Go to the first, previous, next, last section, table of contents.
- tk_jack.zonel(p,n)
-
:: 分割 p に対する n 変数の zonal 多項式を出力する.
- return
-
多項式. x_1, x_2, ... が変数.
- p
-
数のリスト. p=[p0,p1,...] の時 p0>=p1>=...>0.
- n
-
自然数
-
この関数は
Koev-Edelman による Pieri 型公式を用いた Jack symmetric function の計算
アルゴリズムの実装である.
詳しくは Wikipedia 英語版 Jack symmetric function の項を参照.
- zonal(P,N) = jack(P,N,2) である.
load("tk_jack.rr");
[1434] tk_jack.zonal([3,2,1],3);
(112*x_3*x_2^2+112*x_3^2*x_2)*x_1^3+(112*x_3*x_2^3+168*x_3^2*x_2^2+112*x_3^3*x_2)*x_1^2+(112*x_3^2*x_2^3+112*x_3^3*x_2^2)*x_1
[1435] tk_jack.zonal([1,1],3);
(2*x_2+2*x_3)*x_1+2*x_3*x_2
[1436] tk_jack.jack([1,1],3,2);
(2*x_2+2*x_3)*x_1+2*x_3*x_2
- 参照
-
ChangeLog
-
この関数は wishart 分布に従う対称行列の第一固有値が x 以下である確率の計算を
holonomic gradient method でやるためにその初期値を計算する C のプログラムが
必要であった. それを debug するためにとりあえず書いたもの.
- 最適化をまだまださぼってる.
Go to the first, previous, next, last section, table of contents.