
FreeBSD Porter’s Handbook

The FreeBSD Documentation Project

FreeBSD Porter’s Handbook
by The FreeBSD Documentation Project

Published $FreeBSD: head/en_US.ISO8859-1/books/porters-handbook/book.xml 42686 2013-09-22 19:00:47Z
eadler $
Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 The FreeBSD
Documentation Project

Legal Notice

FreeBSD is a registered trademark of The FreeBSD Foundation.

UNIX is a registered trademark of The Open Group in the US and other countries.

Sun, Sun Microsystems, SunOS, Solaris, Java, JDK, and OpenJDK are trademarks or registered trademarks of Sun Microsystems, Inc. in the

United States and other countries.

Apple and QuickTime are trademarks of Apple Computer, Inc.,registered in the U.S. and other countries.

Macromedia and Flash are trademarks or registered trademarks of Macromedia, Inc. in the United States and/or other countries.

Microsoft, Windows, and Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries.

PartitionMagic is a registered trademark of PowerQuest Corporation in the United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations

appear in this book, and the FreeBSD Project was aware of the trademark claim, the designations have been followed by the ™symbol.

Copyright

Redistribution and use in source (XML DocBook) and ’compiled’ forms (XML, HTML, PDF, PostScript, RTF and so forth) with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (XML DocBook) must retainthe above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Table of Contents
1 Introduction ..1

2 Making a New Port Yourself...2

3 Quick Porting ...3

3.1 Writing theMakefile ..3
3.2 Writing the Description Files..3

3.2.1pkg-descr ...3
3.2.2pkg-plist ...4

3.3 Creating the Checksum File..5
3.4 Testing the Port..5
3.5 Checking Your Port withportlint ...6
3.6 Submitting the New Port...6

4 Slow Porting..8

4.1 How Things Work...8
4.2 Getting the Original Sources...9
4.3 Modifying the Port..9
4.4 Patching...10
4.5 Configuring..11
4.6 Handling User Input..11

5 Configuring the Makefile...12

5.1 The Original Source..12
5.2 Naming..12

5.2.1PORTNAMEandPORTVERSION...12
5.2.2PORTREVISIONandPORTEPOCH...12
5.2.3PKGNAMEPREFIXandPKGNAMESUFFIX..15
5.2.4LATEST_LINK...15
5.2.5 Package Naming Conventions..15

5.3 Categorization...17
5.3.1CATEGORIES...17
5.3.2 Current List of Categories..17
5.3.3 Choosing the Right Category..21
5.3.4 Proposing a New Category...22
5.3.5 Proposing Reorganizing All the Categories..23

5.4 The Distribution Files..23
5.4.1DISTVERSION/DISTNAME...23
5.4.2MASTER_SITES..24
5.4.3EXTRACT_SUFX..25
5.4.4DISTFILES ...25
5.4.5EXTRACT_ONLY..25
5.4.6PATCHFILES...26
5.4.7 Multiple Distribution Files or Patches from Different Sites and Subdirectories (MASTER_SITES:n)

26
5.4.8DIST_SUBDIR...31
5.4.9ALWAYS_KEEP_DISTFILES...32

5.5MAINTAINER...32

iii

5.6COMMENT..33
5.7PORTSCOUT...33
5.8 Dependencies..33

5.8.1LIB_DEPENDS...34
5.8.2RUN_DEPENDS...34
5.8.3BUILD_DEPENDS..35
5.8.4FETCH_DEPENDS..35
5.8.5EXTRACT_DEPENDS..35
5.8.6PATCH_DEPENDS..36
5.8.7USES..36
5.8.8USE_*..36
5.8.9 Minimal Version of a Dependency...37
5.8.10 Notes on Dependencies...37
5.8.11 Circular Dependencies Are Fatal..38
5.8.12 Problems Caused by Automatic Dependencies..38
5.8.13USE_andWANT_...39

5.9MASTERDIR...39
5.10 Man Pages...40
5.11 Info Files...41
5.12 Makefile Options...41

5.12.1 Knobs..41
5.12.2OPTIONS...42
5.12.3 Feature Auto-Activation...45
5.12.4 Options Helpers..46

5.13 Specifying the Working Directory..50
5.13.1WRKSRC...50
5.13.2NO_WRKSUBDIR..50

5.14 Conflict Handling..50
5.14.1CONFLICTS_INSTALL..50
5.14.2CONFLICTS_BUILD..51
5.14.3CONFLICTS...51

5.15 Installing Files...51
5.15.1INSTALL_ * Macros..51
5.15.2 Stripping Binaries and Shared Libraries...51
5.15.3 Installing a Whole Tree of Files...52
5.15.4 Install Additional Documentation...52
5.15.5 Subdirectories UnderPREFIX ..54

6 Special Considerations..55

6.1 Shared Libraries..55
6.2 Ports with Distribution Restrictions..55

6.2.1NO_PACKAGE...55
6.2.2NO_CDROM...56
6.2.3NOFETCHFILES..56
6.2.4RESTRICTED...56
6.2.5RESTRICTED_FILES..56
6.2.6 Examples...57

6.3 Building Mechanisms..57

iv

6.3.1 Building Ports in Parallel..57
6.3.2make, gmake, andimake ...57
6.3.3configure Script..57
6.3.4 Usingcmake ...58
6.3.5 Usingscons ...59

6.4 Using GNU Autotools...59
6.4.1 Introduction...59
6.4.2libtool ...60
6.4.3libltdl ...60
6.4.4autoconf andautoheader ..60
6.4.5automake andaclocal ..61

6.5 Using GNUgettext ..61
6.5.1 Basic Usage..61
6.5.2 Optional Usage...62
6.5.3 Handling Message Catalog Directories..62

6.6 UsingPerl ...62
6.7 Using X11...64

6.7.1 X.Org Components...64
6.7.2 Ports That Require Motif..64
6.7.3 X11 Fonts..65
6.7.4 Getting a FakeDISPLAY with Xvfb ...65
6.7.5 Desktop Entries...65

6.8 Using GNOME..66
6.9 Using Qt..66

6.9.1 Ports That Require Qt...66
6.9.2 Component Selection (Qt 4.x Only)...67
6.9.3 Additional Considerations..69

6.10 Using KDE..69
6.10.1 KDE 4 Variable Definitions..69

6.11 Using Java...71
6.11.1 Variable Definitions..71
6.11.2 Building with Ant...72
6.11.3 Best Practices..73

6.12 Web Applications, Apache and PHP...73
6.12.1 Apache..74
6.12.2 Web Applications..74
6.12.3 PHP...75
6.12.4 PEAR Modules...75

6.13 Using Python...76
6.14 UsingTcl/Tk ...77
6.15 Using Emacs..78
6.16 Using Ruby..78
6.17 Using SDL...79
6.18 UsingwxWidgets..80

6.18.1 Introduction...80
6.18.2 Version Selection..80
6.18.3 Component Selection..81
6.18.4 Unicode...82

v

6.18.5 Detecting Installed Versions...82
6.18.6 Defined Variables..83
6.18.7 Processing inbsd.port.pre.mk ...83
6.18.8 Additionalconfigure Arguments..84

6.19 UsingLua ...84
6.19.1 Introduction...84
6.19.2 Version Selection..85
6.19.3 Component Selection..86
6.19.4 Detecting Installed Versions...87
6.19.5 Defined Variables..87
6.19.6 Processing inbsd.port.pre.mk ...88

6.20 Using Xfce...89
6.21 Using Mozilla..89
6.22 Using Databases..90
6.23 Starting and Stopping Services (rc Scripts)...91

6.23.1 Pre-Commit Checklist..92
6.24 Adding Users and Groups...93
6.25 Ports That Rely on Kernel Sources...94

7 Advancedpkg-plist Practices...95

7.1 Changingpkg-plist Based on Make Variables...95
7.2 Empty Directories...95

7.2.1 Cleaning Up Empty Directories..96
7.2.2 Creating Empty Directories..96

7.3 Configuration Files..96
7.4 Dynamic Versus Static Package List...97
7.5 Automated Package List Creation...97

8 Thepkg-* Files..99

8.1pkg-message ...99
8.2pkg-install ...99
8.3pkg-deinstall ...99
8.4pkg-req ..100
8.5 Changing the Names ofpkg- * Files...100
8.6 Making Use ofSUB_FILES andSUB_LIST ...100

9 Testing Your Port ...102

9.1 Runningmake describe ..102
9.2 Portlint...102
9.3 Port Tools..102
9.4PREFIX andDESTDIR...102
9.5 Tinderbox..103

10 Upgrading an Individual Port ...104

10.1 UsingSVNto Make Patches...105
10.2 The FilesUPDATINGandMOVED...106

vi

11 Ports Security...107

11.1 Why Security is So Important...107
11.2 Fixing Security Vulnerabilities..107
11.3 Keeping the Community Informed..107

11.3.1 The VuXML Database..108
11.3.2 A Short Introduction to VuXML..108
11.3.3 Testing Your Changes to the VuXML Database...110

12 Dos and Don’ts...113

12.1 Introduction...113
12.2WRKDIR..113
12.3WRKDIRPREFIX...113
12.4 Differentiating Operating Systems and OS Versions..113
12.5 Writing Something Afterbsd.port.mk ..114
12.6 Use theexec Statement in Wrapper Scripts...114
12.7 Do Things Rationally..115
12.8 Respect BothCCandCXX..115
12.9 RespectCFLAGS..115
12.10 Threading Libraries...116
12.11 Feedback..116
12.12README.html ...116
12.13 Marking a Port Not Installable withBROKEN, FORBIDDEN, or IGNORE...117

12.13.1 Variables...117
12.13.2 Implementation Notes...118

12.14 Marking a Port for Removal withDEPRECATEDor EXPIRATION_DATE...118
12.15 Avoid Use of the.error Construct...119
12.16 Usage ofsysctl ...119
12.17 Rerolling Distfiles...119
12.18 Avoiding Linuxisms..119
12.19 Miscellanea..120

13 A SampleMakefile...121

14 Keeping Up...123

14.1 FreshPorts..123
14.2 The Web Interface to the Source Repository...123
14.3 The FreeBSD Ports Mailing List...123
14.4 The FreeBSD Port Building Cluster onpointyhat.FreeBSD.org ..123
14.5 Portscout: the FreeBSD Ports Distfile Scanner...124
14.6 The FreeBSD Ports Monitoring System..124

15 Appendices..125

15.1 Values ofUSES..125
15.2__FreeBSD_version Values...127

vii

List of Tables
5-1. Popular MagicMASTER_SITESMacros..24
5-2. TheUSE_* Variables...37
5-3. CommonWITH_* andWITHOUT_* Variables..42
6-1. Variables for Ports Related togmake..57
6-2. Variables for Ports That Useconfigure ...58
6-3. Variables for Ports That Usecmake ..58
6-4. Variables for Ports That Usescons ..59
6-5. Variables for Ports That UsePerl..63
6-6. Variables for Ports That Use X..64
6-7. Variables for Ports That Use Qt...66
6-8. Additional Variables for Ports That Use Qt 4.x...67
6-9. Available Qt 4 Library Components..68
6-10. Available Qt 4 Tool Components...68
6-11. Available Qt 4 Plugin Components...68
6-12. Available KDE 4 Components...69
6-13. Variables Which May be Set by Ports That Use Java..71
6-14. Variables Provided to Ports That Use Java..71
6-15. Constants Defined for Ports That Use Java...72
6-16. Variables for Ports That Use Apache...74
6-17. Useful Variables for Porting Apache Modules..74
6-18. Variables for Ports That Use PHP..75
6-19. Most Useful Variables for Ports That Use Python...76
6-20. The Most Useful Variables for Ports That UseTcl/Tk ...77
6-21. Useful Variables for Ports That Use Ruby...78
6-22. Selected Read-Only Variables for Ports That Use Ruby...78
6-23. Variables to SelectwxWidgetsVersions...80
6-24. AvailablewxWidgetsVersions...80
6-25.wxWidgetsVersion Specifications..80
6-26. Variables to Select PreferredwxWidgetsVersions...81
6-27. AvailablewxWidgetsComponents...81
6-28. AvailablewxWidgetsDependency Types...81
6-29. DefaultwxWidgetsDependency Types..81
6-30. Variables to Select Unicode inwxWidgetsVersions..82
6-31. Variables Defined for Ports That UsewxWidgets..83
6-32. Legal Values forWX_CONF_ARGS..84
6-33. Variables to SelectLua Versions...85
6-34. AvailableLua Versions...85
6-35.Lua Version Specifications..85
6-36. Variables to Select PreferredLua Versions...85
6-37. AvailableLua Components...86
6-38. AvailableLua Dependency Types...86
6-39. DefaultLua Dependency Types..86
6-40. Variables Defined for Ports That UseLua ..87
6-41. Variables for Ports That Use Mozilla..89
6-42. Variables for Ports Using Databases..90
10-1.SVNUpdate File Prefixes...105

viii

15-1. Values ofUSES...125
15-2.__FreeBSD_version Values...128

ix

Chapter 1 Introduction
The FreeBSD ports collection is the way almost everyone installs applications ("ports") on FreeBSD. Like
everything else about FreeBSD, it is primarily a volunteer effort. It is important to keep this in mind when reading
this document.

In FreeBSD, anyone may submit a new port, or volunteer to maintain an existing port if it is unmaintained—you do
not need any special commit privileges to do so.

1

Chapter 2 Making a New Port Yourself
So, you are interested in making your own port or upgrading anexisting one? Great!

What follows are some guidelines for creating a new port for FreeBSD. If you want to upgrade an existing port, you
should read this and then readChapter 10.

When this document is not sufficiently detailed, you should refer to/usr/ports/Mk/bsd.port.mk , which all port
Makefiles include. Even if you do not hack Makefiles daily, it is well commented, and you will still gain much
knowledge from it. Additionally, you may send specific questions to the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports).

Note: Only a fraction of the variables (VAR) that can be overridden are mentioned in this document. Most (if not
all) are documented at the start of /usr/ports/Mk/bsd.port.mk ; the others probably ought to be. Note that this
file uses a non-standard tab setting: Emacs and Vim should recognize the setting on loading the file. Both vi(1)
and ex(1) can be set to use the correct value by typing :set tabstop=4 once the file has been loaded.

Looking for something easy to start with? Take a look at the list of requested ports
(http://wiki.freebsd.org/WantedPorts) and see if you canwork on one (or more).

2

Chapter 3 Quick Porting
This section tells you how to quickly create a new port. In many cases, it is not sufficient, so you will have to read
further on into the document.

First, get the original tarball and put it intoDISTDIR , which defaults to/usr/ports/distfiles .

Note: The following assumes that the software compiled out-of-the-box, i.e., there was absolutely no change
required for the port to work on your FreeBSD box. If you needed to change something, you will have to refer to
the next section too.

3.1 Writing the Makefile

The minimalMakefile would look something like this:

$FreeBSD$

PORTNAME= oneko
PORTVERSION= 1.1b
CATEGORIES= games
MASTER_SITES= ftp://ftp.cs.columbia.edu/archives/X11 R5/contrib/

MAINTAINER= asami@FreeBSD.org
COMMENT= Cat chasing a mouse all over the screen

MAN1= oneko.1
MANCOMPRESSED= yes

.include <bsd.port.mk>

Note: In some cases, the Makefile of an existing port may contain additional lines in the header, such as the
name of the port and the date it was created. This additional information has been declared obsolete, and is
being phased out.

See if you can figure it out. Do not worry about the contents of the$FreeBSD$ line, it will be filled in automatically
by SVN when the port is imported to our main ports tree. You canfind a more detailed example in the
sample Makefilesection.

3.2 Writing the Description Files
There are two description files that are required for any port, whether they actually package or not. They are
pkg-descr andpkg-plist . Theirpkg- prefix distinguishes them from other files.

3

Chapter 3 Quick Porting

3.2.1 pkg-descr

This is a longer description of the port. One to a few paragraphs concisely explaining what the port does is sufficient.

Note: This is not a manual or an in-depth description on how to use or compile the port! Please be careful if you
are copying from the README or manpage; too often they are not a concise description of the port or are in an
awkward format (e.g., manpages have justified spacing, as it looks particularly bad with monospaced fonts).

A well-written pkg-descr describes the port completely enough that users would not have to consult the
documentation or visit the website to understand what the software does, how it can be useful, or what particularly
nice features it has. Mentioning certain requirements likea graphical toolkit, heavy dependencies, runtime
environment, or implementation languages help users decide whether this port will work for them.

Include a URL to the official WWW homepage. Prependoneof the websites (pick the most common one) withWWW:

(followed by single space) so that automated tools will workcorrectly. If the URI is the root of the website or
directory, it should be terminated with a slash.

Note: If the listed webpage for a port is not available, try to search the Internet first to see if the official site
moved, was renamed, or is hosted elsewhere.

The following example shows how yourpkg-descr should look:

This is a port of oneko, in which a cat chases a poor mouse all ov er
the screen.

:
(etc.)

WWW: http://www.oneko.org/

3.2.2 pkg-plist

This file lists all the files installed by the port. It is also called the “packing list” because the package is generated by
packing the files listed here. The pathnames are relative to the installation prefix (usually/usr/local . If you are
using theMANn variables (as you should be), do not list any manpages here. If the port creates directories during
installation, make sure to add@dirrm lines to remove them when the package is deleted.

Here is a small example:

bin/oneko
lib/X11/app-defaults/Oneko
lib/X11/oneko/cat1.xpm
lib/X11/oneko/cat2.xpm
lib/X11/oneko/mouse.xpm
@dirrm lib/X11/oneko

Refer to the pkg_create(1) manual page for details on the packing list.

4

Chapter 3 Quick Porting

Note: It is recommended that you keep all the filenames in this file sorted alphabetically. It will make verifying the
changes when you upgrade the port much easier.

Note: Creating a packing list manually can be a very tedious task. If the port installs a large numbers of files,
creating the packing list automatically might save time.

There is only one case whenpkg-plist can be omitted from a port. If the port installs just a handfulof files, and
perhaps directories, the files and directories may be listedin the variablesPLIST_FILES andPLIST_DIRS ,
respectively, within the port’sMakefile . For instance, we could get along withoutpkg-plist in the aboveoneko

port by adding the following lines to theMakefile :

PLIST_FILES= bin/oneko \
lib/X11/app-defaults/Oneko \
lib/X11/oneko/cat1.xpm \
lib/X11/oneko/cat2.xpm \
lib/X11/oneko/mouse.xpm

PLIST_DIRS= lib/X11/oneko

Of course,PLIST_DIRS should be left unset if a port installs no directories of its own.

Note: Several ports can share a common directory. In that case, PLIST_DIRS should be replaced by
PLIST_DIRSTRY so that the directory is removed only if empty, otherwise it is silently ignored. PLIST_DIRS and
PLIST_DIRSTRY are equivalent to using @dirrm and @dirrmtry in pkg-plist , as described in Section 7.2.1.

The price for this way of listing port’s files and directoriesis that you cannot use command sequences described in
pkg_create(1). Therefore, it is suitable only for simple ports and makes them even simpler. At the same time, it has
the advantage of reducing the number of files in the ports collection. Please consider using this technique before you
resort topkg-plist .

Later we will see howpkg-plist andPLIST_FILES can be used to fulfillmore sophisticated tasks.

3.3 Creating the Checksum File
Just typemake makesum. The ports make rules will automatically generate the filedistinfo .

If a file fetched has its checksum changed regularly and you are certain the source is trusted (i.e., it comes from
manufacturer CDs or documentation generated daily), you should specify these files in theIGNOREFILESvariable.
Then the checksum is not calculated for that file when you runmake makesum, but set toIGNORE.

3.4 Testing the Port
You should make sure that the port rules do exactly what you want them to do, including packaging up the port.
These are the important points you need to verify.

5

Chapter 3 Quick Porting

• pkg-plist does not contain anything not installed by your port

• pkg-plist contains everything that is installed by your port

• Your port can be installed multiple times using thereinstall target

• Your portcleans upafter itself upon deinstall

Recommended Test Ordering

1. make install

2. make package

3. make deinstall

4. pkg_add package-name

5. make deinstall

6. make reinstall

7. make package

8. make readme

Make sure that there are not any warnings issued in any of thepackage anddeinstall stages. After step 3, check
to see if all the new directories are correctly deleted. Also, try using the software after step 4, to ensure that it works
correctly when installed from a package.

The most thorough way to automate these steps is via installing theports tinderbox. This maintainsjails in which
you can test all of the above steps without changing the stateof your running system. Please see
ports/ports-mgmt/tinderbox for more information.

3.5 Checking Your Port with portlint

Please useportlint to see if your port conforms to our guidelines. Theports-mgmt/portlint program is part
of the ports collection. In particular, you may want to checkif the Makefileis in the right shape and thepackageis
named appropriately.

3.6 Submitting the New Port
Before you submit the new port, make sure you have read theDOs and DON’Tssection.

Now that you are happy with your port, the only thing remaining is to put it in the main FreeBSD ports tree and make
everybody else happy about it too. We do not need yourwork directory or thepkgname.tgz package, so delete
them now. Next, assuming your port is called oneko,cd to the directory above where theoneko directory is located,
and then type the following:shar ‘find oneko‘ > oneko.shar

Include youroneko.shar file in a bug report and send it with the send-pr(1) program (see Bug Reports and General
Commentary
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributing/contrib-how.html#CONTRIB-GENERAL)
for more information about send-pr(1)). Be sure to classifythe bug report as categoryports and class
change-request (Do not mark the reportconfidential !). Also add a short description of the program you

6

Chapter 3 Quick Porting

ported to the “Description” field of the PR (e.g., perhaps a short version of theCOMMENT), and add the shar file to the
“Fix” field.

Note: You can make our work a lot easier, if you use a good description in the synopsis of the problem report.
We prefer something like “New port: <category>/<portname> <short description of the port>” for new ports. If you
stick to this scheme, the chance that someone will take a look at your PR soon is much better.

One more time,do not include the original source distfile, thework directory, or the package you built withmake
package; and, do use shar(1) for new ports, not diff(1).

After you have submitted your port, please be patient. Sometimes it can take a few months before a port is included
in FreeBSD, although it might only take a few days. You can view the list of ports PRs waiting to be committed to
FreeBSD (http://www.FreeBSD.org/cgi/query-pr-summary.cgi?category=ports).

Once we have looked at your port, we will get back to you if necessary, and put it in the tree. Your name will also be
added to the list of Additional FreeBSD Contributors
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributors/contrib-additional.html) and other files.

7

Chapter 4 Slow Porting
Ok, so it was not that simple, and the port required some modifications to get it to work. In this section, we will
explain, step by step, how to modify it to get it to work with the ports paradigm.

4.1 How Things Work
First, this is the sequence of events which occurs when the user first typesmake in your port’s directory. You may
find that havingbsd.port.mk in another window while you read this really helps to understand it.

But do not worry if you do not really understand whatbsd.port.mk is doing, not many people do...:-)

1. Thefetch target is run. Thefetch target is responsible for making sure that the tarball exists locally in
DISTDIR . If fetch cannot find the required files inDISTDIR it will look up the URL MASTER_SITES, which is
set in the Makefile, as well as our main FTP site at ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/distfiles/, where we
put sanctioned distfiles as backup. It will then attempt to fetch the named distribution file withFETCH, assuming
that the requesting site has direct access to the Internet. If that succeeds, it will save the file inDISTDIR for
future use and proceed.

2. Theextract target is run. It looks for your port’s distribution file (typically a gzip ped tarball) inDISTDIR and
unpacks it into a temporary subdirectory specified byWRKDIR(defaults towork).

3. Thepatch target is run. First, any patches defined inPATCHFILESare applied. Second, if any patch files named
patch- * are found inPATCHDIR(defaults to thefiles subdirectory), they are applied at this time in
alphabetical order.

4. Theconfigure target is run. This can do any one of many different things.

1. If it exists,scripts/configure is run.

2. If HAS_CONFIGUREor GNU_CONFIGUREis set,WRKSRC/configure is run.

5. Thebuild target is run. This is responsible for descending into the port’s private working directory (WRKSRC)
and building it. IfUSES= gmakeis set, GNUmake will be used, otherwise the systemmake will be used.

The above are the default actions. In addition, you can definetargetspre- something or post- something, or put
scripts with those names, in thescripts subdirectory, and they will be run before or after the default actions are
done.

For example, if you have apost-extract target defined in yourMakefile , and a filepre-build in thescripts

subdirectory, thepost-extract target will be called after the regular extraction actions,and thepre-build script
will be executed before the default build rules are done. It is recommended that you useMakefile targets if the
actions are simple enough, because it will be easier for someone to figure out what kind of non-default action the
port requires.

The default actions are done by thebsd.port.mk targetsdo- something. For example, the commands to extract a
port are in the targetdo-extract . If you are not happy with the default target, you can fix it by redefining the
do- something target in yourMakefile .

Note: The “main” targets (e.g., extract , configure , etc.) do nothing more than make sure all the stages up to
that one are completed and call the real targets or scripts, and they are not intended to be changed. If you want

8

Chapter 4 Slow Porting

to fix the extraction, fix do-extract , but never ever change the way extract operates! Additionally, the target
post-deinstall is invalid and is not run by the ports infrastructure.

Now that you understand what goes on when the user typesmake, let us go through the recommended steps to create
the perfect port.

4.2 Getting the Original Sources
Get the original sources (normally) as a compressed tarball(foo.tar.gz or foo.tar.bz2) and copy it into
DISTDIR . Always usemainstreamsources when and where you can.

You will need to set the variableMASTER_SITESto reflect where the original tarball resides. You will find
convenient shorthand definitions for most mainstream sitesin bsd.sites.mk . Please use these sites—and the
associated definitions—if at all possible, to help avoid theproblem of having the same information repeated over
again many times in the source base. As these sites tend to change over time, this becomes a maintenance nightmare
for everyone involved.

If you cannot find a FTP/HTTP site that is well-connected to the net, or can only find sites that have irritatingly
non-standard formats, you might want to put a copy on a reliable FTP or HTTP server that you control (e.g., your
home page).

If you cannot find somewhere convenient and reliable to put the distfile we can “house” it ourselves on
ftp.FreeBSD.org ; however, this is the least-preferred solution. The distfile must be placed into
~/public_distfiles/ of someone’sfreefall account. Ask the person who commits your port to do this. This
person will also setMASTER_SITESto MASTER_SITE_LOCALandMASTER_SITE_SUBDIRto their freefall

username.

If your port’s distfile changes all the time without any kind of version update by the author, consider putting the
distfile on your home page and listing it as the firstMASTER_SITES. If you can, try to talk the port author out of
doing this; it really does help to establish some kind of source code control. Hosting your own version will prevent
users from gettingchecksum mismatch errors, and also reduce the workload of maintainers of our FTP site. Also,
if there is only one master site for the port, it is recommended that you house a backup at your site and list it as the
secondMASTER_SITES.

If your port requires some additional ‘patches’ that are available on the Internet, fetch them too and put them in
DISTDIR . Do not worry if they come from a site other than where you got the main source tarball, we have a way to
handle these situations (see the description ofPATCHFILESbelow).

4.3 Modifying the Port
Unpack a copy of the tarball in a private directory and make whatever changes are necessary to get the port to
compile properly under the current version of FreeBSD. Keepcareful trackof everything you do, as you will be
automating the process shortly. Everything, including thedeletion, addition, or modification of files should be doable
using an automated script or patch file when your port is finished.

If your port requires significant user interaction/customization to compile or install, you should take a look at one of
Larry Wall’s classicConfigure scripts and perhaps do something similar yourself. The goalof the new ports
collection is to make each port as “plug-and-play” as possible for the end-user while using a minimum of disk space.

9

Chapter 4 Slow Porting

Note: Unless explicitly stated, patch files, scripts, and other files you have created and contributed to the
FreeBSD ports collection are assumed to be covered by the standard BSD copyright conditions.

4.4 Patching
In the preparation of the port, files that have been added or changed can be picked up with a diff(1) for later feeding
to patch(1). Each patch you wish to apply should be saved intoa file namedpatch- * where* indicates the
pathname of the file that is patched, such aspatch-Imakefile or patch-src-config.h . These files should be
stored inPATCHDIR(usuallyfiles/ , from where they will be automatically applied. All patchesmust be relative to
WRKSRC(generally the directory your port’s tarball unpacks itself into, that being where the build is done). To make
fixes and upgrades easier, you should avoid having more than one patch fix the same file (e.g.,patch-file and
patch-file2 both changingWRKSRC/foobar.c). Note that if the path of a patched file contains an underscore (_)
character, the patch needs to have two underscores instead in its name. For example, to patch a file named
src/freeglut_joystick.c , the corresponding patch should be namedpatch-src-freeglut__joystick.c .

Please only use characters[-+._a-zA-Z0-9] for naming your patches. Do not use any other characters besides
them. Do not name your patches likepatch-aa or patch-ab etc, always mention the path and file name in patch
names.

Do not put RCS strings in patches. SVN will mangle them when weput the files into the ports tree, and when we
check them out again, they will come out different and the patch will fail. RCS strings are surrounded by dollar ($)
signs, and typically start with$Id or $RCS.

Using the recurse (-r) option to diff(1) to generate patches is fine, but please take a look at the resulting patches to
make sure you do not have any unnecessary junk in there. In particular, diffs between two backup files,Makefile s
when the port usesImake or GNUconfigure , etc., are unnecessary and should be deleted. If you had to edit
configure.in and runautoconf to regenerateconfigure , do not take the diffs ofconfigure (it often grows to
a few thousand lines!); defineUSE_AUTOTOOLS=autoconf:261 and take the diffs ofconfigure.in .

Also, try to minimize the amount of non-functional whitespace changes in your patches. It is common in the Open
Source world for projects to share large amounts of a code base, but obey different style and indenting rules. If you
take a working piece of functionality from one project to fix similar areas in another, please be careful: the resulting
line patch may be full of non-functional changes. It not onlyincreases the size of the SVN repository but makes it
hard to find out what exactly caused the problem and what you changed at all.

If you had to delete a file, then you can do it in thepost-extract target rather than as part of the patch.

Simple replacements can be performed directly from the portMakefile using the in-place mode of sed(1). This is
very useful when you need to patch in a variable value. Example:

post-patch:
@${REINPLACE_CMD} -e ’s|for Linux|for FreeBSD|g’ ${WRKSR C}/README

Quite often, there is a situation when the software being ported, especially if it is primarily developed on Windows®,
uses the CR/LF convention for most of its source files. This may cause problems with further patching, compiler
warnings, scripts execution (/bin/sh^M not found), etc. To quickly convert all files from CR/LF to just LF, add
USE_DOS2UNIX=yesto the portMakefile . A list of files to convert can be specified:

USE_DOS2UNIX= util.c util.h

10

Chapter 4 Slow Porting

If you want to convert a group of files across subdirectories,DOS2UNIX_REGEXcan be used. Its argument is afind

compatible regular expression. More on the format is in re_format(7). This option is useful for converting all files of
a given extension, for example all source code files leaving binary files intact:

USE_DOS2UNIX= yes
DOS2UNIX_REGEX= .* \.(c|cpp|h)

If you want to create a patch file based off of an existing file, you can copy it with an.orig extension, and then
modify the original one. Themakepatch target will write out an appropriate patch file to thefiles directory of the
port.

4.5 Configuring
Include any additional customization commands in yourconfigure script and save it in thescripts subdirectory.
As mentioned above, you can also do this withMakefile targets and/or scripts with the namepre-configure or
post-configure .

4.6 Handling User Input
If your port requires user input to build, configure, or install, you must setIS_INTERACTIVE in yourMakefile .
This will allow “overnight builds” to skip your port if the user sets the variableBATCHin his environment (and if the
user sets the variableINTERACTIVE, thenonly those ports requiring interaction are built). This will save a lot of
wasted time on the set of machines that continually build ports (see below).

It is also recommended that if there are reasonable default answers to the questions, you check the
PACKAGE_BUILDINGvariable and turn off the interactive script when it is set. This will allow us to build the
packages for CDROMs and FTP.

11

Chapter 5 Configuring the Makefile
Configuring theMakefile is pretty simple, and again we suggest that you look at existing examples before starting.
Also, there is asample Makefilein this handbook, so take a look and please follow the ordering of variables and
sections in that template to make your port easier for othersto read.

Now, consider the following problems in sequence as you design your newMakefile :

5.1 The Original Source
Does it live inDISTDIR as a standardgzip ped tarball named something likefoozolix-1.2.tar.gz ? If so, you
can go on to the next step. If not, you should look at overriding any of theDISTVERSION, DISTNAME,
EXTRACT_CMD, EXTRACT_BEFORE_ARGS, EXTRACT_AFTER_ARGS, EXTRACT_SUFX, or DISTFILES variables,
depending on how alien a format your port’s distribution fileis.

In the worst case, you can simply create your owndo-extract target to override the default, though this should be
rarely, if ever, necessary.

5.2 Naming
The first part of the port’sMakefile names the port, describes its version number, and lists it inthe correct category.

5.2.1 PORTNAME and PORTVERSION

You should setPORTNAMEto the base name of your port, andPORTVERSIONto the version number of the port.

5.2.2 PORTREVISION and PORTEPOCH

5.2.2.1 PORTREVISION

ThePORTREVISIONvariable is a monotonically increasing value which is resetto 0 with every increase of
PORTVERSION(i.e., every time a new official vendor release is made), and appended to the package name if
non-zero. Changes toPORTREVISIONare used by automated tools (e.g., pkg_version(1)) to highlight the fact that a
new package is available.

PORTREVISIONshould be increased each time a change is made to the port which significantly affects the content or
structure of the derived package.

Examples of whenPORTREVISIONshould be bumped:

• Addition of patches to correct security vulnerabilities, bugs, or to add new functionality to the port.

• Changes to the portMakefile to enable or disable compile-time options in the package.

• Changes in the packing list or the install-time behavior of the package (e.g., change to a script which generates
initial data for the package, like ssh host keys).

• Version bump of a port’s shared library dependency (in this case, someone trying to install the old package after
installing a newer version of the dependency will fail sinceit will look for the old libfoo.x instead of libfoo.(x+1)).

12

Chapter 5 Configuring the Makefile

• Silent changes to the port distfile which have significant functional differences, i.e., changes to the distfile
requiring a correction todistinfo with no corresponding change toPORTVERSION, where adiff -ru of the
old and new versions shows non-trivial changes to the code.

Examples of changes which do not require aPORTREVISIONbump:

• Style changes to the port skeleton with no functional changeto what appears in the resulting package.

• Changes toMASTER_SITESor other functional changes to the port which do not affect the resulting package.

• Trivial patches to the distfile such as correction of typos, which are not important enough that users of the package
should go to the trouble of upgrading.

• Build fixes which cause a package to become compilable where it was previously failing (as long as the changes
do not introduce any functional change on any other platforms on which the port did previously build). Since
PORTREVISIONreflects the content of the package, if the package was not previously buildable then there is no
need to increasePORTREVISIONto mark a change.

A rule of thumb is to ask yourself whether a change committed to a port is something which everyone would benefit
from having (either because of an enhancement, fix, or by virtue that the new package will actually work at all), and
weigh that against that fact that it will cause everyone who regularly updates their ports tree to be compelled to
update. If yes, thePORTREVISIONshould be bumped.

5.2.2.2 PORTEPOCH

From time to time a software vendor or FreeBSD porter will do something silly and release a version of their
software which is actually numerically less than the previous version. An example of this is a port which goes from
foo-20000801 to foo-1.0 (the former will be incorrectly treated as a newer version since 20000801 is a numerically
greater value than 1).

Tip: The results of version number comparisons are not always obvious. pkg_version(1) can be used to test the
comparison of two version number strings. The pkgng equivalent is pkg version -t . For example:

% pkg_version -t 0.031 0.29

>

Or, for pkgng users:

% pkg version -t 0.031 0.29

>

The > output indicates that version 0.031 is considered greater than version 0.29, which may not have been
obvious to the porter.

In situations such as this, thePORTEPOCHversion should be increased. IfPORTEPOCHis nonzero it is appended to the
package name as described in section 0 above.PORTEPOCHmust never be decreased or reset to zero, because that
would cause comparison to a package from an earlier epoch to fail (i.e., the package would not be detected as out of
date): the new version number (e.g.,1.0,1 in the above example) is still numerically less than the previous version
(20000801), but the,1 suffix is treated specially by automated tools and found to begreater than the implied suffix
,0 on the earlier package.

13

Chapter 5 Configuring the Makefile

Dropping or resettingPORTEPOCHincorrectly leads to no end of grief; if you do not understandthe above discussion,
please keep after it until you do, or ask questions on the mailing lists.

It is expected thatPORTEPOCHwill not be used for the majority of ports, and that sensible use ofPORTVERSIONcan
often preempt it becoming necessary if a future release of the software should change the version structure. However,
care is needed by FreeBSD porters when a vendor release is made without an official version number — such as a
code “snapshot” release. The temptation is to label the release with the release date, which will cause problems as in
the example above when a new “official” release is made.

For example, if a snapshot release is made on the date 20000917, and the previous version of the software was
version 1.2, the snapshot release should be given aPORTVERSIONof 1.2.20000917 or similar, not 20000917, so that
the succeeding release, say 1.3, is still a numerically greater value.

5.2.2.3 Example of PORTREVISION and PORTEPOCH Usage

Thegtkmumble port, version0.10 , is committed to the ports collection:

PORTNAME= gtkmumble
PORTVERSION= 0.10

PKGNAMEbecomesgtkmumble-0.10 .

A security hole is discovered which requires a local FreeBSDpatch.PORTREVISIONis bumped accordingly.

PORTNAME= gtkmumble
PORTVERSION= 0.10
PORTREVISION= 1

PKGNAMEbecomesgtkmumble-0.10_1

A new version is released by the vendor, numbered0.2 (it turns out the author actually intended0.10 to actually
mean0.1.0 , not “what comes after 0.9” - oops, too late now). Since the new minor version2 is numerically less
than the previous version10, thePORTEPOCHmust be bumped to manually force the new package to be detected as
“newer”. Since it is a new vendor release of the code,PORTREVISIONis reset to 0 (or removed from theMakefile).

PORTNAME= gtkmumble
PORTVERSION= 0.2
PORTEPOCH= 1

PKGNAMEbecomesgtkmumble-0.2,1

The next release is 0.3. SincePORTEPOCHnever decreases, the version variables are now:

PORTNAME= gtkmumble
PORTVERSION= 0.3
PORTEPOCH= 1

PKGNAMEbecomesgtkmumble-0.3,1

Note: If PORTEPOCHwere reset to 0 with this upgrade, someone who had installed the gtkmumble-0.10_1

package would not detect the gtkmumble-0.3 package as newer, since 3 is still numerically less than 10.
Remember, this is the whole point of PORTEPOCHin the first place.

14

Chapter 5 Configuring the Makefile

5.2.3 PKGNAMEPREFIX and PKGNAMESUFFIX

Two optional variables,PKGNAMEPREFIXandPKGNAMESUFFIX, are combined withPORTNAMEandPORTVERSION

to formPKGNAMEas${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}. Make sure this
conforms to ourguidelines for a good package name. In particular, you arenot allowed to use a hyphen (-) in
PORTVERSION. Also, if the package name has thelanguage- or the-compiled.specifics part (see below), use
PKGNAMEPREFIXandPKGNAMESUFFIX, respectively. Do not make them part ofPORTNAME.

5.2.4 LATEST_LINK

LATEST_LINK is used during package building to determine a shortened name to create links that can be used by
pkg_add -r . This makes it possible to, for example, install the latest perl version by runningpkg_add -r perl

without knowing the exact version number. This name needs tobe unique and obvious to users.

In some cases, several versions of a program may be present inthe ports collection at the same time. Both the index
build and the package build system need to be able to see them as different, independent ports, although they may all
have the samePORTNAME, PKGNAMEPREFIX, and evenPKGNAMESUFFIX. In those cases, the optionalLATEST_LINK

variable should be set to a different value for all ports except the “main” one — see thelang/gcc46 andlang/gcc

ports, and thewww/apache * family for examples of its use. By settingNO_LATEST_LINK, no link will be generated,
which may be an option for all but the “main” version. Note that how to choose a “main” version — “most popular”,
“best supported”, “least patched”, and so on — is outside thescope of this handbook’s recommendations; we only
tell you how to specify the other ports’ versions after you have picked a “main” one.

5.2.5 Package Naming Conventions

The following are the conventions you should follow in naming your packages. This is to have our package directory
easy to scan, as there are already thousands of packages and users are going to turn away if they hurt their eyes!

The package name should look like[language[_region]]-name[[-]compiled.specifics]-version.numbers.

The package name is defined as${PKGNAMEPREFIX}${PORTNAME}${PKGNAMESUFFIX}-${PORTVERSION}.
Make sure to set the variables to conform to that format.

1. FreeBSD strives to support the native language of its users. Thelanguage- part should be a two letter
abbreviation of the natural language defined by ISO-639 if the port is specific to a certain language. Examples
areja for Japanese,ru for Russian,vi for Vietnamese,zh for Chinese,ko for Korean andde for German.

If the port is specific to a certain region within the languagearea, add the two letter country code as well.
Examples areen_US for US English andfr_CH for Swiss French.

Thelanguage- part should be set in thePKGNAMEPREFIXvariable.

2. The first letter of thename part should be lowercase. (The rest of the name may contain capital letters, so use
your own discretion when you are converting a software name that has some capital letters in it.) There is a
tradition of namingPerl 5 modules by prependingp5- and converting the double-colon separator to a hyphen;
for example, theData::Dumper module becomesp5-Data-Dumper .

3. Make sure that the port’s name and version are clearly separated and placed into thePORTNAMEand
PORTVERSIONvariables. The only reason forPORTNAMEto contain a version part is if the upstream distribution
is really named that way, as in thetextproc/libxml2 or japanese/kinput2-freewnn ports. Otherwise,
thePORTNAMEshould not contain any version-specific information. It is quite normal for several ports to have

15

Chapter 5 Configuring the Makefile

the samePORTNAME, as thewww/apache * ports do; in that case, different versions (and different index entries)
are distinguished by thePKGNAMEPREFIX, PKGNAMESUFFIX, andLATEST_LINK values.

4. If the port can be built with differenthardcoded defaults(usually part of the directory name in a family of ports),
the-compiled.specifics part should state the compiled-in defaults (the hyphen is optional). Examples are
paper size and font units.

The-compiled.specifics part should be set in thePKGNAMESUFFIXvariable.

5. The version string should follow a dash (-) and be a period-separated list of integers and single lowercase
alphabetics. In particular, it is not permissible to have another dash inside the version string. The only exception
is the stringpl (meaning “patchlevel”), which can be usedonlywhen there are no major and minor version
numbers in the software. If the software version has stringslike “alpha”, “beta”, “rc”, or “pre”, take the first
letter and put it immediately after a period. If the version string continues after those names, the numbers should
follow the single alphabet without an extra period between them.

The idea is to make it easier to sort ports by looking at the version string. In particular, make sure version
number components are always delimited by a period, and if the date is part of the string, use the
0.0. yyyy. mm. dd format, notdd. mm. yyyy or the non-Y2K compliantyy. mm. dd format. It is important to
prefix the version with0.0. in case a release with an actual version number is made, whichwould of course be
numerically less thanyyyy.

Here are some (real) examples on how to convert the name as called by the software authors to a suitable package
name:

Distribution
Name

PKGNAMEPREFIX PORTNAME PKGNAMESUFFIX PORTVERSION Reason

mule-2.2.2 (empty) mule (empty) 2.2.2 No changes
required

EmiClock-1.0.2 (empty) emiclock (empty) 1.0.2 No uppercase
names for single
programs

rdist-1.3alpha (empty) rdist (empty) 1.3.a No strings like
alpha allowed

es-0.9-beta1 (empty) es (empty) 0.9.b1 No strings like
beta allowed

mailman-2.0rc3 (empty) mailman (empty) 2.0.r3 No strings like rc

allowed

v3.3beta021.src (empty) tiff (empty) 3.3 What the heck
was that anyway?

tvtwm (empty) tvtwm (empty) pl11 Version string
always required

piewm (empty) piewm (empty) 1.0 Version string
always required

xvgr-2.10pl1 (empty) xvgr (empty) 2.10.1 pl allowed only
when no
major/minor
version numbers

16

Chapter 5 Configuring the Makefile

Distribution
Name

PKGNAMEPREFIX PORTNAME PKGNAMESUFFIX PORTVERSION Reason

gawk-2.15.6 ja- gawk (empty) 2.15.6 Japanese
language version

psutils-1.13 (empty) psutils -letter 1.13 Paper size
hardcoded at
package build
time

pkfonts (empty) pkfonts 300 1.0 Package for
300dpi fonts

If there is absolutely no trace of version information in theoriginal source and it is unlikely that the original author
will ever release another version, just set the version string to1.0 (like thepiewm example above). Otherwise, ask
the original author or use the date string (0.0. yyyy. mm. dd) as the version.

5.3 Categorization

5.3.1 CATEGORIES

When a package is created, it is put under/usr/ports/packages/All and links are made from one or more
subdirectories of/usr/ports/packages . The names of these subdirectories are specified by the variable
CATEGORIES. It is intended to make life easier for the user when he is wading through the pile of packages on the
FTP site or the CDROM. Please take a look at thecurrent list of categoriesand pick the ones that are suitable for
your port.

This list also determines where in the ports tree the port is imported. If you put more than one category here, it is
assumed that the port files will be put in the subdirectory with the name in the first category. Seebelowfor more
discussion about how to pick the right categories.

5.3.2 Current List of Categories

Here is the current list of port categories. Those marked with an asterisk (*) arevirtual categories—those that do not
have a corresponding subdirectory in the ports tree. They are only used as secondary categories, and only for search
purposes.

Note: For non-virtual categories, you will find a one-line description in the COMMENTin that subdirectory’s
Makefile .

Category Description Notes

accessibility Ports to help disabled users.

afterstep * Ports to support the AfterStep
(http://www.afterstep.org) window
manager.

17

Chapter 5 Configuring the Makefile

Category Description Notes

arabic Arabic language support.

archivers Archiving tools.

astro Astronomical ports.

audio Sound support.

benchmarks Benchmarking utilities.

biology Biology-related software.

cad Computer aided design tools.

chinese Chinese language support.

comms Communication software. Mostly software to talk to your serial
port.

converters Character code converters.

databases Databases.

deskutils Things that used to be on the desktop
before computers were invented.

devel Development utilities. Do not put libraries here just because
they are libraries—unless they truly
do not belong anywhere else, they
should not be in this category.

dns DNS-related software.

docs * Meta-ports for FreeBSD
documentation.

editors General editors. Specialized editors go in the section
for those tools (e.g., a
mathematical-formula editor will go
in math).

elisp * Emacs-lisp ports.

emulators Emulators for other operating
systems.

Terminal emulators donot belong
here—X-based ones should go to
x11 and text-based ones to either
commsor misc , depending on the
exact functionality.

finance Monetary, financial and related
applications.

french French language support.

ftp FTP client and server utilities. If your port speaks both FTPand
HTTP, put it inftp with a secondary
category ofwww.

games Games.

geography * Geography-related software.

german German language support.

gnome* Ports from the GNOME
(http://www.gnome.org) Project.

18

Chapter 5 Configuring the Makefile

Category Description Notes

gnustep * Software related to the GNUstep
desktop environment.

graphics Graphics utilities.

hamradio * Software for amateur radio.

haskell * Software related to the Haskell
language.

hebrew Hebrew language support.

hungarian Hungarian language support.

ipv6 * IPv6 related software.

irc Internet Relay Chat utilities.

japanese Japanese language support.

java Software related to the Java™
language.

The java category must not be the
only one for a port. Save for ports
directly related to the Java language,
porters are also encouraged not to use
java as the main category of a port.

kde * Ports from the KDE
(http://www.kde.org) Project.

kld * Kernel loadable modules.

korean Korean language support.

lang Programming languages.

linux * Linux applications and support
utilities.

lisp * Software related to the Lisp
language.

mail Mail software.

math Numerical computation software and
other utilities for mathematics.

mbone* MBone applications.

misc Miscellaneous utilities Basically things that do not belong
anywhere else. If at all possible, try
to find a better category for your port
thanmisc , as ports tend to get
overlooked in here.

multimedia Multimedia software.

net Miscellaneous networking software.

net-im Instant messaging software.

net-mgmt Networking management software.

net-p2p Peer to peer network applications.

news USENET news software.

palm Software support for the Palm™
(http://www.palm.com/) series.

19

Chapter 5 Configuring the Makefile

Category Description Notes

parallel * Applications dealing with parallelism
in computing.

pear * Ports related to the Pear PHP
framework.

perl5 * Ports that requirePerl version 5 to
run.

plan9 * Various programs from Plan9
(http://www.cs.bell-
labs.com/plan9dist/).

polish Polish language support.

ports-mgmt Ports for managing, installing and
developing FreeBSD ports and
packages.

portuguese Portuguese language support.

print Printing software. Desktop publishing tools
(previewers, etc.) belong here too.

python * Software related to the Python
(http://www.python.org/) language.

ruby * Software related to the Ruby
(http://www.ruby-lang.org/)
language.

rubygems * Ports of RubyGems
(http://www.rubygems.org/)
packages.

russian Russian language support.

scheme* Software related to the Scheme
language.

science Scientific ports that do not fit into
other categories such asastro ,
biology andmath .

security Security utilities.

shells Command line shells.

spanish * Spanish language support.

sysutils System utilities.

tcl * Ports that use Tcl to run.

textproc Text processing utilities. It does not include desktop
publishing tools, which go toprint .

tk * Ports that use Tk to run.

ukrainian Ukrainian language support.

vietnamese Vietnamese language support.

windowmaker * Ports to support the WindowMaker
window manager.

20

Chapter 5 Configuring the Makefile

Category Description Notes

www Software related to the World Wide
Web.

HTML language support belongs
here too.

x11 The X Window System and friends. This category is only for software
that directly supports the window
system. Do not put regular X
applications here; most of them
should go into otherx11- *
categories (see below).

x11-clocks X11 clocks.

x11-drivers X11 drivers.

x11-fm X11 file managers.

x11-fonts X11 fonts and font utilities.

x11-servers X11 servers.

x11-themes X11 themes.

x11-toolkits X11 toolkits.

x11-wm X11 window managers.

xfce * Ports related to the Xfce
(http://www.xfce.org/) desktop
environment.

zope * Zope (http://www.zope.org/) support.

5.3.3 Choosing the Right Category

As many of the categories overlap, you often have to choose which of the categories should be the primary category
of your port. There are several rules that govern this issue.Here is the list of priorities, in decreasing order of
precedence:

• The first category must be a physical category (seeabove). This is necessary to make the packaging work. Virtual
categories and physical categories may be intermixed afterthat.

• Language specific categories always come first. For example,if your port installs Japanese X11 fonts, then your
CATEGORIESline would readjapanese x11-fonts .

• Specific categories are listed before less-specific ones. For instance, an HTML editor should be listed aswww

editors , not the other way around. Also, you should not listnet when the port belongs to any ofirc , mail ,
news, security , or www, asnet is included implicitly.

• x11 is used as a secondary category only when the primary category is a natural language. In particular, you
should not putx11 in the category line for X applications.

• Emacsmodes should be placed in the same ports category as the application supported by the mode, not in
editors . For example, anEmacsmode to edit source files of some programming language shouldgo into lang .

• Ports which install loadable kernel modules should have thevirtual categorykld in their CATEGORIESline.

21

Chapter 5 Configuring the Makefile

• misc should not appear with any other non-virtual category. If you havemisc with something else in your
CATEGORIESline, that means you can safely deletemisc and just put the port in that other subdirectory!

• If your port truly does not belong anywhere else, put it inmisc .

If you are not sure about the category, please put a comment tothat effect in your send-pr(1) submission so we can
discuss it before we import it. If you are a committer, send a note to the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports) so we can discuss it first. Too often, new ports are imported
to the wrong category only to be moved right away. This causesunnecessary and undesirable bloat in the master
source repository.

5.3.4 Proposing a New Category

As the Ports Collection has grown over time, various new categories have been introduced. New categories can either
bevirtual categories—those that do not have a corresponding subdirectory in the ports tree— orphysical
categories—those that do. The following text discusses theissues involved in creating a new physical category so
that you can understand them before you propose one.

Our existing practice has been to avoid creating a new physical category unless either a large number of ports would
logically belong to it, or the ports that would belong to it are a logically distinct group that is of limited general
interest (for instance, categories related to spoken humanlanguages), or preferably both.

The rationale for this is that such a change creates a fair amount of work
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/committers-guide/#ports) for both the committers and also
for all users who track changes to the Ports Collection. In addition, proposed category changes just naturally seem to
attract controversy. (Perhaps this is because there is no clear consensus on when a category is “too big”, nor whether
categories should lend themselves to browsing (and thus what number of categories would be an ideal number), and
so forth.)

Here is the procedure:

1. Propose the new category on FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports). You should include a detailed rationale for the new
category, including why you feel the existing categories are not sufficient, and the list of existing ports proposed
to move. (If there are new ports pending inGNATS that would fit this category, list them too.) If you are the
maintainer and/or submitter, respectively, mention that as it may help you to make your case.

2. Participate in the discussion.

3. If it seems that there is support for your idea, file a PR which includes both the rationale and the list of existing
ports that need to be moved. Ideally, this PR should also include patches for the following:

• Makefile s for the new ports once they are repocopied

• Makefile for the new category

• Makefile for the old ports’ categories

• Makefile s for ports that depend on the old ports

• (for extra credit, you can include the other files that have tochange, as per the procedure in the Committer’s
Guide.)

22

Chapter 5 Configuring the Makefile

4. Since it affects the ports infrastructure and involves not only performing repo-copies but also possibly running
regression tests on the build cluster, the PR should be assigned to the Ports Management Team
<portmgr@FreeBSD.org >.

5. If that PR is approved, a committer will need to follow the rest of the procedure that is outlined in the
Committer’s Guide
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/committers-guide/article.html#PORTS).

Proposing a new virtual category should be similar to the above but much less involved, since no ports will actually
have to move. In this case, the only patches to include in the PR would be those to add the new category to the
CATEGORIESof the affected ports.

5.3.5 Proposing Reorganizing All the Categories

Occasionally someone proposes reorganizing the categories with either a 2-level structure, or some other kind of
keyword structure. To date, nothing has come of any of these proposals because, while they are very easy to make,
the effort involved to retrofit the entire existing ports collection with any kind of reorganization is daunting to say the
very least. Please read the history of these proposals in themailing list archives before you post this idea;
furthermore, you should be prepared to be challenged to offer a working prototype.

5.4 The Distribution Files
The second part of theMakefile describes the files that must be downloaded in order to build the port, and where
they can be downloaded from.

5.4.1 DISTVERSION/DISTNAME

DISTNAMEis the name of the port as called by the authors of the software. DISTNAMEdefaults to
${PORTNAME}-${PORTVERSION}, so override it only if necessary.DISTNAMEis only used in two places. First, the
distribution file list (DISTFILES) defaults to${DISTNAME}${EXTRACT_SUFX} . Second, the distribution file is
expected to extract into a subdirectory namedWRKSRC, which defaults towork/ ${DISTNAME} .

Some vendor’s distribution names which do not fit into the${PORTNAME}-${PORTVERSION}-scheme can be
handled automatically by settingDISTVERSION. PORTVERSIONandDISTNAMEwill be derived automatically, but
can of course be overridden. The following table lists some examples:

DISTVERSION PORTVERSION

0.7.1d 0.7.1.d

10Alpha3 10.a3

3Beta7-pre2 3.b7.p2

8:f_17 8f.17

Note: PKGNAMEPREFIXand PKGNAMESUFFIXdo not affect DISTNAME. Also note that if WRKSRCis equal to
work/ ${PORTNAME}-${PORTVERSION} while the original source archive is named something other than
${PORTNAME}-${PORTVERSION}${EXTRACT_SUFX}, you should probably leave DISTNAMEalone— you are better
off defining DISTFILES than having to set both DISTNAMEand WRKSRC(and possibly EXTRACT_SUFX).

23

Chapter 5 Configuring the Makefile

5.4.2 MASTER_SITES

Record the directory part of the FTP/HTTP-URL pointing at the original tarball inMASTER_SITES. Do not forget the
trailing slash (/)!

Themake macros will try to use this specification for grabbing the distribution file with FETCHif they cannot find it
already on the system.

It is recommended that you put multiple sites on this list, preferably from different continents. This will safeguard
against wide-area network problems. We are even planning toadd support for automatically determining the closest
master site and fetching from there; having multiple sites will go a long way towards helping this effort.

If the original tarball is part of one of the popular archivessuch as SourceForge, GNU, or Perl CPAN, you may be
able refer to those sites in an easy compact form usingMASTER_SITE_* (e.g.,MASTER_SITE_SOURCEFORGE,
MASTER_SITE_GNUandMASTER_SITE_PERL_CPAN). Simply setMASTER_SITESto one of these variables and
MASTER_SITE_SUBDIRto the path within the archive. Here is an example:

MASTER_SITES= ${MASTER_SITE_GNU}
MASTER_SITE_SUBDIR= make

Or you can use a condensed format:

MASTER_SITES= GNU/make

These variables are defined in/usr/ports/Mk/bsd.sites.mk . There are new entries added all the time, so make
sure to check the latest version of this file before submitting a port.

Severalmagicmacros exist for popular sites with a predictable directorystructure. For these, just use the
abbreviation and the system will try to guess the correct subdirectory for you.

MASTER_SITES= SF

If the guess is incorrect, it can be overridden as follows.

MASTER_SITES= SF/stardict/WyabdcRealPeopleTTS/${PORT VERSION}

This can be also written as

MASTER_SITES= SF
MASTER_SITE_SUBDIR= stardict/WyabdcRealPeopleTTS/${P ORTVERSION}

Table 5-1. Popular MagicMASTER_SITES Macros

Macro Assumed subdirectory

APACHE_JAKARTA /dist/jakarta/${PORTNAME:S,-„/,}/source

BERLIOS /${PORTNAME:L}

CHEESESHOP /packages/source/source/${DISTNAME:C/(.). * /\1/}/${DISTNAME:

24

Chapter 5 Configuring the Makefile

Macro Assumed subdirectory

DEBIAN /debian/pool/main/${PORTNAME:C/^((lib)?.). * $/\1/}/${PORTNAM

GCC /pub/gcc/releases/${DISTNAME}

GNOME /pub/GNOME/sources/${PORTNAME}/${PORTVERSION:C/^([0 -9]+\.[0

GNU /gnu/${PORTNAME}

MOZDEV /pub/mozdev/${PORTNAME:L}

PERL_CPAN /pub/CPAN/modules/by-module/${PORTNAME:C/-. * //}

PYTHON /ftp/python/${PYTHON_PORTVERSION:C/rc[0-9]//}

RUBYFORGE /${PORTNAME:L}

SAVANNAH /${PORTNAME:L}

SF /project/${PORTNAME:L}/${PORTNAME:L}/${PORTVERSION}

5.4.3 EXTRACT_SUFX

If you have one distribution file, and it uses an odd suffix to indicate the compression mechanism, set
EXTRACT_SUFX.

For example, if the distribution file was namedfoo.tgz instead of the more normalfoo.tar.gz , you would write:

DISTNAME= foo
EXTRACT_SUFX= .tgz

TheUSE_BZIP2, USE_XZandUSE_ZIP variables automatically setEXTRACT_SUFXto .tar.bz2 , .tar.xz or
.zip as necessary. If neither of these are set thenEXTRACT_SUFXdefaults to.tar.gz .

Note: You never need to set both EXTRACT_SUFXand DISTFILES .

5.4.4 DISTFILES

Sometimes the names of the files to be downloaded have no resemblance to the name of the port. For example, it
might be calledsource.tar.gz or similar. In other cases the application’s source code might be in several different
archives, all of which must be downloaded.

If this is the case, setDISTFILES to be a space separated list of all the files that must be downloaded.

DISTFILES= source1.tar.gz source2.tar.gz

If not explicitly set,DISTFILES defaults to${DISTNAME}${EXTRACT_SUFX} .

25

Chapter 5 Configuring the Makefile

5.4.5 EXTRACT_ONLY

If only some of theDISTFILES must be extracted—for example, one of them is the source code, while another is an
uncompressed document—list the filenames that must be extracted inEXTRACT_ONLY.

DISTFILES= source.tar.gz manual.html
EXTRACT_ONLY= source.tar.gz

If noneof theDISTFILES should be uncompressed then setEXTRACT_ONLYto the empty string.

EXTRACT_ONLY=

5.4.6 PATCHFILES

If your port requires some additional patches that are available by FTP or HTTP, setPATCHFILESto the names of the
files andPATCH_SITESto the URL of the directory that contains them (the format is the same asMASTER_SITES).

If the patch is not relative to the top of the source tree (i.e., WRKSRC) because it contains some extra pathnames, set
PATCH_DIST_STRIPaccordingly. For instance, if all the pathnames in the patchhave an extrafoozolix-1.0/ in
front of the filenames, then setPATCH_DIST_STRIP=-p1 .

Do not worry if the patches are compressed; they will be decompressed automatically if the filenames end with.gz

or .Z .

If the patch is distributed with some other files, such as documentation, in agzip ped tarball, you cannot just use
PATCHFILES. If that is the case, add the name and the location of the patchtarball toDISTFILES and
MASTER_SITES. Then, use theEXTRA_PATCHESvariable to point to those files andbsd.port.mk will
automatically apply them for you. In particular, donot copy patch files into thePATCHDIRdirectory—that directory
may not be writable.

Note: The tarball will have been extracted alongside the regular source by then, so there is no need to explicitly
extract it if it is a regular gzip ped or compress ed tarball. If you do the latter, take extra care not to overwrite
something that already exists in that directory. Also, do not forget to add a command to remove the copied patch
in the pre-clean target.

5.4.7 Multiple Distribution Files or Patches from Differen t Sites and Subdirectories
(MASTER_SITES:n)

(Consider this to be a somewhat “advanced topic”; those new to this document may wish to skip this section at first).

This section has information on the fetching mechanism known as bothMASTER_SITES:n andMASTER_SITES_NN.
We will refer to this mechanism asMASTER_SITES:n.

A little background first. OpenBSD has a neat feature inside theDISTFILES andPATCHFILESvariables which
allows files and patches to be postfixed with:n identifiers. Here,n can be both[0-9] and denote a group
designation. For example:

DISTFILES= alpha:0 beta:1

26

Chapter 5 Configuring the Makefile

In OpenBSD, distribution filealpha will be associated with variableMASTER_SITES0instead of our common
MASTER_SITESandbeta with MASTER_SITES1.

This is a very interesting feature which can decrease that endless search for the correct download site.

Just picture 2 files inDISTFILES and 20 sites inMASTER_SITES, the sites slow as hell wherebeta is carried by all
sites inMASTER_SITES, andalpha can only be found in the 20th site. It would be such a waste to check all of them
if the maintainer knew this beforehand, would it not? Not a good start for that lovely weekend!

Now that you have the idea, just imagine moreDISTFILES and moreMASTER_SITES. Surely our “distfiles survey
meister” would appreciate the relief to network strain thatthis would bring.

In the next sections, information will follow on the FreeBSDimplementation of this idea. We improved a bit on
OpenBSD’s concept.

5.4.7.1 Simplified Information

This section tells you how to quickly prepare fine grained fetching of multiple distribution files and patches from
different sites and subdirectories. We describe here a caseof simplifiedMASTER_SITES:n usage. This will be
sufficient for most scenarios. However, if you need further information, you will have to refer to the next section.

Some applications consist of multiple distribution files that must be downloaded from a number of different sites. For
example,Ghostscript consists of the core of the program, and then a large number ofdriver files that are used
depending on the user’s printer. Some of these driver files are supplied with the core, but many others must be
downloaded from a variety of different sites.

To support this, each entry inDISTFILES may be followed by a colon and a “tag name”. Each site listed in
MASTER_SITESis then followed by a colon, and the tag that indicates which distribution files should be downloaded
from this site.

For example, consider an application with the source split in two parts,source1.tar.gz andsource2.tar.gz ,
which must be downloaded from two different sites. The port’sMakefile would include lines likeExample 5-1.

Example 5-1. Simplified Use ofMASTER_SITES:n with One File Per Site

MASTER_SITES= ftp://ftp.example1.com/:source1 \
ftp://ftp.example2.com/:source2

DISTFILES= source1.tar.gz:source1 \
source2.tar.gz:source2

Multiple distribution files can have the same tag. Continuing the previous example, suppose that there was a third
distfile,source3.tar.gz , that should be downloaded fromftp.example2.com . TheMakefile would then be
written likeExample 5-2.

Example 5-2. Simplified Use ofMASTER_SITES:n with More Than One File Per Site

MASTER_SITES= ftp://ftp.example1.com/:source1 \
ftp://ftp.example2.com/:source2

DISTFILES= source1.tar.gz:source1 \
source2.tar.gz:source2 \
source3.tar.gz:source2

27

Chapter 5 Configuring the Makefile

5.4.7.2 Detailed Information

Okay, so the previous section example did not reflect your needs? In this section we will explain in detail how the
fine grained fetching mechanismMASTER_SITES:n works and how you can modify your ports to use it.

1. Elements can be postfixed with: n wheren is [^:,]+ , i.e.,n could conceptually be any alphanumeric string but
we will limit it to [a-zA-Z_][0-9a-zA-Z_]+ for now.

Moreover, string matching is case sensitive; i.e.,n is different fromN.

However, the following words cannot be used for postfixing purposes since they yield special meaning:
default , all andALL (they are used internally in itemii). Furthermore,DEFAULTis a special purpose word
(check item3).

2. Elements postfixed with:n belong to the groupn, :m belong to groupmand so forth.

3. Elements without a postfix are groupless, i.e., they all belong to the special groupDEFAULT. If you postfix any
elements withDEFAULT, you are just being redundant unless you want to have an element belonging to both
DEFAULTand other groups at the same time (check item5).

The following examples are equivalent but the first one is preferred:

MASTER_SITES= alpha

MASTER_SITES= alpha:DEFAULT

4. Groups are not exclusive, an element may belong to severaldifferent groups at the same time and a group can
either have either several different elements or none at all. Repeated elements within the same group will be
simply that, repeated elements.

5. When you want an element to belong to several groups at the same time, you can use the comma operator (,).

Instead of repeating it several times, each time with a different postfix, we can list several groups at once in a
single postfix. For instance,:m,n,o marks an element that belongs to groupm, n ando.

All the following examples are equivalent but the last one ispreferred:

MASTER_SITES= alpha alpha:SOME_SITE

MASTER_SITES= alpha:DEFAULT alpha:SOME_SITE

MASTER_SITES= alpha:SOME_SITE,DEFAULT

MASTER_SITES= alpha:DEFAULT,SOME_SITE

6. All sites within a given group are sorted according toMASTER_SORT_AWK. All groups withinMASTER_SITES

andPATCH_SITESare sorted as well.

7. Group semantics can be used in any of the following variablesMASTER_SITES, PATCH_SITES,
MASTER_SITE_SUBDIR, PATCH_SITE_SUBDIR, DISTFILES , andPATCHFILESaccording to the following
syntax:

a. All MASTER_SITES, PATCH_SITES, MASTER_SITE_SUBDIRandPATCH_SITE_SUBDIRelements must be
terminated with the forward slash/ character. If any elements belong to any groups, the group postfix : n

must come right after the terminator/ . TheMASTER_SITES:n mechanism relies on the existence of the
terminator/ to avoid confusing elements where a:n is a valid part of the element with occurrences where
:n denotes groupn. For compatibility purposes, since the/ terminator was not required before in both
MASTER_SITE_SUBDIRandPATCH_SITE_SUBDIRelements, if the postfix immediate preceding character
is not a/ then:n will be considered a valid part of the element instead of a group postfix even if an element
is postfixed with:n . See bothExample 5-3andExample 5-4.

28

Chapter 5 Configuring the Makefile

Example 5-3. Detailed Use ofMASTER_SITES:n in MASTER_SITE_SUBDIR

MASTER_SITE_SUBDIR= old:n new/:NEW

• Directories within groupDEFAULT-> old:n

• Directories within groupNEW-> new

Example 5-4. Detailed Use ofMASTER_SITES:n with Comma Operator, Multiple Files, Multiple Sites
and Multiple Subdirectories

MASTER_SITES= http://site1/%SUBDIR%/ http://site2/:DE FAULT \
http://site3/:group3 http://site4/:group4 \
http://site5/:group5 http://site6/:group6 \
http://site7/:DEFAULT,group6 \
http://site8/%SUBDIR%/:group6,group7 \
http://site9/:group8

DISTFILES= file1 file2:DEFAULT file3:group3 \
file4:group4,group5,group6 file5:grouping \
file6:group7

MASTER_SITE_SUBDIR= directory-trial:1 directory-n/:gr oupn \
directory-one/:group6,DEFAULT \
directory

The previous example results in the following fine grained fetching. Sites are listed in the exact order they
will be used.

• file1 will be fetched from

• MASTER_SITE_OVERRIDE

• http://site1/directory-trial:1/

• http://site1/directory-one/

• http://site1/directory/

• http://site2/

• http://site7/

• MASTER_SITE_BACKUP

• file2 will be fetched exactly asfile1 since they both belong to the same group

• MASTER_SITE_OVERRIDE

• http://site1/directory-trial:1/

• http://site1/directory-one/

• http://site1/directory/

• http://site2/

• http://site7/

• MASTER_SITE_BACKUP

29

Chapter 5 Configuring the Makefile

• file3 will be fetched from

• MASTER_SITE_OVERRIDE

• http://site3/

• MASTER_SITE_BACKUP

• file4 will be fetched from

• MASTER_SITE_OVERRIDE

• http://site4/

• http://site5/

• http://site6/

• http://site7/

• http://site8/directory-one/

• MASTER_SITE_BACKUP

• file5 will be fetched from

• MASTER_SITE_OVERRIDE

• MASTER_SITE_BACKUP

• file6 will be fetched from

• MASTER_SITE_OVERRIDE

• http://site8/

• MASTER_SITE_BACKUP

8. How do I group one of the special variables frombsd.sites.mk , e.g.,MASTER_SITE_SOURCEFORGE?

SeeExample 5-5.

Example 5-5. Detailed Use ofMASTER_SITES:n with MASTER_SITE_SOURCEFORGE

MASTER_SITES= http://site1/ ${MASTER_SITE_SOURCEFORGE :S/$/:sourceforge,TEST/}
DISTFILES= something.tar.gz:sourceforge

something.tar.gz will be fetched from all sites withinMASTER_SITE_SOURCEFORGE.

9. How do I use this withPATCH* variables?

30

Chapter 5 Configuring the Makefile

All examples were done withMASTER* variables but they work exactly the same forPATCH* ones as can be seen
in Example 5-6.

Example 5-6. Simplified Use ofMASTER_SITES:n with PATCH_SITES

PATCH_SITES= http://site1/ http://site2/:test
PATCHFILES= patch1:test

5.4.7.3 What Does Change for Ports? What Does Not?

i. All current ports remain the same. TheMASTER_SITES:n feature code is only activated if there are elements
postfixed with: n like elements according to the aforementioned syntax rules, especially as shown in item7.

ii. The port targets remain the same:checksum , makesum, patch , configure , build , etc. With the obvious
exceptions ofdo-fetch , fetch-list , master-sites andpatch-sites .

• do-fetch : deploys the new grouping postfixedDISTFILES andPATCHFILESwith their matching group
elements within bothMASTER_SITESandPATCH_SITESwhich use matching group elements within both
MASTER_SITE_SUBDIRandPATCH_SITE_SUBDIR. CheckExample 5-4.

• fetch-list : works like oldfetch-list with the exception that it groups just likedo-fetch .

• master-sites andpatch-sites : (incompatible with older versions) only return the elements of group
DEFAULT; in fact, they execute targetsmaster-sites-default andpatch-sites-default respectively.

Furthermore, using target eithermaster-sites-all or patch-sites-all is preferred to directly checking
eitherMASTER_SITESor PATCH_SITES. Also, directly checking is not guaranteed to work in any future
versions. Check itemiii.ii for more information on these new port targets.

iii. New port targets

i. There aremaster-sites- n andpatch-sites- n targets which will list the elements of the respective
groupn within MASTER_SITESandPATCH_SITESrespectively. For instance, both
master-sites-DEFAULT andpatch-sites-DEFAULT will return the elements of groupDEFAULT,
master-sites-test andpatch-sites-test of grouptest , and thereon.

ii. There are new targetsmaster-sites-all andpatch-sites-all which do the work of the old
master-sites andpatch-sites ones. They return the elements of all groups as if they all belonged to
the same group with the caveat that it lists as manyMASTER_SITE_BACKUPandMASTER_SITE_OVERRIDE

as there are groups defined within eitherDISTFILES or PATCHFILES; respectively for
master-sites-all andpatch-sites-all .

5.4.8 DIST_SUBDIR

Do not let your port clutter/usr/ports/distfiles . If your port requires a lot of files to be fetched, or containsa
file that has a name that might conflict with other ports (e.g.,Makefile), setDIST_SUBDIR to the name of the port

31

Chapter 5 Configuring the Makefile

(${PORTNAME}or ${PKGNAMEPREFIX}${PORTNAME}should work fine). This will changeDISTDIR from the
default/usr/ports/distfiles to /usr/ports/distfiles/ DIST_SUBDIR, and in effect puts everything that is
required for your port into that subdirectory.

It will also look at the subdirectory with the same name on thebackup master site atftp.FreeBSD.org . (Setting
DISTDIR explicitly in yourMakefile will not accomplish this, so please useDIST_SUBDIR.)

Note: This does not affect the MASTER_SITESyou define in your Makefile .

5.4.9 ALWAYS_KEEP_DISTFILES

If your port uses binary distfiles and has a license that requires that the source code is provided with packages
distributed in binary form, e.g., GPL,ALWAYS_KEEP_DISTFILESwill instruct the FreeBSD build cluster to keep a
copy of the files specified inDISTFILES . Users of these ports will generally not need these files, so it is a good idea
to only add the source distfiles toDISTFILES whenPACKAGE_BUILDINGis defined.

Example 5-7. Use ofALWAYS_KEEP_DISTFILES

.if defined(PACKAGE_BUILDING)
DISTFILES+= foo.tar.gz

ALWAYS_KEEP_DISTFILES= yes
.endif

When adding extra files toDISTFILES , make sure you also add them todistinfo . Also, the additional files will
normally be extracted intoWRKDIRas well, which for some ports may lead to undesirable side effects and require
special handling.

5.5 MAINTAINER

Set your mail-address here. Please.:-)

Note that only a single address without the comment part is allowed as aMAINTAINERvalue. The format used should
beuser@hostname.domain . Please do not include any descriptive text such as your realname in this entry—that
merely confusesbsd.port.mk .

The maintainer is responsible for keeping the port up to date, and ensuring the port works correctly. For a detailed
description of the responsibilities of a port maintainer, refer to the The challenge for port maintainers
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributing-ports/maintain-port.html) section.

Changes to the port will be sent to the maintainer of a port forreview and approval before being committed. If the
maintainer does not respond to an update request after two weeks (excluding major public holidays), then that is
considered a maintainer timeout, and the update may be made without explicit maintainer approval. If the maintainer
does not respond within three months, then that maintainer is considered absent without leave, and can be replaced as
the maintainer of the particular port in question. Exceptions to this are anything maintained by the Ports Management
Team <portmgr@FreeBSD.org >, or the Security Officer Team <security-officer@FreeBSD.org >. No
unauthorized commits may ever be made to ports maintained bythose groups.

32

Chapter 5 Configuring the Makefile

We reserve the right to modify the maintainer’s submission to better match existing policies and style of the Ports
Collection without explicit blessing from the submitter. Also, large infrastructural changes can result in a port being
modified without the maintainer’s consent. These kinds of changes will never affect the port’s functionality.

The Ports Management Team <portmgr@FreeBSD.org > reserves the right to revoke or override anyone’s
maintainership for any reason, and the Security Officer Team<security-officer@FreeBSD.org > reserves the
right to revoke or override maintainership for security reasons.

5.6 COMMENT

This is a one-line description of the port. Please respect the following rules:

1. Try to keep the COMMENT value at no longer than 70 characters, as this line will be used by the pkg_info(1)
utility to display a one-line summary of the port;

2. Donot include the package name (or version number of the software);

3. The comment should begin with a capital and end without a period;

4. Do not start with an indefinite article (i.e., A or An);

5. Names are capitalized (for example, Apache, JavaScript,Perl);

6. For lists of words, use the Oxford comma (e.g., green, red, and blue);

7. Spell check the text.

Here is an example:

COMMENT= Cat chasing a mouse all over the screen

The COMMENT variable should immediately follow the MAINTAINER variable in theMakefile .

5.7 PORTSCOUT

Portscout is an automated distfile check utility for the FreeBSD Ports Collection, described in detail inSection 14.5.

ThePORTSCOUTvariable defines special conditions within which thePortscoutdistfile scanner should be restricted.

Situations where thePORTSCOUTvariable should be set include:

• When distfiles should be ignored, whether for specific versions, or specific minor revisions. For example, to
exclude version8.2 from distfile version checks because it is known to be broken,add:

PORTSCOUT= ignore:8.2

• When specific versions or specific major and minor revisions of a distfile should be checked. For example, if only
version0.6.4 should be monitored because newer versions have compatablity issues with FreeBSD, add:

PORTSCOUT= limit:^0\.6\.4

• When URLs listing the available versions differ from the download URLs. For example, to limit distfile version
checks to the download page for thedatabases/pgtune port, add:

PORTSCOUT= site:http://pgfoundry.org/frs/?group_id=1 000416

33

Chapter 5 Configuring the Makefile

5.8 Dependencies
Many ports depend on other ports. This is a very convenient feature of most Unix-like operating systems, including
FreeBSD. Multiple ports can share a common dependency, rather than bundling that dependency with every port or
package that needs it. There are seven variables that can be used to ensure that all the required bits will be on the
user’s machine. There are also some pre-supported dependency variables for common cases, plus a few more to
control the behavior of dependencies.

5.8.1 LIB_DEPENDS

This variable specifies the shared libraries this port depends on. It is a list oflib:dir tuples wherelib is the name
of the shared library,dir is the directory in which to find it in case it is not available.For example,

LIB_DEPENDS= libjpeg.so:${PORTSDIR}/graphics/jpeg

will check for a shared jpeg library with any version, and descend into thegraphics/jpeg subdirectory of your
ports tree to build and install it if it is not found.

The dependency is checked twice, once from within theextract target and then from within theinstall target.
Also, the name of the dependency is put into the package so that pkg_add(1) will automatically install it if it is not on
the user’s system.

5.8.2 RUN_DEPENDS

This variable specifies executables or files this port depends on during run-time. It is a list ofpath:dir[:target]
tuples wherepath is the name of the executable or file,dir is the directory in which to find it in case it is not
available, andtarget is the target to call in that directory. Ifpath starts with a slash (/), it is treated as a file and its
existence is tested withtest -e ; otherwise, it is assumed to be an executable, andwhich -s is used to determine if
the program exists in the search path.

For example,

RUN_DEPENDS= ${LOCALBASE}/news/bin/innd:${PORTSDIR}/ news/inn \
xmlcatmgr:${PORTSDIR}/textproc/xmlcatmgr

will check if the file or directory/usr/local/news/bin/innd exists, and build and install it from thenews/inn

subdirectory of the ports tree if it is not found. It will alsosee if an executable calledxmlcatmgr is in the search
path, and descend into thetextproc/xmlcatmgr subdirectory of your ports tree to build and install it if it is not
found.

Note: In this case, innd is actually an executable; if an executable is in a place that is not expected to be in the
search path, you should use the full pathname.

Note: The official search PATHused on the ports build cluster is

/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/ local/bin

34

Chapter 5 Configuring the Makefile

The dependency is checked from within theinstall target. Also, the name of the dependency is put into the
package so that pkg_add(1) will automatically install it ifit is not on the user’s system. Thetarget part can be
omitted if it is the same asDEPENDS_TARGET.

A quite common situation is whenRUN_DEPENDSis literally the same asBUILD_DEPENDS, especially if ported
software is written in a scripted language or if it requires the same build and run-time environment. In this case, it is
both tempting and intuitive to directly assign one to the other:

RUN_DEPENDS= ${BUILD_DEPENDS}

However, such assignment can pollute run-time dependencies with entries not defined in the port’s original
BUILD_DEPENDS. This happens because of make(1)’s lazy evaluation of variable assignment. Consider aMakefile

with USE_* variables, which are processed byports/Mk/bsd. * .mk to augment initial build dependencies. For
example,USES= gmakeaddsdevel/gmake to BUILD_DEPENDS. To prevent such additional dependencies from
pollutingRUN_DEPENDS, take care to assign with expansion, i.e., expand the value before assigning it to the variable:

RUN_DEPENDS:= ${BUILD_DEPENDS}

5.8.3 BUILD_DEPENDS

This variable specifies executables or files this port requires to build. LikeRUN_DEPENDS, it is a list of
path:dir[:target] tuples. For example,

BUILD_DEPENDS= unzip:${PORTSDIR}/archivers/unzip

will check for an executable calledunzip , and descend into thearchivers/unzip subdirectory of your ports tree
to build and install it if it is not found.

Note: “build” here means everything from extraction to compilation. The dependency is checked from within the
extract target. The target part can be omitted if it is the same as DEPENDS_TARGET

5.8.4 FETCH_DEPENDS

This variable specifies executables or files this port requires to fetch. Like the previous two, it is a list of
path:dir[:target] tuples. For example,

FETCH_DEPENDS= ncftp2:${PORTSDIR}/net/ncftp2

will check for an executable calledncftp2 , and descend into thenet/ncftp2 subdirectory of your ports tree to
build and install it if it is not found.

The dependency is checked from within thefetch target. Thetarget part can be omitted if it is the same as
DEPENDS_TARGET.

35

Chapter 5 Configuring the Makefile

5.8.5 EXTRACT_DEPENDS

This variable specifies executables or files this port requires for extraction. Like the previous, it is a list of
path:dir[:target] tuples. For example,

EXTRACT_DEPENDS= unzip:${PORTSDIR}/archivers/unzip

will check for an executable calledunzip , and descend into thearchivers/unzip subdirectory of your ports tree
to build and install it if it is not found.

The dependency is checked from within theextract target. Thetarget part can be omitted if it is the same as
DEPENDS_TARGET.

Note: Use this variable only if the extraction does not already work (the default assumes gzip) and cannot be
made to work using USE_ZIP or USE_BZIP2 described in Section 5.8.8.

5.8.6 PATCH_DEPENDS

This variable specifies executables or files this port requires to patch. Like the previous, it is a list of
path:dir[:target] tuples. For example,

PATCH_DEPENDS= ${NONEXISTENT}:${PORTSDIR}/java/jfc:e xtract

will descend into thejava/jfc subdirectory of your ports tree to extract it.

The dependency is checked from within thepatch target. Thetarget part can be omitted if it is the same as
DEPENDS_TARGET.

5.8.7 USES

There several parameters exist for defining different kind of features and dependencies that the port in question uses.
They can be specified by adding the following line to theMakefile of the port:

USES= feature[:arguments]

For the complete list of such values, please seeSection 15.1.

Warning: USEScannot be assigned after inclusion of bsd.port.pre.mk .

5.8.8 USE_*

Several variables exist to define common dependencies shared by many ports. Their use is optional, but helps to
reduce the verbosity of the portMakefile s. Each of them is styled asUSE_*. These variables may be used only in
the portMakefile s andports/Mk/bsd. * .mk . They are not meant for user-settable options — usePORT_OPTIONS

for that purpose.

36

Chapter 5 Configuring the Makefile

Note: It is always incorrect to set any USE_* in /etc/make.conf . For instance, setting

USE_GCC=X.Y

(where X.Y is version number) would add a dependency on gccXY for every port, including lang/gccXY itself!

Table 5-2. TheUSE_* Variables

Variable Means

USE_BZIP2 The port’s tarballs are compressed withbzip2 .

USE_ZIP The port’s tarballs are compressed withzip .

USE_GCC The port requires GCC (gcc or g++) to build. Some
ports need any GCC version, some require modern,
recent versions. It is typically set toany (in this case,
GCC from base would be used on versions of FreeBSD
that still have it, orlang/gcc port would be installed
when default C/C++ compiler is Clang); oryes (means
always use stable, modern GCC fromlang/gcc port).
The exact version can be also specified, with a value
such as4.7 . The minimal required version can be
specified as4.6+ . The GCC from the base system is
used when it satisfies the requested version, otherwise an
appropriate compiler in built from the port, and theCC

andCXXvariables are adjusted accordingly.

Variables related togmakeand theconfigure script are described inSection 6.3, while autoconf, automakeand
libtool are described inSection 6.4. Perl related variables are described inSection 6.6. X11 variables are listed in
Section 6.7. Section 6.8deals with GNOME andSection 6.10with KDE related variables.Section 6.11documents
Java variables, whileSection 6.12contains information onApache, PHP and PEAR modules.Python is discussed
in Section 6.13, while Ruby in Section 6.16. Section 6.17provides variables used forSDL applications and finally,
Section 6.20contains information onXfce.

5.8.9 Minimal Version of a Dependency

A minimal version of a dependency can be specified in any* _DEPENDSvariable exceptLIB_DEPENDSusing the
following syntax:

p5-Spiffy>=0.26:${PORTSDIR}/devel/p5-Spiffy

The first field contains a dependent package name, which must match the entry in the package database, a comparison
sign, and a package version. The dependency is satisfied if p5-Spiffy-0.26 or newer is installed on the machine.

5.8.10 Notes on Dependencies

As mentioned above, the default target to call when a dependency is required isDEPENDS_TARGET. It defaults to
install . This is a user variable; it is never defined in a port’sMakefile . If your port needs a special way to handle

37

Chapter 5 Configuring the Makefile

a dependency, use the:target part of the* _DEPENDSvariables instead of redefiningDEPENDS_TARGET.

When you typemake clean , its dependencies are automatically cleaned too. If you do not wish this to happen,
define the variableNOCLEANDEPENDSin your environment. This may be particularly desirable if the port has
something that takes a long time to rebuild in its dependencylist, such as KDE, GNOME or Mozilla.

To depend on another port unconditionally, use the variable${NONEXISTENT} as the first field ofBUILD_DEPENDS

or RUN_DEPENDS. Use this only when you need to get the source of the other port. You can often save compilation
time by specifying the target too. For instance

BUILD_DEPENDS= ${NONEXISTENT}:${PORTSDIR}/graphics/j peg:extract

will always descend to thejpeg port and extract it.

5.8.11 Circular Dependencies Are Fatal

Important: Do not introduce any circular dependencies into the ports tree!

The ports building technology does not tolerate circular dependencies. If you introduce one, you will have someone,
somewhere in the world, whose FreeBSD installation will break almost immediately, with many others quickly to
follow. These can really be hard to detect; if in doubt, before you make that change, make sure you have done the
following: cd /usr/ports; make index . That process can be quite slow on older machines, but you maybe able
to save a large number of people—including yourself— a lot ofgrief in the process.

5.8.12 Problems Caused by Automatic Dependencies

Dependencies must be declared either explicitly or by usingtheOPTIONS framework. Using other methods like
automatic detection complicates indexing, which causes problems for port and package management.

Example 5-8. Wrong Declaration of an Optional Dependency

.include <bsd.port.pre.mk>

.if exists(${LOCALBASE}/bin/foo)
LIB_DEPENDS= bar:${PORTSDIR}/foo/bar
.endif

The problem with trying to automatically add dependencies is that files and settings outside an individual port can
change at any time. For example: an index is built, then a batch of ports are installed. But one of the ports installs the
tested file. The index is now incorrect, because an installedport unexpectedly has a new dependency. The index may
still be wrong even after rebuilding if other ports also determine their need for dependencies based on the existence
of other files.

Example 5-9. Correct Declaration of an Optional Dependency

OPTIONS_DEFINE= BAR
BAR_DESC= Bar support

38

Chapter 5 Configuring the Makefile

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MBAR}
LIB_DEPENDS= bar:${PORTSDIR}/foo/bar
.endif

Testing option variables is the correct method. It will not cause inconsistencies in the index of a batch of ports,
provided the options were defined prior to the index build. Simple scripts can then be used to automate the building,
installation, and updating of these ports and their packages.

5.8.13 USE_ and WANT_

USE_variables are set by the port maintainer to define software onwhich this port depends. A port that needs Firefox
would set

USE_FIREFOX= yes

SomeUSE_variables can accept version numbers or other parameters. For example, a port that requires Apache 2.2
would set

USE_APACHE= 22

For more control over dependencies in some cases,WANT_variables are available to more precisely specify what is
needed. For example, consider themail/squirrelmail port. This port needs some PHP modules, which are listed
in theUSE_PHPvariable:

USE_PHP= session mhash gettext mbstring pcre openssl xml

Those modules may be available in CLI or web versions, so the web version is selected with aWANT_variable:

WANT_PHP_WEB= yes

AvailableUSE_andWANT_variables are defined in the files in/usr/ports/Mk .

5.9 MASTERDIR

If your port needs to build slightly different versions of packages by having a variable (for instance, resolution, or
paper size) take different values, create one subdirectoryper package to make it easier for users to see what to do, but
try to share as many files as possible between ports. Typically you only need a very shortMakefile in all but one of
the directories if you use variables cleverly. In the soleMakefile , you can useMASTERDIRto specify the directory
where the rest of the files are. Also, use a variable as part ofPKGNAMESUFFIXso the packages will have different
names.

This will be best demonstrated by an example. This is part ofjapanese/xdvi300/Makefile ;

PORTNAME= xdvi
PORTVERSION= 17
PKGNAMEPREFIX= ja-
PKGNAMESUFFIX= ${RESOLUTION}

:

39

Chapter 5 Configuring the Makefile

default
RESOLUTION?= 300
.if ${RESOLUTION} != 118 && ${RESOLUTION} != 240 && \

${RESOLUTION} != 300 && ${RESOLUTION} != 400
@${ECHO_MSG} "Error: invalid value for RESOLUTION: \"${RE SOLUTION}\""
@${ECHO_MSG} "Possible values are: 118, 240, 300 (default) and 400."
@${FALSE}

.endif

japanese/xdvi300 also has all the regular patches, package files, etc. If you typemake there, it will take the
default value for the resolution (300) and build the port normally.

As for other resolutions, this is theentirexdvi118/Makefile :

RESOLUTION= 118
MASTERDIR= ${.CURDIR}/../xdvi300

.include "${MASTERDIR}/Makefile"

(xdvi240/Makefile andxdvi400/Makefile are similar). TheMASTERDIRdefinition tellsbsd.port.mk that
the regular set of subdirectories likeFILESDIR andSCRIPTDIR are to be found underxdvi300 . The
RESOLUTION=118line will override theRESOLUTION=300line in xdvi300/Makefile and the port will be built
with resolution set to 118.

5.10 Man Pages
TheMAN[1-9LN] variables will automatically add any manpages topkg-plist (this means you mustnot list
manpages in thepkg-plist —seegenerating PLISTfor more). It also makes the install stage automatically
compress or uncompress manpages depending on the setting ofNO_MANCOMPRESSin /etc/make.conf .

If your port tries to install multiple names for manpages using symlinks or hardlinks, you must use theMLINKS

variable to identify these. The link installed by your port will be destroyed and recreated bybsd.port.mk to make
sure it points to the correct file. Any manpages listed in MLINKS must not be listed in thepkg-plist .

To specify whether the manpages are compressed upon installation, use theMANCOMPRESSEDvariable. This variable
can take three values,yes , no andmaybe. yes means manpages are already installed compressed,no means they are
not, andmaybe means the software already respects the value ofNO_MANCOMPRESSsobsd.port.mk does not have
to do anything special.

If your port anchors its man tree somewhere other thanPREFIX, you can use theMANPREFIXto set it. Also, if only
manpages in certain sections go in a non-standard place, such as someperl modules ports, you can set individual
man paths usingMANsectPREFIX (wheresect is one of1-9 , L or N).

If your manpages go to language-specific subdirectories, set the name of the languages toMANLANG. The value of this
variable defaults to"" (i.e., English only).

Here is an example that puts it all together.

MAN1= foo.1
MAN3= bar.3
MAN4= baz.4
MLINKS= foo.1 alt-name.8
MANLANG= "" ja

40

Chapter 5 Configuring the Makefile

MAN3PREFIX= ${PREFIX}/share/foobar
MANCOMPRESSED= yes

This states that six files are installed by this port;

${MANPREFIX}/man/man1/foo.1.gz
${MANPREFIX}/man/ja/man1/foo.1.gz
${PREFIX}/share/foobar/man/man3/bar.3.gz
${PREFIX}/share/foobar/man/ja/man3/bar.3.gz
${MANPREFIX}/man/man4/baz.4.gz
${MANPREFIX}/man/ja/man4/baz.4.gz

Additionally ${MANPREFIX}/man/man8/alt-name.8.gz may or may not be installed by your port. Regardless, a
symlink will be made to join the foo(1) manpage and alt-name(8) manpage.

If only some manpages are translated, you can use several variables dynamically created fromMANLANGcontent:

MANLANG= "" de ja
MAN1= foo.1
MAN1_EN= bar.1
MAN3_DE= baz.3

This translates into this list of files:

${MANPREFIX}/man/man1/foo.1.gz
${MANPREFIX}/man/de/man1/foo.1.gz
${MANPREFIX}/man/ja/man1/foo.1.gz
${MANPREFIX}/man/man1/bar.1.gz
${MANPREFIX}/man/de/man3/baz.3.gz

5.11 Info Files
If your package needs to install GNU info files, they should belisted in theINFO variable (without the trailing
.info), one entry per document. These files are assumed to be installed toPREFIX/ INFO_PATH. You can change
INFO_PATHif your package uses a different location. However, this is not recommended. These entries contain just
the path relative toPREFIX/ INFO_PATH. For example,lang/gcc34 installs info files toPREFIX/ INFO_PATH/gcc34 ,
andINFO will be something like this:

INFO= gcc34/cpp gcc34/cppinternals gcc34/g77 ...

Appropriate installation/de-installation code will be automatically added to the temporarypkg-plist before
package registration.

5.12 Makefile Options
Many applications can be built with optional or differing configurations. Examples include choice of natural (human)
language, GUI versus command-line, or type of database to support. Users may need a different configuration than
the default, so the ports system provides hooks the port author can use to control which variant will be built.
Supporting these options properly will make users happy, and effectively provide two or more ports for the price of
one.

41

Chapter 5 Configuring the Makefile

5.12.1 Knobs

5.12.1.1 WITH_* and WITHOUT_*

These variables are designed to be set by the system administrator. There are many that are standardized in the
ports/KNOBS (http://svnweb.FreeBSD.org/ports/head/KNOBS?view=markup) file.

When creating a port, do not make knob names specific to a givenapplication. For example in Avahi port, use
WITHOUT_MDNSinstead ofWITHOUT_AVAHI_MDNS.

Note: You should not assume that a WITH_* necessarily has a corresponding WITHOUT_* variable and vice versa.
In general, the default is simply assumed.

Note: Unless otherwise specified, these variables are only tested for being set or not set, rather than being set to
a specific value such as YESor NO.

Table 5-3. CommonWITH_* and WITHOUT_* Variables

Variable Means

WITH_OPENSSL_BASE Use the version of OpenSSL in the base system.

WITH_OPENSSL_PORT Installs the version of OpenSSL from
security/openssl , even if the base is up to date.

5.12.1.2 Knob Naming

Porters should use like-named knobs, both for the benefit of end-users and to help keep the number of knob names
down. A list of popular knob names can be found in theKNOBS

(http://svnweb.FreeBSD.org/ports/head/KNOBS?view=markup) file.

Knob names should reflect what the knob is and does. When a porthas a lib-prefix in thePORTNAMEthe lib-prefix
should be dropped in knob naming.

5.12.2 OPTIONS

5.12.2.1 Background

TheOPTIONS_* variables give the user installing the port a dialog showingthe available options, and then saves
those options to/var/db/ports/ ${UNIQUENAME}/options . The next time the port is built, the options are reused.

When the user runsmake config (or runsmake build for the first time), the framework checks for
/var/db/ports/ ${UNIQUENAME}/options . If that file does not exist, the values ofOPTIONS_* are used, and a
dialog box is displayed where the options can be enabled or disabled. Then theoptions file is saved and the
configured variables are used when building the port.

42

Chapter 5 Configuring the Makefile

If a new version of the port adds newOPTIONS, the dialog will be presented to the user with the saved values of old
OPTIONSprefilled.

make showconfig shows the saved configuration. Usemake rmconfig to remove the saved configuration.

5.12.2.2 Syntax

OPTIONS_DEFINEcontains a list ofOPTIONSto be used. These are independent of each other and are not grouped:

OPTIONS_DEFINE= OPT1 OPT2

Once defined,OPTIONSare described (optional, but strongly recommended):

OPT1_DESC= Describe OPT1
OPT2_DESC= Describe OPT2
OPT3_DESC= Describe OPT3
OPT4_DESC= Describe OPT4
OPT5_DESC= Describe OPT5
OPT6_DESC= Describe OPT6

Tip: ports/Mk/bsd.options.desc.mk has descriptions for many common OPTIONS; there is usually no need to
override these.

Tip: When describing options, view it from the perspective of the user: “What does it do?” and “Why would I want
to enable this?” Do not just repeat the name. For example, describing the NLS option as “include NLS support”
does not help the user, who can already see the option name but may not know what it means. Describing it as
“Native Language Support via gettext utilities” is much more helpful.

OPTIONScan be grouped as radio choices, where only one choice from each group is allowed:

OPTIONS_SINGLE= SG1
OPTIONS_SINGLE_SG1= OPT3 OPT4

OPTIONScan be grouped as radio choices, where none or only one choicefrom each group is allowed:

OPTIONS_RADIO= RG1
OPTIONS_RADIO_RG1= OPT7 OPT8

OPTIONScan also be grouped as “multiple-choice” lists, whereat least oneoption must be enabled:

OPTIONS_MULTI= MG1
OPTIONS_MULTI_MG1= OPT5 OPT6

OPTIONScan also be grouped as “multiple-choice” lists, where none or any option can be enabled:

OPTIONS_GROUP= GG1
OPTIONS_GROUP_GG1= OPT9 OPT10

OPTIONSare unset by default, unless they are listed inOPTIONS_DEFAULT:

43

Chapter 5 Configuring the Makefile

OPTIONS_DEFAULT= OPT1 OPT3 OPT6

OPTIONSdefinitions must appear before the inclusion ofbsd.port.options.mk . ThePORT_OPTIONSvariable can
only be tested after the inclusion ofbsd.port.options.mk . Inclusion ofbsd.port.pre.mk can be used instead,
too, and is still widely used in ports written before the introduction ofbsd.port.options.mk . But be aware that
some variables will not work as expected after the inclusionof bsd.port.pre.mk , typically someUSE_* flags.

Example 5-10. Simple Use ofOPTIONS

OPTIONS_DEFINE= FOO BAR
FOO_DESC= Enable option foo
BAR_DESC= Support feature bar

OPTIONS_DEFAULT=FOO

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MFOO}
CONFIGURE_ARGS+=--with-foo
.else
CONFIGURE_ARGS+=--without-foo
.endif

.if ${PORT_OPTIONS:MBAR}
RUN_DEPENDS+= bar:${PORTSDIR}/bar/bar
.endif

.include <bsd.port.mk>

Example 5-11. Check for Unset PortOPTIONS

.if ! ${PORT_OPTIONS:MEXAMPLES}
CONFIGURE_ARGS+=--without-examples
.endif

Example 5-12. Practical Use ofOPTIONS

OPTIONS_DEFINE= EXAMPLES

OPTIONS_SINGLE= BACKEND
OPTIONS_SINGLE_BACKEND= MYSQL PGSQL BDB

OPTIONS_MULTI= AUTH
OPTIONS_MULTI_AUTH= LDAP PAM SSL

EXAMPLES_DESC= Install extra examples
MYSQL_DESC= Use MySQL as backend
PGSQL_DESC= Use PostgreSQL as backend
BDB_DESC= Use Berkeley DB as backend
LDAP_DESC= Build with LDAP authentication support
PAM_DESC= Build with PAM support

44

Chapter 5 Configuring the Makefile

SSL_DESC= Build with OpenSSL support

OPTIONS_DEFAULT= PGSQL LDAP SSL

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MPGSQL}
USE_PGSQL= yes
CONFIGURE_ARGS+= --with-postgres
.else
CONFIGURE_ARGS+= --without-postgres
.endif

.if ${PORT_OPTIONS:MICU}
LIB_DEPENDS+= icuuc:${PORTSDIR}/devel/icu
.endif

.if ! ${PORT_OPTIONS:MEXAMPLES}
CONFIGURE_ARGS+= --without-examples
.endif

Check other OPTIONS

.include <bsd.port.mk>

5.12.2.3 Default Options

The following options are always on by default.

• DOCS— build and install documentation.

• NLS— Native Language Support.

• EXAMPLES— build and install examples.

• IPV6 — IPv6 protocol support.

Note: There is no need to add these to OPTIONS_DEFAULT. To have them show up in the options selection dialog,
however, they must be added to OPTIONS_DEFINE.

5.12.3 Feature Auto-Activation

When using a GNU configure script, keep an eye on which optional features are activated by auto-detection.
Explicitly disable optional features you do not wish to be used by passing respective--without-xxx or
--disable-xxx in CONFIGURE_ARGS.

45

Chapter 5 Configuring the Makefile

Example 5-13. Wrong Handling of an Option

.if ${PORT_OPTIONS:MFOO}
LIB_DEPENDS+= libfoo.so:${PORTSDIR}/devel/foo
CONFIGURE_ARGS+= --enable-foo
.endif

In the example above, imagine a library libfoo is installed on the system. The user does not want this application to
use libfoo, so he toggled the option off in themake config dialog. But the application’s configure script detects the
library present in the system and includes its support in theresulting executable. Now when the user decides to
remove libfoo from the system, the ports system does not protest (no dependency on libfoo was recorded) but the
application breaks.

Example 5-14. Correct Handling of an Option

.if ${PORT_OPTIONS:MFOO}
LIB_DEPENDS+= libfoo.so:${PORTSDIR}/devel/foo
CONFIGURE_ARGS+= --enable-foo
.else
CONFIGURE_ARGS+= --disable-foo
.endif

In the second example, the library libfoo is explicitly disabled. The configure script does not enable related features
in the application, despite library’s presence in the system.

Note: Under some circumstances, the shorthand conditional syntax can cause problems with complex
constructs. If you receive errors such as Malformed conditional , an alternative syntax can be used.

.if !empty(VARIABLE:MVALUE)
as an alternative to
.if ${VARIABLE:MVALUE}

5.12.4 Options Helpers

There are some macros to help simplify conditional values which differ based on the options set.

If OPTIONS_SUBis set toyes then each of the options added toOPTIONS_DEFINEwill be added toPLIST_SUB, for
example:

OPTIONS_DEFINE= OPT1
OPTIONS_SUB= yes

is equivalent to:

OPTIONS_DEFINE= OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
PLIST_SUB+= OPT1=""

46

Chapter 5 Configuring the Makefile

.else
PLIST_SUB+= OPT1="@comment "
.endif

If X_CONFIGURE_ENABLEis set then--enable-${X_CONFIGURE_ENABLE} or
--disable-${X_CONFIGURE_ENABLE} will be added toCONFIGURE_ARGSdepending on the value of the optionX,
for example:

OPTIONS_DEFINE= OPT1
OPT1_CONFIGURE_ENABLE= test

is equivalent to:

OPTIONS_DEFINE= OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
CONFIGURE_ARGS+= --enable-test
.else
CONFIGURE_ARGS+= --disable-test
.endif

If X_CONFIGURE_WITHis set then--with-${X_CONFIGURE_WITH} or --without-${X_CONFIGURE_WITH}

will be added toCONFIGURE_ARGSdepending on the status of the optionX, for example:

OPTIONS_DEFINE= OPT1
OPT1_CONFIGURE_WITH= test

is equivalent to:

OPTIONS_DEFINE= OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
CONFIGURE_ARGS+= --with-test
.else
CONFIGURE_ARGS+= --without-test
.endif

If X_CONFIGURE_ONis set then its value will be appended toCONFIGURE_ARGSdepending on the status of the
optionX, for example:

OPTIONS_DEFINE= OPT1
OPT1_CONFIGURE_ON= --add-test

is equivalent to:

OPTIONS_DEFINE= OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}

47

Chapter 5 Configuring the Makefile

CONFIGURE_ARGS+= --add-test
.endif

If X_CONFIGURE_OFFis set then its value will be appended toCONFIGURE_ARGSdepending on the status of the
optionX, for example:

OPTIONS_DEFINE= OPT1
OPT1_CONFIGURE_OFF= --no-test

is equivalent to:

OPTIONS_DEFINE= OPT1
.include <bsd.port.options.mk>
.if ! ${PORT_OPTIONS:MOPT1}
CONFIGURE_ARGS+= --no-test
.endif

If X_CMAKE_ONis set then its value will be appended toCMAKE_ARGSdepending on the status of the optionX, for
example:

OPTIONS_DEFINE= OPT1
OPT1_CMAKE_ON= -DTEST:BOOL=true

is equivalent to:

OPTIONS_DEFINE= OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
CMAKE_ARGS+= -DTEST:BOOL=true
.endif

If X_CMAKE_OFFis set then its value will be appended toCMAKE_ARGSdepending on the status of the optionX, for
example:

OPTIONS_DEFINE= OPT1
OPT1_CMAKE_OFF= -DTEST:BOOL=false

is equivalent to:

OPTIONS_DEFINE= OPT1

.include <bsd.port.options.mk>

.if ! ${PORT_OPTIONS:MOPT1}
CMAKE_ARGS+= -DTEST:BOOL=false
.endif

For any of the following variables:

• CFLAGS

• CXXFLAGS

48

Chapter 5 Configuring the Makefile

• LDLAGS

• CONFIGURE_ENV

• MAKE_ENV

• USES

• DISTFILES

If X_ABOVEVARIABLEis defined then its value will be appended toABOVEVARIABLEdepending on the status of the
optionX, for example:

OPTIONS_DEFINE= OPT1
OPT1_USES= gmake
OPT1_CFLAGS= -DTEST

is equivalent to:

OPTIONS_DEFINE= OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
USES+= gmake
CFLAGS+= -DTEST
.endif

For any of the following dependency type:

• PKG_DEPENDS

• EXTRACT_DEPENDS

• PATCH_DEPENDS

• FETCH_DEPENDS

• BUILD_DEPENDS

• LIB_DEPENDS

• RUN_DEPENDS

If X_ABOVEVARIABLEis defined then its value will be appended toABOVEVARIABLEdepending on the status of the
optionX, for example:

OPTIONS_DEFINE= OPT1
OPT1_LIB_DEPENDS= liba.so:${PORTSDIR}/devel/a

is equivalent to:

OPTIONS_DEFINE= OPT1

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MOPT1}
LIB_DEPENDS+= liba.so:${PORTSDIR}/devel/a
.endif

49

Chapter 5 Configuring the Makefile

5.13 Specifying the Working Directory
Each port is extracted in to a working directory, which must be writable. The ports system defaults to having the
DISTFILES unpack in to a directory called${DISTNAME} . In other words, if you have set:

PORTNAME= foo
PORTVERSION= 1.0

then the port’s distribution files contain a top-level directory, foo-1.0 , and the rest of the files are located under that
directory.

There are a number of variables you can override if that is notthe case.

5.13.1 WRKSRC

The variable lists the name of the directory that is created when the application’s distfiles are extracted. If our
previous example extracted into a directory calledfoo (and notfoo-1.0) you would write:

WRKSRC= ${WRKDIR}/foo

or possibly

WRKSRC= ${WRKDIR}/${PORTNAME}

5.13.2 NO_WRKSUBDIR

If the port does not extract in to a subdirectory at all then you should setNO_WRKSUBDIRto indicate that.

NO_WRKSUBDIR= yes

5.14 Conflict Handling
There are three different variables to register a conflict between packages and ports:CONFLICTS,
CONFLICTS_INSTALL andCONFLICTS_BUILD.

Note: The conflict variables automatically set the variable IGNORE, which is more fully documented in
Section 12.13.

When removing one of several conflicting ports, it is advisable to retain theCONFLICTSentries in those other ports
for a few months to cater for users who only update once in a while.

5.14.1 CONFLICTS_INSTALL

If your package cannot coexist with other packages (becauseof file conflicts, runtime incompatibilities, etc.), list the
other package names in theCONFLICTS_INSTALL variable. You can use shell globs like* and? here. Package
names should be enumerated the same way they appear in/var/db/pkg . Please make sure that

50

Chapter 5 Configuring the Makefile

CONFLICTS_INSTALL does not match this port’s package itself. Otherwise enforcing its installation with
FORCE_PKG_REGISTERwill no longer work. The CONFLICTS_INSTALL check is done after the build stage and
prior to the install stage.

5.14.2 CONFLICTS_BUILD

If your port cannot be built if a certain port is already installed, list the other port names in theCONFLICTS_BUILD

variable. You can use shell globs like* and? here. Package names should be enumerated the same way they appear
in /var/db/pkg . The CONFLICTS_BUILD check is done prior to the build stage.Build conflicts are not recorded
in the resulting package.

5.14.3 CONFLICTS

If your port cannot be built if a certain port is already installed and the resulting package cannot coexist with the
other package, list the other package name in theCONFLICTSvariable. You can use shell globs like* and? here.
Packages names should be enumerated the same way they appearin /var/db/pkg . Please make sure that
CONFLICTS_INSTALL does not match this port’s package itself. Otherwise enforcing its installation with
FORCE_PKG_REGISTERwill no longer work. The CONFLICTS check is done prior to the build stage and prior to
the install stage.

5.15 Installing Files

5.15.1 INSTALL_* Macros

Do use the macros provided inbsd.port.mk to ensure correct modes and ownership of files in your own

* -install targets.

• INSTALL_PROGRAMis a command to install binary executables.

• INSTALL_SCRIPT is a command to install executable scripts.

• INSTALL_LIB is a command to install shared libraries.

• INSTALL_KLD is a command to install kernel loadable modules. Some architectures do not like having the
modules stripped, so use this command instead ofINSTALL_PROGRAM.

• INSTALL_DATA is a command to install sharable data.

• INSTALL_MANis a command to install manpages and other documentation (itdoes not compress anything).

These are basically theinstall command with all the appropriate flags.

5.15.2 Stripping Binaries and Shared Libraries

Do not strip binaries manually unless you have to. All binaries should be stripped, but theINSTALL_PROGRAMmacro
will install and strip a binary at the same time (see the next section). TheINSTALL_LIB macro does the same thing
to shared libraries.

51

Chapter 5 Configuring the Makefile

If you need to strip a file, but wish to use neitherINSTALL_PROGRAMnor INSTALL_LIB macros,${STRIP_CMD}

will strip your program or shared library. This is typicallydone within thepost-install target. For example:

post-install:
${STRIP_CMD} ${PREFIX}/bin/xdl

Use the file(1) command on the installed executable to check whether the binary is stripped or not. If it does not say
not stripped , it is stripped. Additionally, strip(1) will not strip a previously stripped program; it will instead exit
cleanly.

5.15.3 Installing a Whole Tree of Files

Sometimes, there is a need to install a big number of files, preserving their hierarchical organization, i.e., copying
over a whole directory tree fromWRKSRCto a target directory underPREFIX.

Two macros exist for this situation. The advantage of using these macros instead ofcp is that they guarantee proper
file ownership and permissions on target files. The first macro, COPYTREE_BIN, will set all the installed files to be
executable, thus being suitable for installing intoPREFIX/bin . The second macro,COPYTREE_SHARE, does not set
executable permissions on files, and is therefore suitable for installing files underPREFIX/share target.

post-install:
${MKDIR} ${EXAMPLESDIR}
(cd ${WRKSRC}/examples && ${COPYTREE_SHARE} . ${EXAMPLES DIR})

This example will install the contents ofexamples directory in the vendor distfile to the proper examples location of
your port.

post-install:
${MKDIR} ${DATADIR}/summer
(cd ${WRKSRC}/temperatures && ${COPYTREE_SHARE} "June Ju ly August" ${DATADIR}/summer)

And this example will install the data of summer months to thesummer subdirectory of aDATADIR.

Additional find arguments can be passed via the third argument to theCOPYTREE_* macros. For example, to install
all files from the first example except Makefiles, one can use the following command.

post-install:
${MKDIR} ${EXAMPLESDIR}
(cd ${WRKSRC}/examples && \

${COPYTREE_SHARE} . ${EXAMPLESDIR} "! -name Makefile")

Note that these macros does not add the installed files topkg-plist . You still need to list them.

5.15.4 Install Additional Documentation

If your software has some documentation other than the standard man and info pages that you think is useful for the
user, install it underPREFIX/share/doc . This can be done, like the previous item, in thepost-install target.

Create a new directory for your port. The directory name should reflect what the port is. This usually means
PORTNAME. However, if you think the user might want different versions of the port to be installed at the same time,
you can use the wholePKGNAME.

52

Chapter 5 Configuring the Makefile

Make the installation dependent on the variableDOCSoption so that users can disable it in/etc/make.conf , like
this:

post-install:
.if ${PORT_OPTIONS:MDOCS}

${MKDIR} ${DOCSDIR}
${INSTALL_MAN} ${WRKSRC}/docs/xvdocs.ps ${DOCSDIR}

.endif

Here are some handy variables and how they are expanded by default when used in theMakefile :

• DATADIRgets expanded toPREFIX/share/ PORTNAME.

• DATADIR_RELgets expanded toshare/ PORTNAME.

• DOCSDIRgets expanded toPREFIX/share/doc/ PORTNAME.

• DOCSDIR_RELgets expanded toshare/doc/ PORTNAME.

• EXAMPLESDIRgets expanded toPREFIX/share/examples/ PORTNAME.

• EXAMPLESDIR_RELgets expanded toshare/examples/ PORTNAME.

Note: The DOCSoption only controls additional documentation installed in DOCSDIR. It does not apply to standard
man pages and info pages. Things installed in DATADIR and EXAMPLESDIRare controlled by DATAand EXAMPLES

options, respectively.

These variables are exported toPLIST_SUB. Their values will appear there as pathnames relative toPREFIX if
possible. That is,share/doc/ PORTNAMEwill be substituted for%%DOCSDIR%%in the packing list by default, and so
on. (See more onpkg-plist substitutionhere.)

All conditionally installed documentation files and directories should be included inpkg-plist with the
%%PORTDOCS%%prefix, for example:

%%PORTDOCS%%%%DOCSDIR%%/AUTHORS
%%PORTDOCS%%%%DOCSDIR%%/CONTACT
%%PORTDOCS%%@dirrm %%DOCSDIR%%

As an alternative to enumerating the documentation files inpkg-plist , a port can set the variablePORTDOCSto a
list of file names and shell glob patterns to add to the final packing list. The names will be relative toDOCSDIR.
Therefore, a port that utilizesPORTDOCSand uses a non-default location for its documentation should setDOCSDIR

accordingly. If a directory is listed inPORTDOCSor matched by a glob pattern from this variable, the entire subtree of
contained files and directories will be registered in the final packing list. If theDOCSoption has been unset then files
and directories listed inPORTDOCSwould not be installed or added to port packing list. Installing the documentation
atPORTDOCSas shown above remains up to the port itself. A typical example of utilizingPORTDOCSlooks as follows:

PORTDOCS= README.* ChangeLog docs/ *

Note: The equivalents of PORTDOCSfor files installed under DATADIR and EXAMPLESDIRare PORTDATAand
PORTEXAMPLES, respectively.

You can also use the pkg-message file to display messages upon installation. See
the section on using pkg-message for details. The pkg-message file does not need to be added to pkg-plist .

53

Chapter 5 Configuring the Makefile

5.15.5 Subdirectories Under PREFIX

Try to let the port put things in the right subdirectories ofPREFIX. Some ports lump everything and put it in the
subdirectory with the port’s name, which is incorrect. Also, many ports put everything except binaries, header files
and manual pages in a subdirectory oflib , which does not work well with the BSD paradigm. Many of the files
should be moved to one of the following:etc (setup/configuration files),libexec (executables started internally),
sbin (executables for superusers/managers),info (documentation for info browser) orshare (architecture
independent files). See hier(7) for details; the rules governing /usr pretty much apply to/usr/local too. The
exception are ports dealing with USENET “news”. They may usePREFIX/news as a destination for their files.

54

Chapter 6 Special Considerations
There are some more things you have to take into account when you create a port. This section explains the most
common of those.

6.1 Shared Libraries
If your port installs one or more shared libraries, define aUSE_LDCONFIGmake variable, which will instruct a
bsd.port.mk to run${LDCONFIG} -m on the directory where the new library is installed (usuallyPREFIX/lib)
duringpost-install target to register it into the shared library cache. This variable, when defined, will also
facilitate addition of an appropriate@exec /sbin/ldconfig -m and@unexec /sbin/ldconfig -R pair into
yourpkg-plist file, so that a user who installed the package can start using the shared library immediately and
de-installation will not cause the system to still believe the library is there.

USE_LDCONFIG= yes

If you need, you can override the default directory by setting theUSE_LDCONFIGvalue to a list of directories into
which shared libraries are to be installed. For example if your port installs shared libraries intoPREFIX/lib/foo and
PREFIX/lib/bar directories you could use the following in yourMakefile :

USE_LDCONFIG= ${PREFIX}/lib/foo ${PREFIX}/lib/bar

Please double-check, often this is not necessary at all or can be avoided through-rpath or settingLD_RUN_PATH

during linking (seelang/moscow_ml for an example), or through a shell-wrapper which setsLD_LIBRARY_PATH

before invoking the binary, likewww/seamonkey does.

When installing 32-bit libraries on 64-bit system, useUSE_LDCONFIG32instead.

Try to keep shared library version numbers in thelibfoo.so.0 format. Our runtime linker only cares for the major
(first) number.

When the major library version number increments in the update to the new port version, all other ports that link to
the affected library should have theirPORTREVISIONincremented, to force recompilation with the new library
version.

6.2 Ports with Distribution Restrictions
Licenses vary, and some of them place restrictions on how theapplication can be packaged, whether it can be sold
for profit, and so on.

Important: It is your responsibility as a porter to read the licensing terms of the software and make sure that the
FreeBSD project will not be held accountable for violating them by redistributing the source or compiled binaries
either via FTP/HTTP or CD-ROM. If in doubt, please contact the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports).

In situations like this, the variables described in the following sections can be set.

55

Chapter 6 Special Considerations

6.2.1 NO_PACKAGE

This variable indicates that we may not generate a binary package of the application. For instance, the license may
disallow binary redistribution, or it may prohibit distribution of packages created from patched sources.

However, the port’sDISTFILES may be freely mirrored on FTP/HTTP. They may also be distributed on a CD-ROM
(or similar media) unlessNO_CDROMis set as well.

NO_PACKAGEshould also be used if the binary package is not generally useful, and the application should always be
compiled from the source code. For example, if the application has configuration information that is site specific hard
coded in to it at compile time, setNO_PACKAGE.

NO_PACKAGEshould be set to a string describing the reason why the package should not be generated.

6.2.2 NO_CDROM

This variable alone indicates that, although we are allowedto generate binary packages, we may put neither those
packages nor the port’sDISTFILES onto a CD-ROM (or similar media) for resale. However, the binary packages and
the port’sDISTFILES will still be available via FTP/HTTP.

If this variable is set along withNO_PACKAGE, then only the port’sDISTFILES will be available, and only via
FTP/HTTP.

NO_CDROMshould be set to a string describing the reason why the port cannot be redistributed on CD-ROM. For
instance, this should be used if the port’s license is for “non-commercial” use only.

6.2.3 NOFETCHFILES

Files defined in theNOFETCHFILESvariable are not fetchable from any of theMASTER_SITES. An example of such
a file is when the file is supplied on CD-ROM by the vendor.

Tools which check for the availability of these files on theMASTER_SITESshould ignore these files and not report
about them.

6.2.4 RESTRICTED

Set this variable alone if the application’s license permits neither mirroring the application’sDISTFILES nor
distributing the binary package in any way.

NO_CDROMor NO_PACKAGEshould not be set along withRESTRICTEDsince the latter variable implies the former
ones.

RESTRICTEDshould be set to a string describing the reason why the port cannot be redistributed. Typically, this
indicates that the port contains proprietary software and that the user will need to manually download the
DISTFILES , possibly after registering for the software or agreeing toaccept the terms of an EULA.

6.2.5 RESTRICTED_FILES

WhenRESTRICTEDor NO_CDROMis set, this variable defaults to${DISTFILES} ${PATCHFILES} , otherwise it is
empty. If only some of the distribution files are restricted,then set this variable to list them.

56

Chapter 6 Special Considerations

Note that the port committer should add an entry to/usr/ports/LEGAL for every listed distribution file, describing
exactly what the restriction entails.

6.2.6 Examples

The preferred way to state "the distfiles for this port must befetched manually" is as follows:

.if !exists(${DISTDIR}/${DISTNAME}${EXTRACT_SUFX})
IGNORE= may not be redistributed because of licensing reaso ns. Please visit some-website to
.endif

This both informs the user, and sets the proper metadata on the user’s machine for use by automated programs.

Note that this stanza must be preceded by an inclusion ofbsd.port.pre.mk .

6.3 Building Mechanisms

6.3.1 Building Ports in Parallel

The FreeBSD ports framework supports parallel building using multiplemake sub-processes, which allows SMP
systems to utilize all of their available CPU power, allowing port builds to be faster and more effective.

This is achieved by passing-jX flag to make(1) running on vendor code. Unfortunately, not all ports handle parallel
building well. Therefore it is required to explicitly enable this feature by addingMAKE_JOBS_SAFE=yessomewhere
below the dependency declaration section of theMakefile .

Another option for controlling this feature from the maintainer’s point of view is theMAKE_JOBS_UNSAFE=yes

variable. It is used when a port is known to be broken with-jX and a user forces the use of multi processor
compilations for all ports in/etc/make.conf with theFORCE_MAKE_JOBS=yesvariable.

6.3.2 make, gmake, and imake

If your port usesGNU make, setUSES= gmake.

Table 6-1. Variables for Ports Related to gmake

Variable Means

USES= gmake The port requiresgmake to build.

GMAKE The full path forgmake if it is not in thePATH.

If your port is an X application that createsMakefile files fromImakefile files usingimake, then setUSES=

imake . This will cause the configure stage to automatically do anxmkmf -a . If the -a flag is a problem for your
port, setXMKMF=xmkmf. If the port usesimake but does not understand theinstall.man target,
NO_INSTALL_MANPAGES=yesshould be set.

If your port’s sourceMakefile has something else thanall as the main build target, setALL_TARGETaccordingly.
Same goes forinstall andINSTALL_TARGET.

57

Chapter 6 Special Considerations

6.3.3 configure Script

If your port uses theconfigure script to generateMakefile files fromMakefile.in files, set
GNU_CONFIGURE=yes. If you want to give extra arguments to theconfigure script (the default argument is
--prefix=${PREFIX} --infodir=${PREFIX}/${INFO_PATH} - -mandir=${MANPREFIX}/man

--build=${CONFIGURE_TARGET}), set those extra arguments inCONFIGURE_ARGS. Extra environment variables
can be passed usingCONFIGURE_ENVvariable.

Table 6-2. Variables for Ports That Useconfigure

Variable Means

GNU_CONFIGURE The port usesconfigure script to prepare build.

HAS_CONFIGURE Same asGNU_CONFIGURE, except default configure
target is not added toCONFIGURE_ARGS.

CONFIGURE_ARGS Additional arguments passed toconfigure script.

CONFIGURE_ENV Additional environment variables to be set for
configure script run.

CONFIGURE_TARGET Override default configure target. Default value is
${MACHINE_ARCH}-portbld-freebsd${OSREL} .

6.3.4 Using cmake

For ports that useCMake, defineUSES= cmake, or USES= cmake:outsource to build in a separate directory (see
below).

Table 6-3. Variables for Ports That Usecmake

Variable Means

CMAKE_ARGS Port specificCMake flags to be passed to thecmake

binary.

CMAKE_BUILD_TYPE Type of build (CMake predefined build profiles).
Default isRelease , or Debug if WITH_DEBUGis set.

CMAKE_ENV Environment variables to be set forcmake binary.
Default is${CONFIGURE_ENV}.

CMAKE_SOURCE_PATH Path to the source directory. Default is${WRKSRC}.

CMake supports the following build profiles:Debug, Release , RelWithDebInfo andMinSizeRel . Debug and
Release profiles respect system* FLAGS, RelWithDebInfo andMinSizeRel will set CFLAGSto -O2 -g and-Os

-DNDEBUGcorrespondingly. The lower-cased value ofCMAKE_BUILD_TYPEis exported to thePLIST_SUB and
should be used if port installs* .cmake files depending on the build type (seedeskutils/strigi for an example).
Please note that some projects may define their own build profiles and/or force particular build type by setting
CMAKE_BUILD_TYPEin CMakeLists.txt files. In order to make a port for such a project respectCFLAGSand
WITH_DEBUG, theCMAKE_BUILD_TYPEdefinitions must be removed from those files.

MostCMake-based projects support an out-of-source method of building. The out-of-source build for a port can be
requested by using the:outsource suffix. When enabled,CONFIGURE_WRKSRC, BUILD_WRKSRCand
INSTALL_WRKSRCwill be set to${WRKDIR}/.build and this directory will be used to keep all files generated

58

Chapter 6 Special Considerations

during configuration and build stages, leaving the source directory intact.

Example 6-1.USES= cmake Example

The following snippet demonstrates the use ofCMake for a port.CMAKE_SOURCE_PATHis not usually required, but
can be set when the sources are not located in the top directory, or if only a subset of the project is intended to be
built by the port.

USES= cmake:outsource
CMAKE_SOURCE_PATH= ${WRKSRC}/subproject

6.3.5 Using scons

If your port usesSCons, defineUSE_SCONS=yes.

Table 6-4. Variables for Ports That Usescons

Variable Means

SCONS_ARGS Port specific SCons flags passed to the SCons
environment.

SCONS_BUILDENV Variables to be set in system environment.

SCONS_ENV Variables to be set in SCons environment.

SCONS_TARGET Last argument passed to SCons, similar to
MAKE_TARGET.

To make third partySConstruct respect everything that is passed to SCons inSCONS_ENV(that is, most
importantly,CC/CXX/CFLAGS/CXXFLAGS), patch theSConstruct so buildEnvironment is constructed like this:

env = Environment(** ARGUMENTS)

It may be then modified withenv.Append andenv.Replace .

6.4 Using GNU Autotools

6.4.1 Introduction

The various GNU autotools provide an abstraction mechanismfor building a piece of software over a wide variety of
operating systems and machine architectures. Within the Ports Collection, an individual port can make use of these
tools via a simple construct:

USE_AUTOTOOLS= tool: version[: operation] ...

At the time of writing,tool can be one oflibtool , libltdl , autoconf , autoheader , automake or aclocal .

version specifies the particular tool revision to be used (seedevel/{automake,autoconf,libtool}[0-9]+

for valid versions).

59

Chapter 6 Special Considerations

operation is an optional extension to modify how the tool is used.

Multiple tools can be specified at once, either by including them all on a single line, or using the+= Makefile
construct.

Finally, there is the special tool, calledautotools , which is a convenience function to bring in all available versions
of the autotools to allow for cross-development work. This can also be accomplished by installing the
devel/autotools port.

6.4.2 libtool

Shared libraries using the GNU building framework usually uselibtool to adjust the compilation and installation
of shared libraries to match the specifics of the underlying operating system. The usual practice is to use copy of
libtool bundled with the application. In case you need to use external libtool , you can use the version provided
by The Ports Collection:

USE_AUTOTOOLS= libtool: version[:env]

With no additional operations,libtool: version tells the building framework to patch the configure script with the
system-installed copy oflibtool . TheGNU_CONFIGUREis implied. Further, a number of make and shell variables
will be assigned for onward use by the port. Seebsd.autotools.mk for details.

With the:env operation, only the environment will be set up.

Finally, LIBTOOLFLAGSandLIBTOOLFILES can be optionally set to override the most likely arguments to, and files
patched by,libtool . Most ports are unlikely to need this. Seebsd.autotools.mk for further details.

6.4.3 libltdl

Some ports make use of thelibltdl library package, which is part of thelibtool suite. Use of this library does
not automatically necessitate the use oflibtool itself, so a separate construct is provided.

USE_AUTOTOOLS= libltdl: version

Currently, all this does is to bring in aLIB_DEPENDSon the appropriatelibltdl port, and is provided as a
convenience function to help eliminate any dependencies onthe autotools ports outside of theUSE_AUTOTOOLS

framework. There are no optional operations for this tool.

6.4.4 autoconf and autoheader

Some ports do not contain a configure script, but do contain anautoconf template in theconfigure.ac file. You
can use the following assignments to letautoconf create the configure script, and also haveautoheader create
template headers for use by the configure script.

USE_AUTOTOOLS= autoconf: version[:env]

and

USE_AUTOTOOLS= autoheader: version

which also implies the use ofautoconf: version.

60

Chapter 6 Special Considerations

Similarly to libtool , the inclusion of the optional:env operation simply sets up the environment for further use.
Without it, patching and reconfiguration of the port is carried out.

The additional optional variablesAUTOCONF_ARGSandAUTOHEADER_ARGScan be overridden by the port
Makefile if specifically requested. As with thelibtool equivalents, most ports are unlikely to need this.

6.4.5 automake and aclocal

Some packages only containMakefile.am files. These have to be converted intoMakefile.in files using
automake , and the further processed byconfigure to generate an actualMakefile .

Similarly, packages occasionally do not ship with includedaclocal.m4 files, again required to build the software.
This can be achieved withaclocal , which scansconfigure.ac or configure.in .

aclocal has a similar relationship toautomake asautoheader does toautoconf , described in the previous
section.aclocal implies the use ofautomake , thus we have:

USE_AUTOTOOLS= automake:version[: env]

and

USE_AUTOTOOLS= aclocal: version

which also implies the use ofautomake: version.

Similarly to libtool andautoconf , the inclusion of the optional:env operation simply sets up the environment
for further use. Without it, reconfiguration of the port is carried out.

As with autoconf andautoheader , bothautomake andaclocal have optional argument variables,
AUTOMAKE_ARGSandACLOCAL_ARGSrespectively, which may be overridden by the portMakefile if required.

6.5 Using GNU gettext

6.5.1 Basic Usage

If your port requiresgettext , setUSES= gettext , and your port will inherit a dependency ondevel/gettext .
Other values forgettext usage are listed inSection 15.1.

A rather common case is a port usinggettext andconfigure . Generally, GNUconfigure should be able to
locategettext automatically. If it ever fails to, hints at the location ofgettext can be passed inCPPFLAGSand
LDFLAGSas follows:

USES= gettext
CPPFLAGS+= -I${LOCALBASE}/include
LDFLAGS+= -L${LOCALBASE}/lib

GNU_CONFIGURE= yes

Of course, the code can be more compact if there are no more flags to pass toconfigure :

USES= gettext

61

Chapter 6 Special Considerations

GNU_CONFIGURE= yes

6.5.2 Optional Usage

Some software products allow for disabling NLS, e.g., through passing--disable-nls to configure . In that
case, your port should usegettext conditionally, depending on the status of theNLSoption. For ports of low to
medium complexity, you can rely on the following idiom:

GNU_CONFIGURE= yes

.include <bsd.port.options.mk>

.if ${PORT_OPTIONS:MNLS}
USES+= gettext
PLIST_SUB+= NLS=""
.else
CONFIGURE_ARGS+= --disable-nls
PLIST_SUB+= NLS="@comment "
.endif

.include <bsd.port.mk>

The next item on your to-do list is to arrange so that the message catalog files are included in the packing list
conditionally. TheMakefile part of this task is already provided by the idiom. It is explained in the section on
advancedpkg-plist practices. In a nutshell, each occurrence of%%NLS%%in pkg-plist will be replaced by
“@comment ” if NLS is disabled, or by a null string if NLS is enabled. Consequently, the lines prefixed by%%NLS%%

will become mere comments in the final packing list if NLS is off; otherwise the prefix will be just left out. All you
need to do now is insert%%NLS%%before each path to a message catalog file inpkg-plist . For example:

%%NLS%%share/locale/fr/LC_MESSAGES/foobar.mo
%%NLS%%share/locale/no/LC_MESSAGES/foobar.mo

In high complexity cases, you may need to use more advanced techniques than the recipe given here, such as
dynamic packing list generation.

6.5.3 Handling Message Catalog Directories

There is a point to note about installing message catalog files. The target directories for them, which reside under
LOCALBASE/share/locale , should rarely be created and removed by a port. The most popular languages have their
respective directories listed inPORTSDIR/Templates/BSD.local.dist . The directories for many other languages
are governed by thedevel/gettext port. Consult itspkg-plist and see whether the port is going to install a
message catalog file for a unique language.

6.6 Using Perl
If MASTER_SITESis set toMASTER_SITE_PERL_CPAN, then the preferred value ofMASTER_SITE_SUBDIRis the
top-level hierarchy name. For example, the recommended value forp5-Module-Name is Module . The top-level

62

Chapter 6 Special Considerations

hierarchy can be examined at cpan.org (http://cpan.org/modules/by-module/). This keeps the port working when the
author of the module changes.

The exception to this rule is when the relevant directory does not exist or the distfile does not exist in that directory.
In such case, using author’s id asMASTER_SITE_SUBDIRis allowed.

All of the tunable knobs below accept eitherYESor a version string like5.8.0+ . YESmeans that the port can be
used with any of the supported Perl versions. If a port only works with specific versions of Perl, it can be indicated
with a version string, specifying a minimum version (e.g.,5.7.3+), a maximum version (e.g.,5.8.0-) or an exact
version (e.g.,5.8.3).

Table 6-5. Variables for Ports That Use Perl

Variable Meaning

USE_PERL5 The port uses Perl 5 to build and run.

USE_PERL5_BUILD The port uses Perl 5 to build.

USE_PERL5_RUN The port uses Perl 5 to run.

PERL The full path of the Perl 5 interpreter, either in the system
or installed from a port, but without the version number.
Use this if you need to replace “#! ”lines in scripts.

PERL_CONFIGURE Configure using Perl’s MakeMaker. It implies
USE_PERL5.

PERL_MODBUILD Configure, build and install using Module::Build. It
impliesPERL_CONFIGURE.

Read only variables Means

PERL_VERSION The full version of Perl installed (e.g.,5.8.9).

PERL_LEVEL The installed Perl version as an integer of the form
MNNNPP(e.g.,500809).

PERL_ARCH Where Perl stores architecture dependent libraries.
Defaults to${ARCH}-freebsd .

PERL_PORT Name of the Perl port that is installed (e.g.,perl5).

SITE_PERL Directory name where site specific Perl packages go.
This value is added toPLIST_SUB.

Note: Ports of Perl modules which do not have an official website should link to cpan.org in the WWW line of
pkg-descr . The preferred URL form is http://search.cpan.org/dist/Module-Name/ (including the trailing
slash).

Note: Do not use ${SITE_PERL} in dependency declarations. Doing so assumes that bsd.perl.mk has been
included, which is not always true. Ports depending on this port will have incorrect dependencies if this port’s files
move later in an upgrade. The right way to declare Perl module dependencies is shown in the example below.

63

Chapter 6 Special Considerations

Example 6-2. Perl Dependency Example

p5-IO-Tee>=0.64:${PORTSDIR}/devel/p5-IO-Tee

6.7 Using X11

6.7.1 X.Org Components

The X11 implementation available in The Ports Collection isX.Org. If your application depends on X components,
setUSE_XORGto the list of required components. Available components, at the time of writing, are:

bigreqsproto compositeproto damageproto dmx dmxproto dri 2proto evieproto fixesproto

fontcacheproto fontenc fontsproto fontutil glproto ice in putproto kbproto libfs oldx

pciaccess pixman printproto randrproto recordproto rende rproto resourceproto

scrnsaverproto sm trapproto videoproto x11 xau xaw xaw6 xaw 7 xbitmaps xcmiscproto

xcomposite xcursor xdamage xdmcp xevie xext xextproto xf86 bigfontproto xf86dgaproto

xf86driproto xf86miscproto xf86rushproto xf86vidmodepr oto xfixes xfont xfontcache xft

xi xinerama xineramaproto xkbfile xkbui xmu xmuu xorg-serv er xp xpm xprintapputil

xprintutil xproto xproxymngproto xrandr xrender xres xscr nsaver xt xtrans xtrap xtst

xv xvmc xxf86dga xxf86misc xxf86vm .

Always up-to-date list can be found in/usr/ports/Mk/bsd.xorg.mk .

The Mesa Project is an effort to provide free OpenGL implementation. You can specify a dependency on various
components of this project withUSE_GLvariable. Valid options are:glut, glu, glw, glew, gl andlinux . For
backwards compatibility, the value ofyes maps toglu .

Example 6-3. USE_XORG Example

USE_XORG= xrender xft xkbfile xt xaw
USE_GL= glu

Table 6-6. Variables for Ports That Use X

USES= imake The port usesimake .

XMKMF Set to the path ofxmkmf if not in thePATH. Defaults to
xmkmf -a .

Example 6-4. Using X11-Related Variables

Use some X11 libraries
USE_XORG= x11 xpm

6.7.2 Ports That Require Motif

If your port requires a Motif library, defineUSES= motif in theMakefile . Default Motif implementation is
x11-toolkits/open-motif . Users can choosex11-toolkits/lesstif instead by settingWANT_LESSTIF

64

Chapter 6 Special Considerations

variable.

TheMOTIFLIB variable will be set bybsd.port.mk to reference the appropriate Motif library. Please patch the
source of your port to use${MOTIFLIB} wherever the Motif library is referenced in the originalMakefile or
Imakefile .

There are two common cases:

• If the port refers to the Motif library as-lXm in its Makefile or Imakefile , simply substitute${MOTIFLIB} for
it.

• If the port usesXmClientLibs in its Imakefile , change it to${MOTIFLIB} ${XTOOLLIB} ${XLIB} .

Note thatMOTIFLIB (usually) expands to-L/usr/local/lib -lXm or /usr/local/lib/libXm.a , so there is
no need to add-L or -l in front.

6.7.3 X11 Fonts

If your port installs fonts for the X Window System, put them in LOCALBASE/lib/X11/fonts/local .

6.7.4 Getting a Fake DISPLAY with Xvfb

Some applications require a working X11 display for compilation to succeed. This pose a problem for machines that
operate headless. When the following variable is used, the build infrastructure will start the virtual framebuffer X
server. The workingDISPLAY is then passed to the build.

USES= display

6.7.5 Desktop Entries

Desktop entries (a Freedesktop standard (http://standards.freedesktop.org/desktop-entry-spec/latest/)) provide a way
to automatically adjust desktop features when a new programis installed, without requiring user intervention. For
example, newly-installed programs automatically appear in the application menus of compatible desktop
environments. Desktop entries originated in theGNOME desktop environment, but are now a standard and also
work with KDE andXfce. This bit of automation provides a real benefit to the user, and desktop entries are
encouraged for applications which can be used in a desktop environment.

6.7.5.1 Using Predefined .desktop Files

Ports that include predefined* .desktop files should include those files inpkg-plist and install them in the
$LOCALBASE/share/applications directory. TheINSTALL_DATA macrois useful for installing these files.

6.7.5.2 Updating Desktop Database

If a port has a MimeType entry in itsportname.desktop , the desktop database must be updated after install and
deinstall. To do this, defineUSES= desktop-file-utils.

65

Chapter 6 Special Considerations

6.7.5.3 Creating Desktop Entries with the DESKTOP_ENTRIES Macro

Desktop entries can be easily created for applications by using theDESKTOP_ENTRIESvariable. A file named
name.desktop will be created, installed, and added to thepkg-plist automatically. Syntax is:

DESKTOP_ENTRIES= "NAME" "COMMENT" "ICON" "COMMAND" "CATEGORY" StartupNotify

The list of possible categories is available on the Freedesktop website
(http://standards.freedesktop.org/menu-spec/latest/apa.html).StartupNotify indicates whether the application is
compatible withstartup notifications. These are typically a graphic indicator like a clock that appear at the mouse
pointer, menu, or panel to give the user an indication when a program is starting. A program that is compatible with
startup notifications clears the indicator after it has started. Programs that are not compatible with startup
notifications would never clear the indicator (potentiallyconfusing and infuriating the user), and should have
StartupNotify set tofalse so the indicator is not shown at all.

Example:

DESKTOP_ENTRIES= "ToME" "Roguelike game based on JRR Tolki en’s work" \
"${DATADIR}/xtra/graf/tome-128.png" \
"tome -v -g" "Application;Game;RolePlaying;" \
false

6.8 Using GNOME
The FreeBSD/GNOME project uses its own set of variables to define which GNOME components a particular port
uses. A comprehensive list of these variables (http://www.FreeBSD.org/gnome/docs/porting.html) exists within the
FreeBSD/GNOME project’s homepage.

6.9 Using Qt

6.9.1 Ports That Require Qt

Table 6-7. Variables for Ports That Use Qt

USE_QT_VER The port uses the Qt toolkit. The only possible value is
3. Appropriate parameters are passed toconfigure

script andmake.

USE_QT4 Specify tool and library dependencies for ports that use
Qt 4. SeeQt 4 component selectionfor more details.

QT_PREFIX Set to the path where Qt installed to (read-only variable).

MOC Set to the path ofmoc (read-only variable). Default set
according toUSE_QT_VERvalue.

66

Chapter 6 Special Considerations

QTCPPFLAGS Additional compiler flags passed viaCONFIGURE_ENV

for Qt toolkit. Default set according toUSE_QT_VER.

QTCFGLIBS Additional libraries for linking passed via
CONFIGURE_ENVfor Qt toolkit. Default set according to
USE_QT_VER.

QTNONSTANDARD Suppress modification ofCONFIGURE_ENV,
CONFIGURE_ARGS, CPPFLAGSandMAKE_ENV.

Table 6-8. Additional Variables for Ports That Use Qt 4.x

UIC Set to the path ofuic (read-only variable).

QMAKE Set to the path ofqmake (read-only variable).

QMAKESPEC Set to the path of configuration file forqmake (read-only
variable).

QMAKEFLAGS Additional flags forqmake.

QT_INCDIR Set to Qt 4 include directories (read-only variable).

QT_LIBDIR Set to Qt 4 libraries path (read-only variable).

QT_PLUGINDIR Set to Qt 4 plugins path (read-only variable).

WhenUSE_QT_VERis set to3, some useful settings are passed to theconfigure script:

CONFIGURE_ARGS+= --with-qt-includes=${QT_PREFIX}/inc lude \
--with-qt-libraries=${QT_PREFIX}/lib \
--with-extra-libs=${LOCALBASE}/lib \
--with-extra-includes=${LOCALBASE}/include

CONFIGURE_ENV+= MOC="${MOC}" LIBS="${QTCFGLIBS}" \
QTDIR="${QT_PREFIX}" KDEDIR="${KDE_PREFIX}"

CPPFLAGS+= ${QTCPPFLAGS}

If USE_QT4is set, the following settings are deployed:

CONFIGURE_ARGS+= --with-qt-includes=${QT_INCDIR} \
--with-qt-libraries=${QT_LIBDIR} \
--with-extra-libs=${LOCALBASE}/lib \
--with-extra-includes=${LOCALBASE}/include

CONFIGURE_ENV+= MOC="${MOC}" UIC="${UIC}" LIBS="${QTCF GLIBS}" \
QMAKE="${QMAKE}" QMAKESPEC="${QMAKESPEC}" QTDIR="${QT_PREFIX}"

MAKE_ENV+= QMAKESPEC="${QMAKESPEC}"

PLIST_SUB+= QT_INCDIR_REL=${QT_INCDIR_REL} \
QT_LIBDIR_REL=${QT_LIBDIR_REL} \
QT_PLUGINDIR_REL=${QT_PLUGINDIR_REL}

67

Chapter 6 Special Considerations

6.9.2 Component Selection (Qt 4.x Only)

Individual Qt 4 tool and library dependencies must be specified in theUSE_QT4variable. Every component can be
suffixed by either_build or _run , the suffix indicating whether the component should be depended on at buildtime
or runtime, respectively. If unsuffixed, the component willbe depended on at both build- and runtime. Usually,
library components should be specified unsuffixed, tool components should be specified with the_build suffix and
plugin components should be specified with the_run suffix. The most commonly used components are listed below
(all available components are listed in_USE_QT4_ALLin /usr/ports/Mk/bsd.qt.mk):

Table 6-9. Available Qt 4 Library Components

Name Description

corelib core library (can be omitted unless the port uses nothing
but corelib)

gui graphical user interface library

network network library

opengl OpenGL library

qt3support Qt 3 compatibility library

qtestlib unit testing library

script script library

sql SQL library

xml XML library

You can determine which libraries the application depends on, by runningldd on the main executable after a
successful compilation.

Table 6-10. Available Qt 4 Tool Components

Name Description

moc meta object compiler (needed for almost every Qt
application at buildtime)

qmake Makefile generator / build utility

rcc resource compiler (needed if the application comes with

* .rc or * .qrc files)

uic user interface compiler (needed if the application comes
with * .ui files created by Qt Designer - in practice,
every Qt application with a GUI)

Table 6-11. Available Qt 4 Plugin Components

Name Description

iconengines SVG icon engine plugin (if the application ships SVG
icons)

imageformats imageformat plugins for GIF, JPEG, MNG and SVG (if
the application ships image files)

68

Chapter 6 Special Considerations

Example 6-5. Selecting Qt 4 Components

In this example, the ported application uses the Qt 4 graphical user interface library, the Qt 4 core library, all of the
Qt 4 code generation tools and Qt 4’s Makefile generator. Since thegui library implies a dependency on the core
library, corelib does not need to be specified. The Qt 4 code generation toolsmoc, uic andrcc , as well as the
Makefile generatorqmake are only needed at buildtime, thus they are specified with the_build suffix:

USE_QT4= gui moc_build qmake_build rcc_build uic_build

6.9.3 Additional Considerations

If the application does not provide aconfigure file but a.pro file, you can use the following:

HAS_CONFIGURE= yes

do-configure:
@cd ${WRKSRC} && ${SETENV} ${CONFIGURE_ENV} \

${QMAKE} ${QMAKEFLAGS} PREFIX=${PREFIX} texmaker.pro

Note the similarity to theqmake line from the providedBUILD.sh script. PassingCONFIGURE_ENVensuresqmake

will see theQMAKESPECvariable, without which it cannot work.qmake generates standard Makefiles, so it is not
necessary to write our ownbuild target.

Qt applications often are written to be cross-platform and often X11/Unix is not the platform they are developed on,
which in turn often leads to certain loose ends, like:

• Missing additional include paths.Many applications come with system tray icon support, but neglect to look for
includes and/or libraries in the X11 directories. You can tell qmake to add directories to the include and library
search paths via the command line, for example:

${QMAKE} ${QMAKEFLAGS} PREFIX=${PREFIX} INCLUDEPATH+=${LOCALBASE}/include \
LIBS+=-L${LOCALBASE}/lib sillyapp.pro

• Bogus installation paths.Sometimes data such as icons or .desktop files are by default installed into directories
which are not scanned by XDG-compatible applications.editors/texmaker is an example for this - look at
patch-texmaker.pro in thefiles directory of that port for a template on how to remedy this directly in the
qmake project file.

6.10 Using KDE

6.10.1 KDE 4 Variable Definitions

If your application depends on KDE 4.x, setUSE_KDE4to the list of required components._build and_run

suffixes can be used to force components dependency type (e.g., baseapps_run). If no suffix is set, a default
dependency type will be used. If you want to force both types,add the component twice with both suffixes (e.g.,
automoc4_build automoc4_run). The most commonly used components are listed below (up-to-date
components are documented at the top of/usr/ports/Mk/bsd.kde4.mk):

69

Chapter 6 Special Considerations

Table 6-12. Available KDE 4 Components

Name Description

kdehier Hierarchy of common KDE directories

kdelibs KDE Developer Platform

kdeprefix If set, port will be installed into${KDE4_PREFIX}

instead of${LOCALBASE}

sharedmime MIME types database for KDE ports

automoc4 Automatic moc for Qt 4 packages

akonadi Storage server for KDE-Pim

soprano Qt 4 RDF framework

strigi Desktop search daemon

libkcddb KDE CDDB library

libkcompactdisc KDE library for interfacing with audio CDs

libkdeedu Libraries used by educational applications

libkdcraw KDE LibRaw library

libkexiv2 KDE Exiv2 library

libkipi KDE Image Plugin Interface

libkonq Konqueror core library

libksane KDE SANE ("Scanner Access Now Easy") library

pimlibs KDE-Pim libraries

kate Text editor framework

marble Virtual globe

okular Universal document viewer

korundum KDE Ruby bindings

perlkde KDE Perl bindings

pykde4 KDE Python bindings

pykdeuic4 PyKDE user interface compiler

smokekde KDE SMOKE libraries

KDE 4.x ports are installed intoKDE4_PREFIX, which is/usr/local/kde4 currently. This is achieved by
specifying thekdeprefix component, which overrides the defaultPREFIX. The ports however respect anyPREFIX

set viaMAKEFLAGSenvironment variable and/ormake arguments.

Example 6-6.USE_KDE4 Example

This is a simple example for a KDE 4 port.USES= cmake:outsource instructs the port to utilizeCMake, a
configuration tool widely used by KDE 4 projects (seeSection 6.3.4for detailed usage).USE_KDE4brings
dependency on KDE libraries and makes port usingautomoc4 at build stage. Required KDE components and other
dependencies can be determined through configure log.USE_KDE4does not implyUSE_QT4. If a port requires some
Qt 4 components, they should be specified inUSE_QT4.

USES= cmake:outsource
USE_KDE4= kdelibs kdeprefix automoc4
USE_QT4= moc_build qmake_build rcc_build uic_build

70

Chapter 6 Special Considerations

6.11 Using Java

6.11.1 Variable Definitions

If your port needs a Java™ Development Kit (JDK™) to either build, run or even extract the distfile, then it should
defineUSE_JAVA.

There are several JDKs in the ports collection, from variousvendors, and in several versions. If your port must use
one of these versions, you can define which one. The most current version, and FreeBSD default isjava/openjdk6 .

Table 6-13. Variables Which May be Set by Ports That Use Java

Variable Means

USE_JAVA Should be defined for the remaining variables to have
any effect.

JAVA_VERSION List of space-separated suitable Java versions for the
port. An optional"+" allows you to specify a range of
versions (allowed values:1.5[+] 1.6[+] 1.7[+]).

JAVA_OS List of space-separated suitable JDK port operating
systems for the port (allowed values:native linux).

JAVA_VENDOR List of space-separated suitable JDK port vendors for the
port (allowed values:freebsd bsdjava sun

openjdk).

JAVA_BUILD When set, it means that the selected JDK port should be
added to the build dependencies of the port.

JAVA_RUN When set, it means that the selected JDK port should be
added to the run dependencies of the port.

JAVA_EXTRACT When set, it means that the selected JDK port should be
added to the extract dependencies of the port.

Below is the list of all settings a port will receive after setting USE_JAVA:

Table 6-14. Variables Provided to Ports That Use Java

Variable Value

JAVA_PORT The name of the JDK port (e.g.,’java/openjdk6’).

JAVA_PORT_VERSION The full version of the JDK port (e.g.,’1.6.0’). If you
only need the first two digits of this version number, use
${JAVA_PORT_VERSION:C/^([0-9])\.([0-9])(. *)$/\1.\2/} .

JAVA_PORT_OS The operating system used by the JDK port (e.g.,
’native’).

JAVA_PORT_VENDOR The vendor of the JDK port (e.g.,’openjdk’).

JAVA_PORT_OS_DESCRIPTION Description of the operating system used by the JDK
port (e.g.,’Native’).

71

Chapter 6 Special Considerations

Variable Value

JAVA_PORT_VENDOR_DESCRIPTION Description of the vendor of the JDK port (e.g.,
’OpenJDK BSD Porting Team’).

JAVA_HOME Path to the installation directory of the JDK (e.g.,
’/usr/local/openjdk6’).

JAVAC Path to the Java compiler to use (e.g.,
’/usr/local/openjdk6/bin/javac’).

JAR Path to thejar tool to use (e.g.,
’/usr/local/openjdk6/bin/jar’ or
’/usr/local/bin/fastjar’).

APPLETVIEWER Path to theappletviewer utility (e.g.,
’/usr/local/openjdk6/bin/appletviewer’).

JAVA Path to thejava executable. Use this for executing Java
programs (e.g.,
’/usr/local/openjdk6/bin/java’).

JAVADOC Path to thejavadoc utility program.

JAVAH Path to thejavah program.

JAVAP Path to thejavap program.

JAVA_KEYTOOL Path to thekeytool utility program.

JAVA_N2A Path to thenative2ascii tool.

JAVA_POLICYTOOL Path to thepolicytool program.

JAVA_SERIALVER Path to theserialver utility program.

RMIC Path to the RMI stub/skeleton generator,rmic .

RMIREGISTRY Path to the RMI registry program,rmiregistry .

RMID Path to the RMI daemon programrmid .

JAVA_CLASSES Path to the archive that contains the JDK class files,
${JAVA_HOME}/jre/lib/rt.jar .

You may use thejava-debug make target to get information for debugging your port. It will display the value of
many of the forecited variables.

Additionally, the following constants are defined so all Java ports may be installed in a consistent way:

Table 6-15. Constants Defined for Ports That Use Java

Constant Value

JAVASHAREDIR The base directory for everything related to Java.
Default:${PREFIX}/share/java .

JAVAJARDIR The directory where JAR files should be installed.
Default:${JAVASHAREDIR}/classes .

JAVALIBDIR The directory where JAR files installed by other ports
are located. Default:
${LOCALBASE}/share/java/classes .

The related entries are defined in bothPLIST_SUB (documented inSection 7.1) andSUB_LIST.

72

Chapter 6 Special Considerations

6.11.2 Building with Ant

When the port is to be built using Apache Ant, it has to defineUSE_ANT. Ant is thus considered to be the sub-make
command. When nodo-build target is defined by the port, a default one will be set that simply runs Ant according
to MAKE_ENV, MAKE_ARGSandALL_TARGET. This is similar to theUSES= gmakemechanism, which is documented
in Section 6.3.

6.11.3 Best Practices

When porting a Java library, your port should install the JARfile(s) in ${JAVAJARDIR} , and everything else under
${JAVASHAREDIR}/${PORTNAME} (except for the documentation, see below). In order to reduce the packing file
size, you may reference the JAR file(s) directly in theMakefile . Just use the following statement (where
myport.jar is the name of the JAR file installed as part of the port):

PLIST_FILES+= %%JAVAJARDIR%%/myport.jar

When porting a Java application, the port usually installs everything under a single directory (including its JAR
dependencies). The use of${JAVASHAREDIR}/${PORTNAME} is strongly encouraged in this regard. It is up the
porter to decide whether the port should install the additional JAR dependencies under this directory or directly use
the already installed ones (from${JAVAJARDIR}).

Regardless of the type of your port (library or application), the additional documentation should be installed in the
same locationas for any other port. The JavaDoc tool is known to produce a different set of files depending on the
version of the JDK that is used. For ports that do not enforce the use of a particular JDK, it is therefore a complex
task to specify the packing list (pkg-plist). This is one reason why porters are strongly encouraged to use the
PORTDOCSmacro. Moreover, even if you can predict the set of files that will be generated byjavadoc , the size of
the resultingpkg-plist advocates for the use ofPORTDOCS.

The default value forDATADIR is ${PREFIX}/share/${PORTNAME} . It is a good idea to overrideDATADIRto
${JAVASHAREDIR}/${PORTNAME} for Java ports. Indeed,DATADIR is automatically added toPLIST_SUB

(documented inSection 7.1) so you may use%%DATADIR%%directly in pkg-plist .

As for the choice of building Java ports from source or directly installing them from a binary distribution, there is no
defined policy at the time of writing. However, people from the FreeBSD Java Project (http://www.freebsd.org/java/)
encourage porters to have their ports built from source whenever it is a trivial task.

All the features that have been presented in this section areimplemented inbsd.java.mk . If you ever think that
your port needs more sophisticated Java support, please first have a look at the bsd.java.mk SVN log
(http://svnweb.FreeBSD.org/ports/head/Mk/bsd.java.mk?view=markup) as it usually takes some time to document
the latest features. Then, if you think the support you are lacking would be beneficial to many other Java ports, feel
free to discuss it on the FreeBSD Java Language mailing list (http://lists.FreeBSD.org/mailman/listinfo/freebsd-java).

Although there is ajava category for PRs, it refers to the JDK porting effort from theFreeBSD Java project.
Therefore, you should submit your Java port in theports category as for any other port, unless the issue you are
trying to resolve is related to either a JDK implementation or bsd.java.mk .

Similarly, there is a defined policy regarding theCATEGORIESof a Java port, which is detailed inSection 5.3.

73

Chapter 6 Special Considerations

6.12 Web Applications, Apache and PHP

6.12.1 Apache

Table 6-16. Variables for Ports That Use Apache

USE_APACHE The port requires Apache. Possible values:yes (gets any
version),22, 24, 22-24 , 22+ , etc. The default APACHE
version is22. More details are available in
ports/Mk/bsd.apache.mk and at
wiki.freebsd.org/Apache/
(http://wiki.freebsd.org/Apache/).

APXS Full path to theapxs binary. Can be overridden in your
port.

HTTPD Full path to thehttpd binary. Can be overridden in your
port.

APACHE_VERSION The version of present Apache installation (read-only
variable). This variable is only available after inclusion
of bsd.port.pre.mk . Possible values:22, 24.

APACHEMODDIR Directory for Apache modules. This variable is
automatically expanded inpkg-plist .

APACHEINCLUDEDIR Directory for Apache headers. This variable is
automatically expanded inpkg-plist .

APACHEETCDIR Directory for Apache configuration files. This variable is
automatically expanded inpkg-plist .

Table 6-17. Useful Variables for Porting Apache Modules

MODULENAME Name of the module. Default value isPORTNAME.
Example:mod_hello

SHORTMODNAME Short name of the module. Automatically derived from
MODULENAME, but can be overridden. Example:hello

AP_FAST_BUILD Useapxs to compile and install the module.

AP_GENPLIST Also automatically creates apkg-plist .

AP_INC Adds a directory to a header search path during
compilation.

AP_LIB Adds a directory to a library search path during
compilation.

AP_EXTRAS Additional flags to pass toapxs .

6.12.2 Web Applications

Web applications should be installed intoPREFIX/www/ appname. For your convenience, this path is available both in

74

Chapter 6 Special Considerations

Makefile and inpkg-plist asWWWDIR, and the path relative toPREFIX is available inMakefile asWWWDIR_REL.

The user and group of web server process are available asWWWOWNandWWWGRP, in case you need to change the
ownership of some files. The default values of both arewww. If you want different values for your port, use
WWWOWN?= myusernotation, to allow user to override it easily.

Do not depend on Apache unless the web app explicitly needs Apache. Respect that users may wish to run your web
app on different web server than Apache.

6.12.3 PHP

Table 6-18. Variables for Ports That Use PHP

USE_PHP The port requires PHP. The valueyes adds a dependency
on PHP. The list of required PHP extensions can be
specified instead. Example:pcre xml gettext

DEFAULT_PHP_VER Selects which major version of PHP will be installed as a
dependency when no PHP is installed yet. Default is5.
Possible values:4, 5

IGNORE_WITH_PHP The port does not work with PHP of the given version.
Possible values:4, 5

USE_PHPIZE The port will be built as a PHP extension.

USE_PHPEXT The port will be treated as a PHP extension, including
installation and registration in the extension registry.

USE_PHP_BUILD Set PHP as a build dependency.

WANT_PHP_CLI Want the CLI (command line) version of PHP.

WANT_PHP_CGI Want the CGI version of PHP.

WANT_PHP_MOD Want the Apache module version of PHP.

WANT_PHP_SCR Want the CLI or the CGI version of PHP.

WANT_PHP_WEB Want the Apache module or the CGI version of PHP.

6.12.4 PEAR Modules

Porting PEAR modules is a very simple process.

Use the variablesFILES , TESTS, DATA, SQLS, SCRIPTFILES , DOCSandEXAMPLESto list the files you want to
install. All listed files will be automatically installed into the appropriate locations and added topkg-plist .

Include${PORTSDIR}/devel/pear/bsd.pear.mk on the last line of theMakefile .

Example 6-7. Example Makefile for PEAR Class

PORTNAME= Date
PORTVERSION= 1.4.3
CATEGORIES= devel www pear

MAINTAINER= example@domain.com

75

Chapter 6 Special Considerations

COMMENT= PEAR Date and Time Zone Classes

BUILD_DEPENDS= ${PEARDIR}/PEAR.php:${PORTSDIR}/devel /pear-PEAR
RUN_DEPENDS:= ${BUILD_DEPENDS}

FILES= Date.php Date/Calc.php Date/Human.php Date/Span. php \
Date/TimeZone.php

TESTS= test_calc.php test_date_methods_span.php testun it.php \
testunit_date.php testunit_date_span.php wknotest.txt \
bug674.php bug727_1.php bug727_2.php bug727_3.php \
bug727_4.php bug967.php weeksinmonth_4_monday.txt \
weeksinmonth_4_sunday.txt weeksinmonth_rdm_monday.tx t \
weeksinmonth_rdm_sunday.txt

DOCS= TODO
_DOCSDIR= .

.include <bsd.port.pre.mk>

.include "${PORTSDIR}/devel/pear/bsd.pear.mk"

.include <bsd.port.post.mk>

6.13 Using Python
The Ports Collection supports parallel installation of multiple Python versions. Ports should make sure to use a
correctpython interpreter, according to the user-settablePYTHON_VERSIONvariable. Most prominently, this means
replacing the path topython executable in scripts with the value ofPYTHON_CMDvariable.

Ports that install files underPYTHON_SITELIBDIR should use thepyXY- package name prefix, so their package
name embeds the version of Python they are installed into.

PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}

Table 6-19. Most Useful Variables for Ports That Use Python

USE_PYTHON The port needs Python. Minimal required version can be
specified with values such as2.6+ . Version ranges can
also be specified, by separating two version numbers
with a dash, e.g.:2.6-2.7

USE_PYDISTUTILS Use Python distutils for configuring, compiling and
installing. This is required when the port comes with
setup.py . This overrides thedo-build and
do-install targets and may also override
do-configure if GNU_CONFIGUREis not defined.

PYTHON_PKGNAMEPREFIX Used as aPKGNAMEPREFIXto distinguish packages for
different Python versions. Example:py24-

PYTHON_SITELIBDIR Location of the site-packages tree, that contains
installation path of Python (usuallyLOCALBASE). The
PYTHON_SITELIBDIR variable can be very useful when
installing Python modules.

76

Chapter 6 Special Considerations

PYTHONPREFIX_SITELIBDIR The PREFIX-clean variant of PYTHON_SITELIBDIR.
Always use%%PYTHON_SITELIBDIR%%in pkg-plist

when possible. The default value of
%%PYTHON_SITELIBDIR%%is
lib/python%%PYTHON_VERSION%%/site-packages

PYTHON_CMD Python interpreter command line, including version
number.

PYNUMERIC Dependency line for numeric extension.

PYNUMPY Dependency line for the new numeric extension, numpy.
(PYNUMERIC is deprecated by upstream vendor).

PYXML Dependency line for XML extension (not needed for
Python 2.0 and higher as it is also in base distribution).

USE_TWISTED Add dependency on twistedCore. The list of required
components can be specified as a value of this variable.
Example:web lore pair flow

USE_ZOPE Add dependency on Zope, a web application platform.
Change Python dependency to Python 2.7. Set
ZOPEBASEDIRcontaining a directory with Zope
installation.

A complete list of available variables can be found in/usr/ports/Mk/bsd.python.mk .

6.14 Using Tcl/Tk
The Ports Collection supports parallel installation of multiple Tcl/Tk versions. Ports should try to support at least the
defaultTcl/Tk version and higher with theUSE_TCLandUSE_TKvariables. It is possible to specify the desired
version oftcl with theWITH_TCL_VERvariable.

Table 6-20. The Most Useful Variables for Ports That Use Tcl/Tk

USE_TCL The port depends on theTcl library (not the shell).
Minimal required version can be specified with values
such as 84+. Individual unsupported versions can be
specified with theINVALID_TCL_VER variable.

USE_TCL_BUILD The port needsTcl only during the build time.

USE_TCL_WRAPPER Ports that require theTcl shell and do not require a
specifictclsh version should use this new variable. The
tclsh wrapper is installed on the system. The user can
specify the desiredtcl shell to use.

WITH_TCL_VER User-defined variable that sets the desiredTcl version.

UNIQUENAME_WITH_TCL_VER Like WITH_TCL_VER, but per-port.

USE_TCL_THREADS Require a threaded build ofTcl/Tk .

77

Chapter 6 Special Considerations

USE_TK The port depends on theTk library (not the wish shell).
ImpliesUSE_TCLwith the same value. For more
information see the description ofUSE_TCLvariable.

USE_TK_BUILD Analog to theUSE_TCL_BUILDvariable.

USE_TK_WRAPPER Analog to theUSE_TCL_WRAPPERvariable.

WITH_TK_VER Analog to theWITH_TCL_VERvariable and implies
WITH_TCL_VERof the same value.

A complete list of available variables can be found in/usr/ports/Mk/bsd.tcl.mk .

6.15 Using Emacs
This section is yet to be written.

6.16 Using Ruby

Table 6-21. Useful Variables for Ports That Use Ruby

Variable Description

USE_RUBY The port requires Ruby.

USE_RUBY_EXTCONF The port usesextconf.rb to configure.

USE_RUBY_SETUP The port usessetup.rb to configure.

RUBY_SETUP Set to the alternative name ofsetup.rb . Common
value isinstall.rb .

The following table shows the selected variables availableto port authors via the ports infrastructure. These variables
should be used to install files into their proper locations. Use them inpkg-plist as much as possible. These
variables should not be redefined in the port.

Table 6-22. Selected Read-Only Variables for Ports That UseRuby

Variable Description Example value

RUBY_PKGNAMEPREFIX Used as aPKGNAMEPREFIXto
distinguish packages for different
Ruby versions.

ruby18-

RUBY_VERSION Full version of Ruby in the form of
x.y.z .

1.8.2

RUBY_SITELIBDIR Architecture independent libraries
installation path.

/usr/local/lib/ruby/site_ruby/1.8

RUBY_SITEARCHLIBDIR Architecture dependent libraries
installation path.

/usr/local/lib/ruby/site_ruby/1.8/amd64

78

Chapter 6 Special Considerations

Variable Description Example value

RUBY_MODDOCDIR Module documentation installation
path.

/usr/local/share/doc/ruby18/patsy

RUBY_MODEXAMPLESDIR Module examples installation path. /usr/local/share/examples/ruby18/patsy

A complete list of available variables can be found in/usr/ports/Mk/bsd.ruby.mk .

6.17 Using SDL
TheUSE_SDLvariable is used to autoconfigure the dependencies for portswhich use an SDL based library like
devel/sdl12 andx11-toolkits/sdl_gui .

The following SDL libraries are recognized at the moment:

• sdl: devel/sdl12

• gfx: graphics/sdl_gfx

• gui: x11-toolkits/sdl_gui

• image:graphics/sdl_image

• ldbad:devel/sdl_ldbad

• mixer:audio/sdl_mixer

• mm:devel/sdlmm

• net:net/sdl_net

• sound:audio/sdl_sound

• ttf: graphics/sdl_ttf

Therefore, if a port has a dependency onnet/sdl_net andaudio/sdl_mixer , the syntax will be:

USE_SDL= net mixer

The dependencydevel/sdl12 , which is required bynet/sdl_net andaudio/sdl_mixer , is automatically
added as well.

If you useUSE_SDL, it will automatically:

• Add a dependency onsdl12-configto BUILD_DEPENDS

• Add the variableSDL_CONFIGto CONFIGURE_ENV

• Add the dependencies of the selected libraries to theLIB_DEPENDS

To check whether an SDL library is available, you can do it with theWANT_SDLvariable:

WANT_SDL= yes

.include <bsd.port.pre.mk>

.if ${HAVE_SDL:Mmixer}!=""

79

Chapter 6 Special Considerations

USE_SDL+= mixer
.endif

.include <bsd.port.post.mk>

6.18 Using wxWidgets
This section describes the status of thewxWidgets libraries in the ports tree and its integration with the ports system.

6.18.1 Introduction

There are many versions of thewxWidgets libraries which conflict between them (install files under the same name).
In the ports tree this problem has been solved by installing each version under a different name using version number
suffixes.

The obvious disadvantage of this is that each application has to be modified to find the expected version. Fortunately,
most of the applications call thewx-config script to determine the necessary compiler and linker flags.The script is
named differently for every available version. Majority ofapplications respect an environment variable, or accept a
configure argument, to specify whichwx-config script to call. Otherwise they have to be patched.

6.18.2 Version Selection

To make your port use a specific version ofwxWidgets there are two variables available for defining (if only one is
defined the other will be set to a default value):

Table 6-23. Variables to Select wxWidgets Versions

Variable Description Default value

USE_WX List of versions the port can use All available versions

USE_WX_NOT List of versions the port can not use None

The following is a list of availablewxWidgetsversions and the corresponding ports in the tree:

Table 6-24. Available wxWidgets Versions

Version Port

2.4 x11-toolkits/wxgtk24

2.6 x11-toolkits/wxgtk26

2.8 x11-toolkits/wxgtk28

Note: The versions starting from 2.5 also come in Unicode version and are installed by a slave port named like
the normal one plus a -unicode suffix, but this can be handled with variables (see Section 6.18.4).

The variables inTable 6-23can be set to one or more of the following combinations separated by spaces:

80

Chapter 6 Special Considerations

Table 6-25. wxWidgets Version Specifications

Description Example

Single version 2.4

Ascending range 2.4+

Descending range 2.6-

Full range (must be ascending) 2.4-2.6

There are also some variables to select the preferred versions from the available ones. They can be set to a list of
versions, the first ones will have higher priority.

Table 6-26. Variables to Select Preferred wxWidgets Versions

Name Designed for

WANT_WX_VER the port

WITH_WX_VER the user

6.18.3 Component Selection

There are other applications that, while not beingwxWidgets libraries, are related to them. These applications can be
specified in theWX_COMPSvariable. The following components are available:

Table 6-27. Available wxWidgets Components

Name Description Version restriction

wx main library none

contrib contributed libraries none

python wxPython (Python bindings) 2.4-2.6

mozilla wxMozilla 2.4

svg wxSVG 2.6

The dependency type can be selected for each component by adding a suffix separated by a semicolon. If not present
then a default type will be used (seeTable 6-29). The following types are available:

Table 6-28. Available wxWidgets Dependency Types

Name Description

build Component is required for building, equivalent to
BUILD_DEPENDS

run Component is required for running, equivalent to
RUN_DEPENDS

lib Component is required for building and running,
equivalent toLIB_DEPENDS

The default values for the components are detailed in the following table:

81

Chapter 6 Special Considerations

Table 6-29. Default wxWidgets Dependency Types

Component Dependency type

wx lib

contrib lib

python run

mozilla lib

svg lib

Example 6-8. Selecting wxWidgets Components

The following fragment corresponds to a port which useswxWidgetsversion2.4 and its contributed libraries.

USE_WX= 2.4
WX_COMPS= wx contrib

6.18.4 Unicode

ThewxWidgets library supports Unicode since version2.5 . In the ports tree both versions are available and can be
selected with the following variables:

Table 6-30. Variables to Select Unicode in wxWidgets Versions

Variable Description Designed for

WX_UNICODE The port worksonlywith the
Unicode version

the port

WANT_UNICODE The port works with both versions
but prefers the Unicode one

the port

WITH_UNICODE The port will use the Unicode
version

the user

WITHOUT_UNICODE The port will use the normal version
if supported (whenWX_UNICODEis
not defined)

the user

Warning: Do not use WX_UNICODEfor ports that can use both Unicode and normal versions. If you want the port
to use Unicode by default define WANT_UNICODEinstead.

6.18.5 Detecting Installed Versions

To detect an installed version you have to defineWANT_WX. If you do not set it to a specific version then the
components will have a version suffix. TheHAVE_WXvariable will be filled after detection.

82

Chapter 6 Special Considerations

Example 6-9. Detecting Installed wxWidgets Versions and Components

The following fragment can be used in a port that useswxWidgets if it is installed, or an option is selected.

WANT_WX= yes

.include <bsd.port.pre.mk>

.if defined(WITH_WX) || !empty(PORT_OPTIONS:MWX) || !emp ty(HAVE_WX:Mwx-2.4)
USE_WX= 2.4
CONFIGURE_ARGS+= --enable-wx
.endif

The following fragment can be used in a port that enableswxPython support if it is installed or if an option is
selected, in addition towxWidgets, both version2.6 .

USE_WX= 2.6
WX_COMPS= wx
WANT_WX= 2.6

.include <bsd.port.pre.mk>

.if defined(WITH_WXPYTHON) || !empty(PORT_OPTIONS:MWXP YTHON) || !empty(HAVE_WX:Mpython)
WX_COMPS+= python
CONFIGURE_ARGS+= --enable-wxpython
.endif

6.18.6 Defined Variables

The following variables are available in the port (after defining one fromTable 6-23).

Table 6-31. Variables Defined for Ports That Use wxWidgets

Name Description

WX_CONFIG The path to thewxWidgetswx-config script (with
different name)

WXRC_CMD The path to thewxWidgetswxrc program (with
different name)

WX_VERSION ThewxWidgetsversion that is going to be used (e.g.,
2.6)

WX_UNICODE If not defined but Unicode is going to be used then it will
be defined

6.18.7 Processing in bsd.port.pre.mk

If you need to use the variables for running commands right after includingbsd.port.pre.mk you need to define
WX_PREMK.

83

Chapter 6 Special Considerations

Important: If you define WX_PREMK, then the version, dependencies, components and defined variables will not
change if you modify the wxWidgets port variables after including bsd.port.pre.mk .

Example 6-10. Using wxWidgets Variables in Commands

The following fragment illustrates the use ofWX_PREMKby running thewx-config script to obtain the full version
string, assign it to a variable and pass it to the program.

USE_WX= 2.4
WX_PREMK= yes

.include <bsd.port.pre.mk>

.if exists(${WX_CONFIG})
VER_STR!= ${WX_CONFIG} --release

PLIST_SUB+= VERSION="${VER_STR}"
.endif

Note: The wxWidgets variables can be safely used in commands when they are inside targets without the need
of WX_PREMK.

6.18.8 Additional configure Arguments

Some GNUconfigure scripts can not findwxWidgetswith just theWX_CONFIGenvironment variable set,
requiring additional arguments. TheWX_CONF_ARGSvariable can be used for provide them.

Table 6-32. Legal Values forWX_CONF_ARGS

Possible value Resulting argument

absolute --with-wx-config=${WX_CONFIG}

relative --with-wx=${LOCALBASE}

--with-wx-config=${WX_CONFIG:T}

6.19 Using Lua
This section describes the status of theLua libraries in the ports tree and its integration with the ports system.

6.19.1 Introduction

There are many versions of theLua libraries and corresponding interpreters, which conflict between them (install
files under the same name). In the ports tree this problem has been solved by installing each version under a different

84

Chapter 6 Special Considerations

name using version number suffixes.

The obvious disadvantage of this is that each application has to be modified to find the expected version. But it can
be solved by adding some additional flags to the compiler and linker.

6.19.2 Version Selection

To make your port use a specific version ofLua there are two variables available for defining (if only one isdefined
the other will be set to a default value):

Table 6-33. Variables to Select Lua Versions

Variable Description Default value

USE_LUA List of versions the port can use All available versions

USE_LUA_NOT List of versions the port can not use None

The following is a list of availableLua versions and the corresponding ports in the tree:

Table 6-34. Available Lua Versions

Version Port

4.0 lang/lua4

5.0 lang/lua50

5.1 lang/lua

The variables inTable 6-33can be set to one or more of the following combinations separated by spaces:

Table 6-35. Lua Version Specifications

Description Example

Single version 4.0

Ascending range 5.0+

Descending range 5.0-

Full range (must be ascending) 5.0-5.1

There are also some variables to select the preferred versions from the available ones. They can be set to a list of
versions, the first ones will have higher priority.

Table 6-36. Variables to Select Preferred Lua Versions

Name Designed for

WANT_LUA_VER the port

WITH_LUA_VER the user

Example 6-11. Selecting the Lua Version

The following fragment is from a port which can useLua version5.0 or 5.1 , and uses5.0 by default. It can be

85

Chapter 6 Special Considerations

overridden by the user withWITH_LUA_VER.

USE_LUA= 5.0-5.1
WANT_LUA_VER= 5.0

6.19.3 Component Selection

There are other applications that, while not beingLua libraries, are related to them. These applications can be
specified in theLUA_COMPSvariable. The following components are available:

Table 6-37. Available Lua Components

Name Description Version restriction

lua main library none

tolua Library for accessing C/C++ code 4.0-5.0

ruby Ruby bindings 4.0-5.0

Note: There are more components but they are modules for the interpreter, not used by applications (only by
other modules).

The dependency type can be selected for each component by adding a suffix separated by a semicolon. If not present
then a default type will be used (seeTable 6-39). The following types are available:

Table 6-38. Available Lua Dependency Types

Name Description

build Component is required for building, equivalent to
BUILD_DEPENDS

run Component is required for running, equivalent to
RUN_DEPENDS

lib Component is required for building and running,
equivalent toLIB_DEPENDS

The default values for the components are detailed in the following table:

Table 6-39. Default Lua Dependency Types

Component Dependency type

lua lib for 4.0-5.0 (shared) andbuild for 5.1 (static)

tolua build (static)

ruby lib (shared)

86

Chapter 6 Special Considerations

Example 6-12. Selecting Lua Components

The following fragment corresponds to a port which usesLua version4.0 and itsRuby bindings.

USE_LUA= 4.0
LUA_COMPS= lua ruby

6.19.4 Detecting Installed Versions

To detect an installed version you have to defineWANT_LUA. If you do not set it to a specific version then the
components will have a version suffix. TheHAVE_LUAvariable will be filled after detection.

Example 6-13. Detecting Installed Lua Versions and Components

The following fragment can be used in a port that usesLua if it is installed, or an option is selected.

WANT_LUA= yes

.include <bsd.port.pre.mk>

.if defined(WITH_LUA5) || !empty(PORT_OPTIONS:MLUA5) || !empty(HAVE_LUA:Mlua-5.[01])
USE_LUA= 5.0-5.1
CONFIGURE_ARGS+= --enable-lua5
.endif

The following fragment can be used in a port that enablestolua support if it is installed or if an option is selected, in
addition toLua, both version4.0 .

USE_LUA= 4.0
LUA_COMPS= lua
WANT_LUA= 4.0

.include <bsd.port.pre.mk>

.if defined(WITH_TOLUA) || !empty(PORT_OPTIONS:MTOLUA) || !empty(HAVE_LUA:Mtolua)
LUA_COMPS+= tolua
CONFIGURE_ARGS+= --enable-tolua
.endif

6.19.5 Defined Variables

The following variables are available in the port (after defining one fromTable 6-33).

Table 6-40. Variables Defined for Ports That Use Lua

Name Description

LUA_VER TheLua version that is going to be used (e.g.,5.1)

LUA_VER_SH TheLua shared library major version (e.g.,1)

LUA_VER_STR TheLua version without the dots (e.g.,51)

LUA_PREFIX The prefix whereLua (and components) is installed

87

Chapter 6 Special Considerations

Name Description

LUA_SUBDIR The directory under${PREFIX}/bin ,
${PREFIX}/share and${PREFIX}/lib whereLua is
installed

LUA_INCDIR The directory whereLua andtolua header files are
installed

LUA_LIBDIR The directory whereLua andtolua libraries are installed

LUA_MODLIBDIR The directory whereLua module libraries (.so) are
installed

LUA_MODSHAREDIR The directory whereLua modules (.lua) are installed

LUA_PKGNAMEPREFIX The package name prefix used byLua modules

LUA_CMD The path to theLua interpreter

LUAC_CMD The path to theLua compiler

TOLUA_CMD The path to thetolua program

Example 6-14. Telling the Port Where to Find Lua

The following fragment shows how to tell a port that uses a configure script where theLua header files and libraries
are.

USE_LUA= 4.0
GNU_CONFIGURE= yes
CONFIGURE_ENV= CPPFLAGS="-I${LUA_INCDIR}" LDFLAGS="-L ${LUA_LIBDIR}"

6.19.6 Processing in bsd.port.pre.mk

If you need to use the variables for running commands right after includingbsd.port.pre.mk you need to define
LUA_PREMK.

Important: If you define LUA_PREMK, then the version, dependencies, components and defined variables will not
change if you modify the Lua port variables after including bsd.port.pre.mk .

Example 6-15. Using Lua Variables in Commands

The following fragment illustrates the use ofLUA_PREMKby running theLua interpreter to obtain the full version
string, assign it to a variable and pass it to the program.

USE_LUA= 5.0
LUA_PREMK= yes

.include <bsd.port.pre.mk>

.if exists(${LUA_CMD})
VER_STR!= ${LUA_CMD} -v

88

Chapter 6 Special Considerations

CFLAGS+= -DLUA_VERSION_STRING="${VER_STR}"
.endif

Note: The Lua variables can be safely used in commands when they are inside targets without the need of
LUA_PREMK.

6.20 Using Xfce
TheUSE_XFCEvariable is used to autoconfigure the dependencies for portswhich use an Xfce based library or
application likex11-toolkits/libxfce4gui andx11-wm/xfce4-panel .

The following Xfce libraries and applications are recognized at the moment:

• libexo:x11/libexo

• libgui: x11-toolkits/libxfce4gui

• libutil: x11/libxfce4util

• libmcs:x11/libxfce4mcs

• mcsmanager:sysutils/xfce4-mcs-manager

• panel:x11-wm/xfce4-panel

• thunar:x11-fm/thunar

• wm: x11-wm/xfce4-wm

• xfdev:dev/xfce4-dev-tools

The following additional parameters are recognized:

• configenv: Use this if your port requires a special modifiedCONFIGURE_ENVto find its required libraries.

-I${LOCALBASE}/include -L${LOCALBASE}/lib

gets added to CPPFLAGS toCONFIGURE_ENV.

Therefore, if a port has a dependency onsysutils/xfce4-mcs-manager and requires the special CPPFLAGS in
its configure environment, the syntax will be:

USE_XFCE= mcsmanager configenv

6.21 Using Mozilla

Table 6-41. Variables for Ports That Use Mozilla

89

Chapter 6 Special Considerations

USE_GECKO Gecko backend the port can handle. Possible values:
libxul (libxul.so), seamonkey

(libgtkembedmoz.so , deprecated, should not be used
any more).

USE_FIREFOX The port requires Firefox as a runtime dependency.
Possible values:yes (get default version),40, 36, 35.
Default dependency is on version40.

USE_FIREFOX_BUILD The port requires Firefox as a buildtime dependency.
Possible values: see USE_FIREFOX. This automatically
sets USE_FIREFOX and assigns the same value.

USE_SEAMONKEY The port requires SeaMonkey as a runtime dependency.
Possible values:yes (get default version),20, 11

(deprecated, should not be used any more). Default
dependency is on version20.

USE_SEAMONKEY_BUILD The port requires SeaMonkey as a buildtime
dependency. Possible values: see USE_SEAMONKEY.
This automatically sets USE_SEAMONKEY and
assigns the same value.

USE_THUNDERBIRD The port requires Thunderbird as a runtime dependency.
Possible values:yes (get default version),31, 30

(deprecated, should not be used any more). Default
dependency is on version31.

USE_THUNDERBIRD_BUILD The port requires Thunderbird as a buildtime
dependency. Possible values: see
USE_THUNDERBIRD. This automatically sets
USE_THUNDERBIRD and assigns the same value.

A complete list of available variables can be found in/usr/ports/Mk/bsd.gecko.mk .

6.22 Using Databases

Table 6-42. Variables for Ports Using Databases

Variable Means

USE_BDB If variable is set toyes , add dependency on
databases/db41 port. The variable may also be set to
values: 40, 41, 42, 43, 44, 46, 47, 48, or 51. You can
declare a range of acceptable values,USE_BDB=42+ will
find the highest installed version, and fall back to 42 if
nothing else is installed.

USE_MYSQL If variable is set toyes , add dependency on
databases/mysql55-client port. An associated
variable,WANT_MYSQL_VER, may be set to values such
as 323, 40, 41, 50, 51, 52, 55, or 60.

90

Chapter 6 Special Considerations

Variable Means

USE_PGSQL If set toyes , add dependency on
databases/postgresql90-client port. An
associated variable,WANT_PGSQL_VER, may be set to
values such as 83, 84, 90, 91 or 92. You can declare a
minimum or maximum value;WANT_PGSQL_VER= 90+

will cause the port to depend on a minimum version of
9.0.

USE_SQLITE If variable is set toyes , add dependency on
databases/sqlite3 port. The variable may also be
set to values: 3, 2.

More details are available in bsd.database.mk
(http://svnweb.FreeBSD.org/ports/head/Mk/bsd.database.mk?view=markup).

6.23 Starting and Stopping Services (rc Scripts)
rc.d scripts are used to start services on system startup, and to give administrators a standard way of stopping,
starting and restarting the service. Ports integrate into the systemrc.d framework. Details on its usage can be found
in the rc.d Handbook chapter
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/configtuning-rcd.html). Detailed explanation of
available commands is provided in rc(8) and rc.subr(8). Finally, there is an article
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/rc-scripting) on practical aspects ofrc.d scripting.

One or morerc.d scripts can be installed:

USE_RC_SUBR= doormand

Scripts must be placed in thefiles subdirectory and a.in suffix must be added to their filename. Standard
SUB_LIST expansions will be used for this file. Use of the%%PREFIX%%and%%LOCALBASE%%expansions is
strongly encouraged as well. More onSUB_LIST in the relevant section.

Prior to FreeBSD 6.1-RELEASE, integration with rcorder(8)is available by usingUSE_RCORDERinstead of
USE_RC_SUBR. However, use of this method is not necessary unless the porthas an option to install itself in the base,
or the service needs to run prior to theFILESYSTEMS rc.d script in the base.

As of FreeBSD 6.1-RELEASE, localrc.d scripts (including those installed by ports) are included in the overall
rcorder(8) of the base system.

Example simplerc.d script:

#!/bin/sh

$FreeBSD$
#
PROVIDE: doormand
REQUIRE: LOGIN
KEYWORD: shutdown
#
Add the following lines to /etc/rc.conf.local or /etc/rc. conf
to enable this service:

91

Chapter 6 Special Considerations

#
doormand_enable (bool): Set to NO by default.
Set it to YES to enable doormand.
doormand_config (path): Set to %%PREFIX%%/etc/doormand /doormand.cf
by default.

. /etc/rc.subr

name=doormand
rcvar=doormand_enable

load_rc_config $name

: ${doormand_enable:="NO"}
: ${doormand_config="%%PREFIX%%/etc/doormand/doorman d.cf"}

command=%%PREFIX%%/sbin/${name}
pidfile=/var/run/${name}.pid

command_args="-p $pidfile -f $doormand_config"

run_rc_command "$1"

Unless there is a good reason to start the service earlier allports scripts should use

REQUIRE: LOGIN

If the service runs as a particular user (other than root) this is mandatory.

KEYWORD: shutdown

is included in the script above because the mythical port we are using as an example starts a service, and should be
shut down cleanly when the system shuts down. If the script isnot starting a persistent service this is not necessary.

For optional configuration elements the "=" style of defaultvariable assignment is preferable to the ":=" style here,
since the former sets a default value only if the variable is unset, and the latter sets one if the variable is unsetor null.
A user might very well include something like

doormand_flags=""

in their rc.conf.local file, and a variable substitution using ":=" would inappropriately override the user’s
intention. The_enable variable is not optional, and should use the ":" for the default.

Note: No new scripts should be added with the .sh suffix.

6.23.1 Pre-Commit Checklist

Before contributing a port with anrc.d script, and more importantly, before committing one, please consult the
following checklist to be sure that it is ready.

92

Chapter 6 Special Considerations

1. If this is a new file, does it have.sh in the file name? If so that should be changed to justfile.in since new
rc.d files may not end with that extension.

2. Does the file have a$FreeBSD$ tag?

3. Do the name of the file (minus.in), thePROVIDEline, and$name all match? The file name matchingPROVIDE

makes debugging easier, especially for rcorder(8) issues.Matching the file name and$name makes it easier to
figure out which variables are relevant inrc.conf[.local] . The latter is also what you might call “policy” for
all new scripts, including those in the base system.

4. Is theREQUIREline set toLOGIN? This is mandatory for scripts that run as a non-root user. Ifit runs as root, is
there a good reason for it to run prior toLOGIN? If not, it should run there so that we can loosely group local
scripts to a point in rcorder(8) after most everything in thebase is already running.

5. Does the script start a persistent service? If so, it should haveKEYWORD: shutdown.

6. Make sure there is noKEYWORD: FreeBSDpresent. This has not been necessary or desirable for years.It is also
an indication that the new script was copy/pasted from an oldscript, so extra caution should be given to the
review.

7. If the script uses an interpreted language likeperl , python , or ruby , make certain that
command_interpreter is set appropriately. Otherwise,

service name stop

will probably not work properly. See service(8) for more information.

8. Have all occurrences of/usr/local been replaced with%%PREFIX%%?

9. Do the default variable assignments come afterload_rc_config ?

10. Are there default assignments to empty strings? They should be removed, but double-check that the option is
documented in the comments at the top of the file.

11. Are things that are set in variables actually used in the script?

12. Are options listed in the defaultname_flags things that are actually mandatory? If so, they should be in
command_args . The-d option is a red flag (pardon the pun) here, since it is usually the option to “daemonize”
the process, and therefore is actually mandatory.

13. Thename_flags variable should never be included incommand_args (and vice versa, although that error is
less common).

14. Does the script execute any code unconditionally? This is frowned on. Usually these things can/should be dealt
with through astart_precmd .

15. All boolean tests should utilize thecheckyesno function. No hand-rolled tests for[Yy][Ee][Ss] , etc.

16. If there is a loop (for example, waiting for something to start) does it have a counter to terminate the loop? We
do not want the boot to be stuck forever if there is an error.

17. Does the script create files or directories that need specific permissions, for example, apid file that needs to be
owned by the user that runs the process? Rather than the traditional touch(1)/chown(8)/chmod(1) routine,
consider using install(1) with the proper command line arguments to do the whole procedure with one step.

93

Chapter 6 Special Considerations

6.24 Adding Users and Groups
Some ports require a certain user to be on the installed system. Choose a free UID from 50 to 999 and register it
either inports/UIDs (for users) or inports/GIDs (for groups). Make sure you do not use a UID already used by
the system or other ports.

Please include a patch against these two files when you require a new user or group to be created for your port.

Then you can useUSERSandGROUPSvariables in yourMakefile , and the user will be automatically created when
installing the port.

USERS= pulse
GROUPS= pulse pulse-access pulse-rt

The current list of reserved UIDs and GIDs can be found inports/UIDs andports/GIDs .

6.25 Ports That Rely on Kernel Sources
Some ports (such as kernel loadable modules) need the kernelsource files so that the port can compile. Here is the
correct way to determine if the user has them installed:

.if !exists(${SRC_BASE}/sys/Makefile)
IGNORE= requires kernel sources to be installed
.endif

94

Chapter 7 Advanced pkg-plist Practices

7.1 Changing pkg-plist Based on Make Variables
Some ports, particularly thep5- ports, need to change theirpkg-plist depending on what options they are
configured with (or version ofperl , in the case ofp5- ports). To make this easy, any instances in thepkg-plist of
%%OSREL%%, %%PERL_VER%%, and%%PERL_VERSION%%will be substituted for appropriately. The value of
%%OSREL%%is the numeric revision of the operating system (e.g.,4.9). %%PERL_VERSION%%and%%PERL_VER%%is
the full version number ofperl (e.g.,5.8.9). Several other%%VARS%%related to port’s documentation files are
described inthe relevant section.

If you need to make other substitutions, you can set thePLIST_SUB variable with a list ofVAR=VALUE pairs and
instances of%%VAR%%will be substituted withVALUE in thepkg-plist .

For instance, if you have a port that installs many files in a version-specific subdirectory, you can put something like

OCTAVE_VERSION= 2.0.13
PLIST_SUB= OCTAVE_VERSION=${OCTAVE_VERSION}

in theMakefile and use%%OCTAVE_VERSION%%wherever the version shows up inpkg-plist . That way, when
you upgrade the port, you will not have to change dozens (or insome cases, hundreds) of lines in thepkg-plist .

If your port installs files conditionally on the options set in the port, the usual way of handling it is prefixing the
pkg-plist lines with a%%TAG%%and adding thatTAGto thePLIST_SUB variable inside theMakefile with a
special value of@comment, which makes package tools to ignore the line:

.if defined(WITH_X11)
PLIST_SUB+= X11=""
.else
PLIST_SUB+= X11="@comment "
.endif

and in thepkg-plist :

%%X11%%bin/foo-gui

This substitution (as well as addition of anymanual pages) will be done between thepre-install and
do-install targets, by reading fromPLIST and writing toTMPPLIST (default:WRKDIR/.PLIST.mktmp). So if your
port buildsPLIST on the fly, do so in or beforepre-install . Also, if your port needs to edit the resulting file, do so
in post-install to a file namedTMPPLIST.

Another way of modifying a port’s packing list is based on setting the variablesPLIST_FILES , PLIST_DIRS , and
PLIST_DIRSTRY. The value of each variable is regarded as a list of pathnamesto write toTMPPLIST along with
PLIST contents. Names listed inPLIST_FILES , PLIST_DIRS , andPLIST_DIRSTRY are subject to%%VAR%%

substitution as described above. Except for that, names from PLIST_FILES will appear in the final packing list
unchanged, while@dirrm and@dirrmtry will be prepended to names fromPLIST_DIRS andPLIST_DIRSTRY,
respectively. To take effect,PLIST_FILES , PLIST_DIRS , andPLIST_DIRSTRY must be set beforeTMPPLIST is
written, i.e., inpre-install or earlier.

95

Chapter 7 Advancedpkg-plist Practices

7.2 Empty Directories

7.2.1 Cleaning Up Empty Directories

Do make your ports remove empty directories when they are de-installed. This is usually accomplished by adding
@dirrm lines for all directories that are specifically created by the port. You need to delete subdirectories before you
can delete parent directories.

:
lib/X11/oneko/pixmaps/cat.xpm
lib/X11/oneko/sounds/cat.au

:
@dirrm lib/X11/oneko/pixmaps
@dirrm lib/X11/oneko/sounds
@dirrm lib/X11/oneko

However, sometimes@dirrm will give you errors because other ports share the same directory. You can use
@dirrmtry to remove only empty directories without warning.

@dirrmtry share/doc/gimp

This will neither print any error messages nor cause pkg_delete(1) to exit abnormally even if
${PREFIX} /share/doc/gimp is not empty due to other ports installing some files in there.

7.2.2 Creating Empty Directories

Empty directories created during port installation need special attention. They will not get created when installing the
package, because packages only store the files, and pkg_add(1) creates directories for them as needed. To make sure
the empty directory is created when installing the package,add this line topkg-plist above the corresponding
@dirrm line:

@exec mkdir -p %D/share/foo/templates

7.3 Configuration Files
If your port installs configuration files toPREFIX/etc (or elsewhere) donot simply list them in thepkg-plist . That
will cause pkg_delete(1) to remove the files carefully edited by the user, and a re-installation will wipe them out.

Instead, install sample file(s) with afilename.sample suffix. Then copy the sample file to the real configuration file
name, if it does not already exist. On deinstall delete the configuration file, but only if it is identical to the.sample

file. You need to handle this both in the portMakefile , and in thepkg-plist (for installation from the package).

Example of theMakefile part:

post-install:
@if [! -f ${PREFIX}/etc/orbit.conf]; then \

${CP} -p ${PREFIX}/etc/orbit.conf.sample ${PREFIX}/etc /orbit.conf ; \
fi

96

Chapter 7 Advancedpkg-plist Practices

For each configuration file, create the following three linesin pkg-plist :

@unexec if cmp -s %D/etc/orbit.conf.sample %D/etc/orbit. conf; then rm -f %D/etc/orbit.conf; fi
etc/orbit.conf.sample
@exec if [! -f %D/etc/orbit.conf] ; then cp -p %D/%F %B/orbit .conf; fi

The order of these lines is important. On deinstallation, the sample file is compared to the actual configuration file. If
these files are identical, no changes have been made by the user and the actual file can be safely deleted. Because the
sample file must still exist for the comparison, the@unexec line comes before the sample configuration file name.
On installation, if an actual configuration file is not already present, the sample file is copied to the actual file. The
sample file must be present before it can be copied, so the@exec line comes after the sample configuration file name.

To debug any issues, temporarily remove the-s flag to cmp(1) for more output.

See pkg_create(1) for more information on%Dand related substitution markers.

If there is a very good reason not to install a working configuration file by default, leave the@exec line out of
pkg-plist and add amessagepointing out that the user must copy and edit the file before the software will work.

7.4 Dynamic Versus Static Package List
A static package listis a package list which is available in the Ports Collection either as apkg-plist file (with or
without variable substitution), or embedded into theMakefile via PLIST_FILES , PLIST_DIRS , and
PLIST_DIRSTRY. Even if the contents are auto-generated by a tool or a targetin the Makefilebeforethe inclusion
into the Ports Collection by a committer, this is still considered a static list, since it is possible to examine it without
having to download or compile the distfile.

A dynamic package listis a package list which is generated at the time the port is compiled based upon the files and
directories which are installed. It is not possible to examine it before the source code of the ported application is
downloaded and compiled, or after running amake clean .

While the use of dynamic package lists is not forbidden, maintainers should use static package lists wherever
possible, as it enables users to grep(1) through available ports to discover, for example, which port installs a certain
file. Dynamic lists should be primarily used for complex ports where the package list changes drastically based upon
optional features of the port (and thus maintaining a staticpackage list is infeasible), or ports which change the
package list based upon the version of dependent software used (e.g., ports which generate docs withJavadoc).

Maintainers who prefer dynamic package lists are encouraged to add a new target to their port which generates the
pkg-plist file so that users may examine the contents.

7.5 Automated Package List Creation
First, make sure your port is almost complete, with onlypkg-plist missing.

Next, create a temporary directory tree into which your portcan be installed, and install any dependencies.

mkdir /var/tmp/‘make -V PORTNAME‘

mtree -U -f ‘make -V MTREE_FILE‘ -d -e -p /var/tmp/‘make -V PORTNAME‘

make depends PREFIX=/var/tmp/‘make -V PORTNAME‘

Store the directory structure in a new file.

97

Chapter 7 Advancedpkg-plist Practices

(cd /var/tmp/‘make -V PORTNAME‘ && find -d * -type d) | sort > OLD-DIRS

Create an emptypkg-plist file:

:>pkg-plist

If your port honorsPREFIX (which it should) you can then install the port and create thepackage list.

make install PREFIX=/var/tmp/‘make -V PORTNAME‘

(cd /var/tmp/‘make -V PORTNAME‘ && find -d * \! -type d) | sort > pkg-plist

You must also add any newly created directories to the packing list.

(cd /var/tmp/‘make -V PORTNAME‘ && find -d * -type d) | sort | comm -13 OLD-DIRS - | sort -r | sed -e ’s#^#@dirrm

Finally, you need to tidy up the packing list by hand; it is notall automated. Manual pages should be listed in the
port’sMakefile underMANn, and not in the package list. User configuration files should be removed, or installed as
filename.sample . Theinfo/dir file should not be listed and appropriateinstall-info lines should be added
as noted in theinfo filessection. Any libraries installed by the port should be listed as specified in theshared libraries
section.

Alternatively, use theplist script in /usr/ports/Tools/scripts/ to build the package list automatically. The
plist script is aRuby script that automates most of the manual steps outlined in the previous paragraphs.

The first step is the same as above: take the first three lines, that is,mkdir , mtree andmake depends . Then build
and install the port:

make install PREFIX=/var/tmp/‘make -V PORTNAME‘

And let plist create thepkg-plist file:

/usr/ports/Tools/scripts/plist -Md -m ‘make -V MTREE_FILE‘ /var/tmp/‘make -V PORTNAME‘ > pkg-plist

The packing list still has to be tidied up by hand as stated above.

Another tool that might be used to create an initialpkg-plist is ports-mgmt/genplist . As with any automated
tool, the resultingpkg-plist should be checked and manually edited as needed.

98

Chapter 8 The pkg-* Files
There are some tricks we have not mentioned yet about thepkg- * files that come in handy sometimes.

8.1 pkg-message

If you need to display a message to the installer, you may place the message inpkg-message . This capability is
often useful to display additional installation steps to betaken after a pkg_add(1) or to display licensing information.

When some lines about the build-time knobs or warnings have to be displayed, useECHO_MSG. Thepkg-message

file is only for post-installation steps. Likewise, the distinction betweenECHO_MSGandECHO_CMDshould be kept in
mind. The former is for printing informational text to the screen, while the latter is for command pipelining:

update-etc-shells:
@${ECHO_MSG} "updating /etc/shells"
@${CP} /etc/shells /etc/shells.bak
@(${GREP} -v ${PREFIX}/bin/bash /etc/shells.bak; \

${ECHO_CMD} ${PREFIX}/bin/bash) >/etc/shells
@${RM} /etc/shells.bak

Note: The pkg-message file does not need to be added to pkg-plist . Also, it will not get automatically printed if
the user is using the port, not the package, so you should probably display it from the post-install target
yourself.

8.2 pkg-install

If your port needs to execute commands when the binary package is installed with pkg_add(1) you can do this via the
pkg-install script. This script will automatically be added to the package, and will be run twice by pkg_add(1):
the first time as${SH} pkg-install ${PKGNAME} PRE-INSTALL and the second time as${SH} pkg-install

${PKGNAME} POST-INSTALL. $2 can be tested to determine which mode the script is being run in. The
PKG_PREFIXenvironmental variable will be set to the package installation directory. See pkg_add(1) for additional
information.

Note: This script is not run automatically if you install the port with make install . If you are depending on it
being run, you will have to explicitly call it from your port’s Makefile , with a line like PKG_PREFIX=${PREFIX}

${SH} ${PKGINSTALL} ${PKGNAME} PRE-INSTALL .

8.3 pkg-deinstall

This script executes when a package is removed.

This script will be run twice by pkg_delete(1). The first timeas${SH} pkg-deinstall ${PKGNAME}

DEINSTALL and the second time as${SH} pkg-deinstall ${PKGNAME} POST-DEINSTALL .

99

Chapter 8 Thepkg-* Files

8.4 pkg-req

If your port needs to determine if it should install or not, you can create apkg-req “requirements” script. It will be
invoked automatically at installation/de-installation time to determine whether or not installation/de-installation
should proceed.

The script will be run at installation time by pkg_add(1) aspkg-req ${PKGNAME} INSTALL . At de-installation
time it will be run by pkg_delete(1) aspkg-req ${PKGNAME} DEINSTALL .

8.5 Changing the Names of pkg-* Files
All the names ofpkg- * files are defined using variables so you can change them in yourMakefile if need be. This
is especially useful when you are sharing the samepkg- * files among several ports or have to write to one of the
above files (seewriting to places other thanWRKDIRfor why it is a bad idea to write directly into thepkg- *

subdirectory).

Here is a list of variable names and their default values. (PKGDIRdefaults to${MASTERDIR}.)

Variable Default value

DESCR ${PKGDIR}/pkg-descr

PLIST ${PKGDIR}/pkg-plist

PKGINSTALL ${PKGDIR}/pkg-install

PKGDEINSTALL ${PKGDIR}/pkg-deinstall

PKGREQ ${PKGDIR}/pkg-req

PKGMESSAGE ${PKGDIR}/pkg-message

Please change these variables rather than overridingPKG_ARGS. If you changePKG_ARGS, those files will not
correctly be installed in/var/db/pkg upon install from a port.

8.6 Making Use of SUB_FILES and SUB_LIST

TheSUB_FILES andSUB_LIST variables are useful for dynamic values in port files, such asthe installationPREFIX

in pkg-message .

TheSUB_FILES variable specifies a list of files to be automatically modified. Eachfile in theSUB_FILES list must
have a correspondingfile.in present inFILESDIR . A modified version will be created inWRKDIR. Files defined as
a value ofUSE_RC_SUBR(or the deprecatedUSE_RCORDER) are automatically added to theSUB_FILES. For the files
pkg-message , pkg-install , pkg-deinstall andpkg-req , the corresponding Makefile variable is
automatically set to point to the processed version.

TheSUB_LIST variable is a list ofVAR=VALUEpairs. For each pair%%VAR%%will get replaced withVALUEin each
file listed inSUB_FILES. Several common pairs are automatically defined:PREFIX, LOCALBASE, DATADIR,
DOCSDIR, EXAMPLESDIR, WWWDIR, andETCDIR. Any line beginning with@commentwill be deleted from resulting
files after a variable substitution.

The following example will replace%%ARCH%%with the system architecture in apkg-message :

SUB_FILES= pkg-message
SUB_LIST= ARCH=${ARCH}

100

Chapter 8 Thepkg-* Files

Note that for this example, thepkg-message.in file must exist inFILESDIR .

Example of a goodpkg-message.in :

Now it is time to configure this package.
Copy %%PREFIX%%/share/examples/putsy/%%ARCH%%.conf in to your home directory
as .putsy.conf and edit it.

101

Chapter 9 Testing Your Port

9.1 Running make describe

Several of the FreeBSD port maintenance tools, such as portupgrade(1), rely on a database called
/usr/ports/INDEX which keeps track of such items as port dependencies.INDEX is created by the top-level
ports/Makefile via make index , which descends into each port subdirectory and executesmake describe

there. Thus, ifmake describe fails in any port, no one can generateINDEX, and many people will quickly become
unhappy.

Note: It is important to be able to generate this file no matter what options are present in make.conf , so please
avoid doing things such as using .error statements when (for instance) a dependency is not satisfied. (See
Section 12.15.)

If make describe produces a string rather than an error message, you are probably safe. Seebsd.port.mk for the
meaning of the string produced.

Also note that running a recent version ofportlint (as specified in the next section) will causemake describe to
be run automatically.

9.2 Portlint
Do check your work withportlint before you submit or commit it.portlint warns you about many common
errors, both functional and stylistic. For a new (or repocopied) port,portlint -A is the most thorough; for an
existing port,portlint -C is sufficient.

Sinceportlint uses heuristics to try to figure out errors, it can produce false positive warnings. In addition,
occasionally something that is flagged as a problem really cannot be done in any other way due to limitations in the
ports framework. When in doubt, the best thing to do is ask on FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports).

9.3 Port Tools
Theports-mgmt/porttools program is part of the Ports Collection.

port is the front-end script, which can help you simplify the testing job. Whenever you want to test a new port or
update an existing one, you can useport test to test your port, including theportlint checking. This command
also detects and lists any files that are not listed inpkg-plist . See the following example:

port test /usr/ports/net/csup

102

Chapter 9 Testing Your Port

9.4 PREFIX and DESTDIR

PREFIX determines where the port will be installed. It defaults to/usr/local , but can be set by the user to a
custom path like/opt . Your port must respect the value of this variable.

DESTDIR, if set by the user, determines the complete alternative environment, usually a jail or an installed system
mounted somewhere other than/ . A port will actually install intoDESTDIR/ PREFIX, and register with the package
database inDESTDIR/var/db/pkg . As DESTDIRis handled automatically by the ports infrastructure with chroot(8),
you do not need any modifications or any extra care to writeDESTDIR-compliant ports.

The value ofPREFIX will be set toLOCALBASE(defaulting to/usr/local). If USE_LINUX_PREFIX is set,PREFIX

will be LINUXBASE(defaulting to/compat/linux).

Avoiding hard-coded/usr/local paths in the source makes the port much more flexible and able to cater to the
needs of other sites. Often, this can be accomplished by simply replacing occurrences of/usr/local in the port’s
variousMakefile s with ${PREFIX} . This variable is automatically passed down to every stage of the build and
install processes.

Make sure your application is not installing things in/usr/local instead ofPREFIX. A quick test for such
hard-coded paths is:

make clean; make package PREFIX=/var/tmp/‘make -V PORTNAME‘

If anything is installed outside ofPREFIX, the package creation process will complain that it cannot find the files.

This test will not find hard-coded paths inside the port’s files, nor will it verify thatLOCALBASEis being used to
correctly refer to files from other ports. The temporarily-installed port in/var/tmp/‘make -V PORTNAME‘ should
be tested for proper operation to make sure there are no problems with paths.

PREFIX should not be set explicitly in a port’sMakefile . Users installing the port may have setPREFIX to a custom
location, and the port should respect that setting.

Refer to programs and files from other ports with the variables mentioned above, not explicit pathnames. For
instance, if your port requires a macroPAGERto have the full pathname ofless , do not use a literal path of
/usr/local/bin/less . Instead, use${LOCALBASE}:

-DPAGER=\"${LOCALBASE}/bin/less\"

The path withLOCALBASEis more likely to still work if the system administrator has moved the whole/usr/local

tree somewhere else.

9.5 Tinderbox
If you are an avid ports contributor, you might want to take a look atTinderbox. It is a powerful system for building
and testing ports based on the scripts used onPointyhat. You can installTinderbox usingports-mgmt/tinderbox

port. Be sure to read supplied documentation since the configuration is not trivial.

Visit the Tinderbox website (http://tinderbox.marcuscom.com/) for more details.

103

Chapter 10 Upgrading an Individual Port
When you notice that a port is out of date compared to the latest version from the original authors, you should first
ensure that you have the latest port. You can find them in theports/ports-current directory of the FreeBSD
FTP mirror sites. However, if you are working with more than afew ports, you will probably find it easier to use
Subversionor portsnap(8) to keep your whole ports collection up-to-date, as described in the Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/ports-using.html). This will have the added
benefit of tracking all the ports’ dependencies.

The next step is to see if there is an update already pending. To do this, you have two options. There is a searchable
interface to the FreeBSD Problem Report (PR) database (http://www.FreeBSD.org/cgi/query-pr-summary.cgi?query)
(also known asGNATS). Selectports in the dropdown, and enter the name of the port.

However, sometimes people forget to put the name of the port into the Synopsis field in an unambiguous fashion. In
that case, you can try theFreeBSD Ports Monitoring System(also known asportsmon). This system attempts to
classify port PRs by portname. To search for PRs about a particular port, use the Overview of One Port
(http://portsmon.FreeBSD.org/portoverview.py).

If there is no pending PR, the next step is to send an email to the port’s maintainer, as shown bymake maintainer .
That person may already be working on an upgrade, or have a reason to not upgrade the port right now (because of,
for example, stability problems of the new version); you would not want to duplicate their work. Note that
unmaintained ports are listed with a maintainer ofports@FreeBSD.org , which is just the general ports mailing list,
so sending mail there probably will not help in this case.

If the maintainer asks you to do the upgrade or there is no maintainer, then you have a chance to help out FreeBSD
by preparing the update yourself! Please do this by using thediff(1) command in the base system.

To create a suitablediff for a single patch, copy the file that needs patching tosomething.orig, save your
changes tosomething and then create your patch:

% diff -u something.orig something > something.diff

Otherwise, you should either use thesvn diff method (Section 10.1) or copy the contents of the port to an entire
different directory and use the result of the recursive diff(1) output of the new and old ports directories (e.g., if your
modified port directory is calledsuperedit and the original is in our tree assuperedit.bak , then save the result
of diff -ruN superedit.bak superedit). Either unified or context diff is fine, but port committers generally
prefer unified diffs. Note the use of the-N option—this is the accepted way to force diff to properly deal with the
case of new files being added or old files being deleted. Beforesending us the diff, please examine the output to make
sure all the changes make sense. (In particular, make sure you first clean out the work directories withmake clean).

To simplify common operations with patch files, you can use/usr/ports/Tools/scripts/patchtool.py .
Before using it, please read/usr/ports/Tools/scripts/README.patchtool .

If the port is unmaintained, and you are actively using it yourself, please consider volunteering to become its
maintainer. FreeBSD has over 4000 ports without maintainers, and this is an area where more volunteers are always
needed. (For a detailed description of the responsibilities of maintainers, refer to the section in the Developer’s
Handbook (http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html#POLICIES-
MAINTAINER).)

The best way to send us the diff is by including it via send-pr(1) (categoryports). If you are maintaining the port,
be sure to put[maintainer update] at the beginning of your synopsis line and set the “Class” of your PR to
maintainer-update . Otherwise, the “Class” of your PR should bechange-request . Please mention any added

104

Chapter 10 Upgrading an Individual Port

or deleted files in the message, as they have to be explicitly specified to svn(1) when doing a commit. If the diff is
more than about 20KB, please compress and uuencode it; otherwise, just include it in the PR as is.

Before you send-pr(1), you should review the Writing the problem report
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/problem-reports/pr-writing.html) section in the Problem
Reports article; it contains far more information about howto write useful problem reports.

Important: If your upgrade is motivated by security concerns or a serious fault in the currently committed port,
please notify the Ports Management Team <portmgr@FreeBSD.org > to request immediate rebuilding and
redistribution of your port’s package. Unsuspecting users of pkg_add(1) will otherwise continue to install the old
version via pkg_add -r for several weeks.

Note: Once again, please use diff(1) and not shar(1) to send updates to existing ports! This helps ports
committers understand exactly what is being changed.

Now that you have done all that, you will want to read about howto keep up-to-date inChapter 14.

10.1 Using SVN to Make Patches
If you can, please submit a svn(1) diff — they are easier to handle than diffs between “new and old” directories. Plus
it is easier for you to see what you have changed and to update your diff if something is modified in the Ports
Collection from when you started to work on it until you submit your changes, or if the committer asks you to fix
something.

% cd ~/my_wrkdir ➊

% svn co https://svn0.us-west.FreeBSD.org/ports/head/dns/pdnsd ➋

% cd ~/my_wrkdir/pdnsd

➊ This can be anywhere you want, of course; building ports is not limited to within /usr/ports/ .

➋ svn0.us-west.FreeBSD.org (https://svn0.us-west.FreeBSD.org/) is a publicSVNserver. Select the closest mirror
and verify the mirror server certificate from the list of Subversion mirror sites
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/svn-mirrors.html).

While in the working directory, make any changes that you would usually make to the port. If you add or remove a
file, usesvn to track these changes:

% svn add new_file

% svn remove deleted_file

Make sure that you check the port using the checklist inSection 3.4andSection 3.5.

% svn status

% svn update ➊

➊ This will try to merge the differences between your patch andcurrent SVN; watch the output carefully. The
letter in front of each file name indicates what was done with it. SeeTable 10-1for a complete list.

105

Chapter 10 Upgrading an Individual Port

Table 10-1.SVN Update File Prefixes

U The file was updated without problems.

G The file was updated without problems (you will only
see this when working against a remote repository).

M The file had been modified, and was merged without
conflicts.

C The file had been modified, and was merged with
conflicts.

If you getC as a result ofsvn update it means something changed in the SVN repository and svn(1) was not able
to merge your local changes and those from the repository. Itis always a good idea to inspect the changes anyway,
since svn(1) does not know anything about how a port should be, so it might (and probably will) merge things that do
not make sense.

The last step is to make a unified diff(1) of the files against SVN:

% svn diff > ../‘basename ${PWD}‘.diff

Note: Any files that have been removed should be explicitly mentioned in the PR, because file removal may not
be obvious to the committer.

Send your patch following the guidelines inChapter 10.

10.2 The Files UPDATING and MOVED

If upgrading the port requires special steps like changing configuration files or running a specific program, you
should document this in the file/usr/ports/UPDATING . The format of an entry in this file is as follows:

YYYYMMDD:
AFFECTS: users of portcategory/portname
AUTHOR: Your name <Your email address>

Special instructions

If you are including exact portmaster or portupgrading instructions, please make sure to get the shell escaping right.

The/usr/ports/MOVED file is used to list moved or removed ports. Each line in the fileis made up of the name of
the port, where the port was moved to, when, and why. If the port was removed, the section detailing where it was
moved to can be left blank. Each section must be separated by the | (pipe) character, like so:

old name|new name (blank for deleted)|date of move|reason

The date should be entered in the formYYYY-MM-DD. New entries should be added to the end of the file to keep it in
chronological order.

If a port was removed but has since been restored, delete the line in this file that states that it was removed.

The changes can be validated withTools/scripts/MOVEDlint.awk .

106

Chapter 11 Ports Security

11.1 Why Security is So Important
Bugs are occasionally introduced to the software. Arguably, the most dangerous of them are those opening security
vulnerabilities. From the technical viewpoint, such vulnerabilities are to be closed by exterminating the bugs that
caused them. However, the policies for handling mere bugs and security vulnerabilities are very different.

A typical small bug affects only those users who have enabledsome combination of options triggering the bug. The
developer will eventually release a patch followed by a new version of the software, free of the bug, but the majority
of users will not take the trouble of upgrading immediately because the bug has never vexed them. A critical bug that
may cause data loss represents a graver issue. Nevertheless, prudent users know that a lot of possible accidents,
besides software bugs, are likely to lead to data loss, and sothey make backups of important data; in addition, a
critical bug will be discovered really soon.

A security vulnerability is all different. First, it may remain unnoticed for years because often it does not cause
software malfunction. Second, a malicious party can use it to gain unauthorized access to a vulnerable system, to
destroy or alter sensitive data; and in the worst case the user will not even notice the harm caused. Third, exposing a
vulnerable system often assists attackers to break into other systems that could not be compromised otherwise.
Therefore closing a vulnerability alone is not enough: the audience should be notified of it in most clear and
comprehensive manner, which will allow to evaluate the danger and take appropriate actions.

11.2 Fixing Security Vulnerabilities
While on the subject of ports and packages, a security vulnerability may initially appear in the original distribution or
in the port files. In the former case, the original software developer is likely to release a patch or a new version
instantly, and you will only need to update the port promptlywith respect to the author’s fix. If the fix is delayed for
some reason, you should eithermark the port asFORBIDDENor introduce a patch file of your own to the port. In the
case of a vulnerable port, just fix the port as soon as possible. In either case,
the standard procedure for submitting your changeshould be followed unless you have rights to commit it directly to
the ports tree.

Important: Being a ports committer is not enough to commit to an arbitrary port. Remember that ports usually
have maintainers, whom you should respect.

Please make sure that the port’s revision is bumped as soon asthe vulnerability has been closed. That is how the
users who upgrade installed packages on a regular basis willsee they need to run an update. Besides, a new package
will be built and distributed over FTP and WWW mirrors, replacing the vulnerable one.PORTREVISIONshould be
bumped unlessPORTVERSIONhas changed in the course of correcting the vulnerability. That is you should bump
PORTREVISIONif you have added a patch file to the port, but you should not if you have updated the port to the
latest software version and thus already touchedPORTVERSION. Please refer to thecorresponding sectionfor more
information.

107

Chapter 11 Ports Security

11.3 Keeping the Community Informed

11.3.1 The VuXML Database

A very important and urgent step to take as early after a security vulnerability is discovered as possible is to notify
the community of port users about the jeopardy. Such notification serves two purposes. First, should the danger be
really severe it will be wise to apply an instant workaround.E.g., stop the affected network service or even deinstall
the port completely until the vulnerability is closed. Second, a lot of users tend to upgrade installed packages only
occasionally. They will know from the notification that theymustupdate the package without delay as soon as a
corrected version is available.

Given the huge number of ports in the tree a security advisorycannot be issued on each incident without creating a
flood and losing the attention of the audience when it comes toreally serious matters. Therefore security
vulnerabilities found in ports are recorded in the FreeBSD VuXML database (http://vuxml.freebsd.org/). The
Security Officer Team members also monitor it for issues requiring their intervention.

If you have committer rights you can update the VuXML database by yourself. So you will both help the Security
Officer Team and deliver the crucial information to the community earlier. However, if you are not a committer, or
you believe you have found an exceptionally severe vulnerability please do not hesitate to contact the Security Officer
Team directly as described on the FreeBSD Security Information (http://www.freebsd.org/security/#how) page.

The VuXML database is an XML document. Its source filevuln.xml is kept right inside the port
security/vuxml . Therefore the file’s full pathname will bePORTSDIR/security/vuxml/vuln.xml . Each time
you discover a security vulnerability in a port please add anentry for it to that file. Until you are familiar with
VuXML, the best thing you can do is to find an existing entry fitting your case, then copy it and use it as a template.

11.3.2 A Short Introduction to VuXML

The full-blown XML format is complex, and far beyond the scope of this book. However, to gain basic insight on the
structure of a VuXML entry you need only the notion of tags. XML tag names are enclosed in angle brackets. Each
opening <tag> must have a matching closing </tag>. Tags may be nested. If nesting, the inner tags must be closed
before the outer ones. There is a hierarchy of tags, i.e., more complex rules of nesting them. This is similar to
HTML. The major difference is that XML is eXtensible, i.e., based on defining custom tags. Due to its intrinsic
structure XML puts otherwise amorphous data into shape. VuXML is particularly tailored to mark up descriptions of
security vulnerabilities.

Now consider a realistic VuXML entry:

<vuln vid="f4bc80f4-da62-11d8-90ea-0004ac98a7b9"> ➊

<topic>Several vulnerabilities found in Foo</topic> ➋

<affects>
<package>

<name>foo</name> ➌

<name>foo-devel</name>
<name>ja-foo</name>
<range><ge>1.6</ge><lt>1.9</lt></range> ➍

<range><ge>2. * </ge><lt>2.4_1</lt></range>
<range><eq>3.0b1</eq></range>

</package>
<package>

<name>openfoo</name> ➎

108

Chapter 11 Ports Security

<range><lt>1.10_7</lt></range> ➏

<range><ge>1.2,1</ge><lt>1.3_1,1</lt></range>
</package>

</affects>
<description>

<body xmlns="http://www.w3.org/1999/xhtml">
<p>J. Random Hacker reports:</p> ➐

<blockquote
cite="http://j.r.hacker.com/advisories/1">
<p>Several issues in the Foo software may be exploited

via carefully crafted QUUX requests. These requests will
permit the injection of Bar code, mumble theft, and the
readability of the Foo administrator account.</p>

</blockquote>
</body>

</description>
<references> ➑

<freebsdsa>SA-10:75.foo</freebsdsa> ➒

<freebsdpr>ports/987654</freebsdpr> (10)
<cvename>CAN-2010-0201</cvename> (11)
<cvename>CAN-2010-0466</cvename>
<bid>96298</bid> (12)
<certsa>CA-2010-99</certsa> (13)
<certvu>740169</certvu> (14)
<uscertsa>SA10-99A</uscertsa> (15)
<uscertta>SA10-99A</uscertta> (16)
<mlist msgid="201075606@hacker.com">http://marc.thea imsgroup.com/?l=bugtraq&m=203886607825605</
<url>http://j.r.hacker.com/advisories/1</url> (18)

</references>
<dates>

<discovery>2010-05-25</discovery> (19)
<entry>2010-07-13</entry> (20)
<modified>2010-09-17</modified> (21)

</dates>
</vuln>

The tag names are supposed to be self-explanatory so we shalltake a closer look only at fields you will need to fill in
by yourself:

➊ This is the top-level tag of a VuXML entry. It has a mandatory attribute,vid , specifying a universally unique
identifier (UUID) for this entry (in quotes). You should generate a UUID for each new VuXML entry (and do
not forget to substitute it for the template UUID unless you are writing the entry from scratch). You can use
uuidgen(1) to generate a VuXML UUID.

➋ This is a one-line description of the issue found.

➌ The names of packages affected are listed there. Multiple names can be given since several packages may be
based on a single master port or software product. This may include stable and development branches, localized
versions, and slave ports featuring different choices of important build-time configuration options.

Important: It is your responsibility to find all such related packages when writing a VuXML entry. Keep in
mind that make search name=foo is your friend. The primary points to look for are as follows:

109

Chapter 11 Ports Security

• the foo-devel variant for a foo port;

• other variants with a suffix like -a4 (for print-related packages), -without-gui (for packages with X
support disabled), or similar;

• jp- , ru- , zh- , and other possible localized variants in the corresponding national categories of the ports
collection.

➍ Affected versions of the package(s) are specified there as one or more ranges using a combination of<lt> ,
<le> , <eq> , <ge> , and<gt> elements. The version ranges given should not overlap.

In a range specification,* (asterisk) denotes the smallest version number. In particular, 2. * is less than2.a .
Therefore an asterisk may be used for a range to match all possible alpha , beta , andRCversions. For instance,
<ge>2. * </ge><lt>3. * </lt> will selectively match every2.x version while
<ge>2.0</ge><lt>3.0</lt> will not since the latter misses2.r3 and matches3.b .

The above example specifies that affected are versions from1.6 to 1.9 inclusive, versions2.x before2.4_1 ,
and version3.0b1 .

➎ Several related package groups (essentially, ports) can belisted in the<affected> section. This can be used if
several software products (say FooBar, FreeBar and OpenBar) grow from the same code base and still share its
bugs and vulnerabilities. Note the difference from listingmultiple names within a single <package> section.

➏ The version ranges should allow forPORTEPOCHandPORTREVISIONif applicable. Please remember that
according to the collation rules, a version with a non-zeroPORTEPOCHis greater than any version without
PORTEPOCH, e.g.,3.0,1 is greater than3.1 or even than8.9 .

➐ This is a summary of the issue. XHTML is used in this field. At least enclosing<p> and</p> should appear.
More complex mark-up may be used, but only for the sake of accuracy and clarity: No eye candy please.

➑ This section contains references to relevant documents. Asmany references as apply are encouraged.

➒ This is a FreeBSD security advisory (http://www.freebsd.org/security/#adv).

(10)This is a FreeBSD problem report (http://www.freebsd.org/support.html#gnats).

(11)This is a MITRE CVE (http://www.cve.mitre.org/) identifier.

(12)This is a SecurityFocus Bug ID (http://www.securityfocus.com/bid).

(13)This is a US-CERT (http://www.cert.org/) security advisory.

(14)This is a US-CERT (http://www.cert.org/) vulnerability note.

(15)This is a US-CERT (http://www.cert.org/) Cyber Security Alert.

(16)This is a US-CERT (http://www.cert.org/) Technical Cyber Security Alert.

(17)This is a URL to an archived posting in a mailing list. The attributemsgid is optional and may specify the
message ID of the posting.

(18)This is a generic URL. It should be used only if none of the other reference categories apply.

(19)This is the date when the issue was disclosed (YYYY-MM-DD).

(20)This is the date when the entry was added (YYYY-MM-DD).

(21)This is the date when any information in the entry was last modified (YYYY-MM-DD). New entries must not
include this field. It should be added upon editing an existing entry.

110

Chapter 11 Ports Security

11.3.3 Testing Your Changes to the VuXML Database

Assume you just wrote or filled in an entry for a vulnerabilityin the packageclamav that has been fixed in version
0.65_7 .

As a prerequisite, you need toinstall fresh versions of the portsports-mgmt/portaudit ,
ports-mgmt/portaudit-db , andsecurity/vuxml .

Note: To run packaudit you must have permission to write to its DATABASEDIR, typically /var/db/portaudit .

To use a different directory set the DATABASEDIRenvironment variable to a different location.

If you are working in a directory other than ${PORTSDIR}/security/vuxml set the VUXMLDIRenvironment
variable to the directory where vuln.xml is located.

First, check whether there already is an entry for this vulnerability. If there were such an entry, it would match the
previous version of the package,0.65_6 :

% packaudit

% portaudit clamav-0.65_6

If there is none found, you have the green light to add a new entry for this vulnerability.

% cd ${PORTSDIR}/security/vuxml

% make newentry

When you are done verify its syntax and formatting.

% make validate

Note: You will need at least one of the following packages installed: textproc/libxml2 , textproc/jade .

Now rebuild theportaudit database from the VuXML file:

% packaudit

To verify that the<affected> section of your entry will match correct package(s), issue the following command:

% portaudit -f /usr/ports/INDEX -r uuid

Note: Please refer to portaudit(1) for better understanding of the command syntax.

Make sure that your entry produces no spurious matches in theoutput.

Now check whether the right package versions are matched by your entry:

% portaudit clamav-0.65_6 clamav-0.65_7

Affected package: clamav-0.65_6 (matched by clamav<0.65_ 7)
Type of problem: clamav remote denial-of-service.
Reference: <http://www.freebsd.org/ports/portaudit/7 4a9541d-5d6c-11d8-80e3-0020ed76ef5a.html>

111

Chapter 11 Ports Security

1 problem(s) found.

The former version should match while the latter one should not.

Finally, verify whether the web page generated from the VuXML database looks like expected:

% mkdir -p ~/public_html/portaudit

% packaudit

% lynx ~/public_html/portaudit/74a9541d-5d6c-11d8-80e3-0020ed76ef5a.html

112

Chapter 12 Dos and Don’ts

12.1 Introduction
Here is a list of common dos and don’ts that you encounter during the porting process. You should check your own
port against this list, but you can also check ports in the PR database
(http://www.FreeBSD.org/cgi/query-pr-summary.cgi?query) that others have submitted. Submit any comments on
ports you check as described in Bug Reports and General Commentary
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributing/contrib-how.html#CONTRIB-GENERAL).
Checking ports in the PR database will both make it faster forus to commit them, and prove that you know what you
are doing.

12.2 WRKDIR

Do not write anything to files outsideWRKDIR. WRKDIRis the only place that is guaranteed to be writable during the
port build (see installing ports from a CDROM
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/ports-using.html#PORTS-CD) for an example of
building ports from a read-only tree). If you need to modify one of thepkg- * files, do so byredefining a variable,
not by writing over it.

12.3 WRKDIRPREFIX

Make sure your port honorsWRKDIRPREFIX. Most ports do not have to worry about this. In particular, ifyou are
referring to aWRKDIRof another port, note that the correct location isWRKDIRPREFIXPORTSDIR/ subdir/ name/work

not PORTSDIR/ subdir/ name/work or .CURDIR/../../ subdir/ name/work or some such.

Also, if you are definingWRKDIRyourself, make sure you prepend${WRKDIRPREFIX}${.CURDIR} in the front.

12.4 Differentiating Operating Systems and OS Versions
You may come across code that needs modifications or conditional compilation based upon what version of FreeBSD
Unix it is running under. The preferred way to tell FreeBSD versions apart are the__FreeBSD_version and
__FreeBSD__ macros defined in sys/param.h (http://svnweb.freebsd.org/base/head/sys/sys/param.h?view=markup).
If this file is not included add the code,

#include <sys/param.h>

to the proper place in the.c file.

__FreeBSD__ is defined in all versions of FreeBSD as their major version number. For example, in FreeBSD 9.x,
__FreeBSD__ is defined to be9.

#if __FreeBSD__ >= 9
if __FreeBSD_version >= 901000

/ * 9.1+ release specific code here * /

113

Chapter 12 Dos and Don’ts

endif
#endif

12.5 Writing Something After bsd.port.mk

Do not write anything after the.include <bsd.port.mk> line. It usually can be avoided by including
bsd.port.pre.mk somewhere in the middle of yourMakefile andbsd.port.post.mk at the end.

Note: Include either the bsd.port.pre.mk /bsd.port.post.mk pair or bsd.port.mk only; do not mix these two
usages.

bsd.port.pre.mk only defines a few variables, which can be used in tests in theMakefile , bsd.port.post.mk

defines the rest.

Here are some important variables defined inbsd.port.pre.mk (this is not the complete list, please read
bsd.port.mk for the complete list).

Variable Description

ARCH The architecture as returned byuname -m (e.g.,i386)

OPSYS The operating system type, as returned byuname -s

(e.g.,FreeBSD)

OSREL The release version of the operating system (e.g.,2.1.5

or 2.2.7)

OSVERSION The numeric version of the operating system; the same
as__FreeBSD_version .

LOCALBASE The base of the “local” tree (e.g.,/usr/local)

PREFIX Where the port installs itself (seemore onPREFIX).

Note: If you have to define the variable MASTERDIR, do so before including bsd.port.pre.mk .

Here are some examples of things you can write afterbsd.port.pre.mk :

no need to compile lang/perl5 if perl5 is already in system
.if ${OSVERSION} > 300003
BROKEN= perl is in system
.endif

You did remember to use tab instead of spaces afterBROKEN=and :-).

114

Chapter 12 Dos and Don’ts

12.6 Use the exec Statement in Wrapper Scripts
If the port installs a shell script whose purpose is to launchanother program, and if launching that program is the last
action performed by the script, make sure to launch the program using theexec statement, for instance:

#!/bin/sh
exec %%LOCALBASE%%/bin/java -jar %%DATADIR%%/foo.jar "$ @"

Theexec statement replaces the shell process with the specified program. If exec is omitted, the shell process
remains in memory while the program is executing, and needlessly consumes system resources.

12.7 Do Things Rationally
TheMakefile should do things simply and reasonably. If you can make it a couple of lines shorter or more
readable, then do so. Examples include using a make.if construct instead of a shellif construct, not redefining
do-extract if you can redefineEXTRACT* instead, and usingGNU_CONFIGUREinstead ofCONFIGURE_ARGS +=

--prefix=${PREFIX} .

If you find yourself having to write a lot of new code to try to dosomething, please go back and review
bsd.port.mk to see if it contains an existing implementation of what you are trying to do. While hard to read, there
are a great many seemingly-hard problems for whichbsd.port.mk already provides a shorthand solution.

12.8 Respect Both CC and CXX

The port must respect bothCCandCXXvariables. What we mean by this is that the port must not set the values of
these variables absolutely, overriding existing values; instead, it may append whatever values it needs to the existing
values. This is so that build options that affect all ports can be set globally.

If the port does not respect these variables, please addNO_PACKAGE=ignores either cc or cxx to the
Makefile .

An example of aMakefile respecting bothCCandCXXvariables follows. Note the?=:

CC?= gcc

CXX?= g++

Here is an example which respects neitherCCnor CXXvariables:

CC= gcc

CXX= g++

Both CCandCXXvariables can be defined on FreeBSD systems in/etc/make.conf . The first example defines a
value if it was not previously set in/etc/make.conf , preserving any system-wide definitions. The second example
clobbers anything previously defined.

115

Chapter 12 Dos and Don’ts

12.9 Respect CFLAGS

The port must respect theCFLAGSvariable. What we mean by this is that the port must not set thevalue of this
variable absolutely, overriding the existing value; instead, it may append whatever values it needs to the existing
value. This is so that build options that affect all ports canbe set globally.

If it does not, please addNO_PACKAGE=ignores cflags to theMakefile .

An example of aMakefile respecting theCFLAGSvariable follows. Note the+=:

CFLAGS+= -Wall -Werror

Here is an example which does not respect theCFLAGSvariable:

CFLAGS= -Wall -Werror

TheCFLAGSvariable is defined on FreeBSD systems in/etc/make.conf . The first example appends additional
flags to theCFLAGSvariable, preserving any system-wide definitions. The second example clobbers anything
previously defined.

You should remove optimization flags from the third partyMakefile s. SystemCFLAGScontains system-wide
optimization flags. An example from an unmodifiedMakefile :

CFLAGS= -O3 -funroll-loops -DHAVE_SOUND

Using system optimization flags, theMakefile would look similar to the following example:

CFLAGS+= -DHAVE_SOUND

12.10 Threading Libraries
The threading library must be linked to the binaries using a special flag-pthread on FreeBSD. If a port insists on
linking -lpthread directly, patch it to use-pthread .

Note: If building the port errors out with unrecognized option ’-pthread’ , it may be desirable to use cc as
linker by setting CONFIGURE_ENVto LD=${CC} . The -pthread option is not supported by ld directly.

12.11 Feedback
Do send applicable changes/patches to the original author/maintainer for inclusion in next release of the code. This
will only make your job that much easier for the next release.

12.12 README.html

Do not include theREADME.html file. This file is not part of the SVN collection but is generated using themake

readme command.

116

Chapter 12 Dos and Don’ts

Note: If make readme fails, make sure that the default value of ECHO_MSGhas not been modified by the port.

12.13 Marking a Port Not Installable with BROKEN, FORBIDDEN, or
IGNORE

In certain cases users should be prevented from installing aport. To tell a user that a port should not be installed,
there are severalmake variables that can be used in a port’sMakefile . The value of the followingmake variables
will be the reason that is given back to users for why the port refuses to install itself. Please use the correctmake

variable as each make variable conveys radically differentmeanings to both users, and to automated systems that
depend on theMakefile s, such asthe ports build cluster, FreshPorts, andportsmon.

12.13.1 Variables

• BROKENis reserved for ports that currently do not compile, install, or deinstall correctly. It should be used for ports
where the problem is believed to be temporary.

If instructed, the build cluster will still attempt to try tobuild them to see if the underlying problem has been
resolved. (However, in general, the cluster is run without this.)

For instance, useBROKENwhen a port:

• does not compile

• fails its configuration or installation process

• installs files outside of${LOCALBASE}

• does not remove all its files cleanly upon deinstall (however, it may be acceptable, and desirable, for the port to
leave user-modified files behind)

• FORBIDDENis used for ports that contain a security vulnerability or induce grave concern regarding the security of
a FreeBSD system with a given port installed (e.g., a reputably insecure program or a program that provides easily
exploitable services). Ports should be marked asFORBIDDENas soon as a particular piece of software has a
vulnerability and there is no released upgrade. Ideally ports should be upgraded as soon as possible when a
security vulnerability is discovered so as to reduce the number of vulnerable FreeBSD hosts (we like being known
for being secure), however sometimes there is a noticeable time gap between disclosure of a vulnerability and an
updated release of the vulnerable software. Do not mark a port FORBIDDENfor any reason other than security.

• IGNOREis reserved for ports that should not be built for some other reason. It should be used for ports where the
problem is believed to be structural. The build cluster willnot, under any circumstances, build ports marked as
IGNORE. For instance, useIGNOREwhen a port:

• compiles but does not run properly

• does not work on the installed version of FreeBSD

• requires FreeBSD kernel sources to build, but the user does not have them installed

• has a distfile which may not be automatically fetched due to licensing restrictions

117

Chapter 12 Dos and Don’ts

• does not work with some other currently installed port (for instance, the port depends onwww/apache20 but
www/apache22 is installed)

Note: If a port would conflict with a currently installed port (for example, if they install a file in the same place
that performs a different function), use CONFLICTSinstead. CONFLICTSwill set IGNOREby itself.

• If a port should be markedIGNOREonly on certain architectures, there are two other convenience variables that
will automatically setIGNOREfor you:ONLY_FOR_ARCHSandNOT_FOR_ARCHS. Examples:

ONLY_FOR_ARCHS= i386 amd64

NOT_FOR_ARCHS= ia64 sparc64

A customIGNOREmessage can be set usingONLY_FOR_ARCHS_REASONandNOT_FOR_ARCHS_REASON. Per
architecture entries are possible withONLY_FOR_ARCHS_REASON_ARCH andNOT_FOR_ARCHS_REASON_ARCH.

• If a port fetches i386 binaries and installs them,IA32_BINARY_PORT should be set. If this variable is set, it will
be checked whether the/usr/lib32 directory is available for IA32 versions of libraries and whether the kernel
has IA32 compatibility compiled in. If one of these two dependencies is not satisfied,IGNOREwill be set
automatically.

12.13.2 Implementation Notes

The strings should not be quoted. Also, the wording of the string should be somewhat different due to the way the
information is shown to the user. Examples:

BROKEN= this port is unsupported on FreeBSD 5.x

IGNORE= is unsupported on FreeBSD 5.x

resulting in the following output frommake describe :

===> foobar-0.1 is marked as broken: this port is unsupporte d on FreeBSD 5.x.

===> foobar-0.1 is unsupported on FreeBSD 5.x.

12.14 Marking a Port for Removal with DEPRECATED or
EXPIRATION_DATE

Do remember thatBROKENandFORBIDDENare to be used as a temporary resort if a port is not working. Permanently
broken ports should be removed from the tree entirely.

When it makes sense to do so, users can be warned about a pending port removal withDEPRECATEDand
EXPIRATION_DATE. The former is simply a string stating why the port is scheduled for removal; the latter is a string
in ISO 8601 format (YYYY-MM-DD). Both will be shown to the user.

It is possible to setDEPRECATEDwithout anEXPIRATION_DATE(for instance, recommending a newer version of the
port), but the converse does not make any sense.

118

Chapter 12 Dos and Don’ts

There is no set policy on how much notice to give. Current practice seems to be one month for security-related issues
and two months for build issues. This also gives any interested committers a little time to fix the problems.

12.15 Avoid Use of the .error Construct
The correct way for aMakefile to signal that the port can not be installed due to some external factor (for instance,
the user has specified an illegal combination of build options) is to set a non-blank value toIGNORE. This value will
be formatted and shown to the user bymake install .

It is a common mistake to use.error for this purpose. The problem with this is that many automated tools that
work with the ports tree will fail in this situation. The mostcommon occurrence of this is seen when trying to build
/usr/ports/INDEX (seeSection 9.1). However, even more trivial commands such asmake maintainer also fail
in this scenario. This is not acceptable.

Example 12-1. How to Avoid Using.error

Assume that someone has the line

USE_POINTYHAT=yes

in make.conf . The first of the next twoMakefile snippets will causemake index to fail, while the second one
will not:

.if USE_POINTYHAT

.error "POINTYHAT is not supported"

.endif

.if USE_POINTYHAT
IGNORE= POINTYHAT is not supported
.endif

12.16 Usage of sysctl

The usage ofsysctl is discouraged except in targets. This is because the evaluation of anymakevar s, such as used
duringmake index , then has to run the command, further slowing down that process.

Usage of sysctl(8) should always be done with theSYSCTLvariable, as it contains the fully qualified path and can be
overridden, if one has such a special need.

12.17 Rerolling Distfiles
Sometimes the authors of software change the content of released distfiles without changing the file’s name. You
have to verify that the changes are official and have been performed by the author. It has happened in the past that the
distfile was silently altered on the download servers with the intent to cause harm or compromise end user security.

Put the old distfile aside, download the new one, unpack them and compare the content with diff(1). If you see
nothing suspicious, you can updatedistinfo . Be sure to summarize the differences in your PR or commit log, so
that other people know that you have taken care to ensure thatnothing bad has happened.

You might also want to contact the authors of the software andconfirm the changes with them.

119

Chapter 12 Dos and Don’ts

12.18 Avoiding Linuxisms
Do not use/proc if there are any other ways of getting the information, e.g.,setprogname(argv[0]) in main()

and then getprogname(3) if you want to “know your name”.

Do not rely on behaviour that is undocumented by POSIX.

Do not record timestamps in the critical path of the application if it also works without. Getting timestamps may be
slow, depending on the accuracy of timestamps in the OS. If timestamps are really needed, determine how precise
they have to be and use an API which is documented to just deliver the needed precision.

A number of simple syscalls (for example gettimeofday(2), getpid(2)) are much faster on Linux® than on any other
operating system due to caching and the vsyscall performance optimizations. Do not rely on them being cheap in
performance-critical applications. In general, try hard to avoid syscalls if possible.

Do not rely on Linux-specific socket behaviour. In particular, default socket buffer sizes are different (call
setsockopt(2) withSO_SNDBUFandSO_RCVBUF, and while Linux’s send(2) blocks when the socket buffer is full,
FreeBSD’s will fail and setENOBUFSin errno.

If relying on non-standard behaviour is required, encapsulate it properly into a generic API, do a check for the
behaviour in the configure stage, and stop if it is missing.

Check the man pages (http://www.freebsd.org/cgi/man.cgi) to see if the function used is a POSIX interface (in the
“STANDARDS” section of the man page).

Do not assume that/bin/sh is bash. Ensure that a command line passed to system(3) will work with a POSIX
compliant shell.

A list of commonbashisms is available here (https://wiki.ubuntu.com/DashAsBinSh).

Do not#include <stdint.h> if inttypes.h is sufficient. This will ensure that the software builds on older
versions of FreeBSD.

Check that headers are included in the POSIX or man page recommended way, e.g.,sys/types.h is often
forgotten, which is not as much of a problem for Linux as it is for FreeBSD.

Compile threaded applications with “-pthread”, not “-lpthread” or variations thereof.

12.19 Miscellanea
The filespkg-descr andpkg-plist should each be double-checked. If you are reviewing a port and feel they can
be worded better, do so.

Do not copy more copies of the GNU General Public License intoour system, please.

Please be careful to note any legal issues! Do not let us illegally distribute software!

120

Chapter 13 A Sample Makefile

Here is a sampleMakefile that you can use to create a new port. Make sure you remove all the extra comments
(ones between brackets)!

It is recommended that you follow this format (ordering of variables, empty lines between sections, etc.). This format
is designed so that the most important information is easy tolocate. We recommend that you useportlint to check the
Makefile .

[the header...just to make it easier for us to identify the po rts.]
Created by: Satoshi Asami <asami@FreeBSD.org>
[The optional Created by: line names the person who originally
created the port. Note that the “:” is followed by a space
and not a tab character.
If this line is present, future maintainers should
not change or remove it except at the original author’s reque st.]

$FreeBSD$
[^^^^^^^^^ This will be automatically replaced with RCS ID s tring by SVN
when it is committed to our repository. If upgrading a port, d o not alter
this line back to "$FreeBSD$". SVN deals with it automatical ly.]

[section to describe the port itself and the master site - POR TNAME
and PORTVERSION are always first, followed by CATEGORIES,
and then MASTER_SITES, which can be followed by MASTER_SITE _SUBDIR.
PKGNAMEPREFIX and PKGNAMESUFFIX, if needed, will be after t hat.
Then comes DISTNAME, EXTRACT_SUFX and/or DISTFILES, and th en
EXTRACT_ONLY, as necessary.]

PORTNAME= xdvi
PORTVERSION= 18.2
CATEGORIES= print
[do not forget the trailing slash ("/")!

if you are not using MASTER_SITE_ * macros]
MASTER_SITES= ${MASTER_SITE_XCONTRIB}
MASTER_SITE_SUBDIR= applications
PKGNAMEPREFIX= ja-
DISTNAME= xdvi-pl18
[set this if the source is not in the standard ".tar.gz" form]
EXTRACT_SUFX= .tar.Z

[section for distributed patches -- can be empty]
PATCH_SITES= ftp://ftp.sra.co.jp/pub/X11/japanese/
PATCHFILES= xdvi-18.patch1.gz xdvi-18.patch2.gz

[maintainer; * mandatory * ! This is the person who is volunteering to
handle port updates, build breakages, and to whom a users can direct
questions and bug reports. To keep the quality of the Ports Co llection
as high as possible, we no longer accept new ports that are ass igned to
"ports@FreeBSD.org".]

MAINTAINER= asami@FreeBSD.org
COMMENT= A DVI Previewer for the X Window System

121

Chapter 13 A SampleMakefile

[dependencies -- can be empty]
RUN_DEPENDS= gs:${PORTSDIR}/print/ghostscript

[this section is for other standard bsd.port.mk variables t hat do not
belong to any of the above]

[If it asks questions during configure, build, install...]
IS_INTERACTIVE= yes
[If it extracts to a directory other than ${DISTNAME}...]
WRKSRC= ${WRKDIR}/xdvi-new
[If the distributed patches were not made relative to ${WRKS RC}, you

may need to tweak this]
PATCH_DIST_STRIP= -p1
[If it requires a "configure" script generated by GNU autoco nf to be run]
GNU_CONFIGURE= yes
[If it requires GNU make, not /usr/bin/make, to build...]
USES= gmake
[If it is an X application and requires "xmkmf -a" to be run...]
USES= imake
[et cetera.]

[non-standard variables to be used in the rules below]
MY_FAVORITE_RESPONSE= "yeah, right"

[then the special rules, in the order they are called]
pre-fetch:

i go fetch something, yeah

post-patch:
i need to do something after patch, great

pre-install:
and then some more stuff before installing, wow

[and then the epilogue]
.include <bsd.port.mk>

122

Chapter 14 Keeping Up
The FreeBSD Ports Collection is constantly changing. Here is some information on how to keep up.

14.1 FreshPorts
One of the easiest ways to learn about updates that have already been committed is by subscribing to FreshPorts
(http://www.FreshPorts.org/). You can select multiple ports to monitor. Maintainers are strongly encouraged to
subscribe, because they will receive notification of not only their own changes, but also any changes that any other
FreeBSD committer has made. (These are often necessary to keep up with changes in the underlying ports
framework—although it would be most polite to receive an advance heads-up from those committing such changes,
sometimes this is overlooked or just simply impractical. Also, in some cases, the changes are very minor in nature.
We expect everyone to use their best judgement in these cases.)

If you wish to use FreshPorts, all you need is an account. If your registered email address is@FreeBSD.org , you
will see the opt-in link on the right hand side of the webpages. For those of you who already have a FreshPorts
account, but are not using your@FreeBSD.org email address, just change your email to@FreeBSD.org , subscribe,
then change it back again.

FreshPorts also has a sanity test feature which automatically tests each commit to the FreeBSD ports tree. If
subscribed to this service, you will be notified of any errorswhich FreshPorts detects during sanity testing of your
commits.

14.2 The Web Interface to the Source Repository
It is possible to browse the files in the source repository by using a web interface. Changes that affect the entire port
system are now documented in the CHANGES (http://svnweb.FreeBSD.org/ports/head/CHANGES) file. Changes
that affect individual ports are now documented in the UPDATING
(http://svnweb.FreeBSD.org/ports/head/UPDATING) file.However, the definitive answer to any question is
undoubtedly to read the source code of bsd.port.mk (http://svnweb.FreeBSD.org/ports/head/Mk/bsd.port.mk), and
associated files.

14.3 The FreeBSD Ports Mailing List
If you maintain ports, you should consider following the FreeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports). Important changes to the way ports work will be
announced there, and then committed toCHANGES.

If this mailing list is too high volume you may consider following FreeBSD ports announce mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsd-ports-announce) which is moderated and has no discussion.

14.4 The FreeBSD Port Building Cluster on pointyhat.FreeBSD.org

One of the least-publicized strengths of FreeBSD is that an entire cluster of machines is dedicated to continually
building the Ports Collection, for each of the major OS releases and for each Tier-1 architecture. You can find the

123

Chapter 14 Keeping Up

results of these builds at package building logs and errors (http://pointyhat.FreeBSD.org/).

Individual ports are built unless they are specifically marked with IGNORE. Ports that are marked withBROKENwill
still be attempted, to see if the underlying problem has beenresolved. (This is done by passingTRYBROKENto the
port’sMakefile .)

14.5 Portscout: the FreeBSD Ports Distfile Scanner
The build cluster is dedicated to building the latest release of each port with distfiles that have already been fetched.
However, as the Internet continually changes, distfiles canquickly go missing. Portscout
(http://portscout.FreeBSD.org), the FreeBSD Ports distfile scanner, attempts to query every download site for every
port to find out if each distfile is still available.Portscoutcan generate HTML reports and send emails about newly
available ports to those who request them. Unless not otherwise subscribed, maintainers are asked to check
periodically for changes, either by hand or using the RSS feed.

Portscout’s first page gives the email address of the port maintainer, the number of ports the maintainer is
responsible for, the number of those ports with new distfiles, and the percentage of those ports that are out-of-date.
The search function allows for searching by email address for a specific maintainer, and for selecting whether or not
only out-of-date ports should be shown.

Upon clicking on a maintainer’s email address, a list of all of their ports is displayed, along with port category,
current version number, whether or not there is a new version, when the port was last updated, and finally when it
was last checked. A search function on this page allows the user to search for a specific port.

Clicking on a port name in the list displays the FreshPorts (http://freshports.org) port information.

14.6 The FreeBSD Ports Monitoring System
Another handy resource is the FreeBSD Ports Monitoring System (http://portsmon.FreeBSD.org) (also known as
portsmon). This system comprises a database that processes information from several sources and allows it to be
browsed via a web interface. Currently, the ports Problem Reports (PRs), the error logs from the build cluster, and
individual files from the ports collection are used. In the future, this will be expanded to include the distfile survey, as
well as other sources.

To get started, you can view all information about a particular port by using the Overview of One Port
(http://portsmon.FreeBSD.org/portoverview.py).

As of this writing, this is the only resource available that maps GNATS PR entries to portnames. (PR submitters do
not always include the portname in their Synopsis, althoughwe would prefer that they did.) So,portsmon is a good
place to start if you want to find out whether an existing port has any PRs filed against it and/or any build errors; or,
to find out if a new port that you may be thinking about creatinghas already been submitted.

124

Chapter 15 Appendices

15.1 Values of USES

Table 15-1. Values ofUSES

Feature Arguments Description

ada (none) Depends on anAda-capable
compiler, and setsCCaccordingly.

bison (none),build , run , both Implies that the port uses
devel/bison in one way or another.
By default, with no arguments or
with thebuild argument, it implies
bison as a build-time dependency,
run implies a run-time dependency,
andboth implies both run-time and
build-time dependencies.

charsetfix (none) Prevents the port from installing
charset.alias . This should be
installed only by
converters/libiconv .
CHARSETFIX_MAKEFILEINcan be
set to a path relative toWRKSRCif
charset.alias is not installed by
WRKSRC/Makefile.in .

cmake (none),outsource The port will useCMake for
configuring and building. With the
outsource argument, an
out-of-source build will be
performed. For more information see
Section 6.3.4.

desktop-file-utils (none) Implies that the port uses the
update-desktop-databasefrom
devel/desktop-file-utils . An
extra post-install step will be run
without interfering with any
post-install steps already in the port
Makefile . Lines will be inserted
into the plist to run
update-desktop-databaseon
package install or removal.

125

Chapter 15 Appendices

Feature Arguments Description

fuse (none) Implies the port will depend on the
FUSE library and handle the
dependency on the kernel module
depending on the version of
FreeBSD.

gettext (none),lib , build , run Implies that the port uses
devel/gettext in one way or
another. By default, with no
arguments or with thelib argument,
impliesgettext with build-time
and run-time dependencies,build

implies a build-time dependency, and
run implies a run-time dependency.

gmake (none) Implies that the port uses
devel/gmake as build-time
dependency.

iconv (none) Implies that the port uses
converters/libiconv as
build-time and run-time dependency.

imake (none) Implies that the port uses
devel/imake as build-time
dependency.

motif (none) Implies that the ports uses
devel/open-motif as a library
dependency. End users can set
WANT_LESSTIFfor the dependency
to be ondevel/lesstif instead of
devel/open-motif .

ncurses (none),base , port Implies that the port usesncurses,
and causes some useful variables to
be set.

pathfix (none) Look for theMakefile.in and
configure files in the port’s
associated sources and fix common
paths to make sure they respect the
FreeBSD hierarchy.

pkgconfig (none),build , run , both Implies that the port uses
devel/pkgconf in one way or
another. With no arguments or with
thebuild argument, it implies
pkg-config as a build-time
dependency;run implies a run-time
dependency; andboth implies both
run-time and build-time
dependencies.

126

Chapter 15 Appendices

Feature Arguments Description

qmail (none),build , run , both , vars Implies that the port uses
mail/qmail in one way or another.
With thebuild argument, it implies
qmail as a build-time dependency.
run implies a run-time dependency.
Using no argument or theboth

argument implies both run-time and
build-time dependencies.vars will
only set QMAIL variables for the
port to use.

readline (none), port Implies that the port usesreadline as
library dependency, and sets
CPPFLAGSandLDFLAGSas
necessary.

shared-mime-info (none) Implies that the port uses
update-mime-databasefrom
misc/shared-mime-info . This
uses will automatically add a
post-install step in such a way that
the port itself still can specify there
own post-install step if needed. It
also insert lines into the plist for
package install and removal to run
update-mime-datawith the correct
arguments.

shebangfix (none) A lot of software uses incorrect
locations for script interpreters, most
notably/usr/bin/perl and
/bin/bash . This fixes shebang lines
in scripts listed inSHEBANG_FILES.
CurrentlyPerl, Python, Bash,
Ruby, andPHP are supported by
default. To support another
interpreter, setSHEBANG_LANG(for
exampleSHEBANG_LANG=lua), then
lua_OLD_CMDandlua_CMD.

zenoss (none) Implies the port uses
net-mgmt/zenoss in one way or
another, but largely is used for
building zenoss related zenpack
ports.

127

Chapter 15 Appendices

15.2 __FreeBSD_version Values
Here is a convenient list of__FreeBSD_version values as defined in sys/param.h
(http://svnweb.FreeBSD.org/base/head/sys/sys/param.h?view=markup):

Table 15-2.__FreeBSD_version Values

Value Date Release

119411 2.0-RELEASE

199501, 199503 March 19, 1995 2.1-CURRENT

199504 April 9, 1995 2.0.5-RELEASE

199508 August 26, 1995 2.2-CURRENT before 2.1

199511 November 10, 1995 2.1.0-RELEASE

199512 November 10, 1995 2.2-CURRENT before 2.1.5

199607 July 10, 1996 2.1.5-RELEASE

199608 July 12, 1996 2.2-CURRENT before 2.1.6

199612 November 15, 1996 2.1.6-RELEASE

199612 2.1.7-RELEASE

220000 February 19, 1997 2.2-RELEASE

(not changed) 2.2.1-RELEASE

(not changed) 2.2-STABLE after 2.2.1-RELEASE

221001 April 15, 1997 2.2-STABLE after texinfo-3.9

221002 April 30, 1997 2.2-STABLE after top

222000 May 16, 1997 2.2.2-RELEASE

222001 May 19, 1997 2.2-STABLE after 2.2.2-RELEASE

225000 October 2, 1997 2.2.5-RELEASE

225001 November 20, 1997 2.2-STABLE after 2.2.5-RELEASE

225002 December 27, 1997 2.2-STABLE after ldconfig -R merge

226000 March 24, 1998 2.2.6-RELEASE

227000 July 21, 1998 2.2.7-RELEASE

227001 July 21, 1998 2.2-STABLE after 2.2.7-RELEASE

227002 September 19, 1998 2.2-STABLE after semctl(2) change

228000 November 29, 1998 2.2.8-RELEASE

228001 November 29, 1998 2.2-STABLE after 2.2.8-RELEASE

300000 February 19, 1996 3.0-CURRENT before mount(2)
change

300001 September 24, 1997 3.0-CURRENT after mount(2)
change

300002 June 2, 1998 3.0-CURRENT after semctl(2)
change

300003 June 7, 1998 3.0-CURRENT after ioctl arg
changes

128

Chapter 15 Appendices

Value Date Release

300004 September 3, 1998 3.0-CURRENT after ELF conversion

300005 October 16, 1998 3.0-RELEASE

300006 October 16, 1998 3.0-CURRENT after 3.0-RELEASE

300007 January 22, 1999 3.0-STABLE after 3/4 branch

310000 February 9, 1999 3.1-RELEASE

310001 March 27, 1999 3.1-STABLE after 3.1-RELEASE

310002 April 14, 1999 3.1-STABLE after C++
constructor/destructor order change

320000 3.2-RELEASE

320001 May 8, 1999 3.2-STABLE

320002 August 29, 1999 3.2-STABLE after
binary-incompatible IPFW and
socket changes

330000 September 2, 1999 3.3-RELEASE

330001 September 16, 1999 3.3-STABLE

330002 November 24, 1999 3.3-STABLE after adding
mkstemp(3) to libc

340000 December 5, 1999 3.4-RELEASE

340001 December 17, 1999 3.4-STABLE

350000 June 20, 2000 3.5-RELEASE

350001 July 12, 2000 3.5-STABLE

400000 January 22, 1999 4.0-CURRENT after 3.4 branch

400001 February 20, 1999 4.0-CURRENT after change in
dynamic linker handling

400002 March 13, 1999 4.0-CURRENT after C++
constructor/destructor order change

400003 March 27, 1999 4.0-CURRENT after functioning
dladdr(3)

400004 April 5, 1999 4.0-CURRENT after
__deregister_frame_info dynamic
linker bug fix (also 4.0-CURRENT
after EGCS 1.1.2 integration)

400005 April 27, 1999 4.0-CURRENT after suser(9) API
change (also 4.0-CURRENT after
newbus)

400006 May 31, 1999 4.0-CURRENT after cdevsw
registration change

400007 June 17, 1999 4.0-CURRENT after the addition of
so_cred for socket level credentials

400008 June 20, 1999 4.0-CURRENT after the addition of
a poll syscall wrapper to libc_r

129

Chapter 15 Appendices

Value Date Release

400009 July 20, 1999 4.0-CURRENT after the change of
the kernel’sdev_t type tostruct

specinfo pointer

400010 September 25, 1999 4.0-CURRENT after fixing a hole in
jail(2)

400011 September 29, 1999 4.0-CURRENT after thesigset_t

datatype change

400012 November 15, 1999 4.0-CURRENT after the cutover to
the GCC 2.95.2 compiler

400013 December 4, 1999 4.0-CURRENT after adding
pluggable linux-mode ioctl handlers

400014 January 18, 2000 4.0-CURRENT after importing
OpenSSL

400015 January 27, 2000 4.0-CURRENT after the C++ ABI
change in GCC 2.95.2 from
-fvtable-thunks to -fno-vtable-thunks
by default

400016 February 27, 2000 4.0-CURRENT after importing
OpenSSH

400017 March 13, 2000 4.0-RELEASE

400018 March 17, 2000 4.0-STABLE after 4.0-RELEASE

400019 May 5, 2000 4.0-STABLE after the introduction
of delayed checksums.

400020 June 4, 2000 4.0-STABLE after merging libxpg4
code into libc.

400021 July 8, 2000 4.0-STABLE after upgrading
Binutils to 2.10.0, ELF branding
changes, and tcsh in the base system.

410000 July 14, 2000 4.1-RELEASE

410001 July 29, 2000 4.1-STABLE after 4.1-RELEASE

410002 September 16, 2000 4.1-STABLE after setproctitle(3)
moved from libutil to libc.

411000 September 25, 2000 4.1.1-RELEASE

411001 4.1.1-STABLE after
4.1.1-RELEASE

420000 October 31, 2000 4.2-RELEASE

420001 January 10, 2001 4.2-STABLE after combining
libgcc.a and libgcc_r.a, and
associated GCC linkage changes.

430000 March 6, 2001 4.3-RELEASE

430001 May 18, 2001 4.3-STABLE after wint_t
introduction.

130

Chapter 15 Appendices

Value Date Release

430002 July 22, 2001 4.3-STABLE after PCI powerstate
API merge.

440000 August 1, 2001 4.4-RELEASE

440001 October 23, 2001 4.4-STABLE after d_thread_t
introduction.

440002 November 4, 2001 4.4-STABLE after mount structure
changes (affects filesystem klds).

440003 December 18, 2001 4.4-STABLE after the userland
components of smbfs were imported.

450000 December 20, 2001 4.5-RELEASE

450001 February 24, 2002 4.5-STABLE after the usb structure
element rename.

450004 April 16, 2002 4.5-STABLE after the
sendmail_enable rc.conf(5)
variable was made to take the value
NONE.

450005 April 27, 2002 4.5-STABLE after moving to
XFree86 4 by default for package
builds.

450006 May 1, 2002 4.5-STABLE after accept filtering
was fixed so that is no longer
susceptible to an easy DoS.

460000 June 21, 2002 4.6-RELEASE

460001 June 21, 2002 4.6-STABLE sendfile(2) fixed to
comply with documentation, not to
count any headers sent against the
amount of data to be sent from the
file.

460002 July 19, 2002 4.6.2-RELEASE

460100 June 26, 2002 4.6-STABLE

460101 June 26, 2002 4.6-STABLE after MFC of ‘sed -i’.

460102 September 1, 2002 4.6-STABLE after MFC of many
new pkg_install features from the
HEAD.

470000 October 8, 2002 4.7-RELEASE

470100 October 9, 2002 4.7-STABLE

470101 November 10, 2002 Start generated __std{in,out,err}p
references rather than __sF. This
changes std{in,out,err} from a
compile time expression to a runtime
one.

131

Chapter 15 Appendices

Value Date Release

470102 January 23, 2003 4.7-STABLE after MFC of mbuf
changes to replace m_aux mbufs by
m_tag’s

470103 February 14, 2003 4.7-STABLE gets OpenSSL 0.9.7

480000 March 30, 2003 4.8-RELEASE

480100 April 5, 2003 4.8-STABLE

480101 May 22, 2003 4.8-STABLE after realpath(3) has
been made thread-safe

480102 August 10, 2003 4.8-STABLE 3ware API changes to
twe.

490000 October 27, 2003 4.9-RELEASE

490100 October 27, 2003 4.9-STABLE

490101 January 8, 2004 4.9-STABLE after e_sid was added
to struct kinfo_eproc.

490102 February 4, 2004 4.9-STABLE after MFC of libmap
functionality for rtld.

491000 May 25, 2004 4.10-RELEASE

491100 June 1, 2004 4.10-STABLE

491101 August 11, 2004 4.10-STABLE after MFC of revision
20040629 of the package tools

491102 November 16, 2004 4.10-STABLE after VM fix dealing
with unwiring of fictitious pages

492000 December 17, 2004 4.11-RELEASE

492100 December 17, 2004 4.11-STABLE

492101 April 18, 2006 4.11-STABLE after adding
libdata/ldconfig directories to mtree
files.

500000 March 13, 2000 5.0-CURRENT

500001 April 18, 2000 5.0-CURRENT after adding addition
ELF header fields, and changing our
ELF binary branding method.

500002 May 2, 2000 5.0-CURRENT after kld metadata
changes.

500003 May 18, 2000 5.0-CURRENT after buf/bio
changes.

500004 May 26, 2000 5.0-CURRENT after binutils
upgrade.

500005 June 3, 2000 5.0-CURRENT after merging
libxpg4 code into libc and after
TASKQ interface introduction.

500006 June 10, 2000 5.0-CURRENT after the addition of
AGP interfaces.

132

Chapter 15 Appendices

Value Date Release

500007 June 29, 2000 5.0-CURRENT after Perl upgrade to
5.6.0

500008 July 7, 2000 5.0-CURRENT after the update of
KAME code to 2000/07 sources.

500009 July 14, 2000 5.0-CURRENT after ether_ifattach()
and ether_ifdetach() changes.

500010 July 16, 2000 5.0-CURRENT after changing mtree
defaults back to original variant,
adding -L to follow symlinks.

500011 July 18, 2000 5.0-CURRENT after kqueue API
changed.

500012 September 2, 2000 5.0-CURRENT after setproctitle(3)
moved from libutil to libc.

500013 September 10, 2000 5.0-CURRENT after the first SMPng
commit.

500014 January 4, 2001 5.0-CURRENT after <sys/select.h>
moved to <sys/selinfo.h>.

500015 January 10, 2001 5.0-CURRENT after combining
libgcc.a and libgcc_r.a, and
associated GCC linkage changes.

500016 January 24, 2001 5.0-CURRENT after change
allowing libc and libc_r to be linked
together, deprecating -pthread
option.

500017 February 18, 2001 5.0-CURRENT after switch from
struct ucred to struct xucred to
stabilize kernel-exported API for
mountd et al.

500018 February 24, 2001 5.0-CURRENT after addition of
CPUTYPE make variable for
controlling CPU-specific
optimizations.

500019 June 9, 2001 5.0-CURRENT after moving
machine/ioctl_fd.h to sys/fdcio.h

500020 June 15, 2001 5.0-CURRENT after locale names
renaming.

500021 June 22, 2001 5.0-CURRENT after Bzip2 import.
Also signifies removal of S/Key.

500022 July 12, 2001 5.0-CURRENT after SSE support.

500023 September 14, 2001 5.0-CURRENT after KSE Milestone
2.

500024 October 1, 2001 5.0-CURRENT after d_thread_t, and
moving UUCP to ports.

133

Chapter 15 Appendices

Value Date Release

500025 October 4, 2001 5.0-CURRENT after ABI change for
descriptor and creds passing on 64
bit platforms.

500026 October 9, 2001 5.0-CURRENT after moving to
XFree86 4 by default for package
builds, and after the new libc strnstr()
function was added.

500027 October 10, 2001 5.0-CURRENT after the new libc
strcasestr() function was added.

500028 December 14, 2001 5.0-CURRENT after the userland
components of smbfs were imported.

(not changed) 5.0-CURRENT after the new C99
specific-width integer types were
added.

500029 January 29, 2002 5.0-CURRENT after a change was
made in the return value of
sendfile(2).

500030 February 15, 2002 5.0-CURRENT after the introduction
of the typefflags_t , which is the
appropriate size for file flags.

500031 February 24, 2002 5.0-CURRENT after the usb
structure element rename.

500032 March 16, 2002 5.0-CURRENT after the introduction
of Perl 5.6.1.

500033 April 3, 2002 5.0-CURRENT after the
sendmail_enable rc.conf(5)
variable was made to take the value
NONE.

500034 April 30, 2002 5.0-CURRENT after mtx_init() grew
a third argument.

500035 May 13, 2002 5.0-CURRENT with Gcc 3.1.

500036 May 17, 2002 5.0-CURRENT without Perl in
/usr/src

500037 May 29, 2002 5.0-CURRENT after the addition of
dlfunc(3)

500038 July 24, 2002 5.0-CURRENT after the types of
some struct sockbuf members were
changed and the structure was
reordered.

134

Chapter 15 Appendices

Value Date Release

500039 September 1, 2002 5.0-CURRENT after GCC 3.2.1
import. Also after headers stopped
using _BSD_FOO_T_ and started
using _FOO_T_DECLARED. This
value can also be used as a
conservative estimate of the start of
bzip2(1) package support.

500040 September 20, 2002 5.0-CURRENT after various changes
to disk functions were made in the
name of removing dependency on
disklabel structure internals.

500041 October 1, 2002 5.0-CURRENT after the addition of
getopt_long(3) to libc.

500042 October 15, 2002 5.0-CURRENT after Binutils 2.13
upgrade, which included new
FreeBSD emulation, vec, and output
format.

500043 November 1, 2002 5.0-CURRENT after adding weak
pthread_XXX stubs to libc,
obsoleting libXThrStub.so.
5.0-RELEASE.

500100 January 17, 2003 5.0-CURRENT after branching for
RELENG_5_0

500101 February 19, 2003 <sys/dkstat.h> is empty and should
not be included.

500102 February 25, 2003 5.0-CURRENT after the d_mmap_t
interface change.

500103 February 26, 2003 5.0-CURRENT after taskqueue_swi
changed to run without Giant, and
taskqueue_swi_giant added to run
with Giant.

500104 February 27, 2003 cdevsw_add() and cdevsw_remove()
no longer exists. Appearance of
MAJOR_AUTO allocation facility.

500105 March 4, 2003 5.0-CURRENT after new cdevsw
initialization method.

500106 March 8, 2003 devstat_add_entry() has been
replaced by devstat_new_entry()

500107 March 15, 2003 Devstat interface change; see
sys/sys/param.h 1.149

500108 March 15, 2003 Token-Ring interface changes.

500109 March 25, 2003 Addition of vm_paddr_t.

500110 March 28, 2003 5.0-CURRENT after realpath(3) has
been made thread-safe

135

Chapter 15 Appendices

Value Date Release

500111 April 9, 2003 5.0-CURRENT after usbhid(3) has
been synced with NetBSD

500112 April 17, 2003 5.0-CURRENT after new NSS
implementation and addition of
POSIX.1 getpw*_r, getgr*_r
functions

500113 May 2, 2003 5.0-CURRENT after removal of the
old rc system.

501000 June 4, 2003 5.1-RELEASE.

501100 June 2, 2003 5.1-CURRENT after branching for
RELENG_5_1.

501101 June 29, 2003 5.1-CURRENT after correcting the
semantics of sigtimedwait(2) and
sigwaitinfo(2).

501102 July 3, 2003 5.1-CURRENT after adding the
lockfunc and lockfuncarg fields to
bus_dma_tag_create(9).

501103 July 31, 2003 5.1-CURRENT after GCC 3.3.1-pre
20030711 snapshot integration.

501104 August 5, 2003 5.1-CURRENT 3ware API changes
to twe.

501105 August 17, 2003 5.1-CURRENT dynamically-linked
/bin and /sbin support and movement
of libraries to /lib.

501106 September 8, 2003 5.1-CURRENT after adding kernel
support for Coda 6.x.

501107 September 17, 2003 5.1-CURRENT after 16550 UART
constants moved from
<dev/sio/sioreg.h> to
<dev/ic/ns16550.h> . Also when
libmap functionality was
unconditionally supported by rtld.

501108 September 23, 2003 5.1-CURRENT after PFIL_HOOKS
API update

501109 September 27, 2003 5.1-CURRENT after adding
kiconv(3)

501110 September 28, 2003 5.1-CURRENT after changing
default operations for open and close
in cdevsw

501111 October 16, 2003 5.1-CURRENT after changed layout
of cdevsw

501112 October 16, 2003 5.1-CURRENT after adding kobj
multiple inheritance

136

Chapter 15 Appendices

Value Date Release

501113 October 31, 2003 5.1-CURRENT after the if_xname
change in struct ifnet

501114 November 16, 2003 5.1-CURRENT after changing /bin
and /sbin to be dynamically linked

502000 December 7, 2003 5.2-RELEASE

502010 February 23, 2004 5.2.1-RELEASE

502100 December 7, 2003 5.2-CURRENT after branching for
RELENG_5_2

502101 December 19, 2003 5.2-CURRENT after
__cxa_atexit/__cxa_finalize
functions were added to libc.

502102 January 30, 2004 5.2-CURRENT after change of
default thread library from libc_r to
libpthread.

502103 February 21, 2004 5.2-CURRENT after device driver
API megapatch.

502104 February 25, 2004 5.2-CURRENT after
getopt_long_only() addition.

502105 March 5, 2004 5.2-CURRENT after NULL is made
into ((void *)0) for C, creating more
warnings.

502106 March 8, 2004 5.2-CURRENT after pf is linked to
the build and install.

502107 March 10, 2004 5.2-CURRENT after time_t is
changed to a 64-bit value on sparc64.

502108 March 12, 2004 5.2-CURRENT after Intel C/C++
compiler support in some headers
and execve(2) changes to be more
strictly conforming to POSIX.

502109 March 22, 2004 5.2-CURRENT after the introduction
of the bus_alloc_resource_any API

502110 March 27, 2004 5.2-CURRENT after the addition of
UTF-8 locales

502111 April 11, 2004 5.2-CURRENT after the removal of
the getvfsent(3) API

502112 April 13, 2004 5.2-CURRENT after the addition of
the .warning directive for make.

502113 June 4, 2004 5.2-CURRENT after ttyioctl() was
made mandatory for serial drivers.

502114 June 13, 2004 5.2-CURRENT after import of the
ALTQ framework.

137

Chapter 15 Appendices

Value Date Release

502115 June 14, 2004 5.2-CURRENT after changing
sema_timedwait(9) to return 0 on
success and a non-zero error code on
failure.

502116 June 16, 2004 5.2-CURRENT after changing kernel
dev_t to be pointer to struct cdev *.

502117 June 17, 2004 5.2-CURRENT after changing kernel
udev_t to dev_t.

502118 June 17, 2004 5.2-CURRENT after adding support
for CLOCK_VIRTUAL and
CLOCK_PROF to clock_gettime(2)
and clock_getres(2).

502119 June 22, 2004 5.2-CURRENT after changing
network interface cloning overhaul.

502120 July 2, 2004 5.2-CURRENT after the update of
the package tools to revision
20040629.

502121 July 9, 2004 5.2-CURRENT after marking
Bluetooth code as non-i386 specific.

502122 July 11, 2004 5.2-CURRENT after the introduction
of the KDB debugger framework, the
conversion of DDB into a backend
and the introduction of the GDB
backend.

502123 July 12, 2004 5.2-CURRENT after change to make
VFS_ROOT take a struct thread
argument as does vflush. Struct
kinfo_proc now has a user data
pointer. The switch of the default X
implementation toxorg was also
made at this time.

502124 July 24, 2004 5.2-CURRENT after the change to
separate the way ports rc.d and
legacy scripts are started.

502125 July 28, 2004 5.2-CURRENT after the backout of
the previous change.

502126 July 31, 2004 5.2-CURRENT after the removal of
kmem_alloc_pageable() and the
import of gcc 3.4.2.

502127 August 2, 2004 5.2-CURRENT after changing the
UMA kernel API to allow ctors/inits
to fail.

138

Chapter 15 Appendices

Value Date Release

502128 August 8, 2004 5.2-CURRENT after the change of
the vfs_mount signature as well as
global replacement of
PRISON_ROOT with
SUSER_ALLOWJAIL for the
suser(9) API.

503000 August 23, 2004 5.3-BETA/RC before the pfil API
change

503001 September 22, 2004 5.3-RELEASE

503100 October 16, 2004 5.3-STABLE after branching for
RELENG_5_3

503101 December 3, 2004 5.3-STABLE after addition of glibc
style strftime(3) padding options.

503102 February 13, 2005 5.3-STABLE after OpenBSD’s nc(1)
import MFC.

503103 February 27, 2005 5.4-PRERELEASE after the MFC of
the fixes in
<src/include/stdbool.h> and
<src/sys/i386/include/_types.h>

for using the GCC-compatibility of
the Intel C/C++ compiler.

503104 February 28, 2005 5.4-PRERELEASE after the MFC of
the change of ifi_epoch from wall
clock time to uptime.

503105 March 2, 2005 5.4-PRERELEASE after the MFC of
the fix of EOVERFLOW check in
vswprintf(3).

504000 April 3, 2005 5.4-RELEASE.

504100 April 3, 2005 5.4-STABLE after branching for
RELENG_5_4

504101 May 11, 2005 5.4-STABLE after increasing the
default thread stacksizes

504102 June 24, 2005 5.4-STABLE after the addition of
sha256

504103 October 3, 2005 5.4-STABLE after the MFC of
if_bridge

504104 November 13, 2005 5.4-STABLE after the MFC of bsdiff
and portsnap

504105 January 17, 2006 5.4-STABLE after MFC of
ldconfig_local_dirs change.

505000 May 12, 2006 5.5-RELEASE.

505100 May 12, 2006 5.5-STABLE after branching for
RELENG_5_5

139

Chapter 15 Appendices

Value Date Release

600000 August 18, 2004 6.0-CURRENT

600001 August 27, 2004 6.0-CURRENT after permanently
enabling PFIL_HOOKS in the
kernel.

600002 August 30, 2004 6.0-CURRENT after initial addition
of ifi_epoch to struct if_data. Backed
out after a few days. Do not use this
value.

600003 September 8, 2004 6.0-CURRENT after the re-addition
of the ifi_epoch member of struct
if_data.

600004 September 29, 2004 6.0-CURRENT after addition of the
struct inpcb argument to the pfil API.

600005 October 5, 2004 6.0-CURRENT after addition of the
"-d DESTDIR" argument to
newsyslog.

600006 November 4, 2004 6.0-CURRENT after addition of
glibc style strftime(3) padding
options.

600007 December 12, 2004 6.0-CURRENT after addition of
802.11 framework updates.

600008 January 25, 2005 6.0-CURRENT after changes to
VOP_*VOBJECT() functions and
introduction of MNTK_MPSAFE
flag for Giantfree filesystems.

600009 February 4, 2005 6.0-CURRENT after addition of the
cpufreq framework and drivers.

600010 February 6, 2005 6.0-CURRENT after importing
OpenBSD’s nc(1).

600011 February 12, 2005 6.0-CURRENT after removing
semblance of SVID2matherr()

support.

600012 February 15, 2005 6.0-CURRENT after increase of
default thread stacks’ size.

600013 February 19, 2005 6.0-CURRENT after fixes in
<src/include/stdbool.h> and
<src/sys/i386/include/_types.h>

for using the GCC-compatibility of
the Intel C/C++ compiler.

600014 February 21, 2005 6.0-CURRENT after EOVERFLOW
checks in vswprintf(3) fixed.

600015 February 25, 2005 6.0-CURRENT after changing the
struct if_data member, ifi_epoch,
from wall clock time to uptime.

140

Chapter 15 Appendices

Value Date Release

600016 February 26, 2005 6.0-CURRENT after LC_CTYPE
disk format changed.

600017 February 27, 2005 6.0-CURRENT after NLS catalogs
disk format changed.

600018 February 27, 2005 6.0-CURRENT after LC_COLLATE
disk format changed.

600019 February 28, 2005 Installation of acpica includes into
/usr/include.

600020 March 9, 2005 Addition of MSG_NOSIGNAL flag
to send(2) API.

600021 March 17, 2005 Addition of fields to cdevsw

600022 March 21, 2005 Removed gtar from base system.

600023 April 13, 2005 LOCAL_CREDS,
LOCAL_CONNWAIT socket
options added to unix(4).

600024 April 19, 2005 hwpmc(4) and related tools added to
6.0-CURRENT.

600025 April 26, 2005 struct icmphdr added to
6.0-CURRENT.

600026 May 3, 2005 pf updated to 3.7.

600027 May 6, 2005 Kernel libalias and ng_nat
introduced.

600028 May 13, 2005 POSIX ttyname_r(3) made available
through unistd.h and libc.

600029 May 29, 2005 6.0-CURRENT after libpcap updated
to v0.9.1 alpha 096.

600030 June 5, 2005 6.0-CURRENT after importing
NetBSD’s if_bridge(4).

600031 June 10, 2005 6.0-CURRENT after struct ifnet was
broken out of the driver softcs.

600032 July 11, 2005 6.0-CURRENT after the import of
libpcap v0.9.1.

600033 July 25, 2005 6.0-STABLE after bump of all shared
library versions that had not been
changed since RELENG_5.

600034 August 13, 2005 6.0-STABLE after credential
argument is added to dev_clone
event handler. 6.0-RELEASE.

600100 November 1, 2005 6.0-STABLE after 6.0-RELEASE

600101 December 21, 2005 6.0-STABLE after incorporating
scripts from the local_startup
directories into the base rcorder(8).

141

Chapter 15 Appendices

Value Date Release

600102 December 30, 2005 6.0-STABLE after updating the ELF
types and constants.

600103 January 15, 2006 6.0-STABLE after MFC of pidfile(3)
API.

600104 January 17, 2006 6.0-STABLE after MFC of
ldconfig_local_dirs change.

600105 February 26, 2006 6.0-STABLE after NLS catalog
support of csh(1).

601000 May 6, 2006 6.1-RELEASE

601100 May 6, 2006 6.1-STABLE after 6.1-RELEASE.

601101 June 22, 2006 6.1-STABLE after the import of
csup.

601102 July 11, 2006 6.1-STABLE after the iwi(4) update.

601103 July 17, 2006 6.1-STABLE after the resolver
update to BIND9, and exposure of
reentrant version of netdb functions.

601104 August 8, 2006 6.1-STABLE after DSO (dynamic
shared objects) support has been
enabled in OpenSSL.

601105 September 2, 2006 6.1-STABLE after 802.11 fixups
changed the api for the
IEEE80211_IOC_STA_INFO ioctl.

602000 November 15, 2006 6.2-RELEASE

602100 September 15, 2006 6.2-STABLE after 6.2-RELEASE.

602101 December 12, 2006 6.2-STABLE after the addition of
Wi-Spy quirk.

602102 December 28, 2006 6.2-STABLE after pci_find_extcap()
addition.

602103 January 16, 2007 6.2-STABLE after MFC of dlsym
change to look for a requested
symbol both in specified dso and its
implicit dependencies.

602104 January 28, 2007 6.2-STABLE after MFC of
ng_deflate(4) and ng_pred1(4)
netgraph nodes and new compression
and encryption modes for ng_ppp(4)
node.

602105 February 20, 2007 6.2-STABLE after MFC of BSD
licensed version of gzip(1) ported
from NetBSD.

602106 March 31, 2007 6.2-STABLE after MFC of PCI MSI
and MSI-X support.

142

Chapter 15 Appendices

Value Date Release

602107 April 6, 2007 6.2-STABLE after MFC of ncurses
5.6 and wide character support.

602108 April 11, 2007 6.2-STABLE after MFC of CAM
’SG’ peripheral device, which
implements a subset of Linux SCSI
SG passthrough device API.

602109 April 17, 2007 6.2-STABLE after MFC of readline
5.2 patchset 002.

602110 May 2, 2007 6.2-STABLE after MFC of
pmap_invalidate_cache(),
pmap_change_attr(),
pmap_mapbios(),
pmap_mapdev_attr(), and
pmap_unmapbios() for amd64 and
i386.

602111 June 11, 2007 6.2-STABLE after MFC of
BOP_BDFLUSH and caused
breakage of the filesystem modules
KBI.

602112 September 21, 2007 6.2-STABLE after libutil(3) MFC’s.

602113 October 25, 2007 6.2-STABLE after MFC of wide and
single byte ctype separation. Newly
compiled binary that references to
ctype.h may require a new symbol,
__mb_sb_limit, which is not
available on older systems.

602114 October 30, 2007 6.2-STABLE after ctype ABI
forward compatibility restored.

602115 November 21, 2007 6.2-STABLE after back out of wide
and single byte ctype separation.

603000 November 25, 2007 6.3-RELEASE

603100 November 25, 2007 6.3-STABLE after 6.3-RELEASE.

603101 December 7, 2007 6.3-STABLE after fixing multibyte
type support in bit macro.

603102 April 24, 2008 6.3-STABLE after adding l_sysid to
struct flock.

603103 May 27, 2008 6.3-STABLE after MFC of the
memrchr function.

603104 June 15, 2008 6.3-STABLE after MFC of support
for :u variable modifier in make(1).

604000 October 4, 2008 6.4-RELEASE

604100 October 4, 2008 6.4-STABLE after 6.4-RELEASE.

700000 July 11, 2005 7.0-CURRENT.

143

Chapter 15 Appendices

Value Date Release

700001 July 23, 2005 7.0-CURRENT after bump of all
shared library versions that had not
been changed since RELENG_5.

700002 August 13, 2005 7.0-CURRENT after credential
argument is added to dev_clone
event handler.

700003 August 25, 2005 7.0-CURRENT after memmem(3) is
added to libc.

700004 October 30, 2005 7.0-CURRENT after solisten(9)
kernel arguments are modified to
accept a backlog parameter.

700005 November 11, 2005 7.0-CURRENT after
IFP2ENADDR() was changed to
return a pointer to IF_LLADDR().

700006 November 11, 2005 7.0-CURRENT after addition of
if_addr member tostruct

ifnet and IFP2ENADDR()
removal.

700007 December 2, 2005 7.0-CURRENT after incorporating
scripts from the local_startup
directories into the base rcorder(8).

700008 December 5, 2005 7.0-CURRENT after removal of
MNT_NODEV mount option.

700009 December 19, 2005 7.0-CURRENT after ELF-64 type
changes and symbol versioning.

700010 December 20, 2005 7.0-CURRENT after addition of
hostb and vgapci drivers, addition of
pci_find_extcap(), and changing the
AGP drivers to no longer map the
aperture.

700011 December 31, 2005 7.0-CURRENT after tv_sec was
made time_t on all platforms but
Alpha.

700012 January 8, 2006 7.0-CURRENT after
ldconfig_local_dirs change.

700013 January 12, 2006 7.0-CURRENT after changes to
/etc/rc.d/abi to support
/compat/linux/etc/ld.so.cache

being a symlink in a readonly
filesystem.

700014 January 26, 2006 7.0-CURRENT after pts import.

700015 March 26, 2006 7.0-CURRENT after the introduction
of version 2 of hwpmc(4)’s ABI.

144

Chapter 15 Appendices

Value Date Release

700016 April 22, 2006 7.0-CURRENT after addition of
fcloseall(3) to libc.

700017 May 13, 2006 7.0-CURRENT after removal of
ip6fw.

700018 July 15, 2006 7.0-CURRENT after import of
snd_emu10kx.

700019 July 29, 2006 7.0-CURRENT after import of
OpenSSL 0.9.8b.

700020 September 3, 2006 7.0-CURRENT after addition of
bus_dma_get_tag function

700021 September 4, 2006 7.0-CURRENT after libpcap 0.9.4
and tcpdump 3.9.4 import.

700022 September 9, 2006 7.0-CURRENT after dlsym change
to look for a requested symbol both
in specified dso and its implicit
dependencies.

700023 September 23, 2006 7.0-CURRENT after adding new
sound IOCTLs for the OSSv4 mixer
API.

700024 September 28, 2006 7.0-CURRENT after import of
OpenSSL 0.9.8d.

700025 November 11, 2006 7.0-CURRENT after the addition of
libelf.

700026 November 26, 2006 7.0-CURRENT after major changes
on sound sysctls.

700027 November 30, 2006 7.0-CURRENT after the addition of
Wi-Spy quirk.

700028 December 15, 2006 7.0-CURRENT after the addition of
sctp calls to libc

700029 January 26, 2007 7.0-CURRENT after the GNU
gzip(1) implementation was replaced
with a BSD licensed version ported
from NetBSD.

700030 February 7, 2007 7.0-CURRENT after the removal of
IPIP tunnel encapsulation
(VIFF_TUNNEL) from the IPv4
multicast forwarding code.

700031 February 23, 2007 7.0-CURRENT after the
modification of bus_setup_intr()
(newbus).

700032 March 2, 2007 7.0-CURRENT after the inclusion of
ipw(4) and iwi(4) firmware.

700033 March 9, 2007 7.0-CURRENT after the inclusion of
ncurses wide character support.

145

Chapter 15 Appendices

Value Date Release

700034 March 19, 2007 7.0-CURRENT after changes to how
insmntque(), getnewvnode(), and
vfs_hash_insert() work.

700035 March 26, 2007 7.0-CURRENT after addition of a
notify mechanism for CPU frequency
changes.

700036 April 6, 2007 7.0-CURRENT after import of the
ZFS filesystem.

700037 April 8, 2007 7.0-CURRENT after addition of
CAM ’SG’ peripheral device, which
implements a subset of Linux SCSI
SG passthrough device API.

700038 April 30, 2007 7.0-CURRENT after changing
getenv(3), putenv(3), setenv(3) and
unsetenv(3) to be POSIX
conformant.

700039 May 1, 2007 7.0-CURRENT after the changes in
700038 were backed out.

700040 May 10, 2007 7.0-CURRENT after the addition of
flopen(3) to libutil.

700041 May 13, 2007 7.0-CURRENT after enabling
symbol versioning, and changing the
default thread library to libthr.

700042 May 19, 2007 7.0-CURRENT after the import of
gcc 4.2.0.

700043 May 21, 2007 7.0-CURRENT after bump of all
shared library versions that had not
been changed since RELENG_6.

700044 June 7, 2007 7.0-CURRENT after changing the
argument for
vn_open()/VOP_OPEN() from file
descriptor index to the struct file *.

700045 June 10, 2007 7.0-CURRENT after changing
pam_nologin(8) to provide an
account management function
instead of an authentication function
to the PAM framework.

700046 June 11, 2007 7.0-CURRENT after updated 802.11
wireless support.

700047 June 11, 2007 7.0-CURRENT after adding TCP
LRO interface capabilities.

146

Chapter 15 Appendices

Value Date Release

700048 June 12, 2007 7.0-CURRENT after RFC 3678 API
support added to the IPv4 stack.
Legacy RFC 1724 behavior of the
IP_MULTICAST_IF ioctl has now
been removed; 0.0.0.0/8 may no
longer be used to specify an interface
index. struct ipmreqn should be used
instead.

700049 July 3, 2007 7.0-CURRENT after importing pf
from OpenBSD 4.1

(not changed) 7.0-CURRENT after adding IPv6
support for FAST_IPSEC, deleting
KAME IPSEC, and renaming
FAST_IPSEC to IPSEC.

700050 July 4, 2007 7.0-CURRENT after converting
setenv/putenv/etc. calls from
traditional BSD to POSIX.

700051 July 4, 2007 7.0-CURRENT after adding new
mmap/lseek/etc syscalls.

700052 July 6, 2007 7.0-CURRENT after moving I4B
headers to include/i4b.

700053 September 30, 2007 7.0-CURRENT after the addition of
support for PCI domains

700054 October 25, 2007 7.0-CURRENT after MFC of wide
and single byte ctype separation.

700055 October 28, 2007 7.0-RELEASE, and 7.0-CURRENT
after ABI backwards compatibility to
the FreeBSD 4/5/6 versions of the
PCIOCGETCONF, PCIOCREAD
and PCIOCWRITE IOCTLs was
MFCed, which required the ABI of
the PCIOCGETCONF IOCTL to be
broken again

700100 December 22, 2007 7.0-STABLE after 7.0-RELEASE

700101 February 8, 2008 7.0-STABLE after the MFC of
m_collapse().

700102 March 30, 2008 7.0-STABLE after the MFC of
kdb_enter_why().

700103 April 10, 2008 7.0-STABLE after adding l_sysid to
struct flock.

700104 April 11, 2008 7.0-STABLE after the MFC of
procstat(1).

700105 April 11, 2008 7.0-STABLE after the MFC of umtx
features.

147

Chapter 15 Appendices

Value Date Release

700106 April 15, 2008 7.0-STABLE after the MFC of
write(2) support to psm(4).

700107 April 20, 2008 7.0-STABLE after the MFC of
F_DUP2FD command to fcntl(2).

700108 May 5, 2008 7.0-STABLE after some lockmgr(9)
changes, which makes it necessary to
includesys/lock.h in order to use
lockmgr(9).

700109 May 27, 2008 7.0-STABLE after MFC of the
memrchr function.

700110 August 5, 2008 7.0-STABLE after MFC of kernel
NFS lockd client.

700111 August 20, 2008 7.0-STABLE after addition of
physically contiguous jumbo frame
support.

700112 August 27, 2008 7.0-STABLE after MFC of kernel
DTrace support.

701000 November 25, 2008 7.1-RELEASE

701100 November 25, 2008 7.1-STABLE after 7.1-RELEASE.

701101 January 10, 2009 7.1-STABLE afterstrndup merge.

701102 January 17, 2009 7.1-STABLE after cpuctl(4) support
added.

701103 February 7, 2009 7.1-STABLE after the merge of
multi-/no-IPv4/v6 jails.

701104 February 14, 2009 7.1-STABLE after the store of the
suspension owner in the struct
mount, and introduction of
vfs_susp_clean method into the
struct vfsops.

701105 March 12, 2009 7.1-STABLE after the incompatible
change to the kern.ipc.shmsegs sysctl
to allow to allocate larger SysV
shared memory segments on 64bit
architectures.

701106 March 14, 2009 7.1-STABLE after the merge of a fix
for POSIX semaphore wait
operations.

702000 April 15, 2009 7.2-RELEASE

702100 April 15, 2009 7.2-STABLE after 7.2-RELEASE.

702101 May 15, 2009 7.2-STABLE after ichsmb(4) was
changed to use left-adjusted slave
addressing to match other SMBus
controller drivers.

148

Chapter 15 Appendices

Value Date Release

702102 May 28, 2009 7.2-STABLE after MFC of the
fdopendir function.

702103 June 06, 2009 7.2-STABLE after MFC of
PmcTools.

702104 July 14, 2009 7.2-STABLE after MFC of the
closefrom system call.

702105 July 31, 2009 7.2-STABLE after MFC of the
SYSVIPC ABI change.

702106 September 14, 2009 7.2-STABLE after MFC of the x86
PAT enhancements and addition of
d_mmap_single() and the
scatter/gather list VM object type.

703000 February 9, 2010 7.3-RELEASE

703100 February 9, 2010 7.3-STABLE after 7.3-RELEASE.

704000 December 22, 2010 7.4-RELEASE

704100 December 22, 2010 7.4-STABLE after 7.4-RELEASE.

800000 October 11, 2007 8.0-CURRENT. Separating wide and
single byte ctype.

800001 October 16, 2007 8.0-CURRENT after libpcap 0.9.8
and tcpdump 3.9.8 import.

800002 October 21, 2007 8.0-CURRENT after renaming
kthread_create() and friends to
kproc_create() etc.

800003 October 24, 2007 8.0-CURRENT after ABI backwards
compatibility to the FreeBSD 4/5/6
versions of the PCIOCGETCONF,
PCIOCREAD and PCIOCWRITE
IOCTLs was added, which required
the ABI of the PCIOCGETCONF
IOCTL to be broken again

800004 November 12, 2007 8.0-CURRENT after agp(4) driver
moved from src/sys/pci to
src/sys/dev/agp

800005 December 4, 2007 8.0-CURRENT after changes to the
jumbo frame allocator (rev174247).

800006 December 7, 2007 8.0-CURRENT after the addition of
callgraph capture functionality to
hwpmc(4).

800007 December 25, 2007 8.0-CURRENT after kdb_enter()
gains a "why" argument.

800008 December 28, 2007 8.0-CURRENT after
LK_EXCLUPGRADE option
removal.

149

Chapter 15 Appendices

Value Date Release

800009 January 9, 2008 8.0-CURRENT after introduction of
lockmgr_disown(9)

800010 January 10, 2008 8.0-CURRENT after the vn_lock(9)
prototype change.

800011 January 13, 2008 8.0-CURRENT after the
VOP_LOCK(9) and
VOP_UNLOCK(9) prototype
changes.

800012 January 19, 2008 8.0-CURRENT after introduction of
lockmgr_recursed(9),
BUF_RECURSED(9) and
BUF_ISLOCKED(9) and the
removal ofBUF_REFCNT().

800013 January 23, 2008 8.0-CURRENT after introduction of
the “ASCII” encoding.

800014 January 24, 2008 8.0-CURRENT after changing the
prototype of lockmgr(9) and removal
of lockcount() and
LOCKMGR_ASSERT().

800015 January 26, 2008 8.0-CURRENT after extending the
types of the fts(3) structures.

800016 February 1, 2008 8.0-CURRENT after adding an
argument to MEXTADD(9)

800017 February 6, 2008 8.0-CURRENT after the introduction
of LK_NODUP and
LK_NOWITNESS options in the
lockmgr(9) space.

800018 February 8, 2008 8.0-CURRENT after the addition of
m_collapse.

800019 February 9, 2008 8.0-CURRENT after the addition of
current working directory, root
directory, and jail directory support
to the kern.proc.filedesc sysctl.

800020 February 13, 2008 8.0-CURRENT after introduction of
lockmgr_assert(9) andBUF_ASSERT

functions.

800021 February 15, 2008 8.0-CURRENT after introduction of
lockmgr_args(9) and
LK_INTERNAL flag removal.

800022 (backed out) 8.0-CURRENT after changing the
default system ar to BSD ar(1).

150

Chapter 15 Appendices

Value Date Release

800023 February 25, 2008 8.0-CURRENT after changing the
prototypes of lockstatus(9) and
VOP_ISLOCKED(9), more
specifically retiring thestruct

thread argument.

800024 March 1, 2008 8.0-CURRENT after axing out the
lockwaiters and
BUF_LOCKWAITERSfunctions,
changing the return value ofbrelvp

from void to int and introducing new
flags for lockinit(9).

800025 March 8, 2008 8.0-CURRENT after adding
F_DUP2FD command to fcntl(2).

800026 March 12, 2008 8.0-CURRENT after changing the
priority parameter to cv_broadcastpri
such that 0 means no priority.

800027 March 24, 2008 8.0-CURRENT after changing the
bpf monitoring ABI when zerocopy
bpf buffers were added.

800028 March 26, 2008 8.0-CURRENT after adding l_sysid
to struct flock.

800029 March 28, 2008 8.0-CURRENT after reintegration of
theBUF_LOCKWAITERSfunction and
the addition of lockmgr_waiters(9).

800030 April 1, 2008 8.0-CURRENT after the introduction
of the rw_try_rlock(9) and
rw_try_wlock(9) functions.

800031 April 6, 2008 8.0-CURRENT after the introduction
of the lockmgr_rw and
lockmgr_args_rw functions.

800032 April 8, 2008 8.0-CURRENT after the
implementation of the openat and
related syscalls, introduction of the
O_EXEC flag for the open(2), and
providing the corresponding linux
compatibility syscalls.

800033 April 8, 2008 8.0-CURRENT after added write(2)
support for psm(4) in native
operation level. Now arbitrary
commands can be written to
/dev/psm%d and status can be read
back from it.

800034 April 10, 2008 8.0-CURRENT after introduction of
thememrchr function.

151

Chapter 15 Appendices

Value Date Release

800035 April 16, 2008 8.0-CURRENT after introduction of
thefdopendir function.

800036 April 20, 2008 8.0-CURRENT after switchover of
802.11 wireless to multi-bss support
(aka vaps).

800037 May 9, 2008 8.0-CURRENT after addition of
multi routing table support (aka
setfib(1), setfib(2)).

800038 May 26, 2008 8.0-CURRENT after removal of
netatm and ISDN4BSD. Also, the
addition of the Compact C Type
(CTF) tools.

800039 June 14, 2008 8.0-CURRENT after removal of
sgtty.

800040 June 26, 2008 8.0-CURRENT with kernel NFS
lockd client.

800041 July 22, 2008 8.0-CURRENT after addition of
arc4random_buf(3) and
arc4random_uniform(3).

800042 August 8, 2008 8.0-CURRENT after addition of
cpuctl(4).

800043 August 13, 2008 8.0-CURRENT after changing bpf(4)
to use a single device node, instead
of device cloning.

800044 August 17, 2008 8.0-CURRENT after the commit of
the first step of the vimage project
renaming global variables to be
virtualized with a V_ prefix with
macros to map them back to their
global names.

800045 August 20, 2008 8.0-CURRENT after the integration
of the MPSAFE TTY layer,
including changes to various drivers
and utilities that interact with it.

800046 September 8, 2008 8.0-CURRENT after the separation
of the GDT per CPU on amd64
architecture.

800047 September 10, 2008 8.0-CURRENT after removal of
VSVTX, VSGID and VSUID.

800048 September 16, 2008 8.0-CURRENT after converting the
kernel NFS mount code to accept
individual mount options in the
nmount() iovec, not just one big
struct nfs_args.

152

Chapter 15 Appendices

Value Date Release

800049 September 17, 2008 8.0-CURRENT after the removal of
suser(9) and suser_cred(9).

800050 October 20, 2008 8.0-CURRENT after buffer cache
API change.

800051 October 23, 2008 8.0-CURRENT after the removal of
the MALLOC(9) and FREE(9)
macros.

800052 October 28, 2008 8.0-CURRENT after the introduction
of accmode_t and renaming of
VOP_ACCESS ’a_mode’ argument
to ’a_accmode’.

800053 November 2, 2008 8.0-CURRENT after the prototype
change of vfs_busy(9) and the
introduction of its MBF_NOWAIT
and MBF_MNTLSTLOCK flags.

800054 November 22, 2008 8.0-CURRENT after the addition of
buf_ring, memory barriers and ifnet
functions to facilitate multiple
hardware transmit queues for cards
that support them, and a lockless
ring-buffer implementation to enable
drivers to more efficiently manage
queuing of packets.

800055 November 27, 2008 8.0-CURRENT after the addition of
Intel™ Core, Core2, and Atom
support to hwpmc(4).

800056 November 29, 2008 8.0-CURRENT after the introduction
of multi-/no-IPv4/v6 jails.

800057 December 1, 2008 8.0-CURRENT after the switch to
the ath hal source code.

800058 December 12, 2008 8.0-CURRENT after the introduction
of the VOP_VPTOCNP operation.

800059 December 15, 2008 8.0-CURRENT incorporates the new
arp-v2 rewrite.

800060 December 19, 2008 8.0-CURRENT after the addition of
makefs.

800061 January 15, 2009 8.0-CURRENT after TCP
Appropriate Byte Counting.

800062 January 28, 2009 8.0-CURRENT after removal of
minor(), minor2unit(), unit2minor(),
etc.

800063 February 18, 2009 8.0-CURRENT after GENERIC
config change to use the USB2 stack,
but also the addition of fdevname(3).

153

Chapter 15 Appendices

Value Date Release

800064 February 23, 2009 8.0-CURRENT after the USB2 stack
is moved to and replaces dev/usb.

800065 February 26, 2009 8.0-CURRENT after the renaming of
all functions in libmp(3).

800066 February 27, 2009 8.0-CURRENT after changing USB
devfs handling and layout.

800067 February 28, 2009 8.0-CURRENT after adding
getdelim(), getline(), stpncpy(),
strnlen(), wcsnlen(), wcscasecmp(),
and wcsncasecmp().

800068 March 2, 2009 8.0-CURRENT after renaming the
ushub devclass to uhub.

800069 March 9, 2009 8.0-CURRENT after libusb20.so.1
was renamed to libusb.so.1.

800070 March 9, 2009 8.0-CURRENT after merging
IGMPv3 and Source-Specific
Multicast (SSM) to the IPv4 stack.

800071 March 14, 2009 8.0-CURRENT after gcc was
patched to use C99 inline semantics
in c99 and gnu99 mode.

800072 March 15, 2009 8.0-CURRENT after the
IFF_NEEDSGIANT flag has been
removed; non-MPSAFE network
device drivers are no longer
supported.

800073 March 18, 2009 8.0-CURRENT after the dynamic
string token substitution has been
implemented for rpath and needed
paths.

800074 March 24, 2009 8.0-CURRENT after tcpdump 4.0.0
and libpcap 1.0.0 import.

800075 April 6, 2009 8.0-CURRENT after layout of structs
vnet_net, vnet_inet and vnet_ipfw
has been changed.

800076 April 9, 2009 8.0-CURRENT after adding delay
profiles in dummynet.

800077 April 14, 2009 8.0-CURRENT after removing
VOP_LEASE() and
vop_vector.vop_lease.

154

Chapter 15 Appendices

Value Date Release

800078 April 15, 2009 8.0-CURRENT after struct rt_weight
fields have been added to struct
rt_metrics and struct rt_metrics_lite,
changing the layout of struct
rt_metrics_lite. A bump to
RTM_VERSION was made, but
backed out.

800079 April 15, 2009 8.0-CURRENT after struct llentry
pointers are added to struct route and
struct route_in6.

800080 April 15, 2009 8.0-CURRENT after layout of struct
inpcb has been changed.

800081 April 19, 2009 8.0-CURRENT after the layout of
struct malloc_type has been changed.

800082 April 21, 2009 8.0-CURRENT after the layout of
struct ifnet has changed, and with
if_ref() and if_rele() ifnet
refcounting.

800083 April 22, 2009 8.0-CURRENT after the
implementation of a low-level
Bluetooth HCI API.

800084 April 29, 2009 8.0-CURRENT after IPv6 SSM and
MLDv2 changes.

800085 April 30, 2009 8.0-CURRENT after enabling
support for VIMAGE kernel builds
with one active image.

800086 May 8, 2009 8.0-CURRENT after adding support
for input lines of arbitrarily length in
patch(1).

800087 May 11, 2009 8.0-CURRENT after some VFS KPI
changes. The thread argument has
been removed from the FSD parts of
the VFS.VFS_* functions do not
need the context any more because it
always refers tocurthread . In
some special cases, the old behavior
is retained.

800088 May 20, 2009 8.0-CURRENT after net80211
monitor mode changes.

800089 May 23, 2009 8.0-CURRENT after adding UDP
control block support.

800090 May 23, 2009 8.0-CURRENT after virtualizing
interface cloning.

155

Chapter 15 Appendices

Value Date Release

800091 May 27, 2009 8.0-CURRENT after adding
hierarchical jails and removing
global securelevel.

800092 May 29, 2009 8.0-CURRENT after changing
sx_init_flags() KPI. The
SX_ADAPTIVESPINis retired and a
newSX_NOADAPTIVEflag is
introduced in order to handle the
reversed logic.

800093 May 29, 2009 8.0-CURRENT after adding
mnt_xflag to struct mount.

800094 May 30, 2009 8.0-CURRENT after adding
VOP_ACCESSX(9).

800095 May 30, 2009 8.0-CURRENT after changing the
polling KPI. The polling handlers
now return the number of packets
processed. A new
IFCAP_POLLING_NOCOUNTis also
introduced to specify that the return
value is not significant and the
counting should be skipped.

800096 June 1, 2009 8.0-CURRENT after updating to the
new netisr implementation and after
changing the way we store and
access FIBs.

800097 June 8, 2009 8.0-CURRENT after the introduction
of vnet destructor hooks and
infrastructure.

800097 June 11, 2009 8.0-CURRENT after the introduction
of netgraph outbound to inbound
path call detection and queuing,
which also changed the layout of
struct thread.

800098 June 14, 2009 8.0-CURRENT after OpenSSL
0.9.8k import.

800099 June 22, 2009 8.0-CURRENT after NGROUPS
update and moving route
virtualization into its own VImage
module.

800100 June 24, 2009 8.0-CURRENT after SYSVIPC ABI
change.

800101 June 29, 2009 8.0-CURRENT after the removal of
the /dev/net/* per-interface character
devices.

156

Chapter 15 Appendices

Value Date Release

800102 July 12, 2009 8.0-CURRENT after padding was
added to struct sackhint, struct tcpcb,
and struct tcpstat.

800103 July 13, 2009 8.0-CURRENT after replacing struct
tcpopt with struct toeopt in the TOE
driver interface to the TCP syncache.

800104 July 14, 2009 8.0-CURRENT after the addition of
the linker-set based per-vnet
allocator.

800105 July 19, 2009 8.0-CURRENT after version bump
for all shared libraries that do not
have symbol versioning turned on.

800106 July 24, 2009 8.0-CURRENT after introduction of
OBJT_SG VM object type.

800107 August 2, 2009 8.0-CURRENT after making the
newbus subsystem Giant free by
adding the newbus sxlock and
8.0-RELEASE.

800108 November 21, 2009 8.0-STABLE after implementing
EVFILT_USER kevent filter.

800500 January 7, 2010 8.0-STABLE after
__FreeBSD_version bump to
makepkg_add -r use
packages-8-stable.

800501 January 24, 2010 8.0-STABLE after change of the
scandir(3) andalphasort(3)

prototypes to conform to SUSv4.

800502 January 31, 2010 8.0-STABLE after addition of
sigpause(3) .

800503 February 25, 2010 8.0-STABLE after addition of
SIOCGIFDESCR and
SIOCSIFDESCR ioctls to network
interfaces. These ioctl can be used to
manipulate interface description, as
inspired by OpenBSD.

800504 March 1, 2010 8.0-STABLE after MFC of importing
x86emu, a software emulator for real
mode x86 CPU from OpenBSD.

800505 May 18, 2010 8.0-STABLE after MFC of adding
liblzma, xz, xzdec, and lzmainfo.

801000 June 14, 2010 8.1-RELEASE

801500 June 14, 2010 8.1-STABLE after 8.1-RELEASE.

157

Chapter 15 Appendices

Value Date Release

801501 November 3, 2010 8.1-STABLE after KBI change in
struct sysentvec, and implementation
of PL_FLAG_SCE/SCX/EXEC/SI
and pl_siginfo for
ptrace(PT_LWPINFO) .

802000 December 22, 2010 8.2-RELEASE

802500 December 22, 2010 8.2-STABLE after 8.2-RELEASE.

802501 February 28, 2011 8.2-STABLE after merging DTrace
changes, including support for
userland tracing.

802502 March 6, 2011 8.2-STABLE after merging log2 and
log2f into libm.

802503 May 1, 2011 8.2-STABLE after upgrade of the gcc
to the last GPLv2 version from the
FSF gcc-4_2-branch.

802504 May 28, 2011 8.2-STABLE after introduction of
the KPI and supporting infrastructure
for modular congestion control.

802505 May 28, 2011 8.2-STABLE after introduction of
Hhook and Khelp KPIs.

802506 May 28, 2011 8.2-STABLE after addition of OSD
to struct tcpcb.

802507 June 6, 2011 8.2-STABLE after ZFS v28 import.

802508 June 8, 2011 8.2-STABLE after removal of the
schedtail event handler and addition
of the sv_schedtail method to struct
sysvec.

802509 July 14, 2011 8.2-STABLE after merging the
SSSE3 support into binutils.

802510 July 19, 2011 8.2-STABLE after addition of
RFTSIGZMB flag forrfork(2) .

802511 September 9, 2011 8.2-STABLE after addition of
automatic detection of USB mass
storage devices which do not support
the no synchronize cache SCSI
command.

802512 September 10, 2011 8.2-STABLE after merging of
re-factoring of auto-quirk.

802513 October 25, 2011 8.2-STABLE after merging of the
MAP_PREFAULT_READ flag to
mmap(2) .

802514 November 16, 2011 8.2-STABLE after merging of
addition of posix_fallocate(2)
syscall.

158

Chapter 15 Appendices

Value Date Release

802515 January 6, 2012 8.2-STABLE after merging of
addition of the posix_fadvise(2)
system call.

802516 January 16, 2012 8.2-STABLE after merging gperf
3.0.3

802517 February 15, 2012 8.2-STABLE after introduction of
the new extensible sysctl(3) interface
NET_RT_IFLISTL to query address
lists (rev231769).

803000 March 3, 2012 8.3-RELEASE.

803500 March 3, 2012 8.3-STABLE after branching
releng/8.3 (RELENG_8_3).

804000 March 28, 2013 8.4-RELEASE.

804500 March 28, 2013 8.4-STABLE after 8.4-RELEASE.

900000 August 22, 2009 9.0-CURRENT.

900001 September 8, 2009 9.0-CURRENT after importing
x86emu, a software emulator for real
mode x86 CPU from OpenBSD.

900002 September 23, 2009 9.0-CURRENT after implementing
the EVFILT_USER kevent filter
functionality.

900003 December 2, 2009 9.0-CURRENT after addition of
sigpause(3) and PIE support in
csu.

900004 December 6, 2009 9.0-CURRENT after addition of
libulog and its libutempter
compatibility interface.

900005 December 12, 2009 9.0-CURRENT after addition of
sleepq_sleepcnt() , which can be
used to query the number of waiters
on a specific waiting queue.

900006 January 4, 2010 9.0-CURRENT after change of the
scandir(3) andalphasort(3)

prototypes to conform to SUSv4.

900007 January 13, 2010 9.0-CURRENT after the removal of
utmp(5) and the addition of utmpx
(seegetutxent(3)) for improved
logging of user logins and system
events.

900008 January 20, 2010 9.0-CURRENT after the import of
BSDL bc/dc and the deprecation of
GNU bc/dc.

159

Chapter 15 Appendices

Value Date Release

900009 January 26, 2010 9.0-CURRENT after the addition of
SIOCGIFDESCR and
SIOCSIFDESCR ioctls to network
interfaces. These ioctl can be used to
manipulate interface description, as
inspired by OpenBSD.

900010 March 22, 2010 9.0-CURRENT after the import of
zlib 1.2.4.

900011 April 24, 2010 9.0-CURRENT after adding
soft-updates journalling.

900012 May 10, 2010 9.0-CURRENT after adding liblzma,
xz, xzdec, and lzmainfo.

900013 May 24, 2010 9.0-CURRENT after bringing in
USB fixes for linux(4).

900014 June 10, 2010 9.0-CURRENT after adding Clang.

900015 July 22, 2010 9.0-CURRENT after the import of
BSD grep.

900016 July 28, 2010 9.0-CURRENT after adding
mti_zone to struct
malloc_type_internal.

900017 August 23, 2010 9.0-CURRENT after changing back
default grep to GNU grep and adding
WITH_BSD_GREP knob.

900018 August 24, 2010 9.0-CURRENT after the
pthread_kill(3) -generated
signal is identified as SI_LWP in
si_code. Previously, si_code was
SI_USER.

900019 August 28, 2010 9.0-CURRENT after addition of the
MAP_PREFAULT_READ flag to
mmap(2) .

900020 September 9, 2010 9.0-CURRENT after adding drain
functionality to sbufs, which also
changed the layout of struct sbuf.

900021 September 13, 2010 9.0-CURRENT after DTrace has
grown support for userland tracing.

900022 October 2, 2010 9.0-CURRENT after addition of the
BSDL man utilities and retirement of
GNU/GPL man utilities.

900023 October 11, 2010 9.0-CURRENT after updating xz to
git 20101010 snapshot.

900024 November 11, 2010 9.0-CURRENT after libgcc.a was
replaced by libcompiler_rt.a.

160

Chapter 15 Appendices

Value Date Release

900025 November 12, 2010 9.0-CURRENT after the introduction
of the modularised congestion
control.

900026 November 30, 2010 9.0-CURRENT after the introduction
of Serial Management Protocol
(SMP) passthrough and the
XPT_SMP_IO and
XPT_GDEV_ADVINFO CAM
CCBs.

900027 December 5, 2010 9.0-CURRENT after the addition of
log2 to libm.

900028 December 21, 2010 9.0-CURRENT after the addition of
the Hhook (Helper Hook), Khelp
(Kernel Helpers) and Object Specific
Data (OSD) KPIs.

900029 December 28, 2010 9.0-CURRENT after the
modification of the TCP stack to
allow Khelp modules to interact with
it via helper hook points and store
per-connection data in the TCP
control block.

900030 January 12, 2011 9.0-CURRENT after the update of
libdialog to version 20100428.

900031 February 7, 2011 9.0-CURRENT after the addition of
pthread_getthreadid_np(3) .

900032 February 8, 2011 9.0-CURRENT after the removal of
the uio_yield prototype and symbol.

900033 February 18, 2011 9.0-CURRENT after the update of
binutils to version 2.17.50.

900034 March 8, 2011 9.0-CURRENT after the struct
sysvec (sv_schedtail) changes.

900035 March 29, 2011 9.0-CURRENT after the update of
base gcc and libstdc++ to the last
GPLv2 licensed revision.

900036 April 18, 2011 9.0-CURRENT after the removal of
libobjc and Objective-C support from
the base system.

900037 May 13, 2011 9.0-CURRENT after importing the
libprocstat(3) library and fuser(1)
utility to the base system.

900038 May 22, 2011 9.0-CURRENT after adding a lock
flag argument to VFS_FHTOVP(9).

900039 June 28, 2011 9.0-CURRENT after importing pf
from OpenBSD 4.5.

161

Chapter 15 Appendices

Value Date Release

900040 July 19, 2011 Increase default MAXCPU for
FreeBSD to 64 on amd64 and ia64
and to 128 for XLP (mips).

900041 August 13, 2011 9.0-CURRENT after the
implementation of Capsicum
capabilities; fget(9) gains a rights
argument.

900042 August 28, 2011 Bump shared libraries’ version
numbers for libraries whose ABI has
changed in preparation for 9.0.

900043 September 2, 2011 Add automatic detection of USB
mass storage devices which do not
support the no synchronize cache
SCSI command.

900044 September 10, 2011 Re-factor auto-quirk. 9.0-RELEASE.

900045 January 2, 2012 9-CURRENT after MFC of true/false
from 1000002.

900500 January 2, 2012 9.0-STABLE.

900501 January 6, 2012 9.0-STABLE after merging of
addition of the posix_fadvise(2)
system call.

900502 January 16, 2012 9.0-STABLE after merging gperf
3.0.3

900503 February 15, 2012 9.0-STABLE after introduction of
the new extensible sysctl(3) interface
NET_RT_IFLISTL to query address
lists (rev231768).

900504 March 3, 2012 9.0-STABLE after changes related to
mounting of filesystem inside a jail
(rev232728).

900505 March 13, 2012 9.0-STABLE after introduction of
new tcp(4) socket options:
TCP_KEEPINIT, TCP_KEEPIDLE,
TCP_KEEPINTVL, and
TCP_KEEPCNT (rev232945).

900506 May 22, 2012 9.0-STABLE after introduction of
thequick_exit function and
related changes required for C++11
(rev235786).

901000 August 5, 2012 9.1-RELEASE.

901500 August 6, 2012 9.1-STABLE after branching
releng/9.1 (RELENG_9_1).

162

Chapter 15 Appendices

Value Date Release

901501 November 11, 2012 9.1-STABLE after LIST_PREV()
added to queue.h (rev242893) and
KBI change in USB serial devices
(rev240659).

901502 November 28, 2012 9.1-STABLE after USB serial jitter
buffer requires rebuild of USB serial
device modules.

901503 February 21, 2013 9.1-STABLE after USB moved to the
driver structure requiring a rebuild of
all USB modules. Also indicates the
presence of nmtree.

901504 March 15, 2013 9.1-STABLE after install gained -l,
-M, -N and related flags and cat
gained the -l option.

901505 June 13, 2013 9.1-STABLE after fixes in ctfmerge
boostrapping (rev249243).

902001 August 3, 2013 releng/9.2 branched from
stable/9 (rev253912).

902501 August 2, 2013 9.2-STABLE after creation of
releng/9.2 branch (rev253913).

1000000 September 26, 2011 10.0-CURRENT.

1000001 November 4, 2011 10-CURRENT after addition of the
posix_fadvise(2) system call.

1000002 December 12, 2011 10-CURRENT after defining boolean
true/false in sys/types.h, sizeof(bool)
may have changed (rev228444).
10-CURRENT after xlocale.h was
introduced (rev227753).

1000003 December 16, 2011 10-CURRENT after major changes
to carp(4), changing size of
struct in_aliasreq, struct in6_aliasreq
(rev228571) and straitening
arguments check of SIOCAIFADDR
(rev228574).

1000004 January 1, 2012 10-CURRENT after the removal of
skpc(9) and the addition of
memcchr(9) (rev229200).

1000005 January 16, 2012 10-CURRENT after the removal of
support for SIOCSIFADDR,
SIOCSIFNETMASK,
SIOCSIFBRDADDR,
SIOCSIFDSTADDR ioctls (rev
230207).

163

Chapter 15 Appendices

Value Date Release

1000006 January 26, 2012 10-CURRENT after introduction of
read capacity data asynchronous
notification in the cam(4) layer (rev
230590).

1000007 February 5, 2012 10-CURRENT after introduction of
new tcp(4) socket options:
TCP_KEEPINIT, TCP_KEEPIDLE,
TCP_KEEPINTVL, and
TCP_KEEPCNT (rev231025).

1000008 February 11, 2012 10-CURRENT after introduction of
the new extensible sysctl(3) interface
NET_RT_IFLISTL to query address
lists (rev231505).

1000009 February 25, 2012 10-CURRENT after import of
libarchive 3.0.3 (rev232153).

1000010 March 31, 2012 10-CURRENT after xlocale cleanup
(rev233757).

1000011 April 16, 2012 10-CURRENT import of
LLVM/Clang 3.1 trunk r154661 (rev
234353).

1000012 May 2, 2012 10-CURRENT jemalloc import (rev
234924).

1000013 May 22, 2012 10-CURRENT after byacc import
(rev235788).

1000014 June 27, 2012 10-CURRENT after BSD sort
becoming the default sort (rev
237629).

1000015 July 12, 2012 10-CURRENT after import of
OpenSSL 1.0.1c (rev238405).

(not changed) July 13, 2012 10-CURRENT after the fix for
LLVM/Clang 3.1 regression (rev
238429).

1000016 August 8, 2012 10-CURRENT after KBI change in
ucom(4) (rev239179).

1000017 August 8, 2012 10-CURRENT after adding streams
feature to the USB stack (rev
239214).

1000018 September 8, 2012 10-CURRENT after major rewrite of
pf(4) (rev240233).

1000019 October 6, 2012 10-CURRENT after pfil(9) KBI/KPI
changed to supply packets in net byte
order to AF_INET filter hooks (rev
241245).

164

Chapter 15 Appendices

Value Date Release

1000020 October 16, 2012 10-CURRENT after the network
interface cloning KPI changed and
struct if_clone becoming opaque (rev
241610).

1000021 October 22, 2012 10-CURRENT after removal of
support for non-MPSAFE
filesystems and addition of support
for FUSEFS (rev241519, 241897).

1000022 October 22, 2012 10-CURRENT after the entire IPv4
stack switched to network byte order
for IP packet header storage (rev
241913).

1000023 November 5, 2012 10-CURRENT after jitter buffer in
the common USB serial driver code,
to temporarily store characters if the
TTY buffer is full. Add flow stop and
start signals when this happens (rev
242619).

1000024 November 5, 2012 10-CURRENT after clang was made
the default compiler on i386 and
amd64 (rev242624).

1000025 November 17, 2012 10-CURRENT after the
sin6_scope_id member variable in
struct sockaddr_in6 was changed to
being filled by the kernel before
passing the structure to the userland
via sysctl or routing socket. This
means the KAME-specific embedded
scope id in sin6_addr.s6_addr[2] is
always cleared in userland
application (rev243443).

1000026 January 11, 2013 10-CURRENT after install gained
the -N flag (rev245313). May also
be used to indicate the presence of
nmtree.

1000027 January 29, 2013 10-CURRENT after cat gained the -l
flag (rev246083).

1000028 February 13, 2013 10-CURRENT after USB moved to
the driver structure requiring a
rebuild of all USB modules (rev
246759).

1000029 March 4, 2013 10-CURRENT after the introduction
of tickless callout facility which also
changed the layout of struct callout
(rev247777).

165

Chapter 15 Appendices

Value Date Release

1000030 March 12, 2013 10-CURRENT after KPI breakage
introduced in the VM subsystem to
support read/write locking (rev
248084).

1000031 April 26, 2013 10-CURRENT after the dst
parameter of the ifnetif_output

method was changed to take const
qualifier (rev249925).

1000032 May 1, 2013 10-CURRENT after the introduction
of theaccept4 (rev250154) and
pipe2 (rev250159) system calls.

1000033 May 21, 2013 10-CURRENT after flex 2.5.37
import (rev250881).

1000034 June 3, 2013 10-CURRENT after the addition of
the following functions to libm:
cacos , cacosf , cacosh , cacoshf ,
casin , casinf , casinh , casinhf ,
catan , catanf , catanh , catanhf ,
logl , log2l , log10l , log1pl ,
expm1l (rev251294).

1000035 June 8, 2013 10-CURRENT after the introduction
of theaio_mlock system call (rev
251526).

1000036 July 9, 2013 10-CURRENT after the addition of a
new function to the kernel GSSAPI
module’s function call interface (rev
253049).

1000037 July 9, 2013 10-CURRENT after the migration of
statistics structures to PCPU
counters. Changed structures
include:ahstat , arpstat ,
espstat , icmp6_ifstat ,
icmp6stat , in6_ifstat ,
ip6stat , ipcompstat , ipipstat ,
ipsecstat , mrt6stat , mrtstat ,
pfkeystat , pim6stat , pimstat ,
rip6stat , udpstat (rev253081).

1000038 July 16, 2013 10-CURRENT after makingARM

EABI the default ABI on arm, armeb,
armv6, and armv6eb architectures
(rev253396).

1000039 July 22, 2013 10-CURRENT afterCAMand mps(4)
driver scanning changes (rev
253549).

166

Chapter 15 Appendices

Value Date Release

1000040 July 24, 2013 10-CURRENT after addition of
libusb pkgconf files (rev253638).

1000041 August 5, 2013 10-CURRENT after change from
time_second to time_uptime in
PF_INET6 (rev253970).

1000042 August 9, 2013 10-CURRENT after VM subsystem
change to unify soft and hard busy
mechanisms (rev254138).

1000043 August 13, 2013 10-CURRENT afterWITH_ICONVis
enabled by default. A new
src.conf(5) option,
WITH_LIBICONV_COMPAT(disabled
by default) addslibiconv_open to
provide compatibility with the
libiconv port (rev254273).

1000044 August 15, 2013 10-CURRENT afterlibc.so

conversion to an ld(1) script (rev
251668, 254358).

1000045 August 15, 2013 10-CURRENT after devfs
programming interface change by
replacing the cdevsw flag
D_UNMAPPED_IOwith the struct
cdev flagSI_UNMAPPED(rev
254389).

1000046 August 19, 2013 10-CURRENT after addition of
M_PROTO[9-12] and removal of
M_FRAG|M_FIRSTFRAG|M_LASTFRAG

mbuf flags (rev254524, 254526.

1000047 August 21, 2013 10-CURRENT after stat(2) update to
allow storing some Windows/DOS
and CIFS file attributes as stat(2)
flags (rev254627).

1000048 August 22, 2013 10-CURRENT after modification of
structurexsctp_inpcb (rev
254672).

1000049 August 24, 2013 10-CURRENT after physio(9)
support for devices that do not
function properly with split I/O, such
as sa(4) (rev254760).

1000050 August 24, 2013 10-CURRENT after modifications of
structurembuf (rev254780, 254799,
254804, 254807 254842).

1000051 August 25, 2013 10-CURRENT after Radeon KMS
driver import (rev254885, 254887).

167

Chapter 15 Appendices

Value Date Release

1000052 September 3, 2013 10-CURRENT after import of
NetBSDlibexecinfo is connected
to the build (rev255180).

1000053 September 6, 2013 10-CURRENT after API and ABI
changes to the Capsicum framework
(rev255305).

1000054 September 6, 2013 10-CURRENT aftergcc and
libstdc++ are no longer built by
default (rev255321).

1000055 September 6, 2013 10-CURRENT after addition of
MMAP_32BITmmap(2) flag (rev
255426).

Note: Note that 2.2-STABLE sometimes identifies itself as “2.2.5-STABLE” after the 2.2.5-RELEASE. The pattern
used to be year followed by the month, but we decided to change it to a more straightforward major/minor system
starting from 2.2. This is because the parallel development on several branches made it infeasible to classify the
releases simply by their real release dates. If you are making a port now, you do not have to worry about old
-CURRENTs; they are listed here just for your reference.

168

	FreeBSD Porter's Handbook
	Table of Contents
	List of Tables
	Chapter 1 Introduction
	Chapter 2 Making a New Port Yourself
	Chapter 3 Quick Porting
	3.1 Writing the Makefile
	3.2 Writing the Description Files
	3.2.1 pkgdescr
	3.2.2 pkgplist

	3.3 Creating the Checksum File
	3.4 Testing the Port
	3.5 Checking Your Port with portlint
	3.6 Submitting the New Port

	Chapter 4 Slow Porting
	4.1 How Things Work
	4.2 Getting the Original Sources
	4.3 Modifying the Port
	4.4 Patching
	4.5 Configuring
	4.6 Handling User Input

	Chapter 5 Configuring the Makefile
	5.1 The Original Source
	5.2 Naming
	5.2.1 PORTNAME and PORTVERSION
	5.2.2 PORTREVISION and PORTEPOCH
	5.2.2.1 PORTREVISION
	5.2.2.2 PORTEPOCH
	5.2.2.3 Example of PORTREVISION and PORTEPOCH Usage

	5.2.3 PKGNAMEPREFIX and PKGNAMESUFFIX
	5.2.4 LATESTLINK
	5.2.5 Package Naming Conventions

	5.3 Categorization
	5.3.1 CATEGORIES
	5.3.2 Current List of Categories
	5.3.3 Choosing the Right Category
	5.3.4 Proposing a New Category
	5.3.5 Proposing Reorganizing All the Categories

	5.4 The Distribution Files
	5.4.1 DISTVERSION/DISTNAME
	5.4.2 MASTERSITES
	5.4.3 EXTRACTSUFX
	5.4.4 DISTFILES
	5.4.5 EXTRACTONLY
	5.4.6 PATCHFILES
	5.4.7 Multiple Distribution Files or Patches from Different Sites and Subdirectories (MASTERSITES:n)
	5.4.7.1 Simplified Information
	5.4.7.2 Detailed Information
	5.4.7.3 What Does Change for Ports? What Does Not?

	5.4.8 DISTSUBDIR
	5.4.9 ALWAYSKEEPDISTFILES

	5.5 MAINTAINER
	5.6 COMMENT
	5.7 PORTSCOUT
	5.8 Dependencies
	5.8.1 LIBDEPENDS
	5.8.2 RUNDEPENDS
	5.8.3 BUILDDEPENDS
	5.8.4 FETCHDEPENDS
	5.8.5 EXTRACTDEPENDS
	5.8.6 PATCHDEPENDS
	5.8.7 USES
	5.8.8 USE*
	5.8.9 Minimal Version of a Dependency
	5.8.10 Notes on Dependencies
	5.8.11 Circular Dependencies Are Fatal
	5.8.12 Problems Caused by Automatic Dependencies
	5.8.13 USE and WANT

	5.9 MASTERDIR
	5.10 Man Pages
	5.11 Info Files
	5.12 Makefile Options
	5.12.1 Knobs
	5.12.1.1 WITH* and WITHOUT*
	5.12.1.2 Knob Naming

	5.12.2 OPTIONS
	5.12.2.1 Background
	5.12.2.2 Syntax
	5.12.2.3 Default Options

	5.12.3 Feature AutoActivation
	5.12.4 Options Helpers

	5.13 Specifying the Working Directory
	5.13.1 WRKSRC
	5.13.2 NOWRKSUBDIR

	5.14 Conflict Handling
	5.14.1 CONFLICTSINSTALL
	5.14.2 CONFLICTSBUILD
	5.14.3 CONFLICTS

	5.15 Installing Files
	5.15.1 INSTALL* Macros
	5.15.2 Stripping Binaries and Shared Libraries
	5.15.3 Installing a Whole Tree of Files
	5.15.4 Install Additional Documentation
	5.15.5 Subdirectories Under PREFIX

	Chapter 6 Special Considerations
	6.1 Shared Libraries
	6.2 Ports with Distribution Restrictions
	6.2.1 NOPACKAGE
	6.2.2 NOCDROM
	6.2.3 NOFETCHFILES
	6.2.4 RESTRICTED
	6.2.5 RESTRICTEDFILES
	6.2.6 Examples

	6.3 Building Mechanisms
	6.3.1 Building Ports in Parallel
	6.3.2 make, gmake, and imake
	6.3.3 configure Script
	6.3.4 Using cmake
	6.3.5 Using scons

	6.4 Using GNU Autotools
	6.4.1 Introduction
	6.4.2 libtool
	6.4.3 libltdl
	6.4.4 autoconf and autoheader
	6.4.5 automake and aclocal

	6.5 Using GNU gettext
	6.5.1 Basic Usage
	6.5.2 Optional Usage
	6.5.3 Handling Message Catalog Directories

	6.6 Using Perl
	6.7 Using X11
	6.7.1 X.Org Components
	6.7.2 Ports That Require Motif
	6.7.3 X11 Fonts
	6.7.4 Getting a Fake DISPLAY with Xvfb
	6.7.5 Desktop Entries
	6.7.5.1 Using Predefined .desktop Files
	6.7.5.2 Updating Desktop Database
	6.7.5.3 Creating Desktop Entries with the DESKTOPENTRIES Macro

	6.8 Using GNOME
	6.9 Using Qt
	6.9.1 Ports That Require Qt
	6.9.2 Component Selection (Qt 4.x Only)
	6.9.3 Additional Considerations

	6.10 Using KDE
	6.10.1 KDE 4 Variable Definitions

	6.11 Using Java
	6.11.1 Variable Definitions
	6.11.2 Building with Ant
	6.11.3 Best Practices

	6.12 Web Applications, Apache and PHP
	6.12.1 Apache
	6.12.2 Web Applications
	6.12.3 PHP
	6.12.4 PEAR Modules

	6.13 Using Python
	6.14 Using Tcl/Tk
	6.15 Using Emacs
	6.16 Using Ruby
	6.17 Using SDL
	6.18 Using wxWidgets
	6.18.1 Introduction
	6.18.2 Version Selection
	6.18.3 Component Selection
	6.18.4 Unicode
	6.18.5 Detecting Installed Versions
	6.18.6 Defined Variables
	6.18.7 Processing in bsd.port.pre.mk
	6.18.8 Additional configure Arguments

	6.19 Using Lua
	6.19.1 Introduction
	6.19.2 Version Selection
	6.19.3 Component Selection
	6.19.4 Detecting Installed Versions
	6.19.5 Defined Variables
	6.19.6 Processing in bsd.port.pre.mk

	6.20 Using Xfce
	6.21 Using Mozilla
	6.22 Using Databases
	6.23 Starting and Stopping Services (rc Scripts)
	6.23.1 PreCommit Checklist

	6.24 Adding Users and Groups
	6.25 Ports That Rely on Kernel Sources

	Chapter 7 Advanced pkgplist Practices
	7.1 Changing pkgplist Based on Make Variables
	7.2 Empty Directories
	7.2.1 Cleaning Up Empty Directories
	7.2.2 Creating Empty Directories

	7.3 Configuration Files
	7.4 Dynamic Versus Static Package List
	7.5 Automated Package List Creation

	Chapter 8 The pkg* Files
	8.1 pkgmessage
	8.2 pkginstall
	8.3 pkgdeinstall
	8.4 pkgreq
	8.5 Changing the Names of pkg* Files
	8.6 Making Use of SUBFILES and SUBLIST

	Chapter 9 Testing Your Port
	9.1 Running make describe
	9.2 Portlint
	9.3 Port Tools
	9.4 PREFIX and DESTDIR
	9.5 Tinderbox

	Chapter 10 Upgrading an Individual Port
	10.1 Using SVN to Make Patches
	10.2 The Files UPDATING and MOVED

	Chapter 11 Ports Security
	11.1 Why Security is So Important
	11.2 Fixing Security Vulnerabilities
	11.3 Keeping the Community Informed
	11.3.1 The VuXML Database
	11.3.2 A Short Introduction to VuXML
	11.3.3 Testing Your Changes to the VuXML Database

	Chapter 12 Dos and Don'ts
	12.1 Introduction
	12.2 WRKDIR
	12.3 WRKDIRPREFIX
	12.4 Differentiating Operating Systems and OS Versions
	12.5 Writing Something After bsd.port.mk
	12.6 Use the exec Statement in Wrapper Scripts
	12.7 Do Things Rationally
	12.8 Respect Both CC and CXX
	12.9 Respect CFLAGS
	12.10 Threading Libraries
	12.11 Feedback
	12.12 README.html
	12.13 Marking a Port Not Installable with BROKEN, FORBIDDEN, or IGNORE
	12.13.1 Variables
	12.13.2 Implementation Notes

	12.14 Marking a Port for Removal with DEPRECATED or EXPIRATIONDATE
	12.15 Avoid Use of the .error Construct
	12.16 Usage of sysctl
	12.17 Rerolling Distfiles
	12.18 Avoiding Linuxisms
	12.19 Miscellanea

	Chapter 13 A Sample Makefile
	Chapter 14 Keeping Up
	14.1 FreshPorts
	14.2 The Web Interface to the Source Repository
	14.3 The FreeBSD Ports Mailing List
	14.4 The FreeBSD Port Building Cluster on pointyhat.FreeBSD.org
	14.5 Portscout: the FreeBSD Ports Distfile Scanner
	14.6 The FreeBSD Ports Monitoring System

	Chapter 15 Appendices
	15.1 Values of USES
	15.2 FreeBSDversion Values

