
EDF R&D

Fluid Dynamics, Power Generation and Environment Department
Single Phase Thermal-Hydraulics Group

6, quai Watier
F-78401 Chatou Cedex

Tel: 33 1 30 87 75 40
Fax: 33 1 30 87 79 16 JULY 2016

Code Saturne documentation

Code Saturne version 2.0.8 developer’s guide

contact: saturne-support@edf.fr

http://www.code-saturne.org/ c© EDF 2016

EDF R&D Code Saturne version 2.0.8 developer’s guide
Code Saturne

documentation
Page 2/6

TABLE OF CONTENTS

1 Coding style guidelines . 3

1.1 Master rule . 3

1.2 C coding style . 3

1.2.1 Punctuation . 3

1.2.2 General rules . 3

1.2.3 Language . 4

1.2.4 Assertions . 4

1.3 Naming conventions . 5

1.3.1 Naming of enumerations . 5

1.3.2 Naming of structures and associated functions . 5

1.3.3 Integer types . 5

1.4 Base functions and types . 6

1.5 Internationalization . 6

EDF R&D Code Saturne version 2.0.8 developer’s guide
Code Saturne

documentation
Page 3/6

1 Coding style guidelines

1.1 Master rule

Keep the style consistent !

This rule should be observed above all others. The coding style in Code Saturne has evolved over the
years, but unless you are ready to update a whole file to a more current style (in which case the other
guidelines should be followed), try to remain consistent with the style in the current file.

1.2 C coding style

1.2.1 Punctuation

Except when adding additional white space to align similar definitions or arguments on several lines,
standard English punctuation rules should be followed:

• no white space before a punctuation mark (, ; .), one white space after a punctuation mark.

• white space before an opening parenthesis, no white space after an opening parenthesis.

• no white space before a closing parenthesis, white-space after a closing parenthesis.

1.2.2 General rules

The following presentation rules are strongly recommended:

• indentation step: 2 characters (4 characters in cs gui * files). When saving files, use spaces,
not tabs. Most importantly, use a decent text editor that does not randomly mix spaces and
tabs. Code Saturne has a sbin/rmb script which removes trailing white-space and replaces tabs
with spaces, but this may appear to damage indentation when it was defined with an odd mix
of spaces and tabs.

• 80 characters maximum line length; split lines longer than this to ensure readability on small
screens, or when viewing code side-by-side on wider screens.

• always use lowercase characters for instructions and identifiers, except for enumerations and
macros which should be in uppercase.

The following coding rules are strongly recommended:

• header (.h) files should have a mechanism to prevent multiple inclusions;

• all macro parameters must be enclosed inside parentheses;

• a function’s return type must always be defined.

• variables should be initialized before use (pointers are set to NULL). A good compiler should
issue warnings when this is not the case, and those warnings must be acted upon;

• when a structure definition is only needed in a single file, it is preferred to define it directly in the
C source file, so as to make as little visible as possible in the matching header file. structures only
used through pointers may be made opaque in this manner, which ensures that their possible
future modification should not have unexpected side-effects.

• When a public function is defined in a C source file, a matching header file containing its prototype
must be included.

EDF R&D Code Saturne version 2.0.8 developer’s guide
Code Saturne

documentation
Page 4/6

• usage of global variables must be kept to a minimum, though such variables may be useful to
maintain state or references to mesh or variable structures in C code callable by Fortran code. If
a global variable is only needed inside a single file, it should be declared “static”. It it is needed
in other files, then it must instead be declared “extern” in the matching header file.

• a const type must not be cast into a non-const type;

• every switch construct should have a default clause (which may reduce to assert(0) to check

code paths in debug mode, but at least this much must be ensured);

• a const attribute should be used when an array or structure is not modified. Recall that for
example const cs mesh t *m means that the contents of mesh structure m are not modified by
the function, while cs mesh t *const m only means that the pointer to m is not modified; const
cs mesh t *const m means both, but its usage in a function prototype gives no additional useful
information on the function’s side effects than the first form (const cs mesh t *m), so that form
is preferred, as it does not clutter the code;

• when an array is passed to a function, describing it as array[] is preferred to *array, as the
array nature of the argument is better conveyed.

• where both a macro or an enumerated constant could be used, an enumeration is preferred, as
values will appear with the enumerated value’s name under a debugger, while only a macro’s
expanded value will appear. An additional advantage of enumerated values is that a compiler
may issue a warning when a switch construct has no case for a given enumeration value.

1.2.3 Language

ANSI C 1989 is assumed, so C99-specific constructs should be avoided (especially C++-style comments
and variable declarations mixed with source code). An exception is the use of long long, which is
available in all C89 compilers tested, and which is needed in some places.

Also, the build mechanism ensure that when some usual C99 types or keywords are not available,
macros are available to simulate their use, so restrict, Bool, int32 t, and int64 t can and should
be used.

1.2.4 Assertions

Assertions are conditions which must always be verified. Several expanded macro libraries may be
available, but a standard C language assertion has the following properties:

• it is only compiled in debug mode (and so incur no run-time performance penalty in production
code, where the NDEBUG macro is defined);

• when its predicate are not verified, it causes a core dump; when running under a debugger, the
code is stopped inside the assertion, but does not exit, which simplifies debugging.

Assertions are thus very useful to ensure that conditions which are always expected (and not dependent
on program input) are met. They also make code more readable, in the sense that it is made clear
that conditions checked by an assertion are always expected, and that not handling other cases is not
an programming error or omission.

If a condition may not be met for some program inputs, and not just in case of programmer error, a
more complete test and call to an error handler (such as bft error) is preferred.

EDF R&D Code Saturne version 2.0.8 developer’s guide
Code Saturne

documentation
Page 5/6

1.3 Naming conventions

The following rules should be followed:

• identifier lengths should not exceed 31 characters (ANSI C89);

• identifier names are in lowercase, except for macro or enumeration definitions, which are in upper-
case; words in an identifier are separated by an underscore character (for example, n_elt_groups_).

• global identifier names are prefixed by the matching library prefix, such as cs_ or BFT_;

• local identifiers should be prefixed by an underscore character.

• Index arrays used with 0 to n− 1 numbering should be named using a idx_ or index_ prefix or
suffix, while similar arrays using a 0 to n− 1 numbering (usually those that may be also used in
Fortran code) should be named using a pos_ prefix or suffix.

1.3.1 Naming of enumerations

The following form is preferred for enumerations:

typedef myclass { CS_MYCLASS_ENUM1,

CS_MYCLASS_ENUM2,

/ ∗ etc. ∗ /
} cs_myclass_t;

1.3.2 Naming of structures and associated functions

Macros and enumerations related to myclass structures are prefixed by CS_MYCLASS_.

Public functions implementing methods are named cs class method , while private functions are sim-
ply named: class method and are declared static.

Files containing these functions are named class.c.

1.3.3 Integer types

Several integer types are found in Code Saturne:

• fvm lnum t should be used for local entity (i.e. vertex, face, cell) numbers or connectivity. It is
a signed integer, normally identical to int, but a larger size could be used in the future for very
large meshes on shared memory machines.

• fvm gnum t should be used for global entity numbers, usually necessary only for I/O aspects.
It is an unsigned 32 or 64-bit integer, depending on whether the code was configured with the
--enable-long-gnum option. Global numbers should always use this type, as for very large
meshes, they may exceed the maximum size of a 32-bit integer (2 147 483 648). The choice of
unsigned integers is two-fold: it doubles the range of available values, and good compilers will
issue warnings when this type is mixed without precaution with the usual integer types. These
warnings should be heeded, as they may avoid many hours of debugging.

• cs int t should be used for integer variables or arrays passed between C and Fortran, though
using integer(kind) statements in Fortran should be a better future solution. In practice,
cs int t and fvm lnum t are identical. The former is more commonly found in older code, but
the latter should be used where applicable for better clarity.

• in all other cases, the standard C types int and size t should be preferred (for example for
loops over variables, probes, or any entity independent of mesh size.

EDF R&D Code Saturne version 2.0.8 developer’s guide
Code Saturne

documentation
Page 6/6

1.4 Base functions and types

In the Code Saturne kernel, it is preferable to use base functions provided by the BFT subsystem to the
usual C functions, as those logging, exit and error-handling functions will work correctly when running
in parallel, and the memory management macros ensure return value checking and allow additional
logging.

The array below summarizes the replacements for usual functions:

C function Code Saturne macro or function Header
exit() cs_exit() cs_base.h

bft_error() bft_error.h

printf() bft_printf() bft_printf.h

malloc(BFT_MALLOC() bft_mem.h

realloc() BFT_REALLOC() bft_mem.h

free() BFT_FREE() bft_mem.h

1.5 Internationalization

Internationalization of messages uses the gettext() mechanism. Messages should always be defined
in US English in the source code (which avoids using extended characters and the accompanying text
encoding issues in source code), and a French translation is defined and maintained using a translation
file po/fr.po. Translations to other languages are of course possible, and only require a volunteer.

Using the gettext() mechanism has several advantages:

• accented or otherwise extended characters appear normally whether using a Latin-1 (or Latin-
9 or Latin-15) environment or whether using a “Unicode” (or generally UTF-8) environment
(assuming that a terminal’s encoding matches that of the LANG environment variable, usually
LANG=fr FR or LANG=fr FR.UTF-8 for French;

• if a message is not translated, it simply appears in its untranslated version;

• maintenance of the translations only requires editing a single file, gettext related tools also make
it easy to check that translations are consistent (i.e. matching format descriptors or line returns)
without requiring complete code coverage tests. In fact, translations could be maintained by a
non-programmer.

• internationalization may be disabled using the --disable-nls configure option, so possible com-
fort vs. speed trade-offs may be decided by the user;

To make internationalization possible, translatable strings should be encased in a () macro (actually
an abbreviation for a call to gettext() if available, which reverts to an empty (identity) macro is
internationalization is unavailable or disabled). Strings assigned to variables must be encased in a N (

) macro (which is an “empty” macro, used by the gettext toolchain to determine that those strings
should appear in the translation dictionary), and the variable to which such a string is assigned should
be encased in the () macro where used.

Note that with UTF-8 type character strings, accented or otherwise extended characters are represented
on multiple bytes. The strlen() C function will return the string’s real size, which may be greater
than the number of output columns it uses. In the preprocessor, the ecs print padded str() may
be used to print such a string and padding it with the correct number of white spaces so as to meet a
given format width. No such function is used or currently needed in the main code, though it could
be added if needed.

	Flyleaf
	Table of contents
	Coding style guidelines
	Master rule
	C coding style
	Punctuation
	General rules
	Language
	Assertions

	Naming conventions
	Naming of enumerations
	Naming of structures and associated functions
	Integer types

	Base functions and types
	Internationalization

