FreeBSD Architecture Handbook

The FreeBSD Documentation Project

FreeBSD Architecture Handbook

by The FreeBSD Documentation Project

Published $FreeBSD: head/en_US.1ISO8859-1/books/antbdook/book.xml 41680 2013-05-19 04:25:40Z eadler
$

Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 20023ZX he FreeBSD Documentation Project

Welcome to the FreeBSD Architecture Handbook. This marsuabhiork in progressand is the work of many
individuals. Many sections do not yet exist and some of thibaedo exist need to be updated. If you are interested
in helping with this project, send email to the FreeBSD doeuntation project mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebdde).

The latest version of this document is always available ftioenFreeBSD World Wide Web server
(http://www.FreeBSD.org/index.html). It may also be ddeaded in a variety of formats and compression options
from the FreeBSD FTP server (ftp://ftp.FreeBSD.org/pue@BSD/doc/) or one of the numerous mirror sites
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/boo&rttbook/mirrors-ftp.html).

FreeBSD is a registered trademark of the FreeBSD Foundation

UNIX is a registered trademark of The Open Group in the Un8&ates and other countries.

Apple, AirPort, FireWire, Mac, Macintosh, Mac OS, Quickémand TrueType are trademarks of Apple Computer, Inc.stegid in the United
States and other countries.

Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Wingds Media and Windows NT are either registered trademarksadetmarks of
Microsoft Corporation in the United States and/or othemtoas.

Many of the designations used by manufacturers and selilistinguish their products are claimed as trademarks.révihese designations
appear in this document, and the FreeBSD Project was awdlne tfademark claim, the designations have been followettido§y™" or the “®”
symbol.

Copyright

Redistribution and use in source (XML DocBook) and 'comgiitorms (XML, HTML, PDF, PostScript, RTF and so forth) with without
modification, are permitted provided that the following ditions are met:

1. Redistributions of source code (XML DocBook) must rethi@ above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file wdified.

2. Redistributions in compiled form (transformed to oth@i3, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, thiofi conditions and the following disclaimer in the
documentation and/or other materials provided with th&idigtion.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Table of Contents

I = o 1= TSP SRTTSRPTRPTRN viii
1 Bootstrapping and Kernel INitialiZation..............c.uuviiiiiic i ceereeee e e e e e s e e e e e 1
Y T 1 SRRSO 1.
L2 OVEBIVIBW. ...ttt ettt ettt et e a ke e e ek kbt e e e ok bt e e e anbe et e e e skt eense e e e anbbeeeesnbeeeensnbneeeenas 1.
RS 21 (@ 1S3 = 1 PP PR 2.
oo T 10 Y = o = 2.
G oo T 1 w2 = o = 3.
O] [0 To (= g r= o = TP PPRTRRT 5.
1.7 KerNel INIHANZAION.cciiiiiieee ettt e e e e e e eaeb e e e e annnnnnsreeaaaeeead 6
2 LOCKING NOTES. ...ttt ettt oo oo e ettt ettt e e e e e ettt bttt e e e e e ambeeeeeaeeesaamnbbneeaaaaaeeeaannnes 14
2.1 MUBEXES ..ot 14
2.2 Shared EXCIUSIVE LOCKS.......cciiiiiiiiiiieie ettt ettt e e e e e s be e e e ennneeeee e 17
2.3 Atomically Protected Variables.............c.uuueiiiiiii e 17
Rl (] (1= K @] o] [=Tox (= TP R PP 18
TN A =14 a1 To] (oo Y AP PUPPPPRURRPR 18
I (o] oL@ o T=Tr= 1 1 o] o FE O RRTR R 18
RS U][aTo N 1] o PP PTPPTR 18
A THE JAIl SUDSYSIEIM. ...ttt ettt et e e e e s e s s bbb e e ee e aaanss bbb e e e aeeeeaaanneeneeeas 22
N ol 011 (=0t (1 =T P U T TP 22
A =] 1 [ox 1o o =SSP RP T 27
5 The SYSINIT FramMEWOTK.ccoi ittt e e e e e e e e bbb e e e e e e s esbbeeeeeaae e e e snnen 33
L0 A 1= 2T o] o T V2SS 33
IS S 1| IO o= - o) PSS 33
IR]V S 2] 1 S 33
6 The TrustedBSD MAC FramMEWOLKeiiiiiiiiiieiiiiie ettt reee e st e e st e e e st e e e s aneeeeesameeesane 36
6.1 MAC Documentation COPYIIGRL...........ueiiiiiiiiiiiiiir e e e e e e s e e e e e e e s e nnnns 36
L7 0] o 1 L OSSR 36
(SRS B a1 0T 0T i o WSRO PR 36
LS =] o YA = 7= Tod (o | £ 10] o OSSR 37
6.5 MAC Framework Kernel ArChItECIULE.eiii it 37.
6.6 MAC POIICY ArCHITECIUIE.ei i i it e e e e e e s e e e e e e e e e e e e e e e eeeseneeees 41
6.7 MAC Policy Entry POINt REFEIENCE.........oiiieieeie e e 44.
6.8 USerland ArChItECIULE.oiiuiiiiiie ettt e e et e e e e 97
LSS @0 [od 013 o] o PSPPSRI 98
AL (0 AV 1= Lo T V3) (= 0 SRR 929
7.1 Management of Physical MEMOIYHR PAgE_Teuuiiiieiiiiiiiiiiiiiiee e et eeesie e e e e 99
7.2 The Unified Buffer Cachewmn_0bJECt Toeiviiiiiiiiiiiiiiiiiiiiiiiiieieiiissamne e seeeersesrannrnrnnnrnnnns 99
7.3 FIlesystem I/O-StruCt DUF ..ottt e e e et e e e e e e e e eeeeas 100
7.4 Mapping Page Tableswn_map_t, VIN_ENIY T ..o ee e 100
7.5 KVM MEMOTY MAPPING....cceeiiiiitiiieeieeee ettt e e e e emet e e e e e e bbb e e e e aeeeeaaaabnbbeeeeeaesaaanneaaaaens 100
7.6 Tuning the FreeBSD VM SYSTEIMNL.......ciiiiiiiiiie ettt e e e e e eee s 101
8 SMPNQ DESIGN DOCUMIBNL......itie ettt e e e ettt e e e e e e s e e aabbbe e e e e e aaaaasseeaaaeeeaaannes 103
S0 1o To VT4 o] 4 T RT TR 103
8.2 Basic Tools and Locking FUNamENtalS............coooiiiiiiiiiiiie e 103
8.3 General ArchiteCture and DESIGIN.ccooiaiiiiiiiiiiii et e e e e e e e e e e neee 104

8.4 SPECIfiIC LOCKING STIAtEQIES.ciiiiiiiiiiiiiiie ettt ee ettt e e e e e e be e e e e e e e e s e nnebeeeeaaaans 107

8.5 IMPIEMENTAtION NOLES.......oiiiiiiiiiiee ettt e e e e e e s e b e e eeesnnnebees 111

8.6 MISCEIIANEOUS TOPICS. .. utttteeiieeeee ittt e e e e e et e ee e e e s st bbbttt e e e e e e s e e nnbe s b e e e e e e e s eannmeeaeeeaeaanns 113

(€1 (01 IT= VY TR PPRRRT P 113

L], DBVICE DI IVEI S ...oei ettt ettt e e st e e te e bt e s be e e ateeabeesbeeaaeesaeeesbeeebeesaeeeabe e beanseeeabeenbeeseeesbeenbannseesatesnbeenneessnean 116
9 WIiting FreeBSD DEVICE DIIVEIS. ...ccciiiiiiiiiieiet ettt ettt e e et e e e e e e e e e s ennb e e e e e e aaaesenees 117
1o I8 [a1 (Yo [V o3 1o T« N UPOPR 117

9.2 Dynamic Kernel Linker Facility - KLD.........ocuuiiiiiiieae e 117

0.3 CNANACIEI DBVICES. ... ettt reee e e e e ettt e e e e e e e et e e e e e e ee bt rraeaeeeeeeererannnns 118

9.4 BIOCK DEVICES (AF€ GOME)..... ittt e ee ettt e e e e esmet e e e e e et e e e e e e e e e e nnbbaeeeee e e emneees 122

0.5 NEIWOIK DIIVEIS . ..cvtttei e ettt e ettt e e e e e e e e ettt e e e e e ee et e e eeeeeeetaat e eeeeeserennmnsateaeseesrarannss 122

L0 ISA DEVICE DIIVEIS. . uu et ree e e e e e e e ettt e e e e e e e ee e e e e e e etebaa e aaaaaaeesessbbannseeeseserans 123
0 Y T 1 PSSR 123

10.2 BaASIC INTOMMALIONciiiiiiiiiiiieeiieieeeeiie ettt eeeeeeeeeeereessessseesressssasbabssssssasssssnnnnnsssssessrennres 123

O B0 LoV Tot T B o1] (= S 125

10.4 Configuration File and the Order of Identifying and RngtDuring Auto-Configuration......... 125

L0.5 RESOUICES ... cteiiti et e ettt e e e ettt e e eeeeee e e et e e e e e eeetaaa e s eeeeeeteaa e seeeeeeaneessaaan s eeeeeestnrnnsaees 127

10.6 BUS MEMOTY MaAPPING. . .eeeeeeiiuertereeateeeessistteteeeresessaasnreeeeesessansssseeeseeeeesssssnsseseeeeesnanaseeesees 130

L0, 7 DM A ittt ettt ettt ittt ———————————————————tttttttttattta———————————————— 136

ORI N [T T o (o o =SS 138

ORI R [T Y- L= (o PSSR 144
O 0I5 1= o 1= = Lo o R 147
0 0 o G 1= W= 101 [Yo R 147
L0 2 | | 1 S PR 148

B O I DT T 149
11.1Probe and Attach........cooooo i 149

L11.2 BUS RESOUICES ... ittt e et e e ettt e et eee e e e e e e e et e e e e ata e e e eat e eata e e e ttaaaeesnsaanesetnaeesrnnns 153

12 Common Access Method SCSI CONIOIBLSu.ui it 157
2 Y To] o1 F PR T PP PPPRRT 157

12.2 GeNeral ArCIITECIUIE.uuiii e e e e et e eeeaeaeeeeesebanns 157

D2 B o] 1o o F RO TP PPPPT 174

12.4 ASYNCNTONOUS EVENLS.....ceiiiiiiiiiiiitie ittt ettt e e ettt e e e s e e sttt e e e e e e e nnb e e e e e eeneees 175

R [01 (=] ¢ €U o) £ T TP POPTPUPTPTPRRTPRRRPRN 176

12.6 EITOIS SUMIMALY......coiiiiiiiiiiii ettt ettt ettt ettt ettt et ettt e e e e e eeaaaeeaeaeaaaaees 182

12.7 TIMEOUL HANAIING ...ttt e e e e e e e be e e e e e e nneaeeeeas 183

L3 USB DBVICES. .. . ciieitiieii et e et e e e e e e e e e e ettt e e e e e e e e ettt aeeeee s e ttat e e eeeeasesaeetaaa e eessesbasaaeeeesesreans 184
G 70 I T 1o To [U Tex 1o] s DR PPRPRRR 184

13,2 HOSE CONIOIEIS. e et e e et e e e e e e e e et eraeaseeeeeebebaneens 185

13.3 USB DeVICE INfOrMAtION.......uiiiiiiieei et e et e e e e e e et nnnnns 187

13.4 Device Probe and AttaCh........oooi i ———— 188

13.5 USB Drivers ProtoCol INfOrMation........cocooiiiiiiiiiiiiieieee et 189

B N Y o] 3RS 192
i B LY oI D 41V ST 192

14.2 OVervieW Of NBWDUS......cooiiiiiiieiiieeec e 192
TA.BINEWDUS AP 195

HES IS Yo 10 o IS 0153 V2] (= o o SRR 197
S0 [(o o [Tt 1o T4 D PPRPRPPPPPPPPPPIRt 197

T][T PP PP PP TPPPRPTPI 197

15.3 Probing, AttaChiNg, 1.ccuiii ittt e e ee e e e et e e e e e e e s et e e e e e anne 197

SRR [(=T = ol T O PPPPU P PP PUPPRN 198

(NSl O 0= 1 F T PP U PP UUPRRUPROPPN 204

16.1 AAING @ DBVICEceiiiiieiitet ettt e ettt e e e e e e e e ea bbbt et et e e e e e e e bebbe e e e e nbasbeeeeaaaens 204

TN o] o 1= g o TSSOSO 209
2110 [Te o [ic=T o] 1) V2T SRTRT TP 210

vi

List of Tables

2t N 1 (G 1 15
2-2. Shared EXCIUSIVE LOCK LIST.......iiiiiiiieiiiii et ee et e e e e s e et s e e e s e e e aa e e e e s ee s saenanasn e e e s senebannens 17

Vii

|. Kernel

Chapter 1 Bootstrapping and Kernel
Initialization

Contributed by Sergey Lyubka.

1.1 Synopsis

This chapter is an overview of the boot and system initiéitiraprocess, starting from the BIOS (firmware) POST, to
the first user process creation. Since the initial stepsstksy startup are very architecture dependent, the I1A-32
architecture is used as an example.

1.2 Overview

A computer running FreeBSD can boot by several methodsyudhthe most common method, booting from a
harddisk where the OS is installed, will be discussed herne.bbot process is divided into several steps:

« BIOS POST
- boot0 stage
- boot2 stage
- loader stage
« kernel initialization

Theboot0 andboot2 stages are also referred tolamtstrap stages 1 andi boot(8) as the first steps in FreeBSD'’s
3-stage bootstrapping procedure. Various informatiomiigt@d on the screen at each stage, so you may visually
recognize them using the table that follows. Please notdfaactual data may differ from machine to machine:

Output (may vary) BIOS (firmware) messages
F1 FreeBSD F2 BSD F5 Disk 2 boot0
>>FreeBSD/i386 BOOT boot2 a

Default: 1:ad(1,a)/boot/loader boot:

BTX loader 1.0 BTX version is 1.01 loader

BIOS drive A: is diskO

BIOS drive C: is diskl

BIOS 639kB/64512kB available memory

FreeBSD/i386 bootstrap loader, Revision 0.8

Console internal video/keyboard

(ijkh@bento.freebsd.org, Mon Nov 20 11:41:23 GMT 2000)

/kernel text=0x1234 data=0x2345 syms=[0x4+0x3456]

Hit [Enter] to boot immediately, or any other key for command prompt
Booting [kernel] in 9 seconds..._

Chapter 1 Bootstrapping and Kernel Initialization

Copyright (c) 1992-2002 The FreeBSD Project. kernel
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992 , 1993, 1994
The Regents of the University of California. All rights rese rved.

FreeBSD 4.6-RC #0: Sat May 4 22:49:02 GMT 2002
devnull@kukas:/usr/obj/usr/src/sys/DEVNULL
Timecounter "i8254" frequency 1193182 Hz

Notes:
a. This prompt will appear if the user presses a key just aétecting an OS to boot at theot0 stage.

1.3 BIOS POST

When the PC powers on, the processor’s registers are san®@@defined values. One of the registers is the
instruction pointeregister, and its value after a power on is well defined: it32 it value of Oxfffffff0. The
instruction pointer register points to code to be executethb processor. One of the registers isdtte 32-bit

control register, and its value just after the reboot is Oe @hthe cr0’s bits, the bit PE (Protection Enabled) indisate
whether the processor is running in protected or real modeeSit boot time this bit is cleared, the processor boots
in real mode. Real mode means, among other things, that Emebphysical addresses are identical.

The value of OxfffffffO is slightly less then 4Gb, so unlebgtmachine has 4Gb physical memory, it cannot pointto a
valid memory address. The computer’s hardware translaigeaddress so that it points to a BIOS memory block.

BIOS stands foBasic Input Output Systerand it is a chip on the motherboard that has a relatively lssnabunt of
read-only memory (ROM). This memory contains various lewel routines that are specific to the hardware
supplied with the motherboard. So, the processor will firstp to the address OxfffffffO, which really resides in the
BIOS’s memory. Usually this address contains a jump insimado the BIOS’s POST routines.

POST stands foPower On Self TesT his is a set of routines including the memory check, sydtamcheck and
other low-level stuff so that the CPU can initialize the cartgs properly. The important step on this stage is
determining the boot device. All modern BIOS's allow the bdevice to be set manually, so you can boot from a
floppy, CD-ROM, harddisk etc.

The very last thing in the POST is theT 0x19 instruction. That instruction reads 512 bytes from the festtor of
boot device into the memory at address 0x7c00. The festrsectororiginates from harddrive architecture, where
the magnetic plate is divided to a number of cylindrical ksacTracks are numbered, and every track is divided by a
number (usually 64) sectors. Track number 0 is the outeroto#te magnetic plate, and sector 1, the first sector
(tracks, or, cylinders, are numbered starting from O, batass - starting from 1), has a special meaning. It is also
called Master Boot Record, or MBR. The remaining sectorsherfitst track are never uséd

1.4 boot 0 Stage

Take a look at the filéboot/boot0 . This is a small 512-byte file, and it is exactly what FreeBSiDstallation
procedure wrote to your harddisk’s MBR if you chose the “Ino@hager” option at installation time.

As mentioned previously, th&lT 0x19 instruction loads an MBR, i.e., th®ot0 content, into the memory at
address 0x7c00. Taking a look at the files/boot/i386/boot0/boot0.S can give a guess at what is happening
there - this is the boot manager, which is an awesome piecadef written by Robert Nordier.

Chapter 1 Bootstrapping and Kernel Initialization

The MBR, or,boot0 , has a special structure starting from offset Ox1be, caliegartition table It has 4 records of
16 bytes each, callgghrtition records which represent how the harddisk(s) are partitionedndfreeBSD’s
terminology, sliced. One byte of those 16 says whether dtipar{slice) is bootable or not. Exactly one record must
have that flag set, otherwiseot0 's code will refuse to proceed.

A partition record has the following fields:

- the 1-byte filesystem type

- the 1-byte bootable flag

- the 6 byte descriptor in CHS format
- the 8 byte descriptor in LBA format

A partition record descriptor has the information about mehtexactly the partition resides on the drive. Both
descriptors, LBA and CHS, describe the same informationirbdifferent ways: LBA (Logical Block Addressing)
has the starting sector for the partition and the partiidength, while CHS (Cylinder Head Sector) has coordinates
for the first and last sectors of the partition.

The boot manager scans the partition table and prints the imethe screen so the user can select what disk and
what slice to boot. By pressing an appropriate kept0 performs the following actions:

- modifies the bootable flag for the selected partition to makedatable, and clears the previous
- saves itself to disk to remember what partition (slice) heesbselected so to use it as the default on the next boot
- loads the first sector of the selected partition (slice) m&mory and jumps there

What kind of data should reside on the very first sector of d@ddale partition (slice), in our case, a FreeBSD slice?
As you may have already guessed, ibi®t2 .

1.5 boot 2 Stage

You might wonder, whyoot2 comes afteboot0 , and not bootl. Actually, there is a 512-byte file cabbedtl in
the directoryboot as well. It is used for booting from a floppy. When booting frarfloppy,bootl plays the same
role asboot0 for a harddisk: it locateboot2 and runs it.

You may have realized that a filkoot/mbr exists as well. It is a simplified version béot0 . The code irmbr
does not provide a menu for the user, it just blindly bootstieition marked active.

The code implementinigoot2 resides irsys/boot/i386/boot2/ , and the executable itself is iboot . The files
boot0 andboot2 that are inboot are not used by the bootstrap, but by utilities such@x0cfg. The actual
position forboot0 is in the MBR. Forboot2 it is the beginning of a bootable FreeBSD slice. These looatare not
under the filesystem’s control, so they are invisible to cands likels.

The main task foboot2 is to load the filgboot/loader , which is the third stage in the bootstrapping procedure.
The code irboot2 cannot use any services likpen() andread() , since the kernel is not yet loaded. It must scan
the harddisk, knowing about the filesystem structure, fiedita /boot/loader , read it into memory using a BIOS
service, and then pass the execution to the loader’s eniny. po

Besides thatyoot2 prompts for user input so the loader can be booted from éifiiedisk, unit, slice and partition.

Theboot2 binary is created in special way:

Chapter 1 Bootstrapping and Kernel Initialization

sys/boot/i386/boot2/Makefile:
boot2.ld: boot2.Idr boot2.bin ${BTXKERN}
btxld -v -E ${ORG2} -f bin -b ${BTXKERN} -l boot2.ldr \
-0 ${. TARGET} -P 1 boot2.bin

This Makefile snippet shows that btxld(8) is used to link thaby. BTX, which stands for BooT eXtender, is a piece
of code that provides a protected mode environment for tbgrpm, called the client, that it is linked with. So
boot2 is a BTX client, i.e., it uses the service provided by BTX.

Thebtxld utility is the linker. It links two binaries together. Thefigirence between btxId(8) and 1d(1) is thdt
usually links object files into a shared object or executablele btxld links an object file with the BTX, producing
the binary file suitable to be put on the beginning of the gartifor the system boot.

boot0 passes the execution to BTX’s entry point. BTX then switdhesprocessor to protected mode, and prepares
a simple environment before calling the client. This inelsd

- virtual v86 mode. That means, the BTX is a v86 monitor. Readleiastructions like pushf, popf, cli, sti, if called
by the client, will work.

- Interrupt Descriptor Table (IDT) is set up so all hardwareirupts are routed to the default BIOS'’s handlers, and
interrupt Ox30 is set up to be the syscall gate.

- Two system callsexec andexit , are defined:

sys/boot/i386/btx/lib/btxsys.s:

.set INT_SYS,0x30 # Interrupt number

#
System call: exit
#
__exit: xorl %eax,%eax # BTX system
int $INT_SYS # call 0x0
#
System call: exec
#
__exec: movl $0x1,%eax # BTX system
int $INT_SYS # call Ox1
BTX creates a Global Descriptor Table (GDT):
sys/boot/i386/btx/btx/btx.s:
gdt: .word 0x0,0x0,0x0,0x0 # Null entry
.word Oxffff,0x0,0x9a00,0xcf # SEL _SCODE
.word Oxffff,0x0,0x9200,0xcf # SEL_SDATA
.word Oxffff,0x0,0x9a00,0x0 # SEL RCODE
.word Oxffff,0x0,0x9200,0x0 # SEL_RDATA
.word Oxffff, MEM_USR,0xfa00,0xcf# SEL_UCODE
.word Oxffff, MEM_USR,0xf200,0xcf# SEL_UDATA

.word _TSSLM,MEM_TSS,0x8900,0x0 # SEL_TSS

The client’s code and data start from address MEM_USR (0&p@hd a selector (SEL_UCODE) points to the
client’s code segment. The SEL_UCODE descriptor has DascrPrivilege Level (DPL) 3, which is the lowest
privilege level. But theNT 0x30 instruction handler resides in a segment pointed to by tHe SEODE
(supervisor code) selector, as shown from the code thatesrea IDT:

mov $SEL_SCODE,%dh # Segment selector

Chapter 1 Bootstrapping and Kernel Initialization

init.2: shr %bx # Handle this int?
jnc init.3 # No
mov %ax,(%di) # Set handler offset
mov %dh,0x2(%di) # and selector
mov %dl,0x5(%di) # Set P:DPL:type
add $0x4,%ax # Next handler

So, when the client calls exec() , the code will be executed with the highest privileges. Hilimws the kernel to
change the protected mode data structures, such as pagg @HBIT, IDT, etc later, if needed.

boot2 defines an important structurguct bootinfo . This structure is initialized bigoot2 and passed to the
loader, and then further to the kernel. Some nodes of thistsires are set biyoot2 , the rest by the loader. This
structure, among other information, contains the kernehéime, BIOS harddisk geometry, BIOS drive number for
boot device, physical memory availabéayvp pointer etc. The definition for it is:

/usr/include/machine/bootinfo.h:
struct bootinfo {

u_int32_t bi_version;
u_int32_t bi_kernelname; / * represents a char * %/
u_int32_t bi_nfs_diskless; / * struct nfs_diskless * %/

/= End of fields that are always present. */

#define bi_endcommon bi_n_bios_used
u_int32_t bi_n_bios_used;
u_int32_t bi_bios_geom[N_BIOS_GEOM];
u_int32_t bi_size;
u_int8 t bi_memsizes valid;
u_int8_t bi_bios_dev; / * bootdev BIOS unit number */
u_int8_t bi_pad[2];
u_int32_t bi_basemem;
u_int32_t bi_extmem;
u_int32_t bi_symtab; / * struct symtab * %/
u_int32_t bi_esymtab; / * struct symtab * %/

/ * Items below only from advanced bootloader */
u_int32_t bi_kernend; / * end of kernel space */
u_int32_t bi_envp; / * environment */
u_int32_t bi_modulep; / * preloaded modules */

h

boot2 enters into an infinite loop waiting for user input, then salhd() . If the user does not press anything, the
loop breaks by a timeout, $ead() will load the default file {ooot/loader). Functionsno_t lookup(char
~filename) andint xfsread(ino_t inode, void *puf, size_t nbyte) are used to read the content of a
file into memory/boot/loader is an ELF binary, but where the ELF header is prepended watht'a struct

exec structureload() scans the loader’s ELF header, loading the contefitoaf/loader into memory, and
passing the execution to the loader’s entry:

sys/boot/i386/boot2/boot2.c:
__exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
MAKEBOOTDEV(dev_maj[dsk.type], 0, dsk.slice, dsk.unit, dsk.part),
0, 0, 0, VTOP(&bootinfo));

Chapter 1 Bootstrapping and Kernel Initialization

1.6 loader Stage

loader is a BTX client as well. | will not describe it here in detalgre is a comprehensive manpage written by
Mike Smith, loader(8). The underlying mechanisms and BT Xeandiscussed above.

The main task for the loader is to boot the kernel. When theddés loaded into memory, it is being called by the
loader:

sys/boot/common/boot.c:
/= Call the exec handler from the loader matching the kernel */
module_formats[km->m_loader]->|_exec(km);

1.7 Kernel Initialization

Let us take a look at the command that links the kernel. Thishelp identify the exact location where the loader
passes execution to the kernel. This location is the kesraetual entry point.

sys/conf/Makefile.i386:

Id -elf -Bdynamic -T /usr/src/sys/conf/ldscript.i386 -ex port-dynamic \
-dynamic-linker /red/herring -o kernel -X locore.o \

<lots of kernel .o files>

A few interesting things can be seen here. First, the kesrah iELF dynamically linked binary, but the dynamic
linker for kernel is/red/herring , which is definitely a bogus file. Second, taking a look at tlee fi
sys/conf/ldscript.i386 gives an idea about whht options are used when compiling a kernel. Reading
through the first few lines, the string

sys/conf/ldscript.i386:
ENTRY (btext)

says that a kernel's entry point is the symbol ‘btext’. Thimol is defined inocore.s
sys/i386/i386/locore.s:

text

/ * * kkkkkkkkkkkkkkkkkkk

*

* This is where the bootblocks start us, set the ball rolling..

*/
NON_GPROF_ENTRY (btext)
First, the register EFLAGS is set to a predefined value of 0900002. Then all the segment registers are initialized:

sys/i386/i386/locore.s:

/= Don't trust what the BIOS gives for eflags. */
pushl $PSL_KERNEL
popfl
| *
* Don't trust what the BIOS gives for %fs and %gs. Trust the boot strap
* to set %cs, %ds, %es and %ss.
*/

Chapter 1 Bootstrapping and Kernel Initialization

mov %ds, %ax
mov %ax, %fs
mov %ax, %gs
btext calls the routinecover_bootinfo() , identify_cpu() , Create_pagetables() , which are also

defined inlocore.s . Here is a description of what they do:

recover_bootinfo This routine parses the parameters to the kernel passed
from the bootstrap. The kernel may have been booted in
3 ways: by the loader, described above, by the old disk
boot blocks, or by the old diskless boot procedure. This
function determines the booting method, and stores the
struct bootinfo structure into the kernel memory.

identify_cpu This functions tries to find out what CPU it is running
on, storing the value found in a variablepu .

create_pagetables This function allocates and fills out a Page Table
Directory at the top of the kernel memory area.

The next steps are enabling VME, if the CPU supports it:

testt $CPUID_VME, R(_cpu_feature)

iz 1f

movl %crd, %eax

orl $CR4_VME, %eax
movl %eax, %crd

Then, enabling paging:

/* Now enable paging */
movl R(_IdlePTD), %eax

mov!l %eax,%cr3 / * load ptd addr into mmu x [
movl %cr0,%eax / = get control word */

orl $CRO_PE|CRO_PG,%eax / * enable paging */

movl %eax,%cr0 / » and let's page NOW! */

The next three lines of code are because the paging was sk gomp is needed to continue the execution in
virtualized address space:

pushl $begin / * jump to high virtualized address */
ret

/* now running relocated at KERNBASE where the system is linked to run */
begin:

The functioninit386() is called with a pointer to the first free physical page, aftatmi_startup() . init386

is an architecture dependent initialization function, amdstartup() is an architecture independent one (the 'mi_
prefix stands for Machine Independent). The kernel nevarmstfrommi_startup() , and by calling it, the kernel
finishes booting:

sys/i386/i386/locore.s:
movl physfree, %esi

Chapter 1 Bootstrapping and Kernel Initialization

pushl %esi [+ value of first for init386(first) */
call _init386 / * wire 386 chip for unix operation */
call _mi_startup / * autoconfiguration, mountroot etc */
hit [= never returns to here */

1.7.1i ni t 386()

init386() is defined insys/i386/i386/machdep.c and performs low-level initialization specific to the i386
chip. The switch to protected mode was performed by the loddhe loader has created the very first task, in which
the kernel continues to operate. Before looking at the coalesider the tasks the processor must complete to
initialize protected mode execution:

- Initialize the kernel tunable parameters, passed from tlodsrapping program.
- Prepare the GDT.

« Prepare the IDT.

- Initialize the system console.

- Initialize the DDB, if it is compiled into kernel.

« Initialize the TSS.

« Prepare the LDT.

« Set up procQ’s pchb.

init386() initializes the tunable parameters passed from bootsiraetiing the environment pointer (envp) and
callinginit_param1() . The envp pointer has been passed from loader ibdhénfo structure:

sys/i386/i386/machdep.c:
kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;

/ = Init basic tunables, hz etc * [
init_param1();

init_param1() is defined insys/kern/subr_param.c . That file has a number of sysctls, and two functions,
init_param1() andinit_param?2() , that are called frormit386()

sys/kern/subr_param.c:
hz = HZ;
TUNABLE_INT_FETCH("kern.hz", &hz);

TUNABLE_<typename> FETCH is used to fetch the value fromehvironment:

lusr/src/sys/sys/kernel.h:
#define TUNABLE_INT_FETCH(path, var) getenv_int((path) , (var))

Sysctlkern.hz is the system clock tick. Additionally, these sysctls artebsgnit_param1()
kern.maxswzone, kern.maxbcache, kern.maxtsiz, kern.dfl dsiz, kern.maxdsiz,
kern.dflssiz, kern.maxssiz, kern.sgrowsiz

Theninit386() prepares the Global Descriptors Table (GDT). Every taskrox8® is running in its own virtual
address space, and this space is addressed by a segmenpaiffsSay, for instance, the current instruction to be
executed by the processor lies at CS:EIP, then the linemiabimddress for that instruction would be “the virtual

Chapter 1 Bootstrapping and Kernel Initialization

address of code segment CS” + EIP. For convenience, segbegitsat virtual address 0 and end at a 4Gb boundary.
Therefore, the instruction’s linear virtual address fas ixample would just be the value of EIP. Segment registers
such as CS, DS etc are the selectors, i.e., indexes, into @BE (more precise, an index is not a selector itself, but
the INDEX field of a selector). FreeBSD’s GDT holds descriptior 15 selectors per CPU:

sys/i386/i386/machdep.c:
union descriptor gdt{NGDT * MAXCPU]; /=* global descriptor table */

sys/i386/include/segments.h:

| *

* Entries in the Global Descriptor Table (GDT)

*/

#define GNULL_SEL 0 / * Null Descriptor */

#define GCODE_SEL 1 / * Kernel Code Descriptor */

#define GDATA_SEL 2 | = Kernel Data Descriptor */

#define GPRIV_SEL 3 |/ +* SMP Per-Processor Private Data */
#define GPROCO_SEL 4 | * Task state process slot zero and up */
#define GLDT_SEL 5 /| = LDT - eventually one per process */
#define GUSERLDT_SEL 6 | * User LDT =/

#define GTGATE_SEL 7 / = Process task switch gate */

#define GBIOSLOWMEM_SEL 8 /* BIOS low memory access (must be entry 8) */
#define GPANIC_SEL 9 | =+ Task state to consider panic from */
#define GBIOSCODE32_SEL 10 / = BIOS interface (32bit Code) */

#define GBIOSCODE16_SEL 11 / = BIOS interface (16bit Code) */

#define GBIOSDATA_SEL 12 [* BIOS interface (Data) */

#define GBIOSUTIL_SEL 13 / = BIOS interface (Utility) */

#define GBIOSARGS_SEL 14 / = BIOS interface (Arguments) */

Note that those #defines are not selectors themselves,dbat field INDEX of a selector, so they are exactly the
indices of the GDT. for example, an actual selector for thaé&kcode (GCODE_SEL) has the value 0x08.

The next step is to initialize the Interrupt Descriptor D T). This table is referenced by the processor when a
software or hardware interrupt occurs. For example, to naadestem call, user application issuesitiie 0x80
instruction. This is a software interrupt, so the processgmrdware looks up a record with index 0x80 in the IDT.
This record points to the routine that handles this interrimghis particular case, this will be the kernel’s syscall
gate. The IDT may have a maximum of 256 (0x100) records. Theeckallocates NIDT records for the IDT, where
NIDT is the maximum (256):

sys/i386/i386/machdep.c:
static struct gate_descriptor idtO[NIDT];
struct gate_descriptor *jdt = &IidtO[0]; / * interrupt descriptor table */

For each interrupt, an appropriate handler is set. The Bygate forINT 0x80 is set as well:

sys/i386/i386/machdep.c:
setidt(0x80, &IDTVEC(int0x80_syscall),
SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));

So when a userland application issuesItie 0x80 instruction, control will transfer to the function
_Xint0Ox80_syscall , which is in the kernel code segment and will be executed sufhervisor privileges.

Console and DDB are then initialized:

Chapter 1 Bootstrapping and Kernel Initialization

sysl/i386/i386/machdep.c:

cninit();
/= skipped */
#ifdef DDB

kdb_init();

if (boothowto & RB_KDB)

Debugger("Boot flags requested debugger");

#endif

The Task State Segment is another x86 protected mode s&utite TSS is used by the hardware to store task
information when a task switch occurs.

The Local Descriptors Table is used to reference userladd and data. Several selectors are defined to point to the
LDT, they are the system call gates and the user code andelatiass:

Jusr/include/machine/segments.h:

#define LSYS5CALLS_SEL 0 | = forced by intel BCS */

#define LSYS5SIGR_SEL 1

#define L43BSDCALLS_SEL 2 [* notyet x/

#define LUCODE_SEL 3

#define LSOL26CALLS_SEL 4 / * Solaris >= 2.6 system call gate */
#define LUDATA_SEL 5

| = separate stack, es,fs,gs sels ? */

[= #define LPOSIXCALLS_SEL 5 =/ / * notyet =/

#define LBSDICALLS_SEL 16 |/ + BSDI system call gate */

#define NLDT (LBSDICALLS_SEL + 1)

Next, procQ’s Process Control Blocktiuct pcb) structure is initialized. procO isstruct proc structure that
describes a kernel process. It is always present while threekis running, therefore it is declared as global:

sys/kern/kern_init.c:
struct proc procO;

The structurestruct pcb is a part of a proc structure. It is defined/isr/include/machine/pch.h and has a
process’s information specific to the i386 architecturehsas registers values.

1.7.2m startup()

This function performs a bubble sort of all the system iti&tion objects and then calls the entry of each object one
by one:

sys/kern/init_main.c:

for (sipp = sysinit; *sipp; sipp++) {
/* ... skipped ... */
/* Call function */
(*((*sipp)->func))((* sipp)->udata);
/* ... skipped ... */
}

10

Chapter 1 Bootstrapping and Kernel Initialization

Although the sysinit framework is described in the Develspelandbook
(http://www.FreeBSD.org/doc/en_US.1ISO8859-1/bookeétopers-handbook), | will discuss the internals of it.

Every system initialization object (sysinit object) is ated by calling a SYSINIT() macro. Let us take as example an
announce Sysinit object. This object prints the copyright message:

sys/kern/init_main.c:

static void
print_caddr_t(void *data __unused)
{

printf("%s", (char *)data);
}

SYSINIT(announce, SI_SUB_COPYRIGHT, SI_ORDER_FIRST, pr int_caddr_t, copyright)

The subsystem ID for this object is SI_SUB_COPYRIGHT (0x0@&01), which comes right after the
SI_SUB_CONSOLE (0x0800000). So, the copyright messadéwiprinted out first, just after the console
initialization.

Let us take a look at what exactly the ma&woSINIT() does. It expands to@ SYSINIT() macro. The

C_SYSINIT() macro then expands to a stadieuct sysinit structure declaration with anothBATA_SET
macro call:

Jusr/include/sys/kernel.h:

#define C_SYSINIT(uniquifier, subsystem, order, func, id ent) \
static struct sysinit uniquifier ## _sys_init = { \ subsyste m, \
order, \ func, \ ident \ }; \ DATA_SET(sysinit_set,uniquifi er ##
_Ssys_init);

#define SYSINIT(uniquifier, subsystem, order, func, iden t) \
C_SYSINIT(uniquifier, subsystem, order, \
(sysinit_cfunc_t)(sysinit_nfunc_t)func, (void *)ident)

TheDATA_SET() macro expands toMAKE_SET(), and that macro is the point where all the sysinit magic islérd

Jusr/include/linker_set.h:

#define MAKE_SET(set, sym) \
static void const * Cconst __ set ##fset## _sym_##tsym = &sym; \
__asm(".section .set." #set "\"am\""); \
__asm(".long " #sym); \

__asm(".previous")
#endif
#define TEXT_SET(set, sym) MAKE_SET(set, sym)
#define DATA_SET(set, sym) MAKE_SET(set, sym)

In our case, the following declaration will occur:

static struct sysinit announce_sys_init = {
S|_SUB_COPYRIGHT,
S|_ORDER_FIRST,
(sysinit_cfunc_t)(sysinit_nfunc_t) print_caddr _t,
(void) copyright

h

static void const *const __set_sysinit_set_sym_announce_sys_init =

11

Chapter 1 Bootstrapping and Kernel Initialization

&announce_sys_init;
__asm(".section .set.sysinit_set" "\"aw\"");
__asm(".long " "announce_sys_init");
__asm(".previous");

The first__asm instruction will create an ELF section within the kernebeeutable. This will happen at kernel link
time. The section will have the naneet.sysinit_set . The content of this section is one 32-bit value, the
address of announce_sys_init structure, and that is whatgbond asm is. The third__asm instruction marks the
end of a section. If a directive with the same section namered before, the content, i.e., the 32-bit value, will be
appended to the existing section, so forming an array ofiBgelinters.

Runningobjdump on a kernel binary, you may notice the presence of such seaibss:

% obj dunmp -h /kernel

7 .set.cons_set 00000014 ¢c03164cO0 ¢03164cO0 002154c0 2 ** 2
CONTENTS, ALLOC, LOAD, DATA
8 .set.kbddriver_set 00000010 c03164d4 ¢03164d4 002154d4 2%x 2
CONTENTS, ALLOC, LOAD, DATA
9 .set.scrndr_set 00000024 c03164e4 c03164e4 002154e4 2 ** 2
CONTENTS, ALLOC, LOAD, DATA
10 .set.scterm_set 0000000c c0316508 ¢c0316508 00215508 2 ** 2
CONTENTS, ALLOC, LOAD, DATA
11 .set.sysctl_set 0000097c c0316514 c0316514 00215514 2 ** 2
CONTENTS, ALLOC, LOAD, DATA
12 .set.sysinit_set 00000664 ¢0316e90 ¢0316e90 0021590 2 *x 2
CONTENTS, ALLOC, LOAD, DATA
This screen dump shows that the size of .set.sysinit_stbsés 0x664 bytes, sox664/sizeof(void *) sysinit
objects are compiled into the kernel. The other sectionk ascet.sysctl_set represent other linker sets.
By defining a variable of typstruct linker_set the content ofset.sysinit_set section will be “collected”

into that variable:

sys/kern/init_main.c:
extern struct linker_set sysinit_set; / * XXX */

Thestruct linker_set is defined as follows:

Jusr/include/linker_set.h:
struct linker_set {
int Is_length;
void *|s_items[1]; / * really Is_length of them, trailing NULL */
2

The first node will be equal to the number of a sysinit objeans] the second node will be a NULL-terminated array
of pointers to them.

Returning to theni_startup() discussion, it is must be clear now, how the sysinit objesaing organized. The
mi_startup() function sorts them and calls each. The very last objecesytstem scheduler:

Jusr/include/sys/kernel.h:

enum sysinit_sub_id {
SI_SUB_DUMMY = 0x0000000, / = not executed; for linker x [
SI_SUB_DONE = 0x0000001, | * processed =/

12

Chapter 1 Bootstrapping and Kernel Initialization

SI_SUB_CONSOLE = 0x0800000, | * console */
S|I_SUB_COPYRIGHT = 0x0800001, | = first use of console */
SI_SUB_RUN_SCHEDULER = Oxfffffff / * scheduler: no return */

k

The system scheduler sysinit object is defined in thesfisévm/vm_glue.c , and the entry point for that object is
scheduler() . That function is actually an infinite loop, and it represemprocess with PID 0, the swapper process.
The procO structure, mentioned before, is used to desdribe i

The first user process, call@tt, is created by the sysinit objeiait

sys/kern/init_main.c:
static void
create_init(const void *udata __unused)
{
int error;
int s;

s = splhigh();
error = fork1(&procO0, RFFDG | RFPROC, &initproc);
if (error)

panic("cannot fork init: %d\n", error);
initproc->p_flag |= P_INMEM | P_SYSTEM;
cpu_set_fork_handler(initproc, start_init, NULL);
remrunqueue(initproc);

splx(s);
}
SYSINIT(init,SI_SUB_CREATE_INIT, SI_ORDER_FIRST, crea te_init, NULL)
Thecreate_init() allocates a new process by callifogk1() , but does not mark it runnable. When this new
process is scheduled for execution by the schedulestéhieinit() will be called. That function is defined in
init_main.c . Ittries to load and exec theit binary, probingsbin/init first, then/sbin/oinit ,
/sbin/init.bak , and finally/stand/sysinstall

sys/kern/init_main.c:
static char init_path[MAXPATHLEN] =
#ifdef INIT_PATH
_ XSTRING(INIT_PATH);
#else
"/sbin/init:/sbin/oinit:/sbin/init.bak:/stand/sysin stall”;
#endif

Notes

1. Some utilities such as disklabel(8) may store the infdionan this area, mostly in the second sector.

13

Chapter 2 Locking Notes

This chapter is maintained by the FreeBSD SMP Next Gener&tioject.

This document outlines the locking used in the FreeBSD Keorgermit effective multi-processing within the
kernel. Locking can be achieved via several means. Datetstas can be protected by mutexes or lockmgr(9) locks.
A few variables are protected simply by always using atorpierations to access them.

2.1 Mutexes

A mutex is simply a lock used to guarantee mutual exclusipec8ically, a mutex may only be owned by one entity
at a time. If another entity wishes to obtain a mutex thatrisaaly owned, it must wait until the mutex is released. In
the FreeBSD kernel, mutexes are owned by processes.

Mutexes may be recursively acquired, but they are intendlee theld for a short period of time. Specifically, one
may not sleep while holding a mutex. If you need to hold a lozoss a sleep, use a lockmgr(9) lock.

Each mutex has several properties of interest:

Variable Name

The name of the struct mtx variable in the kernel source.

Logical Name
The name of the mutex assigned to itlg_init . This name is displayed in KTR trace messages and witness
errors and warnings and is used to distinguish mutexes iwitiness code.

Type

The type of the mutex in terms of th&TX » flags. The meaning for each flag is related to its meaning as
documented in mutex(9).

MTX_DEF
A sleep mutex

MTX_SPIN

A spin mutex

MTX_RECURSE

This mutex is allowed to recurse.

Protectees

A list of data structures or data structure members thatthiis/ protects. For data structure members, the name
will be in the form of structure nameenber nane.

14

Chapter 2 Locking Notes

Dependent Functions

Functions that can only be called if this mutex is held.

Table 2-1. Mutex List

Variable Name Logical Name Type Protectees Dependent
Functions

15

Chapter 2 Locking Notes

Variable Name Logical Name Type Protectees Dependent
Functions
sched_lock “sched lock” MTX_SPIN| _gmonparam, setrunqueue
MTX_RECURSE cnt.v_swtch remrunqueue
cp_time , mi_switch
curpriority , chooseproc

mtx.nt x_bl ocked, |schedclock
mtx.nt x_cont est ed| resetpriority ,

procp_procq, updatepri
procp_sl pq, maybe_resched ,
procp_sfl ag, cpu_switch
procp_st at, cpu_throw
procp_est cpu, need_resched ,
procp_cpti cks resched_wanted
procp_pct cpu, clear_resched
procp_wchan, aston , astoff
procp_wresg, astpending
procp_sw i ne, calcru
procp_sl pti ne, proc_compare
procp_runti ne,

procp_uu,

procp_su,

procp_i u,

procp_uti cks,
procp_sti cks,
procp_iticks,
procp_oncpu,
procp_l ast cpu,
procp_r gi ndex,
procp_hel dnt x,
procp_bl ocked,
procp_nt xnane,
procp_cont est ed,
procp_priority,
procp_usrpri,
procp_nati vepri,
procp_ni ce,
procp_rtprio,
pscnt |, slpque
itqueuebits ,
itqueues
rtqueuebits ,
rtqueues
queuebits
queues ,
idqueuebits
idqueues ,
switchtime
switchticks

16

Chapter 2 Locking Notes

Variable Name Logical Name Type Protectees Dependent
Functions
vm86pch_lock “vm86pch lock” MTX_DEF vm86pch vm86_bioscall
Giant “Giant” MTX_DEH nearly everything lots
MTX_RECURSE
callout_lock “callout lock” MTX_SPIN| callfree
MTX_ RECURSE callwheel ,
nextsoftcheck ,
procp_itcall out,
procp_sl pcal | out,
softticks , ticks

2.2 Shared Exclusive Locks

These locks provide basic reader-writer type functiopalitd may be held by a sleeping process. Currently they are
backed by lockmgr(9).

Table 2-2. Shared Exclusive Lock List

Variable Name Protectees

allproc_lock allproc zombproc pidhashtbl procp_li st
procp_hash nextpid

proctree_lock procp_chi |l dren procp_si bling

2.3 Atomically Protected Variables

An atomically protected variable is a special variable thaipot protected by an explicit lock. Instead, all data
accesses to the variables use special atomic operatioesastebd in atomic(9). Very few variables are treated this
way, although other synchronization primitives such asaxes are implemented with atomically protected variables.

« mtx.nt x_| ock

17

Chapter 3 Kernel Objects

Kernel Objects, oKobj provides an object-oriented C programming system for tleekeAs such the data being
operated on carries the description of how to operate orhit dllows operations to be added and removed from an
interface at run time and without breaking binary compétjbi

3.1 Terminology

Object

A set of data - data structure - data allocation.

Method

An operation - function.

Class

One or more methods.

Interface

A standard set of one or more methods.

3.2 Kobj Operation

Kobj works by generating descriptions of methods. Eachrifggan holds a unique id as well as a default function.
The description’s address is used to uniquely identify tie¢hod within a class’ method table.

A class is built by creating a method table associating omaare functions with method descriptions. Before use
the class is compiled. The compilation allocates a cachasasaciates it with the class. A unique id is assigned to
each method description within the method table of the dfasst already done so by another referencing class
compilation. For every method to be used a function is geadtay script to qualify arguments and automatically
reference the method description for a lookup. The gengfatection looks up the method by using the unique id
associated with the method description as a hash into thee@ssociated with the object’s class. If the method is not
cached the generated function proceeds to use the clakstedind the method. If the method is found then the
associated function within the class is used; otherwiged#fault function associated with the method descripgon i
used.

These indirections can be visualized as the following:

object->cache<->class

18

Chapter 3 Kernel Objects

3.3 Using Kobj

3.3.1 Structures

struct kobj_method

3.3.2 Functions

void kobj_class_compile(kobj_class_t cls);

void kobj_class_compile_static(kobj_class_t cls, kobj_ ops_t ops);

void kobj_class_free(kobj_class_t cls);

kobj_t kobj_create(kobj_class_t cls, struct malloc_type *mtype, int mflags);
void kobj_init(kobj_t obj, kobj class_t cls);

void kobj_delete(kobj_t obj, struct malloc_type * mtype);

3.3.3 Macros

KOBJ_CLASS_FIELDS

KOBJ_FIELDS

DEFINE_CLASS(name, methods, size)
KOBJMETHOD(NAME, FUNC)

3.3.4 Headers

<sys/param.h>
<sys/kobj.h>

3.3.5 Creating an Interface Template

The first step in using Kobj is to create an Interface. Cregtie interface involves creating a template that the script
src/sys/kern/makeobjops.pl can use to generate the header and code for the method diedsiend method
lookup functions.

Within this template the following keywords are usétliclude , INTERFACE CODEMETHODSTATICMETHODand
DEFAULT

The#include statement and what follows it is copied verbatim to the hddbengenerated code file.

For example:

#include <sys/foo.h>

TheINTERFACEkeyword is used to define the interface name. This name isatenated with each method name as
[interface name]_[method name]. Its syntax is INTERFAQEdiface name];.

For example:

19

Chapter 3 Kernel Objects

INTERFACE foo;

The CODEkeyword copies its arguments verbatim into the code filesyit#ax iSCODE { [whatever] };

For example:
CODE {
struct foo * foo_alloc_null(struct bar *)
{
return NULL;
}
2

TheMETHOBeyword describes a method. Its syntaXiSTHOD [return type] [method name] { [object
[, arguments]] };

For example:

METHOD int bar {
struct object *
struct foo *
struct bar;

h

The DEFAULTkeyword may follow thevETHOxeyword. It extends th®IETHOey word to include the default
function for method. The extended syntatETHOD [return type] [method name] { [object; [other
arguments]] }DEFAULT [default function];

For example:

METHOD int bar {
struct object *
struct foo *
int bar;

} DEFAULT foo_hack;

The STATICMETHOxeyword is used like thlIETHOxeyword except the kobj data is not at the head of the object
structure so casting to kobj_t would be incorrect. InsteadTICMETHODelies on the Kobj data being referenced as
'ops’. This is also useful for calling methods directly otitaoclass’s method table.

Other complete examples:

src/sys/kern/bus_if.m
src/sys/kern/device_if.m

3.3.6 Creating a Class

The second step in using Kobj is to create a class. A classsts$ a name, a table of methods, and the size of
objects if Kobj's object handling facilities are used. Teate the class use the ma@®FINE_CLASS() . To create
the method table create an array of kobj_method_t termirtatea NULL entry. Each non-NULL entry may be
created using the mack®DBJMETHOD()

For example:

20

Chapter 3 Kernel Objects
DEFINE_CLASS(fooclass, foomethods, sizeof(struct fooda ta));

kobj_method_t foomethods[] = {
KOBJMETHOD(bar_doo, foo_doo),
KOBJMETHOD(bar_foo, foo_foo),
{ NULL, NULL}

k

The class must be “compiled”. Depending on the state of thegy at the time that the class is to be initialized a
statically allocated cache, “ops table” have to be useds an be accomplished by declaring a struct kobj_ops and
usingkobj_class_compile_static(); otherwisekobj_class_compile() should be used.

3.3.7 Creating an Object

The third step in using Kobj involves how to define the obj&ctbj object creation routines assume that Kobj data is
at the head of an object. If this in not appropriate you willéngo allocate the object yourself and then use

kobj_init() on the Kobj portion of it; otherwise, you may ukebj_create() to allocate and initialize the Kobj
portion of the object automaticallyobj_init() may also be used to change the class that an object uses.

To integrate Kobj into the object you should use the macro BOBELDS.

For example

struct foo_data {
KOBJ_FIELDS;
foo_foo;
foo_bar;

3.3.8 Calling Methods

The last step in using Kobj is to simply use the generatedtfoms to use the desired method within the object’s
class. This is as simple as using the interface name and ttceame with a few modifications. The interface
name should be concatenated with the method name using ativéln them, all in upper case.

For example, if the interface name was foo and the method wathbn the call would be:

[return value =] FOO_BAR(object [, other parameters]);

3.3.9 Cleaning Up

When an object allocated througbbj_create() is no longer needekbbj_delete() may be called on it, and
when a class is no longer being usetj_class_free() may be called on it.

21

Chapter 4 The Jail Subsystem

On most UNIX® systemspot has omnipotent power. This promotes insecurity. If an &dagainedoot on a
system, he would have every function at his fingertips. IreB&D there are sysctls which dilute the poweraaf ,
in order to minimize the damage caused by an attacker. Sgadbifione of these functions is calledcure

levels . Similarly, another function which is present from FreeB&D and onward, is a utility called jail(8)ail
chroots an environment and sets certain restrictions oregs®s which are forked within thal. For example, a
jailed process cannot affect processes outsidgdiheutilize certain system calls, or inflict any damage on thgtho
environment.

Jail is becoming the new security model. People are running gatynvulnerable servers such Apache, BIND,
andsendmail within jails, so that if an attacker gaimsot within thejail, it is only an annoyance, and not a
devastation. This article mainly focuses on the internsdsi(ce code) gfail. For information on how to set up a jail
see the handbook entry on jails (http://www.FreeBSD.arglein_US.ISO8859-1/books/handbook/jails.html).

4.1 Architecture

Jail consists of two realms: the userland program, jail(8), &iedcbde implemented within the kernel: the jail(2)
system call and associated restrictions. | will be disagstie userland program and then hi@w is implemented
within the kernel.

4.1.1 Userland Code

The source for the userlapdil is located inusr/src/usr.sbin/jail , consisting of one filgail.c . The
program takes these arguments: the path ofdHehostname, IP address, and the command to be executed.

4.1.1.1 Data Structures

Injail.c , the first thing | would note is the declaration of an impottstructurestruct jail j; which was
included fromusr/include/sys/jail.h

The definition of thgail ~ structure is:

lusr/include/sysljail.h

struct jail {
u_int32_t version;
char * path;
char * hosthame;
u_int32_t ip_number;
|3

As you can see, there is an entry for each of the argumentsg&sthe jail(8) program, and indeed, they are set
during its execution.

lusr/src/usr.sbin/jail/jail.c
char path[PATH_MAX];

if (realpath(argv[0], path) == NULL)
err(1, "realpath: %s", argv|[0]);

22

Chapter 4 The Jail Subsystem

if (chdir(path) != 0)

err(1, "chdir: %s", path);
memset(&j, 0, sizeof(j));
j-version = 0;
j.path = path;
j-hostname = argv[1];

4.1.1.2 Networking

One of the arguments passed to the jail(8) program is an IReaslehvith which theail can be accessed over the
network. jail(8) translates the IP address given into hgst brder and then stores itjn(thejail structure).

lusr/src/usr.sbin/jail/jail.c
struct in_addr in;

if (inet_aton(argv[2], &in) == 0)
errx(1, "Could not make sense of ip-number: %s", argv[2]);
jip_number = ntohl(in.s_addr);

The inet_aton(3) function "interprets the specified chi@rastring as an Internet address, placing the addresdhiato t
structure provided." This_number member in thgail structure is set only when the IP address placed onto the
in structure by inet_aton(3) is translated into host byte obgentohl(3).

4.1.1.3 Jailing the Process

Finally, the userland program jails the proceksl now becomes an imprisoned process itself and then exetates t
command given using execv(3).

lusr/src/usr.shin/jail/jail.c

i = jail(&);

if (execv(argv[3], argv + 3) != 0)
err(1, "execv: %s", argv[3]);

As you can see, thiail() function is called, and its argumentis ta@ structure which has been filled with the
arguments given to the program. Finally, the program yogi§pes executed. | will now discuss hojail is
implemented within the kernel.

4.1.2 Kernel Space

We will now be looking at the fildusr/src/sys/kern/kern_jail.c . This is the file where the jail(2) system
call, appropriate sysctls, and networking functions afened.

4.1.2.1 sysctls

In kern_jail.c , the following sysctls are defined:

lusr/src/sys/kern/kern_jail.c:

23

Chapter 4 The Jail Subsystem

int jail_set_hostname_allowed = 1;

SYSCTL_INT(_security_jail, OID_AUTO, set_hostname_all owed, CTLFLAG_RW,
&jail_set_hostname_allowed, O,
"Processes in jail can set their hosthames");

int jail_socket_unixiproute_only = 1,
SYSCTL_INT(_security_jail, OID_AUTO, socket_unixiprou te_only, CTLFLAG_RW,
&jail_socket_unixiproute_only, 0,
"Processes in jail are limited to creating UNIX/IPv4/route sockets only");
int jail_sysvipc_allowed = O;
SYSCTL_INT(_security_jail, OID_AUTO, sysvipc_allowed, CTLFLAG_RW,

&jail_sysvipc_allowed, 0,
"Processes in jail can use System V IPC primitives");

static int jail_enforce_statfs = 2;

SYSCTL_INT(_security_jail, OID_AUTO, enforce_statfs, C TLFLAG_RW,
&jail_enforce_statfs, 0,
"Processes in jail cannot see all mounted file systems");

int jail_allow_raw_sockets = 0;

SYSCTL_INT(_security_jail, OID_AUTO, allow_raw_socket s, CTLFLAG_RW,
&jail_allow_raw_sockets, 0,
"Prison root can create raw sockets");

int jail_chflags_allowed = 0;

SYSCTL_INT(_security_jail, OID_AUTO, chflags_allowed, CTLFLAG_RW,
&jail_chflags_allowed, 0,
"Processes in jail can alter system file flags");

int jail_mount_allowed = 0;

SYSCTL_INT(_security_jail, OID_AUTO, mount_allowed, CT LFLAG_RW,
&jail_mount_allowed, 0,
"Processes in jail can mount/unmount jail-friendly file sy stems");

Each of these sysctls can be accessed by the user throughsttié&) program. Throughout the kernel, these specific
sysctls are recognized by their name. For example, the nathe &rst sysctl is
security.jail.set_hostname_allowed

4.1.2.2 jail(2) System Call

Like all system calls, the jail(2) system call takes two angmtsstruct thread =td andstruct jail_args

=uap.td is a pointer to thehread structure which describes the calling thread. In this cantep is a pointer to
the structure in which a pointer to tiedl structure passed by the userlgaitic is contained. When | described
the userland program before, you saw that the jail(2) sys@hwas given dail structure as its own argument.

lusr/src/sys/kern/kern_jail.c:
| *

* struct jail_args {

* struct jail * jail;
* };

*/

24

Chapter 4 The Jail Subsystem

int
jail(struct thread *td, struct jail_args *uap)

Thereforepap->jail can be used to access fa# structure which was passed to the system call. Next, the
system call copies theil ~ structure into kernel space using the copyin(9) functiopyin(9) takes three
arguments: the address of the data which is to be copied @nttekspaceyap->jail , where to store it, and the
size of the storage. ThHeil ~ structure pointed byap->jail is copied into kernel space and is stored in another
jail structurej .

lusr/src/sys/kern/kern_jail.c:
error = copyin(uap->jail, &j, sizeof(j));

There is another important structure defineghibh . Itis theprison structure. Therison structure is used
exclusively within kernel space. Here is the definition @& phison structure.

Jusr/include/sysl/jail.h
struct prison {

LIST_ENTRY(prison) pr_list; / * (a) all prisons */
int pr_id; / * (c) prison id */
int pr_ref; / * (p) refcount */
char pr_path[MAXPATHLEN]; /% (c) chroot path */
struct vnode * pr_root; [/ * (c) vnode to rdir */
char pr_hostiMAXHOSTNAMELEN]; /[+ (p) jail hostname */
u_int32_t pr_ip; / * (c) ip addr host */
void *pr_linux; / * (p) linux abi */
int pr_securelevel; / * (p) securelevel */
struct task pr_task; / * (d) destroy task */
struct mtx pr_mtx;

void *+ pr_slots; / * (p) additional data */

kh

The jail(2) system call then allocates memory farigon structure and copies data betweenijttie andprison
structure.

Jusr/src/sys/kern/kern_jail.c :
MALLOC(pr, struct prison *, sizeof(*pr), M_PRISON, M_WAITOK | M_ZERO);

error = copyinstr(j.path, &pr->pr_path, sizeof(pr->pr_p ath), 0);
if (error)

goto e_killmtx;

error = copyinstr(j.hostname, &pr->pr_host, sizeof(pr-> pr_host), 0);
if (error)

goto e_dropvnref;
pr->pr_ip = j.ip_number;

Next, we will discuss another important system call jaiaeit(2), which implements the function to put a process
into thejail.

Jusr/src/sys/kern/kern_jail.c

| *
* struct jail_attach_args {
* int jid;

25

Chapter 4 The Jail Subsystem

* };

*/

int

jail_attach(struct thread *td, struct jail_attach_args *uap)

This system call makes the changes that can distinguisked jaiocess from those unjailed ones. To understand
what jail_attach(2) does for us, certain background infation is needed.

On FreeBSD, each kernel visible thread is identified byhitsad structure, while the processes are described by
theirproc structures. You can find the definitions of theead andproc structure in

{ust/include/sys/proc.h . For example, thed argumentin any system call is actually a pointer to the roglli
thread'sthread structure, as stated before. Tddeproc member in thehread structure pointed by is a

pointer to theproc structure which represents the process that contains thadtmepresented hy . Theproc
structure contains members which can describe the owmergity(_ucred), the process resource

limits(p_limit), and so on. In thacred structure pointed by_ucred member in theroc structure, there is a
pointer to theprison structure€r_prison).

Jusr/include/sys/proc.h:
struct thread {

struct proc *td_proc;

h

struct proc {

struct ucred *p_ucred;
b
Jusr/include/sys/ucred.h

struct ucred {

struct prison * Cr_prison;

J3

In kern_jail.c , the functionail() then calls functionail_attach() with a givenjid . And

jail_attach() calls functionchange_root() to change the root directory of the calling process. The
jail_attach() then creates a newcred structure, and attaches the newly create@d structure to the calling

process after it has successfully attachedotis®n structure to theicred structure. From then on, the calling
process is recognized as jailed. When the kernel rojditeel() is called in the kernel with the newly created
ucred structure as its argument, it returns 1 to tell that the angdeis connected with fgail. The public ancestor
process of all the process forked within flad, is the process which runs jail(8), as it calls the jail(23tsyn call.
When a program is executed through execve(2), it inheritgaied property of its parentigcred structure,
therefore it has a jailedcred structure.

lusr/src/sys/kern/kern_jail.c
int
jail(struct thread *td, struct jail_args *uap)

{

struct jail_attach_args jaa;

26

Chapter 4 The Jail Subsystem
error = jail_attach(td, &jaa);

if (error)
goto e_dropprref;

int
jail_attach(struct thread *td, struct jail_attach_args *uap)
{
struct proc *p;
struct ucred *newcred, *oldcred;
struct prison *pr;
p = td->td_proc;
pr = prison_find(uap->jid);
change_root(pr->pr_root, td);
newcred->cr_prison = pr;
p->p_ucred = newcred;
}

When a process is forked from its parent process, the foey\&em call usesrhold() to maintain the credential
for the newly forked process. It inherently keep the newhkéal child’s credential consistent with its parent, so the
child process is also jailed.

lusr/src/sys/kern/kern_fork.c :
p2->p_ucred = crhold(td->td_ucred);

td2->td_ucred = crhold(p2->p_ucred);

4.2 Restrictions

Throughout the kernel there are access restrictionsmglédijailed processes. Usually, these restrictions onggckh
whether the process is jailed, and if so, returns an errereiample:

if (jailed(td->td_ucred))
return (EPERM);

4.2.1 SysV IPC

System V IPC is based on messages. Processes can send esthesth messages which tell them how to act. The
functions which deal with messages are: msgctl(3), msgyet(sgsnd(3) and msgrcv(3). Earlier, | mentioned that
there were certain sysctls you could turn on or off in ordeaffect the behavior dfail. One of these sysctls was
security.jail.sysvipc_allowed . By default, this sysctl is set to 0. If it were set to 1, it wdalefeat the whole

27

Chapter 4 The Jail Subsystem

purpose of having gail; privileged users from thgail would be able to affect processes outside the jailed
environment. The difference between a message and a sighaltithe message only consists of the signal number.

Jusr/src/sys/kern/sysv_msg.c

« msgget(key, msgflg) : msgget returns (and possibly creates) a message descriptor thighéées a message
queue for use in other functions.

« msgctl(msgid, cmd, buf) : Using this function, a process can query the status of aagessescriptor.
« msgsnd(msgid, msgp, msgsz, msgflg) : msgsnd sends a message to a process.
« msgrcv(msgid, msgp, msgsz, msgtyp, msgflg) : a process receives messages using this function

In each of the system calls corresponding to these functthase is this conditional:

lusr/src/sys/kern/sysv_msg.c :
if ('jail_sysvipc_allowed && jailed(td->td_ucred))
return (ENOSYS);

Semaphore system calls allow processes to synchronizatexeby doing a set of operations atomically on a set of
semaphores. Basically semaphores provide another waydoegses lock resources. However, process waiting on a
semaphore, that is being used, will sleep until the resauaperelinquished. The following semaphore system calls
are blocked inside gail: semget(2), semctl(2) and semop(2).

lusr/src/sys/kern/sysv_sem.c

- semctl(semid, semnum, cmd, ...) :semctl does the specifiecmd on the semaphore queue indicated by
semid .
- semget(key, nsems, flag) : semget creates an array of semaphores, correspondikeyto

key and flag take on the same meaning as they do in msgget.

- semop(semid, array, nops) : semop performs a group of operations indicateddmay , to the set of
semaphores identified gmid .

System V IPC allows for processes to share memory. Proceasemmunicate directly with each other by sharing
parts of their virtual address space and then reading arithgvdata stored in the shared memory. These system calls
are blocked within a jailed environment: shmdt(2), shmagBmctl(2) and shmget(2).

Jusr/src/sys/kern/sysv_shm.c

« shmctl(shmid, cmd, buf) :shmctl does various control operations on the shared memory rédgmtified
by shmid .

« shmget(key, size, flag) : shmget accesses or creates a shared memory regisiaef bytes.

« shmat(shmid, addr, flag) : shmat attaches a shared memory region identifiedHtoyid to the address

space of a process.

- shmdt(addr) :shmdt detaches the shared memory region previously attachaittiat

28

Chapter 4 The Jail Subsystem

4.2.2 Sockets

Jail treats the socket(2) system call and related lower-leve’etdunctions in a special manner. In order to
determine whether a certain socket is allowed to be creti@dt checks to see if the sysctl
security.jail.socket_unixiproute_only is set. If set, sockets are only allowed to be created if thelja
specified is eithePF_LOCAL PF_INET or PF_ROUTEOtherwise, it returns an error.

lusr/src/sys/kern/uipc_socket.c

int
socreate(int dom, struct socket ** aso, int type, int proto,
struct ucred xcred, struct thread *td)
{
struct protosw *prp;
if (jailed(cred) && jail_socket_unixiproute_only &&
prp->pr_domain->dom_family != PF_LOCAL &&
prp->pr_domain->dom_family != PF_INET &&
prp->pr_domain->dom_family != PF_ROUTE) {
return (EPROTONOSUPPORT);
}
}

4.2.3 Berkeley Packet Filter

TheBerkeley Packet Filter provides a raw interface to data link layers in a protocokjmehdent fashiolBPF is
now controlled by the devfs(8) whether it can be used in agednvironment.

4.2.4 Protocols

There are certain protocols which are very common, such & WOP, IP and ICMP. IP and ICMP are on the same
level: the network layer 2. There are certain precautionishivérre taken in order to prevent a jailed process from
binding a protocol to a certain address only if tteen parameter is sehamis a pointer to &ockaddr structure,
which describes the address on which to bind the service. ¥ @xact definition is thatockaddr "may be used as
a template for referring to the identifying tag and lengtleath address". In the functién pcbbind_setup() ,

sin is a pointer to aockaddr_in structure, which contains the port, address, length andadofamily of the

socket which is to be bound. Basically, this disallows amycpsses fromail to be able to specify the address that
does not belong to thil in which the calling process exists.

lusr/src/sys/netinet/in_pcb.c

int
in_pcbbind_setup(struct inpch *inp, struct sockaddr *nam, in_addr_t *|laddrp,
u_short =*lIportp, struct ucred * cred)
{
struct sockaddr_in *sin;
if (nam) {
sin = (struct sockaddr_in *)nam;

29

You might be wondering what functigatison_ip()

if (sin->sin_addr.s_addr !'= INADDR_ANY)

if (prison_ip(cred, 0, &sin->sin_addr.s_addr))

return(EINVAL);

|f (Iport) {

if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))

return (EADDRNOTAVAIL);

}
}
if (lport == 0) {
if (laddr.s_addr != INADDR_ANY)
if (prison_ip(cred, 0, &laddr.s_addr))
return (EINVAL);
}

if (prison_ip(cred, 0, &laddr.s_addr))

return (EINVAL);

doesprison_ip()

Chapter 4 The Jail Subsystem

is given three arguments, a pointer to the

credential(represented loyed), any flags, and an IP address. It returns 1 if the IP address NOT belong to the
jail or 0 otherwise. As you can see from the code, if it is indeedPaaddress not belonging to tjel, the protocol
is not allowed to bind to that address.

lusr/src/sys/kern/kern_jail.c:

int

prison_ip(struct ucred

{

xcred, int flag, u_int32_t

u_int32_t tmp;

if ('jailed(cred))

return (0);
if (flag)
tmp = *ip;
else
tmp = ntohl(*ip);
if (tmp == INADDR_ANY) {
if (flag)
*ip = cred->cr_prison->pr_ip;
else
*ip = htonl(cred->cr_prison->pr_ip);
return (0);

}

if (tmp == INADDR_LOOPBACK) {

if (flag)
*ip = cred->cr_prison->pr_ip;
else
htonl(cred->cr_prison->pr_ip);

*ip

*ip)

30

Chapter 4 The Jail Subsystem

return (0);

}

if (cred->cr_prison->pr_ip != tmp)
return (1);

return (0);

4.2.5 Filesystem

Evenroot users within thgail are not allowed to unset or modify any file flags, such as imbiatappend-only,
and undeleteable flags, if the securelevel is greater than 0.

lusr/src/sys/ufs/ufs/ufs_vnops.c:
static int
ufs_setattr(ap)

{

if ('priv_check cred(cred, PRIV_VFS_SYSFLAGS, 0)) {

if (ip->i_flags
& (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
error = securelevel_gt(cred, 0);
if (error)
return (error);
}

}
}
lusr/src/sys/kern/kern_priv.c
int
priv_check_cred(struct ucred xcred, int priv, int flags)
{

error = prison_priv_check(cred, priv);
if (error)

return (error);
}
lusr/src/sys/kern/kern_jail.c
int
prison_priv_check(struct ucred *cred, int priv)
{

;\l/vitch (priv) {

case PRIV_VFS_SYSFLAGS:
if (jail_chflags_allowed)
return (0);
else
return (EPERM);

31

Chapter 4 The Jail Subsystem

32

Chapter 5 The SYSINIT Framework

SYSINIT is the framework for a generic call sort and dispat@thanism. FreeBSD currently uses it for the
dynamic initialization of the kernel. SYSINIT allows Fre8B’s kernel subsystems to be reordered, and added,
removed, and replaced at kernel link time when the kerneheraf its modules is loaded without having to edit a
statically ordered initialization routing and recompitetkernel. This system also allows kernel modules, cusrentl
calledKLD's, to be separately compiled, linked, and initialized at hooé and loaded even later while the system is
already running. This is accomplished using the “kernédditi and “linker sets”.

5.1 Terminology

Linker Set

A linker technique in which the linker gathers staticallyctiged data throughout a program’s source files into a
single contiguously addressable unit of data.

5.2 SYSINIT Operation

SYSINIT relies on the ability of the linker to take static dateclared at multiple locations throughout a program’s
source and group it together as a single contiguous chun&taf @his linker technique is called a “linker set”.
SYSINIT uses two linker sets to maintain two data sets caimgieach consumer’s call order, function, and a pointer
to the data to pass to that function.

SYSINIT uses two priorities when ordering the functionsdmecution. The first priority is a subsystem ID giving an
overall order for SYSINIT’s dispatch of functions. Currgmedeclared ID’s are iasys/kernel.h> in the enum

list sysinit_sub_id . The second priority used is an element order within theysibm. Current predeclared
subsystem element orders are<ays/kernel.h> in the enum liskysinit_elem_order

There are currently two uses for SYSINIT. Function dispatsystem startup and kernel module loads, and
function dispatch at system shutdown and kernel moduleaghlgernel subsystems often use system startup
SYSINIT’s to initialize data structures, for example thegess scheduling subsystem uses a SYSINIT to initialize
the run queue data structure. Device drivers should avaidy®'SINIT() directly. Instead drivers for real devices
that are part of a bus structure should D&#VER_MODULE()to provide a function that detects the device and, if it is
present, initializes the device. It will do a few things sifie¢o devices and then caflYSINIT() itself. For
pseudo-devices, which are not part of a bus structureDase MODULE()

5.3 Using SYSINIT

5.3.1 Interface

5.3.1.1 Headers

<sys/kernel.h>

33

Chapter 5 The SYSINIT Framework

5.3.1.2 Macros

SYSINIT(uniquifier, subsystem, order, func, ident)
SYSUNINIT (uniquifier, subsystem, order, func, ident)

5.3.2 Startup

TheSYSINIT() macro creates the necessary SYSINIT data in SYSINIT swgtataita set for SYSINIT to sort and
dispatch a function at system startup and module I18&&INIT() takes a uniquifier that SYSINIT uses to identify
the particular function dispatch data, the subsystem gtideisubsystem element order, the function to call, and the
data to pass the function. All functions must take a congtaintter argument.

Example 5-1. Example of a SYSI NI T()

#include <sys/kernel.h>

void foo_null(void * unused)
{

foo_doo();
}

SYSINIT(foo, SI_SUB_FOO, SI_ORDER_FOO, foo_null, NULL);

struct foo foo_voodoo = {

FOO_VOODOO;

}

void foo_arg(void *vdata)

{
struct foo *foo = (struct foo *)vdata,;
foo_data(foo);

}

SYSINIT(bar, SI_SUB_FOO, SI_ORDER_FOO, foo_arg, &foo_vo 0doo);

Note thatSI_SUB_FOOandSI_ORDER_FOeed to be in theysinit_sub_id andsysinit_elem_order

enum’s as mentioned above. Either use existing ones or agdym to the enum’s. You can also use math for
fine-tuning the order a SYSINIT will run in. This example stoavSYSINIT that needs to be run just barely before
the SYSINIT’s that handle tuning kernel parameters.

Example 5-2. Example of Adjusting SYSI NI T() Order

static void
mptable_register(void *dummy __ unused)

{

apic_register_enumerator(&mptable_enumerator);

}

SYSINIT(mptable_register, SI_SUB_TUNABLES - 1, SI_ORDER _FIRST,
mptable_register, NULL);

34

Chapter 5 The SYSINIT Framework

5.3.3 Shutdown

TheSYSUNINIT() macro behaves similarly to tl&/SINIT() macro except that it adds the SYSINIT data to
SYSINIT’s shutdown data set.

Example 5-3. Example of a SYSUNI NI T()

#include <sys/kernel.h>

void foo_cleanup(void * unused)
{

foo_kill();
}

SYSUNINIT(foobar, SI_SUB_FOO, SI_ORDER_FOO, foo_cleanu p, NULL);

struct foo_stack foo_stack = {
FOO_STACK_VOODOO;

}

void foo_flush(void *vdata)

{

}

SYSUNINIT(barfoo, SI_SUB_FOO, SI_ORDER_FOO, foo_flush, &foo_stack);

35

Chapter 6 The TrustedBSD MAC Framework

Chris Costello and Robert Watson.

6.1 MAC Documentation Copyright

This documentation was developed for the FreeBSD ProjeCttis Costello at Safeport Network Services and
Network Associates Laboratories, the Security Researeisibn of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035 (“CBOSS"), astpdithe DARPA CHATS research program.

Redistribution and use in source (SGML DocBook) and 'coagiforms (SGML, HTML, PDF, PostScript, RTF
and so forth) with or without modification, are permitted yided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retae above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file wdified.

2. Redistributions in compiled form (transformed to oth@i3, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, thiofi conditions and the following disclaimer in the
documentation and/or other materials provided with th&idigtion.

Important: THIS DOCUMENTATION IS PROVIDED BY THE NETWORKS ASSOCIATES TECHNOLOGY, INC
"AS I1S" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL NETWORKS ASSOCIATES TECHNOLOGY, INC BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6.2 Synopsis

FreeBSD includes experimental support for several mamgatzess control policies, as well as a framework for
kernel security extensibility, the TrustedBSD MAC Framekd he MAC Framework is a pluggable access control
framework, permitting new security policies to be easihkéd into the kernel, loaded at boot, or loaded dynamically
at run-time. The framework provides a variety of featuresake it easier to implement new security policies,
including the ability to easily tag security labels (suctcasfidentiality information) onto system objects.

This chapter introduces the MAC policy framework and pregidocumentation for a sample MAC policy module.

6.3 Introduction

The TrustedBSD MAC framework provides a mechanism to allssvdompile-time or run-time extension of the
kernel access control model. New system policies may besim@hted as kernel modules and linked to the kernel; if

36

Chapter 6 The TrustedBSD MAC Framework

multiple policy modules are present, their results will benposed. The MAC Framework provides a variety of
access control infrastructure services to assist poliéieve; including support for transient and persistent
policy-agnostic object security labels. This support igently considered experimental.

This chapter provides information appropriate for develsf policy modules, as well as potential consumers of
MAC-enabled environments, to learn about how the MAC Fraor&supports access control extension of the
kernel.

6.4 Policy Background

Mandatory Access Control (MAC), refers to a set of accessrobpolicies that are mandatorily enforced on users by
the operating system. MAC policies may be contrasted wiitigtionary Access Control (DAC) protections, by
which non-administrative users may (at their discretiaw)gct objects. In traditional UNIX systems, DAC
protections include file permissions and access contts| MAC protections include process controls preventing
inter-user debugging and firewalls. A variety of MAC polieieave been formulated by operating system designers
and security researches, including the Multi-Level SegMLS) confidentiality policy, the Biba integrity policy,
Role-Based Access Control (RBAC), Domain and Type Enforr@n(DTE), and Type Enforcement (TE). Each
model bases decisions on a variety of factors, includingidsatity, role, and security clearance, as well as securit
labels on objects representing concepts such as dataiggnaitd integrity.

The TrustedBSD MAC Framework is capable of supporting gatiodules that implement all of these policies, as
well as a broad class of system hardening policies, whichumsayexisting security attributes, such as user and group
IDs, as well as extended attributes on files, and other sygteperties. In addition, despite the name, the MAC
Framework can also be used to implement purely discretygmalicies, as policy modules are given substantial
flexibility in how they authorize protections.

6.5 MAC Framework Kernel Architecture

The TrustedBSD MAC Framework permits kernel modules torektbe operating system security policy, as well as
providing infrastructure functionality required by mamgcass control modules. If multiple policies are
simultaneously loaded, the MAC Framework will usefullyr(fmme definition of useful) compose the results of the
policies.

6.5.1 Kernel Elements

The MAC Framework contains a number of kernel elements:

- Framework management interfaces

- Concurrency and synchronization primitives.
- Policy registration

- Extensible security label for kernel objects

« Policy entry point composition operators

- Label management primitives

- Entry point APl invoked by kernel services

37

Chapter 6 The TrustedBSD MAC Framework

- Entry point API to policy modules

- Entry points implementations (policy life cycle, objedelcycle/label management, access control checks).
- Policy-agnostic label-management system calls

- mac_syscall() multiplex system call

- Various security policies implemented as MAC policy module

6.5.2 Framework Management Interfaces
The TrustedBSD MAC Framework may be directly managed usysgtks, loader tunables, and system calls.

In most cases, sysctl’'s and loader tunables of the same nawliéthe same parameters, and control behavior such
as enforcement of protections relating to various kernle$gstems. In addition, if MAC debugging support is
compiled into the kernel, several counters will be mairgditracking label allocation. It is generally advisablet tha
per-subsystem enforcement controls not be used to cordlioygehavior in production environments, as they
broadly impact the operation of all active policies. Instgaer-policy controls should be preferred, as they provide
greater granularity and greater operational consistemricydlicy modules.

Loading and unloading of policy modules is performed usimggystem module management system calls and other
system interfaces, including boot loader variables; patiodules will have the opportunity to influence load and
unload events, including preventing undesired unloadfrigepolicy.

6.5.3 Policy List Concurrency and Synchronization

As the set of active policies may change at run-time, andntb@ciation of entry points is non-atomic,
synchronization is required to prevent loading or unlogdifipolicies while an entry point invocation is in progress,
freezing the set of active policies for the duration. Thiagsomplished by means of a framework busy count:
whenever an entry point is entered, the busy count is inonéedewhenever it is exited, the busy count is
decremented. While the busy count is elevated, policy lishges are not permitted, and threads attempting to
modify the policy list will sleep until the list is not busyh€ busy count is protected by a mutex, and a condition
variable is used to wake up sleepers waiting on policy listlifiications. One side effect of this synchronization
model is that recursion into the MAC Framework from within@igy module is permitted, although not generally
used.

Various optimizations are used to reduce the overhead dfithg count, including avoiding the full cost of
incrementing and decrementing if the list is empty or cargainly static entries (policies that are loaded before the
system starts, and cannot be unloaded). A compile-timewialso provided which prevents any change in the set
of loaded policies at run-time, which eliminates the muteking costs associated with supporting dynamically
loaded and unloaded policies as synchronization is no lomeggiired.

As the MAC Framework is not permitted to block in some entrings) a normal sleep lock cannot be used; as a
result, it is possible for the load or unload attempt to blfmrka substantial period of time waiting for the framework
to become idle.

6.5.4 Label Synchronization

As kernel objects of interest may generally be accessedifitone than one thread at a time, and simultaneous entry
of more than one thread into the MAC Framework is permittedusity attribute storage maintained by the MAC

38

Chapter 6 The TrustedBSD MAC Framework

Framework is carefully synchronized. In general, exisagnel synchronization on kernel object data is used to
protect MAC Framework security labels on the object: forraple, MAC labels on sockets are protected using the
existing socket mutex. Likewise, semantics for concuraecess are generally identical to those of the container
objects: for credentials, copy-on-write semantics arentaaed for label contents as with the remainder of the
credential structure. The MAC Framework asserts necegsekyg on objects when invoked with an object reference.
Policy authors must be aware of these synchronization séreaas they will sometimes limit the types of accesses
permitted on labels: for example, when a read-only refexén@ credential is passed to a policy via an entry point,
only read operations are permitted on the label state athiththe credential.

6.5.5 Policy Synchronization and Concurrency

Policy modules must be written to assume that many kernehtts may simultaneously enter one more policy entry
points due to the parallel and preemptive nature of the F8&eBernel. If the policy module makes use of mutable
state, this may require the use of synchronization primgiwithin the policy to prevent inconsistent views on that
state resulting in incorrect operation of the policy. Pekowill generally be able to make use of existing FreeBSD
synchronization primitives for this purpose, includingtexes, sleep locks, condition variables, and counting
semaphores. However, policies should be written to emblegéd primitives carefully, respecting existing kernekloc
orders, and recognizing that some entry points are not peichid sleep, limiting the use of primitives in those entry
points to mutexes and wakeup operations.

When policy modules call out to other kernel subsystemsy, Wikt generally need to release any in-policy locks in
order to avoid violating the kernel lock order or riskingkaecursion. This will maintain policy locks as leaf locks
in the global lock order, helping to avoid deadlock.

6.5.6 Policy Registration

The MAC Framework maintains two lists of active policiestatis list, and a dynamic list. The lists differ only with
regards to their locking semantics: an elevated referemaetds not required to make use of the static list. When
kernel modules containing MAC Framework policies are l@hdiee policy module will usSYSINIT to invoke a
registration function; when a policy module is unloadedSINIT will likewise invoke a de-registration function.
Registration may fail if a policy module is loaded more thawe®, if insufficient resources are available for the
registration (for example, the policy might require labgland insufficient labeling state might be available), or
other policy prerequisites might not be met (some policiay mnly be loaded prior to boot). Likewise,
de-registration may fail if a policy is flagged as not unldalda

6.5.7 Entry Points

Kernel services interact with the MAC Framework in two watyey invoke a series of APIs to notify the framework

of relevant events, and they provide a policy-agnosticllatvecture pointer in security-relevant objects. The labe
pointer is maintained by the MAC Framework via label managetentry points, and permits the Framework to

offer a labeling service to policy modules through reld{iveon-invasive changes to the kernel subsystem
maintaining the object. For example, label pointers haentzlded to processes, process credentials, sockets, pipes
vnodes, Mbufs, network interfaces, IP reassembly quenesaaariety of other security-relevant structures. Kernel
services also invoke the MAC Framework when they performdrtgnt security decisions, permitting policy

modules to augment those decisions based on their owniafierssibly including data stored in security labels).

Most of these security critical decisions will be expliaiicaess control checks; however, some affect more general
decision functions such as packet matching for socketsatyel transition at program execution.

39

Chapter 6 The TrustedBSD MAC Framework

6.5.8 Policy Composition

When more than one policy module is loaded into the kernetiate, the results of the policy modules will be
composed by the framework using a composition operatos dperator is currently hard-coded, and requires that
all active policies must approve a request for it to returccess. As policies may return a variety of error conditions
(success, access denied, object does not exist, ...), edenece operator selects the resulting error from the set of
errors returned by policies. In general, errors indicatirag an object does not exist will be preferred to errors
indicating that access to an object is denied. While it isguatranteed that the resulting composition will be useful
or secure, we have found that it is for many useful selectidmp®licies. For example, traditional trusted systems
often ship with two or more policies using a similar compiosit

6.5.9 Labeling Support

As many interesting access control extensions rely on ggdalpels on objects, the MAC Framework provides a set
of policy-agnostic label management system calls covexinariety of user-exposed objects. Common label types
include partition identifiers, sensitivity labels, intégiabels, compartments, domains, roles, and types. Bigyol
agnostic, we mean that policy modules are able to compldedipe the semantics of meta-data associated with an
object. Policy modules participate in the internalizatom externalization of string-based labels provides by use
applications, and can expose multiple label elements tbcgpions if desired.

In-memory labels are stored in slab-allocated struct |akleich consists of a fixed-length array of unions, each
holding avoid * pointer and dong . Policies registering for label storage will be assignedlat” identifier, which
may be used to dereference the label storage. The semaittiessiorage are left entirely up to the policy module:
modules are provided with a variety of entry points assediatith the kernel object life cycle, including
initialization, association/creation, and destructidsing these interfaces, it is possible to implement refegen
counting and other storage models. Direct access to thetaijecture is generally not required by policy modules
to retrieve a label, as the MAC Framework generally passtsdpointer to the object and a direct pointer to the
object’s label into entry points. The primary exceptionhistrule is the process credential, which must be manually
dereferenced to access the credential label. This may eharigture revisions of the MAC Framework.

Initialization entry points frequently include a sleeputigposition flag indicating whether or not an initializatiis
permitted to sleep; if sleeping is not permitted, a failur@yrbe returned to cancel allocation of the label (and hence
object). This may occur, for example, in the network stadkrdypinterrupt handling, where sleeping is not permitted,
or while the caller holds a mutex. Due to the performance abstaintaining labels on in-flight network packets
(Mbufs), policies must specifically declare a requirembat Mbuf labels be allocated. Dynamically loaded policies
making use of labels must be able to handle the case whererthéinction has not been called on an object, as
objects may already exist when the policy is loaded. The MA&@rework guarantees that uninitialized label slots
will hold a 0 or NULL value, which policies may use to detectnitialized values. However, as allocation of Mbuf
labels is conditional, policies must also be able to handN&aL label pointer for Mbufs if they have been loaded
dynamically.

In the case of file system labels, special support is providethe persistent storage of security labels in extended
attributes. Where available, extended attribute trafmasfre used to permit consistent compound updates of
security labels on vnodes--currently this support is presaly in the UFS2 file system. Policy authors may choose
to implement multilabel file system object labels using amenore) extended attributes. For efficiency reasons, the
vnode labely_label)is a cache of any on-disk label; policies are able to loade&linto the cache when the vnode
is instantiated, and update the cache as needed. As a thswdktended attribute need not be directly accessed with
every access control check.

40

Chapter 6 The TrustedBSD MAC Framework

Note: Currently, if a labeled policy permits dynamic unloading, its state slot cannot be reclaimed, which places a
strict (and relatively low) bound on the number of unload-reload operations for labeled policies.

6.5.10 System Calls

The MAC Framework implements a number of system calls: mbistese calls support the policy-agnostic label
retrieval and manipulation APIs exposed to user applicatio

The label management calls accept a label descriptiontsteycstruct mac, which contains a series of MAC label
elements. Each element contains a character string nachehanacter string value. Each policy will be given the
chance to claim a particular element name, permitting jedito expose multiple independent elements if desired.
Policy modules perform the internalization and exterraion between kernel labels and user-provided labels via
entry points, permitting a variety of semantics. Label ngemaent system calls are generally wrapped by user library
functions to perform memory allocation and error handlsigplifying user applications that must manage labels.

The following MAC-related system calls are present in theeBSD kernel:

- mac_get_proc() may be used to retrieve the label of the current process.

- mac_set_proc() may be used to request a change in the label of the currerggsoc

- mac_get_fd() may be used to retrieve the label of an object (file, sockpg,pi.) referenced by a file descriptor.
« mac_get _file() may be used to retrieve the label of an object referenced lig system path.

- mac_set_fd() may be used to request a change in the label of an object (fdkes pipe, ...) referenced by a file
descriptor.

« mac_set_file() may be used to request a change in the label of an object neftdoy a file system path.

- mac_syscall) permits policy modules to create new system calls withouifging the system call table; it
accepts a target policy name, operation number, and opagumant for use by the policy.

« mac_get_pid() may be used to request the label of another process by pridcess

« mac_get_link() is identical tomac_get_file() , only it will not follow a symbolic link if it is the final entry
in the path, so may be used to retrieve the label on a symlink.

- mac_set_link() is identical tomac_set_file() , only it will not follow a symbolic link if it is the final entry
in a path, so may be used to manipulate the label on a symlink.

- mac_execve() isidentical to theexecve() system call, only it also accepts a requested label to sgirtwess
label to when beginning execution of a new program. This ghan label on execution is referred to as a
"transition".

+ mac_get_peer() ,actuallyimplemented via a socket option, retrieves thellaf a remote peer on a socket, if
available.

In addition to these system calls, tBBOCSIGMACandSIOCSIFMACnetwork interface ioctls permit the labels on
network interfaces to be retrieved and set.

41

Chapter 6 The TrustedBSD MAC Framework

6.6 MAC Policy Architecture

Security policies are either linked directly into the kdrmme compiled into loadable kernel modules that may be
loaded at boot, or dynamically using the module loadingesystalls at runtime. Policy modules interact with the
system through a set of declared entry points, providingsgto a stream of system events and permitting the policy
to influence access control decisions. Each policy coneamsmber of elements:

- Optional configuration parameters for policy.

« Centralized implementation of the policy logic and parasret

- Optional implementation of policy life cycle events, suchritialization and destruction.

- Optional support for initializing, maintaining, and desting labels on selected kernel objects.
- Optional support for user process inspection and modifinaif labels on selected objects.

- Implementation of selected access control entry pointsatenof interest to the policy.

- Declaration of policy identity, module entry points, andippproperties.

6.6.1 Policy Declaration

Modules may be declared using tiC_POLICY_SET() macro, which names the policy, provides a reference to the
MAC entry point vector, provides load-time flags determgniow the policy framework should handle the policy,
and optionally requests the allocation of label state byfrtdimework.

static struct mac_policy_ops mac_ policy_ops =

{
.mpo_destroy = mac_ policy_destroy,
.mpo_init = mac_ policy_init,

.mpo_init_bpfdesc_label = mac_ pol i cy_init_bpfdesc_label,
.mpo_init_cred_label = mac_ pol i cy _init_label,

[+ ..]
.mpo_check_vnode_setutimes = mac_ pol i cy check vnode_setutimes,
.mpo_check _vnode_stat = mac_ pol i cy_check_vnode_stat,
.mpo_check_vnode_write = mac_ pol i cy check vnode_ write,

h

The MAC policy entry point vectomac_pol i cy_ops in this example, associates functions defined in the module
with specific entry points. A complete listing of availabley points and their prototypes may be found in the MAC
entry point reference section. Of specific interest durirngloie registration are the .mpo_destroy and .mpo_init
entry points. .mpo_init will be invoked once a policy is sessfully registered with the module framework but prior
to any other entry points becoming active. This permits thleep to perform any policy-specific allocation and
initialization, such as initialization of any data or lock&ipo_destroy will be invoked when a policy module is
unloaded to permit releasing of any allocated memory antig®n of locks. Currently, these two entry points are
invoked with the MAC policy list mutex held to prevent any etlentry points from being invoked: this will be
changed, but in the mean time, policies should be carefultaibat kernel primitives they invoke so as to avoid lock
ordering or sleeping problems.

The policy declaration’s module name field exists so thattlbeule may be uniquely identified for the purposes of
module dependencies. An appropriate string should betseleEhe full string name of the policy is displayed to the
user via the kernel log during load and unload events, ardeaisorted when providing status information to
userland processes.

42

Chapter 6 The TrustedBSD MAC Framework

6.6.2 Policy Flags

The policy declaration flags field permits the module to pdewthe framework with information about its
capabilities at the time the module is loaded. Currenthgelflags are defined:

MPC_LOADTIME_FLAG_UNLOADOK

This flag indicates that the policy module may be unloadetthi¢fflag is not provided, then the policy
framework will reject requests to unload the module. Thig ftaght be used by modules that allocate label
state and are unable to free that state at runtime.

MPC_LOADTIME_FLAG_NOTLATE

This flag indicates that the policy module must be loaded aitidlized early in the boot process. If the flag is
specified, attempts to register the module following boditlvé rejected. The flag may be used by policies that
require pervasive labeling of all system objects, and cehandle objects that have not been properly
initialized by the policy.

MPC_LOADTIME_FLAG_LABELMBUFS

This flag indicates that the policy module requires labetihlylbufs, and that memory should always be
allocated for the storage of Mbuf labels. By default, the MA@mework will not allocate label storage for
Mbufs unless at least one loaded policy has this flag set.fb@surably improves network performance when
policies do not require Mbuf labeling. A kernel optiocwAC_ALWAYS_LABEL_MB&Xists to force the MAC
Framework to allocate Mbuf label storage regardless of¢ftieng of this flag, and may be useful in some
environments.

Note: Policies using the MPC_LOADTIME_FLAG_LABELMBURg@thout the MPC_LOADTIME_FLAG_NOTLATfRag set
must be able to correctly handle NULL Mbuf label pointers passed into entry points. This is necessary as in-flight
Mbufs without label storage may persist after a policy enabling Mbuf labeling has been loaded. If a policy is
loaded before the network subsystem is active (i.e., the policy is not being loaded late), then all Mbufs are
guaranteed to have label storage.

6.6.3 Policy Entry Points

Four classes of entry points are offered to policies regisitevith the framework: entry points associated with the
registration and management of policies, entry points tleganitialization, creation, destruction, and otheelif

cycle events for kernel objects, events associated witessocontrol decisions that the policy module may influence,
and calls associated with the management of labels on sbjeciddition, anac_syscall() entry pointis

provided so that policies may extend the kernel interfadbauit registering new system calls.

Policy module writers should be aware of the kernel lockitngtegy, as well as what object locks are available
during which entry points. Writers should attempt to avoé@ddlock scenarios by avoiding grabbing non-leaf locks
inside of entry points, and also follow the locking protofmmi object access and modification. In particular, writers
should be aware that while necessary locks to access objettheir labels are generally held, sufficient locks to
modify an object or its label may not be present for all enwings. Locking information for arguments is
documented in the MAC framework entry point document.

43

Chapter 6 The TrustedBSD MAC Framework

Policy entry points will pass a reference to the object lab@hg with the object itself. This permits labeled policies
to be unaware of the internals of the object yet still makagieas based on the label. The exception to this is the
process credential, which is assumed to be understood mygsohs a first class security object in the kernel.

6.7 MAC Policy Entry Point Reference

6.7.1 General-Purpose Module Entry Points

6.7.1.1npo_init

void npo_i nit (struct mac_policy_conf +xconf);
Parameter Description Locking
conf MAC policy definition

Policy load event. The policy list mutex is held, so sleeprapjens cannot be performed, and calls out to other
kernel subsystems must be made with caution. If potentidlgping memory allocations are required during policy
initialization, they should be made using a separate maa¥iBINIT().

6.7.1.2 npo_dest r oy

void npo_dest roy(struct mac_policy_conf xconf);
Parameter Description Locking
conf MAC policy definition

Policy load event. The policy list mutex is held, so cautibodd be applied.

6.7.1.3 npo_syscal |

int npo_syscal | (struct thread xtd, int call, void =arg);
Parameter Description Locking

td Calling thread

cal | Policy-specific syscall number

arg Pointer to syscall arguments

44

Chapter 6 The TrustedBSD MAC Framework
This entry point provides a policy-multiplexed system sallthat policies may provide additional services to user
processes without registering specific system calls. Thieypmame provided during registration is used to demux
calls from userland, and the arguments will be forwardediioentry point. When implementing new services,
security modules should be sure to invoke appropriate aamgrol checks from the MAC framework as needed.

For example, if a policy implements an augmented signaltfanality, it should call the necessary signal access
control checks to invoke the MAC framework and other regexiepolicies.

Note: Modules must currently perform the copyin() of the syscall data on their own.

6.7.1.4 npo_t hread_userr et

void npo_thread_userr et (struct thread *td);

Parameter Description Locking

td Returning thread

This entry point permits policy modules to perform MAC-tteld events when a thread returns to user space, via a
system call return, trap return, or otherwise. This is regflifor policies that have floating process labels, as it s no
always possible to acquire the process lock at arbitrangtpan the stack during system call processing; process
labels might represent traditional authentication datacgss history information, or other data. To employ this
mechanism, intended changes to the process credentiaifalyebe stored in thp_label protected by a per-policy
spin lock, and then set the per-thredaF ASTPENDINGlag and per-processS_MACPENDRN&ag to schedule a call to
the userret entry point. From this entry point, the policyroeeate a replacement credential with less concern about
the locking context. Policy writers are cautioned that éwedering relating to scheduling an AST and the AST

being performed may be complex and interlaced in multittheeleapplications.

6.7.2 Label Operations

6.7.2.1 npo_i nit _bpfdesc_| abel

void npo_init_bpfdesc_| abel (struct label *| abel);
Parameter Description Locking
| abel New label to apply

Initialize the label on a newly instantiated bpfdesc (BPBadiptor). Sleeping is permitted.

45

Chapter 6 The TrustedBSD MAC Framework

6.7.2.2 npo_init_cred_| abel

void npo_init_cred_| abel (struct label *| abel);

Parameter Description Locking
| abel New label to initialize

Initialize the label for a newly instantiated user credaintleeping is permitted.

6.7.2.3 npo_i nit _devfsdirent | abel

void npo_init_devfsdirent_I abel (struct label *| abel);

Parameter Description Locking
| abel New label to apply

Initialize the label on a newly instantiated devfs entrgefling is permitted.

6.7.2.4 npo_init _i fnet | abel

void npo_init_ifnet_| abel (struct label *| abel);

Parameter Description Locking
| abel New label to apply

Initialize the label on a newly instantiated network ingeé. Sleeping is permitted.

6.7.2.5 npo_i nit _i pg_I abel

void npo_init_ipg_l abel (struct label +| abel, int flag);

Parameter Description Locking

| abel New label to apply
Sleeping/non-sleeping malloc(9); see below

flag
Initialize the label on a newly instantiated IP fragmentssEanbly queue. THd ag field may be one of
M_WAITOK and M_NOWAIT, and should be employed to avoid penfing a sleeping malloc(9) during this

46

Chapter 6 The TrustedBSD MAC Framework
initialization call. IP fragment reassembly queue allamafrequently occurs in performance sensitive environtsien

and the implementation should be careful to avoid sleepifgr@-lived operations. This entry point is permitted to
fail resulting in the failure to allocate the IP fragmentssambly queue.

6.7.2.6 npo_i ni t _nbuf _| abel

void npo_init_nbuf_|abel (int flag, struct label *| abel);
Parameter Description Locking

flag Sleeping/non-sleeping malloc(9); see below

| abel Policy label to initialize

Initialize the label on a newly instantiated mbuf packetdegrbuf). Thef | ag field may be one of M_WAITOK

and M_NOWAIT, and should be employed to avoid performingegging malloc(9) during this initialization call.
Mbuf allocation frequently occurs in performance sensigwnvironments, and the implementation should be careful
to avoid sleeping or long-lived operations. This entry pagrpermitted to fail resulting in the failure to allocatesth
mbuf header.

6.7.2.7 npo_i nit _nount _| abel

void npo_init_nount _| abel (struct label *mt | abel , struct label +f sl abel);
Parameter Description Locking

mt | abel Policy label to be initialized for the mount itself

f sl abel Policy label to be initialized for the file system

Initialize the labels on a newly instantiated mount poimeeping is permitted.

6.7.2.8 npo_init_nount _fs_| abel

void npo_init_rmount _fs_I abel (struct label *| abel);
Parameter Description Locking
| abel Label to be initialized

Initialize the label on a newly mounted file system. Sleeggngermitted

a7

Chapter 6 The TrustedBSD MAC Framework

6.7.2.9 npo_i ni t _pi pe_| abel
void npo_init_pipe_| abel (struct label *| abel);

Parameter Description Locking
| abel Label to be filled in

Initialize a label for a newly instantiated pipe. Sleepiagérmitted.

6.7.2.10 npo_i ni t _socket _| abel

void npo_init_socket | abel (struct label +| abel, int flag);

Parameter Description Locking
| abel New label to initialize
flag malloc(9) flags

Initialize a label for a newly instantiated socket. ThHeag field may be one of M_WAITOK and M_NOWAIT, and
should be employed to avoid performing a sleeping mallod(®ing this initialization call.

6.7.2.11 npo_i nit _socket peer _| abel

void npo_init_socket _peer_| abel (struct label | abel, int flag);

Parameter Description Locking

| abel New label to initialize
flag malloc(9) flags

Initialize the peer label for a newly instantiated sockdteTl ag field may be one of M_WAITOK and
M_NOWAIT, and should be employed to avoid performing a siegmalloc(9) during this initialization call.

6.7.2.12 npo_i nit _proc_| abel

void npo_init_proc_| abel (struct label *| abel);

Parameter Description Locking

| abel New label to initialize

48

Chapter 6 The TrustedBSD MAC Framework

Initialize the label for a newly instantiated process. Bleg is permitted.

6.7.2.13 npo_i ni t _vnode_I abel

void npo_init_vnode_| abel (struct label *| abel);
Parameter Description Locking
| abel New label to initialize

Initialize the label on a newly instantiated vhode. Slegp@permitted.

6.7.2.14 npo_dest roy_bpf desc_| abel

void npo_destroy_bpfdesc_| abel (struct label *| abel);

Parameter Description Locking

| abel bpfdesc label

Destroy the label on a BPF descriptor. In this entry pointléicpshould free any internal storage associated with
| abel so thatit may be destroyed.

6.7.2.15 npo_destroy_cred_| abel

void npo_destroy_cred_| abel (struct label *| abel);
Parameter Description Locking
| abel Label being destroyed

Destroy the label on a credential. In this entry point, agyofhodule should free any internal storage associated with
| abel so thatit may be destroyed.

6.7.2.16 npo_dest roy_devf sdi rent _| abel

void npo_destroy_devfsdirent_| abel (struct label *| abel);

Parameter Description Locking

49

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
| abel Label being destroyed

Destroy the label on a devfs entry. In this entry point, agyoithodule should free any internal storage associated
with | abel so that it may be destroyed.

6.7.2.17 npo_destroy_i f net _| abel

void npo_destroy_ifnet_I| abel (struct label *| abel);
Parameter Description Locking
| abel Label being destroyed

Destroy the label on a removed interface. In this entry p@imolicy module should free any internal storage
associated withabel so that it may be destroyed.

6.7.2.18 npo_dest roy_i pg_| abel

void npo_destroy_ipg_l abel (struct label *| abel);
Parameter Description Locking
| abel Label being destroyed

Destroy the label on an IP fragment queue. In this entry paipblicy module should free any internal storage
associated withabel so that it may be destroyed.

6.7.2.19 npo_dest roy_nbuf _| abel

void npo_destroy_nbuf _| abel (struct label *| abel);
Parameter Description Locking
| abel Label being destroyed

Destroy the label on an mbuf header. In this entry point, &pohodule should free any internal storage associated
with | abel so that it may be destroyed.

50

Chapter 6 The TrustedBSD MAC Framework

6.7.2.20 npo_dest r oy_nount _| abel

void npo_destroy_nount _| abel (struct label *| abel);
Parameter Description Locking
| abel Mount point label being destroyed

Destroy the labels on a mount point. In this entry point, agyahodule should free the internal storage associated
with mt | abel so that they may be destroyed.

6.7.2.21 npo_dest roy_nount _| abel

void npo_destroy_nount _| abel (struct label +*mt | abel , struct label +f sl abel);

Parameter Description Locking

mt | abel ~ Mount point label being destroyed
f sl abel File system label being destroyed>

Destroy the labels on a mount point. In this entry point, agyahodule should free the internal storage associated
with mt | abel andf sl abel so that they may be destroyed.

6.7.2.22 npo_dest roy_socket _| abel

void npo_destroy_socket _| abel (struct label *| abel);
Parameter Description Locking
| abel Socket label being destroyed

Destroy the label on a socket. In this entry point, a policydoie should free any internal storage associated with
| abel so thatit may be destroyed.

6.7.2.23 npo_dest roy_socket peer _| abel

void npo_destroy_socket peer_| abel (struct label *peer | abel);

Parameter Description Locking

peer | abel Socket peer label being destroyed

51

Chapter 6 The TrustedBSD MAC Framework

Destroy the peer label on a socket. In this entry point, ecgatiodule should free any internal storage associated
with | abel so that it may be destroyed.

6.7.2.24 npo_dest roy_pi pe_| abel

void npo_destroy_pi pe_| abel (struct label *| abel);

Parameter Description Locking
| abel Pipe label

Destroy the label on a pipe. In this entry point, a policy medinould free any internal storage associated with
| abel so thatit may be destroyed.

6.7.2.25 npo_dest roy_proc_| abel

void npo_destroy_proc_| abel (struct label *| abel);

Parameter Description Locking

| abel Process label

Destroy the label on a process. In this entry point, a poliogute should free any internal storage associated with
| abel so thatit may be destroyed.

6.7.2.26 npo_dest r oy_vnode_| abel

void npo_destroy_vnode_| abel (struct label *| abel);

Parameter Description Locking

| abel Process label

Destroy the label on a vnode. In this entry point, a policy medhould free any internal storage associated with
| abel so thatit may be destroyed.

6.7.2.27 npo_copy_nbuf _| abel

void npo_copy_nbuf _I abel (struct label *Src, struct label +*dest);

52

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
src Source label
dest Destination label

Copy the label information iar ¢ into dest .

6.7.2.28 npo_copy_pi pe_| abel

void npo_copy_pi pe_I abel (struct label *src, struct label *dest);

Parameter Description Locking
src Source label
dest Destination label

Copy the label information iar ¢ into dest .

6.7.2.29 npo_copy_vnode_| abel

void npo_copy_vnode_| abel (struct label *Src, struct label xdest);
Parameter Description Locking

src Source label

dest Destination label

Copy the label information iar ¢ into dest .

6.7.2.30 npo_ext ernal i ze_cred_| abel

int npo_externalize_cred_| abel (struct label +| abel , char el enent _nane, struct sbuf
*sh, int *cl ai ned);

Parameter Description Locking
| abel Label to be externalized

el ement _name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

cl ai ned Should be incremented whehenent _dat a can be filled in.

Produce an externalized label based on the label strucasseed. An externalized label consists of a text

53

Chapter 6 The TrustedBSD MAC Framework

representation of the label contents that can be used wétthans! applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation shouldatthe contents of

el enent _nane before attempting to fill irsb. If el enent _nane does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while exédining the label data. Once the policy fills in

el enent _dat a, »claimed should be incremented.

6.7.2.31 npo_external i ze_i fnet _| abel

int npo_externalize_ifnet_|abel (struct label +| abel , char +*el enent _nane, struct shuf
*sb, int +cl ai med);

Parameter Description Locking
| abel Label to be externalized

el ement _name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

cl ai med Should be incremented whehenent _dat a can be filled in.

Produce an externalized label based on the label strucassed. An externalized label consists of a text
representation of the label contents that can be used wétthans! applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation shouldatthe contents of

el enent _nane before attempting to fill irsb. If el enent _nane does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while exédining the label data. Once the policy fills in

el enent _dat a, »claimed should be incremented.

6.7.2.32 npo_ext ernal i ze_pi pe_| abel

int npo_externalize_pipe_| abel (struct label *| abel , char el enent _nane, struct sbuf
*sb, int *cl ai ned);

Parameter Description Locking
| abel Label to be externalized

el ement _name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

cl ai ned Should be incremented whehenent _dat a can be filled in.

Produce an externalized label based on the label strucasseed. An externalized label consists of a text
representation of the label contents that can be used wétthans! applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation shouldatthe contents of

el enent _name before attempting to fill isb. If el enent _nane does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while exadiming the label data. Once the policy fills in

el ement _dat a, *claimed should be incremented.

54

Chapter 6 The TrustedBSD MAC Framework

6.7.2.33 npo_ext ernal i ze_socket _| abel

int npo_externalize_socket _| abel (struct label *| abel , char el enent _nane, struct sbuf
*sh, int *cl ai ned);

Parameter Description Locking
| abel Label to be externalized

el ement _name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

cl ai med Should be incremented whehenent _dat a can be filled in.

Produce an externalized label based on the label strucasseed. An externalized label consists of a text
representation of the label contents that can be used wétthans! applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation shouldatthe contents of

el enent _name before attempting to fill isb. If el enent _nane does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while exadiming the label data. Once the policy fills in

el enent _dat a, »claimed should be incremented.

6.7.2.34 npo_ext ernal i ze_socket _peer _| abel

int npo_externalize_socket _peer_| abel (struct label x| abel , char el enent _nane, struct
sbuf *sb, int *cl ai ned);

Parameter Description Locking
| abel Label to be externalized

el ement _name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

cl ai med Should be incremented whehenent _dat a can be filled in.

Produce an externalized label based on the label strucassed. An externalized label consists of a text
representation of the label contents that can be used wétthanns! applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation shouldatthe contents of

el enent _nane before attempting to fill irsb. If el enent _nane does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while exadining the label data. Once the policy fills in

el enent _dat a, »claimed should be incremented.

6.7.2.35 npo_ext ernal i ze_vnode_| abel

int npo_externalize_vnode_| abel (struct label +| abel , char +*el enent _nane, struct sbhuf
*sb, int +cl ai med);

55

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
| abel Label to be externalized

el ement _name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label

cl ai med Should be incremented whehenent _dat a can be filled in.

Produce an externalized label based on the label strucassed. An externalized label consists of a text
representation of the label contents that can be used wétthansl applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation shouldathe contents of

el enent _nane before attempting to fill isb. If el enent _nane does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while exadiming the label data. Once the policy fills in

el ement _dat a, *claimed should be incremented.

6.7.2.36 npo_i nternal i ze_cred_| abel

int npo_internalize_cred_| abel (struct label *| abel , char el enent _nane, char
xel enent _data, int *cl ai ned);

Parameter Description Locking
| abel Label to be filled in

el ement _name Name of the policy whose label should be internalized

el ement _data Text data to be internalized

cl ai ned Should be incremented when data can be successfully ititezda

Produce an internal label structure based on externalae Hata in text format. Currently, all policies’

internalize entry points are called when internalization is requestedhe implementation should compare the
contents okl ement _name to its own name in order to be sure it should be internaliZivggdata irel ement _dat a.
Just as in thexternalize entry points, the entry point should return @ifement _name does not match its own
name, or when data can successfully be internalized, inlnmdaser claimed should be incremented.

6.7.2.37 npo_i nternal i ze_i fnet _| abel

int npo_internalize_ifnet_|abel (struct label +| abel , char *el ement _nane, char
*el enent _data, int *cl ai ned);

Parameter Description Locking
| abel Label to be filled in

el emrent _name Name of the policy whose label should be internalized

el ement _dat a Text data to be internalized

56

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cl ai ned Should be incremented when data can be successfully ititerda

Produce an internal label structure based on externalae Hata in text format. Currently, all policies’

internalize entry points are called when internalization is requestedhe implementation should compare the
contents okl enent _nane to its own name in order to be sure it should be internalizivggdata irel ement _dat a.
Just as in thexternalize entry points, the entry point should return @ifenment _name does not match its own
name, or when data can successfully be internalized, inlwdaser claimed should be incremented.

6.7.2.38 npo_i nternal i ze_pi pe_| abel

int npo_internalize_pipe_l abel (struct label *| abel , char el enent _nane, char
*el ement _data, int *cl ai ned);

Parameter Description Locking
| abel Label to be filled in

el ement _name Name of the policy whose label should be internalized

el ement _dat a Text data to be internalized

cl ai ned Should be incremented when data can be successfully ititerda

Produce an internal label structure based on externalatesl Hata in text format. Currently, all policies’

internalize entry points are called when internalization is requestedhe implementation should compare the
contents okl enent _nane to its own name in order to be sure it should be internalizivggdata irel ement _dat a.
Just as in thexternalize entry points, the entry point should return @ifement _name does not match its own
name, or when data can successfully be internalized, inlwdaser claimed should be incremented.

6.7.2.39 npo_i nternal i ze_socket _| abel

int npo_internalize_socket _| abel (struct label +| abel , char el enent _nane, char
el ement _data, int *cl ai ned);

Parameter Description Locking
| abel Label to be filled in

el ement _name Name of the policy whose label should be internalized

el ement _data Textdatato be internalized

cl ai ned Should be incremented when data can be successfully ititerda

Produce an internal label structure based on externalatesl Hata in text format. Currently, all policies’

internalize entry points are called when internalization is requestedhe implementation should compare the
contents okl ement _name to its own name in order to be sure it should be internaliZivggdata irel ement _dat a.
Just as in thexternalize entry points, the entry point should return @ifement _name does not match its own

57

Chapter 6 The TrustedBSD MAC Framework

name, or when data can successfully be internalized, intwdaser claimed should be incremented.

6.7.2.40 npo_i nternal i ze_vnode_| abel

int npo_internalize_vnode_l abel (struct label +| abel , char +*el ement _nane, char
el ement _data, int *cl ai ned);

Parameter Description Locking
| abel Label to be filled in

el ement _name Name of the policy whose label should be internalized

el ement _data Text data to be internalized

cl ai ned Should be incremented when data can be successfully ititerda

Produce an internal label structure based on externalatesl Hata in text format. Currently, all policies’

internalize entry points are called when internalization is requestedhe implementation should compare the
contents okl enent _nane to its own name in order to be sure it should be internalizivggdata irel ement _dat a.
Just as in thexternalize entry points, the entry point should return @ifenment _name does not match its own
name, or when data can successfully be internalized, inlwdaser claimed should be incremented.

6.7.3 Label Events

This class of entry points is used by the MAC framework to geplicies to maintain label information on kernel
objects. For each labeled kernel object of interest to a MAIZy entry points may be registered for relevant life
cycle events. All objects implement initialization, crieat and destruction hooks. Some objects will also implemen
relabeling, allowing user processes to change the labatb@ets. Some objects will also implement object-specific
events, such as label events associated with IP reasseitlylyical labeled object will have the following life cycle
of entry points:

Label initialization o]
(object-specific wait) \
Label creation 0

Relabel events, 0--<--.
Various object-specific, | |
Access control events ~-->--0

Label destruction 0

Label initialization permits policies to allocate memondsset initial values for labels without context for the ue o
the object. The label slot allocated to a policy will be zerby default, so some policies may not need to perform
initialization.

Label creation occurs when the kernel structure is assatiaith an actual kernel object. For example, Mbufs may
be allocated and remain unused in a pool until they are reduinbuf allocation causes label initialization on the
mbuf to take place, but mbuf creation occurs when the mbusss@ated with a datagram. Typically, context will be

58

Chapter 6 The TrustedBSD MAC Framework

provided for a creation event, including the circumstaraféle creation, and labels of other relevant objects in the
creation process. For example, when an mbuf is created framgleet, the socket and its label will be presented to
registered policies in addition to the new mbuf and its labimory allocation in creation events is discouraged, as
it may occur in performance sensitive ports of the kernedddition, creation calls are not permitted to fail so a
failure to allocate memory cannot be reported.

Object specific events do not generally fall into the othe@lrclasses of label events, but will generally provide an
opportunity to modify or update the label on an object baseddulitional context. For example, the label on an IP
fragment reassembly queue may be updated during the MACATDBDPQ entry point as a result of the acceptance
of an additional mbuf to that queue.

Access control events are discussed in detail in the foligwgection.

Label destruction permits policies to release storageabe stssociated with a label during its association with an
object so that the kernel data structures supporting thecobjay be reused or released.

In addition to labels associated with specific kernel olsjezh additional class of labels exists: temporary labels.
These labels are used to store update information subnbiteder processes. These labels are initialized and
destroyed as with other label types, but the creation egeviiC_INTERNALIZE, which accepts a user label to be
converted to an in-kernel representation.

6.7.3.1 File System Object Labeling Event Operations

6.7.3.1.1 npo_associ at e_vnode_devfs

void npo_associ at e_vnode_devf s(struct mount *np, struct label +f sl abel , struct
devfs_dirent *xde, struct label xdel abel , struct vnode *vp, struct label *v| abel);
Parameter Description Locking

np Devfs mount point

f sl abel Devfs file system labehfp->mnt_fslabel)

de Devfs directory entry

del abel Policy label associated witle

vp vnode associated witle

vl abel Policy label associated witip

Fill in the label {1 abel) for a newly created devfs vnode based on the devfs direetary passed ide and its
label.

6.7.3.1.2 npo_associ at e_vnode_extattr

int npo_associ at e_vnode_ext at t r (struct mount *np, struct label +f sl abel , struct vnode
*vp, struct label +v| abel);

59

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
np File system mount point

f sl abel File system label

vp Vnode to label

vl abel Policy label associated withp

Attempt to retrieve the label farp from the file system extended attributes. Upon success allue® is returned.
Should extended attribute retrieval not be supported, aeped fallback is to copiys! abel intovl abel . In the
event of an error, an appropriate value éano should be returned.

6.7.3.1.3 npo_associ at e_vnode_si ngl el abel

void npo_associ at e_vnode_si ngl el abel (struct mount *np, struct label +f sl abel , struct
vnode =*vp, struct label *v| abel);

Parameter Description Locking

np File system mount point

f sl abel File system label

vp Vnode to label

vl abel Policy label associated witip

On non-multilabel file systems, this entry point is calledéd the policy label forp based on the file system label,
f sl abel .

6.7.3.1.4 npo_creat e_devfs_device

void npo_create_devfs_device(dev_t dev, struct devfs_dirent »devfs_dirent, struct
label | abel);

Parameter Description Locking
dev Device corresponding withevf s_di r ent
devfs_dirent Devfs directory entry to be labeled.

| abel Label fordevfs_di rent to be filled in.

Fill out the label on a devfs_dirent being created for thespdglevice. This call will be made when the device file
system is mounted, regenerated, or a new device is madalaieail

6.7.3.1.5 npo_create_devfs_directory

void npo_create_devfs_directory(char =*dirnane, int dirnanel en, struct devfs_dirent

60

Chapter 6 The TrustedBSD MAC Framework

»devfs_dirent, struct label *| abel);

Parameter Description Locking
di rname Name of directory being created

nanel en Length of stringdi r nanme

devfs_dirent Devfs directory entry for directory being created.

Fill out the label on a devfs_dirent being created for thespdglirectory. This call will be made when the device file
system is mounted, regenerated, or a new device requiripgafie directory hierarchy is made available.

6.7.3.1.6 npo_create_devfs_synink

void npo_create_devfs_sym i nk(struct ucred *cred, struct mount *np, struct
devfs_dirent xdd, struct label +»ddl abel , struct devfs_dirent +xde, struct label
~del abel);

Parameter Description Locking

cred Subject credential

np Devfs mount point

dd Link destination

ddl abel Label associated wittid

de Symlink entry

del abel Label associated wittie

Fill in the label @el abel) for a newly created devfs(5) symbolic link entry.

6.7.3.1.7 npo_create_vnode_extattr

int npo_creat e_vnode_ext attr (struct ucred *cred, struct mount *np, struct label
xf sl abel , struct vnode x»dvp, struct label +=dl abel , struct vnode *Vvp, struct label
*v| abel , struct componentname *CNp);

Parameter Description Locking

cred Subject credential

mount File system mount point

| abel File system label

dvp Parent directory vnode

dl abel Label associated wittivp

vp Newly created vnode

61

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
vl abel Policy label associated witip
cnp Component name farp

Write out the label forp to the appropriate extended attribute. If the write sucsefiitlin vi abel with the label,
and return 0. Otherwise, return an appropriate error.

6.7.3.1.8 npo_creat e_nount

void npo_creat e_nount (struct ucred *cred, struct mount *np, struct label *mt, struct
label =f sl abel);

Parameter Description Locking
cred Subject credential

np Object; file system being mounted

mt | abel Policy label to be filled in fonp

f sl abel Policy label for the file systemp mounts.

Fill out the labels on the mount point being created by the@asubject credential. This call will be made when a
new file system is mounted.

6.7.3.1.9 npo_create_root _nount

void npo_create_root _nount (struct ucred +xcred, struct mount *np, struct label
*mt | abel , struct label *f sl abel);

Parameter Description Locking
SeeSection 6.7.3.1.8

Fill out the labels on the mount point being created by the@asubject credential. This call will be made when the
root file system is mounted, after mpo_create_mount;.

6.7.3.1.10 npo_r el abel _vnode

void npo_rel abel _vnode(struct ucred xcred, struct vnode *Vvp, struct label xvnodel abel ,
struct label *newl abel);

Parameter Description Locking

cred Subject credential

62

Chapter 6 The TrustedBSD MAC Framework

Parameter Description

Locking
vp vnode to relabel
vnodel abel Existing policy label forvp
new abel New, possibly partial label to replag@odel abel

Update the label on the passed vnode given the passed upaate abel and the passed subject credential.

6.7.3.1.11 npo_set | abel _vnode_extattr

int npo_set| abel _vnode_ext at t r (struct ucred *cred, struct vnode *vp, struct label
+v| abel , struct label i nt| abel);

Parameter Description Locking

cred Subject credential

vp Vnode for which the label is being written

vl abel Policy label associated witip

i ntl abel Label to write out

Write out the policy from nt | abel to an extended attribute. This is called froop_stdcreatevnode_ea

6.7.3.1.12 npo_updat e_devf sdi rent

void npo_updat e_devf sdi r ent (struct devfs_dirent »devfs_dirent, struct label
+=di rent| abel , struct vnode *vp, struct label *vnodel abel);
Parameter Description Locking

devfs_dirent Object; devfs directory entry

direntl abel Policy label fordevfs_di rent to be updated.

vp Parent vnode Locked
vnodel abel Policy label forvp

Update thalevf s_di r ent label from the passed devfs vnode label. This call will be enatien a devfs vnode has
been successfully relabeled to commit the label changetbatiit lasts even if the vnode is recycled. It will also be

made when a symlink is created in devfs, following a cathta_vnode_create_from_vnode

to initialize the
vnode label.

63

Chapter 6 The TrustedBSD MAC Framework

6.7.3.2 IPC Object Labeling Event Operations

6.7.3.2.1 npo_create_nbuf _from socket

void npo_create_nbuf_from socket (struct socket *s0, struct label *socket | abel , struct
mbuf *m struct label *nbuf | abel);

Parameter Description Locking

socket Socket Socket locking WIP

socket | abel Policy label forsocket

m Object; mbuf

mbuf | abel Policy label to fill in form

Set the label on a newly created mbuf header from the pass&dtdabel. This call is made when a new datagram or
message is generated by the socket and stored in the passéd mb

6.7.3.2.2 npo_cr eat e_pi pe

void npo_create_pi pe(struct ucred *cred, struct pipe *pi pe, struct label *pi pel abel);
Parameter Description Locking

cred Subject credential

pi pe Pipe

pi pel abel Policy label associated withi pe

Set the label on a newly created pipe from the passed subgrimtial. This call is made when a new pipe is created.

6.7.3.2.3 npo_creat e_socket

void npo_create_socket (struct ucred xcred, struct socket *s0, struct label
*socket | abel);

Parameter Description Locking
cred Subject credential Immutable
so Object; socket to label

socket | abel Labelto fill in forso

Set the label on a newly created socket from the passed sgbgetential. This call is made when a socket is created.

64

6.7.3.2.4 npo_create_socket from socket

void npo_create_socket _from socket (struct socket 0l dsocket , struct label

0l dsocket | abel , struct socket *newsocket , struct label

*newsocket | abel);

Parameter Description Locking
ol dsocket Listening socket

ol dsocket | abel Policy label associated withl dsocket

newsocket New socket

newsocket | abel Policy label associated witlewsocket | abel

Label a socketyewsocket , newly accept(2)ed, based on the listen(2) soeketsocket .

6.7.3.2.5 npo_r el abel _pi pe

void npo_rel abel _pi pe(struct ucred xcred, struct pipe
struct label *newl abel);

Parameter Description Locking
cred Subject credential

pi pe Pipe

ol dl abel Current policy label associated wigth pe
new abel Policy label update to apply o pe

Apply a new labelpew abel , topi pe.

6.7.3.2.6 npo_r el abel _socket

void npo_rel abel _socket (struct ucred +xcred, struct socket
struct label *newl abel);

Parameter Description Locking

cred Subject credential Immutable

so Object; socket

ol dl abel Current label foso
new abel Label update foso

Update the label on a socket from the passed socket labetaeipda

*pi pe, struct label

*s0, struct label

Chapter 6 The TrustedBSD MAC Framework

+0l dl abel ,

+0l dl abel ,

65

Chapter 6 The TrustedBSD MAC Framework

6.7.3.2.7 npo_set _socket _peer _from nbuf

void npo_set_socket _peer _from nbuf (struct mbuf *mbuf , struct label *nbuf | abel , struct
label *ol dl abel , struct label *newl abel);

Parameter Description Locking

mbuf First datagram received over socket

nmbuf | abel Label formbuf
ol dl abel Current label for the socket
new abel Policy label to be filled out for the socket

Set the peer label on a stream socket from the passed mbufTaicall will be made when the first datagram is
received by the stream socket, with the exception of Unix @ioreockets.

6.7.3.2.8 npo_set _socket _peer _from socket

void npo_set _socket peer_from socket (struct socket *0l dsocket, struct label

*0l dsocket | abel , struct socket *newsocket, struct label *newsocket peer | abel);
Parameter Description Locking

ol dsocket Local socket

ol dsocket | abel Policy label forol dsocket

newsocket Peer socket

newsocket peer | abel Policy label to fill in fornewsocket

Set the peer label on a stream UNIX domain socket from thespassnote socket endpoint. This call will be made
when the socket pair is connected, and will be made for badipeints.

6.7.3.3 Network Object Labeling Event Operations

6.7.3.3.1 npo_creat e_bpf desc

void npo_create_bpfdesc(struct ucred +xcred, struct bpf_d *bpf _d, struct label
*bpf | abel);

Parameter Description Locking

cred Subject credential Immutable

bpf _d Object; bpf descriptor

66

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
bpf Policy label to be filled in fobpf _d

Set the label on a newly created BPF descriptor from the gamsgect credential. This call will be made when a
BPF device node is opened by a process with the passed soigdential.

6.7.3.3.2 npo_create_ifnet

void npo_create_ifnet (struct ifnet +j fnet, struct label +i fnetl abel);
Parameter Description Locking
i fnet Network interface

i fnet| abel Policy label to fill in fori f net

Set the label on a newly created interface. This call may bdemdnen a new physical interface becomes available to
the system, or when a pseudo-interface is instantiatedgltine boot or as a result of a user action.

6.7.3.3.3 npo_create_ipq

void npo_create_i pg(struct mbuf =fragment, struct label =fragment| abel , struct ipq
*i pqg, struct label *i pgl abel);

Parameter Description Locking

fragnent First received IP fragment

fragnent | abel Policy label forf r agnent

i pq IP reassembly queue to be labeled

i pgl abel Policy label to be filled in fof pq

Set the label on a newly created IP fragment reassembly dumudehe mbuf header of the first received fragment.

6.7.3.3.4 npo_creat e_dat agram from.i pq

void npo_create_create_datagram from.i pq(struct ipq *i pg, struct label +i pgl abel ,
struct mbuf »dat agr am struct label +»dat agr am abel);

Parameter Description Locking

i pq IP reassembly queue

i pgl abel Policy label fori pg

67

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
dat agr am Datagram to be labeled
dat agram abel Policy label to be filled in forat agr am abel

Set the label on a newly reassembled IP datagram from thadfnent reassembly queue from which it was
generated.

6.7.3.3.5 npo_creat e_fragnent

void npo_create_fragmnment (struct mbuf xdat agr am struct label +»dat agr am abel , struct

mbuf *fragnent, struct label =fragnent | abel);
Parameter Description Locking
dat agr am Datagram

dat agram abel Policy label fordat agr am

fragnent Fragment to be labeled

fragnment | abel Policy label to be filled in fodat agr am

Set the label on the mbuf header of a newly created IP fragframntthe label on the mbuf header of the datagram it
was generate from.

6.7.3.3.6 npo_create_nbuf _from nbuf

void npo_create_nbuf _from nbuf (struct mbuf * 0l dmbuf , struct label +ol dnbuf | abel ,
struct mbuf *newrbuf , struct label *newrbuf | abel);

Parameter Description Locking

ol dnbuf Existing (source) mbuf

ol dnbuf | abel Policy label forol dmbuf

newrbuf New mbuf to be labeled

newnbuf | abel Policy label to be filled in fonewnbuf

Set the label on the mbuf header of a newly created datagamtfre mbuf header of an existing datagram. This
call may be made in a number of situations, including when bafris re-allocated for alignment purposes.

6.7.3.3.7 npo_creat e_nbuf _|inkl ayer

void npo_create_nbuf _|inkl ayer (struct ifnet *i fnet, struct label

xj f net| abel , struct
mbuf *nbuf , struct label *nbuf | abel);

68

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
i fnet Network interface

i fnet| abel Policy label fori f net

mbuf mbuf header for new datagram

mbuf | abel Policy label to be filled in formbuf

Set the label on the mbuf header of a newly created datagraerged for the purposes of a link layer response for

the passed interface. This call may be made in a number attigitis, including for ARP or ND6 responses in the
IPv4 and IPv6 stacks.

6.7.3.3.8 npo_creat e_nbuf _from bpfdesc

void npo_create_nbuf _from bpfdesc(struct bpf_d *bpf _d, struct label *bpf | abel , struct

mbuf *nbuf , struct label *nbuf | abel);
Parameter Description Locking
bpf _d BPF descriptor

bpf | abel Policy label forbpf | abel

nmbuf New mbuf to be labeled

mbuf | abel Policy label to fill in formbuf

Set the label on the mbuf header of a newly created datagraerafed using the passed BPF descriptor. This call is
made when a write is performed to the BPF device associatibdhg passed BPF descriptor.

6.7.3.3.9 npo_create_nbuf _from.f net

void npo_create_nbuf _from.ifnet (struct ifnet

*i f net, struct label *i f net | abel , struct
mbuf *nbuf , struct label *nbuf | abel);
Parameter Description Locking
i fnet Network interface
i fnet| abel Policy label fori f net | abel
mbuf mbuf header for new datagram

mbuf | abel Policy label to be filled in formbuf

Set the label on the mbuf header of a newly created datagraerafed from the passed network interface.

69

Chapter 6 The TrustedBSD MAC Framework

6.7.3.3.10 npo_create_nbuf _nul ti cast_encap

void npo_create_nbuf _mul ticast_encap(struct mbuf +=0ol drbuf , struct label +ol dnbuf | abel ,

struct ifnet xi f net, struct label xj f net| abel , struct mbuf *newrbuf , struct label
*newrbuf | abel);

Parameter Description Locking
ol dnbuf mbuf header for existing datagram

ol dnbuf | abel Policy label forol dmbuf

i fnet Network interface

i fnet! abel Policy label fori f net

newnbuf mbuf header to be labeled for new datagram

newnbuf | abel Policy label to be filled in fonewnbuf

Set the label on the mbuf header of a newly created datagraerafed from the existing passed datagram when it is

processed by the passed multicast encapsulation inteffatecall is made when an mbuf is to be delivered using
the virtual interface.

6.7.3.3.11 npo_creat e_nbuf _netl ayer

void npo_create_nbuf_netl ayer (struct mbuf *ol dnbuf , struct label *ol dmbuf | abel , struct

mbuf *newrbuf , struct label *newrbuf | abel);
Parameter Description Locking

ol dnbuf Received datagram

ol dnbuf | abel Policy label forol dmbuf

newnbuf Newly created datagram

newnbuf | abel Policy label fornewnrbuf

Set the label on the mbuf header of a newly created datagraeraed by the IP stack in response to an existing

received datagrano(dnbuf). This call may be made in a number of situations, includimgmresponding to ICMP
request datagrams.

6.7.3.3.12 npo_f ragnent _mat ch

int npo_fragnment _nat ch(struct mbuf +fragment, struct label

+xfragnent| abel , struct ipq
*i pg, struct label *i pql abel);

Parameter Description Locking

70

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
f ragnent IP datagram fragment

fragnent | abel Policy label forf r agnent

i pq IP fragment reassembly queue

i pgl abel Policy label fori pq

Determine whether an mbuf header containing an IP datagraagfent) fragment matches the label of the passed
IP fragment reassembly queue(). Return (1) for a successful match, or (0) for no match. Thlsis made when
the IP stack attempts to find an existing fragment reassequ@ye for a newly received fragment; if this fails, a new
fragment reassembly queue may be instantiated for the #agrRolicies may use this entry point to prevent the

reassembly of otherwise matching IP fragments if policysdoet permit them to be reassembled based on the label
or other information.

6.7.3.3.13 npo_rel abel _i f net

void npo_rel abel _if net (struct ucred xcred, struct ifnet *| f net, struct label
x| fnet| abel , struct label *newl abel);

Parameter Description Locking

cred Subject credential

i fnet Object; Network interface

i fnet| abel Policy label fori f net
new abel Label update to apply tof net

Update the label of network interfadd,net , based on the passed update labeW abel , and the passed subject
credentialcr ed.

6.7.3.3.14 npo_updat e_i pq

void npo_updat e_i pq(struct mbuf +*fragnent, struct label *fragnent | abel , struct ipq
*i pqg, struct label *i pqgl abel);

Parameter Description Locking

mbuf IP fragment

mbuf | abel Policy label fornbuf

i pq IP fragment reassembly queue

i pgl abel Policy label to be updated fopq

Update the label on an IP fragment reassembly quiepe)(based on the acceptance of the passed IP fragment mbuf
headerffbuf).

71

Chapter 6 The TrustedBSD MAC Framework

6.7.3.4 Process Labeling Event Operations

6.7.3.4.1 npo_create_cred

void npo_create_cred(struct ucred *par ent _cred, struct ucred xchi | d_cred);

Parameter Description Locking

parent _cred Parentsubject credential
child_cred Child subject credential

Set the label of a newly created subject credential from #ss@d subject credential. This call will be made when
crcopy(9) is invoked on a newly created struct ucred. Thlisstauld not be confused with a process forking or
creation event.

6.7.3.4.2 npo_execve_transition

void npo_execve_transition(struct ucred 0l d, struct ucred *new, struct vnode *Vp,
struct label xvnodel abel);

Parameter Description Locking

ol d Existing subject credential Immutable

new New subject credential to be labeled

vp File to execute Locked

vnodel abel Policy label forvp

Update the label of a newly created subject credent@al) from the passed existing subject credentld) based

on a label transition caused by executing the passed viv@jeThis call occurs when a process executes the passed
vnode and one of the policies returns a success fromftoe execve_will_transition entry point. Policies may
choose to implement this call simply by invokingo_create_cred and passing the two subject credentials so as
not to implement a transitioning event. Policies shouldleate this entry point unimplemented if they implement
mpo_create_cred , even if they do not implementipo_execve_will_transition

6.7.3.4.3 npo_execve_w |l _transition

int npo_execve_wi || _transition(struct ucred *ol d, struct vnode *Vvp, struct label
*vnodel abel);

Parameter Description Locking
ol d Subject credential prior to execve(2) Immutable

72

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
vp File to execute
vnodel abel Policy label forvp

Determine whether the policy will want to perform a trarwitevent as a result of the execution of the passed vnode
by the passed subject credential. Return 1 if a transitioagsired, 0 if not. Even if a policy returns 0, it should
behave correctly in the presence of an unexpected invacatidpo_execve_transition , as that call may happen
as a result of another policy requesting a transition.

6.7.3.4.4 npo_create_procO

void npo_create_procO(struct ucred xcred);
Parameter Description Locking
cred Subject credential to be filled in

Create the subject credential of process 0, the parent kéaikl processes.

6.7.3.4.5 npo_create_procl

void npo_create_procl(struct ucred xcred);
Parameter Description Locking
cred Subject credential to be filled in

Create the subject credential of process 1, the parent o$aflprocesses.

6.7.3.4.6 npo_rel abel _cred

void npo_rel abel _cred(struct ucred xcred, struct label *new abel);
Parameter Description Locking
cred Subject credential

new abel Label update to apply tor ed

Update the label on a subject credential from the passedefatzel.

73

Chapter 6 The TrustedBSD MAC Framework

6.7.4 Access Control Checks

Access control entry points permit policy modules to infleeaccess control decisions made by the kernel.
Generally, although not always, arguments to an accessotemntry point will include one or more authorizing
credentials, information (possibly including a label) &y other objects involved in the operation. An access
control entry point may return 0 to permit the operation,meano(2) error value. The results of invoking the entry
point across various registered policy modules will be cosagl as follows: if all modules permit the operation to
succeed, success will be returned. If one or modules retufaiture, a failure will be returned. If more than one
module returns a failure, the errno value to return to the wiebe selected using the following precedence,

implemented by therror_select() function inkern_mac.c

Most precedence EDEADLK
EINVAL
ESRCH
EACCES

Least precedence EPERM

If none of the error values returned by all modules are ligtetie precedence chart then an arbitrarily selected value
from the set will be returned. In general, the rules providepdence to errors in the following order: kernel failyres
invalid arguments, object not present, access not peniitaer.

6.7.4.1 npo_check_bpfdesc_receive

int nmpo_check_bpfdesc_recei ve(struct bpf_d *bpf _d, struct label *bpf | abel , struct
ifnet i fnet, struct label +i fnetl abel);

Parameter Description Locking

bpf _d Subject; BPF descriptor

bpf | abel Policy label forbpf _d

i fnet Object; network interface

i fnet| abel Policy label fori f net

Determine whether the MAC framework should permit datagrénom the passed interface to be delivered to the
buffers of the passed BPF descriptor. Return (0) for sucoesserrno value for failure Suggested failure:
EACCES for label mismatches, EPERM for lack of privilege.

6.7.4.2 npo_check_kenv_dunp

int nmpo_check_kenv_dunp(struct ucred xcred);

Parameter Description Locking
cred Subject credential

74

Chapter 6 The TrustedBSD MAC Framework

Determine whether the subject should be allowed to rettieedernel environment (see kenv(2)).

6.7.4.3 npo_check_kenv_get

int npo_check_kenv_get (struct ucred xcred, char +*nane);
Parameter Description Locking

cred Subject credential

nane Kernel environment variable name

Determine whether the subject should be allowed to rettiszeralue of the specified kernel environment variable.

6.7.4.4 npo_check_kenv_set

int npo_check_kenv_set (struct ucred xcred, char +*nane);
Parameter Description Locking

cred Subject credential

nane Kernel environment variable name

Determine whether the subject should be allowed to set theifggd kernel environment variable.

6.7.4.5 npo_check_kenv_unset

int nmpo_check_kenv_unset (struct ucred xcred, char =*nane);
Parameter Description Locking

cred Subject credential

nane Kernel environment variable name

Determine whether the subject should be allowed to unsesgbeified kernel environment variable.

6.7.4.6 npo_check_kl d_I oad

int npo_check_kl d_I oad(struct ucred *cred, struct vnode *Vvp, struct label *v| abel);

75

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cred Subject credential

vp Kernel module vnode

vl abel Label associated withp

Determine whether the subject should be allowed to loadgkeied module file.

6.7.4.7 npo_check_klI d_st at

int npo_check_kl d_st at (struct ucred *cred);

Parameter Description Locking

cred Subject credential

Determine whether the subject should be allowed to ret@dist of loaded kernel module files and associated
statistics.

6.7.4.8 npo_check_klI d_unl oad

int npo_check_kl d_unl oad(struct ucred xcred);

Parameter Description Locking

cred Subject credential

Determine whether the subject should be allowed to unloatagk module.

6.7.4.9 npo_check_pi pe_i oct |

int npo_check_pi pe_i oct | (struct ucred xcred, struct pipe *pi pe, struct label
*pi pel abel , unsigned long cnd, void +data);

Parameter Description Locking
cred Subject credential

pi pe Pipe

pi pel abel Policy label associated withi pe

cmd ioctl(2) command

dat a ioctl(2) data

76

Chapter 6 The TrustedBSD MAC Framework

Determine whether the subject should be allowed to makepbeified ioctl(2) call.

6.7.4.10 npo_check_pi pe_pol |

int npo_check_pi pe_pol | (struct ucred +xcred, struct pipe *pi pe, struct label
*pi pel abel);

Parameter Description Locking

cred Subject credential

pi pe Pipe

pi pel abel Policy label associated withi pe

Determine whether the subject should be allowed togigile.

6.7.4.11 npo_check_pi pe_read

int npo_check_pi pe_r ead(struct ucred xcred, struct pipe *pi pe, struct label
*pi pel abel);

Parameter Description Locking

cred Subject credential

pi pe Pipe

pi pel abel Policy label associated withi pe

Determine whether the subject should be allowed read atzesge.

6.7.4.12 npo_check_pi pe_r el abel

int npo_check_pi pe_rel abel (struct ucred xcred, struct pipe

*pi pe, struct label
*pi pel abel , struct label *newl abel);

Parameter Description Locking

cred Subject credential

pi pe Pipe

pi pel abel Current policy label associated wigh pe
new abel Label update tpi pel abel

Determine whether the subject should be allowed to relaibes.

77

Chapter 6 The TrustedBSD MAC Framework
6.7.4.13 npo_check_pi pe_st at

int npo_check_pi pe_st at (struct ucred xcred, struct pipe *pi pe, struct label
*pi pel abel);

Parameter Description Locking

cred Subject credential

pi pe Pipe

pi pel abel Policy label associated withi pe

Determine whether the subject should be allowed to retséaittstics related tpi pe.

6.7.4.14 npo_check_pipe_wite

int npo_check_pi pe_wr it e(struct ucred +xcred, struct pipe

*pi pe, struct label
*pi pel abel);

Parameter Description

Locking
cred Subject credential
pi pe Pipe

pi pel abel Policy label associated withi pe

Determine whether the subject should be allowed to writg {ee.

6.7.4.15 npo_check_socket _bi nd

int npo_check_socket _bi nd(struct ucred

xcred, struct socket xsocket, struct label

*socket | abel , struct sockaddr *sockaddr);

Parameter Description Locking

cred Subject credential

socket Socket to be bound

socket | abel Policy label forsocket

sockaddr Address okocket

6.7.4.16 npo_check_socket _connect
int npo_check_socket _connect (struct ucred xcred, struct socket *socket, struct label

78

Chapter 6 The TrustedBSD MAC Framework

xsocket | abel , struct sockaddr *sockaddr);
Parameter Description Locking
cred Subject credential

socket Socket to be connected

socket | abel Policy label forsocket

sockaddr Address okocket

Determine whether the subject credentialdd) can connect the passed sockatdket) to the passed socket

addressgockaddr). Return O for success, or @anno value for failure. Suggested failure: EACCES for label
mismatches, EPERM for lack of privilege.

6.7.4.17 npo_check_socket receive

int npo_check_socket _recei ve(struct ucred xcred, struct socket

x50, struct label
*socket | abel);

Parameter Description Locking
cred Subject credential
so Socket

socket | abel Policy label associated wito

Determine whether the subject should be allowed to recafeemation from the socketo.

6.7.4.18 npo_check_socket _send

int npo_check_socket _send(struct ucred *cred, struct socket

*s0, struct label
*socket | abel);

Parameter Description Locking
cred Subject credential
so Socket

socket | abel Policy label associated witko

Determine whether the subject should be allowed to sendrnrdtion across the socked.

6.7.4.19 npo_check_cred_vi si bl e

int npo_check_cred_vi si bl e(struct ucred *ul, struct ucred *U2);

79

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
ul Subject credential
u2 Object credential

Determine whether the subject credentialcan “see” other subjects with the passed subject credeati&eturn 0
for success, or aerrno value for failure. Suggested failure: EACCES for label masomes, EPERM for lack of

privilege, or ESRCH to hide visibility. This call may be madea number of situations, including inter-process
status sysctl's used kps, and in procfs lookups.

6.7.4.20 npo_check_socket vi sible

int npo_check_socket _vi si bl e(struct ucred xcred, struct socket

xsocket, struct label
*socket | abel);

Parameter Description Locking
cred Subject credential
socket Object; socket

socket | abel Policy label forsocket

6.7.4.21 npo_check_i f net _rel abel

int npo_check_i fnet _rel abel (struct ucred *cred, struct ifnet

xj f net, struct label
x| f net| abel , struct label *newl abel);

Parameter Description Locking
cred Subject credential

i fnet Object; network interface

i fnet| abel Existing policy label foii f net

new abel Policy label update to later be applieditbnet

Determine whether the subject credential can relabel theguanetwork interface to the passed label update.

6.7.4.22 npo_check_socket _rel abel

int npo_check_socket _rel abel (struct ucred xcred, struct socket

xsocket, struct label
xsocket | abel , struct label *new abel);

80

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cred Subject credential

socket Object; socket

socket | abel Existing policy label forsocket

new abel Label update to later be applied¢ocket | abel

Determine whether the subject credential can relabel thegubsocket to the passed label update.

6.7.4.23 npo_check_cred_rel abel

int npo_check_cred_rel abel (struct ucred xcred, struct label *newl abel);
Parameter Description Locking
cred Subject credential

new abel Label update to later be applieddoed

Determine whether the subject credential can relabef its¢he passed label update.

6.7.4.24 npo_check_vnode_r el abel

int npo_check_vnode_r el abel (struct ucred *cred, struct vnode *Vvp, struct label
*vnodel abel , struct label *newl abel);

Parameter Description Locking

cred Subject credential Immutable

vp Object; vnode Locked

vnodel abel Existing policy label forvp
new abel Policy label update to later be appliedvp

Determine whether the subject credential can relabel teeguivnode to the passed label update.

6.7.4.25 npo_check_nount _st at

int npo_check_nount _st at (struct ucred xcred, struct mount *np, struct label
*nmount | abel);

Parameter Description Locking

cred Subject credential

81

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
np Object; file system mount
mount | abel Policy label fornp

Determine whether the subject credential can see the sesfudtstatfs performed on the file system. Return O for
success, or aarrno value for failure. Suggested failure: EACCES for label magomes or EPERM for lack of
privilege. This call may be made in a number of situationsluding during invocations of statfs(2) and related calls,
as well as to determine what file systems to exclude fronm{jstiof file systems, such as when getfsstat(2) is invoked.

6.7.4.26 npo_check_proc_debug

int npo_check_pr oc_debug(struct ucred xcred, struct proc *proc);
Parameter Description Locking

cred Subject credential Immutable

proc Object; process

Determine whether the subject credential can debug thegasecess. Return O for success, oeano value for
failure. Suggested failure: EACCES for label mismatch, RREor lack of privilege, or ESRCH to hide visibility of
the target. This call may be made in a number of situatior$iiiing use of the ptrace(2) and ktrace(2) APls, as well
as for some types of procfs operations.

6.7.4.27 npo_check_vnode_access

int npo_check_vnode_access(struct ucred *cred, struct vnode *vp, struct label *| abel ,
int flags);

Parameter Description Locking

cred Subject credential

vp Object; vnode

| abel Policy label forvp

flags access(2) flags

Determine how invocations of access(2) and related calth&gubject credential should return when performed on
the passed vnode using the passed access flags. This shoetdlyebe implemented using the same semantics used
in mpo_check_vnode_open . Return O for success, or anno value for failure. Suggested failure: EACCES for
label mismatches or EPERM for lack of privilege.

82

Chapter 6 The TrustedBSD MAC Framework

6.7.4.28 npo_check_vnode_chdi r

int npo_check_vnode_chdi r (struct ucred *cred, struct vnode »dvp, struct label
+dl abel);

Parameter Description Locking

cred Subject credential

dvp Object; vnode to chdir(2) into

dl abel Policy label fordvp

Determine whether the subject credential can change tleepsavorking directory to the passed vnode. Return O for

success, or aerrno value for failure. Suggested failure: EACCES for label masoh, or EPERM for lack of
privilege.

6.7.4.29 npo_check_vnode_chr oot

int npo_check_vnode_chr oot (struct ucred *cred, struct vnode +dvp, struct label
+dl abel);

Parameter Description Locking

cred Subject credential

dvp Directory vnode

dl abel Policy label associated wittivp

Determine whether the subject should be allowed to chrpot{@ the specified directoryd¢p).

6.7.4.30 npo_check_vnode_create

int npo_check_vnode_cr eat e(struct ucred xcred, struct vnode +»dvp, struct label
+dl abel , struct componentname *cnp, struct vattr *vap);

Parameter Description Locking

cred Subject credential

dvp Object; vnode

dl abel Policy label fordvp

cnp Component name fatvp

vap vnode attributes fovap

Determine whether the subject credential can create a wnitdéhe passed parent directory, passed name

83

Chapter 6 The TrustedBSD MAC Framework

information, and passed attribute information. ReturnrGstacess, or aarro value for failure. Suggested failure:
EACCES for label mismatch, or EPERM for lack of privilege.iball may be made in a number of situations,
including as a result of calls to open(2) with O_CREAT, mkf# and others.

6.7.4.31 npo_check_vnode_del et e

int npo_check_vnode_del et e(struct ucred *cred, struct vnode *dvp, struct label
xdl abel , struct vnode *vp, void =*|abel, struct componentname *Ccnp);
Parameter Description Locking

cred Subject credential

dvp Parent directory vnode

dl abel Policy label fordvp

vp Object; vnode to delete

| abel Policy label forvp

cnp Component name farp

Determine whether the subject credential can delete a vinodethe passed parent directory and passed name
information. Return 0O for success, oramno value for failure. Suggested failure: EACCES for label masah, or
EPERM for lack of privilege. This call may be made in a numbesituations, including as a result of calls to
unlink(2) and rmdir(2). Policies implementing this entryipt should also implememtpo_check rename_to to
authorize deletion of objects as a result of being the tarfj@trename.

6.7.4.32 npo_check_vnode_del et eacl

int nmpo_check_vnode_del et eacl (struct ucred *cred, struct vnode *Vvp, struct label
*| abel , acl_type_t type);

Parameter Description Locking

cred Subject credential Immutable
vp Object; vnode Locked

| abel Policy label forvp

type ACL type

Determine whether the subject credential can delete the @&@lassed type from the passed vnode. Return O for

success, or aarrno value for failure. Suggested failure: EACCES for label maso, or EPERM for lack of
privilege.

84

Chapter 6 The TrustedBSD MAC Framework

6.7.4.33 npo_check_vnode_exec

int npo_check_vnode_exec(struct ucred xcred, struct vnode *Vvp, struct label *| abel);

Parameter Description Locking
cred Subject credential

vp Object; vnode to execute

| abel Policy label forvp

Determine whether the subject credential can execute gsedasnode. Determination of execute privilege is made
separately from decisions about any transitioning evegiiuiR 0 for success, or anrno value for failure.
Suggested failure: EACCES for label mismatch, or EPERMdok of privilege.

6.7.4.34 npo_check_vnode_get acl

int npo_check_vnode_get acl (struct ucred xcred, struct vnode

*vp, struct label x| abel ,
acl_type_t type);

Parameter Description Locking
cred Subject credential

vp Object; vnode

| abel Policy label forvp

type ACL type

Determine whether the subject credential can retrieve tbe éf passed type from the passed vnode. Return 0 for

success, or aarrno value for failure. Suggested failure: EACCES for label mago, or EPERM for lack of
privilege.

6.7.4.35 npo_check_vnode_getextattr

int npo_check_vnode_get ext at t r (struct ucred *cred, struct vnode *vp, struct label
x| abel , int attrnanespace, const char *name, struct uio * Ui 0);

Parameter Description Locking

cred Subject credential

vp Object; vnode

| abel Policy label forvp

attrnamespace Extended attribute namespace

name Extended attribute name

85

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
ui o I/O structure pointer; see uio(9)

Determine whether the subject credential can retrievesttended attribute with the passed namespace and name
from the passed vnode. Policies implementing labelingguekiended attributes may be interested in special
handling of operations on those extended attributes. R&tdior success, or asrrno value for failure. Suggested
failure: EACCES for label mismatch, or EPERM for lack of plege.

6.7.4.36 npo_check_vnode_Ii nk

int npo_check_vnode_| i nk(struct ucred *cred, struct vnode +dvp, struct label +dl abel ,
struct vnode *vp, struct label x| abel , struct componentname *Ccnp);

Parameter Description Locking

cred Subject credential

dvp Directory vnode

dl abel Policy label associated witttvp

vp Link destination vnode

| abel Policy label associated witip

cnp Component name for the link being created

Determine whether the subject should be allowed to creatdk ad the vnodesp with the name specified bynp.

6.7.4.37 npo_check_vnode_nmap

int npo_check_vnode_map(struct ucred xcred, struct vnode *Vvp, struct label *| abel ,
int prot);

Parameter Description Locking

cred Subject credential

vp Vnode to map

| abel Policy label associated witlp

pr ot Mmap protections (see mmap(2))

Determine whether the subject should be allowed to map tbdewp with the protections specified pr ot .

6.7.4.38 npo_check_vnode_mmap_downgr ade

void npo_check_vnode_mrap_downgr ade(struct ucred xcred, struct vnode *vp, struct label
*| abel , int *prot);

86

Chapter 6 The TrustedBSD MAC Framework

Parameter Description

cred SeeSection 6.7.4.37

vp

| abel

pr ot Mmap protections to be downgraded

Downgrade the mmap protections based on the subject anct ¢ddjels.

6.7.4.39 npo_check_vnode_npr ot ect

int npo_check_vnode_npr ot ect (struct ucred xcred, struct vnode *vp, struct label
x| abel , int prot);

Parameter Description Locking
cred Subject credential

vp Mapped vnode

pr ot Memory protections

Determine whether the subject should be allowed to set theifsgd memory protections on memory mapped from
the vnodevp.

6.7.4.40 npo_check_vnode_pol |

int npo_check_vnode_pol | (struct ucred xactive_cred, struct ucred xfile_cred, struct
vnode =*vp, struct label *| abel);
Parameter Description Locking

active_cred Subjectcredential

file _cred Credential associated with the struct file
vp Polled vnode

| abel Policy label associated witip

Determine whether the subject should be allowed to poll timdevp.

6.7.4.41 npo_check_vnode_renane_from

int npo_vnode_r enane_f r on{struct ucred *cred, struct vnode +=dvp, struct label =dl abel ,
struct vnode *vp, struct label x| abel , struct componentname *Ccnp);

87

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cred Subject credential

dvp Directory vnode

dl abel Policy label associated wittivp

vp Vnode to be renamed

| abel Policy label associated withp

cnp Component name farp

Determine whether the subject should be allowed to renamertbdevp to something else.

6.7.4.42 npo_check_vnode_renane_t o

int npo_check_vnode_r enane_t o(struct ucred *cred, struct vnode +xdvp, struct label
xdl abel , struct vnode *vp, struct label | abel , int samedir, struct componentname
*cnp);

Parameter Description Locking

cred Subject credential

dvp Directory vnode

dl abel Policy label associated wittivp

vp Overwritten vnode

| abel Policy label associated withp

samedir Boolean;1 if the source and destination directories are the same

cnp Destination component name

Determine whether the subject should be allowed to renarttetenodevp, into the directorydvp, or to the name
represented bynp. If there is no existing file to overwritep andl abel will be NULL.

6.7.4.43 npo_check_socket _|isten

int npo_check_socket _I| i st en(struct ucred *cred, struct socket *socket, struct label
*socket | abel);

Parameter Description Locking
cred Subject credential
socket Object; socket

socket | abel Policy label forsocket

Determine whether the subject credential can listen onalssgul socket. Return O for success, ogramo value for

88

Chapter 6 The TrustedBSD MAC Framework

failure. Suggested failure: EACCES for label mismatch, BERM for lack of privilege.

6.7.4.44 npo_check_vnode_| ookup

int npo_check_vnode_| ookup(struct ucred *cred, struct vnode =dvp, struct label
*dlabel, struct componentname *CNnp);

Parameter Description Locking

cred Subject credential

dvp Object; vnode

dl abel Policy label fordvp

cnp Component name being looked up

Determine whether the subject credential can perform alpak the passed directory vnode for the passed name.

Return O for success, or @nrno value for failure. Suggested failure: EACCES for label masoh, or EPERM for
lack of privilege.

6.7.4.45 npo_check_vnode_open

int npo_check_vnode_open(struct ucred +xcred, struct vnode *vp, struct label *| abel ,
int acc_node);

Parameter Description Locking
cred Subject credential

vp Object; vnode

| abel Policy label forvp

acc_node open(2) access mode
Determine whether the subject credential can perform an operation on the passed vnode with the passed access

mode. Return O for success, or an errno value for failureg8sigd failure: EACCES for label mismatch, or EPERM
for lack of privilege.

6.7.4.46 npo_check_vnode_readdi r

int npo_check_vnode_r eaddi r (struct ucred *cred, struct vnode +dvp, struct label
* dlabel);

Parameter Description Locking

cred Subject credential

89

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
dvp Object; directory vnode
dl abel Policy label fordvp

Determine whether the subject credential can perforeaddir operation on the passed directory vnode. Return 0
for success, or aarrno value for failure. Suggested failure: EACCES for label magoh, or EPERM for lack of
privilege.

6.7.4.47 npo_check_vnode_r eadl i nk

int npo_check_vnode_r eadl i nk(struct ucred xcred, struct vnode *vp, struct label
*| abel);

Parameter Description Locking

cred Subject credential
vp Object; vnode
| abel Policy label forvp

Determine whether the subject credential can perforeadiink operation on the passed symlink vnode. Return 0
for success, or aerrno value for failure. Suggested failure: EACCES for label masol, or EPERM for lack of
privilege. This call may be made in a number of situationsluding an expliciteadlink call by the user process,
or as a result of an implicieadlink during a name lookup by the process.

6.7.4.48 npo_check_vnode_revoke

int npo_check_vnode_r evoke(struct ucred +xcred, struct vnode *vp, struct label *| abel);

Parameter Description Locking

cred Subject credential
vp Object; vnode
| abel Policy label forvp

Determine whether the subject credential can revoke atoéle passed vnode. Return O for success, @rao
value for failure. Suggested failure: EACCES for label masolm, or EPERM for lack of privilege.

6.7.4.49 npo_check_vnode_set acl

int npo_check_vnode_set acl (struct ucred +xcred, struct vnode *vp, struct label *| abel ,
acl_type_t type, struct acl xacl);

90

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cred Subject credential

vp Object; vnode

| abel Policy label forvp

type ACL type

acl ACL

Determine whether the subject credential can set the pa&Seaf passed type on the passed vnode. Return 0O for
success, or aerrno value for failure. Suggested failure: EACCES for label masoh, or EPERM for lack of
privilege.

6.7.4.50 npo_check_vnode_setextattr

int npo_check_vnode_set ext at t r (struct ucred *cred, struct vnode *vp, struct label
x| abel , int attrnanespace, const char *name, struct uio * Ui 0);

Parameter Description Locking

cred Subject credential

vp Object; vnode

| abel Policy label forvp

attrnamespace Extended attribute namespace

name Extended attribute name

ui o I/O structure pointer; see uio(9)

Determine whether the subject credential can set the estkattiribute of passed name and passed namespace on the
passed vnode. Policies implementing security labels libicke extended attributes may want to provide additional
protections for those attributes. Additionally, policEsould avoid making decisions based on the data referenced
fromui o, as there is a potential race condition between this chegktranactual operation. The o may also be

NULLif a delete operation is being performed. Return O for suxa@sanerrno value for failure. Suggested failure:
EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.51 npo_check_vnode_setfl ags

int npo_check_vnode_set f | ags(struct ucred +xcred, struct vnode *vp, struct label
| abel, u_long fl ags);

Parameter Description Locking
cred Subject credential
vp Object; vnode

91

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
| abel Policy label forvp
flags File flags; see chflags(2)

Determine whether the subject credential can set the pélsggsdn the passed vnode. Return 0 for success, or an
errno value for failure. Suggested failure: EACCES for label magoh, or EPERM for lack of privilege.

6.7.4.52 npo_check_vnode_set node

int nmpo_check_vnode_set node(struct ucred *cred, struct vnode *Vvp, struct label

*| abel ,
mode_t node);

Parameter Description Locking
cred Subject credential

vp Object; vnode

| abel Policy label forvp

node File mode; see chmod(2)

Determine whether the subject credential can set the passdd on the passed vnode. Return 0 for success, or an
errno value for failure. Suggested failure: EACCES for label magoh, or EPERM for lack of privilege.

6.7.4.53 npo_check_vnode_set owner

int npo_check_vnode_set owner (struct ucred +xcred, struct vnode *vp, struct label
x| abel , uid_t uid, gidt gid)

Parameter Description Locking
cred Subject credential

vp Object; vnode

| abel Policy label forvp

uid User ID

gid Group ID

Determine whether the subject credential can set the pas$ead passed gid as file uid and file gid on the passed
vnode. The IDs may be set tel() to request no update. Return 0 for success, ara value for failure.
Suggested failure: EACCES for label mismatch, or EPERMdok of privilege.

6.7.4.54 npo_check_vnode_set uti nes

int nmpo_check_vnode_set uti mes(struct ucred *cred, struct vnode *vp, struct label

92

Chapter 6 The TrustedBSD MAC Framework

*label, struct timespec atime, struct timespec mtime);

Parameter Description Locking
cred Subject credential

vp Object; vp

| abel Policy label forvp

atime Access time; see utimes(2)

ntine Modification time; see utimes(2)

Determine whether the subject credential can set the passeds timestamps on the passed vnode. Return 0 for
success, or aarrno value for failure. Suggested failure: EACCES for label mason, or EPERM for lack of
privilege.

6.7.4.55 npo_check_proc_sched

int npo_check_proc_sched(struct ucred xucred, struct proc *proc);
Parameter Description Locking

cred Subject credential

proc Object; process

Determine whether the subject credential can change ttezlatihg parameters of the passed process. Return O for
success, or aerrno value for failure. Suggested failure: EACCES for label masoh, EPERM for lack of privilege,
or ESRCH to limit visibility.

See setpriority(2) for more information.

6.7.4.56 npo_check_proc_si gnal

int npo_check_proc_si gnal (struct ucred *cred, struct proc *proc, int signal);
Parameter Description Locking

cred Subject credential

proc Object; process

si gnal Signal; see kill(2)

Determine whether the subject credential can deliver tlssgrhsignal to the passed process. Return 0 for success, or
anerrno value for failure. Suggested failure: EACCES for label masoh, EPERM for lack of privilege, or ESRCH
to limit visibility.

93

Chapter 6 The TrustedBSD MAC Framework
6.7.4.57 npo_check_vnode_st at

int npo_check_vnode_st at (struct ucred xcred, struct vnode *Vvp, struct label *| abel);

Parameter Description Locking
cred Subject credential

vp Object; vnode

| abel Policy label forvp

Determine whether the subject credential ss the passed vnode. Return O for success, @ram value for
failure. Suggested failure: EACCES for label mismatch, BERM for lack of privilege.

See stat(2) for more information.

6.7.4.58 npo_check_ifnet_transmt

int npo_check_i fnet_transmni t (struct ucred +xcred, struct ifnet +i fnet, struct label
x| f net| abel , struct mbuf *nbuf , struct label *nbuf | abel);

Parameter Description Locking

cred Subject credential

i fnet Network interface

i fnet| abel Policy label fori f net

mbuf Object; mbuf to be sent

mbuf | abel Policy label formbuf

Determine whether the network interface can transmit tissg@mbuf. Return O for success, oreamo value for
failure. Suggested failure: EACCES for label mismatch, BERM for lack of privilege.

6.7.4.59 npo_check_socket _del i ver

int npo_check_socket _del i ver (struct ucred +xcred, struct ifnet *i fnet, struct label
xi fnetl abel , struct mbuf *nbuf , struct label *nbuf | abel);

Parameter Description Locking

cred Subject credential

i fnet Network interface

i fnet| abel Policy label fori f net

mbuf Object; mbuf to be delivered

94

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
mbuf | abel Policy label formbuf

Determine whether the socket may receive the datagrandsiothe passed mbuf header. Return 0 for success, or an
errno value for failure. Suggested failures: EACCES for labelmasch, or EPERM for lack of privilege.

6.7.4.60 npo_check_socket visible

int npo_check_socket _vi si bl e(struct ucred xcred, struct socket *s0, struct label
*socket | abel);

Parameter Description Locking
cred Subject credential Immutable
so Object; socket

socket | abel Policy label forso

Determine whether the subject credential cred can "seg¥dbsed sockes fcket) using system monitoring
functions, such as those employed by netstat(8) and saRstReturn O for success, or anno value for failure.
Suggested failure: EACCES for label mismatches, EPERMaftk bf privilege, or ESRCH to hide visibility.

6.7.4.61 npo_check_system acct

int npo_check_syst em acct (struct ucred *ucred, struct vnode *vp, struct label
+v| abel);

Parameter Description Locking

ucr ed Subject credential

vp Accounting file; acct(5)

vl abel Label associated withp

Determine whether the subject should be allowed to enalsleuating, based on its label and the label of the
accounting log file.

6.7.4.62 npo_check_system nf sd

int npo_check_syst em nf sd(struct ucred *cred);

Parameter Description Locking
cred Subject credential

95

Chapter 6 The TrustedBSD MAC Framework

Determine whether the subject should be allowed to calMe{&3.

6.7.4.63 npo_check_syst em r eboot

int npo_check_syst em r eboot (struct ucred xcred, int how o);
Parameter Description Locking

cred Subject credential

howt o howt o parameter from reboot(2)

Determine whether the subject should be allowed to reb@ogyistem in the specified manner.

6.7.4.64 npo_check_system settine

int npo_check_system setti me(struct ucred xcred);
Parameter Description Locking
cred Subject credential

Determine whether the user should be allowed to set theraydtik.

6.7.4.65 npo_check_syst em swapon

int npo_check_syst em swapon(struct ucred *cred, struct vnode *Vvp, struct label
*v| abel);

Parameter Description Locking

cred Subject credential

vp Swap device

vl abel Label associated withp

Determine whether the subject should be allowed to\gdds a swap device.

6.7.4.66 npo_check_system sysct|

int npo_check_system sysct| (struct ucred xcred, int *npanme, u_int *nanel en, void *old,
size t *oldl enp, int i nkernel, void =*new, size t new en);

96

Chapter 6 The TrustedBSD MAC Framework

Parameter Description

cred Subject credential

nane See sysctl(3)

nanel en

ol d

ol dl enp

i nker nel Boolean:1 if called from kernel
new See sysctl(3)

new en

Determine whether the subject should be allowed to makepbeified sysctl(3) transaction.

6.7.5 Label Management Calls

Relabel events occur when a user process has requesteagltabel on an object be modified. A two-phase update
occurs: first, an access control check will be performed terd@ne if the update is both valid and permitted, and
then the update itself is performed via a separate entryt@@@label entry points typically accept the object, object
label reference, and an update label submitted by the pgoktsmory allocation during relabel is discouraged, as
relabel calls are not permitted to fail (failure should bparted earlier in the relabel check).

6.8 Userland Architecture

The TrustedBSD MAC Framework includes a number of policpesiic elements, including MAC library interfaces
for abstractly managing labels, modifications to the systesdential management and login libraries to support the
assignment of MAC labels to users, and a set of tools to moaitd modify labels on processes, files, and network
interfaces. More details on the user architecture will baeado this section in the near future.

6.8.1 APIs for Policy-Agnostic Label Management

The TrustedBSD MAC Framework provides a number of librarg aystem calls permitting applications to manage
MAC labels on objects using a policy-agnostic interfacdsermits applications to manipulate labels for a variety

of policies without being written to support specific podisi These interfaces are used by general-purpose tools such
as ifconfig(8), Is(1) and ps(1) to view labels on networkiiftees, files, and processes. The APIs also support MAC
management tools including getfmac(8), getpmac(8), setfB), setfsmac(8), and setpmac(8). The MAC APIs are
documented in mac(3).

Applications handle MAC labels in two forms: an internatiZerm used to return and set labels on processes and
objects fnac_t), and externalized form based on C strings appropriatedoage in configuration files, display to

the user, or input from the user. Each MAC label contains abrarmof elements, each consisting of a name and value
pair. Policy modules in the kernel bind to specific names atetpret the values in policy-specific ways. In the
externalized string form, labels are represented by a coaefimited list of name and value pairs separated by the
character. Labels may be directly converted to and fromusixtg provided APIs; when retrieving labels from the

97

Chapter 6 The TrustedBSD MAC Framework

kernel, internalized label storage must first be preparethéodesired label element set. Typically, this is done i@ on
of two ways: using mac_prepare(3) and an arbitrary list sire label elements, or one of the variants of the call
that loads a default element set from the mac.conf(5) cordtan file. Per-object defaults permit application wrgter
to usefully display labels associated with objects witHmeihg aware of the policies present in the system.

Note: Currently, direct manipulation of label elements other than by conversion to a text string, string editing, and
conversion back to an internalized label is not supported by the MAC library. Such interfaces may be added in the
future if they prove necessary for application writers.

6.8.2 Binding of Labels to Users

The standard user context management interface, setugext@), has been modified to retrieve MAC labels
associated with a user’s class from login.conf(5). Thelseltaare then set along with other user context when either
LOGIN_SETALLIs specified, or whehOGIN_SETMAQs explicitly specified.

Note: It is expected that, in a future version of FreeBSD, the MAC label database will be separated from the
login.conf user class abstraction, and be maintained in a separate database. However, the setusercontext(3)
API should remain the same following such a change.

6.9 Conclusion

The TrustedBSD MAC framework permits kernel modules to aeigithe system security policy in a highly
integrated manner. They may do this based on existing opjeperties, or based on label data that is maintained
with the assistance of the MAC framework. The framework fic@antly flexible to implement a variety of policy
types, including information flow security policies suchMisS and Biba, as well as policies based on existing BSD
credentials or file protections. Policy authors may wishdosult this documentation as well as existing security
modules when implementing a new security service.

98

Chapter 7 Virtual Memory System

Contributed by Matthew Dillon.

7.1 Management of Physical Memory— vm page_t

Physical memory is managed on a page-by-page basis thrbegimtpage_t structure. Pages of physical memory
are categorized through the placement of their respeativ@age_t structures on one of several paging queues.

A page can be in a wired, active, inactive, cache, or free skatcept for the wired state, the page is typically placed
in a doubly link list queue representing the state that ihidVired pages are not placed on any queue.

FreeBSD implements a more involved paging queue for cacheédrae pages in order to implement page coloring.
Each of these states involves multiple queues arrangeddingdo the size of the processor’'s L1 and L2 caches.
When a new page needs to be allocated, FreeBSD attemptsaio obe that is reasonably well aligned from the
point of view of the L1 and L2 caches relative to the VM objédet page is being allocated for.

Additionally, a page may be held with a reference count dkéolowith a busy count. The VM system also
implements an “ultimate locked” state for a page using the BIGSY bit in the page’s flags.

In general terms, each of the paging queues operates in aagtlibh. A page is typically placed in a wired or active
state initially. When wired, the page is usually associatégl a page table somewhere. The VM system ages the
page by scanning pages in a more active paging queue (LRUWjlér to move them to a less-active paging queue.
Pages that get moved into the cache are still associatecawi¥ object but are candidates for immediate reuse.
Pages in the free queue are truly free. FreeBSD attemptsiioniae the number of pages in the free queue, but a
certain minimum number of truly free pages must be mainthin@rder to accommodate page allocation at
interrupt time.

If a process attempts to access a page that does not exspiage table but does exist in one of the paging queues

(such as the inactive or cache queues), a relatively inestpepage reactivation fault occurs which causes the page

to be reactivated. If the page does not exist in system meatal, the process must block while the page is brought
in from disk.

FreeBSD dynamically tunes its paging queues and attemptsitatain reasonable ratios of pages in the various
gueues as well as attempts to maintain a reasonable breakd@ean versus dirty pages. The amount of
rebalancing that occurs depends on the system’s memoryTbérebalancing is implemented by the pageout
daemon and involves laundering dirty pages (syncing thetmtheir backing store), noticing when pages are
activity referenced (resetting their position in the LRUeges or moving them between queues), migrating pages
between queues when the queues are out of balance, andlsd-f@eBSD’s VM system is willing to take a
reasonable number of reactivation page faults to deterhrimeactive or how idle a page actually is. This leads to
better decisions being made as to when to launder or swap-{mage.

7.2 The Unified Buffer Cache— vm obj ect _t

FreeBSD implements the idea of a generic “VM object”. VM altgecan be associated with backing store of various
types—unbacked, swap-backed, physical device-backditt-dracked storage. Since the filesystem uses the same
VM objects to manage in-core data relating to files, the téswal unified buffer cache.

VM objects can beshadowedThat is, they can be stacked on top of each other. For exagmalemight have a
swap-backed VM object stacked on top of a file-backed VM dhjeorder to implement a MAP_PRIVATE

99

Chapter 7 Virtual Memory System

mmap()ing. This stacking is also used to implement varitwasing properties, including copy-on-write, for forked
address spaces.

It should be noted thatwam_page_t can only be associated with one VM object at a time. The VM abje
shadowing implements the perceived sharing of the samegmagss multiple instances.

7.3 Filesystem 1/O— st ruct buf

vnode-backed VM obijects, such as file-backed objects, gypaeed to maintain their own clean/dirty info
independent from the VM system’s idea of clean/dirty. Faraple, when the VM system decides to synchronize a
physical page to its backing store, the VM system needs t& tharpage clean before the page is actually written to
its backing store. Additionally, filesystems need to be adbi@ap portions of a file or file metadata into KVM in
order to operate on it.

The entities used to manage this are known as filesystemrbysfieict buf ’s, orbp’s. When a filesystem needs

to operate on a portion of a VM object, it typically maps pdrthe object into a struct buf and the maps the pages in
the struct buf into KVM. In the same manner, disk I/O is tyflicgssued by mapping portions of objects into buffer
structures and then issuing the 1/0 on the buffer structdies underlying vm_page_t’s are typically busied for the
duration of the 1/0O. Filesystem buffers also have their owtian of being busy, which is useful to filesystem driver
code which would rather operate on filesystem buffers imstéfard VM pages.

FreeBSD reserves a limited amount of KVM to hold mappingseifstruct bufs, but it should be made clear that this
KVM is used solely to hold mappings and does not limit theigbib cache data. Physical data caching is strictly a
function ofvm_page_t 's, not filesystem buffers. However, since filesystem bsffae used to placehold 1/0O, they
do inherently limit the amount of concurrent I/0O possiblew¢ver, as there are usually a few thousand filesystem
buffers available, this is not usually a problem.

7.4 Mapping Page Tables— vm map_t, vmentry t

FreeBSD separates the physical page table topology frovithsystem. All hard per-process page tables can be
reconstructed on the fly and are usually considered throwaSysecial page tables such as those managing KVM are
typically permanently preallocated. These page tablesatrthrowaway.

FreeBSD associates portions of vm_objects with addreggesan virtual memory througém_map_t and

vm_entry_t structures. Page tables are directly synthesized fromrthenap_t/vm_entry t /vm_object_t
hierarchy. Recall that | mentioned that physical pages aledirectly associated with @an_object ; that is not

quite truevm_page_t ’s are also linked into page tables that they are activelg@ated with. Onem_page_t can

be linked into severgimaps as page tables are called. However, the hierarchical iasswcholds, so all references
to the same page in the same object reference the @anpage_t and thus give us buffer cache unification across
the board.

7.5 KVM Memory Mapping

FreeBSD uses KVM to hold various kernel structures. Thelsitaggest entity held in KVM is the filesystem buffer
cache. That is, mappings relatingstouct buf entities.

Unlike Linux, FreeBSD doesot map all of physical memory into KVM. This means that FreeB3ih bandle
memory configurations up to 4G on 32 bit platforms. In facthé mmu were capable of it, FreeBSD could

100

Chapter 7 Virtual Memory System

theoretically handle memory configurations up to 8TB on aiBglatform. However, since most 32 bit platforms are
only capable of mapping 4GB of ram, this is a moot point.

KVM is managed through several mechanisms. The main mesimaused to manage KVM is ttmne allocator

The zone allocator takes a chunk of KVM and splits it up intastant-sized blocks of memory in order to allocate a
specific type of structure. You can ugastat -m to get an overview of current KVM utilization broken down by
zone.

7.6 Tuning the FreeBSD VM System

A concerted effort has been made to make the FreeBSD kernahdigally tune itself. Typically you do not need to
mess with anything beyond tineaxusers andNMBCLUSTERKernel config options. That is, kernel compilation
options specified in (typicallylusr/src/sys/i386/conf/ CONFI G_FI LE. A description of all available kernel
configuration options can be found/umsr/src/sys/i386/conf/LINT

In a large system configuration you may wish to increaseusers . Values typically range from 10 to 128. Note
that raisingmaxusers too high can cause the system to overflow available KVM ragylh unpredictable
operation. It is better to leaveaxusers at some reasonable number and add other options, SMVIBSLUSTERS
to increase specific resources.

If your system is going to use the network heavily, you maywtaincreasé\MBCLUSTERSypical values range
from 1024 to 4096.

TheNBUFparameter is also traditionally used to scale the systeiis.pdrameter determines the amount of KVA the
system can use to map filesystem buffers for 1/0. Note thafgarameter has nothing whatsoever to do with the
unified buffer cache! This parameter is dynamically tune8.0t CURRENT and later kernels and should generally
not be adjusted manually. We recommend that yottry to specify arNBUFparameter. Let the system pick it. Too
small a value can result in extremely inefficient filesystgraration while too large a value can starve the page
gueues by causing too many pages to become wired down.

By default, FreeBSD kernels are not optimized. You can setigging and optimization flags with the
makeoptions directive in the kernel configuration. Note that you shouwtluse-g unless you can accommodate
the large (typically 7 MB+) kernels that result.

makeoptions DEBUG="-¢g"
makeoptions COPTFLAGS="-O -pipe"

Sysctl provides a way to tune kernel parameters at run-tvfme typically do not need to mess with any of the sysctl
variables, especially the VM related ones.

Run time VM and system tuning is relatively straightforwdtist, use Soft Updates on your UFS/FFS filesystems
whenever possibleusr/src/sys/ufs/ffssREADME.softupdates contains instructions (and restrictions) on
how to configure it.

Second, configure sufficient swap. You should have a swajtipartonfigured on each physical disk, up to four,
even on your “work” disks. You should have at least 2x the sg@gre as you have main memory, and possibly even
more if you do not have a lot of memory. You should also sizerygwap partition based on the maximum memory
configuration you ever intend to put on the machine so you ddaee to repartition your disks later on. If you want
to be able to accommodate a crash dump, your first swap partitust be at least as large as main memory and
Ivar/crash must have sufficient free space to hold the dump.

101

Chapter 7 Virtual Memory System

NFS-based swap is perfectly acceptable on 4.X or latersyssteut you must be aware that the NFS server will take
the brunt of the paging load.

102

Chapter 8 SMPng Design Document

Written by John Baldwin and Robert Watson.

8.1 Introduction

This document presents the current design and implementatithe SMPng Architecture. First, the basic primitives
and tools are introduced. Next, a general architecturenfoFteeBSD kernel's synchronization and execution model
is laid out. Then, locking strategies for specific subsystane discussed, documenting the approaches taken to
introduce fine-grained synchronization and parallelisnefach subsystem. Finally, detailed implementation notes
are provided to motivate design choices, and make the read@e of important implications involving the use of
specific primitives.

This document is a work-in-progress, and will be update@fiect on-going design and implementation activities
associated with the SMPng Project. Many sections currexist only in outline form, but will be fleshed out as
work proceeds. Updates or suggestions regarding the dotumag/ be directed to the document editors.

The goal of SMPng is to allow concurrency in the kernel. Thenkkis basically one rather large and complex
program. To make the kernel multi-threaded we use some e tools used to make other programs
multi-threaded. These include mutexes, shared/exclisiks, semaphores, and condition variables. For the
definitions of these and other SMP-related terms, pleasthe€dossarysection of this article.

8.2 Basic Tools and Locking Fundamentals

8.2.1 Atomic Instructions and Memory Barriers

There are several existing treatments of memory barriegts#mic instructions, so this section will not include a lot
of detail. To put it simply, one can not go around readingafalgs without a lock if a lock is used to protect writes to
that variable. This becomes obvious when you consider tleatony barriers simply determine relative order of
memory operations; they do not make any guarantee aboutgiofimemory operations. That is, a memory barrier
does not force the contents of a CPU’s local cache or stoferttofflush. Instead, the memory barrier at lock release
simply ensures that all writes to the protected data will iséble to other CPU’s or devices if the write to release the
lock is visible. The CPU is free to keep that data in its caah®&are buffer as long as it wants. However, if another
CPU performs an atomic instruction on the same datum, thei?&) must guarantee that the updated value is made
visible to the second CPU along with any other operationisitteanory barriers may require.

For example, assuming a simple model where data is consdig@ible when it is in main memory (or a global
cache), when an atomic instruction is triggered on one CRhgrcCPU'’s store buffers and caches must flush any
writes to that same cache line along with any pending operatbehind a memory barrier.

This requires one to take special care when using an itenegeat by atomic instructions. For example, in the sleep
mutex implementation, we have to useaaomic_cmpset rather than amtomic_set to turn on the
MTX_CONTESTEDIt. The reason is that we read the valuerbk_| ock into a variable and then make a decision
based on that read. However, the value we read may be stélenay change while we are making our decision.
Thus, when thatomic_set executed, it may end up setting the bit on another value tioie we made the
decision on. Thus, we have to useaomic_cmpset to set the value only if the value we made the decision on is
up-to-date and valid.

103

Chapter 8 SMPng Design Document

Finally, atomic instructions only allow one item to be upsthor read. If one needs to atomically update several
items, then a lock must be used instead. For example, if twateos must be read and have values that are consistent
relative to each other, then those counters must be prdtbygta lock rather than by separate atomic instructions.

8.2.2 Read Locks Versus Write Locks

Read locks do not need to be as strong as write locks. Botls tyfdecks need to ensure that the data they are
accessing is not stale. However, only write access regekessive access. Multiple threads can safely read a value.
Using different types of locks for reads and writes can beémgnted in a number of ways.

First, sx locks can be used in this manner by using an ex@usok when writing and a shared lock when reading.
This method is quite straightforward.

A second method is a bit more obscure. You can protect a daithmmwiltiple locks. Then for reading that data you
simply need to have a read lock of one of the locks. Howevenryiie to the data, you need to have a write lock of all
of the locks. This can make writing rather expensive but Gandeful when data is accessed in various ways. For
example, the parent process pointer is protected by botbrtleeee_lock sx lock and the per-process mutex.
Sometimes the proc lock is easier as we are just checkingetese a parent of a process is that we already have
locked. However, other places suchigsrior need to walk the tree of processes via parent pointers akohtpc
each process would be prohibitive as well as a pain to guegahat the condition you are checking remains valid for
both the check and the actions taken as a result of the check.

8.2.3 Locking Conditions and Results

If you need a lock to check the state of a variable so that youale an action based on the state you read, you can
not just hold the lock while reading the variable and therpdre lock before you act on the value you read. Once
you drop the lock, the variable can change rendering yousibecinvalid. Thus, you must hold the lock both while
reading the variable and while performing the action as alre$the test.

8.3 General Architecture and Design

8.3.1 Interrupt Handling

Following the pattern of several other multi-threaded UNBtnels, FreeBSD deals with interrupt handlers by giving
them their own thread context. Providing a context for intpt handlers allows them to block on locks. To help
avoid latency, however, interrupt threads run at real-tiemel priority. Thus, interrupt handlers should not execu
for very long to avoid starving other kernel threads. In &ddi since multiple handlers may share an interrupt
thread, interrupt handlers should not sleep or use a slézjwat to avoid starving another interrupt handler.

The interrupt threads currently in FreeBSD are referresgthemvyweight interrupt threads. They are called this
because switching to an interrupt thread involves a fultertrswitch. In the initial implementation, the kernel was
not preemptive and thus interrupts that interrupted a kehnead would have to wait until the kernel thread blocked
or returned to userland before they would have an oppoyttmitun.

To deal with the latency problems, the kernel in FreeBSD k&hlmade preemptive. Currently, we only preempt a
kernel thread when we release a sleep mutex or when an ipt@wmes in. However, the plan is to make the
FreeBSD kernel fully preemptive as described below.

104

Chapter 8 SMPng Design Document

Not all interrupt handlers execute in a thread contextelmdt some handlers execute directly in primary interrupt
context. These interrupt handlers are currently misnarfest™interrupt handlers since thieTR_FAST flag used in
earlier versions of the kernel is used to mark these handiesonly interrupts which currently use these types of
interrupt handlers are clock interrupts and serial I/0O devterrupts. Since these handlers do not have their own
context, they may not acquire blocking locks and thus may osé spin mutexes.

Finally, there is one optional optimization that can be abideMD code called lightweight context switches. Since

an interrupt thread executes in a kernel context, it candeotihhe vmspace of any process. Thus, in a lightweight
context switch, the switch to the interrupt thread does nitck vmspaces but borrows the vmspace of the
interrupted thread. In order to ensure that the vmspacesahtbrrupted thread does not disappear out from under us,
the interrupted thread is not allowed to execute until thermipt thread is no longer borrowing its vmspace. This can
happen when the interrupt thread either blocks or finisties interrupt thread blocks, then it will use its own

context when it is made runnable again. Thus, it can reldesmterrupted thread.

The cons of this optimization are that they are very machieeiéic and complex and thus only worth the effort if
their is a large performance improvement. At this point prisbably too early to tell, and in fact, will probably hurt
performance as almost all interrupt handlers will immegliablock on Giant and require a thread fix-up when they
block. Also, an alternative method of interrupt handling baen proposed by Mike Smith that works like so:

1. Each interrupt handler has two parts: a predicate whiohk muprimary interrupt context and a handler which
runs in its own thread context.

2. If an interrupt handler has a predicate, then when anruréis triggered, the predicate is run. If the predicate
returns true then the interrupt is assumed to be fully hahaltel the kernel returns from the interrupt. If the
predicate returns false or there is no predicate, then teaded handler is scheduled to run.

Fitting light weight context switches into this scheme ntigtove rather complicated. Since we may want to change
to this scheme at some point in the future, it is probably tmedefer work on light weight context switches until we
have settled on the final interrupt handling architectut@atermined how light weight context switches might or
might not fit into it.

8.3.2 Kernel Preemption and Critical Sections

8.3.2.1 Kernel Preemption in a Nutshell

Kernel preemption is fairly simple. The basic idea is thatflU&hould always be doing the highest priority work
available. Well, that is the ideal at least. There are a @maptases where the expense of achieving the ideal is not
worth being perfect.

Implementing full kernel preemption is very straightfordiawhen you schedule a thread to be executed by putting it
on a run queue, you check to see if its priority is higher tiendurrently executing thread. If so, you initiate a
context switch to that thread.

While locks can protect most data in the case of a preemptitrgll of the kernel is preemption safe. For example,

if a thread holding a spin mutex preempted and the new threé@chpts to grab the same spin mutex, the new thread
may spin forever as the interrupted thread may never getrecefta execute. Also, some code such as the code to
assign an address space number for a process daxgegon the Alpha needs to not be preempted as it supports the
actual context switch code. Preemption is disabled forettvesle sections by using a critical section.

105

Chapter 8 SMPng Design Document

8.3.2.2 Critical Sections

The responsibility of the critical section API is to prevenhtext switches inside of a critical section. With a fully
preemptive kernel, eversetrunqueue of a thread other than the current thread is a preemptiort.goire
implementation is focritical_enter to set a per-thread flag that is cleared by its counterpasdtifinqueue is
called with this flag set, it does not preempt regardlesseptiority of the new thread relative to the current thread.
However, since critical sections are used in spin mutexgsaeent context switches and multiple spin mutexes can
be acquired, the critical section APl must support nesfing this reason the current implementation uses a nesting
countinstead of a single per-thread flag.

In order to minimize latency, preemptions inside of a caitigection are deferred rather than dropped. If a thread that
would normally be preempted to is made runnable while theectithread is in a critical section, then a per-thread
flag is set to indicate that there is a pending preemption.nthe outermost critical section is exited, the flag is
checked. If the flag is set, then the current thread is presahtptallow the higher priority thread to run.

Interrupts pose a problem with regards to spin mutexes.dialével interrupt handler needs a lock, it needs to not
interrupt any code needing that lock to avoid possible datetsire corruption. Currently, providing this mechanism
is piggybacked onto critical section API by means of¢he_critical_enter andcpu_critical_exit

functions. Currently this API disables and re-enablesinfas on all of FreeBSD’s current platforms. This approach
may not be purely optimal, but it is simple to understand amgke to get right. Theoretically, this second API need
only be used for spin mutexes that are used in primary indécontext. However, to make the code simpler, it is
used for all spin mutexes and even all critical sections.dy ime desirable to split out the MD API from the Ml API
and only use it in conjunction with the Ml API in the spin muiexplementation. If this approach is taken, then the
MD API likely would need a rename to show that it is a separd@é& A

8.3.2.3 Design Tradeoffs

As mentioned earlier, a couple of trade-offs have been n@adadrifice cases where perfect preemption may not
always provide the best performance.

The first trade-off is that the preemption code does not téikerdCPUs into account. Suppose we have a two CPU’s
A and B with the priority of A's thread as 4 and the priority o5Bhread as 2. If CPU B makes a thread with priority
1 runnable, then in theory, we want CPU A to switch to the newal so that we will be running the two highest
priority runnable threads. However, the cost of deterngnifich CPU to enforce a preemption on as well as
actually signaling that CPU via an IPI along with the synctization that would be required would be enormous.
Thus, the current code would instead force CPU B to switchédigher priority thread. Note that this still puts the
system in a better position as CPU B is executing a threadafifyrl rather than a thread of priority 2.

The second trade-off limits immediate kernel preemptioretd-time priority kernel threads. In the simple case of
preemption defined above, a thread is always preempted imategd(or as soon as a critical section is exited) if a
higher priority thread is made runnable. However, manyatiseexecuting in the kernel only execute in a kernel
context for a short time before either blocking or returniogiserland. Thus, if the kernel preempts these threads to
run another non-realtime kernel thread, the kernel maycsvatt the executing thread just before it is about to sleep
or execute. The cache on the CPU must then adjust to the neadthWhen the kernel returns to the preempted
thread, it must refill all the cache information that was lstaddition, two extra context switches are performed that
could be avoided if the kernel deferred the preemption timiffirst thread blocked or returned to userland. Thus, by
default, the preemption code will only preempt immediatetize higher priority thread is a real-time priority thread

Turning on full kernel preemption for all kernel threads kakie as a debugging aid since it exposes more race
conditions. It is especially useful on UP systems were mangs are hard to simulate otherwise. Thus, there is a

106

Chapter 8 SMPng Design Document

kernel optionFULL_PREEMPTIONO enable preemption for all kernel threads that can be wwedebugging
purposes.

8.3.3 Thread Migration

Simply put, a thread migrates when it moves from one CPU tohemoln a non-preemptive kernel this can only
happen at well-defined points such as when calisgeep or returning to userland. However, in the preemptive
kernel, an interrupt can force a preemption and possibleatian at any time. This can have negative affects on
per-CPU data since with the exceptioncafthread andcurpcbh the data can change whenever you migrate. Since
you can potentially migrate at any time this renders unptetéper-CPU data access rather useless. Thusiitis
desirable to be able to disable migration for sections oedbdt need per-CPU data to be stable.

Critical sections currently prevent migration since theyndt allow context switches. However, this may be too
strong of a requirement to enforce in some cases since eatsgction also effectively blocks interrupt threads on
the current processor. As a result, another API has beerndaebto allow the current thread to indicate that if it
preempted it should not migrate to another CPU.

This APl is known as thread pinning and is provided by the dale. The API consists of two functions:

sched_pin andsched_unpin . These functions manage a per-thread nesting adupinned . A thread is pinned
when its nesting count is greater than zero and a thread sttinpinned with a nesting count of zero. Each
scheduler implementation is required to ensure that pitimegds are only executed on the CPU that they were
executing on when theched_pin was first called. Since the nesting count is only written tdh®ythread itself and

is only read by other threads when the pinned thread is naugixeg but whilesched_lock is held, then

td_pinned does not need any locking. Thehed_pin function increments the nesting count aetled_unpin
decrements the nesting count. Note that these functioysoparate on the current thread and bind the current thread
to the CPU it is executing on at the time. To bind an arbitrargad to a specific CPU, tlsehed_bind and
sched_unbind functions should be used instead.

8.3.4 Callouts

Thetimeout kernel facility permits kernel services to register fuons for execution as part of teftclock
software interrupt. Events are scheduled based on a desireder of clock ticks, and callbacks to the
consumer-provided function will occur at approximatelg tight time.

The global list of pending timeout events is protected byadogl spin mutexcallout_lock ; all access to the

timeout list must be performed with this mutex held. Wheficlock is woken up, it scans the list of pending
timeouts for those that should fire. In order to avoid lockesnebversal, theoftclock thread will release the
callout_lock mutex when invoking the providetineout callback function. If theCALLOUT_MPSAFfiag was

not set during registration, then Giant will be grabbed befovoking the callout, and then released afterwards. The
callout_lock mutex will be re-grabbed before proceeding. Bhiiclock code is careful to leave the list in a
consistent state while releasing the muteX0IKGNOSTICis enabled, then the time taken to execute each function is
measured, and a warning is generated if it exceeds a theeshol

107

Chapter 8 SMPng Design Document

8.4 Specific Locking Strategies

8.4.1 Credentials

struct ucred is the kernel's internal credential structaral is generally used as the basis for process-drivensacces
control within the kernel. BSD-derived systems use a “copywrite” model for credential data: multiple references
may exist for a credential structure, and when a change riedzsmade, the structure is duplicated, modified, and
then the reference replaced. Due to wide-spread cachifgafredential to implement access control on open, this
results in substantial memory savings. With a move to firpgd SMP, this model also saves substantially on
locking operations by requiring that modification only ocon an unshared credential, avoiding the need for explicit
synchronization when consuming a known-shared credential

Credential structures with a single reference are consibti@iutable; shared credential structures must not be
modified or a race condition is risked. A mutex, nt xp protects the reference count of struct ucred so as to
maintain consistency. Any use of the structure requiredid xeference for the duration of the use, or the structure
may be released out from under the illegitimate consumer.

The struct ucred mutex is a leaf mutex and is implemented mat@x pool for performance reasons.

Usually, credentials are used in a read-only manner forssooentrol decisions, and in this cask ucr ed is
generally preferred because it requires no locking. Whemegss’ credential is updated thec lock must be held
across the check and update operations thus avoid raceprddess credential ucr ed must be used for check and
update operations to prevent time-of-check, time-of-ases.

If system call invocations will perform access control afia update to the process credential, the value of

t d_ucr ed must also be refreshed to the current process value. THipmilent use of a stale credential following a
change. The kernel automatically refreshestitheucr ed pointer in the thread structure from the procgsscr ed
whenever a process enters the kernel, permitting use o$h éredential for kernel access control.

8.4.2 File Descriptors and File Descriptor Tables

Details to follow.

8.4.3 Jail Structures

struct prison stores administrative details pertinenh&rhaintenance of jails created using the jail(2) API. This
includes the per-jail hostname, IP address, and relatédgetThis structure is reference-counted since poirtters
instances of the structure are shared by many credentiatgies. A single mutexyr _nt x protects read and write
access to the reference count and all mutable variablefeitise struct jail. Some variables are set only when the jail
is created, and a valid reference to the struct prison iscgesffi to read these values. The precise locking of each
entry is documented via commentssiys/jail.h

8.4.4 MAC Framework

The TrustedBSD MAC Framework maintains data in a varietyeshkl objects, in the form of struct label. In
general, labels in kernel objects are protected by the saokeals the remainder of the kernel object. For example,
thev_l abel labelin struct vnode is protected by the vnode lock on thedeno

108

Chapter 8 SMPng Design Document

In addition to labels maintained in standard kernel objebiss MAC Framework also maintains a list of registered
and active policies. The policy list is protected by a glabakex (nac_policy_list_lock) and a busy count (also
protected by the mutex). Since many access control check®aotar in parallel, entry to the framework for a
read-only access to the policy list requires holding theexuthile incrementing (and later decrementing) the busy
count. The mutex need not be held for the duration of the MAyasperation--some operations, such as label
operations on file system objects--are long-lived. To mottié policy list, such as during policy registration and
de-registration, the mutex must be held and the referenoat coust be zero, to prevent modification of the list while
itis in use.

A condition variablemac_policy_list_not_busy , is available to threads that need to wait for the list to lbeeo
unbusy, but this condition variable must only be waited ahéf caller is holding no other locks, or a lock order
violation may be possible. The busy count, in effect, acts fmsm of shared/exclusive lock over access to the
framework: the difference is that, unlike with an sx locknsamers waiting for the list to become unbusy may be
starved, rather than permitting lock order problems witarels to the busy count and other locks that may be held
on entry to (or inside) the MAC Framework.

8.4.5 Modules

For the module subsystem there exists a single lock thatid tasprotect the shared data. This lock is a
shared/exclusive (SX) lock and has a good chance of neealing &cquired (shared or exclusively), therefore there
are a few macros that have been added to make access to thedoeleasy. These macros can be located in
sys/module.h and are quite basic in terms of usage. The main structurésqbeal under this lock are the module_t
structures (when shared) and the global modulelist_t&tracmodules. One should review the related source code
in kern/kern_module.c to further understand the locking strategy.

8.4.6 Newbus Device Tree

The newbus system will have one sx lock. Readers will holdsaesh(read) lock (sx_slock(9)) and writers will hold
an exclusive (write) lock (sx_xlock(9)). Internal funat®will not do locking at all. Externally visible ones willd&
as needed. Those items that do not matter if the race is warsowill not be locked, since they tend to be read all
over the place (e.g., device_get_softc(9)). There willdatively few changes to the newbus data structures, so a
single lock should be sufficient and not impose a performaecailty.

8.4.7 Pipes

8.4.8 Processes and Threads

- process hierarchy

- proc locks, references

- thread-specific copies of proc entries to freeze durintesy<alls, including td_ucred
- inter-process operations

- process groups and sessions

109

Chapter 8 SMPng Design Document

8.4.9 Scheduler

Lots of references teched_lock and notes pointing at specific primitives and related malgievehere in the
document.

8.4.10 Select and Poll

Theselect andpoll functions permit threads to block waiting on events on filsatiptors--most frequently,
whether or not the file descriptors are readable or writable.

8.4.11 SIGIO

The SIGIO service permits processes to request the delofer5IGIO signal to its process group when the
read/write status of specified file descriptors changes. @strane process or process group is permitted to register
for SIGIO from any given kernel object, and that process ougris referred to as the owner. Each object supporting
SIGIO registration contains pointer field thaNSLLif the object is not registered, or points to a struct sigio
describing the registration. This field is protected by @glonutexsigio_lock . Callers to SIGIO maintenance
functions must pass in this field “by reference” so that loegister copies of the field are not made when
unprotected by the lock.

One struct sigio is allocated for each registered objeddated with any process or process group, and contains
back-pointers to the object, owner, signal informationiedential, and the general disposition of the registration
Each process or progress group contains a list of regisgtnect sigio structureg,_si gi ol st for processes, and
pg_si gi ol st for process groups. These lists are protected by the procgsecess group locks respectively. Most
fields in each struct sigio are constant for the duration efrégistration, with the exception of teéo_pgsi gi o

field which links the struct sigio into the process or proagssip list. Developers implementing new kernel objects
supporting SIGIO will, in general, want to avoid holdingwstture locks while invoking SIGIO supporting functions,
such agsetown orfunsetown to avoid defining a lock order between structure locks andjtbieal SIGIO lock.
This is generally possible through use of an elevated reéereount on the structure, such as reliance on a file
descriptor reference to a pipe during a pipe operation.

8.4.12 Sysctl

Thesysctl MIB service is invoked from both within the kernel and fronetdand applications using a system call.
At least two issues are raised in locking: first, the protectf the structures maintaining the namespace, and
second, interactions with kernel variables and functibias &re accessed by the sysctl interface. Since sysctl {germi
the direct export (and modification) of kernel statistice annfiguration parameters, the sysctl mechanism must
become aware of appropriate locking semantics for thodahlas. Currently, sysctl makes use of a single global sx
lock to serialize use afysctl ; however, it is assumed to operate under Giant and othezgifohs are not provided.
The remainder of this section speculates on locking and sécrzhanges to sysctl.

- Need to change the order of operations for sysctl’s thaatgpdalues from read old, copyin and copyout, write new
to copyin, lock, read old and write new, unlock, copyout. idat sysctl’s that just copyout the old value and set a
new value that they copyin may still be able to follow the olddal. However, it may be cleaner to use the second
model for all of the sysctl handlers to avoid lock operations

110

Chapter 8 SMPng Design Document

- To allow for the common case, a sysctl could embed a poiatamiutex in the SYSCTL_FOO macros and in the
struct. This would work for most sysctl's. For values pragecby sx locks, spin mutexes, or other locking strategies
besides a single sleep mutex, SYSCTL_PROC nodes could beaiget the locking right.

8.4.13 Taskqueue

The taskqueue’s interface has two basic locks associatedtvn order to protect the related shared data. The
taskqueue_queues_mutex is meant to serve as a lock to protect thekqueue_queues TAILQ. The other

mutex lock associated with this system is the one in the staskqueue data structure. The use of the
synchronization primitive here is to protect the integafythe data in the struct taskqueue. It should be noted that
there are no separate macros to assist the user in locking kisfther own work since these locks are most likely not
going to be used outside kérn/subr_taskqueue.c

8.5 Implementation Notes

8.5.1 Sleep Queues

A sleep queue is a structure that holds the list of threa@d®pgn a wait channel. Each thread that is not asleep on a
wait channel carries a sleep queue structure around witfihien a thread blocks on a wait channel, it donates its
sleep queue structure to that wait channel. Sleep queuesatesl with a wait channel are stored in a hash table.

The sleep queue hash table holds sleep queues for wait dhdinaichave at least one blocked thread. Each entry in
the hash table is called a sleepqueue chain. The chain nertdinked list of sleep queues and a spin mutex. The
spin mutex protects the list of sleep queues as well as thewrtsof the sleep queue structures on the list. Only one
sleep queue is associated with a given wait channel. If plalthreads block on a wait channel than the sleep queues
associated with all but the first thread are stored on a lieefsleep queues in the master sleep queue. When a
thread is removed from the sleep queue it is given one of depsjjueue structures from the master queue’s free list
if it is not the only thread asleep on the queue. The last thiegiven the master sleep queue when it is resumed.
Since threads may be removed from the sleep queue in a differéer than they are added, a thread may depart
from a sleep queue with a different sleep queue structurettteone it arrived with.

Thesleepg_lock function locks the spin mutex of the sleep queue chain thaisn@a specific wait channel. The
sleepg_lookup function looks in the hash table for the master sleep quesmcaged with a given wait channel. If
no master sleep queue is found, it retuxiL L. Thesleepq_release function unlocks the spin mutex associated
with a given wait channel.

A thread is added to a sleep queue viadleepq_add . This function accepts the wait channel, a pointer to the
mutex that protects the wait channel, a wait message déscrgiring, and a mask of flags. The sleep queue chain
should be locked vialeepqg_lock before this function is called. If no mutex protects the vedidnnel (or it is
protected by Giant), then the mutex pointer argument shibeildlULL The flags argument contains a type field that
indicates the kind of sleep queue that the thread is beingditidand a flag to indicate if the sleep is interruptible
(SLEEPQ_INTERRUPTIBLE. Currently there are only two types of sleep queues: i@t sleep queues managed

via themsleep andwakeup functions 6LEEPQ_MSLEEPand condition variable sleep queuSs EEPQ_CONDVAR

The sleep queue type and lock pointer argument are used $oiéhternal assertion checking. Code that calls
sleepg_add should explicitly unlock any interlock protecting the weltannel after the associated sleepqueue chain
has been locked visleepg_lock and before blocking on the sleep queue via one of the waitingtfons.

111

Chapter 8 SMPng Design Document

A timeout for a sleep is set by invokirsieepq_set_timeout . The function accepts the wait channel and the
timeout time as a relative tick count as its arguments. Ieaishould be interrupted by arriving signals, the
sleepq_catch_signals function should be called as well. This function acceptstb#é channel as its only
parameter. If there is already a signal pending for thisatlyéhersleepq_catch_signals will return a signal
number; otherwise, it will return 0.

Once a thread has been added to a sleep queue, it blocks nsirng thhesleepg_wait functions. There are four
wait functions depending on whether or not the caller wigbesse a timeout or have the sleep aborted by caught
signals or an interrupt from the userland thread schedTlitersleepq_wait function simply waits until the current
thread is explicitly resumed by one of the wakeup functidiesleepq_timedwait function waits until either the
thread is explicitly resumed or the timeout set by an eackdirto sleepg_set_timeout expires. The
sleepq_wait_sig function waits until either the thread is explicitly resuinar its sleep is aborted. The
sleepq_timedwait_sig function waits until either the thread is explicitly resuthénhe timeout set by an earlier
call tosleepq_set_timeout expires, or the thread’s sleep is aborted. All of the waitfions accept the wait
channel as their first parameter. In addition, ¢le@pqg_timedwait_sig function accepts a second boolean
parameter to indicate if the earlier callsl@epq_catch_signals found a pending signal.

If the thread is explicitly resumed or is aborted by a sigtien a value of zero is returned by the wait function to
indicate a successful sleep. If the thread is resumed bgreattimeout or an interrupt from the userland thread
scheduler then an appropriate errno value is returneddidsidote that sinceleepg_wait can only return O it does
not return anything and the caller should assume a suct¢es=ép. Also, if a thread’s sleep times out and is aborted
simultaneously thesleepq_timedwait_sig will return an error indicating that a timeout occurred.ferror

value of 0 is returned and eithgleepq_wait_sig or sleepg_timedwait_sig was used to block, then the
functionsleepq_calc_signal_retval should be called to check for any pending signals and cdkala
appropriate return value if any are found. The signal numéieirned by the earlier call to

sleepq_catch_signals should be passed as the sole argumesletgpg_calc_signal_retval

Threads asleep on a wait channel are explicitly resumededosid¢bpg_broadcast andsleepq_signal

functions. Both functions accept the wait channel from Whirresume threads, a priority to raise resumed threads
to, and a flags argument to indicate which type of sleep quebeing resumed. The priority argument is treated as a
minimum priority. If a thread being resumed already has adigriority (numerically lower) than the priority
argument then its priority is not adjusted. The flags argunsamsed for internal assertions to ensure that sleep
gueues are not being treated as the wrong type. For exarglephdition variable functions should not resume
threads on a traditional sleep queue. Eleepg_broadcast function resumes all threads that are blocked on the
specified wait channel whildeepq_signal ~ only resumes the highest priority thread blocked on the efannel.

The sleep queue chain should first be locked viestéepg_lock function before calling these functions.

A sleeping thread may have its sleep interrupted by callieglieepqg_abort function. This function must be

called withsched_lock held and the thread must be queued on a sleep queue. A thrgaadsode removed from a
specific sleep queue via teepg_remove function. This function accepts both a thread and a wait cabas an
argument and only awakens the thread if it is on the sleepeajfceuihe specified wait channel. If the thread is not on
a sleep queue or it is on a sleep queue for a different waitreatinen this function does nothing.

8.5.2 Turnstiles

- Compare/contrast with sleep queues.
- Lookup/wait/release. - Describe TDF_TSNOBLOCK race.

- Priority propagation.

112

8.5.3 Details of the Mutex Implementation

- Should we require mutexes to be owned for mtx_destroy€esive can not safely assert that they are unowned by
anyone else otherwise?

8.5.3.1 Spin Mutexes

- Use a critical section...

8.5.3.2 Sleep Mutexes
- Describe the races with contested mutexes

- Why it is safe to read mtx_lock of a contested mutex whenihglthe turnstile chain lock.

8.5.4 Witness
- What does it do

- How does it work

8.6 Miscellaneous Topics

8.6.1 Interrupt Source and ICU Abstractions
- structisrc

- pic drivers

8.6.2 Other Random Questions/Topics
- Should we pass an interlock infema_wait ?
- Should we have non-sleepable sx locks?

- Add some info about proper use of reference counts.

Glossary

atomic

An operation is atomic if all of its effects are visible to etfiCPUs together when the proper access protocol is
followed. In the degenerate case are atomic instructiomgged directly by machine architectures. At a higher

113

Glossary

level, if several members of a structure are protected bylg then a set of operations are atomic if they are all
performed while holding the lock without releasing the lacketween any of the operations.

See Alsopperation.

block

A thread is blocked when it is waiting on a lock, resource,@rdition. Unfortunately this term is a bit
overloaded as a result.

See Alsosleep.

critical section

A section of code that is not allowed to be preempted. A @iitsection is entered and exited using the
critical_enter(9) API.

MD

Machine dependent.

See AlsoMI.

memory operation

A memory operation reads and/or writes to a memory location.

M
Machine independent.
See AlsoMD.
operation

See:memory operation

primary interrupt context

Primary interrupt context refers to the code that runs whreimgrrupt occurs. This code can either run an
interrupt handler directly or schedule an asynchronowsiinpt thread to execute the interrupt handlers for a
given interrupt source.

realtime kernel thread

A high priority kernel thread. Currently, the only realtimpgority kernel threads are interrupt threads.

See Alsothread.

sleep

A thread is asleep when it is blocked on a condition variable sleep queue viasleep or tsleep

See Alsoblock.

114

Glossary

sleepable lock
A sleepable lock is a lock that can be held by a thread whickleep. Lockmgr locks and sx locks are currently

the only sleepable locks in FreeBSD. Eventually, some skslgach as the allproc and proctree locks may
become non-sleepable locks.

See Alsosleep.

thread

A kernel thread represented by a struct thread. Threadsauls bnd hold a single execution context.

wait channel

A kernel virtual address that threads may sleep on.

115

Il. Device Drivers

Chapter 9 Writing FreeBSD Device Drivers

Written by Murray Stokely. Based on intro(4) manual pagedrg Wunsch.

9.1 Introduction

This chapter provides a brief introduction to writing devarivers for FreeBSD. A device in this context is a term
used mostly for hardware-related stuff that belongs to yiséesn, like disks, printers, or a graphics display with its
keyboard. A device driver is the software component of therajing system that controls a specific device. There
are also so-called pseudo-devices where a device drivdasihe behavior of a device in software without any
particular underlying hardware. Device drivers can be dtedpnto the system statically or loaded on demand
through the dynamic kernel linker facility ‘kid’.

Most devices in a UNIX-like operating system are accessexliih device-nodes, sometimes also called special
files. These files are usually located under the directtsy in the filesystem hierarchy.

Device drivers can roughly be broken down into two categoiibaracter and network device drivers.

9.2 Dynamic Kernel Linker Facility - KLD

The kld interface allows system administrators to dynattyieald and remove functionality from a running system.
This allows device driver writers to load their new changgs & running kernel without constantly rebooting to test
changes.

The kld interface is used through:

« kidload - loads a new kernel module
« kldunload - unloads a kernel module
« kidstat - lists loaded modules

Skeleton Layout of a kernel module

| *

* KLD Skeleton

* Inspired by Andrew Reiter's Daemonnews article
*/

#include <sys/types.h>
#include <sys/module.h>

#include <sys/systm.h> / * uprintf */

#include <sys/errno.h>

#include <sys/param.h> / * defines used in kernel.h */

#include <sys/kernel.h> / * types used in module initialization */

| *

* Load handler that deals with the loading and unloading of a KL D.
*/

static int

117

Chapter 9 Writing FreeBSD Device Drivers

skel_loader(struct module *m, int what, void * arg)

{

int err = 0;

switch (what) {
case MOD_LOAD: [+ Kkldload =/
uprintf("Skeleton KLD loaded.\n");
break;
case MOD_UNLOAD:
uprintf("Skeleton KLD unloaded.\n");
break;
default:
err = EOPNOTSUPP;
break;

}

return(err);

}

/= Declare this module to the rest of the kernel */

static moduledata_t skel_mod = {
"skel",
skel_loader,
NULL

kh

DECLARE_MODULE(skeleton, skel_mod, SI_SUB_KLD, SI_ORDE R_ANY);

9.2.1 Makefile

FreeBSD provides a system makefile to simplify compiling enkémodule.

SRCS=skeleton.c
KMOD=skeleton

.include <bsd.kmod.mk>

Runningmake with this makefile will create a filskeleton.ko that can be loaded into the kernel by typing:

kldload -v ./skel eton. ko

9.3 Character Devices

A character device driver is one that transfers data dirécthnd from a user process. This is the most common type
of device driver and there are plenty of simple exampleseérsthurce tree.

This simple example pseudo-device remembers whateveevakhe written to it and can then echo them back when
read.

118

Chapter 9 Writing FreeBSD Device Drivers

Example 9-1. Example of a Sample Echo Pseudo-Device Driver for FreeBSD 10.X

* Simple Echo pseudo-device KLD

* Murray Stokely
* Sgren (Xride) Straarup
* Eitan Adler

#include <sys/types.h>
#include <sys/module.h>

#include <sys/systm.h> / * uprintf */

#include <sys/param.h> / + defines used in kernel.h */

#include <sys/kernel.h> / * types used in module initialization */
#include <sys/confh> / * cdevsw struct */

#include <sys/uio.h> / * Uio struct */

#include <sys/malloc.h>

#define BUFFERSIZE 255

/ * Function prototypes */

static d_open_t echo_open;

static d_close_t echo_close;

static d_read _t echo_read;

static d_write_t echo_write;

/ = Character device entry points */

static struct cdevsw echo_cdevsw = {
.d_version = D_VERSION,
.d_open = echo_open,
.d_close = echo_close,
.d_read = echo_read,
.d_write = echo_write,
.d_name = "echo",

kh

struct s_echo {
char msg[BUFFERSIZE + 1];

int len;
J5
[+ vars =*/
static struct cdev *echo_dey;
static struct s_echo * echomsg;

MALLOC_DECLARE(M_ECHOBUF);
MALLOC_DEFINE(M_ECHOBUF, "echobuffer", "buffer for echo module");

| *

* This function is called by the kid[un]load(2) system calls t o}

* determine what actions to take when a module is loaded or unlo aded.
*/

119

Chapter 9 Writing FreeBSD Device Drivers

static int

echo_loader(struct module *m __unused, int what, void xarg __unused)

{

int error = O;

switch (what) {
case MOD_LOAD: [+ kldload */

error = make_dev_p(MAKEDEV_CHECKNAME | MAKEDEV_WAITOK,

&echo_dev,
&echo_cdevsw,
0,
UID_ROOT,
GID_WHEEL,
0600,
"echo");

if (error != 0)

break;

echomsg = malloc(sizeof(*echomsg), M_ECHOBUF, M_WAITOK |

M_ZERO);
printf("Echo device loaded.\n");
break;
case MOD_UNLOAD:
destroy_dev(echo_dev);
free(echomsg, M_ECHOBUF);
printf("Echo device unloaded.\n");

break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
static int
echo_open(struct cdev *dev __unused, int oflags _ unused, int devtype _ unused,
struct thread xtd __unused)
{
int error = O;
uprintf("Opened device \"echo\" successfully.\n");
return (error);
}
static int
echo_close(struct cdev xdev __unused, int fflag __ unused, int devtype __ unused,
struct thread xtd __ unused)
{
uprintf("Closing device \"echo\".\n");
return (0);
}

120

Chapter 9 Writing FreeBSD Device Drivers

| *
* The read function just takes the buf that was saved via
* echo_write() and returns it to userland for accessing.

* Uio(9)
*/
static int
echo_read(struct cdev »dev __unused, struct uio *Uio, int ioflag __ unused)
{
size_t amt;
int error;
| *
* How big is this read operation? Either as big as the user wants ,
* or as big as the remaining data. Note that the ’len’ does not
* include the trailing null character.
*/
amt = MIN(uio->uio_resid, uio->uio_offset >= echomsg->le n+17?0:
echomsg->len + 1 - uio->uio_offset);
if ((error = uiomove(echomsg->msg, amt, uio)) != 0)
uprintf("uiomove failed\n");
return (error);
}
| *

* echo_write takes in a character string and saves it
* to buf for later accessing.
*/
static int
echo_write(struct cdev xdev __unused, struct uio *Uio, int ioflag __unused)
{
size_t amt;
int error;

| *
* We either write from the beginning or are appending -- do
* not allow random access.

*/

if (uio->uio_offset 1= 0 && (uio->uio_offset = echomsg->I en))
return (EINVAL);

/* This is a new message, reset length */

if (uio->uio_offset == 0)
echomsg->len = 0;

[+ Copy the string in from user memory to kernel memory */

amt = MIN(uio->uio_resid, (BUFFERSIZE - echomsg->len));
error = uiomove(echomsg->msg + uio->uio_offset, amt, uio) ;

/* Now we need to null terminate and record the length */
echomsg->len = uio->uio_offset;

121

Chapter 9 Writing FreeBSD Device Drivers
echomsg->msg[echomsg->len] = 0;

if (error !'= 0)
uprintf("Write failed: bad address\n");
return (error);

}

DEV_MODULE(echo, echo_loader, NULL);

With this driver loaded try:

echo -n "Test Data" > /dev/echo
cat /dev/echo

Opened device "echo" successfully.
Test Data

Closing device "echo".

Real hardware devices are described in the next chapter.

9.4 Block Devices (Are Gone)

Other UNIX systems may support a second type of disk deviogvkras block devices. Block devices are disk
devices for which the kernel provides caching. This cachiadies block-devices almost unusable, or at least
dangerously unreliable. The caching will reorder the saqge®f write operations, depriving the application of the
ability to know the exact disk contents at any one instaniniet This makes predictable and reliable crash recovery
of on-disk data structures (filesystems, databases etpgdsible. Since writes may be delayed, there is no way the
kernel can report to the application which particular woperation encountered a write error, this further
compounds the consistency problem. For this reason, nauseaipplications rely on block devices, and in fact,
almost all applications which access disks directly taleagpains to specify that character (or “raw”) devices sthoul
always be used. Because the implementation of the aliagiegof disk (partition) to two devices with different
semantics significantly complicated the relevant kerndkedéreeBSD dropped support for cached disk devices as
part of the modernization of the disk 1/O infrastructure.

9.5 Network Drivers

Drivers for network devices do not use device nodes in ombetaccessed. Their selection is based on other
decisions made inside the kernel and instead of calling Qpese of a network device is generally introduced by
using the system call socket(2).

For more information see ifnet(9), the source of the looleevice, and Bill Paul's network drivers.

122

Chapter 10 ISA Device Drivers

Written by Sergey Babkin. Modifications for Handbook mad®lbyray Stokely, Valentino Vaschetto, and Wylie
Stilwell.

10.1 Synopsis

This chapter introduces the issues relevant to writingeedfor an ISA device. The pseudo-code presented here is
rather detailed and reminiscent of the real code but isastlly pseudo-code. It avoids the details irrelevant to the
subject of the discussion. The real-life examples can bedauthe source code of real drivers. In particular the
driversep andaha are good sources of information.

10.2 Basic Information
A typical ISA driver would need the following include files:

#include <sys/module.h>
#include <sys/bus.h>

#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>

#include <isal/isavar.h>
#include <isa/pnpvar.h>

They describe the things specific to the ISA and generic bosystem.

The bus subsystem is implemented in an object-orientedbiasits main structures are accessed by associated
method functions.

The list of bus methods implemented by an ISA driver is like éor any other bus. For a hypothetical driver named
“xxx” they would be:

. static void xxx_isa_identify (driver_t *, device_t); Normally used for bus drivers, not device
drivers. But for ISA devices this method may have special ifi$ke device provides some device-specific
(non-PnP) way to auto-detect devices this routine may implt it.

- static int xxx_isa_probe (device_t dev); Probe for a device at a known (or PnP) location. This
routine can also accommodate device-specific auto-deteatiparameters for partially configured devices.

. static int xxx_isa_attach (device_t dev); Attach and initialize device.

. static int xxx_isa_detach (device t dev); Detach device before unloading the driver module.

. static int xxx_isa_shutdown (device_t dev); Execute shutdown of the device before system
shutdown.

« static int xxx_isa_suspend (device_t dev); Suspend the device before the system goes to the

power-save state. May also abort transition to the powes-state.

123

Chapter 10 ISA Device Drivers

. static int xxx_isa_resume (device_t dev); Resume the device activity after return from power-save
state.
Xxx_isa_probe() andxxx_isa_attach() are mandatory, the rest of the routines are optional, deépgimh the

device’s needs.

The driver is linked to the system with the following set ogdaptions.

[= table of supported bus methods */

static device_method_t xxx_isa_methods[] = {
/= list all the bus method functions supported by the driver */
/ * omit the unsupported methods */
DEVMETHOD(device_identify, xxx_isa_identify),
DEVMETHOD(device_probe, XXX_isa_probe),
DEVMETHOD(device_attach, XXX_isa_attach),
DEVMETHOD(device_detach, XxX_isa_detach),
DEVMETHOD(device_shutdown, xxx_isa_shutdown),
DEVMETHOD(device_suspend, xxx_isa_suspend),
DEVMETHOD(device_resume, XXX_isa_resume),

DEVMETHOD_END
h

static driver_t xxx_isa_driver = {
"Xxx",
XXX_isa_methods,
sizeof(struct xxx_softc),

static devclass_t xxx_devclass;

DRIVER_MODULE(xxx, isa, xxx_isa_driver, xxx_devclass,
load_function, load_argument);

Here struct xxx_softc is a device-specific structure thataios private driver data and descriptors for the driver’s
resources. The bus code automatically allocates one sedtrigtor per device as needed.

If the driver is implemented as a loadable module tlvad_function() is called to do driver-specific

initialization or clean-up when the driver is loaded or waded and load_argument is passed as one of its arguments.
If the driver does not support dynamic loading (in other vgatdnust always be linked into the kernel) then these
values should be set to 0 and the last definition would loak lik

DRIVER_MODULE(xxx, isa, xxx_isa_driver,
xxx_devclass, 0, 0);

If the driver is for a device which supports PnP then a tabkupiported PnP IDs must be defined. The table consists
of a list of PnP IDs supported by this driver and human-rebedddscriptions of the hardware types and models
having these IDs. It looks like:

static struct isa_pnp_id xxx_pnp_ids[] = {
/* a line for each supported PnP ID */
{ 0x12345678, "Our device model 1234A" },
{ 0x12345679, "Our device model 1234B" },

124

Chapter 10 ISA Device Drivers

{0, NULL }, / +* end of table x /[
3
If the driver does not support PnP devices it still needs aptgnP ID table, like:

static struct isa_pnp_id xxx_pnp_ids[] = {
{0, NULL }, / =+ end of table x [
b

10.3 device t Pointer

device_tis the pointer type for the device structure. Hegecansider only the methods interesting from the device
driver writer's standpoint. The methods to manipulate galin the device structure are:

 device_t device_get_parent(dev) Get the parent bus of a device.
. driver_t device_get_driver(dev) Get pointer to its driver structure.

. char =device_get_name(dev) Get the driver name, such axx" for our example.

- int device_get_unit(dev) Get the unit number (units are numbered from 0 for the dedsssciated with
each driver).

. char =device_get_nameunit(dev) Get the device name including the unit number, such as “xX%Xx1”
and so on.

- char =device_get_desc(dev) Get the device description. Normally it describes the eramdel of device in
human-readable form.

. device_set_desc(dev, desc) Set the description. This makes the device descriptiont poithe string desc
which may not be deallocated or changed after that.

« device_set_desc_copy(dev, desc) Set the description. The description is copied into an irgker
dynamically allocated buffer, so the string desc may be ghdmfterwards without adverse effects.

- void =device_get_softc(dev) Get pointer to the device descriptor (struct xxx_softcpaied with this
device.

« u_int32_t device_get_flags(dev) Get the flags specified for the device in the configuration file.

A convenience functiodevice_printf(dev, fmt, ...) may be used to print the messages from the device
driver. It automatically prepends the unithame and colahéomessage.

The device_t methods are implemented in thekidia/bus_subr.c

10.4 Configuration File and the Order of Identifying and Prob ing
During Auto-Configuration

The ISA devices are described in the kernel configuratioikiée

device xxx0 at isa? port 0x300 irg 10 drg 5
iomem 0xd0000 flags 0x1 sensitive

125

Chapter 10 ISA Device Drivers

The values of port, IRQ and so on are converted to the res@ataes associated with the device. They are optional,
depending on the device’s needs and abilities for auto-gordtion. For example, some devices do not need DRQ at
all and some allow the driver to read the IRQ setting from tbeick configuration ports. If a machine has multiple
ISA buses the exact bus may be specified in the configuratienlikeisa0 orisal , otherwise the device would be
searched for on all the ISA buses.

sensitive IS a resource requesting that this device must be probedeallanon-sensitive devices. It is supported
but does not seem to be used in any current driver.

For legacy ISA devices in many cases the drivers are stdl tthtletect the configuration parameters. But each device
to be configured in the system must have a config line. If twaagsvof some type are installed in the system but
there is only one configuration line for the correspondirigedy ie:

device xxx0 at isa?

then only one device will be configured.

But for the devices supporting automatic identificationtiy means of Plug-n-Play or some proprietary protocol one
configuration line is enough to configure all the devices sndistem, like the one above or just simply:

device xxx at isa?

If a driver supports both auto-identified and legacy devarasboth kinds are installed at once in one machine then it
is enough to describe in the config file the legacy devices dtlg auto-identified devices will be added
automatically.

When an ISA bus is auto-configured the events happen as fllow

All the drivers’ identify routines (including the PnP idégtroutine which identifies all the PnP devices) are called i
random order. As they identify the devices they add themedisth on the ISA bus. Normally the drivers’ identify
routines associate their drivers with the new devices. T iBentify routine does not know about the other drivers
yet so it does not associate any with the new devices it adds.

The PnP devices are put to sleep using the PnP protocol temrthem from being probed as legacy devices.

The probe routines of non-PnP devices markeskasitive are called. If probe for a device went successfully, the
attach routine is called for it.

The probe and attach routines of all non-PNP devices arecchilewise.

The PnP devices are brought back from the sleep state amgpghadghe resources they request: /0 and memory
address ranges, IRQs and DRQs, all of them not conflictiniy thi2 attached legacy devices.

Then for each PnP device the probe routines of all the préS@ndrivers are called. The first one that claims the
device gets attached. It is possible that multiple drivevsid claim the device with different priority; in this case,
the highest-priority driver wins. The probe routines mugt ISA_PNP_PROBE() to compare the actual PnP ID with
the list of the IDs supported by the driver and if the ID is nothe table return failure. That means that absolutely
every driver, even the ones not supporting any PnP devicesealiiSA_PNP_PROBE(), at least with an empty PnP
ID table to return failure on unknown PnP devices.

The probe routine returns a positive value (the error coderoor, zero or negative value on success.

The negative return values are used when a PnP device ssippaltiple interfaces. For example, an older
compatibility interface and a newer advanced interfacectvare supported by different drivers. Then both drivers
would detect the device. The driver which returns a high&revan the probe routine takes precedence (in other
words, the driver returning 0 has highest precedence niair1 is next, returning -2 is after it and so on). In result

126

Chapter 10 ISA Device Drivers

the devices which support only the old interface will be Haddy the old driver (which should return -1 from the
probe routine) while the devices supporting the new interfas well will be handled by the new driver (which
should return 0 from the probe routine). If multiple driveeturn the same value then the one called first wins. So if
a driver returns value 0 it may be sure that it won the pricaityitration.

The device-specific identify routines can also assign nahedbut a class of drivers to the device. Then all the
drivers in the class are probed for this device, like the edgePnP. This feature is not implemented in any existing
driver and is not considered further in this document.

Because the PnP devices are disabled when probing the ldgaicgs they will not be attached twice (once as
legacy and once as PnP). But in case of device-dependetifyd@utines it is the responsibility of the driver to
make sure that the same device will not be attached by therdviice: once as legacy user-configured and once as
auto-identified.

Another practical consequence for the auto-identifiedats/{both PnP and device-specific) is that the flags can not
be passed to them from the kernel configuration file. So thest gither not use the flags at all or use the flags from
the device unit O for all the auto-identified devices or ugedysctl interface instead of flags.

Other unusual configurations may be accommodated by angab& configuration resources directly with functions
of familiesresource_query_ () andresource_ +_value() . Theirimplementations are located in
kern/subr_bus.c . The old IDE disk drivei386/isa/wd.c contains examples of such use. But the standard
means of configuration must always be preferred. Leavemqgatie configuration resources to the bus configuration
code.

10.5 Resources

The information that a user enters into the kernel configumdile is processed and passed to the kernel as
configuration resources. This information is parsed by tieedonfiguration code and transformed into a value of
structure device_t and the bus resources associated withdtdrivers may access the configuration resources
directly using functionsesource_ * for more complex cases of configuration. However, genethiyis neither
needed nor recommended, so this issue is not discussedrftete.

The bus resources are associated with each device. Theyestdied by type and number within the type. For the
ISA bus the following types are defined:

« SYS_RES_IR@nterrupt number

- SYS_RES DR{QSA DMA channel number

« SYS_RES MEMORYange of device memory mapped into the system memory space
« SYS_RES _IOPORTange of device I/O registers

The enumeration within types starts from 0, so if a devicetivasmemory regions it would have resources of type
SYS_RES_MEMORNMmbered 0 and 1. The resource type has nothing to do with theghiage type, all the resource
values have the C language typesigned long and must be cast as necessary. The resource numbers do @ot hav
to be contiguous, although for ISA they normally would bee Ttermitted resource numbers for ISA devices are:

IRQ: 0-1
DRQ: 0-1

MEMORY: 0-3
IOPORT: 0-7

127

Chapter 10 ISA Device Drivers

All the resources are represented as ranges, with a stad aad count. For IRQ and DRQ resources the count
would normally be equal to 1. The values for memory refer toghysical addresses.

Three types of activities can be performed on resources:

- set/get
- allocate/release
- activate/deactivate

Setting sets the range used by the resource. Allocationvessthe requested range that no other driver would be able
to reserve it (and checking that no other driver reservedrinige already). Activation makes the resource accessible
to the driver by doing whatever is necessary for that (fongxe, for memory it would be mapping into the kernel
virtual address space).

The functions to manipulate resources are:

- int bus_set resource(device_t dev, int type, int rid, u_lo ng start, u_long count)

Set a range for a resource. Returns 0 if successful, errer aterwise. Normally, this function will return an
error only if one oftype ,rid ,start orcount has a value that falls out of the permitted range.

. dev - driver’s device
. type - type of resource, SYS_RES *
rid - resource number (ID) within type

- start, count - resource range

- int bus_get_resource(device_t dev, int type, int rid, u_lo ng *startp, u_long
* countp)

Get the range of resource. Returns 0 if successful, errar éalde resource is not defined yet.

« u_long bus_get resource_start(device_t dev, int type, in t rid) u_long
bus_get_resource_count (device_t dev, int type, int rid)

Convenience functions to get only the start or count. ReBuimcase of error, so if the resource start has 0 among
the legitimate values it would be impossible to tell if théueais O or an error occurred. Luckily, no ISA resources
for add-on drivers may have a start value equal to 0.

- void bus_delete_resource(device_t dev, int type, int rid)
Delete a resource, make it undefined.

« struct resource * bus_alloc_resource(device_t dev, int type, int +rid, u_long start,
u_long end, u_long count, u_int flags)

Allocate a resource as a range of count values not allocagtadyone else, somewhere between start and end.
Alas, alignment is not supported. If the resource was nofesat is automatically created. The special values of
start 0 and end ~O0 (all ones) means that the fixed values uglyiset bybus_set_resource() must be used

instead: start and count as themselves and end=(starttyciouthis case if the resource was not defined before
then an error is returned. Although rid is passed by referdris not set anywhere by the resource allocation code
of the ISA bus. (The other buses may use a different appraztimadify it).

Flags are a bitmap, the flags interesting for the caller are:

128

Chapter 10 ISA Device Drivers

+ RF_ACTIVE- causes the resource to be automatically activated afteradion.
- RF_SHAREABLEresource may be shared at the same time by multiple drivers.

- RF_TIMESHARE resource may be time-shared by multiple drivers, i.eocalled at the same time by many but
activated only by one at any given moment of time.

- Returns 0 on error. The allocated values may be obtainedtiieneturned handle using methatland_ () .

- int bus_release_resource(device_t dev, int type, int rid, struct resource *T)

- Release the resource, r is the handle returnealibyalloc_resource() . Returns 0 on success, error code
otherwise.

« int bus_activate_resource(device_t dev, int type, int rid , Struct resource *1) int
bus_deactivate_resource(device_t dev, int type, int rid, struct resource *T)

- Activate or deactivate resource. Return O on success, eo® otherwise. If the resource is time-shared and
currently activated by another driver thEBUSYis returned.

- int bus_setup_intr(device_t dev, struct resource +r, int flags, driver_intr_t
* handler, void *arg, void *+ cookiep) int bus_teardown_intr(device_t dev, struct
resource xr, void * cookie)

- Associate or de-associate the interrupt handler with acgefdeturn 0 on success, error code otherwise.
« 1 - the activated resource handler describing the IRQ
flags - the interrupt priority level, one of:
INTR_TYPE_TTY - terminals and other likewise character-type devices. asknthem usepltty()

« (INTR_TYPE_TTY | INTR_TYPE_FAST) -terminal type devices with small input buffer, criticalttte data
loss on input (such as the old-fashioned serial ports). Tekrtteem usepltty()

INTR_TYPE_BIO - block-type devices, except those on the CAM controllecsmBsk them ussplbio()
INTR_TYPE_CAM CAM (Common Access Method) bus controllers. To mask theespleam()
INTR_TYPE_NET- network interface controllers. To mask them ggkmp()

INTR_TYPE_MISC- miscellaneous devices. There is no other way to mask thamhbfisplhigh() which
masks all interrupts.

When an interrupt handler executes all the other internmgishing its priority level will be masked. The only
exception is the MISC level for which no other interrupts mr@sked and which is not masked by any other interrupt.

- handler- pointer to the handler function, the type driver_intr_défined asoid driver_intr_t(void *)

- arg - the argument passed to the handler to identify this pdsialevice. It is cast from void* to any real type by
the handler. The old convention for the ISA interrupt hargllgas to use the unit number as argument, the new
(recommended) convention is using a pointer to the devifte stsucture.

+ cookie[p]- the value received frometup() is used to identify the handler when passetktodown()

A number of methods are defined to operate on the resourcédnsufstruct resource *). Those of interest to the
device driver writers are:

« u_long rman_get_start(r) u_long rman_get_end(r) Get the start and end of allocated resource range.

129

Chapter 10 ISA Device Drivers

- void *rman_get_virtual(r) Get the virtual address of activated memory resource.

10.6 Bus Memory Mapping

In many cases data is exchanged between the driver and tloe derough the memory. Two variants are possible:
(a) memory is located on the device card
(b) memory is the main memory of the computer

In case (@) the driver always copies the data back and fottideam the on-card memory and the main memory as
necessary. To map the on-card memory into the kernel viaddtess space the physical address and length of the
on-card memory must be defined aS¥5_RES_MEMOR¥source. That resource can then be allocated and activated
and its virtual address obtained usingan_get_virtual() . The older drivers used the functipmap_mapdev()

for this purpose, which should not be used directly any mdosv it is one of the internal steps of resource

activation.

Most of the ISA cards will have their memory configured for piegl location somewhere in range 640KB-1MB.
Some of the ISA cards require larger memory ranges whichlghmuplaced somewhere under 16 MB (because of
the 24-bit address limitation on the ISA bus). In that caskéfmachine has more memory than the start address of
the device memory (in other words, they overlap) a memorg hulst be configured at the address range used by
devices. Many BIOSes allow configuration of a memory holeMBlstarting at 14MB or 15MB. FreeBSD can
handle the memory holes properly if the BIOS reports thenp@ry (this feature may be broken on old BIOSes).

In case (b) just the address of the data is sent to the devideha device uses DMA to actually access the data in
the main memory. Two limitations are present: First, ISAdsazan only access memory below 16MB. Second, the
contiguous pages in virtual address space may not be contsgn physical address space, so the device may have to
do scatter/gather operations. The bus subsystem prowaddy solutions for some of these problems, the rest has to
be done by the drivers themselves.

Two structures are used for DMA memory allocatibns_dma_tag t andbus_dmamap_t . Tag describes the
properties required for the DMA memory. Map represents a argiinlock allocated according to these properties.
Multiple maps may be associated with the same tag.

Tags are organized into a tree-like hierarchy with inhaed&of the properties. A child tag inherits all the
requirements of its parent tag, and may make them more btriatever more loose.

Normally one top-level tag (with no parent) is created fashedevice unit. If multiple memory areas with different
requirements are needed for each device then a tag for edlcrofmay be created as a child of the parent tag.

The tags can be used to create a map in two ways.

First, a chunk of contiguous memory conformant with the &guirements may be allocated (and later may be
freed). This is normally used to allocate relatively lomgrg areas of memory for communication with the device.
Loading of such memory into a map is trivial: it is always colesed as one chunk in the appropriate physical
memory range.

Second, an arbitrary area of virtual memory may be loadeddmhap. Each page of this memory will be checked for
conformance to the map requirement. If it conforms thenlgfisat its original location. If it is not then a fresh
conformant “bounce page” is allocated and used as inteatediorage. When writing the data from the
non-conformant original pages they will be copied to thenhce pages first and then transferred from the bounce
pages to the device. When reading the data would go from tieai® the bounce pages and then copied to their
non-conformant original pages. The process of copying eeitwthe original and bounce pages is called

130

Chapter 10 ISA Device Drivers

synchronization. This is normally used on a per-transferdbduffer for each transfer would be loaded, transfer done
and buffer unloaded.

The functions working on the DMA memory are:

- int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_ t alignment, bus_size t
boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_d ma_filter_t +filter, void
«filterarg, bus_size_t maxsize, int nsegments, bus_size t maxsegsz, int flags,

bus_dma_tag_t *dmat)
Create a new tag. Returns 0 on success, the error code agberwi
- parent- parent tag, or NULL to create a top-level tag.

. alignment- required physical alignment of the memory area to be aléxtéor this tag. Use value 1 for “no
specific alignment”. Applies only to the futubes_dmamem_alloc() but notbus_dmamap_create() calls.

- boundary- physical address boundary that must not be crossed wheratifig the memory. Use value 0O for
“no boundary”. Applies only to the fututeus_dmamem_alloc() but notbus_dmamap_create() calls. Must
be power of 2. If the memory is planned to be used in non-castB#A mode (i.e., the DMA addresses will
be supplied not by the device itself but by the ISA DMA corlgdlthen the boundary must be no larger than
64KB (64*1024) due to the limitations of the DMA hardware.

- lowaddr, highaddr the names are slightly misleading; these values are udaditdhe permitted range of
physical addresses used to allocate the memory. The exactimgevaries depending on the planned future use:

« Forbus_dmamem_alloc() all the addresses from O to lowaddr-1 are considered peunithe higher ones
are forbidden.

. Forbus_dmamap_create() all the addresses outside the inclusive range [lowaddhgddr] are considered
accessible. The addresses of pages inside the range agee pafise filter function which decides if they are
accessible. If no filter function is supplied then all thegatis considered unaccessible.

. For the ISA devices the normal values (with no filter funcjiare:
lowaddr = BUS_SPACE_MAXADDR_24BIT
highaddr = BUS_SPACE_MAXADDR

- filter, filterarg - the filter function and its argument. If NULL is passed fotefilthen the whole range [lowaddr,
highaddr] is considered unaccessible when dbing dmamap_create() . Otherwise the physical address of
each attempted page in range [lowaddr; highaddr] is passthe ffilter function which decides if it is
accessible. The prototype of the filter functioniis: filterfunc(void ~arg, bus_addr_t paddr) Lt
must return O if the page is accessible, non-zero otherwise.

- maxsize the maximal size of memory (in bytes) that may be allocatedugh this tag. In case it is difficult to
estimate or could be arbitrarily big, the value for ISA dedavould beBUS_SPACE_MAXSIZE_24BIT

- nsegmentsmaximal number of scatter-gather segments supportedegetice. If unrestricted then the value
BUS_SPACE_UNRESTRICTEShould be used. This value is recommended for the parentttegactual
restrictions would then be specified for the descendant Tags with nsegments equal to
BUS_SPACE_UNRESTRICTHDay not be used to actually load maps, they may be used onrastgags. The
practical limit for nsegments seems to be about 250-300dnigalues will cause kernel stack overflow (the
hardware can not normally support that many scatter-gathfégrs anyway).

131

Chapter 10 ISA Device Drivers
- maxsegszmaximal size of a scatter-gather segment supported byeieal The maximal value for ISA device
would beBUS_SPACE_MAXSIZE_24BIT
. flags- a bitmap of flags. The only interesting flags are:
BUS DMA_ALLOCNOWT requests to allocate all the potentially needed bouncesgatpen creating the tag.

BUS_ DMA _ISA mysterious flag used only on Alpha machines. It is not deffoethe i386 machines.
Probably it should be used by all the ISA drivers for Alpha hiaes but it looks like there are no such
drivers yet.

- dmat- pointer to the storage for the new tag to be returned.

- int bus_dma_tag_destroy(bus_dma_tag_t dmat)
Destroy a tag. Returns 0 on success, the error code otherwise
dmat - the tag to be destroyed.

« int bus_dmamem_alloc(bus_dma_tag_t dmat, void + vaddr, int flags, bus_dmamap_t
*mapp)

Allocate an area of contiguous memory described by the thg.size of memory to be allocated is tag’'s maxsize.
Returns 0 on success, the error code otherwise. The refiuiastto be loaded bigus_dmamap_load() before
being used to get the physical address of the memory.

- dmat- the tag
- vaddr- pointer to the storage for the kernel virtual address ofilexated area to be returned.
. flags - a bitmap of flags. The only interesting flag is:

BUS_DMA_NOWAIT if the memory is not immediately available return the erhothis flag is not set then
the routine is allowed to sleep until the memory becomedatvai

- mapp- pointer to the storage for the new map to be returned.

« void bus_dmamem_free(bus_dma_tag_t dmat, void +xvaddr, bus_dmamap_t map)

Free the memory allocated lbys_dmamem_alloc() . At present, freeing of the memory allocated with ISA
restrictions is not implemented. Because of this the recentted model of use is to keep and re-use the allocated
areas for as long as possible. Do not lightly free some arédleam shortly allocate it again. That does not mean
thatbus_dmamem_free() should not be used at all: hopefully it will be properly implented soon.

- dmat- the tag
- vaddr- the kernel virtual address of the memory

- map- the map of the memory (as returned froos_dmamem_alloc())

« int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus _dmamap_t *mapp)

Create a map for the tag, to be usedius_dmamap_load() later. Returns 0 on success, the error code otherwise.

132

Chapter 10 ISA Device Drivers

- dmat- the tag
. flags- theoretically, a bit map of flags. But no flags are defineds@gt present it will be always 0.

- mapp- pointer to the storage for the new map to be returned

« int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_ t map)
Destroy a map. Returns 0 on success, the error code otherwise
- dmat - the tag to which the map is associated

- map - the map to be destroyed

« int bus_dmamap_load(bus_dma_tag_t dmat, bus_dmamap_t ma p, void =*buf, bus_size t
buflen, bus_dmamap_callback_t * callback, void * callback_arg, int flags)

Load a buffer into the map (the map must be previously creaydais dmamap_create() or

bus_dmamem_alloc()). All the pages of the buffer are checked for conformancééaag requirements and for
those not conformant the bounce pages are allocated. Ap@frpnysical segment descriptors is built and passed
to the callback routine. This callback routine is then exgédo handle it in some way. The number of bounce
buffers in the system is limited, so if the bounce buffersraeded but not immediately available the request will
be queued and the callback will be called when the bouncetsuffill become available. Returns 0 if the callback
was executed immediately BINPROGRESY¥ the request was queued for future execution. In the |latise the
synchronization with queued callback routine is the resfiwlity of the driver.

- dmat- the tag

- map- the map

- buf - kernel virtual address of the buffer

- buflen- length of the buffer

. callback callback_arg - the callback function and its argument

The prototype of callback function is:

void callback(void *arg, bus_dma_segment_t *seg, int nseg, int error)
. arg - the same as callback_arg passetu® dmamap_load()

. seg- array of the segment descriptors

- nseg- number of descriptors in array

- error - indication of the segment number overflow: if it is seEfeBIG then the buffer did not fit into the
maximal number of segments permitted by the tag. In this oabethe permitted number of descriptors will be
in the array. Handling of this situation is up to the drivezpeénding on the desired semantics it can either
consider this an error or split the buffer in two and handeegbcond part separately

Each entry in the segments array contains the fields:
.- ds_addr- physical bus address of the segment

. ds_len- length of the segment

« void bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_ t map)

133

Chapter 10 ISA Device Drivers

unload the map.
- dmat- tag

- map- loaded map

« void bus_dmamap_sync (bus_dma_tag_t dmat, bus_dmamap_t m ap, bus_dmasync_op_t op)

Synchronise a loaded buffer with its bounce pages beforatiadphysical transfer to or from device. This is the
function that does all the necessary copying of data betweariginal buffer and its mapped version. The
buffers must be synchronized both before and after doingyémsfer.

- dmat- tag
- map- loaded map

- op- type of synchronization operation to perform:

- BUS_DMASYNC_PREREADefore reading from device into buffer
- BUS_DMASYNC_POSTREA#after reading from device into buffer
- BUS_DMASYNC_PREWRITBefore writing the buffer to device

- BUS_DMASYNC_POSTWRITEfter writing the buffer to device

As of now PREREAD and POSTWRITE are null operations but thay shange in the future, so they must not be
ignored in the driver. Synchronization is not needed formtteanory obtained frorbus_dmamem_alloc()

Before calling the callback function frobus_dmamap_load() the segment array is stored in the stack. And it gets
pre-allocated for the maximal number of segments allowethbyag. Because of this the practical limit for the
number of segments on i386 architecture is about 250-3@kéMmel stack is 4KB minus the size of the user
structure, size of a segment array entry is 8 bytes, and spage $nust be left). Because the array is allocated based
on the maximal number this value must not be set higher thealty nreeeded. Fortunately, for most of hardware the
maximal supported number of segments is much lower. Butifiiver wants to handle buffers with a very large
number of scatter-gather segments it should do that ingrtioad part of the buffer, transfer it to the device, load
next part of the buffer, and so on.

Another practical consequence is that the number of segmneayy limit the size of the buffer. If all the pages in the
buffer happen to be physically non-contiguous then the maksupported buffer size for that fragmented case
would be (nsegments * page_size). For example, if a maxionaler of 10 segments is supported then on i386
maximal guaranteed supported buffer size would be 40K. I§hér size is desired then special tricks should be used
in the driver.

If the hardware does not support scatter-gather at all odtiver wants to support some buffer size even if it is
heavily fragmented then the solution is to allocate a cartics buffer in the driver and use it as intermediate storage
if the original buffer does not fit.

Below are the typical call sequences when using a map depetitcaise of the map. The characters -> are used to
show the flow of time.

For a buffer which stays practically fixed during all the tibmetween attachment and detachment of a device:
bus_dmamem_alloc -> bus_dmamap_load -> ...use buffer> bus_dmamap_unload -> bus_dmamem_free

For a buffer that changes frequently and is passed fromdwrutke driver:

134

When loading a map created bys_dmamem_alloc()
as used irbus_dmamem_alloc()

Chapter 10 ISA Device Drivers

bus_dmamap_create ->
-> bus_dmamap_load -> bus_dmamap_sync(PRE...) -> do trans fer ->
-> bus_dmamap_sync(POST...) -> bus_dmamap_unload ->

-> bus_dmamap_load -> bus_dmamap_sync(PRE...) -> do trans fer ->
-> bus_dmamap_sync(POST...) -> bus_dmamap_unload ->
-> bus_dmamap_destroy

the passed address and size of the buffer must be the same
. In this case it is guaranteed that the whole buffer will bgopeal as one segment

(so the callback may be based on this assumption) and thesegill be executed immediately (EINPROGRESS
will never be returned). All the callback needs to do in tlaseis to save the physical address.

A typical example would be:

static void
alloc_callback(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{

*(bus_addr_t x)arg = seg[0].ds_addr;
}

int error;

struct somedata {

\

struct somedata xysomedata; / * virtual address * [
bus_addr_t psomedata; / * physical bus-relative address */

bus_dma_tag_t tag_somedata;
bus_dmamap_t map_somedata;

error=bus_dma_tag_create(parent_tag, alignment,

boundary, lowaddr, highaddr, / filter */ NULL, / =filterarg x/ NULL,
/ * maxsize */ sizeof(struct somedata), / *nsegments */ 1,

/ * maxsegsz */ sizeof(struct somedata), / xflags */ O,

&tag_somedata);

if(error)

return error;

error = bus_dmamem_alloc(tag_somedata, &vsomedata, / * flags =/ 0,
&map_somedata);

if(error)
return error;

bus_dmamap_load(tag_somedata, map_somedata, (void *)vsomedata,
sizeof (struct somedata), alloc_callback,
(void) &psomedata, / +flags =*/0);

Looks a bit long and complicated but that is the way to do ie phactical consequence is: if multiple memory areas
are allocated always together it would be a really good ideminbine them all into one structure and allocate as
one (if the alignment and boundary limitations permit).

135

Chapter 10 ISA Device Drivers

When loading an arbitrary buffer into the map createdblry dmamap_create() special measures must be taken
to synchronize with the callback in case it would be delayiée: code would look like:

{
int s;
int error;

s = splsoftvm();
error = bus_dmamap_load(
dmat,
dmamap,
buffer_ptr,
buffer_len,
callback,
/ =callback_arg =/ buffer_descriptor,
/ =flags */0);
if (error == EINPROGRESS) {
| *
* Do whatever is needed to ensure synchronization
* with callback. Callback is guaranteed not to be started
* until we do splx() or tsleep().
*/
}
spIx(s);
}

Two possible approaches for the processing of requests are:

1. If requests are completed by marking them explicitly ased@uch as the CAM requests) then it would be simpler
to put all the further processing into the callback driveichhwould mark the request when it is done. Then not
much extra synchronization is needed. For the flow contadaas it may be a good idea to freeze the request queue
until this request gets completed.

2. If requests are completed when the function returns (asdtassic read or write requests on character devices)
then a synchronization flag should be set in the buffer detserandtsleep() called. Later when the callback gets
called it will do its processing and check this synchronaaflag. If it is set then the callback should issue a
wakeup. In this approach the callback function could eitleeall the needed processing (just like the previous case)
or simply save the segments array in the buffer descripteenTafter callback completes the calling function could
use this saved segments array and do all the processing.

10.7 DMA

The Direct Memory Access (DMA) is implemented in the ISA baough the DMA controller (actually, two of

them but that is an irrelevant detail). To make the early I®&icks simple and cheap the logic of the bus control and
address generation was concentrated in the DMA contr&itetunately, FreeBSD provides a set of functions that
mostly hide the annoying details of the DMA controller frohetdevice drivers.

The simplest case is for the fairly intelligent devices.d.tke bus master devices on PCI they can generate the bus
cycles and memory addresses all by themselves. The only thé@y really need from the DMA controller is bus
arbitration. So for this purpose they pretend to be cascalded DMA controllers. And the only thing needed from

136

Chapter 10 ISA Device Drivers

the system DMA controller is to enable the cascaded mode dda Ehannel by calling the following function
when attaching the driver:

void isa_dmacascade(int channel_number)

All the further activity is done by programming the deviceh& detaching the driver no DMA-related functions

need to be called.

For the simpler devices things get more complicated. Thetfans used are:

« int isa_dma_acquire(int chanel_number)

Reserve a DMA channel. Returns 0 on success or EBUSY if thenglavas already reserved by this or a different
driver. Most of the ISA devices are not able to share DMA cl@smanyway, so normally this function is called
when attaching a device. This reservation was made redtibgiane modern interface of bus resources but still
must be used in addition to the latter. If not used then later DMA routines will panic.

int isa_dma_release(int chanel_number)

Release a previously reserved DMA channel. No transfers bauis progress when the channel is released (in
addition the device must not try to initiate transfer aftex thannel is released).

void isa_dmainit(int chan, u_int bouncebufsize)

Allocate a bounce buffer for use with the specified channe¢ frequested size of the buffer can not exceed 64KB.
This bounce buffer will be automatically used later if a stan buffer happens to be not physically contiguous or
outside of the memory accessible by the ISA bus or crosse§4KB boundary. If the transfers will be always
done from buffers which conform to these conditions (suctihase allocated bjyus_dmamem_alloc() with

proper limitations) theisa_dmainit() does not have to be called. But it is quite convenient to fearabitrary
data using the DMA controller. The bounce buffer will autditally care of the scatter-gather issues.

. chan- channel number

- bouncebufsizesize of the bounce buffer in bytes

void isa_dmastart(int flags, caddr_t addr, u_int nbytes, i nt chan)

Prepare to start a DMA transfer. This function must be cdlbeset up the DMA controller before actually starting
transfer on the device. It checks that the buffer is contiggemd falls into the ISA memory range, if not then the
bounce buffer is automatically used. If bounce buffer isurezg but not set up biga_dmainit() or too small

for the requested transfer size then the system will panicase of a write request with bounce buffer the data
will be automatically copied to the bounce buffer.

flags - a bitmask determining the type of operation to be ddhe.direction bits B_READ and B_WRITE are
mutually exclusive.

- B_READ - read from the ISA bus into memory
- B_WRITE - write from the memory to the ISA bus

- B_RAW - if set then the DMA controller will remember the buffend after the end of transfer will
automatically re-initialize itself to repeat transfer bétsame buffer again (of course, the driver may change the
data in the buffer before initiating another transfer indegice). If not set then the parameters will work only
for one transfer, anda_dmastart() will have to be called again before initiating the next tf@nsJsing
B_RAW makes sense only if the bounce buffer is not used.

137

Chapter 10 ISA Device Drivers

- addr - virtual address of the buffer

- nbytes - length of the buffer. Must be less or equal to 64KBhdth of 0 is not allowed: the DMA controller will
understand it as 64KB while the kernel code will understaiad 0 and that would cause unpredictable effects. For
channels number 4 and higher the length must be even bedamsgeahannels transfer 2 bytes at a time. In case of
an odd length the last byte will not be transferred.

- chan - channel number
« void isa_dmadone(int flags, caddr_t addr, int nbytes, int ¢ han)

Synchronize the memory after device reports that transféone. If that was a read operation with a bounce
buffer then the data will be copied from the bounce buffeh®ariginal buffer. Arguments are the same as for
isa_dmastart() . Flag B_RAW is permitted but it does not affésd_dmadone() in any way.

« int isa_dmastatus(int channel_number)

Returns the number of bytes left in the current transfer tordoesferred. In case the flag B_ READ was set in
isa_dmastart() the number returned will never be equal to zero. At the endaoisfer it will be automatically
reset back to the length of buffer. The normal use is to chieektimber of bytes left after the device signals that
the transfer is completed. If the number of bytes is not 0 8wanething probably went wrong with that transfer.

 int isa_dmastop(int channel_number)

Aborts the current transfer and returns the number of bgtfiesihtransferred.

10.8 xxx_isa_probe

This function probes if a device is present. If the driverogps auto-detection of some part of device configuration
(such as interrupt vector or memory address) this autcetietemust be done in this routine.

As for any other bus, if the device cannot be detected or msated but failed the self-test or some other problem
happened then it returns a positive value of error. The VBNMIO must be returned if the device is not present.
Other error values may mean other conditions. Zero or negasilues mean success. Most of the drivers return zero
as success.

The negative return values are used when a PnP device ssippaltiple interfaces. For example, an older
compatibility interface and a newer advanced interfacetviare supported by different drivers. Then both drivers
would detect the device. The driver which returns a high&revan the probe routine takes precedence (in other
words, the driver returning 0 has highest precedence, damigg -1 is next, one returning -2 is after it and so on).
In result the devices which support only the old interfackk g handled by the old driver (which should return -1
from the probe routine) while the devices supporting the meerface as well will be handled by the new driver
(which should return 0 from the probe routine).

The device descriptor struct xxx_softc is allocated by trstean before calling the probe routine. If the probe routine
returns an error the descriptor will be automatically dezdted by the system. So if a probing error occurs the driver
must make sure that all the resources it used during probdeatcated and that nothing keeps the descriptor from
being safely deallocated. If the probe completes succisdfie descriptor will be preserved by the system and later
passed to the routinex_isa_attach() . If a driver returns a negative value it can not be sure thatlithave the
highest priority and its attach routine will be called. Sdhis case it also must release all the resources before
returning and if necessary allocate them again in the attadine. Wherxxx_isa_probe() returns O releasing the
resources before returning is also a good idea and a wediveeldriver should do so. But in cases where there is
some problem with releasing the resources the driver isvalicdo keep resources between returning O from the
probe routine and execution of the attach routine.

138

Chapter 10 ISA Device Drivers

A typical probe routine starts with getting the device dgxor and unit:

struct xxx_softc *sc = device_get_softc(dev);
int unit = device_get_unit(dev);

int pnperror;

int error = O;

sc->dev = dev; / * link it back */
sc->unit = unit;

Then check for the PnP devices. The check is carried out byl tantaining the list of PnP IDs supported by this
driver and human-readable descriptions of the device nsanetesponding to these IDs.

pnperror=ISA_PNP_PROBE(device_get_parent(dev), dev,
xxx_pnp_ids); if(pnperror == ENXIO) return ENXIO;

The logic of ISA_PNP_PROBE is the following: If this card ¢iEe unit) was not detected as PnP then ENOENT
will be returned. If it was detected as PnP but its detectedd®s not match any of the IDs in the table then ENXIO
is returned. Finally, if it has PnP support and it matchesfdh@IDs in the table, 0 is returned and the appropriate
description from the table is set lgvice_set_desc()

If a driver supports only PnP devices then the condition wadoibk like:

if(pnperror !'= 0)
return pnperror;

No special treatment is required for the drivers which dosugport PnP because they pass an empty PnP ID table
and will always get ENXIO if called on a PnP card.

The probe routine normally needs at least some minimal setsofurces, such as 1/0 port number to find the card
and probe it. Depending on the hardware the driver may betalliscover the other necessary resources
automatically. The PnP devices have all the resourcesqifgygshe PnP subsystem, so the driver does not need to
discover them by itself.

Typically the minimal information required to get accessghe device is the I/O port number. Then some devices
allow to get the rest of information from the device configimaregisters (though not all devices do that). So first
we try to get the port start value:

sc->port0 = bus_get_resource_start(dev,
SYS_RES_IOPORT, 0 /+rid =*/); if(sc->port0 == 0) return ENXIO;

The base port address is saved in the structure softc faiefute. If it will be used very often then calling the
resource function each time would be prohibitively slowv# do not get a port we just return an error. Some device
drivers can instead be clever and try to probe all the passgibits, like this:

/ = table of all possible base I/O port addresses for this device */
static struct xxx_allports {

u_short port; / * port address */

short used; / = flag: if this port is already used by some unit */
} xxx_allports = {

{ 0x300, 0 },

{ 0x320, 0 },

139

Chapter 10 ISA Device Drivers

{ 0x340, 0 },
{0,0}/ =* end of table */
h
int port, i;
port = bus_get_resource_start(dev, SYS_RES_IOPORT, 0 / *rid */);
if(port =0) {
for(i=0; xxx_allports[i].port!=0; i++) {
if(xxx_allports[i].used || xxx_allports[i].port != port)
continue;
[+ found it =/
xxx_allports[il.used = 1;
[+ do probe on a known port */
return xxx_really_probe(dev, port);
}
return ENXIO; / = port is unknown or already used */
}
/+ we get here only if we need to guess the port */

for(i=0; xxx_allports][i].port!=0; i++) {
if(xxx_allportsJi].used)
continue;

/+* mark as used - even if we find nothing at this port
* at least we won't probe it in future

*/

xxx_allports[il.used = 1;

error = xxx_really_probe(dev, xxx_allports[i].port);

if(error == 0) / * found a device at that port */
return O;
}
/ = probed all possible addresses, none worked */

return ENXIO;

Of course, normally the driveridentify() routine should be used for such things. But there may be ditk va
reason why it may be better to be doneinbe() : if this probe would drive some other sensitive device craine
probe routines are ordered with consideration ofs#resitive flag: the sensitive devices get probed first and the
rest of the devices later. But tldentify() routines are called before any probes, so they show no regpiae
sensitive devices and may upset them.

Now, after we got the starting port we need to set the port tf@xcept for PnP devices) because the kernel does not
have this information in the configuration file.

if(pnperror / * only for non-PnP devices */
&& bus_set_resource(dev, SYS_RES_IOPORT, 0, sc->port0,
XXX_PORT_COUNT)<0)

return ENXIO;

140

Chapter 10 ISA Device Drivers

Finally allocate and activate a piece of port address spEzial values of start and end mean “use those we set by
bus_set resource() "):

sc->port0_rid = 0;
sc->port0_r = bus_alloc_resource(dev, SYS_RES_IOPORT,
&sc->port0_rid,

[+start */ 0, / *end*/ ~0, / =*count x/ 0, RF_ACTIVE);

if(sc->port0_r == NULL)
return ENXIO;

Now having access to the port-mapped registers we can peldeifice in some way and check if it reacts like it is
expected to. If it does not then there is probably some otéeicd or no device at all at this address.

Normally drivers do not set up the interrupt handlers uhtl &ttach routine. Instead they do probes in the polling
mode using th®ELAY() function for timeout. The probe routine must never hangvergall the waits for the
device must be done with timeouts. If the device does nobredpvithin the time it is probably broken or
misconfigured and the driver must return error. When det@ngithe timeout interval give the device some extra
time to be on the safe side: althougBLAY/() is supposed to delay for the same amount of time on any maithine
has some margin of error, depending on the exact CPU.

If the probe routine really wants to check that the intersuptlly work it may configure and probe the interrupts too.
But that is not recommended.

/ * implemented in some very device-specific way */
if(error = xxx_probe_ports(sc))
goto bad; / =* will deallocate the resources before returning */

The functionxxx_probe_ports() may also set the device description depending on the exatinbdevice it
discovers. But if there is only one supported device modsidan be as well done in a hardcoded way. Of course,
for the PnP devices the PnP support sets the descriptiontfretable automatically.

if(pnperror)
device_set_desc(dev, "Our device model 1234");

Then the probe routine should either discover the rangel thfearesources by reading the device configuration
registers or make sure that they were set explicitly by tlee. W8e will consider it with an example of on-board
memory. The probe routine should be as non-intrusive aslhgesso allocation and check of functionality of the rest
of resources (besides the ports) would be better left totthetaroutine.

The memory address may be specified in the kernel configarfitioor on some devices it may be pre-configured in
non-volatile configuration registers. If both sources aglable and different, which one should be used? Probably
if the user bothered to set the address explicitly in the&eranfiguration file they know what they are doing and
this one should take precedence. An example of implementatiuld be:

/* try to find out the config address first */
sc->memO0_p = bus_get_resource_start(dev, SYS_RES_MEMOR Y, 0/ xrid */);
if(sc->mem0_p == 0) { / * nope, not specified by user */

sc->mem0_p = xxx_read_memO_from_device_config(sc);

141

Chapter 10 ISA Device Drivers

if(sc->mem0_p == 0)

[+ can't get it from device config registers either */
goto bad;

} else {

*/

if(xxx_set_memO0_address_on_device(sc) < 0)
goto bad; / +* device does not support that address */

just like the port, set the memory size,

for some devices the memory size would not be constant

but should be read from the device configuration registers i nstead
to accommodate different models of devices. Another option would
be to let the user set the memory size as "msize" configuratio n
resource which will be automatically handled by the ISA bus.

if(pnperror) { / * only for non-PnP devices */

sc->mem0_size = bus_get_resource_count(dev, SYS_RES_ME MORY, 0 /+rid */);
if(sc->memO0_size == 0) / * not specified by user */
sc->mem0_size = xxx_read_mem0Q_size_from_device_config (sc);

if(sc->mem0_size == 0) {
[= suppose this is a very old model of device without
* auto-configuration features and the user gave no preferenc e,
* SO assume the minimalistic case
* (of course, the real value will vary with the driver)
*/
sc->mem0_size = 8 *1024;

}

if(xxx_set_memO0_size_on_device(sc) < 0)
goto bad; / =+ device does not support that size */

if(bus_set_resource(dev, SYS_RES_MEMORY, / *rid */0,
sc->mem0_p, sc->mem0_size)<0)
goto bad;

} else {

}

sc->mem0_size = bus_get_resource_count(dev, SYS_RES_ME MORY, 0 /+rid =*/);

Resources for IRQ and DRQ are easy to check by analogy.

If all went well then release all the resources and returcesss

xxx_free_resources(sc);
return O;

bad:

Finally, handle the troublesome situations. All the resesrshould be deallocated before returning. We make use of
the fact that before the structure softc is passed to usstaggbed out, so we can find out if some resource was
allocated: then its descriptor is non-zero.

xxx_free_resources(sc);
if(error)

142

Chapter 10 ISA Device Drivers

return error;
else /| * exact error is unknown */
return ENXIO;

That would be all for the probe routine. Freeing of resourse®ne from multiple places, so it is moved to a
function which may look like:

static void
xxx_free_resources(sc)
struct xxx_softc *SC;
{
/ = check every resource and free if not zero */
/= interrupt handler */
if(sc->intr_r) {
bus_teardown_intr(sc->dev, sc->intr_r, sc->intr_cooki e);
bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_r id,
sc->intr_r);
sc->intr_r = 0;
}
[+ all kinds of memory maps we could have allocated */

if(sc->data_p) {
bus_dmamap_unload(sc->data_tag, sc->data_map);
sc->data_p = 0;

}
if(sc->data) { / * sc->data_map may be legitimately equal to 0 */
[+ the map will also be freed */
bus_dmamem_free(sc->data_tag, sc->data, sc->data_map) ;
sc->data = O;
}

if(sc->data_tag) {
bus_dma_tag_destroy(sc->data_tag);
sc->data_tag = 0;

}

... free other maps and tags if we have them ...

if(sc->parent_tag) {
bus_dma_tag_destroy(sc->parent_tag);
sc->parent_tag = O;

}
/ = release all the bus resources */
if(sc->mem0_r) {
bus_release_resource(sc->dev, SYS_RES_MEMORY, sc->mem 0_rid,
sc->mem0O_r);
sc->memO0_r = 0;
}

if(sc->port0_r) {
bus_release_resource(sc->dev, SYS_RES_IOPORT, sc->por t0_rid,
sc->port0_r);

143

Chapter 10 ISA Device Drivers

sc->port0_r = 0;

10.9 xxx_isa_attach

The attach routine actually connects the driver to the gysit¢he probe routine returned success and the system had
chosen to attach that driver. If the probe routine returntte@ the attach routine may expect to receive the device
structure softc intact, as it was set by the probe routingo Althe probe routine returns 0 it may expect that the
attach routine for this device shall be called at some paitiié future. If the probe routine returns a negative value
then the driver may make none of these assumptions.

The attach routine returns 0 if it completed successfullgroor code otherwise.

The attach routine starts just like the probe routine, wéttigg some frequently used data into more accessible
variables.

struct xxx_softc *sc = device_get_softc(dev);
int unit = device_get_unit(dev);
int error = 0;

Then allocate and activate all the necessary resourceauBenormally the port range will be released before
returning from probe, it has to be allocated again. We exihettthe probe routine had properly set all the resource
ranges, as well as saved them in the structure softc. If thiggaroutine had left some resource allocated then it does
not need to be allocated again (which would be consideredran e

sc->port0_rid = 0;
sc->port0_r = bus_alloc_resource(dev, SYS_RES_IOPORT, & sc->port0_rid,
[+start */ 0, / *end*/ ~0, / =*count */ 0, RF_ACTIVE);

if(sc->port0_r == NULL)
return ENXIO;

/ * on-board memory */

sc->mem0O_rid = O;

sc->memO_r = bus_alloc_resource(dev, SYS_RES_MEMORY, &s c->mem0_rid,
[+start */ 0, / *end*/ ~0, /| =*count */ 0, RF_ACTIVE);

if(sc->memO0_r == NULL)
goto bad;

/* get its virtual address */
sc->memO_v = rman_get_virtual(sc->mem0_r);

The DMA request channel (DRQ) is allocated likewise. Todtize it use functions of thsa_dma = () family. For
example:
isa_dmacascade(sc->drq0);

The interrupt request line (IRQ) is a bit special. Besidéscation the driver’s interrupt handler should be asseciat
with it. Historically in the old ISA drivers the argument gasl by the system to the interrupt handler was the device
unit number. But in modern drivers the convention suggess$sipg the pointer to structure softc. The important

144

Chapter 10 ISA Device Drivers

reason is that when the structures softc are allocated dgafiyrthen getting the unit number from softc is easy
while getting softc from the unit number is difficult. Alsaistconvention makes the drivers for different buses look
more uniform and allows them to share the code: each bustgetwin probe, attach, detach and other bus-specific
routines while the bulk of the driver code may be shared antlogig.

sc->intr_rid = 0;
sc->intr_r = bus_alloc_resource(dev, SYS_RES_MEMORY, &s c->intr_rid,
[+start */ 0, /| *end*/ ~0, /| =*count */ 0, RF_ACTIVE);

if(sc->intr_r == NULL)

goto bad;
| *
* XXX_INTR_TYPE is supposed to be defined depending on the typ e of
+ the driver, for example as INTR_TYPE_CAM for a CAM driver
*/
error = bus_setup_intr(dev, sc->intr_r, XXX_INTR_TYPE,
(driver_intr_t *) xxx_intr, (void *) sc, &sc->intr_cookie);
if(error)
goto bad;

If the device needs to make DMA to the main memory then this orgrshould be allocated like described before:

error=bus_dma_tag_create(NULL, / +alignment */ 4,
[*boundary */ 0, / =lowaddr */ BUS_SPACE_MAXADDR_24BIT,
[*highaddr »/ BUS_SPACE_MAXADDR, f#filter */ NULL, / «filterarg *=[NULL,
/ *maxsize */ BUS_SPACE_MAXSIZE_24BIT,
[*nsegments */ BUS_SPACE_UNRESTRICTED,
/ * maxsegsz */ BUS_SPACE_MAXSIZE_24BIT, / xflags =*/ O,
&sc->parent_tag);

if(error)
goto bad;
/* many things get inherited from the parent tag
* sc->data is supposed to point to the structure with the share d data,
+ for example for a ring buffer it could be:
* struct {

* u_short rd_pos;

* u_short wr_pos;

* char bf[XXX_RING_BUFFER_SIZE]

* } xdata;

*/

error=bus_dma_tag_create(sc->parent_tag, 1,
0, BUS_SPACE_MAXADDR, 0, /xfilter =/ NULL, / =filterarg */ NULL,
| *maxsize */ sizeof(* sc->data), / *nsegments */ 1,
/ *maxsegsz */ sizeof(* sc->data), / =*flags =/ O,
&sc->data_tag);

if(error)
goto bad;

error = bus_dmamem_alloc(sc->data_tag, &sc->data, / x flags */ 0,

145

Chapter 10 ISA Device Drivers

&sc->data_map);
if(error)
goto bad;

[+ xxx_alloc_callback() just saves the physical address at

* the pointer passed as its argument, in this case &sc->data_p
* See details in the section on bus memory mapping.

* |t can be implemented like:

* static void

* xxx_alloc_callback(void *arg, bus_dma_segment_t *seg,

* int nseg, int error)

* |

* * (bus_addr_t =*)arg = seg[0].ds_addr;

*}

*/

bus_dmamap_load(sc->data_tag, sc->data_map, (void *)sc->data,
sizeof (* sc->data), xxx_alloc_callback, (void *) &sc->data_p,

[=flags */0);

After all the necessary resources are allocated the deh@mddsbe initialized. The initialization may include tesgi
that all the expected features are functional.

if(xxx_initialize(sc) < 0)
goto bad;

The bus subsystem will automatically print on the consodedidvice description set by probe. But if the driver wants
to print some extra information about the device it may dd@oexample:

device_printf(dev, "has on-card FIFO buffer of %d bytes\n" , sc->fifosize);

If the initialization routine experiences any problemsatipeinting messages about them before returning erroras als
recommended.

The final step of the attach routine is attaching the devides tunctional subsystem in the kernel. The exact way to
do it depends on the type of the driver: a character deviceck lolevice, a network device, a CAM SCSI bus device
and so on.

If all went well then return success.
error = Xxxx_attach_subsystem(sc);
if(error)
goto bad;

return O;

Finally, handle the troublesome situations. All the resesrshould be deallocated before returning an error. We
make use of the fact that before the structure softc is paeseslit gets zeroed out, so we can find out if some
resource was allocated: then its descriptor is non-zero.

bad:

xxx_free_resources(sc);

146

Chapter 10 ISA Device Drivers

if(error)
return error;

else / = exact error is unknown */
return ENXIO;

That would be all for the attach routine.

10.10 xxx_isa_detach

If this function is present in the driver and the driver is goled as a loadable module then the driver gets the ability
to be unloaded. This is an important feature if the hardwapperts hot plug. But the ISA bus does not support hot
plug, so this feature is not particularly important for ti&Aldevices. The ability to unload a driver may be useful
when debugging it, but in many cases installation of the nexgion of the driver would be required only after the
old version somehow wedges the system and a reboot will dedesnyway, so the efforts spent on writing the
detach routine may not be worth it. Another argument thavaiihg would allow upgrading the drivers on a
production machine seems to be mostly theoretical. Imstpdl new version of a driver is a dangerous operation
which should never be performed on a production machine{dmch is not permitted when the system is running
in secure mode). Still, the detach routine may be providethi®sake of completeness.

The detach routine returns 0 if the driver was successfdtached or the error code otherwise.

The logic of detach is a mirror of the attach. The first thingltas to detach the driver from its kernel subsystem. If
the device is currently open then the driver has two choiefase to be detached or forcibly close and proceed with
detach. The choice used depends on the ability of the phatikernel subsystem to do a forced close and on the
preferences of the driver’s author. Generally the forcedelseems to be the preferred alternative.

struct xxx_softc *sc = device_get_softc(dev);
int error;

error = xxx_detach_subsystem(sc);
if(error)
return error;

Next the driver may want to reset the hardware to some cemsistate. That includes stopping any ongoing
transfers, disabling the DMA channels and interrupts taca@emory corruption by the device. For most of the
drivers this is exactly what the shutdown routine does, #dsfincluded in the driver we can just call it.

xxX_isa_shutdown(dev);

And finally release all the resources and return success.

xxx_free_resources(sc);
return O;

147

Chapter 10 ISA Device Drivers

10.11 xxx_isa_shutdown

This routine is called when the system is about to be shut dtiisiexpected to bring the hardware to some
consistent state. For most of the ISA devices no speciaratirequired, so the function is not really necessary
because the device will be re-initialized on reboot anyway.some devices have to be shut down with a special
procedure, to make sure that they will be properly detectied soft reboot (this is especially true for many devices
with proprietary identification protocols). In any caseatisng DMA and interrupts in the device registers and
stopping any ongoing transfers is a good idea. The exadradépends on the hardware, so we do not consider it
here in any detail.

10.12 xxx_intr

The interrupt handler is called when an interrupt is reaivlich may be from this particular device. The ISA bus
does not support interrupt sharing (except in some speasas) so in practice if the interrupt handler is called then
the interrupt almost for sure came from its device. Stik ithterrupt handler must poll the device registers and make
sure that the interrupt was generated by its device. If radtéuld just return.

The old convention for the ISA drivers was getting the devin& number as an argument. This is obsolete, and the
new drivers receive whatever argument was specified for thehe attach routine when calling

bus_setup_intr() . By the new convention it should be the pointer to the stmecsoftc. So the interrupt handler
commonly starts as:

static void
XxXX_intr(struct xxx_softc *SC)
{
It runs at the interrupt priority level specified by the imtgat type parameter dfus_setup_intr() . That means

that all the other interrupts of the same type as well as alstiftware interrupts are disabled.
To avoid races it is commonly written as a loop:
while(xxx_interrupt_pending(sc)) {

XXX_process_interrupt(sc);
xxx_acknowledge_interrupt(sc);

}

The interrupt handler has to acknowledge interrupt to thwicéeonly but not to the interrupt controller, the system
takes care of the latter.

148

Chapter 11 PCI Devices

This chapter will talk about the FreeBSD mechanisms forimgit device driver for a device on a PCI bus.

11.1 Probe and Attach

Information here about how the PCI bus code iterates thrthuginattached devices and see if a newly loaded kid

will attach to any of them.

11.1.1 Sample Driver Source (nypci . c)

| *

* Simple KLD to play with the PCI functions.
*

* Murray Stokely

*/

#include <sys/param.h> / + defines used in kernel.h */

#include <sys/module.h>
#include <sys/systm.h>
#include <sys/errno.h>

#include <sys/kernel.h> / * types used in module initialization */
#include <sys/conf.h> / * cdevsw struct */

#include <sys/uio.h> / * uio struct */

#include <sys/malloc.h>

#include <sys/bus.h> / * structs, prototypes for pci bus stuff and DEVMETHOD macros!
#include <machine/bus.h>

#include <sys/rman.h>

#include <machine/resource.h>

#include <dev/pci/pcivar.h> / * For pci_get macros! */

#include <dev/pci/pcireg.h>

/ * The softc holds our per-instance data. */

struct mypci_softc {

device t my_dev;
struct cdev *my_cdev;
h
/ * Function prototypes */
static d_open_t mypci_open;
static d_close_t mypci_close;
static d_read _t mypci_read,;
static d_write_t mypci_write;
/ = Character device entry points */

static struct cdevsw mypci_cdevsw = {
.d_version = D_VERSION,

149

*/

.d_open = mypci_open,
.d_close = mypci_close,
.d_read = mypci_read,
.d_write = mypci_write,
.d_name = "mypci",

I3

| *

* In the cdevsw routines, we find our softc by using the si_drvl
+ of struct cdev. We set this variable to point to our softc in ou
* attach routine when we create the /dev entry.

*/
int
mypci_open(struct cdev +xdev, int oflags, int devtype, d_thread_t
{
struct mypci_softc * SC;
/* Look up our softc. */
sc = dev->si_drvi;
device_printf(sc->my_dev, "Opened successfully.\n");
return (0);
}
int
mypci_close(struct cdev xdev, int fflag, int devtype, d_thread_t
{
struct mypci_softc * SC;
[+ Look up our softc. */
sc = dev->si_drvl;
device_printf(sc->my_dev, "Closed.\n");
return (0);
}
int
mypci_read(struct cdev xdev, struct uio *Uio, int ioflag)
{
struct mypci_softc * SC;
/* Look up our softc. */
sc = dev->si_drvl;
device_printf(sc->my_dev, "Asked to read %d bytes.\n", ui
return (0);
}
int
mypci_write(struct cdev *dev, struct uio *Uuio, int ioflag)
{
struct mypci_softc * SC;
/= Look up our softc. */

sc = dev->si_drvi;

Chapter 11 PCI Devices

member
r

*td)

« td)

0->uio_resid);

150

device_printf(sc->my_dev, "Asked to write %d bytes.\n", u
return (0);

}
/* PCI Support Functions */

| *

* Compare the device ID of this device against the IDs that this
* supports. If there is a match, set the description and return
*/

static int

mypci_probe(device_t dev)

{

device_printf(dev, "MyPCIl Probe\nVendor ID : 0x%x\nDevic
pci_get_vendor(dev), pci_get_device(dev));

if (pci_get_vendor(dev) == Ox11lcl) {
printf("We've got the Winmodem, probe successful\n");
device_set_desc(dev, "WinModem");
return (BUS_PROBE_DEFAULT);

Chapter 11 PCI Devices

io->uio_resid);

driver
success.

e ID : 0x%x\n",

}
return (ENXIO);
}
/= Attach function is only called if the probe is successful. */
static int
mypci_attach(device_t dev)
{
struct mypci_softc * SC;
printf("MyPCI Attach for : devicelD : 0x%x\n", pci_get dev id(dev));
/* Look up our softc and initialize its fields. */
sc = device_get_softc(dev);
sc->my_dev = dey;
| *
* Create a /dev entry for this device. The kernel will assign us
* a major number automatically. We use the unit number of this
* device as the minor number and name the character device
* "mypci<unit>".
*/
sc->my_cdev = make_dev(&mypci_cdevsw, device_get_unit(dev),
UID_ROOT, GID_WHEEL, 0600, "mypci%u", device_get unit(d ev));

}

sc->my_cdev->si_drvl = sc;
printf("Mypci device loaded.\n");
return (0);

/ * Detach device. * [

151

static int
mypci_detach(device_t dev)
{
struct mypci_softc *SC;

[+ Teardown the state in our softc created in our attach routine

sc = device_get_softc(dev);
destroy_dev(sc->my_cdev);
printf("Mypci detach\n");
return (0);

}

/ = Called during system shutdown after sync. */

static int
mypci_shutdown(device_t dev)

{

printf("Mypci shutdown\n");
return (0);

}

| *

* Device suspend routine.
*/

static int
mypci_suspend(device_t dev)

{

printf("Mypci suspendi\n");
return (0);

}

| *

* Device resume routine.
*/

static int
mypci_resume(device_t dev)

{

printf("Mypci resumel\n");
return (0);

}

static device_method_t mypci_methods[] = {

/ = Device interface */
DEVMETHOD(device_probe,
DEVMETHOD(device_attach,
DEVMETHOD(device_detach,
DEVMETHOD(device_shutdown,
DEVMETHOD(device_suspend,
DEVMETHOD(device_resume,

mypci_probe),
mypci_attach),
mypci_detach),
mypci_shutdown),
mypci_suspend),
mypci_resume),

Chapter 11 PCI Devices

*/

152

Chapter 11 PCI Devices

DEVMETHOD_END
h

static devclass_t mypci_devclass;

DEFINE_CLASS_0(mypci, mypci_driver, mypci_methods, siz eof(struct mypci_softc));
DRIVER_MODULE(mypci, pci, mypci_driver, mypci_devclass , 0, 0);

11.1.2 Makef i | e for Sample Driver

Makefile for mypci driver

KMOD= mypci
SRCS= mypci.c
SRCS+= device_if.h bus_if.h pci_if.h

.include <bsd.kmod.mk>

If you place the above source file andkefile into a directory, you may rumake to compile the sample driver.
Additionally, you may runmake load to load the driver into the currently running kernel anake unload to
unload the driver after it is loaded.

11.1.3 Additional Resources

- PCI Special Interest Group (http://www.pcisig.org/)
- PCI System Architecture, Fourth Edition by Tom Shanley)et a

11.2 Bus Resources

FreeBSD provides an object-oriented mechanism for reogesources from a parent bus. Almost all devices will
be a child member of some sort of bus (PCI, ISA, USB, SCSI,atd)these devices need to acquire resources from
their parent bus (such as memory segments, interrupt limé&\IA channels).

11.2.1 Base Address Registers

To do anything particularly useful with a PCI device you wiled to obtain thBase Address RegistgiBARS) from
the PCI Configuration space. The PCI-specific details ofininig the BAR are abstracted in the
bus_alloc_resource() function.

For example, a typical driver might have something simitethis in theattach() function:

sc->bar0id = PCIR_BAR(0);
sc->barOres = bus_alloc_resource(dev, SYS_RES_MEMORY, & sc->bar0id,
0, ~0, 1, RF_ACTIVE);
if (sc->barOres == NULL) {
printf("Memory allocation of PCI base register 0 failed\n ");

153

Chapter 11 PCI Devices

error = ENXIO;
goto faill;
}

sc->barlid = PCIR_BAR(1);

sc->barlres = bus_alloc_resource(dev, SYS_RES_MEMORY, & sc->barlid,
0, ~0, 1, RF_ACTIVE);

if (sc->barlres == NULL) {

printf("Memory allocation of PCl base register 1 failed\n ");
error = ENXIO;
goto fail2;

}

sc->bar0_b rman_get_bustag(sc->bar0Ores);

sc->barl_b rman_get_bustag(sc->barlres);

t =
sc->bar0_bh = rman_get_bushandle(sc->barOres);
t =
sc->barl_bh = rman_get_bushandle(sc->barlres);

Handles for each base address register are kept in the soittuse so that they can be used to write to the device
later.

These handles can then be used to read or write from the degisters with théus_space_ * functions. For
example, a driver might contain a shorthand function to feah a board specific register like this:

uintl6 t
board_read(struct ni_softc *SC, uintl6_t address)
{
return bus_space_read_2(sc->barl_bt, sc->barl_bh, addr ess);
}

Similarly, one could write to the registers with:

void
board_write(struct ni_softc *SC, uintl6_t address, uintl6_t value)
{
bus_space_write_2(sc->barl_bt, sc->barl_bh, address, v alue);
}

These functions exist in 8bit, 16bit, and 32bit versions yma should uséus_space_{read|write} {1|2|4}
accordingly.

Note: In FreeBSD 7.0 and later, you can use the bus_+ functions instead of bus_space_ *. The bus_* functions
take a struct resource * pointer instead of a bus tag and handle. Thus, you could drop the bus tag and bus handle
members from the softc and rewrite the board_read() function as:

uintl6_t
board_read(struct ni_softc *SC, uintl6_t address)
{
return (bus_read(sc->barlres, address));
}

154

Chapter 11 PCI Devices

11.2.2 Interrupts

Interrupts are allocated from the object-oriented bus ¢o@evay similar to the memory resources. First an IRQ
resource must be allocated from the parent bus, and thenttreuipt handler must be set up to deal with this IRQ.

Again, a sample from a deviegtach() function says more than words.

/* Get the IRQ resource */

sc->irgid = OxO0;
sc->irgres = bus_alloc_resource(dev, SYS_RES IRQ, &(sc- >irgid),
0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
if (sc->irgres == NULL) {
printf("IRQ allocation failed!\n");

error = ENXIO;
goto fail3;
}
/* Now we should set up the interrupt handler */

error = bus_setup_intr(dev, sc->irqres, INTR_TYPE_MISC,
my_handler, sc, &(sc->handler));

if (error) {
printf("Couldn’t set up irg\n");
goto fail4;

}

Some care must be taken in the detach routine of the drivermvast quiesce the device’s interrupt stream, and
remove the interrupt handler. Onses_teardown_intr() has returned, you know that your interrupt handler will
no longer be called and that all threads that might have bestuéing this interrupt handler have returned. Since this
function can sleep, you must not hold any mutexes when gatfiis function.

11.2.3 DMA

This section is obsolete, and present only for historicatoms. The proper methods for dealing with these issues is
to use thebus_space_dma *() functions instead. This paragraph can be removed whendbims is updated to
reflect that usage. However, at the moment, the API is in aflfitio, so once that settles down, it would be good to
update this section to reflect that.

On the PC, peripherals that want to do bus-mastering DMA wheat with physical addresses. This is a problem
since FreeBSD uses virtual memory and deals almost exelysiith virtual addresses. Fortunately, there is a
function,vtophys() to help.

#include <vm/vm.h>
#include <vm/pmap.h>

#define vtophys(virtual_address) (...)
The solution is a bit different on the alpha however, and wiateally want is a function calledobus()
#if defined(__alpha_)

#define vtobus(va) alpha_XXX_dmamap((vm_offset_t)va)
#else

155

Chapter 11 PCI Devices

#define vtobus(va) vtophys(va)
#endif

11.2.4 Deallocating Resources

Itis very important to deallocate all of the resources thatenallocated duringttach() . Care must be taken to
deallocate the correct stuff even on a failure conditiorhsd the system will remain usable while your driver dies.

156

Chapter 12 Common Access Method SCSI
Controllers

Written by Sergey Babkin. Modifications for Handbook madi®lbyray Stokely.

12.1 Synopsis

This document assumes that the reader has a general undéngtaf device drivers in FreeBSD and of the SCSI
protocol. Much of the information in this document was ectea from the drivers:

« ncr (/sys/pci/ncr.c) by Wolfgang Stanglmeier and Stefan Esser
« sym (sys/dev/sym/sym_hipd.c) by Gerard Roudier
« aiC7xXX (sys/dev/aic7xxx/aic7xxx.c) by Justin T. Gibbs

and from the CAM code itself (by Justin T. Gibbs, ¢&es/cam/ +). When some solution looked the most logical
and was essentially verbatim extracted from the code bynJlisGibbs, | marked it as “recommended”.

The document is illustrated with examples in pseudo-cottaofigh sometimes the examples have many details and
look like real code, it is still pseudo-code. It was writtendemonstrate the concepts in an understandable way. For a
real driver other approaches may be more modular and effi¢feso abstracts from the hardware details, as well as
issues that would cloud the demonstrated concepts or thaugposed to be described in the other chapters of the
developers handbook. Such details are commonly shown lag@&linctions with descriptive names, comments or
pseudo-statements. Fortunately real life full-size eXeswith all the details can be found in the real drivers.

12.2 General Architecture

CAM stands for Common Access Method. It is a generic way taeskithe I/O buses in a SCSI-like way. This
allows a separation of the generic device drivers from teeds controlling the 1/0 bus: for example the disk driver
becomes able to control disks on both SCSI, IDE, and/or amgrdius so the disk driver portion does not have to be
rewritten (or copied and modified) for every new I/O bus. Tthestwo most important active entities are:

- Peripheral Modules a driver for peripheral devices (disk, tape, CD-ROM, etc.)
« SCSI Interface Modulg$SIM) - a Host Bus Adapter drivers for connecting to an I/O bush as SCSI or IDE.

A peripheral driver receives requests from the OS, contleeis to a sequence of SCSI commands and passes these
SCSI commands to a SCSI Interface Module. The SCSI InteNamtule is responsible for passing these commands
to the actual hardware (or if the actual hardware is not S@§lfor example, IDE then also converting the SCSI
commands to the native commands of the hardware).

Because we are interested in writing a SCSI adapter driver, rem this point on we will consider everything from
the SIM standpoint.

A typical SIM driver needs to include the following CAM-rééal header files:

#include <cam/cam.h>
#include <cam/cam_cch.h>
#include <cam/cam_sim.h>

157

Chapter 12 Common Access Method SCSI Controllers

#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>

The first thing each SIM driver must do is register itself vitte CAM subsystem. This is done during the driver’'s
xxx_attach() function (here and further xxx__is used to denote the unigiveidname prefix). The
xxx_attach() function itself is called by the system bus auto-configoratiode which we do not describe here.

This is achieved in multiple steps: first it is necessary locale the queue of requests associated with this SIM:

struct cam_devq *devq;

if((devg = cam_simq_alloc(SIZE))==NULL) {
error; / * some code to handle the error */

}

HereSIZE is the size of the queue to be allocated, maximal number ofesg it could contain. It is the number of
requests that the SIM driver can handle in parallel on onel 8&8. Commonly it can be calculated as:

SIZE = NUMBER_OF_SUPPORTED_TARGETSVMAX_SIMULTANEOUS_COMMANDS_PER_TARGET
Next we create a descriptor of our SIM:

struct cam_sim * Sim;

if((sim = cam_sim_alloc(action_func, poll_func, driver_ name,
softc, unit, max_dev_transactions,
max_tagged_dev_transactions, devq))==NULL) {
cam_simg_free(devq);
error; / * some code to handle the error */

}

Note that if we are not able to create a SIM descriptor we fneadevq also because we can do nothing else with it
and we want to conserve memory.

If a SCSI card has multiple SCSI buses on it then each busresgjits own cam_sim structure.

An interesting question is what to do if a SCSI card has maxa tine SCSI bus, do we need one devq structure per
card or per SCSI bus? The answer given in the comments to tihd &@Ale is: either way, as the driver’s author
prefers.

The arguments are:

- action_func - pointer to the driver'sxx_action function.

static void xxx_action (struct camsim=x*sim union ccb *xccb);

« poll_func - pointer to the driver'sxx_poll()

static void xxx_poll (struct camsim=sim);

158

Chapter 12 Common Access Method SCSI Controllers

- driver_name - the name of the actual driver, such as “ncrinats”.

« softc - pointer to the driver’s internal descriptor for tei€SI card. This pointer will be used by the driver in future
to get private data.

- unit - the controller unit number, for example for controllerds0” this number will be 0

- max_dev_transactions - maximal number of simultaneounsaetions per SCSI target in the non-tagged mode.
This value will be almost universally equal to 1, with possiexceptions only for the non-SCSI cards. Also the
drivers that hope to take advantage by preparing one traosachile another one is executed may set it to 2 but
this does not seem to be worth the complexity.

+ max_tagged_dev_transactions - the same thing, but in fgetbmode. Tags are the SCSI way to initiate multiple
transactions on a device: each transaction is assignedjaeutsig and the transaction is sent to the device. When
the device completes some transaction it sends back thi tegether with the tag so that the SCSI adapter (and
the driver) can tell which transaction was completed. Thigiment is also known as the maximal tag depth. It
depends on the abilities of the SCSI adapter.

Finally we register the SCSI buses associated with our SG&itar:

if(xpt_bus_register(sim, bus_number) = CAM_SUCCESS) {
cam_sim_free(sim, / *free_devq */ TRUE);
error; / * some code to handle the error x [

}

If there is one devq structure per SCSI bus (i.e., we considard with multiple buses as multiple cards with one
bus each) then the bus number will always be 0, otherwiselmabn the SCSI card should be get a distinct number.
Each bus needs its own separate structure cam_sim.

After that our controller is completely hooked to the CAM &ya. The value of devq can be discarded now: sim will
be passed as an argument in all further calls from CAM and dexadoe derived from it.

CAM provides the framework for such asynchronous eventieéSevents originate from the lower levels (the SIM
drivers), some events originate from the peripheral dsiveome events originate from the CAM subsystem itself.
Any driver can register callbacks for some types of the alsggmmous events, so that it would be notified if these
events occur.

A typical example of such an event is a device reset. Eackadidion and event identifies the devices to which it
applies by the means of “path”. The target-specific eventatly occur during a transaction with this device. So
the path from that transaction may be re-used to report tieistdthis is safe because the event path is copied in the
event reporting routine but not deallocated nor passed hegafurther). Also it is safe to allocate paths dynamically
at any time including the interrupt routines, although thatirs certain overhead, and a possible problem with this
approach is that there may be no free memory at that time. Bos aeset event we need to define a wildcard path
including all devices on the bus. So we can create the pathédiuture bus reset events in advance and avoid
problems with the future memory shortage:

struct cam_path * path;

if(xpt_create_path(&path, / *periph */NULL,
cam_sim_path(sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, / *free_devq */TRUE);
error; / * some code to handle the error */

159

Chapter 12 Common Access Method SCSI Controllers

softc->wpath = path;
softc->sim = sim;

As you can see the path includes:

- ID of the peripheral driver (NULL here because we have none)

- ID of the SIM driver cam_sim_path(sim))

« SCSiI target number of the device (CAM_TARGET_WILDCARD meéall devices”)

« SCSI LUN number of the subdevice (CAM_LUN_WILDCARD mean$ taJNs”)

If the driver can not allocate this path it will not be able toknormally, so in that case we dismantle that SCSI bus.

And we save the path pointer in the softc structure for futilse After that we save the value of sim (or we can also
discard it on the exit fromixx_probe() if we wish).

That is all for a minimalistic initialization. To do thingfght there is one more issue left.

For a SIM driver there is one particularly interesting eveviien a target device is considered lost. In this case
resetting the SCSI negotiations with this device may be agdea. So we register a callback for this event with
CAM. The request is passed to CAM by requesting CAM action @A control block for this type of request:

struct ccb_setasync CSsa;

xpt_setup_ccbh(&csa.ccb_h, path, / *priority */5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;

csa.callback = xxx_async;

csa.callback_arg = sim;

xpt_action((union cch *)&csa);

Now we take a look at thexx_action() andxxx_poll() driver entry points.

static void xxx_action (struct camsim=x*sim union ccb *ccb);

Do some action on request of the CAM subsystem. Sim desdtileeSIM for the request, CCB is the request itself.
CCB stands for “CAM Control Block”. It is a union of many spéciinstances, each describing arguments for some
type of transactions. All of these instances share the C@Bdrewvhere the common part of arguments is stored.

CAM supports the SCSI controllers working in both initiaftmormal”) mode and target (simulating a SCSI device)
mode. Here we only consider the part relevant to the initiatode.

There are a few function and macros (in other words, methtef#)ed to access the public data in the struct sim:

« cam_sim_path(sim) - the path ID (see above)
- cam_sim_name(sim) - the name of the sim
« cam_sim_softc(sim) - the pointer to the softc (driver private data) structure

« cam_sim_unit(sim) - the unit number

160

Chapter 12 Common Access Method SCSI Controllers

« cam_sim_bus(sim) -the bus ID
To identify the devicexxx_action() can get the unit number and pointer to its structure softcgiese
functions.

The type of request is storeddémb- >ccb_h. f unc_code. So generallgxx_action() consists of a big switch:

struct xxx_softc *softc = (struct xxx_softc *) cam_sim_softc(sim);
struct ccb_hdr *cch_h = &ccb->ccb_h;

int unit = cam_sim_unit(sim);

int bus = cam_sim_bus(sim);

switch(ccb_h->func_code) {
case ...

default:
ccb_h->status = CAM_REQ _INVALID;
xpt_done(cch);
break;

}

As can be seen from the default case (if an unknown commandesas/ed) the return code of the command is set
into ccb- >ccb_h. st at us and the completed CCB is returned back to CAM by calkipg done(ccb)

xpt_done() does not have to be called fromx_action() : For example an 1/0O request may be enqueued inside
the SIM driver and/or its SCSI controller. Then when the dewiould post an interrupt signaling that the processing
of this request is completet_done() may be called from the interrupt handling routine.

Actually, the CCB status is not only assigned as a return botla CCB has some status all the time. Before CCB is
passed to thexx_action() routine it gets the status CCB_REQ_INPROG meaning thatitjgogress. There are

a surprising number of status values definetsys/cam/cam.n which should be able to represent the status of a
request in great detail. More interesting yet, the statusfact a “bitwise or” of an enumerated status value (the
lower 6 bits) and possible additional flag-like bits (the eppits). The enumerated values will be discussed later in
more detail. The summary of them can be found in the Errorsramy section. The possible status flags are:

- CAM_DEV_QFRZN if the SIM driver gets a serious error (for example, the devdoes not respond to the
selection or breaks the SCSI protocol) when processing ai€stduld freeze the request queue by calling
xpt_freeze_simq() , return the other enqueued but not processed yet CCBs fodévice back to the CAM
queue, then set this flag for the troublesome CCB andkpaltione() . This flag causes the CAM subsystem to
unfreeze the queue after it handles the error.

- CAM_AUTOSNS_VALIDBIf the device returned an error condition and the flag CAMSDAUTOSENSE is not
set in CCB the SIM driver must execute the REQUEST SENSE camdraatomatically to extract the sense
(extended error information) data from the device. If thismpt was successful the sense data should be saved in
the CCB and this flag set.

- CAM_RELEASE_SIMQlike CAM_DEV_QFRZN but used in case there is some problenmgsource shortage)
with the SCSI controller itself. Then all the future reqsastthe controller should be stopped by
xpt_freeze_simq() . The controller queue will be restarted after the SIM driveercomes the shortage and
informs CAM by returning some CCB with this flag set.

« CAM_SIM_QUEUED when SIM puts a CCB into its request queue this flag shoulcebéasd removed when
this CCB gets dequeued before being returned back to CAM3.fldg is not used anywhere in the CAM code
now, so its purpose is purely diagnostic.

161

Chapter 12 Common Access Method SCSI Controllers

The functionxxx_action() is not allowed to sleep, so all the synchronization for rese@access must be done
using SIM or device queue freezing. Besides the aforemeadiflags the CAM subsystem provides functions
xpt_release_simq() andxpt_release_devq() to unfreeze the queues directly, without passing a CCB to
CAM.

The CCB header contains the following fields:

« path- path ID for the request

- target_id- target device ID for the request

. target_lun- LUN ID of the target device

- timeout- timeout interval for this command, in milliseconds

« timeout_ch a convenience place for the SIM driver to store the timeanitte (the CAM subsystem itself does
not make any assumptions about it)

. flags- various bits of information about the request spriv_psgijv_ptrl - fields reserved for private use by the
SIM driver (such as linking to the SIM queues or SIM privatairol blocks); actually, they exist as unions:
spriv_ptr0 and spriv_ptrl have the type (void *), spriv_dig#hnd spriv_field1 have the type unsigned long,
sim_priv.entries[0].bytes and sim_priv.entries[1]ds/are byte arrays of the size consistent with the other
incarnations of the union and sim_priv.bytes is one armigg bigger.

The recommended way of using the SIM private fields of CCB wefine some meaningful names for them and use
these meaningful names in the driver, like:

#define ccb_some_meaningful_name sim_priv.entries[0]. bytes
#define ccb_hcb spriv_ptrl / * for hardware control block */

The most common initiator mode requests are:

« XPT_SCSI_IG execute an I/O transaction
The instance “struct ccb_scsiio csio” of the union ccb isduseransfer the arguments. They are:
- cdb_io- pointer to the SCSI command buffer or the buffer itself
. cdb_len- SCSI command length
. data_ptr- pointer to the data buffer (gets a bit complicated if sc>ther is used)
. dxfer_len- length of the data to transfer
. sglist_cnt- counter of the scatter/gather segments
. scsi_status place to return the SCSI status

. sense_databuffer for the SCSI sense information if the command retwam error (the SIM driver is supposed
to run the REQUEST SENSE command automatically in this dabe iICCB flag CAM_DIS_AUTOSENSE is
not set)

- sense_lenthe length of that buffer (if it happens to be higher thae sifsense_data the SIM driver must
silently assume the smaller value) resid, sense_resithe ifransfer of data or SCSI sense returned an error
these are the returned counters of the residual (not traedjedata. They do not seem to be especially
meaningful, so in a case when they are difficult to computg (gaunting bytes in the SCSI controller’s FIFO
buffer) an approximate value will do as well. For a succdsiompleted transfer they must be set to zero.

. tag_action the kind of tag to use:

162

Chapter 12 Common Access Method SCSI Controllers

CAM_TAG_ACTION_NONE - do not use tags for this transaction

MSG_SIMPLE_Q_TAG, MSG_HEAD_OF_Q_TAG, MSG_ORDERED_Q JAvalue equal to the
appropriate tag message (see /sys/cam/scsi/scsi_mdgs#ye gives only the tag type, the SIM driver must
assign the tag value itself

The general logic of handling this request is the following:

The first thing to do is to check for possible races, to make that the command did not get aborted when it was
sitting in the queue:

struct ccb_scsiio *Csio = &cch->csio;

if ((ccb_h->status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
xpt_done(ccb);
return;

}

Also we check that the device is supported at all by our cdietro

if(cch_h->target_id > OUR_MAX_SUPPORTED_TARGET_ID

|| cch_h->target_id == OUR_SCSI_CONTROLLERS_OWN_ID) {
cch_h->status = CAM_TID_INVALID;
xpt_done(ccb);
return;

}

if(ccb_h->target_lun > OUR_MAX_SUPPORTED_LUN) {
ccb_h->status = CAM_LUN_INVALID;
xpt_done(ccb);
return;

}

Then allocate whatever data structures (such as card-depemardware control block) we need to process this
request. If we can not then freeze the SIM queue and remetmdterve have a pending operation, return the CCB
back and ask CAM to re-queue it. Later when the resourcesheewailable the SIM queue must be unfrozen by
returning a ccb with th€AM_SIMQ_RELEASKEIt set in its status. Otherwise, if all went well, link the B@ith

the hardware control block (HCB) and mark it as queued.

struct xxx_hcb *hcb = allocate_hcb(softc, unit, bus);

if(hcb == NULL) {
softc->flags |= RESOURCE_SHORTAGE;
xpt_freeze_simq(sim, / *count */1);
cch_h->status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;

}
hch->ccb = ccb; ccb_h->ccb_hcb = (void *)hcb;
ccb_h->status |= CAM_SIM_QUEUED;

Extract the target data from CCB into the hardware contrmtkl Check if we are asked to assign a tag and if yes
then generate an unique tag and build the SCSI tag messdueSIM driver is also responsible for negotiations
with the devices to set the maximal mutually supported bukhyisynchronous rate and offset.

hcb->target = ccb_h->target_id; hcb->lun = ccb_h->target _lun;

163

Chapter 12 Common Access Method SCSI Controllers

generate_identify_message(hchb);
if(ccb_h->tag_action '= CAM_TAG_ACTION_NONE)
generate_unique_tag_message(hch, ccb_h->tag_action);
if('target_negotiated(hcb))
generate_negotiation_messages(hcb);
Then set up the SCSI command. The command storage may béegpecthe CCB in many interesting ways,
specified by the CCB flags. The command buffer can be cont&in@@B or pointed to, in the latter case the
pointer may be physical or virtual. Since the hardware comgneeeds physical address we always convert the
address to the physical one.

A NOT-QUITE RELATED NOTE: Normally this is done by a call taophys() , but for the PCI device (which
account for most of the SCSI controllers now) drivers’ pbitity to the Alpha architecture the conversion must be
done bytobus() instead due to special Alpha quirks. [IMHO it would be muclidéeto have two separate
functionsytop() andptobus() thenvtobus() would be a simple superposition of them.] In case if a physica
address is requested it is OK to return the CCB with the stati¢ REQ_INVALID the current drivers do that. But
it is also possible to compile the Alpha-specific piece ofeasb in this example (there should be a more direct
way to do that, without conditional compilation in the drisg If necessary a physical address can be also
converted or mapped back to a virtual address but with big, ;3@ we do not do that.

if(ccb_h->flags & CAM_CDB_POINTER) {
/+ CDB is a pointer */
if(!(cch_h->flags & CAM_CDB_PHYS)) {

[+ CDB pointer is virtual */

hcb->cmd = vtobus(csio->cdb_io.cdb_ptr);
} else {

[+ CDB pointer is physical */

#if defined(__alpha_)
hch->cmd = csio->cdb_io.cdb_ptr | alpha_XXX_dmamap_or ;

#else
hch->cmd = csio->cdb_io.cdb_ptr ;
#endif
}
} else {
[+ CDB is in the ccb (buffer) */
hch->cmd = vtobus(csio->cdb_io.cdb_bytes);
}

hcb->cmdlen = csio->cdb_len;

Now it is time to set up the data. Again, the data storage mapbeified in the CCB in many interesting ways,
specified by the CCB flags. First we get the direction of tha ttansfer. The simplest case is if there is no data to
transfer:

int dir = (ccb_h->flags & CAM_DIR_MASK);

if (dir == CAM_DIR_NONE)
goto end_data;

Then we check if the data is in one chunk or in a scatter-gdigieand the addresses are physical or virtual. The
SCSI controller may be able to handle only a limited numbextwinks of limited length. If the request hits this
limitation we return an error. We use a special function tanethe CCB to handle in one place the HCB resource
shortages. The functions to add chunks are driver-dep¢ratehhere we leave them without detailed
implementation. See description of the SCSI command (CBYhng for the details on the address-translation
issues. If some variation is too difficult or impossible tgiement with a particular card it is OK to return the

164

Chapter 12 Common Access Method SCSI Controllers

statusCAM_REQ_INVALID Actually, it seems like the scatter-gather ability is ne¢d anywhere in the CAM code
now. But at least the case for a single non-scattered vibwfr must be implemented, it is actively used by
CAM.

int rv;
initialize_hcb_for_data(hcb);

if(((ccb_h->flags & CAM_SCATTER_VALID)) {

/ = single buffer */

if(!(ccb_h->flags & CAM_DATA_PHYS)) {
rv = add_virtual_chunk(hcb, csio->data_ptr, csio->dxfer _len, dir);
}

} else {
rv = add_physical_chunk(hcb, csio->data_ptr, csio->dxfe r_len, dir);

}

} else {

int i;

struct bus_dma_segment * segs;

segs = (struct bus_dma_segment *)csio->data_ptr;

if ((ccb_h->flags & CAM_SG_LIST_PHYS) != 0) {
[+ The SG list pointer is physical */
rv = setup_hcb_for_physical_sg_list(hcb, segs, csio->sg list_cnt);
} else if (I(ccb_h->flags & CAM_DATA_PHYS)) {
[+ SG buffer pointers are virtual */
for (i = 0; i < csio->sglist_cnt; i++) {
rv. = add_virtual_chunk(hcb, segs][i].ds_addr,
segsli].ds_len, dir);
if (v = CAM_REQ_CMP)

break;
}
} else {
[+ SG buffer pointers are physical */

for (i = 0; i < csio->sglist_cnt; i++) {
rv = add_physical_chunk(hcb, segs][i].ds_addr,
segsli].ds_len, dir);
if (v = CAM_REQ_CMP)
break;

}
}
if(rv '= CAM_REQ_CMP) {
[+ we expect that add_ *_chunk() functions return CAM_REQ_CMP
* if they added a chunk successfully, CAM_REQ_TOO_BIG if
* the request is too big (too many bytes or too many chunks),
* CAM_REQ_INVALID in case of other troubles

*/
free_hcb_and_ccb_done(hcb, ccb, rv);
return;

}

end_data:

If disconnection is disabled for this CCB we pass this infation to the hcb:

165

Chapter 12 Common Access Method SCSI Controllers

if(ccb_h->flags & CAM_DIS_DISCONNECT)
hcb_disable_disconnect(hcb);

If the controller is able to run REQUEST SENSE command alltbglf then the value of the flag
CAM_DIS_AUTOSENSE should also be passed to it, to preveitraatic REQUEST SENSE if the CAM
subsystem does not want it.

The only thing left is to set up the timeout, pass our hcb tdtrelware and return, the rest will be done by the
interrupt handler (or timeout handler).

ccb_h->timeout_ch = timeout(xxx_timeout, (caddr_t) hcbh,

(ccb_h->timeout * hz) / 1000); / = convert milliseconds to ticks */
put_hcb_into_hardware_queue(hchb);
return;

And here is a possible implementation of the function rehgICCB:

static void
free_hcb_and_ccb_done(struct xxx_hch +*hcb, union ccb *cch, u_int32_t status)
{

struct xxx_softc x softc = hcb->softc;

cch->ccb_h.ccb_hcb = 0;
if(hcb !'= NULL) {
untimeout(xxx_timeout, (caddr_t) hcb, ccb->ccb_h.timeo ut_ch);
/= we're about to free a hcb, so the shortage has ended * [
if(softc->flags & RESOURCE_SHORTAGE) ({
softc->flags &= ~RESOURCE_SHORTAGE;
status |= CAM_RELEASE_SIMQ;

}

free_hcb(hcb); / * also removes hcb from any internal lists */

}

cch->ccbh_h.status = status |
(ccb->ccbh_h.status & ~(CAM_STATUS_MASK|CAM_SIM_QUEUED));
xpt_done(ccb);
}

- XPT_RESET_DEVsend the SCSI “BUS DEVICE RESET” message to a device

There is no data transferred in CCB except the header anddkeinteresting argument of it is target_id.
Depending on the controller hardware a hardware contralilast like for the XPT_SCSI_IO request may be
constructed (see XPT_SCSI_IO request description) artdséme controller or the SCSI controller may be
immediately programmed to send this RESET message to theedavthis request may be just not supported (and
return the statuSAM_REQ_INVALID. Also on completion of the request all the disconnecteasaations for this
target must be aborted (probably in the interrupt routine).

Also all the current negotiations for the target are losteset, so they might be cleaned too. Or they clearing may
be deferred, because anyway the target would request iaggn on the next transaction.

« XPT_RESET_BUsSsend the RESET signal to the SCSI bus

No arguments are passed in the CCB, the only interestingraggtiis the SCSI bus indicated by the struct sim
pointer.

A minimalistic implementation would forget the SCSI negtitins for all the devices on the bus and return the
status CAM_REQ_CMP.

166

Chapter 12 Common Access Method SCSI Controllers

The proper implementation would in addition actually reketSCSI bus (possible also reset the SCSI controller)
and mark all the CCBs being processed, both those in the laaedyueue and those being disconnected, as done
with the status CAM_SCSI_BUS_ RESET. Like:

int targ, lun;

struct xxx_hcb xh, =xhh;
struct ccb_trans_settings neg;
struct cam_path * path;

/+ The SCSI bus reset may take a long time, in this case its comple tion
* should be checked by interrupt or timeout. But for simplicit y

* we assume here that it is really fast.

*/

reset_scsi_bus(softc);

/* drop all enqueued CCBs */
for(h = softc->first_queued_hcb; h != NULL; h = hh) {

hh = h->next;

free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);
}

/= the clean values of negotiations to report */
neg.bus_width = 8§;
neg.sync_period = neg.sync_offset = 0;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET L®);

/* drop all disconnected CCBs and clean negotiations */
for(targ=0; targ <= OUR_MAX_SUPPORTED_TARGET,; targ++) {
clean_negotiations(softc, targ);

/= report the event if possible */
if(xpt_create_path(&path, / *periph */NULL,
cam_sim_path(sim), targ,
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
xpt_async(AC_TRANSFER_NEG, path, &neg);
xpt_free_path(path);

}
for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)
for(h = softc->first_discon_hcb[targ][lun]; h != NULL; h = hh) {
hh=h->next;

free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);

}

ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(cch);

/ = report the event */
xpt_async(AC_BUS_RESET, softc->wpath, NULL);
return;

167

Chapter 12 Common Access Method SCSI Controllers

Implementing the SCSI bus reset as a function may be a goadieleause it would be re-used by the timeout
function as a last resort if the things go wrong.

« XPT_ABORT abort the specified CCB

The arguments are transferred in the instance “struct &bt eab” of the union ccb. The only argument field in it
is:

abort_cch- pointer to the CCB to be aborted

If the abort is not supported just return the status CAM_UBORT. This is also the easy way to minimally
implement this call, return CAM_UA_ABORT in any case.

The hard way is to implement this request honestly. Firstkhieat abort applies to a SCSI transaction:

struct ccb * abort_ccb;
abort_ccb = cch->cab.abort_ccb;

if(abort_ccb->ccb_h.func_code !'= XPT_SCSI_IO) {
ccbh->ccb_h.status = CAM_UA_ABORT;
xpt_done(cch);
return;

}

Then it is necessary to find this CCB in our queue. This can be g walking the list of all our hardware control
blocks in search for one associated with this CCB:

struct xxx_hchb *hcb, =*h;
hcb = NULL;

/* We assume that softc->first_hcb is the head of the list of all
* HCBs associated with this bus, including those enqueued for
* processing, being processed by hardware and disconnected o nes.
*/
for(h = softc->first_hcb; h '= NULL; h = h->next) {
if(h->ccb == abort_cch) {
hcb = h;
break;

}

if(hcb == NULL) {
/+* no such CCB in our queue */
cch->ccb_h.status = CAM_PATH_INVALID;
xpt_done(cch);
return;

}

hcb=found_hcb;

Now we look at the current processing status of the HCB. It beagither sitting in the queue waiting to be sent to
the SCSI bus, being transferred right now, or disconneatedaiting for the result of the command, or actually
completed by hardware but not yet marked as done by softWianmake sure that we do not get in any races with
hardware we mark the HCB as being aborted, so that if this HGEBout to be sent to the SCSI bus the SCSI
controller will see this flag and skip it.

168

Chapter 12 Common Access Method SCSI Controllers

int hstatus;

/* shown as a function, in case special action is needed to make
* this flag visible to hardware

*/

set_hcb_flags(hcb, HCB_BEING_ABORTED);

abort_again:

hstatus = get_hcb_status(hchb);

switch(hstatus) {

case HCB_SITTING_IN_QUEUE:
remove_hcb_from_hardware_queue(hcb);
[* FALLTHROUGH:/

case HCB_COMPLETED:

[+ this is an easy case */
free_hcb_and_ccb_done(hcb, abort_cch, CAM_REQ_ABORTED);
break;

If the CCB is being transferred right now we would like to safjto the SCSI controller in some
hardware-dependent way that we want to abort the curremfiea The SCSI controller would set the SCSI
ATTENTION signal and when the target responds to it send a@RB message. We also reset the timeout to
make sure that the target is not sleeping forever. If the canthwould not get aborted in some reasonable time
like 10 seconds the timeout routine would go ahead and riesettiole SCSI bus. Because the command will be
aborted in some reasonable time we can just return the admprest now as successfully completed, and mark the
aborted CCB as aborted (but not mark it as done yet).

case HCB_BEING_TRANSFERRED:

untimeout(xxx_timeout, (caddr_t) hch, abort_cch->ccb_h timeout_ch);
abort_ccb->ccb_h.timeout _ch =
timeout(xxx_timeout, (caddr_t) hch, 10 * hz);

abort_ccb->ccb_h.status = CAM_REQ_ABORTED;

/= ask the controller to abort that HCB, then generate

* an interrupt and stop

*/

if(signal_hardware_to_abort_hcb_and_stop(hch) < 0) {
/= oops, we missed the race with hardware, this transaction
* got off the bus before we aborted it, try again */
goto abort_again;

}

break;

If the CCB is in the list of disconnected then set it up as antadeguest and re-queue it at the front of hardware
queue. Reset the timeout and report the abort request toneleted.

case HCB_DISCONNECTED:

untimeout(xxx_timeout, (caddr_t) hcb, abort_ccb->ccb_h timeout_ch);
abort_ccb->ccb_h.timeout _ch =
timeout(xxx_timeout, (caddr_t) hch, 10 * hz);

put_abort_message_into_hcb(hcb);
put_hcb_at_the_front_of_hardware_queue(hcb);
break;

169

Chapter 12 Common Access Method SCSI Controllers

ccb->ccb_h.status = CAM_REQ_CMP;

xpt_done(cchb);

return;
That is all for the ABORT request, although there is one mesae. Because the ABORT message cleans all the
ongoing transactions on a LUN we have to mark all the othévattansactions on this LUN as aborted. That
should be done in the interrupt routine, after the traneadaets aborted.

Implementing the CCB abort as a function may be quite a goedl, ithis function can be re-used if an I1/0
transaction times out. The only difference would be thatitmed out transaction would return the status
CAM_CMD_TIMEOUT for the timed out request. Then the case XRBORT would be small, like that:

case XPT_ABORT:
struct ccb *abort_cch;
abort_ccb = cch->cab.abort_ccb;

if(@bort_cch->ccb_h.func_code '= XPT_SCSI_IO) {
cch->ccb_h.status = CAM_UA ABORT;
xpt_done(cch);
return;

}
if(xxx_abort_ccb(abort_cch, CAM_REQ_ABORTED) < 0)

/+* no such CCB in our queue */

cchb->ccb_h.status = CAM_PATH_INVALID;
else

ccbh->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
return;

« XPT_SET_TRAN_SETTINGS&Xplicitly set values of SCSI transfer settings

The arguments are transferred in the instance “struct cas tsetting cts” of the union ccb:

. valid - a bitmask showing which settings should be updated:

. CCB_TRANS_SYNC_RATE_VALI&ynchronous transfer rate

. CCB_TRANS_SYNC_OFFSET_VALI&nchronous offset

. CCB_TRANS_BUS_WIDTH_VAL#Dus width

. CCB_TRANS_DISC_VALlbset enable/disable disconnection

. CCB_TRANS_TQ_VALIlbset enable/disable tagged queuing

. flags- consists of two parts, binary arguments and identificadifcsub-operations. The binary arguments are:
. CCB_TRANS DISC_ENBRenable disconnection
. CCB_TRANS_ TAG_ENR:nable tagged queuing

. the sub-operations are:
- CCB_TRANS_ CURRENT_SETTING®ange the current negotiations

. CCB_TRANS USER_SETTING@®member the desired user values sync_period, synct effse
self-explanatory, if sync_offset==0 then the asynchr@moode is requested bus_width - bus width, in bits
(not bytes)

170

Chapter 12 Common Access Method SCSI Controllers

Two sets of negotiated parameters are supported, the usegseand the current settings. The user settings are
not really used much in the SIM drivers, this is mostly jusiecp of memory where the upper levels can store
(and later recall) its ideas about the parameters. Setimgder parameters does not cause re-negotiation of the
transfer rates. But when the SCSI controller does a negmiigtmust never set the values higher than the user
parameters, so it is essentially the top boundary.

The current settings are, as the name says, current. Clugtigimn means that the parameters must be
re-negotiated on the next transfer. Again, these “new atigettings” are not supposed to be forced on the device,
just they are used as the initial step of negotiations. Aley must be limited by actual capabilities of the SCSI
controller: for example, if the SCSI controller has 8-biskand the request asks to set 16-bit wide transfers this
parameter must be silently truncated to 8-bit transfersrgesending it to the device.

One caveat is that the bus width and synchronous parameg¢gpetarget while the disconnection and tag
enabling parameters are per lun.

The recommended implementation is to keep 3 sets of negdtfhus width and synchronous transfer) parameters:
user- the user set, as above

. current- those actually in effect

- goal- those requested by setting of the “current” parameters

The code looks like:

struct ccb_trans_settings * Cts;
int targ, lun;
int flags;

cts = &cch->cts;
targ = ccb_h->target_id;
lun = ccb_h->target_lun;
flags = cts->flags;
if(flags & CCB_TRANS_USER_SETTINGS) {
if(flags & CCB_TRANS_SYNC_RATE_VALID)
softc->user_sync_period[targ] = cts->sync_period;
if(flags & CCB_TRANS_SYNC_OFFSET_VALID)
softc->user_sync_offset[targ] = cts->sync_offset;
if(flags & CCB_TRANS_BUS_WIDTH_VALID)
softc->user_bus_width[targ] = cts->bus_width;

if(flags & CCB_TRANS_DISC_VALID) {
softc->user_tflags[targ][lun] &= ~CCB_TRANS_DISC_ENB;
softc->user_tflags[targ][lun] |= flags & CCB_TRANS_DISC _ENB;
}
if(flags & CCB_TRANS_TQ_ VALID) {
softc->user_tflags[targ][lun] &= ~CCB_TRANS_TQ_ENB;
softc->user_tflags[targ][lun] |= flags & CCB_TRANS_TQ_E NB;
}

}
if(flags & CCB_TRANS_CURRENT_SETTINGS) {

if(flags & CCB_TRANS_SYNC_RATE_VALID)
softc->goal_sync_period[targ] =
max(cts->sync_period, OUR_MIN_SUPPORTED_PERIOD);

171

Chapter 12 Common Access Method SCSI Controllers

if(flags & CCB_TRANS_SYNC_OFFSET_VALID)
softc->goal_sync_offset[targ] =
min(cts->sync_offset, OUR_MAX_SUPPORTED_OFFSET);
if(flags & CCB_TRANS_BUS_WIDTH_VALID)
softc->goal_bus_width[targ] = min(cts->bus_width, OUR_ BUS_WIDTH);

if(flags & CCB_TRANS_DISC_VALID) {
softc->current_tflags[targ][lun] &= ~CCB_TRANS_DISC_E NB;
softc->current_tflags[targ][lun] |= flags & CCB_TRANS_D ISC_ENB;
}
if(flags & CCB_TRANS_TQ_VALID) {
softc->current_tflags[targ]{lun] &= ~CCB_TRANS_TQ_ENB ;
softc->current_tflags[targ][lun] |= flags & CCB_TRANS_T Q_ENB;
}

}
ccb->ccb_h.status = CAM_REQ_CMP;

xpt_done(cchb);
return;

Then when the next I/0 request will be processed it will chiédkhas to re-negotiate, for example by calling the
function target_negotiated(hcb). It can be implementezithis:

int

target_negotiated(struct xxx_hcb * hch)

{
struct softc *softc = hcb->softc;
int targ = hcb->targ;

if(softc->current_sync_period[targ] != softc->goal_sy nc_period[targ]
|| softc->current_sync_offset[targ] != softc->goal_syn c_offset[targ]
|| softc->current_bus_width[targ] !'= softc->goal_bus_w idth[targ])
return 0; / * FALSE */
else
return 1; / * TRUE */
}
After the values are re-negotiated the resulting valueg treiassigned to both current and goal parameters, so for
future 1/0 transactions the current and goal parameterddimithe same andrget_negotiated() would

return TRUE. When the card is initialized (kx_attach()) the current negotiation values must be initialized to
narrow asynchronous mode, the goal and current values rausttialized to the maximal values supported by
controller.

XPT_GET_TRAN_SETTINGSet values of SCSI transfer settings

This operations is the reverse of XPT_SET_TRAN_SETTINGIBup the CCB instance “struct
ccb_trans_setting cts” with data as requested by the flags TRANS CURRENT_SETTINGS or
CCB_TRANS USER_SETTINGS (if both are set then the exidtirigers return the current settings). Set all the
bits in the valid field.

XPT_CALC_GEOMETRYcalculate logical (BIOS) geometry of the disk
The arguments are transferred in the instance “struct @b_geometry ccg” of the union ccb:
- block_size input, block (A.K.A sector) size in bytes

. volume_sizeinput, volume size in bytes

172

Chapter 12 Common Access Method SCSI Controllers

- cylinders- output, logical cylinders
- heads output, logical heads
- secs_per_trackoutput, logical sectors per track

If the returned geometry differs much enough from what th&S@ntroller BIOS thinks and a disk on this SCSI
controller is used as bootable the system may not be ableato Dloe typical calculation example taken from the
aic7xxx driver is:

struct ccbh_calc_geometry * CCQ;
u_int32_t size_mb;

u_int32_t secs_per_cylinder;

int extended,;

ccg = &ccb->ccg;
size_mb = ccg->volume_size
/ ((1024L = 1024L) / ccg->block_size);
extended = check_cards_ EEPROM_for_extended_geometry(s oftc);

if (size_mb > 1024 && extended) {
ccg->heads = 255;

ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * Cccg->secs_per_track;

ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;

xpt_done(cch);

return;

This gives the general idea, the exact calculation depemtissoquirks of the particular BIOS. If BIOS provides
no way set the “extended translation” flag in EEPROM this flagudd normally be assumed equal to 1. Other
popular geometries are:

128 heads, 63 sectors - Symbios controllers
16 heads, 63 sectors - old controllers

Some system BIOSes and SCSI BIOSes fight with each other waitable success, for example a combination of
Symbios 875/895 SCSI and Phoenix BIOS can give geometry6B328ter power up and 255/63 after a hard reset
or soft reboot.

XPT_PATH_INQ path inquiry, in other words get the SIM driver and SCSI coltér (also known as HBA - Host
Bus Adapter) properties

The properties are returned in the instance “struct cclthipagtpi” of the union ccb:
. version_num - the SIM driver version number, now all drivess 1

- hba_inquiry - bitmask of features supported by the corgroll

- PI_MDP_ABLE - supports MDP message (something from SCSI3?)

- PI_WIDE_32 - supports 32 bit wide SCSI

- PI_WIDE_16 - supports 16 bit wide SCSI

173

Chapter 12 Common Access Method SCSI Controllers

- PI_SDTR_ABLE - can negotiate synchronous transfer rate
- PI_LINKED_CDB - supports linked commands
- PI_TAG_ABLE - supports tagged commands

- PI_SOFT_RST - supports soft reset alternative (hard regksaft reset are mutually exclusive within a SCSI
bus)

. target_sprt - flags for target mode support, O if unsupported

- hba_misc - miscellaneous controller features:

- PIM_SCANHILO - bus scans from high ID to low ID

- PIM_NOREMOVE - removable devices not included in scan

- PIM_NOINITIATOR - initiator role not supported

- PIM_NOBUSRESET - user has disabled initial BUS RESET

- hba_eng_cnt- mysterious HBA engine count, somethingeelat compression, now is always set to 0
- vuhba_flags - vendor-unique flags, unused now

- max_target - maximal supported target ID (7 for 8-bit busfdr5L6-bit bus, 127 for Fibre Channel)
- max_lun - maximal supported LUN ID (7 for older SCSI conteodl, 63 for newer ones)

. async_flags - bitmask of installed Async handler, unused now

- hpath_id - highest Path ID in the subsystem, unused now

- unit_number - the controller unit number, cam_sim_unit{si

. bus_id - the bus number, cam_sim_bus(sim)

- initiator_id - the SCSI ID of the controller itself

- base_transfer_speed - nominal transfer speed in KB/s yoicasonous narrow transfers, equals to 3300 for
SCsI

- sim_vid - SIM driver’s vendor id, a zero-terminated strirfgreaximal length SIM_IDLEN including the
terminating zero

- hba_vid - SCSI controller's vendor id, a zero-terminateshgtof maximal length HBA_IDLEN including the
terminating zero

- dev_name - device driver name, a zero-terminated stringaadmmal length DEV_IDLEN including the
terminating zero, equal to cam_sim_name(sim)

The recommended way of setting the string fields is usingptrrike:
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);

After setting the values set the status to CAM_REQ_CMP antk the CCB as done.

12.3 Polling

static void xxx_pol |l (struct camsim=*sim);

174

Chapter 12 Common Access Method SCSI Controllers

The poll function is used to simulate the interrupts whenititerrupt subsystem is not functioning (for example,
when the system has crashed and is creating the system dlinegL.AM subsystem sets the proper interrupt level
before calling the poll routine. So all it needs to do is td tte interrupt routine (or the other way around, the poll
routine may be doing the real action and the interrupt reutiould just call the poll routine). Why bother about a
separate function then? Because of different calling cotivrs. Thexxx_poll routine gets the struct cam_sim
pointer as its argument when the PCI interrupt routine byroomconvention gets pointer to the struct xxx_softc
and the ISA interrupt routine gets just the device unit num®e the poll routine would normally look as:

static void
xxx_poll(struct cam_sim *Sim)
{
Xxx_intr((struct xxx_softc *)cam_sim_softc(sim)); / * for PCI device */
}
or
static void
xxx_poll(struct cam_sim *Sim)
{
XXX_intr(cam_sim_unit(sim)); / * for ISA device */
}

12.4 Asynchronous Events
If an asynchronous event callback has been set up then thadafunction should be defined.

static void
ahc_async(void * callback_arg, u_int32_t code, struct cam_path * path, void * arg)

- callback_arg - the value supplied when registering thdoaak
- code - identifies the type of event

- path - identifies the devices to which the event applies

- arg - event-specific argument

Implementation for a single type of event, AC_LOST_DEVIQiaKs like:

struct xxx_softc * softc;
struct cam_sim * Sim;
int targ;

struct ccb_trans_settings neg;

sim = (struct cam_sim +)callback_arg;
softc = (struct xxx_softc * J)cam_sim_softc(sim);
switch (code) {
case AC _LOST DEVICE:
targ = xpt_path_target_id(path);
if(targ <= OUR_MAX_SUPPORTED_TARGET) {

175

Chapter 12 Common Access Method SCSI Controllers

clean_negotiations(softc, targ);
/* send indication to CAM */
neg.bus_width = 8§;
neg.sync_period = neg.sync_offset = O;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET L\®);
xpt_async(AC_TRANSFER_NEG, path, &neg);
}

break;
default:
break;

12.5 Interrupts

The exact type of the interrupt routine depends on the typleeperipheral bus (PCI, ISA and so on) to which the
SCSiI controller is connected.

The interrupt routines of the SIM drivers run at the intetrdgpel splcam. Seplcam() should be used in the driver
to synchronize activity between the interrupt routine drerest of the driver (for a multiprocessor-aware driver
things get yet more interesting but we ignore this case h&he) pseudo-code in this document happily ignores the
problems of synchronization. The real code must not igrfeeent A simple-minded approach is to spicam() on

the entry to the other routines and reset it on return thuepting them by one big critical section. To make sure that
the interrupt level will be always restored a wrapper fumeitan be defined, like:

static void
XXX_action(struct cam_sim *sim, union ccb * cch)

{
int s;
s = splcam();
Xxx_actionl(sim, ccb);
splx(s);

}

static void
XxXX_actionl(struct cam_sim *sim, union ccbh * cch)

{

... process the request ...

}

This approach is simple and robust but the problem with had interrupts may get blocked for a relatively long
time and this would negatively affect the system’s perfaroga On the other hand the functions of) family
have rather high overhead, so vast amount of tiny criticeti@es may not be good either.

The conditions handled by the interrupt routine and theildedepend very much on the hardware. We consider the
set of “typical” conditions.

First, we check if a SCSI reset was encountered on the bubdphpcaused by another SCSI controller on the same
SCSI bus). If so we drop all the enqueued and disconnectestx) report the events and re-initialize our SCSI
controller. It is important that during this initializatiche controller will not issue another reset or else two
controllers on the same SCSI bus could ping-pong resetgdnrehe case of fatal controller error/hang could be

176

Chapter 12 Common Access Method SCSI Controllers

handled in the same place, but it will probably need alsoisgndESET signal to the SCSI bus to reset the status of
the connections with the SCSI devices.

int fatal=0;
struct ccb_trans_settings neg;
struct cam_path * path;

if(detected_scsi_reset(softc)

|| (fatal = detected_fatal_controller_error(softc))) {
int targ, lun;
struct xxx_hcb +xh, +hh;

[+ drop all enqueued CCBs */
for(h = softc->first_queued_hcb; h != NULL; h = hh) {

hh = h->next;

free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);
}

/= the clean values of negotiations to report */
neg.bus_width = 8;
neg.sync_period = neg.sync_offset = O;
neg.valid = (CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_SYNC_RATE_VALID | CCB_TRANS_SYNC_OFFSET L\i®);

/= drop all disconnected CCBs and clean negotiations */
for(targ=0; targ <= OUR_MAX_SUPPORTED_TARGET,; targ++) {
clean_negotiations(softc, targ);

/ = report the event if possible */
if(xpt_create_path(&path, / *periph * /NULL,
cam_sim_path(sim), targ,
CAM_LUN_WILDCARD) == CAM_REQ_CMP) {
xpt_async(AC_TRANSFER_NEG, path, &neg);
xpt_free_path(path);

}
for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)
for(h = softc->first_discon_hcbl[targ][lun]; h !'= NULL; h = hh) {
hh=h->next;
if(fatal)
free_hcb_and_ccb_done(h, h->cch, CAM_UNREC_HBA_ ERROR)
else
free_hcb_and_cch_done(h, h->cch, CAM_SCSI_BUS_RESET);
}
}
/= report the event */

xpt_async(AC_BUS_RESET, softc->wpath, NULL);

/ = re-initialization may take a lot of time, in such case
* its completion should be signaled by another interrupt or
* checked on timeout - but for simplicity we assume here that
* it is really fast

177

Chapter 12 Common Access Method SCSI Controllers

*/

if(fatal) {
reinitialize_controller_without_scsi_reset(softc);

} else {
reinitialize_controller_with_scsi_reset(softc);

}

schedule_next_hcb(softc);

return;

}

If interrupt is not caused by a controller-wide conditioeriprobably something has happened to the current
hardware control block. Depending on the hardware therelmeayther non-HCB-related events, we just do not
consider them here. Then we analyze what happened to this HCB

struct xxx_hcb *hch, =*h, =hh;
int hcb_status, scsi_status;

int ccb_status;

int targ;

int lun_to_freeze;

hch = get_current_hch(softc);
if(hcb == NULL) {
/ = either stray interrupt or something went very wrong
* or this is something hardware-dependent
*/
handle as necessary;
return;

}

targ = hch->target;
hch_status = get_status_of _current_hch(softc);

First we check if the HCB has completed and if so we check themed SCSI status.

if(hcb_status == COMPLETED) {
scsi_status = get_completion_status(hchb);

Then look if this status is related to the REQUEST SENSE conthaad if so handle it in a simple way.

if(hch->flags & DOING_AUTOSENSE) {

if(scsi_status == GOOD) { / * autosense was successful */
hcb->ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
free_hcb_and_ccb_done(hcb, hcbh->cch, CAM_SCSI_STATUS _ ERROR);
} else {

autosense_failed:
free_hcb_and_ccb_done(hcb, hcbh->cch, CAM_AUTOSENSE_FA IL);
}

schedule_next_hcb(softc);
return;

}

Else the command itself has completed, pay more attentidettils. If auto-sense is not disabled for this CCB and
the command has failed with sense data then run REQUEST SEbI8Eand to receive that data.

178

Chapter 12 Common Access Method SCSI Controllers

hcb->ccb->csio.scsi_status = scsi_status;
calculate_residue(hcb);

if((hcb->ccb->ccb_h.flags & CAM_DIS_AUTOSENSE)==0
&& (scsi_status == CHECK_CONDITION
|| scsi_status == COMMAND_TERMINATED)) {
[+ start auto-SENSE */
hcb->flags |= DOING_AUTOSENSE;
setup_autosense_command_in_hcb(hcb);
restart_current_hch(softc);
return;
}
if(scsi_status == GOOD)
free_hcb_and_cch_done(hcb, hch->cch, CAM_REQ_CMP);
else
free_hcb_and_ccb_done(hcb, hcb->ccb, CAM_SCSI_STATUS _
schedule_next_hcb(softc);
return;

}

ERRORY);

One typical thing would be negotiation events: negotiatimssages received from a SCSI target (in answer to our
negotiation attempt or by target’s initiative) or the tdrigaunable to negotiate (rejects our negotiation messages o

does not answer them).

switch(hcb_status) {
case TARGET_REJECTED_WIDE_NEG:

/ = revert to 8-bit bus */
softc->current_bus_width[targ] = softc->goal_bus_widt h[targ] = 8;
/ = report the event */

neg.bus_width = 8;
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;

xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &n eQ);

continue_current_hch(softc);
return;

case TARGET_ANSWERED WIDE_NEG:
{

int wd;

wd = get_target_bus_width_request(softc);

if(wd <= softc->goal_bus_width[targ]) {
/= answer is acceptable */
softc->current_bus_width[targ] =
softc->goal_bus_width[targ] = neg.bus_width = wd;

/ = report the event */
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.cch_h.path_id, &n
} else {
prepare_reject_message(hch);
}
}

continue_current_hch(softc);
return;

eg);

179

Chapter 12 Common Access Method SCSI Controllers

case TARGET REQUESTED WIDE_NEG:
{

int wd;

wd = get_target_bus_width_request(softc);
wd = min (wd, OUR_BUS_WIDTH);
wd min (wd, softc->user_bus_width[targ]);

if(wd != softc->current_bus_width[targ]) {
/= the bus width has changed */
softc->current_bus_width[targ] =
softc->goal_bus_width[targ] = neg.bus_width = wd;

/ = report the event */
neg.valid = CCB_TRANS_BUS_WIDTH_VALID;
xpt_async(AC_TRANSFER_NEG, hcb->ccb.ccb_h.path_id, &n eq);
}
prepare_width_nego_rsponse(hcb, wd);
}
continue_current_hcb(softc);
return;

}

Then we handle any errors that could have happened duringsauaise in the same simple-minded way as before.
Otherwise we look closer at the details again.

if(hcb->flags & DOING_AUTOSENSE)
goto autosense_failed;

switch(hcb_status) {

The next event we consider is unexpected disconnect. Whichrisidered normal after an ABORT or BUS DEVICE
RESET message and abnormal in other cases.

case UNEXPECTED_DISCONNECT:
if(requested_abort(hcb)) {
/= abort affects all commands on that target+LUN, so
* mark all disconnected HCBs on that target+LUN as aborted too
*/
for(h = softc->first_discon_hch[hch->target][hcb->lun 1;
h = NULL; h = hh) {
hh=h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_REQ_ABORTED);
}
ccb_status = CAM_REQ_ABORTED;
} else if(requested_bus_device_reset(hcb)) {
int lun;

/ = reset affects all commands on that target, so
* mark all disconnected HCBs on that target+LUN as reset
*/

for(lun=0; lun <= OUR_MAX_SUPPORTED_LUN; lun++)

180

Chapter 12 Common Access Method SCSI Controllers

for(h = softc->first_discon_hcb[hcb->target][lun];
h = NULL; h = hh) {
hh=h->next;
free_hcb_and_ccb_done(h, h->ccb, CAM_SCSI_BUS_RESET);
}

/+ send event */
xpt_async(AC_SENT_BDR, hcb->ccb->ccb_h.path_id, NULL)

/ = this was the CAM_RESET_DEV request itself, it is completed */
ccb_status = CAM_REQ_CMP;
} else {

calculate_residue(hcb);

cch_status = CAM_UNEXP_BUSFREE;

/ = request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;

lun_to_freeze = hch->lun;

}

break;

If the target refuses to accept tags we notify CAM about thdtr@turn back all commands for this LUN:

case TAGS REJECTED:
/ = report the event */
neg.flags = 0 & ~CCB_TRANS_TAG_ENB;
neg.valid = CCB_TRANS_TQ_VALID;
xpt_async(AC_TRANSFER_NEG, hch->ccb.ccb_h.path_id, &n eq);

ccb_status = CAM_MSG_REJECT_REC;

/ = request the further code to freeze the queue */
hcb->ccbh->ccbh_h.status |= CAM_DEV_QFRZN;

lun_to_freeze = hcb->lun;

break;

Then we check a number of other conditions, with processasichlly limited to setting the CCB status:

case SELECTION_TIMEOUT:
ccb_status = CAM_SEL_ TIMEOUT;
/ = request the further code to freeze the queue */
hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to_freeze = CAM_LUN_WILDCARD;
break;

case PARITY_ERROR:
ccb_status = CAM_UNCOR_PARITY;
break;

case DATA_OVERRUN:

case ODD_WIDE_TRANSFER:
ccb_status = CAM_DATA_RUN_ERR,;

break;
default:
[+ all other errors are handled in a generic way */
ccb_status = CAM_REQ CMP_ERR;
/ = request the further code to freeze the queue */

181

Chapter 12 Common Access Method SCSI Controllers

hcb->ccb->ccb_h.status |= CAM_DEV_QFRZN;
lun_to freeze = CAM_LUN_WILDCARD;
break;

}
Then we check if the error was serious enough to freeze the queue until it gets proceeded and do so if it is:

if(hcb->ccbh->ccbh_h.status & CAM_DEV_QFRZN) {
/ = freeze the queue */
xpt_freeze_devq(ccbh->ccb_h.path, / *count */1);

/ = re-queue all commands for this target/LUN back to CAM */

for(h = softc->first_queued_hcb; h != NULL; h = hh) {
hh = h->next;

if(targ == h->targ
&& (lun_to_freeze == CAM_LUN_WILDCARD || lun_to_freeze == h->lun))
free_hcb_and_ccb_done(h, h->ccb, CAM_REQUEUE_REQ);
}
}

free_hcb_and_ccb_done(hcb, hcbh->cch, cch_status);
schedule_next_hcb(softc);
return;

This concludes the generic interrupt handling althougleigigeeontrollers may require some additions.

12.6 Errors Summary

When executing an 1/0 request many things may go wrong. Témoreof error can be reported in the CCB status
with great detail. Examples of use are spread throughaosititiument. For completeness here is the summary of
recommended responses for the typical error conditions:

- CAM_RESRC_UNAVAHsome resource is temporarily unavailable and the SIM ddaenot generate an event
when it will become available. An example of this resourcelldde some intra-controller hardware resource for
which the controller does not generate an interrupt wheadbmes available.

- CAM_UNCOR_PARITYunrecovered parity error occurred

- CAM_DATA_ RUN_ERRdata overrun or unexpected data phase (going in othertidingihan specified in
CAM_DIR_MASK) or odd transfer length for wide transfer

- CAM_SEL_TIMEOUT selection timeout occurred (target does not respond)

- CAM_CMD_TIMEOUT- command timeout occurred (the timeout function ran)

« CAM_SCSI_STATUS ERROfRe device returned error

« CAM_AUTOSENSE_FAH.the device returned error and the REQUEST SENSE COMMANRdai
« CAM_MSG_REJECT_REMMESSAGE REJECT message was received

. CAM_SCSI_BUS_RESETeceived SCSI bus reset

182

Chapter 12 Common Access Method SCSI Controllers

CAM_REQ_CMP_ERR"‘impossible” SCSI phase occurred or something else agvegijust a generic error if
further detail is not available

CAM_UNEXP_BUSFREEunexpected disconnect occurred
CAM_BDR_SENTBUS DEVICE RESET message was sent to the target
CAM_UNREC_HBA_ERRORunrecoverable Host Bus Adapter Error
CAM_REQ_TOO_BIGthe request was too large for this controller

CAM_REQUEUE_RER®this request should be re-queued to preserve transagcti@ning. This typically occurs
when the SIM recognizes an error that should freeze the caredienust place other queued requests for the target
at the sim level back into the XPT queue. Typical cases of suairs are selection timeouts, command timeouts
and other like conditions. In such cases the troublesomer@ond returns the status indicating the error, the and
the other commands which have not be sent to the bus yet geteneed.

CAM_LUN_INVALID- the LUN ID in the request is not supported by the SCSI colgrol
CAM_TID_INVALID- the target ID in the request is not supported by the SCSirobeit

12.7 Timeout Handling

When the timeout for an HCB expires that request should beedhqust like with an XPT_ABORT request. The
only difference is that the returned status of aborted rsgleould be CAM_CMD_TIMEOQOUT instead of
CAM_REQ_ABORTED (that is why implementation of the aborttbebe done as a function). But there is one

more possible problem: what if the abort request itself géit stuck? In this case the SCSI bus should be reset, just
like with an XPT_RESET_BUS request (and the idea about impleing it as a function called from both places
applies here too). Also we should reset the whole SCSI budéivice reset request got stuck. So after all the timeout
function would look like:

static void

xxx_timeout(void *arg)

{
struct xxx_hcb *hch = (struct xxx_hcb *)arg;
struct xxx_softc * softc;
struct ccb_hdr *cch_h;

}

softc = hch->softc;
cch_h = &hcb->ccbh->cch_h;

if(hcb->flags & HCB_BEING_ABORTED

|| ccb_h->func_code == XPT_RESET_DEV) {
XxX_reset_bus(softc);

} else {
xxx_abort_cch(hcb->ccb, CAM_CMD_TIMEOUT);

}

When we abort a request all the other disconnected requethis same target/LUN get aborted too. So there appears
a question, should we return them with status CAM_REQ_ABEBDr CAM_CMD_TIMEOUT? The current

drivers use CAM_CMD_TIMEOUT. This seems logical becausmi request got timed out then probably
something really bad is happening to the device, so if theyldvoot be disturbed they would time out by themselves.

183

Chapter 13 USB Devices

Written by Nick Hibma. Modifications for Handbook made by MurStokely.

13.1 Introduction

The Universal Serial Bus (USB) is a new way of attaching devito personal computers. The bus architecture
features two-way communication and has been developedesparnse to devices becoming smarter and requiring
more interaction with the host. USB supportis included Ircafrent PC chipsets and is therefore available in all
recently built PCs. Apple’s introduction of the USB-only @d has been a major incentive for hardware
manufacturers to produce USB versions of their devices fiituee PC specifications specify that all legacy
connectors on PCs should be replaced by one or more USB donsigamroviding generic plug and play capabilities.
Support for USB hardware was available at a very early stadetBSD and was developed by Lennart Augustsson
for the NetBSD project. The code has been ported to FreeB8Dvarare currently maintaining a shared code base.
For the implementation of the USB subsystem a number of feaif USB are important.

Lennart Augustsson has done most of the implementatiore & $B support for the NetBSD project. Many thanks
for this incredible amount of work. Many thanks also to Ardg ®irk for their comments and proofreading of this

paper.

- Devices connect to ports on the computer directly or on ésvoalled hubs, forming a treelike device structure.
- The devices can be connected and disconnected at run time.

+ Devices can suspend themselves and trigger resumes ofghsyistem

- As the devices can be powered from the bus, the host softveartotkeep track of power budgets for each hub.

- Different quality of service requirements by the differeptice types together with the maximum of 126 devices
that can be connected to the same bus, require proper saigeditransfers on the shared bus to take full
advantage of the 12Mbps bandwidth available. (over 400NMbiisUSB 2.0)

- Devices are intelligent and contain easily accessiblerim&tion about themselves

The development of drivers for the USB subsystem and deecimesected to it is supported by the specifications that
have been developed and will be developed. These speafisaie publicly available from the USB home pages.
Apple has been very strong in pushing for standards baseersrby making drivers for the generic classes
available in their operating system MacOS and discourathiegise of separate drivers for each new device. This
chapter tries to collate essential information for a basidarstanding of the present implementation of the USB
stack in FreeBSD/NetBSD. It is recommended however to reagéther with the relevant specifications mentioned
in the references below.

13.1.1 Structure of the USB Stack

The USB support in FreeBSD can be split into three layers.ldwest layer contains the host controller driver,
providing a generic interface to the hardware and its sdiveglfacilities. It supports initialisation of the hardvear
scheduling of transfers and handling of completed andited@ransfers. Each host controller driver implements a
virtual hub providing hardware independent access to tistexs controlling the root ports on the back of the
machine.

184

Chapter 13 USB Devices

The middle layer handles the device connection and disatiome basic initialisation of the device, driver seleatio
the communication channels (pipes) and does resource miaugag. This services layer also controls the default
pipes and the device requests transferred over them.

The top layer contains the individual drivers supportingafic (classes of) devices. These drivers implement the
protocol that is used over the pipes other than the defauit. Aihey also implement additional functionality to make
the device available to other parts of the kernel or userl&hdy use the USB driver interface (USBDI) exposed by
the services layer.

13.2 Host Controllers

The host controller (HC) controls the transmission of p&cka the bus. Frames of 1 millisecond are used. At the
start of each frame the host controller generates a Starbofé& (SOF) packet.

The SOF packet is used to synchronise to the start of the feanti¢o keep track of the frame number. Within each
frame packets are transferred, either from host to devig® ¢@ from device to host (in). Transfers are always
initiated by the host (polled transfers). Therefore thene anly be one host per USB bus. Each transfer of a packet
has a status stage in which the recipient of the data camretilmer ACK (acknowledge reception), NAK (retry),
STALL (error condition) or nothing (garbled data stage,idewnot available or disconnected). Section 8.5 of the
USB specification (http://www.usb.org/developers/diosl) explains the details of packets in more detail. Four
different types of transfers can occur on a USB bus: contrdk, interrupt and isochronous. The types of transfers
and their characteristics are described below (‘Pipesssciion).

Large transfers between the device on the USB bus and theedéniver are split up into multiple packets by the host
controller or the HC driver.

Device requests (control transfers) to the default endpaire special. They consist of two or three phases: SETUP,
DATA (optional) and STATUS. The set-up packet is sent to tbeick. If there is a data phase, the direction of the
data packet(s) is given in the set-up packet. The directidhe status phase is the opposite of the direction during
the data phase, or IN if there was no data phase. The hosbtientrardware also provides registers with the current
status of the root ports and the changes that have occuneslthie last reset of the status change register. Access to
these registers is provided through a virtualised hub agestgd in the USB specification [2]. The virtual hub must
comply with the hub device class given in chapter 11 of that#jzation. It must provide a default pipe through
which device requests can be sent to it. It returns the stdradahub class specific set of descriptors. It should also
provide an interrupt pipe that reports changes happeniitg @brts. There are currently two specifications for host
controllers available: Universal Host Controller Intexdg http://developer.intel.com/design/USB/UHCI1 1t
(UHCI; Intel) and Open Host Controller Interface (httpww.compag.com/productinfo/development/openhci.html)
(OHCI; Compagq, Microsoft, National Semiconductor). TheClt$pecification has been designed to reduce
hardware complexity by requiring the host controller driteesupply a complete schedule of the transfers for each
frame. OHCI type controllers are much more independent byiging a more abstract interface doing a lot of work
themselves.

13.2.1 UHCI

The UHCI host controller maintains a framelist with 1024rders to per frame data structures. It understands two
different data types: transfer descriptors (TD) and queaaels (QH). Each TD represents a packet to be
communicated to or from a device endpoint. QHs are a mean®tmdDs (and QHSs) together.

185

Chapter 13 USB Devices

Each transfer consists of one or more packets. The UHCIsplés large transfers into multiple packets. For every
transfer, apart from isochronous transfers, a QH is alemtdtor every type of transfer these QHs are collected at a
QH for that type. Isochronous transfers have to be executgdicause of the fixed latency requirement and are
directly referred to by the pointer in the framelist. Thetiaschronous TD refers to the QH for interrupt transfers for
that frame. All QHs for interrupt transfers point at the QH dontrol transfers, which in turn points at the QH for
bulk transfers. The following diagram gives a graphicalrgiev of this:

This results in the following schedule being run in each faifter fetching the pointer for the current frame from
the framelist the controller first executes the TDs for adl isochronous packets in that frame. The last of these TDs
refers to the QH for the interrupt transfers for thatframiee iost controller will then descend from that QH to the
QHs for the individual interrupt transfers. After finishitttat queue, the QH for the interrupt transfers will refer the
controller to the QH for all control transfers. It will exaewall the subqueues scheduled there, followed by all the
transfers queued at the bulk QH. To facilitate the handliffinsshed or failed transfers different types of interrupts
are generated by the hardware at the end of each frame. lagh€D for a transfer the Interrupt-On Completion bit
is set by the HC driver to flag an interrupt when the transferdmampleted. An error interrupt is flagged if a TD
reaches its maximum error count. If the short packet defei bet in a TD and less than the set packet length is
transferred this interrupt is flagged to notify the contoHriver of the completed transfer. It is the host controlle
driver’s task to find out which transfer has completed or pazdl an error. When called the interrupt service routine
will locate all the finished transfers and call their callksi.c

See for a more elaborate description the UHCI specificafhttp://developer.intel.com/design/USB/UHCI11D.htm)

13.2.2 OHCI

Programming an OHCI host controller is much simpler. Thetic@ier assumes that a set of endpoints is available,
and is aware of scheduling priorities and the ordering otypes of transfers in a frame. The main data structure
used by the host controller is the endpoint descriptor (BRYhich a queue of transfer descriptors (TDs) is attached.
The ED contains the maximum packet size allowed for an emdpoid the controller hardware does the splitting

into packets. The pointers to the data buffers are updatedesch transfer and when the start and end pointer are
equal, the TD is retired to the done-queue. The four typesidpeints have their own queues. Control and bulk
endpoints are queued each at their own queue. Interrupt EEDgu@ued in a tree, with the level in the tree defining
the frequency at which they run.

framelist interruptisochronous control bulk

The schedule being run by the host controller in each framlkslas follows. The controller will first run the
non-periodic control and bulk queues, up to a time limit sethe HC driver. Then the interrupt transfers for that
frame number are run, by using the lower five bits of the franmalper as an index into level 0 of the tree of
interrupts EDs. At the end of this tree the isochronous EBsannected and these are traversed subsequently. The
isochronous TDs contain the frame number of the first fraradrémsfer should be run in. After all the periodic
transfers have been run, the control and bulk queues amrselagain. Periodically the interrupt service routine is
called to process the done queue and call the callbacks ¢brteensfer and reschedule interrupt and isochronous
endpoints.

See for a more elaborate description the OHCI specification
(http://www.compag.com/productinfo/development/dpartml). Services layer The middle layer provides access
to the device in a controlled way and maintains resourcesérby the different drivers and the services layer. The
layer takes care of the following aspects:

- The device configuration information

186

Chapter 13 USB Devices

« The pipes to communicate with a device

- Probing and attaching and detaching form a device.

13.3 USB Device Information

13.3.1 Device Configuration Information

Each device provides different levels of configuration infation. Each device has one or more configurations, of
which one is selected during probe/attach. A configurationides power and bandwidth requirements. Within each
configuration there can be multiple interfaces. A devicerfiaice is a collection of endpoints. For example USB
speakers can have an interface for the audio data (Audic)XCAasl an interface for the knobs, dials and buttons (HID
Class). All interfaces in a configuration are active at thmeséime and can be attached to by different drivers. Each
interface can have alternates, providing different qualftservice parameters. In for example cameras this is wsed t
provide different frame sizes and numbers of frames pengbco

Within each interface 0 or more endpoints can be specifiedp&ints are the unidirectional access points for
communicating with a device. They provide buffers to tenapity store incoming or outgoing data from the device.
Each endpoint has a unique address within a configuratierendpoint’s number plus its direction. The default
endpoint, endpoint 0, is not part of any interface and alséglan all configurations. It is managed by the services
layer and not directly available to device drivers.

Level O Level 1 Level 2 Slot 0
Slot 3 Slot 2 Slot 1
(Only 4 out of 32 slots shown)

This hierarchical configuration information is describedhe device by a standard set of descriptors (see section 9.6
of the USB specification [2]). They can be requested throhgtGet Descriptor Request. The services layer caches
these descriptors to avoid unnecessary transfers on thebuSB\ccess to the descriptors is provided through
function calls.

« Device descriptors: General information about the devike Vendor, Product and Revision Id, supported device
class, subclass and protocol if applicable, maximum pagiketfor the default endpoint, etc.

- Configuration descriptors: The number of interfaces in ¢bisfiguration, suspend and resume functionality
supported and power requirements.

- Interface descriptors: interface class, subclass andgubif applicable, number of alternate settings for the
interface and the number of endpoints.

« Endpoint descriptors: Endpoint address, direction and,typaximum packet size supported and polling frequency
if type is interrupt endpoint. There is no descriptor for tfefault endpoint (endpoint 0) and it is never counted in
an interface descriptor.

« String descriptors: In the other descriptors string ingliaee supplied for some fields.These can be used to retrieve
descriptive strings, possibly in multiple languages.

Class specifications can add their own descriptor typestieadvailable through the GetDescriptor Request.

Pipes Communication to end points on a device flows througtafied pipes. Drivers submit transfers to endpoints
to a pipe and provide a callback to be called on completiomiture of the transfer (asynchronous transfers) or wait

187

Chapter 13 USB Devices

for completion (synchronous transfer). Transfers to arpeimt are serialised in the pipe. A transfer can either
complete, fail or time-out (if a time-out has been set). Ereme two types of time-outs for transfers. Time-outs can
happen due to time-out on the USBbus (milliseconds). Thies=oduts are seen as failures and can be due to
disconnection of the device. A second form of time-out islenpented in software and is triggered when a transfer
does not complete within a specified amount of time (secofit®se are caused by a device acknowledging
negatively (NAK) the transferred packets. The cause fariththe device not being ready to receive data, buffer
under- or overrun or protocol errors.

If a transfer over a pipe is larger than the maximum packetsiecified in the associated endpoint descriptor, the
host controller (OHCI) or the HC driver (UHCI) will split theansfer into packets of maximum packet size, with the
last packet possibly smaller than the maximum packet size.

Sometimes it is not a problem for a device to return less data tequested. For example abulk-in-transfer to a
modem might request 200 bytes of data, but the modem has diylteS available at that time. The driver can set the
short packet (SPD) flag. It allows the host controller to ategpacket even if the amount of data transferred is less
than requested. This flag is only valid for in-transfers hfesamount of data to be sent to a device is always known
beforehand. If an unrecoverable error occurs in a devicegduartransfer the pipe is stalled. Before any more data is
accepted or sent the driver needs to resolve the cause datharsl clear the endpoint stall condition through send
the clear endpoint halt device request over the default gipe default endpoint should never stall.

There are four different types of endpoints and correspanplipes: - Control pipe / default pipe: There is one

control pipe per device, connected to the default endpeimdi§oint 0). The pipe carries the device requests and
associated data. The difference between transfers ovdetaalt pipe and other pipes is that the protocol for the
transfers is described in the USB specification [2]. Thegeests are used to reset and configure the device. A basic
set of commands that must be supported by each device igeiri chapter 9 of the USB specification [2]. The
commands supported on this pipe can be extended by a deagsgecification to support additional functionality.

« Bulk pipe: This is the USB equivalent to a raw transmissiomiue.

- Interrupt pipe: The host sends a request for data to the elavid if the device has nothing to send, it will NAK the
data packet. Interrupt transfers are scheduled at a fregspecified when creating the pipe.

- Isochronous pipe: These pipes are intended for isochraatetas for example video or audio streams, with fixed
latency, but no guaranteed delivery. Some support for pp#ss type is available in the current implementation.
Packets in control, bulk and interrupt transfers are rétfian error occurs during transmission or the device
acknowledges the packet negatively (NAK) due to for exartgalk of buffer space to store the incoming data.
Isochronous packets are however not retried in case ofifdédivery or NAK of a packet as this might violate the
timing constraints.

The availability of the necessary bandwidth is calculatedrd) the creation of the pipe. Transfers are scheduled
within frames of 1 millisecond. The bandwidth allocatiorthim a frame is prescribed by the USB specification,
section 5.6 [2]. Isochronous and interrupt transfers dosvaeld to consume up to 90% of the bandwidth within a
frame. Packets for control and bulk transfers are scheditedall isochronous and interrupt packets and will
consume all the remaining bandwidth.

More information on scheduling of transfers and bandwidtiamation can be found in chapter 5of the USB
specification [2], section 1.3 of the UHCI specification [Bpesection 3.4.2 of the OHCI specification [4].

188

Chapter 13 USB Devices

13.4 Device Probe and Attach

After the notification by the hub that a new device has beemected, the service layer switches on the port,
providing the device with 100 mA of current. At this point ttlevice is in its default state and listening to device
address 0. The services layer will proceed to retrieve thiewsdescriptors through the default pipe. After that it

will send a Set Address request to move the device away frerdefault device address (address 0). Multiple device
drivers might be able to support the device. For example aamadtiver might be able to support an ISDN TA
through the AT compatibility interface. A driver for thatesgfic model of the ISDN adapter might however be able
to provide much better support for this device. To suppastftbxibility, the probes return priorities indicating the
level of support. Support for a specific revision of a prodacks the highest and the generic driver the lowest
priority. It might also be that multiple drivers could atteio one device if there are multiple interfaces within one
configuration. Each driver only needs to support a subséteiiterfaces.

The probing for a driver for a newly attached device checlss for device specific drivers. If not found, the probe
code iterates over all supported configurations until agdrattaches in a configuration. To support devices with
multiple drivers on different interfaces, the probe itesabver all interfaces in a configuration that have not yehbee
claimed by a driver. Configurations that exceed the powegbtfibr the hub are ignored. During attach the driver
should initialise the device to its proper state, but no¢trésas this will make the device disconnect itself from the
bus and restart the probing process for it. To avoid consgmimecessary bandwidth should not claim the interrupt
pipe at attach time, but should postpone allocating the pipi¢the file is opened and the data is actually used.
When the file is closed the pipe should be closed again, ewergththe device might still be attached.

13.4.1 Device Disconnect and Detach

A device driver should expect to receive errors during aaggaction with the device. The design of USB supports
and encourages the disconnection of devices at any poiimé Drivers should make sure that they do the right
thing when the device disappears.

Furthermore a device that has been disconnected and rextednéll not be reattached at the same device instance.
This might change in the future when more devices suppaelsarmbers (see the device descriptor) or other means
of defining an identity for a device have been developed.

The disconnection of a device is signaled by a hub in therpeipacket delivered to the hub driver. The status
change information indicates which port has seen a cororeckiange. The device detach method for all device
drivers for the device connected on that port are called badtructures cleaned up. If the port status indicates that
in the mean time a device has been connected to that portrdbedure for probing and attaching the device will be
started. A device reset will produce a disconnect-conresgiasnce on the hub and will be handled as described
above.

13.5 USB Drivers Protocol Information

The protocol used over pipes other than the default pipedgfimed by the USB specification. Information on this
can be found from various sources. The most accurate saltice developer’s section on the USB home pages [1].
From these pages a growing number of deviceclass spedficadre available. These specifications specify what a
compliant device should look like from a driver perspecthlvasic functionality it needs to provide and the protocol
that is to be used over the communication channels. The U88fgmtion [2] includes the description of the Hub
Class. A class specification for Human Interface Device®jHhas been created to cater for keyboards, tablets,

189

Chapter 13 USB Devices

bar-code readers, buttons, knobs, switches, etc. A thmchele is the class specification for mass storage devices.
For a full list of device classes see the developers sectich@USB home pages [1].

For many devices the protocol information has not yet bedatighed however. Information on the protocol being
used might be available from the company making the deviemeScompanies will require you to sign a Non
-Disclosure Agreement (NDA) before giving you the spectfmas. This in most cases precludes making the driver
open source.

Another good source of information is the Linux driver s@agcas a number of companies have started to provide
drivers for Linux for their devices. It is always a good ideabntact the authors of those drivers for their source of
information.

Example: Human Interface Devices The specification for thenkin Interface Devices like keyboards, mice, tablets,
buttons, dials,etc. is referred to in other device classifipations and is used in many devices.

For example audio speakers provide endpoints to the digithalogue converters and possibly an extra pipe for a
microphone. They also provide a HID endpoint in a separdésface for the buttons and dials on the front of the
device. The same is true for the monitor control class. ltraghtforward to build support for these interfaces
through the available kernel and userland libraries tagyettith the HID class driver or the generic driver. Another
device that serves as an example for interfaces within onfgroration driven by different device drivers is a cheap
keyboard with built-in legacy mouse port. To avoid having tlost of including the hardware for a USB hub in the
device, manufacturers combined the mouse data receivettfr® PS/2 port on the back of the keyboard and the key
presses from the keyboard into two separate interfacegisame configuration. The mouse and keyboard drivers
each attach to the appropriate interface and allocate pgespo the two independent endpoints.

Example: Firmware download Many devices that have beenajese are based on a general purpose processor with
an additional USB core added to it. Because the developnieinivers and firmware for USB devices is still very
new, many devices require the downloading of the firmwarer délftey have been connected.

The procedure followed is straightforward. The device tiigrs itself through a vendor and product Id. The first
driver probes and attaches to it and downloads the firmwéaoeétirAfter that the device soft resets itself and the
driver is detached. After a short pause the device annotutsogesence on the bus. The device will have changed its
vendor/product/revision Id to reflect the fact that it hasrbsupplied with firmware and as a consequence a second
driver will probe it and attach to it.

An example of these types of devices is the ActiveWire |/Ordpbased on the EZ-USB chip. For this chip a generic
firmware downloader is available. The firmware downloadéal the ActiveWire board changes the revision Id. It
will then perform a soft reset of the USB part of the EZ-USBpctu disconnect from the USB bus and again
reconnect.

Example: Mass Storage Devices Support for mass storagessddgi mainly built around existing protocols. The
lomega USB Zipdrive is based on the SCSI version of theiredfhe SCSI commands and status messages are
wrapped in blocks and transferred over the bulk pipes to sord the device, emulating a SCSI controller over the
USB wire. ATAPI and UFI commands are supported in a similahfan.

The Mass Storage Specification supports 2 different typesapbping of the command block.The initial attempt was
based on sending the command and status through the defsutiqd using bulk transfers for the data to be moved
between the host and the device. Based on experience a ssgorach was designed that was based on wrapping
the command and status blocks and sending them over the biudind in endpoint. The specification specifies
exactly what has to happen when and what has to be done inc@seacondition is encountered. The biggest
challenge when writing drivers for these devices is to fit UBed protocol into the existing support for mass
storage devices. CAM provides hooks to do this in a fairlgigtnt forward way. ATAPI is less simple as historically
the IDE interface has never had many different appearances.

190

Chapter 13 USB Devices

The support for the USB floppy from Y-E Data is again less ghriorward as a new command set has been
designed.

191

Chapter 14 Newbus

Written by Jeroen Ruigrok van der Werven (asmodai) and Hrgamdya.

Special thanks to Matthew N. Dodd, Warner Losh, Bill Paulup&abson, Mike Smith, Peter Wemm and Scott Long

This chapter explains the Newbus device framework in detail

14.1 Device Drivers

14.1.1 Purpose of a Device Driver

A device driver is a software component which provides therface between the kernel's generic view of a
peripheral (e.g., disk, network adapter) and the actualampntation of the peripheral. Thievice driver interface
(DDI) is the defined interface between the kernel and the devigerdrtomponent.

14.1.2 Types of Device Drivers
There used to be days in UNIX, and thus FreeBSD, in which thvere four types of devices defined:

- block device drivers

- character device drivers
- network device drivers

- pseudo-device drivers

Block deviceperformed in a way that used fixed size blocks [of data]. Type tof driver depended on the so-called
buffer cachewhich had cached accessed blocks of data in a dedicatedfpaeimory. Often this buffer cache was
based on write-behind, which meant that when data was mddifimemory it got synced to disk whenever the
system did its periodical disk flushing, thus optimizingtesi

14.1.3 Character Devices

However, in the versions of FreeBSD 4.0 and onward the distin between block and character devices became
non-existent.

14.2 Overview of Newbus

Newbuss the implementation of a new bus architecture based omaaisin layers which saw its introduction in
FreeBSD 3.0 when the Alpha port was imported into the soueee tt was not until 4.0 before it became the default
system to use for device drivers. Its goals are to provide embject-oriented means of interconnecting the various
busses and devices which a host system provides tOpleeating System

Its main features include amongst others:

192

Chapter 14 Newbus

- dynamic attaching

- easy modularization of drivers

- pseudo-busses

One of the most prominent changes is the migration from theifld ad-hoc system to a device tree layout.

At the top level resides thgoot” device which is the parent to hang all other devices on. Fcin eechitecture, there
is typically a single child of “root” which has such thingstasst-to-PCI bridgesetc. attached to it. For x86, this
“root” device is the'nexus” device. For Alpha, various different models of Alpha haviéedéent top-level devices
corresponding to the different hardware chipsets, indgllia, apecs cia andtsunami

A device in the Newbus context represents a single hardwdity & the system. For instance each PCI device is
represented by a Newbus device. Any device in the systemaandhildren; a device which has children is often
called a'bus” . Examples of common busses in the system are ISA and PClhwianage lists of devices attached
to ISA and PCI busses respectively.

Often, a connection between different kinds of bus is repriesl by dbridge” device, which normally has one
child for the attached bus. An example of this iB@lI-to-PCI bridgewhich is represented by a devigei bN on the
parent PCI bus and has a childi N for the attached bus. This layout simplifies the impleméonatf the PCI bus
tree, allowing common code to be used for both top-level aidtbd busses.

Each device in the Newbus architecture asks its parent totmagsources. The parent then asks its own parent until
the nexus is reached. So, basically the nexus is the onlyp#ré Newbus system which knows about all resources.

Tip: An ISA device might want to map its 1O port at 0x230, so it asks its parent, in this case the ISA bus. The ISA
bus hands it over to the PCI-to-ISA bridge which in its turn asks the PCI bus, which reaches the host-to-PCI
bridge and finally the nexus. The beauty of this transition upwards is that there is room to translate the requests.
For example, the 0x230 10 port request might become memory-mapped at 0xb0000230 on a MIPS box by the
PCI bridge.

Resource allocation can be controlled at any place in thedéree. For instance on many Alpha platforms, ISA
interrupts are managed separately from PCl interruptsesalrce allocations for ISA interrupts are managed by the
Alpha’s ISA bus device. On IA-32, ISA and PCI interrupts acttbmanaged by the top-level nexus device. For both
ports, memory and port address space is managed by a sitigye-erexus for IA-32 and the relevant chipset driver
on Alpha (e.g., CIA or tsunami).

In order to normalize access to memory and port mapped ressulewbus integrates thas_space APIs from
NetBSD. These provide a single API to replace inb/outb anettimemory reads/writes. The advantage of this is
that a single driver can easily use either memory-mappesitegg or port-mapped registers (some hardware supports
both).

This support is integrated into the resource allocationtraaism. When a resource is allocated, a driver can retrieve
the associatedus_space_t ag_t andbus_space_handl e_t from the resource.

Newbus also allows for definitions of interface methods iesfiledicated to this purpose. These arerthéles that
are found under therc/sys hierarchy.

The core of the Newbus system is an extensible “object-bassgtamming” model. Each device in the system has a
table of methods which it supports. The system and othecdsvises those methods to control the device and
request services. The different methods supported by aelave defined by a number of “interfaces”. An

“interface” is simply a group of related methods which canrbplemented by a device.

193

Chapter 14 Newbus

In the Newbus system, the methods for a device are providéddoyarious device drivers in the system. When a
device is attached to a driver duriagto-configurationit uses the method table declared by the driver. A device can
laterdetachfrom its driver andre-attachto a new driver with a new method table. This allows dynamitaeement

of drivers which can be useful for driver development.

The interfaces are described by an interface definitiondagg similar to the language used to define vnode
operations for file systems. The interface would be storedrirethods file (which would normally be named
foo_ifm).

Example 14-1. Newbus M ethods

Foo subsystem/driver (a comment...)
INTERFACE foo

METHOD int doit {
device t dev;

k

DEFAULT is the method that will be used, if a method was not
provided via: DEVMETHOD()

METHOD void doit_to_child {
device t dev;
driver_t child;

} DEFAULT doit_generic_to_child;

When this interface is compiled, it generates a headerftite If.h " which contains function declarations:

int FOO_DOIT(device_t dev);
int FOO_DOIT_TO_CHILD(device_t dev, device_t child);

A source file, foo_if.c " is also created to accompany the automatically generaaddr file; it contains
implementations of those functions which look up the lomabf the relevant functions in the object’s method table
and call that function.

The system defines two main interfaces. The first fundamanéaface is calleddevice” and includes methods

which are relevant to all devices. Methods in tdevice” interface includéprobe”, “attach” and“detach” to
control detection of hardware afishutdown”, “suspend” and“resume” for critical event notification.

The second, more complex interfacélisis” . This interface contains methods suitable for devices whave
children, including methods to access bus specific peredaeaformationt, event notificationdhi | d_det ached,
driver _added) and resource managemeat (oc_r esour ce,act i vat e_r esource,deact i vat e_r esour ce,
rel ease_resource).

Many methods in the “bus” interface are performing servioesome child of the bus device. These methods would
normally use the first two arguments to specify the bus pingithe service and the child device which is requesting
the service. To simplify driver code, many of these methal&laccessor functions which lookup the parent and call
a method on the parent. For instance the metio8 TEARDOWN_INTR(device_t dev, device_t child,

...) can be called using the functidas_teardown_intr(device_t child, ...)

194

Chapter 14 Newbus
Some bus types in the system define additional interface®tade access to bus-specific functionality. For instance,

the PCI bus driver defines the “pci” interface which has twdhodsr ead_confi g andw i t e_confi g for
accessing the configuration registers of a PCI device.

14.3 Newbus API

As the Newbus API is huge, this section makes some effort@imenting it. More information to come in the next
revision of this document.

14.3.1 Important Locations in the Source Hierarchy

src/sys/[arch]/[arch] - Kernel code for a specific machine architecture residéesigdirectory. For example,
thei386 architecture, or th6PARC64architecture.

src/sys/dev/[bus] - device support for a specifipus] resides in this directory.

src/sys/dev/pci - PCI bus support code resides in this directory.

src/sys/[isa|pci] - PCI/ISA device drivers reside in this directory. The PSKIbus support code used to exist

in this directory in FreeBSD versioho .

14.3.2 Important Structures and Type Definitions
devclass_t - This is a type definition of a pointer tos&ruct devclass

device_method_t - This is the same a®bj_method_t (seesrc/sys/kobj.h).

device_t - Thisis a type definition of a pointer tosaruct device . device_t represents a device in the system.
Itis a kernel object. Sesc/sys/sys/bus_private.h for implementation details.
driver_t - Thisis a type definition which referencssuct driver . Thedriver struct is a class of théevice

kernel object; it also holds data private to the driver.

Figure14-1. driver_t Implementation

struct driver {
KOBJ_CLASS_FIELDS;
void * priv; | = driver private data */

k

A device_state_t type, which is an enumeratiodevice_state . It contains the possible states of a Newbus
device before and after the autoconfiguration process.

Figure 14-2. Device Statesdevice_state t

| *

* src/sys/sys/bus.h

*/

typedef enum device_state {
DS_NOTPRESENT, # not probed or probe failed */
DS_ALIVE, | = probe succeeded */

195

Chapter 14 Newbus

DS _ATTACHED, k attach method called x [
DS_BUSY k device is open */
} device_state _t;

Notes

1. bus_generic_read_ivar(9) and bus_generic_write(9yar

196

Chapter 15 Sound Subsystem

Contributed by Jean-Francois Dockes.

15.1 Introduction

The FreeBSD sound subsystem cleanly separates generit Bandling issues from device-specific ones. This
makes it easier to add support for new hardware.

The pcm(4) framework is the central piece of the sound subsydt mainly implements the following elements:

- A system call interface (read, write, ioctls) to digitizeshad and mixer functions. The ioctl command set is
compatible with the legac®SSor Voxwareinterface, allowing common multimedia applications to loeted
without modification.

- Common code for processing sound data (format conversiotsal channels).
- A uniform software interface to hardware-specific audielifdéce modules.

- Additional support for some common hardware interface8{por shared hardware-specific code (ex: ISA DMA
routines).

The support for specific sound cards is implemented by haehspecific drivers, which provide channel and mixer
interfaces to plug into the genepem code.

In this chapter, the termpem will refer to the central, common part of the sound drivempposed to the
hardware-specific modules.

The prospective driver writer will of course want to stadrfr an existing module and use the code as the ultimate
reference. But, while the sound code is nice and clean, isesraostly devoid of comments. This document tries to
give an overview of the framework interface and answer songstipns that may arise while adapting the existing
code.

As an alternative, or in addition to starting from a workin@mple, you can find a commented driver template at
http://people.FreeBSD.org/~cg/template.c (http:/fped-reeBSD.org/~cg/template.c)

15.2 Files

All the relevant code lives itusr/src/sys/dev/sound/ , except for the public ioctl interface definitions, found in
Jusr/src/sys/sys/soundcard.h

Under/ustr/src/sys/dev/sound/ , thepcm/ directory holds the central code, while the/ ,isa/ andusb/
directories have the drivers for PCl and ISA boards, and ®Bludio devices.

15.3 Probing, Attaching, etc.

Sound drivers probe and attach in almost the same way as atwdn@ driver module. You might want to look at the
ISA or PCl specific sections of the handbook for more information.

However, sound drivers differ in some ways:

197

Chapter 15 Sound Subsystem

« They declare themselves pan class devices, with a struct snddev_info device privatesire:

static driver_t xxx_driver = {
"pcm",
xxx_methods,
sizeof(struct snddev_info)

I3
DRIVER_MODULE(snd_xxxpci, pci, xxx_driver, pcm_devclas s, 0, 0);
MODULE_DEPEND(snd_xxxpci, snd_pcm, PCM_MINVER, PCM_PREFVER,PCM_MAXVER);

Most sound drivers need to store additional private infaromeabout their device. A private data structure is
usually allocated in the attach routine. Its address isquhpcm by the calls tgpecm_register() and
mixer_init() . pcm later passes back this address as a parameter in calls touhe driver interfaces.

- The sound driver attach routine should declare its MIXER GOA interface tgpcm by callingmixer_init()
For a MIXER interface, this causes in turn a calkiamixer_init()

- The sound driver attach routine declares its general CHANBIEhfiguration tapcm by calling
pcm_register(dev, sc, nplay, nrec) , Wheresc is the address for the device data structure, used in
further calls frompcm, andnplay andnrec are the number of play and record channels.

« The sound driver attach routine declares each of its chanijetts by calls tpcm_addchan() . This sets up the
channel glue irpcm and causes in turn a call taxxchannel_init()

- The sound driver detach routine should galin_unregister() before releasing its resources.

There are two possible methods to handle non-PnP devices:

- Use adevice_identify() method (examplesound/isa/es1888.c). Thedevice_identify() method
probes for the hardware at known addresses and, if it findposted device, creates a new pcm device which is
then passed to probe/attach.

- Use a custom kernel configuration with appropriate hintgfon devices (examplgound/isa/mss.c).

pcm drivers should implemerdevice_suspend , device_resume anddevice_shutdown routines, so that power
management and module unloading function correctly.

15.4 Interfaces

The interface between tlpem core and the sound drivers is defined in termkeyhel objects
There are two main interfaces that a sound driver will usyaibvide: CHANNELand eitheMIXER or AC97.

The AC97interface is a very small hardware access (register reddjimterface, implemented by drivers for
hardware with an AC97 codec. In this case, the actual MIXBR face is provided by the shared AC97 codedm.

15.4.1 The CHANNEL Interface
15.4.1.1 Common Notes for Function Parameters

Sound drivers usually have a private data structure to destireir device, and one structure for each play and
record data channel that it supports.

198

Chapter 15 Sound Subsystem

For all CHANNEL interface functions, the first parametermsapaque pointer.

The second parameter is a pointer to the private channesttatzure, except fothannel_init() which has a
pointer to the private device structure (and returns th@bipointer for further use bycm).

15.4.1.2 Overview of Data Transfer Operations

For sound data transfers, them core and the sound drivers communicate through a shared memea, described
by a struct snd_dbuf.

struct snd_dbuf is private tacm, and sound drivers obtain values of interest by calls tossmeunctions
(sndbuf_getxxx()).

The shared memory area has a sizemibuf_getsize() and is divided into fixed size blocks of
sndbuf_getblksz() bytes.

When playing, the general transfer mechanism is as follogse(se the idea for recording):

- pcminitially fills up the buffer, then calls the sound driversxchannel_trigger() function with a parameter
of PCMTRIG_START.

- The sound driver then arranges to repeatedly transfer tlibewhemory areasqdbuf_getbuf() ,
sndbuf_getsize()) to the device, in blocks afndbuf_getblksz() bytes. It calls back thehn_intr() pcm
function for each transferred block (this will typically py@en at interrupt time).

« chn_intr() arranges to copy new data to the area that was transferrid tievice (now free), and make
appropriate updates to the snd_dbuf structure.

15.4.1.3 channel_init

xxxchannel_init() is called to initialize each of the play or record channelse Talls are initiated from the
sound driver attach routine. (See {®be and attach sectipn

static void *
xxxchannel_init(kobj_t obj, void * data,

struct snd_dbuf * b, struct pcm_channel *C, int dir) O
{

struct xxx_info *sc = data;

struct xxx_chinfo *ch;

return ch; O

0 b isthe address for the channel struct snd_dbuf. It shouldibialized in the function by calling
sndbuf_alloc() . The buffer size to use is normally a small multiple of theital’ unit transfer size for your
device.

c is thepcm channel control structure pointer. This is an opaque objdw function should store it in the local
channel structure, to be used in later callpdm (ie: chn_intr(c)).

dir indicates the channel directioRGMDIR_PLAYor PCMDIR_REQ

199

Chapter 15 Sound Subsystem

0 The function should return a pointer to the private area tsedntrol this channel. This will be passed as a
parameter to other channel interface calls.

15.4.1.4 channel_setformat

xxxchannel_setformat() should set up the hardware for the specified channel for theifsgpd sound format.
static int
xxxchannel_setformat(kobj_t obj, void *data, u_int32_t format) ad
{
struct xxx_chinfo *ch = data;
return O;
}

0 format is specified as aAFMT_XXX value (soundcard.h).

15.4.1.5 channel_setspeed

xxxchannel_setspeed() sets up the channel hardware for the specified sampling sapddeturns the possibly
adjusted speed.

static int
xxxchannel_setspeed(kobj_t obj, void +data, u_int32_t speed)
{

struct xxx_chinfo *ch = data;

return speed;

15.4.1.6 channel_setblocksize

xxxchannel_setblocksize() sets the block size, which is the size of unit transactiomwéenpcm and the
sound driver, and between the sound driver and the devigacdly, this would be the number of bytes transferred
before an interrupt occurs. During a transfer, the soungdsghould calpbcm’s chn_intr() every time this size has
been transferred.

Most sound drivers only take note of the block size here, todsel when an actual transfer will be started.

static int
xxxchannel_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
{
struct xxx_chinfo *ch = data;
return blocksize; 0
}

0 The function returns the possibly adjusted block size. bedhe block size is indeed changed,
sndbuf_resize() should be called to adjust the buffer.

200

Chapter 15 Sound Subsystem

15.4.1.7 channel_trigger

xxxchannel_trigger() is called bypcmto control data transfer operations in the driver.
static int
xxxchannel_trigger(kobj_t obj, void *data, int go) O
{
struct xxx_chinfo *ch = data;
return O;
}

0 go defines the action for the current call. The possible valves a

- PCMTRIG_STARTthe driver should start a data transfer from or to the chblourféer. If needed, the buffer
base and size can be retrieved throegdibuf_getbuf() andsndbuf_getsize()

+ PCMTRIG_EMLDMAWRCMTRIG_EMLDMARThis tells the driver that the input or output buffer may dav
been updated. Most drivers just ignore these calls.

« PCMTRIG_STOP PCMTRIG_ABORThe driver should stop the current transfer.

Note: If the driver uses ISA DMA, sndbuf_isadma() should be called before performing actions on the device,
and will take care of the DMA chip side of things.

15.4.1.8 channel_getptr

xxxchannel_getptr() returns the current offset in the transfer buffer. This wipically be called by
chn_intr() , and this is howcm knows where it can transfer new data.

15.4.1.9 channel_free

xxxchannel_free() is called to free up channel resources, for example whenrtherds unloaded, and should be
implemented if the channel data structures are dynamiaiigated or ifsndbuf_alloc() was not used for buffer
allocation.

15.4.1.10 channel_getcaps

struct pcmchan_caps *
xxxchannel_getcaps(kobj_t obj, void * data)

{

return &xxx_caps; g

0 The routine returns a pointer to a (usually statically-dedinppocmchan_caps structure (defined in
sound/pcm/channel.h . The structure holds the minimum and maximum sampling feegies, and the
accepted sound formats. Look at any sound driver for an ele@amp

201

Chapter 15 Sound Subsystem

15.4.1.11 More Functions

channel_reset() , channel_resetdone() , andchannel_notify() are for special purposes and should not be
implemented in a driver without discussing it on the FreeB&timedia mailing list
(http://lists.FreeBSD.org/mailman/listinfo/freebsuiltimedia).

channel_setdir() is deprecated.

15.4.2 The MIXER Interface

15.4.2.1 mixer_init

xxxmixer_init() initializes the hardware and tellem what mixer devices are available for playing and recording
static int
xxxmixer_init(struct snd_mixer *m)
{
struct xxx_info *sc = mix_getdevinfo(m);
u_int32_t v;

[Initialize hardware]

[Set appropriate bits in v for play mixers] O
mix_setdevs(m, Vv);

[Set appropriate bits in v for record mixers]
mix_setrecdevs(m, V)

return 0;

0 Set bits in an integer value and calix_setdevs() andmix_setrecdevs() to tell pcm what devices exist.

Mixer bits definitions can be found sbundcard.n (SOUND_MASK_XXalues andsOUND_MIXER_XXHit shifts).

15.4.2.2 mixer_set

xxxmixer_set() sets the volume level for one mixer device.

static int
xxxmixer_set(struct snd_mixer *m, unsigned dev,
unsigned left, unsigned right) O
{
struct sc_info *sc = mix_getdevinfo(m);
[set volume level]
return left | (right << 8); O

0 The device is specified asssDUND_MIXER_XX¥alue

The volume values are specified in range [0-100]. A value of sBould mute the device.

202

Chapter 15 Sound Subsystem

O Asthe hardware levels probably will not match the inputecahd some rounding will occur, the routine returns
the actual level values (in range 0-100) as shown.

15.4.2.3 mixer_setrecsrc

xxxmixer_setrecsrc() sets the recording source device.

static int
xxxmixer_setrecsrc(struct snd_mixer *m, u_int32_t src) O

{
struct xxx_info *sC = mix_getdevinfo(m);

[look for non zero bit(s) in src, set up hardware]

[update src to reflect actual action]
return src; O

0 The desired recording devices are specified as a bit field

0 The actual devices set for recording are returned. Somerdroan only set one device for recording. The
function should return -1 if an error occurs.

15.4.2.4 mixer_uninit, mixer_reinit

Xxxmixer_uninit() should ensure that all sound is muted and if possible mixehteare should be powered down
xxxmixer_reinit() should ensure that the mixer hardware is powered up and &mygsenot controlled by
mixer_set() or mixer_setrecsrc() are restored.

15.4.3 The AC97 Interface
The AC97interface is implemented by drivers with an AC97 codec. Iydras three methods:

« xxxac97_init() returns the number of ac97 codecs found.
. ac97_read() andac97_write() read or write a specified register.

The AC97interface is used by the AC97 codepom to perform higher level operations. Look at
sound/pci/maestro3.c or many others undesound/pci/ for an example.

203

Chapter 16 PC Card

This chapter will talk about the FreeBSD mechanisms forimgit. device driver for a PC Card or CardBus device.
However, at present it just documents how to add a new dewiaa existing pccard driver.

16.1 Adding a Device

Device drivers know what devices they support. There is e @fsupported devices in the kernel that drivers use to
attach to a device.

16.1.1 Overview

PC Cards are identified in one of two ways, both based of#rd Information Structur¢ClS) stored on the card.

The first method is to use numeric manufacturer and produnbeuss. The second method is to use the human
readable strings that are also contained in the CIS. The PE s uses a centralized database and some macros to
facilitate a design pattern to help the driver writer matekides to his driver.

Original equipment manufacturers (OEMs) often develogeremce design for a PC Card product, then sell this
design to other companies to market. Those companies ragraesign, market the product to their target audience
or geographic area, and put their own name plate onto the Thedrefinements to the physical card are typically
very minor, if any changes are made at all. To strengthen binand, these vendors place their company name in the
human readable strings in the CIS space, but leave the n@anrdaand product IDs unchanged.

Because of this practice, FreeBSD drivers usually rely aneric IDs for device identification. Using numeric IDs
and a centralized database complicates adding IDs and gudppoards to the system. One must carefully check to
see who really made the card, especially when it appearsthaendor who made the card might already have a
different manufacturer ID listed in the central databaseksys, D-Link, and NetGear are a number of US
manufacturers of LAN hardware that often sell the same de3igese same designs can be sold in Japan under
names such as Buffalo and Corega. Often, these devicedMithae the same manufacturer and product IDs.

The PC Card bus code keeps a central database of card infonntait not which driver is associated with them, in
Isys/dev/pccard/pccarddevs . It also provides a set of macros that allow one to easily ttoossimple entries
in the table the driver uses to claim devices.

Finally, some really low end devices do not contain manuigetidentification at all. These devices must be detected
by matching the human readable CIS strings. While it wouldibe if we did not need this method as a fallback, it is
necessary for some very low end CD-ROM players and EtheardscThis method should generally be avoided, but
a number of devices are listed in this section because they adgled prior to the recognition of the OEM nature of
the PC Card business. When adding new devices, prefer usngimeric method.

16.1.2 Format of pccarddevs

There are four sections in tipecarddevs files. The first section lists the manufacturer numbers fodees that use
them. This section is sorted in numerical order. The next@ebas all of the products that are used by these
vendors, along with their product ID numbers and a desoripdiring. The description string typically is not used
(instead we set the device’s description based on the hueaalable CIS, even if we match on the numeric version).
These two sections are then repeated for devices that usgitigematching method. Finally, C-style comments
enclosed in = andx/ characters are allowed anywhere in the file.

204

Chapter 16 PC Card

The first section of the file contains the vendor IDs. Pleagg lhkis list sorted in numeric order. Also, please
coordinate changes to this file because we share it with N2tB3ielp facilitate a common clearing house for this
information. For example, here are the first few vendor IDs:

vendor FUJITSU 0x0004 Fujitsu Corporation

vendor NETGEAR_2 0x000b Netgear

vendor PANASONIC 0x0032 Matsushita Electric Industrial Co
vendor SANDISK 0x0045 Sandisk Corporation

Chances are very good that tRETGEAR_Zntry is really an OEM that NETGEAR purchased cards from &ed t
author of support for those cards was unaware at the timeNestgiear was using someone else’s ID. These entries
are fairly straightforward. The vendor keyword denoteskine of line that this is, followed by the name of the
vendor. This name will be repeated latepietarddevs , as well as used in the driver's match tables, so keep it short
and a valid C identifier. A numeric ID in hex identifies the m&wturer. Do not add IDs of the foroxffffffff or

oxffff ~ because these are reserved IDs (the former is “no ID setewhd latter is sometimes seen in extremely
poor quality cards to try to indicate “none”). Finally theésea string description of the company that makes the card.
This string is not used in FreeBSD for anything but commenparrposes.

The second section of the file contains the products. As sliwms example, the format is similar to the vendor
lines:

[Allied Telesis K.K. */
product ALLIEDTELESIS LA _PCM 0x0002 Allied Telesis LA-PCM

[* Archos «/
product ARCHOS ARC_ATAPI 0x0043 MiniCD

Theproduct keyword is followed by the vendor name, repeated from abokis. is followed by the product name,
which is used by the driver and should be a valid C identifiet,bay also start with a number. As with the vendors,
the hex product ID for this card follows the same conventarokffffffff andoxffff . Finally, there is a string
description of the device itself. This string typically istrused in FreeBSD, since FreeBSD'’s pccard bus driver will
construct a string from the human readable CIS entriest loanibe used in the rare cases where this is somehow
insufficient. The products are in alphabetical order by nfiacturer, then numerical order by product ID. They have a
C comment before each manufacturer’s entries and therel@k line between entries.

The third section is like the previous vendor section, buhwil of the manufacturer numeric IDs set-10, meaning
“match anything found” in the FreeBSD pccard bus code. Sihese are C identifiers, their names must be unique.
Otherwise the format is identical to the first section of the fi

The final section contains the entries for those cards that briidentified by string entries. This section’s format is
a little different from the generic section:

product ADDTRON AWP100 { "Addtron", "AWP-100&spWireless& spPCMCIA", "Version&sp01.02", NULL
product ALLIEDTELESIS WR211PCM { "Allied&spTelesis&spK. K.", "WR211PCM", NULL, NULL } Allied Telesis

The familiarproduct keyword is followed by the vendor name and the card nameapust the second section of
the file. Here the format deviates from that used earlierr@fsea {} grouping, followed by a number of strings.
These strings correspond to the vendor, product, and eXtramation that is defined in a CIS_INFO tuple. These
strings are filtered by the program that generatearddevs.h to replace &sp with a real space. NULL strings
mean that the corresponding part of the entry should be @ghdrhe example shown here contains a bad entry. It
should not contain the version number unless that is ctiticahe operation of the card. Sometimes vendors will
have many different versions of the card in the field that altkyin which case that information only makes it harder

205

Chapter 16 PC Card

for someone with a similar card to use it with FreeBSD. Someti it is necessary when a vendor wishes to sell
many different parts under the same brand due to marketdrnagions (availability, price, and so forth). Then it can
be critical to disambiguating the card in those rare casesevhe vendor kept the same manufacturer/product pair.
Regular expression matching is not available at this time.

16.1.3 Sample Probe Routine

To understand how to add a device to the list of supporteccdsybne must understand the probe and/or match
routines that many drivers have. It is complicated a littl€reeBSD 5.x because there is a compatibility layer for
OLDCARD present as well. Since only the window-dressingfiecent, an idealized version will be presented here.

static const struct pccard_product wi_pccard_products]] =
PCMCIA_CARD(3COM, 3CRWE737A, 0),
PCMCIA_CARD(BUFFALO, WLI_PCM_S11, 0),
PCMCIA_CARD(BUFFALO, WLI_CF_S11G, 0),
PCMCIA_CARD(TDK, LAK_CDO011WL, 0),

{ NULL }
I3
static int
wi_pccard_probe(dev)
device t dev;
{
const struct pccard_product *pp;
if ((pp = pccard_product_lookup(dev, wi_pccard_products ,
sizeof(wi_pccard_products[0]), NULL)) != NULL) {
if (pp->pp_name !'= NULL)
device_set_desc(dev, pp->pp_name);
return (0);
}
return (ENXIO);
}

Here we have a simple pccard probe routine that matches adieivas. As stated above, the name may vary (if it is
notfoo_pccard_probe() it will be foo_pccard_match()). The functionpccard_product_lookup() isa
generalized function that walks the table and returns atpoto the first entry that it matches. Some drivers may use
this mechanism to convey additional information about searés to the rest of the driver, so there may be some
variance in the table. The only requirement is that each rflventable must havestruct pccard_product as the
first element.

Looking at the table wi_pccard_products, one notices th#t@entries are of the for;r"CMCIA_CARD{ oo, bar,

baz) . Thef oo part is the manufacturer ID froprcarddevs . Thebar partis the product IDbaz is the expected
function number for this card. Many pccards can have maltiphctions, and some way to disambiguate function 1
from function 0 is needed. You may seeMCIA_CARD_pwhich includes the device description frguecarddevs

You may also seeCMCIA_CARDandPCMCIA_CARD2_mvhich are used when you need to match both CIS strings
and manufacturer numbers, in the “use the default desenipéind “take the description from pccarddevs” flavors.

206

Chapter 16 PC Card

16.1.4 Putting it All Together

To add a new device, one must first obtain the identificatiforimation from the device. The easiest way to do this
is to insert the device into a PC Card or CF slot and isiwénfo -v . Sample output:

cbbl pnpinfo vendor=0x104c device=0xac51 subvendor=0x12 65 subdevice=0x0300 class=0x060700
cardbus1
pccardl
unknown pnpinfo manufacturer=0x026f product=0x030c cisv endor="BUFFALO" cisproduct="WLI2-Cl

manufacturer andproduct are the numeric IDs for this product, whidesvendor ~ andcisproduct are the
product description strings from the CIS.

Since we first want to prefer the numeric option, first try tastouct an entry based on that. The above card has been
slightly fictionalized for the purpose of this example. Tlemdor is BUFFALO, which we see already has an entry:
vendor BUFFALO 0x026f BUFFALO (Melco Corporation)

But there is no entry for this particular card. Instead we:find

[+ BUFFALO=*/

product BUFFALO WLI_PCM_S11 0x0305 BUFFALO AirStation 11M bps WLAN

product BUFFALO LPC_CF_CLT 0x0307 BUFFALO LPC-CF-CLT

product BUFFALO LPC3 _CLT 0x030a BUFFALO LPC3-CLT Ethernet Adapter
product BUFFALO WLI_CF_S11G 0x030b BUFFALO AirStation 11M bps CF WLAN

To add the device, we can just add this entrpdcarddevs

product BUFFALO WLI2_CF_S11G 0x030c BUFFALO AirStation ul tra 802.11b CF
Once these steps are complete, the card can be added tovitre Thiat is a simple operation of adding one line:

static const struct pccard_product wi_pccard_products|] ={
PCMCIA_CARD(3COM, 3CRWE737A, 0),
PCMCIA_CARD(BUFFALO, WLI_PCM_S11, 0),
PCMCIA_CARD(BUFFALO, WLI_CF_S11G, 0),

+ PCMCIA_CARD(BUFFALO, WLI_CF2_S11G, 0),
PCMCIA_CARD(TDK, LAK_CDO11WL, 0),
{ NULL }

kh

Note that | have included & in the line before the line that | added, but that is simpljighlight the line. Do not

add it to the actual driver. Once you have added the line, gourecompile your kernel or module and test it. If the
device is recognized and works, please submit a patch. dleis chot work, please figure out what is needed to make it
work and submit a patch. If the device is not recognized ayall have done something wrong and should recheck
each step.

If you are a FreeBSD src committer, and everything appedvs tworking, then you can commit the changes to the
tree. However, there are some minor tricky things to be camedpccarddevs must be committed to the tree first.
Thenpccarddevs.h must be regenerated and committed as a second step, ertbatitige right $FreeBSD$ tag is

in the latter file. Finally, commit the additions to the drive

207

Chapter 16 PC Card

16.1.5 Submitting a New Device

Please do not send entries for new devices to the authotlginestead, submit them as a PR and send the author
the PR number for his records. This ensures that entriesoatest. When submitting a PR, it is unnecessary to
include thepccardevs.h diffs in the patch, since those will be regenerated. It isessary to include a description
of the device, as well as the patches to the client drivenlf go not know the name, use OEM99 as the name, and
the author will adjust OEM99 accordingly after investigati Committers should not commit OEM99, but instead
find the highest OEM entry and commit one more than that.

208

Ill. Appendices

Chapter 8 SMPng Design Document
Bibliography
[1] Marshall Kirk McKusick, Keith Bostic, Michael J Kareland John S Quarterman, 1996, 0-201-54979-4,

Addison-Wesley Publishing Company, In€he Design and Implementation of the 4.4 BSD Operating Byste
1-2.

210

	FreeBSD Architecture Handbook
	Table of Contents
	List of Tables
	I. Kernel
	Chapter 1 Bootstrapping and Kernel Initialization
	1.1 Synopsis
	1.2 Overview
	1.3 BIOS POST
	1.4 boot0 Stage
	1.5 boot2 Stage
	1.6 loader Stage
	1.7 Kernel Initialization
	1.7.1 init386()
	1.7.2 mistartup()

	Chapter 2 Locking Notes
	2.1 Mutexes
	2.2 Shared Exclusive Locks
	2.3 Atomically Protected Variables

	Chapter 3 Kernel Objects
	3.1 Terminology
	3.2 Kobj Operation
	3.3 Using Kobj
	3.3.1 Structures
	3.3.2 Functions
	3.3.3 Macros
	3.3.4 Headers
	3.3.5 Creating an Interface Template
	3.3.6 Creating a Class
	3.3.7 Creating an Object
	3.3.8 Calling Methods
	3.3.9 Cleaning Up

	Chapter 4 The Jail Subsystem
	4.1 Architecture
	4.1.1 Userland Code
	4.1.1.1 Data Structures
	4.1.1.2 Networking
	4.1.1.3 Jailing the Process

	4.1.2 Kernel Space
	4.1.2.1 sysctls
	4.1.2.2 jail(2) System Call

	4.2 Restrictions
	4.2.1 SysV IPC
	4.2.2 Sockets
	4.2.3 Berkeley Packet Filter
	4.2.4 Protocols
	4.2.5 Filesystem

	Chapter 5 The SYSINIT Framework
	5.1 Terminology
	5.2 SYSINIT Operation
	5.3 Using SYSINIT
	5.3.1 Interface
	5.3.1.1 Headers
	5.3.1.2 Macros

	5.3.2 Startup
	5.3.3 Shutdown

	Chapter 6 The TrustedBSD MAC Framework
	6.1 MAC Documentation Copyright
	6.2 Synopsis
	6.3 Introduction
	6.4 Policy Background
	6.5 MAC Framework Kernel Architecture
	6.5.1 Kernel Elements
	6.5.2 Framework Management Interfaces
	6.5.3 Policy List Concurrency and Synchronization
	6.5.4 Label Synchronization
	6.5.5 Policy Synchronization and Concurrency
	6.5.6 Policy Registration
	6.5.7 Entry Points
	6.5.8 Policy Composition
	6.5.9 Labeling Support
	6.5.10 System Calls

	6.6 MAC Policy Architecture
	6.6.1 Policy Declaration
	6.6.2 Policy Flags
	6.6.3 Policy Entry Points

	6.7 MAC Policy Entry Point Reference
	6.7.1 GeneralPurpose Module Entry Points
	6.7.1.1 mpoinit
	6.7.1.2 mpodestroy
	6.7.1.3 mposyscall
	6.7.1.4 mpothreaduserret

	6.7.2 Label Operations
	6.7.2.1 mpoinitbpfdesclabel
	6.7.2.2 mpoinitcredlabel
	6.7.2.3 mpoinitdevfsdirentlabel
	6.7.2.4 mpoinitifnetlabel
	6.7.2.5 mpoinitipqlabel
	6.7.2.6 mpoinitmbuflabel
	6.7.2.7 mpoinitmountlabel
	6.7.2.8 mpoinitmountfslabel
	6.7.2.9 mpoinitpipelabel
	6.7.2.10 mpoinitsocketlabel
	6.7.2.11 mpoinitsocketpeerlabel
	6.7.2.12 mpoinitproclabel
	6.7.2.13 mpoinitvnodelabel
	6.7.2.14 mpodestroybpfdesclabel
	6.7.2.15 mpodestroycredlabel
	6.7.2.16 mpodestroydevfsdirentlabel
	6.7.2.17 mpodestroyifnetlabel
	6.7.2.18 mpodestroyipqlabel
	6.7.2.19 mpodestroymbuflabel
	6.7.2.20 mpodestroymountlabel
	6.7.2.21 mpodestroymountlabel
	6.7.2.22 mpodestroysocketlabel
	6.7.2.23 mpodestroysocketpeerlabel
	6.7.2.24 mpodestroypipelabel
	6.7.2.25 mpodestroyproclabel
	6.7.2.26 mpodestroyvnodelabel
	6.7.2.27 mpocopymbuflabel
	6.7.2.28 mpocopypipelabel
	6.7.2.29 mpocopyvnodelabel
	6.7.2.30 mpoexternalizecredlabel
	6.7.2.31 mpoexternalizeifnetlabel
	6.7.2.32 mpoexternalizepipelabel
	6.7.2.33 mpoexternalizesocketlabel
	6.7.2.34 mpoexternalizesocketpeerlabel
	6.7.2.35 mpoexternalizevnodelabel
	6.7.2.36 mpointernalizecredlabel
	6.7.2.37 mpointernalizeifnetlabel
	6.7.2.38 mpointernalizepipelabel
	6.7.2.39 mpointernalizesocketlabel
	6.7.2.40 mpointernalizevnodelabel

	6.7.3 Label Events
	6.7.3.1 File System Object Labeling Event Operations
	6.7.3.2 IPC Object Labeling Event Operations
	6.7.3.3 Network Object Labeling Event Operations
	6.7.3.4 Process Labeling Event Operations

	6.7.4 Access Control Checks
	6.7.4.1 mpocheckbpfdescreceive
	6.7.4.2 mpocheckkenvdump
	6.7.4.3 mpocheckkenvget
	6.7.4.4 mpocheckkenvset
	6.7.4.5 mpocheckkenvunset
	6.7.4.6 mpocheckkldload
	6.7.4.7 mpocheckkldstat
	6.7.4.8 mpocheckkldunload
	6.7.4.9 mpocheckpipeioctl
	6.7.4.10 mpocheckpipepoll
	6.7.4.11 mpocheckpiperead
	6.7.4.12 mpocheckpiperelabel
	6.7.4.13 mpocheckpipestat
	6.7.4.14 mpocheckpipewrite
	6.7.4.15 mpochecksocketbind
	6.7.4.16 mpochecksocketconnect
	6.7.4.17 mpochecksocketreceive
	6.7.4.18 mpochecksocketsend
	6.7.4.19 mpocheckcredvisible
	6.7.4.20 mpochecksocketvisible
	6.7.4.21 mpocheckifnetrelabel
	6.7.4.22 mpochecksocketrelabel
	6.7.4.23 mpocheckcredrelabel
	6.7.4.24 mpocheckvnoderelabel
	6.7.4.25 mpocheckmountstat
	6.7.4.26 mpocheckprocdebug
	6.7.4.27 mpocheckvnodeaccess
	6.7.4.28 mpocheckvnodechdir
	6.7.4.29 mpocheckvnodechroot
	6.7.4.30 mpocheckvnodecreate
	6.7.4.31 mpocheckvnodedelete
	6.7.4.32 mpocheckvnodedeleteacl
	6.7.4.33 mpocheckvnodeexec
	6.7.4.34 mpocheckvnodegetacl
	6.7.4.35 mpocheckvnodegetextattr
	6.7.4.36 mpocheckvnodelink
	6.7.4.37 mpocheckvnodemmap
	6.7.4.38 mpocheckvnodemmapdowngrade
	6.7.4.39 mpocheckvnodemprotect
	6.7.4.40 mpocheckvnodepoll
	6.7.4.41 mpocheckvnoderenamefrom
	6.7.4.42 mpocheckvnoderenameto
	6.7.4.43 mpochecksocketlisten
	6.7.4.44 mpocheckvnodelookup
	6.7.4.45 mpocheckvnodeopen
	6.7.4.46 mpocheckvnodereaddir
	6.7.4.47 mpocheckvnodereadlink
	6.7.4.48 mpocheckvnoderevoke
	6.7.4.49 mpocheckvnodesetacl
	6.7.4.50 mpocheckvnodesetextattr
	6.7.4.51 mpocheckvnodesetflags
	6.7.4.52 mpocheckvnodesetmode
	6.7.4.53 mpocheckvnodesetowner
	6.7.4.54 mpocheckvnodesetutimes
	6.7.4.55 mpocheckprocsched
	6.7.4.56 mpocheckprocsignal
	6.7.4.57 mpocheckvnodestat
	6.7.4.58 mpocheckifnettransmit
	6.7.4.59 mpochecksocketdeliver
	6.7.4.60 mpochecksocketvisible
	6.7.4.61 mpochecksystemacct
	6.7.4.62 mpochecksystemnfsd
	6.7.4.63 mpochecksystemreboot
	6.7.4.64 mpochecksystemsettime
	6.7.4.65 mpochecksystemswapon
	6.7.4.66 mpochecksystemsysctl

	6.7.5 Label Management Calls

	6.8 Userland Architecture
	6.8.1 APIs for PolicyAgnostic Label Management
	6.8.2 Binding of Labels to Users

	6.9 Conclusion

	Chapter 7 Virtual Memory System
	7.1 Management of Physical Memoryvmpaget
	7.2 The Unified Buffer Cachevmobjectt
	7.3 Filesystem I/Ostruct buf
	7.4 Mapping Page Tablesvmmapt, vmentryt
	7.5 KVM Memory Mapping
	7.6 Tuning the FreeBSD VM System

	Chapter 8 SMPng Design Document
	8.1 Introduction
	8.2 Basic Tools and Locking Fundamentals
	8.2.1 Atomic Instructions and Memory Barriers
	8.2.2 Read Locks Versus Write Locks
	8.2.3 Locking Conditions and Results

	8.3 General Architecture and Design
	8.3.1 Interrupt Handling
	8.3.2 Kernel Preemption and Critical Sections
	8.3.2.1 Kernel Preemption in a Nutshell
	8.3.2.2 Critical Sections
	8.3.2.3 Design Tradeoffs

	8.3.3 Thread Migration
	8.3.4 Callouts

	8.4 Specific Locking Strategies
	8.4.1 Credentials
	8.4.2 File Descriptors and File Descriptor Tables
	8.4.3 Jail Structures
	8.4.4 MAC Framework
	8.4.5 Modules
	8.4.6 Newbus Device Tree
	8.4.7 Pipes
	8.4.8 Processes and Threads
	8.4.9 Scheduler
	8.4.10 Select and Poll
	8.4.11 SIGIO
	8.4.12 Sysctl
	8.4.13 Taskqueue

	8.5 Implementation Notes
	8.5.1 Sleep Queues
	8.5.2 Turnstiles
	8.5.3 Details of the Mutex Implementation
	8.5.3.1 Spin Mutexes
	8.5.3.2 Sleep Mutexes

	8.5.4 Witness

	8.6 Miscellaneous Topics
	8.6.1 Interrupt Source and ICU Abstractions
	8.6.2 Other Random Questions/Topics

	Glossary
	atomic
	block
	critical section
	MD
	memory operation
	MI
	operation
	primary interrupt context
	realtime kernel thread
	sleep
	sleepable lock
	thread
	wait channel

	II. Device Drivers
	Chapter 9 Writing FreeBSD Device Drivers
	9.1 Introduction
	9.2 Dynamic Kernel Linker Facility KLD
	9.2.1 Makefile

	9.3 Character Devices
	9.4 Block Devices (Are Gone)
	9.5 Network Drivers

	Chapter 10 ISA Device Drivers
	10.1 Synopsis
	10.2 Basic Information
	10.3 devicet Pointer
	10.4 Configuration File and the Order of Identifying and Probing During AutoConfiguration
	10.5 Resources
	10.6 Bus Memory Mapping
	10.7 DMA
	10.8 xxxisaprobe
	10.9 xxxisaattach
	10.10 xxxisadetach
	10.11 xxxisashutdown
	10.12 xxxintr

	Chapter 11 PCI Devices
	11.1 Probe and Attach
	11.1.1 Sample Driver Source (mypci.c)
	11.1.2 Makefile for Sample Driver
	11.1.3 Additional Resources

	11.2 Bus Resources
	11.2.1 Base Address Registers
	11.2.2 Interrupts
	11.2.3 DMA
	11.2.4 Deallocating Resources

	Chapter 12 Common Access Method SCSI Controllers
	12.1 Synopsis
	12.2 General Architecture
	12.3 Polling
	12.4 Asynchronous Events
	12.5 Interrupts
	12.6 Errors Summary
	12.7 Timeout Handling

	Chapter 13 USB Devices
	13.1 Introduction
	13.1.1 Structure of the USB Stack
	13.2 Host Controllers
	13.2.1 UHCI
	13.2.2 OHCI

	13.3 USB Device Information
	13.3.1 Device Configuration Information

	13.4 Device Probe and Attach
	13.4.1 Device Disconnect and Detach

	13.5 USB Drivers Protocol Information

	Chapter 14 Newbus
	14.1 Device Drivers
	14.1.1 Purpose of a Device Driver
	14.1.2 Types of Device Drivers
	14.1.3 Character Devices

	14.2 Overview of Newbus
	14.3 Newbus API
	14.3.1 Important Locations in the Source Hierarchy
	14.3.2 Important Structures and Type Definitions

	Chapter 15 Sound Subsystem
	15.1 Introduction
	15.2 Files
	15.3 Probing, Attaching, etc.
	15.4 Interfaces
	15.4.1 The CHANNEL Interface
	15.4.1.1 Common Notes for Function Parameters
	15.4.1.2 Overview of Data Transfer Operations
	15.4.1.3 channelinit
	15.4.1.4 channelsetformat
	15.4.1.5 channelsetspeed
	15.4.1.6 channelsetblocksize
	15.4.1.7 channeltrigger
	15.4.1.8 channelgetptr
	15.4.1.9 channelfree
	15.4.1.10 channelgetcaps
	15.4.1.11 More Functions

	15.4.2 The MIXER Interface
	15.4.2.1 mixerinit
	15.4.2.2 mixerset
	15.4.2.3 mixersetrecsrc
	15.4.2.4 mixeruninit, mixerreinit

	15.4.3 The AC97 Interface

	Chapter 16 PC Card
	16.1 Adding a Device
	16.1.1 Overview
	16.1.2 Format of pccarddevs
	16.1.3 Sample Probe Routine
	16.1.4 Putting it All Together
	16.1.5 Submitting a New Device

	III. Appendices
	Bibliography

