
XDS Family of Products

ISO Modula-2 Library Reference

http://www.excelsior-usa.com

Copyright c© 1999-2001 Excelsior, LLC. All rights reserved.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Excelsior, LLC.

Excelsior’s software and documentation have been tested and reviewed. Nevertheless, Ex-
celsior makes no warranty or representation, either express or implied, with respect to the
software and documentation included with Excelsior product. In no event will Excelsior
be liable for direct, indirect, special, incidental or consequential damages resulting from
any defect in the software or documentation included with this product. In particular, Ex-
celsior shall have no liability for any programs or data used with this product, including
the cost of recovering programs or data.

XDS is a trademark of Excelsior, LLC.

All trademarks and copyrights mentioned in this documentation are the property of their
respective holders.

Contents

1 Input/Output 1
1.1 Standard and Default Channels. 3

1.1.1 Module StdChans. 3
1.2 Reading and Writing of Data. 6

1.2.1 Modules TextIO and STextIO. 6
1.2.2 Modules WholeIO and SWholeIO. 9
1.2.3 Modules RealIO, SRealIO, LongIO, and SLongIO. . . . 12
1.2.4 Modules RawIO and SRawIO. 17
1.2.5 Module IOConsts. 18
1.2.6 Modules IOResult and SIOResult. 19

1.3 Device-Independent Channel Operations. 19
1.3.1 Module IOChan . 20
1.3.2 Module IOChan - Text Operations. 20
1.3.3 Module IOChan - Raw Operations. 24
1.3.4 Module IOChan - Common Operations. 26
1.3.5 Module IOChan - Access to Read Results. 27
1.3.6 Module IOChan - Channel Enquiries. 28
1.3.7 Module IOChan - Exceptions and Device Errors. 28

1.4 Obtaining Channels from Device Modules. 30
1.4.1 Module ChanConsts. 30
1.4.2 Module StreamFile. 35
1.4.3 Module SeqFile. 37
1.4.4 Module RndFile . 42
1.4.5 Module TermFile. 47
1.4.6 Module ProgramArgs. 49

1.5 Interface to Channels for New Device Modules. 50
1.5.1 Module IOLink. 50

2 Mathematical 57
2.1 Modules RealMath and LongMath. 57
2.2 Modules ComplexMath and LongComplexMath. 61

i

ii CONTENTS

3 Concurrent Programming 67
3.1 Module Processes. 67

3.1.1 Types of Processes. 69
3.1.2 The Procedures of Processes. 69

3.2 Module Semaphores. 77

4 String Manipulation 81
4.1 Module Strings . 81

5 String Conversions 99
5.1 Common Data Types. 99

5.1.1 Module ConvTypes. 99
5.2 High-Level String Conversion Modules.100

5.2.1 EXAMPLE - Conversion of strings read by ReadToken. . 101
5.2.2 Module WholeStr. .102
5.2.3 Modules RealStr and LongStr.104

5.3 Low-Level String Conversion Modules.107
5.3.1 EXAMPLE - Use of ScanInt.107
5.3.2 Module WholeConv.108
5.3.3 Modules RealConv and LongConv. 112

6 Miscellaneous 117
6.1 Module CharClass. .117
6.2 Modules LowReal and LowLong.119
6.3 Module Storage. .126
6.4 Module SysClock. .129

6.4.1 The Constants and Types of SysClock. 129

Chapter 1

Input/Output

The input/output library defined in this chapter provides facilities for reading and
writing of data streams over one or morechannels. Channels are connected to
sources of input data, or to destinations of output data, known asdevicesor device
instances. There is a separation between modules that are concerned with device-
independent operations, such as reading and writing, and modules concerned with
device-dependent operations, such as making connections to named files. This
separation allows the library to be extended to work with new devices. The module
structure of the library is depicted in the following figure.

The figure will be available in the final release

Channels already open to standard sources and destinations can be identified using
procedures provided by the moduleStdChans . This module also provides for
the identification and selection of channels used by default for input and output
operations.

The modulesTextIO , WholeIO , RealIO , andLongIO , provide facilities that
allow the reading and writing of high-level units of data, usingtext operations
on channels specified explicitly by a parameter. These high-level units include
characters, strings, and whole numbers and real numbers in decimal notation. The
moduleRawIO provides facilities for reading and writing of arbitrary data types,
usingraw (binary) operationson explicitly specified channels.

Text operations produce or consume data streams as sequences of characters and
line marks. Raw operations produce or consume data streams as sequences of
storage locations (i.e. as arrays whose component type isSYSTEM.LOC).

The library allows devices to support both text and raw operations on a single
channel, although this behaviour is not required.

1

2 CHAPTER 1. INPUT/OUTPUT

The moduleIOResult provides the facility for a program to determine whether
the last operation to read data from a specified input channel found data in the
required format.

Corresponding to theTextIO group of modules is a group of modulesSTextIO ,
SWholeIO , SRealIO , SLongIO , SRawIOandSIOResult . The prefix"S"
serves as an abbreviation for"Simple" . The procedures exported from this
group do not take parameters identifying a channel. They operate on the default
input and output channels, as identified by the moduleStdChans .

The moduleIOConsts defines types and constants used byIOResult and
SIOResult .

The device modulesStreamFile , SeqFile , RndFile , andTermFile pro-
vide facilities that allow a channel to be opened to a named stream, to a rewindable
sequential file, to a random access file, or to a terminal device respectively. The
device moduleProgramArgs provides an open channel from which program
arguments may be read. Device specific operations, such as positioning within a
random access file, are also defined by the appropriate device module.

The moduleChanConsts defines the constants and types used in those device
module procedures that open channels.

The primitive device-independent operations on channels are provided by the
moduleIOChan .

The moduleIOChan defines general input/output library exception values that
may be raised when using any device through a channel. Device errors, such as
a hardware read/write error, are reported by raising one of the general exception
values, and providing an implementation-defined error number. Exception values
associated with device- specific operations are defined by the appropriate device
module.

The moduleIOLink provides facilities that allow a user to provide further spe-
cialized device modules for use with channels, following the pattern of the rest of
the library.

NOTE:

Partial implementations of the input/output library may provide modules selected
exclusively from the groupSTextIO , SWholeIO , SRealIO , andSLongIO ,
normally with SIOResult and IOConsts . If any other module is provided,
the moduleIOChan must also be provided, in accordance with the import depen-
dencies between the definition modules of the library.

1.1. STANDARD AND DEFAULT CHANNELS 3

1.1 Standard and Default Channels

Standard channelsdo not have to be opened by a client program since they are
already open and ready for use. Under some operating systems they may be con-
nected to sources and destinations specified before the program is run, while on a
stand-alone system they may be connected to a console terminal.

No method is provided for closing a standard channel, and the values used to
identify standard channels are constant throughout the execution of the program.

Default channelsare channels whose identities have been stored as those to be
used by default for input and output operations. Initially these correspond to the
standard channels, but their values may be varied to obtain the effect of redirec-
tion.

1.1.1 Module StdChans

The moduleStdChans defines functions that identify channels already open
to implementation-defined sources and destinations of standard input, standard
output, and standard error output. Access to a ‘null device’ is provided to allow
unwanted output to be suppressed. The null device throws away all data written
to it, and gives an immediate end of input indication on reading.

The moduleStdChans provides procedures for identification and selection of
the channels used by default for input and output operations.

ChanID Channel identity

TYPE
ChanId = IOChan.ChanId;

The typeIOChan.ChanId which is used to identify channels is reexported.

StdInChan Get standard input channel id

PROCEDURE StdInChan (): ChanId;

The function procedureStdInChan returns a value identifying a channel open
to the implementation-defined standard source for program input.

4 CHAPTER 1. INPUT/OUTPUT

StdOutChan Get standard output channel id

PROCEDURE StdOutChan (): ChanId;

The function procedureStdOutChan returns a value identifying a channel open
to the implementation-defined standard destination for program output.

StdErrChan Get standard error channel id

PROCEDURE StdErrChan (): ChanId;

The function procedureStdErrChan returns a value identifying a channel open
to the implementation-defined standard destination for program error messages.

NullChan Get null device channel id

PROCEDURE NullChan (): ChanId;

The function procedureNullChan returns a value identifying a channel open to
the null device.

NOTE:

The null device supports all operations by discarding all data written to it, or by
giving an immediate end of input indication on reading.

InChan Get current default input channel id

PROCEDURE InChan (): ChanId;

The function procedureInChan returns the identity of the current default input
channel. This is the channel used by input procedures that do not take a channel
parameter. Initially this is the value returned byStdInChan .

1.1. STANDARD AND DEFAULT CHANNELS 5

OutChan Get current default output channel id

PROCEDURE OutChan (): ChanId;

The function procedureOutChan returns the identity of the current default output
channel. This is the channel used by output procedures that do not take a channel
parameter. Initially this is the value returned byStdOutChan .

ErrChan Get current default error channel id

PROCEDURE ErrChan (): ChanId;

The function procedureErrChan returns the identity of the current default out-
put channel for program error messages. Initially this is the value returned by
StdErrChan .

SetInChan Set current default input channel

PROCEDURE SetInChan (cid: ChanId);

The procedureSetInChan sets the current default input channel to that identi-
fied bycid .

SetOutChan Set current default output channel

PROCEDURE SetOutChan (cid: ChanId);

The procedureSetOutChan sets the current default output channel to that iden-
tified bycid .

SetErrChan Set current default output channel

PROCEDURE SetErrChan (cid: ChanId);

The procedureSetErrChan sets the current default output channel for error
messages to that identified bycid .

6 CHAPTER 1. INPUT/OUTPUT

1.2 Reading and Writing of Data

The moduleTextIO provides facilities for input and output of characters, char-
acter strings, and line marks, using text operations.

The moduleWholeIO provides facilities for input and output of whole numbers
in decimal text form.

The modulesRealIO andLongIO provide facilities for input and output of real
numbers in decimal text form.

The moduleRawIO provides facilities for direct input and output of data, using
raw operations (i.e. without any interpretation).

The input procedures of the modulesTextIO , WholeIO , RealIO , LongIO ,
andRawIO are sufficient for use where the format of the input data is known.
Since, in practice, their use may be inconsistent with the format of the input data,
they have the effect of setting a‘read result’ for the used channel. The module
IOResult provides the facility for obtaining the read result applicable to the
most recent input operation on a given channel.

In all cases, channels are selected explicitly by passing an actual parameter of the
typeChanId to the procedures of these modules.

The modulesSTextIO , SWholeIO , SRealIO , SLongIO , SRawIO, and
SIOResult provide the set of similar procedures set that operate over default
input and output channels, and so do not take a parameter identifying a channel.

1.2.1 Modules TextIO and STextIO

The moduleTextIO provides facilities for input and output of characters, char-
acter strings, and line marks, using text operations.

The procedures of the moduleSTextIO behave as the corresponding procedures
of the moduleTextIO , except that input is taken from the default input channel,
and output is sent to the default output channel.

ReadChar Read a character

PROCEDURE ReadChar (cid: IOChan.ChanId; VAR ch: CHAR);
PROCEDURE ReadChar (VAR ch: CHAR);

If there is a character next in the input stream identified bycid , the procedure

1.2. READING AND WRITING OF DATA 7

ReadChar removes it from the stream and assigns its value toch ; otherwise the
value ofch is not defined. The read result for the channel is set to the value

allRight if a character is read;

endOfLine if no character is read, the next item being a line mark;

endOfInput if no character is read, the input stream having ended.

ReadRestLine Read rest of line

PROCEDURE ReadRestLine (cid: IOChan.ChanId;
VAR s: ARRAY OF CHAR);

PROCEDURE ReadRestLine (VAR s: ARRAY OF CHAR);

If there is a character next in the input stream identified bycid , the procedure
ReadRestLine reads a string of characters; reading continues as long as there
are still characters before the next line mark or the end of the stream. As much
of the string as can be accommodated is copied tos as a string value. The read
result for the channel is set to the value

allRight if s is not empty and accomodates all of the string that has been read;

outOfRange if s is not empty but does not accommodate all of the string;

endOfLine if s is empty, the next item being a line mark;

endOfInput if s is empty, the input stream having ended.

ReadString Read a string

PROCEDURE ReadString (cid: IOChan.ChanId;
VAR s: ARRAY OF CHAR);

PROCEDURE ReadString (VAR s: ARRAY OF CHAR);

If there is a character next in the input stream identified bycid , the procedure
ReadString reads a string of characters; reading continues as long as there are
still characters before the next line mark or the end of the stream and the capacity
of s has not been exhausted. The string is copied tos as a string value. The read
result for the channel is set to the value

8 CHAPTER 1. INPUT/OUTPUT

allRight if s is not empty;

endOfLine if s is empty, the next item being a line mark;

endOfInput if s is empty, the input stream having ended.

ReadToken Read a space-delimited token

PROCEDURE ReadToken (cid: IOChan.ChanId;
VAR s: ARRAY OF CHAR);

PROCEDURE ReadToken (VAR s: ARRAY OF CHAR);

The procedureReadToken first skips any leading spaces in the input stream
identified bycid . If the next item is a character, a string of characters is read;
reading continues as long as there are still non-space characters before the next
line mark or the end of the stream. As much of the string as can be accommodated
is copied tos as a string value. The read result for the channel is set to the value

allRight if s is not empty and accomodates all of the string that has been read;

outOfRange if s is not empty but does not accommodate all of the string;

endOfLine if s is empty, the next item being a line mark;

endOfInput if s is empty, the input stream having ended.

SkipLine Skip rest of input line

PROCEDURE SkipLine (cid: IOChan.ChanId);
PROCEDURE SkipLine ();

The procedureSkipLine reads successive items from the input stream identified
by cid up to and including the next line mark, or until the end of the stream is
reached.

The read result for the channel is set to the value

allRight if a line mark is read;

1.2. READING AND WRITING OF DATA 9

endOfInput if no line mark is read, the input stream having ended.

WriteChar Write a character

PROCEDURE WriteChar (cid: IOChan.ChanId; ch: CHAR);
PROCEDURE WriteChar (ch: CHAR);

The procedureWriteChar writes the characterch to the output stream identi-
fied bycid .

WriteLn Write a line mark

PROCEDURE WriteLn (cid: IOChan.ChanId);
PROCEDURE WriteLn ();

The procedureWriteLn writes a line mark to the output stream identified by
cid .

WriteString Write a string

PROCEDURE WriteString (cid: IOChan.ChanId;
s: ARRAY OF CHAR);

PROCEDURE WriteString (s: ARRAY OF CHAR);

The procedureWriteString writes the string value ins to the output stream
identified bycid .

1.2.2 Modules WholeIO and SWholeIO

The moduleWholeIO provides facilities for input and output of whole numbers
in decimal text form.

The text form of a signed whole number is

["+" | "-"], decimal digit, {decimal digit}

10 CHAPTER 1. INPUT/OUTPUT

The text form of an unsigned whole number is

decimal digit, {decimal digit}

The procedures of the moduleSWholeIO behave as the corresponding proce-
dures of the moduleWholeIO , except that input is taken from the default input
channel, and output is sent to the default output channel.

ReadInt Read an INTEGER value

PROCEDURE ReadInt (cid: IOChan.ChanId;
VAR int: INTEGER);

PROCEDURE ReadInt (VAR int: INTEGER);

The procedureReadInt skips any leading spaces from the input stream identi-
fied bycid , and then reads characters that form a signed whole number. The read
result for the channel is set to the value

allRight if a signed whole number is read, and its value is in the range of the
typeINTEGER; the value of this number is assigned toint ;

outOfRange if a signed whole number is read, but its value is out of range
of the typeINTEGER; the valueMAX(INTEGER) or MIN(INTEGER) is
assigned toint according to the sign of the number;

wrongFormat if there are characters read or to be read, but these are not in the
format of a signed whole number; the value ofint is not defined;

endOfLine if no characters are read, the next item being a line mark; the value
of int is not defined;

endOfInput if no characters are read, the input having ended; the value ofint
is not defined.

1.2. READING AND WRITING OF DATA 11

WriteInt Write an INTEGER value

PROCEDURE WriteInt (cid: IOChan.ChanId;
int: INTEGER;
width: CARDINAL);

PROCEDURE WriteInt (int: INTEGER;
width: CARDINAL);

The procedureWriteInt writes the value ofint to the output stream identified
by cid in text form, with leading spaces as required to make the number of char-
acters written at least that given bywidth . A sign is written only for negative
values. In the special case of a value of zero forwidth , exactly one leading space
is written.

ReadCard Read a CARDINAL value

PROCEDURE ReadCard (cid: IOChan.ChanId;
VAR card: CARDINAL);

PROCEDURE ReadCard (VAR card: CARDINAL);

The procedureReadCard skips any leading spaces from the input stream identi-
fied bycid , and then reads characters that form an unsigned whole number. The
read result for the channel is set to the value

allRight if an unsigned whole number is read, and its value is in the range of
the typeCARDINAL; the value of the number is assigned tocard ;

outOfRange if a signed whole number is read, but its value is out of range of
the values of the typeCARDINAL; the valueMAX(CARDINAL) is assigned
to card ;

wrongFormat if there are characters read or to be read, but these are not in the
format of an unsigned whole number; the value ofcard is not defined;

endOfLine if no characters are read, the next item being a line mark; the value
of card is not defined;

endOfInput if no characters are read, the input having ended; the value of
card is not defined.

12 CHAPTER 1. INPUT/OUTPUT

WriteCard Write a CARDINAL value

PROCEDURE WriteCard (cid: IOChan.ChanId;
card: CARDINAL;
width: CARDINAL);

PROCEDURE WriteCard (card: CARDINAL;
width: CARDINAL);

The procedureWriteCard writes the value ofcard to the output stream iden-
tified bycid in text form, with leading spaces as required to make the number of
characters written at least that given bywidth . In the special case of a value of
zero forwidth , exactly one leading space is written.

1.2.3 Modules RealIO, SRealIO, LongIO, and SLongIO

The modulesRealIO andLongIO provide facilities for input and output of real
numbers in decimal text form.

In the case ofRealIO , real number parameters are of the typeREAL. In the case
of LongIO , real number parameters are of the typeLONGREAL.

The semantics of the two modules are the same, except that when module
RealIO refers to real number values, these values are of the typeREAL, and
when moduleLongIO refers to real number values, these values are of the type
LONGREAL.

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
the two modules.

The text form of a signed fixed-point real number is

["+" | "-"], decimal digit, {decimal digit},
[".", {decimal digit}]

The text form of a signed floating-point real number is

signed fixed-point real number,
"E"|"e", ["+" | "-"], decimal digit, {decimal digit}

1.2. READING AND WRITING OF DATA 13

The procedures of the moduleSRealIO behave as the corresponding procedures
of the moduleRealIO , except that input is taken from the default input channel,
and output is sent to the default output channel.

The procedures of the moduleSLongIO behave as the corresponding procedures
of the moduleLongIO , except that input is taken from the default input channel,
and output is sent to the default output channel.

ReadReal Read a real value

PROCEDURE ReadReal (cid: IOChan.ChanId;
VAR real: REAL);

PROCEDURE ReadReal (cid: IOChan.ChanId;
VAR real: LONGREAL);

PROCEDURE ReadReal (VAR real: REAL);
PROCEDURE ReadReal (VAR real: LONGREAL);

The procedureReadReal skips any leading spaces from the input stream iden-
tified by cid , and then reads characters that form a signed fixed or floating point
number. The read result for the channel is set to the value

allRight if a signed real number is read, and its value is in the range of the
type ofreal ; the value of this number is assigned toreal ;

outOfRange if a signed real number is read, but its value is out of range of
the type ofreal ; the maximum or minimum value of the type ofreal is
assigned toreal according to the sign of the number;

wrongFormat if there are characters read or to be read, but these characters are
not in the format of a signed real number; the value ofreal is not defined;

endOfLine if no characters are read, the next item being a line mark; the value
of real is not defined;

endOfInput if no characters are read, the input having ended; the value of
real is not defined.

14 CHAPTER 1. INPUT/OUTPUT

WriteFloat Write a real value in floating-point format

PROCEDURE WriteFloat (cid: IOChan.ChanId;
real: REAL;
sigFigs: CARDINAL;
width: CARDINAL);

PROCEDURE WriteFloat (cid: IOChan.ChanId;
real: LONGREAL;
sigFigs: CARDINAL;
width: CARDINAL);

PROCEDURE WriteFloat (real: REAL;
sigFigs: CARDINAL;
width: CARDINAL);

PROCEDURE WriteFloat (real: LONGREAL;
sigFigs: CARDINAL;
width: CARDINAL);

The procedureWriteFloat writes the value ofreal to the output stream iden-
tified by cid in floating-point text form, with leading spaces as required to make
the number of characters written at least that given bywidth . A sign is written
only for negative values. In the special case of a value of zero forwidth , exactly
one leading space is written.

One significant digit is included in the whole number part. The signed exponent
part is included only if the exponent value is not zero. If the value ofsigFigs
is greater than zero, that number of significant digits is included, otherwise an
implementation-defined number of significant digits is included. The decimal
point is not included if there are no significant digits in the fractional part.

The following table gives examples of output byWriteFloat :

sigFigs 3923009 39.23009 0.0003923009
1 4E+6 4E+1 4E-4
2 3.9E+6 3.9E+1 3.9E-4
5 3.9230E+6 3.9230E+1 3.9230E-4

1.2. READING AND WRITING OF DATA 15

WriteEng Write a real value in engineering format

PROCEDURE WriteEng (cid: IOChan.ChanId;
real: REAL;
sigFigs: CARDINAL;
width: CARDINAL);

PROCEDURE WriteEng (cid: IOChan.ChanId;
real: LONGREAL;
sigFigs: CARDINAL;
width: CARDINAL);

PROCEDURE WriteEng (real: REAL;
sigFigs: CARDINAL;
width: CARDINAL);

PROCEDURE WriteEng (real: LONGREAL;
sigFigs: CARDINAL;
width: CARDINAL);

The procedureWriteEng behaves as the procedureWriteFloat except that
the number is scaled with one to three digits in the whole number part, and with
an exponent that is a multiple of three.

The following table gives examples of output byWriteEng :

sigFigs 3923009 39.23009 0.0003923009
1 4E+6 40 400E-6
2 3.9E+6 39 390E-6
5 3.9230E+6 39.230 392.30E-6

16 CHAPTER 1. INPUT/OUTPUT

WriteFixed Write a real value in fixed-point format

PROCEDURE WriteFixed (cid: IOChan.ChanId;
real: REAL;
place: INTEGER;
width: CARDINAL);

PROCEDURE WriteFixed (cid: IOChan.ChanId;
real: LONGREAL;
place: INTEGER;
width: CARDINAL);

PROCEDURE WriteFixed (real: REAL;
place: INTEGER;
width: CARDINAL);

PROCEDURE WriteFixed (real: LONGREAL;
place: INTEGER;
width: CARDINAL);

The procedureWriteFixed writes the value ofreal to the output stream iden-
tified bycid in fixed-point text form with leading spaces as required to make the
number of characters written at least that given bywidth . A sign is written only
for negative values. In the special case of a value of zero forwidth , exactly one
leading space is written.

At least one digit is included in the whole number part. The value is rounded
to the given value ofplace relative to the decimal point. The decimal point is
suppressed ifplace is less than zero.

The following table gives examples of output byWriteFixed :

places 3923009 39.23009 0.0003923009
-5 3920000 0 0
-2 3923010 40 0
-1 3923009 39 0
0 3923009. 39. 0.
1 3923009.0 39.2 0.0
4 3923009.0000 39.2301 0.0004

1.2. READING AND WRITING OF DATA 17

WriteReal Write a real value

PROCEDURE WriteReal (cid: IOChan.ChanId;
real: REAL;
width: CARDINAL);

PROCEDURE WriteReal (cid: IOChan.ChanId;
real: LONGREAL;
width: CARDINAL);

PROCEDURE WriteReal (real: REAL;
width: CARDINAL);

PROCEDURE WriteReal (real: LONGREAL;
width: CARDINAL);

If the sign and magnitude of real can be expressed in a field given bywidth , the
procedureWriteReal behaves as the procedureWriteFixed , with a value
of place chosen to fill exactly the remaining field. Otherwise it behaves as the
procedureWriteFloat , with a value ofsigFigs of at least one, limited to
those that can be included together with the sign and exponent part in the given
width .

In the special case of awidth of zero, the effect is as for the procedure
WriteFloat with a value ofsigFigs equal to zero.

1.2.4 Modules RawIO and SRawIO

The moduleRawIO provides facilities for direct input and output of data using
raw operations (i.e. without any interpretation).

The procedures of the moduleSRawIO behave as the corresponding procedures
of the moduleRawIO, except that input is taken from the default input channel,
and output is sent to the default output channel.

Read Read storage units

PROCEDURE Read (cid: IOChan.ChanId;
VAR to: ARRAY OF SYSTEM.LOC);

PROCEDURE Read (VAR to: ARRAY OF SYSTEM.LOC);

While the stream identified bycid is not exhausted, the procedureRead reads

18 CHAPTER 1. INPUT/OUTPUT

successive storage units from that channel, and assign them without interpretation
to successive components ofto . The read result for the channel is set to the value

allRight if items are read for all components;

wrongFormat if some items are read, but not for all components;

endOfInput if no items are read, the input having ended.

Write Write storage units

PROCEDURE Write (cid: IOChan.ChanId;
from: ARRAY OF SYSTEM.LOC);

PROCEDURE Write (from: ARRAY OF SYSTEM.LOC);

The procedureWrite writes successive components offrom to the channel iden-
tified bycid , as storage units without interpretation.

1.2.5 Module IOConsts

The moduleIOConsts defines the enumeration typeReadResults used to
express read results. Programs do not normally need to import fromIOConsts
directly, since client modules define identifiers that correspond to those defined
by this module.

ReadResults Read result identities

TYPE
ReadResults = (* This type is used to classify the result

of an input operation *)
(

notKnown, (* no read result is set *)
allRight, (* data is as expected or as required *)
outOfRange, (* data cannot be represented *)
wrongFormat, (* data not in expected format *)
endOfLine, (* end of line seen before expected data *)
endOfInput (* end of input seen before expected data *)

);

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 19

1.2.6 Modules IOResult and SIOResult

The moduleIOResult provides the facility for a program to determine whether
the last operation to read data from a specified input channel found data in the
required format.

The procedure of the moduleSIOResult behaves as the corresponding proce-
dure of the moduleIOResult , except that the read result for the default input
channel is returned.

NOTE:

The existence of the moduleIOConsts allows the definition module
SIOResult to be independent of the modulesIOResult andIOChan .

ReadResults Read result identities

TYPE
ReadResults = IOConsts.ReadResults;

The typeIOConsts.ReadResults is re-exported.

ReadResult Get read result for channel

PROCEDURE ReadResult (cid: IOChan.ChanId): ReadResults;
PROCEDURE ReadResult (): ReadResults;

The function procedureReadResult returns the stored read result for the chan-
nel identified bycid .

1.3 Device-Independent Channel Operations

The moduleIOChan provides access to channel operations that are provided in a
device-independent manner for all channels.

Device-dependent operations (which include operations for opening new chan-
nels and subsequently closing them) are defined in the definition module for each
device.

20 CHAPTER 1. INPUT/OUTPUT

1.3.1 Module IOChan

The moduleIOChan defines the hidden typeChanId that is used to identify
channels throughout the input/output library, and provides facilities for device-
independent access to operations supported by the device to which a channel is
connected.

ChanId Channel identity

TYPE
ChanId;

Values of this type are used to identify channels throughout the input/output li-
brary.

InvalidChan Get an invalid channel id

PROCEDURE InvalidChan (): ChanId;

The function procedureInvalidChan returns the identity of the invalid chan-
nel.

NOTE:

The invalid channel is a channel on which no data transfer operations are available;
enquiries on the invalid channel indicate that this is the case. The identity of the
invalid channel can be used to initialize variables of the typeChanId .

1.3.2 Module IOChan - Text Operations

Each of the following procedures invokes a corresponding operation for the device
associated with the given channel. If the associated device supports the operation
on the channel, the behaviour of the procedure conforms with the given descrip-
tion. The full behaviour is defined separately for each device.

These device operations produce atext stream. A text stream is a sequence of
items, each of which corresponds either to a character or a line mark. The se-
quence may be empty.

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 21

The text operations provided by a device module perform any necessary trans-
lation between the internal representation (as a sequence of characters and line
marks) and the external representation used by the source or destination. This
may involve, for example, translation to and from escape sequences used in a
coded character set, mapping between the external and internal representation of
lines, or the interpretation of format effectors.

The interpretation of control characters is implementation-defined. The excep-
tion textParseError occurs (but need not be raised) if input data does not
correspond to a character or line mark.

If the device does not support the operation on the channel, it raises the exception
notAvailable .

Look Invoke Look operation

PROCEDURE Look (cid: ChanId;
VAR ch: CHAR;
VAR res: IOConsts.ReadResults);

The procedureLook invokes theLook operation for the device that is associated
with the channel identified bycid .

NOTE:

If supported on the channel, the deviceLook operation attempts to examine the
next item in the input stream for the channel identified bycid , without removing
it. If the next item is a character, its value is assigned toch ; otherwise, the value
of ch is not defined.res is set to the same value as the stored read result for the
channelcid , this being:

allRight if a character is seen next;

endOfLine if no character is seen, the next item being a line mark;

endOfInput if no character is seen, the input having ended.

Skip Invoke Skip operation

PROCEDURE Skip (cid: ChanId);

The procedureSkip invokes theSkip operation for the device that is associated
with the channel identified bycid .

22 CHAPTER 1. INPUT/OUTPUT

NOTE:

If supported on the channel, the deviceSkip operation attempts to remove the
next item in the input stream for the channel identified bycid . If there is no next
item, the end of the input stream having been reached, the exceptionskipAtEnd
is raised; otherwise the next character or line mark in the stream is removed, and
the stored read result for the channelcid is set to the valueallRight .

SkipLook Invoke SkipLook operation

PROCEDURE SkipLook (cid: ChanId;
VAR ch: CHAR;
VAR res: IOConsts.ReadResults);

The procedureSkipLook invokes theSkipLook operation for the device that
is associated with the channel identified bycid .

NOTE:

If supported on the channel, the deviceSkipLook operation attempts to remove
the next item in the input stream for the channel identified bycid and then to
examine the following item without removing it. If there is no next item, the end
of the input stream having been reached, the exceptionskipAtEnd is raised;
otherwise the next character or line mark in the stream is removed. If this is
followed by a character as the next item in the stream, its value is assigned toch ,
without removing the character from the stream; otherwise, the value ofch is not
defined.res is set to the same value as the stored read result for the channelcid ,
this being:

allRight if a character is seen next;

endOfLine if no character is seen, the next item being a line mark;

endOfInput if no character is seen, the input having ended.

WriteLn Invoke WriteLn operation

PROCEDURE WriteLn (cid: ChanId);

The procedureWriteLn invokes theWriteLn operation for the device that is
associated with the channel identified bycid .

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 23

NOTE: If supported on the channel, the deviceWriteLn operation writes a line
mark to the output stream identified bycid .

TextRead Invoke TextRead operation

PROCEDURE TextRead (cid: ChanId;
to: SYSTEM.ADDRESS;
maxChars: CARDINAL;
VAR charsRead: CARDINAL);

The procedureTextRead invokes theTextRead operation for the device that
is associated with the channel identified bycid .

NOTES:

• If supported on the channel, the deviceTextRead operation reads at most
maxChars characters from the current line on the input stream for the
channel identified bycid , and assigns their values to successive compo-
nents of an array variable of the character type for which the address of
the first component isto . The number of characters read is assigned to
charsRead . The read result for the channelcid is set to the value

allRight if ‘maxChars = charsRead = 0’ or
(‘maxChars > 0’ and ‘charsRead > 0’) ;

endOfLine if ‘maxChars > 0’ and ‘charsRead = 0’ , the
next item being a line mark;

endOfInput if ‘maxChars > 0’ and ‘charsRead = 0’ , the
input having ended.

• The intention is to allow ‘sub-arrays’ to be selected, by passing the address
of a starting component within a larger array. An exception occurs, but
need not be raised, if the call leads to an attempt to access a non-existent
component of the larger array.

24 CHAPTER 1. INPUT/OUTPUT

TextWrite Invoke TextWrite operation

PROCEDURE TextWrite (cid: ChanId;
from: SYSTEM.ADDRESS;
charsToWrite: CARDINAL);

The procedureTextWrite invokes theTextWrite operation for the device
that is associated with the channel identified bycid .

NOTES:

• If supported on the channel, the deviceTextWrite operation copies
charsToWrite characters, from successive components of an array vari-
able of the character type, for which the address of the first component is
from , to the output stream for the channel identified bycid . Copying
starts from the index given byoffset .

• The intention is to allow ‘sub-arrays’ to be selected, by passing the address
of a starting component within a larger array. An exception occurs, but
need not be raised, if the call leads to an attempt to access a non-existent
component of the larger array.

1.3.3 Module IOChan - Raw Operations

Each of the following procedures invokes a corresponding operation for the device
associated with the given channel. If the associated device supports the operation
on the channel, the behaviour of the procedure conforms with the given descrip-
tion. The full behaviour is defined for each device module.

The raw operations provided by a device module transfer data location by location
with no translation or interpretation.

If the device does not support the operation on the channel, it raises the exception
notAvailable .

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 25

RawRead Invoke RawRead operation

PROCEDURE RawRead (cid: ChanId;
to: SYSTEM.ADDRESS;
maxLocs: CARDINAL;
VAR locsRead: CARDINAL);

The procedureRawRead invokes theRawReadoperation for the device that is
associated with the channel identified bycid .

NOTES

• If supported on the channel, the deviceRawReadoperation reads at most
maxLocs items from the input stream for the channel identified bycid ,
and assigns their values to successive components of an array variable of
the location type for which the address of the first component isto . The
number of items read is assigned tolocsRead . The read result for the
channel cid is set to the value

allRight if (‘maxLocs = locsRead = 0’) or (‘maxLocs
> 0 and ‘locsRead > 0’)

endOfInput if ‘maxLocs > 0’ and ‘locsRead = 0’

• The intention is to allow ‘sub-arrays’ to be selected, by passing the address
of a starting component within a larger array. An exception occurs, but
need not be raised, if the call leads to an attempt to access a non-existent
component of the larger array.

RawWrite Invoke RawWrite operation

PROCEDURE RawWrite (cid: ChanId;
from: SYSTEM.ADDRESS;
locsToWrite: CARDINAL);

The procedureRawWrite invokes theRawWrite operation for the device that
is associated with the channel identified bycid .

NOTES:

26 CHAPTER 1. INPUT/OUTPUT

• If supported on the channel, the deviceRawWrite operation copies
locsToWrite items, from successive components of an array variable
of the character type, for which the address of the first component isfrom ,
to the output stream for the channel identified bycid . Copying starts from
the index given byoffset .

• The intention is to allow ‘sub-arrays’ to be selected, by passing the address
of a starting component within a larger array. An exception occurs, but
need not be raised, if the call leads to an attempt to access a non-existent
component of the larger array.

1.3.4 Module IOChan - Common Operations

Each of the following procedures invokes a corresponding operation for the device
associated with the given channel. The behaviour of the procedure conforms with
the given description. The full behaviour is defined for each device module.

GetName Invoke GetName operation

PROCEDURE GetName (cid: ChanId;
VAR s: ARRAY OF CHAR);

The procedureGetName invokes theGetName operation for the device that is
associated with the channel identified bycid .

NOTES:

• The deviceGetName operation copies tos (as a string value) a name as-
sociated with the channel identified bycid .

• The name is truncated if the capacity ofs is inadequate.

Reset Invoke Reset operation

PROCEDURE Reset (cid: ChanId);

The procedureReset invokes the Reset operation for the device that is associated
with the channel identified bycid .

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 27

NOTE:

The deviceReset operation resets the device associated with the channel identi-
fied bycid to a state defined by the device module.

Flush Invoke Flush operation

PROCEDURE Flush (cid: ChanId);

The procedureFlush invokes theFlush operation for the device that is associ-
ated with the channel identified bycid .

NOTE:

The deviceFlush operation flushes any data buffered by the device module out
to the destination associated withcid .

1.3.5 Module IOChan - Access to Read Results

Higher-level data input procedures, for units such as strings and numerals, may
alter the read result for a channel to indicate success or a particular kind of failure
of interpretation. The result can be recovered, if necessary, by the caller of the
data input procedure.

SetReadResult Set read result for channel

PROCEDURE SetReadResult (cid: ChanId;
res: IOConsts.ReadResults);

The procedureSetReadResult sets the read result for the channel identified
by cid to the value given byres .

ReadResult Get read result for channel

PROCEDURE ReadResult (cid: ChanId): IOConsts.ReadResults;

The function procedureReadResult returns the stored read result for the chan-
nel identified bycid .

28 CHAPTER 1. INPUT/OUTPUT

1.3.6 Module IOChan - Channel Enquiries

CurrentFlags Get current flags for channel

PROCEDURE CurrentFlags (cid: ChanId): ChanConsts.FlagSet;

The function procedureCurrentFlags returns the set of flags that currently
apply to the channel identified bycid , as defined for the associated device.

1.3.7 Module IOChan - Exceptions and Device Errors

The device-independent exceptions raised by the input/output library are identified
by the values of the enumeration typeChanExceptions :

ChanExceptions Channel exceptions identities

TYPE
ChanExceptions =

(wrongDevice,
(* device specific operation on wrong device *)

notAvailable,
(* operation attempted is not available on the channel *)

skipAtEnd,
(* attempt to skip data from a stream that has ended *)

softDeviceError,
(* device specific recoverable error *)

hardDeviceError,
(* device specific non-recoverable error *)

textParseError,
(* input data does not correspond to a character

or line mark - optional detection *)
notAChannel

(* given value does not identify a channel -
optional detection *)

);

NOTE:

1.3. DEVICE-INDEPENDENT CHANNEL OPERATIONS 29

The detection of the exceptionstextParseError and notAChannel is
implementation-defined.

IsChanException Query exceptional state

PROCEDURE IsChanException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution because of
the raising of an exception fromChanExceptions , the function procedure
IsChanException returnsTRUE; otherwise it returnsFALSE.

ChanException Query exception id

PROCEDURE ChanException (): ChanExceptions;

If the calling coroutine is in the state of exceptional execution because of
the raising of an exception fromChanExceptions , the function procedure
ChanException returns the value that identifies the raised exception; other-
wise the language exceptionexException is raised.

DeviceErrNum Device error number

TYPE
DeviceErrNum = INTEGER;

Values of the typeDeviceErrNum are used to identufy the implementation-
defined error number for a chennel in the device exception handler.

SeeDeviceError procedure.

DeviceError Get device error number

PROCEDURE DeviceError (cid: ChanId): DeviceErrNum;

The function procedureDeviceError returns the error number stored by the
device module for the channel identified bycid , provided that a device error

30 CHAPTER 1. INPUT/OUTPUT

exception has been raised during an operation on that channel; otherwise the value
of the call is not defined.

NOTE:

When a device procedure detects a device error, it raises the exception
softDeviceError or hardDeviceError . If these exceptions are han-
dled, the procedureDeviceError may be used to discover the implementation-
defined error number stored by the device module for the channel that was in use
when the device error occurred.

1.4 Obtaining Channels from Device Modules

Separate device modules are defined that provide a program with the facility to
obtain a new channel, connected either to a sequential stream, a rewindable se-
quential file, a random access file, or a terminal device.

A request to obtain a channel is made by calling an appropriate ‘open procedure’,
in general supplying a name that identifies the source or destination to which the
connection is to be made.

The required input/output operations are specified using combinations of flags that
are defined in terms of constants imported from the moduleChanConsts .

An open procedure returns a parameter of an enumeration type (exported from the
moduleChanConsts) that indicates the success, or otherwise, of the request.

Each of these device modules defines a predicate allowing a check to be made that
a given channel was opened by that module, as well as a ‘close procedure’ that
allows a program to break the connection and release the channel.

Procedures are also provided for device-dependent operations, such as setting the
read/write position on a random access file.

A further device module is defined to allow access to the program arguments over
a pre-opened channel.

1.4.1 Module ChanConsts

The moduleChanConsts defines common types and values for use with open
procedures. Programs do not normally need to import fromChanConsts di-
rectly, since device modules define identifiers that correspond to those defined by
this module.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 31

ChanFlags Channel open flags

TYPE
ChanFlags =
(readFlag,

(* input operations are requested/available *)
writeFlag,

(* output operations are requested/available *)
oldFlag,

(* a file may/must/did exist
before the channel is opened *)

textFlag,
(* text operations are requested/available *)

rawFlag,
(* raw operations are requested/available *)

interactiveFlag,
(* interactive use is requested/applies *)

echoFlag
(* echoing by interactive device on removal of characters

from input stream requested/applies *)
);

The elements of the enumeration typeChanFlags identify channelflagsthat are
specified when a channel is opened and can be obtained for an open channel.

NOTE:

The typeFlagSet is used in actual calls.

32 CHAPTER 1. INPUT/OUTPUT

FlagSet Channel open flags set

FlagSet = SET OF ChanFlags;

CONST
read = FlagSet{readFlag};

(* input operations are requested/available *)
write = FlagSet{writeFlag};

(* output operations are requested/available *)
old = FlagSet{oldFlag};

(* a file may/must/did exist
before the channel is opened *)

text = FlagSet{textFlag};
(* text operations are requested/available *)

raw = FlagSet{rawFlag};
(* raw operations are requested/available *)

interactive = FlagSet{interactiveFlag};
(* interactive use is requested/applies *)

echo = FlagSet{echoFlag};
(* echoing by interactive device on removal of characters

from input stream requested/applies *)

Values of the typeFlagSet are used in the calls to channel open procedures.
Singleton values ofFlagSet are provided for convinience. For example,read
+ write can be used instead ofFlagSet {read,write }.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 33

OpenResults Results of an open request

TYPE
OpenResults =
(opened,

(* the open succeeded as requested *)
wrongNameFormat,

(* given name is in the wrong format
for the implementation *)

wrongFlags,
(* given flags include a value

that does not apply to the device *)
tooManyOpen,

(* this device cannot support any more open channels *)
outOfChans,

(* no more channels can be allocated *)
wrongPermissions,

(* file or directory permissions do not allow request *)
noRoomOnDevice,

(* storage limits on the device prevent the open *)
noSuchFile,

(* a needed file does not exist *)
fileExists,

(* a file of the given name already exists
when a new one is required *)

wrongFileType,
(* the file is of the wrong type to support

the required operations *)
noTextOperations,

(* text operations have been requested,
but are not supported *)

noRawOperations,
(* raw operations have been requested,

but are not supported *)
noMixedOperations,

(* text and raw operations have been requested, but they
are not supported in combination *)

alreadyOpen,
(* the source/destination is already open

for operations not supported in combination
with the requested operations *)

otherProblem
(* open failed for some other reason *)

);

The elements of the enumeration typeOpenResults identify possible results of

34 CHAPTER 1. INPUT/OUTPUT

an open request.

The Use of ChanConsts

To save repetition in the natural language definition of the device modules, the
meaning given to some values ofFlagSet andOpenResults is defined here.
The meaning of the other flags is given for the open operations to which they
apply.

In a call of a device module open procedure that has a request parameter of the
typeFlagSet and a result parameter of the typeOpenResults :

If the result isopened , the following operations are provided for the opened
channel for the combinations of request flags shown:

read write
text text input text output as defined for the device
raw raw input raw output as defined for the device

NOTE:

The supplied flags specify the minimal functionality that must be available for
the open operation to succeed. Implementations are free to allow operations in
addition to those specified in the request flags provided that these are reflected in
the enquiry flags returned for the channel.

If the result is other thanopened , the channel parameter is assigned the value
identifying the invalid channel, on which no input/output operations are provided.
The result is chosen according to the following table:

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 35

wrongNameFormat if the given name is not in the format defined for
the implementation

wrongFlags if the given flags include a value that does not
apply to the device

tooManyOpen if the device cannot support any more open
channels

outOfChans if no more channels can be allocated
wrongPermissions if file or directory permissions do not allow the

request to be met
noRoomOnDevice if storage limits on the device do not allow the

request to be met
noSuchFile if a needed file does not exist
fileExists if a file of the given name already exists when a

new one is required
wrongFileType if the named file is of the wrong type to support

the required operations
noTextOperations if text operations have been requested, but are

not supported by the device
noRawOperations if raw operations have been requested, but are

not supported by the device
noMixedOperations if text and raw operations have been requested,

but they are not supported in combination by the
device

alreadyOpen if the source/destination is already open for op-
erations that are not supported in combination
with the operations now requested

otherProblem if the open failed for a reason other than the
above

1.4.2 Module StreamFile

The moduleStreamFile provides facilities for obtaining and releasing chan-
nels that are connected to named sources and/or destinations for independent se-
quential data streams.

The types IOChan.ChanId , ChanConsts.FlagSet , and
ChanConsts.OpenResults are re-expored. The singleton values of
the typeFlagSet are declared for convinience:

TYPE
ChanId = IOChan.ChanId;

36 CHAPTER 1. INPUT/OUTPUT

FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

CONST
read = FlagSet{ChanConsts.readFlag};

(* input operations are requested/available *)
write = FlagSet{ChanConsts.writeFlag};

(* output operations are requested/available *)
old = FlagSet{ChanConsts.oldFlag};

(* a file may/must/did exist
before the channel is opened *)

text = FlagSet{ChanConsts.textFlag};
(* text operations are requested/available *)

raw = FlagSet{ChanConsts.rawFlag};
(* raw operations are requested/available *)

In a request to open a sequential stream, the flagsread , write , old , text ,
andraw apply. If raw is not included in the request parameterflags , inclusion
of text is implied.

Open Open sequential stream

PROCEDURE Open (VAR cid: ChanId;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedureOpen assigns tocid the identity of a channel that
is connected to a sequential stream specified byname, and the valueopened is
assigned tores .

If write is not included inflags , inclusion ofread is implied; if read is
given or implied, inclusion ofold is implied; a source of the given name has to
already exist if the call is to succeed.

If write is included, a destination of the given name has to not already exist,
unless the flagold is given or implied.

If a channel cannot be opened as required, the value ofres indicates the reason,
andcid identifies the invalid channel.

NOTE:

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 37

Distinct modes in combination withtext and/orraw are given by the following
equivalent sets of flags:

• read from an existing source:read old read+old

• write to a new destination:write

• write to a new or old destination:write+old

• read/write an existing source/destination: read+write
read+write+old

IsStreamFile Query whether stream is sequential

PROCEDURE IsStreamFile (cid: ChanId): BOOLEAN;

The function procedureIsStreamFile returnsTRUEif the channel identified
by cid is open to a sequential stream, andFALSEotherwise.

Close Close sequential stream

PROCEDURE Close (VAR cid: ChanId);

If the channel identified bycid is open to a sequential stream, the procedure
Close closes the channel and assigns the value identifying the invalid channel to
cid ; otherwise, the exceptionwrongDevice is raised.

1.4.3 Module SeqFile

The moduleSeqFile provides facilities for obtaining and releasing channels
that are connected to named rewindable sequential stored files.

If opened for both writing and reading, data written to the file may be read back
from the start of the file. Rewriting from the start of the file causes the previous
contents to be lost.

The types IOChan.ChanId , ChanConsts.FlagSet , and
ChanConsts.OpenResults are re-expored. The singleton values of
the typeFlagSet are declared for convinience:

38 CHAPTER 1. INPUT/OUTPUT

TYPE
ChanId = IOChan.ChanId;
FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

CONST
read = FlagSet{ChanConsts.readFlag};

(* input operations are requested/available *)
write = FlagSet{ChanConsts.writeFlag};

(* output operations are requested/available *)
old = FlagSet{ChanConsts.oldFlag};

(* a file may/must/did exist before the channel is opened *)
text = FlagSet{ChanConsts.textFlag};

(* text operations are requested/available *)
raw = FlagSet{ChanConsts.rawFlag};

(* raw operations are requested/available *)

In a request to open a rewindable sequential file, the flagsread , write , old ,
text , and raw apply. If raw is not included in the request parameter flags,
inclusion oftext is implied.

Channels open to rewindable sequential files may be ininput mode or
in output mode. In input mode, only input operations are available,
‘(IOChan.Flags()*(read+write) = read)’ is true, and an attempt
to write over the channel raises the exceptionnotAvailable . In output mode,
only output operations are available,‘(IOChan.Flags()*(read+write)
= write)’ is true, and an attempt to read from the channel raises the exception
notAvailable . All data written to a rewindable sequential file is appended to
previous data written to that file.

OpenWrite Open sequential file for writing

PROCEDURE OpenWrite (VAR cid: ChanId;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedureOpenWrite assigns tocid the identity of a channel
that is connected to a stored file specified byname; the valueopened is assigned
to res . Output mode is selected and the file is truncated to zero length.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 39

Inclusion of thewrite flag in the parameterflags is implied.

If the call is to succeed, a destination of the given name has to not already ex-
ist unless the flagold is given; if theread flag is included in the request, the
Reread operation is available.

The effect of aReset operation on the channel is to truncate the file to zero
length and to select output mode.

If a channel cannot be opened as required, the value ofres indicates the reason,
andcid identifies the invalid channel.

NOTE:

Distinct modes in combination withtext and/orraw are given by the following
equivalent sets of flags:

• write to a new file:write

• write to a new file or a truncated existing file:old write+old

• write to a new file, need read operations:write+read read

• write to a new or existing file, need read operations:old+read
write+old+read

OpenAppend Open sequential file for appending

PROCEDURE OpenAppend (VAR cid: ChanId;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedureOpenAppend assigns tocid the identity of a chan-
nel that is connected to a stored file specified byname; the valueopened is
assigned tores . Output mode is selected.

Have to write something here.

Inclusion of thewrite and old flags in the parameterflags is implied; a
destination of the given name may already exist.

If the read flag is included in the request, theReread operation is available if
the call is to succeed.

40 CHAPTER 1. INPUT/OUTPUT

The effect of aReset operation on the channel is to select output mode.

If a channel cannot be opened as required, the value ofres indicates the reason,
andcid identifies the invalid channel.

NOTE:

Distinct modes in combination withtext and/orraw are given by the following
equivalent sets of flags:

• write to a new or append to an existing file:write old write+old

• write to a new or append to an existing file, need read operations:read
write+read old+read write+old+read

OpenRead Open sequential file for reading

PROCEDURE OpenRead (VAR cid: ChanId;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedureOpenRead assigns tocid the identity of a channel
that is connected to a stored file specified byname; the value opened is assigned
to res . Input mode is selected and the read position correspond to the start of the
file.

Inclusion of theread andold flags in the parameterflags is implied; a desti-
nation of the given name has to already exist if the call is to succeed.

If the write flag is included in the request, theRewrite operation is available
if the call is to succeed.

The effect of aReset operation on the channel is to select input mode and to set
the read position to the start of the file.

If a channel cannot be opened as required, the value ofres indicates the reason,
andcid identifies the invalid channel.

NOTE:

Distinct modes in combination withtext and/orraw are given by the following
equivalent sets of flags:

• read from an existing file:read old read+old

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 41

• read from an existing file, need write operations:write read+write
old+write read+old+write

IsSeqFile Query whether channel is open to a sequential file

PROCEDURE IsSeqFile (cid: ChanId): BOOLEAN;

The function procedureIsSeqFile returnsTRUEif the channel identified by
cid is open to a rewindable sequential file, andFALSEotherwise.

Reread Rewind and select input mode

PROCEDURE Reread (cid: ChanId);

If the channel identified bycid is open to a rewindable sequential file, the pro-
cedureReread attempts to set the read position of the channel to the start of the
file, and to select input mode; otherwise, the exceptionwrongDevice is raised.

If the operation cannot be performed, perhaps because of insufficient permissions,
neither input mode nor output mode are selected.

Rewrite Rewind and select output mode

PROCEDURE Rewrite (cid: ChanId);

If the channel identified bycid is open to a rewindable sequential file, the proce-
dureRewrite attempts to set the write position of the channel to the start of the
file, to truncate the file to zero length, and to select output mode; otherwise, the
exceptionwrongDevice is raised.

If the operation cannot be performed, perhaps because of insufficient permissions,
neither input mode nor output mode are selected.

Close Close sequential file

PROCEDURE Close (VAR cid: ChanId);

If the channel identified bycid is open to a rewindable sequential file, the pro-
cedureClose closes the channel and assigns the value identifying the invalid
channel tocid ; otherwise, the exceptionwrongDevice is raised.

42 CHAPTER 1. INPUT/OUTPUT

1.4.4 Module RndFile

The moduleRndFile provides facilities for obtaining and releasing channels
that are connected to named random access files.

The types IOChan.ChanId , ChanConsts.FlagSet , and
ChanConsts.OpenResults are re-expored. The singleton values of
the typeFlagSet are declared for convinience:

TYPE
ChanId = IOChan.ChanId;
FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

CONST
read = FlagSet{ChanConsts.readFlag};

(* input operations are requested/available *)
write = FlagSet{ChanConsts.writeFlag};

(* output operations are requested/available *)
old = FlagSet{ChanConsts.oldFlag};

(* a file may/must/did exist before the channel is opened *)
text = FlagSet{ChanConsts.textFlag};

(* text operations are requested/available *)
raw = FlagSet{ChanConsts.rawFlag};

(* raw operations are requested/available *)

Channels opened by the moduleRndFile have an associated read/write position
in the corresponding random-access file. The read/write position is at the start
of the file after opening, or after aReset operation on the channel. It is moved
forward by the number of positions occupied by data that are taken from the file
by an input operation, or written to the file by an output operation.

CONST
FilePosSize = <implementation-defined whole

number greater than zero>;

TYPE
FilePos = ARRAY [1 .. FilePosSize] OF SYSTEM.LOC;

NOTE:

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 43

The implementation-defined typeFilePos has been specified in a way that en-
ables values of this type to be read from or written to a file, while maintaining a
degree of opacity for the type.

A random-access file have a length corresponding to the position after the highest
read/write position at which data have been written. This length is zero if no data
have been written to the file. If the read/write position is set at the current length,
either implicitly on an input or output operation, or explicitly by a positioning
operation, the effect of an input operation is as if the input stream had ended. A
write at that position, if necessary, attempts to allocate more physical storage for
the file.

In a request to open a random-access file, the flagsread , write , old , text ,
andraw apply. If text is not included in the request parameter flags, inclusion
of raw is implied.

OpenOld Open existing random-aceess file

PROCEDURE OpenOld (VAR cid: ChanId;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedureOpenOld assigns tocid the identity of a channel
that is connected to a random access file specified byname; the value opened is
assigned tores . The read/write position correspond to the start of the file.

Inclusion of theold flag in the parameter flags is implied; a file of the given name
have to already exist if the call is to succeed.

If the write flag is not included in the request, inclusion of theread flag is
implied.

If a channel cannot be opened as required, the value ofres indicates the reason,
andcid identifies the invalid channel.

NOTE:

Distinct modes in combination withtext and/orraw are given by the following
equivalent sets of flags:

• read from an existing file:read old read+old

• write to an existing file:write write+old

44 CHAPTER 1. INPUT/OUTPUT

• read/write an existing file:read+write read+write+old

OpenClean Open and clear random-aceess file

PROCEDURE OpenClean (VAR cid: ChanId;
name: ARRAY OF CHAR;
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedureOpenClean assigns tocid the identity of a channel
that is connected to a random access file specified byname; the valueopened is
assigned tores . The file is truncated to zero length.

Inclusion of thewrite flag in the parameter flags is implied; a destination of the
given name has to not already exist unless the flagold is given.

If a channel cannot be opened as required, the value ofres indicates the reason,
andcid identifies the invalid channel.

NOTE:

Distinct modes in combination withtext and/orraw are given by the following
equivalent sets of flags:

• write to a new file:write

• write to a new file or a truncated existing file:old write+old

• write to a new file, read operations are needed:read write+read

• write to a new file or a truncated existing file, read operations are needed:
old+read write+old+read

IsRndFile Query whether channel is open to a random access file

PROCEDURE IsRndFile (cid: ChanId): BOOLEAN;

The function procedureIsRndFile returnsTRUEif the channel identified by
cid is open to a random access file, andFALSEotherwise.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 45

IsRndFileException Query exceptional state

PROCEDURE IsRndFileException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theRndFile exception, the function procedure
IsRndFileException returnsTRUE; otherwise it returnsFALSE.

StartPos Query start position

PROCEDURE StartPos (cid: ChanId): FilePos;

If the channel identified bycid is open to a random access file, the function
procedureStartPos returns the position of the start of the file; otherwise the
exceptionwrongDevice is raised.

CurrentPos Query current position

PROCEDURE CurrentPos (cid: ChanId): FilePos;

If the channel identified bycid is open to a random access file, the function pro-
cedureCurrentPos returns the current read/write position of the file; otherwise
the exceptionwrongDevice is raised.

EndPos Query end position

PROCEDURE EndPos (cid: ChanId): FilePos;

If the channel identified bycid is open to a random access file, the function
procedureEndPos returns the first position in the file at or after which no data
have been written; otherwise the exceptionwrongDevice is raised.

46 CHAPTER 1. INPUT/OUTPUT

NewPos Calculate new position

PROCEDURE NewPos (cid: ChanId;
chunks: INTEGER;
chunkSize: CARDINAL;
from: FilePos): FilePos;

If the channel identified bycid is open to a random access file, the function pro-
cedureNewPos returns the read/write positionchunks * chunkSize places
relative to the position in the file given by the value offrom ; otherwise, the excep-
tion wrongDevice is raised. TheRndFile exception is raised if the required
position cannot be represented as a value of the typeFilePos .

NOTE:

Calculation of the position in a random access file at which to issue text operations
is dependent upon knowledge of the external representation of text items in a
particular file; the amount by which the read/write position is moved as a result
of a text operation may vary depending upon the item that is read or written. For
raw operations, the read/write position is always moved by a value equal to the
storage size of variables of the type of the item read or written.

SetPos Set new position

PROCEDURE SetPos (cid: ChanId; pos: FilePos);

If the channel identified bycid is open to a random access file, the procedure
SetPos sets the read/write position for the file to the position given by the value
of pos ; otherwise the exceptionwrongDevice is raised.

If the position given by the value ofpos is beyond the value returned by a call
of EndPos , ‘read <= IOChan.Flags()’ is false, and a call of an in-
put operation raises the exceptionnotAvailable ; the value of‘write <=
IOChan.Flags()’ is implementation-defined and correspond to the availabil-
ity of output operations in this case. If data are subsequently written at such a po-
sition, those positions that have not been written to are filled with implementation-
defined padding values.

NOTE:

Setting the read/write position beyond the value returned byEndPos does not of
itself affect the size of the file.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 47

Close Close random access file

PROCEDURE Close (VAR cid: ChanId);

If the channel identified by cid is open to a random access file, the procedure
Close closes the channel and assign the value identifying the invalid channel to
cid ; otherwise, the exceptionwrongDevice is raised.

1.4.5 Module TermFile

The moduleTermFile provides facilities that allow elementary access to an
interactive terminal.

The types IOChan.ChanId , ChanConsts.FlagSet , and
ChanConsts.OpenResults are re-expored. The singleton values of
the typeFlagSet are declared for convinience:

TYPE
ChanId = IOChan.ChanId;
FlagSet = ChanConsts.FlagSet;
OpenResults = ChanConsts.OpenResults;

CONST
read = FlagSet{ChanConsts.readFlag};

(* input operations are requested/available *)
write = FlagSet{ChanConsts.writeFlag};

(* output operations are requested/available *)
text = FlagSet{ChanConsts.textFlag};

(* text operations are requested/available *)
raw = FlagSet{ChanConsts.rawFlag};

(* raw operations are requested/available *)
echo = FlagSet{ChanConsts.echoFlag};

(* echoing by interactive device on reading of
characters from input stream requested/applies *)

Channels connected to the terminal device are opened inline modeor in single-
character mode. In line mode, items are echoed before being added to the input
stream and are added a line at a time. In single character mode, items are added
to the input stream as they are typed, and are echoed as they are removed from the

48 CHAPTER 1. INPUT/OUTPUT

input stream by a text read device operation, provided they have not already been
echoed.

Typed characters are distributed between multiple channels according to the se-
quence of read requests.

NOTE:

If all the channels open to the terminal are open in line mode, the terminal device
operates exclusively in line mode; in that case, echoing might be performed by an
underlying operating system. Similarly, if all the channels open to the terminal are
open in single-character mode, the terminal device operates exclusively in single-
character mode; in that case, echoing only occurs on reading from a channel and
not on looking or skipping: this allows interactive input routines to suppress the
echoing of unwanted or unexpected characters.

If an implementation allows it, there might be one or more channels open in line
mode, and one or more channels open in single-character mode. In that case,
echoing is postponed until the treatment of characters can be determined accord-
ing to the sequence of calls of input operations. This behaviour allows programs
that use the terminal in different modes to be written in a modular fashion, there
being no need explicitly to save and restore the state of the terminal device.

In a request to open a channel to the terminal device, the flagsread , write ,
text , raw , andecho apply. If raw is not included in the request parameter
flags, inclusion oftext is implied. If theread flag is not included in the request,
inclusion of thewrite flag is implied.

Open Open terminal

PROCEDURE Open (VAR cid: ChanId;
flags: FlagSet;
VAR res: OpenResults);

If successful, the procedureOpen assigns tocid the identity of a channel that is
connected to the terminal device.

If the echo flag is included in the request, single-character mode is available if
the call is to succeed and the channel operates in single-character mode. Without
the echo flag, line mode is available if the call is to succeed and the channel
operates in line mode.

If a channel cannot be opened as required, the value ofres indicates the reason,
andcid identifies the invalid channel.

1.4. OBTAINING CHANNELS FROM DEVICE MODULES 49

IsTermFile Query whether channel is opened to terminal

PROCEDURE IsTermFile (cid: ChanId): BOOLEAN;

The function procedureIsTermFile returnsTRUEif the channel identified by
cid is open to the terminal device, andFALSEotherwise.

Close Close terminal

PROCEDURE Close (VAR cid: ChanId);

If the channel identified bycid is open to the terminal device, the procedure
Close closes the channel and assigns the value identifying the invalid channel to
cid ; otherwise, the exceptionwrongDevice is raised.

1.4.6 Module ProgramArgs

The moduleProgramArgs provides a channel from which input can be taken
from any arguments given to the program.

TYPE
ChanId = IOChan.ChanId;

The initialization of the moduleProgramArgs opens the channel from which
the implementation-defined program arguments may be read.

ArgChan Get program arguments channel id

PROCEDURE ArgChan (): ChanId;

The function procedureArgChan returns a value identifying a channel from
which the implementation-defined program arguments may be read.

50 CHAPTER 1. INPUT/OUTPUT

IsArgPresent Query whether an argument is present

PROCEDURE IsArgPresent (): BOOLEAN;

The function procedureIsArgPresent returnsTRUEif there is a current argu-
ment from which to read, andFALSEotherwise.

If there is no current argument,‘read <= IOChan.Flags()’ is false,
and attempting to read from the argument channel raises the exception
notAvailable .

NextArg Skip to next argument

PROCEDURE NextArg ();

After the call to the procedureNextArg , if there is another argument, subse-
quent input from the argument channel is taken from the start of that argument;
otherwise a call ofIsArgPresent returnsFALSE.

NOTE:

Provision ofNextArg allows the treatment of arguments that contain spaces or
line marks.

1.5 Interface to Channels for New Device Modules

Additional device modules may be provided to allow the library to be used with
other input sources and output destinations. These might include, for example,
files opened with host-specific options or parameters or with host-specific be-
haviour, a windowing system, or a speech output device.

1.5.1 Module IOLink

The moduleIOLink provides facilities that allow a user to provide specialized
device modules for use with channels, following the pattern of the rest of the
library.

A device needs to identify itself in order to allow a check to be made that device-
dependent operations are applied only for channels opened to that device. To

1.5. INTERFACE TO CHANNELS FOR NEW DEVICE MODULES 51

this end, values of the hidden typeDeviceId are used to identify new device
modules, and are normally obtained by them during their initialization by a call to
the procedureAllocateDeviceId .

TYPE
DeviceId;

A device module procedure provided for opening a channel can obtain a new
channel by calling the procedureMakeChan. If a channel is allocated, but the
call of the device module open procedure is not successful for some reason, the
device module should release the channel by calling the procedureUnMakeChan,
and return the value identifying the invalid channel to its client.

A call to UnMakeChan is also made on a successful call of a device module
procedure provided for closing a channel.

If a call of a device module ‘open’ procedure is successful, then by calling the
function procedureDeviceTablePtrValue , a device module can obtain a
pointer (of the typeDeviceTablePtr) to a ‘device table’ (of a record type
DeviceTable) for the channel. The fields of this record are initialized by
MakeChan, but the procedure can then change any fields of the device table
needed to install its own values for the device data, supported operations, and
flags.

Device tables have:

1. a field in which the device module can store private data,

2. a field in which the value identifying the device module is stored,

3. a field in which the value identifying the channel is stored,

4. a field in which the read result is stored,

5. a field in which device error numbers are stored prior to the raising of a
device error exception,

6. a field in which flags are stored indicating those which apply,

7. a field for each device procedure.

(The fields are initialized byMakeChan to the values shown in the definition
module below.)

52 CHAPTER 1. INPUT/OUTPUT

By calling the function procedureIsDevice , a device module can enquire
whether it was responsible for opening a given channel. This allows it to imple-
ment a corresponding enquiry function that is exported from the device module
itself.

Client modules may raise appropriate exceptions; to support this facility, the
type DevExceptionRange and the procedureRAISEdevException can
be used.

TYPE
DeviceTablePtr = POINTER TO DeviceTable;

(* Values of this type are used to refer to device tables *)

TYPE
LookProc = PROCEDURE (DeviceTablePtr,

VAR CHAR,
VAR IOConsts.ReadResults);

SkipProc = PROCEDURE (DeviceTablePtr);
SkipLookProc = PROCEDURE (DeviceTablePtr,

VAR CHAR,
VAR IOConsts.ReadResults);

WriteLnProc = PROCEDURE (DeviceTablePtr);
TextReadProc = PROCEDURE (DeviceTablePtr,

SYSTEM.ADDRESS,
CARDINAL,
VAR CARDINAL);

TextWriteProc = PROCEDURE (DeviceTablePtr,
SYSTEM.ADDRESS,
CARDINAL);

RawReadProc = PROCEDURE (DeviceTablePtr,
SYSTEM.ADDRESS,
CARDINAL,
VAR CARDINAL);

RawWriteProc = PROCEDURE (DeviceTablePtr,
SYSTEM.ADDRESS,
CARDINAL);

GetNameProc = PROCEDURE (DeviceTablePtr,
VAR ARRAY OF CHAR);

ResetProc = PROCEDURE (DeviceTablePtr);
FlushProc = PROCEDURE (DeviceTablePtr);
FreeProc = PROCEDURE (DeviceTablePtr);

1.5. INTERFACE TO CHANNELS FOR NEW DEVICE MODULES 53

(* Carry out the operations involved in closing
the corresponding channel, including flushing buffers,
but do not unmake the channel.

*)

TYPE
DeviceData = SYSTEM.ADDRESS;

DeviceTable =
RECORD (* Initialized by MakeChan to: *)

cd: DeviceData;
(* the value NIL *)

did: DeviceId;
(* the value given in the call of MakeChan *)

cid: IOChan.ChanId;
(* the identity of the channel *)

result: IOConsts.ReadResults;
(* the value notKnown *)

errNum: IOChan.DeviceErrNum;
(* undefined *)

flags: ChanConsts.FlagSet;
(* ChanConsts.FlagSet{} *)

doLook: LookProc;
(* raise exception notAvailable *)

doSkip: SkipProc;
(* raise exception notAvailable *)

doSkipLook: SkipLookProc;
(* raise exception notAvailable *)

doLnWrite: WriteLnProc;
(* raise exception notAvailable *)

doTextRead: TextReadProc;
(* raise exception notAvailable *)

doTextWrite: TextWriteProc;
(* raise exception notAvailable *)

doRawRead: RawReadProc;
(* raise exception notAvailable *)

doRawWrite: RawWriteProc;
(* raise exception notAvailable *)

doGetName: GetNameProc;
(* return the empty string *)

doReset: ResetProc;

54 CHAPTER 1. INPUT/OUTPUT

(* do nothing *)
doFlush: FlushProc;

(* do nothing *)
doFree: FreeProc;

(* do nothing *)
END;

TYPE
DevExceptionRange =

z[IOChan.notAvailable .. IOChan.textParseError];

AllocateDeviceId Allocate device id

PROCEDURE AllocateDeviceId (VAR did: DeviceId);

The procedureAllocateDeviceId allocates an unique value of the type
DeviceId , and assign this value todid .

MakeChan Allocate a new channel for device

PROCEDURE MakeChan (did: DeviceId;
VAR cid: IOChan.ChanId);

The procedureMakeChan attempts to allocate a new channel for the device mod-
ule identified bydid . If no more channels can be allocated, the value identifying
the invalid channel is assigned tocid . Otherwise, a value identifying a new ini-
tialized channel is assigned tocid .

UnMakeChan Deallocate channel from device

PROCEDURE UnMakeChan (did: DeviceId;
VAR cid: IOChan.ChanId);

Provided the device module identified bydid is the module that made the channel
identified bycid , the procedureUnMakeChandeallocates the channel identified

1.5. INTERFACE TO CHANNELS FOR NEW DEVICE MODULES 55

by cid , and assigns the value identifying the invalid channel tocid ; otherwise
the exceptionwrongDevice is raised.

DeviceTablePtrValue Get device table for channel

PROCEDURE DeviceTablePtrValue (cid: IOChan.ChanId;
did: DeviceId

): DeviceTablePtr;

Provided that the device module identified bydid is the module that made the
channel identified bycid , the function procedureDeviceTablePtrValue
returns a pointer to the device table for the channel identified bycid ; otherwise
the exceptionwrongDevice is raised.

IsDevice Query channel’s device

PROCEDURE IsDevice (cid: IOChan.ChanId;
did: DeviceId

): BOOLEAN;

The function procedureIsDevice returnsTRUEif the device module identified
by did is the module that made the channel identified bycid , and otherwise
returnsFALSE.

RAISEdevException Raise device exception

PROCEDURE RAISEdevException (cid: IOChan.ChanId;
did: DeviceId;
x: DevExceptionRange;
s: ARRAY OF CHAR);

Provided that the device module identified bydid is the module that made the
channel identified bycid , the procedureRAISEdevException raises the ex-
ception given byx , and includes the string value ins in the exception message;
otherwise the exceptionwrongDevice is raised.

56 CHAPTER 1. INPUT/OUTPUT

IsIOException Query exceptional state

PROCEDURE IsIOException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution because of the rais-
ing of an exception fromIOChan.ChanExceptions , the function procedure
IsIOException returnsTRUE; otherwise it returnsFALSE.

IOException Query exception id

PROCEDURE IOException (): IOChan.ChanExceptions;

If the calling coroutine is in the state of exceptional execution because of the rais-
ing of an exception fromIOChan.ChanExceptions , the function procedure
IOException returns the value that identifies the raised exception; otherwise
the language exceptionexException is raised.

NOTE:

A single value of EXCEPTIONS.ExceptionSource is used to iden-
tify the source of input/output library exceptions corresponding to
IOChan.ChanExceptions . The proceduresIsIOException and
IOException are included so that this value need not be exported for
corresponding procedures to be provided through theIOChan interface.

Chapter 2

Mathematical

The mathematical libraries provide the common mathematical functions and some
constants.

The moduleRealMath provides the constants and functions for the typeREAL,
while the moduleLongMath provides similar constants and functions for the
typeLONGREAL.

The moduleComplexMath provides the constants and functions for the type
COMPLEX, while the moduleLongComplexMath provides similar functions
for the typeLONGCOMPLEX.

2.1 Modules RealMath and LongMath

The semantics of the two modules is the same, except that where the module
RealMath refers to the pervasive typeREAL, the corresponding function in
LongMath refers to the pervasive typeLONGREAL.

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
LongMath .

The units used for angular quantities are radians.

57

58 CHAPTER 2. MATHEMATICAL

Constants Useful constants

CONST
pi = 3.1415926535897932384626433832795028841972;
exp1 = 2.7182818284590452353602874713526624977572;

The constantpi provides an implementation-defined approximation to the math-
ematical constantπ. The constant exp1 provides an implementation-defined ap-
proximation to the mathematical constante.

NOTE:

Due to the approximations involved,sin(pi) might not equal zero exactly; sim-
ilarly, exp1 might not equalexp(1) exactly.

sqrt Calculate square root

PROCEDURE sqrt (x: REAL): REAL;
PROCEDURE sqrt (x: LONGREAL): LONGREAL;

The function proceduresqrt returns an implementation-defined approximation
to the positive signed square root ofx . An exception is raised ifx is negative.

exp Calculate exponent

PROCEDURE exp (x: REAL): REAL;
PROCEDURE exp (x: LONGREAL): LONGREAL;

The function procedureexp returns an implementation-defined approximation to
the mathematical constante raised to the power ofx .

ln Calculate natural logarithm

PROCEDURE ln (x: REAL): REAL;
PROCEDURE ln (x: LONGREAL): LONGREAL;

The function procedureln returns an implementation-defined approximation to
the natural logarithm ofx . An exception is raised ifx is zero or negative.

2.1. MODULES REALMATH AND LONGMATH 59

sin Calculate sine

PROCEDURE sin (x: REAL): REAL;
PROCEDURE sin (x: LONGREAL): LONGREAL;

The function proceduresin returns an implementation-defined approximation to
the sine ofx .

cos Calculate cosine

PROCEDURE cos (x: REAL): REAL;
PROCEDURE cos (x: LONGREAL): LONGREAL;

The function procedurecos returns an implementation-defined approximation to
the cosine ofx .

tan Calculate tangent

PROCEDURE tan (x: REAL): REAL;
PROCEDURE tan (x: LONGREAL): LONGREAL;

The function proceduretan returns an implementation-defined approximation to
the tangent ofx . An exception is raised ifx is an odd multiple ofπ/2.

arcsin Calculate arcsine

PROCEDURE arcsin (x: REAL): REAL;
PROCEDURE arcsin (x: LONGREAL): LONGREAL;

The function procedurearcsin returns an implementation-defined approxima-
tion to the arcsine ofx . An exception is raised if the absolute value ofx is greater
than one.

60 CHAPTER 2. MATHEMATICAL

arccos Calculate arccosine

PROCEDURE arccos (x: REAL): REAL;
PROCEDURE arccos (x: LONGREAL): LONGREAL;

The function procedurearccos returns an implementation-defined approxima-
tion to the arccosine ofx . An exception is raised if the absolute value ofx is
greater than one.

arctan Calculate arctangent

PROCEDURE arctan (x: REAL): REAL;
PROCEDURE arctan (x: LONGREAL): LONGREAL;

The function procedurearctan returns an implementation-defined approxima-
tion to the arctangent ofx .

power Calculate power

PROCEDURE power (base, exponent: REAL): REAL;
PROCEDURE power (base, exponent: LONGREAL): LONGREAL;

The function procedurepower returns an implementation-defined approximation
to the result obtained by raisingbase to the power ofexponent . An exception
is raised if the value of base is zero or negative.

This function is mathematically equivalent toexp(y ln(x)) but may be computed
differently.

round Round

PROCEDURE round (x: REAL): INTEGER;
PROCEDURE round (x: LONGREAL): INTEGER;

The function procedureround returns the nearest integer to the value ofx . The
result is an implementation-defined selection of the two possible values if the

2.2. MODULES COMPLEXMATH AND LONGCOMPLEXMATH 61

value ofx is midway between two integer values. An exception occurs and may
be raised if the mathematical result is not within the range of the typeINTEGER.

IsRMathException Query exceptional state

PROCEDURE IsRMathException (): BOOLEAN;
PROCEDURE IsRMathException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theRealMath exception, the function procedure
RealMath.IsRMathException returns TRUE; otherwise the value is
FALSE.

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theLongMath exception, the function procedure
LongMath.IsRMathException returns TRUE; otherwise the value is
FALSE.

2.2 Modules ComplexMath and LongComplex-
Math

The semantics of the two modules are the same, except that where the module
ComplexMath refers to the pervasive typeCOMPLEX, the corresponding func-
tion in LongComplexMath refers to the pervasive typeLONGCOMPLEX.

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
LongComplexMath .

Constants Useful constants

CONST
i = CMPLX (0.0, 1.0);
one = CMPLX (1.0, 0.0);
zero = CMPLX (0.0, 0.0);

The constantsi , one , andzero are the implementation-defined approximations
to the specified values.

62 CHAPTER 2. MATHEMATICAL

NOTE:

These constants are provided for convenience.

abs Calculate modulus

PROCEDURE abs (z: COMPLEX): REAL;
PROCEDURE abs (z: LONGCOMPLEX): LONGREAL;

The function procedureabs returns an implementation-defined approximation to
the modulus (otherwise known as the length, or absolute value) ofz .

NOTE:

An overflow exception may be raised in this computation, even when the complex
number is itself well defined.

arg Calculate argument

PROCEDURE arg (z: COMPLEX): REAL;
PROCEDURE arg (z: LONGCOMPLEX): LONGREAL;

The function procedurearg returns an implementation-defined approximation
to the angle thatz subtends to the positive real axis in the complex plane. An
exception is raised if the modulus ofz is zero.

conj Calculate conjugate

PROCEDURE conj (z: COMPLEX): COMPLEX;
PROCEDURE conj (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedureconj returns an implementation-defined approximation
to the complex conjugate ofz .

2.2. MODULES COMPLEXMATH AND LONGCOMPLEXMATH 63

power Calculate power

PROCEDURE power (base: COMPLEX;
exponent: REAL

): COMPLEX;
PROCEDURE power (base: LONGCOMPLEX;

exponent: LONGREAL
): LONGCOMPLEX;

The function procedurepower returns an implementation-defined approximation
to the result obtained by raisingbase to the power ofexponent .

sqrt Calculate square root

PROCEDURE sqrt (z: COMPLEX): COMPLEX;
PROCEDURE sqrt (z: LONGCOMPLEX): LONGCOMPLEX;

The function proceduresqrt returns an implementation-defined approximation
to the principal square root ofz .

NOTE:

That is, the result is the complex number with an argument of half the value of the
argument ofz , and whose modulus has the value of the positive square root of the
modulus ofz .

exp Calculate exponent

PROCEDURE exp (z: COMPLEX): COMPLEX;
PROCEDURE exp (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedureexp returns an implementation-defined approximation to
the mathematical constante raised to the power ofz .

ln Calculate natural logarithm

PROCEDURE ln (z: COMPLEX): COMPLEX;
PROCEDURE ln (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedureln returns an implementation-defined approximation to

64 CHAPTER 2. MATHEMATICAL

the principal value of the natural logarithm ofz .

sin Calculate sine

PROCEDURE sin (z: COMPLEX): COMPLEX;
PROCEDURE sin (z: LONGCOMPLEX): LONGCOMPLEX;

The function proceduresin returns an implementation-defined approximation to
the complex sine ofz .

cos Calculate cosine

PROCEDURE cos (z: COMPLEX): COMPLEX;
PROCEDURE cos (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedurecos returns an implementation-defined approximation to
the complex cosine ofz .

tan Calculate tangent

PROCEDURE tan (z: COMPLEX): COMPLEX;
PROCEDURE tan (z: LONGCOMPLEX): LONGCOMPLEX;

The function proceduretan returns an implementation-defined approximation to
the complex tangent ofz . An exception is raised ifz is an odd multiple ofπ/2.

arcsin Calculate arcsine

PROCEDURE arcsin (z: LONGCOMPLEX): LONGCOMPLEX;
PROCEDURE arcsin (z: COMPLEX): COMPLEX;

The function procedurearcsin returns an implementation-defined approxima-
tion to the principal value of the complex arcsine ofz .

2.2. MODULES COMPLEXMATH AND LONGCOMPLEXMATH 65

arccos Calculate arccosine

PROCEDURE arccos (z: COMPLEX): COMPLEX;
PROCEDURE arccos (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedurearccos returns an implementation-defined approxima-
tion to the complex arccosine ofz .

arctan Calculate arctangent

PROCEDURE arctan (z: COMPLEX): COMPLEX;
PROCEDURE arctan (z: LONGCOMPLEX): LONGCOMPLEX;

The function procedurearctan returns an implementation-defined approxima-
tion to the complex arctangent ofz .

polarToComplex Convert from polar to complex

PROCEDURE polarToComplex (abs, arg: REAL): COMPLEX;
PROCEDURE polarToComplex (abs, arg: LONGREAL): LONGCOMPLEX;

The function procedurepolarToComplex returns an implementation-defined
approximation to the complex number that has a modulus given byabs and an
argument given byarg .

scalarMult Scalar Multiplication

PROCEDURE scalarMult (scalar: REAL;
z: COMPLEX

): COMPLEX;
PROCEDURE scalarMult (scalar: LONGREAL;

z: LONGCOMPLEX
): LONGCOMPLEX;

The function procedurescalarMult returns an implementation-defined ap-
proximation to the scalar product of the real valuescalar with the complex
valuez .

66 CHAPTER 2. MATHEMATICAL

IsCMathException Query exceptional state

PROCEDURE IsCMathException (): BOOLEAN;
PROCEDURE IsCMathException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution because
of the raising of a ComplexMath exception, the function procedure
ComplexMath.IsCMathException returns TRUE; otherwise it returns
FALSE.

If the calling coroutine is in the state of exceptional execution because
of the raising of aLongComplexMath exception, the function procedure
LongComplexMath.IsCMathException returnsTRUE; otherwise it re-
turnsFALSE.

Chapter 3

Concurrent Programming

3.1 Module Processes

The moduleProcesses provides a basic set of facilities for use in concurrent
programs. These can be used on their own, or in conjunction with those from the
moduleSemaphores which provide for potentially parallel parts of the program
to exclude one another from regions of interaction.

A concurrent program consists of a number ofprocesses, each of which may po-
tentially run in parallel with the others but is distinguishable from them. At any
one time, a process may be in one of four states: It may beready, that is, eligible
to use the processor but not actually doing so. It may becurrent, that is, actually
using the processor. It may bepassive, that is, ineligible to use the processor un-
til another process makes it eligible. Lastly, it may bewaiting, that is, ineligible
to use the processor until the occurrence of one of a set of events for which it is
waiting.

At all times there must be at least one process using the processor, or, if no process
is eligible, there must be at least one process waiting for some external event.

Two general styles of use are envisaged, and both may be present in a single
program.

In the first style (usingSwitch), the model is of a set of closely coupled pro-
cesses, which explicitly choose which of them is to run next, and which pass
information between themselves as part of the choice. The intention is to provide
a higher level coroutine-like facility between processes of the same urgency.

In the second style (usingActivate andSuspendMe), the processes are writ-
ten to be less dependent on one another, and the choice of which of them runs

67

68 CHAPTER 3. CONCURRENT PROGRAMMING

is left to an internal scheduler, which is invoked whenever one process is sus-
pended or another one is reactivated. This internal scheduler makes use of the fact
that each process has an associated static ‘urgency’, specified by anINTEGER
parameter when it is first created. The scheduler ensures that it cannot be the
case that a process eligible to use the processor has an urgency greater than one
of the processes currently doing so. The ‘main process’ (the parent program) is
given a default urgency of zero; for other processes, the more positive the value
of urgency, the more urgent is the process.

Those processes that suspend themselves to wait for external events must first
associate themselves with one or more sources of such events. The International
Standard does not prescribe how events occur, or what the sources of events must
be, other than to require that they be mapped in an implementation-defined way
to values of the pervasive typeCARDINAL, and to require that a source of events
cannot be connected to more than one process simultaneously.

NOTES:

• There is no requirement that pre-emptive scheduling be employed, although
an implementation is free to incorporate such scheduling if this is desired.

• Although the International Standard applies to single-processor machines,
if a pre-emptive (time-sliced) scheduler is present there may conceptually
be more than one ‘current’ process; the description above is phrased so as
to emphasize this.

• A program that uses the moduleProcesses should not make explicit use
of coroutines (except, perhaps, in the implementation ofProcesses it-
self).

• This is a partial specification: Various of the procedures in the modules
Processes andSemaphores have semantics expressed in terms of pre-
conditions. Their behaviour in situations where these preconditions are not
met is deliberately not specified; in particular, the raising of exceptions is
not required. This is a deliberate decision that allows to achieve maximum
efficiency in the implementation of these modules.

The exceptions raised byProcesses are identified by the values of the enumer-
ation typeProcessesExceptions :

TYPE
ProcessesExceptions = (passiveProgram, processError);

3.1. MODULE PROCESSES 69

The detection of the exceptionprocessError is implementation-defined.

After the module is initialized, there is exactly one process, known as the ‘main
process’. This process have an urgency of0 and a parameter ofNIL ; initially, it
is not associated with any source of events.

CHANGE:

This module is not based on the moduleProcesses described inProgramming
in Modula-2.

3.1.1 Types of Processes

TYPE
ProcessId;

(* Used to identify processes *)
Parameter = SYSTEM.ADDRESS;

(* Used to pass data between processes *)
Body = PROC;

(* Used as the type of a process body *)
Urgency = INTEGER;

(* Used by the internal scheduler *)
Sources = CARDINAL;

(* Used to identify event sources *)

3.1.2 The Procedures of Processes

The semantics of certain of the procedures ofProcesses require that a process
be selected from the set of processes that are eligible to run, and be scheduled for
execution. The selection algorithm shall guarantee that no process eligible to use
the processor has an urgency greater than one of the processes currently doing so.

NOTES:

• The procedures in this category areStart , StopMe , SuspendMe,
Activate , SuspendMeAndActivate andWait .

• The urgency of a process is specified, when it is created, by a value of the
typeINTEGER, and cannot be changed dynamically. The more positive the
value of urgency, the more urgent the process.

70 CHAPTER 3. CONCURRENT PROGRAMMING

Certain of the procedures ofProcesses require that a process be associated
with a source of external events. There shall be an implementation-defined map-
ping of values of the typeCARDINALto such sources of events.

A source of events shall not be associated with more than one process at any
instant.

NOTES:

• The International Standard does not prescribe how events occur, or what
the sources of events must be, other than in terms of this implementation-
defined mapping.

• The International Standard does not specify the consequences if a value
(of the type Sources) that is not mapped to a source of events is
passed as an actual parameter to any of the proceduresAttach , Detach ,
IsAttached or Handler .

Create Create new process

PROCEDURE Create (procBody: Body;
extraSpace: CARDINAL;
procUrg: Urgency;
procParams: Parameter;
VAR procId: ProcessId);

The procedureCreate creates a new process. An unique value of the type
ProcessId is assigned toprocId as an identity for the process. The ur-
gency and parameters for the created process are those given byprocUrg and
procParams respectively.extraSpace specifies the amount of workspace (in
units ofSYSTEM.LOC) that is required by the process, above any fixed overhead
needed by the implementation ofProcesses .

The process will be ineligible to run (i.e. it is created in thepassivestate). When
the process is first activated, it will start execution by invoking the procedure that
is denoted byprocBody .

The usage made of the workspace is implementation-dependent.

If the end of this procedure body is reached, or if a return statement is executed
in the procedure body, then the effect will be the same as calling the protection
domain exit procedure (if any), followed by an explicit call ofStopMe .

NOTES:

3.1. MODULE PROCESSES 71

• The process will be activated when another process makes it eligible by
callingSwitch or Activate or SuspendMeAndActivate .

• The standard library makes no provision to handle exceptions generated
by created processes, which must handle all exceptions themselves if it is
wished to avoid exceptional termination of a program.

Start Start new process

PROCEDURE Start (procBody: Body;
extraSpace: CARDINAL;
procUrg: Urgency;
procParams: Parameter;
VAR procId: ProcessId);

The procedureStart have an identical effect to the procedureCreate , except
that the created process will be eligible to run immediately (i.e. it is created in the
readystate).

StopMe Terminate calling process

PROCEDURE StopMe ();

If the calling process is not associated with any source of events, the procedure
StopMe causes the calling process to be terminated and removed from the sys-
tem. The procedure does not return; the calling process will not again become
eligible to run. If there are no other processes, then normal termination of the
program is initiated. If there are other processes eligible to run, then one of them
is selected for execution. The exceptionpassiveProgram is raised if there are
other processes, but none of them is eligible to run and none of them is waiting
for an event to occur.

NOTES:

• If the main process stops, the other processes will continue to run.

• The behaviour ofStopMe in situations where the calling process is associ-
ated with a source of events is implementation-dependent.

72 CHAPTER 3. CONCURRENT PROGRAMMING

SuspendMe Suspend calling process

PROCEDURE SuspendMe ();

The procedureSuspendMe causes the calling process to become ineligible to
run (i.e. to enter thepassivestate). If there are other processes eligible to run,
then one of them is selected for execution. The exceptionpassiveProgram is
raised if no other process is eligible to run and no other process is waiting for an
event to occur.

NOTE:

The suspended process can be reactivated when another process again makes it
eligible by callingSwitch or Activate or SuspendMeAndActivate .

Activate Activate process

PROCEDURE Activate (procId: ProcessId);

If the process identified byprocId is passive or waiting, the procedure
Activate causes that process to become eligible to run (i.e. to enter theready
state); otherwise it have no effect.

NOTE:

If the designated process was suspended by a call ofWait , it will become ready
in the same way as if the event had occurred. Thus, if the procedureActivate
(or SuspendMeAndActivate) is used to reactivate a waiting process, further
checking will usually be required in that process to determine whether or not the
event for which it was waiting had actually taken place.

SuspendMeAndActivateSuspend current process and activate another

PROCEDURE SuspendMeAndActivate (procId: ProcessId);

If the process identified byprocId is passive, waiting, or is the calling process,
the procedureSuspendMeAndActivate causes the calling process to become
ineligible to run (i.e. to enter thepassivestate), and causes the process identified

3.1. MODULE PROCESSES 73

by procId to become eligible to run (i.e. to enter thereadystate); otherwise the
call have no effect.

NOTE

SuspendMeAndActivate(procId) effectively performs anatomic (i.e.
‘indivisible’) sequence of the callsSuspendMe() andActivate(procId) .
If applied to the identity of the calling process, the effect is to force a scheduling
operation.

Switch Switch to another process

PROCEDURE Switch (procId: ProcessId; VAR info: Parameter);

If the calling process has an urgency no greater than that of the process identified
by procId , the procedureSwitch causes the calling process to become ineli-
gible to run (i.e. to enter thepassivestate), and resumes execution of the process
identified byprocId . The exceptionprocessError occurs (but need not be
raised) if this process is already eligible to run.info is passed as a parameter to
the process identified byprocId . If the calling process is reactivated as a result
of another process callingSwitch , theninfo is assigned the value passed by
that other call. If the calling process is reactivated as a result of another process
calling Activate or SuspendMeAndActivate , theninfo is assigned the
valueNIL .

NOTE:

Switch is intended to allow a high-level coroutine facility for use within concur-
rent programs. Several consequences follow:

1. The process that is resumed will only be able to retrieve the parameter
passed to it asinfo if it was ineligible to run by virtue of itself having
calledSwitch .

2. The behaviour ofSwitch in situations where the urgency of the calling
process is greater than the urgency of the process identified byprocId is
implementation-dependent.

3. While a call of Switch may be used instead ofActivate to activate
a process,p, of a higher urgency than the caller,p will not be able to
useSwitch if it wishes to reactivate that caller; it will be obliged to use
Activate or SuspendMeAndActivate .

74 CHAPTER 3. CONCURRENT PROGRAMMING

4. If the designated process was suspended by a call ofWait , it will become
ready in the same way as if the event had occurred. Thus, if the procedure
Switch (or Activate or SuspendMeAndActivate) is used to reac-
tivate a waiting process, further checking will usually be required in that
process to determine whether or not the event for which it was waiting had
actually taken place.

Wait Wait for event

PROCEDURE Wait ();

The procedureWait causes the calling process to become ineligible to run (i.e.
to enter thewaiting state) if it is associated with a source of events. If there are
other processes eligible to run, then one of them is selected for execution.

NOTES:

• One of the ready processes is selected for execution to replace the caller of
Wait . This is on the assumption that, if there are ready processes that are
not executing, the scheduler imposes a fixed upper limit on the number of
executing processes.

• The process will remain ineligible to run until an event occurs from one of
the sources to which it is attached, or until it is made eligible by another
process callingSwitch or Activate or SuspendMeAndActivate .

• If a process waiting for an event is reactivated by virtue of a
call being made by another process toSwitch or Activate or
SuspendMeAndActivate , it will become ready in the same way as if
the event had occurred. Thus, in such situations, further checking will usu-
ally be required to determine whether or not the event for which it was
waiting had actually taken place.

• The behaviour ofWait if the calling process has not been attached to a
source of events, or if another process is attached to the event source after
the calling process has calledWait is implementation-dependent. In such
circumstances the calling process may never again become eligible to run,
and the system could deadlock.

3.1. MODULE PROCESSES 75

Attach Associate event source

PROCEDURE Attach (eventSource: Sources);

The procedureAttach associates the source of events given byeventSource
with the calling process. If the source of events is already associated with a pro-
cess, then that association is first broken.

Detach Dissociate event source

PROCEDURE Detach (eventSource: Sources);

The procedureDetach dissociates the source of events given byeventSource
from the program.

NOTE:

Detach has no effect if the program is not associated witheventSource .

IsAttached Query event source

PROCEDURE IsAttached (eventSource: Sources): BOOLEAN;

The function procedureIsAttached returnsTRUEif and only if the source of
events given byeventSource is associated with one of the processes in the
program.

Handler Query event handler

PROCEDURE Handler (eventSource: Sources): ProcessId;

If the source of events identified byeventSource is associated with a process,
the function procedureHandler is the identity of that process.

NOTE:

The value of the callHandler(eventSource) is implementation-dependent
in the situation where the value ofeventSource is not mapped to any real
source of events.

76 CHAPTER 3. CONCURRENT PROGRAMMING

Me Query current process id

PROCEDURE Me (): ProcessId;

The function procedureMereturns the identity of the calling process.

MyParam Query current process parameter

PROCEDURE MyParam (): Parameter;

The function procedureMyParam returns the value of the parameter denoted by
procParams at the time the process was created.

UrgencyOf Query process urgency

PROCEDURE UrgencyOf (procId: ProcessId): Urgency;

The function procedureUrgencyOf returns the urgency of the process identified
by procId .

NOTE:

This urgency of a process is statically assigned when the process is created; it is
not possible for a process to alter its urgency dynamically.

IsProcessesException Query exceptional state

PROCEDURE IsProcessesException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of aProcesses exception, the function procedure
IsProcessesException returnsTRUE; otherwise it retrunsFALSE.

ProcessesException Query exception id

PROCEDURE ProcessesException (): ProcessesExceptions;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of aProcesses exception, the function procedure

3.2. MODULE SEMAPHORES 77

ProcessesException returns the value that identifies the raised exception;
otherwise the language exceptionexException is be raised.

3.2 Module Semaphores

The moduleSemaphores provides facilities for potentially parallel parts of a
program (i.e. processes) to exclude one another from regions of interaction by
using thesemaphore mechanismfirst proposed by Dijkstra. The semaphores pro-
vided by the module are general or counting semaphores (as opposed to binary
semaphores).

The hidden typeSEMAPHOREis used to identify semaphores.

TYPE
SEMAPHORE;

Each semaphore have a unique identity. Associated with each semaphore there is
a non-negative count, and a set of zero or more processes waiting for it to become
free. A semaphore is said to be‘free’ if its associated count is non-zero.

After the module has been initialized, no semaphores are in existence.

NOTES:

• For convenience, the semantics of this module are illustrated in terms of
the semantics of theProcesses module. However, there is no require-
ment that an implementation provideProcesses in addition to providing
Semaphores .

• The behaviour of the proceduresDestroy , Claim , Release and
CondClaim in situations where the actual parameter passed is not a valid
semaphore (i.e. is not the identity of a semaphore allocated by a call to
Create) is implementation-dependent.

Create Create new semaphore

PROCEDURE Create (VAR s: SEMAPHORE; initialCount: CARDINAL);

The procedureCreate creates a new semaphore, if there are sufficient re-
sources to do so, and assigns its identity tos ; otherwise theSemaphores

78 CHAPTER 3. CONCURRENT PROGRAMMING

exception is raised. The count associated with the semaphore is initialized to
initialCount , and there will then be no process waiting for the semaphore to
be free.

Destroy Destroy semaphore

PROCEDURE Destroy (VAR s: SEMAPHORE);

Provided that no process is waiting for the semaphore identified by the value of
s to become free, the procedureDestroy removes that semaphore and recovers
the resources used to implement it.

The variables is set to a value that is invalid for semaphore operations.

NOTE:

The behaviour ofDestroy(s) in situations where there are processes waiting
for s to become free is implementation-dependent.

Claim Claim semaphore

PROCEDURE Claim (s: SEMAPHORE);

The procedureClaim claims the semaphore identified bys . If the count associ-
ated withs is non-zero, then it is decremented, and the calling process continues
execution; otherwise the calling process becomes ineligible to run, and is added
to the set waiting fors to become free.

Release Unclaim semaphore

PROCEDURE Release (s: SEMAPHORE);

The procedureRelease unclaims the semaphore identified bys . If no process
is waiting ons , the count associated withs is incremented; otherwise one process
is selected from those waiting fors to become free; this process is removed from
the waiting set, and becomes eligible to run (i.e. enter the ready state).

NOTES:

3.2. MODULE SEMAPHORES 79

• No requirement is imposed about which of the waiting processes is chosen
for activation.

• Preemption occurs if the newly eligible process has an urgency greater than
that of the calling process.

CondClaim Claim semaphore safely

PROCEDURE CondClaim (s: SEMAPHORE): BOOLEAN;

If the callClaim(s) would have caused the calling process to become ineligible
to run, the procedureCondClaim returnsFALSE, and the count associated with
s is unchanged. Otherwise the count associated withs is decremented, and the
procedure returnsTRUE.

NOTE:

The calling process is never suspended as a result of callingCondClaim .

IsSemaphoresException Query exceptional state

PROCEDURE IsSemaphoresException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theSemaphores exception, the procedure
IsSemaphoresException returnsTRUE; otherwise it returnsFALSE.

80 CHAPTER 3. CONCURRENT PROGRAMMING

Chapter 4

String Manipulation

4.1 Module Strings

The moduleStrings provides facilities for manipulating character arrays as
representations of strings. The procedures provided accept any character array
type, but manipulate all as if their index types were whole numbers and zero-
based.

The module also provides predicates that check whether an operation to assign,
delete, insert, replace or append strings or characters will work without loss of
information. These predicates check that parameters indexing the concrete repre-
sentation of a string (i.e. the character array containing the string value) fall within
its length, thereby allowing the programmer to maintain the string abstraction.

A general-purpose string typeString1 is provided for convenience when han-
dling single characters by using a value constructor. An enumeration type
CompareResults is provided for use when comparing string values:

TYPE
String1 = ARRAY [0..0] OF CHAR;

CompareResults = (less, equal, greater);

NOTES:

• The procedures provided accept any character array type (i.e. with any in-
dex type) but because of the use of open array parameters the procedures
manipulate all as if their index types were whole numbers and zero-based.

81

82 CHAPTER 4. STRING MANIPULATION

• The array typeString1 may be used as the array type identifier of an array
constructor when constructing an array value from a value of the character
type. The constructed array value may be used as actual parameter in calls
of procedures having a formal open array value parameter, for example to
assign, insert, replace, append, concatenate, or find a single character.

• Since function procedures cannot return open arrays, many of the operations
that might more logically have been provided as function procedures have
to be provided as proper procedures.

• Predicates with the prefix ‘Can’ and the suffix ‘All ’ are provided
to check the operation-completion condition of string operations (e.g.
CanInsertAll checks the operation-completion condition forInsert).
Failure to satisfy the operation-completion condition of a string handling
procedure does not lead to an exception; i.e. the semantics of string opera-
tions are defined for all well-formed parameters.

• Value parameters are used where a string value is not changed by a pro-
cedure. This is not just a matter of programming clarity, but allows the
parameterization of programs using constants.

• Because string constants cannot be assigned to, nor appended to, nor have
characters replaced or inserted, the predicates that test the operation com-
pletion conditions of procedures use VAR-parameters for the string param-
eters.

• The International Standard has not adopted a change to Modula-2 (de-
scribed in the fourth edition ofProgramming in Modula-2) of always re-
quiring a string terminator for a string value.

Length Query string length

PROCEDURE Length (stringVal: ARRAY OF CHAR): CARDINAL;

The function procedureLength returns the length of the string value in
stringVal . This is the same as the value ofLENGTH(stringVal) .

4.1. MODULE STRINGS 83

CanAssignAll Check whether Assign will succeed

PROCEDURE CanAssignAll (sourceLength: CARDINAL;
VAR destination: ARRAY OF CHAR

): BOOLEAN;

The function procedureCanAssignAll returns the value of the Boolean ex-
pressionsourceLength <= HIGH(destination) + 1

NOTES:

• CanAssignAll may be used to check whether complete assignment of
a string value to a string variable will be possible using, for example, the
procedureAssign .

• Since a string variable must have at least one element, single-character
string assignment is always valid.

Assign Assign string value

PROCEDURE Assign (source: ARRAY OF CHAR;
VAR destination: ARRAY OF CHAR);

The procedureAssign assigns the string value insource to destination .
If the length ofsource exceeds the capacity ofdestination , the assigned
value is truncated to the capacity ofdestination . If the length ofsource is
less than the capacity of destination, a string terminator is appended tosource
when assignment takes place.

EXAMPLE - String assignment.

In these, and later, examples the following declarations are assumed:

VAR
small: ARRAY [0 .. 4] OF CHAR;
large: ARRAY [0 .. 255] OF CHAR;
alpha: ARRAY [’A’ .. ’E’] OF CHAR;
ch: CHAR;
found, areDiff: BOOLEAN;
pos: CARDINAL;

84 CHAPTER 4. STRING MANIPULATION

1. ch := "X";
Assign(String1 {ch}, small)
results insmall having value"X"

2. Assign("pq", small)
results insmall having value"pq"

3. Assign("", small)
results insmall having value ””

4. Assign("Hello!", small)
results insmall having value"Hello" withoutstring terminator

5. the call
CanAssignAll(6, small)
returns the valueFALSE

6. Assign("Go", alpha)
results inalpha having value"Go"

7. small := "Hello"; large := "";
IF CanAssignAll(LENGTH(small), large)
THEN

Assign(small, large)
END
results inlarge having value ”Hello”

CanExtractAll Check whether Extract will succeed

PROCEDURE CanExtractAll (sourceLength,
startPos,
numberToExtract: CARDINAL;
VAR destination: ARRAY OF CHAR

): BOOLEAN;

The function procedureCanExtractAll returns the value of the Boolean ex-
pression
(startPos + numberToExtract <= sourceLength) AND
(numberToExtract <= HIGH(destination) + 1)

NOTE:

4.1. MODULE STRINGS 85

CanExtractAll may be used to check whether complete extraction of a sub-
string from a string variable will be possible using, for example, the procedure
Extract .

Extract Extract substring

PROCEDURE Extract (source: ARRAY OF CHAR;
startPos,
numberToExtract: CARDINAL;
VAR destination: ARRAY OF CHAR);

The procedure Extract creates a new string value of at most
numberToExtract characters extracted fromsource . Extraction starts
at positionstartPos in source , and continues as long as there are characters
left to extract fromsource and no more thannumberToExtract characters
have been extracted. If the length of the created string value exceeds the
capacity ofdestination , the string value is truncated to the capacity of
destination , and the truncated value is assigned todestination . If the
length of the created string value is less than the capacity ofdestination ,
a string terminator is appended to the string value, and the resulting value is
assigned todestination . An empty string value is extracted ifstartPos is
greater than or equal toLENGTH(source) .

EXAMPLE - String extraction.

1. large := "ABCDE"; small := "";
IF CanExtractAll(LENGTH (large), 2, 3, small) THEN

Extract(large, 2, 3, small)
END
results insmall having value"CDE"

2. large := "ABCDE"; small := "";
Extract(large, 2, 3, small)
results insmall having value"CDE"

86 CHAPTER 4. STRING MANIPULATION

CanDeleteAll Check whether Delete will succeed

PROCEDURE CanDeleteAll (stringLength,
startPos,
numberToDelete: CARDINAL

): BOOLEAN;

The function procedureCanDeleteAll returns the value of the Boolean ex-
pressionstartPos + numberToDelete <= stringLength

NOTE:

CanDeleteAll may be used to check whether complete deletion of a substring
value from a string variable will be possible using, for example, the procedure
Delete .

Delete Delete substring

PROCEDURE Delete (VAR stringVar: ARRAY OF CHAR;
startPos,
numberToDelete: CARDINAL);

The procedureDelete creates a new string value by deleting at most
numberToDelete characters fromstringVar . Deletion starts at position
startPos in stringVar and continues as long as there are characters left to
delete instringVar and no more thannumberToDelete characters have
been deleted. If any characters are deleted, a string terminator is appended to
the created string value, and the resulting value is assigned tostringVar . The
string value instringVar is not altered ifstartPos is greater than or equal
to LENGTH(stringVar) .

EXAMPLE - String deletion.

1. small := "ABCDE";
IF CanDeleteAll(LENGTH(small), 2, 2) THEN

Delete(small, 2, 2)
END
results insmall having value"ABE"

2. after the assignment
small := "ABC";

4.1. MODULE STRINGS 87

the call
CanDeleteAll(3, 2, 2)

returns the valueFALSE

3. small := "ABC";
Delete(small, 2, 2)
results insmall having value"AB"

CanInsertAll Check whether Insert will succeed

PROCEDURE CanInsertAll (sourceLength, startPos: CARDINAL;
VAR destination: ARRAY OF CHAR

): BOOLEAN;

The function procedureCanInsertAll returns the value of the Boolean
expression
(startPos <= LENGTH(destination)) AND
(sourceLength + LENGTH(destination) <=
HIGH(destination) + 1)

NOTE:

CanInsertAll may be used to check whether complete insertion of a string
value into a string variable will be possible using, for example, the procedure
Insert .

Insert Insert substring

PROCEDURE Insert (source: ARRAY OF CHAR;
startPos: CARDINAL;
VAR destination: ARRAY OF CHAR);

The procedureInsert creates a new string value by inserting the substring
source into destination . The string indestination is first splitted at
the position given bystartPos ; the created string value is the concatenation of
the first part ofdestination , the substringsource , and the second part of
destination . If the length of the created string value exceeds the capacity of
destination , the string value is truncated to the capacity ofdestination ,
and the truncated value is assigned todestination . If the length of the created

88 CHAPTER 4. STRING MANIPULATION

string value is less than the capacity ofdestination , a string terminator is ap-
pended to the string value, and the resulting value is assigned todestination .
The string value indestination is not altered ifstartPos is greater than or
equal toLENGTH(destination) .

EXAMPLE - String insertion.

1. after the assignment
small := "ABCD";

the call
CanInsertAll(LENGTH("XYZ"), 2, small)

returns the valueFALSE

2. small := "ABCD";
Insert("XYZ", 2, small)
results insmall having value"ABXYZ" withoutterminator

3. large := "ABC";
IF CanInsertAll(3, 2, large) THEN

Insert("XYZ", 2, large)
END
results inlarge having value"ABXYZC"

4. large := "ABCD"; ch := "X";
Insert(String1 {ch}, 2, large)
results inlarge having value"ABXCD"

CanReplaceAll Check whether Replace will succeed

PROCEDURE CanReplaceAll (sourceLength, startPos: CARDINAL;
VAR destination: ARRAY OF CHAR

): BOOLEAN;

The function procedureCanReplaceAll returns is the value of the Boolean
expressionsourceLength + startPos <= LENGTH(destination)

NOTES:

• CanReplaceAll may be used to check whether complete replacement of
a substring value within a string variable will be possible using, for example,
the procedureReplace .

4.1. MODULE STRINGS 89

• The preservation of the string abstraction is taken as the goal of the
string module. This means that the operation completion condition of
CanReplaceAll only tests whether the proposed replacement is valid
within the given string length; the procedureReplace always preserves
the length of itsdestination string.

Replace Replace substring

PROCEDURE Replace (source: ARRAY OF CHAR;
startPos: CARDINAL;
VAR destination: ARRAY OF CHAR);

The procedureReplace modifies the string value fromdestination by over-
writing characters indestination with characters extracted from the string
value insource . Overwriting begins at the position given bystartPos and
continues as long as there are characters left to overwrite indestination and
characters left to extract fromsource . The string value indestination is
not altered ifstartPos is greater than or equal toLENGTH(destination) .

NOTE:

The length of the string value indestination is always preserved by
Replace .

EXAMPLE - String replacement.

1. after the assignment
small := "ABC"

the call
CanReplaceAll(LENGTH("XY"), 2, small)

returns the valueFALSE

2. small := "ABC";
Replace("XY", 2, small)
results insmall[0] having value"ABX"

3. large := "ABCDEF";
IF CanReplaceAll(3, 2, large)
THEN

Replace("XYZ", 2, large)
END
results inlarge having value"ABXYZF"

90 CHAPTER 4. STRING MANIPULATION

CanAppendAll Check whether Append will succeed

PROCEDURE CanAppendAll (sourceLength: CARDINAL;
VAR destination: ARRAY OF CHAR

): BOOLEAN;

The function procedureCanAppendAll returns the value of the Boolean
expression
LENGTH(destination) + sourceLength <=
HIGH(destination) + 1

NOTE:

CanAppendAll may be used to check whether it will be possible to append a
string value to another string value held within a string variable using, for example,
the procedureAppend .

Append Append string

PROCEDURE Append (source: ARRAY OF CHAR;
VAR destination: ARRAY OF CHAR);

The procedureAppend creates a new string value by appending the string value
in source onto destination . If the length of the created string value ex-
ceeds the capacity ofdestination , the string value is truncated to the capacity
of destination , and the truncated value is assigned todestination . If
the length of the created string value is less than the capacity ofdestination ,
a string terminator is appended to the string value, and the resulting value is as-
signed todestination .

EXAMPLE - Appending to strings.

1. after the assignment
small := "pqr"

the call
CanAppendAll(LENGTH("XYZ"), small)

returns the valueFALSE

2. small := "pqr";
Append("XYZ", small)
results insmall having value"pqrXY" withoutterminator

4.1. MODULE STRINGS 91

3. small := "pqr";
ch := "s";
Append(String1 {ch}, small)
results insmall having value"pqrs"

CanConcatAll Check whether Concat will succeed

PROCEDURE CanConcatAll (source1Length, source2Length: CARDINAL;
VAR destination: ARRAY OF CHAR

): BOOLEAN;

The function procedureCanConcatAll returns the value of the Boolean ex-
pression
source1Length + source2Length <= HIGH(destination) + 1

NOTE:

CanConcatAll may be used to check whether complete concatenation of two
string values will be possible within the capacity of a specified string variable
using, for example, the procedureConcat .

Concat Concatenate strings

PROCEDURE Concat (source1, source2: ARRAY OF CHAR;
VAR destination: ARRAY OF CHAR);

The procedureConcat creates a new string value by appending the substring
valuesource2 ontosource1 . If the length of the created string value exceeds
the capacity ofdestination , the string value is truncated to the capacity of
destination , and the truncated value is assigned todestination . If the
length of the created string value is less than the capacity ofdestination , a
string terminator is appended to the string value, and the resulting value is as-
signed todestination .

EXAMPLE - String concatenation.

1. after the assignment
small := "pqr"

92 CHAPTER 4. STRING MANIPULATION

the call
CanConcatAll(4, LENGTH(small), small)

returns the valueFALSE

2. small := "pqr";
Concat("WXYZ", small, small)
results insmall having value"WXYZp" withoutterminator

3. small := "jk"; large := "";
ch := "s";
Concat(String1 {ch}, small, large)
results inlarge having value"skj"

Capitalize Capitalize string

PROCEDURE Capitalize (VAR stringVar: ARRAY OF CHAR);

The procedureCapitalize applies the standard functionCAPto each character
of the string value instringVar .

NOTE:

Capitalize may be used to achieve case-insensitive use of the procedures
Compare , FindNext , FindPrev andFindDiff .

EXAMPLE - String capitalization.

The following example assumes a capitalization mapping which maps p to P, q to
Q and r to R.

1. small := "pqr";
Capitalize(small)
results insmall having value"PQR"

Compare Compare strings

PROCEDURE Compare (stringVal1, stringVal2: ARRAY OF CHAR
): CompareResults;

The function procedureCompare returns a value of the enumeration type
CompareResults depending on the lexical ordering of the typeCHAR. The

4.1. MODULE STRINGS 93

value returned isless , equal or greater according as the string value in
stringVal1 is lexically less than, equal to, or greater than the string value in
stringVal2 .

NOTES:

• The result of this function is dependent upon the full collating sequence
of character values. This sequence is implementation-defined, although it
must have certain properties.

• In general, the result of this function is case-sensitive.

EXAMPLE - String comparison.

1. Compare("", "") returnsequal

2. Compare("", "abc") returnsless

3. Compare("abc", "") returnsgreater

4. Compare("pqr", "pqr") returnsequal

5. Compare("pqr", "pqrstuv") returnsless

6. Compare("pqrstuv", "pqr") returnsgreater

7. Compare("abc", "pqr") returnsless

8. Compare("pqr", "abc") returnsgreater

9. Compare("abcdef ", "p") returnsless

10. Compare("p", "abcdef ") returnsgreater

Equal Compare strings

PROCEDURE Equal (stringVal1, stringVal2: ARRAY OF CHAR): BOOLEAN;

The function procedureEqual returns the value of the Boolean expression
Strings.Compare(stringVal1, stringVal2) =
Strings.equal

94 CHAPTER 4. STRING MANIPULATION

FindNext Search string forward

PROCEDURE FindNext (pattern, stringToSearch: ARRAY OF CHAR;
startPos: CARDINAL;
VAR patternFound: BOOLEAN;
VAR posOfPattern: CARDINAL);

The procedureFindNext searches forwards for the next occurrence of
pattern in stringToSearch , starting the search instringToSearch
at position startPos . If pattern is found, the valueTRUE is as-
signed topatternFound , and posOfPattern contains the starting po-
sition of pattern in stringToSearch ; posOfPattern is in the
range[startPos..LENGTH(stringToSearch)-1] . Otherwise the value
FALSE is assigned topatternFound andposOfPattern is unchanged.

NOTES:

• Thepattern might be found at the given value ofstartPos .

• If startPos > LENGTH(stringToSearch) -
LENGTH(pattern) thenpatternFound is returned asFALSE.

EXAMPLE - Forwards string search.

1. large := "Hello hello hello";
FindNext("ll", large, 0, found, pos)
results in:
found having valueTRUE
pos having value2

2. large := "Hello hello hello";
FindNext("ll", large, 0, found, pos);
FindNext("ll", large, pos+1, found, pos)
results in:
found having valueTRUE
pos having value8

3. large := "abcdefghijklmnopqrstuvwxyz";
ch := "x";
FindNext(String1fchg, large, 0, found, pos)
results in:

4.1. MODULE STRINGS 95

found having valueTRUE
pos having value23

4. large := "abcdefghijklmnopqrstuvwxyz";
ch := "x";
FindNext(String1fchg, large, 26, found, pos)
results in:
found having valueFALSE
pos remains unchanged

FindPrev Search string backward

PROCEDURE FindPrev (pattern, stringToSearch: ARRAY OF CHAR;
startPos: CARDINAL;
VAR patternFound: BOOLEAN;
VAR posOfPattern: CARDINAL);

The procedureFindPrev looks backwards for an occurrence ofpattern in the
string value instringToSearch , starting the search instringToSearch
at position startPos . If pattern is found, the valueTRUE is as-
signed topatternFound , and posOfPattern contains the starting posi-
tion of pattern in stringToSearch ; posOfPattern is in the range
[0..startPos] . Otherwise the valueFALSEis assigned topatternFound
andposOfPattern is unchanged.

NOTES:

• Thepattern might be found at the given value ofstartPos .

• If startPos > LENGTH(stringToSearch)-LENGTH(pattern)
the whole string value is searched.

EXAMPLE - Backwards string search.

1. large := "aabbbcccc";
FindPrev("cc", large, 200, found, pos)
results in:
found having valueTRUE
pos having value7

96 CHAPTER 4. STRING MANIPULATION

2. large := "aabbbcccc";
FindPrev("cc", large, 200, found, pos);
FindPrev("cc", large, pos-1, found, pos)
results in:
found having valueTRUE
pos having value6

3. large := "Maybe this makes sense";
FindPrev("se", large, 200, found, pos)
results in:
found having valueTRUE
pos having value20

4. large := "Maybe this makes sense";
FindPrev("se", large, 20, found, pos);
FindPrev("se", large, pos-1, found, pos)
results in:
found having valueTRUE
pos having value17

FindDiff Find position of string difference

PROCEDURE FindDiff (stringVal1, stringVal2: ARRAY OF CHAR;
VAR differenceFound: BOOLEAN;
VAR posOfDifference: CARDINAL);

The procedureFindDiff compares the string values instringVal1 and
stringVal2 . The valueFALSE is assigned todifferenceFound if the
string values are equal andTRUEotherwise. IfdifferenceFound is TRUE,
the position of the first difference between the string values is assigned to
posOfDifference ; otherwiseposOfDifference is unchanged.

Examples - Finding string differences.

1. FindDiff("", "", areDiff, pos) results in:
areDiff having valueFALSE
pos being unchanged

4.1. MODULE STRINGS 97

2. FindDiff("abc", "", areDiff, pos) results in:
areDiff having valueTRUE
pos having value0

3. FindDiff("", "abc", areDiff, pos) results in:
areDiff having valueTRUE poshaving value0

4. FindDiff("pqr", "pqt", areDiff, pos) results in:
areDiff having valueTRUE
pos having value2

5. FindDiff("pqr", "pqrstuv", areDiff, pos) results in:
areDiff having valueTRUE
pos having value3

6. FindDiff("pqrstuv", "pqr", areDiff, pos) results in:
areDiff having valueTRUE
pos having value3

98 CHAPTER 4. STRING MANIPULATION

Chapter 5

String Conversions

The string conversions library allows the conversion of the values of numeric data
types to and from character string representations. The modulesWholeStr ,
RealStr , andLongStr provide simple high-level facilities for converting to
and from strings and whole number and real number data types. Low-level fa-
cilities are provided by the corresponding modulesWholeConv , RealConv ,
andLongConv . Common data types and values that are used in the definition
modules are defined by the moduleConvTypes .

The formats for string conversions correspond to those for numeric input and out-
put, except that the numeric output routines provide for (right) alignment in a
specified field width — see 9.2.2.2 and 9.2.2.3.

5.1 Common Data Types

The moduleConvTypes defines types and values that are used in the high-level
and low-level string conversion definition modules. Where appropriate, the con-
version modules define types in terms of those defined inConvTypes . Direct
import from this module is not normally necessary in modules that are clients of
the high-level conversion modules.

5.1.1 Module ConvTypes

The moduleConvTypes defines the enumeration typeConvResults with val-
ues for expressing the format of strings that are interpreted as representing val-
ues of numeric data types. The module also defines the typesScanClass and

99

100 CHAPTER 5. STRING CONVERSIONS

ScanState , which the low-level conversion modules use in the definition of
procedures that control lexical scanning.

TYPE
ConvResults = (* Values of this type are used

to express the format of a string: *)
(

strAllRight, (* the string format is correct
for the corresponding conversion *)

strOutOfRange, (* the string is well-formed but the value
cannot be represented *)

strWrongFormat, (* the string is in the wrong format
for the conversion *)

strEmpty (* the given string is empty *)
);

ScanClass = (* Values of this type are used to classify input
to finite state scanners: *)

(
padding, (* a leading or padding character at this point

in the scan - ignore it *)
valid, (* a valid character at this point

in the scan - accept it *)
invalid, (* an invalid character at this point

in the scan - reject it *)
terminator (* a terminating character at this point

in the scan (not part of token) *)
);

ScanState = (* The type of lexical scanning
control procedures *)

PROCEDURE (CHAR, VAR ScanClass, VAR ScanState);

5.2 High-Level String Conversion Modules

Separate high-level string conversion modules are defined for the whole number
types (INTEGER and CARDINAL), and for the real number types (REAL and
LONGREAL). These all use decimal notation.

In calls of procedures converting from strings, the source parameterstr is as-

5.2. HIGH-LEVEL STRING CONVERSION MODULES 101

sumed to contain a string value (which is terminated by the string terminator char-
acter if the length of the string is less than the capacity of the array). While leading
spaces are ignored, the entire remainder of the string has to be in the correct format
for the conversion to take place.

In calls of procedures converting to strings, the destination parameterstr is as-
signed a string value (which is terminated by the string terminator character if
the length of the string is less than the capacity of the array). If the destination
parameter is of insufficient capacity, the string is truncated. Users may determine
whether truncation will occur by using procedures such asLengthCard from
the low-level string conversion modules — see 9.5.3.1.2.

NOTE:

The string conversion procedures may be used with strings read by
STextIO.ReadToken or TextIO.ReadToken , if it is required that entire
space-character delimited tokens are in the correct format — see 9.2.2.1.2.

5.2.1 EXAMPLE - Conversion of strings read by ReadToken

This example shows how space-character delimited tokens that cannot be con-
verted to values of typeCARDINALcan be replaced by descriptive text:

firstOnLine := TRUE;
STextIO.ReadToken(inStr);
WHILE SIOResult.ReadResult() <> SIOResult.endOfInput DO

WholeStr.StrToCard(inStr, inCard, inRes);
CASE inRes OF
| ConvTypes.strAllRight .. ConvTypes.strWrongFormat:

IF firstOnLine THEN
firstOnLine := FALSE

ELSE
STextIO.WriteString(" ")

END
| ConvTypes.strEmpty:
firstOnLine := TRUE;
STextIO.SkipLine
END;
CASE inRes OF
| ConvTypes.strAllRight:

STextIO.WriteString(inStr)
| ConvTypes.strOutOfRange:

102 CHAPTER 5. STRING CONVERSIONS

STextIO.WriteString("out-of-range")
| ConvTypes.strWrongFormat:

STextIO.WriteString("wrong-format")
| ConvTypes.strEmpty:

STextIO.WriteLn
END;
STextIO.ReadToken(inStr)

END;

It is assumed here that the capacity of the character array variableinStr is suf-
ficient to accommodate the longest token in the input stream.

5.2.2 Module WholeStr

The moduleWholeStr provides procedures for the conversion of values of the
typeINTEGERand the typeCARDINALto and from strings.

The string form of a signed whole number is

["+" | "-"], decimal digit, {decimal digit}

The string form of an unsigned whole number is

decimal digit, {decimal digit}

StrToInt Convert string to INTEGER

PROCEDURE StrToInt (str: ARRAY OF CHAR;
VAR int: INTEGER;
VAR res: ConvResults);

The procedureStrToInt ignores leading spaces instr and assigns values to
int andres as follows:

strAllRight if the remainder ofstr represents a complete signed whole
number in the range of the typeINTEGER; the value of this number is
assigned toint ;

5.2. HIGH-LEVEL STRING CONVERSION MODULES 103

strOutOfRange if the remainder ofstr represents a complete signed whole
number but its value is out of the range of the typeINTEGER; the value
MAX(INTEGER) or MIN(INTEGER) is assigned toint according to the
sign of the number;

strWrongFormat if there are remaining characters instr but these are not
in the form of a complete signed whole number; the value ofint is not
defined;

strEmpty if there are no remaining characters instr — the value ofint is
not defined.

IntToStr Convert INTEGER to string

PROCEDURE IntToStr (int: INTEGER; VAR str: ARRAY OF CHAR);

The procedureIntToStr assigns tostr the possibly truncated string corre-
sponding to the value ofint . A sign is included only for negative values.

StrToCard Convert string to CARDINAL

PROCEDURE StrToCard (str: ARRAY OF CHAR;
VAR card: CARDINAL;
VAR res: ConvResults);

The procedureStrToCard ignores leading spaces instr and assigns values to
card andres as follows:

strAllRight if the remainder ofstr represents a complete unsigned whole
number in the range of the typeCARDINAL; the value of this number is
assigned tocard ;

strOutOfRange if the remainder ofstr represents a complete unsigned
whole number but its value is out of the range of the typeCARDINAL;
the valueMAX(CARDINAL) is assigned tocard ;

strWrongFormat if there are remaining characters instr but these are not in
the form of a complete unsigned whole number; the value ofcard is not
defined;

104 CHAPTER 5. STRING CONVERSIONS

strEmpty if there are no remaining characters instr ; the value ofcard is not
defined.

CardToStr Convert CARDINAL to string

PROCEDURE CardToStr (card: CARDINAL; VAR str: ARRAY OF CHAR);

The procedureCardToStr assigns tostr the possibly truncated string corre-
sponding to the value ofcard .

5.2.3 Modules RealStr and LongStr

The modulesRealStr andLongStr provide procedures for the conversion of
real numbers to and from strings. In the case ofRealStr , real number parame-
ters are of the typeREAL. In the case ofLongStr , real number parameters are
of the typeLONGREAL.

The semantics of the two modules is the same, except that when module
RealStr refers to the pervasive typeREAL, the corresponding procedure in
LongStr refers to the pervasive typeLONGREAL.

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
LongStr .

The string form of a signed fixed-point real number is

["+" | "-"], decimal digit, {decimal digit},
[".", {decimal digit}]

The string form of a signed floating-point real number is

signed fixed-point real number,
"E"|"e", ["+" | "-"], decimal digit, {decimal digit}

5.2. HIGH-LEVEL STRING CONVERSION MODULES 105

StrToReal Convert string to real

PROCEDURE StrToReal (str: ARRAY OF CHAR;
VAR real: REAL;
VAR res: ConvResults);

PROCEDURE StrToReal (str: ARRAY OF CHAR;
VAR real: LONGREAL;
VAR res: ConvResults);

The procedureStrToReal ignores leading spaces instr and assigns values to
res andreal as follows:

strAllRight if the remainder ofstr represents a complete signed real num-
ber in the range of the type ofreal ; the value of this number is assigned
to real;

strOutOfRange if the remainder ofstr represents a complete signed real
number but its value is out of the range of the type ofreal ; the maximum
or minimum value of the type ofreal is assigned toreal according to
the sign of the number;

strWrongFormat if there are remaining characters instr but these are not
in the form of a complete signed real number; the value ofreal is not
defined;

strEmpty if there are no remaining characters instr ; the value ofreal is not
defined.

RealToFloat Convert real to string (float notation)

PROCEDURE RealToFloat (real: REAL;
sigFigs: CARDINAL;
VAR str: ARRAY OF CHAR);

PROCEDURE RealToFloat (real: LONGREAL;
sigFigs: CARDINAL;
VAR str: ARRAY OF CHAR);

The procedureRealToFloat assigns tostr the possibly truncated string cor-
responding to the value ofreal in floating-point form. A sign is included only

106 CHAPTER 5. STRING CONVERSIONS

for negative values. One significant digit is included in the whole number part.
The signed exponent part is included only if the exponent value is not 0. If the
value ofsigFigs is greater than 0, that number of significant digits is included,
otherwise an implementation-defined number of significant digits is included. The
decimal point is not included if there are no significant digits in the fractional part.

RealToEng Convert real to string (eng. notation)

PROCEDURE RealToEng (real: REAL;
sigFigs: CARDINAL;
VAR str: ARRAY OF CHAR);

PROCEDURE RealToEng (real: LONGREAL;
sigFigs: CARDINAL;
VAR str: ARRAY OF CHAR);

The procedureRealToEng behaves like the procedureRealToFloat except
that the number is scaled with one to three digits in the whole number part and
with an exponent that is a multiple of three.

RealToFixed Convert real to string (fixed notation)

PROCEDURE RealToFixed (real: REAL;
place: INTEGER;
VAR str: ARRAY OF CHAR);

PROCEDURE RealToFixed (real: LONGREAL;
place: INTEGER;
VAR str: ARRAY OF CHAR);

The procedureRealToFixed assigns tostr the possibly truncated string cor-
responding to the value ofreal in fixed-point form. A sign is included only for
negative values. At least one digit is included in the whole number part. The value
is rounded to the given value ofplace relative to the decimal point. The decimal
point is suppressed ifplace is less than 0.

5.3. LOW-LEVEL STRING CONVERSION MODULES 107

RealToStr Convert real to string (auto notation)

PROCEDURE RealToStr (real: REAL; VAR str: ARRAY OF CHAR);
PROCEDURE RealToStr (real: LONGREAL; VAR str: ARRAY OF CHAR);

If the sign and magnitude ofreal can be shown within the capac-
ity of str , the call RealToStr(real,str) behaves like the call
RealToFixed(real,place,str) , with a value of place chosen to
fill exactly the remainder ofstr . Otherwise, the call behaves as the call
RealToFloat(real,sigFigs,str) , with a value ofsigFigs of at least
one, but otherwise limited to the number of significant digits that can be included
together with the sign and exponent part instr .

5.3 Low-Level String Conversion Modules

Separate low-level string conversion modules are defined for the whole number
types (INTEGER and CARDINAL), and for the real number types (REAL and
LONGREAL). These all use decimal notation.

Procedures are defined to return the length of the string that is required to represent
a given value, to return the format of a given string, to return the value of a string
known to be in the correct format for conversion, and to allow control of lexical
scanning of character sequences.

NOTE:

The types designated by ConvTypes.ScanClass and
ConvTypes.ScanState are not given aliases in the low-level conver-
sion modules. This is because clients of a separate finite state interpreter
module need to refer only to procedures such asWholeConv.ScanInt , which
represent the start state, and not to the types themselves.

5.3.1 EXAMPLE - Use of ScanInt

The following procedure usesWholeConv.ScanInt to locate the position of
the first character in a string that follows any leading spaces and to locate the
position of the first character that is not part of an integer. These positions will
coincide if the string does not contain an integer after any leading spaces, and will
be equal to the string length if no such character is contained in the string.

108 CHAPTER 5. STRING CONVERSIONS

PROCEDURE FindInt(str: ARRAY OF CHAR; VAR first, next: CARDINAL);
VAR

ch: CHAR;
len, index: CARDINAL;
state: ConvTypes.ConvState;
class: ConvTypes.ConvClass;

BEGIN
len := LENGTH(str);
index := 0;
first := len;
state := WholeConv.ScanInt;
LOOP

IF index = len THEN EXIT END;
state(str[index], class, state);
CASE class OF
| ConvTypes.padding:
| ConvTypes.valid:

IF index < first THEN first := index END;
| ConvTypes.invalid, ConvTypes.terminator:

EXIT
END;
INC(index)

END;
next := index

END FindInt;

5.3.2 Module WholeConv

The moduleWholeConv provides low-level string conversion procedures for val-
ues of the typeINTEGERand values of the typeCARDINAL.

ScanInt Scan one character of INTEGER

PROCEDURE ScanInt (inputCh: CHAR;
VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);

The procedureScanInt assigns values tochClass andnextState depend-
ing upon the value ofinputCh as shown in the following table:

5.3. LOW-LEVEL STRING CONVERSION MODULES 109

Procedure inputCh chClass nextState
a procedure with
behaviour of

ScanInt space padding ScanInt
sign valid S
decimal digit valid W
other invalid ScanInt

S decimal digit valid W
other invalid S

W decimal digit valid W
other terminator —

NOTE:

The procedureScanInt corresponds to the start state of a finite state machine to
scan for a character sequence that forms a signed whole number. LikeScanCard
and the corresponding procedures in the other low-level string conversion mod-
ules, it may be used to control the actions of a finite state interpreter. As long as
the value ofchClass is other thanterminator or invalid , the interpreter
should call the procedure whose value is assigned tonextState by the previ-
ous call, supplying the next character from the sequence to be scanned. It may
be appropriate for the interpreter to ignore characters classified asinvalid , and
proceed with the scan. This would be the case, for example, with interactive in-
put, if only valid characters are being echoed in order to give interactive users an
immediate indication of badly-formed data. If the character sequence ends be-
fore one is classified asterminator , the string-terminator character should be
supplied as input to the finite state scanner. If the preceding character sequence
formed a complete number, the string-terminator is classified asterminator ,
otherwise it is classified asinvalid .

FormatInt Query INTEGER format

PROCEDURE FormatInt (str: ARRAY OF CHAR): ConvResults;

The function procedureFormatInt queries the format ofstr and returns:

strAllRight if str has a value representing a complete signed whole number
that is in the range of the typeINTEGER;

strOutOfRange if str has a value representing a complete signed whole
number that is not in the range ofINTEGER;

110 CHAPTER 5. STRING CONVERSIONS

strWrongFormat if str has a value with remaining characters that do not
form a complete signed whole number;

strEmpty if str has a value with no remaining characters;

FormatInt ignores any leading space characters instr .

ValueInt Query INTEGER value

PROCEDURE ValueInt (str: ARRAY OF CHAR): INTEGER;

If str has a value representing a signed whole number, the function procedure
ValueInt returns theINTEGERvalue that corresponds to that number. Other-
wise, theWholeConv exception is raised.

LengthInt Query INTEGER length

PROCEDURE LengthInt (int: INTEGER): CARDINAL;

The function procedureLengthInt returns the number of characters in the
string representation of the value ofint .

NOTE:

This value corresponds to the capacity of an arraystr which is of the
minimum capacity needed to avoid truncation of the result in the call
WholeStr.IntToStr(int,str) .

ScanCard Scan one character of CARDINAL

PROCEDURE ScanCard (inputCh: CHAR;
VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);

The procedureScanCard assigns values tochClass and nextState de-
pending upon the value ofinputCh as shown in the following table:

5.3. LOW-LEVEL STRING CONVERSION MODULES 111

Procedure inputCh chClass nextState
a procedure with
behaviour of

ScanCard space padding ScanCard
decimal digit valid W
other invalid ScanCard

W decimal digit valid W
other terminator —

FormatCard Query CARDINAL format

PROCEDURE FormatCard (str: ARRAY OF CHAR): ConvResults;

The function procedureFormatCard queries the format ofstr and returns:

strAllRight if str has a value representing a complete unsigned whole
number that is in the range of the typeCARDINAL;

strOutOfRange if str has a value representing a complete unsigned whole
number that is not in the range ofCARDINAL;

strWrongFormat if str has a value with remaining characters that do not
form a complete unsigned whole number;

strEmpty if str has a value with no remaining characters;

FormatCard ignores any leading space characters instr .

ValueCard Query CARDINAL value

PROCEDURE ValueCard (str: ARRAY OF CHAR): CARDINAL;

If str has a value representing an unsigned whole number, the function proce-
dureValueCard returns theCARDINALvalue that corresponds to that number.
Otherwise, theWholeConv exception is raised.

112 CHAPTER 5. STRING CONVERSIONS

LengthCard Query CARDINAL length

PROCEDURE LengthCard (card: CARDINAL): CARDINAL;

The function procedureLengthCard returns the number of characters in the
string representation of the value ofcard .

NOTE:

This value corresponds to the capacity of an arraystr which is of the
minimum capacity needed to avoid truncation of the result in the call
WholeStr.CardToStr(card,str) .

IsWholeConvException Query exceptional state

PROCEDURE IsWholeConvException (): BOOLEAN;

The function procedureIsWholeConvException returnsTRUEif the calling
coroutine is in the state of exceptional execution because of the raising of the
WholeConv exception, andFALSEotherwise.

5.3.3 Modules RealConv and LongConv

The modulesRealConv and LongConv provide low-level string conversion
procedures for values of the typeREALand values of the typeLONGREAL. In the
case ofRealConv , real number parameters are of the typeREAL. In the case of
LongConv , real number parameters are of the typeLONGREAL.

The semantics of the two modules are the same, except that when module
RealConv refers to the pervasive typeREAL, the corresponding procedure in
LongConv refers to the pervasive typeLONGREAL.

NOTE:

The above statement is merely to avoid needless repetition of the semantics for
LongConv .

5.3. LOW-LEVEL STRING CONVERSION MODULES 113

ScanReal Scan one character of real

PROCEDURE ScanReal (inputCh: CHAR;
VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);

PROCEDURE ScanReal (inputCh: CHAR;
VAR chClass: ConvTypes.ScanClass;
VAR nextState: ConvTypes.ScanState);

The procedureScanReal assigns values tochClass and nextState de-
pending upon the value ofinputCh as shown in the following table:

Procedure inputCh chClass nextState
a procedure with
behaviour of

ScanReal space padding ScanReal
sign valid RS
decimal digit valid P
other invalid ScanReal

RS decimal digit valid P
other invalid RS

P decimal digit valid P
”.” valid F
”E” valid E
other terminator —

F decimal digit valid F
”E” valid E
other terminator —

E sign valid SE
decimal digit valid WE
other invalid E

SE decimal digit valid WE
other invalid SE

WE decimal digit valid WE
other terminator —

114 CHAPTER 5. STRING CONVERSIONS

FormatReal Query real format

PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;
PROCEDURE FormatReal (str: ARRAY OF CHAR): ConvResults;

The function procedureFormatReal queries the format ofstr and returns:

strAllRight if str has a value representing a complete signed real number
that is in the range of the real number type corresponding to the module;

strOutOfRange if str has a value representing a complete signed real num-
ber that is not in the range of the real number type corresponding to the
module;

strWrongFormat if str has a value with remaining characters that do not
form a complete signed real number;

strEmpty if str has a value with no remaining characters;

FormatReal ignores any leading space characters instr .

ValueReal Query real value

PROCEDURE ValueReal (str: ARRAY OF CHAR): REAL;
PROCEDURE ValueReal (str: ARRAY OF CHAR): LONGREAL;

If str has a value representing a real number, the function procedure
ValueReal(str) returns theREAL (or LONGREAL) value that corresponds
most closely to that number. Otherwise, an exception is raised.

LengthFloatReal Query float length

PROCEDURE LengthFloatReal (real: REAL;
sigFigs: CARDINAL): CARDINAL;

PROCEDURE LengthFloatReal (real: LONGREAL;
sigFigs: CARDINAL): CARDINAL;

The function procedureLengthFloatReal returns the number of charac-
ters in the floating-point string representation of the value ofreal when using
sigFigs significant figures.

5.3. LOW-LEVEL STRING CONVERSION MODULES 115

NOTE:

This value corresponds to the capacity of an arraystr which is
of the minimum capacity needed to avoid truncation of the re-
sult in the call RealStr.RealToFloat(real,sigFigs,str)
(in the case of RealConv.LengthFloatReal) or the call
LongStr.RealToFloat(real,sigFigs,str) (in the case of
LongConv.LengthFloatReal) .

LengthEngReal Query engineering length

PROCEDURE LengthEngReal (real: REAL;
sigFigs: CARDINAL): CARDINAL;

PROCEDURE LengthEngReal (real: LONGREAL;
sigFigs: CARDINAL): CARDINAL;

The function procedureLengthEngReal returns the number of characters in
the floating-point engineering string representation of the value ofreal when
usingsigFigs significant figures.

NOTE:

This value corresponds to the capacity of an arraystr which is
of the minimum capacity needed to avoid truncation of the re-
sult in the call RealStr.RealToEng(real,sigFigs,str)
(in the case of RealConv.LengthEngReal) or the call
LongStr.RealToEng(real,sigFigs,str) (in the case of
LongConv.LengthEngReal).

LengthFixedReal Query fixed length

PROCEDURE LengthFixedReal (real: REAL;
place: INTEGER): CARDINAL;

PROCEDURE LengthFixedReal (real: LONGREAL;
place: INTEGER): CARDINAL;

The function procedureLengthFixedReal returns the number of characters
in the fixed-point string representation of the value ofreal when rounded to the
place relative to the decimal point given by the value ofplace .

NOTE:

116 CHAPTER 5. STRING CONVERSIONS

This value corresponds to the capacity of an arraystr which is
of the minimum capacity needed to avoid truncation of the re-
sult in the call RealStr.RealToFixed(real,place,str)
(in the case of RealConv.LengthFixedReal) or the call
LongStr.RealToFixed(real,place,str) (in the case of
LongConv.LengthFixedReal).

IsRConvException Query exceptional state

PROCEDURE IsRConvException (): BOOLEAN;
PROCEDURE IsRConvException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theRealConv exception, the function procedure
RealConv.IsRConvException returnsTRUE; otherwise it returnsFALSE.

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theLongConv exception, the function procedure
LongConv.IsRConvException returnsTRUE; otherwise it returnsFALSE.

Chapter 6

Miscellaneous

6.1 Module CharClass

The full set of values of the character type (the elementary type denoted by the
pervasive identifierCHAR) is implementation-defined. The moduleCharClass
allows a program to determine the classification of a given value of the character
type of an implementation in a way that does not rely on there being a known
literal representation of all members of the character set.

The moduleCharClass provides predicates to test if a given value of the charac-
ter type in an implementation is classified as a numeric, a letter, an upper-case let-
ter, a lower-case letter, a value representing a control function, or as white space.

IsNumeric Test for numeric character

PROCEDURE IsNumeric (ch: CHAR): BOOLEAN;

The function procedureIsNumeric returnsTRUE if ch is a member of an
implementation-defined set of numeric characters that should include the decimal
digits, andFALSEotherwise.

IsLetter Test for letter

PROCEDURE IsLetter (ch: CHAR): BOOLEAN;

The function procedureIsLetter returnsTRUE if ch is a member of an

117

118 CHAPTER 6. MISCELLANEOUS

implementation-defined set of letters that should include the required letters, and
FALSEotherwise.

IsUpper Test for upper case letter

PROCEDURE IsUpper (ch: CHAR): BOOLEAN;

The function procedureIsUpper returns TRUE if ch is a member of an
implementation-defined set of upper case letters that should include the required
upper case letters, andFALSEotherwise.

IsLower Test for lower case letter

PROCEDURE IsLower (ch: CHAR): BOOLEAN;

The function procedureIsLower returns TRUE if ch is a member of an
implementation-defined set of lower case letters that should include the required
lower case letters, andFALSEotherwise.

IsControl Test for control character

PROCEDURE IsControl (ch: CHAR): BOOLEAN;

The function procedureIsControl returnsTRUE if ch is a member of an
implementation-defined set of characters that represent control functions, and
FALSEotherwise.

IsWhiteSpace Test for white space character

PROCEDURE IsWhiteSpace (ch: CHAR): BOOLEAN;

The function procedureIsWhiteSpace returnsTRUEif ch is either a space
character or a member of an implementation-defined set of characters that repre-
sent format effectors, andFALSEotherwise.

6.2. MODULES LOWREAL AND LOWLONG 119

6.2 Modules LowReal and LowLong

Two modules are provided to give access to the underlying properties of the types
REALandLONGREAL. The two modules share common concepts, functions and
values, and hence both modules are considered together.

The moduleLowReal gives access to the underlying properties of the typeREAL,
while LowLong gives access to the same properties for the typeLONGREAL.

For implementations that conform toISO/IEC 10967-1:199x Information tech-
nology - Language independent arithmetic - Part1: Integer and floating point
arithmetic, a more precise specification is given in that International Standard.

If the implementation of the corresponding real number type conforms toISO/IEC
10967-1:199x (LIA-1), procedure functions of a similar name correspond to the
operations required by that International Standard.

Constants and Types

CONST
radix = <implementation-defined whole number value>;
places = <implementation-defined whole number value>;
expoMin = <implementation-defined whole number value>;
expoMax = <implementation-defined whole number value>;
large = <implementation-defined real number value>;
small = <implementation-defined real number value>;
IEC559 = <implementation-defined BOOLEAN value>;
LIA1 = <implementation-defined BOOLEAN value>;
rounds = <implementation-defined BOOLEAN value>;
gUnderflow = <implementation-defined BOOLEAN value>;
exception = <implementation-defined BOOLEAN value>;
extend = <implementation-defined BOOLEAN value>;
nModes = <implementation-defined whole number value>;

TYPE
Modes = PACKEDSET OF [0 .. nModes-1];

The values denoted by the constant identifiers exported fromLowReal and
LowLong are the implementation-defined values specified below.

If an implementation provides facilities for dynamically changing the properties
of the real number types, the constant values refer to the default properties.

120 CHAPTER 6. MISCELLANEOUS

The value ofplaces , and the other facilities in these modules, refer only to the
representation used to store values.

NOTE: Some implementations may choose to compute expressions to greater
precision than that used to store values.

If the implementation of the corresponding real number type conforms toISO/IEC
10967-1:199x (LIA-1), the following correspondences hold:

NOTE: The value of the parameterfmax , required byISO/IEC 10967-1:199x,
is given by the predefined functionMAXwhen applied to the corresponding real
number type.

radix The whole number value of the radix used to represent the corresponding
real number values.

places The whole number value of the number ofradix places used to store
values of the corresponding real number type.

expoMin The whole number value of the exponent minimum.

expoMax The whole number value of the exponent maximum.NOTE: An im-
plementation may choose values such thatexpoMin = expoMax (which
will presumably be the case for a fixed point representation).

large The largest value of the corresponding real number type.NOTE: On
some implementations this may be a machine representation of infinity.

small The smallest positive value of the corresponding real number type, repre-
sented to maximal precision.NOTE: If an implementation has stored val-
ues strictly between 0.0 andsmall , then presumably the implementation
supports gradual underflow.

IEC559 A Boolean value that is true if and only if the implementation of the cor-
responding real number type conforms toIEC 559:1989 (IEEE 754:1987)
in all regards.

NOTES:

• If IEC559 is true, the value of radix is2.

• If LowReal.IEC559 is true, the 32-bit format ofIEC 559:1989is
used for the type REAL.

• If LowLong.IEC559 is true, the 64-bit format ofIEC 559:1989is
used for the type LONGREAL.

6.2. MODULES LOWREAL AND LOWLONG 121

LIA1 A Boolean value that is true if and only if the implementation of the corre-
sponding real number type conforms toISO/IEC 10967-1:199x (LIA-1)in
all regards: parameters, arithmetic, exceptions, and notification.

NOTE: For implementations not conforming toISO/IEC 10967-1:199x, the
corresponding properties are implementation-defined — see 6.8.2.2.

rounds A Boolean value that is true if and only if each operation produces a
result that is one of the values of the corresponding real number type nearest
to the mathematical result.

NOTE: If rounds is true, and the mathematical result lies mid-way be-
tween two values of the corresponding real number type, then the selection
from the two possible values is implementation-dependent.

gUnderflow A Boolean value that is true if and only if there are values of the
corresponding real number type between 0.0 andsmall .

exception A Boolean value that is true if and only if every operation that
attempts to produce a real value out of range raises an exception.

extend A Boolean value that is true if and only if expressions of the corre-
sponding real number type are computed to higher precision than the stored
values.

NOTE: If extend is true, then values greater thanlarge can be com-
puted in expressions, but cannot be stored in variables.

nModes The whole number value giving the number of bit positions needed for
the status flags for mode control.

exponent Exponent value

PROCEDURE exponent (x: REAL): INTEGER;
PROCEDURE exponent (x: LONGREAL): INTEGER;

The function procedureexponent returns the exponent value ofx that lies be-
tweenexpoMin andexpoMax . An exception occurs and may be raised ifx is
equal to 0.0.

122 CHAPTER 6. MISCELLANEOUS

fraction Significand part

PROCEDURE fraction (x: REAL): REAL;
PROCEDURE fraction (x: LONGREAL): LONGREAL;

The function procedurefraction returns the significand (or significant) part of
x . Hence the following relationship shall hold:

x = scale(fraction(x), exponent(x))

sign Signum

PROCEDURE sign (x: REAL): REAL;
PROCEDURE sign (x: LONGREAL): LONGREAL;

The function proceduresign returns 1.0 ifx is greater than 0.0, -1.0 ifx is less
than 0.0, or either 1.0 or -1.0 ifx is equal to 0.0.

NOTE: The uncertainty about the handling of 0.0 is to allow for systems that
distinguish between +0.0 and -0.0 (such as IEEE 754 systems).

succ Next greater value

PROCEDURE succ (x: REAL): REAL;
PROCEDURE succ (x: LONGREAL): LONGREAL;

The function proceduresucc returns the next value of the corresponding real
number type greater thanx , if such a value exists; otherwise an exception occurs
and may be raised.

ulp Unit in the last place

PROCEDURE ulp (x: REAL): REAL;
PROCEDURE ulp (x: LONGREAL): LONGREAL;

The function procedureulp returns the value of the corresponding real number
type equal to a unit in the last place ofx , if such a value exists; otherwise an
exception occurs and may be raised.

6.2. MODULES LOWREAL AND LOWLONG 123

NOTE: Thus, when the value exists, eitherulp(x) = succ(x)-x or
ulp(x) = x-pred(x) or both is true.

pred Previous less value

PROCEDURE pred (x: REAL): REAL;
PROCEDURE pred (x: LONGREAL): LONGREAL;

The function procedurepred returns the next value of the corresponding real
number type less thanx , if such a value exists; otherwise an exception occurs and
may be raised.

intpart Integral part

PROCEDURE intpart (x: REAL): REAL;
PROCEDURE intpart (x: LONGREAL): LONGREAL;

The function procedureintpart returns the integral part ofx . For negative
values, this shall be-intpart(abs(x)) .

fractpart Fractional part

PROCEDURE fractpart (x: REAL): REAL;
PROCEDURE fractpart (x: LONGREAL): LONGREAL;

The function procedurefractpart returns the fractional part ofx . This satisfies
the relationshipfractpart(x)+intpart(x)=x .

scale Scale

PROCEDURE scale (x: REAL; n: INTEGER): REAL;
PROCEDURE scale (x: LONGREAL; n: INTEGER): LONGREAL;

The function procedurescale returns the valuex * radix ** n if such a
value exists; otherwise an exception occurs and may be raised.

124 CHAPTER 6. MISCELLANEOUS

trunc Truncate

PROCEDURE trunc (x: REAL; n: INTEGER): REAL;
PROCEDURE trunc (x: LONGREAL; n: INTEGER): LONGREAL;

The function proceduretrunc returns the value of the most significantn places
of x . An exception occurs and may be raised ifn is less than or equal to zero.

round Round

PROCEDURE round (x: REAL; n: INTEGER): REAL;
PROCEDURE round (x: LONGREAL; n: INTEGER): LONGREAL;

The function procedureround returns the value ofx rounded to the most signif-
icant n places. An exception occurs and may be raised if such a value does not
exist, or ifn is less than or equal to zero.

synthesize Construct value

PROCEDURE synthesize (expart : INTEGER;
frapart: REAL): REAL;

PROCEDURE synthesize (expart : INTEGER;
frapart: LONGREAL): LONGREAL;

The function proceduresynthesize returns a value of the corresponding real
number type constructed from the values ofexpart andfrapart . This value
shall satisfy the relationship:
synthesize(exponent(x),fraction(x))=x

setMode Set status flags

PROCEDURE setMode (m: Modes);
PROCEDURE setMode (m: Modes);

The procedure setMode sets status flags from the value ofm, appropriate to the
underlying implementation of the corresponding real number type.NOTES:

6.2. MODULES LOWREAL AND LOWLONG 125

• Many implementations of floating point provide options for setting status
flags within the system which control details of the handling of the type.
Although two procedures are provided, one for each real number type, the
effect may be the same. Typical effects that can be obtained by this means
are:

– Ensuring that overflow will raise an exception;

– Allowing underflow to raise an exception;

– Controlling the rounding;

– Allowing special values to be produced (e.g. NaNs in implementations
conforming toIEC 559:1989 (IEEE 754:1987));

– Ensuring that special value access will raise an exception;

Since these effects are so varied, the values of typeModes that may be used
are not specified by this International Standard.

• The effect ofsetMode on operations on values of the corresponding real
number type in coroutines other than the calling coroutine is not defined.
Implementations are not required to preserve the status flags (if any) with
the coroutine state.

currentMode Current status flags

PROCEDURE currentMode (): Modes;
PROCEDURE currentMode (): Modes;

The function procedurecurrentMode returns the current status flags (in the
form set bysetMode), or the default status flags (ifsetMode is not used).

NOTE: The returned value is not necessarily the value set bysetMode , since a
call of setMode might attempt to set flags that cannot be set by the program.

IsLowException Query exceptional state

PROCEDURE IsLowException (): BOOLEAN;
PROCEDURE IsLowException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theLowReal exception, the function procedure
LowReal.IsLowException returnsTRUE; otherwise is returnsFALSE.

126 CHAPTER 6. MISCELLANEOUS

If the calling coroutine is in the state of exceptional execution be-
cause of the raising of theLowLong exception, the function procedure
LowLong.IsLowException returnsTRUE; otherwise is returnsFALSE.

6.3 Module Storage

The moduleStorage provides facilities for dynamically allocating and deallo-
cating storage for variables that are not declared in variable declarations. Variables
with storage allocated in this way are designated by dereferenced variable desig-
nators. The facilities are often invoked by using the predefined proceduresNEW
andDISPOSE. The facilities can also be used to allocate storage to be used as
coroutine workspace.

The semantics are described in terms of allocating storage for a variable since the
allocator must take account of any address alignment requirements for the storage
of variables of the given size.CLARIFICATIONS

• Programming in Modula-2adopts two approaches to handling situations
where it is not possible to allocate sufficient storage; the procedure
Allocate of Chapter 25 assignsNIL to the first parameter, whereas
the procedureALLOCATEof Appendix 2 causes the program to terminate.
The International Standard requires the procedureALLOCATEto assign the
valueNIL to its first parameter in this situation.

• Although the first parameter of the procedureDEALLOCATEgiven in Ap-
pendix 2 ofProgramming in Modula-2is a variable parameter, it is not
stated whetherDEALLOCATEassigns a value to its parameter. The Inter-
national Standard requires the procedureDEALLOCATEto assign the value
NIL to its parameter.

6.3. MODULE STORAGE 127

StorageExceptions Storage exceptions identities

TYPE
StorageExceptions = (

nilDeallocation,
(* first argument to DEALLOCATE is NIL *)

pointerToUnallocatedStorage,
(* storage to deallocate not allocated by ALLOCATE *)

wrongStorageToUnallocate
(* amount to deallocate is not amount allocated *)

);

The exceptions raised byStorage are identified by the values of the enumeration
typeStorageExceptions .

The detection of the exceptionwrongStorageToUnallocate is
implementation-defined.

ALLOCATE Allocate storage

PROCEDURE ALLOCATE (VAR addr: SYSTEM.ADDRESS;
amount: CARDINAL);

The procedureALLOCATEallocates storage for a variable of sizeamount , and
assigns the address of this variable toaddr . The allocated locations will not be
in use for the storage of any other variable. If it is not possible to allocate this
storage, the valueNIL is assigned toaddr .

NOTES:

1. If an address passed back by a call ofALLOCATEis assigned to a pointer
variablevp that is to be dereferenced to designate a variable of typeT, the
value for the second parameter toALLOCATEmay be obtained from evalu-
ation of the expressionSIZE(T) . An equivalent effect may be obtained as
NEW(vp) .

2. If an address passed back by a call ofALLOCATEis to be given directly
as the workspace address in a call ofCOROUTINES.NEWCOROUTINE,
the value for the second parameter toALLOCATEis the size of workspace
required.

128 CHAPTER 6. MISCELLANEOUS

DEALLOCATE Deallocate storage

PROCEDURE DEALLOCATE (VAR addr: SYSTEM.ADDRESS;
amount: CARDINAL);

The procedureDEALLOCATEdeallocatesamount locations for the storage of
the variable addressed byaddr and assigns the valueNIL to addr .

The exceptionnilDeallocation is raised if the given value ofaddr is the
nil value. The exceptionpointerToUnallocatedStorage is raised if the
given value ofaddr is not the address of a variable whose storage has been allo-
cated byALLOCATE. The exceptionwrongStorageToUnallocate occurs
and may be raised ifamount is not equal to the number of locations allocated for
the storage of the variable addressed byaddr .

NOTES:

1. If an address passed to a call ofDEALLOCATEis the value of a pointer
variablevp that is dereferenced to designate a variable of typeT, the value
for the second parameter toDEALLOCATEmay be obtained from evalua-
tion of the expressionSIZE(T) . An equivalent effect may be obtained as
DISPOSE(vp) .

2. The variable whose storage is deallocated no longer exists and hence an
exception occurs, which may be raised, if there is a subsequent attempt to
access the variable through a dereferenced designator.

3. This International Standard gives no meaning for a program that
deallocates dynamic storage given as workspace in a call of
COROUTINES.NEWCOROUTINEsince the use made of coroutine
workspace is implementation-dependent.

4. It need not be the case that storage locations deallocated by a call of
DEALLOCATEare available for re-use by a subsequent call ofALLOCATE.

IsStorageException Query exceptional state

PROCEDURE IsStorageException (): BOOLEAN;

If the calling coroutine is in the state of exceptional execution because of the rais-
ing of aStorage exception, the function procedureIsStorageException
returnsTRUE; otherwise it returnsFALSE.

6.4. MODULE SYSCLOCK 129

StorageException Query exception id

PROCEDURE StorageException (): StorageExceptions;

If the calling coroutine is in the state of exceptional execution because of the
raising of aStorage exception, the function procedureStorageException
returns the value that identifies the raised exception; otherwise the language ex-
ceptionexException is raised.

6.4 Module SysClock

The moduleSysClock provides facilities for accessing a system clock that
records the date and time of day.NOTES:

• No provision is made for leap seconds.

• ‘UTC’ is ‘Universal Coordinated Time’. This is the correct international
designation for what was once called ‘GMT’ (Greenwich Mean Time).

• The fieldsummerTimeFlag is present for information only. UTC can
always be obtained by subtracting theUTCDiff value from the time data,
regardless of the value of thesummerTimeFlag . However, its presence
does allow a program to know whether or not the date and time data repre-
sents standard time for that location, or ‘summer time’. A program could
therefore be written to change the system clock to summer time automati-
cally on a certain date, provided it had not already been changed.

6.4.1 The Constants and Types of SysClock

CONST
maxSecondParts = <implementation-defined integral value>;

TYPE
Month = [1 .. 12];
Day = [1 .. 31];
Hour = [0 .. 23];
Min = [0 .. 59];
Sec = [0 .. 59];

130 CHAPTER 6. MISCELLANEOUS

Fraction = [0 .. maxSecondParts];
UTCDiff = [-780 .. 720];
DateTime =

RECORD
year: CARDINAL;
month: Month;
day: Day;
hour: Hour;
minute: Min;
second: Sec;
fractions: Fraction; (* parts of a second *)
zone: UTCDiff;

(* Time zone differential factor which is the number
of minutes to add to local time to obtain UTC. *)

summerTimeFlag: BOOLEAN;
(* Interpretation of flag depends on local usage. *)

END;

CanGetClock Query system clock read permission

PROCEDURE CanGetClock (): BOOLEAN;

The function procedureCanGetClock returns an implementation-defined
BOOLEANvalue. If the valueTRUEis returned, there is a system clock which
the program is permitted to read.

CanSetClock Query system clock write permission

PROCEDURE CanSetClock (): BOOLEAN;

The function procedureCanSetClock() returns an implementation-defined
BOOLEANvalue. If the valueTRUEis returned, there is a system clock which
the program is permitted to set.

6.4. MODULE SYSCLOCK 131

IsValidDateTime Verify date and time

PROCEDURE IsValidDateTime (userData: DateTime): BOOLEAN;

The function procedureIsValidDateTime returns TRUE if the value of
userData represents a valid date and time, and isFALSE otherwise.NOTE:
Only the date components ofuserData need to be validated since all combina-
tions of values of the time components are known to be valid.

GetClock Determine current date and time

PROCEDURE GetClock (VAR userData: DateTime);

The function procedureGetClock assigns values for each field of the variable
userData for which information is available. Each of the remaining fields of
userData are set to zero, where this is a valid value, and otherwise are set to the
lower bound of the range of allowed values.

SetClock Set current date and time

PROCEDURE SetClock (userData: DateTime);

The function procedureSetClock sets the system clock to the date and time
specified byuserData , provided that the program may set the system clock,
and that the value ofuserData represents a valid date and time. If the program
cannot set the system clock, a call ofSetClock have no effect.

NOTE: The effect of a call ofSetClock is implementation-dependent if it is
permitted to set the system clock, but an invalid date and time is given.

Index

abs,62
Activate,72
ALLOCATE, 127
AllocateDeviceId,54
Append,90
arccos,60, 65
arcsin,59, 64
arctan,60, 65
arg,62
ArgChan,49
Assign,83
Attach,75

CanAppendAll,90
CanAssignAll,83
CanConcatAll,91
CanDeleteAll,86
CanExtractAll,84
CanGetClock,130
CanInsertAll,87
CanReplaceAll,88
CanSetClock,130
Capitalize,92
CardToStr,104
ChanConsts,30

ChanFlags,31
FlagSet,32
OpenResults,33

ChanException,29
ChanExceptions,28
ChanFlags,31
ChanID,3
ChanId,20
CharClass,117

IsControl,118
IsLetter,117
IsLower,118
IsNumeric,117
IsUpper,118
IsWhiteSpace,118

Claim,78
Close,37, 41, 47, 49
Compare,92
ComplexMath,61

abs,62
arccos,65
arcsin,64
arctan,65
arg,62
conj,62
Constants,61
cos,64
exp,63
IsCMathException,66
ln, 63
polarToComplex,65
power,63
scalarMult,65
sin,64
sqrt,63
tan,64

Concat,91
CondClaim,79
conj,62
Constants,58, 61
Constants and Types,119
ConvTypes,99

132

INDEX 133

cos,59, 64
Create,70, 77
CurrentFlags,28
currentMode,125
CurrentPos,45

DEALLOCATE, 128
Delete,86
Destroy,78
Detach,75
DeviceErrNum,29
DeviceError,29
DeviceTablePtrValue,55

EndPos,45
Equal,93
ErrChan,5
exp,58, 63
exponent,121
Extract,85

FindDiff, 96
FindNext,94
FindPrev,95
FlagSet,32
Flush,27
FormatCard,111
FormatInt,109
FormatReal,114
fraction,122
fractpart,123

GetClock,131
GetName,26

Handler,75

InChan,4
Insert,87
intpart,123
IntToStr,103
InvalidChan,20
IOChan,20

ChanException,29
ChanExceptions,28
ChanId,20
CurrentFlags,28
DeviceErrNum,29
DeviceError,29
Flush,27
GetName,26
InvalidChan,20
IsChanException,29
Look, 21
RawRead,25
RawWrite,25
ReadResult,27
Reset,26
SetReadResult,27
Skip,21
SkipLook,22
TextRead,23
TextWrite,24
WriteLn, 22

IOConsts,18
ReadResults,18

IOException,56
IOLink, 50

AllocateDeviceId,54
DeviceTablePtrValue,55
IOException,56
IsDevice,55
IsIOException,56
MakeChan,54
RAISEdevException,55
UnMakeChan,54

IOResult,19
ReadResult,19
ReadResults,19

IsArgPresent,50
IsAttached,75
IsChanException,29
IsCMathException,66
IsControl,118

134 INDEX

IsDevice,55
IsIOException,56
IsLetter,117
IsLower,118
IsLowException,125
IsNumeric,117
IsProcessesException,76
IsRConvException,116
IsRMathException,61
IsRndFile,44
IsRndFileException,45
IsSemaphoresException,79
IsSeqFile,41
IsStorageException,128
IsStreamFile,37
IsTermFile,49
IsUpper,118
IsValidDateTime,131
IsWhiteSpace,118
IsWholeConvException,112

Length,82
LengthCard,112
LengthEngReal,115
LengthFixedReal,115
LengthFloatReal,114
LengthInt,110
ln, 58, 63
LongComplexMath,61

abs,62
arccos,65
arcsin,64
arctan,65
arg,62
conj,62
Constants,61
cos,64
exp,63
IsCMathException,66
ln, 63
polarToComplex,65

power,63
scalarMult,65
sin,64
sqrt,63
tan,64

LongConv,112
FormatReal,114
IsRConvException,116
LengthEngReal,115
LengthFixedReal,115
LengthFloatReal,114
ScanReal,113
ValueReal,114

LongIO,12
ReadReal,13
WriteEng,15
WriteFixed,16
WriteFloat,14
WriteReal,17

LongMath,57
arccos,60
arcsin,59
arctan,60
Constants,58
cos,59
exp,58
IsRMathException,61
ln, 58
power,60
round,60
sin,59
sqrt,58
tan,59

LongStr,104
RealToEng,106
RealToFixed,106
RealToFloat,105
RealToStr,107
StrToReal,105

Look, 21
LowLong,119

INDEX 135

Constants and Types,119
currentMode,125
exponent,121
fraction,122
fractpart,123
intpart,123
IsLowException,125
pred,123
round,124
scale,123
setMode,124
sign,122
succ,122
synthesize,124
trunc,124
ulp, 122

LowReal,119
Constants and Types,119
currentMode,125
exponent,121
fraction,122
fractpart,123
intpart,123
IsLowException,125
pred,123
round,124
scale,123
setMode,124
sign,122
succ,122
synthesize,124
trunc,124
ulp, 122

MakeChan,54
Me, 76
MyParam,76

NewPos,46
NextArg,50
NullChan,4

Open,36, 48
OpenAppend,39
OpenClean,44
OpenOld,43
OpenRead,40
OpenResults,33
OpenWrite,38
OutChan,5

polarToComplex,65
power,60, 63
pred,123
Processes,67

Activate,72
Attach,75
Create,70
Detach,75
Handler,75
IsAttached,75
IsProcessesException,76
Me, 76
MyParam,76
ProcessesException,76
Start,71
StopMe,71
SuspendMe,72
SuspendMeAndActivate,72
Switch,73
UrgencyOf,76
Wait, 74

ProcessesException,76
ProgramArgs,49

ArgChan,49
IsArgPresent,50
NextArg,50

RAISEdevException,55
RawIO,17

Read,17
Write, 18

RawRead,25

136 INDEX

RawWrite,25
Read,17
ReadCard,11
ReadChar,6
ReadInt,10
ReadReal,13
ReadRestLine,7
ReadResult,19, 27
ReadResults,18, 19
ReadString,7
ReadToken,8
RealConv,112

FormatReal,114
IsRConvException,116
LengthEngReal,115
LengthFixedReal,115
LengthFloatReal,114
ScanReal,113
ValueReal,114

RealIO,12
ReadReal,13
WriteEng,15
WriteFixed,16
WriteFloat,14
WriteReal,17

RealMath,57
arccos,60
arcsin,59
arctan,60
Constants,58
cos,59
exp,58
IsRMathException,61
ln, 58
power,60
round,60
sin,59
sqrt,58
tan,59

RealStr,104
RealToEng,106

RealToFixed,106
RealToFloat,105
RealToStr,107
StrToReal,105

RealToEng,106
RealToFixed,106
RealToFloat,105
RealToStr,107
Release,78
Replace,89
Reread,41
Reset,26
Rewrite,41
RndFile,42

Close,47
CurrentPos,45
EndPos,45
IsRndFile,44
IsRndFileException,45
NewPos,46
OpenClean,44
OpenOld,43
SetPos,46
StartPos,45

round,60, 124

scalarMult,65
scale,123
ScanCard,110
ScanInt,108
ScanReal,113
Semaphores,77

Claim,78
CondClaim,79
Create,77
Destroy,78
IsSemaphoresException,79
Release,78

SeqFile,37
Close,41
IsSeqFile,41

INDEX 137

OpenAppend,39
OpenRead,40
OpenWrite,38
Reread,41
Rewrite,41

SetClock,131
SetErrChan,5
SetInChan,5
setMode,124
SetOutChan,5
SetPos,46
SetReadResult,27
sign,122
sin,59, 64
SIOResult,19

ReadResult,19
ReadResults,19

Skip,21
SkipLine,8
SkipLook,22
SLongIO,12
SLongIO.ReadReal,13
SLongIO.WriteEng,15
SLongIO.WriteFixed,16
SLongIO.WriteFloat,14
SLongIO.WriteReal,17
sqrt,58, 63
SRawIO,17

Read,17
Write, 18

SRealIO,12
ReadReal,13
WriteEng,15
WriteFixed,16
WriteFloat,14
WriteReal,17

Start,71
StartPos,45
StdChans,3

ChanID,3
ErrChan,5

InChan,4
NullChan,4
OutChan,5
SetErrChan,5
SetInChan,5
SetOutChan,5
StdErrChan,4
StdInChan,3
StdOutChan,4

StdErrChan,4
StdInChan,3
StdOutChan,4
STextIO,6

ReadChar,6
ReadRestLine,7
ReadString,7
ReadToken,8
SkipLine,8
WriteChar,9
WriteLn, 9
WriteString,9

StopMe,71
Storage,126

ALLOCATE, 127
DEALLOCATE, 128
IsStorageException,128
StorageException,129
StorageExceptions,127

StorageException,129
StorageExceptions,127
StreamFile,35

Close,37
IsStreamFile,37
Open,36

Strings,81
Append,90
Assign,83
CanAppendAll,90
CanAssignAll,83
CanConcatAll,91
CanDeleteAll,86

138 INDEX

CanExtractAll,84
CanInsertAll,87
CanReplaceAll,88
Capitalize,92
Compare,92
Concat,91
Delete,86
Equal,93
Extract,85
FindDiff, 96
FindNext,94
FindPrev,95
Insert,87
Length,82
Replace,89

StrToCard,103
StrToInt,102
StrToReal,105
succ,122
SuspendMe,72
SuspendMeAndActivate,72
SWholeIO,9

ReadCard,11
ReadInt,10
WriteCard,12
WriteInt, 11

Switch,73
synthesize,124
SysClock,129

CanGetClock,130
CanSetClock,130
GetClock,131
IsValidDateTime,131
SetClock,131

tan,59, 64
TermFile,47

Close,49
IsTermFile,49
Open,48

TextIO,6

ReadChar,6
ReadRestLine,7
ReadString,7
ReadToken,8
SkipLine,8
WriteChar,9
WriteLn, 9
WriteString,9

TextRead,23
TextWrite,24
trunc,124

ulp, 122
UnMakeChan,54
UrgencyOf,76

ValueCard,111
ValueInt,110
ValueReal,114

Wait, 74
WholeConv,108

FormatCard,111
FormatInt,109
IsWholeConvException,112
LengthCard,112
LengthInt,110
ScanCard,110
ScanInt,108
ValueCard,111
ValueInt,110

WholeIO,9
ReadCard,11
ReadInt,10
WriteCard,12
WriteInt, 11

WholeStr,102
CardToStr,104
IntToStr,103
StrToCard,103
StrToInt,102

Write, 18

INDEX 139

WriteCard,12
WriteChar,9
WriteEng,15
WriteFixed,16
WriteFloat,14
WriteInt, 11
WriteLn, 9, 22
WriteReal,17
WriteString,9

140 INDEX

This page had been intentionally left blank.

Excelsior, LLC
6 Lavrenteva Ave. Suite 441
Novosibirsk 630090 Russia
Tel: +7 (3832) 39 78 24
Fax: +1 (509) 271 5205
Email: info@excelsior-usa.com
Web: http://www.excelsior-usa.com

	Input/Output
	Standard and Default Channels
	Module StdChans

	Reading and Writing of Data
	Modules TextIO and STextIO
	Modules WholeIO and SWholeIO
	Modules RealIO, SRealIO, LongIO, and SLongIO
	Modules RawIO and SRawIO
	Module IOConsts
	Modules IOResult and SIOResult

	Device-Independent Channel Operations
	Module IOChan
	Module IOChan - Text Operations
	Module IOChan - Raw Operations
	Module IOChan - Common Operations
	Module IOChan - Access to Read Results
	Module IOChan - Channel Enquiries
	Module IOChan - Exceptions and Device Errors

	Obtaining Channels from Device Modules
	Module ChanConsts
	Module StreamFile
	Module SeqFile
	Module RndFile
	Module TermFile
	Module ProgramArgs

	Interface to Channels for New Device Modules
	Module IOLink

	Mathematical
	Modules RealMath and LongMath
	Modules ComplexMath and LongComplexMath

	Concurrent Programming
	Module Processes
	Types of Processes
	The Procedures of Processes

	Module Semaphores

	String Manipulation
	Module Strings

	String Conversions
	Common Data Types
	Module ConvTypes

	High-Level String Conversion Modules
	EXAMPLE - Conversion of strings read by ReadToken
	Module WholeStr
	Modules RealStr and LongStr

	Low-Level String Conversion Modules
	EXAMPLE - Use of ScanInt
	Module WholeConv
	Modules RealConv and LongConv

	Miscellaneous
	Module CharClass
	Modules LowReal and LowLong
	Module Storage
	Module SysClock
	The Constants and Types of SysClock

