
QuickAnimationTM

Version 7.0

User’s Guide

How to Contact SoftIntegration

Mail SoftIntegration, Inc.
216 F Street, #68
Davis, CA 95616

Phone + 1 530 297 7398
Fax + 1 530 297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright c©2004-2012 by SoftIntegration, Inc. All rights reserved.
December, 2012

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written
permission of the copyright holder.

SoftIntegration, Inc. is the holder of the copyright ofQuickAnimationTM described in this document.
SoftIntegration, Inc. makes no representations, expressed or implied, with respect to this docu-
mentation, or the software it describes, including withoutlimitations, any implied warranty mer-
chantability or fitness for a particular purpose, all of which are expressly disclaimed. Users should
be aware that included in the terms and conditions under which SoftIntegration is willing to license
QuickAnimationTM as a provision that SoftIntegration, and their distribution licensees, distributors
and dealers shall in no event be liable for any indirect, incidental or consequential damages in connec-
tion with, or arising out of, the furnishing, performance, or use ofQuickAnimationTM, and that lia-
bility for direct damages shall be limited to the amount of purchase price paid forQuickAnimationTM.

Ch, SoftIntegration, One Language for All, and QuickAnimation are either registered trademarks or trade-
marks of SoftIntegration, Inc. in the United States and/or other countries. Microsoft, MS-DOS, Windows,
Windows 95, Windows 98, Windows Me, Windows NT, Windows 2000, and Windows XP are trademarks
of Microsoft Corporation. Solaris and Sun are trademarks ofSun Microsystems, Inc. Unix is a trademark
of the Open Group. HP-UX is either a registered trademark or atrademark of Hewlett-Packard Co. Linux
is a trademark of Linus Torvalds. All other trademarks belong to their respective holders.

ii

Table of Contents

1 QuickAnimation for Display and Animation of Objects 1
1.1 Introduction 1
1.2 User Interface forQuickAnimationTM . 2
1.3 Input Data Format 2

1.3.1 General Drawing Primitives 3
1.3.2 Processing qnm Files 7
1.3.3 Writing Programs for Quick Animation 7
1.3.4 Mechanical Drawing Primitives 10

1.4 Examples UsingQuickAnimationTM . 13
1.4.1 Example 1: Data Format 13
1.4.2 Example 2: Display Positions of Damped Free Vibrations 15
1.4.3 Example 3: Animation of Damped Free Vibrations 20

2 Web-Based Display and Animation of Objects 26
2.0.4 Writing CGI Script Files 26
2.0.5 Configuration and Setup of Web Servers 26

Index 27

iii

Chapter 1

QuickAnimation for Display and Animation
of Objects

1.1 Introduction

Figure 1.1: QuickAnimation window showing the positions ofthree vibration systems.

QuickAnimationTM is a program for quick animation and display of various objects, based on specified
x-y coordinate data. Like other SoftIntegration products,simplicity and easy to use is the key for this utility
program.QuickAnimationTM is especially suitable for animation of two-dimensional mechanical systems.
For example, theQuickAnimationTM window shown in Figure 1.1 displays a menu bar and overdamped,
critical damped, and underdamped vibration systems. The displayed objects are drawn in the largest area of
the window with a title above it. The details on how to use theQuickAnimationTM program ofqanimate
for animation are described in this chapter.

1

1.2. USER INTERFACE FORQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

1.2 User Interface forQuickAnimationTM

A QuickAnimationTM data file for objects typically has a file extension .qnm. The data file can be invoked
by theQuickAnimationTM commandqanimateas follows:

qanimate datafile.qnm

to launch theQuickAnimationTM window, as shown in Figure 1.1.
The menu bar in the QuickAnimation window contains a series of menus which manipulate the animated

system. TheFile menu allows one to quit the program. TheNext andPrev buttons control the frame
of an animation, and theAll button displays all frames at once. TheFast andSlow buttons change
the speed of animation. TheGo andStop buttons start and stop animation, respectively. The systemcan
move in either direction by pressing thePrev button for one direction and theNext button for the opposite
direction. When theGo button is pressed, the system will move in the direction previously assigned by the
Prev or Next button.

1.3 Input Data Format

The typical format for a QuickAnimation data file is displayed in Figure 1.2. It is specified with the following
typographical notation:

• Typewriter text specifies actual keywords.

• Emphasized text is specified by the user.

• Text between square brackets ‘[]’ are optional.

• The line character ‘|’ specifies an “OR” condition.

The character ‘#’ on the first line delimits a comment. QuickAnimation will ignore anything on that line
following the ‘#’ character. The title of the mechanical system is specified by the title keyword fol-
lowed by the title string delimited by the double quotation character, ‘"’. Keyword fixture allows the
following lines to define the fixed objects. Theprimitives are commands used to define general and
mechanical components of the displayed or animated system.Theanimate begins the inputting of of data
for animation. Each line following keywordanimate represents one frame of the animation, as indicated
by the superscript onprimitive. The optionrestart specifies that when the animation is finished, it
starts again from the beginning. The optionreverse specifies that when the animation is finished, it starts
the animatin backwards from the last frame till the first frame. Theprimitives following the keyword
stopped will be displayed only when animation is stopped. A frame consists of a data set that can con-
tain multiple primitives. The continuation character’\’ can be used to span primitives in a data set over
multiple lines. An animation withn number of frames requiresn number of data sets.

2

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

comment
title "title string"
fixture
primitives
animate [restart | reverse]
primitives1 [stopped primitives1]
primitives2 [stopped primitives2]

.

.

.

primitivesn [stopped primitivesn]

Figure 1.2: QuickAnimation data format.

1.3.1 General Drawing Primitives

Figure 1.3 shows the various general drawing primitives available for QuickAnimation. These primitives
allow for the drawing of an arc, line, segment, circle, polygon, and rectangle as well as the insertion of text
into a QuickAnimation program. The syntax for drawing such primitives are displayed in Figure 1.4. As
an example, consider the sytax for drawing a line. One may specify a line by typingline followed by
the x- and y-coordinates of the starting and ending points ofthe line (i.e. line 0 0 2 3 draws a line
from the origin to point (2,3) in the Cartesian coordinate system). Multiple lines may be linked together by
adding more coordinate points after theline statement. Similarly, a circle may be drawn by specifying
its center point and radius according to the syntax in Figure1.4. The various options available for each
general drawing primitives are displayed in Figure 1.5, andan example of color and font options is listed in
Figure 1.6.

3

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

2
(x , y)

2

Segment

1
(x , y)

1

nn
(x , y)

2
(x , y)

2

Line

(x, y) string

Text

(x, y)radius

Circle

Polygon

(x, y)

(x, y)

height

angle

width

1
(x , y)

1

2
(x , y)

2

nn
(x , y)

1
(x , y)

1

Arc

width

angle1

angle2

height

Rectangle

Figure 1.3: Graphical representation of general drawing primitives

line x1 y1 x2 y2 [. . . xn yn]
arc x y width height angle1 angle2
segment x1 y1 x2 y2
rectangle x y width height [angle angle]
polygon x1 y1 x2 y2 x3 y3 . . . xn yn
text x y string
circle x y radius
dot x y

Figure 1.4: Syntax for general drawing primitives

4

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

line
segment . . .

[pen color]
[linewidth pixelwidth]
[linestyle solid |

dashed [length pixellength] |
dotted [gap pixelgap]]

[capstyle butt | round | projecting]
[joinstyle miter | round | bevel]
[depth depth]

arc
circle
polygon
rectangle . . .

[pen color]
[fill color [intensity percent]

[pattern number]]
[linewidth pixelwidth]
[linestyle solid |

dashed [length pixellength] |
dotted [gap pixelgap]]

[capstyle butt | round | projecting]
[joinstyle miter | round | bevel]
[depth depth]

text . . .
[pen color]
[depth depth]
[font fontname]

dot . . .
[pen color]
[depth depth]

Figure 1.5: Options for general drawing primitives

... color { red | blue | yellow | white | black | grey90 ... }

... font { fixed | 6x13 | 6x13bold | lucidasanstypewriter-12 ...
}

Figure 1.6: Sample color and font options

Colors and fonts are specified by the X Window System in Unix and Windows.
The valid color names and their corresponding GRB values arelisted below.

Color Name Hexadecimal R G B
values

white #ffffff = 255 255 255
black #000000 = 0 0 0
gray0 #000000 = 0 0 0

5

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

grey0 #000000 = 0 0 0
gray10 #1a1a1a = 26 26 26
grey10 #1a1a1a = 26 26 26
gray20 #333333 = 51 51 51
grey20 #333333 = 51 51 51
gray30 #4d4d4d = 77 77 77
grey30 #4d4d4d = 77 77 77
gray40 #666666 = 102 102 102
grey40 #666666 = 102 102 102
gray50 #7f7f7f = 127 127 127
grey50 #7f7f7f = 127 127 127
gray60 #999999 = 153 153 153
grey60 #999999 = 153 153 153
gray70 #b3b3b3 = 179 179 179
grey70 #b3b3b3 = 179 179 179
gray80 #cccccc = 204 204 204
grey80 #cccccc = 204 204 204
gray90 #e5e5e5 = 229 229 229
grey90 #e5e5e5 = 229 229 229
gray100 #ffffff = 255 255 255
grey100 #ffffff = 255 255 255
gray #bebebe = 190 190 190
grey #bebebe = 190 190 190
light-gray #d3d3d3 = 211 211 211
light-grey #d3d3d3 = 211 211 211
dark-gray #a9a9a9 = 169 169 169
dark-grey #a9a9a9 = 169 169 169
red #ff0000 = 255 0 0
light-red #f03232 = 240 50 50
dark-red #8b0000 = 139 0 0
yellow #ffff00 = 255 255 0
light-yellow #ffffe0 = 255 255 224
dark-yellow #c8c800 = 200 200 0
green #00ff00 = 0 255 0
light-green #90ee90 = 144 238 144
dark-green #006400 = 0 100 0
spring-green #00ff7f = 0 255 127
forest-green #228b22 = 34 139 34
sea-green #2e8b57 = 46 139 87
blue #0000ff = 0 0 255
light-blue #add8e6 = 173 216 230
dark-blue #00008b = 0 0 139
midnight-blue #191970 = 25 25 112
navy #000080 = 0 0 128
medium-blue #0000cd = 0 0 205
royalblue #4169e1 = 65 105 225
skyblue #87ceeb = 135 206 235
cyan #00ffff = 0 255 255

6

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

light-cyan #e0ffff = 224 255 255
dark-cyan #008b8b = 0 139 139
magenta #ff00ff = 255 0 255
light-magenta #f055f0 = 240 85 240
dark-magenta #8b008b = 139 0 139
turquoise #40e0d0 = 64 224 208
light-turquoise #afeeee = 175 238 238
dark-turquoise #00ced1 = 0 206 209
pink #ffc0cb = 255 192 203
light-pink #ffb6c1 = 255 182 193
dark-pink #ff1493 = 255 20 147
coral #ff7f50 = 255 127 80
light-coral #f08080 = 240 128 128
orange-red #ff4500 = 255 69 0
salmon #fa8072 = 250 128 114
light-salmon #ffa07a = 255 160 122
dark-salmon #e9967a = 233 150 122
aquamarine #7fffd4 = 127 255 212
khaki #f0e68c = 240 230 140
dark-khaki #bdb76b = 189 183 107
goldenrod #daa520 = 218 165 32
light-goldenrod #eedd82 = 238 221 130
dark-goldenrod #b8860b = 184 134 11
gold #ffd700 = 255 215 0
beige #f5f5dc = 245 245 220
brown #a52a2a = 165 42 42
orange #ffa500 = 255 165 0
dark-orange #ff8c00 = 255 140 0
violet #ee82ee = 238 130 238
dark-violet #9400d3 = 148 0 211
plum #dda0dd = 221 160 221
purple #a020f0 = 160 32 240

1.3.2 Processing qnm Files

A QuickAnimation file with the file extension.qnm can be edited in ChIDE with syntqax highlighting,
as shown in Figure 1.7 for the QuickAnimation filecircles.qnm. The animation forcircles.qnm
can be created by clicking the commandAnimate->qanimate (Animate a qnm file) or the
function key F10, as shown in Figure 1.7. Figure 1.8 shows allframes for the animation.

The QuickAnimation filecircles.qnm can also be processed by the command

qanimate circles.qnm

where the commandqanimate is available in Ch.

1.3.3 Writing Programs for Quick Animation

A program can be written to generate the standard output in the QuickAnimation format, using the standard
C functions such asprintf() . The standard output can be sent to the QuickAnimation programqanimatedi-
rectly in ChIDE by clicking the commandAnimate->Output to qanimate or the function key F11,

7

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Figure 1.7: Executing a QuickAnimation filecircles.qnm.

Figure 1.8: The output from executing the QuickAnimation file circles.qnm in Figure 1.7.

8

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Figure 1.9: Executing a program with the standard output (stdout) sent to QuickAnimation.

as shown in Figure 1.9 for running the programCHHOME/demos/qanimate/smileyfaceanim.c.
Figure 1.10 shows a snapshot of the generated animation.

The animation can also be created by typing the following commands in a Ch command shell.

smileyfaceanim.c | qanimate

or

smileyfaceanim.c > tmp1.qnm
qanimate tmp1.qnm

9

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Figure 1.10: The output from executing the programsmileyfaceanim.c in Figure 1.9.

1.3.4 Mechanical Drawing Primitives

The mechanical drawing primitives were built into QuickAnimation for ease of creating typical mechanical
components, such as the springs and joints, of a mechanical system. The mechanical drawing primitives
available in QuickAnimation are derived from the general drawing primitives. For example, a link is a
combination of two circles connected by a line. All the available mechanical drawing primitives are shown
in Fig. 1.11. These primitives are the primary tools used forcreating animations of mechanical systems.

10

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

offset

2
(x , y)

2

1
(x , y)

1

2
(x , y)

2

1
(x , y)

1

1

Slider

(x, y)

Point

2

angle

(x, y)

angle

(x, y)

(x , y)
2

1
(x , y)

Spring

Link
Joint

(x, y)

Ground Pin

Ground

Figure 1.11: Graphical representation of mechanical drawing primitives

Point and Joint

Thepoint primitive is basically circle with a filled-in center. It is usually used to emphasize a point on a
mechanical system. The general syntax for apoint is

point x1 y1 [x2 y2 ... xn yn] [trace],

wherex1y1...xnyn specify the coordinate(s) of the joint(s),trace is an optional parameter used to specify
whether the point is to be traced during animation. For example, to create a point at coordinate (1,3) with a
trace the following command would be required:

point 1 3 trace.

Primitive joint is very similar topoint. It is syntactically the same as thepoint primitive, but
is comprised of a circle that is not filled-in. The joint represents a connection between two links or other
mechanical components.

Link

As previously mentioned, thelink primitive is a mechanical component formed by two circle primitives
and a line primitive. This primitive is normally used for generating animations of mechanical linkages such
as fourbar mechanisms. The general syntax for alink is given by the following:

link x1 x2 x2 y2 [... xn yn].

The coordinates of the endpoints of the first link is specifiedby (x1,y1) and (x2,y2). Addition links may

11

1.3. INPUT DATA FORMAT
CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

be attached to the last link by indicating the coordinates ofthe links’ other endpoints. A typical example of
creating two links adjoined at a common endpoint would be

link 1 1 1 4 4 4

In this example, the endpoints of the first link are at coordinates (1,1) and (1,4). The second link is then
attached to the first link at (1,4), and its other endpoint is located at (4,4). Note that the extra space between
the endpoint coordinates are ignored during execution of the QuickAnimation program. They are present in
the example to help distinguish the endpoints.

Ground

Theground primitive represents a reference area of the animation. It is stationary and fixed to its location.
The syntax forground is

ground x1 y1 x2 y2 [offset pixeloffset]
[ticks forward | backward]

For optionoffset, pixeloffset specifies the distance that the ground should be placed away for the x-
and y-coordinates of the ground. Additionally, if theticks option is used, and its value isforward, then
the ground is specified as going from (x1,y1) to (x2,y2). Likewise, the opposite is true if the value ofticks
is backward. The default value for optionticks is forward. For example,

ground 0 0 10 0 offset 2

will produce aground section from x=0 to x=10 and two units below the line, y=0.

Ground Pin

In order to directly connect a mechanical system toground, thegroundpin primitive is used to specify
the desired connection. The syntax for this primitive is given below as

groundpin x y [angle angle]

Coordinate (x,y) is the center point of the ground pin, and the optional argumentangle angle describes
the angular offset, in radians, relative to a horizontal position. In order to create a ground pin at the origin
with a45◦ rotational offset, the following statement should be declared:

groundpin 0 0 angle 45

Slider

Theslider primitive is generated from the rectangle drawing primitive. It represents a block member of
a mechanical system that is only capable of translation displacement. Similar to the ground pin, the slider
can have an angular displacement that would allow it to translate on a sloped surface. Its syntax is defined
as follow:

slider x y [angle angle]

12

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

As an example, consider a crank-slider mechanism that requires the slider to slide on a sloped surface,
located at (3,4) that is about30◦ relative to the ground. The slider portion of the mechanism can be created
with the following statement:

slider 3 4 angle 30

Spring

The spring is a typical component of many mechanical systems. The availability of aspring primitive in
QuickAnimation greatly increases the number of mechanicalsystems that can be modeled and animated. Its
syntax is given as

spring x1 y1 x2 y2,

where coordinates (x1,y1) and (x2,y2) specifies the endpoints of the spring. To create a spring from (1,1) to
(3,5), the following should be entered in the QuickAnimation data file:

spring 1 1 3 5

1.4 Examples UsingQuickAnimationTM

The source code for these examples are distributed along with Ch. They can be found in the directory
CHHOME/demos/qanimate, such as C:/Ch/demos/qanimate in Windows and /usr/local/ch/demos/qanimate
in Unix.

1.4.1 Example 1: Data Format

The data file in Figure 1.12 illustrates how general and mechanical primitives are specified in a Quick-
Animation file. Figure 1.13 shows the display when this data file is processed by the programqanimate.

13

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

File: sample.qnm (this is a comment)
title "This is a Title"

fixture
#no fixture

animate

low level primitives:
line 0 0 1 1.5 2 2 pen red \

line 3 3 4 4
line 5 5 12 5 linestyle dashed length 2 pen green linewidth 1
line 5 6 12 6 linestyle dashed length 5 pen green linewidth 1
line 5 7 12 7 linestyle dotted gap 1 pen red linewidth 2
line 5 8 12 8 linestyle dotted gap 5 pen red linewidth 2
arc 11 11 4 4 0 270 fill grey90 linewidth 5
arc 12 12 10 11 0 90 13 13 5 5 0 360 linewidth 2 pen blue
segment 14 14 15 15 16 16 17 17 pen red
#color of text cannot be changed in Windows for now
text 18 5 string1 pen rgb:ffff/ffff/0
text 18 7 "This is a string2" pen red
text 18 9 "This is a string3" \

font -*-lucidatypewriter-medium-*-*-*-12-*-*-*-*-*-*-*
circle 22 16 2 \

stopped line 14 17 17 20 text 17.2 20 "center of circle"
rectangle 15 18 1 1 pen red fill grey
rectangle 17 20 2 1 angle 30

higher linkage primitives
joint 18 18
point 19 19
link 20 20 21 21
groundpin 22 22 25 25 angle 30
link 22 22 25 25
polygon 4 10 5 10 6 13 3.5 14 fill green
spring 10 1 15 1
ground 17 1.0 19 2.0
The traced trajectory shown on the upper left
point 0 20 trace
point 3 23 trace
point 6 25 trace
point 10 20 trace

Figure 1.12: A sample data filesample.qnm.

14

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Figure 1.13: The QuickAnimation display based on the sampledata filesample.qnm.

1.4.2 Example 2: Display Positions of Damped Free Vibrations

The QuickAnimationTM data file in Figure 1.14 can be used to display the vibration system shown in
Figure 1.1. The first line starting with# is a comment line. Next, the title of the animation is set. Then, the
fixtures are specified. Th first ground pin and joint are located in (0, 6) by the specification below.

groundpin 0 6 angle 180 joint 0 6

Th second one is located in (4, 6). Th third one is located in (8, 6). Three text strings foroverdamped,
critical damped, andunderdamped are located next to the ground pins. Because the drawing area
is calculated automatically based on the data for primitives without considering the text string width, the
specification

dot 11 6 pen white

allows the text stringunderdamped displayed completely. The specification

rectangle -0.5 -0.818212 1 1 fill red \
spring 0 6 0 0.181788 \

draws the rectangle and spring for the overdamped vibrationsystem. The next two continuation lines draw
the rectangle and spring for the critical damped vibration system. The last two lines are for the underdamped
vibration system. To display as fixed objects, these primitives could have been specified in multiple lines
without continuation symbols.

15

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

qanimate data for animation of vibration systems
title "Positions of damped free vibration"
fixture
groundpin 0 6 angle 180 joint 0 6
text 0.5 6 "overdamped"
groundpin 4 6 angle 180 joint 4 6
text 4.5 6 "critical damped"
groundpin 8 6 angle 180 joint 8 6
text 8.5 6 "underdamped"
dot 11 6 pen white
rectangle -0.5 -0.818212 1 1 fill red \
spring 0 6 0 0.181788 \
rectangle 3.5 -1.049575 1 1 fill green \
spring 4 6 4 -0.049575 \
rectangle 7.5 0.412908 1 1 fill blue \
spring 8 6 8 1.412908

Figure 1.14: TheQuickAnimationTM file for vibration systems shown in Figure 1.1.

-3

-2

-1

0

1

2

3

4

5

0 2 4 6 8 10

am
pl

itu
de

time (second)

overdamped
critically damped

underdamped

Figure 1.15: Three damped free vibrations.

16

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

/**
* File: vibration.cpp

* Display the positions of damped free vibrations of

* overdamped, critical damped, underdamped systems.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/
#include <stdio.h>
#include <math.h>
#include <chplot.h>

/* The initial position of the vibration is 4.
The initial velocity of the vibration is 0 */

double overdamped(double t) {
return 4.12*exp(-1.57*t) - 0.12*exp(-54.2*t);

}

double criticaldamped(double t) {
return 4*(1+6*t)*exp(-6*t);

}

double underdamped(double t) {
return 4.06*exp(-0.5*t)*sin(3*t+1.4);

}

int main() {
double t0, tf;
int num = 100; // number of points for plotting
CPlot plot;

t0 = 0;
tf = 10;
plot.title("Damped Free Vibration");
plot.label(PLOT_AXIS_X, "time (second)");
plot.label(PLOT_AXIS_Y, "x");
plot.func2D(t0, tf, num, overdamped);
plot.legend("overdamped", 0);
plot.func2D(t0, tf, num, criticaldamped);
plot.legend("critically damped", 1);
plot.func2D(t0, tf, num, underdamped);
plot.legend("underdamped", 2);
plot.plotting();
return 0;

}

Program 1: Program for creating displacement for damped vibration shown in Figure 1.15.

17

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

The three categories of the damped free vibrations, overdamped, critical damped, and underdamped, are
described in Exercises in Chapter 6 Functions in the bookC for Engineers and Scientists: An Interpretive
Approach (by Harry H. Cheng, published by McGraw-Hill, 2009). Examples are given as follows.

1. Overdamped.
y1(t) = 4.2e−1.57t − 0.2e−54.2t. (1.1)

In this case, there is no oscillation. The motion decays andx approaches zero for large values of time
as shown in Figure 1.15.

2. Critically damped .
y2(t) = 4(1 − 3t)e−3t. (1.2)

The motion is also nonperiodic for a critically damped system. The mass will also reach the equilib-
rium position rapidly.

3. Underdamped.
y3(t) = 4e−0.5t sin(3t+ π/2). (1.3)

In this case, there is oscillation as shown in Figure 1.15, which is created by Program 1. The solution
is an exponentially decreasing harmonic function. However, because it is a damped motion, the body
will eventually approach the equilibrium position for large values of timet.

Figure 1.1 shows the positions for the above three damped free vibration using Equations (1.1), (1.2),
and (1.3) when timet is 2 seconds. Program 2 can be used to create theQuickAnimationTM data shown in
Figure 1.14.

The displayed vibration systems in Figure 1.1, created by typing the following commands in a Ch
command shell.

position.c | qanimate

or

position.c > tmp1.qnm
qanimate tmp1.qnm

18

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

/**
* File: position.c

* Display the position when t is 2 seconds for damped free vibration of

* overdamped, critical damped, underdamped systems.

* Run this program in Ch as follows:

* position.c | qanimate

* or

* positions.c > tmp1.qnm

* qanimate tmp1.qnm

* See CHHOME/docs/qanimate.pdf for detailed description of this program.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/
#include <stdio.h>
#include <math.h>

/* The amplitude of the vibration is 4 */
double overdamped(double t) {

return 4.2*exp(-1.57*t) - 0.2*exp(-54.2*t);
}

double criticaldamped(double t) {
return 4*(1-3*t)*exp(-3*t);

}

double underdamped(double t) {
return 4*exp(-0.5*t)*sin(3*t+M_PI/2);

}

int main() {
double t, t0, tf; // time
double y1, y2, y3; // displacement
double pin1x = 0, pin1y=7, // pin 1

pin2x = 4, pin2y=7, // pin 2
pin3x = 8, pin3y=7; // pin 3

/* A comment line starting with # */
printf("# qanimate data for positions of vibration systems\n");
/* The title displayed on the animation */
printf("title \"Positions of damped free vibration\"\n");
printf("fixture\n");
/* The primitives following fixture */
printf("groundpin %f %f angle 180 joint %f %f\n", pin1x, pin1y, pin1x, pin1y);
printf("line %f %f %f %f\n", pin1x, pin1y, pin1x, pin1y-1);
printf("text %f %f \"overdamped\"\n", pin1x+0.5, pin1y);
printf("groundpin %f %f angle 180 joint %f %f\n", pin2x, pin2y, pin2x, pin2y);
printf("line %f %f %f %f\n", pin2x, pin2y, pin2x, pin2y-1);
printf("text %f %f \"critical damped\"\n", pin2x+0.5, pin2y);
printf("groundpin %f %f angle 180 joint %f %f\n", pin3x, pin3y, pin3x, pin3y);
printf("line %f %f %f %f\n", pin3x, pin3y, pin3x, pin3y-1);
printf("text %f %f \"underdamped\"\n", pin3x+0.5, pin3y);
printf("dot 11 7 pen white\n"); // to display all text corretly

t = 2; // 2 seconds
y1 = overdamped(t);
y2 = criticaldamped(t);
y3 = underdamped(t);
printf("rectangle %f %f %f %f fill red \\\n",-0.5, y1-1.0, 1.0, 1.0);
printf("spring %f %f %f %f %f \\\n", pin1x, pin1y-1, pin1x, y1);
printf("rectangle %f %f %f %f fill green \\\n", pin2x-0.5, y2-1.0, 1.0, 1.0);
printf("spring %f %f %f %f %f \\\n", pin2x, pin2y-1, pin2x, y2);
printf("rectangle %f %f %f %f fill blue \\\n", pin3x-0.5, y3-1.0, 1.0, 1.0);
printf("spring %f %f %f %f %f \n", pin3x, pin3y-1, pin3x, y3);
return 0;

}

Program 2: Program for creatingQuickAnimationTM data file in Figure 1.14.19

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

1.4.3 Example 3: Animation of Damped Free Vibrations

One may consider the motion of the above damped free vibration as an elevator approaching a stop. It would
be very uncomfortable to ride if it were underdamped, and very slow to ride if it were overdamped. Critical
damping provides the fastest and smoothest ride. The animation of the motion inQuickAnimationTM

can be created by Program 3.
The result of Program 3 is shown in Figure 1.16. The data sets for creating the animation are generated

by the code in afor loop. Figure 1.17 displays a snapshot of the QuickAnimationanimation generated by
the animation data file.

20

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

/**
* File: vibration.c

* Animate the damped free vibration of

* overdamped, critical damped, underdamped systems.

* The output is for animation coordinate data.

* (1a) Run this program in ChIDE by clicking Animate on the menu bar

* (1b) Run this program in Ch as follows:

* vibration.c | qanimate

* or

* vibration.c > tmp1.qnm

* qanimate tmp1.qnm

* (2) Click "Go" to view the animation

* See CHHOME/docs/qanimate.pdf for detailed description of this program.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/
#include <stdio.h>
#include <math.h>

/* The initial position of the vibration is 4.
The initial velocity of the vibration is 0 */

double overdamped(double t) {
return 4.12*exp(-1.57*t) - 0.12*exp(-54.2*t);

}

double criticaldamped(double t) {
return 4*(1+6*t)*exp(-6*t);

}

double underdamped(double t) {
return 4.06*exp(-0.5*t)*sin(3*t+1.4);

}

int main() {
double t, t0, tf; // time
double y1, y2, y3; //displacement
double pin1x = 0, pin1y=7, // pin 1

pin2x = 4, pin2y=7, // pin 2
pin3x = 8, pin3y=7; // pin 3

/* A comment line starting with # */
printf("# qanimate data for animation of vibration systems\n");
/* The title displayed on the animation */
printf("title \"Damped Free Vibration\"\n");
printf("fixture\n");
/* The primitives following fixture */
printf("groundpin %f %f angle 180 joint %f %f\n", pin1x, pin1y, pin1x, pin1y);
printf("line %f %f %f %f\n", pin1x, pin1y, pin1x, pin1y-1);
printf("text %f %f \"overdamped\"\n", pin1x+0.5, pin1y);
printf("groundpin %f %f angle 180 joint %f %f\n", pin2x, pin2y, pin2x, pin2y);
printf("line %f %f %f %f\n", pin2x, pin2y, pin2x, pin2y-1);
printf("text %f %f \"critical damped\"\n", pin2x+0.5, pin2y);
printf("groundpin %f %f angle 180 joint %f %f\n", pin3x, pin3y, pin3x, pin3y);
printf("line %f %f %f %f\n", pin3x, pin3y, pin3x, pin3y-1);
printf("text %f %f \"underdamped\"\n", pin3x+0.5, pin3y);
printf("dot 11 7 pen white\n"); // to display all text corretly
printf("animate restart\n");

t0 = 0;
tf = 10;
for(t = t0; t<tf; t += 0.01) {

y1 = overdamped(t);
y2 = criticaldamped(t);
y3 = underdamped(t);
printf("rectangle %f %f %f %f fill red \\\n",-0.5, y1-1.0, 1.0, 1.0);
printf("spring %f %f %f %f \\\n", pin1x, pin1y-1, pin1x, y1);
printf("rectangle %f %f %f %f fill green \\\n", pin2x-0.5, y2-1.0, 1.0, 1.0);
printf("spring %f %f %f %f \\\n", pin2x, pin2y-1, pin2x, y2);
printf("rectangle %f %f %f %f fill blue \\\n", pin3x-0.5, y3-1.0, 1.0, 1.0);
printf("spring %f %f %f %f \n", pin3x, pin3y-1, pin3x, y3);

}
return 0;

}

Program 3: Program to create the animation for damped free vibrations.

21

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

qanimate data for animation of vibration systems
title "Positions of damped free vibration"
fixture
groundpin 0 6 angle 180 joint 0 6
text 0.5 6 "overdamped"
groundpin 4 6 angle 180 joint 4 6
text 4.5 6 "critical damped"
groundpin 8 6 angle 180 joint 8 6
text 8.5 6 "underdamped"
dot 11 6 pen white
rectangle -0.500000 -0.818212 1.000000 1.000000 fill red \
spring 0 6 0 0.181788 \
rectangle 3.500000 -1.049575 1.000000 1.000000 fill green \
spring 4 6 4 -0.049575 \
rectangle 7.500000 0.412908 1.000000 1.000000 fill blue \
spring 8 6 8 1.412908

.

.

.

rectangle -0.500000 -0.999999 1.000000 1.000000 fill red \
spring 0.000000 6.000000 0.000000 0.000001 \
rectangle 3.500000 -1.000000 1.000000 1.000000 fill green \
spring 4.000000 6.000000 4.000000 -0.000000 \
rectangle 7.500000 -0.995843 1.000000 1.000000 fill blue \
spring 8.000000 6.000000 8.000000 0.004157

Figure 1.16: TheQuickAnimationTM data generated by Program 3.

Figure 1.17: QuickAnimation window showing a snapshot of damped free vibrations.

22

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

Two additional program for animation of the damped free vibration using QuickAnimation animation
are given below. They generate the same animation as that of the programvibration.c shown in Pro-
gram 3. but with special handling of the animation data. Programvibration2.ch outputs the animation
coordinate data to a temporary data file first. The animation data file is then processed by the command
qanimate. After QuickAnimationTM is exited, the temporary animation data file is removed. In this case,
the programvibration2.ch can readily run in ChIDE to create animation.

Programvibration3.c will also produce animation. The animation data are piped directly to the
QuickAnimation programqanimate using the functionpopen() to automatically generate the animation.
The commandqanimate is not invoked as a command inside a Ch program. Execution of the program will
simply generate the desired animation.

Listing of program vibration2.ch

/**
* File: vibration2.ch

* Animate the damped free vibration of

* overdamped, critical damped, underdamped systems.

* The output is for animation coordinate data.

* (1) Run this program in Ch.

* (2) Click "Go" to view the animation

* See CHHOME/docs/qanimate.pdf for detailed description of this program.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/
#include <stdio.h>
#include <math.h>

/* The initial position of the vibration is 4.
The initial velocity of the vibration is 0 */

double overdamped(double t) {
return 4.12*exp(-1.57*t) - 0.12*exp(-54.2*t);

}

double criticaldamped(double t) {
return 4*(1+6*t)*exp(-6*t);

}

double underdamped(double t) {
return 4.06*exp(-0.5*t)*sin(3*t+1.4);

}

int main() {
double t, t0, tf; // time
double y1, y2, y3; // displacement
double pin1x = 0, pin1y=7, // pin 1

pin2x = 4, pin2y=7, // pin 2
pin3x = 8, pin3y=7; // pin 3

FILE *stream;
char qnmFileName[1024]; // data file name for qanimate

tmpnam(qnmFileName);
stream = fopen(qnmFileName,"w");
if (stream==NULL) {

fprintf(stderr, "Error: cannot open ’%s’\n", qnmFileName);
exit(1);

}

/* The first line of the animation file must start with #qanimate */
fprintf(stream, "# qanimate data for animation of vibration systems\n");
/* The title displayed on the animation */
fprintf(stream, "title \"Damped Free Vibration\"\n");

23

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

fprintf(stream, "fixture\n");
/* The primitives following fixture */
fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin1x, pin1y, pin1x, pin1y);
fprintf(stream, "line %f %f %f %f\n", pin1x, pin1y, pin1x, pin1y-1);
fprintf(stream, "text %f %f \"overdamped\"\n", pin1x+0.5, pin1y);
fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin2x, pin2y, pin2x, pin2y);
fprintf(stream, "line %f %f %f %f\n", pin2x, pin2y, pin2x, pin2y-1);
fprintf(stream, "text %f %f \"critical damped\"\n", pin2x+0.5, pin2y);
fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin3x, pin3y, pin3x, pin3y);
fprintf(stream, "line %f %f %f %f\n", pin3x, pin3y, pin3x, pin3y-1);
fprintf(stream, "text %f %f \"underdamped\"\n", pin3x+0.5, pin3y);
fprintf(stream, "dot 11 7 pen white\n"); // to display all text corretly
fprintf(stream, "animate restart\n");

t0 = 0;
tf = 10;
for(t = t0; t<tf; t += 0.01) {

y1 = overdamped(t);
y2 = criticaldamped(t);
y3 = underdamped(t);
fprintf(stream, "rectangle %f %f %f %f fill red \\\n",-0.5, y1-1.0, 1.0, 1.0);
fprintf(stream, "spring %f %f %f %f \\\n", pin1x, pin1y-1, pin1x, y1);
fprintf(stream, "rectangle %f %f %f %f fill green \\\n", pin2x-0.5, y2-1.0, 1.0, 1.0);
fprintf(stream, "spring %f %f %f %f \\\n", pin2x, pin2y-1, pin2x, y2);
fprintf(stream, "rectangle %f %f %f %f fill blue \\\n", pin3x-0.5, y3-1.0, 1.0, 1.0);
fprintf(stream, "spring %f %f %f %f \n", pin3x, pin3y-1, pin3x, y3);

}
fclose(stream);
qanimate $qnmFileName
remove(qnmFileName);
return 0;

}

Listing of program vibration3.c

/**
* File: vibration3.c

* Animate the damped free vibration of

* overdamped, critical damped, underdamped systems.

* The output is for animation coordinate data.

* (1) Run this program in Ch.

* (2) Click "Go" to view the animation

* See CHHOME/docs/qanimate.pdf for detailed description of this program.

* Note: The details about this damped free vibration can be found in

* an exercise in Chapter 6 Functions in the book

* "C for Engineers and Scientists: An Interpretive Approach"

* by Harry H. Cheng, published by McGraw-Hill, 2009,

* ISBN: 0073376051, ISBN-13: 978-0073376059.

**/
#include <stdio.h>
#include <math.h>

/* The initial position of the vibration is 4.
The initial velocity of the vibration is 0 */

double overdamped(double t) {
return 4.12*exp(-1.57*t) - 0.12*exp(-54.2*t);

}

double criticaldamped(double t) {
return 4*(1+6*t)*exp(-6*t);

}

double underdamped(double t) {
return 4.06*exp(-0.5*t)*sin(3*t+1.4);

}

int main() {
double t, t0, tf; // time

24

1.4. EXAMPLES USINGQUICKANIMATIONTM

CHAPTER 1. QUICKANIMATION FOR DISPLAY AND ANIMATION OF OBJECTS

double y1, y2, y3; // displacement
double pin1x = 0, pin1y=7, // pin 1

pin2x = 4, pin2y=7, // pin 2
pin3x = 8, pin3y=7; // pin 3

FILE *stream;

stream = popen("qanimate","w"); // open qanimate pipe
if (stream==NULL) {

fprintf(stderr, "Error: popen() failed\n");
exit(1);

}

/* A comment line starting with # */
fprintf(stream, "# qanimate data for animation of vibration systems\n");
/* The title displayed on the animation */
fprintf(stream, "title \"Damped Free Vibration\"\n");
fprintf(stream, "fixture\n");
/* The primitives following fixture */
fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin1x, pin1y, pin1x, pin1y);
fprintf(stream, "line %f %f %f %f\n", pin1x, pin1y, pin1x, pin1y-1);
fprintf(stream, "text %f %f \"overdamped\"\n", pin1x+0.5, pin1y);
fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin2x, pin2y, pin2x, pin2y);
fprintf(stream, "line %f %f %f %f\n", pin2x, pin2y, pin2x, pin2y-1);
fprintf(stream, "text %f %f \"critical damped\"\n", pin2x+0.5, pin2y);
fprintf(stream, "groundpin %f %f angle 180 joint %f %f\n", pin3x, pin3y, pin3x, pin3y);
fprintf(stream, "line %f %f %f %f\n", pin3x, pin3y, pin3x, pin3y-1);
fprintf(stream, "text %f %f \"underdamped\"\n", pin3x+0.5, pin3y);
fprintf(stream, "dot 11 7 pen white\n"); // to display all text corretly
fprintf(stream, "animate restart\n");

t0 = 0;
tf = 10;
for(t = t0; t<tf; t += 0.01) {

y1 = overdamped(t);
y2 = criticaldamped(t);
y3 = underdamped(t);
fprintf(stream, "rectangle %f %f %f %f fill red \\\n",-0.5, y1-1.0, 1.0, 1.0);
fprintf(stream, "spring %f %f %f %f \\\n", pin1x, pin1y-1, pin1x, y1);
fprintf(stream, "rectangle %f %f %f %f fill green \\\n", pin2x-0.5, y2-1.0, 1.0, 1.0);
fprintf(stream, "spring %f %f %f %f \\\n", pin2x, pin2y-1, pin2x, y2);
fprintf(stream, "rectangle %f %f %f %f fill blue \\\n", pin3x-0.5, y3-1.0, 1.0, 1.0);
fprintf(stream, "spring %f %f %f %f \n", pin3x, pin3y-1, pin3x, y3);

}
pclose(stream);
return 0;

}

25

Chapter 2

Web-Based Display and Animation of
Objects

TheQuickAnimationTM program can be conveniently used to develop Web-based displayment of objects
and animation.

2.0.4 Writing CGI Script Files

Processing data sent from an HTML document with the<FORM> tag requires a script file, which is located
on the server side. Once data are passed to the server throughCommon Gateway Interface (CGI) or mech-
anisms, the necessary procedures are performed and the result is returned to the client. Details about CGI
in Ch can be inCh CGI Toolkit User’s Guide. To useQuickAnimationTM , the content type of the output
form a CGI script need to be specified by the statement

Response.setContentType("application/x-qnm");

which indicates that the output is aQuickAnimationTM application.

2.0.5 Configuration and Setup of Web Servers

In order to run theQuickAnimationTM application from a Netscape Web server in a Unix operating system,
the following line has to be added to the Netscape WWW server configuration filemime.typeslocated in
directoryserver home dir/https-80 or http/config.

type=application/x-qnm exts=qnm

For the Apache Web server, the line

application/x-qnm qnm

may be added to fileserver home dir/conf/mime.types. Note that the Web server needs to restart
in order for the changes to be effective.

26

Index

QuickAnimationTM, 1

CGI, 26
CGI Programming, 25
comment, 2
copyright, ii

general drawing primitives, 3
general primitives, 3

mechanical drawing primitives, 10
mechanical primitives, 10

qanimate,1

27

	QuickAnimation for Display and Animation of Objects
	Introduction
	User Interface for QuickAnimationTM
	Input Data Format
	General Drawing Primitives
	Processing qnm Files
	Writing Programs for Quick Animation
	Mechanical Drawing Primitives

	Examples Using QuickAnimationTM
	Example 1: Data Format
	Example 2: Display Positions of Damped Free Vibrations
	Example 3: Animation of Damped Free Vibrations

	Web-Based Display and Animation of Objects
	Writing CGI Script Files
	Configuration and Setup of Web Servers

	Index

