

Working with Dates in
WebObjects
The approach of the new millennium has given rise to a number of concerns about
how dates are being handled in computer programs. The so-called “Y2K” problem
relates to both how dates are stored internally, and how they’re displayed and
accepted as input.

Writing software that is “Y2K-compliant,” or modifying an existing program so that
it becomes Y2K-compliant, requires that you have a solid understanding of the
software package that you are using to represent and manipulate dates.
Unfortunately, that package is typically complex, mirroring the fact that dates
themselves are complex objects and that any package that works with dates needs
to be extremely flexible in order to be useful in the largest number of situations.

In a WebObjects application, you work with date objects—which store the date
values internally—and formatters—which translate between the internal
representation and a textual one. While these objects can be used in a
Y2K-compliant fashion, they can also be used in a way that is not Y2K compliant.
This paper introduces the various objects you use when working with dates, and
shows you how to avoid writing WebObjects applications that will fail in the new
millennium.

Date Objects

On the server, WebObjects applications use a standard date object provided by the
Foundation layer to contain date values. The NSGregorianDate class
(NSCalendarDate in Objective-C) represents concrete date objects and performs
date computations based on the Gregorian calendar. These date objects store a date
Date Objects 1

  Apple Computer, Inc. 4/19/99

as the number of seconds relative to the absolute reference date (January 1 2001,
GMT).

On the client-side of a Java Client application, dates are represented using a version
of NSCalendarDate that is a simple subclass of java.util.Date. Because the
underlying object differs (NSGregorianDate on the server, java.util.Date on the
client), the behavior of a given date object could conceivably change depending on
whether it is running on the client or on the server (see the reference documentation
for the NSGregorianDate class and the java.util.Date documentation provided
with the JDK (and with WebObjects) for specifics on how these objects behave).

In a server-based WebObjects application, users frequently interact with date
objects through WOTextFields (date values can also be displayed using
WOStrings). To map between the textual representation of a date and the internal
representation that a date object uses, Foundation relies on formatter objects.

Server-Side Date Formatters

WOTextField relies on a date formatter when formatting dates for display and
interpreting user-entered dates. This formatter (NSGregorianDateFormatter for
Java applications, NSDateFormatter for Objective-C and WebScript applications)
allows great flexibility in formatting dates: “Thu 22 Dec 1994” and “12/12/94” are
two possibilities.

The Gregorian date formatter has two attributes: a format string and a “natural
language processing” flag. The format string is constructed from a set of date
conversion specifiers (see Table 1-1) and explicitly specifies the display format or
the expected date entry format. You specify the format that a WOTextField or
WOString should use either by binding the format string to the element’s
dateFormat attribute or by binding a date formatter that was instantiated with the
desired format string to the element’s formatter attribute.

Table 1-1 Date Formatter Conversion Specifiers

Specifier Description

%% a ‘%’ character

%a abbreviated weekday name

%A full weekday name
2 Date Objects

  Apple Computer, Inc. 4/19/99

Natural Language Processing of Dates

The natural language processing flag adds an extra level of intelligence to the
interpretation of strings: if the entered string doesn’t match the date format string
and natural language processing has been requested, the date formatter attempts to
interpret the date anyway. This allows users to enter dates in a more colloquial

%b abbreviated month name

%B full month name

%c shorthand for “ %X %x”, the locale format for date and time

%d day of the month as a decimal number (01-31)

%e same as %d without the leading 0 for days 1 through 9

%F milliseconds as a decimal number

%H hour based on a 24-hour clock as a decimal number (00-23)

%I hour based on a 12-hour clock as a decimal number (01-12)

%j day of the year as a decimal number (001-366)

%m month as a decimal number (01-12)

%M minute as a decimal number (00-59)

%p AM/PM designation for the locale

%S second as a decimal number (00-59)

%w weekday as a decimal number (0-6), where Sunday is 0

%x date using the date representation for the locale

%X time using the time representation for the locale

%y year without century (00-99)

%Y year with century (such as 1990)

%Z time zone abbreviation (such as PDT)

%z time zone offset in hours and minutes from GMT (HHMM)

Table 1-1 Date Formatter Conversion Specifiers (continued)

Specifier Description
Date Objects 3

  Apple Computer, Inc. 4/19/99

fashion: “today,” “the day after tomorrow,” and “a month from today” are all valid
input.

Although natural language processing might appear to be a good thing, in actual
practice it introduces a level of ambiguity that is difficult to ignore. Imprecision in
the English language is partly to blame: the word “Tuesday” by itself isn’t absolute:
which Tuesday does it refer to? (The natural language processor assumes “next
Tuesday.”) Phrases like “last Tuesday” and “next Tuesday” are interpreted as you
would expect, and “next week” is translated as “one week from today.” But the
natural language processor has its limits: “a week ago last Tuesday” gives the same
result as “last Tuesday”—which may or may not be what you want.

The natural language processing logic can also be a problem when working with
numeric dates when the date doesn’t match the format string or the format string
isn’t supplied (In Objective-C, NSCalendarDate’s dateWithNaturalLanguageString:
method engages the natural language processing logic directly, bypassing any
attempt at matching to a format string). See “Years as Two or Four Digits,” below,
for more information.

Disabling Natural Language Processing

Although the use of natural language processing is discouraged, WebObjects
assumes its use by default. Further, when you bind a date object to a WOTextField
or WOString, although there is an attribute that allows you to specify the format
string directly in the binding, there isn’t a corresponding attribute that allows you
to enable or disable natural language processing. In order to disable it, you must
explicitly create and use a formatter object. You can create this object in a number
of places: in your application’s constructor (or init method), in your component’s
awake method, or in a particular method as needed. In Java, you can create a date
formatter with natural language processing disabled like this:

NSGregorianDateFormatter dateFormatter =
new NSGregorianDateFormatter(“%m/%d/%Y”, false);

In Objective-C or WebScript, do this:

_dateFormatter = [[NSDateFormatter alloc]
initWithDateFormat:@”%m/%d/%Y” allowNaturalLanguage:NO];

Note that when applying a date formatter to a cell using Interface Builder in a Java
Client application, you’re presented with a checkbox that allows you to select or
de-select natural language processing. On the client side, the underlying objects are
4 Date Objects

  Apple Computer, Inc. 4/19/99

part of the JDK and have no such natural language processing ability. Thus, this
checkbox has no effect.

Client-Side Date Formatters

Java Client applications use NSGregorianDateFormatter objects to translate
between the internal representation of a date and a string representation. On the
client, the NSGregorianDateFormatter class inherits from
java.text.SimpleDateFormat (on the server, it inherits from NSFormatter).
Although the NSGregorianDateFormatter is essentially the same class on both the
client and the server, the client-side version doesn’t support natural language
processing. (For more information on how the presence or absence of natural
language processing affects user input, see “Years as Two or Four Digits”, below.)

Since NSGregorianDateFormatter exists on the client, you use the same date
formatter conversion specifiers in your Java Client applications as you do for your
server-based applications, with one exception: the %c format specifier isn’t
supported on the client and thus shouldn’t be used in Java Client applications (%c is
shorthand for “%X %x”, the locale format for date and time).

Years as Two or Four Digits

The server-side date formatter has two format specifiers specifically for handling
years: %y deals with years represented using two digits, while %Y deals with
four-digit years.

The use of %y is not recommended due to possible misinterpretation of years before
and after the year 2000. Specifying a date of “1/1/99” is conventionally understood
to mean January 1, 1999, but it’s less clear what is meant by a date of “1/1/00”; is
this January 1, 1900, or January 1, 2000? The way in which a two-digit year is
interpreted by the date formatter changed in WebObjects 4.0. Prior to 4.0, two digit
years were all considered to be offsets from 1900: the year “05,” for example, meant
1905. Recognizing that a format specifier of %y prevented the entry of years after
1999, however, the meaning of a two-digit year was changed in the version of
Foundation that shipped with WebObjects 4.0: years from “00” to “29” are now
interpreted relative to the year 2000, while “30” to “99” are relative to 1900, as
Years as Two or Four Digits 5

  Apple Computer, Inc. 4/19/99

before. Thus, “1/1/29” is assumed to be January 1, 2029, while “1/1/30” works out
to January 1, 1930.

To further complicate the issue, if your server-side formatter uses %y (for instance,
“%m/%d/%y”) and the user enters a date with a four-digit year (“1/1/2000”, for
example), the formatter takes you at your word and only looks at the first two digits
of the year. It then applies the algorithm described in the above paragraph, making
those two digits relative to 1900 or 2000, depending on the version of WebObjects.
So, for example, if you are running WebObjects 4.0 and your formatter uses “%m/
%d/%y”, an entry of “1/1/2000” is interpreted as
“1/1/2020”—and is redisplayed as “1/1/20”.

Given the problems with the %y format specifier, most server-based WebObjects
applications should use %Y. This format specifier accepts both two-digit and
four-digit years. However, the way in which it interprets two-digit years depends
on whether or not natural language processing is active, and is not always intuitive.
For instance, with natural language processing turned off, two-digit years are taken
literally: the year “29” really is the year 29. If natural language processing is used
(meaning that it is turned on and the entered date doesn’t match the format string),
however, two-digit years are interpreted as with %y: in versions of WebObjects prior
to 4.0, they are offsets from 1900; in WebObjects 4.0 and later, “00”-”29” are offsets
from 2000, while “30”-”99” are offsets from 1900.

Be aware that small variations in the user’s input can cause natural language
processing to be enabled or disabled (assuming that it isn’t turned off). If your
format string is “%m/%d/%y”, an entry of “1/1/99” doesn’t activate natural
language processing, while an entry of “1-1-99” does.

The following two tables summarize this behavior (the first table applies to
WebObjects 4.0 and later versions, while the second applies to WebObjects 3.51 and
earlier versions):
6 Years as Two or Four Digits

  Apple Computer, Inc. 4/19/99

Table 1-2 Summary of Year Behavior in WebObjects 4.0 and later

Year
Entered

Year Stored in Date Object

%y %Y, NLP enabled %Y, NLP disabled

001 2000 2000 nil2

29 2029 2029 29

30 1930 1930 30

99 1999 1999 99

1900 20193 1900 1900

1929 20193 1929 1929

1999 20193 1999 1999

2000 20203 2000 2000

1In WebObjects 4.0 and in earlier versions, there is a bug in NSDateFormatter that causes the current
year to be used if natural language parsing is enabled, %y is specified, and a year of “00” is entered.
This bug was fixed in WebObjects 4.0.1.
2In WebObjects 4.0 and later, the %Y format specifier doesn’t accept “00” as a valid year.
3Although these years are stored in the date object as indicated in the table, only the first two digits are
accepted as input by the %y date formatter. Then, because the %y formatter displays only the year
within the century, they are displayed as “19” or “20” in these cases.

Table 1-3 Summary of Year Behavior in WebObjects 3.51 and earlier

Year
Entered

Year Stored in Date Object

%y %Y, NLP enabled %Y, NLP disabled

001 1900 1900 0

29 1929 1929 29

30 1930 1930 30

99 1999 1999 99

1900 19192 1900 1900
Years as Two or Four Digits 7

  Apple Computer, Inc. 4/19/99

For most WebObjects applications, the right-most column in the two tables above
represent the recommended approach, combined with code to validate the year.

Validating Dates

Because of the possibly unexpected behavior when your formatter uses %Y and your
application’s user enters a two-digit year, you may want to disable natural language
processing and then implement a validation method on your enterprise objects that
“sanity-checks” the year portion of any entered date.

Objects that inherit from EOCustomObject or EOGenericRecord inherit a default
implementation of EOValidation. The default implementation of EOValidation’s
validateValueForKey method searches for a method of the form validateKey (where
Key is the name of one of a class’s properties) and invokes it if it exists. Thus, as long
as your objects inherit from EOCustomObject or EOGenericRecord, you need only
implement the appropriate validateKey method to validate a given enterprise object
property.

For more information on validating enterprise object attributes, see the online
reference documentation for EOControl’s EOValidation interface.

1929 19192 1929 1929

1999 19192 1999 1999

2000 19202 2000 2000

1In WebObjects 4.0 and in earlier versions, there is a bug in NSDateFormatter that causes the current
year to be used if natural language parsing is enabled, %y is specified, and a year of “00” is entered.
This bug was fixed in WebObjects 4.0.1.
2Although these years are stored in the date object as indicated in the table, only the first two digits are
accepted as input by the %y date formatter. Then, because the %y formatter displays only the year
within the century, they are displayed as “19” or “20” in these cases.

Table 1-3 Summary of Year Behavior in WebObjects 3.51 and earlier (continued)

Year
Entered

Year Stored in Date Object

%y %Y, NLP enabled %Y, NLP disabled
8 Years as Two or Four Digits

  Apple Computer, Inc. 4/19/99

Two-Digit Years on the Client

The SimpleDateFormat object that’s part of the java.text package uses different
logic to interpret years entered with two digits. When the formatter specifies a
two-digit (“abbreviated”) year, SimpleDateFormat interprets the entry by adjusting
the date to be within 80 years before and 20 years after the time the
SimpleDateFormat instance was created. Thus, for example, using a pattern of
“MM/dd/yy” and a SimpleDateFormat instance created on Jan 1, 1997, the string
“01/11/12” would be interpreted as Jan 11, 2012 while the string “05/04/64” would
be interpreted as May 4, 1964.

API Differences between Objective-C and Java

Unlike most of the classes in the Foundation framework, the Java and Objective-C
versions of the date classes differ in some fairly important respects. As mentioned
earlier, in Java you work with NSGregorianDate and NSGregorianDateFormatter
objects, while in Objective-C you work with NSCalendarDate and
NSDateFormatter objects. Although the NSGregorianDateFormatter and
NSDateFormatter objects are closely related, the date objects themselves aren’t.

The NSGregorianDate and NSCalendarDate classes are both designed specifically
for working with dates that are based upon the Gregorian calendar.
NSCalendarDate, however, is the more flexible of the two. When constructing or
initializing an NSCalendarDate from an NSString, for example, you don’t need an
NSDateFormatter; NSCalendarDate has methods that allow you to specify the
format string directly (+ dateWithString:... and - initWithString:...,
respectively). NSGregorianDate, on the other hand, has no such methods. As well,
the Objective-C version of NSDate has two class methods that return an NSDate
object initialized solely from an NSString using natural language processing
(+ dateWithNaturalLanguageString:...). These methods are not available to the
Java programmer.

Finally, the Objective-C date classes allow you to take advantage of a locale
dictionary that contains a set of implicit calendar formats. This dictionary is not
used by the Java date classes.
API Differences between Objective-C and Java 9

  Apple Computer, Inc. 4/19/99

For More Information

When working with date objects, be sure to read through the documentation
carefully. Relevant documentation for server-based applications can be found
under NSDate, NSGregorianDate, NSFormatter, and NSGregorianDateFormatter if
you’re programming in Java, and under NSDate, NSCalendarDate, NSFormatter,
and NSDateFormatter if you’re working in Objective-C or WebScript. (Be aware
that this documentation has been written with the AppKit programmer in mind;
you’ll find numerous references to AppKit’s NSCell class.) For programmers
developing Java Client applications, the documentation for Sun’s JDK 1.1.6 is
installed along with WebObjects Developer and can be accessed through the
WebObjects Info Center (under Reference->JavaSoft), or can be accessed over the
Internet at http://www.javasoft.com.
10 For More Information

  Apple Computer, Inc. 4/19/99

	Working with Dates in WebObjects
	Working with Dates in WebObjects
	The approach of the new millennium has given rise to a number of concerns about how dates are bei...
	Writing software that is “Y2K-compliant,” or modifying an existing program so that it becomes Y2K...
	In a WebObjects application, you work with date objects—which store the date values internally—and
	Date Objects
	Date Objects
	On the server, WebObjects applications use a standard date object provided by the Foundation laye...
	On the client-side of a Java Client application, dates are represented using a version of NSCalen...
	In a server-based WebObjects application, users frequently interact with date objects through WOT...
	Server-Side Date Formatters
	Server-Side Date Formatters
	WOTextField relies on a date formatter when formatting dates for display and interpreting user-en...
	The Gregorian date formatter has two attributes: a format string and a “natural language processi...
	<TABLE>
	Table 1-1 Date Formatter Conversion Specifiers (continued)
	<TABLE HEADING>
	<TABLE ROW>
	Specifier
	Description

	<TABLE BODY>
	<TABLE ROW>
	%%
	a ‘%’ character

	<TABLE ROW>
	%a
	abbreviated weekday name

	<TABLE ROW>
	%A
	full weekday name

	<TABLE ROW>
	%b
	abbreviated month name

	<TABLE ROW>
	%B
	full month name

	<TABLE ROW>
	%c
	shorthand for “ %X %x”, the locale format for date and time

	<TABLE ROW>
	%d
	day of the month as a decimal number (01-31)

	<TABLE ROW>
	%e
	same as %d without the leading 0 for days 1 through 9

	<TABLE ROW>
	%F
	milliseconds as a decimal number

	<TABLE ROW>
	%H
	hour based on a 24-hour clock as a decimal number (00-23)

	<TABLE ROW>
	%I
	hour based on a 12-hour clock as a decimal number (01-12)

	<TABLE ROW>
	%j
	day of the year as a decimal number (001-366)

	<TABLE ROW>
	%m
	month as a decimal number (01-12)

	<TABLE ROW>
	%M
	minute as a decimal number (00-59)

	<TABLE ROW>
	%p
	AM/PM designation for the locale

	<TABLE ROW>
	%S
	second as a decimal number (00-59)

	<TABLE ROW>
	%w
	weekday as a decimal number (0-6), where Sunday is 0

	<TABLE ROW>
	%x
	date using the date representation for the locale

	<TABLE ROW>
	%X
	time using the time representation for the locale

	<TABLE ROW>
	%y
	year without century (00-99)

	<TABLE ROW>
	%Y
	year with century (such as 1990)

	<TABLE ROW>
	%Z
	time zone abbreviation (such as PDT)

	<TABLE ROW>
	%z
	time zone offset in hours and minutes from GMT (HHMM)

	Natural Language Processing of Dates
	Natural Language Processing of Dates
	The natural language processing flag adds an extra level of intelligence to the interpretation of...
	Although natural language processing might appear to be a good thing, in actual practice it intro...
	The natural language processing logic can also be a problem when working with numeric dates when ...

	Disabling Natural Language Processing
	Disabling Natural Language Processing
	Although the use of natural language processing is discouraged, WebObjects assumes its use by def...
	NSGregorianDateFormatter dateFormatter =
	NSGregorianDateFormatter dateFormatter =
	new NSGregorianDateFormatter(“%m/%d/%Y”, false);

	In Objective-C or WebScript, do this:
	_dateFormatter = [[NSDateFormatter alloc]
	_dateFormatter = [[NSDateFormatter alloc]
	initWithDateFormat:@”%m/%d/%Y” allowNaturalLanguage:NO];

	Note that when applying a date formatter to a cell using Interface Builder in a Java Client appli...

	Client-Side Date Formatters
	Client-Side Date Formatters
	Java Client applications use NSGregorianDateFormatter objects to translate between the internal r...
	Since NSGregorianDateFormatter exists on the client, you use the same date formatter conversion s...

	Years as Two or Four Digits
	Years as Two or Four Digits
	The server-side date formatter has two format specifiers specifically for handling years:
	The use of
	To further complicate the issue, if your server-side formatter uses
	Given the problems with the
	Be aware that small variations in the user’s input can cause natural language processing to be en...
	The following two tables summarize this behavior (the first table applies to WebObjects 4.0 and l...
	<TABLE>
	Table 1-2 Summary of Year Behavior in WebObjects 4.0 and later�
	<TABLE HEADING>
	<TABLE ROW>
	Year Entered
	Year Stored in Date Object

	<TABLE ROW>
	%y
	%Y, NLP enabled
	%Y, NLP disabled

	<TABLE BODY>
	<TABLE ROW>
	00
	2000
	2000
	nil

	<TABLE ROW>
	29
	2029
	2029
	29

	<TABLE ROW>
	30
	1930
	1930
	30

	<TABLE ROW>
	99
	1999
	1999
	99

	<TABLE ROW>
	1900
	2019
	1900
	1900

	<TABLE ROW>
	1929
	20193
	1929
	1929

	<TABLE ROW>
	1999
	20193
	1999
	1999

	<TABLE ROW>
	2000
	20203
	2000
	2000

	<TABLE>
	Table 1-3 Summary of Year Behavior in WebObjects 3.51 and earlier (continued)
	<TABLE HEADING>
	<TABLE ROW>
	Year Entered
	Year Stored in Date Object

	<TABLE ROW>
	%y
	%Y, NLP enabled
	%Y, NLP disabled

	<TABLE BODY>
	<TABLE ROW>
	00
	1900
	1900
	0

	<TABLE ROW>
	29
	1929
	1929
	29

	<TABLE ROW>
	30
	1930
	1930
	30

	<TABLE ROW>
	99
	1999
	1999
	99

	<TABLE ROW>
	1900
	1919
	1900
	1900

	<TABLE ROW>
	1929
	19192
	1929
	1929

	<TABLE ROW>
	1999
	19192
	1999
	1999

	<TABLE ROW>
	2000
	19202
	2000
	2000

	For most WebObjects applications, the right-most column in the two tables above represent the rec...
	Validating Dates
	Validating Dates
	Because of the possibly unexpected behavior when your formatter uses
	Objects that inherit from EOCustomObject or EOGenericRecord inherit a default implementation of E...
	For more information on validating enterprise object attributes, see the online reference documen...

	Two-Digit Years on the Client
	Two-Digit Years on the Client
	The SimpleDateFormat object that’s part of the

	API Differences between Objective-C and Java
	API Differences between Objective-C and Java
	Unlike most of the classes in the Foundation framework, the Java and Objective-C versions of the ...
	The NSGregorianDate and NSCalendarDate classes are both designed specifically for working with da...
	Finally, the Objective-C date classes allow you to take advantage of a locale dictionary that con...

	For More Information
	For More Information
	When working with date objects, be sure to read through the documentation carefully. Relevant doc...

