Design elements of the FreeBSD VM
system
Matthew Dillon

dillon@apollo.backplane.com

$FreeBSD: head/en_US.ISO8859-1/articles/vm-design/ar ticle.xml 42094 2013-06-30
14:17:41Z blackend $

$FreeBSD: head/en_US.ISO8859-1/articles/vm-design/ar ticle.xml 42094 2013-06-30
14:17:41Z blackend $

FreeBSD is a registered trademark of the FreeBSD Foundation.

Linux is a registered trademark of Linus Torvalds.

Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Windo ws Media and Windows NT are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries.

Motif, OSF/1, and UNIX are registered trademarks and IT DialTonea nd The Open Group are trademarks
of The Open Group in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This article was originally published in the January 2000 iss ue of DaemonNews
(http://www.daemonnews.org/). This version of the articl e may include updates from Matt and other
authors to reflect changes in FreeBSD’s VM implementation.

The title is really just a fancy way of saying that | am goin@tempt to describe the whole VM enchilada,
hopefully in a way that everyone can follow. For the last yid@ave concentrated on a number of major
kernel subsystems within FreeBSD, with the VM and Swap sstiesys being the most interesting and NFS
being “a necessary chore”. | rewrote only small portionshefd¢ode. In the VM arena the only major
rewrite | have done is to the swap subsystem. Most of my workel@anup and maintenance, with only
moderate code rewriting and no major algorithmic adjustsiesthin the VM subsystem. The bulk of the
VM subsystem’s theoretical base remains unchanged andétloe credit for the modernization effort in
the last few years belongs to John Dyson and David Greenn@rbéing a historian like Kirk I will not
attempt to tag all the various features with peoples nanvess $ will invariably get it wrong.

Design elements of the FreeBSD VM system

Table of Contents

I g1 4 oo (U Tt Ao o OSSO 2
A A YO o T = £SO 3
G I = 5
Y T I (0B = Y= W 0= o [SR 6
5 Pre-Faultingand Zeroing OPtimiZatiONS.........c.ooveiiirieiereeee e seseeseesesese e tesae e ese e e sseseessesessessessenseseessnsessens 7
6 Page Table OPtimiZatiONS........c.cieiiieiresieee et te e a e se e st seesesae st esaesae e eseesessesaeseenseseesesneseeneeneenennennens 7
48 =1 L= O] o 1 o PSSR 8
S @a o [ox 0T o o IS ST SR 8
9 Bonus QA session by Allen Briggs <bri ggs @i Nt NWONAEr . COMP......cvciieriirierieeee e sese s e sanneeneas 8

1 Introduction

Before moving along to the actual design let's spend a litthe on the necessity of maintaining and modernizing
any long-living codebase. In the programming world, aldoris tend to be more important than code and it is
precisely due to BSD’s academic roots that a great deal efiitin was paid to algorithm design from the beginning.
More attention paid to the design generally leads to a cledrflaxible codebase that can be fairly easily modified,
extended, or replaced over time. While BSD is consideredd bperating system by some people, those of us
who work on it tend to view it more as a “mature” codebase whiak various components modified, extended, or
replaced with modern code. It has evolved, and FreeBSD Iedileeding edge no matter how old some of the code
might be. This is an important distinction to make and onéithanfortunately lost to many people. The biggest
error a programmer can make is to not learn from history, bisdg precisely the error that many other modern
operating systems have made. Windows NT® is the best exarshfiies, and the consequences have been dire.
Linux also makes this mistake to some degree—enough thatSiefBlk can make small jokes about it every once
in a while, anyway. Linux’s problem is simply one of a lack aperience and history to compare ideas against, a
problem that is easily and rapidly being addressed by thexX @ommunity in the same way it has been addressed in
the BSD community—by continuous code development. The WirsdNT folk, on the other hand, repeatedly make
the same mistakes solved by UNIX® decades ago and then spanslfixing them. Over and over again. They have
a severe case of “not designed here” and “we are always regiause our marketing department says so”. | have
little tolerance for anyone who cannot learn from history.

Much of the apparent complexity of the FreeBSD design, eafhgin the VM/Swap subsystem, is a direct result of
having to solve serious performance issues that occur wadieus conditions. These issues are not due to bad
algorithmic design but instead rise from environmentaldes: In any direct comparison between platforms, these
issues become most apparent when system resources begirstoegsed. As | describe FreeBSD’s VM/Swap
subsystem the reader should always keep two points in mind:

1. The most important aspect of performance design is whattae/n as “Optimizing the Critical Path”. It is often
the case that performance optimizations add a little bn#tie code in order to make the critical path perform
better.

2. A solid, generalized design outperforms a heavily-ojztad design over the long run. While a generalized
design may end up being slower than an heavily-optimize@jdeshen they are first implemented, the
generalized design tends to be easier to adapt to changntifioms and the heavily-optimized design winds up
having to be thrown away.

Design elements of the FreeBSD VM system

Any codebase that will survive and be maintainable for yeaust therefore be designed properly from the beginning
even if it costs some performance. Twenty years ago peopie st arguing that programming in assembly was
better than programming in a high-level language becayseduced code that was ten times as fast. Today, the
fallibility of that argument is obvious — as are the parallid algorithmic design and code generalization.

2 VM Objects

The best way to begin describing the FreeBSD VM system isdk &t it from the perspective of a user-level
process. Each user process sees a single, private, camiyib address space containing several types of memory
objects. These objects have various characteristicsré@rogode and program data are effectively a single
memory-mapped file (the binary file being run), but prograhecis read-only while program data is copy-on-write.
Program BSS is just memory allocated and filled with zerosemahd, called demand zero page fill. Arbitrary files
can be memory-mapped into the address space as well, whicwithe shared library mechanism works. Such
mappings can require modifications to remain private to thegss making them. The fork system call adds an
entirely new dimension to the VM management problem on tap@tomplexity already given.

A program binary data page (which is a basic copy-on-wriggeepdlustrates the complexity. A program binary
contains a preinitialized data section which is initiallgpped directly from the program file. When a program is
loaded into a process’s VM space, this area is initially mgrmoapped and backed by the program binary itself,
allowing the VM system to free/reuse the page and later lobhddk in from the binary. The moment a process
modifies this data, however, the VM system must make a pro@y of the page for that process. Since the private
copy has been modified, the VM system may no longer free iqleethere is no longer any way to restore it later
on.

You will notice immediately that what was originally a siredlle mapping has become much more complex. Data
may be modified on a page-by-page basis whereas the file ngpppoompasses many pages at once. The
complexity further increases when a process forks. Wheoegss forks, the result is two processes—each with their
own private address spaces, including any modificationsrbgidhe original process prior to the callftor k() . It

would be silly for the VM system to make a complete copy of thtadht the time of theor k() because it is quite
possible that at least one of the two processes will only tn@eelad from that page from then on, allowing the

original page to continue to be used. What was a private gagede copy-on-write again, since each process (parent
and child) expects their own personal post-fork modifigaito remain private to themselves and not effect the other.

FreeBSD manages all of this with a layered VM Object modeeé @tiginal binary program file winds up being the
lowest VM Object layer. A copy-on-write layer is pushed op tf that to hold those pages which had to be copied
from the original file. If the program modifies a data page bging to the original file the VM system takes a fault
and makes a copy of the page in the higher layer. When a prémréss additional VM Object layers are pushed on.
This might make a little more sense with a fairly basic examplf or k() is a common operation for any *BSD
system, so this example will consider a program that startsud forks. When the process starts, the VM system
creates an object layer, let’s call this A:

A represents the file—pages may be paged in and out of theghg'sical media as necessary. Paging in from the
disk is reasonable for a program, but we really do not wantafpeack out and overwrite the executable. The VM
system therefore creates a second layer, B, that will beigdijysbacked by swap space:

Design elements of the FreeBSD VM system

On the first write to a page after this, a new page is created am@ its contents are initialized from A. All pages in
B can be paged in or out to a swap device. When the program, filnk¥M system creates two new object
layers—C1 for the parent, and C2 for the child—that rest qnatioB:

C1 Cc2

In this case, let’s say a page in B is modified by the originaépaprocess. The process will take a copy-on-write
fault and duplicate the page in C1, leaving the original padg®untouched. Now, let's say the same page in B is
modified by the child process. The process will take a copyvate fault and duplicate the page in C2. The original
page in B is now completely hidden since both C1 and C2 havewnaod B could theoretically be destroyed if it
does not represent a “real” file; however, this sort of oation is not trivial to make because it is so fine-grained.
FreeBSD does not make this optimization. Now, suppose @ftas the case) that the child process doesxast() .

Its current address space is usually replaced by a new adgjvase representing a new file. In this case, the C2 layer
is destroyed:

C1 |

In this case, the number of children of B drops to one, andcaktsses to B now go through C1. This means that B
and C1 can be collapsed together. Any pages in B that alsbiex@d are deleted from B during the collapse. Thus,
even though the optimization in the previous step could Banlhde, we can recover the dead pages when either of
the processes exit exec() .

This model creates a number of potential problems. The §itthtat you can wind up with a relatively deep stack of
layered VM Objects which can cost scanning time and memomsnwlou take a fault. Deep layering can occur when
processes fork and then fork again (either parent or childg.second problem is that you can wind up with dead,
inaccessible pages deep in the stack of VM Objects. In otiekasnple if both the parent and child processes modify
the same page, they both get their own private copies of te pad the original page in B is no longer accessible by
anyone. That page in B can be freed.

FreeBSD solves the deep layering problem with a speciafropdition called the “All Shadowed Case”. This case
occurs if either C1 or C2 take sufficient COW faults to comglieshadow all pages in B. Lets say that C1 achieves
this. C1 can now bypass B entirely, so rather then have Cx&Bnd C2->B->A we now have C1->A and
C2->B->A. But look what also happened—now B has only oneregfee (C2), so we can collapse B and C2
together. The end result is that B is deleted entirely andave IC1->A and C2->A. It is often the case that B will
contain a large number of pages and neither C1 nor C2 will letaltompletely overshadow it. If we fork again and

Design elements of the FreeBSD VM system

create a set of D layers, however, it is much more likely timet of the D layers will eventually be able to completely
overshadow the much smaller dataset represented by C1 dgih@Zame optimization will work at any point in the
graph and the grand result of this is that even on a heavikefbmachine VM Object stacks tend to not get much
deeper then 4. This is true of both the parent and the chilanertirue whether the parent is doing the forking or
whether the children cascade forks.

The dead page problem still exists in the case where C1 or C@tdocompletely overshadow B. Due to our other
optimizations this case does not represent much of a proatehwe simply allow the pages to be dead. If the
system runs low on memory it will swap them out, eating adlittivap, but that is it.

The advantage to the VM Object model is that k() is extremely fast, since no real data copying need take place
The disadvantage is that you can build a relatively complek@bject layering that slows page fault handling down
a little, and you spend memory managing the VM Object stmastuThe optimizations FreeBSD makes proves to
reduce the problems enough that they can be ignored, leavingal disadvantage.

3 SWAP Layers

Private data pages are initially either copy-on-write aozil pages. When a change, and therefore a copy, is made,
the original backing object (usually a file) can no longer bedito save a copy of the page when the VM system
needs to reuse it for other purposes. This is where SWAP com8%VAP is allocated to create backing store for
memory that does not otherwise have it. FreeBSD allocatesvilap management structure for a VM Object only
when it is actually needed. However, the swap managemerctsie has had problems historically:

« Under FreeBSD 3.X the swap management structure preadoaatarray that encompasses the entire object
requiring swap backing store—even if only a few pages of thétct are swap-backed. This creates a kernel
memory fragmentation problem when large objects are mampgutocesses with large runsizes (RSS) fork.

- Also, in order to keep track of swap space, a “list of holetapt in kernel memory, and this tends to get severely
fragmented as well. Since the “list of holes” is a linear, liee swap allocation and freeing performance is a
non-optimal O(n)-per-page.

- It requires kernel memory allocations to take place duriregswap freeing process, and that creates low memory
deadlock problems.

- The problem is further exacerbated by holes created duetmtérleaving algorithm.
« Also, the swap block map can become fragmented fairly easdylting in non-contiguous allocations.

- Kernel memory must also be allocated on the fly for additiemalp management structures when a swapout
occurs.

It is evident from that list that there was plenty of room faygrovement. For FreeBSD 4.X, | completely rewrote the
swap subsystem:

- Swap management structures are allocated through a hdshdtter than a linear array giving them a fixed
allocation size and much finer granularity.

- Rather then using a linearly linked list to keep track of swpace reservations, it now uses a bitmap of swap
blocks arranged in a radix tree structure with free-spactrty in the radix node structures. This effectively
makes swap allocation and freeing an O(1) operation.

Design elements of the FreeBSD VM system

« The entire radix tree bitmap is also preallocated in ordewvtnid having to allocate kernel memory during critical
low memory swapping operations. After all, the system téndsvap when it is low on memory so we should
avoid allocating kernel memory at such times in order to dyaitential deadlocks.

- To reduce fragmentation the radix tree is capable of allogdarge contiguous chunks at once, skipping over
smaller fragmented chunks.

| did not take the final step of having an “allocating hint geiri that would trundle through a portion of swap as
allocations were made in order to further guarantee coatigallocations or at least locality of reference, but |
ensured that such an addition could be made.

4 When to free a page

Since the VM system uses all available memory for disk caghirere are usually very few truly-free pages. The
VM system depends on being able to properly choose pagesahémot in use to reuse for new allocations.
Selecting the optimal pages to free is possibly the singdstimportant function any VM system can perform
because if it makes a poor selection, the VM system may bedaunnecessarily retrieve pages from disk,
seriously degrading system performance.

How much overhead are we willing to suffer in the criticallptd avoid freeing the wrong page? Each wrong choice
we make will cost us hundreds of thousands of CPU cycles amdieeable stall of the affected processes, so we are
willing to endure a significant amount of overhead in orddveasure that the right page is chosen. This is why
FreeBSD tends to outperform other systems when memorymesohecome stressed.

The free page determination algorithm is built upon a histdthe use of memory pages. To acquire this history, the
system takes advantage of a page-used bit feature that ardlstdre page tables have.

In any case, the page-used bit is cleared and at some latgrtpeiVM system comes across the page again and sees
that the page-used bit has been set. This indicates thaatiesip still being actively used. If the bit is still clearst i

an indication that the page is not being actively used. Byrtgshis bit periodically, a use history (in the form of a
counter) for the physical page is developed. When the VMesydater needs to free up some pages, checking this
history becomes the cornerstone of determining the beslidai® page to reuse.

What if the har dwar e has no page-used bit?

For those platforms that do not have this feature, the syatdoally emulates a page-used bit. It unmaps or profects
a page, forcing a page fault if the page is accessed agaim Wbgage fault is taken, the system simply marks the

page as having been used and unprotects the page so thatlieragd. While taking such page faults just to
determine if a page is being used appears to be an expenspegition, it is much less expensive than reusing the
page for some other purpose only to find that a process nekdskitand then have to go to disk.

FreeBSD makes use of several page queues to further refiseldwion of pages to reuse as well as to determine
when dirty pages must be flushed to their backing store. Siage tables are dynamic entities under FreeBSD, it
costs virtually nothing to unmap a page from the addressespiany processes using it. When a page candidate has
been chosen based on the page-use counter, this is pregfsaiys done. The system must make a distinction
between clean pages which can theoretically be freed upydtrag, and dirty pages which must first be written to
their backing store before being reusable. When a pagedatedias been found it is moved to the inactive queue if
it is dirty, or the cache queue if it is clean. A separate athor based on the dirty-to-clean page ratio determines
when dirty pages in the inactive queue must be flushed to @iske this is accomplished, the flushed pages are

Design elements of the FreeBSD VM system

moved from the inactive queue to the cache queue. At thiggeaiges in the cache queue can still be reactivated by
a VM fault at relatively low cost. However, pages in the cagheue are considered to be “immediately freeable”
and will be reused in an LRU (least-recently used) fashioamihe system needs to allocate new memory.

It is important to note that the FreeBSD VM system attemptsefmarate clean and dirty pages for the express reason
of avoiding unnecessary flushes of dirty pages (which e@b#ndwidth), nor does it move pages between the
various page queues gratuitously when the memory subsysteoh being stressed. This is why you will see some
systems with very low cache queue counts and high activeegoeunts when doingsyst at - vmcommand. As

the VM system becomes more stressed, it makes a greaterteffoaintain the various page queues at the levels
determined to be the most effective.

An urban myth has circulated for years that Linux did a bgtteravoiding swapouts than FreeBSD, but this in fact

is not true. What was actually occurring was that FreeBSDpwaactively paging out unused pages in order to make
room for more disk cache while Linux was keeping unused pamgesre and leaving less memory available for
cache and process pages. | do not know whether this is glittday.

5 Pre-Faulting and Zeroing Optimizations

Taking a VM fault is not expensive if the underlying page igatly in core and can simply be mapped into the
process, but it can become expensive if you take a whole libtssh on a regular basis. A good example of this is
running a program such as Is(1) or ps(1) over and over addhe program binary is mapped into memory but not
mapped into the page table, then all the pages that will besaed by the program will have to be faulted in every
time the program is run. This is unnecessary when the paggseistion are already in the VM Cache, so FreeBSD
will attempt to pre-populate a process’s page tables witkdtpages that are already in the VM Cache. One thing
that FreeBSD does not yet do is pre-copy-on-write certagep@n exec. For example, if you run the Is(1) program
while runningvist at 1 you will notice that it always takes a certain number of pagét$, even when you run it
over and over again. These are zero-fill faults, not prograde ¢aults (which were pre-faulted in already).
Pre-copying pages on exec or fork is an area that could use stuay.

A large percentage of page faults that occur are zero-filtdaMou can usually see this by observing thst at - s
output. These occur when a process accesses pages in its&5Stae BSS area is expected to be initially zero but
the VM system does not bother to allocate any memory at aill tinetprocess actually accesses it. When a fault
occurs the VM system must not only allocate a new page, it merstit as well. To optimize the zeroing operation
the VM system has the ability to pre-zero pages and mark tleesueh, and to request pre-zeroed pages when
zero-fill faults occur. The pre-zeroing occurs wheneveiGR&J is idle but the number of pages the system pre-zeros
is limited in order to avoid blowing away the memory cachdssTs an excellent example of adding complexity to
the VM system in order to optimize the critical path.

6 Page Table Optimizations

The page table optimizations make up the most contentiou®ptine FreeBSD VM design and they have shown
some strain with the advent of serious usenofip() . | think this is actually a feature of most BSDs though | am not
sure when it was first introduced. There are two major opttnins. The first is that hardware page tables do not
contain persistent state but instead can be thrown awayydirae with only a minor amount of management
overhead. The second is that every active page table entng isystem has a governipg_ent ry structure which

is tied into thevm page structure. FreeBSD can simply iterate through those masimat are known to exist while
Linux must check all page tables thaight contain a specific mapping to see if it does, which can achiEné?2)
overhead in certain situations. It is because of this the¢ BED tends to make better choices on which pages to

Design elements of the FreeBSD VM system

reuse or swap when memory is stressed, giving it better padioce under load. However, FreeBSD requires kernel
tuning to accommodate large-shared-address-spacéaitsigtich as those that can occur in a news system because
it may run out ofov_ent ry structures.

Both Linux and FreeBSD need work in this area. FreeBSD isityyd maximize the advantage of a potentially sparse
active-mapping model (not all processes need to map allspaitee shared library, for example), whereas Linux is
trying to simplify its algorithms. FreeBSD generally has ferformance advantage here at the cost of wasting a
little extra memory, but FreeBSD breaks down in the case &héarge file is massively shared across hundreds of
processes. Linux, on the other hand, breaks down in the dasewnany processes are sparsely-mapping the same
shared library and also runs non-optimally when trying ttedwine whether a page can be reused or not.

7 Page Coloring

We will end with the page coloring optimizations. Page ciolgiis a performance optimization designed to ensure
that accesses to contiguous pages in virtual memory makmetaise of the processor cache. In ancient times (i.e.
10+ years ago) processor caches tended to map virtual meatber than physical memory. This led to a huge
number of problems including having to clear the cache onyas@ntext switch in some cases, and problems with
data aliasing in the cache. Modern processor caches majgcphy&mory precisely to solve those problems. This
means that two side-by-side pages in a processes addresssag not correspond to two side-by-side pages in the
cache. In fact, if you are not careful side-by-side pagesrinal memory could wind up using the same page in the
processor cache—leading to cacheable data being thromn@ematurely and reducing CPU performance. This is
true even with multi-way set-associative caches (thougleffect is mitigated somewhat).

FreeBSD’s memory allocation code implements page colaptgnizations, which means that the memory

allocation code will attempt to locate free pages that argigaous from the point of view of the cache. For example,

if page 16 of physical memory is assigned to page 0 of a prisc@ssial memory and the cache can hold 4 pages,
the page coloring code will not assign page 20 of physical orgrio page 1 of a process’s virtual memory. It would,
instead, assign page 21 of physical memory. The page cgloode attempts to avoid assigning page 20 because this
maps over the same cache memory as page 16 and would resoift-mptimal caching. This code adds a significant
amount of complexity to the VM memory allocation subsystenyau can well imagine, but the result is well worth
the effort. Page Coloring makes VM memory as deterministiptaysical memory in regards to cache performance.

8 Conclusion

Virtual memory in modern operating systems must addressrauof different issues efficiently and for many
different usage patterns. The modular and algorithmic@gugir that BSD has historically taken allows us to study
and understand the current implementation as well asvelgitleanly replace large sections of the code. There have
been a number of improvements to the FreeBSD VM system iragteséveral years, and work is ongoing.

9 Bonus QA session by Allen Briggs < bri ggs@i nt hwonder . con®

1. What is “the interleaving algorithm” that you refer to in ydisting of the ills of the FreeBSD 3.X swap
arrangements?

FreeBSD uses a fixed swap interleave which defaults to 4.mbens that FreeBSD reserves space for four swap
areas even if you only have one, two, or three. Since swapadéaved the linear address space representing the

Design elements of the FreeBSD VM system

“four swap areas” will be fragmented if you do not actually@dour swap areas. For example, if you have two swap
areas A and B FreeBSD'’s address space representation femtp area will be interleaved in blocks of 16 pages:

ABCDABCDABCDABCD

FreeBSD 3.X uses a “sequential list of free regions” appndga@ccounting for the free swap areas. The idea is that
large blocks of free linear space can be represented withgéedist node Ker n/ subr _r1i st . c). But due to the
fragmentation the sequential list winds up being insanelgrhented. In the above example, completely unused
swap will have A and B shown as “free” and C and D shown as “&dcatted”. Each A-B sequence requires a list
node to account for because C and D are holes, so the list mod@tbe combined with the next A-B sequence.

Why do we interleave our swap space instead of just tack svesgs@nto the end and do something fancier?
Because it is a whole lot easier to allocate linear swaths afclress space and have the result automatically be
interleaved across multiple disks than it is to try to put g@phistication elsewhere.

The fragmentation causes other problems. Being a lingamiger 3.X, and having such a huge amount of inherent
fragmentation, allocating and freeing swap winds up bem@éN) algorithm instead of an O(1) algorithm.
Combined with other factors (heavy swapping) and you settirggy into O(N”2) and O(N”3) levels of overhead,
which is bad. The 3.X system may also need to allocate KVMriua swap operation to create a new list node
which can lead to a deadlock if the system is trying to pagpages in a low-memory situation.

Under 4.X we do not use a sequential list. Instead we use & traei and bitmaps of swap blocks rather than ranged
list nodes. We take the hit of preallocating all the bitmagxpuired for the entire swap area up front but it winds up
wasting less memory due to the use of a bitmap (one bit pekpiostead of a linked list of nodes. The use of a
radix tree instead of a sequential list gives us nearly O¢tiopmance no matter how fragmented the tree becomes.

2. How is the separation of clean and dirty (inactive) pagesteel to the situation where you see low cache queue
counts and high active queue countsyst at - vn? Do the systat stats roll the active and dirty pages togébher
the active queue count?

| do not get the following:

Itis important to note that the FreeBSD VM system attemptefmarate clean and dirty pages for the express reason of
avoiding unnecessary flushes of dirty pages (which eatsaftwidth), nor does it move pages between the various page
gueues gratuitously when the memory subsystem is not baegsed. This is why you will see some systems with very low
cache queue counts and high active queue counts when deygt at - vmcommand.

Yes, that is confusing. The relationship is “goal” versesality”. Our goal is to separate the pages but the reality is
that if we are not in a memory crunch, we do not really have to.

What this means is that FreeBSD will not try very hard to sefgeout dirty pages (inactive queue) from clean pages
(cache queue) when the system is not being stressed, natrtilto deactivate pages (active queue -> inactive
gueue) when the system is not being stressed, even if theyoabeing used.

3. Inthe Is(1) ivnst at 1 example, would not some of the page faults be data page {&@ ¥/ from executable
file to private page)? Il.e., | would expect the page faultsstedime zero-fill and some program data. Or are you
implying that FreeBSD does do pre-COW for the program data?

A COW fault can be either zero-fill or program-data. The meé$ra is the same either way because the backing
program-data is almost certainly already in the cache. Iradteéd lumping the two together. FreeBSD does not

Design elements of the FreeBSD VM system
pre-COW program data or zero-fill, butdbes pre-map pages that exist in its cache.

4. In your section on page table optimizations, can you givéla linore detail aboyiv_ent ry andvm page (or
should vm_page bem pnap—as in 4.4, cf. pp. 180-181 of McKusick, Bostic, Karel, Qeamian)? Specifically,
what kind of operation/reaction would require scanningrtteppings?

How does Linux do in the case where FreeBSD breaks down (ghariarge file mapping over many processes)?

A vm page represents an (object,index#) tuplepA _ent ry represents a hardware page table entry (pte). If you
have five processes sharing the same physical page, anafhhese processes’s page tables actually map the page,
that page will be represented by a singte page structure and thregv_ent ry structures.

pv_ent ry structures only represent pages mapped by the MMU genent r y represents one pte). This means
that when we need to remove all hardware references o page (in order to reuse the page for something else,
page it out, clear it, dirty it, and so forth) we can simplyrstiae linked list ofpv_ent r y’s associated with that

vm page to remove or modify the pte’s from their page tables.

Under Linux there is no such linked list. In order to remouéla hardware page table mappings fama page

linux must index into every VM object thatight have mapped the page. For example, if you have 50 processes al
mapping the same shared library and want to get rid of pagetbainlibrary, you need to index into the page table

for each of those 50 processes even if only 10 of them havelactnapped the page. So Linux is trading off the
simplicity of its design against performance. Many VM aigfums which are O(1) or (small N) under FreeBSD wind
up being O(N), O(N”2), or worse under Linux. Since the ptejsresenting a particular page in an object tend to be at
the same offset in all the page tables they are mapped incireglthe number of accesses into the page tables at the
same pte offset will often avoid blowing away the L1 cache fior that offset, which can lead to better performance.

FreeBSD has added complexity (ffne_ent ry scheme) in order to increase performance (to limit pagetabl
accesses tonly those pte’s that need to be modified).

But FreeBSD has a scaling problem that Linux does not in tiexetare a limited number pf/_ent ry structures
and this causes problems when you have massive sharingeoflddlhis case you may run outpé_ent ry

structures even though there is plenty of free memory availd his can be fixed easily enough by bumping up the
number ofpv_ent ry structures in the kernel config, but we really need to find &ebetay to do it.

In regards to the memory overhead of a page table verses themt r y scheme: Linux uses “permanent” page
tables that are not throw away, but does not negd @nt r y for each potentially mapped pte. FreeBSD uses “throw
away” page tables but adds ipa_ent ry structure for each actually-mapped pte. | think memoryaatilon winds

up being about the same, giving FreeBSD an algorithmic adganwith its ability to throw away page tables at will
with very low overhead.

5. Finally, in the page coloring section, it might help to haudtke more description of what you mean here. | did
not quite follow it.

Do you know how an L1 hardware memory cache works? | will eixpl@onsider a machine with 16MB of main
memory but only 128K of L1 cache. Generally the way this cagbeks is that each 128K block of main memory
uses thesame 128K of cache. If you access offset 0 in main memory and thesebf28K in main memory you can
wind up throwing away the cached data you read from offset 0!

Now, | am simplifying things greatly. What | just describedihat is called a “direct mapped” hardware memory
cache. Most modern caches are what are called 2-way-sstiatge or 4-way-set-associative caches. The

10

Design elements of the FreeBSD VM system

set-associatively allows you to access up to N different orgmegions that overlap the same cache memory without
destroying the previously cached data. But only N.

So if | have a 4-way set associative cache | can access offe#isBt 128K, 256K and offset 384K and still be able to
access offset 0 again and have it come from the L1 cache. ¢l élccess offset 512K, however, one of the four
previously cached data objects will be thrown away by théeac

It is extremely important. . extremely important for most of a processor’'s memory accesses to leg@lobme from

the L1 cache, because the L1 cache operates at the procesparicy. The moment you have an L1 cache miss and
have to go to the L2 cache or to main memory, the processostallland potentially sit twiddling its fingers for
hundreds of instructions worth of time waiting for a read from main mamyto complete. Main memory (the

dynamic ram you stuff into a computer)sow, when compared to the speed of a modern processor core.

Ok, so now onto page coloring: All modern memory caches ai@ ate known aphysical caches. They cache
physical memory addresses, not virtual memory addresbésallows the cache to be left alone across a process
context switch, which is very important.

But in the UNIX world you are dealing with virtual address eps, not physical address spaces. Any program you
write will see the virtual address space given to it. The alqihysical pages underlying that virtual address space are
not necessarily physically contiguous! In fact, you migavé two pages that are side by side in a processes address
space which wind up being at offset 0 and offset 128Ighgisical memory.

A program normally assumes that two side-by-side pagedwitiptimally cached. That is, that you can access data
objects in both pages without having them blow away eachristhache entry. But this is only true if the physical
pages underlying the virtual address space are contigirsafdr as the cache is concerned).

This is what Page coloring does. Instead of assignamgom physical pages to virtual addresses, which may result
in non-optimal cache performance, Page coloring assigasenably-contiguous physical pages to virtual addresses.
Thus programs can be written under the assumption that #racteristics of the underlying hardware cache are the
same for their virtual address space as they would be if thgram had been run directly in a physical address space.

Note that | say “reasonably” contiguous rather than simplyritiguous”. From the point of view of a 128K direct
mapped cache, the physical address 0 is the same as thegblagklcess 128K. So two side-by-side pages in your
virtual address space may wind up being offset 128K and toff32K in physical memory, but could also easily be
offset 128K and offset 4K in physical memory and still retdie same cache performance characteristics. So
page-coloring doesot have to assign truly contiguous pages of physical memorgmdiguous pages of virtual
memory, it just needs to make sure it assigns contiguoussdag®a the point of view of cache performance and
operation.

11

	Table of Contents
	1 Introduction
	2 VM Objects
	3 SWAP Layers
	4 When to free a page
	5 PreFaulting and Zeroing Optimizations
	6 Page Table Optimizations
	7 Page Coloring
	8 Conclusion
	9 Bonus QA session by Allen Briggs briggs@ninthwonder.com

