Getting Started

with Berkeley DB
Java Edition

-

nuwm@ —
(OETWAR Java

Makers of Berkeley DB POWERED

Legal Notice

This documentation is distributed under the terms of the Sleepycat public license. You may review the terms
of this license at: http://www.sleepycat.com/download/oslicense.html
[http://www.sleepycat.com/download/jeoslicense.html]

Sleepycat Software, Berkeley DB, Berkeley DB XML and the Sleepycat logo are trademarks or service marks of
Sleepycat Software, Inc. All rights to these marks are reserved. No third-party use is permitted without the
express prior written consent of Sleepycat Software, Inc.

Java™ and the Java-powered logo are trademarks or registered trademarks of Sun Microsystems, Inc, in the
United States and other countries and are used under license.

To obtain a copy of this document's original source code, please write to <support @I eepycat . conp.

Published 11/13/2004

http://www.sleepycat.com/download/jeoslicense.html

Table of Contents

o 1 =T ol \%
Conventions Used in this BOOKcccviiiiiiiiiiiiiiiiiiiiiiiiii i eeenereeeernns \%

1. Introduction to Berkeley DB Java Editioncccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeenannns 1
FOATUIES ettt ettt et e e e 1

The JE APPLICAtioN .uuiiiiiiiittiiiiiiitteteiiieeeeeeeenaeeeeseesnnneseeesennnneseesanns 3
Databases and Database Environmentsc.cecveveiiiieieriinerinnneneneennns 3

D=1z 1o - Tl 10T ol] o« S 4

Putting and Getting Database ReCOrdscivviiueriiiiiiiieneeieiiiinneeennnnns 4

[D]U]o] N ot- 1 (=IN D- | - L PP PP PP 4

Replacing and Deleting ENtries ...oiiveiieeiiiiiiiiieetieiiiiieeeeeenineeeeeaannns 4
Secondary Databases ...ueeeeieieiieeeeiieeiiieeeeeereiieeeeeeeeeiineneeeseennnnaeeens 5

LI L 3= Ut T o 5

JE RESOUICES «uuvetnttreeteeeeeeeeterenateeenaeeeaneeseannesannnesenanssennessanness 6
Application Considerationscccveeeeeieeiiieeeeeeeirieeeeeeeenrneeeeeeeennnnneees 7

JE Backup and RESTOME ...uveiiiiiiiiteiiiiiiieeeereenneeeeeesernneeseesennnnseesesannnnes 7
Getting and USING JE oi.uuniiiiiiiiiiiitttieeeiineeeeeeenrnneeeeessnnnseeeesssnnnssesseannns 8

N Cel=T o 4 o] PP 8

2. Database ENVIrONMENTS «.uuuuiiiitiieerieeeeiteeeneereeterenaeerenaeeeaneesaannesannnens 9
Opening Database ENVIFONMENTSuueeeiiriiieeeeeeeinineeeeeeenrneeeeesesennnnessasanes 9
Closing Database EnVIironmMeENTS ..cvieiiiietiiiriiieeeereerieeeeeesennneecsesennnneees 10
ENVIronment Properties ..ueeeeeeeereeeiieiieietteeeeeeeeeeeesesssssesssesssessasassaannnns 10

The EnvironmentConfig Class ..cvveeeeieieiiiereerreiieeeeeeeernneeeeeesennaneees 11
EnvironmentMutableConfig ...ueiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeiiieeeeaaannnes 12
Environment STatistiCs v.ueevieriiiiiiiiii it e e e e e renee e e 13
Database Environment Management EXample ...ccovvvieiiiiiiiiineeiiiiiinneeeaannns 14

T DT L= 1o T 1 N 17
OpeNiNG Databases ..ueeeeiieiieeeirieiiitteeeeeninneeeeeesrnaseeseessnsseseesessnnsneens 17
ClOSTNG DAatabases ...uveeeeereiineeeereeeieeeeeeeerneeeeeesesnaseceessnnseseesanns 18

Database Properties c.o.uueeeiieiiiieetieeiiieeeeeeeiineeeeeeesrnnneeesessnnnsessasannnes 19
Administrative Methodscceiriiiiii i it aees 20
Database EXamPLe ...uueiiiiiiiiitiieiiiiiteeeeeiieeeeeeeerineeeseessnnneeeesessnnnneess 22

T B D=1 o 1= R 2T ol) o 25
Using Database RECOIAS ...uuueiiiiiiiiittiiieiiieteeeeiieeeeeeesinneeeeessnnnneesesanns 25
Reading and Writing Database ReCOrdsciiviiiieiiiiiiienieeneiiineeeeeeennnnnes 27
Writing Records to the Databaseccevviiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiinnes 27

Getting Records from the Databasecivvvireiiiiiiiiiieiiieiiiieneeenennnns 28

Deleting RECOIS .uvviiiiiiiiititieiiiieteeeeiieeeeeeeenneneeeesessnneseesssnnnnes 30

DYt B oY] 1 o o 30

USING The BIND APIS .eiiittiiiiiiiietteeiieteeeeenneeeeeesessnneeessessnnnsessananns 31
Numerical and String ObJECES ..ueviiiiiiiiiiiiiiiiiieiiiiiieeeeeeinneeeeeanns 31
Serializeable COmMPpLlex ObJeCtS «ivviiiireriiiiiiiiieeereiiiireeeeeeiiaeeeeeaannes 33

USAZE CaVEALS tiiiiiiietetieeiiineeeeeeernareeeessnnnneseessnnsesessennnnnnes 34

Serializing ObJECES vvviiiriiiiti it ereiiiieeeereaenaeeeeeeennnneeeens 35

Deserializing ObjJeCtS c.uuueeiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeenieeeeeaannns 37

Custom Tuple Bindings ..cceieiiieiiiiieiiieeeeieiiieeeeeesennneeeesennneseeeenns 38

USING COMPArators vuveeeeeiieueeeerernneeeeeeesineeeeeeesssseseesessnnnsessessnnnssssesanns 42

11/13/2004 Getting Started with JE Page ii

Wrting CoOmMParators ..veeeeeeieeteerieeiaeeerreeranneeereeennnnessscessnneesssasenes 42
Setting ComMParatorseeiierieeieeietiieiiieerreeranneeereeessnnesssseesnneeesss 43
Database Record EXample ...eeeeeiiiiiiiiiiiiiiiiiieiieeniieeeeieeecneecesneeennnees. 44
5. USTNG CUISOIS eitetttteieeiittetreennaeteeseearanneessesssnnsesssssssnnsesssasssassssssassans D0
Opening and CLlOSING CUMSOIS vuvvuueeterueeeeiueeesneeeeaeeeesneeessaesesnassssaesasneees D0
Getting Records Using the CUrsorciveieiiiiiiiiiiiiiiiiiiiieneneeeenneeeanaeenas D7
Searching for RECOIASuvieeeiieieeeeiiieeieeeeieeeneneeessneeesnaeessnaesaans 29
Working with Duplicate Recordscceveveiiiieiiiiieiinineerenneeneneeennnee. 62
Putting Records USiNG CUMSOIS ...cievueeeeieteereeeenneeeenneeessaeessnacessneeesnneeasss 04
Deleting Records USING CUISOTS ...uieeueeieruteeeneeeesneeeesneeeenneeesnaseessesannaeess 00
Replacing Records USiNg CUISOIS tivuueieeieteereeeenneeeenneeesneeeessaeessnecesnneeaees 07
CUrSOr EXAMPLE tinnutiiiiitiieittieeieteeaeeeenneeeeiaeeesseeeesneeessneeesnnesssnaaeasness 08
6. Secondary Databases ...c.ueieeeiiiiniiiiiiiiii et eieeieteeeieeeeieeeanaeeaanaeeaes 13
Opening and Closing Secondary Databasesccceevvviiiiiiiiiiieiinneennnneenn.. 74
Implementing Key Creators ...iivviiereeieiieerereeereneeeeseeeesneesesneeeseesanneess 70
Secondary Database Propertiesieeveieeieeriieeenieeeeieeeesneeensececnnececnaes 79
Reading Secondary Databasescceeveiiiiiiiiiiiiiieieniieeeenieeeenneeeeneeeannees 79
Deleting Secondary Database Recordscceeveeiriieeiniieienieeeenneeeeneeennee.. 80
UsiNg SecoNdary CUISOIS .uuiiiiueiiereteeeneerenneeeenaeessneeessnesessnsssonsssssnsseenes O
(D 1= 0T FY N o) [o - TR 72
USING JOTN CUMSOIS 1iieieeitiiieiitetreieinnteteeeennnneeesseesnaneesssassanneesss 83
JOINCUISOr Properties ..ovveeeiiiiiiiiiiiiiiiiiiiitiieenaterseeessnneesssanenes 30
Secondary Database EXample ..cccueeeereiiriieiiiiiierieeieeieeeesieeessneeesnaeeacneess 80
Opening Secondary Databases with MyDbENVccccevvieiiineeennneeennn... 88
Using Secondary Databases with ExamplelnventoryRead 91

78 1 =217 Ut [0)
Enabling and Starting Transactionscceeeeveeeeeieeeerieeeerneeesneeeesneeeesneeeanns 96
Committing and Aborting Transactionscccveveiiiiieiiiiieiiiieennneeeenneenenness 97
Aborting TransaCtions ...ccuveieieeeiieeierieereieeeenneeesneeeeseeeenneeecnneeaes 97
USiNg AUTOCOMMIL «eunnnieiiiiiiiiieiireiiieeereeenianeeesseesanneesseesnnnnesss 98
Transactional CUISOrSc.cveeiieeiieeiinniiieirneerneeineerneerneesneesneosnescnsecnseess 100
Configuring Dirty Reads ...c.veveeiiiiiiiiiiiiiiiiiiiieeeenneerenneeeeneeeenneeeanness. 101
Configuring Serializable ISolationccevvieiiiiiiiiiiiiiiiiiiiiiiiiieieeneneeenn... 104
Transactions and CONCUITENCY .ivvuviirrneerenneereneeeenneerenneesenaeesssesanneeeanss 106
Transactions and Deadlockscevveiiiiiiiiiiiiiiiiieiiiiiiieniinnennaenne... 107
Performance Considerationsc..ccvveevieiiiieiiieiiieiiireneeenneenneenee.. 107
Transactions EXample ...ceeveeeiiieiiiiiiiriiiienieereneeeeieeeesneeeesneeecnneeenneess 109
8. Backing up and Restoring Berkeley DB Java Edition Applications 113
Databases and Log Files ..ivuiiiiiniiiiiiiiiiiiiiieiiieiieeeeneeeeneeeenneenannes. 113
LOg File OVEIVIEW ..viiiiiiiiiiiiiiiiiiieieiteeeieeeeneerennseesneseenneeeannss 113
Cleaning the Log Filesuiiiiieiiiiiiiiiiiiiiiiiiiicireiieereneeenneeennneenns 114

L 2 L PPN I £
Database Modificationsceeveviiiiiiiiiiiiiiiiiiiiiiiiiiieiiecneeenee.. 114
NOrmMal RECOVETY ..uiiiiiiiiiieiiiiiteieiteeeieeeeeneeeenneeeenneeesnessesneeeannes 11D
CheCKPOINtS tiuuutieeietieiieeiieeieeeieeeeaieeeesneeessaeeesnaesseneaesaneeaaes 11D
Performing BaCKUPS «.cuueiiiuiiriiiieiitieiteeeieeeeeneeeesneeecnneeecnnesesneeeanness 116
Performing a Partial BaCkupc.ceeviiiiiiiiiiiiiiiiiiiiiieeiieeeeneeeennee.. 116
Performing a Complete Backupceevuiiiiiiiiiiiiiiiiieniieeeiieeeennneeann. 116

11/13/2004 Getting Started with JE Page iii

Performing CatastrophiC RECOVEIY ...civiuiiiiieiiireiieitieeieeeeieeeeaeeeanneennn 117

[(o1) =T Te | o)Y PP 117

9. Administering Berkeley DB Java Edition Applicationsccccveeiiiiiiiiinennnnnnnn. 119
The JE Properties File ..occuiiiiiiiiiiiiiiiiiiiiii et eeiieeieeesieeeenneeeenneens 119
Managing the Background Threadsccceeeiiiieiiriiiiieiiiereieerineeeenneeranns 119

The Cleaner Thread ..ccvviiiiieiiiiiieeieeieiieeieteeeneeeeneeeanaeeenns 120

The EVICTOr Thread ...ceeeeiiiiiiiiiiiieiiiieiieeiteeeieeeeaneeeenneeeanneenns 121

The Checkpointer Threadcoeveiiiiieiiiiiiiiiiiiiiereiieeeeneeenneeeannes 121

SiZING the CaChE «uertiiii i e i e e e eee e eereeeeseeeanneaeanns 121

The Command Ling TOOLS ..cieutirietiertteeieteennteeeieeeeneeeesneeeenneeesnaeenns 122
31070111311 o H PP 123

D0} e -V [N 124

D0}] o 1 A PPN 125

A. Concurrent Processing in Berkeley DB Java Editioncccveeiiiieiiiieiiinnnennnnen. 127
Multithreaded APPlICAtIONS ...uivereiirieiiiiteriiteeiieerereereneeeenneerenneerannes 127
Multiprocess ApPliCATIONS ..uueiiretiiii i iiieiitreieereneeeeaneeeanneerannes 128

11/13/2004 Getting Started with JE Page iv

Preface

Welcome to Berkeley DB Java Edition (JE). This document introduces JE, version 1.7. It
is intended to provide a rapid introduction to the JE API set and related concepts. The
goal of this document is to provide you with an efficient mechanism with which you can
evaluate JE against your project's technical requirements. As such, this document is
intended for Java developers and senior software architects who are looking for an
in-process data management solution. No prior experience with Sleepycat technologies
is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are net hod names. For example: "The
Envi ronment . openDat abase() method returns a Dat abase class object.”

Variable or non-literal text is presented in italics. For example: "Go to your JE_HOME
directory."

Program examples are displayed in a nonospaced font on a shaded background. For
example:

i nport com sl eepycat . j e. Envi ronment ;

/1 Open the environnent. Allowit to be created if it does not already exist.
Envi ronment myDbEnv;

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in nonospaced bol d font. For example:

i nport com sl eepycat . j e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;
inport java.io.File;

/1 Open the environnent. Allow it to be created if it does not already exist.
Envi ronment nmyDbEnv;

Envi ronment Confi g envConfig = new Environment Config();

envConfig.set All owCreate(true);

myDbEnv = new Environnent (new Fil e("/export/dbEnv"), envConfig);

|:| Finally, notes of interest are represented using a note block such as this.

11/13/2004 Getting Started with JE Page v

11/13/2004 Getting Started with JE Page vi

Chapter 1. Introduction to Berkeley DB Java
Edition

Welcome to Berkeley DB Java Edition (JE). JE is a general-purpose, transactionally
protected, embedded database written in 100% Java (JE makes no JNI calls). As such, it
offers the Java developer safe and efficient in-process storage and management of
arbitrary data.

JE requires Java J2SE 1.4.2 or later.

Features

JE provides an enterprise-class Java-based data management solution. You use JE through
a series of Java APIs. All you need to get started is to add a single jar file to your
application's classpath. See Getting and Using JE (page 8) for more information.

JE offers the following major features:

Large database support. JE databases efficiently scale from one to millions of records.
The size of your JE databases are likely to be limited more by hardware resources
than by any limits imposed upon you by JE.

Databases are described in Databases (page 17).

Multiple thread and process support. JE is designed for multiple threads of control.
Both read and write operations can be performed by multiple threads. JE uses
record-level locking for high concurrency in threaded applications. Further, JE uses
timeouts for deadlock detection to help you ensure that two threads of control do not
deadlock indefinitely.

Moreover, JE allows multiple processes to access the same databases. However, in
this configuration JE requires that there be no more than one process allowed to write
to the database. Read-only processes are guaranteed a consistent, although potentially
out of date, view of the stored data as of the time that the environment is opened.

Database records. All database records are organized as simple key/data pairs. Both
keys and data can be anything from primitive Java types to the most complex of Java
objects.

Database records are described in Database Records (page 25).

Transactions. Transactions allow you to treat one or more operations on one or more
databases as a single unit of work. JE transactions offer the application developer
recoverability, atomicity, and isolation for your database operations.

Note that transaction protection is optional. Transactions are described in
Transactions (page 95).

11/13/2004

Getting Started with JE Page 1

Features

» Indexes. JE allows you to easily create and maintain secondary indices for your primary
data through the use of secondary databases. In this way, you can obtain rapid access
to your data through the use of an alternative, or secondary, key.

Indexes are described in Secondary Databases (page 73).

« In-memory cache. The cache allows for high speed database access for both read and
write operations by avoiding unnecessary disk 1/0. The cache will grow on demand up
to a preconfigured maximum size. To improve your application's performance
immediately after startup time, you can preload your cache in order to avoid disk 1/0
for production requests of your data.

Cache management is described in The Evictor Thread (page 121) and in Sizing the
Cache (page 121).

o Log files. JE databases are stored in one or more sequential numerically-named log
files in the environment directory. The log files are write-once and are portable across
platforms with different endian-ness.

Note that unlike other database implementations, there is no distinction between

database files (that is, the "material database") and log files. Instead JE employs a
log-based storage system to protect database modifications. Before any change is

made to a database, JE writes information about the change to the log file.

Note that JE's log files are not binary compatible with Berkeley DB's database files.
However, both products provide dump and load utilities, and the files that these
operate on are compatible across product lines.

JE's log files are described in more detail in Backing up and Restoring Berkeley DB Java
Edition Applications (page 113). For information on using JE's dump and load utilities,
see The Command Line Tools (page 122).

« Background threads. JE provides several threads that manage internal resources for
you. There is the evictor thread, which is responsible for keeping the in-memory cache
within a preconfigured maximum size by removing unneeded records from it. The
checkpointer is responsible for flushing database data to disk that was written to cache
as the result of a transaction commit (this is done in order to shorten recovery time).
The compressor thread removes subtrees from the database that are empty because
of deletion activity. Finally, the cleaner thread is responsible for cleaning and removing
unneeded log files, thereby helping you to save on disk space.

Background thread management is described in Managing the Background
Threads (page 119).

« Database environments. Database environments provide a unit of encapsulation and
management for one or more databases. In addition, an environment is the unit of
management for internal resources such as the in-memory cache and the background
threads. Environments are also used to manage concurrency and transactions. Note
that all applications using JE are required to use database environments.

Database environments are described in Database Environments (page 9).

11/13/2004 Getting Started with JE Page 2

The JE Application

o Backup and restore. JE's backup procedure consists of simply copying JE's log files to
a safe location for storage. To recover from a catastrophic failure, you copy your
archived log files back to your production location on disk and reopen the JE
environment.

Note that JE always performs normal recovery when it opens a database environment.
Normal recovery brings the database to a consistent state based on change information
found in the database log files.

JE's backup and recovery mechanisms are described in Backing up and Restoring
Berkeley DB Java Edition Applications (page 113).

The JE Application

This section provides a brief overview to the major concepts and operations that comprise
a JE application. This section is concluded with a summary of the decisions that you need
to make when building a JE application.

Note that the core JE classes are all contained in the com sl eepycat . j e package. In
addition, this book describes some classes that are found in com sl eepycat . j e. bi nd. The
bind APIs are used for converting Java objects in and out of byt e arrays.

Databases and Database Environments

To use a JE database, you must first create or open a JE database environment. Database
environments require you to identify the directory on disk where the environment lives.
This location must exist before you create the environment.

You open a database environment by instantiating an Envi r onment object. Your Envi r onnent
instance is called an environment handle.

Once you have opened an environment, you can use it to open any number of databases
within that environment. Each such database is encapsulated by a Dat abase object. You
are required to provide a string that uniquely identifies the database when you open it.
Like environments, the Dat abase instance is sometimes referred to as a database handle.

You use the environment handle to manage database environments and database opens
through methods available on the Envi ronnent class. You use the database handle to
manage individual databases through methods available on the Dat abase class. Further,
You use environment handles to close environments, and you use database handles to
close databases.

Note that for both databases and environments, you can optionally allow JE to create
them if they do not exist at open time.

Environments are described in greater detail in Database Environments (page 9).
Databases are described in greater detail in Databases (page 17).

11/13/2004 Getting Started with JE Page 3

The JE Application

Database Records

Database records are represented as simple key/data pairs. Both record keys and record
data must be byte arrays and are passed to and returned from JE using Dat abaseEntry
instances. Dat abaseEnt ry only supports storage of Java byte arrays. Complex objects must
be marshalled using either Java serialization, or more efficiently with the bind APIs
provided with JE

Database records and byt e array conversion are described in Database Records (page 25).

Putting and Getting Database Records

You store records in a Dat abase by calling one of the put methods on a Dat abase handle.
JE automatically determines the record's proper placement in the database’s internal
B-Tree using whatever key and data comparison functions that are available to it.

You can also retrieve, or get, records using the Dat abase handle. Gets are performed by
providing the key (and sometimes also the data) of the record that you want to retrieve.

You can also use cursors for database puts and gets. Cursors are essentially a mechanism
by which you can iterate over the records in the database. Like databases and database
environments, cursors must be opened and closed. Cursors are managed using the Cur sor
class.

Databases are described in Databases (page 17). Cursors are described in Using
Cursors (page 56).

Duplicate Data

At creation time, databases can be configured to allow duplicate data. Remember that
JE database records consist of a key/data pair. Duplicate data, then, occurs when two
or more records have identical keys, but different data. By default, a Dat abase does not
allow duplicate data.

If your Dat abase contains duplicate data, then a simple database get based only on a
key returns just the first record that uses that key. To access all duplicate records for
that key, you must use a cursor.

Replacing and Deleting Entries

How you replace database records depends on whether duplicate data is allowed in the
database.

If duplicate data is not allowed in the database, then simply calling Dat abase. put () with
the appropriate key will cause any existing record to be updated with the new data.
Similarly, you can delete a record by providing the appropriate key to the

Dat abase. del et e() method.

If duplicate data is allowed in the database, then you must position a cursor to the record
that you want to update, and then perform the put operation using the cursor.

11/13/2004 Getting Started with JE Page 4

The JE Application

To delete records, you can use either Dat abase. del et ¢() or Cursor. del et e() . If duplicate
data is not allowed in your database, then these two method behave identically. However,
if duplicates are allowed in the database, then Dat abase. del et e() deletes every record
that uses the provided key, while Cursor. del et e() deletes just the record at which the
cursor is currently positioned.

Secondary Databases

Secondary Databases provide a mechanism by which you can automatically create and
maintain secondary keys or indices. That is, you can access a database record using a key
other than the one used to store the record in the first place.

When you are using secondary databases, the database that holds the data you are indexing
is called the primary database.

You create a secondary database by opening it and associating it with an existing primary
database. You must also provide a class that generates the secondary's keys (that is, the
index) from primary records. Whenever a record in the primary database is added or
changed, JE uses this class to determine what the secondary key should be.

When a primary record is created, modified, or deleted, JE automatically updates the
secondary database(s) for you as is appropriate for the operation performed on the
primary.

You manage secondary databases using the Secondar yDat abase class. You identify how to
create keys for your secondary databases by supplying an instance of a class that
implements the Secondar yKeyCr eat or interface.

Secondary databases are described in Secondary Databases (page 73).
Transactions

Transactions provide a high level of safety for your database operations by allowing you
to manage one or more database operations as if they were a single unit of work.
Transactions provide your database operations with recoverability, atomicity, and isolation.

Transactions provide recoverability by allowing JE to undo any transactionally protected
operations that may have been in progress at the time of an application or system failure.

Transactions provide atomicity by allowing you to group many database operations into
a single unit of work. Either all operations succeed or none of them do. This means that
if one write operation fails for any reason, then all other writes contained within that
transaction also fail. This ensures that the database is never partially updated as the
result of an only partially successful chain of read/write operations.

Transactions provide isolation by ensuring that the transaction will never write to a record
that is currently in use (for either read or write) by another transaction. Similarly, any
record to which the transaction has written can not be read outside of the transaction
until the transaction ends. (Note that the exception to this second rule is that you can

11/13/2004 Getting Started with JE Page 5

The JE Application

configure your Dat abase or Cursor to perform dirty reads - that is, read records modified
but not yet committed by a transaction).

Essentially, transactional isolation provides a transaction with the same unmodified view
of the database that it would have received had the operations been performed in a
single-threaded application.

Transactions may be long or short lived, they can encompass as many database operations
as you want, and they can span databases so long as all participating databases reside in
the same environment.

Transaction usage results in a performance penalty for the application because they
generally require more disk 1/0 than do non-transactional operations. Therefore, while
most applications will use transactions for database writes, their usage is optional. In
particular, processes that are performing read-only access to JE databases might not use
transactions. Also, applications that use JE for an easily recreated cache might also choose
to avoid transactions.

You manage transactions using the Transacti on class. Transactions are described in
Transactions (page 95).

JE Resources

JE has some internal resources that you may want to manage. Most important of these is
the in-memory cache. You should carefully consider how large the JE cache needs to be.
If you set this number too low, JE will perform potentially unnecessary disk I/0 which
will result in a performance hit. If you set it too high, then you are potentially wasting
RAM that could be put to better purposes.

Note that the size that you configure for the in-memory cache is a maximum size. At
application startup, the cache starts out fairly small (only about 7% of the maximum
allowed size for the cache). It then grows as is required by your application's database
operations. Also, the cache is not pinned in memory - it can be paged out by your operating
system's virtual memory system.

Beyond the cache, JE uses several background threads to keep the cache within its size
limits, to clean the JE log files, to compress the database by removing unneeded subtrees,
and to flush database changes seen in the cache to the backing data files. For the majority
of JE applications, the default behavior for the background threads should be acceptable
and you will not need to manage their behavior. Note that background threads are started
no more than once per process upon environment open.

For more information on sizing the cache and on the background threads, see Administering
Berkeley DB Java Edition Applications (page 119).

11/13/2004 Getting Started with JE Page 6

JE Backup and Restore

Application Considerations
When building your JE application, be sure to think about the following things:

« What data do you want to store? What is best used for the primary key? What is the
best representation for primary record data? Think about the most efficient way to
move your keys and data in and out of byte arrays. See Database Records (page 25)
for more information.

» Does the nature of your data require duplicate record support? Remember that
duplicate support can be configured only at database creation time. See Opening
Databases (page 17) for more information.

If you are supporting duplicate records, you may also need to think about duplicate
comparators (not just key comparators). See Using Comparators (page 42) for more
information.

« What secondary indexes do you need? How can you compute your secondary indexes
based on the data and keys stored in your primary database? Indexes are described in
Secondary Databases (page 73).

» What cache size do you need? See Sizing the Cache (page 121) for information on how
to size your cache.

» Does your application require transactions (most will). Transactions are described in
Transactions (page 95).

JE Backup and Restore

To backup your database, copy the .| db files starting from the lowest numbered log file
to the highest numbered log file to your backup media. Be sure to copy the bytes of the
individual database files in order from the lowest to the highest. You do not have to close
your database or otherwise cease database operations when you do this.

Restoring a JE database from a backup consists of closing your JE environment, copying
archived log files back into your environment directory and then opening your JE
environment again.

Note that whenever a JE environment is opened, JE runs normal recovery. This involves
bringing your database into a consistent state given the changed data found in the
database. If you are using transactions during normal operations, then JE automatically
runs checkpoints for you so as to limit the time required to run this recovery. In any case,
running normal recovery is a routine operation, while performing database restores is
not.

For more information on JE backup and restores, and on checkpoints, see Backing up and
Restoring Berkeley DB Java Edition Applications (page 113).

11/13/2004 Getting Started with JE Page 7

Getting and Using JE

Getting and Using JE

You can obtain JE by visiting the Sleepycat download page:
http://www.sleepycat.com/download/index.shtml.

To install JE, simple untar or unzip the distribution to the directory of your choice. If you
use unzip, make sure to specify the - U option in order to preserve case.

For more information on installing JE, see JE_HOME/ docs/ rel not es. ht M , where JE_HOME
is the directory where you unpacked JE.

You can use JE with your application by adding JE_HOME/ | i b/ j e. j ar to your application’s
classpath.

Beyond this manual, you can find documentation for JE at JE_HOME/ docs/ i ndex. ht n
directory. In particular, complete Javadoc for the JE API set is available at
JE_HOME/ docs/ j aval i ndex. htmi .

JE Exceptions

Before describing the Java APl usage, it is first useful to examine the exceptions thrown
by those APIs. So, briefly, this section describes the exceptions that you can expect to
encounter when writing JE applications.

All of the JE APIs throw Dat abaseExcepti on. Dat abaseExcept i on extends
java. |l ang. Exception. Also, the following classes are subclasses of Dat abaseExcepti on:

« Dat abaseNot FoundExcepti on

Thrown whenever an operation requires a database, and that database cannot be
found.

o Deadl ockException

Thrown whenever a transaction is selected to resolve a deadlock. Upon receiving this
exception, any open cursors must be closed and the enclosing transaction aborted.
Transactions are described in Transactions (page 95).

e RunRecoveryException

Thrown whenever JE determines that recovery needs to be run on the database. If
you receive this exception, you must reopen your environment so as to allow normal
recovery to run. See Databases and Log Files (page 113) for more information on how
normal recovery works.

Note that when reopening your environment, you should stop all database read and
write activities, close all your cursors, close all your databases, and then reopen your
environment.

Note that Dat abaseExcept i on and its subclasses belong to the com sl eepycat . j e package.

11/13/2004 Getting Started with JE Page 8

http://www.sleepycat.com/download/index.shtml

Chapter 2. Database Environments

Berkeley DB Java Edition requires that all databases be placed in a database environment.
Database environments encapsulate one or more databases. This encapsulation provides
your threads with efficient access to your databases by allowing a single in-memory cache
to be used for each of the databases contained in the environment. This encapsulation
also allows you to group operations performed against multiple databases inside a single
transactions (see Transactions (page 95) for more information).

Most commonly you use database environments to create and open databases (you close
individual databases using the individual database handles). You can also use environments
to delete and rename databases. For transactional applications, you use the environment
to start transactions. For non-transactional applications, you use the environment to sync
your in-memory cache to disk.

Finally, you also use the database environment for administrative and configuration
activities related to your database log files and the in-memory cache. See Administering
Berkeley DB Java Edition Applications (page 119) for more information.

For information on managing databases using database environments, see
Databases (page 17). To find out how to use environments with a transactionally protected
application, see Transactions (page 95).

Opening Database Environments

You open a database environment by instantiating an Envi r onment object. You must
provide to the constructor the name of the on-disk directory where the environment is
to reside. This directory location must exist or the open will fail.

By default, JE will not create the environment for you if it does not exist. Set the creation
property to true if you want JE to create the environment. For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

/1 Open the environnent. Allowit to be created if it does not already exist.
Envi ronment nyDbEnvironment = nul | ;

try {
Envi ronment Confi g envConfig = new Environment Config();

envConfig. set Al l owCreate(true);
myDbEnvi ronment = new Environment (new Fil e("/export/dbEnv"), envConfig);

11/13/2004 Getting Started with JE Page 9

Closing Database Environments

} catch (DatabaseException dbe) {
/] Exception handling goes here
}

Your application can open and use as many environments as you have disk and memory
to manage, although most applications will use just one environment. Also, you can
instantiate multiple Envi ronment objects for the same physical environment.

Note that opening an environment usually causes some background threads to be started.
JE uses these threads for log file cleaning and some in-memory cache administrative tasks.
However, these threads will only be opened once per process, so if you open the same
environment more than once from within the same process, there is no performance
impact on your application. Also, if you open the environment as read-only, then the
background threads (with the exception of the evictor thread) are not started.

Note that opening your environment causes normal recovery to be run. This causes your
databases to be brought into a consistent state relative to the changed data found in your
log files. See Databases and Log Files (page 113) for more information.

Closing Database Environments

You close your environment by calling the Envi ronnent . ¢l ose() method. Note that if you
are not using transactions, then you should run an environment sync before closing your
environment. Without a sync, you are not guaranteed that your database will be written
to disk. See Databases and Log Files (page 113) for more information on environment syncs.

i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat. | e. Envi ronment;

try {
if (myDbEnvironnment !'= null) {

myDbEnvi ronnent . sync(); // For non-transactional only
myDbEnvi ronnent . cl ose() ;
}
} catch (DatabaseException dbe) {
/1 Exception handling goes here
}

You should close your environment(s) only after all other database activities have
completed and you have closed any databases currently opened in the environment.

Closing the last environment handle in your application causes all internal data structures
to be released and the background threads to be stopped. If there are any opened
databases, then JE will complain before closing them as well. At this time, any open
cursors are also closed, and any on-going transactions are aborted.

11/13/2004 Getting Started with JE Page 10

Environment Properties

Environment Properties

You set properties for the Envi ronnent using the Envi r onment Confi g class. You can also
set properties for a specific Envi ronment instance using Envi r onnent Miut abl eConfi g.

The EnvironmentConfig Class

The Envi ronnent Confi g class makes a large number of fields and methods available to
you. Describing all of these tuning parameters is beyond the scope of this manual. However,
there are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding
getter method. Also, you can always retrieve the Envi r onment Confi g object used by your
environment using the Envi ronnent . get Confi g() method.

You set environment configuration parameters using the following methods on the
Envi ronment Confi g class:

e Environnent Config.set Al l owCr eat ()

If true, the database environment is created when it is opened. If f al se, environment
open fails if the environment does not exist. This property has no meaning if the
database environment already exists. Default is f al se.

e Environnent Confi g. set CachePercent ()

Sets the percentage of the JVM memory set aside for the in-memory cache. If a non-zero
value is set for Envi r onment Confi g. set CacheSi ze() , this percentage value is not used
to determine the cache size. Further, this percentage is used only for those JVMs that
are capable of reporting the maximum requested memory via Runti ne. maxMenory() .

You can also set this property using the j e. maxMenor yPer cent parameter in your
env_hone/ j e. properti es file.

e Environnent Config. set CacheSi ze()

Sets the amount of memory in bytes allowed for the in-memory cache. If a non-zero
value is set for this property, then any percentage set for

Envi ronnment Conf i g. set CachePer cent () is ignored. See Sizing the Cache (page 121) for
advice on setting your cache size.

You can also set this property using the j e. maxMenory parameter in your
env_hone/ j e. properti es file.

e Environnent Config. set ReadOnl y()

If true, then all databases opened in this environment must be opened as read-only.
If you are writing a multi-process application, then all but one of your processes must
set this value to true. Default is f al se.

11/13/2004 Getting Started with JE Page 11

Environment Properties

You can also set this property using the j e. env. i sReadOnl y parameter in your
env_hone/je. properties file.

e Environnment Confi g. set Transacti onal ()
If t rue, configures the database environment to support transactions. Default is f al se.

You can also set this property using the j e. env.i sTransacti onal parameter in your
env_hone/ je. properties file.

For example:

package com sl eepycat . exanpl es.je.gettingStarted,;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Envi ronment nyDat abaseEnvi ronment = nul | ;
try {
Envi ronment Confi g envConfig = new Environment Config();
envConfig. set All owCreate(true);
envConfi g. set CacheSi ze(134217728); // 128 x 1024 x 1024
envConfig. set Transactional (true);
myDat abaseEnvi ronment =
new Envi ronnent (new Fil e("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
Systemerr.println(dbe.toString());
Systemexit(1);
}

EnvironmentMutableConfig

Envi r onment Mut abl eConf i g manages properties that can be reset after the Envi r onnent
object has been constructed. In addition, Envi r onnment Conf i g extends

Envi ronment Mut abl eConfi g, so you can set these mutable properties at Envi r onment
construction time if necessary.

The Envi ronment Mut abl eConf i g class allows you to set just one property:
e set TxnNoSync()

Determines whether change records created due to a transaction commit are written
to the backing log files on disk. A value of true causes the data to not be flushed to
disk. See Committing and Aborting Transactions (page 97) for more information.

11/13/2004 Getting Started with JE Page 12

Environment Statistics

There is also a corresponding getter method (get TxnNoSync()). Moreover, you can always
retrieve your environment's Envi r onment Mut abl eConf i g object by using the
Envi ronment . get Mut abl eConfi g() method.

For example:

package com sl eepycat . exanpl es.je.gettingStarted,;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Envi ronment ;
i nport com sl eepycat . j e. Envi r onment Mut abl eConfi g;

inmport java.io.File;

try {
Environment nyEnv = new Environment (new File("/export/dbEnv"), null);
Envi ronment Mit abl eConfi g envMit abl eConfig =
new Envi ronment Mut abl eConfi g();
envMit abl eConfi g. set TxnNoSync(true);
nmyEnv. set Mut abl eConf i g(envMit abl eConfi g) ;
} catch (DatabaseException dbe) {
/| Exception handling goes here
}

Environment Statistics

JE offers a wealth of information that you can examine regarding your environment's
operations. The majority of this information involves numbers relevant only to the JE
developer and as such a description of those statistics is beyond the scope of this manual.

However, one statistic that is very important (especially for long-running applications) is
Envi ronment St at s. get NCacheM ss() . This statistic returns the total number of requests
for database objects that were not serviceable from the cache. This number is important
to the application administrator who is attempting to determine the proper size for the
in-memory cache. See Sizing the Cache (page 121) for details.

To obtain this statistic from your environment, call Envi ronnent . get St at s() to return an
Envi ronment St at s object. You can then call the Envi ronment St at s. get NCacheM ss()
method. For example:

i nport com sl eepycat. | e. Envi ronment;

| ong cacheM sses = nyEnv. get Stats(null). get NCacheM ss();

11/13/2004 Getting Started with JE Page 13

Database Environment
Management Example

Note that environment statistics can only be obtained from within your application's
process. In order for the application administrator to obtain this statistic, you must either
provide a mechanism by which you application can be queried for the statistic (for
example, using SNMP) or you must print it for examination (for example, log the value
once a minute).

Note that what is really important for cache sizing is the change in this value over time,
and not the actual value itself. So you might consider offering a delta from one examination
of this statistic to the next (a delta of 0 is desired while large deltas are an indication
that the cache is too small).

Database Environment Management Example

This example provides a complete class that can open and close an environment. It is
both extended and used in subsequent examples in this book to open and close both
environments and databases. We do this so as to make the example code shorter and
easier to manage. You can find this class in:

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
M/DbEnv. j ava

where JE_HOME is the location where you placed your JE distribution.

Example 2.1. Database Environment Management Class

First we write the normal class declarations. We also set up some private data members
that are used to manage environment creation. We use the class constructor to instantiate
the Envi ronnent Confi g object that is used to configure our environment when we open
it.

[l File MyDbEnv.java
package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnent Confi g;

inport java.io.File;

public class MyDbEnv {
private Environnent nyEnv;

publ i ¢ MDbERV() {}

Next we need a method to open the environment. This is responsible for instantiating our
Envi ronment object. Remember that instantiation is what opens the environment (or
creates it if the creation property is set to true and the environment does not currently
exist).

11/13/2004 Getting Started with JE Page 14

Database Environment
Management Example

public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {

Il Instantiate an environnment configuration object

Envi ronment Confi g nmyEnvConfig = new Environnent Config();

Il Configure the environment for the read-only state as identified by
Il the readOnly paraneter on this method call.

myEnvConfi g. set ReadOnl y(readOnl y);

[l 1f the environment is opened for wite, then we want to be able to
Il create the environnent if it does not exist.

myEnvConfi g. set Al | owCreat e(! readOnly);

Il Instantiate the Environnent. This opens it and al so possibly
Il creates it.
myEnv = new Environment (envHome, nyEnvConfig);

}

Next we provide a getter method that allows us to retrieve the Envi ronnent directly. This
is needed for later examples in this guide.

[/ Getter nethods

publi ¢ Environnent getEnv() {
return nyEnv;

}

Finally, we need a method to close our Envi ronnent . We wrap this operationinatry
block so that it can be used gracefully in a fi nal | y statement.

/1 Close the environnent
public void close() {
if (myEnv = null) {
try {
myEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.println("Error closing environment" +
dbe.toString());

}

This completes the MyDbEnv class. While not particularly useful as it currently exists, we
will build upon it throughout this book so that it will eventually open and close all of the
databases required by our applications.

We can now use MyDbEnv to open and close a database environment from the appropriate
place in our application. For example:

11/13/2004 Getting Started with JE Page 15

Database Environment
Management Example

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. | e. Dat abaseEntry;
i nport com sl eepycat . j e. Dat abaseExcepti on;

inport java.io.File;

M/DbEnv exanpl eDbEnv = new MyDbEnv();

try {
exanpl eDbEnv. set up(new File("/directory/currently/exists"), true);

} catch(DatabaseException dbe) {
/] Error code goes here

} finally {
exanpl eDbEnv. cl ose() ;
1

11/13/2004 Getting Started with JE Page 16

Chapter 3. Databases

In Berkeley DB Java Edition, a database is a collection of records. Records, in turn, consist
of key/data pairings.

Conceptually, you can think of a Dat abase as containing a two-column table where column
1 contains a key and column 2 contains data. Both the key and the data are managed
using Dat abaseEnt ry class instances (see Database Records (page 25) for details on this
class). So, fundamentally, using a JE Dat abase involves putting, getting, and deleting
database records, which in turns involves efficiently managing information encapsulated
by Dat abaseEnt ry objects. The next several chapters of this book are dedicated to those
activities.

Note that on disk, databases are stored in sequentially numerically named log files in the
directory where the opening environment is located. JE log files are described Databases
and Log Files (page 113).

Opening Databases

You open a database by using the Envi ronnent . openDat abase() method (environments
are described in Database Environments (page 9)). This method creates and returns a
Dat abase object handle. You must provide Envi ronnent . openDat abase() with a database
name.

You can optionally provide Envi ronnent . openDat abase() with a Dat abaseConfi g() object.
Dat abaseConfi g() allows you to set properties for the database, such as whether it can
be created if it does not currently exist, whether you are opening it read-only, and whether
the database is to support transactions.

Note that by default, JE does not create databases if they do not already exist. To override
this behavior, set the creation property to true.

Finally, if you configured your environment and database to support transactions, you
can optionally provide a transaction object to the Envi ronnent . openDat abase() .
Transactions are described in Transactions (page 95) later in this manual.

The following code fragment illustrates a database open:

11/13/2004 Getting Started with JE Page 17

Opening Databases

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . | e. Dat abase;

i nport com sl eepycat . | e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;

inport java.io.File;

Envi ronment nyDbEnvironment = nul | ;
Dat abase nyDat abase = nul | ;

try {
/] Open the environnent. Create it if it does not already exist.

Envi ronment Confi g envConfig = new Environment Config();
envConfig. set Al l owCreate(true);
myDbEnvi ronment = new Environment (new Fil e("/export/dbEnv"), envConfig);

/] Open the database. Create it if it does not already exist.

Dat abaseConfi g dbConfig = new Dat abaseConfig();

dbConfi g. set Al l owCreat e(true);

myDat abase = myDbEnvi ronnent . openDat abase(nul |,
"sanpl eDat abase",
dbConfi g);

} catch (DatabaseException dbe) {
/] Exception handling goes here

}
Closing Databases

Once you are done using the database, you must close it. You use the Dat abase. cl ose()
method to do this.

Closing a database causes it to become unusable until it is opened again. If any cursors

are opened for the database, JE warns you about the open cursors, and then closes them
for you. Active cursors during a database close can cause unexpected results, especially
if any of those cursors are writing to the database in another thread. You should always
make sure that all your database accesses have completed before closing your database.

Remember that for the same reason, you should always close all your databases before
closing the environment to which they belong.

Cursors are described in Using Cursors (page 56) later in this manual.

The following illustrates database and environment close:

11/13/2004 Getting Started with JE Page 18

Database Properties

inport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . | e. Dat abase;
i nport com sl eepycat. | e. Envi ronment ;

try {

if (nyDatabase != null) {
nyDat abase. cl ose() ;

}

i f (myDbEnvironment !'= null) {
myDbEnvi ronnent . cl ose();

}

} catch (DatabaseException dbe) {

/] Exception handling goes here

Database Properties

You can set database properties using the Dat abaseConfi g class. For each of the properties
that you can set, there is a corresponding getter method. Also, you can always retrieve
the Dat abaseConf i g object used by your database using the Dat abase. get Confi g() method.

The database properties that you can set are:

Dat abaseConfi g. set Al | owCr eat e()

If true, the database is created when it is opened. If false, the database open fails if
the database does not exist. This property has no meaning if the database currently
exists. Default is f al se.

Dat abaseConfi g. set Bt r eeConpar at or ()

Sets the class that is used to compare the keys found on two database records. This
class is used to determine the sort order for two records in the database. By default,
byte for byte comparison is used. For more information, see Using

Comparators (page 42).

Dat abaseConfi g. set Dupl i cat eConpar at or ()

Sets the class that is used to compare two duplicate records in the database. For more
information, see Using Comparators (page 42).

Dat abaseConfi g. set Sort edDupl i cat es()

If true, duplicate records are allowed in the database. If this value is f al se, then
putting a duplicate record into the database results in an error return from the put
call. Note that this property can be set only at database creation time. Default is
fal se.

11/13/2004

Getting Started with JE Page 19

Administrative Methods

o DatabaseConfig. set Excl usiveCreate()

If true, the database open fails if the database currently exists. That is, the open
must result in the creation of a new database. Default is f al se.

« DatabaseConfig. set ReadOnl y()
If true, the database is opened for read activities only. Default is f al se.
« DatabaseConfig.set Transactional ()

If true, the database supports transactions. Default is f al se. Note that a database
cannot support transactions if the environment is non-transactional.

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. j e. Dat abase;
i nport com sl eepycat . j e. Dat abaseConfi g;

[l Environment open onitted for brevity

Dat abase nyDat abase = nul | ;

try {
Dat abaseConfi g dbConfig = new Dat abaseConfig();

dbConfi g. set Al | owCr eat e(true);
dbConfi g. set Sort edDupl i cates(true);
nyDat abase =
myDbEnv. openDat abase(nul |,
"sanpl eDat abase",
dbConfi g);
} catch (DatabaseException dbe) {
/1 Exception handling goes here.
}

Administrative Methods

Both the Envi ronnment and Dat abase classes provide methods that are useful for
manipulating databases. These methods are:

« Dat abase. get Dat abaseNane()

Returns the database's name.

String dbName = nyDat abase. get Dat abaseNang() ;

11/13/2004 Getting Started with JE Page 20

Administrative Methods

» Dat abase. get Envi ronment ()

Returns the Envi ronment that contains this database.

Envi ronment theEnv = nyDat abase. get Envi ronnment () ;

o Database.truncate()

Deletes every record in the database and optionally returns the number of records
that were deleted. Note that it is much less expensive to truncate a database without
counting the number of records deleted than it is to truncate and count.

i nt nunDi scarded =
myDat abase. truncate(nul |,
true); // If true, then the nunber of
/'l records deleted are counted.
Systemout. println("Discarded " + nunDi scarded +
" records from database " +
myDat abase. get Dat abaseNane()) ;

« Dat abase. prel oad()

Preloads the database into the in-memory cache. Optionally takes a | ong that identifies
the maximum number of bytes to load into the cache. If this parameter is not supplied,
the maximum memory usage allowed by the evictor thread is used.

myDat abase. prel oad(10485761); // 1024*1024

e Environnent. get Dat abaseNames()

Returns a list of Strings of all the databases contained by the environment.

import java.util.List;

Li st nyDbNanes = nyDbEnv. get Dat abaseNanes() ;
for(int i=0; i < nyDbNames.size(): i++) {

System out. println("Database Name: " + (String)nmyDbNames. get(i));
}

e Environnent.renoveDat abase()

Deletes the database. The database must be closed when you perform this action on
it.
String dbName = nyDat abase. get Dat abaseName() ;

myDat abase. cl ose() ;
nmyDbEnv. renoveDat abase(nul |, dbNane) ;

11/13/2004 Getting Started with JE Page 21

Database Example

e Environnent.renaneDat abase()

Renames the database. The database must be closed when you perform this action
on it.

String ol dName = nyDat abase. get Dat abaseNane() ;
String newName = new String(ol dName + ".new');
nmyDat abase. cl ose() ;

myDbEnv. r enaneDat abase(nul |, ol dName, newNane) ;

Database Example

In Database Environment Management Example (page 14) we created a class that manages
an Envi ronnent . We now extend that class to allow it to open and manage multiple
databases. Again, remember that you can find this class in:

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
M/DbEnv. j ava

where JE_HOME is the location where you placed your JE distribution.

Example 3.1. Database Management with MyDbEnv

First, we need to import a few additional classes, and setup some global variables to
support databases. The databases that we are configuring and creating here are used by
applications developed in examples later in this guide.

[l File MyDbEnv.java
package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Dat abaseConfi g;

i nport com sl eepycat. | e. Dat abase;

i nport com sl eepycat. j e. Envi ronnent Confi g;
i nport com sl eepycat. | e. Environment;

inport java.io.File;

public class MyDbEnv {
private Environnent nyEnv;
private Database vendor Db;

private Database inventoryDb;

publ i c MDbERV() {}

Next we need to update the MyDbEnv. set up() method to instantiate a Dat abaseConfi g
object. We also need to set some properties on that object. These property values are

11/13/2004 Getting Started with JE Page 22

Database Example

determined by the value of the readOnl y parameter. We want our databases to be
read-only if the environment is also read-only. We also want to allow our databases to
be created if the databases are not read-only.

public void setup(File envHone, bool ean readOnly)

throws Dat abaseException {

Il Instantiate an environnent and database configuration object
Envi ronment Confi g nyEnvConfig = new Environnent Config();

Dat abaseConfi g myDbConfi g = new DatabaseConfig();

/1 Configure the environment and databases for the read-only
[/ state as identified by the readOnly paranmeter on this

[/ method call.

myEnvConfi g. set ReadOnl y(readOnl y);

myDbConfi g. set ReadOnl y(readOnl y);

[/ 1f the environnment is opened for wite, then we want to be
[/ able to create the environnent and databases if

Il they do not exist.

myEnvConfi g. set Al | owCreat e(! readOnl y);

myDbConfi g. set Al | owCreate(!readOnly);

Il Instantiate the Environment. This opens it and al so possibly
Il creates it.
myEnv = new Envi ronnent (envHore, nyEnvConfi g);

Il Now create and open our databases.
vendor Db = nyEnv. openDat abase(nul |,
"Vendor DB",
myDbConfi g);

i nventoryDb = nyEnv. openDat abase(nul |,
"I nvent or yDB",
myDbConfi g);

Next we need some additional getter methods used to return our database handles.

[/ Getter nethods
publ i ¢ Environnent getEnvironment () {

return nyEnv;

publ i ¢ Database get VendorDB() {

return vendor Db;

publ i ¢ Database getlnventoryDB() {

return inventoryDb;

11/13/2004

Getting Started with JE Page 23

Database Example

Finally, we need to update the MyDbEnv. cl ose() method to close our databases.

/1 C ose the environnent
public void close() {
if (myEnv = null) {
try {
vendor Db. cl ose();
i nvent oryDb. cl ose();
myEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.println("Error closing M/DbEnv: " +
dbe.toString());
Systemexit(-1);

}

We can now use MyDbEnv to open and close both database environments and databases
from the appropriate place in our application. For example:

package com sl eepycat . exanpl es.je.gettingStarted,;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Dat abase;

inport java.io.File;

M/DbEnv exanpl eDbEnv = new MyDbEnv();

try {
exanmpl eDbEnv. set up(new File("/directory/currently/exists"), true);

Dat abase vendor Db = exanpl eDbEnv. get Vendor DB() ;
Dat abase invent oryDB = exanpl eDbEnv. get | nvent or yDB() ;

} catch(Dat abaseException dbe) {
/] Error code goes here

} finally {
exanmpl eDbEnv. cl ose();
}

11/13/2004 Getting Started with JE Page 24

Chapter 4. Database Records

JE records contain two parts — a key and some data. Both the key and its corresponding
data are encapsulated in Dat abaseEnt ry class objects. Therefore, to access a JE record,
you need two such objects, one for the key and one for the data.

Dat abaseEnt ry can hold any kind of data from simple Java primitive types to complex
Java objects so long as that data can be represented as a Java byt e array. Note that due
to performance considerations, you should not use Java serialization to convert a Java
object to a byt e array. Instead, use the Bind APIs to perform this conversion (see Using
the BIND APIs (page 31) for more information).

This chapter describes how you can convert both Java primitives and Java class objects
into and out of byt e arrays. It also introduces storing and retrieving key/value pairs from
a database. In addition, this chapter describes how you can use comparators to influence
how JE sorts its database records.

Using Database Records

Each database record is comprised of two Dat abaseEntry objects — one for the key and
another for the data. The key and data information are passed to- and returned from JE
using Dat abaseEntry objects as byt e arrays. Using Dat abaseEnt rys allows JE to change
the underlying byte array as well as return multiple values (that is, key and data).
Therefore, using Dat abaseEnt ry instances is mostly an exercise in efficiently moving your
keys and your data in and out of byt e arrays.

For example, to store a database record where both the key and the data are Java Stri ng
objects, you instantiate a pair of Dat abaseEnt ry objects:

package com sl eepycat. exanpl es.je.gettingStarted;

i nport com sl eepycat. | e. Dat abaseEntry;

String akey = "key";
String aData = "data";

try {
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es(" UTF

Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UT
} catch (Exception e) {

/'l Exception handling goes here
}

8"))
F-8'

'3);

/] Storing the record is described later in this chapter

|:| Notice that we specify UTF- 8 when we retrieve the byt e array from our String object.
Without parameters, String. get Byt es() uses the Java system's default encoding. You should

11/13/2004 Getting Started with JE Page 25

Using Database Records

never use a system's default encoding when storing data in a database because the encoding
can change.

When the record is retrieved from the database, the method that you use to perform this
operation populates two Dat abaseEnt ry instances for you, one for the key and another
for the data. Assuming Java St ri ng objects, you retrieve your data from the Dat abaseEntry
as follows:

package com sl eepycat . exanpl es.je.gettingStarted,;

i nport com sl eepycat . j e. Dat abaseEnt ry;

/] theKey and theData are DatabaseEntry objects. Database
[l retrieval is described later in this chapter. For now,
/1 we assume sonme database get nethod has popul ated these
/] objects for us.

/1 Use DatabaseEntry.getData() to retrieve the encapsul ated Java
/'l byte array.

byte[] nyKey = theKey.getData();
byte[] nyData = theData. getData();

String key = new String(nyKey);
String data = new String(nyData);

There are a large number of mechanisms that you can use to move data in and out of
byt e arrays. To help you with this activity, JE provides the bind APIs. These APIs allow
you to efficiently store both primitive data types and complex objects in byt e arrays.

The next section describes basic database put and get operations. A basic understanding
of database access is useful when describing database storage of more complex data such
as is supported by the bind APIs. Basic bind API usage is then described in Using the BIND
APIs (page 31).

11/13/2004 Getting Started with JE Page 26

Reading and Writing Database
Records

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight
differences in behavior depending on whether your database supports duplicate records.
Two or more database records are considered to be duplicates of one another if they
share the same key. The collection of records sharing the same key are called a duplicates
set.

By default, JE databases do not support duplicate records. Where duplicate records are
supported, cursors (see below) are used to access all of the records in the duplicates set.

JE provides two basic mechanisms for the storage and retrieval of database key/data
pairs:

o The Dat abase. put () and Dat abase. get () methods provide the easiest access for all
non-duplicate records in the database. These methods are described in this section.

o Cursors provide several methods for putting and getting database records. Cursors and
their database access methods are described in Using Cursors (page 56).

Writing Records to the Database

Database records are stored in the internal BTree based on whatever sorting routine is
available to the database. Records are sorted first by their key. If the database supports
duplicate records, then the records for a specific key are sorted by their data.

By default, JE sorts both keys and the data portion of duplicate records using byte-by-byte
lexicographic comparisons. This default comparison works well for the majority of cases.
However, in some case performance benefits can be realized by overriding the default
comparison routine. See Using Comparators (page 42) for more information.

You can use the following methods to put database records:
o Database. put ()

Puts a database record into the database. If your database does not support duplicate
records, and if the provided key already exists in the database, then the currently
existing record is replaced with the new data.

« Dat abase. put NoOverwrite()

Disallows overwriting (replacing) an existing record in the database. If the provided
key already exists in the database, then this method returns Qper at i onSt at us. KEYEXI ST
even if the database supports duplicates.

11/13/2004 Getting Started with JE Page 27

Reading and Writing Database
Records

o Dat abase. put NoDupDat a()

Puts a database record into the database. If the provided key and data already exists
in the database (that is, if you are attempting to put a record that compares equally
to an existing record), then this returns Oper ati onSt at us. KEYEXI ST.

When you put database records, you provide both the key and the data as Dat abaseEnt ry
objects. This means you must convert your key and data into a Java byt e array. For
example:

package com sl eepycat.je.exanpl es. gettingStarted;

i nport com sl eepycat . j e. Dat abase;
inport com sl eepycat. | e. Dat abaseEntry;

[/ Environnment and dat abase opens omitted for clarity.
/1 Environment and dat abase nust NOT be opened read-only.

String aKey = "nyFirstKey";
String aData = "nyFirstData";

try {
Dat abaseEntry theKey = new Dat abaseEntry(akKey. get Byt es(" UTF-

F
Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UT
myDat abase. put (nul |, theKey, theData);
} catch (Exception e) {
/] Exception handling goes here

}
Getting Records from the Database

The Dat abase class provides several methods that you can use to retrieve database records.
Note that if your database supports duplicate records, then these methods will only ever
return the first record in a duplicate set. For this reason, if your database supports
duplicates, you should use a cursor to retrieve records from it. Cursors are described in
Using Cursors (page 56).

You can use either of the following methods to retrieve records from the database:
o Database. get ()

Retrieves the record whose key matches the key provided to the method. If no records
exists that uses the provided key, then Qper ati onSt at us. NOTFOUND is returned.

11/13/2004 Getting Started with JE Page 28

Reading and Writing Database
Records

» Dat abase. get Sear chBot h()

Retrieve the record whose key matches both the key and the data provided to the
method. If no record exists that uses the provided key and data, then
Oper ati onSt at us. NOTFOUND is returned.

Both the key and data for a database record are returned as byte arrays in Dat abaseEntry
objects. These objects are passed as parameter values to the Dat abase. get () method.

In order to retrieve your data once Dat abase. get () has completed, you must retrieve the
byt e array stored in the Dat abaseEnt ry and then convert that byt e array back to the
appropriate datatype. For example:

package com sl eepycat. | e.exanpl es. gettingStarted,;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseEnt ry;

i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

[/ Environment and dat abase opens omitted for clarity.
/1 Environment and dat abase may be opened read-only.

String aKey = "nyFirstKey";

try {
/] Create a pair of DatabaseEntry objects. theKey

/] is used to performthe search. theData is used

/] to store the data returned by the get() operation.

Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Performthe get.
i f (myDatabase.get(null, theKey, theData, LockMbde.DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

Il Recreate the data String.
byte[] retData = theData. getData();
String foundData = new String(retData);

Systemout.printin("For key: '" + aKey + "' found data: '" +
foundData + "'.");
} else {
Systemout.printin("No record found for key '" + aKey + "".");

}
} catch (Exception e) {

/] Exception handling goes here
}

11/13/2004 Getting Started with JE Page 29

Reading and Writing Database
Records

Deleting Records

You can use the Dat abase. del et e() method to delete a record from the database. If your
database supports duplicate records, then all records associated with the provided key
are deleted. To delete just one record from a list of duplicates, use a cursor. Cursors are
described in Using Cursors (page 56).

You can also delete every record in the database by using Dat abase. truncat e().

For example:

package com sl eepycat.|je. exanpl es. gettingStarted;

i nport com sl eepycat. j e. Dat abase;
i nport com sl eepycat . | e. Dat abaseEntry;

[l Environment and dat abase opens onmitted for clarity.
/1 Environnment and database can NOT be opened read-only.

try {
String akKey = "nyFirstKey";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/| Performthe deletion. All records that use this key are
/] del eted.
nyDat abase. del ete(nul |, theKey);
} catch (Exception e) {
/1 Exception handling goes here

}
Data Persistence

When you perform a database modification, your modification is made in the in-memory
cache. This means that your data modifications are not necessarily flushed to disk, and
so your data may not appear in the database after an application restart.

Therefore, if you care if your data is durable across system failures, and to guard against
the rare possibility of database corruption, you should use transactions to protect your
database modifications. Every time you commit a transaction, JE ensures that the data
will not be lost due to application or system failure. Transaction usage is described in
Transactions (page 95).

If you do not want to use transactions, then the assumption is that your data is of a nature
that it need not exist the next time your application starts. You may want this if, for
example, you are using JE to cache data relevant only to the current application runtime.

If, however, you are not using transactions for some reason and you still want some
guarantee that your database modifications are persistent, then you should periodically

11/13/2004 Getting Started with JE Page 30

Using the BIND APIs

run environment syncs. Syncs cause any dirty entries in the in-memory cache and the
operating system'’s file cache to be written to disk. As such, they are quite expensive and
you should use them sparingly.

You run a sync by calling the Envi ronment . sync() method. For applications that use them,
syncs are at a minimum performed immediately before the environment is closed. This
close should occur in the appropriate final | y block. See Opening Database
Environments (page 9) for an example of this.

For a brief description of how JE manages its data in the cache and in the log files, and
how sync works, see Databases and Log Files (page 113).

Using the BIND APIs

Except for Java String and boolean types, efficiently moving data in and out of Java byte
arrays for storage in a database can be a nontrivial operation. To help you with this
problem, JE provides the Bind APIs. While these APIs are described in detail in the
Sleepycat Java Collections Tutorial (see http://www.sleepycat.com/docs/ref/toc.html),
this section provides a brief introduction to using the Bind APIs with:

» Single field numerical and string objects

Use this if you want to store a single numerical or string object, such as Long, Doubl e,
or String.

o Complex objects that implement Java serialization.

Use this if you are storing objects that implement Seri al i zabl e and if you do not need
to sort them.

« Non-serialized complex objects.

If you are storing objects that do not implement serialization, you can create your
own custom tuple bindings. Note that you should use custom tuple bindings even if
your objects are serializble if you want to sort on that data.

Numerical and String Objects

You can use the Bind APIs to store primitive data in a Dat abaseEnt ry object. That is, you
can store a single field containing one of the following types:

e String

» Character
« Bool ean

e Byte

e Short

11/13/2004 Getting Started with JE Page 31

http://www.sleepycat.com/docs/ref/toc.html

Using the BIND APIs

[nt eger
Long
Fl oat

Doubl e

To store primitive data using the Bind APIs:

1.

2.

Create an Ent ryBi ndi ng object.

When you do this, you use Tupl eBi ndi ng. get PrinitiveBinding() toreturn an
appropriate binding for the conversion.

Use the EntryBi ndi ng object to place the numerical object on the Dat abaseEntry.

Once the data is stored in the DatabaseEntry, you can put it to the database in whatever
manner you wish. For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat. | e. Dat abaseEnt ry;

/1 Need a key for the put.
try {
String akey = "nyLong";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

[/ Now build the DatabaseEntry using a Tupl eBi ndi ng

Long nyLong = new Long(123456789l);

Dat abaseEntry theData = new Dat abaseEntry();

Ent ryBi ndi ng nyBi ndi ng = Tupl eBi ndi ng. get Pri mi tiveBi ndi ng(Long. cl ass);
nmyBi ndi ng. obj ect ToEnt ry(nyLong, theData);

[/ Now store it

myDat abase. put (nul |, theKey, theData);
} catch (Exception e) {

/] Exception handling goes here
}

Retrieval from the Dat abaseEnt ry object is performed in much the same way:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . bi nd. Ent ryBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

11/13/2004 Getting Started with JE Page 32

Using the BIND APIs

i nport com sl eepycat . | e. Dat abase;

inport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat. | e. LockMode;

i nport com sl eepycat.je. OperationStat us;

Dat abase nyDat abase = nul | ;
/| Database open onmtted for clarity

try {
/] Need a key for the get

String akey = "nyLong";
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/] Need a DatabaseEntry to hold the associated data.
Dat abaseEntry theData = new Dat abaseEntry();

/1 Bindings need only be created once for a given scope
Ent ryBi ndi ng nyBi ndi ng = Tupl eBi ndi ng. get Pri mi tiveBi ndi ng(Long. cl ass);

Il Get it
OperationStatus retVal = nyDatabase. get(null, theKey, theData,
LockMbde. DEFAULT) ;
String retkKey = null;
if (retVal == QperationStatus. SUCCESS) {
Il Recreate the data.
Il Use the binding to convert the byte array contained in theData
Il to a Long type.
Long theLong = (Long) nyBinding.entryTohject (theData);
retKey = new String(theKey.getData());
Systemout.printin("For key: '" + retKey + "' found Long: '" +
theLong + "'.");
} else {
Systemout.printin("No record found for key "" + retKey + "'.");
}
} catch (Exception e) {
/| Exception handling goes here
}

Serializeable Complex Objects

Frequently your application requires you to store and manage objects for your record
data and/or keys. You may need to do this if you are caching objects created by another
process. You may also want to do this if you want to store multiple data values on a
record. When used with just primitive data, or with objects containing a single data
member, JE database records effectively represent a single row in a two-column table.
By storing a complex object in the record, you can turn each record into a single row in

11/13/2004 Getting Started with JE Page 33

Using the BIND APIs

an n-column table, where n is the number of data members contained by the stored
object(s).

In order to store objects in a JE database, you must convert them to and from a byt e
array. The first instinct for many Java programmers is to do this using Java serialization.
While this is functionally a correct solution, the result is poor space-performance because
this causes the class information to be stored on every such database record. This
information can be quite large and it is redundant — the class information does not vary
for serialized objects of the same type.

In other words, directly using serialization to place your objects into byte arrays means
that you will be storing a great deal of unnecessary information in your database, which
ultimately leads to larger databases and more expensive disk 1/0.

The easiest way for you to solve this problem is to use the Bind APIs to perform the
serialization for you. Doing so causes the extra object information to be saved off to a
unique Dat abase dedicated for that purpose. This means that you do not have to duplicate
that information on each record in the Dat abase that your application is using to store
it's information.

Note that when you use the Bind APIs to perform serialization, you still receive all the
benefits of serialization. You can still use arbitrarily complex object graphs, and you still
receive built-in class evolution through the serialVersionUID (SUID) scheme. All of the
Java serialization rules apply without modification. For example, you can implement
Externalizable instead of Serializable.

Usage Caveats

Before using the Bind APIs to perform serialization, you may want to consider writing your
own custom tuple bindings. Specifically, avoid serialization if:

« If you need to sort based on the objects your are storing. The sort order is meaningless
for the byte arrays that you obtain through serialization. Consequently, you should
not use serialization for keys if you care about their sort order. You should also not
use serialization for record data if your Dat abase supports duplicate records and you
care about sort order.

* You want to minimize the size of your byte arrays. Even when using the Bind APIs to
perform the serialization the resulting byt e array may be larger than necessary. You
can achieve more compact results by building your own custom tuple binding.

« You want to optimize for speed. In general, custom tuple bindings are faster than
serialization at moving data in and out of byt e arrays.

For information on building your own custom tuple binding, see Custom Tuple
Bindings (page 38).

11/13/2004 Getting Started with JE Page 34

Using the BIND APIs

Serializing Objects

To store a serializeable complex object using the Bind APlIs:

1.
2.

Implement java.io.Serializable in the class whose instances that you want to store.

Open (create) your databases. You need two. The first is the database that you use
to store your data. The second is used to store the class information.

Instantiate a class catalog. You do this with

com sl eepycat . bi nd. serial . Storedd assCat al og, and at that time you must provide
a handle to an open database that is used to store the class information.

Create an entry binding that uses com sl eepycat. bi nd. seri al . Seri al Bi ndi ng.

Instantiate an instance of the object that you want to store, and place it in a
Dat abaseEnt ry using the entry binding that you created in the previous step.

For example, suppose you want to store a long, double, and a String as a record's data.

Then you might create a class that looks something like this:

package com sl eepycat.je. exanpl es. gettingStarted;

import java.io.Serializable;

public class MyData inplements Serializable {

private long | ongDat a;
private doubl e doubl eDat a;
private String description;

MData() {
 ongData = 0;
doubl eData = 0.0;
description = null;

}

public void setLong(long data) {
| ongDat a = dat a;
}

publ i ¢ voi d setDoubl e(doubl e data) {
doubl eData = dat a;
}

public void setDescription(String data) {
description = data;
}

public long getLong() {
return | ongDat a;

11/13/2004

Getting Started with JE

Page 35

Using the BIND APIs

}

}

publ i ¢ doubl e getDouble() {
return doubl eDat a;

}

public String getDescription() {
return description;

}

You can then store instances of this class as follows:

package com sl eepycat. | e. exanpl es. gettingStarted;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;
i nport com sl eepycat. bi nd. serial . Storedd assCat al og;
i nport com sl eepycat . bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat. j e. Dat abase;
i nport com sl eepycat . j e. Dat abaseConfi g;
i nport com sl eepycat. | e. Dat abaseEntry;

/1 The key data.
String akey = "nyData";

[/ The data data

My/Dat a data2Store = new MyData();

dat a2St or e. set Long(1234567891) ;

dat a2St or e. set Doubl e(1234. 9876543) ;

dat a2St ore. set Description("A test instance of this class");

try {

/1 Environnment open onitted for brevity

/1 Qpen the database that you will use to store your data

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();

myDbConfig. set Al | owCreat e(true);

myDbConf i g. set Sort edDupl i cat es(true);

Dat abase nyDat abase = nyDbEnv. openDat abase(nul |, "myDb", myDbConfig);

/1 Open the database that you use to store your class infornmation.

/1 The db used to store class information does not require duplicates
/'l support.

myDbConf i g. set Sort edDupl i cat es(fal se);

Dat abase myd assDb = nyDbEnv. openDat abase(nul I, "classDb", nyDbConfig);

11/13/2004

Getting Started with JE Page 36

Using the BIND APIs

/] Instantiate the class catalog
St oredC assCat al og cl assCatal og = new StoredC assCat al og(myd assDb) ;

/] Create the binding
Ent ryBi ndi ng dat aBi ndi ng = new Seri al Bi ndi ng(cl assCat al og,
MyDat a. cl ass) ;

/] Create the DatabaseEntry for the key
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));

/] Create the DatabaseEntry for the data. Use the EntryBinding object
/] that was just created to popul ate the DatabaseEntry

Dat abaseEntry theData = new Dat abaseEntry();

dat aBi ndi ng. obj ect ToEnt ry(dat a2St ore, theData);

{/ Put it as normal
nyDat abase. put (nul |, theKey, theData);

/| Database and environment close omtted for brevity
} catch (Exception e) {
/] Exception handling goes here

}
Deserializing Objects

Once an object is stored in the database, you can retrieve the MyDat a objects from the
retrieved Dat abaseEnt ry using the Bind APIs in much the same way as is described above.
For example:

package com sl eepycat. je. exanpl es. gettingStarted;

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;
i nport com sl eepycat . bi nd. serial . Storedd assCat al og;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseConfi g;
i nport com sl eepycat. | e. Dat abaseEntry;
i nport com sl eepycat . j e. LockMode;

/1 The key data.
String akey = "nyData";

try {
/1 Environment open onitted for brevity.

/1 Open the database that stores your data

11/13/2004 Getting Started with JE Page 37

Using the BIND APIs

Dat abaseConfi g nyDbConfi g = new Dat abaseConfi g();
myDbConfi g. set Al | owCreat e(f al se);
Dat abase nyDat abase = nmyDbEnv. openDat abase(nul |, "myDb", myDbConfig);

/] Open the database that stores your class information.
Dat abase myd assDb = nyDbEnv. openDat abase(nul I, "classDb", nyDbConfig);

/] Instantiate the class catal og
St oredCl assCat al og cl assCatal og = new St oredC assCat al og(myd assDb) ;

/] Create the binding
Ent ryBi ndi ng dat aBi nding = new Seri al Bi ndi ng(cl assCat al og,
MyDat a. cl ass) ;

/] Create DatabaseEntry objects for the key and data
Dat abaseEntry theKey = new Dat abaseEnt ry(akKey. get Byt es("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Do the get as normal
nyDat abase. get (nul |, theKey, theData, LockMbde. DEFAULT);

/] Recreate the MyData object fromthe retrieved DatabaseEntry using
/] the EntryBinding created above
M/Data retrievedData = (M/Data) dataBinding.entryToQbject (theData);

/| Database and environment close omtted for brevity
} catch (Exception e) {
/] Exception handling goes here

}
Custom Tuple Bindings

If you want to store complex objects in your database, then you can use tuple bindings
to do this. While they are more work to write and maintain than if you were to use
serialization, the byt e array conversion is faster. In addition, custom tuple bindings should
allow you to create byt e arrays that are smaller than those created by serialization.
Custom tuple bindings also allow you to optimize your BTree comparisons, whereas
serialization does not.

For information on using serialization to store complex objects, see Serializeable Complex
Objects (page 33).

To store complex objects using a custom tuple binding:

1. Implement the class whose instances that you want to store. Note that you do not
have to implement serialization.

2. Implement the com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng interface.

3. Open (create) your database. Unlike serialization, you only need one.

11/13/2004 Getting Started with JE Page 38

Using the BIND APIs

4. Create an entry binding that uses the tuple binding that you implemented in step 2.

5. Instantiate an instance of the object that you want to store, and place it in a
Dat abaseEnt ry using the entry binding that you created in the previous step.

For example, suppose you want to your keys to be instances of the following class:

package com sl eepycat.|e. exanpl es. gettingStarted;

public class MyData2 {
private |ong | ongDat a;
private Doubl e doubl eDat a;
private String description;

public MyData2() {
 ongData = 0;
doubl eData = new Doubl e(0.0);
description = "";

}

public void setlLong(long data) {
| ongDat a = dat a;
}

publ i ¢ voi d setDoubl e(Doubl e data) {
doubl eData = dat a;
}

public void setString(String data) {
description = data;
}

public long getLong() {
return | ongDat a;
}

publ i ¢ Doubl e getDouble() {
return doubl eDat a;
}

public String getString() {
return description;
}

}

In this case, you need to write a tuple binding for the MyDat a2 class. When you do this,
you must implement the Tupl eBi ndi ng. obj ect ToEnt ry() and Tupl eBi ndi ng. ent ryToQhj ect ()
abstract methods. Remember the following as you implement these methods:

11/13/2004 Getting Started with JE Page 39

Using the BIND APIs

You use Tupl eBi ndi ng. obj ect ToEnt ry() to convert objects to byt e arrays. You use
com sl eepycat . bi nd. t upl e. Tupl eQut put to write primitive data types to the byte
array. Note that Tupl eCQut put provides methods that allows you to work with numerical
types (I ong, doubl e, i nt , and so forth) and not the corresponding j ava. | ang numerical
classes.

The order that you write data to the byt e array in Tupl eBi ndi ng. obj ect ToEntry() is
the order that it appears in the array. So given the MyDat a2 class as an example, if
you write descri ption, doubl eDat a, and then | ongDat a, then the resulting byte array
will contain these data elements in that order. This means that your records will sort
based on the value of the descri pti on data member and then the doubl eDat a member,
and so forth. If you prefer to sort based on, say, the | ongDat a data member, write it
to the byte array first.

You use Tupl eBi ndi ng. entryToQhj ect () to convert the byt e array back into an instance
of your original class. You use com sl eepycat . bi nd. t upl e. Tupl el nput to get data from
the byt e array.

The order that you read data from the byt e array must be exactly the same as the
order in which it was written.

For example:

package com sl eepycat. je.exanpl es. gettingStarted;

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class M/Tupl eBi ndi ng extends Tupl eBindi ng {

/I Wite a MData2 object to a Tupl eQut put
publ i c voi d object ToEntry(Cbj ect object, TupleQutput to) {

M/Dat a2 nyData = (MyDat a2)obj ect;

Il Wite the data to the Tupl eQutput (a DatabaseEntry).

Il Order is inportant. The first data witten will be

Il the first bytes used by the default conparison routines.
to.witeDoubl e(myDat a. get Doubl e() . doubl eVal ue());
to.witelLong(nyData.getLong());
to.witeString(nyData.getString());

}

[/ Convert a Tuplelnput to a MyData2 obj ect
public Object entryToCbject(Tuplelnput ti) {

[/ Data nust be read in the same order that it was
Il originally witten.
Doubl e theDoubl e = new Doubl e(ti.readDoubl e());

11/13/2004

Getting Started with JE Page 40

Using the BIND APIs

long theLong = ti.readLong();
String theString = ti.readString();

M/Dat a2 nyData = new MyData2();
myDat a. set Doubl e(t heDoubl e) ;
myDat a. set Long(t heLong) ;

myDat a. set String(theString);

return myDat a;

}

In order to use the tuple binding, instantiate the binding and then use:
e MTupl eBi ndi ng. obj ect ToEntry() to convert a MyData2 object to a Dat abaseEntry.
e MTupl eBi ndi ng. entryToOhj ect () to convert a Dat abaseEntry to a MyDat a2 object.

For example:

package com sl eepycat.je.exanpl es. gettingStarted;

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . j e. Dat abaseEnt ry;

Tupl eBi ndi ng keyBi ndi ng = new MyTupl eBi ndi ng() ;

MyDat a2 t heKeyData = new MyDat a2();

t heKeyDat a. set Long(1234567891) ;

t heKeyDat a. set Doubl e(new Doubl e(12345. 6789)) ;
t heKeyDat a. set String("M/ key data");

Dat abaseEntry nyKey = new Dat abaseEntry();

try {
/] Store theKeyData in the DatabaseEntry

keyBi ndi ng. obj ect ToEnt ry(t heKeyData, nyKey);
/| Database put and get activity onitted for clarity

/] Retrieve the key data

t heKeyData = (MyDat a2) keyBi ndi ng. ent ryToQbj ect (myKey) ;
} catch (Exception e) {

/] Exception handling goes here
}

11/13/2004 Getting Started with JE Page 41

Using Comparators

Using Comparators

Internally, JE databases are organized as BTrees. This means that most database operations
(inserts, deletes, reads, and so forth) involve BTree node comparisons. This comparison
most frequently occurs based on database keys, but if your database supports duplicate
records then comparisons can also occur based on the database data.

By default, JE performs all such comparisons using a byte-by-byte lexicographic
comparison. This mechanism works well for most data. However, in some cases you may
need to specify your own comparison routine. One frequent reason for this is to perform
a language sensitive lexical ordering of string keys.

Writing Comparators

You override the default comparison function by providing a Java Conpar at or class to the
database. The Java Conpar at or interface requires you to implement the

Conpar at or . conpar e() method (see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html for details).

JE passes your Conpar at or . conpar e() method the byt e arrays that you stored in the
database. If you know how your data is organized in the byt e array, then you can write
a comparison routine that directly examines the contents of the arrays. Otherwise, you
have to reconstruct your original objects, and then perform the comparison.

For example, suppose you want to perform unicode lexical comparisons instead of UTF-8
byte-by-byte comparisons. Then you could provide a comparator that uses

String. conpareTo(), which performs a Unicode comparison of two strings (note that for
single-byte roman characters, Unicode comparison and UTF-8 byte-by-byte comparisons
are identical - this is something you would only want to do if you were using multibyte
unicode characters with JE). In this case, your comparator would look like the following:

package com sl eepycat. | e. exanpl es. gettingStarted;
inport java.util.Conparator;
public class MyDataConparator inplenents Conparator {
publ i ¢ MyDat aConparator() {}
public int conpare(Chject dl, oject d2) {

byte[] bl = (byte[])dl;
byte[] b2 = (byte[])d2;

String s1 = new String(bl);
String s2 = new String(b2);
return sl.conpareTo(s2);

11/13/2004 Getting Started with JE Page 42

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Comparator.html

Using Comparators

Setting Comparators

You specify a Conpar at or using the following methods. Note that by default these methods
can only be used at database creation time, and they are ignored for normal database
opens. Also, note that JE uses the no-argument constructor for these comparators. Further,
it is not allowable for there to be a mutable state in these comparators or else
unpredictable results will occur.

o Dat abaseConfi g. set Bt reeConparat or ()
Sets the Java Conpar at or class used to compare two keys in the database.
o DatabaseConfig. setDupl i cat eConparat or ()

Sets the Java Conpar at or class used to compare the data on two duplicate records in
the database. This comparator is used only if the database supports duplicate records.

You can use the above methods to set a database's comparator after database creation
time if you explicitly indicate that the comparator is to be overridden. You do this by
using the following methods:

|:| If you override your comparator, the new comparator must preserve the sort order
implemented by your original comparator. That is, the new comparator and the old
comparator must return the same value for the comparison of any two valid objects. Failure
to observe this constraint will cause unpredictable results for your application.

If you want to change the fundamental sort order for your database, back up the contents
of the database, delete the database, recreate it, and then reload its data.

o DatabaseConfig.setOverri deBtreeConparator ()

If set to true, causes the database's Btree comparator to be overridden with the
Conpar at or specified on Dat abaseConfi g. set Bt r eeConpar at or () . This method can be
used to change the comparator post-environment creation.

« DatabaseConfig. set Overri deDupl i cat eConparator ()

If set to true, causes the database's duplicates comparator to be overridden with the
Conpar at or specified on Dat abaseConfi g. set Dupl i cat eConparator ().

For example, to use the Conpar at or described in the previous section:

package com sl eepycat. | e. exanpl es. gettingStarted,;

i nport com sl eepycat . j e. Dat abase;
i nport com sl eepycat . j e. Dat abaseConfi g;
i nport com sl eepycat . j e. Dat abaseExcepti on;

i mport java.util.Conparator;

11/13/2004 Getting Started with JE Page 43

Database Record Example

/1 Environment open onitted for brevity

try {
/] Get the database configuration object

Dat abaseConfi g nyDbConfi g = new Dat abaseConfi g();
myDbConfig. set Al | owCreat e(true);

[/ Set the duplicate conparator class
myDbConf i g. set Dupl i cat eConpar at or (MyDat aConpar at or . cl ass) ;

/] Open the database that you will use to store your data

myDbConf i g. set Sort edDupl i cates(true);

Dat abase nyDat abase = nmyDbEnv. openDat abase(nul |, "myDb", myDbConfig);
} catch (DatabaseException dbe) {

/] Exception handling goes here

}
Database Record Example

In Database Example (page 22), we created MyDbEnv, a class that manages

Dat abaseEnvi ronnent and Dat abase opens and closes. We will now write an application
that takes advantage of this class to open databases, put a series of records in them, and
then close the databases and environment.

Remember that all of the classes and programs presented here can be found in the
following directory:

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/j e/ gettingStarted/ exanpl es
where JE_HOME is the location where you placed your JE distribution.

Note that in this example, we are going to save two types of information. First there are
a series of inventory records that identify information about some food items (fruits,
vegetables, and desserts). These records identify particulars about each item such as the
vendor that the item can be obtained from, how much the vendor has in stock, the price
per unit, and so forth.

We also want to manage vendor contact information, such as the vendor's address and
phone number, the sales representative’s name and his phone number, and so forth.

Example 4.1. Inventory.java

All Inventory data is encapsulated in an instance of the following class. Note that because
this class is not serializable, we need a custom tuple binding in order to place it on a
Dat abaseEnt ry object. Because the Tupl el nput and Tupl eQut put classes used by custom
tuple bindings support Java numerical types and not Java numerical classes, we use i nt
and fl oat here instead of the corresponding | nt eger and Fl oat classes.

11/13/2004 Getting Started with JE Page 44

Database Record Example

/1 File Inventory.java
package com sl eepycat . exanpl es.je.gettingStarted;

public class Inventory {

private String sku;

private String itenmNang;
private String category;
private String vendor;
private int vendorlnventory;
private float vendorPrice;

public void setSku(String data) {
sku = dat a;

}

public void setltemNane(String data) {
itemName = data;

public void setCategory(String data) {
category = data;

public voi d setVendorlnventory(int data) {
vendor | nventory = dat a;

publ i c void setVendor(String data) {
vendor = data;

public void setVendorPrice(float data) {
vendor Price = data;

public String getSku() { return sku; }

public String getltemName() { return itenNane; }

public String getCategory() { return category; }

public int getVendorlnventory() { return vendorlnventory; }
public String getVendor() { return vendor; }

public float getVendorPrice() { return vendorPrice; }

}
Example 4.2. Vendor.java

The data for vendor records are stored in instances of the following class. Notice that we
are using serialization with this class simply to demonstrate serializing a class instance.

11/13/2004 Getting Started with JE Page 45

Database Record Example

/1 File Vendor.java
package com sl eepycat . exanpl es.je.gettingStarted;

inport java.io.Serializable;
public class Vendor inplements Serializable {

private String repNane;
private String address;
private String city;

private String state;

private String zipcode;
private String bizPhoneNunber;
private String repPhoneNunber;
private String vendor;

public void setRepName(String data) {
repNane = dat a;

}

public void setAddress(String data) {
address = data;

}

public void setGity(String data) {
city = data;

}

public void setState(String data) {
state = data;

}

publ i c voi d setZipcode(String data) {
zi pcode = dat a;

}

publ i ¢ voi d set Busi nessPhoneNunber (String data) {
bi zPhoneNunber = dat a;

}

publ i ¢ voi d set RepPhoneNunber (String data) {
repPhoneNunber = dat a;

}

public void setVendorName(String data) {
vendor = data;

}

11/13/2004 Getting Started with JE Page 46

Database Record Example

/] Corresponding getter methods omtted for brevity.

/] See exanpl es/ cont sl eepycat/exanpl es/je/ gettingStarted/
[/ exanpl es/ Vendor . j ava

/] for a conplete inplementation of this class.

}

Because we will not be using serialization to convert our | nvent ory objects to a
Dat abaseEnt ry object, we need a custom tuple binding:

Example 4.3. InventoryBinding.java

/1 File InventoryBinding.java
package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl el nput ;
i nport com sl eepycat . bi nd. t upl e. Tupl eCut put ;

public class InventoryBinding extends TupleBinding {

[/ Inplement this abstract method. Used to convert
/] a DatabaseEntry to an Inventory object.
public (bject entryToQhject(Tuplelnput ti) {

String sku = ti.readString();
String itemName = ti.readString();
String category = ti.readString();
String vendor = ti.readString();
int vendorlnventory = ti.readlnt();
float vendorPrice = ti.readFloat();

Inventory inventory = new I nventory();

i nventory. set Sku(sku);

i nventory.setltenmName(itenNane);

i nvent ory. set Cat egory(cat egory);

i nvent ory. set Vendor (vendor) ;

i nvent ory. set Vendor I nvent ory(vendor I nventory);
i nventory. set Vendor Pri ce(vendorPrice);

return invent ory,

}
[/ I'nplement this abstract method. Used to convert a
/] Inventory object to a DatabaseEntry object.

public void object ToEntry(Cbject object, TupleQutput to) {

Inventory inventory = (Inventory)object;

11/13/2004 Getting Started with JE Page 47

Database Record Example

to.witeString(inventory.getSku());
to.witeString(inventory.getltemane())
to.witeString(inventory.getCategory())
to.witeString(inventory.getVendor());
to.witelnt(inventory.getVendorlnventory());
to.witeFl oat (inventory.getVendorPrice());

}

In order to store the data identified above, we write the Exanpl eDat abasePut application.
This application loads the inventory and vendor databases for you.

Inventory information is stored in a Dat abase dedicated for that purpose. The key for
each such record is a product SKU. The inventory data stored in this database are objects
of the I nventory class (see Inventory.java (page 44) for more information).

Exanpl eDat abasePut loads the inventory database as follows:

1. Reads the inventory data from a flat text file prepared in advance for this purpose.
2. Usesjava.lang. String to create a key based on the item's SKU.

3. Uses an I nventory class instance for the record data. This object is stored on a
Dat abaseEnt ry object using | nvent or yBi ndi ng, a custom tuple binding that we
implemented above.

4. Saves each record to the inventory database.

Vendor information is also stored in a Dat abase dedicated for that purpose. The vendor
data stored in this database are objects of the Vendor class (see Vendor.java (page 45)
for more information). To load this Dat abase, Exanpl eDat abasePut does the following:

1. Reads the vendor data from a flat text file prepared in advance for this purpose.
2. Uses the vendor's name as the record's key.

3. Uses a Vendor class instance for the record data. This object is stored on a
Dat abaseEnt ry object using com sl eepycat . bi nd. seri al . Seri al Bi ndi ng.

Example 4.4. Stored Class Catalog Management with MyDbEnv

Before we can write Exanpl eDat abasePut , we need to update MyDbEnv. | ava to support
the class catalogs that we need for this application.

To do this, we start by importing an additional class to support stored class catalogs:
[l File MyDbEnv.java

package com sl eepycat . exanpl es.je.gettingStarted,;

i nport com sl eepycat . j e. Dat abase;
i nport com sl eepycat . j e. Dat abaseConfi g;
i nport com sl eepycat . j e. Dat abaseExcepti on;

11/13/2004 Getting Started with JE Page 48

Database Record Example

i nport com sl eepycat. j e. Envi ronnment Confi g;
i nport com sl eepycat. | e. Envi ronment ;

inport java.io.File;
i nport com sl eepycat. bind. serial . Storedd assCat al og;

We also need to add two additional private data members to this class. One supports the
database used for the class catalog, and the other is used as a handle for the class catalog
itself.

public class MyDbEnv {

private Environnent nyEnv;
private Database vendor Db;
private Database inventoryDb;
private Database classCatal ogDb;

/'l Needed for object serialization
private Storedd assCatal og cl assCatal og;

public MyDbEnv() {}

Next we need to update the MyDbEnv. set up() method to open the class catalog database
and create the class catalog.

public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {

/| Database and environment configuration omtted for brevity

Il Instantiate the Environnment. This opens it and al so possibly
Il creates it.
myEnv = new Envi ronnent (envHone, nyEnvConfi g);

/1 Now create and open our databases.
vendor Db = nyEnv. openDat abase(nul |, "VendorDB", nyDbConfig);

i nventoryDb = nyEnv. openDat abase(nul |, "lnventoryDB", nmyDbConfig);

/1 Open the class catalog db. This is used to
Il optimze class serialization.
cl assCatal ogDb =
myEnv. openDat abase(nul |,
" assCat al ogDB",
myDbConfi g) ;

Il Create our class catal og

11/13/2004 Getting Started with JE Page 49

Database Record Example

classCatal og = new StoredCd assCat al og(cl assCat al ogDb) ;
}

Next we need a getter method to return the class catalog. Note that we do not provide
a getter for the catalog database itself - our application has no need for that.

[l Getter methods
publ i ¢ Environnent getEnvironment () {
return nyEenv;
}

publ i ¢ Database get VendorDB() {
return vendor Db;
}

publ i ¢ Database getlnventoryDB() {
return inventoryDb;
}

public StoredC assCatal og get ClassCatal og() {
return classCatal og;
}

Finally, we need to update the MyDbEnv. cl ose() method to close the class catalog
database.

/1 C ose the environnent
public void close() {
if (nyEnv !=null) {
try {
vendor Db. cl ose();
i nvent oryDb. cl ose();
cl assCat al ogDb. cl ose()
nyEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.printIn("Error closing M/DbEnv: " +
dbe.toString());
Systemexit(-1);

}

So far we have identified the data that we want to store in our databases and how we
will convert that data in and out of Dat abaseEnt ry objects for database storage. We have
also updated MyDbEnv to manage our databases for us. Now we write Exanpl eDat abasePut
to actually put the inventory and vendor data into their respective databases. Because
of the work that we have done so far, this application is actually fairly simple to write.

11/13/2004 Getting Started with JE Page 50

Database Record Example

Example 4.5. ExampleDatabasePut.java

First we need the usual series of import statements:

/I File Exanpl eDat abasePut. | ava
package com sl eepycat . exanpl es.je.gettingStarted;

/1 Bind classes used to nmove class objects in an out of byte arrays.
i nport com sl eepycat . bi nd. Ent ryBi ndi ng;

i nport com sl eepycat . bi nd. seri al . Seri al Bi ndi ng;

i nport com sl eepycat. bi nd. t upl e. Tupl eBi ndi ng;

/| Standard JE database inports
i nport com sl eepycat . | e. Dat abaseEnt ry;
i nport com sl eepycat . j e. Dat abaseExcepti on;

/1 Most of this is used for loading data froma text file for storage
/1 in the databases.

inport java.io.File;

i nport java.io.FilelnputStream

i nport java.io.BufferedReader;

i nport java.io.lnputStreanReader;

i nport java.io.FileNot FoundExcepti on;

i nport java.io.lOException;

inport java.util.ArraylList;

Next comes the class declaration and the private data members that we need for this
class. Most of these are setting up default values for the program.

Note that two Dat abaseEnt ry objects are instantiated here. We will reuse these for every
database operation that this program performs. Also a MyDbEnv object is instantiated here.
We can do this because its constructor never throws an exception. See Stored Class Catalog
Management with MyDbEnv (page 48) for its implementation details.

Finally, the i nventory. txt and vendors.txt file can be found in the GettingStarted
examples directory along with the classes described in this extended example.

public class Exanpl eDat abasePut {

private static File nyDbEnvPath = new File("/tnp/ JEDB");
private static File inventoryFile = new File("./inventory.txt");
private static File vendorsFile = new File("./vendors.txt");

/| DatabaseEntries used for |oading records
private static DatabaseEntry theKey = new DatabaseEntry();
private static DatabaseEntry theData = new Dat abaseEntry();

/| Encapsul ates the environment and dat abases.
private static MyDbEnv nyDbEnv = new MyDbEnv();

11/13/2004 Getting Started with JE Page 51

Database Record Example

Next comes the usage() and mai n() methods. Notice the exception handling in the mai n()
method. This is the only place in the application where we catch exceptions. For this
reason, we must catch Dat abaseExcept i on which is thrown by the com sl eepycat . je. *
classes.

Also notice the call to MyDbEnv. cl ose() in the final | y block. This is the only place in the
application where MyDbEnv. cl ose() is called. MyDbEnv. cl ose() is responsible for closing
the Envi ronnent and all open Dat abase handles for you.

private static void usage() {
System out. print| n("Exanpl eDat abasePut [-h <env directory>]");
Systemout. println(" [-s <selections file> [-v <vendors file>]");
Systemexit(-1);

}

public static void main(String args[]) {

Exanpl eDat abasePut edp = new Exanpl eDat abasePut () ;

try {
edp. run(args);

} catch (DatabaseException dbe) {
Systemerr. println("Exanpl eDat abasePut: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {
Systemerr.println("Exception: " + e.toString());
e.printStackTrace();

} finally {
myDbEnv. cl ose();
}

Systemout.printin("Al done.");
}

Next we write the Exanpl eDat abasePut . run() method. This method is responsible for
initializing all objects. Because our environment and databases are all opened using the
MyDbEnv. set up() method, Exanpl eDat abasePut . run() method is only responsible for calling
MyDbEnv. set up() and then calling the Exanpl eDat abasePut methods that actually load the
databases.

private void run(String args[]) throws DatabaseException {
Il Parse the argunments |i st
par seArgs(args);

myDbEnv. set up(myDbEnvPath, // path to the environment hone
fal se); [l is this environment read-only?

Systemout. println("loading vendors db.");

| oadVendor sDb() ;

Systemout. println("loading inventory db.");
| oadl nvent oryDb();

11/13/2004 Getting Started with JE Page 52

Database Record Example

This next method loads the vendor database. This method uses serialization to convert
the Vendor object to a Dat abaseEntry object.

private void | oadVendorsDb()
throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data

[/ and loads it into a list for us to work with. The integer
Il parameter represents the number of fields expected in the
Il file.

ArrayList vendors = | oadFil e(vendorsFile, 8);

/1 Now |oad the data into the database. The vendor's nanme is the
Il key, and the data is a Vendor class object.

I/ Need a serial binding for the data
Ent ryBi ndi ng dat aBi ndi ng =
new Seri al Bi ndi ng(nyDbEnv. get Cl assCat al og(), Vendor.cl ass);

for (int i =0; i <vendors.size(); i++) {
String[] sArray = (String[])vendors.get(i);
Vendor theVendor = new Vendor ();
t heVendor . set Vendor Name(sArray[0]);
t heVendor . set Address(sArray[1]);
theVendor.setCity(sArray[2]);
t heVendor . set Stat e(sArray[3]);
t heVendor . set Zi pcode(sArray[4]);
t heVendor . set Busi nessPhoneNunber (sArray[5]);
t heVendor . set RepNane(sArray[6]) ;
t heVendor . set RepPhoneNunber (sArray[7]);

/1 The key is the vendor's nane.
/1 ASSUMES THE VENDOR S NAME | S UNI QUE!
String vendor Name = t heVendor. get Vendor Name() ;
try {
theKey = new Dat abaseEnt ry(vendor Nane. get Byt es(" UTF-8"));
} catch (1 OException willNeverCeccur) {}

Il Convert the Vendor object to a DatabaseEntry object
[/ using our SerialBinding
dat aBi ndi ng. obj ect ToEnt ry(t heVendor, theData);

[/ Put it in the database. These puts are transactionally
/] protected (we're using autocommit).
myDbEnv. get Vendor DB() . put (nul I, theKey, theData);

11/13/2004 Getting Started with JE Page 53

Database Record Example

Now load the inventory database. This method uses our custom tuple binding (see
InventoryBinding.java (page 47)) to convert the | nvent ory object to a Dat abaseEntry
object.

private void | oadl nventoryDb()
t hrows Dat abaseException {

Il loadFile opens a flat-text file that contains our data

[/ and loads it into a list for us to work with. The integer
Il parameter represents the number of fields expected in the
Il file.

ArrayList inventoryArray = | oadFile(inventoryFile, 6);

[/ Now | oad the data into the database. The items sku is the
/1 key, and the data is an Inventory class object.

Il Need a tuple binding for the Inventory class.
Tupl eBi ndi ng i nvent oryBi nding = new I nventoryBi nding();

for (int i =0; i <inventoryArray.size(); i++) {
String[] sArray = (String[])inventoryArray.get(i);
String sku = sArray[1];
try {
t heKey = new Dat abaseEnt ry(sku. get Byt es("UTF-8"));
} catch (1 OException willNeverCccur) {}

Inventory thelnventory = new Inventory();
thel nvent ory. set |t emNane(sArray[0]);
thel nventory. set Sku(sArray[1]);
t hel nvent ory. set Vendor Pri ce((new Fl oat (sArray[2])).fl oat Val ue());
t hel nvent ory. set Vendor | nvent or y(
(new Integer(sArray[3])).intValue());
thel nventory. set Cat egory(sArray[4]);
t hel nvent ory. set Vendor (sArray[5]);

Il Place the Vendor object on the DatabaseEntry object using our
[l the tuple binding we inplenented in InventoryBinding.java
i nvent or yBi ndi ng. obj ect ToEntry(thel nventory, theData);

[/ Put it in the database.
myDbEnv. get | nvent oryDB() . put (nul |, theKey, theData);

}

The remainder of this application provides utility methods to read a flat text file into an
array of strings and parse the command line options. From the perspective of this
document, these things are relatively uninteresting. You can see how they are implemented
by looking at:

11/13/2004 Getting Started with JE Page 54

Database Record Example

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
Exanpl eDat aPut . j ava

where JE_HOME is the location where you placed your JE distribution.

private static void parseArgs(String args[]) {
Il Inplementation onitted for brevity.
}

private ArrayList loadFile(File theFile, int nunFields) {
ArrayList records = new ArrayList();
Il Inplementation onitted for brevity.
return records;

}

protected Exanpl eDat abasePut () {}

11/13/2004 Getting Started with JE Page 55

Chapter 5. Using Cursors

Cursors provide a mechanism by which you can iterate over the records in a database.
Using cursors, you can get, put, and delete database records. If a database allows duplicate
records, then cursors are the only mechanism by which you can access anything other
than the first duplicate for a given key.

This chapter introduces cursors. It explains how to open and close them, how to use them
to modify databases, and how to use them with duplicate records.

Opening and Closing Cursors

To use a cursor, you must open it using the Dat abase. openCur sor () method. When you
open a cursor, you can optionally pass it a Cur sor Confi g object to set cursor properties.
Currently, the only available property tells the cursor to perform dirty reads. (For a
description of dirty reads, see Configuring Dirty Reads (page 101)).

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . e. Cursor Confi g;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. j e. Envi ronment ;

inport java.io.File;

Envi ronment nyDbEnvironment = nul | ;
Dat abase nyDat abase = nul | ;
Cursor nyCursor = null;

try {
myDbEnvi ronnent = new Envi ronment (new Fil e("/export/dbEnv"), null);

nyDat abase = myDbEnvi ronnent . openDat abase(nul |, "nyDB", null);

myCur sor = nyDat abase. openCursor (null, null);
} catch (DatabaseException dbe) {

/| Exception handling goes here ...
}

To close the cursor, call the Cursor. cl ose() method. Note that if you close a database
that has cursors open in it, then it will throw an exception and close any open cursors for
you. For best results, close your cursors from within a final | y block.

11/13/2004 Getting Started with JE Page 56

Getting Records Using the Cursor

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;
i nport com sl eepycat . | e. Dat abase;
i nport com sl eepycat. | e. Envi ronment ;

try {
} cai;:lh o]
} finally {

try {
if (myCursor !'=null) {

myCur sor. cl ose();
}

if (nyDatabase != null) {
nyDat abase. cl ose() ;

}

i f (myDbEnvironment !'= null) {
myDbEnvi ronnent . cl ose();
}
} catch(DatabaseException dbe) {
Systemerr.printin("Error in close: " + dbe.toString());

}
}

Getting Records Using the Cursor

To iterate over database records, from the first record to the last, simply open the cursor
and then use the Cursor. get Next () method. For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. j e. LockMode;

i nport com sl eepycat . je. QperationStat us;

Cursor cursor = null;
try {

/| Database and environment open onitted for brevity

11/13/2004 Getting Started with JE Page 57

Getting Records Using the Cursor

/] Open the cursor.
cursor = nyDat abase. openCursor(null, null);

/] Cursors need a pair of DatabaseEntry objects to operate. These hold
/] the key and data found at any given position in the database.

Dat abaseEntry foundKey = new DatabaseEntry();

Dat abaseEntry foundData = new Dat abaseEntry();

/] To iterate, just call getNext() until the |ast database record has been
/] read. Al'l cursor operations return an OperationStatus, so just read
[/ until we no |onger see QperationStatus. SUCCESS
whil e (cursor.get Next (foundKey, foundData, LockMbde. DEFAULT) ==

Oper at i onSt at us. SUCCESS) {

Il getData() on the DatabaseEntry objects returns the byte array

Il held by that object. W use this to get a String value. If the

/| DatabaseEntry held a byte array representation of some other data

Il type (such as a conpl ex object) then this operation woul d | ook

Il considerably different.

String keyString = new String(foundKey.getData());

String dataString = new String(foundData.getData());

Systemout.printin("Key | Data : " + keyString +" | " +

dataString + "");

}
} catch (DatabaseException de) {

Systemerr.printIn("Error accessing database." + de);

} finally {

}

[l Cursors nust be closed.
cursor.close();

To iterate over the database from the last record to the first, instantiate the cursor, and
then use Cursor. get Prev() until you read the first record in the database. For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. LockMbde;

i nport com sl eepycat . je. QperationStat us;

Cursor cursor = null;
try {

/| Database and environment open onitted for brevity

11/13/2004

Getting Started with JE Page 58

Getting Records Using the Cursor

/] Open the cursor.
cursor = nyDat abase. openCursor(null, null);

/] Get the DatabaseEntry objects that the cursor will use.
Dat abaseEntry foundKey = new DatabaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

Il lterate fromthe last record to the first in the database
whil e (cursor.getPrev(foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

String theKey = new String(foundKey. getData());
String theData = new String(foundData.getData());
Systemout.printin("Key | Data : " + theKey + " | " + theData + "");
}
} catch (DatabaseException de) {
Systemerr.printIn("Error accessing database." + de);
} finally {
/1 Cursors nmust be closed.
cursor.close();

}
Searching for Records

You can use cursors to search for database records. You can search based on just a key,
or you can search based on both the key and the data. You can also perform partial
matches if your database supports sorted duplicate sets. In all cases, the key and data
parameters of these methods are filled with the key and data values of the database
record to which the cursor is positioned as a result of the search.

Also, if the search fails, then cursor's state is left unchanged and Oper at i onSt at us. NOTFOUND
is returned.

The following Cur sor methods allow you to perform database searches:
e Cursor. get Sear chKey()

Moves the cursor to the first record in the database with the specified key.
o Cursor. get Sear chKeyRange()

Moves the cursor to the first record in the database whose key is greater than or equal
to the specified key. This comparison is determined by the comparator that you provide
for the database. If no comparator is provided, then the default lexicographical sorting
is used.

For example, suppose you have database records that use the following Strings as
keys:

11/13/2004 Getting Started with JE Page 59

Getting Records Using the Cursor

Al abama
Al aska
Arizona

Then providing a search key of Al aska moves the cursor to the second key noted above.
Providing a key of Al moves the cursor to the first key (Al abama), providing a search
key of Al as moves the cursor to the second key (Al aska), and providing a key of Ar
moves the cursor to the last key (Ari zona).

e Cursor. get SearchBot h()

Moves the cursor to the first record in the database that uses the specified key and
data.

e Cursor. get Sear chBot hRange()

Moves the cursor to the first record in the database whose key is greater than or equal
to the specified key. If the database supports duplicate records, then on matching
the key, the cursor is moved to the duplicate record with the smallest data that is
greater than or equal to the specified data.

For example, suppose you have database records that use the following key/data pairs:

Al abama/ At hens

Al abama/ Fl orence
Al askal/ Anchor age
Al aska/ Fai r banks
Ari zonal/ Avondal e
Ari zonal Fl orence

then providing:

a search key of ... and a search data of ... moves the cursor to ...
Al Fl Alabama/Florence
Ar Fl Arizona/Florence
Al Fa Alaska/Fairbanks
Al A Alabama/Athens

For example, assuming a database containing sorted duplicate records of U.S. States/U.S
Cities key/data pairs (both as Strings), then the following code fragment can be used to
position the cursor to any record in the database and print its key/data values:

11/13/2004 Getting Started with JE Page 60

Getting Records Using the Cursor

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . | e. Dat abase;

inport com sl eepycat. | e. Dat abaseEntry;
inport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. LockMode;

i nport com sl eepycat.je. OperationStat us;

[l For this exanple, hard code the search key and data
String searchKey = "Al";
String searchData = "Fa";

Cursor cursor = null;
try {

/| Database and environnment open onmitted for brevity

/] Open the cursor.
cursor = nyDat abase. openCursor(null, null);

Dat abaseEntry theKey =

new Dat abaseEnt ry(sear chKey. get Byt es("UTF-8"));
Dat abaseEntry theData =

new Dat abaseEnt ry(searchDat a. get Byt es(" UTF-8"));

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Performthe search
OperationStatus retVal = cursor. get Sear chBot hRange(t heKey, theData,
LockMde. DEFAULT) ;
[/ NOTFOUND is returned if a record cannot be found whose key begins
[/ with the search key AND whose data begins with the search data.
if (retVal == QperationStatus. NOTFOUND) {
Systemout. println(searchKey + "/" + searchData +
" not matched in database " +
nmyDat abase. get Dat abaseNange()) ;
} else {
Il Upon conpleting a search, the key and data DatabaseEntry
Il paranmeters for getSearchBot hRange() are populated with the
Il key/data val ues of the found record.
String foundKey = new String(theKey.getData());
String foundData = new String(theData.getData());
Systemout. println("Found record " + foundkey + "/" + foundData +
"for search key/data: " + searchKey +

11/13/2004 Getting Started with JE Page 61

Getting Records Using the Cursor

"/" + searchData);

}

} catch (Exception e) {
/] Exception handling goes here
} finally {
I/ Make sure to close the cursor
cursor.close();

}
Working with Duplicate Records

If your database supports duplicate records, then it can potentially contain multiple
records that share the same key. Using normal database get operations, you can only ever
obtain the first such record in a set of duplicate records. To access subsequent duplicates,
use a cursor. The following Cur sor methods are interesting when working with databases
that support duplicate records:

e Cursor.getNext(), Cursor.getPrev()

Shows the next/previous record in the database, regardless of whether it is a duplicate
of the current record. For an example of using these methods, see Getting Records
Using the Cursor (page 57).

e Cursor. get Sear chBot hRange()

Useful for seeking the cursor to a specific record, regardless of whether it is a duplicate
record. See Searching for Records (page 59) for more information.

e Cursor. get Next NoDup(), Cursor. get PrevNoDup()

Gets the next/previous non-duplicate record in the database. This allows you to skip
over all the duplicates in a set of duplicate records. If you call Cur sor. get PrevNoDup(),
then the cursor is positioned to the last record for the previous key in the database.
For example, if you have the following records in your database:

Al abama/ At hens

Al abama/ Fl orence
Al askal/ Anchor age
Al aska/ Fai r banks
Ari zonal/ Avondal e
Ari zonal Fl orence

and your cursor is positioned to Al aska/ Fai r banks, and you then call

Cursor. get PrevNoDup() , then the cursor is positioned to Alabama/Florence. Similarly,
if you call Cursor. get Next NoDup() , then the cursor is positioned to the first record
corresponding to the next key in the database.

If there is no next/previous key in the database, then Operati onSt at us. NOTFOUND is
returned, and the cursor is left unchanged.

11/13/2004 Getting Started with JE Page 62

Getting Records Using the Cursor

Cur sor. get Next Dup(), Cursor. get PrevDup()

Gets the next/previous record that shares the current key. If the cursor is positioned
at the last record in the duplicate set and you call Cursor. get Next Dup(), then
Operat i onSt at us. NOTFOUND is returned and the cursor is left unchanged. Likewise, if
you call get PrevDup() and the cursor is positioned at the first record in the duplicate
set, then Operati onSt at us. NOTFOUND is returned and the cursor is left unchanged.

Cursor. count ()

Returns the total number of records that share the current key.

For example, the following code fragment positions a cursor to a key and, if the key
contains duplicate records, displays all the duplicates. Note that the following code
fragment assumes that the database contains only String objects for the keys and data.

package com sl eepycat . exanpl es.je.gettingStarted,;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

Cursor cursor = null;
try {

/| Database and environment open onitted for brevity

/] Create DatabaseEntry objects

/] searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEntry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Position the cursor

/] Ignoring the return value for clarity

OperationStatus retVal = cursor.get SearchKey(theKey, theData,
LockMode. DEFAULT) ;

/] Count the nunber of duplicates. If the count is greater than 1,
[/ print the duplicates.
if (cursor.count() > 1) {

while (retVal == QperationStatus. SUCCESS) {

11/13/2004

Getting Started with JE Page 63

Putting Records Using Cursors

String keyString = new String(theKey.getData());

String dataString = new String(theData.getData());

Systemout.printIn("Key | Data : " + keyString +
dataString + "");

" | "o

retVal = cursor.get Next Dup(theKey, theData, LockMde.DEFAULT);
}
}
} catch (Exception e) {
/] Exception handling goes here
} finally {

/1 NMake sure to close the cursor
cursor.close();

}
Putting Records Using Cursors

You can use cursors to put records into the database. JE's behavior when putting records
into the database differs depending on whether the database supports duplicate records.
If duplicates are allowed, its behavior also differs depending on whether a comparator is
provided for the database. (Comparators are described in Using Comparators (page 42)).

Note that when putting records to the database using a cursor, the cursor is positioned
at the record you inserted.

You can use the following methods to put records to the database:
e Cursor.put()

If the provided key does not exist in the database, then the order that the record is
put into the database is determined by the BTree (key) comparator in use by the
database.

If the provided key already exists in the database, and the database does not support
sorted duplicates, then the existing record data is replaced with the data provided
on this method.

If the provided key already exists in the database, and the database does support
sorted duplicates, then the order that the record is inserted into the database is
determined by the duplicate comparator in use by the database.

e Cursor. put NoDupDat a()

If the provided key and data already exists in the database, then this method returns
OperationSt at us. KEYEXI ST.

If the key does not exist, then the order that the record is put into the database is
determined by the BTree (key) comparator in use by the database.

11/13/2004 Getting Started with JE Page 64

Putting Records Using Cursors

Cursor. put NoOverwrite()

If the provided key already exists in the database, then this method returns
Oper ati onSt at us. KEYEXI ST.

If the key does not exist, then the order that the record is put into the database is

determined by the BTree (key) comparator in use by the database.

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . | e. Dat abaseEnt ry;

i nport com sl eepycat.je. OperationStat us;

/I Create the data to put into the database
String keylstr = "My first string";

String datalstr ="M first data";

String key2str = "My second string";

String data2str
String data3str

"My second data";
"My third data";

Cursor cursor = null;
try {

}

/| Database and environnment open onitted for brevity

Dat abaseEntry keyl = new Dat abaseEntry(keylstr. getBytes("UTF-8"));
Dat abaseEntry datal = new Dat abaseEntry(datalstr.getBytes("UTF-8"
Dat abaseEntry key2 = new Dat abaseEnt ry(key2str. getBytes("UTF-8"));
Dat abaseEntry data2 = new Dat abaseEntry(data2str. get Byt es("UTF-8
Dat abaseEntry dat a3 = new Dat abaseEntry(data3str. get Byt es("UTF-8

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

/] Assumi ng an enpty dat abase.

OperationStatus retVal = cursor.put(keyl, datal); // SUCCESS

retVal = cursor.put(key2, data2); // SUCCESS

retVal = cursor.put(key2, data3); // SUCCESS if dups allowed,
/1 KEYEXI ST if not.

catch (Exception e) {

11/13/2004

Getting Started with JE

Page 65

Deleting Records Using Cursors

/] Exception handling goes here

} finally {

}

/1 NMake sure to close the cursor
cursor.close();

Deleting Records Using Cursors

To delete a record using a cursor, simply position the cursor to the record that you want
to delete and then call Cursor. del et e() . Note that after deleting a record, the value of
Cursor. get Current () is unchanged until such a time as the cursor is moved again. Also,

if you call Cursor. del et e() two or more times in a row without repositioning the cursor,
then all subsequent deletes result in a return value of Qperati onSt at us. KEYEMPTY.

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . | e. Dat abase;

inport com sl eepycat. | e. Dat abaseEnt ry;

i nport com sl eepycat. | e. LockMode;

i nport com sl eepycat.je. OperationStat us;

Cursor cursor = null;
try {

/| Database and environnment open onmitted for brevity

/] Create DatabaseEntry objects

/] searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEntry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/] Open a cursor using a database handl e
cursor = nyDat abase. openCursor(null, null);

[/ Position the cursor. Ignoring the return value for clarity
OperationStatus retVal = cursor. get SearchKey(theKey, theData,
LockMyde. DEFAULT) ;

[/ Count the nunber of records using the given key. If there is only
/1 one, delete that record.
if (cursor.count() == 1) {
Systemout.printIn("Deleting " +
new String(theKey.getData())

+ "+
new String(theData.getData()));

11/13/2004

Getting Started with JE Page 66

Replacing Records Using Cursors

cursor. del ete();
}
} catch (Exception e) {
/] Exception handling goes here
} finally {
/1 Make sure to close the cursor
cursor.close();

}
Replacing Records Using Cursors

You replace the data for a database record by using Cur sor. put Current (). This method
takes just one argument — the data that you want to write to the current location in the
database.

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat. j e. Dat abase;

i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat . je. QperationStat us;

Cursor cursor = null;
try {

/| Database and environment open onitted for brevity

/I Create DatabaseEntry objects

/| searchKey is some String.

Dat abaseEntry theKey = new Dat abaseEnt ry(searchKey. get Byt es(" UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

/1 Open a cursor using a database handl e
cursor = nyDat abase. openCursor (null, null);

/] Position the cursor. lgnoring the return value for clarity
OperationStatus retVal = cursor. get Sear chKey(theKey, theData,
LockMbde. DEFAULT);

/1 Repl acenent data
String replaceStr = "M repl acenent string";
Dat abaseEntry repl acenentData =
new Dat abaseEntry(repl aceStr. get Bytes("UTF-8"));
cursor. put Current (repl acement Dat a) ;
} catch (Exception e) {
/| Exception handling goes here

} finally {
[l Make sure to close the cursor

11/13/2004 Getting Started with JE Page 67

Cursor Example

cursor.close();

}

Note that this method cannot be used if the record that you are trying to replace is a
member of a duplicate set. This is because records must be sorted by their data and
replacement would violate that sort order.

If you want to replace the data contained by a duplicate record, delete the record and
create a new record with the desired key and data.

Cursor Example

In Database Example (page 22) we wrote an application that loaded two Dat abase objects
with vendor and inventory information. In this example, we will use those databases to
display all of the items in the inventory database. As a part of showing any given inventory
item, we will look up the vendor who can provide the item and show the vendor's contact
information.

To do this, we create the Exanpl el nvent or yRead application. This application reads and
displays all inventory records by:

1. Opening the environment and then the inventory, vendor, and class catalog Dat abase
objects. We do this using the MyDbEnv class. See Stored Class Catalog Management
with MyDbEnv (page 48) for a description of this class.

2. Obtaining a cursor from the inventory Dat abase.
3. Steps through the Dat abase, displaying each record as it goes.

4. To display the Inventory record, the custom tuple binding that we created in
InventoryBinding.java (page 47) is used.

5. Database. get () is used to obtain the vendor that corresponds to the inventory item.

6. A serial binding is used to convert the Dat abaseEntry returned by the get() to a
Vendor object.

7. The contents of the Vendor object are displayed.

We implemented the Vendor class in Vendor.java (page 45). We implemented the | nvent ory
class in Inventory.java (page 44).

The full implementation of Exanpl el nvent or yRead can be found in:

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
Exanpl el nvent or yRead. j ava

where JE_HOME is the location where you placed your JE distribution.

11/13/2004 Getting Started with JE Page 68

Cursor Example

Example 5.1. ExamplelnventoryRead.java

To begin, we import the necessary classes:

/1 file Exanpl el nvent oryRead. j ava
package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . bi nd. Ent ryBi ndi ng;
i nport com sl eepycat . bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat. bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat . | e. Dat abaseEnt ry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. LockMode;

i nport com sl eepycat.je. QperationStat us;

inport java.io.File;
i nport java.io.lOException;

Next we declare our class and set up some global variables. Note a M/DbEnv object is
instantiated here. We can do this because its constructor never throws an exception. See
Database Example (page 22) for its implementation details.

public class Exanpl el nventoryRead {

private static File nyDoEnvPath =
new File("/tnp/JEDB");

[/ Encapsul ates the database environnment and databases.
private static MyDbEnv nyDbEnv = new MyDbEnv();

private static Tupl eBinding inventoryBinding;
private static EntryBinding vendorBi nding;

Next we create the Exanpl el nvent or yRead. usage() and Exanpl el nvent or yRead. mai n()
methods. We perform almost all of our exception handling from

Exanpl el nvent oryRead. nai n(), and so we must catch Dat abaseExcepti on because the
com sl eepycat . je.* APIs throw them.

private static void usage() {
System out. println("Exanpl el nventoryRead [-h <env directory>]");
Systemexit(0);

}

public static void main(String args[]) {
Exanpl el nvent oryRead eir = new Exanpl el nvent oryRead();
try {
eir.run(args);
} catch (DatabaseException dbe) {

11/13/2004 Getting Started with JE Page 69

Cursor Example

Systemerr. println("Exanpl el nventoryRead: " + dbe.toString());
dbe. print StackTrace();

} finally {
myDbEnv. cl ose();
}

Systemout.printin("Al done.");
}

In Exanpl el nvent or yRead. run(), we call MyDbEnv. set up() to open our environment and
databases. Then we create the bindings that we need for using our data objects with
Dat abaseEnt ry objects.

private void run(String args[]) throws DatabaseException {
Il Parse the argunents |i st
par seArgs(args);

myDbEnv. set up(nyDbEnvPath, // path to the environnent home
true); /1 is this environnent read-only?

Il Setup our bindings.
i nvent oryBi ndi ng = new | nventoryBi ndi ng();
vendor Bi ndi ng =
new Seri al Bi ndi ng(myDbEnv. get Cl assCat al og(),
Vendor . cl ass) ;
showAl | | nventory();

}

Now we write the loop that displays the | nvent ory records. We do this by opening a cursor
on the inventory database and iterating over all its contents, displaying each as we go.

private void showAl | I nventory()
t hrows Dat abaseException {
[/ Get a cursor
Cursor cursor = nyDbEnv. getInventoryDB().openCursor(null, null);

/| DatabaseEntry objects used for reading records
Dat abaseEntry foundKey = new Dat abaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

try { // always want to make sure the cursor gets closed.
whil e (cursor.getNext (foundKey, foundDat a,
LockMbde. DEFAULT) == Cperati onSt at us. SUCCESS) {
Inventory thelnventory =
(I'nventory)invent oryBi ndi ng. entryToQbj ect (f oundDat a) ;
di spl ayl nvent or yRecor d(f oundKey, thelnventory);
}
} catch (Exception e) {
Systemerr.printIn("Error on inventory cursor:");
Systemerr.printin(e.toString());
e.print StackTrace()

11/13/2004 Getting Started with JE Page 70

Cursor Example

} finally {
cursor. close();
}

}

We use Exanpl el nvent or yRead. di spl ayl nvent or yRecord() to actually show the record.
This method first displays all the relevant information from the retrieved Inventory object.
It then uses the vendor database to retrieve and display the vendor. Because the vendor
database is keyed by vendor name, and because each inventory object contains this key,
it is trivial to retrieve the appropriate vendor record.

private void displaylnventoryRecord(Dat abaseEntry theKey,
I nventory thelnventory)
throws Dat abaseException {

String theSKU = new String(theKey.getData());
Systemout.printin(theSKU + ":");
Systemout.printin("\t " + thelnventory.getltenmNane())
Systemout.printin("\t " + thelnventory.getCategory())
Systemout.printin("\t " + thelnventory.getVendor());
Systemout.printin("\t\tNunber in stock: " +

t hel nvent ory. get Vendor I nvent ory());
Systemout.printin("\t\tPrice per unit: " +

t hel nvent ory. get Vendor Price());
Systemout.printin("\t\tContact: ");

Dat abaseEntry searchKey = nul | ;
try {
sear chKey =
new Dat abaseEnt ry(t hel nvent ory. get Vendor (). get Byt es("UTF-8"));
} catch (1 OException willNeverCeccur) {}
Dat abaseEntry foundVendor = new Dat abaseEntry();

i f (myDbEnv. get Vendor DB() . get (nul |, searchKey, foundVendor,
LockMobde. DEFAULT) !'= OperationStatus. SUCCESS) {
Systemout.println("Could not find vendor: " +
t hel nventory. get Vendor () + ".");
Systemexit(-1);
} else {
Vendor theVendor =
(Vendor) vendor Bi ndi ng. ent ryToQhj ect (f oundVendor) ;
Systemout.println("\t\t " + theVendor. get Address());
Systemout.printIn("\t\t " + theVendor.getCity() + ", " +
theVendor.get State() + " " + theVendor. getZi pcode());
Systemout.printIn("\t\t Business Phone: " +
t heVendor . get Busi nessPhoneNunber ());
Systemout.printIn("\t\t Sales Rep: " +
t heVendor . get RepNane()) ;

11/13/2004 Getting Started with JE Page 71

Cursor Example

Systemout. printIn("\t\t "+
t heVendor . get RepPhoneNunber ()) ;
}
}

The remainder of this application provides a utility method used to parse the command
line options. From the perspective of this document, this is relatively uninteresting. You
can see how this is implemented by looking at:

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
Exanpl el nvent or yRead. j ava

where JE_HOME is the location where you placed your JE distribution.

11/13/2004 Getting Started with JE Page 72

Chapter 6. Secondary Databases

Usually you find database records by means of the record's key. However, the key that
you use for your record will not always contain the information required to provide you
with rapid access to the data that you want to retrieve. For example, suppose your

Dat abase contains records related to users. The key might be a string that is some unique
identifier for the person, such as a user ID. Each record's data, however, would likely
contain a complex object containing details about people such as names, addresses, phone
numbers, and so forth. While your application may frequently want to query a person by
user ID (that is, by the information stored in the key), it may also on occasion want to
location people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn
for a given person's name, you create indexes based on names and then just search that
index for the name that you want. You can do this using secondary databases. In JE, the
Dat abase that contains your data is called a primary database. A database that provides
an alternative set of keys to access that data is called a secondary database, and these
are managed using Secondar yDat abase class objects. In a secondary database, the keys
are your alternative (or secondary) index, and the data corresponds to a primary record's
key.

You create a secondary database by using a Secondar yConfi g class object to identify an
implementation of a Secondar yKeyCr eat or class object that is used to create keys based
on data found in the primary database. You then pass this Secondar yConf i g object to the
Secondar yDat abase constructor.

Once opened, JE manages secondary databases for you. Adding or deleting records in

your primary database causes JE to update the secondary as necessary. Further, changing
arecord's data in the primary database may cause JE to modify a record in the secondary,
depending on whether the change forces a modification of a key in the secondary database.

Note that you can not write directly to a secondary database. While methods exist on
Secondar yDat abase and Secondar yCur sor that appear to allow this, they in fact always
throw Unsupport edOper at i onExcepti on. To change the data referenced by a

Secondar yDat abase record, modify the primary database instead. The exception to this
rule is that delete operations are allowed on the Secondar yDat abase object. See Deleting
Secondary Database Records (page 80) for more information.

|:| Secondary database records are updated/created by JE only if the
Secondar yKeyCr eat or . cr eat eSecondar yKey() method returnstrue. If f al se is returned, then
JE will not add the key to the secondary database, and in the event of a record update it
will remove any existing key.

See Implementing Key Creators (page 76) for more information on this interface and method.

When you read a record from a secondary database, JE automatically returns the key and
data from the corresponding record in the primary database.

11/13/2004 Getting Started with JE Page 73

Opening and Closing Secondary
Databases

Opening and Closing Secondary Databases

You manage secondary database opens and closes using the

Envi ronnent . openSecondar yDat abase() method. Just as is the case with primary databases,
you must provide Envi ronment . openSecondar yDat abase() with the database’'s name and,
optionally, other properties such as whether duplicate records are allowed, or whether
the secondary database can be created on open. In addition, you must also provide:

» A handle to the primary database that this secondary database is indexing. Note that
this means that secondary databases are maintained only for the specified Dat abase
handle. If you open the same Dat abase multiple times for write (such as might occur
when opening a database for read-only and read-write in the same application), then
you should open the Secondar yDat abase for each such Dat abase handle.

« A SecondaryConfi g object that provides properties specific to a secondary database.
The most important of these is used to identify the key creator for the database. The
key creator is responsible for generating keys for the secondary database. See Secondary
Database Properties (page 79) for details.

So to open (create) a secondary database, you:

1. Open your primary database.

2. Instantiate your key creator.

3. Instantiate your SecondaryConfi g object.

4. Set your key creator object on your Secondar yConfi g object.

5. Open your secondary database, specifying your primary database and your
Secondar yConfi g at that time.

For example:

package com sl eepycat. exanpl es.je.gettingStarted;
i nport com sl eepycat. bi nd. tupl e. Tupl eBi ndi ng;

i nport com sl eepycat. | e. Dat abase;

i nport com sl eepycat. | e. Dat abaseConfi g;

i nport com sl eepycat. je. Dat abaseExcepti on;
i nport com sl eepycat. je. Environnent;

i nport com sl eepycat. je. Secondar yDat abase;
i nport com sl eepycat. je. SecondaryConfi g;

inport java.io.File;

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();

11/13/2004 Getting Started with JE Page 74

Opening and Closing Secondary
Databases

SecondaryConfi g mySecConfig = new SecondaryConfig();

myDbConfi g. set All owCreate(true);

mySecConfi g. set Al | owCreate(true);

/1 Duplicates are frequently required for secondary databases.
mySecConfi g. set Sort edDupl i cates(true);

/1 Cpen the primry

Environment nyEnv = nul | ;

Dat abase nyDb = nul | ;

Secondar yDat abase mySecDb = nul | ;

try {
String dbNane = "nyPri maryDat abase";

nmyEnv = new Environment (new File("/tnp/ JEENV'), null);
myDb = nyEnv. openDat abase(nul |, dbNanme, nyDbConfig);

/] A fake tuple binding that is not actually inplenented anywhere

[/ in this manual . The tuple binding is dependent on the data in use.
/1 Tupl e bindings are described earlier in this mnual.

Tupl eBi ndi ng nyTupl eBi ndi ng = new MyTupl eBi ndi ng();

/] Open the secondary.
/] Key creators are described in the next section.
Ful | NameKeyCr eat or keyCreat or = new Ful | NameKeyCr eat or (nyTupl eBi ndi ng) ;

/] Get a secondary object and set the key creator on it.
mySecConfi g. set KeyCr eat or (keyCreator);

/] Performthe actual open
String secDbNane = "nySecondaryDat abase";
mySecDb = myEnv. openSecondar yDat abase(nul |, secDoNanme, nyDb,
mySecConfi g) ;
} catch (DatabaseException de) {
/] Exception handling goes here ...

}

To close a secondary database, call its close() method. Note that for best results, you
should close all the secondary databases associated with a primary database before closing
the primary.

For example:

try {
if (nmySecDb !'= null) {

mySecDb. cl ose();
}

if (nyDo !'=null) {
myDb. cl ose();
}

11/13/2004 Getting Started with JE Page 75

Implementing Key Creators

if (nyEnv 1= null) {
myEnv. cl ose();
}
} catch (DatabaseException dbe) {
/] Exception handling goes here

}
Implementing Key Creators

You must provide every secondary database with a class that creates keys from primary
records. You identify this class using the Secondar yConfi g. set KeyCreat or () method.

You can create keys using whatever data you want. Typically you will base your key on
some information found in a record's data, but you can also use information found in the
primary record's key. How you build your keys is entirely dependent upon the nature of
the index that you want to maintain.

You implement a key creator by writing a class that implements the Secondar yKeyCr eat or
interface. This interface requires you to implement the
Secondar yKeyCr eat or . cr eat eSecondar yKey() method.

One thing to remember when implementing this method is that you will need a way to
extract the necessary information from the data's Dat abaseEnt ry and/or the key's

Dat abaseEnt ry that are provided on calls to this method. If you are using complex objects,
then you are probably using the Bind APIs to perform this conversion. The easiest thing
to do is to instantiate the Ent ryBi ndi ng or Tupl eBi ndi ng that you need to perform the
conversion, and then provide this to your key creator's constructor. The Bind APIs are
introduced in Using the BIND APIs (page 31).

Secondar yKeyCr eat or . cr eat eSecondar yKey() returns a boolean. A return value of fal se
indicates that no secondary key exists, and therefore no record should be added to the
secondary database for that primary record. If a record already exists in the secondary
database, it is deleted.

For example, suppose your primary database uses the following class for its record data:

package com sl eepycat . exanpl es.je.gettingStarted;

public class PersonData {
private String userlD
private String surname;
private String faniliarName;

public PersonData(String userlD, String surname, String faniliarName) {
this.userlD = userlD;
this.surname = surnanme;
this.famliarName = fanmiliarNang;

11/13/2004 Getting Started with JE Page 76

Implementing Key Creators

public String getUserlD() {
return userlD;

}

public String getSurname() {
return surnane;

}

public String getFam |iarName() {
return famliarNang;
}
}

Also, suppose that you have created a custom tuple binding, Per sonDat aBi ndi ng, that you
use to convert Per sonDat a objects to and from Dat abaseEnt ry objects. (Custom tuple
bindings are described in Custom Tuple Bindings (page 38).)

Finally, suppose you want a secondary database that is keyed based on the person’s full
name.

Then in this case you might create a key creator as follows:

package com sl eepycat . exanpl es.je.gettingStarted;
i mport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat . j e. Secondar yKeyCr eat or ;
i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;

i nport com sl eepycat . j e. Secondar yDat abase;

i mport java.io.lOException;
public class Full NanmeKeyCreator inplenents SecondaryKeyCreator {
private Tupl eBinding theBi nding;

public Ful | NameKeyCr eat or (Tupl eBi ndi ng t heBi ndi ngl) {
t heBi ndi ng = t heBi ndi ng1;
}

publ i ¢ bool ean creat eSecondar yKey(Secondar yDat abase secDb,
Dat abaseEntry keyEntry,
Dat abaseEntry dataEntry,
Dat abaseEntry resul tEntry) {

Il 1f the dataEntry parameter is null, then we can
Il not create the key
if (dataEntry == null) {

return fal se;

11/13/2004 Getting Started with JE Page 77

Implementing Key Creators

} else { /] Create the key
try {
PersonData pd =
(PersonDat a) theBinding.entryToChject(dataEntry);
String full Name = pd.getFam |iarName() + " " +
pd. get Sur nane() ;
resul t Entry. set Data(ful | Nane. get Byt es("UTF-8"));
} catch (1 OException willNeverQCeccur) {}
}

return true;

}

Finally, you use this key creator as follows:

package com sl eepycat . exanpl es.je.gettingStarted;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

i nport com sl eepycat. j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat . j e. Secondar yDat abase;
i nport com sl eepycat . e. Secondar yConfi g;

Environment nyEnv = nul | ;
Dat abase nyDb = nul | ;
Secondar yDat abase mySecDb = nul | ;

try {
[l Environnment and primary database open omitted for brevity

Tupl eBi ndi ng nyDat aBi ndi ng = new MyTupl eBi ndi ng() ;
Ful | NameKeyCreat or fnkc = new Ful | NameKeyCr eat or (myDat aBi ndi ng) ;

Secondar yConfi g mySecConfig = new SecondaryConfig();
mySecConfi g. set KeyCr eat or (f nkc) ;

[/ Performthe actual open
String secDbNane = "nySecondaryDat abase";
mySecDb = myEnv. openSecondar yDat abase(nul |, secDoName, nyDb,
mySecConfi g) ;
} catch (DatabaseException de) {
/1 Exception handling goes here
} finally {

try {
if (nmySecDb != null) {

mySecDb. cl ose();

11/13/2004 Getting Started with JE Page 78

Secondary Database Properties

}

if (myDb !'=null) {
myDb. cl ose();
}

if (myEnv = null) {
myEnv. cl ose();

}
} catch (DatabaseException dbe) {
Il Exception handling goes here
}
}

Secondary Database Properties

Secondary databases accept Secondar yConfi g objects. Secondar yConfi g is a subclass of
Dat abaseConfi g, so it can manage all of the same properties as does Dat abaseConfi g. See
Database Properties (page 19) for more information.

In addition to the Dat abaseConfi g properties, Secondar yConf i g also allows you to manage
the following properties:

o SecondaryConfig. set Al | owPopul at e()

If true, the secondary database can be autopopulated. This means that on open, if
the secondary database is empty then the primary database is read in its entirety and
additions/modifications to the secondary's records occur automatically.

e SecondaryConfig. set KeyCreator()

Identifies the key creator object to be used for secondary key creation. See
Implementing Key Creators (page 76) for more information.

Reading Secondary Databases

Like a primary database, you can read records from your secondary database either by
using the Secondar yDat abase. get () method, or by using a Secondar yCur sor . The main
difference between reading secondary and primary databases is that when you read a
secondary database record, the secondary record's data is not returned to you. Instead,
the primary key and data corresponding to the secondary key are returned to you.

For example, assuming your secondary database contains keys related to a person's full
name:

package com sl eepycat . exanpl es.je.gettingStarted;
i nport com sl eepycat . j e. Dat abaseEnt ry;

i nport com sl eepycat . j e. LockMode;
i nport com sl eepycat.je. OperationStat us;

11/13/2004 Getting Started with JE Page 79

Deleting Secondary Database
Records

i nport com sl eepycat . j e. Secondar yDat abase;

try {
/] Omtting all database and environment opens

String searchName = "John Doe";
Dat abaseEntry searchKey =
new Dat abaseEnt ry(searchNane. get Byt es(" UTF-8"));
Dat abaseEntry primaryKey = new Dat abaseEntry();
Dat abaseEntry primaryData = new DatabaseEntry();

/] Get the primary key and data for the user 'John Doe'.
OperationStatus retVal = mySecondaryDat abase. get (nul |, searchKey,
pri maryKey,
pri mar yDat a,
LockMde. DEFAULT) ;
} catch (Exception e) {
/] Exception handling goes here

}

Note that, just like Dat abase. get (), if your secondary database supports duplicate records
then Secondar yDat abase. get () only return the first record found in a matching duplicates
set. If you want to see all the records related to a specific secondary key, then use a
Secondar yCur sor (described in Using Secondary Cursors (page 81)).

Deleting Secondary Database Records

In general, you can not modify a secondary database directly. In order to modify a
secondary database, you should modify the primary database and simply allow JE to
manage the secondary modifications for you.

However, as a convenience, you can delete Secondar yDat abase records directly. Doing so
causes the associated primary key/data pair to be deleted. This in turn causes JE to delete
all Secondar yDat abase records that reference the primary record.

You can use the Secondar yDat abase. del et () method to delete a secondary database
record. Note that if your database supports duplicate records, then only the first record
in the matching duplicates set is deleted by this method. To delete all the duplicate
records that use a given key, use a Secondar yCur sor .

|:| Secondar yDat abase. del et e() causes the previously describe delete operations to occur only
if:

« the SecondaryKeyCreat or. cr eat eSecondar yKey() method returns t r ue (see Implementing
Key Creators (page 76) for information on this interface and method).

» the primary database is opened for write access.

11/13/2004 Getting Started with JE Page 80

Using Secondary Cursors

If either of these conditions are not met, then no delete operations can be performed on
the secondary database.

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . je. CperationStat us;

i nport com sl eepycat . j e. Secondar yDat abase;

try {
/1 Ormtting all database and environment opens

String searchName = "John Doe";
Dat abaseEntry searchKey =
new Dat abaseEnt ry(sear chName. get Byt es(" UTF-8"));

/] Delete the first secondary record that uses "John Doe" as
/'l a key. This causes the primary record referenced by this secondary
/] record to be del eted.
OperationStatus retVal = mySecondaryDat abase. del ete(nul |, searchKey);
} catch (Exception e) {
/1 Exception handling goes here
}

Using Secondary Cursors

Just like cursors on a primary database, you can use secondary cursors to iterate over the
records in a secondary database. Like normal cursors, you can also use secondary cursors
to search for specific records in a database, to seek to the first or last record in the
database, to get the next duplicate record, to get the next non-duplicate record, and so
forth. For a complete description on cursors and their capabilities, see Using

Cursors (page 56).

However, when you use secondary cursors:

« Any data returned is the data contained on the primary database record referenced
by the secondary record.

» SecondaryCursor. get Sear chBot h() and related methods do not search based on a
key/data pair. Instead, you search based on a secondary key and a primary key. The
data returned is the primary data that most closely matches the two keys provided
for the search.

For example, suppose you are using the databases, classes, and key creators described
in Implementing Key Creators (page 76). Then the following searches for a person’'s name

11/13/2004 Getting Started with JE Page 81

Database Joins

in the secondary database, and deletes all secondary and primary records that use that
name.

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

i nport com sl eepycat . j e. Secondar yDat abase;
i nport com sl eepycat . | e. Secondar yCur sor;

try {
/| Database and environment opens omtted for brevity

String secondaryNanme = "John Doe";
Dat abaseEntry secondaryKey =
new Dat abaseEnt ry(secondar yNane. get Byt es(" UTF-8"));

Dat abaseEntry foundData = new Dat abaseEntry();

Secondar yCursor nySecCursor =
my Secondar yDat abase. openSecondar yCur sor (nul |, null);

OperationStatus retVal = mySecCursor. get Sear chKey(secondar yKey,
f oundDat a,
LockMde. DEFAULT) ;
while (retVal == QperationStatus. SUCCESS) {
mySecCur sor. del et e();
retVal = mySecCursor. get Next Dup(secondar yKey,
f oundDat a,
LockMbde. DEFAULT) ;
}
} catch (Exception e) {
/| Exception handling goes here

}
Database Joins

If you have two or more secondary databases associated with a primary database, then
you can retrieve primary records based on the union of multiple secondary entries. You
do this using a Joi nCur sor .

Throughout this document we have presented a class that stores inventory information
on grocery items. That class is fairly simple with a limited number of data members, few
of which would be interesting from a query perspective. But suppose, instead, that we
were storing information on something with many more queryable characteristics, such
as an automobile. In that case, you may be storing information such as color, number of

11/13/2004 Getting Started with JE Page 82

Database Joins

doors, fuel mileage, automobile type, number of passengers, make, model, and year, to
name just a few.

In this case, you would still likely be using some unique value to key your primary entries
(in the United States, the automobile’'s VIN would be ideal for this purpose). You would
then create a class that identifies all the characteristics of the automobiles in your
inventory. You would also have to create some mechanism by which you would move
instances of this class in and out of Java byt e arrays. We described the concepts and
mechanisms by which you can perform these activities in Database Records (page 25).

To query this data, you might then create multiple secondary databases, one for each of
the characteristics that you want to query. For example, you might create a secondary

for color, another for number of doors, another for number of passengers, and so forth.
Of course, you will need a unique key creator for each such secondary database. You do
all of this using the concepts and techniques described throughout this chapter.

Once you have created this primary database and all interesting secondaries, what you
have is the ability to retrieve automobile records based on a single characteristic. You
can, for example, find all the automobiles that are red. Or you can find all the automobiles
that have four doors. Or all the automobiles that are minivans.

The next most natural step, then, is to form compound queries, or joins. For example,
you might want to find all the automobiles that are red, and that were built by Toyota,
and that are minivans. You can do this using a Joi nCur sor class instance.

Using Join Cursors
To use a join cursor:

« Open two or more secondary cursors. These cursors must be obtained from secondary
databases that are associated with the same primary database.

« Position each such cursor to the secondary key value in which you are interested. For
example, to build on the previous description, the cursor for the color database is
positioned to the red records while the cursor for the model database is positioned
to the mi ni van records, and the cursor for the make database is positioned to Toyot a.

» Create an array of secondary cursors, and place in it each of the cursors that are
participating in your join query.

« Obtain a join cursor. You do this using the Dat abase. j 0i n() method. You must pass
this method the array of secondary cursors that you opened and positioned in the
previous steps.

» |terate over the set of matching records using Joi nCur sor. get Next () until
Oper ati onSt at us is not SUCCESS.

e Close your join cursor.

« If you are done with them, close all your secondary cursors.

11/13/2004 Getting Started with JE Page 83

Database Joins

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . | e. Dat abase;

i nport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. j e. Joi nCursor;

i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat.je. OperationStat us;

i nport com sl eepycat. | e. Secondar yCur sor;

i nport com sl eepycat . j e. Secondar yDat abase;

/| Database and secondary database opens omtted for brevity.
/1 Assume a primary database handl e:

[l autonotiveDB

/1 Assume 3 secondary database handl es:

/1l autompt i veCol orDB -- index based on autonobile col or
/1 autonotiveTypeDB -- index based on autonobile type
/1l aut onot i veMakeDB -- index based on the manufacturer

[l Query strings:

String theColor = "red";
String theType = "mnivan";
String theMake = "Toyota";

/| Secondary cursors used for the query:
Secondar yCursor col or SecCursor = null;
Secondar yCursor typeSecCursor = null;
Secondar yCur sor makeSecCursor = null;

/1 The join cursor
Joi nCursor joinCursor = null;

/| These are needed for our queries
Dat abaseEntry foundKey = new DatabaseEntry();
Dat abaseEntry foundData = new Dat abaseEntry();

[l Al cursor operations are enclosed in a try block to ensure that they
/1 get closed in the event of an exception.

try {
/] Database entries used for the query:

Dat abaseEntry col or = new Dat abaseEntry(theCol or. get Byt es("UTF-8"));
Dat abaseEntry type = new Dat abaseEnt ry(theType. get Bytes("UTF-8"));
Dat abaseEntry make = new Dat abaseEnt ry(t heMake. get Byt es("UTF-8"));

11/13/2004 Getting Started with JE Page 84

Database Joins

col or SecCursor = aut onot i veCol or DB. openSecondar yCursor (nul |, null);
t ypeSecCur sor = aut onoti veTypeDB. openSecondaryCursor (null, null);
makeSecCur sor = aut onot i veMakeDB. openSecondar yCur sor (nul |, null);

/] Position all our secondary cursors to our query val ues.
OperationStatus col orRet =

col or SecCur sor . get Sear chKey(col or, foundData, LockMbde. DEFAULT);
OperationStatus typeRet =

t ypeSecCur sor . get Sear chKey(type, foundData, LockMbde. DEFAULT);
OperationStatus makeRet =

makeSecCur sor . get Sear chKey(nake, foundData, LockMde. DEFAULT);

[/ If all our searches returned successfully, we can proceed
if (colorRet == QperationStatus. SUCCESS &&

typeRet == QperationStatus. SUCCESS &&

mekeRet == OperationStat us. SUCCESS) {

Il Get a secondary cursor array and popul ate it with our
Il positioned cursors
SecondaryCursor[] cursorArray = {col or SecCursor,
t ypeSecCursor,
makeSecCur sor};

Il Create the join cursor
joinCursor = autonotiveDB.join(cursorArray, null);

Il Now iterate over the results, handling each in turn
whil e (joinCursor.get Next (foundKey, foundData, LockMbde. DEFAULT) ==
Oper at i onSt at us. SUCCESS) {

/1 Do something with the key and data retrieved in
/1 foundKey and foundData
}
}
} catch (DatabaseException dbe) {
[/ Error reporting goes here

} catch (Exception e) {
[/ Error reporting goes here

} finally {

try {
/1l Make sure to close out all our cursors

if (colorSecCursor !'=null) {
col or SecCursor. cl ose();

}

if (typeSecCursor != null) {
typeSecCursor. cl ose();

}

if (makeSecCursor != null) {
makeSecCur sor. cl ose();

11/13/2004 Getting Started with JE Page 85

Secondary Database Example

}

}

if (joinCursor !'=null) {
joinCursor.close();
}
} catch (DatabaseException dbe) {
Il Error reporting goes here
}

JoinCursor Properties

You can set Joi nCur sor properties using the Joi nConfi g class. Currently there is just one
property that you can set:

Joi nConfi g. set NoSort ()

Specifies whether automatic sorting of input cursors is disabled. The cursors are sorted
from the one that refers to the least number of data items to the one that refers to
the most.

If the data is structured so that cursors with many data items also share many common
elements, higher performance will result from listing those cursors before cursors with
fewer data items. Turning off sorting permits applications to specify cursors in the
proper order given this scenario.

The default value is f al se (automatic cursor sorting is performed).

For example:

[/ Al database and environments onitted

JoinConfig config = new Joi nConfig();

config.setNoSort (true);

Joi nCursor joinCursor = nmyDb.join(cursorArray, config);

Secondary Database Example

In previous chapters in this book, we built applications that load and display several JE
databases. In this example, we will extend those examples to use secondary databases.
Specifically:

In Stored Class Catalog Management with MyDbEnv (page 48) we built a class that we
can use to open and manage a JE Envi ronnent and one or more Dat abase objects. In
Opening Secondary Databases with MyDbEnv (page 88) we will extend that class to
also open and manage a Secondar yDat abase.

In Cursor Example (page 68) we built an application to display our inventory database
(and related vendor information). In Using Secondary Databases with
ExamplelnventoryRead (page 91) we will extend that application to show inventory
records based on the index we cause to be loaded using Exanpl eDat abasePut .

11/13/2004

Getting Started with JE Page 86

Secondary Database Example

Before we can use a secondary database, we must implement a class to extract secondary
keys for us. We use | t emNaneKeyCr eat or for this purpose.

Example 6.1. temNameKeyCreator.java

This class assumes the primary database uses | nvent ory objects for the record data. The
I nventory class is described in Inventory.java (page 44).

In our key creator class, we make use of a custom tuple binding called | nvent or yBi ndi ng.
This class is described in InventoryBinding.java (page 47).

You can find the following class in:

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
It emNaneKeyCreator. j ava

where JE_HOME is the location where you placed your JE distribution.

package com sl eepycat. exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Dat abaseEntry;

i nport com sl eepycat. | e. Dat abaseExcepti on;

i nport com sl eepycat.je. Secondar yDat abase;

i nport com sl eepycat. je. Secondar yKeyCreat or ;

i nport com sl eepycat. bi nd. tupl e. Tupl eBi ndi ng;

inport java.io.lCException;

public class ItemNaneKeyCreator inplements SecondaryKeyCreator {
private Tupl eBi ndi ng t heBi ndi ng;

/'l Use the constructor to set the tuple binding
I t emNaneKeyCr eat or (Tupl eBi ndi ng bi ndi ng) {

t heBi ndi ng = bi ndi ng;
}

/1 Abstract nmethod that we nust inplement

public bool ean creat eSecondar yKey(Secondar yDat abase secDb,
Dat abaseEntry keyEntry, [l Fromthe primry
Dat abaseEntry dataEntry, [l Fromthe primry
Dat abaseEntry resultEntry) // set the key data on this.
t hrows Dat abaseException {

if (datakntry == null) {
t hrow new Dat abaseException("Mssing prinmary record data " +
"in key creator.");

11/13/2004 Getting Started with JE Page 87

Secondary Database Example

try {
/1 Convert dataEntry to an Inventory object

Inventory inventoryltem =
(I'nventory) theBinding.entryToChject(dataEntry);
Il Get the itemname and use that as the key
String theltem= inventoryltem getltenmName();
resul t Entry. set Data(thel tem get Byt es(" UTF-8"));
} catch (1 OException willNeverCeccur) {}
return true;

}

Now that we have a key creator, we can use it to generate keys for a secondary database.
We will now extend MyDbEnv to manage a secondary database, and to use
| t emNameKeyCr eat or to generate keys for that secondary database.

Opening Secondary Databases with MyDbEnv

In Stored Class Catalog Management with MyDbEnv (page 48) we built M/DbEnv as an
example of a class that encapsulates Envi r onnment and Dat abase opens and closes. We will
now extend that class to manage a Secondar yDat abase.

Example 6.2. SecondaryDatabase Management with MyDbEnv

We start by importing two additional classes needed to support secondary databases. We
also add a global variable to use as a handle for our secondary database.

/'l File MyDbEnv.java
package com sl eepycat. exanpl es.je.gettingStarted;

i nport com sl eepycat. bi nd. tupl e. Tupl eBi ndi ng;
i nport com sl eepycat. bi nd. serial . StoredC assCat al og;

i nport com sl eepycat. | e. Dat abase;

i nport com sl eepycat. | e. Dat abaseConfi g;

i nport com sl eepycat. je. Dat abaseExcepti on;
i nport com sl eepycat. je. Environnent;

i nport com sl eepycat. je. Envi ronnent Confi g;
i nport com sl eepycat. je. SecondaryConfi g;

i nport com sl eepycat. je. Secondar yDat abase;

inport java.io.File;
public class MyDbEnv {
private Environnent nyEnv;

/'l The databases that our application uses

11/13/2004 Getting Started with JE Page 88

Secondary Database Example

private Database vendor Db;

private Database inventoryDb;

private Database classCatal ogDb;

private SecondaryDat abase itenmNamel ndexDb;

/] Needed for object serialization
private Storedd assCatal og cl assCat al og;

[/ Qur constructor does nothing
public MyDbEnv() {}

Next we update the MyDbEnv. set up() method to open the secondary database. As a part
of this, we have to pass an | t emNaneKeyCr eat or object on the call to open the secondary
database. Also, in order to instantiate | t emNaneKeyCr eat or , we need an | nvent or yBi ndi ng
object (we described this class in InventoryBinding.java (page 47)). We do all this work

together inside of MyDbEnv. set up() .

public void setup(File envHone, bool ean readOnly)

throws Dat abaseException {

Envi ronment Confi g myEnvConfig = new Environnent Config();
Dat abaseConfig myDbConfi g = new DatabaseConfig();
Secondar yConfi g nySecConfig = new SecondaryConfig();

[/ 1f the environment is read-only, then
/1 make the databases read-only too.
myEnvConfi g. set ReadOnl y(readOnl y);
myDbConfi g. set ReadOnl y(readOnl y);
mySecConfi g. set ReadOnl y(readOnl y);

[/ 1f the environment is opened for wite, then we want to be
[l able to create the environnent and databases if

/1 they do not exist.

myEnvConfi g. set Al | owCreat e(! readOnly);

myDbConfig. set Al | owCreat e(!readOnly);

mySecConfi g. set Al | owCreat e(! readOnly);

/1 Environnment and dat abase opens omitted for brevity

Il Qpen the secondary database. W use this to create a
Il secondary index for the inventory database

[/ W want to maintain an index for the inventory entries based
I/ on the itemname. So, instantiate the appropriate key creator
/1 and open a secondary database.
| t emNaneKeyCreat or keyCreator =

new | t enNameKeyCr eat or (new | nvent or yBi ndi ng());

11/13/2004

Getting Started with JE Page 89

Secondary Database Example

/1 Set up the secondary properties

mySecConfi g. set Al | owPopul ate(true); // Al ow autopopul ate
mySecConfi g. set KeyCreat or (keyCreator);

Il Need to allow duplicates for our secondary database
mySecConfi g. set Sort edDupl i cat es(true);

/1 Now open it
i tenNamel ndexDb =
myEnv. openSecondar yDat abase(
nul I,
"itemNanel ndex", // Index name
i nvent oryDb, [l Primary database handle. This is

Il the db that we're indexing.
mySecConfi @) ; Il The secondary config
}

Next we need an additional getter method for returning the secondary database.

publ i ¢ SecondaryDat abase get Nanel ndexDB() {
return itenmNanel ndexDb;
}

Finally, we need to update the MyDbEnv. cl ose() method to close the new secondary
database. We want to make sure that the secondary is closed before the primaries. While
this is not necessary for this example because our closes are single-threaded, it is still a
good habit to adopt.

public void close() {
if (nyEnv !=null) {
try {
/1O ose the secondary before closing the prinaries
i t emNamel ndexDb. cl ose();
vendor Db. cl ose();
i nvent oryDb. cl ose();
cl assCat al ogDb. cl ose();

/1 Finally, close the environnment.
nyEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.printIn("Error closing M/DbEnv: " +
dbe.toString());
Systemexit(-1);

1
}
}
}
That completes our update to MyDbEnv. You can find the complete class implementation
in:

11/13/2004 Getting Started with JE Page 90

Secondary Database Example

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/j e/ gettingStarted/ exanpl es/ MyDbEnv. j ava
where JE_HOME is the location where you placed your JE distribution.

Because we performed all our secondary database configuration management in MyDbEnv,
we do not need to modify Exanpl eDat abasePut at all in order to create our secondary
indices. When Exanpl eDat abasePut calls M/DbEnv. set up(), all of the necessary work is
performed for us.

However, we still need to take advantage of the new secondary indices. We do this by
updating Exanpl el nvent or yRead to allow us to query for an inventory record based on its
name. Remember that the primary key for an inventory record is the item's SKU. The
item’'s name is contained in the | nvent ory object that is stored as each record's data in
the inventory database. But our new secondary index now allows us to easily query based
on the item's name.

Using Secondary Databases with ExampleInventoryRead

In the previous section we changed MyDbEnv to cause a secondary database to be built
using inventory item names as the secondary keys. In this section, we will update

Exanpl el nvent or yRead to allow us to query our inventory records based on the item name.
To do this, we will modify Exanpl el nvent or yRead to accept a new command line switch,
-5, whose argument is the name of an inventory item. If the switch is present on the
command line call to Exanpl el nvent or yRead, then the application will use the secondary
database to look up and display all the inventory records with that item name. Note that
we use a Secondar yCur sor to seek to the item name key and then display all matching
records.

Remember that you can find the following class in:

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
Exanpl el nvent or yRead. j ava

where JE_HOME is the location where you placed your JE distribution.

Example 6.3. SecondaryDatabase usage with ExamplelnventoryRead

First we need to import a few additional classes in order to use secondary databases and
cursors:

package com sl eepycat. exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat. j e. Dat abase;

i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. j e. LockMode;

i nport com sl eepycat . je. QperationStat us;

i nport com sl eepycat . j e. Secondar yCur sor;

11/13/2004 Getting Started with JE Page 91

Secondary Database Example

i nport com sl eepycat . bi nd. Ent r yBi ndi ng;
i nport com sl eepycat. bi nd. seri al . Seri al Bi ndi ng;
i nport com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

inport java.io.File;
inport java.io.lOException;

Next we add a single global variable:

public class Exanpl el nvent oryRead {

private static File nyDobEnvPath =

new File("/tnp/ JEDB");

/'l Encapsul ates the database environnent and dat abases.
private static MyDbEnv nyDbEnv = new MyDbEnv();

private static Tupl eBinding inventoryBinding;
private static EntryBinding vendorBi nding;

I/ The itemto locate if the -s switch is used
private static String locateltem

Next we update Exanpl el nvent or yRead. run() to check to see if the | ocat el t emglobal
variable a value. If it does, then we show just those records related to the item name
passed on the - s switch.

private void run(String args[])
throws Dat abaseException {

/I Parse the argunents |i st
par seArgs(args);

myDbEnv. set up(nyDbEnvPath, // path to the environnent home
true); [l is this environnent read-only?

/1 Setup our bindings.
i nvent oryBi ndi ng = new | nventoryBi ndi ng() ;
vendor Bi nding =
new Seri al Bi ndi ng(myDbEnv. get Cl assCat al og(),
Vendor . cl ass) ;

if (locateltem!= null) {
showl ten() ;

} else {
showAl | I nvent ory();

1

11/13/2004

Getting Started with JE Page 92

Secondary Database Example

Finally, we need to implement Exanpl el nvent or yRead. showi t en() . This is a fairly simple
method that opens a secondary cursor, and then displays every primary record that is
related to the secondary key identified by the | ocat el t emglobal variable.

private void show tem) throws DatabaseException {
SecondaryCursor secCursor = null;
try {
/] searchKey is the key that we want to find in the
/] secondary db.
Dat abaseEntry searchKey =
new Dat abaseEntry(l ocat el tem get Bytes("UTF-8"));

/1 foundKey and foundData are popul ated fromthe primry
[/ entry that is associated with the secondary db key.
Dat abaseEntry foundKey = new Dat abaseEntry();

Dat abaseEntry foundData = new Dat abaseEntry();

/1 open a secondary cursor
secCursor =
myDbEnv. get Namel ndexDB() . openSecondar yCur sor (nul |, null);

/| Search for the secondary database entry.
QperationStatus retVal =
secCur sor. get Sear chKey(sear chKey, foundKey,
foundDat a, LockMbde. DEFAULT);

/] Display the entry, if one is found. Repeat until no more
/] secondary duplicate entries are found
whil e(retVal == QperationStatus. SUCCESS) {
I nventory thelnventory =
(I'nventory)invent oryBi ndi ng. ent ryToQhj ect (f oundDat a) ;
di spl ayl nvent or yRecor d(f oundKey, thelnventory):;
retVal = secCursor. get Next Dup(sear chKey, foundKey,
foundData, LockMde. DEFAULT);
}
} catch (Exception e) {
Systemerr.printIn("Error on inventory secondary cursor:");
Systemerr.printin(e.toString());
e.printStackTrace()
} finally {
if (secCursor !=null) {
secCursor. cl ose();

}
}

The only other thing left to do is to update Exanpl el nvent or yRead. par seAr gs() to support
the -s command line switch. To see how this is done, see:

11/13/2004 Getting Started with JE Page 93

Secondary Database Example

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
Exanpl el nvent or yRead. j ava

where JE_HOME is the location where you placed your JE distribution.

11/13/2004 Getting Started with JE Page 94

Chapter 7. Transactions

Transactions cause one or more database operations to be treated as a single unit of
work. Either all of the operations succeed, or all of them fail. To use transactions, you
specify when a transaction begins and ends, and you specify what operations are performed
within the transaction. You also define when a transaction should abort (fail) in your error
handling code.

JE offers full ACID coverage through its transactions. That is, JE's transactions offer:
« Atomicity.

Multiple database operations (most importantly, write operations) are treated as a
single unit of work. In the event that you abort a transaction while it is in progress,
then all write operations performed during the transaction are discarded. In this event,
your database is left in the state it was in before the transaction began, regardless of
the number or type of write operations that you may have performed during the course
of the transaction.

Note that JE transactions can span one one or more Dat abase handles. However,
transactions can not span Envi ronment handles.

o Consistency.

Your JE databases will never see a partially completed transactions, no matter what
happens to your application. This is true even if your application crashes while there
are in-progress transactions. If the application or system fails, then either all of the
database changes appear when the application next runs, or none of them appear.

e Isolation.

While a transaction is in progress, your databases will appear as if there are no other
operations occurring outside of the transaction. That is, operations wrapped inside a
transaction will always have a clean and consistent view of your databases. They never
have to contend with partially updated records.

Note that JE support multiple levels of isolation. See Transactions and
Concurrency (page 106) for more information.

o Durability.

Once committed, to your databases your modifications will persist even in the event
of an application or system failure. Note that durability is available only if your
application performs a sync when it commits a transaction.

In general you should use transactions whenever you are performing write operations.
However, transaction usage does result in a performance penalty. Applications that are
I0-bound might want to avoid them, especially if your databases are easily recreated
such as what might occur if you are using JE as a non-persistent caching mechanism.

11/13/2004 Getting Started with JE Page 95

Enabling and Starting
Transactions

Enabling and Starting Transactions

Before you can transactionally protect your database modifications, you must:

1. Enable transactions for your Envi ronnent . You do this using the
Envi ronment Confi g. set Transacti onal () method, or through the
je.env.isTransactional je.properties parameter.

2. Enable transactions for your Dat abase. You do this using the
Dat abaseConfi g. set Transacti onal () method.

3. Open your Dat abase from within a transaction. For best results, you should commit
the transaction used to open your database as soon as the open operation completes.
Using autocommit is an excellent way of ensuring that this happens (see below).

Once you have enabled transactions for a given environment and database, then all
database modifications performed for that Dat abase handle must be transactionally
protected. Similarly, if you open an environment or database without enabling transactions,
then you can not use transactions to protect modifications performed for that Envi r onment
or Dat abase handle. Finally, read operations do not require transactional protection
regardless of whether transactions are enabled for the environment. However, remember
that you do suffer at least a small performance penalty when using transactions. If possible,
you should avoid transactionally protecting read-only operations.

You start a transaction using the Envi ronnent . begi nTransacti on() method. You can
commit a transaction using the Transacti on. commit () method.

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;
i nport com sl eepycat. je. Transacti on;

inmport java.io.File;

Dat abase nyDb = nul | ;

Environment nyEnv = nul | ;

try {
Envi ronment Confi g nyEnvConfig = new Environnent Config();
Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
myEnvConfi g. set Transacti onal (true);
myDbConfi g. set Transacti onal (true);

11/13/2004 Getting Started with JE Page 96

Committing and Aborting
Transactions

nmyEnv = new Environnent (new Fil e("/ ny/env/ honme"),
myEnvConfi g) ;

Transaction txn = nyEnv. begi nTransaction(null, null);
myDb = nyEnv. openDat abase(t xn, "myDbNanme", nyDbConfig);
txn.commit();

} catch (DatabaseException de) {
/] Exception handling goes here

}
Committing and Aborting Transactions

When you have completed all database operations that you want to perform from within
a transaction, you must commit the transaction. Committing the transaction causes the
database modifications to be permanently written to the database. In most cases,
committing the transaction also causes the database modifications to be flushed to stable
storage.

Once a transaction has been committed, you can no longer use that same transaction
handle for subsequent database operations.

Use one of the following methods to commit a transaction:
e Transaction.commt()

Ends the transaction and writes the modifications to your database(s). The database
changes may or may not be flushed to stable storage depending on the transaction
commit behavior configured for your environment. By default, the changes are flushed
to stable storage. This behavior is configurable using

Envi r onment Mut abl eConfi g. set TxnNoSync() .

e Transaction.commtSync()

Ends the transaction and writes the modifications to your database(s). The database
modifications are flushed to stable storage.

e Transaction. comm t NoSync()

Ends the transaction and writes the modifications to your database(s). The database
modifications are not necessarily flushed to stable storage. This method is faster than
Transaction. commi t (), but also more dangerous. Use of this method might mean losing
the durability aspect of the transactional subsystem, because a system crash could
cause the loss of any modifications held only in memory.

Aborting Transactions

If for some reason you do not want to commit a transaction, then call Transacti on. abort ().
Aborting the transaction causes JE to discard all modifications made to the database
during the course of the transaction.

11/13/2004 Getting Started with JE Page 97

Committing and Aborting
Transactions

Most frequently you will want to call Transacti on. abort () as a part of your exception
handling activity. The circumstances that require you to call Transacti on. abort () will
vary depending on your application’s activities. Certainly any time your application catches
a Dat abaseExcepti on, the transaction should probably be aborted.

Note that any time your application receives a Deadl ockExcepti on, you must close any
cursors opened for the transaction, abort the transaction and, optionally, start over again.
For more information, see Transactions and Deadlocks (page 107).

For example:

package com sl eepycat . exanpl es.je.gettingStarted,;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Envi ronment ;

i nport com sl eepycat. je. Transacti on;

Dat abase nyDb = nul | ;
Environment nyEnv = nul | ;
Transaction txn = null;

try {
/1 Environnent open omitted ...

txn = nyEnv. begi nTransaction(null, null);
myDb = myEnv. openDat abase(t xn, "myDbNanme", null);
txn.comit();
} catch (DatabaseException dbe) {
if (txn !=null) {
try {
txn. abort();
} catch (DatabaseException txnError) {
Il Error reporting goes here

}
}

Using Autocommit

If your application does not require atomicity for multiple database operations, then you
can use JE's autocommit feature to transactionally protect your database operations.
Essentially, autocommit is a convenience feature that causes JE to automatically use a
transaction for those write operations that do not provide a transaction handle.

To use autocommit:

1. Open your environment and database such that they support transactions. See Enabling
and Starting Transactions (page 96) for a description of how to do this.

11/13/2004 Getting Started with JE Page 98

Committing and Aborting
Transactions

2. Do not provide a transaction handle for the database put or delete operation. Instead,
simply specify nul | for the transaction parameter. If you are using a cursor, do not
provide a transaction handle when you open the cursor.

Note that when you use autocommit, there is no opportunity for you to explicitly abort
the operation. JE, however, will abort the operation if it encounters an error during the
write.

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;
i nport com sl eepycat . | e. Dat abaseEnt ry;

i nport com sl eepycat . j e. Dat abaseConfi g;

i nport com sl eepycat . j e. Dat abase;

import java.io.File;

/1 Open the environnent and dat abase such that transactions
/I are supported

Envi ronment Confi g nyEnvConfig = new Environnent Config();

Dat abaseConfi g nyDbConfig = new Dat abaseConfi g();

nmyEnvConfi g. set Transacti onal (true);

myDbConfi g. set Transacti onal (true);

Dat abase nmyDb = nul | ;
Environment nyEnv = nul | ;

try {
myEnv =
new Environment (new File("/ny/env/home"), nyEnvConfig);

/1 This database is opened fromw thin a transaction using autocomi t
/] because the database configuration specifies transactions.

Il As a result follow on database operations can use transactions.
nmyDb = myEnv. openDat abase(nul |, "nyDoNane", myDbConfig);

String aKey = "nyFirstKey";
String aData = "nyFirstData";

Dat abaseEntry theKey = new Dat abaseEntry(akKey. get Byt es(" UTF- 8"

));
Dat abaseEntry theData = new Dat abaseEnt ry(aDat a. get Byt es(" UTF- 8

"))
/1 This database put is also transactionally protected

/] using autoconmit.
myDb. put (nul |, theKey, theData);

11/13/2004 Getting Started with JE Page 99

Transactional Cursors

} catch (Exception e) {

}

/] Exception handling goes here.

Transactional Cursors

You transactionally protect a cursor by opening it using a transaction. All operations
performed with that cursor are subsequently performed within the scope of that
transaction. You must be sure to close the cursor before committing the transaction.

For example:

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. | e. Dat abase;

i nport com sl eepycat. | e. Dat abaseEntry;
inport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat. | e. Envi ronment ;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat.je. Transacti on;

Cursor cursor = null;

Dat abase nyDb = nul | ;
Environment nyEnv = nul | ;
Transaction txn = nul|;

try {

[/ Environment and database opens omtted for brevity

Dat abaseEntry keyl =

new Dat abaseEntry((new String("keyl")).getBytes("UTF-8"));
Dat abaseEntry datal =

new Dat abaseEntry((new String("datal")).getBytes("UTF-8"));
Dat abaseEntry key2 =

new Dat abaseEntry((new String("key2")).getBytes("UTF-8"));
Dat abaseEntry data2 =

new Dat abaseEntry((new String("data2")).getBytes("UTF-8"));

[/ Start a transaction

txn = nyEnv. begi nTransaction(null, null);
/1 Open a cursor using the transaction
cursor = myDb. openCursor(txn, null);

[/ Put the data. This is transactionally protected
cursor. put (keyl, datal);
cursor. put (key2, data?);

11/13/2004

Getting Started with JE Page 100

Configuring Dirty Reads

} catch (Exception e) {
[/ 1f an error occurs, close the cursor and abort.
/] None of the wite operations perforned by this cursor
/1 will appear in the Database.
Systemerr.printin("Error putting data: " + e.toString());
try {
if (cursor !'= null) {
cursor. close();
cursor = null;

}

if (txn !=null) {
txn. abort();
txn = null;

}
} catch (DatabaseException dbe) {
Il Error reporting goes here

}
} finally {

try {
[l Close the cursor and then commit the transaction

if (cursor !'= null) {
cursor. close();

}

if (txn !=null) {
txn.commit();
}
} catch (DatabaseException dbe) {
Il Error reporting goes here

}
}

Configuring Dirty Reads

You can configure JE to use degree 1 isolation (see Transactions and Concurrency (page 106))
by configuring it to perform dirty reads. Dirty reads allows a reader to see modifications
made but not committed by a transaction in which the read is not being performed.

Dirty reads can improve your application's performance by avoiding lock contention
between the reader and other threads that are writing to the database. However, they
are also dangerous because there is a possibility that the data returned as a part of a
dirty read will disappear as the result of an abort on the part of the transaction who is
holding the write lock. This in effect violates the consistency portion of your ACID
protection.

Concurrency and transactions are described in more detail in Transactions and
Concurrency (page 106).

11/13/2004 Getting Started with JE Page 101

Configuring Dirty Reads

You can configure the default dirty read behavior for a transaction using
Transact i onConfig.setDirtyRead():

package com sl eepycat . exanpl es.je.gettingStarted,;

i mport
i mport
i mport
i mport
i mport
i mport

com sl eepycat
com sl eepycat
com sl eepycat
com sl eepycat
com sl eepycat
com sl eepycat

. j e. Dat abase;

.j e. Dat abaseEntry;

.j e. Envi ronnent ;

. j e. LockMode;
.je.Transacti on;
.je.TransactionConfig;

Dat abase nmyDb = nul | ;
Environment nyEnv =
Transaction txn = null;

try {

nul | ;

[/ Environnment and dat abase open onitted

TransactionConfig tc = new TransactionConfig();
tc.setDirtyRead(true); // Dirty reads will be performed

txn

= nyEnv. begi

nTransaction(null, tc);

Dat abaseEntry theKey =
new Dat abaseEntry((new String("theKey")).getBytes("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

myDb. get (txn, theKey, theData, LockMdde. DEFAULT);
} catch (Exception e) {
/| Exception handling goes here

}

You can also configure the dirty read behavior on a read-by-read basis by specifying
LockMbde. DI RTY_READ:

package com sl eepycat . exanpl es.je.gettingStarted;

i mport
i mport
i mport
i mport
i mport

com sl eepycat
com sl eepycat
com sl eepycat
com sl eepycat
com sl eepycat

.j e. Dat abase;

.j e. Dat abaseEntry;
.j €. Environment ;

.j e. LockMode;
.je.Transacti on;

11/13/2004

Getting Started with JE Page 102

Configuring Dirty Reads

Dat abase nyDb = nul | ;
Environment nyEnv = nul | ;
Transaction txn = null;

try {

/[Environment and dat abase open onitted

txn = nyEnv. begi nTransaction(null, null);

Dat abaseEntry theKey =
new Dat abaseEntry((new String("theKey")).getBytes("UTF-8"));
Dat abaseEntry theData = new DatabaseEntry();

myDb. get (txn, theKey, theData, LockMbde. D RTY _READ);
} catch (Exception e) {
/] Exception handling goes here

}

When using cursors, you can specify the dirty read behavior as described above, or you
can specify it using Cur sor Confi g. setDi rt yRead() :

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat. je. Cursor;

i nport com sl eepycat. | e. Cursor Confi g;
i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat. | e. Dat abaseEntry;
i nport com sl eepycat. | e. Environment;

i nport com sl eepycat. je. Transacti on;

i nport com sl eepycat . j e. LockMode;

Cursor cursor = null;

Dat abase nyDb = nul | ;
Environment nyEnv = nul | ;
Transaction txn = null;

try {

/1 Environnment and dat abase open onitted

Dat abaseEntry thekey =
new Dat abaseEntry((new String("theKey")).getBytes("UTF-8"));

11/13/2004 Getting Started with JE Page 103

Configuring Serializable Isolation

Dat abaseEntry theData = new Dat abaseEntry();

[/ Start a transaction
txn = nyEnv. begi nTransaction(null, null);

/1 Open a cursor using the transaction

CursorConfig cc = new CursorConfig();

cc.setDirtyRead(true); Il Performdirty reads
cursor = myDb. openCursor(txn, cc);

cursor. get Sear chKey(t heKey, theData, LockMde. DEFAULT);
} catch (Exception e) {
/] Exception handling goes here

}
Configuring Serializable Isolation

You can configure JE to use serializable isolation (see Transactions and
Concurrency (page 106)). Serializable isolation prevents transactions from seeing phantoms.
Phantoms occur when a transaction obtains inconsistent results when performing a given

query.

Suppose a transaction performs a search, S, and as a result of that search NOTFOUND is
returned. If you are using only repeatable read isolation (the default isolation level), it
is possible for the same transaction to perform S at a later point in time and return
SUCCESS instead of NOTFOUND. This can occur if another thread of control modified the
database in such a way as to cause S to successfully locate data, where before no data
was found. When this situation occurs, the results returned by S are said to be a phantom.

To prevent phantoms, you can use serializable isolation. Note that this causes JE to
perform additional locking in order to prevent keys from being inserted until the
transaction ends. However, this additional locking can also result in reduced concurrency
for your application, which means that your database access can be slowed.

You configure serializable isolation for all transactions in your environment by using
Envi ronment Confi g. set TxnSeri al i zabl el sol ation():

package com sl eepycat.exanpl es.je.gettingStarted;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat . | e. Dat abaseEntry;

i nport com sl eepycat . e. Envi ronment ;

i nport com sl eepycat . j e. Envi ronnment Confi g;
i nport com sl eepycat. je. Transacti on;

i nport com sl eepycat . j e. LockMode;

Dat abase nyDb = nul | ;
Environment nyEnv = nul | ;

11/13/2004 Getting Started with JE Page 104

Configuring Serializable Isolation

Transaction txn = null;

try {

[/ Open an environnent

Envi ronment Confi g envConfig = new Environment Config();
envConfig. set Al l owCreate(true);

envConfig. set Transactional (true);

/] Use serializable isolataion
envConfig. set TxnSeri al i zabl el sol ation(true);

myEnv = new Envi ronment (nyHoneDirectory, envConfig);

/| Database open onitted

txn = nyEnv. begi nTransaction(null, null);

Dat abaseEntry theKey =
new Dat abaseEnt ry((new String("theKey")). getBytes("UTF-8"));
Dat abaseEntry theData = new Dat abaseEntry();

myDb. get (txn, theKey, theData, LockMdde. DEFAULT);
} catch (Exception e) {
/] Exception handling goes here

}

If you do not configure serializable isolation for all transactions, you can configure
serializable isolation for a specific transaction using
Transact i onConfig. setSerializablelsolation():

package com sl eepycat . exanpl es.je.gettingStarted;

i nport com sl eepycat . j e. Dat abase;

i nport com sl eepycat. | e. Dat abaseEntry;

i nport com sl eepycat. | e. Environment;

i nport com sl eepycat . j e. LockMode;

i nport com sl eepycat. je. Transacti on;

i nport com sl eepycat.je. Transacti onConfig;

Dat abase nyDb = nul | ;
Environment nyEnv = nul | ;
Transaction txn = null;

try {

11/13/2004 Getting Started with JE Page 105

Transactions and Concurrency

/[Environnment and dat abase open onitted

TransactionConfig tc = new TransactionConfig();
tc.setSerializablelsolation(true); // Use serializable isolation
txn = nyEnv. begi nTransaction(null, tc);

Dat abaseEntry theKey =
new Dat abaseEnt ry((new String("theKey")). getBytes("UTF-8"));
Dat abaseEntry theData = new DatabaseEntry();

myDb. get (txn, theKey, theData, LockMdde. DEFAULT);

} catch (Exception e) {

/] Exception handling goes here

}

Transactions and Concurrency

Multi-threaded transactional systems measure the protection that they offer to the data
accessed by their threads of control in terms of degrees or levels of of isolation. Sleepycat
supports the ANSI 4 levels of isolation, although Sleepycat does not always use the ANSI
names for these levels. The mapping of Sleepycat to ANSI terms are:

Degree

ANSI Term

Sleepycat Term

Definition

0

(undefined)

(undefined)

Degree 0 isolation means that one
transaction will never overwrite
another transaction's dirty data.
Dirty data is data that a transaction
has modified but not yet committed
to the underlying data store.

READ UNCOMMITTED |Dirty Read

Degree 1 isolation means that degree
0 is observed, plus a transaction is
guaranteed to not commit any
modifications until the transaction
ends.

READ COMMITTED Degree 2

Degree 2 isolation means that degree
1 is observed, plus no transaction
will ever see data dirtied by another
transaction. Note that JE does not
currently support this degree of
isolation.

(undefined)

REPEATABLE READ | (default)

Degree 2 is observed, plus the data
read by a transaction, T, will never
be dirtied by another transaction
before T completes.

11/13/2004

Getting Started with JE

Page 106

Transactions and Concurrency

Degree ANSI Term Sleepycat Term |Definition

3 SERIALIZABLE Serializable Degree 3 isolation means that
Repeatable Read is observed, plus
no transactions will see phantoms.
Phantoms are records returned as a
result of a search, but which were
not seen by the same transaction
when the identical search criteria
was previously used.

By default, JE transactions offer repeatable read isolation. You can optionally configure
JE to use degree 1 isolation by configuring JE to to perform dirty reads. See Configuring
Dirty Reads (page 101) for more information. You can also optionally configure JE to use
degree 3 isolation. See Configuring Serializable Isolation (page 104) for more information.

Transactions and Deadlocks

Transactions acquire locks on database records throughout their lifetimes, and they do
not release those locks until commit or abort time. This is how JE provides isolation for
its transactions. When a transaction locks a record for write access, no other transaction
can access that record for write (and by default for read) until the lock is released. When
a record is locked for read access, no other transaction can lock it for write access.

The result of this locking activity is that two threads of control can deadlock - that is,
attempt to simultaneously lock the same record. When this happens, a Deadl ockExcepti on
is thrown for one of the deadlocked threads.

When a thread catches a Deadl ockExcepti on, then that thread must release its locks in
order to resolve the deadlock. The thread releases its locks by closing any cursors involved
in the transaction and then aborting the transaction. The thread may then optionally
begin a new transaction and retry the operation that it just aborted.

Performance Considerations

Any number of operations on any number of Dat abase handles can be included in a single
transaction. When many operations are grouped together in a transaction, then that is
considered to be a complex transaction. There is a trade-off between the number of
operations included in a complex transaction and your application’'s throughput as well
as the possibility of deadlock.

Because transactions acquire locks throughout their lifetimes, the likelihood of a deadlock
occurring increases as the number of operations performed by a transaction increases.
The likelihood of deadlock occurring also increases as the number of threads performing
database operations increases. If your transactions become complex enough and the
number of threads operating on your databases increases high enough, your application
can find itself spending more time resolving deadlocks that it does performing useful
work.

11/13/2004 Getting Started with JE Page 107

Transactions and Concurrency

|:| JE applications will only see deadlocks when multiple transactions attempt simultaneous
access of the same database records. JE performs record-level locking only. You can have
multiple simultaneous complex transactions without any deadlock concerns so long as the
number of records simultaneously accessed by those transactions is small.

On the other hand, a transaction commit usually results in synchronous disk 1/0 (this is
not true for Transacti on. conm t NoSync() - see Committing and Aborting

Transactions (page 97) for details). As a result, having longer-lived transactions or more
operations in a transaction can improve your application's performance by avoiding disk
1/0.

Obviously you will have to study the workload expected of your application in order to
decide on how to best resolve the trade-off between reduced disk 1/0 and the potential
for deadlocks. Consider the following as you study this problem:

« |If you do decide to use complex transactions, then try to avoid running multiple
complex transactions that perform simultaneous access of the same database records.
Instead, try to organize your transactions so that they do not overlap in the records
that they want to access. If this is not feasible, then limit yourself to a small number
of threads running complex transactions so as to avoid deadlock problems. How many
threads you can have accessing overlapping sets of database records will depend on
the length and complexity of your transactions. Ultimately, only performance and
stress testing can help you determine the mixture of numbers of threads versus
transactional complexity that is appropriate for your application.

o Try to access your Dat abase handles, and the records in your databases, in the same
order for all transactions. Accessing databases and records in different order in multiple
transactions greatly increases the likelihood of deadlocks.

» Most likely your application will have at least one (and probably many) threads that
perform read-only operations. You should avoid using transactions for operations that
just perform reads as transactionally protecting read-only operations can cause
performance problems. For example, a transactionally protected cursor walking your
database will eventually lock all of the records in your database. In this situation,
your other threads have to wait until the read-only transaction completes before they
can obtain a lock for their own operations.

Note, however, that read-only operations occurring in an application with one or more
threads performing writes should be prepared to catch and respond to deadlock
exceptions. By default read-only operations lock records that they are reading for the
duration of that read. The exception to this is if you are performing dirty reads. See
Configuring Dirty Reads (page 101) for more information.

Also, if your read operations are not transactionally protected, then there is no
guarantee as to the stability of the records read in the database. Repeatedly reading
the same record can cause different data to return if there are other threads writing
and committing changes to the database. If your read operations require stability for
their reads, then you must transactionally protect them.

11/13/2004 Getting Started with JE Page 108

Transactions Example

Transactions Example

In the Secondary Database Example (page 86) we updated the MyDbEnv example class to
support secondary databases. We will now update it to support opening environments
and databases such that transactions can be used. We will then update Exanpl eDat abasePut
to transactionally protect its database writes.

Note that we will not update Exanpl el nvent or yRead in this example. That application
only performs single-threaded reads and there is nothing to be gained by transactionally
protecting those reads.

Example 7.1. Transaction Management with MyDbEnv

All updates to MyDbEnv are performed in the MyDbEnv. set up() . What we do is determine
if the environment is open for write access. If it is, then we open our databases to support
transactions. Doing this is required if transactions are to be used with them. Once the
databases are configured to supported transactions, then autocommit is automatically
used to perform the database opens from within transactions. This, in turn, allows
subsequent operations performed on those databases to use transactions.

Note that we could have chosen to open all our databases with a single transaction, but
autocommit is the easiest way for us to enable transactional usage of our databases.

In other words, the only thing we have to do here is enable transactions for our
environment, and then we enable transactions for our databases.

public void setup(File envHone, bool ean readOnly)
throws Dat abaseException {

Envi ronment Confi g nyEnvConfig = new Environnent Config();
Dat abaseConfig myDbConfig = new Dat abaseConfig();
SecondaryConfi g nySecConfig = new SecondaryConfi g();

[/ 1f the environnment is read-only, then
Il make the databases read-only too.
myEnvConfi g. set ReadOnl y(readOnl y);
myDbConfi g. set ReadOnl y(readOnl y);
mySecConfi g. set ReadOnl y(readOnl y);

[/ 1f the environnment is opened for wite, then we want to be
I/ able to create the environment and databases if

Il they do not exist.

myEnvConfi g. set Al | owCr eat e(! readOnl y);

myDbConfi g. set Al l owCreate(!readOnly);

mySecConfi g. set Al | owCreat e(! readOnly);

Il Allowtransactions if we are witing to the database
myEnvConfi g. set Transacti onal (! readOnly);

11/13/2004 Getting Started with JE Page 109

Transactions Example

myDbConfi g. set Transactional (! readOnly);
mySecConfi g. set Transacti onal (! readOnly);

This completes our update to MyDbEnv. Again, you can see the complete implementation
for this class:

JE_HOVE/ exanpl es/ cont sl eepycat / exanpl es/ j e/ gettingStarted/ exanpl es/
MyDbEnv. j ava

where JE_HOME is the location where you placed your JE distribution.

Next we want to take advantage of transactions when we load our inventory and vendor
databases. To do this, we have to modify Exanpl eDat abasePut to use transactions with
our database puts.

11/13/2004 Getting Started with JE Page 110

Transactions Example

Example 7.2. Using Transactions in ExampleDatabasePut

We start by importing the requisite new class:

package com sl eepycat . exanpl es.je.gettingStarted;

i mport
i mport
i mport
i mport
i mport
i mport

i mport
i mport
i mport

i mport
i mport
i mport

java.io.File;

java.io. FilelnputStream
java.io. Buf f er edReader ;
java.io. |l nput StreanReader;
java.io. Fi | eNot FoundExcepti on;
java.util.ArrayList;

com sl eepycat . j e. Dat abaseEnt ry;
com sl eepycat . j e. Dat abaseExcepti on;
com sl eepycat . je. Transacti on;

com sl eepycat . bi nd. Ent ryBi ndi ng;
com sl eepycat . bi nd. seri al . Seri al Bi ndi ng;
com sl eepycat . bi nd. t upl e. Tupl eBi ndi ng;

In this example, we choose to allow Exanpl eDat abasePut . | oadVendor sDb() to use
autocommit to transactionally protect each record that we put into the database. What
this means is, we do not actually have to change Exanpl eDat abasePut . | oadVendor sDb()
because the simple action of enabling transactions for that database is enough to cause
autocommit to be used for all modifications to the database that do not explicitly provide
a Transacti on object.

For our inventory data, however, we want to load everything inside a single transaction.
This means we need to explicitly commit the transaction when we get done loading our
data, we also have to explicitly abort the transaction in the event of an error:

private void | oadl nventoryDb()

throws Dat abaseException {

Il loadFile opens a flat-text file that contains our data

I/ and loads it into a list for us to work with. The integer
Il paranmeter represents the number of fields expected in the
Il file.

ArrayList inventoryArray = |oadFile(inventoryFile, 6);

I/ Now | oad the data into the database. The items sku is the
Il key, and the data is an Inventory class object.

Il Need a tuple binding for the Inventory class.
Tupl eBi ndi ng i nvent or yBi ndi ng = new | nvent oryBi ndi ng() ;

[/ Start a transaction. All inventory itens get |oaded using a
Il single transaction.
Transaction txn = nyDbEnv. get Env(). begi nTransaction(null, null);

11/13/2004

Getting Started with JE Page 111

Transactions Example

for (int i =0; i <inventoryArray.size(); i++) {
String[] sArray = (String[])inventoryArray.get(i);
String sku = sArray[1];
t heKey = new Dat abaseEnt ry(sku. get Byt es("UTF-8"));

Inventory thelnventory = new I nventory();
thel nventory. set|temNane(sArray[0]);
t hel nvent ory. set Sku(sArray[1]);
t hel nvent ory. set Vendor Pri ce((new Fl oat (sArray[2])).fl oat Val ue());
t hel nvent ory. set Vendor I nvent or y(
(new Integer(sArray[3])).intValue());
t hel nvent ory. set Cat egory(sArray[4]);
t hel nvent ory. set Vendor (sArray[5]);

/'l Place the Vendor object on the DatabaseEntry object using our
/1 the tuple binding we inplenmented in InventoryBinding.java
i nvent oryBi ndi ng. obj ect ToEntry(thel nventory, theData);

[/ Put it in the database. Note that this causes our

/'l secondary database to be automatically updated for us.

try {
myDbEnv. get | nvent or yDB() . put (txn, theKey, theData);

} catch (DatabaseException dbe) {
Systemout.printIn("Error putting entry
txn. abort ();

t hrow dbe;

+ sku. get Bytes());

}
}
[/ Commit the transaction. The data is now safely witten to the

Il inventory database.
txn.comit();

11/13/2004 Getting Started with JE Page 112

Chapter 8. Backing up and Restoring
Berkeley DB Java Edition Applications

Fundamentally, you backup your databases by copying JE log files off to a safe storage
location. To restore your database from a backup, you copy those files to an appropriate
directory on disk and reopen your JE application

Beyond these simple activities, there are some differing backup strategies that you may
want to consider. These topics are described in this chapter.

Databases and Log Files

Before describing JE backup and restore, it is necessary to describe some of JE's internal
workings. In particular, a high-level understanding of JE log files and the in-memory cache
is required. You also need to understand a little about how JE is using its internal data
structures in order to understand why checkpoints and/or syncs are required.

You can skip this section so long as you understand that:
« JE databases are stored in log files contained in your environment directory.
« Every time a JE environment is opened, normal recovery is run.

« For transactional applications, checkpoints should be run in order to bound normal
recovery time. Checkpoints are normally run by the checkpointer thread. See The
Checkpointer Thread (page 121) for information on managing this thread.

» For non-transactional applications, environment syncs must be performed if you want
to guarantee the persistence of your database modifications. Environment syncs are
manually performed by the application developer. See Data Persistence (page 30) for
details.

Log File Overview

Your JE database is stored on-disk in a series of log files. JE uses no-overwrite log files,
which is to say that JE only ever appends data to the end of a log file. It will never delete
or modify an existing log file record.

JE log files are named NNNNNNNN. j db where NNNNNNNN is an 8-digit hexadecimal number
that increases by 1 (starting from 00000000) for each log file written to disk.

JE creates a new log file whenever the current log file has reached a pre-configured size
(10000000 bytes by default). This size is controlled by the je. | og. fil eMax properties
parameter. See The JE Properties File (page 119) for information on setting JE properties.

11/13/2004 Getting Started with JE Page 113

Databases and Log Files

Cleaning the Log Files

Because JE uses no-overwrite log files, the logs must be compacted or cleaned so as to
conserve disk space.

JE uses the cleaner background thread to perform this task. When it runs, the cleaner
thread picks the log file with the smallest number of active records and scans each log
record in it. If the record is no longer active in the database tree, the cleaner does nothing.
If the record is still active in the tree, then the cleaner copies the record forward to a
newer log file.

Once a log file is no longer needed (that is, it no longer contains active records), then
the cleaner thread deletes the log file for you. Or, optionally, the cleaner thread can
simply rename the discarded log file with a del suffix.

JE uses a minimum log utilization property to determine how much cleaning to perform.
The log files contain both obsolete and utilized records. Obsolete records are records
that are no longer in use, either because they have been modified or because they have
been deleted. Utilized records are those records that are currently in use. The
je.cleaner.mnltilization property identifies the minimum percentage of log space
that must be used by utilized records. If this minimum percentage is not met, then obsolete
records are deleted until the minimum percentage is met.

For information on managing the cleaner thread, see The Cleaner Thread (page 120).
The BTree

JE databases are internally organized as a BTree. In order to operate, JE requires the
complete BTree be available to it.

When database records are created, modified, or deleted, the modifications are
represented in the BTree's leaf nodes. Beyond leaf node changes, database record
modifications can also cause changes to other BTree nodes and structures.

Database Modifications

When a write operation is performed in JE, the modified data is written to a leaf node
contained in the in-memory cache. If your JE writes are performed without transactions,
then the in-memory cache is the only location guaranteed to receive a database
modification without further intervention on the part of the application developer.

If your writes are transactionally protected, then every time a transaction is committed
the leaf nodes (and only the leaf nodes) modified by that transaction are written to the
JE log files on disk.

11/13/2004 Getting Started with JE Page 114

Databases and Log Files

Syncs

As stated above, database modifications performed without a transaction are guaranteed
to only ever exist in the in-memory cache. For some class of applications, this is ideal.
By not writing these modifications to the on-disk logs, the application can avoid most of
the overhead caused by disk 1/0.

However, if the application requires its data to persist across process runs, then the
developer must manually sync database modifications to the on-disk log files (again, this
is only necessary for non-transactional applications). This is done using Envi r onment . sync().

Note that syncing the cache causes JE to write all modified objects in the cache to disk.
This is probably the most expensive operation that you can perform in JE. Even so, if your
application requires database data to be persistent across application runs, then the
cache must be synced at least before the environment is closed.

Normal Recovery

Because of the way that JE organizes and manages its BTrees, all it needs is leaf nodes
in order to recreate the rest of the BTree. Essentially, this is what normal recovery is
doing - recreating any missing parts of the internal BTree from leaf node information
stored in the log files.

Checkpoints

Recreating the BTree (that is, running normal recovery) can become expensive if over
time all that is ever written to disk is BTree leaf nodes. So in order to limit the time
required for normal recovery, JE runs checkpoints. Checkpoints write to your log files all
the internal BTree nodes and structures modified as a part of transactional operations.
This means that your log files contain a complete BTree up to the moment in time when
the checkpoint was run. This means that normal recovery only needs to recreate the
portion of the BTree that has been modified since the time of the last checkpoint.

Checkpoints typically write more information to disk than do transaction commits, and
so they are more expensive from a disk I/0 perspective. Therefore, one of the performance
tuning activities that you should perform is to determine how frequently to run
checkpoints. You have to balance the cost of the checkpoints against the time it will take
your application to restart due to the cost of running normal recovery.

Checkpoints are normally performed by the checkpointer background thread. See The
Checkpointer Thread (page 121) for information on managing this thread.

11/13/2004 Getting Started with JE Page 115

Performing Backups

Performing Backups

This section describes how to backup your JE database(s) such that catastrophic recovery
is possible.

To backup your database, you can either take a complete backup or a partial backup. A
partial backup is performed while database write operations are in progress.

Do not confuse complete and partial backups with the concept of a full and incremental
backup. Both a complete and a partial backup are full backups - you back up the entire
database. The only difference between them is how much of the contents of the in-memory
cache are contained in them. On the other hand, an incremental backup is a backup of
just those log files modified or created since the time of the last backup. Most backup
software is capable of performing both full and incremental backups for you.

Performing a Partial Backup

To perform a partial backup of your JE databases, copy all log files (*. | db files) from your
environment directory to your archival location or backup media. The files must be copied
n alphabetical order (numerical in effect). You do not have to stop any database operations
in order to do this.

Note that if your application is not using transactions, then any modifications made to
the database since the time of the last environment sync are not guaranteed to be
contained in these log files. In this case, you may want to consider running a complete
backup in order to guarantee the availability of all modifications made to your database.

Performing a Complete Backup

A complete backup guarantees that you have captured the database in its entirety,
including all contents of your in-memory cache, at the moment that the backup was
taken. To do this, you must make sure that no write operations are in progress and all
database modifications have been written to your log files on disk. To obtain a complete
backup:

1. Stop writing your databases. If you are using transactions, commit or abort all on-going
transactions.

2. If you are not using transactions, run Envi ronnment . sync() so as to ensure that all
database modifications are written to disk.

3. If you are using transactions, then optionally run a checkpoint. Doing this can shorten
the time required to restore your database from this back up.

4. Copy all log files (*.] db) from your environment directory to your archival location
or backup media.

You can now resume normal database operations.

11/13/2004 Getting Started with JE Page 116

Performing Catastrophic
Recovery

Performing Catastrophic Recovery

Catastrophic recovery is necessary whenever your environment and/or database have
been lost or corrupted due to a media failure (disk failure, for example). Catastrophic
recovery is also required if normal recovery fails for any reason.

In order to perform catastrophic recovery, you must have a full back up of your databases.
You will use this backup to restore your database. See Performing Backups (page 116) for
information on running back ups.

To perform catastrophic recovery:
1. Shut down your application.

2. Delete the contents of your environment home directory (the one that experienced
a catastrophic failure), if there is anything there.

3. Copy your most recent full backup into your environment home directory.

4. If you are using a backup utility that runs incremental backups of your environment
directory, copy any log files generated since the time of your last full backup. Be
sure to restore all log files in the order that they were written. The order is important
because it is possible the same log file appears in multiple archives, and you want
to run recovery using the most recent version of each log file.

5. Open the environment as normal. JE's normal recovery will run, which will bring your
database to a consistent state relative to the changed data found in your log files.

You are now done restoring your database.

Hot Standby

As a final backup/recovery strategy, you can create a hot failover. Note that using hot
failovers requires your application to be able to specify its environment home directory
at application startup time. Most application developers allow the environment home
directory to be identified using a command line option or a configuration or properties
file. If your application has its environment home hard-coded into it, you cannot use hot
standbys.

You create a hot standby by periodically backing up your database to an alternative
location on disk. Usually this alternative location is on a separate physical drive from
where you normally keep your database, but if multiple drives are not available then you
should at least put the hot failover on a separate disk partition.

You failover to your hot standby by causing your application to reopen its environment
using the hot standby location.

Note that a hot standby should not be used as a substitute for backing up and archiving
your data to a safe location away from your operating environment. Even if your data is
spread across multiple physical disks, a truly serious catastrophe (fires, malevolent

11/13/2004 Getting Started with JE Page 117

Hot Standby

software viruses, faulty disk controllers, and so forth) can still cause you to lose your
data.

To create and maintain a hot failover:

1.

Copy all log files (*. j db) from your environment directory to the location where you
want to keep your standby. Either a complete or a partial backup can be used for
this purpose, but typically a hot standby is initially created by taking a complete
backup of your database. This ensures that you have captured the contents of your
in-memory cache.

Periodically copy to your standby directory any log files that were changed or created
since the time of your last copy. Most backup software is capable of performing this
kind of an incremental backup for you.

Note that the frequency of your incremental copies determines the amount of data
that is at risk due to catastrophic failures. For example, if you perform the incremental
copy once an hour then at most your hot standby is an hour behind your production
database, and so you are risking at most an hours worth of database changes.

Remove any *. j db files from the hot standby directory that have been removed or
renamed to . del files in the primary directory. This is hot necessary for consistency,
but will help to reduce disk space consumed by the hot standby.

11/13/2004

Getting Started with JE Page 118

Chapter 9. Administering Berkeley DB Java
Edition Applications

There are a series of tools and parameters of interest to the administrator of a Berkeley
DB Java Edition database. These tools and parameters are useful for tuning your JE
database's behavior once it is in a production setting, and they are described here. This
chapter, however, does not describe backing up and restoring your JE databases. See
Backing up and Restoring Berkeley DB Java Edition Applications (page 113) for information
on how to perform those procedures.

The JE Properties File

JE applications can be controlled through a Java properties file. This file must be placed
in your environment home directory and it must be named | e. properti es.

The parameters set in this file take precedence over the configuration behavior coded
into the JE application by your application developers.

Usually you will use this file to control the behavior of JE's background threads, and to
control the size of your in-memory cache. These topics, and the properties parameters
related to them, are described in this chapter. Beyond the properties described here,
there are other properties identified throughout this manual that may be of interest to
you. However, the definitive identification of all the property parameters available to
you is in the sample exanpl e. properti es located in the directory where your JE distribution
was unpacked.

Managing the Background Threads

JE uses some background threads to keep your database resources within preconfigured
limits. If they are going to run, the background threads are started once per application
per process. That is, if your application opens the same environment multiple times, the
background threads will be started just once for that process. See the following list for
the default conditions that gate whether an individual thread is run. Note that you can
prevent a background thread from running by using the appropriate j e. properties
parameter, but this is not recommended for production use and those parameters are
not described here.

The background threads are:
o Cleaner thread.

Responsible for cleaning and deleting unused log files. See The Cleaner Thread (page 120)
for more information.

This thread is run only if the environment is opened for write access.

11/13/2004 Getting Started with JE Page 119

Managing the Background
Threads

o Compressor thread.

Responsible for cleaning up the internal BTree as database records are deleted. The
compressor thread ensures that the BTree does not contain unused nodes. There is no
need for you to manage the compressor and so it is not described further in this manual.

This thread is run only if the environment is opened for write access.
» Evictor thread.

Removes database records out of the in-memory cache in the event that the cache
has reached a predefined maximum size. See The Evictor Thread (page 121) for more
information.

This thread always runs.
o Checkpointer thread.

Responsible for running checkpoints on your environment. See The Checkpointer
Thread (page 121) for more information.

This thread is run only if the environment is configured to support transactions.
The Cleaner Thread

The cleaner thread is responsible for cleaning, or compacting, your log files for you. Log
file cleaning is described in Cleaning the Log Files (page 114).

The following two properties may be of interest to you when managing the cleaner thread:
e je.cleaner.mnUtilization

Identifies the percentage of the log file space that must be used for utilized records.
If the percentage of log file space used by utilized records is too low, then the cleaner
removes obsolete records until this threshold is reached. Default is 50%.

e je.cleaner.expunge

Identifies the cleaner's behavior in the event that it is able to remove a log file. If
true, the log files that have been cleaned are deleted from the file system. If f al se,
the log files that have been cleaned are renamed from NNNNNNNN. j db to NNNNNNNN. del .
You are then responsible for deleting the renamed files.

Note that the cleaner thread runs only if the environment is opened for write access.

11/13/2004 Getting Started with JE Page 120

Sizing the Cache

The Evictor Thread

JE limits the size of its cache based on values set for the environment. Once the size of
the cache reaches the defined limit, the evictor thread evicts parts of the cache to free
up cache space. Note that any modified records evicted from the cache are written to

the backing files on disk. The evictor thread evicts the least used portions of the cache.

To control the amount of memory that your cache can use, use the j e. maxMenor yPer cent
orj e. maxMenory properties. For advice on sizing your cache, see Sizing the Cache (page 121).

Please see the exanpl e. properti es file that is available in your JE source distribution for
the default value set for this parameter.

Note that this thread always runs.
The Checkpointer Thread
Automatically runs checkpoints. Checkpoints are described in Checkpoints (page 115).

Currently, the only checkpointer property that you may want to manage is

j e. checkpoi nter. byt esl nterval . This property identifies how much JE's log files can grow
before a checkpoint is run. Value is specified in bytes. Decreasing this value causes the
checkpointer thread to run checkpoints more frequently. This will improve the time that
it takes to run recovery, but it also increases the system resources (notably, 1/0) required
by JE.

Sizing the Cache

By default, your cache is limited to a percentage of the JYM maximum memory as specified
by the - Xnx parameter. You can change this percentage by using the j e. maxMenor yPer cent
property or through Envi r onment Conf i g. set CachePer cent (). That is, the maximum amount
of memory available to your cache is normally calculated as:

j e. maxMenor yPercent * JVM maxi mum nmenory

You can find out what the value for this property is by using
Envi ronment Confi g. get CachePer cent () .

Note that you can cause JE to use a fixed maximum cache size by using j e. maxMenory or
by using Envi ronnment Confi g. set CacheSi ze() .

Also, not every JVM is capable of identifying the amount of memory requested via the
- Xmx parameter. For those JVMs you must use j e. maxMenory to change your maximum
cache size. The default maximum memory available to your cache in this case is 38M.

Of the amount of memory allowed for your cache, 93% is used for the internal BTree and
the other 7% is used for internal buffers. When your application first starts up, the 7% for
buffers is immediately allocated. The remainder of the cache grows lazily as your
application reads and writes data.

11/13/2004 Getting Started with JE Page 121

The Command Line Tools

In order for your application to start up successfully, the Java virtual machine must have
enough memory available to it (as identified by the - Xmnx command line switch) for both
your application and 7% of your maximum cache value. In order for your application to
run continuously (all the while loading data into the cache), you must make sure your
JVM has enough memory for your application plus the maximum cache size.

The best way to determine how large your cache needs to be is to put your application
into a production environment and watch to see how much disk /0 is occurring. If the
application is going to disk quite a lot to retrieve database records, then you should
increase the size of your cache (provided that you have enough memory to do so).

In order to determine how frequently your application is going to disk for database records
not found in the cache, you can examine the value returned by
Envi ronment St at s. get NCacheM ss() .

Envi ronment St at s. get NCacheM ss() identifies the total number of requests for database
objects that were not serviceable from the cache. This value is cumulative since the
application started. The faster this number grows, the more your application is going to
disk to service database operations. Upon application startup you can expect this value
to grow quite rapidly. However, as time passes and your cache is seeded with your most
frequently accessed database records, what you want is for this number's growth to be
zero or at least very small.

Note that this statistic can only be collected from within the application itself. This means
that it is up to the application developer to provide a mechanism by which this statistic
can be accessed from outside the application.

For more information on collecting this statistic, see Environment Statistics (page 13).

The Command Line Tools

JE ships with several command line tools that you can use to help you manage your
databases. They are:

e DbDunp

Dumps a database to a user-readable format.
» DbLoad

Loads a database from the output produced by DbDunp
o DbVerify

Verifies the structure of a database.

11/13/2004 Getting Started with JE Page 122

The Command Line Tools

DbDump

Dumps a database to a flat-text representation. Options are:

-h
Identifies the environment's directory. This parameter is required.

-S
Identifies the database to be dumped. If this option is not specified, then the -1
is required.

-p
Prints database records in human-readable format.
Lists the databases contained in the environment. If the - s is not provided, then
this argument is required.

-f
Identifies the file to which the output from this command is written. The console
(standard out) is used by default.

-V

Prints the database version number and then quits. All other command line options
are ignored.

For example:

> java com sl eepycat.je.util.DbDunp -h . -p -s Vendor DB

VERSI ON=3

format =print

type=btree

dat abase=Vendor DB

dupsort =fal se

HEADER=END

Mom s Kitchen

sr\ 01\ 01xpt\ 00\ 0d53 Yerman Ct.t\00\0c763 554 9200t\ 00\ ObM ddl e Townt\ 00

\ OeMaggi e Kul t gent\ 00\ 10763 554 9200 x12t\ 00\ 02M\t\ 00\ 0OdMbmi s Ki t chent\ 00
\ 0555432

Of the Vine

sr\ 01\ 01xpt\ 00\ 10133 American Ct.t\00\0c563 121 3800t\ 00\ 0aCent enni al t\ 00
\ 08Bob Ki ngt\ 00\ 10563 121 3800 x54t\ 00\ 02| At\ 00\ 0cCOf f the Vinet\00\ 0552002
Sinply Fresh

sr\ 01\ 01xpt\ 00\ 1115612 Bogart Lanet\00\0c420 333 3912t\ 00\ 08Har ri gant\ 00
\ Of Cheryl Swedber gt\ 00\ 0c420 333 3952t\ 00\ 02W t\ 00\ OcSi npl y Fresht\ 00\ 0
553704

The Baki ng Pan

sr\ 01\ 01xpt\ 00\ 0e1415 53rd Ave.t\00\0c320 442 2277t\ 00\ 07Dut chi nt\ 00\ 09
M ke Roant\00\0c320 442 6879t\ 00\ 02M\t\ 00\ OeThe Baki ng Pant\ 00\ 0556304
The Pantry

11/13/2004 Getting Started with JE Page 123

The Command Line Tools

sr\ 01\ 01xpt\ 00\ 111206 N. Creek Wayt\00\0c763 555 3391t\ 00\ 0bM ddl e Town

t\ 00\ 0f Sul Iy Beckstront\00\0c763 555 3391t\ 00\ 02M\t\ 00\ 0aThe Pantryt\00

\ 0555432

Tri County Produce

sr\ 01\ 01xpt\ 00\ 12309 S. Main Streett\00\0c763 555 5761t\ 00\ ObM ddl e Townt
\ 00\ 0dMort Duf resnet\ 00\ 0c763 555 5765t\ 00\ 02M\t \ 00\ 11Tri County Producet
\ 00\ 0555432

DATA=END

>

DbLoad

Loads a database from the output produced by DbDunp. Options are:

-h

Identifies the environment's directory. This parameter is required.

Overrides the database name, causing the data to be loaded into a database that
uses the name supplied to this parameter.

Specifies configuration options. The options supplied here override the
corresponding options that appear in the data that is being loaded. This option
takes values of the form name=value, where name is the configuration option
that you are overriding and value is the new value for the option.

The following options can be specified:
« database

The name of the database to be loaded. This option duplicates the functionality
of this command's - s command line option.

o dupsort

Indicates whether duplicates are allowed in the database. A value of true
allows duplicates in the database.

Identifies the file from which the database is to be loaded.

Do not overwrite existing keys in the database when loading into an already
existing database. If a key/data pair cannot be loaded into the database for this
reason, a warning message is displayed on the standard error output, and the
key/data pair are skipped

11/13/2004

Getting Started with JE Page 124

The Command Line Tools

Causes a flat text file to be loaded into the database.

The input must be paired lines of text, where the first line of the pair is the key
item, and the second line of the pair is its corresponding data item.

A simple escape mechanism, where newline and backslash (\) characters are
special, is applied to the text input. Newline characters are interpreted as record
separators. Backslash characters in the text will be interpreted in one of two
ways: If the backslash character precedes another backslash character, the pair
will be interpreted as a literal backslash. If the backslash character precedes any
other character, the two characters following the backslash will be interpreted
as a hexadecimal specification of a single character; for example, \0a is a newline
character in the ASCIl character set.

For this reason, any backslash or newline characters that naturally occur in the
text input must be escaped to avoid misinterpretation by db_load.

Prints the database version number and then quits. All other command line options
are ignored.

For example:

> java com sl eepycat.je.util.DoDunp -h . -s VendorDB -f vendordb. t xt
> java com sl eepycat.je.util.DbLoad -h . -f vendordb. txt

>
DbVerify
Examines the identified database for errors. Options are:
-h
Identifies the environment's directory. This parameter is required.
-S
Identifies the database to be verified. This parameter is required.
-q
Suppress the printing of any error descriptions. Instead, simply exit success or
failure.
-V

Prints the database version number and then quits. All other command line options
are ignored.

For example:

11/13/2004 Getting Started with JE Page 125

The Command Line Tools

> java com sl eepycat.je.util.DoVerify -h . -s VendorDB

<BtreeStat s>

<Bot t om nt er nal NodesByLevel total ="1">
<Item|evel ="1" count="1"/>

</ Bot t onl nt er nal NodesByLevel >

<I nt er nal NodesByLevel total ="1">
<Item|evel ="2" count="1"/>

</I'nternal NodesByLevel >

<Leaf Nodes count ="6"/>

<Del et edLeaf Nodes count="0"/>

<Dupl i cat eCount Leaf Nodes count ="0"/>

<Mai nTr eeMaxDept h dept h="2"/>

<Dupl i cat eTr eeMaxDept h dept h="0"/>

</BtreeStats>

11/13/2004 Getting Started with JE Page 126

Appendix A. Concurrent
Processing in Berkeley DB Java
Edition

An in-depth description of concurrent processing in JE is beyond the scope of this manual.
However, there are a few things that you should be aware of as you explore JE. Note that
many of these topics are described in greater detail in other parts of this book. This
section is intended only to summarize JE concurrent processing.

This appendix first describes concurrency with multithreaded applications. It then goes
on to describe Multiprocess Applications (page 128).

Multithreaded Applications

Note the following if you are writing an application that will use multiple threads for
reading and writing JE databases:

« JE database and environment handles are free-threaded (that is, are thread safe), so
from a mechanical perspective you do not have to synchronize access to them when
they are used by multiple threads of control.

« |t is dangerous to close environments, databases and cursors when other database
operations are in progress. So if you are going to share handles for these objects across
threads, you should architect your application such that there is no possibility of a
thread closing a handle when another thread is using that handle.

» If a transaction is shared across threads, it is safe to call transaction. abort () from
any thread. However, be aware that any thread that attempts a database operation
using an aborted transaction will throw a Dat abaseExcepti on. You should architect
your application such that your threads are able to gracefully deal with some other
thread aborting the current transaction.

« If a transaction is shared across threads, make sure that transacti on. commit () can
never be called until all threads participating in the transaction have completed their
database operations.

« JE always performs locking and deadlock detection. Locking is performed at the
database record level. In the event that a deadlock is detected, Deadl ockExcepti on
is thrown.

» A non-transactional operation that reads a record locks it for the duration of the read.
While locked for read, a write lock can not be obtained on that record. However,
another read lock can be obtained for that record. This means that for threaded
applications, multiple threads can simultaneously read a record, but no thread can
write to the record while a read is in progress.

11/13/2004 Getting Started with JE Page 127

Multiprocess Applications

Note that if you are performing dirty reads, then no locking is performed for that read.
Instead, JE uses internal mechanisms to ensure that the data you are reading is
consistent (that is, it will not change mid-read).

Finally, it is possible to specify that you want a write lock for your read operation.
You do this using LockMbde. RMN Use RMAMwhen you know that your read will subsequently
be followed up with a write operation. Doing so can help to avoid deadlocks.

An operation that writes to a record obtains a write lock on that record. While the
write lock is in progress, no other locks can be obtained for that record (either read
or write).

All locks, read or write, obtained from within a transaction are held until the
transaction is either committed or aborted.

This means that the longer a transaction lives, the more likely other threads in your
application are to run into deadlocks. That is, write operations performed outside of
the scope of the transaction will not be able to obtain a lock on those records while
the transaction is in progress. Also, by default, reads performed outside the scope of
the transaction will not be able to lock records written by the transaction. However,
this behavior can be overridden by configuring your reader to perform dirty reads.

Multiprocess Applications

Note the following if you are writing an application that wants to access JE databases
from multiple processes:

In JE, you must use environments. Further, a database can be opened for write access
only if the environment is opened for write access. Finally, only one process may have
an environment opened for write access at a time.

If your process attempts to open an environment for write, and another process has
already opened that environment for write, then the open will fail. In this event, the
process must either exit or open the environment as read-only.

A process that opens an environment for read-only receives a snapshot of the data in
that environment. If another process modifies the environment's databases in any way,
the read-only version of the data will not be updated until the read-only process closes
and reopens the environment (and by extension all databases in that environment).

11/13/2004

Getting Started with JE Page 128

	Getting Started with Berkeley DB Java Edition
	Table of Contents
	Preface
	Conventions Used in this Book

	Chapter 1. Introduction to Berkeley DB Java Edition
	Features
	The JE Application
	Databases and Database Environments
	Database Records
	Putting and Getting Database Records
	Duplicate Data
	Replacing and Deleting Entries
	Secondary Databases
	Transactions
	JE Resources
	Application Considerations

	JE Backup and Restore
	Getting and Using JE
	JE Exceptions

	Chapter 2. Database Environments
	Opening Database Environments
	Closing Database Environments
	Environment Properties
	The EnvironmentConfig Class
	EnvironmentMutableConfig

	Environment Statistics
	Database Environment Management Example

	Chapter 3. Databases
	Opening Databases
	Closing Databases

	Database Properties
	Administrative Methods
	Database Example

	Chapter 4. Database Records
	Using Database Records
	Reading and Writing Database Records
	Writing Records to the Database
	Getting Records from the Database
	Deleting Records
	Data Persistence

	Using the BIND APIs
	Numerical and String Objects
	Serializeable Complex Objects
	Usage Caveats
	Serializing Objects
	Deserializing Objects

	Custom Tuple Bindings

	Using Comparators
	Writing Comparators
	Setting Comparators

	Database Record Example

	Chapter 5. Using Cursors
	Opening and Closing Cursors
	Getting Records Using the Cursor
	Searching for Records
	Working with Duplicate Records

	Putting Records Using Cursors
	Deleting Records Using Cursors
	Replacing Records Using Cursors
	Cursor Example

	Chapter 6. Secondary Databases
	Opening and Closing Secondary Databases
	Implementing Key Creators
	Secondary Database Properties
	Reading Secondary Databases
	Deleting Secondary Database Records
	Using Secondary Cursors
	Database Joins
	Using Join Cursors
	JoinCursor Properties

	Secondary Database Example
	Opening Secondary Databases with MyDbEnv
	Using Secondary Databases with ExampleInventoryRead

	Chapter 7. Transactions
	Enabling and Starting Transactions
	Committing and Aborting Transactions
	Aborting Transactions
	Using Autocommit

	Transactional Cursors
	Configuring Dirty Reads
	Configuring Serializable Isolation
	Transactions and Concurrency
	Transactions and Deadlocks
	Performance Considerations

	Transactions Example

	Chapter 8. Backing up and Restoring Berkeley DB Java Edition Applications
	Databases and Log Files
	Log File Overview
	Cleaning the Log Files
	The BTree
	Database Modifications
	Syncs
	Normal Recovery
	Checkpoints

	Performing Backups
	Performing a Partial Backup
	Performing a Complete Backup

	Performing Catastrophic Recovery
	Hot Standby

	Chapter 9. Administering Berkeley DB Java Edition Applications
	The JE Properties File
	Managing the Background Threads
	The Cleaner Thread
	The Evictor Thread
	The Checkpointer Thread

	Sizing the Cache
	The Command Line Tools
	DbDump
	DbLoad
	DbVerify

	Appendix A. Concurrent Processing in Berkeley DB Java Edition
	Multithreaded Applications
	Multiprocess Applications

