awv

e

Am29200™ RISC Microcontroller Advanced

User’s Manual and Data Sheet Micro
Devices

12]|0UOO0.IW DSIY v 00565WY

Am29200™
RISC Microcontroller
User’'s Manual
and Data Sheet

ADVANCED MICRO DEVICES &\

AMD is a registered trademark of Advanced Micro Devices, Incorporated.

Am29000, Am29005, Am28027, Am29030, Am29035, Am29050, Am29200, 29K, Laser29K, EB29K, Scalable Clocking, and Branch Target Cache
are trademarks of Advanced Micro Devices, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

XRAY29K is a registered trademark of Microtec Research, Inc.

Fusion29K is a registered servicemark of Advanced Micro Devices, Incorporated.

HighC29K is a registered servicemark of MetaWare, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

TABLE OF CONTENTS n
Preface IntroductionandOverviewottt P-1
The Am29200™ RISC Microcontroller P-1
Design Philosophy e P-1
Optimum Performance i, P-2
Performanceleverage i P-2
CONCIUSIONt e e P-3
PurposeofthisManual P-3
Intended Audience P-3
Am29200 Microprocessor User's Manual Overview P-3
29K™ Family Documentation il P-5
Related Publications i P-6
Chapter 1 FeaturesandPerformancecciiiiiiiinnnnnnnns 11
1.1 Distinctive Characteristics oo, 1-1
1.2 Key FeaturesandBenefits, 1-2
1.2.1 Complete Set of Common System Peripherals 1-2
1.2.1.1 ROM Controller (Chapter8) 1-2
1.2.1.2 DRAM Controller (Chapter9) 1-2
1.2.1.3 DMA Controller (Chapter 11) 1-3
1.2.1.4 Peripheral Interface Adapter (Chapter 10) 1-3
1.2.1.5 Interrupt Controller (Section16.8) 1-3
12161/OPort(Chapter12)cccovu... 1-4
1.2.1.7 Video Interface (Chapter15) 1-4
1.2.1.8 Serial Port (Chapter14) 1-4
1.2.1.9 Parallel Port (Chapter 13) 1-4
1.2.2 Wide Range of Price/Performance Points 1-4
1.2.3 Glueless SystemiInterfaces 1-4
1.2.4 Pin-, Bus-, and Software-Compatibility 1-4
125 Complete Development and Support Environment........... 1-56
1.3 PerformanceOverviewttt 1-56
1.3.1 Instruction Timing (Section2.1) 1-5
1.3.2 Pipelining(Section5.1)coiiiiiiiiiniiinn.. 1-6
1.3.3 Burst-Mode and Page-Mode Memories (Sections 8.2.4,9.2.6) . 1-6
1.3.4 Instruction Set Overview (Chapter2) e 1-6
1.3.5 DataFormats (Chapter3).................cooviiiinnn.. 1-6
1.3.6 Protection(Chapter6)civiiiion.. 1-7
1.3.7 DRAM Mapping (Section9.24) 1-7
1.3.8 Interrupts and Traps (Chapter16) 1-7
1.4 Debugging and Testing (Chapter17) 1-7
Chapter 2 Programmingoiieeietinenernnenrennneneansnnnnsas 2-1
21 InstructionSet e 2-1
211 IntegerArithmetic 2-1

TABLE OF CONTENTS i

Chapter 3

212 COMPArEottt ittt ittt 2-1

213 Logical ...t e 2-4
214 Shift e e e e 2-4
215 DataMovementttt 2-4
216 Constantc.coiiiiiiiiii i i 2-5
21.7 Floating-Pointo i 2-6
218 Branchciiiiiiiii i e 2-6
219 Miscellaneouscoiiiiiiiiiiiiii i 2-6
2.1.10 ReservedlInstructions i, 2-6

22 RegisterModel i i 2-6
2.2.1 General-PurposeRegisters, 2-8
2211 RegisterAddressing 2-10

2.2.1.2 Global Registersc.oeveveeenn.n. 2-10

2213 LocalRegistersl 2-11

2.2.1.4 Local-Register Stack Pointer 2-11

2.2.2 Special-PurposeRegisters 2-11

2.3 AddressingRegistersindirectly 2-12
2.3.1 Indirect Pointer C (IPC, Register128) 2-13
2.3.2 Indirect Pointer A (IPA, Register 129) 2-13
2.3.3 Indirect Pointer B (IPB, Register 130) 2-14

2.4 Instruction Environment i, 2-14
2.4.1 Floating-Point Environment (FPE, Register 160) 2-14
2.4.2 Integer Environment (INTE, Register 161) 2-16

2.5 Status Resultsoflnstructions 2-16
25.1 ALU Status (ALU,Register132)cooouut. 2-16
25.2 Arithmetic Operation Status Results 2-17
25.3 Logical Operation StatusResults 2-18
25.4 Floating-PointStatusResults 2-18
25.5 Floating-Point Status (FPS, Register 162) 2-18

2.6 Integer Multiplication and Division 2-20
261 Q(Q,Register131)ot 2-20
2.6.2 Multiplicationcoiiiiiii i 2-21
263 Divisiont e 2-22

2.7 INeedAninstruction To...ciiiriiiiie i 2-25
271 Run-TimeCheckingccooiiiiiieenn.... 2-25
2.7.2 Operating-SystemCalls 2-25
2.7.3 Multiprecision Integer Operations 2-25
274 ComplementingaBoolean 2-26
275 LargeJumpandCallRanges 2-26
276 NO-OPS ...ttt i et e 2-27

2.8 Virtual Arithmetic Processor ccoiiiann. 2-27
2.8.1 Trapping Arithmetic Instructions 2-27
282 VitualRegisterscoviiiiiniiiiiiiiin, 2-27

2.9 Processorinitialization o il i 2-28
2.9.1 Configuration (CFG, Register3) 2-28
292 ResetModel 2-28
Data FormatsandHandlingoiiiiiiiiaiints 3-1
3.1 IntegerDataTypescc.uiiiiiiiiinnnininianennnn, 3-1
311 CharacterData i, 3-1
3.1.2 Half-WordOperationscoiiiuniennnnn.. 3-2
3.1.3 Byte Pointer (BP, Register133) 3-2
314 BitStrings e 3-3
3.1.4.1 Funnel Shift Count (FC, Register134) 3-3

TABLE OF CONTENTS

Chapter 4

Chapter 5

3.1.5 Character-StringOperations 3-4

3.1.5.1 Alignment of Bytes WithinWords 3-4

3.1.5.2 Detection of Characters WithinWords 3-4

316 BooleanData i 3-4
3.1.7 InstructionConstants 3-5

3.2 Floating-PointDataTypes ..., 35
3.2.1 Single-Precision Floating-PointValues 3-5
3.2.2 Double-Precision Floating-Point Values 3-6
3.2.3 Special Floating-PointValues 3-6
3231 Not-A-Number 3-6

83232 INfIY ...t 37

3.2.3.3 Denormalized Numbers 37

B234 2610 ..o e 3-7

3.3 ExternalDataAccessesc.ouiiniiieininiinnennn. 37
3.3.1 Load/Store Instruction Format 37
332 LoadOperationsc.couuiiinirenenineennnnns 39
333 StoreOperations.............coouiiiiieiininunnnn, 39
3.3.4 MultipleAccessest 3-10
3.3.4.1 Load/Store Count Remaining (CR, Register 135) 3-11

3.3.4.2 Movement of Large DataBlocks 3-11

335 OptionBits ...t 3-12
3.3.6 AddressingandAlignment, 3-12
3.3.6.1 Byte and Half-Word Addressing 3-12

3.3.6.2 Byte and Half-Word Accesses 3-12

3.3.6.3 Alignment of Words and Half-Words 3-13

3.3.6.4 Alignmentof Instructions 3-14
Procedurelinkage0iittiiiiiinnninrnnnnnneanns 41
4.1 Run-Time Stack OrganizationandUse 4-1
4.1.1 Management of the Run-Time Stack 4-1
412 TheRegisterStackc it 4-3
413 Local RegistersasaStackCache 4-4
414 TheMemoryStackcoiiiiiiiiiiiinann.. 4-7

4.2 Procedure Linkage Conventions, 4-7
421 ArgumentPassing i, 4-8
422 ProcedurePrologue i, 4-8
423 SpillHandler 4-10
424 ReturnValuesiiiiiiiiiiiiii. 4-10
425 ProcedureEpilogue i, 4-11
426 FilHandlers i 4-11
42.7 The Register StackLeaf Frame 4-11
428 Local Variables and Memory-Stack Frames 4-12
429 StaticLinkPointer.............. 4-13
4.2.10 TransparentProceduresccouun.. 4-13

4.3 RegisterUsageConvention ion... 4-13
4.4 Example of a Complex ProcedureCall 4-14
45 Trace-BackTagscovviiiniiinini it iiieieninannns 4-15
Pipelining and Instruction Scheduling 51
5.1 Four-StagePipeline it 5-1
52 PipelineHoldMode it 5-1
63 Serialization i e 5-2
54 DelayedBrancho 5-2

TABLE OF CONTENTS il

Chapter 6

Chapter 7

Chapter 8

Chapter 9

5.5 OverlappedloadsandStorescooiiiiiiieen .. 5-4

5.6 Delayed Effectsof Registerscoiiiiiiiian, 5-5
SystemProtection ittt ittt 6-1
6.1 UserandSupervisorModesc.ciiiiiiiennnnnn. 6-1
6.1.1 SupervisorMode oo, 6-1
6.1.2 UserModecoiiiiiiiiiiiininennennnnnnnnn 6-1

6.2 RegisterProtectionol 6-1
6.2.1 Register Bank Protect (RBP, Register7) 6-2
SystemOVerviewceteeeneecercresnsecncssennnnns 7-1
7.1 SignalDescriptioncoiiiiiiiiiin it 7-1
741 ClocKS . .oi ettt e e 71
7.12 ProcessorSignals it 7-1
713 ROMinterfaceciiiiiiiiiiiiiiinennn.. 7-2
714 DRAMinterface it 7-3
7.1.5 Peripheral Interface Adapter (PIA) 7-3
716 DMAController it 7-4
7A7 WOPOR ... e e e 7-4
718 ParallelPort 7-4
719 SerialPort..... e e e 7-5
7.1.10 Videolinterface oo, 7-5
7.1.11 JTAG 1149.1 Boundary ScanInterface 7-6

7.2 AccessPrionity e e 7-6
7.3 SystemAddress Paition, 7-7
7.4 Internal Peripheralsand Controllers 7-7
ROMControllercciniiiiniireiriennrneennnnnnes heeen 8-1
8.1 ProgrammableRegisters i, 8-1
8.1.1 ROM Control Register (RMCT, Address 80000000) 8-1
8.1.2 ROM Configuration Register (RMCF, Address 80000004) 8-2
8.1.3 Initializationcoiii il 8-2

82 ROMACCESSESiitiiitiiiii it ianiiinaeanenn, 8-3
821 ROMAddressMappingccooiveiinennnnnnn. 8-3
822 SimpleROMAccessescoviiiiiinieannnn., 8-3
823 WritestotheROMSpaceciiiiaa. 8-3
8.2.4 Burst-Mode ROMAccessesccooveiivnvennnnn. 8-3
825 NamowROMAcCCeSSeSccoiiieiiinnunnnn.. 8-4
8.2.5.1 8-Bit NarrowAccessescouuun.. 8-4

8.2.5.2 16-Bit Narrow Accessesc.cvuueun.. 8-5

8.2.6 Useof WAITto Extend ROMCycles 8-6
DRAMController. Certeeieresretataasanaas 9-1
9.1 ProgrammableRegistersciiiiiiiiiii.., 9-1
9.1.1 DRAM Control Register (DRCT, Address 80000008) 9-1
9.1.2 DRAM Configuration Register (DRCF, Address 8000000C) ... 9-2
9.1.3 DRAM Mapping Register 0 (DRMO, Address 80000010) 9-3
9.1.4 DRAM Mapping Register 1 (DRM1, Address 80000014) 9-3
9.1.5 DRAM Mapping Register 2 (DRM2, Address 80000018) 9-3
9.1.6 DRAM Mapping Register 3 (DRM3, Address 8000001C) 9-3
9.1.7 nitialization i 9-3

9.2 DRAMACEESSEScouniiiminteteanan e iiianeinenennnnns 9-4
921 DRAMAddressMappingc..cviiivinnnnnnn. 9-4
922 AddressMultiplexing............ i i, 9-4

iv

TABLE OF CONTENTS

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

9.23 Sixteen-BtDRAMWidth............................... 9-5

924 MappedDRAMACCESSEScvviiinineninnn.n. 9-6
9.25 NomalAccessTimiNgcovuiiinininnnnnnnn. 9-6
926 Page-ModeAccessTiming...............cocivuivnun.... 9-6
927 DRAMRefresho 9-8
9.28 VideoDRAMInterface o... 9-10
Peripheral Interface Adaptero, 10-1
10.1 Programmable Registerso o 10-1
10.1.1 PIAControl Register0/1 iaun... 10-1
10.1.2 Initialization 10-2
T0.2PIAACCESSESottt e 10-2
10.2.1 NomalAccess TimiNgcoiiininennennn... 10-2
10.2.2 Use of WAITto Extend VO Cycles 10-2
DMAControllerottt atiennnneannnas 1141
11.1 Programmable Registers i ... 1141
11.1.1 DMAO Control Register (DMCTO, Address 80000030) 111
11.1.2 DMAO Address Register (DOMADO, Address 80000034) 11-3
11.1.3 DMAO Address Tail Register (TADO, Address 80000036) 11-4
11.1.4 DMAO Count Register (DMCNO, Address 80000038) 11-4
11.1.5 DMAO Count Tail Register (TCNO, Address 8000003A) 11-4
11.1.6 DMAT1 Control Register (DMCT1, Address 80000040) 11-5
11.1.7 DMAT1 Address Register (DMAD1, Address 80000044) 11-5
11.1.8 DMAT1 Count Register (DMCN1, Address 80000048) 11-5
11.1.9 Initialization i 11-5
112DMATransfersottt 11-6
11.3 DMA Queuing (DMA ChannelOOnly) 11-8
11.4 Random Direct Memory Access by External Devices 11-8
Programmable VOPortttt 121
12.1 Programmable Registers 121
12.1.1 PIO Control Register (POCT, Address 800000D0) 121
12.1.2 PIO Input Register (PIN, Address 800000D4) 12-2
12.1.3 PIO Output Register (POUT, Address 800000D8) 12-2
12.1.4 PIO Output Enable Register (POEN, Address 800000DC) ... 12-3
12.1.5 Initialization 12-3
12.2Operatingthe /OPort 12-3
ParallelPortcciiiiiiiiiiiiiii i ittt iiine i 131
13.1 Programmable Registers 13-1
13.1.1 Parallel Port Control Register (PPCT, Address 800000C0) ... 13-1
13.1.2 Parallel Port Status Register (PPST, Address 800000C1) 13-3
13.1.3 Parallel Port Data Register (PPDT, Address 800000C4) 13-3
13.1.4 Initialization 13-4
13.2ParallelPort Transfers oo i, 13-4
13.2.1 TransfersfromtheHost 135
13.2.2 TransferstotheHost 13-7
Serial Portoiiii i i i i i et i, 1441
14.1 Programmable Registers 14-1
14.1.1 Serial Port Control Register (SPCT, Address 80000080) 1441
14.1.2 Serial Port Status Register (SPST, Address 80000084) 14-3

TABLE OF CONTENTS v

14.1.3 Serial Port Transmit Holding Register

(SPTH, Address 80000088)ccovvenunnnnn. 14-4

14.1.4 Serial Port Receive Buffer Register
(SPRB, Address 8000008C)covuuuinnnn.. 14-4
14.1.5 Baud Rate Divisor Register (BAUD, Address 80000090) 14-5
14.1.6 Serial Port Initialization 14-5
Chapter15 VideolInterfacecciiiiiiiiitiinrnnnnennnnnnnss 151
15.1 Programmable Registerscoiiiiiiiiiennnnn.. 15-1
15.1.1 Video Control Register (VCT, Address 800000EO) 15-1
15.1.2 Top Margin Register (TOP, Address 800000E4) 15-3
15.1.3 Side Margin Register (SIDE, Address 800000E8) 15-3
15.1.4 Video Data Holding Register (VDT, Address 800000EC) 15-3
15.1.5 Initialization i 15-4
15.2 Video Interface Operationcoiiiiiiiinn... 15-4
15.2.1 Transmitting Data on the Video Interface 15-4
15.2.2 Receiving Data on the Video Interface 15-6
Chapter 16 Interruptsand Trapscciiiiiiiiiiiineeanenennnnss 16-1
6.1 OVeIVIEW . .ottt tee et it 16-1
16.1.1 Curmrent Processor Status (CPS, Register2) 16-1
16.1.2 Interrupts i e e 16-3
16.1.3 TrapsS ..ottt i i e i i e e 16-3
16.1.4 ExternalInterruptsandTrapsccovvuninn.. 16-3
16.15 WaitModettt 16-4
16.2VeCtor Areaottt i i et e 16-4
16.2.1 Vector Area Base Address (VAB, Register0) 16-5
16.2.2 VectorNumbers 16-5
16.3Interruptand TrapHandling iiiii.... 16-5
16.3.1 Old Processor Status (OPS, Register1) 16-7
16.3.2 The ProgramCounterStack 16-7
16.3.2.1 Program Counter 0 (PCO, Register 10) 16-9
16.3.2.2 Program Counter 1 (PC1, Register11) 16-9
16.3.2.3 Program Counter 2 (PC2, Register12) 16-9
16.3.3 TakingAninterruptOrTrapcovvunienn... 16-10
16.3.4 Returning From AninterruptOrTrap 16-11
16.3.5 Lightweight Interrupt Processing 16-12
16.3.6 Simulation of Interruptsand Traps 16-13
16 AWARNTIADiiiitttt et e et e e e e eeeaeaaanann 16-13
16.4.1 WARNINpUtcciiiiiiinienniiinnnnnn. 16-14
16.5 Sequencing of Interruptsand Traps covvvnnn.. 16-14
16.6 Exception Reportingand Restarting 16-16
16.6.1 Instruction Exceptionsc.ciiiviiinnin... 16-16
16.6.2 Restarting Mapped DRAMAccesses 16-17
16.6.2.1 Channel Address (CHA, Register4) 16-18
16.6.2.2 Channel Data (CHD, Register5) 16-18
16.6.2.3 Channel Control (CHC, Register6) 16-18
16.6.3 IntegerExceptions o.iiiiiia.., 16-19
16.6.4 Floating-Point Exceptions 16-20
16.6.5 Cormrecting Out-of-Range Results 16-20
16.6.6 Exceptions During Interrupt and Trap Handling 16-21
16.7TimerFacilitycoiiiini ittt ii i 16-21
16.7.1 TimerFacilty Operationccouat. 16-21
16.7.2 Timer Facility Initialization 16-21
16.7.3 Handling Timerinterrupts 16-22

vi TABLE OF CONTENTS

Chapter 17

Chapter 18

Appendix A
Appendix B

Appendix C

16.7.4 TimerFacilityUses it 16-22

16.7.5 Timer Counter (TMC, Register8) 16-22
16.7.6 Timer Reload (TMR, Register9) 16-23

16.8 Internal InterruptControllerl 16-23
16.8.1 Interrupt Control Register (ICT, Address 80000028) 16-24
16.8.2 Interrupt Controller Initialization 16-25
16.8.3 Servicing Internal Interrupts 16-25
Debuggingand Testingc.civeiiiiiiiieeneniannenn. 171
174 TraceFacility ittt 171
17.2Instruction Breakpointso, 17-1
17.3 Processor StatusOutputso, 17-2
17.4 Control SignalsInScanPath 17-2
175TestAccess Port it 17-3
17.6.1 BoundaryScanCells 17-4
17.5.2 Instruction Register and Implemented Instructions 17-5
17521 EXTEST .. oot e 17-6
176.22INTEST 17-6
17523SAMPLE e 17-6

175 241CTESTT 17-6
175.25ICTEST2ottt it 17-7
17526BYPASS 17-7

17.5.3 Order of Scan Cells in Boundary ScanPath............... 17-7
17531 InstructionPath 17-7
17532BYPASSPath........ i i, 17-8
175.33MainDataPath.............................. 17-8
17534ICTEST1Path, 17-10
17535ICTEST2Path 17-10

17.6 Implementing a Hardware-Development System 17-10
1761 HaltMode 17-10
1762 StepModel 17-11
17.6.3 Load TestinstructionMode 17-12
17.6.4 Accessing Internal State Via Boundary Scan 17-14
17.6.4.1 Inspecting State ViaBoundary Scan 17-14

17.6.4.2 Altering State Via Boundary Scan 17-15

17.6.5 HALT Instructions as Breakpoints 17-15
17.6.6 Forcing Outputs to High Impedance 17-16
InstructionSetottt ittt 18-1
18.1 Instruction-Description Nomenclature 18-1
18.1.1 Operand NotationandSymbols 18-1
18.1.2 OperatorSymbols 18-2
18.1.3 Control-Flow Terminology 18-3
18.1.4 AssemblerSyntax i, 18-3
182InstructionFormats F 18-4
18.3 Instruction Descriptionttt 18-7
18.4 Instruction Index by OperationCode 18-127
ProcessorRegisterSummaryc.0iiiiiiiiiiiinnan A-1
Peripheral RegisterSummaryccciieiiiiinnnnnnees B-1
Am29200DataSheetc..oiiiiiiiiii ittt C-1

TABLE OF CONTENTS i

LIST OF FIGURES

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 6-1
Figure 6-2
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5

Figure 8-6
Figure 8-7
Figure 8-8
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6

Am29200 Microprocessor Block Diagram 1-3
General-Purpose Register Organization 2-9
Special-Purpose Registerst 2-12
Indirect Pointer CRegisterciiiiiiiiiiiiiiinn. 2-13
Indirect Pointer ARegisterc.i it 2-14
Indirect Pointer BRegister i, 2-14
Floating-Point Environment Register 2-15
Integer Environment Registeroiiiiiiii it 2-16
ALUStatus Registerc.coiiiiiii it 2-16
Floating-PointStatus i, 2-19
QREGISIErot e e 2-20
Configuration Registerottt iiiiiiiinnnnae, 2-28
Current Processor Status Register In ResetMode 2-29
CharacterFormatottt 3-1
Half-Word Formatcoiiiiii it 3-2
Byte Pointer Register it 3-3
Funnel Shift Count Registero, 3-3
Single-Precision Floating-Point Format 3-6
Double-Precision Floating-Point Format 3-6
Load/Store InstructionFormat i, 3-8
Load/Store Count Remaining Register 3-11
Byte and Half-Word Addressing (Big Endian) 3-13
Run-TimeStackExamplettt ., 4-2
An Activation Record in the Register Stack 4-3
Relationship of Stack Cache and RegisterStack 4-4
StackOverflowt e e 4-6
StackUnderflowo 4-6
Definition of sizeand rsizeValues 4-9
Trace-BackTagscovviirieiineenniiiiiinnaennnenn, 4-15
Register Bank Organizationcoiviiiiiiiinnnn.. 6-2
Register Bank Protect Register, 6-3
ROM Control Registert 8-1
ROM Configuration Registero iiiiiiiiiinan, 8-2
Simple ROMReadCycleciiiiiiiiiii i, 8-4
Simple ROM Read Cycle—ZeroWaitStates 8-5
Simple Write to ROM Bank

(for alterable memories in the ROM address space) 8-6
BurstMode ROMRead cioiiiiiiiiiinann. 8-7
Extending a ROM Read Cycle withWAIT 8-8
Extending a ROM Write CyclewthWAIT. 8-8
DRAMControlRegisterot 9-1
DRAM Configuration Register oian. 9-2
DRAM Mapping Register 0.oovuiiiiniinneneninnnnnen. 9-3
Location of Bytes and Half-Wordsona 16-BitBus 9-5
DRAMReadCyclecoiiiiiiiiiiiii it 9-7
DRAMWrite Cycleot 9-7
DRAM Page-Mode ReadCyclec.ccoviiiiniininnnnn.. 9-8
DRAM Page-Mode WriteCycle it 9-9
DRAMRefreshCycleo, 9-9
VDRAM TransferCycleccoiiiiiiniinnnnenennn. 9-10
PIA Control Register 0 (PICTO, Address 80000020) 10-1
PIA Control Register 1 (PICT1, Address 80000024) 10-1
PIAReadCycleciiiiiiiiiiiiii ittt 10-3
PIAWriteCycle oot iiiian, 10-4
Extendinga PIARead Cycle WthWAIT 10-5
Extending a PIA Write Cycle WithWAIT 10-6

vili

TABLE OF CONTENTS

Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 11-10
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-12
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 16-1
Figure 16-2
Figure 16-3
Figure 16-4
Figure 16-5
Figure 16-6
Figure 16-7
Figure 16-8
Figure 16-9
Figure 16-10
Figure 16-11
Figure 16-12
Figure 16-13
Figure 16-14
Figure 16-15
Figure 17-1
Figure 17-2
Figure 17-3
Figure 17-4
Figure 18-1
Figure 18-2
Figure 18-3

DMAO Control Registercco i iinnnnn. 11-1

DMAOAddressRegister i i, 11-3
DMAO Address Tail Registerot iiinin... 11-4
DMAO Count Register ittt 11-4
DMAO Count Tail Registero iiiiiiiiiinenn.. 11-5
DMAReadCycle i 11-6
DMAWTrite Cyclettt 11-7
External Randkom DRAM ReadCycle 11-9
External Random DRAM WriteCycle 11-10
External RandkomROM ReadCycle 11-11
PIO Control Registerttt 12-1
PiClnputRegister 12-2
PIOOutput Registert 12-2
PIO Output Enable Register i, 12-3
Parallel Port Control Registero iiion.. 13-1
Parallel Port Status Register 13-3
Parallel PotData Register 13-4
State Transistions for Transfers FromtheHost 13-5
Transfer From the Host on the Parallel Port (BRS=0, ARB=0) 13-6
Transfer From the Host on the Parallel Port (BRS=0, ARB=1) 13-6
Transfer From the Host on the Parallel Port (BRS=1, ARB=0) 13-7
Transfer From the Host on the Parallel Port (BRS=1, ARB=1) 13-7
Parallel Port BufferReadCycle oiiiiin.. 13-8
State Transitions for TransferstotheHost e 13-9
Transfer to the Host onthe Parallel Port 13-10
Parallel Port BufferWriteCycle 13-10
Serial Port Control Register i, 141
Serial Port Status Register i il 14-3
Serial Port Transmit Holding Register 14-4
Serial Port Receive Buffer Register 14-5
Baud Rate Divisor Register oottt 14-5
Video ControlRegistero i 15-1
TopMarginRegistero ottt 15-3
SideMarginRegister 15-3
Video DataHoldingRegister 15-4
VCLK, LSYNC, and VDAT Relationships (LSI=0 for example only) 15-5
Current Processor Status Register 16-1
VectorTableEntry i 16-5
Vector Area Base Address Register 16-5
ProgramCounterUnit i, 16-8
Program Counter O Registercoiiiiiiuinn. 16-9
Program Counter 1 Register c.ciiiiiieiiinnnn.. 16-9
Program Counter 2 Registeroiaan. 16-10
Current Processor Status After an Interruptor Trap 16-11
Current Processor Status Before Interrupt Return 16-12
Channel Address Register 16-18
ChannelDataRegister it 16-18
Channel Control Register coiiiiiiiiiinn.. 16-19
Timer Counter Register oo, 16-22
Timer Reload Register i, 16-23
Interrupt Control Registeroo e, 16-24
Valid Transitions for CNTLField ot 17-3
Input Boundary-ScanCell, 17-4
Output Boundary-ScanCell it 17-5
Processor Status While in Load Test InstructonMode 17-13
InstructionFormat i 18-4
Frequently Occurring Instruction FieldUses 18-6
Instruction-DescriptionFormat, 18-7

TABLE OF CONTENTS ix

Figure A-1
Figure A-2
Figure A-3
Figure B-1

General-Purpose Register Organization

.......................... A-1
RegisterBank Organization oo, A-2
Special-PurposeRegisterso, A-3
On-Chip Peripheral Registerscooviiuna... B-1

TABLE OF CONTENTS

LIST OF TABLES

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 7-1
Table 7-2
Table 9-1
Table 9-2
Table 16-1
Table 16-2
Table A-1
Table B-1

Integer Arithmetic Instructionsl 2-2
Comparelnstructions i 2-3
Logical Instructionsol 2-4
ShiftInstructions e 2-4
Data MovementInstructions i, 2-5
ConstantlInstructions o it 2-5
Floating-Point Instructions oL 2-7
Branchinstructions o il 2-8
Miscellaneous Instructions il 2-8
Internal Peripheral Address Assignments 7-7
Internal Peripheral Address Assignments 7-8
DRAM Address Multiplexing (by-4 DRAMs) 9-4
DRAM Address Connections to Am29200 Microprocessor (by-4 DRAMs) 9-5
Vector Number Assignments 16-6
Interrupt and Trap Priority Table 16-15
RegisterFieldSummary i A-7
Peripheral Register Field Summary B-6

TABLE OF CONTENTS xi

|_PREFACE |

INTRODUCTION AND OVERVIEW n

THE Am29200™ RISC MICROCONTROLLER

The Am29200 microprocessor is the first in a new series cf 32-bit processors employ-
ing submicron circuits to increase the degree of system integration, yielding very low
system cost. Dense circuitry and a large number of on-chip peripherals minimize the
number of components required to implement embedded systems, while providing
performance superior to that of complex-instruction-set (CISC) microprocessors. New
systems implemented with the Am29200 microprocessor can achieve higher perform-
ance at lower cost than existing systems. The Am29200 microprocessor is software
compatible with all other members of the 29K™ Family, further broadening the cost/
performance range of the 29K Family.

The Am29200 microprocessor was designed expressly to meet the requirements of
embedded applications such as laser printers, graphics processing, application pro-
gram interface (API) accelerators, X terminals and servers, and scanners. Such appli-
cations make the following demands on system design:

e Performance at low cost: A processor must interface with memory and peripherals
with @ minimum number of external components.

« Design flexibility: One basic design must be extensible to an entire product line.

e Reduced time-to-market: A complete suite of development, debug, and
benchmarking tools is critical for reducing product development time.

o A rational, easy upgrade path: The processor family must provide bus-, pin-, and
software-compatibility so processor upgrades are transparent to both hardware and
software.

The Am29200 microprocessor is optimized for any embedded application that re-
quires better-than-CISC performance at minimal system cost. The electronic compo-
nents for many systems, such as personal laser printers, amount to little more than
the Am29200 microprocessor, ROM, DRAM, and electrical buffering.

DESIGN PHILOSOPHY

The 29K Family of processors is the result of a design philosophy that recognizes that
processor performance must be considered in light of the processor's hardware and
software environment. The key to maximizing performance lies in the realization that
the processor is part of an integrated system, and is itself a collection of components
that must be properly integrated.

Processor features must be considered not only on their own merits, but also in rela-
tion to other components of the system. A particular feature that, while considered
alone may increase one aspect of processor performance, may actually decrease the
performance of the total system, because of the burden it places elsewhere in the
system. As an illustration, consider the factors involved in the execution time of any
processor task:

TASKTIME =(INSTRUCTIONS/TASK) *(CYCLES /INSTRUCTION) *(TIME/CYCLE)

INTRODUCTION AND OVERVIEW ~ P-1

To minimize the time taken, it is necessary to minimize the above product. This is not
equivalent to minimizing all the terms that contribute to the product; in fact, this is gen-
erally not possible due to the interaction of the terms.

As an example of the interaction of the previous terms, consider the number of in-
structions required for a task. An attempt to minimize this number, a more or less tra-
ditional approach to processor architecture design, increases the average number of
cycles required for the execution of an instruction, because of the increased number
of operations performed by each instruction. In addition, cycle time is increased be-
cause of instruction-decode time.

A second example of the interaction in the previous equation appears in an attempt to
reduce the cycle time through the pipelining of operations. In theory, the cycle time
can be made arbitrarily small by the definition of an arbitrarily large number of pipeline
stages. In practice, at least in the case of general-purpose processors, pipelining
rarely yields much of its potential benefit. This is due to situations where the pipeline
cannot be kept fully occupied, such as when memory references and branches occur.
In these situations, additional pipeline stages increase the number of cycles required
for an operation, and thus affect the CYCLES/INSTRUCTION term.

OPTIMUM PERFORMANCE

Each of the terms in the previous equation has some minimum bound for a given
implementation technology and task. In general, this minimum bound cannot be ap-
proached without an offsetting increase in the other terms, making the overall product
less-than-optimum. The question then arises, what combination of terms will yield an
optimum product? There are several things to note when answering this question.

The first observation is that the number of operations underlying a given task is more
or less fixed. Any single processor ultimately limits the time required for a task be-
cause it has a single execution unit and a single instruction stream. The operations
that must be performed are reflected in the INSTRUCTIONS /TASK and CYCLES/
INSTRUCTION terms. These operations may be performed by relatively few instruc-
tions, where each instruction takes multiple cycles to execute, or by a larger number
of instructions, where each takes a single cycle to execute. In the first case, the in-
structions are complex; in the second, they are simple.

The point is that the trade-off between simple and complex instructions is not one-to-
one. For example, reducing the number of cycles per instruction by a factor of three
does not increase the number of instructions per task by the same factor. There are
two reasons for this. The first is that even when an instruction set supports complex
operations, a large proportion of the instructions that are executed perform operations
that could be performed as well by simple instructions. The second is that simple
instructions expose more of the internal processor operation to an optimizing com-
piler. This allows the compiler to tailor the organization and sequence of operations to
the task at hand, thereby reducing the total number of instructions executed.

PERFORMANCE LEVERAGE

Another important observation is that there is a tremendous amount of leverage in the
TIME/CYCLE and CYCLES/INSTRUCTION terms. As they are made smaller, they
have a proportionally greater effect on performance.

For example, a reduction of 10 ns in the cycle time of a processor operating with a
200-ns cycle time yields an increase of 5% in the processor’s performance. The same
improvement in a processor operating with a 50-ns cycle time yields a 20% increase
in performance.

INTRODUCTION AND OVERVIEW

Correspondingly, a reduction of 0.2 in the number of cycles per instruction in a proc-
essor averaging 5 cycles per instruction yields a 4% increase in performance. How-
ever, the same reduction yields a 12.5% performance increase in a processor that
averages 1.6 cycles per instruction.

CONCLUSION

It is possible, and desirable, to increase the number of instructions executed for a
given task, and more than make up for the performance impact of this increase by re-
ductions in the cycle time and in the number of cycles per instruction. For example, if
both the cycle time and the number of cycles per instruction are reduced by a factor of
three, while the number of instructions for a given task is allowed to grow by 50%, the
resulting task time is reduced by a factor of six.

The Am29200 microprocessor was designed with the above effects in mind. Maxi-
mum performance is obtained by the optimization of the product of the number of in-
structions per task, the number of cycles per instruction, and the cycle time, not by
minimizing one factor at the expense of the others. This is accomplished by careful
definition of all processor components. In particular:

1. The INSTRUCTION/TASK term is optimized by the definition of simple
instructions. The processor provides an efficient instruction set and a large
number of general-purpose registers to an optimizing, high-level language
compiler. Most reductions in this term are accomplished by the compiler. The
number of instructions for a given task may be greater than the number of
instructions for processors with complex instruction sets. However, this increase is
more than offset by other improvements in processor performance.

2. The CYCLES/INSTRUCTION term is optimized by the data-flow structure and
performance-enhancing features of the processor. A large amount of processor
hardware is dedicated to achieving an average instruction-execution rate that is
close to single-cycle execution.

3. The TIME/CYCLE term is optimized by the implementation technology, the
processor system interface, and judicious use of pipelining. The simplicity of the
instruction set and processor features helps minimize the cycle time.

PURPOSE OF THIS MANUAL

This manual describes the technical features, programming interface, on-chip periph-
erals, and complete instruction set of the Am29200 microprocessor.

INTENDED AUDIENCE

This manual is intended for system hardware and software architects and system
engineers who are designing or are considering designing systems based on the
Am29200 microprocessor.

Am29200 MICROPROCESSOR USER’S MANUAL OVERVIEW

This manual contains information on the Am29200 microprocessor that is essential
for system hardware and software architects and design engineers. Additional
information is available in the form of data sheets, application notes, and other
documentation provided with software products and hardware-development tools.

INTRODUCTION AND OVERVIEW P-3

The information in this manual is organized into eighteen chapters:

Chapter 1 introduces the features and performance aspects of the Am29200
microprocessor.

Chapter 2 describes the programmer’'s model of the Am29200 microprocessor,
including the instruction set and register model.

Chapter 3 expands on the programmer’s model, discussing different data formats and
data handling. Instructions that manipulate extemal data are also discussed.

Chapter 4 details the management of the run-time stack and defines the conventions
that apply to procedure linkage and register usage.

Chapter 5 describes the internal pipelining and the effects of the pipeline on program
behavior. v

Chapter 6 describes the system-protection features provided by the Am29200
microprocessor.

Chapter 7 provides an overview of the processor’s system interfaces and the system
components that are integrated on-chip.

Chapter 8 describes the ROM Interface.
Chapter 9 describes the DRAM Interface.

Chapter 10 describes the Peripheral Interface Adapter, which is used for glueless
attachment of a number of peripheral components.

Chapter 11 describes the DMA Controller.
Chapter 12 describes the Programmable 1/0O Port.
Chapter 13 describes the Parallel Port.

Chapter 14 describes the Serial Port.

Chapter 15 describes the Video Interface.

Chapter 16 provides a description of the interrupt and trap mechanism and the han-
dling of interrupts and traps, including the operation of the on-chip Interrupt Controller.

Chapter 17 describes the software and hardware facilities for debugging and testing.
Chapter 18 provides a detailed description of the instruction set.

For users already familiar with other 29K Family processors, Chapters 7 through 15
describe the on-chip peripherals and system functions unique to the Am29200
microprocessor.

For those readers desiring only a brief overview of the Am29200 microprocessor,
Chapter 1 identifies the outstanding features of the processor. This chapter addresses
the basic software and hardware concerns. Chapters 2, 3, and 5 are recommended
reading for both hardware and software developers.

For software architects and system programmers interested mainly in software-related
issues, Chapters 4, 6, and 16 provide the necessary information. Chapters 17 and 18
also provide related information.

For hardware architects and systems hardware designers interested mainly in hard-
ware-related issues, Chapters 7 through 15, Chapter 17, and Appendix C provide
most of the required information. Chapters 5 and 18 also provide related information.

P-4

INTRODUCTION AND OVERVIEW

29K FAMILY DOCUMENTATION
ORDER NO. TITLE

10620

11426

12990

14779

15723

15176

12175

10626
10957
13089
14721
15039

29K User’s Manual
Describes the Am29000™ microprocessor’s technical features,
programming interface, and complete instruction set.

Fusion29Ks™ Catalog

Provides information on more than 100 tools that speed a 29K Family
embedded product to market. Includes products from over 50 expert
suppliers of embedded development solutions. Design solution
chapters include: laser printer and OCR solutions, graphics solutions,
and networking solutions.

Fusion29K Newsletter
Contains quarterly updates on developments in the 29K Family.

Am29050™ User’s Manual
Describes the Am29050 microprocessor’s technical features,
programming interface, and complete instruction set.

Am29030™ and Am29035™ User’s Manual
Describes the Am29030 and Am29035 microprocessors’ technical
features, programming interface, and complete instruction set.

29K Laser Printer Solutions Brochure

Reviews how the 29K Family of microprocessors fits into the laser
printer marketplace. Includes a description of AMD’s PCL and
PostScript® Laser29K™ Low-Cost Raster Image Processor
demonstration boards.

29K Family Data Book

Provides a comprehensive collection of data sheets for the Am29000
microprocessor, Am29027™ arithmetic accelerator, HighC29K™ Cross
Development Toolkit, and XRAY29K™ Source-Level Debugger. It also
includes application notes to help shorten designers’ leaming curves
and hardware and software development time.

XRAY29K Data Sheet
High C 29K Data Sheet
Am29005™ Data Sheet
EB29K™ Data Sheet
Am29050 Data Sheet

To order literature, contact your local AMD sales office or call: 800-2929-AMD
Ext.#3 (in the U.S.), or 800-531-5202 Ext. 55651 (in Canada), or direct dial from
any location: 512-462-5651.

INTRODUCTION AND OVERVIEW P-5

RELATED PUBLICATIONS
The IEEE Std. 1149.1-1990 (JTAG) may be ordered from:

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014

Los Alamitos, CA 90720-1264
USA

IEEE Catalogue No. SH13144
1-800-CS-BOOKS
714-821-4010 (FAX)

P-6 INTRODUCTION AND OVERVIEW

| CHAPTER 1|

1.1

FEATURES AND PERFORMANCE a

This chapter provides an evaluation of the Am29200 microprocessor as an aid in
considering a particular application. A detailed technical description of the Am29200
microprocessor is contained in subsequent chapters. This chapter informally
describes the features of the processor, concentrating on features which distinguish
the Am29200 microprocessor from other available processors and describing how
these features enhance system performance and cost-effectiveness. This chapter
consists of the following sections:

» Distinctive Characteristics
» Key Features and Benefits
o Performance Overview
« Debugging and Testing

DISTINCTIVE CHARACTERISTICS

Completely integrated system for embedded applications
« Full 32-bit architecture

« CMOS technology/TTL-compatible

» 16-MHz operational frequency

« Cost/performance flexibility. Support for several low-cost memory configurations
allows performance points of 8, 6, 5, and 3 million instructions per second
sustained

« 4-GB effective address space, 304 Mbytes implemented
« 192 general-purpose registers

o Three-address instruction architecture

o Fully pipelined

¢ Glueless system interfaces with on-chip wait-state control
¢ 8-,16-, or 32-bit ROM interface

e 16- or 32-bit DRAM interface

« Burst-mode and page-mode access support

« DRAM mapping on-chip

« Two-channel DMA controller

« Six-port peripheral interface adapter

» 16-line programmable 1/0 port

» Bi-directional video interface

« Serial port (UART)

FEATURES AND PERFORMANCE ~ 1-1

1.2

1.2.1

1.2.1.1

1.2.1.2

« Bi-directional parallel port for IBM-compatible personal computers
o Interrupt controller

o On-chip timer

+ Enhanced debugging support

o IEEE Std.1149.1-1990 (JTAG) compliant Standard Test Access Port and
Boundary-Scan Architecture implementation

KEY FEATURES AND BENEFITS

The Am29200 RISC microcontroller is a highly integrated, 32-bit embedded processor
implemented in complementary metal-oxide semiconductor (CMOS) technology. It is
targeted primarily at printer, imaging, and graphics applications, using a flexible
architecture, a complete set of common system peripherals on-chip, and glueless
interfacing to external memories and peripherals.

The Am29200 microprocessor also establishes a new line of RISC microcontrollers
based on the 29K architecture. This RISC microcontroller product line will allow users
who do not require the very high performance of other 29K Family members to capi-
talize on the very low system cost made possible by the integration of processor and
peripherals.

The Am29200 microprocessor expands the cost/performance range of systems that
can be built with the 29K Family. The Am29200 microprocessor is fully software
compatible with the Am29000, Am29005™, Am29030, Am29035, and Am29050
microprocessors. It can be used in most existing Am29000 microprocessor
applications without software modifications.

A block diagram of the Am29200 microprocessor is shown in Figure 1-1.

Complete Set of Common System Peripherals

The Am29200 microprocessor minimizes system cost by incorporating a complete set
of system facilities commonly found in embedded applications, eliminating the cost of
additional components. The on-chip functions include: a ROM Controller, a DRAM
Controller, a Peripheral Interface Adapter, a DMA Controller, a Programmable 1/O
Port, a Parallel Port, a Serial Port, and an Interrupt Controller. A Video Interface is
also included for printer, scanner, and other imaging applications. These facilities
allow many simple systems to be built using only the Am29200 microprocessor and
extemal ROM and/or DRAM memory.

ROM CONTROLLER (Chapter 8)

The ROM Controlier supports four individual banks of ROM or other static memory,
each with its own timing characteristics. Each ROM bank may be of a different size
and may be either 8, 16, or 32 bits wide. The ROM banks appear as a contiguous
memory area of up to 64 Mb in size. The ROM Controller also supports writes to the
ROM memory space, for devices such as flash EPROMs and SRAMs.

DRAM CONTROLLER (Chapter 9)

The DRAM Controller supports four separate banks of dynamic memory. Each bank
may be a different size and may be either 16 or 32 bits wide. The DRAM banks ap-
pear as a contiguous memory area of up to 64 Mb in size. Four, 64-Kb regions of the
DRAM can be mapped into a 16-Mb virtual address space, supporting system func-
tions such as on-the-fly data compression and decompression.

1-2 FEATURES AND PERFORMANCE

Figure 1-1 Am29200 Microprocessor Block Diagram

TCK
T¥‘Dsl fe— INCLK
DO JTAG 29K Core MEMCLK
TRST >
_ RESET WARN
A | D INTR(3-0)
TRAR1-0)
t STAT(2-0)
P Pausy 1 A@s-0)
e Parallel ROM » 1D(31-0)
PACK
PAUTOFD oerg| Port Controller | | [R/SV WAIT
POE, PWE = ROMCH3-0)
ROMOE
| BURST
- RSWE
TXD.UFCXH)ZS - Serial | DRAM BOOTW
DSR Port Controller "|" L
DTR » RAS(3-0)
¥ CAS(3-0)
VCLK TREE
VDAT . ———={ 2-Channel THOE
LSYNC * Video | DMA .
Interface
PSYNC |, Controller || DREQ(1-0)
DACK(1-0)
TDMA
o) Peripheral [* ‘[;,‘15}3
PIO(15:0) =+ Port Interface oo
Adapter = PIACS5-0)
PIAOE
PIAWE
Interrupt
Controller
1.2.1.3 DMA CONTROLLER (Chapter 11)

The DMA controller provides two channels for transfer of data between the DRAM
and intemal or external peripherals. One of the DMA channels is double buffered to
relax the constraints on the reload time.

1.2.1.4 PERIPHERAL INTERFACE ADAPTER (Chapter 10)

The Peripheral Interface Adapter (PIA) permits glueless interfacing to as many as six
external peripheral chips. The PIA allows for additional system features implemented
by extenal peripheral chips.

1.2.1.5 INTERRUPT CONTROLLER (Section 16.8)

The Interrupt Controller generates and reports the status of interrupts caused by
on-chip peripherals.

FEATURES AND PERFORMANCE 1-3

1.2.1.6

1.2.1.7

1.2.1.8

1.2.1.9

1.2.2

1.2.3

1.2.4

1/0 PORT (Chapter 12)

The 1/0O Port permits direct access to 16 individually programmable extemal input/
output signals. Eight of these signals can be configured to cause interrupts.

VIDEO INTERFACE (Chapter 15)

The Video Interface permits direct connection to a number of laser marking engines,
video displays, or raster input devices such as scanners.

SERIAL PORT (Chapter 14)
The Serial Port implements a full-duplex UART.

PARALLEL PORT (Chapter 13)

The Parallel Port implements a bidirectional IBM PC-compatible parallel interface to a
host processor.

Wide Range of Price/Performance Points

To reduce design costs and time-to-market, one basic system design can be used as
the foundation for an entire product line. From this design, numerous implementations
of the product at various levels of price and performance may be derived with mini-
mum time, effort, and cost.

The Am29200 microprocessor provides this capability through programmable memory
widths, programmable wait states, burst-mode and page-mode access support, and
hardware and 29K software compatibility. A system can be upgraded without
hardware and software redesign using various memory architectures.

The ROM controller accommodates memories that are either 8, 16, or 32 bits wide,
and the DRAM controller accommodates dynamic memories that are either 16 or 32
bits wide. This unique feature provides a flexible interface to low-cost memory as well
as a convenient, flexible upgrade path. For example, a system can start with a 16-bit
memory design and can subsequently improve performance by migrating to a 32-bit
memory design. One particular advantage is the ability to add memory in
half-megabyte increments. This provides significant cost savings for applications that
do not require larger memory upgrades.

The Am29200 microprocessor allows users to address a wide range of cost perform-
ance points, with higher performance and lower cost than existing designs based on
CISC microprocessors.

Glueless System Interfaces

The Am29200 microprocessor also minimizes system cost by providing a glueless
attachment to extemal ROMs, DRAMs, and other peripheral components. Processor
outputs have edge-rate control that allows them to drive a wide range of load capaci-
tances with low noise and ringing. This eliminates the cost of external logic and
buffering.

Pin-, Bus-, and Software-Compatibility

Compatibility within a processor family is critical for achieving a rational, easy upgrade
path. The Am29200 microprocessor is the first member of a pin-compatible series of
RISC microcontrollers. Future members of this family will improve in price and
performance and system capabilities without requiring that users redesign their

-

1-4 FEATURES AND PERFORMANCE

1.2.5

1.3.1

system hardware or software. Pin compatibility ensures a convenient upgrade path
for future systems.

Moreover, the Am29200 microprocessor is software compatible with existing mem-
bers of the 29K Family (the Am29000, Am29005, Am29030, Am29035, and Am29050
microprocessors). The Am29200 microprocessor provides a migration path to low
cost, highly integrated systems from other 29K Family members, without requiring
expensive rewrites of applications software.

Complete Development and Support Environment

A complete development and support environment is vital for reducing a product’s
time-to-market. Advanced Micro Devices (AMD) has created a standard development
environment for the 29K Family of processors. In addition, the Fusion29KSM
third-party support organization provides the most comprehensive customer/partner
program in the embedded processor market.

Advanced Micro Devices offers a complete set of hardware and software tools for
design, integration, debugging, and benchmarking. These tools, which are available
now for the 29K Family, include the following:

e HighC29K™ optimizing C compiler with assembler, linker, ANSI library functions,
and 29K architectural simulator

o XRAY29K™ source-level debugger
* Debug monitor
o Execution board

In addition, Advanced Micro Devices has developed a standard host interface (HIF)
for OS services, and extensions for the UNIX common object file format (COFF).

This support is augmented by an engineering hotline, an on-line bulletin board, and
field application engineers.

PERFORMANCE OVERVIEW

The Am29200 microprocessor offers a significant margin of performance over CISC
microprocessors in existing embedded designs, since the majority of processor
features were defined for the maximum achievable performance at a very low cost.
This section describes the features of the Am29200 microprocessor from the point of
view of system performance.

Instruction Timing (Section 2.1)

The Am29200 microprocessor uses an Arithmetic/Logic Unit, a Field Shift Unit, and a
Prioritizer to execute most instructions. Each of these is organized to operate on
32-bit operands and provide a 32-bit result. All operations are performed in a single
cycle.

The performance degradation of load and store operations is minimized in the
Am29200 microprocessor by overlapping them with instruction execution, by taking
advantage of pipelining, and by organizing the flow of external data into the processor
so that the impact of external accesses is minimized.

FEATURES AND PERFORMANCE 1-5

1.3.2

1.3.3

1.3.4

1.3.5

Pipelining (Section 5.1)

Instruction operations are overlapped with instruction fetch, instruction decode and
operand fetch, instruction execution, and result write-back to the Register File.
Pipeline forwarding logic detects pipeline dependencies and routes data as required,
avoiding delays that might arise from these dependencies.

Pipeline interlocks are implemented by processor hardware. Except for a few special
cases, it is not necessary to rearrange programs to avoid pipeline dependencies,
although this is sometimes desirable for performance.

Burst-Mode and Page-Mode Memories (Sections 8.2.4, 9.2.6)

The Am29200 microprocessor directly supports burst-mode memories such as AMD’s
27B010 burst-mode EPROM. The burst-mode memory supplies instructions at the
maximum bandwidth, without the complexity of an external cache or the performance
degradation due to cache misses.

The Am29200 microprocessor also can use the page-mode capability of common
DRAMs to improve the access time in cases where page-mode accesses can be
used. This is particularly useful in very low-cost systems with 16-bit-wide DRAMs,
where the DRAM must be accessed twice for each 32-bit operand.

Instruction Set Overview (Chapter 2)

The Am29200 microprocessor employs a three-address instruction set architecture.
The compiler or assembly-language programmer is given complete freedom to
allocate register usage. There are 192 general-purpose registers, allowing the
retention of intermediate calculations and avoiding needless data destruction.
Instruction operands may be contained in any of the general-purpose registers, and
the results may be stored into any of the general-purpose registers.

The Am29200 instruction set contains 117 instructions which are divided into nine
classes. These classes are integer arithmetic, compare, logical, shift, data movement,
constant, floating-point, branch, and miscellaneous. The floating-point instructions are
not executed directly, but are emulated by trap handlers.

All directly implemented instructions are capable of executing in one processor cycle,
with the exception of interrupt retums, loads, and stores.

Data Formats (Chapter 3)

The Am29200 microprocessor defines a word as 32 bits of data, a half-word as 16
bits, and a byte as 8 bits. The hardware provides direct support for word-integer
(signed and unsigned), word-logical, word-boolean, half-word integer (signed and
unsigned), and character data (signed and unsigned).

Word-boolean data is based on the value contained in the most significant bit of the
word. The vaiues TRUE and FALSE are represented by the MSB values 1 and 0,
respectively.

Other data fermats, such as character strings, are supported by instruction se-
quences. Floating-point formats (single and double precision) are defined for the
processor; however, there is no direct hardware support for these formats in the
Am29200 microprocessor.

1-6 FEATURES AND PERFORMANCE

1.3.6

1.3.7

1.3.8

Protection (Chapter 6)

The Am29200 microprocessor offers two mutually exclusive modes of execution, the
User and Supervisor modes, which restrict or permit accesses to certain processor
registers and extemal storage locations.

The Register File may be configured to restrict accesses to Supervisor-mode
programs on a bank-by-bank basis.

DRAM Mapping (Section 9.2.4)

The Am29200 microprocessor provides a 16-Mb region of virtual memory that is
mapped to one of four 64-Kb blocks in the physical DRAM memory. This supports
system functions such as on-the-fly data compression and decompression, allowing a
large data structure such as a frame buffer to be stored in a compressed format while
the application software operates on a region of the structure that is decompressed.
Using a mechanism that is analogous to demand paging, system software moves
data between the compressed and decompressed formats in a way that is invisible to
the applications software. This feature can greatly reduce the amount of memory
required for printing, imaging, and graphics applications.

Interrupts and Traps (Chapter 16)

When an Am29200 microprocessor takes an interrupt or trap, it does not
automatically save its current state information in memory. This lightweight interrupt
and trap facility greatly improves the performance of temporary interruptions such as
simple operating-system calls which require no saving of state information.

In cases where the processor state must be saved, the saving and restoring of state
information is under the control of software. The methods and data structures used to
handle interrupts—and the amount of state saved—may be tailored to the needs of a
particular system.

Interrupts and traps are dispatched through a 256-entry Vector Table which directs
the processor to a routine that handles a given interrupt or trap. The Vector Table
may be relocated in memory by the modification of a processor register. There may
be multiple Vector Tables in the system, though only one is active at any given time.

The Vector Table is a table of pointers to the interrupt and trap handlers, and requires
only 1 Kbyte of memory. The processor performs a vector fetch every time an inter-
rupt or trap is taken. The vector fetch requires at least three cycles, in addition to the
number of cycles required for the basic memory access.

DEBUGGING AND TESTING (Chapter 17)

The Am29200 microprocessor provides debugging and testing features at both the
software and hardware levels.

Software debugging is facilitated by the instruction trace facility and instruction
breakpoints. Instruction tracing is accomplished by forcing the processor to trap after
each instruction has been executed. Instruction breakpoints are implemented by the
HALT instruction or by a software trap.

The processor provides two additional features to assist system debugging and test-
ing. The first feature, the Test/Development Interface, is composed of a group of pins
that indicate the state of the processor and control the operation of the processor. The
second feature is an IEEE Std. 1149.1-1990 (JTAG) compliant Standard Test Access

FEATURES AND PERFORMANCE 1-7

Port and Boundary-Scan Architecture. The Test Access Port provides a scan interface
for testing system hardware in a production environment, and contains extensions
that allow a hardware-development system to control and observe the processor
without interposing hardware between the processor and system.

18 FEATURES AND PERFORMANCE

| CHAPTER 2|

PROGRAMMING a

2.1.1

2.1.2

This chapter focuses on programming the Am29200 microprocessor. First, this
chapter presents an instruction set overview. It then describes the register model,
emphasizing the general- and special-purpose registers. This chapter also describes
certain special-purpose registers that deal directly with instruction execution. Finally,
this chapter describes general considerations related to applications programming.

INSTRUCTION SET

The Am29200 microprocessor recognizes 117 instructions. All instructions execute in
a single cycle, except for IRET, IRETINV, LOADM, STOREM, and certain arithmetic
instructions such as floating-point instructions. Floating-point and integer multiply and
divide instructions are not implemented directly in hardware, but are implemented by
a virtual arithmetic interface invoked using instruction traps (see Section 2.8).

Most instructions deal with general-purpose registers for operands and results; how-
ever, in most instructions, an 8-bit constant can be used in place of a register-based
operand. Some instructions deal with special-purpose registers and external devices
and memories.

This section describes the nine instruction classes in the Am29200 microprocessor,
and provides a brief summary of instruction operations. A detailed instruction specifi-
cation is contained in Chapter 18. Section 19.1 describes the nomenclature used
here.

If the processor attempts to execute an instruction which is not implemented, an
lllegal Opcode trap occurs, unless the instruction is reserved for emulation (see
Section 2.1.10). Reserved instructions are assigned individual traps.

Integer Arithmetic

The Integer Arithmetic instructions perform add, subtract, multiply, and divide opera-
tions on word-length integers. Certain instructions in this class cause traps if signed or
unsigned overflow occurs during the execution of the instruction. There is support for
multiprecision arithmetic on operands whose lengths are multiples of words. All in-
structions in this class set the ALU Status Register. The integer arithmetic instructions
are shown in Table 2-1. In the Am29200 implementation, the integer multiply and
divide instructions cause traps to routines which perform the floating-point operations.

Compare

The Compare instructions (Table 2-2) test for various relationships between two
values. For all Compare instructions except the CPBYTE instruction, the comparisons
are performed on word-length signed or unsigned integers. There are two types of
Compare instructions. The first type places a Boolean value reflecting the outcome of
the compare into a general-purpose register. For the second type, assert instructions,
instruction execution continues only if the comparison is true; otherwise a trap occurs.
The assert instructions specify a vector for the trap (see Section 17.2).

PROGRAMMING 21

Table 2-1 Integer Arithmetic Instructions

Mnemonic Operation Description
ADD DEST « SRCA + SRCB
ADDS DEST « SRCA + SRCB

IF signed overflow THEN Trap (Out of Range)
ADDU DEST « SRCA + SRCB

IF unsigned overflow THEN Trap (Out of Range)
ADDC DEST« SRCA+SRCB+C
ADDCS DEST« SRCA+SRCB+C

IF signed overflow THEN Trap (Out of Range)
ADDCU DEST« SRCA+SRCB+C

IF unsigned overflow THEN Trap (Out of Range)
suB DEST « SRCA-SRCB
SUBS DEST «- SRCA-SRCB

. IF signed overflow THEN Trap (Out of Range)

SUBU DEST « SRCA-SRCB

IF unsigned underflow THEN Trap (Out of Range)
SUBC DEST« SRCA-SRCB-1+C
SUBCS DEST« SRCA-SRCB-1+C

IF signed overflow THEN Trap (Out of Range)
SuBCU DEST« SRCA-SRCB-1+C

IF unsigned underflow THEN Trap (Out of Range)
SUBR DEST «- SRCB-SRCA
SUBRS DEST « SRCB-SRCA

IF signed overflow THEN Trap (Out of Range)
SUBRU DEST« SRCB-SRCA

IF unsigned underflow THEN Trap (Out of Range)
SUBRC DEST« SRCB-SRCA-1+C
SUBRCS DEST« SRCB-SRCA-1+C

IF signed overflow THEN Trap (Out of Range)
SUBRCU DEST« SRCB-SRCA-1+C

IF unsigned underflow THEN Trap (Out of Range)
MULTIPLU DEST « SRCA - SRCB (unsigned)
MULTIPLY DEST « SRCA - SRCB (signed)
MUL Perform one-bit step of a multiply operation (signed)
MULL Complete a sequence of multiply steps
MULTM DEST « SRCA - SRCB (signed), most significant bits
MULTMU DEST « SRCA - SRCB (unsigned), most significant bits
MULU Perform one-bit step of a multiply operation (unsigned)
DIVIDE DEST « (Q//SRCA)/SRCB (signed)

Q « Remainder
DIVIDU DEST « (Q//SRCA)/SRCB (unsigned)

Q « Remainder
DIVo Initialize for a sequence of divide steps (unsigned)
DIV Perform one-bit step of a divide operation (unsigned)
DIVL Complete a sequence of divide steps (unsigned)
DIVREM Generate remainder for divide operation (unsigned)

22 PROGRAMMING

Table 2-2

Compare Instructions

Mnemonic Operation Description
CPEQ IF SRCA =SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPNEQ IF SRCA <> SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLT IF SRCA <SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLTU IF SRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPLE IF SRCA <SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLEU IF SRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPGT IF SRCA >SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPGTU IF SRCA > SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPGE If SRCA>SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPGEU IF SRCA > SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPBYTE IF (SRCA.BYTEO=SRCB.BYTEO) OR
(SRCA.BYTE1=SRCB.BYTE1) OR
(SRCA.BYTE2=SRCB.BYTE2) OR
(SRCA.BYTE3=SRCB.BYTE3) THEN DEST «- TRUE
ELSE DEST « FALSE
ASEQ IF SRCA =SRCB THEN Continue
ELSE Trap (VN)
ASNEQ IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)
ASLT IF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLTU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASLE IF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLEU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGT IF SRCA > SRCB THEN Continue
ELSE Trap (VN)
ASGTU IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGE IF SRCA >SRCB THEN Continue
ELSE Trap (VN)
ASGEU IF SRCA > SRCB (unsigned) THEN Continue

ELSE Trap (VN)

The assert instructions support run-time operand checking and operating-system
calls. If the trap occurs in the User mode, and a trap number between 0 and 63 is
specified by the instruction, a Protection Violation trap occurs.

2.1.3 Logical
The Logical instructions (Table 2-3) perform a set of bit-by-bit Boolean functions on
word-length bit strings. All instructions in this class set the ALU Status Register.

21.4 Shift
The Shift instructions (Table 2-4) perform arithmetic and logical shifts. All but the
EXTRACT instruction operate on word-length data and produce a word-length result.
The EXTRACT instruction operates on double-word data and produces a word-length
result. If both parts of the double-word for the EXTRACT instruction are from the
same source, the EXTRACT operation is equivalent to a rotate operation. For each
operation, the shift count is a 5-bit integer, specifying a shift amount in the range of 0
to 31 bits.

2.1.5 Data Movement
The Data Movement instructions (Table 2-5) move bytes, half-words, and words
between processor registers. In addition, they move data between general-purpose
registers and external devices, and memories. The instructions LOADL and STOREL
are provided for compatibility with other 29K processors and are treated as LOAD and
STORE instructions. Similarly, the instructions MFTLB and MTTLB perform no opera-
tion, except that both are privileged instructions.

Table 2-3 Logical Instructions
Mnemonic Operation Description
AND DEST « SRCA & SRCB
ANDN DEST « SRCA & ~ SRCB
NAND DEST «~ (SRCA & SRCB)
OR DEST « SRCAISRCB
NOR DEST « ~(SRCAISRCB)
XOR DEST « SRCAASRCB
XNOR DEST « ~ (SRCAASRCB)

Table 2-4 Shift Instructions

Mnemonic Operation Description

SLL DEST « SRCA << SRCB (zero fill)

SRL DEST « SRCA >> SRCB (zero fill)

SRA DEST « SRCA >> SRCB (sign fill)

EXTRACT DEST « high-order word of (SRCA//SRCB << FC)

24 PROGRAMMING

Table 2-5 Data Movement Instructions

Mnemonic Operation Description

LOAD DEST « EXTERNAL WORD [SRCB]

LOADL DEST « EXTERNAL WORD [SRCB]

LOADSET DEST « EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] « h'FFFFFFFF

LOADM DEST.. DEST + COUNT «

EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT - 4]

STORE EXTERNAL WORD [SRCB]« SRCA
STOREL EXTERNAL WORD [SRCB] «- SRCA
STOREM EXTERNAL WORD [SRCB] ..

EXTERNAL WORD [SRCB + COUNT - 4] «
SRCA .. SRCA + COUNT

EXBYTE DEST « SRCB, with low-order byte replaced by byte in SRCA
selected by BP

EXHW DEST « SRCB, with low-order half-word replaced by half-word in SRCA
selected by BP

EXHWS DEST « half-word in SRCA selected by BP, sign-extended to 32 bits

INBYTE DEST « SRCA, with byte selected by BP replaced by low-order byte
of SRCB

INHW DEST « SRCA, with half-word selected by BP replaced by low-order
half-word of SRCB

MFSR DEST « SPECIAL

MFTLB no operation (privileged)

MTSR SPDEST « SRCB

MTSRIM SPDEST « 0116

MTTLB no operation (privileged)

2.1.6 Constant

The Constant instructions (Table 2-6) provide the ability to place half-word and word
constants into registers. Most instructions in the instruction set allow an 8-bit constant
as an operand. The Constant instructions allow the construction of larger constants.

Table 2-6 Constant Instructions
Mnemonic Operation Description
CONST DEST «0I16
CONSTH Replace high-order half-word of SRCA by 116
CONSTN DEST« 1116

PROGRAMMING 25

2.1.7

2.1.8

2.1.9

2.1.10

Floating-Point

The Floating-Point instructions (Table 2-7) provide operations on single-precision
(32-bit) or double-precision (64-bit) floating-point data. They also provide conversions
between single-precision, double-precision, and integer number representations. In
the Am29200 processor implementation, these instructions cause traps to routines
which perform the floating-point operations.

Branch

The Branch instructions (Table 2-8) control the execution flow of instructions. Branch
target addresses may be absolute, relative to the Program Counter (with the offset
given by a signed instruction constant), or contained in a general-purpose register.
For conditional jumps, the outcome of the jump is based on a Boolean value in a
general-purpose register. Procedure calls are unconditional, and save the return
address in a general-purpose register. All branches have a delayed effect; the instruc
tion following the branch is executed regardless of the outcome of the branch.

The Miscellaneous instructions (Table 2-9) perform various operations that cannot be
grouped into other instruction classes. In certain cases, these are control functions
available only to Supervisor-mode programs. The instructions INV and IRETINV are
provided for compatibility with other 29K processors. INV performs no operation, and
IRETINV performs the same operations as IRET. Both are privileged instructions.

Reserved Instructions

Sixteen Am29200 operation codes are reserved for instruction emulation. Each of
these instructions causes a trap and sets the indirect pointers IPC, IPA, and IPB. The
relevant operation codes, and the corresponding trap vectors, are as follows:

Operation Codes (Hexadecimal) Trap Vector Numbers (Decimal)

D8-DD 24-29
E7-E9 39-41
F8 56

FA-FF 58-63

The reserved instructions are-intended for future processor enhancements, and
users desiring compatibility with future processor versions should not use them for
any purpose.

REGISTER MODEL

The Am29200 microprocessor has two classes of registers that are accessible by
instructions. These are the general-purpose registers and the special-purpose regis-
ters. Any operation available to the Am29200 microprocessor can be performed on
the general-purpose registers, while special-purpose registers are accessed only by
the instructions MTSR, MTSRIM, and MFSR. This section describes the general-
purpose and special-purpose registers.

26 PROGRAMMING

Table 2-7 Floating-Point Instructions

Mnemonic Operation Description
FADD DEST (single-precision) « SRCA (single-precision)
+SRCB (single-precision)
DADD DEST (double-precision) <« SRCA (double-precision)
+ SRCB (double-precision)
FSUB DEST (single-precision) «SRCA (double-precisioh)
—SRCB (single-precision)
DSuB DEST (doubie-precision) « SRCA (doubie-precision)
—SRCB (double-precision)
FMUL DEST (single-precision) « SRCA (single-precision)
- SRCB (single-precision)
FDMUL DEST (double-precision) « SRCA (single-precision)
- SRCB (single-precision)
DMUL DEST (double-precision) <« SRCA (double-precision)
- SRCB (double-precision)
FDIV DEST (single-precision) « SRCA (single-precision
/SRCB (single-precision)
DDIV DEST (double-precision) « SRCA (double-precision)
/ SRCB (double-precision)
FEQ IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
DEQ IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
FGE IF SRCA (single-precision) >= SRCB (single-precision
THEN DEST « TRUE
ELSE DEST « FALSE
DGE IF SRCA (double-precision) >= SRCB (double-precision
THEN DEST « TRUE
ELSE DEST « FALSE
FGT IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
DGT IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
SQRT DEST (single-precision, double-precision)
« SQRT [SRCA (single-precision, double-precision)]
CONVERT DEST (integer, single-precision, double-precision)
« SRCA (integer, single-precision, double-precision)
CLASS DEST « CLASS [SRCA (single-precision, double-precision)]

PROGRAMMING 2-7

Table 2-8

Branch Instructions

Mnemonic Operation Description

CALL DEST « PC//00+8
PC « TARGET
Execute delay instruction

CALLI DEST « PC//00+8
PC« SRCB
Execute delay instruction

JMP PC « TARGET
Execute delay instruction

JMPI PC« SRCB
Execute delay instruction

JMPT IF SRCA =TRUE THEN PC « TARGET
Execute delay instruction

JMPTI IF SRCA =TRUE THEN PC « SRCB
Execute delay instruction

JMPF IF SRCA =FALSE THEN PC « TARGET
Execute delay instruction

JMPFI IF SRCA =FALSE THEN PC « SRCB
Execute delay instruction

JMPFDEC IF SRCA=FALSE THEN

SRCA « SRCA -1

PC « TARGET
ELSE

SRCA« SRCA-1
Execute delay instruction

Table 2-9 Miscellaneous Instructions
Mnemonic Operation Description
cLz Determine number of leading zeros in a word
SETIP Set IPA, IPB, and IPC with operand register numbers
EMULATE Load IPA and IPB with operand register numbers, and Trap (VN)
INV No operation
IRET Perform an interrupt retum sequence
IRETINV Perform an interrupt return sequence
HALT Enter Halt mode
2.2.1 General-Purpose Registers

The Am29200 microprocessor incorporates 192 general-purpose registers. The or-
ganization of the general-purpose registers is diagrammed in Figure 2-1.

General-purpose registers hold the following types of operands for program use:
1. 32-bit addresses
2. 32-bit signed or unsigned integers

28 PROGRAMMING

Figure 2-1

Global
Registers

Local
Registers

<

<

General-Purpose Register Organization

Absolut
REG‘;Q General-Purpose
0 Indirect Pointer Access
1 Stack Pointer
2-63 Not Implemented
64 Global Register 64
65 Global Register 65
66 Global Register 66
L] L]
[] []
L] L
126 Global Register 126
127 Global Register 127
128 Local Register 125
129 Local Register 126
130 Local Register 127
131 Local Register 0
132 Local Register 1
L] L]
L] L J
L] []
254 Local Register 123
255 Local Register 124

1—|

Stack
Pointer=131
(example)

PROGRAMMING 29

2.2.1.1

2.2.1.2

. 32-bit branch-target addresses

. 32-bit logical bit strings

. 8-bit signed or unsigned characters

. 16-bit signed or unsigned integers

. Word-length Booleans

. Single-precision floating-point numbers

. Double-precision floating-point numbers (in two register locations)

Because a large number of general-purpose registers are provided, a large amount of
frequently used data can be kept on-chip, where access time is fastest.

Am29200 instructions can specify two general-purpose registers for source operands,
and one general-purpose register for storing the instruction result. These registers are
specified by three 8-bit instruction fields containing register numbers. A register may
be specified directly by the instruction, or indirectly by one of three special-purpose
registers.

REGISTER ADDRESSING

The general-purpose registers are partitioned into 64 global registers and 128 local
registers, differentiated by the most significant bit of the register number. The
distinction between global and local registers is the result of register-addressing
considerations.

The following terminology is used to describe the addressing of general-purpose
registers:

1. Register number—this is a software-level number for a general-purpose register.
For example, this is the number contained in an instruction field. Register
numbers range from O to 255.

2. Global-register number—this is a software-level number for a global register.
Global-register numbers range from 0 to 127.

3. Local-register number—this is a software-level number for a local register.
Local-register numbers range from 0 to 127.

© O N O O~ W

4. Absolute-register number—this is a hardware-level number used to select a
general-purpose register in the Register File. Absolute-register numbers range
from O to 255.

GLOBAL REGISTERS

When the most significant bit of a register number is 0, a global register is selected.
The seven least significant bits of the register number give the global-register number.
For global registers, the absolute-register number is equivalent to the register num-
ber.

Global registers 2 through 63 are not implemented. An attempt to access these regis-
ters yields unpredictable results; however, they may be protected from User-mode
access by the Register Bank Protect Register (see Section 7.2.1).

The register numbers associated with Global Registers 0 and 1 have special mean-
ing. The number for Global Register 0 specifies that an indirect pointer is to be used
as the source of the register number (see Section 2.3); there is an indirect pointer for
each of the instruction operand/result registers. Global Register 1 contains the Stack
Pointer, which is used in the addressing of local registers.

210 PROGRAMMING

2.2.13

2.2.1.4

2.2.2

LOCAL REGISTERS

When the most significant bit of a register number is 1, a local register is selected.
The seven least significant bits of the register number give the local-register number.
For local registers, the absolute-register number is obtained by adding the local-
register number to bits 8-2 of the Stack Pointer and truncating the result to seven bits;
the most significant bit of the original register number is unchanged (i.e., it remains
a1l).

The Stack Pointer addition applied to local-register numbers provides a limited form
of base-plus-offset addressing within the local registers. The Stack Pointer contains
the 32-bit base address. This assists run-time storage management of variables for
dynamically nested procedures (see Chapter 4).

LOCAL-REGISTER STACK POINTER

The Stack Pointer is a 32-bit register that may be an operand of an instruction as any
other general-purpose register. However, a shadow copy of Global Register 1 is
maintained by processor hardware for use in local-register addressing. This shadow
copy is set only with the results of Arithmetic and Logical instructions. If the Stack
Pointer is set with the result of any other instruction class, local registers cannot be
accessed predictably until the Stack Pointer is set once again with an Arithmetic or
Logical instruction.

A modification of the Stack Pointer has a delayed effect on the addressing of local
registers, as discussed in Section 6.6.

Special-Purpose Registers

The Am29200 microprocessor contains 24 special-purpose registers. The organiza-
tion of the special-purpose registers is shown in Figure 2-2.

Special-purpose registers provide controls and data for certain processor operations.
Some special-purpose registers are updated dynamically by the processor, independ-
ent of software controls. Because of this, a read of a special-purpose register follow-
ing a write does not necessarily get the data that was written.

Some special-purpose registers have fields reserved for future processor implementa-
tions. When a special-purpose register is read, a bit in a reserved field is read as a 0.
An attempt to write a reserved bit with a 1 has no effect; however, this should be
avoided because of upward-compatibility considerations, except for bits 5 and 6 of the
Current Processor Status Register. These bits are used to disable address transla-
tion in other 29K processors and may be written with 1 in the Am29200
microprocessor.

The special-purpose registers are accessed by explicit data movement only. Instruc-
tions that move data to or from a special-purpose register specify the special-purpose
register by an 8-bit field containing a special-purpose register number. Register num-
bers are specified directly by instructions.

The special-purpose registers are partitioned into protected and unprotected regis-
ters. Special-purpose registers numbered 0—127 and 160-255 are protected (note
that not all of these are implemented). Special-purpose registers numbered 128-159
are unprotected (again, not all are implemented).

Protected special-purpose registers numbered 0-127 are accessible only by pro-
grams executing in the Supervisor mode. An attempted read or write of a special-
purpose register by a User-mode program causes a protection violation trap to occur.
Special-purpose registers numbered 160-255, though architecturally unprotected, are
not accessible by programs in the User mode or the Supervisor mode. These register

PROGRAMMING ~ 2-11

Figure 2-2

Special-Purpose Registers
Register Number Protected Registers Mnemonic
0 Vector Area Base Address VAB
1 Old Processor Status OPS
2 Current Processor Status CPS
3 Configuration CFG
4 Channel Address CHA
5 Channel Data CHD
6 Channel Control CHC
7 Register Bank Protect RBP
8 Timer Counter TMC
9 Timer Reload TMR
10 Program Counter 0 PCO
11 Program Counter 1 PC1
12 Program Counter 2 PC2
Unprotected Registers
128 Indirect Pointer C IPC
129 Indirect Pointer A IPA
130 Indirect Pointer B ' IPB
131 Q Q
132 ALU Status ALU
133 Byte Pointer BP
134 Funnel Shift Count FC
135 Load/Store Count Remaining CR
160 Floating-Point Environment (virtual) FPE
161 Integer Environment (virtual) INTE
162 Floating-Point Status (virtual) FPS

2.3

numbers are reserved for virtual registers in the arithmetic architecture, and any
attempted access causes a Protection Violation trap.

The Floating-Point Environment Register, Integer Environment Register, and Floating-
Point Status Register are not implemented in processor hardware. These registers
are implemented via the virtual arithmetic interface provided on the Am29200
microprocessor (see Section 2.8).

An attempted read of an unimplemented special-purpose register yields an unpredict-
able value. An attempted write of an unimplemented, protected special-purpose
register has an unpredictable effect on processor operation, unless the write causes a
Protection Violation. An attempted write of an unimplemented, unprotected special-
purpose register has no effect; however, this should be avoided because of upward-
compatibility considerations.

ADDRESSING REGISTERS INDIRECTLY

Specifying Global Register 0 as an instruction operand register or result register
causes an indirect access to the general-purpose registers. In this case, the

212 pROGRAMMING

absolute-register number is provided by an indirect pointer contained in a special-
purpose register.

Each of the three possible registers for instruction execution has an associated 8-bit
indirect pointer. Indirect register numbers can be selected independently for each of
the three operands. Since the indirect pointers contain absolute-register numbers, the
number in an indirect pointer is not added to the Stack Pointer when local registers
are selected.

The indirect pointers are set by the MTSR, MTSRIM, SETIP, and EMULATE instruc-
tions and by floating-point, MULTIPLY, MULTM, MULTIPLU, MULTMU,
DIVIDE, and DIVIDU instructions.

For a move-to-special-register instruction, an indirect pointer is set with bits 9-2 of the
32-bit source operand. This provides consistency between the addressing of words in
general-purpose registers and the addressing of words in external devices or memo-
ries. A modification of an indirect pointer using a move-to-special-register instruction
has a delayed effect on the addressing of general-purpose registers, as discussed in
Section 6.6.

For the remaining instructions, all three indirect pointers are set simultaneously with
the absolute-register numbers derived from the register numbers specified by the
instruction. For any local registers selected by the instruction, the Stack-Pointer
addition is applied to the register numbers before the indirect pointers are set.

Except when an indirect pointer is set by a move-to-special-register instruction,
register numbers stored into the indirect pointers are checked for bank-protection
violations at the time that the indirect pointers are set.

2.3.1 Indirect Pointer C (IPC, Register 128)
This unprotected special-purpose register (Figure 2-3) provides the RC-operand
register number (see Section 19.3) when an instruction RC field has the value zero
(i.e., when Global Register 0 is specified).
Figure 2-3 Indirect Pointer C Register
31 23 15 7 0
trrrerererrrrr et ety rerrrrni
Reserved IPC ojo
Bits 31-10: Reserved.
Bits 9-2: Indirect Pointer C (IPC)—The 8-bit IPC field contains an absolute-register
number for a general-purpose register. This number directly selects a register (Stack-
Pointer addition is not performed in the case of local registers).
Bits 1-0: Zeros—The IPC field is aligned for compatibility with word addresses.
2.3.2 Indirect Pointer A (IPA, Register 129)

This unprotected special-purpose register (Figure 2-4) provides the RA-operand
register number (see Section 19.3) when an instruction RA field has the value zero
(i.e., when Global Register 0 is specified).

PROGRAMMING 2-13

Figure 2-4 indirect Pointer A Register

31 23 15 7 0
Reserved IPA ojo

Bits 31-10: Reserved.
Bits 9-2: Indirect Pointer A (IPA)}—The 8-bit IPA field contains an absolute-
register number for either a general-purpose register or a local register. This number
directly selects a register (Stack-Pointer addition is not performed in the case of
local registers).
Bits 1-0: Zeros—The IPA field is aligned for compatibility with word addresses.

2.3.3 Indirect Pointer B (IPB, Register 130)
This unprotected special-purpose register (Figure 2-5) provides the RB-operand
register number (see Section 19.3) when an instruction RB field has the value zero
(i.e., when Global Register 0 is specified).

Figure 2-5 Indirect Pointer B Register
31 23 15 7 0

Frerertrrrrirr ettt ririrrl
Reserved PB oo

Bits 31-10: Reserved.
Bits 9-2: Indirect Pointer B (IPB)}—The 8-bit IPB field contains an absolute-register
number for a general-purpose register. This number directly selects a register (Stack-
Pointer addition is not performed in the case of local registers).
Bits 1-0: Zeros—The IPB field is aligned for compatibility with word addresses.

2.4 INSTRUCTION ENVIRONMENT
This section describes the special-purpose registers that affect the execution of
floating-point and integer arithmetic instructions.

2.4.1 Floating-Point Environment {FPE, Register 160)

This unprotected special-purpose register (Figure 2-6) contains control bits that affect
the execution of floating-point operations. This register is not implemented directly by
processor hardware, but is implemented by the virtual arithmetic interface.

214 PROGRAMMING

Figure 2-6

Floating-Point Environment Register

31 23 15
Terrrrrerrreerrrrrerrryyl

Reserved FRM

- -
- o -

Bits 31-9: Reserved.

Bit 8: Fast Float Select (FF)—The FF bit being 1 enables fast floating-point opera-
tions, in which certain requirements of the IEEE floating-point specification are not
met. This improves the performance of certain operations by sacrificing conformance
to the IEEE specification.

Bits 7-6: Floating-Point Round Mode (FRM)—This field specifies the default mode
used to round the results of floating-point operations, as follows:

FRM1-0 Round Mode

00 Round to nearest
o1 Round to — oo

10 Round to +c

1 Round to zero

Bit 5: Floating-Point Divide-By-Zero Mask (DM)—If the DM bit is 0, a Floating-Point
Exception trap occurs when the divisor of a floating-point division operation is zero
and the dividend is a non-zero, finite number. If the DM bit is 1, a Floating-Point
Exception trap does not occur for divide-by-zero.

Bit 4: Floating-Point Inexact Result Mask (XM)—If the XM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is not equal to the
infinitely precise result. If the XM bit is 1, a Floating-Point Exception trap does not
occur for an inexact result.

Bit 3: Floating-Point Underflow Mask (UM)—If the UM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bit is 1, a Floating-Point Exception trap
does not occur for underflow.

Bit 2: Floating-Point Overflow Mask (VM)—If the VM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too large to be
expressed in the destination format. If the VM bit is 1, a Floating-Point Exception trap
does not occur for overflow.

Bit 1: Floating-Point Reserved Operand Mask (RM)—If the RM bit is 0, a Floating-
Point Exception trap occurs when one or more input operands to a floating-point
operation is a reserved value, or when the result of a floating-point operation is a
reserved value. If the RM bit is 1, a Floating-Point Exception trap does not occur for
reserved operands.

Bit 0: Floating-Point Invalid Operation Mask (NM)—If the NM bit is 0, a Floating-
Point Exception trap occurs when the input operands to a floating-point operation
produce an indeterminate result (e.g., « times 0). If the NM bit is 1, a Floating-Point
Exception trap does not occur for invalid operations.

PROGRAMMING 2-15

24.2

Integer Environment (INTE, Register 161)

This unprotected special-purpose register (Figure 2-7) contains control bits which
affect the execution of integer multiplication and division operations. This register is
not implemented directly by processor hardware, but is implemented by the virtual
arithmetic interface.

Figure 2-7

Integer Environment Register

EERRRRRERREEERERNRERERREREREN

Reserved

&-1
=

2.5.1

Bits 31-2: Reserved.

Bit 1: Integer Division Overflow Mask (DO)—If the DO bit is 0, an Out of Range trap
occurs when overflow of a signed or unsigned 32-bit result occurs during a DIVIDE or
DIVIDU instruction, respectively. If the DO bit is 1, an Out of Range trap does not
occur for overflow during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an Out of Range Trap upon divi-
sion by zero, regardless of the value of the DO bit.

Bit 0: Integer Multiplication Overflow Exception Mask (MO)—If the MO bit is 0, an
Out of Range trap occurs when overflow of a signed or unsigned 32-bit result occurs
during a MULTIPLY or MULTIPLU instruction, respectively. If the MO bit is 1, an Out
of Range trap does not occur for overflow during integer multiply operations.

STATUS RESULTS OF INSTRUCTIONS

This section discusses the status information generated by arithmetic, logical and
floating-point operations, and the special registers which contain this status
information.

ALU Status (ALU, Register 132)

This unprotected special-purpose register (Figure 2-8) holds information about the
outcome of Arithmetic/Logic Unit (ALU) operations as well as control for certain
operations performed by the Execution Unit.

Figure 2-8

ALU Status Register

TTTTTTTT T T T 1T TTTTT

Reserved VIN| Z| C| BP FC

DF

Bits 31-12: Reserved.

2-16 PROGRAMMING

Bit 11: Divide Flag (DF)—The DF bit is used by the instructions that implement
division. This bit is set at the end of the division instructions either to 1 or to the
complement of the 33rd bit of the ALU. When a Divide Step instruction is executed,
the DF bit determines whether an addition or subtraction operation is performed by
the ALU.

Bit 10: Overflow (V)—The V bit indicates that the result of a signed, two's-
complement ALU operation required more than 32 bits to represent the result
correctly. The value of this bit is determined by exclusive-ORing the ALU carry-out
with the carry-in to the most significant bit for signed, two’s-complement operations.
This bit is not used for any special purpose in the processor and is provided for
information only.

Bit 9: Negative (N)—The N bit is set with the value of the most significant bit of the
result of an arithmetic or logical operation. If two’s-complement overflow occurs, the N
bit does not reflect the true sign of the result. This bit is used in divide operations.

Bit 8: Zero (Z)—The Z bit indicates that the result of an arithmetic or logical operation
is zero. This bit is not used for any special purpose in the processor, and is provided
for information only.

Bit 7: Carry (C)—The C bit stores the carry-out of the ALU for arithmetic operations.
It is used by the add-with-carry and subtract-with-carry instructions to generate the
carry into the Arithmetic/Logic Unit.

Bits 6-5: Byte Pointer (BP)—The BP field holds a 2-bit pointer to a byte within a
word. It is used by Insert Byte and Extract Byte instructions. The mapping of the
pointer value to the byte position depends on the value of the Byte Order (BO) bit in
the Configuration Register.

The most significant bit of the BP field is used to determine the position of a half-word
within a word for the Insert Half-Word, Extract Half-Word, and Extract Half-Word,
Sign-Extended instructions. The mapping of the most significant bit to the half-word
position depends on the value of the BO bit in the Configuration Register.

The BP field is set by a Move To Special Register instruction with either the ALU
Status Register or the Byte Pointer Register as the destination. It is also set by a load
or store instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or
store sets the BP field with the complement of the Byte Order bit of the Configuration
Register, for compatibility with other 29K Family processors.

Bits 4-0: Funnel Shift Count (FC)—The FC field contains a 5-bit shift count for the
Funnel Shifter. The Funnel Shifter concatenates two source operands into a single
64-bit operand and extracts a 32-bit result from this 64-bit operand; the FC field speci-
fies the number of bit positions from the most significant bit of the 64-bit operand to
the most significant bit of the 32-bit result. The FC field is used by the EXTRACT
instruction.

The FC field is set by a Move To Special Register instruction with either the ALU
Status Register or the Funnel Shift Count Register as the destination.

Arithmetic Operation Status Results

The Arithmetic instructions modify the V, N, Z, and C bits. These bits are set accord-
ing to the result of the operation performed by the instruction.

All instructions in the Arithmetic class—except for MULTIPLY, MULTM, DIVIDE,
MULTIPLU, MULTMU, and DIVIDU—perform an add. In the case of subtraction, the
subtract is performed by adding the two’s-complement or one’s-complement of an
operand to the other operand. The multiply step and divide step operations also

PROGRAMMING 2-17

2.5.3

2.5-4

2.5.5

perform adds, again possibly complementing one of the operands before the opera-
tion is performed. In general, the status bits are based on the results of the add.

If two’s-complement overflow occurs during the add, the V bit of the ALU Status Reg-
ister is set; otherwise it is reset. Two's-complement overflow occurs when the carry-in
to the most significant bit of the intermediate result differs from the carry-out. When
this occurs, the result cannot be represented by a signed word integer. Note that the
V bit always is set in this manner, even when the result is unsigned.

The N bit of the ALU Status Register is set to the value of the most significant bit of
the result of the add. Note that the divide step and multiply step operations may shift
the result after the operation is performed. In the cases where shifting occurs, the N
bit may not agree with the result that is written into a general-purpose register, since
the N bit is based only on the result of the add, not on the shift.

If the result of the add causes a zero word to be written to a general-purpose register,
the Z bit of the ALU Status Register is set; otherwise, it is reset. The Z bit always
reflects the result written into a general-purpose register; if shifting is performed by a
multiply or divide step, the Z bit reflects the shifted value.

If there is a carry out of the add operation, the C bit is set; otherwise it is reset.

Logical Operation Status Resuits

The Logical instructions modify the N and Z bits. These bits are set according the
result of the instruction. The V and C bits are meaningless in regard to the logical
instructions, so they are not modified.

The N bit of the ALU Status Register is set to the value of the most significant bit of
the result of the logical operation.

If the result of the logical operation is a zero word, the Z bit of the ALU Status Register
is set; otherwise, it is reset.

Floating-Point Status Resuits

The floating-point instructions check for a number of exceptional conditions, and
report these exceptions by setting bits of the Floating-Point Status Register. The
exceptional conditions may also cause traps, depending on the state of mask bits in
the Floating-Point Environment Register. There are two groups of status bits in the
Floating-Point Status Register: trap status bits and sticky status bits. When an excep-
tion is detected, the virtual arithmetic processor on the Am29200 microprocessor sets
the trap status bit and/or the sticky status bit associated with the exception, depending
on the corresponding exception mask bit and on whether or not a trap occurs. The
sticky status bit is set whenever the corresponding exception is masked, regardless of
whether or not a trap occurs. A trap status bit is set whenever a trap occurs, regard-
less of the state of the corresponding mask bit.

A trap status bit is reset when a trap occurs and the indicated status does not apply to
the trapping operation. A sticky status bit is reset only by software.

Floating-Point Status (FPS, Register 162)

This unprotected special-purpose register (Figure 2-9) contains status bits indicating
the outcome of floating-point operations. This register is not implemented directly by
processor hardware, but is implemented by the virtual arithmetic interface.

218 PROGRAMMING

The floating-point status bits are divided into two groups. The first group consists of
the sticky status bits (DS, XS, US, VS, RS, and NS), which, once set, remain set until
explicitly cleared by a Move-to-Special-Register (MTSR) or Move-to-Special-Register-
Immediate (MTSRIM) instruction. Only those sticky status bits corresponding to
masked exceptions are updated. The update occurs at the end of instruction
execution.

The second group consists of the trap status bits (DT, XT, UT, VT, RT, and NT) which
report the status of an operation for which a Floating-Point Exception trap is taken.
These bits are updated only by an operation which takes a trap as a result of an
unmasked Floating-Point Exception; all other operations leave these bits unchanged.
A trap status bit is updated regardless of the state of the corresponding exception
mask in the Floating-Point Environment Register.

Figure 2-9

Floating-Point Status
31 23 15 7 0
|IREERRRRRRRR R |
Reserved Res
T T T T T
[R [R |
LI I T R T [N
DT:UT:RT: DS:US:RS:
XT VI NT XS VS NS

Bits 31-14: Reserved.

Bit 13: Floating-Point Divide By Zero Trap (DT)—The DT bit is set when a Floating-
Point Exception trap occurs, and the associated floating-point operation is a divide
with a zero divisor and a non-zero, finite dividend. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 12: Floating-Point Inexact Result Trap (XT)—The XT bit is set when a Floating-
Point Exception trap occurs, and the result of the associated floating-point operation
is not equal to the infinitely-precise result. Otherwise, this bit is reset when a Floating-
Point Exception trap occurs.

Bit 11: Floating-Point Underflow Trap (UT)—The UT bit is set when a Floating-
Point Exception trap occurs, and the result of the associated floating-point operation
is too small to be expressed in the destination format. Otherwise, this bit is reset when
a Floating-Point Exception trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)—The VT bit is set when a Floating-Point
Exception trap occurs, and the result of the associated floating-point operation is too
large to be expressed in the destination format. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 9: Floating-Point Reserved Operand Trap (RT)—The RT bit is set when a
Floating-Point Exception trap occurs, and the result of the associated floating-point
operation is a reserved value. Otherwise, this bit is reset when a Floating-Point
Exception trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT)—The NT bit is set when a
Floating-Point Exception trap occurs and the input operands to the associated float-
ing-point operation produce an indeterminate result. Otherwise, this bit is reset when
a Floating-Point Exception trap occurs.

Bits 7-6: Reserved.

PROGRAMMING 219

2.6

2.6.1

Bit 5: Floating-Point Divide By Zero Sticky (DS)—The DS bit is set when the DM
bit of the Floating-Point Environment Register is 1, the divisor of a floating-point
division operation is a zero, and the dividend is a non-zero, finite number.

Bit 4: Floating-Point Inexact Result Sticky (XS)—The XS bit is set when the XM bit
of the Floating-Point Environment Register is 1, and the result of a floating-point
operation is not equal to the infinitely precise resuit.

Bit 3: Floating-Point Underflow Sticky (US)—The US bit is set when the UM bit of
the Floating-Point Environment Register is 1, and the result of a floating-point opera-
tion is too small to be expressed in the destination format.

Bit 2: Floating-Point Overflow Sticky (VS)—The VS bit is set when the VM bit of the
Floating-Point Environment Register is 1, and the result of a floating-point operation is
too large to be expressed in the destination format.

Bit 1: Floating-Point Reserved Operand Sticky (RS)—The RS bit is set when the
RM bit of the Floating-Point Environment Register is 1, and either one or more input
operands to a floating-point operation is a reserved value or the result of a floating-
point operation is a reserved value.

Bit 0: Floating-Point Invalid Operation Sticky (NS)—The NS bit is set when the
NM bit of the Floating-Point Environment Register is 1, and the input operands to a
floating-point operation produce an indeterminate result.

INTEGER MULTIPLICATION AND DIVISION

The Am29200 microprocessor does not directly support the instructions MULTIPLU,
MULTMU, MULTIPLY, MULTM, DIVIDE, and DIVIDU. The processor is capable of
performing these instructions as a sequence of multiply- or divide-steps, which are
directly supported by hardware. A special register, Q, is used in conjunction with the
SRCA and SRCB operands to execute the multiply- or divide-step. This section de-
scribes the Q register and discusses the general method for multiplication and
division.

Q (Q, Register 131)
The Q Register is an unprotected special-purpose register (Figure 2-10).

Figure 2-10

Q Register

31 23 15 7 0
darrrrrrrrrreererrrerrrrrrrerer

Q

Bits 31-0: Quotient/Multiplier (Q)}—During a sequence of divide steps, this field
holds the low-order bits of the dividend; it contains the quotient at the end of the
divide. During a sequence of multiply steps, this field holds the multiplier; the field
contains the low-order bits of the result at the end of the multiply.

For an integer divide instruction, the Q field contains the high-order bits of the divi-
dend at the beginning of the instruction, and contains the remainder upon completion
of the instruction.

220 PROGRAMMING

2.6.2

Multiplication

The processor performs integer multiplication by a series of multiply step instructions.
Note that when the product of a constant and a variable is to be computed, a more
efficient sequence of shift and add instructions can usually be found.

If a program requires the multiplication of two integers, the required sequence of
multiply steps may be executed in-line or executed in a multiply routine called as a
procedure. It may be beneficial to precede a full multiply procedure with a routine to
discover whether or not the number of multiply steps may be reduced. This reduction
is possible when the operands do not use all of the available 32 bits of precision.
The following routine muitiplies two 32-bit signed integers, giving a 64-bit resiilt.
Unsigned multiplication can be performed by substituting the MULU instruction for the
MUL and MULL instructions.

; 32 bit * 32 bit —>64 bit signed multiply

; Input: multiplicand in Ir2, multiplier in Ir3

; Output: result most significant word in gr96, result least significant word in gro7

SMul64:

mtsr Q,ir3 ; put multiplier in the Q register

mul gra6, Ir2, 0 ; perform initial multiply step

.rep 30 ; expand out 30 copies of the next instruction
; in-line

mul gra6, Ir2, groé ; total of 30 more multiply steps

.endr

mull gr96, Ir2,groé ; perform last sign correcting step

mfsr gr97,Q ; get the least significant result word

The following routine multiplies two 32-bit integers, retuming a 32-bit result. It at-
tempts to minimize the number of multiply-step instructions by checking the input
operands. It is coded as a subroutine, with pointers to its operands passed in the
indirect pointers IPC, IPA, and IPB. This allows the routine to operate on any combi-
nation of registers, rather than forcing the operands to be in fixed registers.

; 32 bit * 32 bit —> 32 bit signed or unsigned multiply called by:

; call tpc, MUL32 ; call the multiply routine
; setip dst_reg, src1_reg, src2_reg ; passing pointers to the operand registers
; ; in the delay slot

; Input: operands in the registers pointed to by indirect-pointer registers IPA and IPB
; Output: result least significant word in the register pointed to by IPC
; Used: return address in tpc, special registers Q and FC
; Destroy: previous contents of registers tpc, Temp0 — Temp2
; Symbolic register names:
.reg TempO, gr116
.reg Temp1, gr119
.reg Temp2, gr120
.reg tpc, gri22
.word 0x00200000 ; Debugger tag word

Mul32:
; need an instruction to separate SETIP (probably last instruction) from access of indirect
; pointers

mtsrim FC,8 ; useful when one operand is 8-bit

or TempO, gr0, 0 ; copy value of IPA register

PROGRAMMING ~ 2-21

; next check to see that the operand with the most leading zeros becomes the multiplier

cpgtu
jmpt
or

const
or

or
cpleu
jmpf
mtsr
mulu
.rep

mulu
.endr

Temp1,9r0,gr0

Temp1,do8 ; the operands are already ordered correctly

Temp1,Temp1,gr0 ; if it jumps, Temp1 holds 0, so this copies
; the value of the IPB register

Temp0,0 ; swap the operands

Temp0,Temp0,gr0

Temp1,gr0,0

Temp2,Temp1,0x7f ; less than 8 bits?

Temp2,do16 ; no, check for 16 bits

Q,Temp0

Temp0,Temp1,0

7 ; expand out 7 copies of the next instruction
; in-line

TempO,Temp1,TempO ; total of 7 more multiply steps

; the top 24 bits of the result are in the lower 24 bits of TempO0, and the bottom 8 bits are in the

;topof Q
mfsr
jmpi
extract

do16:
const

cplequ
jmpf
mulu

.rep

mulu
.endr

Temp1,Q

tpc ; return to the calling routine

gr0,TempO,Temp1 ; extract the result in the delay-slot of the
; jump

Temp2,0x7fff ; less than 16 bits?

Temp2,Temp0,Temp2

Temp2,do32 ; no, perform all 32 steps

Temp0,Temp1,0 ; perform initial multiply-step

15 ; expand out 15 copies of next instruction
; in-line

TempO0,Temp1,TempO ; total of 15 more multiply-steps

; the top 16 bits of the result will be in the lower 16 bits of TempO, the bottom 16 bits in the top

;of Q
mtsrim
mfsr
jmpi
extract

do32:

mulu
.rep

mulu
.endr

jmpi
mfsr

2.6.3 Division

FC,16 ; extract on bit-16 boundary

Temp1,Q

tpc ; return to the calling routine

gr0, TempO,Temp1 ; extracting the result in the delay-slot of the
; jump

temp0,Temp1,0 ; perform initial step

31 ; expand out 32 copies of the next instruction
; in-line

TempO0,Temp1,TempO ; total of 31 more multiply steps

tpc ; return to calling routine
gr0,Q ; copy the result to the return register in the
; delay slot

The processor performs integer division by a series of divide step instructions. When
the divisor is a power of 2 and the dividend is unsigned, the divide should be accom-
plished by a right shift.

2-22 pROGRAMMING

If a program requires the division of two integers, the required sequence of divide
steps may be executed in-line or executed in a divide routine called as a procedure. It
may be beneficial to precede a full divide procedure with a routine to discover whether
or not the number of divide steps may be reduced. This reduction is possible when
the operands do not use all of the available 32 bits of precision.

The following routine divides a 64-bit, unsigned dividend by a 32-bit unsigned divisor.

; 64 bit / 32 bit — 32 bit unsigned divide
; Input: most significant dividend word in Ir2, least significant dividend word in Ir3,

; divisor in Ir4
; Output: quotient in gr96, remainder in gr97
UDiv64:
mtsr Q, I3 ; put least significant word of the dividend in
; the Q register
div0o gra7, Ir2 ; perform initial divide step
.rep 31 ; expand out 31 copies of the next
; instruction in-line
div gr97, gra7, Ir4 ; total of 30 more divide steps
.endr
divl gr97, gra7, Ird ; perform last step
diviem gr97, gr97, Ir4 ; compute remainder
mfsr groe, Q ; get the quotient

The following routine divides a 32-bit unsigned dividend by a 32-bit unsigned divisor.

; 32 bit / 32 bit — 32 bit unsigned divide
; Input: dividend word in Ir2, divisor in Ir3
; Output: quotient in gr96, remainder in gr97

UDiv32:

mtsr Q, Ir2 ; put the dividend in the Q register

divo gr97,0 ; perform initial divide step, zeroing out
; the upper bits of the dividend

.rep 31 ; expand out 31 copies of the next
; instruction in-line

div gr97, gra7, Ir4 ; total of 30 more divide steps

.endr

divl gr97, gra7, ir4 ; perform last step

divrem gr97, gr97, Ir4 ; compute remainder

mfsr gr96, Q ; get the quotient

The following routine divides a 32-bit signed dividend by a 32-bit signed divisor. It also
traps division by zero. Because the divide-step instructions only operate on unsigned
operands, extra code is required to perform sign checking and conversion.

PROGRAMMING ~ 2-23

; 32 bit / 32 bit signed divide, called by:

: call tpc, SDiv32 ; call the divide routine
H setip dst_reg, src1_reg, src2_reg
; passing pointers to the operand
; registers in the delay slot
; Input: dividend and divisor in the registers pointed to by the indirect-pointer
; registers IPA and IPB
; Output: result quotient in the register pointed to by IPC, remainder left in Temp0
; Used: return address in tpc, special register Q
; Destroyed: previcus contents of registers tpc, Temp0—Temp2
; Symbolic register names:
.reg TempO, gr116
.reg Tempi, gr119
.reg Temp2, gri20
.reg tpe, gri22

.word 0x00200000 ; Debugger tag word
SDiv32:
const Templ,0
asneq V_DIVBYZERO, Temp1, gr0
; check for divide by zero with an assert
add TempO, gro, 0 ; get dividend from indirect pointer
jmpf TempO, pdividend ; is it negative? (jmpf is also “jmppos”)
add Temp2, Temp1, gro ; get divisor from indirect pointer
const Tempi,3 ; set negative result and remainder flags
subr TempO, TempO, O ; make dividend positive
pdividend:
jmpf Temp2, pdivisor ; is divisor negative?
mtsr Q, Temp0 ; copy dividend to Q register in delay slot
; of the jump
xor Temp1, Temp1, 1 ; turn off negative result flag
subr Temp2, Temp2, 0 ; make divisor positive
pdivisor:
divo Temp0, 0 ; initialize
.rep 31 ; expand out 31 copies of the next
; instruction in-line
div Temp0, Temp0, Temp2 ; total of 30 more divide steps
.endr
divi TempO, Temp0, Temp2 ; perform last divide step
diviem TempO, TempO, Temp2 ; get positive remainder
mfsr Temp2, Q ; get positive quotient
sli Temp1, Temp1, 30 ; copy negative remainder flag to test bit
jmpf Temp1, premainder ; if it is not set, remainder is ok
sll Temp1, Temp1, 1 ; copy negative result flag to test bit
subr TempO, TempO, 0 ; negate remainder
premainder:)
jmpfi Temp1, tpc ; return to caller if result is positive
add gro, Temp2, 0 ; copying quotient to the result register
; in the delay slot
jmpi tpc ; else return to caller,

subr gro0, Temp2, 0 negating the quotient in the delay slot

224 PROGRAMMING

2.7.1

2.7.2

2.7.3

1 NEED AN INSTRUCTION TO...

This section discusses topics of general concem in the implementation of applications
programs.

Run-Time Checking

The assert instructions provide programs with an efficient means of comparing two
values and causing a trap when a specified relation between the two values is not
satisfied. The instructions assert that some specified relation is true and trap if the
relation is not true. This allows run-time checking, such as checking that a computed
array index is within the boundaries of the storage for an array, to be performed with a
minimum performance penalty.

Assert instructions are available for comparing two signed or unsigned operands. The
following relations are supported: equal-to, not-equal-to, less-than, less-than-or-equal-
to, greater-than, and greater-than-or-equal-to.

The assert instructions specify a vector number for the trap. However, only vector
numbers 64 through 255 (inclusive) may be specified by User-mode programs. If a
User-mode assert instruction causes a trap, and the vector number is between 0 and
63 inclusive, a Protection Violation trap occurs, instead of the specified trap.

Since the assert instructions allow the specification of the vector number, several
traps may be defined in the system for different situations detected by the assert
instructions.

Operating-System Calls

An applications program can request a service from the operating system by using
the following instruction:
asneq System_Routine, gri1, gri

This instruction always creates a trap since it attempts to assert that the content of a
register is not equal to itself (the register number used here is irrelevant, as long as
the register is otherwise accessible).

The System_Routine vector number specified by the instruction invokes the execution
of the operating system routine that provides the requested service. This vector num-
ber may have any value between 64 and 255, inclusive (vector numbers 0 through 63
are pre-defined or reserved). Thus, as many as 192 different operating-system rou-
tines may be invoked from the applications program.

In cases where the indirect pointers may be used, the EMULATE instruction allows
two operand/result registers to be specified to the operating-system routine. The
instruction is as follows:

emulate System_Routine, Ir3, Ir6

In this case, the System_Routine vector number performs the same function as in the
previous example. Here, however, LR3 and LR6 are specified as operand registers
and/or result registers (these particular registers are used only for illustration). The
operating-system routine has access to these registers via the indirect pointers, which
allows flexible communication.

Multiprecision Integer Operations

The processor allows the Carry (C) bit of the ALU Status Register to be used as
an operand for add and subtract instructions. This provides for the addition and

PROGRAMMING ~ 2-25

2.7.4

2.7.5

subtraction of operands which are greater than 32 bits in length. For example, the
following code implements a 96-bit addition with signed overflow detection.

add Ir7, gr96, Ir2
addc Ir8, gr97, Ir3
addcs Ir9, gro8, Ir4

Global registers GR96-GR98 contain the first operand, local registers LR2-LR4 con-
tain the second operand, and local registers LR7-LR9 contain the result. The first two
add instructions set the C bit, which is used by the second two instructions. If the
addition causes a signed overflow, then an Out of Range trap occurs; overflow is
detected by the final instruction.

Complementing a Boolean

To complement a Boolean in the processor's format, only the most significant bit of
the Boolean word should be considered, since the least significant 31 bits may or may
not be zeros. This is accomplished by the following instruction:

cpge gr96, gr96, 0

The Boolean is in GR96 in this example. This instruction is based on the observation
that a Boolean TRUE is a negative integer, since the Boolean bit coincides with the
integer sign bit. If the operand of this instruction is a negative integer (i.e., TRUE), the
result is the Boolean FALSE. If the operand is non-negative (i.e., the Boolean
FALSE), the result is TRUE.

Large Jump and Call Ranges

The 16-bit relative branch displacement provided by processor instructions is suffi-
cient in the majority of cases. However, addresses with a greater range occasionally
are needed. In these cases, the CONST and CONSTH instructions generate the large
branch-target address in a register. An indirect jump or call then uses this address to
branch to the appropriate location.

When program modules are compiled separately, the compiler cannot determine
whether or not the 16-bit displacement of a CALL instruction is sufficient to reach

an extemnal procedure, even though it is sufficient in most cases. Instead of generat-
ing instructions for the worst case (i.e., the CONST, CONSTH, and CALLI described
above), it is more efficient to generate a CALL as if it were appropriate, with the
worst-case sequence (in this case, CONST, CONSTH, and JMPI) also appearing in
the generated code somewhere (e.g., at the end of a compiled procedure).

When the above scheme is used, the linker is able to determine whether or not the
CALL is sufficient. If it is not, the CALL can be retargeted to the worst-case sequence
in the code. In other words, when the CALL is not sufficient, the linker causes the
execution sequence to be:

call

const
consth

jmpi
In this manner, the longer execution time for the call occurs only when necessary.

226 PROGRAMMING

2.7.6

2.8.1

2.8.2

NO-OPs

When a NO-OP is required for proper operation (e.g., as described in Section 6.6), it
is important that the selected instruction not perform any operation, regardless of
program operating conditions. For example, the NO-OP cannot access general-
purpose registers because a register may be protected from access in some
situations. The suggested NO-OP is:

aseq 0x40, gri, gri

This instruction asserts that the Stack Pointer (GR1) is equal to itself. Since the
assertion is always true, there is no trap. Note also that the Stack Pointer cannot be
protected, and that the assert instruction cannot affect any processor state.

VIRTUAL ARITHMETIC PROCESSOR

In order to be object-code compatible with present and future implementations of the
29K Family of microprocessors, the Am29200 microprocessor provides a virtual
arithmetic interface. A virtual interface is the means by which a processor appears to
perform functions that it does not actually perform. In the case of the Am29200 proc-
essor’s virtual arithmetic interface, the processor defines arithmetic instructions,
control, and status which are not directly supported by hardware, but which are
implemented by system software.

Trapping Arithmetic Instructions

The processor does not incorporate hardware to directly support floating-point
operations, nor does it directly support full multiply and divide instructions. However,
instructions to perform these operations are included in the instruction set. These
instructions are included for compatibility with processor implementations, such as the
Am29050 microprocessor, that include hardware to perform these operations.

In application programs that must be fully object-code compatible across several
processor versions—while taking advantage of the performance of the versions
having arithmetic hardware—the defined instructions should be used to perform
floating-point, multiplication, and division operations.

In the Am29200 microprocessor, the Floating-Point, CLASS, CONVERT, MULTIPLY,
MULTM, MULTIPLU, MULTMU, DIVIDE, DIVIDU, and SQRT instructions cause traps.
The indirect pointers are set at the time the trap occurs, so a trap handler can gain
access to the operands of the instruction and can determine where the result is to be
stored. A trap handler can directly emulate the execution of the instruction.

Virtual Registers

The processor does not incorporate hardware to directly support the Floating-Point
Environment Register (FPE), Integer Environment Register (INTE), or Floating-Point
Status Register (FPS). When one of these registers is referenced by a MTSR/MFSR
instruction (or a variant), a Protection Violation trap occurs. The Protection Violation
trap handler must establish that the faulting instruction is a MTSR/MFSR and that the
register specified by the instruction is one of the registers supported by the virtual
interface. This is accomplished by obtaining the faulting instruction from memory and
examining the OPCODE and SRC/DEST fields. The trap handler then simulates the
operation of the register.

PROGRAMMING 2-27

2.9.1

PROCESSOR INITIALIZATION

When power is first applied to the processor, it is in an indeterminate state and must
be placed in a known state. Also, under certain circumstances, it may be necessary to
place the processor in a defined state. This is accomplished by the Reset mode,
which places the processor into a predefined state.

Configuration (CFG, Register 3}

This protected special-purpose register (Figure 2-11) controls certain processor and
system options. The Configuration Register is defined as follows:

Figure 2-11

Configuration Register

31 23 15 7 0

rrrrereyrerrerertrertererrrerrynd
PRL Reserved

2.9.2

Bits 31-24: Processor Release Level (PRL)—The PRL field is an 8-bit, read-only
identification number which specifies the processor version.

Bits 23-0: Reserved.

Reset Mode

The Reset mode is invoked by asserting the RESET input. The Reset mode is en-
tered within four processor cycles after RESET is asserted. The RESET input must
be asserted for at least four processor cycles to accomplish a processor reset.

The Reset mode can be entered at any point during operation. If the RESET input is
asserted at the time power is first applied to the processor, the processor enters the
Reset mode only after four cycles have occurred on the MEMCLK pin.

The Reset mode configures the processor state as follows:

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any interrupt or trap conditions are ignored.

4. The Current Processor Status Register is set as shown in Figure 2-12.
5. The Contents Valid (CV) bit of the Channel Control Register is reset.

Except as previously noted, the contents of all general-purpose registers and special-
purpose registers are undefined.

The Reset mode is exited when the RESET input is de-asserted. Either four or five
cycles after RESET is de-asserted (depending on internal synchronization time), the
processor performs an initial instruction access on the extemal interface. The initial
instruction access is directed to address 0, which is in ROM Bank O after a reset. The
characteristics of the ROM in Bank O are set by the BOOTW signal during reset (see
Section 9.1.3).

228 PROGRAMMING

Figure 2-12 Current Processor Status Register In Reset Mode

31 23 15 7 0

ojr1{ojojofojojt1{ojof1|1

v

L]
Reserved '

P

)
res , res

res SM

—
h

'

Fz :

L] .]
TD res TE TU res WM res IM

A processor reset configures the intemal peripherals as follows:

1. In the ROM Controller, ROM Bank 0 is configured by the BOOTW signal and the
other banks are set so as not to interfere with accesses to ROM Bank 0.

2. The DRAM configuration is not set by a processor reset, DRAM mapping is
disabled, and the refresh rate is set to the slowest possible value (refresh every
511 MEMCLK cycles).

3. The configuration of the Peripheral Interface Adapter is not set by a processor
reset.

. The DMA Controller is disabled, and all state machines are reset.
. All /O Port signals are disabled as outputs.

. The Parallel Port is disabled, and all state machines are reset.

. The Serial Port is disabled, and all state machines are reset.

0w N O O b

. The Video Interface is disabled, and all state machines are reset. All signals that
may be either inputs or outputs are configured as inputs.

PROGRAMMING 2-29

CHAPTER 3

DATA FORMATS AND HANDLING a

3.1

3.1.1

This section describes the various data types supported by the Am29200 micropro-
cessor and the mechanisms for accessing data in extemal devices and memories.
The Am29200 microprocessor includes provisions for the external access of words,
bytes, half-words, unaligned words, and unaligned half-words, as described in this
section.

INTEGER DATA TYPES

Most instructions deal directly with word-length integer data; integers may be either
signed or unsigned, depending on the instruction. Some instructions (e.g., AND) treat
word-length operands as strings of bits. In addition, there is support for character,
half-word, and Boolean data types.

Character Data

The processor supports character data through load, store, extraction, and insertion
operations, and by a compare operation on byte-length fields within words. The for-
mat of unsigned and signed characters is shown in Figure 3-1; for signed characters,
the sign bit is the most significant bit of the character. For sequences of packed char-
acters within words, bytes are ordered left-to-right (that is, “big-endian”).

Figure 3-1

Character Format

Unsigned:

31 23 15 7 0
crrrrerererrerrerrer e e
00000000000000000000O0O0O0OO0 Data
Signed:

31 23 15 7 0
NERRRRARRERRRRRRRRERERE NRERR
S$ S SSSSSSSSSSSSSSSSSSSs s s|s Data

On a byte load, an external packed byte is converted to one of the character formats
shown in Figure 3-1. On a byte store, the low-order byte of a word is packed into
a selected byte of an extemal word.

The Extract Byte (EXBYTE) instruction replaces the low-order character of a destina-
tion word with an arbitrary byte-aligned character from a source word. For the
EXBYTE instruction, the destination word can be a zero word, which effectively zero-
extends the character from the source operand.

The Insert Byte (INBYTE) instruction replaces an arbitrary byte-aligned character in a
destination word with the low-order character of a source word. For the INBYTE in-
struction, the source operand can be a character constant specified by the instruction.

DATA FORMATS AND HANDLING 31

The Compare Bytes (CPBYTE) instruction compares two word-length operands and
gives a result of TRUE if any corresponding bytes within the operands have equiva-
lent values. This allows programs to detect characters within words without first hav-
ing to extract individual characters, one at a time, from the word of interest.

3.1.2 Half-Word Operations
The processor supports half-word data through load, store, insertion, and extraction
operations. The format of unsigned and signed half-words is shown in Figure 3-2.
For signed half-words, the sign bit is the most significant bit of the half-word. For
sequences of packed half-words within words, half-words are ordered left-to-right (that
is, “big-endian”).
Figure 3-2 Half-Word Format
Unsigned:
31 23 15 7 0
crrrrrrerrrerr e rerrerrr e
0000000000000O00O0O Data
Signed:
31 23 15 7 0
NEERERERRRERRR FTTEETT eI
§ §$ S S S S S §$S S S s s s s s|s Data
On a half-word load, an external packed half-word is converted to one of the formats
shown in Figure 3-2. On a half-word store, the low-order half-word of a word is packed
into a selected half-word of an extemnal word.
The Extract Half-Word (EXHW) instruction replaces the low-order half-word of a desti-
nation word with either the low-order or high-order half-word of a source word. For the
EXHW instruction, the destination word can be a zero word, which effectively zero-
extends the half-word from the source operand.
The Extract Half-Word, Sign-Extended (EXHWS) instruction is similar to the EXHW
instruction, except that it sign-extends the half-word in the destination word (i.e., it
replaces the most significant 16 bits of the destination word with the most significant
bit of the source half-word).
The Insert Half-Word (INHW) instruction replaces either the low-order or high-order
half-word in a destination word with the low-order half-word of a source word.
3.1.3 Byte Pointer (BP, Register 133)

This unprotected special-purpose register (Figure 3-3) provides an altemate access to
the BP field in the ALU Status Register (see Section 2.5.1). For the Extract Byte
(EXBYTE) and Insert Byte (INBYTE) instructions, the character is selected via the
Byte Pointer field. For the Extract Half-Word (EXHW), Extract Half-Word Signed
(EXHWS), and Insert Half-Word (INHW) instructions, the half-word is selected by the
most significant bit of the Byte Pointer field.

3-2 DATA FORMATS AND HANDLING

Figure 3-3

Byte Pointer Register
31 23 15 7 0

3.14

3.1.4.1

Bits 31-2: Zeros.

Bits 1-0: Byte Pointer (BP)—The BP field holds a 2-bit pointer to a byte within a
word. It is used by Insert Byte and Extract Byte instructions.

The most significant bit of the BP field is used to determine the position of a half-word
within a word for the following three instructions; Insert Half-Word, Extract Half-Word,
and Extract Half-Word Sign-Extended instructions.

The BP field is set by a Move To Special Register instruction with either the ALU
Status Register or the Byte Pointer Register as the destination. It is also set by a load
or store instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or
store sets the BP field with 11.

This field allows a program to change the BP field without affecting other fields in the
ALU Status Register.

Bit Strings

Graphics and imaging applications often require that a data region be collectively
shifted by a specific number of bits. The Am29200 microprocessor supports such an
operation through the Extract (EXTRACT) instruction. The Extract instruction concate-
nates two 32-bit values, producing a 64-bit source operand, and then shifts this value
left by an arbitrary number of bits to produce a 32-bit result. The shift amount is deter-
mined by the value in the Funnel Shift Count Register. The Funnel Shift Count Regis-
ter is set before executing the Extract instruction.

FUNNEL SHIFT COUNT (FC, Register 134)

This unprotected special-purpose register (Figure 3-4) provides an altemate access to
the FC field in the ALU Status Register.

Figure 3-4

Funnel Shift Count Register

31 23 15 7 0

[T
FC

Bits 31-5: Zeros.

Bits 4-0: Funnel Shift Count (FC)—The FC field contains a 5-bit shift count for the
Funnel Shifter. The Funnel Shifter concatenates two source-operands into a single
64-bit operand and extracts a 32-bit result from this 64-bit operand; the FC field speci-
fies the number of bit positions from the most significant bit of the 64-bit operand to
the most significant bit of the 32-bit result. The FC field is used by the EXTRACT
instruction.

The FC field is set by a Move To Special Register instruction with either the ALU
Status Register or the Funnel Shift Count Register as the destination.

DATA FORMATS AND HANDLING 33

3.1.5

3.1.5.1

3.1.5.2

3.1.6

This field allows a program to change the FC field without affecting other fields in the
ALU Status Register.

Character-String Operations

The need to perform operations on character strings arises frequently in many sys-
tems. The processor provides operations for manipulating character data, but these
are frequently inefficient for dealing with character strings, since the processor is
optimized for 32-bit data quantities.

In gemeral, it is much more efficient to perform character-string operations by operat-
ing on units of four bytes each. These four-byte units are more suited to the proces-
sor’s data flow organization. However, as outlined in this section, there are several
things to be considered when dealing with four-byte units.

ALIGNMENT OF BYTES WITHIN WORDS

Character strings normally are not aligned with respect to 32-bit words. Thus, when
word operations are used to perform character-string operations, alignment of the
character strings must be taken into account.

For example, consider a character string aligned on the third byte of a word that is
moved to a destination string aligned on the first byte of a word. If the movement is
performed word-at-a-time, rather than byte-at-a-time, the move must involve shift and
merge operations, since words in the destination character string are split across
word boundaries in the source character string.

The processor’s Funnel Shifter can be used to perform the alignment operations

required when character operations are performed in four-byte units. Though the
Funnel Shifter supports general bit-aligned shift and merge operations, it is easily
adapted to byte-aligned operations.

For byte-aligned shift and merge operations, it is only necessary to insure that the two
most significant bits of the Funnel Shift Count (FC) field of the ALU Status Register
point to a byte within a word, and that the three least significant bits of the FC field
are 000.

DETECTION OF CHARACTERS WITHIN WORDS

Most character-string operations require the detection of a particular character within
the string. For example, the end of a character string is identified by a special charac-
ter in some character-string representations. In addition, character strings often are
searched for a specific pattem. During such searches, the most frequently executed
operation is the search within the character string for the first character of the pattern.

The processor provides a Compare Bytes (CPBYTE) instruction, which directly sup-
ports the search for a character within a word. This instruction can provide a factor-of-
four performance increase in character-search operations, since it allows a character
string to be searched in four-byte units.

During the search, the words containing the character string are compared a word at
a time to a search key. The search key has the character of interest in every byte
position. The CPBYTE instruction then gives a result of TRUE if any character within
the character-string word matches the corresponding byte in the search key.

Boolean Data

Some instructions in the Compare class generate word-length Boolean results. Also,
conditional branches are conditional upon Boolean operands. The Boolean format

34 DATA FORMATS AND HANDLING

3.1.7

3.2

3.2.1

used by the processor is such that the Boolean values TRUE and FALSE are repre-
sented by a 1 or 0, respectively, in the most significant bit of a word. The remaining
bits are unimportant: for the compare instructions, they are reset. Note that two’s-
complement negative integers are indicated by the Boolean value TRUE in this
encoding scheme.

Instruction Constants

Eight-bit constants are directly available to most instructions. Larger constants must
be generated explicitly by instructions and placed into registers before they can be
used as operands. The processor has three instructions for the generation of iarge
data constants: Constant (CONST); Constant, High (CONSTH); and Constant,
Negative (CONSTN).

The CONST instruction sets the least significant 16 bits of a register with a field in the
instruction. The most significant 16 bits are set to zero. This instruction allows a
32-bit positive constant to be generated with one instruction, when the constant lies in
the range of 0 to 65535.

Any 32-bit constant can be generated with a combination of the CONST and
CONSTH instructions. The CONSTH instruction sets the most significant 16 bits of a
register with a field in the instruction; the least significant bits are not modified. Thus,
to create a 32-bit constant in a register, the CONST instruction sets the least signifi-
cant 16 bits, and the CONSTH instruction sets the most significant 16 bits.

The CONSTN instruction sets the least significant 16 bits of a register with a field in
the instruction; the most significant 16 bits are set to one. This instruction allows a
32-bit negative constant to be generated with one instruction, when the constant lies
in the range of —65536 to —1.

FLOATING-POINT DATA TYPES

The Am29200 microprocessor defines single- and double-precision floating-point
formats that comply with the IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std. 754—-1985). These data types are not directly supported in processor
hardware, but can be implemented using the virtual arithmetic interface provided on
the Am29200 microprocessor.

In this section, the following nomenclature is used to denote fields in a floating-point
value.

¢ s: sign bit

« bexp: biased exponent
« frac: fraction

« sig: significand

Single-Precision Floating-Point Values

The format for a single-precision floating-point value is shown in Figure 3-5.
Typically, the value of a single-precision operand is expressed by:

(=1)**s * 1.frac * 2**(bexp-127).

The encoding of special floating-point values is given in Section 3.2.3.

DATA FORMATS AND HANDLING 35

Figure 3-5 Single-Precision Floating-Point Format

31 23 15 7 0
FTTrrrrprrrer ettt rr et
s bexp frac
3.2.2 Double-Precision Floating-Point Values

The format for a double-precision floating-point value is shown in Figure 3-6.

Figure 3-6 Double-Precision Floating-Point Format

31 23 15 7 /]
NERERRRRRRRRRRRRRRRRRRRREE R

s bexp frac 0

.frac 1

Typically, the value of a double-precision operand is expressed by:
(-1)"s * 1.frac * 2**(bexp-1023).

The encoding of special floating-point values is given in Section 3.2.3.

In order to be property referenced by a floating-point instruction, a double-precision
floating-point value must be double-word aligned. The absolute-register number of the
register containing the first word (labeled 0 in Figure 3-6) must be even. The absolute-
register number of the register containing the second word (labeled 1 in Figure 3-6)
must be odd. If these conditions are not met, the results of the instruction are unpre-
dictable. Note that the appropriate registers for a double-precision value in the local
registers depends on the value of the Stack Pointer.

3.2.3 Special Floating-Point Values

The Am29200 microprocessor defines floating-point values encoded for special inter-
pretation. The values are described in this section.

3.2.3.1 NOT-A-NUMBER

A Not-a-Number (NaN) is a symbolic value used to report certain floating-point
exceptions. It also can be used to implement user-defined extensions to floating-point
operations. A NaN comprises a floating-point number with maximum biased exponent
and non-zero fraction. The sign bit can be either 0 or 1 and has no significance. There
are two types of NaN: signaling NaNs (SNaNs) and quiet NaNs (QNaNs). A SNaN
causes an Invalid Operation exception if used as an input operand to a floating-point
operation; a QNaN does not cause an exception. The Am29200 microprocessor
distinguishes SNaNs and QNaNs by the most significant bit of the fraction: a 1 indi-
cates a QNaN and a 0 indicates a SNaN.

36 DATA FORMATS AND HANDLING

3.2.3.2

3.2.3.3

3.2.34

3.3

3.3.1

An operation never generates a SNaN as a result. A QNaN result can be generated in
one of two ways:

o As the result of an invalid operation that cannot generate a reasonable result, or

« As the result of an operation for which one or more input operands are either
SNaNs or QNaNs.

In either case, the Am29200 microprocessor produces a QNaN having a fraction of
11000...0; that is, the two most significant bits of the fraction are 11, and the remain-
ing bits are 0. If desired, the Reserved Operand exception can be enabled to cause a
Floating-Point Exception trap. The trap handler in this case can implement a scheme
whereby user-defined NaN values appear t¢ pass through operations as results,
providing overall status for a series of operations.

INFINITY

Infinity is an encoded value used to represent a value too large to be represented as
a finite number in a given floating-point format. Infinity comprises a floating-point
number with maximum biased exponent and zero fraction. The sign bit of an infinity
distinguishes plus infinity (+e<) from minus infinity (—).

DENORMALIZED NUMBERS

The IEEE Standard specifies that, wherever possible, a result too small to be repre-
sented as a normalized number be represented as a denormalized number. A denor-
malized number may be used as an input operand to any operation. For single- and
double-precision formats, a denormalized number is a floating-point number with a
biased exponent of zero and a non-zero fraction field. The sign bit can be either 1 or
0. The value of a denormalized number is expressed by:

(-=1)**s * 0.frac * 2**(-bias+1),

where bias is the exponent bias for the format in question (127 for single precision,
1023 for double precision).

ZERO

A zero is a floating-point number with a biased exponent of zero and a zero fraction
field. The sign bit of a zero can be either 0 or 1; however, positive and negative zero
are both exactly zero, and are considered equal by comparison operations.

EXTERNAL DATA ACCESSES

This section discusses external data accesses supported by load and store opera-
tions on the Am29200 microprocessor.

Load/Store Instruction Format

All processor external accesses occur between general-purpose registers and exter-
nal devices and memories. Accesses occur as the result of the execution of load and
store instructions. The load and store instructions specify which general-purpose
register receives the data (for a load) or supplies the data (for a store). The format of
the load and store instructions is shown in Figure 3-7.

DATA FORMATS AND HANDLING 37

Figure 3-7

Load/Store Instruction Format

31 23 15 7 0
RERRRRRRA RERRRRRRRRRARRREA

XX XXX XXM|oo0 0 OPT RA RBorl

3---4
7]

[REEEEER

S

Addresses for accesses are given either by the content of a general-purpose register
or by a constant value specified by the load or store instruction. The load and store
instructions do not perform address computation directly. Any required address com-
putations are performed explicitly by other instructions.

In load and store instructions, the “RB or I” field specifies the address for the access.
The address is either the content of a general-purpose register with register number
RB, or an immediate constant with a value | (zero-extended to 32 bits). The M bit
determines whether the register or the constant is used.

The data for the access is written into the general-purpose register RA for a load and
is supplied by register RA for a store.

The definitions for other fields in the load or store instruction are given below:
Bits 31-24: Opcode.
Bits 23-21: Reserved.

Bit 20: Set Byte Pointer/Sign Bit (SB)—If the SB bit is 1 for a load, the loaded byte
or half-word is sign-extended in the destination register; if the SB bit is 0, the byte or
half-word is zero-extended. When the SB bit is 1 for either a load or store, the Byte
Pointer Register is written with 11. The Byte Pointer Register is set in this case to
provide software compatibility across different types of memory systems and 29K
Family processors. If the SB bit is 0, the Byte Pointer Register is not affected.

Bit 19: Reserved.

Bits 18-16: Option (OPT)—This field indicates the width of the data access and
controls certain system functions, as follows:

OPT Value Access Width or Type
000 32-bit (word) access
001 8-bit (byte) access
010 16-bit (half-word) access
110 Hardware-Development
System access
—all others— Reserved

The value OPT=110 is used by a hardware-development system to inspect and alter
processor intemal state. It prevents a data access from appearing extemally, al-
though the access does appear at the boundary-scan interface (see Section 18.6.4).

Bits 15-8: (RA)—The data for the access is written into the general-purpose register
RA for a load, and is supplied by register RA for a store.

Bits 7-0: (RB or I)—In load and store instructions, the RB or | field specifies the
address for the access. The address is either the content of a general-purpose

3-8 DATA FORMATS AND HANDLING

3.3.2

3.3.3

register with register number RB, or a constant value | (zero-extended to 32 bits). The
M bit of the operation code (bit 24) determines whether the register or the constant
is used.

Load and store operations are overlapped with the execution of instructions that
follow the load or store instruction. Only one load or store may be in progress on any
given cycle. If a load or store instruction is encountered while another load or store
operation is in progress, the processor enters the Pipeline Hold mode until the first
operation completes (see Section 6.2).

Load Operations

The processor provides the following instructions for performing load operations: Load
(LOAD), Load and Lock (LOADL), Load and Set (LOADSET), and Load Multiple
(LOADM). Al of these instructions transfer data from a memory or a peripheral (inter-
nal or extemnal) into one or more general-purpose registers.

The LOADL instruction in other 29K Family processors supports the implementation
of device and memory interlocks in a multiprocessor configuration. In the Am29200
microprocessor, LOADL is provided for compatibility and is identical to a LOAD.

The LOADSET instruction implements a binary semaphore. It loads a general-
purpose register and atomically writes the accessed location with a word which has 1
in every bit position (that is, the write is indivisible from the read).

The LOADM instruction loads a specified number of registers from sequential
addresses, as explained below in Section 3.3.4.

Load operations are overlapped with the execution of instructions that follow the load
instruction. The processor detects any dependencies on the loaded data that subse-
quent instructions may have and, if such a dependency is detected, enters the
Pipeline Hold mode until the data is retumed by the external device or memory. If a
register that is the target of an incomplete load is written with the result of a
subsequent instruction, the processor does not write the retuming data into the regis-
ter when the load completes; the Not Needed (NN) bit in the Channel Control Register
is set in this case.

Store Operations

The processor provides the following instructions for performing store operations:
Store (STORE), Store and Lock (STOREL), and Store Multiple (STOREM). All of
these instructions transfer data from one or more general-purpose registers to a
memory or a peripheral (intemal or external).

The STOREL instruction in other 29K Family processors supports the implementation
of device and memory interlocks in a multiprocessor configuration. In the Am29200
microprocessor, STOREL is provided for compatibility and is identical to a STORE.

The STOREM instruction stores a specified number of registers to sequential ad-
dresses, as explained below.

Store operations are overlapped with the execution of instructions that follow the store
instruction. However, no data dependencies can exist, since the store prevents any
subsequent load or store accesses until it completes.

DATA FORMATS AND HANDLING 3-9

3.34

Multiple Accesses

The Load Multiple (LOADM) and Store Multiple (STOREM) instructions move contigu-
ous words of data between general-purpose registers and extemal devices and
memories. The number of transfers is determined by the Load/Store Count
Remaining Register.

The Load/Store Count Remaining (CR) field in the Load/Store Count Remaining
Register specifies the number of transfers to be performed by the next LOADM or
STOREM executed in the instruction sequence. The CR field is in the range of 0 to
255, and is zero-based: a count value of O represents one transfer, and a count value
of 255 represents 256 transfers. The CR field also appears in the Channel Control
Register.

Before a LOADM or STOREM is executed, the CR field is set by a Move To Special
Register. A LOADM or STOREM uses the most-recently written value of the CR field.
If an attempt is made to alter the CR field, and the Channel Control Register contains
information for an external access that has not yet completed, the processor enters
the Pipeline Hold mode until the access completes. Note that since the CR is set
independently of the LOADM and STOREM, the CR field may represent valid state of
an interrupted program even if the Contents Valid (CV) bit of the Channel Control
Register is 0 (see also Section 17.6.2).

Because of the pipelined implementation of LOADM and STOREM, at least one
instruction (e.g., the instruction that sets the CR field) must separate two successive
LOADM and/or STOREM instructions.

After the CR field is set, the execution of a LOADM or STOREM begins the data
transfer. As with any other load or store operation, the LOADM or STOREM waits until
any pending load or store operation is complete before starting. The LOADM
instruction specifies the starting address and starting destination general-purpose
register. The STOREM instruction specifies the starting address and the starting
source general-purpose register.

During the execution of the LOADM or STOREM instruction, the processor updates
the address and register number after every access, incrementing the address by 4
and the register number by 1. This continues until either all accesses are completed
or an interrupt or trap is taken.

For a load-multiple or store-multiple address sequence, addresses wrap from the
largest possible value (hexadecimal FFFFFFFC) to the smallest possible value
(hexadecimal 00000000).

The processor increments absolute register numbers during the load-multiple or
store-multiple sequence. Absolute-register numbers wrap from 127 to 128 and from
255 to 128. Thus, a sequence that begins in the global registers may move to the
local registers, but a sequence that begins in the local registers remains in the local
registers. Also, note that the local registers are addressed circularly.

The normal restrictions on register accesses apply for the load-multiple and store-
multiple sequences. For example, if a protected general-purpose register is
encountered in the sequence for a User-mode program, a Protection Violation trap
occurs.

Intermediate addresses are stored in the Channel Address Register, and register
numbers are stored in the Target Register (TR) field of the Channel Control Register.
For the STOREM instruction, the data for every access is stored in the Channel Data
Register (this register also is set during the execution of the LOADM instruction, but

3-10 DATA FORMATS AND HANDLING

3.34.1

has no interpretation in this case). The CR field is updated on the completion of every
access, so that it indicates the number of accesses remaining in the sequence.

Load-multiple and store-multiple operations are indicated by the Multiple Operation
(ML) bit in the Channel Control Register. The ML bit is used to restart a multiple
operation on an interrupt retum; if it is set independently by a Move To Special Regis-
ter before a load or store instruction is executed, the results are unpredictable.

While a multiple load or store is executing, the processor is in the Pipeline Hold mode,
suspending any subsequent instruction execution until the multiple access completes.
If an interrupt or trap is taken, the Channel Address, Channel Data, and Channel
Control registers contain the state of the multiple access at the point of interruption.
The multiple access may be resumed at this point, at a later time, by an interrupt
retumn.

The processor performs multiple accesses using the burst-mode capability of the
ROM or the page-mode capability of the DRAM, if possible. Multiple accesses of
individual bytes and half-words is not supported. If the memory cannot support burst-
mode accesses, a sequence of simple single accesses are performed.

LOAD/STORE COUNT REMAINING (CR, Register 135)

This unprotected special-purpose register (Figure 3-8) provides altemate access to
the CR field in the Channel Control Register.

Figure 3-8

Load/Store Count Remaining Register
31 23 15

TTTTTTT
CR

3.3.4.2

Bits 31-8: Zeros.

Bits 7-0: Load/Store Count Remaining (CR)—The CR field indicates the remaining
number of transfers for a load-multiple or store-multiple operation that encountered an
exception or was interrupted before completion. This number is zero-based; for

example, a value of 28 in this field indicates that 29 transfers remain to be completed.

This register allows a User-mode program to change the CR field in the Channel
Control Register without affecting other fields in the Channel Control Register, and
is used to initialize the value before a Load Multiple or Store Multiple instruction is
executed.

MOVEMENT OF LARGE DATA BLOCKS

The movement of large blocks of data—for example, to perform a memory-to-memory
move—can be performed by an alternating series of loads and stores. However, it is
typically more efficient to move large blocks of data by using an alternating series of
Load Multiple and Store Multiple instructions. These instructions take better
advantage of the data-movement capabilities of the processor, though they require
the use of a larger number of registers.

During data movement, it is possible to perform alignment operations by a series of
EXTRACT instructions between the Load Multiple and Store Multiple. Also, since the
Load Multiple and Store Multiple are interruptible, these instructions may be used to
move large amounts of data without affecting interrupt latency.

DATA FORMATS AND HANDLING ~ 3-11

3.3.5

3.3.6

3.3.6.1

3.3.6.2

Option Bits

The Option field in the load and store instructions supports system functions, such as
byte and half-word accesses. The definition of this field for a load or store is as
follows:

OPT Value Access Width or Type
000 32-bit (word) access
001 8-bit (bxtae access
010 16-bit (half-word) access
110 Hardware-Development
System access
—all others— Reserved

Addressing and Alignment

BYTE AND HALF-WORD ADDRESSING

The Am29200 microprocessor generates word-oriented byte addresses for accesses
to external devices and memories. Addresses are word-oriented because loads,
stores, and instruction fetches access words. However, addresses are byte addresses
because they permit byte selection within accessed words. For load and store
operations, the processor provides for using the least significant address bits to ac-
cess bytes and half-words within exteral words.

For all external byte and half-word accesses, the selection of a byte within an extemal
word is determined by the two least significant bits of an address. The selection of a
half-word within an external word is determined by the next-to-least significant bit of
an address. Figure 3-9 illustrates the addressing of bytes and half-words. In

Figure 3-9, addresses are represented in hexadecimal notation.

For all byte and half-word operations in the processor, the byte or half-word within a
register is selected either by the two bits of the BP field or the two least significant bits
of an external address.

Bytes are ordered within words such that a 00 in the BP field or in the two least signifi-
cant address bits selects the high-order byte of a word, and a 11 selects the low-order
byte. A 00 in the BP field or in the two least significant address bits selects the low-
order byte of a word, and a 11 selects the high-order byte.

Half-words are ordered within words such that a 0 in the most significant bit of the BP
field or the next-to-least significant address bit selects the high-order half-word, and a
1 selects the low-order half-word. A 0 in the most significant bit of the BP field or the
next-to-least significant address bit selects the low-order half-word of a word, and a 1
selects the high-order half-word. Note that since the least significant bit of the BP field
or an address does not participate in the selection of half-words, the alignment of
half-words is forced to half-word boundaries in this case.

BYTE AND HALF-WORD ACCESSES

During a load, the processor selects a byte or half-word from the loaded word de-
pending on the Option (OPT) bits of the load instruction and the two least significant
bits of the address (for bytes) or the next-to-least significant bit of the address (for
half-words). The selected byte or half-word is right-justified within the destination
register. If the SB bit of the load instruction is 0, the remainder of the destination

312 DATA FORMATS AND HANDLING

Figure 3-9

Byte and Half-Word Addressing (Big Endian)

HERRRRRRRRRARARRRRR AR RN

Word 00000000
Half-Word 00000000 Half-Word 00000002

Byte 00000000 Byte 00000001 Byte 00000002 Byte 00000003

RN RANNARRRRRRRREEE

Half-Word 00000004 Half-Word 00000006
Byte 00000004 Byte 00000005 Byte 00000006 Byte 00000007

IEERERESRRRREREERRNERARRRRRRREE

Word FFFFFFF8
Half-Word FFFFFFF8 Hali-Word FFFFFFFA

Byte FFFFFFF8 Byte FFFFFFF9 Byte FFFFFFFA Byte FFFFFFFB

RERRRERRRRRRERRRRERRRERERREEE

Word FFFFFFFC
Half-Word FFFFFFFC Half-Word FFFFFFFE

Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF

3.3.6.3

register is zero-extended. If the SB bit is 1, the remainder of the destination register is
sign-extended with the sign bit of the selected byte or half-word.

During a store, the processor replicates the low-order byte or half-word in the source
register into every byte and half-word position of the stored word. The processor
generates the appropriate byte and/or half-word write enables, based on the
OPT(2-0) signals and the two least significant bits of the address, to write the byte or
half-word in the selected device or memory. The SB bit does not affect the operation
of a store, except for setting the BP field as described below.

If the SB bit is 1 for either a load or store, the BP field is set to 11 when the load or
store is executed. This does not directly affect the load or store access, but supports
compatibility for software developed for word-write-only systems and other 29K
Family processors.

ALIGNMENT OF WORDS AND HALF-WORDS

Since byte addressing is supported, it is possible that the address for an access of a
word or half-word is not aligned to the desired word or half-word. The Am29200
microprocessor either ignores or forces alignment in most cases. However, some
systems may require that unaligned accesses be supported for compatibility reasons.
Because of this, the Am29200 microprocessor provides an option to trap when a
non-aligned access is attempted. This trap allows software emulation of the
non-aligned accesses, in a manner appropriate for the particular system.

The detection of unaligned accesses is activated by a 1 in the Trap Unaligned Access
(TU) bit of the Current Processor Status Register. Unaligned access detection is
based on the data length as indicated by the OPT field of a load or store instruction
and on the two least significant bits of the specified address.

DATA FORMATS AND HANDLING ~ 3-13

An Unaligned Access trap occurs only if the TU bit is 1 and any of the following com-
binations of OPT field and address bits is detected for a load or store to instruction/

data memory:
OPT Value A1 A0 Meaning
000 1 0 Unaligned Word Access
000 0 1 Unaligned Word Access
000 1 1 Unaligned Word Access
010 0 1 Unaligned Half-Word Access
010 1 1 Unaligned Half-Word Access

The trap handler for the Unaligned Access trap is responsible for generating the
correct sequence of aligned accesses and performing any necessary shifting, mask-
ing, and/or merging. Note that a virtual page-boundary crossing may also have to be
considered.

3.3.6.4 ALIGNMENT OF INSTRUCTIONS

In the Am29200 microprocessor, all instructions are 32 bits in length and are aligned
on word-address boundaries. The processor's Program Counter is 30 bits in length,
and the least significant two bits of processor-generated instruction addresses are
always 00. An unaligned address can be generated by indirect jumps and calls. How-
ever, alignment is ignored by the processor in this case, and the processor expects
the system to force alignment (i.e., by interpreting the two least significant address
bits as 00, regardless of their values).

3-14 DATA FORMATS AND HANDLING

CHAPTER 4

PROCEDURE LINKAGE n

4.1

4.1.1

This chapter describes the run-time storage organization recommended for the
Am29200 microprocessor and describes the use of the local registers to improve the
performance of procedure cails. The presentation in this chapter is intended 1o be
used as a guide in the implementation of software systems for the processor, not
necessarily as a strict definition of how these systems must be implemented.

Programming languages that use recursive procedures, such as C, generally use a
stack to store data objects dynamically allocated at run-time. The organization of the
run-time storage, including the run-time stack, determines how data objects are
stored and how procedures are called at the machine level. The Am29200
microprocessor is designed to minimize the overhead of calling a procedure, passing
parameters to a procedure, and returning results from a procedure. This chapter
describes the run-time storage organization and procedure-calling conventions.

RUN-TIME STACK ORGANIZATION AND USE

A run-time stack consists of consecutive overlapping structures called activation
records. An activation record contains dynamically allocated information specific to a
particular activation (or call) of a procedure (such as local data objects). Because of
recursion, multiple copies of a procedure may be active at any given time. Each active
procedure has its own unique activation record, allocated somewhere on the run-time
stack. The local variables required by a particular procedure activation are contained
in the activation record associated with that activation. Thus, the local variables for
different activations do not interfere with one another. A compiler generates the
instructions to create and manage the run-time stack, and compiler-generated
instructions are based on its existence.

As an example, Figure 4-1 shows three activation records on a run-time stack. This
stack configuration was generated by procedure A calling procedure B, which in tum
called procedure C. The fact that procedure C is the currently active procedure is
reflected by its activation record being on the top of the run-time stack. The Stack
Pointer points to the top of procedure C’s activation record.

In Figure 4-1, the storage areas labeled Out args and In args are the outgoing
arguments area (for the caller) or the incoming arguments area (for the callee). These
are shared between the caller procedure and the callee for the communication of
parameters and results. The areas labeled Locals contain storage for local variables,
temporary variables (for example, for expression evaluation), and any other items
required for the proper execution of the procedure.

Management Of The Run-Time Stack

A run-time stack starts at a high address in memory and grows toward lower memory
addresses as procedures are called. The bottom of the stack is the location with a
high address at which the stack starts; the top of the stack is the location with a lower
address at which the most recent activation record has been allocated.

PROCEDURE LINKAGE 41

Figure 4-1

Run-Time Stack Example
Out args X Hi
gher Memory
Inargs A Addresses
Activation L
Record for A Is A
Out args A
| B
o n args 1
Activation
Locals B Record for B
Pt
Out args B
Inargs C
Activation Loca
Record for C Is C Lolv\vde‘;rzllsesrzgty
Out args C Stack Pointer
g (Top of Stack)

When a procedure is called, a new activation record might need to be allocated on the
run-time stack. An activation record is allocated by subtracting from the stack pointer
the number of locations needed by the new activation record. The stack pointer is
decremented so that variables referenced during procedure execution are referenced
in terms of positive offsets from the stack pointer.

When storage for an activation record is allocated, the number of storage locations
allocated is the sum of the number of locations needed for:

1. Local variables; .
2. Restarting the caller, such as locations for retum addresses; and

3. Arguments of procedures that may be called in tum by the called procedure (the
outgoing arguments area).

In some cases storage is not required for one or more of the above items. Also, the
incoming arguments area, though part of the activation record of the callee, is not
allocated storage at this time, because this storage was allocated as the outgoing
arguments area of the calling procedure.

An activation record is de-allocated, just prior to returning to the caller, by adding to
the stack pointer the value subtracted during allocation.

In the Am29200 microprocessor, run-time storage is actually implemented as two
stacks: the Register Stack and the Memory Stack. Storage is allocated and de-
allocated on these stacks at the same time. The Register Stack stores activation
records associated with all active procedures (except leaf routines, as described
later). The Memory Stack stores activation-record information that does not fit into the
Register Stack or that must be kept in memory for other reasons (e.g., because of
pointer dereferences). Both the Register Stack and the Memory Stack are stored in
the external data memory. However, a portion of the Register Stack is kept in the
processor’s local registers for performance. The term stack cache in this section
refers to the use of the local registers to contain a portion of the Register Stack.

4-2 PROCEDURE LINKAGE

4.1.2

The Register Stack

The Register Stack contains activation records for active procedures (Figure 4-2). An
activation record in the Register Stack stores the following information:

o Input arguments to the called procedure. This portion of the activation record is
shared between a caller and the callee. It is allocated by the caller as part of the
caller’s activation record.

« The caller's frame pointer. This is the address of the lowest-addressed byte above
the highest-address word of the caller’s activation record, and is used to manage
the Register Stack. This portion of the activation record is shared between a caller
and the callee. It is allocated by the caller as part of the caller’s activation record.

o The caller's retum address. This is used to resume the execution of the caller after
the called procedure terminates. This is also part of the caller's activation record.

+ The memory frame pointer. This is the address of the top of the caller's Memory
Stack (see below). This address is stored by the callee (if required), and used to
restore the memory stack upon return.

e The local variables of the called procedure, if any.
« Outgoing parameters of the called procedure, if any.
« The frame pointer of the called procedure, if the procedure calls another procedure.

o The return address for the called procedure, if the procedure calls another
procedure. This location is allocated in the Register Stack, and is used when the
called procedure calls another procedure.

Figure 4-2

An Activation Record in the Register Stack

n
>

Incoming Arguments

Frame Pointer LR1 (Caller) Before and
Return Address LRO (Caller) After Call
N <
Memory Frame Pointer Caller's Stack Pointer

Callee’s |
e L Local Variables
of Callee
Outgoing Arguments
Frame Pointer LR1 (Callee) } During
Call
Return Address LRO (Callee)
» —

Callee’s Stack Pointer

PROCEDURE LINKAGE

4.1.3

Local Registers As A Stack Cache

The Am29200 microprocessor is designed for efficient implementation of the Register
Stack. Specifically, the Am29200 microprocessor can use the large number of rela-
tively addressed local registers to cache portions of the Register Stack, yielding a
significant gain in performance. Allocation and de-allocation of activation records
occurs largely within the confines of the high-speed local registers, and most
procedure calls occur without extemal references. Furthermore, during procedure
execution, most data accesses occur without external references, because activation-
record data are referenced most frequently. The principle of locality of reference,
which allows any cache to be effective, also applies to the stack cache. The entries in
the stack cache are likely to remain there for re-use, because the size of the Register
Stack does not change very much over long intervals of program execution. Activation
records are typically small, so the 128 locations in the local register file can hold many
activation records.

Allocating Register-Stack activation records in the local registers is facilitated by the
Stack Pointer in Global Register 1. During the execution of a procedure, the Stack
Pointer points simultaneously to the top of the Register Stack in memory and to the
local register at the top of the stack cache. In other words, Global Register 1, a
word-length register, contains the 32-bit address of the top of the Register Stack,
while bits 8-2 of Global Register 1 (with a 1 appended to the most significant bit)
indicate the absolute register number of Local Register 0. Allocation and de-allocation
of the Register Stack is accomplished by subtracting from or adding to, respectively,
the value of the Stack Pointer.

Using this register-addressing scheme, locations from the Register Stack are auto-
matically mapped into the local register file. Figure 4-3 shows the relationship

Figure 4-3 Relationship of Stack Cache and Register Stack
Register
Stack
Spilled
Activation
Local
Register Register Free Bound (gr127) Records
File - ? ___________ oy >
] Frame Pointer (Ir1)
[' g
1] 1]
Ir6 ! Current H
IS ' Activation !
Ir4 ' Record]
I3 . (in local :
Ir2 ! registers) '
Ir Register Stack Pointer (gr1) '
1ro [— .
Ir127
)
{
Register Allocate Bound (gr126)
44 PROCEDURE LINKAGE

between the Register Stack and the stack cache in the local registers. As shown,
pointers are required to define the boundaries between the Register Stack and the
stack cache.

e The register free bound pointer (rfb, gr127) defines the boundary between the
portion of the Register Stack cached in the local registers and the portion stored in
the external data memory. The rfb pointer contains the address of the first word in
the Register Stack that is not contained in the local registers, but which is in
memory.

« The frame pointer (fp, Ir1) contains the memory address of the lowest-addressed
word not in the current activation record. The current activation record is not
necessarily in the data memory. The fp is used to determine whether or not an
activation record is contained in the local registers when a procedure retumns from a
call, as described later.

o The register stack pointer (rsp, gri) points to the top of the Register Stack either in
the local registers or the data memory. The rsp is contained in the local-register
Stack Pointer (Global Register 1). The top of the Register Stack may or may not be
contained in the data memory. The rsp simply defines the location of the top of the
Register Stack.

o The register allocate bound pointer (rab, gr126) defines the lowest-addressed stack
location that can be cached within the local registers. This defines the limit to which
local registers can be allocated in the Register Stack.

Several activation records may exist in the Register Stack at any given time, but only
one stack location may be mapped to a local register at a given time. When the
Register Stack grows beyond the 128-word capacity of the local registers, some
movement of data between the stack cache and the Register Stack in data memory
must occur.

Stack overflow occurs when a procedure is called, but the activation record of the
callee requires more registers than can be allocated in the stack cache (this is de-
tected by comparing rsp with rab). Figure 4-4 illustrates stack overflow. In this case,
the contents of a number of registers must be moved to data memory. The number of
registers involved must be sufficient to allow the entire activation record of the callee
to reside in the local registers. A block of the registers is copied, or spilled, into an
area of external data memory, freeing space in the local register file for the most
recent procedure call.

Stack underflow occurs when a procedure retums to the caller, but the entire activa-
tion record of the caller is not resident in the stack cache (this is detected by compar-
ing fp with rfb). Figure 4-5 illustrates stack underflow. In this case, the non-resident
portion of the caller's stack must be moved from data memory to the local registers.
Underflow occurs because overflow occurred at some previous point during program
execution, causing part of the Register Stack to be moved to data memory.

The processor performs no hardware management of the stack cache and cannot
detect a reference to a quantity that is not in the stack cache. Consequently, software
must keep the size of an activation record less than or equal to the size of the local
register file (128 words). Any additional storage requirements are satisfied by the
Memory Stack.

PROCEDURE LINKAGE 4-5

Figure 4-4 Stack Overflow

Register
} Stack)
Local Spilled
Register Activation
File Records
Register Free Bound (gr127)
) Frame Pointer (Ir1)
[)
1
])
) ' ‘
ré Register Allocate Bound (gr126) ! Current '
[T I fl Activation '
[£ SRS . : Record '
[| £ SR H ' (in local '
Veeeea ... : , registers) H
reeae- n.o.... ! Register Stack Pointer (gr1) i
SRR 'y« DRI R eeccnccaaan .
Figure 4-5 Stack Underflow
Register
Spilled
Activation
Local Frame Pointer (ir1
Register ¢)—’ . _Rff‘:"fs_ .
File Register Free Bound (gr127) .
..................... > 4 i
' Current '
' Activation '
. Record '
L] 1]
L]
I Register Stack Pointer (gr1) :
Ir0 i '
r127
r126
r125
r124
r123
r122
)
Register Allocate Bound (gr126)

46

PROCEDURE LINKAGE

4.1.4

4.2

The Memory Stack

In general, the Memory Stack is used to augment the Register Stack, holding addi-
tional information associated with activation records. For example, the Memory Stack
holds large data structures that cannot fit into the Register Stack. Similar to the Regis-
ter Stack, the Memory Stack contains a series of (possibly overlapping) activation
records, each corresponding to a procedure activation. However, a Memory Stack
activation record need not exist for a procedure that does not need a Memory Stack
Area. The Memory Stack contains the following information:

o Overflow incoming arguments. These are incoming arguments that do not fit in the
allowed incoming arguments area of the Register Stack activation record.

« Spilled incoming arguments. These are incoming arguments that cannot be kept in
the Register Stack. For example, if the address of an argument is used in a called
procedure, the associated value must be in the Memory Stack.

o Any procedure-local variable not allocated to a register.

« Local block space. This storage is allocated dynamically on the Memory Stack. It is
used to implement functions such as the alloca() function in the C programming
language.

« Overflow outgoing arguments. These are outgoing arguments that do not fit in the
allowed outgoing arguments area of the Register Stack activation record.

In contrast to the Register Stack, the Memory Stack is not cached and has no fixed
size limit. The top of the Memory Stack is defined by the memory stack pointer (msp),
which is stored in Global Register 125 by convention.

PROCEDURE LINKAGE CONVENTIONS

The procedure linkage conventions define the standard sequences of instructions
used to call and retum from procedures. These instruction sequences perform the
following operations (other, more general operations may also be required, as de-
scribed later):

« Put procedure arguments into the outgoing arguments area of the activation record.
This may or may not involve copying the arguments; copying is not necessary if the
arguments are placed into the appropriate registers as the result of computation.

o Branch to the procedure using a call instruction, which also places the retum
address in a register.

 Allocate a frame on the Register Stack. A frame is the storage that contains the
procedure’s activation record.

« If overflow occurs during frame allocation, spill the least-recently used locations of
the Register Stack. The number of spilled locations must be sufficient to allow the
new frame to reside entirely within the local registers.

e Determine the frame-pointer value of the called procedure, if this procedure may
call another procedure.

o Execute the procedure.
e Place retum values into the appropriate registers.
o De-allocate the activation-record frame.

o Fill locations of the local registers from the Register Stack in external memory, if
underflow occurs.

« Branch to the procedure’s retum address.

PROCEDURE LINKAGE 47

4.2.1

4.2.2

This section describes the routines that implement the procedure linkage conventions.
The operations described here are not required on every procedure call. In some
cases, operations can be omitted or simpler routines used; these cases and the ac-
companying simplifications are also described here.

Argument Passing

The linkage convention allows up to 16 words of arguments to be passed from the
caller to the callee in local registers. These arguments are passed in Local Register 2
through Local Register 17 of the caller (note that the local-register numbers are differ-
ent for the caller and the callee, because of Stack-Pointer addressing).

When more than 16 words are required to pass arguments, the additional words are
passed on the Memory Stack. In this case, the memory stack pointer (in Global Regis-
ter 125) points to the seventeenth word of the arguments, and the remaining argu-
ment words have higher memory addresses. Multi-word arguments may be split
across the Register Stack and the Memory Stack. For example, if a multi-word argu-
ment starts on the sixteenth word of the outgoing arguments, the first word of the
argument is passed in the Register Stack, and the remainder of the argument is
passed in the Memory Stack.

All arguments occupy at least one word. Arguments which are a byte or half-word in
length (for example, a character) are padded to 32 bits and passed as a full word.
However, an array or structure composed of multiple byte or half-word components
can be passed as a single, packed array or structure of bytes or half-words rather
than an array or structure of padded bytes or half-words.

No argument is aligned to anything other than a word address boundary, including
multi-word arguments. Some multi-word arguments are referenced as a single object
(for example, double-precision floating-point values). It may be necessary to copy
such arguments to an aligned memory or register area before use.

Procedure Prologue

When a procedure is called, and the procedure may call another procedure, the callee
must allocate a frame for itself on the Register Stack (this is not required for leaf
procedures that do not call other procedures, as described later). A frame is allocated
by decrementing the register stack pointer to accommodate the size of the required
activation record. The procedure prologue is the instruction sequence that allocates
the callee’s Register Stack frame.

To allocate the stack frame, the prologue routine decrements the register stack
pointer by the amount rsize (see Figure 4-6). The value of rsize must be an even
number given by the following formula:

rsize (size of local variable area) + (size of outgoing arguments area) + 2

The value 2 in this formula accounts for the space required by the retum address (in
Local Register 0) and the frame pointer (in Local Register 1). The size of the local
variable area includes the space for the memory frame pointer, if required. If the
formula total is an odd value, the total must be adjusted (by adding 1) so the resulting
rsize value is even. This aligns the top of the Register Stack on a double-word bound-
ary. The reason for this alignment is that double-precision floating-point values must
be aligned to registers with even absolute-register numbers. Alignment of double-
precision values is accomplished by placing these values into even-numbered local
registers and making rsize even (it is also assumed that the register stack pointer is
initialized on an even-word boundary).

48 PROCEDURE LINKAGE

Figure 4-6

Callee’s
Activation
Record

Definition of size and rsize Values

? Incoming Arguments*
' Frame Pointer LR1 (Caller)
L]
) Return Address —— LRO (Caller)
E f Memory Frame Pointer* Caller’s Stack Pointer
L
Coo
' ‘
X ' — -
. ' | Local Variables _
' : of Callee*
' : — —
' L
' . L —
size rsize
']
. ' Outgoing Arguments*
)
: E Frame Pointer* LR1 (Callee)
; ; R Return Address* — LRO (Callee)
Callee’s Stack Pointer
*May not be required

Rsize is not the size of the entire activation record of the callee, because the callee’s
activation record includes storage that was allocated as part of the caller's activation
record frame (e.g., the caller’s outgoing arguments area, which is the callee’s incom-
ing arguments area). The size of the callee’s entire activation record is denoted size,
and is given by the following formula:

size=rsize + (size of the incoming arguments area) + 2

In the prologue routine, the following instruction is used to allocate the stack frame
(rsp=gri):

prologue:
sub rsp,rsp,rsize*4 ; *4 converts words to bytes

However, this instruction does not account for the fact that there may not be enough
room in the local registers to contain the activation record. There must be additional
instructions to detect stack overflow and to cause spilling if overflow occurs. This is
accomplished by comparing the new value of the register stack pointer with the value
of the register allocate bound and invoking a trap handler (with vector number
V_SPILL) if overflow is detected.

Furthermore, if the procedure calls another procedure, the prologue must compute a
frame pointer. The frame pointer will be used by procedures called in tum by the
callee to insure that the callee’s activation record is in the local registers upon return
(i.e., that it has not been spilled onto the Register Stack in data memory). The frame
pointer is computed in the prologue because it need only be computed once, regard-
less of how many procedures are called by a given procedure.

PROCEDURE LINKAGE 4-9

4.2.3

4.2.4

The complete procedure prologue is then (fp = Ir1):

prologue:
sub rsp, rsp, rsize*4 ; allocate frame
asgeu V_SPILL, rsp, rab ; call spill handler if needed
add fp, rsp, size*4 ; compute frame pointer

Spill Handler

If overflow occurs, the assert instruction in the prologue fails, causing a trap. The
trap handler invokes a User-mode routine in the trapping process to spill Register
Stack locations from the local registers to external memory. Having most of the spill
handling in a User-mode routine minimizes the amount of time that interrupts are
disabled and insures that spilling is performed using the correct virtual-memory
configuration.

The spill handler uses two registers. The first register, Global Register 121, normally
contains a trap-handler argument (fav), but is used by the spill handler as a temporary
register. The second register, Global Register 122, stores a trap handler retum ad-
dress (tpc). This register is used by the User-mode spill handler to retum to the
trapping procedure. It is assumed that the address of the User-mode spill handler

is contained in a global register, denoted user_spill_reg in the following instruction
sequence.

The complete spill handler is:

Spill: ; operating-system routine
mfsr tpe, PC1 ; save return address
mtsr PC1, user_spill_reg ; branch to User spill via interrupt return

add tav, user_spill_reg, 4
mtsr PCo, tav
iret

user_spill: ; User-mode spill handler
sub tav, rab, rsp ; compute spill: allocate bound — rsp
srl tav, tav, 2 ; shift to get number of words
sub tav, tav, 1 ; count is one less
misr CR, tav ; set Count Remaining Register
sub tav, rab, rsp
sub tav, rib, tav ; compute new free bound
add rab, rsp, 0 ; adjust allocate bound
storem 0, 0, Ir0, tav ; spill
jmpi tpc ; return to trapping procedure
add rfb, tav, 0 ; adjust free bound

Return Values

If the called procedure returns one or more results, the first 16 words of the result(s)
are returned in Global Register 96 through Global Register 111, starting with Global
Register 96.

If more than 16 words are required for the results, the additional words are returned
in memory locations allocated by the caller. In this case a large return pointer (/rp)
provided by the caller in Global Register 123 at the time of the call points to the sev-
enteenth word of the results, and subsequent words are stored at higher memory
addresses.

4-10 PROCEDURE LINKAGE

4.2.5

4.2.6

4.2.7

Procedure Epilogue

The procedure epilogue de-allocates the stack frame allocated by the procedure
prologue and returns to the calling procedure. Stack de-allocation is accomplished by
adding the rsize value back to the register stack pointer, after which the de-allocated
registers are no longer used and are considered invalid. The epilogue also detects
stack underflow and causes register filling if underflow occurs. This is accomplished
by comparing the value of the caller's frame pointer with the register free bound and
invoking a trap handler (with vector number V_FILL) if underflow is detected. Finally,
the epilogue returns to the caller using the caller's retum address.

The complete procedure epilogue is:

epilogue:
add rsp, rsp, rsize*4 ; add back rsize count
nop ; cannot reference a local register here
asleu V_FILL, fp, rfb ; call fill handler if needed
jmpi Ir0 ; jump to retum address
nop ; delay slot

Fill Handlers

If underflow occurs, the assert instruction in the epilogue fails, causing a trap. The
trap handler invokes a User-mode routine in the trapping process to fill Register Stack
locations from the external memory to local registers. The fill handler is similar in
organization to the spill handler discussed above.

The complete fill handler is:

Fill: ; operating-system routine
mfsr tpc, PC1 ; save return address
mtsr PC1, user_fill_reg ; branch to User fill via interrupt return

add tav, user_fill_reg, 4
mtsr PCO, tav
iret

user_fill: ; User-mode fill handler
sub tav, rfb,rab ; local register has high bit set
or tav, tav, rfb ; put starting register number into Indirect
; Pointer A
mtsr IPA, tav
sub tav, fp, rfb ; compute number of bytes to fill
add rab, rab, tav ; adjust the allocate bound
s tav, tav, 2 ; change byte count to word count
sub tav, tav, 1 ; make count zero-based
mtsr CR, tav ; set Count Remaining register
loadm 0,0, gro, tav ; fill
jmpi tpc ; return to trapping procedure
add b, fp, 0 ; adjust the free bound

The Register Stack Leaf Frame

A leaf procedure is one that does not call any other procedure. The incoming
arguments of a leaf procedure are already allocated in the calling procedure’s activa-
tion-record frame, and the leaf routine is not required to allocate locations for any
outgoing arguments, frame pointer or return address (since it performs no call).
Hence, a leaf procedure need not allocate a stack frame in the local registers, and
can avoid the overhead of the procedure prologue and epilogue routines. Instead, a
leaf routine can use a set of global registers for local variables; Global Register 96

PROCEDURE LINKAGE =~ 411

4.2.8

through Global Register 124 are reserved for this purpose (among other purposes). If
there is an insufficient number of global registers, the leaf procedure may allocate a
frame on the Register Stack.

Local Variables And Memory-Stack Frames

A called procedure can store its local variables and temporaries in space allocated in
the Register Stack frame by the procedure prologue. The values are referenced as an
offset from the rsp base address, using the Stack-Pointer addressing of the local
registers. No object in a register is aligned on anything smaller than a register bound-
ary, and all objects take at least one register.

Because there are 128 local registers, the total Register Stack activation-record size
can not be greater than 128 words. If the callee needs more space for local variables
and temporaries, it must allocate a frame on the Memory Stack to hold these objects.
To allocate a Memory-Stack frame, the procedure prologue decrements the memory
stack pointer (msp, in gr125). The procedure epilogue de-allocates the Memory-Stack
frame by incrementing the msp.

A procedure that extends the Memory Stack dynamically (e.g., using alloca()) must
make a copy of the msp at procedure entry, before allocating the Memory-Stack
frame. The msp is stored in the memory frame pointer (mfp) entry of the activation
record in the Register Stack. The procedure can then change the msp during execu-
tion, according to the needs of dynamic allocation. On procedure retum, the Memory-
Stack frame is de-allocated using the mfp to restore the msp. A procedure that does
not extend the Memory Stack dynamically need not have an mfp entry in its activation
record.

The following prologue and epilogue routines are used if there is no dynamic alloca-
tion of the Memory Stack during procedure execution, but a Memory Stack frame is
otherwise required (Figure 4-6 contains a diagram of register usage):

prologue:

sub rsp, rsp, <rsize>*4 ; allocate register frame

asgeu V_SPILL, rsp, rab ; call spill handler if needed

add fp, rsp, <size>*4 ; compute register frame pointer

sub msp, msp, <msize> ; allocate memory frame

; msize =size of memory frame in words

epilogue:

add rsp, rsp, <rsize>*4 ; de-allocate register frame

add msp, msp, <msize> ; de-allocate memory frame

jmpi Iro ; return

asleu V_FILL, fp, rfb ; call fill handler if needed

The following prologue and epilogue routines are used if there is dynamic allocation of
the Memory Stack during procedure execution:

prologue:
sub rsp, rsp, <rsize>*4 ; allocate register frame
asgeu V_SPILL, rsp, rab ; call spill handler if needed
add fp, rsp, <size>*4 ; compute register frame pointer
add Ir{<rsize>-1}, msp, O ; save memory frame pointer
; Ir{rsize—1} is last reg in new frame
sub msp, msp, <msize> ; allocate memory frame,

; msize =size of memory frame in words

412 PROCEDURE LINKAGE

4.2.9

4.2.10

4.3

epilogue:

add msp, Ir{<rsize>-1},0 ; restore memory stack pointer
; de-allocate memory frame
add rsp, rsp, <rsize>*4 ; de-allocate register frame
nop ; cannot reference a local register here
jmpi Ir0 ; retum
asleu V_FILL, fp, rfb ; call fill handler if needed

Static Link Pointer

Some programming languages permit nested procedure declarations, introducing the
possibility that a procedure may reference variables and arguments which are defined
and managed by another procedure. This other procedure is a static parent of the
callee. A static parent is determined by the declarations of procedures in the program
source, and is not necessarily the calling procedure; the calling procedure is the
dynamic parent. Since procedures can be nested at a number of levels, a given pro-
cedure may have a number of hierarchically organized static parents.

A called procedure can locate its dynamic parent and the variables of the dynamic
parent because of the retum address and frame pointer in the Register Stack. How-
ever, these are not adequate to locate variables of the static parent which may be
referenced in the procedure. If such references appear in a procedure, the procedure
must be provided with a static link pointer (s/p). In the run-time organization, the sip is
stored in Global Register 124. Since there can be a hierarchy of static parents, the sip
points to the sip of the immediate parent, which in tum points to the sip of its immedi-
ate parent, and so on. Note that the contents of Global Register 124 may be de-
stroyed by a procedure call, so a procedure needing to reference the variables of

a static parent may need to preserve the sip until these references are no longer
necessary.

Transparent Procedures

A transparent procedure is one that requires very little overhead for managing
run-time storage. Transparent procedures are used primarily to implement compiler-
specific support functions, such as integer divide.

A transparent routine does not allocate any activation-record frames. Parameters are
passed to a transparent procedure using tav and the Indirect Pointer A, B, and C
registers. The retumn address is stored in tpc. This convention allows a leaf procedure
to call a transparent procedure without changing its status as a leaf procedure. There
is a tight relationship between a compiler and the transparent procedures it calls.
Some transparent procedures may need more temporary registers and the compiler
must account for this.

REGISTER USAGE CONVENTION

The run-time organization standardizes the uses of the local and global registers. This
section summarizes register use and the nomenclature for register values:

o GR1: Register stack pointer (rsp).
e GR2-GR63: Unimplemented.
+ GR64-GR95: Reserved for operating-system use.

e GR96—-GR111: Procedure retum values. Lower-numbered registers are used
before higher-numbered registers. If more than 16 words are needed, the additional

PROCEDURE LINKAGE 413

words are stored in the Memory Stack (see GR123, large retum pointer). These
registers are also used for temporary values that are destroyed upon a procedure
call.

« GR112-GR115: Reserved for programmer. These registers are not used by the
compiler, except as directed by the programmer.

e GR116-GR120: Compiler temporaries.

e GR121: Trap handler argument/temporary (tav)—This register is used to
communicate arguments to a software-invoked trap routine. It can be destroyed by
the trap, but not by other traps and interrupts not explicitly generated by the
program (for example, a Timer trap).

e GR122: Trap handler return address/temporary (ipc). This register is also used by
software-invoked traps. It can be destroyed by the trap, but not by other traps and
interrupts not explicitly generated by the program (for example, a Timer trap).

e GR123: Large retum pointer/temporary (/rp).
o GR124: Static link pointer/temporary (sip).

o GR125: Memory stack pointer (msp).

e GR126: Register allocate bound (rab).

« GR127: Register free bound (rfb).

o LRO: Return address.

o LR1: Frame pointer.

In this convention, registers must be handled by software according to system re-
quirements. The following practices are recommended:

 GR64—-GR95 should be protected from User-mode access by the Register Bank
Protect Register.

¢ The contents of GR96-GR124 should be assumed destroyed by a procedure call,
unless the procedure is a transparent procedure.

o The contents of GR121 and GR122 should be assumed destroyed by any
procedure call or any program-generated trap.

e The contents of GR125 are always preserved by a procedure call.

o The contents of GR126 and GR127 are managed by the spill and fill handlers and
should not be modified except by these handlers.

EXAMPLE OF A COMPLEX PROCEDURE CALL

The following code sequence demonstrates a complex procedure call, illustrating how
registers are used in the run-time organization:

caller:
(other code)
add Irp, msp, 32 ; pass Irp
add slp, msp, 120 ; pass a static link
call Ir0, callee
const 2, 1 ; 1 as first argument
(other code)

4-14 PROCEDURE LINKAGE

callee:

const tav, (126-2)*4 ; giant register allocation

sub rsp, rsp, tav ; allocate register frame

asgeu V_SPILL, rsp, rab

const tav, (126-2)*4+(3*4) ; incoming arguments and overhead
add fp, rsp, tav ; create frame pointer

add Ir123, msp, 0 ; for dynamic Memory-Stack allocation

const tav, memory_frame_size ; big msize
consth tav, memory_frame_size ; high half of msize

sub msp. msp, tav ; allocate memory frame

add Ir18, Irp, 0 ; save Irp for later

add Ir19, slp, 0 ; save slp for later
(other code)

add msp, Ir123, 0 ; de-allocate memory frame

const tav, (126-2)*4 ; giant allocation size

add rsp, rsp, tav ; de-allocate register frame

const @gr96, 1 ; retum value

jmpi Ir0 ; retum to caller

asleu V_FILL, fp, rfb ; insure caller’s registers in frame

4.5 TRACE-BACK TAGS
A trace-back tag is either one or two words of information included at the beginning of
every procedure. This information permits a debug routine to determine the sequence
of procedure calls and the values of program variables at a given point in execution.
The trace-back tag describes the memory frame size and the number of local regis-
ters used by the associated procedure. A one-word tag is used if the memory frame
size is less than 2K words; otherwise, the two-word tag is used. Regardless of tag
length, the tag directly precedes the first instruction of the procedure. Figure 4-7
shows the format of the trace-back tags.
The first word of a trace-back tag starts with the invalid operation code 00 (hexa-
decimal). This unique, invalid instruction operation code allows the debugger to
locate the beginning of the procedure in the absence of other information related to
the beginning of the procedure, such as from a symbol table. This is particularly
Figure 4-7 Trace-Back Tags

One-word tag:

a'mmlzal RRNRRARNREARRRERERD
0000O0OOO O|OIM|T] argcount Reserved msize res
Two-word tag:
IRARRARRANRRRRRRRRRRRNRRRRRRRRANA
Frrrrer Crrrprrrrpertrtrrrirtl
000O0O0 OO Ot |M|T}] argcount Reserved Reserved

PROCEDURE LINKAGE ~ 4-15

useful after a program crash, in which case the debug routine may have only an
arbitrary instruction address within a procedure. The call sequence up to the current
point in execution can be determined from the rsize and msize values in the trace-
back tag. However, for procedures that perform dynamic stack allocation (e.g., using
alloca()), the memory frame pointer must be used.

The tag word immediately preceding a procedure contains the following fields.
Reserved fields must be zero.

Bits ltem Description
31-24 opcode Hexadecimal 00 (an invalid opcode)
23 tag type 0/one-word tag; 1/two-word tag
22 m 0/no mfp; 1/mfp used
21 t 0/normal; 1/transparent procedure
20-16 argcount Number of arguments in registers (includes Ir0 and Ir1)
15-11 Reserved Reserved, must be zero
10-3 msize Memory frame size in doublewords (if bit 23 is 0)
or reserved (if bit 23 is 1)
2-0 Reserved Reserved, must be zero

If the procedure uses a Memory-Stack frame size 2K words or more, the msize field is
contained in the second tag word immediately preceding the first tag word.

416 PROCEDURE LINKAGE

| CHAPTER 5 |

PIPELINING AND n
INSTRUCTION SCHEDULING

5.1

5.2

This chapter describes the operation of the Am29200 pipeline. A description of the
Am29200 pipeline is presented only to offer the reader a general overview of the
intemal operation of this pipeline, with the intent to aid understanding of the effects
the pipeline has on program execution and on the behavior of the microprocessor
under certain conditions.

The operation of the functional units is coordinated by Pipeline Hold mode, which
insures that operations are performed in the proper order. This chapter also describes
the Pipeline Hold mode. In certain cases, the pipeline is exposed during instruction
execution, because execution of certain instructions is dependent on the execution of
previous instructions. This chapter discusses the cases where the pipeline is exposed
to software and describes the resulting effect on instruction execution.

FOUR-STAGE PIPELINE

The Am29200 microprocessor implements a four-stage pipeline for instruction execu-
tion. The four stages are fetch, decode, execute, and write-back. For operations, the
pipeline is organized so the effective instruction-execution rate may be as high as one
instruction per cycle.

During the fetch stage, the Instruction Fetch Unit determines the location of the next
processor instruction and issues the instruction to the decode stage. The instruction is
fetched from an extemal instruction memory.

During the decode stage, the instruction issued from the fetch stage is decoded, and
the required operands are fetched and/or assembled. Addresses for branches, loads,
and stores are also evaluated.

During the execute stage, the Execution Unit performs the operation specified by the
instruction.

During the write-back stage, the results of the operation performed during the execute
stage are stored. In the case of branches, loads, and stores, an address is transmitted
to a memory or a peripheral.

Most pipeline dependencies intemal to the processor are handled by forwarding logic
in the processor. For those dependencies that result from the external system, the
Pipeline Hold mode insures proper operation.

In a few special cases, the processor pipeline is exposed to software executing on the
Am29200 microprocessor (see Sections 5.4, 5.5, and 5.6).

PIPELINE HOLD MODE

The Pipeline Hold mode is activated whenever sequential processor operation cannot
be guaranteed. When this mode is active, the pipeline stages do not advance, and
most intemal processor state is not modified.

PIPELINING AND INSTRUCTION SCHEDULING 5-1

The processor places itself in the Pipeline Hold mode in the following situations:

1. The processor requires an instruction that has either not been fetched or not been
retumed by the external instruction memory.

2. The processor requires data from an in-progress load and the operation has not
completed.

3. The processor attempts to execute a load or store instruction while another load
or store is in progress.

4. The processor must perform a serialization operation as described in Section 5.3.

5. The processor is performing a sequence of load-multiple or store-multiple
accesses. The Pipeline Hold mode in this case prevents further instruction
execution until the completion of the load-multiple or store-multiple sequence.

6. The processor has taken an interrupt or trap, and the first instruction of the
interrupt or trap handler has not entered the execute stage. The Pipeline Hold
mode in this case prevents the processor pipeline from advancing until the
interrupt or trap handler can begin execution.

7. The processor has executed an interrupt retum, and the target instruction of the
interrupt retum has not entered the execute stage. The Pipeline Hold mode in this
case prevents the processor pipeline from advancing until the interrupt retum
sequence is complete.

The Pipeline Hold mode is exited whenever the causing conditions no longer exist, or
when the WARN or RESETinput is asserted.

53 SERIALIZATION
The Am29200 microprocessor overlaps extemal data references with other opera-
tions. When an external data reference might have to be restarted, however, the
processor context must be the same as when the operation was first attempted. To
insure this, certain operations are serialized.
The processor serializes by entering the Pipeline Hold mode in any of the following
circumstances:
1. An extemal access is not yet completed, and one of the following instructions is
encountered:
Move to Special Register (MTSR)
Move to Special Register Immediate (MTSRIM)
Move to TLB (MTTLB)—even though this performs no operation
Interrupt Retumn (IRET)
Interrupt Retum and Invalidate (IRETINV)
Halt (HALT)
2. An external access is not yet completed, and an interrupt or trap, other than a
WARN trap, is taken.
If the processor is in the Pipeline Hold mode due to serialization, it enters the Execut-
ing mode once the external access is completed.
5.4 DELAYED BRANCH
The effect of jump and call instructions is delayed by one cycle to allow the processor
pipeline to achieve maximum throughput. When one of these branches is successful,
the instruction immediately following the jump or call is executed before the target
5-2 PIPELINING AND INSTRUCTION SCHEDULING

instruction of the jump or call is executed. Jump and call instructions collectively are
referred to as delayed branches, and the instruction immediately following is called
the delay instruction (sometimes referred to as a delay slot).

For example, in the following code fragment:

cpeq groé, Iré, Ir7 (1)
jmpf gro6, label (2)
sub Ir6, Ir6, 1 (3)
const Ir6, 0 (4)
label: call Ir0, sort (5)
add i, Ir5,0 (6)

cpneq Ir3, gr96, 0 @

The sub instruction (3) is executed regardiess of the outcome of the jmpf instruction
(2). Of course, if the jmpf is not successful, the const instruction (4) is also executed.
If the jmpf is successful, then the instruction sequence is: (2), (3), (5), (6), and then
the first instruction of the sort procedure. Note that the call instruction (5) is also a
delayed branch, so the instruction immediately following it, (6), is always executed.
After the sort procedure executes the retum sequence, the cpneq instruction (7) is the
next instruction executed.

The benefit of delayed branches is improved performance and a simplified processor
implementation. Performance is improved because the processor pipeline executes
useful instructions in a larger number of cycles, compared to an implementation
without delayed branches.

For example, ignoring all other effects on performance, and assuming 15% of all
instructions are taken branches, then a processor without delayed branches would
take at least two cycles for 15% of its instructions, leading to 0.85(1) + 0.15(2)=1.15
cycles per instruction, on average. This represents a 15% performance degradation
compared to a processor with delayed branches (assuming, for this simple example,
the delay instruction is always useful).

The cost of having delayed branches is either the extra effort required when the com-
piler takes advantage of delayed branches (by re-organizing code), or the extra
NO-OP instruction which the compiler inserts after every branch to guarantee correct
program operation. Since the compiler expends only a small amount of effort to avoid
wasting time and space with NO-OPs, and since the performance improvement result-
ing from this effort is significant, delayed branches are beneficial overall.

PIPELINING AND INSTRUCTION SCHEDULING 53

When two immediately adjacent branches are taken, the target of the first branch
pre-empts execution of the delay cycle of the second branch, and the target of the
second branch then follows the target of the first branch. For example, in the following
code fragment:

jmp 11 (1)
jmp 12 (2
add Ird, Ird, Ir5 @)
L1: sub gr96, gro6, 1)
subc gr97, gr97,0 (5)
L2: const gr100, Oxffof ©6)
subr gri01, gr101, 1 (7)

or gr100, gr100, gri01 (8)

an unconditional jmp instruction (1) is followed immediately by another unconditional
jmp instruction (2). (In this example, unconditional jmps are used; however, any two
immediately adjacent taken branches exhibit the same behavior.) The sequence of
executed instructions in this case is: jmp instruction (1), jmp instruction (2), sub in-
struction (4), const instruction (6), subr instruction (7), or instruction (8), and so on.
Note that the add instruction (3) is not executed. Also, the target of the first jmp in-
struction (1) was merely visited; control did not continue sequentially from L1 but
rather continued from L2.

5.5 OVERLAPPED LOADS AND STORES
The Am29200 microprocessor overlaps external data references with other opera-
tions. Certain programming practices are necessary to exploit this parallelism to
improve program performance.
In order to make full use of overlapped storage accesses, some instruction reorgani-
zation may be necessary. For example, in the following sequence:
loop:

sl gri21,gri19,2 (1)

add gri21, gr120, gri21 (2)

load 0,0,gri21,gri21 (3)

add gr96, gr96, gri21 (4)

sub gr98, gr98, 3 (5)

add gri19, gr119, 1 (6)

cplt gr122, gr119, Ir2 (7)

jmpt gri22, loop (8)

nop)
the add instruction (4) uses the result of the load instruction (3). However, the follow-
ing four instructions do not depend on the result of the load. Therefore, the add in-
struction (4) can be moved past the jmpt (8), since it always will be executed even if

5-4 PIPELINING AND INSTRUCTION SCHEDULING

5.6

the jmpt is taken, and can replace the NO-OP instruction (9). The resulting sequence
is:

loop:
sl gri21,gr119, 2 (1)
add gri21, gri20, gri21 (2)
load 0,0, gr121,gr121 (3)
sub gro8, gr98, 3 (4)
add gri19, gri19, 1 (5)
cplt gri22,gri19,12 (6)
jmpt gri22, loop 7

add gr96, gr96, gri21 (8)

The instructions (4) through (7) are likely to be executed while external memory satis-
fies the load request, resulting in improved throughput. The processor thus allows
parallelism to be exploited by instruction reordering.

The overlapped load feature may be used to improve processor performance, but
imposes no constraints on instruction sequences, as delayed branches do. The proc-
essor implements the proper pipeline interlocks to make this parallelism transparent
to a running program.

DELAYED EFFECTS OF REGISTERS

The modification of some registers has a delayed effect on processor behavior, be-
cause of the processor pipeline. The affected registers are the Stack Pointer (Global
Register 1), Indirect Pointers A, B, and C, and the Current Processor Status Register.

An instruction that writes to the Stack Pointer can be followed immediately by an
instruction that reads the Stack Pointer. However, any instruction that references a
local register also uses the value of the Stack Pointer to calculate an absolute-register
number. At least one cycle of delay must separate an instruction that updates the
Stack Pointer and an instruction that references a local register. In most systems, this
affects procedure call and retumn only (see Section 4.2). In general, though, an in-
struction that immediately follows a change to the Stack Pointer should not reference
a local register (however, note that this restriction does not apply to a reference of a
local register via an indirect pointer).

The indirect pointers have an implementation similar to the Stack Pointer, and exhibit
similar behavior. At least one cycle of delay must separate an instruction that modifies
an indirect pointer and an instruction that uses that indirect pointer to access a
register.

Note that it normally is not possible to guarantee that the delayed effect of the Stack
Pointer and indirect pointers is visible to a program. If an interrupt or trap is taken
immediately after one of these registers is set, then the interrupted routine sees the
effect of the setting in the following instruction, because many cycles elapse between
the two instructions. For this reason, a program should not be written in a manner that
relies on the delayed effect; the results of this practice may be unpredictable.

If the Freeze (FZ) bit of the Current Processor Status Register is reset from 1 to 0, two
cycles are required before all program state is reflected properly in the registers
affected by the FZ bit. This implies that interrupts and traps cannot be enabled until
two cycles after the FZ bit is reset, for proper sequencing of program state.

PIPELINING AND INSTRUCTION SCHEDULING 5-5

CHAPTER 6

SYSTEM PROTECTION a

6.1

6.1.1

6.1.2

The Am29200 microprocessor provides protection for general-purpose registers and
special-purpose registers. Certain processor operations are also protected. This
chapter describes the processor’s protection mechanisms.

USER AND SUPERVISOR MODES

At any given time, the Am29200 microprocessor operates in one of two mutually
exclusive program modes: the Supervisor mode or the User mode. All system-
protection features of the Am29200 microprocessor are based on the difference
between these two modes.

Supervisor Mode

The processor operates in the Supervisor mode whenever the Supervisor Mode (SM)
bit of the Current Processor Status Register is 1 (see Section 16.1.1). In the Supervi-
sor mode, executing programs have access to all processor resources.

Any attempt to access a special-purpose register in the range of 160 to 255 causes a
Protection Violation to occur, in either Supervisor or User mode. This permits vir-
tualization of these registers. Supervisor-mode accesses are permitted for any
general-purpose register, regardless of protection.

User Mode

The processor operates in the User mode whenever the SM bit in the Current
Processor Status Register is 0. In the User mode, any of the following actions by an
executing program causes a Protection Violation trap to occur:

1. An attempted access of any general-purpose register for which a bit in the
Register Bank Protect Register is 1 (see Section 6.2).

2. An attempted execution of one of the following instructions: Interrupt Return,
Interrupt Retum and Invalidate, Invalidate, or Halt. However, a hardware-
development system can disable protection checking for the Halt instruction, so
this instruction may be used to implement instruction breakpoints in User-mode
programs (see Sections 17.2 and 17.6.5).

3. An attempted access of special-purpose register in the range of 0 to 127 or
160 to 255.

4. An attempted execution of an assert or Emulate instruction which specifies a
vector number between 0 and 63, inclusive (see Section 16.2.2).

REGISTER PROTECTION

General-purpose registers are divided into register banks and are protected by the
Register Bank Protection Register. The Register Bank Protection Register allows
parameters for the operating system to be kept in general-purpose registers and

SYSTEM PROTECTION 6-1

6.2.1

protected from corruption by User-mode programs. Register banks consist of 16
registers (except for Bank 0, which contains Registers 2 through 15) and are parti-
tioned according to absolute-register numbers, as shown in Figure 6-1.

The Register Bank Protect Register contains 16 protection bits, where each bit
controls User-mode accesses (read or write) to a bank of registers. Bits 0~15 of the
Register Bank Protect Register, protect Register Banks 0 through 15, respectively.

When a bit in the Register Bank Protect Register is 1, and a register in the corre-
sponding bank is specified as an operand register or result register by a User-mode
instruction, a Protection Violation trap occurs. Note that protection is based on
absolute-register numbers. In the case of local registers, Stack-Pointer addition is
performed before protection checking.

When the processor is in the Supervisor mode, the Register Bank Protect Register
has no effect on general-purpose register accesses.

Register Bank Protect (RBP, Register 7)

This protected special-purpose register (Figure 6-2) protects banks of general-
purpose registers from User-mode program accesses.

The general-purpose registers are partitioned into 16 banks of 16 registers each
(except that Bank 0 contains 14 registers). The banks are organized as shown in
Figure 6-1.

Figure 6-1

Register Bank Organization

Register Bank Absolute-Register General-Purpose
Protect Register Bit Numbers Registers
0 2 through 15 Bank 0 (not implemented)
1 16 through 31 Bank 1 (not implemented)
2 32 through 47 Bank 2 (not implemented)
3 48 through 63 Bank 3 (not implemented)
4 64 through 79 Bank 4
5 80 through 95 Bank 5
6 96 through 111 Bank 6
7 112 through 127 Bank 7
8 128 through 143 Bank 8
9 144 through 159 Bank 9
10 160 through 175 Bank 10
1 176 through 191 Bank 11
12 192 through 207 Bank 12
13 208 through 223 Bank 13
14 224 through 239 Bank 14
15 240 through 255 Bank 15

6-2 SYSTEM PROTECTION

Figure 6-2 Register Bank Protect Register

31 23 15 7 0
crrrerrrrr eyt rrrrrrrd
BO

Reserved B15

Bits 31-16: Reserved.

Bits 15-0: Bank 15 through Bank 0 Protection Bits (B15-B0)—In the Register
Bank Protect Register, each bit is associated with a particular bank of registers, and
the bit number gives the associated bank number (e.g., B11 determines the protection
for Bank 11).

SYSTEM PROTECTION 6-3

| CHAPTER 7 |8
SYSTEM OVERVIEW 1‘,'

The Am29200 microprocessor significantly reduces system cost because it integrates
many system functions onto a single chip. This chapter overviews the system inter-
faces and on-chip peripherals of the Am29200 microprocessor.

71 SIGNAL DESCRIPTION

The Am29200 microprocessor uses 140 pins for signal inputs and outputs. It uses 28
pins for power and ground.

Note: If the Serial Port is not used, the UCLK signal must be tied High.

7.1.1 Clocks

INCLK Input Clock (input)
This is an oscillator input at twice the processor and system operating
frequency. It can be driven at TTL levels.

MEMCLK Memory Clock (output)
This is a clock output at one-half of the frequency of INCLK. Most
processor outputs, and many inputs, are synchronous to MEMCLK.
MEMCLK is driven with CMOS levels.

7.1.2 Processor Signals

A(23-0) Address Bus (output, synchronous)
The Address Bus supplies the byte address for all accesses, except
for DRAM accesses. For DRAM accesses, multiplexed row and
column addresses are provided on A(14-1). A(2-0) are also used to
provide a clock to an optional burst-mode EPROM.

ID(31-0) Instruction/Data Bus (bi-directional, synchronous)
The Instruction/Data Bus (ID Bus) transfers instructions to, and data
to and from the processor.

WAIT Add Wait States (input, synchronous)
External accesses are normally timed by the Am29200 micro-
processor. However, the WAIT signal may be asserted during a PIA,
ROM, or DMA access to extend the access indefinitely.

RW Read/Write (output, synchronous)

During an external ROM, DRAM, DMA, or PIA access, this signal
indicates the direction of transfer: High for a read and Low for a write.

RESET Reset (input, asynchronous)
This input places the processor in the Reset mode. This signal has
special hardening against metastable states, allowing it to be driven
with a slow-rise-time signal.

SYSTEM OVERVIEW 71

7.1.3

WARN

INTR(3-0)

TRAP(1-0)

STAT(2-0)

Warn (input, asynchronous, edge-sensitive)

A High-to-Low transition on this input causes a non-maskable WARN
trap to occur. This trap bypasses the normal trap vector fetch se-
quence, and is useful in situations where the vector fetch may not
work (e.g., when data memory is faulty). This signal has special
hardening against metastable states, allowing it to be driven with a
slow-transition-time signal.

Interrupt Requests 3-0 (input, asynchronous)

These inputs generate prioritized interrupt requests. The interrupt
caused by INTRO has the highest priority, and the interrupt caused by
INTR3 has the lowest priority. The interrupt requests are masked in
prioritized order by the Interrupt Mask field in the Current Processor
Status Register and are disabled by the DA and DI bits of the Current
Processor Status Register. These signals have special hardening
against metastable states, allowing them to be driven with slow-
transition-time signals.

Trap Requests 1-0 (input, asynchronous)

These inputs generate prioritized trap requests. The trap caused by
TRARO has the highest priority. These trap requests are disabled by
the DA bit of the Current Processor Status Register. These signals
have special hardening against metastable states, allowing them to
be driven with slow-transition-time signals.

CPU Status (output, synchronous)

These outputs indicate information about the processor or the current
access for the purposes of hardware debug. They are encoded as
follows:

STAT2 STAT1 STATO Condition

Halt or Step Modes

Reserved

Load Test Instruction Mode, Halt/Freeze
Wait Mode

External data access (data valid)

External instruction access (instruction valid)
Internal data access (data valid)

Idle or data/instruction not valid

- -kt OO === 00
- O0O=0=0-=+0

These signals are described in Section 17.3.

ROM Interface

ROMCS(3-0) ROM Chip Selects, Banks 3-0 (output, synchronous)

ROMOE

A Low level on one of these signals selects the memory devices in
the corresponding ROM bank. ROMCS 3 selects devices in ROM
Bank 3, and so on. The timing and access parameters of each bank
are individually programmable.

ROM Output Enable (output, synchronous)

This signal enables the selected ROM Bank to drive the ID bus. It is
used to prevent bus contention when switching between different
ROM banks or switching between a ROM bank and another device or
DRAM bank.

7-2

SYSTEM OVERVIEW

7.1.4

7.1.5

BOOTW

Burst-Mode Access (output, synchronous)
This signal is asserted to perform sequential accesses from a burst-
mode device such as the Am27B010 burst-mode EPROM.

ROM Space Write Enable (output, synchronous)
This signal is used to write an alterable memory in a ROM bank (such
as an SRAM or Flash EPROM).

Boot ROM Width (input, asynchronous)

This input configures the width of ROM Bank 0, so the ROM can be
accessed before the ROM configuration has been set by the system
initialization software. The BOOTW signal is sampled during and
after a processor reset. If BOOTW is High before and after reset (tied
High), the boot ROM is 32 bits wide. If BOOTW is Low before and
after reset (tied Low), the boot ROM is 16 bits wide. If BOOTW is
Low before reset and High after reset (tied to RESET), the boot ROM
is 8 bits wide. This signal has special hardening against metastable
states, allowing it to be driven with a slow-rise-time signal and permit-
ting it to be tied to RESET.

DRAM Interface

RAS(3-0)

CAS(3-0)

3l
=

Row Address Strobe, Banks 3-0 (output, synchronous)

A High-to-Low transition on one of these signals causes a DRAM in
the corresponding bank to latch the row address and begin an ac-
cess. RAS3 starts an access in DRAM Bank 3, and so on. These
signals also are used in other special DRAM cycles.

Column Address Strobes, Byte 3-0 (output, synchronous)

A High-to-Low transition on these signals causes the DRAM selected
by RAS(3-0) to latch the column address and complete the access.
To support byte and half-word writes, column address strobes are
provided for individual DRAM bytes. CAS3 is the column address
strobe for the DRAMSs, in all banks, attached to ID(31-24). CAS2 is
for the DRAMSs attached to ID(23—-16), and so on. These signals are
also used in other special DRAM cycles.

Write Enable (output, synchronous)

This signal is used to write the selected DRAM bank. “Early write”
cycles are used so the DRAM data inputs and outputs can be tied to
the common ID Bus.

Video DRAM Transfer/Output Enable (output, synchronous)
This signal is used with video DRAMs to transfer data to the video
shift register. It is also used as an output enable in normal video
DRAM read cycles.

Peripheral Interface Adapter (PIA)

PIACS(5-0)

Peripheral Chip Selects, Regions 5-0 (output, synchronous)
These signals are used to select individual peripheral devices. DMA
Channel 0 may be programmed to use PIACSO during an external
peripheral access, and DMA Channel 1 may be programmed to use
PIACSI.

SYSTEM OVERVIEW 73

7.1.6

PIAOE

PIAWE

DREQ(1-0)

DACK(1-0)

GACK

7.1.7 /O Port

7.1.8

PIO(15-0)

PSTROBE

PBUSY

Peripheral Output Enable (output, synchronous)
This signal enables the selected peripheral device to drive the ID bus.

Peripheral Write Enable (output, synchronous)
This signal causes data on the ID bus to be written into the selected
peripheral.

DMA Controller

DMA Request, Channels 1-0 (input, asynchronous)

These signals request an extemal transfer on DMA Channel 0
(DREQO) or DMA Channel 1 (DREQ1). These requests are individu-
ally programmable to be either level- or edge-sensitive for either
polarity of level or edge. DMA transfers can occur to and from inter-
nal peripherals independent of these requests.

DMA Acknowledge, Channels 1-0 (output, synchronous)

These signals acknowledge an extemal transfer on DMA Channel 0
(DREQO) or DMA Channel 1 (DREQ1). DMA transfers can occur to
and from internal peripherals independent of these acknowledgments.

Terminate DMA (input, synchronous)
This signal can be asserted during an extemal DMA transfer to termi-
nate the transfer after the current access.

External Memory Grant Request (input, synchronous)

This signal is used by an external device to request an access to the
Am29200 microprocessor's ROM or DRAM. To perform this access,
the extemal device supplies an address to the Am29200 ROM
Controller or DRAM Controller.

To support a hardware-development system, GREQ should be either
tied High or held at a high-impedance state during a processor reset.

External Memory Grant Acknowledge (output, synchronous)
This signal indicates to an external device that it has been granted an
access to the Am29200 microprocessor's ROM or DRAM, and that
the device should provide an address.

Programmable Input/Output (input/output, asynchronous)

These signals are available for direct software control and inspection.
PIO(15-8) may be individually programmed to cause processor inter-
rupts. These signals have special hardening against metastable
states, allowing them to be driven with slow-transition-time signals.

Paraliel Port

Parallel Port Strobe (input, asynchronous)
This signal is used by the host to indicate that data is on the Parallel
Port or to acknowledge a transfer from the Am29200 microprocessor.

Parallel Port Busy (output, synchronous)
This indicates to the host that the Parallel Port is busy and cannot
accept a data transfer.

7-4

SYSTEM OVERVIEW

7.1.9

7.1.10

PACK

PAUTOFD

Serial Port

UCLK

Parallel Port Acknowledge (output, synchronous)

This signal is used by the Am29200 microprocessor to acknowledge
a transfer from the host or to indicate to the host that data has been
placed on the port.

Parallel Port Autofeed (input, asynchronous)

This signal is used by the host to indicate how line feeds should be
performed or is used to indicate that the host is busy and cannot
accept a data transfer.

Parallel Port Output Enable (output, synchronous)
This signal enables a data buffer containing data from the host to
drive the ID Bus.

Parallel Port Write Enable (output, synchronous)
This signal writes a buffer with data on the ID Bus. The buffer in tum
drives data to the host.

UART Clock (input)

This is an oscillator input for generating the UART (Serial Port) clock.
To generate the UART clock, the oscillator frequency may be divided
by any amount up to 65,536. The UART clock operates at 16 times
the Serial Port's baud rate. As an option, UCLK may be driven with
MEMCLK or INCLK. It can be driven with TTL levels.

Transmit Data (output, asynchronous)
This output is used to transmit serial data.

Receive Data (input, asynchronous)
This input is used to receive serial data.

Data Set Ready (output, synchronous)
This indicates to the host that the serial port is ready to transmit or
receive data.

Data Terminal Ready (input, asynchronous)
This indicates to the Am29200 microprocessor that the host is ready
to transmit or receive data.

Video Interface

VCLK

VDAT

LSYNC

PSYNC

Video Clock (input, asynchronous)

This clock is used to synchronize the transfer of video data. As an
option, VCLK may be driven with MEMCLK or INCLK. It can be
driven with TTL levels.

Video Data (input/output, synchronous to VCLK)
This is serial data to or from the video device.

Line Synchronization (input, asynchronous)
This signal indicates the start of a raster line.

Page Synchronization (input/output, asynchronous)
This signal indicates the beginning of a raster page.

SYSTEM OVERVIEW 75

7.1 I1 1

JTAG 1149.1 Boundary Scan Interface

TCK Test Clock Input (asynchronous input)
This input is used to operate the Test Access Port. The state of the
Test Access Port must be held if this clock is held either High or Low.
This clock is intemally synchronized to MEMCLK for certain opera-
tions of the Test Access Port controller, so signals intemally driven
and sampled by the Test Access Port are synchronous to processor
intemal clocks.

™S Test Mode Select (input, synchronous to TCK)
This input is used to control the Test Access Port. If it is not driven, it
appears High internally.

TDI Test Data Input (input, synchronous to TCK)
This input supplies data to the test logic from an external source. It is
sampled on the rising edge of TCK. If it is not driven, it appears High
intemally.

TDO Test Data Output (3-state output, synchronous to TCK)
This input supplies data from the test logic to an external destination.
It changes on the falling edge of TCK. It is in the high-impedance
state except when scanning is in progress.

TRST Test Reset Input (asynchronous input)
This input asynchronously resets the Test Access Port. If TRSTis not
driven, it appears High intemally.

ACCESS PRIORITY

Many of the processor interface signals are shared between various types of ac-
cesses. If more than one access request occurs at the same time, the requests are
prioritized as follows, in decreasing order of priority:

1. “Panic mode” DRAM Refresh (see Section 9.2.7)

2. DMA Channel O transfer

DMA Channel 1 transfer

Memory access request by an extemal device (see Section 11.4)
Processor DRAM, PIA, or ROM access for data

Processor DRAM or ROM access for an instruction

External DMA transfers require two accesses: one to read the data from a peripheral
or the DRAM, and another to write the data to a peripheral or DRAM. The two ac-
cesses are performed back-to-back, without interruption by another access.

Some processor accesses to narrow memories (a narrow memory is 8 or 16 bits
wide) require two or four accesses; for example, reading 32 bits from an 8-bit-wide
ROM requires four reads. These accesses are also performed back-to-back, without
interruption.

o0 >0

DRAM refresh cycles are normally overlapped with other, non-DRAM accesses.
Because normal refresh cycles are performed when there is no conflict with other
accesses, these cycles are not prioritized in the above list.

7-6 SYSTEM OVERVIEW

7.3 SYSTEM ADDRESS PARTITION

All addresses are in the processor's instruction/data memory address space. The
processor's address space is partitioned as shown in Table 7-1.

Table 7-1 Internal Peripheral Address Assignments

Address Range (hexadecimal) Selection

00000000—-03FFFFFF ROM Banks (all)
40000000—43FFFFFF DRAM Banks (all)
50000000-50FFFFFF Ep;\ed DRAM Banks (all)
60000000-63FFFFFF M transfer cycles
80000000—800000FC Intemal penpherals/oontrollers
90000000-90FFFFFF PIA Region 0 (PCS0O
91000000-91FFFFFF PIA Region 1
92000000-92FFFFFF PIA Region 2
93000000-93FFFFFF PIA Region 3
94000000-94FFFFFF PIA Region 4
95000000-95FFFFFF PIA Region 5

—all others— Reserved

An access to any unimplemented address or address range has an unpredictable
effect on processor operation.

7.4 INTERNAL PERIPHERALS AND CONTROLLERS

Internal peripherals are accessed via interface registers selected by offsets from
address 80000000 (hexadecimal). The assignment of registers to offsets is shown in
Table 7-2. Nearly all registers are read/write and are 32 bits in length (a few register
bits are read only, bits in the Interrupt Control Register are reset-only, and the DMAO
Address Tail Register and DMAO Count Tail Register are both write-only). It is not
possible to perform writes on individual bytes or halfwords of any register.
Unimplemented register bits are read as zeros and should be written with zeros to
insure compatibility with future processor versions.

SYSTEM OVERVIEW 77

Table 7-2 Internal Peripheral Address Assignments

Peripheral Address (hex) Register
ROM Controller 80000000 ROM Control Register
80000004 ROM Configuration Register
DRAM Controller 80000008 DRAM Control Register
8000000C DRAM Configuration Register
DRAM Mapping Unit 80000010 DRAM Mapping Register 0
80000014 DRAM Mapping Register 1
80000018 DRAM Mapping Register 2
8000001C DRAM Mapping Register 3
Peripheral Interface Adapter 80000020 PIA Control Register 0
80000024 PIA Control Register 1
Interrupt Controller 80000028 Interrupt Control Register
DMA Channel 0 80000030 DMAO Control Register
80000034 DMAO Address Register
80000036 DMAO Address Tail Register
80000038 DMAO Count Register
8000003A DMAO Count Tail Register
DMA Channel 1 80000040 DMAT1 Control Register
80000044 DMA1 Address Register
80000048 DMAT1 Count Register
Serial Port 80000080 Serial Port Control Register
80000084 Serial Port Status Register
80000088 Serial Port Transmit Holding Register
8000008C Serial Port Receive Buffer Register
80000090 Baud Rate Divisor Register
Parallel Port 800000C0 Parallel Port Control Register
800000C1 Parallel Port Status Register
800000C4 Parallel Port Data Register
Programmable 1/0O Port 800000D0 PIO Control Register
800000D4 PIO Input Register
800000D8 PIO Output Register
800000DC PIO Output Enable Register
Video Interface 800000E0 Video Control Register
800000E4 Top Margin Register
800000E8 Side Margin Register
800000EC Video Data Holding Register
—all others— Reserved

78 SYSTEM OVERVIEW

CHAPTER 8

ROM CONTROLLER n

The ROM Interface accommodates up to four banks of ROM that appear as a contigu-
ous memory. Each bank is individually configurable in width and timing. This chapter
describes the operation of the ROM controller.

8.1 PROGRAMMABLE REGISTERS
8.1.1 ROM Control Register (RMCT, Address 80000000)
The ROM Control Register (Figure 8-1) controls the access of ROM Banks 0
through 3.
Figure 8-1 ROM Control Register
31 23 15 7 0
T T T T 11 T L L T T T 1

DwWo res | WSO Dw1 res | WS1 DW2 res ws2 Dwsa res | WS3

. . .)
BSTO LM BST1 BST2 BST3

Bit 31: Burst-Mode ROM, Bank 0 (BST0)—When this bit is 1, ROM Bank 0 is ac-
cessed using the burst-mode protocol, in which sequential accesses are completed at
the rate of one access per cycle. When this bit is 0, the burst-mode protocol is not
used.

Bits 30-29: Data Width, Bank 0 (DW0)—This field indicates the width of the ROM in
Bank 0, as follows:

DWO ROM Width
00 32 bits
o1 8 bits
10 16 bits
1" Reserved

Bit 28: Large Memory (LM)—This bit controls the size of the ROM banks and the
total size of the ROM address space. If the LM bit is 0, each ROM bank is up to 4
Mbytes in size, for a total of 16 Mbytes. If the LM bitis 1, each ROM bankis up to 16
Mbytes in size, for a total of 64 Mbytes.

Bits 27-26: Reserved.

Bits 25-24: Wait States, Bank 0 (WS0)—This field specifies the number of wait
states in a ROM access: that is, the number of cycles in addition to one cycle required

ROM CONTROLLER 8-1

8.1.2

to access the ROM. Zero-wait-state cycles are supported only for non-burst-mode
ROM reads. Writes to the ROM address space and burst-mode ROMs require at
least one wait state.

Other bits of this register have a definition similar to BSTO and DWO for ROM Banks 1
through 3.

ROM Configuration Register (RMCF, Address 80000004)

The ROM Configuration Register (Figure 8-2) controls the selection of ROM Banks 0
through 3. In most systems, this register should be set by software to cause the four
banks of ROM to appear as a single, contiguous region of memory.

Figure 8-2

ROM Configuration Register

31 23 15 7 0
rrrrpnrnr rrrryprrryoerrrpreprrrirprd

ASELO AMASKO ASEL1 AMASK1 ASEL2 AMASK2 ASEL3 AMASK3

8.1.3

Bits 31-27: Address Select, Bank 0 (ASEL0)—On a load, store, or instruction ac-
cess, this field is compared against bits of the access address, with the comparisons
possibly masked by the AMASKO field. The unmasked bits of the ASELO field must
match the corresponding bits of the address for ROM bank 0 to be accessed.

Bits 26-24: Address Mask, Bank 0 (AMASKO0)—This field masks the comparison of
the ASELDO field with bits of the address on an access, to permit various sizes of
memories and memory chips in ROM Bank 0 (“ad(x:y)” represents a field of address
bits x through y, inclusive).

AMASKO Value Address Comparison (LM=0) Address Comparison (LM=1)

000 ASELO0(4:0) to ad(23:19
001 ASELO0(4:1) to ad(23:20
011 ASELO0(4:2) to ad(23:21
111 ASELO(4:3) to ad(23:22

ASELO
ASELO
ASELO
ASELO

4.0
4:1
4:2
4:3

to ad(25:22
to ad(25:23
to ad(25:24

to ad(25:21 g

Only the AMASKO values shown in the above table are valid. The AMASKO field
permits various sizes of memories and memory chips in ROM Bank 0 that are inde-
pendent of the sizes in the other banks.

Other bits of this register have a definition similar to ASELO and AMASKO for ROM
banks 1 through 3.

Initialization

ROM Bank 0 is used as the boot ROM containing the initialization code for the proc-
essor and peripherals. The width of this ROM is set by the BOOTW signal, which is
sampled during and after a processor reset. If BOOTW is High before and after reset
(tied High), the boot ROM is 32 bits wide. If BOOTW is Low before and after reset
(tied Low), the boot ROM is 16 bits wide. If BOOTW is Low before reset and High

8-2 ROM CONTROLLER

8.2.1

8.2.2

8.2.3

8.2.4

after reset (tied to RESET), the boot ROM is 8 bits wide. The BOOTW signal is used
to set the DWO field before the boot ROM is accessed. The boot ROM defaults to a
non-burst-mode ROM with three wait states until the ROM Control Register and ROM
Configuration Register are set with the correct configuration. The LM bit is reset to 0.
The ASELO and AMASKO fields are both set to zero by a processor reset.

To prevent bank conflicts during initialization, the ASEL and AMASK fields for ROM
banks 1 through 3 are set to all 1s. The configuration of ROM banks 1 through 3, if
present, must be set by software before the respective bank is accessed.

ROM ACCESSES

ROM Address Mapping

The ASEL and AMASK fields allow the four ROM banks to appear as a contiguous
region of ROM, with the restriction that a bank of a certain size must fit on the natural
address boundary for that size. For example, a 2-Mbyte ROM must be placed on a
2-Mbyte address boundary. For this reason, ROM banks must appear in the address
space in order of decreasing bank size. Note that to achieve a contiguous memory,
the various ROM banks need not appear in sequence in the address space. For
example, ROM Bank 3 may appear in an address range below the address range for
ROM Bank 1 or 2. The only restriction in the placement of ROM banks is that ROM
Bank 0 is used for the initial instruction fetches after a processor reset, starting at
address 00000000, hexadecimal.

Simple ROM Accesses

Figure 8-3 shows the timing of a simple ROM read cycle. The number of cycles is
controlled by the WSx field in the ROM Control Register (“x” represents one of ROM
Banks 0 through 3). The WSk field specifies the number of waits states: that is, the
number of cycles beyond one cycle required to access the ROM. Figure 8-4 shows
the timing of a zero-wait-state ROM read (WSx = 00). In this case, the ROMOE signal
is asserted at the midpoint of the cycle rather than at the beginning of the second
cycle (since there is no second cycle).

Writes to the ROM Space

Figure 8-5 shows the timing of a write to the ROM address space. This cycle is pro-
vided for alterable memories in the ROM space, such as SRAMs or Flash EPROMs.
Zero-wait-state cycles are not supported for writes. Because there are no individual
byte write enables and because of processor limitations, the ROM must be at least 16
bits wide to support writes (see Section 8.2.5). Also, the width of data written must be
at least as wide as the ROM, so that 16-bit data cannot be written into a 32-bit-wide
ROM. If 32-bit data is written into a 16-bit-wide ROM, the processor performs two
simple writes to write the entire 32 bits.

Burst-Mode ROM Accesses

Figure 8-6 shows the timing of a burst-mode ROM access, for direct connection to
burst-mode devices such as AMD’s 27B010 burst-mode EPROM. Burst-mode

ROM CONTROLLER 8-3

Figure 8-3

MEMCLK__'/\'j\'/——\'/\'/__/

Simple ROM Read Cycie

A(24-0) Address

RW : : : T\ :

ROMCSx : 0 ’ ' / '

ROMOE ' \ ’ ' ' / '

BURST ' ' ' ' ' '

RSWE : : ' : ' :

ID(31-0) :

: number of cycles determined :
-— by WSx+1 ——
accesses require at least one wait state for the initial access. Burst-mode writes are
not supported.
8.2.5 Narrow ROM Accesses
A narrow ROM is one that is less than 32 bits wide. The Am29200 microprocessor
supports 8- and 16-bit-wide ROMs in any bank, as determined by the DWx field in the
ROM Control Register. An 8-bit-wide ROM is attached to ID(31-24). A 16-bit-wide
ROM is attached to ID(31-16) and ignores AO. A 32-bit ROM is attached to ID(31-0)
and ignores A(1-0). A narrow ROM can respond to any read access, but the ROM
must be at least 16 bits wide to respond to writes, and the data written must be as
wide as or wider than the ROM. Thus, only 32-bit data may be written into a 32-bit-
wide ROM, and only 16- and 32-bit data may be written into a 16-bit-wide ROM.
8.2.5.1 8-BIT NARROW ACCESSES

If the processor expects a half-word or a word on a read (that is, if the access is not a
byte read), and a narrow ROM is 8 bits wide, the Am29200 microprocessor generates
one (for a half-word) or three (for a word) requests immediately following the first
access. No other intervening accesses are performed. The address for each subse-
quent access is the same as the address for the first access, except that A(1-0) are
incremented by one for each access. A burst-mode access may be performed for the
subsequent bytes if the ROM permits such an access.

The Am29200 microprocessor assembles the final word or half-word by placing the
first received byte in the high-order byte position of the word or half-word. The

84 ROM CONTROLLER

Figure 8-4

Simple ROM Read Cycle—Zero Wait States

e [\ T\

A(24-0)
RAW : , : .
ROMCSx . \ ' /) . ' .
L] L] ' L
ROMOE . [')
. L]] Ll
BURST ' ' ' ’
WVVE.] 1] []
ID(31-0)
second received byte is placed in the next-lower-order byte position and so on until
the entire word or half-word is assembled.
If the read access is a byte access, the processor performs only one access.
If software generates an unaligned half-word or word read, the narrow ROM does not
permit the implementation of the unaligned read. The address sequence generated
to assemble the half-word or word wraps within the half-word or word.
8.2.5.2 16-BIT NARROW ACCESSES

If the processor expects a word on a read, and a narrow ROM is 16 bits wide, the
Am29200 microprocessor generates one more request immediately following the first
access. No other intervening accesses are performed. The address for the second
access is the same as the address for the first access, except that A(1-0) are incre-
mented by two for the second access. A burst-mode access may be performed for
the second 16 bits if the ROM permits such an access.

The Am29200 microprocessor assembles the final word by placing the first received
half-word in the high-order half-word position of the word, and the second received
half-word in the low-order half-word position.

If the read access is a byte or half-word access, the processor performs only one
access.

If software generates an unaligned word read, the narrow ROM does not pemit the
implementation of the unaligned read. The address sequence generated to assemble
the word wraps within the word.

ROM CONTROLLER 8-5

Figure 8-5 Simple Write to ROM Bank (for alterable memories in the

ROM address space)
wax [\
: ' A'ddress l ' .
e o\ , : : ./ ,
s : : : / :
ROMOE : . ' . . :
BURST ' : : : ' :
o T\ [
ID(31-0) (. Data N ' |) .
: number of cycles determined :
- by WSx+1 —
8.2.6 Use of WAIT to Extend ROM Cycles

If the WAIT signal is asserted before the end of a ROM access (that is, before the
cycle in which ROMCSx is deasserted), the processor extends the ROM access until
WAIT is deasserted. This pemits the system to extend the ROM access indefinitely.
The access ends on the cycle after WAIT is deasserted, both for reads (Figure 8-7)
and for writes (Figure 8-8).

The WAIT signal can also be used to extend individual accesses in a sequence of
burst-mode accesses. For each access, the processor does not consider the data to
be valid until the cycle after WAIT is High.

8-6 ROM CONTROLLER

Figure 8-6 Burst-Mode ROM Read

MEMCLK'/\'/\l/_l/\'/\/—

A(24-3) Address
. . . .
. . L}
A(2-0) Address x . . .
[' L] 1]] .
W . . . L} .
. .] L]]
. . . L}
ROMC S ' \ . ' ’ '
L . . 1 .
- L] L} .
ROMOE ' ' \ ' ' f
L} L) L] L] L]
RSWE ' ' ' ' ' '
ID(31-0) .
. number of cycles - . burst '
' determined by ' e suspend—’v

WSx+1

ROM CONTROLLER 8-7

Figure 8-7 Extending a ROM Read Cycle with WAIT

v [\

A(24-0) Address

Figure 8-8 Extending a ROM Write Cycle with WAIT
e AN\

A(24-0) Address {

ROMCS . , , , Y

ROMOE

b
3
m

~—

=
e

ID(31-0) Data N)

8-8 ROM CONTROLLER

CHAPTER 9

DRAM CONTROLLER a

The DRAM Interface accommodates up to four banks of DRAM that appear as a
contiguous memory. Each bank is individually configurable in width. Four, 64-Kbyte
regions of the DRAM can be mapped intc a 16-Mbyte virtual address space.

9.1 PROGRAMMABLE REGISTERS

9.1.1 DRAM Control Register (DRCT, Address 80000008)
The DRAM Control Register (Figure 9-1) controls the access to and refresh of DRAM
Banks 0 through 3.

Figure 9-1 DRAM Control Register

31 23 15 7 0
I I T T T T 11 TTT 1T T TTT
res res res res REFRATE

MR R .o '

PGO, res ! PG1; PG2, PG3, sC

DWo LM DWi DwW2 DwW3

Bit 31: Page-Mode DRAM, Bank 0 (PGO)}—When this bit is 1, burst-mode accesses
to DRAM Bank 0 are performed using page-mode accesses for all but the first access.
When this bit is 0, page-mode accesses are not performed.

Bit 30: Data Width, Bank 0 (DWO0)—This field indicates the width of the DRAM in
Bank O, as follows:

DW Value DRAM Width
0 32 bits
1 16 bits

Bit 29: Reserved.

Bit 28: Large Memory (LM)—This bit controls the size of the DRAM banks

and the total size of the DRAM address space. If the LM bit is 0, each DRAM

bank is up to 4 Mbytes in size, for a total of 16 Mbytes. If the LM bitis 1, each DRAM
bank is up to 16 Mbytes in size, for a total of 64 Mbytes.

PG1, DW1, and so on perform functions similar to PGO and DWO0 for DRAM Banks 1
through 3.

DRAM CONTROLLER 9-1

Bit 15: Static-Column DRAM (SC)—When this bit is 1, page-mode accesses to the
DRAM are performed using static-column accesses. Static column accesses differ
from page-mode cycles only in that CAS(3-0) are held Low throughout a read access.
The timing of the access is not affected, and write accesses are not affected. When
this bit is 0, normal page-mode accesses are performed, if enabled.

Bits 14-9: Reserved.

Bits 8-0: Refresh Rate (REFRATE)—This field indicates the number of MEMCLK
cycles between DRAM refresh cycles. “CAS before RAS” cycles are performed,
overlapped in the background with other non-DRAM accesses when possible. If one
or more banks have not been refreshed in the background when the REFRATE inter-
val expires, the processor forces refresh of the unrefreshed banks.

A zero in the REFRATE field disables refresh. Upon reset, this field is initialized to
the value 1ff, hexadecimal.

9.1.2 DRAM Configuration Register (DRCF, Address 8000000C)
The DRAM Configuration Register (Figure 9-2) controls the selection of DRAM Banks
0 through 3. In most systems, this register should be set by software to cause the
four banks of DRAM to appear as a single, contiguous region of memory.

Figure 9-2 DRAM Configuration Register

31 23 15 7 0
rrriyroeoypeiyrryptreprreiprvep ety el

ASELO AMASKO ASEL1 AMASK1 ASEL2 AMASK2 ASEL3 AMASK3

Bits 31-27: Address Select, Bank 0 (ASEL0)—On a load, store, or instruction ac-
cess, this field is compared against bits of the access address, with the comparisons
possibly masked by the AMASKO field. The unmasked bits of the ASELO field must
match the corresponding bits of the address for DRAM bank 0 to be accessed.

Bits 26-24: Address Mask, Bank 0 (AMASKO0)—This field masks the comparison of
the ASELDO field with bits of the address on an access, to permit various sizes of
memories and memory chips in DRAM Bank 0 (“ad(x:y)” represents a field of address
bits x through y, inclusive).

AMASKO Value Address Comparison (LM=0) Address Comparison (LM=1)
000 ASELO0(4:0) to ad(23:19 ASELO(4:0) to ad(25:21
001 ASELO0(4:1) to ad(23:20 ASELO(4:1) to ad(25:22
o011 ASEL0(4:2) to ad(23:21 ASELO(4:2) to ad(25:23
111 ASELO0(4:3) to ad(23:22 ASELO(4:3) to ad(25:24

Only the AMASKO values shown in the above table are valid.

Other bits of this register have a definition similar to ASELO and AMASKO for DRAM
Banks 1 through 3.

9-2 DRAM CONTROLLER

9.1.3

DRAM Mapping Register 0 (DRMO, Address 80000010)

This register (Figure 9-3) specifies one of four possible mappings of a mapped DRAM
access.

Figure 9-3

DRAM Mapping Register 0

31 23 15 7 0
rrrrreiéyrrrrreriverrryprerrerrrrprrirririd

res VIRTBASE res PHYBASE

'
VALID

9.1.4

'9.1.5

9.1.6

9.1.7

Bit 31: Valid Mapping (VALID)—This bit, when 1, indicates that the mapping speci-
fied by the VIRTBASE and PHYBASE fields is valid.

Bits 30-24: Reserved.
Bits 23-16: Virtual Base Address (VIRTBASE)—This field specifies the virtual base
address of the mapped region. On a mapped DRAM access, it is compared against

bits 23-16 of the address generated by the load or store instruction. The comparison
must match for the mapping to be performed.

Bits 15-8: Reserved.

Bits 7-0: Physical Base Address (PHYBASE)—This field specifies the physical
base address of the mapped region. On a mapped DRAM access, if the comparison
of the virtual base address yields a match and the VALID bit is 1, the PHYBASE field
replaces bits 23-16 of the address.

DRAM Mapping Register 1 (DRM1, Address 80000014)

This register is identical in layout and definition to the DRAM Mapping Register 0.
It specifies the second of the four possible mappings.

DRAM Mapping Register 2 (DRM2, Address 80000018)

This register is identical in layout and definition to the DRAM Mapping Register 0.
It specifies the third of the four possible mappings.

DRAM Mapping Register 3 (DRM3, Address 8000001C)

This register is identical in layout and definition to the DRAM Mapping Register 0.
It specifies the the fourth of the four possible mappings.

Initialization

The configuration of DRAM banks, if present, must be set by software before normal
DRAM accesses are performed (the DRAM may be accessed using default parame-
ters that are set by software to determine the configuration of the DRAM). The DRAM
Mapping registers are not initialized by a processor reset, and must be set by
software before a mapped DRAM access occurs. The REFRATE field is initialized

on reset to the value 1ff, hexadecimal.

DRAM CONTROLLER 9-3

9.2

9.2.1

DRAM ACCESSES

DRAM Address Mapping

The ASEL and AMASK fields allow the four DRAM banks to appear as a contiguous
region of DRAM, with the restriction that a bank of a certain size must fit on the natu-
ral address boundary for that size. For example, a 2-Mbyte DRAM must be placed on
a 2-Mbyte address boundary. For this reason, DRAM banks must appear in the
address space in order of decreasing bank size. Note that to achieve a contiguous
memory, the various DRAM banks need not appear in sequence in the address
space. For example, DRAM Bank 3 may appear in an address range below the ad-
dress range for DRAM Bank 1 or 2. This provides flexibility in meeting the restriction
that DRAM banks appear in the address space in order of decreasing size.

Address Multiplexing

The address multiplexing for the DRAMs is performed directly by the Am29200 micro-
processor on the A(14—1) pins, and no extemnal multiplexing is required. Address
multiplexing is performed as follows (“ax” represents address bit x):

When A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1

RASasserted a22 a21 a20 a19 a19 al8 al7 al6 al5 al4 a13 a12 at1 ar0
CASasserted a23 a22 a21 a20 al0 a9 a8 a7 a6 a5 a4 a3 a&2 al

Table 9-1 shows how this multiplexing of addresses supports various configuration of
memory densities and memory widths, assuming the individual DRAMs are 4 bits
wide. The addresses shown in Table 9-1 are the address bits for an access.

Table 9-2 shows how the various memories should be connected to the processor's
address pins to realize this address multiplexing, again assuming the individual
DRAMs are 4 bits wide.

Table 9-1

DRAM Address Multiplexing (by-4 DRAMS)

DRAM
density

DRAM Portion DRAM multiplexed address bits
width - | ofcycle | 10| 9 | 8| 7] 6| 5| a]l3]2]1]o0o0

1
Mbit

RAS alB|al7]|at6|ai5]|al4]|a13}al2|att1 |al0
CAS a) | aB | a7 | a6 | a5 | a4 | a3 | a2 | at
RAS al9|ai8|lal7|a16|ai5|al4|ai3|al2|all
CAS al0j a9 | aB | a7 | a6 | a5 | a4 | a3 | a2

16 bits

32 bits

4
Mbit

RAS al9]ai8|al7]al6|al5|al4|a13|at2|ai1|alo0
CAS a20) a9 | aB | a7 | a6 | a5 | a4 | a3 | a2 | at
RAS a20|al9|ai8|a17|a16|al5|at4|a13|at2|ati
CAS a21|al0| a9 | a8 | a7 | a6 | a5 | a4 | a3 | a2

16 bits

32 bits

16
Mbit

RAS a21]al9|ai8|al7|a16|ai5|al4|ai3|a12|al1|all
CAS a22)a20]| a9 | a8 | a7 | a6 | a5 | a4 | a3 | a2 | a1
RAS a22|a20|al9|ail8|al7|{a16|ai5|al4|a13|at2|atl
CAS a23|a21|ai0] a9 | aB | a7 | a6 | a5 | a4 | a3 | a2

16 bits

32 bits

°-4 DRAM CONTROLLER

Table 9-2

DRAM Address Connections to Am29200 Microprocessor (by-4 DRAMSs)

DRAM
density

DRAM
width

DRAM multiplexed address bits

10

8

7 6 5 4 3

2

1
Mbit

16 bits

A9

A8 | A7 | A6 | A5 | A4

A3

A2 | A1

32 bits

A10

A9 | AB | A7 | A6 | AS

A4

4
Mbit

16 bits

Al

A9

AB | A7 | A6 | A5 | A4

A3

A2 | Al

32 bits

A12

A10

A9 | AB | A7 | A6 | A5

A4

16
Mbit

16 bits

A13

A1l

A9

AB | A7 | A6 | A5 | A4

A3

A2 | A1

32 bits

Al4

A12

A10

A9 1 AB | A7 | A6 | A5

A4

A3 | A2

9.2.3

Sequential accesses can use page-mode accesses, even though not all CAS address
bits are contiguous address bits, because the processor does not generate a page-
mode access across a 1 Kbyte address boundary. Thus the processor will not
change any address bits other than a(9:1) during a page-mode access.

Sixteen-Bit DRAM Width

For a data access, the width of each DRAM bank can be programmed to be either 16
or 32 bits by the DRAM Control Register. If the DRAM is 16 bits wide, only ID(31-16)
are used to transfer data to and from the processor, and the processor performs two
accesses to read or write a full word.

To read a 32-bit word from a 16-bit DRAM bank, the processor first reads the high-
order 16 bits of the word, then generates a second access to read the low-order 16
bits of the word. The address is incremented by two for the second access. To read
an 8-bit byte or 16-bit half-word from a 16-bit DRAM, the processor performs only a
single access. Alignment and sign extension are performed as usual, except the
required byte or half-word is received on ID(31-16). Figure 9-4 shows the location of
bytes and half-words from a 16-bit DRAM bank. In Figure 9-4, bytes and half-words
are numbered as they are numbered in a word.

To write a 32-bit word into a 16-bit DRAM bank, the processor first writes the high-

order 16 bits of the word, then generates a second access to write the low-order 16
bits of the word. The address is incremented by two for the second access, and the
low-order bits of the word appear on ID(31-16). To write an 8-bit byte or 16-bit half-
word on a 16-bit bus, the processor performs only a single access. For a byte write,
the appropriate byte is replicated on both ID(31-24) and ID(23-16). For a half-word

Figure 9-4

Location of Bytes and Half-Words on a 16-Bit Bus

ID31 23 15 7 0
Bytes Bao | oot x x
ID31 15 0
HaltWords et ,

DRAM CONTROLLER 95

9.2.4

9.2.5

9.2.6

write, the appropriate half-word appears on ID(31-16). The CAS(3-0) signals are
asserted as follows (the value “0” is Low, “1” is High, and “x” is a don’t care):

Data width A(1-0) CAS(3-0) (on write)
8 bits 00 0111
8 bits 01 1011
8 bits 10 0111
8 bits 1 1011
16 bits Ox 0011
16 bits 1x 0011
—all other writes (two cycles)— 0011

Mapped DRAM Accesses

Processor DRAM accesses in the 16-Mbyte address range 50000000 — 50FFFFFF
are mapped to one of four 64-Kbyte regions of the DRAM. This provides a virtual
memory region supporting functions such as image compression and decompression
that yield lower overall memory requirements and thus lower system cost. Only proc-
essor DRAM accesses can be mapped. DRAM accesses by a DMA channel cannot
be mapped.

DRAM Mapping Registers 0 through 3 each specify a DRAM mapping. Before an
access to a DRAM location having an address in the range 50000000 — SOFFFFFF,
bits 23-16 of the address are compared to the VIRTBASE fields in each of the DRAM
Mapping registers. If the address bits match the VIRTBASE field in one of the regis-
ters, and the associated VALID bit is 1, then the PHYBASE field replaces bits 23-16 of
the address before the access is performed. If more than one valid comparison oc-
curs, the mapping specified by DRAM Mapping Register 0 has the highest priority,
and the mapping specified by DRAM Mapping Register 3 has the lowest priority. If no
valid comparison is detected, the processor's User- or Supervisor-mode Instruction or
Data Mapping Miss occurs, depending on the program mode and type of access.

Normal Access Timing

Figure 9-5 shows the timing for a normal DRAM read cycle. Figure 9-6 shows the
timing for a normal DRAM write cycle. DRAM cycles are fixed at four cycles and
cannot be extended with WAIT. An additional cycle is taken after the data is read or
written to permit time for RAS precharge. The rising edge of RAS occurs on the third
rising edge of MEMCLK after the beginning of the cycle.

Page-Mode Access Timing

Page-mode accesses can be enabled for each bank to reduce the average access
time for a sequence of accesses. If enabled, page-mode accesses are performed for
instruction accesses and for the LOADM and STOREM instructions. Page-mode
accesses permit an access time of two cycles for all but the first access. When the
DRAM bank is 16 bits wide, two accesses are required to obtain a 32-bit word. Page-
mode accesses are performed to access the second 16 bits in this case if page-mode
accesses are enabled.

Figure 9-7 shows the timing for a page-mode DRAM read cycle. Figure 9-8 shows
the timing for a page-mode DRAM write cycle. Static-column accesses are performed

9-6 DRAM CONTROLLER

Figure 9-5 DRAM Read Cycle

MEMCLK _/__/——\ / \ / \ / _/

Row Addr x Col Addr

A(14-1)

TROE

ID(31-0)

Figure 9-6 DRAM Write Cycle

e [\

Row Addr x Col Addr

By
>
@
~ N N N

TROE :
D(31-0) — { DataN)

DRAM CONTROLLER 9-7

Figure 9-7 DRAM Page-Mode Read Cycle

Col Addr X ColAddr+ 2
L] [] L]
))]
N F_'\'
\] (] L
' SC=1 '
W (]] . N)
—T—F—VO_E] (] \) 0)
ID(31-0) .
may be repeated up
‘e to 1 Kbyte address -
! boundary '
if SC=1 in the DRAM Control Register. Static-column accesses differ from page-
mode accesses only in that CAS(3-0) remain Low throughout the access.
9.2.7 DRAM Refresh

“CAS before RAS” refresh cycles are performed periodically, as determined by the
REFRATE field of the DRAM Control Register. The REFRATE field specifies the
number of MEMCLK cycles in a refresh interval; a zero in this field disables refresh.
The Am29200 microprocessor insures that one row of each DRAM bank is refreshed
in every interval. Each bank is refreshed separately to distribute the demand placed
on the DRAM power supplies by the individual banks.

Figure 9-9 shows the timing of a refresh cycle. Because refresh cycles use only the
RAS(3-0) and CAS(3-0) signals, the processor attempts to perform refresh in the
background, refreshing each bank in the cycles that the DRAM is not being used,
possibly overlapped with ROM and PIA accesses. Background refresh incurs very
little overhead. The average penalty of refresh is about 2 cycles per refresh interval.
This penalty arises because the processor sometimes attempts to access the DRAM
after a refresh cycle has been started. If one or more banks has not been refreshed
by the end of a refresh interval, the DRAM controller performs “panic mode” refresh
cycles to refresh the remaining banks. Panic mode refresh cycles take priority over
all other processor accesses.

2-8 DRAM CONTROLLER

Figure 9-8 DRAM Page-Mode Write Cycle

wevos [\ S\

TROE : - - ' - -
. 1] 1 2 Il 2 ‘ :
ID(31-0) —:—-——-:-(Data x Data + 2/4), :
' may be repeatedup '
‘o to 1 Kbyte address -
! boundary)

Figure 9-9 DRAM Refresh Cycle

v [\ T\ T\

ID(31-0)

DRAM CONTROLLER 99

9.2.8 Video DRAM Interface

A video DRAM (VDRAM) transfer cycle is performed during accesses in the range
60000000 - 63FFFFFF (hexadecimal). These cycles permit the transfer of data to a
VDRAM shift register in graphics applications. Figure 9-10 shows the timing of a
VDRAM transfer cycle. This cycle differs from a normal DRAM cycle because the
signal TR/OE is asserted with different timing.

Figure 9-10 VDRAM Transfer Cycle

MEMCLK _/——_/—_/ \ / \

Row Addr Col Addr

o o o ele =

\

ID(31-0)

9-10 DRAM CONTROLLER

CHAPTER 10

e

PERIPHERAL INTERFACE ADAPTER

The Peripheral Interface Adapter (PIA) permits direct attachment of up to six
peripheral devices, each with its own 24-bit address space.

10.1 PROGRAMMABLE REGISTERS

10.1.1 PIA Control Register 0/1
The PIA Control Registers (Figure 10-1 and Figure 10-2) control the access to PIA
Regions 0 through 5.

Figure 10-1 PIA Control Register 0 (PICTO, Address 80000020)

31 23 15 7 0
LI L LI L LI L LI L

res IOWAITO res IOWAIT1 res IOWAIT2 res IOWAIT3

L] .
IOEXTO I0EXT1 10EXT2

Figure 10-2

PIA Control Register 1 (PICT1, Address 80000024)

31 23 15 7 0
LI LI rprrrerryrrrrrrrerrrrirird

res IOWAIT4 res IOWAITS

L} .
I0EXT4 I0EXTS5

Bit 31: Input/Output Extend, Region 0 (IOEXT0)—If this bit is one, the end of a PIA
access is extended by one cycle after POE is deasserted or by two cycles after PWE
is deasserted. This provides one additional cycle of output disable time or data hold

time for reads and writes, respectively.

Bits 30-29: Reserved.

Bits 28-24: Input/Output Wait States, Region 0 (IOWAIT0)—This field specifies the
number of wait states taken by an access to PIA Region 0. An I/O read cycle takes at
least three cycles (two wait states), and an I/O write cycle takes at least four cycles
(three wait states). If the IOWAITO field specifies an insufficient number of wait states
for an access (for example, IOWAITO = 00010 for a write), the processor takes the
required minimum number of wait states instead of the specified number.

Other bits perform similar functions to IOEXTO and IOWAITO for PIA Regions 1
through 5.

PERIPHERAL INTERFACE ADAPTER. 10-1

10.1.2

10.2

10.2.1

10.2.2

Initialization

The configuration of PIA regions, if present, must be set by software before PIA ac-
cesses are performed. Peripherals may be accessed using default parameters set by
software to determine the presence and/or configuration of the peripherals.

PIA ACCESSES

PIA accesses are performed as a result of load and store instructions with an address
within the range of PIA Region 0 (addresses 90000000 — 90FFFFFF) through PIA
Region 5 (addresses 95000000 — 95FFFFFF). The PIA region number determines
which of PIACS(5-0) is asserted during the access. PIACSS is asserted for an access
to PIA Region 5, and so on. The data width of the load or store determines the width
of the access. An 8-bit device must be attached to ID(7-0), and a 16-bit device must
be attached to ID(15-0). LOADM and STOREM instructions (possible only for 32-bit
accesses) are performed as a series of simple loads or stores.

Instruction fetching from a PIA region is not supported.

Normal Access Timing

Figure 10-3 shows the timing of a PIA read cycle. The address is driven in the first
cycle, the PIACSx signal is asserted in the second cycle to allow for address setup,
and the PIAOE signal is asserted in the third cycle to allow for chip select setup. The
data must be valid after the number of cycles specified by IOWAITx+1. After sam-
pling the data, the Am29200 microprocessor deasserts PIACSx and PIAOE. The
interface operates such that the processor allows at least one cycle before it drives
ID(31-0) for a new access (though a new address may be driven on A(23-0) immedi-
ately), providing one cycle for the peripheral to disable its drivers. If this cycle is
insufficient, setting the IOEXTx bit for the region causes the processor to insert an
additional cycle after the read before starting a new access.

Figure 10-4 shows timing of a PIA write cycle. The PIAOE signal is not asserted.
Instead, the processor drives data in the second cycle and asserts the PIAWE signal
in the third cycle to allow for address, data, and chip select setup. The PIAWE signal
is deasserted one cycle before the final cycle to provide data hold time for the write. If
one cycle of hold time is insufficient, setting the IOEXTx bit for the region causes the
processor to insert an additional cycle of data hold time.

Use of WAIT to Extend /O Cycles

The WAIT signal is used to extend the number of wait states beyond the number
determined by the IOWAITX field. WAIT can be asserted during a read at any time
before PIAOE is deasserted, and can be asserted during a write at any time before
PIAWE s deasserted. In response to WAIT, the processor extends the access until
WAIT is deasserted. If WAIT is asserted within the appropriate amount of time, a
normal read access ends on the cycle after WAIT is deasserted (Figure 10-5), and a
normal write access ends on the second cycle after WAIT is deasserted, to provide
data hold time (Figure 10-6). If IOEXTx=1, the processor waits one more cycle after a
read access to begin a new access, and inserts one more cycle of data hold time after
a write access.

10-2 PERIPHERAL INTERFACE ADAPTER

Figure 10-3 PIA Read Cycle

e [\

A@23-0) Address
. L] . . L] .
" [. 0 [[
R/V_V N ’ (]) (] (] \]
L] L] L] L] 1] []
PIACSX ' ' \ ' ' ' / '
] L] L] L] [] .
T v) N -
PIAGE ' . \ . : /)
' ' . L] '
PIAWE ' . . 0 ' .
'])] ']
AT ' ' ' ' . '
.) [) . ' .
ID(31-0) . A
: number of cycles determined : dn;xtm i:yde
———————————
' by IOWAITx+1 ™ 'g'mm

PERIPHERAL INTERFACE ADAPTER ~ 10-3

Figure 10-4 PIA Write Cycle

e [\

A(23-0) Address
1] . . . 1] 1]
[. 1] . L] L]
R,W . \ L] . L] L] 1] l
L] L]
PIACSX ' ' \ . ' ' ' l
N] .] 0 [
PIAOE ' ' . ’ . .
[) .)] N
PIAWE ' ' ’ \ ' ' / '
[. ' v Y N
W ' ' ' ' ' N
N ' . [' 0
ID(31-0) - Data N —
: number of cycles determined :
h by IOWAITx+1 -
final cycle is
extended for one
cycle if IOEXTx=1

10-4 PERIPHERAL INTERFACE ADAPTER

Figure 10-5 Extending a PIA Read Cycle with WAIT

MEMCLK _/__/__\ / \ f \ /

A(23-0) Address
) L} L}] Ll L}
[] . .)) [
RW . L] L] . L] \ []
] . L] L} L] L]
L] L] . O . T
PIAC&] . . L] . / L}
. Ll L L}) L]
L] L} L} L] Ll ¥
PIAOE . ' ' . J '
L] L] Ll L] L]
PIAWE ' J ' ' ' '
))] [N .
. L]] & & "
) L] L}
next access is
delayed one cycle
if IOEXTx=1

PERIPHERAL INTERFACE ADAPTER ~ 10-5

Figure 10-6 Extending a PIA Write Cycle with WAIT

e [N\

A(23-0) Address
' , 0 [' [
[" [[["
RAW v .
PIACSX ' ' [[' / .
L] L} L}] L] 1]
PIAOE . ' ' . ' .
L] L L L] L] .
1] Ll L] L}
PIAWE . ' ' ' / [.
WAIT [[/ [" [0
\ .
ID(31-0) Data N)
[
final cycle is
extended for one

cycle if IOEXTx=1

10-6 PERIPHERAL INTERFACE ADAPTER

[CHAPTER 14

DMA CONTROLLER a

11.1

11.1.1

The Am29200 microprocessor has two DMA channels, each capable of performing
either external or intemal DMA. An extemal DMA transfers data between an external
peripheral and DRAM. An intemal DMA transfers data between an on-chip peripheral
and DRAM. One of the DMA channels supports queued transfers. The DMA control-
ler also supports direct DRAM access by an external device such as an exteral DMA
controller.

PROGRAMMABLE REGISTERS

DMAO Control Register (DMCTO, Address 80000030)
The DMAO Control Register (Figure 11-1) controls DMA Channel 0.

Figure 11-1

DMAO Control Register

31 23 15 7 0
LI BB 1 I Frrrrruriri I
res DMAWAIT DW | DRM reserved res
' ' R M
DMAEXT ACS uUD ; EN, CTE; T)
RW TTE QEN CTl

Bit 31: DMA Extend (DMAEXT)—The DMAEXT bit serves a function very similar to
the IOEXTx bits in the PIA Control registers. This bit is set to provide an additional
cycle of output disable time for a read or an additional cycle of data hold time for a
write.

Bits 30-29: Reserved.

Bits 28-24: DMA Wait States (DMAWAIT)—This field specifies the number of wait
states taken by an external access by DMA Channel 0. An external DMA read cycle
takes at least three cycles (two wait states) and an extemal DMA write cycles takes at
least four cycles (three wait states). If the DMAWAIT field specifies an insufficient
number of wait states for an access (for example, DMAWAIT = 00010 for a write), the
processor takes the required minimum number of wait states instead of the specified
number.

DMACONTROLLER 11-1

Bits 23-22: Data Width (DW)—This field indicates the width of the data transferred
by the DMA Channel, as follows:

DW Value DMA Transfer Width
00 32 bits
01 8 bits
10 16 bits
1 32 bits, address unchanged

The value DW=11 is used to repeatedly transfer a fixed pattem from a single DRAM
location to a peripheral. For example, it can be used to transfer to a blank area of a
printed page without requiring that a memory buffer be allocated for the blank area.

Bits 21-20: DMA Request Mode (DRM)—This field indicates how external DMA
requests are signaled by DREQO, as follows:

DRM Value DREQO Request
00 Active Low
01 Active High
10 High-to-Low transition
1 Low-to-High transition

Bit 19: Assert Chip Select (ACS)—This bit controls whether the DMA channel as-
serts PIACS0 during an extenal peripheral access. If the ACS bit is 1, the DMA
channel asserts PIACSD; if the ACS bit is 0, the DMA channel does not assert
PIACSO.

Bits 18-10: Reserved.

Bit 9: Transfer Up/Down (UD)—This bit controls the addressing of memory for the
series of DMA transfers. If the UD bit is 1, the DMA address (in the DMAQ Address
Register) is incremented after each transfer. If the UD bit is 0, the DMA address is
decremented after each transfer. The amount by which the address is incremented or
decremented is determined by the width of the transfer, as follows:

DW Value Address Iincr/Decr
00 (32 bits) +/-4
01 (8 bits) +H-1
10 (16 bits| +H-2
11 (32 bits +-0

Bit 8: Read/Write (RW)—This bit controls whether the DMA transfer is to or from the
DRAM. If the RW bit is 1, the DMA channel transfers data from the DRAM to the
peripheral. If the RW bit is 0, the DMA channel transfers data from the peripheral to
the DRAM.

Bit 7: Enable (EN)—This bit enables the DMA channel to perform transfers. A 1
enables transfers, and a 0 disables transfers.

Bit 6: TDMA Terminate Enable (TTE)—This bit, when 1, causes the DMA channel to
sample the TDMA signal during an extemal DMA transfer and to terminate the trans-
fer if TDMA is asserted. TDMA does not apply to an intemal transfer. If this bit is 0,
the TDMA signal is ignored.

11-2 DMA CONTROLLER

Bit 5: Count Terminate Enable (CTE)—This bit, when 1, causes the DMA channel to
terminate the transfer when the DMACNT field of the DMA Count Register
decrements past zero. If this bit is 0, the COUNT field does not terminate the DMA
transfer, though the DMA channel still decrements the count after every transfer.

Bit 4: Queue Enable (QEN)—This bit, when 1, enables the DMA queuing feature
(which is implemented only on DMA Channel 0). DMA Queuing allows the DMAO
Address Register and DMAQO Count Register to be reloaded automatically at the end
of a DMA transfer from the DMAO Address Tail Register and the DMAO Count Tail
Register, respectively. Queuing permits a second transfer to start immediately after a
first transfer has terminated, greatly reducing the response-time requirement for
software to set up and start the second transfer. When this bit is 0, DMA queuing is
disabled, and the DMAO Address Register and DMAO Count Register are set directly
to initiate a transfer.

Bits 3-2: Reserved.

Bit 1: TDMA Terminate Interrupt (TTI}—The TTI bit is used to report that the DMA
channel has generated an interrupt because of TDMA termination. If the TTE bit is

one and the TDMA signal is asserted during an external DMA transfer, the TTI bit is
set and a processor interrupt occurs.

Bit 0: Count Terminate Interrupt (CTI)—The CTI bit is used to report that the DMA
channel has generated an interrupt because of count termination. If the CTE bit is
one and the DMACNT field decrements past zero, the CTI bit is set and a processor
interrupt occurs.

11.1.2 DMAO Address Register (DMADO, Address 80000034)
The DMAO Address Register (Figure 11-2) contains the addresses for a transfer by
DMA Channel 0.
Figure 11-2 DMAO Address Register
31 23 15 7 0
T T T T T 11 TT T T T T T T T T T T T T T T T T T T o1
PERADDR DRAMADDR

Bits 31-24: Peripheral Address (PERADDR)—This field specifies eight bits that are
driven on A(7-0) during an external peripheral access by the DMA channel. A(23-8)
are driven Low during the transfer.

Bits 23-0: DRAM Address (DRAMADDRY)—This field contains the DRAM address for
the next DMA transfer to or from the DRAM. The DRAMADDR field is incremented or
decremented (based on the UD bit) by an amount determined by the width of the
DMA transfer. The increment or decrement amount is 1 for a byte transfer, 2 for a
halfword transfer, and 4 for a word transfer. To support repeated transfers from the
same word, the address can be left unchanged. The DRAMADDR field wraps from
the value 000000 to FFFFFF (hexadecimal) when decremented and from FFFFFF to
000000 when incremented.

DMA CONTROLLER 11-3

11.1.3

DMAO Address Tail Register (TADO, Address 80000036)

This write-only register (Figure 11-3) is the tail of the DMA Channel 0 address queue,
and is used to write the address of a queued transfer when the QEN bit is 1.

Figure 11-3

DMAO Address Tail Register

31 23 15 7 0
rrrrrriryprrrrrrrrrerrerrrrrrrTTrTrrrT

resefved DRAMADDR

11.14

Bits 31-24: Reserved.

Bits 23-0: DRAM Address (DRAMADDR)—This field is written with the beginning
DRAM address for a queued DMA transfer, if queuing is enabled.

DMAO Count Register (DMCNO, Address 80000038)

The DMAO Count Register (Figure 11-4) specifies the number of transfers remaining
to be performed by DMA Channel 0.

Figure 11-4

DMAO Count Register
31 23 15 7 0
T T 1T T 1T 11 TrT 1T rrrr1r1rrrrrrrrrrrrrrir
reserved DMACNT

11.1.5

Bits 31-24: Reserved.

Bit 23-0: DMA Count (DMACNT)—This field normally specifies the number of trans-
fers remaining to be performed on the DMA channel. The count is zero-based: a
count of zero indicates one transfer, a count of one indicates two transfers, and so on.
The DMA channel decrements the DMACNT field after every transfer. If the CTE bit
is 1, the DMA channel generates an interrupt when the DMACNT field is decremented
past zero. However, if the CTE bit is not 1, the DMACNT field is still decremented
after every transfer and can be used to determine how many transfers have been
performed when the DMA channel terminates because of the TDMA signal.

DMAO Count Tail Register (TCNO, Address 8000003A)

This write-only register (Figure 11-5) is the tail of the DMA Channel 0 count queue,
and is used to write the transfer count of a queued transfer when the QEN bit is 1.

11-4 DMA CONTROLLER

Figure 11-5

DMAO Count Tail Register
31 23 15 7 0

reserved DMACNT

11.1.6

11.1.7

11.1.8

11.1.9

11.2

Bits 31-24: Reserved.

Bits 23-0: DMA Count (DMACNT)—This field is written with the zero-based number
of transfers to be performed by a queued DMA transfer, if queuing is enabled.

DMA1 Control Register (DMCT1, Address 80000040)

The DMAT1 Control Register controls DMA Channel 1. It is identical in layout and
definition to the DMAO Control Register, except that the ACS bit controls whether or
not PIACSI is asserted and there is no QEN bit, since queuing is not implemented on
DMA Channel 1.

DMA1 Address Register (DMAD1, Address 80000044)

The DMA1 Address Register contains the addresses for a transfer by DMA Channel
1. Itis identical in layout and definition to the DMAO Address Register.

DMA1 Count Register (DMCN1, Address 80000048)

The DMA1 Count Register specifies the number of transfers remaining to be per-
formed by DMA Channel 1. It is identical in layout and definition to the DMAO Count
Register.

Initialization

The EN bits of both DMA Channel 0 and DMA Channel 1 are reset to 0 by a proces-
sor reset. The DMA channels must be configured by software before they are used.

DMA TRANSFERS

A DMA transfer is performed as a result of a DMA request. The DMA request may be
generated either by an internal peripheral, or by an external device using DREQ(1-0).
The direction of a DMA transfer is determined by the RW bit of the DMA Control
Register.

If the RW bit is 0, the DMA channel transfers data from the peripheral to the DRAM.
The DMA channel first performs an access to read the data from the peripheral and
then performs a DRAM write to store the data into the DRAM. Both accesses occur
without interruption: there is no other intervening access.

If the RW bit is 1, the DMA channel transfers data from the DRAM to the peripheral.
The DMA channel first perfforms a DRAM read to access the data and then performs
an intemal or external access to write the data to the peripheral. Both accesses occur
without interruption: there is no other intervening access.

DMA CONTROLLER ~ 11-5

The details of DMA transfers to and from the intemal peripherals are unimportant to
users. External DMA transfers appear very much like PIA accesses, except the DMA
acknowledge signals DACK(1-0) are asserted during the transfer as well as, option-
ally, PIACS(1-0). The address bus is driven with an address derived from the DMA
Address Register. Bits 23-8 of the address are all 0s, and bits 7-0 are driven with the
PERADDR field. It is possible to use the DACK(1-0) signals as chip selects to the
DMA peripherals. The signals PIAOE, PIAWE, and WAIT are used as they are during
a PIA access. The DMAWAIT field is used to determine the number of wait states,
much as the IOWAITXx field is used during a PIA access.

If the DRAM is 16 bits wide, a 32-bit DMA DRAM access appears as two 16-bit ac-
cesses on ID(31-16). If the peripheral is 8 or 16 bits wide, a DMA peripheral access
appears as a single access on ID(7-0) or ID(15-0), respectively. The peripheral must
have the same width as the transfer.

Figure 11-6 shows the timing of a DMA read cycle (performed when the RW bit is 0).
The DACKXx signal (and, optionally, the PIACSx signal) is asserted in the second
cycle, and the PIAOE signal is asserted in the third cycle. The data must be valid
after the number of cycles determined by DMAWAIT. |f DMAEXT=1, the processor
waits one more cycle after the read access to begin a new access.

Figure 11-7 shows timing of a DMA write cycle (performed when the RW bitis 1). The
PIAGE signal is not asserted. Instead, the processor drives data in the second cycle
and asserts the PIAWE signal in the third cycle. The PIAWE signal is deasserted one
cycle before the final cycle (the number of cycles is determined by DMAWAIT) to
provide data hold time. If DMAEXT=1, the processor inserts one more cycle of data
hold time after a write access.

Figure 11-6

MEMCLK

A(24-0)

E

WAIT

ID(31-0)

U U U U o W

DMA Read Cycle

Address

number of cycles determined . gzxt t:,og:se is o
—————
. by DMAWAIT+1 s S ONaERYe

11-6 DMA CONTROLLER

Figure 11-7 DMA Write Cycle
MEMCLK_/_/\/\/\/\/

Address

A(24-0)

RW

DACKX
PIACSX

N

oL N

(Data N)-——

number of cycles determined
by DMAWAIT+1 -
final cycle is

extended for one
cycle if DMAEXTx=1

ID(31-0)

If the DMA channel’s TTE bit is 1, an external peripheral can assert TDMA at any time
while DACKXx is asserted to terminate the transfer after the current access; in this
case, the current access is completed as usual. As with PIA accesses, the peripheral
can use WAIT to extend the access.

The generation of DMA requests by the DREQ(1-0) signals is controlled by the DRM
field of the DMA control register. The DMA requests can be programmed individually
to be edge- or level-sensitive for either polarity of edge or level.

If the DMA request is edge-sensitive, the DMA request signal must remain at the
appropriate level for at least four cycles after the active edge to insure that the DMA
channel detects the request. An active edge that occurs during an in-progress trans-
fer (that is, while DACKXx is asserted) is ignored. The DREQx signal must be Low
(rising-edge-triggered) or High (falling-edge-triggered) for four cycles before a new
active edge can be recognized.

If the DMA request is level-sensitive, the request may be deasserted at any time while
DACKXx is asserted, and must be deasserted during the cycle in which DACKXx is
deasserted unless it is desired to generate a subsequent DMA request.

The DMA channel continues to perform transfers until the count expires or the TDMA
input is asserted (depending on the CTE and TTE bits). When the transfer termi-
nates, the EN bit is reset unless there is an active queued transfer, as explained in
Section 11.3.

DMA CONTROLLER 11-7

113

114

DMA QUEUING (DMA CHANNEL 0 ONLY)

The address and count registers for DMA Channel 0 each consist of a two-entry
queue, with each entry of the queue separately addressable for loading a new trans-
fer. The DMAO Address Register and DMAO Count Register are at the head of the
queue. The DMAOQ Address Tail Register and DMAO Count Tail Register are at the
tail of the queue, and are write-only registers. A DMA transfer queued behind an
active transfer can start as soon as the first transfer is complete. This reduces the
response-time requirement for software to load a new transfer: software has the entire
transfer time of the second transfer to load the next transfer at the tail of the queue.

DMA queuing is enabled by writing the appropriate address and count values at the
head of the queue, then setting the DMAO Control Register appropriately, with EN=1,
QEN=0, and CTE/TTE=1.

A transfer is loaded into the tail of the queue by first loading the DMAQO Count Tail
Register, then loading the DMAO Address Tail Register (note that the PERADDR field
cannot be changed by a queued transfer). Writing the tail address causes the QEN
bit to be set. Whenever a DMA transfer terminates at the head of the queue and the
QEN bit is 1, the transfer at the tail of the queue advances to the head of the queue
and begins immediately. When the queued transfer advances to the head of the
queue, the QEN bit is reset, the EN bit remains set, and the CTI/TTI bit is set (note
that the automatic queue advance makes it impossible to inspect the count of the
former transfer after a TT1 interrupt in order to discover how many transfers were
performed by that transfer).

The CTI/TTl interrupt handler need not clear the CTI/TTI bit, in fact, it is unsafe to
write the DMAO Control Register at this point because the termination of the current
transfer (the transfer that was formerly queued) may be lost. The interrupt handier
need only place the count and address of the next transfer at the tail of the queue
(again, the tail address should be loaded after the count, because writing the tail
address sets the QEN bit and enables the queue to advance). The CTI/TTI bit is
automatically reset when the tail address is written.

Queue underflow occurs if the transfer at the head of the queue terminates before the
next transfer is loaded at the tail of the queue. Software can detect that underflow
has occurred by examining the EN bit after setting up the next transfer. If the EN bit is
0, underflow has occurred, because a successful start of a queued transfer causes
the EN bit to remain set when the termination interrupt is generated.

RANDOM DIRECT MEMORY ACCESS BY EXTERNAL DEVICES

The Am29200 microprocessor is designed primarily for single-controller applications,

and it has no provision for other bus masters to control the address and data buses in
the traditional sense. However, the DMA controller does provide a mechanism for an
extemal device to access the ROM or DRAM using addresses provided by the device
rather than by a DMA channel. External devices use the GREQ and GACK signals to
perform a random memory access via the Am29200 DRAM or ROM controller.

Figure 11-8 shows the timing for a memory read using GREQand GACK. The
external device indicates that it wants to perform a memory access by asserting
GREQ. As soon as the processor can perform the access, it asserts GACK. The
extemal device can place the memory address on ID(31-0) during any cycle following
the assertion of GACK: the device indicates that the address is valid by deasserting
GREQ The processor uses this address to determine whether the access is to ROM
or DRAM (according to the normal address allocation) and performs the required
access. Figure 11-8 shows an access to DRAM, as an example. The processor

11-8 DMA CONTROLLER

Figure 11-8

External Random DRAM Read Cycle

B e e B

—_ o

deasserts GACK at the beginning of the cycle in which the data is valid on ID(31-0).
The deassertion of GACK completes the access.

Figure 11-9 illustrates how the GREQ/GACK protocol can be used to perform a mem-
ory write. In this case, the external device supplies the address upon the deassertion
of GREQand then provides the write data on ID(31-0). The processor does not
distinguish between a read and a write, allowing the ID Bus to be available to the
device for the transfer of both address and data. The distinction between reads and
writes must be made by extemal logic (which, for example, forms the signal wenew in
Figure 11-9) in a way that meets the memory timing requirements. For example, an
AND gate can be used to form the negative OR of the processor's WE signal and the
write enable from the external device.

To summarize the use of GREQ and GACK:
1. The extemnal device asserts GREQto request an access.

2. Following the assertion of GACK, the device places the address on ID(31-0) and
deasserts GREQto indicate that the address is valid.

3. For a read, the device must be able to latch data from ID(31-0) at the end of the
cycle in which GACK is deasserted. For a write, the device must be prepared to
drive data on ID(31-0) on the second cycle following the address transfer and
must hold the data valid until the cycle following the deassertion of GACK, at
which time it must stop driving. The device must also supply a write enable signal
that satisfies the timing requirements of the memory. In either case, the processor
deasserts GACK based on the access timing of the ROM or DRAM.

DMA CONTROLLER 11-9

Figure 11-9 External Random DRAM Write Cycle

A(14-1)

r—

' ' . ' ' ' ' 0 ' [f}
0 » ' ' ' o " g ' " "
RW [[[' [’ ' ' ' ['
' f} f} ' f ' ' ') ' ' .
RASX ' ' ' ' ' ' o . ' \ " ' ' ‘
' ' ' . ' ' [[' ' ' '
L] L) L] AJ L] Al Ll L L L 1]]
C—A§(3—0) [] ' ' 0]] [' ' \ ' ' /
' ’ [. [[' ' ' [" "
Wenow f ' ' ' ' ' ' ' ' \ ' ' ' l-
[[' [' ' ' ' ' T T T
TROE ' v [[[[' [[' ' '
IDE1-0)) ' D
_.—\ ' [[' ' ' A A A A N
' ' ' ' [" [[[[' '
GREQ ' I ' ' ’ ' '
' ' [[' ' ' ' L
GACK 1] L] . 1] 1] 1] L : : : : :

To further clarify the use of GREQand GACK, Figure 11-10 shows example timing for
a ROM read. Writes to the ROM space are more difficult to implement than DRAM
writes because the processor always asserts the ROMOE signal.

Memory accesses using GREQ and GACK are restricted to 32-bit accesses: 8- and
16-bit accesses are not supported. Zero-wait-state accesses are also not supported.
Furthermore, the ROM and/or DRAM bank must be 32 bits wide. Although the GREQ
GACK protocol supports full 32-bit addressing, the addresses supplied must be within
the range of ROM or DRAM addresses. DRAM mapping cannot be performed.

During a processor reset, the GREQ input may be used by a hardware-development
system to force processor outputs to the high-impedance state. To prevent driver
conflicts, the system should keep GREQin a high-impedance state during a
processor reset.

11.10 DMA CONTROLLER

MEMCLK
A(24-0)

RSWE

Figure 11-10 External Random ROM Read Cycle

DMA CONTROLLER 11-11

CHAPTER 12

PROGRAMMABLE 1/O PORT a

121

12.1.1

The 1/O Port permits direct programmable access to the sixteen external signals,
P1O(15-0), as either inputs, outputs, or open-drain signals. Eight of these signals,
PIO(15-8), can be programmed to cause interrupts.

PROGRAMMABLE REGISTERS

Pl1O Control Register (POCT, Address 800000D0)

The PIO Control Register (Figure 12-1) controls interrupt generation and determines
the polarity of PIO(15-0).

Figure 12-1

P10 Control Register
31 23 15 7 0
I I T I 1 I i i rtr i1 rrrrrrrrrriord

IRM | IRM | IRM | IRM | IRM | IRM | IRM | IRM
15 14 | 13 121 1 10 9 8

INVERT

Bits 31-30: Interrupt Request Mode, PIO15 (IRM15)—This field enables PIO15 to
generate an interrupt equivalent to a request on the processor's INTR3 input, and
indicates whether PIO15 is level- or edge-sensitive in generating the interrupt. The
IRM15 field controls PIO15 as follows:

IRM15 Value PIO15 Interrupt
00 Interrupt disabled
01 Level-sensitive
10 Edge-sensitive
1 IRM15 only — see below

The INVERT field (see below) further conditions interrupt generation. if the INVERT
bit for PIO15 is 0, an interrupt, if enabled, is generated by a High level on PIO15
(level-sensitive) or on a Low-to-High transition (edge-sensitive) of PIO15. If the
INVERT bit for PIO15 is 1, an interrupt, if enabled, is generated by a Low level on
PIO15 (level-sensitive) or on a High-to-Low transition (edge-sensitive) of PIO15.

For IRM15, the value 11 causes PIO15 to generate an edge-triggered interrupt and to
also set the FBUSY bit in the Parallel Port Control Register (see Section 13.1.1),
causing the PBUSY output to be asserted. This can be used to support certain
system-specific features of the Parallel Port. Note that this value may cause a spuri-
ous setting of FBUSY during a reset, depending on the activity on PIO15 after a reset.

PROGRAMMABLE VO PORT 12-1

12.1.2

Bits 29-16: IRM14 through IRM8—The IRM14 through IRM8 fields enable interrupts
and specify level- or edge-sensitivity for PIO14 through PIO8, respectively. These
fields are identical in definition to IRM15, except that the value 11 is reserved.

Bits 15-0: PIO Inversion (INVERT)—This field determines how the level on each PIO
signal is reflected in the PIO Input and PIO Output Registers, and how interrupts are
generated. The most significant bit of the INVERT field determines the sense of
PIO15, the next bit determines the sense of PIO14, and so on. A 0 in this field causes
the intemal and external sense of the respective P1O signal to be noninverted; a High
extemal level is reflected as a 1 intemally, and a Low is reflected as a 0 intemally. A
1 in this field causes the intemal and external sense of the respective PIO signal to be
inverted; a High external level is reflected as a 0 intemally, and a Low is reflected as a
1 internally.

PIO Input Register (PIN, Address 800000D4)

The PIO Input Register (Figure 12-2) reflects the external levels on the PIO(15-0)
signals.

Figure 12-2

PIO Input Register

31 23 15 7 0
rrrrrrrrrrrvririr1ryrrrereritrrrnririeThind

reserved PIN

12.1.3

Bits 31-16: Reserved.

Bits 15-0: P10 Input (PIN)—This field reflects the levels on each PIO signal. The
most significant bit of the PIN field reflects the level on PIO15, the next bit refiects the
level on PIO14, and so on. The correspondence between levels and bits in this regis-
ter is controlled by the INVERT field.

PIO Output Register (POUT, Address 800000D8)

The PIO Output Register (Figure 12-3) determines the levels driven on the PIO(15-0)
signals, for those signals enabled to be driven by the PIO Output Enable Register.

Figure 12-3

PIO Output Register

31 23 15 7 0

T T T T T T T T T T T T T T T I rTrT i T rTrrrrrrrri
reserved POUT

Bits 31-16: Reserved.

Bits 15-0: PIO Output (POUT)—This field determines the levels on each PIO signal,
if so enabled by the PIO Output Enable Register. The most significant bit of the
POUT field determines the level on P1O15, the next bit determines the level on PIO14,

122 PROGRAMMABLE VO PORT

12.1.4

and so on. The correspondence between levels and bits in this register is controlled
by the INVERT field.

P10 Output Enable Register (POEN, Address 800000DC)

The PIO Output Enable Register (Figure 12-4) determines whether or not the
PIO(15-0) signals are driven as outputs.

Figure 12-4

PIO Output Enable Register
3Ji 23 18 7 0
T1rrrrrrrrryrrrrtib 1 rrrrrrroreoeirnrirtirid

reserved POEN

12.1.5

12.2

Bits 31-16: Reserved.

Bits 15-0: PIO Output Enable (POEN)—This field determines whether each PIO
signal is driven as an output. The most significant bit of the POEN field determines
whether PIO15 is driven, the next bit determines whether PIO14 is driven, and so on.
A 1 in a bit position enables the respective signal to be driven according to the associ-
ated POUT and INVERT bits, and a O disables the signal as an output.

Initialization

During a processor reset, all bits of the PIO Output Enable Register are reset to 0,
disabling all PIO signals as outputs. The /O Port must be initialized by software
before the I/O Port is used.

OPERATING THE 1/O PORT

The PIO(15-0) signals are asynchronous to the processor. A change on PIO(15-0) is
reflected in the PIO Input Register a maximum of four MEMCLK cycles after the
change occurs. A level-sensitive interrupt occurs four cycles after the change, and an
edge-sensitive interrupt occurs five cycles after the change. When driven as an
output, a change to the PIO Output Register is reflected on PIO(15-0) a maximum of
one cycle after the change occurs. The PIO(15-0) signals have additional metastable
hardening, allowing them to be driven with slow-transition-time signals.

The PIO Output Enable Register permits the PIO signals to be operated as open-
drain outputs. This is accomplished by keeping the appropriate POUT bits constant
and writing data into the POEN field, so the output is either driving Low or is disabled,
depending on the data.

PROGRAMMABLE /O PORT 12-3

CHAPTER 13

PARALLEL PORT u

13.1

13.1.1

The Parallel Port connects a host processor to the Am29200 microprocessor. It
supports data transfers from the host to the Am29200 microprocessor or from the
Am29200 microprocessor to the host.

PROGRAMMABLE REGISTERS

Parallel Port Control Register (PPCT, Address 800000C0)
The Parallel Port Control Register (Figure 13-1) controls the Parallel Port.

Figure 13-1

Parallel Port Control Register

31 23 15 7 0
rrrrerryrrerrrritd LI 1 I

reserved TDELAY reserved ODH] res

. L] . L} :
DRQ; DDIR +FACK; BRS ; AFD
FWT TRA FBUSY DHH ARB

3 -4
w
e

Bit 31: Reserved.

Bit 30: Full Word Transfer (FWT)—The Parallel Port is normally configured to trans-
fer 8 bits at a time from the Parallel Port Data Register, and FWT is normally 0. When
the FWT bit is 1, the Parallel Port is configured to transfer 32-bit words from the
Parallel Port Data Register, reducing the demand the Parallel Port places on the
processor. An FWT value of 1 causes the Parallel Port to generate an interrupt or
DMA request for every fourth handshake. For proper transfer of data, external logic
must assemble bytes from the parallel-port interface into the 32-bit external latch that
implements the Parallel Port Data Register. The DMA transfer or load instruction that
reads the Parallel Port Data Register must indicate a data width of 32 bits. Full word
transfers are implemented only for transfers from the host.

Bits 29-24: Reserved.

Bits 23-16: Transfer Delay (TDELAY)—During a transfer from the host, this field
controls the duration of the assertion of PACK (and possibly PBUSY). During a trans-
fer to the host, it controls the duration of data setup, PACK assertion, and data hold
times. The TDELAY field specifies the number of MEMCLK cycles in the duration
interval.

Bit 15: Data Request (DRQ)—This bit is set to indicate that the Paralle! Port is ready

for data to be read from or written to the Parallel Port Data Register. If so enabled by

the MODE field, this bit being 1 generates an interrupt or DMA request to read or write
data. This bit is reset when the Parallel Port Data Register is read or written. The

PARALLEL PORT 13-1

DRAQ bit is read-only, allowing other bits of the Parallel Port Control Register to be set
(for example, the FACK bit) without interfering with the data request.

Bit 14: Transfer Active (TRA)—This bit is set at the beginning of a transfer on the
Parallel Port and reset at the end of a transfer. It is read-only, so that setting other
bits of the Parallel Port Control Register do not interfere with the indication of an
active request. The TRA bit can be inspected by software to detect that a transfer is
hung.

Bits 13-11: Reserved.

Bit 10: Data Direction (DDIR)—This bit controls the direction of data transfer on the
Parallel Port. If the DDIR bit is O (the default), data is received on the Parallel Port. If

the DDIR bit is 1, data is transmitted on the Parallel Port. The MODE field must be 00
when the DDIR bit is changed.

Bits 9-8: Parallel Port Mode (MODE)—This field enables the Parallel Port and con-
trols the operational mode of the Parailel Port, as follows:

MODE Value Effect on Parallel Port
00 Disabled
01 Generate interrupt requests for service
10 Generate DMA Channel 0 requests
11 Generate DMA Channel 1 requests

Requests for service are requests to read or write the Parallel Port Data Register.
Placing the Parallel Port into the disabled state causes all intemal state machines to
be reset, forces PACK Low, and holds the Parallel Port in an idle state. Parallel Port
programmable registers are not affected when the port is disabled.

Bit 7: Force Busy (FBUSY)—A 1 in this bit forces an active level on the PBUSY
output. A 0 allows the PBUSY signal to operate normally.

Bit 6: Force ACK (FACK)—A 1 in this bit forces an active level on the PACK output
for one TDELAY interval. At the end of the interval, the FACK bit is reset and PACK
is deasserted.

Bit 5: Disable Hardware Handshake (DHH)—A 1 in this bit prevents the Parallel
Port interface logic from controlling PACK or PBUSY. A 0 in this bit permits normal
handshaking with PACK and PBUSY. FACK and FBUSY may be used by software to
control PACK and PBUSY regardless of the DHH bit.

Bits 4-3: Reserved.

Bit 2: BUSY Relationship to STROBE (BRS)—This bit controls the relative timing of
the PBUSY and PSTROBE hardware handshaking when the Parallel Port is receiving
data. If BRS=0, PBUSY s asserted on the Low-to-High transition (leading edge) of
PSTROBE. If BRS=1, PBUSY s asserted on the High-to-Low transition (trailing edge)
of PSTROBE. The Parallel Port does not respond to PSTROBE until PBUSY is as-
serted, except that the TRA bit is always set on the leading edge of PSTROBE.

Bit 1: ACK Relationship to BUSY (ARB)—This bit controls the relative timing of the
PACK and PBUSY handshaking when the Parallel Port is receiving data.

If ARB=0, PBUSY and PACK are asserted and deasserted at the same time (except
for output driver skew). Both PACK and PBUSY are asserted at either the leading or
trailing edge of PSTROBE, as controlled by the BRS bit. Both are deasserted to-
gether at the end of a transfer, which is usually at the end of a TDELAY interval.

13-2

PARALLEL PORT

13.1.2

If ARB=1, the PACK pulse follows the PBUSY pulse in time. PBUSY s asserted in
response to an assertion of PSTROBE and is deasserted when the Parallel Port Data
Register has been read and PSTROBE is Low. PACK is asserted at the same time
PBUSY s deasserted and is deasserted at the end of a TDELAY interval.

Bit 0: Autofeed (AFD)—This bit reflects the level on the PAUTOFD input. A 1 indi-
cates PAUTOFD is active (High), and a 0 indicates PAUTOFD is inactive (Low).

Parallel Port Status Register (PPST, Address 800000C1)
The Parallel Port Control Register (Figure 13-2) controls the Parallel Port.

Figure 13-2

Parallel Port Status Register

31 23 15 7 0
rTrrrrryrrrrrrrprirerrirypTd LI

reserved TDELAYV reserved BCT reserved

STB + AC
BSY

13.1.3

Bit 31: PSTROBE Level (STB)—This bit indicates the level on the PSTROBE signal.
If PSTROBE is Low, this bit is 0; if PSTROBE is High, this bit is 1.

Bits 30-24: Reserved.

Bits 23-16: TDELAY Counter Value (TDELAYV)—This field indicates the current
value of the TDELAY counter used to time transitions of the handshaking signals.
This value changes as the TDELAY interval is being timed.

Bits 15-10: Reserved.

Bits 9-8: Byte Count (BCT)—When the FWT bit is 1, this field indicates the number
of bytes (that is, the number of complete handshakes) received on the Parallel Port
since the most recent data request. This information is useful for handling partial-
word transfers at the end of a block transfer.

Bit 7: PBUSY Level (BSY)—This bit indicates the level on the PBUSY signal. If
PBUSY s Low, this bit is 0; if PBUSY s High, this bit is 1.

Bit 6: PACK Level (ACK)—This bit indicates the levei on the PACK signal. If PACK
is Low, this bit is 0; if PACK is High, this bit is 1.

Bits 5-0: Reserved.

Parallel Port Data Register (PPDT, Address 800000C4)

The Parallel Port Data Register (Figure 13-3) is used to read from and write data to
the Parallel Port. This register is not implemented directly on the processor, but
rather is implemented by an extemal data buffer connected to the parallel-port
interface cable. The processor converts an access of this register into an extemal
access of the data buffer. This access is similar to a PIA access, except the timing is
fixed (see Section 13.2) and the access uses the signals POE and PWEto read and
write the buffer.

PARALLEL PORT 13-3

Figure 13-3

8 bits
(FWT=0)

32 bits
(FWT=1)

Parallel Port Data Register

31 23 15 7 0
rrrrrerrrerrrrrrrrrrrrtrrprrrrrird

reserved PDATA

31 23 15 7 0
rrrrrrretérrrrrrrirrrrrrrrrrirrrrrrd

PDATA

13.14

13.2

Bits 7-0 (8-bit transfers) or

Bits 31-0 (32-bit transfers): Parallel Port Data (PDATA)—This field contains the
data being transferred to the Am29200 microprocessor or to the host over the Parallel
Port. For transfers from the host, the width of this field depends on the setting of the
FWT bit in the Parallel Port Control Register; however, the instruction or DMA channel
that reads the Parallel Port must also specify the correct data width to properly read
the Parallel Port Data Register.

Initialization

During a processor reset, the MODE field of the Parallel Port Control Register is reset
to 00. The Parallel Port must be configured by software before the Parallel Port is
enabled.

Writing the value 00 into the MODE field resets the Parallel Port, forces PACK Low,
and forces PBUSY High (unless FBUSY is set).

The I/O Port signal PIO15 may be used by the host to signal a change in the configu-
ration of the Parallel Port. If the IRM15 field of the PIO Control Register has the value
11 (see Section 12.1.1), PIO15 causes an edge-triggered interrupt and causes the
FBUSY bit to be set. Setting the FBUSY bit causes the Parallel Port to appear busy
to the host while the port’s configuration is changed. The FBUSY bit must be reset by
software (if required) once configuration is complete.

PARALLEL PORT TRANSFERS

The Parallel Port does not attach directly to the Am29200 microprocessor, but is
attached to the interface cable via buffers. Data must be latched in the interface,
using a three-state latch such as a 74LS374. The handshaking signals, PSTROBE,
PAUTOFD, PACK, and PBUSY, are connected to the Am29200 microprocessor via
simple interface circuits. The inputs PSTROBE and PAUTOFD should be connected
to the processor via a Schmitt-trigger inverter such as a 74HCT14, and the outputs
PACK and PBUSY should be connected to the host via an open-collector inverter
such as a 7406.

The hardware handshaking described in this section can be disabled by setting the
DHH bit. If the DHH bit is 1, handshaking can be accomplished by software using the
FACK and FBUSY bits.

13-4 PARALLEL PORT

13.2.1 Transfers from the Host

Figure 13-4 shows the state-transition diagram for transferring data from the host to
the Am29200 microprocessor over the Parallel Port. Figure 13-5 through Figure 13-8
show the timing diagrams for these transfers. The timing diagrams differ in the set-
tings of the BRS and ARB bits. The timing diagrams also show the signals as they
appear at the processor interface, and do not reflect the inversions in the buffers to
the parallel-port connector.

The host begins the transfer by placing data on the interface and asserting the
PSTROBE signal. The data is latched in the interface on the rising edge of
PSTROBE if BRS=0, and can be latched by either edge if BRS=1. The TRA bit is set
on the leading edge of PSTROBE.

Figure 13-4 State Transistions for Transfers From the Host

RESET

|

PSTROBET

Set TRA l

BRS=0 or (BRS=1 & PSTROBEY)

Idle

Latch data in buffer (system),
PBUSY,
Generate PIO/DMA Request*,
If ARB=0:
PACKT (same time as
PBUSW) and start

TDELAY timer
DMA/PIO read PDR,
ARB-1, and DMA/PIO read PDR
PSTROBE Low and ARB=0
PBUSYT, Wait for TDELAY
PACKT, expiration and
Start TDELAY timer PSTROBE Low
TDELAY expiration TDELAY expiration
and PSTROBE Low
PACK{, PBUSYT,
Reset TRA PACK !,
Reset TRA

*PlO or DMA request is generated every
fourth time if FWT=1

PARALLEL PORT 13-5

Figure 13-5 Transfer from the Host on the Parallel Port (BRS=0, ARB=0)

Data Data
Data Buffe Data
data |at¢h°d-_.

PSTROBE in buffer / \
PACK and PBUSY deasserted when:
— processor has read data (see

TOELAY inlorvl has expired

- interval has expire

PACK / \‘T - PSTROBE is low P

PBUSY \ / -

PAUTOFD

Figure 13-6 Transfer From the Host on the Parallel Port (BRS=0, ARB=1)

Data Data
Data Buffei Data
data latched—e>
PSTROBE in buffer \
PACK deasserted
when the TDELAY
PACK /‘_ \ interval has expired
PBUSY \ / «—1—- PBUSYdeasserted and PACK as-
serted when processor has read data
(see Figure 13-9) and PSTROBE is
Low
PAUTOFD

The Am29200 microprocessor asserts PBUSY within three MEMCLK cycles after the
leading edge of PSTROBE (BRS=0) or within three MEMCLK cycles after the trailing
edge of PSTROBE (BRS=1). The Am29200 microprocessor asserts PACK at the
same time as PBUSY if ARB=0. The Parallel Port then generates either an interrupt
request or a DMA request, as controlled by the MODE field, so the data can be read.
If ARB=0, both PBUSY and PACK are deasserted once the TDELAY interval has
expired, the Parallel Port Data Register (PDR) has been read, and the host has deas-
serted PSTROBE. If ARB=1, PBUSY s deasserted and PACK is asserted when the
PDR has been read and PSTROBE is Low. PACK remains active until the TDELAY
interval has expired. In any case, the TRA bit is reset when PACK is deasserted.

13-6 PARALLEL PORT

Figure 13-7 Transfer From the Host on the Parallel Port (BRS=1, ARB=0)

Data
Data Buffer Data
PSTROBE <«@— data latched in —&
buffer on either
edge of PSTROBE

PACK /
PBUSY \

PACK and PBUSY deasserted when:

— processor has read data (sse Figure 13-9)

—~ TDELAY interval has expired

— PSTROBE is low
PAUTOFD

Figure 13-8 Transfer From the Host on the Paraliel Port (BRS=1, ARB=1)

Data
Data Buffei Data

PACK deasserted when the
PSTROBE /,_ data latched in _,\ TDELAY interval hag epured

buffer on either
edge of PSTROBE

PACK [~ _
PBUSY \ "__ PBUSYdeasserted and PACK
asserted when processor has

read data (see Figure 13-9)

PAUTOFD

The PDR is mapped to the external buffer register. Figure 13-9 shows the timing of
the external access. This external access is treated as either a DMA access ora
processor PIA access for the purpose of prioritization with other accesses.

The PAUTOFD signal is used for software control during a transfer from the host.
Software can detect the level on PAUTOFD by reading the AFD bit in the Parallel Port
Control Register.

13.2.2 Transfers to the Host

Figure 13-10 shows the state transition diagram for transferring data from the
Am29200 microprocessor to the host over the Parallel Port. Figure 13-11 shows the

PARALLEL PORT 13-7

Figure 13-9 Parallel Port Buffer Read Cycle

MEMGLK M [\ / _/___/_

PWE

ID(7-0) or
ID(31-0)

timing for this transfer. Transfers to the host are enabled by the host, using a system-
dependent software protocol. This type of transfer is enabled in the processor by
setting the DDIR bit in the Parallel Port Control Register. Setting the DDIR bit forces
the PBUSY output active, preventing the host from transferring data to the Am29200
microprocessor. The MODE bit must be 00 when the DDIR bit is set or reset.

The Am29200 microprocessor begins the transfer by writing data to the extemal
buffer. Figure 13-12 shows the timing for a buffer write. The buffer is written by either
software writing the Parallel Port Data Register or a DMA transfer that writes the
Parallel Port Data Register. Setting the DDIR bit causes the Parallel Port to generate
the first DMA or interrupt request to write the data. Thereafter, the Parallel Port
generates a DMA or interrupt request after it completes each transfer to the host.

During a transfer to the host, the PAUTOFD signal is used to indicate that the host is
busy and cannot accept data. PAUTOFD has the same polarity as PBUSY for this
purpose. After the data buffer has been written, the Parallel Port waits for one
TDELAY interval and then asserts PACK as soon as PAUTOFD is High and
PSTROBE is Low (these signal conditions may hold before the interval expires). The
TDELAY interval is used to provide data setup time for the host. PACK is active for
one TDELAY interval, then is deasserted.

In response to PACK, the host acknowledges the transfer by asserting PSTROBE,
which resets the TRA bit. PSTROBE has no fixed relationship to PACK. The host
may also assert PAUTOFD before the end of the transfer to indicate it is not ready for
a subsequent transfer. Following the deassertion of PACK or the assertion of
PSTROBE (whichever is later), the Parallel Port waits one TDELAY interval to provide
data hold time to the host. At the end of the interval, the Parallel Port generates a
new DMA or interrupt request to have the data buffer written again, starting a new
transfer. Software or the DMA channel may determine that all transfers have been
made, and a new transfer does not start in this case.

13-8 PARALLEL PORT

Figure 13-10 State Transitions for Transfers to the Host

RESET

|

DDIR=1 and
PiO or DMA enabied

Idle

Generate PIO/DMA request

PIO/DMA write PDR

Start TDELAY timer
Set TRA

TDELAY expiration and
PSTROBE Low and
PAUTOFD High

PACKT,
Start TDELAY timer

TDELAY expiration

PACK!

PSTROBE High

Start TDELAY timer
Reset TRA

TDELAY expiration

PARALLEL PORT 13-9

Figure 13-11 Transfer to the Host on the Parallel Port

E buffer write (see

Data (from Figure 1 3-$2) Data
buffer) —
PSTROBE \ / L—

PACK asserted on latest of: i

— TDELAY interval after data write ._d?:%?('f :T;sffnénolaatg{ of —

~ PSTROBE Low - controlled by TDELAY
PACK — PAUTOFD High <— PACK duration —*

lled by
TDELAY

PBUSY

PAUTOFD] \ /

Figure 13-12 Parallel Port Buffer Write Cycle

N

ID(7-0) : — Data

13-10 PARALLEL PORT

CHAPTER 14

SERIAL PORT a

The Serial Port permits full-duplex, bi-directional data transfer using the RS-232
protocol.

14.1 PROGRAMMABLE REGISTERS

14.1.1 Serial Port Control Register (SPCT, Address 80000080)
The Serial Port Control Register (Figure 14-1) controls both the transmit and receive
sections of the Serial Port.

Figure 14-1 Serial Port Control Register

31 23 15 7 0
7 LI L tT1rvrirrorrprjprirbi I

reserved res PMODE WLGN reserved 'TMODE reserved RMODE

. : . . .
+ BRK, STP RSIE
LOOP DSR

Bits 31-27: Reserved.

Bit 26: Loopback (LOOP)—Setting this bit places the Serial Port in the loopback
mode. In this mode, the TXD output is set High and the Transmit Shift Register is
connected to the Receive Shift Register. Data transmitted by the transmit section is
immediately received by the receive section. The loopback mode is provided for
testing the Serial Port.

Bit 25: Send Break (BRK)—Setting this bit causes the Serial Port to send a break,
which is a continuous Low level on the TXD output for a duration of more than one
frame transmission time. The transmitter can be used to time the frame by setting the
BRK bit when the transmitter is empty (indicated by the TEMT bit of the Serial Port
Status Register), writing the Serial Port Transmit Holding Register with data to be
transmitted, and then waiting until the TEMT bit is set again before resetting the BRK
bit.

Bit 24: Data Set Ready (DSR)—Setting this bit causes the DSR output to be as-
serted. Resetting this bit causes the DSR output to be deasserted.

Bits 23-22: Reserved.

SERIALPORT 14-1

Bits 21-19: Parity Mode (PMODE)—This field specifies how parity generation and
checking are performed during transmission and reception (the value “x” is a don’t
care):

PMODE Value Parity Generation and Checking
0Oxx No parity bit in frame
100 Odd parity (odd number of 1s in frame)
101 Even parity (even number of 1s in frame)
110 Parity forced/checked as 1
m Parity forced/checked as 0

Bit 18: Stop Bits (STP)—A 0 in this bit specifies that one stop bit is used to signify
the end of a frame. A 1 in this bit specifies that 2 stop bits are used to signify the end
of a frame.

Bits 17-16: Word Length (WLGN)—This field indicates the number of data bits
transmitted or received in a frame, as follows:

WLGN Value Word Length
00 5 bits
01 6 bits
10 7 bits
11 8 bits

Data words of less than eight bits are right-justified in the Transmit Holding Register
and Receive Buffer Register.

Bits 15-10: Reserved.

Bits 9-8: Transmit Mode (TMODE)—This field enables data transmission and con-
trols the operational mode of the Serial Port for the transmission of data, as follows:

TMODE Value Effect on Transmit Section
00 Disabled
01 Generate interrupt requests for service
10 Generate DMA Channel 0 requests
1 Generate DMA Channel 1 requests

Requests for service are requests to write the Transmit Holding Register with data to
be transmitted. Placing the transmit section into the disabled state causes all internal
state machines to be reset and holds the transmit section in an idle state with TXD
High. Serial Port programmable registers are not affected when the transmit section
is disabled.

Bits 7-3: Reserved.

Bit 2: Receive Status Interrupt Enable (RSIE)—This bit enables the Serial Port to
generate an interrupt because of an exception during reception. If this bit is 1 and the
Serial Port receives a break or experiences a framing error, parity error, or overrun
error, the Serial Port generates a Receive Status interrupt.

Bits 1-0: Receive Mode (RMODE)—This field enables data reception and controls
the operational mode of the Serial Port for the reception of data:

14-2 SERIAL PORT

RMODE Value Effect on Receive Section

00 Disabled

01 Generate interrupt requests for service
10 Generate DMA Channel 0 requests

1 Generate DMA Channel 1 requests

Requests for service are requests to read data from the Receive Buffer Register.
Placing the receive section into the disabled state causes all intemal state machines
to be reset and holds the receive section in an idle state. Serial Port programmable
registers are not affected when the receive section is disabled.

14.1.2 Serial Port Status Register (SPST, Address 80000084)
The Serial Port Status Register (Figure 14-2) indicates the status of the transmit and
receive sections of the Serial Port.

Figure 14-2 Serial Port Status Register

31 23 15 7 0
rrrrrrrrrrrrrrrrrrierid UL

reserved reserved

HEEE oo
) THRE| + BRKI; PER }
TEMT RDR DTR FER OER

Bits 31-11: Reserved.

Bit 10: Transmitter Empty (TEMT)—This bit is 1 when the transmitter has no data to
transmit and the Transmit Shift Register is empty. This indicates to software it is safe
to disable the transmit section.

Bit 9: Transmit Holding Register Empty (THRE)—When the THRE bit is 1, the
Transmit Holding Register does not contain valid data and can be written with data to
be transmitted. When the THRE bit is 0, the Transmit Holding Register contains valid
data not yet copied to the Transmit Shift Register for transmission, and cannot be
written. If so enabled by the TMODE field, the THRE bit causes an interrupt or DMA
request when it is set. The THRE bit is reset automatically by writing the Transmit
Holding Register. This bit is read-only, allowing other bits of the Serial Port Status
Register to be written (for example, resetting the BRKI bit) without interfering with the
data request.

Bit 8: Receive Data Ready (RDR)}—When the RDR bit is 1, the Receive Buffer Reg-
ister contains data that has been received on the serial port, and can be read to ob-
tain the data. When the RDR bit is 0, the Receive Buffer Register does not contain
valid data. If so enabled by the RMODE field, the RDR bit causes an interrupt or
DMA request when it is set. The RDR bit is reset automatically by reading the
Receive Buffer Register.

Bits 7-5: Reserved.

SERIALPORT 14-3

Bit 4: Data Terminal Ready (DTR)—The DTR bit indicates the level on the DTR pin.
The DTR bit is 1 when the DTR pin is active, and the DTR bit is 0 when the DTR pin is
inactive.

Bit 3: Break Interrupt (BRKI)—The BRKI bit is set to indicate that a break has been
received. If the RSIE bit is 1, the BRKI bit being set causes a Receive Status inter-
rupt. The BRKI bit should be reset by the Receive Status interrupt handler.

Bit 2: Framing Error (FER)—This bit is set to indicate that a framing error occurred
during reception of data. If the RSIE bit is 1, the FER bit being set causes a Receive
Status interrupt. The FER bit should be reset by the Receive Status interrupt handler.

Bit 1: Parity Error (PER)—This bit is set to indicate that a parity error occurred during
reception of data. If the RSIE bit is 1, the PER bit being set causes a Receive Status
interrupt. The PER bit should be reset by the Receive Status interrupt handler.

Bit 0: Overrun Error (OER)—This bit is set to indicate that an overrun error occurred
during reception of data. If the RSIE bit is 1, the OER bit being set causes a Receive
Status interrupt. The OER bit should be reset by the Receive Status interrupt handler.

14.1.3 Serial Port Transmit Holding Register
(SPTH, Address 80000088)
The processor writes this register (Figure 14-3) with data to be transmitted on the
Serial Port. The transmitter is double-buffered, and the transmit section copies data
from the Transmit Holding Register to the Transmit Shift Register (which is not acces-
sible to software) before transmitting the data.

Figure 14-3 Serial Port Transmit Holding Register
31 23 15 7 0

| N N N N T N N N N I N N I N N N O I Y Y O Y O
reserved TDATA

Bits 31-8: Reserved.
Bits 7-0: Transmit Data (TDATA)—This field is written with data to be transmitted on
the Serial Port. The THRE bit of the Serial Port Status Register should be 1 when this
register is written, to avoid overwriting data already in the register. Writing this regis-
ter causes the THRE bit to be reset.

14.1.4 Serial Port Receive Buffer Register (SPRB, Address 8000008C)

This register (Figure 14-4) contains data received over the Serial Port. The receiver
is double-buffered, and the receive section can be receiving a subsequent frame of
data in the Receive Shift Register (which is not accessible to software) while the
Receive Buffer is being read by software or by a DMA channel.

14-4 SERIAL PORT

Figure 14-4

Serial Port Receive Buffer Register

31 23 15 7 0
rrrrrr1rrrrrrvyri1rrrrrrrerrrrprtrrrrid

reserved RDATA

14.1.5

Bits 31-8: Reserved.

Bits 7-0: Receive Data (RDATA)—This field contains data received on the Serial
Port. The RDR bit of the Serial Port Status Register should be 1 when this register is
read, to avoid reading invalid data. Reading this register causes the RDR bit to be
reset.

Baud Rate Divisor Register (BAUD, Address 80000090)

This register specifies a clock divisor for the generation of a serial clock that controls
the Serial Port. The serial clock rate is 16 times the rate of transmission or reception
of data. The Baud Rate Divisor Register specifies the zero-based number of UCLK
cycles in one phase (half period) of the 16x serial clock. The formula for the baud
rate is thus:

Baud Rate = (Frequency of UCLK) + (BAUDDIV+1) + 32

The maximum baud rate is 1/32 of INCLK, and is achieved by tying UCLK to INCLK
with BAUDDIV=0000, hexadecimal.

Figure 14-5

Baud Rate Divisor Register

31 23 15 7 0
rrrirrrrrerrrrereryrerrirrerirrreried

reserved BAUDDIV

14.1.6

Bits 31-16: Reserved.

Bit 1: Baud Rate Divisor (BAUDDIV)—This field specifies the amount by which the
UCLK input is divided to generate one phase of the serial clock. The serial clock
operates at 16 times the rate of transmission or reception of data. The BAUDDIV
value is zero-based. For example, a value of two specifies a divisor of three.

Serial Port Initialization

During a processor reset, both the TMODE and RMODE fields of the Serial Port
Control Register are reset to 00, disabling the transmit and receive sections of the
Serial Port. Software must initialize the Serial Port before it is enabled.

SERIALPORT 14-5

CHAPTER 15

VIDEO INTERFACE a

The Video Interface provides direct connection to a number of laser-beam marking
engines. It may also be used to receive data from a raster input device such as a
scanner or tc serialize/deserialize a data stream.

15.1 PROGRAMMABLE REGISTERS
15.1.1 Video Control Register (VCT, Address 800000EOQ)

This register (see Figure 15-1) controls the operation of the Video Interface.
Figure 15-1 Video Control Register

31 23 15 7 0
rrrrrrrrrrrrririd LI I

reserved CLKDIV MODE

H . HIEE R
DRQ DDIR CLKI§ PSIO} PSL | SDIR!
res PSI LSl VDI

Bits 31-16: Reserved.

Bit 15: Data Request (DRQ)—This bit is set to indicate that the Video Interface is
ready for data to be written to or read from the Video Data Holding Register. If so
enabled by the MODE field, this bit being set generates an interrupt or DMA request
to write or read data. This bit is reset when the Video Data Holding Register is read
or written. This bit is read-only, to allow other bits of the Video Control Register to be
set (for example, the PSL bit) without interfering with the data request.

Bits 14-11: Clock Divide (CLKDIV)—This fields contains the divisor of the VCLK
input used to generate the internal video clock. It specifies the number of VCLK
periods in one phase (half period) of the interal video clock. For example, a value of
0001 indicates that one VCLK period constitutes one phase of the intemal video
clock—a divide by two. A value of 0000 causes VCLK to be used directly as the video
clock. At the beginning of a video raster line, the clock divider is initialized so that, in
the line, the first period of the intemal clock is the indicated number of VCLK periods.

Bit 10: Data Direction (DDIR)—This bit controls the direction of video data. If the
DDIR bit is 0, data is transmitted on the video interface. If the DDIR bitis 1, data is
received on the video interface.

VIDEO INTERFACE ~ 15-1

Bits 9-8: Video Interface Mode (MODE)—This field enables the Video Interface and
controls the operational mode of the Video Interface, as follows:

MODE Value Effect on Video Interface
00 Disabled
01 Generate interru(?t requests for service
10 Generate DMA Channel 0 requests

1 Generate DMA Channel 1 requests

Requests for service are requests to read or write the Video Data Holding Register.
Placing the Video Interface into the disabled state causes all internal state machines
to be reset and holds the Video Interface in an idle state. Video Interface programma-
ble registers are not affected when the interface is disabled.

Bit 7: Clock Invert (CLKI)—If this bit is 0, the VDAT, PSYNC, and LSYNC pins are
driven or sampled on the Low-to-High transition of the VCLK input. If this bit is 1, the
VDAT, PSYNC, and LSYNC pins are driven or sampled on the High-to-Low transition
of the VCLK input.

Bit 6: Reserved.

Bit 5: Page Sync Input/Output (PSIO)—This bit determines whether or not PSYNC
is an input or output. If this bit is 0, PSYNC is an input. If this bitis 1, PSYNC is an
output.

Bit 4: Page Sync Invert (PSI)—If this bit is 0 and PSYNC is an input, a Low-to-High
transition of the PSYNC input indicates the beginning of a page. If this bitis 1 and
PSYNC is an input, a High-to-Low transition of the PSYNC input indicates the
beginning of a page.

If this bit is 0 and PSYNC is an output, PSYNC is noninverted with respect to the PSL
bit. A PSL bit of 0 is reflected as a Low level, a PSL bit of 1 is reflected as a High
level, and a page starts on a Low-to-High transition. If this bitis 1 and PSYNC is an
output, PSYNC is inverted with respect to the PSL bit. A PSL bit of 0 is reflected as a
High level, a PSL bit of 1 is reflected as a Low level, and a page starts on a High-to-
Low transition.

Bit 3: Page Sync Level (PSL)—When PSYNC is an input, this bit reflects the level on
PSYNC. When PSYNC is an output, this bit determines the level on PSYNC. If
PSI=0, a 0 in this bit corresponds to a Low level on PSYNC and a 1 in this bit corre-
sponds to a High level on PSYNC. If PSI=1, a 0 in this bit corresponds to a High level
on PSYNC and a 1 in this bit corresponds to a Low level on PSYNC.

Bit 2: Line Sync Invert (LSI)—If this bit is 0, a Low-to-High transition of the LSYNC
input indicates the beginning of a line. If this bit is 1, a High-to-Low transition of the
LSYNC input indicates the beginning of a line.

Bit 1: Shift Direction (SDIR)—When this bit is 0, the Video Data Shift Register is
shifted right to transfer data, with video data being shifted out of the least significant
bit of the register (corresponding to bit O of the Video Data Holding Register) or into
the most significant bit (corresponding to bit 31 of the Video Data Holding Register).
When this bit is 1, the Video Data Shift Register is shifted left to transfer data, with
video data being shifted out of the most significant bit of the register or into the least
significant bit.

Bit 0: Video Invert (VIDI)—When this bit is 0, a 1 in the Video Data Shift Register
corresponds to a High level on VDAT and a 0 in the Video Data Shift Register
corresponds to a Low level on VDAT. When this bitis 1, a 1 in the Video Data Shift

15-2

VIDEO INTERFACE

15.1.2

Register corresponds to a Low level on VDAT and a 0 in the Video Data Shift Register
corresponds to a High level on VDAT.

Top Margin Register (TOP, Address 800000E4)
This register (Figure 15-2) specifies the number of lines in the top margin of a page.

Figure 15-2

Top Margin Register

31 23 15 7 0
FrrrrrrirriririTiiTii 7717 v rrrrrrrrrTd

reserved TOPCNT

15.1.3

Bits 31-12: Reserved.

Bits 11-0: Top Margin Count (TOPCNT)—This field specifies the number of lines in
the top margin.

Side Margin Register (SIDE, Address 800000E8)

This register (Figure 15-3) specifies the number of data bits in the left margin of a
page and the number of bits in a raster line of video data. Together, this information
sets the right and left margins of a page.

Figure 15-3

Side Margin Register

31 23 15 7 0
TT T J T 1T 1T T1d
reserved LEFTCNT LINECNT

15.1.4

Bits 31-28: Reserved.

Bits 27-16: Left Margin Count (LEFTCNT)—This field specifies the number of data
bit equivalents in the left margin of a page.

Bits 15-0: Line Count (LINECNT)—This field specifies the number of data bits in a
raster line of video data.

Video Data Holding Register (VDT, Address 800000EC)

This register (Figure 15-4) contains data to be transmitted on or received from the
video interface. Video data is double-buffered so data can be written to or read from
the Video Data Holding Register while other data is transmitted from or received into
the Video Data Shift Register.

VIDEO INTERFACE ~ 15-3

Figure 15-4

Video Data Holding Register

31 23 15 7 0
TrrrrrrrrrrrerrerrrrrrrrrrritrrrTrd

VDATA

15.1.5

15.2

15.2.1

Bits 31-0: Video Data (VDATA)—This field is written or read to transmit or receive
data on the video interface.

Initialization

During a processor reset, the MODE field of the Video Control Register is reset to 00.
Software must configure the Video Interface before it is enabled. To prevent possible
driver conflicts during reset, the PSIO bit is reset and the DDIR bit is set so both
PSYNC and VDAT are inputs. To allow time for the interface signals to settle, the
inputs and outputs should be configured before the interface is enabled.

VIDEO INTERFACE OPERATION

The operation of the Video Interface is synchronous to the VCLK input, which either
clocks the Video Interface directly or at a frequency multiple specified by the CLKDIV
field. The CLKDIV field specifies the number of VCLK periods in one phase (half
period) of the intemal video clock. If the CLKDIV field has the value 0000, the VCLK
input is used directly. The clock divider circuit is initialized when the Video Interface is
disabled, and does not operate until the interface is enabled by the MODE field. This
circuit is also initialized by the transition of LSYNC that indicates the beginning of a
line. Initializing the clock divider with LSYNC insures that the first internal clock pe-
riod in the line is the indicated number of VCLK periods. The maximum frequency of
VCLK is the same as the maximum frequency of INCLK. The maximum operating
frequency of the Video Interface is the frequency of INCLK if the interface is used to
output data. The maximum operating frequency is one-eighth of the frequency of
INCLK if the interface is used to input data.

The PSYNC, LSYNC, and VDAT pins are driven and/or sampled during either the
Low-to-High (CLKI=0) or High-to-Low (CLKI=1) transition of the VCLK input. The
clock divider sequences on the same transition. If the clock is not divided down, new
data can be driven or sampled on every active transition of VCLK. If the clock is
divided down, new data can be driven or sampled on every CLKDIV-times-2 active
transition of VCLK.

Transmitting Data on the Video Interface

Before the Video Interface is enabled to transmit, the Video Control Register should
be set to configure the interface, and the Top Margin and Side Margin registers
should be set with the appropriate counts. When the DDIR bit is 0 (VDAT is an out-
put) and the Video Interface is disabled or is not transferring data, the VDAT output is
held at a level corresponding to a 0 data bit (Low if VIDI=0 or High if VIDI=1). Once
the Video Interface has been configured, it is enabled via the MODE field.

Enabling the Video Interface with DDIR=0 causes the interface to set the DRQ bit,
generating an interrupt or DMA request to write the Video Data Holding Register.

15-4 VIDEO INTERFACE

Writing data into the Video Data Holding Register resets the DRQ bit. Data is
transferred from the Video Data Holding Register to the Video Data Shift Register
whenever the Video Data Shift Register is empty. After the transfer, the DRQ bit is
set to request more data. Thus, the DRQ bit may be set very soon after the first data
word is written. Thereafter, however, the DRQ bit will be set only as data is transmit-
ted on the interface.

A page cycle begins by an active transition of PSYNC, either as an input or output. At
the beginning of a page cycle, three count-down registers are loaded from the
TOPCNT, LEFTCNT, and LINECNT fields. The TOPCNT counter enables the trans-
mission of the first raster line when it counts down to zero. The LEFTCNT counter
enables the transmission of raster data on a line when it counts down to zerc. The
LINECNT counter enables the transmission of raster data as long as it is nonzero.

After the page cycle begins, the counter registers are not enabled to count until the
first active transition of LSYNC. An active transition of LSYNC indicates the beginning
of a line. Because of intemal synchronization delay, the Video Interface does not
respond to LSYNC until five VCLK cycles have elapsed (see Figure 15-5). If the
Video Data Shift Register is not empty, an active transition on LSYNC causes the
TOPCNT counter to decrement by one (the TOPCNT field is unaffected). The
TOPCNT counter continues to decrement by one on each active transition of LSYNC
until it reaches zero. Note that if the TOPCNT field contains zero at the beginning of a
page, the Video Interface begins transmitting on the first active transition of LSYNC.

When the TOPCNT counter reaches zero, the interface is enabled to transmit the first
raster line. At the beginning of the line, the LEFTCNT counter decrements on each
active transition of the interface clock, beginning five VCLK cycles after the active
edge of LSYNC, until the counter reaches zero. When the LEFTCNT counter reaches
zero, the data in the selected end of the Video Data Shift Register is enabled to drive
the VDAT output, and the LINECNT counter is enabled to count. The LEFTCNT
counter is reloaded from the LEFTCNT field but does not count until the next active
transition of LSYNC. If the LEFTCNT field contains zero at the beginning of a line,

Figure 15-5
VCLK

LSYNC
(LSI=0)

VDAT
(CLKDIV=0)

VDAT
(CLKDIV=1)

VDAT
(CLKDIV=2)

VDAT
(CLKDIV=3)

VDAT
(CLKDIV=4)

VCLK, LSYNC, and VDAT Relationships (LSI=0 for example only)

M|

d oo of c]la 2] a o]
d o] e of els 2] e = -
d efe of ele ol e o ale
d o e o el ol e = e
d o] « of a]le w]l e a ol

o e d e o o]] -

o e d o] e o el e o]

1 D Tl el [

))]
- T r
" 2 n
. .]

L first data bit (will remain blank
for top or left margins)

VIDEO INTERFACE 155

1 5.2-2

video data is driven and the LINECNT counter is enabled to count immediately on the
fifth VCLK cycle after the first active transition of LSYNC, after the TOPCNT counter
reaches zero.

The first bit of video data is driven for a period of the interface clock, during the cycle
in which the LEFTCNT counter reaches zero. On the next active transition of the
clock, the Video Data Shift Register is shifted right (SDIR=0) or left (SDIR=1) by one
bit and the new data driven on the VDAT output. Also, the LINECNT counter is decre-
mented by one. When the last bit in the Video Data Shift Register has been
transmitted, new data is loaded from the Video Data Holding Register and the DRQ
bit is set to request more data. Data transmission continues until the LINECNT
counter reaches zero. When the LINECNT counter reaches zero, the VDAT output is
driven to correspond to a 0 data bit and the Video Data Shift Register is cleared. The
LINECNT counter is reloaded but is not enabled to count until a new line begins and
the LEFTCNT counter reaches zero once more. The VDAT output is held at a 0 data
level and the Video Shift Register does not shift until the next line is transmitted.
Clearing the Video Data Shift Register at the end of a line enables it to be reloaded
with new data from the Video Data Holding Register as soon as this data is available.

On each subsequent active transition of LSYNC, a subsequent line of data is transmit-
ted. Each line begins with a synchronization period of five VCLK cycles, then a count-
down of the LEFTCNT counter until it reaches zero, followed by data transmission
and shifting until the LINECNT counter reaches zero. On any active transition of
LSYNC, if the Video Data Shift Register is empty, the page cycle ends and the Video
Interface waits for the next active transition of PSYNC.

Receiving Data on the Video Interface

When the Video interface is configured to receive data, the TOPCNT and LEFTCNT
fields are not used, and the PSYNC pin is not used. Data reception is controlled by
LSYNC, VCLK, and the LINECNT field.

On the active edge of LSYNGC, the LINECNT counter is loaded with the contents of the
LINECNT field. On the fifth active edge of VCLK following the active edge of LSYNC
(for synchronization), data is sampled into the selected end of the Video Data Shift
Register, the register is shifted in the selected direction, and the LINECNT counter is
decremented by one. When the Video Data Shift Register has received 32 bits, the
contents of the register are transferred into the Video Data Holding Register and the
DRQ bit is set to request that the data be read. Data sampling and shifting continue
until the LINECNT counter reaches zero. To clear the data at the end of a line after
the LINECNT counter reaches zero, the data in the Video Data Shift Register is trans-
ferred into the Video Data Holding Register as soon as the holding register is avail-
able, and the DRQ bit is set. The interface waits for the next active transition of
LSYNC before it accepts a new line of data.

15-6 VIDEO INTERFACE

CHAPTER 16

INTERRUPTS AND TRAPS a

16.1

16.1.1

OVERVIEW

Interrupts and traps cause the Am29200 microprocessor to suspend the execution of
an instruction sequence and to begin the execution of a new sequence. The proces-
sor may or may not later resume the execution of the original instruction sequence.

The distinction between interrupts and traps is largely one of causation and enabling.
Interrupts allow extemal devices and the Timer Facility to control processor execution
and are always asynchronous to program execution. Traps are intended to be used
for certain exceptional events that occur during instruction execution and are gener-
ally synchronous to program execution.

A distinction is made between the point at which an interrupt or trap occurs and the
point at which it is taken. An interrupt or trap is said to occur when all conditions that
define the interrupt or trap are met. However, an interrupt or trap that occurs is not
necessarily recognized by the processor, either because of various enables or be-
cause of the processor’s operational mode (e.g., Halt mode). An interrupt or trap is
taken when the processor recognizes the interrupt or trap and alters its behavior
accordingly.

Current Processor Status (CPS, Register 2)

This protected special-purpose register (see Figure 16-1) controls the behavior of the
processor and its ability to recognize exceptional events.

Figure 16-1

Current Processor Status Register

31 23
trrrrrrrerrrr]]! HERERR

Reserved Res Res Res M

Q--4

T ' TEW TU

S..4
=
0 ---
=
=]
>

Bits 31-18: Reserved.

Bits 17: Timer Disable (TD)—When the TD bit is 1, the Timer interrupt is disabled.
When this bit is 0, the Timer interrupt depends on the value of the IE bit of the Timer
Reload Register. Note that Timer interrupts may be disabled by the DA bit regardless
of the value of either TD or IE. The intent of this bit is to provide a means of disabling
Timer interrupts without having to perform a non-atomic read-modify-write operation
on the Timer Reload Register.

Bit 16—-15: Reserved.

INTERRUPTS AND TRAPS ~ 16-1

Bit 14: Interrupt Pending (IP)—This bit allows software to detect the presence of
interrupts while the interrupts are disabled. The IP bit is set if an interrupt request is
active, but the processor is disabled from taking the resulting interrupt due to the
value of the DA, DI, or IM bits. If all interrupt requests are subsequently deactivated
while still disabled, the IP bit is reset.

Bits 13-12: Trace Enable, Trace Pending (TE, TP)—The TE and TP bits implement
a software-controlled, instruction single-step facility. Single stepping is not imple-
mented directly, but rather emulated by trap sequences controlled by these bits. The
value of the TE bit is copied to the TP bit whenever an instruction completes execu-
tion. When the TP bit is 1, a Trace trap occurs. Section 17.1 describes the use of
these bits in more detail.

Bit 11: Trap Unaligned Access (TU)}—The TU bit enables checking of address
alignment for external data-memory accesses. When this bit is 1, an Unaligned Ac-
cess trap occurs if the processor either generates an address for an extemal word not
aligned on a word address-boundary (i.e., either of the least significant two bits is 1)
or generates an address for an extemal half-word not aligned on a half-word address
boundary (i.e., the least significant address bit is 1). When the TU bit is 0, data-mem-
ory address alignment is ignored.

Alignment is ignored for input/output accesses. The alignment of instruction ad-
dresses is also ignored (unaligned instruction addresses can be generated only by
indirect jumps). Interrupt/trap vector addresses always are aligned properly by the
processor.

Bit 10: Freeze (FZ)—The FZ bit prevents certain registers from being updated during
interrupt and trap processing, except by explicit data movement. The affected regis-
ters are: Channel Address, Channel Data, Channel Control, Program Counter 0,
Program Counter 1, Program Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values. An affected register can be
changed only by a Move-To-Special-Register instruction. When the FZ bit is 0, there
is no effect on these registers and they are updated by processor instruction execu-
tion as described in this manual.

The FZ bit is set whenever an interrupt or trap is taken, holding critical state in the
processor so it is not modified unintentionally by the interrupt or trap handler.

Bit 9-8: Reserved.

Bit 7: Wait Mode (WM)—The WM bit places the processor in the Wait mode. When
this bit is 1, the processor performs no operations. The Wait mode is reset by an
interrupt or trap for which the processor is enabled, or by the assertion of the RESET
pin.

Bit 6-5: Reserved.

Bit 4: Supervisor Mode (SM)—The SM bit protects certain processor context, such
as protected special-purpose registers. When this bit is 1, the processor is in the
Supervisor mode and access to all processor context is allowed. When this bit is 0,
the processor is in the User mode and access to protected processor context is not
allowed. An attempt to access (either read or write) protected processor context
causes a Protection Violation trap.

Section 6.1 describes the processor state protected from User-mode access.

Bits 3—2: Interrupt Mask (IM)—The IM field is an encoding of the processor priority
with respect to extemal interrupts. The interpretation of the interrupt mask is specified
in Section 16.1.2.

16-2

INTERRUPTS AND TRAPS

16.1.2

16.1.3

16.1.4

Bit 1: Disable Interrupts (DI)—The DI bit prevents the processor from being inter-
rupted by extemal interrupt requests INTR(3—0) and by internal peripheral requests.
When this bit is 1, the processor ignores all extemal and intemal interrupts. However,
traps (both intemal and external), Timer interrupts, and Trace traps may be taken.
When this bit is 0, the processor takes any interrupt enabled by the IM field, unless
the DA bit is 1.

Bit 0: Disable All Interrupts and Traps (DA)—The DA bit prevents the processor
from taking any interrupts and most traps. When this bit is 1, the processor ignores
interrupts and traps, except for the WARN, Instruction Access Exception, and Data
Access Exception traps. When the DA bit is 0, all traps are taken, and interrupts are
taken if otherwise enabled.

Interrupts

Interrupts are caused by signals applied to any of the external inputs INTR(3-0), by
the Timer Facility (see Section 16.7), or by intemal peripherals (see Section 16.8).
The processor may be disabled from taking certain interrupts by the masking capabil-
ity provided by the Disable All Interrupts and Traps (DA) bit, Disable Interrupts (DI) bit,
and Interrupt Mask (IM) field in the Current Processor Status Register. Timer inter-
rupts may be disabled by the Timer Disable (TD) bit of the Current Processor Status
Register.

The DA bit disables all interrupts. The DI bit disables extenal interrupts and internal
peripheral interrupts without affecting the recognition of traps and Timer interrupts.
The 2-bit IM field selectively enables extemal interrupts as follows:

IM Value Result
00 INTRO enabled
01 INTR(1-0) enabled
10 INTR(2-0) enabled
11 INTR(3-0) and internal
peripheral interrupts enabled

Note that the INTRO interrupt cannot be disabled by the IM field. Also, no extenal
interrupt is taken if either the DA or DI bit is 1. The Interrupt Pending bit in the Current
Processor Status indicates that one or more interrupt requests is active, but the
corresponding interrupt is disabled due to the value of either DA, DI, or IM.

Traps

Traps are caused by signals applied to one of the inputs TRAR{1-0), or by exceptional
conditions such as protection violations. Traps are disabled by the DA bit in the Cur-
rent Processor Status; a 1 in the DA bit disables traps, and a 0 enables traps. It is not
possible to selectively disable individual traps.

External Interrupts And Traps

An extenal device causes an interrupt by asserting one of the INTR(3-0) inputs, and
causes a trap by asserting one of the TRAR{1-0) inputs. Transitions on each of these
inputs may be asynchronous to the processor clock; they are protected against
metastable states. For this reason, an assertion of one of these inputs that meets the
proper set-up-time criteria does not cause the corresponding interrupt or trap until the
fourth following cycle.

INTERRUPTSAND TRAPS ~ 16-3

16.1.5

16.2

The INTR(3-0) inputs are prioritized with respect to each other and with respect to the
processor. To resolve conflicts between these inputs, the inputs are prioritized in
order, so the interrupt caused by INTRO has the highest priority, and the interrupt
caused by INTR3 has the lowest priority.

The TRAR1-0) inputs are prioritized with respect to each other, so the trap caused by
TRARO has priority over the trap caused by TRAP1 when a conflict occurs. Both
TRAPRO and TRAP! have priority over the INTR(3-0) inputs. The TRAR{1-0) inputs
cannot be disabled selectively. Both traps, however, can be disabled by the DA bit in
the Current Processor Status Register.

The INTR(3-0) and TRAR(1-0) inputs are level-sensitive. Once asserted, they must
be held active until the corresponding interrupt or trap is acknowledged by the inter-
rupt or trap handler. This acknowledgment is system-dependent, since there is no
interrupt-acknowledge mechanism defined for the processor.

If any of these inputs is asserted, then de-asserted before it is acknowledged, it is
not possible to predict (unless the interrupt or trap is masked) whether or not the
processor has taken the corresponding interrupt or trap. During interrupt and trap
processing, the vector number is determined in part by which of the INTR(3-0) and
TRAR(1-0) inputs is active. If the input causing an interrupt or trap is de-asserted
before the vector number is determined, the vector number is unpredictable, and the
processor operation is also unpredictable. Typically, this situation results in the proc-
essor taking an lllegal Opcode trap.

There is a five-cycle latency from the de-assertion of an INTR(3-0) or TRAR(1-0)
input to the time the corresponding interrupt or trap is actually not recognized by the
processor. The latency is due to the metastability hardening that allows these signals
to be driven with slow-transition-time signals. The de-assertion must be timed so the
processor is not recognizing the interrupt or trap by the time the corresponding mask
is reset. Otherwise, a spurious interrupt or trap may occur.

Wait Mode

A wait-for-interrupt capability is provided by the Wait mode. The processor is in the
Wait mode whenever the Wait Mode (WM) bit of the Current Processor Status is 1.
While in Wait mode, the processor neither fetches nor executes instructions and
performs no extemal accesses. The Wait mode is exited when an interrupt or trap is
taken.

The processor can take only those interrupts or traps for which it is enabled, even in
the Wait mode. For example, if the processor is in the Wait mode with a DA bit of 1, it
can leave the Wait mode only via a processor reset (see Section 2.9.2) or a WARN
trap (see Section 16.4).

VECTOR AREA

Interrupt and trap processing relies on the existence of a user-managed Vector Area
in external instruction/data memory. The Vector Area begins at an address specified
by the Vector Area Base Address Register and provides for as many as 256 different
interrupt and trap handling routines. The processor reserves 64 routines for system
operation and instruction emulation. The number and definition of the remaining 192
possible routines are system dependent.

The structure of the Vector Area is a table of vectors in instruction/data memory. The
layout of a single vector is shown in Figure 16-2. Each vector gives the beginning
word-address of the associated interrupt or trap handling routine.

16-4 INTERRUPTS AND TRAPS

Figure 16-2 Vector Table Entry
31 23 15 7 0
trerrerfrrrrererrertrtrrrerind
Handler Starting Address ojo
16.2.1 Vector Area Base Address (VAB, Register 0)

This protected special-purpose register (Figure 16-3) specifies the beginning address
of the interrupt/trap Vector Area. The Vector Area is a table of 256 vectors which point
to interrupt and trap handling routines.

When an interrupt or trap is taken, the vector number for the interrupt or trap (see
Section 16.2.2) replaces bits 9-2 of the value in the Vector Area Base Address
Register to generate the physical address for a vector contained in instruction/data
memory.

Figure 16-3

Vector Area Base Address Register
31

23 15
rrrrrrrrrrrrrrrerrred
VAB ojojojolofojo]ojo]o

16.2.2

16.3

Bits 31-10: Vector Area Base (VAB)—The VAB field gives the beginning physical
address of the Vector Area. This address is constrained to begin on a 1K-Byte
address-boundary in instruction/data memory.

Bits 9-0: Zeros—These bits force the alignment of the Vector Area to a 1K-Byte
boundary.

Vector Numbers

When an interrupt or trap is taken, the processor determines an 8-bit vector number
associated with the interrupt or trap. The vector number gives the number of a vector
table entry. The physical address of the vector table entry is generated by replacing
bits 9-2 of the value in the Vector Area Base Address Register with the vector
number.

Vector numbers are either predefined or specified by an instruction causing the trap.
The assignment of vector numbers is shown in Table 16-1 (vector numbers are in
decimal notation). Vector numbers 64 to 255 are for use by trapping instructions; the
definition of the routines associated with these numbers is system dependent.

INTERRUPT AND TRAP HANDLING

Interrupt and trap handling consists of two distinct operations: taking the interrupt or
trap and retumning from the interrupt or trap handler. If the interrupt or trap handler

INTERRUPTS AND TRAPS ~ 16-5

Table 16-1

Vector Number Assignments

Number Type of Trap or Interrupt Cause
0 lllegal Opcode Executing undefined instruction’
1 Unaligned Access Access on unnatural boundary, TU=1
2 Out of Range Overflow or underflow
34 Reserved
5 Protection Violation Invalid User-mode operation?
6-7 Reserved
8 User Instruction Mapping Miss No DRAM mapping for access
9 User Data Mapping Miss No DRAM mapping for access
10 Supervisor Instruction Mapping Miss No DRAM mapping for access
11 Supervisor Data Mapping Miss No DRAM mapping for access
12-13 Reserved
14 Timer Timer Facility
15 Trace Trace Facility
16 INTRO INTRO input
17 INTR1 INTR1 input
18 INTR2 INTR2 input
19 INTRYInternal INTR3 input or internal peripheral
20 TRAR TRAR input
21 TRAPI TRAP! input
22 Floating-Point Exception Unmasked floating-point exception®
23 Reserved
24-29 Reserved for instruction emulation
(opcodes D8-DD)
30 MULTM MULTM instruction
31 MULTMU MULTMU instruction
32 MULTIPLY MULTIPLY instruction
33 DIVIDE DIVIDE instruction
34 MULTIPLU MULTIPLU instruction
35 DIVIDU DIVIDU instruction
36 CONVERT CONVERT instruction
37 SQRT SQRT instruction
38 CLASS CLASS instruction
3941 Reserved for instruction emulation
(opcode E7-E9)
42 FEQ FEQ instruction
43 DEQ DEQ instruction
44 FGT FGT instruction
45 DGT DGT instruction
46 FGE FGE instruction
47 DGE DGE instruction
48 FADD FADD instruction
49 DADD DADD instruction
50 FSUB FSUB instruction
51 DSuB DSUB instruction
52 FMUL FMUL instruction
53 DMUL DMUL instruction

1. This vector number also results if an external device removes INTR3-INTRD or TRAPI-TRARO before the corresponding
interrupt or trap is taken by the processor.

2. Some Supervisor-mode operations cause Protection Violations to facilitate virtualization of certain operations.

3. The Floating-Point Exception trap is not generated by the processor hardware. It is generated by the software that imple-
ments the virtual arithmetic interface (see Section 2.8).

16-6 INTERRUPTS AND TRAPS

Table 16-1

Vector Number Assignments (continued)

Number Type of Trap or Interrupt Cause

54 FDIV FDIV instruction
55 DDIV DDIV instruction
56 Reserved for instruction emulation
(opcode F8)
57 FDMUL FDMUL instruction
58-63 Reserved for instruction emulation
(opcode FA-FF)
64-255 ASSERT and EMULATE instruction traps
(vector number specified by instruction)

Note: Some of Vector Numbers 64-255 are reserved for software compatability (see Sections 4.2.3 and
;tr.z.s)l.\&r)ese are documented in Chapter 4 and in the Host Interface (HIF) Specification, available
om .

16.3.1

16.3.2

retumns directly to the interrupted routine, the interrupt or trap handier need not save
and restore processor state.

Old Processor Status (OPS, Register 1)

This protected special-purpose register has the same format as the Current Proces-
sor Status Register. The Old Processor Status Register stores a copy of the Current
Processor Status Register when an interrupt or trap is taken. This is required since
the Current Processor Status Register is modified to reflect the status of the interrupt/
trap handler.

During an interrupt return, the Old Processor Status Register is copied into the Cur-
rent Processor Status Register. This allows the Current Processor Status Register to
be set as required for the routine that is the target of the interrupt return.

The Program Counter Stack

The Program Counter Unit, shown in Figure 16-4, forms and sequences instruction
addresses for the Instruction Fetch Unit. It contains the Program Counter (PC), the
Program-Counter Multiplexer (PC MUX), the Return Address Latch, and the Program-
Counter Buffer (PC Buffer).

The PC forms addresses for sequential instructions executed by the processor. The
master of the PC Register, PC L1, contains the address of the instruction being
fetched in the Instruction Fetch Unit. The slave of the PC Register, PC L2, contains
the next sequential address, which may be fetched by the Instruction Fetch Unit in the
next cycle.

The Retum Address Latch passes the address of the instruction following the delayed
instruction of a call to the register file. This address is the return address of the call.

The PC Buffer stores the addresses of instructions in various stages of execution
when an interrupt or trap is taken. The registers in this buffe—Program Counters 0,
1, and 2 (PCO, PC1, and PC2)—are nommally updated from the PC as instructions
flow through the processor pipeline.

When an interrupt or trap is taken, the Freeze (FZ) bit in the Current Processor Status
is set, holding the quantities in the PC Buffer. When the FZ bit is set, PCO, PC1, and
PC2 contain the addresses of the instructions in the decode, execute, and write-back
stages of the pipeline, respectively.

INTERRUPTSAND TRAPS ~ 16-7

Figure 16-4 Program Counter Unit

R Bus o
§ >
Instruction | Vi PC Bus Address
Fetch [3 730 Unit
M T N
y ' :
] A [
30-bit ' I PCO :
Incrementer ' !
1])
1] 1]
’]
DD
L]
L] ']
' I PC1 !
A ' 1
1] 1]
[roud . :
: D—
1] ' 1]
1]]
Return ' A 4 '
|| Address € | '
Branch PC MUX ' PC2 '
Latch ' ' PC Buffer
¥ : :
3 1]
: D— :
A

I

B Bus

Upon the execution of an interrupt return, the target instruction stream is restarted
using the instruction addresses in PCO and PC1. Two registers are required here
because the processor implements delayed branches. An interrupt or trap may be
taken when the processor is executing the delay instruction of a branch and decoding
the target of the branch. This discontinuous instruction sequence must be restarted
properly upon an interrupt retum. Restarting the instruction pipeline using two
separate registers correctly handles this special case; in this case PC1 points to the
delay instruction of the branch, and PCO points to its target. PC2 does not participate
in the interrupt retum, but is included to report the addresses of instructions causing
certain exceptions.

The PC is not defined as a special-purpose register. It cannot be modified or
inspected by instructions. Instead, the interrupting and restarting of the pipeline is
done by the PC Buffer registers PCO and PC1.

16-8 INTERRUPTS AND TRAPS

16.3.2.1 PROGRAM COUNTER 0 (PCO, Register 10)
This protected special-purpose register (Figure 16-5) is used on an interrupt retum to
restart the instruction in the decode stage when the original interrupt or trap was
taken.
Figure 16-5 Program Counter O Register
31 23 15 7 0
crrirrrtrertrerrrrerrrrirertrrrl
PCO ofo
Bits 31-2: Program Counter 0 (PC0)—This field captures the word-address of an
instruction as it enters the decode stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bitis 1, PCO holds its
value.
When an interrupt or trap is taken, the PCO field contains the word-address of the
instruction in the decode stage. The interrupt or trap has prevented this instruction
from executing. The processor uses the PCO field to restart this instruction on an
interrupt retumn.
Bits 1-0: Zeros—These bits are zero since instruction addresses are always word
aligned.
16.3.2.2 PROGRAM COUNTER 1 (PC1, Register 11)
This protected special-purpose register (Figure 16-6) is used on an interrupt retum to
restart the instruction in the execute stage when the original interrupt or trap was
taken.
Figure 16-6 Program Counter 1 Register
IERRRRRRRRARRRRRIRRRRRRARRRRRARE
PC1 olo
Bits 31-2: Program Counter 1 (PC1)—This field captures the word-address of an
instruction as it enters the execute stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bitis 1, PC1 holds its
value.
When an interrupt or trap is taken, the PC1 field contains the word-address of the
instruction in the execute stage; the interrupt or trap has prevented this instruction
from completing execution. The processor uses the PC1 field to restart this instruction
on an interrupt retum.
Bits 1-0: Zeros—These bits are zero, since instruction addresses are always word
aligned.
16.3.2.3 PROGRAM COUNTER 2 (PC2, Register 12)

This protected special-purpose register (Figure 16-7) reports the address of certain
instructions causing traps.

INTERRUPTSAND TRAPS ~ 16-9

Figure 16-7

Program Counter 2 Register

31 23 15 7
NERRRRRRRRRRRRRRRRRRRRRRRRRE

PGC2 ojo

16.3.3

Bits 31-2: Program Counter 2 (PC2)—This field captures the word address of an
instruction as it enters the write-back stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register is 1. If the FZ bitis 1, PC2
holds its value.

When an interrupt or trap is taken, the PC2 field contains the word address of the
instruction in the write-back stage. In certain cases PC2 contains the address of
the instruction causing a trap. The PC2 field is used to report the address cf this
instruction and has no other use in the processor.

Bits 1-0: Zeros—These bits are zero since instruction addresses are always word
aligned.

Taking An Interrupt Or Trap

The following operations are performed in sequence by the processor when an
interrupt or trap is taken:

1. Instruction execution is suspended.
2. Instruction fetching is suspended.

3. Any in-progress load or store operation is completed. Any additional operations
are canceled in the case of load multiple and store muitiple.

4. The contents of the Current Processor Status Register are copied into the Old
Processor Status Register.

5. The Current Processor Status register is modified as shown in Figure 16-8 (the
value v means unaffected). Note that setting the Freeze (F2) bit freezes the
Channel Address, Channel Data, Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and ALU Status Registers.

6. The address of the first instruction of the interrupt or trap handler is determined.
The address is obtained by accessing a vector from instruction/data memory,
using the physical address obtained from the Vector Area Base Address Register
and the vector number. This is a 32-bit access.

7. An instruction fetch is initiated using the instruction address determined in step 6.
At this point, normal instruction execution resumes.

Note that the processor does not expilicitly save the contents of any registers when an
interrupt is taken. If register saving is required, it is the responsibility of the interrupt-
or trap-handling routine. For proper operation, registers must be saved before any
further interrupts or traps may be taken. The FZ bit must be reset at least two instruc-
tions before interrupts or traps are re-enabled, to allow program state to be reflected
properly in processor registers if an interrupt or trap is taken.

16-10 INTERRUPTS AND TRAPS

Figure 16-8

Current Processor Status After an Interrupt or Trap

31 23 15 7 0
00000000000OO|ojojojujojojoft]ojojojojoft1fu u|1f1
& A - -
\% A
Reserved ot e L o v
vres . P TP L FZ | WM, SM IM ;DA

L] . . .) L] '

™ res TE TU res res DI

16.3.4

Returning From An Interrupt Or Trap

Two instructions are used to resume the execution of an interrupted program: Inter-
rupt Retum (IRET), and Interrupt Return and Invalidate (IRETINV). These instructions
are identical in the Am29200 microprocessor; in other 29K Family processors, the
IRETINV instruction resets all Valid bits in an instruction cache, whereas the IRET
instruction does not affect the Valid bits.

In some situations, the processor state must be set properly by software before the
interrupt retum is executed. The following is a list of operations normally performed in
such cases:

1. The Current Processor Status is configured as shown in Figure 16-9 (the value x
is a don't care). Note that setting the FZ bit freezes the registers listed below so
they may be set for the interrupt return.

2. The Old Processor Status is set to the value of the Current Processor Status for
the target routine.

3. The Channel Address, Channel Data, and Channel Control registers are set to
restart or resume uncompleted external accesses of the target routine.

4. The Program Counter 1 and Program Counter 0 registers are set to the addresses
of the first and second instructions, respectively, to be executed in the target
routine.

5. Other registers are set as required. These may include registers such as the ALU
Status, Q, and so forth, depending on the particular situation. Some of these
registers are unaffected by the FZ bit, so they must be set in such a manner that
they are not modified unintentionally before the interrupt retum.

Once the processor registers are configured properly, as described above, an inter-
rupt retum instruction (IRET or IRETINV) performs the remaining steps necessary to
retum to the target routine. The following operations are performed by the interrupt
retumn instruction:

1. Any in-progress load or store operation is completed. If a load-multiple or
store-multiple sequence is in progress, the interrupt retum is not executed until the
sequence completes.

2. Interrupts and traps are disabled, regardless of the settings of the DA, DI, and IM
fields of the Current Processor Status, for steps 3 through 10.

3. The contents of the Old Processor Status Register are copied into the Current
Processor Status Register. This normally resets the FZ bit, allowing the Program

INTERRUPTS AND TRAPS 16-11

Figure 16-9 Current Processor Status Before Interrupt Retum

31 23
RERERRERRRAR l
000 00000O0OO00O0

00

\

]NETEE
9....
>

S...]
£

(2]
Z----
—z'----

\/ '
Reserved '
[}

]

| o [

1]
.
.
L
L
.
TD res TE TU res res

10.

11.

Counter 0, 1, 2, Channel Address, Data, Control, and ALU Status registers to
update normally. Since certain bits of the Current Processor Status Register
always are updated by the processor, this copy operation may be irrelevant for
certain bits (e.g., the Interrupt Pending bit).

. If the Contents Valid (CV) bit of the Channel Control Register is 1, and the Not

Needed (NN) and Multiple Operation (ML) bits are both 0, an extemal access is
started. This operation is based on the contents of the Channel Address, Channel
Data, and Channel Control registers. The Current Processor Status Register
conditions the access as usual. Load-multiple and store-multiple operations are
not restarted at this point.

. The address in Program Counter 1 is used to fetch an instruction. The Current

Processor Status Register conditions the fetch. This step is treaied as a branch in
the processor pipeline.

. The instruction fetched in step 6 enters the decode stage of the pipeline.
. The address in Program Counter 0 is used to fetch an instruction. The Current

Processor Status Register conditions the fetch. This step is treated as a branch in
the processor pipeline.

. The instruction fetched in step 6 enters the execute stage of the pipeline, and the

instruction fetched in step 8 enters the decode stage.

. If the CV bit in the Channel Control Register is a 1, the NN bit is 0, and the ML bit

is 1, a load-multiple or store-multiple sequence is started based on the contents of
the Channel Address, Channel Data, and Channel Control registers.

Interrupts and traps are enabled per the appropriate bits in the Current Processor
Status Register.

The processor resumes normal operation.

16.3.5 Lightweight Interrupt Processing

The registers affected by the FZ bit of the Current Processor Status Register are
those modified by almost any usual sequence of instructions. Since the FZ bit is set
by an interrupt or trap, the interrupt or trap handler is able to execute while not
disturbing the state of the interrupted routine, though its execution is somewhat
restricted. Thus, it is not necessary in many cases for the interrupt or trap handler to
save the registers affected by the FZ bit. This permits the implementation of light-
weight interrupt handlers that do not have all of the overhead nommally associated
with interrupt handlers.

16-12 INTERRUPTS AND TRAPS

16.3.6

16.4

The processor provides an additional benefit to lightweight interrupts if the Program
Counter 0 and Program Counter 1 Registers are not modified by the interrupt or trap
handler. If Program Counters 0 and 1 contain the addresses of sequential instructions
when an interrupt or trap is taken, and if they are not modified before an interrupt
retum is executed, step 7 of the interrupt return sequence in Section 16.3.4 occurs as
a sequential fetch—instead of a branch—for the interrupt retum. The performance
impact of a sequential fetch is normally less than that of a branch.

Because the registers affected by the FZ bit are sometimes required for instruction
execution, it is not possible for the lightweight interrupt or trap handler to execute all
instructions, unless the required registers are first saved elsewhere (e.g., in one or
more global registers). Most of the restrictions due to register dependencies are
obvious (e.g., the Byte Pointer for byte extracts) and will not be discussed here. Other
less obvious restrictions are listed below:

1. Load Multiple and Store Multiple. The Channel Address, Channel Data, and
Channel Control registers are used to sequence load-multiple and store-multiple
operations, so these instructions cannot be executed while the registers are
frozen. However, other external accesses may occur; the Channel Address,
Channel Data, and Channel Control registers are required only to restart an
access after an exception, and the interrupt or trap handler is not expected to
encounter any exceptions.

2. Loads and stores which set the Byte Pointer. If the SB bit of a load or store
instruction is 1 and the FZ bit is also 1, there is no effect on the Byte Pointer.
Thus, the execution of extemal byte and half-word accesses using this
mechanism is not possible.

3. Extended arithmetic. The Carry bit of the ALU Status Register is not updated while
the FZ bitis 1.

4. Divide step instructions. The Divide Flag of the ALU Status Register is not
updated when the FZ bit is 1.

If the interrupt or trap handler does not save the state of the interrupted routine, it
cannot allow additional interrupts and traps. Also, the operation of the interrupt or trap
handler cannot depend on any trapping instructions (e.g., floating-point instructions,
assert instructions, illegal operation codes, arithmetic overflow, etc.), since these are
disabled. There are certain cases, however, where traps are unavoidable. Special
considerations for these cases are discussed in Section 16.6.6.

Simulation Of Interrupts And Traps

Assert instructions may be used by a Supervisor-mode program to simulate the oc-
currence of various interrupts and traps defined for the processor. Only an assert
instruction executed in Supervisor mode can specify a vector number between 0 and
63. If this instruction causes a trap, the effect is to create an interrupt or trap similar to
that associated with the specified vector number.

Thus, the interrupt and trap routines defined for basic processor operation can be
invoked without creating any particular hardware condition. For example, an INTR1
interrupt may be simulated by an assert instruction that specifies a vector number
of 17, without the activation of the INTR1 signal.

WARN TRAP

The processor recognizes a special trap, caused by the activation of the WARN input,
which cannot be masked. The WARN trap is intended to be used for severe system-

INTERRUPTS AND TRAPS 16-13

16.4.1

16.5

error or deadlock conditions. It allows the processor to be placed in a known, oper-
able state, while preserving much of its original state for error reporting and possible
recovery. Therefore, it shares some features in common with the Reset mode as well
as features common to other traps described in this section.

The major differences between the WARN trap and other traps are:

1. The processor does not wait for an in-progress external access to complete
before taking the trap, since this access might not complete (for example,
because WAIT is asserted). However, the information related to any outstanding
access is retained by the Channel Address, Channel Data, and Channel Control
registers when the trap is taken.

2. The vector-fetch operation is not performed when the WARN trap is taken. Instead
instruction fetching begins immediately at address 16.

Note that the WARN trap may disrupt the state of the routine that is executing when it
is taken, prohibiting this routine from being restarted.

WARN Input

An inactive-to-active transition on the WARN input causes a WARN trap to be taken
by the processor. The WARN trap cannot be disabled; the processor responds to the
WARN input regardless of its intemal condition, unless the RESETinput is also as-
serted. The WARN input is provided so the system can gain control of the processor
in extreme situations, such as when system power is about to be removed or when a
severe non-recoverable error occurs.

The WARN input is edge-sensitive so an active level on the WARN input for

long intervals does not cause the processor to take multiple WARN traps. However,
WARN must be held active for at least four cycles in order to be properly recognized
by the processor. The processor still takes the WARN trap if WARN is de-asserted
after four cycles. Another WARN trap occurs if WARN makes another inactive-to-ac-
tive transition.

The processor enters the Executing mode when the WARN input is asserted,
regardless of its previous operational mode. Either seven or eight cycles after WARN
is asserted (depending on internal synchronization time), the processor performs a
trap-handler instruction access on the bus. This access is directed to address 16.

SEQUENCING OF INTERRUPTS AND TRAPS

On every cycle, the processor decides either to execute instructions or to take an
interrupt or trap. Since there are muitiple sources of interrupts and traps, more than
one interrupt or trap may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken according to the priority shown in
Table 16-2. In this table, interrupts and traps are listed in order of decreasing priority.
This section discusses the first three columns of Table 16-2. The last two columns are
discussed in Section 16.6.

In Table 16-2, interrupts and traps fall into one of two categories depending on the
timing of their occurrence relative to instruction execution. These categories are
indicated in the third column of Table 16-2 by the labels Inst and Async. These labels
have the following meaning:

1. Inst—Generated by the execution or attempted execution of an instruction.

16-14 INTERRUPTS AND TRAPS

Table 16-2 Interrupt and Trap Priority Table

Priority Type of Interrupt or Trap Inst/Async PC1 Channel Regs
1 WARN Async Next See Note 1
(Highest)
2 User-Mode Data Mapping Miss Inst Next All
Supervisor-Mode Data Mapping Miss Inst Next All
Unaligned Access Inst Next All
Out of Range Inst Next N/A
Assert Instructions Inst Next N/A
3 Floating-Point instructions Inst Next N/A
Integer Multiply/Divide Instructions Inst Next N/A
EMULATE Inst Next N/A
4 TRAFO Async Next Muttiple
5 TRAP1 Async Next Multiple
6 INTRO Async Next Multiple
7 INTR1 Async Next Multiple
8 INTR2 Async Next Multiple
9 INTR3 Async Next Multiple
Internal peripheral interrupts Async Next Multiple
10 Timer Async Next Multiple
1 Trace Async Next Multiple
12 User-mode Inst Mapping Miss Inst Curr N/A
Supervisor-mode Inst Mapping Miss Inst Cumr N/A
13 lilegal Opcode Inst Curr N/A
(Lowest) Protection Violation Inst Cumr N/A

Note 1: The Channel Address, Channel Data, and Channel Control registers are set for a WARN
trap only if an external access is in progress when the trap is taken.

2. Async—Generated asynchronous to and independent of the instruction being
executed, although it may be a result of an instruction executed previously.

The principle for interrupt and trap sequencing is that the highest priority interrupt or
trap is taken first. Other interrupts and traps either remain active until they can be
taken or they are regenerated when they can be taken. This is accomplished depend-
ing on the type of interrupt or trap, as follows:

INTERRUPTS AND TRAPS 16-15

16.6

16.6.1

1. All traps in Table 16-2 with priority 13 through 15 are regenerated by the
re-execution of the causing instruction.

2. Most of the interrupts and traps of priority 4 through 12 must be held by extemnal
hardware until they are taken. The exceptions to this are listed in item 3.

3. The exceptions to item 2 are the Timer interrupt and the Trace trap. These are
caused by bits in various registers in the processor and are held by these
registers until taken or cleared. The two relevant bits are the Interrupt (IN) bit of
the Timer Reload Register for Timer interrupts and the Trace Pending (TP) bit of
the Current Processor Status Register for Trace traps.

4. All traps of priority 2 and 3 in Table 16-2, except for the Unaligned Access trap,
are not regenerated. These traps are mutually exclusive and are given high
priority because they cannot be regenerated; they must be taken if they occur. If
one of these traps occurs at the same time as a reset or WARN trap, it is not taken
and its occurrence is lost.

5. The Unaligned Access trap is regenerated internally when an external access is
restarted by the Channel Address, Channel Data, and Channel Control registers.
Note this trap is not necessarily exclusive to the traps discussed in item 4 above.

The Channel Address, Channel Data, and Channel Control registers are set for a
WARN trap only if an external access is in progress when the trap is taken.

EXCEPTION REPORTING AND RESTARTING

When an instruction encounters an exceptional condition, the Program Counter 0,
Program Counter i, and Program Counter 2 registers report the relevant instruction
address(es) and allow the instruction sequence to be restarted once the exceptional
condition has been remedied (if possible). Similarly, when an extemal access encoun-
ters an exceptional condition, the Channel Address, Channel Data, and Channel
Control registers report information on the access or transfer and allow it to be
restarted. This section describes the interpretation and use of these registers.

The PC1 column in Table 16-2 describes the value held in the Program Counter 1
Register (PC1) when the interrupt or trap is taken. For traps in the Inst category, PC1
contains either the address of the instruction causing the trap, indicated by Curr, or
the address of the instruction following the instruction causing the trap, indicated

by Next.

For interrupts and traps in the Async category, PC1 contains the address of the first
instruction not executed due to the taking of the interrupt or trap. This is the next
instruction to be executed upon interrupt return, as indicated by Next in the PC1
column.

instruction Exceptions

For traps caused by the execution of an instruction (e.g., the Out-of-Range trap), the
Program Counter 2 Register contains the address of the instruction causing the trap.
In all of these cases, PC1 is in the Next category.

The traps associated with instruction fetches (i.e., those of priority 13) occur only if the
processor attempts the execution of the associated instruction. An exception may be
detected during an instruction prefetch, but the associated trap does not occur if the
processor branches before it attempts to execute the invalid instruction. This prevents
spurious instruction exceptions.

16-16 INTERRUPTS AND TRAPS

16.6.2

Restarting Mapped DRAM Accesses

DRAM mapping is provided to support application needs such as on-the-fly data
compression and decompression. In such applications, programs operate on large,
compressed data structures by decompressing data into a smaller region of memory,
operating on the data, and then compressing back into the large compressed struc-
ture. The ability to store the data in a compressed format reduces system memory
requirements, while the ability to operate on the data in a decompressed format sim-
plifies the application software.

For generality, mapped DRAM accesses allow the mapping configuration to be
changed on demand. In other words, the DRAM mapping is performed by a system
routine that changes the mapping as needed by the application program. This allows
applications written with no knowledge of DRAM mapping to operate in a system that
uses DRAM mapping. Since the DRAM mapping trap is part of normal system
operation and does not represent an error, the access that causes the trap must be
restarted—once the trapping condition is remedied—in a manner that cannot be
detected by the program causing the trap.

The Am29200 microprocessor overlaps extemnal accesses with the execution of in-
structions. Thus, traps caused by accesses are imprecise. The address of the
instruction that initiated the access cannot be determined by the trap handler. Since
the address of the initiating instruction is unknown, the access cannot be restarted by
re-executing this instruction. Even if the address could be determined, the instruction
might not be restartable since an instruction executed before the trap occurred, but
after the access began, may have altered the conditions of the access, such as by
altering the address source register.

In order to provide for the restarting of loads and stores that cause exceptions, the
processor saves all information required to restart these accesses in the Channel
Address, Channel Data, and Channel Control registers. The Contents Valid (CV) and
Not Needed (NN) bits in the Channel Control Register indicate that the information
contained in these registers represents an access that must be restarted. The CV bit
indicates the access did not complete, and the NN bit indicates whether or not the
data from the access is required by the processor.

Note that since instruction execution is overlapped with external accesses, an instruc-
tion that executes after a load may alter the destination register for the load. If a trap
occurs in this situation, the access information in the Channel Address, Data, and
Control registers is correct, but the load cannot be restarted because it will destroy the
new value in the destination register. The NN bit provides correct operation in this
case.

When an interrupt or trap is taken, the handling routine has access to the Channel
Address, Data, and Control registers; the contents of these registers may contain
information relevant to an incomplete access and can be preserved for restarting this
access. Since these registers are frozen (due to the FZ bit of the Current Processor
Status) they are not available to monitor any extenal accesses in the interrupt or trap
handler until their contents are saved and the FZ bit is reset.

The processor restarts an access, using the Channel Address, Channel Data, and
Channel Control registers, upon an interrupt retum (IRET or IRETINV). The access is
initiated if the CV bit of the Channel Control Register is 1 and the NN bit is 0. The
restart cannot be detected in the logical operation of the restarted routine, although
the timing of execution is altered.

The mechanism used to restart trapping accesses has the additional benefit of allow-
ing a fast interrupt-response time when the processor is performing a load-multiple or

INTERRUPTS AND TRAPS 16-17

16.6.2.1

store-multiple operation. An interrupted load-multiple or store-multiple is restarted as if
it had faulted. In this case, the operation resumes from the point of interruption, not
from the beginning of the sequence.

CHANNEL ADDRESS (CHA, Register 4)

This protected special-purpose register (Figure 16-10) is used to report exceptions
during external accesses. It also is used to restart interrupted load-muitiple and store-
multiple operations and to restart other external accesses when possible (e.g., after
DRAM mapping misses are serviced).

The Channel Address Register is updated on the execution of every load or store
instruction and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (F2) bit in the Current Processor Status Register is 1.

Figure 16-10

Channel Address Register

31 23 15 7 o
NERRRRRRRRRRRRRRRRRRRRRRRRERRR

CHA

16.6.2.2

Bits 31-0: Channel Address (CHA)—This field contains the address of the current
access (if the FZ bit of the Current Processor Status Register is 0).

CHANNEL DATA (CHD, Register 5)

This protected special-purpose register (Figure 16-11) is used to report exceptions
during extemal accesses. It is also used to restart the first store of an interrupted
store-multiple operation and to restart other external accesses when possible (e.g.,
after DRAM mapping misses are serviced).

The Channel Data Register is updated on the execution of every load or store
instruction and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1. When
the Channel Data Register is updated for a load operation, the resulting value is
unpredictable.

Figure 16-11

Channel Data Register

31 23 15 7 [s]
NERRRRRRRRRRRRRRRRRRRRRRRERRRR

CHD

16.6.2.3

Bits 31-0: Channel Data (CHD)—This field contains the data (if any) associated with
the current access (if the FZ bit of the Current Processor Status Register is 0). If the
current access is not a store, the value of this field is irrelevant.

CHANNEL CONTROL (CHC, Register 6)

This protected special-purpose register (Figure 16-12) is used to report exceptions
during external accesses. It is also used to restart interrupted load-multiple and store-
multiple operations and to restart other extemal accesses when possible (e.g., after
DRAM mapping misses are serviced).

16-18 INTERRUPTS AND TRAPS

The Channel Control Register is updated on the execution of every load or store
instruction and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1.

Figure 16-12

Channel Control Register

31 15

23 7
RERRRERRRARRA BERRERRRR

CNTL CR Res TR

res LS

2
r4
4

ML cv

16.6.3

Bits 31-24:—These bits are a direct copy of bits 23—16 from the load or store instruc-
tion that started the current access (see Section 3.3).

Bits 23-16: Load/Store Count Remaining (CR)—The CR field indicates the
remaining number of transfers for a load-multiple or store-multiple operation that
encountered an exception or was interrupted before completion. This number is zero-
based; for example, a value of 28 in this field indicates that 29 transfers remain to be
completed.

Bit 15: Load/Store (LS)—The LS bit is 0 if the access is a store operation and is 1 if
the access is a load operation.

Bit 14: Multiple Operation (ML)—The ML bit is 1 if the current access is a partially-
complete load-multiple or store-multiple operation; otherwise it is 0.

Bit 13: Set (ST)—The ST bitis 1 if the current access is for a Load and Set
instruction; otherwise it is 0.

Bit 12-10: Reserved.

Bits 9-2: Target Register (TR)}—The TR field indicates the absolute register number
of the data operand for the current access (either a load target or store data source).
Since the register number in this field is absolute, it reflects the Stack-Pointer addition
when the indicated register is a local register.

Bit 1: Not Needed (NN)—The NN bit indicates that, even though the Channel
Address, Channel Data, and Channel Control registers contain a valid representation
of an incomplete load operation, the data requested is not needed. This situation
arises when a load instruction is overlapped with an instruction that writes the load
target register.

Bit 0: Contents Valid (CV)—The CV bit indicates the contents of the Channel
Address, Channel Data, and Channel Control registers are valid.

Integer Exceptions

Some integer add and subtract instructions—ADDS, ADDU, ADDCS, ADDCU, SUBS,
SUBU, SUBCS, SUBCU, SUBRS, SUBRU, SUBRCS, and SUBRCU—cause an
Out-of-Range trap upon overflow or underflow of a 32-bit signed or unsigned result,
depending on the instruction.

Two integer multiply instructions—MULTIPLY and MULTIPLU—cause an Out-of-
Range trap upon overfiow of a 32-bit signed or unsigned result, respectively, if the
MO bit of the Integer Environment Register is 0. If the MO bit is 1, these multiply

INTERRUPTS AND TRAPS 16-19

16.6.4

16.6.5

instructions cannot cause an Out-of-Range trap. Since the processor does not contain
hardware to directly support these instructions, the Out-of-Range trap must be gener-
ated by the software that implements the virtual arithmetic interface (see Section 2.8).

Two integer divide instructions—DIVIDE and DIVIDU—take the Out-of-Range trap
upon overflow of a 32-bit signed or unsigned result, respectively, if the DO bit of the
Integer Environment Register is 0. If the DO bit is 1, the divide instructions cannot
cause an Out-of-Range trap unless the divisor is zero. If the divisor is zero, an Out-of-
Range trap always occurs, regardless of the DO bit.

For the MULTIPLY, MULTIPLU, DIVIDE, and DIVIDU instructions, the destination
register or registers are unchanged if an Out-of-Range trap is taken.

Floating-Point Exceptions

A Floating-Point Exception trap occurs when an exception is detected during a
floating-point operation and the exception is not masked by the corresponding bit of
the Floating-Point Mask Register. In this context, a floating-point operation is defined
as any operation that accepts a floating-point number as a source operand, that
produces a floating-point result, or both. Thus, for example, the CONVERT instruction
may create an exception while attempting to convert a floating-point value to an
integer value or vice versa.

In addition to the operations described in Section 16.3.3, the following operations are
performed when a Floating-Point Exception trap is taken:

1. The status of the trapping operation is written into the trap status bits of the
Floating-Point Status Register. The written status bits do not depend on the
values of the corresponding mask bits in the Floating-Point Environment Register.

2. The destination register or registers are left unchanged.

Correcting Out-of-Range Results

Some Arithmetic instructions cause an Out-of-Range trap if the arithmetic operation
causes an overflow or underflow. When an Out-of-Range trap occurs, the result of the
operation, though incorrect, is written into the destination register. Furthermore, the
Program Counter 2 Register contains the address of the trapping instruction, and the
ALU Status Register contains an indication of the cause of the trap. It is possible, if
required, for the trap handler to use this information to form the correct resuit.

The ALU Status indicates the cause of the Out-of-Range trap, based on the operation
performed, as follows:

1. Signed overflow. If the Out-of-Range trap is caused by signed, two’s-complement
overflow (this can occur for both signed adds and subtracts), the V bit is 1.

2. Unsigned overflow. If the Out-of-Range trap is caused by unsigned overflow (this
can occur only for unsigned adds), the C bit is 1.

3. Unsigned underflow. If the Out-of-Range trap is caused by unsigned underflow
(this can occur only for unsigned subtracts), the C bit is 0.

The multiply instructions, MULTIPLY and MULTIPLU, can cause an Out-of-Range
trap if the MO bit of the Integer Environment Register is 0 and the operation over-
flows. However, these instructions do not set the ALU Status Register. This exception
is detected by reading the trapping instruction, whose address is in the PC2 Register.

16-20 INTERRUPTS AND TRAPS

16.6.6

16.7

16.7.1

16.7.2

Exceptions During Interrupt and Trap Handling

In most cases, interrupt and trap handling routines are executed with the DA bit in the
Current Processor Status having a value of 1. It is normally assumed these routines
do not create many of the exceptions possible in most other processor routines.

If these assumptions are not valid for a particular interrupt or trap handler, the handler
must save the state of the processor and reset the FZ bit of the Current Processor
Status, so the handler itself may be restarted properly. This must be accomplished
before any interrupts or traps can be taken. In this case, the state (or the state of
some other process) must be restored before an interrupt retum is executed.

TIMER FACILITY

The processor has a built-in Timer Facility that can be configured to cause periodic
interrupts. The Timer Facility consists of two special-purpose registers—the Timer
Counter and the Timer Reload registers—accessible only to Supervisor-mode pro-
grams. Also, the Current Processor Status Register contains a control bit as part of
the timer facility. These registers implement timing functions independent of program
execution.

Timer Facility Operation

The Timer Counter Register has a 24-bit Timer Count Value (TCV) field that decre-
ments by one on every processor cycle. If the TCV field decrements to zero, it is
written with the Timer Reload Value (TRV) field of the Timer Reload Register on the
next cycle; the Interrupt (IN) bit of the Timer Reload register is set at the same time.
Reloading the TCV field by the TRV field maintains the accuracy of the Timer Facility.

The Timer Reload Register contains the 24-bit TRV field and the control bits Overflow
(OV), Interrupt (IN), and Interrupt Enable (IE). The TCV field and IN bit were just
described. If the IN bit is 1 and the IE bit also 1, a Timer interrupt occurs. If the IN bit
is 1 when the TCV field decrements to zero, the OV bit is also set. The OV bit
indicates a Timer interrupt may have occurred before a previous interrupt was
serviced.

The Current Processor Status Register contains the Timer Disable (TD) control bit. If
the TD bit is 1, Timer interrupts are disabled. The TD bit and the IE bit have equiva-
lent functions; the TD bit is provided so the timer may be disabled without having to
perform a non-atomic read-modify-write operation on the Timer Reload Register.
There is a possibility the TCV might decrement to zero and set the IN bit as the modi-
fied value is written back to the Timer Reload Register, causing a Timer interrupt to be
missed.

Timer Facility Initialization

To initialize the Timer Facility, the following steps should be taken in the specified
order (it is assumed that Timer interrupts are disabled by the DA bit of the Current
Processor Status Register or the TD bit of the Current Processor Status Register
during the following steps):

1. Set the TCV field with the desired interval count for the first timing interval. This
interval must be sufficiently large to allow the execution of the next step before the
TCYV field decrements to zero (this normally is the case).

INTERRUPTS AND TRAPS 16-21

16.7.3

16.7.4

16.7.5

2. Set the TRV field with the desired interval count for the second timing interval. The
OV and IN bits are reset and the IE bit is set as desired. The second timing
interval may be equivalent to the first timing interval.

Handling Timer Interrupts
The following is a suggested list of actions to be taken to handle a Timer interrupt:
1. Read the Timer Reload register into a general-purpose register.

2. Reset the IN bit in the general-purpose register.

3. Set the TRV field in the general-purpose register to the desired value for the next
timing interval. Note that at this time the Timer Counter is timing the current
interval. This step may be omitted if all intervals are equivalent.

4. Write the contents of the general-purpose register back into the Timer Reload
register.

5. Test the general-purpose-register copy of the OV bit and, if it is set, report the
error as appropriate.

6. Perform any system operations required for the Timer interrupt.
7. Execute an interrupt retum.

Timer Facility Uses
Since the Timer Facility has a resolution of a single processor cycle, it may be used to

h. A~ A
perform precise timing of system events. For example, it may be used to determine an

exact measurement of the number of cycles between two events in the system or to
perform precise time-critical control functions. The Timer interrupt is enabled and
disabled separately from other processor interrupts, so its priority can be specified.

The Timer Facility can be shared among multiple processes. This sharing is accom-
plished by the implementation of a queue for timer events, which are sorted in order
of increasing event time. On each occurrence of a Timer interrupt, the TRV field is set
for the interval between the next two events in the queue, while the Timer Counter
Register is counting the current interval (because of a previous setting of the TRV
field). The event at the beginning of the queue identifies other system actions to be
taken for the Timer interrupt. This event is removed from the queue after the appropri-
ate actions are taken.

Timer Counter (TMC, Register 8)

This protected special-purpose register (Figure 16-13) contains the counter for the
Timer Facility.

Figure 16-13 Timer Counter Register

0

31 23 15 7
HERRRRERRRRRRRRRRRRRRRRRREEEEE

Reserved TCV

16-22 INTERRUPTS AND TRAPS

16.7.6

Bits 31-24: Reserved.

Bits 23-0: Timer Count Value (TCV)—The 24-bit TCV field decrements by one on
each processor clock. When the TCV field decrements to zero, it is reloaded with the
content of the Timer Reload Value field in the Timer Reload Register. At this time, the
Interrupt bit in the Timer Reload Register is set.

The TCV field is zero-based with respect to the Timer interrupt interval; for example, a
value of 28 in the TCV field causes the IN bit to be set in the 29th subsequent proces-
sor cycle. The TCV field is zero for a complete cycle before the IN bit is set.

Timer Reload (TMR, Register 9)

This protected special-purpose register (Figure 16-14) maintains synchronization of
the Timer Counter Register, enables Timer interrupts, and maintains Timer Facility
status information.

Figure 16-14

Timer Reload Register

SRERESREERERRRNRRRRERERRRRRRRERE

Reserved TRV

16.8

Bits 31-27: Reserved.

Bit 26: Overflow (OV)—The OV bit indicates a Timer interrupt occurred before a
previous Timer interrupt was serviced. It is set if the Interrupt (IN) bit is1 when the
Timer Count Value (TCV) field of the Timer Counter Register decrements to zero. In
this case, a Timer interrupt caused by the IN bit has not been serviced when another
interrupt is created.

Bit 25: Interrupt (IN)}—The IN bit is set whenever the TCV field decrements to zero. If
this bit is 1 and the IE bit is also 1, a Timer interrupt occurs. The IN bit is set when the
TCV field decrements to zero, regardiess of the value of the |E bit. The IN bit is reset
by software that handles the Timer interrupt.

Bit 24: Interrupt Enable (IE}—When the |E bit is 1, the Timer interrupt is enabled and
the Timer interrupt occurs whenever the IN bit is 1. When this bit is 0, the Timer inter-
rupt is disabled. The Timer interrupt may be disabled by the DA bit of the Current
Processor Status Register regardless of the value of the IE bit.

Bits 23-0: Timer Reload Value (TRV)—The value of this field is written into the
Timer Count Value (TCV) field of the Timer Counter Register when the TCV field
decrements to zero.

INTERNAL INTERRUPT CONTROLLER

The various peripherals and controliers on the Am29200 microprocessor can cause
interrupts having the same effect on the processor as asserting the processor's INTR3
input. The Interrupt Controller provides a central location for generating interrupts,
indicating which interrupts are active and permitting software to reset the interrupts
independent of servicing the interrupting peripheral.

INTERRUPTS AND TRAPS 16-23

16.8.1

Interrupt Control Register (ICT, Address 80000028)

Bits of the Interrupt Control Register (Figure 16-15) are set at the leading edge of an
interrupt condition, except for the bits related to the I/0 Port (in the IOPI field), since
I/0 Port signals are independently configurable to generate edge-triggered interrupts.
For example, the DMAOI bit is set when the CTI bit transitions from 0 to 1 in the DMAO
Control Register. When a bit in this register is 1, it causes an intemal assertion of the
processor's INTR3 input (there is no external indication of this on INTR3). Software
can inspect this register to determine the source of the interrupt and can reset bits in
this register to clear the interrupt.

Bits in the Interrupt Control Register are reset-only. Writing a 1 into a bit position
causes the bit to be reset, unless an interrupting condition becomes active at the
same time, in which case the bit remains set. Writing a bit with 0 does not affect the
bit, and the bit may be set by an interrupting condition at the same time the bit is
written with 0.

Figure 16-15

Interrupt Control Register

31 23 15 7 0
LI LI rrrroeruri LI LI
reserved reserved IOPI reserved res

Vol res | DMANL oy RXS1+ TXDI
DMADI res RXDI

Bits 31-28: Reserved.

Bit 27: Video Interrupt (VDI)}—A 1 in this bit indicates the Video Interface has gener-
ated an interrupt request.

Bits 26-24: Reserved.

Bits 23-16: VO Port Interrupt (IOPI)—A 1 in this field indicates the respective PIO
signal has generated an interrupt request. A 1 in the most significant bit of the IOPI
field indicates PIO15 has caused an interrupt, the next bit indicates PIO14 has
caused an interrupt, and so on.

Bit 15: Reserved.

Bit 14: DMA Channel 0 Interrupt (DMAOI)—A 1 in this bit indicates DMA Channel 0
has generated an interrupt request.

Bit 13: DMA Channel 1 Interrupt (DMA11)—A 1 in this bit indicates DMA Channel 1
has generated an interrupt request.

Bit 12: Reserved.

Bit 11: Parallel Port Interrupt (PPI)}—A 1 in this bit indicates the Parallel Port has
generated an interrupt request.

Bits 10-8: Reserved.

Bit 7: Serial Port Receive Status Interrupt (RXSI)—A 1 in this bit indicates the
Serial Port has generated an interrupt request because of the status of the receive
logic.

Bit 6: Serial Port Receive Data Interrupt (RXDI)}—A 1 in this bit indicates the Serial
Port has generated an interrupt request because receive data is ready.

16-24 INTERRUPTS AND TRAPS

16.8.2

16.8.3

Bit 5: Serial Port Transmit Data Interrupt (TXDI)—A 1 in this bit indicates the Serial
Port has generated an interrupt request because the Transmit Holding Register is

empty.
Bits 4-0: Reserved.

Interrupt Controller Initialization

Processor interrupts are disabled by a processor reset, but the Interrupt Control Reg-
ister is not affected by a reset. To prevent spurious interrupts, software should reset
all bits of the Interrupt Control Register to 0 before processor interrupts are enabled.

Servicing Internai Interrupts

The Interrupt Control Register allows software to determine the source of an internal
interrupt. Software can prioritize these interrupts using the processors Count
Leading Zeros instruction.

Software clears an interrupt by writing a 1 into the bit that is causing the interrupt
(normally, the leading 1-bit in the Interrupt Control Register). For level-sensitive I/O
Port interrupts, the interrupting condition must be cleared and the corresponding PIO
signal be in an inactive state before the Interrupt Control Register bit is cleared,
otherwise another interrupt will be generated. For other types of interrupts, the condi-
tion causing the interrupt can be cleared in the interrupting peripheral independent of
resetting the bit in the Interrupt Control Register, because the leading edge of the
condition must be detected again before another interrupt can occur (however, the
interrupt should not be cleared in a way that might lose the occurrence of a newly
generated interrupt). Because the Interrupt Control Register is reset-only and be-
cause resetting a bit takes lower precedence than setting a bit, bits can be reset
without interfering with other interrupts or with the detection of a new interrupt of the
type being cleared.

INTERRUPTS AND TRAPS 16-25

[CHAPTER 17

DEBUGGING AND TESTING a

171

17.2

This chapter details the features of the Am29200 microprocessor that support
debugging and testing. The chapter first describes the Trace Facility and instruction
breakpoints which aid in software debugging. Next, the Test/Development Interface
is described. Finally, the Test Access Port and the Boundary Scan Architecture is
discussed.

TRACE FACILITY

Software debug is supported by the Trace Facility. The Trace Facility guarantees
exactly one trap after the execution of any instruction in a program being tested. This
allows a debug routine to follow the execution of instructions and to determine the
state of the processor and system at the end of each instruction.

Tracing is controlled by the Trace Enable (TE) and Trace Pending (TP) bits of the
Current Processor Status Register. The value of the TE bit is always copied into the
TP bit when an instruction enters the write-back stage of the processor pipeline. A
Trace trap occurs whenever the TP bit is 1. As with most traps, the Trace trap can be
disabled only by the DA bit of the Current Processor Status Register.

In order to trace the execution of a program, the debug routine performs an interrupt
retumn to cause the program to begin or resume execution. However, before the inter-
rupt retumn is executed, the TE and TP bits of the Old Processor Status are set with
the values 1 and 0, respectively. The interrupt retum causes these bits to be copied
into the TE and TP bits of the Current Processor Status.

When the target instruction of the interrupt return (whose address is contained in the
Program Counter 1 Register when the interrupt retum is executed) enters the write-
back stage, the processor copies the value of the TE bit into the TP bit. Since the TP
bitis a 1, a Trace trap occurs. This trap prevents any further instruction execution in
the target routine until the interrupt is taken and the routine is resumed with an
interrupt return. When the Trace trap is taken, the TE and TP bits are both reset
automatically, preventing any further Trace traps.

Since the Trace Facility is managed by the Old and Current Processor Status regis-
ters, it operates properly in the event the processor takes an interrupt or trap—unre-
lated to the Trace Facility—before the above trace sequence completes. When the
unrelated interrupt or trap is taken, the state of the Trace Facility (i.e., the values of
the TE and TP bits) is copied into the Old Processor Status from the Current Proces-
sor Status. The Trace Facility then resumes operation when the interrupted routine is
restarted by an interrupt retum.

Itis possible to cause a Trace trap by directly setting the TP and/or TE bits in the
Current Processor Status Register. This may be accomplished only by a Supervisor-
mode program.

INSTRUCTION BREAKPOINTS

The HALT instruction can be used as an instruction breakpoint by a hardware-
development system. However, the HALT instruction normally is a privileged

DEBUGGING AND TESTING ~ 17-1

173

17.4

instruction, causing a Protection Violation trap upon attempted execution by a User-
mode program. The hardware-development system can disable this Protection Viola-
tion as outlined in Section 17.6.5

The Assert class of instructions and the lllegal Opcode trap can be used by software
to implement instruction breakpoints. An instruction breakpoint is set by replacing an
instruction with the Assert instruction or an illegal opcode in the program under test.
When the breakpoint instruction is encountered, the instruction breakpoint causes a
trap. The illegal opcode is preferred since the Program Counter 1 (PC1) points to the
illegal opcode when the trap is taken, whereas PC1 points to the instruction following
the breakpoint if an Assert is used.

PROCESSOR STATUS OUTPUTS

The STAT(2-0) outputs indicate certain information about processor modes along
with information about processor operation. STAT(2-0) may be used to provide feed-
back of processor behavior during normal processor operation and when the proces-
sor is under the control of a hardware-development system.

The encoding of STAT(2-0) is as follows:

STAT2 STAT1 STATO Mode or Condition
0 0 0 Halt or Step Modes
0 0 1 Reserved
0 1 0 Load Test Instruction Mode, Halt/Freeze
0 1 1 Wait Mode
1 0 0 External data access (data valid)
1 0 1 External instruction access (instruction valid)
1 1 0 Internal data access (data valid)
1 1 1 Idle or data/instruction not valid

The STAT(2-0) outputs are a delayed indication of a mode or condition, so a mode or
condition on a given cycle is reflected on STAT(2-0) on the second following cycle.
For example, STAT(2-0)=101 indicates an instruction was valid on ID(31-0) at the
end of the second previous cycle. The R/W output indicates the direction of an ac-
cess, adding information about the access indicated on STAT(2-0) (the R/W signal
appears with the access and is not delayed as are STAT(2-0)). If an access is ex-
tended by WAIT, the appropriate status is shown for every additional cycle until the
access does complete. The address always appears on A(23-0), whether the access
is a read or a write and whether the access is external or internal (that is, to an inter-
nal peripheral). The data appears on ID(31-0), except on a read of an intemnal
peripheral.

CONTROL SIGNALS IN SCAN PATH

The Am29200 microprocessor incorporates a boundary scan interface is compatible
with the IEEE 1149.1 JTAG specification. This interface permits access to testing and
debug features of the processor core not visible on the extemal interface (see Section
17.5.2).

A two-bit CNTL field appears on the boundary-scan register (for readers familiar with
the 29K Family, the CNTL field corresponds to the CNTL(1-0) pins that appear on
other family processors). This field can be used to halt, step, and start the processor,

17-2 DEBUGGING AND TESTING

17.5

as well as force the processor to execute instructions for the purpose of testing and
debugging. The CNTL field affects processor operations as follows:

CNTL Value Mode
00 Load Test Instruction
01 Step
10 Halt
1 Normal

Changes tc the CNTL field are restricted so only one bit of the CNTL field may
change at any given time. The allowed transitions are shown in Figure 17-1. If these
restrictions are violated, processor operation is unpredictable, and a processor reset
is required to resume predictable operation.

Because of the restrictions just described, it is not possible to transition directly be-
tween all possible modes controlled by the CNTL field. For example, the processor
cannot go from the Load Test Instruction mode to Normal operation without first enter-
ing the Halt or Step modes.

TEST ACCESS PORT

The Am29200 microprocessor implements the Standard Test Access Port (TAP) and
Boundary-Scan Architecture as specified by the IEEE Specification 1149.1-1990
(JTAG), with the exception that the INCLK pin is not part of the boundary-scan
register. The IEEE 1149.1-1990 Specification includes many details omitted from the
discussion in this section and is included by reference. The following description
discusses Am29200 microprocessor-specific considerations.

Figure 17-1

Valid Transitions for CNTL Field

Load Test
Instruction
00

DEBUGGING AND TESTING 17-3

17.5.1

Boundary Scan Cells

The Test Access Port can access, affect, and sample the processor inputs and out-
puts because a Boundary Scan Register (BSR) and Parallel Data Register (PDR) are
incorporated into the design of the input and output cells. The Boundary Scan Regis-
ter allows serial data to be loaded into or read out of the processor input/output
boundary. The Parallel Data Register holds data stable at inputs and outputs during
scanning, so system signals are not adversely affected during scanning.

An input or output cell incorporating a BSR and PDR register bit is referred to as a
boundary scan cell. This section describes the implementation of the Am29200
boundary scan cells.

Figure 17-2 shows the design of an input boundary scan cell, and Figure 17-3 shows
the design of an output boundary scan cell. Bidirectional signals use both of these
designs in the same cell. Multiplexor selects, when active, select the lower multiplexor
input.

The Shift and Update clocks, when used to sample or drive processor and system
signals, are synchronized to the processor intemal clocks so all signals (except the
TAP signals) are sampled or driven synchronously to system clocks. However, the
Shift and Update clocks still satisfy the JTAG constraints that inputs are sampled after
the rising edge of TCK, outputs change after the falling edge of TCK, and TCK is the
only control needed to affect sampling and driving.

The IEEE 1149.1-1990 Specification requires that it be possible to force the proces-
sor three-state gutputs to be enabled. This is accomplished by cells that have no
associated pin. The outputs of these cells force groups of output drivers to be
enabied. Some outputs can be disabied by these cells even though the outputs
cannot be disabled during normal operation (for example, the A(23-0) outputs can
be disabled).

The boundary scan cells for the CNTL(1-0) field and STAT(2-0) outputs are part of
the BSR and are accessible by scanning the BSR. However, they can also be
scanned individually using the ICTEST1 instruction (see Section 17.5.2).

Figure 17-2 Input Boundary-Scan Cell
Scan Output
EXTEST,
1
Input Pin INTEST et —ef sel]
X M Input Signal
| U " tologic
SCAN ——-ﬁi:] X
l—’ M B P
u S D
X R R
A A Note1: For the CNTL(1-0) inputs, the
Shift Update I bog*n'edalg;’sggr;_ value is also selected
Scan Input Clock Clock by 1 instruction.

17-4 DEBUGGING AND TESTING

Figure 17-3

Output Signal

from Logic

SCAN

Output Boundary-Scan Cell

Scan Output
EXTEST, Output
INTEST sel Enable

Output Pin

X

\Van

—.Llsei rl — i
I—. M B P J
U S D
X R R
A A
Shift _j Update J
Scan Input Clock Clock

17.5.2

If the ICTESTT1 instruction is active, no other boundary scan cell is scanned. However,
the contents of the other scan cells are undefined after this operation.

The INCLK input is not a boundary scan cell. The clocks to the processor must con-
tinue to operate even if the Test Access Port is active. However, a fault on this input is
readily visible in the operation of the Test Access Port.

The MEMCLK pin has an output boundary scan cell. The EXTEST and INTEST
instructions hold the MEMCLK signal at a fixed logic level for the duration of the
instruction.

Instruction Register and Implemented instructions

The Instruction Register (IREG) of the Test Access Port is a 3-bit register. The least
significant bit (IREGQ) is the bit nearest the TDO output. Instructions are encoded as
follows:

IREG2 IREG1 IREGO Instruction
0 0 0 EXTEST
0 0 1 Preloaded value (acts like BYPASS)
0 1 0 ICTEST2
0 1 1 Reserved (acts like BYPASS)
1 0 0 INTEST
1 0 1 SAMPLE
1 1 0 ICTEST1
1 1 1 BYPASS

The EXTEST, BYPASS, INTEST, and SAMPLE instructions are specified by the
1149.1-1990 Specification. Reserved instructions behave as BYPASS instructions to
conform to the specification. ICTEST1 and ICTEST2 are AMD® public instructions.

Most of these instructions are described in detail in the IEEE 1149.1-1990 Specifica-
tion. Below is a brief description of the special considerations in the Am29200
implementation.

DEBUGGING AND TESTING 17-5

17.5.2.1

17.5.2.2

17.5.2.3

17.5.2.4

EXTEST

The EXTEST instruction is provided for extemal continuity and logic tests. It allows
the Test Access Port to drive outputs and sample inputs.

EXTEST selects the BSR for scanning. During execution:
1. Processor outputs are driven from the PDR.

2. Processor internal output signals are sampled into the BSR. This is default
behavior.

3. Processor inputs are sampled into the BSR.

4. Processor intemal input signals are driven from the PDR. This prevents intemal
logic from seeing invalid combinations of input signals possibly received from
other chips during the test.

INTEST

The INTEST instruction is provided to test the processor’s internal logic. Its primary
value is to allow a hardware-development system to drive the processor's Test Inter-
face without a direct electrical connection to all pins of the package.

INTEST selects the BSR for scanning. During execution:

1. Processor outputs are driven from the PDR. This prevents external logic from
seeing invalid combinations of output signals.

2. Processor internal output signals are sampled into the BSR.
3. Processor inputs are sampled into the BSR. This is default behavior.
4. Processor intemal input signals are driven from the PDR.

The INTEST instruction allows the hardware-development system to alter and inspect
internal registers, using processor load and store instructions, without having the
external system see any bus activity.

SAMPLE

The SAMPLE instruction is provided to inspect the processor’s extermal signals
without interfering with system operations.

SAMPLE selects the BSR for scanning. During execution:

1. Processor outputs are driven by the processor.

2. Processor internal output signals are sampled into the BSR.

3. Processor inputs are sampled into the BSR.

4. Processor intemal input signals are driven from the processor inputs.

ICTEST1

The ICTESTT instruction is defined for AMD processors using the extension mecha-
nisms permitted by the IEEE 1149.1-1990 Specification. It is provided to drive the
CNTL field and sample the STAT(2-0) outputs while leaving other inputs and outputs
in their normal system connection. This allows a hardware-development system to
control the processor and system using the Test Access Port.

ICTEST1 selects a subset of the BSR for scanning. During execution:
1. Processor outputs are driven by the processor.

17-6 DEBUGGING AND TESTING

17.5.25

17.5.2.6

17.5.3

17.5.3.1

2. Processor intemal output signals are sampled into the BSR. This is default
behavior for most signals, but allows the sampling of STAT(2-0).

3. Processor input signals are sampled into the BSR. This is default behavior.

4. The processor CNTL field is driven by the PDR. Processor interal inputs are
driven from the processor inputs.

ICTEST2

The ICTESTZ2 instruction is defined for AMD processors using the extension mecha-
nisms permitted by IEEE 1149.1-1990. ICTEST2 is similar to EXTEST with the ex-
ception that the scan path for ICTEST2 excludes mast of the processor outputs so the
system is not disrupted (for example, by interfering with refresh). This allows a
hardware-development system to access and modify processor intemal state without
disrupting the system.

1. Processor ID(31-0) and STAT(2-0) outputs are driven from the PDR. The output
enable for the 1D Bus is controlled by the PDR. Other processor outputs are
controlled by the processor.

2. Processor intemal output signals for ID(31-0) and STAT(2-0) are sampled into
the BSR. This allows a hardware-development system to sample the processor's
status and data driven by the processor.

3. Processor intemal input signals for 1D(31--0) are driven from the PDR. This allows
a hardware-development system to provide data to the processor independent of
system controls.

BYPASS

The BYPASS instruction is provided to bypass the BSR and shorten access times to
other devices at the board level.

BYPASS selects the Bypass Register for scanning. The processor is not otherwise
affected.

Order of Scan Cells in Boundary Scan Path

This section documents the scan paths and the order of scan cells in the paths. The
cells are listed in order from TDI to TDO. In the Am23200 microprocessor, there are
five scan paths from TDI to TDO: 1) the instruction path, 2) the bypass path, 3) the
main data path, 4) the ICTESTT path, and 5) the ICTESTZ path.

INSTRUCTION PATH

This is a 3-cell path which is used to scan into the Instruction Register. When the
instruction path is selected the captured data is always |REG(2-0) = 001 and the
instruction is set by scanning. The preloaded pattern 001 is used to test for faults in
the boundary scan connections at the board level. The instructions are specified in
Section 17.5.2.

Bit Cell Name
1 IREG2

2 IREG1

3 IREGO

DEBUGGING AND TESTING ~ 17-7

17.5.3.2 BYPASS PATH

This is a one-cell path which is used to bypass the processor and shorten access to
other devices at the board level. When the bypass path is selected, the captured data
is always 0 and the scan in data has no effect on the processor.

17.5.3.3 MAIN DATA PATH

This is a 188-cell path used to access the processor pins. This path is divided into five
sets of cells. Where applicable, each set has a cell which enables the outputs of the
set to be driven on the processor’s pins. These cells are not connected to a processor
pin. For convenience, the drive enable cells are shown in boldface. Some of these
cells affect outputs not normally enabled and disabled during normal system opera-
tion. The sets of cells are divided logically as follows: 1) clocks, requests, and reset,
2) miscellaneous peripheral control signals, 3) memory and peripheral controls,

4) instruction/data bus.

Bit Cell Name Comments

MEMCLK The MEMCLK scan cell is an output scan celi:
it captures processor internal MEMCLK and
substitutes the scanned value for the output.

-t

2 RESET

3 LSYNC

4 VCLK

5 WARN

6 INTR3

7 INTR2

8 INTR1

9 INTRO

10 TRAP1

11 TRARD

12 TDMA

13 DREQO

14 DREQt

15 GREQ

16 TOPDRV Enables the drivers for PSYNC through PWE
17 PSYNCI PSYNC input
18 PSYNCO PSYNC output
19 VDATI VDAT input
20 VDATO VDAT output
21 STATO

22 STAT1

23 STAT2

24 PIOI0 PIOO input
25 PIOOO PIOO0 output
26 PIOI1 PIO1 input
27 PIOO1 PIO1 output
54 PIOI15 PIO15 input
55 PIOO15 PIO15 output
56 PBUSY

57 PACK

58 POE

59 PWE

60 PSTROBE

61 PAUTOFD

62 WAIT

63 BOOTW

17-8 DEBUGGING AND TESTING

Cell Name Comments

ABIDRV Enables the driving of the A(23-0) outputs

BOTDRV Enables the drivers for DACKO through DSR

DBIDRV Enables the ID Bus drivers
IDIO IDO input

IDOO IDO output

IDI1 ID1 input

IDO1 ID1 output

IDI31 ID31 input
IDO31 1D31 output

DEBUGGING AND TESTING 17-9

17.5.3.4

17.5.3.5

17.6

17.6.1

ICTEST1 PATH

This is a 5-bit path used to provide quick access to the CNTL field and the STAT(2-0)
output signals while keeping other inputs and outputs in their normal system
connection.

Bit Cell Name Comments
1 CNTLO Internal control field only
2 CNTL1
3 STATO Outputs: These s‘igna|s are scanned out and are
4 STAT1 shown on the TDO pin, The scan in values do nct
5 STAT2 replace the processor output values. In ICTEST1,

the processor outputs STAT(2-0) continue to reflect
the internal processor signals.

If the ICTESTT1 path.is scanned, the contents of the shift register bits in the other scan
cells become undefined. This occurs because all scan paths share the same shift
clocks

ICTEST2 PATH

The ICTEST2 path includes only the ID Bus, the CNTL field, and the STAT(2-0)
signals. It is provided so a hardware-development system can access the processor
without disrupting the system.

Bit Cell Name Comments

1 CNTLO Internal control field only

2 CNTL1

3 STATO Outputs: These signals are scanned out and are
4 STATH shown on the TDO pin. The scan in values do not
5 STAT2 replace the processor output values. In ICTEST1,

the processor outputs STAT(2-0) continue to reflect
the internal processor signals.

6 DBIDRV Enables the ID Bus drivers
7 IDIO IDO input

8 IDOO 1DO output

9 IDI1 ID1 input

10 IDO1 ID1 output

69 IDI31 ID31 input

70 IDO31 ID31 output

IMPLEMENTING A HARDWARE-DEVELOPMENT SYSTEM

The Halt, Step, and Load Test Instruction modes of operation, invoked using the
CNTL field in the boundary scan path, are defined to support the debugging of the
processor system by a hardware-development system (both hardware and software
debug). This section describes the use of these modes during debug and describes
the corresponding activity on the CNTL field and STAT(2-0) pins.

Halt Mode

The Halt mode allows the hardware-development system to stop processor operation
while preserving its intemal state. The Halt mode is defined so normal operation may
resume from the point the processor enters the Halt mode. All external accesses are

17-10 DEBUGGING AND TESTING

17.6.2

completed before the Halt mode is entered, so a minimum amount of system logic is
required to support the Halt mode.

The Halt mode can be invoked by applying a value of 10 to the CNTL field. The proc-
essor enters the Halt mode within two or three cycles after the CNTL field is changed
(depending on synchronization time), except it first completes any extemal data ac-
cess in progress.

The Halt mode can also be entered as the result of executing a HALT instruction.
When a HALT instruction is executed, the processor enters the Halt mode on the next
cycle, except it completes any external data accesses in progress. In this case, the
processor remains in the Halt mode even though the CNTL field is 11. However, the
processor cannot exit the Halt mode except as the result of the CNTL field or RESET
input. If the instruction following a Halt instruction has an exception (e.g., instruction
mapping miss), the trap associated with the exception is taken before the processor
enters the Halt mode.

The Halt instruction is designed as an instruction breakpoint by the hardware-devel-
opment system. However, the Halt instruction is normally a privileged instruction,
causing a Protection Violation trap upon attempted execution by a User-mode pro-
gram. The hardware-development system can disable this Protection Violation as
described in Section 17.6.5.

In most cases, the STAT(2-0) outputs have a value of 000 whenever the processor is
in the Halt mode. These outputs can be used to verify the processor is in Halt mode.
However, the STAT(2-0) outputs have a value of 010 if the Freeze (FZ) bit of the
Current Processor Status Register is 1 when the Halt mode is entered. This indicates
the visible registers do not reflect the current program state.

While in the Halt mode, the processor does not execute instructions and performs no
extemnal accesses. The Timer Facility does not operate (i.e., the Timer Counter Regis-
ter does not change).

The Halt mode is exited when the Reset mode is entered or the CNTL field places
the processor into another mode. The only valid transitions on the CNTL field from
the value of 10 are to the value 00, which places the processor into the Load Test
Instruction mode, or to the value 11, which causes the processor to resume normal
execution.

Step Mode

The Step mode causes the Am29200 microprocessor to execute at a rate determined
by the hardware-development system, allowing the hardware-development system to
easily control and monitor processor operation. The Step mode is defined so normal
operation may resume after stepping is complete. Since all external accesses are
completed during any step, a minimum amount of system logic is required to support
the slower rate of execution.

The Step mode is invoked by the value of 01 in the CNTL field. The processor enters
the Step mode within two or three cycles after the CNTL field is changed (depending
on synchronization time), except it first completes any external data access in
progress.

In most cases, the STAT(2-0) outputs have a value of 000 whenever the processor is
in the Step mode; these outputs can be used as a verification the processor is in Step
mode. However, the STAT(2-0) outputs have a value of 010 if the Freeze (FZ2) bit of
the Current Processor Status Register is 1 when the Step mode is entered. This
indicates the visible registers do not reflect the current program state.

DEBUGGING AND TESTING 17-11

17.6.3

Wihile in the Step mode, the processor does not execute instructions and performs no
extemnal accesses. The Timer Facility does not operate (i.e., the Timer Counter
Register does not change) while the processor is in the Step mode.

The Step mode is identical to the Halt mode in every respect except one. This differ-
ence is apparent on the transition of the CNTL field from the value 01 (Step mode) to
the value 11 (Normal). On this transition, the processor steps. That is, the processor
state advances by one pipeline stage, and it completes any external access which is
initiated by this state change.

If the processor immediately enters the Pipeline Hold mode on a step, the step may
require multiple cycles to execute, since the processor pipeline cannot advance while
the processor is in the Pipeline Hold mode. The STAT(2-O) lines reflect the state of
the processor for every cycle of the step.

The Timer Counter decrements by one for every cycle of the step; if the Timer
Counter decrements to zero, the usual Timer-Facility actions are performed, and a
Timer interrupt may occur.

After the step is performed, the processor re-enters the Step mode and remains in the
Step mode even though the CNTL field has the value 11 (this prevents the need for a
time-critical transition on the CNTL field). The processor remains in this condition until
the CNTL field transitions to 10 or 01 (or RESETis asserted). The transition to 10
causes the processor to enter the Halt mode and is used to clear the Step mode. The
transition to 01 causes the processor to remain in the Step mode so it may perform
additional steps.

If the processor is placed in the Halt or Step mode while either a LOADM or STOREM
instruction is being executed, the STAT(2-0) outputs indicate the Halt or Step mode
for one cycle (STAT(2-0) =000). They then indicate the Pipeline Hold mode
(STAT(2-0) =001) until the final access of the LOADM or STOREM is complete, at
which time they retum to indicating the Halt or Step mode. A hardware-development
system must therefore ignore any single-cycle Halt/Step mode indication on the
STAT(2-0) outputs as an indication the processor is halted.

Load Test Instruction Mode

The processor incorporates an Instruction Register (IR) that holds instructions while
they are decoded. In the Load Test Instruction mode, the IR is enabled to receive the
content of the Instruction Bus regardless of the state of the processor’s instruction
fetcher. This allows the hardware-development system to provide instructions for
execution directly, thereby providing means for the hardware-development system to
examine and modify the intemal state of the processor without altering the proces-
sor’s instruction stream.

The hardware-development system can place an instruction in the IR by first placing
00 in the CNTL field. The processor enters the Load Test Instruction mode within two
or three cycles after the CNTL field is changed (depending on synchronization time).
However, it first completes and terminates any established burst-mode instruction
access. The Load Test Instruction mode can be entered only from the Halt or Step
modes.

When the processor enters the Load Test Instruction Mode, the processor behaves
as though the Current Processor Status Register were forced to the value shown

in Figure 17-4, even though the register is not changed (the value “u” means
unaffected).

17-12 DEBUGGING AND TESTING

Figure 17-4

Processor Status While in Load Test Instruction Mode

31 23 15 7 0
RERBRRRRRRRRR I I I
00 0000O0O0O0O0OO0OOO Oju|ojOjujulufuf1]O0 Oju|O Ofj1}u ujujt
Reserved :n |:::l : ' : ' IM:'
) . L I I e] L])] [
TD ; P, TP, FZ ; WM |, SM + DA
res TE TU res res DI

The visibie processor state remains unchanged while the processer ie in the Load
Test Instruction Mode. The processor status shown in Figure 17-4 remains in effect
until the next transition to the Normal Mode via the Halt Mode.

While the processor is in the Load Test Instruction mode, it ignores all interrupts and
traps, except for the WARN trap.

The STAT(2-0) lines have a value of 010 while the processor is in the Load Test
Instruction mode; this may be used as a verification that the processor is loading
the IR.

While the processor is in the Load Test Instruction mode, the IR is continually storing
the value on the Instruction/Data Bus; any change in the value on this bus is reflected
in the IR on the next cycle. The hardware-development system can place a desired
instruction into the IR by driving this instruction on the Instruction/Data Bus or via the
scan interface.

The processor exits the Load Test Instruction mode in the second cycle following a
change to the CNTL. field. The only valid change here is either to the Halt mode
(CNTL =10) or the Step mode (CNTL=01).

When the Load Test Instruction mode is exited, the most recent value stored into the
IR is held. If the processor is placed in the Step mode, the IR is marked as having
valid content, enabling the processor to decode and execute the instruction. If the
processor is placed in the Halt mode, it ignores any instruction placed in the IR by the
Load Test Instruction mode and reverts to its normal instruction-fetch mechanism.

Once the IR has been set by the Load Test Instruction mode, the instruction in the IR
may be executed via the Step mode as discussed in the previous section. A single
step is sufficient to cause the execution of this instruction. However, because of
pipelining, multiple steps may be required before the instruction completes execution.
If more than one step is performed, the processor executes the instruction in the IR on
every step. If it is desired to step an instruction to completion without repeated execu-
tion, a NO-OP may be set into the IR (using the Load Test Instruction mode) after the
first step.

The Load Test Instruction mode may be used to cause the execution of most
processor instructions (restrictions are discussed below). This allows inspection
and modification of the processor state.

Because of sequencing constraints, the Load Test Instruction mode cannot be used
to cause the execution of the following instructions: conditional jumps, Load Multiple,
Store Muitiple, Interrupt Retum, and Interrupt Retum and invalidate. Unconditional
jumps and calls are permitted, but affect only the Program Counter. Instruction
sequencing is not affected.

The contents of the Program Counter 0, Program Counter 1, Program Counter 2,
Channel Address, Channel Data, Channel Control, and ALU Status registers are not

DEBUGGING AND TESTING 17-13

17.6.4

17.6.4.1

updated while instructions are executed via the Load Test Instruction mode, except
explicitly by Move To Special Register instructions. Instructions executed using the
Load Test Instruction mode may access the protected processor state even though
the processor is in the User mode.

Instructions executed via the Load Test Instruction mode may be used to access an
external device or memory. Recall that the processor completes any normal data
access before completing a step. This allows the processor to access devices and
memories on behalf of the hardware-development system and simplifies the timing
constraints on the hardware-development system.

During processor execution via the Load Test Instruction made, the nrocessor retaing
the information required to resume normal operation. If any processor state is modi-
fied by the hardware-development system, this state must be restored properly for
normal operation to resume properly.

Once all instructions have been executed via the Load Test Instruction mode, the Halt
mode (CNTL.=10) prepares the processor to resume normal operation. When the
CNTL field transitions to 11, the processor resumes normal operation. The sequence
for the CNTL field to clear the Load Test Instruction mode and resume normal opera-
tion is thus 00/10/11.

Accessing Internal State Via Boundary Scan

The hardware-development system uses load and store instructions, executed via the
Load Test Instruction mode, to alter and inspect the contents of general-purpose
registers. The OPT field for these loads and stores have the value 110 and are di-
rected to the ROM address space (for example, address 0): this causes the processor
to prevent the resulting access from appearing in the system. The access is visible
only via the boundary-scan register. Furthermore, it causes the Am29200 micropro-
cessor to ignore the generation of wait states: the access completes at the end of the
next stepped instruction. This provides a means for a hardware-development system
to perform accesses.

It is not possible to execute a load directly following a store, nor a store directly
following a load, using the Load Test Instruction mode. At least one NO-OP (or other
operation) must be executed between adjacent loads and stores, because of control
conflicts that arise when these instructions are stepped in a system that performs the
resulting accesses at normal speed. However, a sequence of only loads or only
stores is permitted without restriction.

This section describes the sequence of boundary-scan operations performed to
access processor intermnal state.
INSPECTING STATE VIA BOUNDARY SCAN

A hardware-development system uses store instructions to inspect the contents

of general-purpose registers. Since the processor intemal state can be moved to
general-purpose registers, this provides a means to inspect other states as well as
the values in general-purpose registers.

With the processor in the Halt mode, the hardware-development system uses the
following sequence to retrieve the value in a general-purpose register:

1. Set the CNTL field to 10 (Halt) using the ICTEST1 boundary-scan instruction.
2. Set the CNTL field to 00 (Load Test Instruction) using the ICTEST1 instruction.

3. Using the ICTEST2 instruction, set the IDI(31-0) cells with an instruction to store
the desired register into the ROM address space, with OPT=110, and set the

17-14 DEBUGGING AND TESTING

17.6.4.2

17.6.5

7.

CNTL field to 01 (Step). This places the store instruction into the IR and prepares
the processor to step.

. Using the ICTESTH1 instruction, sequence the CNTL field through the values 11,

01, 00 (Normal, Test, Load Test Instruction). This steps the processor and
prepares it to receive another instruction.

. Using the ICTEST2 instruction, set the IDI(31-0) celis to 70400101, hexadecimal

(NO-OP), and set the CNTL field to 01. This loads a NO-OP intc the IR.

. Set the CNTL fieid to 11, then back to 01 using the ICTEST1 instruction. This

steps the processor. At the end of the step, the contents of the register are on the
D Bus, and may be cobtained in the Capture-DR state of the TAP controller (this
state is described in the IEEE 1149.1-1990 Specification). The value will be held
on the ID Bus until the next step.

Repeat steps 2 through 6 for the remaining registers.

Altering State Via Boundary Scan

A hardware-development system uses load instructions to alter the contents of
general-purpose registers. Since the contents of general-purpose registers can be
moved to special-purpose registers, this provides a means to alter other state as well
as the values in general-purpose registers.

With the processor in the Halt mode, the hardware-development system uses the
following sequence to modify the value in a general-purpose register:

1.
2.
3.

Set the CNTL field to 10 (Halt) using the ICTEST1 boundary-scan instruction.
Set the CNTL field to 00 (Load Test Instruction) using the ICTEST1 instruction.

Using the ICTEST2 instruction, set the IDI(31-0) cells with an instruction to load
the desired register from the ROM address space, with OPT=110, and set the
CNTL field to 01 (Step). This places the load instruction into the IR and prepares
the processor to step.

Using the ICTEST1 instruction, sequence the CNTL field through the values 11,
01, 00 {Normal, Test, Load Test Instruction). This steps the processor and
prepares it to receive another instruction.

Using the ICTEST2 instruction, set the 1DI(31-0) cells to 70400101, hexadecimal
(NOOP), and set the CNTL field to 01. This loads a NO-OP into the IR.

Using the ICTEST2 instruction, set the 1DI(31-0) celis to the value to be loaded
and set the CNTL field to 11. This steps the processor and applies the value to be
loaded into the register.

. Set the CNTL field to 01 using the ICTEST1 instruction.

Repeat steps 2 through 7 for the remaining registers.

HALT Instructions as Breakpoints

The HALT instruction can be used by a hardware-development system to implement

an instruction breakpoint. To use the HALT instruction as an instruction breakpoint,
the hardware-development system must disable the protection checking that normally
applies to the HALT instruction so the HALT does not cause a Protection Violation

trap. To accomplish this, the hardware-development system must perform a special
sequence of operations on the boundary-scan interface. This sequence is similar in

effect to holding the CNTL(1-0) inputs at 10 during a reset on other 29K Family proc-
essors. The special sequence is needed in the Am29200 microprocessor because it

DEBUGGING AND TESTING 17-15

17.6.6

has no CNTL(1-0) inputs, but rather implements a CNTL field in the boundary-scan
register. The following sequence disables protection checking on the HALT instruc-
tion:

1.
2.

Set the CNTL field to 10 using the ICTEST1 JTAG instruction.

Reset the boundary-scan cells RESET, DBIDRV, BOTDRV, ABIDRV, and
TOPDRYV to 0 using the INTEST instruction. If the boot ROM in Bank O is 8 or 16
bits wide, reset the BOOTW cell to 0. If the boot ROM is 32 bits wide, set the
BOOTW cell to 1. This resets the processor.

. Set the RESETcell to 1 using the INTEST instruction. If the boot ROM is 8 bits

wide, set the BOOTW cell to 1 (otherwise leave it at 0 or 1). This takes the
processor out of reset and configures the boot ROM.

. Set the CNTL field to 00 using the ICTEST1 instruction.
. Using the ICTEST2 instruction, set the IDI(31-0) cells to a1000000, hexadecimal,

and set the CNTL field to 01. This loads a jump to address 0 into the IR and
prepares the processor to step.

. Using the ICTEST1 instruction, sequence the CNTL field through the values 11,

01, and 00. This steps the processor and prepares it to receive another
instruction.

. Using the ICTEST2 instruction, set the IDI(31-0) cells to 70400101, hexadecimal.

This loads a NO-OP into the IR.

. Using the ICTEST1 instruction, sequence the CNTL field through the values 11,

01, and 11. This starts the processor with protection checking disabled on the

Forcing Outputs to High Impedance

A hardware-development system can force processor outputs to the high-impedance
state by asserting the GREQinput during a processor reset. The outputs remain in
the high-impedance state until a processor reset during which GREQ is not asserted.
This supports functions such as replacing chip signals by emulator signals.

17-16 DEBUGGING AND TESTING

INSTRUCTION SET a

This chapter provides a specification of the Am29200 instruction set. Sections 18.1
and 18.2 describe the terminology and the instruction formats. Section 18.3 describes
each instruction in detail; instructions are presented alphabetically by assembler
mnemonic. Finally, Section 18.4 gives an index of instructions by operation code.

18.1 INSTRUCTION-DESCRIPTION NOMENCLATURE

To simplify the specification of the instruction set, special terminology is used through-
out this chapter. This section defines the terminology and symbols used to describe
instruction operands, operations, and the assembly-language syntax.

This section does not describe all terminology used. It excludes certain descriptive
terms with obvious meanings.

18.1.1 Operand Notation and Symbols

Throughout this chapter, instruction operands are signed two’s-complement word
integers, unless otherwise noted. The term “register” is used consistently to denote a
general-purpose register. Other types of registers are described explicitly.

The following notation is used in the description of instruction operands:

o6 16-bit immediate data, zero-extended to 32 bits.
116 16-bit immediate data, one-extended to 32 bits.
BP The Byte Pointer (BP) field of the ALU Status Register. The BP

field selects a byte or half-word within a word and is interpreted
according to the Byte Order bit of the configuration Register.

C The Carry (C) bit of the ALU Status Register. The C bit is
logically zero-extended to 32 bits when involved in a word
operation.

COUNT The value of the Count Remaining field of the Channel Control

Register. Note that COUNT does not refer to this field directly,
but rather to the value of the field at the beginning of a LOADM
or STOREM instruction.

DEST The general-purpose register that is the destination of an
instruction (i.e., the register used to store the resuit).

EXTERNAL The word in an external device or memory with address n.
WORDI[n]

FALSE The Boolean constant FALSE.

FC The Funnel Shift Count (FC) field of the ALU Status Register.
h'n The hexadecimal constant n.

116 16-bit immediate data.

IPA Indirect Pointer A Register.

INSTRUCTIONSET 18-1

IPB Indirect Pointer B Register.

IPC Indirect Pointer C Register.

PC The Program Counter Register. This register is not explicitly
accessible by instruction, but does appear as an operand for
certain instructions. The Program Counter always contains the
word address of the instruction being executed, and is 30 bits in
length.

Q The Q Register.

Register RA These designate the general-purpose registers specified by the

Register RB instruction fields RA, RB, and RC (see Section 18.2).

Register RC

SPDEST The special-purpose register that is the destination of an
instruction.

SPECIAL The contents of a special-purpose register, used as an
instruction operand.

Special-purpose Designates the special-purpose register specified by the

Register SA instruction field SA (see Section 18.2).

SRCA The contents of general-purpose registers, used as instruction

SRCB operands.

SRCA.BYTEn Designate the byte numbered n within the SRCA or SRCB

SRCB.BYTEn operand.

TARGET The target-instruction address specified by a jump or call instruc-
tion. This address is either absolute or Program-Counter relative.

TRUE The Boolean constant TRUE.

TWIN General-purpose registers are paired by absolute-register
numbers, such that even-numbered registers are paired with
odd-numbered registers having the next-highest register number.
The twin of a given register is the other register in the pair to
which the given register belongs. For example, Local Register 5
is the twin of Local Register 4, and vice versa.

18.1.2 Operator Symbols

The following symbols are used to describe instruction operations:

A<<B Left shift of the A operand by the shift amount given by the B
operand

A>>B Right shift of the A operand by the shift amount given by the B
operand

A/lB Concatenation. The B operand is appended to the A operand. In
the resulting quantity, the A operand makes up the high-order
part, and the B operand makes up the low-order part.

A&B Bitwise AND

AlB Bitwise OR

AAB Bitwise exclusive-OR

~A One’s-complement

18-2 INSTRUCTION SET

18.1.3

18.1.4

A«exp

A=B
A<>B
A>B
A>B
A<B
A<B
A+B
A-B
A*B
A/B
A.B

AORB

Assignment of the A location by the result of the expression on
the right side

Equal to

Not equal to

Greater than

Greater than or equal to
Less than

Less than or equal to
Addition

Subtraction
Multiplication

Division

A subrange which includes the A operand and the B operand.

This symbol is used for subranges of bits as well as subranges of
words.

Logical OR of two Boolean conditions

Control-Flow Terminology

The following terminology is used to describe the control functions performed during
the execution of various instructions:

Continue

IF condition
THEN operations
ELSE operations

Signed overflow

Trap(n)

Unsigned
overflow

Unsigned
underflow

VN

Continue execution of the current instruction sequence.

The condition following the IF is tested. If the condition holds, the
operations following the THEN are performed. If the condition
does not hold, the operations following the ELSE are performed.
If the ELSE is not present and the condition does not hold, no
operation is performed.

This condition is present when the result of an add or subtract of
two’s-complement operands cannot be represented by a signed
word integer.

Specifies a trap with vector number n. The vector number n may
be specified indirectly (e.g., Trap (VN)) or explicitly by symbolic
name (e.g., Trap (Out-of-Range)).

This condition is present when the result of an add of unsigned
operands cannot be represented by an unsigned word integer.

This condition is present when the result of a subtract of
unsigned operands cannot be represented by an unsigned
integer (i.e., when the result is less than zero).

Designates the trap vector number specified by the instruction
field VN (see Section 16.2.2).

Assembler Syntax

This chapter does not contain a full description of the instruction assembler, but
provides a rudimentary description of the assembler syntax.

INSTRUCTIONSET 18-3

18.2

The following notation is used to describe assembler tokens:

cntl Determines the 7-bit control field in a load or store instruction.
const8 Specifies a constant that can be expressed by 8 bits.

const16 Specifies a constant that can be expressed by 16 bits.

ra These tokens name general-purpose registers. In a formal

b sense these represent the same token since the name of a

rc register does not depend on its instruction use. However, three

distinct tokens are used to clarify the relationship between the
assembler syntay, instniction operands, and instruction fields.
spid A symbolic identifier for a special-purpose register.
target A symbolic label for the target of a jump or call instruction.
vn Specifies a trap vector number.

INSTRUCTION FORMATS

All instructions for the Am29200 microprocessor are 32 bits in length and are divided
into four fields, as shown in Figure 18-1. These fields have several alternative defini-
tions, as discussed below. In certain instructions, one or more fields are not used, and
are reserved for future use. Even though they have no effect on processor operation,
bits in reserved fields should be 0 to insure compatibility with future processor
versions.

31 23 15 o

7
rrrrrrryrrrerrrprrrrrrrprrrrie

RC RA RB
7...110 SA RBorl
115...18 19...12
VN 7...10
CNTL UI//RND/FD//FS
Reserved//FS

l\ / \ 7/ \ /
N N

A

M

The instruction fields are defined as follows:
Bits 31-24

OoP This field contains an operation code, defining the operation to
be performed. In some instructions, the least significant bit of the
operation code selects between two possible operands. For this
reason, the least significant bit is sometimes labeled A or M with
the following interpretations:

A (Absolute): The A bit is used to differentiate between Program-
Counter relative (A=0) and absolute (A=1) instruction ad-
dresses when these addresses appear within instructions.

M (Immediate): The M bit selects between a register operand
(M=0) and an immediate operand (M =1) when the altemative is
allowed by an instruction.

18-4

INSTRUCTION SET

Bits 23-16
RC
117...110

115...18

VN
CNTL

Bits 15-8
RA

SA

Bits 7-0
RB
RBorl

19...12

17...10

UI/RND//FD//FS
reserved//FS

The RC field contains a global or local register number.

This field contains the most significant eight bits of a 16-bit
instruction address. This is a word address, and may be
program-counter relative or absolute depending on the A bit of
the operation code.

This field contains the most significant eight bits of a 16-bit in-
struction constant.

This field contains an 8-bit trap vector number.

This field controls a load or store access as described in Section
3.3.1

The RA field contains a global or local register number.
The SA field contains a special-purpose register number.

The RB field contains a global or iocal register number.

This field contains either a global or local register number, or an
8-bit instruction constant depending on the value of the M bit of
the operation code.

This field contains the least significant eight bits of a 16-bit in-
struction address. This is a word address and may be program-
counter relative or absolute depending on the A bit of the
operation code.

This field contains the least significant eight bits of a 16-bit in-
struction constant.

This field controls the operation of the CONVERT instruction.

This field is the FS portion of the above field and specifies the
operand format for the CLASS and SQRT instructions.

The fields described above may appear in many combinations. However, certain
combinations that appear frequently are shown in Figure 18-2.

INSTRUCTIONSET 18-5

Figure 18-2

Three operands with possible 8-bit constant:

Frequently Occurring Instruction Field Uses

31 23 15

L LR I i |
XXX XXX X M RC RA RBorl
Three operands without constant:

31 23 15

Frrrerd LU I I |
XXX XXX X0 RC RA RB

One register operand with 16-bit constant:

31 23 15

IR IR L L I I LI L
XX X XXX X1 115..18 RA 17..10
Jumps and calls with 16-bit instruction address:

31 23 15

L L I I T
XX X XXX XA H7..010 RA i5..i2
Two operands with trap vector number:

31 23 15

et LU I 1 |
XX XX XX XM VN RA RBorl
Loads and stores:

31 23 15 0
Frrrnrrid LR 1 I LR L
XX XX XX XM CNTL RA RBorl

Res

18-6

INSTRUCTION SET

18.3

INSTRUCTION DESCRIPTION

This section describes each Am29200 instruction in detail. Figure 18-3 illustrates the

layout of the information given for each description.

Figure 18-3

Instruction-Description Format

Instruction — 4]
Mnemonic

Instruction

ADD ADD

Name

Brief Operation >

Description

Assembler
Syntax ————————————>

Arithmetic/Logic
Status Result —————————¥]

Operand Specification—
Describes the
instruction fields’
relations to operands,
and implicit operands

in some cases

Instruction Format—

Specifies field \

options used

Operation Code—__________,
HEX format

Detailed Description
of instruction =~ ———————¥

opaeration

* Add

Operation: DEST « SRCA + SRCB

Assembler
Syntax: ADD r¢, ra, b

or

ADD rc, ra, const8

Status: V,N,ZC

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1: | (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7

LI LI TTrrrid LI LELLELLELL

0001010M RC RA RBorl

OP= 14,15 ADD

Description: The SRCA operand is added to the SRCB
operand and the result is placed into the
DEST location.

INSTRUCTION SET

18-7

ADD ADD
Add
Operation: DEST « SRCA+SRCB
Assembler
Syntax: ADDrc,ra, rb
or
ADD rc, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrTrreporrreirort Frrrrreryvrrrrnrd
0001010M RC RA RBor|
OP=14, 15 ADD
Description: The SRCA operand is added to the SRCB operand and the result is

placed into the DEST location.

18-8

INSTRUCTION SET

ADDC ADDC
Add with Carry
Operation: DEST«SRCA+SRCB+C
Assembler
Syntax: ADDC rc, ra, rb
or
ADDC rc, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrirrreruvryprrrerevrrryrrerrerreryprerrrrorTd
0001 110M RC RA RBor|
OP=1C, 1D ADDC
Description: The SRCA operand is added to the SRCB operand and the value of

the ALU Status Carry bit, and the result is placed into the DEST
location.

INSTRUCTIONSET 18-9

ADDCS ADDCS
Add with Carry, Signed
Operation: DEST« SRCA+SRCB+C
IF signed overflow THEN Trap (Out of Range)
Assembler
Syntax: ADDCS rc, ra, b
or
ADDCS rc, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: 1 (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
| I I B O T T T T 111 TT T T T T T [T T T T T 11
0001100M RC RA RBor|
OP=18, 19 ADDCS
Description: The SRCA operand is added to the SRCB operand and the value of

the ALU Status Carry bit, and the result is placed into the DEST
location. If the add operation causes a two’s-complement signed
overflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

18-10 INSTRUCTION SET

ADDCU

Operation: DEST« SRCA+SRCB+C
IF unsigned overflow THEN Trap (Out of Range)

Assembler

Syntax: ADDCU rc, ra, b

or

ADDCU rc, ra, const8

Status: V,N,Z C
Operands: SRCA

Content of register RA

Add with Carry, Unsigned

ADDCU

SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
N N N N Y N O (O R O N N O A I O
0001101M RC RA RBorl
OP=1A, 1B ADDCU

Description: The SRCA operand is added to the SRCB operand and the value of
the ALU Status Carry bit, and the result is placed into the DEST
location. If the add operation causes an unsigned overflow, an
Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow

occurs.

INSTRUCTIONSET 18-11

ADDS
Add, Signed

Operation: DEST « SRCA+SRCB

IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDSrc, ra, rb
or
ADDS rc, ra, const8

Status: V,N,Z,C

ADDS

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1: 1 (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrvrrrprrrrrrryprrrrrrryrrrrrrra
000100O0M RC RA RBorl
OP=10, 11 ADDS

e maldn o 3o b

Description: The SRCA operand is added to the SRC

A amad th
€7ana ana ine resuit

s old fen
nio

placed into the DEST location. If the add operation causes a
two’s-complement signed overflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow

occurs.

18-12 INSTRUCTION SET

ADDU ADDU
Add, Unsigned
Operation: DEST « SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDU rc, ra, rb
or
ADDU rc, ra, const8

Status: V,N,Z,C

Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrryprrrrrerfprrrerrryrrrirbid
0001001M RC RA RBorl
OP=12,13 ADDU

Description: The SRCA operand is added to the SRCB operand and the result is
placed into the DEST location. If the add operation causes an
unsigned overflow, an Out-of-Range trap occurs.

Note that the DEST location is aitered whether or not an overflow
occurs.

INSTRUCTIONSET 18-13

AND

AND
AND Logical

Operation: DEST « SRCA & SRCB
Assembler

Syntax: ANDrc,ra, rb
or
AND rc, ra, const8

Statue:* N 7

Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rTTr1T1r1rryrrrrrrrfrrrrrrry rrrorTrTTd
1001000M RC RA RBorl
OP =90, 91 AND

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB

r\nornnd and the rosult is nlacad -nin fho NEQCT lnaatinn
'I I AT MY T WL o yluwu " VIV Wk\J 1 IVUGLIWVIN .

18-14 INSTRUCTION SET

ANDN ANDN
AND-NOT Logical

Operation: DEST « SRCA & ~SRCB

Assembler
Syntax: ANDN rc, ra, b

or
ANDN rc, ra, const8

Status: N,Z
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:| (Zero-extended to 32 bits)
DEST register RC
31 23 15 7 0
| I N N N N N I N (N N I D
1001110M RC RA RBorl
OP=9C, 9D ANDN

Description: The SRCA operand is logically ANDed, bit-by-bit, with the
one’s-complement of the SRCB operand and the result is placed into
the DEST location.

INSTRUCTIONSET 18-15

ASEQ ASEQ
Assert Equal To

Operation: |F SRCA=SRCB THEN Continue

ELSE Trap (VN)
Assembler
Syntax: ASEQuvn,ra, b
or

ASEQ vn, ra, const8
Status: Not affected

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1: | (Zero-extended to 32 bits)

VN Trap vector number
31 23 15 7 0
rrrrrrrreyprrrrerrryrrrerrirrirrrrrid
0111000M VN RA RBorl

OP=70, 71 ASEQ

Description: If the SRCA operand is equal to the SRCB operand, instruction
. execution continues; otherwise, a trap with the specified vector
number occurs.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and
63 is specified.

18-16 INSTRUCTION SET

ASGE ASGE
Assert Greater Than or Equal To
Operation: IF SRCA > SRCB THEN Continue
ELSE Trap (VN)
Assembler
Syntax: ASGEvn,ra, b
or
ASGE vn, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
rrrrrroeoyprrrerrrruooyreryrroeriryrervoerirird
0101110M VN RA RBorl
OP=5C, sD ASGE
Description: If the value of the SRCA operand is greater than or equal to the value

of the SRCB operand, instruction execution continues; otherwise, a
trap with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and
63 is specified.

INSTRUCTION SET 18-17

ASGEU ASGEU
Assert Greater Than or Equal To, Unsigned

Operation: IF SRCA > SRCB (unsigned) THEN Continue

ELSE Trap (VN)
Assembler
Syntax: ASGEUvn,ra, b
or

ASGEU vn, ra, const8
Status: Not affected

Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: 1 (Zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
rrrrrrreryrerrr vy rrrrrrrrrrrrrrd
0101111M VN RA RBorl
OP =5E, 5F ASGEU

Description: If the value of the SRCA operand is greater than or equal to the value
of the SRCB operand, instruction execution continues; otherwise, a
trap with the specified vector number occurs. For the comparison,
both operands are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0
and 63 is specified.

18-18 INSTRUCTION SET

ASGT ASGT
Assert Greater Than
Operation: IF SRCA>SRCB THEN Continue
ELSE Trap (VN)
Assembler
Syntax: ASGTvn,ra, b
or
ASGT vn, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
: M =1: | (Zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
rrrrrrrprrrerrrreprrrrrerferrrrri
0101100M VN RA RBorl
OP =58, 59 ASGT
Description: If the value of the SRCA operand is greater than the value of the

SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and
63 is specified.

INSTRUCTION SET 18-19

ASGTU

Operation: IF SRCA>SRCB (unsigned) THEN Continue

Assert Greater Than, Unsigned

ELSE Trap (VN)

Assembler

Syntax: ASGTUvn, ra, b

or
ASGTU vn, ra, const8
Status: Not affected

Operands: SRCA

Content of register RA

ASGTU

SRCB M=0: Content of register RB
M=1: 1 (Zero-extended to 32 bits)
VN Trap vector number
31 3 15 7 0
TT T T T T T [TTTTTTT [T T TTT T T[T T T I Tl
0101101M VN RA RBorl
OP=5A, 5B ASGTU

Description: [f the value of the SRCA operand is greater than the value of the

oA

SRCB operand, insiruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison, both

operands are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and
63 is specified.

18-20 INSTRUCTION SET

ASLE

Assert Less Than or Equal To

Operation: |F SRCA<SRCB THEN Continue

ELSE Trap (VN)

Assembler

Syntax: ASLEvn,ra, rb

or

ASLE vn, ra, const8

Status: Not affected
Operands: SRCA

Content of register RA

ASLE

SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
VN Trap vector number
31 23 15 0
rrrrrr I | | B
0101010M VN RA RBorl
OP=54, 55 ASLE

Description: [f the value of the SRCA operand is less than or equal to the value of
the SRCB operand, instruction execution continues; otherwise, a trap

with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and

63 is specified.

INSTRUCTION SET 18-21

ASLEU ASLEU
Assert Less Than or Equal To, Unsigned
Operation: IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
Assembler
Syntax: ASLEUvn,ra, b
or
ASLEU vn, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1: | (Zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
FrTrriuril rTT1TTTrTriprrrrrnrld Frrrrri
010101 1M VN RA RBorl
OP=56, 57 ASLEU
Description: If the value of the SRCA operand is less than or equal to the value of

the SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison, both
operands are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and
63 is specified.

18-22 |INSTRUCTION SET

ASLT ASLT
Assert Less Than
Operation: |IF SRCA <SRCB THEN Continue
ELSE Trap(VN)
Assembler
Syntax: ASLTvn,ra, b
or
ASLT vn, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
rTrrr1irryrirrrrrrirTrrrrTT T rrTT T rTd
0101000M VN RA RBorl
OP =50, 51 ASLT
Description: If the value of the SRCA operand is less than the value of the SRCB

operand, instruction execution continues; otherwise, a trap with the

specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and

63 is specified.

INSTRUCTION SET

18-23

ASLTU ASLTU
Assert Less Than, Unsigned
Operation: IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
Assembler
Syntax: ASLTUvn,ra, b
or
ASLTU vn, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: 1 (Zero-extended to 32 bits)
VN Trap vector number
31 23 15 7 0
rrrrrreyrrrererrrprerrrrrprirerrl
0101001M VN RA RBorl
OP=52, 53 ASLTU
Description: If the value of the SRCA operand is less than the value of the SRCB

operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs. For the comparison, both operands
are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and
63 is specified.

18-24 INSTRUCTION SET

ASNEQ ASNEQ
Assert Not Equal To
Operation: IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)
Assembler
Syntax: ASNEQuvn, ra, rb
or
ASNEQ vn, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
VN Trap vector number
31 23 15 0
rrrrrtrryrtrvrrrrl F'rTrrrnl FrrTnl

0111001M

VN

RA

RBorl

OP=72,73

ASNEQ

Description: If the SRCA operand is not equal to the SRCB operand, instruction
execution continues; otherwise, a trap with the specified vector

number occurs

For programs in the User mode, a Protection Violation trap
occurs—instead of the assert trap—if a vector number between 0 and

63 is specified.

INSTRUCTION SET

18-25

CALL CALL
Call Subroutine
Operation: DEST«PC//00+8
PC « TARGET
Execute delay instruction
Assembler
Syntax: CALL ra, target
Status: Not affected
Operands: TARGET A=0:117...110//19...12 (sign-extended to 30 bits) + PC
A=1:117..110//19...12 (zero-extended to 30 bits)
DEST Register RA
31 23 15 7
| B I B I TT T T T 11 LB I B I | | I N B |
1010100A n7..1 RA 19...12
OP =A8, A9 0 CALL
Description: The address of the second following instruction is placed into the

DEST location and a non-sequential instruction fetch occurs to the
instruction address given by the TARGET operand. The instruction
following the CALL is executed before the non-sequential fetch
occurs.

18-26 INSTRUCTION SET

CALLI CALLI
Call Subroutine, Indirect
Operation: DEST«PC//00+8
PC « SRCB
Execute delay instruction
Assembler
Syntax: CALLlra, rb
Status: Not affected
Operands: SRCB Content of register RB
DEST Register RA
31 23 15 7 0
TT T T T T T [T T T T T T T T T T T i T T T T T T 1T
11001000 Reserved RA RB
OP=C8 CALLI
Description: The address of the second following instruction is placed into the

DEST location and a non-sequential instruction fetch occurs to the
instruction address given by the SRCB operand. The instruction
following the CALLI is executed before the non-sequential fetch
occurs.

INSTRUCTION SET 18-27

CLASS CLASS
Classify Floating-Point Operand
Operation: DEST « CLASS(SRCA)
Assembler
Syntax: CLASSrc, ra, FS
Status: None
Operands: SRCA Content of register RA (single-precision floating-point)
or
Content of register RA and the twin of register RA
(double-precision floating-point)
DEST Register RC
Control: FS Format of source operand SRCA

00 Reserved for future use
01 Single-precision floating-point
10 Double-precision floating-point
11 Reserved for future use

31 23 15 7 0

rrrrrrrprrerrrrrprrrr T T T TTTTI
11100110 RC RA Reserved FS
OP=E6 CLASS
Description: A 32-bit classification code for operand SRCA is placed into the

31

DEST location. Operand SRCA is a single- or double-precision
operand, as specified by FS. The classification code has the following
format:

7 0

rrrrrrrrrrrerrirrrirl P
0

[2Xe]

Bits 31-6: Reserved (forced to 0).

Bit 5: Operand Sign (OS). The OS bit is 1 for a negative operand
(including negative zero) and O for a non-negative operand.

18-28 INSTRUCTION SET

CLASS

CLASS

Bits 4-0: Exponent-Fraction Class (EFC). This field classifies the
biased exponent and fraction fields of the source operand as follows:

EFC Biased Exp (bexp) Fraction (frac) Comments
00000 0 0 zero

00001 unused
00010 0 O<frac<.111...1 denormalized
00011 0 A1 denormalized
00100 1 0

00101 unused
00110 1 O<frac<.111..1
00111 1 A11 .1

01000 1 <bexp <Max 0

01001 unused
01010 1 <bexp < Max O<frac<.111...1

01011 1 <bexp < Max A1

01100 Max 0

01101 unused
01110 Max O<frac<.111...1

01111 Max A1t

10000 Max +1 0 infinity

10001 unused
10010 Max +1, frac MSB=0 <>0 SNaN

10011 Max + 1, frac MSB=1 <>0 QNaN

Note: Max is the largest biased exponent used to represent a finite number in
a given format. Max is 254 for single-precision and 2,046 for

double-precision.

This instruction is not supported directly in processor hardware. In the current
implementation, this instruction causes a CLASS trap. When the trap occurs,
the IPA and IPC registers are set to reference SRCA and DEST, and the IPB

Register is set with the value of the FS field.

INSTRUCTIONSET 18-29

CcLz CLz
Count Leading Zeros
Operation: DEST « count of number of leading zeros in SRCB or |
Assembler
Syntax: ClZrc, b
or
CLZ rc, const8
Status: Not affected
Operands: SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrétrrrryrerroerryprereererrrprrrered
000010O0M RC Reserved RBorl
OP=08,09 cLz
Description: A count of the number of zero-bits to the first one-bit in the SRCB

operand is placed into the DEST location. If the most significant bit of
the SRCB operand is 1, the resulting count is zero. If the SRCB
operand is zero, the resulting count is 32.

18-30 INSTRUCTION SET

CONST CONST

Constant

Operation: DEST e« 0I16
Assembler

Syntax: CONST ra, const16

Status: Not affected
Operands: 0116 115... 8//17 ...10 (Zero-extended to 32 bits)

DEST Register RA
31 23 15 7 0
FTTTTTTTTTTTOTITITOT TTTTTTTTTTTTTI
000000 11 115...18 RA 17...10
OP=03 CONST

Description: The 0i16 operand is placed into the DEST location.

Note: To improve code readability, some assemblers implement
CONST to take a 32-bit argument (rather than const16). The lower
half of the argument is constructed by the CONST.

INSTRUCTIONSET 18-31

CONSTH CONSTH
Constant, High
Operation: Replace high-order half-word of SRCA by 116
Assembler
Syntax: CONSTH ra, const16
Status: Not affected
Operands: SRCA Content of register RA
116 115...18//17...10
DEST Register RA
31 23 15 7 0
rrrrrrrprrrerrrryrrrrrrrprrrrrord
00000010 15...18 RA 17...10
OP=02 CONSTH
Description: The low-order half-word of the SRCA operand is appended to the 116

operand and the result is placed into the DEST operand. Note that
the destination register for this instruction is the same as the source
register.

Note: To improve code readability, some assemblers implement
CONSTH to take a 32-bit argument (rather than const16). The upper
half of the argument is constructed by the CONSTH.

18-32 INSTRUCTION SET

CONSTN CONSTN
Constant, Negative

Operation: DEST « 1116

Assembler
Syntax: CONSTN ra, const16

Status: Not affected

Operands: 1116 115...18//17 ... 10 (ones-extended to 32 bits)
DEST Register RA
31 23 15 7 0
rrrerrrieryprrrrrreryrrTtT T i T e T T TiTTrTd
000000 01 1s...18 RA 17...10
OP=01 CONSTN

Description: The 1116 operand is placed into the DEST location.

INSTRUCTIONSET 18-33

CONVERT

CONVERT
Convert Data Format

Operation: DEST « SRCA, with format modified per Ul, RND, FD, FS
Assembler
Syntax: CONVERT rc, ra, Ul, RND, FD, FS
Status: fpX, fpU, fpV, fpR, fpN
Operands: SRCA Content of register RA (single-precision floating-point)
or
Content of register RA and the twin of register RA
{double-precision floating-point)
DEST Content of register RC (single-precision floating-point)
or
Content of register RC and the twin of register RA
(double-precision floating-point)
Control: Ul 0=signed integer
1 =unsigned integer
RND Round mode
000 Round to nearest
001 Round to minus infinity
010 Round to plus infinity
011 Round to zero
100 Round using floating-point round mode (FRM)
101-111 Reserved
FS,FD Format of source operand, format of destination
operand
00 Integer
01 Single-precision floating-point
10 Double-precision floating-point
1 Reserved
31 23 15 7 0
rrrrrrr]yprrirTrtrryrrrirri FTTTTTT
11100100 RC RA Ul Ao | PO Fs
OP=E4 CONVERT
Description: The SRCA operand with format FS is converted to format FD and

rounded according to RND, then placed into the DEST location. If the
source or destination operand is an integer, it is a signed or unsigned
value according to the value of Ul.

Note: Converting from format to like format is not supported and will
produce unpredictable results.

18-34 INSTRUCTION SET

CONVERT

CONVERT

This instruction is not supported directly in processor hardware. In the
current implementation this instruction causes a CONVERT trap.
When the trap occurs, the IPA and IPC registers are set to reference
SRCA and DEST, and the IPB Register is set with the value of the
UI//RND//FD//FS field. If the Ul bit is 1, the contents of the IPB
Register reflect the value of this field after Stack-Pointer addition. The
Stack Pointer must be subtracted from the contents of the IPB
Register to recover the original value of this field.

INSTRUCTION SET 18-35

CPBYTE CPBYTE
Compare Bytes
Operation: |IF (SRCA.BYTEQO=SRCB.BYTEQ) OR
(SRCA.BYTE1=SRCB.BYTE1) OR
(SRCA.BYTE2=SRCB.BYTE2) OR
(SRCA.BYTE3=SRCB.BYTE3) THEN
DEST « TRUE ELSE DEST « FALSE
Assembler
Syntax: CPBYTErc,ra, b
or
CPBYTE r, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrrrrrrrrereryrrrtrrrryrrreird
0010111M RC RA RBorl
OP= 2E, 2F CPBYTE
Description: Each byte of the SRCA operand is compared to the corresponding

byte of the SRCB operand. If any corresponding bytes are equal, a
Boolean TRUE is placed into the DEST location; otherwise, a
Boolean FALSE is placed into the DEST location.

18-36 INSTRUCTION SET

CPEQ CPEQ
Compare Equal To
Operation: IF SRCA=SRCB THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: CPEQrc,ra, b
or
CPEQ rc, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
Frrrini Frtrrrrrprrirrid Frrrind
0110000M RC RA RBorl
OP =60, 61 CPEQ
Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE

is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location.

INSTRUCTIONSET 18-37

CPGE

Operation:

Compare Greater Than or Equal To

ELSE DEST « FALSE

Assembler
Syntax: CPGE rc, ra, b

or

CPGE rc, ra, const8
Status: Not affected

IF SRCA > SRCB THEN DEST « TRUE

CPGE

Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7
LINNE N N N N N N R N N N N O N N D L O
0100110M RC RA RBorl
OP=4C, 4D CPGE
Description: If the value of the SRCA operand is greater than or equal to the value

of the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location.

18-38 INSTRUCTION SET

CPGEU

CPGEU
Compare Greater Than or Equal To, Unsigned

Operation: IF SRCA > SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: CPGEUrc, ra, b
or
CPGEU rc, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
| I I T N N N N N N N N D O O N O N A |
0100111M RC RA RBor|
OP=4E, 4F CPGEU
Description: If the value of the SRCA operand is greater than or equal to the value

of the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location. For the comparison, both operands are treated as unsigned
integers.

INSTRUCTION SET 18-39

CPGT CPGT
Compare Greater Than

Operation: |IF SRCA > SRCB THEN DEST « TRUE
ELSE DEST « FALSE

Assembler
Syntax: CPGTrc, ra, b
or
CPGT rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M =0: Content of register RB

M=1: | (Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
rrrrrrryprrerrrrryprrrrerryprrrrrrid
0100100M RC RA RBorl

OP=48, 49 CPGT

Description: If the value of the SRCA operand is greater than the value of the
SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

18-40 INSTRUCTION SET

CPGTU CPGTU
Compare Greater Than, Unsigned
Operation: |F SRCA>SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: CPGTUrc, ra, b
or
CPGTU rc, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
TP rril rrrrrrryprrrrrr e rrTirTord
0100101M RC RA RBorl
OP=4A, 4B CPGTU
Description: If the value of the SRCA operand is greater than the value of the

SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, both operands are treated as unsigned integers.

INSTRUCTIONSET 18-41

CPLE

Operation:

Assembler
Syntax:

CPLE
Compare Less Than or Equal To

IF SRCA < SRCB THEN DEST « TRUE
ELSE DEST « FALSE

CPLErc, ra, b
or
CPLE rc, ra, const8

Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrreyrerrrerrrprrrrrrrprrrrre
0100010M RC RA RBorl
OP=44, 45 CPLE
Description: If the value of the SRCA operand is less than or equal to the value of

the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location.

18-42 INSTRUCTION SET

CPLEU CPLEU
Compare Less Than or Equal To, Unsigned
Operation: IF SRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: CPLEUrc, ra, b
or
CPLEU rc, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
T irnri T irrPrrrrirrd P T Tl
0100011M RC RA RBorl
OP =46, 47 CPLEU
Description: If the value of the SRCA operand is less than or equal to the value of

the SRCB operand, a Boolean TRUE is placed into the DEST
location; otherwise, a Boolean FALSE is placed into the DEST
location. For the comparison, both operands are treated as unsigned
integers.

INSTRUCTIONSET 18-43

CPLT CPLT
Compare Less Than

Operation: IF SRCA <SRCB THEN DEST « TRUE
ELSE DEST « FALSE

Assembler
Syntax: CPLTrc, ra, b
or
CPLT rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1:1 (Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
TT T T T T T[T TT T T T T [T T T T T T T T T T T 111
0100000M RC RA RBorl

OP =40, 41 CPLT

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

18-44 INSTRUCTION SET

CPLTU CPLTU
Compare Less Than, Unsigned
Operation: IF SRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: CPLTUrc, ra, b
or
CPLTU rc, ra, const8
Status: Noit affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
TT T T T 11 TT T T T T T [T T T T T T T [T T T 1T 1T
010000 1M RC RA RBorl
OP=42, 43 CPLTU
Description: If the value of the SRCA operand is less than the value of the SRCB

operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For
the comparison, both operands are treated as unsigned integers.

INSTRUCTION SET 18-45

CPNEQ CPNEQ
Compare Not Equai To

Operation: |F SRCA<>SRCB THEN DEST « TRUE
ELSE DEST « FALSE

Assembler
Syntax: CPNEQrc, ra, rb
or
CPNEQ rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1:1(Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
TT T T T T T [T T T T T T T[T T T T T T T T T T 1711
011000 1M RC RA RBorl

OP=62, 63 CPNEQ

Description: If the SRCA operand is not equal to the SRCB operand, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean FALSE
is placed into the DEST location.

18-46 INSTRUCTION SET

DADD DADD
Floating-Point Add, Double-Precision
Operation: DEST (double-precision) « SRCA (double-precision) +
SRCB (double-precision)
Assembler
Syntax: DADD rc, ra, rb
Status: fpX, fpU, fpV, fpR, fpN
Operands: SRCA Content of register RA and the twin of register RA
SRCB Content of register RB and the twin of register RB
DEST Register RC and the twin of register RC
31 23 15 7 0
Frrrrr1rrrryrrrrirrTryTririrrrrrTyi rirTrTrTTd
11110001 RC RA RB
OP=F1 DADD
Description: The SRCA operand is added to the SRCB operand; the result is

rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the addition are double-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DADD trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTIONSET 18-47

DDIV DDIV
Floating-Point Divide, Double-Precision
Operation: DEST (double-precision) « SRCA (double-precision) /
SRCB (double-precision)
Assembler
Syntax: DDIVrc, ra, b
Status: fpD, fpX, fpU, fpV, fpR, fpN
Cperanus: SRCA Content of register RA and the twin of register RA
SRCB Content of register RB and the twin of register RB
DEST Register RC and the twin of register RC
31 23 15 7 0
rrrrrrrveyrryrrrryprrrrrrryrririirnrd
11110111 RC RA RB
OP=F7 DDIV
Description: The SRCA operand is divided by the SRCB operand; the result is

rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the division are double-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DDIV trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

18-48 INSTRUCTION SET

DEQ DEQ
Floating-Point Equal To, Double-Precision
Operation: IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: DEQrc, ra, b
Status: fpl
Operands: SRCA Content of register RA and the twin of register RA
SRCB Content of register RB and the twin of register RB
DEST Register RC
31 23 15 7 0
TT1T1r1r1rrr|yrrr1rrrrriprroerirr ey rirrerhid
11101011 RC RA RB
OP=EB DEQ
Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE

is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location. SRCA and SRCB are double-precision
floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DEQ trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTIONSET 18-49

DGE DGE
Floating-Point Greater Than Or Equal To, Double-Precision
Operation: |IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: DGErc, ra, b
Status: fol
Operands: SRCA Content of register RA and the twin of register RA
SRCB Content of register RB and the twin of register RB
DEST Register RC
31 23 15 7 0
rrrrrrrprrerrrrryprrrrrrTr T T T T TTrTd
11101111 RC RA RB
OP=EF DGE
Description: If the SRCA operand is greater than or equal to the SRCB operand, a

Boolean TRUE is placed into the DEST location; otherwise, a
Boolean FALSE is placed into the DEST location. SRCA and SRCB
are double-precision floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DGE trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

18-50 INSTRUCTION SET

DGT DGT
Floating-Point Greater Than, Double-Precision
Operation: IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: DGTrc,ra, rb
Status: fpl
Operands: SRCA Content of register RA and the twin of register RA
SRCB Content of register RB and the twin of register RB
DEST Register RC
31 23 15 7 0
rrrr1r1rrryrrr1rrrrrryprrrrrrri rTrTrTrTird
11101101 RC RA RB
OP=ED DGT
Description: If the SRCA operand is greater than the SRCB operand, a Boolean

TRUE is placed into the DEST location; otherwise, a Boolean FALSE
is placed into the DEST location. SRCA and SRCB are
double-precision floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DGT trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTIONSET 18-51

DIv DIV
Divide Step
Operation: Perform one-bit step of a divide operation (unsigned)
Assembler
Syntax: DIVrc, ra, b
or
DIV rc, ra, const 8
Status: V. N.Z. C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrreryprerrrrryrrrrrrrypyrrrrrTTd
0110101M RC RA RBorl
OP=8A, 6B DIV
Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCB

operand is subtracted from the SRCA operand. If the DF bit is 0, the
SRCB operand is added to the SRCA operand.

The carry-out of the add or subtract operation is exclusive-ORed with
the value of the DF bit and the value of the Negative (N) bit of the
ALU Status Register; the resulting value is complemented and placed
into the DF bit. The sign of the result of the add or subtract is placed
into the N bit.

The content of the Q Register is appended to the result of the add or
subtract, and the resulting 64-bit value is shifted left by one bit
position; the value computed for the DF bit above fills the vacated bit
position. The high-order 32 bits of the 64-bit shifted value are placed
into the DEST location. The low-order 32 bits of the shifted value are
placed into the Q Register.

Examples of integer divide operations appear in Section 2.6.3.

18-52 INSTRUCTION SET

Divo DIVO
Divide Initialize
Operation: Initialize for a sequence of divide steps (unsigned)
Assembler
Syntax: DIVOrc, rb
or
DIVO rc, const8
Status: V,N,Z,C
Operands: SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrtrrrréyprrrrrerreparsrerirrrrprirrrirei
0110100M RC Reserved RBor|
OP =68, 69 DIVO

Description:

The Divide Flag (DF) bit of the ALU Status Register is set. The sign of
the SRCB operand is placed into the Negative bit of the ALU Status
Register.

The content of the Q register is appended to the SRCB operand, and
the resulting 64-bit value is shifted left by one bit position; a O fills the
vacated bit position. The high-order 32 bits of the 64-bit shifted value
are placed into the DEST location. The low-order 32 bits of the shifted
value are placed into the Q Register.

Examples of integer divide operations appear in Section 2.6.3.

INSTRUCTIONSET 18-53

DIVIDE DIVIDE
integer Divide, Signed
Operation: DEST « (Q//SRCA)/ SRCB (signed)
Q « Remainder
Assembler
Syntax: DIVIDE rc, ra, rb
Status: Not affected
Cperands: Q Content of the Q Register
SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
Frr1rrrrryrrrrrrryrrrrrrryrrTrT T TTTd
11100001 RC RA RB
OP=E1 DIVIDE

Description:

The SRCA operand is appended to the content of the Q register. The
resulting 64-bit value is divided by the SRCB operand and the result
is placed into the DEST location. This operation treats the operands
as signed two’s-complement integers and produces a signed
two’s-complement result.

The remainder is placed into the Q register. A non-zero remainder
always has the same sign as the dividend.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DIVIDE trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

18-54 INSTRUCTION SET

DIVIDU DIVIDU
Integer Divide, Unsigned
Operation: DEST « (Q//SRCA)/SRCB (unsigned)
Q « Remainder
Assembler
Syntax: DIVIDU rc, ra, rb
Status: Not affected
Operands: Q Content of the Q Register
SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrrrrrryprrerrrrryrrvr e i rrrTirTT
11100011 RC RA RB
OP=E3 DIVIDU

Description:

The SRCA operand is appended to the content of the Q Register. The
resulting 64-bit value is divided by the SRCB operand and the result
is placed into the DEST location. This operation treats the operands
as unsigned integers, and produces an unsigned result.

The remainder is placed into the Q Register. The remainder is also

unsigned.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DIVIDU trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to

reference SRCA, SRCB, and DEST.

INSTRUCTION SET 18-55

DIVL DIVL
Divide Last Step
Operation: Complete a sequence of divide steps (unsigned)
Assembler
Syntax: DIVLrc, ra, rb
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
TT T T T T T [T T T T T T T [T T T T T T T[T T T T 1711
0110110M RC RA RBorli
OP=6C, 6D DIVL
Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCB

operand is subtracted from the SRCA operand. If the DF bit is 0,
the SRCB operand is added to the SRCA operand. The result is
placed into the DEST location.

The carry-out of the add or subtract operation is exclusive-ORed with
the value of the DF bit and the value of the Negative (N) bit of the
ALU Status Register; the resulting value is complemented and placed
into the DF bit. The sign of the result of the add or subtract is placed
into the N bit.

The content of the Q register is shifted left by one bit position; the
value computed for the DF bit above fills the vacated bit position. The
shifted value is placed into the Q Register.

Examples of integer divide operations appear in Section 2.6.3.

18-56 INSTRUCTION SET.

DIVREM DIVREM
Divide Remainder
Operation: Generate remainder for divide operation (unsigned)
Assembler
Syntax: DIVREMrc, ra, b
or
DIVREM rc, ra, const8
Status: V,N,ZC
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
TT T T T T T[T T T T 1711 TTT T T T T[T T T T 11
0110111M RC RA RBorl
OP =6E, 6F DIVREM

Description:

If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCA
operand is placed into the DEST location.

If the DF bit is 0, the SRCB operand is added to the SRCA operand
and the result is placed into the DEST location.

Examples of integer divide operations appear in Section 2.6.3.

INSTRUCTION SET 18-57

DMUL DMUL
Floating-Point Multiply, Double-Precision
Operation: DEST (double-precision) « SRCA (double-precision) *
SRCB (double-precision)
Assembler
Syntax: DMUL rc, ra, b
Status: fpX, fpU, fpV, fpR, fpN
Operands: SACA Conient of register RA and the twin of register RA
SRCB Content of register RB and the twin of register RB
DEST Register RC
31 23 15 7 0
TTTTTTTTTTTTTTT T T T T T T T T T T T 7T T
11110101 RC RA RB
OP=F5 DMUL
Description: The SRCB operand is multiplied by the SRCA operand; the result is

rounded according to the FRM field of the Floating-Point Environment
Register and is placed into the DEST location. The operands and the
result of the multiplication are double-precision floating-point
numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DMUL trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

18-58

INSTRUCTION SET

DSUB DSuUB
Floating-Point Subtract, Double-Precision
Operation: DEST (double-precision) « SRCA (double-precision) —
SRCB (double-precision)
Assembler
Syntax: DSUBTrc, ra, rb
Status: fpX, fpU, fpV, fpR, fpN
Operands: SRCA Content of register RA and the twin of register RA
SRCB Content of register RB and the twin of register RB
DEST Register RC
31 23 15 7 0
FrTTTTTTTTTTTITTTITI NI T T T T LS
11110011 RC RA RB
OP=F3 DSUB
Description: The SRCB operand is subtracted from the SRCA operand; the result

is rounded according to the FRM field of the Floating-Point
Environment Register and is placed into the DEST location. The
operands and the result of the subtraction are double-precision
floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a DSUB trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTIONSET 18-59

EMULATE

EMULATE
Trap to Software Emulation Routine

Operation: Load IPA and IPB registers with operand register numbers
and Trap (VN)
Assembler
Syntax: EMULATE vn, ra, rb
Status: Not affected
Cperands: Absoiuie-regisier numbers for registers RA and RB
VN Trap vector number
31 23 15 7 0
rT1rrrirryrrrrrrryrrrrTrrTrTy rTrT I oTeTT
11010111 VN RA RB
OP =D7 EMULATE
Description: The IPA and IPB registers are set to the register numbers of registers

RA and RB, respectively. A trap with the specified vector number
occurs.

Note that the IPC register is also affected by this instruction, but its
value has no interpretation.

For programs in the User mode, a Protection Violation trap occurs—
instead of the EMULATE trap—if a vector number between 0 and 63
is specified. A Protection Violation trap also occurs if RA or RB

specifies a register protected by the Register Bank Protect Register.

18-80 INSTRUCTION SET

EXBYTE EXBYTE
Extract Byte
Operation: DEST « SRCB, with low-order byte replaced by byte in
SRCA selected by BP
Assembler
Syntax: EXBYTErc,ra, b
or
EXBYTE rc, ra, const8
Status: Noi affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
FITTTTT T TTTTTUToTd FrTrrrrryprrrrririd
0000101M RC RA RBorl
OP=0A, 0B EXBYTE

Description:

A byte in the SRCA operand is selected by the Byte Pointer (BP) field
of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected byte replaces the low-order byte
of the SRCB operand and the resulting word is placed into the DEST
location.

Note: The selection of bytes within words is specified in
Section 3.3.6.1.

INSTRUCTIONSET 18-61

EXHW EXHW

Extract Half-Word
Operation: DEST « SRCB, with low-order half-word replaced by half-word in
SRCA selected by BP
Assembler
Syntax: EXHWrc, ra, rb

or
EXHW rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrryrrrrrrryrerrrrrrprrrrirrd
0111110M RC RA RBorl
OP=7C, 7D EXHW

Description: A half-word in the SRCA operand is selected by the Byte Pointer (BP)
field of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected half-word replaces the
low-order half-word of the SRCB operand and the resulting word is
placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.3.6.1.

18-62 INSTRUCTION SET

EXHWS EXHWS
Extract Half-Word, Sign-Extended
Operation: DEST « half-word in SRCA selected by BP,
sign-extended to 32 bits
Assembler
Syntax: EXHWS rc, ra
Status: Not affected
Operands: SRCA Content of register RA
DEST Register RC
31 23 15 7 0
rrr1rrrro]yrroerrrryrrrrrreprerrrrird
01111110 RC RA Reserved
OP=7E EXHWS
Description: A half-word in the SRCA operand is selected by the Byte Pointer (BP)

field of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected half-word is sign-extended to 32
bits and the resulting word is placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.3.6.1.

INSTRUCTIONSET 18-63

EXTRACT EXTRACT
Extract Word, Bit-Aligned
Operation: DEST « high-order word of (SRCA // SRCB << FC)
Assembler
Syntax: EXTRACT rc, ra,rb
or
EXTRACT rc, ra, const8
Statue: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrrryrerorrrjprrrerrriryprrriirtrd
0111101M RC RA RBorl
OP=7A,7B EXTRACT
Description: The SRCB operand is appended to the SRCA operand and the

resulting 64-bit value is shifted left by the number of bit-positions
specified by the Funnel Shift Count (FC) field of the ALU Status
register. The high-order 32 bits of the 64-bit shifted value are placed
in the DEST location.

If the SRCB operand is the same as the SRCA operand, the
EXTRACT instruction performs a rotate operation.

18-64 INSTRUCTION SET

FADD FADD
Floating-Point Add, Single-Precision
Operation: DEST (single-precision) < SRCA (single-precision) +
SRCB (single-precision)
Assembler
Syntax: FADDrc,ra, rb
Status: fpX, fpU, fpV, fpR, fpN
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrirrrrryprrrrrertrprrrrirrprrrerrd
11110000 RC RA RB
OP=F0 FADD
Description: The SRCA operand is added to the SRCB operand; the result is

rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the addition are single-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an FADD trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTION SET 18-65

FDIV FDIV
Floating-Point Divide, Single-Precision
Operation: DEST (single-precision) <« SRCA (single-precision) /
SRCB (single-precision)
Assembler
Syntax: FDIVrc, ra, rb
Status: fpD, fpX, fpU, fpV, fpR, fpN
Operands: SHCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrrrrrryrrrrrerryprrrrrriy rTITTrTiT
11110110 RC RA RB
OP=F6 FDIV
Description: The SRCA operand is divided by the SRCB operand; the result is

rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the division are single-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an FDIV trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

18-66 ' INSTRUCTION SET

FDMUL FDMUL
Floating-Point Multiply, Single-to-Double Precision
Operation: DEST (double-precision) «~ SRCA (single-precision) *
SRCB (single-precision)

Assembler
Syntax: FDMULrc, ra, b

Status: fpR, fpN

Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrrrrreyrrrrrrerprereretrreriryrrirrrid
11111001 RC RA RB
OP=F9 FDMUL

Description: The SRCB operand is multiplied by the SRCA operand; the result is
placed into the DEST location. SRCA and SRCB are single-precision
floating-point numbers; the result is produced in double-precision
format. Because the product of two single-precision operands can
always be represented exactly as a double-precision number, the
FDMUL result does not depend on the FRM field of the Floating-Point
Environment Register.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an FDMUL trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTIONSET 18-67

FEQ FEQ
Floating-Point Equal To, Single-Precision
Operation: IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: FEQrc, ra, b
Status: foN
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
TTTTTTTTTTTTTTI T U T T T T T T T T T T Tad
11101010 RC RA RB
OP=EA FEQ
Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE

is placed into the DEST location; otherwise, a Boolean FALSE is

placed into the DEST location. SRCA and SRCB are single-precision

floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point

Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an FEQ trap.

When the trap occurs, the IPA, IPB, and IPC registers are set to

reference SRCA, SRCB, and DEST.

18-68 INSTRUCTION SET

FGE FGE
Floating-Point Greater Than Or Equal To, Single-Precision
Operation: IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: FGErc, ra, b
Status: fpN
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrrrrrr1yrrrrrvy rtrrrrrorypriianrTold
11101110 RC RA RB
OP=EE FGE
Description: If the SRCA operand is greater than or equal to the SRCB operand, a

Boolean TRUE is placed into the DEST location; otherwise, a

Boolean FALSE is placed into the DEST location. SRCA and SRCB

are single-precision floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point

_Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an FGE trap.

When the trap occurs, the IPA, IPB, and IPC registers are set to

reference SRCA, SRCB, and DEST.

INSTRUCTION SET 18-69

FGT FGT
Floating-Point Greater Than, Single-Precision
Operation: IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
Assembler
Syntax: FGTrc,ra, b
Staius: ipiN
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
FTTTTTT TTTTTTT FrTTTTTTTTTTTTTI
11101100 RC RA
OP=EC FGT
Description: If the SRCA operand is greater than the SRCB operand, a Boolean

TRUE is placed into the DEST location; otherwise, a Boolean FALSE

is placed into the DEST location. SRCA and SRCB are
single-precision floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point

Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an FGT trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to

reference SRCA, SRCB, and DEST.

18-70 INSTRUCTION SET

FMUL FMUL
Floating-Point Multiply, Single-Precision
Operation: DEST (single-precision) < SRCA (single-precision) *
SRCB (single-precision)
Assembler
Syntax: FMULrc, ra, rb
Status: fpX, fpU, fpV, fpR, fpN
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
FTT T T T T T7TT T T T T T VT T T T T T T T T T oo Td
11110100 RC RA RB
OP=F4 FMUL
Description: The SRCA operand is multiplied by the SRCB operand; the result is

rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the multiplication are single-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an FMUL trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTIONSET 18-71

FSUB FSUB
Floating-Point Subtract, Single-Precision
Operation: DEST (single-precision) « SRCA (single-precision) —
SRCB (single-precision)
Assembler
Syntax: FSUBrc, ra, b
Status: fpX, fpU, fpV, fpR, fpN
Operands: SRCA Coitenit of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrrrr11ryrrrrrrrreyrrevtrntrryprririird
11110010 RC RA RB
OP=F2 FSuUB
Description: The SRCB operand is subtracted from the SRCA operand; the result

is rounded according to the FRM field of the Floating-Point
Environment Register and placed into the DEST location. The
operands and the result of the subtraction are single-precision
floating-point numbers.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an FSUB trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

18-72 INSTRUCTION SET

HALT HALT
Enter Halt Mode

Operation: Enter Halt mode on next cycle

Assembler
Syntax: HALT

Status: Not affected
Operands: Not applicable

31 23 15 7 0
rrrirrrryprrrrrirerprrreier i irririd

10001001 Reserved Reserved Reserved

OoP=89 HALT

Description: The processor is placed into the Halt mode in the next cycle, or in the
cycle after an external data access is completed if an access is in
progress.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur unless the Protection Violation trap
was disabled during reset (see Section 17.6.5).

If the instruction following a Halt instruction has an exception
(e.g., TLB Miss), the trap associated with this exception is taken
before the processor enters the Halt mode.

INSTRUCTION SET 18-73

INBYTE INBYTE
Insert Byte

Operation: DEST «SRCA, with byte selected by BP
replaced by low-order byte of SRCB

Assembler
Syntax: INBYTE rc, ra, rb
or
INBYTE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1: 1 (Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
rT1r1r1r17r1r7yrrrrrrryrrrrr T Ty T rrTrTTTd
00001 10M RC RA RBorl

OP =0C, 0D INBYTE

Description: A byte in the SRCA operand is selected by the Byte Pointer (BP) field
of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected byte is replaced by the
low-order byte of the SRCB operand and the resulting word is placed
into the DEST location.

Note: The selection of bytes within words is specified in
Section 3.3.6.1.

18-74 INSTRUCTION SET

INHW INHW

Insert Half-Word
Operation: DEST « SRCA, with half-word selected by BP replaced by
low-order half-word of SRCB
Assembler
Syntax: INHW rc, ra, b

or
INHW rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1:1(Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
rrrrrrryrirrrrrryrrrrirr e rr T rreT
0111100M RC RA RBorl

OP=78,79 INHW

Description: A half-word in the SRCA operand is selected by the Byte Pointer (BP)
field of the ALU Status Register and the Byte Order (BO) bit of the
Configuration Register. The selected half-word is replaced by the
low-order half-word of the SRCB operand and the resulting word is
placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.3.6.1.

INSTRUCTIONSET 18-75

INV

INV
Invalidate

Operation: None
Assembler

Syntax: INV

Status: Not affected

Operands: Not applicable
31 23 15 7 0
IFrTTTTTTTTTTTTT T T T T T T T T T T T T TTTIO
10011111 Reserved Reserved Reserved

OP=9F INV

Description: In 29K Family processors with instruction caches, this instruction

causes all cache valid bits to be reset. In the Am29200 micro-
processor, this instruction performs no operation, except it is a
privileged instruction. Attempted execution by a User-mode program
causes a Protection Violation trap to occur.

18-76 INSTRUCTION SET

IRET IRET
Interrupt Return
Operation: Perform an interrupt retum sequence
Assembler
Syntax: IRET
Status: Not affected
Operands: Not applicable
31 23 15 7 0
TrT T T T T T [T T T T T T T J T T T T T T T[T T T 1T 1T 11
10001000 Reserved Reserved Reserved
OP=88 IRET
Description: This instruction performs the interrupt return sequence described in

Section 16.3.4.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a

Protection Violation trap to occur.

INSTRUCTION SET 18-77

IRETINV IRETINV
Interrupt Return and Invalidate

Operation: Perform an interrupt return sequence

Assembler
Syntax: IRETINV

Status: Not affected
Operands: Not applicable

31 23 15 7 0
trrrrvreprrerrrrryprrrrrrryrrirrri

10001100 Reserved Reserved Reserved

OP=8C IRETINV

Description: This instruction performs the interrupt return sequence described in
Section 16.3.4. In 29K Family processors with an instruction cache,
this instruction also resets the valid bits in the cache. In the
Am29200 microprocessor, this instruction is identical to the IRET
instruction.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a
Protection Violation trap to occur.

18-78 INSTRUCTION SET

JMP JMP
Jump

Operation: PC« TARGET
Execute delay instruction

Assembler
Syntax: JMP target
Status: Not affected

Operands: TARGET A=0:117...110//19...12 (sign-extended to 30 bits) + PC
A=1:117..110/19...12 (zero-extended to 30 bits)

31 23 15 7 0
rtrrrrerrrrrrrvryrrerrrvrrrprrrrrrd

1010000A 17...110 Reserved 19...12

OP=A0, Al JMP

Description: A non-sequential instruction fetch occurs to the instruction address
given by the TARGET operand. The instruction following the JMP is
executed before the non-sequential fetch occurs.

INSTRUCTION SET 18-79

JMPF JMPF
Jump False
Operation: IF SRCA=FALSE THEN PC « TARGET
Execute delay instruction
Assembler
Syntax: JMPF ra, target
Status: Not affected
Operands: SRCA Conient of regisier RA
TARGET A=0:117...110//19... 12 (sign-extended to 30 bits) + PC
A=1:117...110//19...12 (zero-extended to 30 bits)
31 23 15 7 0
rrrrrrrprrrerereypyrrrrrrTryrrrrTrTTd
1010010A 17..110 RA 19...12
OP=A4, A5 JMPF

Description:

If SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the TARGET operand.

If SRCA is a Boolean TRUE, this instruction has no effect.

The instruction following the JMPF is executed regardiess of the
value of SRCA.

18-80 INSTRUCTION SET

JMPFDEC JMPFDEC
Jump False and Decrement

Operation: |IF SRCA=FALSE THEN
SRCA <~ SRCA-1
PC « TARGET
ELSE
SRCA « SRCA-1
Execute delay instruction

Assembler
Syntax: JMPFDEC ra, target

Status: Not affected
Operands: SRCA Content of register RA

TARGET A=0:117...110//19...12 (sign-extended to 30 bits) + PC
A=1:117..110//19...12 (zero-extended to 30 bits)

31 23 15 7 0
rrrrrrrypyrrrrrrryprtrererprrrrrrrd

1011010A n7z..1o RA 19...12

OP=B4, Bs JMPFDEC

Description: If SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the TARGET operand.

If SRCA is a Boolean TRUE, this instruction has no effect on the
instruction-execution sequence.

The SRCA operand is decremented by one, regardless of whether or
not the non-sequential instruction fetch occurs. Note that a negative
number for the SRCA operand is a Boolean TRUE.

The instruction following the JMPFDEC is executed regardless of the
value of SRCA.

INSTRUCTIONSET 18-81

JMPFI JMPFI
Jump False Indirect
Operation: |F SRCA=FALSE THEN PC « SRCB
Execute delay instruction

Assembler
Syntax: JMPFlra, rb

Status: Not affected

Gperands: SRCA Conient of regisier RA
SRCB Content of register RB
31 23 15 7 0
rrrrrrryrrevvrrryprrrrrrryprierirri
11000100 Reserved RA RB
OP=C4 JMPFI

Description: If the SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the SRCB operand.

If SRCA is a Boolean TRUE, this instruction has no effect.

The instruction following the JMPFI is executed regardless of the
value of SRCA.

18-82 INSTRUCTION SET

JMPI JMPI
Jump Indirect
Operation: PC« SRCB
Execute delay instruction

Assembler
Syntax: JMPI b

Status: Not affected

Operands: SRCB Content of register RB
31 23 15 7 0
rrrrrrrjprreerrerveyrirvrorrprrrryrr
11000000 Reserved Reserved RB

OP=Co JMPI

Description: A non-sequential instruction fetch occurs to the instruction address
given by the SRCB operand. The instruction following the JMPI is
executed before the non-sequential fetch occurs.

INSTRUCTIONSET 18-83

JMPT

Operation:

Assembler
Syntax:

Status:

lo oy Y. Iy
vpcianus.

JMPT
Jump True

IF SRCA=TRUE THEN PC « TARGET
Execute delay instruction

JMPT ra, target
Not affected
SRCA

C
TARGET A
A

it Of Tegisier RA
0:117...110//19...12 (sign-extended to 30 bits) + PC
1: 117...110//19...12 (zero-extended to 30 bits)

31 23 15 7 0
| I N N N U N O N N N T T N O T O O O O O O A O B
1010110A n7z..no RA 19...12
OP=AC, AD JMPT
Description: If SRCA is a Boolean TRUE, a non-sequential instruction fetch occurs

to the instruction address given by the TARGET operand.
If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPT is executed regardless of the
value of SRCA.

18-84 INSTRUCTION SET

JMPTI JMPTI
Jump True Indirect
Operation: IF SRCA=TRUE THEN PC « SRCB
Execute delay instruction
Assembler '
Syntax: JMPTlira, b
Status: Not affected
Operands: SRCA Content of register RA
SRCB Content of register RB
31 23 15 7 0
rrr1rrriyrrjprrrrvereryrirerrrrrtyprreririrTrd
11001100 Reserved RA RB
OP =CC JMPTI
Description: If the SRCA is a Boolean TRUE, a non-sequential instruction fetch

occurs to the instruction address given by the SRCB operand.
If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPTI is executed regardless of the
value of SRCA.

INSTRUCTION SET 18-85

LOAD LOAD
Load
Operation: DEST « EXTERNAL WORD [SRCB]
Assembler
Syntax: LOADO, cntl, ra, rb
or
LOAD 0, cntl, ra, const8
Status: Not affected
Operands: SRCB M =0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
DEST Register RA
31 23 15 7
I I O O B | TT T VT T T [T T T T T T T [T T T T T 11
0001011 MIO CNTL RA RBorl
OP=16,17 : LOAD
Res
Description: The extemal word addressed by the SRCB operand is placed into the

DEST location.

The CNTL field of the LOAD instruction affects the bus access as
described in Section 3.3.1.

18-86 INSTRUCTION SET

LOADL LOADL
Load and Lock
Operation: DEST « EXTERNAL WORD [SRCB]
Assembler
Syntax: LOADL 0, cntl, ra, rb
or
LOADL 0, cntl, ra, const8
Status: Not affected
Operands: SRCB M=0: Content of register RB
M=1: 1 (Zero-extended to 32 bits)
DEST Register RA
31 23 15 7 0
LI rtrTrrryryviery1rrvrir1p i r i rvibd
000001 1Mo CNTL RA RBorl
OP =06, 07 ' LOADL
Res

Description:

The extemal word addressed by the SRCB operand is placed into the
DEST location.

The CNTL field of the LOADL instruction affects the bus access as
described in Section 3.3.1.

In other 29K Family processors, this instruction is provided for the
implementation of interlock protocols. In the Am29200 micro-
processor, the LOADL instruction is identical to the LOAD instruction.

INSTRUCTION SET 18-87

LOADM LOADM
Load Muiltiple
Operation: DEST...DEST+COUNT « EXTERNAL WORD [SRCB]...
EXTERNAL WORD [SRCB + (COUNT * 4)]
Assembler
Syntax: LOADM O, cntl, ra, rb
or
LOADM 0, cntl, ra, const8
Status: Not affected
Operands: SRCB M =0: Content of register RB
M=1: 1 (Zero-extended to 32 bits)
DEST register RA
31 23 15 7 0
T T T T T 11 TT T T T T [T T T T T T T [T T T T T 1
001101 1MO CNTL RA RBorl
oP=36,37 ° LOADM
Res
Description: Extermnal words at consecutive word addresses beginning with the

word addressed by the SRCB operand, are placed into consecutive
registers beginning with the DEST location.

The total number of words accessed in the sequence is specified by
the Count Remaining (CR) field of the Channel Control Register
(which also appears in the Load/Store Count Remaining Register) at
the beginning of the bus access. The total number of words is the
value of the CR field plus one. The CNTL field of the LOADM
instruction affects the access as described in Section 3.3.1.

Note: The address and register-number sequences for the LOADM
instruction are specified in Section 3.3.4. Because this instruction
uses the Channel Address and Control Registers, it should not be
executed when the FZ bit is 1.

18-88 |INSTRUCTION SET

LOADSET LOADSET
Load and Set

Operation: DEST « EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] « h‘FFFFFFFF’

Assembler
Syntax: LOADSET 0, cntl, ra, rb
or
LOADSET 0, cntl, ra, const8

Status: Not affected

Operands: SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RA
31 23 15 7 0
T T T T T 11 TT T T T T [T T T T T T T[T T T T T 11
001001 1M|o CNTL RA RBorl|
OP =26, 27 ' LOADSET
Res

Description: The extemal word addressed by the SRCB operand is placed into the
DEST location. After the DEST location is altered, the exteral word
addressed by the SRCB operand is written, atomically, with a word
consisting of a 1 in every bit position.

The CNTL field of the LOADSET instruction affects the bus access as
described in Section 3.3.1.

INSTRUCTIONSET 18-89

MFSR MFSR
Move from Special Register
Operation: DEST « SPECIAL
Assembler
Syntax: MFSR rc, spid
Status: Not affected
Operands: SPECIAL Content of special-purpose register SA
DEST Register RC
31 23 15 7 0
rrrrrreyprrrrrrrprrirrrrryprrrrrnd
11000110 RC SA Reserved
OP=C6 MFSR
Description: The SPECIAL operand is placed into the DEST location.

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the
DEST location is not altered.

18-90 INSTRUCTION SET

MFTLB MFTLB
Move from Translation Look-Aside Buffer Register

Operation: None

Assembler
Syntax: MFTLBrc, ra

Status: Not affected

Operands: SRCA Content of register RA, bits 6 ... 0
DEST Register RC
31 23 15 7 0
rr1r1r1r1rryrrrrrTrTTrTT rTTr T T T T T T T T T T IO
10110110 RC RA Reserved
OP=B6 MFTLB

Description: In 29K Family processors with an MMU, this instruction reads TLB
entries. In the Am29200 microprocessor, this instruction performs no
operation except it is a privileged instruction. Attempted execution by
a User-mode program causes a Protection Violation trap to occur.

INSTRUCTIONSET 18-91

MTSR MTSR
Move to Special Register

Operation: SPDEST « SRCB

Assembler
Syntax: MTSR spid, rb
Status: Not affected unless the destination is the ALU Status Register

Operands: SRCB Content of register RB

SPDEST Special-purpose register SA
31 23 15 7 0
TT T T T T T J T T T T T T T [T T T T T T T T TTTTTI1

11001110

Reserved

SA

RB

OP=CE

MTSR

Description: The SRCB operand is placed into the SPECIAL location.

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the

SPDEST location is not altered.

18-92 INSTRUCTION SET

MTSRIM

MTSRIM
Move to Special Register Inmediate

Operation: SPDEST «0I16

Assembler
Syntax: MTSRIM spid, const16
Status: Not affected unless the destination is the ALU Status Register

Operands: 0l16 115... 18/17 ... 10 (zero-extended to 32 bits)

SPDEST Special-purpose register SA
31 23 15 7 0
TT T T T 11 T T T T T T T [T T T T 111 T T T T T 11
00000100 15..18 SA 17...10
OP=04 MTSRIM
Description: The 0116 operand is placed into the SPECIAL location.

For programs in the User mode, a Protection Violation trap occurs if
SA specifies a protected special-purpose register. If a trap occurs, the
SPDEST location is not altered.

INSTRUCTION SET 18-93

MTTLB MTTLB
Move to Translation Look-Aside Buffer Register

Operation: None

Assembler
Syntax: MTTLBra, b

Status: Not affected

Operands: SRCA Content of register RA, bits 6...0
SRCB Content of register RB
31 23 15 7 0
TT T T T T T J T T T T T T T J T T T T T T T T T 1T 71711
10111110 Reserved RA RB
OP=BE MTTLB

Description: In 29K Family processors with an MMU, this instruction modifies TLB
entries. In the Am29200 microprocessor, this instruction performs no
operation except it is a privileged instruction. Attempted execution by
a User-mode program causes a Protection Violation trap to occur.

18-94 INSTRUCTION SET

MUL MUL
Multiply Step
Operation: Perform one-bit step of a multiply operation
Assembler
Syntax: MUL rc, ra, b
or
MUL rc, ra, const 8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:| (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrryrrrvrrerirreryprerrerrrrprrrrriard
0110010M RC RA RBorl
OP =64, 65 MUL
Description: If the least significant bit of the Q Register is 1, the SRCA operand is

added to the SRCB operand. If the least significant bit of the Q
register is 0, a zero word is added to the SRCB operand.

The content of the Q Register is appended to the result of the add
and the resulting 64-bit value is shifted right by one bit position; the
true sign of the result of the add fills the vacated bit position (i.e., the
sign of the result is complemented if an overflow occurred during the
add operation). The high-order 32 bits of the 64-bit shifted value are
placed into the DEST location. The low-order 32 bits of the shifted
value are placed into the Q Register.

Examples of integer multiply operations appear in Section 2.6.2.

INSTRUCTIONSET 18-95

MULL MULL
Multiply Last Step
Operation: Complete a sequence of multiply steps (for signed multiply)
Assembler
Syntax: MULLrc, ra, rb
or
MULL rc, ra, const 8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrryprrrrrrerperrrrrrerypyrrerirrr
0110011M RC RA RBor|
OP =66, 67 MULL

Description:

If the least significant bit of the Q Register is 1, the SRCA operand is
subtracted from the SRCB operand. If the least significant bit of the Q
register is 0, a zero word is subtracted from the SRCB operand.

The content of the Q Register is appended to the result of the
subtract and the resulting 64-bit value is shifted right by one bit
position; the true sign of the result of the subtract fills the vacated bit
position (i.e., the sign of the result is complemented if an overflow
occurred during the subtract operation). The high-order 32 bits of the
64-bit shifted value are placed into the DEST location. The low-order
32 bits of the shifted value are placed into the Q Register.

Examples of integer multiply operations appear in Section 2.6.2.

18-96 INSTRUCTION SET

MULTIPLU MULTIPLU
Integer Multiply, Unsigned
Operation: DEST « SRCA*SRCB
Assembler
Syntax: MULTIPLU rc, ra, b
Status: None
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrrrrreyrrrrvrerryrrererrrrjprrrrrrd
11100010 RC RA RB
OP=E2 MULTIPLU
Description: The SRCA operand is multiplied by the SRCB operand. The

low-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
unsigned integers and produces an unsigned result.

The contents of the Q register are undefined after a MULTIPLU
operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an MULTIPLU
trap. When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTIONSET 1897

MULTIPLY MULTIPLY
integer Muitiply, Signed
Operation: DEST« SRCA*SRCB
Assembler
Syntax: MULTIPLY rc, ra, rb
Status: None
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrrrrreyprrrrrrryrrrrrrerp T i rTT T
11100000 RC RA RB
OP=EO0 MULTIPLY
Description: The SRCA operand is multiplied by the SRCB operand. The

low-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
two’s-complement integers and produces a two’s-complement result.

The contents of the Q register are undefined after a MULTIPLY
operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a MULTIPLY
trap. When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

18-98 INSTRUCTION SET

MULTM MULTM
Integer Multiply most significant Bits, Signed
Operation: DEST « SRCA*SRCB
Assembler
Syntax: MULTMrc, ra, rb
Status: None
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
rrTrrrrryrrrrrrryprrrrrrryrTTrT T TrTTd
11011110 RC RA RB
OP=DE MULTM
Description: The SRCA operand is multiplied by the SRCB operand. The

high-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
two’s-complement integers and produces a two’s-complement result.

The contents of the Q register are undefined after a MULTM
operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes a MULTM trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

INSTRUCTIONSET 18-99

MULTMU MULTMU
Integer Multiply most significant Bits, Unsigned
Operation: DEST « SRCA*SRCB
Assembler
Syntax: MULTMU rc, ra, b
Status: None
Operands: SRCA Content of register RA
SRCB Content of register RB
DEST Register RC
31 23 15 7 0
FrTTTT T T T T T T T T T T TT T T TT T I T T
11011111 RC RA RB
OP=DF MULTMU
Description: The SRCA operand is multiplied by the SRCB operand. The

high-order 32 bits of the 64-bit result are placed into the DEST
location. This operation treats the SRCA and SRCB operands as
unsigned integers and produces an unsigned result.

The contents of the Q register are undefined after a MULTMU
operation.

Note: This instruction is not supported directly in processor hardware.
In the current implementation this instruction causes an MULTMU
trap. When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

18-100 INSTRUCTION SET

MULU MULU
Multiply Step, Unsigned
Operation: Perform one-bit step of a multiply operation (unsigned)
Assembler
Syntax: MULU rc, ra, b
or
MULU rc, ra, const 8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrryrrrrrrryrrerrerirrtprrrirrrd
0111010M RC RA RBorl
OP =74,75 MULU
Description: If the least significant bit of the Q Register is 1, the SRCA operand is

added to the SRCB operand. If the least significant bit of the Q
register is 0, a zero word is added to the SRCB operand.

The content of the Q register is appended to the result of the add and
the resulting 64-bit value is shifted right by one bit position; the
carry-out of the add fills the vacated bit position. The high-order 32
bits of the 64-bit shifted value are placed into the DEST location. The
low-order 32 bits of the shifted value are placed into the Q Register.

Examples of integer multiply operations appear in Section 2.6.2.

INSTRUCTION SET 18-101

NAND NAND

NAND Logical
Operation: DEST « ~(SRCA & SRCB)
Assembler
Syntax: NANDrc, ra, rb
or
NAND rc, ra, const8
Status: N,Z
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrryrrrvrrerryrrrrrrerprrrirrrd
1001101M RC RA RBor|
OP=9A, 9B NAND

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB
operand. The one’s-complement of the result is placed into the DEST
location.

18-102 INSTRUCTION SET

NOR NOR

NOR Logical
Operation: DEST « ~(SRCA | SRCB)
Assembler
Syntax: NORc,ra, rb
or
NOR rc, ra, const8
Status: N, Z
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:| (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
FrT T T rrTr [rrrrrrryrrrrrrryrrrrrrid
1001100M RC RA RBorl
OP =98, 99 NOR

Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCB
operand. The one’s-complement of the result is placed into the DEST
location.

INSTRUCTION SET 18-103

OR OR

OR Logical
Operation: DEST « SRCAISRCB
Assembler
Syntax: ORrc,ra, b
or
OR rc, ra, const8
Status: N,Z
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
TT T T T 711 TT T T T 11 TT T T T 11 TT T T T 11
1001001M RC RA RBorl
OP=92, 93 OR

Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCB
operand, and the result is placed into the DEST location.

18-104 INSTRUCTION SET

SETIP SETIP
Set Indirect Pointers

Operation: Load IPA, IPB, and IPC registers with operand-register numbers

Assembler
Syntax: SETIPrc,ra, b

Status: Not affected
Operands: Absolute-register numbers for registers RA, RB, and RC

31 23 15 7 0
rrrrrrjprrrererrrprerrrrerprrrirried

10011110 RC RA RB

OP=9E SETIP

Description: The IPA, IPB, and IPC registers are set to the register numbers of
registers RA, RB, and RC, respectively.

For programs in the User mode, a Protection Violation trap occurs if
RA, RB, or RC specifies a register protected by the Register Bank
Protect Register.

Note: This instruction has a delayed effect on the indirect pointer
registers as discussed in Section 5.6.

INSTRUCTION SET 18-105

SLL SLL

Shift Left Logical
Operation: DEST « SRCA <<SRCB (zero fill)
Assembler
Syntax: SlLrc,ra, b

or
SLL rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA
SRCB M =0: Content of register RB, bits 4...0
M=1:1, bits 4...0
DEST Register RC
31 23 15 7 0
rrrrrreprvrrrrrryr e i rririrrrd
1000000M RC RA RBorl
OP =80, 81 SLL

Description: The SRCA operand is shifted left by the number of bit positions
specified by the SRCB operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

18-106 INSTRUCTION SET

SQRT SQRT
Floating-Point Square Root
Operation: DEST « SQRT(SRCA)
Assembler
Syntax: SQRT rc, ra, FS
Status: fpX, fpR, fpN
Operands: SRCA Content of register RA (single-precision floating-point)
or
Content of register RA and the twin of register RA
(double-precision floating-point)
DEST Register RC (single-precision floating-point)
or
Register RC and twin of Register RC
(double-precision floating-point)
Control: FS Format of source operand SRCA
00 Reserved for future use
01 Single-precision floating-point
10 Double-precision floating-point
11 Reserved for future use
31 23 15 7 0
rrivrirrrjprreerrtryprrrrrerprirrerypd
11100101 RC RA Reserved FS
OP=E5 SQRT
Description: This operation computes the square root of floating-point operand

SRCA,; the result is rounded according to FRM field of the
Floating-Point Environment Register and placed into the DEST
location. The operand and result are single- or double-precision
floating-point numbers as specified by FS.

Note: This instruction is not supported directly in processor hardware.
In the current implementation, this instruction causes an SQRT trap.
When the trap occurs, the IPA and IPC registers are set to reference
SRCA and DEST and the IPB Register is set with the value of the FS
field.

INSTRUCTION SET 18-107

SRA SRA
Shift Right Arithmetic

Operation: DEST « SRCA >> SRCB (sign fili)

Assembler
Syntax: SRATrc, ra, b
or
SRA rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA
SRCB M =0: Content of register RB, bits 4...0
M=1:1,bits4...0
DEST Register RC
31 23 15 7 0
rrrrrrrfrerrvrrryperrrrrrryprrrrird
100001 1M RC RA RBor|
OP =86, 87 SRA

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCB operand; the sign of the SRCA operand fills
vacated bit positions. The result is placed into the DEST location.

18-108 INSTRUCTION SET

SRL SRL

Shift Right Logical
Operation: DEST « SRCA>> SRCB (zero fill)
Assembler
Syntax: SRLrc, ra, b

or
SRL rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M =0: Content of register RB, bits 4...0

M=1:1, bits 4...0

DEST Register RC
31 23 15 7 0
FrTTTTTTTTTTTT T T T T T T T T T TT IO
100000 1M RC RA RBorl

OP=82,83 SRL

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCB operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

INSTRUCTION SET 18-109

STORE STORE
Store

Operation: EXTERNAL WORD [SRCB] « SRCA

Assembler
Syntax: STORE O, cntl, ra, b
or
STORE 0, cntl, ra, const8

Status: Not affected

Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
31 23 15 7 0
TT T T T 11 | I I I O O N N O B N N N N I N N N
000111 1MoO CNTL RA RBorl
OP=1E, IF ' STORE
Res

Description: The SRCA operand is placed into the external word addressed by the
SRCB operand.

The CNTL field of the STORE instruction affects the bus access as
described in Section 3.3.1.

18-110 INSTRUCTION SET

STOREL STOREL
Store and Lock
Operation: EXTERNAL WORD [SRCB] « SRCA
Assembler
Syntax: STORELO, cntl, ra, rb
or
STOREL 0, cntl, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
31 23 15 7 0
T T T T 1T 11 TT T T T T [V T T T T T T [T VT T T ITI
000011 1M|O CNTL RA RBorl
OP=0E,0F STOREL
Res
Description: The SRCA operand is placed into the extemal word addressed by the

SRCB operand.

The CNTL field of the STOREL instruction affects the bus access as
described in Section 3.3.1.

In other 29K Family processors, this instruction is provided for the
implementation of interlock protocols. In the Am29200 micro-
processor, the STOREL instruction is identical to the STORE
instruction.

INSTRUCTION SET 18-111

STOREM STOREM
Store Multiple
Operation: EXTERNAL WORD [SRCB]... EXTERNAL WORD
[SRCB +(COUNT * 4)]
«SRCA ... SRCA+COUNT
Assembler
Syntax: STOREM 0, cntl, ra, rb
or
STOREM 0, cntl, ra, const8
Status: Not affected
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:| (Zero-extended to 32 bits)
31 23 15 7 0
TT T T T 71 T T T T T T [T T T T T T T [V T T T T 11
co11111MoO CNTL RA RBorl
OP =3E, 3F ' STOREM
Res

Description:

The contents of consecutive registers, beginning with the SRCA
operand, are placed into extemal words at consecutive word
addresses, beginning with the word addressed by the SRCB
operand.

The total number of words accessed in the sequence is specified by
the Count Remaining (CR) field of the Channel Control Register
(which also appears in the Load/Store Count Remaining Register) at
the beginning of the bus access. The total number of words is the
value of the CR field plus one. The CNTL field of the STOREM
instruction affects the access as described in Section 3.3.1.

Note: The address and register-number sequences for the STOREM
instruction are specified in Section 3.3.4. Because this instruction
uses the Channel Address, Data, and Control Registers, it should not
be executed when the FZ bitis 1.

18-112 INSTRUCTION SET

SuB SuB
Subtract
Operation: DEST « SRCA - SRCB
Assembler
Syntax: SUBrc, ra, b
or
SUB rc, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
TT T T T T T [T T T T T T T [T T T T 1T TT T T T 11
0010010M RC RA RBorl
OP= 24,25 suB
Description: The SRCA operand is added to the two’s-complement of the SRCB

operand and the result is placed into the DEST location.

INSTRUCTION SET 18-113

SUBC SUBC
Subtract with Carry

Operation: DEST« SRCA-SRCB-1+C

Assembler
Syntax: SUBCrc, ra, b
or
SUBC rg, ra, const8

Status: V,N,Z,C

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1:1 (Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
TT T T T T T[T T T T T T T T T T T T T T [TrTTITTiTrTl
0010110M RC RA RBor|

OP=2C, 2D suBC

Description: The SRCA operand is added to the one’s-complement of the SRCB
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location.

18-114 INSTRUCTION SET

SUBCS SuUBCS
Subtract with Carry, Signed
Operation: DEST « SRCA-SRCB-1+C
IF signed overflow THEN Trap (Out of Range)
Assembler
Syntax: SUBCSrc, ra, b
or
SUBCS rc, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrryrvrrrooeprrrrrirryprrerriried
0010100M RC RA RBorl
OP=28, 29 SUBCS
Description: The SRCA operand is added to the one’s-complement of the SRCB

operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes a
two’s-complement signed overflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 18-115

SUBCU SuBCU
Subtract with Carry, Unsigned
Operation: DEST« SRCA-SRCB-1+C
IF unsigned underflow THEN Trap (Out of Range)
Assembler
Syntax: SUBCUrc, ra, b
or
SUBCU rc, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1 (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrryprrrerrrypyrrirrrreprrverrrTrd
0010101M RC RA RBorl
OP=2A,2B SuBCU
Description: The SRCA operand is added to the one’s-complement of the SRCB

operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes an

unsigned underflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an underflow

occurs.

18-116 INSTRUCTION SET

SUBR SUBR
Subtract Reverse
Operation: DEST « SRCB-SRCA
Assembler
Syntax: SUBRrc, ra, b
or
SUBR rc, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
FrTTTTT T T T T T T T T T T T TT T T T T TTIOTITT
0011010M RC RA RBorl
OP= 34,35 SUBR

Description:

The SRCB operand is added to the two’s-complement of the SRCA

operand and the result is placed into the DEST location.

INSTRUCTION SET 18-117

SUBRC SUBRC
Subtract Reverse with Carry

Operation: DEST« SRCB-SRCA-1+C

Assembler
Syntax: SUBRC rc, ra, b
or
SUBRC rc, ra, const8

Status: V,N,Z,C

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1:1(Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0
rrrrrrrjyrrervrrrefprrrrrtrrprrirrrid
0011110M RC RA RBorl
OP =3C, 3D SUBRC

Description: The SRCB operand is added to the one’s-complement of the SRCA
operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location.

18-118 INSTRUCTION SET

SUBRCS SUBRCS
Subtract Reverse with Carry, Signed
Operation: DEST « SRCB-SRCA-1+C
IF signed overflow THEN Trap (Out of Range)
Assembler
Syntax: SUBRCS ¢, ra, rb
or
SUBRCS rc, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: 1 (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrirrrrfyrrvrrrreryrvrtr iy Trriprrerrrd
0011100M RC RA RBorl
OP= 38,39 SUBRCS
Description: The SRCB operand is added to the one’s-complement of the SRCA

operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes a
two’s-complement signed overflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 18-119

SUBRCU SUBRCU
Subtract Reverse with Carry, Unsigned
Operation: DEST« SRCB-SRCA-1+C
IF unsigned underflow THEN Trap (Out of Range)
Assembler
Syntax: SUBRCU rc, ra, b
or
SUBRCU r, ra, const8
Status: V,N,Z,C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
TT T T T T T [T T T T T T T [T T T T T I T[T T TTT1T1
0011101M RC RA RBor |
OP=3A, 3B SUBRCU
Description: The SRCB operand is added to the one’s-complement of the SRCA

operand and the value of the ALU Status Carry bit, and the result is
placed into the DEST location. If the add operation causes an
unsigned underflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

18-120 INSTRUCTION SET

SUBRS SUBRS
Subtract Reverse, Signed

Operation: DEST « SRCB-SRCA
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRS rc, ra, rb
or
SUBRS rc, ra, const8

Status: V,N,Z,C

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1:1(Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
TT T T T T T [T T T T T T T[T T T T T T T T T T T 1 Tr11
001100O0M RC RA RBorl

OP=30, 31 SUBRS

Description: The SRCB operand is added to the two’s-complement of the SRCA
operand and the result is placed into the DEST location. If the add
operation causes a two’s-complement signed overflow, an
Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 18-121

SUBRU SUBRU
Subtract Reverse, Unsigned

Operation: DEST « SRCB-SRCA
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRU rc, ra, rb
or
SUBRU rc, ra, const8

Status: V,N,Z,C

Operands: SRCA Content of register RA

SRCB M=0: Content of register RB

M=1:1 (Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
rrrrrrryprrirrirrjprrereririeid Frrrririd
0011001M RC RA RBorl

OP=32,33 SUBRU

Description: The SRCB operand is added to the two’s-complement of the SRCA
operand and the result is placed into the DEST location. If the add
operation causes an unsigned underflow, an Out-of-Range trap
occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

18-122 INSTRUCTION SET

SUBS SuUBS
Subtract, Signed

Operation: DEST « SRCA-SRCB
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBSrc,ra, b
or
SUBS rc, ra, const8

Status: V,N,Z,C

Operands: SRCA Content of register RA

SRCB M =0: Content of register RB

M=1: 1 (Zero-extended to 32 bits)

DEST Register RC
31 23 15 7 0
rrrrrrryprrrrrrryprirrrtrrr]prerirrrd
0010000M RC RA RBorl

OP=20, 21 suBs

Description: The SRCA operand is added to the two’s-complement of the SRCB
operand and the result is placed into the DEST location. If the add
operation causes a two’s-complement signed overflow, an
Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

INSTRUCTION SET 18-123

SuBU SUBU
Subtract, Unsigned
Operation: DEST « SRCA-SRCB
IF unsigned underflow THEN Trap (Out of Range)
Assembler
Syntax: SUBUrc, ra, b
or
SuBU rc, ra, const8
Status: V,N,Z C
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rTTrrrrryreyrrrrryrrrrirnmid FTTTTrT
001000 1M RC RA RBorl
OoP=22,23 SUBU

Description:

The SRCA operand is added to the two’s-complement of the SRCB
operand and the result is placed into the DEST location. If the add
operation causes an unsigned underflow, an Out-of-Range trap
occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

18-124 INSTRUCTION SET

XNOR XNOR

Exclusive-NOR Logical
Operation: DEST « ~(SRCAASRCB)
Assembler
Syntax: XNORrc, ra, b
or
XNOR rc, ra, const8
Status: N,Z
Operands: SRCA Content of register RA
SRCB M=0: Content of register RB
M=1:1(Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
IFITTTTTTTTTTTTTI TTTTTTT FTTTTTTT
1001011M RC RA RBorl|
OP=96, 97 XNOR

Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the
SRCB operand. The one’s-complement of the result is placed into the
DEST location.

INSTRUCTION SET 18-125

XOR XOR

Exclusive-OR Logical
Operation: DEST « SRCAASRCB
Assembler
Syntax: XORc, ra, b
or
XOR rc, ra, const8
Status: N,Z
Operands: SRCA Content of register RA
SRCB M =0: Content of register RB
M=1: | (Zero-extended to 32 bits)
DEST Register RC
31 23 15 7 0
rrrrrrvryprrrrerryrerrrrrrprrrrrTd
1001010 RC RA RBorl
OP =94, 95 XOR

Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the
SRCB operand, and the result is placed into the DEST location.

18-126 INSTRUCTION SET

184

INSTRUCTION INDEX BY OPERATION CODE

01

02

03

04
06,07
08,09
CA,0B
0C,0D
OE,OF
10,11
12,13
14,15
16,17
18,19
1A,1B
1C,1D
1E,1F
20,21
22,23
24,25
26,27
28,29
2A,2B
2C,2D
2E,2F
30,31
32,33
34,35
36,37
38,39
3A,3B
3C,3D
3E,3F
40,41
42,43
44,45
46,47
48,49
4A,4B
4C,4D
4E4F
50,51
52,53
54,55
56,57
58,59

CONSTN
CONSTH
CONST
MTSRIM
LOADL
ClL.z
EXBYTE
INBYTE
STOREL
ADDS
ADDU
ADD
LOAD
ADDCS
ADDCU
ADDC
STORE
SuBS
SuBU
SuB
LOADSET
SUBCS
SuBCU
SuBC
CPBYTE
SUBRS
SUBRU
SUBR
LOADM
SUBRCS
SUBRCU
SUBRC
STOREM
CPLT
CPLTU
CPLE
CPLEU
CPGT
CPGTU
CPGE
CPGEU
ASLT
ASLTU
ASLE
ASLEU
ASGT

Constant, Negative

Constant, High

Constant

Move to Special Register Immediate
Load and Lock

Count Leading Zeros

Extract Byte

insert Byte

Store and Lock

Add, Signed

Add, Unsigned

Add

Load

Add with Carry, Signed

Add with Carry, Unsigned

Add with Carry

Store

Subtract, Signed

Subtract, Unsigned

Subtract

Load and Set

Subtract with Carry, Signed
Subtract with Carry, Unsigned
Subtract with Carry

Compare Bytes

Subtract Reverse, Signed

Subtract Reverse, Unsigned
Subtract Reverse

Load Multiple

Subtract Reverse with Carry, Signed
Subtract Reverse with Carry, Unsigned
Subtract Reverse with Carry

Store Multiple

Compare Less Than

Compare Less Than, Unsigned
Compare Less Than or Equal To
Compare Less Than or Equal To, Unsigned
Compare Greater Than

Compare Greater Than, Unsigned
Compare Greater Than or Equal To
Compare Greater Than or Equal To, Unsigned
Assert Less Than

Assert Less Than, Unsigned

Assert Less Than or Equal To
Assert Less Than or Equal To, Unsigned
Assert Greater Than

INSTRUCTION SET 18-127

5A,5B
5C,5D
5E,5F
60,61
62,63
64,65
66,67
68,69
6A,6B
6C,6D
6E,6F
70,71
72,73
74,75
78,79
7A,7B
7C,7D
7E
80,81
82,83
86,87

89

8C
90,91
92,93
94,95
96,97
98,99
9A,9B
9C,9D
9E

9F
A0,A1
A4,A5
A8,A9
AC,AD
B4,B5
B6
BE
Co
C4
Cé
C8
cC
CE
D7

ASGTU
ASGE
ASGEU
CPEQ
CPNEQ
MUL
MULL
DIVO
DIV
DIVL
DIVREM
ASEQ
ASNEQ
MULU
INHW
EXTRACT
EXHW
EXHWS
SLL
SRL
SRA
IRET
HALT
IRETINV
AND
OR
XOR
XNOR
NOR
NAND
ANDN
SETIP
INV
JMP
JMPF
CALL
JMPT
JMPFDEC
MFTLB
MTTLB
JMPI
JMPFI
MFSR
CALLI
JMPTI
MTSR
EMULATE

Assert Greater Than, Unsigned
Assert Greater Than or Equal To
Assert Greater Than or Equal To, Unsigned
Compare Equal To

Compare Not Equal To

Multiply Step

Multiply Last Step

Divide Initialize

Divide Step

Divide Last Step

Divide Remainder

Assert Equal To

Assert Not Equal To

Multiply Step, Unsigned

Insert Half-Word

Extract Word, Bit-Aligned

Extract Half-Word

Extract Half-Word, Sign-Extended
Shift Left Logical

Shift Right Logical

Shift Right Arithmetic

Interrupt Retum

Enter HALT Mode

Interrupt Retum and Invalidate
AND Logical

OR Logical

Exclusive-OR Logical
Exclusive-NOR Logical

NOR Logical

NAND Logical

AND-NOT Logical

Set Indirect Pointers

Invalidate

Jump

Jump False

Call Subroutine

Jump True

Jump False and Decrement
Move from Translation Look-Aside Buffer Register
Move to Translation Look-Aside Buffer Register
Jump Indirect

Jump False Indirect

Move from Special Register

Call Subroutine, Indirect

Jump True Indirect

Move to Special Register

Trap to Software Emulation Routine

18-128 INSTRUCTION SET

D8-DD
DE

DF

EO

E1

E2

E3

E4

E5

E6
E7-E9
EA

EB

EC

ED

EE

EF

FO
F1
F2
F3
F4
F5
Fé

F8
F9
FA-FF

Reserved for emulation (trap vector numbers 24-29)

MULTM Integer Multiply Most Significant Bits, Signed

MULTMU Integer Multiply Most Significant Bits, Unsigned

MULTIPLY Integer Multiply, Signed

DIVIDE Integer Divide, Signed

MULTIPLU Integer Multiply, Unsigned

DIVIDU Integer Divide, Unsigned

CONVERT Convert Data Format

SQRT Square Root

CLASS Classify Floating-Point Operand

Reserved for emulation (trap vector number 39—41)

FEQ Floating-Point Equal To, Single-Precision

DEQ Floating-Point Equal To, Double-Precision

FGT Floating-Point Greater Than, Single-Precision

DGT Floating-Point Greater Than, Double-Precision

FGE Floating-Point Greater Than or Equal To,
Single-Precision

DGE Floating-Point Greater Than or Equal To,
Double-Precision

FADD Floating-Point Add, Single-Precision

DADD Floating-Point Add, Double-Precision

FSuB Floating-Point Subtract, Single-Precision

DSUB Floating-Point Subtract, Double-Precision

FMUL Floating-Point Multiply, Single-Precision

DMUL Floating-Point Multiply, Double-Precision

FDIV Floating-Point Divide, Single-Precision

DDIV Floating-Point Divide, Double-Precision

Reserved for emulation (trap vector number 56)

FDMUL Floating-Point Multiply, Single-to-Double-Precision

Reserved for emulation (trap vector numbers 58-63)

INSTRUCTION SET 18-129

APPENDIX A

PROCESSOR REGISTER SUMMARY ‘l
Figure A-1 General-Purpose Register Organization
Absolute
REG# General-Purpose Register
0 Indirect Pointer Access
1 Stack Pointer
| 27HRUG3 | notimplemented |
/
64 GLOBAL REGISTER 64
65 GLOBAL REGISTER 65
66 GLOBAL REGISTER 66
Global] .
Registers < . .
L] L]
126 GLOBAL REGISTER 126
127 GLOBAL REGISTER 127
128 LOCAL REGISTER 125
129 LOCAL REGISTER 126
130 LOCAL REGISTER 127
131 LOCAL REGISTER 0 <—|
132 LOCAL REGISTER 1 Stack
Local < Pointer= 131
Registers . . (example)
L] L]
254 LOCAL REGISTER 123
\ 255 LOCAL REGISTER 124

PROCESSOR REGISTER SUMMARY A1

Figure A-2

Register Bank Organization

Register Absolute-

Bank Protect Register General-Purpose

Register Bit Numbers Registers
0 2 through 15 (Bu:’i‘:slemented)
1 16 through 31 (Buanr'::yllemented)
2 32 through 47 (Bu:?r'::lemmed)
3 48 through 63 ?uanri‘:\:lemented)
4 64 through 79 Bank 4
5 80 through 95 Bank 5
6 96 through 111 Bank 6
7 112 through 127 Bank 7
8 128 through 143 Bank 8
9 144 through 159 Bank 9
10 160 through 175 Bank 10
1 176 through 191 Bank 11
12 192 through 207 Bank 12
13 208 through 223 Bank 13
14 224 through 239 Bank 14
15 240 through 255 Bank 15

A2 PROCESSOR REGISTER SUMMARY

Figure A-3

Special Purpose Registers

REG #
31 23 15 7 0
rrr17r1rrrrrrrrrrrrrroeord
0 VAB 0| 0] 0] 0] 0] o] o] of o] o
Vector Area Base Address (VAB)
Page 16-5
31 23 15 7 0
1 Frrrrerrrrrrvrrid I | | |
Reserved
Old Processor Status (OPS) ! & ‘1t i+ 1 ¢+ 1 &+ 1 v
Page 16-7 TD Res: TE: TU: Res: Res. IM . DA
.] L] .])
P TP FZ WM SM DI
31 23 15 7 0
2 TTTTTTTTTTITTT I | | I
Reserved
Current Processor Status (CPS) E H E H ' H : : : . E H : :
Page 16-1 TDRes: TE:TU: Res: Res, IM : DA
1] 1]])]]
P TP FZ WM SM]}
31 23 15 7 0
3 rrrrrrryrrrorrervrrrrrerrr 1017110
PRL Reserved
Configuration (CFG)
Page 2-28
31 23 15 7 0
4 rrrrrrryrrerrrrrrrryrrvrerrrrvrrirnbid
CHA
Channel Address (CHA)
Page 16-18
31 23 15 7 0
5 rrvrrrrryrrererrrrrrrrrrrrrrrrrinid
CHD
Channel Data (CHD)
Page 16-18
31 23 15 7 0
6 Frirr UL L LI LR
CNTL CR _ TR
: Channel Control (CHC) UL '
Res Page 16-19 LS: ST Res NN:
ML Ccv

PROCESSOR REGISTER SUMMARY

A-3

Figure A-3 Special Purpose Registers (continued)

REG #
31 23 15 7 0
7 rTrrvrrrrrrrrTrTryrirTrrrT ri T I I I oI T Td
Reserved Bi15 oeeeeeeccccccoe BO
Register Bank Protect (RBP)
Page 6-3
31 23 15 7 0
8 rrrrrrryprrrryrrrrrrvrrrirrrrrererd
Reserved TCV
Timer Counter (TMC)
Page 16-22
31 23 15 7 0
ITTT rTrrr1r1rrrrrriTrTriIrTTI T eI T r T TTd
9 Reserved TRV
P
vy
OV, IE
Ul
IN
Timer Reload (TMR)
Page 16-23
31 23 15 7 [+]
10 rrrrrrrrrrrrrrreririrTrrrrnTreTrrTd
PCO 00
Program Counter 0 (PC0)
Page 16-9
31 23 15 7 0
rvrrrrrrrrrrrrrrryrrirrrrrrrrTd
" PC1 0} 0
Program Counter 1 (PC1)
Page 16-9
31 23 15 7 0
rTTr1rrrrrrrrrrrTrT T T T T T T I T T I T T Td
12 PC2 0f0
Program Counter 2 (PC2)
Page 16-10

A4 PROCESSOR REGISTER SUMMARY

Figure A-3

Special Purpose Registers (continued)

REG #

128

129

130

131

132

133

31 23 15 7 0
rrrrrrrerrvrrerrrrrrered rrrrrri
Reserved IPC o| o
Indirect Pointer C (IPC)
Page 2-13
31 23 15 7 0
rTTrTrrrrrrrrTrrrrrrrrryrrroraeTTd
Reserved IPA o] o
Indirect Pointer A (IPA)
Page 2-14
31 23 15 7 0
TTTTrT1rrrrvrrorirrrrrrild TTTTTTT
Reserved IPB o| o
Indirect Pointer B (IPB)
Page 2-14
31 23 15 7 0
rrrrrrvrrvrrrrrrrrrrrirrrrrrrrerrra
Q
Q(Q)
Page 2-20
31 23 15 7 0
rrrrrrerrrrrrerrrrnd Fyrrii
Reserved FC
[] [
ALU Status (ALU) T
PageZ-‘lG DF* N * C !
vV 2z BP
3 23 15 IO
ojojojojojojojo|ojojojojo]jojOjOjO|O|O}O}jO|Of OjO}O|O]O]O|O]O] BP

Byte Pointer (BP)
Page 3-3

PROCESSOR REGISTER SUMMARY

A5

Figure A-3

Special Purpose Registers (continued)

REG #

134

135

160

161

162

31 23 15 7 0

ojojojojojojojo|ojOjOjOjO|O|jO] O] O} O}jO|OJO]O}O|O]JO|OfO FC

Funnel Shift Count (FC)

Page 3-3
31 23 15 7
LU
olojojo|ojojojojojojOjO}0jOjO}OfO]O]jO|O]jO]O]O|O CR
Load/Store Count Remaining (CR)
Page 3-11
31 23 15 7 0
rrrrrvrrvyrrirrroevrrrrrrerrnd I
Reserved ERM
v L] L} L]
. . ' . ' L] .
Floating-Point Envil nt (FPE] ' ' ' '
Page 295 o onme (FPE) FF DM.UM: RM:
XM VM NM

Note: thisis a virtual register not implemented directly in hardware

31 23 15 7 0
rrrrerrrrrrrrerrtrrrrrirrirr e rrnd
Reserved
Integer Environment (INTE) ‘o
Page 2-16 DO«
MO
Note: thisis a virtual register not implemented directly in hardware
31 23 15 7 0
rrrrrrrrrrrvrrrrretd]
Reserved Res
L] d L] | L] | . | L] 4 : |
Floating-Point Status (FPS) I R
Page 2-19 DT: UT: RT: DS US: RS
XT VT NT XS VS NS

Note: thisis a virtual register notimplemented directly in hardware

A6 PROCESSOR REGISTER SUMMARY

Table A-1

Register Field Summary

Label Field Name Register Bit
BO Bank 0 Protection Bit Register Bank Protect 0
B1 Bank 1 Protection Bit Register Bank Protect 1
B2 Bank 2 Protection Bit Register Bank Protect 2
B3 Bank 3 Protection Bit Register Bank Protect 3
B4 Bank 4 Protection Bit Register Bank Protect 4
B5 Bank 5 Protection Bit Register Bank Protect 5
B6 Bank 6 Protection Bit Register Bank Protect 6
B7 Bank 7 Protection Bit Register Bank Protect 7
B8 Bank 8 Protection Bit Register Bank Protect 8
B9 Bank 9 Protection Bit Register Bank Protect 9
B10 Bank 10 Protection Bit Register Bank Protect 10
B11 Bank 11 Protection Bit Register Bank Protect 11
B12 Bank 12 Protection Bit Register Bank Protect 12
B13 Bank 13 Protection Bit Register Bank Protect 13
B14 Bank 14 Protection Bit Register Bank Protect 14
B15 Bank 15 Protection Bit Register Bank Protect 15
BP Byte Pointer ALU Status 6-5
Byte Pointer 1-0
Cc Carry ALU Status 7
CHA Channel Address Channel Address 31-0
CHD Channel Data Channel Data 31-0
CNTL Control Channel Control 30-24
CR Load/Store Count Remaining Channel Control 23-16
Load/Store Count Remaining 7-0
cv Contents Valid Channel Control 0
DA Disable All Interrupts and Traps Current Processor Status 0
Old Processor Status 0
DF Divide Flag ALU Status 1"
DI Disable Interrupts Current Processor Status 1
Old Processor Status 1
DM Floating-Point Divide By Zero Mask Floating-Point Environment 5
DO Integer Division Overflow Mask Integer Environment 1
DS Floating-Point Divide By Zero Sticky Floating-Point Status 5
DT Floating-Point Divide By Zero Trap ALU Status 13
FF Fast Floating-Point Select Floating-Point Environment 8
FC Funnel Shift Count ALU Status 40
Funnel Shift Count 40
FRM Floating-Point Round Mode Floating-Point Environment 7-6
FZ Freeze Current Processor Status 10
Old Processor Status 10

PROCESSOR REGISTER SUMMARY

A7

Table A-1 Register Field Summary (continued)
Label Field Name Register Bit
IE Interrupt Enable Timer Reload 24
M Interrupt Mask Old Processor Status 3-2
Current Processor Status 3-2
IN Interrupt Timer Reload 25
P Interrupt Pending Current Processor Status 14
Old Processor Status 14
IPA Indirect Pointer A Indirect Pointer A 9-2
IPB Indirect Pointer B Indirect Pointer B 9-2
IPC Indirect Pointer C Indirect Pointer C 9-2
LS Load/Store Channel Control 15
ML Multiple Operation Channel Control 14
MO Integer Multiplication Overflow Mask Integer Environment 0
N Negative ALU Status 9
NM Floating-Point Invalid Operation Mask Floating-Point Environment 0
NN Not Needed Channel Control 1
NS Floating-Point Invalid Operation Sticky Floating-Point Status 0
NT Floating-Point Invalid Operation Trap Floating-Point Status
oV Overflow Timer Reload 26
PCO Program Counter 0 Program Counter 0 31-2
PC1 Program Counter 1 Program Counter 1 31-2
PC2 Program Counter 2 Program Counter 2 31-2
PRL Processor Release Level Configuration 31-24
Q Quotient/Multiplier Q Register 31-0
RM Floating-Point Reserved Operand Mask Floating-Point Environment 1
RS Floating-Point Reserved Operand Sticky Floating-Point Status 1
RT Floating-Point Reserved Operand Trap Floating-Point Status 9
SM Supervisor Mode Current Processor Status 4
Old Processor Status 4
ST Set Channel Control 13
TCV Timer Count Value Timer Counter 230
TD Timer Disable Current Processor Status 17
Old Processor Status 17
TE Trace Enable Current Processor Status 13
Old Processor Status 13

A8 PROCESSOR REGISTER SUMMARY

Table A-1

Register Field Summary (continued)

Label Field Name Register Bit
TP Trace Pending Current Processor Status 12
Old Processor Status 12
TR Target Register Channel Control 9-2
TRV Timer Reload Value Timer Reload 230
TU Trap Unaligned Access Current Processor Status 1
Old Processor Status 1
UM Floating-Point Underflow Mask Floating-Point Environment 3
us Floating-Point Underflow Sticky Floating-Point Status 3
ut Floating-Point Underflow Trap Floating-Point Status 1
v Overflow ALU Status 10
VAB Vector Area Base Vector Area Base Address 31-10
VM Floating-Point Overflow Mask Floating-Point Environment 2
Vs Floating-Point Overflow Sticky Floating-Point Status 2
vT Floating-Point Overflow Trap Floating-Point Status 10
WM Wait Mode Current Processor Status 7
Old Processor Status 7
XM Floating-Point Inexact Result Mask Floating-Point Environment 4
Xs Floating-Point Inexact Result Sticky Floating-Point Status
XT Floating-Point Inexact Result Trap Floating-Point Status 12
Y4 Zero ALU Status 8

PROCESSOR REGISTER SUMMARY A9

PERIPHERAL REGISTER SUMMARY

b

Figure B-1 On-Chip Peripheral Registers
Address
(hexadecimal)
31 23 15 0
] 1 T) LB L] L) LI} L] I LI | 1
80000000 DWO res |WS0| |DW1| res |WS1 DW2| res |WS2| |DW3| res [WS3
BS'TO L.M BS'T1 BS.T2 BS.T3
ROM Control Register (RMCT)
Page 8-1
31 23 15 0
L L LB L L L L LIS LB LB LI LI |
80000004
ASELO _ |AMASKO| ASEL1 AMASK1 ASEL2 _ |AMASK2| ASEL3 |AMASK3
ROM Configuration Register (RMCF)
Page 8-2
31 3 15 0
] 1 L LI L L L L L L L L L)
80000008 res res res res REFRATE
PGO: res ! PG1! PG2+ PGa! sc
DWoO LM DW1 DW2 Dws
DRAM Control Register (DRCT)
Page 9-1
31 23 15 7 0
LI LELEE LB LI | rrria LD LI LI |
8000000C
ASELO _ |AMASKO| ASEL1 AMASK1 ASEL2 _ |AMASK2| ASEL3 _ JAMASK3
DRAM Configuration Register (DRCF)
Page 9-2
31 23 15 7 0
rrrurria LB L L LB L LR L L L L
80000010 res VIRTBASE res PHYBASE
VALID
DRAM Mapping Register 0 (DRMO0)
Page 9-3
31 23 15 7 0
rrrruri riTVr17rriru1ri rrrrryvv gy rrrrieund
80000014 res VIRTBASE res PHYBASE
VALID
DRAM Mapping Register 1 (DRM1)
Page 9-3

PERIPHERAL REGISTER SUMMARY B-1

Figure B-1

On-Chip Peripheral Registers (continued)

Address
(hexadecimal)
31 3 15 7 0
LI L L FrryrnrTunvid LI LI L L)
80000018 res VIRTBASE res PHYBASE
VALID
DRAM Mapping Register 2 (DRM2)
Page 9-3
31 3 15 7 0
LI L L T rrivi r1rrrrruri LI L L L
8000001C res VIRTBASE res PHYBASE
VALID
DRAM Mapping Register 3 (DRM3)
Page 9-3
31 23 15 7
] LI ¥ LI T LR L] LI
80000020 res | IOWAITO res | IOWAIT1 res | IOWAIT2 res IOWAIT3
IOEXTo IOEXT1 IOEXT2 IOEXT3
PIA Control Register 0 (PICTO)
Page 10-1
31 23 15 7 0
LR DL LA L LR L rrrrrryryrrrrrinria
80000024 res | IOWAIT4 res | IOWAITS reserved
IOEXT4 IOEXTS
PIA Control Register 1 (PICT1)
Page 10-1
31 23 15 7 0
LR LI | r1rrrrri LI LI
80000028 reserved res 0P| res res
VoI rou. {OMATI P.PI n;(sw: o
Interrupt Control Register (ICT) DMAGH res RXDI
Page 16-24
31 3 15 7 0
1 L L]] rTrrryrrira L]
80000030 res | DMAWAIT | DW |DRM reserved res
DMAEXT ACS UD ! EN i CTE! ™
DMAO Control Register (DMCT0) AW TTE QEN cn
Page 11-1
31 23 15 7 0
LI L L L rTryrrrriyrrrrreryrryrrroearuonga
80000034 PERADDR DRAMADDR
DMAO Address Register (DMADO)
Page 11-3
31 3 15 7 0
ryrrrriri Trrrryrrerry vy rrrryrrrrind
80000038 reserved DRAMADDR
DMAO Address Tail Register (TADO)
Page 11-4

B-2 PERIPHERAL REGISTER SUMMARY

Figure B-1 On-Chip Peripheral Registers (continued)

Address
(hexadecimal)
31 3 15 7 0
L L L L rrr7vvyrrrrrJryr1rryr1rrryrrririri
80000038 reserved DMACNT
DMAO Count Register (DMCNO)
Page 11-4
31 3 15 7 0
rirrrrri rrrrryrrrriyryvyrryrirrryuoruordg
8000003A reserved DMACNT
DMAO Count Tail Register (TCNO)
Page 11-5
31 3 15 7 0
T LR] L) LB L L L L L L)
80000040 res | DMAWAIT | DW |DRM reserved res
DMAEXT ACS UD+ EN ‘CTE ™.
DMA1 Control Register (DMCT1) AW TTE cm
Page 11-5
31 23 15 7 0
T r1rriri rryYyrTrrrrirryyeyrnirrrrrreyreuya
8000 PERADDR DRAMADDR
DMA1 Address Register (DMAD1)
Page 11-5
3 15 7 (V]
LI L L L L rrr79 1717 v17r 17T r1rT1r1r1rrryrrreriry
80000048 reserved DMACNT
DMA1 Count Register (DMCN1)
Page 11-5
31 3 15 7 0
LA 1 | i | LB LN LI L L
80000080 J
reserved res | PMODE | |wLaN reserved ['MODE| _ reserved RMODI
! BAK: sTP RSIE
LOOP DSR
Serial Port Control Register (SPCT)
Page 14-1
31 23 15 7 0
rTrrrryrrryrrrryrirrroriorid LI)
80000084
reserved res
Serial Port Status Register (SPST) \ THRe} "N
Page 14-3 TEMT RDR DTR FER OER
31 23 15 7 0
T rrrrrryrrrryryoerrrirred LI L L L)
80000088 reserved TDATA

Serial Port Transmit Holding Register (SPTH)
Page 14-4

PERIPHERAL REGISTER SUMMARY

Figure B-1
Address
(hexadecimal)
80000088

80000090

800000C0

800000C1

800000C4

800000D0

800000D4

80000008

On-Chip Peripheral Registers (continued)

31 23 1 7 0
riryryrrryiyyi17i7y7 7 rirTrrrrrrriorug L L L L L
reserved RDATA
Serial Port Receive Buffer Register (SPRB)
Page 14-5
31 23 15 7 0
T TV rryryrrrrrrnrd rr T T rrrrryuead
reserved BAUDDIV
Baud Rate Divisor Register (BAUD)
Page 14-5
31 3 15 7 0
L IR B O B) LB L LI] T
reserved TDELAY res MODE res
ros » DRat DDIR ‘FACK: BRS: AFD
FWT TRA FBUSY DHH ARB
Parallel Port Control Register (PPCT)
Page 13-1
31 3 15 7 0
L L L LR L L LI 1 UL
reserved TDELAYV reserved BCT reserved
sTB 'ACK
Parallel Port Status Register (PPST) BSY
Page 13-3
31 23 15 7 0
T TrrrrrJrr1rruyrrryvyrrrrryiryrorvund T rrrri
reserved PDATA
8 bits
23 1 7 0
T rrrrrryrryve vy ey rvrrrrr e rTrTr Ty rT
PDATA
Parallel Port Data Register (PPDT) 32 bits
Page 13-4
1 3 15 7 0
L] I T ¥ L L] 1] T rrrrirryrrrvorunrid
IRM]IRM|IRM | IRM | IRM | IRM | IRM | IRM
15114131 12]11}]10] 9 8 INVERT
PIO Control Register (POCT)
Page 12-1
31 23 _ 15 7 0
TV T rryrrriyrriyirruoag rir v rrrrrTrrryavra
reserved PIN
PIO Input Register (PIN)
Page 12-2
31 23 15 7 0
T1rrrrryrrrrrroriora T rrTrrTrrrriririra
reserved POUT
PIO Output Register (POUT)
Page 12-2

B4

PERIPHERAL REGISTER SUMMARY

Figure B-1

Address

(hexadecimal)

800000DC

800000E0

800000E4

800000E8

800000EC

On-Chip Peripheral Registers (continued)

31 5 7 0
rrrrrryryrrrrriya r1rrr1rr1rrrrrrrriTrT
reserved POEN

PIO Output Enable Register (POEN)

Page 12-3

31 23 15 7 (V]
LR L L L L L L L L L L) Ll LI |

reserved CLKDIV MODE

Video Control Register (VCT) DRQ DDR CLKIPSIOr PSL + SDIRs
Page 15-1 res PSI LSl VIDI

31 3 15 Q
rvr1roor vy TrrTorryriordg rrruri T T T rrrrrrid

reserved TOPCNT

Top Margin Register (TOP)

Page 15-3

31 23 15 7 0
LI LU L L L L | rryrrrreryrvrrrriera
reserved LEFTCNT LINECNT

Side Margin Register (SIDE)

Page 15-3

31 15 7 0
Ty rrrrrrrvyriurida T TrryrrrrirrrrTrryrrunrg

VDATA

Video Data Holding Register (VDT)

Page 15-4

PERIPHERAL REGISTER SUMMARY

Table B-1 Peripheral Register Field Summary
Label Field Name Register Bit
ACK PACK Level Parallel Port Status 6
ACS Assert Chip Select DMAO Control 19
DMAT1 Control 19
AFD Autofeed Parallel Port Control 0
AMASKO Address Mask, Bank 0 ROM Configuration 26-24
DRAM Configuration 26-24
AMASK1 Address Mask, Bank 1 ROM Configuration 18-16
DRAM Configuration 18-16
AMASK2 Address Mask, Bank 2 ROM Configuration 10-8
DRAM Contiguration 10-8
AMASK3 Address Mask, Bank 3 ROM Configuration 2-0
DRAM Contfiguration 2-0
ARB ACK Relationship to BUSY Parallel Port Control 1
ASELO Address Select, Bank 0 ROM Configuration 31-27
DRAM Configuration 31-27
ASEL1 Address Select, Bank 1 ROM Configuration 23-19
DRAM Configuration 23-19
ASEL2 Address Select, Bank 2 ROM Configuration 1511
DRAM Configuration 15-11
ASEL3 Address Select, Bank 3 ROM Configuration 7-3
DRAM Configuration 7-3
BAUDDIV Baud Rate Divisor Baud Rate Divisor 15-0
BCT Byte Count Parallel Port Status 9-8
BRK Send Break Serial Port Control 25
BRKI Break Interrupt Serial Port Status 3
BRS BUSY Relationship to STROBE Parallel Port Control 2
BSTO Burst-Mode ROM, Bank 0 ROM Control 31
BST1 Burst-Mode ROM, Bank 1 ROM Control 23
BST2 Burst-Mode ROM, Bank 2 ROM Control 15
BST3 Burst-Mode ROM, Bank 3 ROM Control 7
BSY PBUSY Level Parallel Port Status 7
CLKDIV Clock Divide Video Control 14-11
CLKI Clock Invert Video Control 7
CTE Count Terminate Enable DMAO Control 5
DMAT1 Control 5
CTi Count Terminate Interrupt DMAOQ Control 0
DMAT1 Control 0
DDIR Data Direction Parallel Port Control 10
Video Control 10
B6 PERIPHERAL REGISTER SUMMARY

Table B-1

Peripheral Register Field Summary (continued)

Label Field Name Register Bit
DHH Disable Hardware Handshake Parallel Port Control 5
DMAOI DMA Channel 0 Interrupt Interrupt Control 14
DMAI1I DMA Channel 1 Interrupt Interrupt Control 13
DMACNT DMA Count DMAO Count 230
DMAO Count Tail 23-0
DMA1 Count 230
DMAEXT DMA Extend DMAO Control 31
DMAT1 Control 31
DMAWAIT DMA Wait States DMAO Control 28-24
DMAT1 Control 28-24
DRAMADDR DRAM Address DMAO Address 23-0
DMAO Address Tail 23-0
DMAT1 Address 23-0
DRM DMA Request Mode DMAO Control 21-20
DMAT1 Control 21-20
DRQ Data Request Parallel Port Control 15
Video Control 15
DSR Data Set Ready Serial Port Control 24
DTR Data Terminal Ready Serial Port Status 4
DW Data Width DMAO Control 22-23
DMAT1 Control 22-23
DWO Data Width, Bank 0 ROM Control 30-29
DRAM Control 30
DW1 Data Width, Bank 1 ROM Control 22-21
DRAM Control 26
DW2 Data Width, Bank 2 ROM Control 14-13
DRAM Control 22
Dw3 Data Width, Bank 3 ROM Control 6-5
DRAM Control 18
EN Enable DMAO Control 7
DMA1 Control 7
FACK Force ACK Parallel Port Control 6
FBUSY Force Busy Parallel Port Control 7
FER Framing Error Serial Port Status 2
FWT Full Word Transfer Parallel Port Control 30
INVERT PIO Inversion PIO Control 15-0

PERIPHERAL REGISTER SUMMARY B-7

Table B-1 Peripheral Register Field Summary (continued)
Label Field Name Register Bit
IOEXTO Input/Output Extend, Region 0 PIA Control 0 31
IOEXT1 Input/Output Extend, Region 1 PIA Control 0 23
IOEXT2 Input/Output Extend, Region 2 PIA Control 0 15
IOEXT3 Input/Output Extend, Region 3 PIA Control 0 7
IOEXT4 Input/Output Extend, Region 4 PIA Contro! 1 31
IOEXTS Input/Output Extend, Region 5 PIA Control 1 23
IOPI VO Port Interrupt Interrupt Control 23-15
IOWAITO Input/Output Wait States, Region 0 PIA Control 0 28-24
IOWAIT1 Input/Output Wait States, Region 1 PIA Control 0 20~16
IOWAIT2 Input/Output Wait States, Region 2 PIA Control 0 12-8
IOWAIT3 Input/Output Wait States, Region 3 PIA Control 0 4-0
IOWAIT4 Input/Output Wait States, Region 4 PIA Control 1 28-24
IOWAITS Input/Output Wait States, Region 5 PIA Control 1 20-16
IRM8 Interrupt Request Mode, PIO8 PIO Control 17-16
IRM9 Interrupt Request Mode, PIO9 PIO Control 19-18
IRM10 Interrupt Request Mode, PIO10 PIO Control 21-20
IRM11 Interrupt Request Mode, PIO11 PIO Control 23-22
IRM12 Interrupt Request Mode, PIO12 PIO Control 25-24
IRM13 Interrupt Request Mode, PIO13 PIO Control 27-26
IRM14 Interrupt Request Mode, PIO14 PIO Control 29-18
IRM15 Interrupt Request Mode, PIO15 PIO Control 31-30
LEFTCNT Left Margin Count Side Margin 27-16
LINECNT Line Count Side Margin 15-0
LM Large Memory ROM Control 28
DRAM Control 28
LOOP Loopback Serial Port Control 26
LSl Line Sync Invert Video Control 2
MODE Parallel Port Mode Parallel Port Control 9-8
Video Interface Mode Video Control 9-8
OER Overrun Error Serial Port Status 0
PDATA Parallel Port Data Parallel Port Data 7-0
31-0
PER Parity Error Serial Port Status 1
PERADDR Peripheral Address DMAO Address 31-24
DMAT1 Address 31-24

B8 PERIPHERAL REGISTER SUMMARY

Table B-1

Peripheral Register Field Summary (continued)

Label Field Name Register Bit
PGO Page-Mode DRAM, Bank O DRAM Control 31
PG1 Page-Mode DRAM, Bank 1 DRAM Control 27
PG2 Page-Mode DRAM, Bank 2 DRAM Control 23
PG3 Page-Mode DRAM, Bank 3 DRAM Control 19
PHYBASE Physical Base Address DRAM Mapping 0 7-0
DRAM Mapping 1 -0
DRAM Mapping 2 7-0
DRAM Mapping 3 7-0
PIN PIO Input PIO Input 15-0
PMODE Parity Mode Serial Port Control 21-19
POEN PIO Output Enable PIO Output Enable 15-0
POUT PIO Output PIO Output 15-0
PPI Parallel Port Interrupt Interrupt Control 11
PSI Page Sync Invert Video Control 4
PSIO Page Sync Input/Output Video Control 5
PSL Page Sync Level Video Control 3
QEN Queue Enable DMAO Control 4
RDATA Receive Data Serial Port Receive Buffer 7-0
RDR Receive Data Ready Serial Port Status 8
REFRATE Refresh Rate DRAM Control 8-0
RMODE Receive Mode Serial Port Control 1-0
RSIE Receive Status Interrupt Enable Serial Port Control 2
RW Read/Write DMAO Control 8
DMAT1 Control 8
RXDI Serial Port Receive Data Interrupt Interrupt Control 6
RXSI Serial Port Receive Status Interrupt Interrupt Control 7
SC Static-Column DRAM DRAM Control 15
SDIR Shift Direction Video Control 1
STB PSTROBE Level Parallel Port Status 31
STP Stop Bits Serial Port Control 18
TDATA Transmit Data Serial Port Transmit Holding 7-0
TDELAY Transfer Delay Parallel Port Control 23-16
TDELAYV TDELAY Counter Value Parallel Port Status 23-16
TEMT Transmitter Empty Serial Port Status 10
THRE Transmit Holding Register Empty Serial Port Status 9

PERIPHERAL REGISTER SUMMARY

Table B-1 Peripheral Register Field Summary (continued)
Label Field Name Register Bit
TMODE Transmit Mode Serial Port Control 9-8
TOPCNT Top Margin Count Top Margin 11-0
TRA Transfer Active Parallel Port Control 14
TTE TDMA Terminate Enable DMAO Control 6
DMAT1 Control 6
T TDMA Terminate Interrupt DMAO Control 1
DMAT1 Control 1
TXDI Serial Port Transmit Data Interrupt Interrupt Control 5
ub Transfer Up/Down DMAO Control 9
DMAT1 Control 9
VALID Valid Mapping DRAM Mapping 0 31
DRAM Mapping 1 31
DRAM Mapping 2 31
DRAM Mapping 3 31
VIDI Video Invert Video Control 0
VDATA Video Data Video Data Holding 31-0
VDI Video Interrupt Interrupt Control 27
VIRTBASE Virtual Base Address DRAM Mapping 0 23-16
DRAM Mapping 1 23-16
DRAM Mapping 2 23-16
DRAM Mapping 3 23-16
WLGN Word Length Serial Port Control 17-16
WSo Wait States, Bank 0 ROM Control 25-24
WS1 Wait States, Bank 1 ROM Control 17-16
wSs2 Wait States, Bank 2 ROM Control 9-8
WS3 Wait States, Bank 3 ROM Control 1-0

B-10 PERIPHERAL REGISTER SUMMARY

Am29200™

RISC Microcontroller

e

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

m Completely integrated system for embedded
applications

Full 32-bit architecture

CMOS technology/TTL-compatible

16-MHz operating frequency

8 million instructions per second (MIPS)
sustained at 16 MHz

304-Mb address space
192 general-purpose registers

Three-address instruction architecture
Fully pipelined

Glueless system interfaces with on-chip wait
state control

8-, 16-, or 32-bit ROM interface
16- or 32-bit DRAM interface
H Burst-Mode and Page-Mode access support

DRAM mapping on-chip
Two-channel DMA Controller
Six-port Peripheral Interface Adapter
16-line Programmable /O Port
Bi-directional Video Interface

Serial Port (UART)

Bi-directional Parallel Port for IBM-compatible
personal computers

Interrupt Controller
On-chip Timer

m Software compatible with all other 29K™ Family
microprocessors

B Advanced debugging support

® |EEE Std. 1149.1-1990 (JTAG) compliant

Standard Test Access Port and Boundary
Scan Architecture

SIMPLIFIED SYSTEM DIAGRAM

Serial Prog.

Port Vo
Parallel
Video ﬁ Port ﬁ

A23-A0 1D31-1DO

Am29200

RISC
Microcontroller

4\
R > 0
R
O | 8,16,0r32 16 or 32
M £ L A
7 > 7 M
7 7
i Peripherals
Publication #: 16361 Rev. B Amendment: /0 This document contains information on & product under development at Advanced Micro
Issue Date: November 1991 Devices, Inc. The is 10 help you evaluate this product. AMD® reserves the c-1
right to change or di inue work on this prop: product without notice.

n AMD

ADVANCE

INFORMATION

GENERAL DESCRIPTION

The Am29200 RISC microcontroller is a highly inte-
grated, general-purpose, 32-bit microcontroller imple-
mented in CMOS technology. Through submicron tech-
nology, the Am29200 microcontroller incorporates a
complete set of system facilities commonly found in
printing, imaging, graphics, and other embedded appli-
cations. The on-chip functions include: a ROM Control-
ler, a DRAM Controller, a Peripheral Interface Adapter,
a DMA Controller, a Video Interface, a Programmable
I/O Port, a Parallel Port, a Serial Port, and an Interrupt
Controller.

The Am29200 microcontroller meets the common re-
quirements of low-cost embedded applications such as
laser beam printers, graphics processors, X terminals

and servers, application program interface (API) ac-
celerators, and scanners.The Am29200 microcontroller
is well suited for these applications since it provides
better performance than the CISC processors typically
used in these application. Compared to the CISC proc-
essors, the Am29200 microcontroller offers lower
system cost and complete design flexibility for the de-
signer. Coupled with hardware and software develop-
ment tools from AMD and the AMD Fusion29KS™ part-
ners, the Am29200 microcontroller provides very quick
time-to-market.

The Am29200 microcontroller is available in a 168-lead
Plastic Quad Flat Pack (PQFP) package. The PQFP
has 140 signal pins and 28 power/ground pins.

29K Family Development Support Products

Contact your local AMD representative for information on the complete set of development support tools.

The following software-development products are available on several hosts:

® Optimizing compilers for common high-level languages

Assembler and utility packages
Source- and assembly-level software debuggers
Target-resident development monitors

Simulators

RELATED AMD PRODUCTS

29K Family Devices

Part No. Description

Am29000™ Streamlined Instruction Microprocessor

Am29005™ Low-Cost Streamlined Instruction Microprocessor

Am29030™ RISC Microprocessor with 8-Kb Instruction Cache

Am29035™ RISC Microprocessor with 4-Kb Instruction Cache

Am29050™ Streamlined Instruction Microprocessor with On-chip Floating-Point

Third Party Development Support Products

The Fusion29K Program of Partnerships for Application Solutions provides the user with a vast array of products de-

signed to meet critical time-to-market needs.

Products/solutions available through the AMD Fusion29K partners include:

B Silicon products

W Software generation and debug tools
m Hardware development tools

B Board level products

B Laser printer solutions

B Multi-user, kernel, and real-time operating systems
B Graphics solutions

® Networking and communications solutions

B Manufacturing support

B Custom support

C-2 Am29200 MICROCONTROLLER

AMD n

INFORMATION

ADVANCE

CONNECTION DIAGRAM

168-Lead PQFP (Top View)

168-Pin PQFP

yxA
8¢t
6ct
oel
LEL
[413
€et
PEL
Sel
9el
LE}

126
125
124
123 p-J
122 -
120 =
119
118
117
116
115 =
114
113
112
111 =

121

o NM e
- - -

15
16

~ANMTVLENOO

110

17
18
19
3 20
4 21

108 =

108

107 =

106 I

105 -

104
103 =
102 =
101 =
100 P

QILLRR
UU UL UL

99 =3

97 =
%
95 =2
94 3
93 3
92 =
91 =
w
89
88
87 =

98 =3

A858838858899
IR

86 =
85 =

v8
€8
c8
18
08
6L
8L
LL
9L
SL
1Z
€L
cL
74
0L
69
89
JA:]
99
S9
9
€9
29
+9
09
6S
8s
LS
9S
SS
S
€S
4]
3]
0S
(14
8y
Ly
or
14
124
124

All values are typical and preliminary.

C-3

Am23200 MICROCONTROLLER

a AMD ADVANCE INFORMATION

SOLDER LAND RECOMMENDATIONS

168-Lead PQFP
Top View
(not to scale)
32.22 mm o
sesr | AR
py TN

®)

n

AR RO f

32.22 mm
0.40 mm
\. /
T
1.98 mm

0.25 mm

Note: All values are typical and preliminary

C4 Am29200 MICROCONTROLLER

AMD n

N[O [R]W[N (=

ADVANCE INFORMATION
PQFP PIN DESIGNATION
(Sorted by Pin Number)
Pin No. | Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. | Pin Name
Vee 43 Vce 85 GND 127 PIO12
GND 44 GND 86 Vee 128 PlIO11
MEMCLK 45 DTR 87 A23 129 PlO10
INCLK 46 RXD 88 A22 130 PIO9
Vce 47 UCLK 89 A21 131 PIO8
GND 48 Vee 90 A20 132 PIO7
GND 49 GND 91 A19 133 Vaoe
8 Vee 50 DSR 92 A18 134 GND
9 1D31 51 TXD 93 A17 135 P06
10 1D30 52 ROMCS3 94 A16 136 P105
11 1D29 53 ROMCS2 95 A15 137 Pl104
12 1D28 54 ROMCS1 96 A14 138 P03
13 GND 55 ROMCSO0 97 A13 139 P102
14 D27 56 BURST 98 A12 140 PI1O1
15 1D26 57 RSWE 99 Al1 141 PIO0
16 1D25 58 ROMOE 100 A10 142 TDO
17 1D24 59 RAS3 101 A9 143 STAT2
18 1D23 60 RAS2 102 A8 144 STAT1
19 1D22 61 RAS1 103 A7 145 STATO
20 ID21 62 RASO 104 A6 146 VDAT
21 1D20 63 CAS3 105 A5 147 PSYNC
22 ID19 64 CAS2 106 A4 148 GND
23 Vee 65 Ve 107 A3 149 Vee
24 ID18 66 GND 108 A2 150 GREQ
25 ID17 67 CAS1 109 Al 151 DREQ1
26 ID16 68 CASO 110 AQ 152 DREQO
27 ID15 69 TR/OE 111 Vee 153 TDMA
28 ID14 70 WE 112 GND 154 TRAPO
29 ID13 71 GACK 113 BOOTW 155 TRAP1
30 ID12 72 PIACSS 114 WAIT 156 INTRO
31 ID11 73 PIACS4 115 PAUTOFD 157 INTR1
32 ID10 74 PIACS3 116 PSTROBE 158 INTR2
33 D9 75 PIACS2 117 Vee 159 INTR3
34 D8 76 PIACS1 118 GND 160 WARN
35 ID7 77 PIACSO 119 PWE 161 GND
36 1D6 78 PIAWE 120 POE 162 VCLK
37 ID5 79 PIAOE 121 PACK 163 LSYNC
38 ID4 80 RW 122 PBUSY 164 TMS
39 ID3 81 DACK1 123 PIO15 165 TRST
40 ID2 82 DACKO 124 PIO14 166 TCK
41 ID1 83 GND 125 PlIO13 167 TDI
42 IDO 84 Vee 126 GND 168 RESET

Am23200 MICROCONTROLLER c-5

a AMD

ADVANCE INFORMATION
PQFP PIN DESIGNATION
(Sorted by Pin Name)
Pin No. [Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. | Pin Name
110 A0 49 GND 9 1D31 60 RAS2
109 A1 66 GND 4 INCLK 59 RAS3
108 A2 83 GND 156 INTRO 168 RESET
107 A3 85 GND 157 INTR1 55 ROMCSO0
106 A4 112 GND 158 INTR2 54 ROMCSH1
105 A5 118 GND 159 INTR3 53 ROMCS2
104 A6 126 GND 163 LSYNC 52 ROMCS3
103 A7 134 GND 3 MEMCLK 58 ROMOE
102 A8 148 GND 121 PACK 57 RSWE
101 A9 161 GND 115 PAUTOFD 46 RXD
100 A10 150 GREQ 122 PBUSY 145 STATO
99 A1l 42 1D0 77 PIACS0 144 STAT1
98 A12 41 D1 76 PIACS1 143 STAT2
97 A13 40 1D2 75 PIACS2 166 TCK
96 A14 39 ID3 74 PIACS3 167 TDI
95 A15 38 ID4 73 PIACS4 153 TDMA
94 A16 37 ID5 72 PIACS5 142 TDO
93 A17 36 ID6 79 PIAOE 164 TMS
92 A18 35 ID7 78 PIAWE 69 TR/OE
91 A19 34 1D8 141 PIO0 154 TRAPO
90 A20 33 1D9 140 PIO1 155 TRAP1
89 A21 32 ID10 139 PIO2 165 TRST
88 A22 31 ID11 138 PIO3 51 TXD
87 A23 30 ID12 137 PIO4 47 UCLK
113 BOOTW 29 ID13 136 PIO5 1 Veo
56 BURST 28 ID14 135 PIO6 5 Vce
68 CASO 27 ID15 132 PIO7 8 Voc
67 CAS1 26 ID16 131 PIO8 23 Vce
64 CAS2 25 ID17 130 PIO9 43 Vee
63 CAS3 24 ID18 129 PIO10 48 Vee
82 DACKO0 22 D19 128 PIO11 65 Voe
81 DACK1 21 1D20 127 PIO12 84 Voo
152 DREQO 20 D21 125 PIO13 86 Vee
151 DREQ1 19 1D22 124 PIO14 111 Ve
50 DSR 18 1D23 123 PIO15 117 Vce
45 DTR 17 1D24 120 POE 133 Veo
4! GACK 16 ID25 116 PSTROBE 149 Vce
2 GND 15 1D26 147 PSYNC 162 VCLK
6 GND 14 1D27 119 PWE 146 VDAT
7 GND 12 1D28 80 RW 114 WAIT
13 GND 11 1D29 62 RASO 160 WARN
44 GND 10 ID30 61 RAS1 70 WE

C-6 Am29200 MICROCONTROLLER

ADVANCE

INFORMATION

AMD n

LOGIC SYMBOL

4 > INTR3-INTRO

—2/ 5 TRAPI-TRAPO
— WA

~—————— BOOTW

——2/ ! pREQI-DREQO

—— ¥ PSTROBE
——» PAUTOFD

—¥ UCLK
—» RXD
~——P1 DTR

—» VCLK
—® LSYNC

VDAT PSYNC

MEMCLK
STAT2-STATO

A23-A0

RW

ROMCS3-ROMCS0

ROMOE
SW
BURS

Xl
m

p|

RAS3-RASO

CAS3-CAS!

o

3
9§

24

PIACS5-PIACS0

3
>
[
m

3
>|
g
mi

IRUIRERIEQILLRIIRGEL]

DACK1-DACKO

GA

(e}
Al

e

-
oo 2
200 0
mmi X <

p:
[S)

I

O
1%
By

PiO15-PIO0 ID31-ID0

I

Am29200 MICROCONTROLLER

c-7

n AMD ADVANCE INFORMATION

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. Valid order numbers are formed by a
combination of the elements below.

AM29200 16 K c w

-[——— SHIPPING OPTION

Blank = Trimmed and Formed (PQJ 168)
/W = with Carrier Ring (PQR 168)

TEMPERATURE RANGE
C = Commercial (Ta=0°C to +45°C)

PACKAGE TYPE
K = 168-Lead Plastic Quad Flat Pack (PQFP)

SPEED OPTION
-16= 16 MHz

DEVICE NUMBER/DESCRIPTION

Am29200
RISC Microcontroller

Valid Combinations

Valid Combinations lists configurations planned

Valid Combinations to be supported in volume. Consult the local AMD
_16KC sales office to confirm availability of specific valid

AM29200 combinations, to check on newly released
—~16KC/W combinations, and to obtain additional data on

AMD standard military grade products.

C-8 Am29200 MICROCONTROLLER

AMD a

ADVANCE INFORMATION
ABSOLUTE MAXIMUM RATINGS OPERATING RANGES
Storage Temperature —-65°C to +150°C Commercial (C) Devices
Voltage on any Pin Ambient Temperature (Ta) 0°C to +55°C
with RespecttoGND -05t0Vec +0.5V Supply Voltage (Vec) +4.7510 +5.25 V

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

Operating ranges define those limits between which the func-
tionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges

Parameter Advance Information
Symbol Parameter Description Test Conditions Min Max Unit
Vi Input Low Voltage -0.5 0.8 \]
Vin Input High Voltage 2.0 Vee +0.5 Vv
Viuncik INCLK Input Low Voltage -0.5 0.8 Vv
Vikineux INCLK Input High Voltage 2.0 Vec +0.5 \')
Vou Output Low Voltage for
All Outputs except MEMCLK lo.=3.2 mA 0.45 \
Von Output High Voltage for
All Outputs except MEMCLK lon=—400 pA 24 "
lu Input Leakage Current 0.45V < VN Vec —0.45 V +10 or HA
(Note 1) +10/-200
lo Output Leakage Current 0.45 V < Vour< Vec —0.45 V +10 pA
Operating Power-Supply Vec = 5.25 V, Outputs
lecor Current Floating; Holding RESET : 14 mA/MHz
active
Voic MEMCLK Output Low Voltage lo,c = 20 mA 0.6
Vore MEMCLK Output High Voltage love = =20 mA Vec—0.6 v

Note 1. The Low input leakage current for the inputs TCK, TDI, TRST, DREQ1-DREQO, and GREQ is —~200 pA.

These pins have internal pull-up resistors.

CAPACITANCE

Parameter Advance Information

Symbol Parameter Description Test Conditions Min Max Unit
Cw Input Capacitance ' 15 pF
Cincix INCLK Input Capacitance 15 pF
Cuemeix MEMCLK Capacitance fC=10 MHz 20 pF
Cour Output Capacitance 20 pF
Cwo /O Pin Capacitance 20 pF

Am29200 MICROCONTROLLER c-9

Z' AMD

ADVANCE INFORMATION

SWITCHING CHARACTERISTICS over COMMERCIAL operating range

Test Conditions Advance Information
No. | Parameter Description (Note 1) Min Max Unit
1 INCLK Period (= .5T) Note 2 30 62.5 ns
2 INCLK High Time Note 2 9 53.5 ns
3 INCLK Low Time Note 2 9 53.5 ns
4 INCLK Rise Time Note 2 0 4 ns
5 INCLK Fall Time Note 2 0 4 ns
6 MEMCLK Delay from INCLK 0 10 ns
7 Synchronous Output Valid Delay from MEMCLK T Note 3 1 10 ns
7a Synchronous Output Valid Delay from MEMCLK T Note 3 1 12 ns
7b Synchronous Output Valid Delay from MEMCLK { 1 10 ns
8 Synchronous Output Disable Delay from MEMCLK T 1 10 ns
9 Synchronous Input Setup Time 6 ns
10 Synchronous Input Hold Time 0 ns
11 Asynchronous Pulse Width Note 4 4T ns
11a | Asynchronous Pulse Width Note 4 Note 4
12 MEMCLK High Time Note 5 5T-3 5T+3 ns
13 MEMCLK Low Time Note 5 5T-3 .5T+3 ns
14 MEMCLK Rise Time Note 5 0 4 ns
15 MEMCLK Fall Time Note 5 0 4 ns
16 UCLK, VCLK Period Note 2 30 ns
17 UCLK, VCLK High Time Note 2 9 ns
18 UCLK, VCLK Low Time Note 2 9 ns
19 UCLK, VCLK Rise time Note 2 0 4 ns
20 UCLK, VCLK Fall Time Note 2 0 4 ns
21 Synchronous Output Valid Delay from VCLK T Note 6 1 15 ns
22 Input Setup Time to VCLK Tl Notes 6, 7 6 ns
23 | Input Hold Time to VCLK T Notes 6, 7 0 ns
24 TCK Frequency 2 MHz
Notes: 1. All outputs driving 80 pF, measured at VoL=0.8 V and Vo=2.0 V. For higher capacitance, add 1 ns output delay per 20 pF
loading up to 300 pF total.
2. INCLK, VCLK, and UCLK can be driven with TTL inputs. UCLK must be tied High if it is unused.
3. Parameter 7 applies to all outputs except PIO15—-PI00, STAT2-STATO, PIACS5-PIACSO0, and DACK1-DACKO. P 7a

No O

applies to PIO15-PI00, STAT2-STATO, PIACS5-PIACS0, and DACK1-DACKO.

A bit time is one period of the internal video clock, which is determined by dividing down VCLK.

. MEMCLK can drive an external load of 100 pF.
. Active VCLK edge depends on CLKI bit in Video Control Register.
. LSYNC and PSYNC may be treated as synchronous signals by meeting the setup and hold times, though the synchronization

delay still applies.

. Parameter 11 applies to all asynchronous inputs except LSYNC and PSYNC. LSYNC and PSYNC minimum widthis 2 bittimes.

C-10 Am29200 MICROCONTROLLER

ADVANCE INFORMATION AMD n
SWITCHING WAVEFORMS

INCLK

MEMCLK

SYNCHRONOUS
OUTPUTS

o

SYNCHRONOUS
INPUTS 15V 15V

[{d
7

ASYNCHRONOUS
INPUTS 15V B 15V

77

UCLK, VCLK

VCLK-RELATIVE 20V

OUTPUTS 08V Note: Video Timing may be rela-
tive to VCLK falling edge if
CLK=1

VCLK-RELATIVE
INPUTS 15V 15V

Note: During AC testing, all inputs are driven at Vi, = 0.45 V, Vi = 2.4 V.

Am29200 MICROCONTROLLER C-11

“" AMD ADVANCE INFORMATION

SWITCHING TEST CIRCUIT

Vi

Am29200 Microcontroller
Pin Under Test

VREF = 15V

low = 400 pA

Vi

C. is guaranteed to 80 pF. For capacitive loading greater than
80 pF, add 1 ns output delay per 20 pF loading up to 300 pF total.

THERMAL CHARACTERISTICS
Plastic Quad Flat Pack (PQFP) Package

Thermal Resistance — °C/Watt

Advance Information

Parameter °C/Watt

6. Junction-to-Ambient 36

C-12 Am29200 MICROCONTROLLER

ADVANCE INFORMATION AMD n

PHYSICAL DIMENSIONS

For reference only. All measurements are given in millimeters unless otherwise noted. BSC is an ANSI standard for
Basic Space Centering.

PQR-168
(measured in millmeters)

B 45.87 R
| 46.13 45.70 N
L 41.37 BSC |
D 41.63 37.87 g
:;532(;) 38.13 . ‘
- 3220
2780 _ BSC -
28.10 -
Zame T 1 P L PR TTTT T TR R R R TR TR R RN A T Pl P ..ﬁ]

Carrier
Ring

45.70|37.8732.20

[oe}

®e
F-S

F-S

S w

m
%24
o
w
<)
PN
©w
[os}
(%24
o

45.87|41.37 | 35,00 [27.80
46.13|41.63| BSC (28.10

127 — 168

| O\
\ mm l N
< il \/)A

aada daade o s s s s a0 s o i s s s s s aaaaasaalalaalalay

LN R R R N S R S R R AR R R R R R e

45 TYP. TOPV;EW
.65 Pitch —| |e— r—n
o | MY s ‘
; i (>>IIIIIJ!IlllJ!lllllIllllllllllllllllllllllllllll!lllllllll((> Iz_oo 4.80
ot | N7 Fiso

SIDE VIEW

14433D
BX 47
9/6/91 SG

Am29200 MICROCONTROLLER C-13

a AMD

ADVANCE

INFORMATION

PHYSICAL DIMENSIONS (continued)

PQJ 168
(measured in millimeters)

31.00
<)
2790 3140
26.65 ___ 28.10 o
REF 'ﬁ
| ARAR ilif
84 43
1 | 85 42| [E—x
] =)
l (i - =)
0.22 =
0.38 T
26.65
' REF
27.90
- I 28.10
1 1 31.00
31.40
0.65 —L—EEI: =)
REF Pin 1 LD. =)
T] =)
o1 | 126 o I r—Y—
127 168
\
HEHE—--—--—QHHs .
TOP VIEW
3:20 3.95
3.60 -- -- MAX
T o] f—
70 0.90
0.25 ¢ Typ.
MIN SIDE VIEW

BU 43
9/9/91 SG

AMD is a registered trademark, Fusion29K is a servicemark, and 29K, Am29000, Am29005, Am29030, Am29035, Am29050, and Am29200
are trademarks of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

© 1991 Advanced Micro Devices, Inc.

C-14 Am29200 MICROCONTROLLER

INDEX

e

A(23-0) signal, 7-1
access priority, 7-6 to 7-7
ACK bit (PACK Level). 13-3

ACK Relationship to BUSY bit. See ARB bit
(ACK Relationship to BUSY)

ACS bit (Assert Chip Select), 11-2
activation records
allocation of, 4-2, 4-4
definition of, 4-1
figure of, 4-3
information stored in, 4-3
Add Wait States signal. See WAIT signal
addition instructions
ADD, 18-8
ADDC (Add with Carry), 18-9
ADDCS (Add with Carry, Signed), 18-10
ADDCU (Add with Carry, Unsigned), 18-11
ADDS (Add, Signed) instruction, 18-12
ADDU (Add, Unsigned) instruction, 18-13

DADD (Floating-Point Add, Double-Precision)
instruction, 18-47

FADD (Floating-Point Add, Single-Precision)
instruction, 18-65

Address Bus signal. See A(23-0) signal

Address Mask field. See AMASKO field
(Address Mask, Bank 0)

Address Select bit. See ASELO bit (Address
Select, Bank 0)

addressing and alignment
addressing registers, 2-10
addressing registers indirectly, 2-12 to 2-14
alignment of instructions, 3-14

alignment of words and half-words, 3-13 to
3-14

byte and half-word accesses, 3-12 to 3-13

byte and half-word addressing, 3-12

internal peripheral address assignments, 7-7,
78

AFD bit (Autofeed), 13-3
alignment. See addressing and alignment

ALU Status (ALU, Register 132)
arithmetic operation status results, 2-17 to 2-18
BP bit (Byte Pointer), 2-17
C bit (Carry), 2-17 to 2-18, 2-25 to 2-26, 16-13
description of, 2-16 to 2-17
DF bit (Divide Flag), 2-17, 16-13
FC bit (Funnel Shift Count), 2-17, 3-3 to 3-4
N bit (Negative), 2-17 to 2-18
set by arithmetic instructions, 2-1
set by logical instructions, 2-4
V bit (Overflow), 2-17 to 2-18
Z (Zero), 2-17 to 2-18
Am29200 microprocessor
29K Family development support products, C-2
absolute maximum ratings, C-9
capacitance, C-9
connection diagram, C-3
DC characteristics, C-9
distinctive characteristics, C-1
general description, C-2
logic symbol, C-7
operating ranges, C-9
ordering information, C-8
physical dimensions, C-13 to C-14
PQFP pin designation, C-5 to C-6
simplified system diagram, C-1
solder land recommendations, C-4
switching characteristics, C-10
switching test circuit, C-12
switching waveforms, C-11
thermal characteristics, C-12
third-party development support products, C-2
Am29200 microprocessor overview
block diagram, 1-3
burst-mode and page-mode memories, 1-6
complete set of system peripherals, 1-2
CYCLES/INSTRUCTION term, P-2
data formats, 1-6
debugging and testing, 1-7to 1-8

INDEX -1

Am239200 microprocessor overview, continued
design philosophy, P-1to P-2
development and support environment, 1-5
distinctive characteristics, 1-1to 1-2
DMA controller, 1-3
DRAM controller, 1-2
DRAM mapping, 1-7
features, 1-1to 1-2
glueless system interfaces, 1-4
/O port, 1-4
instruction set overview, 1-6
INSTRUCTION/TASK term, P-3
instruction timing, 1-5
interrupt controller, 1-3
interrupts and traps, 1-7
optimum performance, P-2
overview, P-1
parallel port, 1-4
performance leverage, P-2 to P-3
performance overview, 1-5to0 1-8
Peripheral Interface Adapter (PIA), 1-3
pin-, bus-, and software-compatibility, 1-4

to1-5
pipelining, 1-6
price/performance points, 1-4
protection, 1-7
ROM controller, 1-2
serial port, 1-4
TIME/CYCLE term, P-3
video interface, 1-4

AMASKO field (Address Mask, Bank 0)
DRAM Configuration Register, 9-2
ROM Configuration Register, 8-2

AND (AND Logical) instruction, 18-14

ANDN (AND-NOT Logical) instruction, 18-15

ARB bit (ACK Relationship to BUSY), 13-2 to
13-3

argument passing, 4-8

arithmetic instructions. See also specific types
of arithmetic instructions

arithmetic operation status results, 2-17 to 2-18
floating-point status results, 2-18

logical operation status results, 2-18
overview, 2-1

table of, 2-2

trapping arithmetic instructions, 2-27

virtual arithmetic processor, 2-27

ASELO bit (Address Select, Bank 0)
DRAM Configuration Register, 9-2
ROM Configuration Register, 8-2

ASEQ (Assert Equal To) instruction, 18-16

ASGE (Assert Greater Than or Equal To)
instruction, 18-17

ASGEU (Assert Greater Than or Equal To,
Unsigned) instruction, 18-18

ASGT (Assert Greater Than) instruction, 18-19

ASGTU (Assert Greater Than, Unsigned)
instruction, 18-20

ASLE (Assert Less Than or Equal To)
instruction, 18-21

ASLEU (Assert Less Than or Equal To,
Unsigned) instruction, 18-22

ASLT (Assert Less Than) instruction, 18-23

ASLTU (Assert Less Than, Unsigned)
instruction, 18-24

ASNEQ (Assert Not Equal To) instruction, 18-25

assembler syntax, 18-3 to 18-4

Assert Chip Select bit. See ACS bit (Assert
Chip Select)

assert instructions. See also specific assert
instructions

comparing signed or unsigned operands,
2-25

run-time checking, 2-4, 2-25
simulation of interrupts and traps, 16-13
trapping, 2-1
using as breakpoints, 17-2
Autofeed bit. See AFD bit (Autofeed)

Baud Rate Divisor Register (BAUD, Address
80000090)

BAUDDIV bit (Baud Rate Divisor), 14-5
description of, 14-5
BAUDDIV bit (Baud Rate Divisor), 14-5
BCT bit (Byte Count), 13-3
bit strings
Funnel Shift Count Register, 3-3 to 3-4
overview, 3-3
bits
ACK (PACK Level), 13-3
ACS (Assert Chip Select), 11-2
AFD (Autofeed), 13-3
AMASKO (Address Mask, Bank 0), 8-2, 9-2

ARB (ACK Relationship to BUSY), 13-2 to
13-3

INDEX

bits, continued

ASELO (Address Select, Bank 0), 8-2, 9-2
BAUDDIV (Baud Rate Divisor), 14-5

BCT (Byte Count), 13-3

BP (Byte Pointer), 2-17, 3-3, 3-12

BRK (Send Break), 14-1

BRKI (Break Interrupt), 14-4

BRS (BUSY Relationship to STROBE), 13-2
BSTO (Burst-Mode ROM, Bank 0), 8-1
BSY {PBUSY Level}, 13-3

C (Carry), 2-17 to 2-18, 2-25 to 2-26, 16-13
CHA (Channel Address), 16-18

CHD (Channel Data), 16-18

CLKDIV (Clock Divide), 15-1

CLKI (Clock Invert), 15-2

CR (Load/Store Count Remaining), 3-10,
3-11,16-19

CTE (Count Terminate Enable), 11-3
CT! (Count Terminate Interrupt), 11-3

CV (Contents Valid), 3-10, 16-12, 16-17,
16-19

DA (Disable All Interrupts and Traps), 16-3
DDIR (Data Direction), 13-2, 15-1

DF (Divide Flag), 2-17, 16-13

DHH (Disable Hardware Handshake), 13-2
DI (Disable Interrupts), 16-3

DM (Floating-Point Divide-By-Zero Mask),
2-15

DMAO1 (DMA Channel 0 Interrupt), 16-24
DMAT1I (DMA Channel 1 Interrupt), 16-24
DMACNT (DMA Count), 11-4, 11-5
DMAEXT (DMA Extend), 11-1

DMAWAIT (DMA Wait States), 11-1

DO (Integer Division Overflow Mask), 2-16
DRAMADDR (DRAM Address), 11-3, 11-4
DRM (DMA Request Mode), 11-2

DRQ (Data Request), 13-1, 15-1

DS (Floating-Point Divide By Zero
Sticky), 2-20

DSR (Data Set Ready), 14-1

DT (Floating-Point Divide By Zero
Trap), 2-19

DTR (Data Terminal Ready), 14-4
DW (Data Width), 11-2

DWO (Data Width, Bank 0), 8-1, 9-1
EFC (Exponent-Fraction Class), 18-29
EN (Enable), 11-2

FACK (Force ACK), 13-2

FBUSY (Force Busy), 13-2

FC (Funnel Shift Count), 2-17, 3-3

FER (Framing Error), 14-4

FF (Fast Float Select), 2-15

FRM (Floating-Point Round Mode), 2-15
FWT (Full Word Transfer), 13-1

FZ (Freeze), 5-5, 16-2, 16-8, 16-10, 16-11,
16-12to 16-13, 16-17, 17-11

|E (Interrupt Enable), 16-21, 16-23
IM (Interrupt Mask), 16-2

IN (Interrupt), 16-21, 16-23
INVERT (PIO Inversion), 12-2

IOEXTO (Input/Output Extend,
Region 0), 10-1

0PI (/O Port Interrupt), 16-24

IOWAITO (Input/Qutput Wait States,
Region 0), 10-1

IP (Interrupt Pending), 16-2

IRM14 through IRM8, 12-2

IRM15 (Interrupt Request Mode), 12-1
LEFTCNT (Left Margin Count), 15-3
LINECNT (Line Count), 15-3

LM (Large Memory), 8-1, 9-1

LOOP (Loopback), 14-1

LS (Load/Store), 16-19

LSI (Line Sync Invert), 15-2

M, 3-8

ML (Multiple Operation), 3-10, 16-12, 16-19

MO (Integer Muttiplication Overflow
Exception Mask), 2-16

MODE (Paraliel Port Mode), 13-2
MODE (Video Interface Mode), 15-2
N (Negative), 2-17 to 2-18

NM (Floating-Point Invalid Operation Mask),
2-15

NN (Not Needed), 3-9, 16-12, 16-17, 16-19

NS (Floating-Point Invalid Operation Sticky),
2-20

NT (Floating-Point Invalid Operation Trap),
2-19

OER (Overrun Error), 14-4
OPT, 3-8, 3-1210 3-14

OS (Operand Sign), 18-28

OV (Overflow), 16-21, 16-23
PCO (Program Counter), 16-9
PC1 (Program Counter 1), 16-9

INDEX 1-3

bits, continued

PC2 (Program Counter 2), 16-10
PDATA (Parallel Port Data), 13-4
PER (Parity Error), 14-4
PERADDR (Peripheral Address), 11-3
PGO (Page-Mode DRAM, Bank 0), 9-1
PHYBASE (Physical Base Address), 9-3
PIN (PIO Input), 12-2
PMODE (Parity Mode), 14-2
POEN (PIO Qutput Enable), 12-4
POUT bit (P10 Output), 12-2
PPI (Parallel Port Interrupt), 16-25
PRL (Processor Release Level), 2-28
PSI (Page Sync Invert), 15-2
PSIO (Page Sync Input/Output), 15-2
PSL (Page Sync Level), 15-2
QEN (Queue Enable), 11-3
RA, 3-8
RBorl, 3-8 to 3-9
RDATA (Receive Data), 14-5
RDR (Receive Data Ready), 14-3
REFRATE (Refresh Rate), 9-2, 9-8, 9-9
register field summary
peripheral registers, B-6 to B-10
special-purpose registers, A-7 to A-9

RM (Floating-Point Reserved Operand
Mask), 2-15

RMODE (Receive Mode), 14-2 to 14-3

RS (Floating-Point Reserved Operand
Sticky), 2-20

RSIE (Receive Status Interrupt), 14-2

RT (Floating-Point Reserved Operand Trap),

2-19
RW (Read/Write), 11-2

RXDI (Serial Port Receive Data Interrupt),
16-25

RXSI (Serial Port Receive Status Interrupt),

16-25

SB (Set Byte Pointer/Sign), 3-8, 3-12 to 3-13,

16-13
SC (Static-Column), 9-2
SDIR (Shift Direction), 15-2
SM (Supervisor Mode), 6-1, 16-2
ST (Set), 16-19
STB (PSTROBE Level), 13-3
STP (Stop Bits), 14-2

TCV (Timer Count Value), 16-21, 16-22,
16-23

TD (Timer Disable), 16-1, 16-21

TDATA (Transmit Data), 14-4

TDELAY (Transfer Delay), 13-1
TDELAYV (TDELAY Counter Value), 13-3
TE (Trace Enable), 16-2, 17-1

TEMT (Transmitter Empty), 14-3

THRE (Transmit Holding Register Empty),
14-3

TMODE (Transmit Mode), 14-2
TOPCNT (Top Margin Count), 15-3
TP (Trace Pending), 16-2, 17-1

TR (Target Register), 3-10, 16-19
TRA (Transfer Active), 13-2

TRV field (Timer Reload Value), 16-21,
16-22, 16-23

TTE (TDMA Terminate Enable), 11-2
TTI (TDMA Terminate Interrupt), 11-3

TU (Trap Unaligned Access), 3-13 to 3-14,
16-2

TXDI (Serial Port Transmit Data Interrupt),
16-25

UD (Transfer Up/Down), 11-2

UM (Floating-Point Underflow Mask), 2-15
US (Floating-Point Underflow Sticky), 2-20
UT (Floating-Point Underflow Trap), 2-19
V (Overflow), 2-17 to 2-18

VAB (Vector Area Base), 16-5

VALID (Valid Mapping), 9-3

VDATA (Video Data), 15-4

VDI (Video Interrupt), 16-24

VIDI (Video Invert), 15-2

VIRTBASE (Virtual Base), 9-3

VM (Floating-Point Overflow Mask), 2-15
VS (Floating-Point Overflow Sticky), 2-20
VT (Floating-Point Overflow Trap), 2-19
WLGN (Word Length), 14-2

WM (Wait Mode), 16-2

WSO (Wait States, Bank 0), 8-1 to 8-2

XM (Floating-Point Inexact Result
Mask), 2-15

XS (Floating-Point Inexact Result
Sticky), 2-20

XT (Floating-Point Inexact Result
Trap), 2-19

Z (Zero), 2-17 to 2-18

14

INDEX

Boolean data, 3-4 to 3-5
BOOTW signal
definition of, 7-3
role in Reset mode, 2-28 to 2-29
setting width of boot ROM, 8-2 to 8-3
boundary scan cells
description of, 17-4 to 17-5
input cell (figure), 17-4
order of, in boundary scan path, 17-7
output cell (figure), 17-5
boundary scan instruction
altering general-purpose registers, 17-15

inspecting general-purpose registers, 17-14
to 17-15

Boundary Scan Register (BSR), 17-4
BP field (Byte Pointer)
ALU Status Register, 2-17
byte and half-word addressing, 3-12
Byte Pointer Register, 3-3
branch instructions
CALL (Call Subroutine), 18-26
CALLI (Call Subroutine, Indirect), 18-27
JMP (Jump), 18-79
JMPF (Jump False), 18-80

JMPFDEC (Jump False and Decrement),
18-81

JMPFI (Jump False Indirect), 18-82
JMPI (Jump Indirect), 18-83
JMPT (Jump True), 18-84
JMPTI (Jump True Indirect), 18-85
overview, 2-6
table of, 2-8
breakpoints
using assert instructions, 17-2

using HALT instruction, 17-1 to 17-2, 17-15
to 17-16

BRK bit (Send Break), 14-1

BRKI bit (Break Interrupt), 14-4

BRS bit (BUSY Relationship to STROBE), 13-2
BSTO bit (Burst-Mode ROM, Bank 0), 8-1

BSY bit (PBUSY Level), 13-3

burst-mode ROM accesses, 1-6, 8-3, 8-6
BURST signal, 7-3

BYPASS instruction, 17-7

BYPASS path, 17-8

byte and half-word accesses
description of, 3-12 to 3-13

location of bytes and half-words on 16-bit
bus, 9-5

sixteen-bit DRAM width, 9-5 to 9-6
byte and half-word addressing
alignment of instructions, 3-14

alignment of words and half-words, 3-13
to 3-14

description of, 3-12
Byte Count bit. See BCT bit (Byte Count)
Byte Pointer (BP, Register 133)

BP field (Byte Pointer), 3-3

description of, 3-2 to 3-3
Byte Pointer field. See BP field (Byte Pointer)

C bit (Carry)
ALU Status Register, 2-17

arithmetic operation status results, 2-17
to 2-18

lightweight interrupt processing, 16-13

multiprecision integer operations, 2-25
o0 2-26

CALL instruction
description of, 18-26
large jump and call ranges, 2-26

CALLI (Call Subroutine, Indirect) instruction,
18-27

calls. See also procedure linkage
delayed branches, 5-2 to 5-4
large jump and call ranges, 2-26
operating-system calls, 2-25

capacitance, C-9

Carry bit. See C bit (Carry)

CAS(3-0) signal, 7-3

CHA bit (Channel Address), 16-18

Channel Address (CHA, Register 4)
CHA bit (Channel Address), 16-18
description of, 16-18
storage of intermediate addresses, 3-10

Channel Control (CHC, Register 6)

CR field (Load/Store Count Remaining),
16-19

CV bit (Contents Valid), 3-10, 16-19
description of, 16-19
LS bit (Load/Store), 16-19

INDEX 1-5

Channel Control (CHC, Register 6), continued
ML bit (Multiple Operation), 3-10, 16-19
NN bit (Not Needed), 3-9, 16-19
ST bit (Set), 16-19
TR field (Target Register), 3-10, 16-19

Channel Data (CHD, Register 5)

CHD bit (Channel Data), 16-18
description of, 16-18
multiple data accesses, 3-10 to 3-11

character data, 3-1 to 3-2
CPBYTE instruction, 3-2
description of, 3-1 to 3-2
EXBYTE instruction, 3-1
format of, 3-1
INBYTE instruction, 3-1

character-strings
alignment of bytes within words, 3-4
detection of characters within words, 3-4
overview, 3-4

CHD bit (Channel Data), 16-18

CLASS (Classify Floating-Point Operand)
instruction, 18-28 to 18-29

CLKDIV bit (Clock Divide), 15-1
CLKI bit (Clock Invert), 15-2
clock signals
INCLK, 7-1
MEMCLK, 7-1
TCK, 7-6
UCLK, 7-5
VCLK, 7-5
CLZ (Count Leading Zeros) instruction, 18-30
CNTL field
boundary scan cells, 17-4
Halt Mode, 17-10to 17-11, 17-15to 17-16

inspecting internal state via boundary scan,
17-1410 17-15

Load Test Instruction mode, 17-12to 17-14
Step Mode, 17-11 to 17-12
use in debugging and testing, 17-2to 17-3
valid transitions (figure), 17-3

Column Address Strobe signal. See CAS(3-0)
signal

Compare Bytes instruction. See CPBYTE
(Compare Bytes) instruction

compare instructions
ASEQ (Assert Equal To), 18-16

ASGE (Assert Greater Than or Equal To), 18-
17

ASGEU (Assert Greater Than or Equal To,
Unsigned), 18-18

ASGT (Assert Greater Than), 18-19

ASGTU (Assert Greater Than, Unsigned), 18-
20

ASLE (Assert Less Than or Equal To), 18-21

ASLEU (Assert Less Than or Equal To,
Unsigned), 18-22

ASLT (Assert Less Than), 18-23

ASLTU (Assert Less Than, Unsigned), 18-24
ASNEQ (Assert Not Equal To), 18-25
CPBYTE (Compare Bytes), 3-2, 3-4, 18-36
CPEQ (Compare Equal To), 18-37

CPGE (Compare Greater Than or Equal To),
18-38

CPGEU (Compare Greater Than or Equal To,
Unsigned), 18-39

CPGT (Compare Greater Than), 18-40

CPGTU (Compare Greater Than, Unsigned),
18-41

CPLE (Compare Less Than or Equal To),
18-42

CPLEU (Compare Less Than or Equal To,
Unsigned), 18-43

CPLT (Compare Less Than), 18-44

CPLTU (Compare Less Than, Unsigned),
18-45

CPNEQ (Compare Not Equal To), 18-46
overview, 2-1

table of, 2-3

types of, 2-1

compatibility of 29K Family of processors,
1-4t0 1-5

complementing a Boolean, 2-26
Configuration (CFG, Register 3)
description of, 2-28
PRL field (Processor Release Level), 2-28
connection diagram, C-3
CONST (Constant) instruction
description of, 18-31
generation of large constants, 3-5
large jump and call ranges, 2-26
constant instructions
available constants, 3-5
overview, 2-5
table of, 2-6

INDEX

CONSTH (Constant, High) instruction
description of, 18-32
generation of large constants, 3-5
large jump and call ranges, 2-26
CONSTN (Constant, Negative) instruction
description of, 18-33
generation of large constants, 3-5
Contents Valid bit. See CV bit (Contents Valid)
control-flow terminology, 18-3
control signals in scan path. See CNTL field

CONVERT (Convert Data Format) instruction,
18-34t0 18-35

Count Leading Zeros (CLZ) instruction, 18-30

Count Remaining field. See CR field (Load/
Store Count Remaining)

Count Terminate Enable bit. See CTE bit
(Count Terminate Enable)

Count Terminate Interrupt bit. See CTI bit
(Count Terminate Interrupt)

CPBYTE (Compare Bytes) instruction
character data, 3-2
description of, 18-36
detection of characters within words, 3-4
CPEQ (Compare Equal To) instruction, 18-37

CPGE (Compare Greater Than or Equal To)
instruction, 18-38

CPGEU (Compare Greater Than or Equal To,
Unsigned) instruction, 18-39

CPGT (Compare Greater Than) instruction,
18-40

CPGTU (Compare Greater Than, Unsigned)
instruction, 18-41

CPLE (Compare Less Than or Equal To)
instruction, 18-42

CPLEU (Compare Less Than or Equal To,
Unsigned) instruction, 18-43

CPLT (Compare Less Than) instruction, 18-44

CPLTU (Compare Less Than, Unsigned)
instruction, 18-45

CPNEQ (Compare Not Equal To) instruction,
18-46

CPU Status signal. See STAT(2-0) signal
(CPU Status)

CR field (Load/Store Count Remaining)
Channel Control Register, 16-19
Load/Store Count Remaining Register, 3-11
multiple data accesses, 3-10 to 3-11

CTE bit (Count Terminate Enable), 11-3

CTI bit (Count Terminate Interrupt), 11-3
Current Processor Status (CPS, Register 2)
after interrupts or traps, 16-11
before interrupt return, 16-10
control of tracing, 17-1

DA bit (Disable All Interrupts and Traps),
16-3

delayed effects of registers, 5-5
description of, 16-1 to 16-3

DI bit {Disable Interrupts), 16-3

FZ bit (Freeze), 5-5, 16-2

IM bit (Interrupt Mask), 16-2

Reset mode, 2-29

SM bit (Supervisor Mode), 6-1, 16-2
TD bit (Timer Disable), 16-1

TE bit (Trace Enable), 16-2

TP bit (Trace Pending), 16-2

TU bit (Trap Unaligned Access), 3-13 to
3-14,16-2

WM bit (Wait Mode), 16-2
CV bit (Contents Valid)
Channel Control Register, 16-19
multiple access operations, 3-10
restarting mapped DRAM accesses, 16-17
returning from interrupts or traps, 16-12

DA bit (Disable All Interrupts and Traps), 16-3
DACK(1-0) signal

definition of, 7-4

DMA transfers, 11-6 to 11-7

DADD (Floating-Point Add, Double-Precision)
instruction, 18-47

Data Direction bit. See DDIR bit (Data Direction)
data formats, 1-6
data movement instructions

EXBYTE (Extract Byte), 18-61

EXHW (Extract Half-Word), 18-62

EXHWS (Extract Half-Word, Sign-Extended),

18-63

INBYTE (Insert Byte), 18-74

INHW (Insert Half-Word), 18-75

LOAD (Load), 18-86

LOADL (Load and Lock), 18-87

LOADM (Load Multiple), 18-88

LOADSET (Load and Set), 18-89

INDEX -7

data movement instructions, continued
MFSR (Move from Special Register), 18-90

MFTLB (Move from Translation Look-Aside
Buffer Register), 18-91

MTSR (Move To Special Register), 18-92

MTSRIM (Move to Special Register
Immediate), 18-93

MTTLB (Move to Translation Look-Aside
Buffer Register), 18-94

overview, 2-4
STORE, 18-110
STOREL (Store and Lock), 18-111
STOREM (Store Multiple), 18-112
table of, 2-5
Data Request bit. See DRQ bit (Data Request)

Data Set Ready bit. See DSR bit (Data Set
Ready)

Data Set Ready signal. See DSR signal

Data Terminal Ready bit. See DTR bit (Data
Terminal Ready)

Data Terminal Ready signal. See DTR signal
data types
floating-point data types

denormalized numbers, 3-7
double-precision floating-point values, 3-6
infinity, 3-7
Not-a-Number (NaN), 3-6 to 3-7
overview, 3-5

single-precision floating-point values, 3-5
to 3-6

special floating-point values, 3-6 to 3-7
zero, 3-7

integer data types, 3-1 to 3-5
bit strings, 3-3
Boolean data, 3-4 to 3-5
Byte Pointer Register, 3-2 to 3-3
character data, 3-1 to 3-2
character-string operations, 3-4
half-word operations, 3-2
instruction constants, 3-5

Data Width field. See DWO field (Data Width,
Bank 0)

DC characteristics, C-9

DDIR bit (Data Direction)
Parallel Port Control Register, 13-2
Video Control Register, 15-1

DDIV (Floating-Point Divide, Double-Precision)
instruction, 18-48

debugging and testing
control signals in scan path, 17-2to 1-3

hardware-development system, 17-10 to
17-16

accessing intemnal state via boundary scan,
17-14

altering state via boundary scan, 17-15
forcing outputs to high impedance, 17-16

HALT instruction as breakpoints, 17-15 to
17-16

Halt mode, 17-10to 17-11

inspecting state via boundary scan, 17-14 to
17-15

Load Test Instruction mode, 17-12to 17-14
Step mode, 17-11to0 17-12
instruction breakpoints, 17-1to 17-2
overview, 1-7to0 1-8
processor status outputs, 17-2
Test Access Port, 17-3 to 17-7
boundary scan cells, 17-4to 17-5
BYPASS instruction, 17-7
bypass path, 17-8
EXTEST instruction, 17-6
ICTEST1 instruction, 17-6 to 17-7
ICTEST1 path, 17-10
ICTEST? instruction, 17-7
ICTEST2 path, 17-10
instruction path, 17-7

Instruction Register and implemented
instructions, 17-5to0 17-7

INTEST instruction, 17-6
main data path, 17-8 to 17-9

order of scan cells in boundary scan
path, 17-7

SAMPLE instruction, 17-6
Trace Facility, 17-1
delayed branches, 5-2 to 5-4
denormalized numbers, 3-7

DEQ (Floating-Point Equal To, Double-
Precision) instruction, 18-49

DF bit (Divide Flag)
ALU Status Register, 2-17
lightweight interrupt processing, 16-13

DGE (Floating-Point Greater Than or Equal To,
Double-Precision) instruction, 18-50

DGT (Floating-Point Greater Than, Double-
Precision) instruction, 18-51

DHH bit (Disable Hardware Handshake), 13-2
DI bit (Disable Interrupts), 16-3

Disable All Interrupts and Traps. See DA bit
(Disable All Interrupts and Traps)

Divide Flag bit. See DF bit (Divide Flag)
division instructions, 2-20

DDIV (Floating-Point Divide, Double-
Precision), 18-48

DIV (Divide Step) instruction, 18-52
DIVO (Divide Initialize) instruction, 18-53

DIVIDE (Integer Divide, Signed) instruction,
2-13, 2-16, 18-54

DIVIDU (Integer Divide, Unsigned), 2-13,
2-16, 18-55

DIVL (Divide Last Step), 18-56
DIVREM (Divide Remainder), 18-57

FDIV (Floating-Point Divide, Single-
Precision), 18-66

not fully supported, 2-27
Q Register, 2-20
routines for performing division, 2-22 to 2-24

DM bit (Floating-Point Divide-By-Zero Mask),
2-15

DMA Channel 0 Interrupt bit. See DMAQO1 bit
(DMA Channel 0 Interrupt)

DMA Channel 1 Interrupt bit. See DMA11 bit
(DMA Channel 1 Interrupt)

DMA controller
DMA read cycle (figure), 11-6
DMA transfers, 11-5to 11-7
DMA write cycle (figure), 11-7

external random DRAM read cycle (figure),
119

external random DRAM write cycle (figure),
11-10

external random ROM read cycle (figure),
11-11

initialization, 9-3
overview, 1-3
programmabile registers

DMAOQ Address Register (DMADO, Address
80000034), 11-3

DMAO Address Tail Register (TADO, Address
80000036), 11-4

DMAO Control Register (DMCTO, Address
80000030), 11-1to 11-3

DMAO Control Register (DMCT1, Address
80000040), 11-5

DMAO Count Register (DMCNO, Address
80000038), 11-4

DMAO Count Tail Register (TCNO, Address
8000003A), 11-4t0 11-5

DMAT1 Address Register (DMAD1, Address
80000044), 11-5

DMA1 Count Register (DMCN1, Address
80000048), 11-5

queuing (DMA channel 0 only), 11-8

random DMA access by external devices, 11-8
to 11-11

signals
DACK(1-0), 7-4
DREQ(1-0), 7-4
GACK, 7-4
GREQ, 74
TDMA, 7-4

DMAQ Address Register (DMADO, Address
80000034)

description of, 11-3

DMA queuing, 11-8

DRAMADDR bit (DRAM Address), 11-3
PERADDR bit (Peripheral Address), 11-3

DMAO Address Tail Register (TADO, Address
80000036)

description of, 11-4
DMA queuing, 11-8
DRAMADDR bit (DRAM Address), 11-4

DMAO Control Register (DOMCTO, Address
80000030)

ACS bit (Assert Chip Select), 11-2

CTE bit (Count Terminate Enable), 11-3
CTI bit (Count Terminate Interrupt), 11-3
description of, 11-1to 11-3

DMA queuing, 11-8

DMAEXT bit (DMA Extend), 11-1
DMAWAIT bit (DMA Wait States), 11-1
DRM bit (DMA Request Mode), 11-2
DW bit (Data Width), 11-2

EN bit (Enable), 11-2

QEN bit (Queue Enable), 11-3

RW bit (Read/Write), 11-2

TTE bit (TDMA Terminate Enable), 11-2
TTI bit (TDMA Terminate Interrupt), 11-3
UD bit (Transfer Up/Down), 11-2

DMAQ Count Register (DMCNO, Address
80000038)

description of, 11-4

INDEX 1-9

DMAO Count Register (DMCNO, Address
80000038), continued

DMA queuing, 11-8
DMACNT bit (DMA Count), 11-4

DMAO Count Tail Register (TCNO, Address
8000003A)

description of, 11-4to 11-5
DMA queuing, 11-8
DMACNT bit (DMA Count), 11-5

DMA1 Address Register (DMAD1, Address
80000044), 11-5

DMAO1 bit (DMA Channel 0 Interrupt), 16-24

DMA1 Control Register (DMCT1, Address
80000040), 11-5

DMA1 Count Register (DMCN1, Address
80000048), 11-5

DMA11 bit (DMA Channel 1 Interrupt), 16-24
DMACNT bit (DMA Count)

DMAO Count Register, 11-4

DMAO Count Tail Register, 11-5
DMAEXT bit (DMA Extend), 11-1
DMAWAIT bit (DMA Wait States), 11-1

DMUL (Floating-Point Multiply, Double-
Precision) instruction, 18-58

DO bit (Integer Division Overflow Mask), 2-16
documentation
29K Family documentation, P-5
overview, P-3 to P-4
related publications, P-6
double-precision floating-point values
description of, 3-6
format of, 3-6
DRAM accesses, 9-4 to 9-10
address multiplexing, 9-4 to 9-5
DRAM address mapping, 9-4
DRAM page-mode read cycle (figure), 9-8
DRAM page-mode write cycle (figure), 9-9
DRAM read cycle (figure), 9-7
DRAM refresh, 9-8
DRAM refresh cycle (figure), 9-9
DRAM write cycle (figure), 9-7
mapped DRAM accesses, 9-6
normal access timing, 9-6
page-mode access timing, 9-6 to 9-7

restarting mapped DRAM acceses, 16-17 to
16-18

sixteen-bit DRAM width, 9-5

VDRAM transfer cycle (figure), 9-10
video DRAM interface, 9-10

DRAM Configuration Register (DRCF, Address
8000000C)

AMASKO field (Address Mask, Bank 0), 9-2
ASELO bit (Address Select, Bank 0), 9-2
description of, 9-2

DRAM Control Register (DRCT, Address
80000008)

description of, 9-1 to 9-2
DWO field (Data Width, Bank 0), 9-1
LM bit (Large Memory), 9-1
PGO bit (Page-Mode DRAM, Bank 0), 9-1
REFRATE bit (Refresh Rate), 9-2
SC bit (Static-Column), 9-2
DRAM controlier
initialization, 9-3
overview, 1-2, 1-7
programmable registers

DRAM Configuration Register (DRCF,
Address 8000000C), 9-2

DRAM Control Register (DRCT, Address
80000008), 9-1 to 9-2

DRAM Mapping Register 0 (DRMO,
Address 80000010), 9-3

DRAM Mapping Register 1 (DRM1,
Address 80000014), 9-3

DRAM Mapping Register 2 (DRM2,
Address 80000018), 9-3

DRAM Mapping Register 3 (DRM3,
Address 8000001C), 9-3

signals
CAS(3-0), 7-3
RAS(3-0), 7-3
TR/OE, 7-3
WE, 7-3

DRAM Mapping Register 0 (DRMO, Address
80000010)

description of, 9-3
PHYBASE bit (Physical Base Address), 9-3
VALID bit (Valid Mapping), 9-3
VIRTBASE bit (Virtual Base), 9-3

DRAM Mapping Register 1 (DRM1, Address
80000014), 9-3

DRAM Mapping Register 2 (DRM2, Address
80000018), 9-3

DRAM Mapping Register 3 (DRM3, Address
8000001C), 9-3

1-10 INDEX

DRAMADDR bit (DRAM Address)
DMAQ Address Register, 11-3
DMAO Address Tail Register, 11-4

DREQ(1-0) signal
definition of, 7-4
DMA transfers, 11-5, 11-7

DRM bit (DMA Request Mode), 11-2

DRQ bit (Data Request), 13-1, 15-1

DS bit (Floating-Point Divide By Zero
Sticky), 2-20

DSR bit (Data Set Ready), 14-1
DSR signal, 7-5

DSUB (Floating-Point Subtract, Double-
Precision) instruction, 18-59

DT bit (Floating-Point Divide By Zero Trap),
2-19

DTR bit (Data Terminal Ready), 14-4
DTR signal, 7-5
DW bit (Data Width), 11-2
DWO field (Data Width, Bank 0)
DRAM Control Register, 9-1
ROM Control Register, 8-1
dynamic parent, 4-13

EFC field (Exponent-Fraction Class), 18-29

EMULATE (Trap to Software Emulation
Routine) instruction

description of, 18-60
setting of indirect pointers, 2-13

EN bit (Enable), 11-2

epilogue. See procedure epilogue

EXBYTE (Extract Byte) instruction
Byte Pointer (BP, Register 133), 3-2
character data, 3-1
description of, 18-61

exception reporting and restarting
Channel Address Register, 16-18
Channel Control Register, 16-18 to 16-19
Channel Data Register, 16-18
correcting out-of-range results, 16-20

exceptions during interrupt and trap handling,

16-21
floating-point exceptions, 16-20
instruction exceptions, 16-16 to 16-17
integer exceptions, 16-19 to 16-20
overview, 16-16

restarting mapped DRAM accesses, 16-17 to
16-18

EXHW (Extract Half-Word) instruction
Byte Pointer Register, 3-2
description of, 18-62
half-word operations, 3-2

EXHWS (Extract Half-Word, Sign-Extended)
instruction

Byte Pointer Register, 3-2
description of, 18-63
half-word operations, 3-2

external data accesses, 3-7 to 3-14
addressing and alignment, 3-12 to 3-14
alignment of instructions, 3-14

alignment of words and half-words, 3-13 to
3-14

byte and half-word accesses, 3-12 to 3-13
byte and half-word addressing, 3-12

load operations, 3-9

Load/Store Count Remaining Register, 3-11
load/store instruction format, 3-7 to 3-9
movement of large data blocks, 3-11 to 3-12
multiple accesses, 3-9 to 3-11

option bits, 3-12

random DMA access by external devices,
11-8to 11-11

restarting mapped DRAM accesses, 16-17 to
16-18

store operations, 3-9
external interrupts and traps, 16-3 to 16-4

External Memory Grant Acknowledge signal.
See GACK signal

External Memory Grant Request signal. See
GREQ signal

EXTEST instruction, 17-6

Extract Byte instruction. See EXBYTE (Extract
Byte) instruction

EXTRACT (Extract Word, Bit-Aligned)
instruction

bit strings, 3-3

description of, 18-64

Funnel Shift Count Register, 3-3

movement of large data blocks, 3-11 to 3-12
operating on double-word data, 2-4

use of FC field, 2-17

Extract Half-Word instruction. See EXHW
(Extract Half-Word) instruction

INDEX §-11

FACK bit (Force ACK), 13-2

FADD (Floating-Point Add, Single-Precision)
instruction, 18-65

FBUSY bit (Force Busy), 13-2

FC bit (Funnel Shift Count)
alignment of bytes within words, 3-4
ALU Status Register, 2-17
Funnel Shift Count Register, 3-3

FDIV (Floating-Point Divide, Single-Precision)
instruction, 18-66

FDMUL (Floating-Point Multiply, Double-
Precision) instruction, 18-67

FEQ (Floating-Point Equal To, Single-Precision)
instruction, 18-68

FER bit (Framing Error), 14-4

FF bit (Fast Float Select), 2-15

FGE (Floating-Point Greater Than or Equal To,
Single-Precision) instruction, 18-69

FGT (Floating-Point Greater Than, Single-
Precision) instruction, 18-70

fields. See bits

fill handlers, 4-11

floating-point data types, 3-5 to 3-7
denormalized numbers, 3-7
double-precision floating-point values, 3-6
infinity, 3-7
Not-a-Number (NaN), 3-6 to 3-7
overview, 3-5

single-precision floating-point values, 3-5
t0o 3-6

special floating-point values, 3-6 to 3-7
zero, 3-7
Floating-Point Environment (FPE, Register 160)
description of, 2-14 to 2-15
DM bit (Floating-Point Divide-By-Zero), 2-15
FF bit (Fast Float Select), 2-15
floating-point status results, 2-18
FRM field (Floating-Point Round Mode), 2-15

NM bit (Floating-Point Invalid Operation
Mask), 2-15

not implemented in processor hardware, 2-12

RM bit (Floating-Point Reserved Operand
Mask), 2-15

sticky status bits, 2-18

trap status bits, 2-18

UM bit (Floating-Point Underflow Mask), 2-15
virtual register support, 2-27

VM bit (Floating-Point Overflow Mask), 2-15

XM bit (Floating-Point Inexact Result Mask),
2-15
floating-point exceptions, 16-20
floating-point instructions

CLASS (Classify Floating-Point Operand),
18-28 to 18-29

CONVERT (Convert Data Format), 18-34 to
18-35

DADD (Floating-Point Add, Double-
Precision), 18-47

DDIV (Floating-Point Divide, Double-
Precision), 18-48

DEQ (Floating-Point Equal To, Double-
Precision), 18-49

DGE (Floating-Point Greater Than or Equal
To, Double-Precision) instruction, 18-50

DGT (Floating-Point Greater Than, Double-
Precision) instruction, 18-51

DMUL (Floating-Point Multiply, Double-
Precision), 18-58

DSUB (Floating-Point Subtract, Double-
Precision), 18-59

FADD (Floating-Point Add, Single-Precision)
instruction, 18-65

FDIV (Floating-Point Divide, Single-Precision)
instruction, 18-66

FDMUL (Floating-Point Multiply, Double-
Precision) instruction, 18-67

FEQ (Floating-Point Equal To, Single-
Precision) instruction, 18-68

FGE (Floating-Point Greater Than or Equal
To, Single-Precision) instruction, 18-69

FGT (Floating-Point Greater Than, Single-
Precision) instruction, 18-70

FMUL (Floating-Point Multiply, Single-
Precision) instruction, 18-71

FSUB (Floating-Point Subtract, Single-
Precision), 18-72

overview, 2-5

SQRT (Floating-Point Square Root), 18-107
status results, 2-18

table of, 2-7

Floating-Point Status (FPS, Register 162), 2-18
to 2-20

description of, 2-18 to 2-20

DS bit (Floating-Point Divide By Zero Sticky),
2-20

DT bit (Floating-Point Divide By Zero Trap),
2-19

not implemented in processor hardware, 2-12

1-12 INDEX

Floating-Point Status (FPS, Register 162)

NS bit (Floating-Point Invalid Operation
Sticky), 2-20

NT bit (Floating-Point Invalid Operation
Trap), 2-19

RS bit (Floating-Point Reserved Operand
Sticky), 2-20

RT bit (Floating-Point Reserved Operand
Trap), 2-19

sticky status bits, 2-19

trap status bits, 2-19

US bit (Floating-Point Underflow Sticky), 2-20
UT bit (Floating-Point Underflow Trap), 2-19
virtual register support, 2-27

VS bit (Floating-Point Overflow Sticky), 2-20
VT bit (Floating-Point Overflow Trap), 2-19

XS bit (Floating-Point Inexact Result Sticky),
2-20
XT bit (Floating-Point Inexact Result Trap),
2-19
FMUL (Floating-Point Multiply, Single-Precision)
instruction, 18-71

Force ACK bit. See FACK bit (Force ACK)
Force Busy bit. See FBUSY bit (Force Busy)
frame pointer (fp), 4-5

Framing Error bit. See FER bit (Framing Error)
FRM bit (Floating-Point Round Mode), 2-15

FSUB (Floating-Point Subtract, Single-
Precision) instruction, 18-72

Full Word Transfer bit. See FWT bit (Full Word
Transfer)

Funnel Shift Count bit. See FC bit (Funnel Shift
Count)

Funnel Shift Count (FC, Register 134)
alignment of bytes within words, 3-4
description of, 3-3 to 3-4

FWT bit (Full Word Transfer), 13-1

FZ bit (Freeze)

Current Processor Status Register, 16-2
delayed effects of registers, 5-5
Halt mode, 17-11

lightweight interrupt processing, 16-12 to
16-13

restarting mapped DRAM accesses, 16-17
returning from interrupts or traps, 16-11
Step mode, 17-11

taking interrupts or traps, 16-8, 16-10

GACK signal
definition of, 7-4

random DMA access by external devices,
11-8to 11-11

general-purpose registers
altering state via boundary scan, 17-15
inspecting, 17-14t0 17-15
operands held by, 2-8, 2-10
organization of, 2-9, 6-1 to 6-2, A-1
overview, 2-8 to 2-10
register protection, 6-1 to 6-2
storing instruction results, 2-10
terminology for addressing, 2-10
using for source operands, 2-10
global registers
overview, 2-10
protecting from user-mode access, 2-10
return values, 4-10
shadow copy of Global Register 1, 2-11
spill handling, 4-10
Stack Pointer contained in, 2-10, 4-4
static link pointer, 4-13
unimplemented registers (2 through 63), 2-10
GREQ signal
definition of, 7-4
forcing outputs to high impedance, 17-16

random DMA access by external devices,
11-8to 11-11

half-word accesses. See byte and half-word
accesses

half-word addressing. See byte and half-word
addressing

half-word data

EXHW (Extract Half-Word) instruction, 3-2,
18-62

EXHWS (Extract Half-Word, Sign-Extended)
instruction, 3-2, 18-63

format of, 3-2

INHW (Insert Half-Word) instruction, 3-2, 18-75

instructions for processing, 3-2
HALT (Enter Halt Mode) instruction

description of, 18-73

used for breakpointing, 17-1, 17-15t0 17-16
Halt mode

altering general-purpose registers, 17-15

INDEX 1-13

Halt mode, continued
for debugging and testing, 17-10 to 17-11

inspecting general-purpose registers, 17-14
to 17-15

hardware-development system. See debugging
and testing

I/O port. See programmable I/O port

I/O Port Interrupt bit. See IOPI bit (/O Port
Interrupt)

ICTEST1 instruction, 17-6t0 17-7,17-14t0 17-16
ICTEST1 path, 17-10
ICTEST2 instruction, 17-7, 17-14 to 17-16
ICTEST2 path, 17-10
ID(7-0) or ID(15-0) signal, 11-6
ID(31-0) signal, 7-1
IE bit (Interrupt Enable)
description of, 16-23
overview, 16-21
lilegal Opcode trap, 17-2
IM bit (Interrupt Mask), 16-2
IN bit (Interrupt)
Timer Facility operation, 16-21
Timer Reload Register, 16-23
INBYTE (Insert Byte) instruction
character data, 3-1, 3-2
description of, 18-74
INCLK signal (Input Clock)
boundary scan cell and, 17-5
definition of, 7-1
video interface operation, 15-4
Indirect Pointer A (IPA, Register 129),2-13t02-14
Indirect Pointer B (IPB, Register 130), 2-14
Indirect Pointer C (IPC, Register 128), 2-13
indirect pointers
checked for bank-protection violations, 2-13
containing absolute-register numbers, 2-13
delayed effects of registers, 5-5
set by certain instructions, 2-13
using as source of register number, 2-10
infinity, 3-7
INHW (Insert Half-Word) instruction
description of, 3-2, 18-75
half-word operations, 3-2
initialization. See also processor initialization
DMA controller, 9-3

internal interrupt controller, 16-25
parallel port, 13-4

Peripheral Interface Adapter (PIA), 10-2
programmable I/O port, 12-4

ROM controller, 8-2 to 8-3

serial port, 14-5

Timer Facility, 16-22

video interface, 15-4

Input/Output Extend bit. See IOEXTO bit (Input/
Output Extend, Region 0)

Input/Output Wait States bit. See IOWAITO bit
(Input/Output Wait States, Region 0)

Insert Byte instruction. See INBYTE (Insert
Byte) instruction

Insert Half-Word instruction. See INHW (Insert
Half-Word) instruction

instruction breakpoints, 17-1 to 17-2

instruction constants, 3-5

Instruction/Data Bus signal. See ID(31-0) signal
Instruction Fetch Unit, 16-7

instruction path, 17-7

Instruction Register (IREG) of Test Access Port,
17-5t0 17-7

instruction scheduling. See pipelining
instruction set
ADD, 18-8
ADDC (Add with Carry), 18-9
ADDCS (Add with Carry, Signed), 18-10
ADDCU (Add with Carry, Unsigned), 18-11
ADDS (Add, Signed), 18-12
ADDU (Add, Unsigned), 18-13
aligment of instructions, 3-14
AND (AND Logical), 18-14
ANDN (AND-NOT Logical), 18-15
arithmetic instructions, 2-1, 2-2
arithmetic operation status results, 2-17t0 2-18
ASEQ (Assert Equal To), 18-16

ASGE (Assert Greater Than or Equal To),
18-17

ASGEU (Assert Greater Than or Equal To,
Unsigned), 18-18

ASGT (Assert Greater Than), 18-19

ASGTU (Assert Greater Than, Unsigned),
18-20

ASLE (Assert Less Than or Equal To), 18-21

ASLEU (Assert Less Than or Equal To,
Unsigned), 18-22

ASLT (Assert Less Than), 18-23

14

INDEX

instruction set, continued

ASLTU (Assert Less Than, Unsigned), 18-24
ASNEQ (Assert Not Equal To), 18-25
assembler syntax, 18-3 to 18-4

assert instructions, 2-1, 2-4, 2-25, 16-13, 17-2
branch instructions, 2-6

CALL (Call Subroutine), 2-26, 18-26

CALLI (Call Subroutine, Indirect), 18-27

CLASS (Classify Floating-Point Operand),
18-28 to 18-29

CLZ (Count Leading Zeros), 18-30
compare instructions, 2-1, 2-3

CONST (Constant), 2-26, 3-5, 18-31
constant instructions, 2-5, 2-6

CONSTH (Constant, High), 2-26, 3-5, 18-32
CONSTN (Constant, Negative), 3-5, 18-33
control-flow terminology, 18-3

CONVERT (Convert Data Format), 18-34 to
18-35

CPBYTE (Compare Bytes), 3-2, 3-4, 18-36
CPEQ (Compare Equal To), 18-37

CPGE (Compare Greater Than or Equal To),
18-38

CPGEU (Compare Greater Than or Equal
To, Unsigned), 18-39

CPGT (Compare Greater Than), 18-40

CPGTU (Compare Greater Than, Unsigned),
18-41

CPLE (Compare Less Than or Equal To),
18-42

CPLEU (Compare Less Than or Equal To,
Unsigned), 18-43

CPLT (Compare Less Than), 18-44

CPLTU (Compare Less Than, Unsigned),
18-45

CPNEQ (Compare Not Equal To), 18-46

DADD (Floating-Point Add, Double-
Precision), 18-47

data movement instructions, 2-4, 2-5

DDIV (Floating-Point Divide, Double-
Precision), 18-48

DEQ (Floating-Point Equal To, Double-
Precision), 18-49

DGE (Floating-Point Greater Than or Equal
To, Double-Precision), 18-50

DGT (Floating-Point Greater Than, Double-
Precision), 18-51

DIV (Divide Step), 18-52
DIVO (Divide Initialize), 18-53

DIVIDE (Integer Divide, Signed), 2-13, 2-16,
18-54

DIVIDU (Integer Divide, Unsigned), 2-13,
2-16, 18-55

DIVL (Divide Last Step), 18-56
DIVREM (Divide Remainder), 18-57

DMUL (Floating-Point Multiply, Double-
Precision), 18-58

DSUB (Floating-Point Subtract, Double-
Precision), 18-59

EMULATE (Trap to Software Emuylation
Routine), 2-13, 18-60

EXBYTE (Extract Byte), 3-1, 3-2, 18-61

exceptions, 16-16 to 16-17

EXHW (Extract Half-Word), 3-2, 18-62

EXHWS (Extract Half-Word, Sign-Extended),
3-2, 18-63

EXTRACT (Extract Word, Bit-Aligned), 2-4,
2-17,3-3, 3-11, 18-64

FADD (Floating-Point Add, Single-Precision),
18-65

FDIV (Floating-Point Divide, Single-
Precision), 18-66

FDMUL (Floating-Point Multiply, Double-
Precision), 18-67

FEQ (Floating-Point Equal To, Single-
Precision), 18-68

FGE (Floating-Point Greater Than or Equal
To, Single-Precision), 18-69

FGT (Floating-Point Greater Than, Single-
Precision), 18-70

floating-point instructions, 2-5
floating-point status results, 2-18

FMUL (Floating-Point Multiply, Single-
Precision), 18-71

frequently occurring field uses, 18-6

FSUB (Floating-Point Subtract, Single-
Precision), 18-72

HALT (Enter Halt Mode), 17-1, 17-15 to
17-16, 18-73

INBYTE (Insert Byte), 3-1, 3-2, 18-74

index by operation code, 18-127 to 18-129
INHW (Insert Half-Word), 3-2, 18-75
instruction formats, 18-4 to 18-6

INV (Invalidate), 2-6, 18-76

IRET (Interrupt Return), 16-11, 16-17, 18-77

IRETINV (Interrupt Retum and Invalidate),
2-6, 16-11, 16-17, 18-78

JMP (Jump), 18-79
JMPF (Jump False), 18-80

INDEX 1-15

instruction set, continued

JMPFDEC (Jump False and Decrement),
18-81

JMPFI (Jump False Indirect), 18-82
JMPI (Jump Indirect), 18-83

JMPT (Jump True), 18-84

JMPTI (Jump True Indirect), 18-85
LOAD (Load), 18-86

LOADL (Load and Lock), 2-4, 3-9, 18-87

LOADM (Load Multiple), 3-9 to 3-10, 9-6,
17-12, 18-88

LOADSET (Load and Set), 3-9, 18-89
logical instructions, 2-4
logical operation status results, 2-18

MFSR (Move from Special Register), 2-7,
2-27,18-90

MFTLB (Move from Translation Look-Aside
Buffer Register), 2-5, 18-91

miscellaneous instructions, 2-6

MTSR (Move To Special Register), 2-7, 2-13,
2-17, 2-19, 2-27, 18-92

MTSRIM (Move to Special Register
Immediate), 2-7, 2-13, 2-19, 18-93

MTTLB (Move to Translation Look-Aside
Buffer Register), 2-5, 18-94

MUL (Multiply Step), 18-95
MULL (Muttiply Last Step), 18-96

MULTIPLU (Integer Multiply, Unsigned),
2-13, 1897

MULTIPLY (Integer Multiply, Signed), 2-13,
18-98

MULTM (Integer Multiply Most-significant
Bits, Signed), 2-13, 18-99

MULTMU (Integer Multiply Most-Significant
Bits, Unsigned), 2-13, 18-100

MULU (Multiply Step, Unsigned), 18-101
NAND (NAND Logical), 18-102

NOR (NOR Logical), 18-103

operand notation and symbols, 18-1 to 18-2
operator symbols, 18-2 to 18-3

OR (OR Logical), 18-104

overview, 1-6, 2-1

reserved instructions, 2-6

SETIP (Set Indirect Pointers), 2-13, 18-105
shift instructions, 2-4

SLL (Shift Left Logical), 18-106

SQRT (Floating-Point Square Root), 18-107

SRA (Shift Right Arithmetic), 18-108

SRL (Shift Right Logical), 18-109

status results, 2-16 to 2-20

STORE (Store), 3-9, 18-110

STOREL (Store and Lock), 2-4, 3-9, 18-111

STOREM (Store Multiple), 3-9 to 3-10, 9-6,
17-12,18-112

SUB (Subtract), 18-113
SUBC (Subtract with Carry), 18-114
SUBCS (Subtract with Carry, Signed), 18-115

SUBCU (Subtract with Carry, Unsigned),
18-116

SUBR (Subtract Reverse), 18-117

SUBRC (Subtract Reverse with Carry),
18-118

SUBRCS (Subtract Reverse with Carry,
Signed), 18-119

SUBRCU (Subtract Reverse with Carry,
Unsigned), 18-120

SUBRS (Subtract Reverse, Signed), 18-121

SUBRU (Subtract Reverse, Unsigned),
18-122

SUBS (Subtract, Signed), 18-123
SUBU (Subtract, Unsigned), 18-124
terminology for, 18-3

traps associated with, 16-16to 16-17
XNOR (Exclusive-NOR Logical), 18-125
XOR (Exclusive-OR Logical), 18-126

integer arithmetic instructions. See arithmetic

instructions

integer data types

bit strings, 3-3

Boolean data, 3-4 to 3-5

Byte Pointer (BP, Register 133), 3-2 to 3-3

character data, 3-1 to 3-2

character-string operations
alignment of bytes within words, 3-4
detection of characters within words, 3-4
overview, 3-4

half-word operations, 3-2

instruction constants, 3-5

integer division instructions. See division

instructions

Integer Environment (INTE, Register 161)

description of, 2-16

DO bit (Integer Division Overflow Mask),
2-16

1-16 INDEX

Integer Environment, continued

MO bit (Integer Multiplication Overflow
Exception Mask), 2-16

not implemented in processor hardware, 2-12
virtual register support, 2-27

integer exceptions, 16-19 to 16-20

integer multiplication instructions. See
multiplication instructions

internal interrupt controller. See interrupt
controller

internal peripherals

address assignments, 7-7, 7-8

internal peripherals and controllers, 7-7 to 7-8
intemal state

accessing via boundary scan, 17-14

inspecting via boundary scan, 17-14to 17-15
interrupt bit. See IN bit (Interrupt)

Interrupt Control Register (ICT, Address
80000028)

description of, 16-24 to 16-25

DMAO1 bit (DMA Channel 0 Interrupt), 16-24
DMAT1I bit (DMA Channel 1 Interrupt), 16-24
IOPI bit (I/O Port Interrupt), 16-24

PPI bit (Parallel Port Interrupt), 16-25

RXDI bit (Serial Port Receive Data Interrupt),
16-25

RXSI bit (Serial Port Receive Status
Interrupt), 16-25

TXDI bit (Serial Port Transmit Data Interrupt),
16-25

VDI bit (Video Interrupt), 16-24
interrupt controller
initialization, 16-25
Interrupt Control Register (ICT, Address
80000028), 16-24 to 16-25
overview, 1-3, 16-24
servicing internal interrupts, 16-25
Interrupt Enable bit. See IE bit (Interrupt
Enable)
Interrupt Mask bit. See IM bit (Interrupt Mask)
Interrupt Request Mode bit. See IRM15 bit
(Interrupt Request Mode)
Interrupt Requests 3-0 signal. See INTR(3-0)
signal
Interrupt Return and Invalidate instruction. See

IRETINV (Interrupt Return and Invalidate)
instruction

Interrupt Return instruction. See IRET (Interrupt
Return) instruction

interrupts and traps. See also traps

Current Processor Status Register
after interrupt or trap, 16-11
before interrupt return, 16-12
description of, 16-1 to 16-3

exception reporting and restarting
Channel Address Register, 16-18
Channel Control Register, 16-18 to 16-19
Channel Data Register, 16-18
correcting out-of-range results, 16-20

exceptions during interrupt and trap
handling, 16-21

floating-point exceptions, 16-20
instruction exceptions, 16-16 to 16-17
integer exceptions, 16-19 to 16-20
overview, 16-16

restarting mapped DRAM accesses, 16-17
to 16-18

external interrupts and traps, 16-3 to 16-4
interrupts, 16-3
interrupts compared with traps, 16-1

lightweight interrupt processing, 16-12 to
16-13

Old Processor Status Register, 16-7
overview, 1-7, 16-1

priority table, 16-15

Program Counter stack, 16-7 to 16-9
Program Counter Unit, 16-7, 16-8

returning from interrupts or traps, 16-11 to
16-12

sequencing of interrupts and traps, 16-14 to
16-16

simulation of interrupts and traps, 16-13
taking interrupts or traps, 16-10
Timer Facility
handling timer interrupts, 16-22
initializing, 16-22
overview, 16-21
Timer Counter Register, 16-22 to 16-23
Timer Reload Register, 16-23
uses for, 16-22
traps, 16-3
Vector Area, 16-4 to 16-5
Vector Area Base Address Register, 16-5
vector numbers, 16-5 to 16-7
Wait mode, 16-4
WARN input, 16-14
WARN trap, 16-14

INDEX I1-17

INTEST instruction, 17-6
INTR(3-0) signal

definition of, 7-2

external interrupts and traps, 16-3 to 16-4
INV (Invalidate) instruction

description of, 18-76

provided for compatibility, 2-6
INVERT bit (PIO Inversion), 12-2
IOEXTO bit (Input/Output Extend, Region 0), 10-1
IOP! bit (VO Port Interrupt), 16-24

IOWAITO bit (Input/Output Wait States,
Region 0), 10-1

IP bit (Interrupt Pending), 16-2

IPA. See Indirect Pointer A (IPA Register 129)
IPB. See Indirect Pointer B (IPB Register 130)
IPC. See Indirect Pointer C (IPC Register 128)

IREG (Instruction Register) of Test Access Port,
17-5t0 17-7

IRET (Interrupt Retum) instruction
description of, 18-77
restarting mapped DRAM accesses, 16-17

returning from interrupts and traps, 16-11 to
16-12

IRETINV (Interrupt Return and Invalidate)
instruction

description of, 18-78
provided for compatibility, 2-6
restarting mapped DRAM accesses, 16-17
returning from interrupts and traps, 16-11
IRM14 through IRM8 bit, 12-2
IRM15 bit (Interrupt Request Mode), 12-1

JTAG 1149.1 boundary scan interface

implementation in Test Access Port, 17-3
t0 17-7

overview, 1-7
signals
TCK, 7-6
TDI, 7-6
TDO, 7-6
TMS, 7-6
TRST, 7-6
jump instructions
JMP (Jump), 18-79
JMPF (Jump False), 18-80
JMPFDEC (Jump False and Decrement), 18-81

JMPFI (Jump False Indirect), 18-82

JMPI (Jump Indirect), 18-83

JMPT (Jump True), 18-84

JMPTI (Jump True Indirect), 18-85
jumps

delayed branches, 5-2 to 5-4

large jump and call ranges, 2-26

Large Memory bit. See LM bit (Large Memory)
large return pointer (Irp), 4-10, 4-14
leaf procedures

calling other procedures, 4-8

Register Stack leaf frame, 4-11
LEFTCNT bit (Left Margin Count), 15-3
lightweight interrupt processing, 16-12 to 16-13
Line Sync Invert bit. See LSI bit (Line Sync Invert)
Line Synchronization signal. See LSYNC signal
LINECNT bit (Line Count), 15-3
LM bit (Large Memory)

DRAM Control Register, 9-1

ROM Control Register, 8-1
LOAD (Load) instruction, 18-86

Load/Store Count Remaining bit. See CR field
(Load/Store Count Remaining)

Load/Store Count Remaining Register (CR,
Register 135)

CR bit (Load/Store Count Remaining), 3-10,
3-11
description of, 3-11
load/store instructions, 3-7 to 3-9
description of, 3-7 to 3-9
format of, 3-8
lightweight interrupt processing, 16-13
OPT bit (option), 3-8
overlapped loads and stores, 5-4 to 5-5
RA bit, 3-8
RB or | bit, 3-8 to 3-9
SB bit (Set Byte Pointer/Sign), 3-8
load/store operations
load operations, 3-9
multiple accesses, 3-9 to 3-11
store operations, 3-9
Load Test Instruction mode
accessing internal state, 17-14
debugging and testing, 17-12to 17-14

LOADL (Load and Lock) instruction
description of, 18-87
overview, 3-9
provided for compatibility, 2-4
LOADM (Load Multiple) instruction
description of, 18-88
multiple data accesses, 3-9 to 3-10
overview, 3-9 to 3-10
page-mode access timing, 9-6
Step mode, 17-12
LOADSET (Load and Set) instruction
description of, 18-89
overview, 3-9
local register stack pointer. See Stack Pointer
local registers, 2-11
obtaining absolute-register number, 2-11
overview, 2-11
stack caches for Register Stack, 4-4 to 4-5
local variables and memory-stack frames, 4-12
logic symbol (diagram), C-7
logical instructions
AND (AND Logical), 18-14
ANDN (AND-NOT Logical), 18-15
NAND (NAND Logical), 18-102
NOR (NOR Logical), 18-103
OR (OR Logical), 18-104
overview, 2-4
SLL (Shift Left Logical), 18-106
SRL (Shift Right Logical), 18-109
status results, 2-18
XNOR (Exclusive-NOR Logical), 18-125
XOR (Exclusive-OR Logical), 18-126
LOORP bit (Loopback), 14-1
LS bit (Load/Store), 16-19
LSl bit (Line Sync Invert), 15-2
LSYNC signal
definition of, 7-5
video interface operation, 15-4 to 15-6

M bit, 3-8

main data path, 17-8 to 17-9

mapped DRAM accesses, 9-6

MEMCLK signal (Memory Clock)
boundary scan cells, 17-5
definition of, 7-1

memory frame pointer (mfp), 4-12
Memory Stack
description of, 4-7

local variables and memory-stack frames,
4-12

prologues and epilogues for allocation, 4-12
storage allocation, 4-2

memory stack pointer (msp), 4-12, 4-14

MFSR (Move from Special Register) instruction
accessing special-purpose registers, 2-7

MFSR (Move from Special Register) instruction,
18-90

referencing virtual registers, 2-27

MFTLB (Move from Translation Look-Aside
Buffer Register), 18-91

provided for compatibility, 2-5
miscellaneous instructions
CLZ (Count Leading Zeros), 18-30

EMULATE (Trap to Software Emulation
Routine), 2-13, 18-60

HALT (Enter Halt Mode), 17-1, 17-15 to
17-16, 18-73

INV (Invalidate), 2-6, 18-76
IRET (Interrupt Retum), 16-11, 16-17, 18-77

IRETINV (Interrupt Return and Invalidate),
2-6, 16-11, 16-17, 18-78

overview, 2-6
SETIP (Set Indirect Pointers), 2-13, 18-105
table of, 2-8
ML bit (Multiple Operation)
description of, 16-19
functions of, 3-10
returning from interrupts or traps, 16-12

MO bit (Integer Multiplication Overflow
Exception Mask), 2-16

MODE bit (Parallel Port Mode), 13-2
MODE bit (Video Interface Mode), 15-2

Move To Special Register Inmediate
instruction. See MTSRIM (Move to Special
Register Immediate) instruction

Move To Special Register instruction. See
MTSR (Move To Special Register) instruction

movement instructions. See data movement
instructions

movement of large data blocks, 3-11 to 3-12
MTSR (Move To Special Register) instruction
accessing special purpose registers, 2-7
clearing of sticky status bits, 2-19

description of, 18-92

INDEX 1-19

MTSR instruction, continued
referencing virtual registers, 2-27
setting of BP field, 2-17
setting of indirect pointers, 2-13

MTSRIM (Move to Special Register Immediate)
instruction
accessing special purpose registers, 2-7
clearing of sticky status bits, 2-19
description of, 18-93
setting of indirect pointers, 2-13

MTTLB (Move to Translation Look-Aside Buffer
Register) instruction

description of, 18-94

provided for compatibility, 2-5
multiple data accesses

description of, 3-9 to 3-11

Load/Store Count Remaining (CR, Register
135), 3-11

movement of large data blocks, 3-11 to 3-12

Multiple Operation bit. See ML bit (Multiple
Operation)

multiplexing of addressing, 9-4 to 9-5
multiplication instructions, 2-20 to 2-22

DMUL (Floating-Point Multiply, Double-
Precision), 18-58

FDMUL (Floating-Point Multiply, Double-
Precision), 18-67

FMUL (Floating-Point Multiply, Single-
Precision), 18-71

MUL (Multiply Step), 18-95
MULL (Multiply Last Step), 18-96

MULTIPLU (Iinteger Multiply, Unsigned),
2-13, 18-97

MULTIPLY (Integer Multiply, Signed), 2-13,
18-98

MULTM (Integer Multiply Most-significant
Bits, Signed), 2-13, 18-99

MULTMU (Integer Multiply Most-Significant
Bits, Unsigned), 2-13, 18-100

MULU (Muttiply Step, Unsigned), 18-101
not fully supported, 2-27

routines for performing multiplication, 2-21 to
2-22

multiprecision integer operations, 2-25 to 2-26

N bit (Negative)
arithmetic operation status results, 2-17t0 2-18
logical operation status results, 2-18
purpose and use, 2-17

NaN

definition of, 3-6

quiet NaNs (QNaNs), 3-6 to 3-7

signaling NaNs (SNaNs), 3-6 to 3-7
NAND (NAND Logical) instruction, 18-102
narrow ROM accesses. See ROM accesses
Negative bit. See N bit (Negative)

NM bit (Floating-Point Invalid Operation Mask),
2-15

NN bit (Not Needed)
description of, 16-19
load operations, 3-9
restarting mapped DRAM accesses, 16-17
returning from interrupts or traps, 16-12
NO-OPs, 2-27, 5-3, 17-14
non-aligned accesses, 3-13 to 3-14
NOR (NOR Logical) instruction, 18-103
Not-a-Number. See NaN

NS bit (Floating-Point Invalid Operation Sticky),
2-20

NT bit (Floating-Point Invalid Operation Trap),
2-19

OER bit (Overrun Error), 14-4
Old Processor Status (OPS, Register 1)
control of tracing, 17-1
description of, 16-7
operand notation and symbols, 18-1 to 18-2
operating-system calls, 2-25
operator symbols, 18-2 to 18-3
OPT field (Option)
alignment of words and half-words, 3-13t0 3-14
byte and half-word accesses, 3-12to 3-13
definition of, 3-8
load/store operations, 3-12
OR (OR Logical) instruction, 18-104
OS bit (Operand Sign), 18-28
out-of-range results, correcting, 16-20
Out-of-Range trap, 16-20
OV bit (Overflow)
description of, 16-23
overview, 16-21
overflow, stack. See stack overflow

Overflow bit. See OV bit (Overflow); V bit
(Overflow)

overflow handling. See spill handler

1-20 INDEX

overlapped loads and stores, 5-4 to 5-5
Overrun Error bit. See OER bit (Overrun Error)

PACK Level bit. See ACK bit (PACK Level)
PACK signal

definition of, 7-5

parallel port transfers, 13-4, 13-6, 13-8
page-mode access timing

DRAM controller, 9-6

figure, 9-8, 99

overview, 1-6

Page-Mode DRAM bit. See PGO bit (Page-
Mode DRAM, Bank 0)

Page Sync Input/Output bit. See PSIO bit
(Page Sync Input/Output)

Page Sync Invert bit. See PSI bit (Page Sync
Invert)

Page Sync Level bit. See PSL bit (Page Sync
Level)

Page Synchronization signal. See PSYNC
signal

Parallel Data Register (PDR), 17-4
parallel port

initialization, 13-4

overview, 1-4

programmable registers

Parallel Port Control Register (PPCT,
Address 800000C0), 13-1 to 13-3

Parallel Port Data Register (PPDT,
Address 800000C4), 13-3 to 13-4

Parallel Port Status Register (PPST,
Address 800000C1), 13-3

signals
PACK, 7-5
PAUTOFD, 7-5
PBUSY, 75
POE, 7-5
PSTROBE, 7-4
PWE, 7-5
transfers, 13-4 to 13-10
from the host, 13-5to 13-7
overview, 13-4
to the host, 13-7 to 13-10

Parallel Port Control Register (PPCT, Address
800000C0)

AFD bit (Autofeed), 13-3

ARB bit (ACK Relationship to BUSY), 13-2 to
13-3

BRS bit (BUSY Relationship to STROBE),
13-2

DDIR bit (Data Direction), 13-2

description of, 13-1 to 13-3

DHH bit (Disable Hardware Handshake), 13-2

DRQ bit (Data Request), 13-1

FACK bit (Force ACK), 13-2

FBUSY bit (Force Busy), 13-2

FWT bit (Full Word Transfer), 13-1

MODE bit (Parallel Port Mode), 13-2

TDELAY bit (Transfer Delay), 13-1

TRA bit (Transfer Active), 13-2

Parallel Port Data Register (PPDT, Address
800000C4)

description of, 13-3 to 13-4
PDATA field (Parallel Port Data), 13-4

Parallel Port Interrupt bit. See PPI bit (Parallel
Port Interrupt)

Parallel Port Mode bit. See MODE bit (Parallel
Port Mode)

Parallel Port Status Register (PPST, Address
800000C1)

ACK bit (PACK Level), 13-3
BCT bit (Byte Count), 13-3
BSY bit (PBUSY Level), 13-3
description of, 13-3
STB bit (PSTROBE Level), 13-3
TDELAYYV bit (TDELAY Counter Value), 13-3
Parity Error bit. See PER bit (Parity Error)
Parity Mode bit. See PMODE bit (Parity Mode)
PAUTOFD signal
definition of, 7-5
parallel port transfers, 13-4 to 13-8
PBUSY Level bit. See BSY bit (PBUSY Level)
PBUSY signal
definition of, 7-5
parallel port transfers, 13-4 to 13-8
PC. See Program Counter
PC Buffer, 16-7
PC MUX, 16-7
PCO field (Program Counter), 16-9
PC1 field (Program Counter 1), 16-9
PC2 bits (Program Counter 2), 16-10
PDATA field (Parallel Port Data), 13-4
PER bit (Parity Error), 14-4

INDEX 1-21

PERADDR bit (Peripheral Address), 11-3
Peripheral Interface Adapter (PIA)
accesses, 10-2to 10-6
definition of, 10-2
extending I/O cycles with WAIT signal, 10-2

extending 1/0 cycles with WAIT signal
(figure), 10-5 to 10-6

normal access timing, 10-2
read cycle (figure), 10-3
write cycle (figure), 10-4
initialization, 10-2
overview, 1-3
programmable registers
PIA Control Register 0/1, 10-1
signals
PIACS(5-0), 7-3
PIACE, 7-4
PIAWE, 7-4
peripheral register summary
field summary, B-6 to B-10

on-chip peripheral registers (diagrams), B-1
to B-5

PGO bit (Page-Mode DRAM, Bank 0), 9-1
PHYBASE bit (Physical Base Address), 9-3
PIA. See Peripheral Interface Adapter (PIA)
PIA Control Register 0/1
IOE?)(T 0 bit (Input/Output Extend, Region 0),
10-1
IOWAITO bit (Input/Output Wait States,
Region 0), 10-1
PIACS(1-0) signal, 11-6
PIACS(5-0) signal, 7-3
PIAOE signal
definition of, 7-4
DMA transfers, 11-6
PIAWE signal
definition of, 7-4
DMA transfers, 11-6
PIN bit (PIO Input), 12-2

PIO Control Register (POCT, Address
800000D0)

description of, 12-1 to 12-2

INVERT bit (PO Inversion), 12-2

IRM14 through IRM8 bit, 12-2

IRM15 bit (Interrupt Request Mode), 12-1
PIO Input Register (PIN, Address 800000D4)

description of, 12-2

PIN bit (PIO Input), 12-2

PIO Output Enable Register (POEN, Address
800000D8)

description of, 12-4
POEN bit (PIO Output Enable), 12-4

PIO Output Register (POUT, Address
800000D8)

description of, 12-2 to 12-3
POUT bit (PIO Output), 12-2
PIO(15-0) signal, 7-4
pipelining
delayed branch, 5-2 to 5-4
delayed effects of registers, 5-5
four stages of, 5-1
overlapped loads and stores, 5-4 to 5-5
overview, 1-6
Pipeline Hold mode, 5-1 to 5-2
serialization, 5-2
PMODE bit (Parity Mode), 14-2
POE signal, 7-5
POEN bit (PIO Output Enable), 12-4
pointers. See indirect pointers; Stack Pointer
POUT bit (PIO Output), 12-2
PPI bit (Parallel Port Interrupt), 16-25
priority table for interrupts and traps, 16-15
PRL field (Processor Release Level), 2-28
procedure epilogue
allocation of Memory Stack frames, 4-12
description of, 4-11
procedure linkage
argument passing, 4-8
conventions, 4-7 to 4-8

example of complex procedure call, 4-14
to 4-15

fill handlers, 4-11
local variables and memory-stack frames, 4-12
procedure epilogue, 4-11
procedure prologue
allocation of Memory Stack frames, 4-12
definition of, 4-8
frame allocation in Register Stack, 4-8
rsize value, 4-8 to 4-9
size value, 4-9
Register Stack leaf frame, 4-11
register usage convention, 4-13 to 4-14
return values, 4-10

1-22 INDEX

procedure linkage, continued
run-time stack, 4-1 to 4-7
activation record in Register Stack, 4-3
allocation of storage locations, 4-2
example of, 4-2
local registers as stack caches, 4-4 to 4-5
management of, 4-1 to 4-2
Memory Stack, 4-7
Register Stack, 4-3
stack cache, 4-4 10 4-5
spill handler, 4-10
static link pointer, 4-13
trace-back tags, 4-15to 4-16
transparent procedures, 4-13
procedure prologue
allocation of Memory Stack frames, 4-12
definition of, 4-8
frame allocation in Register Stack, 4-8
rsize value, 4-8 to 4-9
size value, 4-9
processor initialization, 2-28 to 2-29. See also
initialization
Configuration Register, 2-28
Current Processor Status Register, 2-29
Reset mode, 2-28
processor signals. See also signals
A(23-0), 7-1
ID(31-0), 7-1
INTR(3-0), 7-2
RW, 7-1
RESET, 7-1
STAT(2-0), 7-2
TRAP(1-0), 7-2
WAIT, 7-1
WARN, 7-2

processor status outputs. See STAT(2-0) signal

(CPU Status)
Program Counter, 16-7
Program Counter 0 (PCO, Register 10)
description of, 16-9
PCO field (Program Counter), 16-9
Program Counter 1 (PC1, Register 11)
description of, 16-9
PC1 field (Program Counter 1), 16-9
Program Counter 2 (PC2, Register 12)
description of, 16-10

PC2 bits (Program Counter 2), 16-10
Program-Counter Buffer, 16-7
Program-Counter Multiplexer, 16-7
Program Counter stack, 16-7 to 16-9
Program Counter Unit, 16-7
programmable I/O port

initialization, 12-4

operating the /O port, 12-4

overview, 1-4

PIO Control Register (POCT, Address
800000D0), 12-1 10 12-2

PIO Input Register (PIN, Address
800000D4), 12-2

P10 Output Enable Register (POEN, Address
800000D8), 124

PIO Output Register (POUT, Address
800000D8), 12-2to 12-3

PIO(15-0) signal, 7-4

programming
ALU Status (ALU, Register 132), 2-16t0 2-17
arithmetic operation status results, 2-17t0 2-18
branch instructions, 2-6, 2-8
compare instructions, 2-1, 2-3
complementing a Boolean, 2-26
Configuration (CFG, Register 3), 2-28
constant instructions, 2-5, 2-6
data movement instructions, 2-4 to 2-5
division, 2-22 to 2-24

Floating-Point Environment (FPE, Register
160), 2-14 to 2-15

floating-point instructions, 2-5, 2-7

Floating-Point Status (FPS, Register 162),
2-18t0 2-20

floating-point status results, 2-18
general-purpose registers, 2-8 to 2-11
global registers, 2-10

indirect addressing of registers, 2-12 to 2-14

Indirect Pointer A (IPA, Register 129), 2-13
to 2-14

Indirect Pointer B (IPB, Register 130), 2-14
Indirect Pointer C (IPC, Register 128), 2-13
instruction environment, 2-14 to 2-16
instruction set, 2-1to 2-6

integer arithmetic, 2-1, 2-2

Integer Environment (INTE, Register 161),
2-16

integer multiplication and division, 2-20 to 2-24

INDEX 1-23

programming, continued
large jump and call ranges, 2-26
local register-stack pointer, 2-11
local registers, 2-11
logical instructions, 2-4
logical operation status results, 2-18
miscellaneous instructions, 2-6, 2-8
multiplication, 2-21 to 2-22
multiprecision integer operations, 2-25 to 2-26
NO-OPs, 2-27
operating-system calls, 2-25
processor initialization, 2-28 to 2-29
Q (Q, Register 131), 2-20
register addressing, 2-10
register model, 2-6
reserved instructions, 2-6
Reset mode, 2-28 to 2-29
run-time checking, 2-25
shift instructions, 2-4
special considerations, 2-25 to 2-27
special-purpose registers, 2-11to 2-12
status results of instructions, 2-16 to 2-20
trapping arithmetic instructions, 2-27
virtual arithmetic processor, 2-27
virtual registers, 2-27
prologue. See procedure prologue
protection of registers. See system protection
Protection Violation trap

attempted access of special-purpose
registers, 2-12, 6-1

establishing virtual register support, 2-27
PSI bit (Page Sync Invert), 15-2
PSIO bit (Page Sync Input/Output), 15-2
PSL bit (Page Sync Level), 15-2

PSTROBE Level bit. See STB bit (PSTROBE
Level)

PSTROBE signal

definition of, 7-4

parallel port transfers, 13-5 to 13-8
PSYNC signal, 7-6, 15-4
PWE signal, 7-5

Q (Q, Register 131)
description of, 2-20
Q bit (Quotient/Multiplier), 2-20

QEN bit (Queue Enable), 11-3
QNaNs, 3-6 to 3-7

R/W signal, 7-1
RA bit, 3-8

random DMA access by external devices, 11-8
to 11-11

read cycle (figure), 11-9
ROM read cycle (figure), 11-11

using GREQ and GACK signals, 11-8 to
11-11

write cycle (figure), 11-10
RAS(3-0) signal, 7-3
RB or | field, 3-8 to 3-9
RDATA bit (Receive Data), 14-5
RDR bit (Receive Data Ready), 14-3
Read/Write bit. See RW bit (Read/Write)
Read/Write signal. See R/W signal
Receive Data bit. See RDATA bit (Receive Data)

Receive Data Ready bit. See RDR bit (Receive
Data Ready)

Receive Data signal. See RXD signal

Receive Mode bit. See RMODE bit (Receive
Mode)

Receive Status Interrupt bit. See RSIE bit
(Receive Status Interrupt)

REFRATE bit (Refresh Rate)
definition of, 9-2
DRAM refresh, 9-8
figure, 9-9
register allocate bound pointer (rab), 4-5, 4-14

Register Bank Protection Register (RBP,
Register 7)

description of, 6-2 to 6-3
proéegtion of general-purpose registers, 6-1 to
register free bound pointer (rfb), 4-5, 4-14
Register Stack
description of, 4-3
local registers for caching, 4-4 to 4-5
local variables and memory-stack frames, 4-12
procedure prologue for frame allocation, 4-8
storage allocation, 4-2
Register Stack leaf frame, 4-11
Register Stack pointer (rsp), 4-5, 4-13

1-24 INDEX

register summary

peripheral registers, B-1 to B-10
special-purpose registers, A-1 to A-9

registers

addressing, 2-10
addressing indirectly, 2-12 to 2-14

ALU Status (ALU, Register 132), 2-1, 2-4,
2-1610 2-17

Baud Rate Divisor Register (BAUD, Address
80000090), 14-5

Boundary Scan Register (BSR), 17-4
Byte Pointer (BP, Register 133), 3-2 to 3-3

Channel Address (CHA, Register 4), 3-10 to
3-11, 16-18

Channel Control (CHC, Register 6), 3-9 to
3-10,3-10t0 3-11, 16-18 to 16-19

Channel Data (CHD, Register 5), 3-10 to
3-11,16-18

Configuration (CFG, Register 3), 2-28

Current Processor Status (CPS, Register 2),
3-13, 16-1 to 16-3, 16-10, 17-1

delayed effects on processor behavior, 5-5

DMAOQ Address Register (DMADO, Address
80000034), 11-3

DMAO Address Tail Register (TADO, Address
80000036), 11-4

DMAQ Control Register (DMCTO0, Address
80000030), 11-1 to 11-3

DMAQ Control Register (DMCT1, Address
80000040), 11-5

DMAO Count Register (DMCNO, Address
80000038), 11-4

DMAOQ Count Tail Register (TCNO, Address
8000003A), 11-4to 11-5

DMAT1 Address Register (DMAD1, Address
80000044), 11-5

DMAT1 Count Register (DMCN1, Address
80000048), 11-5

DRAM Configuration Register (DRCF,
Address 8000000C), 9-2

DRAM Control Register (DRCT, Address
80000008), 9-1 to 9-2

DRAM Mapping Register 0 (DRMO, Address
80000010), 9-3

DRAM Mapping Register 1 (DRM1, Address
80000014), 9-3

DRAM Mapping Register 2 (DRM2, Address
80000018), 9-3

DRAM Mapping Register 3 (DRM3, Address
8000001C), 9-3

field summary
peripheral registers, B-6 to B-10
special-purpose registers, A-7 to A-9

Floating-Point Environment (FPE, Register
160), 2-12, 2-14 10 2-15, 2-18, 2-27

Floating-Point Status (FPS, Register 162),
2-12, 2-18 to 2-20, 2-27

Funnel Shift Count (FC, Register 134), 3-3 to 3-4

general-purpose register organization, A-1

global registers, 2-10

Indirect Pointer A (IPA, Register 129), 2-13
to0 2-14

Indirect Pointer B (IPB, Register 130), 2-14

Indirect Pointer C (IPC, Register 128), 2-13

Instruction Register (IREG) of Test Access
Pont, 17-5to 17-7

Integer Environment (INTE, Register 161),
2-12,2-27

Interrupt Control Register (ICT, Address
80000028), 16-24 to 16-25

Load/Store Count Remaining Register (CR,
Register 135), 3-10, 3-11

local registers, 2-11

Old Processor Status (OPS, Register 1),
16-7,17-1

organization of, 6-2
Parallel Data Register (PDR), 17-4

Parallel Port Control Register (PPCT,
Address 800000C0), 13-1 to 13-3

Parallel Port Data Register (PPDT, Address
800000C4), 13-3t0 13-4

Parallel Port Status Register (PPST, Address
800000C1), 13-3

peripheral register summary, B-1 to B-10
PIA Control Register 0/1, 10-1

PIO Control Register (POCT, Address
800000D0), 12-1 to 12-2

PIO Input Register (PIN, Address
800000D4), 12-2

PIO OQutput Enable Register (POEN, Address
800000D8), 12-4

PIO Output Register (POUT, Address
800000D8), 12-2 to 12-3

Program Counter 0 (PCO, Register 10), 16-9
Program Counter 1 (PC1, Register 11), 16-9
Program Counter 2 (PC2, Register 12), 16-10
protection of, 6-1 to 6-2

Q (Q, Register 131), 2-20

register bank organization, A-2

INDEX 1-25

registers, continued

Register Bank Protection Register (RBP,
Register 7), 6-2 to 6-3

register model, 2-6
register usage convention, 4-13 to 4-14

ROM Configuration Register (RMCF,
Address 80000004), 8-2

ROM Control Register (RMCT, Address
80000000), 8-1 to 8-2

Serial Port Control Register (SPCT, Address
80000080), 14-1 to 14-3

Serial Port Receive Buffer Register (SPRB,
Address 8000008C), 14-4 to 14-5

Serial Port Status Register (SPST, Address
80000084), 14-3 to 14-4

Serial Port Transmit Holding Register (SPTH,
Address 80000088), 14-4

Side Margin Register (SIDE, Address
800000ES8), 15-3

special-purpose registers, 2-11 to 2-12, A-3
to A-7

stack overflow, 4-5, 4-6
stack underflow, 4-5, 4-6
terminology for addressing, 2-10

Timer Counter (TMC, Register 8), 16-22 to
16-23

Timer Reload (TMR, Register 9), 16-23

Top Margin Register (TOP, Address
800000E4), 15-3

Vector Area Base Address (VAB, Register 0),
16-5

Video Control Register (VCT, Address
800000E0), 15-1 to 15-3

Video Data Holding Register (VDT, Address
800000EC), 15-3to 154

virtual registers, 2-27
reserved instructions
operation codes and trap vectors, 2-6
purpose and use, 2-6
Reset mode
configuring the processor state, 2-28
Current Processor Status Register, 2-29
RESET signal
definition of, 7-1
invoking RESET mode, 2-28
restarting. See exception reporting and restarting
Return Address Latch, 16-7
return values, 4-10

RM bit (Floating-Point Reserved Operand
Mask), 2-15

RMODE bit (Receive Mode), 14-2 to 14-3
ROM accesses, 8-3 to 8-8
burst-mode ROM accesses, 8-3
burst-mode ROM read (figure), 8-7
narrow ROM accesses, 8-4
8-bit narrow accesses, 8-4 to 8-5
16-bit narrow accesses, 8-5

random DMA access by external devices,
11-8to0 11-11

ROM address mapping, 8-3

simple ROM accesses
description of, 8-3
simple ROM read cycle (figure), 8-4
simple write to ROM bank (figure), 8-6
zero wait state ROM read (figure), 8-5

use of WAIT to extend ROM cycles, 8-6
figures, 8-8

writes to the ROM space, 8-3

ROM Configuration Register (RMCF, Address
80000004)

AMASKO bit (Address Mask, Bank 0), 8-2
ASELO bit (Address Select, Bank 0), 8-2
description of, 8-2

ROM Control Register (RMCT, Address
80000000)

BSTO bit (Burst-Mode ROM, Bank 0), 8-1
description of, 8-1 to 8-2
DWO field (Data Width, Bank 0), 8-1
LM bit (Large Memory), 8-1
WSO bit (Wait States, Bank 0), 8-1 to 8-2
ROM controller. See also ROM accesses
overview, 1-2
programmable registers, 8-1 to 8-3
initialization, 8-2 to 8-3
ROM Configuration Register (RMCF,
Address 80000004), 8-2

ROM Control Register (RMCT, Address
80000000), 8-1 to 8-2

Reset mode, 2-28 to 2-29
signals, 7-2to 7-3
BOOTW, 7-3
BURST, 7-3
ROMCS(3-0), 7-2
ROMOE, 7-2t0 7-3
RSWE, 7-3
ROMCS(3-0) signal, 7-2
ROMOE signal, 7-2to 7-3

1-26 INDEX

round mode, 2-15
Row Address Strobe signal. See RAS(3-0) signal

RS bit (Floating-Point Reserved Operand
Sticky), 2-20

RSIE bit (Receive Status Interrupt), 14-2
rsize value
definition of size and rsize vaiues (figure), 4-9
formulas for, 4-8, 4-9
RSWE signal, 7-3
RT bit (Floating-Point Reserved Operand Trap),
2-19
run-time checking, 2-4, 2-25
run-time stack, 4-1to 4-7
activation records
allocation in local registers, 4-4
allocation of, 4-2
definition of, 4-1
information stored in, 4-3
in Register Stack (figure), 4-3
allocation of storage locations, 4-2
definition of, 4-1
example of, 4-2
frame pointer (fp), 4-5
local registers as stack cache, 4-4 to 4-5
management of, 4-1 to 4-2
Memory Stack, 4-7
register allocate bound pointer (rab), 4-5
register free bound pointer (rfb), 4-5
Register Stack, 4-3
Register Stack pointer (rsp), 4-5
stack cache, 4-4 to 4-5
stack overflow, 4-5, 4-6
Stack Pointer in Global Register 1, 4-4
stack underflow, 4-5, 4-6
RW bit (Read/Write), 11-2
RXD signal, 7-5

RXDI bit (Serial Port Receive Data Interrupt),
16-25

RXSI bit (Serial Port Receive Status Interrupt),
16-25

SAMPLE instruction, 17-6

SB bit (Set Byte Pointer/Sign)
byte and half-word accesses, 3-12 to 3-13
lightweight interrupt processing, 16-13
load/store instruction operation, 3-8

SC bit (Static-Column), 9-2
SDIR bit (Shift Direction), 15-2
security. See system protection
Send Break bit. See BRK bit (Send Break)
serial port
initialization, 14-5
overview, 1-4
programmable registers

Baud Rate Divisor Register (BAUD,
Address 80000090), 14-5

Serial Port Control Register (SPCT,
Address 80000080), 14-1 to 14-3

Serial Port Receive Buffer Register
(SPRB, Address 8000008C), 14-4 to
14-5

Serial Port Status Register (SPST,
Address 80000084), 14-3 to 14-4

Serial Port Transmit Holding Register
(SPTH, Address 80000088), 14-4

signals
DSR, 7-5
DTR, 7-5
RXD, 7-5
TXD, 7-5
UCLK, 7-5

Serial Port Control Register (SPCT, Address
80000080)

BRK bit (Send Break), 14-1

description of, 14-1 to 14-3

DSR bit (Data Set Ready), 14-1

LOORP bit (Loopback), 14-1

PMODE bit (Parity Mode), 14-2

RMODE bit (Receive Mode), 14-2 to 14-3
RSIE bit (Receive Status Interrupt), 14-2
STP bit (Stop Bits), 14-2

TMODE bit (Transmit Mode), 14-2
WLGN field (Word Length), 14-2

Serial Port Receive Buffer Register (SPRB,
Address 8000008C)

description of, 14-4 10 14-5
RDATA bit (Receive Data), 14-5

Serial Port Receive Data Interrupt bit. See RXDI
bit (Serial Port Receive Data Interrupt)

Serial Port Receive Status Interrupt bit. See RXSI
bit (Serial Port Receive Status Interrupt)

Serial Port Status Register (SPST, Address
80000084)

BRKI bit (Break Interrupt), 14-4

INDEX 1-27

Serial Port Status Register, continued
description of, 14-3 to 14-4
DTR bit (Data Terminal Ready), 14-4
FER bit (Framing Error), 14-4
OER bit (Overrun Error), 14-4
PER bit (Parity Error), 14-4
RDR bit (Receive Data Ready), 14-3
TEMT bit (Transmitter Empty), 14-3
THRE bit (Transmit Holding Register Empty),
14-3
Serial Port Transmit Data Interrupt bit. See
TXDI bit (Serial Port Transmit Data Interrupt)

Serial Port Transmit Holding Register (SPTH,
Address 80000088)

description of, 14-4
TDATA bit (Transmit Data), 14-4
serialization of the processor, 5-2
SETIP (Set Indirect Pointers) instruction
description of, 18-105
setting of indirect pointers, 2-13
Shift clock, 17-4
Shift Direction bit. See SDIR bit (Shift Direction)
shift instructions

EXTRACT (Extract Word, Bit-Aligned), 2-4,
2-17,3-3, 3-1110 3-12, 18-64

overview, 2-4

SLL (Shift Left Logical), 18-106
SRA (Shift Right Arithmetic), 18-108
SRL (Shift Right Logical), 18-109
table of, 2-4

Side Margin Register (SIDE, Address
800000E8)

description of, 15-3

LEFTCNT bit (Left Margin Count), 15-3

LINECNT bit (Line Count), 15-3
signal description

connection diagram, C-3

logic symbol, C-7

PQFP pin designation, C-5 to C-6
signaling NaNs (SNaNs), 3-6 to 3-7
signals

A(23-0), 7-1

BOOTW, 2-28 to 2-29, 7-3, 8-2 to 8-3

BURST, 7-3

CAS(3-0), 7-3

DACK(1-0), 7-4,11-6to 11-7

DREQ(1-0), 7-4, 11-5, 11-7

DSR, 7-5

DTR, 7-5

GACK, 7-4, 11-8 to 11-11
GREQ, 7-4, 11-8 10 11-11, 17-16
ID(7-0), 11-6

ID(15-0), 11-6

ID(31-0), 7-1

INCLK, 7-1, 15-4, 17-5
INTR(3-0), 7-2, 16-3t0 16-4
LSYNC, 7-5, 15-4 10 15-6
MEMCLK, 7-1, 17-5

PACK, 7-5, 13-4, 13-6, 13-8
PAUTOFD, 7-5, 13-4 to 13-8
PBUSY, 7-5, 13-4 10 13-8
PIACS(1-0), 11-6
PIACS(5-0), 7-3

PIAOE, 7-4, 11-6

PIAWE, 7-4, 116
PIO(15-0), 7-4

POE, 7-5

PSTROBE, 7-4, 13-5 to 13-8
PSYNC, 7-6, 15-4

PWE, 7-5

RIW, 7-1

RAS(3-0), 7-3

RESET, 2-28, 7-1
ROMCS(3-0), 7-2

ROMOE, 7-2to 7-3

RSWE, 7-3

RXD, 7-5

STAT(2-0), 7-2, 17-2, 17-4, 17-11 to 17-12,
17-13

switching characteristics, C-10
switching waveforms, C-11
TCK, 7-6

TDI, 7-6

TDMA, 7-4

TDO, 7-6

TMS, 7-6

TR/OE, 7-3

TRAP(1-0), 7-2

TRST, 7-6

TXD, 7-5

UCLK, 7-5

VCLK, 7-5, 15-4 to 15-6
VDAT, 7-5, 15-4 to 15-6

1-28 INDEX

WAIT, 7-1, 8-6, 8-8, 10-2, 10-5t0 10-6, 11-6
to 11-7

WARN, 7-2, 16-14
WE, 7-3
single-precision floating-point values
description of, 3-5 to 3-6
format of, 3-6
size value

definition of size and resize values (figure), 4-9

formuia for, 4-S
SLL (Shift Left Logical) instruction, 18-106
SM bit (Supervisor Mode)
Current Processor Status Register, 16-2
Supervisor mode operation, 6-1
SNaNs, 3-6 to 3-7
special floating-point values
denormalized numbers, 3-7
infinity, 3-7
Not-a-Number (NaN), 3-6 to 3-7
zero, 3-7
special-purpose registers, 2-11to 2-12
accessed by data movement, 2-11

accessed only by MTSR, MTSRIM, and
MFSR, 2-7

ALU Status (ALU, Register 132), 2-1, 2-4, 2-
16to 2-17

attempted reads and writes, 2-12

Byte Pointer (BP, Register 133), 3-2 to 3-3
Channel Address (CHA, Register 4), 16-18
Channel Data (CHD, Register 5), 16-18
Configuration (CFG, Register 3), 2-28

Current Processor Status (CPS, Register 2),
16-110 16-3

diagrams, A-3 to A-6

Floating-Point Environment (FPE, Register
160), 2-12, 2-14 to 2-15, 2-18, 2-27

Floating-Point Status (FPS, Register 162),
2-12, 2-18 to 2-20, 2-27

Funnel Shift Count (FC, Register 134), 3-3 to

3-4

Indirect Pointer A (IPA, Register 129), 2-13 to

2-14
Indirect Pointer B (IPB, Register 130), 2-14
Indirect Pointer C (IPC, Register 128), 2-13

Integer Environment (INTE, Register 161),
2-12,2-27

Load/Store Count Remaining Register (CR,
Register 135), 3-11

Old Processor Status (OPS, Register 1), 16-7
organization of, 2-12

Program Counter 0 (PCO, Register 10), 16-9
Program Counter 1 (PC1, Register 11), 16-9
protected and unprotected registers, 2-11
purpose of, 2-11

Q (Q, Register 131), 2-20

reserved fields, 2-11 to 2-12

Timer Counter (TMC, Register 8), 16-22 to
16-23

Timer Reload (TMR, Register 9), 16-23
specifications
absolute maximum ratings, C-9
capacitance, C-9
DC characteristics, C-9
operating ranges, C-9
physical dimensions, C-13 to C-14
switching characteristics, C-10
switching waveforms, C-11
thermal characteristics, C-12
spill handler, 4-10

SQRT (Floating-Point Square Root) instruction,
18-107

SRA (Shift Right Arithmetic) instruction, 18-108
SRL (Shift Right Logical) instruction, 18-109
ST bit (Set), 16-19
stack. See run-time stack
stack cache, defined, 4-2
stack overflow
definition of, 4-5
figure of, 4-6
Stack Pointer
allocating activation records, 4-4
definition of, 2-10, 2-11
delayed effects of registers, 5-5

obtaining absolute-register number for local
registers, 2-11

stack underflow
definition of, 4-5
figure of, 4-6

STAT(2-0) signal (CPU Status)
boundary scan cells, 17-4
debugging and testing, 17-2
definition of, 7-2
encoding of, 17-2
Halt mode, 17-11

INDEX 1-29

STAT(2-0) signal (CPU Status), continued
Load Test Instruction mode, 17-13
processor status outputs, 17-2
Step mode, 17-11 to 17-12

Static-Column bit. See SC bit (Static-Column)

static link pointer (slp)
description of, 4-13
register conventions, 4-14

static parent, 4-13

status outputs. See STAT(2-0) signal (CPU
Status)

STB bit (PSTROBE Level), 13-3
Step mode, 17-11 to 17-12

sticky status bits. See Floating-Point Status
(FPS Register 162)

Stop Bits. See STP bits (Stop Bits)

Store and Lock instruction. See STOREL (Store
and Lock) instruction

STORE instruction
description of, 18-110
overview, 3-9

Store Multiple instruction. See STOREM (Store
Multiple) instruction

store operations. See load/store operations
STOREL (Store and Lock) instruction
description of, 18-111
overview, 3-9
provided for compatibility, 2-4
STOREM (Store Multiple) instruction
description of, 18-112
multiple data accesses, 3-9 to 3-10
overview, 3-9
page-mode access timing, 9-6
Step mode, 17-12
STP bits (Stop Bits), 14-2
strings. See bit strings; character-strings
subtraction instructions

DSUB (Floating-Point Subtract, Double-
Precision), 18-59

FSUB (Floating-Point Subtract, Single-
Precision), 18-72

SUB (Subtract), 18-113
SUBC (Subtract with Carry), 18-114

SUBCS (Subtract with Carry, Signed), 18-115

SUBCU (Subtract with Carry, Unsigned),
18-116

SUBR (Subtract Reverse), 18-117

SUBRC (Subtract Reverse with Carry), 18-118

SUBRCS (Subtract Reverse with Carry,
Signed), 18-119

SUBRCU (Subtract Reverse with Carry,
Unsigned), 18-120

SUBRS (Subtract Reverse, Signed), 18-121

SUBRU (Subtract Reverse, Unsigned), 18-122

SUBS (Subtract, Signed), 18-123

SUBU (Subtract, Unsigned), 18-124
Supervisor mode

accessing special-purpose registers, 2-11

description of, 6-1

Supervisor mode bits. See SM bit (Supervisor
Mode)

switching characteristics, C-10
switching test circuit (diagram), C-12
switching waveforms (diagram), C-11
system overview
access priority, 7-6 to 7-7
internal peripherals and controllers, 7-7 to 7-8
signal description, 7-1to 7-6
clocks, 7-1
DMA controller, 7-4
DRAM interface, 7-3
JTAG 1149.1 boundary scan interface, 7-6
parallel port, 7-4 to 7-5

Peripheral Interface Adapter (PIA), 7-3 to
7-4

processor signals, 7-1 to 7-2
Programmable 1/O port, 7-4
ROM interface, 7-2 to 7-3
serial port, 7-5
video interface, 7-5 to 7-6
system address partition, 7-7
system protection
overview, 1-7
protection of registers
general-purpose registers, 2-10
special-purpose registers, 2-11
register protection, 6-1 to 6-2
Supervisor mode, 6-1
User mode, 6-1
System_Routine call, 2-25

1-30 INDEX

taking interrupts or traps. See interrupts and
traps
TAP. See Test Access Port
TCK signal, 7-6
TCV field (Timer Count Value)
initializing the Timer Facility, 16-22
overview, 16-21
Timer Reload Register, 16-23
TD bit (Timer Disable)
Cu:rgqt Processor Status {CPS, Register 2},
Timer Facility operation, 16-21
TDATA bit (Transmit Data), 14-4
TDELAY bit (Transfer Delay), 13-1
TDELAYV bit (TDELAY Counter Value), 13-3
TDlI signal, 7-6
TDMA signal, 7-4

TDMA Termminate Enable bit. See TTE bit
(TDMA Terminate Enable)

TDMA Terminate Interrupt bit. See TTI bit
(TDMA Terminate Interrupt)

TDO signal, 7-6
TE bit (Trace Enable)
control of tracing, 17-1
Current Processor Status (CPS, Register 2),
16-2
TEMT bit (Transmitter Empty), 14-3
Terminate DMA signal. See TDMA signal
Test Access Port, 17-3 to 17-7
boundary scan cells
description of, 17-4 to 17-5
input cell (figure), 17-4
output cell (figure), 17-5
BYPASS instruction, 17-7
bypass path, 17-8
EXTEST instruction, 17-6
ICTEST1 instruction, 17-6 to 17-7
ICTEST1 path, 17-10
ICTEST2 instruction, 17-7
ICTEST2 path, 17-10
instruction path, 17-7

Instruction Register and implemented
instructions, 17-5to 17-7

INTEST instruction, 17-6
main data path, 17-8 to 17-9

order of scan cells in boundary scan path,
17-7

overview, 1-7to 1-8

SAMPLE instruction, 17-6
Test Clock Input signal. See TCK signal
Test Data Input signal. See TDI signal
Test Data Output signal. See TDO signal
Test Mode Select signal. See TMS signal

Test Reset Input signal. See TRST signal
testing. See debugging and testing

thermal characteristics, C-12

THRE bit (Transmit Holding Register Empty),
14-3

Timer Count Value field. See TCV field (Timer
Count Value)

Timer Counter (TMC, Register 8)

description of, 16-22 to 16-23

TCV field (Timer Count Value), 16-23
Timer Disable bit. See TD bit (Timer Disable)
Timer Facility

handling timer interrupts, 16-22

initializing, 16-22

overview, 16-21

Timer Counter (TMC, Register 8), 16-22 to
16-23

Timer Reload (TMR, Register 9), 16-23
uses for, 16-22
Timer Reload (TMR, Register 9)
description of, 16-23
IE bit (Interrupt Enable), 16-23
IN bit (Interrupt), 16-23
OV bit (Overflow), 16-23
TRV field (Timer Reload Value), 16-23

Timer Reload Value field. See TRV field (Timer
Reload Value)

TMODE bit (Transmit Mode), 14-2
TMS signal, 7-6
Top Margin Register (TOP, Address 800000E4)
description of, 15-3
TOPCNT bit (Top Margin Count), 15-3
TOPCNT bit (Top Margin Count), 15-3
TP bit (Trace Pending)
control of tracing, 17-1
Current Processor Status (CPS, Register 2),
16-2
TR field (Target Register)
Channel Control Register, 16-19
multiple accesses, 3-10
TR/OE signal, 7-3
TRA bit (Transfer Active), 13-2

INDEX 1-31

trace-back tags
definition of, 4-15
fields in, 4-16
figure of, 4-15
Trace Enable bit. See TE bit (Trace Enable)
Trace Facility, 17-1
Trace Pending bit. See TP bit (Trace Pending)

Transfer Active bit. See TRA bit (Transfer
Active)

Transfer Delay bit. See TDELAY bit (Transfer
Delay)

Transfer Up/Down bit. See UD bit (Transfer Up/
Down)

transfers, parallel port. See parallel port

Transmit Data bit. See TDATA bit (Transmit
Data)

Transmit Data signal. See TXD signal

Transmit Holding Register Empty bit. See THRE
bit (Transmit Holding Register Empty)

Transmit Mode bit. See TMODE bit (Transmit
Mode)

Transmitter Empty bit. See TEMT bit
(Transmitter Empty)

transparent procedures, 4-13
trap-handler argument (tav), 4-10, 4-14
trap-handler return address (tpc), 4-10, 4-14

trap status bits. See Floating-Point Status (FPS,
Register 162)

Trap Unaligned Access bit. See TU bit (Trap
Unaligned Access)

TRAP(1-0) signal
definition of, 7-2
external interrupts and traps, 16-3 to 16-4
traps. See also interrupts and traps
compared with interrupts, 16-1

EMULATE (Trap to Software Emulation
Routine) instruction, 2-13, 18-60

external traps, 16-3 to 16-4
Floating-Point Exception trap, 16-20
llegal Opcode trap, 17-2
Out-of-Range trap, 16-20

priority table, 16-15

Protection Violation trap, 6-1

returning from interrupts or traps, 16-11 to
16-12

sequencing of interrupts and traps, 16-14 to
16-16

signals causing, 16-3 to 16-4
simulation of interrupts and traps, 16-13

taking interrupts or traps, 16-10
trapping arithmetic instructions, 2-27
Unaligned Access trap, 3-14
WARN trap, 16-14
TRST signal, 7-6
TRYV field (Timer Reload Value)
initializing the Timer Facility, 16-22
overview, 16-21
Timer Reload Register, 16-23
TTE bit (TDMA Terminate Enable), 11-2
TTI bit (TDMA Terminate Interrupt), 11-3
TU bit (Trap Unaligned Access)

Current Processor Status (CPS, Register 2),
16-2

detection of unaligned accesses, 3-13 to 3-14
two’s complement overfiow, 2-18
TXD signal, 7-5

TXDI bit (Serial Po<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>