XDS Family of Products

ISO Modula-2 Library Reference

%CELSIOR

http://www.excelsior-usa.com

Copyright(©) 1999-2001 Excelsior, LLC. All rights reserved.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Excelsior, LLC.

Excelsior’s software and documentation have been tested and reviewed. Nevertheless, Ex-
celsior makes no warranty or representation, either express or implied, with respect to the
software and documentation included with Excelsior product. In no event will Excelsior
be liable for direct, indirect, special, incidental or consequential damages resulting from
any defect in the software or documentation included with this product. In particular, Ex-
celsior shall have no liability for any programs or data used with this product, including
the cost of recovering programs or data.

XDS is a trademark of Excelsior, LLC.

All trademarks and copyrights mentioned in this documentation are the property of their
respective holders.

Contents

1 Input/Output 1
1.1 Standard and DefaultChannels 3
1.1.1 Module StdChans. 3

1.2 Readingand WritingofData 6
1.2.1 Modules TextlO and STextlO. 6
1.2.2 Modules WholelO and SWholelO. 9
1.2.3 Modules ReallO, SReallO, LonglO, and SLongIlO. . . 12
1.2.4 ModulesRawlOandSRawlO 17
1.25 ModulelOConsts 18
1.2.6 Modules IOResultand SIOResult. 19

1.3 Device-Independent Channel Operations. 19
1.3.1 ModulelOChan. 20
1.3.2 Module IOChan - Text Operations. 20
1.3.3 Module IOChan - Raw Operations. 24
1.3.4 Module IOChan - Common Operations. 26
1.3.5 Module IOChan - Accessto Read Results. 27
1.3.6 Module IOChan - Channel Enquiries 28
1.3.7 Module I0Chan - Exceptions and Device Errors. . . . 28

1.4 Obtaining Channels from Device Modules 30
1.41 ModuleChanConsts 30
1.4.2 Module StreamFile 35
143 ModuleSegFile 37
144 ModuleRndFile. 42
1.45 Module TermFile. 47
1.4.6 Module ProgramArgs. 49

1.5 Interface to Channels for New Device Modules. 50
1.51 ModulelOLink. 50

2 Mathematical 57
2.1 Modules RealMath and LongMath. 57

2.2 Modules ComplexMath and LongComplexMath 61

CONTENTS

Concurrent Programming 67
3.1 ModuleProcesses. 67
3.1.1 TypesofProcesses. 69
3.1.2 The Proceduresof Processes. 69
3.2 Module Semaphores. o 77
String Manipulation 81
4.1 Module Strings. 81
String Conversions 99
51 CommonDataTypes v v 99
51.1 ModuleConvTypes. 99
5.2 High-Level String Conversion Modules 100
5.2.1 EXAMPLE - Conversion of strings read by ReadToken101
5.2.2 ModuleWholeStr 102
5.2.3 Modules RealStrand LongStr. 104
5.3 Low-Level String Conversion Modules. 107
53.1 EXAMPLE-UseofScanint 107
5.3.2 Module WholeConv. 108
5.3.3 Modules RealConvandLongConv 112
Miscellaneous 117
6.1 ModuleCharClass. 117
6.2 Modules LowRealandLowLong. 119
6.3 ModuleStorage 126
6.4 Module SysClock 129

6.4.1 The Constants and Types of SysClack 129

Chapter 1

Input/Output

The input/output library defined in this chapter provides facilities for reading and
writing of data streams over one or markannels Channels are connected to
sources of input data, or to destinations of output data, knowleésesor device
instancesThere is a separation between modules that are concerned with device-
independent operations, such as reading and writing, and modules concerned with
device-dependent operations, such as making connections to named files. This
separation allows the library to be extended to work with new devices. The module
structure of the library is depicted in the following figure.

The figure will be available in the final release

Channels already open to standard sources and destinations can be identified using
procedures provided by the mod&dChans . This module also provides for

the identification and selection of channels used by default for input and output
operations.

The modulegextlO , WholelO , ReallO , andLonglO , provide facilities that

allow the reading and writing of high-level units of data, ustegt operations

on channels specified explicitly by a parameter. These high-level units include
characters, strings, and whole numbers and real numbers in decimal notation. The
moduleRawlO provides facilities for reading and writing of arbitrary data types,
usingraw (binary) operation®n explicitly specified channels.

Text operations produce or consume data streams as sequences of characters and
line marks. Raw operations produce or consume data streams as sequences of
storage locations (i.e. as arrays whose component typgESIEM.LOCG.

The library allows devices to support both text and raw operations on a single
channel, although this behaviour is not required.

2 CHAPTER 1. INPUT/OUTPUT

The moduldOResult provides the facility for a program to determine whether
the last operation to read data from a specified input channel found data in the
required format.

Corresponding to th€extlO group of modules is a group of modulg¥extlO |,
SWholelO, SReallO , SLonglO , SRawlO andSIOResult . The prefix'S"

serves as an abbreviation f&8imple" . The procedures exported from this
group do not take parameters identifying a channel. They operate on the default
input and output channels, as identified by the mo@itkChans .

The modulelOConsts defines types and constants usedI®GRresult and
SIOResult

The device moduleStreamFile , SeqFile , RndFile ,andTermFile pro-

vide facilities that allow a channel to be opened to a named stream, to a rewindable
sequential file, to a random access file, or to a terminal device respectively. The
device moduleProgramArgs provides an open channel from which program
arguments may be read. Device specific operations, such as positioning within a
random access file, are also defined by the appropriate device module.

The moduleChanConsts defines the constants and types used in those device
module procedures that open channels.

The primitive device-independent operations on channels are provided by the
modulelOChan.

The modulelOChan defines general input/output library exception values that
may be raised when using any device through a channel. Device errors, such as
a hardware read/write error, are reported by raising one of the general exception
values, and providing an implementation-defined error number. Exception values
associated with device- specific operations are defined by the appropriate device
module.

The moduldOLink provides facilities that allow a user to provide further spe-
cialized device modules for use with channels, following the pattern of the rest of
the library.

NOTE:

Partial implementations of the input/output library may provide modules selected
exclusively from the grousTextlO , SWholelO , SReallO , andSLongIO ,
normally with SIOResult andlOConsts . If any other module is provided,
the moduldOChan must also be provided, in accordance with the import depen-
dencies between the definition modules of the library.

1.1. STANDARD AND DEFAULT CHANNELS 3

1.1 Standard and Default Channels

Standard channeldo not have to be opened by a client program since they are
already open and ready for use. Under some operating systems they may be con-
nected to sources and destinations specified before the program is run, while on a
stand-alone system they may be connected to a console terminal.

No method is provided for closing a standard channel, and the values used to
identify standard channels are constant throughout the execution of the program.

Default channelsre channels whose identities have been stored as those to be
used by default for input and output operations. Initially these correspond to the
standard channels, but their values may be varied to obtain the effect of redirec-
tion.

1.1.1 Module StdChans

The moduleStdChans defines functions that identify channels already open

to implementation-defined sources and destinations of standard input, standard
output, and standard error output. Access to a ‘null device’ is provided to allow
unwanted output to be suppressed. The null device throws away all data written
to it, and gives an immediate end of input indication on reading.

The moduleStdChans provides procedures for identification and selection of
the channels used by default for input and output operations.

ChanID Channel identity

TYPE
Chanld = I0Chan.Chanld;

The typelOChan.Chanld which is used to identify channels is reexported.

StdInChan Get standard input channel id

PROCEDURE StdInChan (): Chanld;

The function procedur&tdinChan returns a value identifying a channel open
to the implementation-defined standard source for program input.

4 CHAPTER 1. INPUT/OUTPUT

StdOutChan Get standard output channel id

PROCEDURE StdOutChan (): Chanld;

The function procedur8tdOutChan returns a value identifying a channel open
to the implementation-defined standard destination for program output.

|StdErrChan Get standard error channel id|

PROCEDURE StdErrChan (): Chanid;

The function procedur8tdErrChan returns a value identifying a channel open
to the implementation-defined standard destination for program error messages.

'NullChan Get null device channel id|

PROCEDURE NullChan (): Chanid,

The function procedurBlullChan returns a value identifying a channel open to
the null device.

NOTE:

The null device supports all operations by discarding all data written to it, or by
giving an immediate end of input indication on reading.

InChan Get current default input channel id

PROCEDURE InChan (): Chanld;

The function procedurtnChan returns the identity of the current default input
channel. This is the channel used by input procedures that do not take a channel
parameter. Initially this is the value returned 8dInChan .

1.1. STANDARD AND DEFAULT CHANNELS 5

OutChan Get current default output channel id

PROCEDURE OutChan (): Chanld;

The function procedur®utChan returns the identity of the current default output
channel. This is the channel used by output procedures that do not take a channel
parameter. Initially this is the value returned 8idOutChan .

[ErrChan Get current default error channel id|

PROCEDURE ErrChan (): Chanld;

The function procedurErrChan returns the identity of the current default out-
put channel for program error messages. Initially this is the value returned by
StdErrChan

SetinChan Set current default input channel

PROCEDURE SetInChan (cid: Chanld);

The proceduré&etinChan sets the current default input channel to that identi-
fied bycid .

SetOutChan Set current default output channel

PROCEDURE SetOutChan (cid: Chanld);

The procedur&etOutChan sets the current default output channel to that iden-
tified by cid .

SetErrChan Set current default output channel

PROCEDURE SetErrChan (cid: Chanld);

The procedurésetErrChan sets the current default output channel for error
messages to that identified byl .

6 CHAPTER 1. INPUT/OUTPUT

1.2 Reading and Writing of Data

The moduleTextlO provides facilities for input and output of characters, char-
acter strings, and line marks, using text operations.

The moduléWholelO provides facilities for input and output of whole numbers
in decimal text form.

The moduleRReallO andLonglO provide facilities for input and output of real
numbers in decimal text form.

The moduleRawlO provides facilities for direct input and output of data, using
raw operations (i.e. without any interpretation).

The input procedures of the modul&sxtlO , WholelO , ReallO , LonglO ,

and RawlO are sufficient for use where the format of the input data is known.
Since, in practice, their use may be inconsistent with the format of the input data,
they have the effect of setting‘eead result’ for the used channel. The module
IOResult provides the facility for obtaining the read result applicable to the
most recent input operation on a given channel.

In all cases, channels are selected explicitly by passing an actual parameter of the
typeChanld to the procedures of these modules.

The modulesSTextlO , SWholelO, SReallO , SLonglO, SRawlO, and
SIOResult provide the set of similar procedures set that operate over default
input and output channels, and so do not take a parameter identifying a channel.

1.2.1 Modules TextlO and STextlO

The moduleTextlO provides facilities for input and output of characters, char-
acter strings, and line marks, using text operations.

The procedures of the moduBTextlO behave as the corresponding procedures
of the moduleTextlO , except that input is taken from the default input channel,
and output is sent to the default output channel.

'ReadChar Read a character|

PROCEDURE ReadChar (cid: I0Chan.Chanld; VAR ch: CHAR);
PROCEDURE ReadChar (VAR ch: CHAR);

If there is a character next in the input stream identifiectioly , the procedure

1.2. READING AND WRITING OF DATA 7

ReadChar removes it from the stream and assigns its valughtpotherwise the
value ofch is not defined. The read result for the channel is set to the value

allRight if a character is read;
endOfLine if no character is read, the next item being a line mark;

endOflnput if no character is read, the input stream having ended.

'ReadRestLine Read rest of line|

PROCEDURE ReadRestLine (cid: 10Chan.Chanld;
VAR s: ARRAY OF CHAR);
PROCEDURE ReadRestLine (VAR s: ARRAY OF CHAR);

If there is a character next in the input stream identifiectioly , the procedure
ReadRestLine reads a string of characters; reading continues as long as there
are still characters before the next line mark or the end of the stream. As much
of the string as can be accommodated is copiesl & a string value. The read
result for the channel is set to the value

allRight if s is not empty and accomodates all of the string that has been read;
outOfRange if s is not empty but does not accommodate all of the string;
endOfLine if s is empty, the next item being a line mark;

endOflnput if s is empty, the input stream having ended.

ReadString Read a string

PROCEDURE ReadString (cid: I0Chan.Chanld;
VAR s: ARRAY OF CHAR);
PROCEDURE ReadString (VAR s: ARRAY OF CHAR);

If there is a character next in the input stream identifiectioly , the procedure
ReadString reads a string of characters; reading continues as long as there are
still characters before the next line mark or the end of the stream and the capacity
of s has not been exhausted. The string is copiexl s a string value. The read
result for the channel is set to the value

8 CHAPTER 1. INPUT/OUTPUT

allRight if s is not empty;
endOfLine if s is empty, the next item being a line mark;

endOflnput if s is empty, the input stream having ended.

ReadToken Read a space-delimited token

PROCEDURE ReadToken (cid: 10Chan.Chanid;
VAR s: ARRAY OF CHAR);
PROCEDURE ReadToken (VAR s: ARRAY OF CHAR);

The procedurdReadToken first skips any leading spaces in the input stream
identified bycid . If the next item is a character, a string of characters is read,;
reading continues as long as there are still non-space characters before the next
line mark or the end of the stream. As much of the string as can be accommodated
is copied tos as a string value. The read result for the channel is set to the value

allRight if s is not empty and accomodates all of the string that has been read;
outOfRange if s is not empty but does not accommodate all of the string;
endOfLine if s is empty, the next item being a line mark;

endOflnput if s is empty, the input stream having ended.

SkipLine Skip rest of input line

PROCEDURE SkipLine (cid: 10Chan.Chanld);
PROCEDURE SkipLine ();

The procedur&kipLine reads successive items from the input stream identified
by cid up to and including the next line mark, or until the end of the stream is
reached.

The read result for the channel is set to the value

allRight if a line mark is read;

1.2. READING AND WRITING OF DATA 9

endOflnput if no line mark is read, the input stream having ended.

\WriteChar Write a character|

PROCEDURE WriteChar (cid: 10Chan.Chanid; ch: CHAR);
PROCEDURE WriteChar (ch: CHAR);

The procedur&VriteChar writes the charactezh to the output stream identi-
fied bycid .

'WriteLn Write a line mark]|

PROCEDURE WriteLn (cid: IOChan.Chanld);
PROCEDURE WriteLn ();

The proceduréNriteLn writes a line mark to the output stream identified by
cid .

WriteString Write a string

PROCEDURE WriteString (cid: 10Chan.Chanld,;
s: ARRAY OF CHAR);
PROCEDURE WriteString (s: ARRAY OF CHAR);

The procedur&VriteString writes the string value iis to the output stream
identified bycid .

1.2.2 Modules WholelO and SWholelO

The moduléWVholelO provides facilities for input and output of whole numbers
in decimal text form.

The text form of a signed whole number is

['+" | "-"], decimal digit, {decimal digit}

10 CHAPTER 1. INPUT/OUTPUT
The text form of an unsigned whole number is
decimal digit, {decimal digit}

The procedures of the modu&WVholelO behave as the corresponding proce-
dures of the modul&/holelO , except that input is taken from the default input
channel, and output is sent to the default output channel.

|ReadInt Read an INTEGER value|

PROCEDURE ReadInt (cid: 10Chan.Chanid;
VAR int: INTEGER);
PROCEDURE ReadInt (VAR int: INTEGER);

The procedur®keadint skips any leading spaces from the input stream identi-
fied bycid , and then reads characters that form a signed whole number. The read
result for the channel is set to the value

allRight if a signed whole number is read, and its value is in the range of the
type INTEGER the value of this number is assignedrno ;

outOfRange if a signed whole number is read, but its value is out of range
of the typeINTEGER the valueMAX(INTEGER) or MIN(INTEGER) is
assigned tant according to the sign of the number;

wrongFormat if there are characters read or to be read, but these are not in the
format of a signed whole number; the valuamtf is not defined;

endOfLine if no characters are read, the next item being a line mark; the value
of int is not defined;

endOflnput if no characters are read, the input having ended; the valum of
is not defined.

1.2. READING AND WRITING OF DATA 11

\Writelnt Write an INTEGER value|

PROCEDURE Writelnt (cid: 10Chan.Chanld,;
int: INTEGER,;
width: CARDINAL);

PROCEDURE Writelnt (int: INTEGER,;
width: CARDINAL);

The procedur&Vritelnt writes the value oint to the output stream identified

by cid in text form, with leading spaces as required to make the number of char-
acters written at least that given bydth . A sign is written only for negative
values. In the special case of a value of zeroNmth , exactly one leading space

IS written.

'ReadCard Read a CARDINAL value|

PROCEDURE ReadCard (cid: IOChan.Chanld;
VAR card: CARDINAL);
PROCEDURE ReadCard (VAR card: CARDINAL);

The procedur&®eadCard skips any leading spaces from the input stream identi-
fied bycid , and then reads characters that form an unsigned whole number. The
read result for the channel is set to the value

allRight if an unsigned whole number is read, and its value is in the range of
the typeCARDINAL the value of the number is assignecctrd ;

outOfRange if a signed whole number is read, but its value is out of range of
the values of the typEARDINAL the valueMAX(CARDINAL)is assigned
to card ;

wrongFormat if there are characters read or to be read, but these are not in the
format of an unsigned whole number; the valueafd is not defined;

endOfLine if no characters are read, the next item being a line mark; the value
of card is not defined;

endOflnput if no characters are read, the input having ended; the value of
card is not defined.

12 CHAPTER 1. INPUT/OUTPUT

\WriteCard Write a CARDINAL value|

PROCEDURE WriteCard (cid: 10Chan.Chanid;
card: CARDINAL;
width: CARDINAL);

PROCEDURE WriteCard (card: CARDINAL;
width: CARDINAL);

The procedur&VriteCard writes the value otard to the output stream iden-
tified by cid in text form, with leading spaces as required to make the number of
characters written at least that givenwidth . In the special case of a value of
zero forwidth , exactly one leading space is written.

1.2.3 Modules ReallO, SReallO, LonglO, and SLonglO

The modulefkeallO andLonglO provide facilities for input and output of real
numbers in decimal text form.

In the case oReallO , real number parameters are of the tRIeAL In the case
of LonglO , real number parameters are of the tyj@@NGREAL

The semantics of the two modules are the same, except that when module
ReallO refers to real number values, these values are of the Rfp&L, and

when moduld_onglO refers to real number values, these values are of the type
LONGREAL

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
the two modules.

The text form of a signed fixed-point real number is

"+" | "-"], decimal digit, {decimal digit},
[*.", {decimal digit}]

The text form of a signed floating-point real number is

signed fixed-point real number,
"E"|"e", ["+" | "-"], decimal digit, {decimal digit}

1.2. READING AND WRITING OF DATA 13

The procedures of the moduBReallO behave as the corresponding procedures
of the moduleReallO , except that input is taken from the default input channel,
and output is sent to the default output channel.

The procedures of the modu.onglO behave as the corresponding procedures
of the moduld_onglO , except that input is taken from the default input channel,
and output is sent to the default output channel.

'ReadReal Read a real value|

PROCEDURE ReadReal (cid: 10Chan.Chanld,;
VAR real: REAL);
PROCEDURE ReadReal (cid: IOChan.Chanld;
VAR real: LONGREAL);
PROCEDURE ReadReal (VAR real: REAL);
PROCEDURE ReadReal (VAR real: LONGREAL);

The procedur&keadReal skips any leading spaces from the input stream iden-
tified by cid , and then reads characters that form a signed fixed or floating point
number. The read result for the channel is set to the value

allRight if a signed real number is read, and its value is in the range of the
type ofreal ;the value of this number is assignedéal ;

outOfRange if a signed real number is read, but its value is out of range of
the type ofreal ; the maximum or minimum value of the type i&al is
assigned toeal according to the sign of the number;

wrongFormat if there are characters read or to be read, but these characters are
not in the format of a signed real number; the valueeail is not defined;

endOfLine if no characters are read, the next item being a line mark; the value
of real is not defined;

endOflnput if no characters are read, the input having ended; the value of
real is not defined.

14 CHAPTER 1. INPUT/OUTPUT

WriteFloat Write a real value in floating-point format

PROCEDURE WriteFloat (cid: IOChan.Chanld;
real: REAL;
sigFigs: CARDINAL;
width: CARDINAL);

PROCEDURE WriteFloat (cid: IOChan.Chanld;
real: LONGREAL;
sigFigs: CARDINAL,;
width: CARDINAL);

PROCEDURE WriteFloat (real: REAL;
sigFigs: CARDINAL,;
width: CARDINAL);

PROCEDURE WriteFloat (real: LONGREAL,;
sigFigs: CARDINAL;
width: CARDINAL);

The procedur&VriteFloat writes the value ofeal to the output stream iden-
tified by cid in floating-point text form, with leading spaces as required to make
the number of characters written at least that givenvith . A sign is written
only for negative values. In the special case of a value of zerwiftth , exactly
one leading space is written.

One significant digit is included in the whole number part. The signed exponent
part is included only if the exponent value is not zero. If the valusigfigs
is greater than zero, that number of significant digits is included, otherwise an
implementation-defined number of significant digits is included. The decimal
point is not included if there are no significant digits in the fractional part.

The following table gives examples of output WriteFloat

sigFigs 3923009 39.23009 0.0003923009
1 4E+6 4E+1 4E-4
2 3.9E+6 3.9E+1 3.9E-14
5 3.9230E+6 3.9230E+1 3.9230E-4

1.2. READING AND WRITING OF DATA 15

WriteEng Write a real value in engineering format

PROCEDURE WriteEng (cid: I0Chan.Chanld;
real: REAL;
sigFigs: CARDINAL;
width: CARDINAL);

PROCEDURE WriteEng (cid: 10Chan.Chanld;
real: LONGREAL;
sigFigs: CARDINAL,;
width: CARDINAL);

PROCEDURE WriteEng (real: REAL;
sigFigs: CARDINAL,;
width: CARDINAL);

PROCEDURE WriteEng (real: LONGREAL,;
sigFigs: CARDINAL;
width: CARDINAL);

The procedur&VriteEng behaves as the procedufdriteFloat except that
the number is scaled with one to three digits in the whole number part, and with
an exponent that is a multiple of three.

The following table gives examples of output WriteEng

sigFigs 3923009 39.23009 0.0003923009
1 4E+6 40 400E-6
2 3.9E+6 39 390E-6
5 3.9230E+6 39.230 392.30E-6

16 CHAPTER 1. INPUT/OUTPUT

WriteFixed Write a real value in fixed-point format

PROCEDURE WriteFixed (cid: 10Chan.Chanld;
real: REAL;
place: INTEGER;
width: CARDINAL);
PROCEDURE WriteFixed (cid: 10Chan.Chanld;
real: LONGREAL,;
place: INTEGER;
width: CARDINAL);
PROCEDURE WriteFixed (real: REAL;
place: INTEGER;
width: CARDINAL);
PROCEDURE WriteFixed (real: LONGREAL;
place: INTEGER;
width: CARDINAL);

The procedur&VriteFixed writes the value ofeal to the output stream iden-
tified by cid in fixed-point text form with leading spaces as required to make the
number of characters written at least that givewligth . A sign is written only

for negative values. In the special case of a value of zerwidth , exactly one
leading space is written.

At least one digit is included in the whole number part. The value is rounded
to the given value oplace relative to the decimal point. The decimal point is
suppressed place is less than zero.

The following table gives examples of output WriteFixed

places 3923009 39.23009 0.0003923009
-5 3920000 0 0
-2 3923010 40 0
-1 3923009 39 0
0 39230089. 39. 0.
1 3923009.0 39.2 0.0

4 3923009.0000 39.2301 0.0004

1.2. READING AND WRITING OF DATA 17

\WriteReal Write a real value|

PROCEDURE WriteReal (cid: I0Chan.Chanld;
real: REAL;
width: CARDINAL);
PROCEDURE WriteReal (cid: 10Chan.Chanld;
real: LONGREAL;
width: CARDINAL);
PROCEDURE WriteReal (real: REAL,;
width: CARDINAL);
PROCEDURE WriteReal (real: LONGREAL,;
width: CARDINAL);

If the sign and magnitude of real can be expressed in a field givevidii , the
procedureWriteReal behaves as the proceduiériteFixed , with a value

of place chosen to fill exactly the remaining field. Otherwise it behaves as the
procedureWriteFloat , with a value ofsigFigs of at least one, limited to
those that can be included together with the sign and exponent part in the given
width .

In the special case of width of zero, the effect is as for the procedure
WriteFloat with a value ofsigFigs equal to zero.

1.2.4 Modules RawlO and SRawlO

The moduleRawlO provides facilities for direct input and output of data using
raw operations (i.e. without any interpretation).

The procedures of the modugRawlO behave as the corresponding procedures
of the moduleRawlO, except that input is taken from the default input channel,
and output is sent to the default output channel.

Read Read storage units

PROCEDURE Read (cid: 10Chan.Chanld,;
VAR to: ARRAY OF SYSTEM.LOC);
PROCEDURE Read (VAR to: ARRAY OF SYSTEM.LOC);

While the stream identified bgid is not exhausted, the procedlRead reads

18 CHAPTER 1. INPUT/OUTPUT

successive storage units from that channel, and assign them without interpretation
to successive componentstof. The read result for the channel is set to the value

allRight if items are read for all components;
wrongFormat if some items are read, but not for all components;

endOflnput if no items are read, the input having ended.

Write Write storage units

PROCEDURE Write (cid: 10Chan.Chanid;
from: ARRAY OF SYSTEM.LOC);
PROCEDURE Write (from: ARRAY OF SYSTEM.LOC);

The procedur®Vrite writes successive componentd@m to the channel iden-
tified by cid , as storage units without interpretation.

1.2.5 Module IOConsts

The modulelOConsts defines the enumeration tyfpteadResults used to
express read results. Programs do not normally need to importi@&@onsts
directly, since client modules define identifiers that correspond to those defined
by this module.

'ReadResults Read result identities|
TYPE
ReadResults = (* This type is used to classify the result

of an input operation *)

(
notknown, (* no read result is set *)
allRight, (* data is as expected or as required *)
outOfRange, (* data cannot be represented *)
wrongFormat, (* data not in expected format *)
endOfLine, (* end of line seen before expected data *)
endOfinput (* end of input seen before expected data *)

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 19

1.2.6 Modules IOResult and SIOResult

The moduldOResult provides the facility for a program to determine whether
the last operation to read data from a specified input channel found data in the
required format.

The procedure of the modul®lOResult behaves as the corresponding proce-
dure of the moduléOResult , except that the read result for the default input
channel is returned.

NOTE:

The existence of the modulédOConsts allows the definition module
SIOResult to be independent of the modulé3Result andlOChan.

'ReadResults Read result identities|

TYPE
ReadResults = 10Consts.ReadResults;

The typelOConsts.ReadResults is re-exported.

ReadResult Get read result for channel|

PROCEDURE ReadResult (cid: 10Chan.Chanld): ReadResults;
PROCEDURE ReadResult (): ReadResults;

The function procedurBReadResult returns the stored read result for the chan-
nel identified bycid .

1.3 Device-Independent Channel Operations

The moduldOChan provides access to channel operations that are provided in a
device-independent manner for all channels.

Device-dependent operations (which include operations for opening new chan-
nels and subsequently closing them) are defined in the definition module for each
device.

20 CHAPTER 1. INPUT/OUTPUT

1.3.1 Module IOChan

The modulelOChan defines the hidden typ€hanld that is used to identify
channels throughout the input/output library, and provides facilities for device-
independent access to operations supported by the device to which a channel is
connected.

Chanld Channel identity

TYPE
Chanlid;

Values of this type are used to identify channels throughout the input/output li-
brary.

[InvalidChan Get an invalid channel id|

PROCEDURE InvalidChan (): Chanld;

The function procedurtnvalidChan returns the identity of the invalid chan-
nel.

NOTE:

The invalid channel is a channel on which no data transfer operations are available;
enquiries on the invalid channel indicate that this is the case. The identity of the
invalid channel can be used to initialize variables of the @panlid .

1.3.2 Module IOChan - Text Operations

Each of the following procedures invokes a corresponding operation for the device
associated with the given channel. If the associated device supports the operation
on the channel, the behaviour of the procedure conforms with the given descrip-
tion. The full behaviour is defined separately for each device.

These device operations producéeat stream A text stream is a sequence of
items, each of which corresponds either to a character or a line mark. The se-
guence may be empty.

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 21

The text operations provided by a device module perform any necessary trans-

lation between the internal representation (as a sequence of characters and line
marks) and the external representation used by the source or destination. This
may involve, for example, translation to and from escape sequences used in a
coded character set, mapping between the external and internal representation of
lines, or the interpretation of format effectors.

The interpretation of control characters is implementation-defined. The excep-
tion textParseError occurs (but need not be raised) if input data does not
correspond to a character or line mark.

If the device does not support the operation on the channel, it raises the exception
notAvailable

Look Invoke Look operation

PROCEDURE Look (cid: Chanid;
VAR ch: CHAR;
VAR res: 10Consts.ReadResults);

The proceduréook invokes theLook operation for the device that is associated
with the channel identified bgid .
NOTE:

If supported on the channel, the deviceok operation attempts to examine the
next item in the input stream for the channel identifiectlaly , without removing

it. If the next item is a character, its value is assignedhootherwise, the value

of ch is not definedres is set to the same value as the stored read result for the
channekid , this being:

allRight if a character is seen next;
endOfLine if no character is seen, the next item being a line mark;

endOflnput if no character is seen, the input having ended.

Skip Invoke Skip operation

PROCEDURE Skip (cid: Chanld);

The procedur&kip invokes theSkip operation for the device that is associated
with the channel identified bgid .

22 CHAPTER 1. INPUT/OUTPUT

NOTE:

If supported on the channel, the deviSkip operation attempts to remove the
next item in the input stream for the channel identifiectlay . If there is no next

item, the end of the input stream having been reached, the excegimAtEnd

is raised; otherwise the next character or line mark in the stream is removed, and
the stored read result for the channoel is set to the valuallRight

SkipLook Invoke SkipLook operation

PROCEDURE SkipLook (cid: Chanld;
VAR ch: CHAR;
VAR res: 10Consts.ReadResults);

The procedur&kipLook invokes theSkipLook operation for the device that
is associated with the channel identifieddg .

NOTE:

If supported on the channel, the devigkipLook operation attempts to remove
the next item in the input stream for the channel identifieccidy and then to
examine the following item without removing it. If there is no next item, the end
of the input stream having been reached, the excemgmAtEnd s raised,;
otherwise the next character or line mark in the stream is removed. If this is
followed by a character as the next item in the stream, its value is assigokd to
without removing the character from the stream; otherwise, the valcie o not
defined.res is setto the same value as the stored read result for the chadngl

this being:

allRight if a character is seen next;
endOfLine if no character is seen, the next item being a line mark;

endOflnput if no character is seen, the input having ended.

WriteLn Invoke WriteLn operation

PROCEDURE WriteLn (cid: Chanld);

The procedur&VriteLn invokes theWriteLn operation for the device that is
associated with the channel identifieddg .

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 23

NOTE: If supported on the channel, the devisgiteLn operation writes a line
mark to the output stream identified bid .

TextRead Invoke TextRead operation

PROCEDURE TextRead (cid: Chanld,;
to: SYSTEM.ADDRESS;
maxChars: CARDINAL;
VAR charsRead: CARDINAL);

The procedur@extRead invokes theTextRead operation for the device that
is associated with the channel identifiedddg .

NOTES:

e If supported on the channel, the devibextRead operation reads at most
maxChars characters from the current line on the input stream for the
channel identified bgid , and assigns their values to successive compo-
nents of an array variable of the character type for which the address of
the first component iso . The number of characters read is assigned to
charsRead . The read result for the chanmad is set to the value

allRight if ‘maxChars = charsRead = 0’ or
(‘'maxChars > 0’ and ‘charsRead > 0) ;
endOfLine if ‘maxChars > 0’ and ‘charsRead = 0O’ , the

next item being a line mark;

endOflnput if ‘maxChars > 0’ and ‘charsRead = 0’ , the
input having ended.

e The intention is to allow ‘sub-arrays’ to be selected, by passing the address
of a starting component within a larger array. An exception occurs, but
need not be raised, if the call leads to an attempt to access a non-existent
component of the larger array.

24 CHAPTER 1. INPUT/OUTPUT

TextWrite Invoke TextWrite operation

PROCEDURE TextWrite (cid: Chanld,;
from: SYSTEM.ADDRESS;
charsToWrite: CARDINAL);

The procedurdextWrite invokes theTextWrite operation for the device
that is associated with the channel identifiedci .

NOTES:

e If supported on the channel, the deviGextWrite operation copies
charsToWrite characters, from successive components of an array vari-
able of the character type, for which the address of the first component is
from , to the output stream for the channel identifieddi¢ . Copying
starts from the index given hyffset

e The intention is to allow ‘sub-arrays’ to be selected, by passing the address
of a starting component within a larger array. An exception occurs, but
need not be raised, if the call leads to an attempt to access a non-existent
component of the larger array.

1.3.3 Module IOChan - Raw Operations

Each of the following procedures invokes a corresponding operation for the device
associated with the given channel. If the associated device supports the operation
on the channel, the behaviour of the procedure conforms with the given descrip-
tion. The full behaviour is defined for each device module.

The raw operations provided by a device module transfer data location by location
with no translation or interpretation.

If the device does not support the operation on the channel, it raises the exception
notAvailable

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 25

RawRead Invoke RawRead operation

PROCEDURE RawRead (cid: Chanid;
to: SYSTEM.ADDRESS;
maxLocs: CARDINAL;
VAR locsRead: CARDINAL);

The proceduré&kawRead invokes theRawRead operation for the device that is
associated with the channel identifieddg .

NOTES

¢ If supported on the channel, the deviRawRead operation reads at most
maxLocs items from the input stream for the channel identifiedci ,
and assigns their values to successive components of an array variable of
the location type for which the address of the first componetu is The
number of items read is assignedlt@sRead . The read result for the
channel cid is set to the value

allRight if (‘maxLocs = locsRead = 0) or (‘maxLocs
> 0 and ‘locsRead > 0)

endOflnput if ‘maxLocs > 0’ and ‘locsRead = O’

e The intention is to allow ‘sub-arrays’ to be selected, by passing the address
of a starting component within a larger array. An exception occurs, but
need not be raised, if the call leads to an attempt to access a non-existent
component of the larger array.

RawWrite Invoke RawWrite operation

PROCEDURE RawWrite (cid: Chanld;
from: SYSTEM.ADDRESS;
locsToWrite: CARDINAL);

The procedur&kawWrite invokes theRawWrite operation for the device that
is associated with the channel identifieddg .

NOTES:

26 CHAPTER 1. INPUT/OUTPUT

e If supported on the channel, the deviawWrite operation copies
locsToWrite items, from successive components of an array variable
of the character type, for which the address of the first componénmtis ,
to the output stream for the channel identifieddoy . Copying starts from
the index given byffset

e The intention is to allow ‘sub-arrays’ to be selected, by passing the address
of a starting component within a larger array. An exception occurs, but
need not be raised, if the call leads to an attempt to access a non-existent
component of the larger array.

1.3.4 Module IOChan - Common Operations

Each of the following procedures invokes a corresponding operation for the device
associated with the given channel. The behaviour of the procedure conforms with
the given description. The full behaviour is defined for each device module.

GetName Invoke GetName operation

PROCEDURE GetName (cid: Chanid;
VAR s: ARRAY OF CHAR);

The proceduré&etName invokes theGetName operation for the device that is
associated with the channel identifieddg .

NOTES:

e The deviceGetName operation copies te (as a string value) a name as-
sociated with the channel identified bid .

e The name is truncated if the capacitysofs inadequate.

Reset Invoke Reset operation

PROCEDURE Reset (cid: Chanld);

The procedur®eset invokes the Reset operation for the device that is associated
with the channel identified bgid .

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 27

NOTE:

The deviceReset operation resets the device associated with the channel identi-
fied bycid to a state defined by the device module.

Flush Invoke Flush operation

PROCEDURE Flush (cid: Chanid);

The proceduré&lush invokes theFlush operation for the device that is associ-
ated with the channel identified layd .

NOTE:

The deviceFlush operation flushes any data buffered by the device module out
to the destination associated wdid .

1.3.5 Module IOChan - Access to Read Results

Higher-level data input procedures, for units such as strings and numerals, may
alter the read result for a channel to indicate success or a particular kind of failure
of interpretation. The result can be recovered, if necessary, by the caller of the
data input procedure.

'SetReadResult Set read result for channel|

PROCEDURE SetReadResult (cid: Chanld,;
res: 10Consts.ReadResults);

The proceduré&etReadResult sets the read result for the channel identified
by cid to the value given byes .

'ReadResult Get read result for channel|

PROCEDURE ReadResult (cid: Chanld): 10Consts.ReadResults;

The function procedurBeadResult returns the stored read result for the chan-
nel identified bycid .

28 CHAPTER 1. INPUT/OUTPUT

1.3.6 Module IOChan - Channel Enquiries

CurrentFlags Get current flags for channel

PROCEDURE CurrentFlags (cid: Chanld): ChanConsts.FlagSet;

The function procedur€urrentFlags returns the set of flags that currently
apply to the channel identified lyd , as defined for the associated device.

1.3.7 Module IOChan - Exceptions and Device Errors

The device-independent exceptions raised by the input/output library are identified
by the values of the enumeration tyeanExceptions

ChanExceptions Channel exceptions identities
TYPE
ChanExceptions =
(wrongDevice,
(* device specific operation on wrong device *)
notAvailable,
(* operation attempted is not available on the channel *)
skipAtEnd,
(* attempt to skip data from a stream that has ended *)
softDevicekError,
(* device specific recoverable error *)
hardDeviceError,
(* device specific non-recoverable error *)
textParseError,

(* input data does not correspond to a character
or line mark - optional detection *)
notAChannel
(* given value does not identify a channel -
optional detection *)

NOTE:

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 29

The detection of the exceptiortextParseError and notAChannel s
implementation-defined.

IsChanException Query exceptional state

PROCEDURE IsChanException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution because of
the raising of an exception frol@hanExceptions , the function procedure
IsChanException returnsTRUE otherwise it return§&ALSE

ChanException Query exception id

PROCEDURE ChanException (): ChanExceptions;

If the calling coroutine is in the state of exceptional execution because of
the raising of an exception fror@hanExceptions , the function procedure
ChanException returns the value that identifies the raised exception; other-
wise the language excepti@xException s raised.

'DeviceErrNum Device error number|

TYPE
DeviceErrNum = INTEGER;

Values of the typeDeviceErrNum are used to identufy the implementation-
defined error number for a chennel in the device exception handler.

SeeDeviceError procedure.

|DeviceError Get device error number]

PROCEDURE DeviceError (cid: Chanld): DeviceErrNum;

The function procedur®eviceError returns the error number stored by the
device module for the channel identified bid , provided that a device error

30 CHAPTER 1. INPUT/OUTPUT

exception has been raised during an operation on that channel; otherwise the value
of the call is not defined.

NOTE:
When a device procedure detects a device error, it raises the exception
softDeviceError or hardDeviceError . If these exceptions are han-

dled, the procedurBeviceError may be used to discover the implementation-
defined error number stored by the device module for the channel that was in use
when the device error occurred.

1.4 Obtaining Channels from Device Modules

Separate device modules are defined that provide a program with the facility to
obtain a new channel, connected either to a sequential stream, a rewindable se-
guential file, a random access file, or a terminal device.

A request to obtain a channel is made by calling an appropriate ‘open procedure’,
in general supplying a name that identifies the source or destination to which the
connection is to be made.

The required input/output operations are specified using combinations of flags that
are defined in terms of constants imported from the mo@hi@nConsts .

An open procedure returns a parameter of an enumeration type (exported from the
moduleChanConsts) that indicates the success, or otherwise, of the request.

Each of these device modules defines a predicate allowing a check to be made that
a given channel was opened by that module, as well as a ‘close procedure’ that
allows a program to break the connection and release the channel.

Procedures are also provided for device-dependent operations, such as setting the
read/write position on a random access file.

A further device module is defined to allow access to the program arguments over
a pre-opened channel.

1.4.1 Module ChanConsts

The moduleChanConsts defines common types and values for use with open
procedures. Programs do not normally need to import f@manConsts di-

rectly, since device modules define identifiers that correspond to those defined by
this module.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 31

ChanFlags Channel open flags

TYPE
ChanFlags =
(readFlag,
(* input operations are requested/available *)
writeFlag,
(* output operations are requested/available *)
oldFlag,
(* a file may/must/did exist
before the channel is opened *)
textFlag,
(* text operations are requested/available *)
rawFlag,
(* raw operations are requested/available *)
interactiveFlag,
(* interactive use is requested/applies *)
echoFlag
(* echoing by interactive device on removal of characters
from input stream requested/applies *)

);

The elements of the enumeration typleanFlags identify channeflagsthat are
specified when a channel is opened and can be obtained for an open channel.

NOTE:

The typeFlagSet is used in actual calls.

32 CHAPTER 1. INPUT/OUTPUT

FlagSet Channel open flags set

FlagSet = SET OF ChanFlags;

CONST
read = FlagSet{readFlag};
(* input operations are requested/available *)
write = FlagSet{writeFlag};
(* output operations are requested/available *)
old = FlagSet{oldFlag};
(* a file may/must/did exist
before the channel is opened *)
text = FlagSet{textFlag};
(* text operations are requested/available *)
raw = FlagSet{rawFlag};
(* raw operations are requested/available *)
interactive = FlagSet{interactiveFlag};
(* interactive use is requested/applies *)
echo = FlagSet{echoFlag};
(* echoing by interactive device on removal of characters
from input stream requested/applies *)

Values of the typd-lagSet are used in the calls to channel open procedures.
Singleton values oflagSet are provided for convinience. For examplead
+ write can be used instead BfagSet {read,write }.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 33

OpenResults Results of an open request
TYPE
OpenResults =
(opened,
(* the open succeeded as requested *)
wrongNameFormat,

(* given name is in the wrong format
for the implementation *)
wrongFlags,
(* given flags include a value
that does not apply to the device *)
tooManyOpen,
(* this device cannot support any more open channels *)
outOfChans,
(* no more channels can be allocated *)
wrongPermissions,
(* file or directory permissions do not allow request *)
noRoomOnDevice,
(* storage limits on the device prevent the open *)
noSuchFile,
(* a needed file does not exist *)
fileExists,
(* a file of the given name already exists
when a new one is required *)
wrongFileType,
(* the file is of the wrong type to support
the required operations *)
noTextOperations,
(* text operations have been requested,
but are not supported *)
noRawOperations,
(* raw operations have been requested,
but are not supported *)
noMixedOperations,
(* text and raw operations have been requested, but they
are not supported in combination *)
alreadyOpen,
(* the source/destination is already open
for operations not supported in combination
with the requested operations *)
otherProblem
(* open failed for some other reason *)

);

The elements of the enumeration typpenResults identify possible results of

34 CHAPTER 1. INPUT/OUTPUT

an open request.

The Use of ChanConsts

To save repetition in the natural language definition of the device modules, the
meaning given to some valuesklgSet andOpenResults is defined here.

The meaning of the other flags is given for the open operations to which they
apply.

In a call of a device module open procedure that has a request parameter of the
typeFlagSet and a result parameter of the typpenResults

If the result isopened , the following operations are provided for the opened
channel for the combinations of request flags shown:

read write
text | textinput| text output| as defined for the devic
raw | raw input| raw output| as defined for the devic

(¢

[¢)

NOTE:

The supplied flags specify the minimal functionality that must be available for
the open operation to succeed. Implementations are free to allow operations in
addition to those specified in the request flags provided that these are reflected in
the enquiry flags returned for the channel.

If the result is other thawpened , the channel parameter is assigned the value
identifying the invalid channel, on which no input/output operations are provided.
The result is chosen according to the following table:

wrongNameFormat
wrongFlags
tooManyOpen

outOfChans
wrongPermissions

noRoomOnDevice

noSuchFile
fileExists

wrongFileType
noTextOperations
noRawOperations

noMixedOperations

alreadyOpen

otherProblem

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 35

if the given name is not in the format defined for
the implementation

if the given flags include a value that does not
apply to the device

if the device cannot support any more open
channels

if no more channels can be allocated

if file or directory permissions do not allow the
request to be met

if storage limits on the device do not allow the
request to be met

if a needed file does not exist

if a file of the given name already exists when a
new one is required

if the named file is of the wrong type to support
the required operations

if text operations have been requested, but are
not supported by the device

if raw operations have been requested, but are
not supported by the device

if text and raw operations have been requested,
but they are not supported in combination by the
device

if the source/destination is already open for op-
erations that are not supported in combination
with the operations now requested

if the open failed for a reason other than the
above

1.4.2 Module StreamFile

The moduleStreamFile provides facilities for obtaining and releasing chan-
nels that are connected to named sources and/or destinations for independent se-
quential data streams.

The types 10Chan.Chanid ChanConsts.FlagSet and
ChanConsts.OpenResults are re-expored. The singleton values of
the typeFlagSet are declared for convinience:

TYPE
Chanld = I0Chan.Chanld;

36 CHAPTER 1. INPUT/OUTPUT

FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

CONST

read = FlagSet{ChanConsts.readFlag};

(* input operations are requested/available *)
write = FlagSet{ChanConsts.writeFlag};

(* output operations are requested/available *)
old = FlagSet{ChanConsts.oldFlag};

(* a file may/must/did exist

before the channel is opened *)

text = FlagSet{ChanConsts.textFlag};

(* text operations are requested/available *)
raw = FlagSet{ChanConsts.rawFlag};

(* raw operations are requested/available *)

In a request to open a sequential stream, the flagd , write , old , text ,
andraw apply. Ifraw is not included in the request paramdtags , inclusion
of text isimplied.

Open Open sequential stream

PROCEDURE Open (VAR cid: Chanld,;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the proceduf@pen assigns tacid the identity of a channel that
is connected to a sequential stream specifieddye, and the valu@pened is
assigned toes .

If write is not included inflags , inclusion ofread is implied; if read is
given or implied, inclusion obld is implied; a source of the given name has to
already exist if the call is to succeed.

If write is included, a destination of the given name has to not already exist,
unless the flagld is given or implied.

If a channel cannot be opened as required, the valuesofindicates the reason,
andcid identifies the invalid channel.

NOTE:

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 37

Distinct modes in combination wittext and/orraw are given by the following
equivalent sets of flags:

e read from an existing sourcezad old read+old
e write to a new destinationuvrite
e write to a new or old destinationvrite+old

e read/write an existing source/destination: read+write
read+write+old

IsStreamFile Query whether stream is sequential

PROCEDURE IsStreamFile (cid: Chanld): BOOLEAN;

The function procedurkisStreamFile returnsTRUEIf the channel identified
by cid is open to a sequential stream, &l SE otherwise.

Close Close sequential stream

PROCEDURE Close (VAR cid: Chanld);

If the channel identified bgid is open to a sequential stream, the procedure
Close closes the channel and assigns the value identifying the invalid channel to
cid ; otherwise, the exceptionrongDevice is raised.

1.4.3 Module SegFile

The moduleSegFile provides facilities for obtaining and releasing channels
that are connected to named rewindable sequential stored files.

If opened for both writing and reading, data written to the file may be read back
from the start of the file. Rewriting from the start of the file causes the previous
contents to be lost.

The types 10Chan.Chanid ChanConsts.FlagSet and
ChanConsts.OpenResults are re-expored. The singleton values of
the typeFlagSet are declared for convinience:

38 CHAPTER 1. INPUT/OUTPUT

TYPE
Chanld = IOChan.Chanld,;
FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

CONST

read = FlagSet{ChanConsts.readFlag};

(* input operations are requested/available *)
write = FlagSet{ChanConsts.writeFlag};

(* output operations are requested/available *)
old = FlagSet{ChanConsts.oldFlag};

(* a file may/must/did exist before the channel is opened *)
text = FlagSet{ChanConsts.textFlag};

(* text operations are requested/available *)
raw = FlagSet{ChanConsts.rawFlag};

(* raw operations are requested/available *)

In a request to open a rewindable sequential file, the flegd , write , old ,
text , andraw apply. If raw is not included in the request parameter flags,
inclusion oftext is implied.

Channels open to rewindable sequential files may beinjput mode or

in output mode In input mode, only input operations are available,
‘(I0Chan.Flags()*(read+write) = read)’ is true, and an attempt

to write over the channel raises the exceptiatAvailable . In output mode,

only output operations are availabldOChan.Flags()*(read+write)

= write)’ is true, and an attempt to read from the channel raises the exception
notAvailable . All data written to a rewindable sequential file is appended to
previous data written to that file.

OpenWrite Open sequential file for writing

PROCEDURE OpenWrite (VAR cid: Chanld;
name: ARRAY OF CHAR,
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedu@penWrite assigns taid the identity of a channel
that is connected to a stored file specifiechlyne; the valueopened is assigned
tores . Output mode is selected and the file is truncated to zero length.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 39

Inclusion of thewrite flag in the parametdtags is implied.

If the call is to succeed, a destination of the given name has to not already ex-
ist unless the flagld is given; if theread flag is included in the request, the
Reread operation is available.

The effect of aReset operation on the channel is to truncate the file to zero
length and to select output mode.

If a channel cannot be opened as required, the valuesofindicates the reason,
andcid identifies the invalid channel.

NOTE:

Distinct modes in combination wittext and/orraw are given by the following
equivalent sets of flags:

write to a new file:write

write to a new file or a truncated existing filetd write+old

write to a new file, need read operatiomgite+read read

write to a new or existing file, need read operationsid+read
write+old+read

OpenAppend Open sequential file for appending

PROCEDURE OpenAppend (VAR cid: Chanld;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the proceduf@penAppend assigns taid the identity of a chan-
nel that is connected to a stored file specifiednayne; the valueopened is
assigned toes . Output mode is selected.

Have to write something here.

Inclusion of thewrite andold flags in the parametdtags is implied; a
destination of the given name may already exist.

If the read flag is included in the request, tieread operation is available if
the call is to succeed.

40 CHAPTER 1. INPUT/OUTPUT

The effect of aReset operation on the channel is to select output mode.

If a channel cannot be opened as required, the valuesofindicates the reason,
andcid identifies the invalid channel.

NOTE:
Distinct modes in combination wittext and/orraw are given by the following
equivalent sets of flags:

e write to a new or append to an existing filerite old write+old

e write to a new or append to an existing file, need read operatieasd
write+read old+read write+old+read

OpenRead Open sequential file for reading

PROCEDURE OpenRead (VAR cid: Chanid;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the proceduf@penRead assigns taid the identity of a channel

that is connected to a stored file specifiediayne; the value opened is assigned
tores . Input mode is selected and the read position correspond to the start of the
file.

Inclusion of theread andold flags in the parametdlags is implied; a desti-
nation of the given name has to already exist if the call is to succeed.

If the write flag is included in the request, thewrite operation is available
if the call is to succeed.

The effect of aReset operation on the channel is to select input mode and to set
the read position to the start of the file.

If a channel cannot be opened as required, the valuesofindicates the reason,
andcid identifies the invalid channel.

NOTE:
Distinct modes in combination wittext and/orraw are given by the following
equivalent sets of flags:

e read from an existing fileread old read+old

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 41

e read from an existing file, need write operationgite read+write
old+write read+old+write

IsSeqFile Query whether channel is open to a sequential file

PROCEDURE IsSegFile (cid: Chanid): BOOLEAN;

The function procedurésSeqFile returnsTRUEIf the channel identified by
cid is open to a rewindable sequential file, &ML SE otherwise.

Reread Rewind and select input mode

PROCEDURE Reread (cid: Chanld);

If the channel identified bgid is open to a rewindable sequential file, the pro-
cedureReread attempts to set the read position of the channel to the start of the
file, and to select input mode; otherwise, the exceptvoongDevice is raised.

If the operation cannot be performed, perhaps because of insufficient permissions,
neither input mode nor output mode are selected.

Rewrite Rewind and select output mode

PROCEDURE Rewrite (cid: Chanld);

If the channel identified bgid is open to a rewindable sequential file, the proce-
dureRewrite attempts to set the write position of the channel to the start of the
file, to truncate the file to zero length, and to select output mode; otherwise, the
exceptionwrongDevice is raised.

If the operation cannot be performed, perhaps because of insufficient permissions,
neither input mode nor output mode are selected.

Close Close sequential file

PROCEDURE Close (VAR cid: Chanld);

If the channel identified bgid is open to a rewindable sequential file, the pro-
cedureClose closes the channel and assigns the value identifying the invalid
channel tacid ; otherwise, the exceptionrongDevice s raised.

42 CHAPTER 1. INPUT/OUTPUT

1.4.4 Module RndFile

The moduleRndFile provides facilities for obtaining and releasing channels
that are connected to named random access files.

The types I0OChan.Chanid ChanConsts.FlagSet and
ChanConsts.OpenResults are re-expored. The singleton values of
the typeFlagSet are declared for convinience:

TYPE
Chanld = IOChan.Chanld,;
FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

CONST

read = FlagSet{ChanConsts.readFlag};

(* input operations are requested/available *)
write = FlagSet{ChanConsts.writeFlag};

(* output operations are requested/available *)
old = FlagSet{ChanConsts.oldFlag};

(* a file may/must/did exist before the channel is opened *)
text = FlagSet{ChanConsts.textFlag};

(* text operations are requested/available *)
raw = FlagSet{ChanConsts.rawFlag};

(* raw operations are requested/available *)

Channels opened by the moditedFile have an associated read/write position

in the corresponding random-access file. The read/write position is at the start
of the file after opening, or afterlReset operation on the channel. It is moved
forward by the number of positions occupied by data that are taken from the file
by an input operation, or written to the file by an output operation.

CONST
FilePosSize = <implementation-defined whole
number greater than zero>;

TYPE
FilePos = ARRAY [1 .. FilePosSize] OF SYSTEM.LOC;

NOTE:

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 43

The implementation-defined typalePos has been specified in a way that en-
ables values of this type to be read from or written to a file, while maintaining a
degree of opacity for the type.

A random-access file have a length corresponding to the position after the highest
read/write position at which data have been written. This length is zero if no data
have been written to the file. If the read/write position is set at the current length,
either implicitly on an input or output operation, or explicitly by a positioning
operation, the effect of an input operation is as if the input stream had ended. A
write at that position, if necessary, attempts to allocate more physical storage for
the file.

In a request to open a random-access file, the flagd , write , old , text
andraw apply. Iftext is not included in the request parameter flags, inclusion
of raw is implied.

OpenOld Open existing random-aceess file

PROCEDURE OpenOld (VAR cid: Chanld;
name: ARRAY OF CHAR,
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedu@penOld assigns tacid the identity of a channel
that is connected to a random access file specifieddye; the value opened is
assigned toes . The read/write position correspond to the start of the file.

Inclusion of theold flag in the parameter flags is implied; a file of the given name
have to already exist if the call is to succeed.

If the write flag is not included in the request, inclusion of tlead flag is
implied.

If a channel cannot be opened as required, the valuesofindicates the reason,
andcid identifies the invalid channel.

NOTE:

Distinct modes in combination wittext and/orraw are given by the following
equivalent sets of flags:

e read from an existing fileread old read+old

e write to an existing filewrite write+old

44 CHAPTER 1. INPUT/OUTPUT

e read/write an existing filecead+write read+write+old

OpenClean Open and clear random-aceess file

PROCEDURE OpenClean (VAR cid: Chanld;
name: ARRAY OF CHAR,
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedu@penClean assigns taid the identity of a channel
that is connected to a random access file specifiathloye; the valueopened is
assigned toes . The file is truncated to zero length.

Inclusion of thewrite flag in the parameter flags is implied; a destination of the
given name has to not already exist unless thedldg is given.

If a channel cannot be opened as required, the valuesofindicates the reason,
andcid identifies the invalid channel.

NOTE:

Distinct modes in combination wittext and/orraw are given by the following
equivalent sets of flags:

write to a new file:write

write to a new file or a truncated existing fileld write+old

write to a new file, read operations are neededd write+read

write to a new file or a truncated existing file, read operations are needed:
old+read write+old+read

IsRndFile Query whether channel is open to a random access file

PROCEDURE IsRndFile (cid: Chanld): BOOLEAN;

The function procedurésRndFile returnsTRUEIf the channel identified by
cid is open to a random access file, &L SE otherwise.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 45

IsRndFileException Query exceptional state

PROCEDURE IsRndFileException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of th&kndFile exception, the function procedure
IsRndFileException returnsTRUE otherwise it return&ALSE

StartPos Query start position

PROCEDURE StartPos (cid: Chanld): FilePos;

If the channel identified bgid is open to a random access file, the function
procedureStartPos returns the position of the start of the file; otherwise the
exceptionwrongDevice is raised.

CurrentPos Query current position

PROCEDURE CurrentPos (cid: Chanld): FilePos;

If the channel identified bgid is open to a random access file, the function pro-
cedureCurrentPos returns the current read/write position of the file; otherwise
the exceptiorwrongDevice is raised.

EndPos Query end position

PROCEDURE EndPos (cid: Chanld): FilePos;

If the channel identified bgid is open to a random access file, the function
procedureEndPos returns the first position in the file at or after which no data
have been written; otherwise the exceptiammngDevice is raised.

46 CHAPTER 1. INPUT/OUTPUT

NewPos Calculate new position

PROCEDURE NewPos (cid: Chanld;
chunks: INTEGER;
chunkSize: CARDINAL;
from: FilePos): FilePos;

If the channel identified bgid is open to a random access file, the function pro-
cedureNewPosreturns the read/write positiamhunks * chunkSize places
relative to the position in the file given by the valud@m ; otherwise, the excep-
tion wrongDevice s raised. ThekndFile exception is raised if the required
position cannot be represented as a value of the Bylp@os

NOTE:

Calculation of the position in a random access file at which to issue text operations
is dependent upon knowledge of the external representation of text items in a
particular file; the amount by which the read/write position is moved as a result
of a text operation may vary depending upon the item that is read or written. For
raw operations, the read/write position is always moved by a value equal to the
storage size of variables of the type of the item read or written.

SetPos Set new position

PROCEDURE SetPos (cid: Chanld; pos: FilePos);

If the channel identified bgid is open to a random access file, the procedure
SetPos sets the read/write position for the file to the position given by the value
of pos ; otherwise the exceptiomrongDevice is raised.

If the position given by the value gdos is beyond the value returned by a call

of EndPos, ‘read <= IOChan.Flags()’ is false, and a call of an in-
put operation raises the exceptinatAvailable ; the value ofwrite <=
IOChan.Flags()’ is implementation-defined and correspond to the availabil-

ity of output operations in this case. If data are subsequently written at such a po-
sition, those positions that have not been written to are filled with implementation-
defined padding values.

NOTE:

Setting the read/write position beyond the value returneBrPos does not of
itself affect the size of the file.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 47

'Close Close random access file|

PROCEDURE Close (VAR cid: Chanld);

If the channel identified by cid is open to a random access file, the procedure
Close closes the channel and assign the value identifying the invalid channel to
cid ; otherwise, the exceptionrongDevice s raised.

1.4.5 Module TermFile

The moduleTermFile provides facilities that allow elementary access to an
interactive terminal.

The types 10Chan.Chanid ChanConsts.FlagSet and
ChanConsts.OpenResults are re-expored. The singleton values of
the typeFlagSet are declared for convinience:

TYPE
Chanld = IOChan.Chanlid;
FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

CONST

read = FlagSet{ChanConsts.readFlag};

(* input operations are requested/available *)
write = FlagSet{ChanConsts.writeFlag};

(* output operations are requested/available *)
text = FlagSet{ChanConsts.textFlag};

(* text operations are requested/available *)
raw = FlagSet{ChanConsts.rawFlag};

(* raw operations are requested/available *)
echo = FlagSet{ChanConsts.echoFlag};

(* echoing by interactive device on reading of

characters from input stream requested/applies *)

Channels connected to the terminal device are openédemmodeor in single-
character modeIn line mode, items are echoed before being added to the input
stream and are added a line at a time. In single character mode, items are added
to the input stream as they are typed, and are echoed as they are removed from the

48 CHAPTER 1. INPUT/OUTPUT

input stream by a text read device operation, provided they have not already been
echoed.

Typed characters are distributed between multiple channels according to the se-
guence of read requests.

NOTE:

If all the channels open to the terminal are open in line mode, the terminal device
operates exclusively in line mode; in that case, echoing might be performed by an
underlying operating system. Similarly, if all the channels open to the terminal are
open in single-character mode, the terminal device operates exclusively in single-
character mode; in that case, echoing only occurs on reading from a channel and
not on looking or skipping: this allows interactive input routines to suppress the
echoing of unwanted or unexpected characters.

If an implementation allows it, there might be one or more channels open in line
mode, and one or more channels open in single-character mode. In that case,
echoing is postponed until the treatment of characters can be determined accord-
ing to the sequence of calls of input operations. This behaviour allows programs
that use the terminal in different modes to be written in a modular fashion, there
being no need explicitly to save and restore the state of the terminal device.

In a request to open a channel to the terminal device, the feay$, write
text , raw, andecho apply. If raw is not included in the request parameter
flags, inclusion ofext isimplied. If theread flag is notincluded in the request,
inclusion of thewrite flag is implied.

Open Open terminal

PROCEDURE Open (VAR cid: Chanid;
flags: FlagSet;
VAR res: OpenResults);

If successful, the proceduf@pen assigns taid the identity of a channel that is
connected to the terminal device.

If the echo flag is included in the request, single-character mode is available if
the call is to succeed and the channel operates in single-character mode. Without
the echo flag, line mode is available if the call is to succeed and the channel
operates in line mode.

If a channel cannot be opened as required, the valuesofindicates the reason,
andcid identifies the invalid channel.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 49

IsTermFile Query whether channel is opened to terminal

PROCEDURE IsTermFile (cid: Chanld): BOOLEAN;

The function procedurtssTermFile returnsTRUEIf the channel identified by
cid is open to the terminal device, aRALSE otherwise.

(Close Close terminal|

PROCEDURE Close (VAR cid: Chanld);

If the channel identified bgid is open to the terminal device, the procedure
Close closes the channel and assigns the value identifying the invalid channel to
cid ; otherwise, the exceptiomrongDevice is raised.

1.4.6 Module ProgramArgs

The moduleProgramArgs provides a channel from which input can be taken
from any arguments given to the program.

TYPE
Chanld = 10Chan.Chanld;

The initialization of the modul®rogramArgs opens the channel from which
the implementation-defined program arguments may be read.

ArgChan Get program arguments channel id

PROCEDURE ArgChan (): Chanid;

The function procedurdrgChan returns a value identifying a channel from
which the implementation-defined program arguments may be read.

50 CHAPTER 1. INPUT/OUTPUT

IsArgPresent Query whether an argument is present

PROCEDURE IsArgPresent (): BOOLEAN;

The function procedurlsArgPresent returnsTRUEIf there is a current argu-
ment from which to read, an@ALSE otherwise.

If there is no current argumentread <= IOChan.Flags()’ Is false,
and attempting to read from the argument channel raises the exception
notAvailable

NextArg Skip to next argument

PROCEDURE NextArg ();

After the call to the procedurBlextArg , if there is another argument, subse-
guent input from the argument channel is taken from the start of that argument;
otherwise a call ofsArgPresent returnsFALSE

NOTE:

Provision ofNextArg allows the treatment of arguments that contain spaces or
line marks.

1.5 Interface to Channels for New Device Modules

Additional device modules may be provided to allow the library to be used with
other input sources and output destinations. These might include, for example,
files opened with host-specific options or parameters or with host-specific be-
haviour, a windowing system, or a speech output device.

1.5.1 Module IOLink

The modulelOLink provides facilities that allow a user to provide specialized
device modules for use with channels, following the pattern of the rest of the
library.

A device needs to identify itself in order to allow a check to be made that device-
dependent operations are applied only for channels opened to that device. To

1.5. INTERFACE TO CHANNELS FOR NEW DEVICE MODULES 51

this end, values of the hidden tyfeviceld are used to identify new device
modules, and are normally obtained by them during their initialization by a call to
the procedurdllocateDeviceld

TYPE
Deviceld;

A device module procedure provided for opening a channel can obtain a new
channel by calling the proceduMakeChan. If a channel is allocated, but the

call of the device module open procedure is not successful for some reason, the
device module should release the channel by calling the proceahiviakeChan,

and return the value identifying the invalid channel to its client.

A call to UnMakeChan is also made on a successful call of a device module
procedure provided for closing a channel.

If a call of a device module ‘open’ procedure is successful, then by calling the
function proceduréDeviceTablePtrValue , a device module can obtain a
pointer (of the typeDeviceTablePtr) to a ‘device table’ (of a record type
DeviceTable) for the channel. The fields of this record are initialized by
MakeChan, but the procedure can then change any fields of the device table
needed to install its own values for the device data, supported operations, and
flags.

Device tables have:

a field in which the device module can store private data,
a field in which the value identifying the device module is stored,
a field in which the value identifying the channel is stored,

a field in which the read result is stored,

o & w0 N E

a field in which device error numbers are stored prior to the raising of a
device error exception,

o

a field in which flags are stored indicating those which apply,

7. afield for each device procedure.

(The fields are initialized byMakeChan to the values shown in the definition
module below.)

52 CHAPTER 1. INPUT/OUTPUT

By calling the function procedurésDevice , a device module can enquire
whether it was responsible for opening a given channel. This allows it to imple-
ment a corresponding enquiry function that is exported from the device module
itself.

Client modules may raise appropriate exceptions; to support this facility, the
type DevExceptionRange and the procedur®AISEdevException can
be used.

TYPE
DeviceTablePtr = POINTER TO DeviceTable;
(* Values of this type are used to refer to device tables *)

TYPE
LookProc = PROCEDURE (DeviceTablePtr,
VAR CHAR,
VAR 10Consts.ReadResults);
SkipProc PROCEDURE (DeviceTablePtr);

SkipLookProc = PROCEDURE (DeviceTablePtr,
VAR CHAR,
VAR 10Consts.ReadResults);
PROCEDURE (DeviceTablePtr);
PROCEDURE (DeviceTablePtr,
SYSTEM.ADDRESS,
CARDINAL,
VAR CARDINAL);
TextWriteProc = PROCEDURE (DeviceTablePtr,
SYSTEM.ADDRESS,
CARDINAL);
RawReadProc = PROCEDURE (DeviceTablePtr,
SYSTEM.ADDRESS,
CARDINAL,
VAR CARDINAL);

WriteLnProc
TextReadProc

RawWriteProc = PROCEDURE (DeviceTablePtr,
SYSTEM.ADDRESS,
CARDINAL);
GetNameProc = PROCEDURE (DeviceTablePtr,
VAR ARRAY OF CHAR);
ResetProc = PROCEDURE (DeviceTablePtr);
FlushProc = PROCEDURE (DeviceTablePtr);
FreeProc = PROCEDURE (DeviceTablePtr);

1.5. INTERFACE TO CHANNELS FOR NEW DEVICE MODULES 53

(* Carry out the operations involved in closing
the corresponding channel, including flushing buffers,
but do not unmake the channel.

*)
TYPE
DeviceData = SYSTEM.ADDRESS;
DeviceTable =
RECORD (* Initialized by MakeChan to: *)
cd: DeviceData;
(* the value NIL *)
did: Deviceld;
(* the value given in the call of MakeChan *)
cid: IOChan.Chanld;
(* the identity of the channel *)
result: IOConsts.ReadResults;
(* the value notKnown *)
errNum: IOChan.DeviceErrNum;
(* undefined *)
flags: ChanConsts.FlagSet;
(* ChanConsts.FlagSet{} *)
doLook: LookProc;
(* raise exception notAvailable *)
doSkip: SkipProc;

(* raise exception notAvailable *)
doSkipLook: SkipLookProc;

(* raise exception notAvailable *)
doLnWrite: WriteLnProc;

(* raise exception notAvailable *)
doTextRead: TextReadProc;

(* raise exception notAvailable *)
doTextWrite: TextWriteProc;

(* raise exception notAvailable *)
doRawRead: RawReadProc;

(* raise exception notAvailable *)
doRawWrite: RawWriteProc;

(* raise exception notAvailable *)
doGetName: GetNameProc;

(* return the empty string *)
doReset: ResetProc;

54 CHAPTER 1. INPUT/OUTPUT

(* do nothing *)

doFlush: FlushProc;
(* do nothing *)
doFree: FreeProc;
(* do nothing *)
END;
TYPE
DevExceptionRange =

z[IOChan.notAvailable .. 10Chan.textParseError];

| AllocateDeviceld Allocate device id|

PROCEDURE AllocateDeviceld (VAR did: Deviceld);

The procedureAllocateDeviceld allocates an unique value of the type
Deviceld , and assign this value ttid .

'MakeChan Allocate a new channel for device|

PROCEDURE MakeChan (did: Deviceld;
VAR cid: I0Chan.Chanld);

The procedurdakeChan attempts to allocate a new channel for the device mod-
ule identified bydid . If no more channels can be allocated, the value identifying
the invalid channel is assignedd¢a . Otherwise, a value identifying a new ini-
tialized channel is assigned ¢al .

'UnMakeChan Deallocate channel from device|

PROCEDURE UnMakeChan (did: Deviceld;
VAR cid: I0Chan.Chanld);

Provided the device module identified gl is the module that made the channel
identified bycid , the procedur&nMakeChandeallocates the channel identified

1.5. INTERFACE TO CHANNELS FOR NEW DEVICE MODULES 55

by cid , and assigns the value identifying the invalid channeditb ; otherwise
the exceptiorwrongDevice s raised.

\DeviceTablePtrValue Get device table for channel|

PROCEDURE DeviceTablePtrValue (cid: 10Chan.Chanid;
did: Deviceld
). DeviceTablePtr;

Provided that the device module identified iy is the module that made the
channel identified byid , the function procedur®eviceTablePtrValue
returns a pointer to the device table for the channel identifiecidby, otherwise
the exceptiorwrongDevice is raised.

IsDevice Query channel’s device

PROCEDURE IsDevice (cid: IOChan.Chanld;
did: Deviceld
): BOOLEAN;

The function procedurlsDevice returnsTRUEIf the device module identified
by did is the module that made the channel identifiedciy , and otherwise
returnsFALSE

RAISEdevException Raise device exception

PROCEDURE RAISEdevException (cid: I0Chan.Chanld;
did: Deviceld;
x: DevExceptionRange;
s: ARRAY OF CHAR);

Provided that the device module identified dig is the module that made the
channel identified bgid , the procedur®AISEdevException raises the ex-
ception given by, and includes the string value fin the exception message;
otherwise the exceptionrongDevice is raised.

56 CHAPTER 1. INPUT/OUTPUT

ISIOEXxception Query exceptional state

PROCEDURE IslOException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution because of the rais-
ing of an exception froMfOChan.ChanExceptions , the function procedure
ISIOException returnsTRUE otherwise it return&ALSE

IOEXxception Query exception id

PROCEDURE I[OException (): 10Chan.ChanExceptions;

If the calling coroutine is in the state of exceptional execution because of the rais-
ing of an exception fronlOChan.ChanExceptions , the function procedure
IOException returns the value that identifies the raised exception; otherwise
the language excepti@xException is raised.

NOTE:

A single value of EXCEPTIONS.ExceptionSource is used to iden-
tify the source of input/output library exceptions corresponding to
IOChan.ChanExceptions . The procedureslsiOException and
IOException are included so that this value need not be exported for
corresponding procedures to be provided through@t&han interface.

Chapter 2

Mathematical

The mathematical libraries provide the common mathematical functions and some
constants.

The moduleRealMath provides the constants and functions for the tiREeAL,
while the moduleLongMath provides similar constants and functions for the
type LONGREAL

The moduleComplexMath provides the constants and functions for the type
COMPLEXwhile the moduleLongComplexMath provides similar functions
for the typeLONGCOMPLEX

2.1 Modules RealMath and LongMath

The semantics of the two modules is the same, except that where the module
RealMath refers to the pervasive typ@EAL the corresponding function in
LongMath refers to the pervasive typdONGREAL

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
LongMath .

The units used for angular quantities are radians.

57

58 CHAPTER 2. MATHEMATICAL

|Constants Useful constants
CONST

pi = 3.1415926535897932384626433832795028841972;

expl = 2.7182818284590452353602874713526624977572,

The constanpi provides an implementation-defined approximation to the math-
ematical constant. The constant expl provides an implementation-defined ap-
proximation to the mathematical constant

NOTE:

Due to the approximations involvesin(pi) might not equal zero exactly; sim-
ilarly, expl might not equaexp(l) exactly.

sqrt Calculate square root

PROCEDURE sqrt (x: REAL): REAL;
PROCEDURE sqrt (x: LONGREAL): LONGREAL;

The function proceduregrt returns an implementation-defined approximation
to the positive signed square rootxaf An exception is raised K is negative.

exp Calculate exponent

PROCEDURE exp (x: REAL): REAL;
PROCEDURE exp (x: LONGREAL): LONGREAL;

The function procedurexp returns an implementation-defined approximation to
the mathematical constantaised to the power of.

In Calculate natural logarithm

PROCEDURE In (x: REAL): REAL;
PROCEDURE In (x: LONGREAL): LONGREAL;

The function procedurtn returns an implementation-defined approximation to
the natural logarithm af. An exception is raised i is zero or negative.

2.1. MODULES REALMATH AND LONGMATH 59

sin Calculate sine|

PROCEDURE sin (x: REAL): REAL,
PROCEDURE sin (x: LONGREAL): LONGREAL;

The function procedursin returns an implementation-defined approximation to
the sine ofx.

CcoS Calculate cosine

PROCEDURE cos (x: REAL): REAL;
PROCEDURE cos (x: LONGREAL): LONGREAL;

The function procedureos returns an implementation-defined approximation to
the cosine ok.

tan Calculate tangent

PROCEDURE tan (x: REAL): REAL;
PROCEDURE tan (x: LONGREAL): LONGREAL;

The function proceduran returns an implementation-defined approximation to
the tangent ok. An exception is raised K is an odd multiple ofr/2.

arcsin Calculate arcsine

PROCEDURE arcsin (x: REAL): REAL;
PROCEDURE arcsin (x: LONGREAL): LONGREAL;

The function procedurarcsin returns an implementation-defined approxima-
tion to the arcsine af. An exception is raised if the absolute valuexak greater
than one.

60 CHAPTER 2. MATHEMATICAL

arccos Calculate arccosine

PROCEDURE arccos (x: REAL): REAL;
PROCEDURE arccos (x: LONGREAL): LONGREAL,;

The function procedurarccos returns an implementation-defined approxima-
tion to the arccosine at. An exception is raised if the absolute valuexofs
greater than one.

arctan Calculate arctangent

PROCEDURE arctan (x: REAL): REAL,;
PROCEDURE arctan (x: LONGREAL): LONGREAL;

The function procedurarctan returns an implementation-defined approxima-
tion to the arctangent of.

power Calculate power

PROCEDURE power (base, exponent: REAL): REAL;
PROCEDURE power (base, exponent: LONGREAL): LONGREAL;

The function procedurgower returns an implementation-defined approximation
to the result obtained by raisif@ase to the power oexponent . An exception
is raised if the value of base is zero or negative.

This function is mathematically equivalentdep(y In(x)) but may be computed
differently.

'round Round|

PROCEDURE round (x: REAL): INTEGER;
PROCEDURE round (x: LONGREAL): INTEGER;

The function procedureound returns the nearest integer to the valueofThe
result is an implementation-defined selection of the two possible values if the

2.2. MODULES COMPLEXMATH AND LONGCOMPLEXMATH 61

value ofx is midway between two integer values. An exception occurs and may
be raised if the mathematical result is not within the range of the typ&GER

IsRMathException Query exceptional state

PROCEDURE IsRMathException (): BOOLEAN;
PROCEDURE IsRMathException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of th&®ealMath exception, the function procedure
RealMath.IsRMathException returns TRUE otherwise the value is
FALSE

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of théongMath exception, the function procedure
LongMath.IsRMathException returns TRUE otherwise the value is
FALSE

2.2 Modules ComplexMath and LongComplex-
Math

The semantics of the two modules are the same, except that where the module
ComplexMath refers to the pervasive tyg@OMPLEXthe corresponding func-
tion in LongComplexMath refers to the pervasive typdONGCOMPLEX

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
LongComplexMath .

'Constants Useful constants

CONST
i = CMPLX (0.0, 1.0);
one = CMPLX (1.0, 0.0);
Zero CMPLX (0.0, 0.0);

The constants, one, andzero are the implementation-defined approximations
to the specified values.

62 CHAPTER 2. MATHEMATICAL

NOTE:

These constants are provided for convenience.

labs Calculate modulus|

PROCEDURE abs (z: COMPLEX): REAL,
PROCEDURE abs (z: LONGCOMPLEX): LONGREAL;

The function procedurabs returns an implementation-defined approximation to
the modulus (otherwise known as the length, or absolute valug) of

NOTE:

An overflow exception may be raised in this computation, even when the complex
number is itself well defined.

arg Calculate argument

PROCEDURE arg (zz COMPLEX): REAL;
PROCEDURE arg (zz LONGCOMPLEX): LONGREAL;

The function procedurarg returns an implementation-defined approximation
to the angle thar subtends to the positive real axis in the complex plane. An
exception is raised if the modulus bfis zero.

con; Calculate conjugate

PROCEDURE conj (zz. COMPLEX): COMPLEX;
PROCEDURE conj (zz. LONGCOMPLEX): LONGCOMPLEX;

The function procedureonj returns an implementation-defined approximation
to the complex conjugate af.

2.2. MODULES COMPLEXMATH AND LONGCOMPLEXMATH 63

power Calculate power

PROCEDURE power (base: COMPLEX;
exponent: REAL
): COMPLEX;
PROCEDURE power (base: LONGCOMPLEX;
exponent: LONGREAL
): LONGCOMPLEX;

The function procedurgower returns an implementation-defined approximation
to the result obtained by raisirgase to the power oexponent .

sqrt Calculate square root

PROCEDURE sqrt (zz COMPLEX): COMPLEX;
PROCEDURE sqrt (zz LONGCOMPLEX): LONGCOMPLEX;

The function proceduregrt returns an implementation-defined approximation
to the principal square root af.
NOTE:

That is, the result is the complex number with an argument of half the value of the
argument oz, and whose modulus has the value of the positive square root of the
modulus ofz.

exp Calculate exponent

PROCEDURE exp (z: COMPLEX): COMPLEX;
PROCEDURE exp (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedurexp returns an implementation-defined approximation to
the mathematical constantaised to the power f.

In Calculate natural logarithm

PROCEDURE In (zz COMPLEX): COMPLEX;
PROCEDURE In (zz LONGCOMPLEX): LONGCOMPLEX;

The function procedurtn returns an implementation-defined approximation to

64 CHAPTER 2. MATHEMATICAL

the principal value of the natural logarithm of

sin Calculate sine|

PROCEDURE sin (zz: COMPLEX): COMPLEX;
PROCEDURE sin (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedursin returns an implementation-defined approximation to
the complex sine of .

cos Calculate cosine

PROCEDURE cos (z: COMPLEX): COMPLEX;
PROCEDURE cos (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedureos returns an implementation-defined approximation to
the complex cosine of.

tan Calculate tangent

PROCEDURE tan (z: COMPLEX): COMPLEX;
PROCEDURE tan (z: LONGCOMPLEX): LONGCOMPLEX;

The function proceduran returns an implementation-defined approximation to
the complex tangent af. An exception is raised & is an odd multiple ofr /2.

arcsin Calculate arcsine|

PROCEDURE arcsin (zz: LONGCOMPLEX): LONGCOMPLEX;
PROCEDURE arcsin (z: COMPLEX): COMPLEX;

The function procedurarcsin returns an implementation-defined approxima-
tion to the principal value of the complex arcsinezof

2.2. MODULES COMPLEXMATH AND LONGCOMPLEXMATH 65

arccos Calculate arccosine

PROCEDURE arccos (z: COMPLEX): COMPLEX;
PROCEDURE arccos (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedurarccos returns an implementation-defined approxima-
tion to the complex arccosine af

arctan Calculate arctangent

PROCEDURE arctan (z: COMPLEX): COMPLEX;
PROCEDURE arctan (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedurarctan returns an implementation-defined approxima-
tion to the complex arctangent bf

polarToComplex Convert from polar to complex

PROCEDURE polarToComplex (abs, arg: REAL): COMPLEX;
PROCEDURE polarToComplex (abs, arg: LONGREAL): LONGCOMPLEX;

The function procedurpolarToComplex returns an implementation-defined
approximation to the complex number that has a modulus giveabyand an
argument given byrg .

scalarMult Scalar Multiplication

PROCEDURE scalarMult (scalar: REAL;
z: COMPLEX
): COMPLEX;
PROCEDURE scalarMult (scalar: LONGREAL;
z: LONGCOMPLEX
): LONGCOMPLEX;

The function procedurscalarMult returns an implementation-defined ap-
proximation to the scalar product of the real vakmalar with the complex
valuez.

66 CHAPTER 2. MATHEMATICAL

IsCMathException Query exceptional state

PROCEDURE IsCMathException (): BOOLEAN;
PROCEDURE IsCMathException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution because
of the raising of a ComplexMath exception, the function procedure
ComplexMath.IsCMathException returns TRUE otherwise it returns
FALSE

If the calling coroutine is in the state of exceptional execution because
of the raising of aLongComplexMath exception, the function procedure
LongComplexMath.IsCMathException returns TRUE otherwise it re-
turnsFALSE

Chapter 3

Concurrent Programming

3.1 Module Processes

The moduleProcesses provides a basic set of facilities for use in concurrent
programs. These can be used on their own, or in conjunction with those from the
moduleSemaphores which provide for potentially parallel parts of the program

to exclude one another from regions of interaction.

A concurrent program consists of a numbepafcesseseach of which may po-
tentially run in parallel with the others but is distinguishable from them. At any
one time, a process may be in one of four states: It magady, that is, eligible

to use the processor but not actually doing so. It magureent that is, actually

using the processor. It may Ipassivethat is, ineligible to use the processor un-

til another process makes it eligible. Lastly, it maywaiting, that is, ineligible

to use the processor until the occurrence of one of a set of events for which it is
waiting.

At all times there must be at least one process using the processor, or, if no process
is eligible, there must be at least one process waiting for some external event.

Two general styles of use are envisaged, and both may be present in a single
program.

In the first style (usingswitch), the model is of a set of closely coupled pro-
cesses, which explicitly choose which of them is to run next, and which pass
information between themselves as part of the choice. The intention is to provide
a higher level coroutine-like facility between processes of the same urgency.

In the second style (usinfjctivate andSuspendMe), the processes are writ-
ten to be less dependent on one another, and the choice of which of them runs

67

68 CHAPTER 3. CONCURRENT PROGRAMMING

is left to an internal scheduler, which is invoked whenever one process is sus-
pended or another one is reactivated. This internal scheduler makes use of the fact
that each process has an associated static ‘urgency’, specified IDMBGER
parameter when it is first created. The scheduler ensures that it cannot be the
case that a process eligible to use the processor has an urgency greater than one
of the processes currently doing so. The ‘main process’ (the parent program) is
given a default urgency of zero; for other processes, the more positive the value
of urgency, the more urgent is the process.

Those processes that suspend themselves to wait for external events must first
associate themselves with one or more sources of such events. The International
Standard does not prescribe how events occur, or what the sources of events must
be, other than to require that they be mapped in an implementation-defined way
to values of the pervasive tyg@ARDINAL and to require that a source of events
cannot be connected to more than one process simultaneously.

NOTES:

e There is no requirement that pre-emptive scheduling be employed, although
an implementation is free to incorporate such scheduling if this is desired.

e Although the International Standard applies to single-processor machines,
if a pre-emptive (time-sliced) scheduler is present there may conceptually
be more than one ‘current’ process; the description above is phrased so as
to emphasize this.

e A program that uses the modufeocesses should not make explicit use
of coroutines (except, perhaps, in the implementatioRPmaicesses it-
self).

e This is a patrtial specification: Various of the procedures in the modules
Processes andSemaphores have semantics expressed in terms of pre-
conditions. Their behaviour in situations where these preconditions are not
met is deliberately not specified; in particular, the raising of exceptions is
not required. This is a deliberate decision that allows to achieve maximum
efficiency in the implementation of these modules.

The exceptions raised [Brocesses are identified by the values of the enumer-
ation typeProcessesExceptions

TYPE
ProcessesExceptions = (passiveProgram, processError);

3.1. MODULE PROCESSES 69

The detection of the exceptigmmocessError is implementation-defined.

After the module is initialized, there is exactly one process, known as the ‘main
process’. This process have an urgenc® @nd a parameter &dIL ; initially, it
is not associated with any source of events.

CHANGE:

This module is not based on the mod&ecesses described ifProgramming
in Modula-2

3.1.1 Types of Processes

TYPE

Processld;

(* Used to identify processes *)
Parameter = SYSTEM.ADDRESS;

(* Used to pass data between processes *)
Body = PROC;

(* Used as the type of a process body *)
Urgency = INTEGER;

(* Used by the internal scheduler *)
Sources = CARDINAL;

(* Used to identify event sources *)

3.1.2 The Procedures of Processes

The semantics of certain of the procedure®uodcesses require that a process

be selected from the set of processes that are eligible to run, and be scheduled for
execution. The selection algorithm shall guarantee that no process eligible to use
the processor has an urgency greater than one of the processes currently doing so.

NOTES:

e The procedures in this category aBtart , StopMe, SuspendMe,
Activate , SuspendMeAndActivate andWait .

e The urgency of a process is specified, when it is created, by a value of the
typeINTEGER and cannot be changed dynamically. The more positive the
value of urgency, the more urgent the process.

70 CHAPTER 3. CONCURRENT PROGRAMMING

Certain of the procedures #frocesses require that a process be associated
with a source of external events. There shall be an implementation-defined map-
ping of values of the typ€ ARDINALLto such sources of events.

A source of events shall not be associated with more than one process at any
instant.

NOTES:

e The International Standard does not prescribe how events occur, or what
the sources of events must be, other than in terms of this implementation-
defined mapping.

e The International Standard does not specify the consequences if a value
(of the type Sources) that is not mapped to a source of events is
passed as an actual parameter to any of the procedtteesh , Detach ,
IsAttached orHandler .

Create Create new process

PROCEDURE Create (procBody: Body;
extraSpace: CARDINAL;
procUrg: Urgency;
procParams: Parameter,
VAR procld: Processld);

The procedureCreate creates a new process. An unique value of the type
Processld is assigned tgrocld as an identity for the process. The ur-
gency and parameters for the created process are those giyeondiyrg and
procParams respectivelyextraSpace specifies the amount of workspace (in
units of SYSTEM.LOGQ that is required by the process, above any fixed overhead
needed by the implementation Bfocesses .

The process will be ineligible to run (i.e. it is created in gassivestate). When
the process is first activated, it will start execution by invoking the procedure that
is denoted byrocBody .

The usage made of the workspace is implementation-dependent.

If the end of this procedure body is reached, or if a return statement is executed
in the procedure body, then the effect will be the same as calling the protection
domain exit procedure (if any), followed by an explicit call@topMe .

NOTES:

3.1. MODULE PROCESSES 71

e The process will be activated when another process makes it eligible by
calling Switch or Activate or SuspendMeAndActivate

e The standard library makes no provision to handle exceptions generated
by created processes, which must handle all exceptions themselves if it is
wished to avoid exceptional termination of a program.

Start Start new process

PROCEDURE Start (procBody: Body;
extraSpace: CARDINAL;
procUrg: Urgency;
procParams: Parameter,
VAR procld: Processld);

The proceduré&tart have an identical effect to the proced@eeate , except
that the created process will be eligible to run immediately (i.e. itis created in the
readystate).

StopMe Terminate calling process

PROCEDURE StopMe ();

If the calling process is not associated with any source of events, the procedure
StopMe causes the calling process to be terminated and removed from the sys-
tem. The procedure does not return; the calling process will not again become
eligible to run. If there are no other processes, then normal termination of the
program is initiated. If there are other processes eligible to run, then one of them
is selected for execution. The exceptassiveProgram s raised if there are
other processes, but none of them is eligible to run and none of them is waiting
for an event to occur.

NOTES:
¢ If the main process stops, the other processes will continue to run.

e The behaviour oStopMe in situations where the calling process is associ-
ated with a source of events is implementation-dependent.

S

72 CHAPTER 3. CONCURRENT PROGRAMMING

SuspendMe Suspend calling process

PROCEDURE SuspendMe ();

The proceduresuspendMe causes the calling process to become ineligible to
run (i.e. to enter th@assivestate). If there are other processes eligible to run,
then one of them is selected for execution. The excepassiveProgram is
raised if no other process is eligible to run and no other process is waiting for an
event to occur.

NOTE:

The suspended process can be reactivated when another process again makes it
eligible by callingSwitch or Activate or SuspendMeAndActivate

Activate Activate process

PROCEDURE Activate (procld: Processld);

If the process identified byrocld is passive or waiting, the procedure
Activate causes that process to become eligible to run (i.e. to enteeduly
state); otherwise it have no effect.

NOTE:

If the designated process was suspended by a c&llaof , it will become ready

in the same way as if the event had occurred. Thus, if the procédiineate

(or SuspendMeAndActivate) is used to reactivate a waiting process, further
checking will usually be required in that process to determine whether or not the
event for which it was waiting had actually taken place.

uspendMeAndActivateSuspend current process and activate another

PROCEDURE SuspendMeAndActivate (procld: Processld);

If the process identified bgrocld is passive, waiting, or is the calling process,
the procedur&uspendMeAndActivate causes the calling process to become
ineligible to run (i.e. to enter thpassivestate), and causes the process identified

3.1. MODULE PROCESSES 73

by procld to become eligible to run (i.e. to enter tteadystate); otherwise the
call have no effect.

NOTE

SuspendMeAndActivate(procld) effectively performs anatomic (i.e.
‘indivisible’) sequence of the callSuspendMe() andActivate(procld)

If applied to the identity of the calling process, the effect is to force a scheduling
operation.

Switch Switch to another process

PROCEDURE Switch (procld: Processld; VAR info: Parameter);

If the calling process has an urgency no greater than that of the process identified
by procld , the procedur&witch causes the calling process to become ineli-
gible to run (i.e. to enter thpassivestate), and resumes execution of the process
identified byprocld . The exceptiorprocessError occurs (but need not be
raised) if this process is already eligible to rumfo is passed as a parameter to
the process identified gyrocld . If the calling process is reactivated as a result

of another process callinwitch , theninfo is assigned the value passed by
that other call. If the calling process is reactivated as a result of another process
calling Activate or SuspendMeAndActivate , theninfo is assigned the
valueNIL .

NOTE:

Switch isintended to allow a high-level coroutine facility for use within concur-
rent programs. Several consequences follow:

1. The process that is resumed will only be able to retrieve the parameter
passed to it agmfo if it was ineligible to run by virtue of itself having
calledSwitch .

2. The behaviour oSwitch in situations where the urgency of the calling
process is greater than the urgency of the process identifipddoyd is
implementation-dependent.

3. While a call of Switch may be used instead dfctivate to activate
a processp, of a higher urgency than the callgs, will not be able to
useSwitch if it wishes to reactivate that caller; it will be obliged to use
Activate or SuspendMeAndActivate

74

CHAPTER 3. CONCURRENT PROGRAMMING

4. If the designated process was suspended by a c#lllaf , it will become

ready in the same way as if the event had occurred. Thus, if the procedure
Switch (orActivate or SuspendMeAndActivate) is used to reac-
tivate a waiting process, further checking will usually be required in that
process to determine whether or not the event for which it was waiting had
actually taken place.

\Wait Wait for event|

PROCEDURE Wait ();

The procedur&Vait causes the calling process to become ineligible to run (i.e.
to enter thewaiting state) if it is associated with a source of events. If there are
other processes eligible to run, then one of them is selected for execution.

NOTES:

e One of the ready processes is selected for execution to replace the caller of

Wait . This is on the assumption that, if there are ready processes that are
not executing, the scheduler imposes a fixed upper limit on the number of
executing processes.

The process will remain ineligible to run until an event occurs from one of
the sources to which it is attached, or until it is made eligible by another
process callingwitch or Activate or SuspendMeAndActivate

If a process waiting for an event is reactivated by virtue of a
call being made by another process &witch or Activate or
SuspendMeAndActivate , it will become ready in the same way as if
the event had occurred. Thus, in such situations, further checking will usu-
ally be required to determine whether or not the event for which it was
waiting had actually taken place.

The behaviour oWait if the calling process has not been attached to a
source of events, or if another process is attached to the event source after
the calling process has call®dait is implementation-dependent. In such
circumstances the calling process may never again become eligible to run,
and the system could deadlock.

3.1. MODULE PROCESSES 75

|Attach Associate event source

PROCEDURE Attach (eventSource: Sources);

The procedurdttach associates the source of events giverebgntSource
with the calling process. If the source of events is already associated with a pro-
cess, then that association is first broken.

'Detach Dissociate event source

PROCEDURE Detach (eventSource: Sources);

The procedur®etach dissociates the source of events giverelgntSource
from the program.
NOTE:

Detach has no effect if the program is not associated \eNkntSource

IsAttached Query event source

PROCEDURE IsAttached (eventSource: Sources): BOOLEAN;

The function procedursAttached returnsTRUEIf and only if the source of
events given byventSource is associated with one of the processes in the
program.

Handler Query event handler

PROCEDURE Handler (eventSource: Sources): Processld;

If the source of events identified BventSource is associated with a process,
the function procedurelandler is the identity of that process.

NOTE:

The value of the calHandler(eventSource) is implementation-dependent
in the situation where the value efventSource is not mapped to any real
source of events.

76 CHAPTER 3. CONCURRENT PROGRAMMING

Me Query current process id

PROCEDURE Me (): Processld;

The function procedur®ereturns the identity of the calling process.

MyParam Query current process parameter

PROCEDURE MyParam (): Parameter,

The function procedurMyParam returns the value of the parameter denoted by
procParams at the time the process was created.

UrgencyOf Query process urgency

PROCEDURE UrgencyOf (procld: Processld): Urgency;

The function procedurdrgencyOf returns the urgency of the process identified
by procld

NOTE:

This urgency of a process is statically assigned when the process is created; it is
not possible for a process to alter its urgency dynamically.

IsProcessesException Query exceptional state

PROCEDURE IsProcessesException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of #@rocesses exception, the function procedure
IsProcessesException returnsTRUE otherwise it retrun§ALSE

ProcessesException Query exception id

PROCEDURE ProcessesException (): ProcessesExceptions;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of @&rocesses exception, the function procedure

3.2. MODULE SEMAPHORES 77

ProcessesException returns the value that identifies the raised exception;
otherwise the language exceptiexException is be raised.

3.2 Module Semaphores

The moduleSemaphores provides facilities for potentially parallel parts of a
program (i.e. processesto exclude one another from regions of interaction by
using thesemaphore mechanidinst proposed by Dijkstra. The semaphores pro-
vided by the module are general or counting semaphores (as opposed to binary
semaphores).

The hidden typ6SEMAPHORE used to identify semaphores.

TYPE
SEMAPHORE;

Each semaphore have a unique identity. Associated with each semaphore there is
a non-negative count, and a set of zero or more processes waiting for it to become
free. A semaphore is said to Beee’ if its associated count is non-zero.

After the module has been initialized, no semaphores are in existence.
NOTES:

e For convenience, the semantics of this module are illustrated in terms of
the semantics of thBrocesses module. However, there is no require-
ment that an implementation proviéeocesses in addition to providing
Semaphores .

e The behaviour of the procedurd3estroy , Claim , Release and
CondClaim in situations where the actual parameter passed is not a valid
semaphore (i.e. is not the identity of a semaphore allocated by a call to
Create) is implementation-dependent.

Create Create new semaphore

PROCEDURE Create (VAR s: SEMAPHORE; initialCount: CARDINAL);

The procedureCreate creates a new semaphore, if there are sufficient re-
sources to do so, and assigns its identitystootherwise theSemaphores

78 CHAPTER 3. CONCURRENT PROGRAMMING

exception is raised. The count associated with the semaphore is initialized to

initialCount , and there will then be no process waiting for the semaphore to
be free.
Destroy Destroy semaphore

PROCEDURE Destroy (VAR s: SEMAPHORE);

Provided that no process is waiting for the semaphore identified by the value of
s to become free, the procedudestroy removes that semaphore and recovers
the resources used to implement it.

The variables is set to a value that is invalid for semaphore operations.
NOTE:

The behaviour oDestroy(s) in situations where there are processes waiting
for s to become free is implementation-dependent.

Claim Claim semaphore

PROCEDURE Claim (s: SEMAPHORE);

The proceduré€laim claims the semaphore identified by If the count associ-

ated withs is non-zero, then it is decremented, and the calling process continues
execution; otherwise the calling process becomes ineligible to run, and is added
to the set waiting fos to become free.

Release Unclaim semaphore

PROCEDURE Release (s: SEMAPHORE);

The procedur&elease unclaims the semaphore identified &y If no process

is waiting ons, the count associated withis incremented; otherwise one process
is selected from those waiting ferto become free; this process is removed from
the waiting set, and becomes eligible to run (i.e. enter the ready state).

NOTES:

3.2. MODULE SEMAPHORES 79

e No requirement is imposed about which of the waiting processes is chosen
for activation.

e Preemption occurs if the newly eligible process has an urgency greater than
that of the calling process.

CondClaim Claim semaphore saftely

PROCEDURE CondClaim (s: SEMAPHORE): BOOLEAN;

If the callClaim(s) would have caused the calling process to become ineligible
to run, the procedur€ondClaim returnsFALSE, and the count associated with

s is unchanged. Otherwise the count associated svih decremented, and the
procedure return§RUE

NOTE:

The calling process is never suspended as a result of ca&llmgIClaim .

IsSemaphoresException Query exceptional state

PROCEDURE IsSemaphoresException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theSemaphores exception, the procedure
IsSemaphoresException returnsTRUE otherwise it return§ALSE

80

CHAPTER 3. CONCURRENT PROGRAMMING

Chapter 4

String Manipulation

4.1 Module Strings

The moduleStrings provides facilities for manipulating character arrays as
representations of strings. The procedures provided accept any character array
type, but manipulate all as if their index types were whole numbers and zero-
based.

The module also provides predicates that check whether an operation to assign,
delete, insert, replace or append strings or characters will work without loss of
information. These predicates check that parameters indexing the concrete repre-
sentation of a string (i.e. the character array containing the string value) fall within
its length, thereby allowing the programmer to maintain the string abstraction.

A general-purpose string ty@gtringl is provided for convenience when han-
dling single characters by using a value constructor. An enumeration type
CompareResults is provided for use when comparing string values:

TYPE
Stringl = ARRAY [0..0] OF CHAR;

CompareResults = (less, equal, greater);

NOTES:
e The procedures provided accept any character array type (i.e. with any in-
dex type) but because of the use of open array parameters the procedures
manipulate all as if their index types were whole numbers and zero-based.

81

82

CHAPTER 4. STRING MANIPULATION

The array typéStringl may be used as the array type identifier of an array
constructor when constructing an array value from a value of the character
type. The constructed array value may be used as actual parameter in calls
of procedures having a formal open array value parameter, for example to
assign, insert, replace, append, concatenate, or find a single character.

Since function procedures cannot return open arrays, many of the operations
that might more logically have been provided as function procedures have
to be provided as proper procedures.

Predicates with the prefixCan’ and the suffix All ' are provided

to check the operation-completion condition of string operations (e.qg.
CanlnsertAll checks the operation-completion condition fiosert).
Failure to satisfy the operation-completion condition of a string handling
procedure does not lead to an exception; i.e. the semantics of string opera-
tions are defined for all well-formed parameters.

Value parameters are used where a string value is not changed by a pro-
cedure. This is not just a matter of programming clarity, but allows the
parameterization of programs using constants.

Because string constants cannot be assigned to, nor appended to, nor have
characters replaced or inserted, the predicates that test the operation com-
pletion conditions of procedures use VAR-parameters for the string param-
eters.

The International Standard has not adopted a change to Modula-2 (de-
scribed in the fourth edition dProgramming in Modula-Rof always re-
quiring a string terminator for a string value.

Length Query string length

PROCEDURE Length (stringVal: ARRAY OF CHAR): CARDINAL;

The function procedurd_ength returns the length of the string value in
stringvVal . This is the same as the valueldENGTH(stringVal)

4.1. MODULE STRINGS 83

CanAssignAll Check whether Assign will succeed

PROCEDURE CanAssignAll (sourceLength: CARDINAL;
VAR destination: ARRAY OF CHAR
): BOOLEAN;

The function procedur€anAssignAll returns the value of the Boolean ex-
pressiorsourceLength <= HIGH(destination) + 1

NOTES:

e CanAssignAll may be used to check whether complete assignment of
a string value to a string variable will be possible using, for example, the
procedureAssign .

e Since a string variable must have at least one element, single-character
string assignment is always valid.

Assign Assign string value

PROCEDURE Assign (source: ARRAY OF CHAR,;
VAR destination: ARRAY OF CHAR);

The proceduréssign assigns the string value source to destination

If the length ofsource exceeds the capacity distination , the assigned
value is truncated to the capacity adstination . If the length ofsource is
less than the capacity of destination, a string terminator is appendseaitoe
when assignment takes place.

EXAMPLE - String assignment.
In these, and later, examples the following declarations are assumed:

VAR
small: ARRAY [0 .. 4 OF CHAR;
large: ARRAY [0 .. 255] OF CHAR;
alpha: ARRAY ['A’ .. 'E'] OF CHAR;
ch: CHAR;
found, areDiff: BOOLEAN;
pos: CARDINAL,

84 CHAPTER 4. STRING MANIPULATION

1. ch = "X
Assign(Stringl {ch}, small)
results insmall having value'x"

2. Assign("pq”, small)
results insmall having valué'pg"

3. Assign(™, small)
results insmall having value

4. Assign("Hello!", small)
results insmall having valué'Hello" withoutstring terminator

5. the call
CanAssignAll(6, small)
returns the valuEALSE

6. Assign("Go", alpha)
results inalpha having value€'Go"

7. small := "Hello"; large = "
IF CanAssignAll(LENGTH(small), large)
THEN
Assign(small, large)
END

results inlarge having value "Hello”

|CanExtractAll Check whether Extract will succeed|

PROCEDURE CanExtractAll (sourceLength,
startPos,
numberToExtract: CARDINAL;
VAR destination: ARRAY OF CHAR
): BOOLEAN;

The function procedur€anExtractAll returns the value of the Boolean ex-
pression

(startPos + numberToExtract <= sourcelLength) AND

(numberToExtract <= HIGH(destination) + 1)

NOTE:

4.1. MODULE STRINGS 85

CanExtractAll may be used to check whether complete extraction of a sub-
string from a string variable will be possible using, for example, the procedure
Extract

Extract Extract substring

PROCEDURE Extract (source: ARRAY OF CHAR,;
startPos,
numberToExtract: CARDINAL;
VAR destination: ARRAY OF CHAR);

The procedure Extract creates a new string value of at most
numberToExtract characters extracted frommource . Extraction starts

at positionstartPos in source , and continues as long as there are characters
left to extract fromsource and no more thanumberToExtract characters
have been extracted. If the length of the created string value exceeds the
capacity ofdestination , the string value is truncated to the capacity of
destination , and the truncated value is assignediéstination . If the
length of the created string value is less than the capacigesfination :

a string terminator is appended to the string value, and the resulting value is
assigned taestination . An empty string value is extractedstartPos is
greater than or equal tENGTH(source) .

EXAMPLE - String extraction.

1. large := "ABCDE"; small = "
IF CanExtractAll(LENGTH (large), 2, 3, small) THEN
Extract(large, 2, 3, small)
END
results insmall having value'CDE"

2. large := "ABCDE"; small = "
Extract(large, 2, 3, small)
results insmall having valu¢'CDE"

86 CHAPTER 4. STRING MANIPULATION

|CanDeleteAll Check whether Delete will succeed|

PROCEDURE CanDeleteAll (stringLength,
startPos,
numberToDelete: CARDINAL
): BOOLEAN;

The function procedur€anDeleteAll returns the value of the Boolean ex-
pressiorstartPos + numberToDelete <= stringLength

NOTE:

CanDeleteAll may be used to check whether complete deletion of a substring
value from a string variable will be possible using, for example, the procedure
Delete .

Delete Delete substring

PROCEDURE Delete (VAR stringVar: ARRAY OF CHAR,;
startPos,
numberToDelete: CARDINAL);

The procedureDelete creates a new string value by deleting at most
numberToDelete characters fronstringVar . Deletion starts at position
startPos in stringVar and continues as long as there are characters left to
delete instringVar and no more thamumberToDelete characters have
been deleted. If any characters are deleted, a string terminator is appended to
the created string value, and the resulting value is assigngdngVar . The

string value instringVar is not altered ifstartPos is greater than or equal

to LENGTH(stringVar)

EXAMPLE - String deletion.

1. small := "ABCDE",
IF CanDeleteAll(LENGTH(small), 2, 2) THEN
Delete(small, 2, 2)
END
results insmall having valu¢'’ABE"

2. after the assignment
small := "ABC";

4.1. MODULE STRINGS 87

the call
CanDeleteAll(3, 2, 2)
returns the valu€ALSE

3. small := "ABC";
Delete(small, 2, 2)
results insmall having valug'AB"

'CanlnsertAll Check whether Insert will succeed|

PROCEDURE CanlnsertAll (sourceLength, startPos: CARDINAL;
VAR destination: ARRAY OF CHAR
): BOOLEAN;

The function procedureCaninsertAll returns the value of the Boolean
expression

(startPos <= LENGTH(destination)) AND

(sourceLength + LENGTH(destination) <=

HIGH(destination) + 1)

NOTE:

CanlnsertAll may be used to check whether complete insertion of a string
value into a string variable will be possible using, for example, the procedure
Insert

Insert Insert substring

PROCEDURE Insert (source: ARRAY OF CHAR;
startPos: CARDINAL;
VAR destination: ARRAY OF CHAR);

The procedurdnsert creates a new string value by inserting the substring
source into destination . The string indestination is first splitted at

the position given bytartPos ; the created string value is the concatenation of
the first part ofdestination , the substringsource , and the second part of
destination . If the length of the created string value exceeds the capacity of
destination , the string value is truncated to the capacityeétination :

and the truncated value is assignedéstination . If the length of the created

88 CHAPTER 4. STRING MANIPULATION

string value is less than the capacitydafstination , & string terminator is ap-
pended to the string value, and the resulting value is assigrasstmation

The string value idestination is not altered istartPos is greater than or
equal toLENGTH(destination)

EXAMPLE - String insertion.

1. after the assignment
small := "ABCD",
the call
CanlnsertAll(LENGTH("XYZ"), 2, small)
returns the valu€ALSE

2. small := "ABCD";
Insert("XYZ", 2, small)
results insmall having valug'’ABXYZ" withoutterminator

3. large := "ABC";
IF CaninsertAll(3, 2, large) THEN
Insert("XYZ", 2, large)
END
results inlarge having valug'ABXYZC"

4. large := "ABCD"; ch = "X";
Insert(Stringl {ch}, 2, large)
results inlarge having valué¢’ABXCD"

CanReplaceAll Check whether Replace will succeed

PROCEDURE CanReplaceAll (sourceLength, startPos: CARDINAL;
VAR destination: ARRAY OF CHAR
): BOOLEAN;

The function procedur€anReplaceAll returns is the value of the Boolean
expressiorsourceLength + startPos <= LENGTH(destination)

NOTES:

e CanReplaceAll may be used to check whether complete replacement of
a substring value within a string variable will be possible using, for example,
the procedur®eplace .

4.1. MODULE STRINGS 89

e The preservation of the string abstraction is taken as the goal of the
string module. This means that the operation completion condition of
CanReplaceAll only tests whether the proposed replacement is valid
within the given string length; the procedureplace always preserves
the length of itdestination string.

Replace Replace substring

PROCEDURE Replace (source: ARRAY OF CHAR,;
startPos: CARDINAL;
VAR destination: ARRAY OF CHAR);

The procedur®eplace modifies the string value fromhestination by over-
writing characters irdestination with characters extracted from the string
value insource . Overwriting begins at the position given ByartPos and
continues as long as there are characters left to overwrdestination and
characters left to extract frosource . The string value irdestination IS
not altered ifstartPos is greater than or equal t&ENGTH(destination)

NOTE:

The length of the string value imlestination is always preserved by
Replace .

EXAMPLE - String replacement.

1. after the assignment
small := "ABC"
the call
CanReplaceAll(LENGTH("XY"), 2, small)
returns the valu€ALSE

2. small := "ABC";
Replace("XY", 2, small)
results insmall[0] having value'ABX"

3. large := "ABCDEF";
IF CanReplaceAll(3, 2, large)
THEN
Replace("XYZ", 2, large)
END
results inlarge having value¢'ABXYZF"

90 CHAPTER 4. STRING MANIPULATION

CanAppendAll Check whether Append will succeed

PROCEDURE CanAppendAll (sourceLength: CARDINAL,;
VAR destination: ARRAY OF CHAR
): BOOLEAN;

The function procedureCanAppendAll returns the value of the Boolean
expression

LENGTH(destination) + sourceLength <=

HIGH(destination) + 1

NOTE:

CanAppendAll may be used to check whether it will be possible to append a
string value to another string value held within a string variable using, for example,
the procedurdppend.

Append Append string

PROCEDURE Append (source: ARRAY OF CHAR;
VAR destination: ARRAY OF CHAR);

The procedurdppend creates a new string value by appending the string value

in source onto destination . If the length of the created string value ex-
ceeds the capacity destination , the string value is truncated to the capacity
of destination , and the truncated value is assigneddastination Cf

the length of the created string value is less than the capacitgstination ,
a string terminator is appended to the string value, and the resulting value is as-
signed tadestination

EXAMPLE - Appending to strings.

1. after the assignment
small := "pgr"
the call
CanAppendAll(LENGTH("XYZ"), small)
returns the valuEALSE

2. small = "pqr";
Append("XYZ", small)
results insmall having value'pqrXY" withoutterminator

4.1. MODULE STRINGS 91

3. small = "pqgr";
ch = "s"
Append(Stringl ~ {ch}, small)
results insmall having valué'pqgrs”

'CanConcatAll Check whether Concat will succeed|

PROCEDURE CanConcatAll (sourcellength, source2Length: CARDINAL,;
VAR destination: ARRAY OF CHAR
): BOOLEAN;

The function procedur€anConcatAll returns the value of the Boolean ex-
pression
sourcellLength + source2Length <= HIGH(destination) + 1

NOTE:

CanConcatAll may be used to check whether complete concatenation of two
string values will be possible within the capacity of a specified string variable
using, for example, the procedu®ncat .

Concat Concatenate strings

PROCEDURE Concat (sourcel, source2: ARRAY OF CHAR;
VAR destination: ARRAY OF CHAR);

The procedureConcat creates a new string value by appending the substring
valuesource2 ontosourcel . If the length of the created string value exceeds
the capacity ofdestination , the string value is truncated to the capacity of
destination , and the truncated value is assignedi&stination . If the
length of the created string value is less than the capacitesfination , a

string terminator is appended to the string value, and the resulting value is as-
signed tadestination

EXAMPLE - String concatenation.

1. after the assignment
small = "pqgr"

92 CHAPTER 4. STRING MANIPULATION

the call
CanConcatAll(4, LENGTH(small), small)
returns the valuEALSE

2. small = "pqr";
Concat("WXYZ", small, small)
results insmall having valug'WXYZp" withoutterminator

3. small := "k"; large = "
ch = "s"
Concat(Stringl ~ {ch}, small, large)
results inlarge having valué'skj"

Capitalize Capitalize string

PROCEDURE Capitalize (VAR stringVar: ARRAY OF CHAR);

The procedur€apitalize applies the standard functi@APto each character
of the string value irstringVar

NOTE:

Capitalize may be used to achieve case-insensitive use of the procedures
Compare, FindNext , FindPrev andFindDiff

EXAMPLE - String capitalization.

The following example assumes a capitalization mapping which maps pto P, g to
QandrtoR.

1. small = "pqr";
Capitalize(small)
results insmall having value'’PQR"

Compare Compare strings

PROCEDURE Compare (stringVall, stringVal2: ARRAY OF CHAR
). CompareResults;

The function proceduréCompare returns a value of the enumeration type
CompareResults depending on the lexical ordering of the ty@#IAR The

4.1. MODULE STRINGS 93

value returned idess , equal or greater according as the string value in
stringVvall is lexically less than, equal to, or greater than the string value in
stringVal2

NOTES:

e The result of this function is dependent upon the full collating sequence
of character values. This sequence is implementation-defined, although it
must have certain properties.

e In general, the result of this function is case-sensitive.

EXAMPLE - String comparison.

1. Compare(™, ™) returnsequal

2. Compare(™, "abc") returnsless

3. Compare("abc”, ") returnsgreater

4. Compare("pgr”, "pqr") returnsequal

5. Compare("pgr”, "pgrstuv") returnsless

6. Compare("pgrstuv"”, "pgr") returnsgreater

7. Compare("abc”, "pqr") returnsless

8. Compare("pqgr”, "abc") returnsgreater

9. Compare("abcdef ", "p") returnsless

10. Compare("p", "abcdef ") returnsgreater
Equal Compare strings

PROCEDURE Equal (stringVvall, stringvVal2: ARRAY OF CHAR): BOOLEAN;

The function procedurBqual returns the value of the Boolean expression
Strings.Compare(stringVall, stringVal2) =
Strings.equal

94 CHAPTER 4. STRING MANIPULATION

FindNext Search string forward

PROCEDURE FindNext (pattern, stringToSearch: ARRAY OF CHAR,
startPos: CARDINAL;
VAR patternFound: BOOLEAN;
VAR posOfPattern: CARDINAL);

The procedureFindNext searches forwards for the next occurrence of
pattern in stringToSearch , starting the search istringToSearch

at position startPos . If pattern is found, the valueTRUE is as-
signed topatternFound , and posOfPattern contains the starting po-
sition of pattern in stringToSearch ; posOfPattern is in the
range[startPos..LENGTH(stringToSearch)-1] . Otherwise the value
FALSEIis assigned tpatternFound andposOfPattern is unchanged.

NOTES:

e Thepattern might be found at the given value sfartPos

o If startPos > LENGTH(stringToSearch) -
LENGTH(pattern) thenpatternFound is returned aFALSE

EXAMPLE - Forwards string search.

1. large := "Hello hello hello";
FindNext("ll", large, 0, found, pos)
results in:

found having valueTRUE
pos having value?

2. large := "Hello hello hello";
FindNext("ll", large, O, found, pos);
FindNext("ll", large, pos+1, found, pos)
results in:
found having valueTRUE
pos having value8

3. large := "abcdefghijklmnopqgrstuvwxyz";
ch = "x"
FindNext(Stringlfchg, large, 0, found, pos)
results in:

4.1. MODULE STRINGS 95

found having valueTRUE
pos having value23

4. large := "abcdefghijkimnopgrstuvwxyz";
ch = "x"
FindNext(Stringlfchg, large, 26, found, pos)
results in:

found having value=ALSE
pos remains unchanged

FindPrev Search string backward

PROCEDURE FindPrev (pattern, stringToSearch: ARRAY OF CHAR,;
startPos: CARDINAL;
VAR patternFound: BOOLEAN;
VAR posOfPattern: CARDINAL);

The procedur&indPrev looks backwards for an occurrencepaittern in the

string value instringToSearch |, starting the search istringToSearch

at position startPos . If pattern is found, the valueTRUE is as-
signed topatternFound , and posOfPattern contains the starting posi-
tion of pattern in stringToSearch ; posOfPattern is in the range
[0..startPos] . Otherwise the valuEALSEIis assigned tpatternFound
andposOfPattern is unchanged.

NOTES:

e Thepattern might be found at the given value sfartPos

e If startPos > LENGTH(stringToSearch)-LENGTH(pattern)
the whole string value is searched.

EXAMPLE - Backwards string search.

1. large := "aabbbcccc”;
FindPrev("cc", large, 200, found, pos)
results in:

found having valueTRUE
pos having value7

96 CHAPTER 4. STRING MANIPULATION

2. large := "aabbbcccc”;
FindPrev("cc", large, 200, found, pos);
FindPrev("cc", large, pos-1, found, pos)
results in:
found having valueTRUE
pos having value

3. large := "Maybe this makes sense";
FindPrev('se", large, 200, found, pos)
results in:

found having valueTRUE
pos having value20

4. large := "Maybe this makes sense";
FindPrev('se", large, 20, found, pos);
FindPrev('se", large, pos-1, found, pos)
results in:
found having valueTRUE
pos having valuel7

FindDiff Find position of string ditference

PROCEDURE FindDiff (stringVall, stringVal2: ARRAY OF CHAR;
VAR differenceFound: BOOLEAN;
VAR posOfDifference: CARDINAL);

The procedure=indDiff ~ compares the string values stringVall and
stringval2 . The valueFALSE is assigned talifferenceFound if the
string values are equal afidRUEotherwise. IfdifferenceFound is TRUE

the position of the first difference between the string values is assigned to
posOfDifference ; otherwiseposOfDifference is unchanged.

Examples - Finding string differences.

1. FindDiff("", ™, areDiff, pos) results in:
areDiff having value~FALSE
pos being unchanged

4.1. MODULE STRINGS 97

2. FindDiff("abc", ", areDiff, pos) results in:
areDiff having valueTRUE
pos having valued

3. FindDiff("™", "abc", areDiff, pos) results in:
areDiff having valueTRUE pos having valued

4. FindDiff("pgr", "pqt", areDiff, pos) results in:
areDiff having valueTRUE
pos having value2

5. FindDiff("pgr”, "pgrstuv", areDiff, pos) results in:
areDiff having valueTRUE
pos having value3

6. FindDiff("pgrstuv”, "pqr", areDiff, pos) results in:
areDiff having valueTRUE
pos having value3

98

CHAPTER 4. STRING MANIPULATION

Chapter 5

String Conversions

The string conversions library allows the conversion of the values of numeric data
types to and from character string representations. The motiledeStr ,
RealStr , andLongStr provide simple high-level facilities for converting to
and from strings and whole number and real number data types. Low-level fa-
cilities are provided by the corresponding moduikoleConv, RealConv ,
andLongConv. Common data types and values that are used in the definition
modules are defined by the mod@envTypes .

The formats for string conversions correspond to those for numeric input and out-
put, except that the numeric output routines provide for (right) alignment in a
specified field width — see 9.2.2.2 and 9.2.2.3.

5.1 Common Data Types

The moduleConvTypes defines types and values that are used in the high-level
and low-level string conversion definition modules. Where appropriate, the con-
version modules define types in terms of those defineddnvTypes . Direct
import from this module is not normally necessary in modules that are clients of
the high-level conversion modules.

5.1.1 Module ConvTypes
The moduleConvTypes defines the enumeration ty@®nvResults with val-

ues for expressing the format of strings that are interpreted as representing val-
ues of numeric data types. The module also defines the §pasClass and

99

100 CHAPTER 5. STRING CONVERSIONS

ScanState , which the low-level conversion modules use in the definition of
procedures that control lexical scanning.

TYPE
ConvResults = (* Values of this type are used
to express the format of a string: *)
(
strAllRight, (* the string format is correct

for the corresponding conversion *)
strOutOfRange, (* the string is well-formed but the value

cannot be represented *)
strWrongFormat, (* the string is in the wrong format

for the conversion *)

StrEmpty (* the given string is empty *)
);
ScanClass = (* Values of this type are used to classify input
to finite state scanners: *)
(

padding, (* a leading or padding character at this point
in the scan - ignore it *)
valid, (* a valid character at this point
in the scan - accept it *)
invalid, (* an invalid character at this point
in the scan - reject it *)
terminator (* a terminating character at this point
in the scan (not part of token) *)

);

ScanState = (* The type of lexical scanning
control procedures *)
PROCEDURE (CHAR, VAR ScanClass, VAR ScanState);

5.2 High-Level String Conversion Modules

Separate high-level string conversion modules are defined for the whole number
types (NTEGER and CARDINAL, and for the real number typeREAL and
LONGREAL These all use decimal notation.

In calls of procedures converting from strings, the source pararateris as-

5.2. HIGH-LEVEL STRING CONVERSION MODULES 101

sumed to contain a string value (which is terminated by the string terminator char-
acter if the length of the string is less than the capacity of the array). While leading
spaces are ignored, the entire remainder of the string has to be in the correct format
for the conversion to take place.

In calls of procedures converting to strings, the destination pararsteters as-
signed a string value (which is terminated by the string terminator character if
the length of the string is less than the capacity of the array). If the destination
parameter is of insufficient capacity, the string is truncated. Users may determine
whether truncation will occur by using procedures suchesgthCard from

the low-level string conversion modules — see 9.5.3.1.2.

NOTE:

The string conversion procedures may be used with strings read by
STextlO.ReadToken or TextlO.ReadToken , if it is required that entire
space-character delimited tokens are in the correct format — see 9.2.2.1.2.

5.2.1 EXAMPLE - Conversion of strings read by ReadToken

This example shows how space-character delimited tokens that cannot be con-
verted to values of typEARDINALcan be replaced by descriptive text:

firstOnLine := TRUE;
STextlO.ReadToken(inStr);
WHILE SIOResult.ReadResult() <> SIOResult.endOfinput DO
WholeStr.StrToCard(inStr, inCard, inRes);
CASE inRes OF
| ConvTypes.strAllRight .. ConvTypes.strWrongFormat:
IF firstOnLine THEN
firstOnLine := FALSE
ELSE
STextlO.WriteString(" ")
END
| ConvTypes.strEmpty:
firstOnLine := TRUE;
STextlO.SkipLine
END;
CASE inRes OF
| ConvTypes.strAllRight:
STextlO.WriteString(inStr)
| ConvTypes.strOutOfRange:

102 CHAPTER 5. STRING CONVERSIONS

STextlO.WriteString("out-of-range")

| ConvTypes.strWrongFormat:
STextlO.WriteString("wrong-format")

| ConvTypes.strEmpty:
STextlO.WriteLn

END;

STextlO.ReadToken(inStr)

END;

It is assumed here that the capacity of the character array vanedite is suf-
ficient to accommodate the longest token in the input stream.

5.2.2 Module WholeStr

The moduleWholeStr provides procedures for the conversion of values of the
type INTEGERand the typeCARDINALto and from strings.

The string form of a signed whole number is
[*+" | "-"], decimal digit, {decimal digit}
The string form of an unsigned whole number is

decimal digit, {decimal digit}

StrTolnt Convert string to INTEGER

PROCEDURE StrTolnt (str: ARRAY OF CHAR;
VAR int: INTEGER,;
VAR res: ConvResults);

The proceduré&trTolnt ignores leading spaces §tr and assigns values to
int andres as follows:

strAllRight if the remainder ofstr represents a complete signed whole
number in the range of the tyd®ITEGER the value of this number is
assigned tant ;

5.2. HIGH-LEVEL STRING CONVERSION MODULES 103

strOutOfRange if the remainder obtr represents a complete signed whole
number but its value is out of the range of the tyDdEGER the value
MAX(INTEGER) or MIN(INTEGER) is assigned tint according to the
sign of the number;

strWrongFormat if there are remaining charactersstr but these are not
in the form of a complete signed whole number; the valuebf is not

defined;

strEmpty if there are no remaining characterssin — the value ofint is
not defined.

IntToStr Convert INTEGER to string

PROCEDURE IntToStr (int: INTEGER; VAR str: ARRAY OF CHAR);

The procedurdntToStr assigns tostr the possibly truncated string corre-
sponding to the value ofit . A sign is included only for negative values.

StrToCard Convert string to CARDINAL

PROCEDURE StrToCard (str: ARRAY OF CHAR;
VAR card: CARDINAL;
VAR res: ConvResults);

The procedur&trToCard ignores leading spacesstr and assigns values to
card andres as follows:

strAllIRight if the remainder oftr represents a complete unsigned whole
number in the range of the tyg@ARDINAL the value of this number is
assigned teard ;

strOutOfRange if the remainder ofstr represents a complete unsigned
whole number but its value is out of the range of the t¢p&RDINAL
the valueMAX(CARDINAL) is assigned tcard ;

strWrongFormat if there are remaining charactersstn but these are not in
the form of a complete unsigned whole number; the valueaodl is not
defined;

104 CHAPTER 5. STRING CONVERSIONS

strEmpty if there are no remaining characterssin ; the value ottard is not
defined.

CardToStr Convert CARDINAL to string

PROCEDURE CardToStr (card: CARDINAL; VAR str: ARRAY OF CHAR);

The procedur€ardToStr assigns testr the possibly truncated string corre-
sponding to the value afard .

5.2.3 Modules RealStr and LongStr

The modulesRealStr andLongStr provide procedures for the conversion of
real numbers to and from strings. In the cas®e&lIStr , real number parame-
ters are of the typ&EAL In the case of.ongStr , real number parameters are
of the typeLONGREAL

The semantics of the two modules is the same, except that when module
RealStr refers to the pervasive typREAL the corresponding procedure in
LongStr refers to the pervasive tydg®ONGREAL

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
LongStr .

The string form of a signed fixed-point real number is

"+" | "-"], decimal digit, {decimal digit},
[*.", {decimal digit}]

The string form of a signed floating-point real number is

signed fixed-point real number,
"E"|"e", ["+" | "-"], decimal digit, {decimal digit}

5.2. HIGH-LEVEL STRING CONVERSION MODULES 105

StrToReal Convert string to real

PROCEDURE StrToReal (str: ARRAY OF CHAR;
VAR real: REAL,;
VAR res: ConvResults);
PROCEDURE StrToReal (str: ARRAY OF CHAR;
VAR real: LONGREAL,;
VAR res: ConvResults);

The procedur&trToReal ignores leading spacesstr and assigns values to
res andreal as follows:

strAllRight if the remainder obtr represents a complete signed real num-
ber in the range of the type oéal ; the value of this number is assigned
to real;

strOutOfRange if the remainder ofstr represents a complete signed real
number but its value is out of the range of the typeeal ; the maximum
or minimum value of the type afeal is assigned toeal according to
the sign of the number;

strWrongFormat if there are remaining charactersstr but these are not
in the form of a complete signed real number; the valueeal is not

defined;

strEmpty if there are no remaining characterssin ; the value ofeal is not
defined.

RealToFloat Convert real to string (float notation)

PROCEDURE RealToFloat (real: REAL;

sigFigs: CARDINAL;

VAR str: ARRAY OF CHAR);
PROCEDURE RealToFloat (real: LONGREAL;

sigFigs: CARDINAL,;

VAR str: ARRAY OF CHAR);

The procedur&ealToFloat assigns testr the possibly truncated string cor-
responding to the value oéal in floating-point form. A sign is included only

106 CHAPTER 5. STRING CONVERSIONS

for negative values. One significant digit is included in the whole number part.
The signed exponent part is included only if the exponent value is not 0. If the
value ofsigFigs is greater than 0, that number of significant digits is included,
otherwise an implementation-defined number of significant digits is included. The
decimal pointis not included if there are no significant digits in the fractional part.

RealToEng Convert real to string (eng. notation)

PROCEDURE RealToEng (real: REAL;

sigFigs: CARDINAL,;

VAR str: ARRAY OF CHAR);
PROCEDURE RealToEng (real: LONGREAL;

sigFigs: CARDINAL,;

VAR str: ARRAY OF CHAR);

The procedurd&kealToEng behaves like the proceduRealToFloat except
that the number is scaled with one to three digits in the whole number part and
with an exponent that is a multiple of three.

RealToFixed Convert real to string (fixed notation)

PROCEDURE RealToFixed (real: REAL;

place: INTEGER;

VAR str: ARRAY OF CHAR);
PROCEDURE RealToFixed (real: LONGREAL,

place: INTEGER;

VAR str: ARRAY OF CHAR);

The procedur®ealToFixed assigns testr the possibly truncated string cor-
responding to the value oéal in fixed-point form. A sign is included only for
negative values. At least one digitis included in the whole number part. The value
is rounded to the given value pface relative to the decimal point. The decimal
point is suppressed fflace is less than O.

5.3. LOW-LEVEL STRING CONVERSION MODULES 107

RealToStr Convert real to string (auto notation)

PROCEDURE RealToStr (real: REAL; VAR str: ARRAY OF CHAR);
PROCEDURE RealToStr (real: LONGREAL; VAR str: ARRAY OF CHAR);

If the sign and magnitude ofeal can be shown within the capac-

ity of str , the call RealToStr(real,str) behaves like the call
RealToFixed(real,place,str) , with a value of place chosen to
fill exactly the remainder ofstr . Otherwise, the call behaves as the call
RealToFloat(real,sigFigs,str) , With a value ofsigFigs of at least

one, but otherwise limited to the number of significant digits that can be included
together with the sign and exponent parstn .

5.3 Low-Level String Conversion Modules

Separate low-level string conversion modules are defined for the whole number
types (NTEGER and CARDINAL), and for the real number typeRIEAL and
LONGREAL These all use decimal notation.

Procedures are defined to return the length of the string that is required to represent
a given value, to return the format of a given string, to return the value of a string
known to be in the correct format for conversion, and to allow control of lexical
scanning of character sequences.

NOTE:

The types designated by ConvTypes.ScanClass and
ConvTypes.ScanState are not given aliases in the low-level conver-
sion modules. This is because clients of a separate finite state interpreter
module need to refer only to procedures suciVdmleConv.Scanint | which
represent the start state, and not to the types themselves.

5.3.1 EXAMPLE - Use of Scanlint

The following procedure usé&holeConv.Scanint to locate the position of

the first character in a string that follows any leading spaces and to locate the
position of the first character that is not part of an integer. These positions will
coincide if the string does not contain an integer after any leading spaces, and will
be equal to the string length if no such character is contained in the string.

108 CHAPTER 5. STRING CONVERSIONS

PROCEDURE FindInt(str: ARRAY OF CHAR; VAR first, next: CARDINAL);
VAR

ch: CHAR,;

len, index: CARDINAL;

state: ConvTypes.ConvState;

class: ConvTypes.ConvClass;

BEGIN
len := LENGTH(str);
index := O;
first := len;
state := WholeConv.Scanlnt;
LOOP

IF index = len THEN EXIT END;
state(str[index], class, state);
CASE class OF
| ConvTypes.padding:
| ConvTypes.valid:
IF index < first THEN first := index END;
| ConvTypes.invalid, ConvTypes.terminator:
EXIT
END;
INC(index)
END;
next := index
END FindInt;

5.3.2 Module WholeConv

The moduleNVholeConv provides low-level string conversion procedures for val-
ues of the typédNTEGERand values of the typEARDINAL

|Scanlnt Scan one character of INTEGER|

PROCEDURE Scanint (inputCh: CHAR;
VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);

The proceduré&canint assigns values tohClass andnextState depend-
ing upon the value ahputCh as shown in the following table:

5.3. LOW-LEVEL STRING CONVERSION MODULES 109

Procedure inputCh chClass | nextState
a procedure with
behaviour of
Scanint | space padding | Scanint
sign valid S
decimal digit| valid W
other invalid Scanint
S decimal digit| valid W
other invalid S
W decimal digit| valid W
other terminator| —

NOTE:

The procedur&canint corresponds to the start state of a finite state machine to
scan for a character sequence that forms a signed whole numbe&dak€ard

and the corresponding procedures in the other low-level string conversion mod-
ules, it may be used to control the actions of a finite state interpreter. As long as
the value otthClass is other tharterminator ~ orinvalid , the interpreter
should call the procedure whose value is assigneteidState by the previ-

ous call, supplying the next character from the sequence to be scanned. It may
be appropriate for the interpreter to ignore characters classifiedtagl , and
proceed with the scan. This would be the case, for example, with interactive in-
put, if only valid characters are being echoed in order to give interactive users an
immediate indication of badly-formed data. If the character sequence ends be-
fore one is classified @aerminator , the string-terminator character should be
supplied as input to the finite state scanner. If the preceding character sequence
formed a complete number, the string-terminator is classifiddrasinator
otherwise it is classified asvalid

Formatint Query INTEGER format

PROCEDURE Formatint (str: ARRAY OF CHAR): ConvResults;
The function procedurBormatint queries the format adtr and returns:

strAllRight if str has avalue representing a complete signed whole number
that is in the range of the tyddITEGER

strOutOfRange if str has a value representing a complete signed whole
number that is not in the range INTEGER

110 CHAPTER 5. STRING CONVERSIONS

strWrongFormat if str has a value with remaining characters that do not
form a complete signed whole number;

strEmpty if str has a value with no remaining characters;

Formatint ignores any leading space characterstin .

Valuelnt Query INTEGER value

PROCEDURE Valuelnt (str: ARRAY OF CHAR): INTEGER;

If str has a value representing a signed whole number, the function procedure
Valuelnt returns thdNTEGERvalue that corresponds to that number. Other-
wise, theWholeConv exception is raised.

Lengthint Query INTEGER length

PROCEDURE Lengthint (int: INTEGER): CARDINAL;

The function proceduréengthint returns the number of characters in the
string representation of the valueiof .

NOTE:

This value corresponds to the capacity of an arstly which is of the
minimum capacity needed to avoid truncation of the result in the call
WholeStr.IntToStr(int,str)

|ScanCard Scan one character of CARDINAL |

PROCEDURE ScanCard (inputCh: CHAR;
VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);

The procedurescanCard assigns values tohClass and nextState de-
pending upon the value afputCh as shown in the following table:

5.3. LOW-LEVEL STRING CONVERSION MODULES 111

Procedure inputCh chClass | nextState
a procedure with
behaviour of
ScanCard| space padding | ScanCard
decimal digit| valid wW
other invalid ScanCard
w decimal digit| valid W
other terminator| —
FormatCard Query CARDINAL format

PROCEDURE FormatCard (str: ARRAY OF CHAR): ConvResults;
The function procedurBormatCard queries the format oftr and returns:

strAllRight if str has a value representing a complete unsigned whole
number that is in the range of the tyGARDINAL

strOutOfRange if str has a value representing a complete unsigned whole
number that is not in the range GARDINAL

strWrongFormat if str has a value with remaining characters that do not
form a complete unsigned whole number;

strEmpty if str has a value with no remaining characters;

FormatCard ignores any leading space characterstm .

ValueCard Query CARDINAL value

PROCEDURE ValueCard (str: ARRAY OF CHAR): CARDINAL;

If str has a value representing an unsigned whole number, the function proce-
dureValueCard returns theCARDINALvalue that corresponds to that number.
Otherwise, th&VholeConv exception is raised.

112 CHAPTER 5. STRING CONVERSIONS

LengthCard Query CARDINAL length

PROCEDURE LengthCard (card: CARDINAL): CARDINAL,;

The function proceduréengthCard returns the number of characters in the
string representation of the valueadrd .

NOTE:

This value corresponds to the capacity of an arstly which is of the
minimum capacity needed to avoid truncation of the result in the call
WholeStr.CardToStr(card,str)

IsWholeConvException Query exceptional state

PROCEDURE IsWholeConvException (): BOOLEAN;

The function procedurlssWholeConvException returnsTRUEIf the calling
coroutine is in the state of exceptional execution because of the raising of the
WholeConv exception, andFALSE otherwise.

5.3.3 Modules RealConv and LongConv

The modulesRealConv andLongConv provide low-level string conversion
procedures for values of the typEALand values of the typeONGREALIN the
case ofRealConv , real number parameters are of the tiyfeAL In the case of
LongConv , real number parameters are of the tyji@NGREAL

The semantics of the two modules are the same, except that when module
RealConv refers to the pervasive tydREAL, the corresponding procedure in
LongConv refers to the pervasive tydéONGREAL

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
LongConv .

5.3. LOW-LEVEL STRING CONVERSION MODULES

113

'ScanReal

Scan one character of real|

PROCEDURE ScanReal (inputCh: CHAR;
VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);
PROCEDURE ScanReal (inputCh: CHAR;
VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);

The procedurescanReal assigns values tohClass and nextState
pending upon the value afiputCh as shown in the following table:

Procedure inputCh chClass | nextState
a procedure with
behaviour of

ScanReal| space padding | ScanReal

sign valid RS
decimal digit| valid P
other invalid ScanReal

RS decimal digit| valid P

other invalid RS

P decimal digit| valid P

valid F
"E” valid E
other terminator| —

F decimal digit| valid F

"E” valid E
other terminator| —

E sign valid SE

decimal digit| valid WE
other invalid E

SE decimal digit| valid WE

other invalid SE

WE decimal digit| valid WE

other terminator| —

de-

114 CHAPTER 5. STRING CONVERSIONS

FormatReal Query real format

PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;
PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;

The function procedurBormatReal queries the format oftr and returns:

strAllIRight if str has a value representing a complete signed real number
that is in the range of the real number type corresponding to the module;

strOutOfRange if str has a value representing a complete signed real num-
ber that is not in the range of the real number type corresponding to the
module;

strWrongFormat if str has a value with remaining characters that do not
form a complete signed real number;

strEmpty if str has a value with no remaining characters;

FormatReal ignores any leading space characterstin .

ValueReal Query real value

PROCEDURE ValueReal (str: ARRAY OF CHAR): REAL;
PROCEDURE ValueReal (str: ARRAY OF CHAR): LONGREAL;

If str has a value representing a real number, the function procedure
ValueReal(str) returns theREAL (or LONGREA)L value that corresponds
most closely to that number. Otherwise, an exception is raised.

LengthFloatReal Query float length

PROCEDURE LengthFloatReal (real: REAL;

sigFigs: CARDINAL): CARDINAL;
PROCEDURE LengthFloatReal (real: LONGREAL,;

sigFigs: CARDINAL): CARDINAL;

The function proceduré.engthFloatReal returns the number of charac-
ters in the floating-point string representation of the valueeaf when using
sigFigs significant figures.

5.3. LOW-LEVEL STRING CONVERSION MODULES 115

NOTE:

This value corresponds to the capacity of an array which is

of the minimum capacity needed to avoid truncation of the re-
sult in the call RealStr.RealToFloat(real,sigFigs,str)

(in the case of RealConv.LengthFloatReal) or the call
LongStr.RealToFloat(real,sigFigs,str) (in the case of
LongConv.LengthFloatReal)

LengthEngReal Query engineering length

PROCEDURE LengthEngReal (real: REAL;

sigFigs: CARDINAL): CARDINAL;
PROCEDURE LengthEngReal (real: LONGREAL,

sigFigs: CARDINAL): CARDINAL;

The function proceduréengthEngReal returns the number of characters in
the floating-point engineering string representation of the valuealf when
usingsigFigs significant figures.

NOTE:

This value corresponds to the capacity of an array which is

of the minimum capacity needed to avoid truncation of the re-
sult in the call RealStr.RealToEng(real,sigFigs,str)

(in the case of RealConv.LengthEngReal) or the call
LongStr.RealToEng(real,sigFigs,str) (in the case of
LongConv.LengthEngReal).

LengthFixedReal Query fixed length

PROCEDURE LengthFixedReal (real: REAL;

place: INTEGER): CARDINAL;
PROCEDURE LengthFixedReal (real: LONGREAL;

place: INTEGER): CARDINAL;

The function proceduréengthFixedReal returns the number of characters
in the fixed-point string representation of the valueedl when rounded to the
place relative to the decimal point given by the valuplaice .

NOTE:

116 CHAPTER 5. STRING CONVERSIONS

This value corresponds to the capacity of an array which is

of the minimum capacity needed to avoid truncation of the re-
sult in the call RealStr.RealToFixed(realplace,str)

(in the case of RealConv.LengthFixedReal) or the call
LongStr.RealToFixed(real,place,str) (in the case of
LongConv.LengthFixedReal).

IsRConvException Query exceptional state

PROCEDURE IsRConvException (): BOOLEAN;
PROCEDURE IsRConvException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of th&®ealConv exception, the function procedure
RealConv.IsRConvException returnsTRUE otherwise it return§ALSE

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of théongConv exception, the function procedure
LongConv.IsRConvException returnsTRUE otherwise it return§ALSE

Chapter 6

Miscellaneous

6.1 Module CharClass

The full set of values of the character type (the elementary type denoted by the
pervasive identifieCHAR is implementation-defined. The moduarClass

allows a program to determine the classification of a given value of the character
type of an implementation in a way that does not rely on there being a known
literal representation of all members of the character set.

The moduleCharClass provides predicates to test if a given value of the charac-
ter type in an implementation is classified as a numeric, a letter, an upper-case let-
ter, a lower-case letter, a value representing a control function, or as white space.

[IsNumeric Test for numeric character|

PROCEDURE IsNumeric (ch: CHAR): BOOLEAN;

The function procedurésNumeric returnsTRUEIf ch is a member of an
implementation-defined set of numeric characters that should include the decimal
digits, andFALSE otherwise.

IsLetter Test for letter|

PROCEDURE IsLetter (ch: CHAR): BOOLEAN;

The function procedurdsLetter returns TRUEf ch is a member of an

117

118 CHAPTER 6. MISCELLANEOUS

implementation-defined set of letters that should include the required letters, and
FALSE otherwise.

IsUpper Test for upper case letter

PROCEDURE IsUpper (ch: CHAR): BOOLEAN;

The function procedurdsUpper returns TRUEf ch is a member of an
implementation-defined set of upper case letters that should include the required
upper case letters, almALSE otherwise.

IsLower Test for lower case letter]

PROCEDURE IsLower (ch: CHAR): BOOLEAN;

The function procedurdsLower returns TRUEif ch is a member of an
implementation-defined set of lower case letters that should include the required
lower case letters, arfdALSE otherwise.

IsControl Test for control character|

PROCEDURE IsControl (ch: CHAR): BOOLEAN;

The function procedurésControl returnsTRUEIf ch is a member of an
implementation-defined set of characters that represent control functions, and
FALSE otherwise.

IsWhiteSpace Test for white space character

PROCEDURE IsWhiteSpace (ch: CHAR): BOOLEAN;

The function procedurésWhiteSpace returnsTRUEIf ch is either a space
character or a member of an implementation-defined set of characters that repre-
sent format effectors, arfdALSE otherwise.

6.2. MODULES LOWREAL AND LOWLONG 119

6.2 Modules LowReal and LowLong

Two modules are provided to give access to the underlying properties of the types
REALandLONGREALThe two modules share common concepts, functions and
values, and hence both modules are considered together.

The moduld.owReal gives access to the underlying properties of the AL,
while LowLong gives access to the same properties for the ypRGREAL

For implementations that conform t8O/IEC 10967-1:199x Information tech-
nology - Language independent arithmetic - Partl: Integer and floating point
arithmetic a more precise specification is given in that International Standard.

If the implementation of the corresponding real number type conford@Q4EC
10967-1:199x (LIA-1)procedure functions of a similar name correspond to the
operations required by that International Standard.

Constants and Types

CONST
radix = <implementation-defined whole number value>;
places = <implementation-defined whole number value>;
expoMin = <implementation-defined whole number value>;
expoMax = <implementation-defined whole number value>;
large = <implementation-defined real number value>;
small = <implementation-defined real number value>;
IEC559 = <implementation-defined BOOLEAN value>;
LIA1 = <implementation-defined BOOLEAN value>;
rounds = <implementation-defined BOOLEAN value>;
gUnderflow = <implementation-defined BOOLEAN value>;
exception = <implementation-defined BOOLEAN value>;
extend = <implementation-defined BOOLEAN value>;
nModes = <implementation-defined whole number value>;

TYPE
Modes = PACKEDSET OF [0 .. nModes-1];

The values denoted by the constant identifiers exported fromReal and
LowLong are the implementation-defined values specified below.

If an implementation provides facilities for dynamically changing the properties
of the real number types, the constant values refer to the default properties.

120 CHAPTER 6. MISCELLANEOUS

The value ofplaces , and the other facilities in these modules, refer only to the
representation used to store values.

NOTE: Some implementations may choose to compute expressions to greater
precision than that used to store values.

If the implementation of the corresponding real number type conforhi@4EC
10967-1:199x (LIA-1)the following correspondences hold:

NOTE: The value of the parametémax , required bylSO/IEC 10967-1:199x
is given by the predefined functiddlAXwhen applied to the corresponding real
number type.

radix The whole number value of the radix used to represent the corresponding
real number values.

places The whole number value of the numberratlix places used to store
values of the corresponding real number type.

expoMin The whole number value of the exponent minimum.

expoMax The whole number value of the exponent maximM®@TE: An im-
plementation may choose values such thagtoMin = expoMax (which
will presumably be the case for a fixed point representation).

large The largest value of the corresponding real number tyl@TE: On
some implementations this may be a machine representation of infinity.

small The smallest positive value of the corresponding real number type, repre-
sented to maximal precisio™NOTE: If an implementation has stored val-
ues strictly between 0.0 arsnall , then presumably the implementation
supports gradual underflow.

IEC559 A Boolean value that is true if and only if the implementation of the cor-
responding real number type conformsiEC 559:1989 (IEEE 754:1987)
in all regards.

NOTES:

e If IEC559 is true, the value of radix ig8.

o If LowReal.IEC559 s true, the 32-bit format ofEC 559:1989is
used for the type REAL.

e If LowLong.IEC559 s true, the 64-bit format ofEC 559:1989is
used for the type LONGREAL.

6.2. MODULES LOWREAL AND LOWLONG 121

LIA1 A Boolean value that is true if and only if the implementation of the corre-
sponding real number type conformsI®O/IEC 10967-1:199x (LIA-1)n
all regards: parameters, arithmetic, exceptions, and notification.

NOTE: For implementations not conformingk8O/IEC 10967-1:199khe
corresponding properties are implementation-defined — see 6.8.2.2.

rounds A Boolean value that is true if and only if each operation produces a
result that is one of the values of the corresponding real number type nearest
to the mathematical result.

NOTE: If rounds is true, and the mathematical result lies mid-way be-
tween two values of the corresponding real number type, then the selection
from the two possible values is implementation-dependent.

gUnderflow A Boolean value that is true if and only if there are values of the
corresponding real number type between 0.0smdll .

exception A Boolean value that is true if and only if every operation that
attempts to produce a real value out of range raises an exception.

extend A Boolean value that is true if and only if expressions of the corre-
sponding real number type are computed to higher precision than the stored
values.

NOTE: If extend is true, then values greater thlEaxge can be com-
puted in expressions, but cannot be stored in variables.

nModes The whole number value giving the number of bit positions needed for
the status flags for mode control.

exponent Exponent value

PROCEDURE exponent (x: REAL): INTEGER;
PROCEDURE exponent (x: LONGREAL): INTEGER,;

The function procedurexponent returns the exponent value wfthat lies be-
tweenexpoMin andexpoMax. An exception occurs and may be raised ifs
equal to 0.0.

122 CHAPTER 6. MISCELLANEOUS

fraction Significand part

PROCEDURE fraction (x: REAL): REAL;
PROCEDURE fraction (x: LONGREAL): LONGREAL;

The function procedurfaction returns the significand (or significant) part of
X. Hence the following relationship shall hold:

x = scale(fraction(x), exponent(x))

sign Signum

PROCEDURE sign (x: REAL): REAL;
PROCEDURE sign (x: LONGREAL): LONGREAL;

The function procedursign returns 1.0 ifx is greater than 0.0, -1.0 ¥ is less
than 0.0, or either 1.0 or -1.0xf is equal to 0.0.

NOTE: The uncertainty about the handling of 0.0 is to allow for systems that
distinguish between +0.0 and -0.0 (such as IEEE 754 systems).

succ Next greater value

PROCEDURE succ (x: REAL): REAL,;
PROCEDURE succ (x: LONGREAL): LONGREAL;

The function procedursucc returns the next value of the corresponding real
number type greater thaq if such a value exists; otherwise an exception occurs
and may be raised.

ulp Unit in the last place

PROCEDURE ulp (x: REAL): REAL;
PROCEDURE ulp (x: LONGREAL): LONGREAL;

The function proceduralp returns the value of the corresponding real number
type equal to a unit in the last place »f if such a value exists; otherwise an
exception occurs and may be raised.

6.2. MODULES LOWREAL AND LOWLONG 123

NOTE: Thus, when the value exists, eithetp(x) = succ(x)-x or
ulp(x) = x-pred(x) or both is true.
pred Previous less value

PROCEDURE pred (x: REAL): REAL;
PROCEDURE pred (x: LONGREAL): LONGREAL,;

The function procedurpred returns the next value of the corresponding real
number type less than if such a value exists; otherwise an exception occurs and
may be raised.

intpart Integral part

PROCEDURE intpart (x: REAL): REAL;
PROCEDURE intpart (x: LONGREAL): LONGREAL,;

The function procedurentpart returns the integral part of. For negative
values, this shall bentpart(abs(x))

fractpart Fractional part

PROCEDURE fractpart (x: REAL): REAL;
PROCEDURE fractpart (x: LONGREAL): LONGREAL,;

The function procedurgactpart returns the fractional part af. This satisfies
the relationshigractpart(x)+intpart(x)=x

'scale Scale|

PROCEDURE scale (x: REAL; n: INTEGER): REAL;
PROCEDURE scale (x: LONGREAL; n: INTEGER): LONGREAL,;

The function procedurscale returns the value * radix ** n if such a
value exists; otherwise an exception occurs and may be raised.

124 CHAPTER 6. MISCELLANEOUS

'trunc Truncate|

PROCEDURE trunc (x: REAL; n: INTEGER): REAL,;
PROCEDURE trunc (x: LONGREAL; n: INTEGER): LONGREAL,;

The function procedureunc returns the value of the most significanplaces
of Xx. An exception occurs and may be raised i less than or equal to zero.

'round Round|

PROCEDURE round (x: REAL; n: INTEGER): REAL;
PROCEDURE round (x: LONGREAL; n: INTEGER): LONGREAL,;

The function procedursound returns the value of rounded to the most signif-
icantn places. An exception occurs and may be raised if such a value does not
exist, or ifn is less than or equal to zero.

synthesize Construct value

PROCEDURE synthesize (expart : INTEGER;

frapart: REAL): REAL;
PROCEDURE synthesize (expart : INTEGER;

frapart: LONGREAL): LONGREAL;

The function procedureynthesize returns a value of the corresponding real
number type constructed from the valuesapart andfrapart . This value
shall satisfy the relationship:

synthesize(exponent(x),fraction(x))=x

setMode Set status flags

PROCEDURE setMode (m: Modes);
PROCEDURE setMode (m: Modes);

The procedure setMode sets status flags from the value appropriate to the
underlying implementation of the corresponding real number thNGETES:

6.2. MODULES LOWREAL AND LOWLONG 125

e Many implementations of floating point provide options for setting status
flags within the system which control details of the handling of the type.
Although two procedures are provided, one for each real number type, the
effect may be the same. Typical effects that can be obtained by this means
are:

— Ensuring that overflow will raise an exception;
— Allowing underflow to raise an exception;

— Controlling the rounding;

— Allowing special values to be produced (e.g. NaNs in implementations
conforming tolEC 559:1989 (IEEE 754:1987))

— Ensuring that special value access will raise an exception;

Since these effects are so varied, the values of Kpdes that may be used
are not specified by this International Standard.

e The effect ofsetMode on operations on values of the corresponding real
number type in coroutines other than the calling coroutine is not defined.
Implementations are not required to preserve the status flags (if any) with
the coroutine state.

currentMode Current status flags

PROCEDURE currentMode (): Modes;
PROCEDURE currentMode (): Modes;

The function procedureurrentMode returns the current status flags (in the
form set bysetMode), or the default status flags GetMode is not used).

NOTE: The returned value is not necessarily the value setdiylode , since a
call of setMode might attempt to set flags that cannot be set by the program.

IsLowException Query exceptional state

PROCEDURE IsLowException (): BOOLEAN;
PROCEDURE IsLowException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of théowReal exception, the function procedure
LowReal.IsLowException returnsTRUE otherwise is returnsALSE

126 CHAPTER 6. MISCELLANEOUS

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of thé.owLong exception, the function procedure
LowLong.IsLowException returnsTRUE otherwise is returnEALSE

6.3 Module Storage

The moduleStorage provides facilities for dynamically allocating and deallo-
cating storage for variables that are not declared in variable declarations. Variables
with storage allocated in this way are designated by dereferenced variable desig-
nators. The facilities are often invoked by using the predefined procebirés

and DISPOSE The facilities can also be used to allocate storage to be used as
coroutine workspace.

The semantics are described in terms of allocating storage for a variable since the
allocator must take account of any address alignment requirements for the storage
of variables of the given siz€ LARIFICATIONS

e Programming in Modula-Zadopts two approaches to handling situations
where it is not possible to allocate sufficient storage; the procedure
Allocate of Chapter 25 assignhlIL to the first parameter, whereas
the procedurdLLOCATEOf Appendix 2 causes the program to terminate.
The International Standard requires the procedirieOCATHoO assign the
valueNIL to its first parameter in this situation.

e Although the first parameter of the procediEALLOCATHjiven in Ap-
pendix 2 of Programming in Modula-4s a variable parameter, it is not
stated whetheDEALLOCATEassigns a value to its parameter. The Inter-
national Standard requires the procedDEEALLOCATEo assign the value
NIL to its parameter.

6.3. MODULE STORAGE 127

StorageExceptions Storage exceptions identities

TYPE
StorageExceptions = (
nilDeallocation,
(* first argument to DEALLOCATE is NIL *)
pointerToUnallocatedStorage,
(* storage to deallocate not allocated by ALLOCATE *)
wrongStorageToUnallocate
(* amount to deallocate is not amount allocated *)

)i
The exceptions raised I8torage are identified by the values of the enumeration
type StorageExceptions

The detection of the exceptionwrongStorageToUnallocate is
implementation-defined.

ALLOCATE Allocate storage

PROCEDURE ALLOCATE (VAR addr: SYSTEM.ADDRESS;
amount: CARDINAL);

The procedurd LLOCATEallocates storage for a variable of semount , and
assigns the address of this variableattdr . The allocated locations will not be

in use for the storage of any other variable. If it is not possible to allocate this
storage, the valuBIL is assigned taddr .

NOTES:

1. If an address passed back by a callkafL OCATES assigned to a pointer
variablevp that is to be dereferenced to designate a variable of Typlee
value for the second parameterAbLOCATEmMay be obtained from evalu-
ation of the expressio8IZE(T) . An equivalent effect may be obtained as
NEW(vp).

2. If an address passed back by a calldfLOCATEis to be given directly
as the workspace address in a call@DROUTINES.NEWCOROUTINE
the value for the second parameteAioL OCATEs the size of workspace
required.

128 CHAPTER 6. MISCELLANEOUS

DEALLOCATE Deallocate storage

PROCEDURE DEALLOCATE (VAR addr. SYSTEM.ADDRESS;
amount: CARDINAL);

The procedurdEALLOCATHeallocatesamount locations for the storage of
the variable addressed bgdr and assigns the valldIL to addr .

The exceptiomilDeallocation is raised if the given value adddr is the

nil value. The exceptiopointerToUnallocatedStorage is raised if the
given value ofaddr is not the address of a variable whose storage has been allo-
cated byALLOCATE The exceptiorwrongStorageToUnallocate occurs

and may be raised @mount is not equal to the number of locations allocated for
the storage of the variable addressectr .

NOTES:

1. If an address passed to a call DEALLOCATESs the value of a pointer
variablevp that is dereferenced to designate a variable of fypthe value
for the second parameter REALLOCATENay be obtained from evalua-
tion of the expressio®IZE(T) . An equivalent effect may be obtained as
DISPOSE(vp) .

2. The variable whose storage is deallocated no longer exists and hence an
exception occurs, which may be raised, if there is a subsequent attempt to
access the variable through a dereferenced designator.

3. This International Standard gives no meaning for a program that
deallocates dynamic storage given as workspace in a call of
COROUTINES.NEWCOROUTIN&Ince the use made of coroutine
workspace is implementation-dependent.

4. It need not be the case that storage locations deallocated by a call of
DEALLOCATEre available for re-use by a subsequent callof OCATE

IsStorageException Query exceptional state

PROCEDURE IsStorageException (): BOOLEAN,;

If the calling coroutine is in the state of exceptional execution because of the rais-
ing of aStorage exception, the function procedulgStorageException
returnsTRUE otherwise it return§&ALSE

6.4. MODULE SYSCLOCK 129

StorageException Query exception id

PROCEDURE StorageException (): StorageExceptions;

If the calling coroutine is in the state of exceptional execution because of the
raising of aStorage exception, the function procedugorageException

returns the value that identifies the raised exception; otherwise the language ex-
ceptionexException s raised.

6.4 Module SysClock

The moduleSysClock provides facilities for accessing a system clock that
records the date and time of d&yOTES:

e No provision is made for leap seconds.

e ‘UTC’ is ‘Universal Coordinated Time’. This is the correct international
designation for what was once called ‘GMT’ (Greenwich Mean Time).

e The fieldsummerTimeFlag is present for information only. UTC can
always be obtained by subtracting ti@ CDiff value from the time data,
regardless of the value of tlermmerTimeFlag . However, its presence
does allow a program to know whether or not the date and time data repre-
sents standard time for that location, or ‘'summer time’. A program could
therefore be written to change the system clock to summer time automati-
cally on a certain date, provided it had not already been changed.

6.4.1 The Constants and Types of SysClock

CONST
maxSecondParts = <implementation-defined integral value>;

TYPE
Month = [1 .. 12];
Day = [1 .. 31];
Hour = [0 .. 23];
Min = [0 .. 59];
Sec = [0 .. 59];

130 CHAPTER 6. MISCELLANEOUS

Fraction = [0 .. maxSecondParts];
UTCDIff = [-780 .. 720];
DateTime =

RECORD

year: CARDINAL;
month: Month;

day: Day;
hour: Hour;
minute: Min;
second: Sec;

fractions: Fraction; (* parts of a second *)
zone: UTCDiff;
(* Time zone differential factor which is the number
of minutes to add to local time to obtain UTC. *)
summerTimeFlag: BOOLEAN;
(* Interpretation of flag depends on local usage. *)
END;

CanGetClock Query system clock read permission

PROCEDURE CanGetClock (): BOOLEAN;

The function procedureCanGetClock returns an implementation-defined
BOOLEANalue. If the valueTRUEIs returned, there is a system clock which
the program is permitted to read.

CanSetClock Query system clock write permission

PROCEDURE CanSetClock (): BOOLEAN;

The function procedur€anSetClock() returns an implementation-defined
BOOLEANalue. If the valueTRUEis returned, there is a system clock which
the program is permitted to set.

6.4. MODULE SYSCLOCK 131

IsValidDateTime Verity date and time

PROCEDURE IsValidDateTime (userData: DateTime): BOOLEAN;

The function procedurdsValidDateTime returns TRUE if the value of
userData represents a valid date and time, andFALSE otherwise.NOTE:
Only the date components ogerData need to be validated since all combina-
tions of values of the time components are known to be valid.

|GetClock Determine current date and time|

PROCEDURE GetClock (VAR userData: DateTime);

The function procedur&etClock assigns values for each field of the variable
userData for which information is available. Each of the remaining fields of
userData are setto zero, where this is a valid value, and otherwise are set to the
lower bound of the range of allowed values.

|SetClock Set current date and time|

PROCEDURE SetClock (userData: DateTime);

The function procedur&etClock sets the system clock to the date and time
specified byuserData , provided that the program may set the system clock,
and that the value afserData represents a valid date and time. If the program
cannot set the system clock, a call#tClock have no effect.

NOTE: The effect of a call ofSetClock is implementation-dependent if it is
permitted to set the system clock, but an invalid date and time is given.

Index

abs,62

Activate, 72
ALLOCATE, 127
AllocateDeviceld 54
Append,90
arccos60, 65
arcsin,59, 64
arctan,60, 65
arg,62
ArgChan,49
Assign,83
Attach,75

CanAppendAll,90
CanAssignAll,83
CanConcatAll91
CanDeleteAll 86
CanExtractAll,84
CanGetClock130
CanlnsertAll,87
CanReplaceAllg8
CanSetClock130
Capitalize 92
CardToStr,104
ChanConsts30
ChanFlags31
FlagSet32
OpenResults33
ChanException29
ChanException28
ChanFlags31
ChaniD,3
Chanld,20
CharClass117

132

IsControl,118
IsLetter,117
IsLower,118
IsNumeric,117
IsUpper,118
IsWhiteSpacel18
Claim,78
Close,37,41, 47,49
Compare92
ComplexMath61
abs,62
arccos65
arcsin,64
arctan,65
arg,62
conj,62
Constants6l
cos,64
exp,63
IsCMathException66
In, 63
polarToComplex65
power,63
scalarMult,65
sin, 64
sqrt,63
tan,64
Concat91
CondClaim,79
conj,62
Constantsb8, 61
Constants and Type$19
ConvTypes99

INDEX

co0s,59, 64
Create,/0, 77
CurrentFlags28
currentMode 125
CurrentPos45

DEALLOCATE, 128
Delete,86

Destroy,78

Detach,75
DeviceErrNum29
DeviceError,29
DeviceTablePtrValu&5

EndPos45
Equal,93
ErrChan5
exp,58, 63
exponent121
Extract,85

FindDiff, 96
FindNext,94
FindPrev,95
FlagSet32
Flush,27
FormatCard111
Formatint,109
FormatReall14
fraction,122
fractpart,123

GetClock,131
GetName26

Handler,75

InChan,4
Insert,87
intpart, 123
IntToStr,103
InvalidChan,20
IOChan,20

ChanException29
ChanExceptions28
Chanld,20
CurrentFlags28
DeviceErrNum 29
DeviceError,29
Flush,27
GetName26
InvalidChan,20
IsChanExceptior?29
Look, 21
RawRead25
RawWrite,25
ReadResult27
Reset26
SetReadResulp7
Skip, 21
SkipLook, 22
TextRead23
TextWrite, 24
WriteLn, 22
IOConsts18
ReadResultsl8
IOException 56
IOLink, 50
AllocateDeviceld 54
DeviceTablePtrValue5
IOEXxception56
IsDevice,55
ISIOException56
MakeChanb54
RAISEdevException55
UnMakeChanb4
IOResult,19
ReadResult]9
ReadResultsl9
IsArgPresent>0
IsAttached,’5
IsChanExceptiorn29
IsCMathException66
IsControl,118

133

134

IsDevice,55
ISIOException56
IsLetter,117

IsLower,118
IsLowException,125
IsNumeric,117
IsProcessesExceptiont
IsRConvException]116
IsRMathException61
IsRndFile,44
IsRndFileExceptior45
IsSemaphoresException9
IsSeqFile41
IsStorageExceptiori,28
IsStreamFile37
IsTermFile, 49
IsUpper,118
IsValidDateTime 131
IsWhiteSpacel 18
IsWholeConvExceptior, 12

Length,82
LengthCard112
LengthEngReall15
LengthFixedReall 15
LengthFloatReall 14
Lengthint,110
In, 58, 63
LongComplexMathg1
abs,62
arccosps
arcsin,64
arctan,65
arg,62
conj,62
Constants6l
cos,64
exp,63
IsCMathException66
In, 63
polarToComplex65

INDEX

power,63
scalarMult,65
sin, 64
sqrt,63
tan,64

LongConv,112

FormatReall14
IsRConvException] 16
LengthEngReall 15
LengthFixedReall15
LengthFloatReall 14
ScanReall13
ValueReal114

LonglO, 12

ReadReall3
WriteEng,15
WriteFixed,16
WriteFloat,14
WriteReal, 17

LongMath,57

arccos 60
arcsin,59
arctan,60
Constants58
c0s,59
exp,58
IsRMathException61
In, 58
power,60
round,60
sin, 59
sqrt,58
tan,59

LongStr,104

RealToEng,106
RealToFixed 106
RealToFloat,105
RealToStr107
StrToReal 105

Look, 21
LowLong, 119

INDEX

Constants and Type$19
currentMode 125
exponent121
fraction,122
fractpart,123
intpart,123
IsLowException,125
pred,123
round,124
scale,123
setMode 124
sign,122
succ,122
synthesizel24
trunc,124
ulp, 122
LowReal,119
Constants and Type$19
currentMode 125
exponent121
fraction,122
fractpart,123
intpart,123
IsLowException 125
pred,123
round,124
scale123
setMode 124
sign,122
succ,122
synthesizel24
trunc,124
ulp, 122

MakeChanp4
Me, 76
MyParam,76

NewPos46
NextArg, 50
NullChan,4

Open,36, 48
OpenAppend39
OpenClean44
OpenOld 43
OpenRead40
OpenResults33
OpenWrite 38
OutChanp

polarToComplex65
power,60, 63
pred,123
Processe®7
Activate, 72
Attach,75
Create,/0
Detach,75
Handler,75
IsAttached,75

IsProcessesExceptiong

Me, 76
MyParam,76

ProcessesException6

Start, 71
StopMe,71
SuspendMe72

SuspendMeAndActivaté&,2

Switch,73
UrgencyOf,76
Wait, 74
ProcessesExceptiont
ProgramArgs49
ArgChan,49
IsArgPresent>0
NextArg, 50

RAISEdevException55
RawlO,17

Read,17

Write, 18
RawRead25

135

136

RawWrite,25
Read,17
ReadCard]l1l
ReadChar6
ReadInt,10
ReadReall3
ReadRestLine/
ReadResult]9, 27
ReadResultsl8, 19
ReadStringy
ReadToken8
RealConv112
FormatReall14
IsRConvException]116
LengthEngReall15
LengthFixedReall 15
LengthFloatReall 14
ScanReall13
ValueReal 114
ReallO,12
ReadReall3
WriteEng,15
WriteFixed, 16
WriteFloat,14
WriteReal,17
RealMath 57
arccosg0
arcsin,59
arctan,60
Constants58
c0s,59
exp,58
IsRMathException61
In, 58
power,60
round,60
sin, 59
sqrt,58
tan,59
RealStr, 104
RealToEng,106

INDEX

RealToFixed106
RealToFloat105
RealToStr107
StrToReal 105
RealToEng,106
RealToFixed106
RealToFloat105
RealToStr107
Release78
Replace89
Reread41
Reset26
Rewrite,41
RndFile,42
Close 47
CurrentPos45
EndPos45
IsRndFile, 44
IsRndFileExceptior45
NewPos46
OpenClean44
OpenOld43
SetPos46
StartPos45
round,60, 124

scalarMult,65
scale,123
ScanCardl110
Scanint,108
ScanReall13
Semaphores7
Claim, 78
CondClaim,79
Create,/7
Destroy,78
IsSemaphoresException9
Release78
SeqFile 37
Close 41
IsSegFile4l

INDEX

OpenAppend39
OpenRead40
OpenWrite 38
Reread41
Rewrite,41
SetClock,131
SetErrChan5
SetInChan5b
setMode 124
SetOutChanb
SetPos46
SetReadResulp7
sign,122
sin, 59, 64
SIOResult19
ReadResult]9
ReadResultsl9
Skip, 21
SkipLine,8
SkipLook, 22
SLonglO,12
SLonglO.ReadReal,3
SLonglO.WriteEng 15
SLonglO.WriteFixed16
SLonglO.WriteFloat14
SLonglO.WriteReall7
sqrt,58, 63
SRawlO,17
Read,17
Write, 18
SReall0,12
ReadReall3
WriteEng,15
WriteFixed,16
WriteFloat,14
WriteReal, 17
Start,71
StartPos45
StdChans3
ChanlD,3
ErrChan5

137

InChan,4
NullChan,4
OutChanp
SetErrChan5
SetInChan5b
SetOutChan
StdErrChan4
StdinChang3
StdOutChan4
StdErrChan4
StdinChang3
StdOutChan4
STextlO,6
ReadChar6
ReadRestLine7
ReadString7
ReadToken8
SkipLine,8
WriteChar,9
WriteLn, 9
WriteString,9
StopMe,71
Storage126
ALLOCATE, 127
DEALLOCATE, 128
IsStorageExceptiori,28
StorageExceptior,29
StorageException4,27
StorageExceptior,29
StorageExceptiond,27
StreamFile35
Close,37
IsStreamFile37
Open,36
Strings,81
Append,90
Assign,83
CanAppendAll90
CanAssignAll,83
CanConcatAll91
CanDeleteAll, 86

138

CanExtractAll,84
CanlnsertAll,87
CanReplaceAll38
Capitalize 92
Compare92
Concat91
Delete,86
Equal,93
Extract,85
FindDiff, 96
FindNext,94
FindPrev,95
Insert,87
Length,82
Replace89
StrToCard, 103
StrTolnt,102
StrToReal 105
succ,122
SuspendMe72
SuspendMeAndActivat&,2
SWholelO,9
ReadCardl1
ReadInt,10
WriteCard,12
Writelnt, 11
Switch, 73
synthesizel24
SysClock,129
CanGetClock130
CanSetClock130
GetClock,131
IsValidDateTime 131
SetClock,131

tan,59, 64
TermFile,47
Close,49
IsTermFile,49
Open 48
TextlO, 6

INDEX

ReadCharb
ReadRestLine/
ReadStringy
ReadTokeng
SkipLine,8
WriteChar,9
WriteLn, 9
WriteString,9
TextRead23
TextWrite, 24
trunc,124

ulp, 122
UnMakeChanb4
UrgencyOf,76

ValueCard111
Valueint, 110
ValueReal114

Wait, 74
WholeConv,108
FormatCardl111
Formatint,109
IsWholeConvExceptiorl.12
LengthCard112
Lengthint,110
ScanCard]110
Scanint,108
ValueCard 111
Valuelnt,110
WholelO,9
ReadCard]1
ReadInt,10
WriteCard,12
Writelnt, 11
WholeStr,102
CardToStr104
IntToStr,103
StrToCard, 103
StrTolnt,102
Write, 18

INDEX

WriteCard,12
WriteChar,9
WriteEng,15
WriteFixed,16
WriteFloat,14
Writelnt, 11
WriteLn, 9, 22
WriteReal, 17
WriteString,9

139

140 INDEX

This page had been intentionally left blank.

EXCELSIOR

Excelsior, LLC

6 Lavrenteva Ave. Suite 441
Novosibirsk 630090 Russia

Tel: +7 (3832) 39 78 24

Fax: +1 (509) 271 5205

Email: info@excelsior-usa.com
Web: http://www.excelsior-usa.com

	Input/Output
	Standard and Default Channels
	Module StdChans

	Reading and Writing of Data
	Modules TextIO and STextIO
	Modules WholeIO and SWholeIO
	Modules RealIO, SRealIO, LongIO, and SLongIO
	Modules RawIO and SRawIO
	Module IOConsts
	Modules IOResult and SIOResult

	Device-Independent Channel Operations
	Module IOChan
	Module IOChan - Text Operations
	Module IOChan - Raw Operations
	Module IOChan - Common Operations
	Module IOChan - Access to Read Results
	Module IOChan - Channel Enquiries
	Module IOChan - Exceptions and Device Errors

	Obtaining Channels from Device Modules
	Module ChanConsts
	Module StreamFile
	Module SeqFile
	Module RndFile
	Module TermFile
	Module ProgramArgs

	Interface to Channels for New Device Modules
	Module IOLink

	Mathematical
	Modules RealMath and LongMath
	Modules ComplexMath and LongComplexMath

	Concurrent Programming
	Module Processes
	Types of Processes
	The Procedures of Processes

	Module Semaphores

	String Manipulation
	Module Strings

	String Conversions
	Common Data Types
	Module ConvTypes

	High-Level String Conversion Modules
	EXAMPLE - Conversion of strings read by ReadToken
	Module WholeStr
	Modules RealStr and LongStr

	Low-Level String Conversion Modules
	EXAMPLE - Use of ScanInt
	Module WholeConv
	Modules RealConv and LongConv

	Miscellaneous
	Module CharClass
	Modules LowReal and LowLong
	Module Storage
	Module SysClock
	The Constants and Types of SysClock

