Introduction to NanoBSD

Daniel Gerzo
$FreeBSD: head/en_US.ISO8859-1/articles/nanobsd/arti cle.xml 42226 2013-07-09
21:15:47Z rene $

Copyright © 2006 The FreeBSD Documentation Project
$FreeBSD: head/en_US.ISO8859-1/articles/nanobsd/arti cle.xml 42226 2013-07-09
21:15:47Z rene $

FreeBSD is a registered trademark of the FreeBSD Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This document provides information about thanoBSD tools, which can be used to create FreeBSD
system images for embedded applications, suitable for mse@mpact Flash card (or other mass storage
medium).

Table of Contents

a1 Aol (W Lo o g I (o TN F=TaTo] = 1 I 1
A NN E=TaT0] S D [0 o T 2

1 Introduction to NanoBSD

NanoBSD is a tool currently developed by Poul-Henning Kamghk@r eeBSD. or g>. It creates a FreeBSD system
image for embedded applications, suitable for use on a Confiiash card (or other mass storage medium).

It can be used to build specialized install images, desidoeelasy installation and maintenance of systems
commonly called “computer appliances”. Computer appkeritave their hardware and software bundled in the
product, which means all applications are pre-installég: dppliance is plugged into an existing network and can
begin working (almost) immediately.

The features olNanoBSD include:

- Ports and packages work as in FreeBSD — Every single apipliceain be installed and used ifNanoBSD
image, the same way as in FreeBSD.

- No missing functionality — If it is possible to do somethinghviFreeBSD, it is possible to do the same thing with
NanoBSD, unless the specific feature or features were explicitlyoerd from theNanoBSD image when it was
created.

Introduction to NanoBSD

- Everything is read-only at run-time — It is safe to pull thenymo-plug. There is no necessity to run fsck(8) after a
non-graceful shutdown of the system.

- Easy to build and customize — Making use of just one shelpsard one configuration file it is possible to build
reduced and customized images satisfying any arbitraryfsegjuirements.

2 NanoBSD Howto

2.1 The design of NanoBSD

Once the image is present on the medium, it is possible toaodBSD. The mass storage medium is divided into
three parts by default:

- Two image partitionscode#1 andcode#2.

« The configuration file partition, which can be mounted under tf g directory at run time.
These partitions are normally mounted read-only.

The/ et c and/ var directories are md(4) (malloc) disks.

The configuration file partition persists under the g directory. It contains files faret ¢ directory and is briefly
mounted read-only right after the system boot, therefagergquired to copy modified files frofet ¢ back to the
/ cf g directory if changes are expected to persist after the syststarts.

Example 1. Making persistent changesto/ et c/ r esol v. conf

vi /etcl/resolv. conf

[...]

mount /cfg

cp /etc/resolv.conf /cfg
unmount /cfg

Note: The partition containing / cf g should be mounted only at boot time and while overriding the configuration
files.

Keeping / cf g mounted at all times is not a good idea, especially if the NanoBSD system runs off a mass storage
medium that may be adversely affected by a large number of writes to the partition (i.e. when the filesystem
syncer flushes data to the system disks).

2.2 Building a NanoBSD image

A NanoBSD image is built using a simpleanobsd. sh shell script, which can be found in the
/usr/src/tool s/tool s/ nanobsd directory. This script creates an image, which can be comieithe storage
medium using the dd(1) utility.

The necessary commands to builllanoBSD image are:

cd /usr/src/tool s/tool s/ nanobsd [J

Introduction to NanoBSD

sh nanobsd.sh [
cd /usr/obj/nanobsd. full 0O
dd if=_.disk.full of=/dev/da0 bs=64k [

Change the current directory to the base directory of\ieoBSD build script.
Start the build process.

Change the current directory to the place where the builygsare located.

O o o od

Install NanoBSD onto the storage medium.

2.3 Customizing a NanoBSD image

This is probably the most important and most interestinguieaofNanoBSD. This is also where you will be
spending most of the time when developing witAnoBSD.

Invocation of the following command will force theanobsd. sh to read its configuration from the/conf . nano
file located in the current directory:

sh nanobsd.sh -c¢ nyconf. nano

Customization is done in two ways:

- Configuration options

. Custom functions

2.3.1 Configuration options

With configuration settings, it is possible to configure op$ passed to both thei | dwor | d andi nst al | wor | d
stages of thé&lanoBSD build process, as well as internal options passed to the buglith process oNanoBSD.
Through these options it is possible to cut the system dowvit il fit on as little as 64MB. You can use the
configuration options to trim down FreeBSD even more, utilil consists of just the kernel and two or three files
in the userland.

The configuration file consists of configuration options,athoverride the default values. The most important
directives are:

« NANO_NAME — Name of build (used to construct the workdir names).

« NANO_SRC— Path to the source tree used to build the image.

« NANO_KERNEL — Name of kernel configuration file used to build kernel.

« CONF_BUI LD— Options passed to thaii | dwor | d stage of the build.

« CONF_I NSTALL — Options passed to thenst al | wor | d stage of the build.

+ CONF_WORLD— Options passed to both thai | dwor | d and the nst al | wor | d stage of the build.

« Fl ashDevi ce — Defines what type of media to use. Check EhashDevi ce. sub file for more details.

Introduction to NanoBSD

2.3.2 Custom functions

It is possible to fine-tunBlanoBSD using shell functions in the configuration file. The follogiaxample illustrates
the basic model of custom functions:

cust_foo () (
echo "bar=baz" >\
${ NANO WORLDDI R}/ et ¢/ f oo

)

custom ze_cnd cust_foo

A more useful example of a customization function is thediwlhg, which changes the default size of thet ¢
directory from 5MB to 30MB:

cust _etc_size () (
cd ${ NANO WORLDDI R}/ conf
echo 30000 > default/etc/nd_size

)

custom ze_cnd cust_etc_size

There are a few default pre-defined customization functieady for use:

- cust _contonsol e — Disables getty(8) on the VGA devices (theev/ t t yv* device nodes) and enables the
use of the COM1 serial port as the system console.

« cust_al l ow _ssh_root — Allow r oot to login via sshd(8).

. cust _install _fil es— Installs files from thenanobsd/ Fi | es directory, which contains some useful scripts
for system administration.

2.3.3 Adding packages

Packages can be added thlanoBSD image using a custom function. The following function wilktall all the
packages located inusr/ src/ t ool s/ t ool s/ nanobsd/ packages:

install _packages () (

mkdir -p ${NANO WORLDDI R}/ packages

cp /usr/src/tool s/tool s/ nanobsd/ packages/ * ${ NANO WORLDDI R}/ packages
chroot ${NANO WORLDDI R} sh -c¢ 'cd packages; pkg_add -v *;cd ..;’
rm-rf ${NANO WORLDDI R}/ packages

)

customi ze_cnd install _packages

2.3.4 Configuration file example

A complete example of a configuration file for building a custdanoBSD image can be:

NANO_NAME=cust om
NANO SRC=/usr/src
NANO_KERNEL =MYKERNEL
NANO _| MAGES=2

CONF_BUI LD=’
NO_KLDLOAD=YES
NO_NETGRAPH=YES
NO_PAMEYES

CONF_| NSTALL=’
NO_ACPI =YES
NO_BLUETOOTH=YES
NO_CVS=YES
NO_FORTRAN=YES
NO_HTM.=YES
NO_LPR=YES
NO_MAN=YES
NO_SENDMAI L=YES
NO_SHAREDOCS=YES
NO_EXAMPLES=YES
NO | NSTALLLI B=YES
NO_CALENDAR=YES
NO_M SC=YES
NO_SHARE=YES

CONF_WORL D=’
NO_BI ND=YES
NO_MODULES=YES
NO_KERBEROS=YES
NO_GANMES=YES
NO_RESCUE=YES
NO_LOCALES=YES
NO_SYSCONS=YES
NO_| NFO=YES

Fl ashDevi ce SanDi sk 1G

cust _nobeastie() (

touch ${ NANO WORLDDI R}/ boot /| oader . conf

Introduction to NanoBSD

echo "beastie_disabl e=\"YES\"" >> ${NANO WORLDDI R}/ boot /| oader . conf

)

custom ze_cnd cust_contonsol e
custom ze _cnd cust _install _files
custom ze_cnd cust _al |l ow_ssh_root
custom ze_cnd cust_nobeasti e

Introduction to NanoBSD

2.4 Updating NanoBSD
The update process dlanoBSD is relatively simple:

1. Build a newNanoBSD image, as usual.
2. Upload the new image into an unused partition of a runiiagoBSD appliance.

The most important difference of this step from the inib&@noBSD installation is that now instead of using the
_.disk. full file (which contains an image of the entire disk), theli sk. i mage image is installed (which
contains an image of a single system partition).

Reboot, and start the system from the newly installedtjmart
4. |If all goes well, the upgrade is finished.
5. If anything goes wrong, reboot back into the previousipant(which contains the old, working image), to
restore system functionality as fast as possible. Fix aoplpms of the new build, and repeat the process.
To install new image onto the runniddanoBSD system, it is possible to use either tiyaat ep1 or updat ep2
script located in thér oot directory, depending from which partition is running theremt system.

According to which services are available on host servirvg RanoBSD image and what type of transfer is
preferred, it is possible to examine one of these three ways:

2.4.1 Using ftp(1)

If the transfer speed is in first place, use this example:

ftp nyhost
get _.disk.image "| sh updatepl”

2.4.2 Using ssh(1)

If a secure transfer is preferred, consider using this examp

ssh nyhost cat _.disk.image.gz | zcat | sh updatepl

2.4.3 Using nc(1)

Try this example if the remote host is not running neithed(§) or sshd(8) service:

1. Atfirst, open a TCP listener on host serving the image arkerit@end the image to client:

nmyhost# nc -1 2222 < _.disk.inmage
Note: Make sure that the used port is not blocked to receive incoming connections from NanoBSD host by

firewall.

2. Connect to the host serving new image and exagudat ep1 script:

nc nyhost 2222 | sh updatepl

	Table of Contents
	1 Introduction to NanoBSD
	2 NanoBSD Howto
	2.1 The design of NanoBSD
	2.2 Building a NanoBSD image
	2.3 Customizing a NanoBSD image
	2.3.1 Configuration options
	2.3.2 Custom functions
	2.3.3 Adding packages
	2.3.4 Configuration file example

	2.4 Updating NanoBSD
	2.4.1 Using ftp(1)
	2.4.2 Using ssh(1)
	2.4.3 Using nc(1)

