The Design and Implementation of the
4.4BSD Operating System

Marshall Kirk McKusick
Keith Bostic
Michael J. Karels

John S. Quarterman

The Design and Implementation of the 4.4BSD Operating System
by Marshall Kirk McKusick, Keith Bostic, Michael J. Kareland John S. Quarterman

Copyright © 1996 Addison-Wesley Longman, Inc

The second chapter of the bodkje Design and Implementation of the 4.4BSD Operating Byistexcerpted here with the permission of the
publisher. No part of it may be further reproduced or distiglol without the publisher’'s express written permission
(mailto:peter.gordon@awl.com). The rest of the book (Hitpeng.aw.com/catalog/academic/product/0,1144829794,00.html) explores the
concepts introduced in this chapter in incredible detadl isran excellent reference for anyone with an interest in BRBIDX. More information
about this book is available from the publisher, with whonu gan also sign up to receive news of related titles (maiftbjohnson@awl.com).
Information about BSD courses (http://www.mckusick.cooutses/) is available from Kirk McKusick.

Table of Contents

2 DeSIgN OVEIVIEW Of 4.ABSD.........cuuiiiiieiii ittt e e e e e es et eee e e s st e e eeeaee et s ssstaeaeeeeeeesaamneeeeeansansstanneeeeeennnan 1
2.1 4.4BSD Facilities and the KErNel............oooiiiiiiiii e 1
pZ20 0 R I L= =T = P PRTOTPRR 1.
WA =T a1 I @ (o - a1 2= L1 o] o SRR 2.
2.3 KEIMEI SEIVICES .. .eeiii ittt ettt e ettt e e s sttt e e e s e st e eeabe e e e anbbe e e e s nbeeeesantneeeeaas 4.
2.4 PrOCESS MANAQGEIMEINLuueiuueutueeiueeenteenennneeennnnaanamaeseeeseeenesesessnsssnsssnsssnnnnannnansannnsssssssnsssnsnsnsnnnsnnns 4.
A T T | - | OSSPSR 5.
2.4.2 Process Groups and SESSIANScuiiiiiiiiiiiiiiiiieie e ettt ee e e e ettt e ee e e e s e e sbebeeeeeaeaaesareaeeaeans 6
2.5 MemMOry ManNAQEMEILL.cooi it ettt ettt ee et ee e e e e e e e e e e e e e e e e aaaaaeaaes 6.
2.5.1 BSD Memory-Management Design DeCISIQNSuuiiiiiiiiiiiiiiiiiiiee et 7.
2.5.2 Memory Management Inside the Kernel............oo e 8..
A T Y3 (=] 1« F PR TPPPRPURPN 8.
2.6.1 DeSCriPtOrs @nd Q... ...ttt ettt e et e e e e e ennnne e e e nneeees 9
2.6.2 DeSCriptOr MANAGEMIEBNL......ccii ittt eete e e e e e e s e st et e e e e e e e e e e nbebbeeaaeaeseeeeees 10
A RS B LoV (o = TSP TRT 10
P I S Yo Lo L] B 1 = PSPPI 11
2.6.5 Scatter/Gather 1/Q...... ..ottt e e e er e e e 11
2.6.6 Multiple FileSYStemM SUPPOLL.........uuiiiiiiie ettt ettt e e e e et e e e e e ennes 12
2.7 FHlESYSIEIMS. ..ttt ettt ettt e e e e e e oo bbbttt e e e e e e eanmt e e e e e e e e e nnbbeeeee e e e e e e annnereees 12
R S e[S (] =2 TS UURTTP RSP 15.
2.9 NEtWOIK FIESYSIEIML. ...ceiii ittt ettt e e e ettt e e e e e e e e e s s bbb e e eeasansbbeneeaaaaeeeaannnes 16
P2 OB =T 411 0= L OO SPPPPP 16.
2.11 InterproCess COMMUNICALIALL.uveeieieesiiiiiitieieeeeeesessteeeeesssstteneeeeeeeessssnsnnneareeeeeesnssnnnnasessansnns 17
2.12 NetWOrk COMMUNICATIONeiitviieeeiiiiiee ettt e e ettt e e reee e e stbe e e e sstbe e e e esbbeeeeantbeeeeeantbeeenanneeeansbeeeeene 18
2.13 Network IMpPIEmMENTAtION.uiiiiiiiee et r e e e e e s s et e ee e e e s sannnnraeeeeeeennnnes 18
W Y £S5 (=1 4 T 1= = o o PSSR 18
Sy (=] (=] Lot PP UPPPRPN 19

List of Tables

2-1. Machine-independent software in the 4.4BSD KEINEL...........ooooiiiiiiiie e ee e 2.
2-2. Machine-dependent software for the HP300 in the 4.4B&Del.............cccvvveviiiee i 3

Chapter 2 Design Overview of 4.4BSD

2.1 4.4BSD Facilities and the Kernel

The 4.4BSD kernel provides four basic facilities: procesadilesystem, communications, and system startup. This
section outlines where each of these four basic servicessizrithed in this book.

1. Processes constitute a thread of control in an address.ddachanisms for creating, terminating, and
otherwise controlling processes are described in ChapfEnelsystem multiplexes separate virtual-address
spaces for each process; this memory management is diddnShapter 5.

2. The user interface to the filesystem and devices is singitanmon aspects are discussed in Chapter 6. The
filesystem is a set of named files, organized in a tree-stredtiierarchy of directories, and of operations to
manipulate them, as presented in Chapter 7. Files residaysigal media such as disks. 4.4BSD supports
several organizations of data on the disk, as set forth ip@&h&. Access to files on remote machines is the
subject of Chapter 9. Terminals are used to access the sytsteimoperation is the subject of Chapter 10.

3. Communication mechanisms provided by traditional UNyXtems include simplex reliable byte streams
between related processes (see pipes, Section 11.1), fication of exceptional events (see signals, Section
4.7). 4.4BSD also has a general interprocess-communiciaadity. This facility, described in Chapter 11, uses
access mechanisms distinct from those of the filesystemophaé a connection is set up, a process can access it
as though it were a pipe. There is a general networking frasnewliscussed in Chapter 12, that is normally
used as a layer underlying the IPC facility. Chapter 13 dessra particular networking implementation in
detail.

4. Any real operating system has operational issues, sulcbva$o start it running. Startup and operational issues
are described in Chapter 14.

Sections 2.3 through 2.14 present introductory materiated to Chapters 3 through 14. We shall define terms,
mention basic system calls, and explore historical devetoqs. Finally, we shall give the reasons for many major
design decisions.

2.1.1 The Kernel

Thekernelis the part of the system that runs in protected mode and nescaacess by all user programs to the
underlying hardware (e.g., CPU, disks, terminals, netvioks) and software constructs (e.g., filesystem, network
protocols). The kernel provides the basic system fagliftecreates and manages processes, and provides functions
to access the filesystem and communication facilities. & figsctions, calledystem calleppear to user processes

as library subroutines. These system calls are the onlyfante that processes have to these facilities. Detailseof th
system-call mechanism are given in Chapter 3, as are désospf several kernel mechanisms that do not execute
as the direct result of a process doing a system call.

A kernelin traditional operating-system terminology, is a smaltleus of software that provides only the minimal
facilities necessary for implementing additional opergtsystem services. In contemporary research operating
systems -- such as Chorus Rozier et al, 1988, Mach Accettal€&6, Tunis Ewens et al, 1985, and the V Kernel
Cheriton, 1988 -- this division of functionality is more thaust a logical one. Services such as filesystems and
networking protocols are implemented as client applicapimcesses of the nucleus or kernel.

The 4.4BSD kernel is not partitioned into multiple proces3éis basic design decision was made in the earliest
versions of UNIX. The first two implementations by Ken Thomp$iad no memory mapping, and thus made no

Chapter 2 Design Overview of 4.4BSD

hardware-enforced distinction between user and kerneksRéchie, 1988. A message-passing system could have
been implemented as readily as the actually implementechaddternel and user processes. The monolithic kernel
was chosen for simplicity and performance. And the earlyp&ksrwere small; the inclusion of facilities such as
networking into the kernel has increased its size. The atitrend in operating-systems research is to reduce the
kernel size by placing such services in user space.

Users ordinarily interact with the system through a commianduage interpreter, callecshell and perhaps
through additional user application programs. Such progrand the shell are implemented with processes. Details
of such programs are beyond the scope of this book, whichadstoncentrates almost exclusively on the kernel.

Sections 2.3 and 2.4 describe the services provided by 485D kernel, and give an overview of the latter’'s design.
Later chapters describe the detailed design and implertn@mtz these services as they appear in 4.4BSD.

2.2 Kernel Organization

In this section, we view the organization of the 4.4BSD keiméwvo ways:

1. As a static body of software, categorized by the funclignaffered by the modules that make up the kernel
2. By its dynamic operation, categorized according to tieises provided to users

The largest part of the kernel implements the system sestie applications access through system calls. In
4.4BSD, this software has been organized according to tleniog:

- Basic kernel facilities: timer and system-clock handlidgscriptor management, and process management
« Memory-management support: paging and swapping

- Generic system interfaces: the 1/0, control, and multiplgxperations performed on descriptors

- The filesystem: files, directories, pathname translatitenldcking, and I/O buffer management

- Terminal-handling support: the terminal-interface dri@ad terminal line disciplines

- Interprocess-communication facilities: sockets

« Support for network communication: communication prots@md generic network facilities, such as routing

Table 2-1. Machine-independent software in the 4.4BSD keed

Category Lines of code Percentage of kernel
headers 9,393 4.6

initialization 1,107 0.6

kernel facilities 8,793 4.4

generic interfaces 4,782 2.4

interprocess communication 4,540 2.2

terminal handling 3,911 1.9

virtual memory 11,813 5.8

vhode management 7,954 3.9

filesystem naming 6,550 3.2

Chapter 2 Design Overview of 4.4BSD

Category Lines of code Percentage of kernel
fast filestore 4,365 2.2
log-structure filestore 4,337 2.1
memory-based filestore 645 0.3
cd9660 filesystem 4,177 2.1
miscellaneous filesystems (10) 12,695 6.3
network filesystem 17,199 8.5
network communication 8,630 4.3
internet protocols 11,984 5.9
ISO protocols 23,924 11.8
X.25 protocols 10,626 5.3
XNS protocols 5,192 2.6
total machine independent 162,617 80.4

Most of the software in these categories is machine indegrgrahd is portable across different hardware
architectures.

The machine-dependent aspects of the kernel are isolatertfre mainstream code. In particular, none of the
machine-independent code contains conditional code fxifp architecture. When an architecture-dependent
action is needed, the machine-independent code calls hitemnttire-dependent function that is located in the
machine-dependent code. The software that is machine deptimcludes

« Low-level system-startup actions

- Trap and fault handling

- Low-level manipulation of the run-time context of a process
- Configuration and initialization of hardware devices

« Run-time support for I/O devices

Table 2-2. Machine-dependent software for the HP300 in the.4BSD kernel

Category Lines of code Percentage of kernel
machine dependent headers 1,562 0.8

device driver headers 3,495 1.7

device driver source 17,506 8.7

virtual memory 3,087 15

other machine dependent 6,287 3.1

routines in assembly language 3,014 1.5

HP/UX compatibility 4,683 2.3

total machine dependent 39,634 19.6

Table 2-1summarizes the machine-independent software that catestithe 4.4BSD kernel for the HP300. The
numbers in column 2 are for lines of C source code, headey éifebassembly language. Virtually all the software in
the kernel is written in the C programming language; lesa thpercent is written in assembly language. As the

Chapter 2 Design Overview of 4.4BSD

statistics inTable 2-2show, the machine-dependent software, excluding HP/UXdaewite support, accounts for a
minuscule 6.9 percent of the kernel.

Only a small part of the kernel is devoted to initializing #ystem. This code is used when the system is
bootstrappednto operation and is responsible for setting up the kerasdWvare and software environment (see
Chapter 14). Some operating systems (especially thosdimitied physical memory) discard awverlaythe

software that performs these functions after that softlwasebeen executed. The 4.4BSD kernel does not reclaim the
memory used by the startup code because that memory spaarelg 0.5 percent of the kernel resources used on a
typical machine. Also, the startup code does not appearermptate in the kernel -- it is scattered throughout, and it
usually appears in places logically associated with whiagisg initialized.

2.3 Kernel Services

The boundary between the kernel- and user-level code is@atddy hardware-protection facilities provided by the
underlying hardware. The kernel operates in a separatessidpace that is inaccessible to user processes.
Privileged operations -- such as starting 1/0 and haltimgctntral processing unit (CPU) -- are available to only the
kernel. Applications request services from the kernel sjtstem callsSystem calls are used to cause the kernel to
execute complicated operations, such as writing data twnskeey storage, and simple operations, such as returning
the current time of day. All system calls appsginchronouso applications: The application does not run while the
kernel does the actions associated with a system call. Timekaay finish some operations associated with a
system call after it has returned. For exampleirie system call will copy the data to be written from the user
process to a kernel buffer while the process waits, but wgillally return from the system call before the kernel
buffer is written to the disk.

A system call usually is implemented as a hardware trap tieatges the CPU’s execution mode and the current
address-space mapping. Parameters supplied by useréemsyalls are validated by the kernel before being used.
Such checking ensures the integrity of the system. All patars passed into the kernel are copied into the kernel's
address space, to ensure that validated parameters afeamgiedl as a side effect of the system call. System-call
results are returned by the kernel, either in hardwareteagisr by their values being copied to user-specified
memory addresses. Like parameters passed into the keddetsses used for the return of results must be validated
to ensure that they are part of an application’s addresssffabe kernel encounters an error while processing a
system call, it returns an error code to the user. For the Gramming language, this error code is stored in the
global variableerrno, and the function that executed the system call returnsahev1.

User applications and the kernel operate independentlgaf ether. 4.4BSD does not store I/O control blocks or
other operating-system-related data structures in thkcagipn’s address space. Each user-level application is
provided an independent address space in which it exedttekernel makes most state changes, such as
suspending a process while another is running, invisibtaégrocesses involved.

2.4 Process Management

4.4BSD supports a multitasking environment. Each taskreetth of execution is termedmocess Thecontextof a
4.4BSD process consists of user-level state, includingdiméents of its address space and the run-time environment,
and kernel-level state, which includes scheduling pararegtesource controls, and identification informatiore Th
context includes everything used by the kernel in providiaryices for the process. Users can create processes,
control the processes’ execution, and receive notificatiben the processes’ execution status changes. Every
process is assigned a unique value, termpobaess identifie(PID). This value is used by the kernel to identify a
process when reporting status changes to a user, and by @hesereferencing a process in a system call.

Chapter 2 Design Overview of 4.4BSD

The kernel creates a process by duplicating the contextathanprocess. The new process is termetill process
of the originalparent proces3he context duplicated in process creation includes balugier-level execution state
of the process and the process’s system state managed bgrtted. kmportant components of the kernel state are
described in Chapter 4.

Figure 2-1. Process lifecycle

o parent™N_ _______ Wwait arent
rocess rocess
I
‘

fork

The process lifecycle is depictedkigure 2-1 A process may create a new process that is a copy of the akrigyn
using thefork system call. Théork call returns twice: once in the parent process, where thenegalue is the

process identifier of the child, and once in the child procebere the return value is 0. The parent-child relationship
induces a hierarchical structure on the set of processég isyistem. The new process shares all its parent’s
resources, such as file descriptors, signal-handlingsstatid memory layout.

Although there are occasions when the new process is inteod®e a copy of the parent, the loading and execution
of a different program is a more useful and typical actionrégess can overlay itself with the memory image of
another program, passing to the newly created image a saraifieters, using the system eatecveOne

parameter is the name of a file whose contents are in a forrmagnézed by the system -- either a binary-executable
file or a file that causes the execution of a specified inteeppbgram to process its contents.

A process may terminate by executingexit system call, sending 8 bits of exit status to its parent. ifacess wants

to communicate more than a single byte of information witpiarent, it must either set up an
interprocess-communication channel using pipes or secketise an intermediate file. Interprocess communication
is discussed extensively in Chapter 11.

A process can suspend execution until any of its child peegerminate using tiveait system call, which returns

the PID and exit status of the terminated child process. &migsrocess can arrange to be notified by a signal when a
child process exits or terminates abnormally. Usingvila@4 system call, the parent can retrieve information about
the event that caused termination of the child process aodtaesources consumed by the process during its
lifetime. If a process is orphaned because its parent egfta® it is finished, then the kernel arranges for the child’s
exit status to be passed back to a special system protessee Sections 3.1 and 14.6).

The details of how the kernel creates and destroys procassgsven in Chapter 5.

Processes are scheduled for execution accordingtocess-priorityparameter. This priority is managed by a
kernel-based scheduling algorithm. Users can influencedheduling of a process by specifying a parametiee)

that weights the overall scheduling priority, but are stbligated to share the underlying CPU resources according t
the kernel's scheduling policy.

2.4.1 Signals

The system defines a setgifinalsthat may be delivered to a process. Signals in 4.4BSD are lexbeéer hardware
interrupts. A process may specify a user-level subroutif®tahandlerto which a signal should be delivered.
When a signal is generated, it is blocked from further o@nee while it is beingaughtby the handler. Catching a
signal involves saving the current process context andlimgjla new one in which to run the handler. The signal is
then delivered to the handler, which can either abort thege® or return to the executing process (perhaps after
setting a global variable). If the handler returns, the aigmunblocked and can be generated (and caught) again.

Chapter 2 Design Overview of 4.4BSD

Alternatively, a process may specify that a signal is tegm®red or that a default action, as determined by the
kernel, is to be taken. The default action of certain sigizatis terminate the process. This termination may be
accompanied by creation ofcare filethat contains the current memory image of the process foinysestmortem
debugging.

Some signals cannot be caught or ignored. These signalslesIGKILL, which kills runaway processes, and the
job-control signaSIGSTOP

A process may choose to have signals delivered on a spemiil Sb that sophisticated software stack manipulations
are possible. For example, a language supporting cor@utieeds to provide a stack for each coroutine. The
language run-time system can allocate these stacks byirtimigh the single stack provided by 4.4BSD. If the kernel
does not support a separate signal stack, the space atldoatach coroutine must be expanded by the amount of
space required to catch a signal.

All signals have the samgariority. If multiple signals are pending simultaneously, the oidevhich signals are
delivered to a process is implementation specific. Signadileais execute with the signal that caused their invocation
to be blocked, but other signals may yet occur. Mechanismpi@vided so that processes can protect critical
sections of code against the occurrence of specified signals

The detailed design and implementation of signals is desdrin Section 4.7.

2.4.2 Process Groups and Sessions

Processes are organized ipiocess groupsProcess groups are used to control access to terminals anoMide a
means of distributing signals to collections of relatedgesses. A process inherits its process group from its parent
process. Mechanisms are provided by the kernel to allow egssoto alter its process group or the process group of
its descendents. Creating a new process group is easy;|treeofea new process group is ordinarily the process
identifier of the creating process.

The group of processes in a process group is sometimesaeteras gob and is manipulated by high-level system
software, such as the shell. A common kind of job created el s apipelineof several processes connected by
pipes, such that the output of the first process is the inptiteo§econd, the output of the second is the input of the
third, and so forth. The shell creates such a job by forkingoagss for each stage of the pipeline, then putting all
those processes into a separate process group.

A user process can send a signal to each process in a prooegs gs well as to a single process. A process in a
specific process group may receive software interruptstaiiigthe group, causing the group to suspend or resume
execution, or to be interrupted or terminated.

A terminal has a process-group identifier assigned to its identifier is normally set to the identifier of a process
group associated with the terminal. A job-control shell megate a number of process groups associated with the
same terminal; the terminal is tltentrolling terminalfor each process in these groups. A process may read from a
descriptor for its controlling terminal only if the termifgprocess-group identifier matches that of the proceshelf
identifiers do not match, the process will be blocked if ieatpts to read from the terminal. By changing the
process-group identifier of the terminal, a shell can aatdta terminal among several different jobs. This arbdrati

is calledjob controland is described, with process groups, in Section 4.8.

Just as a set of related processes can be collected intoesprg®up, a set of process groups can be collected into a
sessionThe main uses for sessions are to create an isolated emérdrfor a daemon process and its children, and
to collect together a user’s login shell and the jobs thatghall spawns.

Chapter 2 Design Overview of 4.4BSD

2.5 Memory Management

Each process has its own private address space. The adpaesssinitially divided into three logical segments:

text data andstack The text segment is read-only and contains the machineigigins of a program. The data and
stack segments are both readable and writable. The dataségontains the initialized and uninitialized data
portions of a program, whereas the stack segment holds pieaion’s run-time stack. On most machines, the
stack segment is extended automatically by the kernel gsrtfoess executes. A process can expand or contract its
data segment by making a system call, whereas a processaagectie size of its text segment only when the
segment’s contents are overlaid with data from the filesyste when debugging takes place. The initial contents of
the segments of a child process are duplicates of the segmieaparent process.

The entire contents of a process address space do not needasideent for a process to execute. If a process
references a part of its address space that is not residergimmemory, the systepageshe necessary information
into memory. When system resources are scarce, the systena two-level approach to maintain available
resources. If a modest amount of memory is available, thesywill take memory resources away from processes if
these resources have not been used recently. Should thargelvere resource shortage, the system will resort to
swappinghe entire context of a process to secondary storaged@&hmeand pagingndswappingdone by the system
are effectively transparent to processes. A process mag\ey, advise the system about expected future memory
utilization as a performance aid.

2.5.1 BSD Memory-Management Design Decisions

The support of large sparse address spaces, mapped file)aned memory was a requirement for 4.2BSD. An
interface was specified, calledmap that allowed unrelated processes to request a shared mgagia file into their
address spaces. If multiple processes mapped the samediteéir address spaces, changes to the file’s portion of
an address space by one process would be reflected in the appadby the other processes, as well as in the file
itself. Ultimately, 4.2BSD was shipped without themapinterface, because of pressure to make other features, such
as networking, available.

Further development of thmmapinterface continued during the work on 4.3BSD. Over 40 camgzand research
groups participated in the discussions leading to the eev@schitecture that was described in the Berkeley Software
Architecture Manual McKusick et al, 1994. Several of the pamies have implemented the revised interface Gingell
etal, 1987.

Once again, time pressure prevented 4.3BSD from providirighplementation of the interface. Although the latter
could have been built into the existing 4.3BSD virtual-meygystem, the developers decided not to put it in
because that implementation was nearly 10 years old. Funtire, the original virtual-memory design was based on
the assumption that computer memories were small and eixpendereas disks were locally connected, fast, large,
and inexpensive. Thus, the virtual-memory system was desdlitp be frugal with its use of memory at the expense
of generating extra disk traffic. In addition, the 4.3BSD lempentation was riddled with VAX memory-management
hardware dependencies that impeded its portability torathputer architectures. Finally, the virtual-memory
system was not designed to support the tightly coupled proltessors that are becoming increasingly common and
important today.

Attempts to improve the old implementation incrementadigimed doomed to failure. A completely new design, on
the other hand, could take advantage of large memoriesepandisk transfers, and have the potential to run on
multiprocessors. Consequently, the virtual-memory systas completely replaced in 4.4BSD. The 4.4BSD
virtual-memory system is based on the Mach 2.0 VM systemriiana 1987. with updates from Mach 2.5 and Mach
3.0. It features efficient support for sharing, a clean spar of machine-independent and machine-dependent
features, as well as (currently unused) multiprocessgraupProcesses can map files anywhere in their address
space. They can share parts of their address space by ddiageslsnapping of the same file. Changes made by one

Chapter 2 Design Overview of 4.4BSD

process are visible in the address space of the other pr@resalso are written back to the file itself. Processes can
also request private mappings of a file, which prevents aapgés that they make from being visible to other
processes mapping the file or being written back to the fitgfits

Another issue with the virtual-memory system is the way thirmation is passed into the kernel when a system
call is made. 4.4BSD always copies data from the proces®asidpace into a buffer in the kernel. For read or write
operations that are transferring large quantities of diaiang the copy can be time consuming. An alternative to
doing the copying is to remap the process memory into thesketfihe 4.4BSD kernel always copies the data for
several reasons:

- Often, the user data are not page aligned and are not a reufigthe hardware page length.

- Ifthe page is taken away from the process, it will no longeable to reference that page. Some programs depend
on the data remaining in the buffer even after those data lbeee written.

- Ifthe process is allowed to keep a copy of the page (as it isiireat 4.4BSD semantics), the page must be made
copy-on-write A copy-on-write page is one that is protected against beititgen by being made read-only. If the
process attempts to modify the page, the kernel gets a \arile The kernel then makes a copy of the page that
the process can modify. Unfortunately, the typical proe@ismmediately try to write new data to its output
buffer, forcing the data to be copied anyway.

« When pages are remapped to new virtual-memory addresssspmemory-management hardware requires that
the hardware address-translation cache be purged selgclihe cache purges are often slow. The net effect is
that remapping is slower than copying for blocks of dataieas 4 to 8 Kbyte.

The biggest incentives for memory mapping are the needstmssing big files and for passing large quantities of
data between processes. Thmapinterface provides a way for both of these tasks to be dorfeowitcopying.

2.5.2 Memory Management Inside the Kernel

The kernel often does allocations of memory that are neeateahy the duration of a single system call. In a user
process, such short-term memory would be allocated on tiime stack. Because the kernel has a limited run-time
stack, it is not feasible to allocate even moderate-sizeckisl of memory on it. Consequently, such memory must be
allocated through a more dynamic mechanism. For examplenwfie system must translate a pathname, it must
allocate a 1-Kbyte buffer to hold the name. Other blocks oftoly must be more persistent than a single system
call, and thus could not be allocated on the stack even iethvais space. An example is protocol-control blocks that
remain throughout the duration of a network connection.

Demands for dynamic memory allocation in the kernel havesiased as more services have been added. A
generalized memory allocator reduces the complexity dingricode inside the kernel. Thus, the 4.4BSD kernel has
a single memory allocator that can be used by any part of tsteisy It has an interface similar to the C library
routinesmallocandfreethat provide memory allocation to application programs Msi€k & Karels, 1988. Like the

C library interface, the allocation routine takes a para@mgpecifying the size of memory that is needed. The range
of sizes for memory requests is not constrained; howevgsipal memory is allocated and is not paged. The free
routine takes a pointer to the storage being freed, but doie®quire the size of the piece of memory being freed.

Chapter 2 Design Overview of 4.4BSD

2.6 I/0O System

The basic model of the UNIX I/O system is a sequence of bytstsciiin be accessed either randomly or sequentially.
There are naccess methodand nocontrol blocksin a typical UNIX user process.

Different programs expect various levels of structure thatkernel does not impose structure on I/O. For instance,
the convention for text files is lines of ASCII charactersaraped by a single newline character (the ASCII line-feed
character), but the kernel knows nothing about this comeenEor the purposes of most programs, the model is
further simplified to being a stream of data bytes, ot/@nstream It is this single common data form that makes the
characteristic UNIX tool-based approach work Kernighani€eP1984. An 1/O stream from one program can be fed
as input to almost any other program. (This kind of tradiilddNIX 1/0 stream should not be confused with the
Eighth Edition stream I/O system or with the System V, Ra@eaSTREAMS, both of which can be accessed as
traditional 1/0 streams.)

2.6.1 Descriptors and 1/O

UNIX processes useescriptorsto reference 1/0 streams. Descriptors are small unsigrtedéns obtained from the
openandsocketsystem calls. Thepensystem call takes as arguments the name of a file and a pemiaside to
specify whether the file should be open for reading or forimgitor for both. This system call also can be used to
create a new, empty file. fead or write system call can be applied to a descriptor to transfer ddwaclbsesystem
call can be used to deallocate any descriptor.

Descriptors represent underlying objects supported bkeheel, and are created by system calls specific to the type
of object. In 4.4BSD, three kinds of objects can be represty descriptors: files, pipes, and sockets.

- Afileis alinear array of bytes with at least one name. A file existd all its names are deleted explicitly and no
process holds a descriptor for it. A process acquires a i¢scfor a file by opening that file's name with tlopen
system call. /0 devices are accessed as files.

- A pipeis a linear array of bytes, as is a file, but it is used solelyralé@ stream, and it is unidirectional. It also has
no name, and thus cannot be opened witkn Instead, it is created by thmpe system call, which returns two
descriptors, one of which accepts input that is sent to theratescriptor reliably, without duplication, and in
order. The system also supports a named pipe or FIFO. A FIEQ@iugerties identical to a pipe, except that it
appears in the filesystem; thus, it can be opened usinggbesystem call. Two processes that wish to
communicate each open the FIFO: One opens it for readingthte for writing.

« A socketis a transient object that is used for interprocess comnatioit; it exists only as long as some process
holds a descriptor referring to it. A socket is created bysheketsystem call, which returns a descriptor for it.
There are different kinds of sockets that support varioumsraanication semantics, such as reliable delivery of
data, preservation of message ordering, and preservdtinassage boundaries.

In systems before 4.2BSD, pipes were implemented usinglésy$tem; when sockets were introduced in 4.2BSD,
pipes were reimplemented as sockets.

The kernel keeps for each processescriptor tablewhich is a table that the kernel uses to translate the eadtern
representation of a descriptor into an internal representg The descriptor is merely an index into this table.gTh
descriptor table of a process is inherited from that prdsg@ssent, and thus access to the objects to which the
descriptors refer also is inherited. The main ways that ags®can obtain a descriptor are by opening or creation of
an object, and by inheritance from the parent process. litiaddsocket IPC allows passing of descriptors in
messages between unrelated processes on the same machine.

Chapter 2 Design Overview of 4.4BSD

Every valid descriptor has an associatiégloffsetin bytes from the beginning of the object. Read and write
operations start at this offset, which is updated after elath transfer. For objects that permit random access, e fil
offset also may be set with thgeeksystem call. Ordinary files permit random access, and sonieatedo, as well.
Pipes and sockets do not.

When a process terminates, the kernel reclaims all the iz that were in use by that process. If the process was
holding the final reference to an object, the object’s manegeotified so that it can do any necessary cleanup
actions, such as final deletion of a file or deallocation ofcket

2.6.2 Descriptor Management

Most processes expect three descriptors to be open alrdagly they start running. These descriptors are 0, 1, 2,
more commonly known astandard inputstandard outpytandstandard error respectively. Usually, all three are
associated with the user’s terminal by the login process $&etion 14.6) and are inherited throdgtk andexecby
processes run by the user. Thus, a program can read whatthg/pas by reading standard input, and the program
can send output to the user’s screen by writing to standayliour he standard error descriptor also is open for
writing and is used for error output, whereas standard duspused for ordinary output.

These (and other) descriptors can be mapped to objectstbhtrethe terminal; such mapping is calléd
redirection and all the standard shells permit users to do it. The shaldirect the output of a program to a file by
closing descriptor 1 (standard output) and opening theelksiutput file to produce a new descriptor 1. It can
similarly redirect standard input to come from a file by almpdescriptor 0 and opening the file.

Pipes allow the output of one program to be input to anothegiam without rewriting or even relinking of either
program. Instead of descriptor 1 (standard output) of thecsoprogram being set up to write to the terminal, it is set
up to be the input descriptor of a pipe. Similarly, descri@¢standard input) of the sink program is set up to
reference the output of the pipe, instead of the terminab&ayd. The resulting set of two processes and the
connecting pipe is known aspapeline Pipelines can be arbitrarily long series of processesected by pipes.

Theopen pipe andsocketsystem calls produce new descriptors with the lowest unogether usable for a
descriptor. For pipelines to work, some mechanism must beged to map such descriptors into 0 and 1. @hp
system call creates a copy of a descriptor that points toaheedile-table entry. The new descriptor is also the lowest
unused one, but if the desired descriptor is closed fitgbcan be used to do the desired mapping. Care is required,
however: If descriptor 1 is desired, and descriptor O happdso to have been closed, descriptor 0 will be the result.
To avoid this problem, the system provides thg2system call; it is likedup, but it takes an additional argument
specifying the number of the desired descriptor (if the esilescriptor was already opelup2closes it before
reusing it).

2.6.3 Devices

Hardware devices have filenames, and may be accessed byethgaithe same system calls used for regular files.
The kernel can distinguishdevice special filer special file and can determine to what device it refers, but most
processes do not need to make this determination. Termpraisers, and tape drives are all accessed as though they
were streams of bytes, like 4.4BSD disk files. Thus, devigeddencies and peculiarities are kept in the kernel as
much as possible, and even in the kernel most of them aregsggrein the device drivers.

Hardware devices can be categorized as egtrecturedor unstructureglthey are known ablockor character
devices, respectively. Processes typically access dethiceughspecial filesn the filesystem. I/O operations to these
files are handled by kernel-resident software modules t@aeice driversMost network-communication hardware

10

Chapter 2 Design Overview of 4.4BSD

devices are accessible through only the interprocess-eonaation facilities, and do not have special files in the
filesystem name space, becausertive-sockeinterface provides a more natural interface than does dedfide.

Structured or block devices are typified by disks and magmaties, and include most random-access devices. The
kernel supports read-modify-write-type buffering acd@mn block-oriented structured devices to allow the latier t
be read and written in a totally random byte-addresseddaskike regular files. Filesystems are created on block
devices.

Unstructured devices are those devices that do not supptthk structure. Familiar unstructured devices are
communication lines, raster plotters, and unbuffered ratigitapes and disks. Unstructured devices typically
support large block 1/O transfers.

Unstructured files are calletharacter devicebecause the first of these to be implemented were terminadalev
drivers. The kernel interface to the driver for these devjm®ved convenient for other devices that were not block
structured.

Device special files are created by th&nodsystem call. There is an additional system daltfl, for manipulating

the underlying device parameters of special files. The djp@ismthat can be done differ for each device. This system
call allows the special characteristics of devices to bess®d, rather than overloading the semantics of othemsyste
calls. For example, there is @&ctl on a tape drive to write an end-of-tape mark, instead of theneg a special or
modified version ofvrite.

2.6.4 Socket IPC

The 4.2BSD kernel introduced an IPC mechanism more flexitale pipes, based aocketsA socket is an endpoint
of communication referred to by a descriptor, just like adite pipe. Two processes can each create a socket, and
then connect those two endpoints to produce a reliable lngera. Once connected, the descriptors for the sockets
can be read or written by processes, just as the latter wawdtth a pipe. The transparency of sockets allows the
kernel to redirect the output of one process to the input offear process residing on another machine. A major
difference between pipes and sockets is that pipes reqaenanon parent process to set up the communications
channel. A connection between sockets can be set up by tvetatienl processes, possibly residing on different
machines.

System V provides local interprocess communication thindtigrOs (also known asamed pipes FIFOs appear as

an object in the filesystem that unrelated processes canaqkesend data through in the same way as they would
communicate through a pipe. Thus, FIFOs do not require a aimparent to set them up; they can be connected
after a pair of processes are up and running. Unlike sockdt§)s can be used on only a local machine; they cannot
be used to communicate between processes on different negclfilFOs are implemented in 4.4BSD only because
they are required by the POSIX.1 standard. Their functignal a subset of the socket interface.

The socket mechanism requires extensions to the traditighdex 1/0 system calls to provide the associated naming
and connection semantics. Rather than overloading thérexisterface, the developers used the existing intedface
to the extent that the latter worked without being changed,designed new interfaces to handle the added
semantics. Theead andwrite system calls were used for byte-stream type connectionsjpboew system calls

were added to allow sending and receiving addressed messagfe as network datagrams. The system calls for
writing messages includgend sendtg andsendmsgThe system calls for reading messages inchedsg, recvfrom
andrecvmsg|n retrospect, the first two in each class are special cdsbe othersrecviromandsendtgprobably
should have been added as library interfacestemsgandsendmsgrespectively.

11

Chapter 2 Design Overview of 4.4BSD

2.6.5 Scatter/Gather 1/O

In addition to the traditionalead andwrite system calls, 4.2BSD introduced the ability to do scateeher I/O.
Scatter input uses threadvsystem call to allow a single read to be placed in severatwdfit buffers. Conversely,
thewritev system call allows several different buffers to be writtemisingle atomic write. Instead of passing a
single buffer and length parameter, as is done v@td andwrite, the process passes in a pointer to an array of
buffers and lengths, along with a count describing the sizbeoarray.

This facility allows buffers in different parts of a procesidress space to be written atomically, without the need to
copy them to a single contiguous buffer. Atomic writes areassary in the case where the underlying abstraction is
record based, such as tape drives that output a tape blodcbrweite request. It is also convenient to be able to
read a single request into several different buffers (sscnr@cord header into one place and the data into another).
Although an application can simulate the ability to scad&ta by reading the data into a large buffer and then
copying the pieces to their intended destinations, theafasemory-to-memory copying in such cases often would
more than double the running time of the affected applicatio

Just asendandrecvcould have been implemented as library interfacesetedtoandrecvfrom it also would have
been possible to simulateadwith readvandwrite with writev. Howeverread andwrite are used so much more
frequently that the added cost of simulating them would rmeerbeen worthwhile.

2.6.6 Multiple Filesystem Support

With the expansion of network computing, it became desrédbsupport both local and remote filesystems. To
simplify the support of multiple filesystems, the develgaidded a new virtual node enodeinterface to the kernel.
The set of operations exported from the vnode interfaceappech like the filesystem operations previously
supported by the local filesystem. However, they may be stgpby a wide range of filesystem types:

- Local disk-based filesystems

- Files imported using a variety of remote filesystem protscol

« Read-only CD-ROM filesystems

« Filesystems providing special-purpose interfaces -- xaneple, the pr oc filesystem

A few variants of 4.4BSD, such as FreeBSD, allow filesystesrsetloaded dynamically when the filesystems are
first referenced by thenountsystem call. The vnode interface is described in Sectionits.&ncillary support
routines are described in Section 6.6; several of the sipparpose filesystems are described in Section 6.7.

2.7 Filesystems

A regular file is a linear array of bytes, and can be read antdlemrstarting at any byte in the file. The kernel
distinguishes no record boundaries in regular files, afghauany programs recognize line-feed characters as
distinguishing the ends of lines, and other programs maypsamwther structure. No system-related information
about a file is kept in the file itself, but the filesystem st@esnall amount of ownership, protection, and usage
information with each file.

A filenamecomponent is a string of up to 255 characters. These filenamneestored in a type of file called a
directory. The information in a directory about a file is calledigectory entryand includes, in addition to the

12

Chapter 2 Design Overview of 4.4BSD

filename, a pointer to the file itself. Directory entries meafer to other directories, as well as to plain files. A
hierarchy of directories and files is thus formed, and isechéfilesystem

Figure 2-2. A small filesystem

)
nsr/\ /<\r‘l'l'llll'lk
' f/ \?/ ‘]
_/
s ‘Ian,,\&‘;,_
mekusick _ ,/) /
\ .
P kareks, v1
o 1 ?
o NS

a small one is shown iRigure 2-2 Directories may contain subdirectories, and there is herient limitation to the
depth with which directory nesting may occur. To protectebasistency of the filesystem, the kernel does not
permit processes to write directly into directories. A filgiem may include not only plain files and directories, but
also references to other objects, such as devices and socket

The filesystem forms a tree, the beginning of which isrta directory, sometimes referred to by the nasiash
spelled with a single solidus character (/). The root dosctontains files; in our example in Fig 2.2, it contains
vuni x, a copy of the kernel-executable object file. It also corgtdiinectories; in this example, it contains thnsr
directory. Within theusr directory is thebi n directory, which mostly contains executable object codgrofirams,
such as the filess andvi .

A process identifies a file by specifying that filpathnamewhich is a string composed of zero or more filenames
separated by slash (/) characters. The kernel associatafirectories with each process for use in interpreting
pathnames. A processsot directoryis the topmost point in the filesystem that the process cagsactt is

ordinarily set to the root directory of the entire filesystehpathname beginning with a slash is calledadnsolute
pathnameand is interpreted by the kernel starting with the procesmt directory.

A pathname that does not begin with a slash is calledadive pathnamgand is interpreted relative to tleeirrent
working directoryof the process. (This directory also is known by the shoré@nescurrent directoryor working
directory.) The current directory itself may be referred to directjytbe namedot, spelled with a single period J.
The filenamedot-dot(. .) refers to a directory’s parent directory. The root diregis its own parent.

A process may set its root directory with tbolerootsystem call, and its current directory with tbledir system call.
Any process may dohdir at any time, buthrootis permitted only a process with superuser privilegdgootis
normally used to set up restricted access to the system.

Using the filesystem shown in Fig. 2.2, if a process has theafathe filesystem as its root directory, and hasr
as its current directory, it can refer to the file either from the root with the absolute pathnatoagr / bi n/ vi , or
from its current directory with the relative pathnatien/ vi .

System utilities and databases are kept in certain wellvkrdirectories. Part of the well-defined hierarchy includes
a directory that contains tHeome directonfor each user -- for exampléusr / st af f / nckusi ck and

[usr/ st af f/karel s inFig. 2.2. When users log in, the current working directofheir shell is set to the home
directory. Within their home directories, users can crel@tectories as easily as they can regular files. Thus, a user
can build arbitrarily complex subhierarchies.

The user usually knows of only one filesystem, but the systeyknow that this one virtual filesystem is really
composed of several physical filesystems, each on a diffdesice. A physical filesystem may not span multiple
hardware devices. Since most physical disk devices ardathinto several logical devices, there may be more than

13

Chapter 2 Design Overview of 4.4BSD

one filesystem per physical device, but there will be no mioae bne per logical device. One filesystem -- the
filesystem that anchors all absolute pathnames -- is cdi@ot filesystemand is always available. Others may be
mounted; that is, they may be integrated into the direct@yanchy of the root filesystem. References to a directory
that has a filesystem mounted on it are converted transpalgnthe kernel into references to the root directory of
the mounted filesystem.

Thelink system call takes the name of an existing file and another taoreate for that file. After a successfulk,
the file can be accessed by either filename. A filename can bevezhwith theunlink system call. When the final
name for a file is removed (and the final process that has thed#da closes it), the file is deleted.

Files are organized hierarchically dtirectories A directory is a type of file, but, in contrast to regular fjlas

directory has a structure imposed on it by the system. A m®can read a directory as it would an ordinary file, but
only the kernel is permitted to modify a directory. Diredtsrare created by thakdir system call and are removed
by thermdir system call. Before 4.2BSD, tmakdir andrmdir system calls were implemented by a seriebrdf and
unlink system calls being done. There were three reasons for agdgstgms calls explicitly to create and delete
directories:

1. The operation could be made atomic. If the system crashedlirectory would not be left half-constructed, as
could happen when a series of link operations were used.

2. When a networked filesystem is being run, the creation afetidn of files and directories need to be specified
atomically so that they can be serialized.

3. When supporting non-UNIX filesystems, such as an MS-D@Sy#tem, on another partition of the disk, the
other filesystem may not support link operations. Althoutiteofilesystems might support the concept of
directories, they probably would not create and delete iteetries with links, as the UNIX filesystem does.
Consequently, they could create and delete directorigsibexplicit directory create and delete requests were
presented.

Thechownsystem call sets the owner and group of a file, eémshodchanges protection attributestatapplied to a
filename can be used to read back such properties of a filefichbamn fchmod andfstatsystem calls are applied to
a descriptor, instead of to a filename, to do the same set oatpes. Thaenamesystem call can be used to give a
file a new name in the filesystem, replacing one of the file’snalches. Like the directory-creation and
directory-deletion operations, thenamesystem call was added to 4.2BSD to provide atomicity to nanaages in
the local filesystem. Later, it proved useful explicitly tgqpert renaming operations to foreign filesystems and over
the network.

Thetruncatesystem call was added to 4.2BSD to allow files to be shortemad arbitrary offset. The call was added
primarily in support of the Fortran run-time library, whiblas the semantics such that the end of a random-access file
is set to be wherever the program most recently accessefiléhaVithout thetruncatesystem call, the only way to
shorten a file was to copy the part that was desired to a neviditielete the old file, then to rename the copy to the
original name. As well as this algorithm being slow, thedityrcould potentially fail on a full filesystem.

Once the filesystem had the ability to shorten files, the ke¢ondk advantage of that ability to shorten large empty
directories. The advantage of shortening empty direcasi¢hat it reduces the time spent in the kernel searching
them when names are being created or deleted.

Newly created files are assigned the user identifier of theqe®that created them and the group identifier of the
directory in which they were created. A three-level acaawstrol mechanism is provided for the protection of files.
These three levels specify the accessibility of a file to

1. The user who owns the file

14

Chapter 2 Design Overview of 4.4BSD

2. The group that owns the file
3. Everyone else
Each level of access has separate indicators for read stomjsvrite permission, and execute permission.

Files are created with zero length, and may grow when theweten. While a file is open, the system maintains a
pointer into the file indicating the current location in tHe fassociated with the descriptor. This pointer can be
moved about in the file in a random-access fashion. Procekaeisg a file descriptor througherk or dupsystem
call share the current location pointer. Descriptors e@aty separatepensystem calls have separate current
location pointers. Files may havelesin them. Holes are void areas in the linear extent of the filengldata have
never been written. A process can create these holes bygmisg the pointer past the current end-of-file and
writing. When read, holes are treated by the system as zdued bytes.

Earlier UNIX systems had a limit of 14 characters per filen@m@ponent. This limitation was often a problem. For
example, in addition to the natural desire of users to gies fibng descriptive names, a common way of forming
filenames is aBasenane. ext ensi on, where the extension (indicating the kind of file, such ador C source or o

for intermediate binary object) is one to three characteasing 10 to 12 characters for the basename.
Source-code-control systems and editors usually take ofnantwo characters, either as a prefix or a suffix, for
their purposes, leaving eight to 10 characters. It is easgédl0 or 12 characters in a single English word as a
basename (e.g., “multiplexer”).

Itis possible to keep within these limits, but it is inconignt or even dangerous, because other UNIX systems
accept strings longer than the limit when creating files thentruncateto the limit. A C language source file named
nmul ti pl exer. c (already 13 characters) might have a source-code-cor@olith s. prepended, producing a
filenames. nul ti pl exer thatis indistinguishable from the source-code-contrelffir nul t i pl exer . ns, a file
containingt r of f source for documentation for the C program. The contentseofwo original files could easily get
confused with no warning from the source-code-controlsystCareful coding can detect this problem, but the long
filenames first introduced in 4.2BSD practically elimindte i

2.8 Filestores

The operations defined for local filesystems are dividedtintoparts. Common to all local filesystems are
hierarchical naming, locking, quotas, attribute managenaad protection. These features are independent of how
the data will be stored. 4.4BSD has a single implementatignmavide these semantics.

The other part of the local filesystem is the organizationraadagement of the data on the storage media. Laying
out the contents of files on the storage media is the respbtysif the filestore. 4.4BSD supports three different
filestore layouts:

- The traditional Berkeley Fast Filesystem
- The log-structured filesystem, based on the Sprite operatstem design Rosenblum & Ousterhout, 1992
« A memory-based filesystem

Although the organizations of these filestores are comigldifferent, these differences are indistinguishablen® t
processes using the filestores.

The Fast Filesystem organizes data into cylinder groujbss Ehat are likely to be accessed together, based on their
locations in the filesystem hierarchy, are stored in the sarieder group. Files that are not expected to accessed
together are moved into different cylinder groups. Thussfikritten at the same time may be placed far apart on the
disk.

15

Chapter 2 Design Overview of 4.4BSD

The log-structured filesystem organizes data as a log. Adl being written at any point in time are gathered
together, and are written at the same disk location. Dataarer overwritten; instead, a new copy of the file is
written that replaces the old one. The old files are reclaibyea garbage-collection process that runs when the
filesystem becomes full and additional free space is needed.

The memory-based filesystem is designed to store data iraVirtemory. It is used for filesystems that need to
support fast but temporary data, such asp. The goal of the memory-based filesystem is to keep the storag
packed as compactly as possible to minimize the usage ofimhemory resources.

2.9 Network Filesystem

Initially, networking was used to transfer data from one hiae to another. Later, it evolved to allowing users to log
in remotely to another machine. The next logical step wasit@tihe data to the user, instead of having the user go
to the data -- and network filesystems were born. Users wgtkically do not experience the network delays on
each keystroke, so they have a more responsive environment.

Bringing the filesystem to a local machine was among the firfdste@major client-server applications. Therveris

the remote machine that exports one or more of its filesystéheclientis the local machine that imports those
filesystems. From the local client’s point of view, a remgtalounted filesystem appears in the file-tree name space
just like any other locally mounted filesystem. Local cleoan change into directories on the remote filesystem, and
can read, write, and execute binaries within that remotsyfiieem identically to the way that they can do these
operations on a local filesystem.

When the local client does an operation on a remote filesysteanrequest is packaged and is sent to the server. The
server does the requested operation and returns eithexghested information or an error indicating why the
request was denied. To get reasonable performance, tiné miliest cache frequently accessed data. The complexity
of remote filesystems lies in maintaining cache consistéetyeen the server and its many clients.

Although many remote-filesystem protocols have been dpeelover the years, the most pervasive one in use
among UNIX systems is the Network Filesystem (NFS), whosgégeol and most widely used implementation were
done by Sun Microsystems. The 4.4BSD kernel supports thepigiBcol, although the implementation was done
independently from the protocol specification Macklem,4.9ehe NFS protocol is described in Chapter 9.

2.10 Terminals

Terminals support the standard system I/O operations, hi&sve collection of terminal-specific operations to
control input-character editing and output delays. At thedst level are the terminal device drivers that control the
hardware terminal ports. Terminal input is handled acewdd the underlying communication characteristics, such
as baud rate, and according to a set of software-contrelfzrlameters, such as parity checking.

Layered above the terminal device drivers are line distgdithat provide various degrees of character processing.
The default line discipline is selected when a port is beisgdufor an interactive login. The line discipline is run in
canonical modginput is processed to provide standard line-orientedregiftinctions, and input is presented to a
process on a line-by-line basis.

Screen editors and programs that communicate with othepuatars generally run inoncanonical modéalso
commonly referred to agw modeor character-at-a-time modeln this mode, input is passed through to the reading
process immediately and without interpretation. All spécharacter input processing is disabled, no erase or othe
line editing processing is done, and all characters areepasshe program that is reading from the terminal.

16

Chapter 2 Design Overview of 4.4BSD

Itis possible to configure the terminal in thousands of caratibns between these two extremes. For example, a
screen editor that wanted to receive user interrupts asgnolisly might enable the special characters that generate
signals and enable output flow control, but otherwise ruroincanonical mode; all other characters would be passed
through to the process uninterpreted.

On output, the terminal handler provides simple formatfagyices, including

- Converting the line-feed character to the two-charactetagge-return-line-feed sequence
« Inserting delays after certain standard control character
- Expanding tabs

- Displaying echoed nongraphic ASCII characters as a twoacher sequence of the form “~C” (i.e., the ASCII
caret character followed by the ASCII character that is theracter’s value offset from the ASCII “@” character).

Each of these formatting services can be disabled indilliglbgt a process through control requests.

2.11 Interprocess Communication

Interprocess communication in 4.4BSD is organizedammunication domain®omains currently supported
include thelocal domain for communication between processes executing on the s&@uokine; thénternet
domain for communication between processes using the TCP/IBqubsuite (perhaps within the Internet); the
ISO/OSI protocol family for communication between siteguieed to run them; and théNS domainfor
communication between processes using the XEROX NetwasteBys (XNS) protocols.

Within a domain, communication takes place between comeaition endpoints known a®cketsAs mentioned in
Section 2.6, theocketsystem call creates a socket and returns a descriptor; I6t6esystem calls are described in
Chapter 11. Each socket has a type that defines its commiomsaemantics; these semantics include properties
such as reliability, ordering, and prevention of duplicatof messages.

Each socket has associated with @@mmunication protocolThis protocol provides the semantics required by the
socket according to the latter’s type. Applications mayuesy a specific protocol when creating a socket, or may
allow the system to select a protocol that is appropriatéfeitype of socket being created.

Sockets may have addresses bound to them. The form and gedisiocket addresses are dependent on the
communication domain in which the socket is created. Bigdimame to a socket in the local domain causes a file to
be created in the filesystem.

Normal data transmitted and received through sockets aypea. Data-representation issues are the responsibility
of libraries built on top of the interprocess-communicafiacilities. In addition to transporting normal data,
communication domains may support the transmission areptien of specially typed data, termadcess rights

The local domain, for example, uses this facility to passdptors between processes.

Networking implementations on UNIX before 4.2BSD usuallyrised by overloading the character-device
interfaces. One goal of the socket interface was for naiggnams to be able to work without change on stream-style
connections. Such programs can work only if thad andwrite systems calls are unchanged. Consequently, the
original interfaces were left intact, and were made to warlstvteam-type sockets. A new interface was added for
more complicated sockets, such as those used to send daggvih which a destination address must be presented
with eachsendcall.

Another benefit is that the new interface is highly portaBleortly after a test release was available from Berkeley,
the socket interface had been ported to System 11l by a UNRdee (although AT&T did not support the socket

17

Chapter 2 Design Overview of 4.4BSD

interface until the release of System V Release 4, decidistgad to use the Eighth Edition stream mechanism). The
socket interface was also ported to run in many Ethernedsdar vendors, such as Excelan and Interlan, that were
selling into the PC market, where the machines were too ¢malin networking in the main processor. More
recently, the socket interface was used as the basis fooktift's Winsock networking interface for Windows.

2.12 Network Communication

Some of the communication domains supported bystitket PC mechanism provide access to network protocols.
These protocols are implemented as a separate softwarddgjeally below the socket software in the kernel. The
kernel provides many ancillary services, such as bufferagpament, message routing, standardized interfaces to the
protocols, and interfaces to the network interface drif@rshe use of the various network protocols.

At the time that 4.2BSD was being implemented, there wereymatworking protocols in use or under
development, each with its own strengths and weaknessese Was no clearly superior protocol or protocol suite.
By supporting multiple protocols, 4.2BSD could providesirtperability and resource sharing among the diverse set
of machines that was available in the Berkeley environnidattiple-protocol support also provides for future
changes. Today's protocols designed for 10- to 100-Mhitgeeond Ethernets are likely to be inadequate for
tomorrow’s 1- to 10-Ghit-per-second fiber-optic netwoi®snsequently, the network-communication layer is
designed to support multiple protocols. New protocols dded to the kernel without the support for older protocols
being affected. Older applications can continue to opersiteg the old protocol over the same physical network as is
used by newer applications running with a newer networkquait

2.13 Network Implementation

The first protocol suite implemented in 4.2BSD was DARPAa8mission Control Protocol/Internet Protocol
(TCP/IP). The CSRG chose TCP/IP as the first network to iremaite into the socket IPC framework, because a
4.1BSD-based implementation was publicly available frobA&RPA-sponsored project at Bolt, Beranek, and
Newman (BBN). That was an influential choice: The 4.2BSD enpentation is the main reason for the extremely
widespread use of this protocol suite. Later performandecapability improvements to the TCP/IP implementation
have also been widely adopted. The TCP/IP implementatidassribed in detail in Chapter 13.

The release of 4.3BSD added the Xerox Network Systems (XK&dgeol suite, partly building on work done at the
University of Maryland and at Cornell University. This suivas needed to connect isolated machines that could not
communicate using TCP/IP.

The release of 4.4BSD added the ISO protocol suite becauke &ftter’s increasing visibility both within and
outside the United States. Because of the somewhat diffseamantics defined for the ISO protocols, some minor
changes were required in the socket interface to accommdiulede semantics. The changes were made such that
they were invisible to clients of other existing protocdlke ISO protocols also required extensive addition to the
two-level routing tables provided by the kernel in 4.3BSbeTreatly expanded routing capabilities of 4.4BSD
include arbitrary levels of routing with variable-lengtiidkesses and network masks.

2.14 System Operation

Bootstrapping mechanisms are used to start the systermurfrirst, the 4.4BSD kernel must be loaded into the
main memory of the processor. Once loaded, it must go thranghitialization phase to set the hardware into a
known state. Next, the kernel must do autoconfigurationpagss that finds and configures the peripherals that are

18

Chapter 2 Design Overview of 4.4BSD

attached to the processor. The system begins running itesirsgr mode while a start-up script does disk checks and
starts the accounting and quota checking. Finally, thé-ag@script starts the general system services and brings up
the system to full multiuser operation.

During multiuser operation, processes wait for login rexsien the terminal lines and network ports that have been
configured for user access. When a login request is detextedin process is spawned and user validation is done.
When the login validation is successful, a login shell isabeel from which the user can run additional processes.

References

[Accetta et al, 1986] “Mach: A New Kernel Foundation for UNDevelopment™, M. Accetta, R. Baron, W.
Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young, 93 1JSENIX Association Conference
ProceedingsUSENIX Association, June 1986.

[Cheriton, 1988] “The V Distributed System”, D. R. Cherit@14-333Comm ACM, 31, 3Vlarch 1988.

[Ewens et al, 1985] “Tunis: A Distributed Multiprocessor@gting System”, P. Ewens, D. R. Blythe, M.
Funkenhauser, and R. C. Holt, 247-2B8ENIX Assocation Conference ProceedjAdgSENIX Association,
June 1985.

[Gingell et al, 1987] “Virtual Memory Architecture in SunOXR. Gingell, J. Moran, and W. Shannon, 81-94,
USENIX Association Conference ProceedingSENIX Association, June 1987.

[Kernighan & Pike, 1984The UNIX Programming Environmer&. W. Kernighan and R. Pike, Prentice-Hall,
Englewood Cliffs, 1984.

[Macklem, 1994]The 4.4BSD NFS Implementatidd Macklem, 6:1-144.4BSD System Manager’'s Manpal
O'Reilly & Associates, Inc., Sebastopol, 1994.

[McKusick & Karels, 1988] “Design of a General Purpose MegnAHocator for the 4.3BSD UNIX Kernel”, M. K.
McKusick and M. J. Karels, 295-30WSENIX Assocation Conference ProceedjigSENIX Assocation,
June 1998.

[McKusick et al, 1994Berkeley Software Architecture Manual, 4.4BSD EditidnK. McKusick, M. J. Karels, S. J.
Leffler, W. N. Joy, and R. S. Faber, 5:1-424BSD Programmer’s Supplementary DocumedtReilly &
Associates, Inc., Sebastopol, 1994.

[Ritchie, 1988]Early Kernel Design: private communicatioD. M. Ritchie, March 1988.

[Rosenblum & Ousterhout, 1992] “The Design and Implemémtadf a Log-Structured File System”, M.
Rosenblum and K. Ousterhout, 26-8Z;M Transactions on Computer Systems, 1@skociation for
Computing Machinery, February 1992.

[Rozier et al, 1988] “Chorus Distributed Operating Systérvs Rozier, V. Abrossimov, F. Armand, I. Boule, M.
Gien, M. Guillemont, F. Herrmann, C. Kaiser, S. Langloid,€onard, and W. Neuhauser, 305-3UEENIX
Computing Systems, 1, Ball 1988.

[Tevanian, 1987RArchitecture-Independent Virtual Memory Management fmaltel and Distributed Environments:
The Mach Approach: Technical Report CMU-CS-88-186,Tevanian, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, December 1987.

19

	The Design and Implementation of the 4.4BSD Operating System
	Table of Contents
	List of Tables
	Chapter 2 Design Overview of 4.4BSD
	2.1 4.4BSD Facilities and the Kernel
	2.1.1 The Kernel
	2.2 Kernel Organization
	2.3 Kernel Services
	2.4 Process Management
	2.4.1 Signals
	2.4.2 Process Groups and Sessions

	2.5 Memory Management
	2.5.1 BSD MemoryManagement Design Decisions
	2.5.2 Memory Management Inside the Kernel

	2.6 I/O System
	2.6.1 Descriptors and I/O
	2.6.2 Descriptor Management
	2.6.3 Devices
	2.6.4 Socket IPC
	2.6.5 Scatter/Gather I/O
	2.6.6 Multiple Filesystem Support

	2.7 Filesystems
	2.8 Filestores
	2.9 Network Filesystem
	2.10 Terminals
	2.11 Interprocess Communication
	2.12 Network Communication
	2.13 Network Implementation
	2.14 System Operation
	References

