|
| piecewise_cubic_spline_creator () |
|
| piecewise_cubic_spline_creator (const index_type &ns) |
|
| piecewise_cubic_spline_creator (const piecewise_cubic_spline_creator< data_type, dim__, tolerance_type > &pcc) |
|
void | get_segment_control_points (point_type &cp0, point_type &cp1, point_type &cp2, point_type &cp3, const index_type &i) const |
|
void | set_segment_control_points (const point_type &cp0, const point_type &cp1, const point_type &cp2, const point_type &cp3, const index_type &i) |
|
void | set_segment_point_slope (const point_type &p0, const point_type &m0, const point_type &p1, const point_type &m1, const index_type &i) |
|
virtual bool | create (piecewise< bezier, data_type, dim__, tolerance_type > &pc) const |
|
template<typename point_it__ > |
void | set_chip (point_it__ itb, const eli::geom::general::continuity &end_cont) |
|
template<typename point_it__ > |
void | set_cardinal (point_it__ itb, const data__ &c, const eli::geom::general::continuity &end_cont) |
|
template<typename point_it__ > |
void | set_catmull_rom (point_it__ itb, const eli::geom::general::continuity &end_cont) |
|
template<typename point_it__ > |
void | set_kochanek_bartels (point_it__ itb, const data__ &tension, const data__ &bias, const data__ &continuity, const eli::geom::general::continuity &end_cont) |
|
template<typename point_it__ > |
void | set_cubic_spline (point_it__ itb) |
|
template<typename point_it__ > |
void | set_clamped_cubic_spline (point_it__ itb, const point_type &start_slope, const point_type &end_slope) |
|
template<typename point_it__ > |
void | set_natural_cubic_spline (point_it__ itb) |
|
template<typename point_it__ > |
void | set_closed_cubic_spline (point_it__ itb) |
|
template<typename point_it__ > |
void | set_periodic_cubic_spline (point_it__ itb) |
|
| piecewise_creator_base (index_type n, const data_type &tt0) |
|
| piecewise_creator_base (const piecewise_creator_base< data_type, dim__, tolerance_type > &pcb) |
|
virtual | ~piecewise_creator_base () |
|
index_type | get_number_segments () const |
|
void | set_number_segments (const index_type &ns) |
|
void | set_t0 (const data_type &tt0) |
|
data_type | get_t0 () const |
|
void | set_segment_dt (const data_type &dtt, const index_type &i) |
|
data_type | get_segment_dt (const index_type &i) const |
|
template<typename data__, unsigned short dim__, typename tol__>
template<typename point_it__ >
This creates a 3rd order piecewise Bezier curve that interpolates the given points using a cardinal spline. The cardinal spline requires a tension parameter which controls to strength of the slopes. The end slopes use the same tension term, but are one-sided differences unless the end condition is C1-continuous, in which the standard slope algorithm is used. The resulting piecewise curves are C1 continuous.
template<typename data__, unsigned short dim__, typename tol__>
template<typename point_it__ >
This creates a 3rd order piecewise Bezier curve that interpolates the given points with Piecewise Cubit Hermite Interpolating Polynomials. The slopes at the joints are approximated via 2nd order finite differences. Interior slopes are calculated using central differences. The end slopes are either one-sided differences unless the end condition is C1-continuous, in which case central difference is used. The resulting piecewise curves are C1 continuous.
template<typename data__, unsigned short dim__, typename tol__>
template<typename point_it__ >
This creates a 3rd order piecewise Bezier curve that interpolates the given points using a Kochanek-Bartels spline. The Kochanek-Bartels spline requires three terms (tension, bias and continuity) that control the shape of the curve near the knots. The end slopes use the same tension, bias and continuity terms, but only use half of the slope term unless the end condition is C1-continuous, in which the standard slope algorithm is used. The resulting piecewise curves are C1 continuous.