Packet Debugger

George V. Neville-Neil

January 19, 2007

1 Introduction

The Packet Debugger, pdb is a program which allows people to work with
packet streams as if they were working with a source code debugger. Users
can list, inspect, modify, and retransmit any packet from captured files as
well as work with live packet capture.

Installing pdb is covered in the text file, INSTALLATION, which came with
this package. The code is under a BSD License and can be found in the file
COPYRIGHT in the root of this package.

Note: You will very likely need root or sudo access in order to write
packets directly to a network interface, or read them directly from it. If you
don’t understand this note, then please talk to your local systems or network
administrator before trying to use pdb to read and write raw packets.

2 A Quick Tour

For the impatient this section is a 5 minute intro to using the packet debug-
ger.

Create a pcap file with tcpdump, ethereal, wireshark or another pro-
gram of your choosing. Now load the pcap file into pdb as shown in Figure
Figure [1| will serve as our only figure throughout this section. You said you
were impatient, didn’t you?

The first thing to do when you start a new program is to ask for help, and
pdb is no different in this respect. The complete command set is described
in the built in help system. You can ask for help on each command as well,
but that is not shown in this section.

pdb attempts to at very much like a well known debugger and so, if you're
a programmer, you're very likely to recognize many of the commands.

minion ? sudo src/pdb.py -f tests/test.out -i enO
Welcome to PDB version Alpha 0.1.

For a list of commands type ’help <rtn>’

For help on a command type ’help command <rtn>’
pdb> help

Documented commands (type help <topic>):

break delete 1list mnext print run set unload

continue info load prev quit send show

pdb> print

0:

<Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<ARP: spa: 3538819329L, tpa: 3538819566L, hln: 6, pro: 2048,

sha: ’\x00\r\x022{\x9c’, pln: 4, hrd: 1,

tha: ’\x00\x00\x00\x00\x00\x00’, op: 1>

pdb> list

0:

1:

<Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<ARP: spa: 3538819329L, tpa: 3538819566L, hln: 6, pro: 2048, sha: ’\x00\r\x022{\x9c

<Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<ARP: spa: 3538819329L, tpa: 3538819566L, hln: 6, pro: 2048, sha: ’\x00\r\x022{\x9c

: <Ethernet: src: ’\x00\x17\xf2\xe8\x9a*’, dst: ’\x00\r\x022{\x9c’, type: 2048> <IP

<TCP: reset: 6, reserved: 0, sequence: 3630104920L, ack: 1, checksum: 1430, offset:
<Data: payload: 1346182712011260415243967349952109161301218375674401651612607957720

: <Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\x00\x17\xf2\xe8\x9ax’, type: 2048> <IP

<TCP: reset: 6, reserved: 0, sequence: 4015249839L, ack: 1, checksum: 64954, offset
<Data: payload: 5833012640182693830740685309126491793183699354072300151259887449111

[NOTE: Packets 4 through 9 removed for brevityl

pdb> run
pdb> quit
Bye

Figure 1: Quick starting pdb

2

usage: pdb.py [options]

options:
-h, --help show this help message and exit
-f FILENAME, --file=FILENAME
pcap file to read
-1 INTERFACE, --interface=INTERFACE
Network interface to connect to.

Figure 2: pdb command line arguments

In our example we've loaded the test data used to test this program,
test.out. Each file or set of packets is part of a stream, and in this example
we have one stream, which was loaded from test.out. We are currently at
position 0 in the stream, the beginning. We can print the packet at the
current position with the print command, as shown in the example. What
we see is an Ethernet packet, containing an ARP request. We can also list all
the packets in the stream, up to a user configured limit. The 1ist command
shows, by default, 10 packets, including the one at your current position and
the following 9. To play back a stream over the interface selected at startup
the run command is used. If you pick an Ethernet interface at startup, as
we did with enO, then the packet stream will be sent over that interface. To
see the packets you're playing back you can run tcpdump or a similar packet
capture program, to see the packets coming from pdb.

3 Starting pdb

In order to start a debugging session you will need either a pre-recorded pcap
file or a network interface to work with, and possibly both. The command
line arguments to pdb are relatively simple and are shown in Figure

The -f or —-file switch supplies a path and file name to pdb which it will
then attempt to load into the program. If no -i or --interface argument
is supplied then the user can only read packets from the file. Other files and
interfaces may be opened from the command line, see Sections

Once pdb has started you will see the command prompt, shown in Fig-
ure B

At this point pdb is awaiting your commands.

pdb>

Figure 3: Command Prompt

Ctrl-b | Back up one character

Ctrl-f | Move forward one character

Ctrl-a | Move to the beginning of the line
Ctrl-e | Move to the end of the line
Enter | Ask pdb to execute the command
Tab Complete command

Table 1: CLI Editing Keys

3.1 Working with the Command Line

The Command Line Interpreter (CLI) in pdb is implemented using the CMD
module in Python, which in turn uses the popular readline package. What
all of that means is that you have fairly rich, built in command line functions,
including the ability to repeat, edit, and complete command lines. We are
not going to reproduce all of the documentation on readline in this section
but will give a brief introduction to what the CLI provides. If you have
worked with any modern Unix shell, i.e. bash, tcsh, etc., you will be quite
comfortable using the pdb CLI.

As with any other command line your cursor waits at the prompt for
your input. You can ask for help which will give you a list of commands
to choose from, and you can ask for help on a particular command, which
will explain the command itself. When you are entering characters on the
command line you can use a few special keys to edit the text you have
already entered, and these keys are listed in Table

Command completion is the ability of the CLI to guess, based on a
few characters, what command you're trying to give to it. Using the Tab
key frequently is a good way to avoid typing too much or making typing
mistakes. If the CLI is unable to undestand the command you’re trying to
complete it will tell you, by either going no further in the command line
when you type Tab, or by giving you a set of choices of possible commands
to complete. Pressing Tab when there is no text after the command prompt
will give you a list of all the available commands. Some commands also have
completion based on the data you are trying to work with, such as a list of
streams, and these special cases are covered in sections [4.5.1} |4.4.1] [4.4.3]
and which cover the commands that have completion.

Unlike a Unix shell exiting by the Ctrl-d (EOF) key is not supported,
though the program can be halted using Ctrl-c. We strongly recommend
using the quit command to exit the program.

4 Command Reference

All of the commands implemented in pdb are covered in this section and its
subsequent sub-sections.

4.1 help
The help command prints out the available topics for help.
pdb> help

Documented commands (type help <topic>):

break delete info 1load prev quit send show
continue help list mnext print run set unload

Figure 4: Help on all commands

To get help on a specific command type help command where command
is one of the commands listed when you ask for help on its own.

pdb> help help
help [command]
print out the help message, with [command] get help on that comamnd

Figure 5: Help on the help command

4.2 quit

Quit the program. All program state is lost. In the next version it will be
possible to save the state of your streams before exiting.

4.3 Loading and Saving Streams

Each of the commands in this section works on a stream, which is the basic
unit on which pdb operates.

pdb> quit
Bye
localhost ?

Figure 6: Quit Command

4.3.1 load

Read a new stream from a file, or open a network connection. Currently
only pcap files are supported by the load command.

pdb> load filename tests/test.out

Figure 7: Load example

4.3.2 unload

Unload a previously loaded stream. If a numeric argument is supplied then
pdb will attempt to unload that stream. To see all the currently loaded
streams use the info command, discussed in Section |4.4.1

pdb> unload

Figure 8: Unload command

4.4 Inspecting a Stream

Once a STREAM is loaded into pdb you will want to work with it in various
ways. In this section we cover all the commands that allow you to inspect
and move through a STREAM.

4.4.1 info

Get information on all the streams currently loaded into pdb. The stream
displayed in Figure [9] has no breakpoints, was loaded from one of our stan-
dard test files, tests/test.out, has no filter set, and contains 63 packets.
We are currently at the first packet, position 0, in the stream. The Type is
not yet supported. The stream is an ISO Layer 2 stream, with a Datalink

type of Ethernet, which has a 14 byte offset between the link layer header
and the next protocol.

Stream 0O

Breakpoints []

File tests/test.out
Filter

Number of packets: 63
Current Position: O

Type
Layer: 2
Datalink: 1 Offset: 14
Figure 9: Getting info on a STREAM
4.4.2 print

The print command is used to show a single packet, either the current
packet or another one in the same stream.

0: <Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<ARP: spa: 3538819329L, tpa: 3538819566L, hln: 6, pro: 2048,
sha: ’\x00\r\x022{\x9c’, pln: 4, hrd: 1,
tha: ’\x00\x00\x00\x00\x00\x00’, op: 1>

Figure 10: print command

Figure shows the first, Oth, packet in one our supplied test files,
test.out. Packet 0 is an Ethernet frame containing an ARP request.

The print command gives a concise example of how packets are dis-
played by pdb. Packets are displayed from the lowest available layer, up-
wards towards the highest available layer, as viewed using the ISO standard
for networking. Ethernet is the lowest layer we have captured, and the only
other data we have is the ARP packet placed, logically speaking, on top of
it. Each layer is displayed on its own line.

With in each packet the fields are given somewhat human readable
names, that is, if the human is acquainted with network protocols. Most of

pdb assumes that the user has at least a passing understanding of network-
ing and the ability to look up information about packet formats and field
names on their own.

4.4.3 list

The 1ist command shows a subset of the packets in a stream. The number
of packets shown is controlled by the 1ist_length setting, see Section
which defaults to 10.

pdb> list
0: <Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<ARP: spa: 3538819329L, tpa: 3538819566L, hln: 6, pro: 2048, sha: ’>\x00\r\x022{\x9c

1: <Ethermet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<ARP: spa: 3538819329L, tpa: 3538819566L, hln: 6, pro: 2048, sha: ’\x00\r\x022{\x9c

2: <Ethernet: src: ’\x00\x17\xf2\xe8\x9ax’, dst: ’\x00\r\x022{\x9c’, type: 2048> <IP
<TCP: reset: 6, reserved: 0, sequence: 3630104920L, ack: 1, checksum: 1430, offset:
<Data: payload: 1346182712011260415243967349952109161301218375674401651612607957720

Figure 11: The list command

In Figure[L1] we see a subset of the packets printed by the 1ist command.
Each packet is represented just as it is with the print command, explained

in Section .42

4.4.4 next

To move within a STREAM there are two commands provided, the next
command moves you forward, while the prev command, Section moves
you backwards. An optional numeric argument can be given to move more
than 1 packet at a time. As we see in Figure [I2] each time you use the next
command the packet you have jumped to is printed for you, to let you know
where you are.

We were originally at packet number 1, shown by the print command,
and then after the next command we are at packet number 2. Attempts to
jump past the end or beginning of the stream are reported as errors, and no
change is made to your position in the STREAM.

pdb> print

1: <Ethermet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<ARP: spa: 3538819329L, tpa: 3538819566L, hln: 6, pro: 2048, sha: ’\x00\r\x022{\x9c

pdb> next

2: <Ethernet: src: ’\x00\x17\xf2\xe8\x9ax’, dst: ’\x00\r\x022{\x9c’, type: 2048> <IP
<TCP: reset: 6, reserved: 0, sequence: 3630104920L, ack: 1, checksum: 1430, offset:
<Data: payload: 1346182712011260415243967349952109161301218375674401651612607957720

Figure 12: The next command

4.4.5 prev

To move within a STREAM there are two commands provided, the prev com-
mand moves you backwards, while the next command, Section moves
you forwards. An optional numeric argument can be given to move more
than 1 packet at a time. Please refer to Section for more information.

4.5 Running a Stream

Once a stream is loaded or captured you may want to replay the stream on
an interface. In almost all cases playing raw packets back on an interface
requires special privileges, usually those associated with the root user. On
modern Unix systems (FreeBSD, NetBSD, OpenBSD, MacOS X, Linux,
Solaris, etc.) the best way to gain this privilege is via the sudo command.
If you do not understand what was just explained here, please stop, and find
someone to explain it to you.

4.5.1 run

The run command is used to play a stream of packets on an interface. To use
a network interface it must be specified when pdb is started, see Section [4.7]
and at the moment the network interface used for output must match the
type of interface on which the packets were captured. A stream of packets
captured on an Ethernet interface must be run on an Ethernet interface and
a stream of packets captures on the localhost, 100, interface must be played
back on the localhost interface.

There is no output from the run command to the CLI. When playback
is complete the command line returns, as seen in Figure

pdb> run
pdb>

Figure 13: The run command

4.5.2 break

One of the main features of any debugger is to be able to stop a program at
a specific point in its execution. Such a point is called a breakpoint and the
break command is used to set a breakpoint in a STREAM. Since pdb works
with streams of packets, and not lines of source code, the breakpoints are
set on packets, and not source code lines.

The break command sets a break point at a particular packet so that
when the stream is run, pdb will send packets up to the breakpoint, and
then stop, returning control to the user at the command line.

In FigurdI4] we have set a breakpoint at packet number 5, and then run
the stream using the run command. Just before pdb is about to transmit
packet number 5 it stops, and returns control to the user. The user can now
inspect the packet, wait for an event in their program, or do something else
with pdb.

pdb> break 5

pdb> run

Breakpoint at packet 5

5: <Ethernet: src: ’\x00\x17\xf2\xe8\x9a*’, dst: ’\x00\r\x022{\x9c’, type: 2048> <IF
<TCP: reset: 6, reserved: O, sequence: 3630104973L, ack: 1, checksum: 26250, offset
<Data: payload: 1346182712011260415245257091918700634841309286040022917535537639218

pdb>

Figure 14: The break command

4.5.3 continue

When pdb reaches a breakpoint, see Section [£.5.2] it halts transmitting
the packet stream. If the user were to give the run command again pdb
would start transmitting packets from the Oth packet and then reach the
same breakpoint again. The continue command continues transmitting
packets from the stream from the current point, the one it reached when it
hit the breakpoint. With the continue command it is possible to set and

10

reach several breakpoints and to then move consistently through the packet
stream.

4.6 Working with Packets

In the previous sections we were working with streams of packets, but not
with individual packets themselves.

4.6.1 send

The send command is used to send a single packet from the current stream.
When used without any arguments it sends the packet at the current posi-
tion. With a numeric argument it sends the packet at the numbered index
in the stream. No output is shown in the CLI when this command is used.

4.6.2 delete

The delete command is used to remove a packet from the packet stream.
When used without any arguments it deletes the packet at the current po-
sition. With a numeric argument deletes the packet at the numbered index
in the stream. No output is shown in the CLI when this command is used.

4.7 Debugger Options

Various options may be globally set for the packet debugger. The show and
set commands allow the user to see the options and to modify them.

4.7.1 show

The show command lists the values of all the possible packet debugger op-
tions. Currently there are only two options, 1list_length and layer. The
list_length option controls how many packets are displayed when the user
invokes the 1ist command, See Section [4.4.3

pdb> show
list_length = 10
layer = -1

Figure 15: Global Debugger Options

11

4.7.2 set

The layer option restricts packet output to a specific ISO layer. The default
value, -1, shows all layers simultaneously. If the user wants to only inspect
a particular layer of packets they can set this to any value from 1 through
7. Figure shows an example of output restricted to the data-link layer,
in this case, Ethernet.

pdb> set layer 2

pdb> list

0: <Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\xff\xff\xff\xff\xff\xff’, type: 2054>
<Ethernet: src: ’\x00\x17\xf2\xe8\x9ax’, dst: ’\x00\r\x022{\x9c’, type: 2048>
<Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\x00\x17\xf2\xe8\x9a*’, type: 2048>
<Ethernet: src: ’\x00\x17\xf2\xe8\x9ax’, dst: ’\x00\r\x022{\x9c’, type: 2048>
<Ethernet: src: ’\x00\x17\xf2\xe8\x9ax’, dst: ’\x00\r\x022{\x9c’, type: 2048>
<Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\x00\x17\xf2\xe8\x9ax*’, type: 2048>
<Ethernet: src: ’\x00\x17\xf2\xe8\x9ax’, dst: ’\x00\r\x022{\x9c’, type: 2048>
<Ethernet: src: ’\x00\x17\xf2\xe8\x9ax’, dst: ’\x00\r\x022{\x9c’, type: 2048>
<Ethernet: src: ’\x00\r\x022{\x9c’, dst: ’\x00\x17\xf2\xe8\x9a*’, type: 2048>

© 00 N O O WN =

Figure 16: Output restricted to Layer 2, datalink

12

	Introduction
	A Quick Tour
	Starting pdb
	Working with the Command Line

	Command Reference
	help
	quit
	Loading and Saving Streams
	load
	unload

	Inspecting a Stream
	info
	print
	list
	next
	prev

	Running a Stream
	run
	break
	continue

	Working with Packets
	send
	delete

	Debugger Options
	show
	set

