SWI-Prolog/XPCE Semantic Web Library

Jan Wielemaker
SWI,
University of Amsterdam
The Netherlands
E-mail: jan@swi.psy.uva.nl

October 19, 2004

Abstract

This document describes a library for dealing with standards from the W3C standard for the
Semantic WellLike the standards themselves (RDF, RDFS and OWL) this infrastructure is mod-
ular. It consists of Prolog packages for reading, querying and storing semantic web documents
as well as XPCE libraries that provide visualisation and editing. The Prolog libraries can be used
without the XPCE GUI modules. The library can handle upto about 2 miR@¥ tripleson
current commonly used hardware (256MB memory, Pentium 1.5Ghz).

Contents
1 Introduction
2 Modules

3 Module rdf _db

3.1 Querythe RDFdatabase,
3.2 Predicate properties. e e e e
3.3 Modifyingthedatabase e
3.3.1 Modifying predicates
3.3.2 Transactions. e e
3.4 Loadingandsavingtofile.
3.4.1 Partialsave.

3.4.2 Fastloadingandsaving

3.4.3 MD5digests. e e e e
3.5 NamespaceHandling.
3.6 Miscellaneous predicates. e
3.7 lIssueswithrdflb

4 Module rdfs

4.1 Hierarchy and class-individual relations.

4.2 Collections and Containers.

4.3 Labelsandtextual search.

5 Module owl

6 Module rdf _edit

6.1 Transactionmanagement. e e
6.2 Filemanagement
6.3 Encapsulated predicates

6.4 High-level modification predicates.

6.5 UNndo e
6.6 Journalling e e

6.7 Broadcasting change events

7 Related packages and issues

16

16
16
17
18
18
18
19
19

19

Hierachy GUI Select GUI Tabular GUI RDF Diagram GUI

A

Query Query
Assert
Retract Change Events
owl.pl ——Query—»| rdfs.pl update
\
Query Query
Assert
rdf.pl ——Assert—»| rdf_db.pl r<Retract rdf_edit.pl » broadcast.pl
update
? .) Action Log
Read Write Quick Save/Restore Restore
RDF documents RDF Triple-Store Journal

Figure 1: Modules for the Semantic Web library

1 Introduction

SWI-Prolog has started support for web-documents with the development of a small and fast
SGML/XML parser, followed by an RDF parser (early 2000). With gsmweb library we pro-

vide more high level support for manipulating semantic web documents. The semantic web is the
likely point of orientation for knowledge representation in the future, making a library designed in its
spirit promising.

2 Modules

Central to this library is the moduledf_db.pl , providing storage and basic querying for RDF
triples. This triple store is filled using the RDF parser realiseddiypl . The storage module

can quickly save and load (partial) databases. The moddfepl andowl.pl add querying

in terms of the more powerful RDFS and OWL languages. Moddteedit.pl adds editing,
undo, journaling and change-forwarding. Finally, a variety of XPCE modules visualise and edit the
database. Figure figufesummarised the modular design.

3 Module rdf _db

The central module is calleddf_db . It provides storage and indexed querying of RDF triples.
Triples are stored as a quintuple. The first three elements denote the RDFHitgpkmdLine provide
information about the origin of the triple.

{Subject Predicate Object File Line

3.1

The actual storage is provided by tieeeign language (Cinodulerdf_db.c . Using a dedicated
C-based implementation we can reduced memory usage and improve indexing capal@litiesntly
the following indexing is provided.

Any of the 3 fields of the triple
Subject+ PredicateandPredicate+ Object

Predicatesare indexed on thiighest propertyln other words, if predicates are related through
subPropertyOf predicates indexing happens on the most abstract predicate. This makes
calls tordf _has/4 very efficient.

String literal Objectsare indexed case-insensitive to make case-insensitive queries fully in-
dexed. Seedf/3

Query the RDF database

rdf(?Subject, ?Predicate, ?0bj¢ct

Elementary query for triplesSubjectand Predicateare atoms representing the fully qualified
URL of the resourceObjectis either an atom representing a resourcéteral (Valug if
the object is a literal value. If a value of the foldameSpacelD LocalNames provided it is
expanded to a ground atom usiexpand _goal/2 . This implies you can use this construct in
compiled code without paying a preformance penalty. See also sécfohiteral values take
one of the following forms:

Atom
If the value is a simple atom it is the textual representation of a string literal without
explicit type or languagex(nl:lang) qualifier.

lang(LangID, Aton)
Atomrepresents the text of a string literal qualified with the given language.

type(TypelD, Valug
Used for attributes qualified using thelf.dataType TypelD The Value is ei-

ther the textual representation or a natural Prolog representation. See the option
convert _typed _literal (:Converto) of the parser. The storage layer provides ef-
ficient handling of atoms, integers and floats. All other data is represented as a Prolog
record.

For string querying purpose§bjectcan be of the forniteral (+Query, -Valug, where
Queryis one of

exact@Tex)
Perform exact, but case-insensitive match. This query is fully indexed.

substring(+Texf)
Match any literal that containgextas a case-insensitive substring. The query is not in-
dexed orObject

The orginal implementation was in Prolog. This version was implemented in 3 hours, where the C-based implemen-
tation costed a full week. The C-based implementation requires about half the memory and provides about twice the
performance.

word(+Tex?)
Match any literal that containBextdelimited by a non alpha-numeric character, the start
or end of the string. The query is not indexed®@bject

prefix(+Texi)
Match any literal that starts witfiext This call is intended focompletion The query is
not indexed orDbject

like(+Pattern)
Match any literal that matché®atterncase insensitively, where the ‘*’ characteHattern
matches zero or more characters.

Backtracking never returns duplicate triples. Duplicates can be retrievedrdéihg .

rdf(?Subject, ?Predicate, ?Object, ?Soyrce
As rdf/3 but in addition return the source-location of the triple. The source is either a plain
atom or a term of the formaktom: IntegerwhereAtomis intended to be used as filename
or URL andIntegerfor representing the line-number. Unlikdf/3 , this predicate does not
remove duplicates from the result set.

rdf _has(?Subject, ?Predicate, ?Object, -TripleP)ed
This query exploits the RDFSubPropertyOf relation. It returns any triple whose stored
predicate equalRredicateor can reach this by following the recursisabPropertyOfelation.
The actual stored predicate is returnedriiplePred The example below gets all subclasses
of an RDFS (or OWL) class, even if the relation used isndés:subClassOf , but a user-
defined sub-property theredf.

subclasses(Class, SubClasses) :-
findall(S, rdf_has(S, rdfs:subClassOf, Class), SubClasses).

Note thatrdf _has/4 andrdf _has/3 can return duplicate answers if they use a different
TriplePred

rdf _has(?Subject, ?Predicate, ?0bjgct
Same asdf _has (Subject, Predicate, Objec),.

rdf _reachable(?Subject, +Predicate, ?0bjact
Is true if Objectcan be reached fror8ubjectfollowing the transitive predicatBredicateor
a sub-property thereof. When used with eitlSeibjector Objectunbound, it first returns the
origin, followed by the reachable nodes in breath-first search-order. It never generates the same
node twice and is robust against cycles in the transitive relation. With all arguments instantiated
it succeeds deterministically of the relation if a path can be found f&ubjectto Object
Searching starts &ubject assuming the branching factor is normally lower. A call with both
SubjectandObjectunbound raises an instantiation error. The following example generates all
subclasses afifs:Resource

2This predicate realises semantics defined in RDF-Schema rather than RDF. It is partdif tdé module because
the indexing of this module incorporates this:subClassOf predicate.

?- rdf_reachable(X, rdfs:subClassOf, rdfs:'Resource’).

X = ’http://www.w3.0rg/2000/01/rdf-schema#Resource’ ;
X = ’http://www.w3.0rg/2000/01/rdf-schema#Class’ ;
X = ’http://lwww.w3.0rg/1999/02/22-rdf-syntax-ns#Property’ ;

rdf _subject(?Subject
Enumerate resources appearing as a subject in a triple. The main reason for this predicate is to
generate the known subjeatdithout duplicatess one gets usinglf (Subject,,).

3.2 Predicate properties

The predicates below form an experimental interface to provide more reasoning inside the kernel of
the rdhdb engine. Note thaymetric ,inverse _of andtransitive are not yet supported by
the rest of the engine.

rdf _set predicate(+Predicate, +Property
Define a property of the predicate. Defined properties are listed with
rdf _predicate _property/2

rdf _predicate_property(+Predicate, -Property
Query properties of a defined predicate. Currently defined properties are given below.

symmetric(Bool)

True if the predicate is defined to be symetric. {&} P {B} implies{B} P {A}.
inverse.of(Inversg

True if this predicate is the inverse lriverse

transitive(Bool)
True if this predicate is transitive.

triples(Triples)
Unify Tripleswith the number of existing triples using this predicate as second argument.
Reporting the number of triples is intended to support query optimization.

rdf _subject branch_factor(-Float)
Unify Float with the average number of triples associated with each unique value for the
subject-side of this relation. If there are no triples the value 0.0 is returned. This value is
cached with the predicate and recomputed only after substantial changes to the triple set
associated to this relation. This property is indented for path optimalisation when solving
conjunctions ofdf/3 goals.

rdf _object_branch_factor(-Float)
Unify Float with the average number of triples associated with each unique value for the
object-side of this relation. In addition to the comments with the suljesxtichfactor
property, uniqueness of the object value is computed from the hash key rather than the
actual values.

rdfs_subject branch_factor(-Float)
Same asdf _subject _branch _factor/l , but also considering triples of ‘subProp-
ertyOf’ this relation. See alsalf _has/3 .

rdfs_object_branch_factor(-Float)
Same asdf _object _branch _factor/l , but also considering triples of ‘subProper-
tyOf’ this relation. See alsadf _has/3 .

3.3 Modifying the database

As depicted in figurel, there are two levels of modification. Thdf_db module simply modifies,
where thedf_edit library provides transactions and undo on top of this. Applications that wish to
use thedf _edit layer musteveruse the predicates from this section directly.

3.3.1 Modifying predicates

rdf _assert@-Subject, +Predicate, +Objegt
Assert a new triple into the database. This is equivalemtito_assert/4 usingSourceRef
user . Subjectand Predicate are resources. Object is either a resource or a term
literal (Value. Seerdf/3 for an explanation o¥aluefor typed and language qualified
literals. All arguments are subject to name-space expansion (see skgjion

rdf _assert(-Subject, +Predicate, +Object, +SourceRef
Asrdf _assert/3 , addingSourceRefo specify the orgin of the tripleéSourceReis either an
atom or a term of the formaktomint whereAtomnormally refers to a filename andt to the
line-number where the description starts.

rdf _retractall(?Subject, ?Predicate, ?0bjéct
Removes all matching triples from the database. Previous Prolog implementations also pro-
vided a backtrackingdf _retract/3 , but this proved to be rarely used and could always be
replaced withrdf _retractall/3 . Asrdf _retractall/4 using an unboun8ourceRef

rdf _retractall(?Subject, ?Predicate, ?Object, ?SourcgRef
Asrdf _retractall/4 , also matching on th8ourceRefThis is particulary useful to update
all triples coming from a loaded file.

rdf _update(+Subject, +Predicate, +Object, +Actign
Replaces one of the three fields on the matching triples dependiAgtmm

subject(Resource
Changes the first field of the triple.
predicate(Resource
Changes the second field of the triple.
object(Objec)
Changes the last field of the triple to the given resourdéeral (Value.
sourceSourcé

Changes the source locatigraf/load. Note that updating the source has no consequences
for the semantics and therefore tienerationseerdf _generation/1) isnotupdated.

rdf _update(+Subiject, +Predicate, +Object, +Source,+Actipn
Asrdf _update/4 but allows for specifying the source.

3.3.2 Transactions

The predicates from sectidh3.1perform immediate and atomic modifications to the database. There
are two cases where this is not desirable:

1. If the database is modified using information based on reading the same database. A typical
case is a forward reasoner examining the database and asserting new triples that can be deduced
from the already existing ones. For exampplléength(X) ¢, 2 then size(X) is large

(rdf(X, length, literal(L)),
atom_number(L, IL),
IL > 2,
rdf_assert(X, size, large),
fall

; true

Running this code without precautions causes an error becdiis@assert/3 tries to get a
write lock on the database which has an a read operation (rdf/3 has choicepoints) in progress.

2. Multi-threaded access making multiple changes to the database that must be handled as a unit.

Where the second case is probably obvious, the first case is less so. The storage layer may require
reindexing after adding or deleting triples. Such reindexing operatations however are not possible
while there are active read operations in other threads or from choicepoints that can be in the same
thread. For this reason we addet _transaction/1 . Note that, like the predicates from sec-
tion 3.3.1, rdf _transaction/1 raises a permission error exception if the calling thread has active
choicepoints on the database. The problem is illustrated belowrdff$e call leaves a choicepoint
and as the read lock originates from the calling thread itself the system will deadlock if it would not
generate an exception.

1 ?- rdf_assert(a,b,c).

Yes
2 ?- rdf_assert(a,b,d).

Yes

3 ?- rdf(a,b,X), rdf transaction(rdf_assert(a,b,e)).

ERROR: No permission to write rdf_db ‘default’ (Operation would deadlock)
Exception: (8) rdf db:rdf_transaction(rdf_assert(a, b, €)) ? no debug

4 ?-

rdf _transaction(:Goal)
After starting a transaction, all predicates from sec8dhlappend their operation to th&ns-
actioninstead of modifying the database Gbal succeeds rdfransaction cuts all choicepoints
in Goaland executes all recorded operationgstfal fails or throws an exception, all recorded
operations are discarded araf _transaction/1 fails or re-throws the exception.

On entry, rdf _transaction/1 gains exclusive access to the database, but does al-
low readers to come in from all threads. After the successful completiorGal

rdf _transaction/1 gains completely exclusive access while performing the database up-
dates.

Transactions may be nested. Committing a nested transactions merges its change records into
the outer transaction, while discarding a nested transaction simply destroys the change records
belonging to the nested transaction.

3.4 Loading and saving to file

Therdf_db module can read and write RDF-XML for import and export as well as a binary format
built for quick load and save described in sectboi.2 Here are the predicates for portable RDF load
and save.

rdf _load(+In)
Load triples fromIn, which is either a stream opened for reading or an atom specifying a
filename. This predicate calfgocess _rdf/3 to read the source one description at a time,
avoiding limits to the size of the input. Ih is a file, rdf _load/1 provides for caching
the results for quick-load usinglf _load _db/1 described below. Caching is activated by
creating a directorycache (or _cache on Windows) in the directory holding thedf
files. Cached RDF files are loaded at approx. 25 times the speed of RDF-XML files.

rdf _load(+File, +Options)
Asrdf _load/1 , providing additional options. The options are handed to the RDF parser as
implemented byrocess _rdf/3

rdf _unload(+Speqg
Remove all triples loaded fro@pec In the current implementatioBpeamust refer to a file.

rdf _save(-File)
Save all known triples to the givefile. Same asdf _save (File, []).

rdf _savefFile, +Options)
Save with options. Provided options are:

db(+FileRef)
Save all triples whose file-part of thé&ourceRematcheds-ileRefto the giverFile. Saving
arbitrary selections is possible using predicates from seé&tibn.

anon(+Bool)
if anon (false is provided anonymous resources are only saved if the resource appears in
the object field of another triple that is saved.

convert typed._literal(:Converte)
If present, raw literal values are first passedConverterto apply the reverse of the
convert _typed _literal option of the RDF parser. Th€onverteris called with
the same arguments as in the RDF parser, but now with the last argument instantiated and
the first two unbound. A proper convertor that can be used for both loading and saving
must be a logical predicate.

rdf _source(File)
Test or enumerate the files loaded usidfy _load/1

rdf _make
Re-load all RDF sourcefiles (segf _source/l) that have changed since they were loaded
the last time. This implies all triples that originate from the file are removed and the file is
re-loaded. If the file is cached a new cache-file is written. Please note that the new triples are
added at the end of the database, possibly changing the order of (conflicting) triples.

3.4.1 Partial save

Sometimes it is necessary to make more arbitrary selections of material to be saved or exchange RDF
descriptions over an open network link. The predicates in this section provide for this.

rdf _save header(Stream, +Option¥
Save an RDF header, with the XML heade@CTYPEENTITY and opening thedf:RDF
element with appropriate namespace declarations. It uses the primitives from sebtton
generate the required namespaces and desired short-Ggtnensis one of:

db(+FileRef)
Only search for namespaces used in triples labeled KiligiRef

rdf _savefooter(+Strean)
Close the work opened wittdf _save _header/2

rdf _savesubject(+Stream, +Subject, +FileRgf
Save everything known abo8ubjecthat matchegileRef Using an variable foFileRefsaves
all triples with Subject

3.4.2 Fastloading and saving

Loading and saving RDF format is relatively slow. For this reason we designed a binary format that
is more compact, avoids the complications of the RDF parser and avoids repetitive lookup of (URL)
identifiers. Especially the speed improvement of about 25 times is worth-while when loading large
databases. These predicates are used for cachirdf byoad/[1,2] under certain conditions.

rdf _savedb(+File)
Save all known triples int&ile. The saved version includes tBeurceReinformation.

rdf _savedb(+File, +FileRef)
Save all triples wittfSourceRef FileRefegardless of the line-number. For example, usisgyr
all information added usingdf _assert/3 s stored in the database.

10

rdf _load_db(+File)
Load triples fromFile.

3.4.3 MD5 digests

Therdf_db library provides foiMD5 digests An MD5 digest is a 128 bit long hash key computed
from the triples based on the RFC-1321 standard. MD5 keys are computed for each individual triple
and added together to compute the final key, resulting in a key that describes the triple-set but is
independant from the order in which the triples appear. It is claimed that it is practically impossible
for two different datasets to generate the same MD5 key. The Triple20 editor uses the MD5 key for
detecting whether the triples associated to a file have changed as well as to maintain a directory with
snhapshots of versioned ontology files.

rdf _.md5(+Source, -MD5
Return the MD5 digest for all triples in the database associat€dtoce The MD5 digest it-
self is represented as an atom holding a 32-character hexadecimal string. The library maintains
the digest incrementally ordf _load/[1,2] , rdf _load _db/1 , rdf _assert/[3,4]

andrdf _retractall/[3,4] . Checking whether the digest has changed since the last
rdf _load/[1,2] call provides a practical means for checking whether the file needs to be
saved.

rdf _atom_md5(+Text, +Times, -MD%
Computes the MD5 hash frofext which is an atom, string or list of character cod@snesis
an integer> 1. When> 0, the MD5 algorithm is repeatefimestimes on the generated hash.
This can be used for password encryption algorithms to make generate-and-test loops slow.

This predicate bears little relation to RDF handling. It is provided because the RDF library
already contains the MD5 algorithm and semantic web services may involve security and con-
sistency checking. This predicate provides a platform independant alternative doyphe

library provided with theclib package.

3.5 Namespace Handling

Prolog code often contains references to constant resources in a known XML namespace. For exam-
ple, http://www.w3.0rg/2000/01/rdf-schema#Class refers to the most general notion

of a class. Readability and maintability concerns require for abstraction here. The dynamic and
multifile predicate rdfdb:ns/2 maintains a mapping between short meaningful names and hamespace
locations very much like the XMIxmins construct. The initial mapping contains the namespaces
required for the semantic web languages themselves:

ns(rdf, ’http://www.w3.0rg/1999/02/22-rdf-syntax-ns#’).
ns(rdfs, ’http://www.w3.0rg/2000/01/rdf-schema#’).
ns(owl, ’http://www.w3.0rg/2002/7/owl#’).

ns(xsd, ’http://www.w3.0rg/2000/10/XMLSchema#’).
ns(dc, 'http://purl.org/dc/elements/1.1/").

ns(eor, ’http://dublincore.org/2000/03/13/eor#’).

All predicates for the semweb libraries ugeal _expansion/2 rules to make the SWI-Prolog
compiler rewrite terms of the forrd : Local into the fully qualified URL. In addition, the following
predicates are supplied:

11

rdf _equal(Resourcel, Resource?2
Defined asResourcet= Resource2 As this predicate is subject to goal-expansion it can be
used to obtain or test global URL values to readable values. The following goal Uifigh
http://www.w3.0rg/2000/01/rdf-schema#Class without more runtime overhead
than normal Prolog unification.

rdf_equal(rdfs:’Class’, X)

rdf _register_ns(+Alias, +URL)
Register Alias as a shorthand fotJRL Note that the registration must be done before
loading any files using them as namespace aliases are handled at compiletime through
goal _expansion/2

rdf _global_id(?Alias:Local, ?Globa)
Runtime translation betweehias andLocal and aGlobal URL. Expansion is normally done
at compiletime. This predicate is often used to turn a global URL into a more readable term.

rdf _global_object(?Object, ?NameExpandedObject
As rdf _global _id/2 , but also expands the type field if the object is of the form
literal (type (Type, Valug) This predicate is used for goal expansion of the object fields in
rdf/3 and similar goals.

rdf _global_term(+TermO, -Term
Expands allAlias.Local in TermOand return the result iierm Use infrequently for runtime
expansion of namespace identifiers.

rdf _split_url(?Base, ?Local, ?URL
Split a URL into a prefix and local part if used in mode -,-,+ or simply behave as
atom _concat/3 in other modes. ThE/RL is split on the last or/ character.

3.6 Miscellaneous predicates

This section describes the remaining predicates ofdhelb module.

rdf _node(Id)
Generate a unique reference. The returned atom is guaranteed not to occur in the current
database in any field of any triple.

rdf _bnode¢Id)
Generate a unique blank node reference. The returned atom is guaranteed not to occur in the
current database in any field of any triple and starts withriode’.

rdf _is_.bnode(Id)
Succeeds ifd is a blank node identifier (also calleshonymous resourgeln the current im-
plementation this implies it is an atom starting with a double underscore.

rdf _sourcelocation(+Subject, -SourceRef
Return the source-location &le:Line of the first triple that is abousubject

12

rdf _generation(-Generation
Returns the&senerationof the database. Each maodification to the database increments the gen-
eration. It can be used to check the validity of cached results deduced from the database. Mod-
ifications changing multiple triples increme@enerationwith the number of triples modified,
providing a heuristic for ‘how dirty’ cached results may be.

rdf _estimate complexity(R)
eturn the number of alternatives as indicated by the database internal hashed indexing. This is a
rough measure for the number of alternatives we can expect fifarhas/3 call using the
given three arguments. When called with three variables, the total number of triples is returned.
This estimate is used in query optimisation. See atfo_predicate _property/2 and
rdf _statistics/1 for additional information to help optimisers.

rdf _statistics(?Statistic3
Report statistics collected by theéf_db module. Defined values f@tatisticsare:

lookup(?Index, -Count
Number of lookups using a pattern of instantiated fieltlsddexis a termrdf (S,P,Q,
whereS P andO are either+ or -. For exampladf (+,+,-) returns the lookups with
subject and predicate specified and object unbound.
properties(-Coun)
Number of unique values for the second field of the triple set.
sources{Coun)
Number of files loaded throughlf _load/1
subjects¢Coun)
Number of unique values for the first field of the triple set.
triples(-Coun)
Total number of triples in the database.

rdf _match_label(+Method, +Search, +Atom
True if SearchmatcheAtomas defined byvlethod All matching is performed case-insensitive.
Defines methods are:

exact
Perform exact, but case-insensitive match.

substring
Searchis a sub-string offext

word
Searchappears as a whole-word Tiext
prefix
Textstart withSearch
like
TextmatchesSearch case insensitively, where the *' characterSearchmatches zero or
more characters.

rdf _resetdb
Erase all triples from the database and reset all counts and statistics information.

13

rdf _version(-Version
Unify Versionwith the library version number. This number is, like to the SWI-Prolog version
flag, defined a30, 000 x Major + 100 x Minor + Patch.

3.7 Issues with rdfdb

This RDF low-level module has been created after two year experimenting with a plain Prolog based
module and a brief evaluation of a second generation pure Prolog implementation. The aim was to be
able to handle upto about 2 million triples on standard (notebook) hardware and deal efficiently with
subPropertyOf which was identified as a crucial feature of RDFS to realise fusion of different
data-sets.

The following issues are identified and not solved in suitable manner.

Logical update as provided by Prolog means that active queries are not affected by subsequent mod-
ification of the database. The current C-based implementation adherigsntieeliateupdate
model, mainly because the current foreign language interface does not provide the required
information to realise logical updates in C.

subPropertyOf of subPropertyOf is not supported.

Equivalence Similar to subPropertyOf , it is likely to be profitable to handle resource identity
efficient. The current system has no support for it.

4 Module rdfs

Therdfs library adds interpretation of the triple store in terms of concepts from RDF-Schema
(RDFS).

4.1 Hierarchy and class-individual relations

The predicates in this section explore ttis:subPropertyOf , rdfs:subClassOf and
rdf:type relations. Note that the most fundamental of thedés:subPropertyOf , is also
used byrdf _has/[3,4]

rdfs_subproperty_of(?SubProperty, ?Properly
True if SubPropertys equal tdPropertyor Propertycan be reached fro@ubPropertyollowing
therdfs:subPropertyOf relation. It can be used to test as well as generate sub-properties
or super-properties. Note that the commonly used semantics of this predicate is wired into
rdf _has/[3,4] 32

rdfs_subclassof(?SubClass, ?Clajs
True if SubClassis equal toClassor Classcan be reached frorBubClassfollowing the
rdfs:subClassOf relation. It can be used to test as well as generate sub-classes or super-
classes.

3BUG: The current implementation cannot deal with cycles

4BUG: The current implementation cannot deal with predicates that arerdéisubPropertyOf of
rdfs:subPropertyOf , such a®wl:samePropertyAs

SBUG: The current implementation cannot deal with cycles

14

rdfs _classproperty(+Class, ?Property
True if the domain oPropertyincludesClass Used to generate all properties that apply to a
class.

rdfs_individual _of(?Resource, ?Cla¥s
True if Resourcas an indivisual ofClass This impliesResourcéhas arrdf:itype property
that refers taClassor a sub-class thereof. Can be used to test, generate dRessagrcdoelongs
to or generate individuals described Glass

4.2 Collections and Containers

The RDF constructdf:parseType =Collection constructs a list using thaf:first and
rdf:next relations.

rdfs_member(?Resource, +Sgt
Test or generate the members 8kt Setis either an individual ofrdf:List or
rdf:Container

rdfs_list_to_prolog_list(+Set, -Lis)
ConvertSet which must be an individual afif:List into a Prolog list of objects.

rdfs_assertlist(+List, -Resourcg
If Listis a list of resources, create an RDF kRasourcehat reflects these resourcé&source
and the sublist resources are generated with_bnode/1 .

4.3 Labels and textual search

Textual search is partly handled by the predicates fromrdifie.db module and its underlying C-
library. For example, literal objects are hashed case-insensitive to speed up the commonly used case-
insensitive search.

rdfs_label(?Resource, ?Language, ?Lapel
Extract the label fronResourceor generate all resources with the givieabel The label is
either associated using a sub-propertydst:label or it is extracted from the URL using
rdf _split _url/3 . Languagds unified to the value of theml:lang attribute of the label
or a variable if the label has no language specified.

rdfs_label(?Resource, ?Labgl
Defined agdfs _label (Resource,, Labe).

rdfs_ns_label(?Resource, ?Language, ?Lapel
Similar tordfs _label/2 , but prefixes the result using the declared namespace alias (see
section3.5) to facilitate user-friendly labels in applications using multiple namespaces that may
lead to confusion.

rdfs_ns_label(?Resource, ?Labgl
Defined agdfs _ns _label (Resource,, Labe).

15

rdfs _find(+String, +Description, +Properties, +Method, -Subjgct
Find (on backtrackingpubjecs that satisfy a search specification for textual attribusésngis
the string searched foDescriptionis an OWL description (see sectihspecifying candidate
resources Propertiesis a list of properties to search for literal objects whetts:labelis re-
placed by a call tedfs _label/2 and finally,Methoddefines the textual matching algorithm.
All textual mapping is performed case-insensitive. The matching-methods are described with
rdf _match _label/3

5 Module owl

The current SemWeb library distributed with SWI-Prolog does not yet contain an OWL module. A
moduleowl.pl is part of the Triple20 triple browser and editor provides limited support for OWL
reasoning.

6 Module rdf edit

The modulerdf_edit.pl is a layer than encasulates the maodification predicates from s&cBion
for use from a (graphical) editor of the triple store. It adds the following features:

e Transaction management
Maodifications are grouped intimansactiongo safeguard the system from failing operations as
well as provide meaningfull chunks for undo and journalling.

e Undo
Undo and redo-transactions using a single mechanism to support user-friendly editing.

e Journalling
Record all actions to support analysis, versioning, crash-recovery and an alternative to saving.

6.1 Transaction management
Transactions group low-level modification actions together.

rdfe _transaction(:Goal)
RunGoal, recording all modifications to the triple store made through seéti@rExecution is
performed as ionce/l . If Goal succeeds the changes are committecdél fails or throws
an exception the changes are reverted.

Transactions may be nested. A failing nested transaction only reverts the actions performed in-
side the nested transaction. If the outer transaction succeeds it is committed normally. Contrary,
if the outer transaction fails, comitted nested transactions are reverted as well. If any of the mod-
ifications inside the transaction modifies a protected filer@ke _set _file _property/2)

the transaction is reverted ardfe _transaction/1 throws a permission error.

A successful outer transaction (‘level-0") may be undone usilfiy _undo/0 .
rdfe _transaction(:Goal, +Namg
As rdfe _transaction/1 , haming the transactiolame Transaction naming is in-

tended for the GUI to give the user an idea of the next undo action. See also
rdfe _set _transaction _name/1 andrdfe _transaction _name/2 .

16

rdfe _settransaction_name(+Name
Set the ‘name’ of the current transactionrName

rdfe _transaction_.name(?TID, ?Nam¢g
Query assigned transaction names.

rdfe _transaction_.member(+TID, -Action)
Enumerate the actions that took place inside a transaction. This can be used by a GUI to
optimise the MVC (Model-View-Controller) feedback loofsctionis one of:

assertSubject, Predicate, Object
retract(Subject, Predicate, Objéct
update(Subiject, Predicate, Object, Actipn
file(load(Path)

file(unload(Path)

6.2 File management

rdfe _is_modified(?File)
Enumerate/test whethdfile is modified sinds it was loaded or sinds the last call to
rdfe _clear _modified/l . Whether or not a file is modified is determined by the MD5
checksum of all triples belonging to the file.

rdfe _clear_modified(+File)
Set theunmodified-MD35o the current MD5 checksum. See atsfe _is _modified/1

rdfe _setfile_property(+File, +Property)
Control access right and default destination of new tripR¥spertyis one of

accesstAccess’
Where access isonedf orrw. Accesso is default when a file is loaded for which the
user has no write access. If a transaction (sée _transaction/1) modifies a file
with accesso the transaction is reversed.

default(+Default)
Set this file to be the default destination of triplesDEfaultis fallback it is only the
default for triples that have no clear default destination. If ialis all new triples are
added to this file.

rdfe _get file_property(?File, ?Property
Query properties set wittdfe _set _file _property/2

17

6.3 Encapsulated predicates

The following predicates encapsulate predicates fromdhalb module that modify the triple store.
These predicates can only be called when insittarssaction Seerdfe _transaction/1

rdfe_assert+Subject, +Predicate, +Objegt
Encapsulatesdf _assert/3

rdfe_retractall(?Subject, ?Predicate, ?0Objéct
Encapsulatesdf _retractall/3

rdfe _update(+Subject, +Predicate, +Object, +Actign
Encapsulatesdf _update/4

rdfe_load(+In)
Encapsulatesdf _load/1

rdfe _unload(+In)
Encapsulatesdf _unload/1

6.4 High-level modification predicates

This section describes a (yet very incomplete) set of more high-level operations one would like to be
able to perform. Eventually this set may include operations based on RDFS and OWL.

rdfe_delete(tResourcé
Delete all traces ofesource This implies all triples wher&esourceppears asubject predi-
cateor object This predicate starts a transation.

6.5 Undo

Undo aims at user-level undo operations from a (graphical) editor.

rdfe_undo
Revert the last outermost (‘level 0’) transaction (sdfe _transaction/1). Successive
calls go further back in history. Fails if there is no more undo information.

rdfe_redo
Revert the lastdfe _undo/0 . Successive calls revert mardfe _undo/O operations. Fails
if there is no more redo information.

rdfe_can.undo(-TID)
Test if there is another transaction that can be reverted. Used for activating menus in a graphical
environment.TID is unified to the transaction id of the action that will be reverted.

rdfe_can.redo(-TID)
Test if there is another undo that can be reverted. Used for activating menus in a graphical
environment.TID is unified to the transaction id of the action that will be reverted.

18

6.6 Journalling

Optionally, every action through this module is immediately sendjtuenal-file. The journal pro-
vides a full log of all actions with a time-stamp that may be used for inspection of behaviour, version
management, crash-recovery or an alternative to regular save operations.

rdfe _openjournal(+File, +Mode)
Open a existing or new journal. Modeequalaappend andFile exists, the journal is first
replayed. Seedfe _replay _journal/l . If Modeis write the journal is truncated if it
exists.

rdfe _closejournal
Close the currently open journal.

rdfe_current _journal(-Path)
Test whether there is a journal and to which file the actions are journalled.

rdfe_replay_journal(+File)
Read a jorunal, replaying all actions in it. To do so, the system reads the journal a transaction
at a time. If the transaction is closed witlcammitit executes the actions inside the journal.
If it is closed with arollback or not closed at all due to a crash the actions inside the journal
are discarded. Using this predicate only makes sense to inspect the state at the end of a journal
without modifying the journal. Normally a journal is replayed using #ppend mode of
rdfe _open _journal/2

6.7 Broadcasting change events

To realise a modular graphical interface for editing the triple store, the system must use some sort of
eventmechanism. This is implemented by the XPCE librargadcast which is described in the
XPCE User Guide. In this section we describe the terms brodcasted by the library.

rdf _transaction(+ld)
A ‘level-0’ transaction has been committed. The system passes the identifier of the transaction
in Id. In the current implementation there is no way to find out what happened inside the
transaction. This is likely to change in time.

If a transaction is reverted due to failure or exceptmrevent is broadcasted. The initiating
GUI element is supposed to handle this possibility itself and other components are not affected
as the triple store is not changed.

rdf _undo(+Type, +Id)
This event is broadcasted aftermiie _undo/O orrdfe _redo/0 . Typeis one ofundo or
redo andld identifies the transaction as above.

7 Related packages and issues

The SWI-Prolog SemWeb package is designed to provide access to the Semantic Web languages
from Prolog. It consists of the low levetlf db.pl store with layers such aslfs.pl to pro-
vide more high level querying of a triple set with relations suchrdgfs _individual _of/2

19

rdfs _subclass _of/2 , etc. SeRQL is a semantic web query language taking another route. In-
stead of providing alternative relations SeRQL defines a graph query dadietive closuref the
triple set. For example, under assumption of RDFS entailment rules this makes thedfués
rdf:type, Clas}equivalent tardfs _individual _of (S, Clas}.

We developed a parser for SeRQL which compiles SeRQL path expressions into Prolog conjunc-
tions ofrdf (Subject, Predicate, Objéatalls. Entailment modulesealise a fully logical implementa-
tion of rdf/3 including the entailment reasoning required to deal with a Semantic Web language or
application specific reasoning. The infra structure is completed with a query optimiser and an HTTP
server compliant to the Sesame implementation of the SeRQL language. The Sesame Java client can
be used to access Prolog servers from Java, while the Prolog client can be used to access the Sesame
SeRQL server. For further details, see the project home.

20

Index
atomconcat/3,12

broadcast]9
broadcastibrary, 19

Collection
parseTypel5
cryptlibrary, 11

event,19
expandgoal/2,4

goalexpansion/2]11, 12
journal, 16, 19

once/l,16

optimising
query,20

OWL, 16

parseType
Collection,15
processdf/3,9

RDF-Schemal4
rdf/3,4-8, 12, 20
rdf/4,5
rdf_assert/37
rdf_assert/47
rdf_atommd5/3,11
rdf_bnode/1,12
rdf_dblibrary, 5, 15
rdf_equal/2,12
rdf_generation/113
rdf_globalid/2, 12
rdf_global object/2,12
rdf_globalterm/2,12
rdf_has/3,5
rdf_has/45
rdf_is_.bnode/1,12
rdf_load/1,9
rdf_load/2,9
rdf_load .db/1,11
rdf_make/0,10
rdf_matchlabel/3,13

21

rdf_-md5/2,11
rdf_node/1,12
rdf_predicateproperty/2,6
rdf_reachable/35
rdf_registerns/2,12
rdf_resetdb/0,13
rdf_retractall/3,7
rdf_retractall/4,7
rdf_save/19
rdf_save/29
rdf_savedb/1,10
rdf_savefooter/1,10
rdf_saveheader/210
rdf_savesubject/3,10
rdf_setpredicate/26
rdf_source/110
rdf_sourcelocation/2,12
rdf_split_url/3, 12
rdf_statistics/113
rdf_subject/16
rdf_transaction/19
rdf_unload/1,9
rdf_update/47
rdf_update/58
rdf_version/1,14
rdf_assert/37, 8, 10, 18
rdf_assert/4;7
rdf_assert/[3

4], 11
rdf_bnode/1,15
rdf_generation/17
rdf_globalid/2, 12
rdf_has/3)5, 7, 13
rdf_has/44, 5
rdf_has/[3

4], 14
rdf_load/1,9, 10, 13, 18
rdf_load/[1

2], 10,11
rdf_load.db/1,9, 11
rdf_matchlabel/3,16

rdf_predicateproperty/2,6, 13

rdf_retractall/3,7, 18
rdf_retractall/4,7

rdf_retractall/[3

4], 11
rdf_saveheader/210
rdf_source/110
rdf_split_url/3, 15
rdf_statistics/1,13
rdf_transaction/18, 9
rdf_unload/1,18
rdf_update/48, 18
rdfe_assert/318
rdfe_.canredo/1,18
rdfe_.canundo/1,18
rdfe_clearmodified/1,17
rdfe_closejournal/0,19
rdfe_currentjournal/1,19
rdfe_delete/1,18
rdfe_getfile_property/2,17
rdfe_is_modified/1,17
rdfe_load/1,18
rdfe_openjournal/2,19
rdfe_redo/0,18
rdfe_replayjournal/1,19
rdfe_retractall/3,18
rdfe_setfile_property/2,17
rdfe_settransactiomname/1,17
rdfe_transaction/116
rdfe_transaction/216
rdfe_transactioomember/2,17
rdfe_transactiooname/217
rdfe_undo/0,18
rdfe_unload/1,18
rdfe_update/418
rdfe_clearmodified/1,17
rdfe_is_modified/1,17
rdfe_openjournal/2,19
rdfe_redo/0,19
rdfe_replayjournal/1,19
rdfe_setfile_property/2,16, 17
rdfe_settransactiorname/1,16
rdfe_transaction/116-18
rdfe_transactiooname/2,16
rdfe_.undo/0,16, 18, 19
rdfslibrary, 14
rdfs.asserlist/2, 15
rdfs_classproperty/2,15
rdfs_find/5, 16
rdfs_individualof/2, 15

22

rdfs_label/2,15
rdfs_label/3,15
rdfs_list_to_prolog list/2, 15
rdfs.member/215
rdfs_ns.label/2,15
rdfs_ns label/3,15
rdfs_subclasf/2, 14
rdfs_subpropertyof/2, 14
rdfs_individualof/2, 19
rdfs_label/2,15, 16
rdfs_subclasf/2, 20

search16
SeRQL,19
Sesame]9

transaction8
transactions] 6

undo,16, 18

	Introduction
	Modules
	Module rdf_db
	Query the RDF database
	Predicate properties
	Modifying the database
	Modifying predicates
	Transactions

	Loading and saving to file
	Partial save
	Fast loading and saving
	MD5 digests

	Namespace Handling
	Miscellaneous predicates
	Issues with rdf_db

	Module rdfs
	Hierarchy and class-individual relations
	Collections and Containers
	Labels and textual search

	Module owl
	Module rdf_edit
	Transaction management
	File management
	Encapsulated predicates
	High-level modification predicates
	Undo
	Journalling
	Broadcasting change events

	Related packages and issues

