Committer's Guide

The FreeBSD Documentation Project

$FreeBSD: head/en_US.ISO8859-1/articles/committers-g uide/article.xml 42685
2013-09-22 17:24:517Z eadler $

Copyright © 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2 007, 2008, 2009, 2010,
2011, 2012, 2013 The FreeBSD Documentation Project
$FreeBSD: head/en_US.ISO8859-1/articles/committers-g uide/article.xml 42685
2013-09-22 17:24:51Z eadler $

FreeBSD is a registered trademark of the FreeBSD Foundation.

Coverity is a registered trademark; Coverity Extend, Coverity Preve nt and Coverity Prevent SQS are
trademarks of Coverity, Inc.

IBM, AIX, EtherJet, Netfinity, OS/2, PowerPC, PS/2, S/390, and ThinkPad are trademarks of International
Business Machines Corporation in the United States, other cou ntries, or both.

Intel, Celeron, EtherExpress, i386, 486, Itanium, Pentium, and Xeon are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

SPARC, SPARC64, SPARCengine, and UltraSPARC are trademarks of S PARC International, Inc in the
United States and other countries. SPARC International, Inc o wns all of the SPARC trademarks and
under licensing agreements allows the proper use of these trad emarks by its members.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

This document provides information for the FreeBSD comenitbmmunity. All new committers should
read this document before they start, and existing commiétee strongly encouraged to review it from
time to time.

Almost all FreeBSD developers have commit rights to one oremepositories. However, a few developers
do not, and some of the information here applies to them ds (el instance, some people only have
rights to work with the Problem Report database). Pleas&setion 15or more information.

This document may also be of interest to members of the Friee®&munity who want to learn more
about how the project works.

Committer’s Guide

Table of Contents

1 AAMINISITAIVE DELAIISttt e e e e ettt et e e e e e e e s s meeeee s s e nbebbeeeaeeees s nnbsneees 2.
2 COMIMUL BIt TYPES .. etttetetteee ettt ettt e e e e et bbbttt e e e e a4 s e akbe s et e e e e e e e e st b e beeeaasasbbbseeeeaeaeeseannbbnbeeeaaaaass 3.
3 SUDVEISION PrIME ... ittt ettt r et s e e e e e e e n e s e e e nnn e e en e e e neeennn 4..
4 ConVeNntioNS aNd TrAGIIONS.ceiiriiiiiie et ee et e e s e e e e e s e e en e e nne e e e 22
5 Preferred LICENSE fOr NEW FlES.........cociiiiiiie et 24
LS =Y =1 (0] o1 g =] = 4o o PR 25
TIFIN AOUDL. .. oottt 26
LS TN LN IS PSP 26
D WNO'S WO ...ttt ettt ettt e ke e h e e e e e e et e e e Rt e et n e e 27
10 SSH QUICK-STAIM GUITE........ueeieieiiieiiitiitii e et e bbb b s e e e s e e sensss s a s an s e senns 29
11 Coverity Prevent® Availability for FreeBSD COMMILIEISueiiiiiiiiiiiiiiiiie et e e e e ee e e e 29
12 The FreeBSD Committers’ Big LiSt Of RUIES ... 30.
13 Support for MUItiple ArCRILECIUIESttt e e et e e e e e e e e smnneee e e e e ennns 35
14 POIS SPECITIC FAQ. ... e e ettt ettt oo e oottt et e e e e e e ettt bt et e e e e aear et e e e e e e e e enbnbeeeeeaaeaeeaannnes 37
15 Issues Specific to Developers Who Are NOt COMMITLELS.oiiiiiiiiiiiiieiie et 44
16 Information ADOUt GOOGIE ANAIYEICS.......eeiiiiiie ettt e e e e e e e e eeb e eeeesnneees 44
17 Perks Of the JOD......coiiiiii e DD
18 MiISCEIlaNEOUS QUESTIONS.........eiiiiiiiiiiiie ittt ettt eeeeeeeeeeeeee et ee et esae s eseasaessaesssbebabsbanneanessessssssssssssssssssene 46

1 Administrative Details

Login Methods ssh(1), protocol 2 only

Main Shell Host freefall.FreeBSD.org

src/ Subversion svn+ssh://svn.FreeBSD.org/base (see alscection 3.2.8
Root

doc/ Subversion svn+ssh://svn.FreeBSD.org/doc (see als®ection 3.2.1
Root

ports/ Subversion svn+ssh://svn.FreeBSD.org/ports (see als®ection 3.2.b
Root

Internal Mailing Lists developers (technically called all-developers), doceligvers, doc-committers,
ports-developers, ports-committers, src-developecs;emmitters. (Each project
repository has its own -developers and -committers maligtg. Archives for these lists
may be found in fileghome/mail/ r eposi t or y- nane-developers-archive and
/home/mail/ reposi t ory- name-committers-archive on theFreeBSD.org cluster.)

Core Team monthly /home/core/public/monthly-reports on theFreeBSD.org cluster.

reports

Ports Management /home/portmgr/public/monthly-reports on theFreeBSD.org cluster.
Team monthly reports

Committer’s Guide

Noteworthysr c/ stable/8 (8.X-STABLE),stable/9 (9.X-STABLE), head (-CURRENT)
SVN Branches

ssh(1) is required to connect to the project hosts. For nmfoernation, se&ection 10

Useful links:

- FreeBSD Project Internal Pages (http://www.FreeBSDiotgyhal/)
- FreeBSD Project Hosts (http://www.FreeBSD.org/inteimakhines.html)
- FreeBSD Project Administrative Groups (http://www.Fr&Borg/administration.html)

2 Commit Bit Types

The FreeBSD repository has a number of components which wii@bined, support the basic operating system
source, documentation, third party application portsastiructure, and various maintained utilities. When Frd2BS
commit bits are allocated, the areas of the tree where thedyjitbe used are specified. Generally, the areas associated
with a bit reflect who authorized the allocation of the comipitit Additional areas of authority may be added at a

later date: when this occurs, the committer should follonnmed commit bit allocation procedures for that area of the
tree, seeking approval from the appropriate entity andiplysgetting a mentor for that area for some period of time.

Committer Type Responsible Tree Components

src core@ src/, doc/ subject to appropriate
review

doc doceng@ doc/, src/ documentation

ports portmgr@ ports/

Commit bits allocated prior to the development of the notbareas of authority may be appropriate for use in
many parts of the tree. However, common sense dictates twahanitter who has not previously worked in an area
of the tree seek review prior to committing, seek approvatfthe appropriate responsible party, and/or work with a
mentor. Since the rules regarding code maintenance diffarda of the tree, this is as much for the benefit of the
committer working in an area of less familiarity as it is fahers working on the tree.

Committers are encouraged to seek review for their work gsopéhe normal development process, regardless of
the area of the tree where the work is occurring.

2.1 Policy for doc/ Committer Activity in src/

- doc committers may commit documentation changes to sr¢ ileeh as man pages, READMEs, fortune
databases, calendar files, and comment fixes without aggromaa src committer, subject to the normal care and
tending of commits.

« doc committers may commit minor src changes and fixes, subhilkfixes, small features, etc, with an
"Approved by" from a src committer.

- doc committers may seek an upgrade to a src commit bit by Angu mentor, who will propose the doc
committer to core. When approved, they will be added to 'ascand the normal mentoring period will ensue,

Committer’s Guide

which will involve a continuing of “Approved by” for some ped.

- "Approved by" is only acceptable from non-mentored src cdttens -- mentored committers can provide a
"Reviewed by" but not an "Approved by".

3 Subversion Primer

It is assumed that you are already familiar with the basicatgen of the version control systems in use.
Traditionally this was CVS. Subversion is used for ¢he tree as of May 2008, théoc/www tree as of May 2012
and theports tree as of July 2012.

There is a list of things missing in Subversion when comp#weeV'S (http://wiki.freebsd.org/SubversionMissing).
The notes at http://people.freebsd.org/~peter/svnsitatenight also be useful.

3.1 Introduction

The FreeBSD source repository switched from CVS to Subeersin May 31st, 2008. The first real SVN commit is
r179447

The FreeBSDioc/www repository switched from CVS to Subversion on May 19th, 2011 first real SVN commit
isr38821

Note: Part of the dociwww CVS to SVN conversion included an infrastructural change to the build process. The
most notable change is the location of the FreeBSD website wwwtree, which has been moved from wwwi/ ang/ to
head/ | ang/htdocs/

The FreeBSports repository switched from CVS to Subversion on July 14th,20he first real SVN commit is
r300894

There are mechanisms in place to automatically merge clsdraygk from the Subversiamnc repository to the CVS
repository for some FreeBSD branchesdng/6 throughreleng/9), however this is purely to support

pre-existing end-user installs and should not be reliechuprommended or advertised. Future branches will not be
exported to CVS at all. Thgorts repository was exported to CVS for a period of time to aid eserunigration, but

as of 28th February 2013 is no longer exported.

Subversion is not that different from CVS when it comes tdydase, but there are differences. Subversion has a
number of features that should make developers’ lives eddie most important advantage to Subversion (and the
reason why FreeBSD switched) is that it handles branches@nging much better than CVS does. Some of the
principal differences are:

. Commits are atomic.

- Revision numbers apply across the repository—all fileswleat modified in the same commit have the same
revision number.

- Branching and tagging are namespace operations.
- Directories are versioned.

« Files and directories can have arbitrary, versioned métaaitached to them.

Committer’s Guide

- Files and directories can be copied, with full history tiagk

- No more contortions due to CVS weakness such as applying(datidles at compile time in order to avoid
touching vendor branch code.

- No more repo-copies.

Subversion can be installed from the FreeBSD Ports Catlediy issuing these commands:

cd /usr/ports/devel / subversion
make clean install

3.2 Getting Started

There are a few ways to obtain a working copy of the tree frofov8tsion. This section will explain them.

3.2.1 Direct Checkout

The first is to check out directly from the main repositoryr #esrc tree, use:
% svn checkout svn+ssh://svn.freebsd. org/ base/ head /usr/src
For thedoc tree, use:

% svn checkout svn+ssh://svn.freebsd. org/ doc/ head /usr/doc

For theports tree, use:

% svn checkout svn+ssh://svn.freebsd. org/ ports/head /usr/ports

Note: Though the remaining examples in this document are written with the workflow of working with the src tree
in mind, the underlying concepts are the same for working with the doc and the ports tree. Ports related
Subversion operations are listed in Section 14.

The above command will check ouCURRENBource tree akusr/ src/, which can be any target directory on the
local filesystem. Omitting the final argument of that commeadses the working copy, in this case, to be named
“head”, but that can be renamed safely.

svn+ssh means the SVN protocol tunnelled over SSH. The name of thesirsvn.freebsd.org , base is the
path to the repository, artééad is the subdirectory within the repository.

If your FreeBSD login name is different from your login namreymur local machine, you must either include it in
the URL (for examplevn+ssh://jarjar@svn.freebsd.org/base/head), or add an entry to your
~/.ssh/config in the form:

Host svn.freebsd.org
User jarjar

This is the simplest method, but it's hard to tell just yet howch load it will place on the repository. Subversion is
much faster than CVS, however.

Committer’s Guide

Note: The svn diff does not require access to the server as SVN stores a reference copy of every file in the
working copy. This, however, means that Subversion working copies are very large in size.

3.2.2 Checkout from a Mirror

Check out a working copy from a mirror by substituting thenaiis URL for
svn+ssh://svn.freebsd.org/base . This can be an official mirror or a mirror maintained by ussngsync .

There is a serious disadvantage to this method: every timetong is to be committed,swn relocate to the
master repository has to be done, rememberingiorelocate back to the mirror after the commit. Also, since
svn relocate only works between repositories that have the same UUIDgsmaking of the local repository’s
UUID has to occur before it is possible to start using it.

Unlike with CVS, the hassle of a locavnsync mirror probably is not worth it unless the network conneityiv
situation or other factors demand it. If it is needed, seeetitkof this chapter for information on how to set one up.

3.2.3 RELENG _* Branches and General Layout

In svn+ssh://svn.freebsd.org/base , baserefers to the source tree. Similarportsrefers to the ports tree, and
so on. These are separate repositories with their own changber sequences, access controls and commit mail.

For the base repository, HEAD refers to the -CURRENT tree eéxample head/bin/ls is what would go into
{ust/src/bin/ls in a release. Some key locations are:

- /head/which corresponds tHEAD also known asCURRENT

. [stableh which corresponds tRELENGn.

- [relengh. n which corresponds tBELENGn_n.

- [releaseh. n. n which corresponds tBELENGn_n_n_RELEASE

+ /vendor*is the vendor branch import work area. This directory itseiés not contain branches, however its
subdirectories do. This contrasts with table relengandreleasedirectories.

- /projectsand/userfeature a branch work area, like in Perforce. As above/uberdirectory does not contain
branches itself.

3.2.4 FreeBSD Documentation Project Branches and Layout
In svn+ssh://svn.freebsd.org/doc ,docrefers to the repository root of the source tree.

In general, most FreeBSD Documentation Project work willbae within thenead/ branch of the documentation
source tree.

FreeBSD documentation is written and/or translated toowarlanguages, each in a separate directory ihdhe/
branch.

Each translation set contains several subdirectorieh@ovarious parts of the FreeBSD Documentation Project. A
few noteworthy directories are:

- [articles/ contains the source code for articles written by varioug B&D contributors.

Committer’s Guide

- [/books/contains the source code for the different books, such asrdeBSD Handbook.

- /htdocs/contains the source code for the FreeBSD website.

3.2.5 FreeBSD Ports Tree Branches and Layout
In svn+ssh://svn.freebsd.org/ports , portsrefers to the repository root of the ports tree.

In general, most FreeBSD port work will be done within tiead/ branch of the ports tree which is the actual ports
tree used to install software. Some other key locations are:

« [branches/RELENG_n_n which corresponds tBELENGn_n_n is used to merge back security updates in
preparation for a release.

- Jtags/RELEASE) _n_n which corresponds tRELEASE n_n_n represents a release tag of the ports tree.

- /tags/RELEASEn _EOLrepresents the end of life tag of a specific FreeBSD branch.

3.3 Daily Use

This section will explain how to perform common day-to-d@ecations with Subversion.

3.3.1 Help

SVN has built in help documentation. It can be accessed hgdythe following command:

% svn hel p

Additional information can be found in the Subversion Bob#({://svnbook.red-bean.com/).

3.3.2 Checkout

As seen earlier, to check out the FreeBSD head branch:

% svn checkout svn+ssh://svn.freebsd. org/ base/ head /usr/src

At some point, more than justEADwill probably be useful, for instance when merging changestable/7.
Therefore, it may be useful to have a partial checkout of tmeplete tree (a full checkout would be very painful).

To do this, first check out the root of the repository:
% svn checkout --depth=i medi ates svn+ssh://svn.freebsd. org/ base

This will give base with all the files it contains (at the time of writing, JURDADMAP.txt) and empty subdirectories
for head, stable ,vendor and so on.

Expanding the working copy is possible. Just change thehd&fihe various subdirectories:

% svn up --set-depth=infinity base/head
% svn up --set-depth=i nmedi ates base/rel ease base/rel eng base/stable

Committer’s Guide

The above command will pull down a full copy béad, plus empty copies of everglease tag, everyeleng
branch, and everstable branch.

If at a later date merging to-STABLE is required, expand the working copy:

% svn up --set-depth=infinity base/stable/7

Subtrees do not have to be expanded completely. For instexganding onlystable/7/sys and then later expand
the rest oktable/7

% svn up --set-depth=infinity basel/stable/7/sys
% svn up --set-depth=infinity base/stable/7

Updating the tree witkvn update will only update what was previously asked for (in this casad and
stable/7 ; it will not pull down the whole tree.

Note: Decreasing the depth of a working copy is not possible.

3.3.3 Anonymous Checkout

Itis possible to anonymously check out the FreeBSD repgsitith Subversion. This will give access to a read-only
tree that can be updated, but not committed back to the mpositery. To do this, use the following command:

% svn co https://svn0. us-west.FreeBSD. org/ base/ head /usr/src

Select the closest mirror and verify the mirror server Giedie from the list of Subversion mirror sites
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/boo&sttbook/svn-mirrors.html).

3.3.4 Updating the Tree

To update a working copy to either the latest revision, orex#je revision:

% svn updat e
% svn update -r12345

3.3.5 Status

To view the local changes that have been made to the workipg co
% svn status
To show local changes and files that are out-of-date do:

% svn status --show updates

Committer’s Guide

3.3.6 Editing and Committing
Unlike Perforce, SVN does not need to be told in advance dilewditing.

svn commit works like the equivalent CVS command. To commit all charigeke current directory and all
subdirectories:

% svn commi t

To commit all changes in, for example,b/ I i bf et ch/ andusr/ bi n/ fet ch/ in a single operation:

% svn commit lib/libfetch usr/bin/fetch

There is also a commit wrapper for the ports tree to handletbperties and sanity checking your changes:

% /usr/ ports/ Tool s/ scripts/psvn conm t

3.3.7 Adding and Removing Files

Note: Before adding files, get a copy of auto-props.txt (http:/people.freebsd.org/~peter/auto-props.txt) (there is
also a ports tree specific version (http://people.freebsd.org/~beat/cvs2svn/auto-props.txt)) and add it to
~/.subversion/config according to the instructions in the file. If you added something before reading this, use
svn rm --keep-local for just added files, fix your config file and re-add them again. The initial config file is
created when you first run a svn command, even something as simple as svn help .

Files are added to a SVN repository wittn add . To add a file nametbo, edit it, then:

% svn add foo

Note: Most new source files should include a $FreeBSD$ string near the start of the file. On commit, svn will
expand the $FreeBSD$ string, adding the file path, revision number, date and time of commit, and the username
of the committer. Files which cannot be modified may be committed without the $FreeBSD$ string.

Files can be removed witvn remove :
% svn renove foo

Subversion does not require deleting the file before usingrm , and indeed complains if that happens.

Itis possible to add directories witvn add :

% nkdi r bar
% svn add bar

Althoughsvn mkdir makes this easier by combining the creation of the direaod/the adding of it:
% svn nkdir bar

Like files, directories are removed wighin rm . There is no separate command specifically for removingttirees.

Committer’s Guide

% svn rm bar

3.3.8 Copying and Moving Files

This command creates a copyfob.c namedbar.c , with the new file also under version control:
% svn copy foo.c bar.c
The example above is equivalent to:

% cp foo.c bar.c
% svn add bar.c

To move and rename a file:

% svn nove foo.c bar.c

3.3.9 Log and Annotate

svn log shows revisions and commit messages, most recent firstlgsofi directories. When used on a directory,
all revisions that affected the directory and files withiatttirectory are shown.

svn annotate , or equallysvn praise orsvn blame , shows the most recent revision number and who
committed that revision for each line of a file.

3.3.10 Diffs

svn diff displays changes to the working copy. Diffs generated by @¥\unified and include new files by
default in the diff output.

svn diff can show the changes between two revisions of the same file:

% svn di ff -r179453: 179454 ROADNMAP. t xt

It can also show all changes for a specific changeset. Thafily will show what changes were made to the current
directory and all subdirectories in changeset 179454

% svn diff -cl179454 .

3.3.11 Reverting

Local changes (including additions and deletions) can berted usingsvn revert . It does not update out-of-date
files, but just replaces them with pristine copies of theingbversion.

3.3.12 Conflicts

If ansvn update resulted in a merge conflict, Subversion will remember wiiiiels have conflicts and refuse to
commit any changes to those files until explicitly told tHe tonflicts have been resolved. The simple, not yet
deprecated procedure is the following:

10

Committer’s Guide

% svn resol ved foo

However, the preferred procedure is:

% svn resol ve --accept=working foo

The two examples are equivalent. Possible valuesdocept are:

- working : use the version in your working directory (which one pressras been edited to resolve the conflicts).

- base : use a pristine copy of the version you had before update , discarding your own changes, the
conflicting changes, and possibly other intervening chargavell.

- mine-full :use what you had befosen update , including your own changes, but discarding the conflicting
changes, and possibly other intervening changes as well.

« theirs-full : use the version that was retrieved when yousshd update , discarding your own changes.

3.4 Advanced Use

3.4.1 Sparse Checkouts
SVN allowssparse or partial checkouts of a directory by addindepth to asvn checkout

Valid arguments te-depth are:

- empty : the directory itself without any of its contents.

. files :the directory and any files it contains.

- immediates :the directory and any files and directories it containsaute of the subdirectories’ contents.
- infinity :anything.

The--depth option applies to many other commands, includimg commit , svn revert , andsvn diff

Since--depth s sticky, there is a-set-depth option forsvn update that will change the selected depth. Thus,
given the working copy produced by the previous example:

% cd ~/freebsd
% svn update --set-depth=i nmedi ates .

The above command will populate the working copy-iri r eebsd with ROADMAP.txt and empty subdirectories,
and nothing will happen whesvn update is executed on the subdirectories. However, the followimgmand will
set the depth fonead (in this case) to infinity, and fully populate it:

% svn update --set-depth=infinity head

3.4.2 Direct Operation

Certain operations can be performed directly on the repysitithout touching the working copy. Specifically, this
applies to any operation that does not require editing aifigdding:

11

Committer’s Guide

- log , diff

« mkdir

+ remove , copy , rename

« propset ,propedit ,propdel
+ merge

Branching is very fast. The following command would be usedranchRELENG_8

% svn copy svn+ssh://svn. freebsd. org/ base/ head svn+ssh://svn.freebsd. org/ base/ stabl e/ 8

This is equivalent to the following set of commands whictetakinutes and hours as opposed to seconds, depending
on your network connection:

% svn checkout --depth=i medi ates svn+ssh://svn.freebsd. org/ base
% cd base

% svn update --depth=infinity head

% svn copy head stable/8

% svn commit stable/8

3.4.3 Merging with SVN

This section deals with merging code from one branch to ardtipically, from head to a stable branch).

Note: In all examples below, $FSVNrefers to the location of the FreeBSD Subversion repository,
svn+ssh://svn.freebsd.org/base/

3.4.3.1 About Merge Tracking

From the user’s perspective, merge tracking informatiomergeinfo) is stored in a property called

svn:mergeinfo , which is a comma-separated list of revisions and rangesvigions that have been merged. When
set on afile, it applies only to that file. When set on a dirggtioapplies to that directory and its descendants (files
and directories) except for those that have their swnmergeinfo

Itis notinherited. For instancatable/6/contrib/openpam/ does not implicitly inherit mergeinfo from
stable/6/ , or stable/6/contrib/ . Doing so would make partial checkouts very hard to managgtead,
mergeinfo is explicitly propagated down the tree. For meggiomething intdranch/foo/bar/ , the following
rules apply:

1. If branch/foo/bar/ does not already have a mergeinfo record, but a direct adést instance,
branch/foo/) does, then that record will be propagated dowhrtmch/foo/bar/ before information about
the current merge is recorded.

2. Information about the current merge wilbt be propagated back up that ancestor.

3. If a direct descendant dfanch/foo/bar/ (for instancepranch/foo/bar/baz/) already has a mergeinfo
record, information about the current merge will be propadaown to it.

12

Committer’s Guide

If you consider the case where a revision changes severmlageparts of the tree (for exampbeanch/foo/bar/
andbranch/foo/quux/), but you only want to merge some of it (for exampieanch/foo/bar/), you will see
that these rules make sense. If mergeinfo was propagatédugld seem like that revision had also been merged
to branch/foo/quux/ , when in fact it had not been.

3.4.3.2 Selecting the Source and Target

Because of mergeinfo propagation, it is important to chdlesesource and target for the merge carefully to minimise
property changes on unrelated directories.

The rules for selecting the merge target (the directoryybatwill merge the changes to) can be summarized as
follows:

. Never merge directly to afile.
. Never, ever merge directly to a file.
.Never, ever, evemerge directly to a file.

. Changes to kernel code should be mergesy46 . For instance, a change to the ichwd(4) driver should be
merged tasys/ , notsys/deviichwd/ . Likewise, a change to the TCP/IP stack should be mergegkio, not
sys/netinet/

A W ON P

5. Changes to code undee/ should be merged atc/ , not below it.

6. Changes to vendor code (codemtrib/ , crypto/ and so on) should be merged to the directory where

vendor imports happen. For instance, a changeyiato/openssl/util/ should be merged to
crypto/openssl/ . This is rarely an issue, however, since changes to vendisr ae usually merged
wholesale.

7. Changes to userland programs should as a general rulergeahte the directory that contains the Makefile for
that program. For instance, a changegabin/xlint/arch/i386/ should be merged tasr.bin/xlint/

8. Changes to userland libraries should as a general ruleebgechto the directory that contains the Makefile for
that library. For instance, a changéitglibc/gen/ should be merged tid/libc/

9. There may be cases where it makes sense to deviate froméisdar userland programs and libraries. For
instance, everything undét/libpam/ is merged tdib/libpam/ , even though the library itself and all of
the modules each have their own Makefile.

10. Changes to manual pages should be mergsigai@/man/man N/, for the appropriate value of
11. Other changes &hare/ should be merged to the appropriate subdirectory and rebti@/ directly.

12. Changes to a top-level file in the source tree sudhPEATINGOr Makefile.inc1 should be merged directly
to that file rather than to the root of the whole tree. Yes, ithan exception to the first three rules.

13. When in doubt, ask.

If you need to merge changes to several places at once (fanites changing a kernel interface and every userland
program that uses it), merge each target separately, tmemitdhem together. For instance, if you merge a revision
that changed a kernel APl and updated all the userland fitaiged that API, you would merge the kernel change to
sys, and the userland bits to the appropriate userlandtdires, then commit all of these in one go.

The source will almost invariably be the same as the targetinstance, you will always merge
stable/7/lib/libc/ from head/lib/libc/ . The only exception would be when merging changes to code tha

13

Committer’s Guide

has moved in the source branch but not in the parent brancingtance, a change to pkill(1) would be merged from
bin/pkill/ in head tausr.bin/pkill/ in stable/7.

3.4.3.3 Preparing the Merge Target

Because of the mergeinfo propagation issues describadredris very important that you never merge changes into
a sparse working copy. You must always have a full checkotit@branch you will merge into. For instance, when
merging from HEAD to 7, you must have a full checkout of stéhle

% cd stable/7
% svn up --set-depth=infinity

The target directory must also be up-to-date and must ndasoany uncommitted changes or stray files.

3.4.3.4 Identifying Revisions

Identifying revisions to be merged is a must. If the targegadly has complete mergeinfo, ask SVN for a list:

% cd stabl e/ 6/ contrib/openpam
% svn nergeinfo --showrevs=eligible $FSVN head/ contri b/ openpam

If the target does not have complete mergeinfo, check thélodpe merge source.

3.4.3.5 Merging

Now, let us start merging!

3.4.3.5.1 The Principles

Say you would like to merge:

+ revision$R

- in directory $target in stable branch $B
- from directory $source in head

« $FSVN issvn+ssh://svn.freebsd.org/base

Assuming that revisions $P and $Q have already been mengédhat the current directory is an up-to-date working
copy of stable/$B, the existing mergeinfo looks like this:

% svn propget svn:nergeinfo -R $target
$target - /head/$source:$P,$Q

Merging is done like so:
% svn merge -c$R $FSVN head/ $source $t ar get

Checking the results of this is possible witin diff

The svn:mergeinfo now looks like:

14

Committer’s Guide

% svn propget svn:nergeinfo -R $target
$target - head/$source:$P,$Q,$R

If the results are not exactly as shown, assistance may b@eedefore committing as mistakes may have been
made, or there may be something wrong with the existing nigigeor there may be a bug in Subversion.

3.4.3.5.2 Practical Example

As a practical example, consider the following scenarice Thanges taetmap.4 in r238987 is to be merged from
CURRENT to 9-STABLE. The file resides head/share/man/man4 and according t&ection 3.4.3his is also
where to do the merge. Note that in this example all pathsedagive to the top of the svn repository. For more
information on the directory layout, s&ection 3.2.3

The first step is to inspect the existing mergeinfo.
% svn propget svn:nergeinfo -R stabl e/ 9/ share/ nan/ nan4
Take a quick note of how it looks before moving on to the nexpstioing the actual merge:

% svn merge -c r238987 svn+ssh://svn. freebsd. or g/ base/ head/ shar e/ man/ man4 st abl e/ 9/ shar e/ man/ man4
--- Merging r238987 into 'stable/9/share/man/man4’:
U stable/9/share/man/man4/netmap.4
--- Recording mergeinfo for merge of r238987 into
'stable/9/share/man/man4’:
U stable/9/share/man/man4

Check that the revision number of the merged revision has dded. Once this is verified, the only thing left is the
actual commit.

% svn comit stable/9/share/ man/ man4

3.4.3.5.3 Merging into the Kernel (sys/)

As stated above, merging into the kernel is different frommgimg in the rest of the tree. In many ways merging to
the kernel is simpler because there is always the same nagg §ys/).

Oncesvn merge has been executeskn diff has to be run on the directory to check the changes. This n@ay sh
some unrelated property changes, but these can be ignoezt.lild and test the kernel, and, once the tests are
complete, commit the code as normal, making sure that thentbmessage starts with “Merge26222 from

head”, or similar.

3.4.3.6 Precautions Before Committing
As always, build world (or appropriate parts of it).

Check the changes witlvn diff andsvn stat . Make sure all the files that should have been added or deleted
were in fact added or deleted.

Take a closer look at any property change (marked kiyrethe second column afvn stat). Normally, no
svn:mergeinfo properties should be anywhere except thettdirectory (or directories).

15

Committer’s Guide

If something looks fishy, ask for help.

3.4.3.7 Committing

Make sure to commit a top level directory to have the mergaiméluded as well. Do not specify individual files on
the command line. For more information about committingsfitegeneral, see the relevant section of this primer.

3.4.4 VVendor Imports with SVN

Important: Please read this entire section before starting a vendor import.

Note: Patches to vendor code fall into two categories:

» Vendor patches: these are patches that have been issued by the vendor, or that have been extracted from the
vendor’s version control system, which address issues which in your opinion cannot wait until the next vendor
release.

« FreeBSD patches: these are patches that modify the vendor code to address FreeBSD-specific issues.

The nature of a patch dictates where it should be committed:

« Vendor patches should be committed to the vendor branch, and merged from there to head. If the patch
addresses an issue in a new release that is currently being imported, it must not be committed along with the
new release: the release must be imported and tagged first, then the patch can be applied and committed.
There is no need to re-tag the vendor sources after committing the patch.

» FreeBSD patches should be committed directly to head.

3.4.4.1 Preparing the Tree

If importing for the first time after the switch to Subversjdlattening and cleaning up the vendor tree is necessary,
as well as bootstrapping the merge history in the main tree.

3.4.4.1.1 Flattening

During the conversion from CVS to Subversion, vendor brasakere imported with the same layout as the main
tree. This means that th vendor sources ended upvandor/pf/dist/contrib/pf . The vendor source is best
directly invendor/pf/dist

To flatten thepf tree:

% cd vendor/ pf/dist/contri b/ pf

% svn mv $(svn list) ../..

%cd ../..

% svn rmcontrib

% svn propdel -R svn:nergeinfo .
% svn commi t

16

Committer’s Guide

Thepropdel bit is necessary because starting with 1.5, Subversiorawitmatically addvn:mergeinfo ~ to any
directory that is copied or moved. In this case, as nothilgiag merged from the deleted tree, they just get in the
way.

Tags may be flattened as well (3, 4, 3.5 etc.); the proced@ssistly the same, only changidgt to3.5 or
similar, and putting thevn commit off until the end of the process.

3.4.4.1.2 Cleaning Up

Thedist tree can be cleaned up as necessary. Disabling keyword €rpas recommended, as it makes no sense
on unmodified vendor code and in some cases it can even bella@pe&nSSH for example, includes two files that
originated with FreeBSD and still contain the original venstags. To do this:

% svn propdel svn:keywords -R .
svn conmi t

3.4.4.1.3 Bootstrapping Merge History

If importing for the first time after the switch to Subversjdmootstrapsvn:mergeinfo on the target directory in the
main tree to the revision that corresponds to the last r@lettange to the vendor tree, prior to importing new sources:

% cd head/ contri b/ pf
% svn nmerge --record-only svn+ssh://svn. freebsd. or g/ base/ vendor/ pf/di st @80876 .
% svn commi t

3.4.4.2 Importing New Sources

With two commits—one for the import itself and one for the-tatipis step can optionally be repeated for every
upstream release between the last import and the currentimp

3.4.4.2.1 Preparing the Vendor Sources

Unlike in CVS where only the needed parts were imported indoviendor tree to avoid bloating the main tree,
Subversion is able to store a full distribution in the ventlee. So, import everything, but merge only what is
required.

A'svn add is required to add any files that were added since the lastovémgort, andsvn rm is required to
remove any that were removed since. Preparing sorted fisii® @ontents of the vendor tree and of the sources that
are about to be imported is recommended, to facilitate tbeqss.

% cd vendor/ pf/di st

% svn list -R| grep -v '/$ | sort > ./old
% cd ../pf-4.3

% find . -type f | cut -c 3- | sort > ./new

With these two filescomm -23 ../old ../new will list removed files (files only irold), while comm -13
.Jold ../new will list added files only imew.

17

Committer’s Guide

3.4.4.2.2 Importing into the Vendor Tree

Now, the sources must be copied iatat and thesvn add andsvn rm commands should be used as needed:

% cd vendor/pf/pf-4.3

%tar cf - . | tar xf - -C ../dist

% cd ../dist

% comm -23 ../old ../new | xargs svn rm

% comm -13 ../old ../new | xargs svn --parents add

If any directories were removed, they will have todve rm ed manually. Nothing will break if they are not, but they
will remain in the tree.

Check properties on any new files. All text files should haxreeol-style set tonative . All binary files should
havesvn:mime-type set toapplication/octet-stream unless there is a more appropriate media type.
Executable files should hagen:executable set tox. No other properties should exist on any file in the tree.

Committing is now possible, however it is good practice tkengsure that everything is OK by using then stat
andsvn diff commands.

3.4.4.2.3 Tagging

Once committed, vendor releases should be tagged for freteeence. The best and quickest way to do this is
directly in the repository:

% svn cp svn+ssh://svn. freebsd. or g/ base/ vendor/pf/dist svn+ssh://svn.freebsd. org/ base/ vendor/pf/4.3

Once that is completayn up the working copy ofrendor/ pf to get the new tag, although this is rarely needed.

If creating the tag in the working copy of the tragn:mergeinfo results must be removed:

% cd vendor/ pf
% svn cp dist 4.3
% svn propdel svn:nergeinfo -R 4.3

3.4.4.3 Merging to Head

% cd head/ contri b/ pf
% svn up
% svn merge --accept=postpone svn+ssh://svn.freebsd. org/ base/ vendor/pf/di st

The--accept=postpone tells Subversion that it should not complain because meawg#icts will be taken care of
manually.
It is necessary to resolve any merge conflicts. This proceseisame in SVN as in CVS.

Make sure that any files that were added or removed in the verehave been properly added or removed in the
main tree. To check diffs against the vendor branch:

% svn diff --no-diff-deleted --old=svn+ssh://svn.freebsd. org/ base/ vendor/pf/dist --new-.

18

Committer’s Guide

The--no-diff-deleted tells Subversion not to complain about files that are in thedee tree but not in the main
tree, i.e., things that would have previously been remowfdrk the vendor import, like for example the vendor’s
makefiles and configure scripts.

Using CVS, once a file was off the vendor branch, it was not ebltes put back. With Subversion, there is no concept
of on or off the vendor branch. If a file that previously haddbmodifications, to make it not show up in diffs in the
vendor tree, all that has to be done is remove any left-ousdt ltke FreeBSD version tags, which is much easier.

If any changes are required for the world to build with the m®urces, make them now, and keep testing until
everything builds and runs perfectly.

3.4.4.4 Committing the Vendor Import

Committing is now possible! Everything must be committedimne go. If done properly, the tree will move from a
consistent state with old code, to a consistent state withaoele.

3.4.4.5 From Scratch

3.4.4.5.1 Importing into the Vendor Tree
This section is an example of importing and tagdayaccinto head .

First, prepare the directory wendor :

% svn co --depth imedi ates $FSVN vendor
% cd vendor

% svn nkdir byacc

% svn nkdir byacc/di st

Now, import the sources into thiist directory. Once the files are in plagn add the new ones, thesvn
commit and tag the imported version. To save time and bandwidtb¢ctliemote committing and tagging is possible:

% svn cp -m "Tag byacc 20120115" $FSVN vendor/byacc/ di st $FSVN vendor/byacc/ 20120115

3.4.4.5.2 Merging to head

Due to this being a new file, copy it for the merge:
% svn cp -m "Inport byacc to contrib" $FSVN vendor/byacc/ di st $FSVN head/ contri b/ byacc

Working normally on newly imported sources is still possibl

3.4.5 Reverting a Commit

Reverting a commit to a previous version is fairly easy:

% svn nerge -r179454: 179453 ROADMAP. t xt
% svn conmi t

19

Committer’s Guide

Change number syntax, with negative meaning a reverse eheag also be used:

% svn nmerge -c -179454 ROADMAP. t xt
% svn conmmi t

This can also be done directly in the repository:

% svn nerge -r179454: 179453 svn+ssh://svn. freebsd. or g/ base/ ROADVAP. t xt

Note: It is important to ensure that the mergeinfo is correct when reverting a file in order to permit svn
mergeinfo --eligible to work as expected.

Reverting the deletion of a file is slightly different. Copgithe version of the file that predates the deletion is
required. For example, to restore a file that was deletedvisiom N, restore version N-1:

% svn copy svn+ssh://svn. freebsd. or g/ base/ ROADVAP. t xt @ 79454
% svn commi t

or, equally:
% svn copy svn+ssh://svn. freebsd. or g/ base/ ROADVAP. t xt @79454 svn+ssh://svn. freebsd. org/ base

Do notsimply recreate the file manually asdn add it—this will cause history to be lost.

3.4.6 Fixing Mistakes

While we can do surgery in an emergency, do not plan on havietakes fixed behind the scenes. Plan on mistakes
remaining in the logs forever. Be sure to check the outpstofstatus andsvn diff before committing.

Mistakes will happen but, they can generally be fixed withdisituption.

Take a case of adding a file in the wrong location. The rigghio do is tasvn move the file to the correct location
and commit. This causes just a couple of lines of metadataingpository journal, and the logs are all linked up
correctly.

The wrong thing to do is to delete the file and ten add an independent copy in the correct location. Instead of a
couple of lines of text, the repository journal grows anrentiew copy of the file. This is a waste.

3.4.7 Setting up a svnsync Mirror

You probably do not want to do this unless there is a good refsat. Such reasons might be to support many
multiple local read-only client machines, or if your netkdsandwidth is limited. Starting a fresh mirror from empty
would take a very long time. Expect a minimum of 10 hours fghtspeed connectivity. If you have international
links, expect this to take 4 to 10 times longer.

A far better option is to grab a seed file. It is large (~1GB)wilitconsume less network traffic and take less time to
fetch than a svnsync will. This is possible in one of the failog three ways:

% rsync -va --partial --progress freefall:/hone/peter/svnmrror-base-r179637.tbz2 .

% rsync -va --partial --progress rsync://reponman.freebsd. org: 50873/ svnseed/ svnmi rror-base-r215629. tar. xz .

20

Committer’s Guide

% fetch ftp://ftp.freebsd. org/ pub/ FreeBSD/ devel opnment / subver si on/ svnmi rror-base-r221445. tar. xz

Once you have the file, extract it to somewhere likene/svnmirror/base/ . Then, update it, so that it fetches
changes since the last revision in the archive:

% svnsync sync file:///hone/svnm rror/base
You can then set that up to run from cron(8), do checkoutdligs®t up a svnserve server for your local machines to
talk to, etc.

The seed mirror is set to fetch frogan://svn.freebsd.org/base . The configuration for the mirror is stored in
revprop 0 on the local mirror. To see the configuration, try:

% svn proplist -v --revprop -r O file:///hone/svnmirror/base

Usepropset to change things.

3.4.8 Committing High-ASCII Data

Files that have high-ASCI!I bits are considered binary fiteSYN, so the pre-commit checks fail and indicate that
themime-type property should be set tpplication/octet-stream . However, the use of this is discouraged,
so please do not set it. The best way is always avoiding hig§liAdata, so that it can be read everywhere with any
text editor but if it is not avoidable, instead of changing thime-type, set th#dsd:notbinary property with
propset

% svn propset fbsd:nothinary yes foo.data

3.4.9 Maintaining a Project Branch

A project branch is one that is synced to head (or anotherch)as used to develop a project then commit it back to
head. In SVN, “dolphin” branching is used for this. A “dolphbranch is one that diverges for a while and is finally
committed back to the original branch. During developmeiecmigration in one direction (from head to the branch
only). No code is committed back to head until the end. Oneeggmmit back at the end, the branch is dead
(although you can have a new branch with the same name aftedelete the branch if you want).

As per http://people.freebsd.org/~peter/svn_notesvoak that is intended to be merged back into HEAD should be
in base/projects/ . If you are doing work that is beneficial to the FreeBSD comityin some way but not
intended to be merged directly back into HEAD then the prdégeation isbase/user/ your - name/ . This page
(http://svnweb.freebsd.org/base/projects/ GUIDELINK$contains further details.

To create a project branch:

% svn copy svn+ssh://svn. freebsd. org/ base/ head svn+ssh://svn. freebsd. org/ base/ proj ects/ spif
To merge changes from HEAD back into the project branch:

% cd copy_of _spif

% svn nmerge svn+ssh://svn. freebsd. or g/ base/ head

% svn conmi t

It is important to resolve any merge conflicts before comingtt

21

Committer’s Guide

3.5 Some Tips
In commit logs etc., “rev 179872” should be spelled “r179832per convention.
Do not remove and re-add the same file in a single commit asvithisreak the CVS exporter.

Speeding up svn is possible by adding the following/tesh/config

Host *

ControlPath ~/.ssh/sockets/master-%l-%r@%h:%p
ControlMaster auto

ControlPersist yes

and then typing
nkdir ~/.ssh/sockets

Checking out a working copy with a stock Subversion clierthaiit FreeBSD-specific patches
(OPTIONS_SET=FREEBSD_TEMPLAJill mean that$FreeBSD$ tags will not be expanded. Once the correct
version has been installed, trick Subversion into expanttiem like so:

% svn propdel -R svn:keywords .
% svn revert -R.

This will wipe out uncommitted patches.

4 Conventions and Traditions

As a new developer there are a number of things you shouldstoTine first set is specific to committers only. (If
you are not a committer, e.g., have GNATS-only access, tbenmentor needs to do these things for you.)

4.1 Guidelines for Committers

Note: The .ent , .xml , and .xml files listed below exist in the FreeBSD Documentation Project SVN repository at
svn.FreeBSD.org/doc/

If you have been given commit rights to one or more of the repiss:

« Add your author entity ttiead/share/xml/authors.ent ; this should be done first since an omission of this
commit will cause the next commits to break the doc/ build.

This is a relatively easy task, but remains a good first tegbaf version control skills.

Important: New files that do not have the FreeBSD=%H svn:keywords property will be rejected when
attempting to commit them to the repository. Be sure to read Section 3.3.7 regarding adding and removing
files, in addition to verifying that ~/.subversion/config contains the necessary "auto-props" entries from
auto-props.txt mentioned there.

22

Committer’s Guide

Note: Do not forget to get mentor approval for these patches!

- Add yourself to the “Developers” section of the Contribgtbist
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/arfdentributors/index.html)

(head/en_US.1SO8859-1/articles/contributors/contrib. committers.xml) and remove yourself
from the “Additional Contributors” section
(head/en_US.1SO8859-1/articles/contributors/contrib. additional.xml). Please note that entries

are sorted by last name.

- Add an entry for yourself thiead/share/xml/news.xml . Look for the other entries that look like “A new
committer” and follow the format.

« You should add your PGP or GnuPG keyhtead/share/pgpkeys (and if you do not have a key, you should
create one). Do not forget to commit the updatedd/share/pgpkeys/pgpkeys.ent and
head/share/pgpkeys/pgpkeys-developers.xml . Please note that entries are sorted by last name.

Dag-Erling C. Smgrgravdes@FreeBSD.org > has written a shell scriphéad/share/pgpkeys/addkey.sh)
to make this extremely simple. See the README
(http://svhweb.FreeBSD.org/doc/head/share/pgpk&AIRVIE) file for more information.

Note: It is important to have an up-to-date PGP/GnuPG key in the Handbook, since the key may be required
for positive identification of a committer, e.g., by the FreeBSD Administrators <admins@FreeBSD.org > for
account recovery. A complete keyring of FreeBSD.org users is available for download from
http://www.FreeBSD.org/doc/pgpkeyring.txt.

- Add an entry for yourself tarc/share/misc/committers- reposi tory.dot , where repository is either doc,
ports or src, depending on the commit privileges you obthine

« Some people add an entry for themselvesdas/astro/xearth/files/freebsd.committers.markers
« Some people add an entry for themselvesrttusr.bin/calendar/calendars/calendar.freebsd

- If you already have an account at the FreeBSD wiki (httpldifrieebsd.org), make sure your mentor moves you
from the Contributors group (http://wiki.freebsd.orgf@abutorsGroup) to the Developers group
(http://wiki.freebsd.org/DevelopersGroup). Otherwisensider signing up for an account so you can publish
projects and ideas you are working on.

- Once you get access to the wiki, you may add yourself to the WevGGot Here
(http://wiki.freebsd.org/HowWeGotHere) and Irc Nickgtfh//wiki.freebsd.org/IrcNicks) pages.

- If you subscribe to svn-src-all (http://lists.FreeBS@/onailman/listinfo/svn-src-all), svn-ports-all
(http://lists.FreeBSD.org/mailman/listinfo/svn-psill) or svn-doc-all
(http://lists.FreeBSD.org/mailman/listinfo/svn-datt}, you will probably want to unsubscribe to avoid receiyi
duplicate copies of commit messages and their followups.

Note: All src commits should go to FreeBSD-CURRENT first before being merged to FreeBSD-STABLE. No
major new features or high-risk modifications should be made to the FreeBSD-STABLE branch.

23

Committer’s Guide

4.2 Guidelines for Everyone

Whether or not you have commit rights:

- Introduce yourself to the other developers, otherwise reowaiti have any idea who you are or what you are
working on. You do not have to write a comprehensive biogyajuist write a paragraph or two about who you are
and what you plan to be working on as a developer in FreeBS@u §¥iould also mention who your mentor will
be). Email this to the FreeBSD developers mailing list and wdl be on your way!

« Log intohub.FreeBSD.org and create &ar/forward/ user (whereuser is your username) file containing
the e-mail address where you want mail addressgd o user name @FreeBSD.org to be forwarded. This
includes all of the commit messages as well as any other mdikased to the FreeBSD committer’s mailing list
and the FreeBSD developers mailing list. Really large noais which have taken up permanent residence on
hub often get “accidentally” truncated without warning, soviard it or read it and you will not lose it.

Due to the severe load dealing with SPAM places on the cem@éliservers that do the mailing list processing the
front-end server does do some basic checks and will drop soessages based on these checks. At the moment
proper DNS information for the connecting host is the onlgain place but that may change. Some people
blame these checks for bouncing valid email. If you wantéhaeecks turned off for your email you can place a
file namedspam_lover in your home directory ofreefall.FreeBSD.org to disable the checks for your
email.

Note: If you are a developer but not a committer, you will not be subscribed to the committers or developers
mailing lists; the subscriptions are derived from the access rights.

4.3 Mentors

All new developers also have a mentor assigned to them fdirgidew months. Your mentor is responsible for
teaching you the rules and conventions of the project andiggiyour first steps in the developer community. Your
mentor is also personally responsible for your actionsmdyiis initial period.

For committers: until your mentor decides (and announcésaviorced commit taccess) that you have learned
the ropes and are ready to commit on your own, you should motrdbanything without first getting your mentor’s
review and approval, and you should document that approitialamApproved by: line in the commit message.

5 Preferred License for New Files

Currently the FreeBSD Project suggests and uses the foliptext as the preferred license scheme:

[*-
* Copyright (c) [year] [your name]

* All rights reserved.
*

24

Committer’s Guide

* Redistribution and use in source and binary forms, with or wi thout

* modification, are permitted provided that the following co nditions

* are met:

* 1. Redistributions of source code must retain the above copy right

* notice, this list of conditions and the following disclaime r.

* 2. Redistributions in binary form must reproduce the above c opyright

* notice, this list of conditions and the following disclaime r in the
* documentation and/or other materials provided with the dis tribution.

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORSISARND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARILAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTBESLIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBBTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERIPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER INTRAIN, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARSING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSHIBY OF

* SUCH DAMAGE.

* [id for your version control system, if any]

The FreeBSD project strongly discourages the so-calledeldiding clause" in new code. Due to the large number of
contributors to the FreeBSD project, complying with thizsude for many commercial vendors has become difficult.
If you have code in the tree with the advertising clause,qgemnsider removing it. In fact, please consider using the
above license for your code.

The FreeBSD project discourages completely new licensgésaiations on the standard licenses. New licenses

require the approval of the Core Tearpre@FreeBSD.org > to reside in the main repository. The more different
licenses that are used in the tree, the more problems tisatdhises to those wishing to utilize this code, typically

from unintended consequences from a poorly worded license.

Project policy dictates that code under some non-BSD liegnsust be placed only in specific sections of the
repository, and in some cases, compilation must be comditiar even disabled by default. For example, the
GENERIC kernel must be compiled under only licenses idaht@or substantially similar to the BSD license. GPL,
APSL, CDDL, etc, licensed software must not be compiled GENERIC.

Developers are reminded that in open source, getting "opgint'is just as important as getting "source" right, as
improper handling of intellectual property has seriousssmuences. Any questions or concerns should immediately
be brought to the attention of the core team.

6 Developer Relations

If you are working directly on your own code or on code whichli®ady well established as your responsibility,
then there is probably little need to check with other cortemitbefore jumping in with a commit. If you see a bug in
an area of the system which is clearly orphaned (and thera fewe such areas, to our shame), the same applies. If,
however, you are about to modify something which is cleaéinb actively maintained by someone else (and it is
only by watching the eposi t ory-committers ~ mailing list that you can really get a feel for just what is andot)
then consider sending the change to them instead, just asquld have before becoming a committer. For ports,

25

Committer’s Guide

you should contact the listedAINTAINERIN theMakefile . For other parts of the repository, if you are unsure who
the active maintainer might be, it may help to scan the remikistory to see who has committed changes in the past.
Bill Fenner <enner@FreeBSD.org > has written a nice shell script that can help determine \akattive

maintainer might be. It lists each person who has commitiedgiven file along with the number of commits each
person has made. It can be foundfaefall at ~fenner/bin/whodid . If your queries go unanswered or the
committer otherwise indicates a lack of interest in the aféected, go ahead and commit it.

If you are unsure about a commit for any reason at all, hawyiewed by-hackers before committing. Better to
have it flamed then and there rather than when it is part ofepesitory. If you do happen to commit something
which results in controversy erupting, you may also wishansider backing the change out again until the matter is
settled. Remember — with a version control system we canyalslaange it back.

Do not impugn the intentions of someone you disagree witthdy see a different solution to a problem than you, or
even a different problem, it is not because they are stugichise they have questionable parentage, or because they
are trying to destroy your hard work, personal image, or B&2, but simply because they have a different outlook

on the world. Different is good.

Disagree honestly. Argue your position from its merits, badst about any shortcomings it may have, and be open
to seeing their solution, or even their vision of the problernth an open mind.

Accept correction. We are all fallible. When you have maddstake, apologize and get on with life. Do not beat up
yourself, and certainly do not beat up others for your mist&ko not waste time on embarrassment or recrimination,
just fix the problem and move on.

Ask for help. Seek out (and give) peer reviews. One of the veagn source software is supposed to excel is in the
number of eyeballs applied to it; this does not apply if nobwill review code.

7 If in doubt...

When you are not sure about something, whether it be a temhsgue or a project convention be sure to ask. If you
stay silent you will never make progress.

If it relates to a technical issue ask on the public mailistsli Avoid the temptation to email the individual person
that knows the answer. This way everyone will be able to |&@m the question and the answer.

For project specific or administrative questions you shaskl in order:

« Your mentor or former mentor.

- An experienced committer on IRC, email, etc.

- Any team with a "hat", as they should give you a definitive agisw
- If still not sure, ask on FreeBSD developers mailing list.

Once your question is answered, if no one pointed you to dectation that spelled out the answer to your question,
document it, as others will have the same question.

8 GNATS
The FreeBSD Project utilizaSNATS for tracking bugs and change requests. Be sure that if yourgbanfix or
suggestion found in &8NATS PR, you usedit-pr ~ pr-nunber onfreefall to close it. It is also considered nice

26

Committer’s Guide

if you take time to close any PRs associated with your comifiggpropriate. You can also make use of send-pr(1)
yourself for proposing any change which you feel should pbiybe made, pending a more extensive peer-review
first.

You can find out more abo@NATS at:

« FreeBSD Problem Report Handling Guidelines
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/artfpe-guidelines/index.html)

« http://www.cs.utah.edu/csinfo/texinfo/gnats/gnatslh
- http://www.FreeBSD.org/support.html
- send-pr(1)

You can run a local copy of GNATS, and then integrate the FEE2BNATS tree by creating aisync mirror. Then
you can run GNATS commands locally, allowing you to queryRiedatabase without an Internet connection.

8.1 Mirroring the GNATS Tree

Itis possible to mirror the GNATS database by installirgfrsync , and executing:

% rsync -va rsync://bit0.us-west.freebsd. org/ FreeBSD-bit/gnats .

8.2 Useful Tools

Other tharedit-pr there are a collection of tools iynats/tools/ onfreefall which can make working with
PRs much easier.

open-pr , close-pr ,take-pr , andfeedback-pr take PR numbers as arguments and then ask you to select from
a preexisting list of change reasons or let you type in your.ow

change-pr is a multi purpose tool that lets you make multiple changé¢sesame time with one command.

For example, to assignh PR 123456 to yourself tyghe-pr 123456. If you want to set the PR to patched awaiting
an MFC at the same time us#tange-pr -t -p -m "awaiting MFC" 123456

9 Who's Who

Besides the repository meisters, there are other FreeB&Bgbmembers and teams whom you will probably get to
know in your role as a committer. Briefly, and by no meansradhkisively, these are:

Documentation Engineering Teamoteng@FreeBSD.org >

doceng is the group responsible for the documentation Infldstructure, approving new documentation
committers, and ensuring that the FreeBSD website and dectation on the FTP site is up to date with
respect to the CVS tree. It is not a conflict resolution bodhe Vast majority of documentation related
discussion takes place on the FreeBSD documentation propaling list
(http://lists.FreeBSD.org/mailman/listinfo/freebdde). More details regarding the doceng team can be found
in its charter (http://www.FreeBSD.org/internal/docdrigil). Committers interested in contributing to the

27

Committer’s Guide

documentation should familiarize themselves with the Doentation Project Primer
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/boaks/primer/index.html).

Ruslan Ermilov su@FreeBSD.org >

Ruslan is Mister mdoc(7). If you are writing a manual page a@eld some advice on the structure, or the
markup, ask Ruslan.

Bruce Evans kde@FreeBSD.org >

Bruce is the Style Police-Meister. When you do a commit tbaid have been done better, Bruce will be there
to tell you. Be thankful that someone is. Bruce is also vergwkiedgeable on the various standards applicable to
FreeBSD.

Marcus von Appen mva@FreeBSD.org >, Glen Barber gjb@FreeBSD.org >, Konstantin Belousov
<kib@FreeBSD.org >, Joel Dahl foel@FreeBSD.org >, Marc Fonvieille lackend@FreeBSD.org >, Steven
Kreuzer skreuzer@FreeBSD.org >, Xin Li <delphij@FreeBSD.org >, Josh Paetzel
<jpaetzel@FreeBSD.org >, Craig Rodrigues rodrigc@FreeBSD.org >, Hiroki Sato <hirs@FreeBSD.org >,
Gleb Smirnoff glebius@FreeBSD.org >, Ken Smith «ensmith@FreeBSD.org >, Marius Strobl
<marius@FreeBSD.org >

These are the members of the re@FreeBSD.org. This teanpsmable for setting release deadlines and
controlling the release process. During code freezesglease engineers have final authority on all changes to
the system for whichever branch is pending release stdtilierke is something you want merged from
FreeBSD-CURRENT to FreeBSD-STABLE (whatever values thmag have at any given time), these are the
people to talk to about it.

Hiroki is also the keeper of the release documentatotirélease/doc/ =). If you commit a change that
you think is worthy of mention in the release notes, pleaskensare he knows about it. Better still, send him a
patch with your suggested commentary.

Dag-Erling C. Smgrgravees@FreeBSD.org >
Dag-Erling is the FreeBSD Security Officer (http://www.EBSD.org/security/) and oversees the Security
Officer Team security-officer@FreeBSD.org >,

Garrett Wollman wollman@FreeBSD.org >

If you need advice on obscure network internals or are na& sftisome potential change to the networking
subsystem you have in mind, Garrett is someone to talk tae@as also very knowledgeable on the various
standards applicable to FreeBSD.

FreeBSD committer’'s mailing list

svn-src-all (http://lists.FreeBSD.org/mailman/listfsvn-src-all), svn-ports-all
(http://lists.FreeBSD.org/mailman/listinfo/svn-psill) and svn-doc-all
(http://lists.FreeBSD.org/mailman/listinfo/svn-dalt} are the mailing lists that the version control systerasus
to send commit messages to. You shawtdersend email directly to these lists. You should only sendiespib
this list when they are short and are directly related to arndm

FreeBSD developers mailing list

All committers are subscribed to -developers. This list er@sted to be a forum for the committers
“community” issues. Examples are Core voting, announcésnett.

28

Committer’s Guide

The FreeBSD developers mailing list is for the exclusiveafdereeBSD committers. In order to develop
FreeBSD, committers must have the ability to openly discuaters that will be resolved before they are
publicly announced. Frank discussions of work in progressat suitable for open publication and may harm
FreeBSD.

All FreeBSD committers are reminded to obey the copyrighheforiginal author(s) of FreeBSD developers
mailing list mail. Do not publish or forward messages frora BreeBSD developers mailing list outside the list
membership without permission of all of the authors.

Copyright violators will be removed from the FreeBSD deye&is mailing list, resulting in a suspension of
commit privileges. Repeated or flagrant violations may ltesyermanent revocation of commit privileges.

This list isnotintended as a place for code reviews or a replacement forrteBISD architecture and design
mailing list (http://lists.FreeBSD.org/mailman/listiifreebsd-arch). In fact using it as such hurts the FreeBSD
Project as it gives a sense of a closed list where generalidasiaffecting all of the FreeBSD using community
are made without being “open”. Last, but not leaster, never ever, email the FreeBSD developers mailing lis
and CC:/BCC: another FreeBSD ligilever, ever email another FreeBSD email list and CC:/B@E€RreeBSD
developers mailing list. Doing so can greatly diminish tleadfits of this list.

10 SSH Quick-Start Guide

1.

If you do not wish to type your password in every time yousstg1), and you use RSA or DSA keys to
authenticate, ssh-agent(1) is there for your convenidfigeu want to use ssh-agent(1), make sure that you run
it before running other applications. X users, for exampgeially do this from theirxsession or .xinitrc

See ssh-agent(1) for detalils.

Generate a key pair using ssh-keygen(1). The key paiminli up in yourgsHoMEssh/ directory.

Send your public keysHOMEssh/id_dsa.pub or $HOMEssh/id_rsa.pub) to the person setting you up
as a committer so it can be put into §aur | ogi n file in /etc/ssh-keys/ onfreefall

Now you should be able to use ssh-add(1) for authenticatioe per session. This will prompt you for your private
key’s pass phrase, and then store it in your authenticagientassh-agent(1)). If you no longer wish to have your
key stored in the agent, issuisgh-add -d will remove it.

Test by doing something such ssh freefall.FreeBSD.org Is /usr

For more information, sesecurity/openssh , ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), afdl)sc

11 Coverity Prevent® Availability for FreeBSD Committers

In January 2006, the FreeBSD Foundation obtained a licemggdverity Prevent® from Coverity® Ltd. With this
donation, all FreeBSD developers can obtain acce€®terity Prevent analysis results of all FreeBSD Project
software.

FreeBSD developers who are interested in obtaining acodks fanalysis results of the automatalerity
Preventruns, can find out more by logging inb@efall and reading the relevant bits of the files:

29

Committer’s Guide

/usr/local/coverity/coverity_license.txt
The license terms to which the FreeBSD developers will haxagtee in order to use Coverity Prevent analysis
results.

Jusr/local/coverity/coverity_announcement.txt

The announcement posted to the developers’ mailing ligt@freeBSD Project. It contains useful information
about the FreeBSD Foundation and Coverity Ltd., as wellgsug information for registering with the
Coverity Prevent installation of the FreeBSD Cluster.

After reading and understanding the license termsoérity_license.txt , all FreeBSD developers who
are interested in using the analysis results of Coveritydreshould read this file.
/usr/local/coverity/coverity_readme.txt

A short guide about fixes which are committed to the FreeBSDcsotree after being detected by Coverity
Prevent and analyzed by a FreeBSD developer.

The FreeBSD Wiki includes a mini-guide for developers whmiaterested in working with the Coverity Prevent
analysis reports: http://wiki.freebsd.org/Coveritynat. Please note that this mini-guide is only readable by
FreeBSD developers, so if you cannot access this page, yolawe to ask someone to add you to the appropriate
Wiki access list.

Finally, all FreeBSD developers who are going to use Coy@iievent are always encouraged to ask for more details
and usage information, by posting any questions to the nggiit of the FreeBSD developers.

12 The FreeBSD Committers’ Big List of Rules

. Respect other committers.
. Respect other contributors.

. Discuss any significant changeforecommitting.

A W N P

. Respect existing maintainers (if listed in tM&INTAINERfield in Makefile — or in theMAINTAINERfile in the
top-level directory).

5. Any disputed change must be backed out pending resolotithe dispute if requested by a maintainer. Security
related changes may override a maintainer’s wishes at thari8eOfficer’s discretion.

6. Changes go to FreeBSD-CURRENT before FreeBSD-STABLEssrgpecifically permitted by the release
engineer or unless they are not applicable to FreeBSD-CUWRREnNy non-trivial or non-urgent change which
is applicable should also be allowed to sit in FreeBSD-CURREor at least 3 days before merging so that it
can be given sufficient testing. The release engineer hasathe authority over the FreeBSD-STABLE branch
as outlined for the maintainer in rule #5.

7. Do not fight in public with other committers; it looks baflybu must “strongly disagree” about something, do
so only in private.

8. Respect all code freezes and readcthemitters anddevelopers mailing lists in a timely manner so you
know when a code freeze is in effect.

9. When in doubt on any procedure, ask first!

30

Committer’s Guide

10. Test your changes before committing them.

11. Do not commit to anything under tkec/contrib , src/crypto , Or src/sys/contrib trees without
explicitapproval from the respective maintainer(s).

As noted, breaking some of these rules can be grounds foessism or, upon repeated offense, permanent removal
of commiit privileges. Individual members of core have thevpoto temporarily suspend commit privileges until

core as a whole has the chance to review the issue. In casé'@f@ngency” (a committer doing damage to the
repository), a temporary suspension may also be done bgfusitory meisters. Only a 2/3 majority of core has the
authority to suspend commit privileges for longer than akwaeto remove them permanently. This rule does not
exist to set core up as a bunch of cruel dictators who can siispbcommitters as casually as empty soda cans, but to
give the project a kind of safety fuse. If someone is out oftigmnit is important to be able to deal with this
immediately rather than be paralyzed by debate. In all cgasesmmitter whose privileges are suspended or revoked
is entitled to a “hearing” by core, the total duration of thusgension being determined at that time. A committer
whose privileges are suspended may also request a reviég detision after 30 days and every 30 days thereafter
(unless the total suspension period is less than 30 dayg)miitter whose privileges have been revoked entirely
may request a review after a period of 6 months has elapsésiréhiew policy isstrictly informaland, in all cases,
core reserves the right to either act on or disregard reg|fi@steview if they feel their original decision to be the

right one.

In all other aspects of project operation, core is a subsevwimitters and is bound by tlsame rulesJust because
someone is in core this does not mean that they have spesjrdiation to step outside any of the lines painted
here; core’s “special powers” only kick in when it acts as augr, not on an individual basis. As individuals, the core
team members are all committers first and core second.

12.1 Details

1. Respect other committers.

This means that you need to treat other committers as thegpeep developers that they are. Despite our
occasional attempts to prove the contrary, one does nobdet & committer by being stupid and nothing
rankles more than being treated that way by one of your péénsther we always feel respect for one another
or not (and everyone has off days), we still havéréat other committers with respect at all times, on public
forums and in private email.

Being able to work together long term is this project’'s gesatisset, one far more important than any set of
changes to the code, and turning arguments about code suesishat affect our long-term ability to work
harmoniously together is just not worth the trade-off by aogiceivable stretch of the imagination.

To comply with this rule, do not send email when you are angmytberwise behave in a manner which is likely
to strike others as needlessly confrontational. First aidmin, then think about how to communicate in the most
effective fashion for convincing the other person(s) ttainside of the argument is correct, do not just blow off
some steam so you can feel better in the short term at the tasvog-term flame war. Not only is this very bad
“energy economics”, but repeated displays of public aggoeswhich impair our ability to work well together

will be dealt with severely by the project leadership and meylt in suspension or termination of your commit
privileges. The project leadership will take into accouattipublic and private communications brought before
it. It will not seek the disclosure of private communicatiphut it will take it into account if it is volunteered by
the committers involved in the complaint.

All of this is never an option which the project’s leadersaigoys in the slightest, but unity comes first. No
amount of code or good advice is worth trading that away.

31

Committer’s Guide

2. Respect other contributors.

You were not always a committer. At one time you were a contob Remember that at all times. Remember
what it was like trying to get help and attention. Do not fdridjat your work as a contributor was very
important to you. Remember what it was like. Do not discoaréglittle, or demean contributors. Treat them
with respect. They are our committers in waiting. They amrgbit as important to the project as committers.
Their contributions are as valid and as important as your. @fter all, you made many contributions before
you became a committer. Always remember that.

Consider the points raised undeand apply them also to contributors.
3. Discuss any significant changeforecommitting.

The repository is not where changes should be initially Sttechfor correctness or argued over, that should
happen first in the mailing lists and the commit should onlggen once something resembling consensus has
been reached. This does not mean that you have to ask penmiefore correcting every obvious syntax error
or manual page misspelling, simply that you should try toedigy a feel for when a proposed change is not quite
such a no-brainer and requires some feedback first. Peale de not mind sweeping changes if the result is
something clearly better than what they had before, theydjosiot like beingsurprizedby those changes. The
very best way of making sure that you are on the right tracé Istve your code reviewed by one or more other
committers.

When in doubt, ask for review!
4. Respect existing maintainers if listed.

Many parts of FreeBSD are not “owned” in the sense that angifipendividual will jump up and yell if you
commit a change to “their” area, but it still pays to checkfi@ne convention we use is to put a maintainer line
in theMakefile for any package or subtree which is being actively mainthlmeone or more people; see
http://www.FreeBSD.org/doc/en_US.ISO8859-1/booketttgers-handbook/policies.html for documentation

on this. Where sections of code have several maintaineranits to affected areas by one maintainer need to be
reviewed by at least one other maintainer. In cases wher@thimtainer-ship” of something is not clear, you

can also look at the repository logs for the file(s) in questind see if someone has been working recently or
predominantly in that area.

Other areas of FreeBSD fall under the control of someone wéuazages an overall category of FreeBSD
evolution, such as internationalization or networkinge &tp://www.FreeBSD.org/administration.html for
more information on this.

5. Any disputed change must be backed out pending resolotithe dispute if requested by a maintainer. Security
related changes may override a maintainer’s wishes at theriBeOfficer’s discretion.

This may be hard to swallow in times of conflict (when each @dmnvinced that they are in the right, of
course) but a version control system makes it unnecessagyvtman ongoing dispute raging when it is far easier
to simply reverse the disputed change, get everyone calmed dgain and then try to figure out what is the best
way to proceed. If the change turns out to be the best thireg alft it can be easily brought back. If it turns out
not to be, then the users did not have to live with the bogus@ha the tree while everyone was busily debating
its merits. Peopleeryrarely call for back-outs in the repository since discusgienerally exposes bad or
controversial changes before the commit even happensphatiah rare occasions the back-out should be done
without argument so that we can get immediately on to thectopfiguring out whether it was bogus or not.

6. Changes go to FreeBSD-CURRENT before FreeBSD-STABLEssrgpecifically permitted by the release
engineer or unless they are not applicable to FreeBSD-CUWRREnNy non-trivial or non-urgent change which
is applicable should also be allowed to sit in FreeBSD-CURREor at least 3 days before merging so that it

32

Committer’s Guide

can be given sufficient testing. The release engineer hasathe authority over the FreeBSD-STABLE branch
as outlined in rule #5.

This is another “do not argue about it” issue since it is thease engineer who is ultimately responsible (and
gets beaten up) if a change turns out to be bad. Please réisisead give the release engineer your full
cooperation when it comes to the FreeBSD-STABLE branch.ritieagement of FreeBSD-STABLE may
frequently seem to be overly conservative to the casualrebsdut also bear in mind the fact that conservatism
is supposed to be the hallmark of FreeBSD-STABLE and diffemgles apply there than in

FreeBSD-CURRENT. There is also really no point in havingeR8D-CURRENT be a testing ground if
changes are merged over to FreeBSD-STABLE immediatelyn@émneed a chance to be tested by the
FreeBSD-CURRENT developers, so allow some time to elapfgdomerging unless the FreeBSD-STABLE

fix is critical, time sensitive or so obvious as to make furtiesting unnecessary (spelling fixes to manual pages,
obvious bug/typo fixes, etc.) In other words, apply commarsee

Changes to the security branches (for exanRELENG_7_() must be approved by a member of the Security
Officer Team security-officer@FreeBSD.org >, or in some cases, by a member of the re@FreeBSD.org.

7. Do not fight in public with other committers; it looks baflybu must “strongly disagree” about something, do
so only in private.

This project has a public image to uphold and that image ig weportant to all of us, especially if we are to
continue to attract new members. There will be occasionswwhespite everyone’s very best attempts at
self-control, tempers are lost and angry words are exclthrige best thing that can be done in such cases is to
minimize the effects of this until everyone has cooled bamkml That means that you should not air your angry
words in public and you should not forward private corregjerte to public mailing lists or aliases. What
people say one-to-one is often much less sugar-coated thartley would say in public, and such
communications therefore have no place there - they onliederinflame an already bad situation. If the person
sending you a flame-o-gram at least had the grace to sendatelyi, then have the grace to keep it private
yourself. If you feel you are being unfairly treated by aresttleveloper, and it is causing you anguish, bring the
matter up with core rather than taking it public. Core willitkobest to play peace makers and get things back to
sanity. In cases where the dispute involves a change to thebase and the participants do not appear to be
reaching an amicable agreement, core may appoint a mutagigeable 3rd party to resolve the dispute. All
parties involved must then agree to be bound by the decisached by this 3rd party.

8. Respect all code freezes and readcttvemitters anddevelopers mailing list on a timely basis so you know
when a code freeze is in effect.

Committing unapproved changes during a code freeze is kg lBgimistake and committers are expected to
keep up-to-date on what is going on before jumping in afteng labsence and committing 10 megabytes worth
of accumulated stuff. People who abuse this on a regulas basihave their commit privileges suspended until
they get back from the FreeBSD Happy Reeducation Camp werGnaenland.

9. When in doubt on any procedure, ask first!

Many mistakes are made because someone is in a hurry andgushes they know the right way of doing
something. If you have not done it before, chances are gaid/tu do not actually know the way we do things
and really need to ask first or you are going to completely eraba yourself in public. There is no shame in
asking “how in the heck do | do this?” We already know you arénéglligent person; otherwise, you would not
be a committer.

10. Test your changes before committing them.

This may sound obvious, but if it really were so obvious thenprobably would not see so many cases of
people clearly not doing this. If your changes are to the édemake sure you can still compile both GENERIC

33

Committer’s Guide

and LINT. If your changes are anywhere else, make sure yostdbmake world. If your changes are to a
branch, make sure your testing occurs with a machine whialmising that code. If you have a change which

also may break another architecture, be sure and test aupglbsted architectures. Please refer to the FreeBSD

Internal Page (http://www.FreeBSD.org/internal/) foish bf available resources. As other architectures are
added to the FreeBSD supported platforms list, the apatgpshared testing resources will be made available.

11. Do not commit to anything under tkec/contrib ,src/crypto , andsrc/sys/contrib trees without
explicitapproval from the respective maintainer(s).

The trees mentioned above are for contributed softwarelysogported onto a vendor branch. Committing
something there, even if it does not take the file off the veildanch, may cause unnecessary headaches for
those responsible for maintaining that particular piecsaffware. Thus, unless you hageplicit approval from
the maintainer (or you are the maintainer),rdd commit there!

Please note that this does not mean you should not try to iephe software in question; you are still more
than welcome to do so. Ideally, you should submit your pat¢behe vendor. If your changes are
FreeBSD-specific, talk to the maintainer; they may be vgliio apply them locally. But whatever you do, dot
commit there by yourself!

Contact the Core Teantsre@FreeBSD.org > if you wish to take up maintainership of an unmaintained par
of the tree.

12.2 Policy on Multiple Architectures

FreeBSD has added several new architecture ports duriegtreglease cycles and is truly no longer an i386™
centric operating system. In an effort to make it easier &pldereeBSD portable across the platforms we support,
core has developed the following mandate:

Our 32-bit reference platform is i386, and our 64-bit refeeeplatform is sparc64. Major design work (including majé
and ABI changes) must prove itself on at least one 32-bit aiehat one 64-bit platform, preferably the primary refeen
platforms, before it may be committed to the source tree.

The i386 and sparc64 platforms were chosen due to being readdly available to developers and as representatives

of more diverse processor and system designs - big veraslitdian, register file versus register stack, different
DMA and cache implementations, hardware page tables veddtvgare TLB management etc.

The ia64 platform has many of the same complications that8gahas, but is still limited in availability to
developers.

We will continue to re-evaluate this policy as cost and alality of the 64-bit platforms change.

Developers should also be aware of our Tier Policy for the liemm support of hardware architectures. The rules
here are intended to provide guidance during the developpreoess, and are distinct from the requirements for
features and architectures listed in that section. Therties for feature support on architectures at releasedime
more strict than the rules for changes during the developprecess.

12.3 Other Suggestions

When committing documentation changes, use a spell chéefere committing. For all SGML docs, you should
also verify that your formatting directives are correct bmmingmake lint

For all on-line manual pages, rumanck (from ports) over the manual page to verify all of the cro$enmences and
file references are correct and that the man page has all apfirepriateMLINKs installed.

34

Committer’s Guide

Do not mix style fixes with new functionality. A style fix is ampange which does not modify the functionality of
the code. Mixing the changes obfuscates the functiondiliinge when asking for differences between revisions,
which can hide any new bugs. Do not include whitespace clsanilke content changes in commitsdoc/ or wwwi.
The extra clutter in the diffs makes the translators’ job moore difficult. Instead, make any style or whitespace
changes in separate commits that are clearly labeled asrstlehicommit message.

12.4 Deprecating Features

When it is necessary to remove functionality from softwarthie base system the following guidelines should be
followed whenever possible:

1. Mention is made in the manual page and possibly the reteates that the option, utility, or interface is
deprecated. Use of the deprecated feature generates agiarni

2. The option, utility, or interface is preserved until trexhmajor (point zero) release.

3. The option, utility, or interface is removed and no londecumented. It is now obsolete. Itis also generally a
good idea to note its removal in the release notes.

13 Support for Multiple Architectures

FreeBSD is a highly portable operating system intendedrtotfon on many different types of hardware
architectures. Maintaining clean separation of Machinpddelent (MD) and Machine Independent (M) code, as
well as minimizing MD code, is an important part of our stgptéo remain agile with regards to current hardware
trends. Each new hardware architecture supported by Fi2eB8s substantially to the cost of code maintenance,
toolchain support, and release engineering. It also diaallgtincreases the cost of effective testing of kernel
changes. As such, there is strong motivation to differémti@tween classes of support for various architectures
while remaining strong in a few key architectures that aenses the FreeBSD “target audience”.

13.1 Statement of General Intent

The FreeBSD Project targets "production quality commeéadfethe-shelf (COTS) workstation, server, and high-end
embedded systems". By retaining a focus on a narrow set bitectures of interest in these environments, the
FreeBSD Project is able to maintain high levels of qualigbaity, and performance, as well as minimize the load
on various support teams on the project, such as the ponts tllcumentation team, security officer, and release
engineering teams. Diversity in hardware support broatteneptions for FreeBSD consumers by offering new
features and usage opportunities (such as support fort@ZPtis, use in embedded environments, etc.), but these
benefits must always be carefully considered in terms oféheworld maintenance cost associated with additional
platform support.

The FreeBSD Project differentiates platform targets iotar tiers. Each tier includes a specification of the
requirements for an architecture to be in that tier, as wediecifying the obligations of developers with regards to
the platform. In addition, a policy is defined regarding tireumstances required to change the tier of an
architecture.

35

Committer’s Guide

13.2 Tier 1: Fully Supported Architectures

Tier 1 platforms are fully supported by the security officetease engineering, and toolchain maintenance staff.
New features added to the operating system must be fullytifumed across all Tier 1 architectures for every release
(features which are inherently architecture-specifichsagsupport for hardware device drivers, may be exempt
from this requirement). In general, all Tier 1 platforms mhsve build and Tinderbox support either in the
FreeBSD.org cluster, or be easily available for all devetspEmbedded platforms may substitute an emulator
available in the FreeBSD cluster for actual hardware.

Tier 1 architectures are expected to be Production Quality mespects to all aspects of the FreeBSD operating
system, including installation and development environts.e

Tier 1 architectures are expected to be completely intedriato the source tree and have all features necessary to
produce an entire system relevant for that target architecTier 1 architectures generally have at least 6 active
developers.

Tier 1 architectures are expected to be fully supported bytirts system. All the ports should build on a Tier 1
platform, or have the appropriate filters to prevent the imapriate ones from building there. The packaging system
must support all Tier 1 architectures. To ensure an ardhite’s Tier 1 status, proponents of that architecture must
show that all relevant packages can be built on that platform

Tier 1 embedded architectures must be able to cross-buikigas on at least one other Tier 1 architecture. The
packages must be the most relevant for the platform, but reayrimn-empty subset of those that build natively.

Tier 1 architectures must be fully documented. All basicrafiens need to be covered by the handbook or other
documents. All relevant integration documentation musb &le integrated into the tree, or readily available.

Current Tier 1 platforms are i386 and amd64.

13.3 Tier 2: Developmental Architectures

Tier 2 platforms are not supported by the security officeri@bebse engineering teams. Platform maintainers are
responsible for toolchain support in the tree. The toolcaaintainer is expected to work with the platform
maintainers to refine these changes. Major new toolchairpooents are allowed to break support for Tier 2
architectures if the FreeBSD-local changes have not beemporated upstream. The toolchain maintainers are
expected to provide prompt review of any proposed changgsamot block, through their inaction, changes going
into the tree. New features added to FreeBSD should be fedsibmplement on these platforms, but an
implementation is not required before the feature may bedddlthe FreeBSD source tree. New features that may
be difficult to implement on Tier 2 architectures should pdeva means of disabling them on those architectures.
The implementation of a Tier 2 architecture may be commtibetie main FreeBSD tree as long as it does not
interfere with production work on Tier 1 platforms, or siudrgfally with other Tier 2 platforms. Before a Tier 2
platform can be added to the FreeBSD base source tree, tfierplanust be able to boot multi-user on actual
hardware. Generally, there must be at least three activdaers working on the platform.

Tier 2 architectures are usually systems targeted at Tiepfiat, but that are still under development. Architeciure
reaching end of life may also be moved from Tier 1 status to Zigtatus as the availability of resources to continue
to maintain the system in a Production Quality state dinhiess Well supported niche architectures may also be Tier
2.

Tier 2 architectures may have some support for them intediiato the ports infrastructure. They may have cross
compilation support added, at the discretion of portmgm&gorts must built natively into packages if the package
system supports that architecture. If not integrated inécbiase system, some external patches for the architecture
for ports must be available.

36

Committer’s Guide

Tier 2 architectures can be integrated into the FreeBSDWauid The basics for how to get a system running must
be documented, although not necessarily for every singdecbor system a Tier 2 architecture supports. The
supported hardware list must exist and should be no moregtltanple of months old. It should be integrated into
the FreeBSD documentation.

Current Tier 2 platforms are arm, ia64, pc98, powerpc, aadcga.

13.4 Tier 3: Experimental Architectures

Tier 3 platforms are not supported by the security officer @helase engineering teams. At the discretion of the
toolchain maintainer, they may be supported in the tootthéer 3 platforms are architectures in the early stages of
development, for non-mainstream hardware platforms, aclvére considered legacy systems unlikely to see broad
future use. New Tier 3 systems will not be committed to theslsmsirce tree. Support for Tier 3 systems may be
worked on in the FreeBSD Perforce Repository, providings@eontrol and easier change integration from the
main FreeBSD tree. Platforms that transition to Tier 3 statay be removed from the tree if they are no longer
actively supported by the FreeBSD developer communityettkcretion of the release engineer.

Tier 3 platforms may have ports support, either integratezkternal, but do not require it.

Tier 3 platforms must have the basics documented for howitd bikkernel and how to boot it on at least one target
hardware or emulation environment. This documentation met be integrated into the FreeBSD tree.

Current Tier 3 platforms are mips and S/390®.

13.5 Tier 4: Unsupported Architectures
Tier 4 systems are not supported in any form by the project.

All systems not otherwise classified into a support tier aee & systems.

13.6 Policy on Changing the Tier of an Architecture

Systems may only be moved from one tier to another by appodvthe FreeBSD Core Team, which shall make that
decision in collaboration with the Security Officer, Rele&ngineering, and toolchain maintenance teams.

14 Ports Specific FAQ

1. Adding a New Port

1.1.How do | add a new port?
First, please read the section about repository copies.

The easiest way to add a new port is to useattidport script from your machine (located in the
ports/Tools/scripts directory). It will add a port from the directory you spegitletermining the category
automatically from the pomiakefile . It will also add an entry to the port's categaviakefile . It was

written by Michael Haro saharo@FreeBSD.org >, Will Andrews <will@FreeBSD.org >, and Renato

37

Committer’s Guide

Botelho garga@FreeBSD.org >. When sending questions about this script to the FreeBS313 pwiling list
(http://lists.FreeBSD.org/mailman/listinfo/freebpdrts), please also CC Chris Rees
<crees@FreeBSD.org >, the current maintainer.

1.2.Any other things | need to know when | add a new port?

Check the port, preferably to make sure it compiles and ggekaorrectly. This is the recommended sequence:

make install

make package

nmake deinstal |

pkg_add package you built above
nmake deinstal |

make reinstall

make package

HoH H OH OH H R

The Porters Handbook (http://www.FreeBSD.org/doc/enl&38859-1/books/porters-handbook/index.html)
contains more detailed instructions.

Use portlint(1) to check the syntax of the port. You do notessarily have to eliminate all warnings but make
sure you have fixed the simple ones.

If the port came from a submitter who has not contributed ¢oRtoject before, add that person’s name to the
Additional Contributors
(http://www.FreeBSD.org/doc/en_US.1SO8859-1/arsfdentributors/contrib-additional.html) section of the
FreeBSD Contributors List.

Close the PR if the port came in as a PR. To close a PR, justiido- pr PR# onfreefall and change the
state fromopen to closed . You will be asked to enter a log message and then you are done.

2. Removing an Existing Port

2.1.How do | remove an existing port?

First, please read the section about repository copiegrBgbu remove the port, you have to verify there are
no other ports depending on it.

« Make sure there is no dependency on the port in the portsctiolte
- The port's PKGNAME should appear in exactly one line in a ne¢BDEX file.
- No other ports should contain any reference to the port&cttiry or PKGNAME in their Makefiles

« Then, remove the port:

1. Remove the port’s files and directory wittn remove .

2. Remove thesUBDIRIisting of the port in the parent directonakefile
3. Add an entry tgorts/MOVED .

4. Remove the port fromorts/LEGAL if it is there.

38

Committer’s Guide

Alternatively, you can use thenport script, fromports/Tools/scripts . This script was written by Vasil
Dimov <vd@FreeBSD.org >. When sending questions about this script to the FreeB3B pailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebpdrts), please also CC Chris Rees

<crees@FreeBSD.org >, the current maintainer.

3. Re-adding a Deleted Port

3.1.How do | re-add a deleted port?

This is essentially the reverse of deleting a port.

1. Figure out when the port was removed. Use this list
(http://people.freebsd.org/~crees/removed_porteknanl) and then copy the last living revision of the
port:

% cd /usr/ports/category
% svn cp 'svn+ssh://svn.freebsd. org/ ports/category/ portnane/ @ YYYY-M DD}’ portnanme

Pick a date that is before the removal but after the last tonenait.

2. Perform whatever changes are necessary to make the paragain. If it was deleted because the distfiles
are no longer available you will need to volunteer to hostrtlyeurself, or find someone else to do so.

svn add orsvn remove any appropriate files.

Restore th&UBDIRIisting of the port in the parent directomakefile , and delete the entry from
ports/MOVED .

5. Ifthe port had an entry iports/LEGAL , restore it.

6. svn commit these changes, preferably in one step.

Tip: addport now detects when the port to add has previously existed, and should handle all except the
ports/LEGAL step automatically.

4. Repository Copies

4.1.When do we need a repository copy?

When you want to add a port that is related to any port thatréadl in the tree in a separate directory, you
have to do a repository copy. Herelatedmeans it is a different version or a slightly modified version
Examples ar@rint/ghostscript = (different versions) angl1-wm/windowmaker * (English-only and
internationalized version).

39

Committer’s Guide

Another example is when a port is moved from one subdiredtoanother, or when you want to change the
name of a directory because the author(s) renamed theivasefeven though it is a descendant of a port
already in a tree.

4.2.What do | need to do?
With Subversion, a repo copy can be done by any committer:

- Doing a repo copy:

1. First make sure that you were using an up to date ports nietéhe target directory does not exist.
2. Usesvn move orsvn copy to do the repo copy.

3. Upgrade the copied port to the new version. Remember togehthel ATEST_LINK so there are no
duplicate ports with the same name. In some rare cases it magdessary to change thORTNAME
instead ofLATEST_LINK, but this should only be done when it is really needed — egingian
existing port as the base for a very similar program with ed#nt name, or upgrading a port to a new
upstream version which actually changes the distributeme, like the transition from
textproc/libxml to textproc/libxml2 . In most cases, changin@dTEST_LINK should suffice.

4. Add the new subdirectory to ti8JBDIRIisting in the parent directoryakefile . You can rummake
checksubdirs in the parent directory to check this.

5. Ifthe port changed categories, modify theTEGORIESine of the port'sMakefile accordingly
6. Add an entry tgorts/MOVED , if you remove the original port.

7. Commit all changes on one commit. A forced commit is no &needed with Subversion.

« When removing a port:

1. Perform a thorough check of the ports collection for anyat@lencies on the old port location/name,
and update them. Runningep onINDEX is not enough because some ports have dependencies
enabled by compile-time options. A futep -r of the ports collection is recommended.

2. Remove the old port and the aitBDIRentry.
3. Add an entry tgorts/MOVED .

- After repo moves (“rename” operations where a port is copratithe old location is removed):

1. Follow the same steps that are outlined in the previoustvines, to activate the new location of the
port and remove the old one.

5. Ports Freeze

40

Committer’s Guide

5.1.What is a “ports freeze"?

Before a release, it is necessary to restrict commits to dnis free for a short period of time while the
packages and the release itself are being built. This isgarerconsistency among the various parts of the
release, and is called the “ports freeze”.

For more information on the background and policies surdiuga ports freeze, see the Portmgr Quality
Assurance page (http://www.FreeBSD.org/portmgr/ga)htm

5.2.What is a “ports slush” or “feature freeze"?

During a release cycle the ports tree may be in a “slush” gtatead of in a hard freeze. The goal during a
slush is to reach a stable ports tree to avoid rebuildingelasds of packages for the release and to tag the tree.
During this time “sweeping changes” are prohibited unlgesgically permitted by portmgr. Complete details
about what qualifies as a sweeping change can be found on ttmeg?dmplementation page
(http://www.FreeBSD.org/portmgr/implementation.html

The benefit of a slush as opposed to a complete freeze is Hikvits maintainers to continue adding new
ports, making routine version updates, and bug fixes to mastireg ports, as long as the number of affected
ports is minimal. For example, updating the shared libramngion on a port that many other ports depend on.

5.3.How long is a ports freeze or slush?

A freeze only lasts long enough to tag the tree. A slush uglesdts a week or two, but may last longer.

5.4.What does it mean to me?

During a ports freeze, you are not allowed to commit anythinipe tree without explicit approval from the
Ports Management Team. “Explicit approval” here meansytbatsend a patch to the Ports Management Team
for review and get a reply saying, “Go ahead and commit it.”

Not everything is allowed to be committed during a freezeaBé see the Portmgr Quality Assurance page
(http://www.FreeBSD.org/portmgr/ga.html) for more infoation.

Note that you do not have implicit permission to fix a port dgrthe freeze just because it is broken.

During a ports slush, you are still allowed to commit but youstrexercise more caution in what you commit.
Furthermore a special note (typically “Feature Safe: ye®iyt be added to the commit message.

5.5.How do | know when the ports slush starts?

The Ports Management Team will send out warning messaghs tréeBSD ports mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebpdrts) and FreeBSD committer’'s mailing list announcing
the start of the impending release, usually two or three w@ekdvance. The exact starting time will not be
determined until a few days before the actual release. $his¢ause the ports slush has to be synchronized
with the release, and it is usually not known until then wheac#ly the release will be rolled.

When the slush starts, there will be another announcemém treeBSD ports mailing list
(http:/lists.FreeBSD.org/mailman/listinfo/freebpdrts) and FreeBSD committer’s mailing list, of course.

41

Committer’s Guide

5.6.How do | know when the freeze or slush ends?

A few hours after the release, the Ports Management Teansavitl out a mail to the FreeBSD ports mailing
list (http://lists.FreeBSD.org/mailman/listinfo/fiesd-ports) and FreeBSD committer’s mailing list
announcing the end of the ports freeze or slush. Note thaitease being cut does not automatically indicate
the end of the freeze. We have to make sure there will be nonlestte snafus that result in an immediate
re-rolling of the release.

6. Creating a New Category

6.1.What is the procedure for creating a new category?

Please see Proposing a New Category (http://www.FreeB§dac/en_US.ISO8859-1/books/porters-
handbook/makefile-categories.htmI#PROPOSING-CATEQEHRIn the Porter's Handbook. Once that
procedure has been followed and the PR has been assigneddd/Roagement Team
<portmgr@FreeBSD.org >, it is their decision whether or not to approve it. If they, das their responsibility
to do the following:

1. Perform any needed moves. (This only applies to physatagories.)
2. Update th&/ALID_CATEGORIESdefinition inports/Mk/bsd.port.mk
3. Assign the PR back to you.

6.2.What do | need to do to implement a new physical category?

1. Upgrade each moved portsakefile . Do not connect the new category to the build yet.

To do this, you will need to:

1. Change the port6ATEGORIESthis was the point of the exercise, remember?) The new cgteg
should be listedirst. This will help to ensure that tHeKGORIGINis correct.

2. Runamake describe . Since the top-levehake index thatyou will be runningin a few steps is an
iteration ofmake describe over the entire ports hierarchy, catching any errors hellesawe you
having to re-run that step later on.

3. If you want to be really thorough, now might be a good timeuto portlint(1).

2. Check that th@KGORIGINs are correct. The ports system uses each pOAREGORIESentry to create its
PKGORIGIN which is used to connect installed packages to the portting they were built from. If this
entry is wrong, common port tools like pkg_version(1) andpograde(1) fail.

To do this, use thehkorigin.sh tool, as follows:env PORTSDIR pat h/to/ ports sh -e

/ pat h/ t o/ por t s/Tools/scripts/chkorigin.sh . This will checkeveryport in the ports tree, even
those not connected to the build, so you can run it directlyrahe move operation. Hint: do not forget to
look at thePKGORIGINs of any slave ports of the ports you just moved!

3. Onyour own local system, test the proposed changes:dinstment out th&SUBDIRentries in the old
ports’ categoriesMakefile s; then enable building the new categorypants/Makefile . Runmake
checksubdirs in the affected category directories to check §uBDIRentries. Next, in th@orts/

42

Committer’s Guide

directory, runmake index . This can take over 40 minutes on even modern systems; hoyitegea
necessary step to prevent problems for other people.

4. Once thisis done, you can commit the updateds/Makefile to connect the new category to the build
and also commit th&lakefile changes for the old category or categories.

5. Add appropriate entries tmrts/MOVED .
6. Update the documentation by modifying the following:

- the list of categories (http://www.FreeBSD.org/doc/e.1308859-1/books/porters-
handbook/makefile-categories.htmli#PORTING-CATEGORIE$he Porter’'s
Handbook

- www/en/ports/categories . Note that these are now displayed by sub-groups, as spkicifie
www/en/ports/categories.descriptions

(Note: these are in the docs, not the ports, repositorypufgre not a docs committer, you will need to
submit a PR for this.

7. Only once all the above have been done, and no one is angrlogygorting problems with the new ports,
should the old ports be deleted from their previous locatiarthe repository.

It is not necessary to manually update the ports web paggs/(Wivw.FreeBSD.org/ports/index.html) to
reflect the new category. This is now done automatically eiarychange tovww/en/ports/categories and
the daily automated rebuild @XDEX.

6.3.What do | need to do to implement a new virtual category?
This is much simpler than a physical category. You only needadify the following:

- the list of categories (http://www.FreeBSD.org/doc/e’.I308859-1/books/porters-handbook/makefile-
categories.htmi#PORTING-CATEGORIES) in the Porter’s
Handbook

- www/en/ports/categories

7. Miscellaneous Questions

7.1.How do | know if my port is building correctly or not?

First, go check http://pointyhat.FreeBSD.org/errorlogiere you will find error logs from the latest package
building runs on all supported platforms for the most redeanches.

However, just because the port does not show up there doesaaat it is building correctly. (One of the
dependencies may have failed, for instance.) The relevesttdries are available grointyhat under
/a/portbuild/<arch>/<major_version> so feel free to dig around. Each architecture and version has
the following subdirectories:

errors error logs from latest <major_version> run on <arch>

logs all logs from latest <major_version> run on <arch>

packages packages from latest <major_version> run on <arch >
bak/errors error logs from last complete <major_version> r un on <arch>
bak/logs all logs from last complete <major_version> run on <arch>

43

Committer’s Guide

bak/packages packages from last complete <major_version> run on <arch>

Basically, if the port shows up ipackages , oritisinlogs butnotinerrors , it built fine. (Theerrors
directories are what you get from the web page.)

7.2.1 added a new port. Do | need to add it to INDEX?

No, INDEX is no longer stored in the SVN repository. The file can eitreegbnerated by runningake
index , or a pre-generated version can be downloaded nvitke fetchindex

7.3.Are there any other files | am not allowed to touch?

Any file directly underports/ , or any file under a subdirectory that starts with an upperztter \k/,
Tools/ , etc.). In particular, the Ports Management Team is vertegtive ofports/Mk/bsd.port *.mk SO
do not commit changes to those files unless you want to facsriaig)th.

7.4.What is the proper procedure for updating the checksum fargsgistfile when the file changes without
a version change?

When the checksum for a port’s distfile is updated due to thlecswpdating the file without changing the
port’s revision, the commit message should include a sumwfahe relevant diffs between the original and
new distfile to ensure that the distfile has not been corrupt@daliciously altered. If the current version of the
port has been in the ports tree for a while, a copy of the oltfii@gisvill usually be available on the ftp servers;
otherwise the author or maintainer should be contacted diooiitt why the distfile has changed.

15 Issues Specific to Developers Who Are Not Committers

A few people who have access to the FreeBSD machines do netlhavmit bits. For instance, the project is willing
to give access to the GNATS database to contributors whostaaen interest and dedication in working on Problem
Reports.

Almost all of this document will apply to these developersval (except things specific to commits and the mailing
list memberships that go with them). In particular, we reotend that you read:

- Administrative Details

Conventions

Note: You should get your mentor to add you to the “Additional Contributors”
(doc/en_US.1SO8859-1/articles/contributors/contrib.a dditional.xml), if you are not already listed
there.

- Developer Relations
« SSH Quick-Start Guide
« The FreeBSD Committers’ Big List of Rules

44

Committer’s Guide

16 Information About Google Analytics

As of December 12, 2012, Google Analytics was enabled onitheBSD Project website to collect anonymized
usage statistics regarding usage of the site. The infoomabllected is valuable to the FreeBSD Documentation
Project, in order to identify various problems on the FreBR&Dbsite.

16.1 Google Analytics General Policy

The FreeBSD Project takes visitor privacy very seriouskysfich, the FreeBSD Project website honors the “Do Not
Track” headebeforefetching the tracking code from Google. For more informatiglease see the FreeBSD Privacy
Policy (http://www.FreeBSD.org/privacy.html).

Google Analytics access motarbitrarily allowed — access must be requested, voted ohd&pPbcumentation
Engineering Teamdoceng@FreeBSD.org >, and explicitly granted.

Requests for Google Analytics data must include a specifipgae. For example, a valid reason for requesting
access would be “to see the most frequently used web browsens viewing FreeBSD web pages to ensure page
rendering speeds are acceptable.”

Conversely, “to see what web browsers are most frequenglgysvithout statingvhy) would be rejected.

All requests must include the timeframe for which the datalde required. For example, it must be explicitly
stated if the requested data would be needed for a timeframeziog a span of 3 weeks, or if the request would be
one-time only.

Any request for Google Analytics data without a clear, reatde reason beneficial to the FreeBSD Project will be
rejected.

16.2 Data Available Through Google Analytics
A few examples of the types of Google Analytics data avadabtiude:

« Commonly used web browsers
- Page load times

- Site access by language

17 Perks of the Job

Unfortunately, there are not many perks involved with beirgpmmitter. Recognition as a competent software
engineer is probably the only thing that will be of benefithie tong run. However, there are at least some perks:

Free 4-CD and DVD Sets

FreeBSD committers can get a free 4-CD or DVD set at confe®fiom FreeBSD Mall, Inc.
(http://www.freebsdmall.com). The sets are no longerlaiséé as a subscription due to the high shipment costs
to countries outside the USA.

45

Committer’s Guide

Freenode IRC Cloaks

FreeBSD developers may request a cloaked hostmask foratteiunt on the Freenode IRC network in the
form of freebsd/developer/ freefall name orfreebsd/developer/ Ni ckServ nane. To request a
cloak, send an email to Eitan Adleeadler@FreeBSD.org > with your requested hostmask and NickServ
account name.

18 Miscellaneous Questions

1. Why are trivial or cosmetic changes to files on a vendor brancad idea?

- From now on, every new vendor release of that file will needaeelpatches merged in by hand.

- From now on, every new vendor release of that file will needaeelpatcheserifiedby hand.

2.How do | add a new file to a branch?

To add a file onto a branch, simply checkout or update to thedhrgou want to add to and then add the file using
the add operation as you normally would. This works fine ferdéc andports trees. Thesrc tree uses SVN and
requires more care because of thergeinfo properties. See section 1.4.6 of the Subversion Primer
(http://wiki.freebsd.org/SubversionPrimer) for desaRefer to SubversionPrimer/Merging
(http://wiki.freebsd.org/SubversionPrimer/Merging) tletails on how to perform an MFC.

3. What “meta” information should | include in a commit message

As well as including an informative message with each conymitmay need to include some additional
information as well.

This information consists of one or more lines containirglklby word or phrase, a colon, tabs for formatting, and
then the additional information.

The key words or phrases are:

PR: The problem report (if any) which is affected (typically,
by being closed) by this commit.
Submitted by: The name and e-mail address of the person that

submitted the fix; for committers, just the username on
the FreeBSD cluster.

Reviewed by: The name and e-mail address of the person or people
that reviewed the change; for committers, just the
username on the FreeBSD cluster. If a patch was
submitted to a mailing list for review, and the review was
favorable, then just include the list name.

46

Committer’s Guide

Approved by: The name and e-mail address of the person or people
that approved the change; for committers, just the
username on the FreeBSD cluster. It is customary to get
prior approval for a commit if it is to an area of the tree
to which you do not usually commit. In addition, during
the run up to a new release all commitsistbe
approved by the release engineering team. If these are
your first commits then you should have passed them
past your mentor first, and you should list your mentor,
as in ‘user nane- of - ment or (mentor) ”

Obtained from: The name of the project (if any) from which the code
was obtained.
MFC after: If you wish to receive an e-mail reminder to MFC at a

later date, specify the number of days, weeks, or months
after which an MFC is planned.

Security: If the change is related to a security vulnerability or
security exposure, include one or more references or a
description of the issue.

Example 1. Commit Log for a Commit Based on a PR

You want to commit a change based on a PR submitted by Johih 8aritaining a patch. The end of the commit
message should look something like this.

PR: foo/12345
Submitted by: John Smith <John.Smith@example.com>

Example 2. Commit Log for a Commit Needing Review

You want to change the virtual memory system. You have pgsaéches to the appropriate mailing list (in this case,
freebsd-arch) and the changes have been approved.

Reviewed by: -arch

Example 3. Commit Log for a Commit Needing Approval

You want to commit a change to a section of the tree with a MAANNER assigned. You have collaborated with the
listed MAINTAINER, who has told you to go ahead and commit.

Approved by: abc

Whereabc is the account name of the person who approved.

a7

Committer’s Guide

Example 4. Commit Log for a Commit Bringing in Code from OpenBSD

You want to commit some code based on work done in the OpenB&Bap.

Obtained from: OpenBSD

Example 5. Commit Log for a Change to FreeBSD-CURRENT with a Fanned Commit to FreeBSD-STABLE
to Follow at a Later Date.

You want to commit some code which will be merged from FreeB3IRRENT into the FreeBSD-STABLE
branch after two weeks.

MFC after: 2 weeks

Where2 is the number of days, weeks, or months after which an MFCaisn#d. Theweks option may beday,
days , week, weeks, month , months , or may be left off (in which case, days will be assumed).

In some cases you may need to combine some of these.

Consider the situation where a user has submitted a PR norgaiode from the NetBSD project. You are looking at
the PR, but it is not an area of the tree you normally work iny@o have decided to get the change reviewed by the
arch mailing list. Since the change is complex, you opt to MFCraditee month to allow adequate testing.

The extra information to include in the commit would look sthiing like

PR: foo/54321

Submitted by: John Smith <John.Smith@example.com>
Reviewed by: -arch

Obtained from: NetBSD

MFC after: 1 month

4. How do | accespeople.FreeBSD.org to put up personal or project information?

people.FreeBSD.org is the same aieefall.FreeBSD.org . Just create public_html directory. Anything
you place in that directory will automatically be visibleder http://people.FreeBSD.org/.

5. Where are the mailing list archives stored?

The mailing lists are archived undigfmail ~ which will show up aghub/g/mail ~ with pwd(1). This location is
accessible from any machine on the FreeBSD cluster.

48

Committer’s Guide

6.1 would like to mentor a new committer. What process do | neciliow?

See the New Account Creation Procedure (http://www.fréedyg/internal/new-account.html) document on the
internal pages.

49

	Table of Contents
	1 Administrative Details
	2 Commit Bit Types
	2.1 Policy for doc/ Committer Activity in src/

	3 Subversion Primer
	3.1 Introduction
	3.2 Getting Started
	3.2.1 Direct Checkout
	3.2.2 Checkout from a Mirror
	3.2.3 RELENG* Branches and General Layout
	3.2.4 FreeBSD Documentation Project Branches and Layout
	3.2.5 FreeBSD Ports Tree Branches and Layout

	3.3 Daily Use
	3.3.1 Help
	3.3.2 Checkout
	3.3.3 Anonymous Checkout
	3.3.4 Updating the Tree
	3.3.5 Status
	3.3.6 Editing and Committing
	3.3.7 Adding and Removing Files
	3.3.8 Copying and Moving Files
	3.3.9 Log and Annotate
	3.3.10 Diffs
	3.3.11 Reverting
	3.3.12 Conflicts

	3.4 Advanced Use
	3.4.1 Sparse Checkouts
	3.4.2 Direct Operation
	3.4.3 Merging with SVN
	3.4.4 Vendor Imports with SVN
	3.4.5 Reverting a Commit
	3.4.6 Fixing Mistakes
	3.4.7 Setting up a svnsync Mirror
	3.4.8 Committing HighASCII Data
	3.4.9 Maintaining a Project Branch

	3.5 Some Tips

	4 Conventions and Traditions
	4.1 Guidelines for Committers
	4.2 Guidelines for Everyone
	4.3 Mentors

	5 Preferred License for New Files
	6 Developer Relations
	7 If in doubt...
	8 GNATS
	8.1 Mirroring the GNATS Tree
	8.2 Useful Tools

	9 Who's Who
	10 SSH QuickStart Guide
	11 Coverity Prevent® Availability for FreeBSD Committers
	12 The FreeBSD Committers' Big List of Rules
	12.1 Details
	12.2 Policy on Multiple Architectures
	12.3 Other Suggestions
	12.4 Deprecating Features

	13 Support for Multiple Architectures
	13.1 Statement of General Intent
	13.2 Tier 1: Fully Supported Architectures
	13.3 Tier 2: Developmental Architectures
	13.4 Tier 3: Experimental Architectures
	13.5 Tier 4: Unsupported Architectures
	13.6 Policy on Changing the Tier of an Architecture

	14 Ports Specific FAQ
	15 Issues Specific to Developers Who Are Not Committers
	16 Information About Google Analytics
	16.1 Google Analytics General Policy
	16.2 Data Available Through Google Analytics

	17 Perks of the Job
	18 Miscellaneous Questions

