Independent Verification of IPsec
Functionality in FreeBSD
David Honig

honig@sprynet.com

$FreeBSD: head/en_US.ISO8859-1/articles/ipsec-must/a rticle.xml 41645
2013-05-17 18:49:527 gabor $
3 May 1999

FreeBSD is a registered trademark of the FreeBSD Foundation.

Motif, OSF/1, and UNIX are registered trademarks and IT DialTonea nd The Open Group are trademarks
of The Open Group in the United States and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this documen t, and the FreeBSD Project was
aware of the trademark claim, the designations have been follow ed by the “™” or the “®” symbol.

You installed IPsec and it seems to be working. How do you Khbdescribe a method for experimentally
verifying that IPsec is working.

1 The Problem

First, lets assume you havastalledIPsec How do you know it isvorking? Sure, your connection will not work if
it is misconfigured, and it will work when you finally get it iigg netstat(1) will list it. But can you independently
confirm it?

2 The Solution

First, some crypto-relevant info theory:

1. Encrypted data is uniformly distributed, i.e., has madientropy per symbol;
2. Raw, uncompressed data is typically redundant, i.e shlasnaximal entropy.

Suppose you could measure the entropy of the data to- and jraun network interface. Then you could see the
difference between unencrypted data and encrypted daawbhild be true even if some of the data in “encrypted
mode” was not encrypted---as the outermost IP header mufttzepacket is to be routable.

Independent Verification of IPsec Functionality in FreeBSD

2.1 MUST

Ueli Maurer’s “Universal Statistical Test for Random Bit @&ators”(MUST
(http://www.geocities.com/SiliconValley/Code/4704dAikersal.pdf)) quickly measures the entropy of a sample. It
uses a compression-like algorithithe code is given belofor a variant which measures successive (~quarter
megabyte) chunks of a file.

2.2 Tcpdump

We also need a way to capture the raw network data. A progretddapdump(1) lets you do this, if you have
enabled th&erkeley Packet Filteinterface in youkernel's config file

The command:
tcpdunp -c¢ 4000 -s 10000 -w dunpfile.bin

will capture 4000 raw packets tunpf i | e. bi n. Up to 10,000 bytes per packet will be captured in this exampl

3 The Experiment

Here is the experiment:

1. Open awindow to an IPsec host and another window to anunséost.
2. Now startcapturing packets

3. Inthe “secure” window, run the UNIX® command yes(1), whigill stream they character. After a while, stop
this. Switch to the insecure window, and repeat. After a eytstop.

4. Now runMUST on the captured packets. You should see something like tloevfng. The important thing to
note is that the secure connection has 93% (6.7) of the eagbgatue (7.18), and the “normal” connection has
29% (2.1) of the expected value.

% tcpdunp -c 4000 -s 10000 -w ipsecdeno. bin
% ul i scan i psecdeno. bin

Uiscan 21 Dec 98

L=8 256 258560

Measuring file ipsecdenn. bin

Init done

Expected value for L=8 is 7.1836656

6. 9306 - - - mm e

NI oo
[
[
o
[

Independent Verification of IPsec Functionality in FreeBSD

4 Caveat

This experiment shows that IPseécesseem to be distributing the payload dataformly, as encryption should.
However, the experiment described heamnotdetect many possible flaws in a system (none of which do | haye a
evidence for). These include poor key generation or exabatata or keys being visible to others, use of weak
algorithms, kernel subversion, etc. Study the source; kihevcode.

5 IPsec---Definition

Internet Protocol security extensions to IPv4; requiredPe6. A protocol for negotiating encryption and
authentication at the IP (host-to-host) level. SSL secangsone application sockegSH secures only a logirPGP
secures only a specified file or message. IPsec encryptsieverpetween two hosts.

6 Installing IPsec

Most of the modern versions of FreeBSD have IPsec suppditinlbase source. So you will need to include the
I PSEC option in your kernel config and, after kernel rebuild anaisé&ill, configure IPsec connections using
setkey(8) command.

A comprehensive guide on running IPsec on FreeBSD is pravidEreeBSD Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/boo&sttbook/ipsec.html).

7 src/sys/i386/conf/[KERNELNAME

This needs to be present in the kernel config file in order toucametwork data with tcpdump(1). Be sure to run
config(8) after adding this, and rebuild and reinstall.

devi ce bpf

8 Maurer’s Universal Statistical Test (for block size=8 bit S)

You can find the same code at this link (http://www.geocitem/SiliconValley/Code/4704/uliscanc.txt).

| *
ULI SCAN. ¢ ---bl ocksi ze of 8
1 Cct 98
1 Dec 98
21 Dec 98 uliscan.c derived fromueli8.c

This version has // comments renoved for Sun cc

This inplements Ueli M Maurer’s "Universal Statistical Test for Random
Bit Generators" using L=8

Accepts a filenane on the conmand line; wites its results, with other

Independent Verification of IPsec Functionality in FreeBSD

info, to stdout.
Handl es input file exhaustion gracefully.

Ref: J. Cryptology v 5 no 2, 1992 pp 89-105
al so on the web sonewhere, which is where | found it.

-David Honi g
honi g@&prynet. com

Usage:

ULI SCAN fi | enane

out puts to stdout
*/

#define L 8

#define V (1<<L)
#define Q (10+V)
#define K (100 *Q)
#def i ne MAXSAMP (Q + K)

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

int main(argc, argv)
int argc;
char *xargv;
{
FILE *=fptr;
int i,j;
int b, c;
int table[V];
doubl e sum = 0. 0;
int iproduct = 1,
int run;

extern doubl e | og(/* double x =*/);
printf("Uiscan 21 Dec 98 \nL=% % % \n", L, V, MAXSAWP);

if (argc < 2) {
printf("Usage: Uiscan filenane\n");
exit(-1);
} else {
printf("Measuring file %\n", argv[1]);
}

fptr = fopen(argv[1],"rb");

if (fptr == NULL) {
printf("Can't find %\n", argv[1]);
exit(-1);

}

Independent Verification of IPsec Functionality in FreeBSD

for (i =0; i <V, i++) {
table[i] = O;
}

for (i =0; i <Q i++) {
b = fgetc(fptr);
table[b] =1i;

}

printf("lnit done\n");
printf("Expected value for L=8 is 7.1836656\n");
run = 1;

while (run) {
sum = 0. 0;
i product = 1;

if (run)
for (i = Q@ run & i < Q+ K, i++) {
o=
b = fgetc(fptr);

if (b<0)
run = 0;

if (run) {
if (table[b] > j)
j += K
sum += | og((doubl e) (j-table[b]));
table[b] =1i;
}

if (!run)

printf("Premature end of file; read % bl ocks.\n",

sum = (sunm ((double)(i - Q)) / log(2.0);
printf("%. 4f ", sum;

for (i =0; i < (int)(sum8.0 + 0.50); i++)

printf("-");
printf("\n");
[+ refill initial table */
if (0) {

for (i =0; i <Q i++) {
b = fgetc(fptr);

Q;

Independent Verification of IPsec Functionality in FreeBSD

if (b<0) {
run = 0;

} else {
table[b] =1i;

	1 The Problem
	2 The Solution
	2.1 MUST
	2.2 Tcpdump

	3 The Experiment
	4 Caveat
	5 IPsecDefinition
	6 Installing IPsec
	7 src/sys/i386/conf/KERNELNAME
	8 Maurer's Universal Statistical Test (for block size=8 bits)

