Oracle Berkeley DB

Getting Started with
Berkeley DB
for Java

Release 4.7

ORACLE
BERKELEY DR

Legal Notice

This documentation is distributed under an open source license. You may review the terms of this license at:
http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html

Oracle, Berkeley DB, and Sleepycat are trademarks or registered trademarks of Oracle. All rights to these marks
are reserved. No third-party use is permitted without the express prior written consent of Oracle.

Java™ and all Java-based marks are a trademark or registered trademark of Sun Microsystems, Inc, in the United
States and other countries.

To obtain a copy of this document's original source code, please submit a request to the Oracle Technology
Network forum at: http://forums.oracle.com/forums/forum.jspa?forum|D=271

Published 4/25/2008

http://www.oracle.com/technology/software/products/berkeley-db/htdocs/oslicense.html
http://forums.oracle.com/forums/forum.jspa?forumID=271

Table of Contents

o 1 =T ol \%
Conventions Used in this BOOKcccviiiiiiiiiiiiiiiiiiiiiiiiii i eeenereeeernns \%
For More Informationee.eeieeeiiii i e rerereneeeeneerannnenans vi

1. Introduction to Berkeley DBuveiiiiiiiiiiiiiiiiiteeieeinineeeeeeennneeeeecennnnnaeens 1
ADBOUL THhis MaNUAL «..vennet it e e e e e e erenaeeeenaesaannesannes 2
Berkeley DB CONCEPLS tivviinetetiiaiiieeetereeiieeeeeesennneeeeesessnassesesensnsessssanns 2
o Yo o 0 0= 2
KEY-Data Pairs .uveeeiieiiiettiieiiiieeeteeeiiieeeeeeeesraneeeesessnnaseessssnnnnsaeens 3

N el gl 1= D | - E PP 4
Storing Data in the DPLviiiiiiiiiiii it iiii e eeeiraeeeeeas 4

Storing Data using the Base APlciiiiiiiiiiiiiiiiiiiiieiiiiiieeeeannnnns 5

[D]U]o] N ot- 1 (=IN D- | - L PP PP PP 5
Replacing and Deleting ENtries ..ovieieiieeieiiiiiiieetieiiiieeeeeenineeeeeaannns 5
SECONAANY KBYS . uureittieiiiitttieeeiiteeeeeeeanaeeeeesesnnseeeesessnseeessesnnnnneens 6
Using Secondaries with the DPLcciiiiiiiiiiiiiiiiiiieeineiiinneeennnns 6

Using Secondaries with the Base APlcciiiiiiiiiiiiiiiiiiiiiieiiinnneens 6

Which AP Should YOU USE7unueiiietiieitereiteeenereeaerennreeeneeeaaneanns 7
ACCESS METNOAS ..eveieiiii e e et er s e e e e ranas 7
Selecting Access Methods ...cvveiiiiiiiiiiiiiiiiiii it ieeeiieeeeeeennnnaees 8
Choosing between BTree and Hashc.c.evviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeennnns 8
Choosing between Queue and RECNOuvveiiiiiiiiiieiiiniiiieeeeeeennnneeeenns 9
Database Limits and Portabilityceeieiiiieiiiiiiiiiiiiiiiiiiiiii i eenenaans 9
EXCeption Handlingeeiiiiiiiiiiiiiiiiiitetieiiieeeeeeeeieeeeeeesnsnnsseecasnnnnes 10
o g = U L PP 10
Getting and USING DB ..uuuiiiiiiiiiiiitteeeiiieeeeeeeanneeeeeessnnneessssennnaseeeanns 11
2. Database ENVIrONMENTS «..veenieiiiereiteeeieeeeeereeterenaeeeenaeseannesaannasenanens 12
Opening Database ENVIrONMENTS ...uviiiiiiiieeeeieriiieeeeeeeeirneeeeeeennnneneeceenns 12
Closing Database EnvironmMeENTS ..ciieeiiieiiiiiiiieeeereeiieeeeeeeenneeeesesennnneees 13
ENVIronment Properties ..ueeeeeeeereeeiieeieiieeeeeeeeeeereeeseesessesssesseessasassaannnns 14
The EnvironmentConfig Class ..cvveeeeiiiiiiierieiriiiieeeeereennneeeeeesennaneees 14
EnvironmentMutableConfig ...ueiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeiiieeeeeanannnes 15

I. Programming with the Direct Persistence Layerueeiiiiiieiiiiiiiieneeenennneeeenns 17
3. Direct Persistence Layer First STEPS «iviiviieiiiiiiiiiiiiiiiieeeeeeennneeeeeanns 18
1 0 1Y) Vo] (= P PP 18
Opening and Closing Environments and Storescccevvvviinnnennnnn. 19

Persistent ODJECtS tiviiiiiiiiiiiiiii ittt eeiiieeeeeeenrnneeeeraannnanaens 20
Saving @ Retrieving Data ..vvvvviiieriiiiiiiiieiiiiiiiiteeeeeeiieeeeeeeennnneneens 22

4. WOrking With INdiCeS «eviiiieiiiiiiiiiiiiiieiiiteeeeeiieeeeeeesnnneeessesnnnnneees 23
ACCESSING INAEXES +enetttiiiiiiiieteieiiiiteeeeeenineeseeeesenneeeseeesnnnneeenns 23
Accessing Primary INAiCeS .ovvviiieiiiiiiiiiiiiiiiiiiiieeereeninaeeeeannnns 23

Accessing Secondary INAICES cocvuueiiiiiiiiiiiiiiiiiieeereeiiineeeannnns 23

Creating INAEXES tuuuueeetiiiiiiiitetteeiiieeeeeeeaieeeeeeeessnneeeeesennnnessssanns 24
Declaring @ Primary INAeXeSvvieiiiieiiiiiiiiiieeeeeeeiinneeeeeennnnnnes 24

Declaring Secondary INAeXESuueeiiiiiiieeieereiiineeeeeeneneeeeeananns 25

Foreign Key CoNStraints ...ueeeeeeeiieeeeeeeeiineeeeeeennneeeeesennnseeeeeanns 26

5. Saving and Retrieving ObJECLS ...uviiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeiieeeeeaannns 28

4/25/2008 Getting Started with DB Page ii

A SIMPle ENTity Class teueeeeeeerereeereneternieerenneerereeeesneeeesaeeesnnsesanaees 28

Y1010 (51 7 Wl - 1 PP 29
Placing Objects in an Entity StOrecvvieiiiiiiiiiiiiiiiiiiieieeeneeenneenns 30
Retrieving Objects from an Entity Storecooveiiviiiiiiiiiiiiiiiniieennnnnns 33
Retrieving MUltiple ObJeCtS ..uvieueiriieiiiiiieiiiieiieeeieeeiieeeenneeaannees 35
Cursor INTHAliZAtioN ...eeveiiiiiiiiiii i 36

Working with Duplicate Keyscceviiiieiiiiiiiiiiiiiiiieenineerenneeanns 36

KEY RANGES . .ueeiiiiiiiiiittiieiiiieteeeeeiaeeeeeeearnneeesseasnnsesseennes 38

o) [T o) T 38
Deleting Entity ODJeCtS vivvrueiiiiiiiiiiiiiiiiteeeieeeeneeeenneeaeneeeanneens 40
Replacing ENtity ObJECES .uviieiutiriietieiitieieeeenteeeneeeeeneeeenneeesnneennn 40

6. A DPL EXAGMPLE 1utiiiintiiiietieeietteieteenueeeenaeeesnaeeesneeessneeessnesesnnsssnnnens 42
JVZ=] g Te o] g ol b= T PP 42
INVENTONY.CLASS tuuvtieenetteintteeieteeeeteeneeeenneeeeneeeanneesesneeesnnneesnneenns 44
MYDDENV L ettiiiititiiteiteeteeeieteeeeeeeaneerenaeeeaneeeesneeeenneesenneeennes 46

D 1R=Y Vel ol 1o ol - 1 N 48
ExampleDatabasePut.Classceevueereieeiriieeeriiieiieeeiieeenieeeenneeeennees 49
ExamplelnventoryRead.Classeieeeeeeieteerieteerieeeenneeeeineeeeneeeenneeenns 54

[I. Programming with the Base APleiiiieiiiiiiiiiiiiiiiiiieeieeienaeenaneeeannens 58
R D= L= o= T 59
OpeNiNgG Databases vieeueeeeeueeieineeenieteenieeeeeeeeenneeesnneeeerasessneeesnneens 59
CLlOSING DAtabaSses t.uuvereneeienneerenneeraneeeerneeeenneerenneeesneeeesnessenneeennes 60
Database Propertiesuieeieeieeieeeeiieeeeieeeeieeeeeneeeesieeessneeessneeesnnees 61
Administrative Methodsccoviiiiiiiiiiiiiiiiiii e 62
Error Reporting FUNCLIONS ...uviiieititiiiiiiieerieeiieterreennnneesseannnnnes 63
Managing Databases in EnVironmentscoveeeeiieiiiieieiieienieeennneeennness 64
Database EXamPLle ..ueeuiiiiiiieiiieiieeiieeieeeeneeeeaneeeaneeeanaeeaenneen 66

8. Database RECOIAS ...uviuiiiniiiiiiiiiiiii ittt ettt eenteenteeneeenneans 69
Using Database RECOIdSievueiiieiiiieiiiitiriietieiieeeenneeeenaeeesneeeanns 69
Reading and Writing Database Recordscceveviieiiuiiniineennneennnnennn 70
Writing Records to the Databasecccvvveiiiiiiiiiiiiiiiiininennnnen. 71

Getting Records from the Databasecceevevieiiieiiiiiieinennnnnnn. 72

Deleting RECOIAS viivutiiiittieiietieiteeeiteeeneeeeeneeeenneeesnneeeanaeenns 73

Data PersistenCeivviuiiiiiiiiiiiiiiiiiiiiiii i e 74

USiNg the BIND APIS ...uueneiniiniiiiiietetereraeereeneententeneeneenerneennenans 75
Numerical and String ObjJectsviveiriiiiiiiiiiiiiiiii i ceeieeeeees 75
Serializable Complex ObJects .icviiiieiiiiiiiiiiiiieieiireieeaeneens 77

USAge CaVealS .vviiiiiiintetiiiiiineetrienianeeeseennnnneessecsnnnnenss 78

Serializing ObJeCES ..viieiriiiiiiiii e eeieeeeneeaans 78

Deserializing ObjJeCtS ...uvvieiiiiieiiiiiiiiiiiiiiiieeeieeeneeeannees 81

Custom Tuple Bindings ...eeeueeeiieieiieeieiieeriieeerieeeeieeeesneeenanens 82

Database Usage EXamPLe c..uueieeeeerintieeieteeieeeenneeeeneeeenneeesnneeennnees 85

9. USING CUISOIS . uuettttiieeteteeeeenaneeesseananeesssesansesssessannsessesssnnnessssnnes 97
Opening and CLOSING CUMSOIS ..uuierueererueereneeeenneeeenneeeenaeeesneeeenneeeanns 97
Getting Records Using the CUrsor ...oeveiiiiiiiiiiiiiiiiiiiiniieeieeaenaens 98
Searching for RECOIdS ..ccuviiriniieiiiieiiieiieeriieeeeieeeenneeaanaens 100

Working with Duplicate Recordscceeveieeiiiiieiinninnieeeennneenns 103

Putting Records USiNG CUISOTS ...ueeeeeeeiueeeenueeeeneeeesneeeeseeessneeesnnees 105
Deleting Records USING CUISOTS ...uiieeeiereeereneeereneeeenneeeenaeeesneeeennees 107

4/25/2008 Getting Started with DB Page iii

Replacing Records UsiNg CUISOIS .ivuueeeeueeeeiueeeeieeeesieeeeseeesnneeeannees 108

CUISOr EXAMPLE tiinuttieittieitteeiteeeneteeeeeeenneeeanneeesneeeesneeeennneenns 109
10. Secondary Databaseseeieeeeereietiennetiiitereneeenaeeeenaeeeeneeessneeeanneens 114
Opening and Closing Secondary Databasesccceevvveiiiieiienneennnnnns 114
Implementing Key Creators ...iieieiieeeeereieeereneeeeneeeenneeeeneeeenneeeanns 117
Working with MULEIPLle KEYS ...uviiiiiiiiiiiiiiiiiiiieiieeeieeeeeneenns 120
Secondary Database Propertiesceeeieieeiiieeieieeiieeeeneeeeneeeenneeenns 121
Reading Secondary Databasesceevveieiiiiieiiiiiiiiieeriiieenineeenneenns 121
Deleting Secondary Database ReCOrdsc.evevuvirieiinneiienneeranneennnns 122
UsiNg SeCONdAry CUIMSOIS ..uuiiieteerueerenneereneeeesneeeenneeeonasessnneesnneens 123
Database JOINS ...eueiiiiiiiiiiiiiiiiiii it ee s 124
USING JOTN CUISOIS +eiiienttttreiiiietetteeenanneeeseeasnaneessseesnnneenss 125
JOINCUISOr Properties ...ceveeeririiiiiiiiiiiiiiiiierreennnnneeseeannnns 128
Secondary Database EXample ...ccuveieieiiiiieiiiiieieiteenieeeenneerenneeennns 128
Opening Secondary Databases with MyDbsccccvviiiiiiiiiinninnnes 130
Using Secondary Databases with ExampleDatabaseRead 133

11. Database Configurationceeeeeiieieeieieiieeeeiieeeieeeeieeeeeneeeesneeeennees 137
Setting the Page Size ..ccvuviiiiiiiiiiiiiiiii i eei e it eenaeeaas 137
OVErflOW Pages ..viiiniiiiiiiieiitieiieteeieeeeneeeeeneeeenneeessneeeennens 137

e Tl 1413 V- S PP 138

[O EffiCiONCY teveretiiiieiiiiiiiiieeiteeieeeeneeeeeneeeanneeeenneeeaneens 139
Page Sizing AdVICE ...iiiiuiiiiiiiii it ittt eeeieeeeeeeeanneennn 139
Selecting the Cache SizZe ...civviiiiiiiiiiiii i e e eeeeeas 140
BTree Configurationcciieieiieiriieieiieeniieeeeieeerieeeeaneeessneeeannees 140
Allowing Duplicate ReCOrdsuveereeiriieeeiiieieeieeeeeneeeeeneeennnens 141
Sorted DUPlICATES vivveeiiiiiiiii i eiieiieeieeeeneeeanees 141

Unsorted DUPlICAteS ..ueeeueeiiineiieieeiriieeieieeeenneeenneeennneens 141
Configuring a Database to Support Duplicatesccccevennne. 142

Setting Comparison FUNCLIONS ..ieneneiiiiiiiiiiiiiiiiiiiiiiirreeiieeenns 143
Creating Java Comparatorscceeeeeeiieieiinneeierennnneeeenanns 144

4/25/2008

Getting Started with DB Page iv

Preface

Welcome to Berkeley DB (DB). This document introduces DB, version 4.7. It is intended
to provide a rapid introduction to the DB API set and related concepts. The goal of this
document is to provide you with an efficient mechanism with which you can evaluate DB
against your project's technical requirements. As such, this document is intended for Java
developers and senior software architects who are looking for an in-process data
management solution. No prior experience with Berkeley DB is expected or required.

Conventions Used in this Book

The following typographical conventions are used within in this manual:

Class names are represented in nonospaced font, as are net hod names. For example: "The
Dat abase() constructor returns a Dat abase class object.”

Variable or non-literal text is presented in italics. For example: "Go to your DB_INSTALL
directory."

Program examples are displayed in a nonospaced font on a shaded background. For
example:

i nport com sl eepycat . db. Dat abaseConfi g;

Il Al'low the database to be created.
Dat abaseConfi g nyDbConfig = new Dat abaseConfi g();
myDbConfi g. set Al l owCreate(true);

In some situations, programming examples are updated from one chapter to the next.
When this occurs, the new code is presented in nonospaced bol d font. For example:

i nport com sl eepycat . db. Dat abase;
i nport com sl eepycat . db. Dat abaseConfi g;

I/ Alow the database to be created.

Dat abaseConfi g nyDbConfig = new Dat abaseConfig();
myDbConfi g. set Al | owCreate(true);

Dat abase nyDb = new Dat abase("nydb. db", null, nyDbConfig);

|:| Finally, notes of interest are represented using a note block such as this.

4/25/2008 Getting Started with DB Page v

Conventions Used in this Book

For More Information

Beyond this manual, you may also find the following sources of information useful when
building a DB application:

Getting Started with Transaction Processing for Java
[htip:/ /mwww.orade.com/technology/doaumentation/berkeley-db/db/gsg. o/ JAVA/BerkeleyDB-Core- JAVA-Txn.pf]

Berkeley DB Getting Started with Replicated Applications for Java
[http:/ /mwww.orade.com/technology/doaumentation/berkeley-cb/db/gss. db rep/ JAVA/Replication JAVA GSG.pdf]

Berkeley DB Programmer's Reference Guide
[http://www.oracle.com/technology/documentation/berkeley-db/db/ref/toc.html]

Berkeley DB Javadoc
[http://www.oracle.com/technology/documentation/berkeley-db/db/java/index.html]

Berkeley DB Collections Tutorial
[hitp:/ Awww.arade.com/techndlogy/doaumentation/berkeley-db/db/adllections/tutorial/BerkeleyDB-Java- Collections. pof]

4/25/2008

Getting Started with DB Page vi

http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_txn/JAVA/BerkeleyDB-Core-JAVA-Txn.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/gsg_db_rep/JAVA/Replication_JAVA_GSG.pdf
http://www.oracle.com/technology/documentation/berkeley-db/db/ref/toc.html
http://www.oracle.com/technology/documentation/berkeley-db/db/java/index.html
http://www.oracle.com/technology/documentation/berkeley-db/db/collections/tutorial/BerkeleyDB-Java-Collections.pdf

Chapter 1. Introduction to Berkeley DB

Welcome to Berkeley DB (DB). DB is a general-purpose embedded database engine that
is capable of providing a wealth of data management services. It is designed from the
ground up for high-throughput applications requiring in-process, bullet-proof management
of mission-critical data. DB can gracefully scale from managing a few bytes to terabytes
of data. For the most part, DB is limited only by your system's available physical resources.

You use DB through a series of Java APIs which give you the ability to read and write your
data, manage your database(s), and perform other more advanced activities such as
managing transactions. The Java APIs that you use to interact with DB come in two basic
flavors. The first is a high-level API that allows you to make Java classes persistent. The
second is a lower-level APl which provides additional flexibility when interacting with DB
databases.

|:| For long-time users of DB, the lower-level API is the traditional API that you are probably
accustomed to using.

Because DB is an embedded database engine, it is extremely fast. You compile and link
it into your application in the same way as you would any third-party library. This means
that DB runs in the same process space as does your application, allowing you to avoid

the high cost of interprocess communications incurred by stand-alone database servers.

To further improve performance, DB offers an in-memory cache designed to provide rapid
access to your most frequently used data. Once configured, cache usage is transparent.
It requires very little attention on the part of the application developer.

Beyond raw speed, DB is also extremely configurable. It provides several different ways
of organizing your data in its databases. Known as access methods, each such data

organization mechanism provides different characteristics that are appropriate for different
data management profiles. (Note that this manual focuses almost entirely on the BTree
access method as this is the access method used by the vast majority of DB applications).

To further improve its configurability, DB offers many different subsystems, each of which
can be used to extend DB's capabilities. For example, many applications require
write-protection of their data so as to ensure that data is never left in an inconsistent
state for any reason (such as software bugs or hardware failures). For those applications,
a transaction subsystem can be enabled and used to transactional-protect database writes.

The list of operating systems on which DB is available is too long to detail here. Suffice
to say that it is available on all major commercial operating systems, as well as on many
embedded platforms.

Finally, DB is available in a wealth of programming languages. DB is officially supported
in C, C++, and Java, but the library is also available in many other languages, especially
scripting languages such as Perl and Python.

|:| Before going any further, it is important to mention that DB is not a relational database
(although you could use it to build a relational database). Out of the box, DB does not
provide higher-level features such as triggers, or a high-level query language such as SQL.

4/25/2008 Getting Started with DB Page 1

About This Manual

Instead, DB provides just those minimal APIs required to store and retrieve your data as
efficiently as possible.

About This Manual

This manual introduces DB. As such, this book does not examine intermediate or advanced
features such as threaded library usage or transactional usage. Instead, this manual
provides a step-by-step introduction to DB's basic concepts and library usage.

Specifically, this manual introduces the high-level Java API (the DPL), as well as the "base”
Java API that the DPL relies upon. Regardless of the API set that you choose to use, there
are a series of concepts and APIs that are common across the product. This manual starts
by providing a high-level examination of DB. It then describes the APIs you use regardless
of the API set that you choose to use. It then provides information on using the Direct
Persistence Layer (DPL) API, followed by information on using the more extensive "base”
API.

Examples are given throughout this book that are designed to illustrate APl usage. At the
end of each chapter or section in this book, a complete example is given that is designed
to reinforce the concepts covered in that chapter or section. In addition to being presented
in this book, these final programs are also available in the DB software distribution. You
can find them in

DB I NSTALL/ exanpl es_j ava/ db/ GettingStarted
where DB | NSTALL is the location where you placed your DB distribution.

This book uses the Java programming languages for its examples. Note that versions of
this book exist for the C and C++ languages as well.

Berkeley DB Concepts

Before continuing, it is useful to describe some of the concepts you will encounter when
building a DB application.

The concepts that you will encounter depend upon the actual API that you are using.
Some of these concepts are common to both APIs, and so we present those first. Others
are only interesting if you use the DPL, while others apply only to the base API. We present
each of these in turn.

Environments

Environments are required for applications built using the DPL. They are optional, but
very commonly used, for applications built using the base API. Therefore, it is worthwhile
to begin with them.

An environment is essentially an encapsulation of one or more databases. You open an
environment and then you open databases in that environment. When you do so, the
databases are created/located in a location relative to the environment's home directory.

4/25/2008 Getting Started with DB Page 2

Berkeley DB Concepts

Environments offer a great many features that a stand-alone DB database cannot offer:
» Multi-database files.

It is possible in DB to contain multiple databases in a single physical file on disk. This
is desirable for those application that open more than a few handful of databases.
However, in order to have more than one database contained in a single physical file,
your application must use an environment.

o Multi-thread and multi-process support

When you use an environment, resources such as the in-memory cache and locks can
be shared by all of the databases opened in the environment. The environment allows
you to enable subsystems that are designed to allow multiple threads and/or processes
to access DB databases. For example, you use an environment to enable the concurrent
data store (CDS), the locking subsystem, and/or the shared memory buffer pool.

« Transactional processing

DB offers a transactional subsystem that allows for full ACID-protection of your database
writes. You use environments to enable the transactional subsystem, and then
subsequently to obtain transaction IDs.

» High availability (replication) support

DB offers a replication subsystem that enables single-master database replication with
multiple read-only copies of the replicated data. You use environments to enable and
then manage this subsystem.

o Logging subsystem

DB offers write-ahead logging for applications that want to obtain a high-degree of
recoverability in the face of an application or system crash. Once enabled, the logging
subsystem allows the application to perform two kinds of recovery ("normal” and
"catastrophic”) through the use of the information contained in the log files.

For more information on these topics, see the Berkeley DB Getting Started with Transaction
Processing guide and the Berkeley DB Getting Started with Replicated Applications guide.

Key-Data Pairs

DB stores and retrieves data using key-data pairs. The data portion of this is the data
that you have decided to store in DB for future retrieval. The key is the information that
you want to use to look up your stored data once it has been placed inside a DB database.

For example, if you were building a database that contained employee information, then
the data portion is all of the information that you want to store about the employees:
name, address, phone numbers, physical location, their manager, and so forth.

The key, however, is the way that you look up any given employee. You can have more
than one key if you wish, but every record in your database must have a primary key. If

4/25/2008 Getting Started with DB Page 3

Berkeley DB Concepts

you are using the DPL, then this key must be unique; that is, it must not be used multiple
times in the database. However, if you are using the base API, then this requirement is
relaxed. See Duplicate Data (page 5) for more information.

For example, in the case of an employee database, you would probably use something
like the employee identification number as the primary key as this uniquely identifies a
given employee.

You can optionally also have secondary keys that represent indexes into your database.
These keys do not have to be unique to a given record; in fact, they often are not. For

example, you might set up the employee's manager's name as a secondary key so that it
is easy to locate all the employee’s that work for a given manager.

Storing Data

How you manage your stored information differs significantly, depending on which API
you are using. Both APIs ultimately are doing the same thing, but the DPL hides a lot of
the details from you.

Storing Data in the DPL

The DPL is used to store Java objects in an underlying series of databases. These databases
are accessed using an EntityStore class object.

To use the DPL, you must decorate the classes you want to store with Java annotations
that identify them as either an entity class or a persistent class.

Entity classes are classes that have a primary key, and optionally one or more secondary
keys. That is, these are the classes that you will save and retrieve directly using the DPL.
You identify an entity class using the @ntity java annotation.

Persistent classes are classes used by entity classes. They do not have primary or secondary
indices used for object retrieval. Rather, they are stored or retrieved when an entity
class makes direct use of them. You identify an persistent class using the @er si st ent
java annotation.

The primary key for an object is obtained from one of the class' data members. You
identify which data member to use as the primary key using the @ri mar yKey java
annotation.

Note that all non-transient instance fields of a persistent class, as well as its superclasses
and subclasses, are persistent. Static and transient fields are not persistent. The persistent
fields of a class may be private, package-private (default access), protected or public.

Also, simple Java types, such asjava. |l ang. Stringandjava. util.Date, are automatically
handled as a persistent class when you use them in an entity class; you do not have to do
anything special to cause these simple Java objects to be stored in the EntityStore.

4/25/2008 Getting Started with DB Page 4

Berkeley DB Concepts

Storing Data using the Base API

When you are not using the DPL, both record keys and record data must be byte arrays
and are passed to and returned from DB using Dat abaseEnt ry instances. Dat abaseEntry
only supports storage of Java byte arrays. Complex objects must be marshaled using either
Java serialization, or more efficiently with the bind APIs provided with DB

Database records and byt e array conversion are described in Database Records (page 69).

You store records in a Dat abase by calling one of the put methods on a Dat abase handle.
DB automatically determines the record's proper placement in the database's internal
B-Tree using whatever key and data comparison functions that are available to it.

You can also retrieve, or get, records using the Dat abase handle. Gets are performed by
providing the key (and sometimes also the data) of the record that you want to retrieve.

You can also use cursors for database puts and gets. Cursors are essentially a mechanism
by which you can iterate over the records in the database. Like databases and database
environments, cursors must be opened and closed. Cursors are managed using the Cur sor
class.

Databases are described in Databases (page 59). Cursors are described in Using
Cursors (page 97).

Duplicate Data

If you are using the base API, then at creation time databases can be configured to allow
duplicate data. Remember that DB database records consist of a key/data pair. Duplicate
data, then, occurs when two or more records have identical keys, but different data. By
default, a Dat abase does not allow duplicate data.

If your Dat abase contains duplicate data, then a simple database get based only on a
key returns just the first record that uses that key. To access all duplicate records for
that key, you must use a cursor.

If you are using the DPL, then you can duplicate date using secondary keys, but not by
using the primary key. For more information, see Retrieving Multiple Objects (page 35).

Replacing and Deleting Entries

If you are using the DPL, then replacing a stored entity object simply consists of retrieving
it, updating it, then storing it again. To delete the object, use the del et () method that
is available on either its primary or secondary keys. If you use the del et () method
available on the secondary key, then all objects referenced by that key are also deleted.
See Deleting Entity Objects (page 40) for more information.

If you are using the base API, then how you replace database records depends on whether
duplicate data is allowed in the database.

4/25/2008 Getting Started with DB Page 5

Berkeley DB Concepts

If duplicate data is not allowed in the database, then simply calling Dat abase. put () with
the appropriate key will cause any existing record to be updated with the new data.
Similarly, you can delete a record by providing the appropriate key to the

Dat abase. del et e() method.

If duplicate data is allowed in the database, then you must position a cursor to the record
that you want to update, and then perform the put operation using the cursor.

To delete records using the base API, you can use either Dat abase. del ete() or

Cursor. del ete() . If duplicate data is not allowed in your database, then these two method
behave identically. However, if duplicates are allowed in the database, then

Dat abase. del et e() deletes every record that uses the provided key, while Cur sor. del et e()
deletes just the record at which the cursor is currently positioned.

Secondary Keys

Secondary keys provide an alternative way to locate information stored in DB, beyond
that which is provided by the primary key. Frequently secondary keys refer to more than
one record in the database. In this way, you can find all the cars that are green (if you
are maintaining an automotive database) or all the people with brown eyes (if you are
maintaining a database about people). In other words, secondary keys represent a index
into your data.

How you create and maintain secondary keys differs significantly, depending on whether
you are using the DPL or the base API.

Using Secondaries with the DPL

Under the DPL, you declare a particular field to be a secondary key by using the
@econdar yKey annotation. When you do this, you must declare what kind of an index you
are creating. For example, you can declare a secondary key to be part of a ONE_ TO ONE
index, in which case the key is unique to the object. Or you could declare the key to be
MANY_TO ONE, in which case the key can be used for multiple objects in the data store.

Once you have identified secondary keys for a class, you can access those keys by using
the EntityStore. get Secondaryl ndex() method.

For more information, see Declaring Secondary Indexes (page 25).
Using Secondaries with the Base API.

When you are using the base API, you create and maintain secondary keys using a special
type of a database, called a secondary database. When you are using secondary databases,
the database that holds the data you are indexing is called the primary database.

You create a secondary database by opening it and associating it with an existing primary
database. You must also provide a class that generates the secondary's keys (that is, the
index) from primary records. Whenever a record in the primary database is added or
changed, DB uses this class to determine what the secondary key should be.

4/25/2008 Getting Started with DB Page 6

Access Methods

When a primary record is created, modified, or deleted, DB automatically updates the
secondary database(s) for you as is appropriate for the operation performed on the

primary.

You manage secondary databases using the Secondar yDat abase class. You identify how to
create keys for your secondary databases by supplying an instance of a class that
implements the Secondar yKeyCr eat or interface.

Secondary databases are described in Secondary Databases (page 114).
Which API Should You Use?

Of the two APIs that DB makes available to you, we recommend that you use the DPL if
all you want to do is make classes with a relatively static schema to be persistent.
However, the DPL requires Java 1.5, so if you want to use Java 1.4 then you cannot use
the DPL.

Further, if you are porting an application between the C or C++ versions of DB and the
Java version of this API, then you should not use the DPL as the base API is a much closer
match to the other languages available for use with DB.

Additionally, if your application uses a highly dynamic schema, then the DPL is probably
a poor choice for your application, although the use of Java annotations can make the
DPL work a little better for you in this situation.

Access Methods

While this manual will focus primarily on the BTree access method, it is still useful to
briefly describe all of the access methods that DB makes available.

|:| If you are using the DPL, be aware that it only supports the BTree access method. For that
reason, you can skip this section.

Note that an access method can be selected only when the database is created. Once
selected, actual APl usage is generally identical across all access methods. That is, while
some exceptions exist, mechanically you interact with the library in the same way
regardless of which access method you have selected.

The access method that you should choose is gated first by what you want to use as a
key, and then secondly by the performance that you see for a given access method.

The following are the available access methods:

4/25/2008 Getting Started with DB Page 7

Access Methods

Access Method Description

BTree Data is stored in a sorted, balanced tree structure. Both the
key and the data for BTree records can be arbitrarily complex.
That is, they can contain single values such as an integer or a
string, or complex types such as a structure. Also, although not
the default behavior, it is possible for two records to use keys
that compare as equals. When this occurs, the records are
considered to be duplicates of one another.

Hash Data is stored in an extended linear hash table. Like BTree, the
key and the data used for Hash records can be of arbitrarily
complex data. Also, like BTree, duplicate records are optionally
supported.

Queue Data is stored in a queue as fixed-length records. Each record
uses a logical record number as its key. This access method is
designed for fast inserts at the tail of the queue, and it has a
special operation that deletes and returns a record from the
head of the queue.

This access method is unusual in that it provides record level
locking. This can provide beneficial performance improvements
in applications requiring concurrent access to the queue.

Recno Data is stored in either fixed or variable-length records. Like
Queue, Recno records use logical record numbers as keys.

Selecting Access Methods

To select an access method, you should first consider what you want to use as a key for
you database records. If you want to use arbitrary data (even strings), then you should
use either BTree or Hash. If you want to use logical record numbers (essentially integers)
then you should use Queue or Recno.

Once you have made this decision, you must choose between either BTree or Hash, or
Queue or Recno. This decision is described next.

Choosing between BTree and Hash

For small working datasets that fit entirely in memory, there is no difference between
BTree and Hash. Both will perform just as well as the other. In this situation, you might
just as well use BTree, if for no other reason than the majority of DB applications use
BTree.

Note that the main concern here is your working dataset, not your entire dataset. Many
applications maintain large amounts of information but only need to access some small
portion of that data with any frequency. So what you want to consider is the data that

you will routinely use, not the sum total of all the data managed by your application.

4/25/2008 Getting Started with DB Page 8

Database Limits and Portability

However, as your working dataset grows to the point where you cannot fit it all into
memory, then you need to take more care when choosing your access method. Specifically,
choose:

« BTree if your keys have some locality of reference. That is, if they sort well and you
can expect that a query for a given key will likely be followed by a query for one of
its neighbors.

« Hash if your dataset is extremely large. For any given access method, DB must maintain
a certain amount of internal information. However, the amount of information that
DB must maintain for BTree is much greater than for Hash. The result is that as your
dataset grows, this internal information can dominate the cache to the point where
there is relatively little space left for application data. As a result, BTree can be forced
to perform disk 1/0 much more frequently than would Hash given the same amount
of data.

Moreover, if your dataset becomes so large that DB will almost certainly have to
perform disk 1/0 to satisfy a random request, then Hash will definitely out perform
BTree because it has fewer internal records to search through than does BTree.

Choosing between Queue and Recno

Queue or Recno are used when the application wants to use logical record numbers for
the primary database key. Logical record numbers are essentially integers that uniquely
identify the database record. They can be either mutable or fixed, where a mutable
record number is one that might change as database records are stored or deleted. Fixed
logical record numbers never change regardless of what database operations are
performed.

When deciding between Queue and Recno, choose:

» Queue if your application requires high degrees of concurrency. Queue provides
record-level locking (as opposed to the page-level locking that the other access methods
use), and this can result in significantly faster throughput for highly concurrent
applications.

Note, however, that Queue provides support only for fixed length records. So if the
size of the data that you want to store varies widely from record to record, you should
probably choose an access method other than Queue.

» Recno if you want mutable record numbers. Queue is only capable of providing fixed
record numbers. Also, Recno provides support for databases whose permanent storage
is a flat text file. This is useful for applications looking for fast, temporary storage
while the data is being read or modified.

Database Limits and Portability

Berkeley DB provides support for managing everything from very small databases that fit
entirely in memory, to extremely large databases holding millions of records and terabytes

4/25/2008 Getting Started with DB Page 9

Exception Handling

of data. DB databases can store up to 256 terabytes of data. Individual record keys or
record data can store up to 4 gigabytes of data.

DB's databases store data in a binary format that is portable across platforms, even of
differing endian-ness. Be aware, however, that portability aside, some performance issues
can crop up in the event that you are using little endian architecture. See Setting
Comparison Functions (page 143) for more information.

Also, DB's databases and data structures are designed for concurrent access — they are
thread-safe, and they share well across multiple processes. That said, in order to allow
multiple processes to share databases and the cache, DB makes use of mechanisms that
do not work well on network-shared drives (NFS or Windows networks shares, for example).
For this reason, you cannot place your DB databases and environments on network-mounted
drives.

Exception Handling

Before continuing, it is useful to spend a few moments on exception handling in DB with
the java.

Most DB methods throw Dat abaseExcepti on in the event of a serious error. So your DB
code must either catch this exception or declare it to be throwable. Be aware that
Dat abaseExcept i on extends j ava. | ang. Excepti on. For example:

i nport com sl eepycat . db. Dat abaseExcepti on;

try

{
/] DB and other code goes here
}
cat ch(Dat abaseException e)
{
/1 DB error handling goes here
}

You can obtain the DB error number for a Dat abaseExcepti on by using
Dat abaseException. get Errno() . You can also obtain any error message associated with
that error using Dat abaseExcept i on. get Message() .

Error Returns

In addition to exceptions, the DB interfaces always return a value of 0 on success. If the
operation does not succeed for any reason, the return value will be non-zero.

If a system error occurred (for example, DB ran out of disk space, or permission to access
a file was denied, or an illegal argument was specified to one of the interfaces), DB
returns an errno value. All of the possible values of errno are greater than 0.

4/25/2008 Getting Started with DB Page 10

Getting and Using DB

If the operation did not fail due to a system error, but was not successful either, DB
returns a special error value. For example, if you tried to retrieve data from the database
and the record for which you are searching does not exist, DB would return DB_NOTFOUND,
a special error value that means the requested key does not appear in the database. All
of the possible special error values are less than 0.

Getting and Using DB

You can obtain DB by visiting the Berkeley DB download page:
http://www.oracle.com/technology/software/products/berkeley-db/db/index.html.

Toinstall DB, untar or unzip the distribution to the directory of your choice. You will then
need to build the product binaries. For information on building DB, see

DB_INSTALL/ docs/ i ndex. ht M , where DB_INSTALL is the directory where you unpacked
DB. On that page, you will find links to platform-specific build instructions.

That page also contains links to more documentation for DB. In particular, you will find
links for the Berkeley DB Programmer’s Reference Guide as well as the API reference
documentation.

4/25/2008 Getting Started with DB Page 11

http://www.oracle.com/technology/software/products/berkeley-db/db/index.html

Chapter 2. Database Environments

Environments are optional, but very commonly used, for Berkeley DB applications built
using the base API. If you are using the DPL, then environments are required.

Database environments encapsulate one or more databases. This encapsulation provides
your threads with efficient access to your databases by allowing a single in-memory cache
to be used for each of the databases contained in the environment. This encapsulation
also allows you to group operations performed against multiple databases inside a single
transactions (see the Berkeley DB Java Edition Getting Started with Transaction Processing
guide for more information).

Most commonly you use database environments to create and open databases (you close
individual databases using the individual database handles). You can also use environments
to delete and rename databases. For transactional applications, you use the environment
to start transactions. For non-transactional applications, you use the environment to sync
your in-memory cache to disk.

Opening Database Environments

You open a database environment by instantiating an Envi r onment object. You must
provide to the constructor the name of the on-disk directory where the environment is
to reside. This directory location must exist or the open will fail.

By default, the environment is not created for you if it does not exist. Set the creation
property to t rue if you want the environment to be created. For example:

i nport com sl eepycat . j e. Dat abaseExcepti on;
i nport com sl eepycat . j e. Envi ronment ;
i nport com sl eepycat . j e. Envi ronnment Confi g;

import java.io.File;

/1 Open the environnment. Allow it to be created if it does not already exist.
Envi ronment nyDbEnvironment = nul | ;

try {
Envi ronment Confi g envConfig = new Environment Config();

envConfig. set All owCreate(true);

myDbEnvi ronment = new Envi ronnent (new Fil e("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {

/| Exception handling goes here
}

4/25/2008 Getting Started with DB Page 12

Closing Database Environments

package db. gettingStarted;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnment Confi g;

inport java.io.File;
inport java.io.FileNot FoundExcepti on;

/1 Open the environnent. Allow it to be created if it does not already exist.
Envi ronment nyDbEnvironment = nul | ;

try {
Envi ronment Confi g envConfig = new Environment Config();

envConfig. set Al l owCreate(true);

myDbEnvi ronment = new Environment (new File("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {

/] Exception handling goes here
} catch (FileNot FoundException fnfe) {
/'l Exception handling goes here

}

Your application can open and use as many environments as you have disk and memory
to manage, although most applications will use just one environment. Also, you can
instantiate multiple Envi ronment objects for the same physical environment.

Closing Database Environments

You close your environment by calling the Envi ronnent . ¢l ose() method. This method
performs a checkpoint, so it is not necessary to perform a sync or a checkpoint explicitly
before calling it. For information on checkpoints, see the Berkeley DB Java Edition Getting
Started with Transaction Processing guide. For information on syncs, see the Getting
Started with Transaction Processing for Java guide.

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat . db. Envi ronment ;

try {
if (nyDoEnvironnment != null) {

myDbEnvi ronnent . cl ose();

}
} catch (DatabaseException dbe) {
/| Exception handling goes here

}

4/25/2008 Getting Started with DB Page 13

Environment Properties

You should close your environment(s) only after all other database activities have
completed and you have closed any databases currently opened in the environment.

Closing the last environment handle in your application causes all internal data structures
to be released. If there are any opened databases or stores, then DB will complain before
closing them as well. At this time, any open cursors are also closed, and any on-going
transactions are aborted.

Environment Properties

You set properties for the Envi ronment using the Envi ronment Conf i g class. You can also
set properties for a specific Envi ronnment instance using Envi r onment Mut abl eConfi g.

The EnvironmentConfig Class

The Envi ronnent Confi g class makes a large number of fields and methods available to
you. Describing all of these tuning parameters is beyond the scope of this manual. However,
there are a few properties that you are likely to want to set. They are described here.

Note that for each of the properties that you can commonly set, there is a corresponding
getter method. Also, you can always retrieve the Envi r onnent Conf i g object used by your
environment using the Envi ronnent . get Confi g() method.

You set environment configuration parameters using the following methods on the
Envi ronnent Confi g class:

e Environnent Config.set Al l owCreat ()

If t rue, the database environment is created when it is opened. If f al se, environment
open fails if the environment does not exist. This property has no meaning if the
database environment already exists. Default is f al se.

e Environnent Config. set ReadOnl y()

If true, then all databases opened in this environment must be opened as read-only.
If you are writing a multi-process application, then all but one of your processes must
set this value to true. Default is f al se.

« Environnment Confi g. set Transacti onal ()
If t rue, configures the database environment to support transactions. Default is f al se.

For example:

package db. gettingStarted;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnent Confi g;

inport java.io.File;

4/25/2008 Getting Started with DB Page 14

Environment Properties

inport java.io.FileNot FoundExcepti on;

Envi ronment nyDat abaseEnvi ronment = nul | ;
try {
Envi ronment Confi g envConfig = new Environment Config();
envConfig.set Al l owCreate(true);
envConfig. set Transactional (true);
myDat abaseEnvi ronment =
new Environnent (new Fil e("/export/dbEnv"), envConfig);
} catch (DatabaseException dbe) {
Systemerr.println(dbe.toString());
Systemexit(1);
} catch (FileNot FoundException fnfe) {
Systemerr.printin(fnfe.toString());
Systemexit(-1);
}

EnvironmentMutableConfig

Envi r onment Mut abl eConf i g manages properties that can be reset after the Envi r onnent
object has been constructed. In addition, Envi r onnent Conf i g extends

Envi ronment Mut abl eConfi g, so you can set these mutable properties at Envi r onment
construction time if necessary.

The Envi ronnent Mut abl eConfi g class allows you to set the following properties:
o set CachePercent ()

Determines the percentage of JVM memory available to the DB cache. See Selecting
the Cache Size (page 140) for more information.

o setCacheSize()

Determines the total amount of memory available to the database cache. See Selecting
the Cache Size (page 140) for more information.

e set TxnNoSync()

Determines whether change records created due to a transaction commit are written
to the backing log files on disk. A value of true causes the data to not be flushed to
disk. See the Getting Started with Transaction Processing for Java guide for more
information.

o set TxnWiteNoSync()

Determines whether logs are flushed on transaction commit (the logs are still written,
however). By setting this value to t r ue, you potentially gain better performance than
if you flush the logs on commit, but you do so by losing some of your transaction

4/25/2008 Getting Started with DB Page 15

Environment Properties

durability guarantees. See the Getting Started with Transaction Processing for Java
guide for more information.

There is also a corresponding getter method (get TxnNoSync()). Moreover, you can always
retrieve your environment's Envi r onment Mut abl eConf i g object by using the
Envi ronment . get Mut abl eConfi g() method.

For example:

package db. gettingStarted;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi r onment ;
i nport com sl eepycat . db. Envi r onment Miut abl eConfi g;

inport java.io.File;
i nport java.io.FileNot FoundExcepti on;

try {
Envi ronment nyEnv = new Environnment (new Fil e("/export/dbEnv"), null);

Envi r onment Mut abl eConfi g envMut abl eConfig =
new Envi ronnent Mut abl eConfi g();
envMit abl eConfi g. set TxnNoSync(true);
myEnv. set Mut abl eConf i g(envMit abl eConfi g) ;
} catch (DatabaseException dbe) {
/] Exception handling goes here
} catch (FileNot FoundException fnfe) {
/] Exception handling goes here

}

4/25/2008 Getting Started with DB Page 16

Part I. Programming with the
Direct Persistence Layer

This section discusses how to build an application using the DPL. The DPL is ideally suited
for those applications that want a mechanism for storing and managing Java class objects
in a DB database. Note that the DPL is best suited for applications that work with classes
with a relatively static schema.

Also, the DPL requires Java 1.5.

If you want to use Java 1.4 for your DB application, or if you are porting an application
from the Berkeley DB API, then you probably want to use the base APl instead of the DPL.
For information on using the base API, see Programming with the Base APl (page 58).

Chapter 3. Direct Persistence Layer First
Steps

This chapter guides you through the first few steps required to use the DPL with your
application. These steps include:

1. Opening your environment as was described in Opening Database
Environments (page 12).

2. Opening your entity store.

3. Identifying the classes that you want to store in DB as either a persi st ent class or
anentity.

Once you have done these things, you can write your classes to the DB databases, read
them back from the databases, delete them from the databases, and so forth. These
activities are described in the chapters that follow in this part of this manual.

Entity Stores

Entity stores are the basic unit of storage that you use with the DPL. That is, it is a unit
of encapsulation for the classes that you want to store in DB. Under the hood it actually
interacts with DB databases, but the DPL provides a layer of abstraction from the
underlying DB APIs. The store, therefore, provides a simplified mechanism by which you
read and write your stored classes. By using a store, you have access to your classes that
is more simplified than if you were interacting with databases directly, but this simplified
access comes at the cost of reduced flexibility.

Entity stores have configurations in the same way that environments have configurations.
You can use a St oreConfi g object to identify store properties. Among these are methods
that allow you to declare whether:

« the store can be created if it does not exist at the time it is opened. Use the
St oreConfig. set All owCr eat e() method to set this.

» deferred writes are allowed for the store. Use the St oreConfig. set DeferredWite()
method to set this.

« the store is read-only. Use the St oreConfi g. set ReadOnl y() method to set this.

« the store supports transactions. Use the St oreConfi g. set Transact i onal () method to
set this.

Writing DB transactional applications is described in the Berkeley DB Java Edition
Getting Started with Transaction Processing guide.

EntityStore objects also provide methods for retrieving information about the store,
such as:

4/25/2008 Getting Started with DB Page 18

Entity Stores

o the store's name. Use the EntityStore. get St oreNane() method to retrieve this.

« a handle to the environment in which the store is opened. Use the
EntityStore. get Environnment method to retrieve this handle.

You can also use the Enti tySt or e to retrieve all the primary and secondary indexes related
to a given type of entity object contained in the store. See Working with Indices (page 23)
for more information.

Opening and Closing Environments and Stores

As described in Database Environments (page 12), an environment is a unit of encapsulation
for DB databases. It also provides a handle by which activities common across the databases
can be managed.

To use an entity store, you must first open an environment and then provide that
environment handle to the EntityStore constructor.

For example, the following code fragment configures both the environment and the entity
store such that they can be created if they do not exist. Both the environment and the
entity store are then opened.

package persist.gettingStarted;

inport java.io.File;
inport java.io.FileNot FoundExcepti on;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnment Confi g;

i nport com sl eepycat. persist.EntityStore;
i nport com sl eepycat . persist. StoreConfig;

private Environment nyEnv;
private EntityStore store;

try {
Envi ronment Confi g nyEnvConfig = new Environnent Config();

StoreConfig storeConfig = new StoreConfig();

myEnvConfi g. set Al | owCreat e(! readOnl y);
storeConfig.set Al l owCreate(!readOnly);

try {
Il Open the environnent and entity store

myEnv = new Environment (envHonme, nyEnvConfig);
store = new EntityStore(nmyEnv, "EntityStore", storeConfig);

4/25/2008 Getting Started with DB Page 19

Persistent Objects

} catch (FileNot FoundException fnfe) {
Systemerr.printin(fnfe.toString());
Systemexit(-1);
}
} catch(Dat abaseException dbe) {
Systemerr.println("Error opening environment and store: " +
dbe.toString());
Systemexit(-1);
}

As always, before you exit your program you should close both your store and your
environment. Be sure to close your store before you close your environment.
if (store !=null) {
try {
store.close();
} catch(DatabaseException dbe) {
Systemerr.printin("Error closing store: " +

dbe. toString());
Systemexit(-1);

}

if (myEnv !'=null) {
try {
Il Finally, close environnent.
myEnv. cl ose();
} catch(DatabaseException dbe) {
Systemerr.printin("Error closing MDbEnv: " +
dbe.toString());

Systemexit(-1);
}

Persistent Objects

When using the DPL, you store data in the underlying DB databases by making objects
persistent. You do this using Java annotations that both identify the type of persistent
object you are declaring, as well as the primary and secondary indices.

The following are the annotations you will use with your DPL persistent classes:

Annotation Description
@Entity Declares an entity class; that is, a class with
a primary index and optionally one or more
indices.
4/25/2008

Getting Started with DB Page 20

Persistent Objects

Annotation Description

@Persistent Declares a persistent class; that is, a class
used by an entity class. They do not have
indices but instead are are stored or
retrieved when an entity class makes direct
use of them.

@PrimaryKey Declares a specific data member in an entity
class to be the primary key for that object.
This annotation must be used one and only
one time for every entity class.

@SecondaryKey Declares a specific data member in an entity
class to be a secondary key for that object.
This annotation is optional, and can be used
multiple times for an entity class.

For example, the following is declared to be an entity class:

package persist.gettingStarted;

i nport com sl eepycat . persist.nodel . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

@ntity
public class Exanmpl eEntity {

private String aPrimaryKey;
private String aSecondaryKey;

/1 The primry key nust be unique in the database.
@ri mar yKey
private String aPrimaryKey;

@secondar yKey(rel at e=MANY_TO_ONE)
private String aSecondaryKey;

/1 The renai nder of the class' inplementation is purposefully
/] omitted in the interest of brevity.

}

We discuss primary and secondary keys in more detail in Working with Indices (page 23).

4/25/2008 Getting Started with DB Page 21

Saving a Retrieving Data

Saving a Retrieving Data

All data stored using the DPL has one primary index and zero or more secondary indices
associated with it. (Sometimes these are referred to as the primary and secondary keys.)
So to store data under the DPL, you must:

1. Declare a class to be an entity class.
2. Identify the features on the class which represent indexed material.

3. Retrieve the store's primary index for a given class using the
EntityStore. getPrimaryl ndex() method.

4. Put class objects to the store using the Pri maryl ndex. put () method.

In order to retrieve an object from the store, you use the index that is most convenient
for your purpose. This may be the primary index, or it may be some other secondary index
that you declared on your entity class.

You obtain a primary index in the same was as when you put the object to the store: using
EntityStore. getPrimaryl ndex(). You can get a secondary index for the store using the
EntityStore. get Secondaryl ndex() method. Note that get Secondar yl ndex() requires you
to provide a Pri maryl ndex class instance when you call it, so a class's primary index is
always required when retrieving objects from an entity store.

Usually all of the activity surrounding saving and retrieving data is organized within a
class or classes specialized to that purpose. We describe the construction of these data
accessor classes in SimpleDA.class (page 29). But before you perform any entity store
activity, you need to understand indexes. We therefore describe them in the next chapter.

4/25/2008 Getting Started with DB Page 22

Chapter 4. Working with Indices

All entity classes stored in DB using the DPL must have a primary index, or key, identified
for them. All such classes may also have one or more secondary keys declared for them.
This chapter describes primary and secondary indexes in detail, and shows how to access
the indexes created for a given entity class.

One way to organize access to your primary and secondary indexes is to create a data
accessor class. We show an implementation of a data accessor class in
SimpleDA.class (page 29).

Accessing Indexes

In order to retrieve any object from an entity store, you must access at least the primary
index for that object. Different entity classes stored in an entity store can have different
primary indexes, but all entity classes must have a primary index declared for it. The
primary index is just the default index used for the class. (That is, it is the data's key for
the underlying database.)

Entity classes can optionally have secondary indexes declared for them. In order to access
these secondary indexes, you must first access the primary index.

Accessing Primary Indices

You retrieve a primary index using the EntityStore. get Pri naryl ndex() method. To do
this, you indicate the index key type (that is, whether it is a String, Integer, and so forth)
and the class of the entities stored in the index.

For example, the following retrieves the primary index for an | nvent ory class (we provide
an implementation of this class in Inventory.class (page 44)). These index keys are of type
String.

Primaryl ndex<String, I nventory> invent oryBySku =
store. get Primaryl ndex(String.class, Inventory.class);

Accessing Secondary Indices

You retrieve a secondary index using the EntityStore. get Secondar yl ndex() method.
Because secondary indices actually refer to a primary index somewhere in your data store,
to access a secondary index you:

1. Provide the primary index as returned by EntityStore. get Pri maryl ndex().
2. Identify the key data type used by the secondary index (Stri ng, Long, and so forth).

3. Identify the name of the secondary key field. When you declare the Secondar yl ndex
object, you identify the entity class to which the secondary index must refer.

For example, the following first retrieves the primary index, and then uses that to retrieve
a secondary index. The secondary key is held by the i t emNane field of the | nvent ory class.

4/25/2008 Getting Started with DB Page 23

Creating Indexes

Primaryl ndex<String, I nventory> invent oryBySku =
store.get Primaryl ndex(String.class, Inventory.class);

Secondaryl ndex<String, String, I nventory> invent oryByName =
store. get Secondaryl ndex(i nventoryBySku, String.class, "itemName");

Creating Indexes

To create an index using the DPL, you use Java annotations to declare which feature on
the class is used for the primary index, and which features (if any) are to be used as
secondary indexes.

All entity classes stored in the DPL must have a primary index declared for it.

Entity classes can have zero or more secondary indexes declared for them. There is no
limit on the number of secondary indexes that you can declare.

Declaring a Primary Indexes

You declare a primary key for an entity class by using the @ri mar yKey annotation. This
annotation must appear immediately before the data member which represents the class's
primary key. For example:

package persist.gettingStarted;

i nport com sl eepycat . persist.model . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

@ntity
public class Vendor {

private String address;
private String bi zPhoneNunber;
private String city;

private String repName;
private String repPhoneNunber;
private String state;

[/ Primary key is the vendor's name

[/ This assunes that the vendor's nane is
[/ unique in the database.

@r i mar yKey

private String vendor;

For this class, the vendor value is set for an individual Vendor class object by the

set Vendor Nane() method. If our example code fails to set this value before storing the
object, the data member used to store the primary key is set to a null value. This would
result in a runtime error.

4/25/2008 Getting Started with DB Page 24

Creating Indexes

You can avoid the need to explicitly set a value for a class's primary index by specifying
a sequence to be used for the primary key. This results in an unique integer value being
used as the primary key for each stored object.

You declare a sequence is to be used by specifying the sequence keyword to the
@r i mar yKey annotation. For example:

@ri mar yKey(sequence="")
[ong nyPri maryKey;

If you provide the sequence keyword with a name, then the sequence is obtained from
that named sequence. For example:

@r i mar yKey(sequence="Sequence_Nanmespace")
| ong nyPri maryKey;

Declaring Secondary Indexes

To declare a secondary index, we use the @econdar yKey annotation. Note that when we
do this, we must declare what sort of an index it is; that is, what is its relationship to
other data in the data store.

The kind of indices that we can declare are:
« ONE_TO ONE

This relationship indicates that the secondary key is unique to the object. If an object
is stored with a secondary key that already exists in the data store, a run time error
is raised.

For example, a person object might be stored with a primary key of a social security
number (in the US), with a secondary key of the person’'s employee number. Both
values are expected to be unique in the data store.

« MANY_TO ONE

Indicates that the secondary key may be used for multiple objects in the data store.
That is, the key appears more than once, but for each stored object it can be used
only once.

Consider a data store that relates managers to employees. A given manager will have
multiple employees, but each employee is assumed to have just one manager. In this
case, the manager's employee number might be a secondary key, so that you can
quickly locate all the objects related to that manager's employees.

« ONE_TO MANY

Indicates that the secondary key might be used more than once for a given object.
Index keys themselves are assumed to be unique, but multiple instances of the index
can be used per object.

4/25/2008 Getting Started with DB Page 25

Creating Indexes

For example, employees might have multiple unique email addresses. In this case,
any given object can be access by one or more email addresses. Each such address is
unique in the data store, but each such address will relate to a single employee object.

« NANY_TO MANY

There can be multiple keys for any given object, and for any given key there can be
many related objects.

For example, suppose your organization has a shared resource, such as printers. You
might want to track which printers a given employee can use (there might be more
than one). You might also want to track which employees can use a specific printer.
This represents a many-to-many relationship.

Note that for ONE_TO ONE and MANY_TO_ONE relationships, you need a simple data member
(not an array or collection) to hold the key. For ONE_TO MANY and MANY_TO MANY
relationships, you need an array or collection to hold the keys:

@econdar yKey(rel at e=ONE_TO_ONE)
private String primaryEmail Address

new String();

@econdar yKey(rel at e=ONE_TO_MANY)
private Set<String> enmuil Addresses

new HashSet <String>();

Foreign Key Constraints

Sometimes a secondary index is related in some way to another entity class that is also
contained in the data store. That is, the secondary key might be the primary key for
another entity class. If this is the case, you can declare the foreign key constraint to make
data integrity easier to accomplish.

For example, you might have one class that is used to represent employees. You might
have another that is used to represent corporate divisions. When you add or modify an
employee record, you might want to ensure that the division to which the employee
belongs is known to the data store. You do this by specifying a foreign key constraint.

When a foreign key constraint is declared:

+ When a new secondary key for the object is stored, it is checked to make sure it exists
as a primary key for the related entity object. If it does not, a runtime error occurs.

+ When a related entity is deleted (that is, a corporate division is removed from the
data store), some action is automatically taken for the entities that refer to this object
(that is, the employee objects). Exactly what that action is, is definable by you. See
below.

When a related entity is deleted from the data store, one of the following actions are
taken:

o ABORT

4/25/2008 Getting Started with DB Page 26

Creating Indexes

The delete operation is not allowed. A runtime error is raised as a result of the
operation. This is the default behavior.

» CASCADE

All entities related to this one are deleted as well. For example, if you deleted a
Di vi si on object, then all Enpl oyee objects that belonged to the division are also
deleted.

e NULLIFY

All entities related to the deleted entity are updated so that the pertinent data member
is nullified. That is, if you deleted a division, then all employee objects related to
that division would have their division key automatically set to null.

You declare a foreign key constraint by using the rel at edEnt ity keyword. You declare
the foreign key constraint deletion policy using the onRel at edEnt i t yDel et e keyword. For
example, the following declares a foreign key constraint to Di vi si on class objects, and
it causes related objects to be deleted if the D vi si on class is deleted:

@econdar yKey(rel at e=ONE_TO ONE, rel atedEntity=Division.class,
onRel at edEnt i t yDel et e=CASCADE)
private String division = new String();

4/25/2008 Getting Started with DB Page 27

Chapter 5. Saving and Retrieving Objects

To store an object in an Enti t ySt or e you must annotate the class appropriately and then
store it using Pri maryl ndex. put ().

To retrieve and object from an Enti t ySt ore you use the get () method from either the
Pri maryl ndex or Secondaryl ndex, whichever is most appropriate for your application.

In both cases, it simplifies things greatly if you create a data accessor class to organize
your indexes.

In the next few sections we:

1. Create an entity class that is ready to be stored in an entity store. This class will
have both a primary index (required) declared for it, as well as a secondary index
(which is optional).

See the next section for this implementation.
2. Create a data accessor class which is used to organize our data.

See SimpleDA.class (page 29) for this implementation.
3. Create a simple class that is used to put objects to our entity store.

See Placing Objects in an Entity Store (page 30) for this implementation.
4. Create another class that retrieves objects from our entity store.

See Retrieving Objects from an Entity Store (page 33) for this implementation.

A Simple Entity Class

For clarity's sake, this entity class is a simple a class as we can write. It contains only two
data members, both of which are set and retrieved by simple setter and getter methods.
Beyond that, by design this class does not do anything or particular interest.

Its implementation is as follows:
package persist.gettingStarted;
i nport com sl eepycat . persist.nodel . Entity;
i nport com sl eepycat . persi st. nodel . Pri mar yKey;

inport static com sl eepycat. persist.nodel . Rel ationship.*;
i nport com sl eepycat . persi st. nodel . Secondar yKey;

@ntity
public class SinpleEntityCass {

[l Primary key is pKey

4/25/2008 Getting Started with DB Page 28

SimpleDA.class

@r i mar yKey
private String pKey;

/] Secondary key is the sKey
@econdar yKey(rel at e=MANY_TO_ONE)
private String sKey;

public void setpKey(String data) {

pKey = dat a;

}

public void setsKey(String data) {
sKey = dat a;

}

public String getpKey() {
return pKey;

}

public String getsKey() {
return skey;

}
}

SimpleDA.class

As mentioned above, we organize our primary and secondary indexes using a specialize
data accessor class. The main reason for this class to exist is to provide convenient access
to all the indexes in use for our entity class (see the previous section, A Simple Entity
Class (page 28), for that implementation).

For a description on retrieving primary and secondary indexes under the DPL, see Working
with Indices (page 23)

package persist.gettingStarted;
inport java.io.File;

i nport com sl eepycat . db. Dat abaseExcepti on;

i nport com sl eepycat. persist.EntityStore;

i nport com sl eepycat . persist. Primaryl ndex;

i nport com sl eepycat . persi st. Secondaryl ndex;

public class SinpleDA {
[/ Open the indices
public SinpleDA(EntityStore store)
t hrows Dat abaseException {

Il Primary key for SinpleEntityd ass classes

4/25/2008 Getting Started with DB Page 29

Placing Objects in an Entity Store

pl dx = store.getPrimaryl ndex(
String.class, SinpleEntityd ass.class);

Il Secondary key for SinpleEntityC ass classes
Il Last field in the getSecondarylndex() nethod nust be
/1 the name of a class menber; in this case, an
Il SinmpleEntityd ass.class data nenber.
sldx = store. get Secondaryl ndex(
pldx, String.class, "sKey");
}

/1 1ndex Accessors

Primaryl ndex<String, Si npl eEntityC ass> pl dx;

Secondaryl ndex<String, String, Si npl eEntityC ass> sl dx;
}

Placing Objects in an Entity Store
In order to place an object in a DPL entity store, you must:
1. Open the environment and store.
2. Instantiate the object.
3. Put the object to the store using the put () method for the object's primary index.

The following example uses the Si npl eDA class that we show in SimpleDA.class (page 29)
to put a Si npl eEnti tyd ass object (see A Simple Entity Class (page 28)) to the entity
store.

To begin, we import the Java classes that our example needs. We also instantiate the
private data members that we require.

package persist.gettingStarted;

import java.io.File;
i nport java.io.FileNot FoundExcepti on;

i nport com sl eepycat . db. Dat abaseExcepti on;
i nport com sl eepycat . db. Envi ronment ;
i nport com sl eepycat . db. Envi ronnment Confi g;

i nport com sl eepycat. persist.EntityStore;
i nport com sl eepycat . persi st. StoreConfig;

public class SinpleStorePut {
private static File envHome = new File("./JEDB");

private Environment envimt;

4/25/2008 Getting Started with DB Page 30

Placing Objects in an Entity Store

private EntityStore store;
private SinpleDA sda;

Next we create a method that simply opens our database environment and entity store
for us.

Il The setup() nmethod opens the environment and store
/] for us.
public void setup()

throws Dat abaseException {

Envi ronment Confi g envConfig = new Environment Config();
StoreConfig storeConfig = new StoreConfig();

envConfig.set All owCreate(true);
storeConfig.set Al l owCreate(true);

try {
/1 Open the environnent and entity store

envimt = new Envi ronnent (envHone, envConfig);

store = new EntityStore(envimt, "EntityStore", storeConfig);
} catch (FileNot FoundException fnfe) {

Systemerr.printIn("setup(): " + fnfe.toString());

Systemexit(-1);

}

We also need a method to close our environment and store.

// Close our environnent and store.
public void shutdown()
throws Dat abaseException {

store.close();
envmt . cl ose();

}

Now we need to create a method to actually write objects to our store. This method
creates a Si npl eDA object (see SimpleDA.class (page 29) that we will use to access our
indexes. Then we instantiate a serious of Si npl eEnti tyd ass (see A Simple Entity

Class (page 28)) instances that we will place in our store. Finally, we use our primary
index (obtained from the Si npl eDA class instance) to actually place these objects in our
store.

In Retrieving Objects from an Entity Store (page 33) we show a class that is used to retrieve
these objects.

/] Populate the entity store
private void run()
throws Dat abaseException {

4/25/2008 Getting Started with DB Page 31

Placing Objects in an Entity Store

setup();

Il Open the data accessor. This is used to store
Il persistent objects.
sda = new Sinpl eDA(store);

Il Instantiate and store some entity classes
Sinpl eEntityC ass secl = new Sinpl eEntityC ass()
Sinpl eEntityC ass sec2 = new Sinpl eEntityd ass();
Sinpl eEntityC ass sec3 = new Sinpl eEntityd ass();
()
()

Sinpl eEntityC ass sec4 = new Sinpl eEntityC ass
Sinpl eEntityC ass sec5 = new Sinpl eEntityC ass

secl. set pKey("keyone");
secl. set sKey("skeyone");

sec2. set pKey("keytwo");
sec2. set sKey("skeyone");

sec3. set pKey("keythree");
sec3. set sKey("skeytwo");

sec4d. set pKey("keyfour");
sec4d. set sKey("skeythree");

secb. set pKey("keyfive");
secb. set sKey("skeyfour");

sda. pl dx. put (secl);

sda. pl dx. put (sec2);

sda. pl dx. put (sec3);
(sec4)
(secd)

sda. pl dx. put (sec4
sda. pl dx. put (sec5

shut down() ;

}

Finally, to complete our class, we need a mai n() method, which simply calls our run()
method.

[/ main
public static void main(String args[]) {

Si npl eSt orePut ssp = new Sinpl eSt orePut () ;

try {
ssp.run();

} catch (DatabaseException dbe) {
Systemerr.printIn("SinmpleStorePut: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {

4/25/2008 Getting Started with DB Page 32

Retrieving Objects from an Entity
Store

Systemout. println("Exception: " + e.toString());
e.printStackTrace();

}

Systemout.printin("Al done.");

}

Retrieving Objects from an Entity Store

You retrieve objects placed in an entity store by using either the object's primary index,
or the appropriate secondary index if it exists. The following application illustrates this
by retrieving some of the objects that we placed in an entity store in the previous section.

To begin, we import the Java classes that our example needs. We also instantiate the
private data members that we require.

package persist.gettingStarted;

inport java.io.File;

inport java.io.FileNot FoundExcepti on;

i nport com sl eepycat.
i nport com sl eepycat.
i nport com sl eepycat.

i nport com sl eepycat.
i nport com sl eepycat.

db. Dat abaseExcepti on;
db. Envi ronment ;
db. Envi ronnent Confi g;

persist.EntityStore;
persi st. StoreConfig;

public class SinpleStoreGet {

private static File envHome = new File("./JEDB");

private Environnment envmt;
private EntityStore store;
private SinpleDA sda;

Next we create a method that simply opens our database environment and entity store

for us.

Il The setup() nmethod opens the environment and store

/I for us.

public void setup()
throws Dat abaseException {

Envi ronnment Confi g envConfig = new Environment Config();
StoreConfig storeConfig = new StoreConfig();

envConfig.set All owCreate(true);
storeConfig.set Al l owCreate(true);

4/25/2008

Getting Started with DB Page 33

Retrieving Objects from an Entity
Store

try {
/1 Open the environnent and entity store

envit = new Envi ronnent (envHone, envConfig);

store = new EntityStore(envimt, "EntityStore", storeConfig);
} catch (FileNot FoundException fnfe) {

Systemerr.printIn("setup(): " + fnfe.toString());

Systemexit(-1);

}

We also need a method to close our environment and store.

/1 Close our environment and store.
publi ¢ voi d shutdown()
throws Dat abaseException {

store.close();
envmt . cl ose();

}

Now we retrieve a few objects. To do this, we instantiate a Si npl eDA (see
SimpleDA.class (page 29)) class that we use to access our primary and secondary indexes.
Then we retrieve objects based on a primary or secondary index value. And finally, we
display the retrieved objects.

/'l Retrieve some SinpleEntityC ass objects fromthe store.
private void run()
throws Dat abaseException {

setup();

Il Qpen the data accessor. This is used to store
Il persistent objects.
sda = new Sinpl eDA(store);

Il Instantiate and store some entity classes
Sinpl eEntityC ass secl = sda. pl dx. get ("keyone");
Sinpl eEntityC ass sec2 = sda. pl dx. get ("keytwo");

Sinpl eEntityC ass sec4 = sda. sl dx. get("skeythree");

Systemout.printin("secl: " + secl.getpKey());
Systemout. printin("sec2: " + sec2.getpKey());
Systemout. println("sec4:. " + secd. getpKey());

shut down() ;

4/25/2008 Getting Started with DB Page 34

Retrieving Multiple Objects

Finally, to complete our class, we need a mai n() method, which simply calls our run()
method.

[/ main
public static void main(String args[]) {

Sinpl eStoreCGet ssg = new SinpleStoreCGet();

try {
ssg.run();

} catch (DatabaseException dbe) {
Systemerr.printlin("SinpleStoreGet: " + dbe.toString());
dbe. print StackTrace();

} catch (Exception e) {

Systemout. println("Exception: " + e.toString());
e.printStackTrace();

}
Systemout. printin("Al done.");

}
Retrieving Multiple Objects

It is possible to iterate over every object referenced by a specific index. You may want
to do this if, for example, you want to examine or modify every object accessible by a
specific primary index.

In addition, some indexes result in the retrieval of multiple objects. For example,
MANY TO ONE secondary indexes can result in more than one object for any given key (also
known as duplicate keys). When this is the case, you must iterate over the resulting set
of objects in order to examine each object in turn.

There are two ways to iterate over a collection of objects as returned by an index. One
is to use a standard Java | t er at or , which you obtain using an Ent i t yCur sor , which in turn
you can obtain from a Pri maryl ndex:

Primaryl ndex<String, Sinpl eEntityC ass> pi =

store. get Primaryl ndex(String.class, SinpleEntityd ass.class);
EntityCursor<Sinpl eEntityCd ass> pi _cursor = pi.entities();
try {

Iterator<SinpleEntityCass> i = pi_cursor.iterator();

while (i.hasNext()) {

/1 Do sonething here
}

} finally {
/1 Always cl ose the cursor

pi _cursor.close();

}

Alternatively, you can use a Java "foreach” statement to iterate over object set:

4/25/2008 Getting Started with DB Page 35

Retrieving Multiple Objects

Primaryl ndex<String, Si npl eEntityC ass> pi =
store.get Primaryl ndex(String.class, SinpleEntityd ass.class);
EntityCursor<Sinpl eEntityC ass> pi _cursor = pi.entities();
try {
for (SinpleEntitydass seci : pi_cursor) {
Il do something with each object "seci"

}
/1 Al'ways make sure the cursor is closed when we are done with it.
} finally {

sec_cursor. cl ose();

}
Cursor Initialization

When a cursor is first opened, it is not positioned to any value; that is, it is not initialized.
Most of the EntityCursor methods that move a cursor will initialize it to either the first
or last object, depending on whether the operation is moving the cursor forward (all
next... methods) or backwards (all prev...) methods.

You can also force a cursor, whether it is initialized or not, to return the first object by
calling EntityCursor.first(). Similarly, you can force a return of the last object using
EntityCursor.last().

Operations that do not move the cursor (such as EntityCursor. current() or
EntityCursor. del et e() will throw an |1 egal St at eExcepti on when used on an uninitialized
cursor.

Working with Duplicate Keys

If you have duplicate secondary keys, you can return an Enti t yl ndex class object for them
using Secondar yl ndex. subl ndex() Then, use that object’s entities() method to obtain
an EntityCursor instance.

For example:

Pri maryl ndex<String, Si npl eEntityC ass> pi =
store.getPrimarylndex(String.class, SinpleEntityd ass.class);

Secondaryl ndex<String, String, Si npl eEntityd ass> si =
store. get Secondaryl ndex(pi, String.class, "sKey");

EntityCursor<Sinpl eEntityd ass> sec_cursor =
si . subl ndex("skeyone").entities();

try {
for (SinpleEntityC ass seci : sec_cursor) {

/1 do something with each object "seci”

}

Il Always make sure the cursor is closed when we are done with it.

4/25/2008 Getting Started with DB Page 36

Retrieving Multiple Objects

} finally {
sec_cursor.close(); }

Note that if you are working with duplicate keys, you can control how cursor iteration
works by using the following Ent it yCur sor methods:

e nextDup()

Moves the cursor to the next object with the same key as the cursor is currently
referencing. That is, this method returns the next duplicate object. If no such object
exists, this method returns nul | .

 prevDup()

Moves the cursor to the previous object with the same key as the cursor is currently
referencing. That is, this method returns the previous duplicate object in the cursor’s
set of objects. If no such object exists, this method returns nul | .

e next NoDup()

Moves the cursor to the next object in the cursor's set that has a key which is different
than the key that the cursor is currently referencing. That is, this method skips all
duplicate objects and returns the next non-duplicate object in the cursor's set of
objects. If no such object exists, this method returns nul | .

e prevNoDup()

Moves the cursor to the previous object in the cursor's set that has a key which is
different than the key that the cursor is currently referencing. That is, this method
skips all duplicate objects and returns the previous non-