TCONFPY(3) TCONFPY(3)

NAME tconfpy.py
Configuration File Support For Python Applications

SYNOPSIS

It is common to provide an external "configuration file" when writing sophisticated applications. This gives
the end-user the ability to easily change program options by editing that file.

tconfpy is a Python module for parsing such configuration files. tconfpy understands and parses a
configuration "language" which has a rich set of string-substitution, variable name, conditional, and valida-
tion features.

By using tconfpy, you relieve your program of the major responsibility of configuration file parsing and
validation, while providing your users a rich set of configuration features.

NOTE: Throughout this document we use the term "configuration file". However, tconfpy can parse
configurations both in files as well as in-memory lists. Whenever you see the term "file", think "a file or a
set of configuration statements stored in a list".

ANOTHER NOTE: Throughout this document we refer to "symbols" and "variables" interchangeably.
Strictly speaking, this is not really right. A "symbol" is an entry in a symbol table representing the state of
some "variable" that is visible to a person writing a configuration. But it’s safe to assume you’re smart
enough to understand this subtlety and know what is meant by context ;)

JUST ONE LAST NOTE: If you run tconfpy directly, it will dump version and copyright information,
as well as the value of the current predefined System Variables:

python tconfpy.py

DOCUMENT ORGANIZATION

This document is divided into 4 major sections:

PROGRAMMING USING THE tconfpy API discusses how to call the configuration file parser, the
options available when doing this, and what the parser returns. This is the "Programmer’s View" of the
module and provides in-depth descriptions of the API, data structures, and options available to the program-
mer.

CONFIGURATION LANGUAGE REFERENCE describes the syntax and semantics of the configura-
tion language recognized by tconfpy. This is the "User’s View" of the package, but both programmers
and people writing configuration files will find this helpful.

ADVANCED TOPICS FOR PROGRAMMERS describes some ways to combine the various tconfpy
features to do some fairly nifty things.

INSTALLATION explains how to install this package on various platforms. This information can also be
found in the READ-1ST. txt file distributed with the package.

PROGRAMMING USING THE tconfpy API
tconfpy is a Python module and thus available for use by any Python program. This section discusses
how to invoke the t confpy parser, the options available when doing so, and what the parser returns to the
calling program.

TundraWare Inc. 1

TCONFPY(3) TCONFPY(3)

One small note is in order here. As a matter of coding style and brevity, the code examples here assume the
following Python import syntax:

from tconfpy import *
If you prefer the more pedestrian:
import tconfpy

you will have to prepend all references to a t confpy object with tconfpy.. So retval=ParseCon-
fig(... becomes retval = tconfpy.ParseConfig(... andso on.

You will also find the test driver code provided in the t confpy package helpful as you read through the
following sections. test—-tc.py is a utility to help you learn and exercise the tconfpy API. Perusing
the code therein is helpful as an example of the topics discussed below.

Core Objects
In order to use tconfpy effectively, you need to be familiar with the objects used to communicate
between your program and the parser. This section provides a brief overview of these objects for reference
use later in the document.

The Symbol Table Object

A "symbol table" is a t confpy object defined to hold the symbol table proper, the results of the
parse (upon return), and some other data structures used internally by the parser.

The full Symbol Table object definition and initialization looks like this:

class SymbolTable (object):
def __init__ (self):

These items are populated when the parser returns

self.Symbols =
self.DebugMsgs =
self.ErrMsgs =
self.WarnMsgs =
self.Literallines =
self.TotalLines =
self.Visited =

— O — o/ /e s
e e e o

These items are for internal parser use only
Never write an application to depend on their content

self.Templates = Template ()
self.ALLOWNEWVAR = True
self.TEMPONLY = False
self.LITERALVARS = False
self.INLITERAL = False

self .DEBUG = False
self.CondStack = [["", Truel,]

TundraWare Inc. 2

TCONFPY(3) TCONFPY(3)

This object is optionally passed to the API when beginning a parse, if you wish to provide an ini-
tial symbol table. In this case, only Symbols need be populated.

When the parse is complete, an object of this same type is returned. Symbols, DebugMsgs,
ErrMsgs, WarnMsgs, LiterallLines, TotalLines, and Visited will be populated with
the parse results as appropriate. The remaining elements of the object are meaningless when the
parser returns, and applications should never make use of them.

The Variable Descriptor Object

The actual symbol table is kept in the SymbolTable.Symbols dictionary. There is one entry
for each symbol (variable) encountered in the parse. The symbol’s name is used as the dictionary
key and an object of type VarDescriptor as its entry. This "variable descriptor” is an object
that describes the variable’s current and default values, whether it can be modified, and any valida-
tion constraints:

class VarDescriptor (object):
Default variable type is a writeable string with no constraints
def __init__ (self):
self.Value = ""
self.Writeable True
self.Type = TYPE_STRING
self.Default = ""
self.LegalVals = []
self.Min = None
self.Max = None

The Template Object

As described later in this document, it is possible to pre-define a variable’s type, default value, and
validation contraint(s) to be applied only if the variable is actually brought into existence in the
configuration file. This is a so-called "template". Templates have their own object definition:

class Template (object):
def __init__ (self):

self.Symbols {}

In effect, this is a subset of the SymbolTable object. Template.Symbols is populated just
like SymbolTable.Symbols using symbol names and variable descriptors.

API Overview
The tconfpy API consists of a single call. Only the configuration file to be processed is a required
parameter, all the others are optional and default as described below:

from tconfpy import *
retval = ParseConfig(cfgfile,
CallingProgram="tconfpy version-num",

InitialSymTable=SymbolTable(),
AllowNewVars=True,

TundraWare Inc. 3

TCONFPY(3)

where:

TCONFPY(3)

Templates=Template(),
TemplatesOnly=False,
LiteralVars=True,
ReturnPredefs=True,
Debug=False

cfgfile (Required Parameter - No Default)

Declares where the configuration is found. If this parameter is a string, it is treated as the name of
a file to parse. If this parameter is a list, t confpy presumes this to be an in-memory configura-
tion, and parses the list in sequential order, treating each entry as a configuration line. This allows
you to use tconfpy for parsing either configuration files or in-memory configurations. If you
pass anything other than a string or list here, t confpy will produce an error.

If you do pass the API an in-memory list, t confpy treats each entry as a line in a configuration
"file". However, this means that each element of the list must be a string. The parser checks this
first and only processes entries in the list that are strings. Entries of any other type produce an
error and are ignored.

CallingProgram (Default: tconfpy + Version Number)

Change the prompt introducer string used for Debug, Error, and Warning messages.

By default, each time tconfpy produces an Error, Warning, or Debug message, it prepends it
with the string tconfpy followed by the version number. Since tconfpy is designed to be
called from applications programs, you may wish to substitute your own program name or other
information in these messages. You do so by setting the CallingProgram keyword to the
desired text.

InitialSymTable (Default: SymbolTable ())

Used to pass a pre-initialized Symbol Table from the application to the parser. Defaults to an
empty symbol table.

AllowNewVars (Default: True)

Allow the user to create new variables in the configuration file.

Templates (Default: Template ())

This option is used to pass variable templates to the parser. If present, tconfpy expects this
option to pass an object of type Template. See the section below entitled, Using Variable Tem-
plates for all the details. By default, an empty template table (no templates) is passed to the
parser.

TundraWare Inc. 4

TCONFPY(3) TCONFPY(3)

TemplatesOnly (Default: False)

If this option is set to True, tconfpy will not permit a new variable to be created unless a vari-
able template exists for it. By default, tconfpy will use a variable template if one is present for
a new variable, but it does not require one. If a new variable is created, and no Template exists for
it, the variable is just created as a string type with no restrictions on content or length. When this
option is set to True, then a template must exist for each newly created variable.

LiteralVars (Default: False)

If set to True, this option enables variable substitutions within . 1iteral blocks of a configura-
tion file. See the section in the language reference below on . 1iteral usage for details.

ReturnPredefs (Default: True)
tconfpy "prefefines” some variables internally. By default, these are returned in the symbol ta-
ble along with the variables actually defined in the configuration file. If you want a "pure" symbol
table - that is, a table with only your variables in it - set this option to False.

Debug (Default: False)

If set to True, tconfpy will provide detailed debugging information about each line processed
when it returns.

retval An object of type SymbolTable used to return parsing results. The results of the parse will be
returned in various data structures:

SymbolTable.Symbols => All symbols and their values as a result of the pa
SymbolTable.DebugMsgs => Any Debug Messages if debug was requested
SymbolTable.ErrMsgs => Any Error Messages

SymbolTable.WarnMsgs => Any Warning Messages

SymbolTable.Literallines => Any Literal Text found in the configuration file
SymbolTable.TotalLines => Total number of lines processed
SymbolTable.Visited => List of configuration files processed

You can tell whether a parse was successful by examining ErrMsgs. A successful parse will
leave this data structure empty (though there may well be Warning Messages present in Warn—
Msgs.)

The Initial Symbol Table API Option
The simplest way to parse a configuration is just to call the parser with the name of a file or an in-memory
list containing the configuration statements:

retval = ParseConfig("MyConfigFile")
7OR7

myconfig = [configlinel, configline2,]

TundraWare Inc. 5

TCONFPY(3) TCONFPY(3)

retval = ParseConfig(myconfig)

Assuming your configuration is valid, ParseConfig () will return a symbol table populated with all the
variables defined in the configuration and their associated values. This symbol table will have only the sym-
bols defined in that configuration (plus a few built-in and predefined symbols needed internally by
tconfpy).

However, the API provides a way for you to pass a "primed" symbol table to the parser that contains prede-
fined symbols/values of your own choosing. Why on earth would you want to do this? There are a number
of reasons:

* You may wish to write a configuration file which somehow depends on a predefined variable that only
the calling program can know:

.if [APPVERSION] == 1.0

Set configuration for original application version
.else

Set configuration for newer releases
.endif

In this example, only the calling application can know its own version, so it sets the variable
APPVERSION in a symbol table which is passed to ParseConfig().

* You may wish to "protect" certain variable names be creating them ahead of time and marking them as
"Read Only" (VarDescriptor.Writeable=False). This is useful when you want a variable
to be available for use within a configuration file, but you do not want users to be able to change its
value. In this case, the variable can be referenced in a string substitution or conditional test, but cannot
be changed.

* You may want to place limits on what values can be assigned to a particular variable. When a variable
is newly defined in a a configuration file, it just defaults to being a string variable without any limits on
its length or content (unless you are using Variable Templates). But variables that are created by a
program have access to the variable’s "descriptor”. By setting various attribues of the variable descrip-
tor you can control variable type, content, and range of values. In other words, you can have
tconfpy "validate" what values the user assigns to particular variables. This substantially simplifies
your application because no invalid variable value will ever be returned from the parser.

How To Create An Initial Symbol Table
A tconfpy "Symbol Table" is really nothing more than a Python dictionary stored inside a container
object. The key for each dictionary entry is the variable’s name and the value is a t confpy-specific object
called a "variable descriptor”. Creating new variables in the symbol table involves nothing more than this:

from tconfpy import *

Create an empty symbol table
MySymTable = SymbolTable ()

Create descriptor for new variable
MyVarDes = VarDescriptor ()

Code to fiddle with descriptor contents goes here

TundraWare Inc. 6

TCONFPY(3) TCONFPY(3)

MyVarDes.Value = "MyVal"

Now load the variable into the symbol table
MySymTable.Symbols["MyVariableName"] = MyVarDes

Repeat this process for all variables, then call the parser

retval = ParseConfig("MyConfigFile", InitialSymTable=MySymTable)

The heart of this whole business the VarDescriptor object. It "describes" the value and properties of a
variable. These descriptor objects have the following attributes and defaults:

VarDescriptor.Value = "v
VarDescriptor.Writeable = True
VarDescriptor.Type = TYPE_STRING
VarDescriptor.Default = "v
VarDescriptor.LegalVals = []
VarDescriptor.Min = None
VarDescriptor.Max = None

When t confpy encounters a new variable in a configuration file, it just instantiates one of these descriptor
objects with these defaults for that variable. That is, variables newly-defined in a configuration file are
entered into the symbol table as string types, with an initial value of "" and with no restriction on content or
length.

But, when you create variables under program control to "prime" an initial symbol table, you can modify
the content of any of these attributes for each variable. These descriptor attributes are what t confpy uses
to validate subsequent attempts to change the variable’s value in the configuration file. In other words,

modifying a variable’s descriptor tells t confpy just what you’ll accept as "legal" values for that variable.

Each attribute has a specific role:

VarDescriptor.Value (Default: Empty String)

Holds the current value for the variable.

VarDescriptor.Writeable (Default: True)

Sets whether or not the user can change the variable’s value. Setting this attribute to False
makes the variable Read Only.

VarDescriptor.Type (Default: TYPE_STRING)

One of TYPE_BOOL, TYPE_COMPLEX, TYPE_FLOAT, TYPE_INT, or TYPE_STRING.
This defines the type of the variable. Each time t confpy sees a value being assigned to a vari-
able in the configuration file, it checks to see if that variable already exists in the symbol table. If
it does, the parser checks the value being assigned and makes sure it matches the type declared for
that variable. For example, suppose you did this when defining the variable, foo:

VarDescriptor.Type = TYPE_INT

TundraWare Inc. 7

TCONFPY(3) TCONFPY(3)

Now suppose the user puts this in the configuration file:
foo = bar
This will cause a type mismatch error because bar cannot be coerced into an integer type - it is a

string.

As a general matter, for existing variables, t confpy attempts to coerce the right-hand-side of an
assignment to the type declared for that variable. The least fussy operation here is when the vari-
able is defined as TYPE_STRING because pretty much everything can be coerced into a string.

For example, here is how foo = 3+87 is treated for different type declarations:
VarDescriptor.Type VarDescriptor.Value

TYPE_BOOL Type Error

TYPE_COMPLEX 3+87 (A complex number)
TYPE_FLOAT Type Error

TYPE_INT Type Error

TYPE_STRING "3+85" (A string)

This is why the default type for newly-defined variables in the configuration file is
TYPE_STRING: they can accept pretty much any value.

NOTE: tconfpy always stores a variable’s value in it native type in the symbol table entry for
that variable - i.e., You’ll get the variable’s value back from the parser in the proper type. How-
ever, when the variable is actually referenced within a configuration file, it is converted to a string
for purposes of configuration processing.

For instance, when doing conditional comparisons, the parser coerces the variable’s value into a
string for purposes of the comparsion. Say you have the floating point variable myfloat whose
value is 6 . 023 and the configuration file contains a statement like:

.1f myfloat == 6.023

When doing this conditional check, the parser will convert the current value of myfloat into a
string and compare it to the string "6 . 023" on the Right Hand Side.

Similarly, variables are coerced as strings when they are referenced in substitutions:

Assume ’'myfloat’ has been predefined to be a floating point wvariable
Assume ’'mybool’ has been predefined to be a boolean variable

myfloat = 3.14
mybool = True
myvar = [myfloat] is [mybool]

This sets ’'myvar’ to the string ’3.14 is True’

This can be tricky when dealing with Boolean variables. As described later in this document, you

TundraWare Inc. 8

TCONFPY(3) TCONFPY(3)

can do conditional tests based on the state of a Boolean, but if you do this:
.if myboolean == whatever...

The parser converts myboolean to a string of either "True" or "False", so watch out for
this. As a general matter, you're more likely to need the boolean tests that check the state of the
variable, but the above construct is handy if you want to use regular string variables to control con-
ditional bodies:

MYCONTROL = True
.1f myboolean == MYCONTROL

Where, MYCONTROL is a regular old string variable - i.e., It has not been defined to be a Boolean
by either a Template or Initial Symbol table passed to the parser.

VarDescriptor.Default (Default: Empty String)

This is a place to store the default value for a given variable. When a variable is newly-defined in
a configuration file, tconfpy places the first value assigned to that variable into this attribute.
For variables already in the symbol table, t confpy does nothing to this attribute. This attribute
is not actually used by t confpy for anything. It is provided as a convenience so that the calling
program can easily keep track of each variable’s default value. This makes it easy to do things like
"reset" every variable when restarting a program, for example.

VarDescriptor.Legal Vals (Default: [])
Sometimes you want to limit a variable to a specific set of values. That’s what this attribute is for.
LegalVals explictly lists every legal value for the variable in question. If the list is empty,then

this validation check is skipped.

The exact semantics of LegalVals varies depending on the type of the variable.

Variable Type What LegalVals Does
Boolean Nothing - Ignored
Integer, Float, Complex List of numeric values the

user can assign to this wvariable

Examples: [1, 2, 34]
[3.14, 2.73, 6.023e23]
[3.8-475, 5+87]

String List of Python regular expressions.
User must assign a value to this
variable that matches at least
one of these regular expressions.

Example: [r'a+.*’, r’"AnExactString$’]

The general semantic here is "If Legal Vals is not an empty list, the user must assign a value that
matches one of the items in LegalVals."

TundraWare Inc. 9

TCONFPY(3)

TCONFPY(3)

One special note applies to LegalVals for string variables. tconfpy always assumes that this
list contains Python regular expressions. For validation, it grabs each entry in the list, attempts to
compile it as a regex, and checks to see if the value the user wants to set matches. If you define an
illegal regular expression here, t confpy will catch it and produce an appropriate error.

You may also want to specify a set of legal strings that are exact matches not open-ended regular
expressions. For example, suppose you have a variable, COLOR and you only want the user to be
able to only set it to one of, Red, White, or Blue. In that case, use the Python regular expres-
sion metacharacters that indicate "Start Of String" and "End Of String" do do this:

des VarDescriptor ()
des.LegalVals = [r’"Red$’, r’"White$’, r’"Blue$’]

SymTable[’COLOR’] = des
NOTE: If you want this test to be skipped, then set LegalVals to an empty list, []. (This is the

default when you first create an instance of tconfpy.VarDescriptor.) Do not set it to a
Python None or anything else. t confpy expects this attribute to be a list in every case.

VarDescriptor.Min and VarDescriptor.Max (Default: None)

These set the minimum and maxium legal values for the variables, but the semantics vary by vari-
able type:

Variable Type What Min/Max Do

Boolean, Complex Nothing - Ignored

Integer, Float Set Minimum/Maxium allowed values.
String Set Minimum/Maximum string length

In all cases, if you want either of these tests skipped, set Min or Max to the Python None.

All these various validations are logically "ANDed" together. i.e., A new value for a variable must be
allowed AND of the appropriate type AND one of the legal values AND within the min/max range.

tconfpy makes no attempt to harmonize these validation conditions with each other. If you specify a
value in LegalVals that is, say, lower than allowed by Min you will always get an error when the user
sets the variable to that value: It passed the LegalVals validation but failed it for Min.

The Initial Symbol Table And Lexical Namespaces
The CONFIGURATION LANGUAGE REFERENCE section below discusses lexical namespaces in
some detail from the user’s point-of-view. However, it is useful for the programmer to understand how they
are implemented.

TundraWare Inc. 10

TCONFPY(3) TCONFPY(3)

tconfpy is written to use a predefined variable named NAMESPACE as the place where the current
namespace is kept. If you do not define this variable in the initial symbol table passed to the parser,
tconfpy will create it automatically with an initial value of "".

From a programmer’s perspective, there are are few important things to know about namespaces and the
NAMESPACE variable:

"nn

* You can manually set the initial namespace to something other than "". You do this by creating the
NAMESPACE variable in the initial symbol table passed to the parser, and setting the Value attribute
of its descriptor to whatever you want as the initial namespace. At startup tconfpy will check this
initial value to make sure it conforms to the rules for properly formed names - i.e., It it will check for
blank space, a leading $, the presence of square brackets, and so on. If the initial namespace value

"nn

you provide is illegal, t confpy will produce an error and reset the initial namespace to "".

* Because lexical namespaces are implemented by treating NAMESPACE as just another variable, all the
type and value validations available for string variables can be applied to NAMESPACE. As discussed
above, this means you can limit the length and content of what the user assigns to NAMESPACE. In
effect, this means you can limit the number and name of namespaces available for use by the user.
There is one slight difference here than for other variables. The root namespace is always legal,
regardless of what other limitations you may impose via the LegalVals, Min, and Max attributes of
the NAME SPACE variable descriptor.

. When the call to ParseConfig() completes, the Value attribute of the NAMESPACE variable
descriptor will contain the namespace that was in effect when the parse completed. i.e., It will contain
the last namespace used.

How The tconfpy Parser Validates The Initial Symbol And Template Tables

When you pass an initial symbol and/or template table to the parser, t confpy does some basic validation
that the table contents properly conform to the VarDescriptor format and generates error messages if it
finds problems. However, the program does not check your specifications to see if they make sense. For
instance if you define an integer with a minimum value of 100 and a maximum value of 50, tconfpy
cheerfully accepts these limits even though they are impossible. You’ll just be unable to do anything with
that variable - any attempt to change its value will cause an error to be recorded. Similarly, if you put a
value in LegalVals that is outside the range of Min to Max, tconfpy will accept it quietly.

In the case of templates, tconfpy all makes sure that they are all named "canonically". That is, a tem-
plate name may not itself contain a namespace. This effectively means that there can be no namespace sep-

non

arator characters (".") in the template name.

The A11owNewVars API Option
By default, tconfpy lets the user define any new variables they wish in a configuration file, merely by
placing a line in the file in this form:
Varname = Value

However, you can disable this capability by calling the parser like this:

retval = ParseConfig("myconfigfile", AllowNewVars=False)

TundraWare Inc. 11

TCONFPY(3) TCONFPY(3)

This means that the configuration file can "reference" any predefined variables, and even change their val-
ues (if they are Writeable), but it cannot create new variables.

This feature is primarily intended for use when you pass an initial symbol table to the parser and you do not
want any other variables defined by the user. Why? There are several possible uses for this option:

* You know every configuration variable name the calling program will use ahead of time. Disabling
new variable names keeps the configuration file from getting cluttered with variables that the calling
program will ignore anyway, thereby keeping the file more readable.

* You want to insulate your user from silent errors caused by misspellings. Say your program looks for
a configuration variable called MyEmail but the user enters something like myemail =
foo@bar.com. MyEmail and myemail are entirely different variables and only the former is rec-
ognized by your calling program. By turning off new variable creation, the user’s inadvertent mis-
spelling of the desired variable name will be flagged as an error.

Note, however, that there is one big drawback to disabling new variable creation. tconfpy processes
the configuration file on a line-by-line basis. No line "continuation" is supported. For really long vari-
able values and ease of maintenance, it is sometimes helpful to create "intermediate" variables that
hold temporary values used to construct a variable actually needed by the calling program. For exam-
ple:

interl = Really, really, really, really, long argument #1
inter?2 Really, really, really, really, long argument #2

realvar = command [interl] [inter2]

If you disable new variable creation you can’t do this anymore unless all the variables interl,
inter2, and realvar are predefined in the initial symbol table passed to the parser.

Using Variable Templates
By default, any time a new variable is encountered in a configuration file, it is created as a string type with
no restrictions on its content or length. As described above, you can predefine the variable in the initial
symbol table you pass to the parser. This allows you to define that variable’s type and to optionally place
various restrictions on the values it may take. In other words, you can "declare" the variable ahead of time
and tconfpy will do so-called "type and value enforcement".

"Variable Templates" are a related kind of idea, with a bit of a twist. They give you a way to "declare" vari-
able type and content restrictions for selected new variables discovered in the configuration file. In other
words, by using Variable Templates, you can make sure that a new variable also has restrictions placed on
its type and/or values.

The obvious question here is, "Why not just do this by predefining every variable of interest in the initial
symbol table passed to the parser?" There are several answers to this:

* The tconfpy configuration language has very powerful "existential" conditional tests. These test to
see if a variable "exists". If you predefine every variable you will ever need, then the kinds of existen-
tial tests you can do will be somewhat limited (since every variable does already exist).

With Variable Templates, you can define the type and value constraints of a variable which will be

applied, but only if you actually bring that variable into existence. This allows constructs like this
to work:

TundraWare Inc. 12

TCONFPY(3)

.if [.PLATFORM] == posix
posix = True

.endif

.if [.PLATFORM] == nt
nt = True

.endif

.ifall posix
.endié.

.ifall nt
.endié.

.ifnone posix nt

.endif

TCONFPY(3)

In this example, notice that the variables posix and nt may- or may not be actually created, depend-
ing on the value of .PLATFORM. The logic later in the example depends upon this. If you were to
predefine these two variables (to specify type and/or value restrictions), this type of logical flow would

not be possible.

By providing Variable Templates for posix and nt, you can define their type (likely Boolean in this

case) ahead of time and this will be applied if the variable does come into existence.

The other reason for Variable Templates is more subtle, but gives tconfpy tremendous versatility
beyond just processing configuration files. Variable Templates give you a way to use tconfpy to

build data validation tools.

Suppose you have a list of employee records exported in this general format (easy to do with most

databases):

[Employee#]
LastName
FirstName
Address =
City =

and so on

By using the empoyee’s ID as a lexical namespace, we end up creating new variables for each

employee. Say the employee number is 1234.

1234 .FirstName, and so on.

Then we would get,

1234 .LastName,

Now, here’s the subtle part. Notice that the type and content restrictions of these variables is likely to
be the same for each different employee.

TundraWare Inc.

13

TCONFPY(3) TCONFPY(3)

By defining Variable Templates for each of the variables we intend to use over and over again in differ-
ent namespace contexts, we can validate each of them to make sure their content, type, length, and so
forth are correct. This makes it possible to use t confpy as the underpinnings of a "data validation"
or "cleansing" program.

* Another way to look at this is that Variable Templates give you a way to define type/value restrictions
on an entire "class" of variables. Instead of having to explictly predefine variables for every employee
in our example above, you just define templates for the variable set that is common to all employees.
This is way simpler than predefining every possible variable combination ahead of time.

The Templates And TemplatesOnly API Options
Variable Templates are supported with two API options: Templates And TemplatesOnly. Tem-
plates is used to pass a symbol table (separate from the main symbol table) containing the Variable Tem-
plates. By default, this option is set to an object of type Template containing no templates.

So what exactly is a "Variable Template"? It is the exact same thing as a predefined variable you might
pass in the initial symbol table. In other words, it is a Python dictionary entry where the key is the variable
name and the entry is in VarDescriptor format. The big difference here is that normal variables are
stored in the symbol table in a SymbolTable container object. But templated variables are stored in a
Template container object. (See Core Objects above for the details.)

Templated variables are thus defined (by the calling program) just like you would any other variable - but
stored in a different place:

from tconfpy import *

Create an empty template table
MyTemplates = Template ()

Create descriptor for new variable
MyTemplateVarDes = VarDescriptor ()

Code to fiddle with descriptor contents goes here
MyTemplateVarDes.Type = TYPE_INT

and so forth

Now load the variable into the symbol table
MyTemplates.Symbols["MyTemplateName"] = MyTemplateVarDes

Now pass the Templates to the parser
retval = ParseConfig("myfile", Templates=MyTemplates)

NOTE: You may optionally pass either an initial symbol table or a template table or both to the parser
when you call it. That is, the initial set of symbols is disjoint from any templates you’ve defined.

Semantically, the only difference between "regular" and templated variables, is that a templated variable
does not come into existence (i.e. Become an entry) in the main symbol table until a variable by that name
is encountered in the configuration file. Then the variable is created using the template as its entry in the

main symbol table.

For example:

TundraWare Inc. 14

TCONFPY(3) TCONFPY(3)

[1234]

LastName = Jones

FirstName = William
Address = 123 Main Street
City = Anywhere

State = WI

Z1P = 00000-0000
[1235]

LastName = Jones

FirstName = Susan

Address = 123 Main Street
City = Anywhere

State = WI

Z1P = 00000-0000

Suppose you define variable templates for LastName, FirstName, Address, and so on. That is, you
define variables by these names, and define whatever type and content restrictions you want in each of their
VarDescriptors. You then pass these to the parser via the Templates= option.

As tconfpy parses the file and encounters the new variables 1234 .LastName ... 1235.ZIP, it uses
the following
"rules" when creating new variables:

* See if there is a template variable whose name is the same as the "base" name of the new variable.
(The "base" name is just the variable name without the prepended namespace.)

If there is a template with a matching name, see if the value the user wants to assign to that variable
passes all the type/validation rules. If so, load the variable into the symbol table and set its value as
requested, using the VarDescriptor object from the template. (This ensures that future attempts
to change the variable’s value will also be type/validation checked.)

If the assignment fails the validation tests, issue an appropriate error and do not create the variable in
the symbol table.

e If there is no template with a matching name, then just create a new variable as usual - string type with
no restrictions, unless TemplatesOnly is set to True. Setting this option to True tells the pro-
gram that you want to allow the creation of only those variables for which templates are defined. This
is a way to restrict just what new variables can be created in any namespace. TemplatesOnly
defaults to False which means you can create new variables even when no template for them exists.

A few subtleties of templating variables are worth noting here:

» The same template is used over and over again to create a new variable of the same name in different
namespaces. For example, suppose you’ve defined a template with the name, AccountNumber:

[ComputerSupplier]
AccountNumber = 1234-5

[Lawyer]
AccountNumber = 3456-3

TundraWare Inc. 15

TCONFPY(3) TCONFPY(3)

This would create two separate variables in the symbol table, based on the same template: Comput—
erSupplier.AccountNumber and Lawyer .AccountNumber.

This works because tconfpy checks the so-called "canonical" name of a variable when it is being
created (the part of the name without the namespace information) to see if a template exists for it. For
this reason, a template name must never contain a namespace. If you attempt to create templates
with names like Foo . Templatename, the parser will reject it and produce an error.

* Notice that for variables actually in the symbol table, VarDescriptor.Value holds the current
value for the variable. However, this field is meaningless in a template. The template is only used
when creating a new variable to be added the normal symbol table. The value field of the template’s
variable descriptor is never used for anything - it is never read nor is it ever set.

* By definition, a templated variable does not actually exist (in the symbol table) until you assign it
some value in the configuration file. This means that even if you mark the variable as Read Only in its
template, you are able to set it one time - to actually create it. Thereafter, the variable exists in the
symbol table with it’s Writeable attribute set to False and future changes to the variable are pre-
vented

In summary, Variable Templates give you a way to place restrictions on variable type and content in the
event that the variable actually comes into existence. They also give you a way to define such restric-
tions for an entire class of variables without having to explicitly name each such variable ahead of time.
Finally, Variable Templates are an interesting way to use tconfpy as the basis for data validation pro-
grams.

The LiteralVars API Option
tconfpy supports the inclusion of literal text anywhere in a configuration file via the .1iteral direc-
tive. This directive effectively tells the t confpy parser to pass every line it encounters "literally" until it
sees a corresponding .endlinteral directive. By default, tconfpy does exactly this. However,
tconfpy has very powerful variable substitution mechanisms. You may want to embed variable refer-
ences in a "literal" block and have them replaced by tconfpy.

Here is an example:
MyEmail = me@here.com # This defines variable MyEmail
.literal
printf (" [MyEmail]l"); /* A C Statement */

.endliteral

By default, ParseConfig() will leave everything within the .literal/.endliteral block
unchanged. In our example, the string:

printf (" [MyEmail]"); /* A C Statement */
would be in the list of literals returned by ParseConfig().

However, we can ask tconfpy to do variable replacement within literal blocks by setting Literal-
Vars=True in the ParseConfig () call:

TundraWare Inc. 16

TCONFPY(3) TCONFPY(3)

retval = ParseConfig("myconfigfile", LiteralVars=True)

In this example, t confpy would return:
printf ("me@here.com"); /* A C Statement */

At first glance this seems only mildly useful, but it is actually very handy. As described later in this docu-
ment, tconfpy has a rich set of conditional operators and string substitution facilities. You can use these
features along with literal block processing and variable substitution within those blocks. This effectively
lets you use t confpy as a preprocessor for any other language or text.

The ReturnPredefs API Option
As described below, t confpy internally "predefines" a number of variables. These include variables that
describe the current runtime environment as well as variables that substitute for language keywords.

These predefined variables are just stored in the symbol table like any other variable. By default, they are
returned with all the "real" variables discovered in the configuration file. If you want only the variables
actually encountered in the configuration file itself, set ReturnPredefs=False in the ParseCon-
fig () API call. This will cause tconfpy to strip out all the predefined variables before returning the
final symbol table.

Note that this option also removes the NAMESPACE variable since it is understood to also be outside the
configuration file (even though you may have passed an initial version of NAMESPACE to the parser).

Note, also, that this option applies only to the variables predefined by tconfpy itself. Any variables you
predefine when passing an initial symbol table will be returned as usual, regardless of the state of this
option.

The Debug API Option
tconfpy has a fairly rich set of debugging features built into its parser. It can provide some detail about
each line parsed as well as overall information about the parse. Be default, debugging is turned off. To
enable debugging, merely set Debug=True in the API call:

retval = ParseConfig("myconfigfile", Debug=True)

How tconfpy Processes Errors
As a general matter, when t confpy encounters an error in the configuration file currently being parsed, it
does two things. First, it adds a descriptive error message into the list of errors returned to the calling pro-
gram (see the next section). Secondly, in many cases, noteably during conditional processing, it sets the
parser state so the block in which the error occurred is logically False. This does not happen in every
case, however. If you are having problems with errors, enable the Debugging features of the package and
look at the debug output. It provides detailed information about what caused the error and why.

tconfpy Return Values
When tconfpy is finished processing the configuration file, it returns an object (of type SymbolTable)
that contains the entire results of the parse. This includes a symbol table, any relevant error or warning
messages, debug information (if you requested this via the API), and any "literal" lines encountred in the
configuration.

TundraWare Inc. 17

TCONFPY(3) TCONFPY(3)

NOTE: Because the object is of type SymbolTable, it contains other data structures used by the parser
itself. These are purposely "cleaned out" before the parser returns and should never be used by the calling
application for any reason. In other words, use only the data structures documented below when the parser
returns control to your calling program.

The return object is an instance of the class twander . SymbolTable which has been populated with the
results of the parse. In the simplest case, we can parse and extract results like this:

from tconfpy import *
retval = ParseConfig("myconfigfile", Debug=True)

retval now contains the results of the parse:

retval.Symbols

A Python dictionary which lists all the defined symbols and their associated values. A "value" in
this case is always an object of type t confpy .VarDescriptor (as described above).

retval.DebugMsgs

A Python list containing detailed debug information for each line parsed as well as some brief
summary information about the parse. retval.DebugMsgs defaults to an empty list and is
only populated if you set Debug=True in the API call that initiated the parse (as in the example
above).

retval. ErrMsgs
A Python list containing error messages. If this list is empty, you can infer that there were no
parsing errors - i.e., The configuration file was OK.

retval. WarnMsgs
A Python list containing warning messages. These describe minor problems not fatal to the parse
process, but that you really ought to clean up in the configuration file. It is possible to create a
configuration that produces no errors but does produce warnings, for example. It is almost always
the case that this configuration is not being handled the way you intended. As a general matter of
good practice, apply "belt and suspenders” rules in your applications, and demand that a configra-
tion be free of both errors and warnings before proceding.

retval.LiteralLines

As described below, the t confpy configuration language supports a . literal directive. This
directive allows the user to embed literal text anywhere in the configuration file. This effectively
makes tconfpy useful as a preprocessor for any other language or text. retval.Liter-
alLines is a Python list containing all literal text discovered during the parse. The lines appear
there in the order they were discovered in the configuration file.

TundraWare Inc. 18

TCONFPY(3) TCONFPY(3)

retval. TotalLines

Contains a count of the number of the total number of lines processed during the parse.

retval.Visited

Contains a list of all the configuration files and/or in-memory configurations processed.

CONFIGURATION LANGUAGE REFERENCE
tconfpy recognizes a full-featured configuration language that includes variable creation and value
assignment, a full preprocessor with conditionals, type and value enforcement, and lexical namespaces.
This section of the document describes that language and provides examples of how each feature can be
used.

tconfpy Configuration Language Syntax
tconfpy supports a fairly simple and direct configuration language syntax:

* Each line is treated independently. There is no line "continuation".

e The # can begin a comment anywhere on a line. This is done blindly. If you need to embed this sym-
bol somewhere within a variable value, use the [HASH] variable reference.

e Whitespace is (mostly) insignificant. Leading and trailing whitespace is ignored, as is whitespace
around comparison operators. However, there are some places where whitespace matters:

Variable names may not contain whitespace

Directives must be followed by whitespace if they take
other arguments.

When assigning a value to a string variable, whitespace
within the value on the right-hand-side is preserved.
Leading- and trailing whitespace around the right-hand-
side of the assignment is ignored.

Whitespace within both the left- and right-hand-side
arguments of a conditional comparison

(.if ... ==/ != ...)is significant for purposes
of the comparison.

* Case is always significant except when assigning a value to Booleans (described in the section below
entitled, Some Notes On Boolean Variables).

* Regardless of a variable’s type, all variable references return a string representation of the variable’s
value! This is done so that the variable’s value can be used for comparison testing and string substitu-
tion/concatenation. In other words, variables are stored in their native type in the symbol table that is
returned to the calling program. However, they are treated as strings during the parsing of the configu-
ration file whenever they are used in a comparison test or in a substitution.

TundraWare Inc. 19

TCONFPY(3) TCONFPY(3)

. Text inside a literal block (see section below on the .1iteral directive) is left untouched. White-
space, the # symbol, and so on are not intepreted in any way and are passed back to the calling pro-
gram as-is. The one exception to this rule is when variable substitution inside literal blocks is enabled.
This is discussed in a later section of this document as well.

* Any line which does not conform to these rules and/or is not in the proper format for one of the opera-
tions described below, is considered an error.

Creating Variables And Assigning A Value
The heart of a configuration file is a "variable". Variables are stored in a "Symbol Table" which is returned
to the calling program once the configuration file has been processed. The calling program can predefine
any variables it wishes before processing a configuration file. You can normally also define your own new
variables in the configuration file as desired (unless the programmer has inhibited new variable creation).

Variables are assigned values like this:
MyVariable = Some string of text

If MyVariable is a new variable, t confpy will create it on the spot. If it already exists, tconfpy will
first check and make sure that Some string of text is alegal value for this variable. If not, it will
produce an error and refuse to change the current value of MyVariable.

Anytime you create a new variable, the first value assigned to it is also considered its "default" value. This
may (or may not) be meaningful to the application program.

Variables which are newly-defined in a configuration file are always understood to be string variables - i.e.,
They hold "strings" of text. However, it is possible for the applications programmer to predefine variables
with other types and place limitations on what values the variable can take and/or how short or long a string
variable may be. (See the previous section, PROGRAMMING USING THE tconfpy API for all the
gory details.)

The programmer can also arrange for the configuration file to only have access to variables predefined by
the program ahead of time. In that case, if you try to create a new variable, tconfpy will produce an
appropriate error and the new variable will not be created.

Variable Names
Variables can be named pretty much anything you like, with certain restrictions:

e Variable names may not contain whitespace.

e Variable names may not begin with the $ character. The one exception to this is when you are refer-
encing the value of an environment variable. References to environment variables begin with $:

A reference to an environment variable is legal
X = [$TERM]

Attempting to create a new variable starting with $ is illegal
SMYVAR something

TundraWare Inc. 20

TCONFPY(3) TCONFPY(3)

e Variable names cannot have the # character anywhere in them because tconfpy sees that character
as the beginning a comment.

* Variable names cannot begin with . character. tconfpy understands a leading period in a variable
name to be a "namespace escape". This is discussed in a later section on lexical namespaces.

. Variable names cannot contain the [or] characters. These are reserved symbols used to indicate a
variable reference.

* You cannot have a variable whose name is the empty string. This is illegal:

= String

e The variable named NAMESPACE is not available for your own use. tconfpy understands this vari-
able to hold the current lexical namespace as described later in this document. If you set it to a new
value, it will change the namespace, so be sure this is what you wanted to do.

Getting And Using The Value Of A Variable
You can get the value of any currently defined variable by referencing it like this:

[MyVariable]
The brackets surrounding any name are what indicate that you want that variable’s value.

You can also get the value of any Environment Variable on your system by naming the variable with a lead-
ing $:

[SUSER] ... # Gets the value of the USER environment variable
However you cannot set the value of an environment variable:
SUSER = me # This is not permitted

This ability to both set and retrieve variable content makes it easy to combine variables through "substitu-
tion":

MYNAME = Mr. Tconfpy
MYAGE = 101

Greeting = Hello [MYNAME], you look great for someone [MYAGE]!

Several observations are worth noting here:

» The substitution of variables takes place as soon as the parser processes the line Greeting =
That is, variable substitution happens as it is encountered in the configuration file. The only exception
to this is if an attempt is made to refer to an undefined/non-existent variable. This generates an error.

TundraWare Inc. 21

TCONFPY(3) TCONFPY(3)

* The variable Greeting now contains the string "Hello Mr. Tconfpy, you look great for someone
101!" This is true even if variable MYAGE has been defined by the calling program to be an integer
type. To repeat a previously-made point: All variable substitution and comparison operations in a
configuration file are done with strings regardless of the actual type of the variables involved.

* Variables must be defined before they can be referenced. tconfpy does not support so-called "for-
ward" references.

e Unless a variable as been marked as "Read Only" by the application program, you can continue to
change its value as you go. Simply adding another line at the end of our example above will change
the value of Greeting to something new:

Greeting = Generic Greeting Message

In other words, the last assignment statement for a given variable "wins". This may seem sort of
pointless, but it actually has great utility. You can use the .include directive to get, say, a "stan-
dard" configuration provided by the system administrator for a particular application. You can then
selectively override the variables you want to change in your own configuration file.

Indirect Variable Assignment
The dereferencing of a variable’s value can take place on either the right- or left-hand-side of an assign-
ment statement. This means so-called "indirect" variable assignments are permitted:

CurrentTask = HouseCleaning
[CurrentTask] Dad

To understand what this does you need to realize that before t confpy does anything with a statement in a
configuration file, it replaces every variable reference with its associated value (or produces an error for ref-
erences to non-existent variables). So the second statement above is first converted to:

HouseCleaning = Dad
i.e., The value Dad is assigned to a (new) variable called HouseCleaning. In other words, putting a
variable reference on the left-hand-side of an assignment like this allows you to access another variable
which is named "indirectly".

You have to be careful when doing this, though. Consider a similar, but slightly different example:

CurrentTask = House Cleaning # This is fine
[CurrentTask] Dad # Bad!

The reason this no longer works is that the indirect reference causes the second line to parse to:

House Cleaning = Dad
This is illegal because whitespace is not permitted in variable names. tconfpy will produce an error if it
sees such a construct. As a general matter, any variable you construct through this indirection method must
still conform to all the rules of variable naming: It cannot contain whitespace, begin with $, contain #, [, or

1 and so on.

Another example of how indirection can "bite" you is when the value of the variable begins with a period.
As you’ll see in the following section on Lexical Namespaces, a variable name beginning with a period is

TundraWare Inc. 22

TCONFPY(3) TCONFPY(3)

understood to be an "absolute" variable name reference (relative to the root namespace). This can cause
unexpected (though correct) behavior when doing indirect variable access:

NAMESPACE = NS1
foo = .bar # Creates variable NSl.foo with value .bar
[foo] = baz # Means [NSl.foo] = baz

The second assignment statement in this example does not do what you might initially think. Remember,
tconfpy always does variable dereferencing before anything else, so the second statement becomes:

.bar = baz

As you’ll see in the section on Lexical Namespaces below, this actually means, "Set the variable bar in the
root namespace to the value baz." In other words, if you do indirect variable assignment, and the content
of that variable begins with a period, you will be creating/setting a variable in the root namespace. Be
sure this is what you intended to do.

Get into the habit of reading [something] as, "The current value of something"”. See if you under-
stand what the following does (if you don’t, try it out with test-tc.py):

foo =1
bar = 2
[foo] = bar
[bar] = [foo]

You can get pretty creative with this since variable references can occur pretty much anywhere in an assign-
ment statement. The only place they cannot appear is within another variable reference. That is, you can-
not "nest" references:

The Following Is Fine
FOO = Goodness

BAR = Me
Oh [FOO] [BAR] Goodness Gracious Me!

But This Kind Of Nesting Attempt Causes An Error

[FOO[BAR]] = Something Or Other

Introducing Lexical Namespaces
So far,the discussion of variables and references has conveniently ignored the presence of another related
tconfpy feature, "Lexical Namespaces." Namespaces are a way to automatically group related variables
together. Suppose you wanted to describe the options on your car in a configuration file. You might do
this:

MyCar .Brand = Ferrari
MyCar .Model = 250 GTO
MyCar.Color = Red

And so on

You’ll notice that every variable start with the "thing" that each item has in common - they are features of
MyCar. We can simplify this considerably by introducing a lexical namespace:

TundraWare Inc. 23

TCONFPY(3) TCONFPY(3)

[MyCar]

Brand = Ferrari
Model = 250 GTO
Color = Red

The first statement looks like a variable reference, but it is not. A string inside square brackets by itself
on a line introduces a namespace. The first statement in this example sets the namespace to MyCar.
From that point forward until the namespace is changed again, every variable assignment and reference is
"relative" to the namespace. What this really means is that t confpy sticks the namspace plus a . in front
of every variable assigned or referenced. It does this automatically and invisibly, so Brand is turned into
MyCar .Brand and so on. You can actually check this by loading the example above into a test configura-
tion file and running the test-tc.py program on it. You will see the "fully qualified" variable names
that actually were loaded into the symbol table, each beginning with MyCar . and ending with the variable
name you specified.

Realize that this is entirely a naming "trick". tconfpy has no clue what the namespace means, it just
combines the current namespace with the variable name to create the actual variable name that will be
returned in the symbol table.

You're likely scratching your head wondering why on earth this feature present in t confpy. There are
several good reasons for it:

e It reduces typing repetetive information throughout the configuration file. In turn, this reduces the
likelyhood of a typographical or spelling error.

e It helps visibly organize the configuration file. A namespace makes it clear which variables are related
to each other somehow. This is no big deal in small configurations, but tconfpy was written with
the idea of supporting configuration files that might contain thousands or even tens of thousands of
entries.

» It simplifies the application programmer’s job. Say I want to write a program that extracts all the
information about your car from the configuration file, but I don’t know ahead of time how many
things you will describe. All I really have to know is that you are using MyCar as the namespace for
this information. My program can then just scan the symbol table after the configuration file has been
parsed, looking for variables whose name begins with MyCar .. So if you want to add other details
about your auto like, say, Age, Price, and so on, you can do so later and the program does not
have to be rewritten.

e It helps enforce correct configuration files. By default, you can introduce new namespaces into the
configuration file any time you like. However, as described in the previous section on the tconfpy
API, the application programmer can limit you to a predefined set of legal namespaces (via the
LegalVals attribute of the NAMESPACE variable descriptor). By doing this, the programmer is
helping you avoid incorrect configuration file entries by limiting just which namespaces you can enter
to reference or create variables.

Rules For Using Lexical Namespace
Creating and using lexical namespaces is fairly straightforward, but there are a few restrictions and rules:

"nn

* The default initial namespace is the empty string, "". In this one case, t confpy does nothing to vari-
ables assigned or referenced. That’s why our early examples in the previous section worked. When

TundraWare Inc. 24

TCONFPY(3) TCONFPY(3)

we assigned a value to a variable and then referenced that variable value, we did so while in the so-
called "root" namespace, "". When the namespace is "", nothing is done to the variable names.

nn

Bear in mind that the programmer can change this default namespace to something other than
before the configuration file is ever processed. If they do this, they would be well advised to let their
users know this fact.

* There two ways to change to a new namespace:
[NewNameSpace] # May optionally have a comment

OR
NAMESPACE = NewNamespace # May optionally have a comment

If, at any point, you want to return to the root namespace, you can use one of these two methods:

[]
OR
NAMESPACE =

So, why are there two ways to do the same thing? The first way is the more common, and the more
readable way to do it. It appears on a line by itself and makes it clear that the namespace is being
changed. However, because variable references cannot be "nested", you can only use strings of text
here.

Suppose you want to change the namespace in a way that depends on the value of another variable.
For instance:

LOCATION = Timbuktu
NAMESPACE = [LOCATION]-East

In other words, the second form of a namespace change allows you to employ the tconfpy string
substitution and variable referencing features. Bear in mind that tconfpy is case-sensitive so this
will not work as you expect:

Namespace = something

This just set the value of the variable Namespace to something and has nothing whatsoever to do
with lexical namespaces.

. Whichever method you use to change it, the new namespace must follow all the same rules used
for naming variables.

For example, both of the following will cause an error:
[SFOO]
OR

x = $FOO
NAMESPACE = [x]

* By default, all variable assignments and references are relative to the currently active namespace:

TundraWare Inc. 25

TCONFPY(3) TCONFPY(3)

[MyNameSpace]
foo = 123 # Creates a variable called MyNameSpace.foo
b4 = [bar] # Means: MyNameSpace.x = [MyNameSpace.bar]

e If you want to set or reference a variable in a namespace different than the current namespace, you
must use a so-called "absolute" variable name. You do this by "escaping" the variable name. To
escape the name, begin it with a . and then use the full name (including namespace) of that variable.
(This is called the "fully qualified variable name".) For example:

[NS1] # Switch to the namespace NS1
foo = 14 # Creates NSl1.foo

[NS2] # Switch to the NS2 namespace
foo = [.NSl.foo] # Sets NS2.foo = 14

There is another clever way to do this without using the escape character. tconfpy has no under-
standing whatsoever of what a lexical namespace actually is. It does nothing more than "glue" the cur-
rent namespace to any variable names and references in your configuration file. Internally, all vari-
ables are named relative to the root namespace. This means that you can use the fully qualified vari-
able name without any escape character any time you are in the root namespace:

[NS1] # Switch to the namespace NS1
foo = 14 # Creates NS1.foo

[] # Switch to the root namespace
foo = [NSl1l.foo] Sets foo = 14 - no escape needed

H=

* Lexical namspaces are implemented by having NAMESPACE just be nothing more than (yet) another
variable in the symbol table. tconfpy just understands that variable to be special - it treats it as the
repository of the current lexical namespace. This means you can use the value of NAMESPACE in
your own string substitutions:

MyVar [NAMESPACE]-Isn’t This Cool?

You can even use the current value of NAMESPACE when setting a new namespace:

NAMESPACE = [NAMESPACE]-New

One final, but very important point is worth noting here. The NAMESPACE variable itself is always
understood to be relative to the root namespace. No matter what the current namespace actually is,
[NAMESPACE] or NAMESPACE = ... always set a variable by that name in the root namespace.
Similarly, when we use a variable reference to get the current namespace value (as we did in the exam-
ple above), NAMESPACE is understood to be relative to the root namespace. That’s why things like

this work:
[MyNewSpace]
x = 100 # MyNewSpace.x = 100
y = [NAMESPACE]-1 # MyNewSpace.y = MyNewSpace-1

NAMESPACE = NewSpace # .NAMESPACE = NewSpace

TundraWare Inc. 26

TCONFPY(3) TCONFPY(3)

Predefined Variables
tconfpy predefines a number of variables. The NAMESPACE variable we discussed in the previous sec-
tion is one of them, but there are a number of others of which you should be aware. Note that all predefined
variables are relative to the root namespace. Except for the NAMESPACE variable, they are all Read
Only and cannot be modified in your configuration file.

The first group of predefined variables are called "System Variables". As the name implies, they provide
information about the system on which you’re running. These are primarily useful when doing conditional
tests (described later in this document). For example, by doing conditional tests with System Variables you
can have one configuration file that works on both Unix and Windows operating systems. The System Vari-

ables are:
Variable Name Contains
.MACHINENAME — The name of the computer on which you are running.
May also include full domain name, depending on system.
.OSDETAILS — Detailed information about the operating system in use.
.OSNAME — The name of the operating system in use.
.OSRELEASE — The version of the operating system in use.
.OSTYPE — Generic name of the operating system in use.
.PLATFORM — Generic type of the operating system in use.
.PYTHONVERSION - The version of Python in use.

By combining these System Variables as well as the content of selected Environment Variables, you can
create complex conditional configurations that "adapt" to the system on which a Python application is run-
ning. For example:

.if [.MACHINENAME] == foo.bar.com
BKU = tar
.else
BKU = [$BACKUPPROGRAM]
.endif

The other kind of predefined variables are called "Reserved Variables". tconfpy understands a number of
symbols as part of its own language. For example, the string # tells tconfpy to begin a comment until
end-of-line. There may be times, however, when you need these strings for your own use. In other words,
you would like to use one of the strings which comprise the t confpy language for your own purposes and
have tconfpy ignore them. The Reserved Variables give you a way to do this. The Reserved Variables
are:

Variable Name Contains

TundraWare Inc. 27

TCONFPY(3) TCONFPY(3)

DELIML [

DELIMR]

DOLLAR $

ELSE .else
ENDIF .endif
ENDLITERAL .endliteral
EQUAL =

EQUIV ==

HASH #

IF Jif
IFALL .ifall
IFANY .ifall
IFNONE .ifnone
INCLUDE .include
LITERAL .literal
NOTEQUIV l=
PERIOD

For instance, suppose you wanted to include the # symbol in the value of one of your variables. This will
not work, because t confpy interprets it as the beginning of a comment, which is not what you want:

MyJersey = Is #23
So, we use one of the Reserved Variables to get what we want:
MyJersey = Is [HASH]23

One word of warning, though. At the end of the day, you still have to create variable names or namespace
names that are legal. You can’t "sneak" illegal characters into these names using Reserved Variables:

foo = [DOLLAR]MyNewNamespace # No problem
NAMESPACE = [foo] # No way - namespace cannot start with $

Type And Value Enforcement
By default, any variable (or namespace) you create in a configuration file is understood to just hold a string
of characters. There are no limits to what that string may contain, how long it is, and so on.

However, tconfpy gives the programmer considerable power to enforce variable types and values, if they
so choose. (See the section above entitted, PROGRAMMING USING THE tconfpy API for the
details.) The programmer can set all kinds of limitations about a variable’s type, permissible values, and (in
the case of strings) how long or short it may be. The programmer does this by defining these limitations for
each variable of interest prior to calling tconfpy to parse your configuration file. In that case, when
tconfpy actually processes the configuration file, it "enforces" these restrictions any time you attempt to
change the value of one of these variables. If you try to assign a value that fails one of these "validation"
tests, tconfpy will produce an error and leave the variable’s value unchanged.

For instance, suppose the programmer has defined variable "Foo" to be a floating point number, and that it
must have a value between -10.5 and 100.1. In that case:

Foo = 6.023E23 # Error - Value is out of range
Foo = MyGoodness # Error - Value must be a FP number, not a string

TundraWare Inc. 28

TCONFPY(3) TCONFPY(3)

Foo = -2.387 # Good - Value is both FP an in range

What Specific Validations Are Available?
The programmer has several different restrictions they can place on a variable’s value. You do not need to
understand how they work, merely what they are so that any error messages you see will make sense.

* The programmer may declare any variable to be Read Only. This means you can still use references
to that variable to extract its value, but any attempt to change it value within the configuration file will
fail and produce an error.

* The programmer may specify the variable’s type as string (the default), integer, floating point, com-
plex, or boolean.

* The programmer may specify the set of all legal values that can be assigned to a variable. For
instance, the programmer might specify that the floating point variable Transcend can only be set to
either 3.14 or 2.73. Similarly, the programmer might specify that the string variable COLOR can only
ever be set to Red, Green, or Blue. In fact, in the case of string variables, the programmer can actu-
ally specify a set of patterns (regular expressions) the value has to match. For instance, they can
demand that you only set a particular string variable to strings that begin with a and end with bob.

* For integer and floating point variables, the programmer can specify a legal value range for the vari-
able. If you change the value of such a variable, that value must be within the defined range or you’ll
get an error.

* For string variables, the programmer can specify a minimum and maxium length for the strings you
assign to the variable in question.

* The programmer can limit you to only being able to use existing variables. (.i.e. The Predefined
variables and any variables the programmer has defined ahead of time.) In that case, any attempt to
create a new variable in the configuration file will fail and produce an error.

* The programmer can limit you to only being able to use namespaces they have defined ahead of
time. In that case, if you attempt to enter a namespace not on the list the programmer created ahead of
time will fail and produce an error.

* The programmer can enable or prevent the substitution of variable references in literal blocks (see
below). If they disable this option, something like [Foo] is left unchanged within the literal block.
i.e., It too, is treated "literally".

Notes On Variable Type/Value Enforcement
There are a few other things you should know about how t confpy enforces restrictions on variables:

» For purposes of processing the configuration file, variable references are always converted to
strings regardless of the actual type of the variable in question. (Variables are stored in the symbol
table in their actual type.)

For instance, suppose the programmer defines variable Foo to be floating point. Then:

TundraWare Inc. 29

TCONFPY(3) TCONFPY(3)

Foo = 1.23
Bar Value is [Foo] # Creates a new *string* variable with the
value: "Value is 1.23"

In other words, variable values are "coerced" into strings for the purposes of substitution and condi-
tional testing within a configuration file. This is primarily an issue with the conditional comparisons
below. For example, the following conditional is False because the string representations of the two
numbers are different. Assume £1 and £2 have been defined as floating point variables by the calling

program:
f1 =1.0
f2 = 1.00
LAf [f1] == [£f2] # False because "1.0" is not the same string as "1.00"

* You cannot create anything but a string variable within a configuration file. This variable will have no
restrictions placed on its values. All validation features require the limitations to be specified by the
calling program ahead of time.

* Similarly, you cannot change any of the enforcement options from within a configuration file. These
features are only available under program control, presumably by the application program that is call-
ing tconfpy.

e There is no way to know what the limitations are on a particular variable from within the configuration
file. Programmers who use these features should document the variable restrictions they’ve employed
as a part of the documentation for the application in question.

Some Further Notes On Boolean Variables
One last note here concerns Boolean variables. Booleans are actually stored in the symbol table as the
Python Boolean values, True or False. However, tconfpy accepts user statements that set the value of
the Boolean in a number of formats:

Boolean True Boolean False
foo =1 foo = 0

foo = True foo = False
foo = Yes foo = No

foo = On foo = Off

This is the one case where tconfpy is insensitive to case - tRUE, TRUE, and true are all accepted, for
example.

NOTE HOWEVER: If the user wants to do a conditional test on the value of a Boolean they must observe
case and test for either True or False:

boolvar = No

TundraWare Inc. 30

TCONFPY(3) TCONFPY(3)

.if [boolvar] == False # This works fine
.1f [boolvar] == FALSE # This does not work - Case is not being observed
.1f [boolvar] == Off # Neither does this - Only True/False can be tested

As a practical matter, unless you actually need to do comparisons involving "True" and "False"
strings, it is best to use the Existential Conditionals to test the state of a boolean variable. See the section
entitled, Existential Conditionals And Booleans below, for the details.

The . include Directive
At any point in a configuration file, you can "include" another configuration file like this:

.include filename

In fact, you can use all the variable substitution and string concatenation features we’ve already discussed
to do this symbolically:

Base = MyConfig
Ver 1.01

.include [Base]-[Ver].cfg

The whitespace after the . include directive is mandatory to separate it from the file name. You can have
as many .include statements in your configuration file as you wish, and they may appear anywhere.
The only restriction is that they must appear on a line by themselves (with an optional comment).

Why bother? There are several reasons:

* This makes it easy to break up large, complex configurations into simpler (smaller) pieces. This gen-
erally makes things easier to maintain.

e This makes is easy to "factor" common configuration information into separate files which can then be
used by different programs as needed.

* The most common use for . include is to load a "standard" configuration for your program. Recall
that the last assignment of a variable’s value "wins". Suppose you want all the standard settings for a
program, but you just want to change one or two options. Instead of requiring each user to have the
whole set of standard settings in their own configuration file, the system administrator can make them
available as a common configuration. You then .include that file and override any options you
like:

Get the standard options
.include /usr/local/etc/MyAppStandardConfig.cfqg

Override the ones you like
ScreenColor Blue
Currency = Euros

This makes maintenance of complex configuration files much simpler. There is only one master copy
of the configuration that needs to be edited when system-wide changes are required.

TundraWare Inc. 31

TCONFPY(3) TCONFPY(3)

One last thing needs to be noted here. tconfpy does not permit so-called "circular" or "recursive" inclu-
sions. If file a . includes file b and file b . includes file a, you will have an infinite loop of inclusion,
which, uh ..., is a Bad Thing. So, the parser checks each time you attempt to open a new configuration file
to see if it’s already been processed. If it has, an error is produced, and the .include line that would
have caused a circular reference is ignored. Thereafter, the program will continue to process the remainder
of the configuration as usual.

Conditional Directives

One of the most powerful features of tconfpy is its "conditional processing" capabilities. The general
idea is to test some condition and include or exclude configuration information based on the outcome of
the test.

What’s the point? You can build large, complex configurations that test things like environment variables,
one of the Predefined Variables, or even a variable you’ve set previously in the configuration file. In other
words, resulting configuration is then produced in a way that is appropriate for that particular system, on
that particular day, for that particular user, ...

By using conditional directives, you can create a single configuration file that works for every user regard-
less of operating system, location, and so on.

There are two kinds of conditional directives. "Existential Conditionals" test to see if a configuration or
environment variable exists. Existential Conditionals pay no attention to the value of the variables in ques-

tion, merely whether or not those variables have been defined.

"Comparison Conditionals" actually compare two strings. Typically, one or more variable references
appear in the compared strings. In this case, the value of the variable is important.

The general structure of any conditional looks like this:
ConditionalDirective Argument(s)
This is included if the conditional was True
.else # Optional
This is included if the conditional was False
.endif # Required

Except for the whitespace after the conditional directive itself, whitespace is not significant. You may
indent as you wish.

Conditionals may also be "nested". You can have a conditional within another conditional or . else block:
ConditionalDirective Argument (s)
stuff
ConditionalDirective Argument (s)
more stuff

.endif

interesting stuff
.else

TundraWare Inc. 32

TCONFPY(3) TCONFPY(3)

yet more stuff

ConditionalDirective Argument (s)
other stuff
.endif

ending stuff
.endif

There are no explicit limits to how deeply you can nest a configuration. However, you must have an
.endif that terminates each conditional test. Bear in mind that tconfpy pays no attention to your
indentation. It associates an .endif with the last conditional it encountered. That’s why it’s a really
good idea to use some consistent indentation style so you can understand the logical structure of the condi-
tions. It’s also a good idea to put comments throughout such conditional blocks so it’s clear what is going
on.

There are a few general rules to keep in mind when dealing with conditionals:

* There must be whitespace between the conditional directive and its arguments (which may- or may not
have whitespace in them).

* As with any other kind of tconfpy statement, you may place comments anywhere at the end of a
conditional directive line or within the conditional blocks.

* Each conditional directive must have a corresponding .endif. If you have more conditionals than
.endifs or vice-versa, tconfpy will produce an error message to that effect. It can get compli-
cated to keep track of this, especially with deeply nested conditionals. It is therefore recommended
that you always begin and end conditional blocks within the same file. i.e., Don’t start a conditional in
one file and then . include another file that has the terminating .endif in it.

* The .else clause is optional. However, it can only appear after some preceding conditional direc-
tive.

* As in other parts of the tconfpy language, variable names and references in conditional directives
are always relative to the currently active namespace unless they are escaped with a leading period.
Similarly, in this context, Environment Variables, Predefined Variables, and the NAMESPACE Vari-
able are always relative to the root namespace, no matter what namespace is currently active.

Existential Conditional Directives
There are three Existential Conditionals: .1fall, .ifany, and .ifnone. Each has the same syntax:

ExistentialDirective varname
included if test was True

.else # optional
included if test was False

i

In other words, existential conditionals require one or more variable names. In each case, the actual con-
tent of that variable is ignored. The test merely checks to see if a variable by that name exists. Nothing

TundraWare Inc. 33

TCONFPY(3) TCONFPY(3)

else may appear on an existential conditional line, except, perhaps, a comment.
The three forms of existential conditional tests implement three different kinds of logic:
.ifall wvarl varz2

This is a logical "AND" operation. ALL of the variables, varl, var?2
must exist for this test to be True.

.ifany varl var2

This is a logical "OR" operation. It is True of ANY of the variables,

varl, var2 ... exist.

.ifnone wvarl var?2

This is a logical "NOR" operation. It is True only if NONE of the wvariables,

varl, var2 ... exist.

Here is an example:

FOO = 1
BAR = 2
z =0

.1fall FOO BAR
x =1
.endif

.ifany FOO foo fOo
y = 2
.endif
.ifnone BAR bar Bar SOmething
z=3
.endif
When t confpy finishes processing this, x=1, y=2, and z=0.

You can also use references to environment variables in an existential conditional test:

.ifany $MYPROGOPTIONS

options = [SMYPROGOPTIONS]
.else

options = -b20 -c23 -z -r
.endif

Finally, you can use variable references here to get the name of a variable to test by "indirection" (as we
saw in the previous section on accessing/setting variables indirectly). This should be used sparingly since it
can be kind of obscure to understand, but it is possible to do this:

TundraWare Inc. 34

TCONFPY(3) TCONFPY(3)

foo = MyVarName

.ifany [FOO]

.endif
This will test to see if either the variable MyVarName exists.
You can also do indirection through an environment variable. Use this construct with restraint - it can intro-
duce serious obscurity into your configuration file. Still, it has a place. Say the TERM environment variable
issetto vt100:

.ifany [STERM]

.endif

This will test to see if a variable called vt 100 exists in the symbol table. This is a handy way to see if you
have a local variable defined appropriate for the currently defined terminal, for instance.

Existential Conditionals And Booleans
As we’ve just seen, .ifall/any/none check to see if the variables named on the Right Hand Side
"exist". This is true for all kinds of variables, regardless of their type. For instance:
.1fall Booleanl Boolean2
.endif
Foo = Boolean3
.ifall [Foo]

.endif

The first conditional will be True only if both variables, Booleanl and Boolean? exist. Similarly, the
second conditional will be True only if Boolean3 exists.

However, when using indirection on a boolean variable (i.e. A variable that has been pre-defined to be a
boolean type by the calling program), the state of the boolean is returned. For example:

.1fall [Booleanl] [Boolean2]

.endif
In this case, the [Boolean. .] indirection is understood to mean, "Return the logical state of the boolean
variable in question". This allows the existential conditionals to act like logical operators when their targets
are boolean. In the example above, the test will only be True if both booleans are logically True.
You can even mix and match:

.1fall Booleanl [Boolean2]

.endif

TundraWare Inc. 35

TCONFPY(3) TCONFPY(3)

This conditional will be True only if Booleanl exists and Boolean?2 is True.

It’s worth mentioning just why the semantics of indirect boolean references are different than for other vari-
able types. If booleans were treated the same as other variables, then [Boolean] would return a string
representation of the boolean variable’s state - i.e., It would return "True" or "False". In effect, we
would be doing this:

.ifall/any/none True False True True False

This more-or-less makes no sense, since we’re checking to see if variables named "True" and "False" exist.
What does make a lot of sense is to use the state of a boolean variable to drive the conditional logic.

There is one other reason this feature is provided. Earlier versions of tconfpy did not have this feature -
booleans were treated like any other variable. This meant that doing logical tests on the state of the boolean
required a kind of tortuous construct using the Comparsion Conditionals (described in the next section):

Example of AND logic using Comparison Conditional

.1f [Booll] [Bool2] [Bool3] == TrueTrueTrue

.endif
This is ugly, hard to read, and hard to maintain. By contrast, the method just described allows booleans to
be used in their intended manner - to make logical choices. .ifall becomes a logical "AND" function.
.ifany becomes a logical "OR" function, and . ifnone becomes a logical "NOR" function when these

tests are applied to indirect boolean references.

Both methods of testing boolean state remain supported, so you can use the style most appropriate for your
application.

Comparison Conditional Directives
There are two Comparison Conditionals:

.if stringl == string2 # True if stringl and string2 are identical
.if stringl != string2 # True if stringl and string2 are different

As a general matter, you can put literal strings on both sides of such a test, but the real value of these tests
comes when you use variable references within the tested strings. In this case, the value of the variable
does matter. It is the variable’s value that is replaced in the string to test for equality or inequality:

MyName = Tconfpy

.if [MyName] == Tconfpy
MyAge = 100.1

.else
MyAge = Unknown

i
These are particularly useful when used in combination with the tconfpy Predefinded Variable or envi-

ronment variables. You can build configurations that "sense" what system is currently running and "adapt"
accordingly:

TundraWare Inc. 36

TCONFPY(3) TCONFPY(3)

AppFiles = MyAppFiles

.if [.OSNAME] == FreeBSD
files = [$SHOME]/ [AppFiles]
.endif

.if [.OSNAME] == Windows
files = [$USERPROFILE]\ [AppFiles]
.endif

.ifnone [files]
ErrorMessage = I don’t know what kind of system I am running!
.endif

The . literal Directive
By default, tconfpy only permits statements it "recognizes" in the configuration file. Anything else is
flagged as an unrecognized statement or "syntax error”. However, it is possible to "embed" arbitrary text in
a configuration file and have t confpy pass it back to the calling program without comment by using the
.literal directive. It works like this:

.literal
This is literal text that will be passed back.
.endliteral

This tells tconfpy to ignore everything between .1literal and .endliteral and just pass it back to
the calling program (in retval.Literals - see previous section on the tconfpy API). Literal text is
returned in the order it is found in the configuration file.

What good is this? It is a nifty way to embed plain text or even programs written in other languages within
a configuration file and pass them back to the calling program. This is especially handy when used in com-
bination with t confpy conditional features:

.if [.PLATFORM] == posix
.literal
We’re Running On A Unix-Like System
.endliteral

.else
.literal
We’re Not Running On A Unix-Like System
.endliteral

.endif

In other words, we can use t confpy as a "preprocessor” for other text or computer languages. Obviously,
the program has to be written to understand whatever is returned as literal text.

By default, tconfpy leaves text within the literal block completely untouched. It simply returns it as it
finds it in the literal block. However, the programmer can invoke tconfpy with an option (Literal-
Vars=True) that allows variable substitution within literal blocks. This allows you to combine the
results of your configuration into the literal text that is returned to the calling program. Here is how it
works:

TundraWare Inc. 37

TCONFPY(3) TCONFPY(3)

.ifall SUSER

Greeting = Hello [SUSER]. Welcome to [.MACHINENAME]!
.else

Greeting = Hello Random User. Welcome To Random Machine!
.endif

Now embed the greeting in a C program
.literal

#include <stdio.h>

main ()
{
printf (" [Greetingl");
}

.endliteral

If the calling program sets LiteralVars=True, the literal block will return a C program that prints the
greeting defined at the top of this example. If they use the default LiteralVars=False, the C program
would print [Greeting].

In other words, it is possible to have your literal blocks make reference to other configuration variables (and
Predefined or Environment Variables). This makes it convenient to combine both configuration information
for the program, and other, arbitrary textual information that the program may need, all in a single configu-
ration file.

Notice too that the # character can be freely included within a literal block. You don’t have to use a
Reserved Variable reference like [HASH] here because everything (including whitespace) inside a literal
block is left untouched.

If you fail to provide a terminating .endliteral, the program will treat everthing as literal until it
reaches the end of the configuration file. This will generate an appropriate warning, but will work as you
might expect. Everything from the .1literal directive forward will be treated literally. As a matter of

good style, you should always insert an explicit .endliteral, even if itis at the end of file.

Placing an .endliteral in the configuration file without a preceding .1literal will also generate a
warning message, and the statement will be ignored.

GOTCHAS
tconfpy is a "little language". It is purpose-built to do one and only one thing well: process configuration
options. Even so, it is complex enough that there are a few things that can "bite" you when writing these
configuration files:

* Probably the most common problem is attempting to do this:
foo = bar
.1f foo == bar

.endif

TundraWare Inc. 38

TCONFPY(3) TCONFPY(3)
But this will not work. tconfpy is very strict about requiring you to explicitly distinguish between
variable names and variable references.

The example above checks to see if the string foo equals the string bar - which, of course, it never
does.

What you probably want is to compare the value of variable £oo with some string:

foo = bar

.1f [foo] == bar

Londif
Now you’re comparing the value of the variable £ oo with the string bar.
This was done for a very good reason. Because you have to explicitly note whether you want the
name or value of a variable (instead of having t confpy infer it from context), you can mix both lit-
eral text and variable values on either side of a comparison or assignment:

foo = bar

foo[foo]foo = bar # Means: foobarfoo = bar

.if foo[foo] == foobar # Means: .if foobar == foobar

* Namespaces are a handy way to keep configuration options organized, especially in large or complex
configurations. However, you need to keep track of the current namespace when doing things:

foo = bar

[NS-NEW]

.1f [foo] == something # Checks value of NS-NEW.foo - will cause error
since no such variable exists

* Remember that "last assignment wins" when setting variable values:
myvar = 100
a long configuration file
myvar = 200
At the end of all this, myvar will be set to 200. This can be especially annoying if you .include a

configuration file after you’ve set a value and the included file resets it. As a matter of style, it’s best
to do all the . includes at the top of the master configuration file so you won’t get bitten by this one.

. Remember that case matters. Foo, foo, and £00 are all different variable names.

TundraWare Inc. 39

TCONFPY(3) TCONFPY(3)

* Remember that all variable references are string replacements no matter what the type of the variable
actually is. tconfpy type and value enforcement is used to return the proper value and type to the
calling program. But within the actual processing of a configuration file, variable references (i.e., the
values of variables) are always treated as strings.

. It is possible to load your own, user-defined, type in the variable descriptor object when you pre-
define a symbol table to be passed to the parser. The problem is that this is more-or-less useless. The
parser attempts to coerce data assignments in the configuration into the specified type. But, using only
the assignment statements available in this language, you cannot define values in a meaningful way for
user-defined types. So, assignment of user-defined variable types will always fail with a type error.
Again, tconfpy is designed as a small configuration processing language, not as a general purpose
programming language. In short, user-defined types are not supported in the variable descriptor pro-
cessing and will always cause a type error to occur.

ADVANCED TOPICS FOR PROGRAMMERS

Here are some ideas on how you might combine t confpy features to enhance your own applications.

Guaranteeing A Correct Base Configuration
While it is always nice to give users lots of "knobs" to turn, the problem is that the more options you give
them, the more they can misconfigure a program. This is especially a problem when you are doing techni-
cal support. You’d really like to get them to a "standard" configuration and then work from there to help
solve their problem. If your write your program with this in mind, tconfpy gives you several ways to
easily do this:

e Provide a "standard" system-, or even, enterprise-wide configuration file for your application. This file
presumably has all the program options set to "sane" values. All the user has to do is create a configu-
ration file with one line in it:

.include /wherever/the/standard/config/file/is

e Predefine every option variable the program will support. Populate the initial symbol table passed to
ParseConfig() with these definitions. By properly setting the Type, LegalVals, and
Min/Max for each of these variables ahead of time, you can prevent the user from ever entering
option values that make no sense or are dangerous.

* Make sure ever program option has a reasonable Default value in its variable descriptor. Recall that
this attribute is provided for the programmer’s convenience. (When a variable descriptor is first
instantiated, it defaults to a string type and sets the default attribute to an empty string. However, you
can change both type and default value under program control.) If you predefine a variable in the ini-
tial symbol table passed to the parser, tconfpy will leave this attribute alone. However, variables
that are created for the first time in the configuration file will have this attribute set to the first value
assigned to the variable. Now provide a "reset" feature in your application. All it has to do is scan
through the symbol table and set each option to its default value.

Enforcing Mandatory Configurations
The tconfpy type and value validation features give you a handy way to enforce what the legal values for
a particular option may be. However, you may want to go further than this. For instance, you may only
want to give certain classes of users the ability to change certain options. This is easily done. First, prede-
fine all the options of interest in the symbol table prior to calling the tconfpy parser. Next, have your
program decide which options the current user is permitted to change. Finally, mark all the options they

TundraWare Inc. 40

TCONFPY(3) TCONFPY(3)

may not change as "Read Only", by setting the "Writeable" attribute for those options to False. Now call
the parser.

This general approach allows you to write programs that support a wide range of options which are
enabled/disabled on a per-user, per-machine, per-domain, per-ip, per-company... basis.

Iterative Parsing

There may be situations where one "pass" through a configuration file may not be enough. For example,
your program may need to read an initial configuration to decide how to further process the remainder of a
configuration file. Although it sounds complicated, it is actually pretty easy to do. The idea is to have the
program set some variable that selects which part of the configuration file to process, and then call the
parser. When the parser returns the symbol table, the program examines the results, makes whatever adjust-
ments to the symbol table it needs to, and passes it back to the parser for another "go". You can keep doing
this as often as needed. For instance:

Program calls the parser with PASS set to 1

.1f [PASS] ==
Do 1lst Pass Stuff
.endif

Program examines the results of the first pass, does
what is has to, and sets PASS to 2

.1f [PASS] ==
Do 2nd Pass Stuff
.endif

And so on

In fact, you can even make this iterative parsing "goal driven". The program can keep calling the parser,
modifing the results, and calling the parser again until some "goal" is met. The goal could be that a partic-
ular variable gets defined (like CONFIGDONE). The goal might be that a variable is set to a particular value
(like, SYSTEMS=3).

It might even be tempting to keep parsing iteratively until t confpy no longer returns any errors. This is
not recommended, though. A well-formed configuration file should have no errors on any pass. Iterating
until tconfpy no longer detects errors makes it hard to debug complex configuration files. It is tough to
distinguish actual configuration errors from errors would be resolved in a future parsing pass.

INSTALLATION
There are three ways to install tconfpy depending on your preferences and type of system. In each of
these installation methods you must be logged in with root authority on Unix-like systems or as the Admin-
istrator on Win32 systems.

Preparation - Getting And Extracting The Package
For the first two installation methods, you must first download the latest release from:

TundraWare Inc. 41

TCONFPY(3) TCONFPY(3)

http://www.tundraware.com/Software/tconfpy/
Then unpack the contents by issuing the following command:

tar -xzvfi py-tconfpy-X.XXX.tar.gz (where X.XXX is the version number)
Win32 users who do not have tar installed on their system can find a Windows version of the program at:

http://unxutils.sourceforge.net/

Install Method #1 - All Systems (Semi-Automated)
Enter the directory created in the unpacking step above. Then issue the following command:

python setup.py install
This will install the t confpy module and compile it.

You will manually have to copy the ’test-tc.py’ program to a directory somewhere in your executable path.
Similarly, copy the documentation files to locations appropriate for your system.

Install Method #2 - All Systems (Manual)
Enter the directory created in the unpacking step above. Then, manually copy the tconfpy.py file to a direc-
tory somewhere in your PYTHONPATH. The recommended location for Unix-like systems is:
.../pythonX.Y/site-packages
For Win32 systems, the recommended location is:

...\PythonX.Y\lib\site-packages

Where X.Y is the Python release number.

You can precompile the t confpy module by starting Python interactively and then issuing the command:
import tconfpy

Manually copy the ’test-tc.py’ program to a directory somewhere in your executable path. Copy the docu-
mentation files to locations appropriate for your system.

Install Method #3 - FreeBSD Only (Fully-Automated)
Make sure you are logged in as root, then:

cd /usr/ports/devel/py-tconfpy
make install

This is a fully-automated install that puts both code and documentation where it belongs. After this com-
mand has completed you’ll find the license agreement and all the documentation (in the various formats) in:

/usr/local/share/doc/py-tconfpy

TundraWare Inc. 42

TCONFPY(3) TCONFPY(3)

The 'man’ pages will have been properly installed so either of these commands will work:

man tconfpy
man test-tc

Bundling t confpy With Your Own Programs
If you write a program that depends on tconfpy you’ll need to ensure that the end-users have it installed
on their systems. There are two ways to do this:

e Tell them to download and install the package as described above. This is not recommended since you
cannot rely on the technical ability of end users to do this correctly.

* Just include 'tconfpy.py’ in your program distribution directory. This ensures that the module is avail-
able to your program regardless of what the end-user system has installed.

THE tconfpy MAILING LIST
TundraWare Inc. maintains a mailing list to help you with your tconfpy questions and bug reports. To
join the list, send email to majordomo@tundraware.com with a single line of text in the body (not the
Subject line) of the message:

subscribe tconfpy-users your-email-address—-goes-here

You will be notified when your subscription has been approved. You will also receive detailed information
about how to use the list, access archives of previous messages, unsubscribe, and so on.

OTHER
tconfpy requires Python 2.3 or later.

BUGS AND MISFEATURES

None known as of this release.

COPYRIGHT AND LICENSING
tconfpy is Copyright (c) 2003-2005 TundraWare Inc. For terms of use, see the tconfpy-license.txt file in
the program distribution. If you install tconfpy on a FreeBSD system using the ’ports’ mechanism, you
will also find this file in /usr/local/share/doc/py-tconfpy.

AUTHOR
Tim Daneliuk
tconfpy@tundraware.com

DOCUMENT REVISION INFORMATION
$1d: tconfpy.3,v 1.159 2005/01/20 09:32:57 tundra Exp $

TundraWare Inc. 43

