stl_deque.h

Go to the documentation of this file.
00001 // Deque implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc. 00004 // 00005 // This file is part of the GNU ISO C++ Library. This library is free 00006 // software; you can redistribute it and/or modify it under the 00007 // terms of the GNU General Public License as published by the 00008 // Free Software Foundation; either version 2, or (at your option) 00009 // any later version. 00010 00011 // This library is distributed in the hope that it will be useful, 00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 // GNU General Public License for more details. 00015 00016 // You should have received a copy of the GNU General Public License along 00017 // with this library; see the file COPYING. If not, write to the Free 00018 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, 00019 // USA. 00020 00021 // As a special exception, you may use this file as part of a free software 00022 // library without restriction. Specifically, if other files instantiate 00023 // templates or use macros or inline functions from this file, or you compile 00024 // this file and link it with other files to produce an executable, this 00025 // file does not by itself cause the resulting executable to be covered by 00026 // the GNU General Public License. This exception does not however 00027 // invalidate any other reasons why the executable file might be covered by 00028 // the GNU General Public License. 00029 00030 /* 00031 * 00032 * Copyright (c) 1994 00033 * Hewlett-Packard Company 00034 * 00035 * Permission to use, copy, modify, distribute and sell this software 00036 * and its documentation for any purpose is hereby granted without fee, 00037 * provided that the above copyright notice appear in all copies and 00038 * that both that copyright notice and this permission notice appear 00039 * in supporting documentation. Hewlett-Packard Company makes no 00040 * representations about the suitability of this software for any 00041 * purpose. It is provided "as is" without express or implied warranty. 00042 * 00043 * 00044 * Copyright (c) 1997 00045 * Silicon Graphics Computer Systems, Inc. 00046 * 00047 * Permission to use, copy, modify, distribute and sell this software 00048 * and its documentation for any purpose is hereby granted without fee, 00049 * provided that the above copyright notice appear in all copies and 00050 * that both that copyright notice and this permission notice appear 00051 * in supporting documentation. Silicon Graphics makes no 00052 * representations about the suitability of this software for any 00053 * purpose. It is provided "as is" without express or implied warranty. 00054 */ 00055 00056 /** @file stl_deque.h 00057 * This is an internal header file, included by other library headers. 00058 * You should not attempt to use it directly. 00059 */ 00060 00061 #ifndef _DEQUE_H 00062 #define _DEQUE_H 1 00063 00064 #include <bits/concept_check.h> 00065 #include <bits/stl_iterator_base_types.h> 00066 #include <bits/stl_iterator_base_funcs.h> 00067 00068 namespace _GLIBCXX_STD 00069 { 00070 /** 00071 * @if maint 00072 * @brief This function controls the size of memory nodes. 00073 * @param size The size of an element. 00074 * @return The number (not byte size) of elements per node. 00075 * 00076 * This function started off as a compiler kludge from SGI, but seems to 00077 * be a useful wrapper around a repeated constant expression. The '512' is 00078 * tuneable (and no other code needs to change), but no investigation has 00079 * been done since inheriting the SGI code. 00080 * @endif 00081 */ 00082 inline size_t 00083 __deque_buf_size(size_t __size) 00084 { return __size < 512 ? size_t(512 / __size) : size_t(1); } 00085 00086 00087 /** 00088 * @brief A deque::iterator. 00089 * 00090 * Quite a bit of intelligence here. Much of the functionality of deque is 00091 * actually passed off to this class. A deque holds two of these internally, 00092 * marking its valid range. Access to elements is done as offsets of either 00093 * of those two, relying on operator overloading in this class. 00094 * 00095 * @if maint 00096 * All the functions are op overloads except for _M_set_node. 00097 * @endif 00098 */ 00099 template<typename _Tp, typename _Ref, typename _Ptr> 00100 struct _Deque_iterator 00101 { 00102 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00103 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00104 00105 static size_t _S_buffer_size() 00106 { return __deque_buf_size(sizeof(_Tp)); } 00107 00108 typedef random_access_iterator_tag iterator_category; 00109 typedef _Tp value_type; 00110 typedef _Ptr pointer; 00111 typedef _Ref reference; 00112 typedef size_t size_type; 00113 typedef ptrdiff_t difference_type; 00114 typedef _Tp** _Map_pointer; 00115 typedef _Deque_iterator _Self; 00116 00117 _Tp* _M_cur; 00118 _Tp* _M_first; 00119 _Tp* _M_last; 00120 _Map_pointer _M_node; 00121 00122 _Deque_iterator(_Tp* __x, _Map_pointer __y) 00123 : _M_cur(__x), _M_first(*__y), 00124 _M_last(*__y + _S_buffer_size()), _M_node(__y) {} 00125 00126 _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {} 00127 00128 _Deque_iterator(const iterator& __x) 00129 : _M_cur(__x._M_cur), _M_first(__x._M_first), 00130 _M_last(__x._M_last), _M_node(__x._M_node) {} 00131 00132 reference 00133 operator*() const 00134 { return *_M_cur; } 00135 00136 pointer 00137 operator->() const 00138 { return _M_cur; } 00139 00140 _Self& 00141 operator++() 00142 { 00143 ++_M_cur; 00144 if (_M_cur == _M_last) 00145 { 00146 _M_set_node(_M_node + 1); 00147 _M_cur = _M_first; 00148 } 00149 return *this; 00150 } 00151 00152 _Self 00153 operator++(int) 00154 { 00155 _Self __tmp = *this; 00156 ++*this; 00157 return __tmp; 00158 } 00159 00160 _Self& 00161 operator--() 00162 { 00163 if (_M_cur == _M_first) 00164 { 00165 _M_set_node(_M_node - 1); 00166 _M_cur = _M_last; 00167 } 00168 --_M_cur; 00169 return *this; 00170 } 00171 00172 _Self 00173 operator--(int) 00174 { 00175 _Self __tmp = *this; 00176 --*this; 00177 return __tmp; 00178 } 00179 00180 _Self& 00181 operator+=(difference_type __n) 00182 { 00183 const difference_type __offset = __n + (_M_cur - _M_first); 00184 if (__offset >= 0 && __offset < difference_type(_S_buffer_size())) 00185 _M_cur += __n; 00186 else 00187 { 00188 const difference_type __node_offset = 00189 __offset > 0 ? __offset / difference_type(_S_buffer_size()) 00190 : -difference_type((-__offset - 1) 00191 / _S_buffer_size()) - 1; 00192 _M_set_node(_M_node + __node_offset); 00193 _M_cur = _M_first + (__offset - __node_offset 00194 * difference_type(_S_buffer_size())); 00195 } 00196 return *this; 00197 } 00198 00199 _Self 00200 operator+(difference_type __n) const 00201 { 00202 _Self __tmp = *this; 00203 return __tmp += __n; 00204 } 00205 00206 _Self& 00207 operator-=(difference_type __n) 00208 { return *this += -__n; } 00209 00210 _Self 00211 operator-(difference_type __n) const 00212 { 00213 _Self __tmp = *this; 00214 return __tmp -= __n; 00215 } 00216 00217 reference 00218 operator[](difference_type __n) const 00219 { return *(*this + __n); } 00220 00221 /** @if maint 00222 * Prepares to traverse new_node. Sets everything except _M_cur, which 00223 * should therefore be set by the caller immediately afterwards, based on 00224 * _M_first and _M_last. 00225 * @endif 00226 */ 00227 void 00228 _M_set_node(_Map_pointer __new_node) 00229 { 00230 _M_node = __new_node; 00231 _M_first = *__new_node; 00232 _M_last = _M_first + difference_type(_S_buffer_size()); 00233 } 00234 }; 00235 00236 // Note: we also provide overloads whose operands are of the same type in 00237 // order to avoid ambiguous overload resolution when std::rel_ops operators 00238 // are in scope (for additional details, see libstdc++/3628) 00239 template<typename _Tp, typename _Ref, typename _Ptr> 00240 inline bool 00241 operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00242 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00243 { return __x._M_cur == __y._M_cur; } 00244 00245 template<typename _Tp, typename _RefL, typename _PtrL, 00246 typename _RefR, typename _PtrR> 00247 inline bool 00248 operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00249 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00250 { return __x._M_cur == __y._M_cur; } 00251 00252 template<typename _Tp, typename _Ref, typename _Ptr> 00253 inline bool 00254 operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00255 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00256 { return !(__x == __y); } 00257 00258 template<typename _Tp, typename _RefL, typename _PtrL, 00259 typename _RefR, typename _PtrR> 00260 inline bool 00261 operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00262 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00263 { return !(__x == __y); } 00264 00265 template<typename _Tp, typename _Ref, typename _Ptr> 00266 inline bool 00267 operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00268 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00269 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00270 : (__x._M_node < __y._M_node); } 00271 00272 template<typename _Tp, typename _RefL, typename _PtrL, 00273 typename _RefR, typename _PtrR> 00274 inline bool 00275 operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00276 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00277 { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur) 00278 : (__x._M_node < __y._M_node); } 00279 00280 template<typename _Tp, typename _Ref, typename _Ptr> 00281 inline bool 00282 operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00283 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00284 { return __y < __x; } 00285 00286 template<typename _Tp, typename _RefL, typename _PtrL, 00287 typename _RefR, typename _PtrR> 00288 inline bool 00289 operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00290 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00291 { return __y < __x; } 00292 00293 template<typename _Tp, typename _Ref, typename _Ptr> 00294 inline bool 00295 operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00296 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00297 { return !(__y < __x); } 00298 00299 template<typename _Tp, typename _RefL, typename _PtrL, 00300 typename _RefR, typename _PtrR> 00301 inline bool 00302 operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00303 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00304 { return !(__y < __x); } 00305 00306 template<typename _Tp, typename _Ref, typename _Ptr> 00307 inline bool 00308 operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x, 00309 const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) 00310 { return !(__x < __y); } 00311 00312 template<typename _Tp, typename _RefL, typename _PtrL, 00313 typename _RefR, typename _PtrR> 00314 inline bool 00315 operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00316 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00317 { return !(__x < __y); } 00318 00319 // _GLIBCXX_RESOLVE_LIB_DEFECTS 00320 // According to the resolution of DR179 not only the various comparison 00321 // operators but also operator- must accept mixed iterator/const_iterator 00322 // parameters. 00323 template<typename _Tp, typename _RefL, typename _PtrL, 00324 typename _RefR, typename _PtrR> 00325 inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00326 operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x, 00327 const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) 00328 { 00329 return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type 00330 (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) 00331 * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) 00332 + (__y._M_last - __y._M_cur); 00333 } 00334 00335 template<typename _Tp, typename _Ref, typename _Ptr> 00336 inline _Deque_iterator<_Tp, _Ref, _Ptr> 00337 operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x) 00338 { return __x + __n; } 00339 00340 /** 00341 * @if maint 00342 * Deque base class. This class provides the unified face for %deque's 00343 * allocation. This class's constructor and destructor allocate and 00344 * deallocate (but do not initialize) storage. This makes %exception 00345 * safety easier. 00346 * 00347 * Nothing in this class ever constructs or destroys an actual Tp element. 00348 * (Deque handles that itself.) Only/All memory management is performed 00349 * here. 00350 * @endif 00351 */ 00352 template<typename _Tp, typename _Alloc> 00353 class _Deque_base 00354 { 00355 public: 00356 typedef _Alloc allocator_type; 00357 00358 allocator_type 00359 get_allocator() const 00360 { return *static_cast<const _Alloc*>(&this->_M_impl); } 00361 00362 typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator; 00363 typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator; 00364 00365 _Deque_base(const allocator_type& __a, size_t __num_elements) 00366 : _M_impl(__a) 00367 { _M_initialize_map(__num_elements); } 00368 00369 _Deque_base(const allocator_type& __a) 00370 : _M_impl(__a) 00371 { } 00372 00373 ~_Deque_base(); 00374 00375 protected: 00376 //This struct encapsulates the implementation of the std::deque 00377 //standard container and at the same time makes use of the EBO 00378 //for empty allocators. 00379 struct _Deque_impl 00380 : public _Alloc 00381 { 00382 _Tp** _M_map; 00383 size_t _M_map_size; 00384 iterator _M_start; 00385 iterator _M_finish; 00386 00387 _Deque_impl(const _Alloc& __a) 00388 : _Alloc(__a), _M_map(0), _M_map_size(0), _M_start(), _M_finish() 00389 { } 00390 }; 00391 00392 typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type; 00393 _Map_alloc_type _M_get_map_allocator() const 00394 { return _Map_alloc_type(this->get_allocator()); } 00395 00396 _Tp* 00397 _M_allocate_node() 00398 { return _M_impl._Alloc::allocate(__deque_buf_size(sizeof(_Tp))); } 00399 00400 void 00401 _M_deallocate_node(_Tp* __p) 00402 { _M_impl._Alloc::deallocate(__p, __deque_buf_size(sizeof(_Tp))); } 00403 00404 _Tp** 00405 _M_allocate_map(size_t __n) 00406 { return _M_get_map_allocator().allocate(__n); } 00407 00408 void 00409 _M_deallocate_map(_Tp** __p, size_t __n) 00410 { _M_get_map_allocator().deallocate(__p, __n); } 00411 00412 protected: 00413 void _M_initialize_map(size_t); 00414 void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish); 00415 void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish); 00416 enum { _S_initial_map_size = 8 }; 00417 00418 _Deque_impl _M_impl; 00419 }; 00420 00421 template<typename _Tp, typename _Alloc> 00422 _Deque_base<_Tp,_Alloc>::~_Deque_base() 00423 { 00424 if (this->_M_impl._M_map) 00425 { 00426 _M_destroy_nodes(this->_M_impl._M_start._M_node, 00427 this->_M_impl._M_finish._M_node + 1); 00428 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00429 } 00430 } 00431 00432 /** 00433 * @if maint 00434 * @brief Layout storage. 00435 * @param num_elements The count of T's for which to allocate space 00436 * at first. 00437 * @return Nothing. 00438 * 00439 * The initial underlying memory layout is a bit complicated... 00440 * @endif 00441 */ 00442 template<typename _Tp, typename _Alloc> 00443 void 00444 _Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements) 00445 { 00446 size_t __num_nodes = __num_elements / __deque_buf_size(sizeof(_Tp)) + 1; 00447 00448 this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size, 00449 __num_nodes + 2); 00450 this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size); 00451 00452 // For "small" maps (needing less than _M_map_size nodes), allocation 00453 // starts in the middle elements and grows outwards. So nstart may be 00454 // the beginning of _M_map, but for small maps it may be as far in as 00455 // _M_map+3. 00456 00457 _Tp** __nstart = (this->_M_impl._M_map 00458 + (this->_M_impl._M_map_size - __num_nodes) / 2); 00459 _Tp** __nfinish = __nstart + __num_nodes; 00460 00461 try 00462 { _M_create_nodes(__nstart, __nfinish); } 00463 catch(...) 00464 { 00465 _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size); 00466 this->_M_impl._M_map = 0; 00467 this->_M_impl._M_map_size = 0; 00468 __throw_exception_again; 00469 } 00470 00471 this->_M_impl._M_start._M_set_node(__nstart); 00472 this->_M_impl._M_finish._M_set_node(__nfinish - 1); 00473 this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first; 00474 this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first 00475 + __num_elements 00476 % __deque_buf_size(sizeof(_Tp))); 00477 } 00478 00479 template<typename _Tp, typename _Alloc> 00480 void 00481 _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish) 00482 { 00483 _Tp** __cur; 00484 try 00485 { 00486 for (__cur = __nstart; __cur < __nfinish; ++__cur) 00487 *__cur = this->_M_allocate_node(); 00488 } 00489 catch(...) 00490 { 00491 _M_destroy_nodes(__nstart, __cur); 00492 __throw_exception_again; 00493 } 00494 } 00495 00496 template<typename _Tp, typename _Alloc> 00497 void 00498 _Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish) 00499 { 00500 for (_Tp** __n = __nstart; __n < __nfinish; ++__n) 00501 _M_deallocate_node(*__n); 00502 } 00503 00504 /** 00505 * @brief A standard container using fixed-size memory allocation and 00506 * constant-time manipulation of elements at either end. 00507 * 00508 * @ingroup Containers 00509 * @ingroup Sequences 00510 * 00511 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00512 * <a href="tables.html#66">reversible container</a>, and a 00513 * <a href="tables.html#67">sequence</a>, including the 00514 * <a href="tables.html#68">optional sequence requirements</a>. 00515 * 00516 * In previous HP/SGI versions of deque, there was an extra template 00517 * parameter so users could control the node size. This extension turned 00518 * out to violate the C++ standard (it can be detected using template 00519 * template parameters), and it was removed. 00520 * 00521 * @if maint 00522 * Here's how a deque<Tp> manages memory. Each deque has 4 members: 00523 * 00524 * - Tp** _M_map 00525 * - size_t _M_map_size 00526 * - iterator _M_start, _M_finish 00527 * 00528 * map_size is at least 8. %map is an array of map_size pointers-to-"nodes". 00529 * (The name %map has nothing to do with the std::map class, and "nodes" 00530 * should not be confused with std::list's usage of "node".) 00531 * 00532 * A "node" has no specific type name as such, but it is referred to as 00533 * "node" in this file. It is a simple array-of-Tp. If Tp is very large, 00534 * there will be one Tp element per node (i.e., an "array" of one). 00535 * For non-huge Tp's, node size is inversely related to Tp size: the 00536 * larger the Tp, the fewer Tp's will fit in a node. The goal here is to 00537 * keep the total size of a node relatively small and constant over different 00538 * Tp's, to improve allocator efficiency. 00539 * 00540 * **** As I write this, the nodes are /not/ allocated using the high-speed 00541 * memory pool. There are 20 hours left in the year; perhaps I can fix 00542 * this before 2002. 00543 * 00544 * Not every pointer in the %map array will point to a node. If the initial 00545 * number of elements in the deque is small, the /middle/ %map pointers will 00546 * be valid, and the ones at the edges will be unused. This same situation 00547 * will arise as the %map grows: available %map pointers, if any, will be on 00548 * the ends. As new nodes are created, only a subset of the %map's pointers 00549 * need to be copied "outward". 00550 * 00551 * Class invariants: 00552 * - For any nonsingular iterator i: 00553 * - i.node points to a member of the %map array. (Yes, you read that 00554 * correctly: i.node does not actually point to a node.) The member of 00555 * the %map array is what actually points to the node. 00556 * - i.first == *(i.node) (This points to the node (first Tp element).) 00557 * - i.last == i.first + node_size 00558 * - i.cur is a pointer in the range [i.first, i.last). NOTE: 00559 * the implication of this is that i.cur is always a dereferenceable 00560 * pointer, even if i is a past-the-end iterator. 00561 * - Start and Finish are always nonsingular iterators. NOTE: this means that 00562 * an empty deque must have one node, a deque with <N elements (where N is 00563 * the node buffer size) must have one node, a deque with N through (2N-1) 00564 * elements must have two nodes, etc. 00565 * - For every node other than start.node and finish.node, every element in 00566 * the node is an initialized object. If start.node == finish.node, then 00567 * [start.cur, finish.cur) are initialized objects, and the elements outside 00568 * that range are uninitialized storage. Otherwise, [start.cur, start.last) 00569 * and [finish.first, finish.cur) are initialized objects, and [start.first, 00570 * start.cur) and [finish.cur, finish.last) are uninitialized storage. 00571 * - [%map, %map + map_size) is a valid, non-empty range. 00572 * - [start.node, finish.node] is a valid range contained within 00573 * [%map, %map + map_size). 00574 * - A pointer in the range [%map, %map + map_size) points to an allocated 00575 * node if and only if the pointer is in the range 00576 * [start.node, finish.node]. 00577 * 00578 * Here's the magic: nothing in deque is "aware" of the discontiguous 00579 * storage! 00580 * 00581 * The memory setup and layout occurs in the parent, _Base, and the iterator 00582 * class is entirely responsible for "leaping" from one node to the next. 00583 * All the implementation routines for deque itself work only through the 00584 * start and finish iterators. This keeps the routines simple and sane, 00585 * and we can use other standard algorithms as well. 00586 * @endif 00587 */ 00588 template<typename _Tp, typename _Alloc = allocator<_Tp> > 00589 class deque : protected _Deque_base<_Tp, _Alloc> 00590 { 00591 // concept requirements 00592 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00593 00594 typedef _Deque_base<_Tp, _Alloc> _Base; 00595 00596 public: 00597 typedef _Tp value_type; 00598 typedef value_type* pointer; 00599 typedef const value_type* const_pointer; 00600 typedef typename _Base::iterator iterator; 00601 typedef typename _Base::const_iterator const_iterator; 00602 typedef std::reverse_iterator<const_iterator> const_reverse_iterator; 00603 typedef std::reverse_iterator<iterator> reverse_iterator; 00604 typedef value_type& reference; 00605 typedef const value_type& const_reference; 00606 typedef size_t size_type; 00607 typedef ptrdiff_t difference_type; 00608 typedef typename _Base::allocator_type allocator_type; 00609 00610 protected: 00611 typedef pointer* _Map_pointer; 00612 00613 static size_t _S_buffer_size() 00614 { return __deque_buf_size(sizeof(_Tp)); } 00615 00616 // Functions controlling memory layout, and nothing else. 00617 using _Base::_M_initialize_map; 00618 using _Base::_M_create_nodes; 00619 using _Base::_M_destroy_nodes; 00620 using _Base::_M_allocate_node; 00621 using _Base::_M_deallocate_node; 00622 using _Base::_M_allocate_map; 00623 using _Base::_M_deallocate_map; 00624 00625 /** @if maint 00626 * A total of four data members accumulated down the heirarchy. 00627 * May be accessed via _M_impl.* 00628 * @endif 00629 */ 00630 using _Base::_M_impl; 00631 00632 public: 00633 // [23.2.1.1] construct/copy/destroy 00634 // (assign() and get_allocator() are also listed in this section) 00635 /** 00636 * @brief Default constructor creates no elements. 00637 */ 00638 explicit 00639 deque(const allocator_type& __a = allocator_type()) 00640 : _Base(__a, 0) {} 00641 00642 /** 00643 * @brief Create a %deque with copies of an exemplar element. 00644 * @param n The number of elements to initially create. 00645 * @param value An element to copy. 00646 * 00647 * This constructor fills the %deque with @a n copies of @a value. 00648 */ 00649 deque(size_type __n, const value_type& __value, 00650 const allocator_type& __a = allocator_type()) 00651 : _Base(__a, __n) 00652 { _M_fill_initialize(__value); } 00653 00654 /** 00655 * @brief Create a %deque with default elements. 00656 * @param n The number of elements to initially create. 00657 * 00658 * This constructor fills the %deque with @a n copies of a 00659 * default-constructed element. 00660 */ 00661 explicit 00662 deque(size_type __n) 00663 : _Base(allocator_type(), __n) 00664 { _M_fill_initialize(value_type()); } 00665 00666 /** 00667 * @brief %Deque copy constructor. 00668 * @param x A %deque of identical element and allocator types. 00669 * 00670 * The newly-created %deque uses a copy of the allocation object used 00671 * by @a x. 00672 */ 00673 deque(const deque& __x) 00674 : _Base(__x.get_allocator(), __x.size()) 00675 { std::uninitialized_copy(__x.begin(), __x.end(), 00676 this->_M_impl._M_start); } 00677 00678 /** 00679 * @brief Builds a %deque from a range. 00680 * @param first An input iterator. 00681 * @param last An input iterator. 00682 * 00683 * Create a %deque consisting of copies of the elements from [first, 00684 * last). 00685 * 00686 * If the iterators are forward, bidirectional, or random-access, then 00687 * this will call the elements' copy constructor N times (where N is 00688 * distance(first,last)) and do no memory reallocation. But if only 00689 * input iterators are used, then this will do at most 2N calls to the 00690 * copy constructor, and logN memory reallocations. 00691 */ 00692 template<typename _InputIterator> 00693 deque(_InputIterator __first, _InputIterator __last, 00694 const allocator_type& __a = allocator_type()) 00695 : _Base(__a) 00696 { 00697 // Check whether it's an integral type. If so, it's not an iterator. 00698 typedef typename _Is_integer<_InputIterator>::_Integral _Integral; 00699 _M_initialize_dispatch(__first, __last, _Integral()); 00700 } 00701 00702 /** 00703 * The dtor only erases the elements, and note that if the elements 00704 * themselves are pointers, the pointed-to memory is not touched in any 00705 * way. Managing the pointer is the user's responsibilty. 00706 */ 00707 ~deque() 00708 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish); } 00709 00710 /** 00711 * @brief %Deque assignment operator. 00712 * @param x A %deque of identical element and allocator types. 00713 * 00714 * All the elements of @a x are copied, but unlike the copy constructor, 00715 * the allocator object is not copied. 00716 */ 00717 deque& 00718 operator=(const deque& __x); 00719 00720 /** 00721 * @brief Assigns a given value to a %deque. 00722 * @param n Number of elements to be assigned. 00723 * @param val Value to be assigned. 00724 * 00725 * This function fills a %deque with @a n copies of the given value. 00726 * Note that the assignment completely changes the %deque and that the 00727 * resulting %deque's size is the same as the number of elements assigned. 00728 * Old data may be lost. 00729 */ 00730 void 00731 assign(size_type __n, const value_type& __val) 00732 { _M_fill_assign(__n, __val); } 00733 00734 /** 00735 * @brief Assigns a range to a %deque. 00736 * @param first An input iterator. 00737 * @param last An input iterator. 00738 * 00739 * This function fills a %deque with copies of the elements in the 00740 * range [first,last). 00741 * 00742 * Note that the assignment completely changes the %deque and that the 00743 * resulting %deque's size is the same as the number of elements 00744 * assigned. Old data may be lost. 00745 */ 00746 template<typename _InputIterator> 00747 void 00748 assign(_InputIterator __first, _InputIterator __last) 00749 { 00750 typedef typename _Is_integer<_InputIterator>::_Integral _Integral; 00751 _M_assign_dispatch(__first, __last, _Integral()); 00752 } 00753 00754 /// Get a copy of the memory allocation object. 00755 allocator_type 00756 get_allocator() const 00757 { return _Base::get_allocator(); } 00758 00759 // iterators 00760 /** 00761 * Returns a read/write iterator that points to the first element in the 00762 * %deque. Iteration is done in ordinary element order. 00763 */ 00764 iterator 00765 begin() 00766 { return this->_M_impl._M_start; } 00767 00768 /** 00769 * Returns a read-only (constant) iterator that points to the first 00770 * element in the %deque. Iteration is done in ordinary element order. 00771 */ 00772 const_iterator 00773 begin() const 00774 { return this->_M_impl._M_start; } 00775 00776 /** 00777 * Returns a read/write iterator that points one past the last element in 00778 * the %deque. Iteration is done in ordinary element order. 00779 */ 00780 iterator 00781 end() 00782 { return this->_M_impl._M_finish; } 00783 00784 /** 00785 * Returns a read-only (constant) iterator that points one past the last 00786 * element in the %deque. Iteration is done in ordinary element order. 00787 */ 00788 const_iterator 00789 end() const 00790 { return this->_M_impl._M_finish; } 00791 00792 /** 00793 * Returns a read/write reverse iterator that points to the last element 00794 * in the %deque. Iteration is done in reverse element order. 00795 */ 00796 reverse_iterator 00797 rbegin() 00798 { return reverse_iterator(this->_M_impl._M_finish); } 00799 00800 /** 00801 * Returns a read-only (constant) reverse iterator that points to the 00802 * last element in the %deque. Iteration is done in reverse element 00803 * order. 00804 */ 00805 const_reverse_iterator 00806 rbegin() const 00807 { return const_reverse_iterator(this->_M_impl._M_finish); } 00808 00809 /** 00810 * Returns a read/write reverse iterator that points to one before the 00811 * first element in the %deque. Iteration is done in reverse element 00812 * order. 00813 */ 00814 reverse_iterator 00815 rend() { return reverse_iterator(this->_M_impl._M_start); } 00816 00817 /** 00818 * Returns a read-only (constant) reverse iterator that points to one 00819 * before the first element in the %deque. Iteration is done in reverse 00820 * element order. 00821 */ 00822 const_reverse_iterator 00823 rend() const 00824 { return const_reverse_iterator(this->_M_impl._M_start); } 00825 00826 // [23.2.1.2] capacity 00827 /** Returns the number of elements in the %deque. */ 00828 size_type 00829 size() const 00830 { return this->_M_impl._M_finish - this->_M_impl._M_start; } 00831 00832 /** Returns the size() of the largest possible %deque. */ 00833 size_type 00834 max_size() const 00835 { return size_type(-1); } 00836 00837 /** 00838 * @brief Resizes the %deque to the specified number of elements. 00839 * @param new_size Number of elements the %deque should contain. 00840 * @param x Data with which new elements should be populated. 00841 * 00842 * This function will %resize the %deque to the specified number of 00843 * elements. If the number is smaller than the %deque's current size the 00844 * %deque is truncated, otherwise the %deque is extended and new elements 00845 * are populated with given data. 00846 */ 00847 void 00848 resize(size_type __new_size, const value_type& __x) 00849 { 00850 const size_type __len = size(); 00851 if (__new_size < __len) 00852 erase(this->_M_impl._M_start + __new_size, this->_M_impl._M_finish); 00853 else 00854 insert(this->_M_impl._M_finish, __new_size - __len, __x); 00855 } 00856 00857 /** 00858 * @brief Resizes the %deque to the specified number of elements. 00859 * @param new_size Number of elements the %deque should contain. 00860 * 00861 * This function will resize the %deque to the specified number of 00862 * elements. If the number is smaller than the %deque's current size the 00863 * %deque is truncated, otherwise the %deque is extended and new elements 00864 * are default-constructed. 00865 */ 00866 void 00867 resize(size_type new_size) 00868 { resize(new_size, value_type()); } 00869 00870 /** 00871 * Returns true if the %deque is empty. (Thus begin() would equal end().) 00872 */ 00873 bool 00874 empty() const 00875 { return this->_M_impl._M_finish == this->_M_impl._M_start; } 00876 00877 // element access 00878 /** 00879 * @brief Subscript access to the data contained in the %deque. 00880 * @param n The index of the element for which data should be accessed. 00881 * @return Read/write reference to data. 00882 * 00883 * This operator allows for easy, array-style, data access. 00884 * Note that data access with this operator is unchecked and out_of_range 00885 * lookups are not defined. (For checked lookups see at().) 00886 */ 00887 reference 00888 operator[](size_type __n) 00889 { return this->_M_impl._M_start[difference_type(__n)]; } 00890 00891 /** 00892 * @brief Subscript access to the data contained in the %deque. 00893 * @param n The index of the element for which data should be accessed. 00894 * @return Read-only (constant) reference to data. 00895 * 00896 * This operator allows for easy, array-style, data access. 00897 * Note that data access with this operator is unchecked and out_of_range 00898 * lookups are not defined. (For checked lookups see at().) 00899 */ 00900 const_reference 00901 operator[](size_type __n) const 00902 { return this->_M_impl._M_start[difference_type(__n)]; } 00903 00904 protected: 00905 /// @if maint Safety check used only from at(). @endif 00906 void 00907 _M_range_check(size_type __n) const 00908 { 00909 if (__n >= this->size()) 00910 __throw_out_of_range(__N("deque::_M_range_check")); 00911 } 00912 00913 public: 00914 /** 00915 * @brief Provides access to the data contained in the %deque. 00916 * @param n The index of the element for which data should be accessed. 00917 * @return Read/write reference to data. 00918 * @throw std::out_of_range If @a n is an invalid index. 00919 * 00920 * This function provides for safer data access. The parameter is first 00921 * checked that it is in the range of the deque. The function throws 00922 * out_of_range if the check fails. 00923 */ 00924 reference 00925 at(size_type __n) 00926 { _M_range_check(__n); return (*this)[__n]; } 00927 00928 /** 00929 * @brief Provides access to the data contained in the %deque. 00930 * @param n The index of the element for which data should be accessed. 00931 * @return Read-only (constant) reference to data. 00932 * @throw std::out_of_range If @a n is an invalid index. 00933 * 00934 * This function provides for safer data access. The parameter is first 00935 * checked that it is in the range of the deque. The function throws 00936 * out_of_range if the check fails. 00937 */ 00938 const_reference 00939 at(size_type __n) const 00940 { 00941 _M_range_check(__n); 00942 return (*this)[__n]; 00943 } 00944 00945 /** 00946 * Returns a read/write reference to the data at the first element of the 00947 * %deque. 00948 */ 00949 reference 00950 front() 00951 { return *this->_M_impl._M_start; } 00952 00953 /** 00954 * Returns a read-only (constant) reference to the data at the first 00955 * element of the %deque. 00956 */ 00957 const_reference 00958 front() const 00959 { return *this->_M_impl._M_start; } 00960 00961 /** 00962 * Returns a read/write reference to the data at the last element of the 00963 * %deque. 00964 */ 00965 reference 00966 back() 00967 { 00968 iterator __tmp = this->_M_impl._M_finish; 00969 --__tmp; 00970 return *__tmp; 00971 } 00972 00973 /** 00974 * Returns a read-only (constant) reference to the data at the last 00975 * element of the %deque. 00976 */ 00977 const_reference 00978 back() const 00979 { 00980 const_iterator __tmp = this->_M_impl._M_finish; 00981 --__tmp; 00982 return *__tmp; 00983 } 00984 00985 // [23.2.1.2] modifiers 00986 /** 00987 * @brief Add data to the front of the %deque. 00988 * @param x Data to be added. 00989 * 00990 * This is a typical stack operation. The function creates an element at 00991 * the front of the %deque and assigns the given data to it. Due to the 00992 * nature of a %deque this operation can be done in constant time. 00993 */ 00994 void 00995 push_front(const value_type& __x) 00996 { 00997 if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first) 00998 { 00999 std::_Construct(this->_M_impl._M_start._M_cur - 1, __x); 01000 --this->_M_impl._M_start._M_cur; 01001 } 01002 else 01003 _M_push_front_aux(__x); 01004 } 01005 01006 /** 01007 * @brief Add data to the end of the %deque. 01008 * @param x Data to be added. 01009 * 01010 * This is a typical stack operation. The function creates an element at 01011 * the end of the %deque and assigns the given data to it. Due to the 01012 * nature of a %deque this operation can be done in constant time. 01013 */ 01014 void 01015 push_back(const value_type& __x) 01016 { 01017 if (this->_M_impl._M_finish._M_cur 01018 != this->_M_impl._M_finish._M_last - 1) 01019 { 01020 std::_Construct(this->_M_impl._M_finish._M_cur, __x); 01021 ++this->_M_impl._M_finish._M_cur; 01022 } 01023 else 01024 _M_push_back_aux(__x); 01025 } 01026 01027 /** 01028 * @brief Removes first element. 01029 * 01030 * This is a typical stack operation. It shrinks the %deque by one. 01031 * 01032 * Note that no data is returned, and if the first element's data is 01033 * needed, it should be retrieved before pop_front() is called. 01034 */ 01035 void 01036 pop_front() 01037 { 01038 if (this->_M_impl._M_start._M_cur 01039 != this->_M_impl._M_start._M_last - 1) 01040 { 01041 std::_Destroy(this->_M_impl._M_start._M_cur); 01042 ++this->_M_impl._M_start._M_cur; 01043 } 01044 else 01045 _M_pop_front_aux(); 01046 } 01047 01048 /** 01049 * @brief Removes last element. 01050 * 01051 * This is a typical stack operation. It shrinks the %deque by one. 01052 * 01053 * Note that no data is returned, and if the last element's data is 01054 * needed, it should be retrieved before pop_back() is called. 01055 */ 01056 void 01057 pop_back() 01058 { 01059 if (this->_M_impl._M_finish._M_cur 01060 != this->_M_impl._M_finish._M_first) 01061 { 01062 --this->_M_impl._M_finish._M_cur; 01063 std::_Destroy(this->_M_impl._M_finish._M_cur); 01064 } 01065 else 01066 _M_pop_back_aux(); 01067 } 01068 01069 /** 01070 * @brief Inserts given value into %deque before specified iterator. 01071 * @param position An iterator into the %deque. 01072 * @param x Data to be inserted. 01073 * @return An iterator that points to the inserted data. 01074 * 01075 * This function will insert a copy of the given value before the 01076 * specified location. 01077 */ 01078 iterator 01079 insert(iterator position, const value_type& __x); 01080 01081 /** 01082 * @brief Inserts a number of copies of given data into the %deque. 01083 * @param position An iterator into the %deque. 01084 * @param n Number of elements to be inserted. 01085 * @param x Data to be inserted. 01086 * 01087 * This function will insert a specified number of copies of the given 01088 * data before the location specified by @a position. 01089 */ 01090 void 01091 insert(iterator __position, size_type __n, const value_type& __x) 01092 { _M_fill_insert(__position, __n, __x); } 01093 01094 /** 01095 * @brief Inserts a range into the %deque. 01096 * @param position An iterator into the %deque. 01097 * @param first An input iterator. 01098 * @param last An input iterator. 01099 * 01100 * This function will insert copies of the data in the range [first,last) 01101 * into the %deque before the location specified by @a pos. This is 01102 * known as "range insert." 01103 */ 01104 template<typename _InputIterator> 01105 void 01106 insert(iterator __position, _InputIterator __first, 01107 _InputIterator __last) 01108 { 01109 // Check whether it's an integral type. If so, it's not an iterator. 01110 typedef typename _Is_integer<_InputIterator>::_Integral _Integral; 01111 _M_insert_dispatch(__position, __first, __last, _Integral()); 01112 } 01113 01114 /** 01115 * @brief Remove element at given position. 01116 * @param position Iterator pointing to element to be erased. 01117 * @return An iterator pointing to the next element (or end()). 01118 * 01119 * This function will erase the element at the given position and thus 01120 * shorten the %deque by one. 01121 * 01122 * The user is cautioned that 01123 * this function only erases the element, and that if the element is 01124 * itself a pointer, the pointed-to memory is not touched in any way. 01125 * Managing the pointer is the user's responsibilty. 01126 */ 01127 iterator 01128 erase(iterator __position); 01129 01130 /** 01131 * @brief Remove a range of elements. 01132 * @param first Iterator pointing to the first element to be erased. 01133 * @param last Iterator pointing to one past the last element to be 01134 * erased. 01135 * @return An iterator pointing to the element pointed to by @a last 01136 * prior to erasing (or end()). 01137 * 01138 * This function will erase the elements in the range [first,last) and 01139 * shorten the %deque accordingly. 01140 * 01141 * The user is cautioned that 01142 * this function only erases the elements, and that if the elements 01143 * themselves are pointers, the pointed-to memory is not touched in any 01144 * way. Managing the pointer is the user's responsibilty. 01145 */ 01146 iterator 01147 erase(iterator __first, iterator __last); 01148 01149 /** 01150 * @brief Swaps data with another %deque. 01151 * @param x A %deque of the same element and allocator types. 01152 * 01153 * This exchanges the elements between two deques in constant time. 01154 * (Four pointers, so it should be quite fast.) 01155 * Note that the global std::swap() function is specialized such that 01156 * std::swap(d1,d2) will feed to this function. 01157 */ 01158 void 01159 swap(deque& __x) 01160 { 01161 std::swap(this->_M_impl._M_start, __x._M_impl._M_start); 01162 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish); 01163 std::swap(this->_M_impl._M_map, __x._M_impl._M_map); 01164 std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size); 01165 } 01166 01167 /** 01168 * Erases all the elements. Note that this function only erases the 01169 * elements, and that if the elements themselves are pointers, the 01170 * pointed-to memory is not touched in any way. Managing the pointer is 01171 * the user's responsibilty. 01172 */ 01173 void clear(); 01174 01175 protected: 01176 // Internal constructor functions follow. 01177 01178 // called by the range constructor to implement [23.1.1]/9 01179 template<typename _Integer> 01180 void 01181 _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) 01182 { 01183 _M_initialize_map(__n); 01184 _M_fill_initialize(__x); 01185 } 01186 01187 // called by the range constructor to implement [23.1.1]/9 01188 template<typename _InputIterator> 01189 void 01190 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last, 01191 __false_type) 01192 { 01193 typedef typename iterator_traits<_InputIterator>::iterator_category 01194 _IterCategory; 01195 _M_range_initialize(__first, __last, _IterCategory()); 01196 } 01197 01198 // called by the second initialize_dispatch above 01199 //@{ 01200 /** 01201 * @if maint 01202 * @brief Fills the deque with whatever is in [first,last). 01203 * @param first An input iterator. 01204 * @param last An input iterator. 01205 * @return Nothing. 01206 * 01207 * If the iterators are actually forward iterators (or better), then the 01208 * memory layout can be done all at once. Else we move forward using 01209 * push_back on each value from the iterator. 01210 * @endif 01211 */ 01212 template<typename _InputIterator> 01213 void 01214 _M_range_initialize(_InputIterator __first, _InputIterator __last, 01215 input_iterator_tag); 01216 01217 // called by the second initialize_dispatch above 01218 template<typename _ForwardIterator> 01219 void 01220 _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last, 01221 forward_iterator_tag); 01222 //@} 01223 01224 /** 01225 * @if maint 01226 * @brief Fills the %deque with copies of value. 01227 * @param value Initial value. 01228 * @return Nothing. 01229 * @pre _M_start and _M_finish have already been initialized, but none of 01230 * the %deque's elements have yet been constructed. 01231 * 01232 * This function is called only when the user provides an explicit size 01233 * (with or without an explicit exemplar value). 01234 * @endif 01235 */ 01236 void 01237 _M_fill_initialize(const value_type& __value); 01238 01239 // Internal assign functions follow. The *_aux functions do the actual 01240 // assignment work for the range versions. 01241 01242 // called by the range assign to implement [23.1.1]/9 01243 template<typename _Integer> 01244 void 01245 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type) 01246 { 01247 _M_fill_assign(static_cast<size_type>(__n), 01248 static_cast<value_type>(__val)); 01249 } 01250 01251 // called by the range assign to implement [23.1.1]/9 01252 template<typename _InputIterator> 01253 void 01254 _M_assign_dispatch(_InputIterator __first, _InputIterator __last, 01255 __false_type) 01256 { 01257 typedef typename iterator_traits<_InputIterator>::iterator_category 01258 _IterCategory; 01259 _M_assign_aux(__first, __last, _IterCategory()); 01260 } 01261 01262 // called by the second assign_dispatch above 01263 template<typename _InputIterator> 01264 void 01265 _M_assign_aux(_InputIterator __first, _InputIterator __last, 01266 input_iterator_tag); 01267 01268 // called by the second assign_dispatch above 01269 template<typename _ForwardIterator> 01270 void 01271 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last, 01272 forward_iterator_tag) 01273 { 01274 const size_type __len = std::distance(__first, __last); 01275 if (__len > size()) 01276 { 01277 _ForwardIterator __mid = __first; 01278 std::advance(__mid, size()); 01279 std::copy(__first, __mid, begin()); 01280 insert(end(), __mid, __last); 01281 } 01282 else 01283 erase(std::copy(__first, __last, begin()), end()); 01284 } 01285 01286 // Called by assign(n,t), and the range assign when it turns out to be the 01287 // same thing. 01288 void 01289 _M_fill_assign(size_type __n, const value_type& __val) 01290 { 01291 if (__n > size()) 01292 { 01293 std::fill(begin(), end(), __val); 01294 insert(end(), __n - size(), __val); 01295 } 01296 else 01297 { 01298 erase(begin() + __n, end()); 01299 std::fill(begin(), end(), __val); 01300 } 01301 } 01302 01303 //@{ 01304 /** 01305 * @if maint 01306 * @brief Helper functions for push_* and pop_*. 01307 * @endif 01308 */ 01309 void _M_push_back_aux(const value_type&); 01310 void _M_push_front_aux(const value_type&); 01311 void _M_pop_back_aux(); 01312 void _M_pop_front_aux(); 01313 //@} 01314 01315 // Internal insert functions follow. The *_aux functions do the actual 01316 // insertion work when all shortcuts fail. 01317 01318 // called by the range insert to implement [23.1.1]/9 01319 template<typename _Integer> 01320 void 01321 _M_insert_dispatch(iterator __pos, 01322 _Integer __n, _Integer __x, __true_type) 01323 { 01324 _M_fill_insert(__pos, static_cast<size_type>(__n), 01325 static_cast<value_type>(__x)); 01326 } 01327 01328 // called by the range insert to implement [23.1.1]/9 01329 template<typename _InputIterator> 01330 void 01331 _M_insert_dispatch(iterator __pos, 01332 _InputIterator __first, _InputIterator __last, 01333 __false_type) 01334 { 01335 typedef typename iterator_traits<_InputIterator>::iterator_category 01336 _IterCategory; 01337 _M_range_insert_aux(__pos, __first, __last, _IterCategory()); 01338 } 01339 01340 // called by the second insert_dispatch above 01341 template<typename _InputIterator> 01342 void 01343 _M_range_insert_aux(iterator __pos, _InputIterator __first, 01344 _InputIterator __last, input_iterator_tag); 01345 01346 // called by the second insert_dispatch above 01347 template<typename _ForwardIterator> 01348 void 01349 _M_range_insert_aux(iterator __pos, _ForwardIterator __first, 01350 _ForwardIterator __last, forward_iterator_tag); 01351 01352 // Called by insert(p,n,x), and the range insert when it turns out to be 01353 // the same thing. Can use fill functions in optimal situations, 01354 // otherwise passes off to insert_aux(p,n,x). 01355 void 01356 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x); 01357 01358 // called by insert(p,x) 01359 iterator 01360 _M_insert_aux(iterator __pos, const value_type& __x); 01361 01362 // called by insert(p,n,x) via fill_insert 01363 void 01364 _M_insert_aux(iterator __pos, size_type __n, const value_type& __x); 01365 01366 // called by range_insert_aux for forward iterators 01367 template<typename _ForwardIterator> 01368 void 01369 _M_insert_aux(iterator __pos, 01370 _ForwardIterator __first, _ForwardIterator __last, 01371 size_type __n); 01372 01373 //@{ 01374 /** 01375 * @if maint 01376 * @brief Memory-handling helpers for the previous internal insert 01377 * functions. 01378 * @endif 01379 */ 01380 iterator 01381 _M_reserve_elements_at_front(size_type __n) 01382 { 01383 const size_type __vacancies = this->_M_impl._M_start._M_cur 01384 - this->_M_impl._M_start._M_first; 01385 if (__n > __vacancies) 01386 _M_new_elements_at_front(__n - __vacancies); 01387 return this->_M_impl._M_start - difference_type(__n); 01388 } 01389 01390 iterator 01391 _M_reserve_elements_at_back(size_type __n) 01392 { 01393 const size_type __vacancies = (this->_M_impl._M_finish._M_last 01394 - this->_M_impl._M_finish._M_cur) - 1; 01395 if (__n > __vacancies) 01396 _M_new_elements_at_back(__n - __vacancies); 01397 return this->_M_impl._M_finish + difference_type(__n); 01398 } 01399 01400 void 01401 _M_new_elements_at_front(size_type __new_elements); 01402 01403 void 01404 _M_new_elements_at_back(size_type __new_elements); 01405 //@} 01406 01407 01408 //@{ 01409 /** 01410 * @if maint 01411 * @brief Memory-handling helpers for the major %map. 01412 * 01413 * Makes sure the _M_map has space for new nodes. Does not actually add 01414 * the nodes. Can invalidate _M_map pointers. (And consequently, %deque 01415 * iterators.) 01416 * @endif 01417 */ 01418 void 01419 _M_reserve_map_at_back (size_type __nodes_to_add = 1) 01420 { 01421 if (__nodes_to_add + 1 > this->_M_impl._M_map_size 01422 - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map)) 01423 _M_reallocate_map(__nodes_to_add, false); 01424 } 01425 01426 void 01427 _M_reserve_map_at_front (size_type __nodes_to_add = 1) 01428 { 01429 if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node 01430 - this->_M_impl._M_map)) 01431 _M_reallocate_map(__nodes_to_add, true); 01432 } 01433 01434 void 01435 _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front); 01436 //@} 01437 }; 01438 01439 01440 /** 01441 * @brief Deque equality comparison. 01442 * @param x A %deque. 01443 * @param y A %deque of the same type as @a x. 01444 * @return True iff the size and elements of the deques are equal. 01445 * 01446 * This is an equivalence relation. It is linear in the size of the 01447 * deques. Deques are considered equivalent if their sizes are equal, 01448 * and if corresponding elements compare equal. 01449 */ 01450 template<typename _Tp, typename _Alloc> 01451 inline bool 01452 operator==(const deque<_Tp, _Alloc>& __x, 01453 const deque<_Tp, _Alloc>& __y) 01454 { return __x.size() == __y.size() 01455 && std::equal(__x.begin(), __x.end(), __y.begin()); } 01456 01457 /** 01458 * @brief Deque ordering relation. 01459 * @param x A %deque. 01460 * @param y A %deque of the same type as @a x. 01461 * @return True iff @a x is lexicographically less than @a y. 01462 * 01463 * This is a total ordering relation. It is linear in the size of the 01464 * deques. The elements must be comparable with @c <. 01465 * 01466 * See std::lexicographical_compare() for how the determination is made. 01467 */ 01468 template<typename _Tp, typename _Alloc> 01469 inline bool 01470 operator<(const deque<_Tp, _Alloc>& __x, 01471 const deque<_Tp, _Alloc>& __y) 01472 { return lexicographical_compare(__x.begin(), __x.end(), 01473 __y.begin(), __y.end()); } 01474 01475 /// Based on operator== 01476 template<typename _Tp, typename _Alloc> 01477 inline bool 01478 operator!=(const deque<_Tp, _Alloc>& __x, 01479 const deque<_Tp, _Alloc>& __y) 01480 { return !(__x == __y); } 01481 01482 /// Based on operator< 01483 template<typename _Tp, typename _Alloc> 01484 inline bool 01485 operator>(const deque<_Tp, _Alloc>& __x, 01486 const deque<_Tp, _Alloc>& __y) 01487 { return __y < __x; } 01488 01489 /// Based on operator< 01490 template<typename _Tp, typename _Alloc> 01491 inline bool 01492 operator<=(const deque<_Tp, _Alloc>& __x, 01493 const deque<_Tp, _Alloc>& __y) 01494 { return !(__y < __x); } 01495 01496 /// Based on operator< 01497 template<typename _Tp, typename _Alloc> 01498 inline bool 01499 operator>=(const deque<_Tp, _Alloc>& __x, 01500 const deque<_Tp, _Alloc>& __y) 01501 { return !(__x < __y); } 01502 01503 /// See std::deque::swap(). 01504 template<typename _Tp, typename _Alloc> 01505 inline void 01506 swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) 01507 { __x.swap(__y); } 01508 } // namespace std 01509 01510 #endif /* _DEQUE_H */

Generated on Wed Jun 9 11:19:01 2004 for libstdc++-v3 Source by doxygen 1.3.7