
Pantry User Guide
Omari Norman

Pantry User Guide
Omari Norman

Version 32 released Saturday, March 14, 2009.

Copyright 2007-2009 Omari Norman.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Data in the starter_database file is derived from U.S. Department of Agriculture, Agricultural Research Service. 2008. USDA National
Nutrient Database for Standard Reference, Release 21. Nutrient Data Laboratory Home Page: http://www.ars.usda.gov/ba/bhnrc/ndl This data
is in the public domain and there is no copyright, see http://www.ars.usda.gov/Main/docs.htm?docid=6233#copyright

iii

Table of Contents
About Pantry ... vi

Pantry's advantages .. vi
Pantry's disadvantages ... vi
Alternatives ... vi
Pantry on the Internet .. vii

About the documentation ... viii
Installation .. ix

Install everything you will need to compile Pantry ... ix
Compiling and installing ... ix

Getting help and reporting bugs .. xi
1. The Pantry Paradigm ... 1

A client-server model .. 1
Foods .. 1

Traits .. 1
Nutrients ... 2
Available units ... 2

Collections and databases ... 2
2. Manipulating foods .. 4

Opening files and getting server status .. 4
The name, info, and blank reports .. 4
Selecting foods with the --search option ... 6
The units report, and changing foods .. 9
Making changes permanent ... 12
Reports about nutrients ... 14
Sorting reports, and using --auto-order .. 17
Approximations with the --refuse and --by-nut options 22
The paste report ... 24
Saving and quitting .. 25
Additional commands to work with files ... 25
Oops! When things go wrong .. 25

3. Pantry usage tips ... 27
Use your shell .. 27

History features ... 27
Aliases and functions ... 27
Variables and arrays .. 27

Short options and abbreviations ... 28
Files and collections .. 28
Using traits .. 28

4. Creating new foods, and changing the nutrients and available units of existing foods 29
Create the food and its traits ... 29
Add available units .. 29
Create nutrients ... 30
Check your work .. 30
The addFoods script ... 31
Commands to edit the nutrients and available units of foods .. 31

5. Creating recipes .. 34
Create the recipe and its traits ... 34
Add ingredients ... 34
Add available units .. 36
Seeing your new recipe .. 36
The addRecipes script ... 36
Editing recipes .. 37

A. Pantry limitations .. 38
No multibyte or locale awareness ... 38
High RAM usage .. 38

Pantry User Guide

iv

Only one file at a time may be open ... 38
Size of collections, number of collections, number of nutrients, etc. 39
Numbers are approximations ... 39

B. How the USDA National Nutrient Database for Standard Reference became the
starter_database file ... 40
C. Reference pages .. 41

pantry .. 42
pantryd .. 46

v

List of Examples
2.1. Starting the Pantry server ... 4
2.2. Opening a database ... 4
2.3. Getting server status .. 4
2.4. The name report .. 5
2.5. The info report .. 5
2.6. The blank report .. 6
2.7. The groups report .. 6
2.8. Using --search name .. 7
2.9. Using multiple --search options .. 7
2.10. Using the group trait in a search .. 8
2.11. The --ignore-case option .. 8
2.12. Patterns, anchors, and --exact-match .. 9
2.13. Changing traits ... 9
2.14. Changes only affect foods in the buffer ... 10
2.15. Changing the quantity trait ... 10
2.16. Units report .. 11
2.17. Changing the unit trait ... 11
2.18. Papaya units reports ... 12
2.19. Adding foods to a collection .. 13
2.20. Using the --edit option ... 13
2.21. Using the --delete option ... 14
2.22. The goals report ... 14
2.23. My fruititarian foods .. 15
2.24. My fruititarian report ... 16
2.25. The nuts report ... 17
2.26. Using the Goals and Nuts reports ... 17
2.27. A basic sorting example ... 18
2.28. Sorting in descending order ... 19
2.29. Specifying more than one --key ... 20
2.30. Using the --list option to sort foods ... 21
2.31. Using the --auto-order option ... 22
2.32. Using the --refuse option ... 23
2.33. Using the --by-nut option ... 24
2.34. The paste report ... 24
2.35. Seeing if there are unsaved changes .. 25
2.36. Using the --save-as option ... 25
4.1. Creating a new food .. 29
4.2. Adding an available unit .. 30
4.3. Adding nutrients ... 30
4.4. Seeing the new food .. 31
4.5. Using --rename-nut ... 32
4.6. Using --rename-avail-unit ... 32
4.7. Using --delete-nuts ... 33
4.8. Using --delete-avail-units ... 33
5.1. Creating a recipe ... 34
5.2. Adding ingredients to a single collection ... 35
5.3. Add ingredients to the food .. 35
5.4. The recipe report ... 36

vi

About Pantry
Pantry is a command-line oriented nutrient analysis program. It can help you find the nutrient content
of foods and recipes. You can also use it to track and analyze your nutrient intake.

Pantry is a true command-line oriented program. There are no menus or prompts. Of course this
is clearly different from Web-based or GUI programs, but it also differs from programs that run
in a text console but are menu-driven (such programs have been called text user interface [http://
en.wikipedia.org/wiki/Text_user_interface] programs).

Pantry may or may not be what you are looking for, so here is a rundown of the advantages and
disadvantages of this program.

Pantry's advantages
Pantry's true command-line interface gives it many advantages. Because Pantry works from your shell
prompt, you can easily combine it with other text-processing tools. You can also easily write scripts
incorporating Pantry, in ways that even I cannot anticipate. This is the strength of the Unix "toolbox"
way of using a computer.

In addition, nothing beats the speed of a command-line program for something you use frequently
and are familiar with. If you are using a nutrient-analysis program to track your daily food intake,
you will appreciate how quickly you can use Pantry for this purpose. Indeed, I developed Pantry due
to my frustration with current tools because it was very tedious to use them to quickly tally a day's
food intake.

Because Pantry runs from a text console, you can easily set it up on one computer that has an SSH
server running. You may then access your nutrient data from any computer that has an SSH client.
Though Web-based nutrition-tracking services also offer the ability to access your data from any
Internet-connected computer, Pantry is more private than Web-based services.

Pantry's disadvantages
The biggest disadvantage of using Pantry is the same as its biggest advantage: its command-line
interface. Graphical user interface programs attempt to be self-documenting: just sit down, click on
some buttons, and hopefully you can figure things out. With Pantry, on the other hand, you will
absolutely have to read this manual to figure out how it works, and you will need some practice before
you are comfortable with Pantry. In this way, Pantry resembles other command-line oriented Unix
programs. As with other Unix programs, once you learn Pantry, you will love its speed and efficiency--
but you will have to spend some time learning.

Similarly, because of its command-line interface, you will find that you are most efficient with Pantry
if you know your way around a Unix shell prompt. For example, you will find that you can use Pantry
more quickly if you know how to use your shell's features to manipulate your command history. Such
knowledge is useful for any Unix command-line program, not just Pantry; however, building up this
knowledge takes some time.

Pantry has no tools to graphically visualize your food intake. I might eventually add such features
using Gnuplot [http://www.gnuplot.info/] or something similar.

Alternatives
I know I like to check out many possible programs before settling on one to learn to use--and I always
like trying new programs too. Here are some possible alternatives to Pantry that you might take a
look at:

http://en.wikipedia.org/wiki/Text_user_interface
http://en.wikipedia.org/wiki/Text_user_interface
http://en.wikipedia.org/wiki/Text_user_interface
http://www.gnuplot.info/
http://www.gnuplot.info/

About Pantry

vii

NUT This is probably the leading nutrient analysis program for Unix. It
has a text user interface and is very mature. NUT website [http://
nut.sourceforge.net].

Crosstrainer The best GUI program for nutrient analysis that I have ever seen. It does
more than nutrient analysis, too--for example it can track your exercise
too. (Pantry will never do anything other than nutrients.) Crosstrainer
only runs on Windows though, and I have not used Windows in quite
awhile. Crosstrainer is also somewhat expensive. Crosstrainer website
[http://www.crosstrainer.ca/].

nutritiondata.com This website has great tools, and neat graphical features. Using it as a
food diary is somewhat cumbersome, however. nutritiondata.com website
[http://www.nutritiondata.com].

Fitday This is the best food diary website that I have found. Fitday website [http://
www.fitday.com].

Pantry on the Internet
Visit the Pantry home page at http://www.smileystation.com/pantry. I post new versions there. I also
update the Pantry Freshmeat listing at http://www.freshmeat.net/projects/pantry when I release new
versions. Freshmeat has subscription services that will notify you when there is a new release.

Pantry's source code is tracked with Git; you can clone the repository from Github [http://github.com/
massysett/pantry/tree/master].

http://nut.sourceforge.net
http://nut.sourceforge.net
http://nut.sourceforge.net
http://www.crosstrainer.ca/
http://www.crosstrainer.ca/
http://www.nutritiondata.com
http://www.nutritiondata.com
http://www.fitday.com
http://www.fitday.com
http://www.fitday.com
http://www.smileystation.com/pantry
http://www.freshmeat.net/projects/pantry
http://github.com/massysett/pantry/tree/master
http://github.com/massysett/pantry/tree/master
http://github.com/massysett/pantry/tree/master

viii

About the documentation
Right now you are reading the Pantry User Guide. This is a narrative document to teach you step by
step how to use Pantry. I hope you'll read it from beginning to end. In the PDF version, some of the
examples run off the right side of the page. If you're curious about what you're missing (typically very
little of substance) just look at the HTML version.

Also, like any good1 Unix program, Pantry has manual pages. They are available by invoking "man
pantry" or "man pantryd" at the command prompt. The manual pages are not intended to teach you
how to use Pantry. Instead, they serve as reference guides if you wish to jog your memory about how
a particular feature works. You will also find the manual pages at the end of this User Guide.

1I don't mean to presume that Pantry is a good program, but I have tried to imitate the best where I can.

ix

Installation
Pantry is written in C++ [http://en.wikipedia.org/wiki/C_plus_plus] and distributed using the
GNU Autotools [http://en.wikipedia.org/wiki/GNU_build_system]. If you know what that previous
sentence means, then you don't need to read the rest of this section--install Pantry the usual way.

If on the other hand you have never compiled software, never fear. Sometimes compiling software
from source code can be tricky, but Pantry is quite easy to compile and install. This section will lead
you through the process step by step.

Pantry should compile and run perfectly on any recent Unix-like operating system. This includes any
Linux system, the BSDs, Mac OS X, and any of the proprietary Unices. It might also compile and run
in Cygwin; I am unfamiliar with Cygwin so I can't offer any help there. Pantry will not compile or run
in Microsoft Windows, and I doubt this will ever change.

Install everything you will need to compile
Pantry

You'll need to have the following software installed before you attempt to compile Pantry. All this
software is quite common and will be readily available on any Unix system. On a Linux system, use
your distribution's package management system to install this software, if it is not installed already.

make make invokes the compiler, and it also installs the compiled
binaries (and other files) in their proper locations. On Linux this
package is typically named make.

The standard C library The standard C library contains a variety of essential routines that
Pantry uses for file operations and interprocess communications.
I can guarantee that the standard C library is already installed on
your system, as no Unix system can work without one. However,
on many Linux distributions you will need to install the additional
"development" files. These files are necessary if you wish to
compile software from source. Look for a package named libc6-
dev or glibc-devel or something similar. Most other Unix systems
will already have these additional files installed.

A C++ compiler Pantry is written in C++ so you will need a C++ compiler. Pantry
uses only standard features of the C++ language, so any recent C
++ compiler will work. On Linux, install the GNU C++ compiler.
Look for a package named g++, gcc-g++, or something similar.

C++ standard library All C++ programs require the standard C++ library. Though
the standard C++ library likely is already installed on your
system, you may need to install the additional "development" files,
especially if you are on Linux. Look for a package named libstdc
++-devel, libstdc++-dev, or something similar.

Compiling and installing
Now that you've installed all the prerequisites, compiling and installing Pantry is simple:

1. In your normal user account, unpack the tarball with bunzip2 < pantry-32.tar.bz2 |
tar x

2. Change to the newly created directory with cd pantry-32.

http://en.wikipedia.org/wiki/C_plus_plus
http://en.wikipedia.org/wiki/C_plus_plus
http://en.wikipedia.org/wiki/GNU_build_system
http://en.wikipedia.org/wiki/GNU_build_system

Installation

x

3. Run ./configure.

4. Run make.

5. Become the root user by issuing su or sudo -i.

6. Install Pantry with make install.

If you are curious about what the commands listed above are doing, consult one of these tutorials about
how to install software from source code:

• Tuxfiles [http://www.tuxfiles.org/linuxhelp/softinstall.html]

• Linux Howtos [http://liquidweather.net/howto/index.php?id=82]

http://www.tuxfiles.org/linuxhelp/softinstall.html
http://www.tuxfiles.org/linuxhelp/softinstall.html
http://liquidweather.net/howto/index.php?id=82
http://liquidweather.net/howto/index.php?id=82

xi

Getting help and reporting bugs
The best place to start when you're learning Pantry is this user guide, which was written to teach you
everything you need to know. The manual pages, pantry(1) and pantryd(1) were not intended to teach
you how to use Pantry; they're better for jogging your memory on how to use this feature or that.

If you're having trouble installing or using Pantry, send me an email at omari@smileystation.com
[mailto:omari@smileystation.com]. Also, please send me an email if you have any suggestions for
improvement or have any bugs to report.

mailto:omari@smileystation.com
mailto:omari@smileystation.com

1

Chapter 1. The Pantry Paradigm
Every software package comes with a set of terminology and ideas that you need to learn in order to
use the software most effectively. For example, emacs users are familiar with buffers, regions, and
the kill ring. vi users know the difference between normal mode and insert mode. Web browser users
know about URLs (or, at least, addresses) and links. Pantry is no different, as it comes with its own
set of terminology and its own paradigm, as you will learn about in this chapter.

A client-server model
Pantry is designed to work entirely from the command line. This gives you full access to the power
of your shell as you work with Pantry. However, Pantry needs to deal with lots of data. It would take
too long to load all this data into memory every time you execute a Pantry command.

The solution is a client-server model. When you use Pantry, you'll start a server which runs in the
background. This server will hold all the data you're working with. To interact with the server from the
command line, you'll use a client program. When you're done with the server, you can shut it down--
or you can just leave it running. It's up to you.

Pantry comes with two binary programs, with pantryd being the server and pantry being the
client. Generally you will only run one server at a time. The server and client communicate with
each other using a UNIX domain socket [http://en.wikipedia.org/wiki/Unix_domain_sockets], which
is a common means of interprocess communication on Unix. By default, this socket is a file at
$HOME/.pantrySocket. If you want to use a different location for your socket file, you can do so
by setting the environment variable PANTRY_SOCKET before you start pantryd, and you will also
need to be sure the PANTRY_SOCKET variable is set each time you run pantry. Specify the entire
path to the socket, including the filename itself (it need not be named .pantrySocket). By using
the PANTRY_SOCKET variable, you can run more than one pantryd server simultaneously.1

Foods
You will work with Pantry by manipulating what we will call foods. Each food in Pantry has various
pieces of data associated with it, called traits, nutrients, and available units.

Traits
A food's traits is a set of twelve strings. Each of these strings indicates something interesting about
the food. For instance, four of these traits are name, date, quantity, and unit. For a particular
food, these might be equal to Apples, raw, with skin, Wednesday (to indicate the date that
you ate it) 2 and large (3-1/4" dia) to indicate that you ate two large apples. Of course you
can change a food's traits. For instance, you can rename any food whenever you want, and you can
change its quantity and unit traits to indicate how much you ate (or just to see the nutrient breakdown
for that particular quantity and unit.)

Twelve food traits

name This is the name of the food, such as Apples, raw, with skin.

group You can assign whatever you like to this trait to group foods. The foods in
the starter_database file already have group traits corresponding to the
food groups used by USDA; for instance, Apples, raw, with skin
has a group trait of Fruits and Fruit Juices.

1You might need to use PANTRY_SOCKET if the default socket location does not work for you because, for example, you don't have
permission to create files in your home directory or if your home directory is on a filesystem that does not allow creation of sockets. Otherwise,
I can't imagine why most folks would want to run more than one server simultaneously, though this feature does come in handy when I am
testing new versions of Pantry and preparing them for release.

http://en.wikipedia.org/wiki/Unix_domain_sockets
http://en.wikipedia.org/wiki/Unix_domain_sockets

The Pantry Paradigm

2

quantity This is a number. You can use an integer, like 2; a decimal, like 2.5; a fraction,
like 1/2; or a mixed number, like 2 1/2.

unit This is a string. It must be equal to one of the food's available units. Every food
has g, oz, and lb as available units; you can also assign additional available
units to a food, as we will discuss later. Later we will also see how you can
find out what a food's available units are.

date You can assign whatever you wish to this trait to indicate when you ate a food,
if you wish. This does not need to be formatted any particular way, so you
can use 2008-05-18, Sunday, or the day before yesterday if
you want.

meal A string indicating what meal you ate a food at, such as Lunch or midday
snack.

comment Any comments you may wish to add.

order Sometimes you may want your foods to be sorted in a particular order when
you print reports; to do that you can assign appropriate values to this trait, such
as a for one food and b for the next food. As we will see later, Pantry can also
assign values to this trait for you if you wish.

refuse A description of the refuse of a food--that is, the part you don't eat, like bones
or shells. For Apples, raw, with skin, this is Core and stem.

percent-refuse The percent of the food that is refuse. As we will see later Pantry can use the
value of this trait to make it easier for you to keep track of food quantities. As
with the quantity trait, this can be an integer, decimal value, fraction, or mixed
number. For Apples, raw, with skin, this is 10, which is roughly the
percentage of an apple's weight that is core and stem.

yield Later you will learn how to create your own recipes in Pantry. This trait
indicates the total yield of a recipe, in grams.

instructions For a recipe, this may contain any preparation instructions you may wish to
add.

Nutrients
A food's nutrients is a set of pairs of strings and numbers. These indicate the nutrient breakdown of
a food. For example, the food with the name trait Apples, raw, with skin whose quantity
trait is 1 and whose unit trait is large (3-1/4" dia) has 100 nutrients total. Some of the more
interesting ones are Calories which is 116; Calcium, mg which is 13, and Dietary Fiber,
g which is 5. A food's nutrients adjust automatically as you change its quantity or unit traits.

Available units
A food's available units indicate various possible quantities of a food, and how much each given
quantity weighs in grams. For example, the food whose name trait is Apples, raw, with skin
has ten available units total. Among these are large (3 1/4" dia), which is 223g, and cup
slices, which is 109g. Every food always has g, oz, and lb as available units.

Collections and databases
A collection holds foods. Every food must be in a collection. You can use collections to group foods
in a way that is convenient to you--for example, by day of the week, or by foods you eat frequently.
A database holds one or more collections. In Pantry you can only work with one database at a time,

The Pantry Paradigm

3

though you can work with more than one collection as long as they are in the same database. You can
save databases to disk so you can load them again later.

4

Chapter 2. Manipulating foods
Now that you know some essential Pantry terminology, you're ready to jump in and do something
interesting. In this chapter you'll learn how to use Pantry to find nutrition information about foods.

Opening files and getting server status
As you learned in the previous chapter, Pantry employs a client-server architecture. So the first thing
you must do when working with Pantry is start a server. To start a server, simply type pantryd at
a command prompt:

Example 2.1. Starting the Pantry server

$ pantryd

This starts up a Pantry server in the background and returns you to your prompt. This server will keep
running, even after you logout of the shell from which you started the server.1 If you're a skeptic and
you don't believe that you actually have a program running in the background, you can verify that a
Pantry server is running by using your ps command.

Now to interact with the server you'll use the pantry command. First let's load a database. Pantry comes
with the starter_database file. It contains over 7,000 foods from the USDA's National Nutrient
Database for Standard Reference [http://www.ars.usda.gov/Services/docs.htm?docid=8964]. You'll
find this file at $PREFIX/share/pantry/data/starter_database, where $PREFIX is the
prefix you used when you ran the configure script. (This defaults to /usr/local.) So to open the
file run a command similar to this. Just make an appropriate substitution for the location of your
starter_database file:

Example 2.2. Opening a database

$ pantry --open data/starter_database

As with the previous command, you're returned to your prompt without a message. Pantry generally
is quite terse--if it has nothing surprising to say, or if you have not asked it to say anything, then it
stays quiet. If you're wondering if that last command really did anything, you can ask the server to
report its status:

Example 2.3. Getting server status

$ pantry --status
Current filename: /home/massysett/pantry-git/data/starter_database
Collections:
 7413 master

This shows that the database you just opened has a single collection, called master, with 7413 foods.

The name, info, and blank reports
Next let's learn how to print reports, which are Pantry's way of telling you what you want to
know about foods. Most invocations of the Pantry command take the form pantry [options]
COLLECTION... When you enter a pantry command, you will usually specify one or more
collections as non-option arguments2. For example, as we saw above, the starter_database file
comes with one collection, named master.

1As we will discuss later, to terminate the server, run pantry --quit.
2When I say non-option arguments, it's to distinguish these arguments from the arguments with leading single or double dashes.

http://www.ars.usda.gov/Services/docs.htm?docid=8964
http://www.ars.usda.gov/Services/docs.htm?docid=8964
http://www.ars.usda.gov/Services/docs.htm?docid=8964

Manipulating foods

5

In order to learn exactly what foods are in the master collection, you can print reports about the
foods. For example, the simplest report is the name report, which prints the name trait of every food
in the buffer:

Example 2.4. The name report

$ pantry --print name master | head
Croissants, apple
Beef, ground, patties, frozen, cooked, broiled
Rice, white, glutinous, cooked
McDONALD'S, McFLURRY with OREO cookies
Crackers, wheat, regular
Onions, sweet, raw
Fast foods, chicken fillet sandwich, with cheese
Alcoholic beverage, wine, cooking
Lamb, New Zealand, imported, frozen, composite of trimmed retail cuts, separable lean and fat, raw
Bread, french or vienna (includes sourdough)

Thus you use the --print option to print reports. The --print option takes a single argument,
which is the name of the report--here, name. Finally you specify the collection or collections that
has the foods you're interested in--here, master. Pantry first copies every food from the master
collection into the buffer. It then prints a name report for every one of those foods. That's a lot of
foods--over 7,000 of them, so in the manual I've piped the output to head to save some space. After
your pantry command is done, the foods that were copied to the buffer are gone, and the foods in the
master collection are unchanged.

To know more than just the name of a food, use the info report. It prints information about most of a
food's traits. It does not print information about the food's name trait (for that, use the name report) or
about some of the traits that are related only to foods that are recipes (we'll discuss reports applicable
to recipes later.) To save space, the info report does not print information about a trait if it is blank.
You can print more than one report at a time simply by specifying multiple --print options.

Example 2.5. The info report

$ pantry --print name --print info master | head
Croissants, apple
100 g (100g)
Group: Baked Products
Beef, ground, patties, frozen, cooked, broiled
100 g (100g)
Group: Beef Products
Rice, white, glutinous, cooked
100 g (100g)
Group: Cereal Grains and Pasta
McDONALD'S, McFLURRY with OREO cookies

For every food in the buffer, Pantry first printed a name report and then printed an info report. As
you can see, some whitespace would help make this more readable. To get whitespace use the blank
report, which prints a blank line:

Manipulating foods

6

Example 2.6. The blank report

$ pantry --print name --print info \
--print blank master | head
Croissants, apple
100 g (100g)
Group: Baked Products

Beef, ground, patties, frozen, cooked, broiled
100 g (100g)
Group: Beef Products

Rice, white, glutinous, cooked
100 g (100g)

All the reports we have seen so far are printed once for every food in the buffer. We'll call these
reports food reports. On the other hand, some reports are printed just once for the entire buffer, no
matter how many foods are in the buffer. We'll call these reports summary reports because they
summarize information for the entire buffer. One summary report is the groups report, which tells
you information about the group trait of every food in the buffer:

Example 2.7. The groups report

$ pantry --print groups master
Group name Food count
--
Baby Foods 314
Baked Products 489
Beef Products 485
Beverages 262
Breakfast Cereals 440
Cereal Grains and Pasta 180
Dairy and Egg Products 222
Ethnic Foods 153
Fast Foods 354
Fats and Oils 220
Finfish and Shellfish Products 255
Fruits and Fruit Juices 321
Lamb, Veal, and Game Products 345
Legumes and Legume Products 359
Meals, Entrees, and Sidedishes 123
Nut and Seed Products 128
Pork Products 319
Poultry Products 371
Sausages and Luncheon Meats 233
Snacks 139
Soups, Sauces, and Gravies 497
Spices and Herbs 61
Sweets 338
Vegetables and Vegetable Products 805
--
 Total 7413

Selecting foods with the --search option
As you learned in the previous section, the information in your reports in Pantry depends on what foods
are in the buffer, and when you specify a collection name as an argument to the pantry command,

Manipulating foods

7

Pantry copies all the foods from that collection into the buffer. So every report we saw in the previous
section pertained to all the foods in the master collection in the starter_database file--that's
over 7,000 foods. Often you'll only be interested in a fraction of the foods in a particular collection.
That's where the --search option comes in.

With the --search option, you specify a particular trait, such as name, date, or group, and a pattern
you wish to match for that particular trait. As we learned before, Pantry first copies every food from the
each collection you specify into the buffer. However, when you specify --search options, Pantry
then eliminates every food whose trait does not match the pattern you specified. An example will help:

Example 2.8. Using --search name

$ pantry --search name "Apples, raw, with skin" \
--print name --print info master
Apples, raw, with skin
100 g (100g)
Group: Fruits and Fruit Juices
Refuse: 10 percent Core and stem

You have to quote the second argument to the --search option if, as here, it contains characters
that the shell gives special meaning to, such as spaces. Here [http://www.mpi-inf.mpg.de/~uwe/lehre/
unixffb/quoting-guide.html] is an excellent guide that explains why and when quoting is necessary.

As with the --print option, you may specify multiple --search options in a single command.
The effect of multiple --search options is cumulative; that is, a food must match all of the --
search options specified, or Pantry will remove it from the buffer.

Example 2.9. Using multiple --search options

$ pantry --search name Apples --print name master
Apples, dried, sulfured, stewed, without added sugar
Apples, dried, sulfured, uncooked
Applesauce, canned, sweetened, with salt
Apples, canned, sweetened, sliced, drained, heated
Apples, raw, without skin, cooked, microwave
Apples, frozen, unsweetened, unheated
Apples, dried, sulfured, stewed, with added sugar
Apples, dehydrated (low moisture), sulfured, stewed
Applesauce, canned, unsweetened, with added ascorbic acid
Apples, raw, with skin
Applesauce, canned, unsweetened, without added ascorbic acid (includes USDA commodity)
Apples, raw, without skin
Apples, dehydrated (low moisture), sulfured, uncooked
Apples, canned, sweetened, sliced, drained, unheated
Apples, frozen, unsweetened, heated
Apples, raw, without skin, cooked, boiled
Applesauce, canned, sweetened, without salt (includes USDA commodity)

$ pantry --search name Apples \
--search name skin --print name master
Apples, raw, without skin, cooked, boiled
Apples, raw, without skin
Apples, raw, with skin
Apples, raw, without skin, cooked, microwave

You can search using any trait you wish, not just the name trait. For example, you can show all foods
with the word Fruit in their group trait:

http://www.mpi-inf.mpg.de/~uwe/lehre/unixffb/quoting-guide.html
http://www.mpi-inf.mpg.de/~uwe/lehre/unixffb/quoting-guide.html
http://www.mpi-inf.mpg.de/~uwe/lehre/unixffb/quoting-guide.html

Manipulating foods

8

Example 2.10. Using the group trait in a search

$ pantry --search group Fruit --print name \
--print info --print blank master | head
Strawberries, canned, heavy syrup pack, solids and liquids
100 g (100g)
Group: Fruits and Fruit Juices

Pineapple, canned, water pack, solids and liquids
100 g (100g)
Group: Fruits and Fruit Juices

Prunes, dehydrated (low-moisture), uncooked
100 g (100g)

As with many things Unix, by default the --search option is case sensitive. To make it case
insensitive, use the --ignore-case option. This makes the pattern to every --search option
case insensitive.

Example 2.11. The --ignore-case option

$ pantry --search name papaya \
--print name master
Babyfood, fruit, guava and papaya with tapioca, strained
Babyfood, fruit, papaya and applesauce with tapioca, strained
Fruit salad, (pineapple and papaya and banana and guava), tropical, canned, heavy syrup, solids and liquids

$ pantry --ignore-case \
--search name papaya \
--print name master
Babyfood, fruit, guava and papaya with tapioca, strained
Babyfood, fruit, papaya and applesauce with tapioca, strained
Papaya nectar, canned
Fruit salad, (pineapple and papaya and banana and guava), tropical, canned, heavy syrup, solids and liquids
Papayas, raw

Also, by default the search patterns are regular expressions [http://www.regular-expressions.info].3

If a regular expression matches any part of the trait, then the food matches. This can have mildly
unexpected results. Sometimes you may wish to use anchors [http://www.regular-expressions.info/
anchors.html]. In addition, there is an --exact-match option which turns off regular expressions.
When you use exact match, all search patterns must exactly match the search patterns given.

3Pantry uses the regular expression routines that come with the standard UNIX C library. Pantry uses "extended" regular expressions; typically
they are similar to what your egrep command uses. These regular expressions are less versatile than those Perl uses, but they are usually good
enough and they are available on any Unix system.

http://www.regular-expressions.info
http://www.regular-expressions.info
http://www.regular-expressions.info/anchors.html
http://www.regular-expressions.info/anchors.html
http://www.regular-expressions.info/anchors.html

Manipulating foods

9

Example 2.12. Patterns, anchors, and --exact-match

$ pantry --search name "Apples, raw, without skin" \
--print name master
Apples, raw, without skin, cooked, boiled
Apples, raw, without skin
Apples, raw, without skin, cooked, microwave

$ pantry --search name "Apples, raw, without skin$" \
--print name master
Apples, raw, without skin

$ pantry --exact-match \
--search name "Apples, raw, without skin" \
--print name master
Apples, raw, without skin

The units report, and changing foods
Now you know how to search for foods and print information about them. This is often useful all by
itself, but often you will want to change foods. To change a trait, just use the --change option:

Example 2.13. Changing traits

$ pantry --ignore-case --search name papaya \
--change group "Tropical Fruits" \
--print name --print info --print blank \
master
Babyfood, fruit, guava and papaya with tapioca, strained
100 g (100g)
Group: Tropical Fruits

Babyfood, fruit, papaya and applesauce with tapioca, strained
100 g (100g)
Group: Tropical Fruits

Papaya nectar, canned
100 g (100g)
Group: Tropical Fruits

Fruit salad, (pineapple and papaya and banana and guava), tropical, canned, heavy syrup, solids and liquids
100 g (100g)
Group: Tropical Fruits

Papayas, raw
100 g (100g)
Group: Tropical Fruits
Refuse: 33 percent Seeds and skin

As you already know, when you execute a pantry command, Pantry first copies all foods from every
collection you specify into a buffer. Pantry then removes from the buffer all foods that do not match
any --search optionis you specified. Next is where the --change option comes in. Pantry changes
every food in the buffer using any --change options you have specified. After that, Pantry prints
any reports you have requested with the --print option.

Remember that Pantry first copies foods from the collections into the buffer, so when you use the
change option, the original foods that are in the collection are not changed. In the last example we

Manipulating foods

10

changed the group trait of some foods that have papaya in their name trait, but as this shows, this
change did not affect the foods in the master collection:

Example 2.14. Changes only affect foods in the buffer

$ pantry --ignore-case --search name papaya \
--print name --print info --print blank \
master
Babyfood, fruit, guava and papaya with tapioca, strained
100 g (100g)
Group: Baby Foods

Babyfood, fruit, papaya and applesauce with tapioca, strained
100 g (100g)
Group: Baby Foods

Papaya nectar, canned
100 g (100g)
Group: Fruits and Fruit Juices

Fruit salad, (pineapple and papaya and banana and guava), tropical, canned, heavy syrup, solids and liquids
100 g (100g)
Group: Fruits and Fruit Juices

Papayas, raw
100 g (100g)
Group: Fruits and Fruit Juices
Refuse: 33 percent Seeds and skin

To make changes permanent, you can use the --add, --edit, and --delete options, which we
will talk about later.

As we discussed earlier, every food in Pantry has twelve traits. Of these twelve, you can assign
whatever text you want to eight: name, group, date, meal, comment, order, and refuse. Of
course you might be less confused if you, say, refrain from using the refuse trait to store information
about when you ate a food, but that is up to you. You are not constrained to using a particular format
for the date trait; later on, when we discuss the --key option, we'll learn of some considerations you
might want to take into account when assigning information to this trait.

The quantity trait is a number. When you assign values to it using the --change option, you
must use a value that evaluates to a number. You can use whole numbers (such as 2), decimals (such
as 2.5), fractions (such as 2/3) or mixed numbers (such as 1 2/3). If you try to use anything else
for the quantity trait, Pantry will give you an error message and quit.

Example 2.15. Changing the quantity trait

$ pantry --search name "Apples, raw, with skin" \
--change quantity "2 1/2" \
--print name --print info master
Apples, raw, with skin
2 1/2 g (2.5g)
Group: Fruits and Fruit Juices
Refuse: 10 percent Core and stem

Entering 0 for a food's quantity trait does not delete a food; to do that, use the --delete option
which we will talk about later.

Manipulating foods

11

The percent-refuse trait is similar to the quantity trait in that it is also a number. However,
the percent-refuse trait has one additional requirement: it must be between 0 and 100, inclusive,
because a food can't have less than zero percent refuse or more than 100 percent refuse.

As we discussed much earlier, each food in Pantry may have a number of available units. Knowing
what these are will come in handy later when you wish to change the units of a food, but for now let's
just see what a units report looks like.

Example 2.16. Units report

$ pantry --ignore-case --search name papaya \
--print name --print units --print blank \
master
Babyfood, fruit, guava and papaya with tapioca, strained
 jar (113g)

Babyfood, fruit, papaya and applesauce with tapioca, strained
 jar (113g)

Papaya nectar, canned
 cup (250g)
 fl oz (31g)

Fruit salad, (pineapple and papaya and banana and guava), tropical, canned, heavy syrup, solids and liquids
 cup (257g)

Papayas, raw
 cup, cubes (140g)
 cup, mashed (230g)
 large (5-3/4" long x 3-1/4" dia) (380g)
 medium (5-1/8" long x 3" dia) (304g)
 small (4-1/2" long x 2-3/4" dia) (152g)

Every food has g, oz, and lb available as units, so the units report does not show these to save some
space.

The unit trait must be set to be equal to one of the food's available units. When you are changing
a food's unit, the second argument to the --change option is a regular expression that must match
exactly one of the food's available units. If the regular expression does not match exactly one of the
food's available units, Pantry will give you an error message and quit.

Example 2.17. Changing the unit trait

$ pantry --search name "Papayas, raw" \
--change quantity 1 \
--change unit large \
--print name --print info master
Papayas, raw
1 large (5-3/4" long x 3-1/4" dia) (380g)
Group: Fruits and Fruit Juices
Refuse: 33 percent Seeds and skin

As always with the --change options, using --change unit will change every food in the buffer so
that its unit matches the pattern you give. For example, take the following output from a units report:

Manipulating foods

12

Example 2.18. Papaya units reports

$ pantry --ignore-case --search name papaya \
--print name --print units --print blank \
master
Babyfood, fruit, guava and papaya with tapioca, strained
 jar (113g)

Babyfood, fruit, papaya and applesauce with tapioca, strained
 jar (113g)

Papaya nectar, canned
 cup (250g)
 fl oz (31g)

Fruit salad, (pineapple and papaya and banana and guava), tropical, canned, heavy syrup, solids and liquids
 cup (257g)

Papayas, raw
 cup, cubes (140g)
 cup, mashed (230g)
 large (5-3/4" long x 3-1/4" dia) (380g)
 medium (5-1/8" long x 3" dia) (304g)
 small (4-1/2" long x 2-3/4" dia) (152g)

Remember that every food has g, oz, and lb as available units, so I could have appended --change
unit "lb" to the previous command. However, had I appended --change unit small to the
previous command, pantry would have given me an error message and quit because only one of the
foods in the buffer had an available unit that matched that pattern.

Let's say I want to change a papaya's unit to g (for grams). What if I wanted to run pantry --
search name "Papayas, raw" --change unit g master? That would give me an
error message because g matches both g and large (5-3/4" long x 3-1/4" dia). One
solution to this is to use anchors by specifying --change unit '^g$' instead.4 Another is to
use the --exact-match option. Because the second argument to the --change unit option
is a regular expression, it respects the --exact-match and --ignore-case options just as the
--search option does. Thus, pantry --exact-match --search name "Papayas,
raw" --change unit g master works perfectly.

Making changes permanent
As we've been pointing out, when you make changes to foods using the --change option, these
changes are not permanent. This is because those changes are to foods that are in the buffer, which
is Pantry's temporary holding place for foods. You get a new buffer every time you run a pantry
command.

There are three ways to make your changes permanent. The one you'll use the most is the --add
option. This takes the entire buffer and adds its contents to the specified collection:

4 I do this with some frequency, so to make it a little easier to type I have alias -g G='\^g\$' in a file that defines Pantry shell functions,
parameters, and aliases for me. This will only work in zsh.

Manipulating foods

13

Example 2.19. Adding foods to a collection

$ pantry --search name "Apples, raw, with skin" \
--change quantity 2 \
--change unit medium \
--change date 2008-06-22 \
--change meal Lunch \
--add diary \
master

$ pantry --print name --print info diary
Apples, raw, with skin
2 medium (3" dia) (364g)
Group: Fruits and Fruit Juices
Date: 2008-06-22
Meal: Lunch
Refuse: 10 percent Core and stem

The --add option is the easiest way to keep a food diary. You simply search for foods in the master
collection, change their traits as appropriate (such as their quantity, date, and meal traits) and
then add them to another collection. I typically add all my diary foods to one collection, diary,
but you can use multiple collections for this purpose--such as one collection for each day, week, or
whatever. You can even add a food to more than one collection at a time; just use multiple --add
options, one for each collection.

Once you have added a food to a collection with --add, that food is independent of the collection
it came from. That is, in the previous example, if you then make changes to the apple you just added
to diary, this will not affect the food in the master collection.

Thus the --add option works by copying foods from the buffer into a collection. Sometimes though
you will want to change a food that is already in a collection, without copying it. For example, let's
say that in the previous example I made a mistake. I really wanted to indicate that I ate one medium
apple, not two. The --edit option will help you here.

Example 2.20. Using the --edit option

$ pantry --search name "Apples, raw, with skin" \
--search date 2008-06-22 \
--search meal Lunch \
--change quantity 1 \
--edit \
diary

$ pantry --search date 2008-06-22 \
--print name --print info --print blank \
diary
Apples, raw, with skin
1 medium (3" dia) (182g)
Group: Fruits and Fruit Juices
Date: 2008-06-22
Meal: Lunch
Refuse: 10 percent Core and stem

With the --edit option, Pantry copies foods from the source collections and makes the changes
indicated using the --change option, as it always does. However, when you use --edit, Pantry will
make changes to the foods that are inside the original collections, as well as making changes to the
foods that are in the buffer.

Manipulating foods

14

Or, let's say that I decided that I didn't really eat an apple after all. Then I can use the --delete
option:

Example 2.21. Using the --delete option

$ pantry --search date 2008-06-22 \
--search name Apples \
--print name \
--delete diary
Apples, raw, with skin

$ pantry --status
Current filename: /home/massysett/pantry-git/data/starter_database
Collections:
 0 diary (changed)
 7413 master

As you can see, the diary collection now has no foods because you deleted the single food that was
in the collection.

With the --delete, option, after copying foods into the buffer and making any changes you specify,
Pantry then deletes the foods from the original collections. The foods are still present in the buffer,
which is why you can still --print them.

Reports about nutrients
There are two reports to tell you about the nutrient content of foods. First we will discuss the goals
report. It allows you to specify the nutrients you wish to see in a report:

Example 2.22. The goals report

$ pantry --search name "Apples, raw, with skin" \
--print name --print info --print goals \
--goal Calories 2600 \
--goal "Total Fat, g" 43 \
--goal "Protein, g" 162 \
--goal "Total Carbohydrate, g" 390 \
--goal "Dietary Fiber, g" 0 \
master
Apples, raw, with skin
100 g (100g)
Group: Fruits and Fruit Juices
Refuse: 10 percent Core and stem
Nutrient name Amount %G %T

Calories 52 2 100
Total Fat, g 0 0 100
Protein, g 0 0 100
Total Carbohydrate, g 14 4 100
Dietary Fiber, g 2 100

As the example illustrates, you specify the nutrients you wish to see in the goals report by using
multiple --goal options, and the nutrients are shown in the order in which you asked for them with
the --goal options. The first argument to each --goal option specifies the nutrient you wish to see.
Unlike many other things in Pantry, this argument is not a regular expression--instead, for a nutrient
to be printed in the goals report, its name must exactly match one of the nutrients specified with a
--goal option. The --goal option is always case sensitive, even if you have specified the --
ignore-case option.

Manipulating foods

15

The second argument to each --goal option is a goal. For instance, here I have specified that it is
my goal to eat 2600 calories, 43 grams of fat, and so on. These goals can be per day, per month, per
meal...whatever you want. If you don't have a goal for a particular nutrient, just specify 0. (You do,
however, have to specify a goal, even if it is zero.)

With that, you can probably figure out what all the columns in the goals report mean. The first is
simply the name of the nutrient. The second is the amount of the nutrient present. The third column is
the ratio of the second column to the goal you specified, expressed as a percentage.

The fourth column shows this nutrient's percentage of the total amount of that nutrient in the buffer.
This makes more sense with an example. Suppose I am a fruititarian:

Example 2.23. My fruititarian foods

$ pantry --search name 'Apples, raw, with skin' \
--change quantity 3 \
--change unit large \
--change date 2008-06-12 \
--change meal Breakfast \
--add diary \
master

$ pantry --search name 'Bananas, raw' \
--change quantity 1 \
--change unit medium \
--change date 2008-06-12 \
--change meal Lunch \
--add diary \
master

$ pantry --search name 'Papayas, raw' \
--change quantity 2 \
--change unit large \
--change date 2008-06-12 \
--change meal Dinner \
--add diary \
master

Manipulating foods

16

Example 2.24. My fruititarian report

$ pantry --search date 2008-06-12 \
--print name --print info --print goals \
--print blank \
--goal Calories 2600 \
--goal "Total Fat, g" 43 \
--goal "Protein, g" 162 \
--goal "Total Carbohydrate, g" 390 \
--goal "Dietary Fiber, g" 0 \
diary
Apples, raw, with skin
3 large (3-1/4" dia) (669g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Breakfast
Refuse: 10 percent Core and stem
Nutrient name Amount %G %T

Calories 348 13 46
Total Fat, g 1 3 44
Protein, g 2 1 23
Total Carbohydrate, g 92 24 48
Dietary Fiber, g 16 49

Bananas, raw
1 medium (7" to 7-7/8" long) (118g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Lunch
Refuse: 36 percent Skin
Nutrient name Amount %G %T

Calories 105 4 14
Total Fat, g 0 1 15
Protein, g 1 1 17
Total Carbohydrate, g 27 7 14
Dietary Fiber, g 3 9

Papayas, raw
2 large (5-3/4" long x 3-1/4" dia) (760g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Dinner
Refuse: 33 percent Seeds and skin
Nutrient name Amount %G %T

Calories 296 11 40
Total Fat, g 1 2 41
Protein, g 5 3 61
Total Carbohydrate, g 75 19 38
Dietary Fiber, g 14 42

The goals report tells you only about the nutrients that you ask for. To know about all the nutrients
in a food, use the nuts report instead. Because the people at USDA are so industrious, the foods in
the starter_database file have lots of nutrients. Let's see some of them for the apple. Of course
when you run this on your computer you can omit the | head, but I did that here to save some space

Manipulating foods

17

in the manual. The columns in the nuts report mean the same as the corresponding columns in the
goals report; however, unlike the goals report, you do not need to enter a goal for a nutrient in order
for the nutrient to be shown in the nuts report; instead, all of a food's nutrients are shown.

Example 2.25. The nuts report

$ pantry --search name "Apples, raw, with skin" \
--print name --print nuts master | head
Apples, raw, with skin
Nutrient name Amount %G %T

10:0, g 0
12:0, g 0
14:0, g 0 100
16:0, g 0 100
16:1 undifferentiated, g 0
18:0, g 0 100
18:1 undifferentiated, g 0 100

The --goals and --nuts report tell you about each food in the buffer. To get information about
the total nutrient content of a buffer, use the Goals and Nuts summary reports.

Example 2.26. Using the Goals and Nuts reports

$ pantry --search date 2008-06-12 \
--print Goals \
--goal Calories 2600 \
--goal "Total Fat, g" 43 \
--goal "Protein, g" 162 \
--goal "Total Carbohydrate, g" 390 \
--goal "Dietary Fiber, g" 0 \
diary
Sum of nutrients with a goal:
Nutrient name Amount %G

Calories 749 29
Total Fat, g 3 6
Protein, g 8 5
Total Carbohydrate, g 194 50
Dietary Fiber, g 33

$ pantry --search date 2008-06-12 \
--print Nuts diary | head
Sum of all nutrients:
Nutrient name Amount %G

10:0, g 0
12:0, g 0
14:0, g 0
16:0, g 1
16:1 undifferentiated, g 0
18:0, g 0
18:1 undifferentiated, g 0

Sorting reports, and using --auto-order
For all practical purposes, Pantry stores foods in collections in no particular order. Thus, when you
use the --print option to print reports, you don't know what order your foods will come out in. That
can make it hard to find the information you're looking for.

Manipulating foods

18

That's why Pantry has options so it will sort foods in an order you specify. You sort foods by adding
keys. A key is a particular trait that you wish to use to sort foods. For example:

Example 2.27. A basic sorting example

$ pantry --key name \
--print name --print info --print blank \
diary
Apples, raw, with skin
3 large (3-1/4" dia) (669g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Breakfast
Refuse: 10 percent Core and stem

Bananas, raw
1 medium (7" to 7-7/8" long) (118g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Lunch
Refuse: 36 percent Skin

Papayas, raw
2 large (5-3/4" long x 3-1/4" dia) (760g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Dinner
Refuse: 33 percent Seeds and skin

If you want Pantry to sort in descending rather than ascending order,5 use a capital letter to specify
the name of the trait:

5Pantry sorts in what has sometimes been called ASCIIbetical order. Pantry knows nothing about multibyte characters. See Appendix A,
Pantry limitations.

Manipulating foods

19

Example 2.28. Sorting in descending order

$ pantry --key Name \
--print name --print info --print blank \
diary
Papayas, raw
2 large (5-3/4" long x 3-1/4" dia) (760g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Dinner
Refuse: 33 percent Seeds and skin

Bananas, raw
1 medium (7" to 7-7/8" long) (118g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Lunch
Refuse: 36 percent Skin

Apples, raw, with skin
3 large (3-1/4" dia) (669g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Breakfast
Refuse: 10 percent Core and stem

You can also specify more than one --key. Then Pantry will first sort foods using the first key, then
by the second key, etc. For instance, here Pantry will sort foods first by their date traits. Foods with
identical date traits will be sorted by name.

Manipulating foods

20

Example 2.29. Specifying more than one --key

$ pantry --search name \
"Snacks, popcorn, microwave, low fat" \
--change quantity 2 \
--change unit oz \
--change date 2008-06-20 \
--change meal Lunch \
--add diary master

$ pantry --search name \
"Carbonated beverage, cola, contains caffeine" \
--change quantity 1 \
--change unit can \
--change date 2008-06-20 \
--change meal Lunch \
--add diary master

$ pantry --key date --key name \
--print name --print info --print blank \
diary
Apples, raw, with skin
3 large (3-1/4" dia) (669g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Breakfast
Refuse: 10 percent Core and stem

Bananas, raw
1 medium (7" to 7-7/8" long) (118g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Lunch
Refuse: 36 percent Skin

Papayas, raw
2 large (5-3/4" long x 3-1/4" dia) (760g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Dinner
Refuse: 33 percent Seeds and skin

Carbonated beverage, cola, contains caffeine
1 can 12 fl oz (368g)
Group: Beverages
Date: 2008-06-20
Meal: Lunch

Snacks, popcorn, microwave, low fat
2 oz (56.7g)
Group: Snacks
Date: 2008-06-20
Meal: Lunch

You might want to sort your foods in a particular order rather than alphabetical order. For instance,
you might want to see foods sorted by meal. This would yield Breakfast, Dinner, Lunch if
sorted alphabetically. To fix this, use the --list option. This allows you to list values for a particular

Manipulating foods

21

trait. Foods will then be sorted in the order that you specified. (All foods having a trait whose value is
not listed with the --list option will be sorted alphabetically, after foods whose trait values were
specified with --list.)

Example 2.30. Using the --list option to sort foods

$ pantry --search date 2008-06-12 \
--list meal Breakfast \
--list meal Lunch \
--list meal Dinner \
--key meal \
--print name --print info \
--print blank diary
Apples, raw, with skin
3 large (3-1/4" dia) (669g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Breakfast
Refuse: 10 percent Core and stem

Bananas, raw
1 medium (7" to 7-7/8" long) (118g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Lunch
Refuse: 36 percent Skin

Papayas, raw
2 large (5-3/4" long x 3-1/4" dia) (760g)
Group: Fruits and Fruit Juices
Date: 2008-06-12
Meal: Dinner
Refuse: 33 percent Seeds and skin

The --list option is always case sensitive; it is not affected by the --ignore-case option. The
second argument to the --list option is just a plain string, not a regular expression pattern.

You may find that you want to add foods to a collection in a particular order and then see them reported
in that order. Because Pantry stores foods in a manner that is for all practical purposes unordered, just
adding foods to a collection in a particular order does not ensure they will be shown in that order in
reports. Instead, that's what the --auto-order option is for. If you use it when adding a food to
a collection, Pantry will automatically scan the collection for foods with identical date and meal
traits. Pantry will then set the order trait of the food that is added to the collection so that the new
food's order trait will come after all the other foods with identical date and meal traits. Then you
can sort foods using the order trait to see them in the order in which you added them.

Phew! That's a long explanation. An example will help:

Manipulating foods

22

Example 2.31. Using the --auto-order option

$ pantry --search name "McDONALD'S, French Fries" \
--change quantity 1 \
--change unit large \
--change date 2008-06-21 \
--change meal Lunch \
--add diary --auto-order \
master

$ pantry --search name "McDONALD'S, Double Cheeseburger" \
--change quantity 1 \
--change unit item \
--change date 2008-06-21 \
--change meal Lunch \
--add diary --auto-order \
master

$ pantry --search date 2008-06-21 \
--search meal Lunch \
--key order \
--print name --print info --print blank \
diary
McDONALD'S, French Fries
1 large serving (154g)
Group: Fast Foods
Date: 2008-06-21
Meal: Lunch
Order: 0010

McDONALD'S, Double Cheeseburger
1 item (173g)
Group: Fast Foods
Date: 2008-06-21
Meal: Lunch
Order: 0020

--auto-order does not require that you change either the date or meal traits of foods; it will
work fine if those traits are left blank (all the foods in the starter_database file have blank date
and meal traits.)

Approximations with the --refuse and --
by-nut options

"There's good, and then there's good enough," I like to say. Pantry has two options that can help you
when you are looking for approximations.

First the --refuse option. So far we have paid little attention to the refuse trait, which specifies
the typical percentage of a food that is inedible. If you use this option, Pantry will reduce the quanitity
of each food in the buffer by each food's percent-refuse trait. For example, apples range in size from
tiny (about 6 oz, say) to enormous (over a pound!) If I am eating an apple, there are various ways I
can use Pantry to find out the apple's nutrient content. First, I can look at it, guess its size, and then
use the units report to find the appropriate available unit for Apples, raw, with skin. This
requires that I make a good guess, but I am quite bad at guessing these things.

I could weigh the apple. The problem here is that the foods in the starter_database file have
nutrient amounts for a given edible portion of food. These amounts don't include the core, stem, and

Manipulating foods

23

seeds of the apple. So for the best accuracy I would have to cut up the apple and remove the core,
stem, and seeds before weighing it.

Another alternative is the --refuse option. This way I can weigh the apple whole. Pantry will then
deduct the appropriate amount from the quantity.

Example 2.32. Using the --refuse option

$ pantry --search name "Apples, raw, with skin" \
--refuse \
--change quantity 395 \
--change unit '^g$' \
--print name --print info master
Apples, raw, with skin
355.500000000000000 g (355.5g)
Group: Fruits and Fruit Juices
Refuse: 10 percent Core and stem

Of course you can tack on options like --print goals and --goal in order to find more useful
information about the apple.

There's no reason to use the --refuse option if you are using an available unit other than g, oz, or
lb. In the starter_database file, all available units (other than g, oz, and lb) already represent
the edible portion of a food. For instance, the large (3-1/4" dia) available unit for Apples,
raw, with skin is 223g. This means that a typical large apple weighs 223 grams, without the core,
stem and seeds. If you use --refuse here Pantry will think the food weighs too little. Thus using
the --refuse option typically makes sense only if you stick foods on a scale. It is quite handy if,
for example, you weigh a chicken drumstick before you eat it. Otherwise you'd have to weigh the
drumstick, eat it, and then weigh the bone to figure out how much the meat weighed.

The other approximations tool is the --by-nut option. If you use it then Pantry will automatically
adjust the quantity of a food so that a nutrient you specify will be of an amount that you specify.

For example, let's say I have just eaten half a cup of Haagen Dazs chocolate ice cream. I look on
the container and find that I've just eaten 270 calories. But the starter_database file does not
have Haagen Dazs. It does have Ice creams, chocolate, rich, but it doesn't have the same
number of calories per gram. That bothers me because I want to know exactly how many calories I
ate.6 One way I could deal with this discrepancy would be to create a custom food for Haagen Dazs
chocolate ice cream. We'll learn how to do that later. But for now I decide that Ice creams,
chocolate, rich is good enough for my purposes. I figure I will just record that I ate 270 calories
of Ice creams, chocolate, rich:

6Actually Ice creams, chocolate, rich comes really close to Haagen Dazs, but since I'm so anal (wouldn't I have to be, to write
a program like Pantry?) I want to be more exact.

Manipulating foods

24

Example 2.33. Using the --by-nut option

$ pantry --search name \
"Ice creams, chocolate, rich" \
--by-nut Calories 270 \
--print name --print info \
--goal Calories 2800 \
--print goals \
--change date 2008-06-20 \
--add diary master
Ice creams, chocolate, rich
105.882352941176478 g (105.882g)
Group: Sweets
Date: 2008-06-20
Nutrient name Amount %G %T

Calories 270 10 100

As you can see Pantry adjusted the quantity of Ice creams, chocolate, rich so that it would
be equal to 270 calories. --by-nut also lends itself to other uses, such as determining what quantity
of a particular food will have a given amount of calories, fat, etc. so that you can meet whatever goals
you have set for yourself.

The paste report
As you've been reading this chapter, one protest you might have is that a lot of Pantry commands
require a lot of typing. I agree; the best solution, however, comes by using the features of your shell
(such as functions, aliases, history, and variables) to help speed things up. We'll talk about those in the
next chapter. Pantry does, however, have one innovation to help in a common situation. Often, you'll
need to look through foods in the master collection in the starter_database file to find what
you are looking for. Such a search involves two steps: first, you must find the right food; and second,
often you must find the right available unit.

To merge these two steps into one, there is the paste report. It shows both the names of foods and
their available units. The format of the report allows you to take the results and cut and paste them.
Let's say for example I am looking for some sort of strawberry:

Example 2.34. The paste report

$ pantry --ignore-case \
--search name strawberries \
--search group fruit \
--print paste master | head
pantry -xsn "Strawberries, frozen, unsweetened" -cu "berry" "master"
pantry -xsn "Strawberries, frozen, unsweetened" -cu "cup, thawed" "master"
pantry -xsn "Strawberries, frozen, unsweetened" -cu "cup, unthawed" "master"
pantry -xsn "Strawberries, frozen, unsweetened" -cu "g" "master"
pantry -xsn "Strawberries, frozen, unsweetened" -cu "lb" "master"
pantry -xsn "Strawberries, frozen, unsweetened" -cu "oz" "master"
pantry -xsn "Strawberries, frozen, unsweetened" -cu "package (20 oz)" "master"
pantry -xsn "Strawberries, frozen, sweetened, sliced" -cu "cup, thawed" "master"
pantry -xsn "Strawberries, frozen, sweetened, sliced" -cu "g" "master"
pantry -xsn "Strawberries, frozen, sweetened, sliced" -cu "lb" "master"

Then I can simply find the line with the right available unit and food name and paste that to my
command line. I'll likely want to add additional options after I paste, such as --change quantity,
--add, or --print. Unlike the units report, the paste report includes entries for the available units
g, oz, and lb. Of course, to save space in the manual I stuck | head at the end; instead you'll likely
want to send the output to your favorite pager, such as less.

Manipulating foods

25

In order to actually do the cutting and pasting, just use your favorite X terminal emulator, or the cutting
and pasting features of GNU screen [http://http://www.gnu.org/software/screen/].

Saving and quitting
When you make changes to a database using the add option, those changes are made to the database
that is currently in memory. Pantry does not write those changes to disk unless you tell it to. You can
see whether you have unsaved changes to the currently open database by using the --status option:

Example 2.35. Seeing if there are unsaved changes

$ pantry --status
Current filename: /home/massysett/pantry-git/data/starter_database
Collections:
 8 diary (changed)
 7413 master

Two options, --save and --save-as, will save your Pantry database to a file.7 --save will
save the database to the filename shown in the Current filename: part of the status report; if there is no
current filename, Pantry will complain with an error message. --save-as takes a single argument,
which is the name of the file you wish to use. --save-as will save your database to that file, and
it will also change the current filename so that the database will be saved to that same file if you later
use the --save option.

Here, the current filename is /usr/local/share/pantry/data/starter_database.
That's a location that is only writeable by the root user, so if I use the --save option, Pantry will
give me an error and quit. So instead I need to use --save-as to save the database to a file in my
home directory:

Example 2.36. Using the --save-as option

$ pantry --save-as ~/my_pantry_file

Finally you may want to shut down the server if you are done with Pantry. You do this with the --
quit option: just run pantry --quit.

Additional commands to work with files
You've already learned all the options you'll typically need to work with Pantry files: --open, --
save, and --save-as. I'll briefly mention a couple of others. First, one of Pantry's limitations is
that it can work with only one database at a time, and one disk file holds one database. So there's no
apparent way to take the contents of one database and merge it with another. Here's where the --
read option comes in. The --open option reads the contents of a disk file into memory, clobbering
whatever database was already in memory.8 In contrast, the --read option takes the contents of a
disk file and adds those contents to whatever is in memory. Using this you can, for example, merge
the contents of two files.

The second option I'll mention here is simple: --close simply wipes the current database from
memory, leaving you with a blank slate.

Oops! When things go wrong
Pantry takes a lot of command-line options, and sometimes you will get them wrong. Sometimes I
get them wrong, and I wrote this thing. Sometimes you will also try to do something that Pantry does

7The database is written in plain ASCII text, but it's nothing you will want to edit directly.
8--open does not warn you before it clobbers what's in memory, even when the contents of the database in memory have not been saved.
It assumes you know what you're doing.

http://http://www.gnu.org/software/screen/
http://http://www.gnu.org/software/screen/

Manipulating foods

26

not allow. Examples include using a bad pattern for a regular expression (such as ab(c, which has
an unmatched parenthesis) or giving a bad value for a numeric trait (such as attempting to change
the quantity trait to a1). File operations have rich potential for errors--you might try to open a
nonexistent file, open a file that is not a Pantry file, or save to a place where you don't have write
permission.

Whenever Pantry can't do something for whatever reason, it will give you an error message and the
client will quit with a non-zero exit status.9 The server will keep running; it's only the client that will
quit. Therefore you can easily try again.

If any error occurs, no changes will have been made to the database that is in memory or to any disk
file.10 That is, the --add, --edit, and --delete options will have had no effect. If an --
open, --save, --save-as, or --read option fails for any reason, then the database that is
in memory will remain unchanged.

The server should never quit unexpectedly. If it does, it is probably a bug; please report it to
<omari@smileystation.com>.

9 Currently the client will always exit with 1 if there was an error--any error. Maybe in future versions the exit code will change depending
on the nature of the error.
10 This is a dramatic improvement from earlier versions of Pantry, which had a variety of behaviors when errors happened.

27

Chapter 3. Pantry usage tips
There are a number of ways that you can make your use of Pantry more efficient, as this chapter will
show you.

Use your shell
Pantry was designed to be used in concert with a good Unix shell. There are lots of good shells to pick
from. GNU's Bourne Again Shell (bash) is the most common shell on Linux and it's probably the shell
you are using if you do not know what shell you are using. bash is quite serviceable and powerful.

I'd like to recommend two alternatives to bash. zsh is an excellent shell for command-line junkies,
and it is very well documented. zsh is available under a free software license, every major Linux
distribution makes it available in its package repositories, and it is also available in Mac OS X. Another
alternative is fish, the Friendly Interactive Shell. fish benefits from a sharp focus on usability. By
breaking with compatibility with other Unix shells, fish is clear of clutter and predictable to use. fish
is also free software. It's not as widely distributed as zsh, so you might have to compile it yourself.

If you are going to stick with bash or zsh, I highly recommend you read From Bash to Z Shell:
Conquering the Command Line, by Kiddle, Peck and Stephenson. The authors are quite knowledgeable
about Unix shells (Stephenson currently maintains zsh) and this book will teach you many useful
tricks. It is well worth the price.

If you are a zsh user you're probably familiar with its powerful completion capabilities. You'll find a
set of completions for pantry and pantryd at $PREFIX/share/pantry/scripts/_pantry.

History features

It will be particularly useful to you if you learn your shell's features for manipulating your command
history. Often with Pantry I find myself re-running previous commands, with a minor tweak here and
there. History features make this easy.

Aliases and functions

Another key shell feature is the ability to define aliases (which perform simple text substitution) and
functions (which are programs in their own right.) I find both to be invaluable while using Pantry. I use
functions to define my own custom commands to quickly add foods to a day's diary, something which
I found to be nearly impossible with any other nutrient analysis software available. After using Pantry
for a little while, you'll form your own ideas of what sort of functions will help you. For inspiration,
you can take a look at the $PREFIX/share/pantry/scripts/zsh_functions file which is
included in the Pantry distribution, where $PREFIX is the prefix you used when you ran the configure
script. (By default it is /usr/local.) These are the functions I use. You might find them useful as-
is, but I encourage you to modify them to fit your needs.

Variables and arrays

A final key shell feature is shell variables1 and, in particular, arrays. The --list and --goal options
are much more usable if you take advantage of arrays. For example, you might want to display several
nutrients every time you print a goals report. As we saw in the last chapter, typing all these nutrients
gets tiresome very quickly. The solution is to put the nutrients you want into an array.2 Then, instead
of typing all of them at the command line, you simply type the name of your array instead.

1Or, what some shell documentation will call parameters.
2Under certain circumstances you can do this using regular, "scalar" variables rather than arrays, but you'll be making life hard on yourself.

Pantry usage tips

28

For reasons related to word splitting [http://zsh.dotsrc.org/FAQ/zshfaq03.html#l18], I recommend you
use zsh or fish if you're going to become an array user, as their syntax is a bit friendlier than that of
bash and ksh.

Short options and abbreviations
For instructional purposes, all the examples in this manual use double-dashed long options. However,
Pantry has single-dashed short options for all options you'll commonly use. To see what these are,
refer to the Pantry man page or to pantry --help.

In many places, Pantry will accept abbreviations instead of full words. For example, for long options,
you may type just enough to make yourself unambiguous. This means you can type pantry --q instead
of pantry --quit. (pantry --qu or pantry --qui will work too.) You can also do this when you
must specify a trait name. Because the first letter of each trait is unique, you can specify just a single
letter. Thus, you can type pantry --search n bananas master instead of pantry --
search name bananas master. Furthermore, you can abbreviate the names of reports for the
--print option, and you can abbreviate collection names if you are specifying which collections to
search (you can't abbreviate the argument to the --add option.)

That gives you lots of abbreviating options. For instance, instead of typing pantry --ignore-
case --search name bananas --search group fruits --key name --print
name master, you can instead run pantry -isn bananas -sg fruits -kn -pna m.3

Files and collections
Pantry is easiest to work with if you keep all your data in a single Pantry file. That's because Pantry
does not make it very easy for you to move data from one file to another. Pantry has collections so
that you can sort foods within a file in a way that you see fit. I find it easiest to keep three collections
in my Pantry file. In two of these collections, master and quick, every food has a unique name
trait. That makes it easy for me to find foods using simply their name trait. There are over 7000 foods
in my master collection; it has every food that's in the starter_database file as well as other
foods that I created on my own (we'll talk later about how you can create foods and recipes.) A second
collection in my file, quick, holds only foods that I use frequently. There are about fifty foods in here
currently. As with the master collection, every food in my quick collection has a unique name
trait. Many of the foods in my quick collection already have their quantity and unit traits set to
those that I commonly eat. Finally, I have a diary collection. When I add foods to my diary collection
I set the date and meal traits to appropriate values.

This is just the way I do things; you might find a better way. For instance, maybe you will start a
different collection for every day, or for every week. You might not find it necessary to keep a separate
quick collection. You might keep a diary in the same collection as you keep all your other foods.
It's up to you.

Using traits
For most traits, Pantry places no constraints on what values you can use. This gives you a great deal of
latitude. For example, if you have several foods you eat together, one way to easily account for them
in a diary is if you create a recipe, which we will talk about later. Another way is to simply change
the group traits of these foods so they are unique and identical. For example, I often eat a particular
cereal with a particular milk, so in my quick collection I have changed the group traits of these foods
to Cereal and milk.

You can use whatever values you want for the date trait, but you will find that it is easiest to sort dates
if you use a YYYY-MM-DD format.

3 Pantry is liberal about whether spaces or equal signs must separate option arguments from the option itself; for instance, you can type either
-pname, -p name, --print name, or --print=name.

http://zsh.dotsrc.org/FAQ/zshfaq03.html#l18
http://zsh.dotsrc.org/FAQ/zshfaq03.html#l18

29

Chapter 4. Creating new foods, and
changing the nutrients and available
units of existing foods

So far we've only dealt with foods that already exist in the starter_database file, which comes
from data derived from the USDA National Nutrient Database for Standard Reference. We've copied
these foods from one collection to another, often changing their traits along the way. But we haven't
changed the nutrient content of these foods.

But what if you want to track information about a food that is not already in the USDA database? You
might find there is already a food in the database that is close enough for your purposes. However,
with Pantry you can easily create your own foods with their own nutrient data. Such foods are
indistinguishable from those in the starter_database file--except for the fact that you created
them yourself. In this chapter you'll learn how to create foods of your own.

You'll want to create a food if you already have nutrition information for what you are creating--from
a label, say, or from a website. If you are combining multiple ingredients, you'll want to use a recipe
instead, which we will discuss in the next chapter.

Create the food and its traits
You'll create foods with Pantry the same way you do anything else with Pantry: from the command
line.1 In this chapter we'll enter nutrition information for Heritage Flakes. There is something close
in the starter_database file--Cereals ready-to-eat, wheat and malt barley
flakes--but Heritage Flakes is a little higher in some nutrients, such as protein, and has twice as much
fiber. You can get the nutrition information here [http://www.naturespath.com/products/cold_cereals].

To create a new food, use the --create option. This will give you a buffer with a single, blank
food. Then you can use the --change option to change the traits to something appropriate, and the
--add option to add the food to a collection. You can use the --print option to print the buffer,
as usual. That gives us:

Example 4.1. Creating a new food

$ pantry --create \
--change name "Heritage Flakes" \
--change quantity 30 \
--change unit '^g$' \
--print name --print info \
--add master
Heritage Flakes
30 g (30g)

We changed the quantity to 30 grams because that is the quantity that the food label is based upon.2

It's essential that the quantity and units be correct when you add nutrient information.

Add available units
Next you can add available units to your food, if you wish. Pantry will automatically supply your food
with the available units g, oz, and lb, so there is no need to add those. From the label we see that 3/4 of

1This differs dramatically from older versions of Pantry, which used XML files for this purpose.
2You might wonder why we don't say that the quantity is 3/4 and the unit is cup. That's because later we'll discuss adding available units,
which is what you'll have to do so that Pantry knows how much a cup of Heritage Flakes weighs.

http://www.naturespath.com/products/cold_cereals
http://www.naturespath.com/products/cold_cereals

Creating new foods, and
changing the nutrients and

available units of existing foods

30

a cup of Heritage Flakes weighs 30 grams. This means a cup weighs 40 grams. Using this knowledge
we can use the --change-avail-unit option. Its first argument is the name of an available unit
that you wish to create or change, and its second argument is the weight of that available unit, in grams.

Example 4.2. Adding an available unit

$ pantry --exact-match \
--search name "Heritage Flakes" \
--change-avail-unit cup 40 \
--edit master

Create nutrients
Next you can add nutrients. You can use whatever nutrient names you wish, but for consistency's sake
you might wish to use names that are identical to those used in the starter_database file. (To
get a list of all nutrient names used in the master collection of the starter_database file, you
can run pantry --print Nuts master. That command might take several seconds to run,
especially on a slow machine.)

On U.S. food labels, many nutrients are given as percentages. You might just enter these percentages if
you wish. You can convert them to actual values using this chart [http://www.fda.gov/FDAC/special/
foodlabel/dvs.html]. Right now we'll just skirt that issue by entering only macronutrients.3 Be sure to
use the --edit option so your changes are permanent.

Example 4.3. Adding nutrients

$ pantry --exact-match \
--search name "Heritage Flakes" \
--change-nut "Calories" 120 \
--change-nut "Total Fat, g" 1 \
--change-nut "Saturated Fat, g" 0 \
--change-nut "Trans Fat, g" 0 \
--change-nut "Cholesterol, mg" 0 \
--change-nut "Sodium, mg" 130 \
--change-nut "Total Carbohydrate, g" 24 \
--change-nut "Dietary Fiber, g" 6 \
--change-nut "Sugars, g" 4 \
--change-nut "Protein, g" 4 \
--edit master

Check your work
That should do it. Let's make sure:

3Pantry comes with a script that helps you enter new foods, and it converts these percentages to actual values. We'll talk about this script later.

http://www.fda.gov/FDAC/special/foodlabel/dvs.html
http://www.fda.gov/FDAC/special/foodlabel/dvs.html
http://www.fda.gov/FDAC/special/foodlabel/dvs.html

Creating new foods, and
changing the nutrients and

available units of existing foods

31

Example 4.4. Seeing the new food

$ pantry --exact-match \
--search name "Heritage Flakes" \
--print name --print info --print nuts \
master
Heritage Flakes
30 g (30g)
Nutrient name Amount %G %T

Calories 120 100
Cholesterol, mg 0
Dietary Fiber, g 6 100
Protein, g 4 100
Saturated Fat, g 0
Sodium, mg 130 100
Sugars, g 4 100
Total Carbohydrate, g 24 100
Total Fat, g 1 100
Trans Fat, g 0

In this example, for instructional purposes we used more than one pantry command to add the traits,
nutrients, and available units. You can do all this in one command, however. You can even add the
food to collections and --print it, all in the same command.

The addFoods script
You might find it more convenient to enter the commands required into a simple shell script, since
there are so many to type. Alternatively, you can use the addFoods script, which you will find
in $PREFIX/share/pantry/scripts/addFoods, where $PREFIX is the prefix you used
when you installed Pantry. (By default this is /usr/local.) This script takes the name of an input
file, which is simply a number of zsh variables containing the data for the food. This script also
automatically converts micronutrients, which are expressed on US food labels as percentages, to actual
values. To get an idea how the script works, just take a look at the script itself. Alternatively, you will
find a number of sample input files for this script in the $PREFIX/share/pantry/examples/
foods directory. To get started you can just model your input after one of these files.

The addFoods script is written for zsh, so you'll have to install zsh in order to use it.

Commands to edit the nutrients and available
units of foods

Pantry has a number of options to edit the nutrients and available units of existing foods. Changing
nutrients and available units is similar to changing traits: Pantry makes the changes you wish, but
only to foods that are in the buffer. To make your changes permanent, you need to use the --add or
--edit option. We've already seen the --change-nut and --change-avail-unit options.
These work not only for adding new nutrients or available units, but also for modifying existing
ones. Remember that the first argument to --change-nut and --change-avail-unit is not
a regular expression--it is the exact name of the nutrient you wish to add or change, and it is always
case sensitive, even if you use the --ignore-case option.

If you wish to change the name of an existing nutrient, use --rename-nut. It takes two arguments.
The first is a pattern for the nutrient name you wish to change. As with the --search option, this
is a regular expression, unless you use the --exact-match option. --rename-nut also respects
the --ignore-case option. The second argument is the new nutrient name.

Creating new foods, and
changing the nutrients and

available units of existing foods

32

Example 4.5. Using --rename-nut

$ pantry --search name "Heritage Flakes" \
--rename-nut "Total Carbohydrate, g" Carbs \
--print name --print info --print nuts \
master
Heritage Flakes
30 g (30g)
Nutrient name Amount %G %T

Calories 120 100
Carbs 24 100
Cholesterol, mg 0
Dietary Fiber, g 6 100
Protein, g 4 100
Saturated Fat, g 0
Sodium, mg 130 100
Sugars, g 4 100
Total Fat, g 1 100
Trans Fat, g 0

For each food in the buffer, the pattern given in the first argument to --rename-nut must match
either no nutrients or one nutrient of each food. If the pattern matches no nutrients, Pantry will make
no change to that food. If the pattern matches one nutrient, then Pantry will rename that nutrient. If
the pattern matches more than one nutrient, Pantry will give you an error message and quit.

The --rename-avail-unit option renames available units (except for g, oz, and lb, which you
cannot rename); otherwise, it is identical to the --rename-nut option. As with the --rename-
nut option, the --rename-avail-unit pattern must match either zero or one available units for
every food in the buffer (excluding g, oz, or lb); otherwise, Pantry will give you an error and quit.

Example 4.6. Using --rename-avail-unit

$ pantry --search name "Apples, raw, with skin" \
--rename-avail-unit large big \
--print name --print units master
Apples, raw, with skin
 NLEA serving (242g)
 big (223g)
 cup slices (109g)
 cup, quartered or chopped (125g)
 extra small (2-1/2" dia) (101g)
 medium (3" dia) (182g)
 small (2-3/4" dia) (149g)

To delete nutrients, use --delete-nuts. This option takes one argument, a pattern for nutrients
you wish to delete. This pattern is a regular expression, unless you use --exact-match, and it
respects --ignore-case. It deletes every nutrient that matches the pattern, and it doesn't complain
if no nutrients match the pattern:

Creating new foods, and
changing the nutrients and

available units of existing foods

33

Example 4.7. Using --delete-nuts

$ pantry --search name "Heritage Flakes" \
--delete-nuts Fat \
--print name --print nuts \
master
Heritage Flakes
Nutrient name Amount %G %T

Calories 120 100
Cholesterol, mg 0
Dietary Fiber, g 6 100
Protein, g 4 100
Sodium, mg 130 100
Sugars, g 4 100
Total Carbohydrate, g 24 100

The --delete-avail-units option deletes available units, other than g, oz, and lb. In all other
respects it is identical to the --delete-nuts option:

Example 4.8. Using --delete-avail-units

$ pantry --search name "Apples, raw, with skin" \
--delete-avail-units large \
--print name --print units master
Apples, raw, with skin
 NLEA serving (242g)
 cup slices (109g)
 cup, quartered or chopped (125g)
 extra small (2-1/2" dia) (101g)
 medium (3" dia) (182g)
 small (2-3/4" dia) (149g)

34

Chapter 5. Creating recipes
Creating new foods works great if you already know the nutrient content of a food--if, for example,
you can pull the information from a label. Recipes, on the other hand, are ideal if you are creating a
food from other foods and you don't know the nutrient content of the final food.

In Pantry, recipes are mostly like other foods. They are different in that they have two additional traits:
yield and instructions. yield indicates the total weight, in grams, of one batch of this recipe.
This is quite handy because recipes often lose water as you cook them. Of course you can only know
the exact yield after you have cooked a recipe and have weighed it. If you do not supply a yield
trait for a recipe, Pantry will guess the yield by adding up the weight of all the recipe's ingredients.
instructions is simply food preparation notes, or whatever you want.

Create the recipe and its traits
This step is similar to the first step of creating a food: you use the --create option, and then you
set the traits as you wish.

Example 5.1. Creating a recipe

$ pantry --create --change name "Easy Corn Bread" \
--change group "Baked Products" \
--change quantity 50 \
--change unit '^g$' \
--change instructions 'Heat oven to 400
degrees F. Grease 8- or 9-inch pan. Combine
dry ingredients. Stir in milk, oil, and
egg, mixing just until dry ingredients are
moistened. Pour batter into prepared pan.
Bake 20 to 25 minutes or until light golden
brown and wooden pick inserted in center
comes out clean. Serve warm.' \
--add master

Add ingredients
To add ingredients to a food, you use the --add-ingredients option, which takes a single
argument, which is the name of the collection to add foods from.1 Pantry adds all the foods from
the collection as ingredients. Thus, the easiest way to create recipes is to add all the ingredients to a
temporary collection--ingredients, perhaps--and then use that collection as an argument to --
add-ingredients. You can just delete the collection with --delete when you are done.

1You can abbreviate the argument to the shortest unambiguous name for the collection, just as you can abbreviate collections that are positional
arguments to the pantry command.

Creating recipes

35

Example 5.2. Adding ingredients to a single collection

$ pantry --exact-match \
--search name \
"Wheat flour, white, all-purpose, enriched, unbleached" \
--change quantity "1 1/4" --change unit cup \
--add ingredients master

$ pantry --exact-match \
--search name \
"Cornmeal, whole-grain, yellow" \
--change quantity "3/4" --change unit cup \
--add ingredients master

$ pantry --exact-match \
--search name \
"Sugars, granulated" \
--change quantity "1/4" --change unit cup \
--add ingredients master

$ pantry --exact-match \
--search name \
"Leavening agents, baking powder, double-acting, straight phosphate" \
--change quantity "2" --change unit tsp \
--add ingredients master

$ pantry --exact-match \
--search name \
"Salt, table" \
--change quantity "1/2" --change unit tsp \
--add ingredients master

$ pantry --exact-match \
--search name \
"Milk, reduced fat, fluid, 2% milkfat, with added vitamin A" \
--change quantity 1 --change unit cup \
--add ingredients master

$ pantry --exact-match \
--search name \
"Oil, corn and canola" \
--change quantity "1/4" --change unit cup \
--add ingredients master

$ pantry --exact-match \
--search name \
"Egg, whole, raw, fresh" \
--change quantity 1 --change unit large \
--add ingredients master

Okay, now we can add the ingredients to the food itself. After adding them to the food we have no
use for the collection so we can just delete it.

Example 5.3. Add ingredients to the food

$ pantry --search name "Easy Corn Bread" \
--add-ingredients ingredients \
--edit master

$ pantry --delete ingredients

Creating recipes

36

Add available units
You do this just as you would for a food. We won't add any available units here, but you will often
find it is handy to add an available unit for serving. To do this you can simply divide a recipe's yield
by the number of servings. In the next section you'll see how to find a food's estimated yield if you
haven't weighed the yield yourself.

Seeing your new recipe
In order to see your new recipe, you use the recipe report. This report shows the yield trait,
ingredients, and instructions trait for a recipe. Recipes and foods are fully interchangeable in
Pantry--for instance, a recipe can be the ingredient for another recipe.

Example 5.4. The recipe report

$ pantry --search name "Easy Corn Bread" \
--print name --print info --print recipe \
master
Easy Corn Bread
50 g (50g)
Group: Baked Products
Yield: 659.95g (estimated)
1 1/4 cup (156g, 5.51oz) Wheat flour, white, all-purpose, enriched, unbleached
3/4 cup (92g, 3.23oz) Cornmeal, whole-grain, yellow
1/4 cup (50g, 1.76oz) Sugars, granulated
2 tsp (9g, 0.32oz) Leavening agents, baking powder, double-acting, straight phosphate
1/2 tsp (3g, 0.11oz) Salt, table
1 cup (244g, 8.61oz) Milk, reduced fat, fluid, 2% milkfat, with added vitamin A
1/4 cup (56g, 1.98oz) Oil, corn and canola
1 large (50g, 1.76oz) Egg, whole, raw, fresh

Heat oven to 400
degrees F. Grease 8- or 9-inch pan. Combine
dry ingredients. Stir in milk, oil, and
egg, mixing just until dry ingredients are
moistened. Pour batter into prepared pan.
Bake 20 to 25 minutes or until light golden
brown and wooden pick inserted in center
comes out clean. Serve warm.

For ingredients, Pantry prints the quantity trait, the unit trait, and the name trait. Pantry will print
the comment trait's value in parentheses, if the comment trait is set at all. Pantry prints ingredients
by sorting their order traits in ascending order, even though Pantry does not show the order traits
for the ingredients. So, if you want to ensure that your ingredients are shown in a certain order, set
your order trait for each ingredient accordingly.

A recipe's nutrient makeup is determined by all its ingredients. The nutrient makeup is scaled
depending upon the yield trait, which is why Pantry will be more accurate if you weigh the yield of
a recipe and enter it in. If the yield trait of a recipe is not set (of if you explicitly set it to zero) then
in the recipe report Pantry will show an estimate for the recipe's yield, as it has done here. Pantry
gets this estimate by adding the weight of all of a recipe's ingredients. Typically this estimate will be
high, as cooking typically causes some of the water in a recipe to evaporate.

The addRecipes script
Since you have to type so much in order to add a recipe, you might want to put the commands in a
simple shell script. Also, just as there is an addFoods script, there is also an addRecipes script.

Creating recipes

37

The script allows you to define a few shell variables in a file, which you then feed to the script in
order to create your recipe. You'll find it at $PREFIX/share/pantry/scripts/addRecipes,
and there are sample input files at $PREFIX/share/pantry/examples/recipes, where
$PREFIX is the prefix you used when you installed Pantry. (It defaults to /usr/local.)

Like the addFoods script, the addRecipes script is written for zsh.

If you use the addRecipes script, also take a look at the ingrlist script, which will help you as
you look up ingredients to add to input files for addRecipes.

Editing recipes
Recipes and foods in Pantry are nearly fully interchangeable. You can edit the traits and available units
for a recipe in the same way as you do for a food. Nutrients, however, are a bit different. In a regular
food, you input all the nutrient data. For a recipe, the nutrient data is typically calcualted from the
ingredients. You can use --change-nut on a recipe. This will create a nutrient that will override
the automatically-calculated nutrient of the same name, if there is one. For recipes, --rename-
nut only works for nutrients you have entered using --change-nut, and --delete-nuts
only deletes nutrients that you have set using --change-nut or --rename-nut. If you delete
a nutrient you have set using --change-nut or --rename-nut, Pantry will then revert to using
the automatically-calculated nutrient, if there is one.

38

Appendix A. Pantry limitations
Pantry isn't perfect. It has some limitations you might want to know about.

No multibyte or locale awareness
Pantry is horribly U.S. centric. It knows nothing about multibyte character encodings, such as UTF-8.
Furthermore, it knows nothing about locales, so collation [http://en.wikipedia.org/wiki/Collation] is
performed in what has sometimes been called ASCIIbetical order.

Strictly speaking you could use any encoding with Pantry, as long as it is a single-byte one. For
instance, Pantry would have no problem with characters from the ISO-8859-1 character set. However,
I recommend you stick with US-ASCII, for two reasons. First, most Linux distributions these days use
UTF-8 for their terminal encoding. If you use characters solely from the ASCII character set [http://
en.wikipedia.org/wiki/ASCII], then UTF-8 is identical to ASCII. However, if you use characters from
ISO-8859-1 [http://en.wikipedia.org/wiki/ISO/IEC_8859-1], and your terminal is set to UTF-8, then
you will really be using multibyte characters, which Pantry does not know how to handle. Second,
even if you get your terminal set up correctly to use a non-ASCII single-byte encoding, your file may
behave differently if you later use it on a different computer with a different terminal encoding. ASCII,
on the other hand, is an encoding which will work nearly anywhere.

Converting Pantry to use multibyte encodings correctly would not be terribly difficult. Pantry could
ensure that all input data is converted to UTF-8 for internal use, and then convert it to the proper
encoding when sent to the user's terminal. Another issue would be regular expressions. I've never seen
regular expression routines from a UNIX standard C library that claim to be multibyte aware, so they
probably are not. A straightforward solution would be to use PCRE, which can handle UTF-8.

The reason I haven't made Pantry handle multibyte properly is because all the documentation is in
English and the interface is in English. This is not likely to change soon, as Pantry has no community
of users to translate it, and English is the only language I know. If you are fluent in written Enlish,
then likely it is not much of a limitation to use only US-ASCII with Pantry. I could one day make
Pantry multibyte aware, if it seemed someone cared about that and if I had lots of free time.

High RAM usage
Pantry can use lots of memory. Well, whether it is "lots" depends on what you think a lot is. When I
open the starter_database file on my computer, Pantry consumes about 30 MB of memory. I
don't think that is too bad, but then, my least capable computer has 512 MB of RAM, and typically
I don't even use half of that.

Pantry consumes so much memory because it stores so much data. Most of the foods in the
starter_database file have a few dozen nutrients; that's what consumes the vast majority of
storage space. Therefore, if you want to keep all the foods in the starter_database file but
you want to cut memory usage, the easiest way to do it is to delete nutrients you don't need, which
of course is easy with the --delete-nuts option. The less data you store, the smaller Pantry's
memory footprint will be.

A great deal of code in Pantry 26 was rewritten so that Pantry is more frugal with memory. Though
the starter_database file currently consumes 30 MB of memory on my machine, with older versions
of Pantry this was 55 MB. Pantry 26 is also a bit faster than older versions of Pantry, too.

Only one file at a time may be open
In Pantry each server can work only with one file at a time. This could possibly be changed, but right
now I don't see how changing this would do anything other than make the user interface more complex.

http://en.wikipedia.org/wiki/Collation
http://en.wikipedia.org/wiki/Collation
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ISO/IEC_8859-1
http://en.wikipedia.org/wiki/ISO/IEC_8859-1

Pantry limitations

39

Size of collections, number of collections,
number of nutrients, etc.

There are limitations to how many foods you can have in a collection, how many collections you may
have in a single database, etc. These limitations will vary depending upon the nature of your standard
C++ library. On my machine, for example, I can have (in theory) about 4 billion collections. Each
collection can have a much lower number foods: only about 1 billion. For all practical purposes you'd
run out of memory before you hit these limitations.

Numbers are approximations
Gasp! This is a nutrition analysis software package, and the numbers are approximations?! Yes.
Internally Pantry uses floating point numbers. Such numbers are, by their very nature, approximate
[http://en.wikipedia.org/wiki/Floating_point]. We're talking typical approximations on the order of,
for example, fractions of a calorie--not tens of calories or even a single calorie.

Though Pantry could be made more precise, this would come at the expense of more memory usage
and more code. Furthermore, the only result would be precise calculations of nutrition data--data which
is, by its very nature, also approximate. So at this point I'm inclined to say that Pantry's approximations
are "good enough."

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Floating_point

40

Appendix B. How the USDA
National Nutrient Database for
Standard Reference became the
starter_database file

If you are curious about how the data from USDA's National Nutrient Database is translated into a form
Pantry can understand, and whether any data was lost along the way, you've come to the right place.

USDA releases its database in the form of about a dozen plain text files, which you can download from
the USDA website [http://www.ars.usda.gov/main/site_main.htm?modecode=12354500]. If the data
in Pantry looks familiar, it's because this USDA data forms the basis for pretty much any food database
you will find in the US, either on the Web or on your desktop, in free software and in proprietary
products.

I have written a zsh script to convert the USDA database into a series of over 7,000 Pantry
commands--one command for each food in the database. You can find the script at $PREFIX/
share/pantry/scripts/convert_sr.zsh.1 This script renames some nutrients from names
like Fatty acids, total trans to Trans Fat. It also discards some of the gram weights
(or, in Pantry lingo, available units) from the WEIGHT.txt file. For example, the WEIGHT.txt
file contains weights such as lb which Pantry provides automatically. Also, it provides some weights
where the quantity is more than one--it might have a weight for, say, 2 slices of pizza rather than for
1 slice of pizza. I thought hard about what to do with data like this before finally deciding to just
discard it. The only accurate way to keep this data would be to manually go through it and edit the
descriptions accordingly.

The script spits the Pantry commands to standard output, which I then save to a file and use to create
the starter_database file. You can even do it yourself. You might do this if, for instance, USDA
has released a new database and you don't want to wait for me to get around to releasing a new version
of Pantry. Beware, though: the convert_sr.zsh file works fine with SR20 and SR21 (USDA calls the
database simply "SR"), but future SR releases might change their format and break the script. I doubt
this would happen, but it's possible. Also, an earlier release of SR20 had small irregularities in the data
that completely broke this script, but a subsequent release of SR20 fixed this problem.

If you want to see a list of all the nutrients in the starter_database file, open it and run pantry
-p Nuts master. It will be obvious how these nutrients match up with those in SR, even though I
changed the names a bit. This command may take a few seconds to run, especially on slow machines.

1This is a huge change from earlier versions of Pantry, which included Python code to import the USDA database. I've found these sorts of
tasks to be easiest with zsh, though ksh would work fine too. Maybe Perl would work well, but I've never had any desire to learn Perl. C+
+ would be very nasty for a task such as this.

http://www.ars.usda.gov/main/site_main.htm?modecode=12354500
http://www.ars.usda.gov/main/site_main.htm?modecode=12354500

41

Appendix C. Reference pages
This appendix contains reference pages for the commands that Pantry uses. They are identical to the
man pages; indeed, the man pages and this document are generated from the same source.

Reference pages

42

Name
pantry — nutrient tracking and analysis

Synopsis
pantry [options...] [collection...]

Description
pantry copies foods from collections into a buffer. All foods are copied, unless one or more
--search options are specified, in which case only foods that match the patterns of every --
search option are copied. pantry then changes every food in the buffer using any --change
options specified as well as any options for changing nutrients, available units, and ingredients.

If --edit or --delete is specified, pantry deletes the unchanged foods from the corresponding
original collections. If --edit is specified, pantry adds changed foods to corresponding
original collections.

If --print REPORT is specified, buffer is printed using REPORT Buffer is unsorted unless one or
more --key TRAIT is specified. Sorting may be affected by one or more --list options.

If --add COLLECTION is specified, each food in the buffer is added to COLLECTION.

pantry communicates with a pantryd server, see pantryd(1).

Options
TRAIT is any one of:

• name

• group

• quantity

• unit

• date

• meal

• comment

• order

• refuse

• percent-refuse

• yield

• instructions

TRAIT names may be abbreviated.

PATTERN is an extended regular expression, unless --ignore-case is on.

Most options other than file and server control options may appear on the command line more than
once; the effect of multiple options is cumulative.

Reference pages

43

File and server control

--open filename Close currently open database and open filename

--read filename Append contents of filename to currently open database

--close Close currently open database

--save Save currently open database

--save-as filename Save currently open database under a different filename

--quit Shut down server

--status Display server status and database information: names of
collections in database and the number of foods in each
collection, and what filename will be used if --save option
is used

Food selection

--search TRAIT PATTERN , -
s TRAIT PATTERN

Include in buffer only foods whose TRAIT matches PATTERN.

Changing food traits

--change TRAIT string , -c
TRAIT string

Change TRAIT string. If TRAIT is unit, string is a
pattern that must match exactly one of the food's available
units. If TRAIT is quantity or unit, string must be
convertible to a non-negative number. If TRAIT is percent-
refuse, string must be convertible to a number between
0 and 100, inclusive.

--refuse , -r Reduce food quantity by percent refuse.

Changing nutrients, available units, and ingredients

--change-nut string
number

Change nutrient whose name is string to number.

--rename-nut pattern
string

Rename nutrient whose name matches pattern to string.

--delete-nuts PATTERN Delete all nutrients matching PATTERN.

--change-avail-unit
string number

Change available unit whose name is string to number.

--rename-avail-unit
pattern string

Rename available unit whose name matches pattern to
string.

--delete-avail-units
PATTERN

Delete all available units matching PATTERN.

--add-ingredients
COLLECTION

Add ingredients from COLLECTION.

--delete-ingredients
PATTERN

Delete ingredients whose name trait matches PATTERN.

Reference pages

44

Search and edit options

--ignore-case , -i All patterns are case insensitive.

--exact-match , -x All patterns must exactly match their subjects (turns off regular
expressions).

--edit Edit foods in place

--delete Delete matching foods

--create Create a new food from scratch. When this option is used,
Pantry does not copy foods from any collections specified on
the command line, and the --edit and --delete options
are ignored.

--limit number Limit number of foods in buffer to number

Reporting

--print report , -p
report

Print report (see "Reports" section below)

--key TRAIT , -k TRAIT Use TRAIT as a sorting key. If the first letter of TRAIT is
lowercase, sort in ascending order; if the first letter of TRAIT
is uppercase, sort in descending order.

--goal nutrient-name
amount , -g nutrient-name
amount

Add a nutrient intake goal for use by the nutrient-related
reports, where nutrient-name is the nutrient for which you
wish to add a goal, and amount is a string, convertible to a
non-negative number, that is the amount of the goal.

--list TRAIT string , -l
TRAIT string

Add string to the list of strings that will be used when
TRAIT is used as a sorting key. When TRAIT is equal to one
of these values, it will be sorted in the order specified.

Adding results to collections

--add COLLECTION , -a
COLLECTION

Add buffer to COLLECTION.

--auto-order , -o When adding each food to collections specified with --add,
pantry will search the collection for other foods with identical
date and meal traits. The result will be sorted in ascending
order by the order trait. If the highest food's order trait
matches the regular expression ^[0-9]4$, then pantry will
take the highest food's order trait, remove any leading zeroes,
remove the last digit, and increment the result by one. The result
is multiplied by ten, and then is left-padded with zeroes so that
it is four characters long. pantry will then change the order
trait of the food to the result before adding it to the collection.

If there are no foods with identical date and meal traits, then
pantry will set the food's order trait to 0010.

Meta

--help , -h Display brief help.

--version , -v Display Pantry version.

Reference pages

45

--copyright Display copyright information.

Reports
Two types of reports are available. Food reports are printed once per food in the buffer. Summary
reports are printed once for the entire buffer. To print more than one report, use multiple --print
options. Report names may be abbreviated with an unambiguous specification of the first letters of
the report. The following reports are available:

Food reports

name Food names

info All traits other than the name, yield, and instructions.

recipe yield and instructions traits, and the recipe's ingredients.
Ingredients are sorted according to their order traits.

units Available units. g, oz, and lb are not printed as these are available for
every food.

paste Each food name, printed with one available unit per line; quoted so that
output may be easily pasted into subsequent pantry commands.

blank A blank line

nuts All of a food's nutrients

goals Nutrients for which there is a goal specified with --goal

Summary reports

groups Number of foods in each food group, as specified by each food's group
trait

Nuts Sum of all nutrients in the buffer

Goals Sum of all nutrients in the buffer for which there is a --goal

Environment variables
PANTRY_SOCKET If this environment variable is specified, pantry will use the path contained

therein as the filename of the socket where it will attempt to connect to the
pantryd server. PANTRY_SOCKET should contain the entire path (beginning
with /) and filename, not just the directory for the socket. The server must
have already been started with an identical value in its PANTRY_SOCKET
environment variable.

If this environment variable is not specified, pantry will attempt to connect to
a server at the socket named $HOME/.pantrySocket.

Bugs
Please help find them. Report bugs to <omari@smileystation.com>.

Pantry has known limitations; see the Pantry User Guide for details.

Pantry home page
http://www.smileystation.com/pantry

http://www.smileystation.com/pantry

Reference pages

46

Name
pantryd — nutrient tracking and analysis server

Synopsis
pantryd [options...]

Description
pantryd is the server with which pantry communicates. pantryd must be running in order for any
pantry commands to work.

To start a server, simply execute pantryd. This will start a new server in the background, returning
you to your command prompt. This server will keep running even if you logout of the shell from which
you started the server. To kill the server, run pantry --quit.

Options
--foreground , -f Run server in the foreground (useful for debugging)

--help , -h Show brief help and exit

Environment variables
PANTRY_SOCKET If this environment variable is specified, pantryd will use the path contained

therein as the filename of the socket where it will listen for connections.
PANTRY_SOCKET should contain the entire path (beginning with /) and
filename, not just the directory for the socket. To communicate with the server,
you'll need to make sure that subsequent invocations of pantry also have their
PANTRY_SOCKET environment variable set to an identical value.

If this environment variable is not specified, pantryd will listen for connections
on a socket named $HOME/.pantrySocket.

Bugs
Report any bugs to <omari@smileystation.com>.

Pantry home page
http://www.smileystation.com/pantry

http://www.smileystation.com/pantry

