XDS Family of Products

XDS-C

for Linux Operating System
Version 2.51

User’s Guide

%CELSIOR

http://www.excelsior-usa.com

Copyright(©) 1999-2001 Excelsior, LLC. All rights reserved.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Excelsior, LLC.

Excelsior’s software and documentation have been tested and reviewed. Nevertheless, Ex-
celsior makes no warranty or representation, either express or implied, with respect to the
software and documentation included with Excelsior product. In no event will Excelsior
be liable for direct, indirect, special, incidental or consequential damages resulting from
any defect in the software or documentation included with this product. In particular, Ex-
celsior shall have no liability for any programs or data used with this product, including
the cost of recovering programs or data.

XDS is a trademark of Excelsior, LLC.

All trademarks and copyrights mentioned in this documentation are the property of their
respective holders.

Contents

1 About XDS
1.1 WelcometoXDS.
1.2 Conventionsusedinthismanual.
1.2.1 Languagedescriptions.
1.2.2 Sourcecodefragments.

2 Getting started
2.1 Using the Modula-2 compiler.
2.2 Using the Oberon-2 compiler.
23 Errorreporting
2.4 Buildingaprogram.
2.5 Debuggingaprogram.

3 Configuring the compiler
3.1 Systemsearchpaths
3.2 Working configuration.
3.3 XDSmemoryusage. oo e
3.4 Directory hierarchies.
35 XDSsearchpaths.
3.5.1 Redirectionfile.
3.5.2 Regularexpression.
3.6 Options
3.7 Configurationfile.
3.8 Filenameextensions.
3.9 Customizing compilermessages.
3.10 XDSandyourCcompiler.
3.10.1 Building the run-timelibrary
3.10.2 Configuring XDS for seamless compilation.

4 Using the compiler
4.1 Invokingthecompiler

11
11
11
12
13
14
14
15
16
17
18
19
20
20
20

23

CONTENTS

4.1.1 Precedence of compileroptions. 23

4.2 XDS compilers operationmodes. 24
421 COMPILEmode. 24
422 MAKEmMode. 25
423 PROJECTmode. 26
424 GENmMode. 26
425 BROWSEmode. 27
426 ALLsubmode 27
427 BATCHsubmode 28
428 OPTIONSsubmode. 28
429 EQUATIONSsubmode. 29

4.3 Files generated during compilation. 29
4.3.1 Modula-2compiler. 29
4.3.2 Oberon-2compiler 29

4.4 Control file preprocessing. 30
4.5 Projectfiles. 31
46 Makestrategy. 33
4.7 Smartrecompilation. 0oL 34
4.8 Templatefiles. L 35
4.8.1 Usingequationvalues 36
4.8.2 Filenameconstruction. 37
483 lterators. e 37
484 Examples. 38
Compiler options and equations 41
51 Options o e 41
5.2 Optionsreference oo 44
53 EQuations. 55
5.4 Equationsreference. 58
5.5 Error message format specification 63
5.6 The system module COMPILER. 63
Compiler messages 65
6.1 Lexicalerrors. 65
6.2 Syntaxerrors. 67
6.3 SemantiCerrors i 68
6.4 Symbolfilesread/writeerrors. 86
6.5 Internalerrors. 88
6.6 Warnings 89
6.7 Pragmawarnings 92
6.8 Native XDSwarnings o v v i 92

CONTENTS iii

6.9 XDS-Cerrors. o 94
7 XDS Modula-2 97
7.1 1SO Standard compliance., 97
7.1.1 Orderingofdeclarations 97

7.2 New language'sfeatures 98
721 LexiS e e e 99
7.2.2 Complextypes. 99
7.2.3 Setsandpackedsets. 102
724 Strings e 103
7.25 \Valueconstructors. oL 103
7.2.6 Multi-dimensional openarrays. 105
7.2.7 Procedure type declarations. 105
7.2.8 Procedureconstants 106
7.2.9 Whole numberdivision. 106
7.2.10 Typeconversions v v v 107
7.211 NEWandDISPOSE 108
7.2.12 Finalization. 109
7.2.13 Exceptions. e 110
7.2.14 The system module EXCEPTIONS. 112
7.2.15 The system module M2EXCEPTION. 115
7.2.16 Termination, 119
7.217 Coroutines. 119
7.2.18 Protection 121

7.3 Standardprocedures o 122
7.4 Compatibility 124
7.4.1 Expression compatibility L 124
7.4.2 Assignment compatibility. 125
7.4.3 Value parameter compatibility 126
7.4.4 Variable parameter compatibility. 126
7.4.5 System parameter compatibility. 126

7.5 The Modula-2 module SYSTEM 127
751 Systemtypes 129
7.5.2 Systemfunctions 131
753 Systemprocedures. 134

7.6 Languageextensions 135
7.6.1 Lexicalextensions. 135
7.6.2 Additional numerictypes. 136
76.3 Typecasting., 138
7.6.4 Assignment compatibility withBYTE 138

7.6.5 DynamicarraysS i i i e e 138

CONTENTS

7.6.6 Constantarray constructors 140
7.6.7 Setcomplement. 140
7.6.8 Read-only parameters 141
7.6.9 Variable number of parameters 142
7.6.10 Read-onlyexport 143
7.6.11 Renaming of imported modules. 143
7.6.12 NEW and DISPOSE for dynamicarrays 144
7.6.13 HALT e 145
7.6.14 ASSERT e 145
7.7 Sourcecodedirectives 0 145
7.7.1 Inline optionsand equations. 145
7.7.2 Conditional compilation. 147
XDS Oberon-2 149
8.1 TheOberonenvironment. 149
8.1.1 Programstructure. 150
8.1.2 Creatingadefinition. 150
8.2 Lastchangestothelanguage 151
821 ASSERT. e 151
8.2.2 Underscoresinidentifiers 151
8.2.3 Sourcecodedirectives. 152
8.3 Oakwood numericextensions 152
8.3.1 Complexnumbers. 152
8.3.2 In-line exponentiation. 154
8.4 Using Modula-2 features 154
8.5 Languageextensions, 155
851 Comments. 156
8.5.2 String concatenation 156
853 VALfunction. 156
8.5.4 Read-onlyparameters 156
8.5.5 \Variable number of parameters 157
8.5.6 Valueconstructors. 157
8.6 The Oberon-2 module SYSTEM. 157
8.6.1 CompatibilitywithBYTE 158
8.6.2 Wholesystemtypes. 158
86.3 NEWandDISPOSE 158
8.6.4 M2ADR 159
Run-time support 161
9.1 Memory management. 161
9.2 Postmortemhistory oL 163

CONTENTS v
9.3 TheoberonRTSmodule. 164
9.3.1 Typesandvariables. 164
9.3.2 Garbagecollection 164
9.3.3 Objectfinalization. 165
9.3.4 Meta-language facilites 166
9.3.5 Moduleiterators. 168

10 Multilanguage programming 171
10.1 Modula-2and Oberon-2. 171
10.1.1 Basictypes. 171
10.1.2 Datastructures 172
10.1.3 Garbagecollection 174
10.2 Direct language specification. 174
10.3 Interfacingto C. 176
10.3.1 Foreign definitonmodule 176
10.3.2 External procedures specification. 177
10.4 Relaxation of compatibilityrules 177
10.4.1 Assignment compatibility. 178
10.4.2 Parameter compatibility. 178
10.4.3 Ignoring functionresult. 179

11 Mappingto C 181
11.1 Layoutofageneratedcode. 181
11.2 Identifiers. 184
11.3 Datatypes 187
11.3.1 Basictypes. 187
11.3.2 Special systemtypes. 188
11.3.3 Modula-2 enumerationtypes. 190
11.3.4 Modula-2settypes 190
11.3.5 Recordtypes 191
11.3.6 Pointertypes. 192
11.3.7 DynamicarrayS v v v i i e e e 193
11.4 Proceduredeclarations. 194
1141 Parameters oo 195
11.42 Openarrays.« v v v i i i e 197
11.4.3 Oberon-2 variable vecord parameters 198
11.4.4 Sequenceparameters 198
11.45 Functionresults. 199
11.4.6 Procedurebody. 200
11.4.7 Nestedprocedures 203

11.5 Module initialization and finalization. 204

Vi

11.6 Oberon-2 object-oriented features
11.7 Oberon-2 run-time data structures

118 Options
11.8.1 Describing platform.
11.8.2 Codegeneration.
11.8.3 Evaluating size of types

11.8.4 Foreign language interface

11.8.5 Code presentation.

12 Possible Problems

12.2 Ordering of record fields.
12.3 Name collisionsinCtext

A Limitations and restrictions

CONTENTS

Chapter 1

About XDS

1.1 Welcome to XDS

XDS™ is a family name for professional Modula-2/Oberon-2 programming sys-
tems for Intel x86-based PCs (Windows and Linux editions are available). XDS-C
is a "via C” cross-compiler that allows you to target virtually any system, from
embedded to Unix servers. XDS provides an uniform programming environment
for the mentioned platforms and allows design and implementation of portable
software.

The system contains both Modula-2 and Oberon-2 compilers. These languages
are often calledsafe” and“modular” . The principle innovation of the language
Modula-2 was the module concept, information hiding and separate compilation.

Oberon-2 is an object-oriented programming (OOP) language based on Modula-2.
With the introduction of object-oriented facilities, extensible project design be-
came much easier. At the same time, Oberon-2 is quite simple and easy to learn
and use, unlike other OOP languages, such as C++ or Smalltalk.

The XDS Modula-2 compiler implements ISO 10514 standard of Modula-2. The
ISO standard library set is accessible from both Modula-2 and Oberon-2.

XDS is based on a platform-independent front-end for both source languages
which performs all syntactic and semantic checks on the source program. The
compiler builds an internal representation of the compilation unit in memory and

performs platform-independent analysis and optimizations. After that the com-
piler emits output code. It can be either native code for the target platform or text
in the ANSI C language. ANSI C code generation allows you to cross compile

Modula-2/Oberon-2 for almost any platform.

2 CHAPTER 1. ABOUT XDS

Moving to a new language usually means throwing away or rewriting your exist-

ing library set which could have been the work of many years. XDS allows the

programmer to mix Modula-2, Oberon-2, C and Assembler modules and libraries
in a single project.

XDS includes standard ISO and PIM libraries along with a set of utility libraries
and an interface to the ANSI C library set.

XDS compilers produce optimized ANSI C code which is further compiled by

a C compiler. The call of a C compiler can be done transparent for the user.
However, XDS can be used as Modula-2/Oberon-2 to C translator, as it produces
easy readable and understandable text. It is also possible to preserve your source
code comments in their original context.

1.2 Conventions used in this manual

1.2.1 Language descriptions

Where formal descriptions for language syntax constructions appear, an extended
Backus-Naur Formalism (EBNF) is used.

These descriptions are set in t@eurier font.
Text = Text [{ Text }] | Text.

In EBNF, brackets['” and "] ” denote optionality of the enclosed expression,
braces {” and "} ” denote repetition (possibly 0 times), and the vertival lihé ”
separates mutually exclusive variants.

Non-terminal symbols start with an upper case let&ta{ement). Terminal
symbols either start with a lower case lettelefit), or are written in all upper
case lettersREGIN), or are enclosed within quotation marks (€'g").

1.2.2 Source code fragments

When fragments of a source code are used for examples or appear within a text
they are set in th€ourier font.

MODULE Example;

IMPORT InOut;

1.2. CONVENTIONS USED IN THIS MANUAL

BEGIN
InOut.WriteString("This is an example");
INOut.WritelLn;

END Example.

CHAPTER 1. ABOUT XDS

Chapter 2

Getting started

In this and following chapters we assume that XDS is properly installed and con-
figured (See Chapt&); the default file extensions are used.

Your XDS package contains a script file, work , which may be used to prepare
a working directory. For more information, consult yoaadme.1lst file from
the XDS on-line documentation.

2.1 Using the Modula-2 compiler

In the working directory, use a text editor to create a file calletio.mod, con-
taining the following text:

MODULE hello;
IMPORT InOut;

BEGIN
InOut.WriteString("Hello World");
InOut.WriteLn;

END hello.

Type
xm hello.mod

at the command promptxm will know that the Modula-2 compiler should be
invoked for the source file with the extensianod. The compiler heading line

5

6 CHAPTER 2. GETTING STARTED

will appear:
XDS Modula-2 version [code generatdr "hello.mod"

showing which compiler has been invoked (including its version number), which
code generator is being used (in square brackets) and what is its version, and
finally the name of the source filan has been asked to compile.

Assuming that you have correctly typed the source file, the compiler will then
display something like

no errors, no warnings, lines 15, time 1.09

showing the number of errors, the number of source lines and the compilation
time.

Note: The XDS compiler reports are user configurable. If the lines similar to the
above do not appear, check that DECOR equation value contains letters ‘C’
(compiler heading) and ‘R’ (report).

2.2 Using the Oberon-2 compiler

In our bilingual system the Modula-2 source code just shown is also perfectly
valid as the Oberon-2 code. XDS allows you to use Modula-2 libraries when
programming in Oberon-2 (in our case im®©ut module).

As in Modula-2, this source code in Oberon-2 constitutéspalevel moduler
program modulebut in Oberon-2, there is no syntactic distinction between a top-
level module and any other module. The Oberon-2 compiler must be specifically
told that this is a top-level module by using the optMAIN .

Copy the source file to the fileello.ob2and type:
xm hello.ob2 +MAIN

The same sequence of reports will occur as that of the Modula-2 compiler, but the
Oberon-2 compiler will also report whether a new symbol file was generated or
not. Itis also possible to override the default source file extension tihgnd

02 options:

xm hello.mod +02 +MAIN

In this case, the Oberon-2 compiler will be invoked regardless of the file extension.

2.3. ERROR REPORTING 7

2.3 Error reporting

If either compiler detects an error in your code, an error description will be dis-
played. In most cases a copy of the source line will also be shown with a dollar
sign"$" placed directly before the point at which the error occurred. The format
in which XDS reports errors is user configurable (Se®, by default it includes

a file name, a position (line and column numbers) at which the error occurred, an
error type indicator, which can be [E]rror, [W]arning or [F]ault, an error number,
and an error message.

Example
* [bf.mod 26.03 W310]

* infinite loop
$LOOP

2.4 Building a program

After compilation ofhello program you can invoke your C compiler. It is nec-
essary to specify the paths to header files and library (use the name of appropriate
library from you package). Consult your C compiler manual for syntax of the
compiler command line.

cc hello.c -lc:\xds\include c:\xds\lib\libxds.lib

Type

hello

to run your program.

Thexdsuser script creates thgcc script that can be used to compile and link
a simple program. Type

xcc hello.c

8 CHAPTER 2. GETTING STARTED

If your project contains more than one module, we recommend to write a project
file (See4.5 and use appropriate template file (3e8). The following project
file contains all necessary settings:

% debug ON

-gendebug+

-lineno+

% specify template file

-template = xds.tem

% specify a name of a makefile
-mkfname = tmp

-mkfext = mkf

% force generation of the makefile
-makefile+

% call the make

-link = "make -f %s",mkfname#mkfext;
% main module of the program
Imodule hello.mod

It specifies the template file to usadé.tem), the name of the makefile
(tmp.mkf) and the make command line.

After successful compilation of the whole project the compiler creates the make-
file and then executes the command line, specied byLIN& equation. The
xds.tem template file defines a template for a makefile. The following invoca-
tion

xm hello.prj =p
will compile modules constituting the project (if required) and then execute the

make. Sed.8for the full description of template files. See also the project files,
generated by thedsuser script.

2.5 Debugging a program

XDS allows one to use any standard debugger. Howevepdbkemorten history
feature of XDS run-time support may be used in may cases instead of debugger.
To enable this feature the opti@ENDEBUG should be set for all modules in
the program; the debug mode should also be set for a C compiler and linker.

If your program is compiled in this mode, the run-time system will print a stack of
procedure calls (a file name and a line number) on abnormal termination of your

2.5. DEBUGGING A PROGRAM 9

program.

Example

MODULE test;

PROCEDURE Div(a,b: INTEGER): INTEGER,;
BEGIN

RETURN a DIV b
END Div;

PROCEDURE Try;
VAR res:. INTEGER;
BEGIN
res:=Div(1,0);
END Try;

BEGIN
Try;
END test.

When this program is running, an exception is raised and the run-time system
prints the exception location and a stack of procedure calls. If the olptidBENO

is ON, all information will be reported in terms of original (Oberon-2/Modula-2)
source files:

#RTS: No exception handler #6: zero or negative divisor.
test.mod 5
test.mod 11
test.mod 15

The exception was raised in line 6t&ist.mod , theDiv procedure was called
from line 12, while theTry procedure was called from line 16 (module body). If
the optionLINENO is OFF, all information will be reported in terms of generated
C files:

#RTS: No exception handler #6: zero or negative divisor.
test.c 17
test.c 27
test.c 36

Seell.8.2for additional details.

10

CHAPTER 2.

GETTING STARTED

Chapter 3

Configuring the compiler

3.1 System search paths

In order for your operating system to know where to find the executable binary
files which constitute the XDS package, you must set your operating system
search paths appropriately. See the Read Me First file from your on-line docu-
mentation.

3.2 Working configuration

The core part of XDS is themutility, which combines the project subsystem with
Modula-2 and Oberon-2 compilers, accompanied with a set of system files

xm.red Search path redirection file (s8€5.1)

xm.cfg Configuration file (se8.7)

xm.msg Texts of error messages (s&6€)

xm.kwd List of C/C++ keywords and reserved identifiers

Being invoked,xm tries to locate thexm.red file, first in the current directory
and then in the directory wheranis placed (so callechaster redirection filg

Other system files are sought by paths definednmred . If xm.red is not
found, or it does not contain paths for a particular system file, that file is sought in
the current directory and then in the directory whereximautility resides.

LA name of a system file is constructed from the name of the compiler utility and the corre-
spondent filename extension. If you rename xtheutility, you should also rename all system
files.

11

12 CHAPTER 3. CONFIGURING THE COMPILER

A configuration file contains settings that are relevant for all projects. Project
specific settings are defined in project files (8€#. A so-called template file is
used to automate the program build process 58e

A redirection file, a configuration file, and, optionally, a project file and a template
file constitute a working environment for a single execution obtimautility. The
compiler preprocesses files of all these types as describkd.in

Portable software development is one of the main goals of XDS. To achieve that
goal, not only the source texts should be portable between various platforms, but
the environment also. XDS introduces a portable notation for file names that
may be used in all system files and on the command line. The portable notation
combines DOS-like and Unix-like notations (file names are case sensitive):

[drive_letter ™"] unix_file_name

Examples

c:/xds/bin
/mnt/users/alex/cur_pro
cur_pro/sources

Along with the base directorymacro (Seet.4) this portable notation allows to
write all environment files in a platform independent and location independent
manner.

3.3 XDS memory usage

XDS compilers are written in Oberor-2 As any other Oberon-2 program, a
compiler uses garbage collector to deallocate memory. These days, most op-
erating systems, including Windows and Linux, provide virtual memory. If an
Oberon-2 program exceeds the amount of avaiable physical memory, the garbage
collector becomes inefficient. Thus, it is important to restrict the amount of mem-
ory that can be used by an Oberon-2 program. As a rule, such restriction is set
in the configuration or project file (See tIHEAPLIMIT equation). You may

also let the run-time system determine the proper heap size at run time by setting
HEAPLIMIT to zero.

Similarly, the equatiol©OMPILERHEAP should be used to control the amount
of memory used by a compiler itself. That equation is set in the configuration file

2We use XDS in most of our developments.

3.4. DIRECTORY HIERARCHIES 13

(xm.cfg). We recommend to set it according to the amount of physical memory
in your computer:

RAM in megabytes COMPILERHEAP

32-64 16000000
64-128 48000000
more than 128 96000000

It may be necessary to increas€OMPILERHEAP if you get the
"out of memory ”message (F950). Itis very unlikely, GOMPILERHEAP

is set to 16 megabytes or more. Your compilation unit should be very large to
exceed this memory limitNote: if you are using Win32 or X Window API defi-
nition modules, seCOMPILERHEAP to at least 16 megabytes.

Vice versa, if you notice unusually intensive disk activity when compiling your
program, it may indicate that the value of G®MPILERHEAP equation is too
large for your system configuration.

SetCOMPILERHEAP to zero if would prefer the compiler to dynamically ad-
just heap size in accordance with system load.

See9.1for more information on XDS memory management.

3.4 Directory hierarchies

XDS compilers give you complete freedom over where you store both your source
code files and any files which compilers create for you. It is advisable to work in
a project oriented fashion — i.e. to have a separate directory hierarchy for each
independent project.

Due to the re-usable nature of modules written in Modula-2 or Oberon-2, it is
wise to keep a separate directory for those files which are to be made available to
several projects. We will call such files thierary files.

We recommend you to have a separate working directory for each project. You
can also create subdirectories to store symbol files and generated code files. We
recommend to use the supplied script or its customized version to create all sub-
directories and, optionally, a local redirection file or a project file. Refer to the
"Read Me First” file for more information about that script.

14 CHAPTER 3. CONFIGURING THE COMPILER

3.5 XDS search paths

Upon activation, xm looks for a file calledn.red — aredirection file That

file defines paths by which all other files are sought. If a redirection file was
not found in the current directory, the master redirection file is loaded from the
directory where xm executable is placed.

3.5.1 Redirection file

A redirection file consists of several lines of the férm
pattern = directory {";" directory}

pattern is a regular expression with which names of files xm has to open or
create are compared. A pattern usually contains wildcard symbols '*" and '?’,
where

Symbol Matches
* any (possibly empty) string
? any single character.

For a full description of regular expressions 8e& 2

It is also possible to have comment lines in a redirection file. A comment line
should start with the% symbol.

A portable notation (se8.2) is used for directory names or paths. A path may be
absolute or relative, i.e. may consist of full names such as

/usr/myproj/def
or of names relative to the current directory, such as
src/common

denoting the directorgrc/common which is a subdirectory of the current di-
rectory. A single dot as a pathname represents the current directory, a double
dot represents the parent, i.e. the directory which has the current directory as a
subdirectory.

The base directory macfl can be used in a directory name. It denotes the path
to the redirection file. If the redirection file is placed in fhisr/alex directory
then$!/sym denotes théusr/alex/sym directory, wherea$!/.. denotes
the/usr directory.

3See alsal.4

3.5. XDS SEARCH PATHS 15

For any file, its name is sequentially matched with a pattern of each line. If a

match was found, the file is sought in the first of the directories listed on that line,

then in the second directory, and so on until either the file is found, or there are no
more directories to search or there are no more patterns to match.

If xmcould not locate a file which is needed for correct operation, e.g. a necessary
symbol file, it terminates with an appropriate error message.

When creating a filexm also uses redirection, and its behavior is determined by
the OVERWRITE option. If the option was set ONmfirst searches for the file

it is about to create using redirection. Then, if the file was foumapverwrites

it. If no file of the same name as the one which needs to create was found or
the OVERWRITE option was set OFF, then the file is be created in the directory
which appears first in the search path list which pattern matched the filename.

If no pattern matching a given filename can be found inxtnered file, then the
file will be read from (or written to) the current working directory.

Note: If a pattern matching a given filename is found thenmwill notlook into
the current directory, unless it is explicitly specified in the search path.

The following entry inxm.red would be appropriate for searching for the symbol
files (provided that symbol files have the extensgym).

* . sym=sym;/usr/xds/sym;.

Given the above redirection, the compiler will first search for symbol files in the
directorysym which is a subdirectory of the current working directory; then in the
directory storing the XDS library symbol files and then in the current directory.

Example of a redirection file:

xm.msg = /xds/bin
*mod = mod

* def = def

*.0b2 = oberon

*C =cC

*.h = include;/xds/include

*.sym sym; /xds/sym/C

3.5.2 Regular expression

A regular expression is a string containing certain special symbols:

16 CHAPTER 3. CONFIGURING THE COMPILER

Sequence Denotes

* an arbitrary sequence of any characters, possibly empty
(equivalent td\000-\377} expression)
? any single character

(equivalent td\000-\377] expression)

[...] one of the listed characters
{.} an arbitrary sequence of the listed characters, possibly empty
\nnn the ASCII character with octal coden, where n ig0-7]

& the logical operation AND

| the logical operation OR

B the logical operation NOT
(...) the priority of operations

A sequence of the forma-b used within eithef] or {} brackets denotes all
characters frona to b.

Examples

* def
all files which extension igdef

project.*
files which name iproject with an arbitrary extension

.def|.mod
files which extension is eithedef or.mod

{a-z }*X.def
files starting with any sequence of letters, ending in one final "X” and having
the extensiondef .

3.6 Options

Arich set ofxmoptions allows one to control the source language, code generation
and internal limits and settings. We distinguish between boolean options (or just
options) and equations. Asptioncan be set ON (TRUE) or OFF (FALSE), while
anequationvalue is a string. In this chapter we describe only the syntax of setup
directive. The full list ofxmoptions and equations is provided in the Chapter

Options and equations may be set in a configuration file3s@eon the command
line (see4.2), in a project file (sed.5)), and in the source text (S&ey).

3.7. CONFIGURATION FILE 17

The same syntax of a setup directive is used in configuration and project files and

on the command line. The only difference is that arbitrary spaces are permitted in

files, but not on the command line. Option and equation names are case indepen-
dent.

SetupDirective = SetOption
| SetEquation
| DeclareOption
| DeclareEquation
| DeclareSynonym

SetOption = 2 name ('+| ')
SetEquation = '~ name '= [value]
DeclareOption =’ name [+ | V]
DeclareEquation = ’-" name =" [value |
DeclareSynonym = -’ name I’ name

All options and equations used Bynare predeclared.

TheDeclareSynonym directive allows one to use a different name (e.g. shorter
name) for an option or equation.

The old version oSetOption is also supported for convenience:

OldSetOption = '+ name | '~ name

Examples
Directive Meaning
-M2Extensions+ M2EXTENSION is set ON
-Oberon=02 OBERON is set t0"02"
-debug: DEBUG is declared and set OFF
-Demo:+ DEMO is declared and set ON
-Vers:=1.0 VERS is declared and set t4..0"
-A:.genasm A is declared as a synonym fGENASM
+m2extensions M2EXTENSIONS is set OFF

3.7 Configuration file

A configuration file can be used to set the default values of options and equations
(see Chaptes) for all projects (or a set of projects). A non-empty line of a config-
uration file may contain a single compiler option or equation setup directive (see

18 CHAPTER 3. CONFIGURING THE COMPILER

3.6) or a comment. Arbitrary spaces are permitted. TVecharacter indicates a
comment; it causes the rest of a line to be discartiede: the comment character
can not be used when setting an equation.

The master configuration fileplaced along with them utility, usually contains
default settings for the target platform and declarations of platform-specific op-
tions and equations, which may be used in project and template files.

% this is a comment line
% Set equation:

- BSDef = df
% Set predeclared options:
- RangeCheck - % turn range checks off

- M2EXTENSIONS + % allow Modula-2 extensions
% Declare new options:

-iPentium:+

-i80486:-

-i80386: % is equal to -i80386:-
% Declare synonym:

-N :: checknil

-N % disallow NIL checks

% end of configuration file

Figure 3.1: A sample configuration file

3.8 Filename extensions

xm allows you to define what you want to be the standard extensions for each
particular type of file. For instance, you may prefer your Oberon-2 source code
texts to end ino2instead of.ob2

We recommend to either use the traditional extensions or at least the extensions
which describe the kind of file they refer to, and keep same extensions across all
your projects. For example, usgef and.mod for Modula-2 modules,ob2 for
Oberon-2 modules, etc.

Certain other factors must also influence your decisions. Traditionally, Oberon-2
pseudo-definition modules (as created by a browser) are extended vad#i a
With XDS, this may conflict with the extension used for Modula-2 definition mod-
ules. Therefore, the XDS browser (s&2.5 uses the extensiandf by default.

3.9. CUSTOMIZING COMPILER MESSAGES 19

The following filename extensions are usually defined in the configuration file:

DEF extension for Modula-2 definition modules

MOD extension for Modula-2 implementation modules
OBERON extension for Oberon-2 modules

BSDEF extension for Oberon-2 pseudo definition modules
HEADER extension for C header files

CODE extension for generated code files

SYM extension for symbol files

See Tablé.5for the full list of file extensions.

Example (file extension entries in xm.cfg):

-def = def
-mod = mod
-oberon = ob2
-sym = sym

3.9 Customizing compiler messages

The filexm.msg contains texts of error messages in the form
number text

The following is an extract from xm.msg:

001 illegal character
002 comment not closed; started at line %d

042 incompatible assignment

Some messages contain format specifiers for additional arguments. In the above
example, the message 002 contaifédspecifier used to print a line number.

To use a language other than English for compiler messages it is sufficient to
translate xm.msg, preserving error numbers and the order of format specifiers.

20 CHAPTER 3. CONFIGURING THE COMPILER

3.10 XDS and your C compiler

XDS-C can be used as a translator or compiler. In the first case, the C code
generated bxymwill be used for further development or will be ported to another
platform. In the second casem s used as first pass of compilation process; to
get an executable program a C compiler must be used. A C compiler, linker, or
make utility may be invoked seamlessly (se#0.2

Usually, you have to configusemfor your C compiler only once and themwill
do everything to get your program ready for execution.

3.10.1 Building the run-time library

The XDS run-time library is included in an XDS package in C source form, i.e.
for each library module its header file and C source file are provided. For Unix
platforms, a pre-built library file containing object files may be included. This

is not the case for the Windows platform, because different C compilers support
different calling and naming conventions. We recommend to build the library file
for your C compiler or several library files for various C compilers or memory
models. TheLIB/C subdirectory or your XDS installation contains makefiles
which can be used for that purpose. It may be necessary to change a C compiler
name or compiler options in this file.

3.10.2 Configuring XDS for seamless compilation

We will use the ternseamless compilatiahxm is configured to call a C compiler,
linker or make implicitly to prepare an executable for your program. A makefile
can be produced after successful completion of a project and a make utility can be
implicitly called then to compile and link your program.

The compiler uses a template file (S€8) to generate a makefile. The XDS
distribution contains theds.tem template file, which can be used for various C
compilers. The equatioBENV_TARGET determines a target platform, i.e. a file
system, including a representation of a file name, C compiler to use, its options,
etc. By default, the value of this equation is equal to the value cEtité HOST
equation. The configuration fibkem.cfg contains a list of supported platform,

i.e. list of names, that can be used as a valuENY _TARGET equation. We
recommend to set the value of the equation in the beginning of the configuration
file. It may be necessary to change some settings for your platform or append a
new platform. All changes should be donexim.cfg andxds.tem files.

3.10. XDS AND YOUR C COMPILER 21

Note, in the current version it is not possible to append a new platform with
DOS-like file system. We recommend to change settings for platform "MSDOS”,
"0S2” and "WInNT” if necessary.

See2.4for more information.

22

CHAPTER 3. CONFIGURING THE COMPILER

Chapter 4

Using the compiler

4.1 Invoking the compiler

The XDS Modula-2 and Oberon-2 compilers are combined together with the make
subsystem and an Oberon-2 browser into a single utdity,When invoked with-
out parameters, the utility outputs a brief help information.

xmis invoked from the command line of the following form
xm { mode | option | name }

wherename, depending on the operationode can be a module name, a source
file name, or a project file name. Sé for a full description of operation modes.

option is a compiler setup directive (Se€x6). All options are applied to all
operands, notwithstanding their relative order on the command line. On some
platforms, it may be necessary to enclose setup directives in quotation marks:

xm hello.mod ’-checkindex+’

See Chapteb for the list of all compiler options and equations.

4.1.1 Precedence of compiler options

The xm utility receives its options in the following order:

1. from a configuration filexm.cfg (See3.7)
2. from the command line (Sek2)

3. from a project file (if present) (Sekb5)

23

24 CHAPTER 4. USING THE COMPILER

4. from a source text (not all options can be used there) {S8e

At any point during operation, the last value of an option is in effect. Thus, if the
equationOBERON was set taob2in a configuration file, but then set to2 on
the command line, the compiler will use2 as the default Oberon-2 extension.

4.2 XDS compilers operation modes

XDS Modula-2/Oberon-2 compilers have the following operation modes:
Mode Meaning
COMPILE Compile all modules given on the command line
PROJECT Make all projects given on the command line

MAKE Check dependencies and recompile
GEN Generate makefile for all projects
BROWSE Extract definitions from symbol files
HELP Print help and terminate

Both the PROJECT and MAKE modes have two optional operation submodes:
BATCH (see4.2.7) and ALL (see4.2.6§. Two auxiliary operation submodes —
options (seel.2.9 and EQUATIONS (sed.2.9 can be used to inspect the set of
compiler options and equations and their values.

On the command line, the compiler mode is specified with tkiesyymbol fol-
lowed by a mode name. Mode names are not case sensitive, and specifying an
unique portion of a mode name is sufficient, thus

=PROJECTis equivalent ta=p
=BROWSE:is equivalent t=Bro

Operation modes and options can be placed on the command line in arbitrary
order, so the following two command lines are equivalent:

xm =make hello.mod =all -checknil+
xm -checknil+ =a =make hello.mod

4.2.1 COMPILE mode

xm [=compile] { FILENAME | OPTION }

COMPILE is the default mode, and can be invoked simply by supplyimgvith
a source module(s) to compile.Xinis invoked without a given mode, COMPILE
mode is assumed. In order to determine which compiler should be xredooks

4.2. XDS COMPILERS OPERATION MODES 25

at the extensions of the given source files. The default mapping of extensions is
given below :

.mod - Modula-2 implementation module
.def - Modula-2 definition module
.0b2 - Oberon-2 module

For example:

xm hello.mod

will invoke the Modula-2 compiler, whereas:
xm hello.ob2

will invoke the Oberon-2 compiler.

The user is able to reconfigure the extension mapping33gelt is also possible
to override it from the command line using the optidn2 andO2:

xm helloomod +02 (* invokes O2 compiler *)
xm hello.ob2 +m2 (* invokes M2 compiler *)

Note: In the rest of this manual, the COMPILE mode also refers to any case
in which the compilelcompilesa source file, regardless of the actually specified
mode (which can be COMPILE, MAKE, or PROJECT). For instance, an option or
equation, which is stated to affect the compiler behaviour in the COMPILE mode,
is relevant to MAKE and PROJECT modes as well.

4.2.2 MAKE mode

xm =make [=batch] [=all] { FILENAME | OPTION }

In the MAKE mode the compiler determines module dependencies IMPQRT
clauses and then recompiles all necessary modules. Starting from the files on the
command line, it tries to find an Oberon-2 module or a definition and implemen-
taion module for each imported module. It then does the same for each of the
imported modules until all modules are located. Note that a search is made for
source files only. If a source file is not found, the imported modules will not be
appended to the recompile list. See sectidifor more details.

When all modules are gathered, the compiler performs an action according to the
operation submode. If the BATCH submode (de27) was specified, it creates a
batch file of all necessary compilations, rather than actually compiling the source
code.

26 CHAPTER 4. USING THE COMPILER

If the ALL submode (sed.2.6 was specified, all gathered files are recompiled,
otherwise XDS recompiles only the necessary files. Jinart recompilatioral-
gorithm is described id.7.

Usually, a Modula-2 program module or an Oberon-2 top-level module is spec-
ified on the command line. In this case, if thtNK equation is set in either
configuration file oxmcommand line, the linker will be invoked automatically in
case of successful compilation. This feature allows you to build simple programs
without creating project files.

4.2.3 PROJECT mode

xm =project [=batch] [=all] { PROJECTFILE | OPTION }

The PROJECT mode is essentially the same as the MAKE mode except that the
modules to be ‘made’ are provided in a project file. A project file specifies a set of
options and a list of modules. Sées for further details. As in the MAKE mode,

ALL (see4.2.9 and BATCH (seet.2.7) submodes can be used.

If a file extension of a project file is omitted, XDS will use an extension given by
the equatioPRJIEXT (.prj by default).

It may be necessary to compile a single module in the environment specified in a
project file. It can be accomplished in the COMPILE operation mode using with
thePRJ equation:

xm -pri=myproject MyModule.mod
See also

e MAKE operation mode4.2.2
e Make strategy#.6

e Smart recompilationd.7

4.2.4 GEN mode

xm =gen { PROJECTFILE | OPTION }

The GEN operation mode allows one to generate a file containing information
about your project. The most important usage is to generate a makefile, which can

4.2. XDS COMPILERS OPERATION MODES 27

then be passed to the make utility accompanying the "underlaying” C compiler, so
that all generated C files can be compiled and linked into an executable program.

This operation mode can also be used to obtain additional information about your
project, e.g. a list of all modules, import lists, etc.

A so-called template file, specified by ti&EMPLATE equation, is used in this
mode. A template file is a text file, some lines of which are marked with a certain
symbol. All the lines which are not marked are copied to the output file verbatim.
The marked lines are processed in a special way4Sfer more information.

The compiler creates a file with a name specified by the equsti0ANAME . If
the equation is empty, the project file name is used. A file name is then concate-
nated with the extension specified by the equalit{FEXT .

4.2.5 BROWSE mode

xm =browse { MODULENAME | OPTION }

The BROWSE operation mode allows one to generate a pseudo definition module
for an Oberon-2 module. In this mode, the compiler reads a symbol file and pro-

duces a file which contains declarations of all objects exported from the Oberon-2
module, if a format resembling Modula-2 definition modules.

The configuration optioBSDEF specifies the extension of a generated file. If
this option is not set, then the default extensiaf) will be used.

OptionsBSCLOSURE andBSREDEFINE can be used to control the form of a
generated fileNote: theBSTYLE equation (described i®.1.2 is ignored in this
operation mode, and the browse style is always set to DEF.

The MAKEDEF option (See8.1.2 provides an alternative method of producing
pseudo definition modules, preserving so-cadgdortedcomments if necessary.

4.2.6 ALL submode

In both PROJECT and MAKE modes, the compiler checks the time stamps of
the files concerned and recompiles only those files that are necessar.{5ee

If the ALL submode was specified, the time stamps are ignored, and all files are
compiled.

28 CHAPTER 4. USING THE COMPILER

4.2.7 BATCH submode

In the BATCH submode, the compiler creates a batch file of all necessary compi-
lations, rather than actually calling the compilers and compiling the source code.

A batch file is a sequence of lines beginning with the compiler name, followed by
module names to recompile.

The compiler creates a batch file with a name determined by either:

1. The compiler optioBATNAME
2. The project file name (if given)

3. The nameout (if the name could not be determined by the above).

The name is then concatenated with the batch file extension specified by the equa-
tion BATEXT (.bat by default).

See also

e optionLONGNAME (5.1)
e equationBATWIDTH (5.3

4.2.8 OPTIONS submode

The OPTIONS submode allows you to inspect the values of options which are
set in the configuration file, project file and on the command line. It can be used
together with COMPILE (seé.2.1), MAKE (see4.2.2, and PROJECT (sek2.3
modes.

The following command line prints (to the standard output) the list of all defined
options, including all pre-declared options, all options declared in the configura-
tion file, in the project filany.prj and on the command lin&yz option):

Xm =options -prj=my.prj -xyz:+

In the PROJECT mode options are listed for each project file given on the com-
mand line.

See also the EQUATIONS submode.

4.3. FILES GENERATED DURING COMPILATION 29

4.2.9 EQUATIONS submode

The EQUATIONS submode allows you to inspect the values of equations which
are set in the configuration file, project file and on the command line. It can be
used together with COMPILE (se€e2.1), MAKE (see4.2.2, and PROJECT (see
4.2.3 modes.

See also the OPTIONS submode.

4.3 Files generated during compilation

When applied to a file which contains a moduokme, the compilers produce the
following files.

4.3.1 Modula-2 compiler

When applied to a definition module, the Modula-2 compiler producggyaol
file (name.sym and a C header filaméme.h). Generation of a header file can be
prevented by use of tidOHEADER option. The symbol file contains informa-
tion required during compilation of a module which imports the modalme

When applied to an implementation module or a top level module, the Modula-2
compiler produces a C code filegme.q.

4.3.2 Oberon-2 compiler

For all compiled modules, the Oberon-2 compiler producesymbol file
(name.sym), a C header filerfame.h and a code filerfame.q. The symbol
file (name.syn) contains information required during compilation of a module
which imports the moduleame. If the compiler needs to overwrite an existing
symbol file, it will only do so if theCHANGESYM option is set ON.

30 CHAPTER 4. USING THE COMPILER

Command line Generated files
xm Example.def Example.sym
Example.h
Examples xm Example.mod Example.c
xm Win.ob2 +CHANGESYM Win.sym
Win.h
Win.c

4.4 Control file preprocessing

An XDS compiler may read the following control files during execution:

e aredirection file (se8.5.])
e a configuration file (sed.7)
e aproject file (sed.5)

e atemplate file (seé.8)

All these files are preprocessed during read according to the following rules:

A control file is a plain text file containing a sequence of lines. The backslash
character'\") at the end of a line denotes its continuation.

The following constructs are handled during control file preprocessing:

e macros of the kiné(nameg . A macro expands to the value of the equation
nameor, if it does not exist, to the value of the environment variaidee

¢ thebase directorynacro $!) This macro expands to the directory in which
the file containing it resides.

e a set of directives, denoted by the exclamation maltk () as a first non-
whitespace character on a line.

A directive has the following syntax (all keywords are case independent):

Directive = "I" "NEW" SetOption | SetEquation
| "I" "SET" SetOption | SetEquation
| "I" "MESSAGE" Expression
|

“I" "IF" Expression "THEN"

4.5. PROJECT FILES 31

| "I" "ELSIF" Expression "THEN"

| "I" "ELSE"

| "I'" "END".
SetOption = name ("+' | "-").
SetEquation = name "=" string.

The NEWdirective declares a new option or equation. Bl directive changes
the value of an existent option or equation. TRESSAGHlirective prints
Expression value to the standard output. THe directive allows to process or
skip portions of files according to the valueEtpression . IF directives may
be nested.

Expression = Simple [Relation Simple].
Simple = Term { "+" | OR Term }.
Relation = o
Term = Factor { AND Factor }.
Factor = "(" Expression ")".

| String

| NOT Factor

| DEFINED name

| name.
String = "" { character } ™"

| ™ { character } ™.

An operand in an expression is either string, equation name, or option name. In
the case of equation, the value of equation is used. In the case of option, a string
"TRUE" or "FALSE" is used. Thé+" operator denotes string concatenation.
Relation operators perform case insensitive string comparisonNTi@perator

may be applied to a string with valdd RUE" or "FALSE" . The DEFINED
operator yieldSTRUE" if an option or equatiomame is declared antALSE"
otherwise.

See also sectiob.6.

4.5 Project files

A project file has the following structure:

{SetupDirective}
{'module {FileName}}

32 CHAPTER 4. USING THE COMPILER

Setup directives define options and equations that all modules which constitute
the project should be compiled with. See as6and4.4.

Every line in a project file can contain only one setup directive. The character
"9 indicated a comment; it causes the rest of a line to be discaletk: the
comment character can not be used in a string containing equation setting.

EachFileName is a name of a file which should be compiled, linked, or oth-
erwise processed when a project is being built, e.g. a source file, an additional
library, a resource file (on Windows), etc. The compiler processes only Modula-2
and Oberon-2 source files. The type of a file is determined by its extension (by de-
fault Modula-2/Oberon-2 source files extension is assumed). Files of other types
are taken into account only when a template file is processed!(8ee

The compiler recursively scans import lists of all specified Modula-2/Oberon-2
source modules and builds the full list of modules used in the project. Thus,
usually, a project file for an executable program would contain a singidule
directive for the file which contains the main program module and, optionally,
severalmodule directives for non-source files.

At least ondmodule directive should be specified in a project file.

A project file can contain severaDOKUP equations, which allow you to define
additional search paths.

XDS compilers give you complete freedom over where to set options, equations
and redirection directives. However, it is recommended to specify only those
settings in the configuration and redirection files which are applied to all your

projects, and use project files for all project-specific options and redirection direc-
tives.

Given the sample project file shown on Figurd, the compiler will search for
files with.mod and.sym extensions using search paths specified in the project
file beforepaths specified in a redirection file.

A project file is specified explicitly in the PROJECT (s¢2.3 and GEN (see

4.2.4 operation modes. In these modes, all options and equations are set and then
the compiler proceeds through the module list to gather all modules constituting
a project (Sed.6).

Inthe MAKE (seet.2.2 and COMPILE (sed.2.]) operation modes, a project file
can be specified using thRRJ equation. In this case, the module list is ignored,
but all options and equations from the project file are set.

The following command line forces the compiler to compile the mod-
ule helloomod using options and equations specified in the project file

4.6. MAKE STRATEGY 33

-lookup = *.mod = mod
-lookup = *.sym = sym; $(XDSDIR)/sym/C
% check project mode
lif not defined mode then
% by default use debug mode
Inew mode = debug
lend
% report the project mode
Imessage "Making project in the " + mode + " mode"
% set options according to the mode
lif mode = debug then
- gendebug+
- checkrange+
lelse
- gendebug-

Ifi

% specify template file

- template = $!/templates/watcom.tem
Imodule hello

Imodule hello.res

Figure 4.1: A Sample Project File

hello.prj
xm hello.mod -prj=hello.prj

4.6 Make strategy

This section concerns MAKE (sek2.2, PROJECT (seéd.2.3, and GEN (see
4.2.4, operation modes. In these modes, an XDS compiler builds a set of all
modules that constitute the project, starting from the modules specified in a project
file (PROJECT and GEN) or on the command line (MAKE).

The MAKE mode is used in the following examples, but the comments also apply
to the PROJECT and GEN modes.

First, the compiler tries to find all given modules according to the following strat-
egy:

34 CHAPTER 4. USING THE COMPILER

¢ If both filename extension and path are present, the compiler checks if the
given file exists.

xm =make modhello.mod

¢ If only an extension is specified, the compiler seeks the given file using
search paths.

xm =make hello.mod

¢ If no extension is specified, the compiler searches for files with the given
name and the Oberon-2 module extension, Modula-2 implementation mod-
ule extension, and Modula-2 definition module extension.

xm =make hello

An error is raised if more than one file was found, e.g. if doého.ob2
andhello.mod files exist.

Starting from the given files, the compiler tries to find an Oberon-2 source module
or Modula-2 definition and implementation modules for each imported module.

It then tries to do the same for each of the imported modules until all the possi-
ble modules are located. For each module, the compiler checks correspondence
between the file name extension and the kind of the module.

4.7 Smart recompilation

In the MAKE (see4.2.2 and PROJECT (se€2.3 modes, if the ALL (sed.2.9
submode was not specified, an XDS compiler perfosmsrt recompilatiorof
modules which are inconsistent with the available source code files. The complier
uses file modification time to determine which file has been changed. For each
module the decision (to recompile or not) is made only after the decision is made
for all modules on which it depends. A source file is (re)compiled if one or more
of the following conditions is true:

Modula-2 definition module

e the symbol file is missing

e the symbol file is present but its modification date is earlier than that
of the source file or one of the imported symbol files

¢ the header file is missSindNOHEADER option is OFF) or its modifi-
cation date is earlier than that of the source file

4.8. TEMPLATE FILES 35

Modula-2 implementation module

e the code file is missing

e the code file is present but the file modification date is earlier than that
of the source file or one of the imported symbol files (including its
own symbol file)

Modula-2 program module

¢ the code file is missing

¢ the code file is present but the file modification date is earlier than that
of the source file or one of the imported symbol files

Oberon-2 module

e the symbol file is missing

e the symbol file is present but the modification date is earlier than that
of one of the imported symbol files

e the header file is missingNOHEADER option is OFF)
¢ the code file is missing

¢ the code file is present but the file modification date is earlier than that
of the source file or one of the imported symbol files

When theVERBOSE option is set ON, the compiler reports a reason for recompi-
lation of each modulelNote: if an error occured during compilation of a Modula-2
definition module or an Oberon-2 module, all its client modules are not compiled
at all.

4.8 Template files

A template filas used to build a "makefile” in the PROJECT (k2.3 and GEN
(seed.2.4 operation modes, if the optiddAKEFILE is ON.

The compiler copies lines from a template file into the output file verbatim, except
lines marked as requiring further attention. A single character (attention mark) is
specified by the equatioNTTENTION (default is ")

1"MAKEFILE" is a historical name; a linker or library manager response file may be built as
well.

36 CHAPTER 4. USING THE COMPILER

A template file is also subject to preprocessing e

A marked line (or template) has the following forrfiat

Template = { Sentence }.

Sentence = Item { "," Item } ";" | lIterator.

Item = Atom | [Atom | "™] "#" [Extension].
Atom = String | name.

String = " { character } ™

| " { character } ™".
Extension = [">"] Atom.
Iterator = "{" Set "" { Sentence } "}".

Set { Keyword | String }
Keyword = DEF | IMP | OBERON | MAIN
| C | HEADER | ASM | OBJ.

name should be a name of an equation. Not more than three items may be used in
asentence. Afirstitem in a sentence is a format string, while others are arguments.

The XDS distribution contains a template fder.tem which can be used to pro-
duce a makefile for one of the supported C compilers.

4.8.1 Using equation values

In the simplest form, a template line may be used to output a value of an equation.
For example, if the template file contains the line

I "The current project is %s.\n",prj;
and the projecprj/test.prj is processed, the output will contain the line
The current project is prj/test.prj.
Note: the line
I prj;
is valid, but may produce unexpected results under systems in which the backslash
character (V") is used as a directory names separator (e.g. OS/2 or Windows):

prj est.prj

becausé\t" in a format string is replaced with the tab character. Use the fol-
lowing form instead:

2The same syntax is used in thlNK equation.

4.8. TEMPLATE FILES 37

| "%s",prj;

4.8.2 File name construction

The "#" operator constructs a file name from a name and an extension, each
specified as an equation name or literal string. A file is then searched for according
to XDS search paths and the resulting name is substituted. For example, if the file
useful.lib resides in the directory ’../mylibs’ and the redirection file contains
the following line:

*lib = /xds/lib;../mylibs
the line
I "useful"#"lib"
will produce
..Imylibs/useful.lib

If the modifier">" is specified, the compiler assumes that the file being con-
structed is an output file and creates its name according to the strategy for output
files (See3.5.1and theOVERWRITE option).

The"#" operator is also used to represent the current value of an iterator (see
4.8.3. The form in which a name or extension is omitted can be used in an
iterator only.

The form™#" may be used in a second level iterator to represent the current
value of the first level iterator.

4.8.3 lterators

Iterators are used to generate some text for all modules from a given set. Sen-
tences inside the first level of braces are repeated for all modules of the project,
while sentences inside the second level are repeated for all modules imported into
the module currently iterated at the first level. A set is a sequence of keywords
and strings. Each string denotes a specific module, while a keyword denotes all
modules of specific kind.

The meaning of keywords is as follows:

38 CHAPTER 4. USING THE COMPILER

Keyword Meaning

DEF Modula-2 definition module
IMP Modula-2 implementation module
MAIN Modula-2 program module or Oberon-2 module

marked asMAIN
OBERON Oberon module

C C source text
HEADER C header file

ASM assembler source text
OBJ object file

A keyword not listed above is treated as filename extension. Sentences are re-
peated for all files with that extension which are explicitly specified in the project
file using!module directives (seet.5. This allows, for instance, additional
libraries to be specified in a project file:

sample.prj:
-template = mytem.tem
Imodule Sample.mod
Imodule mylib.lib
mytem.tem:
I "0%0s","libxds"#"lib"
{ lib: "+%s"#; }
I "\n"

generated file:

d:\xds\lib\x86\libxds.lib+mylib.lib

4.8.4 Examples

Consider a sample project which consists of a program moduléhich imports
modulesB andC, andB, in turn, importsD (all modules are written in Modula-2):

A

4.8. TEMPLATE FILES 39

The following examples illustrate template files usage:

This template line lists all project modules for which source files are available:
I { imp oberon main: "%s "#, }

For the sample project, it would generate the following line:
A.mod B.mod C.mod D.mod

To output both definition and implementation modules, the following lines may
be used:

I { def : "%s "# }
' { imp oberon main: "%s "#, }
The output would be:
B.def C.def D.def A.mod B.mod C.mod D.mod
The last template line may be used to list all modules along with their import:
I'{ imp main: "%s\n"#, { def: " %s\n"#; } }
The output:

A.mod
B.def
C.def

B.mod
D.def

C.mod

D.mod

40

CHAPTER 4. USING THE COMPILER

Chapter 5

Compiler options and equations

A rich set of XDS compiler options allows you to control the source language,
the generated code, and the internal limits and settings. We distinguish between
boolean options (or just options) and equations. An option can be set ON (TRUE)
or OFF (FALSE), while an equation value is a string.

5.1 Options

Options control the process of compilation, including language extensions, run-
time checks and code generation. An option can be set ON (TRUE) or OFF
(FALSE).

A compiler setup directive (Se&6) is used to set the option value or to declare a
new option.

Options may be set in a configuration file (s&&), on the command line (see
4.2), in a project file (sed.5)). or in the source text (Seg7). At any point of
operation, the last value of an option is in effect.

Alphabetical list of all options along with their descriptions may be found in the
section5.2 See also tables.1 (page4?2), 5.2 (page4?2), 5.3 (page4d) and5.4
(pagedd).

41

CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Option

Meaning

ASSERT

CHECKDIV

CHECKNIL

CHECKSET
CHECKTYPE

CHECKDINDEX | check of dynamic array bounds

CHECKINDEX check of static array bounds

CHECKPROC check of a formal procedure call
CHECKRANGE | range checks

enable ASSERT generation

check for a positive divisor
(DIV and MOD)

NIL pointer dereference check
(range types and enumerations)

range check of set operations
dynamic type guards (Oberon-2 only)

Table 5.1: Run-time checks

Option Meaning

M2ADDTYPES add SHORT and LONG types
M2BASE16 use 16-bits basic types in Modula-2
M2CMPSYM compare symbol files in Modula-2
M2EXTENSIONS | enable Modula-2 extensions
O2ADDKWD enable additonal keywords in Oberon-2

O2EXTENSIONS
O2ISOPRAGMA
O2NUMEXT
STORAGE
TOPSPEED

enable Oberon-2 extensions

enable ISO Modula-2 pragmas in Oberon
enable Oberon-2 scientific extensions
enable default memory management in Modula
enable Topspeed Modula-2-compatible extensi

Table 5.2: Source language control options

-2
ons

43

DNS

5.1. OPTIONS
Option Meaning
_GEN_C__ ANSI C code generation
__GEN_X86__ code generation for 386/486/Pentium/PentiumP
COMMENT copy comments into a generated C code
CONVHDRNAME | use file name in th&include directive
CSTDLIB definition of the C standard library
DIFADR16 SYSTEM.DIFADR returns 16-bits value
GENCDIV generate C division operators
GENCPP generate C++
GENCONSTENUM | generate enumeration as constants
GENCTYPES generate C types
GENDATE insert a date in a C file
GENDEBUG generate code in the debug mode
GENFULLFNAME | generate full name iilineno directive
GENHISTORY enable postmorten history
GENKRC generate K&R C
GENPROCLASS generate a specification of a procedure class
GENPROFILE generate additional code for profiling
GENSIZE evaluate sizes of types
GENTYPEDEF generate typedef’s for types
INDEX16 index is of 16-bits
LINENO generate line numbers in C code files
NOEXTERN do not generate prototypes for external C functi
NOHEADER disable generation of a header file
NOOPTIMIZE disable a set of opimizations
PROCINLINE enable in-line procedure expansion
TARGET16 Cint type is of 16-bits
VERSIONKEY append version key to the module initialization

Table 5.3: Code generator control options

44 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Option Meaning

BSCLOSURE | browse control option

BSREDEFINE | browse control option

CHANGESYM | permission to change a symbol file

FATFS limit file names to 8.3

GCAUTO enables implicit call of the garbage collector
LONGNAME use long names in batch files

M2 force the Modula-2 compiler

MAIN mark an Oberon-2 main module
MAKEDEF generate definition

MAKEFILE generate makefile

02 forces the Oberon-2 compiler
OVERWRITE | create afile, always overwrites the old one
VERBOSE produce verbose messages

WERR treat warnings as errors

WOFF suppress warning messages
XCOMMENTS | preserve exported comments

Table 5.4: Miscellaneous options

5.2 Options reference

This section lists all options in alphabetical order. Those options that may be arbi-
trarily placed in the source code are markethéiee options (See alsé.7). There

are also options which can be placed in a source file, but only in a module header
(i.e. before any of the keyword®EFINITION" , "IMPLEMENTATION", and
"MODULE" These options are marked lasader If an option is not marked ei-

ther as header or inline, then the result of setting it in the source text is undefined.

Operation modes in which an option has effect are listed in square brackets ([])
after the option name; the character *' stands for all operation modes. For ex-
ample, [browse] means that the option is used by the compiler in the BROWSE
operation mode only.

Note: in the MAKE (see4.2.2 and PROJECT (se€.2.3 modes the compiler
switches to the COMPILE (sek2.1) mode to compile each module.

Run-time check options are ON by default. If not explicitly specified, other op-
tions are OFF (FALSE) by default.

__GEN_X86__ [compile]

5.2. OPTIONS REFERENCE 45

The compiler sets this option ON, if the code generation for 386/486/Pen-
tium/PentiumPro is in operation.

The option can be used for compiling different text fragments for different
targets. See alsn.7.2

__GEN_C__ [compile]
The compiler sets this option ON, if the C code generation is in operation.

The option can be used for compiling different text fragments for different
targets. See alsn.7.2

ASSERT [compile] (inline)

If the option is OFF, the compiler ignores all calls of the standard procedure
ASSERT

Warning: Ensure that alASSERTCcalls in your program do not have side
effects (i.e. do not contain calls of other function procedures) before setting
this option OFF.

The option is ON by default.

BSCLOSURE [browse]
Include all visible methods.

If the option is set ON, the browser includes all defined and inherited type-
bound procedure declarations with all record declarations when creating a
pseudo-definition module. See aBd.2

BSREDEFINE [browse]
Include all redefined methods.

If the option is set ON, the browser includes original definitions of any
overwritten type-bound procedures with record declarations. Se8.4lsb

CHANGESYM [compile] (heade)
Permission to change a module interface (a symbol file).

The Oberon-2 compiler creates a temporary symbol file every time an
Oberon-2 module is compiled, compares this symbol file with the exist-
ing one and overwrites it with the new one if necessary. When the option
is OFF (by default), the compiler reports an error if interface of a module
(and, hence, its symbol file) has been changed and does not replace the old
symbol file.

46 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Note: if the M2CMPSYM option is set, the same is valid for compilation
of a Modula-2 definition module, i.e., tteHANGESYM option should
be set ON for the compilation to succeed if a module interface has been
changed.
CHECKDINDEX [compile] (inline)
A check of dynamic array bounds.

If the option is set ON, the compiler generates index checks for dynamic
arrays POINTER TO ARRAY OF)T

The option is ON by default.

CHECKDIV [compile] (inline)

If the option is set ON, the compiler generates a check if a divisor is positive
in DIV andMODpperators.

The option is ON by default.

CHECKINDEX [compile] (inline)
A check of static array bounds.

If the option is set ON, the compiler generates index checks for all arrays
except dynamic (See t@gHECKDINDEX option).

The option is ON by default.

CHECKNIL [compile] (inline)

If the option is set ON, the compiler generates NIL checks on all pointer
dereferences.

The option is ON by default.

CHECKPROC [compile] (inline)

If the option is set ON, the compiler generates a NIL check when calling a
procedure variable.

The option is ON by default.

CHECKRANGE [compile] (inline)

If the option is set ON, the compiler generates range checks for range types
and enumerations.

The option is ON by default.

5.2. OPTIONS REFERENCE 47

CHECKSET [compile] (inline)

If the option is set ON, the compiler generates range checks for set opera-
tions (NCL, EXCL, set aggregates).

The option is ON by default.

CHECKTYPE [compile, Oberon-2 only]ifline)
If the option is set ON, the compiler generates dynamic type guards.
The option is ON by default.

COMMENT [compile] (heade)

If the option is set ON, the compiler copies comments to appropriate places
in the generated C code. Comments from an Oberon-2 module are only
inserted into the C code file and not into the header file.

CONVHDRNAME [compile]

If the option is set ON, the compiler uses a file name in#imelude
directive. Otherwise the compiler generates a module name postfixed by
the header file extension.

CSTDLIB [compileforeign definition only(heade}

The option should be set when compiling a foreign definition module, oth-
erwise it will be ignored. If the option is set ON, the compiler uses angle
brackets<> in the#include directive, when importing the foreign defi-
nition. Otherwise the compiler uses quotes.

#include <stdio.h>
#include "MyLib.h"

DIFADR16 [compile]

If the option is set ON, the compiler assumes that the difference between
addresses on the target platform is a 16-bit integer value, otherwise a 32-bit
integer value.

The correct setting of the option is required for kieDADRSUBADRand
DIFADR system functions to work correctly.

Seell.8.1for further details.

FATFS [*]
Forces the compiler to limit file names to FAT "8.3” convention.

48 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

GCAUTO [compiletop-level module onlyheade)

Enables implicit calls of the garbage collector in the generated program.
The option is ignored for all modules except the top-level module of the
program. We recommend to set the option in the project or configuration
file.

See als®.1

GENCDIV [compile] (heade}
If the option is set ON, the compiler transla@s/ andMODbperators to C
division operator$ and% By default, XDS generates ??7?.
GENCPP [compile] (heade)
If the option is set ON, the compiler generates C++ code. By default, ANSI
C code is generated. (See alSENKRC).
GENCONSTENUM [compile] (heade}
If this option is set ON, a Modula-2 enumeration type is translated to a set
of integer constants. Otherwise, it is translated to a C enumeratimnm).
GENCTYPES [compile] (heade}

If the option is set ON, the compiler generates standard C type names when-
ever possible, otherwise names defined in run-time support are used.

Seell.8.2for further details.

GENDATE [compile]

If the option is set ON (by default), the compiler inserts the current date into
a generated C file.

GENDEBUG [compile] (heade)

If the option is set ON, the compiler generates code in debug mode. If your
program is compiled in this mode, the run-time system prints a stack of
procedure calls (a file name and a number of a line) on abnormal termination
of your program. If the optiohINENO is also ON, the stack is printed in
terms of original (Oberon-2/Modula-2) source files, otherwise a file name
and a number of a line of generated C files is printed.

Note: Setting the option ON will significantly enlarge your program and
slow it down.

Seell.8.2for further details.

5.2. OPTIONS REFERENCE 49

GENFULLFNAME [compile]

If the option is set ON, the compiler generates full file names, including file
paths from redirection directives, #lineno directive.

GENHISTORY [compile] (heade)

If the option is set ON, the run-time system prints a stack of procedure calls
(a file name and a line number) on abnormal termination of your program.
It should be set when compiling a main module of the program. In this case
the required part of the run-time system will be added to the program. The
optionLINENO should be set for all modules in the program.

See2.5for an example.

GENKRC [compile] (heade)

If the option is set ON, the compiler generates K&R C (no types in func-
tion prototypes, etc). It can be useful when porting software to platforms
for which ANSI C compilers are not available. By default, the compiler

generates ANSI C code.

Seell.4and11.8.2for further detalils.
Note: Seeting this option ON removes the line length limit in the generated
C text (seeGENWIDTH).

GENPROCLASS [compile] (heade)

If the option is set ON, the compiler inserts a special macro
X2C_PROCLASSall in function prototypes for Modula-2 and Oberon-2
procedures. The option is set ON by default.

Seell.4and11.8.2for further details.

GENPROFILE [compile] (heade}

If the option is set ON, the compiler generates additional code to provide a
profile of the program. Sekl.8.2for further detalils.

GENSIZE [compile] (heade)

As specified in the language reports the call of standard function SIZE can
be used in constant expression. Due to the specific of compilation to an
intermediate language, the compiler does not know the sizes of most types
during compilation.

When the option is OFF, the compiler will report an error if an attempt is
made to use SIZE of almost all types in a constant expression:

50 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

CONST size = SIZE(MyRecord);

Note: sizes of whole typeBOOLEANCHAR and set types are known to
the compiler.

Seell.8.3for further details.

GENTYPEDEF [compile] (inline)

There are two possible ways to generate a declaration of a restandt()

type in C — by usingypedef of not. In most cases the way used by the
compiler is of no concern. However, when writing a foreign language inter-
face module (See Chapt#0) it is desirable to control type declarations.

When the option is ON, the compiler uses tgpedef form for all the
types declared. The option can be used in the source text, e.g:

<* GENTYPEDEF + *>
TYPE FILE = RECORD END;
<* GENTYPEDEF - *>

Seell.8.2for further details.

INDEX16 [compile]

If the option is set ON, the compiler assumes that an index is of 16 bits on
the target platform. By default, an index is of 32 bits.

Seell.8.1for further details.

LINENO [compile] (heade)
If the option is set ON, the compiler inserts a line of the form
#line lineno [module]

into the generated C code or header file for every generated statement, forc-
ing the C compiler and other tools (such as a debugger) to refer to the orig-
inal Modula-2 or Oberon-2 source text instead of the generated C code.

Note: Seeting this option ON removes the line length limit in the generated
C text (seeGENWIDTH).

LONGNAME [make,project]
Use long names.

If the option is set ON, the compiler uses full path as a prefix for all module
names in the generated batch files. See 4l2q.

5.2. OPTIONS REFERENCE 51

M2 [compile]
Force the Modula-2 compiler.
If the option is set ON, the Modula-2 compiler is invoked regardless of file
extension. The option is ignored in MAKE and PROJECT modes.
M2ADDTYPES [compile,Modula-2 only] keade}
Add short and long modifications of whole types.

If the option is set ON, the compiler recognizes the tyf¢$ORTINT
LONGINT, SHORTCARBNALONGCARBs pervasive identifiers .

Warning: Usage of additional types may cause problems with the software
portability to other compilers.
M2BASE16 [compile,Modula-2 only] keade}
If the option is set ON, the basic typdBITEGER CARDINAL and
BITSET are 16 bits wide in Modula-2. By default, they are 32 bits wide.
M2CMPSYM [compile,Modula-2 only]

If the option is set ON, the Modula-2 compiler compares the symbol
file generated for a definition module with the old version exactly as the
Oberon-2 compiler does. If the symbol files are equal, the old one is
preserved, otherwise the compiler overwrites symbol file, but only if the
CHANGESYM option is set ON.

M2EXTENSIONS [compile,Modula-2 only] feade)
If the option is set ON, the compiler allows XDS Modula-2 language exten-

sions (se€@.6), such as line comment{" "), read-only parameters, etc., to
be used in the source code.
Warning: Extensions usage may cause problems with porting to third-party
compilers.

MAIN [compile, Oberon-2 only]iHeade}
Mark the Oberon-2 main module.

If the option is set ON, the compiler generates a program entry point (‘main’
function) for the Oberon-2 module (S&€l.). Recommended to be used
in a module header.

MAKEDEF [compile,Oberon-2 only]

Forces the Oberon-2 compiler to generate a (pseudo-) definition module af-
ter successful compilation of an Oberon-2 module. The compiler preserves

52 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

the so-callecexportedcomments (i.e. comments started wifk* *) if the
XCOMMENTS option is set ON.

SeeB8.1.2

MAKEFILE [project]
Forces the compiler to generate a makefile after successful compilation of a
project. See alsd.2.4and4.8.

NOEXTERN [compile] (inline)

If the option is set ON, the compiler does not generate C declarations for
procedures defined as external.

Seel0.3.2for further details.

NOHEADER [compile,make,project]heade}
If the option is set ON, the compiler does not create a C header file.
See alsd1.8.4

NOOPTIMIZE [compile] If the option is set OFF (by default), the compiler
performs a set of optimizations, including constant expression evaluation,

constant propagation, etc. If the option is ON, the compiler produces less
efficient, but more readable text.

We recommend to switch the option ON only if you are using XDS as a
translator, i.e. if you will read or maintain the generated code.
02 [compile]
Force Oberon-2 compiler.
If the option is set ON, the Oberon-2 compiler is invoked regardless of the
file extension. The option is ignored in MAKE and PROJECT modes.
O2ADDKWD [compile,Oberon-2 only]H{eade)

Allows Modula-2 exceptions (see.2.13 and finalization (se&.2.129 to
be used in Oberon-2 programs, adding keywded«CEPT RETRY and
FINALLY .

Warning: Usage of this extension will prevent your program from porting
to other Oberon-2 compilers.
O2EXTENSIONS [compile,Oberon-2 only]i{eade}

If the option is set ON, the compiler allows Oberon-2 language extensions
to be used (Se&.5).

5.2. OPTIONS REFERENCE 53

Warning: Extensions usage will affect portability to third-party Oberon-2
compilers.

O2ISOPRAGMA [compile,Oberon-2 only]

If the option is set ON, the compiler allows the ISO Modula-2 style pragmas
<* *> t0 be used in Oberon-2. S8&.3and7.7.

Warning: Usage of ISO Modula-2 pragmas may cause problems when
porting source code to third-party Oberon-2 compilers.

O2NUMEXT [compile,Oberon-2 only]i{eade}

If the option is set ON, the compiler allows the Oberon-2 scientific language
extensions to be used (S8), including COMPLEXandLONGCOMPLEX
types and the in-line exponentiation operator.

Warning: Usage of additional types may cause problems with portability
to other compilers.

OVERWRITE [*]

The option changes the way the compiler selects a directory for output files.
If the option is OFF, the compiler always creates a file in the directory which
appears first in the search path list correspondent to a pattern matching the
file name. Otherwise, the compiler overwrites the old file, if it does exist in
any directory of that list. See al§b5.1

PROCINLINE [compile]

If the option is ON, the compiler tries to expand procedures in-line. In-line
expansion of a procedure eliminates the overhead produced by a procedure
call, parameter passing, register saving, etc. In addition, more optimizations
become possible because the optimizer may process the actual parameters
used in a particular call.

A procedure is not expanded in-line under the following circumstances:

e the procedure is deemed too complex or too large by the compiler.
¢ there are too many calls of the procedure.
e the procedure is recursive.

STORAGE [compile, Modula-2 only] keade}

If the option is set ON, the compiler uses the default memory allocation and
deallocation procedures for the standard proceddE8andDISPOSE

Warning: Usage of this option may cause problems with software portabil-
ity to other compilers.

54 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

TARGET16 [compile]

If the option is set ON, the compiler assumes thmiC type to be 16 bits
wide on the target platform.

Seell.8.1for further details.

VERBOSE [make,project]
If the option is set ON, the compiler will report a reason for each module
(re)compilation (Sed.7).
VERSIONKEY [compile]
This option may be used to perform version checks at link time. If the option
is set ON, the compiler generates a hame of a module body as composition
of
e a module name
e astring” BEGIN_”
e atime stamp
e values of optionsSTARGET16, INDEX16 and DIFADR16 in the
packed form

If a Modula-2 definition module or an Oberon-2 module imported by differ-
ent compilation units has the same version, the same name is generated for
each call of the module body. In all other cases unresolved references will
be reported at link time.

If the option is OFF, the compiler generates module body names in a form:
<module_name> BEGIN.

Note: the option should be set when compiling a Modula-2 definition mod-
ule or an Oberon-2 module.

Seell.2for further details.

WERR [*] (inline)

When the optiotWERRnnr(e.g. WERR301}.is set ON, the compiler treats
the warningnnn (301 in the above example) as error. See the xm.msg file
for warning texts and numbers.

-WERR+Horces the compiler to treat all warnings as errors.

WOFF [*] (inline)

5.3. EQUATIONS 55

When the optionWOFFnnn(e.g. WOFF30) is set ON, the compiler does
not report the warninginn (301 in the above example). See the xm.msg
file for warning texts and numbers.

-WOFF+disables all warnings.

XCOMMENTS [compile,Oberon-2 only]

If the option is set ON, the browser includes so-cakeg@ortedcomments
(i.e. comments which start with(** ”) into a generated pseudo definition
module.

See als@.1.2

5.3 Equations

An equationis a pair fame,value), wherevalue isingeneral case an arbitrary
string. Some equations have a limited set of valid values, some may not have the
empty string as a value.

A compiler setup directive (Sex6) is used to set an equation value or to declare
a new equation.

Equations may be set in a configuration file (8e8, on the command line (see
4.2) and in a project file (seé.5). Some equations may be set in the source text,
at an arbitrary position (marked adine in the reference), or only in the module
header (marked dsade}. At any point of operation, the most recent value of an
equation is in effect.

Alphabetical list of all equations may be found in the sectoh See also tables
5.5(page56), 5.6 (page56), 5.7 (pages7)

56

CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

Name Default | File type

BATEXT .bat recompilation batch file

BSDEF .odf pseudo-definition file created by browser

CODE .C generated C code file

DEF def Modula-2 definition module

HEADER .h generated C header file

MKFEXT | .mkf makefile

MOD .mod | Modula-2 implementation or main module

OBERON | .ob2 Oberon-2 module

OBJEXT .0 object file

PRJEXT prj project file

SYM .sym | symbol file

Table 5.5: File extensions

Name Default | Meaning

ALIGNMENT 4 data alignmentlease read details
below)

COPYRIGHT copyright note

ENUMSIZE 4 default size of enumeration types

GCTHRESHOLD garbage collector threshold (obspo-
lete)

GENIDLEN 30 length of an identifier in the gener-
ated C text

GENINDENT 3 indentation

GENWIDTH 78 line width in the generated C text

HEAPLIMIT 0 generated program heap limit

SETSIZE 4 default size of small set types

STACKLIMIT 0 generated program stack limit

Table 5.6: Code generator equations

5.3. EQUATIONS

Name Default | Meaning

ATTENTION ! attention character in template files

BATNAME out batch file name

BATWIDTH 128 maximum line width in a batch file

BSTYLE DEF | browse style (Se8.1.2

COMPILERHEAP heap limit of the compiler

COMPILERTHRES compiler’s garbage collector thresho
(obsolete)

DECOR hrtp control of compiler messages

ENV_HOST host platform

ENV_TARGET target platform

ERRFMT Seeb.5 | error message format

ERRLIM 16 maximum number of errors

FILE name of the file being compiled

LINK linker command line

LOOKUP lookup directive

MKFNAME makefile name

MODULE name of the module being compiled

PRJ project file name

PROJECT project name

TABSTOP 8 tabulation alignment

TEMPLATE template name (for makefile)

Table 5.7: Miscellaneous equations

57

Id

58 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

5.4 Equations reference

Operation modes in which an equation has effect are enclosed in square brackets
([) after the equation name; the character *' stands for all operation modes.
For example [browse] means that the equation is used by the compiler in the
BROWSE operation mode onlyNote: the compiler switches from the MAKE

and PROJECT mode to the COMPILE mode to compile a module.

ALIGNMENT [compile] (inline)

This equation sets théata alignment Valid values are: 1,2,4, or 8. See
11.8.3for further details.

ATTENTION [project,gen]

The equation defines an attention character which is used in template files
"1” by default). See4.8.

BATEXT [make,projechatch submode

Sets the file extension for recompilation batch files (by defdoalt). See
4.2.7.

BATNAME [make,projechatch submode
Sets the batch file name.

The name of the project file will be used if no batch file name is explicitly
specified. Sed.2.7.

BATWIDTH [make,projechatch submode

Sets the maximum width of a line in a generated batch file (by default 128).
Seed.2.7.

BSDEF [browse]

Sets the file extension for pseudo-definition modules created by the browser
(by default.odf). See4.2.5

BSTYLE [browse]
Sets thestyleof generated pseudo-definition modules. 8de2

CODE [*]
Sets the file extension for code files generated by the compiler (by default

.C).

5.4. EQUATIONS REFERENCE 59

COMPILERTHRES [*]

This equation is left for compatibility; it is ignored by the compiler. In ver-
sions prior to 2.50, it was used to fine tune the compiler’s garbage collector.

See als@®.3.

COMPILERHEAP [

Sets the maximum amount of heap memory (in bytes), that can be used by
the compiler. For systems with virtual memory, we recommend to use a
value which is less than the amount of physical memory.

Setting this equation to zero forces adaptive compiler heap size adjustment
according to system load.

COPYRIGHT [compile]

This copyright note line will be inserted as a comment into all generated C
code/header files. Sdd.1, 11.8.5

DECOR [¥]

The equation controls output of the xm utility. The value of equation is
a string that contains any combination of letters "h”, "t”, "r”, "p” (capital
letters are also allowed). Each character turns on output of

h header line, which contains the name and version of the compiler’s front-
end and back-end

p progress messages

r compiler report: number of errors, lines, etc.

t the summary of compilation of multiple files
By default, the equation value is "hrt”.
DEF [*]
Sets the file extension for Modula-2 definition modules (by defalef).

ENUMSIZE [compile](nline)

Sets the default size for enumeration types in bytes (1,2, or 4). If an enu-
meration type does not fit in the current default size, the smallest suitable
size will be taken.

ENV_HOST [*]
A symbolic name of the host platform. See aB0.2

60 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

ENV_TARGET [*]

Sets a symbolic name of a target platform. A platform is a combination
of operating system, file system, C compiler, its options, etc. See a list of
available platforms ixm.cfg . See als@®.10.2

ERRFMT [*]
Sets the error message format. Se&for details.

ERRLIM [*]
Sets the maximum number of errors allowed for one compilation unit (by
default 16).

FILE [compile]
The compiler sets this equation to the name of the currently compiled file.
See also th&/ODULE equation.

GCTHRESHOLD [compiletop-level module only

This equation is left for compatibility; it is ignored by the compiler. In
versions prior to 2.50, it was used to fine tune the garbage collector.

See als®.1

GENIDLEN [compile]

The maximum length of an identifier in the generated C code (by default

30). Note: the identifier length limit cannot be less than 6 characters. Small

values result in a more compact but less readable text. SeéhlRo
GENINDENT [compile]

Sets indentation in the generated code (by default 3 characters).

GENWIDTH [compile]

The maximum width of a line in generated C code/header files (by default
78).

Note: This equation is ignored and the maximun length of the line is not
limited if at least one of the optiodldNENO andGENKRC is set ON.

HEADER [¥]

Sets the file extension for ANSI C header files generated by compiler (by
default.h).

5.4. EQUATIONS REFERENCE 61

HEAPLIMIT [compiletop-level module only

Sets the maximum amount of heap memory, that can be allocated by the
generated program. The value is set in bytes.

Setting this equation to zero enables the run-time system to dynamically
adjust heap size according to application’s memory demands and system
load.

The equation should be set when the top-level module of the program is
compiled. We recommend to set it in a project file or the configuration file.

See als®.1

LINK [project]

Defines a command line, which will be executed after a successful comple-
tion of a project. As a rule, the equation is used for calling a linker or make
utility.

See2.4for examples.

LOOKUP [4]
Syntax:
-LOOKUP = pattern = directory {";" directory }

The equation can be used for defining additional search paths that would
complement those set in the redirection file. A configuration or project file
may contain severdlOOKUP equations; they are also permitted on the
command line.

See als®.5.1and4.5.

MKFEXT [gen]
Sets the file extension for generated makefiles (by defiankit). See4.2.4

MKFNAME [gen]
Sets the name for a generated makefile. £2el

MOD [*]
Sets the file extension for Modula-2 implementation and program modules
(by default. mod).

MODULE [compile]

The compiler sets this equation to the name of the currently compiled mod-
ule. See also thEILE equation.

62 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

OBERON [*]
Sets the file extension for Oberon-2 modules (by defallp).

OBJEXT [*]
Sets the file extension for object files (by defaa)t

PRJ [compile,make,project]

In the COMPILE and MAKE operation modes, the equation defines a
project file to read settings from. In the PROJECT mode, the compiler sets
this equation to a project file name from the command line.£52&

PRJEXT [compile,make,project]
Sets the file extension for project files (by defaplj). See4.2.3

PROJECT [compile,make,project]

If a project file name is defined, the compiler sets the equation to a project
name without a file path and extension. For example, if the project file name

is pri/Work.prj , the value of the equation is set\dork. The equation
may be used, for instance, in a template file to set the name of the executable
file.

SETSIZE [compile](nline)

Sets the default size for small (16 elements or less) set types in bytes (1,2, or
4). If a set type does not fit in the current default size, the smallest suitable
size will be taken.

STACKLIMIT [compiletop-level module only

Sets the maximum size of the stack in a generated program. The value is set
in bytes.

The equation should be set when a top-level module of a program is com-
piled. We recommend to set the option in the project or configuration file.

SYM [*]
Sets the file extension for symbol files (by defaaitm). See4.3.

TABSTOP [gen]

When reading text files, the compiler replaces the ASCII TAB character
with the number of spaces required to align text (by defAABSTOP is

equal to 8). A wrong value may cause misplaced comments in a generated
pseudo-definition module, incorrect error location in an error message, etc.
We recommend to set this equation to the number used in your text editor.

5.5. ERROR MESSAGE FORMAT SPECIFICATION 63

TEMPLATE [gen]
Sets a name of a template file. Se8.

5.5 Error message format specification

The format in which XDS reports errors is user configurable throughEfRe
RFMT equation. Its syntax is as follows:

{ string "," [argument] ";" }

Any format specification allowed in the C procedyentf can be used in
string

Argument Type Meaning

line integer position in a source text

column integer position in a source text

file string name of a source file

module string module name

errmsg string message text

errno integer error code

language string Oberon-2 or Modula-2

mode string ERROR or WARNING or FAULT
utility string name of an utility

Argument names are not case sensitive. By default, the error message format
includes the following clauses:

"(%s" file; — afile name

"%d",line; — aline number

",%d",column; — acolumn number

") [%.1s] ",mode; — the first letter of an error mode
"%s\n",errmsg; — anerror message

If a warning is reported for the fileest. mod at line 5, column 6, the generated
error message will look like this:

(test.mod 5,6) [W] variable declared but never used

5.6 The system module COMPILER

The system modul€OMPILERprovides two procedures which allow you to use
compile-time values of options and equations in your Modula-2 or Oberon-2 pro-

64 CHAPTER 5. COMPILER OPTIONS AND EQUATIONS

gram:

PROCEDURE OPTION(<constant string>): BOOLEAN;
PROCEDURE EQUATION(<constant string>): <constant string>;

Both this procedures are evaluated at compile-time and may be used in constant
expressions.

Note: The COMPILERmModule is non-standard.

Examples

Printf.printf("This program is optimized for the %s CPU\n",
COMPILER.EQUATION("CPU"));

IF COMPILER.OPTION("_GEN_C__") THEN

END;

Chapter 6

Compiler messages

This chapter gives explanation for compiler diagnostics. For each error, an error
number is provided along with a text of error message and an explanation. An
error message can contain a format specifier in the fdmifior a number o€b6s

for a string. In this case, an argument (or arguments) is described on the next line.

In most cases the compiler prints a source line in which the error was found. The
position of the error in the line is marked with a dollar sign placed directly before
the point at which the error occurred.

6.1 Lexical errors

EOO1
illegal character

All characters within the Modula-2 or Oberon-2 character sets are acceptable.
Control characters in the ran@€ to 37C are ignored. All other characters, e.g.
Y%are invalid.

E002
comment not closed; started at line %d (line number)

This error is reported if a closing comment bracket is omitted for a comment
started at the given line.

E003
illegal number

This error is reported in the following cases:

65

66 CHAPTER 6. COMPILER MESSAGES

e a numeric constant contains a character other than a 0ign (for octal
constants)..9 for decimal,0..9,A..F for hexadecimal).

e an exponent indicator is not followed by an integer

e an illegal suffix is used after a number, e)" in Modula-2 or"C" or
"B" in Oberon-2.

E004
string literal not closed or too long

This error usually occurs if a closing quote is omitted or does not match the open-
ing quote. Note that a string literal is limited to a single line and its size cannot
exceed 256 characters. In Modula-2, string concatenation may be used to build
long literal strings.

FO05
unexpected end of file

Input file ends before end of a module.

EO006
identifier too long

Length of an identifier exceeds compiler limit (127 characters).

FO10
source text read error

A read error occurs while reading source text.

EO012
character constant too large (377C or OFFX is maximum)

The meaning of this message is obvious.

E171
illegal structure of conditional compilation options

This error is reported if a structure of conditiorigl statements is broken, e.g.
there is ndF for anEND ELSE, or ELSIF clause or there is nBNDfor anlF .

E172

conditional compilation option starts with incorrect
symbol

IF , ELSIF , ELSE, ENDor identifier expected.

F173

pragma not closed; started at line %d (line number)

6.2. SYNTAX ERRORS 67

This error is reported if a closing brackét" is omitted for a pragma started at
the given line.

F174
unexpected end of file while skipping; see at %d (line
number)

Input file ended while the compiler was skipping source text according to the
conditional compilation statement. It may be a result of a missedEND *>
clause. Check the pragma at the given line.

E175
invalid pragma syntax

Check the manual for the pragma syntax.

6.2 Syntax errors

EOO7
identifier expected

The compiler expects an identifier at the indicated position.

EO008
expected symbol %s (symbol)

The compiler expects the given symbol at the indicated position. The symbol may
be one of the following:

| ; : . |) =
() {) , - .
DO END OF THEN TO UNTIL IMPORT

MODULE

EO81
expected start of factor

The compiler expects start édctor at the indicated position, i.e. an identifier,
literal value, aggregate, left parenthesis, etc. See the syntax of the language for
more information.

E082
expected start of declaration

68 CHAPTER 6. COMPILER MESSAGES

The compiler expects start of declaration at the indicated position, i.e. one of
the keywords: "CONST", "VAR", "TYPE", "PROCEDURE""BEGIN" , or
"END".

EO83
expected start of type

The compiler expects start of a type at the indicated position. See the syntax of
the language for more information.

EO085
expected expression

The compiler expects expression at the indicated position.

EO86
expected start of statement

The compiler expects start of a statement at the indicated position. See the syntax
of the language for more information.

6.3 Semantic errors

EO020
undeclared identifier "%s" (name)

The given identifier has no definition in the current scope.

EO021
type identifier "%s" shall not be used in declaring
itself (name)

An identifier being declared as a type shall not be used in declaring that type,
unless that type is a new pointer type or a new procedure type. This error will be
reported for the following example

TYPE
Rec = RECORD
next: POINTER TO Rec;
END;

use the following declarations instead:

TYPE

6.3. SEMANTIC ERRORS 69

Ptr = POINTER TO Rec;
Rec = RECORD

next: Ptr;
END;

E022

identifier "%s" was already defined at %s[%d.%d]
(name,file name,line,column)

E028

identifier "%s" was already defined in other module
(name)

An identifier being declared is already known in the current context (the name
used has some other meaning). If a file name and text position of previous defini-
tion are known, the compiler reports error 022 otherwise 028.

E023
procedure with forward declaration cannot be a code
procedure

A forward declaration of a procedure is followed by a declaration of a code pro-
cedure.

EO024
recursive import not allowed

A module imports itself. Example:

MODULE xyz;
IMPORT xyz;

END xyz.

E025
unsatisfied exported object

An object exported from a local object is not defined there. Example:
MODULE M; (* local module *)
EXPORT Foo;

END M;

70 CHAPTER 6. COMPILER MESSAGES

E026
identifier "%s" is used in its own declaration, see
%s[%d.%d]

An identfier cannot be used in its own declaration, like in:

CONST ¢ = 1,
PROCEDURE proc;

CONST c¢c = ¢ + 1,
END proc;

EO027
illegal usage of module identifier "%s" (module name)

An identifier denoting module cannot be used at the indicated position.

E029

incompatible types: "%s" "%s" (type,type)
EO030

incompatible types

The compiler reports this error in the following cases:

e operands in an expression are not expression compatible

e an expression is not compatible with the type of the variable in an assign-
ment statement

e an actual parameter is not compatible with the type of the formal parameter
in a procedure call

The compiler reports error 29 if it can display incompatible types and error 30
otherwise.

EO031
identifier does not denote a type

An identifier denoting a type is expected at the indicated position.

E032
scalar type expected

The compiler expects a scalar type (real, integer, cardinal, range, enumeration,
CHARorBOOLEAN

EO33
ordinal type expected

6.3. SEMANTIC ERRORS 71

The compiler expects a value, variable, or type designator of ordinal type, i.e.
CHARBOOLEANenumeration, integer, or cardinal type or a subrange of one of
those types.

E034
invalid combination of parameters in type conversion

According to the language definition this combination of parameters in a call of
the standard procedukéAL is not valid.

EO035
NEW: "%s" not known in this scope (ALLOCATE or DYNALLO-
CATE)

A call to NEWs treated as a call tALLOCATE(or DYNALLOCATHor open
arrays). The required procedure is not visible in this scope. It must be either
imported or implemented.

Note: In XDS, the default memory managemet routines may be enabled by setting
the STORAGE option ON.

EO036
DISPOSE: "%s" not known in this scope (DEALLOCATE or
DYNDEALLOCATE)

A call to DISPOSE: s treated as a call tDEALLOCATHor DYNDEALLOCATE
for open arrays). The required procedure is not visible in this scope. It must be
either imported or implemented.

Note: In xds, the default memory managemet routines may be enabled by setting
the STORAGE option ON.

EO037
procedure "%s" should be a proper procedure (procedure
name)

In Modula-2, calls oNEWANdDISPOSEare substituted by calls &LLOCATE

and DEALLOCATE(for dynamic arrays by calls oDYNALLOCATEand
DYNDEALLOCATEThe error is reported if one of those procedures is declared
as a function.

EO038
illegal number of parameters "%s" (procedure name)

In Modula-2, calls oNEWANdDISPOSEare substituted by calls &LLOCATE
and DEALLOCATE(for dynamic arrays by calls oDYNALLOCATEand
DYNDEALLOCATEThe error is reported if a number of parameters in the decla-
ration of a substitution procedure is wrong.

72 CHAPTER 6. COMPILER MESSAGES

EO039
procedure "%s": %s parameter expected for "%s" (proce-
dure name,"VAR” or "value”,parameter name)

In Modula-2, calls oNEWANdDISPOSEare substituted by calls &LLOCATE
and DEALLOCATE(for dynamic arrays by calls oDYNALLOCATEand
DYNDEALLOCATEThe error is reported if the kind (variable or value) of the
given parameter in the declaration of a substitution procedure is wrong.

E040
procedure "%s": type of parameter "%s" mismatch

In Modula-2, calls oNEWANdDISPOSEare substituted by calls &LLOCATE
and DEALLOCATE(for dynamic arrays by calls oDYNALLOCATEand
DYNDEALLOCATEThe error is reported if a type of the given parameter in the
declaration of a substitution procedure is wrong.

EO041

guard or test type is not an extension of variable

type

In an Oberon-2 type tesv (IS T) or type quard\{(T)), T should be an exten-
sion of the static type of.

E043
illegal result type of procedure

A type cannot be a result type of a function procedure (language or implementa-
tion restriction).

E044
incompatible result types

A result type of a procedure does not match those of a forward definition or defi-
nition of an overriden method.

EO046
illegal usage of open array type

Open arraysARRAY OJusage is restricted to pointer base types, element types
of open array types, and formal parameter types.

E047
fewer actual than formal parameters

The number of actual parameters in a procedure call is less than the number of
formal parameters.

E048

6.3. SEMANTIC ERRORS 73

more actual than formal parameters

The number of actual parameters in a procedure call is greater than the number of
formal parameters.

E049
sequence parameter should be of SYSTEM.BYTE or
SYSTEM.LOC type

The only valid types of a sequence parameter &¢STEM.BYTE and
SYSTEM.LOC

EO050

object is not array

EO051

object is not record
EO052

object is not pointer
EO053

object is not set

The compiler expects an object of the given type at the indicated position.

EO054
object is not variable

The compiler expects a variable (designator) at the indicated position.

EO55
object is not procedure: %s (procedure name)

The compiler expects a procedure designator at the indicated position.

EO057
a call of super method is valid in method redifinition
only

A call of a super method (type-bound procedure bound to a base type) is valid
only in a redifinition of that method:

PROCEDURE (p: P) Foo;
BEGIN

p.Foo”
END Foo.

EO058
type-bound procedure is not defined for the base type

74 CHAPTER 6. COMPILER MESSAGES

In a call of a super method (type-bound procedure bound to a baseptyjme)
eitherFoo is not defined for a base type pfor there is no base type.

E059
object is neither a pointer nor a VAR-parameter record

The Oberon-2 compiler reports this error in the following cases:

e inatypetesv IS T ortype guardv(T) , v should be a designator de-
noting either pointer or variable parameter of a record typshould be a
record or pointer type

¢ in a declaration of type-bound procedure a receiver may be either a variable
parameter of a record type or a value parameter of a pointer type.

EO060
pointer not bound to record or array type

In Oberon-2, a pointer base type must be an array or record type. For instance, the
declarationTYPE P = POINTER TO INTEGER invalid.

EO061
dimension too large or negative

The second parameter of the LEN function is either negative or larger than the
maximum dimension of the given array.

E062
pointer not bound to record

The Oberon-2 compiler reports this error in the following cases:

e inatypetesv IS T ortype guard/(T) , if v is a pointer it should be a
pointer to record

¢ in a type-bound procedure declaration, if a receiver is a pointer, it should be
a pointer to record

E064
base type of open array aggregate should be a simple

type
A base type of an open array aggreg#®BRAY OF T{}) cannot be a record or
array type.

E065
the record type is from another module

6.3. SEMANTIC ERRORS 75

A procedure bound to a record type should be declared in the same module as the
record type.

E067
receiver type should be exported %s (name of type)

A receiver type for an exported type-bound procedure should also be exported.

EO068
this type-bound procedure cannot be called from a
record

The receiver parameter of this type-bound procedure is of a pointer type, hence
it cannot be called from a designator of a record type. Note that if a receiver
parameter is of a record type, such type-bound procedure can be called from a
designator of a pointer type as well.

EO069
wrong mode of receiver type

A mode of receiver type in a type-bound procedure redefinition does not match
the previous definition.

EO71
non-Oberon type cannot be used in specific Oberon-2
construct

A (object of) non-Oberon type (imported from a non-Oberon module or declared
with direct language specification) cannot be used in specific Oberon-2 constructs
(type-bound procedures, type guards, etc).

EQ72
illegal order of redefinition of type-bound procedures

A type-bound procedure for an extended type is defined before a type-bound pro-
cedure with the same name for a base type.

EOQ74
redefined type-bound procedure should be exported

A redefined type-bound procedure should be exported if both its receiver type and
redefining procedure are exported.

EO75
function procedure without RETURN statement

A function procedure has rRETURNstatement and so cannot return a result.
EO76

76 CHAPTER 6. COMPILER MESSAGES

value is required
The compiler expects an expression at the indicated position.

EQ78
SIZE (TSIZE) cannot be applied to an open array

Standard functionSIZE andTSIZE cannot be used to evaluate size of an open
array designator or type in the standard mode. If language extensions are enabled,
the compiler allows to appl$IZE to an open array designator, but not type.

E087
expression should be constant

The compiler cannot evaluate this expression at compile time. It should be con-
stant according to the language definition.

E088
identifier does not match block name

An identifier at the end of a procedure or module does not match the one in the
procedure or module header. The error may occur as a result of incorrect pairing
of ENBs with headers.

E089
procedure not implemented "%s"

An exported procedure or forward procedure is not declared. This error often
occurs due to comment misplacement.

E090
proper procedure is expected

A function is called as a proper procedure. It must be called in an expression.
A function result can be ignored for procedures definedGs, "Pascal"
"StdCall" or"SysCall* only. Seel0.2

E091
call of proper procedure in expression

A proper procedure is called in an expression.

EQ092
code procedure is not allowed in definition module

E093
not allowed in definition module

The error is reported for a language feature that can not be used in definition
module, including:

6.3. SEMANTIC ERRORS 77

local modules

elaboration of an opaque type

forward declaration
e procedure or module body

e read-only parameters

E094
allowed only in definition module

The error is reported for a language feature that can be used in definition module
only, i.e. read-only variables and record fields (extended Modula-2).

E095
allowed only in global scope

The error is reported for a language feature that can be used only in the global
module scope, including:

¢ elaboration of an opaque type (Modula-2)
e export marks (Oberon-2)

e type-bound procedure definition (Oberon-2)

E096
unsatisfied opaque type "%s"

An opaque type declared in a definition module must be elaborated in the imple-
mentation module.

E097
unsatisfied forward type "%s"

A type T can be introduced in a declaration of a pointer type as in:
TYPE Foo = POINTER TO T;
This typeT must then be declared at the same scope.

E098
allowed only for value parameter

The error is reported for a language feature that can be applied to value parameter
only (not toVARparameters), such as a read-only parameter mark/ (6.

78 CHAPTER 6. COMPILER MESSAGES

E099
RETURN allowed only in procedure body

In Oberon-2, th(RETURMstatement is not allowed in a module body.

E100
illegal order of declarations

In Oberon-2. all constants, types and variables in one declaration sequence must
be declared before any procedure declaration.

E102
language extension is not allowed %s (specification)

The error is reported for a language feature that can be used only if language exten-
sions are switched on. See opticAM@EXTENSIONS andO2EXTENSIONS.

E107
shall not have a value less than 0O

The error reported if a value of a (constant) expression cannot be negative, includ-
ing:

e second operand @IV andMOD

e repetition count in an array constructexpr BY count)

E109
forward type cannot be opaque

A forward typeT (declared a3YPE Foo = POINTER TO TYcannot be elab-
orated as an opaque type, i.e. declare@BE T = <opaque type>).

E110
illegal length, %d was expected (expected number of elements)

Wrong number of elements in an array constructor.

E111
repetition counter must be an expression of a whole
number type

A repetition counter in an array constructor must be of a whole number type.

E112
expression for field "%s" was expected (field name)

The error is reported if a record constructor does not contain an expression for the
given field.

6.3. SEMANTIC ERRORS 79

E113
no variant is associated with the value of the
expression

The error is reported if a record constructor for a record type with variant part
does not have a variant for the given value of a record tag an@ltB& clause is
omitted.

E114
cannot declare type-bound procedure: "%s" is declared
as a field

A type-bound procedure has the same name as a field already declared in that type
or one of its base types.

E116
field "%s" is not exported (field name)

The given field is not exported, put export mark into the declaration of the record
type.

E118
base type is not allowed for non-Oberon record

A record type can be defined as an extension of another type, only if it is an
Oberon-2 record type.

E119
variant fields are not allowed in Oberon record

A record with variant parts cannot be declared as an Oberon-2 record.

E120
field of Oberon type is not allowed in non-Oberon
record

This is considered an error because garbage collector does not trace non-Oberon
records and reference to an object may be lost.

E121
illegal use of type designator "%s"

A type designator cannot be used in a statement position.

E122
expression out of bounds

A value which can be checked at compile-time is out of range.
E123

80 CHAPTER 6. COMPILER MESSAGES

designator is read-only

A designator marked as read-only cannot be used in a position where its value
may be changed.

E124
low bound greater than high bound

A lower bound of a range is greater than high bound.

E125
EXIT not within LOOP statement

An EXIT statement specifies termination of the enclogi@PPstatement. This
EXIT is not within anyLOOPR

E126
case label defined more then once

In a CASEstatement all labels must have different values. The label at the indi-
cated position is alfeady used in tl@ASEstatement.

E128
FOR-loop control variable must be declared in the
local scope

A control variable of aFORloop must be declared locally in the procedure or
module which body contains the loop.

E129
more expressions than fields in a record type

In a record constructor there are more expressions than there are fields in the
record type (or in this variant of a variant record type).

E131
zero step in FOR statement

In aFORstatement, the step cannot be equal to zero.

E132
shall be an open array designator

If language extensions are OFF, the standard procedi@®é&l can be applied to
open arrays only, otherwise to any array designator.

E133
implementation limit exceeded for set base type
(length > %d)

6.3. SEMANTIC ERRORS 81

The compiler restricts length of a base type of set
(MAX(base)-MIN(base)+1). Note, that the limit does not depend on
the low bound, so the following set types are valid:

SET OF [-256..-5]
SET OF [MAX(INTEGER)-512..MAX(INTEGER)]

E134
must be value of unsigned type

The compiler expects a parameter of this standard procedure to be a value of an
unsigned type.

E135
must be value of pointer type

The compiler expects a parameter of this standard procedure to be a value
of a pointer type. Note: the SYSTEM.ADDRESSype is defined as
POINTER TO LOC

E136
must be type designator

The compiler expects a parameter of this standard procedure to be a type designa-
tor.

E137
numeric constant does not have a defined storage size

The compiler must know the size of a value in the given context. A numeric
constant cannot be used at the indicated position.

E139
must be (qualified) identifier which denotes variable

The ISO standard requires an "entire designator” in this context, e.g. as a param-
eter of theSIZE function. It may be either a variable (which may be a formal
parameter) or a field of a record variable withik\&TH statement that applies to

that variable.

E140
interrupt procedures are not implemented yet

Oberon compilers from ETH implements so-called interrupt procedures, marked
by the symbol "+”.

PROCEDURE + Foo;

In XDS, this feature is not implemented.

82 CHAPTER 6. COMPILER MESSAGES

E141
opaque type can not be defined as Oberon pointer

A Modula-2 opaque type cannot be elaborated as an Oberon-2 pointer. See Chap-
ter 10.

E143
not allowed in Oberon

The compiler reports this error for language features that are vaild in Modula-2
but not in Oberon-2, including:

e enumeration types
e range types

e local modules

E144
pointer and record types are mixed in type test

In an Oberon-2 type test IS T or a type guard/(T) , bothv andT must be
either pointers or records.

E145
control variable must not be a formal parameter

According to ISO Modula-2, a control variable inFDRstatement cannot be a
formal parameter (eith&rARor value).

E146
control variable cannot be exported

A variable used as a control variable ilF®Rstatement or an Oberon\ITH
statement cannot be exported.

E147
control variable cannot be threatened

A control variable of &ORstatement or an OberonVZITH statement has been
threatened inside the body of the statement, or in a nested procedure called from
the body. Threatening actions include assignment and passing/A&R@arameter

to a user-defined or standard proced&BR INC, DEC etc). The compiler also
reports the error 158 to indicate the exact place of threatening.

E148
finalization is allowed only in module block

A procedure body can not contain a finalization part.

6.3. SEMANTIC ERRORS 83

E149
RETRY is allowed only in exceptional part of block

This RETRYstatement is outside an exceptional part of a block.

E150
wrong value of direct language specification

A value must be either one of the stringséMfdula” , "Oberon" ,

"C" "Pascal" , "SysCall" , or"StdCall") or the corresponding integer
value. We recommend to use strings, integer values are preserved for backward
compatibility.

E151
must be of integer type

The compiler expects a variable of an integer type.

E152

incompatible calling conventions: "%s" "%s"
E153

incompatible calling conventions

Two procedure types have different calling conventions. The error can reported in
the following cases:

e a procedure is assigned to a procedure variable
e aprocedure is passed as a parameter

e two procedure values are compared

The compiler reports error 152 if it can show incompatible types and error 153
otherwise.

E154

procedure "%s" does not match previous definition:

was: %s now: %s (procedure name,proctype,proctype)

E155

procedure "%s" does not match previous definition (pro-
cedure name)

A procedure heading must have the same number of parameters, the same param-
eter modes (variable or value) and the same types as in the previous declaration.
A previous declaration may be one of the following:

e procedure declaration in a definition module

84 CHAPTER 6. COMPILER MESSAGES

e forward procedure declaration

e type-bound procedure declaration in a base type

The compiler reports error 154 if it can show incompatible types and error 155
otherwise.

E156
procedure designator is expected

A designator which appears to be called (efpo(...)) does not denote a
procedure.

E158
control variable "%s" is threatened here (variable name)

A control variable of dFORstatement or an OberonATH statement is threat-
ened at the indicated position. It means that its value may be changed. See also
error 147.

E159
type of aggregate is not set or array or record

An object which appears to be an aggregate (é&go{...}) begins with an
identifier which is not a set, record, or array type.

E160
invalid parameter specification: expected NIL

Only one special kind of variable parameter is implement¢édR [NIL] . It
means thaNIL may be passed to this parameter.

E161
VAR [NIL] parameter expected

A parameter of th&YSTEM.VALID function must be & AR [NIL] parameter.

E162
%s value should be in % {} (not "%s") (equation,set of valid val-
ues,new value)

This error is reported for a wrong setting &LIGNMENT ENUMSIZE or
SETSIZE equation.

E163
control variable cannot not be volatile

A control variable of aFORstatement cannot be marked as volatile. See the
VOLATILE option.

6.3. SEMANTIC ERRORS 85

E200
not yet implemented

This language feature is not implemented yet.

E201
real overflow or underflow in constant expression

This error is to be reported if a real overflow (underflow) occurs during evaluation
of a constant expression.

E202
integer overflow in constant expression

The compiler uses 64-bits (signed) arithmetics for whole numbers. The error is
reported if an overflow occurs during evaluation of a constant expression. In the
following example, an error will be reported for the assignment statement, while
constant definition is valid.

MODULE Test;

CONST
VeryBigConstant = MAX(CARDINAL)*2; (* OK *)
TooBigConstant = VeryBigConstant*VeryBigConstant; (* OK %)
END Test.
E203

division by zero
The second operand oV, MODREMor"/" operator is zero.

E206
array length is too large or less then zero

The array length is either negative or exceeds implementation limit.

E208
CASE statement always fails

The error is reported if a case select expression can be evaluated at compile-
time and there is no variant corresponding to its value, andEI®E clause

is omitted. If not constantly evaluated, tHBASE statement would cause the
caseSelectException exception at run-time.

E219
too many nested open array types (implementation limit

86 CHAPTER 6. COMPILER MESSAGES

%d) (implementation limit)

The compiler (more precisely, run-time support) puts a limit on the number of
nested open array types (or dimensions). Note, that there is no limit for arrays
with specified length, because such arrays do not require special support in run-
time system.

E220
heirarchy of record extensions too high
(implementation limit %d) (implementation limit)

The run-time system puts a limit on the level of record extensions. It is required
for efficient implementaion of type tests and type guards.

E221
procedure declaration nesting limit (%d) has been
exceeded (implementation limit)

The compiler puts a limit on the number of procedures nested inside each other.
When modules are nested inside procedures, only the level of procedure declara-
tions is counted.

E281
type-bound procedure is not valid as procedure value

A type-bound procedure cannot be assigned to a variable of procedure type.

E282
local procedure is not valid as procedure value "%s"
(procedure name)

A procedure local to another one cannot be assigned to a variable of procedure
type.

E283
code (or external) procedure is not valid as procedure
value

A code procedure and external procedure cannot be assigned to a variable of pro-
cedure type.

6.4 Symbol files read/write errors

F190
incorrect header in symbol file "%s" (module name)

6.4. SYMBOL FILES READ/WRITE ERRORS 87

A symbol file for the given module is corrupted. Recompile it.

F191
incorrect version of symbol file "%s" (%d instead of
%d) (module name, symfile version, current version)

The given symbol file is generated by a different version of the compiler. Re-
compile the respecitve source or use compatible versions of the compiler and/or
symbol file.

F192
key inconsistency of imported module "%s" (module name)

The error occurs if an interface of some module is changed but not all its clients
(modules that imports from it) were recompiled. For exampleAlenports from
B andM B in turn imports frommt

DEFINITION MODULE M; DEFINITION MODULE B; MODULE A,
IMPORT M; IMPORT M,B;
END M. END B. END A.

Let us recompileM.def , B.def and thenM.def again. The error will be
reported when compilinh.mod, because version keys of modéimported
throughB is not equal to the version key Mimported directly.

To fix the problem modules must be compiled in appropriate order. We recom-
mend to use the XDS compiler make facility, i.e. to compile your program in the
MAKE (see4.2.2 or PROJECT (seé.2.3 operation mode. If you always use the
make facility this error will never be reported.

F193
generation of new symbol file not allowed

The Oberon-2 compiler creates a temporary symbol file every time a module is
compiled, compares that symbol file with the existing one and overwrites it with
the new one if necessary. When tGeIANGESYM option is OFF (by default),

the compiler reports an error if the symbol file (and hence the module interface)
had been changed and does not replace the old symbol file.

Note: if the M2CMPSYM option is set ON, the same applies to compilation of a
Modula-2 definition module, i.e., theHANGESYM option should be set if the
module interface has been changed.

F194
module name does not match symbol file name "%s" (module
name)

88 CHAPTER 6. COMPILER MESSAGES

A module name used in dMPORTclause must be equal to the actual name of
the module, written in the module heading.

F195
cannot read symbol file "%s" generated by %s (module
name, compiler name)

The symbol file for the given module is generated by another XDS compiler. Na-
tive code compilers can read symbol files generatedD$-C on the same plat-
form, but not vice versa.

6.5 Internal errors

This section lists internal compiler errors. In some cases such a error may occur
as a result of inadequate recovery from previous errors in your source text. In any
case we recommend to provide us with a bug report, including:

e version of the compiler
e description of your environment (OS, CPU)

e minimal source text reproducing the error

F103

INTERNAL ERROR(ME): value expected
F104

INTERNAL ERROR(ME): designator expected
F105

INTERNAL ERROR(ME): statement expected
F106

INTERNAL ERROR(ME): node type = NIL
F142

INTERNAL ERROR(ME): can not generate code
F196

INTERNAL ERROR: incorrect sym ident %d while reading
symbol file "%s"

F197

INTERNAL ASSERT(%d) while reading symbol file "%s"

6.6. WARNINGS 89

6.6 Warnings

In many cases a warning may help you to find a bug or a serious drawback in your
source text. We recommend not to switch warnings off and carefully check all of
them. In many cases warnings have helped us to find and fix bugs very quickly
(note that XDS compilers are written in XDS Oberon-2 and Modula-2).

Warnings described in this section are reported by M@S-C andNative XDS.
Each of these products may report additional warnings. Native XDS compilers
fulfil more accurate analysis of the source code and report more warnings.

W300
variable declared but never used

This variable is of no use, it is not exported, assigned, passed as a parameter, or
used in an expression. The compiler will not allocate space for it.

w301
parameter is never used

This parameter is not used in the procedure.

W302
value was assigned but never used

The current version of the compiler does not report this warning.

W303
procedure declared but never used

This procedure is not exported, called or assigned. The compiler will not generate
it.

W304
possibly used before definition "%s" (variable name)

This warning is reported if a value of the variable may be undefined at the in-
dicated position. Note, that it is just a warning. The compiler may be mistaken
in complex contexts. In the following examply;” will be assigned at the first
iteration, however, the compiler will report a warning, because it does not trace
execution of thé&-ORstatement.

PROCEDURE Foo;
VAR x,y: INTEGER,
BEGIN
FOR x:=0 TO 2 DO
IF x = 0 THEN y:=1

90 CHAPTER 6. COMPILER MESSAGES

ELSE INC(y) (* warning is reported here *)
END;
END;
END Foo;

This warning is not reported for global variables.

W305
constant declared but never used

The current version of the compiler does not report this warning.

W310
infinite loop

Execution of this loopl(OOR WHILE or REPEAT will not terminate normally.
It means that statements after the loop will never be executed and the compiler
will not generate them. Check that the loop was intentionally made infinite.

W311
unreachable code

This code cannot be executed and the compiler will not generate it (dead code
elimination). It may be statements afteRETURNASSERT(FALSE), HALT,
infinite loop, statements under const&ALSE condition (F FALSE THEN),

etc.

w312
loop is executed exactly once

It may be a loop like

FOR =1 TO 1 DO ... END;
or

LOOP ...; EXIT END;
Check that you wrote it intentionally.

w314
variable "%s" has compile time defined value here

The compiler was able to determine the run-time value of the given variable (due
to constant propagation) and will use it instead of accessing the variable. For the
following example

I:=5; IF i = 5 THEN S END;
the compiler will generate:

6.6. WARNINGS 91

i:=5; S;
This warning is not reported for global variables.

W315
NIL dereference

The compiler knows that a value of a pointer variable is NIL (due to constant
propagation), e.g:

p:=NIL;
p”.field:=1,

The code will be generated and will cause "invalidLocation” exception at run-
time.

This warning is not reported for global variables.

W316
this SYSTEM procedure is not described in Modula-2 1SO
standard

This warning is reported in order to simplify porting your program to other
Modula-2 compilers.

W317
VAR parameter is used here, check that it is not
threatened inside WITH

A variable parameter of a pointer type is used as a control variable in an Oberon-2
WITH statement. The compiler cannot check that it is not changed ingldeél
In the the following exampl&ptr” and, hencép” becomeNIL insideWITH

VAR ptr: P;

PROCEDURE proc(VAR p: P);
BEGIN
WITH p: P1 DO
ptr:=NIL,;
p.i:=1;
END;
END proc;

BEGIN

proc(ptr);
END

92 CHAPTER 6. COMPILER MESSAGES

We recommend to avoid using variable parameters of pointer typ&/$Tlinl state-
ments.

W318
redundant FOR statement

TheFORstatement is redundant (and not generated) if its low and high bounds can
be evaluted at compile-time and it would be executed zero times, or if its body is
empty.

6.7 Pragma warnings

W320
undeclared option "%s"

An undeclared option is used. Its value is assumed BAIESE

W322
undeclared equation "%s"

An undeclared equation is used. Its value is undefined.

w321

option "%s" is already defined
w323

equation "%s" is already defined

The option (equation) is already defined, second declaration is ignored.

W390
obsolete pragma setting

The syntax used is obsolete. The next release of the compiler will not understand
it. We recommend to rewrite the clause using the new syntax.

6.8 Native XDS warnings

W900
redundant code eliminated

This warning is reported if a program fragment does not influence to the program
execution, e.g:

i:=1;

6.8. NATIVE XDS WARNINGS 93

i:=2;
The first assignemnt is redundant and will be deleted.

W90l
redundant code not eliminated - can raise exception

The same as W900, but the redundant code is preserved because it can raise an
exception, e.g.:

i:=a DIV b; (* raises exception if b <= 0 *)
i:=2;
W902
constant condition eliminated
The warning is reported if a boolean condition can be evaluated at run-time, e.g.
IF (i=1) & (i=1) THEN (* the second condition is TRUE *)
or
j=2;
IF (i=1) OR (j#2) THEN (* the second condition is FALSE *)

W903
function result is not used

The compiler ignores function result, like in:
IF Foo() THEN END;

W910

realValueException will be raised here
W911

wholeValueException will be raised here
W912

wholeDivException will be raised here
W913

indexException will be raised here
w914

rangeException will be raised here
W915

invalidLocation exception will be raised here

A warning from this group is reported if the compiler determines that the excep-
tion will be raised in the code corresponding to this program fragment. In this case
the fragment is omitted and the compiler generates a call of a run-time procedure
which will raise this exception.

94 CHAPTER 6. COMPILER MESSAGES

6.9 XDS-C errors

This section describes errors reported by the C code generator (back-end). The
code generator is invoked only if no errors are found by the language parser.

E1001
parameter "%s" is not declared (parameter name)

An unknown parameter name is used in a protocol string of a code procedure.

E1002

can not generate recursive type definition
E1018

can not generate recursive type declaration

In C, a recursive type definition must contain a struct, while in
Modula-2/Oberon-2 this is done via forward declaration of a pointer type.
The following types cannot be generated in C:

TYPE P = POINTER TO P;

or

TYPE P = POINTER TO A:
A = ARRAY [0..1] OF P;

We feel that such types are of very low importance in real programs.

E1003
external names conflict: "%s.%s" and "%s.%s"

The compiler forms an external name (name of exported object) in the form
<module name>_<object name> . The error is reported if external names
of two distinct objects are equal.

E1004
external name "%s.%s" conflict with standard name
(xm.kwd)

The same as previous error, an external name is equal to a name defined in the
xm.kwd file.

E1005
unimplemented system procedure

This standard (system) procedure is not implemented yet.

E1006
undefined array length for dimension %d

6.9. XDS-C ERRORS 95

The LEN function cannot be applied to an open array parameter of a procedure
with the following calling conventions!'C" , "SysCall" , "StdCall* . In

the case of a "normal” (Oberon-2/Modula-2) procedure the compiler passes an
additional parameter for each dimension (length in this dimension)."€br
"SysCall" ,"StdCall* procedures only an address of an array is passed.

E1007
undefined array size for dimension %d

The compiler cannot evaluate the array size.

E1014
can not get size of (%s) (type)

The error is reported if the compiler cannot evaluate size of this type. See also the
GENSIZE option.

E1015
too many parameters

The implementation puts a limit on the number of parameters of a generated pro-
cedure (256). Note, that a source procedure may have less parameters, because
additional parameters are passed for:

e Open array parameters
e variable parameters of record type in Oberon-2

e functions returning compound types

E1008

can not generate expression
E1009

can not generate |-value type cast
E1010

can not generate type conversion
E1011

can not generate aggregate
E1012

can not generate statement

E1013

cannot generate constant aggregate of this type
E1016

can not generate type designator
E1017

96 CHAPTER 6. COMPILER MESSAGES

can not generate type declaration
E1019
can not generate object declaration

An error of this group usually means that some rare language feature (or combi-
nation) is not implemented yet. Please provide us with a bug report containing a
miminal test case.

Chapter 7

XDS Modula-2

This chapter covers details of the XDS implementation of the Modula-2 language.
In the standard modeXxDS Modula-2 complies with ISO 10514 (See the state-
ment of compliance and further details 7nl). The compatibility rules are de-
scribed in7.4. The differences between ISO Modula-2 and the language described
in the 4th edition of Wirth’s “Programming in Modula-2”[V]are listed in7.2
Language extensions are described.i

7.1 1SO Standard compliance

XDS Modula-2 partially complies with the requirements of ISO 10514. The de-
tails of non-conformities are as follows:

e Not all libraries are available in the current release.

e The current release may impose some restrictions on using new language
features.

See ChapteA for further details.

7.1.1 Ordering of declarations

XDS Modula-2 is a so-called ‘single-pass’ implementation. It means that all
identifiers must be declared before use. According to the International Stan-
dard thisdeclare-before-usapproach is perfectly valid. The alternative approach,

When optionsVI2EXTENSIONS andM2ADDTYPES are OFF

97

98 CHAPTER 7. XDS MODULA-2

(declare-before-use-in-declarationgan be used in so-called ‘multi-pass’ imple-
mentations.

A forward declaration must be used to allow forward references to a procedure
which actual declaration appears later in the source text.

Example

PROCEDURE a(x: INTEGER); FORWARD,;
(* FORWARD declaration *)

PROCEDURE b(x: INTEGER);
BEGIN

a(x-1);
END b;

PROCEDURE a(n: INTEGER);
(* proper procedure declaration *)
BEGIN
b(n-1);
END a;

To provide source compatibility between ‘single-pass’ and ‘multi-pass’ imple-
mentations, the Standard requires that all conforming ‘multi-pass’ implementa-
tions accept and correctly process F@RWARDIrective.

7.2 New language’s features

The language described in the International Standard varies in many details from
the one described in Wirth’s “Programming in Modula-2/}/].

The most important innovations are

e complex numbers
e module finalization
e exception handling

e array and record constructors

7.2. NEW LANGUAGE’S FEATURES 99

e four new system modules

¢ standard library

Note: The system modules (except the moda¥STENlare not embedded in the
compiler and are implemented as separate modules.

7.2.1 Lexis

The ISO Modula-2 has some new keywords (table page99) and pervasive
identifiers (tabler.2, pagel00), and provides alternatives for some symbols (ta-

ble 7.3, pagel00. It also introduces the syntax for source code directives (or
pragmas):

Pragma = "<*' pragma_body "*>"

The Standard does not specify a syntapfgma_body . In XDS, source code

directives are used for in-line option setting and for conditional compilation. See
7.7.1for further details.

AND ARRAY BEGIN

BY CASE CONST

DEFINITION DIV DO

ELSE ELSIF END

EXIT EXCEPT (se€7.2.13 EXPORT

FINALLY (see7.2.12 FOR FORWARD (sed.1.])

FROM IF IMPLEMENTATION

IMPORT IN LOOP

MOD MODULE NOT

OF OR PACKEDSET (see
7.2.3

POINTER PROCEDURE QUALIFIED

RECORD REM (se€.2.9 RETRY (se€7.2.13

REPEAT RETURN SET

THEN TO TYPE

UNTIL VAR WHILE

WITH

Table 7.1: Modula-2 keywords

100 CHAPTER 7. XDS MODULA-2

ABS BITSET

BOOLEAN CARDINAL

CAP CHR

CHAR COMPLEX7(2.2)

CMPLX (7.2.2) DEC

DISPOSE EXCL

FALSE FLOAT

HALT HIGH

IM (7.2.2) INC

INCL INT (7.2.10)

INTERRUPTIBLE (7.2.18) INTEGER

LENGTH (7.2.4) LFLOAT (7.2.10)

LONGCOMPLEX7(2.2) LONGREAL

MAX MIN

NEW NIL

ODD ORD

PROC PROTECTION 7(2.18)

RE (7.2.2) REAL

SIZE TRUE

TRUNC UNINTERRUPTIBLE
(7.2.18)

VAL

Table 7.2: Modula-2 pervasive identifiers

Symbol Meaning Alternative
[left bracket (!
] right bracket N
{ left brace (
} right brace)
| case separator !
- dereference @

Table 7.3: Modula-2 alternative symbols

7.2. NEW LANGUAGE’S FEATURES 101

7.2.2 Complex types

TypesCOMPLEXndLONGCOMPLESan be used to represent complex numbers.
These types differ in a the range and precision. CABVIPLEXype is defined as

a (REAL,REAL) pair, while LONGCOMPLE2ONsIsts of a pair ocONGREAL
values.

There is no notation for a complex literal. A complex value can be obtained by
applying the standard functiddMPLXo two reals. If bothtCMPLXarguments are
real constants the result is the complex constant.

CONST i = CMPLX(0.0,1.0);

If both expressions are of tHREALtype, or if one is of theREAL type and the

other is a real constant, the function returr@@MPLEXalue. If both expressions
are of theLONGREAIltype, or if one is of thdc. ONGREAItype and the other is
a real constant the function returnE @NGCOMPLBEXlue. The following table

summarizes the permitted types and the result type:

| REAL LONGREAL real constant
REAL REAL error COMPLEX
LONGREAL error LONGCOMPLEX LONGCOMPLEX
real constant COMPLEX LONGCOMPLEX complex constant

Standard functionREandIM can be used to obtain a real or imaginary part of a
value of a complex type. Both functions have one formal parameter. If the actual
parameter is of th€ OMPLEXype, both functions return REAL value; if the
parameter is of the ONGCOMPLEXpe, functions return &ONGREALvalue;
otherwise the parameter should be a complex constant and functions return a real
constant.

CONST one = IM(CMPLX(0.0,1.0));

There are four arithmetic binary operators for operands of a complex type: addi-
tion (+), subtraction{), multiplication ¢), and division (). The following table
indicates the result of an operation for permitted combinations:

‘ COMPLEX LONGCOMPLEX complex constant
COMPLEX COMPLEX error COMPLEX
LONGCOMPLEX error LONGCOMPLEX LONGCOMPLEX
complex constant COMPLEX LONGCOMPLEX complex constant

There are two arithmetic unary operators that can be applied to the values of a
complex type: identity€) and negation-(). The result is of the operand’s type.

102 CHAPTER 7. XDS MODULA-2

Two complex comparison operators are provided for operands of complex type:
equality €) and inequality €>).

Example

PROCEDURE abs(z: COMPLEX): REAL;
BEGIN

RETURN RealMath.sqrt(RE(z)*RE(z)+IM(z)*IM(2))
END abs;

7.2.3 Sets and packedsets

A set or packedsétype defines a new elementary type whose set of values is the
power set of an associated ordinal type calleddahse typef the set or packedset

type.

SetType = SET OF Type;
PackedsetType = PACKEDSET OF Type;

The International Standard does not require a specific representation for set types.
Packedset types representation has to be mapped to the individual bits of a particu-
lar underlying architecture. The standard tyyl@ SET is a predefined packedset

type.

The current XDS implementation does not distinguish between set and packedset
types. A set of at least 256 elements can be defined.

All set operators, namely unior), difference {), intersection{), and symmet-
rical difference [), can be applied to the values of both set and packedset types.

TYPE
CharSet = SET OF CHAR;
ByteSet = PACKEDSET OF [-127..128];

VAR
letters, digits, alphanum: CharSet;
neg, pos, zero : ByteSet;

2Packedset types are innovated in the Standard.

7.2. NEW LANGUAGE’S FEATURES 103

letters := CharSet{’a’..’z’,’A’.."Z'};
digits = CharSet{'0’..'9};
alphanum := letters + digits;

neg := ByteSet{-127..-1}; pos := ByteSet{1..127};
ero := ByteSet{-127..128}-neg-pos;

N

7.2.4 Strings

For operands of the string literal type, the string concatenation operation is de-
fined, denoted by the symbbt" . Note: a character number literal (e.45C)
denotes a value of a literal string type of length 1. The empty string is compatible
with the typeCHARand has a value equal to the string termina@dz)(

CONST
CR = 15C;
LF = 12C;
LineEnd = CR + LF;
Greeting = "hello " + "world" + LineEnd;

The new standard functiobENGTHcan be used to obtain the length of a string
value.

PROCEDURE LENGTH(s: ARRAY OF CHAR): CARDINAL,;

7.2.5 Value constructors

A value constructor is an expression denoting a value of an array type, a record
type, or a set type. In case of array constructors and record constructors a list
of values, known astructure componentss specified to define the values of
components of an array value or the fields of a record value. In case of a set
constructor, a list of members is specified, whose elements define the elements of
the set value.

ValueConstructor = ArrayValue
| RecordValue
| SetValue.
ArrayValue = Typeldentifier "{"
ArrayComponent { "," ArrayComponent }

104 CHAPTER 7. XDS MODULA-2

e,
ArrayComponent = Component [BY RepeatCount].
Component = Expression.
RepeatCount = ConstExpression.
RecordValue = Typeldentifier "{"

Component { ", Component }

.

Set constructors are described in PIM.

The total number of components of an array constructor must be exactly the same
as the number of array’s elements (taking into account repetition factors). Each
component must be assignment compatible with the array base type.

The number of components of a record constructor must be exactly the same as
the number of fields. Each component must be an assignment compatible with the
type of the field.

A special case is a record constructor for a record with variant parts. H-the

field is the tag field the:-th component must be a constant expression. If there
is no ELSE variant part associated with the tag field, then the variant associated
with the value of expression should exist. If no variant is associated with the
value, then the fields of the ELSE variant part should be included in the sequence
of components.

The constructor’'s components may themselves contain lists of elements, and such
nested constructs need not specify a type identifier. This relaxation is necessary
for multi-dimensional arrays, where the types of the inner components may be
anonymous.

Examples

TYPE
String = ARRAY [0..15] OF CHAR;
Person = RECORD
name: String;
age : CARDINAL;
END;
Vector = ARRAY [0..2] OF INTEGER;
Matrix = ARRAY [0..2] OF Vector;

VAR

7.2. NEW LANGUAGE’S FEATURES 105

string: String;
person: Person;
vector: Vector;
matrix: Matrix;

BEGIN

string:=String{" " BY 16},
person:=Person{"Alex",32};
vector:=Vector{1,2,3},
matrix:=Matrix{vector,{4,5,6},Vector{7,8,9}};
matrix:=Matrix{vector BY 3}

7.2.6 Multi-dimensional open arrays

According to the International Standard, parameters of a multi-dimensional open
array type are allowed:

PROCEDURE Foo(VAR matrix: ARRAY OF ARRAY OF REAL);
VAR i,j; CARDINAL;
BEGIN
FOR ;=0 TO HIGH(matrix) DO
FOR j:=0 TO HIGH(matrix[i]) DO
. matrix[i,j] ...
END;
END;
END Foo;

VAR a: ARRAY [0..2],[0..2] OF REAL;
BEGIN
Foo(a);
END ...
7.2.7 Procedure type declarations
A procedure type identifier may be used in declaration of the type itself. This

feature is used in the Standard Library. See, for example, moQaegTypes
andWholeConv .

106 CHAPTER 7. XDS MODULA-2

TYPE
Scan = PROCEDURE (CHAR; VAR Scan);
Func = PROCEDURE (INTEGER): Func;

7.2.8 Procedure constants

A constant expression may contain values of procedure types, or structured values
whose components are values of procedure types. Procedure constants may be
used as a mechanism for procedure renaming. In a definition module it is possible
to export a renamed version of the imported procedure.

Examples
TYPE ProcTable = ARRAY [0..3] OF PROC;

CONST
WS = STextlO.WriteString;
Table = ProcTable{Up,Down,Left,Right};

7.2.9 Whole number division
Along with DIV andMOZLihe International Standard includes two additional op-
erators for whole number divisiont * and REM

OperatordDIV andMOUDare defined for positive divisors only, while*and REM
can be used for both negative and positive divisors.

The language exceptiamholeDivException (See7.2.13 is raised if:

e the second operand is zero (for all four operators)

e the second operand BV or MODs negative.

For the giverlval andrval

quotient := lIval / rval;
remainder := Ival REM rval;

the following is true (for all non-zero values ofal):

e lval = rval * quotient + remainder

7.2. NEW LANGUAGE’S FEATURES 107

¢ the value ofremainder is either zero, or an integer of the same sign as
lval and of a smaller absolute value thaal

For the giverlval andrval

quotient := Ival DIV rval;
modulus = Ival MOD rval,

the following is true (for all positive values obal):

e lval = rval * quotient + modules

¢ the value ofmodulus is a non-negative integer less thaal

Operations are exemplified in the following table:

op | 31opl0| 31op(-10) | (-31)op10 | (-31)op(-10)
/ 3 -3 -3 3
REM 1 1 -1 -1
DIV 3 exception -4 exception
MOD 1 exception 9 exception

7.2.10 Type conversions

The language includes the following type conversion functic@stR FLOAT,
INT, LFLOAT, ORD TRUNGandVAL. The functiondNT andLFLOAT are not
described in PIM.

All the type conversion functions (excegfL) have a single parameter and can
be expressed in terms of tMAL function.

Function Parameter Equals to

CHR(x) whole VAL(CHAR,Xx)
FLOAT(x) real or whole VAL(REAL,X)
INT(X) real or ordinal VAL(INTEGER,X)
LFLOAT(x) real orwhole VAL(LONGREAL,Xx)
ORD(x) ordinal VAL(CARDINAL,X)
TRUNC(x) real VAL(CARDINAL,X)

The functionVAL can be used to obtain a value of the specified scalar type from an
expression of a scalar type. The function has two parameters. The first parameter
should be a type parameter that denotes a scalar type. If the type is a subrange

108 CHAPTER 7. XDS MODULA-2

type, the result of/AL has the host type of the subrange type, otherwise it has the
type denoted by the type parameter.

The second parameter should be an expression of a scalar type and at least one of
the restriction shall hold:

¢ the result type and the type of the expression are identical
e both the result type and the type of the expression are whole or real

e the result type or the type of the expression is a whole type

In the following table,,/ denotes a valid combination of types ardlenotes an
invalid combination:

the type of the type denoted by the type parameter
expression | whole real CHAR BOOLEANenumeration
wholetype | v v i

real type V V X X X
CHAR vV X vV X X
BOOLEAN vV X X V X
enumeration / X X X vV

An exception is raised if the value of is outside the range of the typein

the callVAL(T,x) . If x is of a real type, the callYAL(INTEGER,x) and
VAL(CARDINAL,x) both truncate the value af.

7.2.11 NEW and DISPOSE

The standard procedurddEWWand DISPOSEare back in the language. Calls of
NEWand DISPOSE are substituted by calls &ALLOCATEand DEALLOCATE
which should be visible at the current scope. The compiler checks compatibility
of these substitution procedures with the expected formal type:

PROCEDURE ALLOCATE(VAR a: ADDRESS; size: CARDINAL);
PROCEDURE DEALLOCATE(VAR a: ADDRESS; size: CARDINAL);

As a rule, the procedure LOCATEandDEALLOCATHleclared in the module

Storage are used. These procedures are made visible by including the import
list:

FROM Storage IMPORT ALLOCATE, DEALLOCATE;

7.2. NEW LANGUAGE’S FEATURES 109

When language extensions are enabled, the procetiliz@gnd DISPOSE can
be applied to dynamic arrays. Se&.12for further details.

See also th&6 TORAGE option.

7.2.12 Finalization

A special mechanism calldthalizationis provided to perform certain operations
during program termination.

A module declaration contains an optional finalization body, which is executed
during program termination for static modules (Se2.16§ or dynamic module
finalization.

ModuleBody = [BEGIN BlockBody

[FINALLY BlockBody]] END
BlockBody = NormalPart

[EXCEPT ExceptionalPart].
NormalPart = StatementSequence.
ExceptionalPart = StatementSequence.

Note: the RETURNstatement can be used iBéockBody .

Consider the following example:

MODULE Test;

VAR cid: StreamFile.Chanld;

BEGIN
StreamFile.Open(cid,"tmp",flags,res);
Process(cid);

FINALLY
StreamFile.Close(cid);

END Test

If the Test module is declared in a procedure block, then the initialization body
will be executed on a call of the procedure, while the finalization body is executed
upon return from the procedure.

110 CHAPTER 7. XDS MODULA-2

If the Test module is a static module, its finalization will be executed during
program termination.

In any case, finalization bodies are executed in reverse order with respect to their
initializations.

In the following example, finalization of a local module is used to restore context:
VAR state: State;
PROCEDURE Foo;

MODULE AutoSave;
IMPORT state, State,
VAR save: State;
BEGIN
save:=state; (* save state *)
state:=fooState;
FINALLY
state:=save; (* restore state *)
END AutoSave;

BEGIN
. process ...
END Foo;

The initialization part of thé&utoSave module will be executed before any state-
ment in theFoo body and finalization part will be executed directly before return-
ing from a call ofFoo.

7.2.13 Exceptions

An exception handling mechanism is now included in the language. Both user-
defined exceptions and language exceptions can be handled. There is no spe-
cial exception type; an exception is identified by a pair: exception source value
and cardinal value. Two keywordEXCEPTandRETRY are added to the lan-
guage. The essential part of exception handling is provided in two system mod-
ules:EXCEPTIONSandM2EXCEPTION

TheEXCEPTIONSmodule provides facilities for raising and identifying the user-
defined exceptions, for reporting their occurrence, and for making enquiries con-
cerning the execution state of the current coroutine.

7.2. NEW LANGUAGE’S FEATURES 111

The M2EXCEPTIONmModule provides facilities for identifying language excep-
tions that have been raised.

A procedure body, an initialization or finalization part of a module body may
contain an exceptional part.

BlockBody = NormalPart [EXCEPT ExceptionalPart].
NormalPart = StatementSequence.
ExceptionalPart = StatementSequence.

Example:

PROCEDURE Div(a,b: INTEGER): INTEGER,

BEGIN

RETURN a DIV b (* try to divide *)
EXCEPT

RETURN MAX(INTEGER) (* if exception *)
END Fly;

When an exception is raised (explicitly or implicitly) the ‘nearest’ (in terms of
procedure calls) exceptional part in the current coroutine receives control. Each
coroutine is executed initially in the normal state. If an exception is raised, the
coroutine state switches to the exceptional state. If there is no exceptional part,
raising of an exception is a termination event (3e219.

A procedure with an exceptional part is executed in the normal state. The state
is restored after block execution. A procedure without an exceptional part is exe-
cuted in the state of the caller.

If an exception is raised in the state of exceptional execution it is re-raised in the
calling context. In this case finalization of local modules and restoring protection
(See7.2.139 will not take place.

An additional statemenRETRY can be used in the exceptional part. Execution
of the RETRYstatement causes the normal part to be re-executed in the normal
state.

Execution of the(RETURNstatement in the exceptional part causes switch to the
normal state.

If neither RETURNor RETRYwas executed in the exceptional part, the excep-
tional completion will occur. In this case after finalization of local modules (if
any) and restoring protection state (if necessary), the exception will be re-raised.

112 CHAPTER 7. XDS MODULA-2

Example

PROCEDURE Foo;
BEGIN
TryFoo(...);
EXCEPT
IF CanBeRepaired() THEN
Repair;
RETRY; (* re-execute the normal part *)
ELSIF CanBeProcessed() THEN
Process;
RETURN; (* exception is handled *)
ELSE
(* exception will be automatically re-raised *)
END;
END Foo;

7.2.14 The system module EXCEPTIONS

The moduleEXCEPTIONSprovides facilities for raising user’s exceptions and
for making enquiries concerning the current execution state.

User-defined exceptions are identified uniquely by a pair (exception source, num-
ber). When the source of a used-defined exception is a separate module, it prevents
the defined exceptions of the module from being raised directly by other sources.
See e.g. the modulgtorage .

TYPE ExceptionSource;

Values of the opaque typexceptionSource are used to identify the source
of exceptions raised; they should be allocated before usage.

TYPE ExceptionNumber = CARDINAL,;

Values of the typ&xceptionNumber are used to distinguish between different
exceptions of one source.

PROCEDURE AllocateSource(VAR newSource: ExceptionSource);

The procedure allocates an unique value of the fgpeeptionSource . The
procedure is normally called during initialization of a module, and the resulting
value is then used in all calls 8AISE. If an unique value cannot be allocated
the language excepti@xException israised (Se&.2.15.

7.2. NEW LANGUAGE’S FEATURES 113

PROCEDURE RAISE(source: ExceptionSource;
number: ExceptionNumber;
message: ARRAY OF CHAR);

A call to RAISE associates the given values of excepsonrce , number, and
message with the current context and raises an exception.

The functionCurrentNumber can be used to obtain the exception number for
the current exception.

PROCEDURE CurrentNumber
(source: ExceptionSource): ExceptionNumber;

If the calling coroutine is in the exceptional execution state because of raising an
exception fromsource , the procedure returns the corresponding number, and
otherwise raises an exception.

The proceduré&etMessage can be used to obtain the message passed when an
exception was raised. This may give further information about the nature of the
exception.

PROCEDURE GetMessage(VAR text: ARRAY OF CHAR);

If the calling coroutine is in the exceptional execution state, the procedure returns
the (possibly truncated) string associated with the current context. Otherwise, in
the normal execution state, it returns the empty string.

PROCEDURE IsCurrentSource
(source: ExceptionSource): BOOLEAN;

If the current coroutine is in the exceptional execution state because of raising an
exception fromsource , the procedure returneBRUE andFALSE otherwise.

PROCEDURE IsExceptionalExecution (): BOOLEAN;

If the current coroutine is in the exceptional execution state because of raising an
exception, the procedure returhRUE andFALSE otherwise.

The following example illustrates the recommended form of a library module and
usage of procedures froBEXCEPTIONS

DEFINITION MODULE FoolLib;

PROCEDURE Foo;

114 CHAPTER 7. XDS MODULA-2

(* Raises Foo exception if necessary *)

PROCEDURE IsFooException(): BOOLEAN;

(* Returns TRUE, if the calling coroutine is in
exceptional state because of the raising of
an exception from Foo, and otherwise returns FALSE.

")

END Foolib.

IMPLEMENTATION MODULE Foolib;
IMPORT EXCEPTIONS;

VAR source: EXCEPTIONS.ExceptionSource;

PROCEDURE Foo;
BEGIN
TryFoo(...);
IF NOT done THEN
EXCEPTIONS.RAISE(source,0,"Foo exception");
END;
END Foo;

PROCEDURE IsFooException(): BOOLEAN;
BEGIN

RETURN EXCEPTIONS.IsCurrentSource(source)
END IsLibException;
BEGIN

EXCEPTIONS.AllocateSource(source)
END FoolLib.

If we want to distinguish the exceptions raised in BwoLib we will append an
enumeration type and an additional enquiry procedure ifrtiwib definition:

TYPE FooExceptions = (fault, problem);
PROCEDURE FooException(): FooExceptions;

TheFooException procedure can be implemented as follows:

7.2. NEW LANGUAGE’S FEATURES 115

PROCEDURE FooException(): FooExceptions;
BEGIN
RETURN VAL(FooExceptions,
EXCEPTIONS.CurrentNumber(source))
END FooException;

TheClient module illustrates the usage of the library modeé®Lib :

MODULE Client;
IMPORT FooLib, EXCEPTIONS, STextlO;

PROCEDURE ReportException;
VAR s: ARRAY [0..63] OF CHAR,;
BEGIN
EXCEPTIONS.GetMessage(s);
STextlO.WriteString(s);
STextlO.WriteLn;
END ReportException;

PROCEDURE TryFoo;
BEGIN
FooLib.Foo;
EXCEPT
IF FooLib.lsFooException() THEN
ReportException;
RETURN; (* exception is handled *)
ELSE
(* Exception will be re-raised *)
END
END TryFoo;

END Client.

7.2.15 The system module M2EXCEPTION

The system modulM2EXCEPTIONdrovides language exceptions identification
facilities. The language (which includes the system modules) is regarded as one
source of exceptions.

116 CHAPTER 7. XDS MODULA-2

The module exports the enumeration ty8Exceptions , used to distinguish
language exceptions, and two enquiry functions.

TYPE
M2Exceptions =
(indexException, rangeException,
caseSelectException, invalidLocation,
functionException, wholeValueException,
wholeDivException, realValueException,

realDivException, complexValueException,
complexDivException, protException,
sysException, coException,

exException

);

PROCEDURE IsM2Exception(): BOOLEAN;

If the current coroutine is in the exceptional execution state because of the raising
of a language exception, the procedure retdiR&JE andFALSE otherwise.

PROCEDURE M2Exception(): M2Exceptions;

If the current coroutine is in the exceptional execution state because of the raising
of a language exception, the procedure returns the corresponding enumeration
value, and otherwise raises an exception.

The following description lists all language exceptions (in alphabetical order)
along with the circumstances under which they are detechate: Compiler
options can be used to control detection of some exceptions (See Chaider
tection of some exceptions is not required by the Standard, however such excep-
tions can be detected on some platforms (See Chapter

caseSelectException
Case selector is out of range and EHeSE clause does not exist.

CcoException
The system modulEOROUTINES (see7.2.17) exceptions:

¢ RETURN from a coroutine other than the main coroutine

e size of the supplied workspace is smaller than the minimum required
(See description of the procedi&EWCOROUTINE

¢ the caller is not attached to the source of interrupts (See description of
the procedurélANDLER

7.2. NEW LANGUAGE’S FEATURES 117

e coroutine workspace overflow

complexDivException
Divide by zero in a complex number expression.

complexValueException

Overflow in evaluation of a complex number expression.

exException
A system modul&EXCEPTIONS or M2EXCEPTION exception:
e exception identity is enquired in the normal execution state (See
CurrentNumber)
e exception identity enquiry to a wrong source (SaerentNumber)
e no further exception source values can be allocated (See
AllocateSource)
functionException
No RETURNMstatement before the end of a function.

indexException
Array index out of range. See optio@$ECKINDEX andCHECKDIN-
DEX.

invalidLocation
Attempt to dereferenc@&lIL or an uninitialized pointer. See the option
CHECKNIL .

protException
The given protection is less restrictive than the current protection.

rangeException
Range exception (See tHECKRANGE option):

e assignment value is out of range of the target’s type
e structure component value is out of range
e expression cannot be converted to the new type

¢ value to be included/excluded is not of the base type of the set (See
also theCHECKSET option)

118 CHAPTER 7. XDS MODULA-2

e return value is out of range
e set value is out of range (See also MIdECKSET option)
e tag value is out of range (in a variant record).

realDivException
Divide by zero in a real number expression.

realValueException
Overflow in evaluation of a real number expression.

sysException
The system modul8YSTEM exceptions.Note: All these exceptions are
non-mandatory.
e invalid use ofADDADRSUBADPor DIFADR
¢ the result ot MAKEADHS out of the address range
e alignment problem witlCAST
¢ the result ofCASTis not a valid representation for the target type

wholeDivException
Whole division exception:

e divided by zero in evaluation of a whole number expression

e the second operand &V or MODs negative (See the HECKDIV
option)

wholeValueException
Overflow in evaluation of a whole number expression.

An example of language exception handling

PROCEDURE Div(a,b: INTEGER): INTEGER,;
BEGIN
RETURN a DIV b
EXCEPT
IF IsM2Exception() THEN
IF M2Exception() = wholeDivException THEN
IF a < 0 THEN RETURN MIN(INTEGER)
ELSE RETURN MAX(INTEGER)

7.2. NEW LANGUAGE’S FEATURES 119

END;
END;
END:;
END Div;

7.2.16 Termination

During the program termination, finalizations of those static modules that have
started initialization are executed in reverse order with respect to their initializa-
tions (See als@.2.19. The static modules are the program module, the imple-
mentation modules, and any local modules declared in the module blocks of these
modules.

Program termination starts from the first occurrence of the following event:

end of the program module body is reached
aRETURNMtatement is executed in the program module body

the standard proceduHALTis called

-

an exception was raised and is not handled

The system modul@ERMINATION provides facilities for enquiries concerning
the occurrence of termination events.

PROCEDURE IsTerminating(): BOOLEAN;

ReturnsTRUEIf any coroutine has inititated program termination @PiLSE
otherwise.

PROCEDURE HasHalted(): BOOLEAN;
ReturnsTRUEIf a call of HALT has been made afeALSE otherwise.

7.2.17 Coroutines

The system modul€EOROUTINE®rovides facilities for coroutines creation, ex-
plicit control transfer between coroutines, and interrupts handliNgte: Some
features can be unavailable in the current release. See Chafutedetails.

Values of the typeCOROUTINEare created dynamically by a call of
NEWCOROUTIN&d identify the coroutine in subsequent operations. A par-

120 CHAPTER 7. XDS MODULA-2

ticular coroutine is identified by the same value of the coroutine type throughout
the lifetime of that coroutine.

TYPE COROUTINE;

The correspondent type was callBROCESS$h PIM. From the third edition of
PIM, the ADDRESS$ype was used to identify a coroutine.

PROCEDURE NEWCOROUTINE(
procBody: PROC;
workspace: SYSTEM.ADDRESS,;
size: CARDINAL,
VAR cr: COROUTINE
[; initProtection: PROTECTION]);

Creates a new coroutine whose body is givenpbgcBody , and returns the
identity of the coroutine ircr . workspace is a pointer to the work space al-
located to the coroutinesize specifies the size of that workspace in terms of
SYSTEM.LOC initProtection is an optional parameter that specifies the
initial protection level of the coroutine.

An exception is raised (SemException) if the value ofsize is less than the
minimum workspace size.

If the optional parameter is omitted, the initial protection of the coroutine is given
by the current protection of the caller.

The created coroutine is initialized in such a way that when control is first trans-
ferred to that coroutine, the procedure givendogcBody is called in a normal
state. The exceptiortQException) is raised when thprocBody procedure
attempts to return to its caller. Since the caller has no exception handler, raising
this exception is a termination event.

The procedurd RANSFER:an be used to transfer control from one coroutine to
another.

PROCEDURE TRANSFER (VAR from: COROUTINE; to: COROUTINE);

Returns the identity of the calling coroutineftom and transfers control to the
coroutine specified bio .

PROCEDURE CURRENT (): COROUTINE;
Returns the identity of the calling coroutine.

7.2. NEW LANGUAGE’S FEATURES 121

Interrupt handling

TheINTERRUPTSOURCHpe is used to identify interrupts.
TYPE INTERRUPTSOURCE = INTEGER,;

Programs that use the interrupt handling facilities may be non-portable since the
type is implementation-defined.

PROCEDURE ATTACH(source: INTERRUPTSOURCE);,

Associates the specified source of interrupts with the calling coroutine. More than
one source of interrupts may be associated with a single coroutine.

PROCEDURE DETACH(source: INTERRUPTSOURCE);

Dissociates the specified source of interrupts from the calling coroutine. The call
has no effect if the coroutine is not associated with source.

PROCEDURE ISATTACHED(source: INTERRUPTSOURCE): BOOLEAN;

Returns TRUE if and only if the specified source of interrupts is currently associ-
ated with a coroutine; otherwise returns FALSE.

PROCEDURE HANDLER(source: INTERRUPTSOURCE): COROUTINE;

Returns the coroutine, if any, that is associated with the source of interrupts. The
result is undefined if there is no coroutine associated with the source.

PROCEDURE IOTRANSFER(VAR from: COROUTINE;
to: COROUTINE);

Returns the identity of the calling coroutinefrom and transfers control to the
coroutine specified byo . On occurrence of an interrupt, associated with the
caller, control is transferred back to the caller, drain returns the identity of
the interrupted coroutine. An exception is raised if the calling coroutine is not
associated with a source of interrupts.

Protection

See sectior.2.18for information about the typPROTECTION
PROCEDURE LISTEN(prot: PROTECTION);

Momentarily changes protection of the calling coroutingttot , usually lower-
ing it so as to allow an interrupt request to be granted.

PROCEDURE PROT(): PROTECTION;

122 CHAPTER 7. XDS MODULA-2

Returns protection of the calling coroutine.

7.2.18 Protection

A program module, implementation module or local module may specify, by in-
cluding protection in its heading, that execution of the enclosed statement se-
guence is protected.

ModuleHeading = MODULE ident [Protection] ";".
Protection = [ConstExpression .

A module with protection in its heading is called a directly protected module.
A directly protected procedure is an exported procedure declared in a protected
module.

Protection of a module is provided by surrounding the externally accessible pro-
cedures and module body by calls of access control procedures. The value of the
protection expression is passed to the call of access control procedures as an actual
parameter.

The protection expression should be of tRROTECTIONtype. The
PROTECTION type is an elementary type with at least two values:
INTERRUPTIBLE andUNINTERRUPTIBLE

Operators<, >, <= and>= can be used to compare values of BROTECTION
type. If z is a value oPROTECTIONype, thenr satisfies the conditions:

UNINTERRUPTIBLE<L z < INTERRUPTIBLE

7.3 Standard procedures

This section briefly describes the set of standard procedures and functions. Some
of them are not defined in the International Standard and are available only if the
optionM2EXTENSIONS is set. The procedundALT (see7.6.13 may have an
additional parameter, if the extensions are enabled .

In the tables 7.4 and7.5) of predefined procedures,stands for a designator,
y andn — for expressions]’ — for a type. Non-standard procedures are marked
with /.

The procedur€OPYand the function®SH ENTIER andLEN are described in
The Oberon-2 Repart

7.4. COMPATIBILITY 123

Procedure Meaning
v/ ASSERT(x[,n]) Terminates the program if ATRUE (See
7.6.19
v/ COPY(x,v) Copies a stringv := X
DEC(v[,n]) VI=V-n , default n=1
DISPOSE(v) Deallocates v~ (Se@.2.1))
EXCL(v,n) v = Vv - {n}
HALT Terminates program execution (S&é.13
INC(v[,n]) V.=V +n , default n=1
INCL(v,n) v .= v + {n}
NEW(V) Allocates v~ (Se€.2.1)

v, NEW(V, zg... x,) Allocates V" of lengthe...x, (See7.6.19)

Table 7.4: Modula-2 proper procedures
7.4 Compatibility

This section describes compatibility between entities of different types. There are
three forms of compatibility:

e expression compatibility (specifying the types that may be combined in ex-
pressions);

e assignment compatibility (specifying the type of a value that may be as-
signed to a variable);

e parameter compatibility (specifying the type of an actual parameter that
may be passed to a formal parameter).

The rules for parameter compatibility are relaxed in the case where a formal pa-
rameter is of a system storage type. This variation is known as the system param-
eter compatibility.

In most cases the compatibility rules are the same as described in PIM. However,
we suppose to explicitly list all the rules.

7.4.1 Expression compatibility

Two expressiong andb of typesT, andT, areexpression compatiblé any of
the following statement is true:

124 CHAPTER 7. XDS MODULA-2

Function Meaning
ABS(x) Absolute value of
v/ ASH(x,n) Arithmetic shift
CAP(x) Corresponding capital letter
CHR(x) Character with the ordinal number
CMPLX(x,y) Complex number with real partand imaginary
party

v/ ENTIER(X) Largest integer not greater than
FLOAT(x) VAL(REAL,X)

HIGH(v) High bound of the index of
IM(X) Imaginary part of a complex
INT(x) VAL(INTEGER,x)
v/ LEN(v[,n]) Length of an array in the dimension (de-
fault=0)

LENGTH(x) String length
LFLOAT(X) VAL(LONGREAL,Xx)

MAX(T) Maximum value of typel

MIN(T) Minimum value of typel’

ODD(x) rMOD2=1

ORD(x) VAL(CARDINAL,X)

RE(x) Real part of a complex

SIZE(T) The number of storage units, required by a vari-
able of typerl’

TRUNC(x) Truncation to the integral part

VAL(T,x) Type conversion

Table 7.5: Modula-2 function procedures

a. The typesl, and7, are identical.Note: If a type is a subrange type, then
only its host type matters, therefore values of subranges of the same host
type are expression compatible with each other and with the host type.

b. A type of one expression is a complex type, and the other expression is a
complex constant.

c. A type of one expression is a real type, and the other expression is a real
constant.

d. Atype of one expression is a whole type, and the other expression is a whole
constant.

7.4. COMPATIBILITY 125

e. A type of one expression is character, and the other expression is a string

literal of length 0 or 1. See alsb2.4

VAR
char: CHAR;

WHILE (char # ”) & (char # ".") DO

7.4.2 Assignment compatibility

An expressiore of type T, is assignment compatibheith the variablev of type
T, if one of the following conditions holds

a. T, is identical to the typd’,, and the type is not an open array type.

b.

C.

T, is a subrange of the typg.

T, is the CARDINAL type or a subrange of the CARDINAL type aihdis
the INTEGER type oe is a whole constant.

. T, is the INTEGER type or a subrange of the INTEGER type @&nd the

CARDINAL type ore is a whole constant.

. T, is areal type and is a real constant.

T, is a complex type andis a complex constant.

. T, is a pointer type and is NIL.

. T, is a procedure type andis the designator of a procedure which has the

same structure as the procedure typand which has been declared at level
0.

T, is the character type or a subrange of the character type &nal string
literal of length O or 1.

. T, is an array type having the character type as its component type,iand

a string literal of length less then or equal to the number of components in
arrays of typer,*.

3 For an expression of a subrange type only host type matters.
4A string literal is not assignment compatible with an array whose component’s type is a sub-
range of the character type.

126 CHAPTER 7. XDS MODULA-2

k. T, is the address type ard is a pointer type off, is the address type and
T, is a pointer type.

7.4.3 Value parameter compatibility

A formal type isvalue parameter compatibl®ith an actual expression if any of
the following statements is true:

a. The formal type is constructed from a system storage type and is system
parameter compatible with the expression.

b. The formal parameter is an open array, the actual parameter is an array type
and the component type of the formal type is value parameter compatible
with the component type of the actual type

c. The formal type is assignment compatible with the actual parameter.

7.4.4 Variable parameter compatibility

A formal type isvariable parameter compatiblith an actual variable if any of
the following statements is true:

a. The formal type is constructed from a system storage type and is system
parameter compatible with the expression.

b. The formal parameter is an open array, the actual parameter is an array type
and the component’s type of the formal type is variable parameter compati-
ble with the component’s type of the actual parameter type.

c. The formal type is identical to the actual parameter type.

7.4.5 System parameter compatibility

A formal type issystem parameter compatibAgth an actual parameter if any of
the following statements is true:

a. The formal parameter is of the SYSTEM.LOC type and the actual parameter
is of any typel” such thaSIZE(T) is equal to 1.

5A formal array parameter with the component’s typés not parameter compatible with the
actual parameter of typE.

7.5. THE MODULA-2 MODULE SYSTEM 127

b. The formal parameter is of the type
ARRAY [0..n-1] OF SYSTEM.LOC
and the actual parameter is of any typsuch thaSIZE(T) is equal ton.

c. The formal parameter is of the open array type
ARRAY OF SYSTEM.LOC
and the actual parameter is of any type but not numeric literal.

d. The formal parameter is of the multi-dimensional open array type
ARRAY OF ARRAY [0..n-1] OF SYSTEM.LOC

and the actual parameter is of any typeuch thatSIZE(T) is a multiple
of n.

7.5 The Modula-2 module SYSTEM

The moduleSYSTEM provides the low-level facilities for gaining an access to

the address and underlying storage of variables, performing address arithmetic
operations and manipulating the representation of values. Program that use these
facilities may be non-portable.

This module does not exist in the same sense as other libraries but is hard-coded
into the compiler itself. To use the facilities provided, however, identifiers must
be imported in a usual way.

Some of theSsYSTEM module procedures are generic procedures that cannot be
explicitly declared, i.e. they apply to classes of operand types or have several
possible forms of a parameter list .

The SYSTEM module is the only module specified in the International Standard
that can be extended in the implementation. The XAYSTEM module provides
additional types and procedures.

Note: The moduleSYSTEM is different in Oberon-2. Se® 6 for details.

DEFINITION MODULE SYSTEM,;

CONST
BITSPERLOC =
LOCSPERWORD = 4;
LOCSPERBYTE = 1;

8;

128 CHAPTER 7. XDS MODULA-2

TYPE

LOC;

ADDRESS = POINTER TO LOC,;

WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;
BYTE = LOC;

PROCEDURE ADDADR(addr: ADDRESS; offset: CARDINAL): ADDRESS,;
PROCEDURE SUBADR(addr: ADDRESS; offset: CARDINAL): ADDRESS;
PROCEDURE DIFADR(addrl, addr2: ADDRESS): INTEGER;

PROCEDURE MAKEADR(val: <whole type>): ADDRESS;

PROCEDURE ADR(VAR v: <anytype>): ADDRESS;

PROCEDURE

PROCEDURE ROTATE(val: <a packedset type>;

num: INTEGER): <type of the first parameter>;

PROCEDURE SHIFT(val: <a packedset type>;

num: INTEGER): <type of the first parameter>;

PROCEDURE CAST(<targettype>;

val: <anytype>):. <targettype>;

PROCEDURE TSIZE (<type>; ...): CARDINAL;

(*

(* --mmmmmmmee- non-standard features ----------------- *)
TYPE

INT8 = <integer 8-bits type>;

INT16 = <integer 16-bits type>;

INT32 = <integer 32-bits type>;

CARD8 = <cardinal 8-bits type>;

CARD16 = <cardinal 16-bits type>;
CARD32 = <cardinal 32-bits type>;
BOOL8 = <boolean 8-bits type>;
BOOL16 = <boolean 16-bits type>;
BOOL32 = <boolean 32-bits type>;

INDEX = <type of index>
DIFADR_TYPE = <type that DIFADR function returns>

REF(VAR v: <anytype>): POINTER TO <type of the parameter>;

7.5. THE MODULA-2 MODULE SYSTEM 129

TYPE (* for use in Oberon *)
INT = <Modula-2 INTEGER type>;
CARD = <Modula-2 CARDINAL type>;

TYPE (* for interfacing to C *)
int = <C int type>;
unsigned = <C unsigned type>;
size t = <C size_t type>;

void = <C void type>;

PROCEDURE MOVE(src,dest: ADDRESS; size: CARDINAL);
PROCEDURE FILL(adr : ADDRESS; val : BYTE; size : CARDINAL});

PROCEDURE GET(adr: ADDRESS; VAR var:. SimpleType);
PROCEDURE PUT(adr: ADDRESS; var: SimpleType);

PROCEDURE CC(n: CARDINAL): BOOLEAN;

END SYSTEM.

7.5.1 System types

LOC

Values of theLOC type are the uninterpreted contents of the smallest
addressable unit of a storage in implementation. The value of the call

TSIZE(LOC) is therefore equal to one.

The typeLOCwas introduced as a mechanism to resolve the problems with
BYTEandWORypes. Its introduction allows a consistent handling of both

these types, and enables aW@®RHike types to be further introduced, eg:
TYPE WORD16 = ARRAY [0..1] OF SYSTEM.LOC;
The only operation directly defined for tHeOC type is an assignment.

There are special rules affecting parameter compatibility for system stor-

age types. See.4.5for further detalils.

BYTE
BYTEis defined a$ OCand has all the properties of the typ@©C

WORD
The typeWORIDs defined as

130 CHAPTER 7. XDS MODULA-2

CONST LOCSPERWORD = 4;
TYPE WORD = ARRAY [0..LOCSPERWORD-1] OF LOC;

and the value of the callSIZE(WORD) is equal to, OCSPERWORD

The only operation directly defined for tWORDQype is an assignment.
There are special rules affecting parameter compatibility for system storage
types. Seé& .4.5for further details.

ADDRESS
The typeADDRES$s defined as
TYPE ADDRESS = POINTER TO LOC;

The ADDRESSype is an assignment compatible with all pointer types and
vice versa (Se&.4.2. A formal variable parameter of ti®DDRESSype
is a parameter compatible with an actual parameter of any pointer type.

Variables of typeADDRESSare no longer expression compatible with
CARDINAL (as it was in PIM) and they cannot directly occur in expres-
sions that include arithmetic operators. FunctiZfid@DADRSUBADRand
DIFADR were introduced for address arithmetic.

Whole system types

TypesINT8 , CARD8INT16 , CARD16INT32 , CARD32are guaranteed
to contain 8, 16, or 32 bits respectively.

These types are introduced to simplify constructing the interfaces for
foreign libraries (See Chaptet0). Types SHORTINT LONGINT,
SHORTCARDLONGCARDEare synonyms ofINT8, INT32, CARDS8
CARD32 respectively (See also theM2ADDTYPES option).
Types INTEGER and CARDINAL are synonyms ofINT16 /INT32,
CARD16CARD32 depending on the target platform. See also the
M2BASE16 option.

These types are not described in the International Standard.

Boolean system types

Types BOOL8 BOOL1g and BOOL32 are guaranteed to contain 8,16
and 32 bits respectively. By default the compiler uB£€30L8type for
BOOLEAN. In some cases (e.g. in the interface to the Windows API)
BOOL160or BOOL32should be used instead.

These types are not described in the International Standard.

7.5. THE MODULA-2 MODULE SYSTEM 131

Bitset system types

Types SET8, SET16, and SET32 are guaranteed to contain 8,16 and
32 bits respectively. The predefined tyBdTSET is a synonym for
SYSTEM.SET160r SYSTEM.SET32 depending on the target platform.
See also th&12BASE16 option.

These types are not described in the International Standard.

Modula-2 whole types

TypesINT and CARDare equal to Modula-ZNTEGER and CARDINAL
types, respectively. These types can be used in Oberon-2 in order to use
Modula-2 procedures in a portable way. S€el for further details.

These types are not described in the International Standard.

Interface to C

Typesint , unsigned , size_ t andvoid are introduced to simplify
interfacing to C libraries. Se¥0.3for further details.

7.5.2 System functions

PROCEDURE ADDADR(addr: ADDRESS;
offs: CARDINAL): ADDRESS;

Returns an address given fgddr + offs) . The subsequent use of the cal-
culated address may raise an exception.

PROCEDURE SUBADR(addr: ADDRESS;
offs: CARDINAL): ADDRESS;

Returns an address given fgddr - offs) . The subsequent use of the cal-
culated address may raise an exception.

The result of functiondDDADRINdSUBADRSs meaningful ifaddr points into
some object and the calculated address points into the same object or points to the
next byte after the object.

PROCEDURE DIFADR(addrl,addr2: ADDRESS): INTEGER,;
Returns the difference between addregadslrl - addr2)

The result of this function is meaningfuladdrl andaddr2 pointinto the same
object or to the next byte after the object.

PROCEDURE MAKEADR(val: <whole type>): ADDRESS;

132 CHAPTER 7. XDS MODULA-2

The function is used to construct a value of the ADDRESS type from the value of
a whole type.

Note: The International Standard does not define the number and types of the
parameters. Programs that use this procedure may be non-portable.

PROCEDURE ADR(VAR v: <any type>): ADDRESS,;
Returns the address of the varialble
PROCEDURE CAST(<type>; x: <any type>). <type>;

The functionCASTcan be used (as a type transfer function) to interpret a value
of any type other than a numeric literal value as a value of anotheftype

The value of the calCAST(Type,val) is an unchecked conversiondl to

the typeType. If SIZE(val) = TSIZE(Type) , the bit pattern representa-
tion of the result is the same as the bit pattern representatigal of otherwise

the result and the value &l have the same bit pattern representation for a size
equal to the smaller of the numbers of storage units.

The given implementation may forbid some combinations of parameter types.
Note: In Oberon-2 module SYSTEM, the respective procedure is calkEd
PROCEDURE TSIZE(Type; ...): CARDINAL;

Returns the number of storage unit©(() used to store the value of the specified
type. The extra parameters, if present, are used to distinguish variants in a variant
record and must be constant expressions

Example

TYPE
R = RECORD
CASE i: INTEGER OF
[1: r: REAL;
|2: b: BOOLEAN;
END;
END;

. TSIZE(R,1) ...

5The International Standard forbids the use of the PIM style type transfeG ARDINAL(X) .
"Those constant expressions are ignored in the current release.

7.5. THE MODULA-2 MODULE SYSTEM 133

The value ofTSIZE(T) is equal toSIZE(T) .

Packedset functions

Values of packedset types are represented as sequence$.of bhibit number 0
is the least significant bit for a given platform. The following is true, where a
variable of the typeC ARDINAL

CAST(CARDINAL,BITSET{0}) = VAL(CARDINAL,1)
SHIFT(CAST(BITSET,v),1) = v * 2
SHIFT(CAST(BITSET,v),-1) = v DIV 2

Note: The functionsROTATEandSHIFT can be applied to a set with size less
than or equal to the size &8TSET.

PROCEDURE ROTATE(x: T; n: integer): T,

Returns the value of rotatedn bits to the left (for positiven) or to the right (for
negativen).

PROCEDURE SHIFT(x: T; n: integer): T;

Returns the value of logically shiftedn bits to the left (for positiven) or to the
right (for negativen).

Warning: The result ofSHIFT(x,n) , wheren is greater than the number of
elements ifT, is undefined.

Non-standard functions

PROCEDURE CC(n: whole constant): BOOLEAN;

Returns TRUE if the corresponding condition flag is set. The function is not
implemented in the current release.

PROCEDURE REF(VAR v: <anytype>):
POINTER TO <type of the parameter>;

Returns the pointer to the variable See alsd 0.4.2
PROCEDURE BIT(adr: T; bit: INTEGER): BOOLEAN;
Returns bin of Mem[adr] . T is either ADDRESS or whole type.

8The current implementation does not distinguish between set and packedset types.

134 CHAPTER 7. XDS MODULA-2

7.5.3 System procedures

Note: all these procedures are non-standard.
PROCEDURE MOVE (src, dst: ADDRESS; size: CARDINAL);

Copiessize hytes from the memory location specified $x¢c to the memory
location specified byst .

Warning: No check for area overlap is performed. The behaviour of
SYSTEM.MOVH case of overlapping areas is undefined.

PROCEDURE FILL(adr : ADDRESS; val : BYTE; size : CARDINAL;);

Fills the memory block of sizeize starting from the memory location specified
by adr with the value ofval using thememset C library function.

PROCEDURE GET (adr. ADDRESS; VAR v: SimpleType);
PROCEDURE PUT (adr: ADDRESS; x: SimpleType);

Gets/puts a value from/to address specifieddy. The second parameter cannot
be of a record or array type.

VAR i: INTEGER,;

GET (128, i); (* get system cell value *)
i = i+20; (* change it *)
PUT (128, i); (* and put back *)

PROCEDURE CODE(...);

The CODE procedure accepts a sequence of strings as its parameter. This proce-
dure inserts a string which is the concatenation of the parameters into the gener-
ated C code.

Example

PROCEDURE disable; (* disable interrupts *)
BEGIN

SYSTEM.CODE ("asm di;");
END disable;

will produce

asm di;

7.6. LANGUAGE EXTENSIONS 135

7.6 Language extensions

Warning: Using extensions may cause problems with software portability to
other compilers.

In the standard mode the XDS Modula-2 compiler is ISO compliant {S8e
A set of language extensions may be enabled using/PEXTENSIONS and
M2ADDTYPES options.

The main purposes of supporting the language extensions are:

e to improve interfacing with other languages (See Chapgr
e to simplify migration from Modula-2 to Oberon-2
¢ to implement some useful features not found in ISO Modula-2

e to provide backward compatibility with previous releases

7.6.1 Lexical extensions

Comments

| NOTE: Only valid when optioM2EXTENSIONS s set. |

As well as(**) , there is another valid format for comments in the source texts.
The portion of a line from-+- ” to the end is considered as a comment.

VAR i: INTEGER; -- this is a comment
- (*
i:=0; (* this line will be compiled *)

__*)

Numeric constants

| NOTE: Only valid when optioM2EXTENSIONS is set. |

Both Modula-2 and Oberon-2 syntax rules for the numeric and character repre-
sentations may be used.

136 CHAPTER 7. XDS MODULA-2

Number =["+" | ""] Integer | Real.
Integer = digit { digit }
| octalDigit { octalDigit } "B"
| digit { hexDigit } "X".
Real = digit { digit } "." { digit } [ScaleFactor].
ScaleFactor = ("E" | "D") ["+" | "-"] digit {digit}.
Character = " char ™ | ™" char ™"
| digit {hexDigit} "H"
| octalDigit {octalDigit} "C".
Examples
1991 1991 (decimal)
ODH 13 (decimal)
15B 13 (decimal)
41X "A"
101C "A"

Note: the symbol D’ in a ScaleFactor denotes 4 ONGREAlalue.

7.6.2 Additional numeric types

’ NOTE: Only valid when optioM2ADDTYPES is set. ‘

The compiler optionM2ADDTYPES introduces the following additional nu-
meric types:

SHORTINT integers betweer 128 and127
LONGINT integers between 23! and23! — 1
SHORTCARD unsigned integers betweérand255
LONGCARD unsigned integers betweérand23? — 1

bR

The following terms for groups of types will be used:

Real typesor (REAL LONGREAL

Integer typegor (SHORTINT INTEGER LONGINT)
Cardinal typedor (SHORTCARIZARDINAL LONGCARD
Whole typegor integerandcardinal types

Numeric typegor wholeandreal types

7.6. LANGUAGE EXTENSIONS 137

All integer types are implemented as subranges of internal compiler integer types.
Therefore, according to the compatibility rules (S&d), the values of differ-

ent integer types can be mixed in the expressions. The same holds for cardinal
types. A mixture of integer and cardinal types is not allowed in expressions. As in
Oberon-2, the numeric types form a hierarchy, and larger types include (i.e. can
accept the values of) smaller types:

LONGREAIC REAL C whole types

Type compatibility in expressions is extended according to the following rules
(See7.4.9):

e The type of the result of an arithmetic or relation operation is the smallest
type which includes the types of both operands.

o Before the operation, the values of both operands are converted to the re-
sult’s type.

For instance, if the following variables are defined:

s: SHORTCARD;

c: CARDINAL;

i INTEGER;

[: LONGINT;

rr REAL;

Ir: LONGREAL;

then

Expression Meaning Result type
S + C VAL(CARDINAL,s) + ¢ CARDINAL
[* i | * VAL(LONGINT,i) LONGINT
r + 1 r + VAL(REAL,1) REAL
r=-=:s r = VAL(REAL,s) BOOLEAN
r+ Ir VAL(LONGREAL,r) + Ir LONGREAL
C + i not allowed

The assignment compatibility rules are also extended (S&6), so an expres-

sione of typeT, is assignment compatible with a variabl®f type T, if T, and

T, are of numeric types and, includesT,. Cardinal types and integer types

are assignment compatible. The compiler generates the range checks whenever
necessary.

138 CHAPTER 7. XDS MODULA-2

Examples (see declarations above):

Statement Comment

i:=C; INTEGER andCARDINALare assignment compatible

i:=s; INTEGER andSHORTCARBre assignment compatible

l:=i; LONGINT andINTEGERare subranges of the same host type
r=i; REAL C INTEGER

r:=c; REAL < CARDINAL

Ir:=r; LONGREAL C REAL

7.6.3 Type casting

| NOTE: Only valid when optioM2EXTENSIONS s set. |

In 1ISO Modula-2, the second parameter of 8%STEM.CASTprocedure can not
be a numeric literal. XDS provides numeric literal casting as an extension:

VAR
c: CARDINAL;

BEGIN
(* Ok if M2EXTENSIONS is ON %)
c := SYSTEM.CAST(CARDINAL,-1);

7.6.4 Assignment compatibility with BYTE

| NOTE: Only valid when optioM2EXTENSIONS is set. |

An expression of type CHAR BOOLEAN SHORTCARD SHORTINT
SYSTEM.INT8, or SYSTEM.CARDS8can be assigned to a variable of type
BYTEor passed as an actual parameters to a formal parameter @Yie

7.6.5 Dynamic arrays

| NOTE: Only valid when optioM2EXTENSIONS s set. |

XDS allows Oberon-2 style dynamic arrays to be used according to the Oberon-2
rules.

7.6. LANGUAGE EXTENSIONS 139

An open array is an array type with no lower and upper bound specified, i.e.
ARRAY OF SomeType. Open arrays may be used only in procedure parameter
lists or as a pointer base type.

TYPE String = POINTER TO ARRAY OF CHAR;
Neither variables nor record fields may be of open array type.

If the designator type is formally an open array, then the only operations allowed
with it are indexing and passing it to a procedure.

The extended versions of standard procedMe®AandDISPOSEcan be used to
create and delete the dynamic arrays (%€éel2.

Example

TYPE

VECTOR = ARRAY OF REAL;
(* 1-dim open array *)

Vector = POINTER TO VECTOR;
(* pointer to open array *)

MATRIX = ARRAY OF VECTOR;
(* 2-dim open array *)

Matrix = POINTER TO MATRIX;
(* pointer to this *)

VAR
v: Vector;
m: Matrix;

PROCEDURE ClearVector(VAR v: VECTOR);
VAR i CARDINAL,;
BEGIN
FOR i ;= 0 TO HIGH (v) DO V[i] := 0 END;
END ClearVector;

PROCEDURE ClearMatrix(VAR m: Matrix);

VAR i: CARDINAL,;
BEGIN

FOR i := 0 TO HIGH (m) DO ClearVector(m[i]) END;
END ClearMatrix;

PROCEDURE Test;

140 CHAPTER 7. XDS MODULA-2

BEGIN
NEW(v, 10);
NEW(m, 10, 20);
ClearVector(v");
ClearMatrix(m");
Vv[0] = 1,
mT1][1] = 2;
m’[2,2] := 1000;
DISPOSE(V);
DISPOSE(m);

END Test;

7.6.6 Constant array constructors

| NOTE: Only valid when optioM2EXTENSIONS is set. |

XDS allows the declaration of constant arrays in the form
ARRAY OF Qualldent "{" ExprList "}"

Qualldent should refer to a basic type, range or enumeration type, and all
expressions withifexprList ~ should be of that type.

Note: structured types and non-constant expressions are not allowed.

The actual type of such a constanARRAY [0..n] OF Qualldent , Where
n+1 is the number of expressionskixprList

CONST table = ARRAY OF INTEGER {1, 2+3, 3};

Constant arrays are subject to the same rules as all other constants, and may be
read as a normal array.

In some cases constructors of this form are more convenient than 1ISO standard
value constructors (See2.5, because you do not need to declare a type and to
calculate manually the number of expressions. However, to make your programs
more portable, we recommend to use the standard features.

7.6.7 Setcomplement

| NOTE: Only valid when optioM2EXTENSIONS s set. |

As in Oberon-2, an unary minus applied to a set denotes the complement of that
set, i.e.—z is the set of all values which are not the elements.of

7.6. LANGUAGE EXTENSIONS 141

TYPE SmallSet = SET OF [0..5];
VAR X, y: SmallSet;
BEGIN
x = SmallSet{1,3,5};
y = - *y={0, 2 4}
y = SmallSet{0..5} - x; (* y = {0, 2, 4} %
END;

7.6.8 Read-only parameters

| NOTE: Only valid when optioM2EXTENSIONS is set. |

In a formal parameter section, the symliél may be placed after the name

of a value parameter. Such a parameter is catbad-only its value can not be
changed in the procedure body. Read-only parameters do not need to be copied
before procedure activation; this enables procedures with structured parameters to
be more effective.

For ARRAYand RECORDead-only parameters, the array elements and record
fields are protected. Read-only parameters cannot be used in definition modules.

We recommend to use read-only parameters with care. The compiler does not
check that the read-only parameter is not modified via another parameter or a
global variable.

Example

PROCEDURE Foo(VAR dest: ARRAY OF CHAR,;
source-: ARRAY OF CHAR);

BEGIN
dest[0]:='a’;
dest[1]:=source[0];
END Foo;

The callFoo(x,x) would produce a wrong result, because the fi®b state-
ment changes the value sburce[0] (source is not copied and points to the
same location adest).

142 CHAPTER 7. XDS MODULA-2

7.6.9 Variable number of parameters

| NOTE: Only valid when optioM2EXTENSIONS s set. |

The last formal parameter of a procedure may be declared as a “sequence of bytes”
(SEQ-parameter). In a procedure call, any (possibly empty) sequence of actual
parameters of any types may be substituted in place of that parameter. Only the
declaration

SEQ name: SYSTEM.BYTE

is allowed. A procedure may have only one SEQ parameter, and it must be the
last element of the formal parameters list.

Within the procedure, sequence parameters are very similar to open array param-
eters. This means that :

¢ theHIGH function can be applied to the parameter;
e aSEQactual parameter may be subsequently passed to another procedure

e thei -th byte of the sequence can be accessed af] , like an array
element.

An array of bytes, which is passed to a procedure as a formal SEQ-parameter, is
formed as follows:

¢ values of all actual parameters forming the sequence are represented as de-
scribed below and concatenated into an array in their textual order

e integer values are convertedt@NGINT

¢ BOOLEAN CHAR cardinal and enumeration values are converted to
LONGCARD

¢ values of range types are converted according to their base types
e real values are converted t@ NGREAL
¢ values of pointer, opaque and procedure types are converfd@RESS

e a structured value (record or array) is interpreted as an array of bytes and
passed as a sequence of:

— the address of the structure

7.6. LANGUAGE EXTENSIONS 143

— a zero 32-bit word (reserved for future extensions)
— size of the structure (in LOCs) minus one

Seell.4.4for further information.

7.6.10 Read-only export

’ NOTE: Only valid when optiotM2EXTENSIONS is set. ‘

The Oberon-2 read-only export symbol ”-”, being specified after a variable or
field identifier in a definition module will define the identifier as read-only for any

client. Only the module in which a read-only variable or field is declared may
change its value.

The compiler will not allow the value of a read-only exported object to be changed
explicitly (by an assignment) or implicitly (by passing it as a VAR parameter).

For read-only variables of an array or record type, both array elements and record
fields are also read-only.

Example (an excerpt from a definition module):

TYPE Rec = RECORD

n-: INTEGER;
m : INTEGER;
END;
VAR
in-: FILE;
X-: Rec;

7.6.11 Renaming of imported modules

| NOTE: Only valid when optioM2EXTENSIONS is set. |

An imported module can be renamed inside the importing module. The real name
of the module becomes invisible.

Import = IMPORT [Ident ":="] Ident
{"" [Ident "="] ident } "".

144 CHAPTER 7. XDS MODULA-2

Example

MODULE test;
IMPORT vw := VirtualWorkstation;

VAR ws: vw.Station;

BEGIN
ws = vw.open();
END test.

7.6.12 NEW and DISPOSE for dynamic arrays

Standard procedurddEWANADISPOSEcan be applied to variables of a dynamic
array type (Se&.6.5. Procedure®YNALLOCATEBNADYNDEALLOCATHRave

to be visible in the calling context. Their headers and semantics are described
below.

PROCEDURE DYNALLOCATE(VAR a: ADDRESS;
size: CARDINAL;
len: ARRAY OF CARDINAL);

The procedure must allocate a dynamic array and return its addrassige is
the size of the array base type (the size of an element)eanfifl is the length
of the array ini-th dimension.

PROCEDURE DYNDEALLOCATE(VAR a: ADDRESS;
size,dim: CARDINAL);

The procedure must deallocate a dynamic array, weae is the size of an
element andlim is the number of dimensions.

Note: In most cases, default implementation of these procedures may be used.
The STORAGE option controls whether the default memory management should
be enabled.

A dynamic array is represented as a pointer to a so-calleay descriptor(See
11.3.7.

7.7. SOURCE CODE DIRECTIVES 145

7.6.13 HALT

| NOTE: Only valid when optioM2EXTENSIONS is set. |

An optional integer parameter is allowed for tHALT procedure.
PROCEDURE HALT ([code: INTEGERY));

HALT terminates the program execution with an optional return code. Consult
your operating system/environment documentation for more details.

7.6.14 ASSERT

| NOTE: Only valid when optioM2EXTENSIONS s set. |

The procedurdSSERTchecks its boolean parameter and terminates the program
if it is not TRUE The second optional parameter dend#esk termination code
If it is omitted, a standard value is assumed.

PROCEDURE ASSERT(cond: BOOLEAN [; code: INTEGER]);
A call ASSERT(expr,code) is equivalent to
IF NOT expr THEN HALT(code) END;

7.7 Source code directives

Source code directives (or pragmas) are used to set compilation options in the
source text and to select specific pieces of the source text to be compiled (condi-
tional compilation). The ISO Modula-2 standard does not describe pragma syntax.
XDS supports source code directives in both Modula-2 and Oberon-2. The syntax
described inThe Oakwood Guidelines for the Oberon-2 Compiler Develoers
used.

7.7.1 Inline options and equations

In some cases it is more desirable to set a compiler option or equation within the
source text. Some compiler options, suchVasIN , are more meaningful in the
source file before the module header, and some, such as run-time checks, even
between statements.

146 CHAPTER 7. XDS MODULA-2

XDS allows options to be changed in the source text by using standard 1SO
pseudo comments* ... *> ° Some options can only be placed in the source
text before the module header (i.e. before keywold$?’LEMENTATION
DEFINITION , andMODULE These options will be ignored if found elsewhere

in the source text. See2for more details.

The format of an inline option or equation setting is described by the following
syntax:

Pragma = "< PragmaBody "*>"

PragmaBody = PUSH | POP | NewStyle | OldStyle
NewStyle = [NEW] name ["+" | "" | "=" string]
OldStyle = ("+" | "-") name

NewStyle is proposed as the Oakwood standard for Obero@@Style

is the style used in the previous XDS releases. All option names are case-
independent. 10IdStyle is used, there should be no space betwetrand

+ or - OldStyle does not allow to declare a new option or equation and to
change an equation value.

In all cases, the symbal sets the corresponding option ON, and the symbol
sets it OFF.

PUSHand POP keywords may be used to save and restore the whole state of
options and equations.

Examples

PROCEDURE Length(VAR a: ARRAY OF CHAR): CARDINAL,;
VAR i: CARDINAL,;

BEGIN
<* PUSH *> (* save state *)
<* CHECKINDEX - *> (* turn CHECKINDEX off *)
i = 0;
WHILE (i<=HIGH(a)) & (a[i]#0C) DO INC(i) END;
<* POP *> (* restore state *)
RETURN i;

END Length;

<* ALIGNMENT = "2" *>

9The old pragma styl¢s$..*) is supported to provide backward compatibility, but the com-
piler reports the “obsolete syntax” warning.

7.7. SOURCE CODE DIRECTIVES 147

TYPE
R = RECORD (* This record is 6 bytes long *)
fl: CHAR;
f2: CARDINAL,;
END;

7.7.2 Conditional compilation

It is possible to use conditional compilation with Modula-2 and Ober8re@m-

pilers via the standard 1ISO pragma notation *> . Conditional compilation
statements can be placed anywhere in the source code. The syntax of the condi-
tional compilationlF statement follows:

IfStatement = <* IF Expression THEN *> text
{ <* ELSIF Expression THEN *> text }
[<* ELSE *> text]

<* END *>
Expression = SimpleExpression

[("="] "#") SimpleExpression].
SimpleExpression = Term { "OR" Termj}.
Term = Factor { "&" Factor}.
Factor = Ident | string |

"DEFINED" "(" Ident ")" |

"(" Expression ")" |

™ Factor | "NOT" Factor.
Ident = option | equation.

An operand in an expression is either a name of an option or equation or a string
literal. An option has the string valuB'RUE", if it is currently set ON and
"FALSE" , if it is currently set off or was not defined at all. The compiler will
report a warning if an undeclared option or equation is used as a conditional com-
pilation identifier.

The comparison operators™and "#” are not case sensitive.

See also the sectidn6.

Examples

Oonly if the O2ISOPRAGMA option is set ON

148 CHAPTER 7. XDS MODULA-2

IMPORT lib :=
<* [F__GEN_X86__ THEN *> MyX86Lib;
<* ELSIF __ GEN_C__ THEN *> MyCLib;
<* ELSE *> ** Unknown ***
<* END *>

CONST Win = <* IF Windows THEN *> TRUE
<* ELSE *> FALSE
<* END *>;

<* |F DEFINED(Debug) & (DebugLevel = "2") THEN *>
PrintDebugInformation;
<* END *>;

<* |F target_os = "OS2" THEN *>
Strings.Capitalize(filename);
<* IF NOT HPFS THEN *>
TruncateFileName(filename);
<* END *>
<* END *>

Chapter 8

XDS Oberon-2

This chapter includes the details of the Oberon-2 language which are specific for
this implementation. In the standard mé&DS Oberon-2 is fully compatible

with ETH compilers (Se&he Oberon-2 RepdrtThe last changes to the language
are described i8.2

To provide a smooth path from Modula-2 to Oberon-2 XDS allows all Modula-2
data types to be used in Oberon-2 modules G4ée

Several language extensions are implemented in the language accordihg to
Oakwood Guidelines for the Oberon-2 Compiler Develop¢Bee8.3). Other
language extensions are describe8.in As XDS is a truly multi-lingual system,
special features were introduced to provide interfacing to foreign languages (See
Chapterl0).

8.1 The Oberon environment

The Oberon-2 language was originally designed for use in an environment that
providescommand activation, garbage collectioand dynamic loadingof the
modules. Not being a part of the language, these features still contribute to the
power of Oberon-2.

The garbage collector and command activation are implemented in the Oberon
Run-Time Support and can be used in any program. The dynamic loader is not
provided in the current release. S28for further information.

When the option©2EXTENSIONS andO2NUMEXT are OFF.
2These guidelines have been produced by a group of Oberon-2 compiler developers, including
ETH developers, after a meeting at the Oakwood Hotel in Croydon, UK in June 1993.

149

150 CHAPTER 8. XDS OBERON-2

8.1.1 Program structure

In an Oberon-2 environment, any declared parameterless procedure can be con-
sidered as a main procedure and can be called by its name (a qualified identifier
of the formModuleName.ProcName).

Due to the nature of XDS, and its freedom from the Oberon system, a different
approach had to be found to declare the ‘top level’ or program modules.

The module which contains the top level of your program must be compiled it with
the MAIN option set. This will generate an entry point to your program. Only
one module per program shall be compiled with the option set. It is recommended
to set it in the module header:

<*+ MAIN *>
MODULE hello;

IMPORT InOut;

BEGIN
InOut.WriteString ("Hello World!);
InOut.WriteLn;

END hello.

8.1.2 Creating a definition

XDS provides two different ways to create a definition for an Oberon-2 module:

o the BROWSE operation mode (se&2.5 creates a definition module from
a symbol file

o theMAKEDEF option forces the Oberon-2 compiler to generate a (pseudo)
definition module after successful compilation of an Oberon-2 module.

The MAKEDEF option provides additional services: the compiler will preserve
the so-calledexportedcomments (i.e. comments which start with ‘(**") if the
XCOMMENTS option is ON.

The generated pseudo-definition module contains all exported declarations in the
order of their appearance in the source text. All exported comments are placed at
the appropriate positions.

8.2. LAST CHANGES TO THE LANGUAGE 151

A definition can be generated in thrsyles TheBSTYLE equation can be used
to choose one of the styleBEF (default),DOC or MOD.

The DEF style

This produces an ETH-style definition module. Alpe-bound procedures
(method} and relative comments are shown as parts of the corresponding
record types.

This is the only style for which th& SREDEFINE and BSCLOSURE
options are applicable.
The DOC style

This produces a pseudo-definition module in which methods are shown as
parts of the appropriate record types (ignoring comments) and at the posi-
tions at which they occur in the source text.

The MOD style

This attempts to produce a file which can be compiled as an Oberon-2 mod-
ule after slight modification (i.e. the file will contaifEND procname”,
etc.)

8.2 Last changes to the language

8.2.1 ASSERT

The procedurdSSERTchecks its boolean parameter and terminates the program
if it is not TRUE The second optional parameter denotéss& termination code
If omitted, a standard value is assumed.

PROCEDURE ASSERT(cond: BOOLEAN [; code: INTEGERY]);
A call ASSERT (expr,code) is equivalent to
IF NOT expr THEN HALT(code) END;

8.2.2 Underscores in identifiers

According to theDakwood Guidelinean underscore () may be used in iden-
tifiers (as a letter).

ident = (letter | " ") { letter | digit | " " }

152 CHAPTER 8. XDS OBERON-2

We recommend to use underscores with care, as it may cause problems with soft-
ware portability to other compilers. This feature may be important for interfacing
to foreign languages (See Chapi€y.

8.2.3 Source code directives

Source code directives (or pragmas) are used to set compilation options in
the source text and to select specific pieces of the source text to be compiled
(conditional compilation). According to th®@akwood Guidelinesll directives

are contained in ISO Modula-2 style pseudo comments using angled brackets
<< L RS>

The additional language constructs should not be considered to be part of the
Oberon-2 language. They define a separate compiler control language that coexist
with Oberon-2. The optio®2ISOPRAGMA allows pragmas to be used.

The syntax of the directives is the same for Modula-2 and Oberon-27 3éer
further detalils.

8.3 0Oakwood numeric extensions

XDS Oberon-2 supports two extensions which are of importance for scientific
programming, namely

e complex numbers

¢ in-line exponentiation operator

The O2NUMEXT option should be set to use these extensions.

8.3.1 Complex numbers

’ NOTE: Only valid when optio®©2NUMEXT is set. ‘

Two additional types are included in the type hierarchy if@@NUMEXT option
is set:

COMPLEX defined as (REAL,REAL)
LONGCOMPLEXdefined as (LONGREAL,LONGREAL)

8.3. OAKWOOD NUMERIC EXTENSIONS 153

All numeric types form a (partial) hierarchy

COMPLEX

whole types- REAL C LONGREAL

C LONGCOMPLEX

A common mathematical notation is used for complex number literals:

number = integer | real | complex
complex = real "i"

A literal of the form5.0i denotes a complex number with real part equal to zero
and an imaginary part equal 500. Complex constants with a non-zero real part
can be described using arithmetic operators.

CONST
i = 1.
x = 1. + 1.

For the declarations

VAR
c. COMPLEX;
I: LONGCOMPLEX;
r. REAL;
X. INTEGER;

the following statements are valid:

c:=i+r;
l:=c;

New conversion functionRE andIM can be used to obtain a real or imaginary
part of a value of a complex type. Both functions have one parameter. If the
parameter is of th€ OMPLEXype, both functions return REAL value; if the
parameter is of the ONGCOMPLEXpe, functions return &ONGREALvalue;
otherwise the parameter should be a complex constant and functions return a real
constant.

A complex value can be formed by applying the standard funciitPLXto
two reals. If bothCMPLXarguments are real constants, the result is a complex
constant.

154 CHAPTER 8. XDS OBERON-2

CONST i = CMPLX(0.0,1.0);

If both expressions are of tiREALtype, the function returns @OMPLEXalue,
otherwise it returns BONGCOMPLBEXlue.

8.3.2 In-line exponentiation

| NOTE: Only valid when optiotD2NUMEXT is set. |

The exponentiation operatdt provides a convenient notation for arithmetic ex-
pressions, which does not involve function calls. It is an arithmetic operator which
has a higher precedence than multiplication operators.

Term = Exponent { MulOp Exponent }.
Exponent = Factor { "™*" Factor }.

Note: the operator is right-associated:

a * xb * xc is evaluated ag * x(b xc)

The left operand of the exponentiaticerfb) should be any numeric value (in-
cluding complex), while the right operand should be of a real or integer type. The
result type does not depend of the type of right operand and is defined by the table:

Left operand type Result type
an integer type REAL

REAL REAL
LONGREAL LONGREAL
COMPLEX COMPLEX

LONGCOMPLEX LONGCOMPLEX

8.4 Using Modula-2 features

All Modula-2 types and corresponding operations can be used in Oberon-2, in-
cluding enumeration types, range types, records with variant parts, sets, etc.

Important Notes:

¢ Itis not allowed to declare Modula-2 types in an Oberon-2 module.

8.5. LANGUAGE EXTENSIONS 155

e A module using Modula-2 features is likely to be non-portable to other com-
pilers.

Example

(*MODULA-2*) DEFINITION MODULE UsefulTypes;

TYPE
TranslationTable = ARRAY CHAR OF CHAR;
Color = (red,green,blue);
Colors = SET OF Color;

END UsefulTypes.
(*OBERON-2*) MODULE UsingM2;
IMPORT UsefulTypes;

TYPE
TranslationTable* = UsefulTypes.TranslationTable;

VAR colors*: UsefulTypes.Color;

BEGIN
colors:=UsefulTypes.Colors{UsefulTypes.red};
END UsingM2.

8.5 Language extensions

Warning: Using extensions may cause problems with the software portability to
other compilers.

In the standard mode, the XDS Oberon-2 compiler is fully compatible with ETH
compilers (See als8.2). The O2EXTENSIONS option enables some language
extensions. The main purposes of language extensions are

e to improve interfacing to other languages (See Chalder

¢ to provide backward compatibility with the previous versions of XDS.

156 CHAPTER 8. XDS OBERON-2

See also

e Source language directive8.2.3

e Oakwood numeric extension8.f).

8.5.1 Comments

’ NOTE: Only valid when optio©2EXTENSIONS is set. ‘

As well as '(**) 7, there is another valid format for comments in source texts.

The portion of a line from - " to the end of line is considered a comment.
VAR |. INTEGER; -- this is a comment

8.5.2 String concatenation

| NOTE: Only valid when optiotD2EXTENSIONS s set. |

The symbol "+” can be used for constant string and characters concatenation. See
7.2.4for more details.

8.5.3 VAL function

’ NOTE: Only valid when optio©2EXTENSIONS is set. ‘

The functionVAL can be used to obtain a value of the specified scalar type from
an expression of a scalar type. Se2.10for more details.

PROCEDURE VAL(Type; expr: ScalarType): Type;

The function can be applied to any scalar types, including system fixed size types
(See8.6.2.

8.5.4 Read-only parameters

’ NOTE: Only valid when optioD2EXTENSIONS is set.

8.6. THE OBERON-2 MODULE SYSTEM 157

In a formal parameter section, the symbdl may appear after a name of a value
parameter. That parameter is calledd-only its value can not be changed in the
procedure’s body. Read-only parameters need not to be copied before the pro-
cedure activation; this enables procedures with structured parameters to be more
effective. Read-only parameters can not be used in a procedure type declaration.

We recommend to use read-only parameters with care. The compiler does not
check that the read-only parameter is not modified via another parameter or a
global variable.

Example

PROCEDURE Foo(VAR dest: ARRAY OF CHAR;
source-: ARRAY OF CHAR);

BEGIN
dest[0]:='a’;
dest[1]:=source[0];
END Foo;

The callFoo(x,x) would produce a wrong result, because the first statement
changes the value gburce[0] (source is not copied and points to the same
location aglest).

8.5.5 Variable number of parameters

’ NOTE: Only valid when optiof©2EXTENSIONS is set. ‘

Everything contained in the sectign6.9is applicable to Oberon-2.

8.5.6 Value constructors

| NOTE: Only valid when optiotD2EXTENSIONS is set. |

Everything contained in the secti@n2.5is applicable to Oberon-2.

8.6 The Oberon-2 module SYSTEM

Low-level facilities are provided by the modu STEMThis module does not
exist in the same sense as other library modules; it is hard-coded into the compiler

158 CHAPTER 8. XDS OBERON-2

itself. However, to use the provided facilities, it must be imported in the usual
way.

Some procedures in the modu@&’ STEMare generic procedures that cannot be
explicitly declared, i.e. they apply to classes of operand types.

XDS Oberon-2 compiler implements all system features describedha
Oberon-2 Repor{exceptGETREGPUTREGandCQ and allows one to access
all features, described in the Modula-2 International Standard Modula-Z(See
In this section we describe only features specific for this implementation.

8.6.1 Compatibility with BYTE

Expressions of type€HAR BOOLEANSHORTINTand SYSTEM.CARD&an
be assigned to variables of tyB& TE or passed as actual parameters to formal
parameters of typBYTE

If a formal procedure parameter has tyJifRAY OF BYTEhen the correspond-
ing actual parameter may be of any type, except numeric literals.

8.6.2 Whole system types

Module SYSTEMontains the signed typ&sT8 ,INT16 , INT32 , and unsigned
typesCARD8 CARD16 CARD32 which are guaranteed to contain exactly 8, 16,
or 32 bits respectively. These types were introduced to simplify consstructing
the interfaces to foreign libraries (See Chagt@y. The basic typeSHORTINT,
INTEGER LONGINTare synonyms ofNT8 , INT16 , andINT32 respectively.

The unsigned types form a hierarchy whereby larger types include (the values of)
smaller types.

SYSTEM.CARD32 SYSTEM.CARD16& SYSTEM.CARDS
The whole hierarchy of numeric types (See a#s®.J):

signed types

LONGREAL REALD { :
unsigned types

8.6.3 NEW and DISPOSE

The procedur&sYSTEM.NEWan be used to allocate the system memory, i.e.
memory which is not the subject of garbage collect®SMSTEM.NEWs a generic

8.6. THE OBERON-2 MODULE SYSTEM 159

procedure, which is applied to pointer types and can be used in several ways,
depending on pointer’s base type.

PROCEDURE NEW(VAR p: AnyPointer [; x0,..xn: integer]);
Let typeP be defined aPOINTER TOI" andp is of typeP.

NEWp) T is a record or fixed length array type. The proce-
dure allocates a storage block®iZE(7') bytes and
assigns its address o

NEWp, n) T is arecord or fixed length array type. The procedure
allocates a storage block af bytes and assigns its
address to.

NEWp, xy,.. z,_1) 7T is ann-dimensional open array. The procedure al-
locates an open array of lengths given by the expres-
sionsxy,..r,_1

The procedur&sYSTEM.DISPOSEcan be used to free a block previously allo-
cated by a call t&YSTEM.NEWt doesnot immediately deallocate the block,
but marks it as a free block. The block will be deallocated by the next call of the
garbage collector.

PROCEDURE DISPOSE(VAR p: AnyPointer; [size: integer]);

DISPOSE(p) T is arecord or array type. The procedure deallocates
the storage block points to.

DISPOSE(p, n) T isarecord or fixed length array type. The procedure
deallocates the storage blockrobytesp points to.

8.6.4 M2ADR

In Oberon-2, theSYSTEM.ADRprocedure returnsONGINT, which is not al-
ways very convenient. Th8YSTEM.M2ADRprocedure behaves as Modula-2
SYSTEM.ADRreturningSYSTEM.ADDRESS

PROCEDURE M2ADR(VAR x: any type): ADDRESS;

160 CHAPTER 8. XDS OBERON-2

Chapter 9

Run-time support

Some language features are implemented in the run-time library, including:

e run-time checks

e exceptions and finalization
e coroutines

e memory management

e garbage collection

e postmortem history

XDS provides an integrated Modula-2 and Oberon-2 run-time library, taking into
account the possibility that modules written in both languages are used in one
project. As a rule, if you do not use a particular feature, the part of RTS that
implements that feature will not be added to your executable program. For ex-
ample, if your program is written entirely in Modula-2, the Oberon-2 part of RTS
(garbage collector, meta-language facilities) will not included.

The integrated memory manager is describe@.in The sectior®.3describes an
interface to the Oberon-2 run-time support.

9.1 Memory management

The XDS integrated memory manager implements

161

162 CHAPTER 9. RUN-TIME SUPPORT

e default memory allocation and deallocation procedures for Modula-2 (See
the optionSTORAGE);

e memory allocation procedures for Oberon-2;
e system memory allocation procedures for Oberon-2 Gé&);

¢ the garbage collector.

The compiler provides the opticdBCAUTO and the equatioMEAPLIMIT to
control the memory management. They should be set when the top-level module
of the program is compiléd The compiler uses their values when generating the
RTS initialization call.

The equatiorHEAPLIMIT specifies the maximum size of the heap in bytes. If
that equation is set to zero, the run-time system automatically determines heap
size at startup and dynamically adjusts it according to application’s memory use
and system load.

The optionGCAUTO allows the garbage collector to be called implicitly. If the
option is not set the garbage collector must be called explicitly &58e The
garbage collector is called implicitly by the memory allocation procedure in the
following cases:

e a memory block of the requested length cannot be allocated,;

e the amount of busy memory exceeds the limit specified by the
HEAPLIMIT equation (or the limit chosen by the run-ime system if
HEAPLIMIT was set to zero during compilation);

e the amount of busy memory exceeds some limit set internally by the mem-
ory manager for optimum performance.

If the memory block still cannot be allocated after the call to the garbage col-
lector, the exceptioXEXCEPTIONS.noMemoryException will be raised by
the Oberon-2 memory allocation procedure

Note: In a pure Modula-2 program, the garbage collector is never invoked, so you
may set thtHEAPLIMIT equation to a very large value.

1 We recommend to set them in the configuration file or a project file.
2In Modula-2 it has to returiIL if failed to allocate a memory block.

9.2. POSTMORTEM HISTORY 163

9.2 Postmortem history

If the optionGENHISTORY was set ON when your program was compiled, the
run-time system prints a stack of procedure calls on abnormal termination of your
program, including

e a file name
e aline number
e a program counter value

e a procedure name (sometimes)

Note: all modules constituting your program should be compiled with the option
LINENO set ON.

Note: Turning theGENHISTORY option ON slows down your code, cause the
translator inserts extra RTS calls into every generated function. It should be done
when you compile the main module of your program, in its header, compiler com-
mand line, or project (we recommend the last approach).

The following example shows a sketch of a program and the procedure stack:

PROCEDURE P1;

(* uninitialized variable: *)

VAR x: ARRAY [0..50] OF INTEGER;
BEGIN

i:=i DIV j; (* line 50 *)
END P1;

PROCEDURE P2;
BEGIN

=i DIV j; (* line 100 *)
END P2;

PROCEDURE P3;
BEGIN

P1; (* line 150 *)
END P3;

#RTS: No exception handler #6: zero or negative divisor

164 CHAPTER 9. RUN-TIME SUPPORT

Source file LINE OFFSET PROCEDURE
"test.mod" 50 000000DE
"test.mod" 100 0000024C
"test.mod" 150 0000051D

It is obvious from the source text that the procedRiecannot be called frorR2.
The second line is superfluous.

9.3 The oberonRTS module

The run-time support (RTS) is an integral part of the Oberon-2 language imple-
mentation. It includes command activation, memory allocation, garbage collec-
tion and meta-language facilities. The modaberonRTS (written in Modula-2)
provides an interface to these features.

9.3.1 Types and variables

TYPE
Module; (* run-time data structure for a module *)
Type; (* run-time data structure for a data type *)

Command = PROC; (* parameterless procedure *)
CARDINAL = SYSTEM.CARD32;

VAR
nullModule: Module; (* Null value of type Module *)
nullType: Type; (* Null value of type Type *)

9.3.2 Garbage collection

Collect Garbage Collector

PROCEDURE Collect;

Invokes the garbage collector.

9.3. THE OBERONRTS MODULE 165

GetlInfo Get Memory Information

PROCEDURE GetInfo(VAR objects, busymem: CARDINAL);

Returns the number of allocated objects and the total size of the allocated memory.

9.3.3 Object finalization

A system with garbage collection has some specific features. Its main difference
from systems without garbage collection is that deallocation of any system re-
source must be postponed until garbage collection. For example, let some data
structure contain descriptors of open files. To close a file (i.e. to destroy its de-
scriptor), one needs to know that there are no references to that file. This informa-
tion becomes known only in the course of garbage collection. The same argument
also holds for other kinds of resources.

One immediate implication is that there must be sdimalization mechanism:
the ability to perform certain operations with an object when there are no more
references to it.

XDS allows a finalization procedure to be attached to any dynamically allocated
object.

Finalizer Type of a finalization procedure

TYPE Finalizer = PROCEDURE (SYSTEM.ADDRESS);,

InstallFinalizer Set a finalizer to an object

PROCEDURE InstallFinalizer(f: Finalizer;
obj: SYSTEM.ADDRESS);

The procedure sets the finalization procedufer the objecbbj . That procedure
will be called when the object becomes unreachable.

Note: a finalizer is called on the GC stack (stack size is limited).

Example

TYPE

166 CHAPTER 9. RUN-TIME SUPPORT

Obj = POINTER TO ObjDesc;
ObjDesc = RECORD

file: File; (* file handler *)
END;

PROCEDURE Final(x: SYSTEM.ADDRESS);
VAR o: Ob;j;
BEGIN
0:=SYSTEM.CAST(Obj,x);
IF o.file # NIL THEN Close(file) END;
END Final;

PROCEDURE Create(): Obj;
VAR o: Ob;j;

BEGIN
NEW(0);
o.file:=NIL;
oberonRTS.InstallFinalizer(Final,0);
TryOpen(o.file);

END Create,

9.3.4 Meta-language facilities
The meta-programming operations can be used to retrieve the type of an object,

to create an object of the given type, to get the name of a type and a type by its
name, etc.

Search Search a Module by its Name

PROCEDURE Search(name: ARRAY OF CHAR): Module;

Returns a module by itsame or nullModule

NameOfModule Name of Module|

PROCEDURE NameOfModule(m: Module;
VAR name: ARRAY OF CHAR);

Returns thename of the Module .

9.3. THE OBERONRTS MODULE 167

ThisCommand Get Command by its Name

PROCEDURE ThisCommand(m: Module;
name: ARRAY OF CHAR;
): Command;

Returns the command (parameterless procedure) nanade” in the modulem
or NIL , if the command does not exist.

ThisType Get Type by its Name

PROCEDURE ThisType(m: Module;
name: ARRAY OF CHAR): Type;

Returns the type nameddme” declared in the moduleor nullType , if there
IS no such type.

SizeOf Size of Type

PROCEDURE SizeOf(t: Type): INTEGER;

Returns the size (in bytes) of an object of the type

BaseOf Base of Type

PROCEDURE BaseOf(t: Type; level: INTEGER): Type;
Returns thdevelth base type of .

LevelOf Level of Type Extension

PROCEDURE LevelOf(t: Type): INTEGER,;
Returns a level of the type extension.

ModuleOf Module of Type

168 CHAPTER 9. RUN-TIME SUPPORT

PROCEDURE ModuleOf(t: Type): Module;

Returns the module in which the typewas declared.

NameOfType Name of Type

PROCEDURE NameOfType(t: Type; VAR name: ARRAY OF CHAR);
Returns thaename of the record typé .

TypeOf Type of Object

PROCEDURE TypeOf(obj: SYSTEM.ADDRESS): Type;
Returns the type of the objeabj .

NewObj Create Object

PROCEDURE NewObj(type: Type): SYSTEM.ADDRESS;
Creates a new object of the typgpe .

9.3.5 Module iterators

The moduleoberonRTS provides procedures which can be used to iterate all
loaded modules, all commands, and all object types (i.e., exported record types).

Namelterator Iterator Type

TYPE
Namelterator = PROCEDURE (
(*context:*) SYSTEM.ADDRESS,
(*name:*) ARRAY OF CHAR
): BOOLEAN;

A procedure of typeNamelterator is called by an iterator on each iterated
item. An iterator passes the name of the item along with the so-cedietext

9.3. THE OBERONRTS MODULE 169

word. This allows some context information to be passed to the user-defined pro-
cedure (e.g., a file handler). If the procedure returns FALSE, the iteration is ter-
minated.

IlterModules Iterate all Modules|

PROCEDURE IterModules(context:. SYSTEM.ADDRESS,;
iter: Namelterator);

The procedure iterates all Oberon-2 modules.

lterCommands Iterate Commands|

PROCEDURE IterCommands(mod: Module;
context: SYSTEM.ADDRESS;
iter: Namelterator);

Iterates all commands implemented in the modntel

IterTypes Iterate Record Types

PROCEDURE lIterTypes(mod: Module;
context: SYSTEM.WORD,;
iter: Namelterator);

Iterates all record types declared in the modutsd

170 CHAPTER 9. RUN-TIME SUPPORT

Chapter 10
Multilanguage programming

XDS allows you to mix Modula-2, Oberon-2, C, and Assembler modules, li-
braries, and object files in one project.

10.1 Modula-2 and Oberon-2

It is not necessary to notify the compiler of using Modula-2 objects in Oberon-2
module and vice versa. The compiler will detect the language automatically when
processing symbol files dMPORTCclause.

10.1.1 Basic types
In Oberon-2 the basic types have the same length on all platforms. In Modula-2
the size of typesNTEGER CARDINALandBITSET may be different and de-

pends on the value of thd2BASE16 option. The following table summarizes
the correspondence between the basic types.

171

172 CHAPTER 10. MULTILANGUAGE PROGRAMMING

Type Size Oberon-2 Modula-2
M2BASE16+ M2BASE16-

integer 8 SHORTINT — —

integer 16 INTEGER INTEGER —

integer 32 LONGINT — INTEGER
cardinal 8 — — —
cardinal 16 — CARDINAL —
cardinal 32 — — CARDINAL
bitset 16 — BITSET —
bitset 32 SET — BITSET

The system typedNT and CARD correspond to Modula-2ZNTEGER and
CARDINALtypes respectively. We recommend to US& andCARDnN Oberon-2
when importing Modula-2 modules. For example, if the proceéo® is defined
in the Modula-2 definition modulslas

DEFINITION MODULE M;
PROCEDURE Foo(VAR x: INTEGER);

END M.
its portable usage in Oberon-2 is as follows:

VAR x: SYSTEM.INT,

I\/I..Fo.o(x.);

10.1.2 Data structures

XDS allows any Modula-2 data structures to be used in Oberon-2 modules, even
those that can not be defined in Oberon-2 (e.g. variant records, range types, set
types, enumerations, etc).

However, usage of Modula-2 types in Oberon-2 and vice versa is restricted.
Whenever possible XDS tries to produce the correct code. If a correct transla-
tion is impossible, an error is reported:

e a Modula-2 record field type cannot be of an Oberon-2 pointer, record or
array type;

10.1. MODULA-2 AND OBERON-2 173

e a Modula-2 pointer to an Oberon-2 record cannot be used in specific
Oberon-2 constructs (type-bound procedures, type guards, etc);

e an opaque type can not be defined as an Oberon pointer.

Standard procedurédEVWANdDISPOSEare always applied according to the lan-
guage of a parameter’s type. For example, for the following declarations in an
Oberon-2 module:

TYPE
Rec = RECORD END;
MP = POINTER ['Modula”] TO Rec; (* Modula pointer *)
OP = POINTER TO Rec; (* Oberon pointer *)
VAR
m: MP;
o: OP;

the callNEW(m)will be treated as a call to the Modula-2 defaBltLOCATE
while NEW(o) will be treated as a call of the standard Oberon-2 run-time routine.
See alsd 0.2

Implicit memory deallocation (garbage collection) is applied to Oberon-2 objects
only. If a variable of a Modula-2 pointer type is declared in an Oberon-2 module,
it shall be deallocated explicitly.

Example: Using the Modula data type in Oberon

(* Modula-2*) DEFINITION MODULE m2;
TYPE
Rec = RECORD (* a record with variant parts *)
CASE tag: BOOLEAN OF

ITRUE: i: INTEGER;
|[FALSE: r. REAL;
END;
END;

Ptr = POINTER TO Rec;

VAR
rr Rec;
p: Ptr,

174 CHAPTER 10. MULTILANGUAGE PROGRAMMING

PROCEDURE Foo(VAR r: Rec);

END m2.

(* Oberon-2 *) MODULE o02;

IMPORT m2; (* import of a Modula-2 module *)

VAR
rr m2.Rec; (* using the Modula-2 record type *)
p: m2.Ptr; (* using the Modula-2 pointer type *)
x: POINTER TO m2.Rec;

BEGIN
NEW(p); (* Modula-2 default ALLOCATE *)
NEW(X); (* Oberon-2 NEW *)
m2.Foo(r);
m2.Foo(p");
m2.Foo(X");
END o2.

10.1.3 Garbage collection

It is important to remember that Modula-2 and Oberon-2 have different ap-
proaches to memory utilization. When a program contains both Modula-2 and
Oberon-2 modules, garbage collection is used. B&éor more information.

10.2 Direct language specification

The compiler must know the implementation language of a module to take into
account different semantics of different languages and to produce correct code.

In some cases, it is necessary for a procedure or data type to be implemented
according to the rules of a language other than that of the whole module. In XDS,
itis possible to explicitly specify the language of a type or objBatect language
specification (DLS)s allowed either if language extensions are enabled or if the
moduleSYSTEMSs imported.

In a record, pointer, or procedure type declaration, or in a procedure declaration,

10.2. DIRECT LANGUAGE SPECIFICATION 175

the desired language (or, more precisely, the way in which that declaration is
treated by the compiler) can be specified[dslanguage "|" immediately
following the keywordRECOR[POINTER or PROCEDURIanguage can be

a string or integer constant expression

Convention String Integer
Oberon-2 "Oberon" O
Modula-2 "Modula" 1

C "C" 2
Pascal "Pascal" 5

Win32 APl "StdCall" 7

OS/2 API "SysCall" 8

Examples:

TYPE
UntracedPtr = POINTER ['Modula"] TO Rec;

HereUntracedPtr is defined as a Modula-2 pointer, hence all variables of that
type will not be traced by garbage collector.

PROCEDURE ["C"] sig_handler (id : SYSTEM.int);

signal.signal(signal. SYSSEGV, sig_handler);

Heresig_handler has C calling and naming conventions, so it can be installed
as a signal handler into C run-time support.

A direct language specification clause placed after a name of a field, constant,
type, or variable points out that the name of the object will be treated according to
the rules of the specified language.

TYPE
Rec ['C"] = RECORD
name ['C"]: INTEGER;
END;
CONST pi ['C"] = 3.14159;

VAR buffer[]['C']: POINTER TO INTEGER

We recommend to use strings, integer values are preserved for backward compatibility.

176 CHAPTER 10. MULTILANGUAGE PROGRAMMING

Note: In ISO Modula-2, an absolute address may be specified for a variable after
its name in square brackets, so the empty brackets are required in the last line.

A procedure name is treated according to the language of its declaration, so in the
following declaration:

PROCEDURE ['C"] Foo;

both the procedure type and the procedure name are treated according to the C
language rulesNote: If you are using a C++ compiler, tHeoo function should

be declared with C name mangling style. Consult your C++ manuals for further
information.

10.3 Interfacingto C

Special efforts were made in XDS to provide convenient interface to other lan-
guages, primarily to the C language. The main goal is to allow direct usage of
existing C libraries and APIs in Modula-2/Oberon-2 programs.

10.3.1 Foreign definition module

A direct language specification (s&8.2) clause may appear immediately after
keywordsDEFINITION MODULE The effect is that all objects defined in that
module are translated according to the specified language rules, thus making un-
necessary direct language specifications for each object.

Several options are often used in foreign definition modules. 13e®4for the
description of options used to create a foreign definition module.

Example

<*+ MZ2EXTENSIONS *>

<*+ CSTDLIB *> (* C standard library *)

<*+ NOHEADER *> (* we already have header file *)
DEFINITION MODULE ['C"] string;

IMPORT SYSTEM,;

PROCEDURE strlen(s: ARRAY OF CHAR): SYSTEM.size t;
PROCEDURE strcmp(sl: ARRAY OF CHAR,;

10.4. RELAXATION OF COMPATIBILITY RULES 177

s2: ARRAY OF CHAR): SYSTEM.int;
END string.

Take the following considerations into account when designing your own foreign
definition module:

¢ If you are developing an interface to an existing header file, us&Me
HEADER option to disable generation of the header file. This option is
meaningful for translators only.

e If the header file is a standard header file, useGBdDLIB option. This
option is meaningful for the translators only.

e Use the specigddYSTEMypesint , unsigned , size_t , andvoid for
corresponding C types.

e XDS compilers use relaxed type compatibility rules for foreign entities. See
10.4for more information.

Definition modules for ANSI C librariess{dio.def , string.def , etc) can
be used as tutorial examples.

10.3.2 External procedures specification

In some cases, it may be desirable not to write a foreign definition module but
to use some C or API functions directly. XDS compilers allow a function to be
declared as external.

The declaration of an external procedure consists of a procedure header only. The
procedure name in the header is prefixed by the syrtibol

PROCEDURE ['C"] / putchar(ch: SYSTEM.int): SYSTEM.int;

10.4 Relaxation of compatibility rules

The compiler performs all semantic checks for an object or type according to
its language specification. Any object declared as that of Modula-2 or Oberon-2
is subject to Modula-2 or Oberon-2 compatibility rules respectively. The com-
piler uses relaxed compatibility rules for objects and types declaretC'as
"Pascal" ,"StdCall" ,and"SysCall"

178 CHAPTER 10. MULTILANGUAGE PROGRAMMING

10.4.1 Assignment compatibility

Two pointer type objects are considered assignment compatible, if

¢ they are of the same Modula-2 or Oberon-2 type.

e at least one of their types is declared'@s , "Pascal" ,"StdCall" ,or
"SysCall" , and theibase typesre the same.
VAR

x: POINTER TO T;
y: POINTER TO T;
z: POINTER ['C"] TO T;

BEGIN
X =y, -- error
y = z; -- ok
zZ =Y, -- ok

10.4.2 Parameter compatibility

For procedures declared'&@3" , "Pascal" ,"StdCall* ,or"SysCall" ,the
type compatibility rules for parameters are significantly relaxed:

If a formal value parameter is of the type declare®P@8NTER TO Tthe actual
parameter can be of any of the following types:

¢ the same type (the only case for regular Modula-2/Oberon-2 procedures);
e another type declared BINTER TO T

e any array type which elements are of typeln this case the address of the
first array element is passed, as it is done in C.

o the typeT itself, if T is a record type. In this case the address of the actual
parameter is passed.

If a formal parameter is an open array of typethe actual parameter can be of
any of the following types:

e an (open) array of typd@ (the only case for regular Modula-2/Oberon-2
procedures);

10.4. RELAXATION OF COMPATIBILITY RULES 179

e typeverb'T itself (if M2EXTENSIONSoption is set ON);
e any type declared &8OINTER TO T

This relaxation, in conjunction with th8YSTEM.REFfunction procedure (see
7.5.9, simplifies Modula-2/Oberon-2 calls to C libraries and the target operating

system API, preserving the advantages of the type checking mechanism provided
by that languages.

Example

TYPE
Str = POINTER TO CHAR;
Rec = RECORD ... END;
Ptr = POINTER TO Rec;

PROCEDURE ['C"] Foo(s: Str); ... END Foo;

PROCEDURE ['C"] Bar(p: Ptr); ... END Bar;
PROCEDURE ['C"] FooBar(a: ARRAY OF CHAR); ... END FooBar;
VAR

s: St

a: ARRAY [0..5] OF CHAR,;

p: POINTER TO ARRAY OF CHAR;

R: Rec;

A: ARRAY [0..20] OF REC;

P: POINTER TO REC;

Foo(s); (* allowed - the same type *)

Foo(a); (* allowed for the "C" procedure *)

Foo(p"); (* allowed for the "C" procedure *)

Bar(R); (* the same as Bar(SYSTEM.REF(R)); *)

Bar(A); (* allowed for the "C" procedure *)

Bar(P); (* allowed for the "C" procedure *)

FooBar(s); (* allowed for the "C" procedure *)

10.4.3 Ignoring function result

It is a standard practice in C programming to ignore the result of a function call.
Some standard library functions are designed taking that practice into account.

180 CHAPTER 10. MULTILANGUAGE PROGRAMMING

E.g. the string copy function accepts the destination string as a variable parameter
(in terms of Modula-2) and returns a pointer to it:

extern char *strcpy(char *, const char *);
In many cases, the result of tercpy function call is ignored.

In XDS, it is possible to ignore results of functions defined@$, "Pascal"
"StdCall* , or "SysCall" . Thus, the functionstrcpy defined in the
string.def foreign definition module as

PROCEDURE ['C"] strcpy(VAR d: ARRAY OF CHAR;
s: ARRAY OF CHAR): ADDRESS:

can be used as a proper procedure or as function procedure:

strepy(d,s);
ptr:=strcpy(d,s);

Chapter 11
Mapping to C

Almost all features of Modula-2 and Oberon-2 have direct equivalents in ANSI
C. If some construct is not directly available in C, the most simple and effective
solution preserving the language semantics is used.

Many features are implemented in the run-time system. TheXfilé.h isa C
header file of the run-time support library. It contains a set of type definitions,
macros and functions necessary for compilation and execution of a translated
code.

Note: In the examples of a generated C code throughout this appendix some unim-
portant details may be omitted for simplicity.

11.1 Layout of a generated code

The compiler generates the header files and C code files (Seé.3lsé gener-
ated header file has the following general layout:

1. a user defined copyright statement (SeeGRPYRIGHT equation)

2. two header lines, including time of compilation, the name of the file, a ver-
sion of the XDS compiler.

3. #ifdef <module_name> H_

4. a set of "include” directives (always contains "include” directive for the
run-time header fil&X2C.h).

5. external declarations

181

182 CHAPTER 11. MAPPING TO C

6. #endif

Note: External declarations may contain implicitly exported identifiers. E.g. a
structure always contains non-exported fields.

For a sample definition module:
DEFINITION MODULE MyLib;
PROCEDURE Foo;

END MyLib.

the following header file will be produced under on assumption thaCtheY-
RIGHT equation is properly set):

/* (c) 1994 Widget Databases Ltd */
I* "@#)MyLib.h Sep 15 12:50:16 1995" */
/* Generated by XDS Modula-2 to ANSI C v3.14 translator */

#ifndef MyLib H
#define MyLib_H_
#ifndef X2C H_
#include "X2C.h"
#endif

extern void X2C_PROCLASS MyLib_Foo(void);

extern void X2C_PROCLASS MyLib_BEGIN(void);

#endif /* MyLib_H_ */

A generated C code file has the following general layout:

1. a user defined copyright statement (SeeGRPYRIGHT equation)

2. two header lines, including time of compilation (See the opt&BEN-
DATE), the name of the file, a version of the XDS compiler.

3. definitions of the pre-processor symbols corresponding to the settings of
some options (Sekl.8.)

4. a set of include directives (for program module it contains "include” direc-
tive for the run-time header fil€2C.h).

11.1. LAYOUT OF A GENERATED CODE

5. the generated source text
For the implementation module:
IMPLEMENTATION MODULE MyLib;
IMPORT InOut;

VAR count: INTEGER;
PROCEDURE Foo;
BEGIN

INC(count);

InOut.Writelnt(count,0);

InOut.WriteLn;

END Foo;

BEGIN
count:=0;

END MyLib.

the following code file will be produced:

/* (c) 1994 Widget Databases Ltd */
[* "@#)MyLib.c Jan 12 12:50:36 1995" */

[* Generated by XDS Modula-2 to ANSI C v3.12 translator */

#define X2C _int32
#define X2C_index32
#ifndef InOut_ H_
#include "InOut.h"
#endif

#include "MyLib.h"

static X2C_INT32 count;

extern void X2C_PROCLASS MyLib_Foo(void)

{

count += 1l;
InOut_WriteInt(count,Oul);
INOut_WriteLn();

} /* END Foo */

183

184 CHAPTER 11. MAPPING TO C

extern void X2C_PROCLASS MyLib_BEGIN(void)

{
static int MyLib_init=0;
if (MyLib_init) return;
MyLib_init=1;
InOut_BEGIN();
count=0ul;

}

Note: for an Oberon module both the header and code files are generated.

11.2 Identifiers

The compiler tries to copy identifiers from the source text to the C code without
modifications. In some cases it can be necessary to expand an identifier or to
reduce it (See also tHeENIDLEN equation).

Note: The compiler does not change identifiers which are marked as C identifiers
via the direct language specification facility. S22

All exported identifierS are prefixed by the module name.
If an identifier to be declared is already defined in the C text it is postfixed with a
number. It can occur for a various reasons:

1. an identifier coincides with the C keyword or standard identifier.
VAR char: CHAR;
translates to:
X2C_CHAR charl;

The compiler uses postfixing for all identifiers listed in thra.kwd file.
The file provided by the distribution contains a list of all ANSI C/C++ key-
words and some identifiers from the C standard libraries.

One can extend the file with other identifiers. For example, if you pro-
gram contains (non-exported) identiff@r and imports a standard i@ath
library, it is necessary to includge into thexm.kwd file.

Lidentifiers that are declared in a definition module, or marked as exported in an oberon mod-
ule.

11.2. IDENTIFIERS 185

2. alocal identifier coincides with the global one.
VAR i. INTEGER,;

PROCEDURE Foo;
VAR i: INTEGER,;
BEGIN
ii=1;
END Foo;

translates to:
static X2C _INT32 i;
static void Foo(void)

{
X2C_INT32 i1;

i1 = 1;
}

3. an identifier is exported/imported to/from the context, where such an iden-
tifier is already defined. E.g.

PROCEDURE Foo; END Foo;

MODULE Local;

EXPORT QUALIFIED Foo;

PROCEDURE Foo; END Foo;

END Local,

The compiler does not extend identifiers defined in the local modules with
the module name. It will use postfixing to distinguish between Ego

procedures.

static void Foo(void)

{
}

186 CHAPTER 11. MAPPING TO C

static void Fool(void) /* Local.Foo */

{
}

If the length of a generated identifier length is greater than the limit defined by the
GENIDLEN equation, the compiler will reduce the identifier. Let us consider the
definition module:

DEFINITION MODULE MyModule;

VAR int: INTEGER;

PROCEDURE proc;

END MyModule.

If the limit is large enough (in our case greater than 13), the following declarations
will be generated in the header file:

extern X2C_INT32 MyModule_int;
extern void X2C_PROCLASS MyModule_ proc(void);

If the GENIDLEN equation is set to 6, all identifiers will be reduced:

extern X2C_INT32 MyModu;
extern void X2C_PROCLASS MyModl(void);

This feature can be used for satisfying the obsolete C compilers or linkers, which
imposes strong restrictions on the length of identifiers.

A special naming scheme is used for the identifiers of the functions correspond-
ing to the initialization parts of compilation units (module bodies). If the option
VERSIONKEY is off, the compiler generates a function identifier of the form:
<module_name> BEGIN

For the above example, the initialization part will be declared as

extern void X2C_PROCLASS MyModule BEGIN(void);

or, if GENIDLEN=6 as

11.3. DATA TYPES 187

extern void X2C PROCLASS MyMod2(void);

If the option is on, the compiler generates the name of a module body as a com-
position of

e a module name
e astring” BEGIN "
e atime stamp

e values of optionsTARGET16, INDEX16 and DIFADR16 in the packed
form. All modules constituting the project should be compiled with the
same values of these options.

If the definition (or Oberon) module imported by different compilation units has

the same version, the same name will be generated for each call of the module
body. In all other cases unresolved references will occur at a link time.

Example

extern void X2C_PROCLASS MyModule BEGIN_AOFE6691B(void);
or, if GENIDLEN=6 as

extern void X2C_PROCLASS MyMod2_ AOFE6691B(void);

We recommend to switch ON the optiERSIONKEY whenever possible.

11.3 Datatypes

11.3.1 Basic types

The correspondence between Modula-2/Oberon-2 basic types and C types is de-
scribed in the table$l.1and11.2 A representation of system types is described
in the tablel1.3 Note: Subrange types are represented by their host types.

If the option GENCTYPES is off, the compiler uses identifiers defined the in
run-time moduleX2C.h for all basic types; see the last column of the tables. If
the option is on, the compiler generates C type identifiers.

188 CHAPTER 11. MAPPING TO C
VAR ch: CHAR,

translates toGENCTYPES is off):

X2C_CHAR ch;

or, if the option is on, to:

char ch;
Basic type Bits | C type X2C type
SHORTINT 8 | signedchar | X2C_INT8
INTEGER 16 | short X2C_INT16
INTEGER 32 | long X2C_INT32
LONGINT 32 | long X2C_INT32

SHORTCARD 8 | unsigned char| X2C_CARDS8
CARDINAL | 16 | unsigned short X2C_CARD16
CARDINAL | 32 | unsigned long| X2C_CARD32

LONGCARD| 32 | long X2C_CARD32
REAL 32 | float X2C_REAL
LONGREAL | 64 | double X2C_LONGREAL
CHAR 8 | unsigned char| X2C_CHAR
BOOLEAN 8 | unsigned char| X2C_BOOLEAN
BITSET 16 | unsigned short X2C_SET16
BITSET 32 | unsigned long| X2C_SET32

Table 11.1: Representation of Modula-2 basic types

In Modula-2, the size oINTEGER CARDINAL and BITSET types is con-
trolled via the optionM2BASE16. If the option is setINTEGERIis equal to
SYSTEM.INT16, CARDINALis equal toSYSTEM.CARD16and BITSET s
defined aPACKEDSET OF [0..15] . Otherwise, all these types are 32-bits
wide.

11.3.2 Special system types

The module SYSTEM provides special types , unsigned , size_t and
void . A characteristic feature of these types is that they are generated exactly as
the corresponding C types, i.e.

11.3. DATA TYPES

Basic type | Bits | C type X2C type
SHORTINT| 8 | signedchar | X2C_INT8
INTEGER | 16 | shortint X2C_INT16
LONGINT | 32 | longint X2C_INT32
REAL 32 | float X2C_REAL
LONGREAL 64 | double X2C_LONGREAL
CHAR 8 | unsigned char X2C_CHAR
BOOLEAN | 8 | unsigned char X2C_BOOLEAN
SET 32 | unsigned long X2C_SET32
Table 11.2: Representation of Oberon-2 basic types
System type| Bits | C type X2C type
INT8 8 | signed char X2C_INTS8
INT16 16 | shortint X2C INT16
INT32 32 | long X2C_INT32
CARDS8 8 | unsigned char | X2C_CARDS8
CARD16 16 | unsigned short| X2C_CARD16
CARD32 32 | unsigned long | X2C_CARD32
LOC 8 | char X2C _LOC
BYTE 8 | char X2C LOC
WORD 32 | array of LOC | X2C_WORD
ADDRESS | 32 | pointerto LOC| X2C_ADDRESS

Table 11.3: Representation of SYSTEM types

D

189

190 CHAPTER 11. MAPPING TO C

VAR

x: SYSTEM.size_t;

y: SYSTEM.int;

z: POINTER TO SYSTEM.void;
translates to

size t Xx;

int y;

void * z;

The types should be used in the foreign definition modules (Se3.

11.3.3 Modula-2 enumeration types

An enumeration type is translated to the@um declaration.
TYPE color = (red,green,blue);

translates to:

enum color {red,green,blue};

or, if the optionGENTYPEDEF is set to:

enum color {red,green,blue};
typedef enum color color;

11.3.4 Modula-2 set types

Modula-2 sets which have not more than 32 elements are represented as unsigned
types of appropriate length. Large sets are declared as array of words.

TYPE
SmallSet = SET OF [-1..1];
Setl6 SET OF [0..15];
LongSet SET OF [-1..32];

translates to:

11.3. DATA TYPES 191

typedef X2C_SET8 SmallSet;
typedef X2C_SET16 Setl6;
typedef X2C_CARD32 Long[2];

11.3.5 Record types

A record is translated into a C struct.

TYPE
R = RECORD
b: BOOLEAN;
c. CHAR;
END;

translates to:

struct R {
X2C_BOOLEAN b;
X2C_CHAR c;

3

If the option GENTYPEDEF is set, the compiler will generate thgpedef
declaration including bottag nameandtype name

struct R;

typedef struct R R;

struct R {
X2C_BOOLEAN b;
X2C_CHAR c;

h

The tag names are needed for the recursive structure declarations (See the next
section).

A dummy field is generated for an empty record, since the C compilers treat an
empty structure as an error:

struct R {
X2C INT32 _dummy_;

}

192 CHAPTER 11

A variant part is translated to a@ion .

R = RECORD
CASE tag: BOOLEAN OF
ITRUE : c: CHAR;
|[FALSE: b: BOOLEAN;
END;
set. BITSET;

END;

is translated to:

struct R {
X2C_BOOLEAN tag;
union {
struct {
X2C_CHAR c¢;
Py
struct {
X2C_BOOLEAN b;
}_2;
b
X2C_SET32 set;

J§

An access to a field of a variant parti§ of type R)

r.c:=a,

is translated to:

11.3.6 Pointer types

A pointer type is mapped to the corresponding C type.

P = POINTER TO R;
R = RECORD
next: P;

END;

. MAPPING TO C

11.3. DATA TYPES 193

is translated to:

struct R;
typedef struct R *P;
struct R {

P next;

h

Pointer types are often used in a declaration of recursive data structures. In C,
a recursive data structure must contain at leastsinect declaration. The
compiler reports an error if detects a recursive data type without at least one record

type, e.g.:
T = POINTER TO T,

This limitation should not cause any problems since data structures that constitutes
of pointers only are quite artificial.

A special case is a pointer to an open array (Be8.7).

11.3.7 Dynamic arrays

A dynamic array typeis represented as a pointer to a descriptor of an open array.
For an/N-dimensional open array, the descriptor contains:

e a pointer to the array body;
e for each of N — 1 higher dimensions:

— alength of an array in this dimension;
— asize of array element in this dimension;

e an array length of the last dimension.

Example

TYPE
String = POINTER TO ARRAY OF CHAR;
Matrix = POINTER TO ARRAY OF ARRAY OF REAL;

2Pointer to a (multidimensional) open array.

194 CHAPTER 11. MAPPING TO C

is translated to:

struct _0;
typedef struct _0 * String;

struct _0 {
X2C_CHAR * Adr; /* pointer to an array body */
X2C_INDEX Len0;

g

struct _1;
typedef struct _1 * Matrix;

struct _1 {
X2C_REAL * Adr; [* pointer to an array body */
X2C_INDEX LenO; /* length of the 1st dimension */
X2C_INDEX Sizel,;
X2C _INDEX Lenl; /* length of the 2nd dimension */

¥
If m is of typeMatrix then the caINEW(m,3,5) will set the following values:

Len0 5 alength of the inner dimension
Lenl 3 alength of the outer dimension
Sizel 20 5 x4, if sizeof(REAL)=4

11.4 Procedure declarations

A Modula-2/Oberon-2 procedure is translated to a C function. A special case is
translation of a nested procedure (Sge4.7). A generated function prototype
includes call of theX2C_PROCLAS®nacro, if theGENPROCLASS option is

ON.

Regardless of th6&6ENPROCLASS setting, function prototypes corresponding
to foreign procedures contains the following macro call:

DLS string Macro name

"c" none
"Pascal" X2C_PASCAL
"StdCall" X2C_ STDCALL

"SysCall" X2C.SYSCALL

11.4. PROCEDURE DECLARATIONS 195

A list of parameters is generated according to the value o&lBBIKRC option
(Seell.8.9. If GENKRC is ON, the compiler generates parameter names only,
otherwise the compiler generates full function prototype.

11.4.1 Parameters

The parameter passing convention conforms, whenever possible, to the rules of the
C language. Variable parameters are declared as pointers to the formal parameter
type. Exceptions are parameters of array and large set types which are always
passed by reference.

The procedure header

PROCEDURE Foo(a: INTEGER;
VAR b: INTEGER;

c. Array;

VAR d: Array);

is translated to:

void X2C_PROCLASS Foo(X2C INT32 a,
X2C_INT32 *Db,
Array c,
Array d)

In the case of value arrays and long sets, the procedure called is responsible for
making a local copy.

TYPE Vector = ARRAY [0..2] OF REAL;
PROCEDURE Foo(v: Vector);
BEGIN
<statements>
END Foo;

is translated to:

typedef X2C_REAL Vector[3];

static void X2C_PROCLASS Foo(Vector V)

196 CHAPTER 11. MAPPING TO C

{
V tmp;
v = (X2C_REAL *)memcpy(tmp,v2,sizeof(V));
<statments>

} I* END Foo */

A special case is a character array parameter of a fixed size. A string literal can
be passed as an actual parameter for a such formal parameter. A string literal
can be shorter than the formal parameter and a special care must be taken not to
access memory location beyond the end of the actual parameter. The compiler
copies a string literal to a temporary variable in the caller procedure. Then in the
callee procedure, the parameter will be copied again according to the standard
rules.Note: in some cases this double copying may be prevented by marking the
parameter as read-only (Sé&.9.

TYPE Str = ARRAY [0..7] OF CHAR,

PROCEDURE Foo(s: Str);
END Foo;

PROCEDURE Callee;
BEGIN

Foo("hello™);
END Callee;

is translated to:
typedef X2C_CHAR Str[8];

static void X2C_PROCLASS Foo(Str s)
{

A tmp;

s=(X2C_CHAR *)memcpy(tmp,s,8u);
} I* END Foo *

static void X2C_PROCLASS Callee(void)
{

Str tmp;

Foo(*(Str *)memcpy(&tmp,“hello”,6u));
} /* END Callee */

11.4. PROCEDURE DECLARATIONS 197

11.4.2 Open arrays

Parameters of an open array are generated according to the following rules:

e for a N-dimensional open arrayy additional parameters (a length of each
dimension) are passed.

¢ if the parameter is a value parameter, the space necessary for the local copy
is allocated at a run-time. The allocated memory is free before the function
termination.

PROCEDURE Foo(s: ARRAY OF ARRAY OF CHAR);
BEGIN

<statements>
END Foo;

PROCEDURE Callee;

VAR x: ARRAY [0..1],[0..1] OF CHAR;
BEGIN

Foo(x);
END Calleg;

is translated to:

static void X2C_PROCLASS Foo(X2C_CHAR 5],
X2C_CARD32 s_len,
X2C_CARD32 s_lenl)
{
X2C_PCOPY((void **)&s,s_len*s_lenl);
<statements>
X2C_PFREE(s,s_len*s_lenl);
} /¥ END Foo *

static void X2C_PROCLASS Callee(void)
{

X2C_CHAR Xx[2][2];

Foo((X2C_CHAR *)x, 2u, 2u);
} /* END Callee */

198 CHAPTER 11. MAPPING TO C

11.4.3 Oberon-2 variable vecord parameters

For a variable record parameter in Oberon-2 an additional paramtertég is
passed. This parameter is needed for the dynamic type tests and for calling the
type-bound procedures (See alsh6).

PROCEDURE Foo(VAR r: Rec);
is translated to:

static void proc(struct Rec * r, X2C_TD r_type);

11.4.4 Sequence parameters

For the sequence parameters, the compiler forms the byte array explicitly as a
dynamic aggregate, according to the rules specifiedarf

PROCEDURE write(SEQ x: SYSTEM.BYTE);
END write;

PROCEDURE Foo;
VAR
I INTEGER,
c: CHAR;
r: REAL;
a: ARRAY [0..7] OF CHAR,;
BEGIN
write(i,c,r,a);
END Foo;

is translated to:

static void X2C_PROCLASS write(X2C_LOC x[],
X2C_CARD32 x_len)

{
} I* END write */

static void X2C_PROCLASS Foo(void)
X2C_INT32 i
X2C_CHAR c;

11.4. PROCEDURE DECLARATIONS 199

X2C_REAL r;
X2C_CHAR a[8];
X2C_SEQ tmp[7];
write(

(tmp[0].val=i,
tmp[1].val=(X2C_CARD32)c,
(X2C_LONGREAL)&tmp[2]=(X2C_LONGREAL)r,
tmp[4].adr=a,
tmp([5].val=0,
tmpl[6].val=7,

(X2C_LOC *)tmp),
28u);
} I* END Foo *

For this call, the actual array passedmote will contain:

4 bytes of a sign-extended valueiof

4 bytes of a zero-extended valueof

8 bytes of a LONGREAL value

12 bytes of an array descriptor

— 4 bytes containing the addressaof
— 4 bytes containing the value O
— 4 bytes containing the value 3IZE(a)-1)

11.4.5 Function results

XDS supports arbitrary return types for functions. If a function returns an array
or a large set type, an additional parameter is declared. It is used as a pointer to a
temporary variable receiving the result of function.

TYPE A = ARRAY [0..1] OF REAL;

PROCEDURE Foo(): A;
VAR a:. A;

BEGIN
RETURN a

200 CHAPTER 11. MAPPING TO C

END Foo:;

PROCEDURE Callee;
VAR Xx: A;

BEGIN
x:=Foo();

END Callee;

is translated to:

typedef X2C_REAL A[2];

static X2C_REAL * X2C_PROCLASS Foo(A Foo_ret)
{

A al;

memcpy(Foo_ret,al,sizeof(A));

return Foo_ret;
} I* END Foo */

static void X2C_PROCLASS Callee(void)
{

A X

A tmp;

memcpy(x,Foo(tmp),sizeof(A));
} I* END Callee */

11.4.6 Procedure body

In most cases the translation of a procedure body is transparent. Most statements
of the source languages have direct analog in C. However, in some cases a special
care must be taken to preserve the language semantics.

The following example illustrates the situation wheeéurn statements are re-
placed withgoto to free the memory allocated for a parameter.

PROCEDURE Length(s: ARRAY OF CHAR): CARDINAL,
VAR i: CARDINAL;

BEGIN
i:=0;
WHILE i<HIGH(s) DO

11.4. PROCEDURE DECLARATIONS 201

IF s[i]l=0C THEN RETURN i END;
INC(i)
END;
RETURN i
END Length;

is translated to:

static X2C_CARD32 Length(X2C_CHAR s]],
X2C_CARD32 s_len)
{

X2C_CARD32 i;
X2C_CARD32 Length_ret;
X2C_PCOPY((void **)&s,s_len);
i = 0;
while (i<s_len-1) {
if (s[i]==\0") {
Length_ret=i;
goto label;
}
i += 1;
} I* END WHILE */
Length_ret=i;
label:;
X2C_PFREE(s,s_len);
return Length_ret;
} /* END Length */

If a procedure contains local modules, its initialization and finalization parts (See
7.2.19 are inserted into the appropriate places:

VAR Foo_in_operation: BOOLEAN;

PROCEDURE Foo(): INTEGER;
MODULE M;
IMPORT Foo0_in_operation;
BEGIN
Foo_in_operation:=TRUE;
FINALLY
Foo_in_operation:=FALSE;
END M;

202 CHAPTER 11. MAPPING TO C

BEGIN
RETURN 1
END Foo;

is translated to:

static X2C_BOOLEAN Foo_in_operation;

static X2C _INT32 Foo(void)

{
X2C_INT32 Foo_ret;
Foo_in_operation=1; /* M initialization */
Foo_ret=0x01l;
Foo_in_operation=0; /* M finalization */
return Foo_ret;

} I* END Foo *

If a procedure contains an exceptional part (3213, the procedure body is
generated ag statement, where one branch corresponds to a normal part, and
another to an exceptional part. The calls of run-time functions are generated to
provide all necessary actions. The finalization statements (if any) are generated
after theif statement.

PROCEDURE Div(a,b: INTEGER): INTEGER;
BEGIN
RETURN a DIV b
EXCEPT
RETURN MAX(INTEGER)
END Div;

is translated to:

static X2C INT32 Div(X2C _INT32 a, X2C _INT32 b)
{
X2C_XHandler_STR tmp;
X2C _INT32 Div_ret;
if (X2C_XTRY(&tmp)) {
Div_ret = X2C_DIV(a,b);
X2C_XOFF();
}

11.4. PROCEDURE DECLARATIONS 203

else {
Div_ret=X2C_max_longcard,;
}
X2C_XREMOVE();
return Div_ret;
} /* END Div */

11.4.7 Nested procedures

There is no equivalent for Modula-2/Oberon-2 nested procedures in C. The com-
piler appends additional parameters to make an access to the local variables (and
parameters) of an outer procedure(s).

Example

PROCEDURE proc(a: INTEGER);
VAR b,c,d: INTEGER;

PROCEDURE locl(a: INTEGER);
BEGIN

b:=a;
END locl,;

PROCEDURE loc2;
BEGIN

locl(d+a);
END loc2;

BEGIN
c:.=1;
loc2;
END proc;
is translated to:

static void loc1(X2C_INT32 * b, X2C_INT32 a)

{
*b=a;
} I* END locl *

204 CHAPTER 11. MAPPING TO C

static void loc2(X2C _INT32 * b,
X2C_INT32 * a,
X2C_INT32 * d)

{
locl(b, *d+*a);
} I* END loc2 */

static void X2C_PROCLASS proc(X2C_INT32 a)
{

X2C _INT32 c;

X2C _INT32 b;

X2C INT32 d;

c=0x01l;

loc2(&b, &a, &d);
} I* END proc */

Note: Only the used variables are passed as additional parameters (e.g. the vari-
ablec is not used and not passed).

11.5 Module initialization and finalization

For each compilation unit the compiler generates the initialization function which
contains the necessary initialization statements and statements constituting the
module body. Initialization statements include the call of initialization functions

of all imported modules. Two forms of an ideintifier of an initialization function
are controlled by th/ ERSIONKEY option.

If the module body contains a finalization part (Se2.19 this part is generated
as a separate procedure, and the run-time support procedure is called to register it.

Example
IMPLEMENTATION MODULE M,;
IMPORT A, B;

BEGIN
A.Foo();

11.6. OBERON-2 OBJECT-ORIENTED FEATURES 205

FINALLY
B.Foo();
END M.

is translated to\ERSIONKEY is OFF; the module header is omitted):

static void final(void)
[* finalization part */

{
B_Foo();
} /¥ END */

void M_BEGIN(void)

{
static int M_init=0;
if (M_init) return;
M_init=1;
A _BEGIN(); [* initialize A */
B_BEGIN(); [* initialize B */
X2C_FINALLY((final); /* register FINALLY */
A_Foo(); [* M initialization */

}

Each module initialization is executed only once (See the first three lines in
M_BEGIN. Imported compilation units are initialized before the body of the mod-
ule.

For a program module (or an Oberon-2 module marked witi\iAéN option)
the compiler uses the identifierain as the name of module body, and thain
function contains a call ak2C_INIT to initialize run-time system.

11.6 Oberon-2 object-oriented features

The compiler uses the standard scheme to implement object-oriented features in
Oberon-2. A dynamic type of records is needed for type tests and a table of type-
bound procedures (methods or virtual functions) is needed to call them. A type

descriptor containing all necessary information is created for an Oberon-2 record
(Seell.?.

A C structure corresponding to an Oberon-2 record does not contain any additional

206 CHAPTER 11. MAPPING TO C

fields® since, for variables of a record type, the dynamic type is statically known to
the compiler. A dynamic type of an objectmay differ from a static one only if

is a variable parameter of a record typevas a pointer. For a variable parameter
of a record type an additional parametipg tagor a pointer to type descriptor)

is passed (Sekl.4.3.

For a dynamically allocated record, a type tag (and possibly some other informa-
tion) is stored before the actual record data and is invisible to a programmer.

An extended record directly contains the fields of all the base types.

TYPE
Node = POINTER TO NodeDesc;
NodeDesc = RECORD

next: Node;

END;

IntNodeDesc = RECORD (NodeDesc)
val: INTEGER;

END;

is translated to:

struct NodeDesc;
typedef struct NodeDesc * Node;

struct x_NodeDesc {
Node next;

|8

struct x_IntNodeDesc {
Node next;
X2C_INT16 val;

J§

A type-bound procedure is translated to a function which prototype includes both
a receiver parameter (two parameters if receiver is a variable record parameter)
and normal parameters.

PROCEDURE (n: Node) Print;
END Print;

3Unlike the previous XDS release.

11.7. OBERON-2 RUN-TIME DATA STRUCTURES 207

is translated to a function declaration and the corresponding function type:

typedef void (X2C_PROCLASS *Print_)(Node);

static void X2C_PROCLASS Print(Node n)

{
} * END Print */

The call of type-bound procedure is made via a table of methunl$(is of type
Node).

node.Print;
is translated to the call of run-time macro:
X2C_CALL(Print_,X2C_GET_TD(node),0)(node);

X2C_CALLmacro evaluates a procedure to cxXl2C_GET_TDfunction returns
type tag;Print_ is the function type an@ is the ordinal number of thErint
method.

11.7 Oberon-2 run-time data structures

Certain information about an Oberon-2 module must be available at run-time.
This information is provided in the form of type descriptors (for each record type)
and a module descriptor.

A type descriptor contains an information necessary for:

e dynamic type tests and type guards (type descriptors of all base records);
e calling type-bound procedures (a method table);

e garbage collection (location of pointers in records and arrays).

The run-time system provides a set of pre-defined descriptors, that are used for
dynamically allocated arrays (including dynamic arrays).

A module descriptor contains an information necessary for garbage collection (the
locations of all global pointers) and meta-language programming.

208 CHAPTER 11. MAPPING TO C

Example
MODULE x;

TYPE

Node = POINTER TO NodeDesc;

NodeDesc = RECORD
next: Node;

END;

IntNode = POINTER TO IntNodeDesc;

IntNodeDesc = RECORD (NodeDesc)
val: INTEGER;

END;

VAR root: Node; (* global pointer *)

PROCEDURE (n: Node) Print;
END Print;

PROCEDURE (n: IntNode) Print;
END Print;

PROCEDURE (n: IntNode) Foo;
END Foo;

END x.

The following data structure will be created for the above example (type descriptor
of NodeDesc and some details are omitted, comments are added by hand):

[* Module descriptor: */
static void * x_offs[][={ &root,X2C_OFS_END },
static X2C_MD_REC x_desc={

0,"x",x_offs

¥
/* IntNodeDesc type descriptor: */
/* location of pointers (IntNodeDesc): */

static void * x_IntNodeDesc_offs[]= {
X2C_OFS(struct x_IntNodeDesc,next),

11.8. OPTIONS 209

X2C_OFS_END };

[* method table: */

static X2C_PROC x_IntNodeDesc_proc[]= {
(X2C_PROC) Print1
(X2C_PROC) Foo };

/* IntNodeDesc type descriptor: */

extern X2C_TD_REC x_IntNodeDesc_desc={
sizeof(struct x_IntNodeDesc),
"IntNodeDesc",
&x_desc,
0,1,1,
[* base type descriptors */
{ &x_NodeDesc_desc, &x_IntNodeDesc_desc,

0060000000000 00

2
X_IntNodeDesc_proc, /* method table */
x_IntNodeDesc_offs /* pointer locations */

h

11.8 Options

This sections describes the options that affect the generated C code. Some of the
options must remain the same for all modules that belongs to the same program
(Seell.8.).

11.8.1 Describing platform

The XDS compilers generate a highly portable ANSI C code. However, to get
correct program one must appropriately describe target platform configuration (or
a C compiler) by using the following options (all options are OFF by default):

TARGET16

The option must be set for 16-bit platform. If the option is ON, the compiler
will assume the Gnt type is 16 bits wideNote: different settings may be
required for different C compilers; consult your C compiler manual.

210 CHAPTER 11. MAPPING TO C

INDEX16

The option defines a size of an index and the maximum size of an array
or structure on the target platform. If the option is ON, the compiler will
assume that an index is 16 bits wide, otherwise 32 bits wide.

DIFADR16

The option defines a difference between addresses on the target platform. If
the option is ON, the compiler assumes that the difference is a 16-bit integer
value, otherwise a 32-bit integer value.

The correct setting of the option is required to implem&RDADR
SUBADRINdDIFADR system functions.

These options must have the same settings for all the modules of a prodosen.
the compiler inserts a definition of the corresponding macros in the C code file.

#define X2C _int32 [* target 32 */
#define X2C_index32 /* index 32 */

If the VERSIONKEYoption is set, an identifier of an initialization function con-
tains settings of these options in a packed form.

11.8.2 Code generation
Improving readability

By default the compiler performs a set of optimizations, including constant ex-
pression evaluation, constant propagation, etc. In the expressions it generates
constant values, not constant names.

If you are using XDS as a translator, we recommend to set the ot@@PTI-
MIZE ON. In this case, the compiler generates constant names whenever possi-
ble.

Generate C types

The GENCTYPES option forces the compiler to use C type identifiers instead of
the identifiers, defined iX2C.h, see tabled1.1, 11.2and11.30n pagel38

Note: Modula-2INTEGER CARDINALandBITSET types are translated ac-
cording to the value of th®12BASE16 option. In spite of the option setting, the
compiler generates the identifiers frof@C.h for the following types:

11.8. OPTIONS 211

Source type X2C type

WORD X2C_WORD
ADDRESS X2C_ADDRESS
PROC X2C_PROC
COMPLEX X2C_COMPLEX
LONGCOMPLEX | X2C_LONGCOMPLEX

Debug mode

The GENDEBUG option should be set to compile your program in the debug
mode. If your program is compiled in this mode, the run-time system will print a
stack of procedure calls (a file name and a line number) on abnormal termination
of your program.

Example

<*+ GENDEBUG *>
MODULE test;

PROCEDURE Div(a,b: INTEGER): INTEGER,;
BEGIN

RETURN a DIV b
END Div;

PROCEDURE Try;
VAR res: INTEGER;
BEGIN
res:=Div(1,0);
END Try;

BEGIN
Try;
END test.

When this program is running, the exception is raised and the run-time system
prints the exception location and a stack of procedure calls. If the opiiiEBNO

is ON, all information will be reported in terms of original (Oberon-2/Modula-2)
source files:

#RTS: No exception handler #6: zero or negative divisor.

212 CHAPTER 11. MAPPING TO C

test.mod 6
test.mod 12
test.mod 16

The exception was raised in line 6t@st.mod , theDiv procedure was called
from line 12, while thelTry procedure was called from line 16 (module body).

If the optionLINENO is OFF, all information will be reported in terms of gener-
ated C files:

#RTS: No exception handler #6: zero or negative divisor.
test.c 17
test.c 27
test.c 36

In the debug mode the compiler inserts additional calls in the generated C code
(some parts of code unimportant for this example are omitted):

#define X2C_DEBUG

static long X2C_PROCLASS Div(long a, long b)
{

long Div_ret;

X2C_PROC_INP();

Div_ret=X2C_DIV(a,b);

X2C_PROC_OUT();

return Div_ret;
} I* END Div *

static void X2C_PROCLASS Try(void)
{
long res;
X2C_PROC_INP();
res = (X2C_SET_HINFO() Div(1l, 0l));
X2C_PROC_OUT();
} I* END Try ¥/

As can be seen from the above example, the compiler

1. inserts thetdefine X2C_DEBUG line in the module header. This defini-
tion switches all macros, defined ¥2C.h run-time library, into the debug
mode.

11.8. OPTIONS 213

2. generates calls 0f2C_PROC_INPandX2C_PROC_OUinto each proce-
dure declaration.

3. insertsX2C_SET_HINFOmacro (set history information) into each proce-
dure call.

Important notes:

¢ If not all modules of the program are compiled in the debug mode, the
stack of procedure calls may be incomplete. The XDS distribution contains
libraries compiled in the debug mode. We recommend to use these libraries
when debugging your program.

e The XDS run-time system supports 64 levels of procedure calls. If this limit
is exceeded, XDS will show only the first 64 procedure calls.

e Switching the option ON will significantly increase the size of your program
and slow it down.

Profile mode

If the optionGENPROFILE is set ON, the compiler generates additional code to
provide a profile of the program. At the end of a program execution the run-time
system will print the profile of the program to standard output. For each procedure
in the program the output includes:

¢ the name of procedure;
e the number of calls;
¢ the time of procedure execution, including all internal calls;

¢ the time of procedure execution, excluding all calls.

The option may be not implemented for all platfomrs. See your on-line documen-
tation.

Generate K&R C

The optionGENKRC forces the compiler to generate K&R C instead of ANSI
C. If the option is ON, the procedure declaration

214 CHAPTER 11. MAPPING TO C

PROCEDURE Foo(a,b: INTEGER);
BEGIN

END Foo.
is translated to:

static void X2C_PROCLASS Foo(a, b)
X2C_INT32 a;
X2C_INT32 b;

{
} /* END Foo *

By default the option is OFF and XDS generates the ANSI C code.

Generate C++

The optionGENCPP forces the compiler to generate C++ instead of ANSI C. In
the current release there are only few differences between generated ANSI C and
C++ code. In the future versions we will use specific C++ features to improve
readability and efficiency of generated code.

Procedure class specification

The option GENPROCLASS forces the compiler to insert special macro
X2C_PROCLAS#to all function prototypes.

This macro can be used as a specifier of a function class, e.g. it can be set to
pascal tochange parameter passing convention. For many platforms, this macro
cannot be used in a meaningful way. In such cases, we recommend to set the
option OFF to make the generated code more readable.

Generatetypedef

The optionGENTYPEDEF specifies the generation of a record, enumerations
and dynamic arrays. If the option is OFF, the compiler generates only tag names
in the corresponding C constructs.

11.8. OPTIONS 215

struct Rec {...};
enum Color {...};

If the option is ON, the compiler generates both tag names and type names, using
typedef

struct Rec {...};

typedef struct Rec Rec;
enum Color {...};

typedef enum Color Color;

The option is essential in the development of an interface to a foreign library. An
inline usage of the option is recommended in such cases. The following examples
(fromstdio.h andtime.h illustrate inline usage.

From the interface tstdio.h

TYPE
<* PUSH *> <* GENTYPEDEF+ *>
FILE = RECORD END;
<* POP *>
The option shall be ON, sindelLE is usually defined as
typedef struct {...} FILE;

Vice versa, we have to switch the option OFF, when defining the interface to
time.h

TYPE

<* PUSH *> <* GENTYPEDEF- *>
tm = RECORD
END;

<* POP *>

since it is defined as

struct tm {...};

216 CHAPTER 11. MAPPING TO C

Version key

TheVERSIONKEY option specifies the generation of an identifier for an initial-
ization function. The option is introduced to perform version checks at a link time.
If the symbol file (corresponding to a definition or Oberon module) has the same
version, the same names will be generated for the calls of initialization functions.
If the name of an actual initialization function and the name of the called function
does not match the linker will report the unresolved reference error. It means that
the program must be recompiled in the right order using MAKE or PROJECT
operation mode (See Chaptyr

Note: the option should be set when a definition or an Oberon module is compiled.
See alsd. 1.2for further details.

The length of identifiers

TheGENIDLEN sets the maximum length of an identifier in the generated code.
Note: the identifier's length cannot be less than 6 characters. The small value
leads to more compact but non-readable text. Seeldlsb

11.8.3 Evaluating size of types

The programmers are used to the fact that the sizes of types are known at the
compilation time, i.e. one can write

TYPE Rec = RECORD ... END;
CONST Size = SIZE(Rec);

The portable nature of XDS compilers makes an evaluation of sizes at constant
times somewhat tricky. Different C compilers on different platforms may use var-
ious alignment algorithms, not mentioning that the base types may have different
sizes.

To generate a portable code, the XDS compilers do not allow (in default mode)
the call of SIZE andTSIZE functions to be used in constant expressions. E.g.
one can write

size:=SIZE(Rec);

but not

11.8. OPTIONS 217

CONST Size = SIZE(Rec);
In most cases, it is not an essential restriction, since

e a use of the size of a type is rare in high-level programming;

e if a constant likeSize is not used itself in a constant expression it can be
replaced by a variable initialized in the module body.

However, both Modula-2 and Oberon-2 languages can be used in the low-level
programming and it can be desirable to know a size of a type in compilation time,
in spite of a potential non-portability of a program.

If the GENSIZE option is set ON, the compiler will calculate sizes of types using
the value of theALIGNMENT equation.

You have to consult with your C compiler guide to set the proper value of the
equation. To prevent that inappropriate setting, the compiler generates checks in
the module initialization function.

if (sizeof(Rec) != 4) X2C_TRAP(X2C_ASSERT_TRAP);

An exception will be reported at a run-timé the size evaluated by the XDS
compiler is not equal to those evaluated by the C compiler.

11.8.4 Foreign language interface

Certain options are introduced to specify an interface to foreign languages, namely
NOHEADER, NOEXTERN andCSTDLIB. See also th6 ENTYPEDEF op-
tion (11.8.2 which is often used for providing a correct foreign language interface.

Disable header file

The NOHEADER option disables the generation of a header file. The option is
usually specified in the foreign definition module to force the C compiler to use
the original header files (See al$0.3).

4During the program initialization.

218 CHAPTER 11. MAPPING TO C

Disable function prototype
In some cases it may be desirable not to write a foreign definition module but
to use a few C functions directly. The XDS compilers allow a C function to be
declared as external:
PROCEDURE [2] / putchar(c: CHAR);
The symbol'/* marks a procedure as external. Only procedure header must be
specified for an external procedure. After the declaration the external procedure
can be used as usual:

putchar(’a’);
A function defined as external can be implemented as macro, or have some ad-
ditional specifications in its prototype. TH¢OEXTERN option prevents the

compiler from generating a function’s prototype. In this case, a C compiler will
use an original prototype (if available).

Mark C interface library
The CSTDLIB option must be set when compiling a foreign definition module,
otherwise the option is ignored. For the foreign definition marke@&§DLIB ,

the compiler will use angle brackets in the#include directive. Otherwise
the compiler will use quotes.

Example

<*+ CSTDLIB *> <*+ NOHEADER *>
DEFINITION MODULE stdio;

END stdio.

MODULE Test;
IMPORT stdio, MyLib;
END Test.

The import section of the moduleest is translated to:

11.8. OPTIONS 219

#include <stdio.h>
#include "MyLib.h"

11.8.5 Code presentation

In this section we describe options that do not affect the program execution, but
the C code representation.

Insert line numbers

TheLINENO option forces the compiler to a insert line number information into
the generated C code in the form#ine directives.

Example

PROCEDURE Foo(i: INTEGER): INTEGER;
BEGIN

I:=i*;

ii=i+i;

RETURN i
END Foo;

translate to:

#line 2
static X2C _INT32 X2C_PROCLASS Foo(X2C_INT32 i)
{
#line 4
i=i*i;
#line 5
i=i+i;
#line 6
return i;
} /* END Foo */

Copy comments

The COMMENT option forces the compiler to copy the original file comments
into the generated C code.

220 CHAPTER 11. MAPPING TO C

If the option is ON, the compiler copies comments to an appropriate place in the
generated C code. Comments from an Oberon-2 module are only inserted into the
C code file and not into the header file.

Insert copyright message

The COPYRIGHT equation can be used for inserting a single line comment to
the very beginning of the generated code or header file. E.g., including the line

-copyright = (c) 1995 Widget Databases Ltd

to xm.cfg will cause the following line to appear at the head of the generated C
text

[* (c) 1995 Widget Databases Ltd */

See also an example irl. 1

Convert header file names
The CONVHDRNAME option forces the compiler to use a file name in the
#include directive, according to the given file system. Otherwise the com-

piler will generate a module name postfixed by the header file extension. E.g., the
include directive for the modulklyLibrary will be generated under OS/2 as

#include "MYLIBRAR.H"

The option may be necessary if source text resides on a FAT patrtition.

Set line width

The GENWIDTH equation sets the length of a line in the generated code (by
default it is equal to 78)Note: the compiler splits a line in an appropriate place,
when its length exceedes the limit.

Chapter 12

Possible Problems

12.1 Warnings from C compiler

The produced C text should contain no errors, but various C compilers may pro-
duce different kinds of warnings. The most probable warnings are:

e Code has no effect;
e Variable (or parameter) is never used,;

e Function should return a value.

Do not pay attention to these warnings.

12.2 Ordering of record fields

Some procedures from the run-time library are implemented under the assumption
that the C compiler will not change the order of record fields. If your C compiler
supports various ordering of structs please ensure that the appropriate C compiler
option is switched ON.

12.3 Name collisions in C text

In some cases name collisions in generated C text are possible. If an identifier in
your program coincides with an identifier from some standard header file append

221

222 CHAPTER 12. POSSIBLE PROBLEMS

it to thexm.kwd file.

Some basic C compilers (or linkers) might truncate the names or external names.
Use theGENIDLEN equation to generate indetifiers of required length. Heg
for further information.

Appendix A

Limitations and restrictions

There are some limitations and restrictions in implementation of both Modula-2
and Oberon-2 compilers.

Length of identifiers

The length of an identifier is at most 127 characters.

There may be further limitations imposed by your C compiler and linker. Please
check the appropriate reference manuals.

Length of literal strings

The length of a literal string is at most 256 characters. Longer strings may be
constructed using the string concatenation operator {S:4.

Record extension hierarchy

The depth of a record extension hierarchy is at most 15 extensions.

223

224 APPENDIX A. LIMITATIONS AND RESTRICTIONS

Unimplemented ISO libraries

The following Modula-2 1SO standard library modules are not available in the
current release:

TermFile Access to an interactive terminal
LowLong Access to underlying properties of the tyipeNGREAL
LowReal Access to underlying properties of the tyREAL

Unimplemented Oakwood libraries

The following Oberon-2 Oakwood library modules are not available in the current
release:

Input Keyboard and pointer device access
Files File input/output, riders
XYPlane Elementary pixel plotting

Whole overflow

The whole overflow exception is not detected in the current release.

Coroutines

The current release provides a restricted implementation of the system module
COROUTINES: the interrupt requests are not detected.

Dynamic loader

The Oberon-2 dynamic loading facility is not provided in the current release.

Bibliography

[MOWIi91] H.Mossenbck, N.Wirth. The Programming Language Oberon-2.
Structured Programming,1991, 12, 179-195.

[PIM] N.Wirth. Programming in Modula-2. 4th edition. Springer-Verlag,
1988. ISBN 0-387-50150-9.

[Wirth88] N.Wirth. From Modula-2 to Oberon. Software, Practice and Experi-
ence 18:7(1988), 661-670.

[ReWi92] M.Reiser, N.Wirth. Programming in Oberon - Steps Beyond Pascal and
Modula. ACM Press, Addison Wessley, 1992. ISBN 0-201-56543-9

[M093] H.Modssenbck. Object Oriented Programming in Oberon-2. Springer-
Verlag, 1993. ISBN 3-540-56411-X

225

Index

-NAME+ 17

-NAME-, 17

-NAME:, 17

-NAME:: , 17
-NAME:=, 17
-NAME= 17

.bat (See BATEXT)28
.def (See DEF)18
.mkf (See MKFEXT),27
.mod (See MOD)18
.0b2 (See OBERON}8
.odf (See BSDEF)R7
.prj (See PRJIEXT)6
<* *> 146

.c(See CODE)29
.h(See HEADER)29
.sym(See SYM)29
Xxm, 11

xm.cfg,17
Xm.msg,19
xm.red,14

xm, 23

_GEN_C_, 43 /45
__GEN_X86__, 43,44

ABS, 123

ADDRESS,130

address arithmetid,31
ALIGNMENT , 56, 58, 217
AllocateSourcel12

ASH, 123

ASSERT,122, 145
ASSERT, 42, 45

ASSERT (Oberon-2)151

226

ATTENTION , 35, 57, 58

BaseOf,167

BATEXT , 28, 56, 58
BATNAME , 28, 57, 58
BATWIDTH , 28, 57, 58
browser style]151
BSCLOSURE, 27, 44, 45, 151
BSDEF, 19, 27, 56, 58
BSREDEFINE, 27, 44, 45, 151
BSTYLE, 27,57,58, 151
BYTE, 129

C compiler,7
C interface 176
external procedure4,’7
language specificationd,’4
using C functions179
CAP, 123
caseSelectExceptiofi16
CHANGESYM, 29, 44, 45, 51, 87
CHECKDINDEX , 42, 46, 46, 117
CHECKDIV , 42, 46,118
CHECKINDEX , 42, 46, 117
CHECKNIL , 42, 46,117
CHECKPROC, 42, 46
CHECKRANGE , 42, 46, 117
CHECKSET, 42,47, 117
CHECKTYPE, 42, 47
CHR,123
CMPLX, 123
CODE, 19, 56, 58
Collect,164
COMMENT , 43,47, 219

INDEX

COMPILER , 63

COMPILERHEAP , 12,13, 57,59

COMPILERTHRES , 57, 59
COMPLEX, 99
complex number€9
conditional compilation147
configuration,11
configuration file 17
directories,13
filename extensiond,8
redirection file,14
search pathg,1
configuration file
master18
configuration file (xm.cfg)17
CONVHDRNAME , 43, 47, 220
COPY,122
COPYRIGHT , 56, 59, 220
COROUTINES, 119
CSTDLIB, 43, 47,218
CurrentNumberl113

debugging a prograng,
DEC, 122

DECOR, 6, 57, 59
DEF, 19, 56, 59

definition for Oberon-2 modulé,50

DIFADR16, 43, 47, 54
DIFADR16, 210
DISPOSE 108 122, 144
DISPOSE (SYSTEM, 02)158
DLS, 174

DYNALLOCATE, 144
DYNDEALLOCATE, 144

ENTIER, 123
ENUMSIZE, 56, 59
ENV_HOST, 57,59
ENV_TARGET, 57, 60
equationshbb
ALIGNMENT , 58

227

ATTENTION , 58
BATEXT , 58
BATNAME , 58
BATWIDTH , 58
BSDEF, 58
BSTYLE, 58
CODE, 58
COMPILERHEAP , 59
COMPILERTHRES, 59
COPYRIGHT , 59
DECOR, 59

DEF, 59
ENUMSIZE, 59
ENV_HOST, 59
ENV_TARGET, 60
ERRFMT, 60
ERRLIM , 60

FILE , 60
GCTHRESHOLD, 60
GENIDLEN, 60
GENINDENT, 60
GENWIDTH , 60
HEADER, 60
HEAPLIMIT , 61
LINK , 61
LOOKUP, 61
MKFEXT , 61
MKFNAME , 61
MOD, 61
MODULE, 61
OBERON, 62
OBJEXT, 62

PRJ, 62

PRJEXT, 62
PROJECT, 62
SETSIZE, 62
STACKLIMIT , 62
SYM, 62
TABSTOP, 62
TEMPLATE , 63

ERRFMT, 57, 60, 63

228

ERRLIM , 57, 60
error message formad3
ExceptionNumberl12
EXCEPTIONS112
AllocateSourcell12
CurrentNumberl13
ExceptionNumberl12
ExceptionSourcel 12
GetMessagel 13
IsCurrentSourcel 13
IsExceptionalExecutior, 13
RAISE, 112
exceptions110
ExceptionSourcel 12
EXCL, 122

FATFS, 44, 47
FILE , 57, 60, 61
file name
extension18
portable notation] 2
Files, 224
finalization,109
Finalizer,165
fixed size types]130
FLOAT, 123
foreign definition modulel76

garbage collection49, 161
GCAUTO, 44, 48, 162
GCTHRESHOLD, 56, 60
GENCDIV, 43, 48
GENCONSTENUM, 43, 48
GENCPP, 43, 48,214
GENCTYPES, 43, 48, 210
GENDATE, 43, 48
GENDEBUG, 8§, 43,48, 211
GENFULLFNAME , 43, 49
GENHISTORY , 43, 49, 163
GENIDLEN, 56, 60, 216
GENINDENT, 56, 60

INDEX

GENKRC, 43, 48, 49, 60, 195 213
GENPROCLASS, 43,49, 194, 214
GENPROFILE, 43, 49, 213
GENSIZE, 43, 49, 95, 217
GENTYPEDEF, 43, 50, 214
GENWIDTH , 49, 50, 56, 60, 220
GetInfo,165

GetMessagel 13

HALT, 122 145

HEADER, 19, 56, 60
HEAPLIMIT , 12, 56, 61, 162
HIGH, 123

history,8

IM, 123

implementation limitations223
INC, 122

INCL, 122

INDEX16, 43, 50, 54
INDEX16, 209

inline equations145

inline options,145

Input, 224
InstallFinalizer,165

INT, 123

interrupt handling120
IsCurrentSourcel 13
IsExceptionalExecutior, 13
ISM2Exception,116
lterCommands169
IterModules,169
IterTypes,169

LEN, 123

LENGTH, 123

LevelOf, 167

LFLOAT, 123

limitations of implementation223

LINENO, 9, 43, 48, 49, 50, 60, 163
219

LINK , 26, 36, 57, 61

INDEX

LOC, 129

LONGNAME , 28, 44, 50
LOOKUP, 32, 57,61
LowLong, 224

LowReal, 224

M2, 6, 25, 44,51
M2ADDTYPES, 42, 51, 97, 130,
135 136
M2ADR (SYSTEM, 02),159
M2BASE16, 42,51, 130,171
M2CMPSYM, 42, 46, 51, 87
M2EXCEPTION
caseSelectExceptiohl6
coException]116
complexDivException116
complexValueExceptiori, 17
exException]117
functionException117
indexException117
invalidLocation,117
ISM2Exception,116
M2Exception,116
protException,117
rangeExceptionl 17
realDivException]118
realValueException] 18
sysException]118
wholeDivException]118
wholeValueException] 18
M2EXCEPTION, 115
M2Exception,116
M2EXTENSIONS, 42, 51, 78, 97,
123 135 138 140-143
145 179
MAIN , 6, 38, 44, 51, 145 150
MAKEDEF , 27, 44, 51, 150
MAKEFILE , 35, 44, 52
mapping to C181
code generation optiongD9
code layout]181

229

data types187

identifiers,184

module body204

nested procedure203

Oberon-2 feature205

procedure declaratiod94
master configuration file,8
master redirection filel 1
MAX, 123
memory managemert08 144, 161
memory usage (compilers)2
message

E001,65

E002,65

E003,65

EO004,66

E006,66

EO007,67

E008,67

E012,66

E020,68

E021,68

E022,69

E023,69

E024,69

E025,69

E026,70

E027,70

E028,69

E029,70

E030,70

EO031,70

E032,70

E033,70

E034,71

E035,71

E036,71

EO037,71

E038,71

E039,72

E040,72

230

E041,72
E043,72
E044,72
E046,72
E047,72
E048,73
E049,73
E050,73
EO051,73
E052,73
E053,73
E054,73
E055,73
EO057,73
E058,73
E059,74
E060,74
E061,74
E062,74
E064,74
E065,74
E067,75
E068,75
E069,75
EO071,75
EO072,75
EO074,75
EO075,75
EO076,76
EO078,76
E081,67
E082,67
E083,68
E085,68
E086,68
E087,76
E088,76
E089,76
E090,76
E091,76
E092,76

E093,76
E094,77
EQ095,77
E096,77
EQ97,77
E098,77
E099,78
E100,78
E1001,94
E1002,94
E1003,94
E1004,94
E1005,94
E1006,94
E1007,95
E1008,95
E1009,95
E1010,95
E1011,95
E1012,95
E1013,95
E1014,95
E1015,95
E1016,95
E1017,96
E1018,94
E1019,96
E102,78
E107,78
E109,78
E110,78
E111,78
E112,78
E113,79
E114,79
E116,79
E118,79
E119,79
E120,79
E121,79
E122,79

INDEX

INDEX

E123,80
E124,80
E125,80
E126,80
E128,80
E129,80
E131,80
E132,80
E133,80
E134,81
E135,81
E136,81
E137,81
E139,81
E140,81
E141,82
E143,82
E144,82
E145,82
E146,82
E147,82
E148,82
E149,83
E150,83
E151,83
E152,83
E153,83
E154,83
E155,83
E156,84
E158,84
E159,84
E160,84
E161,84
E162,84
E163,84
E171,66
E172,66
E175,67
E200,85
E201,85

E202,85
E203,85
E206,85
E208,85
E219,86
E220,86
E221,86
E281,86
E282,86
E283,86
F005,66
F010,66
F103,88
F104,88
F105,88
F106,88
F142,88
F173,66
F174,67
F190,86
F191,87
F192,87
F193,87
F194,87
F195,88
F196,88
F197,88
W300,89
W301,89
W302,89
W303,89
W304,89
W305,90
W310,90
W311,90
W312,90
W314,90
W315,91
W316,91
W317,91
W318,92

231

232

W320,92
W321,92
W322,92
W323,92
W390,92
W900,92
W901,93
W902,93
W903,93
W910,93
W911,93
W912,93
W913,93
W914,93
W915,93
MIN, 123
MKFEXT , 27, 56, 61
MKFNAME , 27,57, 61
MOD, 19, 56, 61
Modula-2,97
array constructorsl,40
complex types99
COROUTINES119
dynamic arrays]138
EXCEPTIONS,112
exceptions110
lexical extensions] 35
M2EXCEPTION,115
NEW and DISPOSEL08 144
numeric types136
open arrays]105
PACKEDSET,102
read-only exportl43
read-only parameter$4l
renaming in import clausd 43
SEQ parameterd42
set complementl 40
standard procedure$22
string concatenatiori,03
SYSTEM, 127
system functions] 31

INDEX

system procedure$34
TERMINATION, 119
value constructors,03
MODULE, 57, 60, 61
ModuleOf,167
multilanguage programming,71
external procedureg,/7
interface to C176
language specification,’4
Modula-2/Oberon-2171

Namelterator168

NameOfModule 166

NameOfType 168

NEW (M2), 108 144

NEW (SYSTEM, 02),158

NewObj,168

NOEXTERN, 43,52, 218

NOHEADER, 29, 34, 35, 43, 52,
217

NOOPTIMIZE , 43,52, 210

02, 6, 25,44, 52
O2ADDKWD, 42, 52
O2EXTENSIONS, 42, 52, 78, 149,
155-157
O2ISOPRAGMA, 42, 53,152
O2NUMEXT, 42, 53, 149 152 154
Oakwood Extensiond,52
OBERON, 19, 24, 56, 62
Oberon environment,49
Oberon run-time support49, 164
Oberon-2149
ASSERT,151
comments156
complex numbers]52
definition, 150
identifiers,151
in-line exponentiation] 54
language extension$b5
module SYSTEM157

INDEX

numeric extensiond,52
read-only parameter$56
SEQ parameterd,57
string concatenatiori,56
SYSTEM.BYTE,158
using Modula-2154
VAL, 156
value constructord,57
oberonRTS 164
OBJEXT, 56, 62
ODD, 123
operation mode4
ALL, 27
BATCH, 28
BROWSE,27
COMPILE, 24
EQUATIONS, 29
GEN, 26
MAKE, 25
OPTIONS,28
PROJECTR26
option precedence3
options 41
GEN.C, 45
__GEN_X86__, 44
ASSERT, 45
BSCLOSURE, 45
BSREDEFINE, 45
CHANGESYM, 45
CHECKDINDEX , 46
CHECKDIV , 46
CHECKINDEX , 46
CHECKNIL , 46
CHECKPROC, 46
CHECKRANGE, 46
CHECKSET, 47
CHECKTYPE , 47
code control43
code control equation$6
COMMENT , 47
CONVHDRNAME , 47

CSTDLIB, 47
DIFADR16, 47
FATFS, 47

file extensions56
GCAUTO, 48
GENCDIV, 48
GENCONSTENUM, 48
GENCPP, 48
GENCTYPES, 48
GENDATE, 48
GENDEBUG, 48
GENFULLFNAME , 49
GENHISTORY, 49
GENKRC, 49
GENPROCLASS, 49
GENPROFILE, 49
GENSIZE, 49
GENTYPEDEF, 50
INDEX16, 50
language control2
LINENO, 50
LONGNAME , 50
M2,51
M2ADDTYPES, 51
M2BASE16, 51
M2CMPSYM, 51
M2EXTENSIONS, 51
MAIN , 51
MAKEDEF , 51
MAKEFILE , 52

miscellaneous equationsy

miscellaneous optiong4
NOEXTERN, 52
NOHEADER, 52
NOOPTIMIZE , 52
02,52

O2ADDKWD, 52
O2EXTENSIONS, 52
O2ISOPRAGMA, 53
O2NUMEXT, 53
OVERWRITE , 53

233

234

PROCINLINE , 53
run-time checks42
STORAGE, 53
TARGET16, 54
VERBOSE, 54
VERSIONKEY , 54
WERR, 54
WOFF, 54
XCOMMENTS, 55
ORD (M2),123
OVERWRITE , 15, 37, 44,53

portability

file names12
possible problem£21
postmorten historyg
precedence of option&3
PRJ, 26, 32, 57, 62
PRJEXT, 26, 56, 62
PROCINLINE , 43,53
PROJECT, 57, 62
project files,31

RAISE, 112
RE, 123
read-only parameter$41, 156
redirection file,14

master11
regular expressiongb
RTS,161
Run-Time support] 61
running a program/

Search]166

SEQ parameterd42 157

SETSIZE, 56, 62

SIZE, 123

SizeOf,167

STACKLIMIT , 56, 62

standard procedures
Modula-2,122

INDEX

STORAGE, 42, 53, 71, 108 144

162
string concatenatiorl,56
SYM, 19, 56, 62
symbol files,29
SYSTEM
ADDADR, 131
ADR (M2), 131
BIT, 133
CAST, 132
CC,133
CODE,134
DIFADR, 131
DISPOSE 158
FILL, 134
GET, 134
GETREG,158
M2ADR, 159
MOVE, 134
NEW, 158
PUT, 134
PUTREG,158
REF (M2),133
ROTATE, 133
SHIFT, 133
SUBADR, 131
TSIZE, 132
SYSTEM, 127, 157
system modules
COMPILER,63
COROUTINES,119
EXCEPTIONS,112
M2EXCEPTION,115
SYSTEM (M2),127
SYSTEM (02),157
TERMINATION, 119
system typesl29

TABSTOP, 57, 62
TARGET16, 43, 54, 54
TARGET16, 209

INDEX

TEMPLATE , 27,57, 63
template files26, 35
TermFile, 224
TERMINATION , 119
ThisCommandl167
ThisType, 167
TOPSPEED, 42
TRUNC, 123
TypeOf,168

VAL (M2), 123

VAL (O2), 156

value constructorg,03 157
VERBOSE, 35, 44, 54
VERSIONKEY , 43,54, 216
VOLATILE , 84

WERR, 44, 54
WOFF, 44, 54
WORD, 129

X2C.h,181
XCOMMENTS, 44, 52, 55, 150
XYPlane, 224

235

236 INDEX

This page had been intentionally left blank.

EXCELSIOR

Excelsior, LLC

6 Lavrenteva Ave. Suite 441
Novosibirsk 630090 Russia

Tel: +7 (3832) 39 78 24

Fax: +1 (509) 271 5205

Email: info@excelsior-usa.com
Web: http://www.excelsior-usa.com

	About XDS
	Welcome to XDS
	Conventions used in this manual
	Language descriptions
	Source code fragments

	Getting started
	Using the Modula-2 compiler
	Using the Oberon-2 compiler
	Error reporting
	Building a program
	Debugging a program

	Configuring the compiler
	System search paths
	Working configuration
	XDS memory usage
	Directory hierarchies
	XDS search paths
	Redirection file
	Regular expression

	Options
	Configuration file
	Filename extensions
	Customizing compiler messages
	XDS and your C compiler
	Building the run-time library
	Configuring XDS for seamless compilation

	Using the compiler
	Invoking the compiler
	Precedence of compiler options

	XDS compilers operation modes
	COMPILE mode
	MAKE mode
	PROJECT mode
	GEN mode
	BROWSE mode
	ALL submode
	BATCH submode
	OPTIONS submode
	EQUATIONS submode

	Files generated during compilation
	Modula-2 compiler
	Oberon-2 compiler

	Control file preprocessing
	Project files
	Make strategy
	Smart recompilation
	Template files
	Using equation values
	File name construction
	Iterators
	Examples

	Compiler options and equations
	Options
	Options reference
	Equations
	Equations reference
	Error message format specification
	The system module COMPILER

	Compiler messages
	Lexical errors
	Syntax errors
	Semantic errors
	Symbol files read/write errors
	Internal errors
	Warnings
	Pragma warnings
	Native XDS warnings
	XDS-C errors

	XDS Modula-2
	ISO Standard compliance
	Ordering of declarations

	New language's features
	Lexis
	Complex types
	Sets and packedsets
	Strings
	Value constructors
	Multi-dimensional open arrays
	Procedure type declarations
	Procedure constants
	Whole number division
	Type conversions
	NEW and DISPOSE
	Finalization
	Exceptions
	The system module EXCEPTIONS
	The system module M2EXCEPTION
	Termination
	Coroutines
	Protection

	Standard procedures
	Compatibility
	Expression compatibility
	Assignment compatibility
	Value parameter compatibility
	Variable parameter compatibility
	System parameter compatibility

	The Modula-2 module SYSTEM
	System types
	System functions
	System procedures

	Language extensions
	Lexical extensions
	Additional numeric types
	Type casting
	Assignment compatibility with BYTE
	Dynamic arrays
	Constant array constructors
	Set complement
	Read-only parameters
	Variable number of parameters
	Read-only export
	Renaming of imported modules
	NEW and DISPOSE for dynamic arrays
	HALT
	ASSERT

	Source code directives
	Inline options and equations
	Conditional compilation

	XDS Oberon-2
	The Oberon environment
	Program structure
	Creating a definition

	Last changes to the language
	ASSERT
	Underscores in identifiers
	Source code directives

	Oakwood numeric extensions
	Complex numbers
	In-line exponentiation

	Using Modula-2 features
	Language extensions
	Comments
	String concatenation
	VAL function
	Read-only parameters
	Variable number of parameters
	Value constructors

	The Oberon-2 module SYSTEM
	Compatibility with BYTE
	Whole system types
	NEW and DISPOSE
	M2ADR

	Run-time support
	Memory management
	Postmortem history
	The oberonRTS module
	Types and variables
	Garbage collection
	Object finalization
	Meta-language facilities
	Module iterators

	Multilanguage programming
	Modula-2 and Oberon-2
	Basic types
	Data structures
	Garbage collection

	Direct language specification
	Interfacing to C
	Foreign definition module
	External procedures specification

	Relaxation of compatibility rules
	Assignment compatibility
	Parameter compatibility
	Ignoring function result

	Mapping to C
	Layout of a generated code
	Identifiers
	Data types
	Basic types
	Special system types
	Modula-2 enumeration types
	Modula-2 set types
	Record types
	Pointer types
	Dynamic arrays

	Procedure declarations
	Parameters
	Open arrays
	Oberon-2 variable vecord parameters
	Sequence parameters
	Function results
	Procedure body
	Nested procedures

	Module initialization and finalization
	Oberon-2 object-oriented features
	Oberon-2 run-time data structures
	Options
	Describing platform
	Code generation
	Evaluating size of types
	Foreign language interface
	Code presentation

	Possible Problems
	Warnings from C compiler
	Ordering of record fields
	Name collisions in C text

	Limitations and restrictions

