an MD5 Context and returns the computed MD5 message digest.

sha(Data) -> Digest

Types:

� Data = iolist() | binary()
� Digest = binary()

Computes an SHA message digest from Data, where the length of the digest is 160 bits
(20 bytes).

sha init() -> Context

Types:

11Crypto Application

crypto Crypto Reference Manual

� Context = binary()

Creates an SHA context, to be used in subsequent calls to sha update/2.

sha update(Context, Data) -> NewContext

Types:

� Data = iolist() | binary()
� Context = NewContext = binary()

Updates an SHA Context with Data, and returns a NewContext.

sha final(Context) -> Digest

Types:

� Context = Digest = binary()

Finishes the update of an SHA Context and returns the computed SHA message digest.

md5 mac(Key, Data) -> Mac

Types:

� Key = Data = iolist() | binary()
� Mac = binary()

Computes an MD5 MAC message authentification code from Key and Data, where the the
length of the Mac is 128 bits (16 bytes).

md5 mac 96(Key, Data) -> Mac

Types:

� Key = Data = iolist() | binary()
� Mac = binary()

Computes an MD5 MAC message authentification code from Key and Data, where the
length of the Mac is 96 bits (12 bytes).

sha mac(Key, Data) -> Mac

Types:

� Key = Data = iolist() | binary()
� Mac = binary()

Computes an SHA MAC message authentification code from Key and Data, where the
length of the Mac is 160 bits (20 bytes).

sha mac 96(Key, Data) -> Mac

Types:

� Key = Data = iolist() | binary()
� Mac = binary()

Computes an SHA MAC message authentification code from Key and Data, where the
length of the Mac is 96 bits (12 bytes).

des cbc encrypt(Key, IVec, Text) -> Cipher

12 Crypto Application

Crypto Reference Manual crypto

Types:

� Key = Text = iolist() | binary()
� IVec = Cipher = binary()

Encrypts Text according to DES in CBC mode. Text must be a multiple of 64 bits (8
bytes). Key is the DES key, and IVec is an arbitrary initializing vector. The lengths of
Key and IVec must be 64 bits (8 bytes).

des cbc decrypt(Key, IVec, Cipher) -> Text

Types:

� Key = Cipher = iolist() | binary()
� IVec = Text = binary()

Decrypts Cipher according to DES in CBC mode. Key is the DES key, and IVec is an
arbitrary initializing vector. Key and IVec must have the same values as those used when
encrypting. Cipher must be a multiple of 64 bits (8 bytes). The lengths of Key and IVec
must be 64 bits (8 bytes).

des3 cbc encrypt(Key1, Key2, Key3, IVec, Text) -> Cipher

Types:

� Key1 =Key2 = Key3 Text = iolist() | binary()
� IVec = Cipher = binary()

Encrypts Text according to DES3 in CBC mode. Text must be a multiple of 64 bits (8
bytes). Key1, Key2, Key3, are the DES keys, and IVec is an arbitrary initializing vector.
The lengths of each of Key1, Key2, Key3 and IVec must be 64 bits (8 bytes).

des3 cbc decrypt(Key1, Key2, Key3, IVec, Cipher) -> Text

Types:

� Key1 = Key2 = Key3 = Cipher = iolist() | binary()
� IVec = Text = binary()

Decrypts Cipher according to DES3 in CBC mode. Key1, Key2, Key3 are the DES key,
and IVec is an arbitrary initializing vector. Key1, Key2, Key3 and IVec must and IVec
must have the same values as those used when encrypting. Cipher must be a multiple of
64 bits (8 bytes). The lengths of Key1, Key2, Key3, and IVec must be 64 bits (8 bytes).

aes cfb 128 encrypt(Key, IVec, Text) -> Cipher

aes cbc 128 encrypt(Key, IVec, Text) -> Cipher

Types:

� Key = Text = iolist() | binary()
� IVec = Cipher = binary()

Encrypts Text according to AES in Cipher Feedback mode (CFB) or Cipher Block
Chaining mode (CBC). Text must be a multiple of 128 bits (16 bytes). Key is the AES
key, and IVec is an arbitrary initializing vector. The lengths of Key and IVec must be
128 bits (16 bytes).

aes cfb 128 decrypt(Key, IVec, Cipher) -> Text

aes cbc 128 decrypt(Key, IVec, Cipher) -> Text

13Crypto Application

crypto Crypto Reference Manual

Types:

� Key = Cipher = iolist() | binary()
� IVec = Text = binary()

Decrypts Cipher according to Cipher Feedback Mode (CFB) or Cipher Block Chaining
mode (CBC). Key is the AES key, and IVec is an arbitrary initializing vector. Key and
IVec must have the same values as those used when encrypting. Cipher must be a
multiple of 128 bits (16 bytes). The lengths of Key and IVec must be 128 bits (16
bytes).

erlint(Mpint) -> N

mpint(N) -> Mpint

Types:

� Mpint = binary()
� N = integer()

Convert a binary multi-precision integer Mpint to and from an erlang big integer. A
multi-precision integer is a binary with the following form: <<ByteLen:32/integer,
Bytes:ByteLen/binary>>where both ByteLen and Bytes are big-endian. Mpints are
used in some of the functions in crypto and are not translated in the API for
performance reasons.

rand bytes(N) -> binary()

Types:

� N = integer()

Generates N bytes randomly uniform 0..255, and returns the result in a binary. Uses the
crypto library pseudo-random number generator.

rand uniform(Lo, Hi) -> N

Types:

� Lo, Hi, N = Mpint | integer()
� Mpint = binary()

Generate a random number N, Lo =< N < Hi. Uses the crypto library
pseudo-random number generator. The arguments (and result) can be either erlang
integers or binary multi-precision integers.

mod exp(N, P, M) -> Result

Types:

� N, P, M, Result = Mpint
� Mpint = binary()

This function performs the exponentiation N ^ P mod M, using the crypto library.

rsa sign(Data, Key) -> Signature

rsa sign(DigestType, Data, Key) -> Signature

Types:

� Data = Mpint

14 Crypto Application

Crypto Reference Manual crypto

� Key = [E, N, D]
� E, N, D = Mpint

Where E is the public exponent, N is public modulus and D is the private exponent.
� DigestType = md5 | sha

The default DigestType is sha.
� Mpint = binary()
� Signature = binary()

Calculates a DigestType digest of the Data and creates a RSA signature with the
private key Key of the digest.

rsa verify(Data, Signature, Key) -> Verified

rsa verify(DigestType, Data, Signature, Key) -> Verified

Types:

� Verified = boolean()
� Data, Signature = Mpint
� Key = [E, N]
� E, N = Mpint

Where E is the public exponent and N is public modulus.
� DigestType = md5 | sha

The default DigestType is sha.
� Mpint = binary()

Calculates a DigestType digest of the Data and verifies that the digest matches the RSA
signature using the signer’s public key Key.

rsa public encrypt(PlainText, PublicKey, Padding) -> ChipherText

Types:

� PlainText = binary()
� PublicKey = [E, N]
� E, N = Mpint

Where E is the public exponent and N is public modulus.
� Padding = rsa pkcs1 padding | rsa pkcs1 oaep padding | rsa no padding
� ChipherText = binary()

Encrypts the PlainText (usually a session key) using the PublicKey and returns the
chipher. The Padding decides what padding mode is used, rsa pkcs1 padding is PKCS
#1 v1.5 currently the most used mode and rsa pkcs1 oaep padding is EME-OAEP as
defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty encoding parameter. This
mode is recommended for all new applictions. The size of the Msg must be less than
byte size(N)-11 if rsa pkcs1 padding is used, byte size(N)-41 if
rsa pkcs1 oaep padding is used and byte size(N) if rsa no padding is used. Where
byte size(N) is the size part of an Mpint-1.

rsa private decrypt(ChipherText, PrivateKey, Padding) -> PlainText

Types:

� ChipherText = binary()
� PrivateKey = [E, N, D]

15Crypto Application

crypto Crypto Reference Manual

� E, N, D = Mpint
Where E is the public exponent, N is public modulus and D is the private exponent.

� Padding = rsa pkcs1 padding | rsa pkcs1 oaep padding | rsa no padding
� PlainText = binary()

Decrypts the ChipherText (usually a session key encrypted with rsa public encrypt/3
[page 15]) using the PrivateKey and returns the message. The Padding is the padding
mode that was used to encrypt the data, see rsa public encrypt/3 [page 15].

rsa private encrypt(PlainText, PrivateKey, Padding) -> ChipherText

Types:

� PlainText = binary()
� PrivateKey = [E, N, D]
� E, N, D = Mpint

Where E is the public exponent, N is public modulus and D is the private exponent.
� Padding = rsa pkcs1 padding | rsa no padding
� ChipherText = binary()

Encrypts the PlainText using the PrivateKey and returns the chipher. The Padding
decides what padding mode is used, rsa pkcs1 padding is PKCS #1 v1.5 currently the
most used mode. The size of the Msg must be less than byte size(N)-11 if
rsa pkcs1 padding is used, and byte size(N) if rsa no padding is used. Where
byte size(N) is the size part of an Mpint-1.

rsa public decrypt(ChipherText, PublicKey, Padding) -> PlainText

Types:

� ChipherText = binary()
� PublicKey = [E, N]
� E, N = Mpint

Where E is the public exponent and N is public modulus
� Padding = rsa pkcs1 padding | rsa no padding
� PlainText = binary()

Decrypts the ChipherText (encrypted with rsa private encrypt/3 [page 16]) using the
PrivateKey and returns the message. The Padding is the padding mode that was used
to encrypt the data, see rsa private encrypt/3 [page 16].

dss sign(Data, Key) -> Signature

Types:

� Digest = Mpint
� Key = [P, Q, G, X]
� P, Q, G, X = Mpint

Where P, Q and G are the dss parameters and X is the private key.
� Mpint = binary()
� Signature = binary()

Calculates the sha digest of the Data and creates a DSS signature with the private key
Key of the digest.

dss verify(Data, Signature, Key) -> Verified

16 Crypto Application

Crypto Reference Manual crypto

Types:

� Verified = boolean()
� Digest, Signature = Mpint
� Key = [P, Q, G, Y]
� P, Q, G, Y = Mpint

Where P, Q and G are the dss parameters and Y is the public key.
� Mpint = binary()

Calculates the sha digest of the Data and verifies that the digest matches the DSS
signature using the public key Key.

rc4 encrypt(Key, Data) -> Result

Types:

� Key, Data = iolist() | binary()
� Result = binary()

Encrypts the data with RC4 symmetric stream encryption. Since it is symmetric, the
same function is used for decryption.

dh generate key(DHParams) -> fPublicKey,PrivateKeyg

dh generate key(PrivateKey, DHParams) -> fPublicKey,PrivateKeyg

Types:

� DHParameters = [P, G]
� P, G = Mpint

Where P is the shared prime number and G is the shared generator.
� PublicKey, PrivateKey = Mpint()

Generates a Diffie-Hellman PublicKey and PrivateKey (if not given).

dh compute key(OthersPublicKey, MyPrivateKey, DHParams) -> SharedSecret

Types:

� DHParameters = [P, G]
� P, G = Mpint

Where P is the shared prime number and G is the shared generator.
� OthersPublicKey, MyPrivateKey = Mpint()
� SharedSecret = binary()

Computes the shared secret from the private key and the other party’s public key.

exor(Data1, Data2) -> Result

Types:

� Data1, Data2 = iolist() | binary()
� Result = binary()

Performs bit-wise XOR (exclusive or) on the data supplied.

17Crypto Application

crypto Crypto Reference Manual

DES in CBC mode

The Data Encryption Standard (DES) defines an algoritm for encrypting and decrypting
an 8 byte quantity using an 8 byte key (actually only 56 bits of the key is used).

When it comes to encrypting and decrypting blocks that are multiples of 8 bytes various
modes are defined (NIST SP 800-38A). One of those modes is the Cipher Block
Chaining (CBC) mode, where the encryption of an 8 byte segment depend not only of
the contents of the segment itself, but also on the result of encrypting the previous
segment: the encryption of the previous segment becomes the initializing vector of the
encryption of the current segment.

Thus the encryption of every segment depends on the encryption key (which is secret)
and the encryption of the previous segment, except the first segment which has to be
provided with an initial initializing vector. That vector could be chosen at random, or
be a counter of some kind. It does not have to be secret.

The following example is drawn from the old FIPS 81 standard (replaced by NIST SP
800-38A), where both the plain text and the resulting cipher text is settled. The
following code fragment returns ‘true’.

Key = <<16#01,16#23,16#45,16#67,16#89,16#ab,16#cd,16#ef>>,
IVec = <<16#12,16#34,16#56,16#78,16#90,16#ab,16#cd,16#ef>>,
P = "Now is the time for all ",
C = crypto:des cbc encrypt(Key, IVec, P),

% Which is the same as
P1 = "Now is t", P2 = "he time ", P3 = "for all ",
C1 = crypto:des cbc encrypt(Key, IVec, P1),
C2 = crypto:des cbc encrypt(Key, C1, P2),
C3 = crypto:des cbc encrypt(Key, C2, P3),

C = <<C1/binary, C2/binary, C3/binary>>,
C = <<16#e5,16#c7,16#cd,16#de,16#87,16#2b,16#f2,16#7c,

16#43,16#e9,16#34,16#00,16#8c,16#38,16#9c,16#0f,
16#68,16#37,16#88,16#49,16#9a,16#7c,16#05,16#f6>>,

<<"Now is the time for all ">> ==
crypto:des cbc decrypt(Key, IVec, C).

The following is true for the DES CBC mode. For all decompositions P1 ++ P2 = P of
a plain text message P (where the length of all quantities are multiples of 8 bytes), the
encryption C of P is equal to C1 ++ C2, where C1 is obtained by encrypting P1 with Key
and the initializing vector IVec, and where C2 is obtained by encrypting P2 with Key
and the initializing vector last8(C1), where last(Binary) denotes the last 8 bytes of
the binary Binary.

Similarly, for all decompositions C1 ++ C2 = C of a cipher text message C (where the
length of all quantities are multiples of 8 bytes), the decryption P of C is equal to P1 ++
P2, where P1 is obtained by decrypting C1 with Key and the initializing vector IVec, and
where P2 is obtained by decrypting C2 with Key and the initializing vector last8(C1),
where last8(Binary) is as above.

For DES3 (which uses three 64 bit keys) the situation is the same.

18 Crypto Application

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

aes_cbc_128_decrypt/3
crypto , 13

aes_cbc_128_encrypt/3
crypto , 13

aes_cfb_128_decrypt/3
crypto , 13

aes_cfb_128_encrypt/3
crypto , 13

crypto
aes_cbc_128_decrypt/3, 13
aes_cbc_128_encrypt/3, 13
aes_cfb_128_decrypt/3, 13
aes_cfb_128_encrypt/3, 13
des3_cbc_decrypt/5, 13
des3_cbc_encrypt/5, 13
des_cbc_decrypt/3, 13
des_cbc_encrypt/3, 12
dh_compute_key/3, 17
dh_generate_key/1, 17
dh_generate_key/2, 17
dss_sign/2, 16
dss_verify/3, 16
erlint/1, 14
exor/2, 17
info/0, 10
info_lib/0, 10
md5/1, 11
md5_final/1, 11
md5_init/0, 11
md5_mac/2, 12
md5_mac_96/2, 12
md5_update/2, 11
mod_exp/3, 14
mpint/1, 14
rand_bytes/1, 14
rand_uniform/2, 14
rc4_encrypt/2, 17
rsa_private_decrypt/3, 15

rsa_private_encrypt/3, 16
rsa_public_decrypt/3, 16
rsa_public_encrypt/3, 15
rsa_sign/2, 14
rsa_sign/3, 14
rsa_verify/3, 15
rsa_verify/4, 15
sha/1, 11
sha_final/1, 12
sha_init/0, 11
sha_mac/2, 12
sha_mac_96/2, 12
sha_update/2, 12
start/0, 10
stop/0, 10

des3_cbc_decrypt/5
crypto , 13

des3_cbc_encrypt/5
crypto , 13

des_cbc_decrypt/3
crypto , 13

des_cbc_encrypt/3
crypto , 12

dh_compute_key/3
crypto , 17

dh_generate_key/1
crypto , 17

dh_generate_key/2
crypto , 17

dss_sign/2
crypto , 16

dss_verify/3
crypto , 16

erlint/1
crypto , 14

19Crypto Application

exor/2
crypto , 17

info/0
crypto , 10

info_lib/0
crypto , 10

md5/1
crypto , 11

md5_final/1
crypto , 11

md5_init/0
crypto , 11

md5_mac/2
crypto , 12

md5_mac_96/2
crypto , 12

md5_update/2
crypto , 11

mod_exp/3
crypto , 14

mpint/1
crypto , 14

rand_bytes/1
crypto , 14

rand_uniform/2
crypto , 14

rc4_encrypt/2
crypto , 17

rsa_private_decrypt/3
crypto , 15

rsa_private_encrypt/3
crypto , 16

rsa_public_decrypt/3
crypto , 16

rsa_public_encrypt/3
crypto , 15

rsa_sign/2
crypto , 14

rsa_sign/3
crypto , 14

rsa_verify/3

crypto , 15

rsa_verify/4
crypto , 15

sha/1
crypto , 11

sha_final/1
crypto , 12

sha_init/0
crypto , 11

sha_mac/2
crypto , 12

sha_mac_96/2
crypto , 12

sha_update/2
crypto , 12

start/0
crypto , 10

stop/0
crypto , 10

20 Crypto Application

