Integration

Getting Started
with ChIDE and Ch Command Shell

Ch Version 7.0

& func.c - ChIDE - Professional Edition
File Edit Search View Tools Debug Animate Options

-l

Language Buffers Help

B R TRl C: Chidemosibin M
| ¥atart $Continue ®@Abort “Estep [ENext 2=lp “=Down Sbresk &Clear | $3Parse P Run Bstop
1 func.c |

[l #include <stdio.h> a

3 int i = 100;

4 int g = 200;

5 -void func(int n) {

6 int i = 1;

7 double a[5] = {1,2,3,4,5};

e

9@

10 }

AL

12 -int main() {

13 int i = 10;

14

1.5 func (i) ;

i printf ("Done!\n") ;

17 return 0; i

18 }

s

4] |

12
Iow is: Date=2011-12-20 Time=15:45:13

debug> a

a 1.0000 2.0000
debug> 1

S 1

debug> Z*g
2%g

debug:>

400

4

3.0000 4.0000 5.0000

=

Copyright(©2012 by Softintegration, Inc., All rights reserved

How to Contact Softintegration

Mail Softintegration, Inc.
216 F Street, #68
Davis, CA 95616
Phone + 1530297 7398
Fax + 1530297 7392
Web http://www.softintegration.com
Email info@softintegration.com

Copyright(©2012 by Softintegration, Inc. All rights reserved.
Revision 7.0.0, January 2012

Permission is granted for registered users to make one cofiydir own personal use. Further reproduction,
or any copying of machine-readable files (including this)doeany server computer, is strictly prohibited.

Softintegration, Inc. is the holder of the copyright to the I@hguage environment described in this docu-

ment, including without limitation such aspects of the egsias its code, structure, sequence, organization,
programming language, header files, function and commaeg] fibject modules, static and dynamic loaded

libraries of object modules, compilation of command anchlilp names, interface with other languages and

object modules of static and dynamic libraries. Use of thstesy unless pursuant to the terms of a license
granted by Softintegration or as otherwise authorized Wwisaan infringement of the copyright.

Softintegration, Inc. makes no representations, expresseor implied, with respect to this documenta-
tion, or the software it describes, including without limitations, any implied warranty merchantability
or fitness for a particular purpose, all of which are expressy disclaimed. Users should be aware that
included in the terms and conditions under which Softintegation is willing to license the Ch lan-
guage environment as a provision that Softintegration, andheir distribution licensees, distributors
and dealers shall in no event be liable for any indirect, inalental or consequential damages in con-
nection with, or arising out of, the furnishing, performance, or use of the Ch language environment,
and that liability for direct damages shall be limited to the amount of purchase price paid for the Ch
language environment.

In addition to the foregoing, users should recognize that dlcomplex software systems and their doc-
umentation contain errors and omissions. Softintegratiorshall not be responsible under any circum-
stances for providing information on or corrections to errors and omissions discovered at any time in
this documentation or the software it describes, even if Sdhtegration has been advised of the errors
or omissions. The Ch language environment is not designed ticensed for use in the on-line control
of aircraft, air traffic, or navigation or aircraft communic ations; or for use in the design, construction,
operation or maintenance of any nuclear facility.

Ch, ChIDE, Softintegration, and One Language for All arbeitregistered trademarks or trademarks of
Softintegration, Inc. in the United States and/or othemtoes. Microsoft, MS-DOS, Windows, Windows
2000, Windows XP, Windows Vista, and Windows 7 are tradesaflkMicrosoft Corporation. Solaris and
Sun are trademarks of Sun Microsystems, Inc. Unix is a tradkemof the Open Group. HP-UX is either a
registered trademark or a trademark of Hewlett-PackardL@uwx is a trademark of Linus Torvalds. Mac
OS X and Darwin are trademarks of Apple Computers, Inc. QNXtimdemark of QNX Software Systems.
AlX is a trademark of IBM. All other trademarks belong to thiegspective holders.

Table of Contents

i MS . . o e e e e e e e e e 5
i ram Syntax Erfors e e 6
' ++ ' USELINPUL .« .« o o e e e e 7
o et

45

45

46

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE

1 Introduction

Chis an embeddable cross-platform C/C++ interpreter.dtsgperset of C with classes in C++. It supports
most new features in the latest C standard called C99 witkr atker friendly high-level extensions. Ch can
be used for cross-platform scripting, shell programmirg/3D plotting, numerical computing, embedded
scripting, and quick animation. With advanced numericatdess, Ch can be conveniently used for vari-
ous applications in engineering and science. However, @spegcially suitable for interactive classroom
presentations in teaching and for students learning C/C++.

An Integrated Development Environment (IDE) can be usedeteldp C and C++ programs. It can
typically be used to edit programs with added features adraatic syntax highlighting and run the pro-
grams within the IDE. ChIDE is a cross-platform IDE to edigbdg, and run C/Ch/C++ programs in Ch
interpretively without compilation. The user can set bpgakts, run a program step by step, watch and
change values of variables during the program executian, @hIDE is developed using Embedded Ch.
It is the most user-friendly IDE for beginners to learn comgpyprogramming in C and C++. ChIDE can
also be used to compile and link edited C/C++ programs usit@€ compilers of your choice such as
Microsoft Visual Studio .NET in Windows, GNU gcc/g++ in Lirand Mac OS X.

Because Ch is interpretive, C/C++ expressions, statemémistions, and programs can be readily
executed in Ch without compilation. Therefore, Ch is anlidetution for teaching and learning C/C++. An
instructor can use Ch interactively in classroom presiEmsiwvith a laptop to quickly illustrate programming
features, especially when answering students’ questlaFarners can also quickly try out different features
of C/C++ without tedious compile/link/execute/debug egcl To assist beginners in learning, Ch has been
especially developed with many helpful warning and errossages when an error occurs, instead of cryptic
and arcane messages lgegmentation fautindbus erroror crashing.

This brief document will get the user to quickly start usinglQE and Ch command shell to learn
computer programming and develop programs in C/Ch/C++.

2 Executing C/Ch/C++ Programs in ChIDE

2.1 Getting Started

ChIDE can be launched by running the same progehaide across different platforms.

In Windows, ChIDE can also be conveniently launched by dealitking its icon shown in Figuid 1 on
the desktop.

In Mac OS X x86, ChIDE can also be launched by clicking the isbbown in Figurél on the dashboard
or in the Applications folder.

In Linux, ChIDE can also be launched under the entry Progreammiools in the startup menu. The
command

ch -d

will create an icon for Ch on the desktop. If Ch is installedhna ChIDE, an icon for ChIDE will also be
created on the desktop.
The command line option for the commacitide is as follows.

chide [-d directory] [fil enanes

Figure 1: The ChIDE icon in Windows, Mac OS X, and Linux.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

&1 hello.c - ChIDE - Professional Edition
File Edit Search View Tools Debug Animate Options Language Buffers

IR A TNl C\ Chidemosichdemos il
debug bar | ¥start $Continue ®Abort “EStep [ENext Z:lp SDown SBreak &Clear
tab 1 hello.c |
directory > chdemos - 1 "/* Fi.‘LE: hello.c
faine Directories and Files 2 _ Print 'Hel;o, world' on the scree

= 3 #include <stdio.h>
file browser Ch data2D.ch = 4 . -
pane C debugc > 5 int main()
Cbreapoint || ezt 7® | printe(r "
reakpoin Chelloc e] | printf ("Hello, world\n");
Chhello.ch 8 return 0;
hello.obj . !
— C# yibration.cpp 10
editing pane | +
= « | | KN |
ebug pane
semﬂfn bar [Locals| Variables | Stack |_Watch Breaifpo1r‘|t5|
Number] Breakpoint Location
1 Cc:\Ch\demos\chdemos\hello.c:7
debug pane =
| |
input/output R debug>
pane "
debug
command >
pane 4| | KN |
[i=7 co=1 INS (LF)

Figure 2: Terms related to the layout of ChIDE.

Without the command line option, the commacttdde will start ChIDE using the information previously
saved when the ChIDE was exited. The optfdnl enanes will open one or multiple files. With the
option-d di rectory, the file browser pane of the ChIDE will list files in the diregt di r ect ory.
For example, the command

chide -d /Users/hone/harry filel.ch file2.ch

will open filesfi | el. ch andfi | e2. ch inthe current working directory and the file browser pane wil
list files in the directory User s/ horme/ harry.

2.2 Editing and Executing C/Ch/C++ Programs
2.2.1 Editing C/Ch/C++ Program Source Code

Text editing in ChIDE works similarly to most Windows Mac teeditors such as Word and Notepad with
the additional feature of automatic syntax highlightindgil@E can hold multiple files in memory at one time
but only one file will be visible. By default, ChIDE allows up 20 files in memory at once as described in
sectior 3.8. The general layout of ChIDE is displayed in Fe#i which also shows various terms used to
describe ChIDE in this document.

As an example, open a new document by clicking the comnk&nide| New or the first icon on the
tool bar, and type

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

&4 hello.c - ChIDE - Professional Edition = |D|ﬂ

File Edit Search Wiew Tools Debug Animate Options Language Buffers Help

s =R AN - AR R N =N W C:\ Chidemosichdemos ~|
| TStart ¥Cortinue ®Abot %EStep GENext ==lp SDown ®Bresk &Clear | #2Pase PRUn @Smp
1 hello.c |
chdemos j 1 -}/* File: hello.c
Directories snd Files 2 Print 'Hello, world' on the screen. */
=9 3 #include <stdio.h>
Ch data?D.ch 4 .]
C debugc 3 int main()
€h func2D ch 5 -1 i
C hello ¢ 7 printf ("Hello, world\n");
Ch hello.ch 8 return 0;
L yibrat: g 1
VIDIrAat1on. Cpp 10
| LKD) | >
li=1 co=1 NS (LF) J

Figure 3: The program edited inside the editing pane in ChIDE

/= File: hello.c
Print "Hello, world" on the screen */
#i ncl ude <stdi o. h>

int main() {
printf("Hello, world!'\n");
return O;

}

in the text as shown in Figuké 3 in the editing pane. The progappears colored due to syntax highlighting.

When ChIDE is started for the first time, programsGRHOVE/ denps/ chdenos will be copied
to HOVE/ chdenos, whereCHHOME is the home directory (folder) for Ch such &s/ Ch in Windows
and/ usr/ | ocal / ch in Mac, andHOVE is the user's home directory such @s/ Docunent s and
Settings/ Adm ni strator. The same prograrel | 0. ¢ in HOME/ chdenos/ hel | 0. ¢, such as
C./ Docunents and Setti ngs/Adm ni strator/chdenps/ hel | 0. cinWindows, can also be
loaded using th&i | e- >Open command. By default, this program is loaded when the ChiBiaded. In
Windows, a program listed under the Windows explorer cam laésdragged and dropped on to the ChIDE,
which will open the program in the editing pane.

The line numbers, margin, and fold margin on the left sidehef ¢diting pane can be suppressed as
shown in Figurd ¥4 by clicking the commands ew >Li ne Nunbers, Margin, Fold Margin,
respectively. Clicking these commands again will bringsthenarks back. The fold point markérs’ and
"+’ on the fold margin can be clicked to contract and expand aftolé block of code, respectively. In
Figurel4, the file brower pane is closed by clicking the comindnew >Fi | e Br owser Pane.

Save the document as a file nanted | 0. ¢ by the commanéi | e- >Save As, as shown in Figurel 5.
You can also right click the file on the file name on the Tab lweraied below the debug bar, and then select
the command@ave As to save the program as shown in Figure 6.

There are five panes in ChIDE: the editing pane, file browsee pdebug pane, debug command pane,
and input/output pane, as shown in Figure 2. The file browaee jis located on the left of the editing pane.
The debug pane is located either to the below of the editimg jpa on the right when CHIDE is displayed
in vertical split to be described in the next paragraph.idiyt it is of zero size, but it can be made larger
by dragging the divider between it and the editing pane. Téf®id command pane is located either to the
below of the debug pane or on the right. Details about the giglamne and debug command pane will be
described in section 4. Similarly, the input/output panedated either to the below of the debug pane or
on the right. The input/output pane is on the left of the detimgmand pane. Initially the input/output pane

3

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

&4 hello.c - ChIDE - Professional Edition = |D|ﬂ

File Edit Search | Wiew Tools Debug Animate Options Language Buffers Help

DEEHR S| BB X = |EQ &at|cth C:\Ch\demos\chdemos ~|
| Tstart lerontinue ®ibort SEStep [EMext 2=lp SDown ®Bresk UClear | §¥2Parse PRun ©5mp
1 hello.c

[/* File: hello.c
Print 'Hello, world' on the screen. */
#include <stdio.h>

int main()

{
printf ("Hello, world\n");
return 0;

}

a | 2|

li=1 co=1 INS (LF) Y

Figure 4: The program displayed without line numbers, nmarfipld margin, and file browser pane in
ChIDE.

&4 hello.c - ChIDE - Professional Edition = |D|ﬂ

File Edit Search Wiew Tools Debug Animate Options Language Buffers Help

R Cirl+M c AN W\ Chidemosichdemos v|

Open... Cirl+0 ext =lp SDown WBresk WClear | $3Pase PRun @Siop

Open Selected Filename Ctrl+Shift+0

Revert Cirl+R : hello.c

Close CHrl+w it 'Hello, world' on the screen. */

Save Crl+5 e <stdio.h>

Cirl+Shift+5 |n“

Save a Copy... Crl+5hift+P

Encoding P ntf("Hello, world\n");

Export » birn 0:

Page Setup...

Prirt... Cirl+P _I
| »

Load Session...

SAva Seesinn A

Figure 5: Saving the edited program using the comnféride | Save As in ChIDE.

&3 hello.c - ChIDE - Professional Edition - |D|ﬂ
File Edit Search Wiew Tools Debug Animate Options Language Buffers Help
=R RE= IR AR R e R X2l W ;i Chidemosichdemos -|
| Fstart ¥Cortinue ®Abort “ESten ENext 2=lp S=Down SBreak UClear | $=Parse B Run ©5iop
lhell
Close -

chder— F 1 —|/* File: hello.c

Dir Save L 2 Print 'Hello, world' on the screen. */
= r 3 #include <stdio.h>
Chdata—— 4 . .
C debn Indent 3 int main()
Ch func ; 6 -
C hell Print T printf("Hello, world\n");
thhello ch ; , zaturn 0;
CHyibration.

vibration.cpp 10
KN 1] | i
liI=1 co=1 IN5 (LF) A

Figure 6: Saving the edited program in ChIDE by right cligkthe file name.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

B4 hello.c - ChIDE - Professional Edition L |D|§|

File Edit Search View Tools Debug Animate Options Language Buffers Help

D@ EHL & a2l X| o~ |EQ @&ab|ch C:\Ch\demos\chdemos ~|
| Fstart Fiontinie @ LhHor G'E’Step ENext 2=ln S=0own WBreak WClear | 93Rarse BPRun Sctop
1 hello.c |
chdemos ‘:J 1 -/* File: hello.c 7
Diirectories and Files 2 Print 'Hello, world' on the screen. */
=N 3 #include <stdio.h>
Ch data?D ch 4 - :
C debug.c 5 int main()
€h func2D ch & -1)
C hello o i printf ("Hello, world\n") ;
Ch hello ch B return 0;
U+ wibration.c 9 }
P 10 -
| 2l | b

*ch =u "hello. "
Hello, world
*Exit code: O

|
< | i

=1 co=1 N5 (LF) W

Figure 7: Executing the program using the commRuad in ChIDE and its output.

is of zero size, but it can also be made larger by dragging itidedl between it and the debug pane. By
default, the output from the program is directed into theutfqutput pane.

TheVi ew >Vertical Split command can be used to change the layout of the ChIDE in akrtic
mode, in which the file browser pnae is on the left, followedlisy editing pane, then the debug pane, and
the input/output pane and debug command pane on the rigbtloEhtion and size of the ChIDE, the sizes
of file browser pane, editing pane, debug pane, and inpptibyiane in the current session are saved when
ChIDE is closed. When ChIDE is started next time, these saakgbs in the previous session will be used
for the new session. The commavidew >Def aul t Layout will use the values in ChIDE global and
user options files to reset ChIDE to use the default layout.

2.2.2 Running C/Ch/C++ Programs and Stop Their Execution

A C/Ch/C++ program with the file extensiarc, . ch, . cpp, . cc, and. cxx, or without file extension
can readily be executed in ChIDE. Perform Ben on the debug bar dfool s- >Run command as shown
in Figure[T to execute the programel | 0. c. Instead of performing thBun or Tool s- >Run command,
pressing function key2 will also execute the program. Details for keyboard comnsaar@ described in
sectior 3.5.

You may use the commarithr se on the debug bar dfool s- >Par se to just check the syntax error
of the program without executing it.

If the command execution has failed and is taking too long tommete, then the
St op on the debug bar drool s- >St op Execut i ng command can be used to stop the program.

2.2.3 Output from Execution of Programs

When the prograntiel | 0. ¢ is executed, the input/output pane will be made visible i§ihot already
visible and will display

>ch -u "hello.c"
Hell o, world
>Exit code: O

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.2 Editing and Executing C/Ch/C++ Programs

as shown in Figurgl 7. The first line in the blue color
>ch -u "hello.c"

from ChIDE shows that it uses the commartdto execute the programel | 0. ¢. The next line in the
black color is the output from running the progréml | 0. c. The last line in the blue color is from ChIDE
showing that the program has finished. This line displayse#tiecode for the program. An exit code of O
indicates that the program is terminated successfully bystatement

return O;
or
exit (0);

in the program. If a failure had occurred during the executbthe program or the program is terminated
with a non-zero value for a return or exit statement such as

return -1;
or
exit(-1);

the exit code would be -1.

2.2.4 Detecting Program Syntax Errors

ChIDE understands the error messages produced by Ch. Tdiseedd a mistake to the program by
changing the line

printf("Hello, world\n");
to
printf("Hello, world\n";

Perform theRun or Tool s- >Run command for the modified program. The results should looklairto
those below

ERROR: missing ')’ before ';’

ERROR: syntax error before or at line 7 in file ' C \ch\denos\bin\hello.c’
==>: printf("Hello, world\n";
BUG printf("Hello, world\n"; <== ???

ERROR: cannot execute conmand ' C:\ch\ denos\bin\hello.c’

as shown in Figure]l8. Because the program fails to execugegxit code -1 is displayed at the end of the
input/output pane as

>Exit code: -1

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.3 Executing C/Ch/C++ Programs with the User Input

B4 hello.c - ChIDE - Professional Edition N |D|§|

File Edit Search View Tools Debug Animate Options Language Buffers Help

D@ EH R &l x| = [EQ &at|ch C:\Ch\demos\chdemos ~|

| Tstart Fortinie ®abot “ESten ENext Sln =Down SBresk &Cear | 92Parse B Run ®ctop

1 hello.c|

chdemos ﬂ 1 -/* File: hello.c A
e 2 Print 'Hello, world' on the screen. */

= 3 #include <stdio.h>

Ch data?D.ch ‘ : -

€ debug.c _5 int main()

Gh func2D ch 4 = .

C hello ¢ 7 printf("Hello, world\n'(;

Ch hello ch g return 0;

U+ wibration.c g)

PE 10 =
< KN | »
ERROR: missing ') " before ";°
ERRCR: syntax error before or at line 7 in file 'C:\Ch\demos'chdemos'hello.c'

= printf {"Hello, worldin"®;

BUG: printf{"Hello, worldin";<== 777
< | i3
lI=7 co=28 INS (LF) Y

Figure 8: The error line in output from executing prograei | o. c.

If you double click the red colored error message in the ifquiput pane shown in Figuieé 8 with the left
button of your mouse, the line with incorrect syntax and thiereamessage in the input/output pane will be
highlighted with yellow backgrounds as shown in Figure 9e Ehret is moved to this line and the pane is
automatically scrolled if needed to show the line. ChIDEensthnds both the file name and line number
parts of error messages so it can open another file (such aslariée) if errors were caused by that file.

While it is easy to see where the problem is in this simple caséh a large file, the
Tool s->Next Error Message command, or the function kely4, can be used to view each of the
reported errors. Upon performinfpol s- >Next Error Message, the first error message in the in-
put/output pane and the appropriate line in the editing aadiighlighted with yellow backgrounds.

The commandool s- >Pr evi ous Error Message, orthe function keyshi f t +F4, can be used
to view the previous error message.

The input/output pane can be opened and closed by the comviane > nput / Qut put Pane.
The contents of the input/output pane can be cleared by thenemdVvi ew >Cl ear | nput/ Qut put Pane
or the function key F9 as shown in Figlire 10.

2.3 Executing C/Ch/C++ Programs with the User Input

ChIDE can also execute programs that require the user’s thppugh such C functions asanf(). For ex-
ample, load the program C:./ Ch/ denps/ bin/scanf.c in Windows or
/usr/1ocal / ch/ denps/ bi n/ scanf . ¢ in Linux or Mac OS X, as shown in Figure]11.

When the program is executed, the user will be prompted tatiamumber as shown in Figurel11. The
user then must type in a number in the input/output pane. Bpilit number of 56 and output are shown in
Figure[11.

2.4 Executing C/Ch/C++ Programs with Plotting

Running a C/Ch/C++ program with graphical plotting is thensaas running other programs. This can be
demonstrated by an example.

Type in the code as shown in Figuie]12. The same program can l@ds loaded from
C. / Ch/ denps/ bi n/ f pl ot xy. cpp When the program is executed, it creates a plot shown in elif@r

7

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.4 Executing C/Ch/C++ Programs with Plotting

&1 hello.c - ChIDE - Professional Edition

File Edit Search View Tools Debug Animate Options Language Buffers Help

el

i E R R - A e =t e =R W 2 Chidemosichdemos

|

| ot $ootinie ®ibort *Estep Ehext S=lp SDown SBreak &Clear | #2Parse B Run @cton

1 hello.c |
chdemos - 1 - /* File: hello.c 7
Directories and Files o Print 'Hello, world' on the screen. */
.. : 3 #include <stdio.h>
Ch data2D ch 4) .
C debug.c 5 int main()
Ch func2D.ch - { .
C hello.c 7 printf ("Hello, world\n";
Ch hello ch E return 0;
b wibration o 2 }
Pp 10 E
4 | 2HA | 3

ERRQR: missing ") " before ;T

=S printf {("Hello, worldin";
BUG: printf {"Hello, worldin";<== 2727

<| |
li=7 co=1 INS (LF)

[ERROR: syntax error before or at line 7 in file 'C:\Ch‘demos‘chdenos\hello.c’

i
/4

Figure 9: Finding the error line in output from executing gnam hello.c.

&1 hello.c - ChIDE - Professional Edition
File Edit Search View Tools Debug Animate Options Language Buffers
D@ M E|&| ¢+ Change Font Size

Help

-lalx]

|

| Fstart $cotinl

PParse PRun @cton

X

I

= Wertical Split
thgles Default Layout
chdemos
Directories and Fil MGl tout Pane
[=W Clear Debug Command Pane
Ch data2D.ch Clear Debug Corsole Window
C debug.c
Ch func?D ch Toggle current fold
C hello.c Toggle all folds
Ch hello.ch
CH yibration cpp Full Sereen Fiz
v Tool Bar
v Debig Bar
v Tab Bar
v Status Bar
Whitespace Cirl+shift+8
End of Line Chrl+5hift+9
v Indemtation Guides
v Lire Mumbers
¥ Margin
v Fold Margin
v File Browser Pare Chrl+1
¥ Input/Qutput Pare Chrl+2
Debug Pare Chrl+3
Debug Command Pane Chrl+4
Input/Output, Debug, Debug Command Panes F&
Debug Console Window Fad
ﬂ—l Debug Console Window Always On Top
ERRQR: missing ") " before ;T
ERROR: syntax errcor before or at line 7 in file 'C:\Ch\demos‘chdemosihello.c’
=S printf {("Hello, worldin";
BUG: printf {"Hello, worldin";<== 2727
« |
li=7 co=28 INS (LF)

i
/4

Figure 10: Clearing the contents in the input/output pane.

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Argursent

ol
File Edit Searchh View Tools Debug Animate Options Language Buffers Help
LI T A sl . Chidemosibin |
| ®start Fiontinie ®ARort Esten ENedt 2=lp =lown SBreak &Clear | f2Rase PRUN Sciop
1helio.c 2scanf.c|

bin l‘ 1 -/* File: scanf.c
Directories and Fil = | 2 Handle the user's input and output on the screen. */
=) 3 #include <stdio.h>
Becdemo_ch 4 - -
Makefile 5 -int main() {
Makefile Win & int num;
README i : :
Ch arg ch 8 printf("Please input a number\n") ;
Ch cdermo] scanf ("%d", snum) ;
C commandarg.c 10 printf({"Your input number is %d\n", num);
OH data?DiCurve cpp 11 return 0;
C debug.c 12 }
I# frlntsra enn x
i) ;rl | |]

ek =u "scanf.g®

Please input a number
96

Your input number iz 56
=*Exit code: 0

< |
=15 co=1 ING (LF)

=

Figure 11: Executing the program with input and output.

The plotting functiorfplotxy () is available in Ch or Softintegration C++ Graphical Liky@SIGL). The pro-
gram uses the plotting functidplotxy () to plot function func() with 37 points and with the x valuethe
range from O to 360.

To compile a program using plotting features with headerfilglot.h, the program has to be treated as
a C++ program with file extension .cpp to link with a SIGL C+-bfting library. How to compile a C++
program using a C++ compiler will be described in se€tion8.

Many sample programs are available in CHHOME/demos/bin@AOME/demos/lib/libch/plot di-
rectories to demonstrate capabilities and usages of théngideatures in Ch. For example, the program
C. / Ch/ denps/ bi n/ pl ot xy. cpp uses the plotting functioplotxy() plot data stored in arrays. When it
is executed, it creates the same plot shown in Figure] 13. Thegragm
C./ Ch/ denps/ bi n/ f pl ot xyz. cpp uses the plotting function fplotxyz() to plot the function
cos(x) sin(y) with two independent variablesandy for the = value in the range from -3 to 3 angdin the
range of -4 to 4. The plot uses 80 points for both and y coordinates. The program
C. / Ch/ denps/ bi n/ | egend. cpp shows how to add legends for multiple curves to a plot.

2.5 Executing C/Ch/C++ Programs with Command Line Argumens

ChIDE can run programs with changeable command line argtendio set the command line arguments,
use theTool s- >Conmand Li ne Argunent s command to view the modeless Command Line Argu-
ment dialog which shows the current command line argumeardsaiows setting new values. The acceler-
ator keys for the main window remain active while this dialsglisplayed, so it can be used to rapidly run
a command several times with different arguments. Altéralgt a command executed in the input/output
pane as described in sectioh 6 can be made to display the i@odainand Line Arguments dialog when
executed by starting the command with-e® which is otherwise ignored as shown below.

* C:/ Ch/ denps/ bi n/ commandar g. c
* " C./ Ch/ denps/ bi n/ commandar g. c*

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Argursent

B4 fplotxy.cpp - ChIDE - Professional Edition - |D|ﬂ
File Edit Search View Tools Debug Animate Options Language Buffers Help
D@ RS ¢ =@ x| ~[BQ S a|ch |CiChidemostbin ~|
|§Start $Cortinie ®Abot SEStey [ENext =lp S=Down ®Break &Clear | #3paree BPRUN @oip
1 fplotxy.cpp |

1 -/* File: fplotxy.cpp A

2 Plot a function using plotting function fplotxy() */ —

3 f#include<math_h>

4 #include<chplot.h>

i

6 /* function to be plotted */

7 -double func(double x) {

8 return sin(x*M PI/180);

9 }

10

11 -int main() {

12 double x0 = 0, xf = 360; /* beginning and end points */

13 int num = 37; /* number of points for the plot */

14

15 fplotxy(func, x0, xf, num, "function sin(x)", "x (degree)™, "sin(x)"__|

16 }

17 X
q| | »
li=1 co=1 NS (LF) 4

Figure 12: A program using the plotting functifpiotxy ().

If the modeless Command Line Arguments dialog is alreadipleisthen the +’ is ignored.

The program in Figure_14 will accept the command line argusand print them out. The command
Tool s->Conmmand Li ne Argunent s as shown in Figure_15 launches the modeless Command Line
Argument dialog. Figure-16 shows how command line argumar@setup. The output from execution of
this program with command line arguments is displayed infedT.

10

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Argursent

function sin(x)

05

sin(x)
o
T

-1 1 1 1 1 1 1 1 J
0 50 100 150 200 250 300 350 400
X (degree)

Figure 13: The output of the plotting program in Figlré 12.

% commandarg.c - ChIDE - Professional Edition - |D|ﬂ
File | Edit Search View Tools Debug Animate Options Language Buffers Help
D HE &S| &R X = |EDQ &at|ch C:\Ch\demos\bin ~|

| Fstart ¥Continue ®2bort *ESten ENext 2=l =Down BBreak WClear | #=Parse PPRUn @Siop
1 commandarg.c |

1 [include <stdio.h>
2
32 -int main(int arge, char *argv[]) {
4 int i;
5
6 - for (i=0; argv[i] != NULL; i++) {
7 printf ("argv[%d] = %s\n", i, argv[il);
B }
9 return 0;
10 1
11
< | [
li=1 co=1 NS (LF) v

Figure 14: A program for handling command line arguments.

11

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Argurment

B% commandarg.c - ChIDE - Professional Edition - |2 x]
File Edit Search ‘iew | Tools Debug Animate Options Language Buffers Help
DS EE (S|4 =8 Pase ibin] |
| ¥Start $Continue @A Run Fe ok UClear | 9=Parse PPRUn @Stop
1 commandarg.c | Compile
1 #include <st ‘ P
5 Lirk
2 -int main(int Bdild
4 int i; €]
5 .
g for (i=0; Stiop Executing
: P Indent crlvg |7
4 BRI Command Line Arguments
10 1
11 MNext Error Message F4
Previous Error Message Shift+F4
« | i
li=1 co=1 INS (LF) Y

Figure 15: Launching the modal Command Line Arguments dialo

2% commandarg.c - ChIDE - Professional Edition B |D ﬂ
File FEdit Search View Tools Debug Animate Options Language Buffers Help
@R Z] BB %<~ |EQ S ch C:\Ch\demos\bin v|
| Totart $onfinue ®pbors "Estep ENext 2=lp S=Down MBresk &Clear | $2Parse P Run @stop
1 commandarg.c |
1 #include <stdio.h>
2
2 -int main(int argc, char *argv[]) {
a int i;
o
& - for(i=0; argv[i] != NULL; i++) |
i printf("argv[td] = %s\n", i, argwv[i]);
8 }
e return 0; ﬂ
}_2 ! 1 |-D optionl
2: |v optionz
3 |"0pt\0n 3 with space”
4 |
Set Cancel |
<| | i
li=1 co=1 INS (LF) 7

Figure 16: Setting command line arguments.

12

2 EXECUTING C/CH/C++ PROGRAMS IN CHIDE
2.5 Executing C/Ch/C++ Programs with Command Line Argurment

E% commandarg.c - ChIDE - Professional Edition 5 - |D ﬂ
File Edit Search ‘iew Tools Debug Animate Optlons Language Buffers Help
R IR e RS =T C: Chidemostbin] |

| ®start $ontinue ®abo: “=Step ENext &Lp S=Down 8Bresk &Clear | $2Parse PRun @stop
1 commandarg.c |

=) #include <stdio.h> A
2

2 -int main(int argc, char *argv[]) {

4 int i;

i

L for (i=0; argv[i] != NULL; i++) {

i printf("argv[%d] = %s\n", i, argv[i]);

g }

g return 0; L
10 }

3l X

| »

>ch -u "commandarg.c" -o optionl -v optionZ "option3 with space”

argv [0] = commandarg.c
argv[l] = -0

argv[2] = optionl
argv[3] = -w

argv[4] = optionz

argv[5] = option3 with space
*Exit code: 0

|
4| | »
li=1 co=1 ING (LF)

4 |»

BN

Figure 17: Executing the program with command line argusient

13

2.6 Indenting C/Ch/C++ Programs 3 EDITING IN CHIDE

BX hello.c - ChIDE - Professional Edition o [=]
File Edit Seach Wiew Tools Debug Animate Optons Language Buffers Help
= A = = s 20 W C:\ Chidemosichdemos ~|
| Fstart #continuz @sbot SEStep Ehext 2=lp SzDown WBreak &Clzar | §=Parse P Run @Stop
1 hello.c |
| j| 1 -/* File: hello.c
. 2 Print 'Hello, world' on the screen. */
CAChidemosichdemos) .
3 #include <stdio.h>
CAChidemos 4
Gach = int main()
A
A !
D:\ 7 printf ("Hello, world\n") ;
. g return 0;
Ed
; 9 }
2 10
U yibration. cpp
| Dl | 2
hellog; 2011-12-20 - 15,1608 | 4

Figure 18: Displaying the parent directories of the curkgotking directory.
2.6 Indenting C/Ch/C++ Programs

For readability and software maintenance, each line in graro should be properly indented. This is
especially important for readability for a program with marested loops and selection statements. The
commandTool s- >l ndent on the menu bar properly indents the program in the editinge p&ou can
also right click the file on the file name on the Tab bar, locdietbw the debug bar, and then select the
commandl ndent to indent the program. Figuié 6 shows the commandent when the file name
hel | 0. ¢c on the Tab bar is right clicked.

3 Editing in ChIDE

Most text editing features in a word processor such as Madtd&ord or Notepad are available in ChIDE.
Menus on the tool bar and menus under the comntahd on the menu bar can be used to edit programs
in the editing pane. Some unique features for editing C/&h/@rograms in ChIDE are described in this
section.

3.1 Browsing Files

Programs in the current working directory are displayedhanftle browser pane, as shown in Figule 2. The
current working directory is displayed at the end of the tma and also at the top of the file browser pane.
The first entry undebi r ect ori es and Fi |l es in the file browser pane is the parent directory of the
current working directory. Clicking the arrow at the endtw turrent working directory in the file browser
pane, all parent directories of the current working directire displayed as shown in Figulirg 18. Selecting
a parent directory, its contents will be displayed in theliilewser pane.

The history of current working directories can be displaygdclicking the arrow at the end of the
tool bar as shown in Figuie 119. Selecting a directory in tisolny of the current working directories, the
selected directory wil become the current working directand its contents will be displayed in the file
browser pane.

3.2 Edit

In Windows, Right clicking on the editing pane will also ginop the commonly used editing commands as
shown in Figuré_20.

14

3.3 Find and Replace 3 EDITING IN CHIDE

X hello.c - ChIDE - Professional Edition - |0 X
=t
File Edit Seach Wiew Tools Debug Animate Optons Language Buffers Help
= A = = s 20 W C:\ Chidemosichdemos ~|
| Totart $oorfinue ®abot *Estep ENext =l OIS
1 hello.c | CAChidemos
chdemos j 1 -/* File: hello.c |CAChidemosibin
Directories and Files 2 Print 'Hello, [G1Ch
=) 3 #include <stdio.h>
Ch data?D.ch 4 . .
c debug.c 5 int main()
Ch func2D.ch |)
C hello 7 printf ("Hello, world\n") ;
O hello ch g return 0;
hello oby 9)
C# yibration cpp 1
4| i | i
hellog; 2011-12-20 - 15,1608 | 4

Figure 19: Displaying the history of current working direces.

&} hello.c - ChIDE - Professional Edition - |D ﬂ

File Edit Search Wiew Tools Debug Animate Options Language Buffers Help

DEEHR &S $BRX| o |8 Q ab|ch C:\Ch\demos\chdemos ~|
| FStart ¥ Conbinue ®@Abort SEStep GEhext 2=lp SDown WBresk UClear | $3Parse PPRun @5top
1 hello.c |
1 -/* File: hello.c
2 Print 'Hello, world' on the screen. */ Lindo
3 #include <stdio.h> Feda
4
5 int main() Cut
G |
7 printf ("Hello, world\n") :; Paste
g return 0; Deleta
9 }
10 Select All
Close
< | 2
=8 co=1 ING (LF) J

Figure 20: Using editing commands by right clicking on théied pane.

As the user inputs the text into the editing pane, if the imgitihg matches a word in the edited file, the
matched word will be displayed. The user can hitHm er key to automatically complete the input for
the matched word. However, the user can t@be | +Ent er to list all matched words, use the arrow key
to select a word, then tygent er key to complete the word.

Rectangular regions of text can be selected in ChIDE by hgldown the Alt key on Windows or the
Ctrl key on Linux and Mac OS X while dragging the mouse overtéxe.

Key commands and abbreviations can be used to speed upmeditibld 2 in sectioh 36 lists many key
commands for quick editing. Abbreviations are describeskictior 3.7

3.3 Find and Replace

ChIDE has options to allow searching for words, regular egpions, matching case, in the reverse direction,
wrapping around the end of the document. C style backslasipes may be used to search and replace
control characters. Replacements can be made individualBr the current selection or over the whole
file. When regular expressions are used, tagged subexgmessin be used in the replacement text. Regular
expressions will not match across a line end. For the usenganience, the function key F3 can be used to
search the next word.

15

3.4 Changing Font Size 3 EDITING IN CHIDE

Table 1: Commonly used commands and their correspondingoleegt commands in ChIDE.

Command Keyboard Command
Help F1

Run C/Ch/C++ program in Ch F2

Find Next F3

Find Previous Shift+F3
Next Error Message F4
Previous Error Message Shift+F4
Start (Debug the program) F5

Step (Single step) F6

Next (Step over the next statement) F7
Open or close Input/Output, Debug, Debug Command Pane F8
Clear Input/Output Pane F9
Animate a QuickAnimation file F10
Send output for QuickAnimation F11

Full screen F12

Open or close File Browser Pane Ctrl+1
Open or close Input/Output Pane Ctrl+2
Open or close Debug Pane Ctrl+3
Open or close Debug Command Pane Ctrl+3

3.4 Changing Font Size

For the classroom presentation, the font size of the digplgyrogram can be enlarged by clicking the
commandVi ew >Change Font Si ze, and then make changes. In addition, the keyboard commands
Ctrl +Keypad+,Ct r| +Keypad- ,andCt r | +Keypad/ can be conveniently used during a presentation
to magnify the font size, reduce the font size, and restaeddht size to normal, respectively, as shown in
Table[2 in sectiof 3]6. Note that for a laptop without a sepakaypad, to use the keyboard commands,
you need to turn on “Num Lock” by pressirghi f t +NumlLk key first. Then, use the keys on the keypad.
For example, press the k€} r | +Keypad+ with the key for' + next to theShi ft key.

3.5 Folding

ChIDE supports folding for C/Ch/C++ and several other laaggs as presented in sectidn 9. Fold points
are based upon indentation for C/Ch/C++ and on countingelréar the other languages. The fold point
markers can be clicked to expand or contract folds as shoWwigired 8 andl4 in sectidn 2.2. The keyboard
commandCt r | +Shi ft +C i ck in the fold margin will expand or contract all the top levelds. The
commandCt r | +Cl i ck on a fold point to toggle it and perform the same operationlbaohédren. The
commandshi ft +Cl i ck on a fold point to show all children.

3.6 Keyboard Commands

Keyboard commands in ChIDE mostly follow common Windows &K+ conventions. All move keys
(arrows, page up/down, home and end) allow to extend or esthgcstream selection when holding the Shift
key, and the rectangular selection when holding the Shiftalhkeys. Some keys may not be available with
some national keyboards or because they are taken by tlersgsch as by a window manager on GTK+.
Keyboard equivalents of menu commands are listed in the saenu

Table[1 lists the most commonly used commands and theirsgoneling keyboard commands.

16

3.7 Abbreviations 3 EDITING IN CHIDE

Table[2 lists less commonly used commands with no menu dgniva
By default, function keys F9, F10, F11, and F12 in Mac OS X aeclpnded to certain features. To use
these function keys for ChIDE as shown in Table 1, you canbtlisthese pre-binding with the following
steps:
Click the Apple symbol on the upper left corner.
Click System Preferences.
Click Keyboard & Mouse.
Click Keyboard Shortcuts.
Click to disable the pre-selected bindings for F9, F10, khtl F12.

3.7 Abbreviations

Abbreviations in ChIDE can replace a short name with a preddftext for quick editing text or programs.
To use an abbreviation, type it and use Hik t - >Expand Abbr evi ati on command or th&€t r | +B
key to insert the expansion. The abbreviation is replacedrbgxpansion defined in the abbreviation files,
one is global and the other is the user specific. The globakalztions for writing C/Ch/C++ can be opened
by the command

Opti ons->0Open Chl DE A obal Abbreviation File

The global abbreviations can be overwritten by the usereafidition. The user abbreviation file can be
opened by the command

Opti ons->0pen Chl DE User Abbreviation File
An abbreviation file contains a list of entries of the form
abbr evi ati on=expansi on

An abbreviation name can have any character (except cathieolacters such as CR and LF), including
accented characters and multibyte characters for Asiguiges such as Chinese.

The abbreviation names have properties files limits: theyotstart with sharp (#) or space or tab (but
can have spaces inside); and they cannot havecharacter inside. An abbreviation name is limited to 32
characters, which should be more than enough faldreviation

An expansion may contain new line characters indicatetd\ny . The character |’ in an expansion
marks the position where the caret will be after expansion.in€lude a literal | * in an expasion, use
R

When expanding, the names don’t need to be separated froprehious text, i.e. if you definé as
" &eacut e’ , you can expand it inside a word.

If a name is the ending of another one, only the shorter orlde/iéxpanded, i.e. if you defing i ng’
and’ gat heri ng’ , the later will see only théri ng’ part expanded.

The global programming abbreviations can be used to spedtieutyping and indenting programs.
Table[3 lists the global abbreviations predefined for wgit@YCh/C++ programs.

A sample abbreviatiohw is included in the distributed default user abbreviatioe. filf you type the
abbreviationhw followed by theCt r | +B key, the contents for the header for a homework assignment, a
shown in Figuré 21, will be added in the editing pane conwvehjie You may edit the user abbreviation file
by the command

Opti ons->0pen Chl DE User Abbreviation File

to configure the abbreviatiamwwith your name and relevant information for a class or piojec

17

3.7 Abbreviations

3 EDITING IN CHIDE

Table 2: Less common commands and their corresponding keytoommands in ChIDE.

Description Keyboard Command
Magnify font size Ctrl+Keypad+
Reduce font size Ctrl+Keypad-
Restore font size to normal Ctrl+Keypad/
Cycle through the opened files in the buffers Ctrl+Tab
Indent block Tab

Dedent block Shift+Tab

Delete to start of word Ctrl+BackSpace
Delete to end of word Ctrl+Delete

Delete to start of line Ctrl+Shift+BackSpace
Delete to end of line Ctrl+Shift+Delete
Go to start of document Ctrl+Home

Extend selection to start of document Ctrl+Shift+Home
Go to start of display line Alt+Home

Extend selection to start of display line Alt+Shift+Home
Go to end of document Ctrl+End

Extend selection to end of document Ctrl+Shift+End
Go to end of display line Alt+End

Extend selection to end of display line Alt+Shift+End
Expand or contract a fold point Ctrl+Keypad*
Create or delete a bookmark Ctrl+F2

Select to next bookmark Alt+F2

Scroll up Ctrl+Up

Scroll down Ctrl+Down

Line cut Ctrl+L

Line copy Ctrl+Shift+T

Line delete Ctrl+Shift+L

Line transpose with previous Ctrl+T

Line duplicate Ctrl+D

Find matching preprocessor conditional, skipping nestezto Ctrl+K

Select to matching preprocessor conditional Ctrl+Shift+K
Find matching preprocessor conditional backwards, skippiested ones Ctrl+J

Select to matching preprocessor conditional backwards [+Shift+J
Previous paragraph. Shift extends selection Ctrl+[

Next paragraph. Shift extends selection Ctrl+]

Previous word. Shift extends selection Ctrl+Left

Next word. Shift extends selection Ctrl+Right
Previous word part. Shift extends selection Ctrl+/

Next word part. Shift extends selection Ctyl+

18

3.7 Abbreviations

3 EDITING IN CHIDE

Table 3: The default global abbreviations and their exparssi (Continued)

Abbreviation Expansion
com x| *

inc #include<| >

myinc #include' | "

def #defing

main function main()
mainarg function main() with arguments
if if statement

elseif else if statement
else else statement

for for loop

while while loop

do do-while loop
switch switch statement
foreach foreach loop

a [|]for an array index
C '| for a character

S ”| ” for a string

p (|) for parentheses
pi M_PI|

epsilon FLTEPSILON
cond | ?: for conditional operator
sizeof sizeof|()

struct struct structure
union union structure
enum enum structure
class class structure
stdlib.h include stdlib.h
time.h include time.h
assert.h include assert.h
complex.h include complex.h
ctype.h include ctype.h
errno.h include errno.h
fenv.h include fenv.h
float.h include float.h
inttypes.h include inttypes.h
iIS0646.h include is0646.h
limits.h include limits.h
locale.h include locale.h
math.h include math.h

19

3.7 Abbreviations

Table 3: (Continued)

3 EDITING IN CHIDE

Abbreviation Expansion
setjimp.h include setjmp.h
signal.h include stdarg.h
stdarg.h include stdarg.h
stdbool.h include stdbool.h
stddef.h include stddef.h
stdint.h include stdint.h
stdio.h include stdio.h
stdlib.h include stdlib.h
string.h include string.h
tgmath.h include tgmath.h
time.h include time.h
wchar.h include wchar.h
wctype.h include wctype.h
chdl.h include chdl.h
chplot.h include chplot.h
chshell.h include chshell.h
numeric.h include numeric.h
func a function definition
prot | O; for a function prototype
call | (); for calling a function
printf printf(" |\ n™);
scanf scanf(| ", &);

sin sin()

a standard C function namecall the standard C function

B4 (Untitled) * ChIDE - Professional Edition

File Edit Search View Tools DCebug Animate Options Language Buffers Help

DB G| & f 2@ x |« > |BQ @at|ch C:\Ch\demos\chdemos

—[olx]

| otart: $iortinue ®abort Eofen EMert =lp S=Down UBresk SClear | $2Rarse P Run Bitp

v

1 Untitled # |
1 iy /***
2 * File: myhello.c
=) * Homework 1 for EMES, Fall 2011
4 * Purpose: Print multiple lines on the screen.
i * Author: FirstName LastName
6 ‘k'k!ki!**ii!‘k**i{**i‘l!***i{*'ki‘l!**!lli**i***ii*******i***/
T $include <stdio.h>
a
8 -—int main() {
10 printf ("\n") ;
Al return 0;
12 }
Pl | _’I
li=2 co=13 INS (LF) 4

Figure 21: Using the abbreviatidnwto create the header for a homework assignment.

20

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

3.8 Buffers
24 hello.c - ChIDE - Professional Edition -5
File Edit Search Wiew Tools | Debug Animate Options Language Buffers Help
D@k & & E@ ¥ | < Start (Debug the prog om the beginning) F5 :|
| start $iontinue @pbore 550 Conlinue Bl i from e clrrent location) e
1 hello.c | FAEarE [AEERT Ie FURRIRG Ereara)
1 -[/* File: hello.c F&
2 Print 'Hello, w F7
4 #include <stdio.h>
4 - . & fluriction)
2 . '}nt naintl Break (Set a breakpaoint at the selected line)
7 printf ("Hello, Clegr (Clear @ breakpoint gt the selected [ing)
g } Btan. b Debug a program with Debug Consale Window
10 Display special variables in debug pane for Locals and Wariables
4 | i
MNow Is: Date=2011-12-20 Time=15:21.10 Y

Figure 22: Debug menus.
3.8 Buffers

ChIDE has 20 buffers by default, each containing a file. Thalmer of the default buffers can be changed in
the user option file for ChIDE. ThBuf f er s menu can be used to switch between buffers, either by select-
ing the file name or using thBuf f er s- >Pr evi ous Fi | e andBuf f er s- >Next Fi | e commands.
The keyboard comman@t r | +Tab cycles through the opened files in the buffers as shown ineThlh
sectior 3.6.

When all the buffers contain files, then opening a new file eaasbuffer to be reused which may require
a file to be saved. In this case an alert is displayed to enkaneser wants the file saved.

3.9 Sessions

A session is a list of file names and some options for ChIDE. d@usave a complete set of your currently
opened buffers as a session for fast batch-loading in thegfuSessions are stored as plain text files with
the extension ".session”.
Use the commandsi | e- >Load Sessi on andFi | e- >Save Sessi on to load/save sessions.
When ChIDE is closed, the opened buffers are saved in a sed8ioen ChIDE is started next time, the
previously saved session will be loaded automatically ertew session.

4 Debugging C/Ch/C++ Programs in ChIDE

The ChIDE has all capabilities available in a typical delmrgor binary C programs. The debug interface
commands, such &t art andSt ep, are available under the commabebug on the menu bar as shown
in Figure[22. They are also available directly on the debugTiae applicable commands on the debug bar
at any point of debugging will be clickable. Non-clickablenemands are dimmed.

4.1 Executing Programs in Debug Mode

The user can execute the program in the editing pane in thegdabde by thé&t art command or function
key F5. The program will stop when a breakpoint is hit. The sa@ execute the program line by line either
by commandSt ep or Next . The commandst ep or function key F6 will step into a function whereas
the commandNext or function key F7 will step over the function to the next lifi@uring debugging, the

21

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.2 Setting and Clearing Breakpoints

commandCont i nue can be invoked to continue the execution of the programhtéllgrogram ends or it
hits a breakpoint, which will be described in secfion 4.2.

If a program execution has failed and is taking too long to piete, then the commantbort can be
used to stop the program. However, when a program is at time gioaccepting input from the user such as
by the input functiorscanf(), the program cannot be aborted only after the input fundiidahes.

4.2 Setting and Clearing Breakpoints

Before program execution or during the debugging of an eeelcprogram, new breakpoints can be added
to stop the program execution when they are hit. A breakdoin& line can be added by clicking the left
margin of the line as shown in Figuré 2. To clear the breakpaiitk the highlighted red mark on the left
margin of the line. Breakpoints in the debugger can be exadnioy clickingBr eakpoi nt s on the debug
pane selection bar above the debug pane as shown in Eiguree2liebug pane will display the breakpoint
number and its location for each breakpoint. A breakpointtie current line can also be added by clicking
the commandBr eak. on the debug bar It can also be deleted by clicking the cordrGaear on the debug
bar. If no breakpoint has been set, the comm@hdar is non-clickable. A breakpoint cannot be set in a
declaration statement; however, a breakpoint can be setdeclaration statement with initialization such
as

int i = 10;
The program shall not be edited when it is being executed ahdgyjed. Otherwise, a warning message

War ni ng: Any changes nade to the file during debugging wll not
be reflected in the current debuggi ng session

will be displayed. After a program is finished its executitircan be edited. When a program is edited by
deleting or adding new code, the breakpoints set for therprogvill be updated automatically.

Using debug commands inside the debug command pane, whichemilescribed in section 4.5, a
breakpoint can also be set for functions and controllingaides,

4.3 Monitoring Local Variables and Their Values in the DebugPane

The commandst ep on the debug bar or under the commdabug on the menu bar can be used to step
into a function. If the function is not in one of files loadedtive buffer already, the file containing the

function will be loaded. At the end of the execution of thegreom, the file loaded during the debugging
will be removed from the buffer. However, if a breakpoint bagn set in the loaded file, the file will be kept

in the buffer when the execution of the program is finished.

When a program is executed line by line by comma8tdsp or Next , names and their corresponding
values of variables in the current stack can be examinecid¢bug pane by clicking metuocal s on the
debug pane selection bar. When control of the program execigtinside a function, the commahdcal s
displays the values of local variables and arguments oftthetion. When control of the program execution
is not in a function of a script, commarhacal s displays the values of global variables of the program. As
shown in Figuré 23, when prograimunc. c, available in the directorHHOVE/ denos/ bi n, is executed
at line 9, highlighted by the color green, local integer &alési andn are 1 and 10, whereas the arapf
double type contains 1, 2, 3, 4, and 5, as shown in the debugy pan

4.4 Monitoring Variables in Different Stacks and Their Values in the Debug Pane

The user can change the function stack during debugginganitgp Up to its calling function or move
Down to the called function so that the variables within its scopa be displayed in the debug pane or

22

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.4 Monitoring Variables in Different Stacks and Their \é@un the Debug Pane

B4 func.c - ChIDE - Professional Edition - |D ﬂ

File Edit Search View Tools Debug Animate Options Language Buffers Help
D& & =@ % |- ~[[8Q &ab| eh |[cichidemosibin ~|
| ®otart FContinue ®Abort ®Estep Ghext 2=lUp S=hown SBreak &Clear | 95Parse P Run @otop
1 func.c |

1 #include <stdio.h> A

2

3 int i 100;

4 int g 200;

5 -—void func(int n) {
(5]

i

8

int i = 1;

double a[5] = {1,2,3,4,5};
9@ g=10;
10 1
150
12 -int main() {
13 int i = 10;
14
15 func (i) ;
16 printf ("Done!\n") ;
17 return 0; |-

19: =
q| | »

Locals |\f’ariables| Stack | Watch| Breakpointsl

Name Value

i 1

El 1.0000 2Z.0000 2Z2.0000 4.0000 5.0000

n 10

<]
debug:>

‘| 3| RY— o]

Moy is: Date=2011-12-20 Time=15:45:13 7

Figure 23: Displaying names and values of local variablgkéncurrently called function.

accessed in the debug command pane. Different colors adeta$gghlight the current line and executing
lines in the calling functions. For example, when clickirgramandUp in Figure[23, the control flow of the
program moves to its calling functianain() at line 15 as highlighted with the blue color in Figlré 24. The
menuDown as shown in Figurg 23 is not clickable. But, the m&uwn is clickable in Figuré 24 when the
current stack is moved up. The debug pane at this point gisplee name and value of the variablgthe
only regular variable, in the calling functianain().

Commandst ack displays function, member function, or program name antesponding stack level
in each stack. The current running function has stack leyallereas level n+1 is the function that has
called a function with stack level n. For example, as showRigure[25, functiorf unc() is called by
functionmain(), which in turn is invoked by the prografrunc. c.

Names and their corresponding values of variables in atlkst@an be displayed by the command
Var i abl es on the debug pane selection bar as shown in Figure 26. Steels lare highlighted with
the corresponding colors for the current line and executives in the calling functions in the editing pane
as shown in Figure 24. In Figurel26, the program is stoppeide@®. Names and values of local variables
inside functions unc() andmain() as well as global variables are displayed in the debug paseona
can see, before line 9 is executed, the value of the glob&htag is 200.

When the command

D spl ay special variables in debug pane for Locals and Vari abl es

in the debug menu shown in Figurel 22 is clicked, names anésalfispecial variables such asf unc__
will be displayed in the debug pane for commahdsal s andVar i abl es.

23

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Using Debug Commands in the Debug Command Pane

B4 func.c - ChIDE - Professional Edition - |D ﬂ

File Edit Search View Tools Debug Animate Options Language Buffers Help

D2ER[& ¢ =8 x> = [EBQ &ab|ch |ciChidemosibin -]
| ¥otart $Continue ®Abort ‘;EStep ENext 2=Up =Down NEresk &Clear | $2Farse PR Betop
1 func.c |

1 #include <stdio.h> A

- =

=] int i = 100;

4 int g = 200;

5 -—void func(int n) {

B int i = 1;

i double a[5] = {1,2,3,4,5});

g

e Dg=Nay]

10 1

il

12 -int main() {

13 int i = 10;

14

15 func (i) ;

16 printf ("Done!\n") ;

17 return 0; |-

18 }

18 i
q| | »

Locals |\f’ariables| Stack | Watch| Breakpointsl

Name Value

i 10

1 »
debug:>

K I Ml i

MNowe is: Date=2011-12-20 Time=15:45:13 o

Figure 24: Displaying names and values of local variabldhércalling function.
4.5 Using Debug Commands in the Debug Command Pane

Many debug commands inside the debug command pane arebéallaing the debugging of a program.
A prompt

debug>

inside the debug command pane indicates that the debuggeady to accept debug commands. Type
the commandel p, it will display all available commands as shown in Figuré Zhe menu on the left
before a colon shows a command and the description on thieesighains the action taken for the command.
All commands on the debug bar have corresponding commanithsiinteractive debug command pane.
However, some features are available only through the debomgnand pane.

The variables, expressions, and functions can be mangoulay commandsissi gn, cal |, and
pri nt. The commandssi gn assigns a value to a variableal | invokes a function, angr i nt prints
out the value of a variable or expression including funcidhis invalid to print an expression of void type
including a function with return type void. One can also jiygte an expression, the value of the expression
will be displayed. If the expression is a function with th&uraing type of void, only the function is called.
For example, commands

debug> assign i =2+x10
debug> cal |l func()
debug> print i

20

24

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Using Debug Commands in the Debug Command Pane

24 func.c - ChIDE - Professional Edition B
File Edit Search View Tools Debug Animate Options Language Buffers Help

MEE

D@ ER & & =@ ~|EBQ R&at|ch |ciChidemosibin -]
| Fotart FContinue | ®abort ‘;EStep Enext ®=Up “=Down SBresk &Clear | $=Rarse PR Betop
1 func.c

=l #include <stdio.h> A

int i
int g

100;
200;

int i = 1;

2
3
4
5 -void func({int n) {
6
7 double a[5] = {1,2,3,4,5);

12 -int main() {

13 int i = 10;

14

15 func (i) ;

16 printf ("Done!\n") ;

17 return 0; (-
18 }

19 o
< | ;I_I

Locals | Variables Stack IWatch | Breakpoints |

Stack Level |Stack Hame

0 funci)

T main)

2 func.c

« | B
debug:>

K JLA| KT —

N

MNow is: Date=2011-12-20 Time=15:45:13

Figure 25: Displaying different stacks at the executinghpoi

debug> 2+*i
40
debug>

assign the variable with the value of 10, call functiofiunc() , and print out the value of the expression
2«1 when the variable is valid in its current scope. As another example, when @unogrunc. ¢ is
executed and stopped at line 9 shown in Figuile 28, the valuesiablesa andi as well as the expression
2+ g can be obtained by typing corresponding commands in thegdetommand pane.

The commandst art begins debugging a program. The optional command line aggtsrfor the
commandst art andr un are processed and passed to the arguments for the funadimg). For example,
to run progranC: \ Ch\ denos\ bi n\ commandar g. ¢ shown in Figuré 17, the debug command

debug> start -0 optionl -v option2 "option3 with space”

will assign the strings" C. \ Ch\ denos\ bi n\ commandarg.c", "-0", "optionl", "-v",
"option2",and" option3 with space" toelementar gv[0] ,argv[1] ,argv[2] ,argv[3],
ar gv[4] , andar gv[5] , the argumenar gv of the main function

int main(int argc, char *argv[])

of the Ch scriptonmandar g. c, respectively. The output on the Debug Console Window idlairto that
displayed in the input/output pane in Figliréd 17. A command rgument with space should be enclosed
within two double quotation marks as shown above for thegtriopti on3 wi t h space".

25

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Using Debug Commands in the Debug Command Pane

B4 func.c - ChIDE - Professional Edition h - |D ﬂ

File Edit Search View Tools Debug Animate Options Language Buffers Help

|Dﬁ’vﬂ@l@\%@séxhﬂfﬂl@q&qﬂm| v|
| ¥otart $Continue ®Abort ‘;EStep Ehext ®=lp S=Down WBresk WClear | $=Rarze P Run Bitop
1func.c |

=l $include <stdio.h> "

int i
int g

100;
200;

int i = 1;

2
3
4
5 -void func(int n) {
6
o double a[5] = {1,2,3,4,5);

12 -int main() {

dE=, int 1 = 10;

14

15 func(i) ;

16 printf ("Done!\n") ;

17 return 0; e

I] =
<| | »

=) 1.0000 Z.0000 Z.0000 4.0000 5.0000
n 10

Stack 1: main ()

i 10

stack 2: func.c

i 100

a 200

func () 0xX03334820

main () 0X03334E20

< |

[i5: Date=2011-12-20 Time=15:45:13

A=

Figure 26: Displaying names and values of all variableslistatks .

The program will stop when a breakpoint is hit. The commanad will execute the program without
debugging by ignoring breakpoints. Similar to commandderdebug bar, the user can execute the program
line by line either by commandt ep or next. The commandt ep will step into a function whereas
the commanaext will step over the function to the next line. During the deping), the commandont
can be invoked to continue the execution of the programttfilits a breakpoint or the program ends. The
user can change the function stack during debugging. It oampgo its calling function or move down to
the called function by the commandg anddown, respectively, so that the variables within its scope can
be accessed in the debug command pane. The function or progaees in all stacks are displayed by
the commandt ack. Names and their corresponding values of variables in thewustack are displayed
by the command ocal s. Commandvar i abl es displays names and values for all variables within its
scope in each stack.

The commandavat ch adds an expression, including a single variable, into afigtatched expressions.
Watched expressions can be added before or during exeaftioprogram. An expression can be removed
from the list of the watched expressions by tlemove expr command. The commandenove removes
all expressions in the watched list. For example, commamtisei debug command pane

debug> watch 2+g
debug> watch i

26

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE

4.5 Using Debug Commands in the Debug Command Pane

B4 func.c - ChIDE - Professional Edition I

—[olx]

File | Edit Search View Tools Debug Animate Options Language Buffers Help

D@ & Bl -~ [BQ &at|ch C:\Ch\demos\bin ~|

| ®otart $Continue ®Abort %EStep ENext 2=Up “=Down BBresk QClear | $2Parze P Run @ctop

1funcc|

=l #include <stdio.h>
2
3 int i = 100;

<

2]
.

debug> help

start [args]:
run [args]:
step:

next:

cont:

up

down :

stack:
locals:
variables:
watch expr:
remove exXpr:
remove:

stopin funcname [cond]:
stopvar varname [cond]:
clearline filename #:
clearfunc funcname:
clearvar wvarname:
clear:

help:

assign var=expr:

call funci):

print expr:

stopat filename # [cond]:

FEFEKRRERXARRARFXARAERRE Debug Menu FHrfrrrsdtadraartnhrrass

start the program with debugging

run the program without debugging

step into a function or next line

step over a function or next line

continue till hitting a breakpoint or ends
change stack to the calling function
change stack to the called function
display stack names in all stacks

display variables and values within its scope
display variables and values in all stacks
add an expression into the watch list
remove an expression from the watch list
remove all expressions from the watch list
set a new breakpoint in a file at line #
set a new breakpoint in a function

set a new breakpoint for a controlling wariable
clear a breakpoint in a file at line #
clear a breakpoint for a function

clear a breakpoint for a wariable

clear all breakpoints

display this debug menu

assign a value to a wariable

call a function

print out the value of an expression

eXpr: print out the value of an expression
abort: abort the debugger
debug>

o >l |

W

MNewy is: Date=2011-12-20 Time=15:45:13

Figure 27: Debug commands in the debug command pane.

add expressior2* g and variable i to a list of watched expressions as shown inre{@9. When the
program is stopped at a breakpoint or stepped into nexinséat the values of these watched expressions
can be viewed in the debug pane by clicking the commé#idc h on the debug pane selection bar as shown
in Figure[29.

Before the program execution or during the debugging of &cwed program, new breakpoints can be
added to stop the program execution. A breakpoint can be sased on three specifications: file name and
line number, function, and controlling variable. When ad@int is setup in a function, the program will
stop at its first executable line of the function. When a bpeakt is setup for a variable, the program will
stop when the value of the variable changes. Each breakpaimhave an optional conditional expression.
When a breakpoint location is reached, the conditionalesgion is evaluated if it exists. The breakpoint
is hit only if the expression is either true or has changedctvinieeds to be specified when the breakpoint
was added. By default, the breakpoint is hit only if the egpien is true. Commansdt opat sets a
new breakpoint specified by a file name and line number in theexuent arguments. The program breaks
execution when it reaches this location. Commanaepi n sets a new breakpoint for a function. The
program breaks execution when it reaches the first exeeutld of the function. Commansit opvar
sets a new breakpoint for a controlling variable. The vagigbevaluated while the program is running. The
program breaks execution when the value of the variableggganNhen each of these command is invoked,

27

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.5 Using Debug Commands in the Debug Command Pane

B4 func.c - ChIDE - Professional Edition B |D ﬁ
File Edit Search View Tools Debug Animate Options Language Buffers Help
D W& & 2| x| = |[EQ 2| o [~|
| ¥start BContinue ®Abort “Estep ENext 2Up S=Down ®Bresk &clear | $=Farse P Run @stop
1 func.c |
1 #include <stdio.h> a
= =]
3 int 1 = 100;
| int g = 200;
S5 -void func(int n) {
B int i = 1;
7 double a[5] = {1,2,3,4,5];
a
J@ [N)
10 }
11
12 -int main() {
13 int i = 10;
14
15 func (i) ;
16 printf ("Done!\n") ;
17 return 0; i
18 } -
4| | »
debug> a
a 1.0000 Z.0000 2.0000 4.0000 5.0000
debug> 1
T 1
debugs> 2%*g
2*g 400
debug>
4 | 4] | 2]
Mo i5: Date=2011-12-20 Time=15:45:13 V7

Figure 28: Using debug commands in the debug command pane.

a breakpoint is appended to the list of breakpoints. Theoopticonditional expression and triggering
method for each breakpoint are passed as the last two argsioiethese commands. For example, the
syntaxes for setting a breakpoint in a file with a completé paid line number are as follows.

debug> stopat filenane #
debug> stopat filename # condexpr
debug> stopat filename # condexpr condtrue

The symbol# should be substituted by a line number. When a breakpoiatimtis reached, the optional
expressiorcondexpr is evaluated. If the argumenbndt r ue is true or missing, the breakpoint will be
hit if the value for the expression is true; otherwise, thealapoint will be hit if the value for the expression
has changed. For example, the command

debug> stopat C./Ch/denos/bin/func.c 6
sets a breakpoint in filtunc. c located at the directory C:/Ch/demos/bin at line 6. The caman
debug> stopat C./Ch/denos/bin/func.c 6 i+ 1

sets a breakpoint in fileunc. c at line 6. When the breakpoint location in file func.c at lines 6eached,
the expressiom +j is evaluated and the breakpoint will be hit if the value fag thxpression +j is true.
The above command is the same as

debug> stopat C./Ch/denbs/bin/func.c 6 i+

28

4 DEBUGGING C/CH/C++ PROGRAMS IN CHIDE
4.6 Using the Debug Console Window for Input and Output

B4 func.c - ChIDE - Professional Edition - |D ﬁ

File Edit Search View Tools Debug Animate Options Language Buffers Help

IsE=A=NeR= A - S R SR XA W C:\ Chidemostbin| ~|
| ¥start BContinue ®Abort “Estep ENext 2Up S=Down ®Bresk &clear | $=Farse P Run @stop
1 func.c |

1 #include <stdio.h> -

. l=

3 int i = 100;

| int g = 200;

S5 -void func(int n) {

B int i = 1;

7 double a[5] = {1,2,3,4,5};

8

s@ INg=Nn 2

10 }

11

12 -int main() {

13 int i = 10;

14

15 func (i) ;

16 printf ("Done!\n") ; |

17 return 0;

18 } -
«| | »

Locals I Yariables | Stack Watch IBreakDoints |

Expression |Value |
Z g 400
i it
debug> watch Z#*g
debug> watch 1
debug>
| 3| KN — i
Nowe is: Date=2011-12-20 Time=15:45:13 V7

Figure 29: Setting watch expressions and variables inkieleiébug command pane to display their values
in the debug pane.

The command
debug> stopat C./Ch/denos/bin/func.c 6 i+ O

sets a breakpoint in fileunc. ¢ at line 6. When the breakpoint location in fifaunc. c at line 6 is
reached, the expressiortj is evaluated and the breakpoint will be hit if the value fa #xpressiof +j
has changed. On the other hand, commaridsar | i ne, cl ear f unc, andcl ear var with proper
arguments remove a breakpoint of line, function, and végidype in the list, respectively. Command
cl ear removes all breakpoints in the debugger.

If a program execution has failed and is taking too long to jglete, then the commarabort can be
used to stop the program.

The debug command pane can be cleared by clickihg the command
Vi ew- >Cl ear Debug Command Pane as shown in Figurg10.

4.6 Using the Debug Console Window for Input and Output

Normally, the standard input and output of a program are leanth the input/output pane. For some
applications, such as Windows console applications ugiadgunction hitkb(), the user may interface with
the program through a console windows in debug mode. Thegdetmsole window can be opened and
closed by the command ew >Debug Consol e W ndow. When a program is executed in the debug
mode, the standard input, output, and error streams ared¢bd@acted in a separate Debug Console Window
shown in Figuré_30.

29

5 GETTING STARTED WITH CH COMMAND SHELL

EiDebug Console Window _ ol X
Hello, world il
<| | M 4

Figure 30: The Debug Console Window for input/output in dghog.

Ch

Figure 31: A Chicon on a desktop in Windows, Linux, and Mac QS X

By default, the console window always stays on the top ofrotiedows. This default behavior can be
turned off or on by the command ew >Debug Consol e W ndow Al ways on Top. The contents
of the debug console window can be cleared by the comrbabdg- >Cl ear Debug Consol e W ndow
as shown in Figure_10. The colors for background and text dsasw¢he windows size and font size of the
debug console window can be changed by right clicking theDEhicon on the upper left corner of the
window and selecting the mermRr oper t i es to make changes. Note that for Windows Vista, you need to
run ChIDE with the administrative privilege to make such aruje.

5 Getting Started with Ch Command Shell

Ch can be used as a command shell in which commands are mdcdske other commonly used shells
such as the MS-DOS shell, Bash-shell, or C-shell, commaadde executed in a Ch shell. Unlike these
conventional shells, expressions, statements, funciodgprograms in C and C++ can be readily executed
in a Ch shell.

A Ch shell can be launched by running the commahd In Windows, Linux, and Mac OS X, a Ch
command shell can also be conveniently launched by clickirged-coloredCh icon, shown in Figurg 31,
on the desktop or on the tool bar of the ChIDE.

Assume the user account is the administrator, after a ChisHalnched in Windows, by default, the
screen prompt of the shell window becomes

C. / Docunents and Settings/Adm ni strator>

whereC: / Docunment s and Settings/ Admni ni strat or is the usershome directoryon the desk-

top as shown in Figurle_82. The colors of the text and backgt@swell as the window size and font size

of the shell window can be changed by right clicking the Ciabthe upper left corner of the window, and
selecting the menBr oper ti es to make changes. Note that for Windows Vista, you need to hibE

with the administrative privilege to make such a change. dibplayed directoryC: / Docunent s and
Settings/ Adm ni strator is also called theurrent working directory If the user account is not the
administrator, the account nam@ministratorshall be changed to the appropriate user account name. The
prompt indicates that the system is in a Ch shell and is rea@ygdept the user’s terminal keyboard input.
The default prompt in a Ch shell can be reconfigured. If thetimpped in is syntactically correct, it will

be executed successfully. Upon completion of the executiensystem prompt will appear again. If an

30

5 GETTING STARTED WITH CH COMMAND SHELL
5.1 Portable Commands for Handling Files

Ch Professional _ ol x|

Ch -
Professional edition, version 6.1.0.13631 ﬁ
(C) Copyright 2001-2608 SoftIntegration, Inc.
http://www.softintegration.com
C:/Documents and Settings/Administrator> printf("Hello, world™)
Hello, world
C:/Documents and Settings/Administrator>

«| | AV
Figure 32: A Ch command shell.
Table 4: Portable commands for handling files.

Command Usage Description
cd cd change to the home directory
cddir change to the directongir
cp cpfilel file2 copyfilelto file2
Is Is list contents in the working directory
mkdir mkdir dir create a new directorgir
pwd pwd print (display) the name of the working directory
rm rm file removefile
chmod chmod +xfile change the mode dile to make it executable
chide chidefile.c launch ChIDE for editing and executitfide.c

error occurs during the execution of the program or exppesshe Ch shell prints out the corresponding
error messages to assist the user in debugging the program.

All statements and expressions of C can be executed intariycin a Ch command shell. For example,
the outputHel 1 o, wor | d can be obtained by calling the functigmintf () interactively as shown below
and as seen in Figure]32.

C:. / Docunents and Settings/Administrator> printf("Hello, world")
Hell o, world

In comparison with Figure_32, the last prom@t/ Docunent s and Setti ngs/ Adm ni strat or >

is omitted to save the space in the presentation of this ddote that the semicolon at the end of a statement
in a C program is optional when the corresponding statenseexeécuted in command mode. There is no
semicolon in calling the functioprintf () in the above execution.

5.1 Portable Commands for Handling Files

At the system prompt, not only C programs and statements, but also any other coasr(@uch agpwd
for printing the current working directory) can be executedthis scenario, Ch is used as a command shell
in the same manner as MS-DOS shell in Windows.

Commands can be executed in a Ch command shell or in a Ch prograere are hundreds of com-
mands along with their respective online documentatiorhegdystem. No one knows all of them. Every
computer wizard has a small set of working tools that are afiede time, plus a vague idea of what else is
out there. In this section, we will describe how to use thetmosymonly used commands, listed in Tdble 4,
for handling files through examples. It should be emphasagin that these commands running in the Ch
shell are portable across different platforms such as Wisdainux, or Mac OS X. Using these commands,
a user can effectively manipulate files on the system to ruroGrams.

31

5 GETTING STARTED WITH CH COMMAND SHELL
5.1 Portable Commands for Handling Files

Assume that Ch is installed i@ / Ch in Windows, the default installation directory. The cutremrk-
ing directory isC: / Docunent s and Setti ngs/ Adm ni strat or, which is also the user's home
directory. The application of portable commands for filediang can be illustrated by interactive execution
of commands in a Ch shell as shown below.

C./ Docunents and Settings/Adm nistrator> nkdir c99

C./ Docunments and Settings/Adm nistrator> cd c99

C./ Docunents and Settings/Adm ni strator/c99> pwd

C./ Docunents and Settings/Adm ni strator/c99

C./ Docurments and Settings/Adm nistrator/c99> cp C:/Ch/denos/bin/hello.c hello.c
C./ Docunents and Settings/Adm nistrator/c99> |s

hello.c

C:./ Docunments and Settings/Adm nistrator/c99> chide hello.c

As shown inUsagein Table[4, the commanehkdir takes one argument as a directory to be created. We
first create a directory callet®9 using the command

nkdir c99

Then, we change to this new directdCy/ Docunent s and Setti ngs/ Adm ni strator/c99 us-
ing command

cd c99
Next, we display the current working directory with the coamnd
pwd

A C programhel | 0. ¢ shown in Figuré 3 in the director@: / Ch/ denos/ bi nis copied to the working
directory with the same file name using the command

cp C/Ch/denos/bin/hello.c hello.c
Files in the current directory are listed using the command
l's

At this point, there is only one file hello.c in the directory
C./ Docunents and Settings/Adm ni strator/c99. Itis recommended that you save all your
developed C programs in this directory so that you may eéisitiall programs later on. Finally, program
hel | o. ¢ is launched by the command

chide hello.c

to be edited and executed in ChIDE as shown in Figlire 3. Foassi@om presentation, sometimes, it is
more convenient to open multiple source files by a single canthas shown below:

> chide filel.c file2.c header.h

To use a command dealing with a path with white space, the methds to be placed inside a pair of
double quotation marks, as shown below, to removehidel o. c.

> rm"C./Docunents and Settings/Adm nistrator/c99/ hello.c"

32

5 GETTING STARTED WITH CH COMMAND SHELL
5.2 Setup Search Paths for Commands, Header Files, anddfufdes in Ch

5.2 Setup Search Paths for Commands, Header Files, and Fumah Files in Ch

When a command is typed into a prompt of a command shell fazuddan, the command shell will search
for the command in prespecified directories. In a Ch shadl sifstem variablepath of string type contains
the directories to be searched for the command. Each diyeistseparated by a semicolon inside the string
_path. When a Ch command shell is launched, the system variphbté contains some default search paths.
For example, in Windows, the default search paths are

C./Ch/bin;C./Ch/sbin;C /Ch/tool kit/bin;C/Ch/tool kit/sbin;C /WNDOW5; C./ W NDON5/ SYSTEM32;

The user can add new directories to the search paths for thenaad shell by using the string func-
tion stradd() in the startup file, which will be discussed in detail a litikder. This function adds argu-
ments of string type and returns it as a new string. For exatpe directoryC. / Docunent s and
Set ti ngs/ Admi ni strator/ c99is not in the search paths for a command. If you try to run @ogr
hell o.c in this directory when the current working directory is
C: / Docunment s and Settings/Adm ni strator, the Ch shell will not be able to find this pro-
gram, as shown below, and give two error messages.

C:. / Docunents and Settings/Admi nistrator> hello.c
ERROR: variable "hello.c’ not defined
ERROR: conmmand ' hell o.c¢c’ not found

When Ch is launched or a Ch program is executed, by defauwiijliexecute the startup filechrc in
Unix such as Linux and Mac OS X achrc in Windows in the user’s home directory if the startup file
exists. In the remaining presentation, it is assumed thas @ked in Windows with a startup filehrc in
the user’s home directory. This startup file typically sgisthe search paths for commands, header files,
function files, etc. In Windows, a startup filehrc with default setup is created in the user’'s home directory
during installation of Ch. However, there is no startup fil@iuser’'s home directory in Unix by default. The
system administrator may add such a startup file in a usenselttirectory. However, the user can execute
Ch with the option d as follows

ch -d

to copy a sample startup file from the direct@yHOVE/ conf i g/ to the user's home directory if there is
no startup file in the home directory yet. Note tRHOVE is not the string' CHHOVE" , instead it uses the
file system path under which Ch is installed. For example,ddgut, Ch is installed ifC: / Ch in Windows
and/ usr /| ocal / chin Unix. In Windows, the command in a Ch shell below

C:. / Docunents and Settings/Administrator> ch -d

will create a startup file _chrc in the user's home directory
C:. / Docunment s and Settings/Adm nistrator. This local Ch initialization startup filechrc
can be opened by the following command on the menu bar

Opti ons->Open Ch Local Startup File

to edit the search paths in ChIDE, as shown in Figutte 33. lat,ithe above commanch - d will also
create an icon for Ch on the desktop. If Ch is installed with#JE, an icon for ChIDE will also be created
on the desktop.

To include the directoryC: / Docunent s and Setti ngs/ Adm ni strator/c99 in the search
paths for a command, the following statement

33

5 GETTING STARTED WITH CH COMMAND SHELL
5.2 Setup Search Paths for Commands, Header Files, anddfufdes in Ch

&1 _chrc - ChIDE - Professional Edition

File Edit Search View Tools Debug Animate | Options Language Buffers Help

DEEHRg e x| <= 8438
| Tstart ¥Contnue ®abort Estep ENext 2=Lr
1 func.c 2_chre|
=[] // Hote: This file is called thz
2 // This file must be located in
3 //RB R R AR R R A R
4 // umask(0022) ;
B //_warning = 3;
6
it
g

// print al
//_ignoreeof = 1; // ignore E
//_path = stradd(".;", _path);

//_path = stradd(_path, "C:/add/

g //_ppath = stradd(_ppath, "c:/ad
10 //_fpath = stradd(_fpath, "C:/ad
Sl //_ipath = stradd(_ipath, "c:/ad
12 //_lpath = stradd(_lpath, "C:/ad
95 //_pathext = stradd(_pathext, ";

Always On Top
Dpen Fies Here
Wrap

Wirap Cufput
Read-Only

-[oIx

Lire End Characters
Cornvert Line BEnd Characters

Change Indentation Settings. ..
lUse Monospaced Font

Ctrl+Shift+1
Cirl+F11

Open Ch Lacal Starbup File
Open Ch Systermn Startup File

Dipen ChIDE User Abbreviations File

14 Open CHIDE Global Abbreviations File

15 /* for Web-Based Enterprise Mana = =

16 // _path = stradd(path, "C:/Win COipeny ChIDE Local Options File

I /* for wordpad.exe */ Open ChIDE |User Options File

AE //_path = stradd(_path, "C:/Prog ©Open ChIDE Global Cptions File

19 /* for winword.exe, you need to

20 //_path = stradd(_path, "C:/Prog Open ChIDE Localization File

Sé _/* _NET 2008 Open C/Ch/C++ Property File

23 _path = stradd(_path, "C:/Progra Open CS5 Property File ks
Z4 path = stradd(_path, "C:/Progra Open HTML/XML Property File i
e _path = stradd(_path, "C:/Progra Open Quick&nimation Property File

2a putenv(stradd ("LIB=C:/Program Fi Open 0L Property File

27 ::C :/Program E‘:?.les /M:i.c::oso Open Tex Property File >
gg - C:/Program Files/Microso Open Others Property File !
20

putenv(stradd ("INCLUDE=C:/Program Files/Microsoft Visual Studio 9.0/VC/incl »
4| | b

=5 co=3 ING (CR+LF)

4

Figure 33: Open the local Ch initialization startup file falitang.

_path = stradd(_path, "C./Docunents and Settings/Adm nistrator/c99;");

needs to be added to the startup fidlarc in the user’s home directory so that the comméred | 0. ¢
in this directory can be invoked regardless of what the etirveorking directory is. After the directory
C./ Docunents and Settings/ Adm ni strator/c99 has been added to the search patath,
you need to restart a Ch command shell. Then, you will be abéxé¢cute the programmel | 0. ¢ in this
directory as shown below.

C:. / Docunents and Settings/Administrator> hello.c
Hell o, world

In Unix such as Linux and Mac OS X, the search paths for comméyddefault do not contain the
current working directory. To include the current workingedtory in the search paths for a command, the
following statement

_path = stradd(_path, ".;");

needs to be added in startup filechrc in the user's home directory. Function call

stradd(_path, ".;") adds the current directory represented by .’ to the systesnch pathspath.
Similar to_path for commands, the header files in Ch are searched in direstepecified in the system
variable_ipath. Each path is also delimited by a semicolon. For examplestdtement below

_ipath = stradd(_i path, "C./Docunents and Setting/Adm nistrator/c99;");

34

5 GETTING STARTED WITH CH COMMAND SHELL
5.3 Interactive Execution of C/Ch/C++ Programs

adds the directoryC: / Docunent s and Setti ng/ Adni ni strator/c99 to the search paths for
header files included by the preprocessing directimelude such as

#i ncl ude <headerfile. h>
One can also add this directory to the search pdfiegh for function files by the statement
_fpath = stradd(_fpath, "C./Docunents and Setting/Adm nistrator/c99;");

A function file contains the function definition, which wiltldescribed in sectidn 5.5.

5.3 Interactive Execution of C/Ch/C++ Programs

It is very simple and easy to run C programs interactivelyhaitt compilation in a Ch shell. For example,
assume thaC: / Docunent s and Settings/ Adni ni strator/c99 is the current working direc-
tory as presented in sectibn b.1. The progtaeh | 0. ¢ in this directory can be executed in Ch to get the
output ofHel | o, wor | d as shown below.

C:. / Docunents and Settings/Admi nistrator/c99> hello.c

Hell o, world
C:. / Docunents and Settings/Admi nistrator/c99> _status
0

The exit code from executing a program in a Ch command shk#ps in the system variablsstatus
Because the prograimel | o. ¢ has been executed successfully, the exit code is 0 as shoile sbove
output whenstatusis typed in the command line.

In Unix such as Linux and Mac OS X, in order to readily use the@pmmbhel | 0. ¢ as a command,
the file has to be executable. The commahthod can change the mode of a file. The following command

chnod +x hello.c

will make the progranhel | 0. ¢ executable so that it can run in a Ch command shell.

5.4 Interactive Execution of C/Ch/C++ Expressions and St&ments

For simplicity, only the prompt in a Ch command shell will be displayed in the remaining pnestéon. If
a C expression is typed in the command shell, it will be evaldidy Ch and the result then will be displayed
on the screen. For example, if the expresdiafd* 2 is typed in, the output will be 7 as shown below.

> 1+3%2
7

Any valid C expression can be evaluated in a Ch shell. Thezefoh can be conveniently used as a calcu-
lator.

As another example, one can declare a variable at the prardghean use the variable in the subsequent
calculations as shown below.

>int i

> sizeof (int)
4

>i =30

35

5 GETTING STARTED WITH CH COMMAND SHELL
5.4 Interactive Execution of C/Ch/C++ Expressions ande®tents

30

> printf("w", i)
le

> printf("%", i)
11110

> | = 0bl11110

30

> | = Ox1E

30

> = -2

-2

> printf("%", i)
1111111122112112211121122112111110
> printf("%82b", 2)
00000000000000000000000000000010

In the above C statements, varialblés declared as int type with 4 bytes. Then, the integer valuéB
i is displayed in decimal, hexadecimal, and binary numbetse ifitegral constants in different number
systems can also be assigned to variabes seen above. Finally, the two’s complement representaftio
the negative number2 is also displayed. Characteristics for all other data typ&3can also be presented
interactively.

By default, a value of float or double type is displayed witlo tar four digits after the decimal point,
respectively. For example,

> float f = 10
> 2xf

20. 00

> double d = 10
> d

10. 0000

All C operators can be used interactively as shown below.

> int i=0b100, j = 0b1001
> i << 1

8

> printf("%", i]j)
1101

The concept of pointers and addresses of variables carubtrailed as shown below.

> int =10, *p
> &i

leddf O

>p = &
leddf O

> %p

10

> xp = 20

36

5 GETTING STARTED WITH CH COMMAND SHELL
5.4 Interactive Execution of C/Ch/C++ Expressions ande®tents

20
>
20

In this example, the variable of pointer to int points to the variable. The working principle for pointer to
pointer can also be interactively illustrated in the sameamesa In the next example, the relation of arrays
and pointers is illustrated as follows:

>int a[5] = {10, 20, 30, 40,50}, =*p
> a
1eb438

> &a[0]
1eb438

> a[1]

20

> *(a+l)
20

>p = atl
leb43c

> %p

20

> p[0]

20

Expressionaa[1], *(a+l), =*p, andp[O] all refer to the same element. Multi-dimensional arrays
can also be handled interactively. The boundary of an agapécked in Ch to detect potential bugs. For
example,

> int a[5] = {10, 20, 30, 40, 50}

> a[-1]

WARNI NG subscript value -1 less than lower Iimt O
10

> a[5]

WARNI NG subscript value 5 greater than upper limt 4
50

> char s[5]

> strcpy(s, "abc")

abc

>'s

abc

> strcpy(s, "ABCDE")

ERROR: string length sl is less than s2 in strcpy(sl, s2)
ABCD

> s

ABCD

The allowed indices for arrag of 5 elements are from 0 to 4. Arraycan only hold 5 characters including
a null character. Ch can catch bugs in existing C code retatéte array boundary overrun such as these.
The alignment of a C structure or C++ class can also be exahsisshown below.

37

5 GETTING STARTED WITH CH COMMAND SHELL
5.5 Interactive Execution of C/Ch/C++ Functions

> struct tag {int i; double d;} s
> s.i =20

20

>'Ss

i= 20

.d = 0.0000

> si zeof (s)

16

In this example, although the sizes of int and double are 48amespectively, the size of structusewith
two fields of int and double types is 16, instead of 12, for theppr alignment.

5.5 Interactive Execution of C/Ch/C++ Functions

A program can be divided into many separate files. Each filsistsnof many related functions, which can
be accessible to any part of a program. All functions in théa@dard libraries can be executed interactively
and can be used inside user defined functions. For example interactive execution:

> srand(time(NULL))

> rand()

4497

> rand()

11439

> doubl e add(doubl e a, double b) {double c; c=atb+sin(1.5); return c;}
> double c

> ¢ = add(10.0, 20)

30. 9975

The random number generator functiamd() is seeded with a time value gmand(time(NULL) . Function
add() which calls type-generic mathematical functin() is defined at the prompt and then used.

A file that contains more than one function definition is ulgusalffixed with. ch to identify itself as
part of a Ch program. One can create a function file in a Ch progring environment. Aunction file in
Ch is a file that contains only one function definition. The eapha function file ends inchf , such as
addi ti on. chf . The names of the function file and function definition indige function file must be the
same. The functions defined using function files are treagefitley were system built-in functions in Ch.

Similar to_path for commands, a function is searched based on the searchipatie system variable
_fpath for function files. Each path is delimited by a semicolon. Byadilt, the variablefpath contains the
pathsl i b/1ibc, lib/libch, lib/libopt, andlibch/numneri cinthe home directory of Ch.
If the system variablefpath is modified interactively in a Ch shell, it will be effectivenly for functions
invoked in the current shell interactively. For runningigts, the setup of function search paths in the current
shell will not be used and inherited in subshells. In thisecéise system variabldpath can be modified in

startup file_chrc in Windows or.chrc in Unix in the user’'s home directory.

For example, if a file namedddi ti on. chf contains the program shown in Prograin 1, the function
addi tion() will be treated as a system built-in function, which can b#edato compute the sum
a + b of two input arguments; and b. Assume that the function filaddi ti on. chf is located at
C. / Docunents and Settings/Adm nistrator/c99/addition. chf, the directory
C:. / Docunment s and Settings/Adm ni strator/c99should be added to the function search path
in the startup filechrc in Unix or _fpath in Windows in the user’'s home directory with the followingust-
ment.

38

5 GETTING STARTED WITH CH COMMAND SHELL
5.5 Interactive Execution of C/Ch/C++ Functions

/* File: addition.chf

A function file with file extension .chf x/
int addition(int a, int b) {

int c;

c =a+ b;

return c;

Program 1: Function filaddi t i on. chf.
/* File: programc
Program uses function addition() in function file addition.chf =/
#i ncl ude <stdio. h>

/* This function prototype is optional when function addition() in
file addition.chf is used in Ch =/
int addition(int a, int b);

int main() {
int a=3, b=4, sum

sum = addition(a, b);

printf("sum= %\n ", sum;
return O;

Program 2: A program using function figadi t i on. chf .
_fpath=stradd(_fpath, "C./Docunents and Settings/Adm nistrator/c99;");

Functionaddi ti on() then can be used either interactively in command mode asrsheiaw,

>int i =9
> i = addition(3, i)
12

or inside programs. In Prograim 2, the functiaddi ti on() is called without a function prototype in
themain() function so that the function prototype defined inside thecfion fileaddi t i on. chf will be
invoked. If the search paths for function files have not beepgrly setup, a warning message such as

WARNI NG function 'addition()’ not defined

will be displayed, when the functioaddi t i on() is called.

When a function is called interactively in a Ch shell, thediion file will be loaded. If you modify
a function file after the function has been called, the sulmeigcalls in the command mode will still use
the old version of the function definition that had been lohddo invoke the modified version of the
new function file, you can either remove the function defimitin the system using the commareanvar
followed by a function name. or start a new Ch shell by tygih@t the prompt. For example, the command

> renmvar addition

removes the definition for functioaddi t i on(). The commandemvar can also be used to remove a
declared variable.

39

5.6 Interactive BxedNilEtRACHYEdaXilE€s)TION OF COMMANDS IN THE INPUT/OUTPUT PAR

5.6 Interactive Execution of C++ Features

Not only C programs can be executed in Ch, but also classesamed C++ features are supported in Ch as
shown below for interactive execution of C++ code.

>int i

> cin >> |

10

> cout << i

10

> class tagc {private: int mi; public: void set(int); int get(int &;}
> void tagc::set(int i) {mi = 2*xi;}

> int tagc::get(int &) {i++;, return mi;}
> tagc c

> c.set (20)

> c.get (i)

40

>

11

> si zeof (tagc)

4

The input and output can be handled usiilgandcoutin C++. The public methotlagc: : set () setsthe
private membemi , whereas the public methddagc: : get () gets its value. The argument of method
tagc: : get () is passed by reference. The size of the ctaaggc is 4 bytes which does not include the
memory for member functions.

6 Interactive Execution of Commands in the Input/Output Pare

Binary commands or C/C++ programs can also be executedagtiegly inside the input/output pane as
shown in Figuré_34. In Figufe_ 84, the progrdmal | o. c is executed first in the input/output pane. Then,
the commandawd prints the current working directory. The commasdists files and directories in the
current working directory. Options of a command can alsorogiged. For example, the commalsican
invoked in the form of

s -F

to list directories with a forward slash at the end.
To use a command with a complete path which containing a vepiéee, the path needs to be placed
inside a pair of double quotation marks, as shown below.

> "C:/Docunents and Settings/Adm nistrator/c99/hello.c"

How to execute /C/Ch/C++ programs with command line argusmisrdescribed in sectidn 2.5.

40

7 QUICK ANIMATION

&1 hello.c - ChIDE - Professional Edition - EI|§|

File Edit Search ‘iew Tools Debug Animeate Options Language Buffers Help

iR T - e =R e Sl W C: Chidemosichdemos| -|
| otat $oorinie @pbot “Estep Ehent &lp SDown BBresk MClear | $2Rarse BPRun @stop
1hello.c|

1l -/* File: hello.c a

2 Print 'Hello, world' on the screen. */

3 #include <stdio.h>

4

5 int main()

.

i printf ("Hello, world\n") ;

g return 0;

9 }

10 o

1] | il

hello.c

»ch -u hello.c
Hello, world
*»Exit code: O
pwd

>pwd
C:/Ch/demos/chdemos
*Exit code: O
1g:cF

yls: =
datazD.ch
debug.c*
funczZD.ch
hello.c*
hello.ch
vibration.cpp
>Exit code: O

|
l |

=1 co=1 INS (LF)

N E

Figure 34: Executing commands inside the input/output pane

7 Quick Animation

Ch can be used for quick animation usifimickAnimation™. It can also be used to display various
objects based on specified x-y coordinate dafmickAnimation™ is especially suitable for animation
of two-dimensional mechanical systems. Detailed infoifomaaboutQuickAnimation™ can be found
QuickAnimation User’'s Guidavailable inCHHOVE/ docs/ gani mat e. pdf .

A QuickAnimation file with the file extensiongnmcan be edited in ChIDE with syntqax highlighting,
as shown in Figuré_35 for the QuickAnimation fité r cl es. gnm The animation forci rcl es. gnm
can be created by clicking the commaAdi mat e- >gani mate (Aninmate a qnmfile) or the
function key F10, as shown in Figurel35. Figlré 36 shows aithfrs for the animation.

A Ch program can be written to generate the standard outpheiQuickAnimation format, using the
standard C functions such psntf() . The standard output can be sent to the QuickAnimation progan-
imate directly by clicking the commanéni mat e- >Qut put t o gani mat e or the function key F11,
as shown in Figuré_37 for running the progr&8AiHOVE/ denps/ gani mat e/ smi | eyf aceani m c.
Figure[38 shows a snapshot of the generated animation.

41

8 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

& circles.qnm - ChIDE - Professional Edition -|o|x]
File Edit Search View Tools Debug | Animate Cptions Language Buffers Help
RN = A= S WAl o®d oonimate (Animate a ~|
| Fotat $oortinue ®ibort Eoen [F] Oubpul fo genimate 1 E0arce P RLA BS
1 circles.gnm I
ganimate vl 1 # File: circles.qnm -
Diirectories and Files 2 # (1) Run this program in ChIDE by clicking Animate
=] = # (2) Run this program in a Ch command shell by typi
@én‘cles qam 4 # (3) Run this program in a command shell by typing
©sample.qrm 5 title "This is a Title"”
C vibrationc : ;
t# yibration cpp jg ooimate ;
Ch vibration? ch 8 circle 22 16 2 pen red fill blue
C vibration3.c 4 circle 24 16 2 pen red fill blue
Cvibration_f)osc 10 circle 26 16 2 pen red fill blue
) Ll circle 27 16 2 pen red fill blue
1z circle 28 16 2 pen red fill blue R
155 circle 30 16 2 pen red fill blue -
an
4| LA KN | _'I__|
circles.gnm @ 2011-11-21 - 18:34:50 | 7

Figure 35: Executing a QuickAnimation fi@rcles.gnm

I This is a Title

N=F

File MNext Previous All Go Stop Fast Slow

Figure 36: The output from executing the QuickAnimation filkeles.qnmin Figure[35.
8 Compiling and Linking C/C++ Programs in ChIDE

ChIDE can also compile and link an edited C/C++ program ingtiéing pane using C and C++ compil-
ers, then execute the created binary executable prograndefwlt, the ChIDE is configured during the
installation to use the latest Microsoft Visual Studio .NiB$talled in your Windows to compile C and C++
programs. The environment variables and commands for theaV/Studio compiler can be modified in the
individual startup configuration filechrc in the user's home directory, which can be opened for edéing

shown in Figuré 33. In Linux and Mac OS X x86, ChIDE uses coatpilGNU gcc and g++ to compile C

and C++ programs, respectively. The default compiler cachlaaged by modifying the C/Ch/C++ property
file cpp. properti es which can be opened by the commadgt i ons- >cpp. properti es.

The commandrool s- >Conpi | e as shown in Figuré_39 can be used to compile a program. The
output and error messages for compiling a C or C++ prograndiapdayed in the input/output pane of the
ChIDE. In Windows, compiling a program will create an objét# with file extension .obj. The object
file can be linked using the comman@ol s- >Li nk to create an executable program. The executable in
Windows has file extension .exe.

If a make file makefile or Makefile is available in the currentdiory, the commandiool s- >Bui | d
will invoke the make file to build an application. A make filencalso be invoked by right clicking the file
name on the file tab, then clicking the commarek e in Linux or Mac and the commanudake or nmake
in Windows as shown in Figufe 40.

When ChIDE is used to edit a make file, the syntax will be higftied. Because the tab character is
reserved as a special character to begin a command for sokeeaommand, it will be preserved and not
replaced with white spaces. A file with the file extensiarak or with the following file name is recognized

42

8 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

& smileyfaceanim.c * ChIDE - Professional Edition L E||ﬂ
File Edit Search Wiew Tools Debug [Animate Options Language Buffers Help
Dedbia|samXe @80 geimate (Anlmate agnm file) FLo | ~|
| Tstat Foortine @b Ssten G ESEeliefa Rl ZParse PRun @5tcp
1line2.ch 2 smileyfaceanim.c *|
qanimate ~[] 12 #include <stdio.h> B
Directories and Files 15 #include <math.h>
EO
Scircles qhum 17 -int main() |
© sample.qnm 18 double t, t0 = 0.0 , tf = 9;
C smileyface snapshot.c 19 . . .
€ srrirlevfaceanin ¢ 20 /* A comment line starting with # */
Coritratione S printf("# ganimate data for smiley face\n");
Cvibration. cpp 22 /* The title displayed on the animation */
h vibration? ch i) printf("title \"Smiley Face\"\n") ;
C vibration3 ¢ 24 printf ("fixture\n") ;
C vibration pos.c 25 /* The primitives following fixture */
26 printf("circle %f %f %f fill blue \n", -0.4, 0.4, 0.2);
o printf("circle %f %f %f £ill blue \n", 0.4, 0.4, 0.2);
28 printf(Tarc %f %f %f 3f %f ¥f f£ill blue \n",
29 0.0, -0.2, 1.0, 1.0, 179.5 , 180.0);
30 printf("circle %f %f %f fill yellow \n", 0.0, 0.0, 1.0);
31 printf(Tanimate reverse\n");
32
33 for(t = t0; t<tf; t += 1)
S - {
35 printf(rarc %f %f 3f %f %f %f fill white \n",
36 0.0, -0.2, t*0.1, 1.0, 179.5 , 180.0);
a7 }
38 return 0; £
349 1 -
4 |l | »
output to ganimate.
‘| | 2]
Mowis: Date=2011-12-29 Time=18:21:03 4

Figure 37: Executing a program with the standard outpub(g)dsent to QuickAnimation.

B Smiley Face

File Mext Previous All Go Stop Fast Slow

Figure 38: The output from executing the programileyfaceanim.i Figure[3T.

43

8 COMPILING AND LINKING C/C++ PROGRAMS IN CHIDE

-lolx

#|

ak WClesr | $EParse PRun Woton

&1 hello.c - ChIDE - Professional Edition
File Edit Search View | Tools Debug Animate Options Language Buffers Help
D@ 3| & =28 Pase

| Totart $ioninue @4 Run F2
1 hello.c |

chdemos j
Directories and Files

[=1

Ch data2D.ch

€ debug c Shop Executing

Gh func2D ch -

C hello.c Inclent cirl+0
Chhello.ch
hello.obj Command Line Arguments

B+ vibration cpp

bn the screen. */

n")

Next Error Message F4

Previous Error Message Shift+F4
- - .]

»ch cl -D USE_MATH DEFINES -D CRT SECURE NO DEPRECATE /EHsc -c hello.c
Microsoft (R} 32-bit C/C++ Optimizing Compiler Version 14.00.50727.762 for BOxBA
Copyright (C) Microsoft Corporation. All rights reserved.

hello.c
*Exit code: O

4] |
li=1 co=1 INS (LF)

N E

Figure 39: Compiling a C/C++ program.

B% Makefile - ChIDE - Professional Edition . - El|ﬂ
File Edit Search ‘iew Tools Debug Animeate Options Language Buffers Help
iR T - R e RNl C: Chidemosibin] -|

| Fotat Foorine @pAbot Esep Gt Sl S=hown W8reak clear | $22arze P RUn Bcton
1 Makafila |

bin Close - 1 # An example Makefile for Windows a
Dire Save P g # type command "nmake' in a Ch shell to build commar

E'"d Save As 4

Bcderr ;
Tlake 5 cc= ch cl

B REA G LK = ch cl

Charge Print 7 INC=-IC:/Ch/extern/include

Ch cderno .B CELAG=

C commandarg.c 13 LELRGS

t# data?DCurve. cpp

C debug = 11 target: hello.exe

7 i R RN

4 I P|

rnmake —-f Makefile

)P

Microsoft (R) Program Maintenance Utility Version 8.00.50727.762
Copyright (C) Microsoft Corporation. All rights reserwved.

ch ¢l -IC:/Ch/extern/include hello.c -o /Fohello.obj
Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 14.00.50727.762 for B0x8 w
4| | »
li=5 co=10 INS (LF)

RN

Figure 40: Using a makefile to compile a C/C++ program.

44

10 LOCAL LANGUAGES SUPPORTED IN CHIDE

as a make file in ChIDE:;

makefil e

makefile.wn
makefile win
makefile. Wn
makefile Wn
Makefile

Makefile.w n
Makefile w n
Makefile. Wn
Makefile Wn

The commandool s- >Go will execute the developed executable program.

9 Other Computer Languages Understood by ChIDE

ChIDE is a general-purpose text editor. It currently is dablsyntax highlighting the following languages.

C/Ch/C++*
CSs*

HTML*

Make

SQL and PLSQL
TeX and LaTeX
XML*

If the symbol *’ is attached to a language, it denotes that the folding asideddn sectio 315 is supported
for the language.

Language settings are determined from the file extensiomhizitan be changed by selecting another
language from théanguage menu.

10 Local Languages Supported in ChIDE

When Ch is installed in a platform in a language differentrfrEnglish, the menus and dialogs of ChIDE
will be in its local language. By default, ChIDE supports mtian 30 local languages as follows:
Afrikaans, Aribic, Basque, Brazilian Portuguese, BulgariCatalan, Chinese Simplified, Chinese Tra-
ditional, Czech, Danish, Dutch, French, Galician, Gernanreek, Hungarian, Indonesian, Italian, Japanese,
Korean, Malaysian, Norwegian, Polish, Romanian, PortaguRussian, Serbian, Slovenian, Spanish, Span-
ish (Mexican), Swedish, Thai, Turkish, Ukrainian, and Wels
A new local language can also be easily supported.

45

Index

.chrc[33
_chrc[33
_fpath[38
_ipath,[3%
_path[3334

abbreviationd, 17
animation[4iL

buffers[21

cd,[31
ChIDE,d
chide[31
chmod[35
chrc[33
command shell_30
commandg, 40
compile[42
Compile and Link Commands
Build,[42
Compile[42
Go,[42
Link, 42
copyright[J
cp,[31
CSS[4b

Debug Command
Watch[2Y

Debug Commands
Abort,[22
Continue[21L
Down,[22
Next,[21[22
Parsel b
Run[5
Start[21
Step[21(2P
Stop[%
Up,[22

Debug Commands inside Debug Command Pane

abort[29
assign[24
call,[24
clear[29
clearfunc[2P
clearline[29
clearvar[2P
cont[26
down[Z26
expr[24

help[2%
locals[26
next[26
print,[24
remove[20, 27
remove expi,_ 26
run,[25
stack[26
start[2h
step[26
stopat[2V
stopin[27
stopvar 2
up,[26
variables[2b
watch[26
Debug Console WindoW, 29
Debug Pane
Breakpoints, 22
Locals[22
Stack[2B
Variables[2B

debugging, 211

edit,[12
Embedded Cif]1

find,[18
folding,[18
font size[16
function

function files[38
function keys[_1b

homework[1}
HTML,
html,[43

IDE,
Input/Output Panég] 7
input/output pané, 40

Integrated Development Environmét, 1

keyboard commands, 116

languages
CSS[4b
HTML,
htm!,[43
LaTeX,[45
Make [4%
PLSQL[45

46

INDEX

SQL,[45

Tex,[45

XML,
LaTeX,[45
link, 42
Is,[31

Make [4%
Makefile [42
makefile[4P
mkdir,[31

Output[T
PLSQL[4%

prompt[30
pwd,[31

quick animation 41
QuickAnimation[41

remvar[39
replace[Ib
rm,[31

sessiong, 21
SQL,[45
stradd()[(3B_ 34

Tex,[45

Unix Commands

cd,[31
cp,[31
Is,[31
mkdir,[31
pwd,[31
rm,[31
rmdir,[31

XML,

47

INDEX

	Introduction
	Executing C/Ch/C++ Programs in ChIDE
	Getting Started
	Editing and Executing C/Ch/C++ Programs
	Editing C/Ch/C++ Program Source Code
	Running C/Ch/C++ Programs and Stop Their Execution
	Output from Execution of Programs
	Detecting Program Syntax Errors

	Executing C/Ch/C++ Programs with the User Input
	Executing C/Ch/C++ Programs with Plotting
	Executing C/Ch/C++ Programs with Command Line Arguments
	Indenting C/Ch/C++ Programs

	Editing in ChIDE
	Browsing Files
	Edit
	Find and Replace
	Changing Font Size
	Folding
	Keyboard Commands
	Abbreviations
	Buffers
	Sessions

	Debugging C/Ch/C++ Programs in ChIDE
	Executing Programs in Debug Mode
	Setting and Clearing Breakpoints
	Monitoring Local Variables and Their Values in the Debug Pane
	Monitoring Variables in Different Stacks and Their Values in the Debug Pane
	Using Debug Commands in the Debug Command Pane
	Using the Debug Console Window for Input and Output

	Getting Started with Ch Command Shell
	Portable Commands for Handling Files
	Setup Search Paths for Commands, Header Files, and Function Files in Ch
	Interactive Execution of C/Ch/C++ Programs
	Interactive Execution of C/Ch/C++ Expressions and Statements
	Interactive Execution of C/Ch/C++ Functions
	Interactive Execution of C++ Features

	Interactive Execution of Commands in the Input/Output Pane
	Quick Animation
	Compiling and Linking C/C++ Programs in ChIDE
	Other Computer Languages Understood by ChIDE
	Local Languages Supported in ChIDE
	Index

