
PyTables User's Guide

Hierarchical datasets in Python - Release 1.4

Francesc Altet
Ivan Vilata

Scott Prater
Vicent Mas
Tom Hedley

Antonio Valentino
Jeffrey Whitaker

PyTables User's Guide: Hierarchical datasets in Python - Release 1.4
by Francesc Altet, Ivan Vilata, Scott Prater, Vicent Mas, Tom Hedley, Antonio Valentino, and Jeffrey Whitaker

Published $LastChangedDate: 2006-12-21 10:05:30 +0100 (Thu, 21 Dec 2006) $
Copyright © 2002, 2003, 2004, 2005, 2006 Francesc AltetCárabos Coop. V.

Copyright Notice and Statement for PyTables Software Library and Utilities

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 by the Board
of Trustees of the University of Illinois. All rights reserved.

See more information about the terms of this license at: http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

Copyright Notice and Statement for the lrucache.py module

Copyright 2004 Evan Prodromou. Licensed under the Academic Free License 2.1.

See more information about the terms of this license at: http://opensource.org/licenses/afl-2.1.php

http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html
http://opensource.org/licenses/afl-2.1.php

iv

Table of Contents
I. The PyTables Core Library ... 1

1. Introduction ... 2
1.1. Main Features .. 3
1.2. The Object Tree ... 4

2. Installation ... 8
2.1. Installation from source ... 8

2.1.1. Prerequisites .. 8
2.1.2. PyTables package installation ... 10

2.2. Binary installation (Windows) ... 11
2.2.1. Windows prerequisites .. 11
2.2.2. PyTables package installation ... 12

3. Tutorials .. 13
3.1. Getting started .. 13

3.1.1. Importing tables objects ... 13
3.1.2. Declaring a Column Descriptor ... 13
3.1.3. Creating a PyTables file from scratch ... 14
3.1.4. Creating a new group .. 14
3.1.5. Creating a new table ... 15
3.1.6. Reading (and selecting) data in a table .. 16
3.1.7. Creating new array objects ... 17
3.1.8. Closing the file and looking at its content 18

3.2. Browsing the object tree .. 19
3.2.1. Traversing the object tree ... 19
3.2.2. Setting and getting user attributes .. 21
3.2.3. Getting object metadata ... 23
3.2.4. Reading data from Array objects ... 25

3.3. Commiting data to tables and arrays ... 26
3.3.1. Appending data to an existing table ... 26
3.3.2. Modifying data in tables .. 27
3.3.3. Modifying data in arrays .. 29
3.3.4. And finally... how to delete rows from a table 30

3.4. Multidimensional table cells and automatic sanity checks ... 31
3.4.1. Shape checking .. 33
3.4.2. Field name checking ... 34
3.4.3. Data type checking ... 34

3.5. Exercising the Undo/Redo feature .. 35
3.5.1. A basic example .. 36
3.5.2. A more complete example ... 38

3.6. Using enumerated types ... 40
3.6.1. Enumerated columns ... 41
3.6.2. Enumerated arrays .. 42

3.7. Dealing with nested structures in tables .. 43
3.7.1. Nested table creation ... 44
3.7.2. Reading nested tables: introducing NestedRecArray objects 45
3.7.3. Using Cols accessor .. 46
3.7.4. Accessing meta-information of nested tables 46

3.8. Other examples in PyTables distribution ... 49
4. Library Reference ... 50

4.1. tables variables and functions .. 50
4.1.1. Global variables ... 50
4.1.2. Global functions ... 50

PyTables User's Guide

v

4.2. The File class .. 52
4.2.1. File instance variables ... 52
4.2.2. File methods .. 53
4.2.3. File special methods ... 61

4.3. The Node class .. 62
4.3.1. Node instance variables ... 62
4.3.2. Node methods .. 63

4.4. The Group class ... 64
4.4.1. Group instance variables .. 65
4.4.2. Group methods .. 65
4.4.3. Group special methods .. 67

4.5. The Leaf class .. 69
4.5.1. Leaf instance variables .. 69
4.5.2. Leaf methods ... 69

4.6. The Table class .. 71
4.6.1. Table instance variables ... 71
4.6.2. Table methods .. 72
4.6.3. Table special methods .. 76
4.6.4. The Row class ... 78

4.7. The Cols class .. 79
4.7.1. Cols instance variables .. 79
4.7.2. Cols methods ... 79

4.8. The Description class .. 80
4.8.1. Description instance variables .. 80
4.8.2. Description methods ... 81

4.9. The Column class ... 81
4.9.1. Column instance variables .. 81
4.9.2. Column methods ... 82
4.9.3. Column special methods ... 82

4.10. The Array class .. 83
4.10.1. Array instance variables ... 84
4.10.2. Array methods ... 84
4.10.3. Array special methods ... 85

4.11. The CArray class .. 86
4.11.1. CArray instance variables ... 86
4.11.2. Example of use .. 86

4.12. The EArray class .. 87
4.12.1. EArray instance variables ... 87
4.12.2. EArray methods ... 87

4.13. The VLArray class .. 88
4.13.1. VLArray instance variables ... 88
4.13.2. VLArray methods ... 88
4.13.3. VLArray special methods ... 89

4.14. The UnImplemented class ... 90
4.15. The AttributeSet class .. 91

4.15.1. AttributeSet instance variables ... 92
4.15.2. AttributeSet methods ... 92

4.16. Declarative classes ... 92
4.16.1. The IsDescription class .. 92
4.16.2. The Col class and its descendants ... 93
4.16.3. The Atom class and its descendants. .. 96

4.17. Helper classes ... 100
4.17.1. The Filters class ... 100
4.17.2. The IndexProps class .. 101

PyTables User's Guide

vi

4.17.3. The Index class ... 102
4.17.4. The Enum class .. 102

5. Optimization tips ... 105
5.1. Informing PyTables about expected number of rows in tables 105
5.2. Accelerating your searches .. 105

5.2.1. In-kernel searches ... 105
5.2.2. Indexed searches ... 107

5.3. Compression issues ... 109
5.4. Shuffling (or how to make the compression process more effective) 114
5.5. Using Psyco ... 116
5.6. Getting the most from the node LRU cache ... 119
5.7. Selecting an User Entry Point (UEP) in your tree .. 120
5.8. Compacting your PyTables files .. 121

II. Complementary modules .. 122
6. FileNode - simulating a filesystem with PyTables .. 123

6.1. What is FileNode? .. 123
6.2. Finding a FileNode node .. 123
6.3. FileNode - simulating files inside PyTables .. 123

6.3.1. Creating a new file node .. 124
6.3.2. Using a file node .. 124
6.3.3. Opening an existing file node .. 125
6.3.4. Adding metadata to a file node .. 125

6.4. Complementary notes .. 126
6.5. Current limitations .. 126
6.6. FileNode module reference ... 127

6.6.1. Global constants ... 127
6.6.2. Global functions ... 127
6.6.3. The FileNode abstract class .. 127
6.6.4. The ROFileNode class ... 128
6.6.5. The RAFileNode class ... 129

7. NetCDF - a PyTables NetCDF3 emulation API ... 130
7.1. What is NetCDF? .. 130
7.2. Using the tables.NetCDF module ... 130

7.2.1. Creating/Opening/Closing a tables.NetCDF file 130
7.2.2. Dimensions in a tables.NetCDF file .. 130
7.2.3. Variables in a tables.NetCDF file ... 131
7.2.4. Attributes in a tables.NetCDF file .. 131
7.2.5. Writing data to and retrieving data from a tables.NetCDF variable 132
7.2.6. Efficient compression of tables.NetCDF variables 134

7.3. tables.NetCDF module reference .. 134
7.3.1. Global constants ... 134
7.3.2. The NetCDFFile class ... 135
7.3.3. The NetCDFVariable class ... 136

7.4. Converting between true netCDF files and tables.NetCDF files 137
7.5. tables.NetCDF file structure .. 138
7.6. Sharing data in tables.NetCDF files over the internet with OPeNDAP 138
7.7. Differences between the Scientific.IO.NetCDF API and the tables.NetCDF API 138

III. Appendixes ... 140
A. Supported data types in PyTables .. 141
B. Using nested record arrays .. 143

B.1. Introduction ... 143
B.2. NestedRecArray methods ... 145
B.3. NestedRecord objects .. 146

C. Utilities ... 147

PyTables User's Guide

vii

C.1. ptdump ... 147
C.1.1. Usage ... 147
C.1.2. A small tutorial on ptdump .. 147

C.2. ptrepack .. 149
C.2.1. Usage ... 149
C.2.2. A small tutorial on ptrepack ... 150

C.3. nctoh5 .. 152
C.3.1. Usage ... 152

D. PyTables File Format .. 154
D.1. Mandatory attributes for a File .. 154
D.2. Mandatory attributes for a Group .. 154
D.3. Mandatory attributes, storage layout and supported data types for Leaves 155

D.3.1. Table format ... 155
D.3.2. Array format ... 157
D.3.3. CArray format ... 158
D.3.4. EArray format ... 158
D.3.5. VLArray format ... 159

Bibliography ... 161

viii

List of Figures
1.1. An HDF5 example with 2 subgroups, 2 tables and 1 array. .. 6
1.2. A PyTables object tree example. ... 7
3.1. The initial version of the data file for tutorial 1, with a view of the data objects. 19
3.2. The final version of the data file for tutorial 1. ... 30
3.3. General properties of the /detector/readout table. .. 31
3.4. Table hierarchy for tutorial 2. ... 35
5.1. Times for different selection modes over Int32 values. Benchmark made on a machine with Itanium
(IA64) @ 900 MHz processors with SCSI disk @ 10K RPM. ... 106
5.2. Times for different selection modes over Float64 values. Benchmark made on a machine with Itanium
(IA64) @ 900 MHz processors with SCSI disk @ 10K RPM. ... 107
5.3. Times for indexing a couple of columns of data type Int32 and Float64. Benchmark made on a machine
with Itanium (IA64) @ 900 MHz processors with SCSI disk @ 10K RPM. ... 109
5.4. Comparison between different compression libraries. ... 110
5.5. Comparison between different compression levels of Zlib. .. 111
5.6. Writing tables with several compressors. ... 111
5.7. Selecting values in tables with several compressors. The file is not in the OS cache. 112
5.8. Selecting values in tables with several compressors. The file is in the OS cache. 112
5.9. Writing in tables with different levels of compression. ... 113
5.10. Selecting values in tables with different levels of compression. The file is in the OS cache. 114
5.11. Comparison between different compression libraries with and without the shuffle filter. 115
5.12. Writing with different compression libraries with and without the shuffle filter. 115
5.13. Reading with different compression libraries with the shuffle filter. The file is not in OS cache. 116
5.14. Reading with different compression libraries with and without the shuffle filter. The file is in OS cache.
... 116
5.15. Writing tables with/without Psyco. ... 118
5.16. Reading tables with/without Psyco. ... 119
5.17. Complete tree in file test.h5, and subtree of interest for the user. .. 121
5.18. Resulting object tree derived from the use of the rootUEP parameter. .. 121

ix

List of Tables
5.1. Retrieving speed and memory consumption dependency of the number of nodes in LRU cache. 120
A.1. Data types supported for array elements and tables columns in PyTables. .. 142

Part I. The PyTables Core Library

2

Chapter 1. Introduction
La sabiduría no vale la pena si no es posible servirse de ella para inventar una nueva manera de preparar los
garbanzos.(Wisdom isn't worth anything if you can't use it to come up with a new way to cook garbanzos).
--—A wise Catalan in "Cien años de soledad" Gabriel García Márquez

The goal of PyTables is to enable the end user to manipulate easily data tables and array objects in a hierarchical
structure. The foundation of the underlying hierarchical data organization is the excellent HDF5 library (see [1]).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5 API, but only
to provide a flexible, very pythonic tool to deal with (arbitrarily) large amounts of data (typically bigger than available
memory) in tables and arrays organized in a hierarchical and persistent disk storage structure.

A table is defined as a collection of records whose values are stored in fixed-length fields. All records have the same
structure and all values in each field have the same data type. The terms fixed-length and strict data types may seem
to be a strange requirement for an interpreted language like Python, but they serve a useful function if the goal is to
save very large quantities of data (such as is generated by many data acquisition systems, Internet services or scientific
applications, for example) in an efficient manner that reduces demand on CPU time and I/O.

In order to emulate in Python records mapped to HDF5 C structs PyTables implements a special class so as to easily
define all its fields and other properties. PyTables also provides a powerful interface to mine data in tables. Records
in tables are also known in the HDF5 naming scheme as compound data types.

For example, you can define arbitrary tables in Python simply by declaring a class with name field and types informa-
tion, such as in the following example:

class Particle(IsDescription):
 name = StringCol(16) # 16-character String
 idnumber = Int64Col() # Signed 64-bit integer
 ADCcount = UInt16Col() # Unsigned short integer
 TDCcount = UInt8Col() # unsigned byte
 grid_i = Int32Col() # integer
 grid_j = IntCol() # integer (equivalent to Int32Col)
 class Properties(IsDescription): # A sub-structure (nested data-type)
 pressure = Float32Col(shape=(2,3)) # 2-D float array
 (single-precision)
 energy = FloatCol(shape=(2,3,4)) # 3-D float array
 (double-precision)

You then pass this class to the table constructor, fill its rows with your values, and save (arbitrarily large) collections of
them to a file for persistent storage. After that, the data can be retrieved and post-processed quite easily with PyTables
or even with another HDF5 application (in C, Fortran, Java or whatever language that provides a library to interface
with HDF5).

Other important entities in PyTables are the array objects that are analogous to tables with the difference that all of
their components are homogeneous. They come in different flavors, like generic (they provide a quick and fast way
to deal with for numerical arrays), enlargeable (arrays can be extended in any single dimension) and variable length
(each row in the array can have a different number of elements).

The next section describes the most interesting capabilities of PyTables.

Introduction

3

1.1. Main Features
PyTables takes advantage of the object orientation and introspection capabilities offered by Python, the HDF5
powerful data management features and numarray flexibility and high-performance manipulation of large sets of
objects organized in grid-like fashion to provide these features:

• Support for table entities: You can tailor your data adding or deleting records in your tables. A large number of
rows (up to 2**62), i.e. much more than will fit into memory is supported as well.

• Multidimensional and nested table cells: You can declare a column to consist of general array cells as well as scalars,
which is the only dimensionality allowed the majority of relational databases. You can even declare columns that
are made of other columns (of different types), which is known as struct types.

• Indexing support for columns of tables: Very useful if you have large tables and you want to quickly look up for
values in columns satisfying some criteria.

• Support for numerical arrays: NumPy (see [10]), Numeric (see [11]) and numarray (see [12]) arrays can be
used as a useful complement of tables to store homogeneous data.

• Enlargeable arrays: You can add new elements to existing arrays on disk in any dimension you want (but only
one). Besides, you can access to only a slice of your datasets by using the powerful extended slicing mechanism,
without need to load all your complete dataset in-memory.

• Variable length arrays: The number of elements in these arrays can be variable from row to row. This provides a
lot of flexibility when dealing with complex data.

• Supports a hierarchical data model: Allows the user to clearly structure all the data. PyTables builds up an object
tree in memory that replicates the underlying file data structure. Access to the file objects is achieved by walking
through and manipulating this object tree.

• User defined metadata: Besides supporting system metadata (like the number of rows of a table, shape, flavor,
etc.) the user may specify its own metadata (as for example, room temperature, or protocol for IP traffic that was
collected) that complement the meaning of his actual data.

• Ability to read/modify generic HDF5 files: PyTables can access a wide range of objects in generic HDF5 files,
like compound type datasets (that can be mapped to Table objects), homogeneous datasets (that can be mapped to
Array objects) or variable length record datasets (that can be mapped to VLArray objects). Besides, if a dataset
is not supported, it will be mapped into a special UnImplemented class (see Section 4.14), that will let the user
see that the data is there, although it would be unreachable (still, you will be able to access the attributes and some
metadata in the dataset). With that, PyTables probably can access and modify most of the HDF5 files out there.

• Data compression: Supports data compression (using the Zlib, LZO and bzip2 compression libraries) out of the box.
This is important when you have repetitive data patterns and don't want to spend time searching for an optimized
way to store them (saving you time spent analyzing your data organization).

• High performance I/O: On modern systems storing large amounts of data, tables and array objects can be read
and written at a speed only limited by the performance of the underlying I/O subsystem. Moreover, if your data is
compressible, even that limit is surmountable!

• Support of files bigger than 2 GB: PyTables automatically inherits this capability from the underlying HDF5
library (assuming your platform supports the C long long integer, or, on Windows, __int64).

• Architecture-independent: PyTables has been carefully coded (as has HDF5 itself) with little-endian/big-endian
byte orderings issues in mind. So, you can write a file on a big-endian machine (like a Sparc or MIPS) and read it

Introduction

4

on other little-endian machine (like an Intel or Alpha) without problems. In addition, it has been tested successfully
with 64 bit platforms (Intel-64, AMD-64, PowerPC-G5, MIPS, UltraSparc) using code generated with 64 bit aware
compilers.

1.2. The Object Tree
The hierarchical model of the underlying HDF5 library allows PyTables to manage tables and arrays in a tree-like
structure. In order to achieve this, an object tree entity is dynamically created imitating the HDF5 structure on disk.
The HDF5 objects are read by walking through this object tree. You can get a good picture of what kind of data is
kept in the object by examining the metadata nodes.

The different nodes in the object tree are instances of PyTables classes. There are several types of classes, but the
most important ones are the Node, Group and Leaf classes. All nodes in a PyTables tree are instances of the
Node class. Group and Leaf classes are descendants of Node. Group instances (referred to as groups from now on)
are a grouping structure containing instances of zero or more groups or leaves, together with supplementary metadata.
Leaf instances (referred to as leaves) are containers for actual data and can not contain further groups or leaves. The
Table, Array, CArray, EArray, VLArray and UnImplemented classes are descendants of Leaf, and inherit
all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix filesystem,

i.e. a node (file or directory) is always a child of one and only one group (directory), its parent group 1. Inside of
that group, the node is accessed by its name. As is the case with Unix directories and files, objects in the object tree
are often referenced by giving their full (absolute) path names. In PyTables this full path can be specified either as
string (such as '/subgroup2/table3', using / as a parent/child separator) or as a complete object path written
in a format known as the natural name schema (such as file.root.subgroup2.table3).

Support for natural naming is a key aspect of PyTables. It means that the names of instance variables of the node

objects are the same as the names of the element's children2. This is very Pythonic and intuitive in many cases. Check
the tutorial Section 3.1.6 for usage examples.

You should also be aware that not all the data present in a file is loaded into the object tree. Only the metadata (i.e.
special data that describes the structure of the actual data) is loaded. The actual data is not read until you request it
(by calling a method on a particular node). Using the object tree (the metadata) you can retrieve information about
the objects on disk such as table names, titles, name columns, data types in columns, numbers of rows, or, in the case
of arrays, the shapes, typecodes, etc. of the array. You can also search through the tree for specific kinds of data then
read it and process it. In a certain sense, you can think of PyTables as a tool that applies the same introspection
capabilities of Python objects to large amounts of data in persistent storage.

It is worth to note that, from version 1.2 on, PyTables sports a node cache system that loads nodes on demand, and
unloads nodes that have not been used for some time (i.e. following a Least Recent Used schema). This feature allows
opening HDF5 files with large hierarchies very quickly and with a low memory consumption, while retaining all the
powerful browsing capabilities of the previous implementation of the object tree. See [18] for more facts about the
advantages introduced by this new node cache system.

To better understand the dynamic nature of this object tree entity, let's start with a sample PyTables script (you can
find it in examples/objecttree.py) to create a HDF5 file:

from tables import *

class Particle(IsDescription):

1PyTables does not support hard links – for the moment.
2I got this simple but powerful idea from the excellent Objectify module by David Mertz (see [6])

Introduction

5

 identity = StringCol(length=22, dflt=" ", pos = 0) # character String
 idnumber = Int16Col(1, pos = 1) # short integer
 speed = Float32Col(1, pos = 2) # single-precision

Open a file in "w"rite mode
fileh = openFile("objecttree.h5", mode = "w")
Get the HDF5 root group
root = fileh.root

Create the groups:
group1 = fileh.createGroup(root, "group1")
group2 = fileh.createGroup(root, "group2")

Now, create an array in the root group
array1 = fileh.createArray(root, "array1",
 ["this is", "a string array"], "String array")
Create 2 new tables in group1 and group2
table1 = fileh.createTable(group1, "table1", Particle)
table2 = fileh.createTable("/group2", "table2", Particle)
Create one more Array in group1
array2 = fileh.createArray("/group1", "array2", [1,2,3,4])

Now, fill the tables:
for table in (table1, table2):
 # Get the record object associated with the table:
 row = table.row
 # Fill the table with 10 records
 for i in xrange(10):
 # First, assign the values to the Particle record
 row['identity'] = 'This is particle: %2d' % (i)
 row['idnumber'] = i
 row['speed'] = i * 2.
 # This injects the Record values
 row.append()

 # Flush the table buffers
 table.flush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

This small program creates a simple HDF5 file called objecttree.h5 with the structure that appears in Figure 1.13.
When the file is created, the metadata in the object tree is updated in memory while the actual data is saved to disk.
When you close the file the object tree is no longer available. However, when you reopen this file the object tree will
be reconstructed in memory from the metadata on disk, allowing you to work with it in exactly the same way as when
you originally created it.

3We have used ViTables (see [19]) in order to create this snapshot.

Introduction

6

Figure 1.1. An HDF5 example with 2 subgroups, 2 tables and 1 array.

In Figure 1.2 you can see an example of the object tree created when the above objecttree.h5 file is read (in fact,
such an object is always created when reading any supported generic HDF5 file). It's worthwhile to take your time to

understand it4. It will help you to avoid programming mistakes.

4Bear in mind, however, that this diagram is not a standard UML class diagram; it is rather meant to show the connections between the PyTables
objects and some of its most important attributes and methods.

Introduction

7

fileObject(File)
+name: string = "objecttree.h5"
+root: Group = groupRootObject
+open(filename:string)
+createGroup(where:Group,name:string): Group
+createTable(where:Group,name:string,description:IsDescription): Table
+createArray(where:Group,name:string,object:array): Array
+close()

groupRootObject(Group)
+_v_name: string = root
+group1: Group = groupObject1
+group2: Group = groupObject2
+array1: Array = arrayObject1

groupObject1(Group)
+_v_name: string = group1
+table1: Table = tableObject1
+array2: Array = arrayObject2

groupObject2(Group)
+_v_name: string = group2
+table2: Table = tableObject2

rowObject2(Row)
+identity: CharType
+idnumber: Int16
+speed: Int32
+append()
+nrow()

tableObject2(Table)
+name: string = table2
+row: Row = rowObject2
+read(): Table

arrayObject1(Array)
+name: string = array1
+read(): Array

tableObject1(Table)
+name: string = table1
+row: Row = rowObject1
+read(): Table

rowObject1(Row)

+speed: Float32

+identity: CharType
+idnumber: Int16

+append()
+nrow()

arrayObject2(Array)
+name: string = array2
+read(): Array

Figure 1.2. A PyTables object tree example.

8

Chapter 2. Installation
Make things as simple as possible, but not any simpler.
--—Albert Einstein

The Python Distutils are used to build and install PyTables, so it is fairly simple to get the application up
and running. If you want to install the package from sources go to the next section. But if you are running Windows
and want to install precompiled binaries jump to Section 2.2). In addition, packages are available for many different
Linux distributions, for instance T2 Project [http://www.t2-project.org], RockLinux [http://www.rocklinux.org/],
Debian [http://www.debian.org/], or Gentoo [http://www.gentoo.org/], among others. There are also packages for
other Unices like FreeBSD [http://www.freshports.org/] or MacOSX [http://www.opendarwin.org/]

2.1. Installation from source
These instructions are for both Unix/Linux and Windows systems. If you are using Windows, it is assumed that you
have a recent version of MS Visual C++ (>= 6.0) compiler installed. A GCC compiler is assumed for Unix, but
other compilers should work as well.

Extensions in PyTables have been developed in Pyrex (see [7]) and C language. You can rebuild everything from
scratch if you have Pyrex installed, but this is not necessary, as the Pyrex compiled source is included in the distribution.

To compile PyTables you will need a recent version of Python, the HDF5 (C flavor) library, and the numarray
(see [12]) package. Although you won't need NumPy (see [10]) or Numeric (see [11]) in order to compile PyTables,
they are supported; you only need a reasonably recent version of them (>= 1.0 for NumPy and >= 24.2 for Numeric)
if you plan on using them in your applications. If you already have NumPy and/or Numeric installed, the test driver
module will detect them and will run the tests for NumPy and/or Numeric automatically.

2.1.1. Prerequisites

First, make sure that you have at least Python 2.3, 2.4, 2.5 or higher, HDF5 1.6.5 and numarray 1.5.2 or higher installed
(I'm using HDF5 1.6.5 and numarray 1.5.2 currently). If you don't, fetch and install them before proceeding.

Compile and install these packages (but see Section 2.2.1 for instructions on how to install precompiled binaries if you
are not willing to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install the Zlib (see [5]), which is also
required by HDF5 as well. You may also optionally install the excellent LZO compression library (see [13] and Sec-
tion 5.3). The high-performance bzip2 compression library can also be used with PyTables (see [14]). The use of the

UCL compression library is in process of being deprecated1, so it is recommended to not use it unless you have to
(you still have data files compressed with UCL). Meanwhile, you can force its support in PyTables by passing the
--force-ucl flag to setup.py (see later).

Unix setup.py will detect HDF5, LZO, UCL or bzip2 libraries and include files under /usr
or /usr/local; this will cover most manual installations as well as installations from
packages. If setup.py can not find libhdf5 (or liblzo, libucl or libbz2 that
you may wish to use) or if you have several versions of a library installed and want to use
a particular one, then you can set the path to the resource in the environment, setting the
values of the HDF5_DIR, LZO_DIR, UCL_DIR or BZIP2_DIR environment variables
to the path to the particular resource. You may also specify the locations of the resource
root directories on the setup.py command line. For example:

1This is because of recurrent memory problems in some platforms (perhaps some bad interaction between UCL and something else). Eventually,
UCL support will be dropped in the future, so, please, refrain to create datasets compressed with it.

http://www.t2-project.org
http://www.t2-project.org
http://www.rocklinux.org/
http://www.rocklinux.org/
http://www.debian.org/
http://www.debian.org/
http://www.gentoo.org/
http://www.gentoo.org/
http://www.freshports.org/
http://www.freshports.org/
http://www.opendarwin.org/
http://www.opendarwin.org/

Installation

9

 --hdf5=/stuff/hdf5-1.6.5
 --lzo=/stuff/lzo-1.08
 --bzip2=/stuff/bzip2-1.0.3

Also, for non-standard installations of numarray, the location of its header files can be
given like this:

 --numarray-headers=/stuff/numarray-1.5.5/numarray/include

You can force the compilation of the deprecated UCL compressor by passing the --force-
ucl flag:

 --ucl=/stuff/ucl-1.03 --force-ucl

If your HDF5 library was built as a shared library not in the runtime load path, then you
can specify the additional linker flags needed to find the shared library on the command
line as well. For example:

 --lflags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.6.5/lib"

You may also want to try setting the LD_LIBRARY_PATH environment variable to point
to the directory where the shared libraries can be found. Check your compiler and linker
documentation as well as the Python Distutils documentation for the correct syntax
or environment variable names.

It is also possible to link with specific libraries by setting the LIBS environment variable:

 LIBS="hdf5-1.6.5"
 LIBS="hdf5-1.6.5 nsl"

Finally, you can pass additional flags to your compiler by passing them to the --cflags flag:

 --cflags="-w -O3"

In the above case, a gcc compiler is used and you instructed it to suppress all the warnings
and set the level 3 of optimization.

Windows Once you have installed the prerequisites, setup.py needs to know where the necessary
library stub (.lib) and header (.h) files are installed. Set the following environment
variables:

HDF5_DIR Points to the root HDF5 directory (where the include/ and dll/ directories
can be found). Mandatory.

LZO_DIR Points to the root LZO directory (where the include/ and lib/ directories
can be found). Optional.

BZIP2_DIR Points to the root bzip2 directory (where the include/ and lib/ directories
can be found). Optional.

UCL_DIR Points to the root UCL directory (where the include/ and lib/ directories
can be found). Optional, but discouraged.

Installation

10

For example:

 set HDF5_DIR=c:\stuff\5-165-win
 set LZO_DIR=c:\stuff\lzo-1-08
 set BZIP2_DIR=c:\stuff\bzip2-1-0-3

Or, you can pass this information to setup.py by setting the appropriate arguments on
the command line. For example:

 --hdf5=c:\stuff\5-165-win
 --lzo=c:\stuff\lzo-1-08
 --bzip2=c:\stuff\bzip2-1-0-3

Also, for non-standard installations of numarray, the location of its header files can be
given like this:

 --numarray-headers=c:\stuff\numarray-1-5-
1\numarray\include

You can force the compilation of the deprecated UCL compressor by passing the --force-
ucl flag:

 --ucl=c:\stuff\ucl-1-02 --force-ucl

You can get ready-to-use Windows binaries and other development files for most of those
libraries from the GnuWin32 project (see [20]).

2.1.2. PyTables package installation

Once you have installed the HDF5 library and the numarray package, you can proceed with the PyTables package
itself:

1. Run this command from the main PyTables distribution directory, including any extra command line arguments
as discussed above:

 python setup.py build_ext --inplace

Depending on the compiler flags used when compiling your Python executable, there may appear many warnings.
Don't worry, almost all of them are caused by variables declared but never used. That's normal in Pyrex extensions.

2. To run the test suite, change into the tables/tests directory and execute this command:

Unix In the shell sh and its variants:

 PYTHONPATH=../.. python test_all.py

Windows Open a DOS terminal and type:

 set PYTHONPATH=..\.. python test_all.py

Installation

11

If you would like to see verbose output from the tests simply add the flag -v and/or the word verbose to the
command line. You can also run only the tests in a particular test module. For example, to execute just the types
test:

 python test_types.py -v

If a test fails, please enable verbose output (the -v flag and verbose option), run the failing test module again,
and, very important, get your PyTables version information by running the command:

 python test_all.py --show-versions

and send back the output to developers so that we may continue improving PyTables.

If you run into problems because Python can not load the HDF5 library or other shared libraries:

Unix Try setting the LD_LIBRARY_PATH environment variable to point to the directory where the missing
libraries can be found.

Windows Put the DLL libraries (hdf5dll.dll and, optionally, lzo1.dll and bzip2.dll) in a directo-
ry listed in your PATH environment variable or in python_installation_path\Lib\site-
packages\tables (the last directory may have not exist yet, so if you want to install the DLLs
there, you should do so after installing the PyTables package). The setup.py installation program
will print out a warning to that effect if the libraries can not be found.

3. To install the entire PyTables Python package, change back to the root distribution directory and run the following
command (make sure you have sufficient permissions to write to the directories where the PyTables files will
be installed):

 python setup.py install

Of course, you will need super-user privileges if you want to install PyTables on a system-protected area. You
can select, though, a different place to install the package using the --prefix flag:

 python setup.py install --prefix="/home/myuser/mystuff"

Have in mind, however, that if you use the --prefix flag to install in a non-standard place, you should properly
setup your PYTHONPATH environment variable, so that the Python interpreter would be able to find your new
PyTables installation.

You have more installation options available in the Distutils package. Issue a:

 python setup.py install --help

for more information on that subject.

That's it! Now you can skip to the next chapter to learn how to use PyTables.

2.2. Binary installation (Windows)
This section is intended for installing precompiled binaries on Windows platforms. You may also find it useful for
instructions on how to install binary prerequisites even if you want to compile PyTables itself on Windows.

2.2.1. Windows prerequisites
First, make sure that you have Python 2.3, 2.4, 2,5 or higher, HDF5 1.6.5 or higher and numarray 1.5.2 or higher
installed (I have built the PyTables binaries using HDF5 1.6.5 and numarray 1.5.2).

Installation

12

For the HDF5 library it should be enough to manually copy the hdf5dll.dll, zlib1.dll and
szipdll.dll files to a directory in your PATH environment variable (for example C:\WINDOWS\SYSTEM32) or
python_installation_path\Lib\site-packages\tables (the last directory may have not exist yet,
so if you want to install the DLLs there, you should do so after installing the PyTables package).

Caveat: When downloading the binary distribution for HDF5 libraries, select one compiled with MSVC 6.0 if you
are using Python 2.3.x, such as the package 5-165-win.zip. The file 5-165-win-net.zip was compiled with
the MSVC 7.1 (aka ".NET 2003") and you must choose if you want to run PyTables with Python 2.4.x or 2.5.x
series. You have been warned!

To enable compression with optional LZO or bzip2 libraries (see the Section 5.3 for hints about how they may be used
to improve performance), fetch and install the LZO (choose v1.x, LZO v2.x is not supported in precompiled Windows

builds) and bzip2 binaries from [20]2. Normally, you will only need to fetch and install the <package>-<ver-
sion>-bin.zip file and copy the lzo1.dll or bzip2.dll files in a directory in the PATH environment vari-
able, or in python_installation_path\Lib\site-packages\tables (the last directory may have not
exist yet, so if you want to install the DLLs there, you should do so after installing the PyTables package), so that
they can be found by the PyTables extensions.

Please, note that PyTables has internal machinery for dealing with uninstalled optional compression libraries, so, you
don't need to install any of LZO or bzip2 dynamic libraries if you don't want to.

2.2.2. PyTables package installation

Download the tables-<version>.win32-py<version>.exe file and execute it.

You can (you should) test your installation by unpacking the source tar-ball, changing to the tables/tests/ sub-
directory and executing the test_all.py script. If all the tests pass (possibly with a few warnings, related to the
potential unavailability of LZO or bzip2 libs) you already have a working, well-tested copy of PyTables installed!
If any test fails, please try to locate which test module is failing and execute:

 python test_<module>.py -v verbose

and also:

 python test_all.py --show-versions

and mail the output to the developers so that the problem can be fixed in future releases.

You can proceed now to the next chapter to see how to use PyTables.

2Note that support for the UCL compressor has been declared deprecated and has not been added in the binary build of PyTables for Windows.

13

Chapter 3. Tutorials
Seràs la clau que obre tots els panys, seràs la llum, la llum il.limitada, seràs confí on l'aurora comença, seràs forment,
escala il.luminada!
--—M'aclame a tu Lyrics: Vicent Andrés i Estellés Music: Ovidi Montllor

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand PyTables'
main features. If you would like more information about some particular instance variable, global function, or method,
look at the doc strings or go to the library reference in Chapter 4. If you are reading this in PDF or HTML formats,
follow the corresponding hyperlink near each newly introduced entity.

Please, note that throughout this document the terms column and field will be used interchangeably, as will the terms
row and record.

3.1. Getting started
In this section, we will see how to define our own records in Python and save collections of them (i.e. a table) into
a file. Then we will select some of the data in the table using Python cuts and create numarray arrays to store this
selection as separate objects in a tree.

In examples/tutorial1-1.py you will find the working version of all the code in this section. Nonetheless, this tutorial
series has been written to allow you reproduce it in a Python interactive console. I encourage you to do parallel testing
and inspect the created objects (variables, docs, children objects, etc.) during the course of the tutorial!

3.1.1. Importing tables objects

Before starting you need to import the public objects in the tables package. You normally do that by executing:

 >>> import tables

This is the recommended way to import tables if you don't want to pollute your namespace. However, PyTables
has a very reduced set of first-level primitives, so you may consider using the alternative:

 >>> from tables import *

which will export in your caller application namespace the following functions: openFile(), copyFile(),
isHDF5File(), isPyTablesFile() and whichLibVersion(). This is a rather reduced set of functions,
and for convenience, we will use this technique to access them.

If you are going to work with numarray (or NumPy or Numeric) arrays (and normally, you will) you will also need
to import functions from them. So most PyTables programs begin with:

 >>> import tables # but in this tutorial we use "from tables import *"
 >>> import numarray # or "import numpy" or "import Numeric"

3.1.2. Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data retrieved
from it. You need first to define the table, the number of columns it has, what kind of object is contained in each
column, and so on.

Tutorials

14

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and an ADC
(Analogical to Digital Converter) with a range of 16 bits. For these values, we will define 2 fields in our record object
called TDCcount and ADCcount. We also want to save the grid position in which the particle has been detected, so
we will add two new fields called grid_i and grid_j. Our instrumentation also can obtain the pressure and energy
of the particle. The resolution of the pressure-gauge allows us to use a simple-precision float to store pressure
readings, while the energy value will need a double-precision float. Finally, to track the particle we want to assign it
a name to identify the kind of the particle it is and a unique numeric identifier. So we will add two more fields: name
will be a string of up to 16 characters, and idnumber will be an integer of 64 bits (to allow us to store records for
extremely large numbers of particles).

Having determined our columns and their types, we can now declare a new Particle class that will contain all
this information:

 >>> class Particle(IsDescription):
 ... name = StringCol(16) # 16-character String
 ... idnumber = Int64Col() # Signed 64-bit integer
 ... ADCcount = UInt16Col() # Unsigned short integer
 ... TDCcount = UInt8Col() # unsigned byte
 ... grid_i = Int32Col() # integer
 ... grid_j = IntCol() # integer (equivalent to Int32Col)
 ... pressure = Float32Col() # float (single-precision)
 ... energy = FloatCol() # double (double-precision)
 ...
 >>>

This definition class is self-explanatory. Basically, you declare a class variable for each field you need. As its value
you assign an instance of the appropriate Col subclass, according to the kind of column defined (the data type, the
length, the shape, etc). See the Section 4.16.2 for a complete description of these subclasses. See also Appendix A for
a list of data types supported by the Col constructor.

From now on, we can use Particle instances as a descriptor for our detector data table. We will see later on how
to pass this object to construct the table. But first, we must create a file where all the actual data pushed into our table
will be saved.

3.1.3. Creating a PyTables file from scratch

Use the first-level openFile function (see description) to create a PyTables file:

 >>> h5file = openFile("tutorial1.h5", mode = "w", title = "Test file")

openFile (see description) is one of the objects imported by the "from tables import *" statement. Here, we
are saying that we want to create a new file in the current working directory called "tutorial1.h5" in "w"rite mode
and with an descriptive title string ("Test file"). This function attempts to open the file, and if successful, returns
the File (see 4.2) object instance h5file. The root of the object tree is specified in the instance's root attribute.

3.1.4. Creating a new group

Now, to better organize our data, we will create a group called detector that branches from the root node. We will
save our particle data table in this group.

 >>> group = h5file.createGroup("/", 'detector', 'Detector information')

Here, we have taken the File instance h5file and invoked its createGroup method (see description) to create
a new group called detector branching from "/" (another way to refer to the h5file.root object we mentioned
above). This will create a new Group (see 4.4) object instance that will be assigned to the variable group.

Tutorials

15

3.1.5. Creating a new table

Let's now create a Table (see 4.6) object as a branch off the newly-created group. We do that by calling the cre-
ateTable (see description) method of the h5file object:

 >>> table = h5file.createTable(group, 'readout', Particle, "Readout example")

We create the Table instance under group. We assign this table the node name "readout". The Particle class
declared before is the description parameter (to define the columns of the table) and finally we set "Readout example"
as the Table title. With all this information, a new Table instance is created and assigned to the variable table.

If you are curious about how the object tree looks right now, simply print the File instance variable h5file, and
examine the output:

 >>> print h5file
 Filename: 'tutorial1.h5' Title: 'Test file' Last modif.: 'Sun Jul 27 14:00:13
 2003'
 / (Group) 'Test file'
 /detector (Group) 'Detector information'
 /detector/readout (Table(0,)) 'Readout example'

As you can see, a dump of the object tree is displayed. It's easy to see the Group and Table objects we have just
created. If you want more information, just type the variable containing the File instance:

 >>> h5file
 File(filename='tutorial1.h5', title='Test file', mode='w', trMap={},
 rootUEP='/')
 / (Group) 'Test file'
 /detector (Group) 'Detector information'
 /detector/readout (Table(0,)) 'Readout example'
 description := {
 "ADCcount": Col('UInt16', shape=1, itemsize=2, dflt=0),
 "TDCcount": Col('UInt8', shape=1, itemsize= 1, dflt=0),
 "energy": Col('Float64', shape=1, itemsize=8, dflt=0.0),
 "grid_i": Col('Int32', shape=1, itemsize=4, dflt=0),
 "grid_j": Col('Int32', shape=1, itemsize=4, dflt=0),
 "idnumber": Col('Int64', shape=1, itemsize=8, dflt=0),
 "name": Col('CharType', shape=1, itemsize=16, dflt=None),
 "pressure": Col('Float32', shape=1, itemsize=4, dflt=0.0) }
 byteorder := little

More detailed information is displayed about each object in the tree. Note how Particle, our table descriptor class,
is printed as part of the readout table description information. In general, you can obtain much more information about
the objects and their children by just printing them. That introspection capability is very useful, and I recommend that
you use it extensively.

The time has come to fill this table with some values. First we will get a pointer to the Row (see 4.6.4) instance of
this table instance:

 >>> particle = table.row

The row attribute of table points to the Row instance that will be used to write data rows into the table. We write
data simply by assigning the Row instance the values for each row as if it were a dictionary (although it is actually
an extension class), using the column names as keys.

Below is an example of how to write rows:

Tutorials

16

 >>> for i in xrange(10):
 ... particle['name'] = 'Particle: %6d' % (i)
 ... particle['TDCcount'] = i % 256
 ... particle['ADCcount'] = (i * 256) % (1 << 16)
 ... particle['grid_i'] = i
 ... particle['grid_j'] = 10 - i
 ... particle['pressure'] = float(i*i)
 ... particle['energy'] = float(particle['pressure'] ** 4)
 ... particle['idnumber'] = i * (2 ** 34)
 ... particle.append()
 ...
 >>>

This code should be easy to understand. The lines inside the loop just assign values to the different columns in the Row
instance particle (see 4.6.4). A call to its append() method writes this information to the table I/O buffer.

After we have processed all our data, we should flush the table's I/O buffer if we want to write all this data to disk.
We achieve that by calling the table.flush() method.

 >>> table.flush()

3.1.6. Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we are
interested in. See the example below:

 >>> table = h5file.root.detector.readout
 >>> pressure = [x['pressure'] for x in table.iterrows()
 ... if x['TDCcount']>3 and 20<=x['pressure']<50]
 >>> pressure
 [25.0, 36.0, 49.0]

The first line creates a "shortcut" to the readout table deeper on the object tree. As you can see, we use the natural
naming schema to access it. We also could have used the h5file.getNode() method, as we will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rows in table as they are
provided by the table.iterrows() iterator (see description). The iterator returns values until all the data in table
is exhausted. These rows are filtered using the expression:

 x['TDCcount'] > 3 and x['pressure'] <50

We select the value of the pressure column from filtered records to create the final list and assign it to pressure
variable.

We could have used a normal for loop to accomplish the same purpose, but I find comprehension syntax to be more
compact and elegant.

Let's select the name column for the same set of cuts:

 >>> names=[x['name'] for x in table if x['TDCcount']>3 and
 20<=x['pressure']<50]
 >>> names
 ['Particle: 5', 'Particle: 6', 'Particle: 7'

Note how we have omitted the iterrows() call in the list comprehension. The Table class has an implementation
of the special method __iter__() that iterates over all the rows in the table. In fact, iterrows() internally calls

Tutorials

17

this special __iter__() method. Accessing all the rows in a table using this method is very convenient, especially
when working with the data interactively.

That's enough about selections. The next section will show you how to save these selected results to a file.

3.1.7. Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a new group columns branching
off the root group. Afterwards, under this group, we will create two arrays that will contain the selected data. First,
we create the group:

 >>> gcolumns = h5file.createGroup(h5file.root, "columns", "Pressure and
 Name")

Note that this time we have specified the first parameter using natural naming (h5file.root) instead of with an
absolute path string ("/").

Now, create the first of the two Array objects we've just mentioned:

 >>> h5file.createArray(gcolumns, 'pressure', array(pressure),
 ... "Pressure column selection")
 /columns/pressure (Array(3,)) 'Pressure column selection'
 type = Float64
 itemsize = 8
 flavor = 'numarray'
 byteorder = 'little'

We already know the first two parameters of the createArray (see description) methods (these are the same as the
first two in createTable): they are the parent group where Array will be created and the Array instance name.
The third parameter is the object we want to save to disk. In this case, it is a numarray array that is built from the
selection list we created before. The fourth parameter is the title.

Now, we will save the second array. It contains the list of strings we selected before: we save this object as-is, with
no further conversion.

 >>> h5file.createArray(gcolumns, 'name', names, "Name column selection")
 /columns/name Array(4,) 'Name column selection'
 type = 'CharType'
 itemsize = 16
 flavor = 'List'
 byteorder = 'little'

As you can see, createArray() accepts names (which is a regular Python list) as an object parameter. Actually,
it accepts a variety of different regular objects (see description) as parameters. The flavor attribute (see the output
above) saves the original kind of object that was saved. Based on this flavor, PyTables will be able to retrieve
exactly the same object from disk later on.

Note that in these examples, the createArray method returns an Array instance that is not assigned to any variable.
Don't worry, this is intentional to show the kind of object we have created by displaying its representation. The Array
objects have been attached to the object tree and saved to disk, as you can see if you print the complete object tree:

 >>> print h5file
 Filename: 'tutorial1.h5' Title: 'Test file' Last modif.: 'Sun Jul 27
 14:00:13 2003'
 / (Group) 'Test file'

Tutorials

18

 /columns (Group) 'Pressure and Name'
 /columns/name (Array(3,)) 'Name column selection'
 /columns/pressure (Array(3,)) 'Pressure column selection'
 /detector (Group) 'Detector information'
 /detector/readout (Table(10,)) 'Readout example'

3.1.8. Closing the file and looking at its content

To finish this first tutorial, we use the close method of the h5file File object to close the file before exiting Python:

 >>> h5file.close()
 >>> ^D

You have now created your first PyTables file with a table and two arrays. You can examine it with any generic
HDF5 tool, such as h5dump or h5ls. Here is what the tutorial1.h5 looks like when read with the h5ls pro-
gram:

 $ h5ls -rd tutorial1.h5
 /columns Group
 /columns/name Dataset {3}
 Data:
 (0) "Particle: 5", "Particle: 6", "Particle: 7"
 /columns/pressure Dataset {3}
 Data:
 (0) 25, 36, 49
 /detector Group
 /detector/readout Dataset {10/Inf}
 Data:
 (0) {0, 0, 0, 0, 10, 0, "Particle: 0", 0},
 (1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 1},
 (2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
 (3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
 (4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4", 16},
 (5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
 (6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
 (7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
 (8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
 (9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}

Here's the outputs as displayed by the "ptdump" PyTables utility (located in utils/ directory):

 $ ptdump tutorial1.h5
 Filename: 'tutorial1.h5' Title: 'Test file' Last modif.: 'Sun Jul 27 14:40:51
 2003'
 / (Group) 'Test file'
 /columns (Group) 'Pressure and Name'
 /columns/name (Array(3,)) 'Name column selection'
 /columns/pressure (Array(3,)) 'Pressure column selection'
 /detector (Group) 'Detector information'
 /detector/readout (Table(10,)) 'Readout example'

You can pass the -v or -d options to ptdump if you want more verbosity. Try them out!

Also, in Figure 3.1, you can admire how the tutorial1.h5 looks like using the ViTables [http://www.carabos.com/
products/vitables.html] graphical interface .

http://www.carabos.com/products/vitables.html
http://www.carabos.com/products/vitables.html
http://www.carabos.com/products/vitables.html

Tutorials

19

Figure 3.1. The initial version of the data file for tutorial 1, with a view of the data objects.

3.2. Browsing the object tree
In this section, we will learn how to browse the tree and retrieve data and also meta-information about the actual data.

In examples/tutorial1-2.py you will find the working version of all the code in this section. As before, you are encour-
aged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1. Traversing the object tree

Let's start by opening the file we created in last tutorial section.

 >>> h5file = openFile("tutorial1.h5", "a")

This time, we have opened the file in "a"ppend mode. We use this mode to add more information to the file.

PyTables, following the Python tradition, offers powerful introspection capabilities, i.e. you can easily ask infor-
mation about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existing File instance:

Tutorials

20

 >>> print h5file
 Filename: 'tutorial1.h5' Title: 'Test file' Last modif.: 'Sun Jul 27 14:40:51
 2003'
 / (Group) 'Test file'
 /columns (Group) 'Pressure and Name'
 /columns/name (Array(3,)) 'Name column selection'
 /columns/pressure (Array(3,)) 'Pressure column selection'
 /detector (Group) 'Detector information'
 /detector/readout (Table(10,)) 'Readout example'

It looks like all of our objects are there. Now let's make use of the File iterator to see how to list all the nodes in
the object tree:

 >>> for node in h5file:
 ... print node
 ...
 / (Group) 'Test file'
 /columns (Group) 'Pressure and Name'
 /detector (Group) 'Detector information'
 /columns/name (Array(3,)) 'Name column selection'
 /columns/pressure (Array(3,)) 'Pressure column selection'
 /detector/readout (Table(10,)) 'Readout example'

We can use the walkGroups method (see description) of the File class to list only the groups on tree:

 >>> for group in h5file.walkGroups("/"):
 ... print group
 ...
 / (Group) 'Test file'
 /columns (Group) 'Pressure and Name'
 /detector (Group) 'Detector information'

Note that walkGroups() actually returns an iterator, not a list of objects. Using this iterator with the listN-
odes() method is a powerful combination. Let's see an example listing of all the arrays in the tree:

 >>> for group in h5file.walkGroups("/"):
 ... for array in h5file.listNodes(group, classname = 'Array'):
 ... print array
 ...
 /columns/name Array(3,) 'Name column selection'
 /columns/pressure Array(3,) 'Pressure column selection'

listNodes() (see description) returns a list containing all the nodes hanging off a specific Group. If the classname
keyword is specified, the method will filter out all instances which are not descendants of the class. We have asked
for only Array instances. There exist also an iterator counterpart called iterNodes() (see description) that might
be handy is some situations, like for example when dealing with groups with a large number of nodes behind it.

We can combine both calls by using the walkNodes(where, classname) special method of the File object
(see description). For example:

 >>> for array in h5file.walkNodes("/", "Array"):
 ... print array
 ...
 /columns/name (Array(3,)) 'Name column selection'
 /columns/pressure (Array(3,)) 'Pressure column selection'

Tutorials

21

This is a nice shortcut when working interactively.

Finally, we will list all the Leaf, i.e. Table and Array instances (see 4.5 for detailed information on Leaf class),
in the /detector group. Note that only one instance of the Table class (i.e. readout) will be selected in this
group (as should be the case):

 >>> for leaf in h5file.root.detector._f_walkNodes('Leaf'):
 ... print leaf
 ...
 /detector/readout (Table(10,)) 'Readout example'

We have used a call to the Group._f_walkNodes(classname, recursive) method (see description), using
the natural naming path specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let's take a look at
some important PyTables object instance variables.

3.2.2. Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by using the
AttributeSet class (see 4.15). You can access this object through the standard attribute attrs in Leaf nodes
and _v_attrs in Group nodes.

For example, let's imagine that we want to save the date indicating when the data in /detector/readout table
has been acquired, as well as the temperature during the gathering process:

 >>> table = h5file.root.detector.readout
 >>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
 >>> table.attrs.temperature = 18.4
 >>> table.attrs.temp_scale = "Celsius"

Now, let's set a somewhat more complex attribute in the /detector group:

 >>> detector = h5file.root.detector
 >>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed with the _v_attrs attribute because detector is a Group node. In
general, you can save any standard Python data structure as an attribute node. See Section 4.15 for a more detailed
explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

 >>> table.attrs.gath_date
 'Wed, 06/12/2003 18:33'
 >>> table.attrs.temperature
 18.399999999999999
 >>> table.attrs.temp_scale
 'Celsius'
 >>> detector._v_attrs.stuff
 [5, (2.2999999999999998, 4.5), 'Integer and tuple']

You can probably guess how to delete attributes:

 >>> del table.attrs.gath_date

If you want to examine the current user attribute set of /detector/table, you can print its representation (try
hitting the TAB key twice if you are on a Unix Python console with the rlcompleter module active):

Tutorials

22

 >>> table.attrs
 /detector/readout (AttributeSet), 2 attributes:
 [temp_scale := 'Celsius',
 temperature := 18.399999999999999]

You can get a list of all attributes or only the user or system attributes with the _f_list() method.

 >>> print table.attrs._f_list("all")
 ['CLASS', 'FIELD_0_NAME', 'FIELD_1_NAME', 'FIELD_2_NAME', 'FIELD_3_NAME',
 'FIELD_4_NAME', 'FIELD_5_NAME', 'FIELD_6_NAME', 'FIELD_7_NAME', 'NROWS',
 'TITLE', 'VERSION', 'temp_scale', 'temperature']
 >>> print table.attrs._f_list("user")
 ['temp_scale', 'temperature']
 >>> print table.attrs._f_list("sys")
 ['CLASS', 'FIELD_0_NAME', 'FIELD_1_NAME', 'FIELD_2_NAME', 'FIELD_3_NAME',
 'FIELD_4_NAME', 'FIELD_5_NAME', 'FIELD_6_NAME', 'FIELD_7_NAME', 'NROWS',
 'TITLE', 'VERSION']

You can also rename attributes:

 >>> table.attrs._f_rename("temp_scale","tempScale")
 >>> print table.attrs._f_list()
 ['tempScale', 'temperature']

However, you can not set, delete or rename read-only attributes:

 >>> table.attrs._f_rename("VERSION", "version")
 Traceback (most recent call last):
 File ">stdin>", line 1, in ?
 File "/home/falted/PyTables/pytables-0.7/tables/AttributeSet.py",
 line 249, in _f_rename
 raise AttributeError, \
 AttributeError: Read-only attribute ('VERSION') cannot be renamed

If you would terminate your session now, you would be able to use the h5ls command to read the /detector/
readout attributes from the file written to disk:

 $ h5ls -vr tutorial1.h5/detector/readout
 Opened "tutorial1.h5" with sec2 driver.
 /detector/readout Dataset {10/Inf}
 Attribute: CLASS scalar
 Type: 6-byte null-terminated ASCII string
 Data: "TABLE"
 Attribute: VERSION scalar
 Type: 4-byte null-terminated ASCII string
 Data: "2.0"
 Attribute: TITLE scalar
 Type: 16-byte null-terminated ASCII string
 Data: "Readout example"
 Attribute: FIELD_0_NAME scalar
 Type: 9-byte null-terminated ASCII string
 Data: "ADCcount"
 Attribute: FIELD_1_NAME scalar
 Type: 9-byte null-terminated ASCII string
 Data: "TDCcount"

Tutorials

23

 Attribute: FIELD_2_NAME scalar
 Type: 7-byte null-terminated ASCII string
 Data: "energy"
 Attribute: FIELD_3_NAME scalar
 Type: 7-byte null-terminated ASCII string
 Data: "grid_i"
 Attribute: FIELD_4_NAME scalar
 Type: 7-byte null-terminated ASCII string
 Data: "grid_j"
 Attribute: FIELD_5_NAME scalar
 Type: 9-byte null-terminated ASCII string
 Data: "idnumber"
 Attribute: FIELD_6_NAME scalar
 Type: 5-byte null-terminated ASCII string
 Data: "name"
 Attribute: FIELD_7_NAME scalar
 Type: 9-byte null-terminated ASCII string
 Data: "pressure"
 Attribute: tempScale scalar
 Type: 8-byte null-terminated ASCII string
 Data: "Celsius"
 Attribute: temperature {1}
 Type: native double
 Data: 18.4
 Attribute: NROWS {1}
 Type: native int
 Data: 10
 Location: 0:1:0:1952
 Links: 1
 Modified: 2003-07-24 13:59:19 CEST
 Chunks: {2048} 96256 bytes
 Storage: 470 logical bytes, 96256 allocated bytes, 0.49% utilization
 Type: struct {
 "ADCcount" +0 native unsigned short
 "TDCcount" +2 native unsigned char
 "energy" +3 native double
 "grid_i" +11 native int
 "grid_j" +15 native int
 "idnumber" +19 native long long
 "name" +27 16-byte null-terminated ASCII string
 "pressure" +43 native float
 } 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to your data.

3.2.3. Getting object metadata

Each object in PyTables has metadata information about the data in the file. Normally this meta-information is
accessible through the node instance variables. Let's take a look at some examples:

 >>> print "Object:", table
 Object: /detector/readout Table(10,) 'Readout example'
 >>> print "Table name:", table.name
 Table name: readout

Tutorials

24

 >>> print "Table title:", table.title
 Table title: Readout example
 >>> print "Number of rows in table:", table.nrows
 Number of rows in table: 10
 >>> print "Table variable names with their type and shape:"
 Table variable names with their type and shape:
 >>> for name in table.colnames:
 ... print name, ':= %s, %s' % (table.coltypes[name], table.colshapes[name])
 ...
 ADCcount := UInt16, 1
 TDCcount := UInt8, 1
 energy := Float64, 1
 grid_i := Int32, 1
 grid_j := Int32, 1
 idnumber := Int64, 1
 name := CharType, 1
 pressure := Float32, 1

Here, the name, title, nrows, colnames, coltypes and colshapes attributes (see 4.6.1 for a complete
attribute list) of the Table object gives us quite a bit of information about the table data.

You can interactively retrieve general information about the public objects in PyTables by printing their internal doc
strings:

 >>> print table.__doc__
 Represent a table in the object tree.
 It provides methods to create new tables or open existing ones, as
 well as to write/read data to/from table objects over the
 file. A method is also provided to iterate over the rows without
 loading the entire table or column in memory.

 Data can be written or read both as Row instances or numarray
 (NumArray or RecArray) objects or NestedRecArray objects.

 Methods:

 __getitem__(key)
 __iter__()
 __setitem__(key, value)
 append(rows)
 flushRowsToIndex()
 iterrows(start, stop, step)
 itersequence(sequence)
 modifyRows(start, rows)
 modifyColumn(columns, names, [start] [, stop] [, step])
 modifyColumns(columns, names, [start] [, stop] [, step])
 read([start] [, stop] [, step] [, field [, flavor]])
 reIndex()
 reIndexDirty()
 removeRows(start [, stop])
 removeIndex(colname)
 where(condition [, start] [, stop] [, step])
 whereAppend(dstTable, condition [, start] [, stop] [, step])
 getWhereList(condition [, flavor])

Tutorials

25

 Instance variables:

 description -- the metaobject describing this table
 row -- a reference to the Row object associated with this table
 nrows -- the number of rows in this table
 rowsize -- the size, in bytes, of each row
 cols -- accessor to the columns using a natural name schema
 colnames -- the field names for the table (tuple)
 coltypes -- the type class for the table fields (dictionary)
 colshapes -- the shapes for the table fields (dictionary)
 colindexed -- whether the table fields are indexed (dictionary)
 indexed -- whether or not some field in Table is indexed
 indexprops -- properties of an indexed Table

The help function is also a handy way to see PyTables reference documentation online. Try it yourself with other
object docs:

 >>> help(table.__class__)
 >>> help(table.removeRows)

To examine metadata in the /columns/pressure Array object:

 >>> pressureObject = h5file.getNode("/columns", "pressure")
 >>> print "Info on the object:", repr(pressureObject)
 Info on the object: /columns/pressure (Array(3,)) 'Pressure column selection'
 type = Float64
 itemsize = 8
 flavor = 'numarray'
 byteorder = 'little'
 >>> print " shape: ==>", pressureObject.shape
 shape: ==> (3,)
 >>> print " title: ==>", pressureObject.title
 title: ==> Pressure column selection
 >>> print " type: ==>", pressureObject.type
 type: ==> Float64

Observe that we have used the getNode() method of the File class to access a node in the tree, instead of the
natural naming method. Both are useful, and depending on the context you will prefer one or the other. getNode()
has the advantage that it can get a node from the pathname string (as in this example) and can also act as a filter to show
only nodes in a particular location that are instances of class classname. In general, however, I consider natural naming
to be more elegant and easier to use, especially if you are using the name completion capability present in interactive
console. Try this powerful combination of natural naming and completion capabilities present in most Python consoles,
and see how pleasant it is to browse the object tree (well, as pleasant as such an activity can be).

If you look at the type attribute of the pressureObject object, you can verify that it is a "Float64" array. By
looking at its shape attribute, you can deduce that the array on disk is unidimensional and has 3 elements. See 4.10.1
or the internal doc strings for the complete Array attribute list.

3.2.4. Reading data from Array objects

Once you have found the desired Array, use the read() method of the Array object to retrieve its data:

 >>> pressureArray = pressureObject.read()

Tutorials

26

 >>> pressureArray
 array([25., 36., 49.])
 >>> print "pressureArray is an object of type:", type(pressureArray)
 pressureArray is an object of type: <class 'numarray.numarraycore.NumArray'>
 >>> nameArray = h5file.root.columns.name.read()
 >>> nameArray
 ['Particle: 5', 'Particle: 6', 'Particle: 7']
 >>> print "nameArray is an object of type:", type(nameArray)
 nameArray is an object of type: <type 'list'>
 >>>
 >>> print "Data on arrays nameArray and pressureArray:"
 Data on arrays nameArray and pressureArray:
 >>> for i in range(pressureObject.shape[0]):
 ... print nameArray[i], "-->", pressureArray[i]
 ...
 Particle: 5 --> 25.0
 Particle: 6 --> 36.0
 Particle: 7 --> 49.0
 >>> pressureObject.name
 'pressure'

You can see that the read() method (see) returns an authentic numarray object for the pressureObject
instance by looking at the output of the type() call. A read() of the nameObject object instance returns a
native Python list (of strings). The type of the object saved is stored as an HDF5 attribute (named FLAVOR) for objects
on disk. This attribute is then read as Array meta-information (accessible through in the Array.attrs.FLAVOR
variable), enabling the read array to be converted into the original object. This provides a means to save a large variety
of objects as arrays with the guarantee that you will be able to later recover them in their original form. See description
for a complete list of supported objects for the Array object class.

3.3. Commiting data to tables and arrays
We have seen how to create tables and arrays and how to browse both data and metadata in the object tree. Let's
examine more closely now one of the most powerful capabilities of PyTables, namely, how to modify already

created tables and arrays1.

3.3.1. Appending data to an existing table

Now, let's have a look at how we can add records to an existing table on disk. Let's use our well-known readout Table
object and append some new values to it:

 >>> table = h5file.root.detector.readout
 >>> particle = table.row
 >>> for i in xrange(10, 15):
 ... particle['name'] = 'Particle: %6d' % (i)
 ... particle['TDCcount'] = i % 256
 ... particle['ADCcount'] = (i * 256) % (1 << 16)
 ... particle['grid_i'] = i
 ... particle['grid_j'] = 10 - i
 ... particle['pressure'] = float(i*i)
 ... particle['energy'] = float(particle['pressure'] ** 4)
 ... particle['idnumber'] = i * (2 ** 34)

1Appending data to arrays is also supported, but you need to create special objects called EArray (see 4.12 for more info).

Tutorials

27

 ... particle.append()
 ...
 >>> table.flush()

It's the same method we used to fill a new table. PyTables knows that this table is on disk, and when you add new

records, they are appended to the end of the table2.

If you look carefully at the code you will see that we have used the table.row attribute to create a table row and
fill it with the new values. Each time that its append() method is called, the actual row is committed to the output
buffer and the row pointer is incremented to point to the next table record. When the buffer is full, the data is saved
on disk, and the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the .flush() method after a write operation, or else your tables will
not be updated!

Let's have a look at some rows in the modified table and verify that our new data has been appended:

 >>> for r in table.iterrows():
 ... print "%-16s | %11.1f | %11.4g | %6d | %6d | %8d |" % \
 ... (r['name'], r['pressure'], r['energy'], r['grid_i'], r['grid_j'],
 ... r['TDCcount'])
 ...
 ...
 Particle: 0 | 0.0 | 0 | 0 | 10 | 0 |
 Particle: 1 | 1.0 | 1 | 1 | 9 | 1 |
 Particle: 2 | 4.0 | 256 | 2 | 8 | 2 |
 Particle: 3 | 9.0 | 6561 | 3 | 7 | 3 |
 Particle: 4 | 16.0 | 6.554e+04 | 4 | 6 | 4 |
 Particle: 5 | 25.0 | 3.906e+05 | 5 | 5 | 5 |
 Particle: 6 | 36.0 | 1.68e+06 | 6 | 4 | 6 |
 Particle: 7 | 49.0 | 5.765e+06 | 7 | 3 | 7 |
 Particle: 8 | 64.0 | 1.678e+07 | 8 | 2 | 8 |
 Particle: 9 | 81.0 | 4.305e+07 | 9 | 1 | 9 |
 Particle: 10 | 100.0 | 1e+08 | 10 | 0 | 10 |
 Particle: 11 | 121.0 | 2.144e+08 | 11 | -1 | 11 |
 Particle: 12 | 144.0 | 4.3e+08 | 12 | -2 | 12 |
 Particle: 13 | 169.0 | 8.157e+08 | 13 | -3 | 13 |
 Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

3.3.2. Modifying data in tables

Ok, until now, we've been only reading and writing (appending) values to our tables. But there are times that you need
to modify your data once you have saved it on disk (this is specially true when you need to modify the real world data
to adapt your goals ;). Let's see how we can modify the values that were saved in our existing tables. We will start
modifying single cells in the first row of the Particle table:

 >>> print "Before modif-->", table[0]
 Before modif--> (0, 0, 0.0, 0, 10, 0L, 'Particle: 0', 0.0)
 >>> table.cols.TDCcount[0] = 1
 >>> print "After modif first row of ADCcount-->", table[0]
 After modif first row of ADCcount--> (0, 1, 0.0, 0, 10, 0L, 'Particle: 0',
 0.0)

2Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

Tutorials

28

 >>> table.cols.energy[0] = 2
 >>> print "After modif first row of energy-->", table[0]
 After modif first row of energy--> (0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0)

We can modify complete ranges of columns as well:

 >>> table.cols.TDCcount[2:5] = [2,3,4]
 >>> print "After modifying slice [2:5] of ADCcount-->", table[0:5]
 After modifying slice [2:5] of ADCcount--> RecArray[
 (0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0),
 (256, 1, 1.0, 1, 9, 17179869184L, 'Particle: 1', 1.0),
 (512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0),
 (768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0),
 (1024, 4, 65536.0, 4, 6, 68719476736L, 'Particle: 4', 16.0)
]
 >>> table.cols.energy[1:9:3] = [2,3,4]
 >>> print "After modifying slice [1:9:3] of energy-->", table[0:9]
 After modifying slice [1:9:3] of energy--> RecArray[
 (0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0),
 (256, 1, 2.0, 1, 9, 17179869184L, 'Particle: 1', 1.0),
 (512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0),
 (768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0),
 (1024, 4, 3.0, 4, 6, 68719476736L, 'Particle: 4', 16.0),
 (2560, 10, 100000000.0, 10, 0, 171798691840L, 'Particle: 10', 100.0),
 (2816, 11, 214358881.0, 11, -1, 188978561024L, 'Particle: 11', 121.0),
 (3072, 12, 4.0, 12, -2, 206158430208L, 'Particle: 12', 144.0),
 (3328, 13, 815730721.0, 13, -3, 223338299392L, 'Particle: 13', 169.0)
]

Check that the values has been correctly modified!. Hint: remember that column TDCcount is the first one, and that
energy is the third. Look for more info on modifying columns in Section .

PyTables also let's you modify complete sets of rows at the same time. As a demonstration of these capability, see
the next example:

 >>> table.modifyRows(start=1, step=3,
 ... rows=[(1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0),
 ... (2, 4, 6.0, 8, 10, 12L, 'Particle: None*2',
 16.0)])
 2
 >>> print "After modifying the complete third row-->", table[0:5]
 After modifying the complete third row--> RecArray[
 (0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0),
 (1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0),
 (512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0),
 (768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0),
 (2, 4, 6.0, 8, 10, 12L, 'Particle: None*2', 16.0)
]

As you can see, the modifyRows call has modified the rows second and fifth, and it returned the number of modified
rows.

Apart of modifyRows, there exists another method, called modifyColumn to modify specific columns as well.
Please, check sections description and description for a more in-depth description of them.

Tutorials

29

Finally, it exists another way of modifying tables that is generally more handy than the described above. This new
way uses the method update() (see description) of the Row instance that is attached to every table, so it is meant
to be used in table iterators. Look at the next example:

 >>> for row in table.where(table.cols.TDCcount <= 2):
 ... row['energy'] = row['TDCcount']*2
 ... row.update()
 ...
 >>> print "After modifying energy column (where TDCcount <=2)-->", table[0:4]
 After modifying energy column (where TDCcount <=2)--> NestedRecArray[
 (0, 1, 2.0, 0, 10, 0L, 'Particle: 0', 0.0),
(1, 2, 4.0, 4, 5, 6L, 'Particle: None', 8.0),
 (512, 2, 4.0, 2, 8, 34359738368L, 'Particle: 2', 4.0),
 (768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3', 9.0)
]

Note:The authors find this way of updating tables (i.e. using Row.update()) to be both convenient and efficient.
Please, make sure to use it extensively.

3.3.3. Modifying data in arrays

We are going now to see how to modify data in array objects. The basic way to do this is through the use of
__setitem__ special method (see description). Let's see at how modify data on the pressureObject array:

 >>> print "Before modif-->", pressureObject[:]
 Before modif--> [25. 36. 49.]
 >>> pressureObject[0] = 2
 >>> print "First modif-->", pressureObject[:]
 First modif--> [2. 36. 49.]
 >>> pressureObject[1:3] = [2.1, 3.5]
 >>> print "Second modif-->", pressureObject[:]
 Second modif--> [2. 2.1 3.5]
 >>> pressureObject[::2] = [1,2]
 >>> print "Third modif-->", pressureObject[:]
 Third modif--> [1. 2.1 2.]

So, in general, you can use any combination of (multidimensional) extended slicing3 to refer to indexes that you want
to modify. See for more examples on how to use extended slicing in PyTables objects.

Similarly, with and array of strings:

 >>> print "Before modif-->", nameObject[:]
 Before modif--> ['Particle: 5', 'Particle: 6', 'Particle: 7']
 >>> nameObject[0] = 'Particle: None'
 >>> print "First modif-->", nameObject[:]
 First modif--> ['Particle: None', 'Particle: 6', 'Particle: 7']
 >>> nameObject[1:3] = ['Particle: 0', 'Particle: 1']
 >>> print "Second modif-->", nameObject[:]
 Second modif--> ['Particle: None', 'Particle: 0', 'Particle: 1']
 >>> nameObject[::2] = ['Particle: -3', 'Particle: -5']
 >>> print "Third modif-->", nameObject[:]
 Third modif--> ['Particle: -3', 'Particle: 0', 'Particle: -5']

3With the sole exception that you cannot use negative values for step.

Tutorials

30

3.3.4. And finally... how to delete rows from a table

We'll finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the the 5th
to 9th rows (inclusive):

 >>> table.removeRows(5,10)
 5

removeRows(start, stop) (see description) deletes therows in the range (start, stop). It returns the number
of rows effectively removed.

We have reached the end of this first tutorial. Don't forget to close the file when you finish:

 >>> h5file.close()
 >>> ^D
 $

In Figure 3.2 you can see a graphical view of the PyTables file with the datasets we have just created. In Figure 3.3
are displayed the general properties of the table /detector/readout.

Figure 3.2. The final version of the data file for tutorial 1.

Tutorials

31

Figure 3.3. General properties of the /detector/readout table.

3.4. Multidimensional table cells and automatic sanity
checks
Now it's time for a more real-life example (i.e. with errors in the code). We will create two groups that branch directly
from the root node, Particles and Events. Then, we will put three tables in each group. In Particles we
will put tables based on the Particle descriptor and in Events, the tables based the Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created table
/Events/TEvent3 and select some values from it, using a comprehension list.

Look at the next script (you can find it in examples/tutorial2.py). It appears to do all of the above, but it
contains some small bugs. Note that this Particle class is not directly related to the one defined in last tutorial; this
class is simpler (note, however, the multidimensional columns called pressure and temperature).

We also introduce a new manner to describe a Table as a dictionary, as you can see in the Event description. See
description about the different kinds of descriptor objects that can be passed to the createTable() method.

Tutorials

32

 from numarray import *
 from tables import *

 # Describe a particle record
 class Particle(IsDescription):
 name = StringCol(length=16) # 16-character String
 lati = IntCol() # integer
 longi = IntCol() # integer
 pressure = Float32Col(shape=(2,3)) # array of floats
 (single-precision)
 temperature = FloatCol(shape=(2,3)) # array of doubles
 (double-precision)

 # Another way to describe the columns of a table
 Event = {
 "name" : StringCol(length=16),
 "lati" : IntCol(),
 "longi" : IntCol(),
 "pressure" : Float32Col(shape=(2,3)),
 "temperature" : FloatCol(shape=(2,3)),
 }

 # Open a file in "w"rite mode
 fileh = openFile("tutorial2.h5", mode = "w")
 # Get the HDF5 root group
 root = fileh.root
 # Create the groups:
 for groupname in ("Particles", "Events"):
 group = fileh.createGroup(root, groupname)
 # Now, create and fill the tables in the Particles group
 gparticles = root.Particles
 # Create 3 new tables
 for tablename in ("TParticle1", "TParticle2", "TParticle3"):
 # Create a table
 table = fileh.createTable("/Particles", tablename, Particle,
 "Particles: "+tablename)
 # Get the record object associated with the table:
 particle = table.row
 # Fill the table with data for 257 particles
 for i in xrange(257):
 # First, assign the values to the Particle record
 particle['name'] = 'Particle: %6d' % (i)
 particle['lati'] = i
 particle['longi'] = 10 - i
 ########### Detectable errors start here. Play with them!
 particle['pressure'] = array(i*arange(2*3), shape=(2,4)) # Incorrect
 #particle['pressure'] = array(i*arange(2*3), shape=(2,3)) # Correct
 ########### End of errors
 particle['temperature'] = (i**2) # Broadcasting
 # This injects the Record values
 particle.append()
 # Flush the table buffers
 table.flush()

Tutorials

33

 # Now Events:
 for tablename in ("TEvent1", "TEvent2", "TEvent3"):
 # Create a table in the Events group
 table = fileh.createTable(root.Events, tablename, Event,
 "Events: "+tablename)
 # Get the record object associated with the table:
 event = table.row
 # Fill the table with data on 257 events
 for i in xrange(257):
 # First, assign the values to the Event record
 event['name'] = 'Event: %6d' % (i)
 event['TDCcount'] = i % (1<<8) # Correct range
 ########### Detectable errors start here. Play with them!
 #event['xcoord'] = float(i**2) # Correct spelling
 event['xcoor'] = float(i**2) # Wrong spelling
 event['ADCcount'] = i * 2 # Correct type
 #event['ADCcount'] = "sss" # Wrong type
 ########### End of errors
 event['ycoord'] = float(i)**4
 # This injects the Record values
 event.append()

 # Flush the buffers
 table.flush()

 # Read the records from table "/Events/TEvent3" and select some
 table = root.Events.TEvent3
 e = [p['TDCcount'] for p in table
 if p['ADCcount'] < 20 and 4 <= p['TDCcount'] < 15]
 print "Last record ==>", p
 print "Selected values ==>", e
 print "Total selected records ==> ", len(e)
 # Finally, close the file (this also will flush all the remaining buffers)
 fileh.close()

3.4.1. Shape checking

If you look at the code carefully, you'll see that it won't work. You will get the following error:

 $ python tutorial2.py
 Traceback (most recent call last):
 File "tutorial2.py", line 53, in ?
 particle['pressure'] = array(i*arange(2*3), shape=(2,4)) # Incorrect
 File "/usr/local/lib/python2.2/site-packages/numarray/numarraycore.py",
 line 281, in array
 a.setshape(shape)
 File "/usr/local/lib/python2.2/site-packages/numarray/generic.py",
 line 530, in setshape
 raise ValueError("New shape is not consistent with the old shape")
 ValueError: New shape is not consistent with the old shape

This error indicates that you are trying to assign an array with an incompatible shape to a table cell. Looking at the
source, we see that we were trying to assign an array of shape (2,4) to a pressure element, which was defined
with the shape (2,3).

Tutorials

34

In general, these kinds of operations are forbidden, with one valid exception: when you assign a scalar value to a
multidimensional column cell, all the cell elements are populated with the value of the scalar. For example:

 particle['temperature'] = (i**2) # Broadcasting

The value i**2 is assigned to all the elements of the temperature table cell. This capability is provided by the
numarray package and is known as broadcasting.

3.4.2. Field name checking

After fixing the previous error and rerunning the program, we encounter another error:

 $ python tutorial2.py
 Traceback (most recent call last):
 File "tutorial2.py", line 74, in ?
 event['xcoor'] = float(i**2) # Wrong spelling
 File "src/hdf5Extension.pyx",
 line 1812, in hdf5Extension.Row.__setitem__
 raise KeyError, "Error setting \"%s\" field.\n %s" % \
 KeyError: Error setting "xcoor" field.
 Error was: "exceptions.KeyError: xcoor"

This error indicates that we are attempting to assign a value to a non-existent field in the event table object. By looking
carefully at the Event class attributes, we see that we misspelled the xcoord field (we wrote xcoor instead). This
is unusual behavior for Python, as normally when you assign a value to a non-existent instance variable, Python creates
a new variable with that name. Such a feature can be dangerous when dealing with an object that contains a fixed list
of field names. PyTables checks that the field exists and raises a KeyError if the check fails.

3.4.3. Data type checking

Finally, in order to test type checking, we will change the next line:

 event.ADCcount = i * 2 # Correct type

to read:

 event.ADCcount = "sss" # Wrong type

This modification will cause the following TypeError exception to be raised when the script is executed:

 $ python tutorial2.py
 Traceback (most recent call last):
 File "tutorial2.py", line 76, in ?
 event['ADCcount'] = "sss" # Wrong type
 File "src/hdf5Extension.pyx",
 line 1812, in hdf5Extension.Row.__setitem__
 raise KeyError, "Error setting \"%s\" field.\n %s" % \
 KeyError: Error setting "ADCcount" field.
 Error was: "exceptions.TypeError: NA_setFromPythonScalar: bad value type."

You can see the structure created with this (corrected) script in Figure 3.4. In particular, note the multidimensional
column cells in table /Particles/TParticle2.

Tutorials

35

Figure 3.4. Table hierarchy for tutorial 2.

3.5. Exercising the Undo/Redo feature
PyTables has integrated support for undoing and/or redoing actions. This functionality lets you put marks in specific
places of your hierarchy manipulation operations, so that you can make your HDF5 file pop back (undo) to a specific
mark (for example for inspecting how your hierarchy looked at that point). You can also go forward to a more recent
marker (redo). You can even do jumps to the marker you want using just one instruction as we will see shortly.

You can undo/redo all the operations that are related to object tree management, like creating, deleting, moving or
renaming nodes (or complete sub-hierarchies) inside a given object tree. You can also undo/redo operations (i.e. cre-
ation, deletion or modification) of persistent node attributes. However, when actions include internal modifications
of datasets (that includes Table.append, Table.modifyRows or Table.removeRows among others), they
cannot be undone/redone currently.

This capability can be useful in many situations, like for example when doing simulations with multiple branches.
When you have to choose a path to follow in such a situation, you can put a mark there and, if the simulation is not
going well, you can go back to that mark and start another path. Other possible application is defining coarse-grained
operations which operate in a transactional-like way, i.e. which return the database to its previous state if the operation

Tutorials

36

finds some kind of problem while running. You can probably devise many other scenarios where the Undo/Redo

feature can be useful to you 4.

3.5.1. A basic example

In this section, we are going to show the basic behavior of the Undo/Redo feature. You can find the code used in
this example in examples/tutorial3-1.py. A somewhat more complex example will be explained in the next
section.

First, let's create a file:

 >>> import tables
 >>> fileh = tables.openFile("tutorial3-1.h5", "w", title="Undo/Redo demo 1")

And now, activate the Undo/Redo feature with the method enableUndo (see method description) of File:

 >>> fileh.enableUndo()

From now on, all our actions will be logged internally by PyTables. Now, we are going to create a node (in this
case an Array object):

 >>> one = fileh.createArray('/', 'anarray', [3,4], "An array")

Now, mark this point:

 >>> fileh.mark()
 1
 >>>

We have marked the current point in the sequence of actions. In addition, the mark() method has returned the iden-
tifier assigned to this new mark, that is 1 (mark #0 is reserved for the implicit mark at the beginning of the action log).
In the next section we will see that you can also assign a name to a mark (see method description for more info on
mark()). Now, we are going to create another array:

 >>> another = fileh.createArray('/', 'anotherarray', [4,5], "Another array")

Right. Now, we can start doing funny things. Let's say that we want to pop back to the previous mark (that whose
value was 1, do you remember?). Let's introduce the undo() method (see method description):

 >>> fileh.undo()
 >>>

Fine, what do you think it happened? Well, let's have a look at the object tree:

 >>> print fileh
 do-undo1.h5 (File) 'Undo/Redo demo 1'
 Last modif.: 'Fri Mar 4 20:22:28 2005'
 Object Tree:
 / (RootGroup) 'Undo/Redo demo 1'
 /anarray (Array(2,)) 'An array'

 >>>

4You can even hide nodes temporarily. Will you be able to find out how?

Tutorials

37

What happened with the /anotherarray node we've just created? You guess it, it has disappeared because it was
created after the mark 1. If you are curious enough you may well ask where it has gone. Well, it has not been deleted
completely; it has been just moved into a special, hidden, group of PyTables that renders it invisible and waiting for
a chance to be reborn.

Now, unwind once more, and look at the object tree:

 >>> fileh.undo()
 >>> print fileh
 do-undo1.h5 (File) 'Undo/Redo demo 1'
 Last modif.: 'Fri Mar 4 20:22:28 2005'
 Object Tree:
 / (RootGroup) 'Undo/Redo demo 1'

 >>>

Oops, /anarray has disappeared as well!. Don't worry, it will revisit us very shortly. So, you might be somewhat
lost right now; in which mark are we?. Let's ask the getCurrentMark() method (see method description) in the
file handler:

 >>> print fileh.getCurrentMark()
 0

So we are at mark #0, remember? Mark #0 is an implicit mark that is created when you start the log of actions when
calling File.enableUndo(). Fine, but you are missing your too-young-to-die arrays. What can we do about that?
File.redo() (see method description) to the rescue:

 >>> fileh.redo()
 >>> print fileh
 do-undo1.h5 (File) 'Undo/Redo demo 1'
 Last modif.: 'Fri Mar 4 20:22:28 2005'
 Object Tree:
 / (RootGroup) 'Undo/Redo demo 1'
 /anarray (Array(2,)) 'An array'

>>>

Great! The /anarray array has come into life again. Just check that it is alive and well:

 >>> fileh.root.anarray.read()
 [3, 4]
 >>> fileh.root.anarray.title
 'An array'
 >>>

Well, it looks pretty similar than in its previous life; what's more, it is exactly the same object!:

 >>> fileh.root.anarray is one
 True

It just was moved to the the hidden group and back again, but that's all! That's kind of fun, so we are going to do the
same with /anotherarray:

 >>> fileh.redo()
 >>> print fileh

Tutorials

38

 do-undo1.h5 (File) 'Undo/Redo demo 1'
 Last modif.: 'Fri Mar 4 20:22:28 2005'
 Object Tree:
 / (RootGroup) 'Undo/Redo demo 1'
 /anarray (Array(2,)) 'An array'
 /anotherarray (Array(2,)) 'Another array'

 >>>

Welcome back, /anotherarray! Just a couple of sanity checks:

 >>> assert fileh.root.anotherarray.read() == [4,5]
 >>> assert fileh.root.anotherarray.title == "Another array"
 >>> fileh.root.anotherarray is another
 True

Nice, you managed to turn your data back into life. Congratulations! But wait, do not forget to close your action log
when you don't need this feature anymore:

 >>> fileh.disableUndo()

That will allow you to continue working with your data without actually requiring PyTables to keep track of all
your actions, and more importantly, allowing your objects to die completely if they have to, not requiring to keep them
anywhere, and hence saving process time and space in your database file.

3.5.2. A more complete example

Now, time for a somewhat more sophisticated demonstration of the Undo/Redo feature. In it, several marks will be set
in different parts of the code flow and we will see how to jump between these marks with just one method call. You
can find the code used in this example in examples/tutorial3-2.py

Let's introduce the first part of the code:

 import tables

 # Create an HDF5 file
 fileh = tables.openFile('tutorial3-2.h5', 'w', title='Undo/Redo demo 2')

 #'-**-**-**-**-**-**- enable undo/redo log -**-**-**-**-**-**-**-'
 fileh.enableUndo()

 # Start undoable operations
 fileh.createArray('/', 'otherarray1', [3,4], 'Another array 1')
 fileh.createGroup('/', 'agroup', 'Group 1')
 # Create a 'first' mark
 fileh.mark('first')
 fileh.createArray('/agroup', 'otherarray2', [4,5], 'Another array 2')
 fileh.createGroup('/agroup', 'agroup2', 'Group 2')
 # Create a 'second' mark
 fileh.mark('second')
 fileh.createArray('/agroup/agroup2', 'otherarray3', [5,6], 'Another array 3')
 # Create a 'third' mark
 fileh.mark('third')
 fileh.createArray('/', 'otherarray4', [6,7], 'Another array 4')

Tutorials

39

 fileh.createArray('/agroup', 'otherarray5', [7,8], 'Another array 5')

You can see how we have set several marks interspersed in the code flow, representing different states of the database.
Also, note that we have assigned names to these marks, namely 'first', 'second' and 'third'.

Now, start doing some jumps back and forth in the states of the database:

 # Now go to mark 'first'
 fileh.goto('first')
 assert '/otherarray1' in fileh
 assert '/agroup' in fileh
 assert '/agroup/agroup2' not in fileh
 assert '/agroup/otherarray2' not in fileh
 assert '/agroup/agroup2/otherarray3' not in fileh
 assert '/otherarray4' not in fileh
 assert '/agroup/otherarray5' not in fileh
 # Go to mark 'third'
 fileh.goto('third')
 assert '/otherarray1' in fileh
 assert '/agroup' in fileh
 assert '/agroup/agroup2' in fileh
 assert '/agroup/otherarray2' in fileh
 assert '/agroup/agroup2/otherarray3' in fileh
 assert '/otherarray4' not in fileh
 assert '/agroup/otherarray5' not in fileh
 # Now go to mark 'second'
 fileh.goto('second')
 assert '/otherarray1' in fileh
 assert '/agroup' in fileh
 assert '/agroup/agroup2' in fileh
 assert '/agroup/otherarray2' in fileh
 assert '/agroup/agroup2/otherarray3' not in fileh
 assert '/otherarray4' not in fileh
 assert '/agroup/otherarray5' not in fileh

Well, the code above shows how easy is to jump to a certain mark in the database by using the goto() method (see
method description).

There are also a couple of implicit marks for going to the beginning or the end of the saved states: 0 and -1. Going to
mark #0 means go to the beginning of the saved actions, that is, when method fileh.enableUndo() was called.
Going to mark #-1 means go to the last recorded action, that is the last action in the code flow.

Let's see what happens when going to the end of the action log:

 # Go to the end
 fileh.goto(-1)
 assert '/otherarray1' in fileh
 assert '/agroup' in fileh
 assert '/agroup/agroup2' in fileh
 assert '/agroup/otherarray2' in fileh
 assert '/agroup/agroup2/otherarray3' in fileh
 assert '/otherarray4' in fileh
 assert '/agroup/otherarray5' in fileh
 # Check that objects have come back to life in a sane state
 assert fileh.root.otherarray1.read() == [3,4]

Tutorials

40

 assert fileh.root.agroup.otherarray2.read() == [4,5]
 assert fileh.root.agroup.agroup2.otherarray3.read() == [5,6]
 assert fileh.root.otherarray4.read() == [6,7]
 assert fileh.root.agroup.otherarray5.read() == [7,8]

Try yourself going to the beginning of the action log (remember, the mark #0) and check the contents of the object tree.

We have nearly finished this demonstration. As always, do not forget to close the action log as well as the database:

 #'-**-**-**-**-**-**- disable undo/redo log -**-**-**-**-**-**-**-'
 fileh.disableUndo()

 # Close the file
 fileh.close()

You might want to check other examples on Undo/Redo feature that appear in examples/undo-redo.py.

3.6. Using enumerated types
Beginning from version 1.1, PyTables supports the handling of enumerated types. Those types are defined by providing
an exhaustive set or list of possible, named values for a variable of that type. Enumerated variables of the same type
are usually compared between them for equality and sometimes for order, but are not usually operated upon.

Enumerated values have an associated name and concrete value. Every name is unique and so are concrete values. An
enumerated variable always takes the concrete value, not its name. Usually, the concrete value is not used directly, and
frequently it is entirely irrelevant. For the same reason, an enumerated variable is not usually compared with concrete
values out of its enumerated type. For that kind of use, standard variables and constants are more adequate.

PyTables provides the Enum (see 4.17.4) class to provide support for enumerated types. Each instance of Enum is an

enumerated type (or enumeration). For example, let us create an enumeration of colors5:

 >>> import tables
 >>> colorList = ['red', 'green', 'blue', 'white', 'black']
 >>> colors = tables.Enum(colorList)
 >>>

Here we used a simple list giving the names of enumerated values, but we left the choice of concrete values up to the
Enum class. Let us see the enumerated pairs to check those values:

 >>> print "Colors:", [v for v in colors]
 Colors: [('blue', 2), ('black', 4), ('white', 3), ('green', 1), ('red', 0)]
 >>>

Names have been given automatic integer concrete values. We can iterate over the values in an enumeration, but we
will usually be more interested in accessing single values. We can get the concrete value associated with a name by
accessing it as an attribute or as an item (the later can be useful for names not resembling Python identifiers):

 >>> print "Value of 'red' and 'white':", (colors.red, colors.white)
 Value of 'red' and 'white': (0, 3)
 >>> print "Value of 'yellow':", colors.yellow
 Value of 'yellow':
 Traceback (most recent call last):

5All these examples can be found in examples/enum.py.

Tutorials

41

 File "<stdin>", line 1, in ?
 File "enum.py", line 222, in __getattr__
 AttributeError: no enumerated value with that name: 'yellow'
 >>>
 >>> print "Value of 'red' and 'white':", (colors['red'], colors['white'])
 Value of 'red' and 'white': (0, 3)
 >>> print "Value of 'yellow':", colors['yellow']
 Value of 'yellow':
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "enum.py", line 181, in __getitem__
 KeyError: "no enumerated value with that name: 'yellow'"
 >>>

See how accessing a value that is not in the enumeration raises the appropriate exception. We can also do the opposite
action and get the name that matches a concrete value by using the __call__() method of Enum:

 >>> print "Name of value %s:" % colors.red, colors(colors.red)
 Name of value 0: red
 >>> print "Name of value 1234:", colors(1234)
 Name of value 1234:
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "enum.py", line 311, in __call__
 ValueError: no enumerated value with that concrete value: 1234
 >>>

You can see what we made as using the enumerated type to convert a concrete value into a name in the enumeration.
Of course, values out of the enumeration can not be converted.

3.6.1. Enumerated columns

Columns of an enumerated type can be declared by using the EnumCol (see 4.16.2) class. To see how this works, let
us open a new PyTables file and create a table to collect the simulated results of a probabilistic experiment. In it, we
have a bag full of colored balls; we take a ball out and annotate the time of extraction and the color of the ball.

 >>> h5f = tables.openFile('enum.h5', 'w')
 >>>
 >>> class BallExt(tables.IsDescription):
 ... ballTime = tables.Time32Col()
 ... ballColor = tables.EnumCol(colors, 'black', dtype='UInt8')
 ...
 >>> tbl = h5f.createTable(
 ... '/', 'extractions', BallExt, title="Random ball extractions")
 >>>

We declared the ballColor column to be of the enumerated type colors, with a default value of black. We also

stated that we are going to store concrete values as unsigned 8-bit integer values6.

Let us use some random values to fill the table:

 >>> import time

6In fact, only integer values are supported right now, but this may change in the future.

Tutorials

42

 >>> import random
 >>> now = time.time()
 >>> row = tbl.row
 >>> for i in range(10):
 ... row['ballTime'] = now + i
 ... row['ballColor'] = colors[random.choice(colorList)] # notice this
 ... row.append()
 ...
 >>>

Notice how we used the __getitem()__ call of colors to get the concrete value to store in ballColor. You
should know that this way of appending values to a table does automatically check for the validity on enumerated
values. For instance:

 >>> row['ballTime'] = now + 42
 >>> row['ballColor'] = 1234
 Traceback (most recent call last):
 File "<stdin>", line 1, in ?
 File "hdf5Extension.pyx", line 2936, in hdf5Extension.Row.__setitem__
 File "enum.py", line 311, in __call__
 ValueError: no enumerated value with that concrete value: 1234
 >>>

But take care that this check is only performed here and not in other methods such as tbl.append() or
tbl.modifyRows(). Now, after flushing the table we can see the results of the insertions:

 >>> tbl.flush()
 >>>
 >>> COMMENT("Now print them!")
 >>> for r in tbl:
 ... ballTime = r['ballTime']
 ... ballColor = colors(r['ballColor']) # notice this
 ... print "Ball extracted on %d is of color %s." % (ballTime, ballColor)
 ...
 Ball extracted on 1116501220 is of color white.
 Ball extracted on 1116501221 is of color red.
 Ball extracted on 1116501222 is of color blue.
 Ball extracted on 1116501223 is of color white.
 Ball extracted on 1116501224 is of color white.
 Ball extracted on 1116501225 is of color green.
 Ball extracted on 1116501226 is of color black.
 Ball extracted on 1116501227 is of color red.
 Ball extracted on 1116501228 is of color white.
 Ball extracted on 1116501229 is of color white.
 >>>

As a last note, you may be wondering how to have access to the enumeration associated with ballColor once the
file is closed and reopened. You can call tbl.getEnum('ballColor') (see 4.6.2) to get the enumeration back.

3.6.2. Enumerated arrays

EArray and VLArray leaves can also be declared to store enumerated values by means of the EnumAtom (see
4.16.3) class, which works very much like EnumCol for tables. Also, Array leaves can be used to open native HDF
enumerated arrays.

Tutorials

43

Let us create a sample EArray containing ranges of working days as bidimensional values:

 >>> workingDays = {'Mon': 1, 'Tue': 2, 'Wed': 3, 'Thu': 4, 'Fri': 5}
 >>> dayRange = tables.EnumAtom(workingDays, shape=(0, 2), flavor='Tuple')
 >>> earr = h5f.createEArray('/', 'days', dayRange, title="Working day
 ranges")
 >>>

Nothing surprising, except for a pair of details. In the first place, we use a dictionary instead of a list to explicitly
set concrete values in the enumeration. In the second place, there is no explicit Enum instance created! Instead, the
dictionary is passed as the first argument to the constructor of EnumAtom. If the constructor gets a list or a dictionary
instead of an enumeration, it automatically builds the enumeration from it.

Now let us feed some data to the array:

 >>> wdays = earr.getEnum()
 >>> earr.append([(wdays.Mon, wdays.Fri), (wdays.Wed, wdays.Fri)])
 >>> earr.append([(wdays.Mon, 1234)])
 >>>

Please note that, since we had no explicit Enum instance, we were forced to use getEnum() (see 4.12.2) to get it
from the array (we could also have used dayRange.enum). Also note that we were able to append an invalid value
(1234). Array methods do not check the validity of enumerated values.

Finally, we will print the contents of the array:

 >>> for (d1, d2) in earr:
 ... print "From %s to %s (%d days)." % (wdays(d1), wdays(d2), d2-d1+1)
 ...
 From Mon to Fri (5 days).
 From Wed to Fri (3 days).
 Traceback (most recent call last):
 File "<stdin>", line 2, in ?
 File "enum.py", line 311, in __call__
 ValueError: no enumerated value with that concrete value: 1234L
 >>>

That was an example of operating on concrete values. It also showed how the value-to-name conversion failed because
of the value not belonging to the enumeration.

Now we will close and remove the file, and this little tutorial on enumerated types is done:

 >>> import os
 >>> h5f.close()
 >>> os.remove('enum.h5')
 >>>

3.7. Dealing with nested structures in tables
PyTables supports the handling of nested structures (or nested datatypes, as you prefer) in table objects, allowing you
to define arbitrarily nested columns.

An example will clarify what this means. Let's suppose that you want to group your data in pieces of information that
are more related than others pieces in your table, So you may want to tie them up together in order to have your table
better structured but also be able to retrieve and deal with these groups more easily.

Tutorials

44

You can create such a nested substructures by just nesting subclasses of IsDescription. Let's see one example
(okay, it's a bit silly, but will serve for demonstration purposes):

 class Info(IsDescription):
 """A sub-structure of Test"""
 _v_pos = 2 # The position in the whole structure
 name = StringCol(10)
 value = Float64Col(pos=0)

 colors = Enum(['red', 'green', 'blue']) # An enumerated type

 class NestedDescr(IsDescription):
 """A description that has several nested columns"""
 color = EnumCol(colors, 'red', dtype='UInt32', indexed=1) # indexed
 column
 info1 = Info()
 class info2(IsDescription):
 _v_pos = 1
 name = StringCol(10)
 value = Float64Col(pos=0)
 class info3(IsDescription):
 x = FloatCol(1)
 y = UInt8Col(1)

The root class is NestedDescr and both info1 and info2 are substructures of it. Note how info1 is actually
an instance of the class Info that was defined prior to NestedDescr. Also, there is a third substructure, namely
info3 that hangs from the substructure info2. You can also define positions of substructures in the containing
object by declaring the special class attribute _v_pos.

3.7.1. Nested table creation

Now that we have defined our nested structure, let's create a nested table, that is a table with columns that contain
other subcolumns.

 >>> from tables import *
 >>> fileh = openFile("nested-tut.h5", "w")
 >>> table = fileh.createTable(fileh.root, 'table', NestedDescr)
 >>>

Done! Now, we have to feed the table with some values. The problem is how we are going to reference to the nested
fields. That's easy, just use a '/' character to separate names in different nested levels. Look at this:

 >>> for i in range(10):
 ... row['color'] = colors[['red', 'green', 'blue'][i%3]]
 ... row['info1/name'] = "name1-%s" % i
 ... row['info2/name'] = "name2-%s" % i
 ... row['info2/info3/y'] = i
 ... # All the rest will be filled with defaults
 ... row.append()
 ...
 >>> table.flush()
 >>> table.nrows
 10L
 >>>

Tutorials

45

You see? In order to fill the fields located in the substructures, we just need to specify its full path in the table hierarchy.

3.7.2. Reading nested tables: introducing NestedRecArray ob-
jects

Now, what happens if we want to read the table? Which data container will be used to keep the data? Well, it's worth
trying it:

 >>> nra = table[::4]
 >>> print nra
 NestedRecArray[
 (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L),
 (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L),
 (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)
]
 >>>

We have read one row for each four in the table, giving a result of three rows. What about the container? Well, we can
see that it is a new mysterious object known as NestedRecArray. If we ask for more info on that:

 >>> type(nra)
 <class 'tables.nestedrecords.NestedRecArray'>

we see that it is an instance of the class NestedRecArray that lives in the module nestedrecords of tables
package. NestedRecArray is actually a subclass of the RecArray object of the records module of numarray
package. You can see more info about NestedRecArray object in Appendix B.

You can make use of the above object in many different ways. For example, you can use it to append new data to
the existing table object:

 >>> table.append(nra)
 >>> table.nrows
 13L
 >>>

Or, to create new tables:

 >>> table2 = fileh.createTable(fileh.root, 'table2', nra)
 >>> table2[:]
 array(
 [(((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L),
 (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L),
 (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)],
 descr=[('info2', [('info3', [('x', '1f8'), ('y', '1u1')]), ('name',
 '1a10'), ('value', '1f8')]), ('info1', [('name', '1a10'), ('value',
 '1f8')]), ('color', '1u4')], shape=3)

Finally, we can select nested values that fulfill some condition:

 >>> names = [x['info2/name'] for x in table if x['color'] == colors.red]
 >>> names
 ['name2-0', 'name2-3', 'name2-6', 'name2-9', 'name2-0']
 >>>

Note that the row accessor does not provide the natural naming feature, so you have to completely specify the path
of your desired columns in order to reach them.

Tutorials

46

3.7.3. Using Cols accessor

We can use the cols attribute object (see 4.7) of the table so as to quickly access the info located in the interesting
substructures:

 >>> table.cols.info2[1:5]
 array(
 [((1.0, 1), 'name2-1', 0.0),
 ((1.0, 2), 'name2-2', 0.0),
 ((1.0, 3), 'name2-3', 0.0),
 ((1.0, 4), 'name2-4', 0.0)],
 descr=[('info3', [('x', '1f8'), ('y', '1u1')]), ('name', '1a10'),
 ('value', '1f8')],
 shape=4)
 >>>

Here, we have made use of the cols accessor to access to the info2 substructure and an slice operation to get access
to the subset of data we were interested in; you probably have recognized the natural naming approach here. We can
continue and ask for data in info3 substructure:

 >>> table.cols.info2.info3[1:5]
 array(
 [(1.0, 1),
 (1.0, 2),
 (1.0, 3),
 (1.0, 4)],
 descr=[('x', '1f8'), ('y', '1u1')],
 shape=4)
 >>>

You can also use the _f_col method to get a handler for a column:

 >>> table.cols._f_col('info2')
 /table.cols.info2 (Cols), 3 columns
 info3 (Cols(1,), Description)
 name (Column(1,), CharType)
 value (Column(1,), Float64)

Here, you've got another Cols object handler because info2 was a nested column. If you select a non-nested column,
you will get a regular Column instance:

 >>> ycol = table.cols._f_col('info2/info3/y')
 >>> ycol
 /table.cols.info2.info3.y (Column(1,), UInt8, idx=None)
 >>>

To sum up, the cols accessor is a very handy and powerful way to access data in your nested tables. Be sure of using
it, specially when doing interactive work.

3.7.4. Accessing meta-information of nested tables

Tables have an attribute called description which points to an instance of the Description class (see 4.8) and
is useful to discover different meta-information about table data.

Let's see how it looks like:

Tutorials

47

 >>> table.description
 {
 "info2": {
 "info3": {
 "x": FloatCol(dflt=1, shape=1, itemsize=8, pos=0, indexed=False),
 "y": UInt8Col(dflt=1, shape=1, pos=1, indexed=False)},
 "name": StringCol(length=10, dflt=None, shape=1, pos=1, indexed=False),
 "value": Float64Col(dflt=0.0, shape=1, pos=2, indexed=False)},
 "info1": {
 "name": StringCol(length=10, dflt=None, shape=1, pos=0, indexed=False),
 "value": Float64Col(dflt=0.0, shape=1, pos=1, indexed=False)},
 "color": EnumCol(Enum({'blue': 2, 'green': 1, 'red': 0}), 'red',
 dtype='UInt32', shape=1, pos=2, indexed=1)}
 >>>

As you can see, it provides very useful information on both the formats and the structure of the columns in your table.

This object also provides a natural naming approach to access to subcolumns metadata:

 >>> table.description.info1
 {
 "name": StringCol(length=10, dflt=None, shape=1, pos=0, indexed=False),
 "value": Float64Col(dflt=0.0, shape=1, pos=1, indexed=False)}
 >>> table.description.info2.info3
 {
 "x": FloatCol(dflt=1, shape=1, itemsize=8, pos=0, indexed=False),
 "y": UInt8Col(dflt=1, shape=1, pos=1, indexed=False)}
 >>>

There are other variables that can be interesting for you:

 >>> table.description._v_nestedNames
 [('info2', [('info3', ['x', 'y']), 'name', 'value']), ('info1',
 ['name', 'value']), 'color']
 >>> table.description.info1._v_nestedNames
 ['name', 'value']
 >>>

_v_nestedNames provides the names of the columns as well as its structure. You can see that there are the same
attributes for the different levels of the Description object, because the levels are also Description objects
themselves.

There is a special attribute, called _v_nestedDescr that can be useful to create NestedRecArrays objects that
imitate the structure of the table (or a subtable!):

 >>> from tables import nestedrecords
 >>> table.description._v_nestedDescr
 [('info2', [('info3', [('x', '1f8'), ('y', '1u1')]), ('name', '1a10'),
 ('value', '1f8')]), ('info1', [('name', '1a10'), ('value', '1f8')]),
 ('color', '1u4')]
 >>> nestedrecords.array(None, descr=table.description._v_nestedDescr)
 array(
 [],
 descr=[('info2', [('info3', [('x', '1f8'), ('y', '1u1')]), ('name',
 '1a10'), ('value', '1f8')]), ('info1', [('name', '1a10'), ('value',

Tutorials

48

 '1f8')]),('color', '1u4')], shape=0)
 >>> nestedrecords.array(None, descr=table.description.info2._v_nestedDescr)
 array(
 [],
 descr=[('info3', [('x', '1f8'), ('y', '1u1')]), ('name', '1a10'),
 ('value', '1f8')], shape=0)
 >>>

Look the Section 4.8 for the complete listing of attributes.

Finally, there is a special iterator of the Description class, called _f_walk that is able to return you the different
columns of the table:

 >>> for coldescr in table.description._f_walk():
 ... print "column-->",coldescr
 ...
 column--> Description([('info2', [('info3', [('x', '1f8'), ('y',
 '1u1')]), ('name', '1a10'), ('value', '1f8')]), ('info1', [('name',
 '1a10'), ('value', '1f8')]), ('color', '1u4')])
 column--> EnumCol(Enum({'blue': 2, 'green': 1, 'red': 0}), 'red',
 dtype='UInt32', shape=1, pos=2, indexed=1)
 column--> Description([('info3', [('x', '1f8'), ('y', '1u1')]),
 ('name', '1a10'), ('value', '1f8')])
 column--> StringCol(length=10, dflt=None, shape=1, pos=1, indexed=False)
 column--> Float64Col(dflt=0.0, shape=1, pos=2, indexed=False)
 column--> Description([('name', '1a10'), ('value', '1f8')])
 column--> StringCol(length=10, dflt=None, shape=1, pos=0, indexed=False)
 column--> Float64Col(dflt=0.0, shape=1, pos=1, indexed=False)
 column--> Description([('x', '1f8'), ('y', '1u1')])
 column--> FloatCol(dflt=1, shape=1, itemsize=8, pos=0, indexed=False)
 column--> UInt8Col(dflt=1, shape=1, pos=1, indexed=False)
 >>>

Well, this is the end of this tutorial. As always, do not forget to close your files:

 >>> fileh.close()
 >>>

Finally, you may want to have a look at your resulting data file:

 $ ptdump -d nested-tut.h5
 / (RootGroup) ''
 /table (Table(13L,)) ''
 Data dump:
 [0] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)
 [1] (((1.0, 1), 'name2-1', 0.0), ('name1-1', 0.0), 1L)
 [2] (((1.0, 2), 'name2-2', 0.0), ('name1-2', 0.0), 2L)
 [3] (((1.0, 3), 'name2-3', 0.0), ('name1-3', 0.0), 0L)
 [4] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
 [5] (((1.0, 5), 'name2-5', 0.0), ('name1-5', 0.0), 2L)
 [6] (((1.0, 6), 'name2-6', 0.0), ('name1-6', 0.0), 0L)
 [7] (((1.0, 7), 'name2-7', 0.0), ('name1-7', 0.0), 1L)
 [8] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)
 [9] (((1.0, 9), 'name2-9', 0.0), ('name1-9', 0.0), 0L)
 [10] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)

Tutorials

49

 [11] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
 [12] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)
 /table2 (Table(3L,)) ''
 Data dump:
 [0] (((1.0, 0), 'name2-0', 0.0), ('name1-0', 0.0), 0L)
 [1] (((1.0, 4), 'name2-4', 0.0), ('name1-4', 0.0), 1L)
 [2] (((1.0, 8), 'name2-8', 0.0), ('name1-8', 0.0), 2L)

Most of the code in this section is also available in examples/nested-tut.py.

All in all, PyTables provides a quite comprehensive toolset to cope with nested structures and address your classi-
fication needs. However, caveat emptor, be sure to not nest your data too deeply or you will get inevitably messed
interpreting too intertwined lists, tuples and description objects.

3.8. Other examples in PyTables distribution
Feel free to examine the rest of examples in directory examples/, and try to understand them. We have written
several practical sample scripts to give you an idea of the PyTables capabilities, its way of dealing with HDF5
objects, and how it can be used in the real world.

50

Chapter 4. Library Reference

PyTables implements several classes to represent the different nodes in the object tree. They are named File,
Group, Leaf, Table, Array, CArray, EArray, VLArray and UnImplemented. Another one allows the user
to complement the information on these different objects; its name is AttributeSet. Finally, another important
class called IsDescription allows to build a Table record description by declaring a subclass of it. Many other
classes are defined in PyTables, but they can be regarded as helpers whose goal is mainly to declare the data type
properties of the different first class objects and will be described at the end of this chapter as well.

An important function, called openFile is responsible to create, open or append to files. In addition, a few utility
functions are defined to guess if the user supplied file is a PyTables or HDF5 file. These are called isPyTables-
File() and isHDF5File(), respectively. Finally, there exists a function called whichLibVersion that informs
about the versions of the underlying C libraries (for example, the HDF5 or the Zlib).

Let's start discussing the first-level variables and functions available to the user, then the different classes defined in
PyTables.

4.1. tables variables and functions

4.1.1. Global variables

__version__ The PyTables version number.

hdf5Version The underlying HDF5 library version number.

4.1.2. Global functions

copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)

An easy way of copying one PyTables file to another.

This function allows you to copy an existing PyTables file named srcfilename to another file called dstfile-
name. The source file must exist and be readable. The destination file can be overwritten in place if existing by as-
serting the overwrite argument.

This function is a shorthand for the File.copyFile() method, which acts on an already opened file. kwargs
takes keyword arguments used to customize the copying process. See the documentation of File.copyFile()
(see description) for a description of those arguments.

isHDF5File(filename)

Determine whether a file is in the HDF5 format.

When successful, it returns a true value if the file is an HDF5 file, false otherwise. If there were problems identifying
the file, an HDF5ExtError is raised.

isPyTablesFile(filename)

Determine whether a file is in the PyTables format.

When successful, it returns a true value if the file is a PyTables file, false otherwise. The true value is the format
version string of the file. If there were problems identifying the file, an HDF5ExtError is raised.

Library Reference

51

openFile(filename, mode='r', title='', trMap={}, rootUEP="/", filters=None)

Open a PyTables (or generic HDF5) file and returns a File object.

filename
The name of the file (supports environment variable expansion). It is suggested that it should have any of ".h5",
".hdf" or ".hdf5" extensions, although this is not mandatory.

mode
The mode to open the file. It can be one of the following:

'r'
read-only; no data can be modified.

'w'
write; a new file is created (an existing file with the same name would be deleted).

'a'
append; an existing file is opened for reading and writing, and if the file does not exist it is created.

'r+'
is similar to 'a', but the file must already exist.

title
If filename is new, this will set a title for the root group in this file. If filename is not new, the title will be read
from disk, and this will not have any effect.

trMap
A dictionary to map names in the object tree Python namespace into different HDF5 names in file namespace.
The keys are the Python names, while the values are the HDF5 names. This is useful when you need to use HDF5
node names with invalid or reserved words in Python.

rootUEP
The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the starting point to
create the object tree. The group has to be named after its HDF5 name and can be a path. If it does not exist,
an HDF5ExtError exception is issued. Use this if you do not want to build the entire object tree, but rather
only a subtree of it.

filters
An instance of the Filters class (see Section 4.17.1) that provides information about the desired I/O filters
applicable to the leaves that hang directly from root (unless other filters properties are specified for these leaves).
Besides, if you do not specify filter properties for its child groups, they will inherit these ones. So, if you open a
new file with this parameter set, all the leaves that would be created in the file will recursively inherit this filtering
properties (again, if you don't prevent that from happening by specifying other filters on the child groups or leaves).

nodeCacheSize
The number of unreferenced nodes to be kept in memory. Least recently used nodes are unloaded from memory
when this number of loaded nodes is reached. To load a node again, simply access it as usual. Nodes referenced
by user variables are not taken into account nor unloaded.

whichLibVersion(name)

Get version information about a C library.

If the library indicated by name is available, this function returns a 3-tuple containing the major library version as an
integer, its full version as a string, and the version date as a string. If the library is not available, None is returned.

Library Reference

52

The currently supported library names are hdf5, zlib, lzo, ucl (in process of being deprecated) and bzip2. If
another name is given, a ValueError is raised.

4.2. The File class
An instance of this class is returned when a PyTables file is opened with the openFile() function. It offers methods
to manipulate (create, rename, delete...) nodes and handle their attributes, as well as methods to traverse the object
tree. The user entry point to the object tree attached to the HDF5 file is represented in the rootUEP attribute. Other
attributes are available.

File objects support an Undo/Redo mechanism which can be enabled with the enableUndo() method. Once the
Undo/Redo mechanism is enabled, explicit marks (with an optional unique name) can be set on the state of the database
using the mark() method. There are two implicit marks which are always available: the initial mark (0) and the final
mark (-1). Both the identifier of a mark and its name can be used in undo and redo operations.

Hierarchy manipulation operations (node creation, movement and removal) and attribute handling operations (setting
and deleting) made after a mark can be undone by using the undo() method, which returns the database to the state
of a past mark. If undo() is not followed by operations that modify the hierarchy or attributes, the redo() method
can be used to return the database to the state of a future mark. Else, future states of the database are forgotten.

Note that data handling operations can not be undone nor redone by now. Also, hierarchy manipulation operations on
nodes that do not support the Undo/Redo mechanism issue an UndoRedoWarning before changing the database.

The Undo/Redo mechanism is persistent between sessions and can only be disabled by calling the disableUndo()
method.

4.2.1. File instance variables

filename The name of the opened file.

format_version The PyTables version number of this file.

isopen True if the underlying file is open, false otherwise.

mode The mode in which the file was opened.

title The title of the root group in the file.

trMap A dictionary that maps node names between PyTables and HDF5 domain names.
Its initial values are set from the trMap parameter passed to the openFile func-
tion. You cannot change its contents after a file is opened.

rootUEP The UEP (user entry point) group in the file (see description).

filters Default filter properties for the root group (see 4.17.1).

root The root of the object tree hierarchy (a Group instance).

objects A dictionary which maps path names to objects, for every visible node in the tree
(deprecated, see note below).

groups A dictionary which maps path names to objects, for every visible group in the tree
(deprecated, see note below).

leaves A dictionary which maps path names to objects, for every visible leaf in the tree
(deprecated, see note below).

Library Reference

53

Note: From PyTables 1.2 on, the dictionaries objects, groups and leaves are just instances of objects faking
the old functionality. Actually, they internally use File.getNode() (see description) and File.walknodes()
(see description), which are recommended instead.

4.2.2. File methods

createGroup(where, name, title='', filters=None, createparents=False)

Create a new Group instance with name name in where location.

where
The parent group where the new group will hang from. where parameter can be a path string (for example "/
level1/group5"), or another Group instance.

name
The name of the new group.

title
A description for this group.

filters
An instance of the Filters class (see Section 4.17.1) that provides information about the desired I/O filters
applicable to the leaves that hangs directly from this new group (unless other filters properties are specified for
these leaves). Besides, if you do not specify filter properties for its child groups, they will inherit these ones.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

createTable(where, name, description, title='', filters=None, expectedrows=10000,
createparents=False)

Create a new Table instance with name name in where location. See the Section 4.6 for a description of the Table
class.

where
The parent group where the new table will hang from. where parameter can be a path string (for example "/lev-
el1/leaf5"), or Group instance.

name
The name of the new table.

description

This is an object that describes the table, that is, how many columns has it, and properties for each column: the
type, the shape, etc. as well as other table properties.

description can be any of the next several objects:

A user-defined class
This should inherit from the IsDescription class (see 4.16.1) where table fields are specified.

A dictionary
For example, when you do not know beforehand which structure will have your table). See Section 3.4 for
an example of use.

Library Reference

54

A RecArray
This object from the numarray package is also accepted, and all the information about columns and other
metadata is used as a basis to create the Table object. Moreover, if the RecArray has actual data this is
also injected on the newly created Table object.

A NestedRecArray
Finally, if you want to have nested columns in your table, you can use this object (see Appendix B) and all
the information about columns and other metadata is used as a basis to create the Table object. Moreover,
if the NestedRecArray has actual data this is also injected on the newly created Table object.

title
A description for this object.

filters
An instance of the Filters class (see Section 4.17.1) that provides information about the desired I/O filters to
be applied during the life of this object.

expectedrows
An user estimate of the number of records that will be on table. If not provided, the default value is appropriate
for tables until 10 MB in size (more or less). If you plan to save bigger tables you should provide a guess; this
will optimize the HDF5 B-Tree creation and management process time and memory used. See Section 5.1 for a
discussion on that issue.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

createArray(where, name, object, title='', createparents=False)

Create a new Array instance with name name in where location. See the Section 4.10 for a description of the Array
class.

object
The regular array to be saved. Currently accepted values are: NumPy, Numeric, numarray arrays (including
CharArray string numarrays) or other native Python types, provided that they are regular (i.e. they are not like
[[1,2],2]) and homogeneous (i.e. all the elements are of the same type). Also, objects that have some of their
dimensions equal to zero are not supported (use an EArray object if you want to create an array with one of
its dimensions equal to 0).

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

See createTable description for more information on the where, name and title, parameters.

createCArray(where, name, shape, atom, title='', filters=None,
createparents=False)

Create a new CArray instance with name name in where location. See the Section 4.11 for a description of the
CArray class.

shape
The shape of the objects to be saved.

atom
An Atom instance representing the shape, type and flavor of the chunk of the objects to be saved.

Library Reference

55

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

See createTable description for more information on the where, name and title, parameters.

createEArray(where, name, atom, title='', filters=None, expectedrows=1000,
createparents=False)

Create a new EArray instance with name name in where location. See the Section 4.12 for a description of the
EArray class.

atom
An Atom instance representing the shape, type and flavor of the atomic objects to be saved. One (and only one) of
the shape dimensions must be 0. The dimension being 0 means that the resulting EArray object can be extended
along it. Multiple enlargeable dimensions are not supported right now. See Section 4.16.3 for the supported set
of Atom class descendants.

expectedrows
In the case of enlargeable arrays this represents an user estimate about the number of row elements that will be
added to the growable dimension in the EArray object. If not provided, the default value is 1000 rows. If you plan
to create both much smaller or much bigger EArrays try providing a guess; this will optimize the HDF5 B-Tree
creation and management process time and the amount of memory used.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

See createTable description for more information on the where, name, title, and filters parameters.

createVLArray(where, name, atom=None, title='', filters=None, expectedsizein-
MB=1.0, createparents=False)

Create a new VLArray instance with name name in where location. See the Section 4.13 for a description of the
VLArray class.

atom
An Atom instance representing the shape, type and flavor of the atomic object to be saved. See Section 4.16.3
for the supported set of Atom class descendants.

expectedsizeinMB
An user estimate about the size (in MB) in the final VLArray object. If not provided, the default value is 1 MB.
If you plan to create both much smaller or much bigger VLA's try providing a guess; this will optimize the HDF5
B-Tree creation and management process time and the amount of memory used.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

See createTable description for more information on the where, name, title, and filters parameters.

getNode(where, name=None, classname=None)

Get the node under where with the given name.

where can be a Node instance or a path string leading to a node. If no name is specified, that node is returned.

If a name is specified, this must be a string with the name of a node under where. In this case the where argument can
only lead to a Group instance (else a TypeError is raised). The node called name under the group where is returned.

Library Reference

56

In both cases, if the node to be returned does not exist, a NoSuchNodeError is raised. Please, note that hidden
nodes are also considered.

If the classname argument is specified, it must be the name of a class derived from Node. If the node is found but it
is not an instance of that class, a NoSuchNodeError is also raised.

isVisibleNode(path)

Is the node under path visible?

If the node does not exist, a NoSuchNodeError is raised.

getNodeAttr(where, attrname, name=None)

Returns the attribute attrname under where.name location.

where, name
These arguments work as in getNode() (see description), referencing the node to be acted upon.

attrname
The name of the attribute to get.

setNodeAttr(where, attrname, attrvalue, name=None)

Sets the attribute attrname with value attrvalue under where.name location. If the node already has a large number of
attributes, a PerformanceWarning will be issued.

where, name
These arguments work as in getNode() (see description), referencing the node to be acted upon.

attrname
The name of the attribute to set on disk.

attrvalue
The value of the attribute to set. Any kind of python object (like string, ints, floats, lists, tuples, dicts, small Nu-
meric/NumPy/numarray objects...) can be stored as an attribute. However, if necessary, (c)Pickle is automat-
ically used so as to serialize objects that you might want to save (see 4.15 for details).

delNodeAttr(where, attrname, name=None)

Delete the attribute attrname in where.name location.

where, name
These arguments work as in getNode() (see description), referencing the node to be acted upon.

attrname
The name of the attribute to delete on disk.

copyNodeAttrs(where, dstnode, name=None)

Copy the attributes from node where.name to dstnode.

where, name
These arguments work as in getNode() (see description), referencing the node to be acted upon.

Library Reference

57

dstnode
This is the destination node where the attributes will be copied. It can be either a path string or a Node object.

iterNodes(where, classname=None)

Returns an iterator yielding children nodes hanging from where. These nodes are alpha-numerically sorted by its node
name.

where
This argument works as in getNode() (see description), referencing the node to be acted upon.

classname
If the name of a class derived from Node is supplied in the classname parameter, only instances of that class (or
subclasses of it) will be returned.

listNodes(where, classname=None)

Returns a list with children nodes hanging from where. The list is alpha-numerically sorted by node name.

where
This argument works as in getNode() (see description), referencing the node to be acted upon.

classname
If the name of a class derived from Node is supplied in the classname parameter, only instances of that class (or
subclasses of it) will be returned.

removeNode(where, name=None, recursive=False)

Removes the object node name under where location.

where, name
These arguments work as in getNode() (see description), referencing the node to be acted upon.

recursive
If not supplied, the object will be removed only if it has no children; if it does, a NodeError will be raised. If
supplied with a true value, the object and all its descendants will be completely removed.

copyNode(where, newparent=None, newname=None, name=None,
overwrite=False, recursive=False, createparents=False, **kwargs)

Copy the node specified by where and name to newparent/newname.

where, name
These arguments work as in getNode() (see description), referencing the node to be acted upon.

newparent
The destination group that the node will be copied to (a path name or a Group instance). If newparent is None,
the parent of the source node is selected as the new parent.

newname
The name to be assigned to the new copy in its destination (a string). If newname is None or not specified, the
name of the source node is used.

overwrite
Whether the possibly existing node newparent/newname should be overwritten or not. Note that trying to copy
over an existing node without overwriting it will issue a NodeError.

Library Reference

58

recursive
Specifies whether the copy should recurse into children of the copied node. This argument is ignored for leaf
nodes. The default is not recurse.

createparents
Whether to create the needed groups for the new parent path to exist (not done by default).

kwargs
Additional keyword arguments may be passed to customize the copying process. The supported arguments depend
on the kind of node being copied. The following are some of them:

title
The new title for the destination. If None, the original title is used. This only applies to the topmost node for
recursive copies.

filters
Specifying this parameter overrides the original filter properties in the source node. If specified, it must be an
instance of the Filters class (see Section 4.17.1). The default is to copy the filter attribute from the source node.

copyuserattrs
You can prevent the user attributes from being copied by setting this parameter to False. The default is to copy
them.

start, stop, step
Specify the range of rows in child leaves to be copied; the default is to copy all the rows.

stats
This argument may be used to collect statistics on the copy process. When used, it should be a dictionary with keys
groups, leaves and bytes having a numeric value. Their values will be incremented to reflect the number
of groups, leaves and bytes, respectively, that have been copied in the operation.

renameNode(where, newname, name=None)

Change the name of the node specified by where and name to newname.

where, name
These arguments work as in getNode() (see description), referencing the node to be acted upon.

newname
The new name to be assigned to the node (a string).

moveNode(where, newparent=None, newname=None, name=None,
overwrite=False, createparents=False)

Move the node specified by where and name to newparent/newname.

where, name
These arguments work as in getNode() (see description), referencing the node to be acted upon.

newparent
The destination group the node will be moved to (a path name or a Group instance). If newparent is None, the
original node parent is selected as the new parent.

newname
The new name to be assigned to the node in its destination (a string). If newname is None or not specified, the
original node name is used.

Library Reference

59

The other arguments work as in Node._f_move() (see description).

walkGroups(where='/')

Iterator that returns the list of Groups (not Leaves) hanging from (and including) where. The where Group is listed
first (pre-order), then each of its child Groups (following an alpha-numerical order) is also traversed, following the
same procedure. If where is not supplied, the root object is used.

where
The origin group. Can be a path string or Group instance.

walkNodes(where="/", classname="")

Recursively iterate over the nodes in the File instance. It takes two parameters:

where
If supplied, the iteration starts from (and includes) this group.

classname
(String) If supplied, only instances of this class are returned.

Example of use:

Recursively print all the nodes hanging from '/detector'
print "Nodes hanging from group '/detector':"
for node in h5file.walkNodes("/detector"):
 print node

copyChildren(srcgroup, dstgroup, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy the children of a group into another group.

This method copies the nodes hanging from the source group srcgroup into the destination group dstgroup.
Existing destination nodes can be replaced by asserting the overwrite argument. If the recursive argument is
true, all descendant nodes of srcnode are recursively copied. If createparents is true, the needed groups for
the given destination parent group path to exist will be created.

kwargs takes keyword arguments used to customize the copying process. See the documentation of
Group._f_copyChildren() (see description) for a description of those arguments.

copyFile(dstfilename, overwrite=False, **kwargs)

Copy the contents of this file to dstfilename.

dstfilename must be a path string indicating the name of the destination file. If it already exists, the copy will fail
with an IOError, unless the overwrite argument is true, in which case the destination file will be overwritten in
place. In this last case, the destination file should be closed or ugly errors will happen.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected, etc. Arguments
unknown to nodes are simply ignored. Check the documentation for copying operations of nodes to see which options
they support.

Copying a file usually has the beneficial side effect of creating a more compact and cleaner version of the original file.

Library Reference

60

flush()

Flush all the leaves in the object tree.

close()

Flush all the leaves in object tree and close the file.

isUndoEnabled()

Is the Undo/Redo mechanism enabled?

Returns True if the Undo/Redo mechanism has been enabled for this file, False otherwise. Please, note that this
mechanism is persistent, so a newly opened PyTables file may already have Undo/Redo support.

enableUndo(filters=Filters(complevel=1))

Enable the Undo/Redo mechanism.

This operation prepares the database for undoing and redoing modifications in the node hierarchy. This allows
mark(), undo(), redo() and other methods to be called.

The filters argument, when specified, must be an instance of class Filters (see Section 4.17.1) and is meant
for setting the compression values for the action log. The default is having compression enabled, as the gains in terms
of space can be considerable. You may want to disable compression if you want maximum speed for Undo/Redo
operations.

Calling enableUndo() when the Undo/Redo mechanism is already enabled raises an UndoRedoError.

disableUndo()

Disable the Undo/Redo mechanism.

Disabling the Undo/Redo mechanism leaves the database in the current state and forgets past and future database
states. This makes mark(), undo(), redo() and other methods fail with an UndoRedoError.

Calling disableUndo() when the Undo/Redo mechanism is already disabled raises an UndoRedoError.

mark(name=None)

Mark the state of the database.

Creates a mark for the current state of the database. A unique (and immutable) identifier for the mark is returned. An
optional name (a string) can be assigned to the mark. Both the identifier of a mark and its name can be used in undo()
and redo() operations. When the name has already been used for another mark, an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoError
is raised.

getCurrentMark()

Get the identifier of the current mark.

Returns the identifier of the current mark. This can be used to know the state of a database after an application crash,
or to get the identifier of the initial implicit mark after a call to enableUndo().

Library Reference

61

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoError
is raised.

undo(mark=None)

Go to a past state of the database.

Returns the database to the state associated with the specified mark. Both the identifier of a mark and its name can
be used. If the mark is omitted, the last created mark is used. If there are no past marks, or the specified mark is not
older than the current one, an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoError
is raised.

redo(mark=None)

Go to a future state of the database.

Returns the database to the state associated with the specified mark. Both the identifier of a mark and its name can
be used. If the mark is omitted, the next created mark is used. If there are no future marks, or the specified mark is
not newer than the current one, an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoError
is raised.

goto(mark)

Go to a specific mark of the database.

Returns the database to the state associated with the specified mark. Both the identifier of a mark and its name can
be used.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoError
is raised.

4.2.3. File special methods

Following are described the methods that automatically trigger actions when a File instance is accessed in a special
way.

__contains__(path)

Is there a node with that path?

Returns True if the file has a node with the given path (a string), False otherwise.

__iter__()

Iterate over the children on the File instance. However, this does not accept parameters. This iterator is recursive.

Example of use:

Recursively list all the nodes in the object tree
h5file = tables.openFile("vlarray1.h5")
print "All nodes in the object tree:"
for node in h5file:

Library Reference

62

 print node

__str__()

Prints a short description of the File object.

Example of use:

>>> f=tables.openFile("data/test.h5")
>>> print f
data/test.h5 (File) 'Table Benchmark'
Last modif.: 'Mon Sep 20 12:40:47 2004'
Object Tree:
/ (Group) 'Table Benchmark'
/tuple0 (Table(100L,)) 'This is the table title'
/group0 (Group) ''
/group0/tuple1 (Table(100L,)) 'This is the table title'
/group0/group1 (Group) ''
/group0/group1/tuple2 (Table(100L,)) 'This is the table title'
/group0/group1/group2 (Group) ''

__repr__()

Prints a detailed description of the File object.

4.3. The Node class
This is the base class for all nodes in a PyTables hierarchy. It is an abstract class, i.e. it may not be directly instantiated;
however, every node in the hierarchy is an instance of this class.

A PyTables node is always hosted in a PyTables file, under a parent group, at a certain depth in the node hierarchy.
A node knows its own name in the parent group and its own path name in the file. When using a translation map (see
4.2), its HDF5 name might differ from its PyTables name.

All the previous information is location-dependent, i.e. it may change when moving or renaming a node in the hierar-
chy. A node also has location-independent information, such as its HDF5 object identifier and its attribute set.

This class gathers the operations and attributes (both location-dependent and independent) which are common to all
PyTables nodes, whatever their type is. Nonetheless, due to natural naming restrictions, the names of all of these
members start with a reserved prefix (see 4.4).

Sub-classes with no children (i.e. leaf nodes) may define new methods, attributes and properties to avoid natural
naming restrictions. For instance, _v_attrs may be shortened to attrs and _f_rename to rename. However,
the original methods and attributes should still be available.

4.3.1. Node instance variables

Location dependent

_v_file The hosting File instance (see 4.2).

_v_parent The parent Group instance (see 4.4).

_v_depth The depth of this node in the tree (an non-negative integer value).

_v_name The name of this node in its parent group (a string).

Library Reference

63

_v_hdf5name The name of this node in the hosting HDF5 file (a string).

_v_pathname The path of this node in the tree (a string).

_v_rootgroup The root group instance. This is deprecated; please use node._v_file.root.

Location independent

_v_objectID The identifier of this node in the hosting HDF5 file.

_v_attrs The associated AttributeSet instance (see 4.15).

Attribute shorthands

_v_title A description of this node. A shorthand for TITLE attribute.

4.3.2. Node methods

Hierarchy manipulation

_f_close()

Close this node in the tree.

This releases all resources held by the node, so it should not be used again. On nodes with data, it may be flushed to disk.

The closing operation is not recursive, i.e. closing a group does not close its children.

_f_isOpen()

Is this node open?

_f_remove(recursive=False)

Remove this node from the hierarchy.

If the node has children, recursive removal must be stated by giving recursive a true value; otherwise, a NodeEr-
ror will be raised.

_f_rename(newname)

Rename this node in place.

Changes the name of a node to newname (a string).

_f_move(newparent=None, newname=None, overwrite=False, createparents=False)

Move or rename this node.

Moves a node into a new parent group, or changes the name of the node. newparent can be a Group object or a
pathname in string form. If it is not specified or None, the current parent group is chosen as the new parent. newname
must be a string with a new name. If it is not specified or None, the current name is chosen as the new name. If
createparents is true, the needed groups for the given new parent group path to exist will be created.

Moving a node across databases is not allowed, nor it is moving a node into itself. These result in a NodeError.
However, moving a node over itself is allowed and simply does nothing. Moving over another existing node is similarly

Library Reference

64

not allowed, unless the optional overwrite argument is true, in which case that node is recursively removed before
moving.

Usually, only the first argument will be used, effectively moving the node to a new location without changing its name.
Using only the second argument is equivalent to renaming the node in place.

_f_copy(newparent=None, newname=None, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy this node and return the new node.

Creates and returns a copy of the node, maybe in a different place in the hierarchy. newparent can be a Group
object or a pathname in string form. If it is not specified or None, the current parent group is chosen as the new parent.
newname must be a string with a new name. If it is not specified or None, the current name is chosen as the new
name. If recursive copy is stated, all descendants are copied as well. If ucreateparents is true, the needed
groups for the given new parent group path to exist will be created.

Copying a node across databases is supported but can not be undone. Copying a node over itself is not allowed, nor it is
recursively copying a node into itself. These result in a NodeError. Copying over another existing node is similarly
not allowed, unless the optional overwrite argument is true, in which case that node is recursively removed before
copying.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected, etc. See the
documentation for the particular node type.

Using only the first argument is equivalent to copying the node to a new location without changing its name. Using
only the second argument is equivalent to making a copy of the node in the same group.

_f_isVisible()

Is this node visible?

Attribute handling

_f_getAttr(name)

Get a PyTables attribute from this node.

If the named attribute does not exist, an AttributeError is raised.

_f_setAttr(name, value)

Set a PyTables attribute for this node.

If the node already has a large number of attributes, a PerformanceWarning is issued.

_f_delAttr(name)

Delete a PyTables attribute from this node.

If the named attribute does not exist, an AttributeError is raised.

4.4. The Group class
Instances of this class are a grouping structure containing instances of zero or more groups or leaves, together with
supporting metadata.

Library Reference

65

Working with groups and leaves is similar in many ways to working with directories and files, respectively, in a Unix
filesystem. As with Unix directories and files, objects in the object tree are often described by giving their full (or
absolute) path names. This full path can be specified either as a string (like in '/group1/group2') or as a complete
object path written in natural name schema (like in file.root.group1.group2) as discussed in the Section 1.2.

A collateral effect of the natural naming schema is that names of Group members must be carefully chosen to avoid
colliding with existing children node names. For this reason and not to pollute the children namespace, it is explicitly
forbidden to assign normal attributes to Group instances, and all existing members start with some reserved prefixes,
like _f_ (for methods) or _v_ (for instance variables). Any attempt to set a new child node whose name starts with
one of these prefixes will raise a ValueError exception.

Another effect of natural naming is that nodes having reserved Python names and other non-allowed Python names
(like for example $a or 44) can not be accessed using the node.child syntax. You will be forced to use
getattr(node, child) and delattr(node, child) to access them.

You can also make use of the trMap (translation map dictionary) parameter in the openFile function (see descrip-
tion) in order to translate HDF5 names not suited for natural naming into more convenient ones.

4.4.1. Group instance variables

These instance variables are provided in addition to those in Node (see 4.3).

_v_nchildren The number of children hanging from this group.

_v_children Dictionary with all nodes hanging from this group.

_v_groups Dictionary with all groups hanging from this group.

_v_leaves Dictionary with all leaves hanging from this group.

_v_filters Default filter properties for child nodes —see 4.17.1. A shorthand for FILTERS
attribute.

4.4.2. Group methods

This class defines the __setattr__, __getattr__ and __delattr__ methods, and they set, get and delete
ordinary Python attributes as normally intended. In addition to that, __getattr__ allows getting child nodes by
their name for the sake of easy interaction on the command line, as long as there is no Python attribute with the same
name. Groups also allow the interactive completion (when using readline) of the names of child nodes. For instance:

nchild = group._v_nchildren # get a Python attribute

Add a Table child called "table" under "group".
h5file.createTable(group, 'table', myDescription)

table = group.table # get the table child instance
group.table = 'foo' # set a Python attribute
(PyTables warns you here about using the name of a child node.)
foo = group.table # get a Python attribute
del group.table # delete a Python attribute
table = group.table # get the table child instance again

Caveat: The following methods are documented for completeness, and they can be used without any problem. How-
ever, you should use the high-level counterpart methods in the File class, because these are most used in documen-
tation and examples, and are a bit more powerful than those exposed here.

Library Reference

66

These methods are provided in addition to those in Node (see 4.3).

_f_getChild(childname)

Get the child called childname of this group.

If the child exists (be it visible or not), it is returned. Else, a NoSuchNodeError is raised.

_f_copy(newparent, newname, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy this node and return the new one.

This method has the behavior described in Node._f_copy() (see description). In addition, it recognizes the fol-
lowing keyword arguments:

title
The new title for the destination. If omitted or None, the original title is used. This only applies to the topmost
node in recursive copies.

filters
Specifying this parameter overrides the original filter properties in the source node. If specified, it must be an
instance of the Filters class (see Section 4.17.1). The default is to copy the filter properties from the source
node.

copyuserattrs
You can prevent the user attributes from being copied by setting this parameter to False. The default is to copy
them.

stats
This argument may be used to collect statistics on the copy process. When used, it should be a dictionary with
keys 'groups', 'leaves' and 'bytes' having a numeric value. Their values will be incremented to reflect
the number of groups, leaves and bytes, respectively, that have been copied during the operation.

_f_iterNodes(classname=None)

Returns an iterator yielding all the object nodes hanging from this instance. The nodes are alpha-numerically sorted
by its node name. If a classname parameter is supplied, it will only return instances of this class (or subclasses of it).

_f_listNodes(classname=None)

Returns a list with all the object nodes hanging from this instance. The list is alpha-numerically sorted by node name.
If a classname parameter is supplied, it will only return instances of this class (or subclasses of it).

_f_walkGroups()

Iterate over the list of Groups (not Leaves) hanging from (and including) self. This Group is listed first (pre-order),
then each of its child Groups (following an alpha-numerical order) is also traversed, following the same procedure.

_f_walkNodes(classname=None, recursive=True)

Iterate over the nodes in the Group instance. It takes two parameters:

classname
(String) If supplied, only instances of this class are returned.

Library Reference

67

recursive
(Integer) If false, only children hanging immediately after the group are returned. If true, a recursion over all the
groups hanging from it is performed.

Example of use:

Recursively print all the arrays hanging from '/'
print "Arrays the object tree '/':"
for array in h5file.root._f_walkNodes("Array", recursive=1):
 print array

_f_close()

Close this node in the tree.

This method has the behavior described in Node._f_close() (see description). It should be noted that this oper-
ation disables access to nodes descending from this group. Therefore, if you want to explicitly close them, you will
need to walk the nodes hanging from this group before closing it.

_f_copyChildren(dstgroup, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy the children of this group into another group.

Children hanging directly from this group are copied into dstgroup, which can be a Group (see 4.4) object or its
pathname in string form. If createparents is true, the needed groups for the given destination group path to exist
will be created.

The operation will fail with a NodeError if there is a child node in the destination group with the same name as
one of the copied children from this one, unless overwrite is true; in this case, the former child node is recursively
removed before copying the later.

By default, nodes descending from children groups of this node are not copied. If the recursive argument is true,
all descendant nodes of this node are recursively copied.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected, etc. Arguments
unknown to nodes are simply ignored. Check the documentation for copying operations of nodes to see which options
they support.

4.4.3. Group special methods

Following are described the methods that automatically trigger actions when a Group instance is accessed in a special
way.

__setattr__(name, value)

Set a Python attribute called name with the given value.

This method stores an ordinary Python attribute in the object. It does not store new children nodes under this group;
for that, use the File.create*() methods (see 4.2). It does neither store a PyTables node attribute; for that, use
File.setNodeAttr() (see description), Node._f_setAttr() (see description) or Node._v_attrs (see
_v_attrs).

If there is already a child node with the same name, a NaturalNameWarning will be issued and the child node
will not be accessible via natural naming nor getattr(). It will still be available via File.getNode() (see
description), Group._f_getChild() (see description) and children dictionaries in the group (if visible).

Library Reference

68

__getattr__(name)

Get a Python attribute or child node called name.

If the object has a Python attribute called name, its value is returned. Else, if the node has a child node called name,
it is returned. Else, an AttributeError is raised.

__delattr__(name)

Delete a Python attribute called name.

This method deletes an ordinary Python attribute from the object. It does not remove children nodes from this group;
for that, use File.removeNode() (see description) or Node._f_remove() (see description). It does neither
delete a PyTables node attribute; for that, use File.delNodeAttr() (see description), Node._f_delAttr()
(see description) or Node._v_attrs (see _v_attrs).

If there were an attribute and a child node with the same name, the child node will be made accessible again via
natural naming.

__contains__(name)

Is there a child with that name?

Returns True if the group has a child node (visible or hidden) with the given name (a string), False otherwise.

__iter__()

Iterate over the children on the group instance. However, this does not accept parameters. This iterator is not recursive.

Example of use:

Non-recursively list all the nodes hanging from '/detector'
print "Nodes in '/detector' group:"
for node in h5file.root.detector:
 print node

__str__()

Prints a short description of the Group object.

Example of use:

>>> f=tables.openFile("data/test.h5")
>>> print f.root.group0
/group0 (Group) 'First Group'
>>>

__repr__()

Prints a detailed description of the Group object.

Example of use:

>>> f=tables.openFile("data/test.h5")
>>> f.root.group0
/group0 (Group) 'First Group'
 children := ['tuple1' (Table), 'group1' (Group)]

Library Reference

69

>>>

4.5. The Leaf class
The goal of this class is to provide a place to put common functionality of all its descendants as well as provide a way
to help classifying objects on the tree. A Leaf object is an end-node, that is, a node that can hang directly from a
group object, but that is not a group itself and, thus, it can not have descendants. Right now, the set of end-nodes is
composed by Table, Array, CArray, EArray, VLArray and UnImplemented class instances. In fact, all the
previous classes inherit from the Leaf class.

4.5.1. Leaf instance variables

These instance variables are provided in addition to those in Node (see 4.3).

shape The shape of data in the leaf.

byteorder The byte ordering of data in the leaf.

filters Filter properties for this leaf —see 4.17.1.

name The name of this node in its parent group (a string). An alias for Node._v_name.

hdf5name The name of this node in the hosting HDF5 file (a string). An alias for
Node._v_hdf5name.

objectID The identifier of this node in the hosting HDF5 file. An alias for
Node._v_objectID.

attrs The associated AttributeSet instance (see 4.15). An alias for
Node._v_attrs.

title A description for this node. An alias for Node._v_title.

4.5.2. Leaf methods

flush()

Flush pending data to disk.

Saves whatever remaining buffered data to disk. It also releases I/O buffers, so, if you are filling many objects (i.e.
tables) in the same PyTables session, please, call flush() extensively so as to help PyTables to keep memory
requirements low.

_f_close(flush=True)

Close this node in the tree.

This method has the behavior described in Node._f_close() (see description). Besides that, the optional argument
flush tells whether to flush pending data to disk or not before closing.

close(flush=True)

Close this node in the tree.

This method is completely equivalent to _f_close().

Library Reference

70

isOpen()

Is this node open?

This method is completely equivalent to _f_isOpen().

remove()

Remove this node from the hierarchy.

This method has the behavior described in Node._f_remove() (see description). Please, note that there is no
recursive flag since leaves do not have child nodes.

copy(newparent, newname, overwrite=False, createparents=False, **kwargs)

Copy this node and return the new one.

This method has the behavior described in Node._f_copy() (see description). Please, note that there is no recur-
sive flag since leaves do not have child nodes. In addition, this method recognizes the following keyword arguments:

title
The new title for the destination. If omitted or None, the original title is used.

filters
Specifying this parameter overrides the original filter properties in the source node. If specified, it must be an
instance of the Filters class (see Section 4.17.1). The default is to copy the filter properties from the source
node.

copyuserattrs
You can prevent the user attributes from being copied by setting this parameter to False. The default is to copy
them.

start, stop, step
Specify the range of rows in child leaves to be copied; the default is to copy all the rows.

stats
This argument may be used to collect statistics on the copy process. When used, it should be a dictionary with
keys 'groups', 'leaves' and 'bytes' having a numeric value. Their values will be incremented to reflect
the number of groups, leaves and bytes, respectively, that have been copied during the operation.

rename(newname)

Rename this node in place.

This method has the behavior described in Node._f_rename() (see description).

move(newparent=None, newname=None, overwrite=False, createparents=False)

Move or rename this node.

This method has the behavior described in Node._f_move() (see description).

_f_isVisible()

Is this node visible?

This method has the behavior described in Node._f_isVisible() (see description).

Library Reference

71

getAttr(name)

Get a PyTables attribute from this node.

This method has the behavior described in Node._f_getAttr() (see description).

setAttr(name, value)

Set a PyTables attribute for this node.

This method has the behavior described in Node._f_setAttr() (see description).

delAttr(name)

Delete a PyTables attribute from this node.

This method has the behavior described in Node._f_delAttr() (see description).

4.6. The Table class
Instances of this class represents table objects in the object tree. It provides methods to read/write data and from/to
table objects in the file.

Data can be read from or written to tables by accessing to an special object that hangs from Table. This object is an
instance of the Row class (see 4.6.4). See the tutorial sections Chapter 3 on how to use the Row interface. The columns
of the tables can also be easily accessed (and more specifically, they can be read but not written) by making use of
the Column class, through the use of an extension of the natural naming schema applied inside the tables. See the
Section 4.9 for some examples of use of this capability.

Note that this object inherits all the public attributes and methods that Leaf already has.

Finally, during the description of the different methods, there will appear references to a particular object called Nest-
edRecArray. This inherits from numarray.records.RecArray and is designed to keep columns that have
nested datatypes. Please, see Appendix B for info on these objects.

4.6.1. Table instance variables

description A Description (see 4.8) instance describing the structure of this table.

row The associated Row instance (see 4.6.4).

nrows The number of rows in this table.

rowsize The size in bytes of each row in the table.

cols A Cols (see Section 4.7) instance that serves as an accessor to Column (see
Section 4.9) objects.

colnames A tuple containing the (possibly nested) names of the columns in the table.

coltypes Maps the name of a column to its datatype.

colstypes Maps the name of a column to its data string type.

colshapes Maps the name of a column to it shape.

colitemsizes Maps the name of a column to the size of its base items.

Library Reference

72

coldflts Maps the name of a column to its default.

colindexed Is the column which name is used as a key indexed? (dictionary)

indexed Does this table have any indexed columns?

indexprops Index properties for this table (an IndexProps instance, see 4.17.2).

flavor The default flavor for this table. This determines the type of objects returned dur-
ing input (i.e. read) operations. It can take the "numarray" (default) or "numpy"
values. Its value is derived from the _v_flavor attribute of the IsDescrip-
tion metaclass (see 4.16.1) or, if the table has been created directly from a nu-
marray or NumPy object, the flavor is set to the appropriate value.

4.6.2. Table methods

getEnum(colname)

Get the enumerated type associated with the named column.

If the column named colname (a string) exists and is of an enumerated type, the corresponding Enum instance
(see 4.17.4) is returned. If it is not of an enumerated type, a TypeError is raised. If the column does not exist, a
KeyError is raised.

append(rows)

Append a series of rows to this Table instance. rows is an object that can keep the rows to be append in several
formats, like a NestedRecArray (see Appendix B), a RecArray, a NumPy object, a list of tuples, list of Numer-
ic/numarray/NumPy objects, string, Python buffer or None (no append will result). Of course, this rows object has
to be compliant with the underlying format of the Table instance or a ValueError will be issued.

Example of use:

from tables import *
class Particle(IsDescription):
 name = StringCol(16, pos=1) # 16-character String
 lati = IntCol(pos=2) # integer
 longi = IntCol(pos=3) # integer
 pressure = Float32Col(pos=4) # float (single-precision)
 temperature = FloatCol(pos=5) # double (double-precision)

fileh = openFile("test4.h5", mode = "w")
table = fileh.createTable(fileh.root, 'table', Particle, "A table")
Append several rows in only one call
table.append([("Particle: 10", 10, 0, 10*10, 10**2),
 ("Particle: 11", 11, -1, 11*11, 11**2),
 ("Particle: 12", 12, -2, 12*12, 12**2)])
fileh.close()

col(name)

Get a column from the table.

If a column called name exists in the table, it is read and returned as a numarray object, or as a NumPy object
(whatever is more appropriate depending on the flavor of the table). If it does not exist, a KeyError is raised.

Library Reference

73

Example of use:

narray = table.col('var2')

That statement is equivalent to:

narray = table.read(field='var2')

Here you can see how this method can be used as a shorthand for the read() (see description) method.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding Row (see Section 4.6.4) instances built from rows in table. If a range is supplied (i.e. some
of the start, stop or step parameters are passed), only the appropriate rows are returned. Else, all the rows are returned.
See also the __iter__() special method in Section 4.6.3 for a shorter way to call this iterator.

The meaning of the start, stop and step parameters is the same as in the range() python function, except that negative
values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

result = [row['var2'] for row in table.iterrows(step=5)
if row['var1'] <= 20]

Note: This iterator can be nested (see example in description).

itersequence(sequence, sort=True)

Iterate over a sequence of row coordinates.

sequence
Can be any object that supports the __getitem__ special method, like lists, tuples, Numeric/NumPy/numarray
objects, etc.

sort
If true, means that sequence will be sorted out so that the I/O process would get better performance. If your
sequence is already sorted or you don't want to sort it, put this parameter to 0. The default is to sort the sequence.

Note: This iterator can be nested (see example in description).

read(start=None, stop=None, step=1, field=None, flavor=None)

Returns the actual data in Table. If field is not supplied, it returns the data as a NestedRecArray (see Appendix B)
object table.

The meaning of the start, stop and step parameters is the same as in the range() python function, except that negative
values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do not specify
neither start nor stop, then all the rows in the object are selected.

The rest of the parameters are described next:

field
If specified, only the column field is returned as an homogeneous numarray/NumPy/Numeric object, depend-
ing on the flavor. If this is not supplied, all the fields are selected and a NestedRecArray (see Appendix B)
or NumPy object is returned. Nested fields can be specified in the field parameter by using a '/' character as a
separator between fields (e.g. Info/value).

Library Reference

74

flavor
Passing a flavor parameter make an additional conversion to happen in the default returned object. flavor can have
any of the next values: "numarray" "numpy", "python" or "numeric" (only if field has been specified).
If flavor is not specified, then it will take the value of self.flavor.

readCoordinates(coords, field=None, flavor=None)

Read a set of rows given their indexes into an in-memory object.

This method works much like the read() method (see description), but it uses a sequence (coords) of row indexes
to select the wanted columns, instead of a column range.

It returns the selected rows in a NestedRecArray object (see Appendix B). If flavor is provided, an additional
conversion to an object of this flavor is made, just as in read().

modifyRows(start=None, stop=None, step=1, rows=None)

Modify a series of rows in the [start:stop:step] extended slice range. If you pass None to stop, all the rows
existing in rows will be used.

rows can be either a recarray or a structure that is able to be converted to any of them and compliant with the table
format.

Returns the number of modified rows.

It raises an ValueError in case the rows parameter could not be converted to an object compliant with table de-
scription.

It raises an IndexError in case the modification will exceed the length of the table.

modifyColumn(start=None, stop=None, step=1, column=None, colname=None)

Modify a series of rows in the [start:stop:step] extended slice row range. If you pass None to stop, all the
rows existing in column will be used.

column can be either a NestedRecArray (see Appendix B), RecArray, numarray, NumPy object, list or tuple
that is able to be converted into a NestedRecArray compliant with the specified colname column of the table.

colname specifies the column name of the table to be modified.

Returns the number of modified rows.

It raises an ValueError in case the column parameter could not be converted into an object compliant with column
description.

It raises an IndexError in case the modification will exceed the length of the table.

modifyColumns(start=None, stop=None, step=1, columns=None, names=None)

Modify a series of rows in the [start:stop:step] extended slice row range. If you pass None to stop, all the
rows existing in columns will be used.

columns can be either a NestedRecArray (see Appendix B), RecArray, a NumPy object, a list of arrays or list
or tuples (the columns) that are able to be converted to a NestedRecArray compliant with the specified column
names subset of the table format.

names specifies the column names of the table to be modified.

Library Reference

75

Returns the number of modified rows.

It raises an ValueError in case the columns parameter could not be converted to an object compliant with table
description.

It raises an IndexError in case the modification will exceed the length of the table.

removeRows(start, stop=None)

Removes a range of rows in the table. If only start is supplied, this row is to be deleted. If a range is supplied, i.e. both
the start and stop parameters are passed, all the rows in the range are removed. A step parameter is not supported, and
it is not foreseen to implement it anytime soon.

start
Sets the starting row to be removed. It accepts negative values meaning that the count starts from the end. A value
of 0 means the first row.

stop
Sets the last row to be removed to stop - 1, i.e. the end point is omitted (in the Python range tradition). It accepts,
likewise start, negative values. A special value of None (the default) means removing just the row supplied in start.

removeIndex(index)

Remove the index associated with the specified column.

The argument colname should be the name of a column. If the column is not indexed, nothing happens. If it does not
exist, a KeyError is raised.

This index can be created again by calling the createIndex() (see description) method of the appropriate Column
object.

flushRowsToIndex()

Add remaining rows in buffers to non-dirty indexes. This can be useful when you have chosen non-automatic indexing
for the table (see Section 4.17.2) and want to update the indexes on it.

reIndex()

Recompute all the existing indexes in table. This can be useful when you suspect that, for any reason, the index
information for columns is no longer valid and want to rebuild the indexes on it.

reIndexDirty()

Recompute the existing indexes in table, but only if they are dirty. This can be useful when you have set the reindex
parameter to 0 in IndexProps constructor (see description) for the table and want to update the indexes after a
invalidating index operation (Table.removeRows, for example).

where(condition, start=None, stop=None, step=None)

Iterate over values fulfilling a condition.

This method returns an iterator yielding Row (see 4.6.4) instances built from rows in the table that satisfy the given
condition over a column. If that column is indexed, its index will be used in order to accelerate the search. Else,
the in-kernel iterator (with has still better performance than standard Python selections) will be chosen instead. Please,
check the Section 5.2 for more information about the performance of the different searching modes.

Library Reference

76

Moreover, if a range is supplied (i.e. some of the start, stop or step parameters are passed), only the rows in
that range and fulfilling the condition are returned. The meaning of the start, stop and step parameters is
the same as in the range() Python function, except that negative values of step are not allowed. Moreover, if only
start is specified, then stop will be set to start+1.

You can mix this method with standard Python selections in order to have complex queries. It is strongly recommended
that you pass the most restrictive condition as the parameter to this method if you want to achieve maximum perfor-
mance.

Example of use:

passvalues=[]
for row in table.where(0 < table.cols.col1 < 0.3, step=5):
 if row['col2'] <= 20:
 passvalues.append(row['col3'])
print "Values that pass the cuts:", passvalues

Note that, from PyTables 1.1 on, you can nest several iterators over the same table. For example:

for p in rout.where(rout.cols.pressure < 16):
 for q in rout.where(rout.cols.pressure < 9):
 for n in rout.where(rout.cols.energy < 10):
 print "pressure, energy:", p['pressure'],n['energy']

In this example, iterators returned by where() have been used, but you may as well use any of the other reading
iterators that the Table object offers. Look at examples/nested-iter.py for the full code.

whereAppend(dstTable, condition, start=None, stop=None, step=None)

Append rows fulfilling the condition to the dstTable table.

dstTable must be capable of taking the rows resulting from the query, i.e. it must have columns with the expected names
and compatible types. The meaning of the other arguments is the same as in the where() method (see description).

The number of rows appended to dstTable is returned as a result.

getWhereList(condition, flavor=None)

Get the row coordinates that fulfill the condition parameter. This method will take advantage of an indexed column
to speed-up the search.

flavor is the desired type of the returned list. It can take the "numarray", "numpy", "numeric" or "python"
values. The default is returning an object of the same flavor than self.flavor.

4.6.3. Table special methods

Following are described the methods that automatically trigger actions when a Table instance is accessed in a special
way (e.g., table["var2"] will be equivalent to a call to table.__getitem__("var2")).

__iter__()

It returns the same iterator than Table.iterrows(0,0,1). However, this does not accept parameters.

Example of use:

result = [row['var2'] for row in table if row['var1'] <= 20]

Library Reference

77

Which is equivalent to:

result = [row['var2'] for row in table.iterrows()
 if row['var1'] <= 20]

Note: This iterator can be nested (see example in description).

__getitem__(key)

Get a row or a range of rows from the table.

If the key argument is an integer, the corresponding table row is returned as a numarray.records.Record
or as a tables.nestedrecords.NestedRecord object, whichever is more appropriate. If key is a
slice, the range of rows determined by it is returned as a numarray.records.RecArray or as a
tables.nestedrecords.NestedRecArray object, whichever is more appropriate.

Using a string as key to get a column is supported but deprecated. Please use the col() (see description) method.

Example of use:

record = table[4]
recarray = table[4:1000:2]

Those statements are equivalent to:

record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)

Here you can see how indexing and slicing can be used as shorthands for the read() (see description) method.

__setitem__(key, value)

It takes different actions depending on the type of the key parameter:

key is an Integer
The corresponding table row is set to value. value must be a List or Tuple capable of being converted to the
table field format.

key is a Slice
The row slice determined by key is set to value. value must be a NestedRecArray object or a RecArray
object or a list of rows capable of being converted to the table field format.

Example of use:

Modify just one existing row
table[2] = [456,'db2',1.2]
Modify two existing rows
rows = numarray.records.array([[457,'db1',1.2],[6,'de2',1.3]],
formats="i4,a3,f8")
table[1:3:2] = rows

Which is equivalent to:

table.modifyRows(start=2, rows=[456,'db2',1.2])
rows = numarray.records.array([[457,'db1',1.2],[6,'de2',1.3]],
formats="i4,a3,f8")
table.modifyRows(start=1, step=2, rows=rows)

Library Reference

78

4.6.4. The Row class

This class is used to fetch and set values on the table fields. It works very much like a dictionary, where the keys are
the field names of the associated table and the values are the values of those fields in a specific row.

This object turns out to actually be an extension type, so you won't be able to access its documentation interactively.
However, you will be able to access some of its internal attributes through the use of Python properties. In addition,
there are some important methods that are useful for adding and modifying values in tables.

Row attributes

nrow
Property that returns the current row number in the table. It is useful to know which row is being dealt with in
the middle of a loop or iterator.

Row methods

append()

Once you have filled the proper fields for the current row, calling this method actually append these new data to the
disk (actually data are written to the output buffer).

Example of use:

row = table.row
for i in xrange(nrows):
 row['col1'] = i-1
 row['col2'] = 'a'
 row['col3'] = -1.0
 row.append()
table.flush()

Please, note that, after the loop in which Row.append() has been called, it is always convenient to make a call to
Table.flush() in order to avoid losing the last rows that can be in internal buffers.

update()

This allows you to modify values of your tables when you are in the middle of table iterators, like
Table.iterrows() (see description) or Table.where() (see description). Once you have filled the proper
fields for the current row, calling this method actually commits these data to the disk (actually data are written to the
output buffer).

Example of use:

for row in table.iterrows(step=10):
 row['col1'] = row.nrow
 row['col2'] = 'b'
 row['col3'] = 0.0
 row.update()

which modifies every tenth row in table. Or:

for row in table.where(table.cols.col1 > 3):
 row['col1'] = row.nrow
 row['col2'] = 'b'

Library Reference

79

 row['col3'] = 0.0
 row.update()

which just updates the rows with values in first column bigger than 3.

4.7. The Cols class
This class is used as an accessor to the table columns following the natural name convention, so that you can access
the different columns because there exists one attribute with the name of the columns for each associated column,
which can be a Column instance (non-nested column) or another Cols instance (nested column).

Columns under a Cols accessor can be accessed as attributes of it. For instance, if table.cols is a Cols instance
with a column named col1 under it, the later can be accessed as table.cols.col1. If col1 is nested and contains
a col2 column, this can be accessed as table.cols.col1.col2 and so on and so forth.

4.7.1. Cols instance variables

_v_colnames A list of the names of the columns (or nested columns) hanging directly from
this Cols instance. The order of the names matches the order of their respective
columns in the containing table.

_v_colpathnames A list of the complete pathnames of the columns hanging directly from this Cols
instance. If the table does not contain nested columns, this is exactly the same as
_v_colnames attribute.

_v_table The parent Table instance.

_v_desc The associated Description (see Section 4.9) instance.

4.7.2. Cols methods

_f_col(colname)

Return a handler to the colname column. If colname is a nested column, a Cols instance is returned. If colname is a
non-nested column a Column object is returned instead.

__getitem__(key)

Get a row or a range of rows from the Cols accessor.

If the key argument is an integer, the corresponding Cols row is returned as a numarray.records.Record
or as a tables.nestedrecords.NestedRecord object, whichever is more appropriate. If key is a
slice, the range of rows determined by it is returned as a numarray.records.RecArray or as a
tables.nestedrecords.NestedRecArray object, whichever is more appropriate.

Using a string as key to get a column is supported but deprecated. Please use the col() (see description) method.

Example of use:

record = table.cols[4] # equivalent to table[4]
recarray = table.cols.Info[4:1000:2]

Those statements are equivalent to:

nrecord = table.read(start=4)[0]

Library Reference

80

nrecarray = table.read(start=4, stop=1000, step=2).field('Info')

Here you can see how a mix of natural naming, indexing and slicing can be used as shorthands for the read() (see
description) method.

__setitem__(key)

Set a row or a range of rows to the Cols accessor.

If the key argument is an integer, the corresponding Cols row is set to the value object. If key is a slice, the range
of rows determined by it is set to the value object.

Example of use:

table.cols[4] = record
table.cols.Info[4:1000:2] = recarray

Those statements are equivalent to:

table.modifyRows(4, rows=record)
table.modifyColumn(4, 1000, 2, colname='Info', column=recarray)

Here you can see how a mix of natural naming, indexing and slicing can be used as shorthands for the modifyRows()
and modifyColumn() (see description and description) methods.

4.8. The Description class
The instances of the Description class provide a description of the structure of a table.

An instance of this class is automatically bound to Table (see 4.6) objects when they are created. It provides a
browseable representation of the structure of the table, made of non-nested (Col —see 4.16.2) and nested (Descrip-
tion) columns. It also contains information that will allow you to build NestedRecArray (see Appendix B) ob-
jects suited for the different columns in a table (be they nested or not).

Column descriptions (see Col class in 4.16.2) under a description can be accessed as attributes of it. For instance,
if table.description is a Description instance with a column named col1 under it, the later can be ac-
cessed as table.description.col1. If col1 is nested and contains a col2 column, this can be accessed as
table.description.col1.col2.

4.8.1. Description instance variables

_v_name The name of this description instance. If description is the root of the nested type
(or the description of a flat table), its name will be the empty string ('').

_v_names A list of the names of the columns hanging directly from this description instance.
The order of the names matches the order of their respective columns in the con-
taining description.

_v_pathnames A list of the pathnames of the columns hanging directly from this description. If
the table does not contain nested columns, this is exactly the same as _v_names
attribute.

_v_nestedNames A nested list of the names of all the columns hanging directly from this descrip-
tion instance. You can use this for the names argument of NestedRecArray
factory functions.

Library Reference

81

_v_nestedFormats A nested list of the numarray string formats (and shapes) of all the columns hang-
ing directly from this description instance. You can use this for the formats ar-
gument of NestedRecArray factory functions.

_v_nestedDescr A nested list of pairs of (name, format) tuples for all the columns under
this table or nested column. You can use this for the descr argument of Nest-
edRecArray factory functions.

_v_types A dictionary mapping the names of non-nested columns hanging directly from this
description instance to their respective numarray types.

_v_stypes A dictionary mapping the names of non-nested columns hanging directly from this
description instance to their respective string types.

_v_shapes A dictionary mapping the names of non-nested columns hanging directly from this
description instance to their respective shapes.

_v_dflts A dictionary mapping the names of non-nested columns hanging directly from
this description instance to their respective default values. Please, note that all the
default values are kept internally as numarray objects.

_v_colObjects A dictionary mapping the names of the columns hanging directly from this de-
scription instance to their respective descriptions (Col —see 4.16.2— or De-
scription —see 4.8 — instances).

_v_itemsizes A dictionary mapping the names of non-nested columns hanging directly from this
description instance to their respective item size (in bytes).

_v_nestedlvl The level of the description in the nested datatype.

4.8.2. Description methods

_f_walk(type='All')

Iterate over nested columns.

If type is 'All' (the default), all column description objects (Col and Description instances) are returned in
top-to-bottom order (pre-order).

If type is 'Col' or 'Description', only column descriptions of that type are returned.

4.9. The Column class
Each instance of this class is associated with one column of every table. These instances are mainly used to fetch and
set actual data from the table columns, but there are a few other associated methods to deal with indexes.

4.9.1. Column instance variables

table The parent Table instance.

name The name of the associated column.

pathname The complete pathname of the associated column. This is mainly useful in nested
columns; for non-nested ones this value is the same a name.

Library Reference

82

type The data type of the column.

shape The shape of the column.

index The associated Index object (see 4.17.3) to this column (None if it does not
exist).

dirty Whether the index is dirty or not (property).

4.9.2. Column methods

createIndex()

Create an Index (see 4.17.3) object for this column.

reIndex()

Recompute the index associated with this column. This can be useful when you suspect that, for any reason, the index
information is no longer valid and want to rebuild it.

reIndexDirty()

Recompute the existing index only if it is dirty. This can be useful when you have set the reindex parameter to 0
in IndexProps constructor (see description) for the table and want to update the column's index after a invalidating
index operation (Table.removeRows, for example).

removeIndex()

Delete the associated column's index. After doing that, you will loose the indexation information on disk. However,
you can always re-create it using the createIndex() method (see description).

4.9.3. Column special methods

__getitem__(key)

Returns a column element or slice. It takes different actions depending on the type of the key parameter:

key is an Integer
The corresponding element in the column is returned as a scalar object or as a numarray object, depending on
its shape.

key is a Slice
The row range determined by this slice is returned as a numarray object.

Example of use:

print "Column handlers:"
for name in table.colnames:
 print table.cols[name]
print
print "Some selections:"
print "Select table.cols.name[1]-->", table.cols.name[1]
print "Select table.cols.name[1:2]-->", table.cols.name[1:2]
print "Select table.cols.lati[1:3]-->", table.cols.lati[1:3]
print "Select table.cols.pressure[:]-->", table.cols.pressure[:]

Library Reference

83

print "Select table.cols['temperature'][:]-->", table.cols['temperature'][:]

and the output of this for a certain arbitrary table is:

Column handlers:
/table.cols.name (Column(1,), CharType)
/table.cols.lati (Column(2,), Int32)
/table.cols.longi (Column(1,), Int32)
/table.cols.pressure (Column(1,), Float32)
/table.cols.temperature (Column(1,), Float64)

Some selections:
Select table.cols.name[1]--> Particle: 11
Select table.cols.name[1:2]--> ['Particle: 11']
Select table.cols.lati[1:3]--> [[11 12]
 [12 13]]
Select table.cols.pressure[:]--> [90. 110. 132.]
Select table.cols['temperature'][:]--> [100. 121. 144.]

See the examples/table2.py for a more complete example.

__setitem__(key, value)

It takes different actions depending on the type of the key parameter:

key is an Integer
The corresponding element in the column is set to value. value must be a scalar or numarray/NumPy object,
depending on column's shape.

key is a Slice
The row slice determined by key is set to value. value must be a list of elements or a numarray/NumPy.

Example of use:

Modify row 1
table.cols.col1[1] = -1
Modify rows 1 and 3
table.cols.col1[1::2] = [2,3]

Which is equivalent to:

Modify row 1
table.modifyColumns(start=1, columns=[[-1]], names=["col1"])
Modify rows 1 and 3
columns = numarray.records.fromarrays([[2,3]], formats="i4")
table.modifyColumns(start=1, step=2, columns=columns, names=["col1"])

4.10. The Array class
Represents an array on file. It provides methods to write/read data to/from array objects in the file. This class does not
allow you to enlarge the datasets on disk; see the EArray descendant in Section 4.12 if you want enlargeable dataset
support and/or compression features. See also CArray in Section 4.11

The array data types supported are the same as the set provided by the numarray package. For details of these data
types see Appendix A, or the numarray reference manual ([12]).

Library Reference

84

An interesting property of the Array class is that it remembers the flavor of the object that has been saved so that
if you saved, for example, a List, you will get a List during readings afterwards, or if you saved a NumPy array,
you will get a NumPy object.

Note that this object inherits all the public attributes and methods that Leaf already provides.

4.10.1. Array instance variables

flavor The object representation for this array. It can be any of "numarray", "numpy",
"numeric" or "python" values.

nrows The length of the first dimension of the array.

nrow On iterators, this is the index of the current row.

type The type class of the represented array.

stype The string type of the represented array.

itemsize The size of the base items. Specially useful for CharType objects.

4.10.2. Array methods

Note that, as this object has no internal I/O buffers, it is not necessary to use the flush() method inherited from Leaf
in order to save its internal state to disk. When a writing method call returns, all the data is already on disk.

getEnum()

Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enum instance (see 4.17.4) is returned. If it is not of an
enumerated type, a TypeError is raised.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding numarray instances built from rows in array. The return rows are taken from the first
dimension in case of an Array and CArray instance and the enlargeable dimension in case of an EArray instance.
If a range is supplied (i.e. some of the start, stop or step parameters are passed), only the appropriate rows are returned.
Else, all the rows are returned. See also the and __iter__() special methods in Section 4.10.3 for a shorter way
to call this iterator.

The meaning of the start, stop and step parameters is the same as in the range() python function, except that negative
values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

result = [row for row in arrayInstance.iterrows(step=4)]

read(start=None, stop=None, step=1)

Read the array from disk and return it as a numarray (default) object, or an object with the same original flavor that
it was saved. It accepts start, stop and step parameters to select rows (the first dimension in the case of an Array and
CArray instance and the enlargeable dimension in case of an EArray) for reading.

Library Reference

85

The meaning of the start, stop and step parameters is the same as in the range() python function, except that negative
values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

4.10.3. Array special methods

Following are described the methods that automatically trigger actions when an Array instance is accessed in a
special way (e.g., array[2:3,...,::2] will be equivalent to a call to array.__getitem__(slice(2,3,
None), Ellipsis, slice(None, None, 2))).

__iter__()

It returns the same iterator than Array.iterrows(0,0,1). However, this does not accept parameters.

Example of use:

result = [row[2] for row in array]

Which is equivalent to:

result = [row[2] for row in array.iterrows(0, 0, 1)]

__getitem__(key)

It returns a numarray (default) object (or an object with the same original flavor that it was saved) containing the
slice of rows stated in the key parameter. The set of allowed tokens in key is the same as extended slicing in python
(the Ellipsis token included).

Example of use:

array1 = array[4] # array1.shape == array.shape[1:]
array2 = array[4:1000:2] # len(array2.shape) == len(array.shape)
array3 = array[::2, 1:4, :]
array4 = array[1, ..., ::2, 1:4, 4:] # General slice selection

__setitem__(key, value)

Sets an Array element, row or extended slice. It takes different actions depending on the type of the key parameter:

key is an integer:
The corresponding row is assigned to value. If needed, this value is broadcasted to fit the specified row.

key is a slice:
The row slice determined by it is assigned to value. If needed, this value is broadcasted to fit in the desired
range. If the slice to be updated exceeds the actual shape of the array, only the values in the existing range are
updated, i.e. the index error will be silently ignored. If value is a multidimensional object, then its shape must
be compatible with the slice specified in key, otherwise, a ValueError will be issued.

Example of use:

a1[0] = 333 # Assign an integer to a Integer Array row
a2[0] = "b" # Assign a string to a string Array row
a3[1:4] = 5 # Broadcast 5 to slice 1:4
a4[1:4:2] = "xXx" # Broadcast "xXx" to slice 1:4:2

Library Reference

86

General slice update (a5.shape = (4,3,2,8,5,10)
a5[1, ..., ::2, 1:4, 4:] = arange(1728, shape=(4,3,2,4,3,6))

4.11. The CArray class
This is a child of the Array class (see 4.10) and as such, CArray represents an array on the file. The difference is that
CArray has a chunked layout and, as a consequence, it also supports compression. You can use this class to easily
save or load array (or array slices) objects to or from disk, with compression support included.

4.11.1. CArray instance variables

In addition to the attributes that CArray inherits from Array, it supports some more that provide information about
the filters used.

atom An Atom (see 4.16.3) instance representing the shape, type and flavor of the atom-
ic objects to be saved.

4.11.2. Example of use

See below a small example of CArray class. The code is available in examples/carray1.py.

import numarray
import tables

fileName = 'carray1.h5'
shape = (200,300)
atom = tables.UInt8Atom(shape = (128,128))
filters = tables.Filters(complevel=5, complib='zlib')

h5f = tables.openFile(fileName,'w')
ca = h5f.createCArray(h5f.root, 'carray', shape, atom, filters=filters)
Fill a hyperslab in ca. The array will be converted to UInt8 elements
ca[10:60,20:70] = numarray.ones((50,50))
h5f.close()

Re-open a read another hyperslab
h5f = tables.openFile(fileName)
print h5f
print h5f.root.carray[8:12, 18:22]
h5f.close()

The output for the previous script is something like:

carray1.h5 (File) ''
Last modif.: 'Thu Jun 16 10:47:18 2005'
Object Tree:
/ (RootGroup) ''
/carray (CArray(200L, 300L)) ''

[[0 0 0 0]
 [0 0 0 0]
 [0 0 1 1]
 [0 0 1 1]]

Library Reference

87

4.12. The EArray class
This is a child of the Array class (see 4.10) and as such, EArray represents an array on the file. The difference is

that EArray allows to enlarge datasets along any single dimension1 you select. Another important difference is that
it also supports compression.

So, in addition to the attributes and methods that EArray inherits from Array, it supports a few more that provide a
way to enlarge the arrays on disk. Following are described the new variables and methods as well as some that already
exist in Array but that differ somewhat on the meaning and/or functionality in the EArray context.

4.12.1. EArray instance variables

atom An Atom (see 4.16.3) instance representing the shape, type and flavor of the atom-
ic objects to be saved. One of the dimensions of the shape is 0, meaning that the
array can be extended along it.

extdim The enlargeable dimension, i.e. the dimension this array can be extended along.

nrows The length of the enlargeable dimension of the array.

4.12.2. EArray methods

getEnum()

Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enum instance (see 4.17.4) is returned. If it is not of an
enumerated type, a TypeError is raised.

append(sequence)

Appends a sequence to the underlying dataset. Obviously, this sequence must have the same type as the EArray
instance; otherwise a TypeError is issued. In the same way, the dimensions of the sequence have to conform to
those of EArray, that is, all the dimensions have to be the same except, of course, that of the enlargeable dimension
which can be of any length (even 0!).

Example of use (code available in examples/earray1.py):

import tables
from numarray import strings

fileh = tables.openFile("earray1.h5", mode = "w")
a = tables.StringAtom(shape=(0,), length=8)
Use 'a' as the object type for the enlargeable array
array_c = fileh.createEArray(fileh.root, 'array_c', a, "Chars")
array_c.append(strings.array(['a'*2, 'b'*4], itemsize=8))
array_c.append(strings.array(['a'*6, 'b'*8, 'c'*10], itemsize=8))

Read the string EArray we have created on disk
for s in array_c:
 print "array_c[%s] => '%s'" % (array_c.nrow, s)
Close the file

1In the future, multiple enlargeable dimensions might be implemented as well.

Library Reference

88

fileh.close()

and the output is:

array_c[0] => 'aa'
array_c[1] => 'bbbb'
array_c[2] => 'aaaaaa'
array_c[3] => 'bbbbbbbb'
array_c[4] => 'cccccccc'

4.13. The VLArray class
Instances of this class represents array objects in the object tree with the property that their rows can have a variable
number of (homogeneous) elements (called atomic objects, or just atoms). Variable length arrays (or VLA's for short),
similarly to Table instances, can have only one dimension, and likewise Table, the compound elements (the atoms)
of the rows of VLArrays can be fully multidimensional objects.

VLArray provides methods to read/write data from/to variable length array objects residents on disk. Also, note that
this object inherits all the public attributes and methods that Leaf already has.

4.13.1. VLArray instance variables

atom An Atom (see 4.16.3) instance representing the shape, type and flavor of the atom-
ic objects to be saved.

nrow On iterators, this is the index of the current row.

nrows The total number of rows.

4.13.2. VLArray methods

getEnum()

Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enum instance (see 4.17.4) is returned. If it is not of an
enumerated type, a TypeError is raised.

append(sequence, *objects)

Append objects in the sequence to the array.

This method appends the objects in the sequence to a single row in this array. The type of individual objects must
be compliant with the type of atoms in the array. In the case of variable length strings, the very string to append is
the sequence.

Example of use (code available in examples/vlarray1.py):

import tables
from numpy import * # or, from numarray import *

Create a VLArray:
fileh = tables.openFile("vlarray1.h5", mode = "w")
vlarray = fileh.createVLArray(fileh.root, 'vlarray1',
tables.Int32Atom(flavor="numpy"),
 "ragged array of ints", Filters(complevel=1))

Library Reference

89

Append some (variable length) rows:
vlarray.append(array([5, 6]))
vlarray.append(array([5, 6, 7]))
vlarray.append([5, 6, 9, 8])

Now, read it through an iterator:
for x in vlarray:
 print vlarray.name+"["+str(vlarray.nrow)+"]-->", x

Close the file
fileh.close()

The output of the previous program looks like this:

vlarray1[0]--> [5 6]
vlarray1[1]--> [5 6 7]
vlarray1[2]--> [5 6 9 8]

The objects argument is only retained for backwards compatibility; please do not use it.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding one row per iteration. If a range is supplied (i.e. some of the start, stop or step parameters
are passed), only the appropriate rows are returned. Else, all the rows are returned. See also the __iter__() special
methods in Section 4.13.3 for a shorter way to call this iterator.

The meaning of the start, stop and step parameters is the same as in the range() python function, except that negative
values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

for row in vlarray.iterrows(step=4):
 print vlarray.name+"["+str(vlarray.nrow)+"]-->", row

read(start=None, stop=None, step=1)

Returns the actual data in VLArray. As the lengths of the different rows are variable, the returned value is a python
list, with as many entries as specified rows in the range parameters.

The meaning of the start, stop and step parameters is the same as in the range() python function, except that negative
values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

4.13.3. VLArray special methods

Following are described the methods that automatically trigger actions when a VLArray instance is accessed in a spe-
cial way (e.g., vlarray[2:5] will be equivalent to a call to vlarray.__getitem__(slice(2,5,None)).

__iter__()

It returns the same iterator than VLArray.iterrows(0,0,1). However, this does not accept parameters.

Example of use:

result = [row for row in vlarray]

Library Reference

90

Which is equivalent to:

result = [row for row in vlarray.iterrows()]

__getitem__(key)

It returns the slice of rows determined by key, which can be an integer index or an extended slice. The returned value
is a list of objects of type array.atom.type.

Example of use:

list1 = vlarray[4]
list2 = vlarray[4:1000:2]

__setitem__(keys, value)

Updates a vlarray row described by keys by setting it to value. Depending on the value of keys, the action taken
is different:

keys is an integer:
It refers to the number of row to be modified. The value object must be type and shape compatible with the
object that exists in the vlarray row.

keys is a tuple:
The first element refers to the row to be modified, and the second element to the range (so, it can be an integer
or an slice) of the row that will be updated. As above, the value object must be type and shape compatible with
the object specified in the vlarray row and range.

Note: When updating VLStrings (codification UTF-8) or Objects atoms, there is a problem: one can only update
values with exactly the same bytes than in the original row. With UTF-8 encoding this is problematic because, for
instance, 'c' takes 1 byte, but ' ' takes two. The same applies when using Objects atoms, because when cPickle
applies to a class instance (for example), it does not guarantee to return the same number of bytes than over other
instance, even of the same class than the former. These facts effectively limit the number of objects than can be updated
in VLArrays.

Example of use:

vlarray[0] = vlarray[0]*2+3
vlarray[99,3:] = arange(96)*2+3
Negative values for start and stop (but not step) are supported
vlarray[99,-99:-89:2] = vlarray[5]*2+3

4.14. The UnImplemented class
Instances of this class represents an unimplemented dataset in a generic HDF5 file. When reading such a file (i.e. one
that has not been created with PyTables, but with some other HDF5 library based tool), chances are that the specific
combination of datatypes and/or dataspaces in some dataset might not be supported by PyTables yet. In such a
case, this dataset will be mapped into the UnImplemented class and hence, the user will still be able to build the
complete object tree of this generic HDF5 file, as well as enabling the access (both read and write) of the attributes of
this dataset and some metadata. Of course, the user won't be able to read the actual data on it.

This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its datasets would
not be supported by PyTables. However, if you are really interested in having access to an unimplemented dataset,
please, get in contact with the developer team.

This class does not have any public instance variables, except those inherited from the Leaf class (see 4.5).

Library Reference

91

4.15. The AttributeSet class
Represents the set of attributes of a node (Leaf or Group). It provides methods to create new attributes, open, rename
or delete existing ones.

Like in Group instances, AttributeSet instances make use of the natural naming convention, i.e. you can access
the attributes on disk like if they were normal AttributeSet attributes. This offers the user a very convenient way
to access (but also to set and delete) node attributes by simply specifying them like a normal attribute class.

Caveat emptor: All Python data types are supported. In particular, multidimensional numarray objects are saved na-
tively as multidimensional objects in the HDF5 file. Python strings are also saved natively as HDF5 strings, and loaded
back as Python strings. However, the rest of the data types including the Python scalar ones (i.e. Int, Long and Float) and
more general objects (like NumPy or Numeric) are serialized using cPickle, so you will be able to correctly retrieve
them only from a Python-aware HDF5 library. So, if you want to save Python scalar values and be able to read them
with generic HDF5 tools, you should make use of scalar numarray objects (for example numarray.array(1,
type=numarray.Int64)). In the same way, attributes in HDF5 native files will be always mapped into numar-
ray objects. Specifically, a multidimensional attribute will be mapped into a multidimensional numarray and an
scalar will be mapped into a scalar numarray (for example, an attribute of type H5T_NATIVE_LLONG will be read
and returned as a numarray.array(X, type=numarray.Int64) scalar).

One more warning: because of the various potential difficulties in restoring a Python object stored in an attribute, you
may end up getting a cPickle string where a Python object is expected. If this is the case, you may wish to run
cPickle.loads() on that string to get an idea of where things went wrong, as shown in this example:

>>> import tables
>>>
>>> class MyClass(object):
... foo = 'bar'
...
>>> # An object of my custom class.
... myObject = MyClass()
>>>
>>> h5f = tables.openFile('test.h5', 'w')
>>> h5f.root._v_attrs.obj = myObject # store the object
>>> print h5f.root._v_attrs.obj.foo # retrieve it
bar
>>> h5f.close()
>>>
>>> # Delete class of stored object and reopen the file.
... del MyClass, myObject
>>>
>>> h5f = tables.openFile('test.h5', 'r')
>>> print h5f.root._v_attrs.obj.foo
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
AttributeError: 'str' object has no attribute 'foo'
>>> # Let us inspect the object to see what is happening.
... print repr(h5f.root._v_attrs.obj)
'ccopy_reg\n_reconstructor\np1\n(c__main__\nMyClass\np2\nc__builtin__\nobject\np3\nNtRp4\n.'
>>> # Maybe unpickling the string will yield more information:
... import cPickle
>>> cPickle.loads(h5f.root._v_attrs.obj)
Traceback (most recent call last):
 File "<stdin>", line 1, in ?

Library Reference

92

AttributeError: 'module' object has no attribute 'MyClass'
>>> # So the problem was not in the stored object,
... # but in the *environment* where it was restored.
... h5f.close()

4.15.1. AttributeSet instance variables

_v_node The parent node instance.

_v_attrnames List with all attribute names.

_v_attrnamessys List with system attribute names.

_v_attrnamesuser List with user attribute names.

4.15.2. AttributeSet methods

Note that this class defines the __setattr__, __getattr__ and __delattr__ and they work as normally
intended. Any scalar (string, ints or floats) attribute is supported natively as an attribute. However, (c)Pickle is
automatically used so as to serialize other kind of objects (like lists, tuples, dicts, small NumPy/Numeric/numarray
objects, ...) that you might want to save. If an attribute is set on a target node that already has a large number of
attributes, a PerformanceWarning will be issued.

With these special methods, you can access, assign or delete attributes on disk by just using the next constructs:

leaf.attrs.myattr = "str attr" # Set a string (native support)
leaf.attrs.myattr2 = 3 # Set an integer (native support)
leaf.attrs.myattr3 = [3,(1,2)] # A generic object (Pickled)
attrib = leaf.attrs.myattr # Get the attribute myattr
del leaf.attrs.myattr # Delete the attribute myattr

_f_copy(where)

Copy the user attributes (as well as certain system attributes) to where object. where has to be a Group or Leaf
instance.

_f_list(attrset="user")

Return a list of attribute names of the parent node. attrset selects the attribute set to be used. A user value returns
only the user attributes and this is the default. sys returns only the system attributes. all returns both the system
and user attributes.

_f_rename(oldattrname, newattrname)

Rename an attribute.

4.16. Declarative classes
In this section a series of classes that are meant to declare datatypes that are required for primary PyTables (like
Table or VLArray) objects are described.

4.16.1. The IsDescription class

This class is designed to be used as an easy, yet meaningful way to describe the properties of Table objects through
the definition of derived classes that inherit properties from it. In order to define such a class, you must declare it as

Library Reference

93

descendant of IsDescription, with as many attributes as columns you want in your table. The name of each attribute
will become the name of a column, and its value will hold a description of it.

Ordinary columns can be described using instances of the Col (see Section 4.16.2) class. Nested columns can be
described by using classes derived from IsDescription or instances of it. Derived classes can be declared in place
(in which case the column takes the name of the class) or referenced by name, and they can have a _v_pos special
attribute which sets the position of the nested column among its sibling columns.

Once you have created a description object, you can pass it to the Table constructor, where all the information it
contains will be used to define the table structure. See the Section 3.4 for an example on how that works.

See below for a complete list of the special attributes that can be specified to complement the metadata of an IsDe-
scription class.

IsDescription special attributes

_v_flavor The flavor of the table. It can take "numarray" (default) or "numpy" values. This
determines the type of objects returned during input (i.e. read) operations.

_v_indexprops An instance of the IndexProps class (see Section 4.17.2). You can use this to
alter the properties of the index creation process for a table.

_v_pos Sets the position of a possible nested column description among its sibling
columns.

4.16.2. The Col class and its descendants

The Col class is used as a mean to declare the different properties of a table column. In addition, a series of descendant
classes are offered in order to make these column descriptions easier to the user. In general, it is recommended to use
these descendant classes, as they are more meaningful when found in the middle of the code.

Col instance attributes

type The type class of the column.

stype The string type of the column.

recarrtype The string type, in RecArray format, of the column.

shape The shape of the column.

itemsize The size of the base items. Specially useful for StringCol objects.

indexed Whether this column is meant to be indexed or not.

_v_pos The position of this column with regard to its column siblings.

_v_name The name of this column

_v_pathname The complete pathname of the column. This is mainly useful in nested columns;
for non-nested ones this value is the same a _v_name.

Col methods

None.

Library Reference

94

Col constructors

A description of the different constructors with their parameters follows:

Col(dtype="Float64", shape=1, dflt=None, pos=None, indexed=0)

Declare the properties of a Table column.

dtype
The data type for the column. All types listed in Appendix A are valid data types for columns. The type description
is accepted both in string-type format and as a numarray data type.

shape
An integer or a tuple, that specifies the number of dtype items for each element (or shape, for multidimensional
elements) of this column. For CharType columns, the last dimension is used as the length of the character strings.
However, for this kind of objects, the use of StringCol subclass is strongly recommended.

dflt
The default value for elements of this column. If the user does not supply a value for an element while filling a
table, this default value will be written to disk. If the user supplies an scalar value for a multidimensional column,
this value is automatically broadcasted to all the elements in the column cell. If dflt is not supplied, an appropriate
zero value (or null string) will be chosen by default. Please, note that all the default values are kept internally
as numarray objects.

pos
By default, columns are arranged in memory following an alpha-numerical order of the column names. In some
situations, however, it is convenient to impose a user defined ordering. pos parameter allows the user to force
the desired ordering.

indexed
Whether this column should be indexed for better performance in table selections.

StringCol(length=None, dflt=None, shape=1, pos=None, indexed=0)

Declare a column to be of type CharType. The length parameter sets the length of the strings. The meaning of the
other parameters are like in the Col class.

BoolCol(dflt=0, shape=1, pos=None, indexed=0)

Define a column to be of type Bool. The meaning of the parameters are the same of those in the Col class.

IntCol(dflt=0, shape=1, itemsize=4, sign=1, pos=None, indexed=0)

Declare a column to be of type IntXX, depending on the value of itemsize parameter, that sets the number of bytes of
the integers in the column. sign determines whether the integers are signed or not. The meaning of the other parameters
are the same of those in the Col class.

This class has several descendants:

Int8Col(dflt=0, shape=1, pos=None, indexed=0)

Define a column of type Int8.

UInt8Col(dflt=0, shape=1, pos=None,indexed=0)

Define a column of type UInt8.

Library Reference

95

Int16Col(dflt=0, shape=1, pos=None, indexed=0)

Define a column of type Int16.

UInt16Col(dflt=0, shape=1, pos=None, indexed=0)

Define a column of type UInt16.

Int32Col(dflt=0, shape=1, pos=None, indexed=0)

Define a column of type Int32.

UInt32Col(dflt=0, shape=1, pos=None, indexed=0)

Define a column of type UInt32.

Int64Col(dflt=0, shape=1, pos=None, indexed=0)

Define a column of type Int64.

UInt64Col(dflt=0, shape=1, pos=None, indexed=0)

Define a column of type UInt64.

FloatCol(dflt=0.0, shape=1, itemsize=8, pos=None, indexed=0)

Define a column to be of type FloatXX, depending on the value of itemsize. The itemsize parameter sets the
number of bytes of the floats in the column and the default is 8 bytes (double precision). The meaning of the other
parameters are the same as those in the Col class.

This class has two descendants:

Float32Col(dflt=0.0, shape=1, pos=None, indexed=0)

Define a column of type Float32.

Float64Col(dflt=0.0, shape=1, pos=None, indexed=0)

Define a column of type Float64.

ComplexCol(dflt=0.+0.j, shape=1, itemsize=16, pos=None)

Define a column to be of type ComplexXX, depending on the value of itemsize. The itemsize parameter sets
the number of bytes of the complex types in the column and the default is 16 bytes (double precision complex). The
meaning of the other parameters are the same as those in the Col class.

ComplexCol columns and its descendants do not support indexation.

This class has two descendants:

Complex32Col(dflt=0.+0.j, shape=1, pos=None)

Define a column of type Complex32.

Complex64Col(dflt=0+0.j, shape=1, pos=None)

Define a column of type Complex64.

Library Reference

96

TimeCol(dflt=0, shape=1, itemsize=8, pos=None, indexed=0)

Define a column to be of type Time. Two kinds of time columns are supported depending on the value of itemsize:
4-byte signed integer and 8-byte double precision floating point columns (the default ones). The meaning of the other
parameters are the same as those in the Col class.

Time columns have a special encoding in the HFD5 file. See Appendix A for more information on those types.

This class has two descendants:

Time32Col(dflt=0, shape=1, pos=None, indexed=0)

Define a column of type Time32.

Time64Col(dflt=0.0, shape=1, pos=None, indexed=0)

Define a column of type Time64.

EnumCol(enum, dflt, dtype='UInt32', shape=1, pos=None, indexed=False)

Description of a column of an enumerated type.

Instances of this class describe a table column which stores enumerated values. Those values belong to an enumerated
type, defined by the first argument (enum) in the constructor of EnumCol, which accepts the same kinds of arguments
as Enum (see 4.17.4). The enumerated type is stored in the enum attribute of the column.

A default value must be specified as the second argument (dflt) in the constructor; it must be the name (a string) of
one of the enumerated values in the enumerated type. Once the column is created, the corresponding concrete value is
stored in its dflt attribute. If the name does not match any value in the enumerated type, a KeyError is raised.

A numarray data type might be specified in order to determine the base type used for storing the values of enumerated
values in memory and disk. The data type must be able to represent each and every concrete value in the enumeration.
If it is not, a TypeError is raised. The default base type is unsigned 32-bit integer, which is sufficient for most cases.

The stype attribute of enumerated columns is always 'Enum', while the type attribute is the data type used for
storing concrete values.

The shape, position and indexed attributes of the column are treated as with other column description objects (see
4.16.2).

4.16.3. The Atom class and its descendants.

The Atom class is a descendant of the Col class (see 4.16.2) and is meant to declare the different properties of the base
element (also known as atom) of CArray, EArray and VLArray objects. The Atom instances have the property
that their length is always the same. However, you can grow objects along the extensible dimension in the case of
EArray or put a variable number of them on a VLArray row. Moreover, the atoms are not restricted to scalar values,
and they can be fully multidimensional objects.

A series of descendant classes are offered in order to make the use of these element descriptions easier. In general, it
is recommended to use these descendant classes, as they are more meaningful when found in the middle of the code.

Atom instance variables

In addition to the variables that it inherits from the Col class, it has the next additional attributes:

flavor The object representation for this atom. See below on constructors description for
Atom class the possible values it can take.

Library Reference

97

Atom methods

atomsize()

Returns the total length, in bytes, of the element base atom. If its shape is has one zero element on it (for use in
EArrays, for example), this is replaced by an one in order to compute the atom size correctly.

Atom constructors

A description of the different constructors with their parameters follows:

Atom(dtype="Float64", shape=1, flavor="numarray")

Define properties for the base elements of CArray, EArray and VLArray objects.

dtype

The data type for the base element. See the Appendix A for a relation of data types supported. The type description
is accepted both in string-type format and as a numarray data type.

shape

In a EArray context, it is a tuple specifying the shape of the object, and one (and only one) of its dimensions must
be 0, meaning that the EArray object will be enlarged along this axis. In the case of a VLArray, it can be an integer
with a value of 1 (one) or a tuple, that specifies whether the atom is an scalar (in the case of a 1) or has multiple
dimensions (in the case of a tuple). For CharType elements, the last dimension is used as the length of the character
strings. However, for this kind of objects, the use of StringAtom subclass is strongly recommended.

flavor

The object representation for this atom. It can be any of "numarray", "numpy" or "python" for the character types and
"numarray", "numpy", "numeric" or "python" for the numerical types. If specified, the read atoms will be converted
to that specific flavor. If not specified, the atoms will remain in their native format (i.e. numarray).

StringAtom(shape=1, length=None, flavor="numarray")

Define an atom to be of CharType type. The meaning of the shape parameter is the same as in the Atom class.
length sets the length of the strings atoms. flavor can be whether "numarray", "numpy" or "python". Unicode
strings are not supported by this type; see the VLStringAtom class if you want Unicode support (only available
for VLAtom objects).

BoolAtom(shape=1, flavor="numarray")

Define an atom to be of type Bool. The meaning of the parameters are the same of those in the Atom class.

IntAtom(shape=1, itemsize=4, sign=1, flavor="numarray")

Define an atom to be of type IntXX, depending on the value of itemsize parameter, that sets the number of bytes of
the integers that conform the atom. sign determines whether the integers are signed or not. The meaning of the other
parameters are the same of those in the Atom class.

This class has several descendants:

Int8Atom(shape=1, flavor="numarray")

Define an atom of type Int8.

Library Reference

98

UInt8Atom(shape=1, flavor="numarray")

Define an atom of type UInt8.

Int16Atom(shape=1, flavor="numarray")

Define an atom of type Int16.

UInt16Atom(shape=1, flavor="numarray")

Define an atom of type UInt16.

Int32Atom(shape=1, flavor="numarray")

Define an atom of type Int32.

UInt32Atom(shape=1, flavor="numarray")

Define an atom of type UInt32.

Int64Atom(shape=1, flavor="numarray")

Define an atom of type Int64.

UInt64Atom(shape=1, flavor="numarray")

Define an atom of type UInt64.

FloatAtom(shape=1, itemsize=8, flavor="numarray")

Define an atom to be of FloatXX type, depending on the value of itemsize. The itemsize parameter sets the
number of bytes of the floats in the atom and the default is 8 bytes (double precision). The meaning of the other
parameters are the same as those in the Atom class.

This class has two descendants:

Float32Atom(shape=1, flavor="numarray")

Define an atom of type Float32.

Float64Atom(shape=1, flavor="numarray")

Define an atom of type Float64.

ComplexAtom(shape=1, itemsize=16, flavor="numarray")

Define an atom to be of ComplexXX type, depending on the value of itemsize. The itemsize parameter sets
the number of bytes of the floats in the atom and the default is 16 bytes (double precision complex). The meaning of
the other parameters are the same as those in the Atom class.

This class has two descendants:

Complex32Atom(shape=1, flavor="numarray")

Define an atom of type Complex32.

Complex64Atom(shape=1, flavor="numarray")

Define an atom of type Complex64.

Library Reference

99

TimeAtom(shape=1, itemsize=8, flavor="numarray")

Define an atom to be of type Time. Two kinds of time atoms are supported depending on the value of itemsize:
4-byte signed integer and 8-byte double precision floating point atoms (the default ones). The meaning of the other
parameters are the same as those in the Atom class.

Time atoms have a special encoding in the HFD5 file. See Appendix A for more information on those types.

This class has two descendants:

Time32Atom(shape=1, flavor="numarray")

Define an atom of type Time32.

Time64Atom(shape=1, flavor="numarray")

Define an atom of type Time64.

EnumAtom(enum, dtype='UInt32', shape=1, flavor='numarray')

Description of an atom of an enumerated type.

Instances of this class describe the atom type used by an array to store enumerated values. Those values belong to
an enumerated type.

The meaning of the enum and dtype arguments is the same as in EnumCol (see 4.16.2). The shape and flavor
arguments have the usual meaning of other Atom classes (the flavor applies to the representation of concrete read
values).

Enumerated atoms also have stype and type attributes with the same values as in EnumCol.

Now, there come two special classes, ObjectAtom and VLString, that actually do not descend from Atom, but
which goal is so similar that they should be described here. The difference between them and the Atom and descendants
classes is that these special classes does not allow multidimensional atoms, nor multiple values per row. A flavor can
not be specified neither as it is immutable (see below).

Caveat emptor: You are only allowed to use these classes to create VLArray objects, not CArray and EArray
objects.

ObjectAtom()

This class is meant to fit any kind of object in a row of an VLArray instance by using cPickle behind the scenes.
Due to the fact that you can not foresee how long will be the output of the cPickle serialization (i.e. the atom already
has a variable length), you can only fit a representant of it per row. However, you can still pass several parameters to
the VLArray.append() method as they will be regarded as a tuple of compound objects (the parameters), so that
we still have only one object to be saved in a single row. It does not accept parameters and its flavor is automatically
set to "Object", so the reads of rows always returns an arbitrary python object. You can regard ObjectAtom types
as an easy way to save an arbitrary number of generic python objects in a VLArray object.

VLStringAtom()

This class describes a row of the VLArray class, rather than an atom. It differs from the StringAtom class in that
you can only add one instance of it to one specific row, i.e. the VLArray.append() method only accepts one object
when the base atom is of this type. Besides, it supports Unicode strings (contrarily to StringAtom) because it uses
the UTF-8 codification (this is why its atomsize() method returns always 1) when serializing to disk. It does not
accept any parameter and because its flavor is automatically set to "VLString", the reads of rows always returns a

Library Reference

100

python string. See the Section D.3.5 if you are curious on how this is implemented at the low-level. You can regard
VLStringAtom types as an easy way to save generic variable length strings.

See examples/vlarray1.py and examples/vlarray2.py for further examples on VLArrays, including
object serialization and Unicode string management.

4.17. Helper classes
In this section are listed classes that does not fit in any other section and that mainly serve for ancillary purposes.

4.17.1. The Filters class

This class is meant to serve as a container that keeps information about the filter properties associated with the en-
largeable leaves, that is Table, EArray and VLArray as well as CArray.

The public variables of Filters are listed below:

complevel The compression level (0 means no compression).

complib The compression filter used (in case of compressed dataset).

shuffle Whether the shuffle filter is active or not.

fletcher32 Whether the fletcher32 filter is active or not.

There are no Filters public methods with the exception of the constructor itself that is described next.

Filters(complevel=0, complib="zlib", shuffle=1, fletcher32=0)

The parameters that can be passed to the Filters class constructor are:

complevel
Specifies a compress level for data. The allowed range is 0-9. A value of 0 disables compression. The default is
that compression is disabled, that balances between compression effort and CPU consumption.

complib
Specifies the compression library to be used. Right now, "zlib" (default), "lzo", "ucl" and "bzip2" values
are supported. See Section 5.3 for some advice on which library is better suited to your needs.

shuffle
Whether or not to use the shuffle filter present in the HDF5 library. This is normally used to improve the compres-
sion ratio (at the cost of consuming a little bit more CPU time). A value of 0 disables shuffling and 1 makes it
active. The default value depends on whether compression is enabled or not; if compression is enabled, shuffling
defaults to be active, else shuffling is disabled.

fletcher32
Whether or not to use the fletcher32 filter in the HDF5 library. This is used to add a checksum on each data chunk.
A value of 0 disables the checksum and it is the default.

Of course, you can also create an instance and then assign the ones you want to change. For example:

import numarray as na
from tables import *

fileh = openFile("test5.h5", mode = "w")

Library Reference

101

atom = Float32Atom(shape=(0,2))
filters = Filters(complevel=1, complib = "lzo")
filters.fletcher32 = 1
arr = fileh.createEArray(fileh.root, 'earray', atom, "A growable array",
 filters = filters)
Append several rows in only one call
arr.append(na.array([[1., 2.],
 [2., 3.],
 [3., 4.]], type=na.Float32))

Print information on that enlargeable array
print "Result Array:"
print repr(arr)

fileh.close()

This enforces the use of the LZO library, a compression level of 1 and a fletcher32 checksum filter as well. See the
output of this example:

Result Array:
/earray (EArray(3L, 2), fletcher32, shuffle, lzo(1)) 'A growable array'
 type = Float32
 shape = (3L, 2)
 itemsize = 4
 nrows = 3
 extdim = 0
 flavor = 'numarray'
 byteorder = 'little'

4.17.2. The IndexProps class

You can use this class to set/unset the properties in the indexing process of a Table column. To use it, create an
instance, and assign it to the special attribute _v_indexprops in a table description class (see 4.16.1) or dictionary.

The public variables of IndexProps are listed below:

auto Whether an existing index should be updated or not after a table append operation.

reindex Whether the table columns are to be re-indexed after an invalidating index oper-
ation.

filters The filter settings for the different Table indexes.

There are no IndexProps public methods with the exception of the constructor itself that is described next.

IndexProps(auto=1, reindex=1, filters=None)

The parameters that can be passed to the IndexProps class constructor are:

auto
Specifies whether an existing index should be updated or not after a table append operation. The default is enable
automatic index updates.

reindex
Specifies whether the table columns are to be re-indexed after an invalidating index operation (like for example,
after a Table.removeRows call). The default is to reindex after operations that invalidate indexes.

Library Reference

102

filters
Sets the filter properties for Column indexes. It has to be an instance of the Filters (see 4.17.1) class. A None
value means that the default settings for the Filters object are selected.

4.17.3. The Index class

This class is used to keep the indexing information for table columns. It is actually a descendant of the Group class,
with some added functionality.

It has no methods intended for programmer's use, but it has some attributes that may be interesting for him.

Index instance variables

column The column object this index belongs to.

type The type class for the index.

itemsize The size of the atomic items. Specially useful for columns of CharType type.

nelements The total number of elements in index.

dirty Whether the index is dirty or not.

filters The Filters (see Section 4.17.1) instance for this index.

4.17.4. The Enum class

Each instance of this class represents an enumerated type. The values of the type must be declared exhaustively and
named with strings, and they might be given explicit concrete values, though this is not compulsory. Once the type
is defined, it can not be modified.

There are three ways of defining an enumerated type. Each one of them corresponds to the type of the only argument
in the constructor of Enum:

• Sequence of names: each enumerated value is named using a string, and its order is determined by its position in
the sequence; the concrete value is assigned automatically:

>>> boolEnum = Enum(['True', 'False'])

• Mapping of names: each enumerated value is named by a string and given an explicit concrete value. All of the
concrete values must be different, or a ValueError will be raised.

>>> priority = Enum({'red': 20, 'orange': 10, 'green': 0})
>>> colors = Enum({'red': 1, 'blue': 1})
Traceback (most recent call last):
 ...
ValueError: enumerated values contain duplicate concrete values: 1

• Enumerated type: in that case, a copy of the original enumerated type is created. Both enumerated types are con-
sidered equal.

>>> prio2 = Enum(priority)
>>> priority == prio2
True

Please, note that names starting with _ are not allowed, since they are reserved for internal usage:

Library Reference

103

>>> prio2 = Enum(['_xx'])
Traceback (most recent call last):
 ...
ValueError: name of enumerated value can not start with ``_``: '_xx'

The concrete value of an enumerated value is obtained by getting its name as an attribute of the Enum instance (see
__getattr__()) or as an item (see __getitem__()). This allows comparisons between enumerated values and
assigning them to ordinary Python variables:

>>> redv = priority.red
>>> redv == priority['red']
True
>>> redv > priority.green
True
>>> priority.red == priority.orange
False

The name of the enumerated value corresponding to a concrete value can also be obtained by using the __call__()
method of the enumerated type. In this way you get the symbolic name to use it later with __getitem__():

>>> priority(redv)
'red'
>>> priority.red == priority[priority(priority.red)]
True

(If you ask, the __getitem__() method is not used for this purpose to avoid ambiguity in the case of using strings
as concrete values.)

Special methods

__getitem__(name)

Get the concrete value of the enumerated value with that name.

The name of the enumerated value must be a string. If there is no value with that name in the enumeration, a Key-
Error is raised.

__getattr__(name)

Get the concrete value of the enumerated value with that name.

The name of the enumerated value must be a string. If there is no value with that name in the enumeration, an
AttributeError is raised.

__contains__(name)

Is there an enumerated value with that name in the type?

If the enumerated type has an enumerated value with that name, True is returned. Otherwise, False is returned.
The name must be a string.

This method does not check for concrete values matching a value in an enumerated type. For that, please use the
__call__() method.

__call__(value, *default)

Get the name of the enumerated value with that concrete value.

Library Reference

104

If there is no value with that concrete value in the enumeration and a second argument is given as a default, this
is returned. Else, a ValueError is raised.

This method can be used for checking that a concrete value belongs to the set of concrete values in an enumerated type.

__len__()

Return the number of enumerated values in the enumerated type.

__iter__()

Iterate over the enumerated values.

Enumerated values are returned as (name, value) pairs in no particular order.

__eq__(other)

Is the other enumerated type equivalent to this one?

Two enumerated types are equivalent if they have exactly the same enumerated values (i.e. with the same names and
concrete values).

__repr__()

Return the canonical string representation of the enumeration. The output of this method can be evaluated to give a
new enumeration object that will compare equal to this one.

105

Chapter 5. Optimization tips
... durch planmässiges Tattonieren. [... through systematic, palpable experimentation.]
--—Johann Karl Friedrich Gauss [asked how he came upon his theorems]

On this chapter, you will get deeper knowledge of PyTables internals. PyTables has several places where the user
can improve the performance of his application. If you are planning to deal with really large data, you should read
carefully this section in order to learn how to get an important efficiency boost for your code. But if your dataset is
small or medium size (say, up to 10 MB), you should not worry about that as the default parameters in PyTables
are already tuned to handle that perfectly.

5.1. Informing PyTables about expected number of
rows in tables
The underlying HDF5 library that is used by PyTables allows for certain datasets (chunked datasets) to take the data
in bunches of a certain length, so-called chunks, to write them on disk as a whole, i.e. the HDF5 library treats chunks
as atomic objects and disk I/O is always made in terms of complete chunks. This allows data filters to be defined by
the application to perform tasks such as compression, encryption, checksumming, etc. on entire chunks.

An in-memory B-tree is used to map chunk structures on disk. The more chunks that are allocated for a dataset the
larger the B-tree. Large B-trees take memory and cause file storage overhead as well as more disk I/O and higher
contention for the metadata cache. Consequently, it's important to balance between memory and I/O overhead (small
B-trees) and time to access data (big B-trees).

PyTables can determine an optimum chunk size to make B-trees adequate to your dataset size if you help it by
providing an estimation of the number of rows for a table. This must be made at table creation time by passing this
value to the expectedrows keyword of the createTable method (see description).

When your table size is bigger than 10 MB (take this figure only as a reference, not strictly), by providing this guess
of the number of rows you will be optimizing the access to your data. When the table size is larger than, say 100MB,
you are strongly suggested to provide such a guess; failing to do that may cause your application to do very slow I/O
operations and to demand huge amounts of memory. You have been warned!

5.2. Accelerating your searches
If you are going to use a lot of searches like the next one:

row = table.row
result = [row['var2'] for row in table if row['var1'] <= 20]

(for future reference, we will call this the standard selection mode) and you want to improve the time taken to run
it, keep reading.

5.2.1. In-kernel searches

PyTables provides a way to accelerate data selections when they are simple, i.e. when only a column is implied in
the selection process, through the use of the where iterator (see description). We will call this mode of selecting data
in-kernel. Let's see an example of in-kernel selection based on the standard selection mentioned above:

row = table

Optimization tips

106

result = [row['var2'] for row in table.where(table.cols.var1 <= 20)]

This simple change of mode selection can account for an improvement in search times up to a factor of 10 (see the
Figure 5.1).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
(s

ec
on

ds
)

Number of rows

Comparison between the different selection modes in PyTables
 (condition applied over Int32 values)

Standard
In-kernel
Indexed

Figure 5.1. Times for different selection modes over Int32 values. Benchmark made on
a machine with Itanium (IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

Optimization tips

107

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
(s

ec
on

ds
)

Number of rows

Comparison between the different selection modes in PyTables
 (condition applied over Float64 values)

Standard
In-kernel
Indexed

Figure 5.2. Times for different selection modes over Float64 values. Benchmark made
on a machine with Itanium (IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

So, where is the trick? It's easy. In the standard selection mode the data for column var1 has to be carried up to
Python space so as to evaluate the condition and decide if the var2 value should be added to the result list. On
the contrary, in the in-kernel mode, the condition is passed to the PyTables kernel (hence the name), written in C,
and evaluated there at C speed (with some help of the numarray package), so that the only values that are brought
to the Python space are the references for rows that fulfilled the condition.

You should note, however, that currently the where method only accepts conditions along a single column1. Fortu-
nately, you can mix the in-kernel and standard selection modes for evaluating arbitrarily complex conditions along
several columns at once. Look at this example:

row = table
result = [row['var2'] for row in table.where(table.cols.var3 == "foo")
 if row['var1'] <= 20]

here, we have used a in-kernel selection to filter the rows whose var3 field is equal to string "foo". Then, we apply
a standard selection to complete the query.

Of course, when you mix the in-kernel and standard selection modes you should pass the most restrictive condition to
the in-kernel part, i.e. to the where iterator. In situations where it is not clear which is the most restrictive condition,
you might want to experiment a bit in order to find the best combination.

5.2.2. Indexed searches

When you need more speed than in-kernel selections can offer you, PyTables offers a third selection method, the
so-called indexed mode. In this mode, you have to decide which column(s) you are going to do your selections on,

1PyTables Pro will address this shortcoming.

Optimization tips

108

and index them. Indexing is just a kind of sort operation, so that next searches along a column will look at the sorted
information using a binary search which is much faster than a sequential search.

You can index your selected columns in several ways:

Declaratively
In this mode, you can declare a column as being indexed by passing the indexed parameter to the column descriptor.
That is:

class Example(IsDescription):
 var1 = StringCol(length=4, dflt="", pos=1, indexed=1)
 var2 = BoolCol(0, indexed=1, pos = 2)
 var3 = IntCol(0, indexed=1, pos = 3)
 var4 = FloatCol(0, indexed=0, pos = 4)

In this case, we are telling that var1, var2 and var3 columns will be indexed automatically when you add
rows to the table with this description.

Calling Column.createIndex()
In this mode, you can create an index even on an already created table. For example:

indexrows = table.cols.var1.createIndex()
indexrows = table.cols.var2.createIndex()
indexrows = table.cols.var3.createIndex()

will create indexes for all var1, var2 and var3 columns, and after doing that, they will behave as regular
indexes.

After you have indexed a column, you can proceed to use it through the use of Table.where method:

row = table
result = [row['var2'] for row in table.where(table.cols.var1 == "foo")]

or, if you want to add more conditions, you can mix the indexed selection with a standard one:

row = table
result = [row['var2'] for row in table.where(table.cols.var3 <= 20)
 if row['var1'] == "foo"]

remember to pass the most restrictive condition to the where iterator.

You can see in figures5.1 and 5.2 that indexing can accelerate quite a lot your data selections in tables. For moderately
large tables (> one million rows), you can get speedups in the order of 100x with regard to in-kernel selections, and
in the order of 1000x with regard to standard selections.

One important aspect of indexation in PyTables is that it has been implemented with the goal of being capable to
manage effectively very large tables. In Figure 5.3, you can see that the times to index columns in tables always grow
linearly. In particular, the time to index a couple of columns with 1 billion of rows each is 40 min. (roughly 20 min.
each), which is a quite reasonable figure. This is because PyTables has chosen an algorithm that does a partial sort
of the columns in order to ensure that the indexing time grows linearly. On the contrary, most of relational databases
try to do a complete sort of columns, and this makes the time to index grow much faster with the number of rows.

The fact that relational databases use a complete sorting algorithm for indexes means that their index would be more
effective (but not by a large extent) for searching purposes than the PyTables approach. However, for relatively
large tables (> 10 millions of rows) the time required for completing such a sort can be so large, that indexing is not

Optimization tips

109

normally worth the effort. In other words, PyTables indexing scales much better than relational databases. So don't
worry if you have extremely large columns to index: PyTables is designed to cope with that perfectly.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

T
im

e
(s

ec
on

ds
)

Number of rows

Index creation time

Figure 5.3. Times for indexing a couple of columns of data type Int32 and Float64. Benchmark
made on a machine with Itanium (IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

5.3. Compression issues

One of the beauties of PyTables is that it supports compression on tables and arrays2, although it is not used by
default. Compression of big amounts of data might be a bit controversial feature, because compression has a legend
of being a very big consumer of CPU time resources. However, if you are willing to check if compression can help
not only by reducing your dataset file size but also by improving I/O efficiency, specially when dealing with very
large datasets, keep reading.

There is a common scenario where users need to save duplicated data in some record fields, while the others have
varying values. In a relational database approach such redundant data can normally be moved to other tables and a
relationship between the rows on the separate tables can be created. But that takes analysis and implementation time,
and makes the underlying libraries more complex and slower.

PyTables transparent compression allows the users to not worry about finding which is their optimum strategy for
data tables, but rather use less, not directly related, tables with a larger number of columns while still not cluttering
the database too much with duplicated data (compression is responsible to avoid that). As a side effect, data selections
can be made more easily because you have more fields available in a single table, and they can be referred in the same
loop. This process may normally end in a simpler, yet powerful manner to process your data (although you should still
be careful about in which kind of scenarios the use of compression is convenient or not).

The compression library used by default is the Zlib (see [5]). Since HDF5 requires it, you can safely use it and expect
that your HDF5 files will be readable on any other platform that has HDF5 libraries installed. Zlib provides good

2More precisely, it is supported in CArray, EArray and VLArray objects, but not in Array objects.

Optimization tips

110

compression ratio, although somewhat slow, and reasonably fast decompression. Because of that, it is a good candidate
to be used for compressing you data.

However, in some situations it is critical to have very good decompression speed (at the expense of lower compression
ratios or more CPU wasted on compression, as we will see soon). In others, the emphasis is put in achieving the max-
imum compression ratios, no matter which reading speed will result. This is why support for two additional compres-
sors has been added to PyTables: LZO (see [13]) and bzip2 (see [14]). Following the author of LZO (and checked by
the author of this section, as you will see soon), LZO offers pretty fast compression (though a small compression ratio)
and extremely fast decompression. In fact, LZO is so fast when compressing/decompressing that it may well happen
(that depends on your data, of course) that writing or reading a compressed dataset is sometimes faster than if it is not
compressed at all (specially when dealing with extremely large datasets). This fact is very important, specially if you
have to deal with very large amounts of data. Regarding bzip2, it has a reputation of achieving excellent compression
ratios, but at the price of spending much more CPU time, which results in very low compression/decompression speeds.

Be aware that the LZO and bzip2 support in PyTables is not standard on HDF5, so if you are going to use your PyTables
files in other contexts different from PyTables you will not be able to read them. Still, see the Section C.2 (where
the ptrepack utility is described) to find a way to free your files from LZO or bzip2 dependencies, so that you can
use these compressors locally with the warranty that you can replace them with Zlib (or even remove compression
completely) if you want to use these files with other HDF5 tools or platforms afterwards.

In order to allow you to grasp what amount of compression can be achieved, and how this affects performance, a
series of experiments has been carried out. All the results presented in this section (and in the next one) have been
obtained with synthetic data and using PyTables 1.3. Also, the tests have been conducted on a IBM OpenPower 720
(e-series) with a PowerPC G5 at 1.65 GHz and a hard disk spinning at 15K RPM. As your data and platform may
be totally different for your case, take this just as a guide because your mileage will probably vary. Finally, and to
be able to play with tables with a number of rows as large as possible, the record size has been chosen to be small
(16 bytes). Here is its definition:

class Bench(IsDescription):
 var1 = StringCol(length=4)
 var2 = IntCol()
 var3 = FloatCol()

With this setup, you can look at the compression ratios that can be achieved in Figure 5.4. As you can see, LZO is
the compressor that performs worse in this sense, but, curiosly enough, there is not much difference between Zlib
and bzip2.

Disk space taken by a record (original record size: 16 bytes)

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

5

10

15

20

25

30

B
yt

es
/r

ow

No compression
zlib lvl1
lzo lvl1
bzip2 lvl1

Figure 5.4. Comparison between different compression libraries.

Optimization tips

111

Also, PyTables lets you select different compression levels for Zlib and bzip2, although you may get a bit disappointed
by the small improvement that show these compressors when dealing with a combination of numbers and strings as in
our example. As a reference, see plot 5.5 for a comparison of the compression achieved by selecting different levels of
Zlib. Very oddly, the best compression ratio corresponds to level 1 (!). It's difficult to explain that, but this lesson will
serve to reaffirm that there is no replacement for experiments with your own data. In general, it is recommended to
select the lowest level of compression in order to achieve best performance and decent (if not the best!) compression
ratio. See later for more figures on this regard.

Disk space taken by a record (original record size: 16 bytes)

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

5

10

15

20

25

30

B
yt

es
/r

ow
No compression
zlib lvl1
zlib lvl3
zlib lvl6
zlib lvl9

Figure 5.5. Comparison between different compression levels of Zlib.

Have also a look at Figure 5.6. It shows how the speed of writing rows evolves as the size (the row number) of the
table grows. Even though in these graphs the size of one single row is 16 bytes, you can most probably extrapolate
these figures to other row sizes.

Writing with small (16 bytes) record size

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
R

ow
s/

s

No compression
zlib lvl1
lzo lvl1
bzip2 lvl1

Figure 5.6. Writing tables with several compressors.

In Figure 5.7 you can see how compression affects the reading performance. In fact, what you see in the plot is an
in-kernel selection speed, but provided that this operation is very fast (see Section 5.2.1), we can accept it as an actual
read test. Compared with the reference line without compression, the general trend here is that LZO does not affect

Optimization tips

112

too much the reading performance (and in some points it is actually better), Zlib makes speed to drop to a half, while
bzip2 is performing very slow (up to 8x slower).

Also, in the same Figure 5.7 you can notice some strange peaks in the speed that we might be tempted to attribute to
libraries on which PyTables relies (HDF5, compressors...), or to PyTables itself. However, Figure 5.8 reveals that, if we
put the file in the filesystem cache (by reading it several times before, for example), the evolution of the performance
is much smoother. So, the most probable explanation would be that such a peaks are a consequence of the underlying
OS filesystem, rather than a flaw in PyTables (or any other library behind it). Another consequence that can be derived
from the above plot is that LZO decompression performance is much better than Zlib, allowing an improvement in
overal speed of more than 2x, and perhaps more important, the read performance for really large datasets (i.e. when
they do not fit in the OS filesystem cache) can be actually better than not using compression at all. Finally, one can
see that reading performance is very badly affected when bzip2 is used (it is 10x slower than LZO and 4x than Zlib),
but this is not too strange anyway.

Selecting with small (16 bytes) record size (file not in cache)

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
R

ow
s/

s

No compression
zlib lvl1
lzo lvl1
bzip2 lvl1

Figure 5.7. Selecting values in tables with several compressors. The file is not in the OS cache.

Selecting with small (16 bytes) record size (file in cache)

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0

2

4

6

8

10

12

14

16

M
R

ow
s/

s

No compression
zlib lvl1
lzo lvl1
bzip2 lvl1

Figure 5.8. Selecting values in tables with several compressors. The file is in the OS cache.

So, generally speaking and looking at the experiments above, you can expect that LZO will be the fastest in both
compressing and decompressing, but the one that achieves the worse compression ratio (although that may be just OK

Optimization tips

113

for many situations, specially when used with the Section 5.4). bzip2 is the slowest, by large, in both compressing
and decompressing, and besides, it does not achieve any better compression ratio than Zlib. Zlib represents a balance
between them: it's somewhat slow compressing (2x) and decompressing (3x) than LZO, but it normally achieves fairly
good compression ratios.

Finally, by looking at the plots 5.9, 5.10, and the aforementioned 5.5 you can see why the recommended compression
level to use for all compression libraries is 1. This is the lowest level of compression, but if you take the approach
suggested above, the redundant data is to be found normally in the same row, making redundancy locality very high
so that a small level of compression should be enough to achieve a good compression ratio on your data tables, saving
CPU cycles for doing other things. Nonetheless, in some situations you may want to check for your own how the
different compression levels affect your application.

You can select the compression library and level by setting the complib and complevel keywords in the Filters
class (see 4.17.1). A compression level of 0 will completely disable compression (the default), 1 is the less CPU
time demanding level, while 9 is the maximum level and most CPU intensive. Finally, have in mind that LZO is not
accepting a compression level right now, so, when using LZO, 0 means that compression is not active, and any other
value means that LZO is active.

So, in conclusion, if your ultimate goal is writing and reading as fast as possible, choose LZO. If you want to reduce
as much as possible your data, while retaining acceptable read speed, choose Zlib. Finally, if portability is important
for you, Zlib is your best bet. So, when you want to use bzip2? Well, looking at the results, it is difficult to recommend
its use in general, but you may want to experiment with it in those cases where you know that it is well suited for your
data pattern (for example, for dealing with repetitive string datasets).

Writing with small (16 bytes) record size

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
R

ow
s/

s

No compression
zlib lvl1
zlib lvl3
zlib lvl6
zlib lvl9

Figure 5.9. Writing in tables with different levels of compression.

Optimization tips

114

Selecting with small (16 bytes) record size (file in cache)

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0

2

4

6

8

10

12

14

16

M
R

ow
s/

s

No compression
zlib lvl1
zlib lvl3
zlib lvl6
zlib lvl9

Figure 5.10. Selecting values in tables with different levels of compression. The file is in the OS cache.

5.4. Shuffling (or how to make the compression pro-
cess more effective)
The HDF5 library provides an interesting filter that can leverage the results of your favorite compressor. Its name is
shuffle, and because it can greatly benefit compression and it does not take many CPU resources (see below for a
justification), it is active by default in PyTables whenever compression is activated (independently of the chosen
compressor). It is of course deactivated when compression is off (which is the default, as you already should know).
Of course, you can deactivate it if you want, but this is not recommended.

So, how exactly works this mysterious filter? From the HDF5 reference manual: “The shuffle filter de-interlaces a
block of data by reordering the bytes. All the bytes from one consistent byte position of each data element are placed
together in one block; all bytes from a second consistent byte position of each data element are placed together a
second block; etc. For example, given three data elements of a 4-byte datatype stored as 012301230123, shuffling will
re-order data as 000111222333. This can be a valuable step in an effective compression algorithm because the bytes in
each byte position are often closely related to each other and putting them together can increase the compression ratio.”

In Figure 5.11 you can see a benchmark that shows how the shuffle filter can help the different libraries in compressing
data. In this experiment, shuffle has made LZO to compress almost 3x more (!), while Zlib and bzip2 are seeing
improvements of 2x. Once again, the data for this experiment is synthetic, and shuffle seems to do a great work with

it, but in general, the results will vary in each case3.

3Some users reported that the typical improvement with real data is between a factor 1.5x and 2.5x over the already compressed datasets.

Optimization tips

115

Disk space taken by a record (original record size: 16 bytes)

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0

5

10

15

20

25

30

B
yt

es
/r

ow

No compression
zlib lvl1
zlib lvl1 (Shuffle)
lzo lvl1
lzo lvl1 (Shuffle)

bzip2 lvl1

bzip2 lvl1 (Shuffle)

Figure 5.11. Comparison between different compression libraries with and without the shuffle filter.

At any rate, the most remarkable fact about the shuffle filter is the relatively high level of compression that compressor
filters can achieve when used in combination with it. A curious thing to note is that the Bzip2 compression rate does
not seem very much improved (less than a 40%), and what is more striking, Bzip2+shuffle does compress quite less
than Zlib+shuffle or LZO+shuffle combinations, which is kind of unexpected. The thing that seems clear is that Bzip2
is not very good at compressing patterns that result of shuffle application. As always, you may want to experiment
with your own data before widely applying the Bzip2+shuffle combination in order to avoid surprises.

Now, how does shuffling affect performance? Well, if you look at plots 5.12, 5.13 and 5.14, you will get a somewhat
unexpected (but pleasant) surprise. Roughly, shuffle makes the writing process (shuffling+compressing) faster (aprox-
imately a 15% for LZO, 30% for Bzip2 and a 80% for Zlib), which is an interesting result by itself. But perhaps more
exciting is the fact that the reading process (unshuffling+decompressing) is also accelerated by a similar extent (a 20%
for LZO, 60% for Zlib and a 75% for Bzip2, roughly).

Writing with small (16 bytes) record size

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
R

ow
s/

s

No compression
zlib lvl1
zlib lvl1 (Shuffle)
lzo lvl1
lzo lvl1 (Shuffle)

bzip2 lvl1

bzip2 lvl1 (Shuffle)

Figure 5.12. Writing with different compression libraries with and without the shuffle filter.

Optimization tips

116

Selecting with small (16 bytes) record size (file not in cache)

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0

1

2

3

4

5

6

7

M
R

ow
s/

s

No compression
zlib lvl1 (Shuffle)

lzo lvl1 (Shuffle)

bzip2 lvl1 (Shuffle)

Figure 5.13. Reading with different compression libraries with the shuffle filter. The file is not in OS cache.

Selecting with small (16 bytes) record size (file in cache)

10 3 10 4 10 5 10 6 10 7 10 8

Number of rows

0

2

4

6

8

10

12

14

16

M
R

ow
s/

s

No compression
zlib lvl1
zlib lvl1 (Shuffle)
lzo lvl1
lzo lvl1 (Shuffle)

bzip2 lvl1

bzip2 lvl1 (Shuffle)

Figure 5.14. Reading with different compression libraries with and without the shuffle filter. The file is in OS cache.

You may wonder why introducing another filter in the write/read pipelines does effectively accelerate the throughput.
Well, maybe data elements are more similar or related column-wise than row-wise, i.e. contiguous elements in the
same column are more alike, so shuffling makes the job of the compressor easier (faster) and more effective (greater
ratios). As a side effect, compressed chunks do fit better in the CPU cache (at least, the chunks are smaller!) so that the
process of unshuffle/decompress can make a better use of the cache (i.e. reducing the number of CPU cache faults).

So, given the potential gains (faster writing and reading, but specially much improved compression level), it is a good
thing to have such a filter enabled by default in the battle for discovering redundancy when you want to compress
your data, just as PyTables does.

5.5. Using Psyco
Psyco (see [15]) is a kind of specialized compiler for Python that typically accelerates Python applications with no
change in source code. You can think of Psyco as a kind of just-in-time (JIT) compiler, a little bit like Java's, that emits

Optimization tips

117

machine code on the fly instead of interpreting your Python program step by step. The result is that your unmodified
Python programs run faster.

Psyco is very easy to install and use, so in most scenarios it is worth to give it a try. However, it only runs on Intel 386
architectures, so if you are using other architectures, you are out of luck (at least until Psyco will support yours).

As an example, imagine that you have a small script that reads and selects data over a series of datasets, like this:

def readFile(filename):
"Select data from all the tables in filename"

fileh = openFile(filename, mode = "r")
result = []
for table in fileh("/", 'Table'):
result = [p['var3'] for p in table if p['var2'] <= 20]

fileh.close()
return result

if __name__=="__main__":
print readFile("myfile.h5")

In order to accelerate this piece of code, you can rewrite your main program to look like:

if __name__=="__main__":
import psyco
psyco.bind(readFile)
print readFile("myfile.h5")

That's all!. From now on, each time that you execute your Python script, Psyco will deploy its sophisticated algorithms
so as to accelerate your calculations.

You can see in the graphs 5.15 and 5.16 how much I/O speed improvement you can get by using Psyco. By looking at
this figures you can get an idea if these improvements are of your interest or not. In general, if you are not going to use
compression you will take advantage of Psyco if your tables are medium sized (from a thousand to a million rows),
and this advantage will disappear progressively when the number of rows grows well over one million. However if
you use compression, you will probably see improvements even beyond this limit (see Section 5.3). As always, there
is no substitute for experimentation with your own dataset.

Optimization tips

118

 0

 50

 100

 150

 200

 250

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

No Psyco
Psyco

Figure 5.15. Writing tables with/without Psyco.

Optimization tips

119

 0

 200

 400

 600

 800

 1000

 1200

 1000 10000 100000 1e+06 1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

No Psyco
Psyco

Figure 5.16. Reading tables with/without Psyco.

5.6. Getting the most from the node LRU cache
Starting from PyTables 1.2 on, it has been introduced a new LRU cache that prevents from loading all the nodes of
the object tree in memory. This cache is responsible of loading just up to a certain amount of nodes and discard the
least recent used ones when there is a need to load new ones. This represents a big advantage over the old schema,
specially in terms of memory usage (as there is no need to load every node in memory), but it also adds very convenient
optimizations for working interactively like, for example, speeding-up the opening times of files with lots of nodes,
allowing to open almost any kind of file in typically less than one tenth of second (compare this with the more than
10 seconds for files with more than 10000 nodes in PyTables pre-1.2 era). See [18] for more info on the advantages
(and also drawbacks) of this approach.

One thing that deserves some discussion is the election of the parameter that sets the maximum amount of nodes to be
held in memory at any time. As PyTables is meant to be deployed in machines that have potentially low memory, the
default for it is quite conservative (you can look at its actual value in the NODE_CACHE_SIZE parameter in module
tables/constants.py). However, if you usually have to deal with files that have much more nodes than the
maximum default, and you have a lot of free memory in your system, then you may want to experiment which is the
appropriate value of NODE_CACHE_SIZE that fits better your needs.

As an example, look at the next code:

def browse_tables(filename):
fileh = openFile(filename,'a')
group = fileh.root.newgroup

Optimization tips

120

for j in range(10):
for tt in fileh.walkNodes(group, "Table"):
 title = tt.attrs.TITLE
 for row in tt:
pass
fileh.close()

We will be running the code above against a couple of files having a /newgroup containing 100 tables and 1000
tables respectively. We will run this small benchmark for different values of the LRU cache size, namely 256 and
1024. You can see the results in Table 5.1.

 100 nodes 1000 nodes

 Memory (MB) Time (ms) Memory (MB) Time (ms)

Node is
coming
from...

Cache
size

256 1024 256 1024 256 1024 256 1024

From disk 14 14 1.24 1.24 51 66 1.33 1.31

From
cache

 14 14 0.53 0.52 65 73 1.35 0.68

Table 5.1. Retrieving speed and memory consumption dependency of the number of nodes in LRU cache.

From the data in Table 5.1, one can see that, when the number of objects that you are dealing with does fit in cache, you
will get better access times to them. Also, incrementing the node cache size does effectively consumes more memory
only if the total nodes exceeds the slots in cache; otherwise the memory consumption remains the same. It is also worth
noting that incrementing the node cache size in the case you want to fit all your nodes in cache, it does not take much
more memory than keeping too conservative. On another hand, it might happen that the speed-up that you can achieve
by allocating more slots in your cache maybe is not worth the amount of memory used.

Anyway, if you feel that this issue is important for you, setup your own experiments and proceed fine-tuning the
NODE_CACHE_SIZE parameter.

5.7. Selecting an User Entry Point (UEP) in your tree
Note: After the introduction of the new object tree cache in PyTables 1.2, this feature is not very useful anymore and
might become deprecated in future versions.

If you have a huge tree in your data file with many nodes on it, creating the object tree would take long time. Many
times, however, you are interested only in access to a part of the complete tree, so you won't strictly need PyTables
to build the entire object tree in-memory, but only the interesting part.

This is where the rootUEP parameter of openFile function (see description) can be helpful. Imagine that you have
a file called "test.h5" with the associated tree that you can see in Figure 5.17, and you are interested only in the
section marked in red. You can avoid the build of all the object tree by saying to openFile that your root will be
the /Group2/Group3 group. That is:

fileh = openFile("test.h5", rootUEP="/Group2/Group3")

As a result, the actual object tree built will be like the one that can be seen in Figure 5.18.

Of course this has been a simple example and the use of the rootUEP parameter was not very necessary. But when
you have thousands of nodes on a tree, you will certainly appreciate the rootUEP parameter.

Optimization tips

121

Figure 5.17. Complete tree in file test.h5, and subtree of interest for the user.

Figure 5.18. Resulting object tree derived from the use of the rootUEP parameter.

5.8. Compacting your PyTables files
Let's suppose that you have a file on which you have made a lot of row deletions on one or more tables, or deleted
many leaves or even entire subtrees. These operations might leave holes (i.e. space that is not used anymore) in your
files, that may potentially affect not only the size of the files but, more importantly, the performance of I/O. This is
because when you delete a lot of rows on a table, the space is not automatically recovered on-the-flight. In addition, if
you add many more rows to a table than specified in the expectedrows keyword in creation time this may affect
performance as well, as explained in Section 5.1.

In order to cope with these issues, you should be aware that a handy PyTables utility called ptrepack can be
very useful, not only to compact your already existing leaky files, but also to adjust some internal parameters (both
in memory and in file) in order to create adequate buffer sizes and chunk sizes for optimum I/O speed. Please, check
the Section C.2 for a brief tutorial on its use.

Another thing that you might want to use ptrepack for is changing the compression filters or compression levels
on your existing data for different goals, like checking how this can affect both final size and I/O performance, or
getting rid of the optional compressors like LZO, UCL or bzip2 in your existing files in case you want to use them
with generic HDF5 tools that do not have support for these filters.

Part II. Complementary modules

123

Chapter 6. FileNode - simulating a
filesystem with PyTables

6.1. What is FileNode?
FileNode is a module which enables you to create a PyTables database of nodes which can be used like regular
opened files in Python. In other words, you can store a file in a PyTables database, and read and write it as you
would do with any other file in Python. Used in conjunction with PyTables hierarchical database organization, you
can have your database turned into an open, extensible, efficient, high capacity, portable and metadata-rich filesystem
for data exchange with other systems (including backup purposes).

Between the main features of FileNode, one can list:

• Open: Since it relies on PyTables, which in turn, sits over HDF5 (see [1]), a standard hierarchical data format
from NCSA.

• Extensible: You can define new types of nodes, and their instances will be safely preserved (as are normal groups,
leafs and attributes) by PyTables applications having no knowledge of their types. Moreover, the set of possible
attributes for a node is not fixed, so you can define your own node attributes.

• Efficient: Thanks to PyTables' proven extreme efficiency on handling huge amounts of data. FileNode can make
use of PyTables' on-the-fly compression and decompression of data.

• High capacity: Since PyTables and HDF5 are designed for massive data storage (they use 64-bit addressing even
where the platform does not support it natively).

• Portable: Since the HDF5 format has an architecture-neutral design, and the HDF5 libraries and PyTables are known
to run under a variety of platforms. Besides that, a PyTables database fits into a single file, which poses no trouble
for transportation.

• Metadata-rich: Since PyTables can store arbitrary key-value pairs (even Python objects!) for every database node.
Metadata may include authorship, keywords, MIME types and encodings, ownership information, access control
lists (ACL), decoding functions and anything you can imagine!

6.2. Finding a FileNode node
FileNode nodes can be recognized because they have a NODE_TYPE system attribute with a 'file' value. It
is recommended that you use the getNodeAttr() method (see description) of tables.File class to get the
NODE_TYPE attribute independently of the nature (group or leaf) of the node, so you do not need to care about.

6.3. FileNode - simulating files inside PyTables
The FileNode module is part of the nodes sub-package of PyTables. The recommended way to import the module
is:

>>> from tables.nodes import FileNode

However, FileNode exports very few symbols, so you can import * for interactive usage. In fact, you will most probably
only use the NodeType constant and the newNode() and openNode() calls.

FileNode - simulating a filesystem with PyTables

124

The NodeType constant contains the value that the NODE_TYPE system attribute of a node file is expected to contain
('file', as we have seen). Although this is not expected to change, you should use FileNode.NodeType instead of
the literal 'file' when possible.

newNode() and openNode() are the equivalent to the Python file() call (alias open()) for ordinary files.
Their arguments differ from that of file(), but this is the only point where you will note the difference between
working with a node file and working with an ordinary file.

For this little tutorial, we will assume that we have a PyTables database opened for writing. Also, if you are somewhat
lazy at typing sentences, the code that we are going to explain is included in the examples/filenodes1.py file.

You can create a brand new file with these sentences:

>>> import tables
>>> h5file = tables.openFile('fnode.h5', 'w')

6.3.1. Creating a new file node

Creation of a new file node is achieved with the newNode() call. You must tell it in which PyTables file you
want to create it, where in the PyTables hierarchy you want to create the node and which will be its name. The
PyTables file is the first argument to newNode(); it will be also called the 'host PyTables file'. The
other two arguments must be given as keyword arguments where and name, respectively. As a result of the call, a
brand new appendable and readable file node object is returned.

So let us create a new node file in the previously opened h5file PyTables file, named 'fnode_test' and
placed right under the root of the database hierarchy. This is that command:

>>> fnode = FileNode.newNode(h5file, where='/', name='fnode_test')

That is basically all you need to create a file node. Simple, isn't it? From that point on, you can use fnode as any
opened Python file (i.e. you can write data, read data, lines of text and so on).

newNode() accepts some more keyword arguments. You can give a title to your file with the title argument. You
can use PyTables' compression features with the filters argument. If you know beforehand the size that your
file will have, you can give its final file size in bytes to the expectedsize argument so that the PyTables library
would be able to optimize the data access.

newNode() creates a PyTables node where it is told to. To prove it, we will try to get the NODE_TYPE attribute
from the newly created node.

>>> print h5file.getNodeAttr('/fnode_test', 'NODE_TYPE')
file

6.3.2. Using a file node

As stated above, you can use the new node file as any other opened file. Let us try to write some text in and read it.

>>> print >> fnode, "This is a test text line."
>>> print >> fnode, "And this is another one."
>>> print >> fnode
>>> fnode.write("Of course, file methods can also be used.")
>>>
>>> fnode.seek(0) # Go back to the beginning of file.
>>>
>>> for line in fnode:
... print repr(line)

FileNode - simulating a filesystem with PyTables

125

'This is a test text line.\n'
'And this is another one.\n'
'\n'
'Of course, file methods can also be used.'

This was run on a Unix system, so newlines are expressed as '\n'. In fact, you can override the line separator for a
file by setting its lineSeparator property to any string you want.

While using a file node, you should take care of closing it before you close the PyTables host file. Because of the
way PyTables works, your data it will not be at a risk, but every operation you execute after closing the host file
will fail with a ValueError. To close a file node, simply delete it or call its close() method.

>>> fnode.close()
>>> print fnode.closed
True

6.3.3. Opening an existing file node

If you have a file node that you created using newNode(), you can open it later by calling openNode(). Its argu-
ments are similar to that of file() or open(): the first argument is the PyTables node that you want to open (i.e.
a node with a NODE_TYPE attribute having a 'file' value), and the second argument is a mode string indicating
how to open the file. Contrary to file(), openNode() can not be used to create a new file node.

File nodes can be opened in read-only mode ('r') or in read-and-append mode ('a+'). Reading from a file node is
allowed in both modes, but appending is only allowed in the second one. Just like Python files do, writing data to an
appendable file places it after the file pointer if it is on or beyond the end of the file, or otherwise after the existing
data. Let us see an example:

>>> node = h5file.root.fnode_test
>>> fnode = FileNode.openNode(node, 'a+')
>>> print repr(fnode.readline())
'This is a test text line.\n'
>>> print fnode.tell()
26
>>> print >> fnode, "This is a new line."
>>> print repr(fnode.readline())
''

Of course, the data append process places the pointer at the end of the file, so the last readline() call hit EOF. Let
us seek to the beginning of the file to see the whole contents of our file.

>>> fnode.seek(0)
>>> for line in fnode:
... print repr(line)
'This is a test text line.\n'
'And this is another one.\n'
'\n'
'Of course, file methods can also be used.This is a new line.\n'

As you can check, the last string we wrote was correctly appended at the end of the file, instead of overwriting the
second line, where the file pointer was positioned by the time of the appending.

6.3.4. Adding metadata to a file node

You can associate arbitrary metadata to any open node file, regardless of its mode, as long as the host PyTables file
is writable. Of course, you could use the setNodeAttr() method of tables.File to do it directly on the proper

FileNode - simulating a filesystem with PyTables

126

node, but FileNode offers a much more comfortable way to do it. FileNode objects have an attrs property which
gives you direct access to their corresponding AttributeSet object.

For instance, let us see how to associate MIME type metadata to our file node:

>>> fnode.attrs.content_type = 'text/plain; charset=us-ascii'

As simple as A-B-C. You can put nearly anything in an attribute, which opens the way to authorship, keywords,
permissions and more. Moreover, there is not a fixed list of attributes. However, you should avoid names in all caps
or starting with '_', since PyTables and FileNode may use them internally. Some valid examples:

>>> fnode.attrs.author = "Ivan Vilata i Balaguer"
>>> fnode.attrs.creation_date = '2004-10-20T13:25:25+0200'
>>> fnode.attrs.keywords_en = ["FileNode", "test", "metadata"]
>>> fnode.attrs.keywords_ca = ["FileNode", "prova", "metadades"]
>>> fnode.attrs.owner = 'ivan'
>>> fnode.attrs.acl = {'ivan': 'rw', '@users': 'r'}

You can check that these attributes get stored by running the ptdump command on the host PyTables file:

$ ptdump -a fnode.h5:/fnode_test
/fnode_test (EArray(113,)) ''
/fnode_test.attrs (AttributeSet), 14 attributes:
[CLASS := 'EARRAY',
EXTDIM := 0,
FLAVOR := 'numarray',
NODE_TYPE := 'file',
NODE_TYPE_VERSION := 2,
TITLE := '',
VERSION := '1.2',
acl := {'ivan': 'rw', '@users': 'r'},
author := 'Ivan Vilata i Balaguer',
content_type := 'text/plain; charset=us-ascii',
creation_date := '2004-10-20T13:25:25+0200',
keywords_ca := ['FileNode', 'prova', 'metadades'],
keywords_en := ['FileNode', 'test', 'metadata'],
owner := 'ivan']

Note that FileNode makes no assumptions about the meaning of your metadata, so its handling is entirely left to your
needs and imagination.

6.4. Complementary notes
You can use FileNodes and PyTables groups to mimic a filesystem with files and directories. Since you can store
nearly anything you want as file metadata, this enables you to use a PyTables file as a portable compressed backup,
even between radically different platforms. Take this with a grain of salt, since node files are restricted in their naming
(only valid Python identifiers are valid); however, remember that you can use node titles and metadata to overcome
this limitation. Also, you may need to devise some strategy to represent special files such as devices, sockets and such
(not necessarily using FileNode).

We are eager to hear your opinion about FileNode and its potential uses. Suggestions to improve FileNode and create
other node types are also welcome. Do not hesitate to contact us!

6.5. Current limitations
FileNode is still a young piece of software, so it lacks some functionality. This is a list of known current limitations:

FileNode - simulating a filesystem with PyTables

127

1. Node file names are constrained to PyTables node names (i.e. most valid Python identifiers). For the moment,
if you want arbitrary names you will have to use a translation map (see description) or the node title. The same
restriction applies to attribute names.

2. Node files can only be opened for read-only or read and append mode. This will be enhanced in the future.

3. There is no universal newline support yet. This is likely to be implemented in a near future.

4. Sparse files (files with lots of zeros) are not treated specially; if you want them to take less space, you should be
better off using compression.

These limitations still make FileNode entirely adequate to work with most binary and text files. Of course, sugges-
tions and patches are welcome.

6.6. FileNode module reference

6.6.1. Global constants

NodeType Value for NODE_TYPE node system attribute.

NodeTypeVersions Supported values for NODE_TYPE_VERSION node system attribute.

6.6.2. Global functions

newNode(h5file, where, name, title="", filters=None, expectedsize=1000)

Creates a new file node object in the specified PyTables file object. Additional named arguments where and name
must be passed to specify where the file node is to be created. Other named arguments such as title and filters
may also be passed. The special named argument expectedsize, indicating an estimate of the file size in bytes,
may also be passed. It returns the file node object.

openNode(node, mode = 'r')

Opens an existing file node. Returns a file node object from the existing specified PyTables node. If mode is not
specified or it is 'r', the file can only be read, and the pointer is positioned at the beginning of the file. If mode is
'a+', the file can be read and appended, and the pointer is positioned at the end of the file.

6.6.3. The FileNode abstract class

This is the ancestor of ROFileNode and RAFileNode (see below). Instances of these classes are returned when
newNode() or openNode() are called. It represents a new file node associated with a PyTables node, providing
a standard Python file interface to it.

This abstract class provides only an implementation of the reading methods needed to implement a file-like object over
a PyTables node. The attribute set of the node becomes available via the attrs property. You can add attributes
there, but try to avoid attribute names in all caps or starting with '_', since they may clash with internal attributes.

The node used as storage is also made available via the read-only attribute node. Please do not tamper with this object
unless unavoidably, since you may break the operation of the file node object.

The lineSeparator property contains the string used as a line separator, and defaults to os.linesep. It can be
set to any reasonably-sized string you want.

The constructor sets the closed, softspace and _lineSeparator attributes to their initial values, as well as
the node attribute to None. Sub-classes should set the node, mode and offset attributes.

FileNode - simulating a filesystem with PyTables

128

Version 1 implements the file storage as a UInt8 uni-dimensional EArray.

FileNode methods

getLineSeparator()

Returns the line separator string.

setLineSeparator()

Sets the line separator string.

getAttrs()

Returns the attribute set of the file node.

close()

Flushes the file and closes it. The node attribute becomes None and the attrs property becomes no longer available.

next()

Returns the next line of text. Raises StopIteration when lines are exhausted. See file.next.__doc__ for
more information.

read(size=None)

Reads at most size bytes. See file.read.__doc__ for more information

readline(size=-1)

Reads the next text line. See file.readline.__doc__ for more information

readlines(sizehint=-1)

Reads the text lines. See file.readlines.__doc__ for more information.

seek(offset, whence=0)

Moves to a new file position. See file.seek.__doc__ for more information.

tell()

Gets the current file position. See file.tell.__doc__ for more information.

xreadlines()

For backward compatibility. See file.xreadlines.__doc__ for more information.

6.6.4. The ROFileNode class

Instances of this class are returned when openNode() is called in read-only mode ('r'). This is a descendant
of FileNode class, so it inherits all its methods. Moreover, it does not define any other useful method, just some
protections against users intents to write on file.

FileNode - simulating a filesystem with PyTables

129

6.6.5. The RAFileNode class

Instances of this class are returned when either newNode() is called or when openNode() is called in append
mode ('a+'). This is a descendant of FileNode class, so it inherits all its methods. It provides additional methods
that allow to write on file nodes.

flush()

Flushes the file node. See file.flush.__doc__ for more information.

truncate(size=None)

Truncates the file node to at most size bytes. Currently, this method only makes sense to grow the file node, since
data can not be rewritten nor deleted. See file.truncate.__doc__ for more information.

write(string)

Writes the string to the file. Writing an empty string does nothing, but requires the file to be open. See
file.write.__doc__ for more information.

writelines(sequence)

Writes the sequence of strings to the file. See file.writelines.__doc__ for more information.

130

Chapter 7. NetCDF - a PyTables
NetCDF3 emulation API
7.1. What is NetCDF?
The netCDF format is a popular format for binary files. It is portable between machines and self-describing, i.e. it
contains the information necessary to interpret its contents. A free library provides convenient access to these files (see
[8]). A very nice python interface to that library is available in the Scientific Python NetCDF module (see
[16]). Although it is somewhat less efficient and flexible than HDF5, netCDF is geared for storing gridded data and is
quite easy to use. It has become a de facto standard for gridded data, especially in meteorology and oceanography. The
next version of netCDF (netCDF 4) will actually be a software layer on top of HDF5 (see [9]). The tables.NetCDF
module does not create HDF5 files that are compatible with netCDF 4 (although this is a long-term goal).

7.2. Using the tables.NetCDF module
The module tables.NetCDF emulates the Scientific.IO.NetCDF API using PyTables. It presents the data
in the form of objects that behave very much like arrays. A tables.NetCDF file contains any number of dimen-
sions and variables, both of which have unique names. Each variable has a shape defined by a set of dimensions,
and optionally attributes whose values can be numbers, number sequences, or strings. One dimension of a file can be
defined as unlimited, meaning that the file can grow along that direction. In the sections that follow, a step-by-step
tutorial shows how to create and modify a tables.NetCDF file. All of the code snippets presented here are includ-
ed in examples/netCDF_example.py. The tables.NetCDF module is designed to be used as a drop-in re-
placement for Scientific.IO.NetCDF, with only minor modifications to existing code. The differences between
table.NetCDF and Scientific.IO.NetCDF are summarized in the last section of this chapter.

7.2.1. Creating/Opening/Closing a tables.NetCDF file

To create a tables.netCDF file from python, you simply call the NetCDFFile constructor. This is also the
method used to open an existing tables.netCDF file. The object returned is an instance of the NetCDFFile
class and all future access must be done through this object. If the file is open for write access ('w' or 'a'), you
may write any type of new data including new dimensions, variables and attributes. The optional history keyword
argument can be used to set the history NetCDFFile global file attribute. Closing the tables.NetCDF file is
accomplished via the close method of NetCDFFile object.

Here's an example:

>>> import tables.NetCDF as NetCDF
>>> import time
>>> history = 'Created ' + time.ctime(time.time())
>>> file = NetCDF.NetCDFFile('test.h5', 'w', history=history)
>>> file.close()

7.2.2. Dimensions in a tables.NetCDF file

NetCDF defines the sizes of all variables in terms of dimensions, so before any variables can be created the dimensions
they use must be created first. A dimension is created using the createDimension method of the NetCDFFile
object. A Python string is used to set the name of the dimension, and an integer value is used to set the size. To create
an unlimited dimension (a dimension that can be appended to), the size value is set to None.

>>> import tables.NetCDF as NetCDF

NetCDF - a PyTables NetCDF3 emulation API

131

>>> file = NetCDF.NetCDFFile('test.h5', 'a')
>>> file.NetCDFFile.createDimension('level', 12)
>>> file.NetCDFFile.createDimension('time', None)
>>> file.NetCDFFile.createDimension('lat', 90)

All of the dimension names and their associated sizes are stored in a Python dictionary.

>>> print file.dimensions
{'lat': 90, 'time': None, 'level': 12}

7.2.3. Variables in a tables.NetCDF file

Most of the data in a tables.NetCDF file is stored in a netCDF variable (except for global attributes). To create a
netCDF variable, use the createVariable method of the NetCDFFile object. The createVariable method
has three mandatory arguments, the variable name (a Python string), the variable datatype described by a single char-
acter Numeric typecode string which can be one of f (Float32), d (Float64), i (Int32), l (Int32), s (Int16), c (Char-
Type - length 1), F (Complex32), D (Complex64) or 1 (Int8), and a tuple containing the variable's dimension names
(defined previously with createDimension). The dimensions themselves are usually defined as variables, called
coordinate variables. The createVariable method returns an instance of the NetCDFVariable class whose
methods can be used later to access and set variable data and attributes.

>>> times = file.createVariable('time','d',('time',))
>>> levels = file.createVariable('level','i',('level',))
>>> latitudes = file.createVariable('latitude','f',('lat',))
>>> temp = file.createVariable('temp','f',('time','level','lat',))
>>> pressure = file.createVariable('pressure','i',('level','lat',))

All of the variables in the file are stored in a Python dictionary, in the same way as the dimensions:

>>> print file.variables
{'latitude': <tables.NetCDF.NetCDFVariable instance at 0x244f350>,
'pressure': <tables.NetCDF.NetCDFVariable instance at 0x244f508>,
'level': <tables.NetCDF.NetCDFVariable instance at 0x244f0d0>,
'temp': <tables.NetCDF.NetCDFVariable instance at 0x244f3a0>,
'time': <tables.NetCDF.NetCDFVariable instance at 0x2564c88>}

7.2.4. Attributes in a tables.NetCDF file

There are two types of attributes in a tables.NetCDF file, global (or file) and variable. Global attributes provide
information about the dataset, or file, as a whole. Variable attributes provide information about one of the variables in
the file. Global attributes are set by assigning values to NetCDFFile instance variables. Variable attributes are set
by assigning values to NetCDFVariable instance variables.

Attributes can be strings, numbers or sequences. Returning to our example,

>>> file.description = 'bogus example to illustrate the use of tables.NetCDF'
>>> file.source = 'PyTables Users Guide'
>>> latitudes.units = 'degrees north'
>>> pressure.units = 'hPa'
>>> temp.units = 'K'
>>> times.units = 'days since January 1, 2005'
>>> times.scale_factor = 1

The ncattrs method of the NetCDFFile object can be used to retrieve the names of all the global attributes. This
method is provided as a convenience, since using the built-in dir Python function will return a bunch of private

NetCDF - a PyTables NetCDF3 emulation API

132

methods and attributes that cannot (or should not) be modified by the user. Similarly, the ncattrs method of a
NetCDFVariable object returns all of the netCDF variable attribute names. These functions can be used to easily
print all of the attributes currently defined, like this

>>> for name in file.ncattrs():
>>> print 'Global attr', name, '=', getattr(file,name)
Global attr description = bogus example to illustrate the use of tables.NetCDF
Global attr history = Created Mon Nov 7 10:30:56 2005
Global attr source = PyTables Users Guide

Note that the ncattrs function is not part of the Scientific.IO.NetCDF interface.

7.2.5. Writing data to and retrieving data from a tables.NetCDF
variable

Now that you have a netCDF variable object, how do you put data into it? If the variable has no unlimited dimension,
you just treat it like a Numeric array object and assign data to a slice.

>>> import numarray
>>> levels[:] = numarray.arange(12)+1
>>> latitudes[:] = numarray.arange(-89,90,2)
>>> for lev in levels[:]:
>>> pressure[:,:] = 1000.-100.*lev
>>> print 'levels = ',levels[:]
levels = [1 2 3 4 5 6 7 8 9 10 11 12]
>>> print 'latitudes =\n',latitudes[:]
latitudes =
[-89. -87. -85. -83. -81. -79. -77. -75. -73. -71. -69. -67. -65. -63.
-61. -59. -57. -55. -53. -51. -49. -47. -45. -43. -41. -39. -37. -35.
-33. -31. -29. -27. -25. -23. -21. -19. -17. -15. -13. -11. -9. -7.
-5. -3. -1. 1. 3. 5. 7. 9. 11. 13. 15. 17. 19. 21.
23. 25. 27. 29. 31. 33. 35. 37. 39. 41. 43. 45. 47. 49.
51. 53. 55. 57. 59. 61. 63. 65. 67. 69. 71. 73. 75. 77.
79. 81. 83. 85. 87. 89.]

Note that retrieving data from the netCDF variable object works just like a Numeric array too. If the netCDF variable
has an unlimited dimension, and there is not yet an entry for the data along that dimension, the append method must
be used.

>>> for n in range(10):
>>> times.append(n)
>>> print 'times = ',times[:]
times = [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

The data you append must have either the same number of dimensions as the NetCDFVariable, or one less. The
shape of the data you append must be the same as the NetCDFVariable for all of the dimensions except the un-
limited dimension. The length of the data long the unlimited dimension controls how may entries along the unlimited
dimension are appended. If the data you append has one fewer number of dimensions than the NetCDFVariable, it
is assumed that you are appending one entry along the unlimited dimension. For example, if the NetCDFVariable
has shape (10,50,100) (where the dimension length of length 10 is the unlimited dimension), and you append
an array of shape (50,100), the NetCDFVariable will subsequently have a shape of (11,50,100). If you
append an array with shape (5,50,100), the NetCDFVariable will have a new shape of (15,50,100). Ap-
pending an array whose last two dimensions do not have a shape (50,100) will raise an exception. This append
method does not exist in the Scientific.IO.NetCDF interface, instead entries are appended along the unlimited

NetCDF - a PyTables NetCDF3 emulation API

133

dimension one at a time by assigning to a slice. This is the biggest difference between the tables.NetCDF and
Scientific.IO.NetCDF interfaces.

Once data has been appended to any variable with an unlimited dimension, the sync method can be used to synchronize
the sizes of all the other variables with an unlimited dimension. This is done by filling in missing values (given by the
default netCDF _FillValue, which is intended to indicate that the data was never defined). The sync method is
automatically invoked with a NetCDFFile object is closed. Once the sync method has been invoked, the filled-in
values can be assigned real data with slices.

>>> print 'temp.shape before sync = ',temp.shape
temp.shape before sync = (0, 12, 90)
>>> file.sync()
>>> print 'temp.shape after sync = ',temp.shape
temp.shape after sync = (10L, 12, 90)
>>> import numarray.random_array as random_array
>>> for n in range(10):
>>> temp[n] = 10.*random_array.random(pressure.shape)
>>> print 'time, min/max temp, temp[n,0,0] = ',\
 times[n],min(temp[n].flat),max(temp[n].flat),temp[n,0,0]
time, min/max temp, temp[n,0,0] = 0.0 0.0122650898993 9.99259281158
 6.13053750992
time, min/max temp, temp[n,0,0] = 1.0 0.00115821603686 9.9915933609
 6.68516159058
time, min/max temp, temp[n,0,0] = 2.0 0.0152112031356 9.98737239838
 3.60537290573
time, min/max temp, temp[n,0,0] = 3.0 0.0112022599205 9.99535560608
 6.24249696732
time, min/max temp, temp[n,0,0] = 4.0 0.00519315246493 9.99831295013
 0.225010097027
time, min/max temp, temp[n,0,0] = 5.0 0.00978941563517 9.9843454361
 4.56814193726
time, min/max temp, temp[n,0,0] = 6.0 0.0159023851156 9.99160385132
 6.36837291718
time, min/max temp, temp[n,0,0] = 7.0 0.0019518379122 9.99939727783
 1.42762875557
time, min/max temp, temp[n,0,0] = 8.0 0.00390585977584 9.9909954071
 2.79601073265
time, min/max temp, temp[n,0,0] = 9.0 0.0106026884168 9.99195957184
 8.18835449219

Note that appending data along an unlimited dimension always increases the length of the variable along that dimension.
Assigning data to a variable with an unlimited dimension with a slice operation does not change its shape. Finally,
before closing the file we can get a summary of its contents simply by printing the NetCDFFile object. This produces
output very similar to running 'ncdump -h' on a netCDF file.

>>> print file
test.h5 {
dimensions:
 lat = 90 ;
 time = UNLIMITED ; // (10 currently)
 level = 12 ;
variables:
 float latitude('lat',) ;
 latitude:units = 'degrees north' ;
 int pressure('level', 'lat') ;

NetCDF - a PyTables NetCDF3 emulation API

134

 pressure:units = 'hPa' ;
 int level('level',) ;
 float temp('time', 'level', 'lat') ;
 temp:units = 'K' ;
 double time('time',) ;
 time:scale_factor = 1 ;
 time:units = 'days since January 1, 2005' ;
// global attributes:
 :description = 'bogus example to illustrate the use of tables.NetCDF' ;
 :history = 'Created Wed Nov 9 12:29:13 2005' ;
 :source = 'PyTables Users Guilde' ;
}

7.2.6. Efficient compression of tables.NetCDF variables

Data stored in NetCDFVariable objects is compressed on disk by default. The parameters for the default compres-
sion are determined from a Filters class instance (see section 4.17.1) with complevel=6, complib='zlib'
and shuffle=1. To change the default compression, simply pass a Filters instance to createVariable with
the filters keyword. If your data only has a certain number of digits of precision (say for example, it is temperature
data that was measured with a precision of 0.1 degrees), you can dramatically improve compression by quantizing (or
truncating) the data using the least_significant_digit keyword argument to createVariable. The least
significant digit is the power of ten of the smallest decimal place in the data that is a reliable value. For example if the
data has a precision of 0.1, then setting least_significant_digit=1 will cause data the data to be quantized
using numarray.around(scale*data)/scale, where scale = 2**bits, and bits is determined so that
a precision of 0.1 is retained (in this case bits=4).

In our example, try replacing the line

>>> temp = file.createVariable('temp','f',('time','level','lat',))

with

>>> temp = file.createVariable('temp','f',('time','level','lat',),
 least_significant_digit=1)

and see how much smaller the resulting file is.

The least_significant_digit keyword argument is not allowed in Scientific.IO.NetCDF, since
netCDF version 3 does not support compression. The flexible, fast and efficient compression available in HDF5 is the
main reason I wrote the tables.NetCDF module - my netCDF files were just getting too big.

The createVariable method has one other keyword argument not found in Scientific.IO.NetCDF - ex-
pectedsize. The expectedsize keyword can be used to set the expected number of entries along the unlimited
dimension (default 10000). If you expect that your data with have an order of magnitude more or less than 10000
entries along the unlimited dimension, you may consider setting this keyword to improve efficiency (see section 5.1
for details).

7.3. tables.NetCDF module reference

7.3.1. Global constants

_fillvalue_dict Dictionary whose keys are NetCDFVariable single character typecodes and
whose values are the netCDF _FillValue for that typecode.

ScientificIONetCDF_imported True if Scientific.IO.NetCDF is installed and can be imported.

NetCDF - a PyTables NetCDF3 emulation API

135

7.3.2. The NetCDFFile class

NetCDFFile(filename, mode='r', history=None)

Opens an existing tables.NetCDF file (mode = 'r' or 'a') or creates a new one (mode = 'w'). The history
keyword can be used to set the NetCDFFile.history global attribute (if mode = 'a' or 'w').

A NetCDFFile object has two standard attributes: dimensions and variables. The values of both are dic-
tionaries, mapping dimension names to their associated lengths and variable names to variables. All other attributes
correspond to global attributes defined in a netCDF file. Global file attributes are created by assigning to an attribute
of the NetCDFFile object.

NetCDFFile methods

close()

Closes the file (after invoking the sync method).

sync()

Synchronizes the size of variables along the unlimited dimension, by filling in data with default netCDF _FillValue.
Returns the length of the unlimited dimension. Invoked automatically when the NetCDFFile object is closed.

ncattrs()

Returns a list with the names of all currently defined netCDF global file attributes.

createDimension(name, length)

Creates a netCDF dimension with a name given by the Python string name and a size given by the integer size. If
size = None, the dimension is unlimited (i.e. it can grow dynamically). There can be only one unlimited dimension
in a file.

createVariable(name, type, dimensions, least_significant_digit= None, expected-
size=10000, filters=None)

Creates a new variable with the given name, type, and dimensions. The type is a one-letter Numeric
typecode string which can be one of f (Float32), d (Float64), i (Int32), l (Int32), s (Int16), c (CharType - length
1), F (Complex32), D (Complex64) or 1 (Int8); the predefined type constants from Numeric can also be used. The
F and D types are not supported in netCDF or Scientific.IO.NetCDF, if they are used in a tables.NetCDF file,
that file cannot be converted to a true netCDF file nor can it be shared over the internet with OPeNDAP. Dimensions
must be a tuple containing dimension names (strings) that have been defined previously by createDimensions.
The least_significant_digit is the power of ten of the smallest decimal place in the variable's data that is
a reliable value. If this keyword is specified, the variable's data truncated to this precision to improve compression.
The expectedsize keyword can be used to set the expected number of entries along the unlimited dimension
(default 10000). If you expect that your data with have an order of magnitude more or less than 10000 entries along
the unlimited dimension, you may consider setting this keyword to improve efficiency (see section 5.1 for details).
The filters keyword is a PyTables Filters instance that describes how to store the data on disk. The default
corresponds to complevel=6, complib='zlib', shuffle=1 and fletcher32=0.

nctoh5(filename, unpackshort=True, filters=None)

Imports the data in a netCDF version 3 file (filename) into a NetCDFFile object using
Scientific.IO.NetCDF (ScientificIONetCDF_imported must be True). If unpackshort=True,

NetCDF - a PyTables NetCDF3 emulation API

136

data packed as short integers (type s) in the netCDF file will be unpacked to type f using the scale_factor and
add_offset netCDF variable attributes. The filters keyword can be set to a PyTables Filters instance to
change the default parameters used to compress the data in the tables.NetCDF file. The default corresponds to
complevel=6, complib='zlib', shuffle=1 and fletcher32=0.

h5tonc(filename, packshort=False, scale_factor=None, add_offset=None)

Exports the data in a tables.NetCDF file defined by the NetCDFFile instance into a netCDF version 3 file using
Scientific.IO.NetCDF (ScientificIONetCDF_imported must be True). If packshort=True> the
dictionaries scale_factor and add_offset are used to pack data of type f as short integers (of type s) in the
netCDF file. Since netCDF version 3 does not provide automatic compression, packing as short integers is a commonly
used way of saving disk space (see this page [http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml]
for more details). The keys of these dictionaries are the variable names to pack, the values are the scale_factors and
offsets to use in the packing. The data are packed so that the original Float32 values can be reconstructed by multiply-
ing the scale_factor and adding add_offset. The resulting netCDF file will have the scale_factor and
add_offset variable attributes set appropriately.

7.3.3. The NetCDFVariable class

The NetCDFVariable constructor is not called explicitly, rather an NetCDFVarible instance is returned by
an invocation of NetCDFFile.createVariable. NetCDFVariable objects behave like arrays, and have the
standard attributes of arrays (such as shape). Data can be assigned or extracted from NetCDFVariable objects
via slices.

NetCDFVariable methods

typecode()

Returns a single character typecode describing the type of the variable, one of f (Float32), d (Float64), i (Int32), l
(Int32), s (Int16), c (CharType - length 1), F (Complex32), D (Complex64) or 1 (Int8).

append(data)

Append data to a variable along its unlimited dimension. The data you append must have either the same number
of dimensions as the NetCDFVariable, or one less. The shape of the data you append must be the same as the
NetCDFVariable for all of the dimensions except the unlimited dimension. The length of the data long the unlimited
dimension controls how may entries along the unlimited dimension are appended. If the data you append has one
fewer number of dimensions than the NetCDFVariable, it is assumed that you are appending one entry along the
unlimited dimension. For variables without an unlimited dimension, data can simply be assigned to a slice without
using the append method.

ncattrs()

Returns a list with all the names of the currently defined netCDF variable attributes.

assignValue(data)

Provided for compatiblity with Scientific.IO.NetCDF. Assigns data to the variable. If the variable has an
unlimited dimension, it is equivalent to append(data). If the variable has no unlimited dimension, it is equivalent
to assigning data to the variable with the slice [:].

getValue()

Provided for compatiblity with Scientific.IO.NetCDF. Returns all the data in the variable. Equivalent to ex-
tracting the slice [:] from the variable.

http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

NetCDF - a PyTables NetCDF3 emulation API

137

7.4. Converting between true netCDF files and
tables.NetCDF files
If Scientific.IO.NetCDF is installed, tables.NetCDF provides facilities for converting between
true netCDF version 3 files and tables.NetCDF hdf5 files via the NetCDFFile.h5tonc() and
NetCDFFile.nctoh5() class methods. Also, the nctoh5 command-line utility (see Section C.3) uses the
NetCDFFile.nctoh5() class method.

As an example, look how to convert a tables.NetCDF hdf5 file to a true netCDF version 3 file (named test.nc)

>>> scale_factor = {'temp': 1.75e-4}
>>> add_offset = {'temp': 5.}
>>> file.h5tonc('test.nc',packshort=True, \
 scale_factor=scale_factor,add_offset=add_offset)
packing temp as short integers ...
>>> file.close()

The dictionaries scale_factor and add_offset are used to optionally pack the data as short integers in the
netCDF file. Since netCDF version 3 does not provide automatic compression, packing as short integers is a commonly
used way of saving disk space (see this page [http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml]
for more details). The keys of these dictionaries are the variable names to pack, the values are the scale_factors and
offsets to use in the packing. The resulting netCDF file will have the scale_factor and add_offset variable
attributes set appropriately.

To convert the netCDF file back to a tables.NetCDF hdf5 file:

>>> history = 'Convert from netCDF ' + time.ctime(time.time())
>>> file = NetCDF.NetCDFFile('test2.h5', 'w', history=history)
>>> nobjects, nbytes = file.nctoh5('test.nc',unpackshort=True)
>>> print nobjects,' objects converted from netCDF, totaling',nbytes,'bytes'
5 objects converted from netCDF, totaling 48008 bytes
>>> temp = file.variables['temp']
>>> times = file.variables['time']
>>> print 'temp.shape after h5 --> netCDF --> h5 conversion = ',temp.shape
temp.shape after h5 --> netCDF --> h5 conversion = (10L, 12, 90)
>>> for n in range(10):
>>> print 'time, min/max temp, temp[n,0,0] = ',\
 times[n],min(temp[n].flat),max(temp[n].flat),temp[n,0,0]
time, min/max temp, temp[n,0,0] = 0.0 0.0123250000179 9.99257469177
 6.13049983978
time, min/max temp, temp[n,0,0] = 1.0 0.00130000000354 9.99152469635
 6.68507480621
time, min/max temp, temp[n,0,0] = 2.0 0.0153000000864 9.98732471466
 3.60542488098
time, min/max temp, temp[n,0,0] = 3.0 0.0112749999389 9.99520015717
 6.2423248291
time, min/max temp, temp[n,0,0] = 4.0 0.00532499980181 9.99817466736
 0.225124999881
time, min/max temp, temp[n,0,0] = 5.0 0.00987500045449 9.98417472839
 4.56827497482
time, min/max temp, temp[n,0,0] = 6.0 0.01600000076 9.99152469635
 6.36832523346
time, min/max temp, temp[n,0,0] = 7.0 0.00200000009499 9.99922466278
 1.42772495747

http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

NetCDF - a PyTables NetCDF3 emulation API

138

time, min/max temp, temp[n,0,0] = 8.0 0.00392499985173 9.9908246994
 2.79605007172
time, min/max temp, temp[n,0,0] = 9.0 0.0107500003651 9.99187469482
 8.18832492828
>>> file.close()

Setting unpackshort=True tells nctoh5 to unpack all of the variables which have the scale_factor and
add_offset attributes back to floating point arrays. Note that tables.NetCDF files have some features not sup-
ported in netCDF (such as Complex data types and the ability to make any dimension unlimited). tables.NetCDF
files which utilize these features cannot be converted to netCDF using NetCDFFile.h5tonc.

7.5. tables.NetCDF file structure
A tables.NetCDF file consists of array objects (either EArrays or CArrays) located in the root group of a
pytables hdf5 file. Each of the array objects must have a dimensions attribute, consisting of a tuple of dimension
names (the length of this tuple should be the same as the rank of the array object). Any array objects with one of the
supported datatypes in a pytables file that conforms to this simple structure can be read with the tables.NetCDF
module.

7.6. Sharing data in tables.NetCDF files over the inter-
net with OPeNDAP
tables.NetCDF datasets can be shared over the internet with the OPeNDAP protocol (http://opendap.org), via the
python opendap module (http://opendap.oceanografia.org). A plugin for the python opendap server is included with
the pytables distribution (contrib/h5_dap_plugin.py). Simply copy that file into the plugins directory of
the opendap python module source distribution, run python setup.py install, point the opendap server
to the directory containing your tables.NetCDF files, and away you go. Any OPeNDAP aware client (such as
Matlab or IDL) will now be able to access your data over http as if it were a local disk file. The only restriction
is that your tables.NetCDF files must have the extension .h5 or .hdf5. Unfortunately, tables.NetCDF
itself cannot act as an OPeNDAP client, although there is a client included in the opendap python module, and
Scientific.IO.NetCDF can act as an OPeNDAP client if it is linked with the OPeNDAP netCDF client library.
Either of these python modules can be used to remotely acess tables.NetCDF datasets with OPeNDAP.

7.7. Differences between the Scientific.IO.NetCDF API
and the tables.NetCDF API
1. tables.NetCDF data is stored in an HDF5 file instead of a netCDF file.

2. Although each variable can have only one unlimited dimension in a tables.NetCDF file, it need not be the first as
in a true NetCDF file. Complex data types F (Complex32) and D (Complex64) are supported in tables.NetCDF,
but are not supported in netCDF (or Scientific.IO.NetCDF). Files with variables that have these datatypes,
or an unlimited dimension other than the first, cannot be converted to netCDF using h5tonc.

3. Variables in a tables.NetCDF file are compressed on disk by default using HDF5 zlib compression with
the shuffle filter. If the least_significant_digit keyword is used when a variable is created with the creat-
eVariable method, data will be truncated (quantized) before being written to the file. This can signifi-
cantly improve compression. For example, if least_significant_digit=1, data will be quantized us-
ing numarray.around(scale*data)/scale, where scale = 2**bits, and bits is determined
so that a precision of 0.1 is retained (in this case bits=4). From http://www.cdc.noaa.gov/cdc/conventions/
cdc_netcdf_standard.shtml: “least_significant_digit -- power of ten of the smallest decimal place in unpacked data
that is a reliable value.” Automatic data compression is not available in netCDF version 3, and hence is not available
in the Scientific.IO.NetCDF module.

http://opendap.org
http://opendap.oceanografia.org
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

NetCDF - a PyTables NetCDF3 emulation API

139

4. In tables.NetCDF, data must be appended to a variable with an unlimited dimension using the append method
of the netCDF variable object. In Scientific.IO.NetCDF, data can be added along an unlimited dimension
by assigning it to a slice (there is no append method). The sync method of a tables.NetCDF NetCDFVari-
able object synchronizes the size of all variables with an unlimited dimension by filling in data using the default
netCDF _FillValue. The sync method is automatically invoked with a NetCDFFile object is closed. In
Scientific.IO.NetCDF, the sync() method flushes the data to disk.

5. The tables.NetCDF createVariable() method has three extra optional keyword arguments not found
in the Scientific.IO.NetCDF interface, least_significant_digit (see item (2) above), expectedsize and filters.
The expectedsize keyword applies only to variables with an unlimited dimension, and is an estimate of the number
of entries that will be added along that dimension (default 1000). This estimate is used to optimize HDF5 file access
and memory usage. The filters keyword is a PyTables filters instance that describes how to store the data on disk.
The default corresponds to complevel=6, complib='zlib', shuffle=1 and fletcher32=0.

6. tables.NetCDF data can be saved to a true netCDF file using the NetCDFFile class method h5tonc (if
Scientific.IO.NetCDF is installed). The unlimited dimension must be the first (for all variables in the file)
in order to use the h5tonc method. Data can also be imported from a true netCDF file and saved in an HDF5
tables.NetCDF file using the nctoh5 class method.

7. In tables.NetCDF a list of attributes corresponding to global netCDF attributes defined in the file can be ob-
tained with the NetCDFFile ncattrs method. Similarly, netCDF variable attributes can be obtained with
the NetCDFVariable ncattrs method. These functions are not available in the Scientific.IO.NetCDF
API.

8. You should not define tables.NetCDF global or variable attributes that start with _NetCDF_. Those names
are reserved for internal use.

9. Output similar to 'ncdump -h' can be obtained by simply printing a tables.NetCDF NetCDFFile instance.

Part III. Appendixes

141

Appendix A. Supported data types in
PyTables
The Table, Array, CArray, VLArray and EArray classes can all handle the complete set of data types supported by the
numarray package (see [12]), NumPy (see [10]) and Numeric (see [11]) in Python. The data types for table fields can
be set via the constructor for the Col class and its descendants (see 4.16.2) while array elements can be set through
the use of the Atom class and its descendants (see 4.16.3).

In addition to those data types, PyTables' Table, VLArray and EArray classes do support some aliasing data types
for their columns and atoms. Each one of these aliasing types corresponds to one numarray type, but they also have
special meanings for PyTables. They can be seen as the ordinary types they are associated with, plus some additional
meaning. Since they do not exist as numarray types, they can only be specified to PyTables using strings.

Currently, the only supported aliasing data type is Time. Two kinds of time values can be handled: 4-byte signed
integer and 8-byte double precision floating point. Both of them reflect the number of seconds since the Unix Epoch,
i.e. Jan 1 00:00:00 UTC 1970. Their types correspond to numarray's Int32 and Float64, respectively. Time values are
stored in the HDF5 file using the H5T_TIME class. Integer times are stored as is, while floating point times are split
into two signed integer values representing seconds and microseconds (beware: smaller decimals will be lost!).

PyTables also supports HDF5 H5T_ENUM enumerations (restricted sets of unique name and unique value pairs). The
numarray representation of an enumerated value depends on the concrete base type used to store the enumeration in
the HDF5 file. Enumerations are similar to aliasing data types in the sense that enumerated data is handled as regular
numarray data. Enumerations are also specified to PyTables using a string type, with an additional Enum (see 4.17.4)
instance.

Currently, only scalar integer values (both signed and unsigned) are supported in enumerations. This restriction may
be lifted when HDF5 supports other kinds on enumerated values.

A quick reference to the complete set of data types supported by PyTables is given in Appendix A.

Supported data types in PyTables

142

Type Code Description C Type Size (in bytes) Python Counterpart

Bool boolean unsigned char 1 Boolean

Int8 8-bit integer signed char 1 Integer

UInt8 8-bit unsigned integer unsigned char 1 Integer

Int16 16-bit integer short 2 Integer

UInt16 16-bit unsigned inte-
ger

unsigned short 2 Integer

Int32 integer int 4 Integer

UInt32 unsigned integer unsigned int 4 Long

Int64 64-bit integer long long 8 Long

UInt64 unsigned 64-bit inte-
ger

unsigned long long 8 Long

Float32 single-precision float float 4 Float

Float64 double-precision float double 8 Float

Complex32 single-precision com-
plex

struct {float r, i;} 8 Complex

Complex64 double-precision
complex

struct {double r, i;} 16 Complex

CharType arbitrary length string char[] * String

Time32 integer time POSIX's time_t 4 Integer

Time64 floating point time POSIX's struct
timeval

8 Float

Enum enumerated value enum - -

Table A.1. Data types supported for array elements and tables columns in PyTables.

143

Appendix B. Using nested record
arrays
B.1. Introduction
Nested record arrays are a generalization of the record array concept. Basically, a nested record array is a record array
that supports nested datatypes. It means that columns can contain not only regular datatypes but also nested datatypes.

Each nested record array is a NestedRecArray object in the tables.nestedrecords module. Nested record
arrays are intended to be as compatible as possible with ordinary record arrays (in fact the NestedRecArray class
inherits from RecArray). As a consequence, the user can deal with nested record arrays nearly in the same way that
he does with ordinary record arrays.

The easiest way to create a nested record array is to use the array() function in the tables.nestedrecords
module. The only difference between this function and its non-nested capable analogous is that now, we must provide
an structure for the buffer being stored. For instance:

>>> from tables.nestedrecords import array
>>> nra1 = array(
... [(1, (0.5, 1.0), ('a1', 1j)), (2, (0, 0), ('a2', 1+.1j))],
... formats=['Int64', '(2,)Float32', ['a2', 'Complex64']])

will create a two rows nested record array with two regular fields (columns), and one nested field with two sub-fields.

The field structure of the nested record array is specified by the keyword argument formats. This argument only
supports sequences of strings and other sequences. Each string defines the shape and type of a non-nested field. Each
sequence contains the formats of the sub-fields of a nested field. Optionally, we can also pass an additional names
keyword argument containing the names of fields and sub-fields:

>>> nra2 = array(
... [(1, (0.5, 1.0), ('a1', 1j)), (2, (0, 0), ('a2', 1+.1j))],
... names=['id', 'pos', ('info', ['name', 'value'])],
... formats=['Int64', '(2,)Float32', ['a2', 'Complex64']])

The names argument only supports lists of strings and 2-tuples. Each string defines the name of a non-nested field.
Each 2-tuple contains the name of a nested field and a list describing the names of its sub-fields. If the names argument
is not passed then all fields are automatically named (c1, c2 etc. on each nested field) so, in our first example, the
fields will be named as ['c1', 'c2', ('c3', ['c1', 'c2'])].

Another way to specify the nested record array structure is to use the descr keyword argument:

>>> nra3 = array(
... [(1, (0.5, 1.0), ('a1', 1j)), (2, (0, 0), ('a2', 1+.1j))],
... descr=[('id', 'Int64'), ('pos', '(2,)Float32'),
... ('info', [('name', 'a2'), ('value', 'Complex64')])])
>>>
>>> nra3
array(
[(1L, array([0.5, 1.], type=Float32), ('a1', 1j)),
(2L, array([0., 0.], type=Float32), ('a2', (1+0.10000000000000001j)))],
descr=[('id', 'Int64'), ('pos', '(2,)Float32'), ('info', [('name', 'a2'),
('value', 'Complex64')])],

Using nested record arrays

144

shape=2)
>>>

The descr argument is a list of 2-tuples, each of them describing a field. The first value in a tuple is the name of the
field, while the second one is a description of its structure. If the second value is a string, it defines the format (shape
and type) of a non-nested field. Else, it is a list of 2-tuples describing the sub-fields of a nested field.

As you can see, the descr list is a mix of the names and formats arguments. In fact, this argument is intended to
replace formats and names, so they cannot be used at the same time.

Of course the structure of all three keyword arguments must match that of the elements (rows) in the buffer being
stored.

Sometimes it is convenient to create nested arrays by processing a set of columns. In these cases the function fro-
marrays comes handy. This function works in a very similar way to the array function, but the passed buffer is a
list of columns. For instance:

>>> from tables.nestedrecords import fromarrays
>>> nra = fromarrays([[1, 2], [4, 5]], descr=[('x', 'f8'),('y', 'f4')])
>>>
>>> nra
array(
[(1.0, 4.0),
(2.0, 5.0)],
descr=[('x', 'f8'), ('y', 'f4')],
shape=2)

Columns can be passed as nested arrays, what makes really straightforward to combine different nested arrays to get
a new one, as you can see in the following examples:

>>> nra1 = fromarrays([nra, [7, 8]], descr=[('2D', [('x', 'f8'), ('y',
 'f4')]),
>>> ... ('z', 'f4')])
>>>
>>> nra1
array(
[((1.0, 4.0), 7.0),
((2.0, 5.0), 8.0)],
descr=[('2D', [('x', 'f8'), ('y', 'f4')]), ('z', 'f4')],
shape=2)
>>>
>>> nra2 = fromarrays([nra1.field('2D/x'), nra1.field('z')], descr=[('x',
 'f8'),
('z', 'f4')])
>>>
>>> nra2
array(
[(1.0, 7.0),
(2.0, 8.0)],
descr=[('x', 'f8'), ('z', 'f4')],
shape=2)

Finally it's worth to mention a small group of utility functions, makeFormats, makeNames and makeDescr, that can
be useful to obtain the structure specification to be used with array and fromarrays functions. Given a description list,
makeFormats gets the corresponding formats list. In the same way makeNames gets the names list. On the other hand
the descr list can be obtained from formats and names lists using the makeDescr function. For example:

Using nested record arrays

145

>>> from tables.nestedrecords import makeDescr, makeFormats, makeNames
>>> descr =[('2D', [('x', 'f8'), ('y', 'f4')]),('z', 'f4')]
>>>
>>> formats = makeFormats(descr)
>>> formats
[['f8', 'f4'], 'f4']
>>> names = makeNames(descr)
>>> names
[('2D', ['x', 'y']), 'z']
>>> d1 = makeDescr(formats, names)
>>> d1
[('2D', [('x', 'f8'), ('y', 'f4')]), ('z', 'f4')]
>>> # If no names are passed then they are automatically generated
>>> d2 = makeDescr(formats)
>>> d2
[('c1', [('c1', 'f8'), ('c2', 'f4')]),('c2', 'f4')]

B.2. NestedRecArray methods
To access the fields in the nested record array use the field() method:

>>> print nra2.field('id')
[1, 2]
>>>

The field() method accepts also names of sub-fields. It will consist of several field name components separated
by the string '/', for instance:

>>> print nra2.field('info/name')
['a1', 'a2']
>>>

Eventually, the top level fields of the nested recarray can be accessed passing an integer argument to the field()
method:

>>> print nra2.field(1)
[[0.5 1.] [0. 0.]]
>>>

An alternative to the field() method is the use of the fields attribute. It is intended mainly for interactive usage
in the Python console. For example:

>>> nra2.fields.id
[1, 2]
>>> nra2.fields.info.fields.name
['a1', 'a2']
>>>

Rows of nested recarrays can be read using the typical index syntax. The rows are retrieved as NestedRecord
objects:

>>> print nra2[0]
(1L, array([0.5, 1.], type=Float32), ('a1', 1j))
>>>
>>> nra2[0].__class__

Using nested record arrays

146

<class tables.nestedrecords.NestedRecord at 0x413cbb9c>

Slicing is also supported in the usual way:

>>> print nra2[0:2]
NestedRecArray[
(1L, array([0.5, 1.], type=Float32), ('a1', 1j)),
(2L, array([0., 0.], type=Float32), ('a2', (1+0.10000000000000001j)))
]
>>>

Another useful method is asRecArray(). It converts a nested array to a non-nested equivalent array.

This method creates a new vanilla RecArray instance equivalent to this one by flattening its fields. Only bottom-
level fields included in the array. Sub-fields are named by pre-pending the names of their parent fields up to the top-
level fields, using '/' as a separator. The data area of the array is copied into the new one. For example, calling
nra3.asRecArray() would return the same array as calling:

>>> ra = numarray.records.array(
... [(1, (0.5, 1.0), 'a1', 1j), (2, (0, 0), 'a2', 1+.1j)],
... names=['id', 'pos', 'info/name', 'info/value'],
... formats=['Int64', '(2,)Float32', 'a2', 'Complex64'])

Note that the shape of multidimensional fields is kept.

B.3. NestedRecord objects
Each element of the nested record array is a NestedRecord, i.e. a Record with support for nested datatypes. As
said before, we can do indexing as usual:

>>> print nra1[0]
(1, (0.5, 1.0), ('a1', 1j))
>>>

Using NestedRecord objects is quite similar to using Record objects. To get the data of a field we use the
field() method. As an argument to this method we pass a field name. Sub-field names can be passed in the way
described for NestedRecArray.field(). The fields attribute is also present and works as it does in Nest-
edRecArray.

Field data can be set with the setField() method. It takes two arguments, the field name and its value. Sub-field
names can be passed as usual. Finally, the asRecord() method converts a nested record into a non-nested equivalent
record.

147

Appendix C. Utilities
PyTables comes with a couple of utilities that make the life easier to the user. One is called ptdump and lets you
see the contents of a PyTables file (or generic HDF5 file, if supported). The other one is named ptrepack that
allows to (recursively) copy sub-hierarchies of objects present in a file into another one, changing, if desired, some of
the filters applied to the leaves during the copy process.

Normally, these utilities will be installed somewhere in your PATH during the process of installation of the PyTables
package, so that you can invoke them from any place in your file system after the installation has successfully finished.

C.1. ptdump
As has been said before, ptdump utility allows you look into the contents of your PyTables files. It lets you see
not only the data but also the metadata (that is, the structure and additional information in the form of attributes).

C.1.1. Usage

For instructions on how to use it, just pass the -h flag to the command:

$ ptdump -h

to see the message usage:

usage: ptdump [-R start,stop,step] [-a] [-h] [-d] [-v] file[:nodepath]
 -R RANGE -- Select a RANGE of rows in the form "start,stop,step"
 -a -- Show attributes in nodes (only useful when -v or -d are active)
 -c -- Show info of columns in tables (only useful when -v or -d are active)
 -i -- Show info of indexed columns (only useful when -v or -d are active)
 -d -- Dump data information on leaves
 -h -- Print help on usage
 -v -- Dump more meta-information on nodes

C.1.2. A small tutorial on ptdump

Let's suppose that we want to know only the structure of a file. In order to do that, just don't pass any flag, just the
file as parameter:

$ ptdump vlarray1.h5
Filename: 'vlarray1.h5' Title: '' , Last modif.: 'Fri Feb 6 19:33:28 2004' ,
 rootUEP='/', filters=Filters(), Format version: 1.2
/ (Group) ''
/vlarray1 (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'

we can see that the file contains just a leaf object called vlarray1, that is an instance of VLArray, has 4 rows, and
two filters has been used in order to create it: shuffle and zlib (with a compression level of 1).

Let's say we want more meta-information. Just add the -v (verbose) flag:

$ ptdump -v vlarray1.h5
/ (Group) ''
 children := ['vlarray1' (VLArray)]
/vlarray1 (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
 atom = Atom(type=Int32, shape=1, flavor='Numeric')

Utilities

148

 nrows = 4
 flavor = 'Numeric'
 byteorder = 'little'

so we can see more info about the atoms that are the components of the vlarray1 dataset, i.e. they are scalars of
type Int32 and with Numeric flavor.

If we want information about the attributes on the nodes, we must add the -a flag:

$ ptdump -va vlarray1.h5
/ (Group) ''
 children := ['vlarray1' (VLArray)]
 /._v_attrs (AttributeSet), 5 attributes:
 [CLASS := 'GROUP',
 FILTERS := None,
 PYTABLES_FORMAT_VERSION := '1.2',
 TITLE := '',
 VERSION := '1.0']
/vlarray1 (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
 atom = Atom(type=Int32, shape=1, flavor='Numeric')
 nrows = 4
 flavor = 'Numeric'
 byteorder = 'little'
 /vlarray1.attrs (AttributeSet), 4 attributes:
 [CLASS := 'VLARRAY',
 FLAVOR := 'Numeric',
 TITLE := 'ragged array of ints',
 VERSION := '1.0']

Let's have a look at the real data:

$ ptdump -d vlarray1.h5
/ (Group) ''
/vlarray1 (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
 Data dump:
[array([5, 6]), array([5, 6, 7]), array([5, 6, 9, 8]), array([5, 6, 9, 10,
 12])]

we see here a data dump of the 4 rows in vlarray1 object, in the form of a list. Because the object is a VLA, we
see a different number of integers on each row.

Say that we are interested only on a specific row range of the /vlarray1 object:

ptdump -R2,4 -d vlarray1.h5:/vlarray1
/vlarray1 (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
 Data dump:
[array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

Here, we have specified the range of rows between 2 and 4 (the upper limit excluded, as usual in Python). See how
we have selected only the /vlarray1 object for doing the dump (vlarray1.h5:/vlarray1).

Finally, you can mix several information at once:

$ ptdump -R2,4 -vad vlarray1.h5:/vlarray1
/vlarray1 (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
 atom = Atom(type=Int32, shape=1, flavor='Numeric')

Utilities

149

 nrows = 4
 flavor = 'Numeric'
 byteorder = 'little'
 /vlarray1.attrs (AttributeSet), 4 attributes:
 [CLASS := 'VLARRAY',
 FLAVOR := 'Numeric',
 TITLE := 'ragged array of ints',
 VERSION := '1.0']
 Data dump:
[array([5, 6, 9, 8]), array([5, 6, 9, 10, 12])]

C.2. ptrepack
This utility is a very powerful one and lets you copy any leaf, group or complete subtree into another file. During the
copy process you are allowed to change the filter properties if you want so. Also, in the case of duplicated pathnames,
you can decide if you want to overwrite already existing nodes on the destination file. Generally speaking, ptrepack
can be useful in may situations, like replicating a subtree in another file, change the filters in objects and see how
affect this to the compression degree or I/O performance, consolidating specific data in repositories or even importing
generic HDF5 files and create true PyTables counterparts.

C.2.1. Usage

For instructions on how to use it, just pass the -h flag to the command:

$ ptrepack -h

to see the message usage:

usage: ptrepack [-h] [-v] [-o] [-R start,stop,step] [--non-recursive]
 [--dest-title=title] [--dont-copyuser-attrs] [--overwrite-nodes]
 [--complevel=(0-9)] [--complib=lib] [--shuffle=(0|1)]
 [--fletcher32=(0|1)] [--keep-source-filters]
 sourcefile:sourcegroup destfile:destgroup
 -h -- Print usage message.
 -v -- Show more information.
 -o -- Overwite destination file.
 -R RANGE -- Select a RANGE of rows (in the form "start,stop,step")
 during the copy of *all* the leaves.
 --non-recursive -- Do not do a recursive copy. Default is to do it.
 --dest-title=title -- Title for the new file (if not specified,
 the source is copied).
 --dont-copy-userattrs -- Do not copy the user attrs (default is to do it)
 --overwrite-nodes -- Overwrite destination nodes if they exist. Default is
 to not overwrite them.
 --complevel=(0-9) -- Set a compression level (0 for no compression, which
 is the default).
 --complib=lib -- Set the compression library to be used during the copy.
 lib can be set to "zlib", "lzo", "ucl" or "bzip2". Defaults to "zlib".
 --shuffle=(0|1) -- Activate or not the shuffling filter (default is active
 if complevel>0).
 --fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not
 active by default).
 --keep-source-filters -- Use the original filters in source files. The
 default is not doing that if any of --complevel, --complib, --shuffle

Utilities

150

 or --fletcher32 option is specified.

C.2.2. A small tutorial on ptrepack

Imagine that we have ended the tutorial 1 (see the output of examples/tutorial1-1.py), and we want to copy
our reduced data (i.e. those datasets that hangs from the /column group) to another file. First, let's remember the
content of the examples/tutorial1.h5:

$ ptdump tutorial1.h5
Filename: 'tutorial1.h5' Title: 'Test file' , Last modif.: 'Fri Feb 6
 19:33:28 2004' , rootUEP='/', filters=Filters(), Format version: 1.2
/ (Group) 'Test file'
/columns (Group) 'Pressure and Name'
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'
/detector (Group) 'Detector information'
/detector/readout (Table(10L,)) 'Readout example'

Now, copy the /columns to other non-existing file. That's easy:

$ ptrepack tutorial1.h5:/columns reduced.h5

That's all. Let's see the contents of the newly created reduced.h5 file:

$ ptdump reduced.h5
Filename: 'reduced.h5' Title: '' , Last modif.: 'Fri Feb 20 15:26:47 2004' ,
 rootUEP='/', filters=Filters(), Format version: 1.2
/ (Group) ''
/name (Array(3,)) 'Name column selection'
/pressure (Array(3,)) 'Pressure column selection'

so, you have copied the children of /columns group into the root of the reduced.h5 file.

Now, you suddenly realized that what you intended to do was to copy all the hierarchy, the group /columns itself
included. You can do that by just specifying the destination group:

$ ptrepack tutorial1.h5:/columns reduced.h5:/columns
ptdump reduced.h5
Filename: 'reduced.h5' Title: '' , Last modif.: 'Fri Feb 20 15:39:15 2004' ,
 rootUEP='/', filters=Filters(), Format version: 1.2
/ (Group) ''
/name (Array(3,)) 'Name column selection'
/pressure (Array(3,)) 'Pressure column selection'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

OK. Much better. But you want to get rid of the existing nodes on the new file. You can achieve this by adding the
-o flag:

$ ptrepack -o tutorial1.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5
Filename: 'reduced.h5' Title: '' , Last modif.: 'Fri Feb 20 15:41:57 2004' ,
 rootUEP='/', filters=Filters(), Format version: 1.2
/ (Group) ''

Utilities

151

/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

where you can see how the old contents of the reduced.h5 file has been overwritten.

You can copy just one single node in the repacking operation and change its name in destination:

$ ptrepack tutorial1.h5:/detector/readout reduced.h5:/rawdata
$ ptdump reduced.h5
Filename: 'reduced.h5' Title: '' , Last modif.: 'Fri Feb 20 15:52:22 2004',
 rootUEP='/', filters=Filters(), Format version: 1.2
/ (Group) ''
/rawdata (Table(10L,)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

where the /detector/readout has been copied to /rawdata in destination.

We can change the filter properties as well:

$ ptrepack --complevel=1 tutorial1.h5:/detector/readout reduced.h5:/rawdata
Problems doing the copy from 'tutorial1.h5:/detector/readout' to
'reduced.h5:/rawdata'
The error was --> exceptions.ValueError: The destination
 (/rawdata (Table(10L,)) 'Readout example') already exists.
 Assert the overwrite parameter if you really want to overwrite it.
The destination file looks like:
Filename: 'reduced.h5' Title: ''; Last modif.: 'Fri Feb 20 15:52:22 2004';
 rootUEP='/'; filters=Filters(), Format version: 1.2
/ (Group) ''
/rawdata (Table(10L,)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

Traceback (most recent call last):
 File "../utils/ptrepack", line 358, in ?
 start=start, stop=stop, step=step)
 File "../utils/ptrepack", line 111, in copyLeaf
 raise RuntimeError, "Please, check that the node names are not
 duplicated in destination, and if so, add the --overwrite-nodes flag
 if desired."
RuntimeError: Please, check that the node names are not duplicated in
 destination, and if so, add the --overwrite-nodes flag if desired.

ooops!. We ran into problems: we forgot that /rawdata pathname already existed in destination file. Let's add the
--overwrite-nodes, as the verbose error suggested:

$ ptrepack --overwrite-nodes --complevel=1 tutorial1.h5:/detector/readout
reduced.h5:/rawdata
$ ptdump reduced.h5
Filename: 'reduced.h5' Title: ''; Last modif.: 'Fri Feb 20 16:02:20 2004';
 rootUEP='/'; filters=Filters(), Format version: 1.2

Utilities

152

/ (Group) ''
/rawdata (Table(10L,), shuffle, zlib(1)) 'Readout example'
/columns (Group) ''
/columns/name (Array(3,)) 'Name column selection'
/columns/pressure (Array(3,)) 'Pressure column selection'

you can check how the filter properties has been changed for the /rawdata table. Check as the other nodes still exists.

Finally, let's copy a slice of the readout table in origin to destination, under a new group called /slices and with
the name, for example, aslice:

 $ ptrepack -R1,8,3 tutorial1.h5:/detector/readout
 reduced.h5:/slices/aslice $ ptdump reduced.h5 Filename: 'reduced.h5'
 Title: ''; Last modif.: 'Fri Feb 20 16:17:13 2004'; rootUEP='/';
 filters=Filters(); Format version: 1.2 / (Group) '' /rawdata
 (Table(10L,), shuffle, zlib(1)) 'Readout example' /columns (Group)
 ''
 /columns/name (Array(3,)) 'Name column selection' /columns/pressure
 (Array(3,)) 'Pressure column selection' /slices (Group) ''
 /slices/aslice (Table(3L,)) 'Readout example'

note how only 3 rows of the original readout table has been copied to the new aslice destination. Note as well
how the previously inexistent slices group has been created in the same operation.

C.3. nctoh5
This tool is able to convert a file in NetCDF [http://www.unidata.ucar.edu/packages/netcdf/] format to a PyTables
file (and hence, to a HDF5 file). However, for this to work, you will need the NetCDF interface for Python that comes
with the excellent Scientific Python (see [16]) package. This script was initially contributed by Jeff Whitaker.
It has been updated to support selectable filters from the command line and some other small improvements.

If you want other file formats to be converted to PyTables, have a look at the SciPy (see [17]) project (subpack-
age io), and look for different methods to import them into NumPy/Numeric/numarray objects. Following the
SciPy documentation, you can read, among other formats, ASCII files (read_array), binary files in C or Fortran
(fopen) and MATLAB (version 4, 5 or 6) files (loadmat). Once you have the content of your files as NumPy/Nu-
meric/numarray objects, you can save them as regular (E)Arrays in PyTables files. Remember, if you end
with a nice conversor, do not forget to contribute it back to the community. Thanks!

C.3.1. Usage

For instructions on how to use it, just pass the -h flag to the command:

$ nctoh5 -h

to see the message usage:

usage: nctoh5 [-h] [-v] [-o] [--complevel=(0-9)] [--complib=lib]
 [--shuffle=(0|1)] [--fletcher32=(0|1)] [--unpackshort=(0|1)]
 [--quantize=(0|1)] netcdffilename hdf5filename
 -h -- Print usage message.
 -v -- Show more information.
 -o -- Overwite destination file.
 --complevel=(0-9) -- Set a compression level (0 for no compression, which
 is the default).

http://www.unidata.ucar.edu/packages/netcdf/
http://www.unidata.ucar.edu/packages/netcdf/

Utilities

153

 --complib=lib -- Set the compression library to be used during the copy.
 lib can be set to "zlib", "lzo", "ucl" or "bzip2". Defaults to "zlib".
 --shuffle=(0|1) -- Activate or not the shuffling filter (default is active
 if complevel>0).
 --fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not
 active by default).
 --unpackshort=(0|1) -- unpack short integer variables to float variables
 using scale_factor and add_offset netCDF variable attributes
 (not active by default).
 --quantize=(0|1) -- quantize data to improve compression using
 least_significant_digit netCDF variable attribute (not active by
 default).
 See http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
 for further explanation of what this attribute means.

If you have followed the small tutorial on the ptrepack utility (see C.2), you should easily realize what most of
the different flags would mean.

154

Appendix D. PyTables File Format
PyTables has a powerful capability to deal with native HDF5 files created with another tools. However, there are
situations were you may want to create truly native PyTables files with those tools while retaining fully compatibility
with PyTables format. That is perfectly possible, and in this appendix is presented the format that you should endow
to your own-generated files in order to get a fully PyTables compatible file.

We are going to describe the 1.6 version of PyTables file format (introduced in PyTables version 1.3). At this
stage, this file format is considered stable enough to do not introduce significant changes during a reasonable amount of
time. As time goes by, some changes will be introduced (and documented here) in order to cope with new necessities.
However, the changes will be carefully pondered so as to ensure backward compatibility whenever is possible.

A PyTables file is composed with arbitrarily large amounts of HDF5 groups (Groups in PyTables naming
scheme) and datasets (Leaves in PyTables naming scheme). For groups, the only requirements are that they must
have some system attributes available. By convention, system attributes in PyTables are written in upper case, and
user attributes in lower case but this is not enforced by the software. In the case of datasets, besides the mandatory
system attributes, some conditions are further needed in their storage layout, as well as in the datatypes used in there,
as we will see shortly.

As a final remark, you can use any filter as you want to create a PyTables file, provided that the filter is a standard one
in HDF5, like zlib, shuffle or szip (although the last one can not be used from within PyTables to create a new file,
datasets compressed with szip can be read, because it is the HDF5 library which do the decompression transparently).

D.1. Mandatory attributes for a File
The File object is, in fact, an special HDF5 group structure that is root for the rest of the objects on the object tree.
The next attributes are mandatory for the HDF5 root group structure in PyTables files:

CLASS
This attribute should always be set to 'GROUP' for group structures.

PYTABLES_FORMAT_ VERSION
It represents the internal format version, and currently should be set to the '1.6' string.

TITLE
A string where the user can put some description on what is this group used for.

VERSION
Should contains the string '1.0'.

D.2. Mandatory attributes for a Group
The next attributes are mandatory for group structures:

CLASS
This attribute should always be set to 'GROUP' for group structures.

TITLE
A string where the user can put some description on what is this group used for.

VERSION
Should contains the string '1.0'.

PyTables File Format

155

D.3. Mandatory attributes, storage layout and support-
ed data types for Leaves
This depends on the kind of Leaf. The format for each type follows.

D.3.1. Table format

Mandatory attributes

The next attributes are mandatory for table structures:

CLASS
Must be set to 'TABLE'.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should contain the string '2.6'.

FLAVOR
This is meant to provide the information about the kind of object kept in the Table, i.e. when the dataset is read,
it will be converted to the indicated flavor. It can take one the next string values:

"numarray"
The read operations will return a numarray object.

"numpy"
The read operations will be return as a NumPy object.

FIELD_X_NAME
It contains the names of the different fields. The X means the number of the field, zero-based (beware, order do
matter). You should add as many attributes of this kind as fields you have in your records.

FIELD_X_FILL
It contains the default values of the different fields. All the datatypes are suported natively, except for complex
types that are currently serialized using Pickle. The X means the number of the field, zero-based (beware, order
do matter). You should add as many attributes of this kind as fields you have in your records. These fields are
meant for saving the default values persistently and their existence is optional.

NROWS
This should contain the number of compound data type entries in the dataset. It must be an int data type.

Storage Layout

A Table has a dataspace with a 1-dimensional chunked layout.

Datatypes supported

The datatype of the elements (rows) of Table must be the H5T_COMPOUND compound data type, and each of these
compound components must be built with only the next HDF5 data types classes:

H5T_BITFIELD
This class is used to represent the Bool type. Such a type must be build using a H5T_NATIVE_B8 datatype,
followed by a HDF5 H5Tset_precision call to set its precision to be just 1 bit.

PyTables File Format

156

H5T_INTEGER
This includes the next data types:

H5T_NATIVE_SCHAR
This represents a signed char C type, but it is effectively used to represent an Int8 type.

H5T_NATIVE_UCHAR
This represents an unsigned char C type, but it is effectively used to represent an UInt8 type.

H5T_NATIVE_SHORT
This represents a short C type, and it is effectively used to represent an Int16 type.

H5T_NATIVE_USHORT
This represents an unsigned short C type, and it is effectively used to represent an UInt16 type.

H5T_NATIVE_INT
This represents an int C type, and it is effectively used to represent an Int32 type.

H5T_NATIVE_UINT
This represents an unsigned int C type, and it is effectively used to represent an UInt32 type.

H5T_NATIVE_LONG
This represents a long C type, and it is effectively used to represent an Int32 or an Int64, depending on
whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_ULONG
This represents an unsigned long C type, and it is effectively used to represent an UInt32 or an UInt64,
depending on whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_LLONG
This represents a long long C type (__int64, if you are using a Windows system) and it is effectively used
to represent an Int64 type.

H5T_NATIVE_ULLONG
This represents an unsigned long long C type (beware: this type does not have a correspondence on Windows
systems) and it is effectively used to represent an UInt64 type.

H5T_FLOAT
This includes the next datatypes:

H5T_NATIVE_FLOAT
This represents a float C type and it is effectively used to represent an Float32 type.

H5T_NATIVE_DOUBLE
This represents a double C type and it is effectively used to represent an Float64 type.

H5T_TIME
This includes the next datatypes:

H5T_UNIX_D32BE
This represents a POSIX time_t C type and it is effectively used to represent a 'Time32' aliasing type,
which corresponds to an Int32 type.

H5T_UNIX_D64BE
This represents a POSIX struct timeval C type and it is effectively used to represent a 'Time64' aliasing
type, which corresponds to a Float64 type.

PyTables File Format

157

H5T_STRING
The datatype used to describe strings in PyTables is H5T_C_S1 (i.e. a string C type) followed with a call to the
HDF5 H5Tset_size() function to set their length.

H5T_ARRAY
This allows the construction of homogeneous, multidimensional arrays, so that you can include such objects in
compound records. The types supported as elements of H5T_ARRAY data types are the ones described above.
Currently, PyTables does not support nested H5T_ARRAY types.

H5T_COMPOUND
This allows the support of complex numbers. Its format is described below:

The H5T_COMPOUND type class contains two members. Both members must have the H5T_FLOAT atom-
ic datatype class. The name of the first member should be "r" and represents the real part. The name of
the second member should be "i" and represents the imaginary part. The precision property of both of the
H5T_FLOAT members must be either 32 significant bits (e.g. H5T_NATIVE_FLOAT) or 64 significant bits (e.g.
H5T_NATIVE_DOUBLE). They represent Complex32 and Complex64 types respectively.

Currently, PyTables does not support nested H5T_COMPOUND types, the only exception being supporting com-
plex numbers in Table objects as described above.

D.3.2. Array format

Mandatory attributes

The next attributes are mandatory for array structures:

CLASS
Must be set to 'ARRAY'.

FLAVOR
This is meant to provide the information about the kind of object kept in the Array, i.e. when the dataset is read,
it will be converted to the indicated flavor. It can take one the next string values:

"numarray"
The read operations will return a numarray object.

"numpy"
The read operations will return a NumPy object.

"numeric"
The read operations will return a Numeric object.

"python"
The read operations will return a Python list object in case the dataset has dimensionality. If the dataset is
an scalar, then an appropriate Python scalar will be returned instead.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should contain the string '2.3'.

Storage Layout

An Array has a dataspace with a N-dimensional contiguous layout (if you prefer a chunked layout see EArray
below).

PyTables File Format

158

Datatypes supported

The elements of Array must have either HDF5 atomic data types or a compound data type representing a com-
plex number. The atomic data types can currently be one of the next HDF5 data type classes: H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported for reading existing Ar-
ray objects, but not for creating them. See the Table format description in Section D.3.1 for more info about these
types.

In addition to the HDF5 atomic data types, the Array format supports complex numbers with the H5T_COMPOUND
data type class. See the Table format description in Section D.3.1 for more info about this special type.

You should note that H5T_ARRAY class datatypes are not allowed in Array objects.

D.3.3. CArray format

Mandatory attributes

The next attributes are mandatory for carray structures:

CLASS
Must be set to 'CARRAY'.

FLAVOR
This is meant to provide the information about the kind of objects kept in the CArray, i.e. when the dataset is
read, it will be converted to the indicated flavor. It can take the same values as the Array object.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should contain the string '1.0'.

Storage Layout

An CArray has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of CArray must have either HDF5 atomic data types or a compound data type representing a com-
plex number. The atomic data types can currently be one of the next HDF5 data type classes: H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported for reading existing CAr-
ray objects, but not for creating them. See the Table format description in Section D.3.1 for more info about these
types.

In addition to the HDF5 atomic data types, the CArray format supports complex numbers with the H5T_COMPOUND
data type class. See the Table format description in Section D.3.1 for more info about this special type.

You should note that H5T_ARRAY class datatypes are not allowed in Array objects.

D.3.4. EArray format

Mandatory attributes

The next attributes are mandatory for earray structures:

PyTables File Format

159

CLASS
Must be set to 'EARRAY'.

EXTDIM
(Integer) Must be set to the extensible dimension. Only one extensible dimension is supported right now.

FLAVOR
This is meant to provide the information about the kind of objects kept in the EArray, i.e. when the dataset is
read, it will be converted to the indicated flavor. It can take the same values as the Array object (see D.3.2),
except "Int" and "Float".

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should contain the string '1.3'.

Storage Layout

An EArray has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of EArray are allowed to have the same data types as for the elements in the Array format. They
can be one of the HDF5 atomic data type classes: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT, H5T_TIME or
H5T_STRING, see the Table format description in Section D.3.1 for more info about these types. They can also be
a H5T_COMPOUND datatype representing a complex number, see the Table format description in Section D.3.1.

You should note that H5T_ARRAY class data types are not allowed in EArray objects.

D.3.5. VLArray format

Mandatory attributes

The next attributes are mandatory for vlarray structures:

CLASS
Must be set to 'VLARRAY'.

FLAVOR
This is meant to provide the information about the kind of objects kept in the VLArray, i.e. when the dataset is
read, it will be converted to the indicated flavor. It can take one of the next values:

"numarray"
The dataset will be returned as a numarray object.

"numpy"
The dataset will be returned as a NumPy object.

"numeric"
The dataset will be returned as an Numeric object.

"python"
The dataset will be returned as a Python List object in case the dataset has dimensionality. If the dataset is
an scalar, then an appropriate Python scalar will be returned instead.

PyTables File Format

160

"Object"
The elements in the dataset will be interpreted as pickled (i.e. serialized objects through the use of the Pickle
Python module) objects and returned as Python generic objects. Only one of such objects will be deserialized
per entry. As the Pickle module is not normally available in other languages, this flavor won't be useful
in general.

"VLString"
The elements in the dataset will be returned as Python String objects of any length, with the twist that
Unicode strings are supported as well (provided you use the UTF-8 codification, see below). However, only
one of such objects will be deserialized per entry.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should contain the string '1.2'.

Storage Layout

An VLArray has a dataspace with a 1-dimensional chunked layout.

Data types supported

The data type of the elements (rows) of VLArray objects must be the H5T_VLEN variable-length (or VL for short)
datatype, and the base datatype specified for the VL datatype can be of any atomic HDF5 datatype that is listed in the
Table format description D.3.1. That includes the classes:

• H5T_BITFIELD

• H5T_INTEGER

• H5T_FLOAT

• H5T_TIME

• H5T_STRING

• H5T_ARRAY

They can also be a H5T_COMPOUND data type representing a complex number, see the Table format description
in Section D.3.1 for a detailed description.

You should note that this does not include another VL datatype, or a compound datatype that does not fit the description
of a complex number. Note as well that, for Object and VLString special flavors, the base for the VL datatype
is always a H5T_NATIVE_UCHAR. That means that the complete row entry in the dataset has to be used in order
to fully serialize the object or the variable length string.

In addition, if you plan to use a VLString flavor for your text data and you are using ascii-7 (7 bits ASCII) codification
for your strings, but you don't know (or just don't want) to convert it to the required UTF-8 codification, you should
not worry too much about that because the ASCII characters with values in the range [0x00, 0x7f] are directly mapped
to Unicode characters in the range [U+0000, U+007F] and the UTF-8 encoding has the useful property that an UTF-8
encoded ascii-7 string is indistinguishable from a traditional ascii-7 string. So, you will not need any further conversion
in order to save your ascii-7 strings and have an VLString flavor.

161

Bibliography
[1] NCSA. What is HDF5?. Concise description about HDF5 capabilities and its differences from earlier versions

(HDF4). http://hdf.ncsa.uiuc.edu/whatishdf5.html .

[2] Anders Henja and Daniel B Michelson. A High Level Interface to the {HDF5} File Format. HL-HDF is a high
level interface to the Hierarchical Data Format, version 5. HL-HDF also contains an interface to the Python
programming language, called PyHL. ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/contrib/hl-hdf5/README.html .

[3] NCSA. Introduction to {HDF5}. Introduction to the HDF5 data model and programming model. http://
hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html .

[4] NCSA. The HDF5 table programming model. Examples on using HDF5 tables with the C API. http://
hdf.ncsa.uiuc.edu/HDF5/hdf5_hl/doc/RM_hdf5tb_ex.html .

[5] JeanLoup Gailly and Mark Adler. zlib. {A Massively Spiffy Yet Delicately Unobtrusive Compression Library}. A
standard library for compression purposes. http://www.gzip.org/zlib/ .

[6] David Mertz. Objectify. {On the 'Pythonic' treatment of XML documents as objects(II)}. Article describing XML
Objectify, a Python module that allows working with XML documents as Python objects. Some of the ideas
presented here are used in PyTables. http://www-106.ibm.com/developerworks/xml/library/xml-matters2/
index.html .

[7] Greg Ewing. Pyrex. {A Language for Writing Python Extension Modules}. http://www.cosc.canterbury.ac.nz/
~greg/python/Pyrex .

[8] Glenn Davis, Russ Rew, Steve Emmerson, John Caron, and Harvey Davies. NetCDF. {Network Common Data
Form}. An interface for array-oriented data access and a library that provides an implementation of the inter-
face. http://www.unidata.ucar.edu/packages/netcdf/ .

[9] Russ Rew, Mike Folk, and et al. NetCDF-4. {Network Common Data Form version 4}. Merging the NetCDF and
HDF5 Libraries. http://www.unidata.ucar.edu/software/netcdf/netcdf-4/ .

[10] Travis Oliphant and et al. NumPy. {Scientific Computing with Numerical Python}. The latest and most powerful
re-implementation of Numeric to date. It implements all the features that can be found in Numeric and nu-
marray, plus a bunch of new others. In general, is more efficient as well. http://numeric.scipy.org/ .

[11] David Ascher, Paul F Dubois, Konrad Hinsen, Jim Hugunin, and Travis Oliphant. Numerical Python. Package to
speed-up arithmetic operations on arrays of numbers. http://sourceforge.net/projects/numpy/ .

[12] Perry Greenfield, Todd Miller, Richard L White, J. C. Hsu, Paul Barrett, Jochen K#pper, and Peter J Verveer.
Numarray. Reimplementation of Numeric which adds the ability to efficiently manipulate large numeric
arrays in ways similar to Matlab and IDL. Among others, Numarray provides the record array extension.
http://stsdas.stsci.edu/numarray/ .

[13] Markus F Oberhumer. LZO. A data compression library which is suitable for data de-/compression in real-time.
It offers pretty fast compression and extremly fast decompression with reasonable compression ratio. http:/
/www.oberhumer.com/opensource/ .

[14] Julian Seward. bzip2. A high performance lossless compressor. It offers very high compression ratios within
reasonable times. http://www.bzip.org/ .

[15] Armin Rigo. Psyco. A Python specializing compiler. Run existing Python software faster, with no change in your
source. http://psyco.sourceforge.net .

http://hdf.ncsa.uiuc.edu/whatishdf5.html
ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/contrib/hl-hdf5/README.html
http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html
http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html
http://hdf.ncsa.uiuc.edu/HDF5/hdf5_hl/doc/RM_hdf5tb_ex.html
http://hdf.ncsa.uiuc.edu/HDF5/hdf5_hl/doc/RM_hdf5tb_ex.html
http://www.gzip.org/zlib/
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.unidata.ucar.edu/packages/netcdf/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://numeric.scipy.org/
http://sourceforge.net/projects/numpy/
http://stsdas.stsci.edu/numarray/
http://www.oberhumer.com/opensource/
http://www.oberhumer.com/opensource/
http://www.bzip.org/
http://psyco.sourceforge.net

Bibliography

162

[16] Konrad Hinsen. Scientific Python. Collection of Python modules useful for scientific computing. http://
starship.python.net/~hinsen/ScientificPython/ .

[17] Eric Jones, Travis Oliphant, Pearu Peterson, and et al. SciPy. {Scientific tools for Python}. SciPy supplements
the popular Numeric module, gathering a variety of high level science and engineering modules together as
a single package. http://www.scipy.org .

[18] Francesc Altet and Ivan Vilata. Optimization of file openings in PyTables. This document explores the savings
of the opening process in terms of both CPU time and memory, due to the adoption of a LRU cache for the
nodes in the object tree. http://pytables.sourceforge.net/doc/NewObjectTreeCache.pdf .

[19] Coop. V. Cárabos. ViTables. {A GUI for PyTables/HDF5 files}. It is a graphical tool for browsing and editing
files in both PyTables and HDF5, formats. http://www.carabos.com/products/vitables.html .

[20] Alexis Wilke, Jerry S., Kees Zeelenberg, and Mathias Michaelis. GnuWin32. {GNU (and other) tools ported
to Win32}. GnuWin32 provides native Win32-versions of GNU tools, or tools with a similar open source
licence. http://gnuwin32.sourceforge.net/ .

http://starship.python.net/~hinsen/ScientificPython/
http://starship.python.net/~hinsen/ScientificPython/
http://www.scipy.org
http://pytables.sourceforge.net/doc/NewObjectTreeCache.pdf
http://www.carabos.com/products/vitables.html
http://gnuwin32.sourceforge.net/

	PyTables User's Guide
	Table of Contents
	Part I. The PyTables Core Library
	Chapter 1. Introduction
	1.1. Main Features
	1.2. The Object Tree

	Chapter 2. Installation
	2.1. Installation from source
	2.1.1. Prerequisites
	2.1.2. PyTables package installation

	2.2. Binary installation (Windows)
	2.2.1. Windows prerequisites
	2.2.2. PyTables package installation

	Chapter 3. Tutorials
	3.1. Getting started
	3.1.1. Importing tables objects
	3.1.2. Declaring a Column Descriptor
	3.1.3. Creating a PyTables file from scratch
	3.1.4. Creating a new group
	3.1.5. Creating a new table
	3.1.6. Reading (and selecting) data in a table
	3.1.7. Creating new array objects
	3.1.8. Closing the file and looking at its content

	3.2. Browsing the object tree
	3.2.1. Traversing the object tree
	3.2.2. Setting and getting user attributes
	3.2.3. Getting object metadata
	3.2.4. Reading data from Array objects

	3.3. Commiting data to tables and arrays
	3.3.1. Appending data to an existing table
	3.3.2. Modifying data in tables
	3.3.3. Modifying data in arrays
	3.3.4. And finally... how to delete rows from a table

	3.4. Multidimensional table cells and automatic sanity checks
	3.4.1. Shape checking
	3.4.2. Field name checking
	3.4.3. Data type checking

	3.5. Exercising the Undo/Redo feature
	3.5.1. A basic example
	3.5.2. A more complete example

	3.6. Using enumerated types
	3.6.1. Enumerated columns
	3.6.2. Enumerated arrays

	3.7. Dealing with nested structures in tables
	3.7.1. Nested table creation
	3.7.2. Reading nested tables: introducing NestedRecArray objects
	3.7.3. Using Cols accessor
	3.7.4. Accessing meta-information of nested tables

	3.8. Other examples in PyTables distribution

	Chapter 4. Library Reference
	4.1. tables variables and functions
	4.1.1. Global variables
	4.1.2. Global functions
	copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)
	isHDF5File(filename)
	isPyTablesFile(filename)
	openFile(filename, mode='r', title='', trMap={}, rootUEP="/", filters=None)
	whichLibVersion(name)

	4.2. The File class
	4.2.1. File instance variables
	4.2.2. File methods
	createGroup(where, name, title='', filters=None, createparents=False)
	createTable(where, name, description, title='', filters=None, expectedrows=10000, createparents=False)
	createArray(where, name, object, title='', createparents=False)
	createCArray(where, name, shape, atom, title='', filters=None, createparents=False)
	createEArray(where, name, atom, title='', filters=None, expectedrows=1000, createparents=False)
	createVLArray(where, name, atom=None, title='', filters=None, expectedsizeinMB=1.0, createparents=False)
	getNode(where, name=None, classname=None)
	isVisibleNode(path)
	getNodeAttr(where, attrname, name=None)
	setNodeAttr(where, attrname, attrvalue, name=None)
	delNodeAttr(where, attrname, name=None)
	copyNodeAttrs(where, dstnode, name=None)
	iterNodes(where, classname=None)
	listNodes(where, classname=None)
	removeNode(where, name=None, recursive=False)
	copyNode(where, newparent=None, newname=None, name=None, overwrite=False, recursive=False, createparents=False, **kwargs)
	renameNode(where, newname, name=None)
	moveNode(where, newparent=None, newname=None, name=None, overwrite=False, createparents=False)
	walkGroups(where='/')
	walkNodes(where="/", classname="")
	copyChildren(srcgroup, dstgroup, overwrite=False, recursive=False, createparents=False, **kwargs)
	copyFile(dstfilename, overwrite=False, **kwargs)
	flush()
	close()
	isUndoEnabled()
	enableUndo(filters=Filters(complevel=1))
	disableUndo()
	mark(name=None)
	getCurrentMark()
	undo(mark=None)
	redo(mark=None)
	goto(mark)

	4.2.3. File special methods
	__contains__(path)
	__iter__()
	__str__()
	__repr__()

	4.3. The Node class
	4.3.1. Node instance variables
	Location dependent
	Location independent
	Attribute shorthands

	4.3.2. Node methods
	Hierarchy manipulation
	_f_close()
	_f_isOpen()
	_f_remove(recursive=False)
	_f_rename(newname)
	_f_move(newparent=None, newname=None, overwrite=False, createparents=False)
	_f_copy(newparent=None, newname=None, overwrite=False, recursive=False, createparents=False, **kwargs)
	_f_isVisible()

	Attribute handling
	_f_getAttr(name)
	_f_setAttr(name, value)
	_f_delAttr(name)

	4.4. The Group class
	4.4.1. Group instance variables
	4.4.2. Group methods
	_f_getChild(childname)
	_f_copy(newparent, newname, overwrite=False, recursive=False, createparents=False, **kwargs)
	_f_iterNodes(classname=None)
	_f_listNodes(classname=None)
	_f_walkGroups()
	_f_walkNodes(classname=None, recursive=True)
	_f_close()
	_f_copyChildren(dstgroup, overwrite=False, recursive=False, createparents=False, **kwargs)

	4.4.3. Group special methods
	__setattr__(name, value)
	__getattr__(name)
	__delattr__(name)
	__contains__(name)
	__iter__()
	__str__()
	__repr__()

	4.5. The Leaf class
	4.5.1. Leaf instance variables
	4.5.2. Leaf methods
	flush()
	_f_close(flush=True)
	close(flush=True)
	isOpen()
	remove()
	copy(newparent, newname, overwrite=False, createparents=False, **kwargs)
	rename(newname)
	move(newparent=None, newname=None, overwrite=False, createparents=False)
	_f_isVisible()
	getAttr(name)
	setAttr(name, value)
	delAttr(name)

	4.6. The Table class
	4.6.1. Table instance variables
	4.6.2. Table methods
	getEnum(colname)
	append(rows)
	col(name)
	iterrows(start=None, stop=None, step=1)
	itersequence(sequence, sort=True)
	read(start=None, stop=None, step=1, field=None, flavor=None)
	readCoordinates(coords, field=None, flavor=None)
	modifyRows(start=None, stop=None, step=1, rows=None)
	modifyColumn(start=None, stop=None, step=1, column=None, colname=None)
	modifyColumns(start=None, stop=None, step=1, columns=None, names=None)
	removeRows(start, stop=None)
	removeIndex(index)
	flushRowsToIndex()
	reIndex()
	reIndexDirty()
	where(condition, start=None, stop=None, step=None)
	whereAppend(dstTable, condition, start=None, stop=None, step=None)
	getWhereList(condition, flavor=None)

	4.6.3. Table special methods
	__iter__()
	__getitem__(key)
	__setitem__(key, value)

	4.6.4. The Row class
	Row attributes
	Row methods
	append()
	update()

	4.7. The Cols class
	4.7.1. Cols instance variables
	4.7.2. Cols methods
	_f_col(colname)
	__getitem__(key)
	__setitem__(key)

	4.8. The Description class
	4.8.1. Description instance variables
	4.8.2. Description methods
	_f_walk(type='All')

	4.9. The Column class
	4.9.1. Column instance variables
	4.9.2. Column methods
	createIndex()
	reIndex()
	reIndexDirty()
	removeIndex()

	4.9.3. Column special methods
	__getitem__(key)
	__setitem__(key, value)

	4.10. The Array class
	4.10.1. Array instance variables
	4.10.2. Array methods
	getEnum()
	iterrows(start=None, stop=None, step=1)
	read(start=None, stop=None, step=1)

	4.10.3. Array special methods
	__iter__()
	__getitem__(key)
	__setitem__(key, value)

	4.11. The CArray class
	4.11.1. CArray instance variables
	4.11.2. Example of use

	4.12. The EArray class
	4.12.1. EArray instance variables
	4.12.2. EArray methods
	getEnum()
	append(sequence)

	4.13. The VLArray class
	4.13.1. VLArray instance variables
	4.13.2. VLArray methods
	getEnum()
	append(sequence, *objects)
	iterrows(start=None, stop=None, step=1)
	read(start=None, stop=None, step=1)

	4.13.3. VLArray special methods
	__iter__()
	__getitem__(key)
	__setitem__(keys, value)

	4.14. The UnImplemented class
	4.15. The AttributeSet class
	4.15.1. AttributeSet instance variables
	4.15.2. AttributeSet methods
	_f_copy(where)
	_f_list(attrset="user")
	_f_rename(oldattrname, newattrname)

	4.16. Declarative classes
	4.16.1. The IsDescription class
	IsDescription special attributes

	4.16.2. The Col class and its descendants
	Col instance attributes
	Col methods
	Col constructors
	Col(dtype="Float64", shape=1, dflt=None, pos=None, indexed=0)
	StringCol(length=None, dflt=None, shape=1, pos=None, indexed=0)
	BoolCol(dflt=0, shape=1, pos=None, indexed=0)
	IntCol(dflt=0, shape=1, itemsize=4, sign=1, pos=None, indexed=0)
	Int8Col(dflt=0, shape=1, pos=None, indexed=0)
	UInt8Col(dflt=0, shape=1, pos=None,indexed=0)
	Int16Col(dflt=0, shape=1, pos=None, indexed=0)
	UInt16Col(dflt=0, shape=1, pos=None, indexed=0)
	Int32Col(dflt=0, shape=1, pos=None, indexed=0)
	UInt32Col(dflt=0, shape=1, pos=None, indexed=0)
	Int64Col(dflt=0, shape=1, pos=None, indexed=0)
	UInt64Col(dflt=0, shape=1, pos=None, indexed=0)

	FloatCol(dflt=0.0, shape=1, itemsize=8, pos=None, indexed=0)
	Float32Col(dflt=0.0, shape=1, pos=None, indexed=0)
	Float64Col(dflt=0.0, shape=1, pos=None, indexed=0)

	ComplexCol(dflt=0.+0.j, shape=1, itemsize=16, pos=None)
	Complex32Col(dflt=0.+0.j, shape=1, pos=None)
	Complex64Col(dflt=0+0.j, shape=1, pos=None)

	TimeCol(dflt=0, shape=1, itemsize=8, pos=None, indexed=0)
	Time32Col(dflt=0, shape=1, pos=None, indexed=0)
	Time64Col(dflt=0.0, shape=1, pos=None, indexed=0)

	EnumCol(enum, dflt, dtype='UInt32', shape=1, pos=None, indexed=False)

	4.16.3. The Atom class and its descendants.
	Atom instance variables
	Atom methods
	atomsize()

	Atom constructors
	Atom(dtype="Float64", shape=1, flavor="numarray")
	dtype
	shape
	flavor

	StringAtom(shape=1, length=None, flavor="numarray")
	BoolAtom(shape=1, flavor="numarray")
	IntAtom(shape=1, itemsize=4, sign=1, flavor="numarray")
	Int8Atom(shape=1, flavor="numarray")
	UInt8Atom(shape=1, flavor="numarray")
	Int16Atom(shape=1, flavor="numarray")
	UInt16Atom(shape=1, flavor="numarray")
	Int32Atom(shape=1, flavor="numarray")
	UInt32Atom(shape=1, flavor="numarray")
	Int64Atom(shape=1, flavor="numarray")
	UInt64Atom(shape=1, flavor="numarray")

	FloatAtom(shape=1, itemsize=8, flavor="numarray")
	Float32Atom(shape=1, flavor="numarray")
	Float64Atom(shape=1, flavor="numarray")

	ComplexAtom(shape=1, itemsize=16, flavor="numarray")
	Complex32Atom(shape=1, flavor="numarray")
	Complex64Atom(shape=1, flavor="numarray")

	TimeAtom(shape=1, itemsize=8, flavor="numarray")
	Time32Atom(shape=1, flavor="numarray")
	Time64Atom(shape=1, flavor="numarray")

	EnumAtom(enum, dtype='UInt32', shape=1, flavor='numarray')
	
	ObjectAtom()
	VLStringAtom()
	

	4.17. Helper classes
	4.17.1. The Filters class
	Filters(complevel=0, complib="zlib", shuffle=1, fletcher32=0)

	4.17.2. The IndexProps class
	IndexProps(auto=1, reindex=1, filters=None)

	4.17.3. The Index class
	Index instance variables

	4.17.4. The Enum class
	Special methods
	__getitem__(name)
	__getattr__(name)
	__contains__(name)
	__call__(value, *default)
	__len__()
	__iter__()
	__eq__(other)
	__repr__()

	Chapter 5. Optimization tips
	5.1. Informing PyTables about expected number of rows in tables
	5.2. Accelerating your searches
	5.2.1. In-kernel searches
	5.2.2. Indexed searches

	5.3. Compression issues
	5.4. Shuffling (or how to make the compression process more effective)
	5.5. Using Psyco
	5.6. Getting the most from the node LRU cache
	5.7. Selecting an User Entry Point (UEP) in your tree
	5.8. Compacting your PyTables files

	Part II. Complementary modules
	Chapter 6. FileNode - simulating a filesystem with PyTables
	6.1. What is FileNode?
	6.2. Finding a FileNode node
	6.3. FileNode - simulating files inside PyTables
	6.3.1. Creating a new file node
	6.3.2. Using a file node
	6.3.3. Opening an existing file node
	6.3.4. Adding metadata to a file node

	6.4. Complementary notes
	6.5. Current limitations
	6.6. FileNode module reference
	6.6.1. Global constants
	6.6.2. Global functions
	newNode(h5file, where, name, title="", filters=None, expectedsize=1000)
	openNode(node, mode = 'r')

	6.6.3. The FileNode abstract class
	FileNode methods
	getLineSeparator()
	setLineSeparator()
	getAttrs()
	close()
	next()
	read(size=None)
	readline(size=-1)
	readlines(sizehint=-1)
	seek(offset, whence=0)
	tell()
	xreadlines()

	6.6.4. The ROFileNode class
	6.6.5. The RAFileNode class
	flush()
	truncate(size=None)
	write(string)
	writelines(sequence)

	Chapter 7. NetCDF - a PyTables NetCDF3 emulation API
	7.1. What is NetCDF?
	7.2. Using the tables.NetCDF module
	7.2.1. Creating/Opening/Closing a tables.NetCDF file
	7.2.2. Dimensions in a tables.NetCDF file
	7.2.3. Variables in a tables.NetCDF file
	7.2.4. Attributes in a tables.NetCDF file
	7.2.5. Writing data to and retrieving data from a tables.NetCDF variable
	7.2.6. Efficient compression of tables.NetCDF variables

	7.3. tables.NetCDF module reference
	7.3.1. Global constants
	7.3.2. The NetCDFFile class
	NetCDFFile methods
	close()
	sync()
	ncattrs()
	createDimension(name, length)
	createVariable(name, type, dimensions, least_significant_digit= None, expectedsize=10000, filters=None)
	nctoh5(filename, unpackshort=True, filters=None)
	h5tonc(filename, packshort=False, scale_factor=None, add_offset=None)

	7.3.3. The NetCDFVariable class
	NetCDFVariable methods
	typecode()
	append(data)
	ncattrs()
	assignValue(data)
	getValue()

	7.4. Converting between true netCDF files and tables.NetCDF files
	7.5. tables.NetCDF file structure
	7.6. Sharing data in tables.NetCDF files over the internet with OPeNDAP
	7.7. Differences between the Scientific.IO.NetCDF API and the tables.NetCDF API

	Part III. Appendixes
	Appendix A. Supported data types in PyTables
	Appendix B. Using nested record arrays
	B.1. Introduction
	B.2. NestedRecArray methods
	B.3. NestedRecord objects

	Appendix C. Utilities
	C.1. ptdump
	C.1.1. Usage
	C.1.2. A small tutorial on ptdump

	C.2. ptrepack
	C.2.1. Usage
	C.2.2. A small tutorial on ptrepack

	C.3. nctoh5
	C.3.1. Usage

	Appendix D. PyTables File Format
	D.1. Mandatory attributes for a File
	D.2. Mandatory attributes for a Group
	D.3. Mandatory attributes, storage layout and supported data types for Leaves
	D.3.1. Table format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	D.3.2. Array format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	D.3.3. CArray format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	D.3.4. EArray format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	D.3.5. VLArray format
	Mandatory attributes
	Storage Layout
	Data types supported

	Bibliography

