k|

i

PyTables User's Guide

Hierarchical datasets in Python - Release 1.4

Francesc Altet
Ivan Vilata
Scott Prater
Vicent Mas
Tom Hedley
Antonio Valentino
Jeffrey Whitaker

PyTables User's Guide: Hierarchical datasets in Python - Release 1.4
by Francesc Altet, Ivan Vilata, Scott Prater, Vicent Mas, Tom Hedley, Antonio Valentino, and Jeffrey Whitaker

Published $L astChangedDate: 2006-12-21 10:05:30 +0100 (Thu, 21 Dec 2006) $

Copyright © 2002, 2003, 2004, 2005, 2006 Francesc AltetCérabos Coop. V.

Copyright Notice and Statement for Py Tabl es SoftwareLibrary and Utilities

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer.

2. Redistributionsin binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, ORTORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 by the Board
of Trustees of the University of Illinois. All rights reserved.

See more information about the terms of thislicenseat: ht t p: / / hdf . ncsa. ui uc. edu/ HDF5/ doc/ Copyri ght . ht m
Copyright Notice and Statement for the Irucache.py module
Copyright 2004 Evan Prodromou. Licensed under the Academic Free License 2.1.

See more information about the terms of thislicenseat: ht t p: / / opensour ce. org/ | i censes/ afl -2. 1. php

http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html
http://opensource.org/licenses/afl-2.1.php

Table of Contents

[. The PyTables Core LIDIaryoooeiiiieeiii ettt ettt et e et e e ae e 1
O [L oo (0 1o o RSP PP PPPPPT 2
L1 MAIN FEAIUNES ...ttt ettt e et e et e e e 3
1.2, THE ODJECE THEE ...ttt ettt e e e et et eeenaa s 4
A N0 = 1 = o) o IO OPPPTPRTPPPPIN 8
2.1, INStallation frOM SOUICEuiiiiii ettt ettt e et e e e e e 8
2. 1.1 PrerQQUISITESeieeei ettt ettt 8

2.1.2. PyTables package installationcccooveviiiiiiiiiiini e 10

2.2. Binary installation (WINAOWS)uieiiiuieiiii e 11
2.2.1. WindOWS PrerqUISITEScccvuneiiiiieeeeeie e 11

2.2.2. PyTables package installationcccooveiiiiiiiiiiinic e 12

I U (o) (- | TSSO TUPPPTRPPPIN 13
3L, GEING SEAMTE ... ceeeee et et 13
3.1.1. Importing tables OBJECtScoovveiiii 13

3.1.2. Declaring a Column DESCIIPLOLvceeuviieiiiiieeeei e 13

3.1.3. Creating a PyTables file from scratchc.ccoveviiiiiiiiiiiiincc, 14

3.1.4. Creating @ NEW GIOUD «....ceeeruneeeetieeeteiiaeeeeti e eeeri e eeeriaeeeerenas 14

3.1.5. Creating anew tableiiiiiiiiii e 15

3.1.6. Reading (and selecting) datain atable............ccooceviiiiiiiiiiiiiinnen, 16

3.1.7. Creating new array ODJECEScvevviieiiiiiiece e 17

3.1.8. Closing the file and looking at its contentcccceevevevineerennnnnn. 18

3.2. Browsing the ODJECE tre8uuiiiiii e 19
3.2.1. Traversing the ObJECt treeuviiieii e 19

3.2.2. Setting and getting user attributesSevveviiiiiiiiiiieei e, 21

3.2.3. Getting object metadatauueeiiiiieeiii e 23

3.2.4. Reading data from Array ODJECESuuieiiiiiiieiiiiieeeei e 25

3.3. Commiting data to tableS @Nd @rTaYSccuvuniiiii e 26
3.3.1. Appending data to an existing tableccooeeiiiiiiiiiiie 26

3.3.2. Modifying datain tablesocooviiiiiiiii 27

3.3.3. Modifying dat@ in arraysSuuveveeuiieieiiieeeei e e 29

3.3.4. And finaly... how to delete rowsfrom atable.............ccooveviieiins 30

3.4. Multidimensional table cells and automatic sanity checkscooevviviiiiiiiiiiiiiiineees 31
3.4.1. Shape CheCKINGuuiiiiiii e 33

3.4.2. Field name cheCkingoviiiiiiiiiii e 34

3.4.3. Data type CheCKIiNGcceuvuieiiiiie e 34

3.5. Exercising the Undo/Red0 fEALUIEoiiiiiiiiiiiii e 35
35.1 A DaSiC &XamMPIEcooveiii e 36

3.5.2. A more complete exampleovveiiiiiiei 38

3.6. USING ENUMETAEEA TYPESvvueiiiiii ettt ettt ettt ettt e et e e e ne e e enees 40
3.6.1. Enumerated COIUMNScoouuniiiiiii it 41

3.6.2. ENUMENELET @ITAYS .. .ceevvieeieiiieeeeii ettt 42

3.7. Dealing with nested StructuresS in tableSoiiiiiiiiii e 43
3.7.1. Nested table Creationc.uueieiiiiiieiiii e 44

3.7.2. Reading nested tables: introducing NestedRecArray objects............... 45

3.7.3. USING COlS CCESSON ... eeierieeetetiaeetetie e e et et e et e e et e e e 46

3.7.4. Accessing meta-information of nested tables...........coovviiviiiiiis 46

3.8. Other examplesin PyTables distribUtioncoooieiiiiiiiiii e 49
A, LiDrary REFEIENCE ...t ettt e e 50
4.1. tables variables and fFUNCLIONSooiiiiiiii e 50
4.1.1. Global variablesoiiiiiiiii 50

4.1.2. GlIobal TUNCLIONScieiii e 50

PyTables User's Guide

N N o= T = = P 52
4.2.1. Fileinstance variableScocvuiiiiiiiii e 52
422 File MEthOdscccuuiiiiiii e 53
4.2.3. File special methodsccoeiiiiiiiii e 61
4.3. ThE NOUE CIaSSiiiiiii e e e e e e e aens 62
4.3.1. Node instance variablesc.coveviiiiiiii i 62
4.3.2. NOde MELNOAScivvcii e 63
R N ¢ =Y € (o0 o ot P 64
4.4.1. Group instance variablescooevii i 65
4.4.2, Group MELNOAScovuiiiicii e 65
4.4.3. Group special MEthOdScveiiiiiiiiiei e 67
4.5, The LEAM ClaSS . iivuiiiiii i e e e e et e e e e e eeen 69
45.1. Leaf instance variableSooeiviiiiiiiii e 69
45.2. Leaf MEthOdScovuiiiiiiii e 69
4.6. The TahlE ClasScvvi e e e eaas 71
4.6.1. Table instance variablesccocviii i 71
4.6.2. Tahle MEthOOSccovniiiiiii e 72
4.6.3. Table special Methodsccccevviiiiiiiiie e 76
4.6.4. ThE ROW Cla55vuiiiiiiiii e e e e 78
O N =Y o £ =S 79
4.7.1. Colsinstance variableScoceuiiiiiiiiiii e 79
4.7.2. ColS MENOASuviiiiiciii e 79
4.8. The DESCIIPLON ClaSSivuiiiiiieiii e e e e e e e e e e e et e e et e e et e eaaeees 80
4.8.1. Description instance variablescoccciiiiiiiiiiiiiiii e, 80
4.8.2. Description Methodsco.vveiiiiiiiiicc e 81
4.9. The COlUMN CIaSSiiiciii e e e e e e e 81
4.9.1. Column instance variablescooevviiiiie e 81
4.9.2. Column MELNOOSuciiiiiiii e 82
4.9.3. Column special Methodsccccvieiiiiiiiii e, 82
(O N TN 4 = YA o - P 83
4.10.1. Array instance variablescccoveiiiiiii e, 84
4.10.2. Array MELNOOScvviiii e 84
4.10.3. Array special Methodscocvviiiiiiiiiiie e, 85
O N T O = YA == 86
4.11.1. CArray instance variablesccooveiiiiii e 86
4.11.2. EXaMPIE OF USE ...iviiiii e e e 86
D N o Tl A - o = P 87
4.12.1. EArray instance variableScooeviiiiiii i, 87
4.12.2. EArray MethodsScccuviiiiiiiiciie e 87
N R N o LY N 4 = YA - P 88
4.13.1. VLATrray instance variablescccoocviiiiii i 88
4.13.2. VLATTay MEthOOScovviiiiici e 88
4.13.3. VLArray special methodscccoeevuiiiiiiiiii e, 89
4.14. The Unimplemented Classc..ueiiiiiiiii i e e e 90
4.15. The AtrIDULESEL ClasScvvviii e e e 91
4.15.1. AttributeSet instance variablescccoveiii i 92
4.15.2. AttributeSet MEthodSc.vvevviiiii e 92
4.16. DECIAratiVE ClaSSES ...ivvuiiiiiiiii et 92
4.16.1. The ISDEeSCription ClaSScccuiviiiieiiii e 92
4.16.2. The Col class and its descendantsccooevviveiiiieiiiiieiiieeeinneen, 93
4.16.3. The Atom class and its descendants.ccceveviiieiiiiiiiineeinnnes 96
R o 1= o= o =S 100
4.17.1. The FIErS ClassS ...ccuviiiiiiiiiii e 100
4.17.2. The INdexXProps Classccceiiiiiiiiiiie e e 101

PyTables User's Guide

4.17.3. The INAEX ClaSSuuiiiiiii e 102
A.17.4. The ENUM ClESS ..ievviieeiiii et e e 102
SR o111 40Tz 1o TR 1] 0P 105
5.1. Informing PyTables about expected number of rowsintables...........ccc.ccoeviviiiiinnnnn, 105
5.2. ACCElerating YOUr SEAICNESciuuiiiiieiie e e e e e e e e e e e e e e e e e aanaaes 105
5.2.1. IN-Kernel SEarCheSoivvviiiiiiiii e 105
5.2.2. Indexed SEArChESuiiiiiiii i 107
5.3, COMPIESSION ISSUESevvuieiiueitiertteeeteestsesat e eetaeeet s e st e etn e eateesanaestnaeesnaesanaees 109
5.4. Shuffling (or how to make the compression process more effective)ccooeceeeennnnnns 114
5.5, USING PSYCO ..ovniiiiieii ettt e e e e e 116
5.6. Getting the most from the node LRU cacheccocooiiiiiiiii i 119
5.7. Selecting an User Entry Point (UEP) in YOUr tr€8cvvviiiie e 120
5.8. Compacting your PyTableS fil€Sccovuiiiiiiiiii e 121
[1. Complementary MOGUIESuiiiiiiiii et e e e e e e e e e e e et e et e et e e et e e st e eetn e eenaeeaes 122
6. FileNode - simulating a filesystem with PyTableScc..iiiiiiiiii e 123
B.1. WhEt 1S FIENOOE?covuiiiiiii et e e e 123
6.2. Finding a FIIENOE NOUEcovviiiiii e e e e 123
6.3. FileNode - simulating filesinside PyTablescc.oviiiiiiiiiiiii e 123
6.3.1. Creating anew filenodecccoovviiiiiiiiiin e, 124
6.3.2.UsiNg afilenodecccouviiiiiiiii e 124
6.3.3. Opening an existing file nodecccoeeiiiiiii i 125
6.3.4. Adding metadatato afilenode.........c.cccoeevviiiiiii i, 125
6.4. COMPIEMENLANY NOLESuuiiii e e e e e e e e e e e e ean s 126
6.5, CUITent lIMItAHONSuuuiiiiiie e e et e e et e e e e 126
6.6. FileNode MOdUIE rEFEIENCEiiiii e 127
6.6.1. Global CONSANES ...evvvieeeiiii e 127
6.6.2. Global FUNCLIONSuuiiiiiiiiceii e e 127
6.6.3. The FileNode abstract Classooveviviiiiiiiiiiiieii e, 127
6.6.4. The ROFIIENOIE ClaSSuviviiiiiiiiiiii e 128
6.6.5. The RAFIIENOIE ClaSSviviiiiiiiiiiii e 129
7. NetCDF - a PyTables NetCDF3 emulation APlcoovviiiiiiiiee e e e e e e e e e eeaane s 130
1Y = T NN = (O PR 130
7.2. Using the tablesINEtCDF MOCUIEuoiiiiiii e 130
7.2.1. Creating/Opening/Closing a tables.NetCDF file.............ccccecevnneenn. 130
7.2.2. Dimensions in atablesNetCDF fileococvviiiiiiiiiiiiiii e, 130
7.2.3. Variables in atablesNetCDF filecoceviviiiiiiiieiiiiieeeeeeeen, 131
7.2.4. Attributes in atablesNetCDF filecooeviiiiiiiiii e, 131
7.2.5. Writing data to and retrieving data from atables.NetCDF variable.... 132
7.2.6. Efficient compression of tables.NetCDF variables........................ 134
7.3. tables.NetCDF mMOdUIE FEfEIENCEueiiiii e 134
7.3.1. Global CONSLANES ...evvneeiiiiiee e e e e 134
7.3.2. The NEtCDFFIl€ ClaSsuuuiieeeiiiieeiiiii e 135
7.3.3. The NetCDFVariable classovveviiiiiiiiiiiiieece e, 136
7.4. Converting between true netCDF files and tablesNetCDF files.........cccccoeviviiieiincnnnnn. 137
7.5. tablES.NELCDF fil@ SLIUCLUIE ...oevveieiiii e e e e e eee 138
7.6. Sharing data in tables.NetCDF files over the internet with OPeNDAPccccceevneis 138
7.7. Differences between the Scientific.|O.NetCDF API and the tables.NetCDF APl 138
N o= o[t 140
A. Supported data typesS in PYTableScouuiiiiiiiii e 141
B. USING NESLEA FECOIT @ITAYS .vuuiiveeiii i eeie e e e et e et e e e e e e e e e e e e e e et e e et e e et e e et e e et e eaaneeeenns 143
2300 I 1 g 1 (e L1 Tox e o PP 143
B.2. NestedReCATTay MEINOOSccvuiiiiicii e e e 145
[SRCRNI=S (S0 [2o (o [o] o= ox T 146
O 11111 147

Vi

PyTables User's Guide

L35 I o) (o L1 oo T 147

L3 T U= 1= PP 147

C.1.2. A small tutorial on ptdumpccoviieiiiieiiieee e 147

LR o)1 1= o= o: QNP 149

O3 T U= o[- PP 149

C.2.2. A small tutorial on ptrepackccoveeeiiiiiiiii e, 150

L3 T o Tox (o] L PRSPPI 152

(O3 I T U= o[- PP 152

D. PyTables File FOIMELciuiiiii i et e e e et e e e e et e e et e e et e e e aneeaneees 154
D.1. Mandatory attributes for aFileccovuiiiiiiii i 154

D.2. Mandatory attributes for @ GroUPueviiniiiii e 154

D.3. Mandatory attributes, storage layout and supported data types for Leaves.................... 155

D.3.1 Table fOrmatccuuiiiiiiiiieei e e e e 155

D.3.2. Array TOrmMal ... c.ovenii e 157

D.3.3. CArray fOrmalccouiiiieiie e 158

D.3.4. EArray fOrmatccovuiiiiiiiii e 158

D.3.5. VLArray fOrmalcovuiiiiiii e 159

[1] o] oo r="o] /R 161

Vii

List of Figures

1.1. An HDF5 example with 2 subgroups, 2 tables and L ara.coeuuuieieiiiieiii e 6
1.2. A PyTables ObJECt tree @XaMPIE.coeeiiieiiii ettt e e 7
3.1. Theinitial version of the data file for tutorial 1, with aview of the data objects.ccccoeiviiiviiniernnnnn, 19
3.2. Thefinal version of the data file for tULOral L.c..uuiiiiiiiiiii e 30
3.3. Genera properties of the /detector/readout table.ccooviiiiiiiii 31
3.4. Table hierarchy fOr TULOMTEl 2.couuiieiiii et e e 35
5.1. Timesfor different selection modes over Int32 values. Benchmark made on a machine with Itanium

(1A64) @ 900 MHz processors with SCSI disk @ 10K RPM.ciiiiiiiiiiiiiieie e 106
5.2. Timesfor different selection modes over Float64 values. Benchmark made on a machine with Itanium

(1A64) @ 900 MHz processors with SCSI disk @ 10K RPM.ciiiiiiiiiiiiiieie e 107
5.3. Timesfor indexing a couple of columns of data type Int32 and Float64. Benchmark made on a machine

with Itanium (1A64) @ 900 MHz processors with SCSI disk @ 10K RPM.ccoovviiiiiiiiiiiiiiiiiecceii e, 109
5.4. Comparison between different compression liBraries.ooovuii i 110
5.5. Comparison between different compression levels of ZIiD.oooeiiiiiiii 111
5.6. Writing tables with Several COMPIESSOIS.oiiiuue ittt et eeeeens 111
5.7. Selecting values in tables with several compressors. Thefileisnotinthe OScache.ccoiveiiiiiieies 112
5.8. Selecting values in tables with several compressors. Thefileisinthe OScache.cccooeviiiiinn, 112
5.9. Writing in tables with different levels of COMPrESSION.iviiiiiiiiiii e 113
5.10. Selecting values in tables with different levels of compression. Thefileisinthe OS cache. 114
5.11. Comparison between different compression libraries with and without the shuffle filter. 115
5.12. Writing with different compression libraries with and without the shufflefilter.cccooooiii, 115
5.13. Reading with different compression libraries with the shuffle filter. The fileis not in OS cache. 116
5.14. Reading with different compression libraries with and without the shufflefilter. Thefileisin OS cache.
... 116
5.15. Writing tables With/WIthOUL PSYCO.uuuuiiiiiiii et eeeas 118
5.16. Reading tables With/WIthOUL PSYCO.iiiiiiii e 119
5.17. Complete tree in file test.h5, and subtree of interest for the user.ccoiiiii i, 121
5.18. Resulting object tree derived from the use of the rootUEP parameter.cccooiieiiiiiiiiiiiiiniecciineeeee 121

viii

List of Tables

5.1. Retrieving speed and memory consumption dependency of the number of nodesin LRU cache. 120
A.1. Datatypes supported for array elements and tables columns in PyTables.ccoovviiiiiiiiiiiniiiieeis 142

Part I. The PyTables Core Library

Chapter 1. Introduction

La sabiduria no vale la pena si no es posible servirse de €ella para inventar una nueva manera de preparar los
garbanzos.(Wisdom isn't worth anything if you can't use it to come up with a new way to cook garbanzos).
--——A wise Catalan in "Cien afios de soledad" Gabriel Garcia Marquez

The goal of PyTabl es isto enable the end user to manipulate easily data tables and array objects in a hierarchical
structure. The foundation of the underlying hierarchical data organization isthe excellent HDF5 library (see [1]).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5 API, but only
to provide aflexible, very pythonic tool to deal with (arbitrarily) large amounts of data (typically bigger than available
memory) in tables and arrays organized in a hierarchical and persistent disk storage structure.

A tableis defined as a collection of records whose values are stored in fixed-length fields. All records have the same
structure and all values in each field have the same data type. The terms fixed-length and strict data types may seem
to be a strange requirement for an interpreted language like Python, but they serve a useful function if the goal is to
savevery large quantities of data (such asis generated by many data acquisition systems, Internet services or scientific
applications, for example) in an efficient manner that reduces demand on CPU time and 1/O.

In order to emulate in Python records mapped to HDF5 C structs Py Tabl es implementsaspecia classso asto easily
define all itsfields and other properties. Py Tabl es also provides a powerful interface to mine datain tables. Records
in tables are also known in the HDF5 naming scheme as compound data types.

For example, you can define arbitrary tables in Python simply by declaring a class with name field and typesinforma-
tion, such asin the following example:

class Particle(lsDescription):

nane = StringCol (16) # 16-character String

i dnunber = I nt64Col () # Signed 64-bit integer

ADCcount = Ul nt 16Col () # Unsi gned short integer

TDCcount = Ul nt 8Col () # unsi gned byte

grid_i = I nt 32Col () # i nteger

grid_j = IntCol () # integer (equivalent to Int32Col)

cl ass Properties(lsDescription): # A sub-structure (nested data-type)
pressure = Fl oat 32Col (shape=(2,3)) # 2-D float array
('si ngl e- preci si on)
ener gy = Fl oat Col (shape=(2,3,4)) # 3-D float array
(doubl e- pr eci si on)

Y ou then passthis classto the table constructor, fill itsrowswith your values, and save (arbitrarily large) collections of
them to afilefor persistent storage. After that, the data can be retrieved and post-processed quite easily with PyTables
or even with another HDF5 application (in C, Fortran, Java or whatever language that provides a library to interface
with HDF5).

Other important entities in PyTables are the array objects that are analogous to tables with the difference that all of
their components are homogeneous. They come in different flavors, like generic (they provide a quick and fast way
to deal with for numerical arrays), enlargeable (arrays can be extended in any single dimension) and variable length
(each row in the array can have a different number of elements).

The next section describes the most interesting capabilities of Py Tabl es.

Introduction

1.1. Main Features

PyTabl es takes advantage of the object orientation and introspection capabilities offered by Pyt hon, the HDF5
powerful data management features and numar r ay flexibility and high-performance manipulation of large sets of
objects organized in grid-like fashion to provide these features:

Support for table entities: You can tailor your data adding or deleting records in your tables. A large number of
rows (up to 2**62), i.e. much more than will fit into memory is supported as well.

Multidimensional and nested tablecells: Y ou can declare acolumn to consist of general array cellsaswell asscalars,
which is the only dimensionality allowed the majority of relational databases. Y ou can even declare columns that
are made of other columns (of different types), which is known as struct types.

Indexing support for columns of tables: Very useful if you have large tables and you want to quickly look up for
valuesin columns satisfying some criteria.

Support for numerical arrays. NunPy (see [10]), Nuneri ¢ (see[11]) and numar r ay (see[12]) arrays can be
used as a useful complement of tables to store homogeneous data.

Enlargeable arrays. You can add new elements to existing arrays on disk in any dimension you want (but only
one). Besides, you can access to only a slice of your datasets by using the powerful extended slicing mechanism,
without need to load all your complete dataset in-memory.

Variable length arrays: The number of elements in these arrays can be variable from row to row. This provides a
lot of flexibility when dealing with complex data.

Supportsa hierarchical data model: Allowsthe user to clearly structure all the data. Py Tabl es builds up an object
tree in memory that replicates the underlying file data structure. Access to the file objects is achieved by walking
through and manipulating this object tree.

User defined metadata: Besides supporting system metadata (like the number of rows of a table, shape, flavor,
etc.) the user may specify its own metadata (as for example, room temperature, or protocol for IP traffic that was
collected) that complement the meaning of his actual data.

Ability to read/modify generic HDF5 files: Py Tabl es can access awide range of objectsin generic HDF5 files,
like compound type datasets (that can be mapped to Tabl e objects), homogeneous datasets (that can be mapped to
Ar r ay objects) or variable length record datasets (that can be mapped to VLAY r ay objects). Besides, if a dataset
is not supported, it will be mapped into a special Unl npl enent ed class (see Section 4.14), that will let the user
see that the data is there, although it would be unreachable (still, you will be able to access the attributes and some
metadata in the dataset). With that, Py Tabl es probably can access and modify most of the HDF5 files out there.

Data compression: Supports datacompression (using the Zlib, LZO and bzip2 compression libraries) out of the box.
This is important when you have repetitive data patterns and don't want to spend time searching for an optimized
way to store them (saving you time spent analyzing your data organization).

High performance 1/0: On modern systems storing large amounts of data, tables and array objects can be read
and written at a speed only limited by the performance of the underlying 1/0O subsystem. Moreover, if your datais
compressible, even that limit is surmountable!

Support of files bigger than 2 GB: PyTabl es automatically inherits this capability from the underlying HDF5
library (assuming your platform supports the C long long integer, or, on Windows, __int64).

Architecture-independent: PyTables has been carefully coded (as has HDF5 itself) with little-endian/big-endian
byte orderings issues in mind. So, you can write a file on a big-endian machine (like a Sparc or MIPS) and read it

Introduction

on other little-endian machine (like an Intel or Alpha) without problems. In addition, it has been tested successfully
with 64 bit platforms (Intel-64, AMD-64, PowerPC-G5, MIPS, UltraSparc) using code generated with 64 bit aware
compilers.

1.2. The Object Tree

The hierarchical model of the underlying HDF5 library allows Py Tabl es to manage tables and arrays in atree-like
structure. In order to achieve this, an object tree entity is dynamically created imitating the HDF5 structure on disk.
The HDF5 objects are read by walking through this object tree. Y ou can get a good picture of what kind of datais
kept in the object by examining the metadata nodes.

The different nodes in the object tree are instances of Py Tabl es classes. There are several types of classes, but the
most important ones are the Node, Gr oup and Leaf classes. All nodes in a Py Tabl es tree are instances of the
Node class. Gr oup and Leaf classesare descendantsof Node. Gr oup instances (referred to as groups from now on)
are agrouping structure containing instances of zero or more groups or leaves, together with supplementary metadata.
Leaf instances (referred to as leaves) are containers for actual data and can not contain further groups or leaves. The
Tabl e, Array, CArray, EArray, VLAr r ay and Unl npl enent ed classes are descendants of Leaf , and inherit
all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix filesystem,

i.e. anode (file or directory) is always a child of one and only one group (directory), its parent group ! Inside of
that group, the node is accessed by its name. Asis the case with Unix directories and files, objects in the object tree
are often referenced by giving their full (absolute) path names. In Py Tabl es thisfull path can be specified either as
string (such as' / subgr oup?2/ t abl e3' , using/ asa parent/child separator) or as a complete object path written
in aformat known as the natural name schema (such asfi | e. r oot . subgr oup2. t abl e3).

Support for natural naming is a key aspect of Py Tabl es. It means that the names of instance variables of the node

objects are the same as the names of the element's children?. Thisis very Pythonic and intuitive in many cases. Check
the tutorial Section 3.1.6 for usage examples.

Y ou should also be aware that not all the data present in afile is loaded into the object tree. Only the metadata (i.e.
special data that describes the structure of the actual data) is loaded. The actual data is not read until you request it
(by calling a method on a particular node). Using the object tree (the metadata) you can retrieve information about
the objects on disk such as table names, titles, name columns, data typesin columns, numbers of rows, or, in the case
of arrays, the shapes, typecodes, etc. of the array. Y ou can aso search through the tree for specific kinds of data then
read it and process it. In a certain sense, you can think of Py Tabl es as atool that applies the same introspection
capabilities of Python objects to large amounts of data in persistent storage.

It is worth to note that, from version 1.2 on, PyTables sports a node cache system that loads nodes on demand, and
unloads nodes that have not been used for sometime (i.e. following a Least Recent Used schema). This feature allows
opening HDF5 files with large hierarchies very quickly and with alow memory consumption, while retaining all the
powerful browsing capabilities of the previous implementation of the object tree. See [18] for more facts about the
advantages introduced by this new node cache system.

To better understand the dynamic nature of this object tree entity, let's start with asample Py Tabl es script (you can
finditinexanpl es/ obj ect tr ee. py) to create aHDF5 file:

fromtables inport *

class Particle(lsDescription):

1F’yTabl es does not support hard links — for the moment.
2 got this simple but powerful idea from the excellent Objectify module by David Mertz (see [6])

Introduction

identity = StringCol (I ength=22, dflt=" ", pos = 0) # character String
i dnumber = Int16Col (1, pos = 1) # short integer
speed = Fl oat 32Col (1, pos = 2) # single-precision

Open a file in "wWrite node

fileh = openFil e("objecttree. h5", node = "w')
CGet the HDF5 root group

root = fileh.root

Create the groups:
groupl fileh.createG oup(root, "groupl")
group2 fileh.createG oup(root, "group2")

Now, create an array in the root group
arrayl = fileh.createArray(root, "arrayl",
["this is", "a string array"], "String array")
Create 2 new tables in groupl and group2
tablel = fil eh.createTabl e(groupl, “"tablel”, Particle)
table2 = fil eh.createTabl e("/group2", "table2", Particle)
Create one nore Array in groupl
array2 = fileh.createArray("/groupl”, "array2", [1,2,3,4])

Now, fill the tables:

for table in (tablel, table2):
CGet the record object associated with the table:
row = table.row
Fill the table with 10 records

for i in xrange(10):
First, assign the values to the Particle record
row'identity'] = "'This is particle: %®2d % (i)
row 'idnumber'] =i
row 'speed'] =1 * 2.
This injects the

2
Record val ues
row. append()

Flush the table buffers
tabl e. flush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

Thissmall program createsasimple HDF5filecalled obj ect t r ee. h5 with the structure that appearsin Figure 1.13,
When the file is created, the metadata in the object tree is updated in memory while the actual data is saved to disk.
When you close the file the object tree is no longer available. However, when you reopen this file the object tree will
be reconstructed in memory from the metadata on disk, allowing you to work with it in exactly the same way aswhen
you originaly created it.

3We have used ViTables (see[19]) in order to create this snapshot.

Introduction

&' ViTables 1.0.1 — O X%
File NMode Query Windows Tools Help

@ 1 Sodl mASsK

Eftablel

Object tree
i--ﬁob_jez:ttree.h5

identity idnumber

This is particlg 0 0.0

=-[F=d group2 — -

@lil I:I . This is particle 1 2.0

) Etable2 This is particle 2 4.0 =
—--@groupl This is particle 3 6.0

This is particle 4 8.0
This is particle 5 10.0
This is particle & 12.0

-EAQuery results

nnm

This is particle 7 14.0
This is particle 8 16.0
N (m] X.
@ |1 arra g] 53

1 L @ |1
2 2 string
3 3 array
4 4

[il I T«I»]

Itmpfcopia_objecttree.hd file closed! Tl

/homefvmasivitablesfexamples/nestad1.hs file closed!

Hmp/FT_rl0OuP ha file closed! =

Opening /homedvmasivitables/examplesiobjecttree hs... =]

OK! -]
4

Figure 1.1. An HDF5 example with 2 subgroups, 2 tables and 1 array.

In Figure 1.2 you can see an exampl e of the object tree created when the above obj ect t r ee. h5 fileisread (in fact,
such an object is aways created when reading any supported generic HDF5 file). It's worthwhile to take your time to

understand it*. It will help you to avoid programming mistakes.

“4Bear in mind, however, that this diagram is not astandard UML class diagram; it is rather meant to show the connections between the Py Tabl es
objects and some of its most important attributes and methods.

Introduction

fileObject(File)

+name: string = "objecttree. h5"
+root: Group = aroupRoot Obj ect

+open(filenane: string)
+cr eat eG oup(where: G oup, nanme: string): G oup

+cr eat eTabl e(wher e: G oup, nane: string, description:|sDescription): Table
+cr eat eArray(wher e: G oup, nane: string, obj ect:array): Array
+cl ose()
groupRootObject(Group)
+_v_nane: string = root
+groupl: Group = groupObjectl
+group2: Group = groupObject?2
tarrayl: Array = arrayCbjectl -
arrayObject1(Array)
+nane: string = arrayl
+read(): Array
groupObject1(Group) groupObject2(Group)
+_v_name: string = groupl +_v_name: string = group2
+tabl el: Table = tabl eObjectl +t abl e2: Tabl e = tabl eCbj ect?2
+array2: Array = arrayQbj ect?2 |
tableObject1(Table) tableObject2(Table)

+nane: string = tablel
+row. Row = rowChjectl

+nane: string = table2
+row. Row = rowbj ect 2

Tread(); Table +read(): Table
|_‘ arrayObject2(Array)

- +nanme: _string = array2 :
rowObject1(Row) Fread(): Array rowObject2(Row)

+identity: CharType +identity: CharType
+i dnunber: Int16 ilsdggg‘.oelr s ggt 16
+speed: Fl oat 32 +aBpend()
+append() nrow()
+nr ow)

Figure 1.2. A PyTables object tree example.

Chapter 2. Installation

Make things as simple as possible, but not any simpler.
--—Albert Einstein

The Python Di st uti | s are used to build and install PyTabl es, so it is fairly simple to get the application up
and running. If you want to install the package from sources go to the next section. But if you are running Windows
and want to install precompiled binaries jump to Section 2.2). In addition, packages are available for many different
Linux distributions, for instance T2 Project [http://www.t2-project.org], RockLi nux [http://www.rocklinux.org/],
Debi an [http://www.debian.org/], or Gent oo [http://www.gentoo.org/], among others. There are also packages for
other Unices like Fr eeBSD [http://www.freshports.org/] or Mac OSX [http://www.opendarwin.org/]

2.1. Installation from source

These instructions are for both Unix/Linux and Windows systems. If you are using Windows, it is assumed that you
have a recent version of M5 Vi sual C++ (>= 6.0) compiler installed. A GCC compiler is assumed for Unix, but
other compilers should work as well.

Extensions in PyTables have been developed in Pyrex (see [7]) and C language. You can rebuild everything from
scratchif you have Pyrex installed, but thisisnot necessary, asthe Pyrex compiled sourceisincluded inthedistribution.

To compile Py Tabl es you will need arecent version of Pyt hon, the HDF5 (C flavor) library, and the numar r ay
(see[12]) package. Although you won't need NunPy (see[10]) or Nurrer i ¢ (see[11]) in order to compile PyTables,
they are supported; you only need a reasonably recent version of them (>= 1.0 for NumPy and >= 24.2 for Numeric)
if you plan on using them in your applications. If you aready have NunPy and/or Nuner i ¢ instaled, the test driver
module will detect them and will run the tests for NunPy and/or Nurrer i ¢ automatically.

2.1.1. Prerequisites

First, make surethat you have at least Python 2.3, 2.4, 2.5 or higher, HDF5 1.6.5 and numarray 1.5.2 or higher installed
(I'musing HDF5 1.6.5 and numarray 1.5.2 currently). If you don't, fetch and install them before proceeding.

Compile and install these packages (but see Section 2.2.1 for instructions on how to install precompiled binariesif you
are not willing to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install the ZI i b (see [5]), which is also
required by HDF5 as well. Y ou may also optionally install the excellent LZO compression library (see [13] and Sec-
tion 5.3). The high-performance bzip2 compression library can also be used with PyTables (see [14]). The use of the

UCL compression library isin process of being deprecatedl, so it is recommended to not use it unless you have to
(you still have data files compressed with UCL). Meanwhile, you can force its support in PyTables by passing the
--force-ucl flagtoset up. py (seelater).

Unix set up. py will detect HDF5, LZO, UCL or bzi p2 librariesand includefilesunder / usr
or/usr/1 ocal ; thiswill cover most manual installations as well as installations from
packages. If set up. py cannot find! i bhdf 5 (orli bl zo, I i bucl orlibbz2 that
you may wish to use) or if you have several versions of alibrary installed and want to use
aparticular one, then you can set the path to the resource in the environment, setting the
values of theHDF5_DI R, LZO DI R, UCL_DI Ror BZI P2_DI R environment variables
to the path to the particular resource. Y ou may also specify the locations of the resource
root directories on the set up. py command line. For example:

MThisis because of recurrent memory problems in some platforms (perhaps some bad interaction between UCL and something else). Eventually,
UCL support will be dropped in the future, so, please, refrain to create datasets compressed with it.

http://www.t2-project.org
http://www.t2-project.org
http://www.rocklinux.org/
http://www.rocklinux.org/
http://www.debian.org/
http://www.debian.org/
http://www.gentoo.org/
http://www.gentoo.org/
http://www.freshports.org/
http://www.freshports.org/
http://www.opendarwin.org/
http://www.opendarwin.org/

Installation

Windows

--hdf 5=/ stuff/hdf5-1.6.5
--l1zo=/stuff/l zo-1.08
--bzi p2=/stuff/bzip2-1.0.3

Also, for non-standard installations of numarray, the location of its header files can be
given like this:

--numar r ay- header s=/ st uf f/ numarray- 1. 5. 5/ numarr ay/ i ncl ude

Y ou can force the compilation of the deprecated UCL compressor by passing the --force-
ucl flag:

--ucl =/stuff/ucl-1.03 --force-ucl

If your HDF5 library was built as a shared library not in the runtime load path, then you
can specify the additional linker flags needed to find the shared library on the command
line aswell. For example:

--1flags="-Xlinker -rpath -Xinker /stuff/hdf5-1.6.5/Iib"

Y oumay alsowant totry settingthe LD _LIBRARY _PATH environment variableto point
to the directory where the shared libraries can be found. Check your compiler and linker
documentation as well as the Python Di st ut i | s documentation for the correct syntax
or environment variable names.

Itisalso possibleto link with specific libraries by setting the LI BS environment variable:

LI BS="hdf 5- 1. 6. 5"
LI BS="hdf 5-1.6.5 nsl "

Finally, you can pass additional flagsto your compiler by passing them to the --cflagsflag:
--cflags="-w - 3"

In the above case, agcc compiler is used and you instructed it to suppress all the warnings
and set the level 3 of optimization.

Onceyou haveinstalled the prerequisites, set up. py needsto know where the necessary
library stub (. I i b) and header (. h) files are installed. Set the following environment
variables:

HDF5 DIR Pointsto the root HDF5 directory (where the include/ and dil/ directories
can be found). Mandatory.

LZO DIR Points to the root LZO directory (where the include/ and lib/ directories
can be found). Optional.

BZIP2_DIR Pointsto the root bzip2 directory (where the include/ and lib/ directories
can be found). Optional.

UCL_DIR Points to the root UCL directory (where the include/ and lib/ directories
can be found). Optional, but discouraged.

Installation

For example:

set HDF5 DI R=c:\stuff\5-165-w n
set LZO DI R=c:\stuff\lzo-1-08
set Bzl P2_DI R=c:\ stuff\bzip2-1-0-3

Or, you can pass thisinformation to set up. py by setting the appropriate arguments on
the command line. For example:

--hdf 5=c: \stuff\5-165-w n
--lzo=c:\stuff\lzo-1-08
--bzi p2=c:\ st uf f\ bzi p2-1-0-3

Also, for non-standard installations of numarray, the location of its header files can be
given like this:

--numarr ay- header s=c: \ st uf f\ numarr ay- 1- 5-
1\ numar ray\ i ncl ude

Y ou can force the compilation of the deprecated UCL compressor by passing the --force-
ucl flag:
--ucl=c:\stuff\ucl-1-02 --force-ucl

Y ou can get ready-to-use Windows binaries and other development files for most of those
libraries from the Gnuwin32 project (see[20]).

2.1.2. PyTables package installation

Once you have installed the HDF5 library and the numarray package, you can proceed with the Py Tabl es package

itself:
1. Run thiscommand from the main Py Tabl es distribution directory, including any extra command line arguments
as discussed above:
pyt hon setup.py build_ext --inplace

Depending on the compiler flags used when compiling your Python executable, there may appear many warnings.
Don't worry, aimost all of them are caused by variables declared but never used. That's normal in Pyrex extensions.

Unix

. Torun the test suite, changeinto thet abl es/ t est s directory and execute this command:
In the shell sh and its variants:

PYTHONPATH=. . /.. python test_all. py

Windows OpenaDOStermina and type:

set PYTHONPATH=..\.. python test all. py

10

Installation

If you would like to see verbose output from the tests ssmply add the flag - v and/or the word ver bose to the
command line. Y ou can also run only the testsin a particular test module. For example, to executejust thet ypes
test:

pyt hon test _types.py -v

If atest fails, please enable verbose output (the - v flag and ver bose option), run the failing test module again,
and, very important, get your Py Tabl es version information by running the command:

pyt hon test _all.py --show versions
and send back the output to devel opers so that we may continue improving Py Tabl es.
If you run into problems because Python can not load the HDF5 library or other shared libraries:

Unix Try settingtheLD_LIBRARY _PATH environment variableto point to thedirectory wherethemissing
libraries can be found.

Windows Put the DLL libraries (hdf 5dl | . dl | and, optionaly, | zol. dl | and bzi p2. dl |) inadirecto-
ry listed in your PATH environment variableor inpyt hon_i nstal | ati on_path\Li b\ si te-
packages\t abl es (the last directory may have not exist yet, so if you want to install the DLLs
there, you should do so after installing the PyTables package). The set up. py installation program
will print out awarning to that effect if the libraries can not be found.

3. Toinstall the entire PyTables Python package, change back to the root distribution directory and run the following
command (make sure you have sufficient permissions to write to the directories where the Py Tabl es files will
be installed):

pyt hon setup. py install

Of course, you will need super-user privileges if you want to install Py Tabl es on a system-protected area. You
can select, though, a different place to install the package using the - - pr ef i x flag:

pyt hon setup.py install --prefix="/home/ myuser/nystuff"

Have in mind, however, that if you usethe - - pr ef i x flag to install in a non-standard place, you should properly
setup your PYTHONPATH environment variable, so that the Python interpreter would be able to find your new
PyTabl es installation.

Y ou have more installation options available in the Distutils package. Issue a
pyt hon setup.py install --help
for more information on that subject.

That'sit! Now you can skip to the next chapter to learn how to use Py Tabl es.

2.2. Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows platforms. You may also find it useful for
instructions on how to install binary prerequisites even if you want to compile Py Tabl es itself on Windows.

2.2.1. Windows prerequisites

First, make sure that you have Python 2.3, 2.4, 2,5 or higher, HDF5 1.6.5 or higher and numarray 1.5.2 or higher
installed (I have built the Py Tabl es binariesusing HDF5 1.6.5 and numarray 1.5.2).

11

Installation

For the HDF5 library it should be enough to manualy copy the hdf5dl|.dll, zlibl.dll and
szipdl | . dll filestoadirectory inyour PATHenvironment variable (for example C: \ W NDOWS\ SYSTEM32) or
pyt hon_install ati on_pat h\ Li b\ si t e- packages\t abl es (the last directory may have not exist yet,
so if you want to install the DLLs there, you should do so after installing the PyTables package).

Caveat: When downloading the binary distribution for HDF5 libraries, select one compiled with MSVC 6.0 if you
are using Python 2.3.x, such asthe package 5- 165- wi n. zi p. Thefile5- 165- wi n- net . zi p wascompiled with
the MSVC 7.1 (aka". NET 2003") and you must choose if you want to run PyTables with Python 2.4.x or 2.5.x
series. Y ou have been warned!

To enable compression with optional LZO or bzip2 libraries (see the Section 5.3 for hints about how they may be used
to improve performance), fetch and install the LZO (choose v1.x, LZOv2.x is not supported in precompiled Windows

builds) and bzi p2 binaries from [20]2. Normally, you will only need to fetch and install the <package>- <ver -
si on>- bi n. zi p fileand copy thel zol. dl | or bzi p2. dl | filesinadirectory inthe PATH environment vari-
able, orinpython_instal |l ati on_pat h\ Li b\ si t e- packages\t abl es (the last directory may have not
exist yet, so if you want to install the DLLs there, you should do so after installing the PyTables package), so that
they can be found by the PyTables extensions.

Please, note that PyTables has internal machinery for dealing with uninstalled optional compression libraries, so, you
don't need to install any of LZO or bzip2 dynamic libraries if you don't want to.

2.2.2. PyTables package installation

Download thet abl es- <ver si on>. wi n32- py<ver si on>. exe fileand executeit.

Y ou can (you should) test your installation by unpacking the source tar-ball, changing to thet abl es/ t est s/ sub-
directory and executing thet est _al | . py script. If al the tests pass (possibly with a few warnings, related to the
potential unavailability of LZO or bzip2 libs) you already have aworking, well-tested copy of Py Tabl es installed!
If any test fails, please try to locate which test module is failing and execute:

pyt hon test <nodul e>. py -v verbose
and also:
pyt hon test _all.py --show versions
and mail the output to the developers so that the problem can be fixed in future releases.

Y ou can proceed now to the next chapter to see how to use Py Tabl es.

°Note that support for the UCL compressor has been declared deprecated and has not been added in the binary build of PyTables for Windows.

12

Chapter 3. Tutorials

Seras laclau que obretots els panys, seraslallum, lallum il.limitada, seras confi on |I'aurora comenga, seras forment,
escalail.luminadal
-—~M'aclame atu Lyrics: Vicent Andrési Estellés Music: Ovidi Montllor

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand Py Tabl es'
main features. If you would like moreinformation about some particular instance variable, global function, or method,
look at the doc strings or go to the library reference in Chapter 4. If you are reading thisin PDF or HTML formats,
follow the corresponding hyperlink near each newly introduced entity.

Please, note that throughout this document the terms column and field will be used interchangeably, as will the terms
row and record.

3.1. Getting started

In this section, we will see how to define our own records in Python and save collections of them (i.e. atable) into
afile. Then we will select some of the data in the table using Python cuts and create nunmar r ay arraysto store this
selection as separate objectsin atree.

In examples/tutorial 1-1.py you will find the working version of all the code in this section. Nonetheless, this tutorial

series has been written to allow you reproduce it in a Python interactive console. | encourage you to do parallel testing
and inspect the created objects (variables, docs, children objects, etc.) during the course of the tutorial!

3.1.1. Importing tables objects

Before starting you need to import the public objectsin thet abl es package. Y ou normally do that by executing:
>>> jnport tables

Thisisthe recommended way to import t abl es if you don't want to pollute your namespace. However, Py Tabl es
has a very reduced set of first-level primitives, so you may consider using the alternative:

>>> fromtables inport *
which will export in your caller application namespace the following functions. openFi | e(), copyFil e(),
i SHDF5Fi | e(),i sPyTabl esFi | e() and whi chLi bVer si on() . Thisis arather reduced set of functions,

and for convenience, we will use this technique to access them.

If you are going to work with nurmar r ay (or NunPy or Nurrer i ¢) arrays (and normally, you will) you will also need
to import functions from them. So most Py Tabl es programs begin with:

>>> jnport tables # but in this tutorial we use "fromtables inport *"
>>> | nmport nunarray # or "inmport nunmpy" or "inmport Numeric"

3.1.2. Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data retrieved
from it. You need first to define the table, the number of columns it has, what kind of object is contained in each
column, and so on.

13

Tutorials

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and an ADC
(Analogical to Digital Converter) with arange of 16 hits. For these values, we will define 2 fieldsin our record object
called TDCcount and ADCcount . We also want to save the grid position in which the particle has been detected, so
wewill add two new fieldscalledgri d_i andgri d_j . Our instrumentation also can obtain the pressure and energy
of the particle. The resolution of the pressure-gauge alows us to use a simple-precision float to store pr essur e
readings, whilethe ener gy value will need adouble-precision float. Finally, to track the particle we want to assign it
anameto identify the kind of the particleit is and a unique numeric identifier. So we will add two more fields: nane
will be a string of up to 16 characters, and i dnunber will be an integer of 64 hits (to allow us to store records for
extremely large numbers of particles).

Having determined our columns and their types, we can now declare anew Parti cl e class that will contain all
thisinformation:

>>> class Particle(lsDescription):

nanme = StringCol (16) # 16-character String

i dnunber = Int64Col () # Signed 64-bit integer

ADCcount = Ul nt 16Col () # Unsi gned short integer

TDCcount = Ul nt 8Col () # unsi gned byte

grid_i = I nt 32Col () # i nteger

grid_j = IntCol () # integer (equivalent to Int32Col)
pressure = Float32Col () # float (single-precision)

ener gy = Fl oat Col () # doubl e (doubl e-preci sion)

>>>
This definition class is self-explanatory. Basically, you declare a class variable for each field you need. Asits value
you assign an instance of the appropriate Col subclass, according to the kind of column defined (the data type, the

length, the shape, etc). See the Section 4.16.2 for a compl ete description of these subclasses. See also Appendix A for
alist of data types supported by the Col constructor.

From now on, we can use Par t i ¢l e instances as a descriptor for our detector data table. We will see later on how
to pass this object to construct the table. But first, we must create afile where al the actual data pushed into our table
will be saved.

3.1.3. Creating a PyTables file from scratch

Usethefirst-level openFi | e function (see description) to create aPy Tabl es file:
>>> h5file = openFile("tutorial 1. h5", npde = "w', title = "Test file")

openFi | e (seedescription) isone of the objectsimported by the"f rom t abl es i nport *" statement. Here, we
are saying that we want to create anew filein the current working directory called "t ut or i al 1. h5" in"w'rite mode
and with an descriptivetitle string ("Test fi | e"). Thisfunction attemptsto open thefile, and if successful, returns
theFi | e (see4.2) object instance h5f i | e. Theroot of the object treeis specified in the instance'sr oot attribute.

3.1.4. Creating a new group

Now, to better organize our data, we will create a group called detector that branches from the root node. We will
save our particle datatablein this group.

>>> group = h5file.createGoup("/", 'detector', 'Detector information')

Here, we have taken the Fi | e instance h5f i | e and invoked itscr eat eGr oup method (see description) to create
a new group called detector branching from "/" (another way to refer to the h5fi | e. r oot object we mentioned
above). Thiswill create anew Gr oup (see 4.4) object instance that will be assigned to the variable gr oup.

14

Tutorials

3.1.5. Creating a new table

Let's now create a Tabl e (see 4.6) object as a branch off the newly-created group. We do that by calling the cr e-
at eTabl e (see description) method of the h5f i | e object:

>>> table = h5file.createTabl e(group, 'readout', Particle, "Readout exanple")

We create the Tabl e instance under gr oup. We assign this table the node name "readout”. The Parti cl e class
declared before is the description parameter (to define the columns of the table) and finally we set "Readout example”
asthe Tabl e title. With al thisinformation, anew Tabl e instanceis created and assigned to the variable table.

If you are curious about how the object tree looks right now, simply pri nt the Fi | e instance variable h5file, and
examine the output:

>>> print h5file

Filename: 'tutoriall.h5 Title: 'Test file' Last nodif.: 'Sun Jul 27 14:00: 13
2003'

/| (Group) 'Test file'

/detector (G oup) 'Detector information'

/ det ect or/readout (Table(0,)) 'Readout exanple'

As you can see, adump of the object tree is displayed. It's easy to see the G- oup and Tabl e objects we have just
created. If you want more information, just type the variable containing the Fi | e instance:

>>> h5file
File(filename="tutoriall.h5, title=" Test file', node="w , trMp={},
root UEP="/")
[(Group) 'Test file'
/detector (G oup) 'Detector information'
/ det ect or/ readout (Table(0,)) 'Readout exanple
description := {
"ADCcount": Col (' U nt16', shape=1, itensize=2, dflt=0),
"TDCcount": Col (' UInt8', shape=1, itensize= 1, dflt=0),
"energy": Col (' Float64', shape=1, itensize=8, dflt=0.0),
"grid_i": Col ('Int32', shape=1, itensize=4, dflt=0),
"grid_ j": Col ('Int32', shape=1, itensize=4, dflt=0),
"idnunber”: Col ('Int64', shape=1, itensize=8, dflt=0),
"name": Col (' Char Type', shape=1, itensize=16, dflt=None),
"pressure”: Col (' Fl oat32', shape=1, itensize=4, dflt=0.0) }
byteorder :=1little

More detailed information is displayed about each object in the tree. Note how Par t i cl e, our table descriptor class,
isprinted as part of the readout table description information. In general, you can obtain much more information about
the objects and their children by just printing them. That introspection capability isvery useful, and | recommend that
you use it extensively.

The time has come to fill this table with some values. First we will get a pointer to the Row (see 4.6.4) instance of
thist abl e instance:

>>> particle = table.row

Ther ow attribute of t abl e points to the Row instance that will be used to write data rows into the table. We write
data simply by assigning the Row instance the values for each row as if it were a dictionary (although it is actually
an extension class), using the column names as keys.

Below is an example of how to write rows:

15

Tutorials

>>> for i in xrange(10):
particle['name'] = 'Particle: 9%%d" % (i)
particl e[’ TDCcount"'] i % 256
particl e[’ ADCcount'] (i * 256) % (1 << 16)
particle['grid_i"]

i
10 - i
f

particle['grid j'] =

particle[' pressure'] float(i*i)

particle['energy'] = float(particle['pressure'] ** 4)
particle['idnunmber’] i * (2 ** 34)

particl e. append()
>>>
This code should be easy to understand. Thelinesinside the loop just assign valuesto the different columnsin the Row

instanceparticl e (see4.6.4). A cal toitsappend() method writesthisinformation to thet abl e 1/O buffer.

After we have processed all our data, we should flush the table's 1/0 buffer if we want to write all this data to disk.
We achieve that by calling thet abl e. f | ush() method.

>>> table.flush()

3.1.6. Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we are
interested in. See the example below:

>>> table = h5file.root.detector.readout

>>> pressure = [x['pressure'] for x in table.iterrows()

C. i f x['TDCcount']>3 and 20<=x[' pressure']<50]
>>> pressure
[25.0, 36.0, 49.0]

The first line creates a "shortcut” to the readout table deeper on the object tree. As you can see, we use the natural
naming schemato accessit. We also could have used the h5f i | e. get Node() method, aswe will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rows in table as they are
provided by thet abl e. i t err ows() iterator (see description). Theiterator returns values until al the datain table
is exhausted. These rows are filtered using the expression:

X[" TDCcount'] > 3 and Xx[' pressure'] <50

We select the value of the pr essur e column from filtered records to create thefinal list and assignitto pr essur e
variable.

We could have used anormal f or loop to accomplish the same purpose, but | find comprehension syntax to be more
compact and elegant.

Let's select the nane column for the same set of cuts:

>>> pames=[x['nane'] for x in table if x['TDCcount']>3 and
20<=x["' pressure'] <50]

>>> nanes

["Particle: 5", 'Particle: 6', 'Particle: 7

Note how we have omitted thei t er r ows () cal inthelist comprehension. The Tabl e class has an implementation
of thespecial method __iter__ () thatiteratesover al therowsinthetable. Infact,i t err ows() internaly cals

16

Tutorials

thisspecial __iter __ () method. Accessing all the rowsin atable using this method is very convenient, especially
when working with the data interactively.

That's enough about selections. The next section will show you how to save these selected resultsto afile.

3.1.7. Creating new array objects

In order to separate the selected data from the mass of detector data, we will create anew group col urms branching
off the root group. Afterwards, under this group, we will create two arrays that will contain the selected data. First,
we create the group:

>>> gcol ums = h5file.createG oup(h5file.root, "colums", "Pressure and
Nane")

Note that this time we have specified the first parameter using natural naming (h5f i | e. r oot) instead of with an
absolute path string ("/").

Now, create the first of the two Ar r ay objects we've just mentioned:

>>> hbfile.createArray(gcol ums, 'pressure', array(pressure),
. "Pressure colum sel ection")

/col ums/ pressure (Array(3,)) 'Pressure colum selection'
type = Fl oat 64

itensize = 8

flavor = 'nunarray'

byteorder = "little'

We aready know thefirst two parameters of thecr eat eAr r ay (see description) methods (these are the same asthe
firsttwoincr eat eTabl e): they are the parent group where Ar r ay will be created and the Ar r ay instance name.
The third parameter is the object we want to save to disk. In this case, it isanumar r ay array that is built from the
selection list we created before. The fourth parameter is thetitle.

Now, we will save the second array. It contains the list of strings we selected before: we save this object as-is, with
no further conversion.

>>> h5file.createArray(gcolums, 'nane', nanes, "Nane col um sel ection")
[/ col ums/ nane Array(4,) 'Name col unm sel ection’

type = ' Char Type'

itenmsize = 16

flavor = 'List'

byteorder = "little'

Asyou can see, cr eat eArray() accepts names (which isaregular Python list) as an object parameter. Actualy,
it accepts avariety of different regular objects (see description) as parameters. Thef | avor attribute (see the output
above) saves the original kind of object that was saved. Based on this flavor, Py Tabl es will be able to retrieve
exactly the same object from disk later on.

Notethat intheseexamples, thecr eat eAr r ay method returnsan Ar r ay instancethat isnot assignedto any variable.
Don't worry, thisisintentional to show the kind of object we have created by displaying itsrepresentation. The Ar r ay
objects have been attached to the object tree and saved to disk, as you can see if you print the complete object tree:

>>> print h5file

Filenanme: 'tutoriall.h5 Title: 'Test file' Last nodif.: 'Sun Jul 27
14: 00: 13 2003"
[(Goup) 'Test file'

17

Tutorials

/colums (G oup) 'Pressure and Nane'

/[col ums/nanme (Array(3,)) 'Nane colum sel ection’

/col ums/pressure (Array(3,)) 'Pressure colum selection’
/detector (G oup) 'Detector information'

/ det ect or/ readout (Tabl e(10,)) ' Readout exanpl e

3.1.8. Closing the file and looking at its content
Tofinishthisfirst tutorial, we usethe cl ose method of the h5file Fi | e object to close the file before exiting Python:

>>> h5file.close()
>>> AD

Y ou have now created your first Py Tabl es file with a table and two arrays. Y ou can examine it with any generic
HDFS5 tool, such ash5dunp or h51 s. Hereiswhat thet ut ori al 1. h5 looks like when read with the h5I s pro-
gram:

$ h5ls -rd tutorial1.h5

/ col ums G oup

/ col ums/ nane Dat aset {3}

Dat a:

(0) "Particle: 5", "Particle: 6", "Particle: 7"

/ col ums/ pressure Dat aset {3}

Dat a:

(0) 25, 36, 49

/ det ect or G oup

/ det ect or / r eadout Dat aset {10/ nf}

Dat a:

(0) {0, 0, 0, O, 10, 0O, "Particle: 0", 0},

(1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 13},

(2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},

(3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},

(4) {1024, 4, 65536, 4, 6, 68719476736, "Particl e: 4", 16},
(5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particl e: 6", 36},
(7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
(8) {2048, 8, 16777216, 8, 2, 137438953472, "Parti cl e: 8", 64},
(9) {2304, 9, 43046721, 9, 1, 154618822656, "Particl e: 9", 81}

Here's the outputs as displayed by the "ptdump” Py Tabl es utility (locatedinut i | s/ directory):

$ ptdunp tutoriall.h5

Filename: 'tutoriall.h5 Title: 'Test file' Last nodif.: 'Sun Jul 27 14:40:51
2003'

/ (Group) 'Test file'

/colums (G oup) 'Pressure and Nane'

/col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/ pressure (Array(3,)) 'Pressure colum selection'

/detector (G oup) 'Detector information'

/ det ect or/readout (Tabl e(10,)) 'Readout exanpl €'

You can passthe - v or - d optionsto pt dunp if you want more verbosity. Try them out!

Also, inFigure3.1, you can admirehow thet ut or i al 1. h5 lookslikeusingtheViTables [http://www.carabos.com/
products/vitables.html] graphical interface .

18

http://www.carabos.com/products/vitables.html
http://www.carabos.com/products/vitables.html
http://www.carabos.com/products/vitables.html

Tutorials

& WiTables 1.0.1 — O X
File Node Query Windows Tools Help

@ @od|| mR[Sk
Object tree EEreado Readout example | (m]|ES
i--ﬁtutoriall.hS (5] energy grid_i grid_j idnumber name —
é--@'detector 1 0.0 u] 10 u] Particle: o]
- E@readou || [2 1.0 1 a 17179869184 Particle: 1
P 3 256.0 2 8 34359738368 Particle: 2
—--@columns -
i .goo 4 6561.0 3 7 51539607552 Particle: 3
Pl s 65536.0 4 3 68710476736 Particle: 4
""" 6 390625.0 5 5 85809345020 Particle: 5
+ B Query results|| = 1679616.0 & 4 Particle: 6 [
8 5764801.0 7 3 120259084288 Particle: 7 [+
[il I]
iname Mame column selection o (=]
1 [[m] ES
1 Particle: 5 @ |1
2 Particle: 5] 1 25.0
3 Particle: 7 36.0
4 Particle: 2] NN E 49.0
5 Particle: g el
= My~ rbim e 1n il
[T T«]r]
HmpdET_loCur ha file closed! ml
Cpening fhomefymasivitables/examplesiobjecttrea hb...
ol =
fhomelv masfvitablesiexamplesiobjecttree hb file closad! =
HrandFT et P b E fila clacadl v
A

Figure 3.1. Theinitial version of the datafile for tutorial 1, with aview of the data objects.

3.2. Browsing the object tree

In this section, we will learn how to browse the tree and retrieve data and also meta-information about the actual data.

In examples/tutorial 1-2.py you will find the working version of all the code in this section. Asbefore, you are encour-
aged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1. Traversing the object tree
Let's start by opening the file we created in last tutorial section.
>>> h5file = openFile("tutorial 1. h5", "a")
Thistime, we have opened the filein "a"ppend mode. We use this mode to add more information to thefile.

PyTabl es, following the Python tradition, offers powerful introspection capabilities, i.e. you can easily ask infor-
mation about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existing Fi | e instance:

19

Tutorials

>>> print h5file

Fil ename: 'tutoriall.h5 Title: "Test file' Last nodif.: 'Sun Jul 27 14:40:51
2003

[(Goup) 'Test file'

/colums (G oup) 'Pressure and Nane'

/[col ums/nanme (Array(3,)) 'Nane colum sel ection’

/col ums/pressure (Array(3,)) 'Pressure colum selection’

/detector (G oup) 'Detector information'

/ det ect or/ readout (Tabl e(10,)) ' Readout exanpl e

It looks like all of our objects are there. Now let's make use of the Fi | e iterator to see how to list al the nodes in
the object tree:

>>> for node in h5file:
print node

/ (Group) 'Test file'

/colums (G oup) 'Pressure and Nane'

/detector (G oup) 'Detector information'

/col ums/nane (Array(3,)) 'Nane colum sel ection'

/col ums/pressure (Array(3,)) 'Pressure colum selection'
/ det ect or/ readout (Tabl e(10,)) 'Readout exanpl e

We can usethewal kG- oups method (see description) of the Fi | e classto list only the groups on tree:

>>> for group in h5file.wal kG oups("/"):
print group

/ (Group) 'Test file'
/colums (G oup) 'Pressure and Nane'
/detector (G oup) 'Detector information'

Note that wal kGr oups() actualy returns an iterator, not a list of objects. Using this iterator with the | i st N-
odes() method is apowerful combination. Let's see an example listing of all the arraysin the tree:

>>> for group in h5file.wal kG oups("/"):
for array in h5file.listNodes(group, classnane = 'Array'):
print array

/col ums/nanme Array(3,) 'Nanme col unm sel ection'
/col ums/ pressure Array(3,) 'Pressure colunn sel ection'

I i st Nodes() (seedescription) returnsalist containing all the nodes hanging off aspecific G oup. If the classname
keyword is specified, the method will filter out al instances which are not descendants of the class. We have asked
for only Ar r ay instances. There exist also an iterator counterpart called i t er Nodes () (seedescription) that might
be handy is some situations, like for example when dealing with groups with alarge number of nodes behind it.

We can combine both calls by using thewal kNodes(wher e, cl assnane) specia method of the Fi | e object
(see description). For example:

>>> for array in h5file.wal kNodes("/", "Array"):
print array

/col ums/nanme (Array(3,)) 'Nane colum sel ection’
/col ums/pressure (Array(3,)) 'Pressure colum selection’

20

Tutorials

Thisis anice shortcut when working interactively.

Finaly, wewill list all the Leaf , i.e. Tabl e and Ar r ay instances (see 4.5 for detailed information on Leaf class),
inthe/ det ect or group. Note that only one instance of the Tabl e class (i.e. r eadout) will be selected in this
group (as should be the case):

>>> for leaf in h5file.root.detector. f_ wal kNodes(' Leaf'):
print | eaf

/ det ect or/ readout (Tabl e(10,)) ' Readout exanpl e

Wehaveusedacall totheG oup. _f _wal kNodes(cl assnane, recursive) method (seedescription), using
the natural naming path specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let's take alook at
some important Py Tabl es object instance variables.

3.2.2. Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by using the
AttributeSet class (see 4.15). You can access this object through the standard attribute at t r s in Leaf nodes
and_v_attrsinG oup nodes.

For example, let's imagine that we want to save the date indicating when the datain / det ect or / r eadout table
has been acquired, as well as the temperature during the gathering process:

>>> table = h5file.root. detector.readout

>>> table.attrs.gath _date = "Wed, 06/12/2003 18: 33"
>>> table.attrs.tenperature = 18. 4

>>> table.attrs.tenp_scale = "Cel sius"

Now, let's set a somewhat more complex attribute in the/ det ect or group:

>>> detector = h5file.root. detector
>>> detector. v _attrs.stuff =[5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed withthe _v_at t r s attribute because detector isa Gr oup node. In
general, you can save any standard Python data structure as an attribute node. See Section 4.15 for a more detailed
explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date

'Wed, 06/12/2003 18: 33"

>>> table.attrs.tenperature

18. 399999999999999

>>> table.attrs.tenp_scal e

' Cel si us'

>>> detector. v_attrs.stuff

[5, (2.2999999999999998, 4.5), 'Integer and tuple']

Y ou can probably guess how to delete attributes:
>>> del table.attrs.gath_date

If you want to examine the current user attribute set of / det ect or/ t abl e, you can print its representation (try
hitting the TAB key twiceif you are on a Unix Python console with ther | conpl et er module active):

21

Tutorials

>>> table.attrs

/detector/readout (AttributeSet), 2 attributes:
[temp_scale := 'Cel sius',

tenperature : = 18.399999999999999]

You can get alist of all attributes or only the user or system attributeswiththe f |i st () method.

>>> print table.attrs. _f _list("all")

['CLASS', 'FIELD O NAME', 'FIELD 1 NAME', 'FIELD 2 NAME', 'FIELD 3 NAME' ,
"FIELD 4 NAVE', 'FIELD 5 NAME', 'FIELD 6 _NAME , 'FIELD 7 NAMVE , ' NROWS ,
"TITLE' , 'VERSION, 'tenp_scale', 'tenperature']

>>> print table.attrs. _f_list("user")

['tenp_scale', 'tenperature']

>>> print table.attrs. f |ist("sys")

['CLASS', 'FIELD O NAME', 'FIELD 1 NAME', 'FIELD 2 NAME', 'FIELD 3 NAME' ,
"FIELD 4 NAVE', 'FIELD 5 NAME', 'FIELD 6 _NAME , 'FIELD 7 NAMVE , ' NROMS' ,
"TITLE , ' VERSI ON]

Y ou can also rename attributes:

>>> table.attrs. f _rename("tenp_scal e", "tenpScal e")
>>> print table.attrs. f _list()
['tenpScal e', 'tenperature']

However, you can not set, delete or rename read-only attributes:

>>> table.attrs. _f_renane("VERSION', "version")

Traceback (most recent call last):

File ">stdin>", line 1, in ?

File "/hone/falted/ PyTabl es/ pytabl es-0. 7/t abl es/ Attri but eSet. py",
line 249, in _f renane

rai se AttributeError, \

AttributeError: Read-only attribute (' VERSION) cannot be renaned

If you would terminate your session how, you would be able to use the h51 s command to read the / det ect or /
readout attributes from the file written to disk:

$ h5ls -vr tutorial 1. h5/ det ect or/ r eadout
Opened “"tutorial 1. h5" with sec2 driver.

/ det ect or / r eadout Dat aset {10/ nf}
Attribute: CLASS scal ar
Type: 6-byte null-term nated ASCI| string

Data: "TABLE"
Attri bute: VERSION scal ar

Type: 4-byte null-term nated ASCI| string
Data: "2.0"

Attribute: TITLE scal ar

Type: 16-byte null-term nated ASCI| string

Data: "Readout exanple”
Attribute: FIELD O _NAME scal ar
Type: 9-byte null-term nated ASCI| string
Data: "ADCcount"
Attribute: FIELD 1 NAME scal ar
Type: 9-byte null-term nated ASCI| string
Data: "TDCcount™"

22

Tutorials

Attribute: FIELD 2 NAME scal ar

Type:

Data: "

7-byte null-term nated ASCI| string
ener gy"

Attribute: FIELD 3 NAME scal ar

Type:

Data: "

7-byte null-term nated ASCI| string
grid_i"

Attribute: FIELD 4 NAME scal ar

Type:

Data: "

7-byte null-term nated ASCI| string
grid_j"

Attribute: FIELD 5 NAME scal ar

Type:

Data: "

9-byte null-term nated ASCI| string
i dnunber "

Attribute: FIELD 6 NAME scal ar

Type:

Data: "

5-byte null-term nated ASCI| string
nane"

Attribute: FIELD 7 NAME scal ar

Type:

Data: "

9-byte null-term nated ASCI| string
pressure"

Attribute: tenpScal e scal ar

Type:

8-byte null-term nated ASCI| string

Data: "Cel sius"
Attribute: tenperature {1}

Type: nati ve doubl e
Data: 18.4

Attribute: NROANS {1}
Type: native int
Data: 10

Location: 0:1:0:1952

Li nks:

1

Modi fied: 2003-07-24 13:59:19 CEST

Chunks: {2048} 96256 bytes
St or age: 470 | ogi cal bytes, 96256 allocated bytes, 0.49%utilization
Type: struct {
" ADCcount " +0 native unsi gned short
" TDCcount " +2 native unsi gned char
"ener gy" +3 nati ve doubl e
"grid_i" +11 native int
"grid_ j" +15 native int
"i dnunber " +19 native | ong | ong
"name" +27 16-byte null-term nated ASCI| string
"pressure” +43 native fl oat
} 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to your data.

3.2.3. Getting object metadata

Each object in PyTabl es has metadata information about the data in the file. Normally this meta-information is
accessible through the node instance variables. Let's take alook at some examples:

>>> print "Cbject:", table
nj ect: /detector/readout Tabl e(10,) ' Readout exanple
>>> print "Table nanme:", table.nane

Tabl e name: readout

23

Tutorials

>>> print "Table title:", table.title
Table title: Readout exanple
>>> print "Nunber of rows in table:", table.nrows

Nurmber of rows in table: 10

>>> print "Table variable nanes with their type and shape:"
Tabl e variable nanes with their type and shape:

>>> for nanme in table.col nanmes:

print name, ':= 9%, %' % (table.coltypes[nane], table.col shapes[nane])

ADCcount := U ntl6, 1

TDCcount := Unt8, 1

energy := Float64, 1

grid_i :=1nt32, 1

grid_j :=1nt32, 1

i dnunber := Int64, 1

nane := CharType, 1

pressure := Float32, 1

Here, the nane, titl e, nrows, col nanes, col t ypes and col shapes attributes (see 4.6.1 for a complete
attribute list) of the Tabl e object gives us quite a bit of information about the table data.

Y ou can interactively retrieve general information about the public objects in PyTables by printing their internal doc
strings:

>>> print table. doc__

Represent a table in the object tree.

It provides nmethods to create new tables or open existing ones, as
well as to wite/read data to/fromtable objects over the

file. Anmethod is also provided to iterate over the rows w t hout

| oading the entire table or colum in nenory.

Data can be witten or read both as Row i nstances or numarray
(NumArray or RecArray) objects or NestedRecArray objects.

Met hods:

__getitem_ (key)

_iter__ ()

__setitem_(key, val ue)

append(r ows)

fl ushRowsTol ndex()

iterrows(start, stop, step)

i ter sequence(sequence)

nodi f yRows(start, rows)

nodi f yCol um(col utms, names, [start] [, stop] [, step])
nodi f yCol ums(col ums, names, [start] [, stop] [, step])
read([start] [, stop] [, step] [, field [, flavor]])

rel ndex()

rel ndexbDi rty()

renoveRows(start [, stop])

r enovel ndex(col nane)

where(condition [, start] [, stop] [, step])

wher eAppend(dst Tabl e, condition [, start] [, stop] [, step])
get WherelLi st (condition [, flavor])

24

Tutorials

| nst ance vari abl es:

description -- the metaobject describing this table

row -- a reference to the Row object associated with this table
nrows -- the nunber of rows in this table

rowsi ze -- the size, in bytes, of each row

cols -- accessor to the columms using a natural name schema

col names -- the field names for the table (tuple)

coltypes -- the type class for the table fields (dictionary)
col shapes -- the shapes for the table fields (dictionary)

col i ndexed -- whether the table fields are indexed (dictionary)
i ndexed -- whether or not sone field in Table is indexed

i ndexprops -- properties of an indexed Tabl e

Thehel p functionis also ahandy way to see Py Tabl es reference documentation online. Try it yourself with other
object docs:

>>> hel p(table.__class_)
>>> hel p(tabl e. r enoveRows)

To examine metadata in the /columns/pressure Ar r ay object:

>>> pressureChj ect = h5file.get Node("/col uims", "pressure")

>>> print "Info on the object:", repr(pressureChject)

Info on the object: /colums/pressure (Array(3,)) 'Pressure colum sel ection'
type = Fl oat 64

itensi ze = 8

flavor = 'nunarray'

byteorder = '"little'

>>> print " shape: ==>", pressureject.shape
shape: ==> (3,)

>>> print " title: ==>", pressure(bject.title
title: ==> Pressure colum sel ection

>>> print " type: ==>", pressureCbject.type

type: ==> Fl oat 64

Observe that we have used the get Node() method of the Fi | e class to access a node in the tree, instead of the
natural naming method. Both are useful, and depending on the context you will prefer one or the other. get Node()
hasthe advantage that it can get anode from the pathname string (asin this example) and can also act asafilter to show
only nodesin aparticular location that are instances of class classname. In general, however, | consider natural naming
to be more elegant and easier to use, especially if you are using the name completion capability present in interactive
console. Try thispowerful combination of natural naming and compl etion capabilities present in most Python consol es,
and see how pleasant it is to browse the object tree (well, as pleasant as such an activity can be).

If you look at the t ype attribute of the pr essur eObj ect object, you can verify that it is a"Float64" array. By

looking at itsshape attribute, you can deduce that the array on disk isunidimensional and has 3 elements. See 4.10.1
or the internal doc strings for the complete Ar r ay attribute list.

3.2.4. Reading data from Array objects
Once you have found the desired Ar r ay, usether ead() method of the Ar r ay object to retrieve its data:

>>> pressureArray = pressureObject.read()

25

Tutorials

>>> pressureArray

array([25., 36., 49.])

>>> print "pressureArray is an object of type:", type(pressureArray)
pressureArray is an object of type: <class 'numarray. numarraycore. NumArray' >
>>> nameArray = h5file.root.col ums. nane. read()

>>> nameArray

["Particle: 5", 'Particle: 6', 'Particle: 7]
>>> print "nameArray is an object of type:", type(nanmeArray)
naneArray is an object of type: <type 'list'>

>>>

>>> print "Data on arrays naneArray and pressureArray:"
Data on arrays nameArray and pressureArray:

>>> for i in range(pressureCbject.shape[0]):
print naneArray[i], "-->", pressureArray[i]

Particle: 5-->25.0

Particle: 6 --> 36.0

Particle: 7 -->49.0

>>> pressurebj ect. name

' pressure'

You can see that the r ead() method (see) returns an authentic nunar r ay object for the pr essur eCbj ect
instance by looking at the output of the t ype() call. A read() of the naneCbj ect object instance returns a
native Python list (of strings). Thetype of the object saved is stored as an HDF5 attribute (named FLAVOR) for objects
on disk. This attribute isthen read as Ar r ay meta-information (accessiblethroughinthe Array. attrs. FLAVOR
variable), enabling the read array to be converted into the original object. This providesameansto save alarge variety
of objects as arrayswith the guarantee that you will be ableto later recover themintheir original form. See description
for acomplete list of supported objects for the Ar r ay object class.

3.3. Commiting data to tables and arrays

We have seen how to create tables and arrays and how to browse both data and metadata in the object tree. Let's
examine more closely now one of the most powerful capabilities of Py Tabl es, namely, how to modify already

created tables and arrays®.

3.3.1. Appending data to an existing table

Now, let'shave alook at how we can add recordsto an existing table on disk. Let's use our well-known readout Tabl e
object and append some new valuesto it:

>>> table = h5file.root.detector.readout

>>> particle = table.row

>>> for i in xrange(10, 15):
particle['nanme'] = 'Particle: %d" % (i)
particle[' TDCcount'] i % 256
particle[' ADCcount'] (i * 256) % (1 << 16)
particle['grid_i']

=1L =11

particle['grid j'] = 10 - i

particle['pressure'] float(i*i)

particle['energy'] = float(particle['pressure'] ** 4)
particle['idnunmber'] i * (2 ** 34)

a ppending data to arraysis also supported, but you need to create specia objects called EAr r ay (see 4.12 for more info).

26

Tutorials

particle. append()
>>> tabl e. flush()

It's the same method we used to fill anew table. Py Tabl es knows that this tableis on disk, and when you add new
records, they are appended to the end of the tabl .

If you look carefully at the code you will see that we have used the t abl e. r ow attribute to create a table row and
fill it with the new values. Each time that itsappend() method is called, the actual row is committed to the output
buffer and the row pointer is incremented to point to the next table record. When the buffer is full, the datais saved
on disk, and the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the . f | ush() method after a write operation, or else your tables will
not be updated!

Let'shave alook at some rows in the modified table and verify that our new data has been appended:
>>> for r in table.iterrows():
print "%16s | %1.1f | %1.49 | %6d | %d | %8d |" %\

(r["name'], r['pressure'], r['energy'], r['grid_i'], r['grid_j'],
r[*' TDCcount'])

Particl e:

0 | 0.0 | 0 | 0 | 10 | 0
Particle: 1 | 1.0 | 1 | 1 | 9 | 1 |
Particle: 2 | 4.0 | 256 | 2 | 8 | 2
Particle: 3 | 9.0 | 6561 | 3 | 7 | 3
Particl e: 4 | 16.0 | 6. 554e+04 | 4 | 6 | 4
Particl e: 5 | 25.0 | 3. 906e+05 | 5 | 5 | 5
Particl e: 6 | 36.0 | 1.68e+06 | 6 | 4 | 6
Particl e: 7 | 49.0 | 5. 765e+06 | 7 | 3 | 7
Particl e: 8 | 64.0 | 1.678e+07 | 8 | 2 | 8
Particl e: 9 | 81.0 | 4. 305e+07 | 9 | 1 | 9
Particle: 10 | 100. 0 | 1e+08 | 10 | 0 | 10
Particl e: 11 | 121.0 | 2.144e+08 | 11 | -1 | 11
Particl e: 12 | 144.0 | 4. 3e+08 | 12 | -2 | 12
Particl e: 13 | 169. 0 | 8. 157e+08 | 13 | -3 | 13
Particl e: 14 | 196. 0 | 1.476e+09 | 14 | -4 | 14

3.3.2. Modifying data in tables

Ok, until now, we've been only reading and writing (appending) values to our tables. But there are times that you need
to modify your data once you have saved it on disk (thisis specially true when you need to modify the real world data
to adapt your goals ;). Let's see how we can modify the values that were saved in our existing tables. We will start
modifying single cellsin the first row of thePar t i cl e table:

>>> print "Before nodif-->", table[O0]

Before nodif--> (0, 0, 0.0, 0, 10, OL, 'Particle: 0', 0.0)

>>> table.cols. TDCcount[0] = 1

>>> print "After nodif first row of ADCcount-->", table[O0]

After nodif first row of ADCcount--> (O, 1, 0.0, O, 10, OL, 'Particle: 0,
0.0)

°Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

27

Tutorials

>>> tabl e.cols.energy[0] = 2
>>> print "After nodif first row of energy-->", tabl e[0]
After nodif first row of energy--> (0, 1, 2.0, 0, 10, OL, "Particle: 0, 0.0)

We can modify compl ete ranges of columns as well:
>>> tabl e.cols. TDCcount[2:5] = [2, 3, 4]

>>> print "After nodifying slice [2:5] of ADCcount-->", table[0:5]
After nodifying slice [2:5] of ADCcount--> RecArray|

(0, 1, 2.0, O, 10, OL, 'Particle: 0, 0.0),

(256, 1, 1.0, 1, 9, 17179869184L, 'Particle: 1', 1.0),

(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2", 4.0),
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3, 9.0),
(1024, 4, 65536.0, 4, 6, 68719476736L, 'Particle: 4', 16.0)

]
>>> table.cols.energy[1:9:3] =[2,3,14]

>>> print "After nodifying slice [1:9:3] of energy-->", table[0:9]
After nodifying slice [1:9:3] of energy--> RecArray]

(0, 1, 2.0, O, 10, OL, 'Particle: 0, 0.0),

(256, 1, 2.0, 1, 9, 17179869184L, 'Particle: 1', 1.0),

(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2", 4.0),

(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3, 9.0),

(1024, 4, 3.0, 4, 6, 68719476736L, 'Particle: 4', 16.0),

(2560, 10, 100000000.0, 10, O, 171798691840L, 'Particle: 10', 100.0),
(2816, 11, 214358881.0, 11, -1, 188978561024L, 'Particle: 11', 121.0),
(3072, 12, 4.0, 12, -2, 206158430208L, 'Particle: 12', 144.0),

(3328, 13, 815730721.0, 13, -3, 223338299392L, 'Particle: 13', 169.0)

]

Check that the values has been correctly modified!. Hint: remember that column TDCcount isthefirst one, and that
ener gy isthethird. Look for moreinfo on modifying columnsin Section .

PyTables also let's you modify complete sets of rows at the same time. As a demonstration of these capability, see
the next example:

>>> tabl e. nodi f yRows(start=1, step=3,

rows=[(1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0),
(2, 4, 6.0, 8, 10, 12L, 'Particle: None*2',
16.0)])
2

>>> print "After nodifying the conplete third row->", table[O0:5]
After nodifying the conplete third row -> RecArray|

(0, 1, 2.0, 0, 10, OL, 'Particle: 0', 0.0),

(1, 2, 3.0, 4, 5, 6L, 'Particle: None', 8.0),

(512, 2, 256.0, 2, 8, 34359738368L, 'Particle: 2', 4.0),
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3, 9.0),

(2, 4, 6.0, 8, 10, 12L, 'Particle: None*2', 16.0)
]

Asyou can see, thenodi f yRows call has modified the rows second and fifth, and it returned the number of modified
rows.

Apart of nodi f yRows, there exists another method, called nodi f yCol unm to modify specific columns as well.
Please, check sections description and description for amore in-depth description of them.

28

Tutorials

Finally, it exists another way of modifying tables that is generally more handy than the described above. This new
way uses the method updat e() (see description) of the Rowinstance that is attached to every table, so it is meant
to be used in table iterators. Look at the next example:

>>> for row in table.where(table.cols. TDCcount <= 2):
row 'energy'] = row' TDCcount']*2
r ow. updat e()

>>> print "After nodifying energy colum (where TDCcount <=2)-->", table[O0:4]
After nodifying energy colum (where TDCcount <=2)--> NestedRecArray|

(0, 1, 2.0, 0, 10, OL, 'Particle: 0', 0.0),

(1, 2, 4.0, 4, 5, 6L, 'Particle: None', 8.0),
(512, 2, 4.0, 2, 8, 34359738368L, 'Particle: 2', 4.0),
(768, 3, 6561.0, 3, 7, 51539607552L, 'Particle: 3, 9.0)

]

Note: The authors find this way of updating tables (i.e. using Row. updat e()) to be both convenient and efficient.
Please, make sure to use it extensively.

3.3.3. Modifying data in arrays

We are going now to see how to modify data in array objects. The basic way to do this is through the use of
__setitem _ specia method (see description). Let's see at how modify dataon the pr essur eChj ect array:

>>> print "Before nodif-->", pressureCbject][:]
Before nodif--> [25. 36. 49.]

>>> pressureCbject[0] = 2

>>> print "First nodif-->", pressureQbject[:]

First nodif-->[2. 36. 49.]

>>> pressureCbject[1:3] =1[2.1, 3.5]

>>> print "Second nodif-->", pressureCbject][:]
Second nodi f--> [2. 2.1 3.5]

>>> pressureQoject[::2] =[1,2]

>>> print "Third nodif-->", pressureQbject[:]

Third nodi f--> [1. 2.1 2.]

So, in general, you can use any combination of (multidimensional) extended dlici ng3 to refer to indexes that you want
to modify. See for more examples on how to use extended slicing in PyTables objects.

Similarly, with and array of strings:

>>> print "Before nodif-->", nanmeCbject][:]

Before nodif--> ['Particle: 5', 'Particle: 6', 'Particle: 7']
>>> nanme(bject[0] = 'Particle: None'

>>> print "First nodif-->", naneCbject][:]

First nodif--> ['Particle: None', 'Particle: 6', 'Particle: 7']
>>> namebject[1:3] = ['Particle: 0', 'Particle: 1']

>>> print "Second nodif-->", nanmeCbject[:]

Second nodif--> ['Particl e: None', 'Particle: 0', 'Particle: 1']
>>> nameQoject[::2] = ['Particle: -3, '"Particle: -5']

>>> print "Third nodif-->", naneCbject][:]

Third nodif--> ['Particle: -3, '"Particle: 0', 'Particle: -5']

Swith the sole exception that you cannot use negative valuesfor st ep.

29

Tutorials

3.3.4. And finally... how to delete rows from a table

WEell finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the the 5th
to 9th rows (inclusive):

>>> t abl e. r emoveRows (5, 10)
5

renoveRows(start, stop) (seedescription) deletes therows in the range (start, stop). It returns the number
of rows effectively removed.

We have reached the end of thisfirst tutorial. Don't forget to close the file when you finish:

>>> h5file.cl ose()
>>> AD

$

In Figure 3.2 you can see agraphical view of the Py Tabl es file with the datasets we have just created. In Figure 3.3
are displayed the general properties of thetable/ det ect or/ r eadout .

& WiTables 1.0.1 — O X
File Node Query Windows Tools Help

@ ESQE| x|SR

Object tree Ereadout Readout example
m m ADCcount| TDCcount| energy grid_i | grid_j | idnumber name
: 1 0 |1 2.0 0 10 o} Particle; 0
] 1 2 4.0 4 5 5] Particle: Non{_
L 3 512 2 4.0 2 8 34350738368 Particle: 2
= colum| (1 768 3 6561.0 3 7 51539607552 Particle: 3
3 e 2 4 6.0 8 10 12 Particle: None' | |
~EEnam| |l 2560 10 100000000.0 10 O 171798691840 Particle: 10
+-Edquery res||I5 2816 11 214358881.0 11 -1 188978561024 Particle: 11 [T
B 3072 12 429981696.0 12 -2 206158430208 Particle: 12 [+]
il I [4]+]

1 Farticle: -3 1

2 Particle: n] 1.0

3 Particle: -5) 2.1

2.0
T B EY Y
TR T =T T Hakia st L = 1~ AL e L it = D bkl B Tl
to developers,
The requested database is not open! I
Cpening fusrlocalfsro/pytables- 1.2 3/ examples/tutorial 1.h4. . ﬁ
OK! ~]
4

Figure 3.2. Thefinal version of the datafile for tutorial 1.

30

Tutorials

&' Table properties 7 O X

Iﬁy'stem Attributes | User Attrib| |

—Database
MName: readout
Path: /detector/readout

Type: Table

—Dataspace
Dimensions: 1
Shape: (10L,)
Data Type: Record

Compression: zlib

Mame |T'y'pe Shape
ADCcount UIntlg 1
TOCcount UInt& 1
energy Floato4 1
grid_i Int32 1
grid_] Int32 1
idnumber Inte4 1
name CharType 1
pressure Float32 1

QK I Cancel

Figure 3.3. General properties of the /detector/readout table.

3.4. Multidimensional table cells and automatic sanity
checks

Now it'stime for amore real-life example (i.e. with errorsin the code). We will create two groups that branch directly
from ther oot node, Parti cl es and Event s. Then, we will put three tables in each group. In Par ti cl es we
will put tables based onthe Par t i ¢l e descriptor and in Event s, the tables based the Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created table
/ Event s/ TEvent 3 and select some values from it, using a comprehension list.

Look at the next script (you can find it in exanpl es/ tut ori al 2. py). It appears to do al of the above, but it
contains some small bugs. Notethat thisPar t i cl e classisnot directly related to the one defined in last tutorial; this
classis simpler (note, however, the multidimensional columns called pr essur e andt enper at ur e).

We also introduce a new manner to describe a Tabl e as adictionary, as you can seein the Event description. See
description about the different kinds of descriptor objects that can be passed to thecr eat eTabl e() method.

31

Tutorials

fromnumarray inmport *
fromtables inmport *

Describe a particle record
class Particle(lsDescription):

nane = StringCol (I engt h=16) # 16-character String
| ati = IntCol () # 1 nteger

| ongi = IntCol () # 1 nteger

pressure = Fl oat 32Col (shape=(2,3)) # array of floats

(singl e-precision)
t enper ature = Fl oat Col (shape=(2, 3)) # array of doubles
(doubl e- preci si on)

Anot her way to describe the colums of a table

Event = {
"name" : StringCol (I engt h=16),
“lati" : IntCol (),
"l ongi " : IntCol (),
"pressure” : Fl oat 32Col (shape=(2, 3)),
"tenperature” : FloatCol (shape=(2,3)),
}

Open a file in "Write node

fileh = openFile("tutorial 2. h5", npde = "w')
CGet the HDF5 root group

root = fileh.root

Create the groups:

for groupnane in ("Particles", "Events"):
group = fileh.createG oup(root, groupnamne)
Now, create and fill the tables in the Particles group

gparticles = root. Particles
Create 3 new tables
for tablenane in ("TParticlel”, "TParticle2", "TParticle3"):
Create a table
table = fileh.createTabl e("/Particles", tablenanme, Particle,
"Particles: "+tabl enanme)
CGet the record object associated with the table:
particle = table.row
Fill the table with data for 257 particles
for i in xrange(257):
First, assign the values to the Particle record
particle['name'] = 'Particle: %%d % (i)
particle['lati'] =i
particle['longi'] = 10 - i
#H##H#HH##H#E Detectable errors start here. Play with then
particle[' pressure'] = array(i*arange(2*3), shape=(2,4)) # Incorrect
#particle[' pressure'] = array(i*arange(2*3), shape=(2,3)) # Correct
#HH###HH##H End of errors
particle['tenperature'] = (i**2) # Broadcasti ng
This injects the Record val ues
particl e. append()
Flush the table buffers
tabl e. fl ush()

32

Tutorials

Now Event s:
for tablenane in ("TEventl1l", "TEvent2", "TEvent3"):
Create a table in the Events group
table = fileh.createTabl e(root. Events, tablenanme, Event,
"Events: "+t abl enane)
CGet the record object associated with the table:
event = table.row
Fill the table with data on 257 events
for i in xrange(257):
First, assign the values to the Event record
event['nane'] = 'Event: 9%%d" % (i)
event[' TDCcount'] =i % (1<<8) # Correct range
#H##H####H#E Detectable errors start here. Play with then
#event [' xcoord'] = float(i**2) # Correct spelling

event[' xcoor'] = float(i**2) # Wong spelling
event[' ADCcount'] =i * 2 # Correct type
#event[' ADCcount'] = "sss" # Wong type

#HH###HH##H End of errors
event['ycoord'] = float(i)**4

This injects the Record val ues
event . append()

Flush the buffers
tabl e. flush()

Read the records fromtable "/Events/ TEvent3" and sel ect sone
tabl e = root. Events. TEvent 3
e = [p['TDCcount'] for p in table
if p['ADCcount'] < 20 and 4 <= p[' TDCcount'] < 15]
print "Last record ==>", p
print "Selected val ues ==>", e
print "Total selected records ==> ", len(e)
Finally, close the file (this also will flush all the remaining buffers)
fileh.close()

3.4.1. Shape checking

If you look at the code carefully, you'll see that it won't work. Y ou will get the following error:

$ python tutorial 2. py
Traceback (nmost recent call last):
File "tutorial 2.py", line 53, in ?
particle['pressure'] = array(i*arange(2*3), shape=(2,4)) # Incorrect
File "/usr/local/lib/python2.2/site-packages/numarray/ numarraycore. py",
line 281, in array
a. set shape(shape)
File "/usr/local/lib/python2.2/site-packages/ numarray/ generic. py",
line 530, in setshape
rai se Val ueError("New shape is not consistent with the ol d shape")
Val ueError: New shape is not consistent with the old shape

This error indicates that you are trying to assign an array with an incompatible shape to a table cell. Looking at the
source, we see that we were trying to assign an array of shape (2, 4) to apr essur e element, which was defined
with the shape (2, 3) .

33

Tutorials

In general, these kinds of operations are forbidden, with one valid exception: when you assign a scalar value to a
multidimensional column cell, all the cell elements are populated with the value of the scalar. For example:

particle['tenperature'] = (i**2) # Broadcasti ng

Thevauei ** 2 is assigned to all the elements of the t enper at ur e table cell. This capability is provided by the
numar r ay package and is known as broadcasting.

3.4.2. Field name checking

After fixing the previous error and rerunning the program, we encounter another error:

$ python tutorial 2. py
Traceback (nost recent call |ast):
File "tutorial 2.py", line 74, in ?
event[' xcoor'] = float(i**2) # Wong spelling
Fil e "src/ hdf 5Ext ensi on. pyx",
line 1812, in hdf5Extensi on. Row. setitem _
rai se KeyError, "Error setting \"%\" field.\n %" %\
KeyError: Error setting "xcoor" field.
Error was: "exceptions. KeyError: xcoor"

Thiserror indicates that we are attempting to assign avalue to anon-existent field in the event table object. By looking
carefully at the Event class attributes, we see that we misspelled the xcoor d field (wewrote xcoor instead). This
isunusual behavior for Python, as normally when you assign avalue to anon-existent instance variable, Python creates
anew variable with that name. Such a feature can be dangerous when dealing with an object that contains a fixed list
of field names. PyTables checks that the field exists and raisesaKeyEr r or if the check fails.

3.4.3. Data type checking

Finally, in order to test type checking, we will change the next line:

event. ADCcount =i * 2 # Correct type
to read:
event . ADCcount = "sss" # Wong type

This modification will cause the following TypeEr r or exception to be raised when the script is executed:

$ python tutorial 2. py

Traceback (nost recent call |ast):
File "tutorial 2. py", line 76, in ?
event[' ADCcount'] = "sss" # Wong type

Fil e "src/ hdf 5Ext ensi on. pyx",
line 1812, in hdf5Extensi on. Row. setitem _
rai se KeyError, "Error setting \"%\" field.\n %" %\
KeyError: Error setting "ADCcount” field.
Error was: "exceptions. TypeError: NA set FronPyt honScal ar: bad val ue type."

You can see the structure created with this (corrected) script in Figure 3.4. In particular, note the multidimensional
column cellsintable/ Parti cl es/ TParti cl e2.

Tutorials

& WiTables 1.0.1 — O X
File Node Query Windows Tools Help
@ @Qod| ;&K
Object tree Ed TParticle2 Particles: TParticle2
i--ﬁ‘-?‘ﬂ‘tutorial?.hS lati longi name pressure temperat
- fParticles 209 208 -198 Particle: 206[[0., 208, [[43264,
-EETParticles 210 209 -199 Particle: 20<[[0., 209., [[43681.
- EETParticla? 211 210 -200 Particle: 21C[[0., 210., [[44100, ||
ETParticlel 212 -201 Particle: 211[[0., 211., [[44521. ﬁ
e vens - s Jparicer 2131 o a15..[[5530510
~ETEvent3 = il ' T Dl
- TEvent1 EE TEvent2 Ewvents: TEvent2
+-[@Query results | @ {[apccount TDCcount name xcoord ycoord
150 298 0 Event: 149 22201.0 49288440
151 300 0 Event: 150 22500.0 50625000
152 302 0 Event: 151 22801.0 51988560
153 304 0 Event: 152 23104.0 533794815
154 306 0 Event: 153 23409.0 54798128
155 308 0 Event: 154 23716.0 56244865
156 310 0 Event: 155 24025.0 577200624
157 312 0 Event: 156 24336.0 592240893
| il [T<1+] 1] [T«
A= I o e e B e S S T
Ok
fusrllocalisro/pytables- 1.2.3/examplesitutorialz hs file closed! ||
Cpening fusrlocalfsro/pytables- 1.2 3/ examples/tutorialz ha. . "N
Okl =]
A

Figure 3.4. Table hierarchy for tutorial 2.

3.5. Exercising the Undo/Redo feature

PyTabl es hasintegrated support for undoing and/or redoing actions. Thisfunctionality letsyou put marksin specific
places of your hierarchy manipulation operations, so that you can make your HDF5 file pop back (undo) to a specific
mark (for example for inspecting how your hierarchy looked at that point). Y ou can also go forward to a more recent
marker (redo). Y ou can even do jumps to the marker you want using just one instruction as we will see shortly.

You can undo/redo al the operations that are related to object tree management, like creating, deleting, moving or
renaming nodes (or complete sub-hierarchies) inside a given object tree. Y ou can also undo/redo operations (i.e. cre-
ation, deletion or modification) of persistent node attributes. However, when actions include internal modifications
of datasets (that includes Tabl e. append, Tabl e. nodi f yRows or Tabl e. r enbveRows among others), they
cannot be undone/redone currently.

This capability can be useful in many situations, like for example when doing simulations with multiple branches.
When you have to choose a path to follow in such a situation, you can put a mark there and, if the smulation is not
going well, you can go back to that mark and start another path. Other possible application is defining coarse-grained
operations which operatein atransactional -like way, i.e. which return the database to its previous state if the operation

35

Tutorials

finds some kind of problem while running. You can probably devise many other scenarios where the Undo/Redo
feature can be useful to you 4.

3.5.1. A basic example

In this section, we are going to show the basic behavior of the Undo/Redo feature. Y ou can find the code used in
thisexampleinexanpl es/ t ut ori al 3- 1. py. A somewhat more complex example will be explained in the next
section.

First, let's create afile:

>>> jnport tables
>>> fileh = tables.openFile("tutorial 3-1. h5", "w', title="Undo/ Redo denp 1")

And now, activate the Undo/Redo feature with the method enabl eUndo (see method description) of Fi | e:
>>> fil eh. enabl eUndo()

From now on, all our actions will be logged internally by Py Tabl es. Now, we are going to create a node (in this
case an Ar r ay object):

>>> one = fileh.createArray('/', 'anarray', [3,4], "An array")
Now, mark this point:

>>> fileh. mark()
1
>>>

We have marked the current point in the sequence of actions. In addition, the mar k() method has returned the iden-
tifier assigned to this new mark, that is 1 (mark #0 is reserved for the implicit mark at the beginning of the action log).
In the next section we will see that you can also assign a name to a mark (see method description for more info on
mar k()). Now, we are going to create another array:

>>> anot her = fileh.createArray('/', 'anotherarray', [4,5], "Another array")

Right. Now, we can start doing funny things. Let's say that we want to pop back to the previous mark (that whose
valuewas 1, do you remember?). Let's introduce the undo() method (see method description):

>>> fil eh.undo()
>>>

Fine, what do you think it happened? Well, let's have alook at the object tree:

>>> print fileh

do-undol. h5 (File) 'Undo/ Redo denp 1'
Last modif.: "Fri Mar 4 20:22:28 2005
oj ect Tree:

/ (Root G oup) 'Undo/ Redo denp 1'
/[anarray (Array(2,)) 'An array'

>>>

Y ou can even hide nodes temporarily. Will you be able to find out how?

36

Tutorials

What happened with the/ anot her ar r ay node we've just created? Y ou guessit, it has disappeared because it was
created after the mark 1. If you are curious enough you may well ask where it has gone. Well, it has not been deleted
completely; it has been just moved into a special, hidden, group of PyTables that renders it invisible and waiting for
a chance to be reborn.

Now, unwind once more, and look at the object tree:

>>> fil eh.undo()

>>> print fileh

do-undol. h5 (File) 'Undo/Redo denp 1'
Last modif.: '"Fri Mar 4 20:22:28 2005
oj ect Tree:

/ (Root Group) 'Undo/ Redo denop 1'

>>>

Oops, / anar r ay has disappeared as well!l. Don't worry, it will revisit us very shortly. So, you might be somewhat
lost right now; in which mark are we?. Let's ask the get Cur r ent Mar k() method (see method description) in the
file handler:

>>> print fileh.getCurrent Mark()
0

So we are at mark #0, remember? Mark #0 is an implicit mark that is created when you start the log of actions when
calingFi | e. enabl eUndo() . Fine, but you are missing your too-young-to-die arrays. What can we do about that?
Fil e. redo() (seemethod description) to the rescue:

>>> fileh.redo()

>>> print fileh

do-undol. h5 (File) 'Undo/ Redo denp 1'
Last nmodif.: 'Fri Mar 4 20:22:28 2005
oj ect Tree:

/ (Root G oup) 'Undo/ Redo denp 1'
[anarray (Array(2,)) 'An array’

>>>
Great! The/ anar r ay array has come into life again. Just check that it is alive and well:

>>> fileh.root.anarray.read()
[3, 4]

>>> fileh.root.anarray.title
"An array'

>>>

WEell, it looks pretty similar than in its previous life; what's more, it is exactly the same object!:

>>> fileh.root.anarray i s one
Tr ue

It just was moved to the the hidden group and back again, but that's all! That's kind of fun, so we are going to do the
samewith/ anot her arr ay:

>>> fileh.redo()
>>> print fileh

37

Tutorials

do-undol. h5 (File) 'Undo/ Redo denp 1'
Last nmodif.: 'Fri Mar 4 20:22:28 2005
oj ect Tree:

/ (Root G oup) 'Undo/ Redo denp 1'
[anarray (Array(2,)) 'An array’

[anot herarray (Array(2,)) 'Another array'

>>>

Welcome back, / anot her ar r ay! Just a couple of sanity checks:
>>> assert fileh.root.anotherarray.read() ==
>>> assert fileh.root.anotherarray.title ==

>>> fileh.root.anotherarray is another
True

[4, 9]
" Anot her array"

Nice, you managed to turn your data back into life. Congratulations! But wait, do not forget to close your action log

when you don't need this feature anymore;

>>> fil eh. di sabl eUndo()

That will allow you to continue working with your data without actually requiring Py Tabl es to keep track of all
your actions, and more importantly, allowing your objectsto die completely if they haveto, not requiring to keep them
anywhere, and hence saving process time and space in your database file.

3.5.2. A more complete example

Now, time for a somewhat more sophisticated demonstration of the Undo/Redo feature. In it, several marks will be set
in different parts of the code flow and we will see how to jump between these marks with just one method call. Y ou
can find the code used in this example in exanpl es/ t ut ori al 3- 2. py

Let'sintroduce the first part of the code:
i mport tables

Create an HDF5 file

fileh = tables.openFile('tutorial3-2.h5", '"w, title=" Undo/ Redo denp 2')

#o-Fxoxkx_xkx_kx_xx_*x*_ anabl e undo/r
fil eh. enabl eUndo()

Start undoabl e operations
fileh.createArray('/', 'otherarrayl', [3,4],
fileh.createGoup('/"', "agroup', 'Goup 1')
Create a '"first' mark

fileh.mark(' first')
fileh.createArray('/agroup', 'otherarray2',
fileh.createGoup('/agroup', 'agroup?2', 'Go
Create a 'second’ nark

fileh. mark(' second')
fileh.createArray('/agroup/agroup2', 'othera
Create a "third mark

fileh.mark('third")

fileh.createArray('/', 'otherarray4', [6,7],

edo |Og _kk_kk_kk_Kkk_kk_kk_ Kk _!

" Anot her array 1')

[4,5], 'Another array 2')
up 2')

rray3', [5,6], 'Another array 3')

" Anot her array 4')

38

Tutorials

fileh.createArray('/agroup', 'otherarray5 , [7,8], 'Another array 5')
Y ou can see how we have set several marksinterspersed in the code flow, representing different states of the database.

Also, note that we have assigned names to these marks, namely ' first',' second' and' third'.
Now, start doing some jumps back and forth in the states of the database:

Now go to mark 'first'
fileh.goto('first')

assert '/otherarrayl' in fileh

assert '/agroup' in fileh

assert '/agroup/agroup2' not in fileh

assert '/agroup/otherarray2' not in fileh
assert '/agroup/agroup2/otherarray3' not in fileh
assert '/otherarray4' not in fileh

assert '/agroup/otherarray5' not in fileh

G to mark 'third

fileh.goto('third")

assert '/otherarrayl' in fileh

assert '/agroup' in fileh

assert '/agroup/agroup2' in fileh

assert '/agroup/otherarray2' in fileh

assert '/agroup/agroup2/otherarray3' in fileh
assert '/otherarray4' not in fileh

assert '/agroup/otherarray5' not in fileh

Now go to nark 'second'

fileh.goto('second')

assert '/otherarrayl' in fileh

assert '/agroup' in fileh

assert '/agroup/agroup2' in fileh

assert '/agroup/otherarray2' in fileh

assert '/agroup/agroup2/otherarray3' not in fileh
assert '/otherarray4' not in fileh

assert '/agroup/otherarray5' not in fileh

WEell, the code above shows how easy isto jump to a certain mark in the database by using the got o() method (see
method description).

There are also a couple of implicit marks for going to the beginning or the end of the saved states: 0 and -1. Going to
mark #0 means go to the beginning of the saved actions, that is, when method f i | eh. enabl eUndo() wascalled.
Going to mark #-1 means go to the last recorded action, that is the last action in the code flow.

Let's see what happens when going to the end of the action log:

Go to the end
fileh.goto(-1)

assert '/otherarrayl' in fileh

assert '/agroup' in fileh

assert '/agroup/agroup2' in fileh

assert '/agroup/otherarray2' in fileh

assert '/agroup/agroup2/otherarray3' in fileh
assert '/otherarray4' in fileh

assert '/agroup/otherarray5 in fileh

Check that objects have cone back to life in a sane state

assert

fileh.root.otherarrayl. read()

[3.4]

39

Tutorials

assert fileh.root.agroup.otherarray2.read() == [4,5]

assert fileh.root.agroup. agroup2.otherarray3.read() == [5, 6]
assert fileh.root.otherarray4.read() == [6, 7]

assert fileh.root.agroup.otherarray5.read() == [7, 8]

Try yourself going to the beginning of the action log (remember, the mark #0) and check the contents of the object tree.
We have nearly finished this demonstration. As always, do not forget to close the action log as well as the database:

H -k xx_xx_xx_xx_**x_ djsabl e undo/redo |09 _kk_kk_ Kk _Khhk_Kkk_Kkk_Kk_!'
fileh.di sabl eUndo()

Close the file
fileh.close()

Y ou might want to check other examples on Undo/Redo feature that appear in exanpl es/ undo- r edo. py.

3.6. Using enumerated types

Beginning from version 1.1, PyTables supportsthe handling of enumerated types. Thosetypesare defined by providing
an exhaustive set or list of possible, named values for a variable of that type. Enumerated variables of the same type
are usually compared between them for equality and sometimes for order, but are not usually operated upon.

Enumerated values have an associated name and concrete value. Every nameis unique and so are concrete values. An
enumerated variable always takes the concrete value, not its name. Usually, the concrete valueis not used directly, and
frequently it is entirely irrelevant. For the same reason, an enumerated variable is not usually compared with concrete
values out of its enumerated type. For that kind of use, standard variables and constants are more adequate.

PyTables provides the Enum(see 4.17.4) class to provide support for enumerated types. Each instance of Enumisan
enumerated type (or enumeration). For example, let us create an enumeration of col ors”:

>>> jnmport tables

>>> colorList = ['red', 'green', 'blue', "white', 'black']
>>> col ors = tabl es. Enun{col orLi st)
>>>

Here we used asimple list giving the names of enumerated values, but we left the choice of concrete values up to the
Enumclass. Let us see the enumerated pairs to check those values:

>>> print "Colors:", [v for v in col ors]
Colors: [('blue', 2), ('"black', 4), ('white', 3), ('green', 1), ('red, 0)]
>>>

Names have been given automatic integer concrete values. We can iterate over the values in an enumeration, but we
will usually be more interested in accessing single values. We can get the concrete value associated with a name by
accessing it as an attribute or as an item (the later can be useful for names not resembling Python identifiers):

>>> print "Value of 'red" and 'white':", (colors.red, colors.white)
Val ue of 'red' and 'white': (0, 3)

>>> print "Value of 'yellow :", colors.yellow

Val ue of 'vyell ow :

Traceback (nost recent call |ast):

SAll these examples can befound in exanpl es/ enum py.

40

Tutorials

File "<stdin>", line 1, in ?
File "enum py", line 222, in _ getattr__

AttributeError: no enunerated value with that nanme: 'yellow
>>>

>>> print "Value of 'red" and 'white':", (colors['red'], colors['white'])
Val ue of 'red'" and 'white': (0, 3)
>>> print "Value of 'yellow :", colors['yellow]
Val ue of 'vyellow :
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
File "enum py", line 181, in _ getitem _
KeyError: "no enunerated value with that name: 'yellow "
>>>

See how accessing avaluethat is not in the enumeration rai ses the appropriate exception. We can also do the opposite
action and get the name that matches a concrete value by usingthe _cal | __ () method of Enum

>>> print "Name of value %:" % colors.red, colors(colors.red)
Nanme of value 0: red

>>> print "Name of value 1234:", col ors(1234)

Nanme of val ue 1234:

Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
File "enum py", line 311, in _ call__

Val ueError: no enunerated value with that concrete val ue: 1234
>>>

Y ou can see what we made as using the enumerated type to convert a concrete value into a name in the enumeration.
Of course, values out of the enumeration can not be converted.

3.6.1. Enumerated columns

Columns of an enumerated type can be declared by using the EnuntCol (see 4.16.2) class. To see how thisworks, let
us open anew PyTablesfile and create a table to collect the smulated results of a probabilistic experiment. In it, we
have abag full of colored balls; we take aball out and annotate the time of extraction and the color of the ball.

>>> h5f = tables.openFile('enumh5', 'w)
>>>

>>> cl ass Bal | Ext (tabl es. |sDescription):
bal | Time = tables. Ti me32Col ()
bal | Col or = tabl es. EnuntCol (col ors, 'black', dtype='" U nt8")

>>> tbl = h5f. createTabl e(

C. /', "extractions', BallExt, title="Random ball extractions")
>>>

Wedeclared thebal | Col or columnto be of the enumerated typecol or s, with adefault value of bl ack. Wealso

stated that we are going to store concrete values as unsigned 8-bit integer val ues®.

L et us use some random valuesto fill the table:

>>> jnport tine

8in fact, only integer values are supported right now, but this may change in the future.

41

Tutorials

>>> jnport random

>>> now = tinme.tinme()

>>> row = thl.row

>>> for i in range(10):
row ' ball Time'] = now + i
row ' ball Color'] = col ors[random choi ce(colorList)] # notice this
row. append()

>>>
Notice how we used the __getiten()__ call of col or s to get the concrete value to storein bal | Col or . You
should know that this way of appending values to a table does automatically check for the validity on enumerated

values. For instance:

>>> row ' bal | Tinme'] = now + 42
>>> rowf ' ball Color'] = 1234

Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
Fil e "hdf 5Ext ensi on. pyx", |ine 2936, in hdf5Extensi on. Row. setitem _
File "enumpy", line 311, in _call_

Val ueError: no enunerated value with that concrete val ue: 1234
>>>

But take care that this check is only performed here and not in other methods such as t bl . append() or
t bl . nodi f yRows () . Now, after flushing the table we can see the results of the insertions:

>>> thbl.flush()
>>>
>>> COMMVENT(" Now print them"™)
>>> for r in thl:
bal | Time = r['bal |l Ti ne']
bal | Col or = colors(r['ballColor']) # notice this
print "Ball extracted on % is of color %." % (ballTine, ball Col or)

of color white.
of col or red.

of col or bl ue.
of color white.
of color white.
of col or green.
of col or bl ack.
of col or red.

of color white.
of color white.

Bal | extracted on 1116501220
Bal | extracted on 1116501221
Bal | extracted on 1116501222
Bal | extracted on 1116501223
Bal | extracted on 1116501224
Bal | extracted on 1116501225
Bal | extracted on 1116501226
Bal | extracted on 1116501227
Bal | extracted on 1116501228
Bal | extracted on 1116501229
>>>

mn nnunuonnnnuonuon

Asalast note, you may be wondering how to have access to the enumeration associated with bal | Col or oncethe
fileisclosed and reopened. You cancal t bl . get Enun{ ' bal | Col or') (see4.6.2) to get the enumeration back.

3.6.2. Enumerated arrays

EArray and VLAr r ay leaves can aso be declared to store enumerated values by means of the EnumAt om (see
4.16.3) class, which works very much like EnuntCol for tables. Also, Ar r ay leaves can be used to open native HDF
enumerated arrays.

42

Tutorials

Let us create asample EAr r ay containing ranges of working days as bidimensional values:

>>> wor ki ngbays = {'Mon': 1, 'Tue': 2, "Wed': 3, '"Thu': 4, "Fri': 5}

>>> dayRange = tabl es. EnunAt om(wor ki ngDays, shape=(0, 2), flavor='Tuple')
>>> earr = h5f.createEArray('/', 'days', dayRange, title="Wrking day
ranges")

>>>

Nothing surprising, except for a pair of details. In the first place, we use a dictionary instead of a list to explicitly
set concrete values in the enumeration. In the second place, there is no explicit Enuminstance created! Instead, the
dictionary is passed asthe first argument to the constructor of EnunmAt om If the constructor getsalist or adictionary
instead of an enumeration, it automatically builds the enumeration from it.

Now let us feed some data to the array:

>>> wdays = earr. get Enun()

>>> earr. append([(wdays. Mon, wdays. Fri), (wdays.Wed, wdays.Fri)])
>>> earr. append([(wdays. Mon, 1234)])

>>>

Please note that, since we had no explicit Enuminstance, we were forced to use get Enun() (see 4.12.2) to get it
from the array (we could also have used day Range. enunj. Also note that we were able to append an invalid value
(1234). Array methods do not check the validity of enumerated values.

Finally, we will print the contents of the array:

>>> for (dl, d2) in earr:
print "From % to % (% days)." % (wdays(dl), wdays(d2), d2-di+1)

From Mon to Fri (5 days).
From Wed to Fri (3 days).

Traceback (nmost recent call last):
File "<stdin>", line 2, in ?
File "enum py", line 311, in _ call__

Val ueError: no enunerated value with that concrete val ue: 1234L
>>>

That was an example of operating on concrete values. It also showed how the value-to-name conversion failed because
of the value not belonging to the enumeration.

Now we will close and remove the file, and this little tutorial on enumerated typesis done:

>>> | nmport o0s

>>> h5f. cl ose()

>>> 0s.renove(' enum h5')
>>>

3.7. Dealing with nested structures in tables

PyTables supports the handling of nested structures (or nested datatypes, as you prefer) in table objects, allowing you
to define arbitrarily nested columns.

An example will clarify what this means. Let's suppose that you want to group your datain pieces of information that
are more related than others pieces in your table, So you may want to tie them up together in order to have your table
better structured but also be able to retrieve and deal with these groups more easily.

43

Tutorials

Y ou can create such a nested substructures by just nesting subclasses of | sDescri pti on. Let's see one example
(okay, it'sahit silly, but will serve for demonstration purposes):

class Info(lsDescription):
"""A sub-structure of Test
_v_pos = 2 # The position in the whole structure
name = StringCol (10)
val ue = Fl oat 64Col (pos=0)

colors = Enun(['red', 'green', 'blue']) # An enunerated type

cl ass NestedDescr (| sDescription):
"""A description that has several nested col ums
col or = EnunCol (col ors, 'red', dtype=' U nt32', indexed=1) # indexed
col um
infol = Info()
class info2(lsDescription):
_v_pos =1
name = StringCol (10)
val ue = Fl oat 64Col (pos=0)
class info3(lsDescription):
X Fl oat Col (1)
\ Ul nt 8Col (1)

Theroot classis Nest edDescr and bothi nf 01 and i nf 02 are substructures of it. Note how i nf 01 is actually
an instance of the class | nf o that was defined prior to Nest edDescr . Also, there is a third substructure, namely
i nf 03 that hangs from the substructure i nf 02. You can aso define positions of substructures in the containing
object by declaring the special class attribute _v_pos.

3.7.1. Nested table creation

Now that we have defined our nested structure, let's create a nested table, that is a table with columns that contain
other subcolumns.

>>> fromtables inport *

>>> fileh = openFil e("nested-tut.h5", "w')

>>> table = fileh.createTabl e(fileh.root, 'table', NestedDescr)
>>>

Done! Now, we have to feed the table with some values. The problem is how we are going to reference to the nested
fields. That'seasy, justusea' /' character to separate names in different nested levels. Look at this:

>>> for i in range(10):
row'color'] = colors[['red, 'green', 'Dblue'][i%3]]
row 'infol/nane'] = "nanel-%" %i
row 'info2/nane'] = "nane2-%" %i

row'info2/info3/y'] = i
Al the rest will be filled with defaults
row. append()

>>> table.flush()
>>> tabl e. nrows
10L

>>>

Tutorials

Yousee?Inorder tofill thefieldslocated in the substructures, wejust need to specify itsfull pathin thetable hierarchy.

3.7.2. Reading nested tables: introducing NestedRecArray ob-
jects

Now, what happens if we want to read the table? Which data container will be used to keep the data? Well, it'sworth
trying it:

>>> nra = table[::4]

>>> print nra

Nest edRecArr ay|

(((2.0, 0), 'nane2-0', 0.0), ('nanmel-0', 0.0), OL),
(((1.0, 4), 'nane2-4', 0.0), ('nanel-4', 0.0), 1L),
(((2.0, 8), 'nane2-8, 0.0), ('nanel-8', 0.0), 2L)
]

>>>

We have read one row for each four in the table, giving aresult of three rows. What about the container? Well, we can
seethat it is a new mysterious object known as Nest edRecAr r ay. If we ask for more info on that:

>>> type(nra)
<cl ass 'tabl es. nest edrecords. Nest edRecArray"' >

we seethat it isan instance of the class Nest edRecAr r ay that livesin the module nest edr ecor ds of t abl es
package. Nest edRecAr r ay isactually asubclassof the Rec Ar r ay object of ther ecor ds module of nunmar r ay
package. Y ou can see more info about Nest edRecAr r ay object in Appendix B.

You can make use of the above object in many different ways. For example, you can use it to append new data to
the existing table object:

>>> t abl e. append(nra)
>>> t abl e. nrows

13L

>>>

Or, to create new tables:

>>> table2 = fileh.createTable(fileh.root, 'table2', nra)
>>> tabl e2[:]

array(

[(((2.0, O), 'nanme2-0', 0.0), ('namel-0', 0.0), OL),

(((2.0, 4), 'nane2-4', 0.0), ('nanel-4', 0.0), 1L),

(((2.0, 8), 'nane2-8, 0.0), ('nanel-8, 0.0), 2L)],

descr=[('info2', [("info3", [('x", '"1f8), ('y', "1ul')]), (' name',
'1a10'), ('value', '1f8')]), ('infol', [('nanme', '1lall'), ('value',
*1f8')]), (‘color', '1u4')], shape=3)

Finally, we can select nested values that fulfill some condition:

>>> nanes = [x['info2/name'] for x in table if x['color'] == colors.red]
>>> nanes

['nane2-0', 'nane2-3', 'nanme2-6', 'name2-9', 'nane2-0']

>>>

Note that the row accessor does not provide the natural naming feature, so you have to completely specify the path
of your desired columnsin order to reach them.

45

Tutorials

3.7.3. Using Cols accessor

We can use the col s attribute object (see 4.7) of the table so as to quickly access the info located in the interesting
substructures:

>>> tabl e. col s.info2[1:5]

array(

[((1.0, 1), 'name2-1', 0.0),

((1.0, 2), 'nane2-2', 0.0),

((1.0, 3), 'nane2-3', 0.0),

((2.0, 4), 'nane2-4', 0.0)],

descr=[("info3", [('x', "1f8"), ('y', "1ul')]), ('name', '1all'),
('value', '"1f8")],

shape=4)

>>>

Here, we have made use of the cols accessor to access to the info2 substructure and an slice operation to get access
to the subset of data we were interested in; you probably have recognized the natural naming approach here. We can
continue and ask for datain info3 substructure:

>>> tabl e.col s.info2.info3[1:5]
array(

[(1.0, 1),

(1.0, 2),

(1.0, 3),

(1.0, 4],

descr=[('x", "1f8"), ('y', '"1lul')],
shape=4)

>>>

You canasousethe f _col method to get a handler for a column:

>>> table.cols. f_col ('info2")
/table.cols.info2 (Cols), 3 colums
i nfo3 (Cols(1,), Description)
nane (Columm(1,), CharType)
val ue (Columm(1,), Float64)

Here, you've got another Col s aobject handler because info2 was a nested column. If you select a non-nested column,
you will get aregular Col unm instance:

>>> ycol = table.cols. f _col ("info2/info3/y")

>>> ycol

/table.cols.info2.info3.y (Colum(1,), U nt8, idx=None)
>>>

Tosum up, thecol s accessor isavery handy and powerful way to access datain your nested tables. Be sure of using
it, specially when doing interactive work.

3.7.4. Accessing meta-information of nested tables

Tables have an attribute called descr i pt i on which pointsto aninstance of theDescr i pti on class (see 4.8) and
is useful to discover different meta-information about table data.

Let's see how it looks like:

46

Tutorials

>>> tabl e. descri ption
{

"info2": {

"info3": {
"x": FloatCol (dflt=1, shape=1, itensize=8, pos=0, indexed=Fal se),

y": U nt8Col (dflt=1, shape=1, pos=1, indexed=Fal se)},
"name": StringCol (I engt h=10, dflt=None, shape=1, pos=1, indexed=Fal se),
"val ue": Fl oat 64Col (dflt=0.0, shape=1, pos=2, indexed=Fal se)},
nfol": {
"nanme": StringCol (I engt h=10, dflt=None, shape=1, pos=0, indexed=Fal se),
"val ue": Fl oat 64Col (dflt=0.0, shape=1, pos=1, indexed=Fal se)},

"col or": EnunCol (Enum({'blue': 2, 'green': 1, 'red : 0}), 'red',

dtype=' U nt 32", shape=1, pos=2, indexed=1)}
>>>

Asyou can see, it provides very useful information on both the formats and the structure of the columnsin your table.
This object also provides a natural naming approach to access to subcolumns metadata:

>>> t abl e. descri ption.infol

{
"name": StringCol (I engt h=10, dflt=None, shape=1, pos=0, indexed=Fal se),
"val ue": Fl oat 64Col (dflt=0.0, shape=1, pos=1, indexed=Fal se)}

>>> tabl e. descri ption.info2.info3

{
"x": FloatCol (dflt=1, shape=1, itensize=8, pos=0, indexed=False),
y": U nt8Col (dflt=1, shape=1, pos=1, indexed=Fal se)}

>>>
There are other variables that can be interesting for you:

>>> tabl e. description. _v_nest edNanes

[("info2', [("info3", ['X', 'y']), '"name', 'value']), ('infol',
['nanme', 'value']), 'color']

>>> tabl e.description.infol. v _nestedNanmes

['nanme', 'value']

>>>

_Vv_nest edNanes provides the names of the columns as well as its structure. Y ou can see that there are the same
attributes for the different levels of the Descri pt i on object, because the levels are also Descri pt i on objects
themselves.

Thereisaspecial attribute, called _v_nest edDescr that can be useful to create Nest edRecAr r ays objects that
imitate the structure of the table (or a subtable!):

>>> fromtables inport nestedrecords

>>> tabl e. descri ption. _v_nest edDescr

[("info2', [("info3", [('x', "2f8), ('y', "1ul')]), ('pnane', '1lall'),
("value', "1f8)]), ("infol', [('name', '1al0'), ('value', '1f8')]),
("color', '"1lud')]

>>> nest edr ecords. array(None, descr=tabl e.description._v_nestedDescr)

array(

[1,

descr=[('info2', [("info3", [('x', "1f8), ('y', '"1ul')]), ('nane',
'1a10'), ('value', '1f8)]), ('infol', [('name', '1al0'), ('value'

47

Tutorials

'1f8')]),('color', '"1lud4')], shape=0)
>>> nest edr ecords. array(None, descr=tabl e.description.info2. v_nestedDescr)
array(
[1,
descr=[("info3", [('x", "1f8), ('y', "1ul')]), ('name', '1all'),
("value', '1f8')], shape=0)
>>>

L ook the Section 4.8 for the complete listing of attributes.

Finally, thereis a specid iterator of theDescri pti onclass, caled f wal k that isableto return you the different
columns of thetable:

>>> for coldescr in table.description._f_wal k():
print "colum-->", col descr

colum--> Description([('"info2', [('info3", [('Xx', "1f8"), ('y',
‘1ul')]), ('nane', '1al0'), ('value', '1f8')]), ('infol', [('nane',
'1a10'), ('value', '1f8')]), ('color', '1lu4)])
col um--> EnunCol (Enum({'blue': 2, 'green': 1, 'red': 0}), 'red
dtype=' U nt 32', shape=1, pos=2, indexed=1)
colum--> Description([('"info3", [('x", "1f8"), ('y', '1lul')]),

("nanme', '1al0'), ('value', '1f8')])
col um--> StringCol (I engt h=10, dflt=None, shape=1, pos=1, indexed=Fal se)
col um--> Fl oat 64Col (df I t=0. 0, shape=1, pos=2, indexed=Fal se)
col um--> Description([('nane', '1al0'), ('value', '1f8')])
col um--> StringCol (I engt h=10, dflt=None, shape=1, pos=0, indexed=Fal se)
col um--> Fl oat 64Col (df I t=0. 0, shape=1, pos=1, indexed=Fal se)
col um--> Description([('x", "1f8"), ('y', '1lul')])
col um--> Fl oat Col (dflt=1, shape=1, itensize=8, pos=0, indexed=Fal se)
col um--> U nt8Col (dflt=1, shape=1, pos=1, indexed=Fal se)
>>>

WEell, thisisthe end of thistutorial. As always, do not forget to close your files:

>>> fileh.close()
>>>

Finally, you may want to have alook at your resulting data file:

$ ptdunp -d nested-tut.h5
/' (Root Gr oup)
/table (Table(13L,))

Dat a dunp:

[0] (((2.0, O), 'nane2-0', 0.0), ('nanmel-0', 0.0), OL)
[1] (((2.0, 1), 'nane2-1', 0.0), ('nanel-1', 0.0), 1L)
[2] (((2.0, 2), 'nane2-2', 0.0), ('nanmel-2', 0.0), 2L)
[3] (((2.0, 3), 'nane2-3", 0.0), ('nanmel-3', 0.0), OL)
[4] (((2.0, 4), 'nane2-4', 0.0), ('nanel-4', 0.0), 1L)
[5] (((2.0, 5), 'nane2-5', 0.0), ('nanmel-5', 0.0), 2L)
[6] (((2.0, 6), 'nane2-6', 0.0), ('nanmel-6', 0.0), OL)
[7] (((2.0, 7), 'nane2-7', 0.0), ('nanmel-7', 0.0), 1L)
[8 (((1.0, 8), 'nane2-8, 0.0), ('nanel-8 , 0.0), 2L)
[9] (((2.0, 9), 'nane2-9', 0.0), ('nanel-9', 0.0), OL)
[10] (((1.0, O), 'nane2-0', 0.0), ('nanel-0', 0.0), OL)

48

Tutorials

[11] (((1.0, 4), 'nanme2-4', 0.0), ('nanmel-4', 0.0), 1L)
[12] (((1.0, 8), 'nanme2-8', 0.0), ('namel-8', 0.0), 2L)
/table2 (Table(3L,)) "'

Dat a dunp:
[0] (((1.0, O), 'name2-0', 0.0), ('nanmel-0', 0.0), OL)
[1] (((2.0, 4), 'name2-4', 0.0), ('nanel-4', 0.0), 1L)
[2] (((1.0, 8), 'name2-8, 0.0), ('nanel-8, 0.0), 2L)

Most of the code in this section isaso availablein exanpl es/ nest ed-t ut . py.

Allinall, PyTabl es provides a quite comprehensive tool set to cope with nested structures and address your classi-
fication needs. However, caveat emptor, be sure to not nest your data too deeply or you will get inevitably messed
interpreting too intertwined lists, tuples and description objects.

3.8. Other examples in PyTables distribution

Feel free to examine the rest of examples in directory exanpl es/, and try to understand them. We have written
several practical sample scripts to give you an idea of the Py Tabl es capabilities, its way of dealing with HDF5
objects, and how it can be used in the real world.

49

Chapter 4. Library Reference

PyTabl es implements several classes to represent the different nodes in the object tree. They are named Fi | e,
G oup, Leaf , Tabl e, Array, CArray, EArray, VLAr r ay and Unl npl enent ed. Another one allowsthe user
to complement the information on these different objects; its nameis At t ri but eSet . Finaly, another important
classcalled | sDescri pti on allowsto build aTabl e record description by declaring a subclass of it. Many other
classes are defined in Py Tabl es, but they can be regarded as helpers whose goal is mainly to declare the data type
properties of the different first class objects and will be described at the end of this chapter as well.

An important function, called openFi | e isresponsible to create, open or append to files. In addition, a few utility
functions are defined to guess if the user supplied file is a PyTables or HDF5 file. These are called i sPyTabl es-
Fi 1 e() andi sHDF5Fi | e() , respectively. Finally, thereexistsafunction calledwhi chLi bVer si on thatinforms
about the versions of the underlying C libraries (for example, the HDF5 or the ZI i b).

Let's start discussing the first-level variables and functions available to the user, then the different classes defined in
PyTabl es.

4.1. tables variables and functions
4.1.1. Global variables

__version__ The Py Tabl es version number.

hdf5Version The underlying HDF5 library version number.

4.1.2. Global functions

copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)
An easy way of copying one PyTablesfile to another.

This function allows you to copy an existing PyTablesfile named sr cf i | enane to another filecaled dst fi | e-
nanme. The source file must exist and be readable. The destination file can be overwritten in place if existing by as-
serting theover wr i t e argument.

This function is a shorthand for the Fi | e. copyFi | e() method, which acts on an already opened file. kwar gs
takes keyword arguments used to customize the copying process. See the documentation of Fi | e. copyFi | e()
(see description) for a description of those arguments.

isHDF5File(filename)
Determine whether afileisin the HDF5 format.

When successful, it returns atrue valueif thefile isan HDF5 file, false otherwise. If there were problems identifying
thefile, an HDF5Ext Er r or israised.

isPyTablesFile(filename)

Determine whether afileisin the PyTables format.

When successful, it returns a true value if the file is a PyTables file, false otherwise. The true value is the format
version string of thefile. If there were problemsidentifying the file, an HDF5Ext Er r or israised.

50

Library Reference

openFile(filename, mode="r", title=", trMap={}, rootUEP="/", filters=None)
Open aPyTabl es (or generic HDF5) file and returnsaFi | e object.

filename
The name of the file (supports environment variable expansion). It is suggested that it should haveany of " . h5",
".hdf" or". hdf 5" extensions, although thisis not mandatory.

mode
The mode to open thefile. It can be one of the following:

r
read-only; no data can be modified.

w
write; anew fileis created (an existing file with the same name would be deleted).

a
append; an existing file is opened for reading and writing, and if the file does not exist it is created.

r+
issimilar to 'a, but the file must already exist.

title
If filename is new, this will set atitle for the root group in thisfile. If filename is not new, the title will be read
from disk, and thiswill not have any effect.

trMap
A dictionary to map names in the object tree Python namespace into different HDF5 names in file namespace.
The keys are the Python names, while the values are the HDF5 names. Thisis useful when you need to use HDF5
node names with invalid or reserved words in Python.

rootUEP
The root User Entry Point. Thisis a group in the HDF5 hierarchy which will be taken as the starting point to
create the object tree. The group has to be named after its HDF5 name and can be a path. If it does not exist,
an HDF5Ext Er r or exception is issued. Use this if you do not want to build the entire object tree, but rather
only asubtree of it.

filters
Aninstance of the Fi | t er s class (see Section 4.17.1) that provides information about the desired 1/0O filters
applicable to the leaves that hang directly from root (unless other filters properties are specified for these leaves).
Besides, if you do not specify filter properties for its child groups, they will inherit these ones. So, if you open a
new filewith this parameter set, all the leaves that would be created in the file will recursively inherit thisfiltering
properties (again, if you don't prevent that from happening by specifying other filterson the child groupsor leaves).

nodeCacheSize
The number of unreferenced nodes to be kept in memory. Least recently used nodes are unloaded from memory
when this number of loaded nodes is reached. To load a node again, simply access it as usual. Nodes referenced
by user variables are not taken into account nor unloaded.

whichLibVersion(name)
Get version information about a C library.

If thelibrary indicated by nane is available, thisfunction returns a 3-tuple containing the major library version as an
integer, its full version as a string, and the version date as a string. If the library is not available, None isreturned.

51

Library Reference

The currently supported library names are hdf 5, zl i b, | zo, ucl (in process of being deprecated) and bzi p2. If
another nameisgiven, aVal ueEr r or israised.

4.2. The File class

Aninstance of this classisreturned when aPyTablesfileisopened withtheopenFi | e() function. It offers methods
to manipulate (create, rename, delete...) nodes and handle their attributes, as well as methods to traverse the object
tree. The user entry point to the object tree attached to the HDF5 file is represented in the r oot UEP attribute. Other
attributes are available.

Fi | e objects support an Undo/Redo mechanism which can be enabled with the enabl eUndo() method. Once the
Undo/Redo mechanismis enabled, explicit marks (with an optional unique name) can be set on the state of the database
using the mar k() method. There are two implicit marks which are always available: theinitial mark (0) and the final
mark (-1). Both the identifier of a mark and its name can be used in undo and redo operations.

Hierarchy manipulation operations (node creation, movement and removal) and attribute handling operations (setting
and deleting) made after a mark can be undone by using the undo() method, which returns the database to the state
of apast mark. If undo(') isnot followed by operations that modify the hierarchy or attributes, ther edo() method
can be used to return the database to the state of afuture mark. Else, future states of the database are forgotten.

Note that data handling operations can not be undone nor redone by now. Also, hierarchy manipulation operations on
nodes that do not support the Undo/Redo mechanism issue an UndoRedoWar ni ng before changing the database.

The Undo/Redo mechanism is persistent between sessions and can only be disabled by calling thedi sabl eUndo()
method.

4.2.1. File instance variables

filename The name of the opened file.

format_version The PyTables version number of thisfile.

isopen Trueif the underlying fileis open, false otherwise.

mode The mode in which the file was opened.

title Thetitle of the root group in thefile.

trMap A dictionary that maps node names between PyTables and HDF5 domain names.

Itsinitial valuesare set fromthet r Map parameter passed totheopenFi | e func-
tion. Y ou cannot change its contents after afile is opened.

rootUEP The UEP (user entry point) group in the file (see description).

filters Default filter properties for the root group (see 4.17.1).

root Theroot of the object tree hierarchy (a Gr oup instance).

objects A dictionary which maps path names to objects, for every visible nodein the tree

(deprecated, see note below).

groups A dictionary which maps path names to objects, for every visible group in the tree
(deprecated, see note below).

leaves A dictionary which maps path names to objects, for every visible leaf in the tree
(deprecated, see note below).

52

Library Reference

Note: From PyTables 1.2 on, the dictionaries obj ect s, gr oups and | eaves are just instances of objects faking
the old functionality. Actually, they internally use Fi | e. get Node() (seedescription) and Fi | e. wal knodes()
(see description), which are recommended instead.

4.2.2. File methods

createGroup(where, name, title=", filters=None, createparents=False)
Create a new Group instance with name name in where location.

where
The parent group where the new group will hang from. where parameter can be a path string (for example "/
I evel 1/ gr oup5"), or another Group instance.

name
The name of the new group.

title
A description for this group.

filters
Aninstance of the Fi | t er s class (see Section 4.17.1) that provides information about the desired 1/0O filters
applicable to the leaves that hangs directly from this new group (unless other filters properties are specified for
these leaves). Besides, if you do not specify filter properties for its child groups, they will inherit these ones.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

createTable(where, name, description, title=", filters=None, expectedrows=10000,
createparents=False)

Create anew Tabl e instance with name name in where location. See the Section 4.6 for a description of the Tabl e
class.

where
The parent group where the new table will hang from. where parameter can be a path string (for example™ / | ev-
el 1/ 1 eaf 5"), or Group instance.

name
The name of the new table.

description
Thisis an object that describes the table, that is, how many columns has it, and properties for each column: the
type, the shape, etc. as well as other table properties.
description can be any of the next several objects:
A user-defined class
This should inherit fromthe | sDescr i pti on class (see 4.16.1) where table fields are specified.

A dictionary
For example, when you do not know beforehand which structure will have your table). See Section 3.4 for
an example of use.

53

Library Reference

A RecArray
This object from the numar r ay package is also accepted, and all the information about columns and other
metadata is used as a basis to create the Tabl e object. Moreover, if the RecAr r ay has actual data thisis
also injected on the newly created Tabl e object.

A Nest edRecArr ay
Finally, if you want to have nested columns in your table, you can use this object (see Appendix B) and all
the information about columns and other metadata is used as a basis to create the Tabl e object. Moreover,
if the Nest edRecAr r ay has actual datathisisaso injected on the newly created Tabl e object.

title
A description for this object.

filters
Aninstance of the Fi | t er s class (see Section 4.17.1) that provides information about the desired /O filters to
be applied during the life of this object.

expectedr ows
An user estimate of the number of records that will be on table. If not provided, the default value is appropriate
for tables until 10 MB in size (more or less). If you plan to save bigger tables you should provide a guess; this
will optimize the HDF5 B-Tree creation and management process time and memory used. See Section 5.1 for a
discussion on that issue.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

createArray(where, name, object, title=", createparents=False)

Create anew Ar r ay instance with name name in where location. See the Section 4.10 for adescription of the Ar r ay
class.

obj ect
The regular array to be saved. Currently accepted values are: NunPy, Nuner i ¢, numar r ay arrays (including
Char Ar r ay string numarrays) or other native Python types, provided that they are regular (i.e. they are not like
[[1, 2], 2])and homogeneous (i.e. al the elements are of the same type). Also, objects that have some of their
dimensions equal to zero are not supported (use an EAr r ay object if you want to create an array with one of
its dimensions equal to 0).

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

Seecr eat eTabl e description for more information on the where, name and title, parameters.

createCArray(where, name, shape, atom, title=", filters=None,
createparents=False)

Create a new CAr r ay instance with name name in where location. See the Section 4.11 for a description of the
CAr r ay class.

shape
The shape of the objects to be saved.

atom
An At ominstance representing the shape, type and flavor of the chunk of the objects to be saved.

54

Library Reference

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

Seecr eat eTabl e description for more information on the where, name and title, parameters.

createEArray(where, name, atom, title=", filters=None, expectedrows=1000,
createparents=False)

Create a new EAr r ay instance with name name in where location. See the Section 4.12 for a description of the
EAr r ay class.

atom
An At ominstance representing the shape, type and flavor of the atomic objectsto be saved. One (and only one) of
the shape dimensions must be 0. The dimension being 0 means that the resulting EAr r ay object can be extended
along it. Multiple enlargeable dimensions are not supported right now. See Section 4.16.3 for the supported set
of At omclass descendants.

expectedr ows
In the case of enlargeable arrays this represents an user estimate about the number of row elements that will be
added to the growable dimension in the EArray object. If not provided, the default value is 1000 rows. If you plan
to create both much smaller or much bigger EArrays try providing a guess; this will optimize the HDF5 B-Tree
creation and management process time and the amount of memory used.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

Seecr eat eTabl e description for more information on the where, name, title, and filters parameters.

createVLArray(where, name, atom=None, title=", filters=None, expectedsizein-
MB=1.0, createparents=False)

Create a new VLAr r ay instance with name name in where location. See the Section 4.13 for a description of the
VLAY r ay class.

atom
An At ominstance representing the shape, type and flavor of the atomic object to be saved. See Section 4.16.3
for the supported set of At omclass descendants.

expectedsize nMB
An user estimate about the size (in MB) inthefinal VLAr r ay object. If not provided, the default valueis 1 MB.
If you plan to create both much smaller or much bigger VLA'stry providing aguess; thiswill optimize the HDF5
B-Tree creation and management process time and the amount of memory used.

createparents
Whether to create the needed groups for the parent path to exist (not done by default).

Seecr eat eTabl e description for more information on the where, name, title, and filters parameters.
getNode(where, name=None, classname=None)

Get the node under where with the given name.

where can be aNode instance or a path string leading to a node. If no name is specified, that node is returned.

If anameis specified, this must be a string with the name of a node under where. In this case the where argument can
only leadtoaGr oup instance (elseaTypeEr r or israised). The node called name under the group whereisreturned.

55

Library Reference

In both cases, if the node to be returned does not exist, a NoSuchNodeEr r or is raised. Please, note that hidden
nodes are also considered.

If the classname argument is specified, it must be the name of a class derived from Node. If the node is found but it
is not an instance of that class, aNoSuchNodeEr r or isalso raised.

isVisibleNode(path)

Isthe node under pat h visible?

If the node does not exist, aNoSuchNodeEr r or israised.

getNodeAttr(where, attrname, name=None)
Returns the attribute attrname under where.name location.

where, name
These argumentswork asin get Node() (see description), referencing the node to be acted upon.

attrname
The name of the attribute to get.

setNodeAttr(where, attrname, attrvalue, name=None)

Sets the attribute attrname with value attrvalue under where.name location. If the node already has alarge number of
attributes, aPer f or manceWar ni ng will be issued.

where, name
These argumentswork asin get Node() (see description), referencing the node to be acted upon.

attrname
The name of the attribute to set on disk.

attrvalue
The value of the attribute to set. Any kind of python object (like string, ints, floats, lists, tuples, dicts, small Nu-

meric/NumPy/numarray objects...) can be stored as an attribute. However, if necessary, (¢) Pi ckl e isautomat-
ically used so asto serialize objects that you might want to save (see 4.15 for details).

delNodeAttr(where, attrname, name=None)
Delete the attribute attrname in where.name location.

where, name
These argumentswork asin get Node() (see description), referencing the node to be acted upon.

attrname
The name of the attribute to delete on disk.

copyNodeAttrs(where, dstnode, name=None)
Copy the attributes from node where.name to dstnode.

where, name
These argumentswork asin get Node() (see description), referencing the node to be acted upon.

56

Library Reference

dstnode
This s the destination node where the attributes will be copied. It can be either a path string or a Node object.

iterNodes(where, classname=None)

Returnsan iterator yielding children nodes hanging from where. These nodes are alpha-numerically sorted by its node
name.

where
Thisargument works asin get Node() (seedescription), referencing the node to be acted upon.

classname
If the name of a class derived from Node is supplied in the classname parameter, only instances of that class (or
subclasses of it) will be returned.

listNodes(where, classname=None)
Returns alist with children nodes hanging from where. The list is alpha-numerically sorted by node name.

where
Thisargument works asin get Node() (seedescription), referencing the node to be acted upon.

classname
If the name of a class derived from Node is supplied in the classname parameter, only instances of that class (or
subclasses of it) will be returned.

removeNode(where, name=None, recursive=False)
Removes the object node name under where location.

where, name
These argumentswork asin get Node() (see description), referencing the node to be acted upon.

recursive
If not supplied, the object will be removed only if it has no children; if it does, aNodeEr r or will beraised. If
supplied with atrue value, the object and all its descendants will be completely removed.

copyNode(where, newparent=None, newname=None, name=None,
overwrite=False, recursive=False, createparents=False, **kwargs)

Copy the node specified by where and name to newparent/newname.

where, name
These argumentswork asin get Node() (see description), referencing the node to be acted upon.

newpar ent
The destination group that the node will be copied to (a path name or aGr oup instance). If newparent isNone,
the parent of the source node is selected as the new parent.

newname
The name to be assigned to the new copy in its destination (a string). If newname is None or not specified, the
name of the source node is used.

overwrite
Whether the possibly existing node newparent/newname should be overwritten or not. Note that trying to copy
over an existing node without overwriting it will issue aNodeEr r or .

57

Library Reference

recursive
Specifies whether the copy should recurse into children of the copied node. This argument is ignored for leaf
nodes. The default is not recurse.

createparents
Whether to create the needed groups for the new parent path to exist (not done by default).

kwargs
Additional keyword arguments may be passed to customi ze the copying process. The supported arguments depend
on the kind of node being copied. The following are some of them:

title
The new title for the destination. If None, the origina title is used. This only applies to the topmost node for
recursive Copies.

filters
Specifying this parameter overrides the original filter properties in the source node. If specified, it must be an
instance of theFi | t er s class(see Section4.17.1). The default isto copy thefilter attribute from the source node.

copyuser attrs
Y ou can prevent the user attributes from being copied by setting this parameter to Fal se. The default isto copy
them.

start, stop, step
Specify the range of rowsin child leaves to be copied; the default isto copy al the rows.

stats
Thisargument may be used to collect statistics on the copy process. When used, it should be adictionary with keys
groups, | eaves and byt es having a numeric value. Their values will be incremented to reflect the number
of groups, leaves and bytes, respectively, that have been copied in the operation.

renameNode(where, newname, name=None)
Change the name of the node specified by where and name to newname.

where, name
These argumentswork asin get Node() (see description), referencing the node to be acted upon.

newname
The new name to be assigned to the node (a string).

moveNode(where, newparent=None, newname=None, name=None,
overwrite=False, createparents=False)

Move the node specified by where and name to newparent/newname.

where, name
These argumentswork asin get Node() (see description), referencing the node to be acted upon.

newparent
The destination group the node will be moved to (a path name or a G oup instance). If newparent is None, the
original node parent is selected as the new parent.

newname
The new name to be assigned to the node in its destination (a string). If newname is None or not specified, the
original node name s used.

58

Library Reference

The other argumentswork asin Node. f _nove() (seedescription).
walkGroups(where='")

Iterator that returns the list of Groups (not Leaves) hanging from (and including) where. The where Group is listed
first (pre-order), then each of its child Groups (following an apha-numerical order) is aso traversed, following the
same procedure. If where is not supplied, the root object is used.

where
The origin group. Can be a path string or Gr oup instance.

walkNodes(where="/", classname="")
Recursively iterate over the nodesin the Fi | e instance. It takes two parameters:

where
If supplied, the iteration starts from (and includes) this group.

classname
(String) If supplied, only instances of this class are returned.

Example of use:

Recursively print all the nodes hanging from'/detector'
print "Nodes hanging from group '/detector':"
for node in h5file.wal kNodes("/detector"):

print node

copyChildren(srcgroup, dstgroup, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy the children of a group into another group.

This method copies the nodes hanging from the source group sr cgr oup into the destination group dst gr oup.
Existing destination nodes can be replaced by asserting the over wr i t e argument. If ther ecur si ve argument is
true, al descendant nodes of sr cnode are recursively copied. If cr eat epar ent s istrue, the needed groups for
the given destination parent group path to exist will be created.

kwar gs takes keyword arguments used to customize the copying process. See the documentation of
Group. _f_copyChil dren() (seedescription) for adescription of those arguments.

copyFile(dstfilename, overwrite=False, **kwargs)
Copy the contents of thisfiletodst fi | enane.

dst fi | enane must be a path string indicating the name of the destination file. If it already exists, the copy will fail
withan| CError, unlesstheover wri t e argument istrue, in which case the destination file will be overwrittenin
place. In thislast case, the destination file should be closed or ugly errors will happen.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected, etc. Arguments
unknown to nodes are simply ignored. Check the documentation for copying operations of nodes to see which options
they support.

Copying afile usually hasthe beneficial side effect of creating amore compact and cleaner version of the original file.

59

Library Reference

flush()

Flush all the leavesin the object tree.

close()
Flush all the leavesin object tree and close thefile.
isUndoEnabled()

I's the Undo/Redo mechanism enabled?

Returns Tr ue if the Undo/Redo mechanism has been enabled for thisfile, Fal se otherwise. Please, note that this
mechanism is persistent, so a newly opened PyTables file may already have Undo/Redo support.

enableUndo(filters=Filters(complevel=1))
Enable the Undo/Redo mechanism.

This operation prepares the database for undoing and redoing modifications in the node hierarchy. This alows
mar k() ,undo(),redo() and other methods to be called.

Thefil t er s argument, when specified, must be an instance of classFi | t er s (see Section 4.17.1) and is meant
for setting the compression values for the action log. The default is having compression enabled, asthe gainsin terms

of space can be considerable. You may want to disable compression if you want maximum speed for Undo/Redo
operations.

Calling enabl eUndo() when the Undo/Redo mechanismis already enabled raises an UndoRedoEr r or .
disableUndo()
Disable the Undo/Redo mechanism.

Disabling the Undo/Redo mechanism leaves the database in the current state and forgets past and future database
states. Thismakesmar k() , undo(),redo() and other methods fail with an UndoRedoEr r or .

Calling di sabl eUndo() when the Undo/Redo mechanism is already disabled raises an UndoRedoEr r or .

mark(name=None)

Mark the state of the database.

Creates amark for the current state of the database. A unique (and immutable) identifier for the mark is returned. An
optional nane (astring) can be assigned to the mark. Both the identifier of amark and itsname can beusedinundo()

and r edo() operations. When the nane has already been used for another mark, an UndoRedoEr r or israised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoEr r or
israised.

getCurrentMark()

Get the identifier of the current mark.

Returns the identifier of the current mark. This can be used to know the state of a database after an application crash,
or to get the identifier of theinitial implicit mark after acall to enabl eUndo() .

60

Library Reference

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoEr r or
israised.

undo(mark=None)
Go to apast state of the database.

Returns the database to the state associated with the specified mar k. Both the identifier of a mark and its name can
be used. If the mar k is omitted, the last created mark is used. If there are no past marks, or the specified mar k isnot
older than the current one, an UndoRedoEr r or israised.

This method can only be called when the Undo/Redo mechani sm has been enabled. Otherwise, an UndoRedoEr r or
israised.

redo(mark=None)
Go to afuture state of the database.

Returns the database to the state associated with the specified mar k. Both the identifier of a mark and its name can
be used. If the mar k is omitted, the next created mark is used. If there are no future marks, or the specified mar k is
not newer than the current one, an UndoRedoEr r or israised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoEr r or
israised.

goto(mark)
Go to aspecific mark of the database.

Returns the database to the state associated with the specified mar k. Both the identifier of a mark and its name can
be used.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an UndoRedoEr r or
israised.
4.2.3. File special methods

Following are described the methods that automatically trigger actionswhen aFi | e instanceis accessed in a special
way.

__contains__ (path)

Isthere a node with that path?

Returns Tr ue if the file has a node with the given path (astring), Fal se otherwise.

_iter__()

Iterate over the children on the Fi | e instance. However, this does not accept parameters. Thisiterator isrecursive.
Example of use:

Recursively list all the nodes in the object tree
h5file = tabl es. openFile("vlarrayl. h5")

print "All nodes in the object tree:"

for node in h5file:

61

Library Reference

print node

str ()
Prints a short description of the Fi | e object.
Example of use:

>>> f =t abl es. openFi | e("data/test.h5")

>>> print f

data/test.h5 (File) 'Table Benchnark'

Last nodif.: 'Mon Sep 20 12:40: 47 2004’

oj ect Tree:

/ (Group) 'Table Benchnark'

/tupl e0 (Tabl e(100L,)) 'This is the table title'

/ group0 (G oup)

/ groupO/tupl el (Tabl e(100L,)) 'This is the table title'
/ group0/ gr oupl (G oup)

/ groupO/ groupl/tupl e2 (Table(100L,)) 'This is the table title'
/ group0/ gr oupl/ group2 (G oup)

_repr__()

Prints a detailed description of the Fi | e object.

4.3. The Node class

Thisisthebase classfor all nodesinaPyTableshierarchy. Itisan abstract class, i.e. it may not be directly instantiated;
however, every node in the hierarchy is an instance of this class.

A PyTables node is always hosted in a PyTables file, under a parent group, at a certain depth in the node hierarchy.
A node knows its own name in the parent group and its own path name in the file. When using a translation map (see
4.2), its HDF5 name might differ from its PyTables name.

All the previousinformation islocation-dependent, i.e. it may change when moving or renaming anode in the hierar-
chy. A node also has location-independent information, such as its HDF5 object identifier and its attribute set.

This class gathers the operations and attributes (both location-dependent and independent) which are common to all
PyTables nodes, whatever their type is. Nonetheless, due to natural naming restrictions, the names of all of these
members start with areserved prefix (see 4.4).

Sub-classes with no children (i.e. leaf nodes) may define new methods, attributes and properties to avoid natural
naming restrictions. For instance, v_attrs may beshortenedtoattrs and _f _renane tor enane. However,
the original methods and attributes should still be available.

4.3.1. Node instance variables

Location dependent

_v file The hosting Fi | e instance (see 4.2).

_V_parent The parent Gr oup instance (see 4.4).

_Vv_depth The depth of this node in the tree (an non-negative integer value).
_V_name The name of this node in its parent group (a string).

62

Library Reference

_v_hdf5name The name of this node in the hosting HDF5 file (a string).
_Vv_pathname The path of this node in the tree (a string).
_V_rootgroup Theroot group instance. Thisis deprecated; pleaseusenode. v _fil e.root.

Location independent
_V_objectID Theidentifier of this node in the hosting HDF5 file.

_V_attrs Theassociated At t ri but eSet instance (see 4.15).

Attribute shorthands

_V_title A description of thisnode. A shorthand for TI TLE attribute.

4.3.2. Node methods

Hierarchy manipulation

_f close()

Closethis nodein the tree.

Thisreleasesall resourcesheld by the node, soit should not be used again. On nodeswith data, it may beflushed to disk.
The closing operation is not recursive, i.e. closing a group does not close its children.

_f isOpen()

Is this node open?

_f remove(recursive=False)

Remove this node from the hierarchy.

If the node has children, recursive removal must be stated by givingr ecur si ve atruevalue; otherwise, aNodeEr -
ror will beraised.

_f rename(newname)

Rename this node in place.

Changes the name of a node to newname (a string).

_f move(newparent=None, newname=None, overwrite=False, createparents=False)
Move or rename this node.

Moves a node into a new parent group, or changes the name of the node. newpar ent can be a G- oup abject or a
pathnamein string form. If it isnot specified or None, the current parent group is chosen asthe new parent. newnane
must be a string with a new name. If it is not specified or None, the current name is chosen as the new name. If
cr eat epar ent s istrue, the needed groups for the given new parent group path to exist will be created.

Moving a node across databases is not allowed, nor it is moving a node into itself. These result in a NodeEr r or .
However, moving anodeover itself isallowed and simply does nothing. Moving over another existing nodeissimilarly

63

Library Reference

not allowed, unlessthe optional over wr i t e argument istrue, in which case that node is recursively removed before
moving.

Usually, only thefirst argument will be used, effectively moving the node to anew location without changing its name.
Using only the second argument is equivalent to renaming the node in place.

_f_copy(newparent=None, newname=None, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy this node and return the new node.

Creates and returns a copy of the node, maybe in a different place in the hierarchy. newpar ent can be a G oup
object or apathnamein string form. If it is not specified or None, the current parent group is chosen as the new parent.
newnane must be a string with a new name. If it is not specified or None, the current name is chosen as the new
name. If r ecur si ve copy is stated, all descendants are copied as well. If ucr eat epar ent s istrue, the needed
groups for the given new parent group path to exist will be created.

Copying anode across databasesis supported but can not be undone. Copying anode over itself isnot allowed, nor itis
recursively copying anodeinto itself. Theseresult inaNodeEr r or . Copying over another existing nodeissimilarly
not allowed, unlessthe optional over wr i t e argument istrue, in which case that node is recursively removed before

copying.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected, etc. See the
documentation for the particular node type.

Using only the first argument is equivalent to copying the node to a new location without changing its name. Using
only the second argument is equivalent to making a copy of the node in the same group.

_f isVisible()

Isthis node visible?

Attribute handling

_f getAttr(name)

Get a PyTables attribute from this node.

If the named attribute does not exist, an At t r i but eEr r or israised.
_f setAttr(name, value)

Set a PyTables attribute for this node.

If the node aready has alarge number of attributes, aPer f or manceWar ni ng isissued.
_f _delAttr(hame)

Delete a PyTables attribute from this node.

If the named attribute does not exist, an At t r i but eEr r or israised.

4.4. The Group class

Instances of this class are a grouping structure containing instances of zero or more groups or leaves, together with
supporting metadata.

Library Reference

Working with groups and leavesis similar in many ways to working with directories and files, respectively, in aUnix
filesystem. As with Unix directories and files, objects in the object tree are often described by giving their full (or
absolute) path names. Thisfull path can be specified either asastring (likein' / gr oup1/ gr oup?2') or asacomplete
object path written in natural name schema (likeinfi | e. r oot . gr oupl. gr oup2) asdiscussed in the Section 1.2.

A collateral effect of the natural naming schemais that names of G- oup members must be carefully chosen to avoid
colliding with existing children node names. For this reason and not to pollute the children namespace, it is explicitly
forbidden to assign normal attributes to Group instances, and all existing members start with some reserved prefixes,
like f _(for methods) or _v_ (for instance variables). Any attempt to set a new child node whose name starts with
one of these prefixes will raiseaVal ueEr r or exception.

Another effect of natural naming is that nodes having reserved Python names and other non-allowed Python names
(like for example $a or 44) can not be accessed using the node. chi | d syntax. You will be forced to use
getattr(node, child) anddel attr(node, chil d) toaccessthem.

Y ou can aso make use of thet r Map (translation map dictionary) parameter inthe openFi | e function (see descrip-
tion) in order to translate HDF5 names not suited for natural naming into more convenient ones.

4.4.1. Group instance variables

These instance variables are provided in addition to those in Node (see 4.3).

_v_nchildren The number of children hanging from this group.

_v_children Dictionary with all nodes hanging from this group.

_v_groups Dictionary with all groups hanging from this group.

_V_leaves Dictionary with al leaves hanging from this group.

_v filters Default filter properties for child nodes —see 4.17.1. A shorthand for FI LTERS
attribute.

4.4.2. Group methods

Thisclassdefinesthe __setattr_, getattr__ and __del attr__ methods, and they set, get and delete
ordinary Python attributes as normally intended. In addition to that, __get attr ___ allows getting child nodes by
their name for the sake of easy interaction on the command line, as long as there is no Python attribute with the same
name. Groupsalso allow theinteractive completion (whenusingr eadl i ne) of thenamesof child nodes. For instance:

nchild = group. _v_nchildren # get a Python attribute

Add a Table child called "table" under "group".
h5fil e. creat eTabl e(group, 'table', myDescription)

table = group.table # get the table child instance
group.table = 'foo' # set a Python attribute

(PyTabl es warns you here about using the nane of a child node.)
foo = group.table # get a Python attribute

del group.table # delete a Python attribute

table = group.table # get the table child instance again

Caveat: The following methods are documented for completeness, and they can be used without any problem. How-
ever, you should use the high-level counterpart methodsinthe Fi | e class, because these are most used in documen-
tation and examples, and are a bit more powerful than those exposed here.

65

Library Reference

These methods are provided in addition to those in Node (see 4.3).

_f_getChild(childname)
Get the child called chi | dnane of this group.

If the child exists (beit visible or not), it is returned. Else, aNoSuchNodeEr r or israised.

_f _copy(newparent, newname, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy this node and return the new one.

This method has the behavior described in Node. _f _copy() (see description). In addition, it recognizes the fol-
lowing keyword arguments:

title
The new title for the destination. If omitted or None, the original title is used. This only applies to the topmost
node in recursive copies.

filters
Specifying this parameter overrides the original filter properties in the source node. If specified, it must be an
instance of the Fi | t er s class (see Section 4.17.1). The default is to copy the filter properties from the source
node.

copyuser attrs
Y ou can prevent the user attributes from being copied by setting this parameter to Fal se. The default isto copy
them.

stats
This argument may be used to collect statistics on the copy process. When used, it should be a dictionary with
keys' groups',' | eaves' and' byt es' havinganumeric value. Their valueswill be incremented to reflect
the number of groups, leaves and bytes, respectively, that have been copied during the operation.

_f _iterNodes(classname=None)

Returns an iterator yielding all the object nodes hanging from this instance. The nodes are alpha-numerically sorted
by its node name. If a classname parameter is supplied, it will only return instances of this class (or subclasses of it).

_f listNodes(classname=None)

Returns alist with all the object nodes hanging from thisinstance. Thelist is alpha-numerically sorted by node name.
If aclassname parameter is supplied, it will only return instances of this class (or subclasses of it).

_f walkGroups()

Iterate over the list of Groups (not Leaves) hanging from (and including) self. This Group is listed first (pre-order),
then each of its child Groups (following an a pha-numerical order) is also traversed, following the same procedure.

_f walkNodes(classname=None, recursive=True)
Iterate over the nodes in the Gr oup instance. It takes two parameters:

classname
(Sring) If supplied, only instances of this class are returned.

66

Library Reference

recursive
(Integer) If false, only children hanging immediately after the group are returned. If true, arecursion over all the
groups hanging from it is performed.

Example of use:

Recursively print all the arrays hanging from'/'

print "Arrays the object tree '/'

for array in h5file.root. f wal kNodes("Array", recursive=1):
print array

_f close()
Close this node in the tree.

This method has the behavior described in Node. f cl ose() (seedescription). It should be noted that this oper-
ation disables access to nodes descending from this group. Therefore, if you want to explicitly close them, you will
need to walk the nodes hanging from this group before closing it.

_f _copyChildren(dstgroup, overwrite=False, recursive=False,
createparents=False, **kwargs)

Copy the children of this group into another group.

Children hanging directly from this group are copied into dst gr oup, which can be a Gr oup (see 4.4) object or its
pathnamein string form. If cr eat epar ent s istrue, the needed groups for the given destination group path to exist
will be created.

The operation will fail with a NodeEr r or if there is a child node in the destination group with the same name as
one of the copied children from thisone, unlessover wr i t e istrue; in this case, the former child node isrecursively
removed before copying the later.

By default, nodes descending from children groups of this node are not copied. If ther ecur si ve argument istrue,
all descendant nodes of this node are recursively copied.

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters may be
changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected, etc. Arguments
unknown to nodes are simply ignored. Check the documentation for copying operations of nodes to see which options
they support.

4.4.3. Group special methods

Following are described the methods that automatically trigger actionswhen aGr oup instanceis accessed in aspecial
way.

__setattr__(name, value)
Set a Python attribute called nane with the given val ue.

This method stores an ordinary Python attribute in the object. It does not store new children nodes under this group;
for that, usethe Fi | e. cr eat e* () methods (see 4.2). It does neither store a PyTables node attribute; for that, use
Fil e.set NodeAttr () (seedescription), Node. f set Attr () (seedescription) or Node. v_attrs (see
_V_attrs).

If there is already a child node with the same nane, a Nat ur al NameWar ni ng will be issued and the child node
will not be accessible via natural naming nor get att r (). It will still be available viaFi | e. get Node() (see
description), Group. _f _get Chi | d() (seedescription) and children dictionaries in the group (if visible).

67

Library Reference

__getattr__(name)
Get a Python attribute or child node called nane.

If the object has a Python attribute called nane, its value is returned. Else, if the node has a child node called nane,
itisreturned. Else,an At t ri but eErr or israised.

__delattr__(name)
Delete a Python attribute called narre.

This method deletes an ordinary Python attribute from the object. 1t does not remove children nodes from this group;
for that, use Fi | e. renbveNode() (see description) or Node. f renove() (seedescription). It does neither
delete a PyTables node attribute; for that, use Fi | e. del NodeAttr () (seedescription), Node. f del Attr ()
(seedescription) or Node. _v_attrs (see_v_attrs).

If there were an attribute and a child node with the same nane, the child node will be made accessible again via
natural naming.

__contains__(name)
Isthere a child with that name?

Returns Tr ue if the group has a child node (visible or hidden) with the given name (a string), Fal se otherwise.

__iter__ ()
Iterate over the children on the group instance. However, this does not accept parameters. Thisiterator isnot recursive.
Example of use:

Non-recursively list all the nodes hanging from'/detector'
print "Nodes in '/detector' group:"
for node in h5file.root.detector:

print node

str ()
Prints a short description of the Gr oup object.
Example of use:

>>> f=tabl es. openFil e("data/test.h5")
>>> print f.root.group0

/group0 (G oup) 'First G oup'

>>>

__repr__()
Prints a detailed description of the G oup object.

Example of use:

>>> f =t abl es. openFi | e("data/test.h5")
>>> f.root.group0
/group0 (G oup) 'First G oup'
children := ["tuplel" (Table), 'groupl’ (G oup)]

68

Library Reference

>>>

4.5. The Leaf class

The goal of thisclassisto provide a place to put common functionality of all its descendants as well as provide away
to help classifying objects on the tree. A Leaf object is an end-node, that is, a node that can hang directly from a
group object, but that is not a group itself and, thus, it can not have descendants. Right now, the set of end-nodesis
composed by Tabl e, Array, CArray, EArray, VLAr r ay and Unl npl enent ed classinstances. In fact, al the
previous classes inherit from the Leaf class.

4.5.1. Leaf instance variables

These instance variables are provided in addition to those in Node (see 4.3).

shape The shape of datain the |eaf.

byteorder The byte ordering of datain the leaf.

filters Filter propertiesfor this leaf —see 4.17.1.

name Thenameof thisnodeinitsparent group (astring). Analiasfor Node. _v_nane.

hdf5name The name of this node in the hosting HDF5 file (a string). An dias for
Node. v_hdf 5nane.

object|D The identifier of this node in the hosting HDF5 file. An dlias for
Node. v_object|D.

attrs The associated AttributeSet instance (see 4.15). An dias for
Node. v_attrs.

title A description for thisnode. An aliasfor Node. _v_title.

4.5.2. Leaf methods

flush()

Flush pending data to disk.

Saves whatever remaining buffered data to disk. It also releases 1/O buffers, so, if you are filling many objects (i.e.
tables) in the same PyTables session, please, call f1 ush() extensively so as to help PyTables to keep memory
requirements low.

_f close(flush=True)
Close thisnode in the tree.

Thismethod hasthe behavior describedinNode. _f _cl ose() (seedescription). Besidesthat, the optional argument
f | ush tellswhether to flush pending data to disk or not before closing.

close(flush=True)
Close thisnode in the tree.

This method is completely equivalentto _f _cl ose().

69

Library Reference

isOpen()

Is this node open?

This method is completely equivalentto _f i sQpen().
remove()

Remove this node from the hierarchy.

This method has the behavior described in Node. _f_renmove() (see description). Please, note that there is no
recur si ve flag since leaves do not have child nodes.

copy(newparent, newname, overwrite=False, createparents=False, **kwargs)
Copy this node and return the new one.

Thismethod hasthe behavior describedinNode. _f copy() (seedescription). Please, notethat thereisnor ecur -
si ve flag sinceleaves do not have child nodes. In addition, this method recogni zes the foll owing keyword arguments:

title
The new title for the destination. If omitted or None, the original titleis used.

filters
Specifying this parameter overrides the original filter properties in the source node. If specified, it must be an
instance of the Fi | t er s class (see Section 4.17.1). The default is to copy the filter properties from the source
node.

copyuser attrs
Y ou can prevent the user attributes from being copied by setting this parameter to Fal se. The default isto copy
them.

start, stop, step
Specify the range of rowsin child leaves to be copied; the default is to copy al the rows.

stats
This argument may be used to collect statistics on the copy process. When used, it should be a dictionary with
keys' groups',' | eaves' and' byt es' havinganumeric value. Their valueswill be incremented to reflect
the number of groups, leaves and bytes, respectively, that have been copied during the operation.

rename(newname)

Rename this node in place.

This method has the behavior described in Node. _f _renanme() (seedescription).
move(newparent=None, newname=None, overwrite=False, createparents=False)
Move or rename this node.

This method has the behavior described in Node. f nove() (seedescription).

_f isVisible()

Isthis node visible?

This method has the behavior described in Node. _f i sVi si bl e() (seedescription).

70

Library Reference

getAttr(name)

Get a PyTables attribute from this node.

This method has the behavior described in Node. _f _get Attr () (seedescription).
setAttr(name, value)

Set a PyTables attribute for this node.

This method has the behavior described in Node. f set Attr () (seedescription).

delAttr(name)
Delete a PyTables attribute from this node.

This method has the behavior described in Node. _f _del Attr () (seedescription).

4.6. The Table class

Instances of this class represents table objects in the object tree. It provides methods to read/write data and from/to
table objectsin thefile.

Data can be read from or written to tables by accessing to an special object that hangs from Tabl e. Thisobject isan
instance of the Row class (see 4.6.4). Seethetutorial sections Chapter 3 on how to use the Rowinterface. The columns
of the tables can aso be easily accessed (and more specifically, they can be read but not written) by making use of
the Col umm class, through the use of an extension of the natural naming schema applied inside the tables. See the
Section 4.9 for some examples of use of this capability.

Note that this object inherits all the public attributes and methods that Leaf already has.

Finally, during the description of the different methods, therewill appear referencesto aparticular object called Nest -
edRecArr ay. Thisinherits from numar r ay. r ecor ds. RecArr ay and is designed to keep columns that have
nested datatypes. Please, see Appendix B for info on these abjects.

4.6.1. Table instance variables

description A Descri pti on (see4.8) instance describing the structure of thistable.

row The associated Row instance (see 4.6.4).

nrows The number of rowsin thistable.

rowsize The sizein bytes of each row in the table.

cols A Col s (see Section 4.7) instance that serves as an accessor to Col urm (see

Section 4.9) objects.

colnames A tuple containing the (possibly nested) names of the columnsin the table.
coltypes Maps the name of a column to its datatype.

colstypes Maps the name of a column to its data string type.

colshapes Maps the name of a column to it shape.

colitemsizes Maps the name of a column to the size of its base items.

71

Library Reference

coldflts Maps the name of a column to its default.

colindexed I's the column which name is used as a key indexed? (dictionary)

indexed Does this table have any indexed columns?

indexprops Index properties for thistable (an | ndexPr ops instance, see 4.17.2).

flavor The default flavor for this table. This determines the type of objects returned dur-

ing input (i.e. read) operations. It can take the "numarray" (default) or "numpy"
values. Itsvalue isderived fromthe _v_f | avor attribute of the | sDescr i p-
t i on metaclass (see 4.16.1) or, if the table has been created directly from anu-
mar r ay or NunPy object, the flavor is set to the appropriate value.

4.6.2. Table methods

getEnum(colname)
Get the enumerated type associated with the named column.

If the column named col nane (a string) exists and is of an enumerated type, the corresponding Enuminstance
(see 4.17.4) is returned. If it is not of an enumerated type, a TypeEr r or israised. If the column does not exist, a
KeyError israised.

append(rows)

Append a series of rows to this Tabl e instance. rows is an object that can keep the rows to be append in severa
formats, likeaNest edRecAr r ay (see Appendix B), aRecAr r ay, aNunPy object, alist of tuples, list of Nuner -

i ¢/numar r ay/NunPy objects, string, Python buffer or None (no append will result). Of course, thisrows object has
to be compliant with the underlying format of the Tabl e instance or aVal ueEr r or will be issued.

Example of use:

fromtables inport *
class Particle(lsDescription):

nane = StringCol (16, pos=1) # 16-character String

| ati = | nt Col (pos=2) # 1 nteger

| ongi = | nt Col (pos=3) # 1 nteger

pressure = Fl oat 32Col (pos=4) # float (single-precision)
t enper ature = Fl oat Col (pos=5) # doubl e (doubl e-preci sion)

fileh = openFile("test4.h5", node = "wW')
table = fileh.createTabl e(fileh.root, "table', Particle, "A table")
Append several rows in only one call

t abl e. append([(" Particl e: 10", 10, 0O, 10*10, 10**2),
("Particle: 11", 11, -1, 11*11, 11**2),
("Particle: 12", 12, -2, 12*12, 12**2)])

fileh.close()
col(name)
Get a column from the table.

If a column called nane exists in the table, it is read and returned as a nunar r ay object, or as a NunPy object
(whatever is more appropriate depending on the flavor of the table). If it does not exist, aKeyEr r or israised.

72

Library Reference

Example of use:

narray = table.col ('var2')

That statement is equivalent to:

narray = table.read(field=" var2')

Here you can see how this method can be used asa shorthand fort he read() (see description) method.
iterrows(start=None, stop=None, step=1)

Returns an iterator yielding Row (see Section 4.6.4) instances built from rowsin table. If arangeis supplied (i.e. some
of the start, stop or step parameters are passed), only the appropriate rows are returned. Else, all the rows are returned.
Seealsothe _iter () special method in Section 4.6.3 for a shorter way to call thisiterator.

Themeaning of the start, stop and step parametersisthe sameasinther ange() python function, except that negative
values of st ep arenot allowed. Moreover, if only st ar t isspecified, thenst op will besettost art +1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

result =[] rowf'var2'] for rowin table.iterrows(step=5)
if row'varl'] <= 20]

Note: Thisiterator can be nested (see example in description).
itersequence(sequence, sort=True)
Iterate over a sequence of row coordinates.

sequence
Can be any object that supportsthe _geti t em _ specia method, like lists, tuples, Numeric/NumPy/numarray
objects, etc.

sort
If true, means that sequence will be sorted out so that the I/O process would get better performance. If your
sequence is aready sorted or you don't want to sort it, put this parameter to 0. The default isto sort the sequence.

Note: Thisiterator can be nested (see example in description).

read(start=None, stop=None, step=1, field=None, flavor=None)

Returnsthe actual datain Tabl e. If fieldisnot supplied, it returnsthedataasaNest edRecAr r ay (see Appendix B)
object table.

Themeaning of the start, stop and step parametersisthe sameasinther ange() python function, except that negative
values of step are not allowed. Moreover, if only start is specified, then stop will be set to start+ 1. If you do not specify
neither start nor stop, then all the rows in the object are selected.

Therest of the parameters are described next:

field
If specified, only the column field is returned as an homogeneous numar r ay/NunPy/Nuner i ¢ object, depend-
ing on the flavor. If thisis not supplied, all the fields are selected and a Nest edRecAr r ay (see Appendix B)
or NunPy object is returned. Nested fields can be specified in the field parameter by usinga' /' character asa
separator between fields (e.g. | nf o/ val ue).

73

Library Reference

flavor
Passing aflavor parameter make an additional conversion to happen in the default returned object. flavor can have

any of the next values: " numar r ay" "nunpy", " pyt hon" or " nunmeri c" (only if field has been specified).

If flavor is not specified, then it will takethevalue of sel f. fl avor.

readCoordinates(coords, field=None, flavor=None)
Read a set of rows given their indexes into an in-memory object.

This method works much likether ead() method (see description), but it uses a sequence (coor ds) of row indexes
to select the wanted columns, instead of a column range.

It returns the selected rowsin aNest edRecAr r ay object (see Appendix B). If f | avor isprovided, an additional
conversion to an object of thisflavor ismade, just asinr ead() .

modifyRows(start=None, stop=None, step=1, rows=None)

Modify aseries of rowsinthe[st art: st op: st ep] extended dlice range. If you pass None to stop, all the rows
existing in rows will be used.

rows can be either arecarray or a structure that is able to be converted to any of them and compliant with the table
format.

Returns the number of modified rows.

It raises an Val ueEr r or in case the rows parameter could not be converted to an object compliant with table de-
scription.

Itraisesan | ndexEr r or in case the modification will exceed the length of the table.
modifyColumn(start=None, stop=None, step=1, column=None, colname=None)

Modify aseries of rowsinthe[st art: st op: st ep] extended slice row range. If you pass None to stop, all the
rows existing in column will be used.

column can be either aNest edRecAr r ay (see Appendix B), RecAr r ay, nunar r ay, NunPy object, list or tuple
that is able to be converted into aNest edRecAr r ay compliant with the specified colname column of the table.

colname specifies the column name of the table to be modified.
Returns the number of modified rows.

It raisesan Val ueEr r or in casethe column parameter could not be converted into an object compliant with col umm
description.

It raisesan | ndexEr r or in case the modification will exceed the length of the table.

modifyColumns(start=None, stop=None, step=1, columns=None, names=None)

Modify aseries of rowsinthe[st art: st op: st ep] extended slice row range. If you pass None to stop, all the
rows existing in columns will be used.

columns can be either aNest edRecAr r ay (see Appendix B), RecAr r ay, aNunPy object, alist of arrays or list
or tuples (the columns) that are able to be converted to a Nest edRecAr r ay compliant with the specified column
names subset of the table format.

names specifies the column names of the table to be modified.

74

Library Reference

Returns the number of modified rows.

It raises an Val ueEr r or in case the columns parameter could not be converted to an object compliant with table
description.

It raisesan | ndexEr r or in case the modification will exceed the length of the table.

removeRows(start, stop=None)

Removes arange of rowsin thetable. If only start is supplied, thisrow isto be deleted. If arangeissupplied, i.e. both
the start and stop parameters are passed, all the rowsin the range are removed. A step parameter is not supported, and
it is not foreseen to implement it anytime soon.

start
Setsthe starting row to be removed. It accepts negative values meaning that the count startsfrom the end. A value
of 0 meansthefirst row.

stop

Setsthelast row to be removed to stop - 1, i.e. the end point is omitted (in the Pythonr ange tradition). It accepts,
likewisestart, negativevalues. A special value of None (the default) meansremoving just therow suppliedin start.

removelndex(index)
Remove the index associated with the specified column.

The argument colname should be the name of a column. If the column is not indexed, nothing happens. If it does not
exist, aKeyError israised.

Thisindex can be created again by callingthecr eat el ndex () (seedescription) method of the appropriate Col umm
object.

flushRowsTolndex()

Add remaining rowsin buffersto non-dirty indexes. This can be useful when you have chosen non-automatic indexing
for the table (see Section 4.17.2) and want to update the indexes on it.

relndex()

Recompute all the existing indexes in table. This can be useful when you suspect that, for any reason, the index
information for columnsis no longer valid and want to rebuild the indexes onit.

relndexDirty()

Recompute the existing indexesin table, but only if they are dirty. This can be useful when you have set ther ei ndex
parameter to O in | ndexPr ops constructor (see description) for the table and want to update the indexes after a
invalidating index operation (Tabl e. r enoveRows, for example).

where(condition, start=None, stop=None, step=None)
Iterate over values fulfillingacondi ti on.

This method returns an iterator yielding Row (see 4.6.4) instances built from rows in the table that satisfy the given
condi ti on over acolumn. If that column isindexed, itsindex will be used in order to accelerate the search. Else,
thein-kernel iterator (with has till better performance than standard Python sel ections) will be chosen instead. Please,
check the Section 5.2 for more information about the performance of the different searching modes.

75

Library Reference

Moreover, if arange is supplied (i.e. some of the st art, st op or st ep parameters are passed), only the rows in
that range and fulfilling the condi t i on are returned. The meaning of the st art, st op and st ep parametersis
thesameasinther ange() Python function, except that negative values of st ep are not allowed. Moreover, if only
st art isspecified, thenst op will besettost art +1.

Y ou can mix this method with standard Python selectionsin order to have complex queries. It isstrongly recommended
that you pass the most restrictive condition as the parameter to this method if you want to achieve maximum perfor-
mance.

Example of use:

passval ues=[]
for rowin table.where(0 < table.cols.coll < 0.3, step=5):
if ron'col2'] <= 20:
passval ues. append(row ' col 3'])
print "Values that pass the cuts:", passval ues

Note that, from Py Tabl es 1.1 on, you can nest several iterators over the same table. For example:

for p in rout.where(rout.cols.pressure < 16):
for g in rout.where(rout.cols.pressure < 9):
for n in rout.where(rout.cols.energy < 10):
print "pressure, energy:", p['pressure'],n['energy']

In this example, iterators returned by wher e() have been used, but you may as well use any of the other reading
iterators that the Tabl e object offers. Look at exanpl es/ nest ed-i t er. py for the full code.

whereAppend(dstTable, condition, start=None, stop=None, step=None)
Append rows fulfilling the condition to the dstTable table.

dstTable must be capabl e of taking the rowsresulting from the query, i.e. it must have columnswith the expected names
and compatible types. The meaning of the other argumentsis the same asin thewher e() method (see description).

The number of rows appended to dstTable is returned as a result.
getWhereList(condition, flavor=None)

Get the row coordinates that fulfill the condition parameter. This method will take advantage of an indexed column
to speed-up the search.

flavor isthe desired type of the returned list. It can takethe " nunar ray"” , " nunpy",
values. The default is returning an object of the same flavor thansel f. f 1l avor.

nuneric" or"pyt hon"

4.6.3. Table special methods

Following are described the methods that automatically trigger actionswhen aTabl e instanceis accessed in a special
way (e.g., t abl e["var2"] will beequivdlenttoacaltotabl e. __getitem _("var2")).

__iter__()
It returns the same iterator than Tabl e. i t er r ows(0, 0, 1) . However, this does not accept parameters.
Example of use:

result = rowf'var2'] for rowin table if row' 'varl'] <= 20]

76

Library Reference

Which is equivalent to;

result = rowf'var2'] for rowin table.iterrows()
if row'varl'] <= 20]

Note: Thisiterator can be nested (see example in description).

__getitem___(key)
Get arow or arange of rows from the table.

If the key argument is an integer, the corresponding table row is returned as a numarr ay. r ecor ds. Record
or as a t abl es. nest edrecords. Nest edRecor d object, whichever is more appropriate. If key is a
dice, the range of rows determined by it is returned as a nunarray.records. RecArray or as a
t abl es. nest edr ecor ds. Nest edRecAr r ay object, whichever is more appropriate.

Using astring askey to get a column is supported but deprecated. Please use the col () (see description) method.
Example of use:

record = tabl e[4]
recarray = tabl e[4:1000: 2]

Those statements are equivalent to:

record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)

Here you can see how indexing and slicing can be used as shorthands for ther ead() (see description) method.

__setitem__ (key, value)
It takes different actions depending on the type of the key parameter:

keyisanl nt eger
The corresponding table row is set to value. value must beaLi st or Tupl e capable of being converted to the
table field format.

keyisaSlice
The row slice determined by key is set to value. value must be a Nest edRecAr r ay object or a RecAr r ay
object or alist of rows capable of being converted to the table field format.

Example of use:

Modi fy just one existing row

table[2] = [456, "' db2', 1.2]

Modify two existing rows

rows = numarray.records.array([[457,"'dbl',1.2],[6,"'de2',1.3]],
formats="i 4, a3, f8")

table[1:3:2] = rows

Which is equivalent to:

t abl e. nodi f yRows(start=2, rows=[456,"' db2',1.2])

rows = numarray.records.array([[457, 'dbl',1.2],[6,"'de2',1.3]],
formats="i 4, a3,f8")

tabl e. nodi f yRows(start=1, step=2, rows=rows)

77

Library Reference

4.6.4. The Row class

This classis used to fetch and set values on the table fields. It works very much like a dictionary, where the keys are
the field names of the associated table and the values are the values of those fields in a specific row.

This object turns out to actually be an extension type, so you won't be able to access its documentation interactively.
However, you will be able to access some of itsinternal attributes through the use of Python properties. In addition,
there are some important methods that are useful for adding and modifying values in tables.

Row attributes

nrow
Property that returns the current row number in the table. It is useful to know which row is being dealt with in
the middle of aloop or iterator.

Row methods

append()

Once you have filled the proper fields for the current row, calling this method actually append these new data to the
disk (actually data are written to the output buffer).

Example of use:

row = tabl e.row

for i in xrange(nrows):
rof'coll'] =i-1
rof'col2'] ="a
rof'col3'] =-1.0

row. append()
tabl e. fl ush()

Please, note that, after the loop in which Row. append() has been called, it is always convenient to make a call to
Tabl e. f1 ush() inorder to avoid losing the last rows that can be in internal buffers.

update()

This allows you to modify values of your tables when you are in the middle of table iterators, like
Tabl e.iterrows() (seedescription) or Tabl e. wher e() (see description). Once you have filled the proper
fields for the current row, calling this method actually commits these data to the disk (actually data are written to the
output buffer).

Example of use:

for rowin table.iterrows(step=10):

rowf'col1'] = row. nrow
rowf'col2'] ="'b'
rowf'col3'] = 0.0

r ow. updat e()
which modifies every tenth row in table. Or:

for rowin table.where(table.cols.coll > 3):
row ' col 1'] r ow. nr ow
row ' col 2'] ' b’

78

Library Reference

rowf'col3'] = 0.0
r ow. updat e()

which just updates the rows with values in first column bigger than 3.

4.7. The Cols class

This classis used as an accessor to the table columns following the natural name convention, so that you can access
the different columns because there exists one attribute with the name of the columns for each associated column,
which can be a Col umm instance (non-nested column) or ancther Col s instance (nested column).

Columns under aCol s accessor can be accessed as attributes of it. For instance, if t abl e. col s isaCol s instance
with acolumnnamed col 1 under it, thelater can beaccessed ast abl e. col s. col 1.If col 1 isnested and contains
acol 2 column, thiscan be accessed ast abl e. col s. col 1. col 2 and so on and so forth.

4.7.1. Cols instance variables

_v_colnames A list of the names of the columns (or nested columns) hanging directly from
this Col s instance. The order of the names matches the order of their respective
columnsin the containing table.

_v_colpathnames A list of the complete pathnames of the columns hanging directly from this Col s
instance. If the table does not contain nested columns, thisis exactly the same as
_v_col names attribute.

_Vv_table The parent Tabl e instance.

_v_desc The associated Description (see Section 4.9) instance.

4.7.2. Cols methods

_f _col(colname)

Return a handler to the colname column. If colname is a nested column, a Col s instance is returned. If colnameis a
non-nested column a Col umm object is returned instead.

__getitem__ (key)
Get arow or arange of rows from the Col s accessor.

If the key argument is an integer, the corresponding Col s row isreturned asanumarray. r ecor ds. Record
or as a t abl es. nest edrecords. Nest edRecor d object, whichever is more appropriate. If key is a
dice, the range of rows determined by it is returned as a numarray.records. RecArray or as a
t abl es. nest edr ecor ds. Nest edRecAr r ay object, whichever is more appropriate.

Using astring askey to get a column is supported but deprecated. Please use the col () (see description) method.
Example of use:

record = table.cols[4] # equivalent to table[4]
recarray = table.cols.Info[4:1000: 2]

Those statements are equivalent to;

nrecord = table.read(start=4)[0]

79

Library Reference

nrecarray = table.read(start=4, stop=1000, step=2).field('Info")

Here you can see how a mix of natural naming, indexing and slicing can be used as shorthands for ther ead() (see
description) method.

__setitem___(key)
Set arow or arange of rows to the Col s accessor.

If thekey argument is an integer, the corresponding Col s row isset totheval ue object. If key isadlice, therange
of rows determined by it is set to theval ue object.

Example of use:

tabl e.col s[4] = record
t abl e. col s. I nf o[4: 1000: 2] = recarray

Those statements are equivalent to:

t abl e. nodi f yRows(4, rows=record)
t abl e. nodi f yCol um(4, 1000, 2, col nane='Info', colum=recarray)

Hereyou can see how amix of natural naming, indexing and slicing can be used as shorthandsfor thenrodi f yRows ()
and nodi f yCol umrm() (see description and description) methods.

4.8. The Description class

Theinstances of the Descr i pti on class provide adescription of the structure of atable.

An instance of this class is automatically bound to Tabl e (see 4.6) objects when they are created. It provides a
browseabl e representation of the structure of the table, made of non-nested (Col —see4.16.2) and nested (Descr i p-
t i on) columns. It also contains information that will allow you to build Nest edRecAr r ay (see Appendix B) ob-
jects suited for the different columnsin atable (be they nested or not).

Column descriptions (see Col classin 4.16.2) under a description can be accessed as attributes of it. For instance,
if t abl e. descri ptionisaDescri pti on instance with a column named col 1 under it, the later can be ac-
cessed ast abl e. descri ption. col 1. If col 1 isnested and contains acol 2 column, this can be accessed as
tabl e. descri ption. col 1. col 2.

4.8.1. Description instance variables

_V_name The name of this description instance. If description is the root of the nested type
(or the description of aflat table), its name will be the empty string (* ').

_V_names A list of the names of the columns hanging directly from this description instance.
The order of the names matches the order of their respective columns in the con-
taining description.

_Vv_pathnames A list of the pathnames of the columns hanging directly from this description. If
the table does not contain nested columns, thisis exactly thesameas_v_namnes
attribute.

_V_nestedNames A nested list of the names of al the columns hanging directly from this descrip-

tion instance. You can use this for the nanes argument of Nest edRecAr r ay
factory functions.

80

Library Reference

_Vv_nestedFormats

_V_nestedDescr

_V_types

_V_stypes

_V_shapes

_v_dflts

_Vv_colObjects

_V_itemsizes

_V_nestedivl

A nested list of the numarray string formats (and shapes) of all the columns hang-
ing directly from this description instance. Y ou can use thisfor thef or mat s ar-
gument of Nest edRecAr r ay factory functions.

A nested list of pairs of (name, fornat) tuples for al the columns under
thistable or nested column. Y ou can use thisfor thedescr argument of Nest -
edRecAr r ay factory functions.

A dictionary mapping the names of non-nested columns hanging directly from this
description instance to their respective numarray types.

A dictionary mapping the names of non-nested columns hanging directly fromthis
description instance to their respective string types.

A dictionary mapping the names of non-nested columns hanging directly fromthis
description instance to their respective shapes.

A dictionary mapping the names of non-nested columns hanging directly from
this description instance to their respective default values. Please, note that all the
default values are kept internally as numarray objects.

A dictionary mapping the names of the columns hanging directly from this de-
scription instance to their respective descriptions (Col —see 4.16.2— or De-
scri pti on —see 4.8 — instances).

A dictionary mapping the names of non-nested columns hanging directly fromthis
description instance to their respective item size (in bytes).

Thelevel of the description in the nested datatype.

4.8.2. Description methods

_f walk(type="All")

Iterate over nested columns.

Iftypeis' Al l" (the default), all column description objects (Col and Descr i pti on instances) are returned in

top-to-bottom order (pre-order).

Iftypeis' Col"' or' Description',only column descriptions of that type are returned.

4.9. The Column class

Each instance of this class is associated with one column of every table. These instances are mainly used to fetch and
set actual data from the table columns, but there are afew other associated methods to deal with indexes.

4.9.1. Column instance variables

table
name

pathname

The parent Tabl e instance.
The name of the associated column.

The complete pathname of the associated column. Thisis mainly useful in nested
columns; for non-nested ones this value isthe sasmeanane.

81

Library Reference

type The data type of the column.

shape The shape of the column.

index The associated | ndex object (see 4.17.3) to this column (None if it does not
exist).

dirty Whether the index is dirty or not (property).

4.9.2. Column methods

createlndex()

Createan | ndex (see 4.17.3) object for this column.

relndex()

Recompute the index associated with this column. This can be useful when you suspect that, for any reason, the index
information is no longer valid and want to rebuild it.

relndexDirty()

Recompute the existing index only if it is dirty. This can be useful when you have set the r ei ndex parameter to 0
inl ndexPr ops constructor (see description) for the table and want to update the column'sindex after ainvalidating
index operation (Tabl e. r enoveRows, for example).

removelndex()

Delete the associated column’s index. After doing that, you will loose the indexation information on disk. However,
you can awaysre-create it using thecr eat el ndex() method (see description).

4.9.3. Column special methods

__getitem__ (key)
Returns a column element or dlice. It takes different actions depending on the type of the key parameter:

keyisan| nt eger
The corresponding element in the column is returned as a scalar object or asanunar r ay object, depending on
its shape.

keyisaSlice
The row range determined by this sliceisreturned asanunar r ay object.

Example of use:

print "Colum handlers:"
for name in table.col nanes:
print table.cols[nane]
pri nt
print "Some selections:”
print "Select table.cols.nanme[1l]-->", table.cols. nanme[1]
print "Select table.cols.nanme[1l:2]-->", table.cols.nanme[1:2]
print "Select table.cols.lati[1:3]-->", table.cols.lati[1:3]
print "Select table.cols.pressure[:]-->", table.cols.pressure[:]

82

Library Reference

print "Select table.cols['tenperature']J[:]-->", table.cols['tenperature'][:]
and the output of thisfor a certain arbitrary tableis:

Col umm handl ers:

/tabl e.cols.name (Colum(1,), CharType)
/table.cols.lati (Colum(2,), |nt32)
/table.cols.longi (Colum(1,), Int32)
/table.cols.pressure (Colum(1,), Float32)
/table.cols.tenmperature (Columm(1,), Float64)

Sone sel ecti ons:

Sel ect table.cols.nane[1]--> Particle: 11

Sel ect table.cols.nane[1:2]--> ['Particle: 11']
Select table.cols.lati[1:3]--> [[11 12]

[12 13]]

Sel ect table.cols.pressure[:]-->[90. 110. 132.]
Sel ect table.cols['tenperature'][:]-->[100. 121. 144.]

Seetheexanpl es/ t abl e2. py for amore complete example.
__setitem__ (key, value)
It takes different actions depending on the type of the key parameter:

keyisanl| nt eger
The corresponding element in the column is set to value. value must be a scalar or numar r ay/NunPy object,
depending on column'’s shape.

keyisaSlice
Therow dice determined by key is set to value. value must be alist of elementsor anumar r ay/NunPy.

Example of use:

Modify row 1
table.cols.col 1[1] = -1

Modify rows 1 and 3
table.cols.col 1[1::2] = [2, 3]

Which is equivalent to:

Modify row 1

t abl e. nodi f yCol ums(start=1, colums=[[-1]], nanmes=["col 1"])

Modify rows 1 and 3

colums = numarray.records.fromarrays([[2,3]], formats="i4")

t abl e. nodi f yCol ums(start=1, step=2, colums=col utmms, nanes=["col 1"])

4.10. The Array class

Represents an array on file. It provides methods to write/read data to/from array objectsin thefile. This class does not
allow you to enlarge the datasets on disk; seethe EAr r ay descendant in Section 4.12 if you want enlargeable dataset
support and/or compression features. See also CAr r ay in Section 4.11

The array data types supported are the same as the set provided by the numar r ay package. For details of these data
types see Appendix A, or the numar r ay reference manual ([12]).

83

Library Reference

An interesting property of the Ar r ay classis that it remembers the flavor of the object that has been saved so that
if you saved, for example, aLi st , you will get aLi st during readings afterwards, or if you saved a NunPy array,
you will get aNunPy object.

Note that this object inherits all the public attributes and methods that Leaf already provides.

4.10.1. Array instance variables

flavor The object representation for this array. It can be any of "numarray”, "numpy",
"numeric" or "python" values.

nrows The length of the first dimension of the array.

nrow On iterators, thisis the index of the current row.

type The type class of the represented array.

stype The string type of the represented array.

itemsize The size of the base items. Specially useful for Char Ty pe objects.

4.10.2. Array methods

Note that, as this object has no internal 1/0 buffers, it is not necessary to use the flush() method inherited from Leaf
in order to save itsinternal state to disk. When awriting method call returns, all the datais already on disk.

getEnum|()
Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enuminstance (see 4.17.4) is returned. If it is not of an
enumerated type, aTypeEr r or israised.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding numar r ay instances built from rows in array. The return rows are taken from the first
dimensionin case of an Ar r ay and CAr r ay instance and the enlargeable dimension in case of an EAr r ay instance.
If arangeissupplied (i.e. some of the start, stop or step parameters are passed), only the appropriate rows are returned.
Else, all the rows arereturned. See dlsotheand __iter () specia methodsin Section 4.10.3 for a shorter way
to call thisiterator.

Themeaning of the start, stop and step parametersisthe sameasinther ange() python function, except that negative
values of st ep arenot allowed. Moreover, if only st ar t isspecified, thenst op will besettost art +1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

result = [rowfor rowin arraylnstance.iterrows(step=4)]

read(start=None, stop=None, step=1)

Read the array from disk and return it asanunar r ay (default) object, or an object with the same original flavor that

it was saved. It accepts start, stop and step parameters to select rows (the first dimension in the case of an Ar r ay and
CAr r ay instance and the enlargeable dimension in case of an EAr r ay) for reading.

84

Library Reference

Themeaning of the start, stop and step parametersisthe sameasinther ange() python function, except that negative
values of st ep arenot allowed. Moreover, if only st ar t isspecified, thenst op will besettost art +1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

4.10.3. Array special methods

Following are described the methods that automatically trigger actions when an Ar r ay instance is accessed in a
specia way (e.g.,array[2: 3, ...,::2] will beequivalenttoacaltoarray. getitem (slice(2,3,
None), Ellipsis, slice(None, None, 2))).

__iter__()

It returns the same iterator than Array. i t er rows(0, 0, 1) . However, this does not accept parameters.
Example of use:

result =] rowf2] for rowin array]

Which is equivalent to:

result = [romf2] for rowin array.iterrows(0, 0, 1)]

__getitem__ (key)

It returns anumar r ay (default) object (or an object with the same original flavor that it was saved) containing the
slice of rows stated in the key parameter. The set of allowed tokensin key isthe same as extended slicing in python

(theEl I'i psi s token included).

Example of use:

arrayl = array|[4] # arrayl. shape == array. shape[1:]

array2 = array[4:1000: 2] # len(array2.shape) == |l en(array. shape)
array3 = array[::2, 1:4, :]

array4 = array[1, ..., ::2, 1:4, 4:] # CGeneral slice selection

__setitem___(key, value)
Sets an Array element, row or extended dlice. It takes different actions depending on the type of the key parameter:

key isan integer:
The corresponding row is assigned to value. If needed, thisval ue is broadcasted to fit the specified row.

key isadice:
The row dlice determined by it is assigned to val ue. If needed, thisval ue is broadcasted to fit in the desired
range. If the slice to be updated exceeds the actual shape of the array, only the values in the existing range are
updated, i.e. the index error will be silently ignored. If val ue isamultidimensiona object, then its shape must
be compatible with the slice specified in key, otherwise, aVal ueEr r or will beissued.

Example of use:

al[0] = 333 # Assign an integer to a Integer Array row
a2[0] = "b" # Assign a string to a string Array row
a3[1:4] =5 # Broadcast 5 to slice 1:4

a4[1:4:2] = "xXx" # Broadcast "xXx" to slice 1:4:2

85

Library Reference

Ceneral slice update (a5.shape = (4,3, 2,8,5,10)
ab[1, ..., ::2, 1:4, 4:] = arange(1728, shape=(4,3,2,4,3,6))

4.11. The CArray class

Thisisachild of the Ar r ay class (see4.10) and assuch, CAr r ay representsan array on thefile. Thedifferenceisthat
CAr r ay has a chunked layout and, as a consequence, it also supports compression. You can use this class to easily
save or load array (or array slices) objects to or from disk, with compression support included.

4.11.1. CArray instance variables

In addition to the attributes that CAr r ay inheritsfrom Ar r ay, it supports some more that provide information about
the filters used.

atom An At om(see4.16.3) instance representing the shape, type and flavor of the atom-
ic objects to be saved.

4.11.2. Example of use

See below asmall example of CAr r ay class. The codeisavailablein exanpl es/ carrayl. py.

i mport numarray
i mport tables

fileName = 'carrayl. h5'

shape = (200, 300)

atom = t abl es. Ul nt 8At on{ shape = (128, 128))

filters = tables. Filters(conpl evel =5, conplib="zlib")

h5f = tabl es. openFil e(fil eNane, ' w)
ca = hb5f.createCArray(h5f.root, 'carray', shape, atom filters=filters)

Fill a hyperslab in ca. The array will be converted to U nt8 el enents
ca[10: 60, 20: 70] = numarray. ones((50, 50))
h5f . cl ose()

Re-open a read anot her hypersl ab
h5f = tabl es. openFil e(fil eNane)
print h5f

print h5f.root.carray[8:12, 18:22]
h5f . cl ose()

The output for the previous script is something like:

carrayl. h5 (File)

Last nmodif.: 'Thu Jun 16 10:47:18 2005
oj ect Tree:

/ (Root Gr oup)

/[carray (CArray(200L, 300L))

[

cooco
cooo
PPk oo
5588

86

Library Reference

4.12. The EArray class

Thisisachild of the Ar r ay class (see 4.10) and as such, EAr r ay represents an array on the file. The differenceis

that EAr r ay allowsto enlarge datasets along any single dimensi on* you select. Another important difference is that
it also supports compression.

So, in addition to the attributes and methods that EAr r ay inheritsfrom Ar r ay, it supports afew more that provide a
way to enlarge the arrays on disk. Following are described the new variables and methods aswell as some that already
exist in Ar r ay but that differ somewhat on the meaning and/or functionality in the EAr r ay context.

4.12.1. EArray instance variables

atom An At om(see4.16.3) instance representing the shape, type and flavor of the atom-
ic objects to be saved. One of the dimensions of the shape is 0, meaning that the
array can be extended along it.

extdim The enlargeable dimension, i.e. the dimension this array can be extended along.

nrows The length of the enlargeable dimension of the array.

4.12.2. EArray methods

getEnum()
Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enuminstance (see 4.17.4) is returned. If it is not of an
enumerated type, aTypeEr r or israised.

append(sequence)

Appends asequence to the underlying dataset. Obviously, this sequence must have the same type as the EAr r ay
instance; otherwise aTypeEr r or isissued. In the same way, the dimensions of the sequence have to conform to
those of EAr r ay, that is, al the dimensions have to be the same except, of course, that of the enlargeable dimension
which can be of any length (even Q).

Example of use (code availablein exanpl es/ earrayl. py):

i mport tables
fromnumarray i nmport strings

fileh = tabl es. openFil e("earrayl. h5", node = "w'")

a = tabl es. StringAton{shape=(0,), |ength=8)

Use 'a' as the object type for the enl argeabl e array

array ¢ = fileh.createEArray(fileh.root, 'array c', a, "Chars")
array_c.append(strings.array(['a *2, 'b'*4], itensize=8))
array_c.append(strings.array(['a' *6, 'b'*8, 'c'*10], itensize=8))

Read the string EArray we have created on disk
for s in array_c:

print "array c[%] => '%'" % (array_c.nrow, S)
Close the file

4n the future, multi ple enlargeable dimensions might be implemented as well.

87

Library Reference

fileh.close()
and the output is:

array_c[0] => 'aa'
array_c[1] => 'bbbb’
array _c[2] => 'aaaaaa'
array_c[3] => 'bbbbbbbb'
array_c[4] => 'cccccccec'

4.13. The VLArray class

Instances of this class represents array objects in the object tree with the property that their rows can have avariable
number of (homogeneous) elements (called atomic objects, or just atoms). Variable length arrays (or VLA'sfor short),
similarly to Tabl e instances, can have only onedimension, and likewise Tabl e, the compound el ements (the atoms)
of therows of VLAr r ays can be fully multidimensional objects.

VLAY r ay provides methods to read/write data from/to variable length array objects residents on disk. Also, note that
this object inherits al the public attributes and methods that Leaf aready has.

4.13.1. VLArray instance variables

atom An At om(see4.16.3) instance representing the shape, type and flavor of the atom-
ic objects to be saved.

nrow On iterators, thisis the index of the current row.

nrows The total number of rows.

4.13.2. VLArray methods

getEnum|()
Get the enumerated type associated with this array.

If this array is of an enumerated type, the corresponding Enuminstance (see 4.17.4) is returned. If it is not of an
enumerated type, aTypeEr r or israised.

append(sequence, *objects)
Append objectsin the sequence to the array.

This method appends the objects in the sequence to asingle row in this array. The type of individual objects must
be compliant with the type of atoms in the array. In the case of variable length strings, the very string to append is
thesequence.

Example of use (code availablein exanpl es/ vl arrayl. py):

i mport tables
from nunpy inport * # or, fromnumarray inport *

Create a VLArray:
fileh = tabl es. openFile("vlarrayl. h5", node = "w')
viarray = fileh.createVLArray(fileh.root, 'vlarrayl',
tabl es. | nt 32At om(f | avor =" nunpy"),
"ragged array of ints", Filters(conplevel =1))

88

Library Reference

Append sone (variable | ength) rows:
vl array. append(array([5, 6]))

vl array. append(array([5, 6, 7]))

vl array. append([5, 6, 9, 8])

Now, read it through an iterator:
for x in vlarray:
print vlarray.name+"["+str(vlarray. nrow)+"]-->", x

Close the file
fileh.close()

The output of the previous program looks like this:

vliarrayl[0]--> [5 6]

vliarrayl[1]--> [5 6 7]

vliarrayl[2]--> [5 6 9 8]

Theobj ect s argument is only retained for backwards compatibility; please do not useit.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding one row per iteration. If arangeis supplied (i.e. some of the start, stop or step parameters
are passed), only the appropriate rows are returned. Else, all therows arereturned. Seealsothe i ter__ () specia
methodsin Section 4.13.3 for a shorter way to call thisiterator.

Themeaning of the start, stop and step parametersisthe sameasinther ange() python function, except that negative
values of st ep arenot allowed. Moreover, if only st ar t is specified, thenst op will besettost art +1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

for rowin vliarray.iterrows(step=4):
print vlarray.name+"["+str(vlarray.nrow)+"]-->", row

read(start=None, stop=None, step=1)

Returns the actual datain VLAr r ay. Asthe lengths of the different rows are variable, the returned value is a python
list, with as many entries as specified rows in the range parameters.

Themeaning of the start, stop and step parametersisthe sameasinther ange() python function, except that negative
values of st ep arenot allowed. Moreover, if only st ar t isspecified, thenst op will besettost art +1. If you do
not specify neither start nor stop, then all the rows in the object are selected.

4.13.3. VLArray special methods

Following are described the methods that automatically trigger actionswhen aVLAr r ay instanceisaccessed in aspe-
cial way (e.g., vl array[2: 5] will beequivalenttoacall tovl array. getitem_ (slice(2,5, None)).

__iter__()
It returns the same iterator than VLArray. i t er rows(0, 0, 1) . However, this does not accept parameters.
Example of use:

result =[] rowfor rowin vliarray]

89

Library Reference

Which is equivalent to;

result = [rowfor rowin vliarray.iterrows()]

__getitem__ (key)

It returns the slice of rows determined by key, which can be an integer index or an extended slice. The returned value
isalist of objectsof typear ray. at om t ype.

Example of use:

listl
list2

vl array] 4]
vl array[4: 1000: 2]

__setitem__ (keys, value)

Updates avlarray row described by keys by setting it to val ue. Depending on the value of keys, the action taken
is different:

keys isan integer:
It refers to the number of row to be modified. The val ue object must be type and shape compatible with the
object that existsin the vlarray row.

keys isatuple
The first element refers to the row to be modified, and the second element to the range (so, it can be an integer
or an slice) of the row that will be updated. As above, theval ue object must be type and shape compatible with
the object specified in the vlarray row and range.

Note: When updating VLSt r i ngs (codification UTF-8) or Cbj ect s atoms, thereis aproblem: one can only update
values with exactly the same bytes than in the origina row. With UTF-8 encoding this is problematic because, for
instance, 'c' takes 1 byte, but ' ' takes two. The same applies when using Obj ect s atoms, because when cPickle
applies to a class instance (for example), it does not guarantee to return the same number of bytes than over other
instance, even of the same classthan the former. Thesefacts effectively limit the number of objectsthan can be updated
in VLAr r ays.

Example of use:

vlarray[0] = vlarray[0]*2+3

vl array[99, 3:] = arange(96)*2+3

Negative values for start and stop (but not step) are supported
vl array[99,-99:-89: 2] = vlarray[5]*2+3

4.14. The Unimplemented class

Instances of this class represents an unimplemented dataset in a generic HDF5 file. When reading such afile (i.e. one
that has not been created with Py Tabl es, but with some other HDF5 library based tool), chances are that the specific
combination of datatypes and/or dataspaces in some dataset might not be supported by PyTabl es yet. In such a
case, this dataset will be mapped into the Unl npl enent ed class and hence, the user will still be able to build the
complete object tree of this generic HDF5 file, aswell as enabling the access (both read and write) of the attributes of
this dataset and some metadata. Of course, the user won't be able to read the actua data on it.

Thisisan elegant way to allow users to work with generic HDF5 files despite the fact that some of its datasets would
not be supported by Py Tabl es. However, if you are really interested in having access to an unimplemented dataset,
please, get in contact with the developer team.

This class does not have any public instance variables, except those inherited from the Leaf class (see 4.5).

90

Library Reference

4.15. The AttributeSet class

Represents the set of attributes of a node (Leaf or Group). It provides methods to create new attributes, open, rename
or delete existing ones.

Likein Gr oup instances, At t r i but eSet instances make use of the natural naming convention, i.e. you can access
the attributeson disk like if they werenormal At t ri but eSet attributes. This offersthe user avery convenient way
to access (but also to set and delete) node attributes by simply specifying them like a normal attribute class.

Caveat emptor: All Python datatypes are supported. In particular, multidimensional numar r ay objectsare saved na
tively asmultidimensional objectsin the HDF5 file. Python strings are al so saved natively as HDF5 strings, and loaded
back as Python strings. However, therest of the datatypesincluding the Python scalar ones (i.e. Int, Long and Float) and
more general objects(likeNunPy or Nuner i ¢) areserializedusingcPi ckl e, soyouwill beableto correctly retrieve
them only from a Python-aware HDF5 library. So, if you want to save Python scalar values and be able to read them
with generic HDF5 toals, you should make use of scalar numar r ay objects (for example nunarr ay. array(1,
t ype=nunar r ay. | nt 64)). Inthe same way, attributesin HDF5 native fileswill be always mapped into nunar -
r ay objects. Specifically, a multidimensional attribute will be mapped into a multidimensional numar r ay and an
scalar will be mapped into ascalar numar r ay (for example, an attribute of type H5T_NATI VE_LLONGwill beread
and returned asanumarray. array(X, type=nunarray. | nt 64) scalar).

One more warning: because of the various potential difficultiesin restoring a Python object stored in an attribute, you
may end up getting a cPi ckl e string where a Python object is expected. If this is the case, you may wish to run
cPi ckl e. | oads() onthat string to get an idea of where things went wrong, as shown in this example:

>>> jnmport tables

>>>

>>> cl ass MyCl ass(object):
foo = 'bar'

>>> # An object of nmy custom cl ass.
... myQbject = Myd ass()
>>>
>>> h5f = tables.openFile('test.h5 , "w)
>>> h5f.root. v_attrs.obj = nyCbject # store the object
>>> print h5f.root. v _attrs.obj.foo # retrieve it
bar
>>> h5f. cl ose()
>>>
>>> # Delete class of stored object and reopen the file.
... del MWyd ass, myQbject
>>>
>>> h5f = tables.openFile('test.h5 , 'r")
>>> print h5f.root._v_attrs.obj.foo
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?

AttributeError: 'str' object has no attribute 'foo
>>> # Let us inspect the object to see what is happening.

print repr(h5f.root._v_attrs.obj)
‘ccopy_reg\n_reconstructor\npl\n(c__main__ \nM/Cl ass\np2\nc__buil tin__\nobj ect\ np3\ nNt Rp4\ n
>>> # Maybe unpickling the string will yield nore information

i mport cPickle
>>> cPi ckl e. | oads(h5f.root._v_attrs. obj)
Traceback (nost recent call |ast):

File "<stdin>", line 1, in ?

91

Library Reference

AttributeError: 'nodul e’ object has no attribute ' MWd ass’
>>> # So the problemwas not in the stored object,

but in the *environnent* where it was restored.

h5f . cl ose()

4.15.1. AttributeSet instance variables

_V_node The parent node instance.

_V_attrnames List with al attribute names.

_V_attrnamessys List with system attribute names.

_V_attrnamesuser List with user attribute names.

4.15.2. AttributeSet methods

Note that this class definesthe __setattr__, getattr__ and __del attr__ and they work as normally

intended. Any scalar (string, ints or floats) attribute is supported natively as an attribute. However, (c) Pi ckl e is
automatically used so as to serialize other kind of objects (like lists, tuples, dicts, small NumPy/Numeric/numarray
objects, ...) that you might want to save. If an attribute is set on a target node that already has a large number of
attributes, aPer f or manceWar ni ng will be issued.

With these special methods, you can access, assign or delete attributes on disk by just using the next constructs:

| eaf .attrs. myattr = "str attr" # Set a string (native support)

| eaf . attrs. myattr2 = 3 # Set an integer (native support)
leaf .attrs. myattr3 = [3,(1,2)] # A generic object (Pickled)
attrib = leaf.attrs. nyattr # Cet the attribute nmyattr

del leaf.attrs. myattr # Delete the attribute nyattr

_f _copy(where)

Copy the user attributes (as well as certain system attributes) to where object. where has to be a G- oup or Leaf
instance.

_f list(attrset="user")

Return alist of attribute names of the parent node. attrset selects the attribute set to be used. A user value returns
only the user attributes and this is the default. sys returns only the system attributes. al | returns both the system
and user attributes.

_f rename(oldattrname, newattrname)

Rename an attribute.

4.16. Declarative classes

In this section a series of classes that are meant to declare datatypes that are required for primary Py Tabl es (like
Tabl e or VLAr r ay) objects are described.

4.16.1. The IsDescription class

This class is designed to be used as an easy, yet meaningful way to describe the properties of Tabl e objects through
the definition of derived classes that inherit properties from it. In order to define such a class, you must declare it as

92

Library Reference

descendant of IsDescription, with as many attributes as columns you want in your table. The name of each attribute
will become the name of acolumn, and its value will hold a description of it.

Ordinary columns can be described using instances of the Col (see Section 4.16.2) class. Nested columns can be
described by using classesderived from | sDescr i pt i on or instancesof it. Derived classes can be declared in place
(in which case the column takes the name of the class) or referenced by name, and they can havea _v_pos special
attribute which sets the position of the nested column among its sibling columns.

Once you have created a description object, you can pass it to the Tabl e constructor, where all the information it
contains will be used to define the table structure. See the Section 3.4 for an example on how that works.

See below for acomplete list of the special attributes that can be specified to complement the metadata of an | sDe-
scri ption class.

IsDescription special attributes

_v_flavor The flavor of the table. It can take "numarray” (default) or "numpy" values. This
determines the type of objects returned during input (i.e. read) operations.

_V_indexprops An instance of the | ndexPr ops class (see Section 4.17.2). Y ou can use thisto
alter the properties of the index creation process for atable.

_V_pos Sets the position of a possible nested column description among its sibling
columns.

4.16.2. The Col class and its descendants

TheCol classisused asamean to declarethe different properties of atable column. In addition, aseries of descendant
classes are offered in order to make these column descriptions easier to the user. In general, it is recommended to use
these descendant classes, as they are more meaningful when found in the middle of the code.

Col instance attributes

type The type class of the column.

stype The string type of the column.

recarrtype The string type, in RecAr r ay format, of the column.

shape The shape of the column.

itemsize The size of the base items. Specially useful for St ri ngCol objects.

indexed Whether this column is meant to be indexed or not.

_V_pos The position of this column with regard to its column siblings.

_V_name The name of this column

_v_pathname The compl ete pathname of the column. Thisis mainly useful in nested columns;

Col methods

None.

for non-nested ones thisvalueisthesamea_v_nane.

93

Library Reference

Col constructors

A description of the different constructors with their parameters follows:
Col(dtype="Float64", shape=1, dflt=None, pos=None, indexed=0)
Declare the properties of aTabl e column.

dtype
Thedatatypefor the column. All typeslistedin Appendix A arevalid datatypesfor columns. Thetype description
is accepted both in string-type format and as a numarray data type.

shape
An integer or atuple, that specifies the number of dtype items for each element (or shape, for multidimensional
elements) of thiscolumn. For Char Type columns, thelast dimension isused asthelength of the character strings.
However, for this kind of objects, the use of St ri ngCol subclassis strongly recommended.

dflt
The default value for elements of this column. If the user does not supply avalue for an element whilefilling a
table, this default value will be written to disk. If the user supplies an scalar value for amultidimensional column,
thisvalueisautomatically broadcasted to all the elementsin the column cell. If dflt isnot supplied, an appropriate
zero value (or null string) will be chosen by default. Please, note that all the default values are kept internally
as humarray objects.

pos
By default, columns are arranged in memory following an apha-numerical order of the column names. In some

situations, however, it is convenient to impose a user defined ordering. pos parameter allows the user to force
the desired ordering.

indexed
Whether this column should be indexed for better performance in table selections.

StringCol(length=None, dflt=None, shape=1, pos=None, indexed=0)

Declare a column to be of type Char Type. The length parameter sets the length of the strings. The meaning of the
other parameters are like in the Col class.

BoolCol(dflt=0, shape=1, pos=None, indexed=0)
Define a column to be of type Bool . The meaning of the parameters are the same of those in the Col class.
IntCol(dflt=0, shape=1, itemsize=4, sign=1, pos=None, indexed=0)

Declare acolumn to be of type | nt XX, depending on the value of itemsize parameter, that sets the number of bytes of
theintegersin the column. sign determines whether the integers are signed or not. The meaning of the other parameters
are the same of thosein the Col class.

This class has several descendants:

Int8Col(dflt=0, shape=1, pos=None, indexed=0)
Define acolumn of typel nt 8.

UInt8Col(dflt=0, shape=1, pos=None,indexed=0)

Define acolumn of type Ul nt 8.

94

Library Reference

Int16Col(dflt=0, shape=1, pos=None, indexed=0)
Define acolumn of type | nt 16.

UInt16Col(dflt=0, shape=1, pos=None, indexed=0)
Define a column of type Ul nt 16.

Int32Col(dflt=0, shape=1, pos=None, indexed=0)
Define acolumn of type | nt 32.

UInt32Col(dflt=0, shape=1, pos=None, indexed=0)
Define acolumn of type Ul nt 32.

Int64Col(dflt=0, shape=1, pos=None, indexed=0)
Define acolumn of type | nt 64.

UInt64Col(dflt=0, shape=1, pos=None, indexed=0)
Define a column of type Ul nt 64.
FloatCol(dflt=0.0, shape=1, itemsize=8, pos=None, indexed=0)

Define acolumn to be of type Fl oat XX, depending onthevalueof i t ensi ze. Thei t ensi ze parameter setsthe
number of bytes of the floats in the column and the default is 8 bytes (double precision). The meaning of the other
parameters are the same as those in the Col class.

This class has two descendants:

Float32Col(dflt=0.0, shape=1, pos=None, indexed=0)

Define a column of type Fl oat 32.

Float64Col(dflt=0.0, shape=1, pos=None, indexed=0)

Define acolumn of type Fl oat 64.

ComplexCol(dflt=0.+0.j, shape=1, itemsize=16, pos=None)

Define a column to be of type Conpl ex XX, depending onthevalueof i t ensi ze. Thei t ensi ze parameter sets
the number of bytes of the complex types in the column and the default is 16 bytes (double precision complex). The
meaning of the other parameters are the same as those in the Col class.

Conpl exCol columns and its descendants do not support indexation.

This class has two descendants:

Complex32Col(dflt=0.+0.j, shape=1, pos=None)

Define acolumn of type Conpl ex32.

Complex64Col(dflt=0+0.j, shape=1, pos=None)

Define a column of type Conpl ex64.

95

Library Reference

TimeCol(dflt=0, shape=1, itemsize=8, pos=None, indexed=0)

Define a column to be of type Time. Two kinds of time columns are supported depending onthevalueof i t ensi ze:
4-byte signed integer and 8-byte doubl e precision floating point columns (the default ones). The meaning of the other
parameters are the same as those in the Col class.

Time columns have a specia encoding in the HFDS5 file. See Appendix A for more information on those types.
This class has two descendants:

Time32Col(dflt=0, shape=1, pos=None, indexed=0)

Define acolumn of type Ti ne32.

Time64Col(dflt=0.0, shape=1, pos=None, indexed=0)

Define a column of type Ti ne64.

EnumcCol(enum, dflt, dtype='UInt32', shape=1, pos=None, indexed=False)

Description of acolumn of an enumerated type.

Instances of this class describe atable column which stores enumerated values. Those values belong to an enumerated
type, defined by thefirst argument (enum in the constructor of EnuntCol , which acceptsthe same kinds of arguments
as Enum(see 4.17.4). The enumerated type is stored in the enumattribute of the column.

A default value must be specified as the second argument (df | t) in the constructor; it must be the name (a string) of
one of the enumerated valuesin the enumerated type. Once the column is created, the corresponding concrete value is
stored initsdf | t attribute. If the name does not match any value in the enumerated type, aKeyEr r or israised.

A numarray datatype might be specified in order to determine the base type used for storing the values of enumerated
valuesin memory and disk. The data type must be able to represent each and every concrete value in the enumeration.
Ifitisnot,aTypeErr or israised. The default base typeisunsigned 32-hit integer, which is sufficient for most cases.

The st ype attribute of enumerated columnsis dways' Enuni , whilethe t ype attribute is the data type used for
storing concrete values.

The shape, position and indexed attributes of the column are treated as with other column description objects (see
4.16.2).

4.16.3. The Atom class and its descendants.

The At omclassisadescendant of the Col class(see4.16.2) and is meant to declare the different properties of the base
element (also known as atom) of CAr r ay, EAr r ay and VLAr r ay objects. The At ominstances have the property
that their length is always the same. However, you can grow objects along the extensible dimension in the case of
EAr r ay or put avariable number of themonaVLAr r ay row. Moreover, the atoms are not restricted to scalar values,
and they can be fully multidimensional objects.

A series of descendant classes are offered in order to make the use of these element descriptions easier. In general, it
is recommended to use these descendant classes, as they are more meaningful when found in the middle of the code.

Atom instance variables

In addition to the variables that it inherits from the Col class, it has the next additional attributes:

flavor The object representation for this atom. See below on constructors description for
At omclass the possible values it can take.

96

Library Reference

Atom methods
atomsize()

Returns the total length, in bytes, of the element base atom. If its shape is has one zero element on it (for use in
EAr r ays, for example), thisis replaced by an one in order to compute the atom size correctly.

Atom constructors

A description of the different constructors with their parameters follows:
Atom(dtype="Float64", shape=1, flavor="numarray")

Define properties for the base elements of CAr r ay, EArr ay and VLAr r ay objects.
dtype

The data type for the base element. See the Appendix A for arelation of data types supported. The type description
is accepted both in string-type format and as a numarray data type.

shape

InaEAr r ay context, it is atuple specifying the shape of the object, and one (and only one) of its dimensions must
be 0, meaning that the EAr r ay object will be enlarged along thisaxis. In the case of aVLAr r ay, it can be an integer
with a value of 1 (one) or atuple, that specifies whether the atom is an scalar (in the case of a 1) or has multiple
dimensions (in the case of atuple). For Char Ty pe elements, the last dimension is used as the length of the character
strings. However, for thiskind of objects, the use of St r i ngAt omsubclassis strongly recommended.

flavor

The object representation for thisatom. It can be any of "numarray”, "numpy" or "python" for the character types and

"numarray”, "numpy”, "numeric" or "python" for the numerical types. If specified, the read atoms will be converted
to that specific flavor. If not specified, the atomswill remain in their native format (i.e. numar r ay).

StringAtom(shape=1, length=None, flavor="numarray")

Define an atom to be of Char Type type. The meaning of the shape parameter is the same as in the At omclass.

length sets the length of the strings atoms. flavor can be whether " nurmar ray" , " nunpy" or " pyt hon" . Unicode

strings are not supported by this type; see the VLSt r i ngAt omclass if you want Unicode support (only available
for VLAt omobjects).

BoolAtom(shape=1, flavor="numarray")

Define an atom to be of type Bool . The meaning of the parameters are the same of those in the At omclass.
IntAtom(shape=1, itemsize=4, sign=1, flavor="numarray")

Define an atom to be of type | nt XX, depending on the value of itemsize parameter, that sets the number of bytes of
the integers that conform the atom. sign determines whether the integers are signed or not. The meaning of the other
parameters are the same of those in the At omclass.

This class has severa descendants:

Int8Atom(shape=1, flavor="numarray")

Define an atom of typel nt 8.

97

Library Reference

UInt8Atom(shape=1, flavor="numarray")
Define an atom of type Ul nt 8.
Int16Atom(shape=1, flavor="numarray")
Define an atom of typel nt 16.
UIntl6Atom(shape=1, flavor="numarray")
Define an atom of type Ul nt 16.
Int32Atom(shape=1, flavor="numarray")
Define an atom of type | nt 32.
UInt32Atom(shape=1, flavor="numarray")
Define an atom of type Ul nt 32.
Int64Atom(shape=1, flavor="numarray")
Define an atom of type | nt 64.
UInt64Atom(shape=1, flavor="numarray")
Define an atom of type Ul nt 64.
FloatAtom(shape=1, itemsize=8, flavor="numarray")

Define an atom to be of FI oat XX type, depending onthevalueof i t enrsi ze. Thei t ensi ze parameter sets the
number of bytes of the floats in the atom and the default is 8 bytes (double precision). The meaning of the other
parameters are the same as those in the At omclass.

This class has two descendants:

Float32Atom(shape=1, flavor="numarray")

Define an atom of type FI oat 32.

Float64Atom(shape=1, flavor="numarray")

Define an atom of type FI oat 64.

ComplexAtom(shape=1, itemsize=16, flavor="numarray")

Define an atom to be of Conpl ex XX type, depending on the value of i t ensi ze. Thei t ensi ze parameter sets
the number of bytes of the floats in the atom and the default is 16 bytes (double precision complex). The meaning of
the other parameters are the same as those in the At omclass.

This class has two descendants:
Complex32Atom(shape=1, flavor="numarray")
Define an atom of type Conpl ex32.
Complex64Atom(shape=1, flavor="numarray")

Define an atom of type Conpl ex64.

98

Library Reference

TimeAtom(shape=1, itemsize=8, flavor="numarray")

Define an atom to be of type Time. Two kinds of time atoms are supported depending on the value of i t ensi ze:
4-byte signed integer and 8-byte double precision floating point atoms (the default ones). The meaning of the other
parameters are the same as those in the At omclass.

Time atoms have a special encoding in the HFD5 file. See Appendix A for more information on those types.
This class has two descendants:

Time32Atom(shape=1, flavor="numarray")

Define an atom of type Ti ne32.

Time64Atom(shape=1, flavor="numarray")

Define an atom of type Ti ne64.

EnumAtom(enum, dtype='UInt32', shape=1, flavor="numarray")

Description of an atom of an enumerated type.

Instances of this class describe the atom type used by an array to store enumerated values. Those values belong to
an enumerated type.

The meaning of the enumand dt ype argumentsisthe sameasin EnuntCol (see4.16.2). Theshape andf | avor
arguments have the usual meaning of other At omclasses (thef | avor appliesto the representation of concrete read
values).

Enumerated atoms also have st ype andt ype attributes with the same values asin Enuntol .

Now, there come two special classes, Cbj ect At omand VLSt ri ng, that actually do not descend from At om but
which goal isso similar that they should be described here. The difference between them and the At omand descendants
classes is that these special classes does not allow multidimensional atoms, nor multiple values per row. A flavor can
not be specified neither asit isimmutable (see below).

Caveat emptor: You are only alowed to use these classes to create VLAr r ay objects, not CAr r ay and EAr r ay
objects.

ObjectAtom()

This classis meant to fit any kind of object in arow of an VLAr r ay instance by using cPi ckl e behind the scenes.
Dueto thefact that you can not foresee how long will be the output of thecPi ckl e seridization (i.e. the atom already
has avariable length), you can only fit arepresentant of it per row. However, you can still pass several parametersto
the VLAr r ay. append() method asthey will be regarded as a tuple of compound objects (the parameters), so that
we still have only one object to be saved in asingle row. It does not accept parameters and its flavor is automatically
setto" Qhj ect ", sothereads of rowsalwaysreturns an arbitrary python object. Y ou can regard Cbj ect At omtypes
as an easy way to save an arbitrary number of generic python objectsinaVLAr r ay object.

VLStringAtom()

This class describes arow of the VLAY r ay class, rather than an atom. It differs from the St ri ngAt omclassin that
you can only add oneinstance of it to one specificrow, i.e. the VLAr r ay. append() method only accepts one object
when the base atom is of thistype. Besides, it supports Unicode strings (contrarily to St r i ngAt on) because it uses
the UTF-8 codification (thisiswhy itsat onsi ze() method returns always 1) when serializing to disk. It does not
accept any parameter and because its flavor is automatically setto " VLSt ri ng" , the reads of rows always returns a

99

Library Reference

python string. See the Section D.3.5 if you are curious on how this is implemented at the low-level. You can regard
VLSt ri ngAt omtypes as an easy way to save generic variable length strings.

Seeexanpl es/ vl arrayl. py and exanpl es/ vl array2. py for further examples on VLAr r ays, including
object serialization and Unicode string management.

4.17. Helper classes

In this section are listed classes that does not fit in any other section and that mainly serve for ancillary purposes.

4.17.1. The Filters class

This class is meant to serve as a container that keeps information about the filter properties associated with the en-
largeable leaves, that isTabl e, EArr ay and VLAr r ay aswell asCArr ay.

The public variablesof Fi | t er s arelisted below:

complevel The compression level (0 means no compression).

complib The compression filter used (in case of compressed dataset).
shuffle Whether the shuffle filter is active or not.

fletcher 32 Whether the fletcher32 filter is active or not.

Thereareno Fi | t er s public methods with the exception of the constructor itself that is described next.

Filters(complevel=0, complib="zlib", shuffle=1, fletcher32=0)
The parameters that can be passed tothe Fi | t er s class constructor are:

complevel
Specifies a compress level for data. The allowed range is 0-9. A value of 0 disables compression. The default is
that compression is disabled, that balances between compression effort and CPU consumption.

complib
Specifiesthecompression library to beused. Right now, " zI i b" (default),” | zo"," ucl " and" bzi p2" values
are supported. See Section 5.3 for some advice on which library is better suited to your needs.

shuffle
Whether or not to use the shuffle filter present in the HDF5 library. Thisis normally used to improve the compres-
sion ratio (at the cost of consuming a little bit more CPU time). A value of 0 disables shuffling and 1 makes it
active. The default value depends on whether compression is enabled or not; if compression is enabled, shuffling
defaults to be active, else shuffling is disabled.

fletcher32
Whether or not to use the fletcher32 filter in the HDF5 library. Thisis used to add a checksum on each data chunk.
A vaue of 0 disables the checksum and it is the defaullt.

Of course, you can also create an instance and then assign the ones you want to change. For example:

i mport numarray as na
fromtables inport *

fileh = openFile("test5. h5", node = "wW')

100

Library Reference

atom = Fl oat 32At on(shape=(0, 2))
filters = Filters(conpl evel =1, conmplib = "lzo")
filters.fletcher32 =1
arr = fileh.createEArray(fileh.root, 'earray', atom "A growable array",
filters = filters)
Append several rows in only one call
arr.append(na.array([[1., 2.],
[2., 3.],
[3., 4.]], type=na.Fl oat 32))

Print information on that enlargeable array
print "Result Array:"
print repr(arr)

fileh.close()

This enforces the use of the LZOlibrary, a compression level of 1 and a fletcher32 checksum filter as well. See the
output of this example:

Result Array:

[earray (EArray(3L, 2), fletcher32, shuffle, [zo(1l)) 'A growable array’
type = Fl oat 32
shape = (3L, 2)
itensize = 4

nrows = 3
extdim= 0
flavor = 'numarray'
byteorder = "little'

4.17.2. The IndexProps class

You can use this class to set/unset the properties in the indexing process of a Tabl e column. To use it, create an
instance, and assign it to the specia attribute _v_i ndexpr ops in atable description class (see 4.16.1) or dictionary.

The public variables of | ndexPr ops arelisted below:

auto Whether an existing index should be updated or not after atable append operation.

reindex Whether the table columns are to be re-indexed after an invalidating index oper-
ation.

filters Thefilter settings for the different Tabl e indexes.

Thereareno | ndexPr ops public methods with the exception of the constructor itself that is described next.

IndexProps(auto=1, reindex=1, filters=None)
The parameters that can be passed to the | ndexPr ops class constructor are:

auto
Specifies whether an existing index should be updated or not after atable append operation. The default is enable
automatic index updates.

reindex
Specifies whether the table columns are to be re-indexed after an invalidating index operation (like for example,
after aTabl e. r enbveRows call). The default isto reindex after operations that invalidate indexes.

101

Library Reference

filters

Setsthefilter propertiesfor Col unm indexes. It hasto bean instance of theFi | t er s (see4.17.1) class. A None
value means that the default settings for the Fi | t er s object are selected.

4.17.3. The Index class

This classis used to keep the indexing information for table columns. It is actually a descendant of the Gr oup class,
with some added functionality.

It has no methods intended for programmer's use, but it has some attributes that may be interesting for him.

Index instance variables

column The column object thisindex belongs to.

type The type class for the index.

itemsize The size of the atomic items. Specially useful for columns of Char Type type.
nelements The total number of elementsin index.

dirty Whether the index is dirty or not.

filters TheFi | t er s (see Section 4.17.1) instance for thisindex.

4.17.4. The Enum class

Each instance of this class represents an enumerated type. The values of the type must be declared exhaustively and
named with strings, and they might be given explicit concrete values, though this is not compulsory. Once the type
is defined, it can not be modified.

There are three ways of defining an enumerated type. Each one of them corresponds to the type of the only argument
in the constructor of Enum

Sequence of names: each enumerated value is named using a string, and its order is determined by its position in
the sequence; the concrete value is assigned automatically:

>>> bool Enum = Enum([' True', 'False'])

Mapping of names: each enumerated value is named by a string and given an explicit concrete value. All of the
concrete values must be different, or aVal ueEr r or will be raised.

>>> priority = Enum({'red': 20, 'orange': 10, 'green': 0})
>>> colors = Enum({'red': 1, 'blue': 1})
Traceback (nobst recent call last):

Val ueError: enumnerated val ues contain duplicate concrete values: 1

Enumerated type: in that case, a copy of the original enumerated type is created. Both enumerated types are con-
sidered equal.

>>> prio2 = Enun{priority)
>>> priority == prio2
True

Please, note that names starting with _ are not allowed, since they are reserved for internal usage:

102

Library Reference

>>> prio2 = Enun([' _xx'])
Traceback (nost recent call |ast):

Val ueError: nanme of enunerated val ue can not start with XX

The concrete value of an enumerated value is obtained by getting its name as an attribute of the Enuminstance (see
__getattr__())orasanitem(see__getitem_()). Thisallowscomparisons between enumerated values and
assigning them to ordinary Python variables:

>>> redv = priority.red

>>> redv == priority['red']

True

>>> redv > priority.green

True

>>> priority.red == priority.orange

Fal se

The name of the enumerated value corresponding to a concrete value can also be obtained by usingthe _cal | __ ()

method of the enumerated type. In this way you get the symbolic nameto useit later with__getitem ():
>>> priority(redv)

"red

>>> priority.red == priority[priority(priority.red)]

True

(Ifyouask,the__getitem () methodisnot used for this purpose to avoid ambiguity in the case of using strings
as concrete values.)

Special methods
__getitem__ (hame)
Get the concrete value of the enumerated value with that nane.

The nane of the enumerated value must be a string. If there is no value with that name in the enumeration, a Key -
Error israised.

__getattr__(name)
Get the concrete value of the enumerated value with that nane.

The nane of the enumerated value must be a string. If there is no value with that nane in the enumeration, an
AttributeError isrased.

__contains__ (name)
Isthere an enumerated value with that nane in the type?

If the enumerated type has an enumerated value with that nane, Tr ue is returned. Otherwise, Fal se is returned.
The namre must be a string.

This method does not check for concrete values matching a value in an enumerated type. For that, please use the
__call_() method.

__call__(value, *default)

Get the name of the enumerated value with that concrete val ue.

103

Library Reference

If there is no value with that concrete value in the enumeration and a second argument is given as adef aul t , this
isreturned. Else, aVal ueEr r or israised.

Thismethod can be used for checking that a concrete val ue belongsto the set of concrete valuesin an enumerated type.
_len__()

Return the number of enumerated values in the enumerated type.

_iter__()

Iterate over the enumerated values.

Enumerated values are returned as (nane, val ue) pairsinno particular order.

__eq__(other)

Isthe ot her enumerated type equivalent to this one?

Two enumerated types are equivalent if they have exactly the same enumerated values (i.e. with the same names and
concrete values).

repr()

Return the canonical string representation of the enumeration. The output of this method can be evaluated to give a
new enumeration object that will compare equal to this one.

104

Chapter 5. Optimization tips

... durch planméssiges Tattonieren. [... through systematic, pal pable experimentation.]
--—Johann Karl Friedrich Gauss [asked how he came upon his theorems]

On thischapter, you will get deeper knowledge of Py Tabl es internals. Py Tabl es hassevera placeswherethe user
can improve the performance of his application. If you are planning to deal with really large data, you should read
carefully this section in order to learn how to get an important efficiency boost for your code. But if your dataset is
small or medium size (say, up to 10 MB), you should not worry about that as the default parametersin Py Tabl es
are aready tuned to handle that perfectly.

5.1. Informing PyTables about expected number of
rows in tables

The underlying HDF5 library that isused by Py Tabl es allowsfor certain datasets (chunked datasets) to take the data
in bunches of a certain length, so-called chunks, to write them on disk as awhole, i.e. the HDF5 library treats chunks
as atomic objects and disk /O is always made in terms of complete chunks. This allows data filters to be defined by
the application to perform tasks such as compression, encryption, checksumming, etc. on entire chunks.

An in-memory B-tree is used to map chunk structures on disk. The more chunks that are allocated for a dataset the
larger the B-tree. Large B-trees take memory and cause file storage overhead as well as more disk 1/0 and higher
contention for the metadata cache. Consequently, it's important to bal ance between memory and I/O overhead (small
B-trees) and time to access data (big B-trees).

PyTabl es can determine an optimum chunk size to make B-trees adequate to your dataset size if you help it by
providing an estimation of the number of rows for atable. This must be made at table creation time by passing this
valueto theexpect edr ows keyword of the cr eat eTabl e method (see description).

When your table size is bigger than 10 MB (take this figure only as a reference, not strictly), by providing this guess
of the number of rows you will be optimizing the access to your data. When the table size islarger than, say 100MB,

you are strongly suggested to provide such a guess; failing to do that may cause your application to do very slow I/O
operations and to demand huge amounts of memory. Y ou have been warned!

5.2. Accelerating your searches

If you are going to use alot of searches like the next one:

row = table.row
result = [rowf'var2'] for rowin table if rowf'varl'] <= 20]

(for future reference, we will call this the standard selection mode) and you want to improve the time taken to run
it, keep reading.

5.2.1. In-kernel searches

PyTabl es provides away to accelerate data selections when they are simple, i.e. when only acolumn isimplied in
the selection process, through the use of thewher e iterator (see description). We will call this mode of selecting data
in-kernel. Let's see an example of in-kernel selection based on the standard sel ection mentioned above:

row = tabl e

105

Optimization tips

result = row'var2'] for rowin table.where(table.cols.varl <= 20)]

This simple change of mode selection can account for an improvement in search times up to a factor of 10 (see the
Figure 5.1).

Comparison between the different selection modes in PyTables
(condition applied over Int32 values)

100000 T T T T T
Standard —+—
In-kernel

10000 k Indexed ---%--- |

1000

100

10

Time (seconds)

O X 001 %l . L L L L L
100 10000 100000 1le+06 le+07 1e+08 1e+09

Number of rows

Figure 5.1. Times for different selection modes over Int32 values. Benchmark made on
amachine with Itanium (IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

106

Optimization tips

Comparison between the different selection modes in PyTables
(condition applied over Float64 values)

100000 T T T T

Sta'ndard —
In-kernel
Indexed ---%---

10000

1000

100

10

Time (seconds)

0 . Ool . - L L L A A
100 10000 100000 1le+06 le+07 1le+08 1le+09

Number of rows

Figure 5.2. Timesfor different selection modes over Float64 values. Benchmark made
on amachine with Itanium (IA64) @ 900 MHz processors with SCS| disk @ 10K RPM.

So, where is the trick? It's easy. In the standard selection mode the data for column var 1 has to be carried up to
Python space so as to evaluate the condition and decide if the var 2 value should be added to ther esul t list. On
the contrary, in the in-kernel mode, the condition is passed to the Py Tabl es kernel (hence the name), written in C,
and evaluated there at C speed (with some help of the numar r ay package), so that the only values that are brought
to the Python space are the references for r ows that fulfilled the condition.

Y ou should note, however, that currently the wher e method only accepts conditions along a single col umn'. Fortu-
nately, you can mix the in-kernel and standard selection modes for evaluating arbitrarily complex conditions along
several columns at once. Look at this example:

row = table
result = row'var2'] for rowin table.where(table.cols.var3 == "foo")
if rowf 'varl'] <= 20]

here, we have used ain-kernel selection to filter the rowswhosevar 3 field isequal to string " f 00" . Then, we apply
a standard selection to complete the query.

Of course, when you mix the in-kernel and standard sel ection modes you should pass the most restrictive condition to

thein-kernel part, i.e. to thewher e iterator. In situations where it is not clear which is the most restrictive condition,
you might want to experiment abit in order to find the best combination.

5.2.2. Indexed searches

When you need more speed than in-kernel selections can offer you, Py Tabl es offers a third selection method, the
so-called indexed mode. In this mode, you have to decide which column(s) you are going to do your selections on,

1PyTabI&s Pro will address this shortcoming.

107

Optimization tips

and index them. Indexing is just akind of sort operation, so that next searches along a column will ook at the sorted
information using a binary search which is much faster than a sequential search.

Y ou can index your selected columnsin several ways:
Declaratively
Inthismode, you can declare acolumn asbeing indexed by passing theindexed parameter to the column descriptor.

That is:

cl ass Exanpl e(| sDescription):

varl = StringCol (I ength=4, dflt="", pos=1, indexed=1)
var2 = Bool Col (0, indexed=1, pos = 2)

var3 = IntCol (0, indexed=1, pos = 3)

var4 = Fl oat Col (0, indexed=0, pos = 4)

In this case, we are telling that var 1, var 2 and var 3 columns will be indexed automatically when you add
rows to the table with this description.

Calling Column.createl ndex()
In this mode, you can create an index even on an already created table. For example:

i ndexrows = tabl e.col s.varl. createl ndex()
i ndexrows = tabl e.col s. var2. createl ndex()
i ndexrows = tabl e.col s. var 3. creat el ndex()

will create indexes for al var 1, var 2 and var 3 columns, and after doing that, they will behave as regular
indexes.

After you have indexed a column, you can proceed to use it through the use of Tabl e. wher e method:

row = table
result = [rowf'var2'] for rowin table.where(table.cols.varl == "foo")]

or, if you want to add more conditions, you can mix the indexed selection with a standard one:

row = table
result = rowf'var2'] for row in table.where(table.cols.var3 <= 20)
if rowf'varl'] == "foo"]

remember to pass the most restrictive condition to the wher e iterator.

You can seein figures5.1 and 5.2 that indexing can accelerate quite alot your data selectionsin tables. For moderately
large tables (> one million rows), you can get speedups in the order of 100x with regard to in-kernel selections, and
in the order of 1000x with regard to standard selections.

One important aspect of indexation in Py Tabl es isthat it has been implemented with the goal of being capable to
manage effectively very large tables. In Figure 5.3, you can see that the times to index columnsin tables aways grow
linearly. In particular, the time to index a couple of columns with 1 billion of rows each is 40 min. (roughly 20 min.
each), which isa quite reasonable figure. Thisis because Py Tabl es has chosen an algorithm that does a partial sort
of the columns in order to ensure that the indexing time grows linearly. On the contrary, most of relational databases
try to do a complete sort of columns, and this makes the time to index grow much faster with the number of rows.

The fact that relational databases use a complete sorting algorithm for indexes means that their index would be more
effective (but not by a large extent) for searching purposes than the Py Tabl es approach. However, for relatively
large tables (> 10 millions of rows) the time required for completing such a sort can be so large, that indexing is not

108

Optimization tips

normally worth the effort. In other words, Py Tabl es indexing scales much better than relational databases. So don't
worry if you have extremely large columns to index: Py Tabl es is designed to cope with that perfectly.

Index creation time
10000 T T T T T

1000

10

Time (seconds)
=

0.1

0.01

0.001

1e-04 L L L L L
1000 10000 100000 1e+06 le+07 1le+08 le+09

Number of rows

Figure 5.3. Times for indexing a couple of columns of data type Int32 and Float64. Benchmark
made on a machine with Itanium (1A64) @ 900 MHz processors with SCSI disk @ 10K RPM.

5.3. Compression issues

One of the beauties of Py Tabl es is that it supports compression on tables and arraysz, although it is not used by
default. Compression of big amounts of data might be a bit controversia feature, because compression has a legend
of being a very big consumer of CPU time resources. However, if you are willing to check if compression can help
not only by reducing your dataset file size but also by improving /O efficiency, specialy when dealing with very
large datasets, keep reading.

There is a common scenario where users need to save duplicated data in some record fields, while the others have
varying values. In arelational database approach such redundant data can normally be moved to other tables and a
relationship between the rows on the separate tables can be created. But that takes analysis and implementation time,
and makes the underlying libraries more complex and slower.

PyTabl es transparent compression allows the users to not worry about finding which is their optimum strategy for
data tables, but rather use less, not directly related, tables with a larger number of columns while still not cluttering
the database too much with duplicated data (compression is responsible to avoid that). As a side effect, data selections
can be made more easily because you have more fields available in asingle table, and they can be referred in the same
loop. This process may normally end in asimpler, yet powerful manner to process your data (although you should still
be careful about in which kind of scenarios the use of compression is convenient or not).

The compression library used by default isthe Zlib (see[5]). Since HDF5 requiresit, you can safely use it and expect
that your HDF5 files will be readable on any other platform that has HDF5 libraries installed. Zlib provides good

°More precisely, it is supported in CAr r ay, EAr r ay and VLAr r ay objects, but not in Ar r ay objects.

109

Optimization tips

compression ratio, although somewhat slow, and reasonably fast decompression. Because of that, it isagood candidate
to be used for compressing you data.

However, in some situationsit is critical to have very good decompression speed (at the expense of lower compression
ratios or more CPU wasted on compression, aswe will see soon). In others, the emphasisis put in achieving the max-
imum compression ratios, no matter which reading speed will result. Thisiswhy support for two additional compres-
sors has been added to PyTables: LZO (see [13]) and bzip2 (see [14]). Following the author of LZO (and checked by
the author of this section, as you will see soon), LZO offers pretty fast compression (though asmall compression ratio)
and extremely fast decompression. In fact, LZO is so fast when compressing/decompressing that it may well happen
(that depends on your data, of course) that writing or reading a compressed dataset is sometimes faster than if it is not
compressed at all (specially when dealing with extremely large datasets). Thisfact is very important, specially if you
have to deal with very large amounts of data. Regarding bzip2, it has a reputation of achieving excellent compression
ratios, but at the price of spending much more CPU time, which resultsin very low compressi on/decompression speeds.

Beawarethat the LZO and bzip2 support in PyTablesisnot standard on HDF5, soif you are going to use your Py Tables
filesin other contexts different from PyTables you will not be able to read them. Still, see the Section C.2 (where
the pt r epack utility is described) to find away to free your files from LZO or bzip2 dependencies, so that you can
use these compressors locally with the warranty that you can replace them with Zlib (or even remove compression
completely) if you want to use these files with other HDF5 tools or platforms afterwards.

In order to allow you to grasp what amount of compression can be achieved, and how this affects performance, a
series of experiments has been carried out. All the results presented in this section (and in the next one) have been
obtained with synthetic data and using PyTables 1.3. Also, the tests have been conducted on a IBM OpenPower 720
(e-series) with a PowerPC G5 at 1.65 GHz and a hard disk spinning at 15K RPM. As your data and platform may
be totally different for your case, take this just as a guide because your mileage will probably vary. Finadly, and to
be able to play with tables with a number of rows as large as possible, the record size has been chosen to be small
(16 bytes). Here isits definition:

cl ass Bench(IsDescription):

varl = StringCol (I engt h=4)
var2 = I ntCol ()
var3 = Fl oat Col ()

With this setup, you can look at the compression ratios that can be achieved in Figure 5.4. Asyou can see, LZO is
the compressor that performs worse in this sense, but, curiosly enough, there is not much difference between Zlib
and bzip2.

o Disk space taken by arecord (original record size: 16 bytes)
T T T T

=== No compression
m—Zlib IVI1
m—|z0 V1

s : = hzip2 IvI1

Bytes/row

i i i i
%03 104 10° 10° 107 108
Number of rows

Figure 5.4. Comparison between different compression libraries.

110

Optimization tips

Also, PyTablesletsyou select different compression levelsfor Zlib and bzip2, although you may get a bit disappointed
by the small improvement that show these compressors when dealing with a combination of numbers and stringsasin
our example. Asareference, see plot 5.5 for acomparison of the compression achieved by selecting different levels of
Zlib. Very oddly, the best compression ratio correspondsto level 1 (1). It's difficult to explain that, but thislesson will
serve to reaffirm that there is no replacement for experiments with your own data. In general, it is recommended to
select the lowest level of compression in order to achieve best performance and decent (if not the best!) compression
ratio. See later for more figures on this regard.

. Disk space taken by arecord (original record size: 16 bytes)
T T T T

=== No compression
m—Zlib IVI1
= Zlib VI3
5 : === Zlib IVI6
= Zlib IVI9

20 |-

Bytes/row

5 i i i i
102 104 10° 10° 107 108
Number of rows

Figure 5.5. Comparison between different compression levels of Zlib.

Have also alook at Figure 5.6. It shows how the speed of writing rows evolves as the size (the row number) of the
table grows. Even though in these graphs the size of one single row is 16 bytes, you can most probably extrapolate
these figures to other row sizes.

20 Writing with small (16 bytes) record size

=== No compression

m— ZlibIvI1
25 (| === lzolvIl
=== bzip2 Ivl1
20
v
]
215
14
s

10

05 / w

0.0 n ! I n
108 104 10° 10° 107 108
Number of rows

Figure 5.6. Writing tables with several compressors.

In Figure 5.7 you can see how compression affects the reading performance. In fact, what you see in the plot is an
in-kernel selection speed, but provided that this operation is very fast (see Section 5.2.1), we can accept it as an actual
read test. Compared with the reference line without compression, the general trend here is that LZO does not affect

111

Optimization tips

too much the reading performance (and in some pointsit is actually better), Zlib makes speed to drop to a half, while
bzip2 is performing very slow (up to 8x slower).

Also, in the same Figure 5.7 you can notice some strange peaks in the speed that we might be tempted to attribute to
librariesonwhich PyTablesrelies (HDF5, compressors...), or to PyTablesitself. However, Figure 5.8 revea sthat, if we
put the file in the filesystem cache (by reading it several times before, for example), the evolution of the performance
is much smoother. So, the most probabl e explanation would be that such a peaks are a consequence of the underlying
OSfilesystem, rather than aflaw in PyTables (or any other library behind it). Another consegquence that can be derived
from the above plot is that LZO decompression performance is much better than Zlib, allowing an improvement in
overal speed of more than 2x, and perhaps more important, the read performance for really large datasets (i.e. when
they do not fit in the OS filesystem cache) can be actually better than not using compression at all. Finally, one can
see that reading performance is very badly affected when bzip2 is used (it is 10x slower than LZO and 4x than Zlib),
but this is not too strange anyway.

0 Selecting with small (16 bytes) record size (file not in cache)
3 T T T

=== No compression
35 | == zliblvil
= |20 IVI1

=== bzip2 Ivl1

0.0 i i i i
102 104 10° 10° 107 108
Number of rows

Figure 5.7. Selecting values in tables with several compressors. Thefile is not in the OS cache.

" Selecting with small (16 bytes) record size (filein cache)

=== No0 compression
14| = ziblvil
m—|z0 VI1
=== bzip2 IvI1

10F

MRows/s
00

D

—

n 1 1 1
9.03 104 10° 10° 107 108
Number of rows

Figure 5.8. Selecting values in tables with several compressors. Thefileisin the OS cache.

So, generally speaking and looking at the experiments above, you can expect that LZO will be the fastest in both
compressing and decompressing, but the one that achieves the worse compression ratio (although that may be just OK

112

Optimization tips

for many situations, specially when used with the Section 5.4). bzip2 is the slowest, by large, in both compressing
and decompressing, and besides, it does not achieve any better compression ratio than Zlib. Zlib represents a balance
between them: it's somewhat low compressing (2x) and decompressing (3x) than LZO, but it normally achievesfairly
good compression ratios.

Finally, by looking at the plots 5.9, 5.10, and the aforementioned 5.5 you can see why the recommended compression
level to use for all compression libraries is 1. This is the lowest level of compression, but if you take the approach
suggested above, the redundant data is to be found normally in the same row, making redundancy locality very high
so that asmall level of compression should be enough to achieve agood compression ratio on your datatables, saving
CPU cycles for doing other things. Nonetheless, in some situations you may want to check for your own how the
different compression levels affect your application.

Y ou can select the compression library and level by settingtheconpl i b andconpl evel keywordsintheFi | ters
class (see 4.17.1). A compression level of 0 will completely disable compression (the default), 1 is the less CPU
time demanding level, while 9 is the maximum level and most CPU intensive. Finally, have in mind that LZO is not
accepting a compression level right now, so, when using LZO, 0 means that compression is not active, and any other
value meansthat LZO is active.

So, in conclusion, if your ultimate goal is writing and reading as fast as possible, choose LZO. If you want to reduce
as much as possible your data, while retaining acceptable read speed, choose Zlib. Finaly, if portability isimportant
for you, Zlib isyour best bet. So, when you want to use bzip2? Well, looking at the results, it isdifficult to recommend
itsuse in general, but you may want to experiment with it in those cases where you know that it iswell suited for your
data pattern (for example, for dealing with repetitive string datasets).

20 Writing with small (16 bytes) record size
A T T T

=== No compression
m— Zlib IvI1
25 == zliblvI3
=== 7lib IVI6
= ZlibIvI9

N n i i
108 104 10° 10° 107 108
Number of rows

Figure 5.9. Writing in tables with different levels of compression.

113

Optimization tips

Selecting with small (16 bytes) record size (file in cache)

16

=== No compression

14 || = zliblvil
= Zlib VI3
=== 7lib IVI6

12| === ZlibIvI9

MRows/s

L~
T

1 1 1 1
9.0 3 104 10° 10° 107
Number of rows

Figure 5.10. Selecting valuesin tables with different levels of compression. Thefileisin the OS cache.

5.4. Shuffling (or how to make the compression pro-
cess more effective)

The HDF5 library provides an interesting filter that can leverage the results of your favorite compressor. Its nameis
shuffle, and because it can greatly benefit compression and it does not take many CPU resources (see below for a
justification), it is active by default in Py Tabl es whenever compression is activated (independently of the chosen
compressor). It is of course deactivated when compression is off (which is the default, as you aready should know).
Of course, you can deactivate it if you want, but thisis not recommended.

So, how exactly works this mysterious filter? From the HDF5 reference manual: “The shuffle filter de-interlaces a
block of data by reordering the bytes. All the bytes from one consistent byte position of each data element are placed
together in one block; all bytes from a second consistent byte position of each data element are placed together a
second block; etc. For example, given three data elements of a 4-byte datatype stored as 012301230123, shuffling will
re-order data as 000111222333. This can be avaluable step in an effective compression algorithm because the bytesin
each byte position are often closely related to each other and putting them together can increase the compression ratio.”

In Figure5.11 you can see abenchmark that shows how the shufflefilter can help the different librariesin compressing
data. In this experiment, shuffle has made LZO to compress almost 3x more (!), while Zlib and bzip2 are seeing
improvements of 2x. Once again, the data for this experiment is synthetic, and shuffle seemsto do a great work with

it, but in general, the results will vary in each case’.

3Some users reported that the typical improvement with real datais between afactor 1.5x and 2.5x over the already compressed datasets.

114

Optimization tips

- Disk space taken by arecord (original record size: 16 bytes)

=== NO compression
— ZlibIvI1
=B = 2lib Ivl1 (Shuffle)
= |z0 IvI1

=== |20 lvI1 (Shuffle)
20 bzip2 Ivi1
= bzip2 IvI1 (Shuffle)

1 1 1 1
9.03 104 10° 10° 107 108
Number of rows

Figure 5.11. Comparison between different compression libraries with and without the shuffle filter.

At any rate, the most remarkabl e fact about the shufflefilter isthe relatively high level of compression that compressor
filters can achieve when used in combination with it. A curious thing to note is that the Bzip2 compression rate does
not seem very much improved (less than a 40%), and what is more striking, Bzip2+shuffle does compress quite less
than Zlib+shuffle or LZO+shuffle combinations, which iskind of unexpected. The thing that seems clear isthat Bzip2
is not very good at compressing patterns that result of shuffle application. As always, you may want to experiment
with your own data before widely applying the Bzip2+shuffle combination in order to avoid surprises.

Now, how does shuffling affect performance? Well, if you look at plots 5.12, 5.13 and 5.14, you will get a somewhat
unexpected (but pleasant) surprise. Roughly, shuffle makes the writing process (shuffling+compressing) faster (aprox-
imately a 15% for LZO, 30% for Bzip2 and a80% for Zlib), which is an interesting result by itself. But perhaps more
exciting isthe fact that the reading process (unshuffling+decompressing) is a so accelerated by asimilar extent (a20%
for LZO, 60% for Zlib and a 75% for Bzip2, roughly).

Writing with small (16 bytes) record size
3.0 T T T

=== NoO compression
= Zlib IvI1

25| = glib vI1 (Shuffle)
m—|z0 |vI1
=== 120 IvI1 (Shuffle)
20 bzip2 Ivi1

= bzip2 lvI1 (Shuffle)

10

) ‘j—/ N

i | | i
"10% 104 10° 10° 107 108
Number of rows

Figure 5.12. Writing with different compression libraries with and without the shuffle filter.

115

Optimization tips

; Selecting with small (16 byt

es) record size (file not in cache)

=== No compression
=== Zlib Ivl1 (Shuffle)
=== |zo IvI1 (Shuffle)
=== bzip2 IvI1 (Shuffle)

9.0 3 16A

1 1 1
10° 10° 107 108
Number of rows

Figure 5.13. Reading with different compression libraries with the shufflefilter. Thefileis not in OS cache.

16

14+

10F

MRows/s
0

Selecting with small (16 bytes) record size (filein cache)

=== No compression

= Zlib IvI1

=== Zlib IvI1 (Shuffle)

m—|z0 |vI1

=== 120 IvI1 (Shuffle)
bzip2 Ivi1

=== bzip2 IvI1 (Shuffle)

s

9.0 3 164

Figure 5.14. Reading with different compression libraries with and without the shufflefilter. Thefileisin OS cache.

Y ou may wonder why introducing another filter in the write/read pipelines does effectively accel erate the throughput.
WEell, maybe data elements are more similar or related column-wise than row-wise, i.e. contiguous elements in the
same column are more alike, so shuffling makes the job of the compressor easier (faster) and more effective (greater
ratios). Asaside effect, compressed chunks do fit better in the CPU cache (at |east, the chunks are smaller!) so that the
process of unshuffle/decompress can make a better use of the cache (i.e. reducing the number of CPU cache faullts).

So, given the potential gains (faster writing and reading, but specially much improved compression level), it isagood
thing to have such a filter enabled by default in the battle for discovering redundancy when you want to compress

your data, just as PyTables does.

5.5. Using Psyco

Psyco (see [15]) is a kind of specialized compiler for Python that typically accelerates Python applications with no
changein source code. Y ou can think of Psyco asakind of just-in-time (JIT) compiler, alittle bit like Java's, that emits

1 1 1
10° 10° 107 108
Number of rows

116

Optimization tips

machine code on the fly instead of interpreting your Python program step by step. The result is that your unmodified
Python programs run faster.

Psycoisvery easy toinstall and use, so in most scenariosit isworth to giveit atry. However, it only runson Intel 386
architectures, so if you are using other architectures, you are out of luck (at least until Psyco will support yours).

As an example, imagine that you have a small script that reads and selects data over a series of datasets, like this:

def readFile(fil enane):
"Select data fromall the tables in fil enane”

fileh = openFil e(fil ename, node = "r")

result =[]

for table in fileh("/", 'Table'):

result = [p['var3'] for pintable if p['var2'] <= 20]

fileh.close()
return result

if _nanme_ ==" main__":
print readFile("nmyfile.h5")

In order to accelerate this piece of code, you can rewrite your main program to look like:

if _ nanme_ ==
i mport psyco
psyco. bi nd(readFi | e)

print readFile("myfile.h5")

__main

That'sall!. From now on, each time that you execute your Python script, Psyco will deploy its sophisticated algorithms
S0 asto accelerate your calculations.

Y ou can seein the graphs 5.15 and 5.16 how much 1/0O speed improvement you can get by using Psyco. By looking at
thisfiguresyou can get an ideaif these improvements are of your interest or not. In general, if you are not going to use
compression you will take advantage of Psyco if your tables are medium sized (from a thousand to a million rows),
and this advantage will disappear progressively when the number of rows grows well over one million. However if
you use compression, you will probably see improvements even beyond this limit (see Section 5.3). As dways, there
is no substitute for experimentation with your own dataset.

117

Optimization tips

Speed (Krow/s)

Writing with medium record size (56 bytes)

250 T T r . .
- NO PSyco s+ @1
-, o ElIPSYCO [l
P i
200 = i
cl\\\\ i/
"l,,-
» ol
150 | ey, B .
P s T
- P e
- | \.a L “"' »
] ®, . %
- " K
100" —
0 P P N
1000 10000 100000 1le+07

Figure 5.15. Writing tables with/without Psyco.

Number of rows

118

Optimization tips

Selecting with medium record size (56 bytes)
1200 T T — T T — T T —

No' Psyco --'-.---'
Psyco miilnm
\I'I'I'.!
1000 | o = .
e
o
-
800 - \\s.\ .
] gt -
2 S e wooget ¥ " B
5 ™ rud
< 600 F K .
? S
2 S o
n SRS
400 | l-. -
m 3
o ,
N al -
\o‘.:~n¢‘: - &-
200 | W -
\N“‘\\\\\
0 N N P N N P N N PR N N N
1000 10000 100000 1e+06 1e+07

Number of rows

Figure 5.16. Reading tables with/without Psyco.

5.6. Getting the most from the node LRU cache

Starting from PyTables 1.2 on, it has been introduced a new LRU cache that prevents from loading all the nodes of
the object tree in memory. This cache is responsible of loading just up to a certain amount of nodes and discard the
least recent used ones when there is a need to load new ones. This represents a big advantage over the old schema,
specialy interms of memory usage (asthereisno need to |oad every nodein memory), but it also adds very convenient
optimizations for working interactively like, for example, speeding-up the opening times of files with lots of nodes,
allowing to open almost any kind of file in typicaly less than one tenth of second (compare this with the more than
10 seconds for files with more than 10000 nodes in PyTables pre-1.2 era). See [18] for more info on the advantages
(and aso drawbacks) of this approach.

One thing that deserves some discussion is the el ection of the parameter that sets the maximum amount of nodesto be
held in memory at any time. As PyTables is meant to be deployed in machines that have potentially low memory, the
default for it is quite conservative (you can look at its actual value in the NODE_CACHE_SI ZE parameter in module
t abl es/ const ant s. py). However, if you usualy have to deal with files that have much more nodes than the
maximum default, and you have alot of free memory in your system, then you may want to experiment which isthe
appropriate value of NODE_CACHE_SI ZE that fits better your needs.

As an example, look at the next code:
def browse_tabl es(fil enane):

fileh = openFile(filenane,"'a')
group = fileh.root.newgroup

119

Optimization tips

for j in range(10):

for tt in fileh.wal kNodes(group, "Table"):
title = tt.attrs. TI TLE
for rowin tt:

pass

fileh.close()

We will be running the code above against a couple of files having a/ newgr oup containing 100 tables and 1000
tables respectively. We will run this small benchmark for different values of the LRU cache size, namely 256 and
1024. Y ou can seetheresultsin Table 5.1.

100 nodes 1000 nodes

Memory (M B) Time (Ms) Memory (M B) Time (Ms)
Nodeis |Cache 256 1024 256 1024 256 1024 256 1024
coming |size
from...
From disk 14 14 1.24 1.24 51 66 1.33 131
From 14 14 0.53 0.52 65 73 135 0.68
cache

Table 5.1. Retrieving speed and memory consumption dependency of the number of nodesin LRU cache.

Fromthedatain Table 5.1, one can seethat, when the number of objectsthat you are dealing with doesfit in cache, you
will get better access times to them. Also, incrementing the node cache size does effectively consumes more memory
onlyif thetotal nodes exceedsthe slotsin cache; otherwise the memory consumption remainsthe same. It isalso worth
noting that incrementing the node cache size in the case you want to fit all your nodesin cache, it does not take much
more memory than keeping too conservative. On another hand, it might happen that the speed-up that you can achieve
by allocating more slotsin your cache maybe is not worth the amount of memory used.

Anyway, if you fed that this issue is important for you, setup your own experiments and proceed fine-tuning the
NODE_CACHE_SI| ZE parameter.

5.7. Selecting an User Entry Point (UEP) in your tree

Note: After the introduction of the new object tree cache in PyTables 1.2, this feature is not very useful anymore and
might become deprecated in future versions.

If you have a huge tree in your data file with many nodes on it, creating the object tree would take long time. Many
times, however, you are interested only in access to a part of the complete tree, so you won't strictly need PyTables
to build the entire object tree in-memory, but only the interesting part.

Thisiswherether oot UEP parameter of openFi | e function (see description) can be helpful. Imagine that you have
afilecaled "t est. h5" with the associated tree that you can seein Figure 5.17, and you are interested only in the

section marked in red. You can avoid the build of all the object tree by saying to openFi | e that your root will be
the/ Group2/ Gr oup3 group. That is:

fileh = openFil e("test.h5", root UEP="/G oup2/ G oup3")
As aresult, the actual object tree built will be like the one that can be seen in Figure 5.18.

Of course this has been a simple example and the use of the r oot UEP parameter was not very necessary. But when
you have thousands of nodes on atree, you will certainly appreciate ther oot UEP parameter.

120

Optimization tips

/ o \
7)up 1\ Group?2
Tablel Table2 / Grou§3 Arrayl

Table4 Table5 Array?2

Figure 5.17. Complete tree in file test.h5, and subtree of interest for the user.

Root
Table4 Table5 Array?2

Figure 5.18. Resulting object tree derived from the use of the rootUEP parameter.

5.8. Compacting your PyTables files

Let's suppose that you have a file on which you have made a lot of row deletions on one or more tables, or deleted
many leaves or even entire subtrees. These operations might leave holes (i.e. space that is not used anymore) in your
files, that may potentially affect not only the size of the files but, more importantly, the performance of 1/0. Thisis
because when you delete alot of rows on atable, the spaceis not automatically recovered on-the-flight. In addition, if
you add many more rows to a table than specified in the expect edr ows keyword in creation time this may affect
performance as well, as explained in Section 5.1.

In order to cope with these issues, you should be aware that a handy Py Tabl es utility caled pt r epack can be
very useful, not only to compact your aready existing leaky files, but also to adjust some internal parameters (both
in memory and in file) in order to create adequate buffer sizes and chunk sizes for optimum /O speed. Please, check
the Section C.2 for a brief tutoria on its use.

Another thing that you might want to use pt r epack for is changing the compression filters or compression levels
on your existing data for different goals, like checking how this can affect both final size and 1/0 performance, or
getting rid of the optional compressors like LZO, UCL or bzi p2 in your existing filesin case you want to use them
with generic HDF5 tools that do not have support for these filters.

121

Part Il. Complementary modules

Chapter 6. FileNode - simulating a
fillesystem with PyTables

6.1. What is FileNode?

Fi | eNode isamodule which enables you to create a Py Tabl es database of nodes which can be used like regular
opened files in Python. In other words, you can store afile in a Py Tabl es database, and read and write it as you
would do with any other filein Python. Used in conjunction with Py Tabl es hierarchical database organization, you
can have your database turned into an open, extensible, efficient, high capacity, portable and metadata-rich filesystem
for data exchange with other systems (including backup purposes).

Between the main features of Fi | eNode, one can list:

* Open: Sinceit relies on Py Tabl es, which in turn, sits over HDF5 (see [1]), a standard hierarchical data format
from NCSA.

» Extensible: You can define new types of nodes, and their instances will be safely preserved (as are normal groups,
leafs and attributes) by Py Tabl es applications having no knowledge of their types. Moreover, the set of possible
attributes for anode is not fixed, so you can define your own node attributes.

« Efficient: Thanks to PyTables' proven extreme efficiency on handling huge amounts of data. FileNode can make
use of PyTables on-the-fly compression and decompression of data.

» High capacity: Since PyTables and HDF5 are designed for massive data storage (they use 64-bit addressing even
where the platform does not support it natively).

» Portable: Sincethe HDF5 format has an architecture-neutral design, and the HDF5 librariesand Py Tablesare known
to run under avariety of platforms. Besides that, a PyTables database fits into a single file, which poses no trouble
for transportation.

» Metadata-rich: Since PyTables can store arbitrary key-value pairs (even Python objects!) for every database node.

Metadata may include authorship, keywords, MIME types and encodings, ownership information, access control
lists (ACL), decoding functions and anything you can imagine!

6.2. Finding a FileNode node

FileNode nodes can be recognized because they have a NODE_TYPE system attribute with a*' fil e' value. It
is recommended that you use the get NodeAt t r () method (see description) of t abl es. Fi | e class to get the
NCDE_TYPE attribute independently of the nature (group or leaf) of the node, so you do not need to care about.

6.3. FileNode - simulating files inside PyTables

The FileNode moduleis part of thenodes sub-package of Py Tabl es. The recommended way to import the module
is.

>>> fromtabl es. nodes i nport Fil eNode

However, FileNode exportsvery few symbols, soyou canimport* for interactive usage. Infact, youwill most probably
only usethe NodeType constant and the newNode() and openNode() calls.

123

FileNode - simulating afilesystem with PyTables

TheNodeTy pe constant containsthe value that the NODE_ TYPE system attribute of anodefileis expected to contain
(file',aswehaveseen). Although thisis not expected to change, you should use FileNode.NodeType instead of
theliteral ' fi |l e' when possible.

newNode() and openNode() are the equivaent to the Pythonfi | e() cal (aliasopen()) for ordinary files.
Their arguments differ from that of fi | e(), but thisis the only point where you will note the difference between
working with anode file and working with an ordinary file.

For thislittletutorial, wewill assumethat wehaveaPy Tabl es database opened for writing. Also, if you are somewhat
lazy at typing sentences, the code that we are going to explainisincluded intheexanpl es/ fi | enodes1. py file.

Y ou can create a brand new file with these sentences:

>>> jnmport tables
>>> h5file = tabl es.openFil e(' fnode. h5", "w)

6.3.1. Creating a new file node

Creation of a new file node is achieved with the newNode() cal. You must tell it in which Py Tabl es file you
want to create it, where in the Py Tabl es hierarchy you want to create the node and which will be its name. The
PyTabl es fileis the first argument to newNode() ; it will be also called the' host PyTables file'.The
other two arguments must be given as keyword arguments wher e and nane, respectively. As aresult of the call, a
brand new appendable and readabl e file node object is returned.

So let us create a new node file in the previously opened h5f i | e PyTabl es file, named ' f node_test' and
placed right under the root of the database hierarchy. Thisis that command:

>>> fnode = Fil eNode. newNode(h5file, where='/', name=' fnode_ test')

That is basically all you need to create a file node. Simple, isn't it? From that point on, you can use f node as any
opened Python file (i.e. you can write data, read data, lines of text and so on).

newNode() accepts some more keyword arguments. Y ou can give atitleto your filewiththet i t | e argument. You
can use Py Tabl es' compression features with thefi | t er s argument. If you know beforehand the size that your
filewill have, you can giveitsfina filesizein bytestotheexpect edsi ze argument so that the Py Tabl es library
would be able to optimize the data access.

newNode() createsaPyTabl es node whereitistold to. To proveit, we will try to get the NODE_TYPE attribute
from the newly created node.

>>> print h5file.get NodeAttr('/fnode test', 'NODE TYPE)
file

6.3.2. Using a file node

As stated above, you can use the new node file as any other opened file. Let ustry to write sometext in and read it.

>>> print >> fnode, "This is a test text line."
>>> print >> fnode, "And this is another one."
>>> print >> fnode
>>> fnode.wite("OF course, file nethods can al so be used.")
>>>
>>> fnode. seek(0) # Go back to the beginning of file.
>>>
>>> for line in fnode:
print repr(line)

124

FileNode - simulating afilesystem with PyTables

"This is a test text line.\n'

"And this is another one.\n'

A\

'"Of course, file nethods can al so be used.'

Thiswas run on a Unix system, so hewlines are expressed as' \ n' . In fact, you can override the line separator for a
file by settingits| i neSepar at or property to any string you want.

While using afile node, you should take care of closing it before you close the Py Tabl es host file. Because of the
way PyTabl es works, your data it will not be at arisk, but every operation you execute after closing the host file
will fail withaVal ueEr r or . To close afile node, simply deleteit or call itscl ose() method.

>>> fnode. cl ose()
>>> print fnode. cl osed
True

6.3.3. Opening an existing file node

If you have afile node that you created using newNode() , you can open it later by calling openNode() . Its argu-
mentsaresimilartothat of f i | e() or open() : thefirst argument isthe Py Tabl es node that you want to open (i.e.
anode with a NODE_TYPE attribute havinga' fi |l e' vaue), and the second argument is a mode string indicating
how to open thefile. Contrary tof i | e(), openNode() can not be used to create a new file node.

File nodes can be opened in read-only mode (' r ') or in read-and-append mode (" a+'). Reading from afile nodeis
allowed in both modes, but appending is only allowed in the second one. Just like Python files do, writing data to an
appendable file places it after the file pointer if it is on or beyond the end of the file, or otherwise after the existing
data. Let us see an example:

>>> node = h5file.root.fnode test

>>> fnode = Fil eNode. openNode(nhode, 'a+')
>>> print repr(fnode.readline())

"This is a test text line.\n'

>>> print fnode.tell ()

26

>>> print >> fnode, "This is a new line."
>>> print repr(fnode.readline())

Of course, the data append process places the pointer at the end of thefile, sothelastr eadl i ne() call hit EOF. Let
us seek to the beginning of the file to see the whole contents of our file.

>>> fnode. seek(0)

>>> for |line in fnode:

. print repr(line)

'"This is a test text line.\n'

"And this is another one.\n'

A\ n'

'O course, file nmethods can al so be used. This is a new line.\n'

As you can check, the last string we wrote was correctly appended at the end of the file, instead of overwriting the
second line, where the file pointer was positioned by the time of the appending.

6.3.4. Adding metadata to a file node

Y ou can associate arbitrary metadata to any open node file, regardiess of its mode, aslong asthe host Py Tabl es file
iswritable. Of course, you could usetheset NodeAt t r () method of t abl es. Fi | e todoit directly on the proper

125

FileNode - simulating afilesystem with PyTables

node, but FileNode offers a much more comfortable way to doiit. Fi | eNode objectshavean at t r s property which
givesyou direct access to their corresponding At t r i but eSet object.

For instance, let us see how to associate MIME type metadata to our file node:
>>> fnode. attrs.content _type = 'text/plain; charset=us-ascii'

As simple as A-B-C. You can put nearly anything in an attribute, which opens the way to authorship, keywords,
permissions and more. Moreover, there is not afixed list of attributes. However, you should avoid namesin all caps

or starting with' ' , since Py Tabl es and FileNode may use them internally. Some valid examples:
>>> fnode.attrs.author = "lvan Vilata i Bal aguer”

>>> fnode.attrs.creation_date = ' 2004- 10- 20T13: 25: 25+0200'

>>> fnode. attrs. keywords_en = ["Fil eNode", "test", "nmetadata"]

>>> fnode. attrs. keywords_ca = ["Fil eNode", "prova", "nmetadades"]

>>> fnode. attrs. owner = 'ivan'

>>> fnode.attrs.acl = {"ivan': '"rw, '@sers': 'r'}

Y ou can check that these attributes get stored by running the pt dunp command on the host Py Tabl es file:

$ ptdunp -a fnode. h5:/fnode_t est
/fnode_test (EArray(113,)) "'
/fnode_test.attrs (AttributeSet), 14 attributes:

[CLASS : = ' EARRAY',

EXTDI M : = 0,

FLAVOR : = 'numarray',

NODE_TYPE := '"file',

NODE_TYPE_VERSI ON : = 2,

TITLE :="",

VERSION := "1.2'",

acl := {"ivan': 'rw, '@sers': 'r'},

author := '"lvan Vilata i Bal aguer',

content _type := 'text/plain; charset=us-ascii',

creation_date :
keywords_ca :
keywords_en :
owner := 'ivan']

= '2004-10- 20T13: 25: 25+0200' ,
['FileNode', 'prova', 'netadades'],
['FileNode', "test', 'metadata'],

Note that FileNode makes no assumptions about the meaning of your metadata, so its handling is entirely left to your
needs and imagination.

6.4. Complementary notes

YoucanuseFi | eNodesand Py Tabl es groupsto mimic afilesystem with files and directories. Since you can store
nearly anything you want as file metadata, this enables you to usea Py Tabl es file as a portable compressed backup,
even between radically different platforms. Take thiswith agrain of salt, since node files are restricted in their naming
(only valid Python identifiers are valid); however, remember that you can use node titles and metadata to overcome
thislimitation. Also, you may need to devise some strategy to represent special files such as devices, sockets and such
(not necessarily using FileNode).

We are eager to hear your opinion about FileNode and its potential uses. Suggestions to improve FileNode and create
other node types are also welcome. Do not hesitate to contact us!

6.5. Current limitations

Fi | eNode isstill ayoung piece of software, soit lacks some functionality. Thisisalist of known current limitations:

126

FileNode - simulating afilesystem with PyTables

1. Node file names are constrained to Py Tabl es node names (i.e. most valid Python identifiers). For the moment,
if you want arbitrary names you will have to use a translation map (see description) or the node title. The same
restriction applies to attribute names.

2. Nodefiles can only be opened for read-only or read and append mode. Thiswill be enhanced in the future.
3. Thereisno universal newline support yet. Thisislikely to be implemented in a near future.

4. Sparse files (files with lots of zeros) are not treated specialy; if you want them to take less space, you should be
better off using compression.

These limitations still make Fi | eNode entirely adequate to work with most binary and text files. Of course, sugges-
tions and patches are welcome.

6.6. FileNode module reference

6.6.1. Global constants

NodeType Vaue for NODE_TYPE node system attribute.

NodeTypeVersions Supported values for NODE_TYPE_VERSI ON node system attribute.
6.6.2. Global functions

newNode(h5file, where, name, title="", filters=None, expectedsize=1000)

Creates anew file node object in the specified Py Tabl es file object. Additional named argumentswher e and nane
must be passed to specify where the file node isto be created. Other named argumentssuchastitl eandfilters
may also be passed. The special named argument expect edsi ze, indicating an estimate of the file size in bytes,
may also be passed. It returns the file node object.

openNode(node, mode ='r")

Opens an existing file node. Returns a file node object from the existing specified PyTables node. If mode is not
specified or itis' r' , the file can only be read, and the pointer is positioned at the beginning of the file. If mode is
"a+' , thefile can be read and appended, and the pointer is positioned at the end of thefile.

6.6.3. The FileNode abstract class

This is the ancestor of ROFi | eNode and RAFi | eNode (see below). Instances of these classes are returned when
newNode() oropenNode() arecalled. It represents anew file node associated with aPy Tabl es node, providing
a standard Python file interface to it.

Thisabstract class provides only an implementation of the reading methods needed to implement afile-like object over
aPyTabl es node. The attribute set of the node becomes available viathe at t r s property. You can add attributes
there, but try to avoid attribute namesin al caps or starting with' _" , since they may clash with internal attributes.

The node used as storage is also made available viathe read-only attribute node. Please do not tamper with this object
unless unavoidably, since you may break the operation of the file node object.

Thel i neSepar at or property contains the string used as aline separator, and defaultsto os. | i nesep. It can be
set to any reasonably-sized string you want.

The constructor setsthe cl osed, sof t space and _| i neSepar at or attributes to their initial values, aswell as
the node attribute to None. Sub-classes should set the node, node and of f set attributes.

127

FileNode - simulating afilesystem with PyTables

Version 1 implements the file storage asa Ul nt 8 uni-dimensional EAr r ay.
FileNode methods

getLineSeparator()

Returns the line separator string.

setLineSeparator()

Sets the line separator string.

getAttrs()

Returns the attribute set of the file node.

close()

Flushesthefileand closesit. Thenode attribute becomesNone andtheat t r s property becomesno longer available.
next()

Returns the next line of text. Raises St opl t er at i on when lines are exhausted. Seefil e. next. __doc__ for
more information.

read(size=None)

Reads at most si ze bytes. Seefi |l e. read. __doc__ for moreinformation
readline(size=-1)

Readsthe next text line. Seefi |l e. readl i ne. __doc__ for moreinformation
readlines(sizehint=-1)

Readsthetext lines. Seefi |l e. readl i nes. __doc__ for moreinformation.
seek(offset, whence=0)

Movesto anew file position. Seefi | e. seek. __doc__ for more information.
tell()

Getsthe current file position. Seefil e.tel | . __doc__ for moreinformation.
xreadlines()

For backward compatibility. Seef i | e. xreadl i nes. __doc___ for more information.

6.6.4. The ROFileNode class

Instances of this class are returned when openNode() is called in read-only mode (‘' r'). This is a descendant
of Fi | eNode class, so it inherits al its methods. Moreover, it does not define any other useful method, just some
protections against users intents to write on file.

128

FileNode - simulating afilesystem with PyTables

6.6.5. The RAFileNode class

Instances of this class are returned when either newNode() is caled or when openNode() is caled in append
mode (' a+'). Thisisadescendant of Fi | eNode class, so it inherits all its methods. It provides additional methods
that allow to write on file nodes.

flush()
Flushesthefilenode. Seefil e. fl ush. __doc__ for moreinformation.

truncate(size=None)

Truncates the file node to at most si ze bytes. Currently, this method only makes sense to grow the file node, since
data can not be rewritten nor deleted. Seefi |l e. t runcat e. __doc__ for more information.

write(string)

Writes the string to the file. Writing an empty string does nothing, but requires the file to be open. See
file.wite.__doc__ for moreinformation.

writelines(sequence)

Writes the sequence of stringstothefile. Seefile.witelines. doc__ for moreinformation.

129

Chapter 7. NetCDF - a PyTables
NetCDF3 emulation API

7.1. What is NetCDF?

The netCDF format is a popular format for binary files. It is portable between machines and self-describing, i.e. it
containsthe information necessary to interpret its contents. A freelibrary provides convenient accessto thesefiles (see
[8]). A very nice python interface to that library is available in the Sci enti fi ¢ Pyt hon Net CDF module (see
[16]). Although it is somewhat |ess efficient and flexible than HDF5, netCDF is geared for storing gridded dataand is
quite easy to use. It has become a de facto standard for gridded data, especially in meteorology and oceanography. The
next version of netCDF (netCDF 4) will actually be a software layer ontop of HDF5 (see[9]). Thet abl es. Net CDF
modul e does not create HDF5 files that are compatible with netCDF 4 (although thisis along-term goal).

7.2. Using the tables.NetCDF module

The modulet abl es. Net CDF emulatesthe Sci enti fi c. | O. Net CDF API using PyTables. It presents the data
in the form of objects that behave very much like arrays. A t abl es. Net CDF file contains any number of dimen-
sions and variables, both of which have unique names. Each variable has a shape defined by a set of dimensions,
and optionally attributes whose values can be numbers, number sequences, or strings. One dimension of afile can be
defined as unlimited, meaning that the file can grow along that direction. In the sections that follow, a step-by-step
tutorial shows how to create and modify at abl es. Net CDF file. All of the code snippets presented here are includ-
ed in exanpl es/ net CDF_exanpl e. py. Thet abl es. Net CDF module is designed to be used as a drop-in re-
placement for Sci enti fi c. | O Net CDF, with only minor modificationsto existing code. The differences between
t abl e. Net CDF and Sci enti fi c. | O Net CDF are summarized in the last section of this chapter.

7.2.1. Creating/Opening/Closing a tables.NetCDF file

To create at abl es. net CDF file from python, you simply call the Net CDFFi | e constructor. This is also the
method used to open an existing t abl es. net CDF file. The object returned is an instance of the Net CDFFi | e
class and all future access must be done through this object. If the file is open for write access (' W or ' a'), you
may write any type of new dataincluding new dimensions, variables and attributes. The optional hi st or y keyword
argument can be used to set the hi st or y Net CDFFi | e global file attribute. Closing thet abl es. Net CDF fileis
accomplished viathe cl ose method of Net CDFFi | e object.

Here's an example:

>>> jnport tabl es. Net CDF as Net CDF

>>> jnport tine

>>> history = 'Created ' + tinme.ctinme(tinme.time())

>>> file = Net CDF. Net CDFFi |l e('test.h5", 'w , history=history)
>>> file.close()

7.2.2. Dimensions in a tables.NetCDF file

NetCDF definesthe sizes of al variablesin terms of dimensions, so before any variables can be created the dimensions
they use must be created first. A dimension is created using the cr eat eDi nensi on method of the Net CDFFi | e
object. A Python string is used to set the name of the dimension, and an integer value is used to set the size. To create
an unlimited dimension (a dimension that can be appended to), the size value is set to None.

>>> jnport tabl es. Net CDF as Net CDF

130

NetCDF - a PyTables NetCDF3 emulation AP

>>> file = Net CDF. Net CDFFil e('test.h5 , '"a')

>>> file. Net COFFi | e. createD nension('level', 12)
>>> file. Net COFFi | e. createD nension('tinme', None)
>>> file. Net COFFi | e. createD nension('lat', 90)

All of the dimension names and their associated sizes are stored in a Python dictionary.

>>> print file.dimensions
{*lat': 90, "tinme': None, 'level': 12}

7.2.3. Variables in a tables.NetCDF file

Most of thedatain at abl es. Net CDF fileis stored in a netCDF variable (except for global attributes). To create a
netCDF variable, usethecr eat eVar i abl e method of theNet CDFFi | e object. Thecr eat eVar i abl e method
has three mandatory arguments, the variable name (a Python string), the variable datatype described by a single char-
acter Numeric typecode string which can be one of f (Float32), d (Float64),i (Int32),1 (Int32), s (Int16), ¢ (Char-
Type - length 1), F (Complex32), D (Complex64) or 1 (Int8), and a tuple containing the variable's dimension names
(defined previously with cr eat eDi nensi on). The dimensions themselves are usually defined as variables, called
coordinate variables. The cr eat eVar i abl e method returns an instance of the Net CDFVar i abl e class whose
methods can be used later to access and set variable data and attributes.

>>> times = file.createVariable('tine',"d ,('tinme',))

>>> | evels = file.createVariable('level',"i',('level',))

>>> | atitudes = file.createVariable('latitude',"'f',('lat',))

>>> tenp = file.createVariable('tenmp','f',('tine', ' level','lat',))
>>> pressure = file.createVariabl e(' pressure','i',('level',"'lat',))

All of the variables in the file are stored in a Python dictionary, in the same way as the dimensions;

>>> print file.variables

{'latitude': <tabl es.NetCDF. Net CDFVari abl e i nstance at 0x244f 350>,
'pressure': <tables. Net COF. Net CDFVari abl e i nstance at 0x244f 508>,
"level': <tabl es. Net CDF. Net COFVari abl e i nstance at 0x244f 0d0>,
"tenp': <tabl es. Net CDF. Net CDFVari abl e i nstance at 0x244f 3a0>,
"time': <tabl es. Net CDF. Net CDFVari abl e i nstance at 0x2564c88>}

7.2.4. Attributes in a tables.NetCDF file

There are two types of attributesin at abl es. Net CDF file, global (or file) and variable. Global attributes provide
information about the dataset, or file, asawhole. Variable attributes provide information about one of the variablesin
thefile. Global attributes are set by assigning values to Net CDFFi | e instance variables. Variable attributes are set
by assigning valuesto Net CDFVar i abl e instance variables.

Attributes can be strings, numbers or sequences. Returning to our example,

>>> file.description = 'bogus exanple to illustrate the use of tables. Net COF
>>> file.source = 'PyTabl es Users Cuide'

>>> | atitudes.units = 'degrees north'

>>> pressure.units = 'hPa'

>>> tenp.units = 'K

>>> times.units = 'days since January 1, 2005

>>> times.scale factor = 1

Thencat t r s method of the Net CDFFi | e object can be used to retrieve the names of al the global attributes. This
method is provided as a convenience, since using the built-in di r Python function will return a bunch of private

131

NetCDF - a PyTables NetCDF3 emulation AP

methods and attributes that cannot (or should not) be modified by the user. Similarly, the ncat t r s method of a
Net CDFVar i abl e object returns all of the netCDF variable attribute names. These functions can be used to easily
print all of the attributes currently defined, like this

>>> for name in file.ncattrs():

>>> print 'dobal attr', nane, '=', getattr(file, nanme)

A obal attr description = bogus exanple to illustrate the use of tables. Net COF
A obal attr history = Created Mon Nov 7 10:30:56 2005

A obal attr source = PyTabl es Users Guide

Note that thencat t r s function isnot part of the Sci enti fi c. | O Net CDF interface.

7.2.5. Writing data to and retrieving data from a tables.NetCDF
variable

Now that you have a netCDF variable object, how do you put datainto it? If the variable has no unlimited dimension,
you just treat it like aNumeric array object and assign datato aslice.

>>> | nport nunarray

>>> | evel s[:] = numarray. arange(12) +1

>>> | atitudes[:] = nunmarray.arange(-89, 90, 2)

>>> for lev in levels[:]:

>>> pressure[:,:] = 1000.-100. *| ev

>>> print 'levels ="', levels[:]

levels = [1 2 3 4 5 6 7 8 9 10 11 12]

>>> print 'latitudes =\n',latitudes[:]

latitudes =

[-89. -87. -85. -83. -81. -79. -77. -75. -73. -71. -69. -67. -65. -63
-61. -59. -57. -55. -53. -51. -49. -47. -45. -43. -41. -39. -37. -35
-33. -31. -29. -27. -25. -23. -21. -19. -17. -15. -13. -11. -9. -7.
-5, -3. -1. 1. 3. 5. 7. 9. 11. 13. 15. 17. 19. 21
23. 25. 27. 29. 31. 33. 35. 37. 39. 41. 43. 45. 47. 49.
51. 53. 55. 57. 59. 61. 63. 65. 67. 69. 71. 73. 75. 77.
79. 81. 83. 85. 87. 89.]

Note that retrieving data from the netCDF variable object works just like a Numeric array too. If the netCDF variable
has an unlimited dimension, and there is not yet an entry for the data along that dimension, the append method must
be used.

>>> for n in range(10):

>>> ti nmes. append(n)

>>> print "times = ', tines[:]

times = [0. 1. 2. 3. 4. 5 6. 7. 8. 9.]

The data you append must have either the same number of dimensions as the Net CDFVar i abl e, or oneless. The
shape of the data you append must be the same as the Net CDFVar i abl e for all of the dimensions except the un-
limited dimension. The length of the data long the unlimited dimension controls how may entries along the unlimited
dimension are appended. If the data you append has one fewer number of dimensionsthan the Net CDFVar i abl e, it
is assumed that you are appending one entry along the unlimited dimension. For example, if the Net CDFVar i abl e
has shape (10, 50, 100) (where the dimension length of length 10 is the unlimited dimension), and you append
an array of shape (50, 100) , the Net CDFVar i abl e will subsequently have a shape of (11, 50, 100) . If you
append an array with shape (5, 50, 100) , the Net CDFVar i abl e will have anew shape of (15, 50, 100) . Ap-
pending an array whose last two dimensions do not have a shape (50, 100) will raise an exception. Thisappend
method does not existinthe Sci enti fi c. | O. Net CDF interface, instead entries are appended al ong the unlimited

132

NetCDF - a PyTables NetCDF3 emulation AP

dimension one at atime by assigning to a dice. This is the biggest difference between the t abl es. Net CDF and
Scientific.l O Net CDF interfaces.

Once datahas been appended to any variablewith an unlimited dimension, thesync method can be used to synchronize
the sizes of all the other variables with an unlimited dimension. Thisis done by filling in missing values (given by the
default netCDF _Fi | | Val ue, which isintended to indicate that the data was never defined). The sync method is
automatically invoked with aNet CDFFi | e object is closed. Once the sync method has been invoked, the filled-in
values can be assigned real datawith dlices.

>>> print 'tenp.shape before sync = ', tenp. shape

tenp. shape before sync = (0, 12, 90)

>>> file.sync()

>>> print 'tenp.shape after sync = ', tenp. shape

tenp. shape after sync = (10L, 12, 90)

>>> jnport nunarray.random array as random array

>>> for n in range(10):

>>> temp[n] = 10.*random array. r andon{ pr essur e. shape)

>>> print "time, mn/max tenp, tenmp[n,0,0] = "',\

times[n],mn(tenp[n].flat), mx(tenp[n].flat),tenp[n, O, 0]

time, mn/max tenp, tenmp[n,0,0] = 0.0 0.0122650898993 9. 99259281158
6. 13053750992

time, min/max tenp, tenp[n,0,0] = 1.0 0.00115821603686 9. 9915933609
6. 68516159058

time, min/max tenp, tenmp[n,0,0] = 2.0 0.0152112031356 9. 98737239838
3. 60537290573

time, min/max tenp, tenmp[n,0,0] = 3.0 0.0112022599205 9. 99535560608
6. 24249696732

time, mn/max tenp, tenp[n,0,0] = 4.0 0.00519315246493 9. 99831295013
0. 225010097027

time, min/max tenp, tenp[n,0,0] = 5.0 0.00978941563517 9. 9843454361
4.56814193726

time, min/max tenp, tenp[n,0,0] = 6.0 0.0159023851156 9. 99160385132
6. 36837291718

time, min/max tenp, tenmp[n,0,0] = 7.0 0.0019518379122 9. 99939727783
1. 42762875557

time, mn/max tenp, tenmp[n,0,0] = 8.0 0.00390585977584 9.9909954071
2. 79601073265

time, min/max tenp, tenmp[n,0,0] = 9.0 0.0106026884168 9. 99195957184
8. 18835449219

Notethat appending dataal ong an unlimited dimension alwaysincreasesthe length of thevariableal ong that dimension.
Assigning data to a variable with an unlimited dimension with a slice operation does not change its shape. Finaly,
before closing thefilewe can get asummary of its contentssimply by printing the Net CDFFi | e object. Thisproduces
output very similar to running 'ncdump -h' on anetCDF file.

>>> print file
test.h5 {
di nensi ons:
lat = 90 ;
time = UNLIMTED ; // (10 currently)
level = 12 ;
vari abl es:
float latitude('lat',) ;
| atitude:units = 'degrees north'
int pressure('level', "lat') ;

133

NetCDF - a PyTables NetCDF3 emulation AP

pressure:units = 'hPa’
int level ('level',)
float tenp('time', "level', "lat")

temp:units = 'K
double tine('tine',)
tinme:scale factor = 1 ;

time:units = 'days since January 1, 2005
/1 gl obal attributes:
:description = 'bogus exanple to illustrate the use of tables. Net COF

:history = 'Created Wed Nov 9 12:29:13 2005’
:source = 'PyTabl es Users Cuil de'

}
7.2.6. Efficient compression of tables.NetCDF variables

Datastoredin Net CDFVar i abl e objectsis compressed on disk by default. The parameters for the default compres-
sion aredetermined fromakFi | t er s classinstance (see section 4.17.1) withconpl evel =6, conpli b="zli b’
and shuf f | e=1. Tochangethedefault compression, simply passaFi | t er s instancetocr eat eVar i abl e with
thefi | t er s keyword. If your data only hasacertain number of digits of precision (say for example, it istemperature
datathat was measured with aprecision of 0. 1 degrees), you can dramatically improve compression by quantizing (or
truncating) thedatausingthel east _si gni fi cant _di gi t keywordargumenttocr eat eVari abl e. Theleast
significant digit isthe power of ten of the smallest decimal place in the datathat isareliable value. For exampleif the
datahasaprecisionof 0. 1, thensettingl east _si gni fi cant _di gi t =1 will cause datathe datato be quantized
using numarr ay. around(scal e*dat a)/ scal e, wherescal e = 2**bi t s, and bitsis determined so that
aprecision of 0. 1 isretained (inthiscase bi t s=4).

In our example, try replacing the line

>>> tenp = file.createvVariable('temp',"'f"',("time'," level',"lat’',))
with
>>> tenp = file.createVariable('temp',"'f',("tine',"level',"lat',),

| east _significant_digit=1)
and see how much smaller the resulting fileis.

The | east _significant _digit keyword argument is not allowed in Sci enti fic.| O Net CDF, since
netCDF version 3 does not support compression. The flexible, fast and efficient compression availablein HDF5 isthe
main reason | wrotethet abl es. Net CDF module - my netCDF files were just getting too big.

Thecr eat eVar i abl e method has one other keyword argument not found in Sci enti fi c. | O. Net CDF - ex-
pect edsi ze. Theexpect edsi ze keyword can be used to set the expected number of entries along the unlimited
dimension (default 10000). If you expect that your data with have an order of magnitude more or less than 10000
entries along the unlimited dimension, you may consider setting this keyword to improve efficiency (see section 5.1
for details).

7.3. tables.NetCDF module reference

7.3.1. Global constants

_fillvalue_dict Dictionary whose keys are Net CDFVar i abl e single character typecodes and
whose values are the netCDF _FillVaue for that typecode.

Scientificl ONetCDF _imported True if Sci enti fi c. | O Net CDF isinstalled and can be imported.

134

NetCDF - a PyTables NetCDF3 emulation AP

7.3.2. The NetCDFFile class

NetCDFFile(filename, mode="r", history=None)

Opensan existingt abl es. Net CDF file(mode="r"' or' a') or createsanew one(mode="w). Thehi st ory
keyword can be used to set the Net CDFFi | e. hi st ory global attribute (if mode="a' or' w).

A Net CDFFi | e object has two standard attributes: di nensi ons and vari abl es. The values of both are dic-
tionaries, mapping dimension names to their associated lengths and variable names to variables. All other attributes
correspond to global attributes defined in a netCDF file. Global file attributes are created by assigning to an attribute
of the Net CDFFi | e object.

NetCDFFile methods

close()

Closes the file (after invoking the sync method).

sync()

Synchronizes the size of variables along the unlimited dimension, by filling in data with default netCDF _FillValue.
Returns the length of the unlimited dimension. Invoked automatically when the Net CDFFi | e object is closed.

ncattrs()
Returns alist with the names of all currently defined netCDF global file attributes.
createDimension(name, length)

Creates a netCDF dimension with a name given by the Python string nane and a size given by the integer si ze. If
si ze = None, thedimensionisunlimited (i.e. it can grow dynamically). There can be only one unlimited dimension
inafile.

createVariable(name, type, dimensions, least_significant_digit= None, expected-
size=10000, filters=None)

Creates a new variable with the given nane, type, and di nmensi ons. The type is a one-letter Numeric
typecode string which can be one of f (Float32), d (Float64), i (Int32), | (Int32), s (Int16), ¢ (CharType - length
1), F (Complex32), D (Complex64) or 1 (Int8); the predefined type constants from Numeric can aso be used. The
F and D types are not supported in netCDF or Scientific.|O.NetCDF, if they are used in at abl es. Net CDF file,
that file cannot be converted to atrue netCDF file nor can it be shared over the internet with OPeNDAP. Dimensions
must be a tuple containing dimension names (strings) that have been defined previously by cr eat eDi nensi ons.
Thel east _si gni ficant _di git isthe power of ten of the smallest decimal place in the variable's data that is
areliable value. If this keyword is specified, the variable's data truncated to this precision to improve compression.
The expect edsi ze keyword can be used to set the expected number of entries along the unlimited dimension
(default 10000). If you expect that your data with have an order of magnitude more or less than 10000 entries along
the unlimited dimension, you may consider setting this keyword to improve efficiency (see section 5.1 for details).
Thefilters keywordisaPyTablesFi | t er s instance that describes how to store the data on disk. The default
correspondsto conpl evel =6, conpl i b="zl i b',shuffl e=1andfl et cher 32=0.

nctoh5(filename, unpackshort=True, filters=None)

Imports the data in a netCDF verson 3 file (fil enane) into a Net CDFFil e object using
Scientific.l O NetCDF (Sci entificlONet CODF_i nmported must be Tr ue). If unpackshort =Tr ue,

135

NetCDF - a PyTables NetCDF3 emulation AP

data packed as short integers (type s) in the netCDF file will be unpacked to typef using thescal e_f act or and
add_of f set netCDF variable attributes. Thefi | t er s keyword can be set to aPyTables Fi | t er s instance to
change the default parameters used to compress the data in the t abl es. Net CDF file. The default corresponds to
conpl evel =6, conpl i b="zlib',shuffle=1andfl etcher32=0.

h5tonc(filename, packshort=False, scale_factor=None, add_offset=None)

Exportsthedatainat abl es. Net CDF file defined by the Net CDFFi | e instanceinto anetCDF version 3 fileusing
Scientific.lO NetCDF(ScientificlONet CDF_i nmportedmustbeTrue).If packshort =True> the
dictionariesscal e_f act or and add_of f set are used to pack data of typef as short integers (of type s) inthe
netCDF file. Since netCDF version 3 does not provide automatic compression, packing as short integersisacommonly
used way of saving disk space (see this page [http://www.cdc.noaa.gov/cdc/conventions/cdc_netedf standard.shtml]
for more details). The keys of these dictionaries are the variable names to pack, the values are the scale factors and
offsetsto use in the packing. The data are packed so that the original Float32 values can be reconstructed by multiply-
ingthescal e_fact or and addingadd_of f set . The resulting netCDF file will havethescal e_f act or and
add_of f set variable attributes set appropriately.

7.3.3. The NetCDFVariable class

The Net CDFVar i abl e constructor is not called explicitly, rather an Net CDFVar i bl e instance is returned by
an invocation of Net CDFFi | e. cr eat eVari abl e. Net CDFVar i abl e objects behave like arrays, and have the
standard attributes of arrays (such as shape). Data can be assigned or extracted from Net CDFVar i abl e objects
viadglices.

NetCDFVariable methods

typecode()

Returns a single character typecode describing the type of the variable, one of f (Float32), d (Float64), i (Int32), |
(Int32), s (Int16), c (CharType - length 1), F (Complex32), D (Complex64) or 1 (Int8).

append(data)

Append data to a variable along its unlimited dimension. The data you append must have either the same number
of dimensions as the Net CDFVar i abl e, or one less. The shape of the data you append must be the same as the
Net CDFVar i abl e for al of the dimensions except the unlimited dimension. Thelength of thedatalong the unlimited
dimension controls how may entries along the unlimited dimension are appended. If the data you append has one
fewer number of dimensions than the Net CDFVar i abl e, it is assumed that you are appending one entry along the
unlimited dimension. For variables without an unlimited dimension, data can simply be assigned to a slice without
using the append method.

ncattrs()
Returns alist with al the names of the currently defined netCDF variable attributes.
assignValue(data)

Provided for compatiblity with Sci entific. | O Net CDF. Assigns data to the variable. If the variable has an
unlimited dimension, it is equivalent to append(dat a) . If the variable has no unlimited dimension, it is equivalent
to assigning data to the variable with the dlice[:] .

getValue()

Provided for compatiblity with Sci enti fi c. | O. Net CDF. Returns al the data in the variable. Equivalent to ex-
tracting thedlice[:] from the variable.

136

http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

NetCDF - a PyTables NetCDF3 emulation AP

7.4. Converting between true netCDF files and
tables.NetCDF files

If Scientific.lO NetCDF is ingtaled, tabl es. Net CDF provides facilities for converting between
true netCDF version 3 files and tabl es. Net COF hdf5 files via the Net CDFFi | e. h5tonc() and
Net CDFFi | e. nct oh5() class methods. Also, the nct oh5 command-line utility (see Section C.3) uses the
Net CDFFi | e. nct oh5() class method.

Asan example, look how to convert at abl es. Net CDF hdf5fileto atrue netCDF version 3file (namedt est . nc)

>>> scale factor = {"tenp': 1.75e-4}
>>> add_offset = {"tenp': 5.}
>>> file.h5tonc('test.nc', packshort=True, \
scal e_factor=scal e_factor, add_of f set =add_of f set)
packi ng tenp as short integers ...
>>> file.close()

The dictionaries scal e_f act or and add_of f set are used to optionally pack the data as short integers in the
netCDF file. Since netCDF version 3 does not provide automatic compression, packing as short integersisacommonly
used way of saving disk space (see this page [http://www.cdc.noaa.gov/cdc/conventions/cdc_netedf standard.shtml]
for more details). The keys of these dictionaries are the variable names to pack, the values are the scale factors and
offsets to use in the packing. The resulting netCDF file will havethescal e_f act or and add_of f set variable
attributes set appropriately.

To convert the netCDF file back to at abl es. Net CDF hdf5 file:

>>> history = 'Convert fromnetCDF ' + tine.ctime(tinme.tinme())

>>> file = Net CDF. Net CDFFi |l e('test2.h5', "w , history=history)

>>> nobj ects, nbytes = file.nctoh5('test.nc', unpackshort=Tr ue)

>>> print nobjects,' objects converted fromnet COF, totaling', nbytes,' bytes

5 objects converted fromnet CDF, totaling 48008 bytes

>>> tenp = file.variables['tenp']

>>> times = file.variables['tinme']

>>> print 'tenp.shape after h5 --> netCDF --> h5 conversion = ', tenp. shape

tenp. shape after h5 --> netCDF --> h5 conversion = (10L, 12, 90)

>>> for n in range(10):

>>> print "time, mn/max tenp, tenmp[n,0,0] = "',\

times[n],mn(tenp[n].flat), max(tenp[n].flat),tenp[n, O, 0]

time, min/max tenp, tenmp[n,0,0] = 0.0 0.0123250000179 9. 99257469177
6. 13049983978

time, mn/max tenp, tenp[n,0,0] = 1.0 0.00130000000354 9.99152469635
6. 68507480621

time, min/max tenp, tenp[n,0,0] = 2.0 0.0153000000864 9.98732471466
3. 60542488098

time, min/max tenp, tenmp[n,0,0] = 3.0 0.0112749999389 9. 99520015717
6. 2423248291

time, mn/max tenp, tenp[n,0,0] = 4.0 0.00532499980181 9. 99817466736
0. 225124999881

time, mn/max tenp, tenp[n,0,0] = 5.0 0.00987500045449 9.98417472839
4.56827497482

time, mn/max tenp, tenmp[n,0,0] = 6.0 0.01600000076 9.99152469635

6. 36832523346

time, mn/max tenp, tenp[n,0,0] = 7.0 0.00200000009499 9. 99922466278
1. 42772495747

137

http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

NetCDF - a PyTables NetCDF3 emulation AP

time, min/max tenp, tenmp[n,0,0] = 8.0 0.00392499985173 9. 9908246994
2. 79605007172

time, mn/max tenp, tenp[n,O0, 0]
8.18832492828

>>> file.close()

9.0 0.0107500003651 9.99187469482

Setting unpackshor t =Tr ue tells nct oh5 to unpack all of the variables which have the scal e_f act or and
add_of f set attributes back to floating point arrays. Notethat t abl es. Net CDF files have some features not sup-
ported in netCDF (such as Complex data types and the ability to make any dimension unlimited). t abl es. Net CDF
fileswhich utilize these features cannot be converted to netCDF using Net CDFFi | e. h5t onc.

7.5. tables.NetCDF file structure

A t abl es. Net CDF file consists of array objects (either EArrays or CArr ays) located in the root group of a
pytables hdf5 file. Each of the array objects must have adi mensi ons attribute, consisting of a tuple of dimension
names (the length of this tuple should be the same as the rank of the array object). Any array objects with one of the
supported datatypes in a pytables file that conforms to this simple structure can be read with the t abl es. Net CDF
module.

7.6. Sharing data in tables.NetCDF files over the inter-
net with OPeNDAP

t abl es. Net CDF datasets can be shared over the internet with the OPeNDAP protocol (http://opendap.org), viathe
python opendap module (http://opendap.oceanografia.org). A plugin for the python opendap server is included with
the pytables distribution (cont ri b/ h5_dap_pl ugi n. py). Simply copy that fileinto the pl ugi ns directory of
the opendap python module source distribution, run pyt hon setup. py install, point the opendap server
to the directory containing your t abl es. Net CDF files, and away you go. Any OPeNDAP aware client (such as
Matlab or IDL) will now be able to access your data over http as if it were a local disk file. The only restriction
is that your t abl es. Net CDF files must have the extension . h5 or . hdf 5. Unfortunately, t abl es. Net CDF
itself cannot act as an OPeNDAP client, although there is a client included in the opendap python module, and
Scientific.l O Net CDF can act asan OPeNDAP client if it islinked with the OPeNDAP netCDF client library.
Either of these python modules can be used to remotely acesst abl es. Net CDF datasets with OPeENDAP.

7.7. Differences between the Scientific.lO.NetCDF API
and the tables.NetCDF API

1. t abl es. Net CDF datais stored in an HDF5 file instead of anetCDF file.

2. Although each variable can have only oneunlimited dimensioninat abl es. Net CDFfile, it need not bethefirst as
inatrue NetCDF file. Complex datatypes F (Complex32) and D (Complex64) are supportedint abl es. Net CDF,
but are not supported in netCDF (or Sci enti fi c. | O Net CDF). Fileswith variables that have these datatypes,
or an unlimited dimension other than the first, cannot be converted to netCDF using h5t onc.

3. Variables in at abl es. Net CDF file are compressed on disk by default using HDF5 zlib compression with
the shuffle filter. If the least significant_digit keyword is used when a variable is created with the cr eat -
eVari abl e met hod, data will be truncated (quantized) before being written to the file. This can signifi-
cantly improve compression. For example, if | east _si gni fi cant _di gi t =1, data will be quantized us-
ing numar ray. around(scal exdata)/ scal e, where scale = 2**bits, and hits is determined
so that a precision of 0.1 is retained (in this case bi t s=4). From http://www.cdc.noaa.gov/cdc/conventions/
cdc_netcdf _standard.shtml: “least_significant_digit -- power of ten of the smallest decimal place in unpacked data
thatisareliablevalue.” Automatic datacompression isnot availablein netCDF version 3, and henceisnot available
intheSci entific.| O Net COF module.

138

http://opendap.org
http://opendap.oceanografia.org
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml

NetCDF - a PyTables NetCDF3 emulation AP

. Int abl es. Net CDF, datamust be appended to avariable with an unlimited dimension using theappend method
of the net CDF variable object. In Sci ent i fi c. | O. Net CDF, data can be added along an unlimited dimension
by assigning it to adlice (thereis no append method). Thesync method of at abl es. Net CDF Net CDFVari -
abl e object synchronizes the size of all variables with an unlimited dimension by filling in data using the default
netCDF _Fi | | Val ue. The sync method is automatically invoked with a Net CDFFi | e object is closed. In
Scientific.l QO NetCDF,thesync() method flushes the datato disk.

. Thet abl es. Net CDF creat eVari abl e() method has three extra optional keyword arguments not found
intheSci enti fic. |l O Net CDFinterface, least_significant_digit (seeitem (2) above), expectedsize and filters.
The expectedsize keyword applies only to variables with an unlimited dimension, and is an estimate of the number
of entriesthat will be added along that dimension (default 1000). This estimateis used to optimize HDF5 file access
and memory usage. The filters keyword is a PyTables filters instance that describes how to store the data on disk.
The default correspondsto conpl evel =6, conpl i b="zl i b' ,shuffl e=1andfl et cher 32=0.

. t abl es. Net CDF data can be saved to a true netCDF file using the Net CDFFi | e class method h5t onc (if
Scientific.l QO NetCDFisinstaled). The unlimited dimension must be the first (for all variablesin the file)
in order to use the h5t onc method. Data can also be imported from a true netCDF file and saved in an HDF5
t abl es. Net CDF fileusing the nct oh5 class method.

. Int abl es. Net CDF alist of attributes corresponding to global netCDF attributes defined in the file can be ob-
tained with the Net CDFFi | e ncattrs method. Similarly, netCDF variable attributes can be obtained with
theNet CDFVari abl e ncat t r s method. Thesefunctionsarenot availableinthe Sci enti fi c. | O. Net CDF
API.

. You should not define t abl es. Net CDF global or variable attributes that start with _Net CDF_. Those names
arereserved for internal use.

. Output similar to 'ncdump -h' can be obtained by simply printing at abl es. Net CDF Net CDFFi | e instance.

139

Part Ill. Appendixes

Appendix A. Supported data types in
PyTables

The Table, Array, CArray, VLArray and EArray classes can all handle the complete set of data types supported by the
numarray package (see[12]), NumPy (see[10]) and Numeric (see[11]) in Python. The data types for table fields can
be set via the constructor for the Col class and its descendants (see 4.16.2) while array elements can be set through
the use of the At omclass and its descendants (see 4.16.3).

In addition to those data types, PyTables Table, VLArray and EArray classes do support some aliasing data types
for their columns and atoms. Each one of these aliasing types corresponds to one numarray type, but they also have
specia meanings for PyTables. They can be seen as the ordinary types they are associated with, plus some additional
meaning. Since they do not exist as numarray types, they can only be specified to Py Tables using strings.

Currently, the only supported aliasing data type is Time. Two kinds of time values can be handled: 4-byte signed
integer and 8-byte double precision floating point. Both of them reflect the number of seconds since the Unix Epoch,
i.e. Jan 1 00:00:00 UTC 1970. Their types correspond to numarray's Int32 and Float64, respectively. Time vaues are
stored in the HDF5 file using the H5T_TIME class. Integer times are stored as is, while floating point times are split
into two signed integer values representing seconds and microseconds (beware: smaller decimals will be lost!).

PyTables a so supportsHDF5 H5T_ENUM enumerations (restricted sets of unique name and unique value pairs). The
numarray representation of an enumerated value depends on the concrete base type used to store the enumeration in
the HDF5 file. Enumerations are similar to aliasing data types in the sense that enumerated data is handled as regular
numarray data. Enumerations are also specified to PyTables using a string type, with an additional Enum(see 4.17.4)
instance.

Currently, only scalar integer values (both signed and unsigned) are supported in enumerations. This restriction may
be lifted when HDF5 supports other kinds on enumerated values.

A quick reference to the complete set of data types supported by PyTablesis givenin Appendix A.

141

Supported datatypesin PyTables

Type Code Description C Type Size (in bytes) Python Counterpart
Bool boolean unsigned char 1 Boolean
Int8 8-hit integer signed char 1 Integer
Uint8 8-hit unsigned integer | unsigned char 1 Integer
Int16 16-bit integer short 2 Integer
Uint16 16-bit unsigned inte- | unsigned short 2 Integer
ger
Int32 integer int 4 Integer
uint32 unsigned integer unsigned int 4 Long
Int64 64-bit integer long long 8 Long
Uint64 unsigned 64-bit inte- |unsigned long long 8 Long
ger
Float32 single-precision float |float Float
Float64 double-precision float | double Float
Complex32 single-precision com- |struct {float r, i;} 8 Complex
plex
Complex64 double-precision struct {doubler, i;} 16 Complex
complex
CharType arbitrary length string | char] * String
Time32 integer time POSIX'stime t Integer
Time64 floating point time POSIX's struct 8 Float
timeval
Enum enumerated value enum - -

Table A.1. Datatypes supported for array elements and tables columnsin PyTables.

142

Appendix B. Using nested record
arrays

B.1. Introduction

Nested record arrays are a generalization of the record array concept. Basically, anested record array isarecord array
that supports nested datatypes. It means that columns can contain not only regular datatypes but also nested datatypes.

Each nested record array isaNest edRecAr r ay objectinthet abl es. nest edr ecor ds module. Nested record
arrays are intended to be as compatible as possible with ordinary record arrays (in fact the Nest edRecAr r ay class
inherits from RecAr r ay). As aconsequence, the user can deal with nested record arrays nearly in the same way that
he does with ordinary record arrays.

The easiest way to create a nested record array isto usethear ray() functioninthet abl es. nest edr ecor ds
module. The only difference between this function and its non-nested capable analogousis that now, we must provide
an structure for the buffer being stored. For instance:

>>> fromtabl es. nest edrecords i nport array

>>> nral = array(
[(1, (0.5, 1.0), ("al', 1j)), (2, (0, 0), ("a2', 1+.1j))],
formats=['Int64', '(2,)Float32', ['a2', 'Conplex64']])

will create atwo rows nested record array with two regular fields (columns), and one nested field with two sub-fields.

The field structure of the nested record array is specified by the keyword argument f or mat s. This argument only
supports sequences of strings and other sequences. Each string defines the shape and type of a non-nested field. Each
seguence contains the formats of the sub-fields of a nested field. Optionally, we can aso pass an additional nanmes
keyword argument containing the names of fields and sub-fields:

>>> nra2 = array(
[(1, (0.5, 1.0), ('"al', 1j)), (2, (0, 0), ("a2', 1+.1j))],
nanes=['id, 'pos', ('info', ['nanme', 'value'])],
formats=['Int64', '(2,)Float32', ['a2', 'Conplex64']])

The names argument only supports lists of strings and 2-tuples. Each string defines the name of a non-nested field.
Each 2-tuple containsthe name of anested field and alist describing the names of itssub-fields. If thenames argument
is not passed then all fields are automatically named (c1, c2 etc. on each nested field) so, in our first example, the
fieldswill benamedas[' c1', 'c2', ('c3', ['cl', 'c2'])].

Another way to specify the nested record array structureisto usethe descr keyword argument:

>>> nra3 = array(

[(1, (0.5, 1.0), ('al', 1j)), (2, (0, 0), ("a2', 1+.1j))],
descr=[("id", "Int64"), ('pos', '(2,)Fl oat32'),

C. (info', [('nane', 'a2'), ('value', 'Conplex64')])])
>>>

>>> nra3
array(
[(1L, array([0.5, 1.], type=Float32), ('al', 1j)),

(2L, array([0., 0.], type=Float32), ('a2', (1+0.10000000000000001j)))1,
descr=[('id", '"Int64'), ('pos', '(2,)Float32"), ('info', [('nane’', 'a2'),
(*value', 'Complex64')])],

143

Using nested record arrays

shape=2)
>>>

Thedescr argumentisalist of 2-tuples, each of them describing afield. Thefirst value in atuple isthe name of the
field, while the second oneis a description of its structure. If the second value is a string, it defines the format (shape
and type) of anon-nested field. Else, it isalist of 2-tuples describing the sub-fields of a nested field.

Asyou can see, thedescr listisamix of thenanes and f or mat s arguments. In fact, thisargument is intended to
replacef or mat s and nanes, so they cannot be used at the same time.

Of course the structure of al three keyword arguments must match that of the elements (rows) in the buf f er being
stored.

Sometimes it is convenient to create nested arrays by processing a set of columns. In these cases the function f r o-
mar r ays comes handy. This function works in a very similar way to the array function, but the passed buffer is a
list of columns. For instance:

>>> fromtabl es. nestedrecords inport fromarrays

>>> nra = fromarrays([[1, 2], [4, 5]], descr=[('x', "f8),('y', '"f4')])
>>>

>>> nra

array(

[(1.0, 4.0),

(2.0, 5.0)7,

descr=[('x"', '"f8"), ('y', 'f4')],

shape=2)

Columns can be passed as nested arrays, what makes really straightforward to combine different nested arrays to get
anew one, as you can see in the following examples:

>>> nral = fromarrays([nra, [7, 8]], descr=[('2D, [('x', '"f8), ('y',
RESIDE

>>> ., ('z', 'f4')])

>>>

>>> nral

array(

[((12.0, 4.0), 7.0),

((2.0, 5.0), 8.0)],

descr=[('2D, [('x"', '"f8"), ('y', 'f4)]), (‘z', 'f4')],
shape=2)

>>>

>>> nra2 = fromarrays([nral.field('2Dx"), nral.field('z')], descr=[('Xx",
'f8"),

("z', "f4")])

>>>

>>> nra2

array(

[(12.0, 7.0),

(2.0, 8.0)],

descr=[('x"', 'f8"), ('z', 'f4')],

shape=2)

Finally it's worth to mention a small group of utility functions, makeFormats, makeNames and makeDescr, that can
be useful to obtain the structure specification to be used with array and fromarrays functions. Given adescription list,
makeFormats gets the corresponding formatslist. In the same way makeNames gets the names list. On the other hand
the descr list can be obtained from formats and names lists using the makeDescr function. For example:

144

Using nested record arrays

>>> from tabl es. nestedrecords i nport makeDescr, makeFormats, makeNanes
>>> descr =[('2D, [('x", '"f8), ('y', 'f4)]),(z', 'f4')]

>>>

>>> formats = nmakeFor mat s(descr)

>>> formats

[["f8, 'f4'], 'f4']

>>> pames = nakeNanmes(descr)

>>> nanes

(20, ["x', "y']), "2']

>>> d1 = nakeDescr (formats, nanes)

>>> dl

(20, [("x, "f8), ("y', "f4)]), ("z', "f4")]

>>> # | f no nanes are passed then they are automatical ly generated
>>> d2 = nmakeDescr (formats)

>>> d2

[("c2, [('c1, "f8), (‘'c2', "f4')]),('c2", "f4')]

B.2. NestedRecArray methods

To accessthe fields in the nested record array usethef i el d() method:

>>> print nra2.field('id")
[1, 2]
>>>

Thefi el d() method accepts also names of sub-fields. It will consist of several field name components separated
by thestring*' /', for instance:

>>> print nra2.field("info/nane')
["al', 'a2']
>>>

Eventually, the top level fields of the nested recarray can be accessed passing an integer argument to thefi el d()
method:

>>> print nra2.field(1)

[[0.51.] [0. 0. 1]
>>>

An dternativetothef i el d() methodistheuseof thef i el ds attribute. It isintended mainly for interactive usage
in the Python console. For example:

>>> nra2.fields.id

[1, 2]

>>> nra2.fields.info.fields.nane
['al', 'a2']

>>>

Rows of nested recarrays can be read using the typical index syntax. The rows are retrieved as Nest edRecor d
objects:

>>> print nra2[0]

(1L, array([0.5, 1.], type=Float32), ('al', 1j))
>>>

>>> nra2[0].__class__

145

Using nested record arrays

<cl ass tabl es. nest edr ecor ds. Nest edRecord at 0x413cbb9c>
Slicing is aso supported in the usual way:

>>> print nra2[0: 2]

Nest edRecArr ay|

(1L, array([0.5, 1.], type=Float32), ('al', 1j)),

(2L, array([0., 0.], type=Float32), ('a2', (1+0.10000000000000001j)))
]

>>>
Another useful method isasRecAr r ay () . It converts anested array to a non-nested equivalent array.

This method creates a new vanilla RecAr r ay instance equivalent to this one by flattening its fields. Only bottom-
level fieldsincluded in the array. Sub-fields are named by pre-pending the names of their parent fields up to the top-
level fields, using ' /' as a separator. The data area of the array is copied into the new one. For example, calling
nra3. asRecArray() would return the same array as calling:

>>> ra = numarray.records. array(
[(1, (0.5, 1.0), "al', 1j), (2, (0, 0), 'a2', 1+.1j)],
nanes=['id, 'pos', 'info/nane', 'info/value'],
formats=['Int64', '(2,)Float32', '"a2', 'Conplex64'])

Note that the shape of multidimensional fields is kept.

B.3. NestedRecord objects

Each element of the nested record array isaNest edRecor d, i.e. aRecor d with support for nested datatypes. As
said before, we can do indexing as usual:

>>> print nralf0]
(1, (0.5, 1.0), ('"a1', 1j))
>>>

Using Nest edRecor d objects is quite similar to using Recor d objects. To get the data of a field we use the
fiel d() method. Asan argument to this method we pass a field name. Sub-field names can be passed in the way
described for Nest edRecArray. fiel d().Thefi el ds attributeisalso present and works asit doesin Nest -
edRecArray.

Field data can be set with the set Fi el d() method. It takes two arguments, the field name and its value. Sub-field
names can be passed asusual. Finally, theasRecor d() method convertsanested record into anon-nested equivalent
record.

146

Appendix C. Utilities

PyTabl es comes with acouple of utilities that make the life easier to the user. Oneis called pt dunp and lets you
see the contents of a Py Tabl es file (or generic HDF5 file, if supported). The other one is named pt r epack that
allowsto (recursively) copy sub-hierarchies of objects present in afile into another one, changing, if desired, some of
the filters applied to the leaves during the copy process.

Normally, theseutilitieswill beinstalled somewherein your PATH during the process of installation of the Py Tabl es
package, so that you can invoke them from any placein your file system after the installation has successfully finished.

C.1. ptdump

As has been said before, pt dunp utility allows you look into the contents of your Py Tabl es files. It lets you see
not only the data but also the metadata (that is, the structure and additional information in the form of attributes).

C.1.1. Usage

For instructions on how to useit, just passthe - h flag to the command:
$ ptdunp -h
to see the message usage:

usage: ptdunp [-R start,stop,step] [-a] [-h] [-d] [-v] file[:nodepath]
-R RANGE -- Select a RANGE of rows in the form"start, stop, step"

-a -- Show attributes in nodes (only useful when -v or -d are active)

-C -- Show info of colums in tables (only useful when -v or -d are active)
-i -- Show info of indexed colums (only useful when -v or -d are active)
-d -- Dunp data information on | eaves

-h -- Print help on usage

-V -- Dunp nore neta-informati on on nodes

C.1.2. A small tutorial on ptdump

Let's suppose that we want to know only the structure of afile. In order to do that, just don't pass any flag, just the
file as parameter:

$ ptdunp vlarrayl. h5

Fil enane: 'vlarrayl.h5' Title: '' , Last nodif.: 'Fri Feb 6 19:33:28 2004' ,
rootUEP="/', filters=Filters(), Format version: 1.2
/ (G oup)

/vlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'

we can seethat the file containsjust aleaf object called vl ar r ay1, that isan instance of VLAr r ay, has 4 rows, and
two filters has been used in order to createit: shuf f | e and zI i b (with acompression level of 1).

Let's say we want more meta-information. Just add the - v (verbose) flag:

$ ptdunp -v vlarrayl. h5

/[(G oup)
children := ['"vlarrayl (VLArray)]

/vlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
atom = Atonm(type=Int32, shape=1, flavor="Nuneric')

147

Utilities

nrows = 4
flavor = ' Nuneri c'
byteorder = "little'

S0 we can see more info about the atoms that are the components of the vl ar r ay1 dataset, i.e. they are scalars of
typel nt 32 and with Nurrer i ¢ flavor.

If we want information about the attributes on the nodes, we must add the - a flag:

$ ptdunp -va vlarrayl. h5
/ (G oup)
children := ['vlarrayl (VLArray)]
/. v _attrs (AttributeSet), 5 attributes:

[CLASS : = ' GROUP'

FI LTERS : = None,

PYTABLES FORVMAT VERSION := '1.2',
TITLE : = "',

VERSION := '1.0']

/vlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
atom = Aton(type=Int32, shape=1, flavor="Nuneric')

nrows = 4
flavor = ' Nurmeri c'
byteorder = '"little'
/vlarrayl.attrs (AttributeSet), 4 attributes:
[CLASS : = ' VLARRAY' ,
FLAVOR : = ' Nunmeric',
TITLE : = 'ragged array of ints',
VERSION := '1.0']

Let's have alook at thered data:

$ ptdunp -d vlarrayl. h5
/[(G oup)
/[vlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
Dat a dunp:
[array([5, 6]), array([5, 6, 7]), array([5, 6, 9, 8]), array([5 6, 9, 10,
12])1]

we see here a data dump of the 4 rowsin vl arr ay1 object, in the form of alist. Because the object isa VLA, we
see adifferent number of integers on each row.

Say that we are interested only on a specific row range of the/ vl ar r ay1 object:

ptdunp -R2,4 -d vlarrayl. h5:/vlarrayl

[vlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
Dat a dunp:

[array([5, 6, 9, 8]), array([5 6, 9, 10, 12])]

Here, we have specified the range of rows between 2 and 4 (the upper limit excluded, as usual in Python). See how
we have selected only the/ vl ar r ay1 object for doing thedump (vl arrayl. h5: /vl arrayl).

Finally, you can mix several information at once:

$ ptdunp -R2,4 -vad vlarrayl. h5:/vlarrayl
/vlarrayl (VLArray(4,), shuffle, zlib(1)) 'ragged array of ints'
atom = Atonm(type=Int32, shape=1, flavor="Nuneric')

148

Utilities

nrows = 4
flavor = ' Nuneric'
byteorder = "little'
/vlarrayl.attrs (AttributeSet), 4 attributes:
[CLASS : = ' VLARRAY' ,
FLAVOR : = 'Nuneric',
TITLE : = 'ragged array of ints',
VERSION := '1.0']
Dat a dunp:

[array([5, 6, 9, 8]), array([5 6, 9, 10, 12])]

C.2. ptrepack

This utility isavery powerful one and lets you copy any leaf, group or complete subtree into another file. During the
copy process you are allowed to change thefilter propertiesif you want so. Also, in the case of duplicated pathnames,
you can decideif you want to overwrite already existing nodes on the destination file. Generally speaking, pt r epack
can be useful in may situations, like replicating a subtree in another file, change the filters in objects and see how
affect thisto the compression degree or 1/0O performance, consolidating specific datain repositories or even importing
generic HDF5 files and create true Py Tabl es counterparts.

C.2.1. Usage

For instructions on how to useit, just passthe - h flag to the command:
$ ptrepack -h
to see the message usage:

usage: ptrepack [-h] [-v] [-0] [-R start, stop, step] [--non-recursive]
[--dest-title=title] [--dont-copyuser-attrs] [--overwite-nodes]
[--conpl evel =(0-9)] [--complib=lib] [--shuffle=(0|1)]
[--fletcher32=(0|1)] [--keep-source-filters]
sourcefil e: sourcegroup destfil e: destgroup

-h -- Print usage nessage.
-v -- Show nore infornmation.
-0 -- Overwite destination file.

-R RANGE -- Select a RANGE of rows (in the form"start, stop, step")
during the copy of *all* the |eaves.

--non-recursive -- Do not do a recursive copy. Default is to do it.
--dest-title=title -- Title for the newfile (if not specified,
t he source is copied).
--dont -copy-userattrs -- Do not copy the user attrs (default is to do it)
--overwite-nodes -- Overwite destination nodes if they exist. Default is
to not overwite them
--conpl evel =(0-9) -- Set a conpression level (0 for no conpression, which

is the default).
--conplib=lib -- Set the conpression library to be used during the copy.

lib can be set to "zlib", "lzo", "ucl" or "bzip2". Defaults to "zlib".

--shuffle=(0]1) -- Activate or not the shuffling filter (default is active
i f conpl evel >0).

--fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not
active by default).

--keep-source-filters -- Use the original filters in source files. The
default is not doing that if any of --conplevel, --conplib, --shuffle

149

Utilities

or --fletcher32 option is specified.

C.2.2. A small tutorial on ptrepack

Imagine that we have ended the tutorial 1 (seethe output of exanpl es/ t ut ori al 1- 1. py), and we want to copy
our reduced data (i.e. those datasets that hangs from the / col urm group) to another file. First, let's remember the
content of theexanpl es/ tut ori al 1. h5:

$ ptdunmp tutoriall.h5

Fil ename: 'tutoriall.h5 Title: 'Test file' , Last nmodif.: 'Fri Feb 6
19: 33:28 2004' , rootUEP="/', filters=Filters(), Format version: 1.2

[(Group) 'Test file'

/colums (G oup) 'Pressure and Name'

[col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/pressure (Array(3,)) 'Pressure colum selection'

/detector (G oup) 'Detector information'

[det ect or/ readout (Tabl e(10L,)) ' Readout exanple'

Now, copy the/ col umms to other non-existing file. That's easy:
$ ptrepack tutorial 1. h5:/col ums reduced. h5
That's all. Let's see the contents of the newly created r educed. h5 file:

$ ptdunp reduced. h5

Fi |l ename: 'reduced.h5 Title: '* , Last nodif.: 'Fri Feb 20 15:26:47 2004' ,
rootUEP="/"', filters=Filters(), Format version: 1.2
[(Goup) "'

/name (Array(3,)) 'Nane colum sel ection'
[pressure (Array(3,)) 'Pressure colum selection'

S0, you have copied the children of / col umms group into the root of ther educed. h5 file.

Now, you suddenly realized that what you intended to do was to copy all the hierarchy, the group / col ums itself
included. Y ou can do that by just specifying the destination group:

$ ptrepack tutorial 1. h5:/col ums reduced. h5:/ col ums
pt dump reduced. h5

Fil enane: 'reduced.h5' Title: '' , Last nodif.: 'Fri Feb 20 15:39:15 2004' |,
root UEP='/', filters=Filters(), Format version: 1.2
[(Goup) "'

/name (Array(3,)) 'Nane colum sel ection'

[pressure (Array(3,)) 'Pressure colum selection'
/[colums (G oup) "'

[col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/ pressure (Array(3,)) 'Pressure colum selection'

OK. Much better. But you want to get rid of the existing nodes on the new file. You can achieve this by adding the
-oflag:

$ ptrepack -o tutorial 1. h5:/col utmms reduced. h5:/col ums
$ ptdunp reduced. h5

Fi |l ename: 'reduced.h5 Title: '* , Last nodif.: 'Fri Feb 20 15:41:57 2004' ,
rootUEP="/', filters=Filters(), Format version: 1.2
[(G oup) "'

150

Utilities

[col ums (G oup)
[col ums/nanme (Array(3,)) 'Nane colum sel ection’
/col ums/pressure (Array(3,)) 'Pressure colum selection’

where you can see how the old contents of ther educed. h5 file has been overwritten.
Y ou can copy just one single node in the repacking operation and change its name in destination:

$ ptrepack tutorial 1. h5:/detector/readout reduced. h5:/rawdata
$ ptdunp reduced. h5

Fi |l ename: 'reduced.h5" Title: '' , Last nodif.: 'Fri Feb 20 15:52:22 2004',
rootUEP="/"', filters=Filters(), Format version: 1.2
[(Goup) "'

/rawdata (Tabl e(10L,)) ' Readout exanpl €'

/[colums (G oup) "'

[col ums/nanme (Array(3,)) 'Nane colum sel ection'

/col ums/pressure (Array(3,)) 'Pressure colum selection'

wherethe/ det ect or / r eadout hasbeen copied to/ r awdat a in destination.
We can change the filter properties as well:

$ ptrepack --compl evel =1 tutorial 1. h5:/detector/readout reduced. h5:/rawdata
Probl ems doing the copy from'tutoriall. hb:/detector/readout' to
'reduced. h5:/rawdat a'
The error was --> exceptions. Val ueError: The destination

(/rawdata (Tabl e(10L,)) 'Readout exanple') already exists.

Assert the overwite paraneter if you really want to overwite it.
The destination file | ooks Iike:

Fil enane: 'reduced.h5' Title: ''; Last nodif.: 'Fri Feb 20 15:52:22 2004';
rootUEP='/'; filters=Filters(), Format version: 1.2
[(Goup) "'

/rawdata (Tabl e(10L,)) ' Readout exanpl €'

/[colums (G oup) "'

/[col ums/nane (Array(3,)) 'Nane colum sel ection'

/col ums/ pressure (Array(3,)) 'Pressure colum selection'

Traceback (nmost recent call last):
File "../utils/ptrepack”, line 358, in ?
start=start, stop=stop, step=step)
File "../utils/ptrepack”, line 111, in copylLeaf

rai se RuntineError, "Please, check that the node nanes are not
duplicated in destination, and if so, add the --overwite-nodes flag
if desired."
Runti meError: Please, check that the node nanmes are not duplicated in
destination, and if so, add the --overwite-nodes flag if desired.

ooops!. We ran into problems: we forgot that / r awdat a pathname already existed in destination file. Let's add the
--overwite-nodes, asthe verbose error suggested:

$ ptrepack --overwite-nodes --conplevel =1 tutorial 1. h5:/detector/readout

reduced. h5: /r awdat a

$ ptdunp reduced. h5

Fi |l ename: 'reduced. h5 Title: ''; Last nodif.: 'Fri Feb 20 16: 02: 20 2004';
rootUEP="/"'; filters=Filters(), Format version: 1.2

151

Utilities

/[(G oup)

/rawdat a (Tabl e(10L,), shuffle, zlib(1l)) 'Readout exanpl e’
[col ums (G oup)

[col ums/nanme (Array(3,)) 'Nane colum sel ection’

/col ums/pressure (Array(3,)) 'Pressure colum selection’

you can check how thefilter properties has been changed for the/ r awdat a table. Check asthe other nodes till exists.

Finally, let's copy adlice of ther eadout tablein origin to destination, under anew group called/ sl i ces and with
the name, for example, asl i ce:

$ ptrepack -R1,8,3 tutorial 1. h5:/detector/readout

reduced. h5:/slices/aslice $ ptdunp reduced. h5 Fil enane: 'reduced. h5'
Title: '"'; Last nodif.: '"Fri Feb 20 16:17:13 2004'; root UEP='/";
filters=Filters(); Format version: 1.2 / (Goup) '' /rawdata

(Tabl e(10L,), shuffle, zlib(1l)) 'Readout exanple' /colums (G oup)

/col ums/nanme (Array(3,)) 'Nane colum sel ection' /colums/pressure
(Array(3,)) 'Pressure colum selection' /slices (G oup)
/slices/aslice (Table(3L,)) 'Readout exanple'

note how only 3 rows of the original r eadout table has been copied to the new asl i ce destination. Note as well
how the previously inexistent sl i ces group has been created in the same operation.

C.3. nctohb

Thistool isable to convert afilein Net CDF [http://www.unidata.ucar.edu/packages/netcdf/] format to aPy Tabl es
file (and hence, to aHDF5 file). However, for thisto work, you will need the NetCDF interface for Python that comes
withtheexcellent Sci enti fi c Pyt hon (see[16]) package. This script wasinitially contributed by Jeff Whitaker.
It has been updated to support selectable filters from the command line and some other small improvements.

If you want other file formats to be converted to Py Tabl es, have alook at the Sci Py (see[17]) project (subpack-
agei 0), and look for different methods to import them into NunPy/ Nuner i ¢/ numar r ay objects. Following the
Sci Py documentation, you can read, among other formats, ASCII files (r ead_ar r ay), binary filesin C or Fortran
(f open) and MATLAB (version 4, 5 or 6) files (I oadnat). Once you have the content of your files as NunPy/ Nu-
nmeri ¢/ numar r ay objects, you can save them asregular (E) Arr ays in PyTabl es files. Remember, if you end
with a nice conversor, do not forget to contribute it back to the community. Thanks!

C.3.1. Usage

For instructions on how to useit, just passthe - h flag to the command:

$ nctoh5 -h

to see the message usage:

usage: nctoh5 [-h] [-v] [-0] [--conplevel =(0-9)] [--conplib=lib]

[--shuffle=(0]|1)] [--fletcher32=(0|1)] [--unpackshort=(0|1)]
[--quantize=(0|1)] netcdffil enane hdf5fil enane

-h -- Print usage nessage.

-v -- Show nore information.

-0 -- Overwite destination file.

--conpl evel =(0-9) -- Set a conpression |level (0 for no conpression, which

is the default).

152

http://www.unidata.ucar.edu/packages/netcdf/
http://www.unidata.ucar.edu/packages/netcdf/

Utilities

--conplib=lib -- Set the conpression library to be used during the copy.

lib can be set to "zlib", "lzo", "ucl" or "bzip2". Defaults to "zlib".

--shuffle=(0]1) -- Activate or not the shuffling filter (default is active
i f conpl evel >0).

--fletcher32=(0|1) -- Wiether to activate or not the fletcher32 filter (not
active by default).

--unpackshort=(0| 1) -- unpack short integer variables to float variabl es

usi ng scal e_factor and add_of fset net COF variable attri butes
(not active by default).

--quantize=(0|1) -- quantize data to inprove conpressi on using
| east _significant_digit net COF variable attribute (not active by
defaul t).

See http://ww. cdc. noaa. gov/ cdc/ conventi ons/ cdc_net cdf _st andard. sht m
for further explanation of what this attribute neans.

If you have followed the small tutorial on the pt r epack utility (see C.2), you should easily realize what most of
the different flags would mean.

153

Appendix D. PyTables File Format

PyTabl es has a powerful capability to deal with native HDF5 files created with another tools. However, there are
situationswereyou may want to createtruly native Py Tabl es fileswith thosetoolswhileretaining fully compatibility
with Py Tabl es format. That is perfectly possible, and in this appendix is presented the format that you should endow
to your own-generated filesin order to get afully Py Tabl es compatiblefile.

We are going to describe the 1.6 version of Py Tabl es file format (introduced in Py Tabl es version 1.3). At this
stage, thisfileformat is considered stable enough to do not introduce significant changes during areasonable amount of
time. Astime goes by, some changeswill be introduced (and documented here) in order to cope with new necessities.
However, the changes will be carefully pondered so as to ensure backward compatibility whenever is possible.

A PyTabl es file is composed with arbitrarily large amounts of HDF5 groups (Gr oups in PyTabl es naming
scheme) and datasets (Leaves in Py Tabl es naming scheme). For groups, the only requirements are that they must
have some system attributes available. By convention, system attributesin Py Tabl es are written in upper case, and
user attributes in lower case but this is not enforced by the software. In the case of datasets, besides the mandatory
system attributes, some conditions are further needed in their storage layout, as well asin the datatypes used in there,
aswe will see shortly.

Asafinal remark, you can useany filter asyouwant to createaPy Tabl es file, provided that thefilter isastandard one
in HDF5, like Zib, shuffle or szip (although the last one can not be used from within Py Tabl es to create anew file,
datasets compressed with szip can be read, becauseit isthe HDF5 library which do the decompression transparently).

D.1. Mandatory attributes for a File

TheFi | e objectis, in fact, an special HDF5 group structure that is root for the rest of the objects on the object tree.
The next attributes are mandatory for the HDF5 root group structure in Py Tabl es files:

CLASS
This attribute should always be set to' GROUP' for group structures.

PYTABLES FORMAT_VERSION
It represents the internal format version, and currently should be set tothe' 1. 6' string.

TITLE
A string where the user can put some description on what is this group used for.

VERSION
Should containsthe string* 1. 0" .

D.2. Mandatory attributes for a Group

The next attributes are mandatory for group structures:

CLASS
This attribute should always be set to' GROUP' for group structures.

TITLE
A string where the user can put some description on what is this group used for.

VERSION
Should containsthe string* 1. 0' .

154

PyTables File Format

D.3. Mandatory attributes, storage layout and support-
ed data types for Leaves

This depends on the kind of Leaf . The format for each type follows.

D.3.1. Table format

Mandatory attributes
The next attributes are mandatory for table structures:

CLASS
Must besetto' TABLE' .

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should containthe string* 2. 6" .

FLAVOR
Thisis meant to provide the information about the kind of object kept inthe Tabl e, i.e. when the dataset is read,
it will be converted to the indicated flavor. It can take one the next string values:

"numarray"”
The read operations will return anumar r ay object.

"numpy"
The read operations will be return as a NunPy object.

FIELD_X_NAME
It contains the names of the different fields. The X means the number of the field, zero-based (beware, order do
matter). Y ou should add as many attributes of this kind as fields you have in your records.

FIELD_X_FILL
It contains the default values of the different fields. All the datatypes are suported natively, except for complex
types that are currently serialized using Pickle. The X means the number of the field, zero-based (beware, order
do matter). Y ou should add as many attributes of this kind as fields you have in your records. These fields are
meant for saving the default values persistently and their existence is optional.

NROWS
This should contain the number of compound data type entriesin the dataset. It must be an int data type.

Storage Layout

A Tabl e has adataspace with a 1-dimensional chunked layout.

Datatypes supported

The datatype of the elements (rows) of Tabl e must bethe HST_COMPOUND compound datatype, and each of these
compound components must be built with only the next HDF5 data types classes:

H5T_BITFIELD
This class is used to represent the Bool type. Such a type must be build using a H5T_NATIVE_B8 datatype,
followed by aHDF5 H5Tset _pr eci si on call to set its precision to be just 1 bit.

155

PyTables File Format

H5T_INTEGER
Thisincludes the next data types:

H5T_NATIVE_SCHAR
Thisrepresents asigned char C type, but it is effectively used to represent an | nt 8 type.

H5T_NATIVE_UCHAR
This represents an unsigned char C type, but it is effectively used to represent an Ul nt 8 type.

H5T_NATIVE_SHORT
Thisrepresents ashort C type, and it is effectively used to represent an | nt 16 type.

H5T_NATIVE_USHORT
This represents an unsigned short C type, and it is effectively used to represent an Ul nt 16 type.

H5T_NATIVE_INT
Thisrepresentsan int C type, and it is effectively used to represent an | nt 32 type.

H5T _NATIVE_UINT
This represents an unsigned int C type, and it is effectively used to represent an Ul nt 32 type.

H5T_NATIVE_LONG
This represents along C type, and it is effectively used to represent an | nt 32 or an | nt 64, depending on
whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_ULONG
This represents an unsigned long C type, and it is effectively used to represent an Ul nt 32 or an Ul nt 64,
depending on whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_LLONG
Thisrepresentsalong long C type (__i nt 64, if you are using a Windows system) and it is effectively used
to represent an | nt 64 type.

H5T_NATIVE_ULLONG
Thisrepresents an unsigned long long C type (beware: thistype does not have a correspondence on Windows
systems) and it is effectively used to represent an Ul nt 64 type.

H5T_FLOAT
Thisincludes the next datatypes:

H5T_NATIVE_FLOAT
Thisrepresents afloat C type and it is effectively used to represent an Fl oat 32 type.

H5T_NATIVE_DOUBLE
This represents adouble C type and it is effectively used to represent an FI oat 64 type.

H5T _TIME
Thisincludes the next datatypes:

H5T_UNIX_D32BE
This represents a POSIX time_t C type and it is effectively used to represent a' Ti me32' aliasing type,
which correspondsto an | nt 32 type.

H5T_UNIX_D64BE
This represents a POSI X struct timeval C type and it is effectively used to represent a' Ti me64' aiasing
type, which correspondsto aFl oat 64 type.

156

PyTables File Format

H5T_STRING
The datatype used to describe stringsin PyTablesisH5T _C Sl (i.e. astring C type) followed with a call to the
HDF5 H5Tset _si ze() function to set their length.

H5T_ARRAY
This alows the construction of homogeneous, multidimensional arrays, so that you can include such objectsin
compound records. The types supported as elements of HST_ARRAY data types are the ones described above.
Currently, Py Tabl es does not support nested HST_ARRAY types.

H5T_COMPOUND
This allows the support of complex numbers. Its format is described below:

The H5T_COMPOUND type class contains two members. Both members must have the H5T _FLOAT atom-
ic datatype class. The name of the first member should be "r" and represents the rea part. The name of
the second member should be "i" and represents the imaginary part. The precision property of both of the
H5T_FLOAT members must be either 32 significant bits(e.g. HST_NATIVE_FLOAT) or 64 significant bits(e.g.
H5T_NATIVE _DOUBLE). They represent Complex32 and Complex64 types respectively.

Currently, Py Tabl es does not support nested HST_COMPOUND types, the only exception being supporting com-
plex numbersin Tabl e objects as described above.

D.3.2. Array format

Mandatory attributes
The next attributes are mandatory for array structures:

CLASS
Must besetto' ARRAY" .

FLAVOR
Thisis meant to provide the information about the kind of object kept inthe Ar r ay, i.e. when the dataset is read,
it will be converted to the indicated flavor. It can take one the next string values:

"numarray"”
The read operations will return anumar r ay object.

" numpy"
The read operations will return a NunPy object.

"numeric"
The read operations will return aNuner i ¢ object.

" python"
The read operations will return aPython | i st object in case the dataset has dimensionality. If the dataset is
an scalar, then an appropriate Python scal ar will be returned instead.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should containthe string ' 2. 3" .

Storage Layout

An Arr ay has a dataspace with a N-dimensional contiguous layout (if you prefer a chunked layout see EAr r ay
below).

157

PyTables File Format

Datatypes supported

The elements of Array must have either HDF5 atomic data types or a compound data type representing a com-
plex number. The atomic data types can currently be one of the next HDF5 data type classes. H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME classis also supported for reading existing Ar -

r ay objects, but not for creating them. See the Tabl e format description in Section D.3.1 for more info about these

types.

In addition to the HDF5 atomic data types, the Array format supports complex numbers with the HST_COMPOUND
datatype class. Seethe Tabl e format description in Section D.3.1 for more info about this special type.

Y ou should note that HST_ARRAY class datatypes are not allowed in Ar r ay objects.

D.3.3. CArray format

Mandatory attributes
The next attributes are mandatory for carray structures:

CLASS
Must be set to' CARRAY" .

FLAVOR
This is meant to provide the information about the kind of objects kept in the CAr r ay, i.e. when the dataset is
read, it will be converted to the indicated flavor. It can take the same values as the Ar r ay object.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should containthe string' 1. 0" .

Storage Layout

An CAr r ay has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of CAr r ay must have either HDF5 atomic data types or a compound data type representing a com-
plex number. The atomic data types can currently be one of the next HDF5 data type classes. H5T_BITFIELD,
H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME classisal so supported for reading existing CAr -

r ay objects, but not for creating them. See the Tabl e format description in Section D.3.1 for more info about these

types.

In addition to the HDF5 atomic datatypes, the CArray format supports complex numberswith the HST_COMPOUND
data type class. Seethe Tabl e format description in Section D.3.1 for more info about this special type.

Y ou should note that HST_ARRAY class datatypes are hot allowed in Ar r ay objects.
D.3.4. EArray format

Mandatory attributes

The next attributes are mandatory for earray structures:

158

PyTables File Format

CLASS
Must be set to' EARRAY" .

EXTDIM
(Integer) Must be set to the extensible dimension. Only one extensible dimension is supported right now.

FLAVOR
This is meant to provide the information about the kind of objects kept in the EAr r ay, i.e. when the dataset is
read, it will be converted to the indicated flavor. It can take the same values as the Ar r ay object (see D.3.2),
except" I nt" and" Fl oat " .

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should contain the string* 1. 3" .

Storage Layout

An EAr r ay has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of EAr r ay are alowed to have the same data types as for the elements in the Array format. They
can be one of the HDF5 atomic data type classes: HST_BITFIELD, H5T _INTEGER, H5T_FLOAT, H5T_TIME or
H5T_STRING, seethe Tabl e format description in Section D.3.1 for more info about these types. They can also be
aH5T_COMPOUND datatype representing a complex number, see the Tabl e format description in Section D.3.1.

Y ou should note that HST_ARRAY class data types are not allowed in EAr r ay objects.
D.3.5. VLArray format

Mandatory attributes
The next attributes are mandatory for viarray structures:

CLASS
Must be set to' VLARRAY' .

FLAVOR
Thisis meant to provide the information about the kind of objects kept in the VLAr r ay, i.e. when the dataset is
read, it will be converted to the indicated flavor. It can take one of the next values:

"numarray"
The dataset will be returned asanumar r ay object.

"numpy"
The dataset will be returned as a NunPy object.

"numeric"
The dataset will be returned as an Nuner i ¢ object.

" python"
The dataset will be returned as a Python Li st object in case the dataset has dimensionality. If the dataset is
an scalar, then an appropriate Python scalar will be returned instead.

159

PyTables File Format

" Object"
Theelementsin the dataset will beinterpreted aspickled (i.e. serialized objectsthrough theuse of thePi ckl e
Python module) objects and returned as Python generic objects. Only one of such objectswill be deserialized
per entry. Asthe Pi ckl e module is not normally available in other languages, this flavor won't be useful
in general.

"VLString"
The elements in the dataset will be returned as Python St ri ng objects of any length, with the twist that
Unicode strings are supported as well (provided you use the UTF-8 codification, see below). However, only
one of such objectswill be deserialized per entry.

TITLE
A string where the user can put some description on what is this dataset used for.

VERSION
Should containthe string ' 1. 2" .

Storage Layout

AnVLAr r ay has adataspace with a 1-dimensional chunked layout.

Data types supported

The data type of the elements (rows) of VLAr r ay objects must be the H5T_VLEN variable-length (or VL for short)
datatype, and the base datatype specified for the VL datatype can be of any atomic HDF5 datatype that islisted in the
Tabl e format description D.3.1. That includes the classes:

* H5T_BITFIELD

* H5T_INTEGER

H5T_FLOAT

H5T_TIME

H5T_STRING
* H5T_ARRAY

They can also be aH5T_COMPOUND data type representing a complex number, see the Tabl e format description
in Section D.3.1 for adetailed description.

Y ou should notethat this does not include another VL datatype, or acompound datatype that does not fit the description
of a complex number. Note as well that, for Obj ect and VLSt ri ng specia flavors, the base for the VL datatype
isalways aH5T _NATIVE_UCHAR. That means that the complete row entry in the dataset has to be used in order
to fully serialize the object or the variable length string.

Inaddition, if youplantouseaVLSt r i ng flavor for your text dataand you areusing ascii-7 (7 bitsASCI 1) codification
for your strings, but you don't know (or just don't want) to convert it to the required UTF-8 codification, you should
not worry too much about that because the ASCI| characters with valuesin the range [0x00, 0x7f] are directly mapped
to Unicode characters in the range [U+0000, U+007F] and the UTF-8 encoding has the useful property that an UTF-8
encoded ascii-7 string isindistinguishable from atraditional ascii-7 string. So, you will not need any further conversion
in order to save your ascii-7 stringsand havean VLSt r i ng flavor.

160

Bibliography

[1] NCSA. What is HDF5?. Concise description about HDF5 capabilities and its differences from earlier versions
(HDF4). http://hdf.ncsa.uiuc.edu/whatishdf5.html .

[2] Anders Henja and Daniel B Michelson. A High Level Interface to the {HDF5} File Format. HL-HDF is a high
level interface to the Hierarchical Data Format, version 5. HL-HDF also contains an interface to the Python
programming language, called PyHL. ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/contrib/hl-hdf5/README.html .

[3] NCSA. Introduction to {HDF5}. Introduction to the HDF5 data model and programming model. http:/
hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html .

[4] NCSA. The HDF5 table programming model. Examples on using HDF5 tables with the C API. http://
hdf.ncsa.uiuc.edu/HDF5/hdf5_hl/doc/RM _hdf5th_ex.html .

[5] JeanLoup Gailly and Mark Adler. Zlib. {A Massively Siffy Yet Delicately Unobtrusive Compression Library}. A
standard library for compression purposes. http://www.gzip.org/zlib/ .

[6] David Mertz. Objectify. {On the 'Pythonic' treatment of XML documents as objects(11)}. Article describing XML
Objectify, a Python module that allows working with XML documents as Python objects. Some of the ideas
presented here are used in PyTables. http://www-106.ibm.com/devel operworks/xml/library/xml-matters2/
index.html .

[7] Greg Ewing. Pyrex. {A Language for Writing Python Extension Modules}. http://www.cosc.canterbury.ac.nz/
~greg/python/Pyrex .

[8] Glenn Davis, Russ Rew, Steve Emmerson, John Caron, and Harvey Davies. NetCDF. {Network Common Data
Form}. Aninterface for array-oriented data access and alibrary that provides an implementation of the inter-
face. http://www.unidata.ucar.edu/packages/netcdf/ .

[9] Russ Rew, Mike Folk, and et a. NetCDF-4. {Network Common Data Form version 4}. Merging the NetCDF and
HDF5 Libraries. http://www.unidata.ucar.edu/software/netcdf/netcdf-4/ .

[10] Travis Oliphant and et a. NumPy. {Scientific Computing with Numerical Python}. The latest and most powerful
re-implementation of Numeric to date. It implements all the features that can be found in Numeric and nu-
marray, plus abunch of new others. In general, is more efficient aswell. http://numeric.scipy.org/ .

[11] David Ascher, Paul F Dubois, Konrad Hinsen, Jim Hugunin, and Travis Oliphant. Numerical Python. Package to
speed-up arithmetic operations on arrays of numbers. http://sourceforge.net/projects/numpy/ .

[12] Perry Greenfield, Todd Miller, Richard L White, J. C. Hsu, Paul Barrett, Jochen K#pper, and Peter J Verveer.
Numarray. Reimplementation of Numeric which adds the ability to efficiently manipulate large numeric
arrays in ways similar to Matlab and IDL. Among others, Numarray provides the record array extension.
http://stsdas.stsci.edu/numarray/ .

[13] Markus F Oberhumer. LZO. A data compression library which is suitable for data de-/compression in real-time.
It offers pretty fast compression and extremly fast decompression with reasonable compression ratio. http:/
/www.oberhumer.com/opensource/ .

[14] Julian Seward. bzip2. A high performance lossless compressor. It offers very high compression ratios within
reasonable times. http://www.bzip.org/ .

[15] Armin Rigo. Psyco. A Python specializing compiler. Run existing Python software faster, with no change in your
source. http://psyco.sourceforge.net .

161

http://hdf.ncsa.uiuc.edu/whatishdf5.html
ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/contrib/hl-hdf5/README.html
http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html
http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html
http://hdf.ncsa.uiuc.edu/HDF5/hdf5_hl/doc/RM_hdf5tb_ex.html
http://hdf.ncsa.uiuc.edu/HDF5/hdf5_hl/doc/RM_hdf5tb_ex.html
http://www.gzip.org/zlib/
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.unidata.ucar.edu/packages/netcdf/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://numeric.scipy.org/
http://sourceforge.net/projects/numpy/
http://stsdas.stsci.edu/numarray/
http://www.oberhumer.com/opensource/
http://www.oberhumer.com/opensource/
http://www.bzip.org/
http://psyco.sourceforge.net

Bibliography

[16] Konrad Hinsen. Scientific Python. Collection of Python modules useful for scientific computing. http:/
starship.python.net/~hinsen/ScientificPython/ .

[17] Eric Jones, Travis Oliphant, Pearu Peterson, and et al. SciPy. {Scientific tools for Python}. SciPy supplements
the popular Numeric module, gathering a variety of high level science and engineering modules together as
asingle package. http://www.scipy.org .

[18] Francesc Altet and Ivan Vilata. Optimization of file openings in PyTables. This document explores the savings
of the opening process in terms of both CPU time and memory, due to the adoption of a LRU cache for the
nodesin the object tree. http://pytables.sourceforge.net/doc/NewObjectTreeCache.pdf .

[19] Coop. V. Cérabos. ViTables. {A GUI for PyTablesHDF5 files}. It is a graphical tool for browsing and editing
filesin both PyTables and HDF5, formats. http://www.carabos.com/products/vitables.html .

[20] Alexis Wilke, Jerry S., Kees Zedlenberg, and Mathias Michaelis. Ghuwin32. {GNU (and other) tools ported
to Win32}. Gnuwin32 provides native Win32-versions of GNU tools, or tools with a similar open source
licence. http://gnuwin32.sourceforge.net/ .

162

http://starship.python.net/~hinsen/ScientificPython/
http://starship.python.net/~hinsen/ScientificPython/
http://www.scipy.org
http://pytables.sourceforge.net/doc/NewObjectTreeCache.pdf
http://www.carabos.com/products/vitables.html
http://gnuwin32.sourceforge.net/

	PyTables User's Guide
	Table of Contents
	Part I. The PyTables Core Library
	Chapter 1. Introduction
	1.1. Main Features
	1.2. The Object Tree

	Chapter 2. Installation
	2.1. Installation from source
	2.1.1. Prerequisites
	2.1.2. PyTables package installation

	2.2. Binary installation (Windows)
	2.2.1. Windows prerequisites
	2.2.2. PyTables package installation

	Chapter 3. Tutorials
	3.1. Getting started
	3.1.1. Importing tables objects
	3.1.2. Declaring a Column Descriptor
	3.1.3. Creating a PyTables file from scratch
	3.1.4. Creating a new group
	3.1.5. Creating a new table
	3.1.6. Reading (and selecting) data in a table
	3.1.7. Creating new array objects
	3.1.8. Closing the file and looking at its content

	3.2. Browsing the object tree
	3.2.1. Traversing the object tree
	3.2.2. Setting and getting user attributes
	3.2.3. Getting object metadata
	3.2.4. Reading data from Array objects

	3.3. Commiting data to tables and arrays
	3.3.1. Appending data to an existing table
	3.3.2. Modifying data in tables
	3.3.3. Modifying data in arrays
	3.3.4. And finally... how to delete rows from a table

	3.4. Multidimensional table cells and automatic sanity checks
	3.4.1. Shape checking
	3.4.2. Field name checking
	3.4.3. Data type checking

	3.5. Exercising the Undo/Redo feature
	3.5.1. A basic example
	3.5.2. A more complete example

	3.6. Using enumerated types
	3.6.1. Enumerated columns
	3.6.2. Enumerated arrays

	3.7. Dealing with nested structures in tables
	3.7.1. Nested table creation
	3.7.2. Reading nested tables: introducing NestedRecArray objects
	3.7.3. Using Cols accessor
	3.7.4. Accessing meta-information of nested tables

	3.8. Other examples in PyTables distribution

	Chapter 4. Library Reference
	4.1. tables variables and functions
	4.1.1. Global variables
	4.1.2. Global functions
	copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)
	isHDF5File(filename)
	isPyTablesFile(filename)
	openFile(filename, mode='r', title='', trMap={}, rootUEP="/", filters=None)
	whichLibVersion(name)

	4.2. The File class
	4.2.1. File instance variables
	4.2.2. File methods
	createGroup(where, name, title='', filters=None, createparents=False)
	createTable(where, name, description, title='', filters=None, expectedrows=10000, createparents=False)
	createArray(where, name, object, title='', createparents=False)
	createCArray(where, name, shape, atom, title='', filters=None, createparents=False)
	createEArray(where, name, atom, title='', filters=None, expectedrows=1000, createparents=False)
	createVLArray(where, name, atom=None, title='', filters=None, expectedsizeinMB=1.0, createparents=False)
	getNode(where, name=None, classname=None)
	isVisibleNode(path)
	getNodeAttr(where, attrname, name=None)
	setNodeAttr(where, attrname, attrvalue, name=None)
	delNodeAttr(where, attrname, name=None)
	copyNodeAttrs(where, dstnode, name=None)
	iterNodes(where, classname=None)
	listNodes(where, classname=None)
	removeNode(where, name=None, recursive=False)
	copyNode(where, newparent=None, newname=None, name=None, overwrite=False, recursive=False, createparents=False, **kwargs)
	renameNode(where, newname, name=None)
	moveNode(where, newparent=None, newname=None, name=None, overwrite=False, createparents=False)
	walkGroups(where='/')
	walkNodes(where="/", classname="")
	copyChildren(srcgroup, dstgroup, overwrite=False, recursive=False, createparents=False, **kwargs)
	copyFile(dstfilename, overwrite=False, **kwargs)
	flush()
	close()
	isUndoEnabled()
	enableUndo(filters=Filters(complevel=1))
	disableUndo()
	mark(name=None)
	getCurrentMark()
	undo(mark=None)
	redo(mark=None)
	goto(mark)

	4.2.3. File special methods
	__contains__(path)
	__iter__()
	__str__()
	__repr__()

	4.3. The Node class
	4.3.1. Node instance variables
	Location dependent
	Location independent
	Attribute shorthands

	4.3.2. Node methods
	Hierarchy manipulation
	_f_close()
	_f_isOpen()
	_f_remove(recursive=False)
	_f_rename(newname)
	_f_move(newparent=None, newname=None, overwrite=False, createparents=False)
	_f_copy(newparent=None, newname=None, overwrite=False, recursive=False, createparents=False, **kwargs)
	_f_isVisible()

	Attribute handling
	_f_getAttr(name)
	_f_setAttr(name, value)
	_f_delAttr(name)

	4.4. The Group class
	4.4.1. Group instance variables
	4.4.2. Group methods
	_f_getChild(childname)
	_f_copy(newparent, newname, overwrite=False, recursive=False, createparents=False, **kwargs)
	_f_iterNodes(classname=None)
	_f_listNodes(classname=None)
	_f_walkGroups()
	_f_walkNodes(classname=None, recursive=True)
	_f_close()
	_f_copyChildren(dstgroup, overwrite=False, recursive=False, createparents=False, **kwargs)

	4.4.3. Group special methods
	__setattr__(name, value)
	__getattr__(name)
	__delattr__(name)
	__contains__(name)
	__iter__()
	__str__()
	__repr__()

	4.5. The Leaf class
	4.5.1. Leaf instance variables
	4.5.2. Leaf methods
	flush()
	_f_close(flush=True)
	close(flush=True)
	isOpen()
	remove()
	copy(newparent, newname, overwrite=False, createparents=False, **kwargs)
	rename(newname)
	move(newparent=None, newname=None, overwrite=False, createparents=False)
	_f_isVisible()
	getAttr(name)
	setAttr(name, value)
	delAttr(name)

	4.6. The Table class
	4.6.1. Table instance variables
	4.6.2. Table methods
	getEnum(colname)
	append(rows)
	col(name)
	iterrows(start=None, stop=None, step=1)
	itersequence(sequence, sort=True)
	read(start=None, stop=None, step=1, field=None, flavor=None)
	readCoordinates(coords, field=None, flavor=None)
	modifyRows(start=None, stop=None, step=1, rows=None)
	modifyColumn(start=None, stop=None, step=1, column=None, colname=None)
	modifyColumns(start=None, stop=None, step=1, columns=None, names=None)
	removeRows(start, stop=None)
	removeIndex(index)
	flushRowsToIndex()
	reIndex()
	reIndexDirty()
	where(condition, start=None, stop=None, step=None)
	whereAppend(dstTable, condition, start=None, stop=None, step=None)
	getWhereList(condition, flavor=None)

	4.6.3. Table special methods
	__iter__()
	__getitem__(key)
	__setitem__(key, value)

	4.6.4. The Row class
	Row attributes
	Row methods
	append()
	update()

	4.7. The Cols class
	4.7.1. Cols instance variables
	4.7.2. Cols methods
	_f_col(colname)
	__getitem__(key)
	__setitem__(key)

	4.8. The Description class
	4.8.1. Description instance variables
	4.8.2. Description methods
	_f_walk(type='All')

	4.9. The Column class
	4.9.1. Column instance variables
	4.9.2. Column methods
	createIndex()
	reIndex()
	reIndexDirty()
	removeIndex()

	4.9.3. Column special methods
	__getitem__(key)
	__setitem__(key, value)

	4.10. The Array class
	4.10.1. Array instance variables
	4.10.2. Array methods
	getEnum()
	iterrows(start=None, stop=None, step=1)
	read(start=None, stop=None, step=1)

	4.10.3. Array special methods
	__iter__()
	__getitem__(key)
	__setitem__(key, value)

	4.11. The CArray class
	4.11.1. CArray instance variables
	4.11.2. Example of use

	4.12. The EArray class
	4.12.1. EArray instance variables
	4.12.2. EArray methods
	getEnum()
	append(sequence)

	4.13. The VLArray class
	4.13.1. VLArray instance variables
	4.13.2. VLArray methods
	getEnum()
	append(sequence, *objects)
	iterrows(start=None, stop=None, step=1)
	read(start=None, stop=None, step=1)

	4.13.3. VLArray special methods
	__iter__()
	__getitem__(key)
	__setitem__(keys, value)

	4.14. The UnImplemented class
	4.15. The AttributeSet class
	4.15.1. AttributeSet instance variables
	4.15.2. AttributeSet methods
	_f_copy(where)
	_f_list(attrset="user")
	_f_rename(oldattrname, newattrname)

	4.16. Declarative classes
	4.16.1. The IsDescription class
	IsDescription special attributes

	4.16.2. The Col class and its descendants
	Col instance attributes
	Col methods
	Col constructors
	Col(dtype="Float64", shape=1, dflt=None, pos=None, indexed=0)
	StringCol(length=None, dflt=None, shape=1, pos=None, indexed=0)
	BoolCol(dflt=0, shape=1, pos=None, indexed=0)
	IntCol(dflt=0, shape=1, itemsize=4, sign=1, pos=None, indexed=0)
	Int8Col(dflt=0, shape=1, pos=None, indexed=0)
	UInt8Col(dflt=0, shape=1, pos=None,indexed=0)
	Int16Col(dflt=0, shape=1, pos=None, indexed=0)
	UInt16Col(dflt=0, shape=1, pos=None, indexed=0)
	Int32Col(dflt=0, shape=1, pos=None, indexed=0)
	UInt32Col(dflt=0, shape=1, pos=None, indexed=0)
	Int64Col(dflt=0, shape=1, pos=None, indexed=0)
	UInt64Col(dflt=0, shape=1, pos=None, indexed=0)

	FloatCol(dflt=0.0, shape=1, itemsize=8, pos=None, indexed=0)
	Float32Col(dflt=0.0, shape=1, pos=None, indexed=0)
	Float64Col(dflt=0.0, shape=1, pos=None, indexed=0)

	ComplexCol(dflt=0.+0.j, shape=1, itemsize=16, pos=None)
	Complex32Col(dflt=0.+0.j, shape=1, pos=None)
	Complex64Col(dflt=0+0.j, shape=1, pos=None)

	TimeCol(dflt=0, shape=1, itemsize=8, pos=None, indexed=0)
	Time32Col(dflt=0, shape=1, pos=None, indexed=0)
	Time64Col(dflt=0.0, shape=1, pos=None, indexed=0)

	EnumCol(enum, dflt, dtype='UInt32', shape=1, pos=None, indexed=False)

	4.16.3. The Atom class and its descendants.
	Atom instance variables
	Atom methods
	atomsize()

	Atom constructors
	Atom(dtype="Float64", shape=1, flavor="numarray")
	dtype
	shape
	flavor

	StringAtom(shape=1, length=None, flavor="numarray")
	BoolAtom(shape=1, flavor="numarray")
	IntAtom(shape=1, itemsize=4, sign=1, flavor="numarray")
	Int8Atom(shape=1, flavor="numarray")
	UInt8Atom(shape=1, flavor="numarray")
	Int16Atom(shape=1, flavor="numarray")
	UInt16Atom(shape=1, flavor="numarray")
	Int32Atom(shape=1, flavor="numarray")
	UInt32Atom(shape=1, flavor="numarray")
	Int64Atom(shape=1, flavor="numarray")
	UInt64Atom(shape=1, flavor="numarray")

	FloatAtom(shape=1, itemsize=8, flavor="numarray")
	Float32Atom(shape=1, flavor="numarray")
	Float64Atom(shape=1, flavor="numarray")

	ComplexAtom(shape=1, itemsize=16, flavor="numarray")
	Complex32Atom(shape=1, flavor="numarray")
	Complex64Atom(shape=1, flavor="numarray")

	TimeAtom(shape=1, itemsize=8, flavor="numarray")
	Time32Atom(shape=1, flavor="numarray")
	Time64Atom(shape=1, flavor="numarray")

	EnumAtom(enum, dtype='UInt32', shape=1, flavor='numarray')
	
	ObjectAtom()
	VLStringAtom()
	

	4.17. Helper classes
	4.17.1. The Filters class
	Filters(complevel=0, complib="zlib", shuffle=1, fletcher32=0)

	4.17.2. The IndexProps class
	IndexProps(auto=1, reindex=1, filters=None)

	4.17.3. The Index class
	Index instance variables

	4.17.4. The Enum class
	Special methods
	__getitem__(name)
	__getattr__(name)
	__contains__(name)
	__call__(value, *default)
	__len__()
	__iter__()
	__eq__(other)
	__repr__()

	Chapter 5. Optimization tips
	5.1. Informing PyTables about expected number of rows in tables
	5.2. Accelerating your searches
	5.2.1. In-kernel searches
	5.2.2. Indexed searches

	5.3. Compression issues
	5.4. Shuffling (or how to make the compression process more effective)
	5.5. Using Psyco
	5.6. Getting the most from the node LRU cache
	5.7. Selecting an User Entry Point (UEP) in your tree
	5.8. Compacting your PyTables files

	Part II. Complementary modules
	Chapter 6. FileNode - simulating a filesystem with PyTables
	6.1. What is FileNode?
	6.2. Finding a FileNode node
	6.3. FileNode - simulating files inside PyTables
	6.3.1. Creating a new file node
	6.3.2. Using a file node
	6.3.3. Opening an existing file node
	6.3.4. Adding metadata to a file node

	6.4. Complementary notes
	6.5. Current limitations
	6.6. FileNode module reference
	6.6.1. Global constants
	6.6.2. Global functions
	newNode(h5file, where, name, title="", filters=None, expectedsize=1000)
	openNode(node, mode = 'r')

	6.6.3. The FileNode abstract class
	FileNode methods
	getLineSeparator()
	setLineSeparator()
	getAttrs()
	close()
	next()
	read(size=None)
	readline(size=-1)
	readlines(sizehint=-1)
	seek(offset, whence=0)
	tell()
	xreadlines()

	6.6.4. The ROFileNode class
	6.6.5. The RAFileNode class
	flush()
	truncate(size=None)
	write(string)
	writelines(sequence)

	Chapter 7. NetCDF - a PyTables NetCDF3 emulation API
	7.1. What is NetCDF?
	7.2. Using the tables.NetCDF module
	7.2.1. Creating/Opening/Closing a tables.NetCDF file
	7.2.2. Dimensions in a tables.NetCDF file
	7.2.3. Variables in a tables.NetCDF file
	7.2.4. Attributes in a tables.NetCDF file
	7.2.5. Writing data to and retrieving data from a tables.NetCDF variable
	7.2.6. Efficient compression of tables.NetCDF variables

	7.3. tables.NetCDF module reference
	7.3.1. Global constants
	7.3.2. The NetCDFFile class
	NetCDFFile methods
	close()
	sync()
	ncattrs()
	createDimension(name, length)
	createVariable(name, type, dimensions, least_significant_digit= None, expectedsize=10000, filters=None)
	nctoh5(filename, unpackshort=True, filters=None)
	h5tonc(filename, packshort=False, scale_factor=None, add_offset=None)

	7.3.3. The NetCDFVariable class
	NetCDFVariable methods
	typecode()
	append(data)
	ncattrs()
	assignValue(data)
	getValue()

	7.4. Converting between true netCDF files and tables.NetCDF files
	7.5. tables.NetCDF file structure
	7.6. Sharing data in tables.NetCDF files over the internet with OPeNDAP
	7.7. Differences between the Scientific.IO.NetCDF API and the tables.NetCDF API

	Part III. Appendixes
	Appendix A. Supported data types in PyTables
	Appendix B. Using nested record arrays
	B.1. Introduction
	B.2. NestedRecArray methods
	B.3. NestedRecord objects

	Appendix C. Utilities
	C.1. ptdump
	C.1.1. Usage
	C.1.2. A small tutorial on ptdump

	C.2. ptrepack
	C.2.1. Usage
	C.2.2. A small tutorial on ptrepack

	C.3. nctoh5
	C.3.1. Usage

	Appendix D. PyTables File Format
	D.1. Mandatory attributes for a File
	D.2. Mandatory attributes for a Group
	D.3. Mandatory attributes, storage layout and supported data types for Leaves
	D.3.1. Table format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	D.3.2. Array format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	D.3.3. CArray format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	D.3.4. EArray format
	Mandatory attributes
	Storage Layout
	Datatypes supported

	D.3.5. VLArray format
	Mandatory attributes
	Storage Layout
	Data types supported

	Bibliography

