
Am29200 and Am29205
RiSe Microcontrollers
User's Manual

• • •
•
•

Advanced
Micro

Devices

•

Am29200™ and Am29205™
RiSe Microcontrollers

User's Manual

Rev. 1, 1994

ADVANCED MICRO DEVICES l1

© 1994 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for
a particular application. AMD assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice.
AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the
information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD and Am29000 are registered trademarkS; Am29005, Am29027, Am29030, Am29035, Am29050, Am29200, Am29205, Am29240, Am29243,
Am29245, 29K, Laser29K, EB29K, XRAY29K, MiniMON29K, and Design-Made-Easy are trademarks of Advanced Micro Devices, Inc.
Fusion29K is a servicemark of Advanced Micro Devices, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.
High C is a registered trademark of MetaWare, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

IF YOU HAVE QUESTIONS, WE'RE HERE TO HELP YOU.

Customer Service
AMD's customer service network includes U.S. offices, international offices, and a
customer training center. Expert technical assistance is available from AMD's worldwide
staff of field application engineers and factory support staff to answer 29K'" Family
hardware and software development questions.

Hotline, Email, and Bulletin Board Support
For answers to technical questions, AMD provides a toll-free number for direct access to
our engineering support staff. For overseas customers, the easiest way to reach the
engineering support staff with your questions is via fax with a short description of your
question. AMD 29K Family customers also receive technical support through electronic
mail. This worldwide service is available to 29K product users via the international UNIX
email service. Also available is the AMD bulletin board service, which provides the latest
29K product information, including technical information and data on upcoming product
releases.

Engineering Support Staff
(800) 292-9263 ext 2 toll-free for U.S.

0031-11-1163

(512) 602-4118

44-(0)256-811101

(512) 602-5031

29k-support@amd.com

Bulletin Board

(800) 292-9263 ext 1

(512) 602-4898

toll-free for Japan

direct dial worldwide

U.K. and Europe hotline

fax

email

toll-free for U.S.

worldwide and local for U.S.

Documentation and Literature
The 29K Family Customer Support Group responds quickly to information and literature
requests. A simple phone call gets you free 29K Family information, such as data books,
user's manuals, data sheets, application notes, the Fusion29KsM Partner Solutions
Catalog and Newsletter, and other literature. Internationally, contact your local AMD
sales office for complete 29K Family literature.

Customer Support Group

(800) 292-9263 ext 3

(512) 602-5651

(512) 602-5051

toll-free for U.S.

local for U.S.

fax for U.S.

iii

TABLE OF CONTENTS

Preface INTRODUCTION AND OVERVIEW

Am29200 AND Am2920S RISC MICROCONTROLLERS xv

DESIGN PHILOSOPHY .. xv

PURPOSE OF THIS MANUAL xviii

INTENDED AUDIENCE .. xviii

USER'S MANUAL OVERVIEW xviii

AMD DOCUMENTATION ... xix

RELATED PUBLICATIONS ... xx

Chapter 1 FEATURES AND PERFORMANCE

1.1 DISTINCTIVE CHARACTERISTICS 1-1
1.1.1 Am29200 Microcontroller 1-2
1.1 .2 Am2920S Microcontroller 1-4

1.2 KEY FEATURES AND BENEFITS 1-5
1.2.1 Complete Set of Common System Peripherals 1-5
1.2.2 Wide Range of Price/Performance Points 1-6
1.2.3 Glueless System Interfaces 1-6
1.2.4 Bus- and Binary-Compatibility 1-7
1.2.5 Complete Development and Support Environment 1-7

1.3 PERFORMANCE OVERVIEW 1-7
1.3.1 Instruction Timing 1-7
1.3.2 Pipelining .. 1-8
1.3.3 Burst-Mode and Page-Mode Memories 1-8
1.3.4 Instruction Set Overview 1-8
1.3.5 Data Formats .. 1-8
1.3.6 Protection ... 1-9
1.3.7 DRAM Mapping .. 1-9
1.3.8 Interrupts and Traps 1-9

1.4 DEBUGGING AND TESTING 1-9

Chapter 2 PROGRAMMING

2.1 INSTRUCTION SET ... 2-1
2.1.1 Integer Arithmetic 2-1
2.1.2 Compare .. 2-1
2.1.3 Logical .. 2-4
2.1.4 Shift .. 2-4
2.1 .5 Data Movement .. 2-4
2.1.6 Constant .. 2-5
2.1. 7 Floating Point .. 2-6
2.1.8 Branch .. 2-7
2.1 .9 Miscellaneous .. 2-7
2.1.10 Reserved Instructions 2-8

2.2 REGISTER MODEL .. 2-8
2.2.1 General-Purpose Registers 2-8

Table of Contents v

~AMD
2.2.2 Special-Purpose Registers 2-11

2.3 ADDRESSING REGISTERS INDIRECTly 2-12
2.3.1 Indirect Pointer C Register (IPC, Register 128) 2-13
2.3.2 Indirect Pointer A Register (IPA, Register 129) 2-13
2.3.3 Indirect Pointer B Register (IPB, Register 130) 2-14

2.4 INSTRUCTION ENVIRONMENT 2-14
2.4.1 Floating-Point Environment Register (FPE, Register 160) ... 2-14
2.4.2 Integer Environment Register (INTE, Register 161) 2-15

2.5 STATUS RESULTS OF INSTRUCTIONS 2-16
2.5.1 AlU Status Register (AlU, Register 132) 2-16
2.5.2 Arithmetic Operation Status Results 2-17
2.5.3 logical Operation Status Results 2-17
2.5.4 Floating-Point Status Results 2-18
2.5.5 Floating-Point Status Register (FPS, Register 162) 2-18

2.6 INTEGER MULTIPLICATION AND DIVISION 2-19
2.6.1 0 Register (0, Register 131) 2-20
2.6.2 Multiplication .. 2-20
2.6.3 Division .. 2-22

2.7 I NEED AN INSTRUCTION FOR 2-24
2.7.1 Run-Time Checking 2-24
2.7.2 Operating-System Calls 2-24
2.7.3 Multiprecision Integer Operations 2-25
2.7.4 Complementing a Boolean 2-25
2.7.5 large Jump and Call Ranges 2-25
2.7.6 NO-OPs .. 2-25

2.8 VIRTUAL ARITHMETIC PROCESSOR 2-26
2.8.1 Trapping Arithmetic Instructions 2-26
2.8.2 Virtual Registers 2-26

2.9 PROCESSOR INITIALIZATION 2-26
2.9.1 Configuration Register (CFG, Register 3) 2-26
2.9.2 Reset Mode .. 2-27

Chapter 3 DATA FORMATS AND HANDLING

3.1 INTEGER DATA TYPES .. 3-1
3.1.1 Character Data ... 3-1
3.1.2 Half-Word Operations 3-2
3.1.3 Byte Pointer Register (BP, Register 133) 3-2
3.1.4 Bit Strings ... 3-3
3.1.5 Character-String Operations 3-4
3.1.6 Boolean Data .. 3-5
3.1.7 Instruction Constants 3-5

3.2 FLOATING-POINT DATA TYPES 3-5
3.2.1 Single-Precision Floating-Point Values 3-5
3.2.2 Double-Precision Floating-Point Values 3-6
3.2.3 Special Floating-Point Values 3-6

3.3 EXTERNAL DATA ACCESSES 3-7
3.3.1 load/Store Instruction Format 3-7
3.3.2 load Operations 3-9
3.3.3 Store Operations 3-9
3.3.4 Multiple Accesses 3-9
3.3.5 Addressing and Alignment 3-11

Chapter 4 PROCEDURE LINKAGE

4.1 RUN-TIME STACK ORGANIZATION AND USE 4-1

vi Table of Contents

AMD~
4.1.1 Management of the Run-Time Stack 4-1
4.1.2 Register Stack ... 4-3
4.1.3 Local Registers as a Stack Cache 4-4
4.1.4 Memory Stack ... 4-5

4.2 PROCEDURE LINKAGE CONVENTIONS 4-6
4.2.1 Argument Passing 4-7
4.2.2 Procedure Prologue 4-8
4.2.3 Spill Handler .. 4-10
4.2.4 Return Values ... 4-10
4.2.5 Procedure Epilogue 4-10
4.2.6 Fill Handlers .. 4-11
4.2.7 Register Stack Leaf Frame 4-11
4.2.8 Local Variables and Memory-Stack Frames 4-11
4.2.9 Static Link Pointer 4-12
4.2.10 Transparent Procedures 4-13

4.3 REGISTER USAGE CONVENTION 4-13

4.4 COMPLEX PROCEDURE CALL EXAMPLE 4-14

4.5 TRACE-BACK TAGS .. 4-15

ChapterS PIPELINING AND INSTRUCTION SCHEDULING

5.1 FOUR-STAGE PIPELINE 5-1

5.2 PIPELINE HOLD MODE .. 5-1

5.3 SERIALIZATION ... 5-2

5.4 DELAYED BRANCH ... 5-2

5.5 OVERLAPPED LOADS AND STORES 5-4

5.6 DELAYED EFFECTS OF REGISTERS 5-5

Chapter 6 SYSTEM PROTECTION

6.1 USER AND SUPERVISOR MODES 6-1
6.1.1 Supervisor Mode 6-1
6.1.2 User Mode .. 6-1

6.2 REGISTER PROTECTION 6-1
6.2.1 Register Bank Protect Register (RBP. Register 7) 6-2

Chapter 7 SYSTEM OVERVIEW

7.1 SIGNAL DESCRIPTION .. 7-1
7.1.1 Clocks .. 7-1
7.1 .2 Processor Signals 7-1
7.1.3 ROM Interface ... 7-3
7.1.4 DRAM Interface•. 7-3
7.1.5 Peripheral Interface Adapter (PIA) 7-4
7.1.6 DMA Controller ... 7-4
7.1.7 1/0 Port ... 7-5
7.1.8 Parallel Port ... 7-5
7.1.9 Serial Port ... 7-6
7.1.10 Video Interface ... 7-6
7.1.11 JTAG 1149.1 Boundary Scan Interface 7-6
7.1.12 Pin Changes for the Am29205 Microcontroller 7-7

7.2 ACCESS PRIORITy ... 7-7

7.3 SYSTEM ADDRESS PARTITION 7-8

7.4 INTERNAL PERIPHERALS AND CONTROLLERS 7-8

Table of Contents vii

~AMD
Chapter 8 ROM CONTROLLER

8.1 OVERViEW ... 8-1

8.2 PROGRAMMABLE REGISTERS 8-1
8.2.1 ROM Control Register (RMCT, Address 80000000) 8-1
8.2.2 ROM Configuration Register (RMCF, Address 80000004) 8-2
8.2.3 Initialization " 8-3

8.3 ROM ACCESSES ... 8-4
8.3.1 ROM Address Mapping 8-4
8.3.2 Simple ROM Accesses 8-4
8.3.3 Narrow ROM Accesses 8-4
8.3.4 Writes to the ROM Space 8-7
8.3.5 Burst-Mode ROM Accesses 8-8
8.3.6 Use of WAIT to Extend ROM Cycles 8-8

Chapter 9 DRAM CONTROLLER

9.1 OVERViEW ... 9-1

9.2 PROGRAMMABLE REGiSTERS 9-1
9.2.1 DRAM Control Register (DRCT, Address 80000008) 9-1
9.2.2 DRAM Configuration Register (DRCF, Address 8000000C) .. 9-2
9.2.3 DRAM Mapping Register 0 (DRMO, Address 80000010) 9-3
9.2.4 DRAM Mapping Register 1 (DRM1, Address 80000014) 9-4
9.2.5 DRAM Mapping Register 2 (DRM2, Address 80000018) 9-4
9.2.6 DRAM Mapping Register 3 (DRM3, Address 8000001 C) 9-4
9.2.7 Initialization .. 9-4

9.3 DRAM ACCESSES .. 9-4
9.3.1 DRAM Address Mapping 9-4
9.3.2 Address Multiplexing 9-5
9.3.3 32-Bit DRAM Width 9-7
9.3.4 16-Bit DRAM Width 9-7
9.3.5 Mapped DRAM Accesses 9-8
9.3.6 Normal Access Timing 9-8
9.3.7 Page-Mode Access Timing 9-10
9.3.8 DRAM Refresh .. 9-10
9.3.9 Video DRAM Interface 9-12

Chapter 10 PERIPHERAL INTERFACE ADAPTER

10.1 OVERVIEW .. 10-1

10.2 PROGRAMMABLE REGiSTERS 10-1
10.2.1 PIA Control Register 0/1 (PICTO/1, Address 80000020/24) .. 10-1
10.2.2 Initialization ... 10-2

10.3 PIA ACCESSES .. 10-2
10.3.1 Normal Access Timing 10-2
10.3.2 Use of WAIT to Extend 1/0 Cycles 10-3

Chapter 11 DMA CONTROLLER

11.1 OVERVIEW .. 11-1

11.2 PROGRAMMABLE REGISTERS 11-1
11.2.1 DMAO Control Register (DMCTO, Address 80000030) 11-1
11.2.2 DMAO Address Register (DMADO, Address 80000034) 11-4
11.2.3 DMAO Address Tail Register (TADO, Address 80000070) ... 11-4
11.2.4 DMAO Count Register (DMCNO, Address 80000038) 11-5
11.2.5 DMAO Count Tail Register (TCNO, Address 8000003C) 11-5
11.2.6 DMA1 Control Register (DMCT1, Address 80000040) 11-5

AMD~
11.2.7 DMA1 Address Register (DMAD1,Address80000044) 11-7
11.2.8 DMA1 Count Register (DMCN1, Address 80000048) 11-7
11.2.9 Initialization ... 11-7

11.3 DMA TRANSFERS ... 11-8
11.3.1 Specifying the Direction of a DMA Transfer 11-8
11.3.2 Programming Internal DMA Transfers 11-8
11.3.3 Programming External DMA Transfers 11-9
11.3.4 Generating External DMA Requests 11-9
11.3.5 External DMA Transfers 11-9
11.3.6 Latching External DMA Requests 11-11

11.4 DMA QUEUING (DMA CHANNEL 0) 11-12

11.5 RANDOM DIRECT MEMORY ACCESS BY EXTERNAL DEVICES 11-12

Chapter 12 PROGRAMMABLE 110 PORT

12.1 OVERVIEW .. 12-1

12.2 PROGRAMMABLE REGISTERS 12-1
12.2.1 PIO Control Register (POCT, Address 80000000) 12-1
12.2.2 PIO Input Register (PIN, Address 80000004) 12-2
12.2.3 PIO Output Register (POUT, Address 80000008) 12-2
12.2.4 PIO Output Enable Register (POEN, Address 800000DC) .. 12-3
12.2.5 Initialization ... 12-3

12.3 OPERATING THE 1/0 PORT 12-3

Chapter 13 PARALLEL PORT

13.1 OVERViEW .. 13-1

13.2 PROGRAMMABLE REGiSTERS 13-1
13.2.1 Parallel Port Control Register (PPCT, Address 8000OOCO) .. 13-1
13.2.2 Parallel Port Status Register (PPST, Address 80000OC8) ... 13-3
13.2.3 Parallel Port Data Register (PPDT, Address 800000C4) 13-4
13.2.4 Initialization ... 13-4

13.3 PARALLEL PORT TRANSFERS 13-5
13.3.1 Transfers from the Host 13-5
13.3.2 Transfers to the Host 13-5

Chapter 14 SERIAL PORT

14.1 OVERVIEW .. 14-1

14.2 PROGRAMMABLE REGISTERS 14-1
14.2.1 Serial Port Control Register (SPCT, Address 80000080) 14-1
14.2.2 Serial Port Status Register (SPST, Address 80000084) 14-3
14.2.3 Serial Port Transmit Holding Register

(SPTH, Address 80000088) 14-4
14.2.4 Serial Port Receive Buffer Register

(SPRB, Address 8000008C) 14-4
14.2.5 Baud Rate Divisor Register (BAUD, Address 80000090) 14-5
14.2.6 Initialization ... 14-5

Chapter 15 VIDEO INTERFACE

15.1 OVERViEW .. 15-1

15.2 PROGRAMMABLE REGiSTERS 15-1
15.2.1 Video Control Register (VCT, Address 80oo00EO) 15-1
15.2.2 Top Margin Register (TOP, Address 800000E4) 15-3
15.2.3 Side Margin Register (SIDE, Address 800000E8) 15-3

Table of Contents ix

It1 AMD

15.2.4 Video Data Holding Register (VDT. Address 800000EC) 15-3
15.2.5 Initialization ... 15-4

15.3 VIDEO INTERFACE OPERATION 15-4
15.3.1 Transmitting Data on the Video Interlace 15-5
15.3.2 Receiving Data on the Video Interlace 15-6

Chapter 16 INTERRUPTS AND TRAPS

16.1 OVERViEW .. 16-1

16.2 INTERRUPTS AND TRAPS 16-1
16.2.1 Current Processor Status Register (CPS. Register 2) 16-1
16.2.2 Interrupts ... 16-3
16.2.3 Traps .. 16-4
16.2.4 External Interrupts and Traps 16-4
16.2.5 Wait Mode .. 16-4

16.3 VECTOR AREA .. 16-5
16.3.1 Vector Area Base Address Register (VAB. Register 0) 16-5
16.3.2 Vector Numbers 16-5

16.4 INTERRUPT AND TRAP HANDLING 16-6
16.4.1 Old Processor Status Register (OPS. Register 1) 16-6
16.4.2 Program Counter Stack 16-6
16.4.3 Taking an Interrupt or Trap 16-10
16.4.4 Returning from an Interrupt or Trap 16-11
16.4.5 Lightweight Interrupt Processing.. 16-12
16.4.6 Simulation of Interrupts and Traps 16-13

16.5 WARN TRAP .. 16-13
16.5.1 WARN Input .. 16-14

16.6 SEQUENCING OF INTERRUPTS AND TRAPS 16-14

16.7 EXCEPTION REPORTING AND RESTARTING 16-16
16.7.1 Instruction Exceptions 16-16
16.7.2 Restarting Mapped DRAM Accesses 16-17
16.7.3 Integer Exceptions 16-19
16.7.4 Floating-Point Exceptions. 16-20
16.7.5 Correcting Out-of-Range Results 16-20
16.7.6 Exceptions During Interrupt and Trap Handling 16-21

16.8 TIMER FACILITY ... 16-21
16.8.1 TimerFacilityOperation 16-21
16.8.2 Timer Facility Initialization 16-21
16.8.3 Handling Timer Interrupts 16-22
16.8.4 Timer Facility Uses 16-22
16.8.5 Timer Counter Register (TMC. Register 8) 16-22
16.8.6 Timer Reload Register (TMR. Register 9) 16-23

16.9 INTERNAL INTERRUPT CONTROLLER 16-23
16.9.1 Interrupt Control Register (lCT. Address 80000028) 16-23
16.9.2 Interrupt Controller Initialization. 16-25
16.9.3 Servicing Internal Interrupts 16-25

Chapter 17 DEBUGGING AND TESTING

17.1 OVERVIEW .. 17-1

17.2 TRACE FACiLITY .. 17-1

17.3 INSTRUCTION BREAKPOINTS 17-2

17.4 PROCESSOR STATUS OUTPUTS 17-2

17.5 CONTROL FIELD IN SCAN PATH 17-3

x Table of Contents

AMD~
17.6TEST ACCESS PORT .. 17-4

17.6.1 Boundary-Scan Cells 17-4
17.6.2 Instruction Register and Implemented Instructions 17-6
17.6.3 Order of Scan Cells in Boundary-Scan Path 17-8

17.7 IMPLEMENTING A HARDWARE-DEVELOPMENT SySTEM 17-11
17.7.1 Halt Mode ... 17-11
17.7.2 Step Mode. 17-12
17.7.3 Load Test Instruction Mode 17-13
17.7.4 Accessing Internal State Via Boundary Scan. 17-14
17.7.5 HALT Instructions as Breakpoints. 17-16
17.7.6 ForCing Outputs to High Impedance 17-17

17.8 EMULATING THE Am29205 MICROCONTROLLER 17-17

Chapter 18 INSTRUCTION SET

18.1 INSTRUCTION-DESCRIPTION NOMENCLATURE 18-1
18.1.1 Operand Notation and Symbols 18-1
18.1.2 Operator Symbols 18-2
18.1.3 Control-Flow Terminology 18-3
18.1.4 Assembler Syntax 18-3

18.2 INSTRUCTION FORMATS 18-4

18.3 INSTRUCTION DESCRiPTION 18-5

Appendix A SPECIAL SETTINGS FOR THE
Am29200 AND Am2920S MICROCONTROLLERS A-1

Appendix B PROCESSOR REGISTER SUMMARY B-1

Appendix C PERIPHERAL REGISTER SUMMARY C-1

INDEX 1-1

Table of Contents xi

~ AMD

xii

LIST OF FIGURES
Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 6-1
Figure 6-2
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5

Am29200 Microcontroller Block Diagram 1-3
Am29205 Microcontroller Block Diagram 1-4
General-Purpose Register Organization 2-9
Special-Purpose Registers 2-12
Indirect Pointer C Register 2-13
Indirect Pointer A Register 2-13
Indirect Pointer B Register '" 2-14
Floating-Point Environment Register 2-14
Integer Environment Register 2-15
ALU Status Register .. 2-16
Floating-Point Status ... 2-18
Q Register .. 2-20
Configuration Register .. 2-26
Current Processor Status Register In Reset Mode 2-27
Character Format ... 3-1
Half-Word Format ... 3-2
Byte Pointer Register '" ... 3-3
Funnel Shift Count Register 3-3
Single-Precision Floating-Point Format 3-6
Double-Precision Floating-Point Format 3-6
Load/Store Instruction Format 3-8
Load/Store Count Remaining Register 3-11
Byte and Half-Word Addressing (Big Endian) 3-12
Run-Time Stack Example .. 4-2
Activation Record in the Register Stack 4-3
Relationship of Stack Cache and Register Stack 4-4
Stack Overflow ... 4-6
Stack Underflow .. 4-7
Definition of size and (size Values 4-9
Trace-Back Tags , , 4-15
Register Bank Organization 6-2
Register Bank Protect Register 6-3
ROM Control Register ... 8-1
ROM Configuration Register 8-3
Simple ROM Read Cycle ... 8-5
Simple ROM Read Cycle-Zero Wait States 8-6
Simple Write to ROM Bank 8-7
Byte Write to ROM Bank (using CAS3-CASO as byte strobes) 8-9
Burst-Mode ROM Read ... 8-10
Extending a ROM Read Cycle with WAIT 8-11
Extending a ROM Write Cycle with WAIT 8-11
DRAM Control Register .. 9-1
DRAM Configuration Register 9-3
DRAM Mapping Register 0 9-3
Location of Bytes and Half-Words on a 16-Bit Bus 9-8
DRAM Read Cycle .. 9-9
DRAM Write Cycle .. 9-9
DRAM Page-Mode Read Cycle 9-10
DRAM Page-Mode Write Cycle 9-11
DRAM Refresh Cycle ... 9-11
VDRAM Transfer Cycle ... 9-12
PIA Control Register 0 (PICTO, Address 80000020) 10-1
PIA Control Register 1 (PICT1, Address 80000024) 10-1
PIA Read Cycle .. 10-3
PIA Write Cycle .. 10-4
Extending a PIA Read Cycle with WAIT 10-5

Table of Contents

Figure 10-6
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 11-10
Figure 11-11
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-12
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 16-1
Figure 16-2
Figure 16-3
Figure 16-4
Figure 16-5
Figure 16-6
Figure 16-7
Figure 16-8
Figure 16-9
Figure 16-10
Figure 16-11
Figure 16-12
Figure 16-13
Figure 16-14
Figure 16-15
Figure 17-1
Figure 17-2
Figure 17-3
Figure 17-4

AMD~
Extending a PIA Write Cycle with WAIT 10-5
DMAO Control Register ... 11-2
DMAO Address Register .. 11-4
DMAO Address Tail Register 11-4
DMAO Count Register .. 11-5
DMAO Count Tail Register 11-5
DMA 1 Control Register ... 11-5
External DMA PIA Read Cycle 11-10
External DMA PIA Write Cycle 11-11
External Random DRAM Read Cycle 11-13
External Random DRAM Write Cycle 11-14
External Random ROM Read Cycle 11-15
Pia Control Register ... 12-1
Pia Input Register ... 12-2
Pia Output Register .. 12-2
Pia Output Enable Register 12-3
Parallel Port Control Register 13-1
Parallel Port Status Register 13-3
Parallel Port Data Register 13-4
State Transitions for Transfers from the Host 13-6
Transfer from the Host on the Parallel Port (BRS=O, ARB=O) 13-7
Transfer from the Host on the Parallel Port (BRS=O, ARB=1) 13-7
Transfer from the Host on the Parallel Port (BRS=1, ARB=O) 13-8
Transfer from the Host on the Parallel Port (BRS=1, ARB=1) 13-8
Parallel Port Buffer Read Cycle 13-9
State Transitions for Transfers to the Host 13-9
Transfer to the Host on the Parallel Port .. 13-10
Parallel Port Buffer Write Cycle 13-10
Serial Port Control Register 14-1
Serial Port Status Register 14-3
Serial Port Transmit Holding Register 14-4
Serial Port Receive Buffer Register 14-4
Baud Rate Divisor Register 14-5
Video Control Register .. 15-1
Top Margin Register .. 15-3
Side Margin Register ... 15-3
Video Data Holding Register 15-4
VCLK, LSYNC, and VDAT Relationships 15-6
Current Processor Status Register 16-1
Vector Table Entry .. 16-5
Vector Area Base Address Register 16-5
Program Counter Unit .. 16-8
Program Counter 0 Register 16-9
Program Counter 1 Register 16-9
Program Counter 2 Register. 16-10
Current Processor Status After an Interrupt or Trap 16-11
Current Processor Status Before Interrupt Return 16-11
Channel Address Register. .. 16-18
Channel Data Register .. 16-18
Channel Control Register 16-19
Timer Counter Register 16-22
Timer Reload Register. 16-23
Interrupt Control Register 16-24
Valid Transitions for CNTL Field 17-3
Input Boundary-Scan Cell 17-4
Output Boundary-Scan Cell 17-5
Processor Status While in Load Test Instruction Mode 17-13

Table of Contents xiii

~ AMD

xiv

Figure 17-5

Figure 18-1
Figure 18-2
Figure 18-3
Figure 8-1
Figure 8-2
Figure 8-3
Figure C-1

LIST OF TABLES

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 7-1
Table 7-2
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 16-1
Table 16-2
Table 17-1
Table 17-2
Table 17-3
Table 17-4
Table 8-1
Table C-1

Using an Am29200 Microcontroller to Emulate
an Am29205 Microcontroller 17-18
Instruction Format .. 18-4
Frequently Occurring Instruction Field Uses 18-6
Instruction-Description Format•.............. 18-7
General-Purpose Register Organization 8-1
Register 8ank Organization 8-2
Special-Purpose Registers 8-3
On-Chip Peripheral Registers .. C-1

Am29200 and Am29205 Microcontrollers: Feature Summary 1-2
Integer Arithmetic Instructions 2-2
Compare Instructions .. 2-3
Logical Instructions .. 2-4
Shift Instructions .. 2-4
Data Movement Instructions 2-5
Constant Instructions .. 2-5
Floating-Point Instructions .. 2-6
8ranch Instructions '" 2-7
Miscellaneous Instructions 2-8
Reserved Instructions .. 2-8
Internal Peripheral Address Ranges 7-8
Internal Peripheral Address Assignments 7-10
Address Multiplexing for 16-bit DRAM Memory 9-5
Address Multiplexing for 32-bit DRAM Memory 9-6
DRAM Address Multiplexing (by-4 DRAMs) 9-6
DRAM Address Connections to Microcontroller (by-4 DRAMs) 9-7
Vector Number Assignments 16-7
Interrupt and Trap Priority Table " 16-15
Instruction Scan Path ... 17-8
Main Data Scan Path ... 17-9
ICTEST1 Scan Path " .. , 17-10
ICTEST2 Scan Path ... 17-11
Processor Register Field Summary B-7
Peripheral Register Field Summary C-6

Table of Contents

INTRODUCTION AND OVERVIEW

Am29200 AND Am29205 RISC MICROCONTROLLERS
The Am29200 and Am29205 microcontrollers are part of a growing family of 32-bit
reduced-instruction set (RiSe) processors employing submicron circuits to increase the
degree of system integration, yielding very low system cost. Dense circuitry and a large
number of on-chip peripherals minimize the number of components required to imple­
ment embedded systems, while providing performance superior to that of complex­
instruction-set (elSe) microprocessors. Systems implemented with the Am29200 or
Am29205 microcontroller can achieve higher performance at lower cost than existing
systems. The Am29200 and Am29205 microcontrollers are binary compatible with all
other members of the 29K Family, further broadening the price/performance range of the
29K Family.

The Am29200 and Am29205 microcontrollers were designed expressly to meet the
requirements of embedded applications such as laser printers, graphics processing,
application program interface (API) accelerators, X terminals and servers, and scanners.
Such applications make the following demands on system design:

• Performance at low cost: A processor must interface with memory and peripherals
with a minimum number of external components.

• Design flexibility: One basic design must be extensible to an entire product line.

• Reduced time-to-market: A complete set of development, debug, and benchmarking
tools is critical for reducing product development time.

• A rational, easy upgrade path: The processor family must provide bus- and software-
compatibility so processor upgrades are transparent to both hardware and software.

The Am29200 and Am29205 microcontrollers are optimized for any embedded applica­
tion requiring better-than-eISe performance at minimal system cost. The electronic
components for many systems, such as personal laser printers, amount to little more
than the Am29200 or Am29205 microcontroller, ROM, DRAM, and electrical buffering.

DESIGN PHILOSOPHY
The 29K Family of processors results from a design philosophy that considers processor
performance in light of the processor's hardware and software environment. The key to
maximizing performance is understanding that the processor is part of an integrated
system, and is itself a collection of components that must be properly integrated.

Processor features must be considered not only on their own merits, but also in relation
to other components of the system. A particular feature that, while considered alone may
increase one aspect of processor performance, may actually decrease the performance
of the total system, because of the burden it places elsewhere in the system.

Introduction and Overview xv

~AMD

xvi

As an illustration, consider the factors involved in the execution time of any processor
task:

Task Time = (Instructions' Task) * (Cycles 'Instruction) * (Time' Cycle)

To minimize the time taken, it is necessary to minimize the above product. This is not
equivalent to minimizing all the terms that contribute to the product; in fact, this is
generally not possible due to the interaction of the terms.

As an example of the interaction of the previous terms, consider the number of instruc­
tions required for a task. An attempt to minimize this number, a more or less traditional
approach to processor architecture design, increases the average number of cycles
required for the execution of an instruction, because of the increased number of
operations performed by each instruction. In addition, cycle time is increased because of
instruction-decode time.

A second example of the interaction in the previous equation appears in an attempt to
reduce the cycle time through the pipelining of operations. In theory, the cycle time can
be made arbitrarily small by the definition of an arbitrarily large number of pipeline
stages. In practice, at least in the case of general-purpose processors, pipelining rarely
yields much of its potential benefit. This is due to situations where the pipeline cannot be
kept fully occupied, such as when memory references and branches occur. In these
situations, additional pipeline stages increase the number of cycles required for an
operation, and thus affect the Cycles / Instruction term.

Optimum Performance
Each of the terms in the previous equation has some minimum bound for a given
implementation technology and task. In general, this minimum bound cannot be
approached without an offsetting increase in the other terms, making the overall product
less-than-optimum. The question then arises, what combination of terms will yield an
optimum product? There are several things to note when answering this question.

The first observation is that the number of operations underlying a given task is more or
less fixed. Any single processor ultimately limits the time required for a task because it
has a single execution unit and a single instruction stream. The operations that must be
performed are reflected in the Instructions / Task and Cycles / Instruction terms. These
operations may be performed by relatively few instructions, where each instruction takes
multiple cycles to execute, or by a larger number of instructions, where each takes a
single cycle to execute. In the first case, the instructions are complex; in the second,
they are simple.

The point is that the trade-off between simple and complex instructions is not one-to­
one. For example, reducing the number of cycles per instruction by a factor of three
does not increase the number of instructions per task by the same factor. There are two
reasons for this. The first is that even when an instruction set supports complex opera­
tions, a large proportion of the instructions that are executed perform operations that
could be performed as well by simple instructions. The second is that simple instructions
expose more of the internal processor operation to an optimizing compiler. This allows
the compiler to tailor the organization and sequence of operations to the task at hand,
thereby reducing the total number of instructions executed.

Introduction and Overview

AMD~

Performance Leverage
Another important observation is that there is a tremendous amount of leverage in the
Time / Cycle and Cycles / Instruction terms. As they are made smaller, they have a
proportionally greater effect on performance.

For example, a reduction of 10 ns in the cycle time of a processor operating with a
200-ns cycle time yields an increase of 5% in the processor's performance. The same
improvement in a processor operating with a 50-ns cycle time yields a 20% increase in
performance.

Correspondingly, a reduction of 0.2 in the number of cycles per instruction in a processor
averaging 5 cycles per instruction yields a 4% increase in performance. However, the
same reduction yields a 12.5% performance increase in a processor that averages 1.6
cycles per instruction.

Conclusion
It is possible, and desirable, to increase the number of instructions executed for a given
task, and more than make up for the performance impact of this increase by reductions
in the cycle time and in the'number of cycles per instruction. For example, if both the
cycle time and the number of cycles per instruction are reduced by a factor of three,
while the number of instructions for a given task is allowed to grow by 50%, the resulting
task time is reduced by a factor of six.

The Am29200 and Am29205 microcontrollers were designed with the above effects in
mind. Maximum performance is obtained by the optimization of the product of the
number of instructions per task, the number of cycles per instruction, and the cycle time,
not by minimizing one factor at the expense of the others. This is accomplished by
careful definition of all processor components. In particular:

• The Instruction / Task term is optimized by the definition of simple instructions. The
processor provides an efficient instruction set and a large number of general-pur­
pose registers to an optimizing, high-level language compiler. Most reductions in
this term are accomplished by the compiler. The number of instructions for a given
task may be greater than the number of instructions for processors with complex
instruction sets. However, this increase is more than offset by other improvements in
processor performance.

• The Cycles / Instruction term is optimized by the data-flow structure and perfor­
mance-enhancing features of the processor. A large amount of processor hardware is
dedicated to achieving an average instruction-execution rate that is close to single­
cycle execution.

• The Time / Cycle term is optimized by the implementation technology, the processor
system interface, and judicious use of pipelining. The simplicity of the instruction set
and processor features helps minimize the cycle time.

Introduction and Overview xvii

~AMD
PURPOSE OF THIS MANUAL
This manual describes the technical features, programming interface, on-chip peripher­
als, and complete instruction set of the Am29200 and Am29205 microcontrollers.

INTENDED AUDIENCE
This manual is intended for system hardware and software architects and system
engineers who are designing or are considering designing systems based on the
Am29200 and Am29205 microcontrollers.

USER'S MANUAL OVERVIEW
This manual contains information on the Am29200 and Am29205 microcontrollers and is
essential for system hardware and software architects and design engineers. Additional
information is available in the form of data sheets, application notes, and other docu­
mentation provided with software products and hardware-development tools.

The information in this manual is organized into eighteen chapters:

• Chapter 1 introduces the features and performance aspects of the Am29200 and
Am29205 microcontrollers.

• Chapter 2 describes the programmer's model of the Am29200 and Am29205
microcontrollers, including the instruction set and register model.

• Chapter 3 expands on the programmer's model, discussing different data formats
and data handling. Instructions that manipulate external data are also discussed.

• Chapter 4 details the management of the run-time stack and defines the conven­
tions that apply to procedure linkage and register usage.

• Chapter 5 describes the internal pipelining and the effects of the pipeline on program
behavior.

• Chapter 6 describes the system-protection features provided by the Am29200 and
Am29205 microcontrollers.

• Chapter 7 provides an overview of the processor's system interfaces and the
system components that are integrated on-chip.

• Chapter 8 describes the ROM interface.

• Chapter 9 describes the DRAM interface.

• Chapter 10 describes the peripheral interface adapter, which is used for glue less
attachment of a number of peripheral components.

• Chapter 11 describes the DMA controller.

• Chapter 12 describes the programmable 110 port.

• Chapter 13 describes the parallel port.

• Chapter 14 describes the serial port.

• Chapter 15 describes the video interface.

• Chapter 16 provides a description of the interrupt and trap mechanism and the han­
dling of interrupts and traps, including the operation of the on-chip interrupt controller.

• Chapter 17 describes the software and hardware facilities for debugging and testing.

• Chapter 18 provides a detailed description of the instruction set.

AMD~

For those readers desiring only a brief overview of the Am29200 and Am29205
microcontrollers, Chapter 1 identifies the outstanding features of each device. This
chapter addresses the basic software and hardware concerns.

Chapters 2, 3, and 5 are recommended reading for both hardware and software
developers.

For software architects and system programmers interested mainly in software-related
issues, Chapters 4, 6, and 16 provide the necessary information. Chapters 17 and 18
also provide related information.

For hardware architects and systems hardware designers interested mainly in hard­
ware-related issues, Chapters 7 through 15 and Chapter 17 provide most of the
required information. Chapters 5 and 18 also provide related information.

For users already familiar with other 29K Family processors, Chapters 7-15 describe the
on-chip peripherals and system functions unique to the Am29200 and Am29205
microcontrollers.

AMD DOCUMENTATION

29K Family
ORDER NO. DOCUMENT

10620

15723

14779

16361

17741

17882

18002

11426

Am29000@ and Am29005™ Microprocessors User's Manual
and Data Sheet
Describes the Am29000 and Am29005 microprocessors' technical
features, programming interface, and complete instruction set.

Am29030™ and Am29035™ Microprocessors User's Manual
and Data Sheet
Describes the Am29030 and Am29035 microprocessors' technical
features, programming interface, and complete instruction set.

Am29050™ Microprocessor User's Manual
Describes the Am29050 microprocessor's technical features,
programming interface, and complete instruction set.

Am29200 and Am29205 RISC Microcontrollers Data Sheet
Describes the Am29200 and Am29205 microcontrollers' technical
features, including electrical and mechanical specifications.

Am29240™, Am29245™, and Am29243™ RISC Microcontrollers
User's Manual and Data Sheet
Describes the Am29240, Am29245, and Am29243 microcontrollers'
technical features, programming interface, and complete instruction set.

Am29240, Am29245, and Am29243 RISC Microcontrollers Brochure
Describes features, reference designs, and tool support for this series of
high-performance RISC microcontrollers.

29K Family Comparison Chart
Compares the features of all 29K microprocessors and microcontrollers in
a single chart organized for easy reference.

Fusion29KsM Catalog
Provides information on more than 200 tools that speed a 29K Family
embedded product to market. Includes products from over 100 expert
suppliers of embedded development solutions. Design solution chapters

Introduction and Overview xix

~AMD

xx

12990

15176

10344

16693

include: laser printer and OCR solutions, graphics solutions, and
networking solutions.

Fusion Newsletter
Contains quarterly updates on developments in the Am1S6 Family, 29K
Family, and E series of microprocessors and features new Fusion Partner
solutions.

29K Laser Printer Solutions Brochure
Reviews how the 29K Family of microprocessors fits into the laser printer
marketplace. Includes a description of AMD's PCl and PostScript®
Laser291{TM low-Cost Raster Image Processor demonstration boards.

29K Family Design-Made-Easy Solutions Brochure
Presents an overview of the entire 29K Family of microprocessors and
microcontrollers. Features development support products.

RiSe Design-Made-EasyTM Applications Guide
Presents topics on the 29K Family, including interfaces to integer
multipliers, context switching, TlB handlers, benchmarking applications,
byte-writable memories for three-bus microprocessors, host interface
(HIF) version 2.0 specification, using the Am29000 microprocessor as a
high-performance DMA controller, and writing interrupt handlers.

Development Tools
1 n04 Am29200 and Am29205 RiSe Microcontroller Brochure

10287

10626

10957

Reviews how the SA-29200 and SA-29205 demonstration boards and
the SA-29200 expansion board use the Am29200 or Am29205
microcontroller to meet requirements for low-cost embedded
applications. Includes additional support product and ordering
information.

MiniMON29KTM Portable Debug Monitor Data Sheet

XRAY29KTM Source-Level Debugger Data Sheet

High e® 29K Development Toolkit Data Sheet

To order literature, contact your local AMD sales office or call: SOO-2929-AMD, ext. 3 (in
the U.S.), or SOO-531-5202, ext. 55651 (in Canada), or direct dial from any location:
512-602-5651.

RELATED PUBLICATIONS
The IEEE Standard 1149.1-1990 (JTAG) may be ordered from

IEEE Computer Society Press
Customer Service Center
10662 los Vaqueros Circle
P.O. Box 3014
los Alamitos, CA 90720-1264
USA

IEEE Catalog No. SH13144
1-S00-CS-BOOKS
714-S21-4010 (fax)

Introduction and Overview

1 FEATURES AND PERFORMANCE

This chapter provides a general evaluation of the Am29200 and Am29205 microcontrollers.
A detailed technical description of the Am29200 and Am29205 microcontrollers is
contained in subsequent chapters. This chapter informally describes the features of the
two microcontrollers, concentrating on features which distinguish them from other
available processors and describing how these features enhance system performance
and cost-effectiveness. This chapter consists of the following sections:

• Distinctive Characteristics

• Key Features and Benefits

• Performance Overview

• Debugging and Testing

1.1 DISTINCTIVE CHARACTERISTICS
The Am29200 and Am29205 RISC microcontrollers are highly integrated, 32-bit
embedded processors implemented in complementary metal-oxide semiconductor
(CMOS) technology. Through submicron technology, the Am29200 and Am29205
microcontrollers incorporate a complete set of system facilities commonly found in
printing, imaging, graphics, and other embedded applications. The distinctive features of
each microcontroller are compared in Table 1-1.

Based on the 29K architecture, the Am29200 and Am29205 microcontrollers are part of
a growing family of RISC microcontrollers, which also includes the high-performance
Am29240, Am29245, and Am29243 RISC microcontrollers.

Features and Performance 1-1

~AMD
Table 1·1

1.1.1

1-2

Am29200 and Am29205 Microcontrollers: Feature Summary

FEATURE Am29200 Microcontroller Am29205 Microcontroller

Data Bus Width
Internal 32 bits 32 bits
External 32 bits 16 bits

Address Bus Width 24 bits 22 bits

ROM Interface
Banks 4 3
Width e, 16,32 bits e, 16 bits
ROM Size (Max/Bank) 16 Mbytes 4 Mbytes
Boot-up ROM Width e, 16, 32 bits 16 bits
Burst-mode access Supported Not Supported

DRAM Interface
Banks 4 4
Width 16,32 bits 16 bits only
Size: 32-bH mode 16 MbytesJbank -
Size: 16-bH mode e MbytesJbank e MbytesJbank
Video DRAM Supported Not Supported

On-Chip DMA
Width (ext. peripherals) e, 16, 32 bits e, 16 bits
Externally Controlled 2 Channels 1 Channel
External Master Access Yes No
Extemal Terminate Signal Yes No

Peripheral Interface Adapter
(PIA)

PIA Ports 6 2
Data Width e, 16, 32 bits e, 16 bits

Programmable UO Port (PIO)
Signals 16 e

Serial Ports
Ports 1 Port 1 Port
DSR/DTR Supported Uses PIO Signals

Interrupt Controller
External Interrupt Pins 4 2
External Trap and Wam Pins 3 0

Parallel Port Controller
32-bit Transfer Yes No

JTAG Debug Support Yes No

Am29200 Microcontroller
The Am29200 microcontroJler meets the common requirements of embedded applica­
tions such as industrial control, graphics processing, imaging applications, laser printers,
and general purpose applications requiring high-performance in a compact deSign.
Figure 1-1 shows a block diagram of the Am29200 microcontroJler. The microcontroller
includes the following features:

• Completely integrated system for embedded applications

• Full 32-bit architecture

• 16- and 20-MHz operating frequencies

• Price/performance flexibility. Support for several low-cost memory configurations
allows performance points of 8, 6, 5, and 3 million instructions per second sustained
(at 16 MHz).

• 4-Gbyte virtual address space, 304-Mbyte physical address space implemented

Features and Performance

AMD~

• 192 general-purpose registers; three-address instruction architecture

• Glueless system interfaces with on-chip wait state control

• Four banks of ROM, each separately programmable for 8-, 16-, or 32-bit interface

• Four banks of DRAM, each separately programmable for 16- or 32-bit interface

• Burst-mode and page-mode access support

• DRAM mapping on-chip

• Advanced debugging support

• IEEE Std. 1149.1-1990 (JTAG) compliant Standard Test Access Port and
Boundary Scan Architecture

• Two-channel DMA controller with queuing on one channel

• 6-port peripheral interface adapter

• 16-line programmable I/O port

• Bidirectional bit serializer/deserializer (video interface)

• Serial port (UART)

• Bidirectional parallel port controller

• Interrupt controller

• On-chip timer

• Binary compatibility with all 29K Family microcontrollers and microprocessors

Figure 1·1 Am29200 Microcontroller Block Diagram

Parallel po~{s I. i} Clock! /. t 2 DREQ
ControVStatus 6 STAT: J 4 5 Control 5 7 2 ~

Lines MEMCLK JTAG Lines GREOIGACKlTDMA

411 4/ 16 V 6 II , I Parallel Port 2-Channel DMA , I
Controller Controller

Serial
Data Programmable I/O

Serial Port
I/O Port

Printer/Scanner
Video Serializer/ Am29000CPU Interrupt Interrupts, Traps

Deserializer
ROM

Controller

Chip Selects ROM RASICAS
Controller

DRAM Controller

4 I
PIA 414 V

I
Controller

Timer/Counter
~I

A Lr
I\.

II ; ;.
ROM " 116 V

"V
~ "

Space PIA'
V' 24 32

DRAM Address Instruction/Data
Memory Chip Selects Bus Bus

'II ~ ... ;.

I Peripherals ~
Features and Performance 1-3

~AMD
1.1.2 Am29205 Microcontroller

The Am29205 RISC microcontroller (see Figure 1-2) is a highly integrated, low-cost
derivative of the Am29200 microcontroller, with a 16-bit instruction bus, fewer peripheral
ports, and no JTAG interface. It includes the following features:

• Completely integrated system for embedded applications

• Full 16-bit external, 32-bit internal architecture

• 12- and 16-MHz operating frequencies

• 68-Mbyte address space

• Two-channel DMA controller (one external)

• Three separately programmable ROM banks with16-bit ROM interface

• Fully functional 16-bit DRAM interface complete with address MUXing, Refresh, and
RAS/CAS generation

• Two-port peripheral interface adapter

• Eight-line programmable I/O port

• Bidirectional bit serializer/deserializer (video interface)

• Serial port (UART)

• Bidirectional parallel port controller

• Interrupt controller

• On-chip timer

Figure 1·2 Am2920S Microcontroller Block Diagram

Parallel p01} Clock! 13 ControVStatus 6 Control 2t DREQ
Lines MEMCLK Lines DACK

4V 2 / 8, / 2 'I
I I Parallel Port DMA I

Controller Controller
serial

ata Programmable I/O
Serial Port

Printer/Scanner
I/O Port

Video Serializer/ Interrupt Interrupts

Deserializer
Am29000CPU

Controller
ROM
Chip Selects ROM RASICAS

Controller
DRAM Controller

3 V
PIA 412 V

I
Controller

Timer/Counter
~I

A ~)0. ..
:; I ~

ROM " / V
... ~

.... v

Space PIAl
2 ;' 22 16

DRAM Address Instruction/Data
Memory Chip Selects Bus Bus ,., "'i 7-

I Peripherals]
1-4 Features and Performance

1.2

1.2.1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

1.2.1.5

KEY FEATURES AND BENEFITS

Complete Set of Common System Peripherals
The Am29200 and Am29205 microcontrollers minimize system cost by incorporating a
complete set of system facilities commonly found in embedded applications, eliminating
the cost of additional components.

The on-chip functions include: a ROM controller, a DRAM controller, a peripheral
interface adapter, a DMA controller, a programmable I/O port, a parallel port, a serial
port, and an interrupt controller. A serializer/deserializer (video interface) is also included
for printer, scanner, and other imaging applications.

By providing a complete set of common system peripherals on-chip and glueless
interfacing to external memories and peripherals, these RiSe microcontrollers let
product designers capitalize on the very low system cost made possible by the integra­
tion of processor and peripherals. Many simple systems can be built using only the
Am29200 or Am29205 microcontroller and external ROM and/or DRAM memory.

ROM Controller (Chapter 8)

The ROM controller supports four individual banks of ROM or other static memory in the
Am29200 microcontroller and three banks in the Am29205 microcontroller. Each ROM
bank has its own timing characteristics, and each bank can be a different size: either 8,
16, or 32 bits wide in the Am29200 microcontroller and 8 or 16 bits wide in the Am29205
microcontroller. The ROM banks can appear as a contiguous memory area of up to 64
Mbytes in size on the Am29200 microcontroller. The ROM controller also supports writes
to the ROM memory space for devices such as flash EPROMs and SRAMs.

DRAM Controller (Chapter 9)

The DRAM controller supports four separate banks of dynamic memory. On the
Am29200 microcontroller, each bank can be a different size: either 16 or 32 bits wide.
DRAM banks on the Am29205 microcontroller are 16 bits wide. The DRAM banks can
appear as a contiguous memory area of up to 64 Mbytes in size on the Am29200
microcontroller and 32 Mbytes on the Am29205 microcontroller. To support system
functions such as on-the-fly data compression and decompression, four 64-Kbyte
regions of the DRAM can be mapped into a 16-Mbyte virtual address space.

Peripheral Interface Adapter (PIA) (Chapter 10)

The peripheral interface adapter allows for additional system features implemented by
external peripheral chips. The PIA permits glue less interfacing from the Am29200
microcontroller to as many as six external peripheral regions and from the Am29205
microcontroller to two external peripherals.

DMA Controller (Chapter 11)

The DMA controller in the Am29200 microcontroller provides two channels for transfer­
ring data between the DRAM and internal or external peripherals. One of the DMA
channels is double buffered to relax the constraints on the reload time. On the Am29205
microcontroller, internal 32-bit transfers are supported on two DMA channels; external
transfers are limited to 8-or 16-bit data accesses on one DMA channel.

Interrupt Controller (Section 16.9)

The interrupt controller generates and reports the status of interrupts caused by on-chip
peripherals.

Features and Performance 1-5

~AMD
1.2.1.6

1.2.1.7

1.2.1.8

1.2.1.9

1.2.2

1.2.3

1-6

1/0 Port (Chapter 12)

The Am29200 microcontroller's I/O port permits direct access to 16 individually program­
mable external input/output signals. Eight signals are available on the Am29205
microcontroller. These eight signals can be configured to cause interrupts on either
microcontroller.

Parallel Port (Chapter 13)

The parallel port implements a bidirectional IBM PC-compatible parallel interface to a
host processor.

Serial Port (Chapter 14)

The serial port implements a full-duplex UART.

Serializer/Deserializer (Chapter 15)

The bidirectional bit serializer/deserializer (video interface) permits direct connection to a
number of laser marking engines, video displays, or raster input devices such as
scanners.

Wide Range of Price/Performance Points
To reduce design costs and time-to-market, one basic system design can be used as the
foundation for an entire product line. From this design, numerous implementations of the
product at various levels of price and performance may be derived with minimum time,
effort, and cost.

The Am29200 and Am29205 microcontrollers provide this capability through program­
mable memory widths, burst-mode and page-mode access support, programmable wait
states, and hardware and 29K Family software compatibility. A system can be upgraded
without hardware and software redesign using various memory architectures.

The ROM controller on the Am29205 microcontroller accommodates memories that are
either 8 or 16 bits wide, while that of the Am29200 microcontroller supports either 8-,
16-, or 32-bit memories. The DRAM controller on the Am29205 microcontroller accom­
modates dynamic memories that are 16 bits wide; the Am29200 microcontroller supports
either 16- or 32-bit memories.

These unique features provide a flexible interface to low-cost memory as well as a
convenient, flexible upgrade path. For example, a system can start with a 16-bit memory
design and can subsequently improve performance by migrating to a 32-bit memory
design. One particular advantage is the ability to add memory in half-megabyte incre­
ments. This provides significant cost savings for applications that do not require larger
memory upgrades.

The Am29200 microcontroller family allows users to address a wide range of
price/performance points, with higher performance and lower cost than existing designs
based on CISC microprocessors.

Glueless System Interfaces
The Am29200 and Am29205 microcontrollers also minimize system cost by providing a
glueless attachment to external ROMs, DRAMs, and other peripheral components.
Processor outputs have edge-rate control that allows them to drive a wide range of load
capacitances with low noise and ringing. This eliminates the cost of external logic and
buffering.

Features and Performance

1.2.4

1.2.5

AMD~

Bus- and Binary.compatibility
Compatibility within a processor family is critical for achieving a rational, easy upgrade
path. The Am29200and Am29205 microcontrollers are members of a bus-compatible
family of RISC microcontrollers, which also includes the high-performance Am29240,
Am29245, and Am29243 microcontrollers. Future members of this family will improve in
price and performance and system capabilities without requiring that users redesign
their system hardware or software. Bus compatibility ensures a convenient upgrade path
for future systems.

The Am29200 microcontroller is binary compatible with the Am29240, Am29245, and
Am29243 microcontrollers, as well as the Am29000, Am29005, Am29030, Am29035,
and Am29050 microprocessors. The Am29200 microcontroller family provides a
migration path to low-cost, highly integrated systems for products based on other 29K
Family microprocessors, without requiring expensive rewrites of application software.

Complete Development and Support Environment
A complete development and support environment is vital for reducing a product's
time-to-market. Advanced Micro Devices has created a standard development environ­
ment for the 29K Family of processors. In addition, the Fusion29K third-party support
organization provides the most comprehensive customer/partner program in the
embedded processor market.

Advanced Micro Devices offers a complete set of hardware and software tools for
design, integration, debugging, and benchmarking. These tools, which are available now
for the 29K Family, include the following:

• High C® 29K optimizing C compiler with assembler, linker, ANSI library functions,
and 29K architectural simulator

• XRAY29KTM source-level debugger

• MiniMON29KTM debug monitor

• A complete family of demonstration and development boards

In addition, Advanced Micro Devices has developed a standard host interface (HIF)
specification for operating system services, the Universal Debug Interface (UDI) for
seamless connection of debuggers to ICEs and target hardware, and extensions for the
UNIX common object file format (COFF).

This support is augmented by an engineering hotline, an on-line bulletin board, and field
application engineers.

1.3 PERFORMANCE OVERVIEW

1.3.1

The Am29200 and Am29205 microcontrollers offer a significant margin of performance
over CISC microprocessors in existing embedded designs, since the majority of
processor features were defined for the maximum achievable performance at a very low
cost. This section describes the features of the Am29200 and Am29205 microcontrollers
from the point of view of system performance.

Instruction Timing (Section 2.1)
The Am29200 and Am29205 microcontrollers use an arithmetic/logic unit, a field shift
unit, and a prioritizer to execute most instructions. Each of these is organized to operate
on 32-bit operands and provide a 32-bit result. All operations are performed in a Single
cycle.

Features and Performance 1-7

~ AMD

1.3.2

1.3.3

1.3.4

1.3.5

1-8

The performance degradation of load and store operations is minimized in the Am29200
and Am29205 microcontrollers by overlapping them with instruction execution, by taking
advantage of pipelining, and by organizing the flow of external data into the processor so
that the impact of external accesses is minimized.

Pipelining (Chapter 5)
Instruction operations are overlapped with instruction fetch, instruction decode and
operand fetch, instruction execution, and result write-back to the register file. Pipeline
forwarding logic detects pipeline dependencies and routes data as required, avoiding
delays that might arise from these dependencies.

Pipeline interlocks are implemented by processor hardware. Except for a few special
cases, it is not necessary to rearrange programs to avoid pipeline dependencies,
although this is sometimes desirable for performance.

Burst-Mode and Page-Mode Memories (Sections 8.3.5, 9.3.7)
The Am29200 microcontroller directly supports burst-mode memories in ROM address
space. The burst-mode memory supplies instructions at the maximum bandwidth,
without the complexity of an external cache or the performance degradation due to
cache misses.

Both the Am29200 and Am29205 microcontrollers can also use the page-mode capabili­
ty of common DRAMs to improve the access time in cases where page-mode accesses
can be used. This is particularly useful in very low-cost systems with 16-bit-wide
DRAMs, where the DRAM must be accessed twice for each 32-bit operand.

Instruction Set Overview (Section 2.1, Chapter 18)
The Am29200 and Am29205 microcontrollers employ a three-address instruction set
architecture. The compiler or assembly-language programmer is given complete
freedom to allocate register usage. There are 192 general-purpose registers, allowing
the retention of intermediate calculations and avoiding needless data destruction.
Instruction operands may be contained in any of the general-purpose registers, and the
results may be stored into any of the general-purpose registers.

The instruction set contains 117 instructions that are divided into nine classes. These
classes are integer arithmetic, compare, logical, shift, data movement, constant, floating
point, branch, and miscellaneous. The floating-point instructions are not executed
directly, but are emulated by trap handlers.

All directly implemented instructions are capable of executing in one processor cycle,
with the exception of interrupt returns, loads, and stores.

Data Formats (Chapter 3)
The Am29200 and Am29205 microcontrollers define a word as 32 bits of data, a
half-word as 16 bits, and a byte as 8 bits. The hardware provides direct support for
word-integer (signed and unsigned), word-logical, word-boolean, half-word integer
(signed and unsigned), and character data (signed and unsigned).

Word-boolean data is based on the value contained in the most significant bit of the
word. The values TRUE and FALSE are represented by the MSB values 1 and 0,
respectively.

Other data formats, such as character strings, are supported by instruction sequences.
Floating-point formats (single and double precision) are defined for the processor;

Features and Performance

1.3.6

1.3.7

1.3.8

AMD~
however, there is no direct hardware support for these formats in the Am29200 or
Am29205 microcontroller.

Protection (Chapter 6)
The Am29200 and Am29205 microcontrollers offer two mutually exclusive modes of
execution, the user and supervisor modes, that restrict or permit accesses to certain
processor registers and external storage locations.

The register file may be configured to restrict accesses to supervisor-mode programs on
a bank-by-bank basis.

DRAM Mapping (Section 9.3.5)
The Am29200 and Am29205 microcontrollers provide a 16-Mbyte region of virtual
memory that is mapped to one of four 64-Kbyte blocks in the physical DRAM memory.
This supports system functions such as on-the-fly data compression and decompres­
sion, allowing a large data structure such as a frame buffer to be stored in a compressed
format while the application software operates on a region of the structure that is
decompressed. Using a mechanism that is analogous to demand paging, system
software moves data between the compressed and decompressed formats in a way that
is invisible to the applications software. This feature can greatly reduce the amount of
memory required for printing, imaging, and graphics applications.

Interrupts and Traps (Chapter 16)
When the microcontroller takes an interrupt or trap, it does not automatically save its
current state information in memory. This lightweight interrupt and trap facility greatly
improves the performance of temporary interruptions such as simple operating-system
calls that require no saving of state information.

In cases where the processor state must be saved, the saving and restoring of state
information is under the control of software. The methods and data structures used to
handle interrupts-and the amount of state saved-may be tailored to the needs of a
particular system.

Interrupts and traps are dispatched through a 256-entry vector table that directs the
processor to a routine that handles a given interrupt or trap. The vector table may be
relocated in memory by the modification of a processor register. There may be multiple
vector tables in the system, though only one is active at any given time.

The vector table is a table of pointers to the interrupt and trap handlers and requires only
1 Kbyte of memory. The processor performs a vector fetch every time an interrupt or trap
is taken. The vector fetch requires at least three cycles, in addition to the number of
cycles required for the basic memory access.

1.4 DEBUGGING AND TESTING (Chapter 17)
Software debugging on the Am29200 and Am29205 microcontrollers is facilitated by the
instruction trace facility and instruction breakpoints. Instruction tracing is accomplished
by forcing the processor to trap after each instruction has been executed. Instruction
breakpoints are implemented by the HALT instruction or by a software trap.

The Am29200 microcontroller provides two additional features to assist system debug­
ging and testing:

• The tesVdevelopment interface is composed of a group of pins that indicate the state
of the processor and control the operation of the processor.

Features and Performance 1-9

~AMD

1-10

• An IEEE Standard 1149.1-1990 (JTAG) compliant Standard Test Access Port and
Boundary-Scan Architecture. The test access port provides a scan interface for test­
ing system hardware in a production environment, and contains extensions that allow
a hardware-development system to control and observe the processor without inter­
posing hardware between the processor and system.

Hardware testing and debugging on the Am29205 microcontroller are supported by
using an Am29200 microcontroller to emulate an Am29205 microcontroller.

Features and Performance

2

2.1

2.1.1

2.1.2

PROGRAMMING

This chapter focuses on programming the Am29200 and Am29205 microcontrollers. First,
this chapter presents an instruction set overview. It then describes the register model,
emphasizing the general- and special-purpose registers. This chapter also describes
certain special-purpose registers that deal directly with instruction execution. Finally, this
chapter describes general considerations related to application programming.

INSTRUCTION SET
The Am29200 and Am29205 microcontrollers recognize 117 instructions. All instructions
execute in a single cycle, except for IRET, IRETINV, LOADM, STOREM, and certain
arithmetic instructions such as floating-point instructions. Floating-point and integer
multiply and divide instructions are not implemented directly in hardware, but are imple­
mented by a virtual arithmetic interface invoked using instruction traps (see Section 2.8).

Most instructions deal with general-purpose registers for operands and results; however,
in most instructions, an 8-bit constant can be used in place of a register-based operand.
Some instructions deal with special-purpose registers and external devices and memories.

This section describes the nine instruction classes and provides a brief summary of
instruction operations. A detailed instruction specification is contained in Chapter 18.
Section 18.1 describes the nomenclature used here.

If the processor attempts to execute an unimplemented instruction, an Illegal Opcode
trap occurs unless the instruction is reserved for emulation (see Section 2.1.10).
Reserved instructions are assigned individual traps.

Integer Arithmetic
The Integer Arithmetic instructions perform add, subtract, multiply, and divide operations
on word-length integers. Certain instructions in this class cause traps if signed or
unsigned overflow occurs during the execution of the instruction. There is support for
multiprecision arithmetic on operands whose lengths are multiples of words. All instruc­
tions in this class set the ALU Status Register. The Integer Arithmetic instructions are
shown in Table 2-1. In the Am29200 and Am29205 microcontrollers, the integer multiply
and divide instructions cause traps to routines which perform the operations.

Compare
The Compare instructions (Table 2-2) test for various relationships between two values.
For all Compare instructions except the CPBYTE instruction, the comparisons are
performed on word-length signed or unsigned integers. There are two types of Compare
instructions. The first type places a Boolean value reflecting the outcome of the compare
into a general-purpose register. For the second type, assert instructions, instruction
execution continues only if the comparison is true; otherwise a trap occurs. The assert
instructions specify a vector for the trap (see Section 16.3).

The assert instructions support run-time operand checking and operating-system calls. If
the trap occurs in the User mode, and a trap number between 0 and 63 is specified by
the instruction, a Protection Violation trap occurs.

Programming 2-1

~AMD
Table 2·1 Integer Arithmetic Instructions

Mnemonic Operation Description

ADD DEST +- SRCA + SRCB

ADDS DEST +- SRCA + SRCB
IF signed overflow THEN Trap (Out of Range)

ADDU DEST +- SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

ADDC DEST +- SRCA + SRCB + C

ADDCS DEST +- SRCA + SRCB + C
IF signed overflow THEN Trap (Out of Range)

ADDCU DEST +- SRCA + SRCB + C
IF unsigned overflow THEN Trap (Out of Range)

SUB DEST +- SRCA - SRCB

SUBS DEST +- SRCA - SRCB
IF signed overflow THEN Trap (Out of Range)

SUBU DEST +- SRCA - SRCB
IF unsigned underflow THEN Trap (Out of Range)

SUBC DEST +- SRCA - SRCB - 1 + C

SUBCS DEST +- SRCA - SRCB - 1 + C
IF signed overflow THEN Trap (Out of Range)

SUBCU DEST +- SRCA - SRCB - 1 + C
IF unsigned underflow THEN Trap (Out of Range)

SUBR DEST +- SRCB -SRCA

SUBRS DEST +- SRCB - SRCA
IF signed overflow THEN Trap (Out of Range)

SUBRU DEST +- SRCB - SRCA
IF unsigned underflow THEN Trap (Out of Range)

SUBRC DEST +- SRCB - SRCA - 1 + C

SUBRCS DEST +- SRCB - SRCA - 1 + C
IF signed overflow THEN Trap (Out of Range)

SUBRCU DEST +- SRCB - SRCA - 1 +C
IF unsigned underflow THEN Trap (Out of Range)

MULTIPLU DEST +- SRCA . SRCB (unsigned)

MULTIPLY DEST +- SRCA . SRCB (signed)

MUL Perform one-bit step of a multiply operation (signed)

MULL Complete a sequence of multiply steps

MULTM DEST +- SRCA . SRCB (signed), most significant bits

MULTMU DEST +- SRCA . SRCB (unsigned), most significant bits

MULU Perform one-bit step of a multiply operation (unsigned)

DIVIDE DEST +- (Q/lSRCA)/SRCB (signed)
Q +- Remainder

DIVIDU DEST +- (Q//SRCA)/SRCB (unsigned)
Q +- Remainder

DIVO Initialize for a sequence of divide steps (unsigned)

DIV Perform one-bit step of a divide operation (unsigned)

DIVL Complete a sequence of divide steps (unsigned)

DIVREM Generate remainder for divide operation (unsigned)

2-2 Programming

AMD~
Table 2·2 Compare Instructions

Mnemonic Operation Description

CPEQ IF SRCA = SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

CPNEQ IF SRCA <> SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

CPLT IF SRCA < SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

CPLTU IF SRCA < SRCB (unsigned) THEN DEST ~ TRUE
ELSE DEST ~ FALSE

CPLE IF SRCA:S; SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

CPLEU IF SRCA:S; SRCB (unsigned) THEN DEST +-- TRUE
ELSE DEST ~ FALSE

CPGT IF SRCA > SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

CPGTU IF SRCA > SRCB (unsigned) THEN DEST ~ TRUE
ELSE DEST ~ FALSE

CPGE If SRCA ~ SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

CPGEU IF SRCA ~ SRCB (unsigned) THEN DEST +-- TRUE
ELSE DEST ~ FALSE

CPBYTE IF (SRCA.BYTEO = SRCB.BYTEO) OR
(SRCA.BYTE1 = SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3 = SRCB.BYTE3) THEN DEST ~ TRUE

ELSE DEST ~ FALSE

ASEQ IF SRCA = SRCB THEN Continue
ELSE Trap (VN)

ASNEQ IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)

ASLT IF SRCA < SRCB THEN Continue
ELSE Trap (VN)

ASLTU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)

ASLE IF SRCA :s; SRCB THEN Continue
ELSE Trap (VN)

ASLEU IF SRCA:S; SRCB (unsigned) THEN Continue
ELSE Trap (VN)

ASGT IF SRCA > SRCB THEN Continue
ELSE Trap (VN)

ASGTU IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)

ASGE IF SRCA ~ SRCB THEN Continue
ELSE Trap (VN)

ASGEU IF SRCA ~ SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Programming 2-3

~AMD
2.1.3

Table 2-3

2.1.4

Table 2-4

2.1.5

2-4

Logical
The Logical instructions (Table 2-3) perform a set of bit-by-bit Boolean functions on
word-length bit strings. All instructions in this class set the ALU Status Register.

Logical Instructions

Mnemonic Operation Description

AND DEST ~ SRCA & SRCB

ANON DEST ~ SRCA & - SRCB

NAND DEST ~- (SRCA & SRCB)

OR DEST ~ SRCA I SRCB

NOR DEST ~ - (SRCA I SRCB)

XOR DEST ~ SRCA 1\ SRCB

XNOR DEST ~ - (SRCA 1\ SRCB)

Shift
The Shift instructions (Table 2-4) perform arithmetic and logical shifts. All but the
EXTRACT instruction operate on word-length data and produce a word-length result.
The EXTRACT instruction operates on double-word data and produces a word-length
result. If both parts of the double-word for the EXTRACT instruction are from the same
source, the EXTRACT operation is equivalent to a rotate operation. For each operation,
the shift count is a 5-bit integer, specifying a shift amount in the range of 0 to 31 bits.

Shift Instructions

Mnemonic

SLL

SRL

SRA

EXTRACT

Operation Description

DEST ~ SRCA « SRCB (zero fill)

DEST ~ SRCA » SRCB (zero fill)

DEST ~ SRCA » SRCB (sign fill)

DEST ~ high-order word of (SRCAl/SRCB « FC)

Data Movement
The Data Movement instructions (Table 2-5) move bytes, half-words, and words
between processor registers. In addition, they move data between general-purpose
registers and external devices, and memories. The instructions LOADL and STOREL
are provided for compatibility with other 29K processors and are treated as LOAD and
STORE instructions. Similarly, the instructions MFTLB and MTTLB perform no operation,
except that both are privileged instructions.

Programming

Table 2·5

2.1.6

Table 2·6

AMD~

Data Movement Instnactions

Mnemonic

LOAD

LOADL

LOADSET

LOADM

STORE

STOREL

STOREM

EXSYTE

EXHW

EXHWS

INSYTE

INHW

MFSR

MFTLS

MTSR

MTSRIM

MTILS

Constant

Operation Description

DEST f- EXTERNAL WORD [SRCS)

Implemented as LOAD

DEST f- EXTERNAL WORD [SRCS)
EXTERNAL WORD [SRCS) f- h'FFFFFFFF'

DEST .. DEST + COUNT f-
EXTERNAL WORD [SRCS] ..
EXTERNAL WORD [SRCS + COUNT· 4]

EXTERNAL WORD [SRCS] f- SRCA

Implemented as STORE

EXTERNAL WORD [SRCS) ..
EXTERNAL WORD [SRCS + COUNT· 4] f­
SRCA .. SRCA + COUNT

DEST f- SRCS, with low-order byte replaced by byte in SRCA
selected by SP

DEST f- SRCS, with low-order half-word replaced by half-word in SRCA
selected by SP

DEST f- half-word in SRCA selected by SP, sign-extended to 32 bits

DEST f- SRCA, with byte selected by SP replaced by low-order byte
ofSRCS

DEST f- SRCA, with half-word selected by SP replaced by low-order
half-word of SRCS

DEST f- SPECIAL

no operation (privileged)

SPDEST f- SRCS

SPDEST f- 0116

no operation (privileged)

The Constant instructions (Table 2-6) provide the ability to place half-word and word
constants into registers. Most instructions in the instruction set allow an a-bit constant as
an operand. The Constant instructions allow the construction of larger constants.

Constant Instnactions

Mnemonic

CONST

CONSTH

CONSTN

Operation Description

DEST f- 0116

Replace high-order half-word of SRCA by 116

DEST f-1116

Programming 2-5

~AMD
2.1.7

Table 2-7

2-6

Floating Point
The Floating-Point instructions (Table 2-7) provide operations on single-precision (32-bit)
or double-precision (64-bit) floating-point data. They also provide conversions between
single-precision, double-precision, and integer number representations. In the Am29200
and Am29205 microcontrollers, these instructions cause traps (specified by the vector
numbers listed in the table) to routines which perform the floating-point operations.

Floating-Point Instructions

Mnemonic Operation Description Vector Number

FADD DEST (single-precision) f- SRCA (single-precision) 48
+ SRCS (single-precision)

DADO DEST (double-precision) f- SRCA (double-precision) 49
+ SRCS (double-precision)

FSUS DEST (single-precision) f- SRCA (double-precision) 50
- SRCS (single-precision)

DSUS DEST (double-precision) f- SRCA (double-precision) 51
- SRCS (double-precision)

FMUL DEST (single-precision) f- SRCA (single-precision) 52
· SRCS (single-precision)

FDMUL DEST (double-precision) f- SRCA (single-precision) 57
· SRCS (single-precision)

DMUL DEST (double-precision) f- SRCA (double-precision) 53
· SRCS (double-precision)

FDIV DEST (single-precision) f- SRCA (single-precision 54
I SRCS (single-precision)

DDIV DEST (double-precision) f- SRCA (double-precision) 55
I SRCS (double-precision)

FEO IF SRCA (single-precision) = SRCS (single-precision) 42
THEN DEST f- TRUE

ELSE DEST f- FALSE

DEO IF SRCA (double-precision) = SRCS (double-precision) 43
THEN DEST f- TRUE

ELSE DEST f- FALSE

FGE IF SRCA (single-precision) >= SRCS (Single-precision) 46
THEN DEST f- TRUE

ELSE DEST f- FALSE

DGE IF SRCA (double-precision) >= SRCS (double-precision) 47
THEN DEST f- TRUE

ELSE DEST f- FALSE

FGT IF SRCA (single-precision) > SRCS (Single-precision) 44
THEN DEST f- TRUE

ELSE DEST f- FALSE

ooT IF SRCA (double-precision) > SRCS (double-precision) 45
THEN DEST f- TRUE

ELSE DEST f- FALSE

SORT DEST (single-precision, double-precision) 37
f- SORT [SRCA (Single-precision, double-precision)]

CONVERT DEST (integer, single-precision, double-precision) 36
f- SRCA (integer, single-precision, double-precision)

CLASS DEST f- CLASS [SRCA (single-precision, double-precision)] 38

Programming

2.1.8

Table 2-8

2.1.9

AMD~

Branch
The Branch instructions (Table 2-8) control the execution flow of instructions. Branch
target addresses may be absolute, relative to the program counter (with the offset given
by a signed instruction constant), or contained in a general-purpose register. For
conditional jumps, the outcome of the jump is based on a Boolean value in a general­
purpose register. Procedure calls are unconditional and save the return address in a
general-purpose register. All branches have a delayed effect; the instruction following
the branch is executed regardless of the outcome of the branch.

Branch Instftlctions

Mnemonic Operation Description

CALL DEST E- PCI/OO + 8
PC E- TARGET
Execute delay instruction

CALLI DEST E- PCI/OO + 8
PC E-SRCB
Execute delay instruction

JMP PCE- TARGET
Execute delay instruction

JMPI PC E-SRCS
Execute delay instruction

JMPT IF SRCA = TRUE THEN PC E- TARGET
Execute delay instruction

JMPTI IF SRCA = TRUE THEN PC E- SRCS
Execute delay instruction

JMPF IF SRCA = FALSE THEN PC E- TARGET
Execute delay instruction

JMPFI IF SRCA = FALSE THEN PC E- SRCS
Execute delay instruction

JMPFDEC IF SRCA= FALSE THEN
SRCA E- SRCA - 1
PC E- TARGET

ELSE
SRCA E- SRCA - 1

Execute delay instruction

Miscellaneous
The Miscellaneous instructions (Table 2-9) perform various operations that cannot be
grouped into other instruction classes. In certain cases, these are control functions
available only to Supervisor-mode programs. The instructions INV and IRETINV are
provided for compatibility with other 29K processors. INV performs no operation, and
IRETINV performs the same operations as IRET. Both are privileged instructions.

Proarammina 2-7

~AMD

Table 2·9

2.1.10

Miscellaneous Instftlctions

Mnemonic

CLZ

SETIP

EMULATE

INV

IRET

IRETINV

HALT

Operation Description

Determine number of leading zeros in a word

Set IPA, IPS, and IPC with operand register numbers

Load IPA and IPS with operand register numbers and Trap (VN)

No operation

Perform an interrupt return sequence

Perform an interrupt return sequence

Enter Halt mode

Reserved Instructions
Sixteen operation codes are reserved for instruction emulation. Each of these instruc­
tions causes a trap and sets the indirect pointers IPC, IPA, and IPB. The relevant
operation codes, and the corresponding trap vectors, are as follows:

Table 2·10 Reserved Instftlctions

Operation Codes (Hexadecimal) Trap Vector Numbers (Decimal)

DB-DO
E7-E9
F8
FA-FF

24-29
39-41
56
58-63

The reserved instructions are intended for future processor enhancements, and users
desiring compatibility with future processor versions should not use them for any
purpose.

2.2 REGISTER MODEL

2.2.1

2·8

The microcontroller has two classes of registers that are accessible by instructions.
These are the general-purpose registers and the special-purpose registers. Any
operation available to the microcontroller can be performed on the general-purpose
registers, while special-purpose registers are accessed only by the instructions MTSR,
MTSRIM, and MFSR. This section describes the general-purpose and special-purpose
registers.

General.Purpose Registers
The microcontroller incorporates 192 general-purpose registers. The organization of the
general-purpose registers is diagrammed in Figure 2-1.

General-purpose registers hold the following types of operands for program use:

• 32-bit addresses

• 32-bit Signed or unsigned integers

• 32-bit branch-target addresses

• 32-bit logical bit strings

• a-bit Signed or unsigned characters

Programming

Figure 2-1

Global
Registers

Local
Registers

General-Purpose Register Organization

Absolute General Purpose Register #

0 Indirect Pointer Access

1 Stack Pointer

2-63 Not Implemented

64 Global Register 64

65 Global Register 65

66 Global Register 66

• •
• •
• •

126 Global Register 126

127 Global Register 127

128 Local Register 125

129 Local Register 126

130 Local Register 127

131 Local Register 0

132 Local Register 1

• •
• •
• •

254 Local Register 123

255 Local Register 124

Programming

....
~

AMD~

31 8 210

rspl I
J

I I
131

(example)

See Section 4.1.3 for mar e
f detail on the operation a

the register stack pOinte
(rsp).

2-9

~ AMD

2.2.1.1

2.2.1.2

2.2.1.3

2-10

• 16-bit signed or unsigned integers

• Word-length Booleans

• Single-precision floating-point numbers

• Double-precision floating-point numbers (in two register locations)

Because a large number of general-purpose registers are provided, a large amount of
frequently used data can be kept on-chip, where access time is fastest.

Instructions can specify two general-purpose registers for source operands and one
general-purpose register for storing the instruction result. These registers are specified
by three 8-bit instruction fields containing register numbers. A register may be specified
directly by the instruction, or indirectly by one of three special-purpose registers.

Register Addressing

The general-purpose registers are partitioned into 64 global registers and 128 local
registers, differentiated by the most significant bit of the register number. The distinction
between global and local registers is the result of register-addressing considerations.

The following terminology is used to describe the addressing of general-purpose
registers:

• Register number, a software-level number for a general-purpose register. For
example, this is the number contained in an instruction field. Register numbers range
from 0 to 255.

• Global-register number, a software-level number for a global register. Global-register
numbers range from 0 to 127.

• Local-register number, a software-level number for a local register. Local-register
numbers range from 0 to 127.

• Absolute-register number, a hardware-level number used to select a general-purpose
register in the register file. Absolute-register numbers range from 0 to 255.

Global Registers

When the most significant bit of a register number is 0, a global register is selected. The
seven least significant bits of the register number give the global-register number. For
global registers, the absolute-register number is equivalent to the register number.

Global registers 2 through 63 are not implemented. An attempt to access these registers
yields unpredictable results; however, they may be protected from User-mode access by
the Register Bank Protect Register (see Section 6.2.1).

The register numbers associated with Global Registers 0 and 1 have special meaning.
The number for Global Register 0 specifies that an indirect pointer is to be used as the
source of the register number (see Section 2.3); there is an indirect pointer for each of
the instruction operand/result registers. Global Register 1 contains the Stack Pointer,
which is used in the addressing of local registers.

Local Registers

When the most significant bit of a register number is 1, a local register is selected. The
seven least significant bits of the register number give the local-register number. For
local registers, the absolute-register number is obtained by adding the local-register
number to bits 8-2 of the Stack Pointer and truncating the result to seven bits; the most
significant bit of the original register number is unchanged (i.e., it remains a 1).

Programming

2.2.1.4

2.2.2

AMo;tt

The Stack Pointer addition applied to local-register numbers provides a limited form of
base-plus-offset addressing within the local registers. The Stack Pointer contains the
32-bit base address. This assists run-time storage management of variables for
dynamically nested procedures (see Chapter 4).

Local·Register Stack Pointer

The Stack Pointer is a 32-bit register that may be an operand of an instruction as any
other general-purpose register. However, a shadow copy of Global Register 1 is
maintained by processor hardware for use in local-register addressing. This shadow
copy is set only with the results of Arithmetic and Logical instructions. If the Stack
Pointer is set with the result of any other instruction class, local registers cannot be
accessed predictably until the Stack Pointer is set once again with an Arithmetic or
Logical instruction.

A modification of the Stack Pointer has a delayed effect on the addressing of local
registers, as discussed in Section 5.6.

Special.Purpose Registers
The microcontroller contains 24 special-purpose registers. The organization of the
special-purpose registers is shown in Figure 2-2.

Special-purpose registers provide controls and data for certain processor operations.
Some special-purpose registers are updated dynamically by the processor, independent
of software controls. Because of this, a read of a special-purpose register following a
write does not necessarily get the data that was written.

Some special-purpose registers have fields reserved for future processor implementa­
tions. When a special-purpose register is read, a bit in a reserved field is read as a O. An
attempt to write a reserved bit with a 1 has no effect; however, this should be avoided
because of upward-compatibility considerations, except for bits 5 and 6 of the Current
Processor Status Register. These bits are used to disable address translation in other 29K
processors and may be written with 1 in the Am29200 and Am29205 microcontrollers.

The special-purpose registers are accessed by explicit data movement only. Instructions
that move data to or from a special-purpose register specify the special-purpose register
by an a-bit field containing a special-purpose register number. Register numbers are
specified directly by instructions.

The special-purpose registers are partitioned into protected and unprotected registers.
Special-purpose registers numbered 0-127 and 160-255 are protected (note that not all
of these are implemented). Special-purpose registers numbered 128-159 are unpro­
tected (again, not all are implemented).

Protected special-purpose registers numbered 0-127 are accessible only by programs
executing in the Supervisor mode. An attempted read or write of a special-purpose
register bya User-mode program causes a Protection Violation trap to occur. Special­
purpose registers numbered 160-255, though architecturally unprotected, are not
accessible by programs in the User mode or the Supervisor mode. These register
numbers are reserved for virtual registers in the arithmetic architecture, and any
attempted access causes a Protection Violation trap.

The Floating-Point Environment Register, Integer Environment Register, and Floating­
Point Status Register are not implemented in processor hardware. These registers are
implemented via the virtual arithmetic interface provided on the Am29200 and Am29205
microcontrollers (see Section 2.8).

Programming 2-11

~AMD
Figure 2-2 Special-Purpose Registers

2.3

2-12

Register Number

o
1

2

3

4

5

6

7

8

9

10
11

12

128
129

130

131
132
133
134

135

160
161
162

Protected Registers

Vector Area Base Address

Old Processor Status

Current Processor Status

Configuration

Channel Address

Channel Data

Channel Control

Register Bank Protect

Timer Counter

Timer Reload

Program Counter 0

Program Counter 1

Program Counter 2

Unprotected Registers

Indirect Pointer C

Indirect Pointer A

Indirect Pointer B

a
ALU Status

Byte Pointer

Funnel Shift Count

Load/Store Count Remaining

Floating-Point Environment (virtual)

Integer Environment (virtual)

Floating-Point Status (virtual)

Mnemonic

VAB

OPS

CPS

CFG

CHA

CHD

CHC

RBP

TMC

TMR

PCO

PC1

PC2

IPC

IPA

IPB

a
ALU

BP

FC

CR

FPE

INTE

FPS

An attempted read of an unimplemented special-purpose register yields an unpredict­
able value. An attempted write of an unimplemented, protected special-purpose register
has an unpredictable effect on processor operation, unless the write causes a Protection
Violation. An attempted write of an unimplemented, unprotected special-purpose register
has no effect; however, this should be avoided because of upward-compatibility .
considerations.

ADDRESSING REGISTERS INDIRECTLY
Specifying Global Register 0 as an instruction operand register or result register causes
an indirect access to the general-purpose registers. In this case, the absolute-register
number is provided by an indirect pointer contained in a special-purpose register.

Each of the three possible registers for instruction execution has an associated 8-bit
indirect pOinter. Indirect register numbers can be selected independently for each of the
three operands. Since the indirect pointers contain absolute-register numbers, the number
in an indirect pointer is not added to the Stack Pointer when local registers are selected.

The indirect pointers are set by the MTSR, MTSRIM, SETIP, and EMULATE instructions,
and by floating-point, MULTIPLY, MULTM, MULTIPLU, MULTMU, DIVIDE, and DIVIDU
instructions.

Programming

2.3.1

AMO;t1

For a move-to-special-register instruction, an indirect pOinter is set with bits 9-2 of the
32-bit source operand. This provides consistency between the addressing of words in
general-purpose registers and the addressing of words in external devices or memories. A
modification of an indirect pointer using a move-to-special-register instruction has a
delayed effect on the addressing of general-purpose registers (see Section 5.6).

For the remaining instructions, all three indirect pointers are set simultaneously with the
absolute-register numbers derived from the register numbers specified by the instruc­
tion. For any local registers selected by the instruction, the Stack-Pointer addition is
applied to the register numbers before the indirect pointers are set.

Except when an indirect pointer is set by a move-to-special-register instruction, register
numbers stored into the indirect pOinters are checked for bank-protection violations at
the time the indirect pointers are set.

Indirect Pointer C Register (IPC, Register 128)
This unprotected special-purpose register (Figure 2-3) provides the RC-operand register
number (see Section 18.3) when an instruction RC field has the value zero (i.e., when
Global Register 0 is specified).

Figure 2·3 Indirect Pointer C Register

2.3.2

31 23 15 7 0

I' , I " " " , III
. Reserved. IPC . 0 . 0 .

Bits 31-10: Reserved

Bits 9-2: Indirect Pointer C (IPC)-The 8-bit IPC field contains an absolute-register
number for a general-purpose register. This number directly selects a register. (Stack­
Pointer addition is not performed in the case of local registers.)

Bits 1-0: Zeros-The IPC field is aligned for compatibility with word addresses.

Indirect Pointer A Register (IPA, Register 129)
This unprotected special-purpose register (Figure 2-4) provides the RA-operand register
number (see Section 18.3) when an instruction RA field has the value zero (i.e., when
Global Register 0 is specified).

Figure 2-4 Indirect Pointer A Register

31 23 15 7 0

I II I I I I I I III
. Reserved. IPA. o. 0 .

Bits 31-10: Reserved

Bits 9-2: Indirect Pointer A (IPA)-The 8-bit IPA field contains an absolute-register
number for either a general-purpose register or a local register. This number directly
selects a register. (Stack-Pointer addition is not performed in the case of local registers.)

Bits 1-0: Zeros-The IPA field is aligned for compatibility with word addresses.

Programming 2·13

~AMO
2.3.3 Indirect Pointer B Register (IPB, Register 130)

This unprotected special-purpose register (Figure 2-5) provides the RB-operand register
number (see Section 18.3) when an instruction RB field has the value zero (Le., when
Global Register 0 is specified).

Figure 2-5 Indirect Pointer B Register

31 23 15 7 0

I' , I' I , I , , I III
. Reserved. IPB. O. 0 .

Bits 31-10: Reserved

Bits 9-2: Indirect Pointer B (IPB)-The 8-bit IPB field contains an absolute-register
number for a general-purpose register. This number directly selects a register. (Stack­
Pointer addition is not performed in the case of local registers.)

Bits 1-0: Zeros-The IPB field is aligned for compatibility with word addresses.

2.4 INSTRUCTION ENVIRONMENT
This section describes the special-purpose registers that affect the execution of Floating­
Point and Integer Arithmetic instructions.

2.4.1 Floating.Point Environment Register (FPE, Register 160)

Figura 2-6

This unprotected special-purpose register (Figure 2-6) contains control bits that affect
the execution of floating-point operations. This register is not implemented directly by
processor hardware, but is implemented by the virtual arithmetic software.

Floating.Point Environment Register
31 23 15
, , , , , , " , I , , , , , I , , , , , ,

Reserved

Bits 31-9: Reserved

7 0

I I I I i i

• I I I : I

• I I I I • :

FF OM I UM I RM I
, I I

XM VM NM

Bit 8: Fast Float Select (FF)-The FF bit being 1 enables fast floating-point operations,
in which certain requirements of the IEEE floating-point specification are not met. This
improves the performance of certain operations by sacrificing conformance to the IEEE
specification.

Bits 7~: Floating-Point Round Mode (FRM)-This field specifies the default mode
used to round the results of floating-point operations, as follows:

FRM1-o Round Mode

00 Round to nearest
01 Round to - 00

10 Round to + 00

11 Round to zero

2-14 Programming

2.4.2

Figure 2·7

AMD~

Bit 5: Floating-Point Divide-By-Zero Mask (DM)-If the DM bit is 0, a Floating-Point
Exception trap occurs when the divisor of a floating-point division operation is zero and
the dividend is a non-zero, finite number. If the DM bit is 1, a Floating-Point Exception
trap does not occur for divide-by-zero.

Bit 4: Floating-Point Inexact Result Mask (XM}-If the XM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is not equal to the
infinitely precise result. If the XM bit is 1, a Floating-Point Exception trap does not occur
for an inexact result.

Bit 3: Floating-Point Underflow Mask (UM}-If the UM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bit is 1, a Floating-Point Exception trap
does not occur for underflow.

Bit 2: Floating-Point Overflow Mask (VM)-If the VM bit is 0, a Floating-Point Excep­
tion trap occurs when the result of a floating-point operation is too large to be expressed
in the destination format. If the VM bit is 1, a Floating-Point Exception trap does not
occur for overflow.

Bit 1: Floating-Point Reserved Operand Mask (RM}-If the RM bit is 0, a Floating­
Point Exception trap occurs when one or more input operands to a floating-point
operation is a reserved value, or when the result of a floating-point operation is a
reserved value. If the RM bit is 1, a Floating-Point Exception trap does not occur for
reserved operands.

Bit 0: Floating-Point Invalid Operation Mask (NM)-If the NM bit is 0, a Floating-Point
Exception trap occurs when the input operands to a floating-point operation produce an
indeterminate result (e.g., 00 times 0). If the NM bit is 1, a Floating-Point Exception trap
does not occur for invalid operations.

Integer Environment Register (INTE, Register 161)
This unprotected special-purpose register (Figure 2-7) contains control bits that affect
the execution of integer multiplication and division operations. This register is not
implemented directly by processor hardware, but is implemented by the virtual arithmetic
interface.

Integer Environment Register
31 23 15 7 o

I' , , , , , " , , , , , I I , , , I I I I I I I I I I I . Reserved III . ,

Bits 31-2: Reserved

Bit 1: Integer Division Overflow Mask {DO}-If the DO bit is 0, an Out-of-Range trap
occurs when overflow of a signed or unsigned 32-bit result occurs during a DIVIDE or
DIVIDU instruction, respectively. If the DO bit is 1, an Out-of-Range trap does not occur
for overflow during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an Out-of-Range Trap upon division
by zero, regardless of the value of the DO bit.

Programming 2-15

~AMD
Bit 0: Integer Multiplication Overflow Exception Mask (MO)-If the MO bit is 0, an
Out-of-Range trap occurs when overflow of a signed or unsigned 32-bit result occurs
during a MULTIPLY or MULTIPLU instruction, respectively. If the MO bit is 1, an
Out-of-Range trap does not occur for overflow during integer multiply operations.
Because 64-bit results cannot overflow, this bit should be set to 1 when obtaining a
64-bit result for multiplication to avoid Out-of-Range traps.

2.5 STATUS RESULTS OF INSTRUCTIONS

2.5.1

This section discusses the status information generated by arithmetic, logical and
floating-point operations, and the special registers that contain this status information.

ALU Status Register (ALU, Register 132)
This unprotected special-purpose register (Figure 2-8) holds information about the
outcome of Arithmetic/Logic Unit (ALU) operations as well as control for certain opera­
tions performed by the execution unit.

Figure 2-8 ALU Status Register

2-16

31 23 15 7 o

I
Reserved Fe

OF

Bits 31-12: Reserved

Bit 11: Divide Flag (DF)-The OF bit is used by the instructions that implement division.
This bit is set at the end of the division instructions either to 1 or to the complement of
the 33rd bit of the ALU. When a Divide Step instruction is executed, the OF bit deter­
mines whether an addition or subtraction operation is performed by the ALU.

Bit 10: Overflow (V)-The V bit indicates that the result of a signed, two's-complement
ALU operation required more than 32 bits to represent the result correctly. The value of
this bit is determined by exclusive-ORing the ALU carry-out with the carry-in to the most
significant bit for signed, two's-complement operations. This bit is not used for any
special purpose in the processor and is provided for information only.

Bit 9: Negative (N)-The N bit is set with the value of the most significant bit of the
result of an arithmetic or logical operation. If two's-complement overflow occurs, the N bit
does not reflect the true sign of the result. This bit is used in divide operations.

Bit 8: Zero (Z)-The Z bit indicates that the result of an arithmetic or logical operation is
zero. This bit is not used for any special purpose in the processor, and is provided for
information only.

Bit 7: Carry (C)-The C bit stores the carry-out of the ALU for arithmetic operations. It is
used by the add-with-carry and subtract-with-carry instructions to generate the carry into
the Arithmetic/Logic Unit.

Bits 6-5: Byte Pointer (BP)-The BP field holds a 2-bit pointer to a byte within a word.
It is used by Insert Byte and Extract Byte instructions.

Programming

2.5.2

2.5.3

AMO.:1

The most significant bit of the BP field is used to determine the position of a half-word
within a word for the Insert Half-Word, Extract Half-Word, and Extract Half-Word,
Sign-Extended instructions.

The BP field is set by a Move To Special Register instruction with either the ALU Status
Register or the Byte Pointer Register as the destination. It is also set by a load or store
instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or store sets the
BP field with 11.

The Byte Pointer Register (Section 3.1.3) provides direct access to this field.

Bits 4-0: Funnel Shift Count (FC)-The FC field contains a 5-bit shift count for the
funnel shifter. The funnel shifter concatenates two source operands into a single 64-bit
operand and extracts a 32-bit result from this 64-bit operand; the FC field specifies the
number of bit positions from the most significant bit of the 64-bit operand to the most
significant bit of the 32-bit result. The FC field is used by the EXTRACT instruction.

The FC field is set by a Move To Special Register instruction with either the ALU Status
Register or the Funnel Shift Count Register as the destination.

Arithmetic Operation Status Results
The Arithmetic instructions modify the V, N, Z, and C bits. These bits are set according
to the result of the operation performed by the instruction.

All instructions in the Arithmetic class-except for MULTIPLY, MULTM, DIVIDE, MULTI­
PLU, MULTMU, and DIVIDU-perform an add. In the case of subtraction, the subtract is
performed by adding the two's-complement or one's-complement of an operand to the
other operand. The multiply-step and divide-step operations also perform adds, again
possibly complementing one of the operands before the operation is performed. In
general, the status bits are based on the results of the add.

If two's-complement overflow occurs during the add, the V bit of the ALU Status Register
is set; otherwise it is reset. Two's-complement overflow occurs when the carry-in to the
most significant bit of the intermediate result differs from the carry-out. When this occurs,
the result cannot be represented by a signed word integer. Note that the V bit always is
set in this manner, even when the result is unsigned.

The N bit of the ALU Status Register is set to the value of the most significant bit of the
result of the add. Note that the divide-step and multiply-step operations may shift the
result after the operation is performed. In the cases where shifting occurs, the N bit may
not agree with the result that is written into a general-purpose register, since the N bit is
based only on the result of the add, not on the shift.

If the result of the add causes a zero word to be written to a general-purpose register,
the Z bit of the ALU Status Register is set; otherwise, it is reset. The Z bit always reflects
the result written into a general-purpose register; if shifting is performed by a multiply or
divide step, the Z bit reflects the shifted value.

If there is a carry out of the add operation, the C bit is set; otherwise it is reset.

Logical Operation Status Results
The Logical instructions modify the Nand Z bits. These bits are set according the result
of the instruction. The V and C bits are meaningless in regard to the Logical instructions,
so they are not modified.

Programming 2-17

~AMD

2.5.4

2.5.5

Figure 2-9

2-18

The N bit of the ALU Status Register is set to the value of the most significant bit of the
result of the logical operation.

If the result of the logical operation is a zero word, the Z bit of the ALU Status Register is
set; otherwise, it is reset.

Floating.Point Status Results
The Floating-Point instructions check for a number of exceptional conditions, and report
these exceptions by setting bits of the Floating-Point Status Register. The exceptional
conditions may also cause traps, depending on the state of mask bits in the Floating­
Point Environment Register. There are two groups of status bits in the Floating-Point
Status Register: trap status bits and sticky status bits. When an exception is detected,
the virtual arithmetic processor on the microcontroller sets the trap status bit and/or the
sticky status bit associated with the exception, depending on the corresponding excep­
tion mask bit and on whether or not a trap occurs. The sticky status bit is set whenever
the corresponding exception is masked, regardless of whether or not a trap occurs. A
trap status bit is set whenever a trap occurs, regardless of the state of the corresponding
mask bit.

A trap status bit is reset when a trap occurs and the indicated status does not apply to
the trapping operation. A sticky status bit is reset only by software. .

Floating.Point Status Register (FPS, Register 162)
This unprotected special-purpose register (Figure 2-9) contains status bits indicating the
outcome of floating-point operations. This register is not implemented directly by
processor hardware, but is implemented by the virtual arithmetic software.

The floating-point status bits are divided into two groups. The first group consists of the
sticky status bits (OS, XS, US, VS, AS, and NS), which, once set, remain set until
explicitly cleared by a Move-to-Special-Register (MTSA) or Move-to-Special-Register­
Immediate (MTSRIM) instruction. Only those sticky status bits corresponding to masked
exceptions are updated. The update occurs at the end of instruction execution.

The second group consists of the trap status bits (OT, XT, UT, VT, AT, and NT) that
report the status of an operation for which a Floating-Point Exception trap is taken.
These bits are updated only by an operation that takes a trap as a result of an un­
masked Floating-Point Exception; all other operations leave these bits unchanged. A
trap status bit is updated regardless of the state of the corresponding exception mask in
the Floating-Point Environment Aegister.

Floatlng·Point Status

~ 23 15 7 0

I I I I I I I I I I I I I I I I I IIIIIII~IIIIIII Reserved

I • I • " I •• I , ,

• I I , :. I •• I : I

•• I , .' ., ••••

OT 'UT ' RT ' OS ' US ' RS ' . '. ". XT VT NT XS VS NS

Bits 31-14: Reserved

Bit 13: Floating-Point Divide-By-Zero Trap (DT)-The OT bit is set when a Floating­
Point Exception trap occurs and the associated floating-point operation is a divide with a

Programming

AMD~

zero divisor and a non-zero, finite dividend. Otherwise, this bit is reset when a Floating­
Point Exception trap occurs.

Bit 12: Floating-Point Inexact Result Trap (XT}-The XT bit is set when a Floating­
Point Exception trap occurs and the result of the associated floating-point operation is
not equal to the infinitely-precise result. Otherwise, this bit is reset when a Floating-Point
Exception trap occurs.

Bit 11: Floating-Point Underflow Trap (UT}-The UT bit is set when a Floating-Point
Exception trap occurs and the result of the associated floating-point operation is too
small to be expressed in the destination format. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)-The VT bit is set when a Floating-Point
Exception trap occurs and the result of the associated floating-point operation is too
large to be expressed in the destination format. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 9: Floating-Point Reserved Operand Trap (RT}-The RT bit is set when a
Floating-Point Exception trap occurs and the result of the associated floating-point
operation is a reserved value. Otherwise, this bit is reset when a Floating-Point Excep­
tion trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT)-The NT bit is set when a Floating­
Point Exception trap occurs and the input operands to the associated floating-point
operation produce an indeterminate result. Otherwise, this bit is reset when a Floating­
Point Exception trap occurs.

Bits 7-6: Reserved

Bit 5: Floating-Point Divlde-By-Zero StiCky (DS)-The OS bit is set when the OM bit
of the Floating-Point Environment Register is 1, the divisor of a floating-point division
operation is a zero, and the dividend is a non-zero, finite number.

Bit 4: Floating-Point Inexact Result StiCky (XS)-The XS bit is set when the XM bit of
the Floating-Point Environment Register is 1 and the result of a floating-point operation
is not equal to the infinitely precise result.

Bit 3: Floating-Point Underflow Sticky (US)-The US bit is set when the UM bit of the
Floating-Point Environment Register is 1 and the result of a floating-point operation is
too small to be expressed in the destination format.

Bit 2: Floating-Point Overflow Sticky (VS)-The VS bit is set when the VM bit of the
Floating-Point Environment Register is 1 and the result of a floating-point operation is
too large to be expressed in the destination format.

Bit 1: Floating-Point Reserved Operand Sticky (RS)-The RS bit is set when the RM
bit of the Floating-Point Environment Register is 1 and either one or more input oper­
ands to a floating-point operation is a reserved value or the result of a floating-point
operation is a reserved value.

Bit 0: Floating-Point Invalid Operation StiCky (NS)-The NS bit is set when the NM
bit of the Floating-Point Environment Register is 1 and the input operands to a floating­
pOint operation produce an indeterminate result.

2.6 INTEGER MULTIPLICATION AND DIVISION
The Am29200 and Am29205 microcontrollers do not directly support the instructions
MULTIPLU, MULTMU, MULTIPLY, MULTM, DIVIDE, and DIVIDU. The processor is

Programming 2-19

~AMD

2.6.1

capable of performing these instructions as a sequence of multiply or divide steps, which
are directly supported by hardware. A special register, Q, is used in conjunction with the
SRCA and SRCB operands to execute the multiply or divide step. This section describes
the Q register and discusses the general method for multiplication and division.

Q Register (Q, Register 131)
The Q Register is an unprotected special-purpose register (Figure 2-10).

Figure 2-10 Q Register

2.6.2

2-20

31 23 15 7 0 I' , , , , , , , , , , , , , , 'a' , , , , , , , , , , , , , , I
Bits 31-0: QuotientIMultiplier (Q)-During a sequence of divide steps, this field holds
the low-order bits of the dividend; it contains the quotient at the end of the divide. During
a sequence of multiply steps, this field holds the multiplier; the field contains the
low-order bits of the result at the end of the multiply.

For an integer divide instruction, the a field contains the high-order bits of the dividend
at the beginning of the instruction, and contains the remainder upon completion of the
instruction.

Multiplication
The processor performs integer multiplication by a series of multiply-step instructions.
Note that when the product of a constant and a variable is to be computed, a more
efficient sequence of shift and add instructions can usually be found. Many compilers
use this technique automatically.

If a program requires the multiplication of two integers, the required sequence of multiply
steps may be executed in-line or executed in a multiply routine called as a procedure. It
may be beneficial to precede a full multiply procedure with a routine to discover whether
or not.the number of multiply steps may be reduced. This reduction is possible when the
operands do not use all of the available 32 bits of preCision.

The following routine multiplies two 32-bit signed integers, giving a 64-bit result.
Unsigned multiplication can be performed by substituting the MULU instruction for the
MUL and MULL instructions.

; 32 bit· 32 bit ->64 bit signed multiply
; Input: multiplicand in 1r2, multiplier in Ir3
; Output: result most significant word in gr96, result least significant word in gr97

SMul64:
mtsr
mul
.rep

mul
.endr

C,Ir3
gr96, 1r2, 0
30

gr96, 1r2, gr96

; put multiplier in the C register
; perform initial multiply step
; expand out 30 copies of the next instruction
; in-line
; total of 30 more multiply steps

mull gr96, 1r2,gr96 ; perform last sign correcting step
mfsr gr97, C ; get the least significant result word

The following routine multiplies two 32-bit integers, returning a 32-bit result. It attempts
to minimize the number of multiply-step instructions by checking the input operands. It is

Programming

AMD~
coded as a subroutine, with pointers to its operands passed in the indirect pointers IPC,
IPA, and IPB. This allows the routine to operate on any combination of registers, rather
than forcing the operands to be in fixed registers.

; 32 bit· 32 bit -> 32 bit signed or unsigned multiply called by:

call tpc, MUL32 ; call the multiply routine
setip dscreg, srcCreg, src23eg ; passing pointers to the operand registers

; in the delay slot

; Input: operands in the registers pointed to by indirect-pointer registers IPA and IPB
; Output: result least significant word in the register pointed to by IPC
; Used: return address in fpc, special registers a and FC
; Destroy: previous contents of registers tpc, TempO - Temp2
; Symbolic register names:

.reg TempO, gr116

.reg Temp1, gr119

.reg Temp2, gr120

.reg tpc, gr122

.word OXOO200000 ; Debugger tag word

Mu132:
; need an instruction to separate SETIP (probably last instruction) from access of indirect
; pointers

mtsrim FC,a
or TempO, grO, 0

; useful when one operand is a-bit
; copy value of IPA register

; next check to see that the operand with the most leading zeros becomes the multiplier
cpgtu Temp1,grO,grO
jmpf Temp1,doa
or Temp1,Temp1,grO

const TempO,O
or TempO, TempO,grO
or Temp1,grO,0

d08:
cpleu Temp2,Temp1,Ox7f
jmpf Temp2,d016
mtsr a,TempO
mulu TempO,Temp1,0

.rep 7

mulu TempO,Temp1,TempO
.endr

; the operands are already ordered correctly
; if it jumps, Temp1 holds 0, so this copies
; the value of the IPB register

; swap the operands

; less than a bits?
; no, check for 16 bits

; expand out 7 copies of the next instruction
; in-line
; total of 7 more multiply steps

; the top 24 bits of the result are in the lower 24 bits of TempO, and the bottom a bits are in the
; top ofa

d016:

mfsr
jmpi
extract

canst
cplequ
jmpf
mulu

Temp1,a
tpc
grO,TempO,Temp1

Temp2,Ox7fff
Temp2,TempO,Temp2
Temp2,do32
TempO, Temp1,0

Programming

; return to the calling routine
; extract the result in the delay-slot of the
; jump

; less than 16 bits?

; no, perform all 32 steps
; perform initial multiply-step

2-21

~AMD

2.6.3

2-22

. rep

mulu
.endr

15

TempO,Temp1,TempO

; expand out 15 copies of next instruction
; in-line
; total of 15 more multiply-steps

; the top 16 bits of the result will be in the lower 16 bits of TempO, the bottom 16 bits in the top
;ofQ

mtsrim
mfsr
jmpi
extract

d032:
mulu

.rep

mulu
.endr

jmpi
mfsr

Division

FC,16
Temp1,Q
tpc
grO,TempO,Temp1

tempO,Temp1,O

31

TempO,Temp1,TempO

fpc
grO,Q

; extract on bit-16 boundary

; return to the calling routine
; extracting the result in the delay-slot of the
; jump

; perform initial step

; expand out 32 copies of the next instruction
; in-line
; total of 31 more multiply steps

; return to calling routine
; copy the result to the return register in the
; delay slot

The processor performs integer division by a series of divide-step instructions. When the
divisor is a power of 2 and the dividend is unsigned, the divide should be accomplished
by a right shift.

If a program requires the division of two integers. the required sequence of divide steps
may be executed in-line or executed in a divide routine called as a procedure. It may be
beneficial to precede a full divide procedure with a routine to discover whether or not the
number of divide steps may be reduced. This reduction is possible when the operands
do not use all of the available 32 bits of precision.

The following routine divides a 64-bit, unsigned dividend by a 32-bit unsigned divisor.

; 64 bit 132 bit -+ 32 bit unsigned divide
; Input: most significant dividend word in 1r2, least significant dividend word in 1r3,
, divisor in Ir4
; Output: quotient in gr96, remainder in gr97

UDiv64:
mtsr Q,Ir3

divO gr97,1r2

. rep 31

div gr97, gr97, Ir4
.endr

; put least significant word of the dividend in
; the Q register
; perform initial divide step

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

divl gr97, gr97, Ir4 ; perform last step
divrem gr97, gr97, Ir4 ; compute remainder
mfsr gr96, Q ; get the quotient

The following routine divides a 32-bit unsigned dividend by a 32-bit unsigned divisor.

; 32 bit 1 32 bit -+ 32 bit unsigned divide
; Input: dividend word in 1r2, divisor in Ir4
; Output: quotient in gr96, remainder in gr97

Programming

AMD~
UDiv32:

mtsr
divO

.rep

div
.endr

Q,Ir2
gr97,O

31

gr97, gr97, Ir4

; put the dividend in the Q register
; perform initial divide step, zeroing out
; the upper bits of the dividend

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

divl gr97, gr97,Ir4 ; perform last step
divrem gr97, gr97,Ir4 ; compute remainder
mfsr g196, Q ; get the quotient

The following routine divides a 32-bit signed dividend by a 32-bit signed divisor. It also
traps division by zero. Because the divide-step instructions only operate on unsigned
operands, extra code is required to perform sign checking and conversion.

; 32 bit 132 bit signed divide, called by:

call
setip

tpc, SDiv32 ; call the divide routine
dsCreg, srcCreg, src2_reg

; passing pointers to the operand
; registers in the delay slot

; Input: dividend and divisor in the registers pointed to by the indirect-pointer
, registers IPA and IPB
; Output result quotient in the register pointed to by IPC, remainder left in TempO
; Used: return address in tpc, special register Q
; Destroyed: previous contents of registers tpc, TempO - Temp2
; Symbolic register names:

SDiv32:

pdividend:

pdivisor:

. reg TempO, gr116

.reg Temp1, gr119

.reg Temp2, gr120

.reg tpc, gr122

.word OxOO200000 ; Debugger tag word

const Temp1, 0
asneq V_DIVBYZERO, Temp1, grO

; check for divide by zero with an assert
add TempO, grO, 0 ; get dividend from indirect pointer
jmpf TempO, pdividend ; is it negative? Ompf is also "jmppos")
add Temp2, Temp1, grO ; get divisor from indirect pointer
const Temp1, 3 ; set negative result and remainder flags
subr TempO, TempO, 0 ; make dividend pOSitive

jmpf
mtsr

xor
subr

Temp2, pdivisor
Q, TempO

Temp1, Temp1, 1
Temp2, Temp2, 0

divO TempO, 0

.rep 31

div TempO, TempO, Temp2
.endr

divl TempO, TempO, Temp2

Programming

; is divisor negative?
; copy dividend to Q register in delay slot
; of the jump
; turn off negative result flag
; make divisor positive

; initialize

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

; perform last divide step

2-23

~AMD
divrem
mfsr
sll
jmpf
sll
subr

premainder:
jmpfi
add

jmpi
subr

TempO, TempO, Temp2
Temp2, Q
Temp1, Temp1, 30
Temp1, premainder
Temp1, Temp1, 1
TempO, TempO, a

Temp1, tpc
grO, Temp2, 0

tpc
grO, Temp2, 0

; get positive remainder
; get positive quotient
; copy negative remainder flag to test bit
; if it is not set, remainder is ok
; copy negative result flag to test bit
; negate remainder

; return to caller if result is positive
; copying quotient to the result register
; in the delay slot
; else return to caller,
; negating the quotient in the delay slot

2.7 I NEED AN INSTRUCTION FOR •••

2.7.1

2.7.2

2-24

This section discusses topics of general concern in the implementation of application
programs.

Run-Time Checking
The assert instructions provide programs with an efficient means of comparing two
values and causing a trap when a specified relation between the two values is not
satisfied. The instructions assert that some specified relation is true and trap if the
relation is not true. This allows run-time checking, such as checking that a computed
array index is within the boundaries of the storage for an array, to be performed with a
minimum performance penalty.

Assert instructions are available for comparing two signed or unsigned operands. The
following relations are supported: equal-to, not-equal-to, less-than. less-than-or-equal-to.
greater-than, and greater-than-or-equal-to.

The assert instructions specify a vector number for the trap. However. only vector
numbers 64 through 255 (inclusive) may be specified by User-mode programs. If a
User-mode assert instruction causes a trap and the vector number is between 0 and 63
inclusive, a Protection Violation trap occurs, instead of the specified trap.

Since the assert instructions allow the specification of the vector number. several traps
may be defined in the system for different situations detected by the assert instructions.

Operating-System Calls
An applications program can request a service from the operating system by using the
following instruction:

asneq System_Routine, gr1, gri

This instruction always creates a trap since it attempts to assert that the content of a
register is not equal to itself (the register number used here is irrelevant, as long as the
register is otherwise accessible).

The System_Routine vector number specified by the instruction invokes the execution of
the operating system routine that provides the requested service. This vector number
may have any value between 64 and 255. inclusive (vector numbers 0 through 63 are
pre-defined or reserved). Thus, as many as 192 different operating-system routines may
be invoked from the applications program.

In cases where the indirect pointers may be used. the EMULATE instruction allows two
operand/result registers to be specified to the operating-system routine. The instruction
is as follows:

Programming

2.7.3

2.7.4

2.7.5

2.7.6

AMD~
emulate System_Routine, 1r3, Ir6

In this case, the System_Routine vector number performs the same function as in the
previous example. Here, however, LR3 and LR6 are specified as operand registers
and/or result registers (these particular registers are used only for illustration). The
operating-system routine has access to these registers via the indirect pointers, which
allows flexible communication.

Multiprecision Integer Operations
The processor allows the Carry (C) bit of the ALU Status Register to be used as an
operand for add and subtract instructions. This provides for the addition and subtraction
of operands that are greater than 32 bits in length. For example, the following code
implements a 96-bit addition with signed overflow detection.

add Ir7, g196, 1r2
addc IrS, g197, Ir3
addcs 119, g198, Ir4

Global registers GR96-GR98 contain the first operand, local registers LR2-LR4 contain
the second operand, and local registers LR7-LR9 contain the result. The first two add
instructions (ADD and ADDC) set the C bit, which is used by the second two instructions
(AD DC and ADDCS). If the addition causes a signed overflow, then an Out-of-Range
trap occurs; overflow is detected by the final instruction.

Complementing a Boolean
To complement a Boolean in the processor's format, only the most significant bit of the
Boolean word should be considered, since the least significant 31 bits mayor may not
be zeros. This is accomplished by the following instruction:

cpge g196, g196, 0

The Boolean is in GR96 in this example. This instruction is based on the observation
that a Boolean TRUE is a negative integer, since the Boolean bit coincides with the
integer sign bit. If the operand of this instruction is a negative integer (Le., TRUE), the
result is the Boolean FALSE. If the operand is non-negative (Le., the Boolean FALSE),
the result is TRUE. Note that this instruction clears the least significant 31 bits.

Large .Jump and Can Ranges
The 16-bit relative branch displacement provided by processor instructions is sufficient in
the majority of cases. However, addresses with a greater range are occasionally
needed. In these cases, the CONST and CONSTH instructions generate the large
branch-target address in a register. An indirect jump or call then uses this address to
branch to the appropriate location.

NO-OPs
When a NO-OP is required for proper operation (e.g., as described in Section 5.6), it is
important that the selected instruction not perform any operation, regardless of program
operating conditions. For example, the NO-OP cannot access general-purpose registers
because a register may be protected from access in some situations. The suggested
NO-OPis:

aseq Ox40, gr1, gr1

This instruction asserts that the Stack Pointer (GR1) is equal to itself. Since the asser­
tion is always true, there is no trap. Note also that the Stack Pointer cannot be protected,
and that the assert instruction cannot affect any processor state.

Programming 2-25

~AMD
2.8

2.8.1

2.8.2

2.9

2.9.1

VIRTUAL ARITHMETIC PROCESSOR
In order to be object-code compatible with present and future implementations of the
29K Family of microprocessors, the Am29200 and Am29205 microcontrollers provide
virtual arithmetic software. A virtual implementation is the means by which a processor
appears to perform functions that it does not actually perform. In the case of the
Am29200 and Am29205 microcontrollers, the processor defines arithmetic instructions,
control, and status which are not directly supported by hardware, but which are imple­
mented by system software.

Trapping Arithmetic Instructions
The processor does not incorporate hardware to directly support floating-point opera­
tions, nor does it directly support full multiply and divide instructions. However, instruc­
tions to perform these operations are included in the instruction set. These instructions
are included for compatibility with processor implementations, such as the Am29050
microprocessor, that have hardware to perform these operations.

In application programs that must be fully object-code compatible across several
processor versions-while taking advantage of the performance of the versions having
arithmetic hardware-the defined instructions should be used to perform floating-point,
multiplication, and division operations.

In the Am29200 and Am29205 microcontrollers, the Floating-Point, CLASS, CONVERT,
MULTIPLY, MULTM, MULTIPLU, MULTMU, DIVIDE, DIVIDU, and SQRT instructions
cause traps. The indirect pOinters are set at the time the trap occurs, so a trap handler
can gain access to the operands of the instruction and can determine where the result is
to be stored. A trap handler can directly emulate the execution of the instruction.

Virtual Registers
The processor does not incorporate hardware to directly support the Floating-POint
Environment Register (FPE), Integer Environment Register (INTE), or Floating-Point
Status Register (FPS). When one of these registers is referenced by a MTSRlMFSR
instruction (or a variant), a Protection Violation trap occurs. The Protection Violation trap
handler must establish that the faulting instruction is a MTSRlMFSR and that the register
specified by the instruction is one of the registers supported by the virtual interface. This is
accomplished by obtaining the faulting instruction from memory and examining the
OPCODE and SRC/DEST fields. The trap handler then simulates the operation of the
register.

PROCESSOR INITIALIZATION
When power is first applied to the processor, it is in an indeterminate state and must be
placed in a known state. Also, under certain circumstances, it may be necessary to place
the processor in a defined state. This is accomplished by the Reset mode, which places
the processor into a predefined state.

Configuration Register (CFG, Register 3)
This protected special-purpose register (Figure 2-11) controls certain processor and
system options. The Configuration Register is defined as follows:

Figure 2-11 Configuration Register
31 23 15 7 0

I
PRL Reserved

2-26 Programming

2.9.2

AMD~
Bits 31-24: Processor Release Level (PRLr-The PRL field is an 8-bit, read-only
identification number which specifies the processor version.

Bits 23-0: Reserved

Reset Mode
The Reset mode is invoked by asserting the RESET input. The Reset mode is entered
within four processor cycles (MEMCLK cycles) after RESET is asserted. The RESET
input must be asserted for at least four processor cycles to accomplish a processor
reset.

The Reset mode can be entered at any point during operation. If the RESET input is
asserted at the time power is first applied to the processor, the processor enters the
Reset mode only after four cycles have occurred on the MEMCLK pin.

The Reset mode configures the processor state as follows:

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any interrupt or trap conditions are ignored.

4. The Current Processor Status Register (see Section 16.2.1) is set as shown in
Figure 2-12.

5. The Contents Valid (CV) bit of the Channel Control Register (see Section 16.7.2.3)
is reset.

Except as previously noted, the contents of all general-purpose registers and special­
purpose registers are undefined.

The Reset mode is exited when the RESET input is deasserted. Either four or five cycles
after RESET is deasserted (depending on internal synchronization time), the processor
performs an initial instruction access on the external interface. The initial instruction
access is directed to address 0, which is in ROM Bank 0 after a reset. Setting the
characteristics of the ROM in Bank 0 during reset is described in Section 8.2.3.

A processor reset configures the internal peripherals as follows:

1. In the ROM controller, ROM Bank 0 on the Am29200 microcontroller is configured by
the BOOTW signal; the boot ROM in ROM Bank 0 on the Am29205 microcontroller is
always 16 bits wide.The other banks are set so as not to interfere with accesses to
ROM BankO.

Figure 2·12 Current Processor Status Register In Reset Mode

31 23 15 7 o

TO res TE TU res WM res 1M OA

Programming 2-27

~AMD

2-28

2. The DRAM configuration is not set by a processor reset, DRAM mapping is disabled,
and the refresh rate is set to the slowest possible value (refresh every 511 MEMCLK
cycles).

3. The configuration of the peripheral interface adapter is not set by a processor reset.

4. The DMA controller is disabled, DRM fields are reset to 0, and all state machines are
reset.

5. The POEN field of the PIO Output Enable Register (see Section 12.2.4) is reset to 0,
making all PIO pins inputs.

6. The parallel port is disabled and all state machines are reset.

7. The serial port is disabled and all state machines are reset.

8. The video interface is disabled and all state machines are reset. All signals that may
be either inputs or outputs are configured as inputs.

Programming

3 DATA FORMATS AND HANDLING

This chapter describes the various data types supported by the Am29200 and Am29205
microcontrollers. The mechanisms for accessing data in external devices and memories
are also described. The Am29200 and Am2920S microcontrollers include provisions for
the external access of words, bytes, half-words, unaligned words, and unaligned
half-words, as described in this chapter.

3.1 INTEGER DATA TYPES
Most instructions deal directly with word-length integer data; integers may be either
signed or unsigned, depending on the instruction. Some instructions (e.g., AND) treat
word-length operands as strings of bits. In addition, there is support for character,
half-word, and Boolean data types.

The Am29200 and Am2920S microcontrollers support big endian byte order only. See
Section 3.3.S.1.

3.1.1 Character Data
The processor supports character data through load, store, extraction, and insertion
operations, and by a compare operation on byte-length fields within words. The format of
unsigned and signed characters is shown in Figure 3-1; for signed characters, the sign
bit is the most Significant bit of the character. For sequences of packed characters within
words, bytes are ordered left-to-right (big endian).

Figure 3·1 Character Fonnat

Unsigned
31 23 15 7 0

II II I I I I I I I
000000000000000000000000 Data

Signed

31 23 15 7 0

I III I I I I I I
.SSSSSSSSSSSSSSSSSSSSSSSS.S. Data.

On a byte load, an external packed byte is converted to one of the character formats
shown in Figure 3-1. On a byte store, the low-order byte of a word is packed into a
selected byte of an external word.

The Extract Byte (EXBYTE) instruction replaces the low-order character of a destination
word with an arbitrary byte-aligned character from a source word. For the EXBYTE
instruction, the destination word can be a zero word, which effectively zero-extends the
character from the source operand.

Data Formats and Handling 3-1

~AMD

3.1.2

The Insert Byte (INBYTE) instruction replaces an arbitrary byte-aligned character in a
destination word with the low-order character of a source word. For the INBYTE
instruction, the source operand can be a character constant specified by the instruction.

The Compare Bytes (CPBYTE) instruction compares two word-length operands and
gives a result of TRUE if any corresponding bytes within the operands have equivalent
values. This allows programs to detect characters within words without first having to
extract individual characters, one at a time, from the word of interest.

Half·Word Operations
The processor supports half-word data through load, store, insertion, and extraction
operations. The format of unsigned and signed half-words is shown in Figure 3-2.
For signed half-words, the sign bit is the most significant bit of the half-word. For
sequences of packed half-words within words, half-words are ordered left-to-right (big
endian).

Figure 3·2 Half·Word Fonnat

UnSigned

3.1.3

3-2

31 23 15 7 0

I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I
.0000000000000000. Data .

Signed
31 23 15 7 0

I I I I I I I I I I I I I I I I III I I I I I I I I I I I I I I
.SSSSSSSSSSSSSSSS.S. Data .

On a half-word load, an external packed half-word is converted to one of the formats
shown in Figure 3-2. On a half-word store, the low-order half-word of a word is packed
into a selected half-word of an external word.

The Extract Half-Word (EXHW) instruction replaces the low-order half-word of a
destination word with either the low-order or high-order half-word of a source word. For
the EXHW instruction, the destination word can be a zero word, which effectively
zero-extends the half-word from the source operand.

The Extract Half-Word, Sign-Extended (EXHWS) instruction is similar to the EXHW
instruction; except that it Sign-extends the half-word in the destination word (Le., it
replaces the most significant 16 bits of the destination word with the most significant bit
of the source half-word).

The Insert Half-Word (INHW) instruction replaces either the low-order or high-order
half-word in a destination word with the low-order half-word of a source word.

Byte Pointer Register (BP, Register 133)
This unprotected special-purpose register (Figure 3-3) provides an alternate access to
the BP field in the ALU Status Register (see Section 2.5.1). For the Extract Byte
(EXBYTE) and Insert Byte (INBYTE) instructions, the character is selected via the Byte
Pointer field. For the Extract Half-Word (EXHW), Extract Half-Word Signed (EXHWS),
and Insert Half-Word (INHW) instructions, the half-word is selected by the most signifi­
cant bit of the Byte Pointer field.

Data Formats and Handling

AMD~
Figure 3-3 Byte Pointer Register

3.1.4

31 23 15 7 0

1.1·1·1·1 !. I

Bits 31-2: Zeros

Bits 1-0: Byte Pointer (BP)-The BP field holds a 2-bit pointer to a byte within a word.
It is used by Insert Byte and Extract Byte instructions.

The most significant bit of the BP field is used to determine the position of a half-word
within a word for the following three instructions; Insert Half-Word, Extract Half-Word,
and Extract Half-Word Sign-Extended instructions.

The BP field is set by a Move To Special Register instruction with either the ALU Status
Register or the 8yte Pointer Register as the destination. It is also set by a load or store
instruction if the Set 8yte Pointer (S8) bit in the instruction is 1. A load or store sets the
BP field with 11.

This field allows a program to change the 8P field without affecting other fields in the
ALU Status Register.

Bit Strings
Graphics and imaging applications often require that a data region be collectively shifted
by a specific number of bits. The microcontroller supports such an operation through the
Extract (EXTRACn instruction. The Extract instruction concatenates two 32-bit values,
producing a 64-bit source operand, and then shifts this value left by an arbitrary number
of bits to produce a 32-bit result. The shift amount is determined by the value in the
Funnel Shift Count Register. The Funnel Shift Count Register is set before executing the
Extract instruction.

3.tA.t F ... nel Shift Count Register (FC, Register t34)

This unprotected special-purpose register (Figure 3-4) provides an alternate access to
the FC field in the ALU Status Register.

Figure ~ Funnel Shift Co ... t Register

31 23 15 7 o

I I I I
Fe

Bits 31-5: Zeros

Bits 4-0: Funnel Shift Count (FC)-The FC field contains a 5-bit shift count for the
funnel shifter. The funnel shifter concatenates two source-operands into a single 64-bit
operand and extracts a 32-bit result from this 64-bit operand; the FC field specifies the
number of bit positions from the most significant bit of the 64-bit operand to the most
significant bit of the 32-bit result. The FC field is used by the EXTRACT instruction.

Data Formats and Handling

~AMD

3.1.5

3.1.5.1

3.1.5.2

3-4

The FC field is set by a Move To Special Register instruction with either the ALU Status
Register or the Funnel Shift Count Register as the destination.

This field allows a program to change the Fe field without affecting other fields in the
ALU Status Register.

Character.String Operations
The need to perform operations on character strings arises frequently in many systems.
The processor provides operations for manipulating character data, but these are
frequently inefficient for dealing with character strings, since the processor is optimized
for 32-bit data quantities.

In general, it is much more efficient to perform character-string operations by operating
on units of four bytes each. These four-byte units are more suited to the processor's
data flow organization. However, as outlined in this section, there are several points to
be considered when dealing with four-byte units.

Alignment of Bytes within Words

Character strings normally are not aligned with respect to 32-bit words. Thus, when word
operations are used to perform character-string operations, alignment of the character
strings must be taken into account.

For example, consider a character string aligned on the third byte of a word that is
moved to a destination string aligned on the first byte of a word. If the movement is
performed word-at-a-time, rather than byte-at-a-time, the move must involve shift and
merge operations, since words in the destination character string are split across word
boundaries in the source character string.

The processor's funnel shifter can be used to perform the alignment operations required
when character operations are performed in four-byte units. Though the funnel shifter
supports general bit-aligned shift and merge operations, it is easily adapted to byte­
aligned operations.

For byte-aligned shift and merge operations, it is only necessary to ensure that the two
most significant bits of the Funnel Shift Count (FC) field of the ALU Status Register point
to a byte within a word, and that the three least significant bits of the FC field are 000.

Detection of Characte,. within Words

Most character-string operations require the detection of a particular character within the
string. For example, the end of a character string is identified by a special character in
some character-string representations. In addition, character strings often are searched
for a specific pattern. During such searches, the most frequently executed operation is
the search within the character string for the first character of the pattern.

The processor provides a Compare Bytes (CPBYTE) instruction, which directly supports
the search for a character within a word. This instruction can provide a factor-of-four
performance increase in character-search operations, since it allows a character string
to be searched in four-byte units.

During the search, the words containing the character string are compared a word at a
time to a search key. The search key has the character of interest in every byte position.
The CPBYTE instruction then gives a result of TRUE if any character within the charac­
ter-string word matches the corresponding byte in the search key.

Data Formats and Handlina

3.1.6

3.1.7

AMD~

Boolean Data
Some instructions in the Compare class generate word-length Boolean results. Also,
conditional branches are conditional upon Boolean operands. The Boolean format used
by the processor is such that the Boolean values TRUE and FALSE are represented by
a 1 or 0, respectively, in the most significant bit of a word. The remaining bits are
unimportant: for the Compare instructions, they are reset. Note that two's-complement
negative integers are indicated by the Boolean value TRUE in this encoding scheme.

Instruction Constants
Eight-bit constants are directly available to most instructions. Larger constants must be
generated explicitly by instructions and placed into registers before they can be used as
operands. The processor has three instructions for the generation of large data
constants: Constant (CONST); Constant, High (CONSTH); and Constant, Negative
(CONSTN).

The CONST instruction sets the least significant 16 bits of a register with a field in the
instruction. The most significant 16 bits are set to O. This instruction allows a 32-bit
positive constant to be generated with one instruction, when the constant lies in the
range of 0 to 65535.

Any 32-bit constant can be generated with a combination of the CONST and CONSTH
instructions. The CONSTH instruction sets the most significant 16 bits of a register with
a field in the instruction; the least significant bits are not modified. Thus, to create a
32-bit constant in a register, the CONST instruction sets the least significant 16 bits, and
the CONSTH instruction sets the most significant 16 bits.

The CONSTN instruction sets the least significant 16 bits of a register with a field in the
instruction; the most significant 16 bits are set to 1. This instruction allows a 32-bit
negative constant to be generated with one instruction, when the constant lies in the
range of -65536 to -1.

3.2 FLOATING·POINT DATA TYPES

3.2.1

The Am29200 and Am29205 microcontrollers define single- and double-precision
floating-point formats that comply with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Std. 754-1985). These data types are not directly supported in
processor hardware, but can be implemented using the virtual arithmetic interface
provided on the Am29200 and Am29205 microcontrollers.

In this section, the following nomenclature is used to denote fields in a floating-point
value:

• s: sign bit

• bexp: biased exponent

• frac: fraction

• sig: significand

Single.Precislon Floating.Polnt Values
The format for a single-precision floating-point value is shown in Figure 3-5.
Typically, the value of a single-precision operand is expressed by:

(-1)**5 * 1.frac * 2**(bexp-127)

The encoding of special floating-point values is given in Section 3.2.3.

Data Formats and Handling 3-5

~AMD

Figure 3·5 Single·Precision Floating.Point Fonnat

31 23 15 7 0

II I I I I I I I II
.8. bexp . frae .

3.2.2 Double-Precision Floating.Point Values
The format for a double-precision floating-point value is shown in Figure 3-6.

Figure 3-6 Double-Precision Floating·Point Fonnat

3.2.3

3.2.3.1

3-6

31 23 15 7 o

8 o

.. .frae

Typically, the value of a double-precision operand is expressed by:

(-1)**8 * 1.frac * 2**(bexp-1023)

The encoding of special floating-point values is given in Section 3.2.3.

In order to be properly referenced by a floating-point instruction, a double-precision
floating-point value must be double-word aligned. The absolute-register number of the
register containing the first word (labeled 0 in Figure 3-6) must be even. The absolute­
register number of the register containing the second word (labeled 1 in Figure 3-6) must
be odd. If these conditions are not met, the results of the instruction are unpredictable.
Note that the appropriate registers for a double-precision value in the local registers
depend on the value of the Stack Pointer.

Special Floating.Point Values
The Am29200 and Am29205 microcontrollers define floating-point values encoded for
special interpretation. The values are described in this section.

Not·a·Number

A Not-a-Number (NaN) is a symbolic value used to report certain floating-point
exceptions. It also can be used to implement user-defined extensions to floating-point
operations. A NaN comprises a floating-point number with maximum biased exponent
and non-zero fraction. The sign bit can be either 0 or 1 and has no significance. There
are two types of NaN: signaling NaNs (SNaNs) and quiet NaNs (QNaNs). An SNaN
causes an Invalid Operation exception if used as an input operand to a floating-point
operation; a QNaN does not cause an exception. The microcontroller distinguishes
SNaNs and QNaNs by the most significant bit of the fraction: a 1 indicates a QNaN and
a 0 indicates an SNaN.

An operation never generates an SNaN as a result. A QNaN result can be generated in
one of two ways:

• as the result of an invalid operation that cannot generate a reasonable result, or

Data Formats and Handling

3.2.3.2

3.2.3.3

3.2.3.4

3.3

3.3.1

AMD~

• as the result of an operation for which one or more input operands are either SNaNs
orONaNs.

In either case, the microcontroller produces a ONaN having a fraction of 11000 ... 0;
that is, the two most significant bits of the fraction are 11, and the remaining bits are O. If
desired, the Reserved Operand exception can be enabled to cause a Floating-Point
Exception trap. The trap handler in this case can implement a scheme whereby user-de­
fined NaN values appear to pass through operations as results, providing overall status
for a series of operations.

Infinity

Infinity is an encoded value used to represent a value too large to be represented as a
finite number in a given floating-point format. Infinity comprises a floating-point number
with maximum biased exponent and zero fraction. The sign bit of an infinity distinguishes
plus infinity (+oo) from minus infinity (-co).

Denonnallzed Number.

The IEEE Standard specifies that, wherever possible, a result too small to be repre­
sented as a normalized number be represented as a denormalized number. A denormal­
ized number may be used as an input operand to any operation. For single- and
double-precision formats, a denormalized number is a floating-point number with a
biased exponent of zero and a non-zero fraction field. The sign bit can be either 1 or O.
The value of a denormalized number is expressed by:

(-1)**s * O.frae * 2**(-bias+1)

where bias is the exponent bias for the format in question (127 for single precision, 1023
for double precision).

Zero

A zero is a floating-point number with a biased exponent of zero and a zero fraction field.
The sign bit of a zero can be either 0 or 1; however, positive and negative zero are both
exactly zero, and are considered equal by comparison operations.

EXTERNAL DATA ACCESSES
This section discusses external data accesses supported by load and store operations
on the Am29200 and Am29205 microcontrollers.

Load/Store Instruction Format
All accesses external to the processor occur between general-purpose registers and
external devices and memories. Accesses occur as the result of the execution of load
and store instructions. The load and store instructions specify which general-purpose
register receives the data (for a load) or supplies the data (for a store). The format of the
load and store instructions is shown in Figure 3-7.

Addresses for accesses are given either by the content of a general-purpose register or
by a constant value specified by the load or store instruction. The load and store
instructions do not perform address computation directly. Any required address com­
putations are performed explicitly by other instructions.

In load and store instructions, the "RB or I" field specifies the address for the access.
The address is either the content of a general-purpose register with register number RB,

Data Formats and Handling 3-7

~AMD

Figure 3-7 Load(Store Instftlction Format
31 23

I I I I I I I I II I III
XXXXXXXMOOO . , ,

, " , , , ,
res 'res ,

5B

15 7 o

I I I I I I I I I II I I I I I I
RA RBorl OPT

or an immediate constant with a value I (zero-extended to 32 bits). The M bit determines
whether the register or the constant is used.

The data for the access is written into the general-purpose register RA for a load and is
supplied by register RA for a store.

The definitions for other fields in the load or store instruction are given below:

Bits 31-24: Opcode

Bits 23-21: Reserved

Bit 20: Set Byte Pointer/Sign Bit (SB)-If the SB bit is 1 for a load, the loaded byte or
half-word is sign-extended in the destination register; if the SB bit is 0, the byte or
half-word is zero-extended. When the SB bit is 1 for either a load or store, the Byte
Pointer Register is written with 11. The Byte Pointer Register is set in this case to
provide software compatibility across different types of memory systems and 29K Family
processors. If the SB bit is 0, the Byte Pointer Register is not affected.

Bit 19: Reserved

Bits 18-16: Option (OPT)-This field indicates the width of the data access and
controls certain system functions, as follows:

OPT Value

000
001
010
110
-all others-

Access Width or Type

32-bit (word) access
a-bit (byte) access
16-bit (half-word) access
Hardware-development system access
Reserved

The value OPT =110 is used by a hardware-development system to inspect and alter
processor internal state. It prevents a data access from appearing externally, although
the access does appear at the boundary-scan interface (see Section 17.7.4).

Bits 15-8: (RA)-The data for the access is written into the general-purpose register RA
for a load, and is supplied by register RA for a store.

Bits 7-0: (RB or I)-In load and store instructions, the RB or I field specifies the
address for the access. The address is either the content of a general-purpose register
with register number RB, or a constant value I (zero-extended to 32 bits). The M bit of
the operation code (bit 24) determines whether the register or the constant is used.

Load and store operations are overlapped with the execution of instructions that follow
the load or store instruction. Only one load or store may be in progress on any given

Data Formats and Handling

3.3.2

3.3.3

3.3.4

AMD~

cycle. If a load or store instruction is encountered while another load or store operation
is in progress, the processor enters the Pipeline Hold mode until the first operation
completes (see Section 5.2).

Load Operations
The processor provides the following instructions for performing load operations: Load
(LOAD), Load and Lock (LOADL), Load and Set (LOADSET), and Load Multiple
(LOADM). All of these instructions transfer data from a memory or a peripheral (internal
or external) into one or more general-purpose registers.

The LOADL instruction in other 29K Family processors supports the implementation of
device and memory interlocks in a multiprocessor configuration. In the Am29200 and
Am29205 microcontrollers, LOADL is provided for compatibility and is identical to a
LOAD.

The LOADSET instruction implements a binary semaphore. It loads a general-purpose
register and atomically writes the accessed location with a word which has 1 in every bit
position (that is, the write is indivisible from the read).

The LOADM instruction loads a specified number of registers from sequential
addresses, as explained below in Section 3.3.4.

Load operations are overlapped with the execution of instructions that follow the load
instruction. The processor detects any dependencies on the loaded data that subse­
quent instructions may have and, if such a dependency is detected, enters the Pipeline
Hold mode until the data is returned by the external device or memory. If a register that
is the target of an incomplete load is written with the result of a subsequent instruction,
the processor does not write the returning data into the register when the load com­
pletes; the Not Needed (NN) bit in the Channel Control Register is set in this case.

Store Operations
The processor provides the following instructions for performing store operations: Store
(STORE), Store and Lock (STOREL), and Store Multiple (STOREM). All of these
instructions transfer data from one or more general-purpose registers to a memory or a
peripheral (internal or external).

The STOREL instruction in other 29K Family processors supports the implementation of
device and memory interlocks in a multiprocessor configuration. In the Am29200 and
Am29205 microcontrollers, STOREL is provided for compatibility and is identical to a
STORE.

The STOREM instruction stores a specified number of registers to sequential addresses,
as explained below.

Store operations are overlapped with the execution of instructions that follow the store
instruction. However, no data dependencies can exist, since the store prevents any
subsequent load or store accesses until it completes.

Multiple Accesses
The Load Multiple (LOADM) and Store Multiple (STOREM) instructions move contiguous
words of data between general-purpose registers and external devices and memories.
The number of transfers is determined by the Load/Store Count Remaining Register.

The Load/Store Count Remaining (CR) field in'the Load/Store Count Remaining
Register specifies the number of transfers to be performed by the next LOADM or

Data Formats and Handling 3-9

~AMD

3-10

STOREM executed in the instruction sequence. The CR field is in the range of 0 to 255
and is zero-based: a count value of 0 represents one transfer, and a count value of 255
represents 256 transfers. The CR field also appears in the Channel Control Register.

Before a LOADM or STOREM is executed, the CR field is set by a Move To Special
Register. A LOADM or STOREM uses the most recently written value of the CR field. If
an attempt is made to alter the CR field, and the Channel Control Register contains
information for an extemal access that has not yet completed, the processor enters the
Pipeline Hold mode until the access completes. Note that since the CR is set indepen­
dently of the LOADM and STOREM, the CR field may represent valid state of an
interrupted program even if the Contents Valid (CV) bit of the Channel Control Register
is 0 (see also Section 16.7.2).

Because of the pipelined implementation of LOADM and STOREM, at least one
instruction (e.g., the instruction that sets the CR field) must separate two successive
LOADM and/or STOREM instructions.

After the CR field is set, the execution of a LOADM or STOREM begins the data transfer.
As with any other load or store operation, the LOADM or STOREM waits until any
pending load or store operation is complete before starting. The LOADM instruction
specifies the starting address and starting destination general-purpose register. The
STOREM instruction specifies the starting address and the starting source general­
purpose register.

During the execution of the LOADM or STOREM instruction, the processor updates the
address and register number after every access, incrementing the address by 4 and the
register number by 1. This continues until either all accesses are completed or an
interrupt or trap is taken.

For a load-multiple or store-multiple address sequence, addresses wrap from the largest
possible value (FFFFFFFCh) to the smallest possible value (OOOOOOOOh).

The processor increments absolute register numbers during the load-multiple or
store-multiple sequence. Absolute-register numbers wrap from 127 to 128 and from 255
to 128. Thus, a sequence that begins in the global registers may move to the local .
registers, but a sequence that begins in the local registers remains in the local registers.
Also, note that the local registers are addressed circularly.

The normal restrictions on register accesses apply for the load-multiple and store-multi­
ple sequences. For example, if a protected.general-purpose register is encountered in
the sequence for a User-mode program, a Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Address Register, and register
numbers are stored in the Target Register (TR) field of the Channel Control Register. For
the STOREM instruction, the data for every access is stored in the Channel Data
Register (this register also is set during the execution of the LOADM instruction, but has
no interpretation in this case). The CR field is updated on the completion of every
access, so that it indicates the number of accesses remaining in the sequence.

Load-multiple and store-multiple operations are indicated by the Multiple Operation (ML)
bit in the Channel Control Register. The ML bit is used to restart a multiple operation on
an interrupt return; if it is set independently by a Move To Special Register before a load
or store instruction is executed, the results are unpredictable. .

While a multiple load or store is executing, the processor is in the Pipeline Hold mode,
suspending any subsequent instruction execution until the multiple access completes. If
an interrupt or trap is taken, the Channel Address, Channel Data, and Channel-Control

Data Formats and Handling

3.3A.1

AMD~

registers contain the state of the multiple access at the point of interruption. Later, the
multiple access may be resumed at this point by an interrupt return.

The processor performs multiple accesses using the burst-mode capability of the ROM
or the page-mode capability of the DRAM, if possible. Bursts are stopped and restarted
when crossing a 1-Kbyte page boundary. Multiple accesses of individual bytes and
half-words is not supported. If the memory cannot support burst-mode accesses, a
sequence of simple single accesses is performed. Burst-mode ROM access is not
supported on the Am29205 microcontroller.

Loacl/Store Count Remaining Register (CR, Register 135)

This unprotected special-purpose register (Figure 3-8) provides alternate access to the
CR field in the Channel Control Register.

Figure 3-8 Loacl/Store Count Remaining Register

3.3A.2

3.3.5

3.3.5.1

31 23 15 7 0

Bits 31-8: Zeros

Bits 7~: LoadlStore Count Remaining (CR)-The CR field indicates the remaining
number of transfers for a load-multiple or store-multiple operation that encountered an
exception or was interrupted before completion. This number is zero-based; for example,
a value of 28 in this field indicates that 29 transfers remain to be completed.

This register allows a User-mode program to change the CR field in the Channel Control
Register without affecting other fields in the Channel Control Register, and is used to
initialize the value before a Load Multiple or Store Multiple instruction is executed.

Movement of Large Data Blocks

The movement of large blocks of data-for example, to perform a memory-to-memory
mov~n be performed by an alternating series of loads and stores. However, it is
typically more efficient to move large blocks of data by using an alternating series of
Load Multiple and Store Multiple instructions. These instructions take better advantage
of the data-movement capabilities of the processor, though they require the use of a
larger number of registers.

During data movement, it is possible to perform alignment operations by a series of
EXTRACT instructions between the Load Multiple and Store~ulr . Iso, since the
Load Multiple and Store Multiple are interruptible, these instru may ¥ used to
move large amounts of data without affecting interrupt laten .'

Addressing and Alignment

Byte and Half.word Addressing

The Am29200 and Am29205 microcontrollers generate word-oriented byte addresses
for accesses to external devices and memories. Addresses are word-oriented because
loads, stores, and instruction fetches access words. However, addresses are byte
addresses because they permit byte selection within accessed words. For load and

Data Formats and Handling 3-11

~AMD
store operations, the processor provides for using the least significant address bits to
access bytes and half-words within external words.

For all external byte and half-word accesses, the selection of a byte within an external
word is determined by the two least significant bits of an address. The selection of a
half-word within an external word is determined by the next-to-Ieast significant bit of an
address. Figure 3-9 illustrates the addressing of bytes and half-words. In Figure 3-9,
addresses are represented in hexadecimal notation.

Figure 3·8 Byte and Half·Word Addressing (Big Endian)

3.3.5.2

3-12

31 23 15 7 o

Half-Word 00000004 Half-Word 00000OO6

B~eOOOOOOO4 B~eOOOOOOO5 B~e 00000006 B~e 00000007

Word FFFFFFFC
Half-Word FFFFFFFC Half-Word FFFFFFFE

B~e FFFFFFFC B~e FFFFFFFD B~e FFFFFFFE B~e FFFFFFFF

For all byte and half-word operations in the processor, the byte or half-word within a
register is selected either by the two bits of the BP field or the two least significant bits of
an external address.

Bytes are ordered within words such that a 00 in the BP field or in the two least signifi­
cant address bits selects the high-order byte of a word, and a 11 selects the low-order
byte.

Half-words are ordered within words such that a 0 in the most significant bit of the BP
field or the next-to-Ieast significant address bit selects the high-order half-word, and a 1
selects the low-order half-word. Note that since the least significant bit of the BP field of
an address does not participate in the selection of half-words, the alignment of half­
words is forced to half-word boundaries in this case.

Byte and Half·Word Access.s

During a load, the processor selects a byte or half-word from the loaded word, depend­
ing on the Option (OPT) bits of the load instruction and the two least significant bits of
the address (for bytes) or the next-to-Ieast significant bit of the address (for half-words).
The selected byte or half-word is right-justified within the destination register. If the SB
bit of the load instruction is 0, the remainder of the destination register is zero-extended.

Data Formats and Handling

3.3.5.3

3.3.5.4

AMD~

If the SB bit is 1, the remainder of the destination register is sign-extended with the sign
bit of the selected byte or half-word.

During a store, the processor replicates the low-order byte or half-word in the source
register into every byte and half-word pOSition of the stored word. The processor
generates the appropriate byte and/or half-word write enables, based on the OPT field
and the two least significant bits of the address, to write the byte or half-word in the
selected device or memory. The SB bit does not affect the operation of a store, except
for setting the BP field as described below.

If the SB bit is 1 for either a load or store, the BP field is set to 11 when the load or store
is executed. This does not directly affect the load or store access, but supports
compatibility for software developed for word-write-only systems and other 29K Family
processors.

Alignment of Words and Half-Words

Since byte addressing is supported, it is possible that the address for an access of a
word or half-word is not aligned to the desired word or half-word. The microcontroller
either ignores or forces alignment in most cases. However, some systems may require
that unaligned accesses be supported for compatibility reasons. Because of this, the
Am29200 and Am29205 microcontrollers provide an option to trap when a non-aligned
access is attempted. This trap allows software emulation of the non-aligned accesses, in
a manner appropriate for the particular system.

The detection of unaligned accesses is activated by a 1 in the Trap Unaligned Access
(TU) bit of the Current Processor Status Register. Unaligned access detection is based
on the data length as indicated by the OPT field of a load or store instruction and on the
two least significant bits of the specified address.

An Unaligned Access trap occurs only if the TU bit is 1 and any of the following combina­
tions of OPT field and address bits is detected for a load or store to instruction/data
memory:

OPT Value A1 AO Meaning

000 1 0 Unaligned Word Access
000 0 1 Unaligned Word Access
000 1 1 Unaligned Word Access
010 0 1 Unaligned Half-Word Access
010 1 1 Unaligned Half-Word Access

The trap handler for the Unaligned Access trap is responsible for generating the correct
sequence of aligned accesses and performing any necessary shifting, masking, and/or
merging. Note that a virtual page-boundary crossing may also have to be considered.

Alignment of Instructions

In the Am29200 and Am29205 microcontrollers, all instructions are 32 bits in length and
are aligned on word-address boundaries. The processor's program counter is 30 bits in
length, and the least significant two bits of processor-generated instruction addresses
are always 00. An unaligned address can be generated by indirect jumps and calls.
However, alignment is ignored by the processor in this case, and the processor expects
the system to force alignment (Le., by interpreting the two least significant address bits
as 00, regardless of their values).

Data Formats and Handling 3-13

4 PROCEDURE LINKAGE

This chapter describes the run-time storage organization recommended for the
Am29200 and Am29205 microcontrollers and describes the use of the local registers to
improve the performance of procedure calls. The presentation in this chapter is intended
as a guide for implementing microcontroller software systems, not necessarily as a strict
definition of how these systems must be implemented.

Programming languages that use recursive procedures, such as C, generally use a
stack to store data objects dynamically allocated at run-time. The organization of the
run-time storage, including the run-time stack, determines how data objects are stored
and how procedures are called at the machine level. The microcontroller is designed to
minimize the overhead of calling a procedure, passing parameters to a procedure, and
returning results from a procedure. This chapter describes the run-time storage orga­
nization and procedure-calling conventions.

4.1 RUN-TIME STACK ORGANIZATION AND USE

4.1.1

A run-time stack consists of consecutive overlapping structures called activation records.
An activation record contains dynamically allocated information specific to a particular
activation (or call) of a procedure (such as local data objects). Because of recursion,
multiple copies of a procedure may be active at any given time. Each active procedure
has its own unique activation record allocated somewhere on the run-time stack. The
local variables required by a particular procedure activation are contained in the
activation record associated with that activation. Thus, the local variables for different
activations do not interfere with one another. A compiler generates the instructions to
create and manage the run-time stack, and compiler-generated instructions are based
on its existence.

As an example, Figure 4-1 shows three activation records on a run-time stack. This
stack configuration was generated by procedure A calling procedure B, which in turn
called procedure C. The fact that procedure C is the currently active procedure is
reflected by its activation record being on the top of the run-time stack. The Stack
Pointer points to the top of procedure C's activation record.

In Figure 4-1, the storage areas labeled Out args and In args are the outgoing argu­
ments area (for the caller) or the incoming arguments area (for the callee). These are
shared between the caller procedure and the callee for the communication of parame­
ters and results. The areas labeled Locals contain storage for local variables, temporary
variables (for example, for expression evaluation), and any other items required for the
proper execution of the procedure.

Management of the Run-Time Stack
A run-time stack starts at a high address in memory and grows toward lower memory
addresses as procedures are called. The bottom of the stack is the location with a high
address at which the stack starts; the top of the stack is the location with a lower
address at which the most recent activation record has been allocated.

When a procedure is called, a new activation record might need to be allocated on the
run-time stack. An activation record is allocated by subtracting from the stack pOinter the

Procedure Linkage 4-1

~AMD
Figure 4-1 Run-Time Slack Example

4-2

I.
atlon

I~A
Activ

Record

Activ
Recor

ttion rm,c

~
.

Out argsX
In args A

Locals A

Out args A
In args B

Locals B

Outargs B
In args C

Locals C

Outargs C

Higher Me mory
es Address

AcJ alion
d for B Recor

I
Lower Me mory

ses Addres

Stack Poi nter
ack) (Top of St

number of loeations needed by the new activation record. The stack pointer is decrem­
ented so that variables referenced during procedure execution are referenced in terms
of positive offsets from the stack painter.

When storage for an activation record is allocated, the number of storage locations
allocated is the sum of the number of locations needed for:

1. Local variables

2. Restarting the caller, such as locations for return addresses

3. Arguments of procedures that may be called in turn by the called procedure (the out-
going arguments area)

In some cases storage is not required for one or more of the above items. Also, the
incoming arguments area, though part of the activation record of the callee, is not
allocated storage at this time, because this storage was allocated as the outgoing
arguments area of the calling procedure.

An activation record is deallocated, just prior to returning to the caller, by adding to the
stack pointer the value subtracted during allocation.

In the Am29200 and Am29205 microcontrollers, run-time storage is actually implement­
ed as two stacks: the Register Stack and the Memory Stack. Storage is allocated and
deallocated on these stacks at the same time. The Register Stack stores activation
records associated with all active procedures (except leaf routines, as described later).
The Memory Stack stores activation-record information that does not fit into the Register
Stack or that must be kept in memory for other reasons (e.g., because of pointer
de references). Both the Register Stack and the Memory Stack are stored in the external
data memory. However, a portion of the Register Stack is kept in the processor's local
registers for performance. The term stack cache in this section refers to the use of the
local registers to contain a portion of the Register Stack.

Procedure Linkage

4.1.2

AMD~

Register Stack
The Register Stack contains activation records for active procedures (Figure 4-2). An
activation record in the Register Stack stores the following information:

• Input arguments to the called procedure. This portion of the activation record is
shared between a caller and the callee. It is allocated by the caller as part of the call­
er's activation record.

• The caller's frame pointer. This is the address of the lowest-addressed byte above
the highest-address word of the caller's activation record, and is used to manage the
Register Stack. This portion of the activation record is shared between a caller and
the callee. It is allocated by the caller as part of the caller's activation record.

• The caller's return address. This is used to resume the execution of the caller after
the called procedure terminates. This is also part of the caller's activation record.

• The memory frame pointer. This is the address of the top of the caller's Memory
Stack (see below). This address is stored by the callee (if required), and used to re­
store the memory stack upon return.

• The local variables of the called procedure, if any.

• Outgoing parameters of the called procedure, if any.

• The frame pointer of the called procedure, if the procedure calls another procedure.

• The return address for the called procedure, if the procedure calls another procedure.
This location is allocated in the Register Stack, and is used when the called proce­
dure calls another procedure.

Fllure 4-2 Activation Record In the Register Stack

lIee's Ca
Act
Re

ivation
cord

-
-

r-
r-
r-

r-

-
-
-

Incoming Arguments

Frame Pointer

Retum Address

Memory Frame Pointer

Local Variables
ofCallee

Outgoing Arguments

Frame Pointer

Return Address

-
-

-
-
-
-
-

-
-

LR 1 (Caller)} Before and

LRO (Caller) After Call
4--

Caller's Stack Pointer

LRl (Callee) } During

LRO (Callee) Call

4--
Callee's Stack Pointer

Procedure Linkage 4-3

;t1 AMD

4.1.3 Local Registers as a Stack Cache
The Am29200 and Am29205 microcontrollers are designed for efficient implementation
of the Register Stack. Specifically, each microcontroller can use the large number of
relatively addressed local registers to cache portions of the Register Stack, yielding a
significant gain in performance. Allocation and deallocation of activation records occurs
largely within the confines of the high-speed local registers, and most procedure calls
occur without external references. Furthermore, during procedure execution, most data
accesses occur without external references, because activation-record data are
referenced most frequently. The principle of locality of reference, which allows any cache
to be effective, also applies to the stack cache. The entries in the stack cache are likely
to remain there for re-use, because the size of the Register Stack does not change very
much over long intervals of program execution. Activation records are typically small, so
the 128 locations in the local register file can hold many activation records.

Allocating Register-Stack activation records in the local registers is facilitated by the Stack
Pointer in Global Register 1. During the execution of a procedure, the Stack Pointer points
simultaneously to the top of the Register Stack in memory and to the local register at the
top of the stack cache. In other words, Global Register 1, a word-length register, contains
the 32-bit address of th~ top of the Register Stack, while bits 8-2 of Global Register 1
(with a 1 appended to the most significant bit) indicate the absolute register number of
Local Register o. Allocation and deallocation of the Register Stack is accomplished by
subtracting from or adding to, respectively, the value of the Stack Pointer.

Using this register-addressing scheme, locations from the Register Stack are automati­
cally mapped into the local register file. Figure 4-3 shows the relationship between the
Register Stack and the stack cache in the local registers. As shown, pointers are
required to define the boundaries between the Register Stack and the stack cache.

Figure 4-3 Relationship of Stack Cache and Register Stack

Local
Register

File Register Free Bound (gr127)

Register
Stack

Spilled
Activation
Records

II-------tGr:~~ ~~i:t:r-(~l-) - - - - - -

IrS
IrS
Ir4
Ir3
1r2
Irl
IrO

Ir127

........ """-'~J.J;'-'-"'-4-01

Current
Activation
Record
(in local
registers)

R egister Stack Pointer (grl) ,
~ ~~~~~~~

Procedure Linkage

4.1.4

AMD~

• The register free bound pOinter (rfb, gr127) defines the boundary between the portion
of the Register Stack cached in the local registers and the portion stored in the exter­
nal data memory. The rfb pointer contains the address of the first word in the Register
Stack that is not contained in the local registers, but which is in memory.

• The frame pOinter (fp, Ir1) contains the memory address of the lowest-addressed
word not in the current activation record. The fp is used to determine whether the call­
er's complete activation record is contained in the local registers when a procedure
returns from a call, as described later.

• The register stack pointer (rsp, gr1) points to the top of the Register Stack either in
the local registers or the memory. The rsp is contained in the local-register Stack
Pointer (Global Register 1). The top of the Register Stack mayor may not be con­
tained in the data memory. The rsp simply defines the location of the top of the Regis­
ter Stack.

• The register allocate bound pointer (rab, gr126) defines the lowest-addressed stack
location that can be cached within the local registers. This defines the limit to which
local registers can be allocated in the Register Stack.

Several activation records may exist in the Register Stack at any given time, but only
one stack location may be mapped to a local register at a given time. When the Register
Stack grows beyond the 128-word capacity of the local registers, some movement of
data between the stack cache and the Register Stack in data memory must occur.

Stack overflow occurs when a procedure is called, but the activation record of the callee
requires more registers than can be allocated in the stack cache (this is detected by
comparing rsp with rab). Figure 4-4 illustrates stack overflow. In this case, the contents
of a number of registers must be moved to data memory. The number of registers
involved must be sufficient to allow the entire activation record of the callee to reside in
the local registers. A block of the registers is copied, or spilled, into an area of external
data memory, freeing space in the local register file for the most recent procedure call.

Stack underflow occurs when a procedure returns to the caller, but the entire activation
record of the caller is not resident in the stack cache (this is detected by comparing fp
with rfb). Figure 4-5 illustrates stack underflow. In this case, the non-resident portion of
the caller's stack must be moved from data memory to the local registers. Underflow
occurs because overflow occurred at some previous point during program execution,
causing part of the Register Stack to be moved to memory.

The processor performs no hardware management of the stack cache and cannot detect
a reference to a quantity that is not in the stack cache. Consequently, software must
keep the size of an activation record less than or equal to the size of the local register
file (128 words). Any additional storage requirements are satisfied by the Memory Stack.

Memory Stack
In general, the Memory Stack is used to augment the Register Stack, holding additional
information associated with activation records. For example, the Memory Stack holds
large data structures that cannot fit into the Register Stack. Similar to the Register Stack,
the Memory Stack contains a series of (possibly overlapping) activation records, each
corresponding to a procedure activation. However, a Memory Stack activation record
need not exist for a procedure that does not need a Memory Stack Area. The Memory
Stack contains the following information:

• Overflow incoming arguments. These are incoming arguments that do not fit in the
allowed incoming arguments area of the Register Stack activation record.

Procedure Linkage 4-5

~AMD
Figure 4-4 Stack Overflow

1

Local
Register

File
Register Free Bound (gr127)

---+

1 :~ ~~:~_~"_d_(~,~~!,j
• Ir4 •
~-----ir3-----~

~ - --- -ir2--- - - ~

~::::: E::::: ~ Register Stack Pointer (gr1)

Register
Stack

Spilled
Activation
Records

Current
Activation

Record
(in local
registers)

~-----!~-----~.---- ~~------------. .
• Spilled incoming arguments. These are incoming arguments that cannot be kept in

the Register Stack. For example, if the address of an argument is used in a called
procedure, the associated value must be in the Memory Stack.

• Any procedure-local variable not allocated to a register.

• Local block space. This storage is allocated dynamically on the Memory Stack.
It is used to implement functions such as the al/oea() function in the C programming
language.

• Overflow outgoing arguments. These are outgoing arguments that do not fit in the
allowed outgoing arguments area of the Register Stack activation record.

In contrast to the Register Stack, the Memory Stack is not cached and has no fixed size
limit. The top of the Memory Stack is defined by the memory stack pointer (msp), which
is stored in Global Register 125 by convention.

4.2 PROCEDURE LINKAGE CONVENTIONS
The procedure linkage conventions define the standard sequences of instructions used
to call and return from procedures. These instruction sequences perform the following
operations (other, more general operations may also be required, as described later):

• Put procedure arguments into the outgoing arguments area of the activation record.
This mayor may not involve copying the arguments; copying is not necessary if the
arguments are placed into the appropriate registers as the result of computation.

Procedure Linkage

AMD~

Figure 4-5 Stack Underflow

4.2.1

, ,
~ - - - -LOcai - - - - ~ Frame Pointer (Ir1)

Register
Stack

Spilled
Activation
Records ,---Re-fsier--- .~ ~ _____ !9 _______ , ___________ _

: File , Register Free Bound (gr127)
i - - - - - - - - - - - -, ~

1 r-------------------- ~
,

Ir1 R egister Stack Pointer (gr1) ,

Current
Activation

Record

IrQ .--
In.u ~'r-----------,
Irl26
Ir125
Ir124
Ir123
Ir122 Unused

• Branch to the procedure using a call instruction, which also places the return address
in a register.

• Allocate a frame on the Register Stack. A frame is the storage that contains the pro­
cedure's activation record.

• If overflow occurs during frame allocation, spill the least recently used locations of the
Register Stack. The number of spilled locations must be sufficient to allow the new
frame to reside entirely within the local registers.

• Determine the frame-pointer value of the called procedure, if this procedure may call
another procedure.

• Execute the procedure.

• Place return values into the appropriate registers.

• Deallocate the activation-record frame.

• Fill locations of the local registers from the Register Stack in external memory, if un-
derflow occurs.

• Branch to the procedure's return address.

This section describes the routines that implement the procedure linkage conventions.
The operations described here are not required on every procedure call. In some cases,
operations can be omitted or simpler routines used; these cases and the accompanying
simplifications are also described here.

Argument Passing
The linkage convention allows up to 16 words of arguments to be passed from the caller
to the callee in local registers. These arguments are passed in Local Register 2 through

Procedure Linkage 4--7

~AMD

4.2.2

Local Register 17 of the caller (note that the local-register numbers are different for the
caller and the callee, because of Stack-Pointer addressing).

When more than 16 words are required to pass arguments, the additional words are
passed on the Memory Stack. In this case, the memory stack pointer (in Global Register
125) points to the seventeenth word of the arguments, and the remaining argument
words have higher memory addresses. Multiword arguments may be split across the
Register Stack and the Memory Stack. For example, if a multiword argument starts on
the sixteenth word of the outgoing arguments, the first word of the argument is passed in
the Register Stack, and the remainder of the argument is passed in the Memory Stack.

All arguments occupy at least one word. Arguments that are a byte or half-word in length
(for example, a character) are padded to 32 bits and passed as a full word. However, an
array or structure composed of multiple byte or half-word components can be passed as
a single, packed array or structure of bytes or half-words rather than an array or
structure of padded bytes or half-words.

No argument is aligned to anything other than a word address boundary, including
multiword arguments. Some multiword arguments are referenced as a single object (for
example, double-precision floating-point values). It may be necessary to copy such
arguments to an aligned memory or register area before use.

Procedure Prologue
When a procedure is called and the procedure may call another procedure, the callee
must allocate a frame for itself on the Register Stack (this is not required for leaf
procedures that do not call other procedures, as described later). A frame is allocated by
decrementing the register stack pointer to accommodate the size of the required
activation record. The procedure prologue is the instruction sequence that allocates the
callee's Register Stack frame.

To allocate the stack frame, the prologue routine decrements the register stack pointer
by the amount rsize (see Figure 4-6). The value of rsize must be an even number given
by the following formula:

rsize ~ (size of local variable area) + (size of outgoing arguments area) + 2

The value 2 in this formula accounts for the space required by the return address (in
Local Register 0) and the frame pOinter (in Local Register 1). The size of the local
variable area includes the space for the memory frame pointer, if required. If the formula
total is an odd value, the total must be adjusted (by adding 1) so the resulting rsize value
is even. This aligns the top of the Register Stack on a double-word boundary. The
reason for this alignment is that double-precision floating-point values must be aligned to
registers with even absolute-register numbers. Alignment of double-precision values is
accomplished by placing these values into even-numbered local registers and making
rsize even (it is also assumed that the register stack pointer is initialized on an even­
word boundary).

Rsize is not the size of the entire activation record of the callee, because the callee's
activation record includes storage that was allocated as part of the caller's activation
record frame (e.g., the caller's outgoing arguments area, which is the callee's incoming
arguments area). The size of the callee's entire activation record is denoted size and is
given by the following formula: .

size = rsize + (size of the incoming arguments area) + 2

Procedure Linkage

AMD~

Figure 4-6 Definition of size and rsize Values

lIee's Ca
Acti

Rec
vation

ord

~ ,
size , , , , , , , , , , , ...

~

rsze
, , , , , , , , , ,
+

.... Incoming Arguments"

Frame Pointer

Retum Address

Memory Frame Pointer"

-
-

Local Variables - ofCallee"

-
~

~ Outgoing Arguments"

Frame Pointer"

Retum Address"

" May not be required

-

-
-
-
-
-

-

+--
LR1 (Caller)

LRO (Caller)

ler's Stack Pointer Cal

~
Call

LR1 (Callee)

LRO(Callee)

ee's Stack Pointer

In the prologue routine, the following instruction is used to allocate the stack frame
(rsp = gr1):

prologue:
sub rsp,rsp,rsize"4 ; "4 converts words to bytes

However, this instruction does not account for the fact that there may not be enough
room in the local registers to contain the activation record. There must be additional
instructions to detect stack overflow and to cause spilling if overflow occurs. This is
accomplished by comparing the new value of the register stack pointer with the value of
the register allocate bound and invoking a trap handler (with vector number V_SPILL) if
overflow is detected.

Furthermore, if the procedure calls another procedure, the prologue must compute a
frame pointer. The frame pointer will be used by procedures called in tum by the callee
to insure that the callee's activation record is in the local registers upon retum (Le., that it
has not been spilled onto the Register Stack in data memory). The frame pointer is
computed in the prologue because it need only be computed once, regardless of how
many procedures are called by a given procedure.

The complete procedure prologue is then (fp = Ir1):

prologue:
sub rsp, rsp, rsize"4
asgeu V_SPILL, rsp, rab
add fp, rsp, size"4

; allocate frame
; call spill handler if needed
; compute frame pointer

Procedure Linkage 4-9

~AMD
4.2.3

4.2.4

4.2.5

4-10

Spill Handler
If overflow occurs, the assert instruction in the prologue fails, causing a trap. The trap
handler invokes a User-mode routine in the trapping process to spill Register Stack
locations from the local registers to external memory. Having most of the spill handling in
a User-mode routine minimizes the amount of time that interrupts are disabled and
insures that spilling is performed using the correct virtual-memory configuration.

The spill handler uses two registers. The first register, Global Register 121, normally
contains a trap handler argument (fav), but is used by the spill handler as a temporary
register. The second register, Global Register 122, stores a trap handler return address
(fpc). This register is used by the User-mode spill handler to return to the trapping
procedure. It is assumed that the address of the User-mode spill handler is contained in
a global register, denoted usecspill_reg in the following instruction sequence.

The complete spill handler is:

Spill:

usecspill:

mfsr
mtsr
add
mtsr
iret

sub
sri
sub
mtsr
sub
sub
add
storem
jmpi
add

Return Values

tpc,PC1
PC1, user_spilUeg
taY, usecspill_reg, 4
PCO, taY

taY, rab, rsp
taY, taY, 2
taY, taY, 1
CR, taY
taY, rab, rsp
taY, rfb, taY
rab, rsp, 0
0, 0, IrO, tay
tpc
rfb, taY, 0

; operating-system routine
; save return address
; branch to User spill via interrupt return

; User-mode spill handler
; compute spill: allocate bound - rsp
; shift to get number of words
; count is one less
; set Count Remaining Register

; compute new free bound
; adjust allocate bound
; spill
; return to trapping procedure
; adjust free bound

If the called procedure returns one or more results, the first 16 words of the result(s)
are returned in Global Register 96 through Global Register 111, starting with Global
Register 96.

If more than 16 words are required for the results, the additional words are returned in
memory locations allocated by the caller. In this case a large return pointer (/rp) provided
by the caller in Global Register 123 at the time of the call points to the seventeenth word
of the results, and subsequent words are stored at higher memory addresses.

Procedure Epilogue
The procedure epilogue deallocates the stack frame allocated by the procedure
prologue and returns to the calling procedure. Stack deallocation is accomplished by
adding the rsize value back to the register stack pointer, after which the deallocated
registers are no longer used and are considered invalid. The epilogue also detects stack
underflow and causes register filling if underflow occurs. This is accomplished by
comparing the value of the caller's frame pOinter with the register free bound and
invoking a trap handler (with vector number V_FILL) if underflow is detected. Finally, the
epilogue returns to the caller using the caller's return address.

Procedure Linkage

4.2.6

4.2.7

4.2.8

AMD~
The complete procedure epilogue is:

epilogue:
add rsp, rsp, rsize*4
nop
asleu V_FILL, fp, rib
jmpi 110
nop

Fill Handlers

; add back rsize count
; cannot reference a local register here
; call fill handler if needed
; jump to return address
; delay slot

If underflow occurs, the assert instruction in the epilogue fails, causing a trap. The trap
handler invokes a User-mode routine in the trapping process to fill Register Stack
locations from the external memory to local registers. The fill handler is similar in
organization to the spill handler discussed above.

The complete fill handler is:

Fill:
mfsr tpc, PC1
mtsr PC1, useUilUeg
add taY, useUilUeg, 4
mtsr PCO, tay
iret

usecfill:

const tay, (Ox80<<2)
or taY, taY, rib

mtsr IPA, tay
sub taY, fp, rib
add rab, rab, tay
sri taY, taY, 2
sub taY, taY, 1
mtsr CR, tay
loadm 0, 0, grO, rib
jmpi tpc
add rib, Ir1, 0

Register Stack Leaf Frame

; operating-system routine
; save return address
; branch to User fill via interrupt return

; User-mode fill handler

; local register has high bit set
; put starting register number into Indirect
; Pointer A

; compute number of bytes to fill
; adjust the allocate bound
; change byte count to word count
; make count zero-based
; set Count Remaining register
; fill
; return to trapping procedure
; adjust the free bound

A leaf procedure is one that does not call any other procedure. The incoming arguments
of a leaf procedure are already allocated in the calling procedure's activation-record
frame, and the leaf routine is not required to allocate locations for any outgoing argu­
ments, frame pointer, or return address (since it performs no call). Hence, a leaf
procedure need not allocate a stack frame in the local registers, and can avoid the
overhead of the procedure prologue and epilogue routines. Instead, a leaf routine can
use a set of global registers for local variables; Global Register 96 through Global
Register 124 are reserved for this purpose (among other purposes). If there is an
insufficient number of global registers, the leaf procedure may allocate a frame on the
Register Stack.

Local Variables and Memory-Stack Frames
A called procedure can store its local variables and temporaries in space allocated in the
Register Stack frame by the procedure prologue. The values are referenced as an offset
from the rsp base address, using the Stack-Pointer addressing of the local registers. No
object in a register is aligned on anything smaller than a register boundary, and all
objects take at least one register.

Procedure Linkage 4-11

~AMD

4.2.9

4-12

Because there are 128 local registers, the total Register Stack activation-record size
cannot be greater than 128 words. If the callee needs more space for local variables and
temporaries, it must allocate a frame on the Memory Stack to hold these objects. To
allocate a Memory-Stack frame, the procedure prologue decrements the memory stack
pointer (msp, in gr125). The procedure epilogue deallocates the Memory-Stack frame by
incrementing the msp.

A procedure that extends the Memory Stack dynamically (e.g., using al/oca()) must
make a copy of the msp at procedure entry before allocating the Memory-Stack frame.
The msp is stored in the memory frame pointer (mfp) entry of the activation record in the
Register Stack. The procedure can then change the msp during execution, according to
the needs of dynamic allocation. On procedure return, the Memory-Stack frame is
deallocated using the mfp to restore the msp. A procedure that does not extend the
Memory Stack dynamically need not have an mfp entry in its activation record.

The following prologue and epilogue routines are used if there is no dynamic allocation
of the Memory Stack during procedure execution, but a Memory Stack frame is other­
wise required (Figure 4-6 contains a diagram of register usage):

prologue:

epilogue:

sub
asgeu
add
sub

rsp, rsp, <rsize>*4
V_SPILL, rsp, rab
fp, rsp, <size>*4
msp, msp, <msize>

; allocate register frame
; call spill handler if needed
; compute register frame pointer
; allocate memory frame
; msize = size of memory frame in words

add rsp, rsp, <rsize>*4 ; deallocate register frame
add msp, msp, <msize> ; deallocate memory frame
jmpi IrQ ; return
asleu V_FILL, fp, rfb ; call fill handler if needed

The following prologue and epilogue routines are used if there is dynamic allocation of
the Memory Stack during procedure execution:

prologue:
sub rsp, rsp, <rsize>*4
asgeu V_SPILL, rsp, rab
add fp, rsp, <size>*4
add Ir{<rsize> -1}, msp, 0

sub msp, msp, <msize>

epilogue:
add msp, Ir{<rsize> - 1},O

add rsp, rsp, <rsize>*4
nop
jmpi IrQ
asleu V_FILL, fp, rfb

Static Link Pointer

; allocate register frame
; call spill handler if needed
; compute register frame pointer
; save memory frame pointer
; Ir{rsize-1} is last reg in new frame
; allocate memory frame,
; msize = size of memory frame in words

; restore memory stack pOinter
; deallocate memory frame
; deallocate register frame
; cannot reference a local register here
; return
; call fill handler if needed

Some programming languages permit nested procedure declarations, introducing the
possibility that a procedure may reference variables and arguments that are defined and
managed by another procedure. This other procedure is a static parent of the callee. A
static parent is determined by the declarations of procedures in the program source and
is not necessarily the calling procedure; the calling procedure is the dynamic parent.

Procedure Linkage

4.2.10

AMD~
Since procedures can be nested at a number of levels, a given procedure may have a
number of hierarchically organized static parents.

A called procedure can locate its dynamic parent and the variables of the dynamic
parent because of the return address and frame pointer in the Register Stack. However,
these are not adequate to locate variables of the static parent that may be referenced in
the procedure. If such references appear in a procedure, the procedure must be
provided with a static link pointer (sIp). In the run-time organization, the sIp is stored in
Global Register 124. Since there can be a hierarchy of static parents, the sIp points to
the sIp of the immediate parent, which in turn points to the sIp of its immediate parent,
and so on. Note that the contents of Global Register 124 may be destroyed by a
procedure call, so a procedure needing to reference the variables of a static parent may
need to preserve the sIp until these references are no longer necessary.

Transparent Procedures
A transparent procedure is one that requires very little overhead for managing run-time
storage. Transparent procedures are used primarily to implement compiler-specific
support functions, such as integer divide.

A transparent routine does not allocate any activation-record frames. Parameters are
passed to a transparent procedure using tavand the Indirect Pointer A, B, and C
registers. The retum address is stored in tpc. This convention allows a leaf procedure to
call a transparent procedure without changing its status as a leaf procedure. There is a
tight relationship between a compiler and the transparent procedures it calls. Some
transparent procedures may need more temporary registers and the compiler must
account for this.

4.3 REGISTER USAGE CONVENTION
The run-time organization standardizes the uses of the local and global registers. This
section summarizes register use and the nomenclature for register values:

• GR1: Register stack pointer (rsp)

• GR2-GR63: Unimplemented

• GR64-GR95: Reserved for operating-system use

• GR96-GR111: Procedure return values. Lower-numbered registers are used before
higher-numbered registers. If more than 16 words are needed, the additional words
are stored in the Memory Stack (see GR123, large return pointer). These registers
are also used for temporary values that are destroyed upon a procedure call.

• GR112-GR115: Reserved for programmer. These registers are not used by the com­
piler, except as directed by the programmer.

• GR116-GR120: Compiler temporaries

• GR121: Trap handler argument/temporary (tav)-This register is used to communi­
cate arguments to a software-invoked trap routine. It can be destroyed by the trap,
but not by other traps and interrupts not explicitly generated by the program (for
example, a limer trap).

• GR122: Trap handler return address/temporary (tpc). This register is also used by
software-invoked traps. It can be destroyed by the trap, but not by other traps and
interrupts not explicitly generated by the program (for example, a limer trap).

• GR123: Large return pointer/temporary (Irp)

• GR124: Static link pointer/temporary (sIp)

Procedure Linkage 4-13

~AMD
• GR125: Memory stack pointer (msp)

• GR126: Register allocate bound (rab)

• GR127: Register free bound (rfb)

• LRO: Return address

• LR1: Frame pointer (fp)

In this convention, registers must be handled by software according to system require­
ments. The following practices are recommended:

• GR64-GR95 should be protected from User-mode access by the Register Bank
Protect Register.

• The contents of GR96-GR124 should be assumed destroyed by a procedure call,
unless the procedure is a transparent procedure.

• The contents of GR121 and GR122 should be assumed destroyed by any procedure
call or any program-generated trap.

• The contents of GR125 are always preserved by a procedure call.

• The contents of GR126 and GR127 are managed by the spill and fill handlers and
should not be modified except by these handlers.

4.4 COMPLEX PROCEDURE CALL EXAMPLE

4-14

The following code sequence demonstrates a complex procedure call, illustrating how
registers are used in the run-time organization:

caller:

(other code)
add
add
call
const

(other code)

callee:

const
sub
asgeu
const
add
add
const
consth
sub
add
add

(other code)
add
const
add
const
jmpi
asleu

Irp, msp, 32
sip, msp, 120
IrO, callee
1r2,1

tav, (126-2)*4
rsp, rsp, tav
V_SPILL, rsp, rab
tav, (126-2)*4 + (3*4)
fp, rsp, tav
Ir123, msp, 0
tav, memory_frame_size
tav, memory_frame_size
msp, msp, tav
Ir18, Irp, 0
Ir19, sip, 0

msp, Ir123, 0
tav, (126-2)*4
rsp, rsp, tav
gr96,1
IrO
V_FILL, fp, rfb

; pass Irp
; pass a static link

; 1 as first argument

; maximum register allocation
; allocate register frame
; assert will be taken
; incoming arguments and overhead
; create frame pointer
; for dynamic Memory-Stack allocation
; big msize (>65535 bytes)
; high half of msize
; allocate memory frame
; save Irp for later
; save sip for later

; deallocate memory frame
; maximum allocation size
; deallocate register frame
; return value
; return to caller
; ensure caller's registers in frame

Procedure Linkage

AMD~
4.5 TRACE·BACK TAGS

A trace-back tag is either one or two words of information included at the beginning of
every procedure. This information permits a debug routine to determine the sequence of
procedure calls and the values of program variables at a given point in execution. The
trace-back tag describes the memory frame size and the number of local registers used
by the associated procedure. A one-word tag is used if the memory frame size is less
than 2K words; otherwise, the two-word tag is used. Regardless of tag length, the tag
directly precedes the first instruction of the procedure. Figure 4-7 shows the format of the
trace-back tags.

Figure 4·7 Trace·Back Tags

One-word lag:
31 23

II I I I I I I IIII
OOOOOOOOOMT

Two-word lag:

31 23

I I I I
argcounl

o 0 0 0 0 0 0 0 1 M T argcounl

15

15

7 o
I I I I I I I I I I I
Reserved msize

7 o

Reserved Reserved

The first word of a trace-back tag starts with the invalid operation code 00 (hexadecimal).
This unique, invalid instruction operation code allows the debugger to locate the beginning
of the procedure in the absence of other information related to the beginning of the
procedure, such as from a symbol table. This is particularly useful after a program crash,
in which case the debug routine may have only an arbitrary instruction address within a
procedure. The call sequence up to the current point in execution can be determined from
the argcount and msize values in the trace-back tag. However, for procedures that perform
dynamic stack allocation (e.g., using alloca(), the memory frame pointer must be used.

The tag word immediately preceding a procedure contains the following fields. Reserved
fields must be zero.

1-Word 2-Word
Tag Bits Tag Bits Item Description

31-24 31-24 (word 2) opcode OOh (an invalid opcode)
23 23 (word 2) tag type o=one-word tag; 1 =two-word tag
22 22 ~word 2~ Mfp O=no mfp; 1 =mfp used
21 21 word 2 Transparent O=normal; 1 =transparent procedure
20-16 20-16 (word 2) argcount Number of arguments in

registers (including IrQ and Ir1)
15-11 15-0 ~word 2~ reserved Reserved, must be zero
10-3 31-2 word 1 msize Memory frame size in doublewords
2-0 1-0 (word 1) reserved Reserved, must be zero

If the procedure uses a Memory-Stack frame size 2K words or more, the msize field is
contained in the second tag word immediately preceding the first tag word.

Procedure Linkage 4-15

5 PIPELINING AND
INSTRUCTION SCHEDULING

This chapter offers a general overview of the internal operation of the pipeline, to help
the programmer understand how the pipeline affects the program execution and the
microcontroller's behavior under certain conditions.

The operation of the functional units is coordinated by Pipeline Hold mode, which
ensures that operations are performed in the proper order. In certain cases, the pipeline
is exposed during instruction execution, because execution of certain instructions is
dependent on the execution of previous instructions. This chapter discusses the cases
where the pipeline is exposed to software and describes the resulting effect on instruc­
tion execution.

5.1 FOUR·STAGE PIPELINE
The Am29200 and Am29205 microcontrollers implement a four-stage pipeline for
instruction execution. The four stages are fetch, decode, execute, and write-back. For
operations, the pipeline is organized so the effective instruction-execution rate may be
as high as one instruction per cycle.

During the fetch stage, the instruction fetch unit determines the location of the next
processor instruction and issues the instruction to the decode stage. The instruction is
fetched from an external instruction memory.

During the decode-stage, the instruction issued from the fetch stage is decoded, and the
required operands are fetched and/or assembled. Addresses for branches; loads, and
stores are also evaluated.

During the execute stage, the execution unit performs the operation specified by the
instruction.

During the write-back stage, the results of the operation performed during the execute
stage are stored. In the case of branches, loads, and stores, an address is transmitted to
a memory or a peripheral.

Most pipeline dependencies internal to the processor are handled by forwarding logic in
the processor. For those dependencies that result from the external system, the Pipeline
Hold mode ensures proper operation.

In a few special cases, the processor pipeline is exposed to software executing on the
microcontroller (see Sections 5.4, 5.5, and 5.6).

5.2 PIPELINE HOLD MODE
The Pipeline Hold mode is activated whenever sequential processor operation cannot be
guaranteed. When this mode is active, the pipeline stages do not advance, and most
internal processor state is not modified.

The processor places itself in the Pipeline Hold mode in the following situations:

• The processor requires an instruction that has either not been fetched or not been
returned by the external instruction memory.

Pipelining and Instruction Scheduling 5-1

~AMD
• The processor requires data from an in-progress load and the operation has not

completed.

• The processor attempts to execute a load or store instruction while another load or
store is in progress.

• The processor must perform a serialization operation as described in Section 5.3.

• The processor is performing a sequence of load-multiple or store-multiple accesses.
The Pipeline Hold mode in this case prevents further instruction execution until the
completion of the load-multiple or store-multiple sequence.

• The processor has taken an interrupt or trap, and the first instruction of the interrupt
or trap handler has not entered the execute stage. The Pipeline Hold mode in this
case prevents the processor pipeline from advancing until the interrupt or trap handler
can begin execution.

• The processor has executed an interrupt return, and the target instruction of the inter­
rupt return has not entered the execute stage. The Pipeline Hold mode in this case
prevents the processor pipeline from advancing until the interrupt return sequence is
complete.

The Pipeline Hold mode is exited whenever the causing conditions no longer exist, or
when the WARN or RESET input is asserted.

5.3 SERIALIZATION
The Am29200 and Am29205 microcontrollers overlap external data references with
other operations. When an external data reference might have to be restarted, however,
the processor context must be the same as when the operation was first attempted. To
insure this, certain operations are serialized.

The processor serializes by entering the Pipeline Hold mode in any of the following
circumstances:

• An external access is not yet completed, and one of the following instructions is en­
countered:
Move to Special Register (MTSR)
Move to Special Register Immediate (MTSRIM)
Move to TLB (MTTLB)-even though this performs no operation
Interrupt Return (IRET)
Interrupt Return and Invalidate (IRETINV)
Halt (HALT)

• An external access is not yet completed, and an interrupt or trap, other than a WARN
trap, is taken.

If the processor is in the Pipeline Hold mode due to serialization, it enters the Executing
mode once the external access is completed.

5.4 DELAYED BRANCH

5-2

The effect of jump and call instructions is delayed by one cycle to allow the processor
pipeline to achieve maximum throughput. When one of these branches is successful, the
instruction immediately following the jump or call is executed before the target instruction
of the jump or call is executed. Jump and call instructions collectively are referred to as
delayed branches, and the instruction immediately following is called the delay instruc­
tion (sometimes referred to as a delay slot).

Pipelining and Instruction Scheduling

For example, in the following code fragment:

cpeq
jmpf
sub
const

label: call
add
cpneq

g196, IrS, Ir7
gr96,label
Ir6, IrS, 1
Ir6,O

IrO, sort
1r2, Ir5, 0
Ir3, gr96, 0

(1)
(2)
(3)
(4)

(5)
(6)
(7)

AMD~

The SUB instruction (3) is executed regardless of the outcome of the JMPF instruction
(2). Of course, if the JMPF is not successful, the CONST instruction (4) is also executed.
If the JMPF is successful, then the instruction sequence is: (2), (3), (5), (6), and then the
first instruction of the sort procedure. Note that the CALL instruction (5) is also a delayed
branch, so the instruction immediately following it, (6), is always executed. After the sort
procedure executes the return sequence, the CPNEQ instruction (7) is the next instruc­
tion executed.

The benefit of delayed branches is improved performance and a simplified processor
implementation. Performance is improved because the processor pipeline executes
useful instructions in a larger number of cycles, compared to an implementation without
delayed branches.

For example, ignoring all other effects on performance and assuming 15% of all
instructions are taken branches, then a processor without delayed branches would take
at least two cycles for 15% of its instructions, leading to 0.85(1) + 0.15(2) = 1.15 cycles
per instruction, on average. This represents a 15% performance degradation compared
to a processor with delayed branches (assuming, for this simple example, the delay
instruction is always useful).

The cost of having delayed branches is either the extra effort required when the compiler
takes advantage of delayed branches (by re-organizing code), or the extra NO-OP
instruction that the compiler inserts after every branch to guarantee correct program
operation. Since the compiler expends only a small amount of effort to avoid wasting
time and space with NO-OPs, and since the performance improvement resulting from
this effort is significant, delayed branches are beneficial overall.

When two immediately adjacent branches are taken, the target of the first branch
pre-empts execution of the delay cycle of the second branch, and the target of the
second branch then follows the target of the first branch. For example, in the following
code fragment:

L1:

jmp L1
jmpL2
add

sub
subc

Ir4, Ir4, Ir5

gr96, g196, 1
gr97, gr97, 0

Pipelining and Instruction Scheduling

(1)
(2)
(3)

(4)
(5)

~AMD
L2: const

subr
or

gr100, OxffOf (6)
gr101, gr101, 1 (7)
gr100, gr100, gr101 (8)

an unconditional JMP instruction (1) is followed immediately by another unconditional
JMP instruction (2). (In this example, unconditional JMPs are used; however, any two
immediately adjacent taken branches exhibit the same behavior.) The sequence of
executed instructions in this case is: JMP instruction (1), JMP instruction (2), SUB
instruction (4), CONST instruction (6), SUBR instruction (7), OR instruction (8). and so
on. Note that the ADD instruction (3) is not executed. Also, the target of the first JMP
instruction (1) was merely visited; control did not continue sequentially from L 1, but
rather continued from L2.

5.5 OVERLAPPED LOADS AND STORES
The Am29200 and Am29205 microcontrollers overlap external data references with
other operations. Certain programming practices are necessary to exploit this parallelism
to improve program performance.

In order to make full use of overlapped storage accesses, some instruction reorganiza­
tion may be necessary. For example. in the following sequence:

loop:

sll gr121, grl19, 2 (1)
add gr121, gr120, gr121 (2)
load 0,0, gr121, gr121 (3)
add gr96, gr96, gr121 (4)
sub gr98, gr98, 3 (5)
add gr119, gr119, 1 (6)
cplt gr122, gr119,1r2 (7)
jmpt gr122, loop (8)
nop (9)

the ADD instruction (4) uses the result of the LOAD instruction (3). However. the
following four instructions do not depend on the result of the LOAD. Therefore, the ADD
instruction (4) can be moved past the JMPT (8), since it always will be executed even
ifthe JMPT is taken, and can replace the NO-OP instruction (9). The resulting sequence
is:

loop:

sll
add
load
sub
add
cplt
jmpt
add

gr121, gr119, 2 (1)
gr121, gr120, gr121 (2)
0, 0, gr121, gr121 (3)
gr98, gr98, 3 (4)
gr119, gr119, 1 (5)
gr122, grl19,1r2 (6)
gr122, loop (7)
gr96, gr96, gr121 (8)

The instructions (4) through (7) are likely to be executed while external memory satisfies
the load request, resulting in improved throughput. The processor thus allows parallel­
ism to be exploited by instruction reordering.

Pipelining and Instruction Scheduling

AMD~

The overlapped load feature may be used to improve processor performance, but
imposes no constraints on instruction sequences, as delayed branches do. The proces­
sor implements the proper pipeline interlocks to make this parallelism transparent to a
running program.

5.6 DELAYED EFFECTS OF REGISTERS
The modification of some registers has a delayed effect on processor behavior, because
of the processor pipeline. The affected registers are the Stack Pointer (Global Register
1), Indirect Pointers A, B, and C, and the Current Processor Status Register.

An instruction that writes to the Stack Pointer can be followed immediately by an
instruction that reads the Stack Pointer. However, any instruction that references a local
register also uses the value of the Stack Pointer to calculate an absolute-register
number. At least one cycle of delay must separate an instruction that updates the Stack
Pointer and an instruction that references a local register. In most systems, this affects
procedure call and return only (see Section 4.2). In general, though, an instruction that
immediately follows a change to the Stack Pointer should not reference a local register
(however, note that this restriction does not apply to a reference of a local register via an
indirect pointer).

The indirect pointers have an implementation similar to the Stack Pointer and exhibit
similar behavior. At least one cycle of delay must separate an instruction that modifies
an indirect pOinter and an instruction that uses that indirect pOinter to access a register.

Note that it normally is not possible to guarantee that the delayed effect of the Stack
Pointer and indirect pointers is visible to a program. If an interrupt or trap is taken
immediately after one of these registers is set, then the interrupted routine sees the
effect of the setting in the following instruction, because many interrupt or trap execution
cycles elapse between the two instructions of the interrupted routine. For this reason, a
program should not be written in a manner that relies on the delayed effect; the results of
this practice may be unpredictable.

If the Freeze (FZ) bit of the Current Processor Status Register is reset from 1 to 0, two
cycles are required before all program state is reflected properly in the registers affected
by the FZ bit. This implies that interrupts and traps cannot be enabled until two cycles
after the FZ bit is reset, for proper sequencing of program state. There is no delay
associated with setting the FZ bit from 0 to 1.

Pipelining and Instruction Scheduling 5-5

6 SYSTEM PROTECTION

The Am29200 and Am29205 microcontrollers provide protection for general-purpose
registers and special-purpose registers. Certain processor operations are also protected.
This chapter describes the processor's protection mechanisms.

6.1 USER AND SUPERVISOR MODES

6.1.1

6.1.2

At any given time, the microcontroller operates in one of two mutually exclusive program
modes: the Supervisor mode or the User mode. All system-protection features of the
microcontroller are based on the difference between these two modes.

Supervisor Mode
The processor operates in the Supervisor mode whenever the Supervisor Mode (SM) bit
of the Current Processor Status Register is 1 (see Section 16.2.1). In the Supervisor
mode, executing programs have access to all processor resources.

Any attempt to access a special-purpose register in the range of 160 to 255 causes a
Protection Violation to occur in either Supervisor or User mode. This permits virtualiza­
tion of these registers. Supervisor-mode accesses are permitted for any general-pur­
pose register, regardless of protection.

User Mode
The processor operates in the User mode whenever the SM bit in the Current Processor
Status Register is o. In the User mode, any of the following actions by an executing
program causes a Protection Violation trap to occur:

• An attempted access of any general-purpose register for which a bit in the Register
Bank Protect Register is 1 (see Section 6.2).

• An attempted execution of one of the following instructions: Interrupt Return, Interrupt
Return and Invalidate, Invalidate, or Halt. However, a hardware-development system
can disable protection checking for the Halt instruction, so this instruction may be
used to implement instruction breakpoints in User-mode programs (see Sections 17.3
and 17.7.5).

• An attempted access of special-purpose register in the range of 0 to 127 or
160 to 255.

• An attempted execution of an assert or EMULATE instruction that specifies a vector
number between 0 and 63, inclusive (see Section 16.3.2).

6.2 REGISTER PROTECTION
General-purpose registers are divided into register banks and are protected by the
Register Bank Protect Register. The Register Bank Protect Register allows parameters
for the operating system to be kept in general-purpose registers and protected from
corruption by User-mode programs. Register banks consist of 16 registers (except for
Bank 0, which contains Registers 2 through 15) and are partitioned according to
absolute-register numbers, as shown in Figure 6-1.

System Protection 6-1

~AMD

Figure &-1

6.2.1

6-2

Register Bank Organization

Register Bank Absolute-Register General-Purpose
Protect Register Bit Numbers Registers

0 2 through 15 Bank 0 (not implemented)

1 16 through 31 Bank 1 (not implemented)

2 32 through 47 Bank 2 (not implemented)

3 48 through 63 Bank 3 (not implemented)

4 64 through 79 Bank 4

5 80 through 95 BankS

6 96 through 111 Bank 6

7 112 through 127 Bank 7

8 128 through 143 Bank 8

9 144 through 159 Bank 9

10 160 through 175 Bank 10

11 176 through 191 Bank 11

12 192 through 207 Bank 12

13 208 through 223 Bank 13

14 224 through 239 Bank 14

15 240 through 255 Bank 15

The Register Bank Protect Register contains 16 protection bits, where each bit controls
User-mode accesses (read or write) to a bank of registers. Bits ~15 of the Register
Bank Protect Register, protect Register Banks 0 through 15, respectively.

When a bit in the Register Bank Protect Register is 1 and a register in the corresponding
bank is specified as an operand register or result register by a User-mode instruction, a
Protection Violation trap occurs. Note that protection is based on absolute-register
numbers. In the case of local registers, Stack-Pointer addition is performed before
protection checking.

When the processor is in the Supervisor mode, the Register Bank Protect Register has
no effect on general-purpose register accesses.

Register Bank Protect Register (RBP, Register 7)
This protected special-purpose register (Figure 6-2) protects banks of general-purpose
registers from User-mode program accesses.

The general-purpose registers are partitioned into 16 banks of 16 registers each (except
that Bank 0 contains 14 registers). The banks are organized as shown in Figure 6-1.

System Protection

AMD~

Figure 6-2 Register Bank Protect Register
31 23 15 7 o

II I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I
Reserved B 15 BO

Bits 31-16: Reserved

Bits 15-0: Bank 15 through Bank 0 Protection Bits (B15-BO)-ln the Register Bank
Protect Register, each bit is associated with a particular bank of registers, and the
bit number gives the associated bank number (e.g., B11 determines the protection for
Bank 11).

System Protection 6-3

7 SYSTEM OVERVIEW

The Am29200 and Am29205 microcontrollers significantly reduce system cost because
each microcontroller integrates many system functions onto a single chip. This chapter
overviews the system interfaces and on-chip peripherals of the Am29200 and Am29205
microcontrollers.

7.1 SIGNAL DESCRIPTION

7.1.1

7.1.2

The Am29200 microcontroller uses 140 pins for signal inputs and outputs. It uses 28
pins for power and ground.

The Am29205 microcontroller uses 84 pins for signal inputs and outputs. It uses 16 pins
for power and ground. Section 7.1.12 summarizes the signal differences between the
Am29200 and Am29205 microcontrollers.

Note: The UCLK signal must be tied High if the serial port is not used. The TRST signal
must be tied to RESET, whether or not the JTAG port is used. See Appendix A for other
important hardware configuration notes.

Clocks
INCLK

MEMCLK

Input Clock (input)
This is an oscillator input at twice the processor and system operating
frequency. It can be driven at TTL levels.

Memory Clock (output)
This is a clock output at one-half of the frequency of INCLK. Most proces­
sor outputs, and many inputs, are synchronous to MEMCLK. MEMCLK
drives out with CMOS levels.

Processor Signals
A23-AO Address Bus (output, synchronous)

The address bus supplies the byte address for all accesses, except for
ORAM accesses. For ORAM accesses, multiplexed row and column
addresses are provided on A14-A1. A2-AO are also used to provide a
clock to an optional burst-mode EPROM. The signals A23-A22 and
burst-mode devices are not supported on the Am29205 microcontroller.

1031-100 Instruction/Data Bus (bidirectional, synchronous)
The instruction/data bus (10 bus) transfers instructions to, and data to and
from the processor. The signals 1015-100 are not supported on the
Am29205 microcontroller.

WAIT Add Wait States
(input, synchronous, weak internal pull-up transistor)
External accesses are normally timed by the Am29200 microcontroller.
However, the WAIT signal may be asserted during a PIA, ROM, or OMA
access to extend the access indefinitely. The WAIT pin is not available on
the Am29205 microcontroller; see the WAITfTRIST signal description.

System Overview 7-1

~AMD

7-2

WAIT/TRIST Add Wait StateslThree-State Control
(input, synchronous, weak internal pull-up transistor)
The WAIT signal may be asserted during a PIA, ROM, or DMA access to
extend the access indefinitely. The WAITITRIST pin also used for three­
state control during test. When asserted during a processor reset, all
output pins go into a high impedance state. For normal operation, this pin
must be pulled High during processor reset. This pin is not available on
the Am29200 microcontroller; see the WAIT signal description.

R/W ReadlWrite (output, synchronous)
During an external ROM, DRAM, DMA, or PIA access, this signal indi­
cates the direction of transfer: High for a read and Low for a write.

RESET Reset (input, asynchronous)
This input places the processor in the Reset mode. This signal has spe­
cial hardening against metastable states, allowing it to be driven with a
slow-rise-time signal.

WARN Warn (input, asynchronous, edge-sensitive, internal pull-up)
A High-to-Low transition on this input causes a non-maskable WARN trap
to occur. This trap bypasses the normal trap vector fetch sequence, and
is useful in situations where the vector fetch may not work (e.g., when
data memory is faulty). This signal has special hardening against metast­
able states, allowing it to be driven with a slow-transition-time signal. This
signal is not supported on the Am29205 microcontroller.

INTR3-INTRO Interrupt Requests 3-0 (input, asynchronous, internal pull-ups)
These inputs generate prioritized interrupt requests. The interrupt caused
by INTRO has the highest priority, and the interrupt caused by INTR3 has
the lowest priority. The interrupt requests are masked in prioritized order
by the Interrupt M"isk field in the Current Processor Status Register and
are disabled by the DA and DI bits of the Current Processor Status Regis­
ter. These signals have special hardening against metastable states,
allowing them to be driven with slow-transition-time signals. The
INTR1-INTRO signals are not supported on the Am29205 microcontroller.

STAT2-STATO
CPU Status (output, synchronous)
These outputs indicate information about the processor or the current
access for the purposes of hardware debug. They are encoded as follows:

STAT2 STAT1 STATO Condition

0 0 0 Halt or Step mode
0 0 1 InterrupVtrap vector fetch (vector valid)
0 1 0 Load Test Instruction mode, Halt/Freeze
0 1 1 Branch target fetch (instruction valid)
1 0 0 External data access (data valid)
1 0 1 External instruction access (instruction valid)
1 1 0 Internal peripheral access (data valid)
1 1 1 Idle or data/instruction not valid

Note that in all cases, a condition is reflected on the STAT pins on the
second cycle following the condition. These signals are described in more
detail in Section 17.4. The STAT2-STATO signals are not supported on
the Am29205 microcontroller.

System Overview

7.1.3

7.1.4

AMD~
TRAP1-TRAPO

Trap Requests 1-0 (input, asynchronous, internal pull-ups)
These inputs generate prioritized trap requests. The trap caused by
TRAPO has the highest priority. These trap requests are disabled by the
DA bit of the Current Processor Status Register. These signals have
special hardening against metastable states, allowing them to be driven
with slow-transition-time signals. These signals are not supported on the
Am29205 microcontroller.

ROM Interface
ROMCS3-ROMCSO

ROM Chip Selects, Banks 3-0 (output, synchronous)
A Low level on one of these signals selects the memory devices in the
corresponding ROM bank. ROMCS3 selects devices in ROM Bank 3, and
so on. The timing and access parameters of each bank are individually
programmable. ROMCS3 is not supported on the Am29205 microcontroller.

ROMOE ROM Output Enable (output, synchronous)

BURST

BOOTW

This signal enables the selected ROM Bank to drive the ID bus. It is used
to prevent bus contention when switching between different ROM banks
or switching between a ROM bank and another device or DRAM bank.

Burst-Mode Access (output, synchronous)
This Signal is asserted to perform sequential accesses from a burst-mode
device. This signal is not supported on the Am29205 microcontroller.

ROM Space Write Enable (output, synchronous)
This signal is used to write an alterable memory in a ROM bank (such as
an SRAM or Flash EPROM). RSWE supports only writes of width equal to
or greater than the width of the memory, and the memory must be at least
16 bits wide. The CASx signals, described in Section 7.1.4, serve as
individual byte strobes for writes to the ROM space, if ROM byte writes
are enabled.

Boot ROM Width (input, asynchronous)
This input configures the width of ROM Bank 0, so the ROM can be ac­
cessed before the ROM configuration has been set by the system initial­
ization software. The BOOTW signal is sampled during and after a pro­
cessor reset. If BOOTW is High before and after reset (tied High), the
boot ROM is 32 bits wide. If BOOTW is Low before and after reset (tied
Low), the boot ROM is 16 bits wide. If BOOTW is Low before reset and
High after reset (tied to RESET), the boot ROM is 8 bits wide. This signal
has special hardening against metastable states, allowing it to be driven
with a slow-rise-time signal and permitting it to be tied to RESET.

This signal is not supported on the Am29205 microcontroller. ROM Bank
o is set to 16 bits during a processor reset; this setting cannot be
changed.

DRAM Interface
RAS3-RASO Row Address Strobe, Banks 3-0 (output, synchronous)

A High-to-Low transition on one of these signals causes a DRAM in the
corresponding bank to latch the row address and begin an access. RAS3
starts an access in DRAM Bank 3, and so on. These signals also are
used in other special DRAM cycles.

System Overview 7-3

~AMD

7.1.5

7.1.6

7-4

CAS3-CAS0 Column Address Strobes, Byte 3-0 (output, synchronous)
A High-to-Low transition on these signals causes the DRAM selected by
RAS3-RASO to latch the column address and complete the access. To
support byte and half-word writes, column address strobes are provided
for individual DRAM bytes. CAS3 is the column address strobe for the
DRAMs, in all banks, attached to ID31-ID24. CAS2 is for the DRAMs
attached to ID23-ID16, and so on. These signals are also used in other
special DRAM cycles.

The CASx signals can be enabled to act as individual byte strobes for
byte writes to the ROM space. In this configuration, ROM accesses do
not conflict with DRAM accesses or refresh even though the CASx may
be used by both the ROM and DRAM. Refresh is delayed during byte
reads and writes to ROM space.

The CAS1-GASO signals are not supported on the Am29205
microcontroller.

Write Enable (output, synchronous)
This signal is used to write the selected DRAM bank. "Early write" cycles
are used so the DRAM data inputs and outputs can be tied to the com­
mon ID bus.

Video DRAM Transfer/Output Enable (output, synchronous)
This signal is used with video DRAMs to transfer data to the video shift
register. It is also used as an output enable in normal video DRAM read
cycles. This signal is not supported on the Am29205 microcontroller.

Peripheral Interface Adapter (PIA)
'Pi'AC§5-'Pi'AC§0

Peripheral Chip Selects, Regions 5-0 (output, synchronous)
These signals are used to select individual peripheral devices. DMA
Channel 0 may be programmed to use PIACSO during an external periph­
eral access, and DMA Channel 1 may be programmed to use PIACS1.
PIACS5-PIACS2 are not supported on the Am29205 microcontroller.

PIAOE Peripheral Output Enable (output, synchronous)
This signal enables the selected peripheral device to drive the ID bus.

Peripheral Write Enable (output, synchronous)
This signal causes data on the ID bus to be written into the selected
peripheral.

DMA Controller
DREQ1-DREQO

DMA Request, Channels 1-0 (input, asynchronous, internal pull-ups)
These signals request an external transfer on DMA Channel 0 (DREaO) or
DMA Channel 1 (DREa1). These requests are individually programmable
to be either level- or edge-sensitive for either polarity of level or edge. DMA
transfers can occur to and from internal peripherals independent of these
requests. DREaO is not supported on the Am29205 microcontroller.

DACK1-DACKO
DMA Acknowledge, Channels 1-0 (output, synchronous)
These signals acknowledge an external transfer on DMA Channel 0
(DREaO) or DMA Channel 1 (DREa1). DMA transfers can occur to and

System Overview

7.1.7

7.1.8

TDMA

1/0 Port

AMD~
from internal peripherals independent of these acknowledgments. DACKO
is not supported on the Am29205 microcontroller.

Terminate DMA (input, synchronous)
This signal can be asserted during an external DMA transfer to terminate
the transfer after the current access. This signal is not supported on the
Am29205 microcontroller.

External Memory Grant Request (input, synchronous, internal pull-up)
This signal is used by an external device to request an access to the
Am29200 microprocessor's ROM or DRAM. To perform this access, the
external device supplies an address to the Am29200 microcontroller's
ROM controller or DRAM controller.

To support a hardware-development system, GREQ should be either tied
High or held at a high-impedance state during a processor reset.

This signal is not supported on the Am29205 microcontroller.

External Memory Grant Acknowledge (output, synchronous)
This signal indicates to an external device that it has been granted an
access to the Am29200 microcontroller's ROM or DRAM, and that the
device should provide an address. This signal is not supported on the
Am29205 microcontroller.

PI015-PIOO Programmable Input/Output (input/output, asynchronous)
These signals are available for direct software control and inspection.
PI015-PI08 may be individually programmed to cause processor inter­
rupts. These signals have special hardening against metastable states,
allowing them to be driven with slow-transition-time signals. The signals
PI07-PIOO are not supported on the Am29205 microcontroller.

Parallel Port
PSTROBE Parallel Port Strobe (input, asynchronous)

This signal is used by the host to indicate that data is on the parallel port
or to acknowledge a transfer from the microcontroller.

PBUSY Parallel Port Busy (output, synchronous)
This indicates to the host that the parallel port is busy and cannot accept
a data transfer.

PACK Parallel Port Acknowledge (output, synchronous)
This signal is used by the microcontroller to acknowledge a transfer from
the host or to indicate to the host that data has been placed on the port.

PAUTOFD Parallel Port Autofeed (input, asynchronous)
This signal is used by the host to indicate how line feeds should be per­
formed or is used to indicate that the host is busy and cannot accept a
data transfer.

POE Parallel Port Output Enable (output, synchronous)
This signal enables an external data buffer containing data from the host
to drive the ID bus.

PWE Parallel Port Write Enable (output, synchronous)
This signal writes a buffer with data on the ID bus. Then, the buffer drives
data to the host.

System Overview 7-5

~AMD
7.1.9

7.1.10

7.1.11

Hi

Serial Port
UCLK UART Clock (input)

This is an oscillator input for generating the UART (serial port) clock. To
generate the UART clock, the oscillator frequency may be divided by
any amount up to 65,536. The UART clock operates at 16 times the
serial port's baud rate. As an option, UCLK may be driven with MEMCLK
or INCLK. It can be driven with TTL levels. UCLK must be tied High if
unused.

TXD Transmit Data (output, asynchronous)
This output is used to transmit serial data.

RXD Receive Data (input, asynchronous)
This input is used to receive serial data.

DSR Data Set Ready (output, synchronous)
This indicates to the host that the serial port on the Am29200 microcon­
troller is ready to transmit or receive data. This signal is not supported on
the Am29205 microcontroller.

DTR Data Terminal Ready (input, asynchronous)
This indicates to the Am29200 microcontroller that the host is ready to
transmit or receive data. This signal is not supported on the Am29205
microcontroller.

Video Interface
VCLK Video Clock (input, asynchronous)

This clock is used to synchronize the transfer of video data. As an option,
VCLK may be driven with MEMCLK or INCLK. It can be driven with TTL
levels.

VDAT Video Data (input/output, synchronous to VCLK)
This is serial data to or from the video device.

LSYNC

PSYNC

Line Synchronization (input, asynchronous)
This signal indicates the start of a raster line.

Page Synchronization (input/output, asynchronous)
This signal indicates the beginning of a raster page.

JTAG 1149.1 Boundary Scan Interface (Am29200 Microcontroller)
TCK Test Clock Input (asynchronous Input, internal pull-up)

This input is used to operate the test access port. The state of the test
access port must be held if this clock is held either High or Low. This
clock is internally synchronized to MEMCLK for certain operations of the
test access port controller, so signals internally driven and sampled by the
test access port are synchronous to processor internal clocks. This signal
is not available on the Am29205 microcontroller.

TMS Test Mode Select (input, synchronous to TCK, internal pull-up)
This input is used to control the test access port. If it is not driven, it
appears High internally. This signal is not available on the Am29205
microcontroller.

TDI Test Data Input (input, synchronous to TCK, internal pull-up)
This input supplies data to the test logic from an external source. It is
sampled on the rising edge of TCK. If it is not driven, it appears High
internally. This signal is nat available on the Am29205 microcantroller.

System Overview

7.1.12

TOO

AMD~
Test Data Output (three-state output, synchronous to TCK)
This output supplies data from the test logic to an external destination. It
changes on the falling edge of TCK. It is in the high-impedance state
except when scanning is in progress. This signal is not available on the
Am2920S microcontroller.
Test Reset Input (asynchronous input, internal pull-up)
This input asynchronously resets the test access port. This input places
the test logic in a state such that no output driver is enabled. The TRST
input must be asserted in conjunction with the RESET input for correct
processor initialization, whether or not the JTAG port is used. (See Ap­
pendix A) This signal is not available on the Am2920S microcontroller.

Pin Changes for the Am29205 Microcontroller
The reduced pin count of the Am29205 microcontroller comes from having a 16-bit
instruction/data bus, fewer ports on some of the peripherals, and no JTAG interface. The
following signals supported on the Am29200 microcontroller are not available on the
Am2920S microcontroller.

• Processor signals: A23-A22, ID15-IDO, WARN, INTR1-INTRO, TRAP1-TRAPO,
STAT2-STATO

• ROM interface signals: ROMCS3, BURST, BOOTW

• DRAM interface signals: CAS1-CASO, TRIOE

• PIA signals: PIACS5-PIACS2

• DMA signals: DREaO, DACKO, TDMA, GREO, GACK

• I/O port signals: PI07-PIOO

• Serial port signals: DSR, DTR

• JTAG signals: TCK, TDI, TMS, TOO, TRST

In addition, the Am29200 microcontroller's WAIT pin is defined as a WAITfTRIST pin on
the Am29205 microcontroller.

7.2 ACCESS PRIORITY
Many of the processor interface signals are shared between various types of accesses.
If more than one access request occurs at the same time, the requests are prioritized as
follows, in decreasing order of priority:

1. "Panic mode" DRAM Refresh (see Section 9.3.8)

2. DMA Channel 0 transfer

3. DMA Channel 1 transfer

4. Memory access request by an external device (see Section 11.S)

S. Processor DRAM, PIA, or ROM access for data

6. Processor DRAM or ROM access for an instruction

External DMA transfers require two accesses: one to read the data from a peripheral or
the DRAM, and another to write the data to a peripheral or DRAM. The two accesses
are performed back-to-back, without interruption by another access.

Some processor accesses to narrow memories (a narrow memory is 8 or 16 bits wide)
require two or four accesses; for example, reading 32 bits from an 8-bit-wide ROM requires
four reads. These accesses are also performed back-to-back, without interr:uption.

System Overview 7-7

~AMD
DRAM refresh cycles are normally overlapped with other, non-DRAM accesses.
Because normal refresh cycles are performed when there is no conflict with other
accesses, these cycles are not prioritized in the above list.

7.3 SYSTEM ADDRESS PARTITION

Table 7·1

All addresses are in the microcontroller's instruction/data memory address space. The
address space is partitioned as shown in Table 7-1.

Internal Peripheral Addre •• Range.

Maximum Physical Size
Address Range Selection

Am29200 Microcontroller Am2920S Microcontroller (hexadexlmal)

~3FFFFFF ROM Banks (all) 64 Mbytes 12 Mbytes
40000000-43FFFFFF DRAM Banks (all) 64 Mbytes 32 Mbytes
S~OFFFFFF Mapped DRAM Banks (all) 16 Mbytes 16 Mbytes
~3FFFFFF VDRAM transfers 64 Mbytes Not Supported
S()()()()()()()-OOOOOFC Internal peripherals/controllers - -
9OOOOOOO-9OFFFFFF PIA Region 0 (PIACSO) 16 Mbytes 4 Mbytes
91000Q00-91FFFFFF PIA Region 1 (PIACS1) 16 Mbytes 4 Mbytes
92000Q00-92FFFFFF PIA Region 2 (PIACS2) 16 Mbytes Not Supported
93000Q00-93FFFFFF PIA Region 3 (PIACS3) 16 Mbytes Not Supported
94000Q00-94FFFFFF PIA Region 4 (PIACS4) 16 Mbytes Not Supported
9S000Q00-9SFFFFFF PIA Region 5 (PIACS5) 16 Mbytes Not Supported
-all others- Reserved

An access to any unimplemented address or address range has an unpredictable effect
on processor operation.

7.4 INTERNAL PERIPHERALS AND CONTROLLERS

7-8

Internal peripheral registers are selected by offsets from address 80000000h. The
address aSSignment of the various internal peripherals and controllers is shown in
Table 7-2.

Nearly all registers are readlwrite and are 32 bits in length. However, a few register bits
are read only, bits in the Interrupt Control Register are reset-only, and the DMAO
Address Tail Register and DMAO Count Tail Register are both write-only. It is not
possible to perform writes on individual bytes or halfwords of any register. Unimplem­
ented register bits are read as zeros and should be written with zeros to ensure compati­
bility with future processor versions.

Three registers have alternates, provided for backward compatibility. The following
summary shows the preferred and alternate addresses for each of these registers.

Register

DMAO Address Tail Register
DMAO Count Tail Register
Parallel Port Status Register

Preferred Address

80000070h
SOOOOO3Ch
SOOOOOCSh

Alternate Address

SOOOOO36h
SOOOOO3Ah
SOOOOOC1h

The alternate DMAO Address Tail Register and the alternate DMAO Count Tail Register
allow write-only access for compatibility with earlier versions of the Am29200 and
Am29205 microcontrollers. These two registers are supported for backward

System Overview

AMD~
compatibility and should not be used for new designs. The DMAO Address Tail Register
(address 80000070h) and DMAO Count Tail Register (address 8000003Ch) should be
used instead.

The alternate Parallel Port Status Register is also provided for compatibility. This register
should not be used for new designs. The Parallel Port Status Register (address
800000C8h) should be used instead.

System Overview 7-9

~AMD
Table 7·2 Intemal Peripheral Address Assignments

Address
Peripheral (hexadecimal) Register

ROM Controller 80000000 ROM Control Register
80000004 ROM Configuration Register

DRAM Controller 80000008 DRAM Control Register
8000000c DRAM Configuration Register

DRAM Mapping Unit 80000010 DRAM Mapping Register 0
80000014 DRAM Mapping Register 1
80000018 DRAM Mapping Register 2
8000001C DRAM Mapping Register 3

Peripheral Interface Adapter 80000020 PIA Control Register 0
80000024 PIA Control Register 1 •

Interrupt Controller 80000028 Interrupt Control Register

DMA Channel 0 80000030 DMAO Control Register
80000034 DMAO Address Register
80000070 DMAO Address Tail Register
80000038 DMAO Count Register
8000oo3C DMAO Count Tail Register

DMA Channel 1 80000040 DMA 1 Control Register
80000044 DMA 1 Address Register
80000048 DMA 1 Count Register

Serial Port 80000080 Serial Port Control Register
80000084 Serial Port Status Register
80000088 Serial Port Transmit Holding Register
8000008C Serial Port Receive Buffer Register
80000090 Baud Rate Divisor Register

Parallel Port 800000c0 Parallel Port Control Register
8000OOC4 Parallel Port Data Register
800000C8 Parallel Port Status Register

Programmable 1/0 Port 80000000 PIO Control Register
800000D4 PIO Input Register
800000D8 PIO Output Register
800000DC PIO Output Enable Register

Video Interface 800000EO Video Control Register
800000E4 Top Margin Register
800000E8 Side Margin Register
800000EC Video Data Holding Register

---all others- Reserved

Note; • Reserved on the Am29205 microcontroller.

7·10 System Overview

8 ROM CONTROLLER

This chapter describes the operation of the ROM controller. Programmable registers and
initialization are discussed, along with ROM address mapping, ROM reads and writes,
burst-mode accesses, and extending ROM cycles.

8.1 OVERVIEW

8.2

8.2.1

Figure 8-1

The on-chip ROM controller provides a glueless interface to static memory devices
such as ROMs and EPROMs, as well as alterable devices such as SRAMs, flash
EPROMs, and memory-mapped peripherals. ROM space on the Am29200 and
Am29205 microcontrollers is divided into banks, each of which is individually configur­
able for width and access timing. Programmable registers control the location, size,
width, wait-state, and burst capability of each bank. The banks can be arranged to form
a contiguous memory area.

The ROM interface on the Am29200 microcontroller accommodates up to four banks of
ROM. These banks can be 8, 16, or 32 bits wide, with a maximum address space of 16
Mbytes per bank.

The Am29205 microcontroller supports up to three ROM banks; 8- and 16-bit wide
banks are supported, with a maximum address space of 4 Mbytes per bank. Burst-mode
ROM access is not supported. Boot ROM width is 16 bits. The signals ROMCS3,
BURST, and BOOTW are not available on the Am29205 microcontroller.

PROGRAMMABLE REGISTERS

ROM Control Register (RMCT, Address 80000000)
The ROM Control Register (Figure 8-1) controls the access of ROM Banks 0 through 3
on the Am29200 microcontroller and ROM Banks 0 through 2 on the Am29205
microcontroller.

ROM Control Register

31 23 15 7 0

DWO WSO

, , , , , , ,
BSTO LM : res BST1 BST2 BST3

BWE

IHl = Reserved on Am29205 microcontroller

Bit 31: Burst-Mode ROM, Bank 0 (BSTO), Am29200 mlcrocontroller-When this bit is
1, ROM Bank 0 is accessed using the burst-mode protocol, in which sequential ac­
cesses are completed at the rate of one access per cycle. When this bit is 0, the
burst-mode protocol is not used. This bit is reserved on the Am29205 microcontroller.

ROM Controller 8-1

~AMD

8.2.2

8-2

Bits 30-29: Data Width, Bank 0 {DWO}-This field indicates the width of the ROM in
Bank 0, as follows:

DWO

00
01
10
11

ROM Width

32 bits (Reserved on Am29205 microcontroller)
8 bits
16 bits
Reserved

Bit 28: Large Memory {LM}-This bit controls the size of the ROM banks and the total
size of the ROM address space. If the LM bit is 0 on either microcontroller, each ROM
bank is up to 4 Mbytes in size, for placement within a 16 Mbyte addre~s space.

If the LM bit is 1 on the Am29200 microcontroller, each ROM bank is up to 16 Mbytes in
size, for placement within a 64-Mbyte address space. If the LM bit is 1 on the Am29205
microcontroller, each ROM bank is up to 4 Mbytes in size, for placement within a
64-Mbyte address space.

Bit 27: Byte Write Enable {BWE}-This bit controls whether or not the CASx signals
are used as byte strobes during writes to the ROM address space. If BWE is 0, the
CASx signals are not used during ROM writes (unless there is a hidden refresh at the
same time). If BWE is 1, the CASx signals are used as byte strobes during a ROM write
with hidden refresh prohibited during a ROM read or write.

Bit 26: Reserved

Bits 25-24: Wait States, Bank 0 {WSO}-This field specifies the number of wait states
in a ROM access: that is, the number of cycles in addition to one cycle required to .,
access the ROM. Zero-wait-state cycles are supported only for non-burst-mode ROM
reads. Writes to the ROM address space and burst-mode ROMs have a minimum of one
wait state, even when wait states are programmed at zero.

Other bits of this register have a definition similar to BSTO, OW~, and WSO for ROM
Banks 1 through 3 on the Am29200 microcontroller and ROM Banks 1 through 2 on the
Am29205 microcontroller. The BSTx bits are not supported on the Am29205 microcon­
troller.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller only.

ROM Configuration Register (RMCF, Address 80000004)
The ROM Configuration Register (Figure 8-2) controls the selection of ROM Banks 0
through 3 on the Am29200 microcontroller and ROM Banks 0 through 2 on the
Am29205 microcontroller. In most systems, this register should be set by software to
cause all the banks of ROM to appear as a single, contiguous region of memory.

Bits 31-27: Address Select, Bank 0 {ASELO}-On a load, store, or instruction access,
this field is compared against bits of the access address, with the comparisons possibly
masked by the AMASKO field. The unmasked bits of the ASELO field must match the
corresponding bits of the address for ROM Bank 0 to be accessed.

Bits 26-24: Address Mask, Bank 0 {AMASKO}-This field masks the comparison of
the ASELO field with bits of the address on an access, to permit various sizes of
memories and memory chips in ROM Bank 0 ("ad(x:yt represents a field of address bits
x through y, inclusive).

ROM Controller

AMD~
Figure 8-2 ROM Configuration Register

8.2.3

31 23

fBI = Reserved on Am29205 microcontroller

AMASKO
Value

000
001
011
111

Address Comparison
(LM=O)

ASELOI4:0) to a~23:191 ASELO 4:1) to a 23:20
ASELO 4:2) to a 23:21
ASELO 4:3) to a 23:22

15

Address Comparison
(LM=1)

7 o

ASELOI4:0) to ad;25:21)
ASELO 4:1) to ad;25:22)
ASELO 4:2) to a~25:23) (Reserved on Am29205)
ASELO 4:3) to a~25:24) (Reserved on Am29205)

Only the AMASKO values shown in the above table are valid. The AMASKO field permits
various sizes of memories and .memory chips in ROM Bank 0 that are independent of
the sizes in the other banks.

Other bits of this register have a definition similar to ASELO and AMASKO for ROM
Banks 1 through 3 on the Am29200 microcontroller and ROM Banks 1 through 2 on the
Am29205 microcontroller.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller only.
Although ROM Bank 3 is not supported on the Am29205 microcontroller, AMASK3 and
ASEL3 still exist in the ROM Configuration Register. ASEL3 must be programmed to a
value that does not overlap with addresses specified for ROM Banks 2 through O.

Initialization
ROM Bank 0 is used as the boot ROM containing the initialization code for the processor
and peripherals.

On the Am29200 microcontroller, the width of Bank 0 is set by the BooTW signal, which
is sampled during and after a processor reset. If BooTW is High before and after reset
(tied High), the boot ROM is 32 bits wide. If BOOTW is Low before and after reset (tied
Low), the boot ROM is 16 bits wide. If BooTW is Low before reset and High after reset
(tied to RESET), the boot ROM is a bits wide. The BOOTW signal is used to set the
DWO field before the boot ROM is accessed.

On the Am29205 microcontroller, the boot ROM width in Bank 0 is 16 bits during
processor reset. No a-bit booting is possible since the BooTW signal is not supported
on the Am29205 microcontroller.

The boot ROM defaults to a non-burst-mode ROM with three wait states until the ROM
Control Register and ROM Configuration Register are set with the correct configuration.
The LM bit is reset to O. The ASELO and AMASKO fields are both set to zero by a
processor reset.

ROM Controller

~AMD

8.3

8.3.1

8.3.2

8.3.3

8-4

To prevent bank conflicts during initialization, the ASEL and AMASK fields for ROM
banks 1 through 3 are set to all1s. The configuration of ROM banks 1 through 3, if
present, must be set by software before the respective bank is accessed.

ROM ACCESSES

ROM Address Mapping
To map logical memory banks to physical addresses, each ROM bank uses two fields to
determine the location of the bank in physical memory: AMASK and ASEL. AMASK
selects the number of address bits decoded and thus the size of a given bank. ASEL
contains the address bit values compared against the address and thus the location of a
given bank. The LM bit controls the maximum size of the banks and the total size of the
ROM address space as shown.

AMASKValue

000
001
011
111

Bank Size (LM=O)

512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes

• Am29200 microcontroller only

Bank Size (LM=1)

2 Mbytes
4 Mbytes
8 Mbytes·

16 Mbytes·

The ASEL and AMASK fields allow the three or four ROM banks to appear as a
contiguous region of ROM, with the restriction that a bank of a certain size must fit on
the natural address boundary for that size. For example, a 2-Mbyte ROM must be
placed on a 2-Mbyte address boundary. For this reason, ROM banks must appear in the
address space in order of decreasing bank size if the banks are to be contiguous. Note
that to achieve a contiguous memory, the various ROM banks need not appear in
sequence in the address space. For example, on the Am29200 microcontroller, ROM
Bank 3 may appear in an address range below the address range for ROM Bank'1 or 2.
The only restriction in the placement of ROM banks is that ROM Bank 0 is used for the
initial instruction fetches after a processor reset, starting at address 00000000, hexadeci­
mal. Setting AMASK to 0 and ASEL to 1 Fh reduces the probability of empty banks being
inadvertently decoded. This configures the bank as small and as high in memory as
possible.

Simple ROM Accesses
Figure 8-3 shows the timing of a simple ROM read cycle. The number of cycles is
controlled by the WSx field in the ROM Control Register ("x" represents one of ROM
Banks 0 through 3). The WSx field specifies the number of wait states: that is, the
number of cycles beyond one cycle required to access the ROM.

Figure 8-4 shows the timing of a zero-wait-state ROM read (WSx = 00). In this case, the
ROMOE signal is asserted at the midpoint of the cycle rather than at the beginning of
the second cycle (since there is no second cycle).

Narrow ROM Accesses
A narrow ROM is one that is less than 32 bits wide. The Am29200 and Am29205
microcontrollers support 8- and 16-bit-wide ROMs in any bank, as determined by the
DWx field in the ROM Control Register.

ROM Controller

AMD~

Figure 8-3 Si ... I. ROM R_d Cycl.

MEMCLK

A2.3-AO

R/W

ROMCSx

ROMOE

BURST

RSWE

1031-100

8.3.3.1

I

jfj .: '~ .. :': .' ..

=:J
I

~

I

• I

:\'---~-­
:/

I \'-______ ~------~------~:J/

number of cycles determined by WSx+l ____ a "
WSx=3 illustrated

An 8-bit-wide ROM must be attached to 1031-1024. A 16-bit-wide ROM must be
attached to 1031-1016 and ignores AO. A 32-bit ROM is attached to 1031-100 and
ignores A 1-AO. A narrow ROM can respond to any read access, but the ROM must be
at least 16 bits wide to respond to writes. Writes to 8-bit memories are not supported and
may provide unreliable results.

.. Bit Narrow Ace •••••

If the processor expects a half-word or a word on a read (that is, if the access is not a
byte read), and a narrow ROM is 8 bits wide, the microcontroller generates one (for a
half-word) or three (for a word) requests immediately following the first access. No
other intervening accesses are performed. The address for each subsequent access is
the same as the address for the first access, except that A1-AO are incremented by
one for each access. A burst-mode access may be performed for the subsequent bytes
if the ROM permits such an access and if the ROM Control Register is programmed to
enable burst.

The microcontroller assembles the final word or half-word by placing the first received
byte in the high-order byte position of the word or half-word. The second received byte is
placed in the next-lower-order byte position and so on until the entire word or half-word
is assembled.

If the read access is a byte access, the processor performs only one access.

If software generates an unaligned half-word or word read, the narrow ROM does not
permit the implementation of the unaligned read. The address sequence generated to

ROM Controller

~AMD

Figure 8-4 Simple ROM Read Cycle-Zero Wait State.

MEMCLK

A2.3-AO

ROMCSx

ROMOE

1031-100

8.3.3.2

assemble the half-word or word wraps within the half-word or word. A trap on unaligned
access is available and may be used to detect and correct such accesses.

i6-Bit Narrow Acce •• e.

If the processor expects a word on a read, and a narrow ROM is 16 bits wide, the
microcontroller generates one more request immediately following the first access. No
other intervening accesses are performed. The address for the second access is the
same as the address for the first access, except that A 1-AO are incremented by two for
the second access. A burst-mode access may be performed for the second 16 bits if the
ROM permits such an access.

The microcontroller assembles the final word by placing the first received half-word in
the high-order half-word position of the word, and the second received half-word in the
low-order half-word position.

If the read access is a byte or half-word access, the processor performs only one
access. .

If software generates an unaligned word read, the narrow ROM does not permit the
implementation of the unaligned read. The address sequence generated to assemble
the word wraps within the word. A trap on unaligned access is available and may be
used to detect and correct such accesses.

ROM Controller

8.3.4

8.3.4.1

AMD~
Writes to the ROM Space

Simple Writes

Figure 8-5 shows the timing of a simple write to the ROM address space. This cycle is
provided for alterable memories in the ROM space, such as SRAMs or Flash EPROMs.
Zero-wait-state cycles are not supported for writes.

Because of processor limitations, the ROM must be at least 16 bits wide to support
writes (see Section 8.3.3). If 32-bit data is written into a 16-bit-wide ROM, the processor
performs two back-to-back uninterrupted accesses. On the first cycle of the second
write, the processor drives the data bus with the second 16 bits (that is, in the same
cycle in which ROMCSx and A23--AO are asserted).

8.3.4.2 Byte Writes

If the BWE bit is set in the ROM Control Register, the processor uses the CASx signals
as individual byte strobes, to allow byte and half-word writes to the ROM address space.
Note that this reuse of the CASx signals causes CAS-only cycles to the memories in the
DRAM banks (if present) during ROM writes and causes spurious write enables to
non-selected memories in the ROM banks during DRAM accesses. These normally do
not cause invalid operation. Furthermore, hidden refresh is disabled during ROM reads
or writes if the BWE bit is set, to prevent invalid interference between simultaneous ROM
and DRAM cycles. Thus, one slight disadvantage of using ROM byte writes is that there
are fewer hidden refresh cycles and hence slightly degraded system performance.

Figure a.s Simple Write to ROM Bank

MEMCLK

A2.3-AO

R/W

ROMCSx

ROMOE

BURST

RSWE

1031-100

(for alterable memories in the ROM address space)

,

J ,
=' ,

~

,
•

:/
:/

\ ~------------~/
~ _o_a_m_N""'''''''''''''''' --J')~'''''''''''''''~'''''--:{

number of cycles determined by WSx+ 1 ,
WSx=3 illustrated ____ •• ,

ROM Controller 8-7

~AMO

8.3.5

8.3.6

The CAS3-CASO signals on the Am29200 microcontroller are used to write individual
bytes for a 32-bit-wide ROM bank as follows:

Data width A1-AO ~~ (on write)

8 bits 00 0111
8 bits 01 1011
8 bits 10 1101
8 bits 11 1110

16 bits OX 0011
16 bits 1x 1100
32 bits xx 0000

The CAS3-CASO signals are used to write individual bytes for a 16-bit-wide bank (that
is, a narrow bank) as follows:

Data width A1-AO

8 bits 00
8 bits 01
8 bits 10
8 bits 11

16 bits Ox
16 bits 1x
-all other writes (two cycles)-

~~O (on write)

0111
1011
0111
1011
0011
0011
0011

Byte writes are not supported for 8-bit-wide narrow banks.

Figure 8-6 shows the timing of a write to the ROM address space. The CAS3-CASO
signals have exactly the same timing as RSWE.

Burst·Mode ROM Accesses (Am29200 Microcontroller)
Figure 8-7 shows the timing of a burst-mode ROM access, for direct connection to
burst-mode devices. Burst-mode accesses have a minimum of one wait state for the
initial access, even when wait states are programmed as zero; sequential access after
that are single cycle. Burst-mode writes are not supported. Burst-mode ROM accesses
are not supported on the Am29205 microcontroller.

Use of WAiT to Extend ROM Cycles
If the WAIT signal is asserted two cycles before the end of a ROM access (that is, two
cycles before the cycle in which ROMCSx would normally be deasserted), the processor
extends the ROM access until WAIT is deasserted. This permits the system to extend
the ROM access indefinitely. The access ends on the cycle after WAIT is deasserted,
both for reads (Figure 8-8) and for writes (Figure 8-9). Note that the wait state counter
continues to count while WAIT is active, so that the cycle is controlled by either the wait
state counter or WAIT, depending on which has the longer duration. Note that WAIT will
not be recognized by any bank programmed for zero wait states.

The WAIT signal on the Am29200 microcontroller can also be used to extend individual
accesses in a sequence of burst-mode accesses. For each access, the processor does
not consider the data to be valid until the cycle after WAIT is High (Figure 8-7).

ROM Controller

AMD~
Figure 8-6 Byte Write to ROM Bank (using ~ as byte strobes.

MEMCLK

=x X A2.3-AO Address >-.:".::::":'": , ..
'. ::.:,. ;.:. :;:.~: .'. ". :

I

R/W :\ 'i
ROMCSx ~ 'I
ROMOE

BURST

RSWE \ I
CAS3-CASO \ I
1031-100 :(DataN)

number of cycles determined by WSx+ 1
• WSx=3 illustrated • I I

ROM Controller 8-9

~AMD
FI 7

MEMCLK

A23-A3

A2-AO

ROMCSx

ROMOE

1031-100

8-10

.... -Mode ROil R (Am29200 IIlcrocontrollert

,e
~----------------------:,­

I -I

\~~----~--~--~,-
'_--~--~--~----~'-

number of cycles
determined by WSx+ 1

_-'
I I - -I following accesses' burst I

----; are always single ~ suspend ---;
cycle

ROM Controller

AMD~

Figure a.a Extending a ROM Read Cycle with WAiT

MEMCLK

A2.3-AO _____________________ A_d_d_re_s_s __________________ --Jx~ __________ ~~
R/W '\~ __ -
ROMCSx 'I

~------------------------------------~I

-----------------------------_1'
1031-100 -----"--c{ ... ________ ..IX Oata N 0---1.--

Figure 8-9 Extending a ROM Write Cycle with WII'I"

MEMCLK

A2.3-AO Address

R/W 'I
ROMCSx 'I
ROMOE

RSWE /
WAIT /
1031-100 Oata N)

ROM Controller 8-11

9 DRAM CONTROLLER

This chapter describes the DRAM interface on the Am29200 and Am29205 microcon­
trollers. The programmable registers are presented, followed by a discussion of DRAM
accesses, address mapping, and address multiplexing. Mapped DRAM accesses,
page-mode timing, DRAM refresh, and video DRAM transfers are also described.

9.1 OVERVIEW

9.2

9.2.1

The Am29200 and Am29205 microcontrollers directly support DRAM devices without
any additional components, providing RAS and CAS generation, address multiplexing,
and refresh generation. The on-chip DRAM controller utilizes page-mode accesses and
CAS-before-RAS refresh to extract maximum performance from DRAM devices.

The DRAM interface accommodates up to four banks of DRAM that appear as a
contiguous memory. Each bank on the Am29200 microcontroller is individually configur­
able in width; the Am29205 microcontroller supports only 16-bit wide DRAM banks. In
addition, four 64-Kbyte regions of the DRAM can be mapped into a 16-Mbyte virtual
address space. The DRAM controller provides a fixed access time of three cycles plus
one cycle of RAS precharge after each access. Two cycle page-mode accesses are
supported.

To support a lower pin count, several signals used by the Am29200 microcontroller for
DRAM interfacing are not available on the Am29205 microcontroller. Because the external
data bus is only 16-bits wide, there need be only two CAS signals (one CAS per byte),
labeled CAS3 and CAS2. The internal circuitry of the Am29205 microcontroller automati­
cally concatenates the two 16-bit accesses, using big-endian structure for a full 32-bit
word. The TRIOE signal for normal DRAM output enable and video DRAM transfer is not
available on the Am29205 microcontroller. Any DRAM with an OE line should be tied to
CAS for the bank, or tied to ground (asserted) as intemal DRAM logic gates OE with cs.
Video DRAM transfers are not supported on the Am29205 microcontroller.

PROGRAMMABLE REGISTERS

DRAM Control Register (DRCT, Address 80000008)
The DRAM Control Register (Figure 9-1) controls the access to and refresh of DRAM
Banks 0 through 3.

Figure 9·1 DRAM Control Register

31 23 15 7 o
I I I I I I I I I

res REFRATE
, , , i , 0 . ,
••• I • • I

PGO: res: PGl : PG2 : PG3: sc
OWO LM OWl OW2 OW3

DRAM Controller 9-1

~AMD

9.2.2

9-2

Bit 31: Page-Mode DRAM, Bank 0 (PGO)-When this bit is 1, burst-mode accesses to
DRAM Bank 0 are performed using page-mode accesses for all but the fir~t access.
When this bit is 0, page-mode accesses are not performed.

Bit 30: Data Width, Bank 0 (DWO)-This field indicates the width of the DRAM in Bank
0, as follows:

DWValue

o
1

DRAM Width

32 bits (Reserved on Am29205 microcontroller)
16 bits

Since the Am29205 microcontroller supports only 16-bit DRAM, all DWx bits should be
set to 1.

Bit 29: Reserved

Bit 28: Large Memory (LM)-This bit controls the size of the DRAM banks and the total
size of the DRAM address space. If the LM bit is 0 on either microcontroller, each DRAM
bank is up to 4 Mbytes in size, for placement within a 16 Mbyte address space.

If the LM bit is 1 on the Am29200 microcontroller, each DRAM bank is up to 16 Mbytes
in size, for placement within a 64-Mbyte address space. If the LM bit is 1 on the
Am29205 microcontroller, each DRAM bank is up to 8 Mbytes in size, for placement
within a 64-Mbyte address space.

PG1, DW1, and so on perform functions similar to PGO and DWO for DRAM Banks 1
through 3.

Bit 15: Static-Column DRAM (SC)-When this bit is 1, page-mode accesses to the
DRAM are performed using static-column accesses. Static column accesses differ from
page-mode cycles only in that CAS3-CASO are held Low throughout a read access. The
timing of the access is not affected, and write accesses are not affected. When this bit is
0, normal page-mode accesses are performed, if enabled.

Bits 14-9: Reserved

Bits 8-0: Refresh Rate (REFRATE)-This field indicates the number of MEMCLK
cycles between DRAM refresh intervals. A DRAM refresh interval is the time required to
refresh all four DRAM banks. "CAS before RAS" cycles are performed, overlapped in the
background with other non-DRAM accesses when possible. If one or more banks have
not been refreshed in the background when the REFRATE interval expires, the proces­
sor forces a panic mode refresh of the unrefreshed banks.

A zero in the REFRATE field disables refresh. Upon reset, this field is initialized to the
value 1FFh.

DRAM Configuration Register (DRCF, Address 800000OC)
The DRAM Configuration Register (Figure 9-2) controls the selection of DRAM Banks 0
through 3. In most systems, this register should be set by software to cause the four
banks of DRAM to appear as a Single, contiguous region of memory.

DRAM Controller

AMD~
Figure 9·2 DRAM Configuration Register

9.2.3

31 23 15 7 o
I

ASELO AMASKO ASEL1 AMASK1 ASEL2 AMASK2 ASEL3 AMASK3

Bits 31-27: Address Select, Bank 0 (ASELO}-On a load, store, or instruction access,
this field is compared against bits of the access address, with the comparisons possibly
masked by the AMASKO field. The unmasked bits of the ASELO field must match the
corresponding bits of the address for DRAM bank 0 to be accessed.

Bits 26-24: Address Mask, Bank 0 {AMASKO}-This field masks the comparison of
the ASELO field with bits of the address on an access, to permit various sizes of
memories and memory chips in DRAM Bank 0 ("ad(x:y)" represents a field of address
bits x through y, inclusive).

AMASKO
Value

000
001
011
111

Address Comparison
(LM=O)

ASELO~4:01 to ad(23:19~
ASELO 4:1 to a~23:20
ASELO 4:2 to a 23:21
ASELO(4:3 to a 23:22)

Address Comparison
(LM=1)

ASELO~4:0~ to a~25:21 ~ ASELO 4:1 to a 25:22
ASELO 4:2 to a 25:23
ASELO(4:3) to ad(25:24) (Reserved on Am29205)

Only the AMASKO values shown in the above table are valid.

Other bits of this register have a definition similar to ASELO and AMASKO for DRAM
Banks 1 through 3.

DRAM Mapping Register 0 (DRMO, Address 8000001 OJ
This register (Figure 9-3) specifies one of four possible mappings of a mapped DRAM
access.

Figure 9-3 DRAM Mapping Register 0

31 23 15 7 o

I I
I I I I I I I I I I

res VIRTBASE res

I I I I I

PHYBASE

,
VALID

Bit 31: Valid Mapping {VAll D}-This bit, when 1, indicates that the mapping specified
by the VIRTBASE and PHYBASE fields is valid.

Bits 30-24: Reserved

Bits 23-16: Virtual Base Address (VIRTBASE)-This field specifies the virtual base
address of the mapped region. On a mapped DRAM access, it is compared against bits
23-16 of the address generated by the load or store instruction. The comparison must
match for the mapping to be performed.

DRAM Controller

~AMD

9.2.4

9.2.5

9.2.6

9.2.7

9.3

9.3.1

Bits 15-8: Reserved

Bits 7~: Physical Base Address (PHYBASE)-This field specifies the physical base
address of the mapped region. On a mapped DRAM access, if the comparison of the
virtual base address yields a match and the VALID bit is 1, the PHYBASE field replaces
bits 23-16 of the address.

DRAM Mapping Register 1 (DRM1, Address 80000014)
This register is identical in layout and definition to the DRAM Mapping Register O.
It specifies the second of the four possible mappings.

DRAM Mapping Register 2 (DRM2, Address 80000018)
This register is identical in layout and definition to the DRAM Mapping Register O.
It specifies the third of the four possible mappings.

DRAM Mapping Register 3 (DRM3, Address 80OO001C)
This register is identical in layout and definition to the DRAM Mapping Register O.
It specifies the the fourth of the four possible mappings.

Initialization
The configuration of DRAM banks, if present, must be set by software before normal
DRAM accesses are performed (the DRAM may be accessed using default parameters
that are set by software to determine the configuration of the DRAM). The DRAM
Mapping registers are not initialized by a processor reset, and must be set by
software before a mapped DRAM access occurs. The REFRATE field is initialized
on reset to the value 1 FFh. DRAM power-up requirements must be guaranteed by
software.

DRAM ACCESSES

DRAM Address Mapping
To map logical memory banks to physical addresses, each DRAM bank uses two fields
to determine the location of the bank in physical memory: AMASK and ASEL. AMASK
selects the number of address bits decoded and thus the size of a given bank. ASEL
c::ontains the address bit values compared against the address and thus the location of a
given bank. The LM bit controls the maximum size of the banks and the total size of the
DRAM address space as shown.

AMASKValue

000
001
011
111

Bank Size (LM=O)

512 Kbytes
1 Mbyte
2 Mbytes
4 Mbytes

* Am29200 microcontroller only

Bank Size (LM=1)

2 Mbytes
4 Mbytes
8 Mbytes*

16 Mbytes*

The ASEL and AMASK fields allow the four DRAM banks to appear as a contiguous
region of DRAM, with the restriction that a bank of a certain size must fit on the natural
address boundary for that size. For example, a 2-Mbyte DRAM must be placed on a
2-Mbyte address boundary. For this reason, DRAM banks must appear in the address
space in order of decreasing bank size. Note that to achieve a contiguous memory, the

DRAM Controller

9.3.2

T tM

AMD~
various DRAM banks need not appear in sequence in the address space. For example,
DRAM Bank 3 may appear in an address range below the address range for DRAM
Bank 1 or 2. This provides flexibility in meeting the restriction that DRAM banks appear
in the address space in order of decreasing size. Setting AMASK to 0 and ASEL to 1 Fh
reduces the probability of empty banks being inadvertently decoded. This configures the
bank as small and as high in memory as possible.

Address Multiplexing
The address multiplexing for the DRAMs is performed directly by the processor on the
A14-A1 pins, and no external multiplexing is required. As shown in Table 9-1 and
Table 9-2, only the odd physical address pins from A9 and above (A9, A 11, and A 13) are
used for 16-bit interfaces, while only even physical address pins above A9 (A10, A12,
and A14) are used for 32-bit memories. Address bit AO is not represented, since the
Am29200 microcontroller supports only 16- and 32-bit DRAM widths. Address multiplex­
ing for 16- and 32-bit DRAM memories is performed as shown in Table 9-1 and
Table 9-2 ("aX' represents address bit x).

Address Multipl.xing for t &-bIt DRAM Memory

Bank Depth Bank Depth
Address Pin RAS Asserted CAS Asserted (LM=O)(..) (LM=1) (ea)

•
A13 a21 822 4 Mbyte 8 Mbyte

•
A11 a19 820 1 Mbyte 2 Mbyte

•
A9 a18 a9
A8 a17 a8 Up to Up to

256 Kbyte 512 Kbyte
A7 a16 a7
AS a15 a6
AS a14 a5
A4 a13 a4
A3 a12 a3
A2 a11 82
A1 a10 a1

Note: • indicates Signals not applicable to the bus width.

DRAM Controller

~AMD
Table 9-2

Table 9-3

DRAM
density

1 Mbit

4 Mbit

16 Mbit

9-6·

Address Multiplexing for 32-bit DRAM Memory (Am29200 Microcontroller)

Bank Depth Bank Depth
Address Pin RAS Asserted CAS Asserted (LM=O)(ea) (LM=1)(ea)

A14 a22 a23 4 Mbyte 16 Mbyte

•
A12 a20 821 2 Mbyte 4 Mbyte

•
Al0 a19 al0

A9 a18 a9 Up 10 Up 10
512 Kbyte 1 Mbyte

AS a17 a8

A7 a16 a7

A6 a15 a6

AS a14 a5

A4 a13 a4

A3 a12 a3

A2 all 82

•
Note: • indicates signals not applicable to the bus width.

Table 9-3 shows how this multiplexing of addresses supports various configurations of
memory densities and memory widths, assuming the individual DRAMs are 4 bits wide.
The addresses shown in Table 9-3 are the address bits for an access. Table 9-4 shows
how the various memories should be connected to the processor's address pins to
realize this address multiplexing, again assuming the individual DRAMs are 4 bits wide.

Sequential accesses can use page-mode accesses, even though not all CAS address bits
are contiguous address bits, because the processor does not generate a page-mode

DRAM Address Multiplexing (by-4 DRAMs)

DRAM Portion DRAM multiplexed address bits
width ofcyele 10 9 8 7 6 5 4 3 2 1 0

RAS a18 a17 a16 a15 a14 a13 a12 a11 al0
16 bits

CAS a9 a8 a7 a6 a5 a4 a3 a2 al

RAS a19 a18 a17 a16 a15 a14 a13 a12 a11
32 bits

CAS al0 a9 as a7 a6 a5 a4 a3 a2

RAS a19 a18 a17 a16 a15 a14 a13 a12 all al0
16 bits

CAS a20 a9 a8 a7 a6 a5 a4 a3 a2 al

RAS a20 a19 a18 a17 a16 a15 a14 a13 a12 all
32 bits

CAS a21 al0 a9 as a7 a6 a5 a4 a3 a2

RAS a21 a19 a18 a17 a16 a15 a14 a13 a12 all al0
16 bits

CAS a22 a20 a9 a8 a7 a6 a5 a4 a3 a2 al

RAS a22 a20 a19 a18 a17 a16 a15 a14 a13 a12 all
32 bits

CAS a23 a21 al0 a9 a8 a7 a6 as a4 a3 a2

DRAM Controller

Table

9.3.3

9.3.4

AMD~
DRAM Address Connections to Microcontroller (by04 DRAMs)

DRAM DRAM DRAM multiplexed address bits
density width 10 9 8 7 6 5 4 3 2 1 0

1 Mbit 16 bits A9 AS A7 A6 AS A4 A3 A2 Al

32 bits Al0 A9 AS A7 A6 AS A4 A3 A2

4Mbit 16 bits All A9 A8 A7 A6 AS A4 A3 A2 Al

32 bits A12 Al0 A9 A8 A7 A6 AS A4 A3 A2

16 16 bits A13 All A9 A8 A7 AS A5 A4 A3 A2 Al
Mbit 32 bits A14 A12 Al0 A9 AS A7 A6 A5 A4 A3 A2

access across a l-Kbyte address boundary. Thus, the processor will not change any
address bits other than a(9:1) during a page-mode access.

32-Bit DRAM Width (Am29200 Microcontroller)
For a data access, the width of each DRAM bank on the Am29200 microcontroller can
be programmed to be either 32 or 16 bits by the DRAM Control Register. If the DRAM is
32 bits wide, 1031-100 are used to transfer data to and from the processor, and the
processor performs one access to read or write a byte, half-word, or word. The
CAS3-CASO signals are asserted as follows (the value "0" is Low, "1" is High, and "K' is
a don't care):

Data Width

8 bits
8 bits
8 bits
8 bits

16 bits
16 bits
32 bits

A1-AO

00
01
10
11
Ox
1x
00 (one cycle)

16-Bit DRAM Width

CAS3-CASO (on write)

0111
1011
1101
1110
0011
1100
0000

If the DRAM is 16 bits wide on either the Am29200 or Am29205 microcontroller, only
1031-1016 are used to transfer data to and from the processor and the processor
performs two accesses to read or write a full word.

To read a 32-bit word from a 16-bit DRAM bank, the processor first reads the high-order
16 bits of the word, then generates a second access to read the low-order 16 bits of the
word. The address is incremented by two for the second access. To read an a-bit byte or
16-bit half-word from a 16-bit DRAM, the processor performs only a single access.
Alignment and sign extension are performed as usual, except the required byte or
half-word is received on 1031-1016. Figure 9-4 shows the location of bytes and half­
words from a 16-bit DRAM bank. In Figure 9-4, bytes and half-words are numbered as
they are numbered in a word.

To write a 32-bit word into a 16-bit DRAM bank, the processor first writes the high-
order 16 bits of the word, then generates a second access to write the low-order 16 bits
of the word. The address is incremented by two for the second access, and the low
order bits of the word appear on 1031-1016. To write an a-bit byte or 16-bit half-word on
a 16-bit bus, the processor performs only a single access. For a byte write, the appropri­
ate byte is replicated on both 1031-1024 and 1023-1016. For a half-word write, the

DRAM Controller 9-7

~AMD
Flgu,. ~ Location of Byt •• and Half·Worei. on a 16-Blt Bu.

9.3.5

9.3.6

Bytes

Half-Words

1031

Byte 0
Byte 2

1031

23

Byte 1
Byte 3

Half-Word 0
Half-Word 1

15 7 o

x x

15 o

x

appropriate half-word appears on 1031-1016. The CAS3-CASO signals are asserted as
follows (the value "0" is low, "1" is High, and 'Y is a don't care):

Data width A1-AO

8 bits 00
8 bits 01
8 bits 10
8 bits 11

16 bits Ox
16 bits 1x
-all other writes (two cycles)-

Mapped DRAM Acce

~(onwrlte)

0111
1011
0111
1011
0011
0011
0011

Processor DRAM accesses in the 16-Mbyte address range SOOOOOOOh-50FFFFFFh are
mapped to one of four 64-Kbyte regions of the DRAM. This provides a virtual memory
region supporting functions such as image compression and decompression that yield
lower overall memory requirements and thus lower system cost. Only processor DRAM
accesses can be mapped. DRAM accesses by a DMA channel cannot be mapped.

DRAM Mapping Registers 0 through 3 each specify a DRAM mapping. Before an access
to a DRAM location having an address in the range SOOOOOOOh-50FFFFFFh, bits 23-16
of the address are compared to the VIRTBASE fields in each of the DRAM Mapping
registers. If the address bits match the VIRTBASE field in one of the registers, and the
associated VALID bit is 1, then the PHYBASE field replaces bits 23-16 of the address
before the access is performed. If more than one valid comparison occurs, the mapping
specified by DRAM Mapping Register 0 has the highest priority, and the mapping
specified by DRAM Mapping Register 3 has the lowest priority. If no valid comparison is
detected, the processor's User- or Supervisor-mode Instruction or Data Mapping Miss
occurs, depending on the program mode and type of access.

Normal Ace ... Timing
Figure 9-5 shows the timing for a normal DRAM read cycle. Figure 9-6 shows the timing
for a normal DRAM write cycle. DRAM cycles are fixed at four cycles including precharge
and cannot be extended with WAIT. An additional cycle is taken after the data is read or
written to permit time for RAS precharge. The rising edge of RAS occurs on the third
rising edge of MEMClK after the beginning of the cycle.

DRAM Controller

AMD~

Figure 9-5 DRAM Read Cycle

MEMCLK

A14-A1 D Row Addr X Col Addr X
R/W -:J '\
RASx \ '/ ~
CAS3-CASO \ /
WE

TRIOE • \ /
1031-100 (, X Data 0

• Arn29200 microcontroller only

Figure 9-6 DRAM Write Cycle

MEMCLK

A14-A1 J Row Addr X Col Addr X
:.:" .. : .

,

R/W ~ '/
RASx \ '/ ~
CAS3-CASO \ /
WE \ /
TRIOE •

1031-100 :(DataN)

• Arn29200 microconlroller only

DRAM Controller 9-9

~AMD
9.3.7

9.3.8

Page.Mode Access Timing
Page-mode accesses can be enabled for each bank to reduce the average access time
for a sequence of accesses. If enabled, page-mode accesses are performed for
instruction accesses and for the LOADM and STOREM instructions. Page-mode
accesses permit an access time of two cycles for all but the first access. When the
DRAM bank is 16 bits wide, two accesses are required to obtain a 32-bit word. Page­
mode accesses are performed to access the second 16 bits in this case if page-mode
'accesses are enabled.

Figure 9-7 shows the timing for a page-mode DRAM read cycle. Figure 9-8 shows the
timing for a page-mode DRAM write cycle. Static-column accesses are performed if
SC=1 in the DRAM Control Register. Static-column accesses differ from page-mode
accesses only in that CASx remain Low throughout the access.

DRAM Refresh
"CAS before RAS" refresh cycles are performed periodically, as determined by the
REFRATE field of the DRAM Control Register. The REFRATE field specifies the number
of MEMCLK cycles in a refresh interval; a zero in this field disables refresh. The
microcontroller ensures that one row of each DRAM bank is refreshed in every interval.
Each bank is refreshed separately to distribute the demand placed on the DRAM power
supplies by the individual banks.

Figure 9-9 shows the timing of a refresh cycle. Because refresh cycles use only the
RASx and CASx signals, the processor attempts to perform refresh in the background,
refreshing each bank in the cycles that the DRAM is not being used, possibly overlapped

Figure 9-7 DRAM Page-Mode Read Cycle

MEMCLK

I

A14-A1 25) Row Addr X", ___ C_O_I A_d_dr ___ X"' __ C_OI_Ad_d_r_+_21_4 ___ X ... ···._·· .. _.,,:._: _ _. :·_·:· ::_'·_:::_:W_::;:_\:;; ... n~

:\~-------I

RA~ \~~ ____ ~ __ ~.~ __ ~ ____ ~:, L
I

SC=O r---"",

\-...,.....---==-~; ,---': ''''---....,-I; ,
SC=1

,"'-------~,
1031-100 ------~---~("' __ -JX Dam

may be repeated up to 1
~ Kbyte address boundary ~
I I

• Am29200 microcontroller only

9-10 DRAM Controller

AMD~

Figure 9-8 DRAM Page-Mode Write Cycle

MEMCLK

A14-A1 J RowAddr X Col Addr '-________ ..IX Col Addr +214 X ,

RIW ~ 'i
RASx \ '/ L ,

\ :/
I \\--..,.J I

\ I
TRIOE.

1031-100 ~~------~'~(~ ________ D_am ________ ..IX~ ____ D_a_m_+_21_4 ____ J)~------~------~-

• Am29200 microcontroller only

Figure 9·9 DRAM Refresh Cycle

MEMCLK

A14-A1

\ .'

may be repeated up to 1
'-- Kbyte address boundary ~ , ,

'/
CA~ASO~ I

'\~---~--------------~

TRIOE.

1031-100

• Am29200 microcontroller only

DRAM Controller

,'----

9-11

~AMD

9.3.9

with ROM and PIA accesses. Background refresh incurs very little overhead. The
average penalty of background refresh is about 2 cycles per refresh interval. This
penalty arises because the processor sometimes attempts to access the DRAM after a
refresh cycle has been started. If one or more banks has not been refreshed by the end
of a refresh interval, the DRAM controller performs "panic mode" refresh cycles to
refresh the remaining banks. Panic mode refresh cycles take priority over all other
processor accesses.

Video DRAM Interface (Am29200 Microcontroller)
A video DRAM (VDRAM) transfer cycle is performed during accesses in the range
60000000h- 63FFFFFFh. These cycles permit the transfer of data to a VDRAM shift
register in graphics applications.

For VDRAM transfer cycles with 16-bit memories, the DRAM bank's page-mode bit
(PGx) in the DRAM Control Register must be turned off.

Figure 9-10 shows the timing of a VDRAM transfer cycle. Note that the ID bus is not
forced to high impedance. This cycle differs from a normal DRAM cycle because the
signal TRICE is asserted with different timing.

Figure 9·10 VDRAM Trensfer Cycle (Am29200 Microcontroller)

MEMCLK

A14-A1 Col Addr

\"-~-~--~: /
\"-.........------,.J; /

WE : \~ ________ ,H_i_g_h=_f_ea_d_._Lo_w __ =_w_m_e ______ J7
TrooE ~~ ________________ ~/

1031-100

9-12 DRAM Controller

\"-~-

10 PERIPHERAL INTERFACE ADAPTER

This chapter describes the peripheral interface (PIA) adapter on the Am29200 and
Am29205 microcontrollers. Information is provided on the programmable registers,
initialization, and PIA accesses, including timing.

10.1 OVERVIEW

10.2

10.2.1

PIA space on the microcontroller is divided into regions, each of which can be directly
attached to an off-chip peripheral device. The microcontroller's dedicated PIA chip select
signals will assert a peripheral device's chip select input pin when the associated PIA
region on the microcontroller is read or written.

With six PIA chip select signals, PIACS~PIACSO, the Am29200 microcontroller permits
direct attachment of up to six external peripheral devices, each with its own 24-bit
address space, for a maximum size of 16 Mbytes per PIA region.

With two PIA chip select Signals and a smaller address bus, the Am29205 microcontrol­
ler supports up to two peripheral devices, each with its own 22-bit memory space, for a
maximum size of 4 Mbytes per PIA region. The 16-bit 10 bus of the Am29205 microcon­
troller limits PIA support to 8- or 16-bit peripherals. The PIACS~PIACS2 signals are not
supported on the Am29205 microcontroller.

PROGRAMMABLE REGISTERS

PIA Control Register 0/1 (PICTO/1, Address 80000020/24)
The PIA Control Registers (Figure 10-1 and Figure 10-2) control the access to PIA.
Regions 0 through 5 on the Am29200 microcontroller. The PIA Control Register 1 is not
available on the Am29205 microcontroller, since that product does not support PIA
Regions 2, 3, 4, or 5.

FI tOot PIA Control Register 0 (PICTO. Address 80000020)

31 23 15 7 o

, , . .
10EXTO IOEXT1 IOEXT2 IOEXT3

[jj] = Reserved on Am29205 microcontroller

Figure to.2 PIA Control Register t (PlCTt. Addres. 80000024) (Am29200 Microcontroller)

31 23 15 7 . 0

. .
IOEXT4 IOEXT5

Ill! = Reserved on Am29205 microcontroller

Peripheral Interface Adapter 10-1

it1 AMD

10.2.2

Bit 31: Input/Output Extend, Region 0 (IOEXTO)-If this bit is one, the end of a PIA
access is extended by one cycle after PIAOE is deasserted or by two cycles after
PIAWE is deasserted. This provides one additional cycle of output disable time or data
hold time for reads and writes, respectively.

Bits 30-29: Reserved

Bits 28-24: Input/Output Wait States, Region 0 (IOWAITO)-This field specifies the
number of wait states taken by an access to PIA Region o. An I/O read cycle takes at
least three cycles (two wait states), and an I/O write cycle takes at least four cycles
(three wait states). If the IOWA ITO field specifies an insufficient number of wait states for
an access (for example, IOWAITO = 00010b for a write), the processor takes the
required minimum number of wait states instead of the specified number.

Other bits perform similar functions to IOEXTO and IOWAITO for PIA Regions 1 through S.

Bits 15-0: Reserved. These bits are reserved on the Am2920S microcontroller and
should be written with Os to ensure compatibility.

Initialization
The configuration of PIA regions, if present, must be set by software before PIA
accesses are performed. Peripherals may be accessed using default parameters set by
software to determine the presence and/or configuration of the peripherals.

10.3 PIA ACCESSES

10.3.1

10-2

PIA accesses are performed as a result of load and store instructions having an address
within the range of the specific PIA regions supported by the microcontroller. The
Am29200 microcontroller supports PIA Regions S through 0; the Am2920S microcontrol­
ler supports PIA Regions 1 through O. The PIA region number determines which PIACSx
signal is asserted during the access. PIACSO is asserted for an access to PIA Region 0,
and so on.

The Am29200 microcontroller supports PIA accesses within the address ranges of PIA
Region 0 (addresses 90000000h-90FFFFFFh) through PIA Region S (addresses
9S000000h-9SFFFFFFh). The data width of the load or store (selected by the OPT bits
of the instruction) determines the width of the access. An 8-bit device must be attached
to 107-10.0 on the Am29200 microcontroller and a 16-bit device must be attached to
1015-100. LOAOM and STOREM instructions (possible only for 32-bit accesses) are
performed as a series of simple loads and stores.

The Am2920S microcontroller supports PIA accesses within the address ranges of PIA
Region 0 (addresses 90000000h-90FFFFFFh) through PIA Region 1 (addresses
91000000h-91 FFFFFFh). Since the instruction/data bus on the Am2920S microcontrol­
ler is 16 bits wide, only 8- or 16-bit peripherals are supported. They are attached to
1023-1016 and 1031-1016, respectively. Only byte or half-word accesses (specified by
the OPT bits in the load and store instructions) are allowed on these peripherals.
Performing a 32-bit data access on these peripherals may result in unpredictable data.

When a byte access is made to the PIA region on either microcontroller, the two least
significant bits of the address must be 11. When a half-word access is made, the two
least significant bits must be 10. Instruction fetching from a PIA region is not supported.

Normal Access Timing
Figure 10-3 shows the timing of a PIA read cycle. The address is driven in the first cycle,
the PIACSx signal is asserted in the second cycle to allow for address setup, and the

Peripheral Interface Adapter

10.3.2

AMort

PIAOE signal is asserted in the third cycle to allow for chip select setup. The data must
be valid after the number of cycles specified by IOWAITx+ 1. After sampling the data, the
microcontroller deasserts PIACSx and PIAOE. The interface operates such that the
processor allows at least one cycle before it drives the instruction/data bus (1031-100 on
the Am29200 microcontroller and 1031-16 on the Am29205 microcontroller) for a new
access (though a new address may be driven on the address bus immediately),
providing one cycle for the peripheral to disable its drivers. If this cycle is insufficient,
setting the IOEXTx bit for the region causes the processor to insert an additional cycle
after the read before starting a new access.

Figure 10-4 shows timing of a PIA write cycle. The PIAOE signal is not asserted.
Instead, the processor drives data in the second cycle and asserts the PIAWE signal in
the third cycle to allow for address, data, and chip select setup. The PIAWE signal is
deasserted cine cycle before the final cycle to provide data hold time for the write. If one
cycle of hold time is insufficient, setting the IOEXTx bit for the region causes the
processor to insert an additional cycle of data hold time.

Use of WAIT to Extend 1/0 Cycles
The WAIT signal is used to extend the number of wait states beyond the number
determined by the IOWAITx field. WAIT can be asserted during a read at any time up
until two cycles before PIAOE is deasserted, and can be asserted during a write at any
time up until two cycles before PIAWE is deasserted. In response to WAIT, the proces­
sor extends the access until WAIT is deasserted. If WAIT is asserted within the appropri­
ate amount of time, a normal read access ends on the cycle after WAIT is deasserted

FI 10-3 PIA Read Cycle

MEMCLK
,

A23-AO :=:J(~ ________________ A_d_dr_e~ __________________ JX~ __________ __

PIACSx

1031-100

:\
, -------~---

:\~ ______ ~ ______ ~ ______ ~:J/

, \~------~------~:~/

-----------"---------.a...-c(~ ____________ Jx Data N O~ --
,
•

number of cycles determined by 10WAITX+ 1
10WAIT =3 illustrated

Peripheral Interface Adapter

,
, next acce~ is ____ delayed one cycle

, ifIOEXTx=l

10-3

~AMD

Figure 10-4 PIA Write Cycle

MEMCLK

A23-AO

RfW

1031-100

1D-4

I

---v Address -.r-----..ft _______ A--
I

3 :C
I I

:\~--~--~--~----~:,-

: \~ ______ _.--------__ :J/

--~--------~~{~ ____________________ D_am __ N ___________________ 'J)____

I

•
number of cycles determined by 10WAITx+ 1

IOWAITx=4 illustrated
I ..

final cycle is
extended for one
cycle if 10EXTx=1

(Figure 10-5), and a normal write access ends on the second cycle after WAIT is
deasserted, to provide data hold time (Figure 10-6). If IOEXTx=l, the processor waits
one more cycle after a read access to begin a new access, and inserts one more cycle
of data hold time after a write access.

Peripheral Interface Adapter

AMD~

Figure 10-5 Extending a PIA R_d Cycle with WlO'f

MEMCLK

A2.3-AO

1031-100

____________ .Ad.d.re.ss ____________ .Jx\.~~ ' ' .. ;;;,.;;;";;;;".: . .;L;;;,;,, .. '; :.:;

----------------~/

:\'--~-
:1
:1 , ,.

.< . .; ••..•. ,.,;; ·;··,·,;;··' _______________IX Data N o~-
next access is
delayed one cycle
ifiOEXTx=l

Figure 10-6 Extending a PIA Write Cycle with 1IiiIIT

MEMCLK

A2.3-AO

PIACSx

1031-100

____________ Ad.d.re.ss ___________ ...IX'-__ , ·j ... ,L ... :;; ',:

----------------~I
________ ...JI

DataN

Peripheral Interface Adapter

'I
'I

)
final cycle is
extended for one
cycle if IOEXTx=l

10-5

11 DMA CONTROLLER

This chapter describes the on-chip DMA controller. Programmable registers and
initialization are detailed, followed by a discussion of DMA transfers, queuing, and
random DMA by external devices.

The DMA controller supports three types of DMA transfers: internal, external, and
direct transfers.

11.1 OVERVIEW

11.2

11.2.1

The on-chip DMA controller provides a means to transfer data between the DRAM and
internal or external peripherals. Each supported DMA channel on the Am29200 and
Am29205 microcontrollers is configurable for width, direction, address increment or
decrement, external request type, and external peripheral wait states.

Internal DMA transfers can be requested by the parallel port, serial port, and video
interface. Each of these internal peripherals has a field in its control register for
specifying which of the two DMA channels is to be used for the transfer.

External DMA transfers are requested by off-chip peripherals.

Direct DMA transfers transfer data between an external device and DRAM using an
address supplied by the device. The GREO and GACK signals are used to perform
direct DMA. Direct DMA is not supported on the Am29205 microcontroller.

The Am29200 microcontroller has two DMA channels, DMA Channel 0 and DMA
Channel 1, each capable of performing either internal or external DMA transfers. One of
these channels, DMA Channel 0, supports queued transfers. Using the GREO and
GACK signals, the Am29200 microcontroller also supports direct DRAM and ROM
access by an external device such as an external DMA controller.

The Am29205 microcontroller has one externally controlled DMA channel, DMA
Channel 1, and two internally controlled channels, DMA Channels 0 and 1, available for
use by the internal peripherals only. 32-bit DMA transfers between internal peripherals
and DRAM are supported. However, DMA transfers between external peripherals and
DRAM are limited to 8- or 16- bit data accesses. The DREOO, DACKO, GREO, GACK,
and TDMA signals are not supported on the Am29205 microcontroller.

PROGRAMMABLE REGISTERS

DMAO Control Register (DMCTO, Address 80000030)
The DMAO Control Register (Figure 11-1) controls DMA Channel 0 on the Am29200
and Am29205 microcontrollers. DMA Channel 0 on the Am29205 microcontroller is
available for transfers between internal peripherals and DRAM only; external transfers
are not supported.

DMA Controller 11-1

~AMO
Figure 11·1 DMAO Control Register

11-2

31 23 15

. .
DMAEXT ACS

7

.
UD: EN : CTE:

o

..
TIl • .

RW TIE aEN en

II = Reserved on Am29205 microcontroller

Bit 31: DMA Extend (DMAEXT), Am29200 microcontroller-The DMAEXT bit serves
a function very similar to the 10EXTx bits in the PIA Control registers. This bit is set to
provide an additional cycle of output disable time for a read or an additional cycle of data
hold time for a write. This bit is reserved on the Am29205 microcontroller.

Bits 30-29: Reserved

Bits 2&-24: DMA Wait States (DMAWAIT), Am29200 microcontroller-This field
specifies the number of wait states taken by an external access by DMA Channel O. An
external DMA read cycle takes at least three cycles (two wait states) and an external
DMA write cycle takes at least four cycles (three wait states). If the DMAWAIT field
specifies an insufficient number of wait states for an access (for example. DMAWAIT =
00010b for a write), the processor takes the required minimum number of wait states
instead of the specified number. This field is reserved on the Am29205 microcontroller.

Bits 23-22: Data Width (DW)-This field indicates the width of the data transferred by
the DMA channel, as follows:

OW Value

00

01
10
11

OMA Transfer Width

32 bits (Extemal and internal transfers on Am29200 microcontroller)
32 bits (Internal transfers on Am29205 microcontroller)
8 bits
16 bits
32 bits, address unchanged (Reserved on Am29205 microcontroller)

On the Am29200 microcontroller, the value DW=11 is used to repeatedly transfer a fixed
pattern from a single DRAM location to a peripheral. For example, it can be used to
transfer to a blank area of a printed page without requiring that a memory buffer be
allocated for the blank area.

Bits 21-20: DMA Request Mode (DRM), Am29200 microcontroller-This field
indicates how external DMA requests are signaled by DREQO, as follows:

ORMValue

00
01
10
11

OREQO Request

Active Low
Active High
High-to-Low transition
Low-to-High transition

The DRM field is set to 00 by a processor reset. See Section 11.3.6 for information on
clearing latched DMA requests. This field is reserved on the Am29205 microcontroller.

OMA Controller

AMO~
Bit 19: Assert Chip Select (ACS), Am29200 microcontroller-This bit controls
whether DMA Channel 0 asserts PIACSO during an external peripheral access. If the
ACS bit is 1, the DMA channel asserts PIACSO; if the ACS bit is 0, the DMA channel
does not assert PIACSO. This bit is reserved on the Am29205 microcontroller.

Bits 18-10: Reserved

Bit 9: Transfer Up/Down (UD)-This bit controls the addressing of memory for the
series of DMA transfers. If the UD bit is 1, the DMA address (in the DMAO Address
Register) is incremented after each transfer. If the UD bit is 0, the DMA address is
decremented after each transfer. The amount by which the address is incremented or
decremented is determined by the width of the transfer, as follows:

OW Value

00)32 bits)
01 8 bits)
10 16bits)
11 32 bits)

Address IncrlDecr

+/-4
+/-1
+/-2
+/~ (Reserved on Am29205 microcontroller)

Bit 8: ReadIWrite (RW)-This bit controls whether the DMA transfer is to or from the
DRAM. If the RW bit is 1, the DMA channel transfers data from the DRAM to the
peripheral. If the RW bit is 0, the DMA channel transfers data from the peripheral to the
DRAM. .
Bit 7: Enable (EN)-This bit enables the DMA channel to perform transfers. A 1 enables
transfers, and a 0 disables transfers.

Bit 6: TDMA Terminate Enable (TTE), Am29200 microcontroller-This bit, when 1,
causes the DMA channel to sample the TDMA signal during an external DMA transfer
and to terminate the transfer if TDMA is asserted. TDMA does not apply to an internal
transfer. If this bit is 0, the TDMA signal is ignored. This bit is reserved on the Am29205
microcontroller.

Bit 5: Count Terminate Enable (CTE)-This bit, when 1, causes the DMA channel to
terminate the transfer when the DMACNT field of the DMA Count Register decrements
past zero. If this bit is 0, the DMA transfer does not terminate, though the DMA channel
still decrements the count after every transfer.

Bit 4: Queue Enable (QEN)-This bit, when 1, enables the DMA queuing feature (which
is implemented only on DMA Channel 0). DMA queuing allows the DMAO Address
Register and DMAO Count Register to be reloaded automatically at the end of a DMA
transfer from the DMAO Address Tail Register and the DMAO Count Tail Register,
respectively. Queuing permits a second transfer to start immediately after a first transfer
has terminated, greatly reducing the response-time requirement for software to set up
and start the second transfer. When this bit is 0, DMA queuing is disabled, and the
DMAO Address Register and DMAO Count Regisler are set directly to initiate a transfer.

Bits 3-2: Reserved

Bit 1: TDMA Terminate Interrupt (TTl), Am29200 microcontroller-The TIl bit is
used to report that the DMA channel has generated an interrupt because of TDMA
termination. If the TIE bit is one and the TDMA signal is asserted during an external
DMA transfer, the TTl bit is set and a processor interrupt occurs. This bit is reserved on
the Am29205 microcontroller.

OMA Controller 11-3

~AMD

11.2.2

Bit 0: Count Terminate Interrupt (CTI~ The CTI bit is used to report that the DMA
channel has generated an interrupt because of count termination. If the CTE bit is one
and the DMACNT field decrements past zero, the CTI bit is set and a processor interrupt
occurs.

DMAO Address Register (DMADO, Address 80000034)
The DMAO Address Register (Figure 11-2) contains the addresses for a transfer by DMA
ChannelO.

Figure 11·2 DMAO Address Register

11.2.3

31 23 15 7 o

Ell = Reserved on Am29205 microcontroller

Bits 31-24: Peripheral Address (PERADDR), Am29200 microcontro"er-This field
specifies eight bits that are driven on A7-AO during an external peripheral access by the
DMA channel. A23-A8 are driven Low during the transfer. The peripheral address
remains unchanged with each access. This field is reserved on the Am29205 microcon­
troller, since external DMA transfers are not supported on Channel o.
Bits 23-0: DRAM Address (DRAMADDR~ This field contains the DRAM address for
the next DMA transfer to or from the DRAM. The DRAMADDR field is incremented or
decremented (based on the UD bit) by an amount determined by the width of the DMA
transfer. The increment or decrement amount is 1 for a byte transfer, 2 for a halfword
transfer, and 4 for a word transfer. (Word transfer is not supported on the Am29205
microcontroller.) To support repeated transfers from the same word on the Am29200
microcontroller, the address can be left unchanged. The DRAMADDR field wraps from
the value OOOOOOh to FFFFFFh when decremented and from FFFFFFh to OOOOOOh
when incremented.

DMAO Address Tail Register (TADO, Address 80000070)
This write-only register (Figure 11-3) is the tail of the DMA Channel 0 address queue,
and is used to write the address of a queued transfer when the QEN bit is 1.

Figure 11-3 DMAO Address Tail Register

11-4

31 23 15 7 o
I I I I I I I I I I I I

reserved DRAMADDR

Bits 31-24: Reserved

Bits 23-0: DRAM Address (DRAMADDR~ This field is written with the beginning
DRAM address for a queued DMA transfer, if queuing is enabled.

DMA Controller

11.2.4

AMD~

DMAO Count Register (DMCNO, Address 80000038)
The DMAO Count Register (Figure 11-4) specifies the number of transfers remaining to
be performed by DMA Channel o.

Figure 1104 DMAO Count Register

11.2.5

31 23 15 7 o
I I I I I I I I I I I I I I

reserved DMACNT

Bits 31-24: Reserved

Bit 23-0: DMA Count (DMACN~ This field normally specifies the number of transfers
remaining to be performed on the DMA channel. The count is zero-based: a count of
zero indicates one transfer, a count of one indicates two transfers, and so on. The DMA
channel decrements the DMACNT field after every transfer. If the CTE bit is 1, the DMA
channel generates an interrupt when the DMACNT field is decremented past zero.
However, if the CTE bit is not 1, the DMACNT field is still decremented after every
transfer and can be used to determine how many transfers have been performed when
the DMA channel terminates because of the TDMA signal.

DMAO Count Tail Register (TCNO, Address 8000003C)
This write-only register (Figure 11-5) is the tail of the DMA Channel 0 count queue, and
is used to write the transfer count of a queued transfer when the QEN bit is 1.

Figure 11-5 DMAO Count Tail Register

11.2.6

31 23 15 7 o
I I I I I I I I I I I I I I I I

reserved DMACNT

Bits 31-24: Reserved

Bits 23-0: DMA Count (DMACN~ This field is written with the zero-based number of
transfers to be performed by a queued DMA transfer, if queuing is enabled.

DMA 1 Control Register (DMCT1, Address 80000040)
The DMA 1 Control Register controls DMA Channel 1. Queuing is not implemented on
DMA Channel 1.

Figure 11-6 DMA 1 Control Register

31 23 15 7 o

DMAWAIT

I I I I

reserved III ~ I'~ II I I I I

, , •• I •• ..
DMAEXT ACS UD: EN : CTE TTl:

RW TTE cn
LI = Reserved on Am29205 microcontroller

DMA Controller 11-5

~AMD

11-6

Bit 31: DMA Extend (DMAEXT)-The DMAEXT bit serves a function very similar to the
IOEXTx bits in the PIA Control registers. This bit is set to provide an additional cycle of
output disable time for a read or an additional cycle of data hold time for a write.

Bits 30-29: Reserved

Bits 28-24: DMA Wait States (DMAWAIT)-This field specifies the number of wait
states taken by an external access by DMA Channel 1. An external DMA read cycle
takes at least three cycles (two wait states) and an external DMA write cycle takes at
least four cycles (three wait states). If the DMAWAIT field specifies an insufficient
number of wait states for an access (for example, DMAWAIT = 00010b for a write), the
processor takes the required minimum number of wait states instead of the specified
number.

Bits 23-22: Data Width (DW)-This field indicates the width of the c.lata transferred by
the DMA channel, as follows:

DWValue

00

01
10
11

DMA Transfer Width

32 bits (External and internal transfers on Am29200 microcontroller)
32 bits (Internal transfers on Am29205 microcontroller)
8 bits
16 bits
32 bits, address unchanged (Reserved on Am29205 microcontroller)

On the Am29200 microcontroller, the value DW=11 is used to repeatedly transfer a fixed
pattern from a single DRAM location to a peripheral. For example, it can be used to
transfer to a blank area of a printed page without requiring that a memory buffer be
allocated for the blank area.

Bits 21-20: DMA Request Mode (DRM)-This field indicates how external DMA
requests are signaled by DREQ1, as follows:

DRMValue

00
01
10
11

DREQ1 Request

Active Low
Active High
High-to-Low transition
Low-ta-High transition

The DRM field is set to 00 by a processor reset. See Section 11.3.6 for information on
clearing latched DMA requests.

Bit 19: Assert Chip Select (ACS)-This bit controls whether DMA Channel 1 asserts
PIACS1 during an external peripheral access. If the ACS bit is 1, the DMA channel
asserts PIACS1; if the ACS bit is 0, the DMA channel does not assert PIACS1.

Bits 18-10: Reserved

Bit 9: Transfer Up/Down (UD)-This bit controls the addressing of memory for the
series of DMA transfers. If the UD bit is 1, the DMA address (in the DMA 1 Address
Register) is incremented after each transfer. If the UD bit is 0, the DMA address is
decremented after each transfer. The amount by which the address is incremented or
decremented is determined by the width of the transfer, as follows:

DMA Controller

11.2.7

11.2.8

11.2.9

AMO~

OW Value

00132 bits)
01 8 bits)
10 16 bits)
11 32 bits)

Address Incr/Decr

+/4
+/-1
+/-2
+1-0 (Reserved on Am29205 microcontroller)

Bit 8: ReadIWrite (RW)-This bit controls whether the DMA transfer is to or from the
DRAM. If the RW bit is 1, the DMA channel transfers data from the DRAM to the
peripheral. If the RW bit is 0, the DMA channel transfers data from the peripheral to the
DRAM.

Bit 7: Enable (EN)-This bit enables the DMA channel to perform transfers. A 1 enables
transfers, and a 0 disables transfers.

Bit 6: TDMA Terminate Enable (TTE), Am29200 mlcrocontroller-This bit, when 1,
causes the DMA channel to sample the TDMA signal during an external DMA transfer
and to terminate the transfer if TDMA is asserted. TDMA does not apply to an internal
transfer. If this bit is 0, the TDMA signal is ignored. This bit is reserved on the Am29205
microcontroller.

Bit 5: Count Terminate Enable (CTE)-This bit, when 1, causes the DMA channel to
terminate the transfer when the DMACNT field of the DMA Count Register decrements
past zero. If this bit is 0, the CTE field does not terminate the DMA transfer, though the
DMA channel still decrements the count after every transfer.

Bits 4-2: Reserved

Bit 1: TDMA Terminate Interrupt (TTl), Am29200 mlcrocontroller-The TTl bit is
used to report that the DMA channel has generated an interrupt because of TDMA
termination. If the TTE bit is one and the TDMA signal is asserted during an external
DMA transfer, the TTl bit is set and a processor interrupt occurs. This bit is reserved on
the Am29205 microcontroller.

Bit 0: Count Terminate Interrupt (CTI)-The CTI bit is used to report that the DMA
channel has generated an interrupt because of count termination. If the CTE bit is one
and the DMACNT field decrements past zero, the CTI bit is set and a processor interrupt
occurs.

DMA1 Address Register (DMAD1, Address 80000044)
The DMA 1 Address Register contains the addresses for a transfer by DMA Channel 1. It
is identical in layout and definition to the DMAO Address Register, except that the
PERADDR field is not reserved on the Am29205 microcontroller for DMA Channel 1.

DMA1 Count Register (DMCN1, Address 80000048)
The DMA 1 Count Register specifies the number of transfers remaining to be performed
by DMA Channel 1. It is identical in layout and definition to the DMAO Count Register.

Initialization
The EN bits of the DMAO and DMA 1 Control registers are reset to 0 by a processor
reset. The DRM fields of both registers are also reset to 0 (see Section 11.3.6). The
DMA channels must be configured by software before they are used.

OMA Controller 11-7

~AMD
11.3 DMA TRANSFERS

11.3.1

11.3.2

11-8

A DMA transfer is performed as a result of a DMA request. The DMA request can be
generated either by an internal peripheral (parallel port, serial port, or video interface) or
by an external device using DRE01-DREOO on the Am29200 microcontroller and
DRE01 on the Am29205 microcontroller.

Specifying the Direction of a DMA Transfer
The direction of a DMA transfer is determined by the RW bit of the DMA Control
Register.

If the RW bit is 0, the DMA channel transfers data from the peripheral to the DRAM. The
DMA channel first performs an access to read the data from the peripheral and then
performs a DRAM write to store the data into the DRAM. Both accesses occur without
interruption: there is no other intervening access.

If the RW bit is 1, the DMA channel transfers data from the DRAM to the peripheral. The
DMA channel first performs a DRAM read to access the data and then performs an
internal or external access to write the data to the peripheral. Both accesses occur
without interruption: there is no other intervening access.

Programming Internal DMA Transfers
Programming an internal DMA transfer using the parallel port, serial port, or video
interface involves coding the DMA controller registers along with the appropriate internal
peripheral's control register, as listed in the following table.

Internal Peripheral

Parallel Port
Serial Port
Video Interface

Control Register

Parallel Port Control Register
Serial Port Control Register
Video Control Register

DMA Enable Field

MODE
TMODE, RMODE
MODE

Setting up an internal DMA transfer involves disabling the peripheral and the DMA
controller, configuring both, and enabling both. Note that the internal peripheral and the
DMA controller must be disabled before each is configured; after configuration, the
peripheral must be enabled before the DMA controller is enabled. Otherwise, the steps
listed below can be performed in any order.

The following procedure describes how to program a simple internal transfer, using the
video interface as an example.

1. Disable the parallel port, serial port, or video interface with the appropriate field in the
peripheral's control register. For example, to disable the video interface, set the
MODE field in the Video Control Register to 00.

2. Disable the DMA channel by writing 0 to the EN bit of the DMAx Control Register.

3. Program the peripheral's control register with the appropriate values. For example,
program the Video Control Register with values for ClKl, SDIR, VIDI, lSI, PSI, PSIO,
etc., as required.

4. Program other peripheral registers as needed. For example, program the Side Margin
Register of the video interface to set the required page margins.

5. Program the DMAx Control Register, specifying the address increment or decrement,
transfer direction, and interrupt enables.

DMA Controller

11.3.3

11.3.4

11.3.5

AMD~

6. Program the DMAx Address Register by specifying the DRAM starting address to be
read or written.

7. Program the DMAx Count Register.

8. Enable peripheral DMA requests with the appropriate field in the peripheral's control
register. For example, set the MODE field of the Video Control Register to 10 to en­
able DMA Channel O.

9. Enable the DMA channel by writing a 1 to the EN bit of the DMAx Control Register.

Programming External DMA Transfers
Programming an external DMA transfer is accomplished by coding the DMA controller
registers. Note that the DMA controller must be disabled before being configured;
otherwise, the steps listed below can be performed in any order.

The following procedure describes how to program a simple external transfer.

1. Disable the DMA channel by writing a 0 to the EN bit of the DMAx Control Register.

2. Program the DMAx Control Register, specifying the address increment or decrement,
transfer direction, interrupt enables, wait states, etc., for external peripherals.

3. Program the DMAx Address Register by specifying the external peripheral address
and the DRAM starting address to be read or written.

4. Program the DMAx Count Register.

5. Enable the DMA channel by writing a 1 to the EN bit of the DMAx Control Register.

Generating External DMA Requests
The generation of DMA requests by the DRE01-DREOO signals is controlled by the
DRM field of the DMA control register. The DMA requests can be programmed individu­
ally to be edge- or level-sensitive for either polarity of edge or level.

If the DMA request is edge-sensitive, the DMA request signal must remain at the
appropriate level for at least four cycles after the active edge to insure that the DMA
channel detects the request. An active edge that occurs during an in-progress transfer
(that is, while DACKx is asserted) is ignored. The DREOx signal must be Low (rising­
edge-triggered) or High (falling-edge-triggered) for four cycles before a new active edge
can be recognized.

If the DMA request is level-sensitive, the request may be deasserted at any time while
DACKx is asserted, and must be deasserted during the cycle in which DACKx is
deasserted unless it is desired to generate a subsequent DMA request.

External DMA Transfers
External DMA transfers appear very much like PIA accesses, except the DMA acknowl­
edge signals (DACK1-DACKO on the Am29200 microcontroller and DACK1 on the
Am2920S microcontroller) are asserted during the transfer as well as, optionally,
PIACS1-PIACSO on the Am29200 microcontroller and PIACS1 on the Am2920S
microcontroller. The address bus is driven with an address derived from the DMA
Address Register. Bits 23-8 of the address are all Os, and bits 7-0 are driven with the
PERADDR field. It is possible to use the DACKx signals as chip selects to the DMA
peripherals. The signals PIAOE, PIAWE, and WAIT are used as they are during a PIA
access. The DMAWAIT field is used to determine the number of wait states, much as the
IOWAITx field is used during a PIA access.

DMA Controller 11-9

~AMD
On the Am29200 microcontroller, if the DRAM is 16 bits wide, a 32-bit DMA DRAM
access appears as two 16-bit accesses on ID31-ID16. If the peripheral is 8 or 16 bits
wide, a DMA peripheral access appears as a single access on ID7-IDO or ID15-IDO,
respectively. The peripheral must have the same width as the transfer.

On the Am29205 microcontroller, DMA transfers between external peripherals and the
DRAM are limited to 8- or 16- bit data accesses. For 8- or 16- bit wide peripherals, a
DMA access appears on ID23-16 or ID31-16, respectively. The peripheral must have
the same width as the transfer.

Figure 11-7 shows the timing of a DMA read cycle (performed when the RW bit is 0).
The DACKx signal (and, optionally, the PIACSx signal) is asserted in the second cycle,
and the PIAOE signal is asserted in the third cycle. The data must be valid after the
number of cycles determined by DMAWAIT. If DMAEXT =1, the processor waits one
more cycle after the read access to begin a new access. The peripheral can use WAIT
to extend the access.

Figure 11-8 shows timing of a DMA write cycle (performed when the RW bit is 1). The
PIAOE signal is not asserted. Instead, the processor drives data in the second cycle and
asserts the PIAWE signal in the third cycle. The PIAWE signal is deasserted one cycle
before the final cycle (the number of cycles is determined by DMAWAIT) to provide data
hold time. If DMAEXT =1, the processor inserts one more cycle of data hold time after a
write access. The peripheral can use WAIT to extend the access.

On the Am29200 microcontroller, if the DMA channel's TIE bit is 1, an external peripher­
al can assert TDMA at any time while DACKx is asserted to terminate the transfer after

Figure 11·7 External DMA PIA R_d Cycle

MEMCLK

A(23-0)

R/W

OACKx
PIACSx

PIAOE

PIAWE

WAIT

10(31-0)

11-10

· 2) .' .
..... ________ Ad_dr_eSS _________ ..Ix""'· ._ ______ __

•

=:J :\-----·
: \",,---~----~----~:..I/

. \~------~------~:/

--~----~----~-c("" _______ Jx DamN

• • ·
number of cycles determined by DMAWAIT +1

DMAWAIT =3 illustrated

DMA Controller

· • next access is ____ . delayed one cycle

• ifDMAEXT=1

AMD~

Figure 11-8 Extemal DMA PIA Write Cycle

MEMCLK

·
A(23-0) ~~ __________ Ad_d_ress ___________ ~

·
ANI =' :C

10(31-0)

11.3.6

• •

:\~--~--~--~----~:,-

--M---------~(~ __________________ D_m_a_N ________________ __J}___

• number of cycles determined by DMAWAIT + 1
DMAWAIT =4 illustrated •

final cycle is
extended for one
cycle if DMAEXTx=1

the current access; in this case, the current access is completed as usual. As with PIA
accesses, the peripheral can use WAIT to extend the access.

The DMA channel continues to perform transfers until the count expires or the TDMA
input is asserted (depending on the CTE and TIE bits). When the transfer terminates,
the EN bit is reset unless there is an active queued transfer, as explained in Section
11.4.

Latching External DMA Requests
The DMA controller is designed to latch an active transition of the external DREQ line,
even if such a transition occurs when the DMA is disabled. This latching occurs for botn
edge- and level-triggered modes. The latched transition will then be recognized when
the DMA channel is enabled, assuming the DRM field has not changed. This latching
avoids a problem when using edge-sensitive DMA requests. There is the potential to
lose a request between the time a transfer terminates on the count going to zero (which
automatically disables the channel, blocking further requests) and the time the DMA
interrupt handler restarts the channel.

Any programming of the DMA Control Register that changes the value of the DRM field
from its previously programmed value will clear any latched request. Thus, to re-enable
a DMA channel and also clear any latched request, the respective DMA Control Register
must be written twice. With the first write, the DMA should remain disabled, and a value

DMA Controller 11-11

~AMD
different from the desired DRM value should be set in the DRM field. On the second
write, the DMA should be enabled, and the desired value should be set in the DRM field.

Upon reset, the DRM field is set to 00 (active Low). Therefore, if the DMA is later
enabled with DRM still at 00, any active Low transition of DREQ since reset will have
been latched and will be considered an active request when the DMA is enabled. To
clear any such latched request, as noted above, the DMA Control Register should be
written twice, once with DMA disabled and DRM set to 11 (or 10 or 01), and finally with
DMA enabled and DRM set to 00.

11.4 DMA QUEUING (DMA CHANNEL 0)
The address and count registers for DMA Channel 0 each consist of a two-entry queue,
with each entry of the queue separately addressable for loading a new transfer. The
DMAO Address Register and DMAO Count Register are at the head of the queue. The
DMAO Address Tail Register and DMAO Count Tail Register are at the tail of the queue
and are write-only registers. A DMA transfer queued behind an active transfer can start
as soon as the first transfer is complete. This reduces the response-time requirement for
software to load a new transfer: software has the entire transfer time of the second
transfer to load the next transfer at the tail of the queue.

DMA queuing is enabled by writing the appropriate address and count values at the
head of the queue, then setting the DMAO Control Register appropriately, with EN=1,
QEN=O, and CTEmE=1.

A transfer is loaded into the tail of the queue by first loading the DMAO Count Tail
Register, then loading the DMAO Address Tail Register (note that the PERADDR field
cannot be changed by a queued transfer). Writing the tail address causes the QEN bit to
be set. Whenever a DMA transfer terminates at the head of the queue and the QEN bit
is 1, the transfer at the tail of the queue advances to the head of the queue and begins
immediately. When the queued transfer advances to the head of the queue, the QEN bit
is reset, the EN bit remains set, and the CTlml bit is set (note that the automatic queue
advance makes it impossible to inspect the count of the former transfer after a TTl
interrupt in order to discover how many transfers were performed by that transfer).

The CTIITTI interrupt handler need not clear the CTlml bit: in fact, it is unsafe to write
the DMAO Control Register at this point because the termination of the current transfer
(the transfer that was formerly queued) may be lost. The interrupt handler need only
place the count and address of the next transfer at the tail of the queue (again, the tail
address should be loaded after the count, because writing the tail address sets the QEN
bit and enables the queue to advance). The CTlml bit is automatically reset when the
tail address is written.

Queue underflow occurs if the transfer at the head of the queue terminates before the
next transfer is loaded at the tail of the queue. Software can detect that underflow has
occurred by examining the EN bit after setting up the next transfer. If the EN bit is 0,
underflow has occurred, because a successful start of a queued transfer causes the EN
bit to remain set when the termination interrupt is generated.

11.5 RANDOM DIRECT MEMORY ACCESS BY EXTERNAL DEVICES
(Am29200 MICROCONTROLLER)

11-12

The Am29200 microcontroller is designed primarily for single-controller applications, and
it has no provision for other bus masters to control the address and data buses in the
traditional sense. However, the DMA controller does provide a mechanism for an
external device to access the ROM or DRAM using addresses provided by the device

DMA Controller

AMD~
rather than by a OMA channel. External devices use the GREO and GACK signals to
perform a random memory access via the Am29200 microcontroller's ORAM or ROM
controller.

Figure 11-9 shows the timing for a memory read using GREO and GACK. The external
device indicates that it wants to perform a memory access by asserting GREO. As soon
as the processor can perform the access, it asserts GACK. The external device can
place the memory address on 1031-100 during any cycle following the assertion of
GACK. The device indicates that the address is valid by deasserting GREO. The
processor uses this address to determine whether the access is to ROM or ORAM
(according to the normal address allocation) and performs the required access.
Figure 11-9 shows an access to DRAM, as an example. The processor deasserts GACK
at the beginning of the cycle in which the data is valid on 1031-100. The deassertion of
GACK completes the access.

Figure 11-10 illustrates how the GREatGACK protocol can be used to perform a
memory write. In this case, the external device supplies the address upon the deasser­
tion of GREO and then provides the write data on 1031-100. The processor does not
distinguish between a read and a write, allowing the 10 Bus to be available to the device
for the transfer of both address and data. The distinction between reads and writes must
be made by external logic (which, for example, forms the signal wenew in Figure 11-10)
in a way that meets the memory timing requirements. For example, an ANO gate can be

Figure t t.. External Random DRAM Read Cycle (Am29200 MicrocontrollerJ

MEMCLK
I I

A14-A1 ~ Addr I
Col Addr E

:/ :l
I I

\ I :r RASx
I

\ I :,-CAS3-CASO I

I

1031-100 ----------~(~------:-.----------_~~'------_~
~ : --------', :

:\~ ______________________ ~ ____ ~ ________ _w:,

DMA Controller 11-13

~AMD
Figure 11.10 Extemal Random DRAM Wrile Cycle (Am29200 Microconlroller)

MEMCLK

A14-A1

wenew

1031-100

11-14

:/ :l ,

\ ':r -------,
\' :r
"""'::---~,

\ :r --------.,.,

__________ ~(~ ________________ ~~~ ____ ~_m _____ 1
-:-1"""": _______ -11 :

:\~ ______ ~ ______ ~~ __ ~ __ ~ __ ~ __ _M:I

used to form the negative OR of the processor's WE signal and the write enable from
the external device.

To summarize the use of GREQ and GACK:

1. The external device asserts GREQ to request an access.

2. Following the assertion of GACK, the device places the address on ID31-IDO and
deasserts GREQ to indicate that the address is valid.

3. For a read, the device must be able to latch data from ID31-IDO at the end of the
cycle in which GACK is deasserted. For a write, the device must be prepared to drive
data on ID31-IDO on the second cycle following the address transfer and must hold
the data valid until the cycle fpllowing the deassertion of GACK, at which time it must
stop driving. The device must also supply a write enable signal that satisfies the tim­
ing requirements of the memory. In either case, the processor deasserts GACK
based on the access timing of the ROM or DRAM.

To further clarify the use of GREQ and GACK, Figure 11-11 shows example timing for a
ROM read. Writes to the ROM space are more difficult to implement than DRAM writes
because the processor always asserts the ROMOE signal.

Memory accesses using GREQ and GACK are restricted to 32-bit accesses: 8- and
16-bit accesses are not supported. Zero-wait-state accesses are also not supported.
Furthermore, the ROM and/or DRAM bank must be 32 bits wide. Although the GREW

DMA Controller

AMD~

Figure 11·11 External Random ROM Read Cycle (Am29200 Microcontroller)

MEMCLK

A2.3-AO

RIW

ROMCSx

ROMOE

BURST

RSWE

1031-100

GREQ

GACK

I Address I
:/ :' ... _;.....­

'\'-~~:/
'U ' , , ,

__ --_--... --_--ED-7--Cl3 : __ _ (

\ ------....,/'
:\ :/

GACK protocol supports full 32-bit addressing, the addresses supplied must be within
the range of ROM or DRAM addresses. DRAM mapping cannot be performed.

During a processor reset, the GREO input may be used by a hardware-development
system to force processor outputs to the high-impedance state. To prevent driver
conflicts, the system should keep GREO in a high-impedance state during a processor
reset.

DMA Controller 11-15

12 PROGRAMMABLE 1/0 PORT

This chapter discusses the programmable 1/0 port available on the Am29200 and
Am29205 microcontrollers. Programmable registers, initialization, and operation are
described.

12.1 OVERVIEW

12.2

12.2.1

The 1/0 port permits direct programmable access of up to sixteen external PIO signals,
as either inputs or open-drain outputs. When used as inputs, eight of these signals,
P1015-P108, can be programmed to cause edge- or level-sensitive interrupts. The
Am29200 microcontroller supports sixteen external PIO signals (PI015-PIOO). The
Am29205 microcontroller supports eight PIO signals, (PI015-PI08).

PROGRAMMABLE REGISTERS

PIO Control Register (POCT, Address 800000DO)
The PIO Control Register (Figure 12-1) controls interrupt generation and determines the
polarity of PI015-PIOO on the Am29200 microcontroller and P1015-P108 on the
Am29205 microcontroller.

Figure 12-1 PlO Control Register

31 23 15 7 o

[3 = Reserved on Am29205 microconlroller

Bits 31-30: Interrupt Request Mode, PI015 {IRM15}--This field enables PI015 to
generate an interrupt equivalent to a request on the processor's INTR3 input, and
indicates whether PI015 is level- or edge-sensitive in generating the interrupt. The
IRM15 field controls PI015 as follows:

IRM15 Value

00
01
10
11

PI015 Interrupt

Interrupt disabled
Level-sensitive
Edge-sensitive
IRM15 only - see below

The INVERT field (see below) further conditions interrupt generation. If the INVERT bit
for PI015 is 0, an interrupt, if enabled, is generated by a High level on PI015 (level-sen­
sitive) or on a Low-to-High transition (edge-sensitive) of P1015. If the INVERT bit for
PI015 is 1, an interrupt, if enabled, is generated by a Low level on PI015 (level-sensi­
tive) or on a High-to-Low transition (edge-sensitive) of PI015.

Programmable 110 Port 12-1

~AMD

12.2.2

For IRM15, the value 11 causes PI015 to generate an edge-triggered interrupt and to
also set the FBUSY bit in the Parallel Port Control Register (see Section 13.2.1), causing
the PBUSY output to be asserted. This can be used to support certain system-specific
features of the parallel port. Note that this value may cause a spurious setting of FBUSY
during a reset, depending on the activity on PI015 after a reset.

Bits 29-16: IRM14 through IRMB-The IRM14-IRM8 fields enable interrupts and
specify level- or edge-sensitivity for PI014-PI08, respectively. These fields are identical
in definition to IRM15, except that the value 11 is reserved.

BHs 15-0: PIO Inversion (INVERT)-This field determines how the level on each PIO
signal is reflected in the PIO Input and PIO Output Registers, and how interrupts are
generated. The most significant bit of the INVERT field determines the sense of PI015,
the next bit determines the sense of PI014, and so on. A 0 in this field causes the intemal
and extemal sense of the respective PIO signal to be noninverted; a High external level is
reflected as a 1 internally, and a Low is reflected as a 0 intemally.A1in this field causes
the intemal and external sense of the respective PIO signal to be inverted; a High extemal
level is reflected as a 0 internally, and a Low is reflected as a 1 internally.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller and
should be written with Os to ensure compatibility.

PIO Input Register (PIN, Address 800000D4)
The PIO Input Register (Figure 12-2) reflects the extemal levels of PI015-PIOO on the
Am29200 microcontroller and PI015-PIOS on the Am29205 microcontroller.

Figure 12-2 PIO Input Register

12.2.3

31 23 15 7 o

Iilll = Reserved on Am29205 microcontroler

Bits 31-16: Reserved

Bits 15-0: PIO Input (PIN)-This field reflects the levels on each PIO signal. The most
significant bit of the PIN field reflects the level on PI015, the next bit reflects the level on
PI014, and so on. The correspondence between levels and bits in this register is
controlled by the INVERT field.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller and will
be read as Os.

PIO Output Register (POUT, Address 800000DB)
The PIO Output Register (Figure 12-3) determines the levels driven on the PIO signals,
for those signals enabled to be driven by the PIO Output Enable Register.

Figure 12-3 PIO Output Register

EI = Reserved on Am29205 microcontroller

12-2 Programmable I/O Port

12.2.4

AMD~
Bits 31-16: Reserved

Bits 15-0: PIO Output (POUT)-This field determines the levels on each PIO signal, if
so enabled by the PIO Output Enable Register. The most significant bit of the POUT field
determines the level on PI015, the next bit determines the level on PI014, and so on.
The correspondence between levels and bits in this register is controlled by the INVERT
field.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller and
should be written with Os to ensure compatibility.

PIO Output Enable Register (POEN, Address eoOGOGDC)

The PIO Output Enable Register (Figure 12-4) determines whether or not the PIO
signals are driven as outputs.

Fi t ~ PIG Output Enable Reg_ster

12.2.5

31 23 15 7 o

Ell = Reserved on Am29205 microcontroller

Bits 31-16: Reserved

Bits 15-0: PIO Output Enable (POEN)-This field determines whether each PIO signal
is driven as an output. The most significant bit of the POEN field determines whether
PI015 is driven, the next bit determines whether PI014 is driven, and so on. A 1 in a bit
position enables the respective signal to be driven according to the associated POUT
and INVERT bits, and a 0 disables the signal as an output.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller and
should be written with Os to ensure compatibility.

Initialization
During a processor reset, all bits of the PIO Output Enable Register are reset to 0,
disabling all PIO signals as outputs. The VO port must be initialized by software before
the VO port is used.

12.3 OPERATING THE I/O PORT
The PIO signals are asynchronous to the processor. A change on any PIO signal is
reflected in the PIO Input Register a maximum of four MEMCLK cycles after the change
occurs. A level-sensitive interrupt occurs four cycles after the change, and an edge-sen­
sitive interrupt occurs five cycles after the change. When driven as an output, a change
to the PIO Output Register is reflected on the PIO signals a maximum of one cycle after
the change occurs. All the PIO signals have additional metastable hardening, allowing
them to be driven with slow-transition-time signals.

The PIO Output Enable Register permits the PIO signals to be operated as open-drain
outputs. This is accomplished by keeping the appropriate POUT bits constant and
writing data into the POEN field, so the output is either driving Low or is disabled,
depending on the data.

Programmable VO Port 12-3

13 PARALLEL PORT

This chapter describes the parallel port supported on the Am29200 and Am29205
microcontrollers. Programmable registers and initialization are described, along with
parallel port transfers from the host and to the host.

13.1 OVERVIEW

13.2

13.2.1

The parallel port supports asynchronous bidirectional parallel data transfers. It connects a
host processor to the Am29200 or Am29205 microcontroller. The parallel port supports
data transfers from the host to the microcontroller or from the microcontroller to the host.
Data is transferred via an 8- or 32-bit extemal data register. Data is transferred to and
from the extemal data register via processor access (programmed VO) or DMA transfers.
The Am29205 microcontroller does not support full word transfers on the parallel port.

PROGRAMMABLE REGISTERS

Parallel Port Control Register (PPCT, Address 800000cO)
The Parallel Port Control Register (Figure 13-1) controls the parallel port.

Figure t 3-t Parallel Port Control Register

31 23

II I I I I I I I I

TDELAY . ,
res:

FWT

Il!ll = Reserved on Am29205 microcontroller

Bit 31: Reserved

15

ORa:
TRA

7

. I.,
oorR :FACK:

FBUSY OHH

o

BRS: AFO

ARB

Bit 30: Full Word Transfer (FWT), Am29200 mlcrocontroller-This bit controls
whether the parallel port generates an interrupt or DMA request every handshake or
every fourth handshake. When FWT is 0, a transfer of either 8 or 32 bits occurs on every
handshake. When FWT is 1, a transfer of either 8 or 32 bits occurs on every fourth
handshake, reducing the demand the parallel port places on the processor. The FWT bit
is reserved on the Am29205 microcontroller; it must be set to 0 to ensure proper
operation.

For proper transfer. of data, external logic must assemble bytes from the parallel port
interface into-an 8- or 32-bit extemallatch that implements the Parallel Port Data Register.
The actual size of the transfer is determined by the width of the extemal latch: an 8-bit
latch enables 8-bit transfers, and a 32-bit latch enables full word transfers. The DMA
transfer or load/store instruction that reads/writes the Parallel Port Data Register must
indicate the correct data width. Full word transfers are implemented only for transfers from
the host. Full word transfers are not supported on the Am29205 microcontroller.

Parallel Port 13-1

~AMD

13-2

Bits 29-24: Reserved

Bits 23-16: Transfer Delay (TDELAY)-During a transfer from the host, this field
controls the duration of the assertion of PACK (and possibly PBUSY). During a transfer
to the host, it controls the duration of data setup, PACK assertion, and data hold times.

On transfers from the host, the TDELAY field specifies one less than the number of
MEMCLK cycles in the duration interval. Setting TOE LAY to a in this case will cause
PACK to assert for one cycle.

On transfers to the host, the TDELAY field specifies the number of MEMCLK cycles in
the duration interval. In this case, if TOE LAY is set to 0, PACK will not assert at all.

Bit 15: Data Request (DRQ)-This bit is set to indicate that the parallel port is ready for
data to be read from or written to the Parallel Port Data Register. If so enabled by the
MODE field, this bit being 1 generates an interrupt or DMA request to read or write data.
This bit is reset when the Parallel Port Data Register is read or written. The ORO bit is
read-only, allowing other bits of the Parallel Port Control Register to be set (for example,
the FACK bit) without interfering with the data request.

Bit 14: Transfer Active (TRA)-This bit is set at the beginning of a transfer on the
parallel port and reset at the end of a transfer. It is read-only, so that setting other bits of
the Parallel Port Control Register does not interfere with the indication of an active
request. The TRA bit can be inspected by software to detect that a transfer is hung.

Bits 13-11: Reserved

Bit 10: Data Direction (DDIR)-This bit controls the direction of data transfer on the
parallel port. If the DDIR bit is a (the default), data is received on the parallel port. If the
DDIR bit is 1, data is transmitted on the parallel port. The MODE field must be 00 when
the DDIR bit is changed.

Bits 9-8: Parallel Port Mode (MODE)-This field enables the parallel port and controls
the operational mode of the parallel port, as follows:

MODE Value

00
01
10
11

Effect on Parallel Port

Disabled
Generate interrupt requests for service
Generate DMA Channel 0 requests
Generate DMA Channel 1 requests

Requests for service are requests to read or write the Parallel Port Data Register.
Placing the parallel port into the disabled state causes all internal state machines to be
reset, forces PACK Low, and holds the parallel port in an idle state. Parallel port
programmable registers are not affected when the port is disabled.

Bit 7: Force Busy (FBUSY)-A 1 in this bit forces an active level on the PBUSY output.
A a allows the PBUSY signal to operate normally.

Bit 6: Force ACK (FACK)-A 1 in this bit forces an active level on the PACK output for
one TDELAY interval. At the end of the interval, the FACK bit is reset and PACK is
deasserted.

Bit 5: Disable Hardware Handshake (DHH)-A 1 in this bit prevents the parallel
port interface logic from controlling PACK or PBUSY. A a in this bit permits normal

Parallel Port

13.2.2

AMD~
handshaking with PACK and PBUSY. FACK and FBUSY may be used by software to
control PACK and PBUSY regardless of the DHH bit.

Bits 4-3: Reserved

Bit 2: BUSY Relationship to STROBE (BRS)-This bit controls the relative timing of
the PBUSY and PSTROBE hardware handshaking when the parallel port is receiving
data. If BRS=O, PBUSY is asserted on the Low-to-High transition (leading edge) of
PSTROBE. If BRS=1, PBUSY is asserted on the High-to-Low transition (trailing edge) of
PSTROBE. The parallel port does not respond to PSTROBE until PBUSY is asserted,
except that the TRA bit is always set on the leading edge of PSTROBE.

Bit 1: ACK Relationship to BUSY (ARB)-This bit controls the relative timing of the
PACK and PBlJSY handshaking when the parallel port is receiving data.

If ARB=O, PBUSYand PACK are asserted and deasserted at the same time (except for
output driver skew). Both PACK and PBUSY are asserted at either the leading or trailing
edge of PSTROBE, as controlled by the BRS bit. Both are deasserted together at the
end of a transfer, which is usually at the end of a TDELAY interval.

If ARB=1, the PACK pulse follows the PBUSY pulse in time. PBUSY is asserted in
response to an assertion of PSTROBE and is deasserted when the Parallel Port Data
Register has been read and PSTROBE is Low. PACK is asserted at the same time
PBUSY is deasserted and is deasserted at the end of a TDELAY interval.

Bit 0: Autofeed (AFD)-This bit reflects the level on the PAUTOFD input. A 1 indicates
PAUTOFD is active (High), and a 0 indicates PAUTOFD is inactive (Low).

Parallel Port Status Register (PPST, Address 80000OC8)
The Parallel Port Status Register (Figure 13-2) indicates the status of the parallel port.

Figure t 3·2 Parallel Pori Status Register

31 23 15 7 0

II reserved TDELAYV

I I I

I B~TI I I

I I I

reserved reserved

I I I I I I I I I

.
STB : ACK

BSY

Bit 31: PSTROBE Level (STB)-This bit indicates the level on the PSTROBE signal. If
PSTROBE is Low, this bit is 0; if PSTROBE is High, this bit is 1.

Bits 30-24: Reserved

Bits 23-16: TDELAY Counter Value {TDELAYV)-This field indicates the current value
of the TDELAY counter used to time transitions of the handshaking signals. This value
changes as the TDELAY interval is being timed.

Bits 15-10: Reserved

Bits 9-8: Byte Count {BCT}-When the FWT bit is 1, this field indicates the number of
bytes (that is, the number otcomplete handshakes) received on the parallel port since

Parallel Port 13-3

~AMD

13.2.3

Figure 13-3

8 bits

32 bits

13.2.4

13-4

the most recent data request. This information is useful for handling partial-word
transfers at the end of a block transfer.

Bit 7: PBUSY Level (BSY)-This bit indicates the level on the PBUSY signal. If PBUSY
is Low, this bit is 0; if PBUSY is High, this bit is 1.

Bit 6: PACK Level (ACK)-This bit indicates the level on the PACK signal. If PACK is
Low, this bit is 0; if PACK is High, this bit is 1.

Bits 5-0: Reserved

Parallel Port Data Register (PPDT, Address 80000OC4)
The Parallel Port Data Register (Figure 13-3) is used to read from and write data to the
parallel port. This register is not implemented directly on the processor, but rather is
implemented by an external data latch connected to the parallel port interface cable. The
processor converts an access of this register into an external access of the data latch.
This access is similar to a PIA access, except the timing is fixed (see Section 13.3) and
the access uses the signals POE and PWE to read and write the latch.

Parallel Port Data Register

31 23 15 7 0

I
I I I I I I

reserved I
I I I I I

I PDATA

I I

31 23 15 7 0

I I I I I I

PDATA

Bits 7-0 (8-bit transfers) or

Bits 31-0 (32-bit transfers): Parallel Port Data (PDATA), Am29200 microcontroller­
This field contains the data being transferred to/from the microcontroller and the host
over the parallel port. For transfers from the host, the width of this field is determined by
the width of the external latch that implements the Parallel Port Data Register. However,
the instruction or DMA channel that reads the parallel port must also specify the correct
data width to properly read the Parallel Port Data Register. Full word transfers are not
supported on the Am29205 microcontroller.

Initialization
During a processor reset, the MODE field of the Parallel Port Control Register is reset to
00 (disabled) and the FBUSY bit is set to 1, forcing PBUSY Low (busy). The parallel port
must be configured by software before the parallel port is enabled.

Writing the value 00 into the MODE field resets the parallel port, forces PACK Low, and
forces PBUSY High (unless FBUSY is set).

The I/O port signal PI015 may be used by the host to signal a change in the configura­
tion of the parallel port. If the IRM15 field of the PIO Control Register has the value 11
(see Section 12.2.1), PI015 causes an edge-triggered interrupt and causes the FBUSY

Parallel Port

AMD~
bit to be set. Setting the FBUSY bit causes the parallel port to appear busy (PBUSY=O)
to the host while the port's configuration is changed. The FBUSY bit must be reset by
software (if required) once configuration is complete.

13.3 PARALLEL PORT TRANSFERS

13.3.1

13.3.2

The parallel port does not attach directly to the microcontroller, but is attached to the
interface cable via buffers. Data must be latched in the interface using a three-state latch
such as a 74LS374. The handshaking signals, PSTROBE, PAUTOFD, PACK, and
PBUSY, are connected to the microcontroller via simple interface circuits. The inputs
PSTROBE and PAUTOFD should be connected to the processor via a Schmitt-trigger
inverter such as a 74HCT14, and the outputs PACK and PBUSY should be connected to
the host via an open-collector inverter such as a 7406.

The hardware handshaking described in this section can be disabled by setting the DHH
bit. If the DHH bit is 1, handshaking can be accomplished by software using the FACK
and FBUSY bits.

Transfers from the Host
Figure 13-4 shows the state-transition diagram for transferring data from the host to the
microcontroller over the parallel port. Figure 13-5 through Figure 13-8 show the timing
diagrams for these transfers. The timing diagrams differ in the settings of the BRS and
ARB bits. The timing diagrams also show the signals as they appear at·the processor
interface, and do not reflect the inversions in the buffers to the parallel-port connector.

The host begins the transfer by placing data on the interface and asserting the
PSTROBE signal. The data is latched in the interface on the rising edge of PSTROBE if
BRS=O, and can be latched by either edge if BRS=1. The TRA bit is set on the leading
edge of PSTROBE.

The microcontroller asserts PBUSY within three MEMCLK cycles after the leading edge
of PSTROBE (BRS=O) or within three MEMCLK cycles after the trailing edge of
PSTROBE (BRS=1). The microcontroller asserts PACK at the same time as P""'B U.".SY..., if
ARB=O. The parallel port then generates either an interrupt request or a DMA request,
as controlled by the MODE field, so the data can be read. If ARB=O, both PBUSY and
PACK are deasserted once the TDELAY interval has expired, the Parallel Port Data
Register (PDR) has been read, and the host has deasserted PSTROBE. If ARB=1,
PBUSY is deasserted and PACK is asserted when the PDR has been read and
PSTROBE is Low. PACK remains active until the TDELAY interval has expired. In any
case, the TRA bit is reset when PACK is deasserted.

The PDR is mapped to the external buffer register. Figure 13-9 shows the timing of the
external access. This external access is treated as either a DMA access or a processor
PIA access for the purpose of prioritization with other accesses.

The PAUTOFD signal is used for software control during a transfer from the host.
Software can detect the level on PAUTOFD by reading the AFD bit in the Parallel Port
Control Register.

Transfers to the Host
Figure 13-10 shows the state transition diagram for transferring data from the microcon­
troller to the host over the parallel port. Figure 13-11 shows the timing for this transfer.
Transfers to the host are enabled by the host, using a system-dependent software
protocol. This type of transfer is enabled in the processor by setting the DDIR bit in the
Parallel Port Control Register. Setting the DDIR bit forces the PBUSY output active,

Parallel Port 13-5

~AMD
Figure 13-4 State Transitions for Transfers from the No.st

RESET

13-6

DMAIPIO read PDR.
ARB=1. and
PSTROBE Low

1 1
I Idle I

PSTROBEt

I SetTRA I
BRS=<> or (BRS=1 & P STROBE.!.)

Latch data in buffer (system).
PBUSV.!..
Generate PIO/DMA Request*.
If ARB=O:

PACKt isame time as
PBUSV) and start
TDELAY timer

DMAI
and A

PIO read PDR
RB=O

J5B0Sii't. Wait for TDELAY ex-
PACKt. piration and

Start TDELAY timer PSTROBELow

TDELAY expiration

PACKJ..
ResetTRA

J5Ml§'(t.
PACKJ..

ResetTRA

TDE LAY expiration
STROBE Low and P

*PIO or DMA request is generated every
fourth time if FWT=1

preventing the host from transferring data to the microcontroller. The MODE bit must be
00 when the DDIR bit is set or reset.

The microcontroller begins the transfer by writing data to the external buffer.
Figure 13-12 shows the timing for a buffer write. The buffer is written by either software
writing the Parallel Port Data Register or a DMA transfer that writes the Parallel Port
Data Register. The parallel port automatically generates the first DMA or interrupt
request to write the data. Thereafter. the parallel port generates a DMA or interrupt
request after it completes each transfer to the host.

During a transfer to the host; the PAUTOFD signal is used to indicate that the host is
busy and cannot accept data. PAUTOFD has the same polaritY as PBUSY for this
purpose. After the data buffer has been written. the parallel port waits for one TDELAY
interval and then asserts PACK as soon as PAUTOFD is High and PSTROBE is Low
(these signal conditions may hold before the interval expires). The TDELAY interval is

Parallel Port

AMD~
Figure 13-5 Transfer from the Host on the Parallel Port (BRS=O, ARB=O)

Data ___ ~X~ _________ oa_m _________ X~ ____________ __
DamBuffer ______________ -'x~ ____________________ o_am ____________________ __

PSTROBE

PACK

PAUTOFD

dam larohed_ /
in buffer \~----------------------PACK and PlIDSY deasserted when:

- processor has read dam
(see Figure 13-9)

__________ ~(~ ________________ J)r~-+-=-~-~T-E~-OB-V-~-~-%-~-h-as_e_xp_ir_ed __ _

~_X ____________________________ X_.~. ~

Figure 13-6 Transfer from the Host on the Parallel Port (BRS=O, ARB=1)

Dam ____ JX~ ___________ o_a_ta __________ _JX~ __________________ ~
Data Buffer X"" ______________ o_am ______________ _

data Iarohed_1
PSTROBE in buffer • \~----------------------PACK deasserted

when the TOE LAY
PACK _____________________ ...11 \ interval has expired

.BUsY \ J P'USV_ ... PACK_
~. ----------' serted when processor has read dam

(see Figure 13-9) and PSTROBE is
Low

PAUTOFD ··>;X~ ________________ X·'
used to provide data setup time for the host. PACK is active for one TDELAY interval,
then is deasserted.

In response to PACK, the host acknowledges the transfer by asserting PSTROBE, which
resets the TRA bit. PSTROBE has no fixed relationship to PACK. The host may also
assert PAUTOFD before the end of the transfer to indicate it is not ready for a subse­
quent transfer. Following the deassertion of PACK or the assertion of PSTROBE
(whichever is later), the parallel port waits one TDELAY interval to provide data hold time
to the host. At the end of the interval, the parallel port generates a new DMA or interrupt
request to have the data buffer written again, starting a new transfer. Software or the
DMA channel may determine that all transfers have been made, and a new transfer
does not start in this case.

Parallel Port 13-7

~AMD
Figure 13-7 Transfer from the Host on the Parallel Port (B~S=1. ARB=O)

Data ____ JX~ ______________ Da_m ____________ __Ix~ .. _. __ ~~~~ __________ __

DmaBUffer __ ~ ____ ~ __________________ __IX~ _______________ D_am ______________ __

PSTROBE I~ dam latch~ in -\ ______________ .1. buffer on either ~. __________________ _

edge 01 PSTROBE

PACK

---~('---------+'~-
PACK and ~ deasserted when: -.J

- processor has read dam (see Figure 13-9)
- TDELAY interval has expired
- PSTROBE is low

PAUTOFD _....JX'-____________ x".
Figure 13-8 Transfer from the Host on the Parallel Port (BRS=1. ARB=1)

Data

DmaBUffer _______________________________ ··J··X~ ______________ D_a_m ____________ ___

PSTROBE

PACK

PAUTOFD

13-8

_ dam latched in _
PACK deasserted when the
TDELAY interval has expired

___________ ...1 buffer on either '------------------~---

edge 01 PSTROBE

---------------------------....,\ ,d---om PACK
\'. ______ -.I. asserted when processor has

read dam (see Figure 13-9)

Parallel Port

AMD~
Figure 13-9 Parallel Port Buffer Read Cycle

MEMCLK

A23-AO

107-100 or
1031-100

~~------~--~~~~--------~--------~----

Figure 13·10 State Transitions for Transfers to the Host

RESET

001R=1 and
PIO or OMA enabled

Generate PIOIDMA request

TOELAY expiration and
PSTROBE Low and
PAUTOFO High

Parallel Port 13-9

~AMD
Figure 13·11 Transfer to the Host on the Parallel Port

Data (from
buffer)

PST ROBE

PACK

PAUTOFD

____ , ... x- buffer write (see
Figure 13-12)

Data X,,-: __

---'~-------/ L
PACK asserted on latest of: data hold time from later of

- TDELAY interval after data write _------'" _ PACK.!. or PSTROBEt
- PSTROBE Low controlled by TDELAY
- PAUTOFD High - -- PACK duration- ,, _____________ _

------------ controlled by
TDELAY

__ I \"-___ ~I

Figure 13·12 Parallel Port Buffer Write Cycle

MEMCLK

A23--AO

POE

PWE ., :/ .
(

I

) 107-100 Data

•

13-10 Parallel Port

14 SERIAL PORT

This chapter describes the programmable registers of the serial port on the Am29200
and Am29205 microcontrollers.

14.1 OVERVIEW

14.2

14.2.1

The on-chip serial port is a UART that permits full-duplex, bidirectional data transfer using
the RS-232 standard. Serial port registers provide a programmable baud rate generator,
odd/even parity capability, choice of word length, a test mode, and DMA access.

The operations of the serial port are similar on the Am29200 and Am29205 microcontrol­
lers, except that the DSR and DTR handshake signals are not available on the Am29205
microcontroller. These functions, if needed, can be recreated with available PIO signals.

PROGRAMMABLE REGISTERS

Serial Port Control Register (SPCT, Address 80000080)
The Serial Port Control Register (Figure 14-1) controls both the transmit and receive
sections of the serial port.

Figure 14-1 Sarial Port Control Register

31 23 15 7 o
I I I I I I I I I I I I I I I I I I

reserved PMOOE WlGN reserved TMOOE reserved RMOOE

, .. , ,
:BRK: STP RSIE

LOOP DSR

E] = Reserved on Arn29205 microconlroller

Bits 31-27: Reserved

Bit 26: Loopback (LOOP}-Setting this bit places the serial port in the loopback mode. In
this mode, the TXD output is set High and the Transmit Shift Register is connected to the
Receive Shift Register. Data transmitted by the transmit section is immediately received
by the receive section. The loopback mode is provided for testing the serial port.

Bit 25: Send Break {BRK}-Setting this bit causes the serial port to send a break,
which is a continuous Low level on the TXD output for a duration of more than one frame
transmission time. The transmitter can be used to time the frame by setting the BRK bit
when the transmitter is empty (indicated by the TEMT bit of the Serial Port Status
Register), writing the Serial Port Transmit Holding Register with data to be transmitted,
and then waiting until the TEMT bit is set again before resetting the BRK bit.

Bit 24: Data Set Ready (DSR), Am29200 microcontroller-Setting this bit causes the
DSR output to be asserted. Resetting this bit causes the DSR output to be deasserted.
This bit is reserved on the Am29205 microcontroller.

Serial Port 14-1

~AMD

14-2

Bits 23-22: Reserved

Bits 21-19: Parity Mode {PMODE)-This field specifies how parity generation and
checking are performed during transmission and reception (the value "x" is a don't care):

PMODE Value

Oxx
100
101
110
111

Parity Generation and Checking

No parity bit in frame
Odd parity (odd number of 1s in frame)
Even parity (even number of 1s in frame)
Parity forced/checked as 1
Parity forced/checked as 0

Bit 18: Stop Bits {STP)-A 0 in this bit specifies that one stop bit is used to signify
the end of a frame. A 1 in this bit specifies that two stop bits are used to signify the end
of a frame.

Bits 17-16: Word Length (WLGN)-This field indicates the number of data bits
transmitted or received in a frame, as follows:

WLGNValue

00
01
10
11

Word Length

5 bits
6 bits
7 bits
8 bits

Data words of less than eight bits are right-justified in the Transmit Holding Register and
Receive Buffer Register.

Bits 15-10: Reserved

Bits 9-8: Transmit Mode (TMODE)-This field enables data transmission and controls
the operational mode of the serial port for the transmission of data, as follows:

TMODEValue

00
01
10
11

Effect on Transmit Section

Disabled
Generate interrupt requests for service
Generate DMA Channel 0 requests
Generate DMA Channel 1 requests

Requests for service are requests to write the Transmit Holding Register with data to be
transmitted. Placing the transmit section into the disabled state causes all internal state
machines to be reset and holds the transmit section in an idle state with TXD High.
Serial port programmable registers are not affected when the transmit section is
disabled.

Bits 7-3: Reserved

Bit 2: Receive Status Interrupt Enable (RSIE)-This bit enables the serial port to
generate an interrupt because of an exception during reception. If this bit is 1 and the
serial port receives a break or experiences a framing error, parity error, or overrun error,
the serial port generates a Receive Status interrupt.

Serial Port

14.2.2

AMD~
Bits 1-0: Receive Mode (RMODE)-This field enables data reception and controls the
operational mode of the serial port for the reception of data:

RMODEValue

00
01
10
11

Effect on Receive Section

Disabled
Generate interrupt requests for service
Generate DMA Channel 0 requests
Generate DMA Channel 1 requests

Requests for service are requests to read data from the Receive Buffer Register. Placing
the receive section into the disabled state causes all internal state machines to be reset
and holds the receive section in an idle state. Serial port programmable registers are not
affected when the receive section is disabled.

Serial Port Status Register (SPST, Address 80000084)
The Serial Port Status Register (Figure 14-2) indicates the status of the transmit and
receive sections of the serial port.

Figure f 4·2 Serial Port Status Register

31 23 15 7 o
I I I I I I I I I I I I I I

reserved

, , , •• I • I

:THRE: : SRKI: PER:

TEMT RDR DTR FER OER

III = Reserved on Am29205 microoontrolier

Bits 31-11: Reserved

Bit 10: Transmitter Empty (TEMT}-This bit is 1 when the transmitter has no data to
transmit and the Transmit Shift Register is empty. This indicates to software it is safe to
disable the transmit section.

Bit 9: Transmit Holding Register Empty (THRE)-When the THRE bit is 1, the
Transmit Holding Register does not contain valid data and can be written with data to be
transmitted. When the THRE bit is 0, the Transmit Holding Register contains valid data
not yet copied to the Transmit Shift Register for transmission and cannot be written. If so
enabled by the TMODE field, the THRE bit causes an interrupt or DMA request when it
is set. The THRE bit is reset automatically by writing the Transmit Holding Register. This
bit is read-only, allowing other bits of the Serial Port Status Register to be written (for
example, resetting the BRKI bit) without interfering with the data request.

Bit 8: Receive Data Ready (RDR)-When the RDR bit is 1, the Receive Buffer Register
contains data that has been received on the serial port, and can be read to obtain the
data. When the RDR bit is 0, the Receive Buffer Register does not contain valid data. If
so enabled by the RMODE field, the RDR bit causes an interrupt or DMA request when it
is set. The RDR bit is reset automatically by reading the Receive Buffer Register.

Bits 7-5: Reserved

Serial Port 14-3

~AMD

14.2.3

Bit 4: Data Terminal Ready (DTR), Am29200 microcontroller-The DTR bit indicates
the level on the DTR pin. The DTR bit is 1 when the DTR pin is active; the DTR bit is 0
when the DTR pin is inactive. This bit is reserved on the Am29205 microcontroller.

Bit 3: Break Interrupt (BRKI)-The BRKI bit is set to indicate that a break has been
received. If the RSIE bit is 1, the BRKI bit being set causes a Receive Status interrupt.
The BRKI bit should be reset by the Receive Status interrupt handler.

Bit 2: Framing Error (FER)-This bit is set to indicate that a framing error occurred
during reception of data. If the RSIE bit is 1, the FER bit being set causes a Receive
Status interrupt. The FER bit should be reset by the Receive Status interrupt handler.

Bit 1: Parity Error (PER)-This bit is set to indicate that a parity error occurred during
reception of data. If the RSIE bit is 1, the PER bit being set causes a Receive Status
interrupt. The PER bit should be reset by the Receive Status interrupt handler.

Bit 0: Overrun Error (OER)-This bit is set to indicate that an overrun error occurred
during reception of data. If the RSIE bit is 1, the OER bit being set causes a Receive
Status interrupt. The OER bit should be reset by the Receive Status interrupt handler.

Serial Port Transmit Holding Register (SPTH, Address 80000088)
The processor writes this register (Figure 14-3) with data to be transmitted on the serial
port. The transmitter is double-buffered, and the transmit section copies data from the
Transmit Holding Register to the Transmit Shift Register (which is not accessible to
software) before transmitting the data.

Figure 14-3 Serial Pori Transmit Holding Register

14.2.4

31 23 15 7 o
I

reserved TDATA

Bits 31-8: Reserved

Bits 7-0: Transmit Data (TDATA)-This field is written with data to be transmitted on
the serial port. The THRE bit of the Serial Port Status Register should be 1 when this
register is written, to avoid overwriting data already in the register. Writing this register
causes the THRE bit to be reset.

Serial Port Receive Buffer Register (SPRB, Address 8000008C)
This register (Figure 14-4) contains data received over the serial port. The receiver is
double-buffered, and the receive section can be receiving a subsequent frame of data in
the Receive Shift Register (which is not accessible to software) while the Receive Buffer
is being read by software or by a DMA channel.

Figure 14-4 Serial Pori Receive Buffer Register
31 23 15 7 o

I

reserved RDATA

14-4 Serial Port

14.2.5

AMD~

Bits 31-8: Reserved

Bits 7-0: Receive Data (RDATA)-This field contains data received on the serial port.
The RDR bit of the Serial Port Status Register should be 1 when this register is read, to
avoid reading invalid data. Reading this register causes the RDR bit to be reset.

Baud Rate Divisor Register (BAUD, Address 80000090)
This register (Figure 14-5) specifies a clock divisor for the generation of a serial clock
that controls the serial port. The UCLK (serial clock rate) is 16 times faster than the baud
rate of the serial port. The Baud Rate Divisor Register specifies the zero-based number
of UCLK cycles in one phase (half period) of the 16x serial clock. The formula for the
baud rate is thus:

Baud Rate = (Frequency of UCLK) + (BAUDDIV+1) + 32

The maximum baud rate is 1/32 of INCLK and is achieved by tying UCLK to INCLK with
BAUDDIV~OOOO, hexadecimal.

Figure 14-5 Baud Rate Divisor Register

14.2.6

31 23 15 7 o
I I I I I I I I I I I I I I I I

reserved BAUDDIV

Bits 31-16: Reserved

Bit 15-1: Baud Rate Divisor (BAUDDIV)-This field specifies the amount by which the
UCLK input is divided to generate one phase of the serial clock. The serial clock
operates at 16 times the rate of transmission or reception of data. The BAUDDIV value
is zero-based. For example, a value of two specifies a divisor of three.

Initialization
During a processor reset, both the TMODE and RMODE fields of the Serial Port Control
Register are reset to 00, disabling the transmit and receive sections of the serial port.
Software must initialize the serial port before it is enabled.

Serial Port 14-5

15 VIDEO INTERFACE

This chapter describes the bidirectional bit serializer/deserializer (known as the video
interface) on the Am29200 and Am29205 microcontrollers. First the programmable
registers of the video interface are described. This is followed by a discussion of video
interface operation, including transmitting and receiving data.

15.1 OVERVIEW

15.2

15.2.1

The video interface provides direct connection to printer engine interfaces, raster input
devices, and other serial-driven devices. The programmable interface allows direct
connection to a large number of marking engines. Features of the interface include
programmable image scan rates, along with programmable horizontal and vertical image
margins. Video interface operations are the same on both the Am29200 and Am29205
microcontrollers.

PROGRAMMABLE REGISTERS

Video Control Register (VCT, Address 800000EO)
This register (see Figure 15-1) controls the operation of the video interface.

Figure 15·1 Video Control Register

31 23 15 7 o

I I
I I I

CLKDIV reserved 1~1.I1 IIIII
I I I I I I I I I

, • I. I I ••••

ORO OOIR ClKI: PSIO: PSl: SOIR:

res PSI LSI VIOl

Bits 31-16: Reserved

Bit 15: Data Request (DRQ)-This bit is set to indicate that the video interface is ready
for data to be written to or read from the Video Data Holding Register. If so enabled by
the MODE field, this bit being set generates an interrupt or DMA request to write or read
data. This bit is reset when the Video Data Holding Register is read or written. This bit is
read-only, to allow other bits of the Video Control Register to be set (for example, the
PSL bit) without interfering with the data request.

Bits 14-11: Clock Divide {CLKDIV)-This field contains the divisor of the VCLK input
used to generate the internal video clock. It specifies the number of VCLK periods in one
phase (half period) of the internal video clock. For example, a value of 0001 indicates
that one VCLK period constitutes one phase of the internal video clock-a divide by two.
A value of 0000 causes VCLK to be used directly as the video clock. At the beginning of
a video raster line, the clock divider is initialized so that, in the line, the first period of the
internal clock is the correct number of VCLK 'periods.

Video Interface 15-1

~AMD

15-2

Bit 10: Data Direction (DDIR)-This bit controls the direction of video data. If the DDIR
bit is 0, data is transmitted on the video interface. If the DDIR bit is 1, data is received on
the video interface.

Bits ~: Video Interface Mode (MODE)-This field enables the video interface and
controls the operational mode of the video interface, as follows:

MODE Value

00
01
10
11

Effect on Video Interface

Disabled
Generate interrupt requests for service
Generate DMA Channel 0 requests
Generate DMA Channel 1 requests

Requests for service are requests to read or write the Video Data Holding Register.
Placing the video interface into the disabled state causes all internal state machines to
be reset and holds the video interface in an idle state. Video interface programmable
registers are not affected when the interface is disabled.

Bit 7: Clock Invert (CLKI)-If this bit is 0, the VDAT, PSYNC, and LSYNC pins are
driven or sampled on the Low-to-High transition of the VCLK input. If this bit is 1, the
VDAT, PSYNC, and LSYNC pins are driven or sampled on the High-to-Low transition of
the VCLK input.

Bit 6: Reserved

Bit 5: Page Sync Input/Output (PSIO)-This bit determines whether or not PSYNC is
an input or output. If this bit is 0, PSYNC is an input. If this bit is 1, PSYNC is an output.

Bit 4: Page Sync Invert (PSI)-If this bit is 0 and PSYNC is an input, a Low-to-High
transition of the PSYNC input indicates the beginning of a page. If this bit is 1 and
PSYNC is an input, a High-to-Low transition of the PSYNC input indicates the beginning
of a page.

If this bit is 0 and PSYNC is an output, PSYNC is noninverted with respect to the PSL
bit. A PSL bit of 0 is reflected as a Low level, a PSL bit of 1 is reflected as a High level,
and a page starts on a Low-to-High transition. If this bit is 1 and PSYNC is an output,
PSYNC is inverted with respect to the PSL bit. A PSL bit of 0 is reflected as a High level,
a PSL bit of 1 is reflected as a Low level, and a page starts on a High-to-Low transition.

Bit 3: Page Sync Level (PSL)-When PSYNC is an input, this bit reflects the level on
PSYNC. When PSYNC is an output, this bit determines the level on PSYNC. If PSI=O, a
o in this bit corresponds to a Low level on PSYNC and a 1 in this bit corresponds to a
High level on PSYNC. If PSI=1, a 0 in this bit corresponds to a High level on PSYNC and
a 1 in this bit corresponds to a Low level on PSYNC.

Bit 2: Line Sync Invert (LSI)-If this bit is 0, a Low-to-High transition of the LSYNC
input indicates the beginning of a line. If this bit is 1, a High-to-Low transition of the
LSYNC input indicates the beginning of a line.

Bit 1: Shift Direction (SDIR)-When this bit is 0, the Video Data Shift Register is shifted
right to transfer data, with video data being shifted out of the least significant bit of the
register (corresponding to bit 0 of the Video Data Holding Register) or into the most
significant bit (corresponding to bit 31 of the Video Data Holding Register). When this bit
is 1, the Video Data Shift Register is shifted left to transfer data, with video data being
shifted out of the most significant bit of the register or into the least significant bit.

Video Interface

15.2.2

AMD~

Bit 0: Video Invert {VIDI)-When this bit is 0, a 1 in the Video Data Shift Register
corresponds to a High level on VDAT and a 0 in the Video Data Shift Register
corresponds to a Low level on VDAT. When this bit is 1, a 1 in the Video Data Shift
Register corresponds to a Low level on VDAT and a 0 in the Video Data Shift Register
corresponds to a High level on VDAT.

Top Margin Register (TOP, Address SOOOOOE4)
This register (Figure 15-2) specifies the number of lines in the top margin of a page.

Figure 15·2 Top Margin Register

15.2.3

31 23 15 7 o
I I I I I I I I I I I I I I

reserved TOPCNT

Bits 31-12: Reserved

Bits 11-0: Top Margin Count (TOPCNT)-This field specifies the number of lines in the
top margin.

Side Margin Register (SIDE, Address SOOOOOES)
This register (Figure 15-3) specifies the number of data bits in the left margin of a page
and the number of bits in a raster line of video data. Together, this information sets the
right and left margins of a page.

Figure 15-3 Side Margin Register

15.2.4

31 23 15 7 o
I I I I I I I I I I I I I

reserved LEFTCNT LlNECNT

Bits 31-28: Reserved

Bits 27-16: Left Margin Count (LEFTCNT)-This field specifies the number of data bit
equivalents in the left margin of a page.

Bits 15-0: Line Count (LlNECNT)-This field specifies the number of data bits in a
raster line of video data.

Video Data Holding Register (VDT, Address SOOOOOEe)
This register (Figure 15-4) contains data to be transmitted on or received from the video
interface. Video data is double-buffered so data can be written to or read from the Video
Data Holding Register while other data is transmitted from or received into the Video
Data Shift Register.

Video Interface 15-3

~AMD

Figure 15-4 Video Data Holding Register

15.2.5

31 23 15 7 o

II I I I I I I
I I

VDATA

Bits 31~: Video Data (VDATA)-This field is written or read to transmit or receive data
on the video interface.

Initialization
During a processor reset, the MODE field of the Video Control Register is reset to 00.
Software must configure the video interface before it is enabled. To prevent possible
driver conflicts during reset, the PSIO bit is reset and the DDIR bit is set so both PSYNC
and VDAT are inputs. To allow time for the interface signals to settle, the inputs and
outputs should be configured before the interface is enabled.

15.3 VIDEO INTERFACE OPERATION

15-4

The operation of the video interface is synchronous to the VCLK input (see Section
7.1.10), which clocks the video interface either directly or at a frequency multiple
specified by the CLKDIV field. The CLKDIV field specifies the number of VCLK periods
in one phase (half period) of the internal video clock. If the CLKDIV field has the value
0000, the VCLK input is used directly.

The following equations show how the CLKDIV field determines the internal video clock.

IfCLKDIV=O
Internal Video Clock period = VCLK

IfCLKDIV> 0
Internal Video Clock period = [VCLK * CLKDIV] * 2
and
Internal Video Clock frequency = [VCLK + (CLKDIV * 2)]

For example, assuming VCLK = 16 MHz = 62.5 ns period:

CLKDIV

o
1
2
3
4

Internal Video Clock Period

62.5 ns
[62.5 ns * 1] * 2 = 125 ns
[62.5 ns * 2] * 2 = 250 ns
[62.5 ns * 3] * 2 = 375 ns
[62.5 ns * 4] * 2 = 500 ns

Internal Video Clock Frequency

16.0 MHz ~VCLK)
8.0 MHz 1/2 of VCLK)
4.0 MHz 1/4 of VCLK)
2.67 MHz (1/6 of VCLK)
2.0 MHz (1/8 of VCLK)

The progression continues in this way up to a value of 15 for CLKDIV.

The clock divider circuit is initialized when the video interface is disabled, and does not
operate until the interface is enabled by the MODE field. This circuit is also initialized by
the transitipn of LSYNC that indicates the beginning of a line. Initializing the clock divider
with LSYNC insures that the first internal clock period in the line is the indicated number
of VCLK periods. The maximum frequency of VCLK is the same as the maximum
frequency of INCLK. The maximum operating frequency of the video interface is the
frequency of INCLK if the interface is used to output data. The maximum operating
frequency is one-eighth of the frequency of INCLK if the interface is used to input data.

Video Interface

15.3.1

AMD~
The PSYNC, LSYNC, and VDAT pins are driven and/or sampled during either the
Low-to-High (CLKI=O) or High-to-Low (CLKI=1) transition of the VCLK input. The clock
divider sequences on the same transition. If the clock is not divided down, new data can
be driven or sampled on every active transition of VCLK. If the clock is divided down,
new data can be driven or sampled on every CLKDIV-times-2 active transition of VCLK.

TransmiHing Data on the Video Interface
Before the video interface is enabled to transmit, the Video Control Register should be
set to configure the interface, and the Top Margin and Side Margin registers should be
set with the appropriate counts. When the DDIR bit is 0 (VDAT is an output) and the
video interface is disabled or is not transferring data, the VDAT output is held at a level
corresponding to a 0 data bit (Low if VIDI=O or High if VIDI=1). Once the video interface
has been configured, it is enabled via the MODE field.

Enabling the video interface with DDIR=O causes the interface to set the DRO bit,
thereby generating an interrupt or DMA request to write the Video Data Holding Register.
Writing data into the Video Data Holding Register resets the DRO bit. Data is transferred
from the Video Data Holding Register to the Video Data Shift Register whenever the
Video Data Shift Register is empty. After the transfer, the DRO bit is set to request more
data. Thus, the DRO bit may be set very soon after the first data word is written.
Thereafter, however, the DRO bit will be set only as data is transmitted on the interface.

A page cycle begins by an active transition of PSYNC, either as an input or output. At
the beginning of a page cycle, three count-down registers are loaded from the TOPCNT,
LEFTCNT, and LlNECNT fields. The TOPCNT counter enables the transmission of the
first raster line when it counts down to zero. The LEFTCNT counter enables the
transmission of raster data on a line when it counts down to zero. The LlNECNT counter
enables the transmission of raster data as long as it is nonzero.

After the page cycle begins, the counter registers are not enabled to count until the first
active transition of LSYNC. An active transition of LSYNC indicates the beginning of a
line. Because of internal synchronization delay, the video interface does not respond to
LSYNC until five VCLK cycles have elapsed (see Figure 15-5). If the Video Data Shift
Register is not empty, an active transition on LSYNC causes the TOPCNT counter to
decrement by one (the TOPCNT field is unaffected). The TOPCNT counter continues to
decrement by one on each active transition of LSYNC until it reaches zero. Note that if
the TOPCNT field contains zero at the beginning of a page, the video interface begins
transmitting on the first active transition of LSYNC.

When the TOPCNT counter reaches zero, the interface is enabled to transmit the first
raster line. At the beginning of the line, the LEFTCNT counter decrements on each
active transition of the interface clock, beginning five VCLK cycles after the active edge
of LSYNC, until the counter reaches zero. When the LEFTCNT counter reaches zero,
the data in the selected end of the Video Data Shift Register is enabled to drive the
VDAT output, and the LlNECNT counter is enabled to count. The LEFTCNT counter is
reloaded from the LEFTCNT field but does not count until the next active transition of
LSYNC. If the LEFTCNT field contains zero at the beginning of a line, video data is
driven and the LlNECNT counter is enabled to count immediately on the fifth VCLK cycle
after the first active transition of LSYNC, after the TOPCNT counter reaches zero.

The first bit of video data is driven for a period of the interface clock, during the cycle in
which the LEFTCNT counter reaches zero. On the next active transition of the clock, the
Video Data Shift Register is shifted right (SDIR=O) or left (SDIR=1) by one bit and the
new data driven on the VDAT output. Also, the LlNECNT counter is decremented by
one. When the last bit in the Video Data Shift Register has been transmitted, new data is

Video Interface 15-5

~AMD

Figure 15-5 YCLK, LSYNC, and YDAT Relationships (CLKI=O, LSI=O for e.ample only)

VCLK
(CLKI=O»

LSYNC
(LSI=O)

i~~DIV=1) -r---+-~---,-ank -,-: -oIL1-,-: -oIL1-,-: --u..1-r-: --u..1-r-: -LL-I-r-: -LL-I-r-: -'1-1-r-: -'1-1-r-: -'1-1...--:

~~DIV=2) ""'--~.lr-----blan~k :--..I:IL.......r-: ~: -'1-1 .--: ---.-: --'11.........-: --.--: ...A.....,I :,---.,-: ---&LI..........---:

~~DIV=3) _~.\o---blan""-k :----"XL-.-: _: _: 11.L.....+o: _: _: _I :_: _:

i~~DIV=4) _____ ~.L.....bl--Lank--':............&LI : _ : ---': ___ : ---&L.I ' ---' ___ ~~--LIL....I,'--
•
•
•

15.3.2

15-6

L first data bit (will remain blank
for top or left margins)

loaded from the Video Data Holding Register and the ORO bit is set to request more
data. Data transmission continues until the LlNECNT counter reaches zero. When the
LlNECNT counter reaches zero, the VDAT output is driven to correspond to a 0 data bit
and the Video Data Shift Register is cleared. The LlNECNT counter is reloaded but is
not enabled to count until a new line begins and the LEFTCNT counter reaches zero
once more. The VDAT output is held at a 0 data level and the Video Shift Register does
not shift until the next line is transmitted. Clearing the Video Data Shift Register at the
end of a line enables it to be reloaded with new data from the Video Data Holding
Register as soon as this data is available.

On each subsequent active transition of LSYNC, a subsequent line of data is trans­
mitted. Each line begins with a synchronization period of five VCLK cycles, then a
countdown of the LEFTCNT counter until it reaches zero, followed by data transmission
and shifting until the LlNECNT counter reaches zero. On any active transition of LSYNC,
if the Video Data Shift Register is empty, the page cycle ends and the video interface
waits for the next active transition of PSYNC.

Receiving Data on the Video Interface
When the video interface is configured to receive data, the TOPCNT and LEFTCNT
fields are not used, and the PSYNC pin is not used. Data reception is controlled by
LSYNC, VCLK, and the LlNECNT field.

On the active edge of LSYNC, the LlNECNT counter is loaded with the contents of the
LlNECNT field. On the fifth active edge of VCLK following the active edge of LSYNC (for
synchronization), data is sampled into the selected end of the Video Data Shift Register,
the register is shifted in the selected direction, and the LlNECNT counter is decremented
by one. When the Video Data Shift Register has received 32 bits, the contents of the
register are transferred into the Video Data Holding Register and the ORO bit is set to
request that the data be read. Data sampling and shifting continue until the LlNECNT

Video Interface

AMD~
counter reaches zero. To clear the data at the end of a line after the LlNECNT counter
reaches zero, the data in the Video Data Shift Register is transferred into the Video Data
Holding Register as soon as the holding register is available, and the ORO bit is set. The
interface waits for the next active transition of LSYNC before it accepts a new line of data.

Video Interface 15-7

16 INTERRUPTS AND TRAPS

This chapter describes how to use interrupts and traps to control the behavior of the
Am29200 and Am29205 microcontrollers. Programmable registers are defined, as are
vector numbers and interrupt and trap priorities. Interrupt and trap handling is discussed
along with exception reporting and timer configuration. The chapter concludes with a
description of the microcontroller's internal interrupt handler.

16.1 OVERVIEW
The Am29200 and Am29205 microcontrollers employ a lightweight interrupt and trap
facility that does not automatically save its current state in memory. Saving and restoring
state information is under software control. Interrupts and traps are dispatched using a
vector table that can be relocated in memory.

On the Am29205 microcontroller, external traps and WARN are not supported. Only the
INTR3-INTR2 inputs are available. The PIO signals can be used as additional interrupts
when more inputs are required.

16.2 INTERRUPTS AND TRAPS

16.2.1

Interrupts and traps cause the Am29200 and Am29205 microcontrollers to suspend the
execution of an instruction sequence and to begin the execution of a new sequence. The
processor mayor may not later resume the execution of the original instruction sequence.

The distinction between interrupts and traps is largely one of causation and enabling.
Interrupts alloW external devices and the timer facility to control processor execution and
are always asynchronous to program execution. Traps are intended to be used for
certain exceptional events that occur during instruction execution and are generally
synchronous to program execution.

A distinction is made between the point at which an interrupt or trap occurs and the point
at which it is taken. An interrupt or trap is said to occur when all conditions that define
the interrupt or trap are met. However, an interrupt or trap that occurs is not necessarily
recognized by the processor, either because of various enables or because of the
processor's operational mode (e.g., Halt mode). An interrupt or trap is taken when the
processor recognizes the interrupt or trap and alters its behavior accordingly.

Current Processor Status Register (CPS, Register 2)
This protected special-purpose register (see Figure 16-1) controls the behavior of the
processor and its ability to recognize exceptional events.

Figure 16-1 Current Processor Status Register

31 23 15 7 0

I I I I I I I I I I I I I
Reserved II ~IIIIII ~II R~II,L III

, "i. I • ii'
I I • • ••

I I I • I.' ••

TO ,TE,TU, WM 01'
IP TP FZ SM OA

Interrupts and Traps 16-1

~AMD

16-2

Bits 31-18: Reserved

Bits 17: Timer Disable (TD}-When the TO bit is 1, the limer interrupt is disabled.
When this bit is 0, the limer interrupt depends on the value of the IE bit of the limer
Reload Register. Note that limer interrupts may be disabled by the DA bit regardless of
the value of either TO or IE. The intent of this bit is to provide a means of disabling limer
interrupts without having to perform a non-atomic read-modify-write operation on the
limer Reload Register.

Bit 16-15: Reserved

Bit 14: Interrupt Pending (IP}-This bit allows software to detect the presence of
interrupts while the interrupts are disabled. The IP bit is set if an interrupt request is
active, but the processor is disabled from taking the resulting interrupt due to the value
of the OA, 01, or 1M bits. If all interrupt requests are subsequently deactivated while still
disabled, the IP bit is reset. .

Bits 13-12: Trace Enable, Trace Pending (TE, TP}-The TE and TP bits implement a
software-controlled, instruction single-step facility. Single stepping is not implemented
directly, but rather emulated by trap sequences controlled by these bits. The value of the
TE bit is copied to the TP bit whenever an instruction completes execution. When the TP
bit is 1, a Trace trap occurs. Section 17.2 describes the use of these bits in more detail.

Bit 11: Trap Unaligned Access (TU}-The TU bit enables checking of address
alignment for external data-memory accesses. When this bit is 1, an Unaligned Access
trap occurs if the processor either generates an address for an external word not aligned
on a word address-boundary (Le., either of the least significant two bits is 1) or gener­
ates an address for an external half-word not aligned on a half-word address boundary
(Le., the least significant address bit is 1). When the TU bit is 0, data-memory address
alignment is ignored.

Alignment is ignored for inpuVoutput accesses. The alignment of instruction addresses is
also ignored (unaligned instruction addresses can be generated only by indirect jumps).
InterrupVtrap vector addresses always are aligned properly by the processor.

Bit 10: Freeze (FZ}-The FZ bit prevents certain registers from being updated during
interrupt and trap processing, except by explicit data movement. The affected registers
are: Channel Address, Channel Data, Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values. An affected register can be
changed only by a Move-To-Special-Register instruction. When the FZ bit is 0, there is
no effect on these registers and they are updated by processor instruction execution as
described in this manual.

The FZ bit is set whenever an interrupt or trap is taken, holding critical state in the
processor so it is not modified unintentionally by the interrupt or trap handler.

If the Freeze (FZ) bit of the Current Processor Status Register is reset from 1 to 0, two
cycles are required before all program state is reflected properly in the registers affected
by the FZ bit. This implies that interrupts and traps cannot be enabled until two cycles
after the FZ bit is reset, for proper sequencing of program state. There is no delay
associated with setting the FZ bit from ° to 1.

Bit 9-8: Reserved

Interrupts and Traps

18.2.2

AMD~
Bit 7: Wait Mode (WM}-The WM bit places the processor in the Wait mode. When this
bit is 1, the processor performs no operations. The Wait mode is reset by an interrupt or
trap for which the processor is enabled, or by the assertion of the RESET pin.

Bit 6-5: Reserved

Bit 4: Supervisor Mode (SM}-The SM bit protects certain processor context, such as
protected special-purpose registers. When this bit is 1, the processor is in the Supervisor
mode and access to all processor context is allowed. When this bit is 0, the processor is
in the User mode and access to protected processor context is not allowed. An attempt
to access (either read or write) protected processor context causes a Protection
Violation trap.

Section 6.1 describes the processor state protected from User-mode access.

Bits 3-2: Interrupt Mask (IM}-The 1M field is an encoding of the processor priority with
respect to external interrupts. The interpretation of the interrupt mask is specified in
Section 16.2.2.

Bit 1: Disable Interrupts (DI}-The 01 bit prevents the processor from being interrupted
by internal peripheral requests and by external interrupt requests INTR3-INTRO on the
Am29200 microcontroller and INTR3-INTR2 on the Am29205 microcontroller. When this
bit is 1, the processor ignores all internal and external interrupts. However, traps (both
internal and external), Timer interrupts, and Trace traps may be taken. When this bit is 0,
the processor takes any interrupt enabled by the 1M field, unless the OA bit is 1.

Bit 0: Disable All Interrupts and Traps (DA}-The OA bit prevents the processor from
taking any interrupts and most traps. When this bit is 1, the processor ignores interrupts
and traps, except for the WARN trap on the Am29200 microcontroller. When the OA bit
is 0, all traps are taken; interrupts are taken if otherwise enabled.

Interrupts
Interrupts are caused by Signals applied to any of the external INTRx inputs, by the tirner
facility (see Section 16.8), or by internal peripherals (see Section 16.9). The processor
may be disabled from taking certain interrupts by the masking capability provided by the
Disable All Interrupts and Traps (OA) bit, Disable Interrupts (01) bit, and Interrupt Mask
(1M) field in the Current Processor Status Register. Timer interrupts may be disabled by
the Timer Disable (TO) bit of the Current Processor Status Register.

The OA bit disables all interrupts. The 01 bit disables external interrupts and internal
peripheral interrupts without affecting the recognition of traps and Timer interrupts. The
2-bit 1M field selectively enables external interrupts as follows:

1M Value Result

00
01
10

11

INTRO enabled
INTR1-INTRO enabled
INTR2-INTRO enabled
INTR2 enabled
INTR3-INTRO and internal peripheral interrupts enabled
INTR3-INTR2 and internal peripheral interrupts enabled

Microcontroller

Am29200
Am29200
Am29200
Am2920S
Am29200
Am2920S

Note that the INTRO interrupt cannot be disabled by the 1M field. Also, no external
interrupt is taken if either the OA or 01 bit is 1. The Interrupt Pending bit in the Current
Processor Status indicates that one or more interrupt requests is active, but the corre­
sponding interrupt is disabled due to the value of either OA, 01, or 1M.

Interrupts and Traps 16-3

~AMD
16.2.3

16.2.4

16.2.5

16-4

Traps
Traps are caused by signals applied to one of the Am29200 microcontroller inputs
TRAP1-TRAPO or by exceptional conditions such as protection violations. Traps are
disabled by the DA bit in the Current Processor Status; a 1 in the DA bit disables traps,
and a 0 enables traps. It is not possible to selectively disable individual traps.

External Interrupts and Traps
An external device causes an interrupt by asserting one of the INTRx inputs, and causes
a trap by asserting one of the TRAP1-TRAPO inputs on the Am29200 microcontroller.
Transitions on each of these inputs may be asynchronous to the processor clock; they
are protected against metastable states. For this reason, an assertion of one of these
inputs that meets the proper set-up-time criteria does not cause the corresponding
interrupt or trap until the fourth following cycle.

The INTRx inputs are prioritized with respect to each other and with respect to the
processor. To resolve conflicts between these inputs, the inputs are prioritized in order,
so the interrupt caused by INTRO has the highest priority and the interrupt caused by
INTR3 has the lowest priority.

The TRAP1-TRAPO inputs on the Am29200 microcontroller are prioritized with respect
to each other, so the trap caused by TRAPO has priority over the trap caused by TRAP1
when a conflict occurs. Both TRAPO and TRAP1 have priority over the INTRs.:-INTRO
inputs. The TRAP1-TRAPO inputs cannot be disabled selectively. Both traps, however,
can be disabled by the DA bit in the Current Processor Status Register.

The INTRx and TRAP1-TRAPO inputs are level-sensitive. Once asserted, they must be
held active until the corresponding interrupt or trap is acknowledged by the interrupt or
trap handler. This acknowledgment is system-dependent, since there is no interrupt-ac­
knowledge mechanism defined for the processor.

If any of these inputs is asserted, then deasserted before it is acknowledged, it is not
possible to predict (unless the interrupt or trap is masked) whether or not the processor
has taken the corresponding interrupt or trap. During interrupt and trap processing, the
vector number is determined in part by which of the INTRx and TRAP1-TRAPO inputs is
active. If the input causing an interrupt or trap is deasserted before the vector number is
determined, the vector number is unpredictable and the processor operation is also
unpredictable. Typically, this situation results in the processor taking an Illegal Opcode
trap.

There is a five-cycle latency from the deassertion of an INTRx or TRAP1-TRAPO input
to the time the corresponding interrupt or trap is no longer recognized by the processor.
The latency is due to the metastability hardening that allows these Signals to be driven
with slow-transition-time signals. The deassertion must be timed so the processor is not
recognizing the interrupt or trap by the time the corresponding mask is reset. Otherwise,
a spurious interrupt or trap may occur.

External traps are not supported on the Am29205 microcontroller. Only the
INTRs.:-INTR2 inputs are available for external interrupts.

Wait Mode
A wait-for-interrupt capability is provided by the Wait mode. The processor is in the Wait
mode whenever the Wait Mode (WM) bit of the Current Processor Status is 1. While in
Wait mode, the processor neither fetches nor executes instructions and performs no
external accesses. The Wait mode is exited when an interrupt or trap is taken.

Interrupts and Traps

AMD~
The processor can take only those interrupts or traps for which it is enabled, even in the
Wait mode. For example, if the processor is in the Wait mode with the DA bit set to 1, it
can leave the Wait mode only via a processor reset (see Section 2.9.2) or a WARN trap
(see Section 16.5).

16.3 VECTOR AREA
Interrupt and trap processing relies on the existence of a user-managed vector area in
external instruction/data memory. The vector area begins at an address specified by the
Vector Area Base Address Register and provides for as many as 256 different interrupt
and trap handling routines. The processor reserves 64 routines for system operation and
instruction emulation. The number and definition of the remaining 192 possible routines
are system dependent.

The structure of the vector area is a table of vectors in instruction/data memory. The
layout of a single vector is shown in Figure 16-2. Each vector gives the beginning
word-address of the associated interrupt or trap handling routine.

Figure 16-2 Vector Table Entry

16.3.1

31 23 IS' 7 o

I
Handler Starting Address 1·1· I

Vector Area Base Address Register (VAB. Register 0)
This protected special-purpose register (Figure 16-3) specifies the beginning address of
the interrupt/trap vector area. The vector area is a table of 256 vectors that point to
interrupt and trap handling routines.

When an interrupt or trap is taken, the vector number for the interrupt or trap (see
Section 16.3.2) replaces bits 9-2 of the value in the Vector Area Base Address Register
to generate the physical address for a vector contained in instruction/data memory.

Figure 16-3 Vector Area Base Address Register

'16.3.2

31 23 15 7 0

I I I I I I I I I I I I I I I I I
VAB

Bits 31-10: Vector Area Base (VAB)-The VAB field gives the beginning physical
address of the vector area. This address is constrained to begin on a l-Kbyte address­
boundary in instruction/data memory.

Bits 9-0: Zeros-These bits force the alignment of the vector area to a l-Kbyte
boundary.

Vector Numbers
When an interrupt or trap is taken, the processor determines an 8-bit vector number
associated with the interrupt or trap. The vector number gives the number of a vector

Interrupts and Traps 16-5

~AMD
table entry. The physical address of the vector table entry is generated by replacing bits
9-2 of the value in the Vector Area Base Address Register with the vector number.

Vector numbers are either predefined or specified by an instruction causing the trap. The
assignment of vector numbers is shown in Table 16-1 (vector numbers are in decimal
notation). Vector numbers 64 to 255 are used by trapping instructions; the definition of
the routines associated with these numbers is system dependent.

16.4 INTERRUPT AND TRAP HANDLING

16.4.1

16.4.2

16-6

Interrupt and trap handling consists of two distinct operations: taking the interrupt or trap
and returning from the interrupt or trap handler. If the interrupt or trap handler returns
directly to the interrupted routine, the interrupt or trap handler need not save and restore
processor state.

Old Processor Status Register (OPS, Register 1)
This protected special-purpose register has the same format as the Current Processor
Status Register. The Old Processor Status Register stores a copy of the Current
Processor Status Register when an interrupt or trap is taken. This is required since the
Current Processor Status Register is modified to reflect the status of the interruptltrap
handler.

During an interrupt return, the Old Processor Status Register is copied into the Current
Processor Status Register. This allows the Current Processor Status Register to be set
as required for the routine that is the target of the interrupt return.

Program Counter Stack
The program counter unit, shown in Figure 16-4, forms arid sequences instruction
addresses for the instruction fetch unit. It contains the program counter (PC), the
program-counter multiplexer (PC MUX), the return address latch, and the program­
counter buffer.

The PC forms addresses for sequential instructions executed by the processor. The
master of the PC Register, PC L 1, contains the address of the instruction being fetched
in the instruction fetch unit. The slave of the PC Register, PC L2, contains the next
sequential address, which may be fetched by the instruction fetch unit in the next cycle.

The return address latch passes the address of the instruction following the delayed
instruction of a call to the register file. This address is the return address of the call.

The PC buffer stores the addresses of instructions in various stages of execution when
an interrupt or trap is taken. The registers in this buffer-Program Counters a, 1, and 2
(PCa, PC1, and PC2)-are normally updated from the PC as instructions flow through
the processor pipeline.

When an interrupt or trap is taken, the Freeze (FZ) bit in the Current Processor Status
Register is set, holding the quantities in the PC buffer. When the FZ bit is set, pca, PC1,
and PC2 contain the addresses of the instructions in the decode, execute, and write­
back stages of the pipeline, respectively.

Upon the execution of an interrupt return, the target instruction stream is restarted using
the instruction addresses in pca and PC1. Two registers are required here because the
processor implements delayed branches. An interrupt or trap may be taken when the
processor is executing the delay instruction of a branch and decoding the target of the
branch. This discontinuous instruction sequence must be restarted properly upon an
interrupt return. Restarting the instruction pipeline using two separate registers correctly

Interrupts and Traps

Table 16-1 Vector Number Assignments

Number Type of Trap or Interrupt

0 Illegal Opcode
1 Unaligned Access
2 Out-of-Range

3-4 Reserved
5 Protection Violation

6-7 Reserved
8 User Instruction Mapping Miss
9 User Data Mapping Miss

10 Supervisor Instruction Mapping Miss
11 Supervisor Data Mapping Miss

12-13 Reserved
14 Timer
15 Trace
16 INTR04
17 INTR14
18 INTR2
19 INTR3I1 nternal
20 TRAP04
21 TRAP1 4
22 Floating-Point Exception
23 Reserved

24-29 Reserved for instruction emulation
(opcodes D8-DD)

30 MULTM
31 MULTMU

32 MULTIPLY
33 DIVIDE

34 MULTIPLU

35 DIVIDU
36 CONVERT
37 SQRT

38 CLASS
39-41 Reserved for instruction emulation

(opcode E7-E9)
42 FEQ

43 DEQ

44 FGT

45 DGT
46 FGE

47 DGE
48 FADD

49 DADO
50 FSUB

51 DSUB

52 FMUL

Notes:

AMD~

Cause

Executing undefined instruction 1

Access on unnatural boundary, TU = 1
Overflow or underflow

Invalid User-mode operation2

No DRAM mapping for access
No DRAM mapping for access
No DRAM mapping for access
No DRAM mapping for access

Timer Facility
Trace Facility
INTRO input
INTR1 input
INTR2 input
INTR3 input or internal peripheral
TRAPO input
TRAP1 input
Unmasked floating-point exception3

MULTM instruction

MULTMU instruction
MULTIPLY instruction

DIVIDE instruction
MULTIPLU instruction
DIVIDU instruction
CONVERT instruction
SQRT instruction

CLASS instruction

FEQ instruction

DEQ instruction

FGT instruction
DGT instruction

FGE instruction
DGE instruction

FADD instruction

DADD instruction

FSUB instruction

DSUB instruction
FMUL instruction

1. This vector number also results if an external device removes INTRx orTRAP 1-TRAPO before the corresponding interrupt or
trap is taken by the processor (see Section 16.2.4).

2. Some Supervisor-mode operations cause Protection Violations to facilitate virtualization of certain operations.

3. The Floating-Point Exception trap is not generated b}(the processor hardware. It is generated by the software that implements
the virtual arithmetic interface (see Section 2.8).

4. Cannot be generated by the Am29205 microcontroller hardware.

Interrupts and Traps 16-7

~AMD
Table 16-1 Vector Number Assignments (continued)

Number

53
54
55
56

57
58-63

64-255

Notes: (continued)

Type of Trap or Interrupt

DMUL

FDIV
DDIV

Reserved for instruction emulation
(opcode F8)

FDMUL

Reserved for instruction emulation
(opcode FA-FF)

Cause

DMUL instruction
FDIV instruction

DDIV instruction

FDMUL instruction

ASSERT and EMULATE instruction traps NoteS
(vector number specified by instruction)

5. Some of Vector Numbers 64-255 are reserved for software compatibility (see Sections 4.2.3 and 4.2.6). These are docu­
mented in Chapter 4 and in the Host Interface (HIF) Specification (included in the RISC Design-Made-Easy Application Guide,
PID #16693A), available from AMD.

Figure 16-4 Program Counter Unit

Instruction
Fetch

Branch

3D-bit
Incrementer

BBus

30

Return
Address

Latch

R Bus

PC Bus

PC Buffer

~ .
-------------- -,

Hi-S Interrupts and Traps

Address
Unit

AMO:'

handles this special case; in this case, PCl points to the delay instruction of the branch,
and pca points to its target. PC2 does not participate in the interrupt return, but is
included to report the addresses of instructions causing certain exceptions.

The PC is not defined as a special-purpose register. It cannot be modified or inspected
by instructions. Instead, the interrupting and restarting of the pipeline is done by the PC
Buffer registers pca and PC1.

16.4.2.1 Program Counter 0 Register (PCO, Register 10)

This protected special-purpose register (Figure 16-5) is used on an interrupt return to
restart the instruction in the decode stage when the original interrupt or trap was taken.

Figure 16-5 Program Counter 0 Register
31 23 15 7 0

I' """""" W """""""10 10 1

Bits 31-2: Program Counter 0 (PCO)-This field captures the word-address of an
instruction as it enters the decode stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, pca holds its
value.

When an interrupt or trap is taken, the pca field contains the word-address of the
instruction in the decode stage. The interrupt or trap has prevented this instruction from
executing. The processor uses the pca field to restart this instruction on an interrupt
return.

Bits 1~: Zeros-These bits are zero since instruction addresses are always word
aligned.

16.4.2.2 Program Counter 1 Register (PC1, Register 11)

This protected special-purpose register (Figure 16-6) is used on an interrupt return to
restart the instruction in the execute stage when the original interrupt or trap was taken.

Figure 16-6 Program Counter 1 Register

31 23 15 7 0

I"""""""l,"""'" ""'1 010 1

Bits 31-2: Program Counter 1 (PC1)-This field captures the word-address of an
instruction as it enters the execute stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PCl holds its
value.

When an interrupt or trap is taken, the PCl field contains the word-address of the
instruction in the execute stage; the interrupt or trap has prevented this instruction from
completing execution. The processor uses the PC1 field to restart this instruction on an
interrupt return.

Bits 1~: Zeros-These bits are zero, since instruction addresses are always word
aligned.

Interrupts and Traps 16-9

~AMD
16.4.2.3 Program Counter 2 Register (PC2. Register 12)

This protected special-purpose register (Figure 16-7) reports the address of certain
instructions causing traps.

Figure 16-7 Program Counter 2 Register

16.4.3

16-10

31 23 15 7 0

II I I I I I I I I I I I I I Il.l I I I I I I II I I I I 1010 I

Bits 31-2: Program Counter 2 (PC2)-This field captures the word address of an
instruction as it enters the write-back stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PC2 holds its
value.

When an interrupt or trap is taken, the PC2 field contains the word address of the
instruction in the write-back stage. In certain cases PC2 contains the address of the
instruction causing a trap. The PC2 field is used to report the address of this instruction
and has no other use in the processor.

Bits 1-0: Zeros-These bits are zero since instruction addresses are always word
aligned.

Taking an Interrupt or Trap
The following operations are performed in sequence by the processor when an interrupt
or trap is taken:

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any in-progress load or store operation is completed. Any additional operations are
canceled in the case of load multiple and store multiple.

4. The contents of the Current Processor Status Register are copied into the Old Pro­
cessor Status Register.

5. The Current Processor Status register is modified as shown in Figure 16-8 (the value
u means unaffected). Note that setting the Freeze (FZ) bit freezes the Channel Ad­
dress, Channel Data, Channel Control, Program Counter 0, Program Counter 1, Pro­
gram Counter 2, and ALU Status Registers.

6. The address of the first instruction of the interrupt or trap handler is determined. The
address is obtained by accessing a vector from instruction/data memory, using the
physical address obtained from the Vector Area Base Address Register and the vec­
tor number. This is a 32-bit access.

7. An instruction fetch is initiated using the instruction address determined in step 6. At
this point, normal instruction execution resumes.

Note that the processor does not explicitly save the contents of any registers when an
interrupt is taken. If register saving is required, it is the responsibility of the interrupt- or
trap-handling routine. For proper operation, registers must be saved before any further
interrupts or traps may be taken. The FZ bit must be reset at least two instructions
before interrupts or traps are re-enabled, to allow program state to be reflected properly
in processor registers if an interrupt or trap is taken.

Interrupts and Traps

AMOr.

Figure 16-8 Current Processor Status After an Interrupt or Trap

16.4.4

31 23 15 7 0

F 01 01 J J ! ! ~ l ~ 10 10 101;1~1~1;1~1~1;1;loH:Hol ;1": "1;1 ~I
Reserved .'" ••••• I • I.'

I res I IP: TP I FZ I WM: SM 1M : OA
I I

TO res TE TU res res 01

Retuming from an Interrupt or Trap
Two instructions are used to resume the execution of an interrupted program: Interrupt
Return (IRET), and Interrupt Return and Invalidate (IRETINV). These instructions are
identical in the Am29200 and Am29205 microcontrollers; in other 29K Family proces­
sors, the IRETINV instruction resets all Valid bits in an instruction cache, whereas the
IRET instruction does not affect the Valid bits.

In some situations, the processor state must be set properly by software before the
interrupt retum is executed. The following is a list of operations normally performed in
such cases:

1. The Current Processor Status Register is configured as shown in Figure 16-9 (the
value xis a don't care). Note that setting the FZ bit freezes the registers listed below
so they may be set for the interrupt return.

2. The Old Processor Status Register is set to the value of the Current Processor Status
for the target routine.

3. The Channel Address, Channel Data, and Channel Control registers are set to restart
or resume uncompleted external accesses of the target routine.

4. The Program Counter 1 and Program Counter 0 registers are set to the addresses of
the first and second instructions, respectively, to be executed in the target routine.

5. Other registers are set as required. These may include registers such as the ALU
Status, Q, and so forth, depending on the particular situation. Some of these registers
are unaffected by the FZ bit so they must be set in such a manner that they are not
modified unintentionally before the interrupt return.

Figure 16-9 Current Processor Status Before Interrupt Retum

31 23 15 7 o

I II I I
.0 0 0 0

I I I I I
00000

' ------""v
Reserved

I

TO res TE TU res res 01

InterruDts and TraDs 16-11

~AMD

16.4.5

16-12

Once the processor registers are configured properly, as described above, an interrupt
return instruction (IRET or IRETINV) performs the remaining steps necessary to retum
to the target routine. The following operations are performed by the interrupt return
instruction:

1. Any in-progress load or store operation is completed. If a load-multiple or store-multi­
ple sequence is in progress, the interrupt return is not executed until the sequence
completes.

2. Interrupts and traps are disabled, regardless of the settings of the DA, 01, and 1M
fields of the Current Processor Status, for steps 3 through 1 a.

3. The contents of the Old Processor Status Register are copied into the Current Pro­
cessor Status Register. This normally resets the FZ bit, allowing the Program Counter
a, 1, 2, Channel Address, Data, Control, and ALU Status registers to update normally.
Since certain bits of the Current Processor Status Register always are updated by the
processor, this copy operation may be irrelevant for certain bits (e.g., the Interrupt
Pending bit).

4. If the Contents Valid (CV) bit of the Channel Control Register is 1, and the Not Needed
(NN) and Multiple Operation (ML) bits are both a, an extemal access is started. This
operation is based on the contents of the Channel Address, Channel Data, and Chan­
nel Control registers. The Current Processor Status Register conditions the access as
usual. Load-multiple and store-multiple operations are not restarted at this point.

5. The address in Program Counter 1 is used to fetch an instruction. The Current Pro­
cessor Status Register conditions the fetch. This step is treated as a branch in the
processor pipeline.

6. The instruction fetched in step 5 enters the decode stage of the pipeline.

7. The address in Program Counter a is used to fetch an instruction. The Current Pro­
cessor Status Register conditions the fetch. This step is treated as a branch in the
processor pipeline.

8. The instruction fetched in step 5 enters the execute stage of the pipeline, and the
instruction fetched in step 7 enters the decode stage.

9. If the CV bit in the Channel Control Register is a 1, the NN bit is 0, and the ML bit is
1, a load-multiple or store-multiple sequence is started based on the contents of the
Channel Address, Channel Data, and Channel Control registers.

1 a.lnterrupts and traps are enabled per the appropriate bits in the Current Processor
Status Register.

11. The processor resumes normal operation.

Lightweight Interrupt Processing
The registers affected by the FZ bit of the Current Processor Status Register are those
modified by almost any usual sequence of instructions. Since the FZ bit is set by an
interrupt or trap, the interrupt or trap handler is able to execute while not disturbing the
state of the interrupted routine, though its execution is somewhat restricted. Thus, it is
not necessary in many cases for the interrupt or trap handler to save the registers
affected by the FZ bit. This permits the implementation of lightweight interrupt handlers
that do not have all of the overhead normally associated with interrupt handlers.

The processor provides an additional benefit to lightweight interrupts if the Program
Counter a and Program Counter 1 Registers are not modified by the interrupt or trap
handler. If Program Counters a and 1 contain the addresses of sequential instructions

Interrupts and Traps

18.4.8

AMD~

when an interrupt or trap is taken, and if they are not modified before an interrupt return
is executed, step 7 of the interrupt return sequence in Section 16.4.4 occurs as a
sequential fetch-instead of a branch-for the interrupt return. The performance impact
of a sequential fetch is normally less than that of a branch.

Because the registers affected by the FZ bit are sometimes required for instruction
execution, it is not possible for the lightweight interrupt or trap handler to execute all
instructions, unless the required registers are first saved elsewhere (e.g., in one or more
global registers). Most of the restrictions due to register dependencies are obvious (e.g.,
the Byte Pointer for byte extracts) and will not be discussed here. Other less obvious
restrictions are listed below:

• Load Multiple and Store Multiple. The Channel Address, Channel Data, and Channel
Control registers are used to sequence load-multiple and store-multiple operations,
so these instructions cannot be executed while the registers are frozen. However,
other external accesses may occur; the Channel Address, Channel Data, and Chan­
nel Control registers are required only to restart an access after an exception, and the
interrupt or trap handler is not expected to encounter any exceptions.

• Loads and stores that set the Byte Pointer. If the SB bit of a load or store instruction is
1 and the FZ bit is also 1, there is no effect on the Byte Pointer. Thus, the execution
of external byte and half-word accesses using this mechanism is not possible.

• Extended arithmetic. The Carry bit of the ALU Status Register is not updated while
the FZ bit is 1.

• Divide step instructions. The Divide Flag of the ALU Status Register is not updated
when the FZ bit is 1.

If the interrupt or trap handler does not save the state of the interrupted routine, it cannot
allow additional interrupts and traps. Also, the operation of the interrupt or trap handler
cannot depend on any trapping instructions (e.g., floating-point instructions, assert
instructions, illegal operation codes, arithmetic overflow, etc.), since these are disabled.
There are certain cases, however, where traps are unavoidable. Special considerations
for these cases are discussed in Section 16.7.6.

Simulation of Interftlpts and Traps
Assert instructions may be used by a Supervisor-mode program to simulate the occur­
rence of various interrupts and traps defined for the processor. Only an assert instruction
executed in Supervisor mode can specify a vector number between 0 and 63. If this
instruction causes a trap, the effect is to create an interrupt or trap similar to that
associated with the specified vector number.

Thus, the interrupt and trap routines defined for basic processor operation can be
invoked without creating any particular hardware condition. For example, on the
Am29200 microcontroller, an INTR1 interrupt may be simulated by an assert instruction
that specifies a vector number of 17, without the activation of the INTR1 signal.

18.5 WARN TRAP (Am29200 Microcontroller)
The processor recognizes a special trap, caused by the activation of the WARN input,
that cannot be masked. The WARN trap is intended to be used for severe system-error
or deadlock conditions. It allows the processor to be placed in a known, operable state,
while preserving much of its original state for error reporting and possible recovery.
Therefore, it shares some features in common with the Reset mode as well as features
common to other traps described in this section.

Interrupts and Traps 16-13

~AMD

16.5.1

The major differences between the WARN trap and other traps are:

• The processor does not wait for an in-progress external access to complete before tak­
ing the trap, since this access might not complete (for example, because WAIT is as­
serted). However, the information related to any outstanding access is retained by the
Channel Address, Channel Data, and Channel Control registers when the trap is taken .

• The vector-fetch operation is not performed when the WARN trap is taken. Instead,
instruction fetching begins immediately at address 16.

Note that the WARN trap may disrupt the state of the routine that is executing when it is
taken, prohibiting this routine from being restarted. WARN may also reset some internal
peripherals.

WARN Input (Am29200 Microcontroller)
An inactive-to-active transition on the WARN input causes a WARN trap to be taken by
the processor. The WARN trap cannot be disabled; the processor responds to the
WARN input regardless of its internal condition unless the RESET input is also asserted.
The WARN input is provided so the system can gain control of the processor in extreme
situations, such as when system power is about to be removed or when a severe
non-recoverable error occurs.

The WARN input is edge-sensitive so an active level on the WARN input for long
intervals does not cause the processor to take multiple WARN traps. However, WARN
must be held active for at least four cycles in order to be properly recognized by the
processor. The processor still takes the WARN trap if WARN is deasserted after four
cycles. Another WARN trap occurs if WARN makes another inactive-to-active transition.

The processor enters the Executing mode when the WARN input is asserted, regardless
of its previous operational mode. Either seven or eight cycles after WARN is asserted
(depending on internal synchronization time), the processor performs a trap-handler
instruction access on the bus. This access is directed to address 16.

16.6 SEQUENCING OF INTERRUPTS AND TRAPS

16-14

On every cycle, the processor decides either to execute instructions or to take an
interrupt or trap. Since there are multiple sources of interrupts and traps, more than one
interrupt or trap may be pending on a given cycle.

To resolve conflicts, interrupts and traps are taken according to the priority shown in
Table 16-2. In this table, interrupts and traps are listed in order of decreasing priority.
This section discusses the first three columns of Table 16-2. The last two columns are
discussed in Section 16.7.

In Table 16-2, interrupts and traps fall into one of two categories depending on the timing
of their occurrence relative to instruction execution. These categories are indicated in
the third column of Table 16-2 by the labels Insf and Async. These labels have the
following meaning:

• Inst-Generated by the execution or attempted execution of an instruction.

• Async-Generated asynchronous to and independent of the instruction being
executed, although it may be a result of an instruction executed previously.

Interrupts and Traps

AMD~
Table 115·2 Internlpt and Trap Priority Table

Priority Type of Interrupt or Trap InstlAsync PC1 Channel Regs

1 WARN2
(Highest)

Async Next Note1

2 User-Mode Data Mapping Miss Inst Next All
Supervisor-Mode Data Mapping Miss Inst Next All

3 Unaligned Access Inst Next All
Out-of-Range Inst Next NlA
Assert Instructions Inst Next NlA
Floating-Point Instructions Inst Next N/A
Integer Multiply/Divide Instructions Inst Next NlA
EMULATE Inst Next NlA

4 TRAP()2 Async Next Multiple

5 TRAP12 Async Next Multiple

6 INTR()2 Async Next Multiple

7 INTR12 Async Next Multiple

8 INTR2 Async Next Multiple

9 INTR3 Async Next Multiple
Internal peripheral interrupts Async Next Multiple

10 Timer Async Next Multiple

11 Trace Async Next Multiple

12 User-mode Inst Mapping Miss Inst Curr N/A
Supervisor-mode Inst Mapping Miss Inst Curr N/A

13 Illegal Opcode Inst Curr N/A
(Lowest) Protection Violation Inst Curr NlA

Notes:
1. The Channel Address, Channel Data, and Channel Control registers are set for aWARN trap on the Am29200 microcontro//er

only if an external access is in progress when the trap is taken.

2. Not supported on the Am29205 microcontroller.

Interrupts and Traps 16-15

;r1 AMD

The principle for interrupt and trap sequencing is.that the highest priority interrupt or trap
is taken first. Other interrupts and traps either remain active until they can be taken or
they are regenerated when they can be taken. This is accomplished depending on the
type of interrupt or trap, as follows:

1. All traps in Table 16-2 with priority 13 through 15 are regenerated by the re-execution
of the causing instruction.

2. Most of the interrupts and traps of priority 4 through 12 must be held by external hard­
ware until they are taken. The exceptions to this are listed in item 3.

3. The exceptions to item 2 are the Timer interrupt and the Trace trap. These are
caused by bits in various registers in the processor and are held by these registers
until taken or cleared. The two relevant bits are the Interrupt (IN) bit of the Timer Re­
load Register for Timer interrupts and the Trace Pending (TP) bit of the Current Pro­
cessor Status Register for Trace traps.

4. All traps of priority 2 and 3 in Table 16-2, except for the Unaligned Access trap, are not
regenerated. These traps are mutually exclusive and are given high priority because they
cannot be regenerated; they must be taken if they occur. If one of these traps occurs at
the same time as a reset or WARN trap, it is not taken and its occurrence is lost.

5. The Unaligned Access trap is regenerated internally when an external access is re­
started by the Channel Address, Channel Data, and Channel Control registers. Note
this trap is not necessarily exclusive to the traps discussed in item 4 above.

The Channel Address, Channel Data, and Channel Control registers are set for a WARN
trap only if an external access is in progress when the trap is taken.

16.7 EXCEPTION REPORTING AND RESTARTING

16.7.1

16-16

When an instruction encounters an exceptional condition, the Program Counter 0,
Program Counter 1, and Program Counter 2 registers report the relevant instruction
address(es) and allow the instruction sequence to be restarted once the exceptional
condition has been remedied (if possible). Similarly, when an external access encoun­
ters an exceptional condition, the Channel Address, Channel Data, and Channel Control
registers report information on the access or transfer and allow it to be restarted. This
section describes the interpretation and use of these registers.

The PC1 column in Table 16-2 describes the value held in the Program Counter 1
Register (PC1) when the interrupt or trap is taken. For traps in the Inst category, PC1
contains either the address of the instruction causing the trap, indicated by Curr, or the
address of the instruction following the instruction causing the trap, indicated by Next.

For interrupts and traps in the Async category, PC1 contains the address of the first
instruction not executed due to the taking of the interrupt or trap. This is the next
instruction to be executed upon interrupt return, as indicated by Next in the PC1 column.

Instruction Exceptions
For traps caused by the execution of an instruction (e.g., the Out-of-Range trap), the
Program Counter 2 Register contains the address of the instruction causing the trap. In
all of these cases, PC1 is in the Next category.

The traps associated with instruction fetches (i.e., those of priority 13) occur only if the
processor attempts the execution of the associated instruction. An exception may be
detected during an instruction prefetch, but the associated trap does not occur if the
processor branches before it attempts to execute the invalid instruction. This prevents
spurious instruction exceptions.

Interrupts and Traps

16.7.2

AMD~

Restarting Mapped DRAM Accesses
DRAM mapping is provided to support application needs such as on-the-fly data
compression and decompression. In such applications, programs operate on large,
compressed data structures by decompressing data into a smaller region of memory,
operating on the data, and then compressing back into the large compressed structure.
The ability to store the data in a compressed format reduces system memory require­
ments, while the ability to operate on the data in a decompressed format simplifies the
application software.

For generality, mapped DRAM accesses allow the mapping configuration to be changed
on demand. In other words, the DRAM mapping is performed by a system routine that
changes the mapping as needed by the application program. This allows applications
written with no knowledge of DRAM mapping to operate in a system that uses DRAM
mapping. Since the DRAM mapping trap is part of normal system operation and does
not represent an error, the access that causes the trap must be restarted~nce the
trapping condition is remedied-in a manner that cannot be detected by the program
causing the trap.

The Am29200 and Am29205 microcontrollers overlap external accesses with the
execution of instructions. Thus, traps caused by accesses are imprecise. The address of
the instruction that initiated the access cannot be determined by the trap handler. Since
the address of the initiating instruction is unknown, the access cannot be restarted by
re-executing this instruction. Even if the address could be determined, the instruction
might not be restartable since an instruction executed before the trap occurred, but after
the access began, may have altered the conditions of the access, such as by altering
the address source register.

In order to provide for the restarting of loads and stores that cause exceptions, the
processor saves all information required to restart these accesses in the Channel
Address, Channel Data, and Channel Control registers. The Contents Valid (CV) and
Not Needed (NN) bits in the Channel Control Register indicate that the information
contained in these registers represents an access that must be restarted. The CV bit
indicates the access did not complete, and the NN bit indicates whether or not the data
from the access is required by the processor.

Note that since instruction execution is overlapped with external accesses, an instruction
that executes after a load may alter the destination register for the load. If a trap occurs
in this situation, the access information in the Channel Address, Channel Data, and
Channel Control registers is correct, but the load cannot be restarted because it will
destroy the new value in the destination register. The NN bit provides correct operation
in this case.

When an interrupt or trap is taken, the handling routine has access to the Channel
Address, Channel Data, and Channel Control registers. The contents of these registers
may contain information relevant to an incomplete access and can be preserved for
restarting this access. Since these registers are frozen (due to the FZ bit of the Current
Processor Status) they are not available to monitor any external accesses in the
interrupt or trap handler until their contents are saved and the FZ bit is reset.

Upon an interrupt return (I RET or IRETINV), the processor restarts an access using the
Channel Address, Channel Data, and Channel Control registers. The access is initiated
if the CV bit of the Channel Control Register is 1 and the NN bit is O. The restart cannot
be detected in the logical operation of the restarted routine, although the timing of
execution is altered.

Interrupts and Traps 16-17

~AMD

t6.7.2.t

The mechanism used to restart trapping accessas has the additional benefit of allowing
a fast interrupt-response time when the processor is performing a load-multiple or
store-multiple operation. An interrupted load-multiple or store-multiple is restarted as if it
had faulted. In this case, the operation resumes from the point of interruption, not from
the beginning of the sequence.

Channel Address Register (CHA, Register 4)

This protected special-purpose register (Figure 16-10) is used to report exceptions
during external accesses. It is also used to restart interrupted load-multiple and store­
multiple operations and to restart other external accesses when possible (e.g., after
DRAM mapping misses are serviced).

The Channel Address Register is updated on the execution of every load or store
instruction and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1.

Figure ta.to Channel Address Register

t6.7.2.2

31 23 15 7 0

II I I I I I I I I I I I I I I ~H! I I I I I I I I I I II I I I

Bits 31-0: Channel Address (CHA)-This field contains the address of the current
access (if the FZ bit of the Current Processor Status Register is 0).

Channel Data Register (CHD. Register 5)

This protected special-purpose register (Figure 16-11) is used to report exceptions
during external accesses. It is also used to restart the first store of an interrupted
store-multiple operation and to restart other external accesses when possible (e.g., after
DRAM mapping misses are serviced).

The Channel Data Register is updated on the execution of every load or store instruction
and on every load or store in a load-multiple or store-multiple sequence, except when
the Freeze (FZ) bit in the Current Processor Status Register is 1. When the Channel
Data Register is updated for a load operation, the resulting value is unpredictable.

Figure t a.t t Channel Data Register

t6.7.2.3

16-18

31 23 15 7 0

II I I I I I I I I I I I I I I ;H~ I I I I I I I I I I I I I I I

Bits 31-0: Channel Data (CHD)-This field contains the data (if any) associated with
the current access (if the FZ bit of the Current Processor Status Register is 0). If the
current access is not a store, the value of this field is irrelevant.

Channel Control Register (CHC. Register 6)

This protected special-purpose register (Figure 16-12) is used to report exceptions
during external accesses. It is also used to restart interrupted load-multiple and store­
multiple operations and to restart other external accesses when possible (e.g., after
DRAM mapping misses are serviced).

Interrupts and Traps

AMD~
The Channel Control Register is updated on the execution of every load or store
instruction and on every load or store in a load-multiple or store-multiple sequence,
except when the Freeze (FZ) bit in the Current Processor Status Register is 1.

Figure 16-12 Channel Control Register

16.7.3

31 23

I I I I I I I I I I I I I I
CNTL CR

15

IIII ~ , , ,
I I I

I I I

LS: ST

ML

7

I I I I I I I
TR

o

III i ,
I I
I I

NN :
I

CV

Bits 31-24:-These bits are a direct copy of bits 23-16 from the load or store instruction
that started the current access (see Section 3.3).

Bits 23-16: LoadlStore Count Remaining {CR)-The CR field indicates the remaining
number of transfers for a load-multiple or store-multiple operation that encountered an
exception or was interrupted before completion. This number is zero-based; for
example, a value of 28 in this field indicates that 29 transfers remain to be completed.

Bit 15: LoadlStore {LS)-The LS bit is 0 if the access is a store operation and is 1 if the
access is a load operation.

Bit 14: Multiple Operation (ML)-The ML bit is 1 if the current access is a partially­
complete load-multiple or store-multiple operation; otherwise it is o.
Bit 13: Set (Sf)-The ST bit is 1 if the current access is for a Load and Set instruction;
otherwise it is O.

Bit 12-10: Reserved

Bits 9-2: Target Register (TR)-The TR field indicates the absolute register number of
the data operand for the current access (either a load target or store data source). Since
the register number in this field is absolute, it reflects the Stack-Pointer addition when
the indicated register is a local register.

Bit 1: Not Needed (NN)-The NN bit indicates that even though the Channel Address,
Channel Data, and Channel Control registers contain a valid representation of an
incomplete load operation, the data requested is not needed. This situation arises when
a load instruction is overlapped with an instruction that writes the load target register.

Bit 0: Contents Valid (CV)-The CV bit indicates the contents of the Channel Address,
Channel Data, and Channel Control registers are valid.

Integer Exceptions
Some integer add and subtract instructions-ADDS, ADDU, ADDCS, ADDCU, SUBS,
SUBU, SUBCS, SUBCU, SUBRS, SUBRU, SUBRCS, and SUBRCU-cause an
Out-of-Range trap upon overflow or underflow of a 32-bit signed or unsigned result,
depending on the instruction.

Two integer multiply instructions-MULTIPLY and MULTIPLU~ause an Out-of-Range
trap upon overflow of a 32-bit signed or unsigned result, respectively, if the MO bit of the
Integer Environment Register is o. If the MO bit is 1, these multiply instructions cannot

Interrupts and Traps 16-19

~AMD

16.7.4

16.7.5

16-20

cause an Out-of-Range trap. Since the processor does not contain hardware to directly
support these instructions, the Out-of-Range trap must be generated by the software
that implements the virtual arithmetic interface (see Section 2.8).

Two integer divide instructions-DIVIDE and DIVIDU-take the Out-of-Range trap upon
overflow of a 32-bit signed or unsigned result, respectively, if the DO bit of the Integer
Environment Register is O. If the DO bit is 1, the divide instructions cannot cause an
Out-of-Range trap unless the divisor is zero. If the divisor is zero, an Out-of-Range trap
always occurs, regardless of the DO bit.

For the MULTIPLY, MULTIPLU, DIVIDE, and DIVIDU instructions, the destination
register (or registers) is unchanged if an Out-of-Range trap is taken.

Floating-Point Exceptions
A Floating-Point Exception trap occurs when an exception is detected during a floating­
point operation and the exception is not masked by the corresponding bit of the Floating­
Point Mask Register. In this context, a floating-point operation is defined as any
operation that accepts a floating-point number as a source operand, that produces a
floating-point result, or both. Thus, for example, the CONVERT instruction may create
an exception while attempting to convert a floating-point value to an integer value or vice
versa.

In addition to the operations described in Section 16.4.3, the following operations are
performed when a Floating-Point Exception trap is taken:

1. The status of the trapping operation is written into the trap status bits of the Floating­
Point Status Register. The written status bits do not depend on the values of the cor­
responding mask bits in the Floating-Point Environment Register.

2. The destination register or registers are left unchanged.

Correcting Out-of-Range Results
Some Arithmetic instructions cause an Out-of-Range trap if the arithmetic operation
causes an overflow or underflow. When an Out-of-Range trap occurs, the result of the
operation, though incorrect, is written into the destination register. Furthermore, the
Program Counter 2 Register contains the address of the trapping instruction, and the
ALU Status Register contains an indication of the cause of the trap. It is possible, if
required, for the trap handler to use this information to form the correct result.

The ALU Status indicates the cause of the Out-of-Range trap based on the operation
performed, as follows:

1. Signed overflow. If the Out-of-Range trap is caused by signed, two's-complement
overflow (this can occur for both signed adds and subtracts), the V bit is 1.

2. Unsigned overflow. If the Out-of-Range trap is caused by unsigned overflow (this can
occur only for unsigned adds), the C bit is 1.

3. Unsigned underflow. If the Out-of-Range trap is caused by unsigned underflow (this
can occur only for unsigned subtracts), the C bit is O.

The multiply instructions, MULTIPLY and MULTIPLU, can cause an Out-of-Range trap if
the MO bit of the Integer Environment Register is 0 and the operation overflows.
However, these instructions do not set the ALU Status Register. This exception is
detected by reading the trapping instruction whose address is in the PC2 Register.

Interrupts and Traps

16.7.6

AMD~

Exceptions Dl,lring Interrupt and Trap Handling
In most cases, interrupt and trap handling routines are executed with the DA bit in the
Current Processor Status having a value of 1. It is normally assumed these routines do
not create many of the exceptions possible in most other processor routines.

If these assumptions are not valid for a particular interrupt or trap handler, the handler
must save the state of the processor and reset the FZ bit of the Current Processor
Status so the handler itself may be restarted properly. This must be accomplished before
any interrupts or traps can be taken. In this case, the state (or the state of some other
process) must be restored before an interrupt return is executed.

16.8 TIMER FACILITY

16.8.1

16.8.2

The processor has a built-in timer facility that can be configured to cause periodic
interrupts. The timer facility consists of two special-purpose registers-the timer counter
and the timer reload registers-accessible only to Supervisor-mode programs. Also, the
Current Processor Status Register contains a control bit as part of the timer facility.
These registers implement timing functions independent of program execution.

Timer Facility Operation
The Timer Counter Register has a 24-bit Timer Count Value (TCV) field that decrements
by one on every processor cycle. If the TCV field decrements to zero, it is written with
the Timer Reload Value (TRV) field of the Timer Reload Register on the next cycle; the
Interrupt (IN) bit of the Timer Reload register is set at the same time. Reloading the TCV
field by the TRV field maintains the accuracy of the timer facility.

The Timer Reload Register contains the 24-bit TRV field and the control bits Overflow
(OV) , Interrupt (IN), and Interrupt Enable (IE). If the IN bit is 1 and the IE bit also 1, a
Timer interrupt occurs. If the IN bit is 1 when the TCV field decrements to zero, the OV
bit is also set. The OV bit indicates a Timer interrupt may have occurred before a
previous interrupt was serviced.

The Current Processor Status Register contains the Timer Disable (TD) control bit. If the
TO bit is 1, Timer interrupts are disabled. The TO bit and the IE bit have equivalent
functions; the TO bit is provided so the timer may be disabled without having to perform
a non-atomic read-modify-write operation on the Timer Reload Register. There is a
possibility the TCV might decrement to zero and set the IN bit as the modified value is
written back to the Timer Reload Register, causing a Timer interrupt to be missed.

Timer Facility Initialization
To initialize the timer facility, the following steps should be taken in the specified order (it
is assumed that Timer interrupts are disabled by the OA bit of the Current Processor
Status Register or the TD bit of the Current Processor Status Register during the
following steps):

1. Set the TCV field with the desired interval count for the first timing interval. This inter­
val must be sufficiently large to allow the execution of the next step before the TCV
field decrements to zero (this normally is the case).

2. Set the TRV field with the desired interval count for the second timing interval. The
OVand IN bits are reset and the IE bit is set as desired. The second timing interval
may be equivalent to the first timing interval.

Interrupts and Traps 16-21

;t1 AMD

16.8.3

16.8.4

16.8.5

Handling Timer Interrupts
The following is a suggested list of actions necessary to handle a Timer interrupt:

1. Read the Timer Reload Register into a general-purpose register.

2. Reset the IN bit in the general-purpose register.

3. Set the TRV field in the general-purpose register to the desired value for the next tim­
ing interval. Note that at this time the timer counter is timing the current interval. This
step may be omitted if all intervals are equivalent. '

4. Write the contents of the general-purpose register back into the Timer Reload
Register.

5. Test the general-purpose-register copy of the OV bit and, if it is set, report the error as
appropriate.

6. Perform any system operations required for the Timer interrupt.

7. Execute an interrupt return.

Timer Facility Uses
Since the timer facility has a resolution of a single processor cycle, it may be used to
perform preCise timing of system events. For example, it may be used to determine an
exact measurement of the number of cycles between two events in the system or to
perform precise time-critical control functions. The Timer interrupt is enabled and
disabled separately from other processor interrupts so its priority can be specified.

The timer facility can be shared among multiple processes. This sharing is accomplished
by the implementation of a queue for timer events, which are sorted in order of increas­
ing event time. On each occurrence of a Timer interrupt, the TRV field is set for the
interval between the next two events in the queue, while the Timer Counter Register is
counting the current interval (because of a previous setting of the TRV field). The event
at the beginning of the queue identifies other system actions to be taken for the Timer
interrupt. This event is removed from the queue after the appropriate actions are taken.

Timer Counter Register (TMC, Register 8)
This protected special-purpose register (Figure 16-13) contains the counter for the timer
facility.

Figure 16-13 Timer Counter Register

16-22

31 23 15 7 0

I
Reserved rev

Bits 31-24: Reserved

Bits 23-0: Timer Count Value {TCV}-The 24-bit TCV field decrements by one on each
processor clock. When the TCV field decrements to zero, it is reloaded with the content
of the Timer Reload Value field in the Timer Reload Register. At this time, the Interrupt
bit in the Timer Reload Register is set.

Interrupts and Traps

16.8.6

AMD~

The TCV field is zero-based with respect to the limer interrupt interval; for example, a
value of 28 in the TCV field causes the IN bit to be set in the 29th subsequent processor
cycle. The TCV field is zero for a complete cycle before the IN bit is set.

Timer Reload Register (TMR, Register 9)
This protected special-purpose register (Figure 16-14) maintains synchronization of the
limer Counter Register, enables limer interrupts, and maintains timer facility status
information.

Figure 1&·14 Timer Reload Register

31

I I I I
Reserved

23 15 7 0

IIII1111111111 ~~ 11111111111
, , ,
: I I . '

ov: IE

IN

Bits 31-27: Reserved

Bit 26: Overflow (OV)-The OV bit indicates a limer interrupt occurred before a previous
limer interrupt was serviced. It is set if the Interrupt (IN) bit is1 when the limer Count
Value (TCV) field of the limer Counter Register decrements to zero. In this case, a limer
interrupt caused by the IN bit has not been serviced when another interrupt is created.

Bit 25: Interrupt (IN)-The IN bit is set whenever the TCV field decrements to zero. If
this bit is 1 and the IE bit is also 1, a limer interrupt occurs. The IN bit is set when the
TCV field decrements to zero, regardless of the value of the IE bit. The IN bit is reset by
software that handles the limer interrupt.

Bit 24: Interrupt Enable (I E)-When the IE bit is 1, the limer interrupt is enabled and
the limer interrupt occurs whenever the IN bit is 1. When this bit is 0, the limer interrupt
is disabled. The limer interrupt may be disabled by the OA bit of the Current Processor
Status Register regardless of the value of the IE bit. The limer interrupt can also be
disabled by the TO bit of the CPS Register, regardless of the value of IE and/or OA.

Bits 23-0: Timer Reload Value (TRV)-The value of this field is written into the limer
Count Value (TCV) field of the limer Counter Register when the TCV field decrements
to zero.

16.9 INTERNAL INTERRUPT CONTROLLER

16.9.1

The various peripherals and controllers on the Am29200 and Am29205 microcontrollers
can cause interrupts having the same effect on the processor as asserting the proces­
sor's INTR3 input. The interrupt controller provides a central location for generating
interrupts, indicating which interrupts are active and permitting software to reset the
interrupts independent of servicing the interrupting peripheral.

Interrupt Control Register (lCT, Address 80000028)
Bits of the Interrupt Control Register (Figure 16-15) are set at the leading edge of an
interrupt condition, except for the bits related to the 1/0 port (in the lOP I field), since 1/0
port signals are independently configurable to generate edge-triggered interrupts. For

Interrupts and Traps 16-23

~AMD
example, the DMAOI bit is set when the CTI bit tra'nsitions from 0 to 1 in the DMAO
Control Register, When a bit in this register is 1, it causes an internal assertion of the
processor's INTR3 input (there is no external indication of this on INTR3), Software can
inspect this register to determine the source of the interrupt and can reset bits in this
register to clear the interrupt.

Bits in the Interrupt Control Register are reset-only. Writing a 1 into a bit position causes
the bit to be reset unless an interrupting condition becomes active at the same time, in
which case the bit remains set. Writing a bit with 0 does not affect the bit, and the bit
may be set by an interrupting condition at the same time the bit is written with 0,

Figure 16·15 Interrupt Control Register

16·24

31 23 15 7 o
I I I I I I I

IIIIII~IIII , . , , , ,

I I

reserved 10PI res

.
VOl

: I I I I I I :

res: : : PPI RXSI: TXOI
OMAOI: res RXOI

OMA11

Bits 31-28: Reserved

Bit 27: Video Interrupt (VDI)-A 1 in this bit indica~es the video interface has generated
an interrupt request.

Bits 26-24: Reserved

Bits 23-16: 110 Port Interrupt (IOPI)-A 1 in this field indicates the respective PIO
Signal has generated an interrupt request. A 1 in the most significant bit of the IOPI field
indicates PI015 has caused an interrupt, the next bit indicates PI014 has caused an
interrupt, and so on.

Bit 15: Reserved

Bit 14: DMA Channel 0 Interrupt (DMAOI)-A 1 in this bit indicates DMA Channel 0
has generated an interrupt request.

Bit 13: DMA Channel 1 Interrupt (DMA1I)-A 1 in this bit indicates DMA Channel 1
has generated an interrupt request.

Bit 12: Reserved

Bit 11: Parallel Port Interrupt (PPI)-A 1 in this bit indicates the parallel port has
generated an interrupt request.

Bits 10-8: Reserved

Bit 7: Serial Port Receive Status Interrupt (RXSI)-A 1 in this bit indicates the serial
port has generated an interrupt request because of the status of the receive logic.

Bit 6: Serial Port Receive Data Interrupt (RXDI)-A 1 in this bit indicates the serial
port has generated an interrupt request because receive data is ready,

Bit 5: Serial Port Transmit Data Interrupt (TXDI)-A 1 in this bit indicates the serial
port has generated an interrupt request because the Transmit Holding Register is empty,

Bits 4-0: Reserved

Interrupts and Traps

16.9.2

16.9.3

AMD~
Interrupt Controller Initialization
Processor interrupts are disabled by a processor reset, but the Interrupt Control Register
is not affected by a reset. To prevent spurious interrupts, software should reset all bits of
the Interrupt Control Register to 0 before processor interrupts are enabled.

Servicing Internal Interrupts
The Interrupt Control Register allows software to determine the source of an internal
interrupt. Software can prioritize these interrupts using the processor's Count Leading
Zeros instruction.

Software clears an interrupt by writing a 1 into the bit that is causing the interrupt
(normally, the leading 1-bit in the Interrupt Control Register). For level-sensitive I/O port
interrupts, the interrupting condition must be cleared and the corresponding PIO signal
be in an inactive state before the Interrupt Control Register bit is cleared, otherwise
another interrupt will be generated.

For other types of interrupts, the condition causing the interrupt can be cleared in the
interrupting peripheral independent of resetting the bit in the Interrupt Control Register,
because the leading edge of the condition must be detected again before another
interrupt can occur. However, the interrupt should not be cleared in a way that might lose
the occurrence of a newly generated interrupt. Because the Interrupt Control Register is
reset-only and because resetting a bit takes lower precedence than setting a bit, bits can
be reset without interfering with other interrupts or with the detection of a new interrupt of
the type being cleared.

Interrupts and Traps 16-25

17 DEBUGGING AND TESTING

This chapter details the features of the Am29200 and Am29205 microcontrollers that
support debugging and testing. The chapter first describes the trace facility and instruc­
tion breakpoints that aid in software debugging. Next,the tesVdevelopment interface, the
test access port, and the boundary-scan architecture are discussed. A description of
how to use an Am29200 microcontroller to emulate an Am29205 microcontroller
concludes the chapter.

17.1 OVERVIEW
The Am29200 microcontroller provides debugging and testing features at both the
hardware and software levels. Instruction tracing and instruction breakpoints are
supported. The microcontroller's test development interface is composed of pins that
indicate the state of the processor and control its operation. A JTAG-compliant test
access port facilitates system testing in a production environment.

The Am29205 microcontroller supports software debugging only. Hardware testing and
debugging can be accomplished by using an Am29200 microcontroller to emulate an
Am29205 microcontroller.

17.2 TRACE FACILITY
Software debug for the Am29200 and Am29205 microcontrollers is supported by the
trace facility. The trace facility guarantees exactly one trap after the execution of any
instruction in a program being tested. This allows a debug routine to tollow the execution
of instructions and to determine the state of the processor and system at the end of each
instruction.

Tracing is controlled by the Trace Enable (TE) and Trace Pending (TP) bits of the
Current Processor Status Register. The value of the TE bit is always copied into the TP
bit when an instruction enters the write-back stage of the processor pipeline. A Trace
trap occurs whenever the TP bit is 1. As with most traps, the Trace trap can be disabled
only by the DA bit of the Current Processor Status Register.

In order to trace the execution of a program, the debug routine performs an interrupt
return to cause the program to begin or resume execution. However, before the interrupt
return is executed, the TE and TP bits of the Old Processor Status Register are set with
the values 1 and 0, respectively. The interrupt return causes these bits to be copied into
the TE and TP bits of the Current Processor Status Register.

When the target instruction of the interrupt return (whose address is contained in the
Program Counter 1 Register when the interrupt return is executed) enters the write-back
stage, the processor copies the value of the TE bit into the TP bit. Since the TP bit is a 1,
a Trace trap occurs. This trap prevents any further instruction execution in the target
routine until the interrupt is taken and the routine is resumed with an interrupt return.
When the Trace trap is taken, the TE and TP bits are both reset automatically, prevent­
ing any further Trace traps.

Since the trace facility is managed by the Old and Current Processor Status registers, it
operates properly in the event the processor takes an interrupt or trap-unrelated to the

Debugging and Testing 17-1

~AMD
trace facility-before the above trace sequence completes. When the unrelated interrupt
or trap is taken, the state of the trace facility (Le., the values of the TE and TP bits) is
copied into the Old Processor Status Register from the Current Processor Status
Register. The trace facility then resumes operation when the interrupted routine is
restarted by an interrupt return.

It is possible to cause a Trace trap by directly setting the TP and/or TE bits in the
Current Processor Status Register. This may be accomplished only by a Supervisor­
mode program.

17.3 INSTRUCTION BREAKPOINTS
The HALT instruction can be used as an instruction breakpoint by a hardware-develop­
ment system. However, the HALT instruction normally is a privileged instruction, causing
a Protection Violation trap upon attempted execution by a User-mode program. The
hardware-development system can disable this Protection Violation trap as outlined in
Section 17.7.5.

The assert class of instructions and the Illegal Opcode trap can be used by software to
implement instruction breakpoints. An instruction breakpoint is set by replacing an
instruction with the assert instruction or an illegal opcode in the program under test.
When the breakpoint instruction is encountered, the instruction breakpoint causes a trap.
The illegal opcode is preferred since the Program Counter 1 (PC1) points to the illegal
opcode when the trap is taken, whereas PC1 points to the instruction following the
breakpoint if an assert instruction is used.

17.4 PROCESSOR STATUS OUTPUTS (Am29200 MICROCONTROLLER)
The STAT2-STATO outputs on the Am29200 microcontroller indicate certain information
about processor modes along with information about processor operation.
STAT2-STATO may be used to provide feedback of processor behavior during normal
processor operation and when the processor is under the control of a hardware­
development system.

17-2

The encoding of STAT2-STATO is as follows:

STAT2 STAT1 STATO

o
o
o
o
1
1
1
1

o
o
1
1
o
o
1
1

o
1
o
1
o
1
o
1

Condition

Halt or Step modes
Interrupt/trap vector fetch (vector valid)
Load Test Instruction mode, Halt/Freeze
Branch target fetch (instruction valid)
External data access (data valid)
External instruction access (instruction valid)
Internal peripheral access (data valid)
Idle or data/instruction not valid

The STAT2-5TATO outputs are a delayed indication of a mode or condition, so a mode
or condition on a given cycle is reflected on STAT2-STATO on the second following
cycle. For example, STAT2-STATO=100 indicates an external data access was valid on
1031-100 at the end of the second previous cycle. The RIW output indicates the
direction of an access, adding information about the access indicated on STAT2-5TATO
(the RIW signal appears with the access and is not delayed as are STAT2-STATO). If an
access is extended by WAIT, the appropriate status is shown for every additional cycle
until the access does complete. The address always appears on A23-AO, whether the
access is a read or a write and whether the access is external or internal (that is, to an

Debugging and Testing

AMD~
internal peripheral). The data appears on 1031-100, except on a read of an internal
peripheral.

17.5 CONTROL FIELD IN SCAN PATH (Am29200 MICROCONTROLLER)
The Am29200 microcontroller incorporates a boundary-scan interface that is compatible
with the IEEE 1149.1 JTAG specification. This interface permits access to testing
and debug features of the processor core not visible on the external interface (see
Section 17.6.2).

A two-bit CNTL field appears on the Boundary Scan Register. The CNTL field corre­
sponds to the CNTL 1-CNTLO pins that appear on other 29K family processors. This
field can be used to halt, step, and start the processor, as well as force the processor to
execute instructions for the purpose of testing and debugging. The CNTL field affects
processor operations as follows:

CNTL Value

00
01
10
11

Mode

Load Test Instruction
Step
Halt
Normal

Changes to the CNTL field are restricted so that only one bit of the CNTL field may
change at any given time. The allowed transitions are shown in Figure 17-1. If these
restrictions are violated, processor operation is unpredictable and a processor reset is
required to resume predictable operation.

Figure 17·1 Valid Transitions for CNTL Field

Debugging and Testing 17-3

~AMD
Because of the restrictions just described, it is not possible to transition directly between
all possible modes controlled by the CNTL field. For example, the processor cannot go
from the Load Test Instruction mode to Normal operation without first entering the Halt or
Step modes.

17.6 TEST ACCESS ~ORT (Am29200 MICROCONTROLLER)

17.6.1

The Am29200 microcontroller implements the Standard Test Access Port (TAP) and
Boundary-Scan Architecture as specified by the IEEE Specification 1149.1-1990
(JTAG), with the exception that the INCLK pin is not part of the boundary-scan register.
The IEEE 1149.1-1990 Specification includes many details omitted from the discussion
in this section and is included by reference. The following description discusses
Am29200 microcontroller-specific considerations.

Boundary·Scan Cells
The test access port can access, affect, and sample the processor inputs and outputs
because a Boundary Scan Register (BSR) and Parallel Data Register (PDR) are
incorporated into the design of the input and output cells. The Boundary Scan Register
allows serial data to be loaded into or read out of the processor inpuVoutput boundary.
The Parallel Data Register holds data stable at inputs and outputs during scanning, so
system signals are not adversely affected during scanning.

An input or output cell incorporating a BSR and PDR register bit is referred to as a
boundary-scan cell. This section describes the implementation of the Am29200 micro­
controller boundary-scan cells.

Figure 17-2 shows the deSign of an input boundary-scan cell, and Figure 17-3 shows the
design of an output boundary-scan cell. Bidirectional Signals use both of these designs
in the same cell. Multiplexor selects, when active, select the lower multiplexor input.

Figure 17-2 Input Boundary-Scan Cell

Input Pin

Scan Input

Shift
Clock

Scan Output

I EXTEST,
INTEST
See Note

Update
Clock

p
o
R

Note: For the CNTL field, the boundary-scan value is also selected by the ICTESn instruction.

17-4 Debugging and Testing

Input Signal
to Logic

Figure 17.3 Output Boundary·Scan Cell

Output Signal
from Logic

SCAN

Scan Input
Shift
Clock

B
S
R

Scan Output

I EXTEST,
INTEST

Update
Clock

Output
Enable

AMD~

The shift and update clocks, when used to sample or drive processor and system
signals, are synchronized to the processor internal clocks so a" signals (except the TAP
signals) are sampled or driven synchronously to system clocks. However, the shift and
update clocks still satisfy the JTAG constraints that inputs are sampled after the.rising
edge of TCK, outputs change after the falling edge of TCK, and TCK is the only control
needed to affect sampling and driving.

The IEEE 1149.1-1990 Specification requires that it be possible to force the processor
three-state outputs to be enabled. This is accomplished by cells that have no associated
pin. The outputs of these cells force groups of output drivers to be enabled. Some
outputs can be disabled by these cells even though the outputs cannot be disabled
during normal operation (for example, the A23-AO outputs can be disabled).

The boundary-scan cells for the CNTL 1-CNTLO field and STAT2-STATO outputs are
part of the BSR and are accessible by scanning the BSA. However, they can also be
scanned individually using the ICTEST1 instruction (see Section 17.6.2). If the ICTEST1
instruction is active, no other boundary-scan cell is scanned. However, the contents of
the other scan cells are undefined after this operation.

The INCLK input is not a boundary-scan cell. The clocks to the processor must continue
to operate even if the test access port is active. However, a fault on this input is readily
visible in the operation of the test access port.

The MEMCLK pin has an output boundary-scan cell. The EXTEST and INTEST
instructions hold the MEMCLK signal at a fixed logic level for the duration of the
instruction.

Debugging and Testing 17-5

~AMD
17.6.2

17.8.2.1

17.8.2.2

17-6

Instruction Register and Implemented Instructions
The Instruction Register (IREG) of the test access port is a three-bit register. The least
significant bit (IREGO) is the bit nearest the TOO output. Instructions are encoded as
follows:

IREG2 IREG1 IREGO Instruction

0 0 0 EXTEST
0 0 1 Preloaded value (acts like BYPASS)
0 1 0 ICTEST2
0 1 1 Reserved (acts like BYPASS)
1 0 0 INTEST
1 0 1 SAMPLE
1 1 0 ICTEST1
1 1 1 BYPASS

The EXTEST, BYPASS, INTEST, and SAMPLE instructions are specified by the
1149.1-1990 Specification. Reserved instructions behave as BYPASS instructions to
conform to the specification. ICTEST1 and ICTEST2 are AMD public instructions.

Most of these instructions are described in detail in the IEEE 1149.1-1990 Specification.
Below is a brief description of the special considerations in the Am29200 microcontroller
implementation.

EXTEST

The EXTEST instruction is provided for external continuity and logic tests. It allows the
test access port to drive outputs and sample inputs.

EXTEST selects the Boundary Scan Register (BSR) for scanning. During execution

1. Processor outputs are driven from the Parallel Data Register (PDR).

2. Processor internal output signals are sampled into the BSA. This is default behavior.

3. Processor inputs are sampled into the BSA.

4. Processor internal input signals are driven from the PDA. This prevents internal logic
from seeing invalid combinations of input signals possibly received from other chips
during the test.

INTEST

The INTEST instruction is provided to test the processor's internal logic. Its primary
value is to allow a hardware-development system to drive the processor's test interface
without a direct electrical connection to all pins of the package.

INTEST selects the BSR for scanning. During execution

1. Processor outputs are driven from the PDA. This prevents extemallogic from seeing
invalid combinations of output signals.

2. Processor internal output signals are sampled into the BSA.

3. Processor inputs are sampled into the BSA. This is default behavior.

4. Processor internal input signals are driven from the PDA.

Debuagina and Testing

17.6.2.3

17.6.2.4

17.6.2.5

AMD~
The INTEST instruction allows the hardware-development system to alter and inspect
internal registers, using processor load and store instructions, without having the
external system see any bus activity.

SAMPLE

The SAMPLE instruction is provided to inspect the processor's external signals without
interfering with system operations.

SAMPLE selects the BSR for scanning. During execution

1. Processor outputs are driven by the processor.

2. Processor internal output signals are sampled into the BSR.

3. Processor inputs are sampled into the BSR.

4. Processor internal input signals are driven from the processor inputs.

ICTEST1

The ICTEST1 instruction is defined for AMD processors using the extension mecha­
nisms permitted by the IEEE 1149.1-1990 Spec.fication. It is provided to drive the CNTL
field and sample the STAT2-8TATO outputs while leaving other inputs and outputs in
their normal system connection. This allows a hardware-development system to control
the processor and system using the test access port.

ICTEST1 selects a subset of the BSR for scanning. During execution

1. Processor outputs are driven by the processor.

2. Processor internal output signals are sampled into the BSR. This is default behavior
for most signals, but allows the sampling of STAT2-STATO.

3. Processor input signals are sampled into the BSR. This is default behavior.

4. The processor CNTL field is driven by the PDR. Processor internal inputs are driven
from the processor inputs.

ICTEST2

The ICTEST2 instruction is defined for AMD processors using the extension mecha­
nisms permitted by IEEE 1149.1-1990. ICTEST2 is similar to EXTEST with the excep­
tion that the scan path for ICTEST2 excludes most of the processor outputs so the
system is not disrupted (for example, by interfering with refresh). This allows a hard­
ware-development system to access and modify processor internal state without
disrupting the system.

1. Processor ID31-IDO and STAT2-STATO outputs are driven from the PDR. The output
enable for the ID bus is controlled by the PDR. Other processor outputs are controlled
by the processor.

2. Processor internal output signals for ID31-IDO and STAT2-8TATO are sampled into
the BSR. This allows a hardware-development system to sample the processor's sta­
tus and data driven by the processor.

3. Processor internal input signals for ID31-IDO are driven from the PDR. This allows a
hardware-development system to provide data to the processor, independent of sys­
tem controls.

Debugging and Testing 17-7

~AMD
17.6.2.6

17.6.3

17.6.3.1

Table 17·1

17.6.3.2

17.6.3.3

17-8

BYPASS

The BYPASS instruction is provided to bypass the BSR and shorten access times to
other devices at the board level.

BYPASS selects the Bypass Register for scanning. The processor is not otherwise
affected.

Order of Scan Cells in Boundary-Scan Path
This section documents the scan paths and the order of scan cells in the paths. The
cells are listed in order from TOI to TOO. In the Am29200 microcontroller, there are five
scan paths from TOI to TOO: 1) the instruction path, 2) the bypass path, 3) the main
data path, 4) the ICTEST1 path, and 5) the ICTEST2 path.

Instnletlon Path

This three-cell path outlined in Table 17-1 is used to scan into the Instruction Register.
When the instruction path is selected the captured data is always IREG2-IREGO = 001
and the instruction is set by scanning. The preloaded pattern 001 is used to test for
faults in the boundary-scan connections at the board level. The instructions are specified
in Section 17.6.2.

InstftlCtion Scan Path

Bit Cell Name

1 IREG2
2 IREG1
3 IREGO

Bypass Path

This is a one-cell path that is used to bypass the processor and shorten access to other
devices at the board level. When the bypass path is selected, the captured data is
always 0 and the scan-in data has no effect on the processor.

Main Data Path

This is a 188-cell path used to access the processor pins. This path is divided into five
sets of cells. Where applicable, each set has a cell that enables the outputs of the set to
be driven on the processor's pins. These cells are not connected to a processor pin. For
convenience, the drive enable cells are shown in Table 17-2 in boldface. Some of these
cells affect outputs not normally enabled and disabled during normal system operation.
The sets of cells are divided logically as follows: 1) clocks, requests, and reset, 2)
miscellaneous peripheral control signals, 3) memory and peripheral controls, 4) instruc­
tion/data bus.

Debugging and Testing

AMD~
Table 17·2 Main Data Scan Path

Bit Cell Name Comments

MEMCLK The MEMCLK scan cell is an output scan cell:
it captures processor intemal MEMCLK and
substitutes the scanned value for the output

2 RESET
3 LSYNC
4 VCLK
5 WARN
6 INTR3
7 INTR2
8 INTR1
9 INTRO
10 TRAP1
11 TRAPO
12 TDMA
13 DREOO
14 DREQ1
15 GREQ

16 TOPDRV Enables the drivers for PSYNC through PWE
17 PSYNCI PSYNCinput
18 PSYNCO PSYNC output
19 VDATI VDATinput
20 VDATO VDAToutput
21 STATO
22 STAT1
23 STAT2
24 PIOIO PIOOinput
25 PIOOO PIOOoutput
26 PIOl1 PI01 input
27 PlOO1 PI010utput

54 PIOl15 PI015 input
55 PlOO15 PI015 output
56 PBUSY
57 PACK
58 POE
59 PWE
60 PSTROBE
61 PAUTOFD
62 WAIT
63 BOOTW

64 ABIDRV Enables the driving of the A23-AO outputs
65 AO
66 A1

88 A23

89 BOTDRV Enables the drivers for DACKO through DSR
90 DACKO
91 DACK1
92 RIW
93 PIAOE
94 PIAWE
95 PIACSO
96 PIACS1
97 PIACS2
98 PIACS3
99 PIACS4
100 PIACSS
101 GACK
102 WE

Debugging end Testing 17-9

~AMD
103 TR
104 CASO
105 CAS1
106 CAS2
107 CAS3
108 RASO
109 RAS1
110 RAS2
111 ~3
112 ROMOE
113 RSWE
114 BURST
115 ROMCSO
116 RO'MCS1
117 ROMCS2
118 ROMCS3
119 TXO
120 OSR
121 UCLK
122 RXO
123 OTR

124
125
126
127
128

187
188

DBIDRV
1010
1000
1011
1001

10131
10031

Enables the 10 bus drivers
100 input
100 output
101 input
101 output

1031 input
1031 output

Note: Drive-enable cells are shown in boldface.

17.6.3.4 ICTEST1 Path

This five-bit path, outlined in Table 17-3, is used to provide quick access to the CNTL
field and the STAT2-STATO output signals while keeping other inputs and outputs in
their normal system connection.

Table 17·3 ICTEST1 Scan Path

17.6.3.5

17-10

Bit

1
2
3
4
5

Cell Name

CNTLO
CNTL1
STATO
STAn
STAT2

Comments

Internal control field only

Outputs: These signals are scanned out and are
shown on the TOO pin. The scan-in values do not
replace the processor output values. In ICTEST1,
the processor outputs STAT2-5TATO continue to
reflect the internal processor signals.

If the ICTEST1 path is scanned, the contents of the shift register bits in the other scan
cells become undefined. This occurs because all scan paths share the same shift clocks.

ICTEST2 Path

The ICTEST2 path includes only the ID bus, the CNTL field, and the STAT2-STATO
signals. It is provided so a hardware-development system can access the processor
without disrupting the system.

Debugging and Testing

AMO:t

Table 17-4 ICTEST2 Scan Path

Bit Cell Hame Comments

1 CNTLO Internal control field only
2 CNTL1
3 STATO Outputs: These signals are scanned out and are
4 STAT1 shown on the TOO pin. The scan-in values do not
5 STAT2 replace the processor outxut values. In ICTEST1,

the processor ou~uts St J2-STATO continue to

DBIDRV
reflect the interna processor signals.

6 Enables the 10 bus drivers
7 1010 100 input
8 1000 100 output
9 1011 101 input
10 1001 101 output

69 10131 1031 input
70 10031 1031 output

17.7 IMPLEMENTING A HARDWARE.DEVELOPMENT SYSTEM
(Am29200 MICROCONTROLLER)

17.7.1

The Halt, Step, and Load Test Instruction modes of operation, invoked using the CNTL
field in the boundary-scan path, are defined to support the debugging of the processor
system by a hardware-development system (both hardware and software debug). This
section describes the use of these modes during debug and describes the correspond­
ing activity on the CNTL field and STAT2-8TATO pins.

Halt Mode
The Halt mode allows the hardware-development system to stop processor operation
while preserving its internal state. The Halt mode is defined so normal operation may
resume from the pOint the processor enters the Halt mode. All external accesses are
completed before the Halt mode is entered, so a minimum amount of system logic is
required to support the Halt mode.

The Halt mode can be invoked by applying a value of 10 to the CNTL field. The proces­
sor enters the Halt mode within two or three cycles after the CNTL field is changed
(depending on synchronization time), except it first completes any external data access
in progress.

The Halt mode can also be entered as the result of executing a HALT instruction. When
a HALT instruction is executed, the processor enters the Halt mode on the next cycle,
except it completes any external data accesses in progress. In this case, the processor
remains in the Halt mode even though the CNTL field is 11. However, the processor
cannot exit the Halt mode except as the result of the CNTL field or RESET input. If the
instruction following a Halt instruction has an exception (e.g., instruction mapping miss),
the trap associated with the exception is taken before the processor enters the Halt
mode.

The Halt instruction is designed as an instruction breakpoint by the hardware-develop­
ment system. However, the Halt instruction is normally a privileged instruction, causing a
Protection Violation trap upon attempted execution by a User-mode program. The
hardware-development system can disable this Protection Violation as described in
Section 17.7.5.

In most cases, the STAT2-8:rATO outputs have a value of 000 whenever the processor
is in the Halt mode. These outputs can be used to verify the processor is in Halt mode.

Debugging and Testing 17-11

~AMD

17.7.2

17-12

However, the STAT2-STATO outputs have a valu~ of 010 if the Freeze (FZ) bit of the
Current Processor Status Register is 1 when the Halt mode is entered. This indicates the
visible registers do not reflect the current program state.

While in the Halt mode, the processor does not execute instructions and performs no
external accesses. The timer facility does not operate (i.e., the Timer Counter Register
does not change).

The Halt mode is exited when the Reset mode is entered or the CNTL field places the
processor into another mode. The only valid transitions on the CNTL field from the value
of 10 are to the value 00, which places the processor into the Load Test Instruction
mode, or to the value 11, which causes the processor to resume normal execution.

Step Mode
The Step mode causes the Am29200 microcontroller to execute at a rate determined by
the hardware-development system, allowing the hardware-development system to easily
control and monitor processor operation. The Step mode is defined so normal operation
may resume after stepping is complete. Since all external accesses are completed
during any step, a minimum amount of system logic is required to support the slower
rate of execution.

. "

The Step mode is invoked by the value of 01 in the CNTL field. The processor enters the
Step mode within two or three cycles after the CNTL field is changed (depending on
synchronization time), except it first completes any external data access in progress.

In most cases, the STAT2-STATO outputs have a value of 000 whenever the processor
is in the Step mode; these outputs can be used as a verification the processor is in Step
mode. However, the STAT2-STATO outputs have a value of 010 if the Freeze (FZ) bit of
the Current Processor Status Register is 1 when the Step mode is entered. This
indicates the visible registers do not reflect the current program state.

While in the Step mode, the processor does not execute instructions and performs no
external accesses. The Timer Facility does not operate (Le., the "Timer Counter Register
does not change) while the processor is in the Step mode.

The Step mode is identical to the Halt mode in every respect except one. This difference
is apparent on the transition of the CNTL field from the value 01 (Step mode) to the
value 11 (Normal). On this transition, the processor steps. That is, the processor state
advances by one pipeline stage, and it completes any external access that is initiated by
this state change.

If the processor immediately enters the Pipeline Hold mode on a step, the step may
require multiple cycles to execute, since the processor pipeline cannot advance while
the processor is in the Pipeline Hold mode. The STAT2-STATO lines reflect the state of
the processor for every cycle of the step.

The timer counter decrements by one for every cycle of the step; if the timer counter
decrements to zero, the usual timer-facility actions are performed and a timer interrupt
may occur.

After the step is performed, the processor re-enters the Step mode and remains in the
Step mode even though the CNTL field has the value 11 (this prevents the need for a
time-critical transition on the CNTL field). The processor remains in this condition until the
CNTL field transitions to 10 or 01 (or RESET is asserted). The transition to 10 causes the
processor to enter the Halt mode and is used to clear the Step mode. The transition to 01
causes the processor to remain in the Step mode so it may perform additional steps.

Debugging and Testing

17.7.3

AMD~
If the processor is placed in the Halt or Step mode while either a LOADM or STOREM
instruction is being executed, the STAT2-5TATO outputs indicate the Halt or Step mode
for one cycle (STAT2-STATO = 000). They then indicate the Pipeline Hold mode
(STAT2-5TATO = 001) until the final access of the LOADM or STOREM is complete, at
which time they return to indicating the Halt or Step mode. A hardware-development
system must therefore ignore any single-cycle HalVStep mode indication on the
STAT2-5TATO outputs as an indication the processor is halted.

Load Test Instruction Mode
The processor incorporates an Instruc~ion Register (IR) that holds instructions while they
are decoded. In the Load Test Instruction mode, the IR is enabled to receive the content
of the instruction bus regardless of the state of the processor's instruction fetcher. This
allows the hardware-development system to provide instructions for execution directly,
thereby providing means for the hardware-development system to examine and modify
the internal state of the processor without altering the processor's instruction stream.

The hardware-development system can place an instruction in the IR by first placing 00 in
the CNTL field. The processor enters the Load Test Instruction mode within two or three
cycles after the CNTL field is changed (depending on synchronization time). However, it
first completes and terminates any established burst-mode instruction access. The Load
Test Instruction mode can be entered only from the Halt or Step modes.

When the processor enters the Load Test Instruction Mode, the processor behaves as
though the Current Processor Status Register were forced to the value shown in
Figure 17-4, even though the register is not changed (the value "u" means unaffected).

Figure 17-4 Processor Status While in Load Test Instruction Mode

31 23 15 7 0

I·'·' .'.'.'.'.' .'.'.'.'.'.' ·1+1·1 +I:I+I·~ .1:1< +1,' "1+ 1
Reserved ::: : : :: : : : : 1M : :

TO: IP: TP: FZ : WM : SM : OA
res TE TU res res 01

The visible processor state remains unchanged while the processor is in the Load Test
Instruction Mode. The processor status shown in Figure 17-4 remains in effect until the
next transition to the Normal Mode via the Halt Mode.

While the processor is in the Load Test Instruction mode, it ignores all interrupts and
traps, except for the WARN trap.

The STAT2-5TATO lines have a value of 010 while the processor is in the Load Test
Instruction mode; this may be used as a verification that the processor is loading the IR.

While the processor is in the Load Test Instruction mode, the IR is continually storing the
value on the instruction/data bus; any change in the value on this bus is reflected in the IR
on the next cycle. The hardware-development system can place a desired instruction into
the IR by driving this instruction on the InstructionlData Bus or via the scan interface.

The processor exits the Load Test Instruction mode in the second cycle following a
change to the CNTL field. The only valid change here is either to the Halt mode
(CNTL = 10) or the Step mode (CNTL = 01).

Debugging and Testing 17-13

~AMD

17.7.4

17-14

When the Load Test Instruction mode is exited, tl:le most recent value stored into the IR
is held. If the processor is placed in the Step mode, the IR is marked as having valid
content, enabling the processor to decode and execute the instruction. If the processor
is placed in the Halt mode, it ignores any instruction placed in the IR by the Load Test
Instruction mode and reverts to its normal instruction-fetch mechanism.

Once the IR has been set by the Load Test Instruction mode, the instruction in the IR
may be executed via the Step mode as discussed in the previous section. A single step
is sufficient to cause the execution of this instruction. However, because of pipelining,
multiple steps may be required before the instruction completes execution. If more than
one step is performed, the processor executes the instruction in the IR on every step. If
it is desired to step an instruction to completion without repeated execution, a NO-OP
may be set into the IR (using the Load Test Instruction mode) after the first step.

The Load Test Instruction mode may be used to cause the execution of most processor
instructions (restrictions are discussed below). This allows inspection and modification of
the processor state.

Because of sequencing constraints, the Load Test Instruction mode cannot be used to
cause the execution of the following instructions: conditional jumps, Load Multiple, Store
Multiple, Interrupt Return, and Interrupt Return and Invalidate. Unconditional jumps and
calls are permitted, but affect only the Program Counter. Instruction sequencing is not
affected.

The contents of the Program Counter 0, Program Counter 1, Program Counter 2,
Channel Address, Channel Data, Channel Control, and ALU Status registers are not
updated while instructions are executed via the Load Test Instruction mode, except
explicitly by Move To Special Register instructions. Instructions executed using the Load
Test Instruction mode may access the protected processor state even though the
processor is in the User mode.

Instructions executed via the Load Test Instruction mode may be used to access an
external device or memory. Recall that the processor completes any normal data access
before completing a step. This allows the processor to access devices and memories on
behalf of the hardware-development system and simplifies the timing constraints on the
hardware-development system.

During processor execution via the Load Test Instruction mode, the processor retains
the information required to resume normal operation. If any processor state is modified
by the hardware-development system, this state must be restored properly for normal
operation to resume properly.

Once all instructions have been executed via the Load Test Instruction mode, the Halt
mode (CNTL=10) prepares the processor to resume normal operation. When the CNTL
field transitions to 11, the processor resumes normal operation. The sequence for the
CNTL field to clear the Load Test Instruction mode and resume normal operation is thus
00/10/11.

Accessing Internal State Via Boundary Scan
The hardware-development system uses load and store instructions, executed via the
Load Test Instruction mode, to alter and inspect the contents of general-purpose registers.
The OPT field for these loads and stores have the value 110 and are directed to the ROM
address space (for example, address 0): this causes the processor to prevent the
resulting access from appearing in the system. The access is visible only via the bound­
ary-scan register. Furthermore, it causes the Am29200 microcontroller to ignore the

Debugging and Testing

17.7.4.1

17.7.4.2

AMD~

generation of wait states: the access completes at the end of the next stepped instruction.
This provides a means for a hardware-development system to perform accesses.

It is not possible to execute a load directly following a store, nor a store directly following
a load, using the Load Test Instruction mode. At least one NO-OP (or other operation)
must be executed between adjacent loads and stores, because of control conflicts that
arise when these instructions are stepped in a system that performs the resulting
accesses at normal speed. However, a sequence of only loads or only stores is per­
mitted without restriction.

This section describes the sequence of boundary-scan operations performed to access
processor internal state.

Altering State Via Boundary Scan

A hardware-development system uses load instructions to alter the contents of general­
purpose registers. Since the contents of general-purpose registers can be moved to
special-purpose registers, this provides a means to alter other state as well as the
values in general-purpose registers.

With the processor in the Halt mode, the hardware-development system uses the
following sequence to modify the value in a general-purpose register:

1. Set the CNTL field to 10 (Halt) using the ICTEST1 boundary-scan instruction.

2. Set the CNTL field to 00 (Load Test Instruction) using the ICTEST1 instruction.

3. USing the ICTEST2 instruction, set the 10131-1010 cells with an instruction to load the
desired register from the ROM address space, with OPT=110, and set the CNTL field
to 01 (Step). This places the load instruction into the IR and prepares the processor
to step.

4. Using the ICTEST1 instruction, sequence the CNTL field through the values 11, 01,
and 00 (Normal, Step, and Load Test Instruction). This steps the processor and pre­
pares it to receive another instruction.

5. Using the ICTEST2 instruction, set the 10131-1010 cells to 70400101, hexadecimal
(NOOP), and set the CNTL field to 01. This loads a NO-OP into the IR.

6. Using the ICTEST2 instruction, set the 10131-1010 cells to the value to be loaded and
set the CNTL field to 11. This steps the processor and applies the value to be loaded
into the register.

7. Set the CNTL field to 01 using the ICTEST1 instruction.

8. Repeat steps 2 through 7 for the remaining registers.

Inspecting State Via Boundary Scan

A hardware-development system uses store instructions to inspect the contents of
general-purpose registers. Since the processor internal state can be moved to general­
purpose registers, this provides a means to inspect other states as well as the values in
general-purpose registers.

With the processor in the Halt mode, the hardware-development system uses the
following sequence to retrieve the value in a general-purpose register:

1. Set the CNTL field to 10 (Halt) using the ICTEST1 boundary-scan instruction.

2. Set the CNTL field to 00 (L,oad Test Instruction) using the ICTEST1 instruction.

Debugging and Testing 17-15

~AMD

17.7.5

17-16

3. Using the ICTEST2 instruction, set the 101(31-0) cells with an instruction to store the
desired register into the ROM address space, with OPT =110, and set the CNTL field
to 01 (Step). This places the store instruction into the IR and prepares the processor
to step.

4. Using the ICTEST1 instruction, sequence the CNTL field through the values 11, 01,
and 00 (Normal, Step, and Load Test Instruction). This steps the processor and pre­
pares it to receive another instruction.

5. Using the ICTEST2 instruction, set the 10131-1010 cells to 70400101, hexadecimal
(NO-OP), and set the CNTL field to 01. This loads a NO-OP into the IR.

6. Set the CNTL field to 11, then back to 01 using the ICTEST1 instruction. This steps
the processor. At the end of the step, the contents of the register are on the 10 bus,
and may be obtained in the Capture-OR state of the TAP controller (this state is de­
scribed in the IEEE 1149.1-1990 Specification). The value will be held on the 10 bus
until the next step.

7. Repeat steps 2 through 6 for the remaining registers.

HALT Instructions as Breakpoints
The HALT instruction can be used by a hardware-development system to implement an
instruction breakpoint. To use the HALT instruction as an instruction breakpoint, the
hardware-development system must disable the protection checking that normally
applies to the HALT instruction so the HALT does not cause a Protection Violation trap.
To accomplish this, the hardware-development system must perform a special sequence
of operations on the boundary-scan interface. This sequence is similar in effect to
holding the CNTL 1-CNTLO inputs at 10 during a reset on other 29K Family processors.
The special sequence is needed in the Am29200 microcontroller because it has no
CNTL 1-CNTLO inputs, but rather implements a CNTL field in the boundary-scan
register. The following sequence disables protection checking on the HALT instruction:

1. Set the CNTL field to 10 using the ICTEST1 JTAG instruction.

2. Reset the boundary-scan cells RESET, OBIORV, BOTORV, ABIORV, and TOPORV to
o using the INTEST instruction. If the boot ROM in Bank 0 is a or 16 bits wide, reset
ttie BOOTW cell to O. If the boot ROM is 32 bits wide, set the BOOTW cell to 1. This
resets the processor.

3. Set the RESET cell to 1 using the INTEST instruction. If the boot ROM is a bits wide,
set the BOOTW cell to 1 (otherwise leave it at 0 or 1). This takes the processor out of
reset and configures the boot ROM.

4. Set the CNTL field to 00 using the ICTESTl instruction.

5. Using the ICTEST2 instruction, set the 10131-1010 cells to al000000, hexadecimal,
and set the CNTL field to 01. This loads a jump to address 0 into the IR and prepares
the processor to step.

6. Using the ICTESTl instruction, sequence the CNTL field through the values 11, 01,
and 00. This steps the processor and prepares it to receive another instruction.

7. Using the ICTEST2 instruction, set the 10131-1010 cells to 70400101, hexadecimal.
This loads a NO-OP into the IR.

a. Using the ICTEST1 instruction, sequence the CNTL field through the values 11, 01,
and 11. This starts the processor with protection checking disabled on the HALT
instruction. The TMS input must be kept High during this operation.

Debugging and Testing

17.7.6

AMD~

Forcing Outputs to High Impedance
For the Am29200 microcontroller, a hardware-development system can force processor
outputs to the high-impedance state by asserting the GREQ input during a processor
reset. The outputs remain in the high-impedance state until a processor reset during
which GREQ is not asserted. This supports functions such as replacing chip signals by
emulator signals.

For the Am29205 microcontroller, a hardware-development system can force processor
outputs to high impedance by asserting the WAITITRIST signal. The outputs remain in
the high-impedance state until a processor reset during which WAITITRIST is not
asserted.

17.8 EMULATING THE Am29205 MICROCONTROLLER
Unlike the Am29200 microcontroller, the Am29205 microcontroller does not have a
hardware-development interface for testing and debugging. Hardware development is
performed by using an Am29200 microcontroller to emulate an Am29205 microcontroller.

Figure 17-5 shows a typical configuration for using an Am29200 microcontroller to
emulate the Am29205 microcontroller. The hardware-development system asserts the
WAIT/TRIST pin during processor reset to force the outputs of the Am29205 microcon­
troller into high impedance state. An Am29200 microcontroller is then connected to the
Am29205 microcontroller and interfaced directly to the system logic. The hardware-de­
velopment system then uses the JTAG to access the CNTL field on the Am29200
microcontroller and perform the hardware debugging functions previously described in
this chapter.

To avoid contention on the WAIT/TRIST signal, the target system must drive the
WAIT/TRIST pin with an open collector buffer (e.g., 74HC07) and a pull-up resistor. The
hardware-development system must continue to drive the WAIT/TRIST pin Low for at
least one MEMCLK cycle following the deassertion of RESET so the correct value on the
WAIT/TRIST pin is latched into the internal logic.

On the Am29200 microcontroller, the memories (ROM and DRAM) are attached to
1031-1016 and the peripherals (PIA and Parallel Port Data Register) are attached to
1015-100. On the Am29205 microcontroller, the memories and peripherals are attached
to 1031-1016. For the Am29200 microcontroller to access the memories and peripherals
correctly, 1031-1016 on the Am29200 microcontroller must be connected to 1015-100.
To avoid contentions on the 10 bus, three-state buffers (e.g., 2 x 74HC244) are used to
isolate 1031-1016 from 1015-100. These three-state buffers will be enabled when the
processor is doing a PIA or parallel port read access.

Debugging and Testing . 17-17

~AMD
Figure 17-5 Using an Am29200 Microcontroller to Emulate an Am29205 Mlcrocontroller

INCLK ----"T"""-...... INCLK 1031-1016 I----""'T"'--+ 1031-1016

MEMCLK MEMCLK PIAOE PIAOE

Vee I'"'i+--" WAITITRIST Am29205 POE t-----t-+;r-+ POE
Open-Collector ~ MlcrocontroUer

Buller
INTR3-INTR2,

WAIT r-+-t-t--.... ORE01, PSTROBE,
PAUTOFO, UCLK,

VOAT,
PSYNC-

RXO, VCLK, LSYNC
A21-AO, A21-AO,

.... +-H--.. VOAT,
PSYNC

ROMCS2-ROMCSO, ROMCS2-ROMCSO,
ROMOE, RSWE, ROMOE, RSWE,

RAS3-RASO, RAS3-RASO,
CAS3-CAS2, WE, CAS3-CAS2, WE,
PIACS1-PIACSO, t-----t-+-1I--T+ PIACS1-PIACSO,

PIAWE, DACK1, PIAWE, DACK1,
PI01~I08, PI01~I08,

PBUSY, PBUSY, PACK,
Rfiii, PACK, RlW, PWE, TXO

RESET PWE, TXO

I REsET--~~~~--------~l-~~l

INTR3-INTR2,
DRE01,

PSTROBE,
PAUTOFO, -

UCLK, AXO,
VCLK, LSYNC

To Emulator
Hardware

17-18

... INCLK

"-- MEMCLK

_WAIT

RESET

INTR3-INTR2,
DRE01, PSTROBE,
PAUTOFO, UCLK,

'----i RXO, VCLK, LSYNC

TRST
1031-1016 --111

Three­
State

Buffers
x16

'__--.. VOAT,
PSYNC

Vee

Am29200
Microcontroller

ID1~OO~

PIAOE 1
POE t--06--.,

l lNTRHNTRO,
TRAP1-TRAPO,
WARN, DREOO,
GREO,OTR

GNO

BOOTW,
TOMA

TCK,
__ --i™S,

TOI,
TOO

A21-AO,
ROMOE, RSWE,

ROMCS2-ROMCSO,
RAS3-RASO, t----.......

CAS3-CAS2, WE,
PIACS1-PIACSO,
PIAWE, OACK1,

PBUSY, PACK,
RlW, PWE, TXO,

PI01~106

Debugging and Testing

Unconnected pins on the
Am29200 mlcrocontroUer

A23-A22, ROMCS3,
STAT2-8TATO,
CAS1-CASO, TRICE,
OACKO, GACK,
PIACS5-PIACS2, BURST,
OSR, PI07-PIOO

18 INSTRUCTION SET

This chapter provides a specification of the instruction set for the Am29200 and
Am29205 microcontrollers. Sections 18.1 and 18.2 describe the terminology and the
instruction formats. Section 18.3 describes each instruction in detail; instructions are
presented alphabetically by assembler mnemonic. Finally, Section 18.4 gives an index of
instructions by operation code.

18.1 INSTRUCTION-DESCRIPTION NOMENCLATURE

18.1.1

To simplify the specification of the instruction set, special terminology is used throughout
this chapter. This section defines the terminology and symbols used to describe
instruction operands, operations, and the assembly-language syntax.

This section does not describe all terminology used. It excludes certain descriptive terms
with obvious meanings.

Operand Notation and Symbols
Throughout this chapter, instruction operands are signed two's-complement word
integers unless otherwise noted. The term "register" is used consistently to denote a
general-purpose register. Other types of registers are described explicitly.

The following notation is used in the description of instruction operands:

0116

1116

116

BP

C

COUNT

OEST

EXTERNAL
WORO[n]

FALSE

FC

h'n'

IPA

IPB

16-bit immediate data, zero-extended to 32 bits

16-bit immediate data, one-extended to 32 bits

16-bit immediate data

The Byte Pointer (BP) field of the ALU Status Register. The BP field
selects a byte or half-word within a word.

The Carry (C) bit of the ALU Status Register. The C bit is logically
zero-extended to 32 bits when involved in a word operation.

The value of the Count Remaining field of the Channel Control Reg­
ister. Note that COUNT does not refer to this field directly, but rather
to the value of the field at the beginning of a LOAOM or STOREM
instruction.

The general-purpose register that is the destination of an instruction
(Le., the register used to store the result).

The word in an external device or memory with address n.

The Boolean constant FALSE

The Funnel Shift Count (FC) field of the ALU Status Register

The hexadecimal constant n

Indirect Pointer A Register

Indirect Pointer B Register

Instruction Set 18-1

~AMD

18.1.2

18-2

IPC

PC

a
Register RA
Register RB
Register RC

SPDEST

SPECIAL

Special-purpose
Register SA

SRCA
SRCB

SRCA.BYTEn
SRCB.BYTEn

TARGET

TRUE

. TWIN

Indirect Pointer C Register

Program Counter Register. This register is not explicitly
accessible by instruction, but does appear as an operand for
certain instructions. The Program Counter always contains the word
address of the instruction being executed, and is 30 bits in length.

a Register

These designate the general-purpose registers specified by the
instruction fields RA, RB, and RC (see Section 18.2).

The special-purpose register that is the destination of an instruction.

The contents of a special-purpose register, used as an
instruction operand.

Designates the special-purpose register specified by the
instruction field SA (see Section 18.2).

The contents of general-purpose registers, used as instruction
operands. .

Designate the byte numbered n within the SRCA or SRCB
operand.

The target-instruction address specified by a jump or call instruc­
tion. This address is either absolute or Program-Counter relative.

Boolean constant TRUE

General-purpose registers are paired by absolute-register
numbers, such that even-numbered registers are paired with odd­
numbered registers having the next-highest register number. The
twin of a given register is the other register in the pair to which the
given register belongs. For example, Local Register 5 is the twin of
Local Register 4, and vice versa.

Operator Symbols
The following symbols are used to describe instruction operations:

A « B Left shift of the A operand by the shift amount given

A»B

AIIB

A&B

AlB

AI\B

-A

A (- exp

A=B

A<>B

by the B operand

Right shift of the A operaPid by the shift amount given
by the B operand

Concatenation. The B operand is appended to the A operand. In the
resulting quantity, tl1e A operand makes up the high-order part, and
the B operand makes up the low-order part.

Bitwise AND

Bitwise OR

Bitwise exclusive-OR

One's-complement

Assignment of the A location by the result of the expression on the
right side

Equal to

Not equal to

Instruction Set

18.1.3

18.1.4

A<B

AsB
A+B
A-B

A*B
AlB
A .. B

Greater than

Greater than or equal to

Less than

Less than or equal to

Addition

Subtraction

Multiplication

Division

AMD~

A subrange that includes the A operand and the B operand. This
symbol is used for sub ranges of bits as well as subranges of words.

A OR B Logical OR of two Boolean conditions

Control-Flow Terminology
The following terminology is used to describe the control functions performed during the
execution of various instructions:

Continue

IF condition
THEN operations
ELSE operations

Signed overflow

Trap(n)

Unsigned
overflow

Unsigned
underflow

Continue execution of the current instruction sequence.

The condition following the IF is tested. If the condition holds, the
operations following the THEN are performed. If the condition
does not hold, the operations following the ELSE are performed. If
the ELSE is not present and the condition does not hold, no opera-
tion is performed.

This condition is present when the result of an add or subtract of
two's-complement operands cannot be represented by a signed
word integer.

Specifies a trap with vector number n. The vector number n may be
specified indirectly (e.g., Trap (VN» or explicitly by symbolic name
(e.g., Trap (Out-of-Range».

This condition is present when the result of an add of unsigned
operands cannot be represented by an unsigned word integer.

This condition is present when the result of a subtract of
unsigned operands cannot be represented by an unsigned
integer (i.e., when the result is less than zero).

VN Designates the trap vector number specified by the instruction field
VN (see Section 16.3.2).

Assembler Syntax
This chapter does not contain a full description of the instruction assembler, but
provides a rudimentary description of the assembler syntax.

The following notation is used to describe assembler tokens:

cntl

const8

const16

Determines the 7-bit control field in a load or store instruction.

Specifies a constant that can be expressed by 8 bits.

Specifies a constant that can be expressed by 16 bits.

Instruction Set 18-3

~AMD
ra
rb
rc

spid

target

vn

These tokens name general-purpose registers. In a formal
sense these represent the same token since the name of a
register does not depend on its instruction use. However, three dis­
tinct tokens are used to clarify the relationship between the assem­
bler syntax, instruction operands, and instruction fields.

A symbolic identifier for a special-purpose register.

A symbolic label for the target of a jump or call instruction.

Specifies a trap vector number.

18.2 INSTRUCTION FORMATS
All instructions for the Am29200 and Am29205 microcontrollers are 32 bits in length and
are divided into four fields, as shown in Figure 18-1. These fields have several alterna­
tive definitions, as discussed below. In certain instructions, one or more fields are not
used, and are reserved for future use. Even though they have no effect on processor
operation, bits in reserved fields should be 0 to insure compatibility with future processor
versions.

Figure 18-1 Instruction Format

18-4

31 23 15 7 0

I I I I I I
I

/
V

I I I I I I
OP

, I' I I I I I I II I I I I I I II

1 ~/ '----v--/ ,'----..
A RC RA RB
M 117 ... 110 SA RBorl

115 ... 18 19 ... 12
VN 17 ... 10

CNTL UII/ RND 1/ FD 1/ FS
Reserved 1/ FS

The instruction fields are defined as follows:

Bits 31-24

OP

A

M

Bits 23-16

RC

This field contains an operation code that defines the operation to
be performed. In some instructions, the least significant bit of the
operation code selects between two possible operands. For this
reason, the least significant bit is sometimes labeled A or M with the
following interpretations:

(Absolute): The A bit is used to differentiate between Program­
Counter relative (A = 0) and absolute (A = 1) instruction addresses
when these addresses appear within instructions.

(Immediate): The M bit selects between a register operand (M = 0)
and an immediate operand (M = 1) when the alternative is allowed
by an instruction.

The RC field contains a global or local register number.

Instruction Set

117 ... 110

115 ... 18

VN

CNTL

Bits 15-8

RA

SA

Bits 7-0

RB

RBor I

19 ••• 12

17 ... 10

AMD~
This field contains the most significant eight bits of a 16-bit
instruction address. This is a word address and may be
program-counter relative or absolute depending on the A bit of the
operation code.

This field contains the most significant eight bits of a 16-bit
instruction constant.

This field contains an 8-bit trap vector number.

This field controls a load or store access as described in
Section 3.3.1

The RA field contains a global or local register number.

The SA field contains a special-purpose register number.

The RB field contains a global or local register number.

This field contains either a global or local register number, or an
8-bit instruction constant depending on the value of the M bit of the
operation code.

This field contains the least significant eight bits of a 16-bit instruc­
tion address. This is a word address and may be program-counter
relative or absolute depending on the A bit of the operation code.

This field contains the least significant eight bits of a 16-bit
instruction constant.

UI /I RND /I FD /I FS This field controls the operation of the CONVERT instruction.

reserved /I FS This field is the FS portion of the above field and specifies the
operand format for the CLASS and SORT instructions.

The fields described above may appear in many combinations. However, certain
combinations that appear frequently are shown in Figure 18-2.

18.3 INSTRUCTION DESCRIPTION
This section describes each microcontroller instruction in detail. Figure 18-3 illustrates
the layout of the information given for each description.

Instruction Set 18-5

~AMD
Figure 18-2 Frequently Occurring In.truction Fi.ld U •••

Three operands with possible 8-bit constant:

31 23 15 7 0

II I I I I I I I I I I I I I I

I
I I I I

I
I I I I I

I RC RA RBorl XXXXXXXM

Three operands without constant:

31 23 15 7 0

II I I I I I I I I I I I I

I I I

I
I I I I

I RC RA RB XXXXXXXO

One register operand with 16-blt constant:

31 23 15 7 0

II I I I I I I I I I I I I I I

I
I I I

I
I I I I I I

I 115 .. 18 RA 17 .. 10 XXXXXXX1

Jumps and calls with 16-blt instruction address:

31 23 15 7 0

II I I I I I I I I I I I I I

I
I I I

I
I I I I I I

I 117 ... 110 RA 19 .. 12 XXXXXXXA

Two operands with trap vector number:

31 23 15 7 0

II I I I I I I I I I I I I

I
I I I I I I I I I I I VN RA RBorl XXXXXXXM

Loads and stores:

31 23 15 7 0

II I I I I I I I I
I I I

I
I I I I I I I I I I I CNTL RA RBorl XXXXXXXM

Res

18-6 Instruction Set

AMD;t1

Fi 18-3 Instniction.Description Fonnat

Instruction
Mnemonic

Instruction
Name

Brief Operation
Description

Assembler
Syntax

ArithmeticJLogic

.{
Status Result -----..-..1

Operand Specification­
Describes the
instruction fields'
relations to operands,
and implicit operands
in some cases

f
Instruction Format. ~\
Specifies field
options used

Operation Code-____ ---1~
HEX format

Detailed Description
of instruction -----~

operation

ADD ADD

Add

Operation: DEST +- SRCA + SRCS

Assembler
Syntax: ADD rc, ra, rb

or
ADD rc, ra, constS

status: V,N,Z,C

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7
Iii iii iii Iii iii i I i i iii i i I Ii iii : 0001010 M: RC RA RSorl

OP= 14,15 ADD

Description: The SRCA operand is added to the SRCB
operand and the result is placed into the
DEST location.

Instruction Set

II
0

I

18-7

~AMD
ADD

Operation: DEST +- SRCA + SRCB

Assembler
Syntax: ADD rc, ra, rb

or
ADD rc, ra, const8

Status: V, N, Z, C

Add

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I I
0001010~

OP = 14,15

I I
RC

15

I I
ADD

I I
RA

7
I I I
RBorl

ADD

o

Description: The SRCA operand is added to the SRCB operand and the result is
placed into the DEST location.

18-8 Instruction Set

ADDC

Add with Carry

Operation: DEST f- SRCA + SRCB + C

Assembler
Syntax: ADDC rc, ra, rb

or
ADDC rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

DEST

31

I I I I I I • I I
?001110M

OPo: 1C.1D

23

M = 1: I (Zero-extended to 32 bits)

Register RC

15
I I I I I I I
RC RA

ADDC

7
I • I
RBar'

AMD~

AD DC

o

Description: The SRCA operand is added to the SRCB operand and the value of the
ALU Status Carry bit, and the result is placed into the DEST I?cation.

Instruction Set 18-9

~AMD

18-10

ADDCS ADDCS

Add with Carry, Signed

Operation: OEST +- SRCA + SRCB + C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: AOOCS rc, ra, rb

or
AOOCS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA

SRCS

OEST

31

II I I I I I I I
000l100M

op= 18,19

23

Content of register RA

M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

Register RC

I I
RC

15 II
ADDCS

I I
RA

7
I I I
RBorl

o

Description: The SRCA operand is added to the SRCS operand and the value of the
ALU Status Carry bit, and the result is placed into the OEST location. If
the add operation causes a two's-complement signed overflow, an
Out-of-Range trap occurs.

Note that the OEST location is altered whether or not an overflow
occurs.

Instruction Set

ADDCU

Add with Carry, Unsigned

Operation: DEST ~ SRCA + SRCS + C
IF unsigned overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDCU rc, ra, rb

or
ADDCU rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7

I I I I I I I I I
0001101M

I
RC

I I I I I I
RA II

op= 1A, 1B ADDCU

AMD~

ADDCU

I I I
RBorl

o

Description: The SRCA operand is added to the SRCS operand and the value of the
ALU Status Carry bit, and the result is placed into the DEST location. If
the add operation causes an unsigned overflow, an Out-of-Range trap
occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

Instruction Set 18-11

~AMD

18-12

ADDS

Add, Signed

Operation: DEST ~ SRCA + SRCS
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDS rc, ra, rb

or
ADDS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 , , ,
I
, , ,

RC RA
I' , , , , , '1' 000 1 000

OP = 10.11 ADDS

ADDS

7 o , , , ,
RBorl

Description: The SRCA operand is added to the SRCS operand and the result is
placed into the DEST location. If the add operation causes a
two's-complement signed overflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

Instruction Set

ADDU

Add, Unsigned

Operation: DEST f- SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

Assembler
Syntax: ADDU rc, ra, rb

or
ADDU rc, ra, constB

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST

31 23 I' , , , , , , I'
000 1 0 0 1 M

OP=12,13

Register RC

15 , ,
I
,

RC

ADDU

7 , I
RA

AMD~

ADDU

0 , , , , ,
I RBarl

Description: The SRCA operand is added to the SRCB operand and the result is
placed into the DEST location. If the add operation causes an unsigned
overflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

Instruction Set 18-13

.:1 AMD

AND

AND Logical

Operation: DEST +- SRCA & SRCB

Assembler
Syntax: AND re, ra, rb

or
AND re, ra, eonst8

Status: N, Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
~001000M

OP = 90, 91

I
RC

15
I

I
I

AND

7

I I
RA

I I I I I
RBorl

Description: The SRCA operand is logically ANDed, bit-by-bit, with the SRCB
operand and the result is placed into the DEST location.

18-14 Instruction Set

AND

0

I

ANON

AND-NOT Logical

Operation: OEST +- SACA & -SACS

Assembler
Syntax: ANON rc, ra, rb

or
ANON rc, ra, const8

Status: N,Z

Operands: SACA Content of register AA

SACS M = 0: Content of register AS

OEST

31 23

II I I I I I I I
1001110M

OP=9C,9D

M = 1: I (Zero-extended to 32 bits)

Aegister AC

I I
RC

15

I II

ANON

I I
RA

7

AMO~

ANON

I I I I
RBorl

o

Description: The SACA operand is logically ANOed, bit-by-bit, with the
one's-complement of the SACS operand and the result is placed into
the OEST location.

Instruction Set 18-15

~AMD

18-16

ASEQ

Assert Equal To

Operation: IF SRCA = SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASEO vn, ra, rb

or
ASEO vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

VN

31 23 II I I I I I I II
0111000M

OP = 70, 71

M = 1: I (Zero-extended to 32 bits)

Trap vector number

15

I I
VN II

ASEQ

I I
RA

ASEQ

7 o
I I I I I

RBorl

Description: If the SRCA operand is equal to the SRCB operand, instruction
execution continues; otherwise, a trap with ~he specified vector number
occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set

ASGE

Assert Greater Than or Equal To

Operation: IF SRCA ~ SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGE vn, ra, rb

or
ASGE vn, ra, const8

Status: Not aff.ected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

VN

31

I I I I I I I I I
0101110M

OP=5C,5D

23

M = 1: I (Zero-extended to 32 bits)

Trap vector number

I I
VN

15

II

ASGE

I I
RA

7

AMD~

ASGE

I I I I
RBorl

o

Description: If the value of the SRCA operand is greater than or equal to the value of
the SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set 18-17

~AMD

18-18

ASGEU

Assert Greater Than or Equal To, Unsigned

Operation: IF SRCA ~ SRCS (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGEU vn, ra, rb

or
ASGEU vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7 I' , , , , , I I , , ,
I
, , ,

VN RA ,0 1 0 1 1 11M,

OP = 5E. SF ASGEU

,

ASGEU

0 , , , , ,
RBorl

Description: If the value of the SRCA operand is greater than or equal to the value of
the SRCS operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison, both
operands are treated as unsigned integers.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set

ASGT

Assert Greater Than

Operation: IF SRCA > SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGT vn, ra, rb

or
ASGT vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M =1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15
, I II , ,
VN RA I , , , , , , , I 0101100M

OP=58,59 ASGT

AMD~

ASGT

7 o
, , , , I

RBorl

Description: If the value of the SRCA operand is greater than the value of the SRCB
operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap--if a vector number between 0 and
63 is specified.

Instruction Set 18-19

~AMD

18-20

ASGTU

Assert Greater Than, Unsigned

Operation: IF SACA > SACS (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASGTU vn, ra, rb

or
ASGTU vn, ra, const8

Status: Not affected

Operands: SACA Content of register AA

SACS M = 0: Content of register AS

VN

31 23

/
1 I I I I I I /
0101101M

OP=5A,5B

M = 1: I (Zero-extended to 32 bits)

Trap vector number

15
I I I I I I
VN RA

ASGTU

7

ASGTU

I I I I I
RBorl

o

Description: If the value of the SACA operand is greater than the value of the SACS
operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs. For the comparison, both operands are
treated as unsigned integers.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set

ASLE

Assert Less Than or Equal To

Operation: IF SRCA.s SRCB THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASLE vn, ra, rb

or
ASLE vn, ra, conste

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

VN

31 23

II I I I I I I II
0101010M

OP = 54. 55

M = 1: I (Zero-extended to 32 bits)

Trap vector number

15
I I

I
I I I

VN RA

ASLE

7

II

AMD~

ASLE

I I I I
RBorl

o

I I

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set 18-21

;t1 AMD

18-22

ASLEU

Assert Less Than or Equal To, Unsigned

Operation: IF SRCA s SRCe (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASLEU vn, ra, rb

or
ASLEU vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

VN

31 23

II I I I I I I II
0101011M

OP = 56, 57

M = 1: I (Zero-extended to 32 bits)

Trap vector number

15

I I I

I

I I I I I
VN RA

ASLEU

7

ASLEU

o
I I I I I
RBorl

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCe operand, instruction execution continues; otherwise, a trap
with the specified vector number occurs. For the comparison, both
operands are treated as unsigned integers:

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set

ASLT

Assert Less Than

Operation: IF SACA < SACB THEN Continue
ELSE Trap(VN)

Assembler
Syntax: ASLT vn, ra, rb

or
ASLT vn, ra, const8

Status: Not affected

Operands: SACA Content of register AA

SRCB M = 0: Content of register RB

VN

31 23

II I I I I I I II
0101000M

OP = 50, 51

M = 1: I (Zero-extended to 32 bits)

Trap vector number

I I
VN

15

II

ASLT

I I
RA

AMD~

ASLT

7 o
I I I I I

RB orl

Description: If the value of the SACA operand is less than the value of the SACB
operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set 18-23

~AMD

18-24

ASLTU

Assert Less Than, Unsigned

Operation: IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASLTU vn, ra, rb

or
ASLTU vn, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15

I I II I I
VN RA

OP=52,53 ASLTU

ASLTU

7 o

II I I I I I I
RBorl .

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, instruction execution continues; otherwise, a trap with the
specified vector number occurs. For the comparison, both operands are
treated as unsigned integers.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set

ASNEQ

Assert Not Equal To

Operation: IF SRCA <> SRCS THEN Continue
ELSE Trap (VN)

Assembler
Syntax: ASNEO vn, ra, rb

or
ASNEO vn, ra, constB

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

VN Trap vector number

31 23 15 7 I' , , , , , , I 0111001M

, ,
VN II , ,

RA II
OP=72,73 ASNEQ

AMD~

ASNEQ

o , , , ,
RBorl I I

Description: If the SRCA operand is not equal to the SRCB operand, instruction
execution continues; otherwise, a trap with the specified vector number
occurs.

For programs in the User mode, a Protection Violation trap
occurs-instead of the assert trap-if a vector number between 0 and
63 is specified.

Instruction Set 18-25

~AMD
CALL

Can Subroutine

Operation: DEST ~ PC II 00 + 8
PC~TARGET
Execute delay instruction

Assembler
Syntax: CALL ra, target

Status: Not affected

CALL

Operands: TARGET A = 0: 117 ... 1101119 ... 12 (sign-extended to 30 bits) + PC
A = 1: 117 ... 1101119 ... 12 (zero-extended to 30 bits)

DEST Register RA

31 23

I I I I I I I I I
10101 0 0 A

OP=A8,A9

I I I I
117 ... 110

15

I I
CALL

7
I I I I I I I
RA 19 ... 12

0

I

Description: The address of the second following instruction is placed into the DEST
location and a non-sequential instruction fetch occurs to the instruction
address given by the TARGET operand. The instruction following the
CALL is executed before the non-sequential fetch occurs.

18-26 Instruction Set

CALLI

Call Subroutine, Indirect

Operation: DEST t- PC /I 00 + 8
PCt-SRCS

Assembler
Syntax:

Status:

Execute delay instruction

CALLI ra, rb

Not affected

Operands: SRCS Content of register RS

DEST Register RA

31 23

/
1 I I I I I I /
~1001000

OP=C8

I I I I
Reserved

15 II
CALLI

I I
RA

7
I I
RB

AMD~

CALLI

o

Description: The address of the second following instruction is placed into the DEST
location and a non-sequential instruction fetch occurs to the instruction
address given by the SRCS operand. The instruction following the
CALLI is executed before the non-sequential fetch occurs.

Instruction Set 18-27

;t1 AMD

18-28

CLASS CLASS
Classify Floating-Point Operand

Operation: DEST ~ CLASS(SRCA)

Assembler
Syntax: CLASS rc, ra, FS

Status: None

Operands: SRCA Content of register RA (Single-precision floating-point)
or

Content of register RA and the twin of register RA
(double-precision floating-point)

DEST Register RC

Control: FS

31

00
01
10
11

Format of source operand SRCA
Reserved for future use
Single-precision floating-point
Double-precision floating-point
Reserved for future use

23 15 7 0

II I I I I I I I I I I I I I

I
I I I

I
I I I I I I ~s I : 1 1 1 0 0 1 1 0: RC RA Reserved

OP=E6 CLASS

Description: A 32-bit classification code for operand SRCA is placed into the DEST
location. Operand SRCA is a single- or double-precision operand, as
specified by FS. The classification code has the following format:

31 7

I
o

Bits 31-6: Reserved (forced to 0).

I I I
EFC

Bit 5: Operand Sign (OS). The as bit is 1 for a negative operand
(including negative zero) and 0 for a non-negative operand.

Instruction Set

o

CLASS

EFC

00000
00001
00010
00011

00100
00101
00110
00111

01000
01001
01010
01011

01100
01101
01110
01111

10000
10001
10010
10011

AMD~

CLASS

Bits 4-0: Exponent-Fraction Class (EFC). This field classifies the
biased exponent and fraction fields of the source operand as follows:

Biased Exp (bexp) Fraction (frae) Comments

0 0 zero
unused

0 0<frac<.111 ... 1 denormalized
0 .111...1 denormalized

0
unused
0<frac<.111 ... 1

.111 ... 1

1 < bexp < Max 0
unused

1 < bexp < Max 0<frac<.111 ... 1
1 < bexp < Max .111... 1

Max 0
unused

Max 0<frac<.111 ... 1
Max .111 ... 1

Max + 1 0 infinity
unused

Max + 1, frac MSB = 0 <>0 SNaN
Max + 1, frac MSB = 1 <>0 QNaN

Note: Max is the largest biased exponent used to represent a finite number in a
given format. Max is 254 for Single-precision and 2,046 for double-precision.

This instruction is not supported directly in processor hardware. In the current
implementation, this instruction causes a CLASS trap. When the trap occurs,
the IPA and IPC registers are set to reference SRCA and DEST, and the IPB
Register is set with the value of the FS field.

Instruction Set 18-29

l1 AMD

CLZ

Count Leading Zeros

Operation: DEST ~ count of number of leading zeros in SRCB or I

Assembler
Syntax: CLZ rc, rb

or
CLZ rc, const8

Status: Not affected

Operands: SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I ' , , , , , , I ' o 0 0 0 1 0 0 M

OP = 08.09

, , ,
RC

15

I
, , , , ,

Reserved

CLZ

7

CLZ

, , , , ,
RBorl

o

Description: A count of the number of zero-bits to the first one-bit in the SRCB
operand is placed into the DEST location. If the most significant bit of
the SRCB operand is 1, the resulting count is zero. If the SRCB operand
is zero, the resulting count is 32.

18-30 Instruction Set

CONST

Operation: DEST ~ 0116

Assembler
Syntax: CONST ra, const16

Status: Not affected

AMD~

CONST

Constant

Operands: 0116 115 ... 81117 ... 10 (Zero-extended to 32 bits)

DEST Register RA

31 23 15 7 0

/' , , , , , , / , , , , ,
I
, , , , , , , ,

115 ... 18 RA 17 ... 10 .00000011.

OP,.,03 CONST

Description: The 0116 operand is placed into the DEST location.

Note: To improve code readability, some assemblers implement CONST
to take a 32-bit argument (rather than const16). The lower half of the
argument is constructed by the CONST.

Instruction Set 18-31

it1 AMD

18-32

CONSTH CONSTH

Constant, High

Operation: Replace high-order half-word of SRCA by 116

Assembler
Syntax: CONSTH ra, const16

Status: Not affected

Operands: SRCA

116

DEST

31 23 II II I I II II
00000010

OP=02

Content of register RA

115 ... 18 1/ 17 ... 10

Register RA

15

I I I I
115 ... 18 II

CONSTH

I I
RA

7 o
I I I I I II 17 ... 10

Description: The low-order half-word of the SRCA operand is appended to the 116
operand and the result is placed into the DEST operand. Note that the
destination register for this instruction is the same as the source
register.

Note: To improve code readability, some assemblers implement
CONSTH to take a 32-bit argument (rather than const16). The upper
half of the argument is constructed by the CONSTH.

Instruction Set

CONSTN

Operation: OEST ~ 1116

Assembler

Constant, Negative

Syntax: CONSTN ra, const16

Status: Not affected

Operands: 1116

OEST

31 23

115 ... 181117 ... 10 (ones-extended to 32 bits)

Register RA

15 7

I I I I I I I I I I

AMD~

CONSTN

0

I I I I II I I I .1 I I I
00000001 115 ... 18

I
RA 17 ... 10

OP=01 CONSTN

Description: The 1116 operand is placed into the OEST location.

Instruction Set 18-33

~AMD

18-34

CONVERT CONVERT
Convert Data Format

Operation: DEST +- SRCA, with format modified per UI, RND, FD, FS

Assembler
Syntax:

Status:

CONVERT rc, ra, UI, RND, FD, FS

fpX, fpU, fpV, fpR, fpN

Operands: SRCA Content of register RA (Single-precision floating-point)
or

Content of register RA and the twin of register RA
(double-precision floating-point)

DEST Content of register RC (single-precision floating-point)

Control: UI

RNO
000
001
010
011
100
101-111

FS,FO

00
01
10
11

31 23 I' , , , , , , I'
11100100

OP=E4

or
Content of register RC and the twin of register RA
(double-precision floating-point)

o = signed integer
1 = unsigned integer

Round mode
Round to nearest
Round to minus infinity
Round to plus infinity
Round to zero
Round using floating-point round mode (FRM)
Reserved

Format of source operand, format of destination
operand
Integer
Single-precision floating-point
Double-precision floating-point
Reserved

, ,
AC

15

I'
CONVERT

, ,
AA

7 , , I
AND

Description: The SRCA operand with format FS is converted to format FD and
rounded according to RND, then placed into the DEST location. If the
source or destination operand is an integer, it is a signed or unsigned
value according to the value of UI.

Note: Converting from format to like format is not supported and will .
produce unpredictable results.

Instruction Set

o

CONVERT

AMD~

CONVERT

This instruction is not supported directly in processor hardware. In the
current implementation this instruction causes a CONVERT trap. When
the trap occurs, the IPA and IPC registers are set to reference SRCA
and DEST, and the IPB Register is set with the value of the
UIIIRNDIIFDIIFS field. If the UI bit is 1, the contents of the IPB Register
reflect the value of this field after Stack-Pointer addition. The Stack
Pointer must be subtracted from the contents of the IPB Register to
recover the original value of this field.

Instruction Set 18-35

t1 AMD

CPBYTE
Compare Bytes

Operation: IF (SRCA.BYTEO = SRCB.BYTEO) OR
(SRCA.BYTE1 = SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3 = SRCB.BYTE3) THEN
DEST +- TRUE ELSE DEST +- FALSE

Assembler
Syntax: CPBYTE rc, ra, rb

or
CPBYTE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 , , , , '1'
1 0 1 1 1

I I
RC II

I I
RA

op= 2E.2F CPBYTE

CPBYTE

7 o
I I I I

RBorl

Description: Each byte of the SRCA operand is compared to the corresponding byte
of the SRCB operand. If any corresponding bytes are equal, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location.

18-36 Instruction Set

CPEQ

Compare Equal To

Operation: IF SRCA = SRCB THEN OEST +- TRUE
ELSE OEST +- FALSE

Assembler
Syntax: CPEa rc, ra, rb

or
CPEa rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I ' , , , I , I I
o 1 1 0 0 o. 0 M

I ,
RC

OP = 60, 61

15

II
CPEQ

, I
RA

AMD~

CPEQ

7 o
I , , ,

RS orl

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE is
placed into the OEST location; otherwise, a Boolean FALSE is placed
into the DEST location.

Instruction Set 18-37

~AMD
CPGE

Compare Greater Than or Equal To

Operation: IF SRCA ~ SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

Assembler
Syntax: CPGE rc, ra, rb

or
CPGE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

DEST

31 23

I I I I I I I I I
0100110M

OP=4C.40

M = 1: I (Zero-extended to 32 bits)

Register RC

I I
RC

15

II

CPGE

I I
RA

7

CPGE

I I I I
RBorl

o

Description: If the value of the SRCA operand is greater than or equal to the value of
the SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location.

18-38 Instruction Set

CPGEU

Compare Greater Than or Equal To, Unsigned

Operation: IF SRCA ~ SRCB (unsigned) THEN DEST ~ TRUE
ELSE DEST ~ FALSE

Assembler
Syntax: CPGEU re, ra, rb

or
CPGEU re, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
0100111M

OP=4E,4F

I I
RC

15

I II

CPGEU

I I
RA

7

AMD~

CPGEU

I I I I
RBorl

o

Description: If the value of the SRCA operand is greater than or equal to the value of
the SRCB operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For the
compariso~, both operands are treated as unsigned integers.

Instruction Set 18-39

~AMD
CPGT

Compare Greater Than

Operation: IF SRCA > SRCB THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPGT rc, ra, rb

or
CPGT rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

/
1 I I I I I I /
0100100~

OP = 48, 49

I I
RC

15

CPGT

I I
RA

7

CPGT

I I I I
RBorl

o

Description: If the value of the SRCA operand is greater than the value of the SRCB
operand, a Boolean TRUE is placed into the DEST location; otherwise,
a Boolean FALSE is placed into the DEST location.

18-40 Instruction Set

CPGTU

Compare Greater Than, Unsigned

Operation: IF SRCA > SRCB (unsigned) THEN DEST f- TRUE
ELSE DEST f- FALSE

Assembler
Syntax: CPGTU rc, ra, rb

or
CPGTU rc, ra, const8

Status:

Operands:

Not affected

SRCA
SRCB

DEST

31 23

I I I I I I I I I
0100101~

OP=4A,4B

Content of register RA
M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

Register RC

15

I I I

I
I I I

RC RA

CPGTU

7

I

AMD~

CPGTU

0

I I I I

I RBorl

Description: If the value of the SRCA operand is greater than the value of the SRCB
operand, a Boolean TRUE is placed into the DEST location; otherwise,
a Boolean FALSE is placed into the DEST location. For the comparison,
both operands are treated as unsigned integers.

Instruction Set 1&41

~AMD
CPLE

Compare Less Than or Equal To

Operation: IF SRCA S SRCB THEN OEST ~ TRUE
ELSE OEST ~ FALSE

Assembler
Syntax: CPLE rc, ra, rb

or
CPLE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

OEST Register RC

31 23 15

I I

I
I I I

RC RA
II I I I I I I II
0100010M

OP=44,45 CPLE

CPLE

7 . 0

I I I I I I
RBorl

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCB operand, a Boolean TRUE is placed into the OEST location;
otherwise, a Boolean FALSE is placed into the OEST location.

18-42 Instruction Set

CPLEU

Compare Less Than or Equal To, Unsigned

Operation: IF SRCA.s SRCS (unsigned) THEN DEST +- TRUE
ELSE DEST +- FALSE

Assembler
Syntax: CPLEU rc, ra, rb

or
CPLEU rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

1"1""11 0100011M

OP = 46, 47

I I
RC

15

CPLEU

I I
RA

7

AMD~

CPLEU

o
I I I I
RBorl

Description: If the value of the SRCA operand is less than or equal to the value of
the SRCS operand, a Boolean TRUE is placed into the DEST location;
otherwise, a Boolean FALSE is placed into the DEST location. For the
comparison, both operands are treated as unsigned integers.

Instruction Set 18-43

~AMD
CPLT

Compare Less Than

Operation: IF SACA < SACB THEN OEST f- TAUE
ELSE OEST f- FALSE

Assembler
Syntax: CPLT rc, ra, rb

or
CPLT rc, ra, const8

Status: Not affected

Operands: SACA Content of register AA

SACB M = 0: Content of register AB

OEST

31 23

I I I I I I I I I
0100000M

OP=40,41

M = 1: I (Zero-extended to 32 bits)

Aegister AC

I I
RC

15

I I I

CPLT

I I
RA

CPLT

7 o
I I I I I

RBarl .

Description: If the value of the SACA operand is less than the value of the SACB
operand, a Boolean TAUE is placed into the OEST location; otherwise,
a Boolean FALSE is placed into the OEST location.

18-44 Instruction Set

CPLTU

Compare Less Than, Unsigned

Operation: IF SRCA < SRCB (unsigned) THEN OEST +- TRUE
ELSE OEST +- FALSE

Assembler
Syntax: CPLTU rc, ra, rb

or
CPLTU rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

OEST

31 23

I I I I I I I I I
o 1 0 0 0 0 1 M

OP=42,43

M = 1: I (Zero-extended to 32 bits)

Register RC

I I
RC

15 I II
CPLTU

I I
RA

7

AMD~

CPLTU

I I I I
RBorl

o

Description: If the value of the SRCA operand is less than the value of the SRCB
operand, a Boolean TRUE is placed into the OEST location; otherwise,
a Boolean FALSE is placed into the OEST location. For the comparison,
both operands are treated as unsigned integers.

Instruction Set 18-45

~AMD
CPNEQ

Compare Not Equal To

Operation: IF SRCA <> SRCB THEN DEST ~ TRUE
ELSE DEST ~ FALSE

Assembler
Syntax: CPNEO rc, ra, rb

or
CPNEO rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I
I I I I I I I II
~110001M

OP=62,63

I I
RC

15

II

CPNEQ

I I
RA

7

CPNEQ

I I I
RBarl

o

Description: If the SRCA operand is not equal to the SRCB operand, a Boolean
TRUE is placed into the DEST location; otherwise, a Boolean FALSE is
placed into the DEST location.

1 ~6 Instruction Set

AMD~

DADD DADD

Operation:

Assembler
Syntax:

Status:

Floating-Point Add, Double-Precision

DEST (double-precision) ~ SRCA (double-precision) +
SRCB (double-precision)

DADD rc, ra, rb

fpX, fpU, fpV, fpR, fpN

Operands: SRCA Content of register RA and the twin of register RA

SRCB

DEST

31 23

II I I I I I I II
11110001

OP=F1

Content of register RB and the twin of register RB

Register RC and the twin of register RC

15 7
I I

I

I I I I I I I I
RC RA RB

DADD

Description: The SRCA operand is added to the SRCB operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the addition are double-precision floating-point numbers.

0

I

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a DADD trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST.

Instruction Set 18-47

~AMD
DDIY

Operation:

Assembler
Syntax:

Status:

Floating-Point Divide, Double-Precision

DEST (double-precision) +- SRCA (double-precision) I
SRCS (double-precision)

DDIV rc, ra, rb

fpD, fpX, fpU, fpV, fpR, fpN

Operands: SRCA

SRCS

DEST

Content of register RA and the twin of register RA

Content of register RS and the twin of register RS

Register RC and the twin of register RC

31 23

II I I I I I I II
11110111

OP=F7

I I I
RC

15
I

I

I I I

DDIV

7
I I I I

I

I I I I I
RA RB

DDIY

o

Description: The SRCA operand is divided by the SRCS operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the division are double-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a DDIV trap. When
the trap occurs, the IPA, IPS, and IPC registers are set to reference
SRCA, SRCS, and DEST.

1 ~8 Instruction Set

DEQ

Operation:

Assembler
Syntax:

Status:

Floating-Point Equal To, Double-Precision

IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST ~ TRUE
ELSE DEST ~ FALSE

DEQ rc, ra, rb

fpl

AMD~

DEQ

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

RegisterRC

31

SRCB

DEST

23 15 7 0

II I I I I I I I I I

I
I I I I 1.1 I I

RC RA RB .11101011.

OP=EB DEQ

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE is
placed into the DEST location; otherwise, a Boolean FALSE is placed
into the DEST location. SRCA and SRCB are double-precision
floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a DEQ trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST.

Instruction Set 18-49

rt AMD

DGE

Floating-Point Greater Than Or Equal To, Double-Precision

Operation:

Assembler
Syntax:

Status:

IF SRCA (double-precision) ~ SRCB (double-precision)
THEN DEST +- TRUE
ELSE DEST +- FALSE

DGE rc, ra, rb

fpl

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB SRCB

DEST Register RC

DGE

31 23 15 7 0 I' , , , , , , I , , ,
I
, , , , , , ,

AC AA AB .11101111.

OP=EF DGE

Description: If the SRCA operand is greater than or equal to the SRCB operand, a
Boolean TRUE is placed into the DEST location; otherwise, a Boolean
FALSE is placed into the DEST location. SRCA and SRCB are
double-precision floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

I

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a DGE trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST..

18-50 Instruction Set

DGT

Operation:

Assembler
Syntax:

Status:

Floating-Point Greater Than, Double-Precision

IF SRCA (double-precision) > SRCB (double-precision)
THEN OEST +- TRUE
ELSE OEST +- FALSE

OGT rc, ra, rb

fpl

AMD~

DGT

Operands: SRCA Content of register RA and the twin of register RA

Content of register RB and the twin of register RB

Register RC

31

SRCB

OEST

23 15 7 0

, I I I I I I I , I I I I I I I I I I I I I I RC RA RB .11101101.

OP=ED DGT

Description: If the SRCA operand is greater than the SRCB operand, a Boolean
TRUE is placed into the OEST location; otherwise, a Boolean FALSE is
placed into the OEST location. SRCA and SRCB are double-precision
floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a OGT trap. When the
trap occurs, the IPA, IPB, and IPC registers are set to reference SRCA,
SRCB, and OEST.

Instruction Set 18-51

~AMD

18-52

DIY DIY

Divide Step

Operation: Perform one-bit step of a divide operation (unsigned)

Assembler
Syntax: OIV rc, ra, rb

or
OIV rc, ra, canst 8

Status: V, N, Z, C

Operands: SRCA

SRCB

OEST

31 23

I I I I I I I I I
o 1 101 0 1 M

OP=6A.66

Content of register RA

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

Register RC

15 7
I I

I
I I I

RC RA

DIV

0
I I I I I I

R60rl

Description: If the Divide Flag (OF) bit of the ALU Status Register is 1, the SRCB
operand is subtracted from the SRCA operand. If the OF bit is 0, the
SRCB operand is added to the SRCA operand.

The carry-out of the add or subtract operation is exclusive-ORed with
the value of the OF bit and the value of the Negative (N) bit of the ALU
Status Register; the resulting value is complemented and placed into
the OF bit. The sign of the result of the add or subtract is placed into the
N bit.

The content of the a Register is appended to the result of the add or
subtract, and the resulting 64-bit value is shifted left by one bit position;
the value computed for the OF bit above fills the vacated bit position.
The high-order 32 bits of the 64-bit shifted value are placed into the
OEST location. The low-order 32 bits of the shifted value are placed into
the a Register.

Examples of integer divide operations appear in Section 2.6.3.

Instruction Set

AMD~
Diva Diva

Divide Initialize

Operation: Initialize for a sequence of divide steps (unsigned)

Assembler
Syntax: DIVO rc, rb

or
DIVO rc, const8

. Status: V, N, Z, C

Operands: SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

,I I I I I I I ,I
0110100M

OP=68,69

I I
RC

15

I
I I I I I

Reserved

DIVO

7
I I I I I

RBorl

Description: The Divide Flag (OF) bit of the ALU Status Register is set. The sign of
the SRCB operand is placed into the Negative bit of the ALU Status
Register.

The content of the Q register is appended to the SRCB operand, and
the resulting 64-bit value is shifted left by one bit position; a 0 fills the
vacated bit position. The high-order 32 bits of the 64-bit shifted value
are placed into the DEST location. The low-order 32 bits of the shifted
value are placed into the Q Register.

Examples of integer divide operations appear in Section 2.6.3.

0

Instruction Set 18-53

~AMD

18-54

DIVIDE DIVIDE

Operation: DEST ~
o ~

Assembler

Integer Divide, Signed

(0 II SRCA) I SRCB (signed)
Remainder

Syntax: DIVIDE rc, ra, rb

Status: Not affected

Operands: 0

SRCA

SRCB

DEST

31 23

I I I I I I I I I
11100001

OP=E1

Content of the 0 Register

Content of register RA

Content of register RB

Register RC

I I
RC

15

DIVIDE

I I
RA

7

II I I
RS

o

Description: The SRCA operand is appended to the content of the 0 register. The
resulting 64-bit value is divided by the SRCB operand and the result is
placed into the DEST location. This operation treats the operands as
signed two's-complement integers and produces a signed
two's-complement result.

The remainder is placed into the 0 register. A non-zero remainder
always has the same sign as the dividend.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a DIVIDE trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST.

Instruction Set

DIVIDU

Integer Divide, Unsigned

Operation: DEST f- (0 II SRCA) I SRCB (unsigned)
Of-Remainder

Assembler
Syntax: DIVIDU rc, ra, rb

Status: Not affected

Operands: 0

SRCA

SRCB

DEST

31 23

I I I I I I I I I
~1100011

OP=E3

Content of the 0 Register

Content of register RA

Content of register RB

RegisterRC

15

~Cl I I II

DIVIDU

I I
RA

7

AMD~
DIVIDU

I I
RB

o

Description: The SRCA operand is appended to the content of the 0 Register. The
resulting 64-bit value is divided by the SRCB operand and the result is
placed into the DEST location. This operation treats the operands as
unsigned integers, and produces an unsigned result.

The remainder is placed into the 0 Register. The remainder is also
unsigned.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a DIVIDU trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST.

Instruction Set 18-55

~AMD

18-56

DIVL DIVL

Divide Last Step

Operation: Complete a sequence of divide steps (unsigned)

Assembler
Syntax: DIVL rc, ra, rb

Status: V, N, Z, C

Operands: SRCA

SRCS

DEST

31 23 I' I I I I I I I
0110110M

OP=6C,6D

Content of register RA

M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

Register RC

15

~C' I I I'
DIVL

I I
RA

7
I I I I

RBorl

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCS
operand is subtracted from the SRCA operand. If the DF bit is 0,

o

the SRCS operand is added to the SRCA operand. The result is placed
into the DEST location.

The carry-out of the add or subtract operation is exclusive-ORed with
the value of the DF bit and the value of the Negative (N) bit of the ALU
Status Register; the resulting value is complemented and placed into
the DF bit. The sign of the result of the add or subtract is placed into the
N bit.

The content of the Q register is shifted left by one bit position; the value
computed for the DF bit above fills the vacated bit position. The shifted
value is placed into the a Register.

Examples of integer divide operations appear in Section 2.6.3.

Instruction Set

DIVREM

Divide Remainder

Operation: Generate remainder for divide operation (unsigned)

Assembler
Syntax: DIVREM re, ra, rb

or
DIVREM re, ra, eonst8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

AMD~
DIVREM

31 23 7 0

1
~~I~I-rI-I~I~I-rI~I~-r~'-~~~~-r~~~~-r-rI~~TI~I~I-r-'

0110111M RBorl

OP =6E, 6F

Description: If the Divide Flag (DF) bit of the ALU Status Register is 1, the SRCA
operand is placed into the DEST location.

If the DF bit is 0, the SRCB operand is added to the SRCA operand and
the result is placed into the DEST location.

Examples of integer divide operations appear in Section 2.6.3.

Instruction Set 18-57

~AMD
DMUL DMUL

Operation:

Assembler
Syntax:

Status:

Floating-Point Multiply, Double-Precision

DEST (double-precision) +- SRCA (double-precision) *
SRCS (double-precision)

DMUL rc, ra, rb

fpX, fpU, fpV, fpR, fpN

Operands: SRCA

SRCS

DEST

Content of register RA and the twin of register RA

Content of register RS and the twin of register RS

RegisterRC

31 23 15 7

II I I I I I I I I I I

I
I I I I I I I

RC RA RB .11110101.

OP=F5 DMUL

Description: The SRCS operand is multiplied by the SRCA operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and is placed into the DEST location. The operands and the
result of the multiplication are double-precision floating-point numbers.

0

I

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a DMUL trap. When
the trap occurs, the IPA, IPS, and IPC registers are set to reference
SRCA, SRCS, and DEST.

18-58 Instruction Set

DSUB

Operation:

Assembler
Syntax:

Status:

Operands:

Floating-Point Subtract, Double-Precision

DEST (double-precision) ~ SRCA (double-precision) -
SRCB (double-precision)

DSUB rc, ra, rb

fpX, fpU, fpV, fpR, fpN

AMD~

DSUB

SRCA Content of register RA and the twin of register RA

SRCB

DEST

Content of register RB and the twin of register RB

Register RC

31 23 15 7 0
I I I

I

I I I I I I I

I
RC RA RB

II I I I I I I II
11110011

OP=F3 DSUB

Description: The SRCB operand is subtracted from the SRCA operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and is placed into the DEST location. The operands and the
result of the subtraction are double-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a DSUB trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST.

Instruction Set 18-59

~AMD

18-60

EMULATE

Operation:

Assembler
Syntax:

Status:

Operands:

31

Trap to Software Emulation Routine

Load IPA and IPB registers with operand register numbers
and Trap (VN)

EMULATE vn, ra, rb

Not affected

Absolute-register numbers for registers RA and RB

VN Trap vector number

23 15 7

EMULATE

0 I' I I I I I I I I I I

I
I I I I I I I

VN RA RB .11010111,

OP=D7 EMULATE

Description: The IPA and IPB registers are set to the register numbers of registers
RA and RB, respectively. A trap with the specified vector number
occurs.

Note that the IPC register is also affected by this instruction, but its
value has no interpretation.

For programs in the User mode, a Protection Violation trap occurs­
instead of the EMULATE trap-if a vector number between 0 and 63 is
specified. A Protection Violation trap also occurs if RA or RB specifies a
register protected by the Register Bank Protect Register.

Instruction Set

EXBVTE
Extract Byte

Operation: DEST +- SRCB, with low-order byte replaced by byte in
SRCA selected by BP

Assembler
Syntax: EXBYTE rc, ra, rb

or
EXBYTE rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

DEST

31 23

II I I I I I I II
0000101M

OP=OA,OB

M = 1: I (Zero-extended to 32 bits)

Register RC

15
I I

I

I I I
RC RA

EXBYTE

7

AMD~

EXBVTE

o
I I I

RBorl I I

Description: A byte in the SRCA operand is selected by the Byte Pointer (BP) field of
the ALU Status Register. The selected byte replaces the low-order byte
of the SRCB operand and the resulting word is placed into the DEST
location.

Note: The selection of bytes within words is specified in
Section 3.3.5.1.

Instruction Set 18-61

r. AMD

18-62

EXHW EXHW

Extract Half-Word

Operation: DEST ~ SACB, with low-order half-word replaced by half-word in
SACA selected by BP

Assembler
Syntax: EXHW rc, ra, rb

or
EXHW rc, ra, const8

Status: Not affected

Operands: SACA Content of register AA

SACB M = 0: Content of register AB
M = 1: I (Zero-extended to 32 bits)

DEST Aegister AC

31 23

II I I I I I I II
0111110M

OP=7C,70

I I
RC

15

I II

EXHW

I I
RA

7
I I I I

RBarl

o

Description: A half-word in the SACA operand is selected by the Byte Pointer (SP)
field of the ALU Status Aegister. The selected half-word replaces the
low-order half-word of the SACB operand and the resulting word is
placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.3.5.1.

Instruction Set

EXHWS

Extract Half-Word, Sign-Extended

Operation: DEST ~ half-word in SRCA selected by BP,
sign-extended to 32 bits

Assembler
Syntax: EXHWS rc, ra

Status: Not affected

Operands: SRCA Content of register RA

DEST Register RC

31 23 15

II I I I I I I I I I I I

I
I I I

RC RA ~1111110

OP=7E EXHWS

AMD;t1

EXHWS

7 o
I I I I
Reserved

Description: A half-word in the SRCA operand is selected by the Byte Pointer eBP)
field of the ALU Status Register. The selected half-word is
sign-extended to 32 bits and the resulting word is placed into the DEST
location.

Note: The selection of half-words within words is specified in
Section 3.3.5.1.

Instruction Set 18-63

~AMD

18-64

EXTRACT
Extract Word, Bit-Aligned

Operation: DEST ~ high-order word of (SRCA /I SRCS « FC)

Assembler
Syntax: EXTRACT rc, ra ,rb

or
EXTRACT rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS

DEST

31 23

II I I I I I I II
0111101M

OP=7A,7B

M = 1: I (Zero-extended to 32 bits)

Register RC

15

I I I

I

I I I
RC RA

EXTRACT

7

EXTRACT

o
I I I I I I

RBorl .

Description: The SRCS operand is appended to the SRCA operand and the resulting
64-bit value is shifted left by the number of bit-positions specified by the
Funnel Shift Count (FC) field of the ALU Status register. The high-order
32 bits of the 64-bit shifted value are placed in the DEST location.

If the SRCS operand is the same as the SRCA operand, the EXTRACT
instruction performs a rotate operation.

Instruction Set

FADD

Operation:

Assembler
Syntax:

Status:

Operands:

31

Floating-Point Add, Single-Precision

DEST (single-precision) ~ SRCA (single-precision) +
SRCB (single-precision)

FADD rc, ra, rb

fpX, fpU, fpV, fpR, fpN

SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

23 15 7

AMD~

FADD

0

II I I I I I I I I I I

I
I I I I I I I

I RC RA RB .11110000.

OP=FO FADD

Description: The SRCA operand is added to the SRCB operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the addition are single-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes an FADD trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST.

Instruction Set 18-65

~AMD
FDIV

Operation:

Assembler
Syntax:

Status:

Operands:

Floating-Point Divide, Single-Precision

DEST (single-precision) ~ SRCA (single-precision) I
SRCS (single-precision)

FDIV rc, ra, rb

fpD, fpX, fpU, fpV, fpR, fpN

SRCA

SRCS

DEST

Content of register RA

Content of register RS

Register RC

FDIV

31 23 15 7 0
I I

I

I I I I I I I
RC RA RB

II I I I I I I II
11110110

OP=F6 FDIV

Description: The SRCA operand is divided by the SRCS operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the division are single-precision floating-point numbers.

I

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes an FDIV trap. When
the trap occurs, the IPA, IPS, and IPC registers are set to reference
SRCA, SRCS, and DEST.

18-66 Instruction Set

FDMUL

Operation:

Assembler
Syntax:

Status:

Operands:

31

Floating-Point Multiply, Single-to-Double Precision

DEST (double-precision) ~ SRCA (single-precision) *
SRCB (single-precision)

FDMUL rc, ra, rb

fpR, fpN

SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

23 15 7

AMD~

FDMUL

0 II I I I I I I I I I I I

I
I I I I I I I

I AC AA AS .11111001.

OP=F9 FDMUL

Description: The SRCB operand is multiplied by the SRCA operand; the result is
placed into the DEST location. SRCA and SRCB are single-precision
floating-point numbers; the result is produced in double-precision
format. Because the product of two single-precision operands can
always be represented exactly as a double-precision number, the
FDMUL result does not depend on the FRM field of the Floating-Point
Environment Register.

Note: This instruction IS not supported directly in processor hardware. In
the current implementation this instruction causes an FDMUL trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

Instruction Set 18-67

~AMD
FEQ

Operation:

Assembler
Syntax:

Status:

Floating-Point Equal To, Single-Precision

IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST +- TRUE
ELSE DEST +- FALSE

FEQ rc, ra, rb

fpN

FEQ

Operands: SRCA Content of register RA

Content of register RB

RegisterRC

31

SRCB

DEST

23 15 7 0 II I I I I I I I I I I

I
I I I I I I I I

RC RA RB ,11101010,

OP=EA FEQ

Description: If the SRCA operand is equal to the SRCB operand, a Boolean TRUE is
placed into the DEST location; otherwise, a Boolean FALSE is placed
into the DEST location. SRCA and SRCB are single-precision
floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes an FEQ trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST.

18-68 Instruction Set

AMD~

FGE FGE

Floating-Point Greater Than Or Equal To, Single-Precision

Operation:

Assembler
Syntax:

Status:

IF SRCA (single-precision) ~ SRCB (single-precision)
THEN DEST ~ TRUE
ELSE DEST ~ FALSE

FGE rc, ra, rb

fpN

Operands: SRCA Content of register RA

SRCB Content of register RB

DEST Register RC

31 23 15 7 0

II I I I I I I I I I

I
I I I I I I I I

RC RA RB .11101110.

OP=EE FGE

Description: If the SRCA operand is greater than or equal to the SRCB operand, a
Boolean TRUE is placed into the DEST location; otherwise, a Boolean
FALSE is placed into the DEST location. SRCA and SRCB are
single-precision floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes an FGE trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and DEST.

Instruction Set 18-69

~AMD

18-70

FGT

Operation:

Assembler
Syntax:

Status:

Floating-Point Greater Than, Single-Precision

IF SRCA (single-precision) > SRCB (single-precision)
THEN OEST f- TRUE
ELSE OEST f- FALSE

FGT rc, ra, rb

fpN

FGT

Operands: SRCA Content of register RA

Content of register RB SRCB

OEST Register RC

31 23 15 7 0

II I I I I I I I I I

I
I I I I I I I I

I RC RA RS .11101100.

OP=EC FGT

Description: If the SRCA operand is greater than the SRCB operand, a Boolean
TRUE is placed into the OEST location; otherwise, a Boolean FALSE is
placed into the OEST location. SRCA and SRCB are single-precision
floating-point numbers.

The rounding mode specified by the FRM field of the Floating-Point
Environment Register has no effect on this operation.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes an FGT trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SRCA, SRCB, and OEST.

Instruction Set

AMD~

FMUL FMUL

Floating-Point Multiply, Single-Precision

Operation: OEST (single-precision) +- SACA (single-precision) *
SACB (single-precision)

Assembler
Syntax: FMUL rc, ra, rb

Status: fpX, fpU, fpV, fpA, fpN

Operands: SACA

SACB

OEST

31 23

I I I I I I I I I
11110100

OP=F4

Content of register AA

Content of register AB

AegisterAC

I I
RC

15

II
FMUL

I I
RA

7
I I I

RB

Description: The SACA operand is multiplied by the SRCB operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Aegister and placed into the OEST location. The operands and the
result of the multiplication are single-precision floating-point numbers.

o

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes an FMUL trap. When
the trap occurs, the IPA, IPB, and IPC registers are set to reference
SACA, SRCB, and OEST.

Instruction Set 18-71

~AMD

18-72

FSUB

Floating-Point Subtract, Single-Precision

Operation: DEST (single-precision) +- SRCA (single-precision) -
SRCS (single-precision)

Assembler
Syntax: FSUS rc, ra, rb

Status: fpX, fpU, fpV, fpR, fpN

Operands: SRCA

SRCS

DEST

31 23

II I I I I I I II
11110010

OP=F2

Content of register RA

Content of register RS

Register RC

15
I I

I

I
RC

FSUB

7
I I I
RA

FSUB

0
I I I

I
RB

Description: The SRCS operand is subtracted from the SRCA operand; the result is
rounded according to the FRM field of the Floating-Point Environment
Register and placed into the DEST location. The operands and the
result of the subtraction are single-precision floating-point numbers.

Note: This instruction is not supported directly in processor hardware. In
the current implementation, this instruction causes an FSUS trap. When
the trap occurs, the IPA, IPS, and IPC registers are set to reference
SRCA, SRCS, and DEST.

Instruction Set

HALT

Enter Halt Mode

Operation: Enter Halt mode on next cycle

Assembler
Syntax: HALT

Status: Not affected

Operands: Not applicable

31 23

II I I I I I I I I I
10001001

15

I I I

I Reserved

I

OP=89 HALT

I I I
Reserved

AMD~

HALT

7 o
I I I I I

Reserved I I

Description: The processor is placed into the Halt mode in the next cycle, or in the
cycle after an external data access is completed if an access is in
progress.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a Protection
Violation trap to occur unless the Protection Violation trap was disabled
during reset (see Section 17.7.5).

If the instruction following a Halt instruction has an exception
(e.g., TLB Miss), the trap associated with this exception is taken before
the processor enters the Halt mode.

Instruction Set 18-73

~AMD

18-74

INBYTE

Insert Byte

Operation: DEST ~SRCA, with byte selected by BP
replaced by low-order byte of SRCB

Assembler
Syntax: INBYTE rc, ra, rb

or
INBYTE rc, ra, constS

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I II
0000110M

OP=OC,OD

I I
RC

15

I I

I

I

IN BYTE

I I
RA

INBYTE

7 o
I I I I
RBorl

Description: A byte in the SRCA operand is selected by the Byte Pointer (BP) field of
the ALU Status Register. The selected byte is replaced by the low-order
byte of the SRCB operand and the resulting word is placed into the
DEST location.

Note: The selection of bytes within words is specified in
Section 3.3.5.1.

Instruction Set

INHW

Insert Half-Word

Operation: DEST +--SRCA, with half-word selected by BP replaced by
low-order half-word of SRCB

Assembler
Syntax: INHW rc, ra, rb

or
INHW rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 , , , , , 7 , , , , I' , , , , , , I
.0111100M. RC I RA RBorl

OP=78,79 INHW

AMD~

INHW

0

I
Description: A half-word in the SRCA operand is selected by the Byte Pointer (BP)

field of the ALU Status Register. The selected half-word is replaced by
the low-order half-word of the SRCB operand and the resulting word is
placed into the DEST location.

Note: The selection of half-words within words is specified in
Section 3.3.5.1.

Instruction Set 18-75

~AMD
INY INY

Invalidate

Operation: None

Assembler
Syntax: INV

Status: Not affected

Operands: Not applicable

31 23 15 7 o

I I I I I I I I I f I I I I I
.10011111. Reserved I I I I I I I

. Reserved

I I I I I
Reserved

OP=9F INV

Description: In 29K Family processors with instruction caches, this instruction causes
all cache valid bits to be reset. In the Am29200 and Am29205 .
microcontrollers, this instruction performs no operation, except it is a
privileged instruction. Attempted execution by a User-mode program
causes a Protection Violation trap to occur.

18-76 Instruction Set

IRET

Interrupt Return

Operation: Perform an interrupt return sequence

Assembler
Syntax: IRET

Status: Not affected

Operands: Not applicable

31 23 15
I I I I I I I I I II I I I I I I I

10001 000 Reserved I Reserved

OP=88 IRET

AMD~

IRET

7 0
I I I I I I I

Reserved

Description: This instruction performs the interrupt return sequence described in
Section 16.4.4.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a Protection
Violation trap to occur.

Instruction Set 18-n

~AMD

18-78

IRETINV

Interrupt Return and Invalidate

Operation: Perform an interrupt retum sequence

Assembler
Syntax: IRETINV

Status: Not affected

Operands: Not applicable

31 23

"

, , , , , , ,
10001100

OP=8C

, I , , ,
Reserved

15

I'
IRETINV

, , , , ,
Reserved

7

IRETINV

, , , I
Reserved

o , I

Description: This instruction performs the interrupt retum sequence described in
Section 16.4.4. In 29K Family processors with an instruction cache, this
instruction also resets the valid bits in the cache. In the Am29200 and
Am29205 microcontrollers, this instruction is identical to the IRET
instruction.

This instruction may be executed only by Supervisor-mode programs.
An attempted execution by a User-mode program causes a Protection
Violation trap to occur.

Instruction Set

AMD~

JMP JMP

Jump

Operation: PC +- TARGET
Execute delay instruction

Assembler
Syntax: JMP target

Status: Not affected

Operands: TARGET A = 0: 117 ... 1101119 ... 12 (sign-extended to 30 bits) + PC
A = 1: 117 ... 1101119 ... 12 (zero-extended to 30 bits)

31 23 15 7 II I I I I I I I I I I I I I

I
I I I I I I

I
I I I I I I

117 ... 110 Reserved 19 ... 12 .1010000A.

OP=AO, A1 JMP

Description: A non-sequential instruction fetch occurs to the instruction address
given by the TARGET operand. The instruction following the JMP is
executed before the non-sequential fetch occurs.

0
I

I

Instruction Set 18-79

~AMD

18-80

JMPF JMPF

Jump False

Operation: IF SRCA = FALSE THEN PC ~ TARGET
Execute delay instruction

Assembler
Syntax: JMPF ra, target

Status: Not affected

Operands: SRCA Content of register RA

TARGET A = 0: 117 ... 1101119 ... 12 (sign-extended to 30 bits) + PC
A = 1: 117 ... 110 1119 ... 12 (zero-extended to 30 bits)

31 23 15 .7 0

II I I I I I I I I I I I I

I
I I I I I I I

I
I I I I I I I

I 117 ... 110 RA 19 ... 12 .1010010A.

OP=A4, AS JMPF

Description: If SRCA is a Boolean FALSE, a non-sequential instruction fetch occurs
to the instruction address given by the TARGET operand.

If SRCA is a Boolean TRUE, this instruction has no effect.

The instruction following the JMPF is executed regardless of the value
ofSRCA.

Instruction Set

AMD~

JMPFDEC JMPFDEC

Jump False and Decrement

Operation: IF SRCA = FALSE THEN

Assembler
Syntax:

Status:

Operands:

31

SRCA +- SRCA - 1
PC+-TARGET

ELSE
SRCA +- SRCA - 1

Execute delay instruction

JMPFDEC ra, target

Not affected

SRCA Content of register RA

TARGET A = 0: 117 ... 1101119 ... 12 (sign-extended to 30 bits) + PC
A = 1: 117 ... 1101119 ... 12 (zero-extended to 30 bits)

23 15 7 0

II I I I I I I I I I I I I

I
I I I I I I I

I
I I I I I I

I 117 ... 110 RA 19 ... 12 .1011010A.

op= 84, 85 JMPFDEC

Description: If SRCA is a Boolean FALSE, a non-sequential instruction fetch occurs
to the instruction address given by the TARGET operand.

If SRCA is a Boolean TRUE, this instruction has no effect on the
instruction-execution sequence.

The SRCA operand is decremented by one, regardless of whether or
not the non-sequential instruction fetch occurs. Note that a negative
number for the SRCA operand is a Boolean TRUE.

The instruction following the JMPFDEC is executed regardless of the
value of SRCA.

Instruction Set 18-81

~AMD

18-82

JMPFI JMPFI

Jump False Indirect

Operation: IF SRCA = FALSE THEN PC ~ SRCB
Execute delay instruction

Assembler
Syntax: JMPFI ra, rb

Status: Not affected

Operands: SRCA

SRCB

31 23

II I I I I I I I
11000100

OP=C4

Content of register RA

Content of register RB

15
I I I I

I
I

Reserved

JMPFI

I
RA

7
I

II
I I
RB

Description: If the SRCA is a Boolean FALSE, a non-sequential instruction fetch
occurs to the instruction address given by the SRCB operand.

If SRCA is a Boolean TRUE, this instruction has no effect.

o

The instruction following the JMPFI is executed regardless of the value
ofSRCA.

Instruction Set

AMD~
JMPI JMPI

Jump Indirect

Operation: PC +- SRCB
Execute delay instruction

Assembler
Syntax: JMPI rb

Status: Not affected

Operands: SRCB

31 23

II I I I I I I I I
11000000

op=co

Content of register RB

15
I I I I

I
I I I I

Reserved Reserved

JMPI

7
I I
RS

Description: A non-sequential instruction fetch occurs to the instruction address
given by the SRCB operand. The instruction following the JMPI is
executed before the non-sequential fetch occurs.

Instruction Set

o

18-83

~AMD

18-84

JMPT

Jump True

Operation: IF SRCA = TRUE THEN PC f- TARGET
Execute delay instruction

Assembler
Syntax: JMPT ra, target

Status: Not affected

Operands: SRCA Content of register RA

JMPT

TARGET A = 0: 117 ... 1101119 ... 12 (Sign-extended to 30 bits) + PC

31

/
1 I I I I I I /
~010110A

OP=AC, AD

23

A = 1: 117 ... 1101119 ... 12 (zero-extended to 30 bits)

15 7 0
I I I I I

I
I I I I I I I I I I I I I

117 ... 110 RA 19 ... 12

JMPT

Description: If SRCA is a Boolean TRUE, a non-sequential instruction fetch occurs to
the instruction address given by the TARGET operand.

If SRCA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPT is executed regardless of the value
ofSRCA.

Instruction Set

JMPTI

Jump True Indirect

Operation: IF SACA = TAUE THEN PC +- SACB
Execute delay instruction

Assembler
Syntax: JMPTI ra, rb

Status: Not affected

Operands: SACA

SACB

31 23

II I I I I I I I
11001100

OP=CC

Content of register AA

Content of register AB

15
I I I I I

I
I I I

Reserved

JMPTI

I
RA

7
I I I

RB

AMD~

JMPTI

o

Description: If the SACA is a Boolean TRUE, a non-sequential instruction fetch
occurs to the instruction address given by the SACB operand.

If SACA is a Boolean FALSE, this instruction has no effect.

The instruction following the JMPTI is executed regardless of the value
of SACA.

Instruction Set 18-85

~AMD

UI-86

LOAD LOAD

Load

Operation: DEST +- EXTERNAL WORD [SRCB]

Assembler
Syntax: LOAD 0, cntl, ra, rb

or
LOAD 0, cntl, ra, const8

Status: Not affected

Operands: SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RA

31 23

II I I I I I I II
0001011MO

OP= 16, 17
Res

15

LOAD

I I
RA

7
I I I I

RBarl

Description: The external word addressed by the SRCB operand is placed into the
DEST location.

The CNTL field of the LOAD instruction affects the bus access as
described in Section 3.3.1.

Instruction Set

o

AMD~

LOADL LOADL

Load and Lock

Operation: DEST ~ EXTERNAL WORD [SRCB]

Assembler
Syntax: LOADL 0, cntl, ra, rb

or
LOADL 0, cntl, ra, const8

Status:

Operands:

Not affected

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RA

31 23 15 I I I I I I I I II I I I I I I I I
• 0 0 0 0 0 11M. O. CNTl RA ,

OP=06,07
,

LOADL ,
Res

7
I I I I
RBorl

Description: The external word addressed by the SRCB operand is placed into the
DEST location.

The CNTL field of the LOADL instruction affects the bus access as
described in Section 3.3.1.

In other 29K Family processors, this instruction is provided for the
implementation of interlock protocols. In the Am29200 and Am29205
microcontrollers, the LOADL instruction is identical to the LOAD
instruction.

0

I

Instruction Set 18-87

~AMD

18-88

LOADM LOADM
Load Multiple

Operation: DEST ... DEST +COUNT +- EXTERNAL WORD [SRCB] ...
EXTERNAL WORD [SRCB + (COUNT * 4)]

Assembler
Syntax: LOADM 0, cntl, ra, rb

or
LOADM 0, cntl, ra, const8

Status: Not affected

Operands: SRCB

DEST

31 23 I' , I I , , , II
0011011MO

OP=36,37
Res

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

register RA

15

I I I I'
CNTL .

LOADM

I I
RA

7
I , I I

RBorl

o

Description: External words at consecutive word addresses beginning with the word
addressed by the SRCB operand, are placed into consecutive registers
beginning with the DEST location.

The total number of words accessed in the sequence is specified by the
Count Remaining (CR) field of the Channel Control Register (which also
appears in the Load/Store Count Remaining Register) at the beginning
of the bus access. The total number of words is the value of the CR field
plus one. The CNTL field of the LOADM instruction affects the access
as described in Section 3.3.1.

Note: The address and register-number sequences for the LOADM
instruction are specified in Section 3.3.4. Because this instruction uses
the Channel Address and Control Registers, it should not be executed
when the FZ bit is 1.

Instruction Set

AMD~

LOADSET LOADSET

Load and Set

Operation: DEST ~ EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] ~ h'FFFFFFFF'

Assembler
Syntax: LOADSET 0, cntl, ra, rb

or
LOADSET 0, cntl, ra, const8

Status: Not affected

Operands: SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RA

31 23 II I I I I I I II
0010011MO

OP = 26, 27
Res

15 I I I I II
CNTL _

LOADSET

I I
RA

7
I I I
RBorl

Description: The external word addressed by the SRCB operand is placed into the
DEST location. After the DEST location is altered, the external word
addressed by the SRCB operand is written, atomically, with a word
consisting of a 1 in every bit position.

The CNTL field of the LOADSET instruction affects the bus access as
described in Section 3.3.1.

o

Instruction Set 18-89

~AMD

18-90

MFSR

Move from Special Register

Operation: DEST ~ SPECIAL

Assembler
Syntax: MFSR rc, spid

Status: Not affected

Operands: SPECIAL

DEST

Content of special-purpose register SA

Register RC

31 23 15 7

II I I I I I I I I I I I

I
I I I I

RC SA .11000110.

OP=C6 MFSR

Description: The SPECIAL operand is placed into the DEST location.

MFSR

0
I I I I

I Reserved

For programs in the User mode, a Protection Violation trap occurs if SA
specifies a protected special-purpose register. If a trap occurs, the
DEST location is not altered.

Instruction Set

AMD~

MFTLB MFTLB

Move from Translation Look-Aside Buffer Register

Operation: None

Assembler
Syntax:

Status:

MFTLB rc, ra

Not affected

Operands: SRCA Content of register RA, bits 6 ... 0

DEST Register RC

31 23 15

II , , , , , , I
, , ,

I'
, ,

RC RA ,10110110,

OP=B6 MFTLB

7 0 , I I I ,
I Reserved

Description: In 29K Family processors with an MMU, this instruction reads TLB
entries. In the Am29200 and Am29205 microcontrollers, this instruction
performs no operation except it is a privileged instruction. Attempted
execution by a User-mode program causes a Protection Violation trap to
occur.

Instruction Set 18-91

~AMD

18-92

MTSR

Operation:

Assembler
Syntax:

Status:

Operands:

31

MTSR

Move to Special Register

SPDEST ~ SRCS

MTSR spid, rb

Not affected unless the destination is the ALU Status Register

SRCS Content of register RS

SPDEST Special-purpose register SA

23 15 7 ° II I I I I I I I I I I I I

I
I I I

I
I I I I Reserved SA RB ,1 1 0 0 1 1 1 0,

OP=CE MTSR

Description: The SRCS operand is placed into the SPECIAL location.

For programs in the User mode, a Protection Violation trap occurs if SA
specifies a protected special-purpose register. If a trap occurs, the
SPDEST location is not altered.

Instruction Set

MTSRIM

Move to Special Register Immediate

Operation: SPDEST +- 0116

Assembler
Syntax: MTSRIM spid, const16

AMD~

MTSRIM

Status: Not affected unless the destination is the ALU Status Register

Operands: 0116 115 ... 18/117 ... 10 (zero-extended to 32 bits)

SPDEST Special-purpose register SA

31 23 15 7 0

II I I I I I I I I I I I

I
I I I I I I I I 115 ... 18 SA 17 ... 10 .0 0 0 0 0 1 0 O.

OP=04 MTSRIM

Description: The 0116 operand is placed into the SPECIAL location.

For programs in the User mode, a Protection Violation trap occurs if SA
specifies a protected special-purpose register. If a trap occurs, the
SPDEST location is not altered.

Instruction Set 18-93

~AMD
MTTLB

Move to Translation Look-Aside Buffer Register

Operation: None

Assembler
Syntax: MTILB ra, rb

Status: Not affected

Operands: SRCA

SRCB

31 23

II I I I I I I I
.10111110,

OP=BE

I

Content of register RA, bits 6 ... 0

Content of register RB

15
I I I I I I I I

Reserved RA

MTTLB

7

MTTLB

0
I I I RB

Description: In 29K Family processors with an MMU, this instruction modifies TLB
entries. In the Am29200 and Am29205 microcontrollers, this instruction
performs no operation except it is a privileged instruction. Attempted
execution by a User-mode program causes a Protection Violation trap to
occur.

18-94 Instruction Set

MUL
Multiply Step

Operation: Perform one-bit step of a multiply operation

Assembler
Syntax: MUL rc, ra, rb

or
MUL rc, ra, const 8

Status: V, N, Z, C

Operands: SRCA

SRCB

DEST

31 23

/
1 I I I I I I /

0110010M

OP = 64, 65

Content of register RA

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

Register RC

15
I I

I
I I I

RC RA

MUL

AMD~

MUL

7 o
I I I I

RBorl

Description: If the least significant bit of the a Register is 1, the SRCA operand is
added to the SRCB operand. If the least significant bit of the a register
is 0, a zero word is added to the SRCB operand.

The content of the a Register is appended to the result of the add and
the resulting 64-bit value is shifted right by one bit position; the true sign
of the result of the add fills the vacated bit position (Le., the sign of the
result is complemented if an overflow occurred during the add
operation). The high-order 32 bits of the 64-bit shifted value are placed
into the DEST location. The low-order 32 bits of the shifted value are
placed into the a Register.

Examples of integer multiply operations appear in Section 2.6.2.

Instruction Set 18-95

~AMD

18-96

MULL

Operation:

Assembler
Syntax:

Status:

Operands:

MULL

Multiply Last Step

Complete a sequence of multiply steps (for signed multiply)

MULL rc, ra, rb
or

MULL rc, ra, const 8

V,N,Z,C

SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15 7 0

II I I I I I I I
0110011M

OP = 66, 67

I
RC

I

I
I

MULL

I I I I I I I
RA RBorl

Description: If the least significant bit of the a Register is 1, the SRCA operand is
subtracted from the SRCB operand. If the least Significant bit of the a
register is 0, a zero word is subtracted from the SRCB operand.

I

The content of the a Register is appended to the result of the subtract
and the resulting 64-bit value is shifted right by one bit position; the true
sign of the result of the subtract fills the vacated bit position (Le., the
sign of the result is complemented if an overflow occurred during the
subtract operation). The high-order 32 bits of the 64-bit shifted value are
placed into the DEST location. The low-order 32 bits of the shifted value
are placed into the a Register.

Examples of integer multiply operations appear in Section 2.6.2.

Instruction Set

AMD~

MULTIPLU

Integer Multiply, Unsigned

Operation: DES-r ~ SRCA * SRCB

Assembler
Syntax: MULTIPLU rc, ra, rb

Status: None

Operands: SRCA

SRCB

DEST

Content of register RA

Content of register RB

Register RC

MULTIPLU

31 23 15 7 0
I I

I
I I I I I I I

RC RA RS I I I I I I I I I
1110001~

OP=E2 MULTIPLU

Description: The SRCA operand is multiplied by the SRCB operand. The low-order
32 bits of the 64-bit result are placed into the DEST location. This .
operation treats the SRCA and SRCB operands as unsigned integers
and produces an unsigned result.

The contents of the a register are undefined after a MULTIPLU
operation.

I

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes an MULTIPLU trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

Instruction Set 18-97

~AMD
MULTIPLY MULTIPLY

Integer Multiply, Signed

Operation: DEST +- SRCA * SRCS

Assembler
Syntax: MULTIPLY rc, ra, rb

Status: None

Operands: SRCA

SRCS

DEST

31 23

II I I I I I I II
11100000

OP=EO

Content of register RA

Content of register RS

Register RC

15
I I I I

I

I
AC

MULTIPLY

I I
RA

7 0

I

I I I I

I
AS

Description: The SRCA operand is multiplied by the SRCS operand. The low-order
32 bits of the 64-bit result are placed into the DEST location. This
operation treats the SRCA and SRCS operands as two's-complement
integers and produces a two's-complement result.

The contents of the Q register are undefined after a MULTIPLY
operation.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a MULTIPLY trap.
When the trap occurs, the IPA, IPS, and IPC registers are set to
reference SRCA, SRCS, and DEST.

18-98 Instruction Set

MULTM

Integer Multiply most significant Bits, Signed

Operation: DEST ~ SRCA * SRCS

Assembler
Syntax: MULTM rc, ra, rb

Status: None

Operands: SRCA

SRCS

DEST

31 23

II I I I I I I II
11011110

OP=DE

Content of register RA

Content of register RS

RegisterRC

15
I I

I
I

RC

MULTM

7
I I I
RA

AMD~

MULTM

0
I I I

I RB

Description: The SRCA operand is multiplied by the SRCS operand. The high-order
32 bits of the 64-bit result are placed into the DEST location. This
operation treats the SRCA and SRCS operands as two's-complement
integers and produces a two's-complement result.

The contents of the a register are undefined after a MULTM operation ..

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes a MULTM trap. When
the trap occurs, the IPA, IPS, and IPC registers are set to reference
SRCA, SRCS, and DEST.

Instruction Set 18-99

~AMD

18-100

MULTMU

Integer Multiply most significant Bits, Unsigned

Operation: DEST +- SRCA * SRCB

Assembler
Syntax: MULTMU rc, ra, rb

Status: None

Operands: SRCA

SRCB

DEST

31 23

II I I I I I I II
11011111

OP=DF

Content of register RA

Content of register RB

Register RC

15

I I

I

I
RC

MULTMU

7

I I I
RA

MULTMU

0
I I I

I
RB

Description: The SRCA operand is multiplied by the SRCB operand. The high-order
32 bits of the 64-bit result are placed into the DEST location. This
operation treats the SRCA and SRCB operands as unsigned integers
and produces an unsigned result.

The contents of the a register are undefined after a MULTMU operation.

Note: This instruction is not supported directly in processor hardware. In
the current implementation this instruction causes an MULTMU trap.
When the trap occurs, the IPA, IPB, and IPC registers are set to
reference SRCA, SRCB, and DEST.

Instruction Set

MULU

Multiply Step, Unsigned

Operation: Perform one-bit step of a multiply operation (unsigned)

Assembler
Syntax: MULU rc, ra, rb

or
MUlU rc, ra, const 8

Status: V, N, Z, C

Operands: SACA Content of register AA

SACB M = 0: Content of register AB

DEST

31 23 I' , , , , , , I'
0111010M

OP=74,75

M = 1: I (Zero-extended to-32 bits)

AegisterAC

, ,
RC

15

I'
MULU

, ,
RA

7

AMD~
MULU

o , , , ,
RBorl

Description: If the least significant bit of the a Aegister1s 1, the SACA operand is
added to the SACB operand. If the least significant bit of the a register
is 0, a zero word is added to the SACB operand.

The content of the a register is appended to the result of the add and
the resulting 54-bit value is shifted right by one bit position; the carry-out
of the add fills the vacated bit position. The high-order 32 bits of the
54-bit shifted value are placed into the DEST location. The low-order 32
bits of the shifted value are placed into the a Aegister.

Examples of integer multiply operations appear in Section 2.6.2.

Instruction Set 18-101

~AMD

18-102

NAND NAND

NAND Logical

Operation: DEST ~ -(SRCA & SRCS)

Assembler
Syntax: NAND rc, ra, rb

or
NAND rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 ,I I I I I I I II
1001101M

OP=9A,9B

I I
RC

15

II

NAND

I I
RA

7

I I I
RBorl

Description: • The SACA operand is logically ANDed, bit-by-bit, with the SRCS
operand. The one's-complement of the result is placed into the DEST
location.

Instruction Set

o

NOR

NOR Logical

Operation: DEST ~ -(SACA I SACS)

Assembler
Syntax: NOA rc, ra, rb

or
NOA rc, ra, const8

Status: N, Z

Operands: SACA Content of register AA

SACS M = 0: Content of register AS

DEST

31 23

II I I I I I I I
1001100M

OP=98,99

M = 1: I (Zero-extended to 32 bits)

Aegister AC

15
I I I I I I I
RC RA

NOR

7

AMD~

NOR

I I I I
RBorl

o

Description: The SACA operand is logically OAed, bit-by-bit, with the SACS
operand. The one's-complement of the result is placed into the DEST
location.

Instruction Set 18-103

~AMD
OR

OR Logical

Operation: DEST +- SRCA I SRCB

Assembler
Syntax: OR rc, ra, rb

or
OR rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
1001001M

OP = 92, 93

I I
RC

15 II
OR

I I
RA

7
I I I I

RBorl

Description: The SRCA operand is logically ORed, bit-by-bit, with the SRCB
operand, and the result is placed into the DEST location.

18-104 Instruction Set

OR

o

AMD~

SETIP SETIP

Set Indirect Pointers

Operation: Load IPA, IPB, and IPC registers with operand-register numbers

Assembler
Syntax: SETIP rc, ra, rb

Status: Not affected

Operands: Absolute-register numbers for registers RA, RB, and RC

31 23

I I I I I I
.10011110

OP=9E

I I
RC

15

II

SETIP

I I
RA

7
I I
RB

Description: The IPA, IPB, and IPC registers are set to the register numbers of
registers RA, RB, and RC, respectively.

o

I I

For programs in the User mode, a Protection Violation trap occurs if RA,
RB, or RC specifies a register protected by the Register Bank Protect
Register.

Note: This instruction has a delayed effect on the indirect pointer
registers as discussed in Section 5.6.

Instruction Set 18-105

~AMD
SLL SLL

Shift Left Logical

Operation: DEST t- SRCA « SRCB (zero fill)

Assembler
Syntax: SLL rc, ra, rb

or
SLL rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB, bits 4 ... 0
M = 1: I, bits 4 ... 0

DEST Register RC

31 23

I I I I I I I I I
1000000~

OP = 80, 81

I
RC

15
I

I
SLL

7
I I I I

RA
I I I I

RBorl

Description: The SRCA operand is shifted left by the number of bit positions
specified by the SRCB operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

18-106 Instruction Set

0

I

SQRT

Operation:

Assembler
Syntax:

Status:

Operands:

Floating-Point Square Root

DEST t- SORT(SRCA)

SORT rc, ra, FS

fpX, fpR, fpN

SRCA Content of register RA (single-precision floating-point)
or

Content of register RA and the twin of register RA
(double-precision floating-point)

DEST Register RC (single-precision floating-point)
or

Register RC and twin of Register RC
(double-precision floating-point)

AMD~

SQRT

Control: FS Format of source operand SRCA
Reserved for future use
Single-precision floating-point
Double-precision floating-point
Reserved for future use

31

00
01
10
11

23 15 7 0

II I I I I I I I I I I

I
I I I

I
I I I I I

I ~s I RC RA Reserved ,11100101,

OP=E5 SQRT

Description: This operation computes the square root of floating-point operand
SRCA; the result is rounded according to the FRM field of the
Floating-Point Environment Register and placed into the DEST location.
The operand and result are single- or double-precision floating-point
numbers as specified by FS.

Note: This instruction is not supported directly in processor hardware. In
the current implementation, this instruction causes an SORT trap. When
the trap occurs, the IPA and IPC registers are set to reference SRCA
and DEST, and the IPB Register is set with the value of the FS field.

Instruction Set 18-107

~AMD
SRA SRA

Shift Right Arithmetic

Operation: DEST ~ SRCA » SRCB (sign fill)

Assembler
Syntax: SRA rc, ra, rb

or
SRA rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB, bits 4 .. , 0
M = 1: I, bits 4 ... 0

DEST Register RC

31 23 15 7

II I I I I I I I I I

I
I I I I

RC RA , 1 0 0 0 0 11M,

OP=86,87 SRA

I I I
RBorl

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCB operand; the sign of the SRCA operand fills
vacated bit positions. The result is placed into the DEST location.

18-108 Instruction Set

0

I

SRL

Shift Right Logical

Operation: DEST ~ SRCA » SRCS (zero fill)

Assembler
Syntax: SRL rc, ra, rb

or
SRL rc, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS, bits 4 ... 0
M = 1: I, bits 4 ... 0

DEST

31 23

I I I I I I I I I
1000001M

OP = 82. 83

Register RC

I I
RC

15 7

I I I I I
RA

SRL

AMD~
SRL

0
I I I I I I RBorl

Description: The SRCA operand is shifted right by the number of bit positions
specified by the SRCS operand; zeros fill vacated bit positions. The
result is placed into the DEST location.

Instruction Set 18-109

it1 AMD

18-110

STORE

Store

Operation: EXTERNAL WORD [SRCB] +- SRCA

Assembler
Syntax: STORE 0, cntl, ra, rb

or

Status:

Operands:

STORE 0, cntl, ra, const8

Not affected

SRCA

SACB

Content of register RA

M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

31 23 15

II I I I I I I II I I I I

I
I I I I I I

CNTL RA , 0 0 0 1 1 11M, 0,

OP=1E,1F STORE
Res

STORE

7 0
I I I I
RBorl

Description: The SRCA operand is placed into the external word addressed by the
SRCB operand.

The CNTL field of the STORE instruction affects the bus access as
described in Section 3.3.1. .

Instruction Set

STOREL

Store and Lock

Operation: EXTERNAL WORD [SRCB] ~ SRCA

Assembler
Syntax: STOREL 0, cntl, ra, rb

or
STOREL 0, cntl, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

31 23 15 7

I
I I I I I I I II

0000111MO
I I I I II I I I I I I I
CNTL. RA .

OP=OE, OF STOREL
Res

AMD~

STOREL

I I I
RBorl

o

I I

Description: The SRCA operand is placed into the external word addressed by the
SRCB operand.

The CNTL field of the STOREL instruction affects the bus access as
described in Section 3.3.1.

In other 29K Family processors, this instruction is provided for the
implementation of interlock protocols. In the Am29200 and Am29205
microcontroliers, the STOREL instruction is identical to the STORE
instruction.

Instruction Set 18-111

~AMD

18-112

STOREM STOREM

Store Multiple

Operation: EXTERNAL WORD [SRCB] ... EXTERNAL WORD
[SRCB + (COUNT * 4)]
f- SRCA ... SRCA + COUNT

Assembler
Syntax: STOREM 0, cntl, ra, rb

or
STOREM 0, cntl, ra, const8

Status: Not affected

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

31 23 15 7 o

I I I I I I I I I I
0011111MO

I I I I II I
CNTL

I I
RA

I I I I
RBorl

OP =3E, 3F STOREM
Res

Description: The contents of consecutive registers, beginning with the SRCA
operand, are placed into external words at consecutive word addresses,
beginning with the word addressed by the SRCB operand.

The total number of words accessed in the sequence is specified by the
Count Remaining (CR) field of the Channel Control Register (which also
appears in the Load/Store Count Remaining Register) at the beginning
of the bus access. The total number of words is the value of the CR field
plus one. The CNTL field of the STOREM instruction affects the access
as described in Section 3.3.1.

Note: The address and register-number sequences for the STOREM
instruction are specified in Section 3.3.4. Because this instruction uses
the Channel Address, Data, and Control Registers, it should not be
executed when the FZ bit is 1.

Instruction Set

SUB

Subtract

Operation: DEST ~ SRCA - SRCB

Assembler
Syntax: SUB rc, ra, rb

or
SUB rc, ra, constS

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I
I I I I I I I II I I I I

0010010M RC

OP= 24,25

15

II

SUB

I I
RA

7

AMD~

I I I I
RBorl

SUB

o

Description: The SRCA operand is added to the two's-complement of the SRCB
operand and the result is placed into the DEST location.

Instruction Set 18-113

~AMD
SUBC

Subtract with Carry

Operation: DEST f- SRCA - SRCB - 1 + C

Assembler
Syntax: SUBC re, ra, rb

or
SUBC re, ra, eonst8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

DEST

31 23

I I I I I I I I I
0010110M

op= 2C,2D

M = 1: I (Zero-extended to 32 bits)

Register RC

15
I I I

I
I I I

RC RA

SUBC

SUBC

7 o
I I I I

RBorl

Description: The SRCA operand is added to the one's-eomplement of the SRCB
operand and the value of the ALU Status Carry bit. The result is placed
into the DEST location.

18-114 Instruction Set

AMD~

SUBCS SUBCS

Subtract with Carry, Signed

Operation: DEST ~ SRCA - SRCB - 1 + C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBCS rc, ra, rb

or
SUBCS rc, ra, constS

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RS

DEST

31 23

II I I I I I I II
001 0 1 0 0 M

OP =28, 29

M = 1: I (Zero-extended to 32 bits)

Register RC

15
I I

I

I I I
AC AA

SUBCS

7

II
I I I I

AS or I

o

Description: The SRCA operand is added to the one's-complement of the SRCB
operand and the value of the ALU Status Carry bit. The result is placed
into the DEST location.

If the add operation causes a two's-complement signed overflow, an
Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

Instruction Set 18-115

~AMD

18-116

SUBCU SUBCU

Subtract with Carry, Unsigned

Operation: DEST ~ SRCA - SRCS - 1 + C
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUSCU rc, ra, rb

or
SUBCU rc, ra, constS

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I
I I I I I I I II
0010101~

OP .. 2A,2B

I I
RC

15

II

SUBCU

I I
RA

7 o
I I I I I

RBorl

Description: The SRCA operand is added to the one's-complement of the SRCS
operand and the value of the ALU Status Carry bit. The result is placed
into the DEST location.

If the add operation causes an unsigned underflow, an Out-of-Range
trap occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

Instruction Set

SUBR

Subtract Reverse

Operation: DEST f- SRCB - SRCA

Assembler
Syntax: SUBR rc, ra, rb

or
SUBR rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I II
00l1010M

op= 34,35

I I
RC

15

I II

SUBR

I I
RA

AMD~

SUBR

7 o
I I I I

RBorl

Description: The SRCB operand is added to the two's-complement of the SRCA
operand and the result is placed into the DEST location.

Instruction Set 18-117

~AMD
SUBRC

Subtract Reverse with Carry

Operation: DEST ~ SRCB - SRCA - 1 + C

Assembler
Syntax: SUBRC re, ra, rb

or
SUBRC re, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
0011110M

OP=3C,3D

I I
RC

15
I I

I
I

SUBRe

I I
RA

SUBRC

7 o
I I I I

RBorl I I

Description: The SRCB operand is added to the one's-eomplement of the SRCA
operand and the value of the ALU Status Carry bit. The result is placed
into the DEST location.

18-118 Instruction Set

AMD~

SUBRCS SUBRCS

Subtract Reverse with Carry, Signed

Operation: DEST +- SRCB - SRCA - 1 + C
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRCS rc, ra, rb

or
SUBRCS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

DEST

31 23

II I I I I I I II
0011100M

op= 38,39

M = 1: I (Zero-extended to 32 bits)

Register RC

15
I I

I

I I I
RC RA

SUBRCS

7 o
I I I I

RBorl

Description: The SRCB operand is added to the one's-complement of the SRCA
operand and the value of the ALU Status Carry bit. The result is placed
into the DEST location.

If the add operation causes a two's-complement signed overflow, an
Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

Instruction Set 18-119

~AMD

18-120

SUBRCU SUBRCU

Subtract Reverse with Carry, Unsigned

Operation: DEST +- SACB - SRCA - 1 + C
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBACU rc, ra, rb

or
SUBRCU rc, ra, const8

Status: V, N, Z, C

Operands: SACA Content of register RA

SRCB M = 0: Content of register RB

DEST

31 23

I I I I I I I I I
0011101M

OP=3A,38

M = 1: I (Zero-extended to 32 bits)

Register RC

I I
RC

15 II
SUBRCU

I I
RA

7
I I I

RBorl

o

Description: The SRCB operand is added to the one's-complement of the SRCA
operand and the value of the ALU Status Carry bit. The result is placed
into the DEST location.

If the add operation causes an unsigned underflow, an Out-of-Range
trap occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

Instruction Set

SUBRS

Subtract Reverse, Signed

Operation: DEST ~ SRCB - SRCA
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBRS rc, ra, rb

or
SUBRS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB

DEST

31

I I I I I I I I I
001 100 0 M

OP =30, 31

23

M = 1: I (Zero-extended to 32 bits)

Register RC

I I
AC

15

II
SUBRS

I I
AA

7

AMD~
SUBRS

I I I I
AB orl

o

Description: The SRCB operand is added to the two's-complement of the SRCA
operand and the result is placed into the DEST location. If the add
operation causes a two's-complement Signed overflow, an Out-of-Range
trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

Instruction Set 18-121

~AMD

18-122

SUBRU SUBRU

Subtract Reverse, Unsigned

Operation: DEST +- SRCS - SRCA
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUSRU rc, ra, rb

or
SUSRU rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS

DEST

31 23

I
I I I I I I I II

0011001M

OP = 32, 33

M = 1: I (Zero-extended to 32 bits)

RegisterRC

I I
RC

15 II
SUBRU

I I
RA

7
I I I I

RBorl

o

Description: The SRCS operand is added to the two's-complement ot the SRCA
operand and the result is placed into the DEST location. If the add
operation causes an unsigned underflow, an Out-ot-Range trap occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

Instruction Set

SUBS

Subtract, Signed

Operation: DEST +- SRCA - SRCB
IF signed overflow THEN Trap (Out of Range)

Assembler
Syntax: SUBS rc, ra, rb

or
SUBS rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

I I I I I I I I I
~ 0 1 0 0 0 0 M

OP =20, 21

I
RC

15
I

I
I

SUBS

I I
RA

AMD~

SUBS

7 o

II
I I I I

RBorl I I

Description: The SRCA operand is added to the two's-complement of the SRCS
operand and the result is placed into the DEST location. If the add
operation causes a two's-complement signed overflow, an Out-of-Range
trap occurs.

Note that the DEST location is altered whether or not an overflow
occurs.

Instruction Set 18-123

~AMD

18-124

SUBU SUBU

Subtract, Unsigned

Operation: DEST ~ SRCA - SRCB
IF unsigned underflow THEN Trap (Out of Range)

Assembler
Syntax: SUBU rc, ra, rb

or
SUBU rc, ra, const8

Status: V, N, Z, C

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23 15

I I

I

I I I
RC RA

II I I I I I I II
0010001M

OP = 22, 23 SUBU

7

II

o

I I I I I
RBorl

Description: The SRCA operand is added to the two's-complement of the SRCB
operand and the result is placed into the DEST location. If the add
operation causes an unsigned underflow, an Out-of-Range trap occurs.

Note that the DEST location is altered whether or not an underflow
occurs.

Instruction Set

XNOR

Exclusive-NOR Logical

Operation: OEST ~ - (SRCA 1\ SRCB)

Assembler
Syntax: XNOR rc, ra, rb

or
XNOR rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCB M = 0: Content of register RB
M = 1: I (Zero-extended to 32 bits)

OEST Register RC

31 23

OP = 96, 97

I I
RC

15

XNOR

I I
RA

AMD~
XNOR

7 o
I I I I I

RBorl

Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the
SRCB operand. The one's-complement of the result is placed into the
OEST location.

Instruction Set 18-125

~AMD
XOR XOR

Exclusive-OR Logical

Operation: DEST ~ SRCA 1\ SRCS

Assembler
Syntax: XOR re, ra, rb

or
XOR rc, ra, const8

Status: N, Z

Operands: SRCA Content of register RA

SRCS M = 0: Content of register RS
M = 1: I (Zero-extended to 32 bits)

DEST Register RC

31 23

II I I I I I I II
~001010M

OP",94,95

I I
RC

15

II

XOR

I I
RA

7

II
I I I I

RBorl

Description: The SRCA operand is logically exclusive-ORed, bit-by-bit, with the
SRCS operand, and the result is placed into the DEST location.

18-126 Instruction Set

o

AMD~

18.4 INSTRUCTION INDEX BY OPERATION CODE
01 CONSTN Constant, Negative
02 CONSTH Constant, High
03 CONST Constant
04 MTSRIM Move to Special Register Immediate
06,07 LOADL Load and Lock
08,09 CLZ Count Leading Zeros
OA,OB EXBYTE Extract Byte
OC,OD INBYTE Insert Byte
OE,OF STOREL Store and Lock
10,11 ADDS Add, Signed
12,13 ADDU Add, Unsigned
14,15 ADD Add
16,17 LOAD Load
18,19 ADDCS Add with Carry, Signed
1A,1B ADDCU Add with Carry, Unsigned
1C,1D ADDC Add with Carry
1E,1F STORE Store
20,21 SUBS Subtract, Signed
22,23 SUBU Subtract, Unsigned
24,25 SUB Subtract
26,27 LOADSET Load and Set
28,29 SUBCS Subtract with Carry, Signed
2A,2B SUBCU Subtract with Carry, Unsigned
2C,2D SUBC Subtract with Carry
2E,2F CPBYTE Compare Bytes
30,31 SUBRS Subtract Reverse, Signed
32,33 SUBRU Subtract Reverse, Unsigned
34,35 SUBR Subtract Reverse
36,37 LOADM Load Multiple
38,39 SUBRCS Subtract Reverse with Carry, Signed
3A,3B SUBRCU Subtract Reverse with Carry, Unsigned
3C,3D SUBRC Subtract Reverse with Carry
3E,3F STOREM Store Multiple
40,41 CPLT Compare Less Than
42,43 CPLTU Compare Less Than, Unsigned
44,45 CPLE Compare Less Than or Equal To
46,47 CPLEU Compare Less Than or Equal To, Unsigned
48,49 CPGT Compare Greater Than
4A,4B CPGTU Compare Greater Than, Unsigned
4C,4D CPGE Compare Greater Than or Equal To
4E,4F CPGEU Compare Greater Than or Equal To, Unsigned
50,51 ASLT Assert Less Than
52,53 ASLTU Assert Less Than, Unsigned
54,55 ASLE Assert Less Than or Equal To
56,57 ASLEU Assert Less Than or Equal To, Unsigned

Instruction Set 18-127

~AMD
58,59 ASGT Assert Greater Than
5A,5B ASGTU Assert Greater Than, Unsigned
5C,5D ASGE Assert Greater Than or Equal To
5E,5F ASGEU Assert Greater Than or Equal To, Unsigned
60,61 CPEO Compare Equal To
62,63 CPNEO Compare Not Equal To
64,65 MUL Multiply Step
66,67 MULL Multiply Last Step
68,69 DIVO Divide Initialize
6A,6B DIV Divide Step
6C,6D DIVL Divide Last Step
6E,6F DlVREM Divide Remainder
70,71 AS EO Assert Equal To
72,73 ASNEO Assert Not Equal To
74,75 MULU Multiply Step, Unsigned
78,79 INHW Insert Half-Word
7A,7B EXTRACT Extract Word, Bit-Aligned
7C,7D EXHW Extract Half-Word
7E EXHWS Extract Half-Word, Sign-Extended
80,81 SLL Shift Left Logical
82,83 SRL Shift Right Logical
86,87 SRA Shift Right Arithmetic
88 IRET Interrupt Retum
89 HALT Enter HALT Mode
8C IRETINV Interrupt Return and Invalidate
90,91 AND AND Logical
92,93 OR OR Logical
94,95 XOR Exclusive-OR Logical
96,97 XNOR Exclusive-NOR Logical
98,99 NOR NOR Logical
9A,9B NAND NAND Logical
9C,9D ANDN AND-NOT Logical
9E SETIP Set Indirect Pointers
9F INV Invalidate
AO,A1 JMP Jump
A4,A5 JMPF Jump False
A8,A9 CALL Call Subroutine
AC,AD JMPT Jump True
B4,B5 JMPFDEC Jump False and Decrement
B6 MFTLB Move from Translation Look-Aside Buffer Register
BE MTTLB Move to Translation Look-Aside Buffer Register
CO JMPI Jump Indirect
C4 JMPFI Jump False Indirect
C6 MFSR Move from Special Register
C8 CALLI Call Subroutine, Indirect
CC JMPTI Jump True Indirect

18-128 Instruction Set

CE
D7
DB-DD
DE
DF
EO
E1
E2
E3
E4
E5
E6
E7-E9
EA
EB
EC
ED
EE

EF

FO
F1
F2
F3
F4
F5
F6
F7
Fa
F9
FA-FF

AMD~

MTSR Move to Special Register
EMULATE Trap to Software Emulation Routine
Reserved for emulation (trap vector numbers 24-29)
MULTM Integer Multiply Most Significant Bits, Signed
MULTMU Integer Multiply Most Significant Bits, Unsigned
MULTIPLY Integer Multiply, Signed
DIVIDE Integer Divide, Signed
MULTIPLU Integer Multiply, Unsigned
DIVIDU Integer Divide, Unsigned
CONVERT Convert Data Format
SORT Square Root
CLASS Classify Floating-Point Operand
Reserved for emulation (trap vector number 39-41)
FEO Floating-Paint Equal To, Single-Precision
DEO Floating-Point Equal To, Double-Precision
FGT Floating-Point Greater Than, Single-Precision
DGT Floating-Point Greater Than, Double-Precision
FGE Floating-Paint Greater Than or Equal To,

Single-Precision
DGE Floating-Point Greater Than or Equal To,

Double-Precision
FADD Floating-Point Add, Single-Precision
DADD Floating-Point Add, Double-Precision
FSUB Floating-Point Subtract, Single-Precision
DSUB Floating-Paint Subtract, Double-Precision
FMUL Floating-Point Multiply, Single-Precision
DMUL Floating-Point Multiply, Double-Precision
FDIV Floating-Point Divide, Single-Precision
DDIV Floating-Point Divide, Double-Precision
Reserved for emulation (trap vector number 56)
FDMUL Floating-Point Multiply, Single-to-Double-Precision
Reserved for emulation (trap vector numbers 58-63)

Instruction Set 18-129

A SPECIAL SETTINGS FOR THE
Am29200 AND Am2920S MICROCONTROLLERS

Am29200 MICROCONTROLLER
Before using the Am29200 microcontroller product, the user should prepare the
microcontroller by setting the following signals as shown.

• Tie the TRST signal to RESET, whether or not the JTAG port will be used.

• If the JTAG port will not be used, drive TCK, TMS, and TOI to known states, prefer­
ably through pull-up resistors. Although these signals have weak internal active pull­
ups, tying them to a known signal level will eliminate any system noise from being
coupled into the JTAG interface.

• If the serial port will not be used, tie the UCLK signal High.

Am29205 MICROCONTROLLER
Before using the Am29205 microcontroller product, the user should prepare the
microcontroller by setting the following Signals and fields as shown.

• Pull the WAITfTRIST signal High.

• If the serial port will not be used, tie the UCLK signal High.

• Program the ASEL3 field in the ROM Configuration Register with a value that does
not overlap with addresses specified for ROM Banks a through 2.

• In the PIA Control Register 0, write bits 15-0 with as.

• In the PIO Control Register, write bits 7--0 with as.

• In the PIO Output Register, write bits 7--0 with as.

• In the PIO Output Enable Register, write bits 7--0 with as.

• In the Parallel Port Control Register, set the FWT bit to o.
Note that all registers with fields designated as "reserved" should be programmed with
Os to ensure compatibility.

Special Microcontroller Settings A-1

B PROCESSOR REGISTER SUMMARY

Figure B-1 General-Purpose Register Organization

Global
Registers

Local
Registers

Absolute
Register #

0

1

2--63

64

65

66

•
•
•

126

127

128

129

130

131

132

•
•
•

254

255

General Purpose

Indirect Pointer Access

Stack Pointer

Not Implemented

Global Register 64

Global Register 65

Global Register 66

•
•
•

Global Register 126

Global Register 127

Local Register 125

Local Register 126

Local Register 127

Local Register 0

Local Register 1

•
•
•

Local Register 123

Local Register 124

Processor Register Summary

...

31 8 210

rspl I
J

I I
131

(example)

See Section 4.1.3 lor mor e
I detail on the operation 0

the register stack pointe
(rsp).

B-1

~AMD
Figure B·2 Register Bank Organization

Register
Absolute-Register General·Purpose Bank Protect

Register Bit Numbers Registers

0 2 through 15
BankO
(not implemented)

16 through 31
Bank 1

1 (not implemented)

32 through 47
Bank 2

2 (not implemented)

3 48 through 63
Bank 3
(not implemented)

4 64 through 79 Bank 4

5 80 through 95 Bank 5

6 96 through 111 Bank 6

7 112 through 127 Bank 7

8 128 through 143 Bank 8

9 144 through 159 Bank 9

10 160 through 175 Bank 10

11 176 through 191 Bank 11

12 192 through 207 Bank 12

13 208 through 223 Bank 13

14 224 through 239 Bank 14

15 240 through 255 Bank 15

B·2 Processor Register Summary

AMD~
Figure B-3 Special.Purpose Registe,.

REG.

o

31 II 23
I I I
VAB

Vector Area Base Addre .. (VAB)
Page 16-5

31 23

15 7 0
I I

15 7 0
II I I I I I I I II I

Reserved

Old Processor Status (OPS)
Page 16-6

I 11.1 : 1.11,11.1: 1,1 : 1,1: 1.1.1

2

3

4

5

6

31

II

23
I I I I
Reserved

Current Processor Status (CPS)
Page 16-1

31

II
I I I

PRL

23

II

Configuration (CFG)
Page 2-26

31 23

I I I I

Channel Address (CHA)
Page 16-18

31 23

I I I

Channel Data (CHD)
Page 16-18

31 23

I I I I I

I

I
CNTL , .

I I
CR

Channel Control (CHC) .
Res Page 16-19

I

. : ': . : . : . : . . .'
To Res: TE : TU: Res: Res: 1M : DA

I • • I I •

IP TP FZ WM 8M 01

15 7 0

: : :::: : : : :: : I

TO Res: TE : TU: Res: Res: 1M : DA
I I I I I I

IP TP FZ WM 8M 01

15 7 0
I I I I I I I I I I I

Reserved

15 7 0
I I I I
CHA

15 7 0
I I I I I I

CHO

15 7 0

I I I I I I I I I I I I I TR , , i i ,
I I I I I

L8: ST Res NN:
I I

ML CV

Processor Register Summary B-3

~AMD
Figure B-3 Special·Purpose Registers (continued)

REG.

31 23 15 7 a
7 I I I I I I II I I I I I I I I I I I I I I

I Reserved • B15 •••••••••••••• BO

Register Bank Protect (RBP)
Page 6-3

31 23 15 7 a
8 I

I I I I I I I I I I I I I I
Reserved TCV

Timer Counter (TMC)
Page 16-22

31 23 15 7 a
9 II II I

I I I I I I I I I I I I I Reserved. TRV

I I I
I

I I

OV: IE

IN

Timer Reload (TMR)
Page 16-23

31 23 15 7 a

I
I I I I I I I I I I I I I I

1010 I 10
PCO

Program Counter 0 (PCO)
Page 16-9

31 23 15 7 a

I
I I I I I I I I

1
0

1
0

1
11 PC1

Program Counter 1 (PC1)
Page 16-9

31 23 15 7 a

I I I I I I I I

1010 1
12 PC2

Program Counter 2 (PC2)
Page 16-10

B-4 Processor Register Summary

AMD~
Figure B-3 Special-Purpose Registers (continued)

REG.

31 23 15 7 0
128 II

I I I I I I I I I I I I I

10101 Reserved IPC

Indirect Pointer C (IPC)
Page 2-13
31 23 15 7 0
II II II I I I I I I I I I I I I I I I

10101 129 Reserved IPA

Indirect Pointer A (IPA)
Page 2-13
31 23 15 7 0
II II II I I I I I I I I I I I I I I I

10101
130 Reserved IPB

Indirect Pointer S (IPS)
Page 2-14
31 23 15 7 0

131
II I I I I I I I I I I I I I

I I a
Q(Q)
Page 2-20
31 23 15 7 0

132 I" II I I I I I I I I I I IIIII I I I I I Reserved FC
I , , I I

ALU Status (ALU) I ' I I I

Page 2-16 . .
OF. N • C .

V Z BP

31 23 15 7 0
133 lol~ol010101 ~P I

Syte Pointer (SP)
Page 3-3

Processor Register Summary 8-5

~AMD
Figure B-3 Special-Purpose Registers (continued)

8-6

REG'
31 23

Funnel Shift Count (FC)
Page 3-3

15 7

31 23 15 7

Load/Store Count Remaining (CR)
Page 3-11

I I
FC

I I I
CR

o

o

31 23 15 7 0

160 &...�� ____ �_�_�Re_�se_~e_ld_1 1_1 __ ---'-rI...L..IF-~M~I...L..,I. 1 lil...-J11l..r'i I

Roating-Point Environment (FPE)
Page 2-14

Note: this is a virtual register not implemented directly in hardware

• I ••• I I

FF OM: U'M: AM:
XM VM NM

31 23 15 7 0

161 LI_I ____________ I_I _________ ~_~s_e_~_e_ld_I ________ --1--1------~I~,~I~i I
Integer Environment (INTE) D:O ','
Page 2-15

MO
Note: this is a virtual register not implemented directly in hardware

31 23 15 7 0

162 l'--I __ R_les~_~ed_1 __ I 1--'-o1..L.r'1.I~1 i.L.,.Lll,-L-i I R--,~sl.........." I irL-o-'l,I-r'-T.I.~1 i I
Roating-Point Status (FPS)
Page 2-18

• I • I I • I I •• I I

Ih: liT: AT: OS: us: AS:
x'S v's NS

Note: this is a virtual register not implemented directly in hardware

Processor Register Summary

AMD~
Tab.elM Processor Register Field Summary

Label Field Name Register Bit

BO Bank 0 Protection Bit Register Bank Protect 0

B1 Bank 1 Protection Bit Register Bank Protect

B2 Bank 2 Protection Bit Register Bank Protect 2

B3 Bank 3 Protection Bit Register Bank Protect 3

B4 Bank 4 Protection Bit Register Bank Protect 4

B5 Bank 5 Protection Bit Register Bank Protect 5

B6 Bank 6 Protection Bit Register Bank Protect 6

B7 Bank 7 Protection Bit Register Bank Protect 7

B8 Bank 8 Protection Bit Register Bank Protect 8

B9 Bank 9 Protection Bit Register Bank Protect 9

B10 Bank 10 Protection Bit Register Bank Protect 10

B11 Bank 11 Protection Bit Register Bank Protect 11

B12 Bank 12 Protection Bit Register Bank Protect 12

B13 Bank 13 Protection Bit Register Bank Protect 13

B14 Bank 14 Protection Bit Regi'ster Bank Protect 14

B15 Bank 15 Protection Bit Register Bank Protect 15

BP Byte Pointer ALU Status 6-5
Byte Pointer 1-0

C Carry ALU Status 7

CHA Channel Address Channel Address 31-0

CHD Channel Data Channel Data 31-0

CNTL Control Channel Control • 30-24

CR Load/Store Count Remaining Channel Control 23-16
Load/Store Count Remaining 7-0

CV Contents Valid Channel Control 0

DA Disable All Interrupts and Traps Current Processor Status 0
Old Processor Status 0

OF Divide Flag ALU Status 11

01 Disable Interrupts Current Processor Status
Old Processor Status

OM Floating-Point Divide By Zero Mask Floating-Point Environment 5

DO Integer Division Overflow Mask Integer Environment

OS Floating-Point Divide By Zero Sticky Floating-Point Status 5

DT Floating-Point Divide By Zero Trap ALU Status 13

FF Fast Floating-Point Select Floating-Point Environment 8

FC Funnel Shift Count ALU Status 4-0
Funnel Shift Count 4-0

FRM Floating-Point Round Mode Floating-Point Environment 7~

FZ Freeze Current Processor Status 10
Old Processor Status 10

Processor Register Summary B-7

~AMD

Table B·1 Register Field Summary (continued)

Label Field Name Register Bit

IE Interrupt Enable Timer Reload 24

1M Interrupt Mask Old Processor Status 3-2
Current Processor Status 3-2

IN Interrupt Timer Reload 25

IP Interrupt Pending Current Processor Status 14
Old Processor Status 14

IPA Indirect Pointer A Indirect Pointer A 9-2

IPB Indirect Pointer B Indirect Pointer B 9-2

IPC Indirect Pointer C Indirect Pointer C 9-2

LS Load/Store Channel Control 15

ML Multiple Operation Channel Control 14

MO Integer Multiplication Overflow Mask Integer Environment a
N Negative ALU Status 9

NM Floating-Point Invalid Operation Mask Floating-Point Environment a
NN Not Needed Channel Control 1

NS Floating-Point Invalid Operation Sticky Floating-Point Status a
NT Floating-Point Invalid Operation Trap Floating-Point Status 8

OV Overflow Timer Reload 26

pca Program Counter a Program Counter a 31-2

PC1 Program Counter 1 Program Counter 1 31-2

PC2 Program Counter 2 Program Counter 2 31-2

PRL Processor Release Level Configuration 31-24

Q QuotientlMultiplier Q Register 31--{)

RM Floating-Point Reserved Operand Mask Floating-Point Environment

RS Floating-Point Reserved Operand Sticky Floating-Point Status

AT Floating-Point Reserved Operand Trap Floating-Point Status 9

SM Supervisor Mode Current Processor Status 4
Old Processor Status 4

ST Set Channel Control 13

TCV Timer Count Value Timer Counter 23--{)

TO Timer Disable Current Processor Status 17
Old Processor Status 17

TE Trace Enable Current Processor Status 13
Old Processor Status 13

B-8 Processor Register Summary

AMD~
Tabl 1 Regist.r Fi.ld Summary (continued)

Label Field Name Register Bit

TP Trace Pending Current Processor Status 12
Old Processor Status 12

TR Target Register Channel Control 9-2

TRV Timer Reload Value Timer Reload 2:Hl

TU Trap Unaligned Access Current Processor Status 11
Old Processor Status 11

UM Floating-Point Underflow Mask Floating-Point Environment 3

US Floating-Point Underflow Sticky Floating-Point Status 3

UT Floating-Point Underflow Trap Roating-Point Status 11

V Overflow AlU Status 10
VAB Vector Area Base Vector Area Base Address 31-10

VM Floating-Point Overflow Mask Floating-Point Environment 2

VS Floating-Point Overflow Sticky Floating-Point Status 2

VT Floating-Point Overflow Trap Floating-Point Status 10

WM Wait Mode Current Processor Status 7
Old Processor Status 7

XM Floating-Point Inexact Result Mask Floating-Point Environment 4

XS Floating-Point Inexact Result Sticky Floating-Point Status 4

XT Floating-Point Inexact Result Trap Floating-Point Status 12

Z Zero AlU Status 8

Processor Register Summary B-9

c PERIPHERAL REGISTER SUMMARY

Figure C·1 On.chip Peripheral Registers

Address
(hexadecimal)

31 23 15 7 0

80000000

BSTO LM: res BST1 BST2 BST3
BWE

ROM Control Register (RMCT)
Page 8-1

31

80000004

ROM Configuration Register (RMCF)
Page 8-3

31 23 15 7 0

, , , , , ,
L:'

, L~s ,
, '~s ,

, I I I I I I I I I
80000008

res REFRATE ,
PGO: r~: PG1: PG2: PG3:

.
SC

DWO LM DW1 DW2 DW3

DRAM Control Register (DRen
Page 9-1

BOOOOOOC

DRAM Configuration Register (DRCF)
Page 9-3

31 23 15 7 0

I I I I I I

I
I I I I I I

I
I I I I I I I I I

80000010
res VIRTBASE res PHYBASE

VALID

DRAM Mapping Register 0 (DRMO)
Page 9-3

31 23 15 7 0

I I
I I I I

I
I I I I I I

I
I I I I I I I I I

80000014
res VIRTBASE res PHYBASE

VALID

DRAM Mapping Register 1 (DRM1)
Page 9-4

EII = Reserved on Am29205 microconlrol/er

Peripheral Register Summary C-1

~AMD
FlgureC.1 On-Chip Peripheral Reglste,. (continUed)

Add
(hexadecimal)

31 23 15 7 o

I I I I I I I I I I I I I I I I
80000018

VlRTBASE res res

I I I I I

PHYBASE .
VAUD

DRAM Mapping Register 2 (ORM2)
Page 9-4

31 23 15 7 o

I I I I I I I I I I I I I I I I I I
800000lC

VIRTBASE res res

I ", iii

PHYBASE

VALID

DRAM Mapping Register 3 (ORM3)
Page 9-4

80000020 .
IOEXTO IOEXT1 IOEXT2 IOEXT3

PIA Control Register 0 (PiCTO)
Page 10-1

31 23 15 7 o

80000024

IOEXT4 IOEXT5

PIA Control Register 1 (PlCT1)
Page 10-1

31 23 15 7 0

L:~II
I I I I I I I I I II I I I I I I I I I I

80000028
IOPI res res res , , . , , ,

VOl res • , 'PPI AXSI'lXDI
Interrupt Control Register (ICY) DMAOI'res AXDI
Page 16-24 Dt1A11

15

8000003O
reserved . .

UD: EN :ciE: TTl : DMAEXT ACS

DMAO Control Register (OMCTO)
RW TTE aEN ell

Page 11-2

31 23 15 7 o

80000034
DRAMADDA

C-2

DMAO Address Register (OMADO)
Page 11-4

Peripheral Register Summary

AMD~

Figure C-t On.chip Peripheral Registerslcontinued)

Address
(hexadecimal)

80000070 31 23 15 7 0

(preferred) I I I I I I I I I I I I I I I I I I

reserved DRAMADDR
80000036
(alternate) DMAO Address Tall Regiater (TAOO)

(See Section 7.4) Page 11-4

31 23 15 7 0

I I I I I I I

I

I I I I I I I I I I
80000038

reserved DMACNT

DMAO Count Register (DMCNO)
Page 11-5

8000003C 31 23 15 7 0
(preferred) I

I I I I I I

I

I I I I I I I I I I

8000003A
reserved DMACNT

(alternate) DMAO Count Tall Register (TCNO)
(See Section 7.4) Page 11-5

31 23 15 7 0

I I r~s)
I I I

I D~ ID~MI I

I I I I

I I I I I

I I I I 80000040
DMAWAtT reserved res

DMAEXT ACS UD: EN :CTe Tn:

80000044

80000048

80000080

DMA 1 Control Register (DMCT1)
Page 11-5

31 23 15

I
I I I I I I

I
I I I

PERADDR

DMA 1 Address Register (DMAD1)
Page 11-7

31 23 15

I
I I I I I I

I
I I I

reserved

DMA1 Count Register (DMCN1)
Page 11-7

31 23 15 I I I I

reserved Illb~ I II I III I ~li~ res PMODE WlGN

:BRK: STP
LOOP DSR

Serial Port Control Register (SPCT)
Page 14-1

I I I I I

DRAMADDR

I I I I I

DMACNT

I I I

reserved

Peripheral Register Summary

RW TTE cn

7 0
I I

7 0
I I

7 o
I i I

res8IVad .
RStE

C-3

~AMD
Figure C.1 On-Chlp Peripheral Reglste,. (continued)

Address
(hexadecimal)

80000084

80000088

80000088

80000090

800000cO

8OO000c8
(preferred)

31 23

I' I I I I

reserved

Serial Port Status Register (SPST)
Page 14-3

31 23

I' I i I I iii

reserved

15
i I

15
i I

Serial Port Transmit Holding Register (SPTH)
Page 14-4

31 23 15

I' iii iii i I I

reserved

Serial Port ReceIve Buffer Register (SPRB)
Page 14-4

31 23
I I I I

reserved

Baud Rste Divisor Register (BAUD)
Page 14-5

31 23

I 11
, , ,

I
, , ,

reserved TDELAY .
res I

15

15

I I
oRa:

I
FWT TRA

Parallel Port Control Register (PPCT)
Page 13-1

31 23 15 , I I , , , I I , ,

7 o

IIII res ILILI
:BRKi:PER:

OTR FER OER

7 o
iii

TDATA

7 o
I i I

ROATA

7 o
I i I I

BAUOO,V

7 0 , ,
I I~DEI I I I~I I I I res , .

:FAC~ BRS:AFO OO,R
FBUSYOHH ARB

7 0 , , , , , , ,
I I reserved I" TDELAYV I reserved I~TI I I reserved

800000C1
(altemste)

(See Section 7.4)

800oooC4

.
STB

Parallel Port Status Register (PPST)
Page 13-3

31 23
I I I I I I I

reserved

31 23

I' I i

Parallel Port Data Register (PPDT)
Page 13-4

15
I I

15
I I

POATA

Peripheral Register Summary

:ACK
BSY

7 o

I' I I i , I
POATA

8 bits
Arn29200 and Arn29205 microconlroliers

I I i
7 o , , , , , , , , , , I

32 bits
Arn29200 microcontrolier only

AMD~
F C.t On-Chip Peripheral Regl.t (continued)

Addreaa
(hexadecimal)

80000000

80000004

80000008

800000DC

8OOOOOEO

PlO Control Register (POeT)
Page 12-1

PlO Input Register (PIN)
Page 12-2

31 23

reserved

PlO Output Register (POUT)
Page 12-2

31 23

reserved

PlO Output Enable Register (POEN)
Page 12-3

31 23
I I I i

Video Control Register (VeT)
Page 15-1

15

15

15 7 0

, .
DOIR CL.KI:PSIO: PSL:SDI~

.
ORO

res PSI LSI VIOl

31 23 15 7 0

8OOOOOE4 I ... _� __ � __ �_� _______ � __ �_�~' __ ' ______ ' __ ' ____ ~ ______ '_' __ ' __ ' __ '_' __ ' __ ~
. reserved TOPCNT

8OOOOOE8

Top Margin Register (TOP)
Page 15-3

31 23
iii i I I I I , I

reserved LEFTCNT

Side Margin Register (SIDE)
Page 15-3

31 23

15 7 o

I ' I I I I

LlNECNT

15 7 o

800000EC l_' __ ' __ '_' _______ ' __ ' ________ ~~'~'~ __________ ' __ ' __________ ~
• VOATA

Video Data Holding Register (VDT)
Page 15-4

Peripheral Register Summary

~AMD
Table C.1 Peripheral Register Field Summary

Label Field Name Register Bit

ACK PACK Level Parallel Port Status 6

ACS Assert Chip Select DMAO Control 19
DMA 1 Control 19

AFD Autofeed Parallel Port Control 0

AMASKO Address Mask, Bank 0 ROM Configuration 26-24
DRAM Configuration 26-24

AMASK1 Address Mask, Bank 1 ROM Configuration 18-16
DRAM Configuration 18-16

AMASK2 Address Mask, Bank 2 ROM Configuration 10--8
DRAM Configuration 10--8

AMASK3 Address Mask, Bank 3 ROM Configuration 2-0
DRAM Configuration 2-0

ARB ACK Relationship to BUSY Parallel Port Control

ASELO Address Select, Bank 0 ROM Configuration 31-27
DRAM Configuration 31-27

ASEL1 Address Select, Bank 1 ROM Configuration 23-19
DRAM Configuration 23-19

ASEL2 Address Select, Bank 2 ROM Configuration 15-11
DRAM Configuration 15-11

ASEl3 Address Select, Bank 3 ROM Configuration 7-3
DRAM Configuration 7-3

BAUDDIV Baud Rate Divisor Baud Rate Divisor 15-0

BCT Byte Count Parallel Port Status g...a

BRK Send Break Serial Port Control 25

BRKI Break Interrupt Serial Port Status 3

BRS BUSY Relationship to STROBE Parallel Port Control 2

BSTO Burst-Mode ROM, Bank 0 ROM Control 31

BST1 Burst-Mode ROM, Bank 1 ROM Control 23

BST2 Burst-Mode ROM, Bank 2 ROM Control 15

BST3 Burst-Mode ROM, Bank 3 ROM Control 7

BSY PBUSY Level Parallel Port Status 7

BWE Byte Write Enable ROM Control 27

CLKDIV Clock Divide Video Control 14-11

CLKI Clock Invert Video Control 7

CTE Count Terminate Enable DMAO Control 5
DMA 1 Control 5

CTI Count Terminate Interrupt DMAO Control 0
DMA 1 Control 0

C-6 Peripheral Register Summary

AMD~
T C-t PerIpheral Register Field Summary (continued)

Label Field Name Register Bit

DDIR Data Direction Parallel Port Control 10
Video Control 10

DHH Disable Hardware Handshake Parallel Port Control 5

DMAOI DMA Channel 0 Interrupt Interrupt Control 14

DMA1I DMA Channel 1 Interrupt Interrupt Control 13

DMACNT DMACount DMAOCount 23-0
DMAO Count Tail 23-0
DMA1 Count 23-0

DMAEXT "DMA Extend DMAO Control 31
DMA 1 Control 31

DMAWAIT DMA Wait States DMAO Control 28-24
DMA 1 Control 28-24

DRAMADDR DRAM Address DMAO Address 23-0
DMAO Address Tail 23-0
DMA 1 Address 23-0

DRM DMA Request Mode DMAO Control 21-20
DMA 1 Control 21-20

ORO Data Request Parallel Port Control 15
Video Control 15

DSR Data Set Ready Serial Port Control 24

DTR Data Terminal Ready Serial Port Status 4

OW Data Width DMAO Control 22-23
DMA 1 Control 22-23

DWO Data Width. Bank 0 ROM Control 30-29
DRAM Control 30

DW1 Data Width. Bank 1 ROM Control 22-21
DRAM Control 26

DW2 Data Width. Bank 2 ROM Control 14-13
DRAM Control 22

DW3 Data Width. Bank 3 ROM Control !Hi
DRAM Control 18

EN Enable DMAO Control 7
DMA 1 Control 7

FACK ForceACK Parallel Port Control 6

FBUSY Force Busy Parallel Port Control 7

FER Framing Error Serial Port Status 2

FWT Full Word Transfer Parallel Port Control 30

INVERT PIO Inversion PIOControl 15-0

Peripheral Register Summary C-7

~AMD
Table C·1 Peripheral Register Field Summary (continued)

Label Field Name Register Bit

10EXTO Input/Output Extend, Region 0 PIA Control 0 31

IOEXT1 Input/Output Extend, Region 1 PIA Control 0 23

IOEXT2 Input/Output Extend, Region 2 PIA Control 0 15

IOEXT3 Input/Output Extend, Region 3 PIA Control 0 7

IOEXT4 Input/Output Extend, Region 4 PIA Control 1 31

IOEXT5 Input/Output Extend, Region 5 PIA Control 1 23

10PI I/O Port Interrupt Interrupt Control 23-16

10WAITO Input/Output Wait States, Region 0 PIA Control 0 28-24

10WAIT1 Input/Output Wait States, Region 1 PIA Control 0 20-16

IOWAIT2 Input/Output Wait States, Region 2 PIA Control 0 12~

IOWAIT3 Input/Output Wait States, Region 3 PIA Control 0 4-{)

IOWAIT4 Input/Output Wait States, Region 4 PIA Control 1 28-24

IOWAIT5 Input/Output Wait States, Region 5 PIA Control 1 20-16

IRM8 Interrupt Request Mode, PI08 PIOControl 17-16

IRM9 Interrupt Request Mode, PI09 PIOControl 19--18

IRM10 Interrupt Request Mode, PI010 PIO Control 21-20

IRM11 Interrupt Request Mode, PI011 PIOControl 23-22

IRM12 Interrupt Request Mode, PI012 PIOControl 25-24

IRM13 Interrupt Request Mode, PI013 PIOControl 27-26

IRM14 Interrupt Request Mode, PI014 PIO Control 29--28

IRM15 Interrupt Request Mode, PI015 PIOControl 31-30

LEFTCNT Left Margin Count Side Margin 27-16

LlNECNT Line Count Side Margin 15-0

LM Large Memory ROM Control 28
DRAM Control 28

LOOP Loopback Serial Port Control 26

LSI Line Sync Invert Video Control 2

MODE Parallel Port Mode Parallel Port Control H
Video Interface Mode Video Control H

OER Overrun Error Serial Port Status 0

PDATA Parallel Port Data Parallel Port Data 7-{J
31-{J

PER Parity Error Serial Port Status

PERADDR Peripheral Address DMAO Address 31-24
DMA 1 Address 31-24

C·S Peripheral Register Summary

AMD~
Table C-1 Peripheral Register Field Summary (continued)

Label Field Name Register Bit

PGO Page-Mode DRAM, Bank 0 DRAM Control 31

PG1 Page-Mode DRAM, Bank 1 DRAM Control 27

PG2 Page-Mode DRAM, Bank 2 DRAM Control 23

PG3 Page-Mode DRAM, Bank 3 DRAM Control 19

PHYBASE Physical Base Address DRAM Mapping 0 7~
DRAM Mapping 1 7~
DRAM Mapping 2 7~
DRAM Mapping 3 7~

PIN PIO Input PIOlnput 15-0

PMODE Parity Mode Serial Port Control 21-19

POEN PIO Output Enable PIO Output Enable 15-0

POUT PIOOutput PIOOutput 15-0

PPI Parallel Port Interrupt Interrupt Control 11

PSI Page Sync Invert Video Control 4

PSIO Page Sync Input/Output Video Control 5

PSL Page Sync Level Video Control 3

QEN Queue Enable DMAO Control 4

RDATA Receive Data Serial Port Receive Buffer 7~

RDR Receive Data Ready Serial Port Status 8

REFRATE Refresh Rate DRAM Control ~

RMODE Receive Mode Serial Port Control 1~

RSIE Receive Status Interrupt Enable Serial Port Control 2

RW ReadlWrite DMAO Control 8
DMA 1 Control 8

RXDI Serial Port Receive Data Interrupt Interrupt Control 6

RXSI Serial Port Receive Status Interrupt Interrupt Control 7

SC Static-Column DRAM DRAM Control 15

SDIR Shift Direction Video Control

STB PSTROBE Level Parallel Port Status 31

STP Stop Bits Serial Port Control 18

TDATA Transmit Data Serial Port Transmit Holding 7~

TDELAY Transfer Delay Parallel Port Control 23-16

TDELAYV TDELAY Counter Value Parallel Port Status 23-16

TEMT Transmitter Empty Serial Port Status 10

THRE Transmit Holding Register Empty Serial Port Status 9

Peripheral Register Summary c-s

~AMD
TableC·1 Peripheral Register Field Summary (continued)

Label Field Name Register Bit

TMODE Transmit Mode Serial Port Control 9-8

TOPCNT Top Margin Count Top Margin 1Hl

TRA Transfer Active Parallel Port Control 14

TTE TDMA Terminate Enable DMAO Control 6
DMA 1 Control 6

TTl TDMA Terminate Interrupt DMAO Control
DMA 1 Control

TXDI Serial Port Transmit Data Interrupt Interrupt Control 5

UD Transfer UplDown DMAO Control 9
DMA 1 Control 9

VALID Valid Mapping DRAM Mapping 0 31
DRAM Mapping 1 31
DRAM Mapping 2 31
DRAM Mapping 3 31

VIOl Video Invert Video Control 0

VDATA Video Data Video Data Holding 31~

VOl Video Interrupt Interrupt Control 27

VIRTBASE Virtual Base Address DRAM Mapping 0 23-16
DRAM Mapping 1 23-16
DRAM Mapping 2 23-16
DRAM Mapping 3 23-16

WLGN Word Length Serial Port Control 17-16

WSO Wait States, Bank 0 ROM Control 25-24

WS1 Wait States, Bank 1 ROM Control 17-16

WS2 Wait States, Bank 2 ROM Control 9-8

WS3 Wait States, Bank 3 ROM Control 1~

C·10 Peripheral Register Summary

INDEX

A
A2.3-AO signals

definition, 7-1
external DMA transfers, 11-4

absolute-register number, 2-10

access priority, 7-7-7-8

ACK bit (PACK Level), 13-4

ACS bit (Assert Chip Select), 11-3, 11-6

activation records
allocation, 4-1-4-2, 4-4
definition, 4-1

ADD (Add) instruction, description, 18-8

Add Wait States signal. See WAIT signal;
WAITfTRIST Signal

ADDC (Add with Carry) instruction, description, 18-9

ADDCS (Add with Carry, Signed) instruction,
description, 18-10

ADDCU (Add with Carry, Unsigned) instruction,
description, 18-11

addition instructions
ADD (Add), 18-8
ADDC (Add with Carry), 18-9
ADDCS (Add with Carry, Signed), 18-10
ADDCU (Add with Carry, Unsigned), 18-11
ADDS (Add, Signed), 18-12
ADDU (Add, Unsigned), 18-13
DADO (Floating-Point Add, Double-Precision),

18-47
FADD (Floating-Point Add, Single-Precision), 18-65

Address Bus signals. See A2.3-AO signals

addressing
byte and half-word addressing, 3-11-3-12
indirect register addressing, 2-12-2-14
internal peripheral address assignments, 7-8-7-10
registers, 2-10

ADDS (Add, Signed) instruction, description, 18-12

ADDU (Add, Unsigned) instruction, description, 18-13

AFD bit(Autofeed), 13-3

alignment
of bytes within words, 3-4
of instructions, 3-13
of words and half-words, 3-13
Unaligned Access trap, 16-2

Index

ALU Status Register
arithmetic instructions, 2-1
description, 2-16-2-17
logical instructions, 2-4

Am29200 microcontroller family
development tools, 1-7
overview, xv, 1-1
product support, 1-7

Am29200 microcontroller
block diagram, 1-3
design philosophy, xv-xvii
distinctive characteristics, 1-2-1-3
overview

burst-mode memory support, 1-8
bus-compatibility, 1-7
data formats, 1-8-1-9
debugging and testing, 1-9-1-10
DRAM mapping, 1-9
instruction set, 1-8
instruction timing, 1-7-1-8
interfaces, 1-6
interrupts and traps, 1-9-1-10
page-mode memory support, 1-8
peripherals on-chip, 1-5-1-6
pipelining, 1-8
price/performance, 1-6
protection, 1-9
software-compatibility, 1-7

performance overview, 1-7-1-9
product support, iii
special settings, A-1

Am29205 microcontroller
block diagram, 1-4
design philosophy, xv-xvii
distinctive characteristics, 1-4-1-5
emulating the Am29205 microcontroller, 17-17
overview

bus-compatibility, 1-7
data formats, 1-8-1-9
debugging and testing, 1-9-1-10
DRAM mapping, 1-9
instruction set, 1-8
instruction timing, 1-7-1-8
interfaces, 1-6
interrupts and traps, 1-9-1-10
page-mode memory support, 1-8
peripherals on-Chip, 1-5-1-6
pipelining, 1-8
price/performance, 1-6

1-1

~AMD
protection, 1-9
software-compatibility, 1-7

performance overview, 1-7-1-9
pin changes, 7-7
product support, iii
special settings, A-1

AMASKO field (Address Mask, Bank 0)
DRAM Configuration Register, 9-3
ROM Configuration Register, 8-2-8-3

AMASK1 field (Address Mask, Bank 1)
DRAM Configuration Register, 9-3
ROM Configuration Register, 8-3

AMASK2 field (Address Mask, Bank 2)
DRAM Configuration Register, 9-3
ROM Configuration Register, 8-3

AMASK3 field (Address Mask, Bank 3)
Am29205 microcontroller, 8-3
DRAM Configuration Register, 9-3
ROM Configuration Register, 8-3

AND (AND logical) instruction, description, 18-14

ANDN (AND-NOT logical) instruction, description,
18-15

ARB bit (ACK Relationship to BUSY), 13-3

argcount value, 4-15

argument passing, 4-7-4-8

arithmetic instructions
See also specific types of arithmetic instructions
ALU Status Register, 2-1
multiprecision integer operations, 2-25
overview, 2-1-2-3
status results, 2-17
table, 2-2
trapping, 2-26
virtual arithmetic processor, 2-26

ASELO field (Address Select, Bank 0)
DRAM Configuration Register, 9-3
ROM Configuration Register, 8-2

ASEL 1 field (Address Select, Bank 1)
DRAM Configuration Register, 9-3
ROM Configuration Register, 8-3

ASEL2 field (Address Select, Bank 2)
DRAM Configuration Register, 9-3
ROM Configuration Register, 8-3

ASEL3 field (Address Select, Bank 3)
Am29205 microcontroller, 8-3
DRAM Configuration Register, 9-3
required setting for Am29205 microcontroller, A-1
ROM Configuration Register, 8-3

ASEQ (Assert Equal To) instruction
description, 18-16
NO-OPs, 2-25-2-26

1-2 Index

ASGE (Assert Greater Than or Equal To) instruction,
description, 18-17

ASGEU (Assert Greater Than or Equal To, Unsigned)
instruction, description, 18-18

ASGT (Assert Greater Than) instruction, description,
18-19

ASGTU (Assert Greater Than, Unsigned) instruction,
description, 18-20

ASLE (Assert Less Than or Equal To) instruction,
description, 18-21

ASLEU (Assert Less Than or Equal To, Unsigned)
instruction, description, 18-22

ASLT (Assert Less Than) instruction, description,
18-23

ASLTU (Assert Less Than, Unsigned) instruction,
description, 18-24

ASNEQ (Assert Not Equal To) instruction
description, 18-25
operating system calls, 2-24

assert instructions
run-time checking, 2-24
setting instruction breakpOints, 17-2
simulating interrupts and traps, 16-13-16-14
trapping, 2-24

B
B15-BO field (Bank 15-Bank 0 Protection Bits), 6-3

Baud Rate Divisor Register, description, 14-5

BAUDDIV field (Baud Rate Divisor), 14-5

BCT field (Byte Count), 13-3-13-4

big endian, 3-1,3-2,3-12

bit strings
Funnel Shift Count Register, 3-3-3-4
overview, 3-3-3-4

bits
ACK (PACK Level), 13-4
ACS (Assert Chip Select), 11-3, 11-6
AFD (Autofeed), 13-3
AMASKO (Address Mask, Bank 0), 8-2-8-3, 9-3
AMASK1 (Address Mask, Bank 1), 8-3, 9-3
AMASK2 (Address Mask, Bank 2), 8-3, 9-3
AMASK3 (Address Mask, Bank 3), 8-3, 9-3
ARB (ACK Relationship to BUSY), 13-3
ASELO (Address Select, Bank 0), 8-2, 9-3
ASEL 1 (Address Select, Bank 1), 8-3, 9-3
ASEL2 (Address Select, Bank 2), 8-3, 9-3
ASEL3 (Address Select, Bank 3), 8-3, 9-3
B15-BO (Bank 15-Bank 0 Protection Bits), 6-3
BAUDDIV (Baud Rate Divisor), 14-5
BCT (Byte Count), 13-3-13-4
BP (Byte Pointer), 2-16--2-17,3-3

BRK (Send Break). 14-1
BRKI (Break Interrupt). 14-4
BRS (BUSY Relationship to STROBE). 13-3
BSTO (Burst-Mode ROM. Bank 0). 8-1
BST1 (Burst-Mode ROM. Bank 1). 8-2
BST2 (Burst-Mode ROM. Bank 2). 8-2
BST3 (Burst-Mode ROM. Bank 3). 8-2
BSY (PBUSY Level). 13-4
BWE (Byte Write Enable). 8-2
C (Carry). 2-16
CHA (Channel Address). 16-18
CHD (Channel Data). 16-18
CLKDIV (Clock Divide). 15-1
CLKI (Clock Invert). 15-2
CR (Load/Store Count Remaining). 3-11. 16-19
CTE (Count Terminate Enable). 11-3. 11-7
CTI (Count Terminate Interrupt). 11-4. 11-7
CV (Contents Valid). 16-19
DA (Disable All Interrupts and Traps). 16-3
DDIR (Data Direction). 13-2. 15-2
OF (Divide Flag). 2-16
DHH (Disable Hardware Handshake). 13-2-13-3
01 (Disable Interrupts). 16-3
OM (Floating-Point Divide-By-Zero Mask). 2-15
DMAOI (DMA Channel 0 Interrupt). 16-24
DMA 11 (DMA Channel 1 Interrupt). 16-24
DMACNT (DMA Count). 11-5
DMAEXT (DMA Extend). 11-2. 11-6
DMAWAIT (DMA Wait States). 11-2. 11-6
DO (Integer Division Overflow Mask). 2-15
DRAMADDR (DRAM Address). 11-4
DRM (DMA Request Mode). 11-2. 11-6
ORO (Data Request). 13-2. 15-1
OS (Floating-Point Divide-By-Zero Sticky). 2-19
DSR (Data Set Ready). 14-1
DT (Floating-Point Divide-By-Zero Trap). 2-18-2-19
DTR (Data Terminal Ready). 14-4
OW (Data Width). 11-2. 11-6
DWO (Data Width. Bank 0). 8-2. 9-2
DW1 (Data Width. Bank 1). 8-2. 9-2
DW2 (Data Width. Bank 2). 8-2. 9-2
DW3 (Data Width. Bank 3). 8-2. 9-2
EN (Enable). 11-3. 11-7
FACK (Force ACK). 13-2
FBUSY (Force Busy). 13-2
FC (Funnel Shift Count). 2-17. 3-3-3-4
FER (Framing Error). 14-4
FF (Fast Float Select). 2-14
FRM (Floating-Point Round Mode). 2-14
FWT (Full Word Transfer). 13-1
FZ (Freeze). 16-2
1.3-8
IE (Interrupt Enable). 16-23
1M (Interrupt Mask). 16-3
IN (Interrupt). 16-23
INVERT (PIO Inversion). 12-2
10EXTO (Input/Output Extend. Region 0).10-2
IOEXT1 (Input/Output Extend. Region 1). 1.Q-2
IOEXT2 (Input/Output Extend. Region 2).10-2

Index

AMO;t1

IOEXT3 (Input/Output Extend. Region 3).10-2
IOEXT4 (Input/Output Extend. Region 4).10-2
IOEXT5 (Input/Output Extend. Region 5).10-2
10PI (1/0 Port Interrupt). 16-24
10WAITO (Input/Output Wait States. Region 0). 10-2
IOWAIT1 (Input/Output Wait States. Region 1). 10-2
IOWAIT2 (Input/Output Wait States. Region 2). 10-2
IOWAIT3 (Input/Output Wait States. Region 3). 10-2
IOWAIT4 (Input/Output Wait States. Region 4).10-2
IOWAIT5 (Input/Output Wait States. Region 5).10-2
IP (Interrupt Pending). 16-2
IPA (Indirect Pointer A). 2-13
IPB (Indirect Pointer B). 2-14
IPC (Indirect Pointer C). 2-13
IRM14-IRM8. 12-2
IRM15 (Interrupt Request Mode. PI015). 12-1-12-2
LEFTCNT (Left Margin Count). 15-3
LlNECNT (Line Count). 15-3
LM (Large Memory). 8-2. 9-2
LOOP (Loopback). 14-1
LS (Load/Store). 16-19
LSI (Line Sync Invert). 15-2
ML (Multiple Operation). 16-19
MO (Integer Multiplication Overflow Exception

Mask). 2-16
MODE (Parallel Port Mode). 13-2
MODE (Video Interface Mode). 15-2
N (Negative). 2-16
NM (Floating-Point Invalid Operation Mask). 2-15
NN (Not Needed). 16-19
NS (Floating-Point Invalid Operation Sticky). 2-19
NT (Floating-Point Invalid Operation Trap). 2-19
OER (Overrun Error). 14-4
OPT (Option). 3-8
OV (Overflow). 16-23
PCO (Program Counter 0). 16-9
PC1 (Program Counter 1). 16-9
PC2 (Program Counter 2).16-10
PDATA (Parallel Port Data). 13-4
PER (Parity Error). 14-4
PERADDR (Peripheral Address). 11-4
peripheral registers (table). C-6--C-11
PGO (Page-Mode DRAM. Bank 0). 9-2
PG1 (Page-Mode DRAM. Bank 1). 9-2
PG2 (Page-Mode DRAM. Bank 2). 9-2
PG3 (Page-Mode DRAM, Bank 3). 9-2
PHYBASE (Physical Base Address). 9-4
PIN (PIO Input). 12-2
PMODE (Parity Mode). 14-2
POEN (PIO Output Enable). 12-3
POUT (PIO Output). 12-3
PPI (Parallel Port Interrupt). 16-24
PRL (Processor Release Level). 2-27
processor registers (table). B-7-B-9
PSI (Page Sync Invert). 15-2
PSIO (Page Sync Input/Output). 15-2
PSL (Page Sync Level). 15-2
o (OuotientlMultiplier). 2-20
OEN (Oueue Enable). 11-3

1-3

~AMD
RA,3-8
RB,3-8
RDATA (Receive Data), 14-5
RDR (Receive Data Ready), 14-3
REFRATE (Refresh Rate), 9-2
reserved fields, A-1
RM (Floating-Point Invalid Operand Mask), 2-15
RMODE (Receive Mode), 14-3
RS (Floating-Point Reserved Operand Sticky), 2-19
RSIE (Receive Status Interrupt Enable), 14-2
RT (Floating-Point Reserved Operand Trap), 2-19
RW (ReadlWrite), 11-3, 11-7
RXDI (Serial Port Receive Data Interrupt), 16-24
RXSI (Serial Port Receive Status Interrupt), 16-24
SB (Set Byte Pointer/Sign Bit), 3-8
SC (Static-Column DRAM), 9-2
SDIR (Shift Direction), 15-2
SM (Supervisor Mode), 16-3
ST (Set), 16-19
STB (PSTROBE Level), 13-3
STP (Stop Bits), 14-2
TCV (Timer Count Value), 16-22-16-23
TO (Timer Disable), 16-2
TDATA (Transmit Data), 14-4
TDELAY (Transfer Delay), 13-2
TDELAYV (TDELAY Counter Value), 13-3
TE (Trace Enable), 16-2
TEMT (Transmitter Empty), 14-3
THRE (Transmit Holding Register Empty), 14-3
TMODE (Transmit Mode), 14-2
TOPCNT (Top Margin Count), 15-3
TP (Trace Pending), 16-2
TR (Target Register), 16-19
TRA (Transfer Active), 13-2
TRV (Timer Reload Value), 16-23
TTE (TDMA Terminate Enable), 11-3, 11-7
TTl (TDMA Terminate Interrupt), 11-3, 11-7
TU (Trap Unaligned Access), 16-2
TXDI (Serial Port Transmit Data Interrupt), 16-24
UD (Transfer Up/Down), 11-3, 11-6-11-7
UM (Floating-Point Underflow Mask), 2-15
US (Floating-Point Underflow Sticky), 2-19
UT (Floating-Point Underflow Trap), 2-19
V (Overflow), 2-16
VAB (Vector Area Base), 16-5
VALID (Valid Mapping), 9-3
VDATA (Video Data), 15-4
VOl (Video Interrupt), 16-24
VIOl (Video Invert), 15-3
VIRTBASE (Virtual Base Address), 9-3
VM (Floating-Point Overflow Mask), 2-15
VS (Floating-Point Overflow Sticky), 2-19
VT (Floating-Point Overflow Trap), 2-19
WLGN (Word Length), 14-2
WM (Wait Mode), 16-3
WSO (Wait States, Bank 0), 8-2
WS1 (Wait States, Bank 1), 8-2
WS2 (Wait States, Bank 2), 8-2
WS3 (Wait States, Bank 3), 8-2

1-4

XM (Floating-Point Inexact Result Mask), 2-15
XS (Floating-Point Inexact Result Sticky), 2-19
XT (Floating-Point Inexact Result Trap), 2-19
Z (Zero), 2-16

Boolean data, 3-5

BOOTW signal
definition, 7-3
setting width of boot ROM, 8-3

boundary-scan cells
bypass scan path, 17-8
description, 17-4-17-5
ICTEST1 scan path, 17-10
ICTEST2 scan path, 17-10-17-11
instruction scan path, 17-8
main data scan path, 17-8-17-10

Boundary-Scan Register (BSR), 17-4-17-5
CNTLfield,17-3-17-4

BP field (Byte Pointer)
ALU Status Register, 2-16-2-17
Byte Pointer Register, 3-3

branch instructions
CALL (Call Subroutine), 18-26
CALLI (Call Subroutine, Indirect), 18-27
JMP (Jump), 18-79
JMPF (Jump False), 18-80
JMPFDEC (Jump False and Decrement), 18-81
JMPFI (Jump False Indirect), 18-82
JMPI (Jump Indirect), 18-83
JMPT (Jump True), 18-84
JMPTI (Jump True Indirect), 18-85
overview, 2-7
table, 2-7

breakpoints
using assert instructions, 17-2
using the HALT instruction, 17-2

BRK bit (Send Break), 14-1

BRKI bit (Break Interrupt), 14-4

BRS bit (BUSY Relationship to STROBE), 13-3

BSR. See Boundary-Scan Register (BSR)

BSTO bit (Burst-Mode ROM, Bank 0),8-1

BST1 bit (Burst-Mode ROM, Bank 1), 8-2

BST2 bit (Burst-Mode ROM, Bank 2), 8-2

BST3 bit.(Burst-Mode ROM, Bank 3), 8-2

BSY bit (PBUSY Level), 13-4

BURST signal, definition, 7-3

burst-mode
boot ROM state, 8-3
DRAM page-mode accesses, 9-2, 9-6-9-7, 9-10
multiple data accesses, 3-11
ROM accesses, 8-1, 8-2, 8-5, 8-6, 8-8, 8-10

Burst-Mode Access signal. See BURST signal

Index

BWE bit (Byte Write Enable), 8-2

BYPASS instruction, 17-8

bypass scan path, 17-8

Byte Pointer Register, description, 3-2-3-3

byte writes, ROM space, 8-7-8-8

c
C bit (Carry)

ALU Status Register, 2-16
arithmetic operation status results, 2-17
multiprecision integer operations, 2-25

CALL (Call Subroutine) instruction, description, 18-26

CALLI (Call Subroutine, Indirect) instruction,
description, 18-27

calling conventions, 4-13-4-14

CAS3-CASO signals
definition, 7-4
during static-column accesses, 9-2
using as byte stobes, 8-2

CAS-before-RAS refresh cycles
DRAM refresh, 9-10
REFRATE field (Refresh Rate), 9-2
timing (diagram), 9-11

CHA field (Channel Address), 16-18

Channel Address Register
description, 16-18
multiple data accesses, 3-10

Channel Control Register
description, 16-18-16-19
multiple data accesses, 3-10-3-11

Channel Data Register, description, 16-18

character data, format, 3-1-3-2

character strings, overview, 3-4

CHD field (Channel Data), 16-18

CLASS (Classify Floating-Point Operand) instruction,
description, 18-28-18-29

CLKDIV field (Clock Divide), 15-1

CLKI bit (Clock Invert), 15-2

clock signals
INCLK,7-1
MEMCLK,7-1
TCK,7-6
UCLK,7-6
VCLK,7-6

CLZ (Count Leading Zeros) instruction, description,
18-30

CNTL field
Boundary Scan Register, 17-3-17-4

boundary-scan cells, 17-5
Halt mode, 17-11-17-12
ICTEST1 scan path, 17-10
ICTEST2 scan path, 17-10-17-11
Load Test Instruction mode, 17-13-17-14
Step mode, 17-12-17-13

AMD~

Column Address Strobes, Banks 3-0 signals. See
CAS3-CASO signals

compare instructions
ASEO (Assert Equal To), 18-16
ASGE (Assert Greater Than or Equal To), 18-17
ASGEU (Assert Greater Than or Equal To,

Unsigned),18-18
ASGT (Assert Greater Than), 18-19
ASGTU (Assert Greater Than, Unsigned), 18-20
ASLE (Assert Less Than or Equal To), 18-21
ASLEU (Assert Less Than or Equal To, Unsigned),

18-22
ASLT (Assert Less Than), 18-23
ASLTU (Assert Less Than, Unsigned), 18-24
ASNEO (Assert Not Equal To), 18-25
CPBYTE (Compare Bytes), 18-36
CPEO (Compare Equal To), 18-37
CPGE (Compare Greater Than or Equal To), 18-38
CPGEU (Compare Greater Than or Equal To,

Unsigned),18-39
CPGT (Compare Greater Than), 18-40
CPGTU (Compare Greater Than, Unsigned), 18-41
CPLE (Compare Less Than or Equal To), 18-42
CPLEU (Compare Less Than or Equal To,

Unsigned),18-43
CPLT (Compare Less Than), 18-44
CPLTU (Compare Less Than, UnSigned), 18-45
CPNEO (Compare Not Equal To), 18-46
overview, 2-1-2-3
table, 2-3

compiler
delayed branches, 5-3-5-4
High C 29K optimizing C compiler, 1-7
run-time stack organization, 4-1-4-6
temporary registers, 4-13
transparent procedures, 4-13-4-15

complementing a Boolean, 2-25

Configuration Register, description, 2-26-2-27

CONST (Constant) instruction
description, 18-31
generation of large constants, 3-5
large jump and call ranges, 2-25

constant instructions
CONST (Constant), 18-31
CONSTH (Constant, High), 18-32
CONSTN (Constant, Negative), 18-33
overview, 2-5
table, 2-5

CONSTH (Constant, High) instruction
description, 18-32

Index 1-5

~AMD
generation of large constants, 3-5
large jump and call ranges, 2-25

CONSTN (Constant, Negative) instruction
description, 18-33
generation of large constants, 3-5

CONVERT (Convert Data Format) instruction,
description, 18-34-18-35

CPBYTE (Compare Bytes) instruction
character data, 3-2
description, 18-36
detection of characters within words, 3-4

CPEO (Compare Equal To) instruction, description,
18-37

CPGE (Compare Greater Than or Equal To)
instruction

complementing a Boolean, 2-25
description, 18-38

CPGEU (Compare Greater Than or Equal To,
Unsigned) instruction, description, 18-39

CPGT (Compare Greater Than) instruction,
description, 18-40

CPGTU (Compare Greater Than, Unsigned)
instruction, description, 18-41

CPLE (Compare Less Than or Equal To) instruction,
description, 18-42

CPLEU (Compare Less Than or Equal To, Unsigned)
instruction, description, 18-43

CPLT (Compare Less Than) instruction, description,
18-44

CPLTU (Compare Less Than, Unsigned) instruction,
description, 18-45

CPNEO (Compare Not Equal To) instruction,
description, 18-46

CPU Status signals. See STAT2-5TATO signals

CR field (Load/Store Count Remaining)
Channel Control Register, 16-19
Load/Store Count Remaining Register, 3-11
multiple access operations, 3-9-3-10

CTE bit (Count Terminate Enable), 11-3, 11-7

CTI bit (Count Terminate Interrupt), 11-4, 11-7

Current Processor Status Register
after an interrupt or trap, 16-11
before interrupt return, 16-11
controloftracing, 17-1-17-2
delayed effects ofregisters, 5-5, 16-2
description, 16-1-16-3
Reset mode, 2-27

CV bit (Contents Valid), 16-19
multiple access operations, 3-10
restarting faulting accesses, 16-17-16-18
returning from interrupts or traps, 16-12

1-6 Index

D·
DA bit (Disable All Interrupts and Traps)

Current Processor Status Register, 16-3
disabling interrupts, 16-3
exceptions during interrupt and trap handling, 16-21

DACK1-DACKO signals, definition, 7-4-7-5

DADD (Floating-Point Add, Double-Precision)
instruction, deSCription, 18-47

data movement instructions
EXBYTE (Extract Byte), 18-61
EXHW (Extract Half-Word), 18-62
EXHWS (Extract Half-Word, Sign-Extended), 18-63
INBYTE (Insert Byte), 18-74
INHW (Insert Half-Word), 18-75
LOAD (Load), 18-86
LOADL (Load and Lock), 18-87
LOADM (Load Multiple), 18-88
LOADSET (Load and Set), 18-89
MFSR (Move from Special Register), 18-90
MFTLB (Move from Translation Look-Aside Buffer

Register), 18-91
movement of large data blocks, 3-11
MTSR (Move to Special Register), 18-92
MTSRIM (Move to Special Register Immediate),

18-93
MTTLB (Move to Translation Look-Aside Buffer

Register), 18-94
overview, 2-4-2-6
STORE (Store), 18-110
STOREL (Store and Lock), 18-111
STOREM (Store Multiple), 18-112
table, 2-5

Data Set Ready signal. See DSR signal

Data Terminal Ready signal. See DTR signal

data types
floating-point data types, 3-5-3-7

denormalized numbers, 3-7
double-precision floating-point values, 3-6
infinity, 3-7
Not-a-Number, 3-6-3-7
single-precision floating-point values, 3-5
special floating-point values, 3-6-3-7
zero, 3-7

integer data types, 3-1-3-5
bit strings, 3-3-3-4
Boolean data, 3-5
character data, 3-1-3-2
character string operations, 3-4
half-word operations, 3-2
instruction constants, 3-5

DDIR bit (Data Direction)
Parallel Port Control Register, 13-2
Video Control Register, 15-2

001 V (Floating-Point Divide, Double-Precision)
instruction, description, 18-48

debugging and testing
accessing internal state via boundary-scan,

17-14-17-16
boundary-scan cells, 17-4-17-5
control field in scan path, 17-3-17-4
emulating the Am29205 microcontroller, 17-17
forcing outputs to high impedance, 17-17-17-18
Halt mode, 17-11-17-12
implementing a hardware-development system,

17-11-17-17
instruction breakpoints, 17-2
Load Test Instruction mode, 17-13-17-14
overview, 17-1
processor status outputs, 17-2-17-3
Step mode, 17-12-17-13
Test Access Port, 17-4-17-11
tracing, 17-1-17-2

delayed branches, 5-2-5-4

delayed effects of registers, 5-5

DEQ (Floating-Point Equal To, Double-Precision)
instruction, description, 18-49

development tools
AMD products, xx, 1-7
compiler, xx, 1-7
debugger, xx, 1-7
development boards, xx, 1-7
monitor, xx, 1-7
third-party products, iii, xix-xx, 1-7

OF bit (Divide Flag), 2-16

DGE (Floating-Point Greater Than or Equal To,
Double-Precision) instruction, description, 18-50

DGT (Floating-Point Greater Than, Double-Precision)
instruction, description, 18-51

DHH bit (Disable Hardware Handshake), 13-2-13-3

DI bit (Disable Interrupts), 16-3
disabling interrupts, 16-3

DIV (Divide Step) instruction, description, 18-52

DIVO (Divide Initialize) instruction, description, 18-53

DIVIDE (Integer Divide, Signed) instruction,
description, 18-54

DIVIDU (Integer Divide, Unsigned) instruction,
description, 18-55

division, routines for performing, 2-19-2-20,
2-22-2-24

division instructions
DDIV (Floating-Point Divide, Double-Precision),

18-48
DIV (Divide Step), 18-52
DIVO (Divide Initialize), 18-53
DIVIDE (Integer Divide, Signed), 18-54
DIVIDU (Integer Divide, Unsigned), 18-55

Index

AMD~
DIVL (Divide Last Step), 18-56
DIVREM (Divide Remainder), 18-57
FDIV (Floating-Point Divide, Single-Precision),

18-66

DIVL (Divide Last Step) instruction, description, 18-56

DIVREM (Divide Remainder) instruction, description,
18-57

DM bit (Floating-Point Divide-By-Zero Mask), 2-15

DMA Acknowledge 1 through 0 signals. See
DACK1-DACKO Signals

DMA controller
DMA queuing (DMA Channel 0), 11-12
DMA transfers, 11-8-11-12

directtransfers, 11-1, 11-12-11-15
external peripherals, 11-1
extemal transfers, 11-1, 11-9-11-11
generating external DMA requests, 11-9
internal peripherals, 11-1
internal transfers, 11-1, 11-8-11-9
latching external requests, 11-11-11-12
parallel port, 13-2
serial port, 14-2, 14-3
specifying direction, 11-8
video interface, 15-2

initialization, 11-7
overview, 11-1
programmable registers, 11-1-11-7
signals .

DACK1-DACKO, 7-4-7-5
DREQ1-DREQO,7-4
GACK,7-5
GREO,7-5
TDMA,7-5

DMA Request 1 through 0 Signals. See
DREQ1-DREQO signals

DMAO Address Register, description, 11-4

DMAO Address Tail Register
address assignments, 7-8-7-10
description, 11-4

DMAO Control Register, description, 11-1-11-4

DMAO Count Register, deSCription, 11-5

DMAO Count Tail Register
address assignments, 7-8-7-10
description, 11-5

DMAOI bit (DMA Channel 0 Interrupt), 16-24

DMA1 Address Register, description, 11-7

DMA 1 Control Register, description, 11-5-11-7

DMA1 Count Register, deSCription, 11-7

DMA 11 bit(DMA Channel 1 Interrupt), 16-24

DMACNT field (DMA Count), 11-5

DMAEXT bit (DMA Extend), 11-2, 11-6

1-7

~AMD
DMAWAIT field (DMA Wait States), 11-2, 11-6

DMUL (Floating-Point Multiply, Double-Precision)
instruction, description, 18-58

DO bit (Integer Division Overflow Mask), 2-15

DRAM accesses
16-bit DRAM, 9-7
32-bit DRAM, 9-7
address multiplexing, 9-5-9-7
DRAM address mapping, 9-4-9-5
DRAM refresh, 7-7, 9-10-9-12
mapped accesses, 9-8
normal access timing, 9-8
page-mode access timing, 9-10
restarting mapped DRAM accesses, 16-17-16-19
video DRAM interface, 9-12

DRAM Configuration Register, description, 9-2-9-3

DRAM Control Register, description, 9-1-9-2

DRAM controller
See also DRAM accesses
address mapping, 8-4, 9-4-9-5
initialization, 9-4
overview, 9-1
programmable registers

DRAM Configuration Register, 9-2-9-3
DRAM Control Register, 9-1-9-2

Signals
CAS3-CASO,7-4
RAS3-RASO, 7-3
TRlOE,7-4
WE,7-4

DRAM Mapping Register 0, description, 9-3-9-4

DRAM Mapping Register 1, description, 9-4

DRAM Mapping Register 2, description, 9-4

DRAM Mapping Register 3, description, 9-4

DRAM refresh, panic mode, 7-7

DRAMADDR field (DRAM Address), 11-4

DRE01-DREOO signals
definition, 7-4
signaling external DMA requests, 11-2, 11-6

DRM field (DMA Request Mode), 11-2, 11-6

DRO bit (Data Request)
Parallel Port Control Register, 13-2
Video Control Register, 15-1

DS bit (Floating-Point Divide-By-Zero Sticky), 2-19

DSR bit (Data Set Ready), Serial Port Control
Register, 14-1

DSR Signal
activating, 14-1
definition, 7-6

DSUB (Floating-Point Subtract, Double-Precision)
instruction, description, 18-59

1-8 Index

DT bit (Floating-Point Divide-By-Zero Trap),
2-18-2-19

DTR bit (Data Terminal Ready), Serial Port Status
Register, 14-4

DTR signal
activating, 14-4
definition, 7-6

DW field (Data Width), 11-2, 11-6

DWO bit (Data Width, DRAM Bank 0), 9-2

DWO field (Data Width, ROM Bank 0), 8-2

DW1 bit (Data Width, DRAM Bank 1), 9-2

DW1 field (Data Width, ROM Bank 1), 8-2

DW2 bit (Data Width, DRAM Bank 2), 9-2

DW2 field (Data Width, ROM Bank 2), 8-2

DW3 bit (Data Width, DRAM Bank 3), 9-2

DW3 field (Data Width, ROM Bank 3), 8-2

dynamic parent, 4-12-4-13

E
EMULATE (Trap to Software Emulation Routine)

instruction
description, 18-60
operating-system calls, 2-24-2-25

EN bit (Enable), 11-3, 11-7
DMA initialization, 11-7

endian. See big end ian

EXBYTE (Extract Byte) instruction
BP field (Byte Pointer), 2-16-2-17
Byte Pointer Register, 3-2
character data, 3-1
description, 18-61

EXHW (Extract Half-Word) instruction
BP field (Byte Pointer), 2-17
Byte Pointer Register, 3-2
description, 18-62
half-word operations, 3-2

EXHWS (Extract Half-Word, Sign-Extended)
instruction

BP field (Byte Pointer), 2-17
Byte Pointer Register, 3-2
description, 18-63
half-word operations, 3-2

External Memory Grant Acknowledge signal. See
GACKsignal

External Memory Grant Request signal. See GREQ
signal

EXTEST instruction, 17-6

EXTRACT (Extract Word, Bit-Aligned) instruction
bit strings, 3-3

description, 18-64
FC field (Funnel Shift Count), 2-17
operating on double-word data, 2-4

F
FACK bit (Force ACK), 13-2

FADD (Floating-Point Add, Single-Precision) instruc­
tion, description, 18-65

FBUSY bit (Force Busy), 13-2

FC field (Funnel Shift Count), 3-3-3-4
ALU Status Register, 2-17

FDIV (Floating-Point Divide, Single-Precision) instruc­
tion, description, 18-66

FDMUL (Floating-Point Multiply, Single-to-Double Pre­
cision) instruction, description, 18-67

FEQ (Floating-Point Equal To, Single-Precision)
instruction, description, 18-68

FER bit (Framing Error), 14-4

FF bit (Fast Float Select), 2-14

FGE (Floating-Point Greater Than or Equal To,
Single-Precision) instruction, description, 18-69

FGT (Floating-Point Greater Than, Single-Precision)
instruction, description, 18-70

field summary
peripheral registers (table), C-6-C-11
processor registers (table), 8-7-8-9

fields. See bits

fill handlers, 4-11

floating-point data types
denormalized numbers, 3-7
double-precision floating-point values, 3-6
infinity,3-7
Not-a-Number, 3-6-3-7
Single-precision floating-point values, 3-5
special floating-point values, 3-6-3-7
zero, 3-7

Floating-Point Environment Register
description, 2-14--2-15
not implemented in processor hardware, 2-11

Floating-Point Exception trap
Floating-Point Environment Register, 2-15
Floating-Point Status Register, 2-18-2-19
trap status bits, 2-18-2-19

floating-point instructions
CLASS (Classify Floating-Point Operand),

18-28-18-29
CONVERT (Convert Data Format), 18-34--18-35
DADO (Floating-Point Add, Double-Precision),

18-47

Index

AMOz:1

DDIV (Floating-Point Divide, Double-Precision),
18-48

DEQ (Floating-Point Equal To, Double-Precision),
18-49

DGE (Floating-Point Greater Than or Equal To,
Double-Precision),18-50

DGT (Floating-Point Greater Than, Double­
Precision), 18-51

DMUL (Floating-Point Multiply, Double-Precision),
18-58

DSUB (Floating-Point Subtract, Double-Precision),
18-59

FADD (Floating-Point Add, Single-Precision), 18-65
FDIV (Floating-Point Divide, Single-Precision),

18-66
FDMUL (Floating-Point Multiply, Single-to-Double

Precision), 18-67
FEQ (Floating-Point Equal To, Single-Precision),

18-68
FGE (Floating-Point Greater Than or Equal To,

Single-Precision), 18-69
FGT (Floating-Point Greater Than, Single­

Precision),18-70
FMUL (Floating-Point Multiply, Single-Precision),

18-71
FSUB (Floating-Point Subtract, Single-Precision),

18-72
overview, 2-6
SQRT (Floating-Point Square Root), 18-107
status results, 2-18
table, 2-6

Floating-Point Status Register
description, 2-18-2-19
not implemented in processor hardware, 2-11
Protection Violation trap, 2-26
sticky status bits, 2-18-2-19
trap status bits, 2-18-2-19

FMUL (Floating-Point Multiply, Single-Precision)
instruction, description, 18-71

fp. See frame pointer (fp)

frame, definition, 4-7

frame pointer (fp)
definition, 4-5
register conventions, 4-14

Freeze bit. See FZ bit (Freeze)

FRM field (Floating-Point Round Mode), 2-14

FSUB (Floating-Point Subtract, Single-Precision)
instruction, description, 18-72

Funnel Shift Count Register, description, 3-3-3-4

FWT bit (Full Word Transfer), 13-1
required setting for Am29205 microcontroller, A-1

FZ bit (Freeze)
Current Processor Status Register, 16-2
delayed effects of registers, 5-5, 16-2
Halt mode, 17-12

1-9

~AMD
interrupt and trap handling, 16-6-16-13
lightweight interrupt processing, 16-12-16-13
Program Counter registers, 16-6-16-9
registers affected by, 16-10, 16-11-16-12
restarting the interrupt or trap handler, 16-21
Step mode, 17-12

G
GACKsignal

definition, 7-5
direct DMA access by external devices,

11-12-11-15

general-purpose registers
addressing terminology, 2-10
operands held by, 2-8-2-10
organization, 2-9, B-1
overview, 2-8-2-10

global registers
global-register number, 2-10
overview, 2-10

GREQsignal
definition, 7-5
direct DMA access by external devices,

11-12-11-15

H
half-word data, format, 3-2

HALT (Enter Halt Mode) instruction
description, 18-73
instruction breakpoints, 17-2, 17-16-17-17

Halt mode, 17-11-17-12

hardware-development system. See debugging and
testing

host interface (HIF) specification. See operating
system

1/0 port. See Programmable 1/0 Port (PIO)

ICTESn instruction, 17-7

ICTEST1 scan path, 17-10

ICTEST2 instruction, 17-7

ICTEST2 scan path, 17-10-17-11

ID31-IDO signals, definition, 7-1

IE bit (Interrupt Enable), 16-23

IEEE floating-point standard
implementation, 3-5-3-7
improving performance of, 2-14

1-10 Index

Illegal Opcode trap
instruction breakpoints, 17-2
unimplemented instructions, 2-1
unpredictable vector number, 16-4

1M field (Interrupt Mask), 16-3
enabling interrupts, 16-3

IN bit (Interrupt), 16-23

INBYTE (Insert Byte) instruction
BP field (Byte Pointer), 2-16-2-17
Byte Pointer Register, 3-2
character data, 3-2
description, 18-74

INCLK Signal, definition, 7-1

Indirect Pointer A Register, description, 2-13

Indirect Pointer B Register, description, 2-14

Indirect Pointer C Register, description, 2-13

indirect pointers
delayed effects of registers, 5-5
set by certain instructions, 2-13

INHW (Insert Half-Word) instruction
BP field (Byte Pointer), 2-17
Byte Pointer Register, 3-2
description, 18-75
half-word operations, 3-2

initialization
See a/so processor initialization
DMA controller, 11-7
DRAM controller, 9-4
internal interrupt controller, 16-23-16-25
parallel port, 13-4-13-5
Peripheral Interface Adapter (PIA), 10-2
programmable 1/0 port, 12-3
ROM controller, 8-3-8-4
serial port, 14-5
timer facility, 16-21
video interface, 15-4

Input Clock Signal. See INCLK

Instruction Bus signals. See ID31-IDO signals

instruction constants, 3-5

instruction scan path, 17-8

instruction scheduling. See pipelining

instruction set
ADD (Add), 18-8
ADDC (Add with Carry), 18-9
ADDCS (Add with Carry, Signed), 18-10
ADDCU (Add with Carry, Unsigned), 18-11
ADDS (Add, Signed), 18-12
ADDU (Add, Unsigned), 18-13
AND (AND logical), 18-14
ANDN (AND-NOT logical), 18-15
arithmetic operation status results, 2-17
ASEQ (Assert Equal To), 18-16

ASGE (Assert Greater Than or Equal To). 18-17
ASGEU (Assert Greater Than or Equal To.

Unsigned). 18-18
ASGT (Assert Greater Than). 18-19
ASGTU (Assert Greater Than. Unsigned). 18-20
ASLE (Assert Less Than or Equal To). 18-21
ASLEU (Assert Less Than or Equal To. Unsigned).

18-22
ASLT (Assert Less Than). 18-23
ASLTU (Assert Less Than. Unsigned). 18-24
ASNEQ (Assert Not Equal To). 18-25
assembler syntax. 18-3-18-64
branch instructions. 2-7
CALL (Call Subroutine). 18-26
CALLI (Call Subroutine. Indirect). 18-27
CLASS (Classify Floating-Point Operand).

18-28-18-29
CLZ (Count Leading Zeros). 18-30
compare instructions. 2-1-2-3
CONST (Constant). 18-31
constant instructions. 2-5
CONSTH (Constant. High). 18-32
CONSTN (Constant. Negative). 18-33
control-flow terminology. 18-3
CONVERT (Convert Data Format). 18-34-18-35
CPBYTE (Compare Bytes). 18-36
CPEQ (Compare Equal To). 18-37
CPGE (Compare Greater Than or Equal To). 18-38
CPGEU (Compare Greater Than or Equal To.

UnSigned). 18-39
CPGT (Compare Greater Than). 18-40
CPGTU (Compare Greater Than. Unsigned). 18-41
CPLE (Compare Less Than or Equal To). 18-42
CPLEU (Compare Less Than or Equal To.

Unsigned). 18-43
CPLT (Compare Less Than). 18-44
CPLTU (Compare Less Than. Unsigned). 18-45
CPNEQ (Compare Not Equal To). 18-46
DADO (Floating-Point Add. Double-Precision).

18-47
data movement instructions. 2-4-2-6
DDIV (Floating-Point Divide. Double-Precision).

18-48
DEQ (Floating-Point Equal To. Double-Precision).

18-49
description format. 18-7
descriptions. 18-8-18-126
ooE (Floating-Point Greater Than or Equal To.

Double-Precision). 18-50
ooT (Floating-Point Greater Than. Double-

Precision). 18-51
DIV (Divide Step). 18-52
DIVO (Divide Initialize). 18-53
DIVIDE (Integer Divide. Signed). 18-54
DIVIDU (Integer Divide. Unsigned). 18-55
DIVL (Divide Last Step). 18-56
DIVREM (Divide Remainder). 18-57
DMUL (Floating-Point Multiply. Double-Precision).

18-58 •

Index

AMD~
DSUB (Floating-Point Subtract. Double-Precision).

18-59
EMULATE (Trap to Software Emulation Routine).

18-60
EXBYTE (Extract Byte). 18-61
EXHW (Extract Half-Word). 18-62
EXHWS (Extract Half-Word. Sign-Extended). 18-63
EXTRACT (Extract Word. Bit-Aligned). 18-64
FADD (Floating-Point Add. Single-Precision). 18-65
FDIV (Floating-Point Divide. Single-Precision).

18-66
FDMUL (Floating-Point Multiply. Single-to-Double

Precision). 18-67
FEQ (Floating-Point Equal To. Single-Precision).

18-68
FGE (Floating-Point Greater Than or Equal To.

Single-Precision). 18-69
FGT (Floating-Point Greater Than. Single-

Precision). 18-70
floating-point instructions. 2-6
floating-point operation status results. 2-18
FMUL (Floating-Point Multiply. Single-Precision).

18-71
FSUB (Floating-Point Subtract. Single-Precision).

18-72 .
HALT (Enter Halt Mode). 18-73
INBYTE (Insert Byte). 18-74
INHW (Insert Half-Word). 18-75
instruction formats. 18-4-18-5
integer arithmetic instructions. 2-1-2-3
INV (Invalidate). 18-76
IRET (Interrupt Return). 18-n
IRETINV (Interrupt Return and Invalidate). 18-78
JMP (Jump). 18-79
JMPF (Jump False). 18-80
JMPFDEC (Jump False and Decrement). 18-81
JMPFI (Jump False Indirect). 18-82
JMPI (Jump Indirect). 18-83
JMPT (Jump True). 18-84
JMPTI (Jump True Indirect). 18~85
LOAD (Load). 18-86
load and store instructions. 3-7-3-9
LOADL (Load and Lock). 18-87
LOADM (Load Multiple). 18-88
LOADSET (Load and Set). 18-89
logical instructions. 2-4
logical operation status results. 2-17-2-18
MFSR (Move from Special Register). 18-90
MFTLB (Move from Translation Look-Aside Buffer

Register). 18-91
miscellaneous instructions. 2-7-2-9
MTSR (Move to Special Register). 18-92
MTSRIM (Move to Special Register Immediate).

18-93
MTILB (Move to Translation Look-Aside Buffer

Register). 18-94
MUL (Multiply Step). 18-95
MULL (Multiply Last Step). 18-96
MUL TIPLU (Integer Multiply. Unsigned). 18-97
MULTIPLY (Integer Multiply. Signed). 18-98

1-11

~AMD
MULTM (Integer Multiply Most Significant Bits,

Signed), 18-99
MULTMU (Integer Multiply Most Significant Bits,

Unsigned), 18-100
MULU (Multiply Step, Unsigned), 18-101
NAND (NAND Logical), 18-102
NOR (NOR Logical), 18-103
operand notation and symbols, 18-1-18-2
operation code index, 18-127-18-129
operator symbols, 18-2-18-3
OR (OR Logical), 18-104
overview, 2-1-2-8
reserved instructions, 2-8
SETIP (Set Indirect Pointers), 18-105
shift instructions, 2-4
SLL (Shift Left Logical), 18-106
SQRT (Floating-Point Square Root), 18-107
SRA (Shift Right Arithmetic), 18-108
SRL (Shift Right Logical), 18-109
STORE (Store), 18-110
STOREL (Store and Lock), 18-111
STOREM (Store Multiple), 18-112
SUB (Subtract), 18-113
SUBC (Subtract with Carry), 18-114
SUBCS (Subtract with Carry, Signed), 18-115
SUBCU (Subtract with Carry, Unsigned), 18-116
SUBR (Subtract Reverse), 18-117
SUBRC (Subtract Reverse with Carry), 18-118
SUBRCS (Subtract Reverse with Carry, Signed),

18-119
SUBRCU (Subtract Reverse with Carry, Unsigned),

18-120
SUBRS (Subtract Reverse, Signed), 18-121
SUBRU (Subtract Reverse, Unsigned), 18-122
SUBS (Subtract, Signed), 18-123
SUBU (Subtract, Unsigned), 18-124
terminology, 18-1-18-4
XNOR (Exclusive-NOR Logical), 18-125
XOR (Exclusive-OR Logical), 18-126

integer arithmetic instructions. See arithmetic
instructions

integer data types, 3-1-3-5

Integer Environment Register, description, 2-15--2-16

intemal peripherals
address assignments (table), 7-10
alternate register addresses, 7-8-7-9
DMA transfers, 11-1

Interrupt Control Register, description, 16-23-16-24

Interrupt Requests 3-0 signals. See INTR3-INTRO
Signals

interrupts, enabling and disabling, 16-3

interrupts and traps
Current Processor Status Register, description,

16-1-16-3
exception reporting and restarting, 16-16-16-21

Channel Address Register, 16-18

1-12 Index

Channel Control Register, 16-18-16-19
Channel Data Register, 16-18
correcting out-of-range results, 16-20
exceptions during interrupt and trap handling,

16-21
floating-point exceptions, 16-20
instruction exceptions, 16-16
integer exceptions, 16-19-16-20
restarting faulting accesses, 16-17-16-19

external interrupts and traps, 16-4
interrupt controller

initialization, 16-25
Interrupt Control Regisler, 16-25
overview, 16-23
servicing internal interrupts, 16-25

interrupts, 16-3
latency, 16-4
lightweight interrupt processing, 16-12-16-13
Old Processor Status Register, description, 16-6
overview, 16-1
priority (table), 16-15
Program Counter stack, 16-6-16-10

Program Counter 0 Register, 16-9
Program Counter 1 Register, 16-9
Program Counter 2 Register, 16-10

returning from an interrupt or trap, 16-11-16-12
sequencing, 16-14-16-16
simulation of interrupts and traps, 16-13-16-14
taking an interrupt or trap, 16-10
Timer Facility

handling timer interrupts, 16-22
initialization, 16-21
overview, 16-21
limer Counter Register, 16-22-16-23
limer Reload Register, 16-23
uses, 16-22

traps, 16-4
vector area, 16-5--16-6
Vector Area Base Address Register, description,

16-5
vector numbers

assignments (table), 16-7-16-9
definition, 16-5--16-6

Wait mode, 16-4-16-5
WARN input, 16-14-16-16
WARN trap, 16-13-16-14

INTEST instruction, 17-6-17-7

INTR3-INTRO signals
definition, 7-2
interrupts, 16-3, 16-4
INTR3, internal interrupt controller, 16-23-16-25

INV (Invalidate) instruction, description, 18-76

INVERT field (PIO Inversion), 12-2

IOEXTO bit (Input/Output Extend, Region 0),10-2

IOEXT1 bit (Input/Output Extend, Region 1), 10-2

IOEXT2 bit (Input/Output Extend, Region 2),10-2

IOEXT3 bit (Input/Output Extend, Region 3),10-2

IOEXT4 bit (Input/Output Extend, Region 4),10-2

IOEXT5 bit (Input/Output Extend, Region 5),10-2

lOP I field (I/O Port Interrupt), 16-24

10WAITO field (Input/Output Wait States, Region 0),
10-2

IOWAIT1 field (Input/Output Wait States, Region 1),
10-2

IOWAIT2 field (Input/Output Wait States, Region 2),
10-2

IOWAIT3 field (Input/Output Wait States, Region 3),
10-2

IOWAIT4 field (Input/Output Wait States, Region 4),
10-2

IOWAIT5 field (Input/Output Wait States, Region 5),
10-2

IP bit (Interrupt Pending), 16-2

IPA field (Indirect Pointer A), 2-13

IPB field (Indirect Pointer B), 2-14

IPC field (Indirect Pointer C), 2-13

IRET (Interrupt Return) instruction
description, 18-77
restarting mapped DRAM accesses, 16-17-16-18
returning from interrupts and traps, 16-11-16-12

IRETINV (Interrupt Return and Invalidate) instruction
deSCription, 18-78
restarting mapped DRAM accesses, 16-17-16-18
returning from interrupts and traps, 16-11-16-12

IRM14-1RM8 fields, 12-2

IRM15 field (Interrupt Request Mode, PI015),
12-1-12-2

J
JMP (Jump) instruction, description, 18-79

JMPF (Jump False) instruction, description, 18-80

JMPFDEC (Jump False and Decrement) instruction,
description, 18-81

JMPFI (Jump False Indirect) instruction, description,
18-82

JMPI (Jump Indirect) instruction, description, 18-83

JMPT (Jump True) instruction, description, 18-84

JMPTI (Jump True Indirect) instruction, description,
18-85

JTAG 1149.1 boundary-scan interface
See a/so Test Access Port
IEEE standard document, xx
signals

TCK,7-6

AMD~
TDI,7-6
TOO, 7-7
TMS, 7-6
TRST,7-7

jump instructions
JMP (Jump), 18-79
JMPF (Jump False), 18-80
JMPFDEC (Jump False and Decrement), 18-81
JMPFI (Jump False Indirect), 18-82
JMPI (Jump Indirect), 18-83
JMPT (Jump True), 18-84
JMPTI (Jump True Indirect), 18-85

jumps
delayed branches, 5-2-5-4
large jump and call ranges, 2-25

L
large return pointer (Irp)

description, 4-10
register conventions, 4-13

leaf procedures
calling other procedures, 4-8
register stack leaf frames, 4-11

LEFTCNT field (Left Margin Count), 15-3

Line Synchronization signal. See LSYNC signal

LlNECNT field (Line Count), 15-3

LM bit (Large Memory), 8-2, 9-2

LOAD (Load) instruction, description, 18-86

load and store instructions
BP field (Byte POinter), 2-17
format, 3-7-3-9

OPT field (Option), 3-8
RA,3-8
RBor I, 3-8
SB bit (Set Byte Pointer/Sign Bit), 3-8

load operations, 3-9
multiple accesses, 3-9-3-11
overlapped loads and stores, 5-4-5-5
store operations, 3-9

Load Test Instruction mode, 17-13-17-14

Load/Store Count Remaining Register, description,
3-11

LOADL (Load and Lock) instruction, description,
18-87

LOADM (Load Multiple) instruction
description, 18-88
multiple data accesses, 3-9-3-11

LOADSET (Load and Set) instruction, deSCription,
18-89

local registers
local-register number, 2-10

Index 1-13

~AMD
overview, 2-10-2-11

logical instructions
AND (AND logical), 18-14
ANDN (AND-NOT logical), 18-15
NAND (NAND Logical), 18-102
NOR (NOR Logical), 18-103
OR (OR Logical), 18-104
overview, 2-4
SLL (Shift Left Logical), 18-106
SRL (Shift Right Logical), 18-109
status results, 2-17-2-18
table, 2-4
XNOR (Exclusive-NOR Logical), 18-125
XOR (Exclusive-OR Logical), 18-126

LOOP bit (Loopback), 14-1

Irp. See large return pointer (Irp)

LS bit (Load/Store), 16-19

LSI bit (Line Sync Invert), 15-2

LSYNC Signal, definition, 7-6

M
main data scan path, 17-8-17-10

MEMCLK signal, definition, 7-1

Memory Clock signal. See MEMCLK signal

memory frame pointer (mfp), description, 4-12

memory map, 7-8-7-10

Memory Stack
description, 4-5-4-6
local variables and memory-stack frames,

4-11-4-12
prologue and epilogue routines for allocation, 4-12
storage allocation, 4-2

memory stack pointer (msp)
deSCription, 4-6, 4-12
register conventions, 4-14

memory-stack frame, 4-11-4-12

MFSR (Move from Special Register) instruction
acceSSing special-purpose registers, 2-8
description, 18-90

MFTLB (Move from Translation Look-Aside Buffer
Register) instruction, description, 18-91

miscellaneous instructions
CL2 (Count Leading Zeros), 18-30
EMULATE (Trap to Software Emulation Routine),

18-60
HALT (Enter Halt Mode), 18-73
INV (Invalidate), 18-76
IRET (Interrupt Return), 18-n
IRETINV (Interrupt Return and Invalidate), 18-78
overview, 2-7-2-9

1-14 Index

SETIP (Sf)t Indirect Pointers), 18-105
table, 2-8

ML bit (Multiple Operation)
Channel Control Register, 16-19
multiple data accesses, 3-10
returning from interrupts or traps, 16-12

MO bit (Integer Multiplication Overflow Exception
Mask),2-16

MODE field (Parallel Port Mode), Parallel Port Control
Register, 13-2

MODE field (Video Interface Mode), Video Control
Register, 15-2

msize value, 4-15

msp. See memory stack pointer (msp)

MTSR (Move to Special Register) instruction
accessing special-purpose registers, 2-8
BP field (Byte Pointer), 2-17
description, 18-92
FC field (Funnel Shift Count), 2-17

MTSRIM (Move to Special Register Immediate)
instruction

accessing special-purpose registers, 2-8
description, 18-93

MTTLB (Move to Translation Look-Aside Buffer Regis­
ter) instruction, description, 18-94

MUL (Multiply Step) instruction, description, 18-95

MULL (Multiply Last Step) instruction, description,
18-96

multiple data accesses
description, 3-9-3-11
Load/Store Count Remaining Register, 3-11
movement of large data blocks, 3-11

multiplication, routines for performing, 2-19-2-20

multiplication instructions
DMUL (Floating-Point Multiply, Double-Precision),

18-58
FDMUL (Floating-Point Multiply, Single-ta-Double

Precision),18-67
FMUL (Floating-Point Multiply, Single-Precision),

18-71
MUL (Multiply Step), 18-95
MULL (Multiply Last Step), 18-96
MULTIPLU (Integer Multiply, Unsigned), 18-97
MULTIPLY (Integer Multiply, Signed), 18-98
MULTM (Integer Multiply Most Significant Bits,

Signed), 18-99
MULTMU (Integer Multiply Most Significant Bits,

Unsigned),18-1oo
MULU (Multiply Step, Unsigned), 18-101

MULTIPLU (Integer Multiply, Unsigned) instruction,
deSCription, 18-97

MULTIPLY (Integer Multiply, Signed) instruction,
description, 18-98

MULTM (Integer Multiply Most Significant Bits,
Signed) instruction, description, 18-99

MULTMU (Integer Multiply Most Significant Bits,
Unsigned) instruction, description, 18-100

MULU (Multiply Step, Unsigned) instruction,
description, 18-101

N
N bit (Negative)

ALU Status Register, 2-16
arithmetic operation status results, 2-17
logical operation status results, 2-17-2-18

NAND (NAND Logical) instruction, description, 18-102

NM bit (Floating-Point Invalid Operation Mask), 2-15

NN bit (Not Needed)
Channel Control Register, 16-19
restarting faulting accesses, 16-17-16-18
returning from interrupts or traps, 16-12

NO-OPs, 2-25-2-26

NOR (NOR Logical) instruction, description, 18-103

Not-a-Number
definition, 3-~7
Quiet NaNs (QNaNs), 3-6-3-7
Signaling NaNs (SNaNs), 3-~7

NS bit (Floating-Point Invalid Operation Sticky), 2-19

NT bit (Floating-Point Invalid Operation Trap), 2-19

o
OER bit (Overrun Error), 14-4

Old Processor Status Register
controloftracing, 17-1-17-2
description, 16-6

operating system services, host interface (HIF)
specification, xx, 1-7, 16-8

operating-system calls, 2-24-2-25

OPT field (Option)
alignment of words and half-words, 3-13
byte and half-word accesses, 3-12-3-13
load and store instruction format, 3-8

OR (OR Logical) instruction, description, 18-104

Out-of-Range trap
correcting out-of-range results, 16-20
Integer Environment Register, 2-15-2-16
integer exceptions, 16-19-16-20

OV bit (Overflow), 16-23

overflow. See spill handler

Index

AMD~

p
PACK signal

assertion duration, 13-2
definition, 7-5
disabling hardware handshakes, 13-2-13-3
forcing active level, 13-2
signal level, 13-4

Page Synchronization signal. See PSYNC signal

page-mode
DRAM accesses, 9-10
DRAM page-mode read cycle (diagram), 9-10
DRAM page-mode write cycle (diagram), 9-11
sequential DRAM accesses, 9-6-9-7
specifying, 9-2
static-column accesses, 9-2

Parallel Data Register (PDR), 17-4-17-5

parallel port
initialization, 13-4-13-5
internal DMA transfers, 11-1, 11-8-11-12, 13-2
overview, 13-1
programmable registers

Parallel Port Control Register, 13-1-13-3
Parallel Port Data Register, 13-4
Parallel Port Status Register, 13-3-13-4

signals
PACK,7-5
PAUTOFD,7-5
PBUSY, 7-5
POE,7-5
PSTROBE,7-5
PWE,7-5

transfers from the host, 13-5
transfers to the host, 13-5-13-7

Parallel Port Acknowledge signal. See PACK signal

Parallel Port Autofeed signal. See PAUTOFD signal

Parallel Port Busy signal. See PBUSY signal

Parallel Port Control Register, description, 13-1-13-3

Parallel Port Data Register, description, 13-4

Parallel Port Output Enable signal. See POE signal

Parallel Port Status Register
address assignments, 7-9-7-11
description, 13-3-13-4

Parallel Port Strobe signal. See PSTROBE signal

Parallel Port Write Enable signal. See PWE signal

PAUTOFD signal
definition, 7-5
signal level, 13-3

PBUSY signal
assertion duration, 13-2
definition, 7-5
disabling hardware handshakes, 13-2-13-3
forcing active level, 13-2

1-15

~AMD
signal level, 13-4

PCO field (Program Counter 0),16-9

PC1 field (Program Counter 1), 16-9

PC2 field (Program Counter 2), 16-10

PDATA field (Parallel Port Data), 13-4

PDR. See Parallel Data Register (PDR)

PER bit (Parity Error), 14-4

PERADDR field (Peripheral Address), 11-4

Peripheral Chip Selects, Regions 5-0 Signals. See
PIACS5-PIACSO signals

Peripheral Interface Adapter (PIA)
See also PIA
initialization, 10-2
overview, 10-1
PIA accesses, 10-2-10-4

extending a PIA read cycle with WAIT (diagram),
10-5

extending a PIA write cycle with WAIT (diagram),
10-5

extending 1/0 cycles, 10-3--10-4
normal access timing, 10-2-10-3
PIA read cycle (diagram), 10-3
PIA write cycle (diagram), 10-4

programmable registers, 10-1-10-2
signals

PIACS5-PIACSO,7-4
PIAOE,7-4
PIAWE,7-4

Peripheral Output Enable signal. See PIAOE signal

peripheral registers
See also registers
address assignments, 7-8-7-10
field summary (table), C-6-C-11
register summary, C-1-C-10

Peripheral Write Enable Signal. See PIAWE signal

PGO (Page-Mode DRAM, Bank 0), 9-2

PG1 (Page-Mode DRAM, Bank 1), 9-2

PG2 (Page-Mode DRAM, Bank 2), 9-2

PG3 (Page-Mode DRAM, Bank 3), 9-2

PHYBASE field (Physical Base Address), 9-4

PIA Control Register 0, description, 10-1-10-2

PIA Control Register 1, description, 10-1-10-2

PIACS5-PIACSO signals
definition, 7-4
external DMA transfers, 11-3, 11-6

PIAOE signal
definition, 7-4
extending PIA accesses, 10-2
external DMA transfers, 11-9--11-11

1-16 Index

PIAWE signal
definition: 7-4
extending PIA accesses, 10-2
extemal DMA transfers, 11-9--11-11

pin changes, Am29205 microcontroller, 7-7

PIN field (PIO Input), 12-2

PIO Control Register, description, 12-1-12-2

PIO Input Register, deSCription, 12-2

PIO Output Enable Register, description, 12-3

PIO Output Register, description, 12-2-12-3

P1015-P100 signals, definition, 7-5

Pipeline Hold mode, multiple data accesses, 3-10

pipelining
delayed branch, 5-2-5-4
delayed effects of registers, 5-5
four-stage instruction execution, 5-1
overlapped loads and stores, 5-4-5-5
overview, 5-1
Pipeline Hold mode, 5-1-5-2
serialization, 5-2

PMODE field (Parity Mode)', 14-2

POE signal, definition, 7-5

POEN field (PIO Output Enable), 12-3

pointers
See also indirect pointers
frame pointer (fp), 4-5
register allocate bound pointer (rab), 4-5
register free bound pointer (rfb), 4-5
register stack pointer (rsp), 4-5

POUT field (PIO Output), 12-3

PPI bit (Parallel Port Interrupt), 16-24

PRL field (Processor Release Level), 2-27

procedure linkage
argument passing, 4-7-4-8
complex procedure call example, 4-14
conventions, 4-6--4-13
fill handlers, 4-11
local variables and memory-stack frames,

4-11-4-12
Memory Stack, 4-5--4-6
overview, 4-1
procedure epilogue, 4-10--4-11
procedure prologue

allocation of memory-stack frames, 4-11-4-12
definition, 4-8
frame allocation on Register Stack, 4-8-4-9

Register Stack, 4-3
register stack leaf frame, 4-11
register usage convention, 4-13-4-14
retum values, 4-10
run-time stack, 4-1-4-6
spill handler, 4-10

static link pointer, 4-12-4-13
trace-back tags, 4-15-4-17
transparent procedures, 4-13

processor initialization, 2-26-2-28
See a/so initialization
Configuration Register, 2-26-2-27
Current Processor status Register, 2-27
overview, 2-26
Reset mode, 2-27-2-28

processor registers
field summary (table), 8-7-8-9
register summary, 8-1-8-9

processor signals
A23-AO, 7-1
1031-100, 7-1
INTR3-INTRO, 7-2
RIW,7-2
RESET,7-2
STAT2-STATO, 7-2
TRAP1-TRAPO, 7-3
WAIT,7-1
WAITITRIST, 7-2
WARN,7-2

product support
bulletin board service, iii
documentation and literature, iii, xix-xx
technical support hotline, iii

Program Counter 0 Register, description, 16-9

Program Counter 1 Register, description, 16-9

Program Counter 2 Register, description, 16-10

Programmable 1/0 Port (PIO)
See a/so PIO
initialization, 12-3
operating the 1/0 port, 12-3
overview, 12-1
programmable registers

PIO Control Register, 12-1-12-2
.PIO Input Register, 12-2
PIO Output Enable Register, 12-3
PIO Output Register, 12-2-12-3

signals, PI015-PIt>0, 7-5

Programmable Input/Output signals. See P1015-P100
signals

programming
activation records, 4-1-4-6
ALU Status Register, 2-16-2-17
arithmetic operation status results, 2-17
branch instructions, 2-7
compare instructions, 2-1
complementing a 8001ean, 2-25
Configuration Register, 2-26-2-27
constant instructions, 2-5
data movement instructions, 2-4
division, 2-22-2-24
Floating-Point Environment Register, 2-14-2-15

Index

AMD~
floating-point instructions, 2-6
Floating-Point Status Register, 2-18-2-20
floating-point status results, 2-18
general-purpose registers, 2-8-2-11
global registers, 2-10
Indirect Pointer A Register, 2-13
Indirect Pointer B Register, 2-14
Indirect Pointer C Register, 2-13
indirect register addressing, 2-12-2-14
instruction environment, 2-14-2-16
instruction scheduling, 5-1-5-6
instruction set, 2-1-2-8
integer arithmetic instructions, 2-1
Integer Environment Register, 2-15-2-16
integer multiplication and division, 2-19-2-24
large jump and call ranges, 2-25
local registers, 2-10-2-11
local-register stack pointer, 2-11-2-28
logical instructions, 2-4
logical operation status results, 2-17-2-18
miscellaneous instructions, 2-7
multiplication, 2-20-2-22
multiprecision integer operations, 2-25
NO-OPs, 2-25
operating-system calls, 2-24-2-25
pipelining, 5-1-5-6
procedure linkage, 4-1-4-17
processor initialization, 2-26-2-28
a Register, 2-20
register addressing, 2-10
register mOdel, 2-8-2-12
register usage convention, 4-13-4-14
reserved instructions, 2-8
reset mode, 2-27-2-28
run-time checking, 2-24
run-time stack organization, 4-1-4-6
shift instructions, 2-4
special-purpose registers, 2-11-2-13
status results of instructions, 2-16-2-19
trapping arithmetic instructions, 2-26
virtual arithmetic processor, 2-26
virtual registers, 2-26

protection of registers. See system protection

Protection Violation trap
assert instructions, 2-1
protected special-purpose registers, 2-12
Supervisor mode, 6-1
User mode, 6-1
virtual registers, 2-26

PSI bit (Page Sync Invert), 15-2

PSIO bit (Page Sync Input/Output), 15-2

PSL bit (Page Sync Level), 15-2

PSTR08E signal
definition, 7-5
signal level, 13-3
timing hardware handshakes, 13-3

1-17

~AMD
PSYNC signal

definition. 7-6
signal level. 15-2

PWE signal. definition. 7-5

Q
Q field (QuotientlMultiplier). 2-20

Q Register. description. 2-20

QEN bit (Queue Enable). 11-3

R
R/W signal. definition. 7-2

rab. See register allocate bound (rab)

RAS3-RASO signals. definition. 7-3

RDATA field (Receive Data). 14-5

RDR bit (Receive Data Ready). 14-3

ReadlWrite signal. See R/W signal

Receive Data signal. See RXD signal

REFRATE field (Refresh Rate). 9-2

register allocate bound pointer (rab)
definition. 4-5
register conventions. 4-14

Register Bank Protect Register
description.6-2~3
protecting general-purpose registers. 6-1-6-3

register free bound pointer (rfb)
definition. 4-5
register conventions. 4-14

register number. 2-10

Register Stack
activation record. 4-3
description. 4-3
local registers as a stack cache. 4-4-4-5
local registers for caching. 4-4-4-5
local variables and memory-stack frames.

4-11-4-12
procedure prologue for frame allocation. 4-8-4-9
relationship to stack cache (figure). 4-4
storage allocation. 4-2

register stack pointer (rsp)
definition. 4-5
register conventions. 4-13

register summary. special-purpose registers. 8-3-8-6.
C-1~-5

registers
addressing. 2-10
addressing indirectly. 2-12-2-14
AW Status (AW. Register 132). 2-1~2-17

1-18 Index

bank organization. B-2
Baud Rate Divisor (BAUD. Address 80000090).

14-5
Byte Pointer (BP. Register 133). 3-2-3-3
Channel Address (CHA. Register 4). 16-18
Channel Control (CHC. Register 6).16-18-16-19
Channel Data (CHD. Register 5).16-18
Configuration (CFG. Register 3). 2-2~2-27
Current Processor Status (CPS. Register 2).

16-1-16-3
delayed effects. 5-5
DMAO Address (DMADO. Address 80000034).11-4
DMAO Address Tail (TADO. Address 80000070).

11-4
DMAO Control (DMCTO. Address 80000030).

11-1-11-4
DMAO Count (DMCNO. Address 80000038). 11-5
DMAO Count Tail (TCNO. Address 8000003C). 11-5
DMA1 Address (DMAD1. Address 80000044). 11-7
DMA 1 Control (DMCT1. Address 80000040).

11-5-11-7
DMA 1 Count Register (DMCN1. Address

80000048).11-7
DRAM Configuration (DRCF. Address SOOOOOOC).

9-2-9-3
DRAM Control (DRCT. Address 80000008).9-1-9-2
DRAM Mapping 0 (DRMO. Address 80000010).

9-3-9-4
DRAM Mapping 1 (DRM1. Address 80000014). 9-4
DRAM Mapping 2 (DRM2. Address 80000018). 9-4
DRAM Mapping 3 (DRM3. Address 8000001 C). 9-4
Floating-Point Environment (FPE. Register 160).

2-14-2-15
Floating-Point Status (FPS. Register 162).

2-18-2-19
Funnel Shift Count (FC. Register 134). 3-3-3-4
general-purpose. 2-8-2-11
global. 2-10
Indirect Pointer A (IPA. Register 129). 2-13
Indirect Pointer B (IPB. Register 130). 2-14
Indirect Pointer C (IPC. Register 128). 2-13
Integer Environment (INTE. Register 161).

2-15-2-16
Interrupt Control (ICT. Address 1;10000028).

16-23--16-24
Load/Store Count Remaining (CR. Register 135).

3-11
local. 2-10-2-11
Old Processor Status (OPS. Register 1).16-6
Parallel Port Control (PPCT. Address 800000c0).

13-1-13-3
Parallel Port Data (PPDT. Address 800000C4). 13-4
Parallel Port Status (PPST. Address 800000c8).

13-3--13-4
peripheral register address assignments. 7-8-7-10
peripheral register summary. C-1-C-10
PIA Control 0 (PICTO. Address 80000020).

10-1-10-2
PIA Control 1 (PICT1. Address 80000024).

10-1-10-2

PIO Control (POCT, Address 80000000),12-1-12-2
PIO Input (PIN, Address 80000004),12-2
PIO Output (POUT, Address 80000008),12-2-12-3
PIO Output Enable (POEN, Address 800000DC),

12-3
processor register summary, 8-1-8-9
Program Counter 0 (PCO, Register 10), 16-9
Program Counter 1 (PC 1, Register 11), 16-9
Program Counter 2 (PC2, Register 12), 16-10
protection, 6-1--6-3
Q (Q, Register 131), 2-20
Register Bank Protect (RBP, Register 7), 6-2--6-3
register usage conventions, 4-13-4-14
reserved fields, A-1
ROM Configuration (RMCF, Address 80000004),

8-2-8-3
ROM Control (RMCT, Address 80000000), 8-1-8-2
Serial Port Control (SPCT, Address 80000080),

14-1-14-3
Serial Port Receive Buffer (SPRB, Address

8000008C), 14~14-5
Serial Port Status (SPST, Address 80000084),

14-3-14-4
Serial Port Transmit Holding (SPTH, Address

80000088),14-4
Side Margin (SIDE, Address 800000E8), 15-3
special-purpose, 2-11-2-13, B-3-8-6
Timer Counter (TMC, Register 8),16-22-16-23
Timer Reload (TMR, Register 9),16-23
Top Margin (TOP, Address aoooOOE4), 15-3
Vector Area Base Address (VAB, Register 0), 16-5
Video Control (VCT, Address 800000EO), 15-1-15-3
Video Data Holding (VOT, Address BOOOOOEC),

15-3-15-4
virtual,2-26

reserved instructions, table, 2-8

Reset mode, 2-27-2-29

RESET signal
definition, 7-2
invoking Reset mode, 2-27-2-28

Reset signal. See RESET signal

rfb. See register free bound pointer (rfb)

RM bit (Floating-Point Invalid Operand Mask), 2-15

RMOOE field (Receive Mode)
Serial Port Control Register, 14-3
serial port initialization, 14-5

ROM accesses
burst-mode accesses, 8-8
byte writes, 8-7-8-8
extending ROM cycles, 8-8
narrow ROM accesses, 8-4-8-6
ROM address mapping, 8-4
simple ROM accesses, 8-4
simple writes, 8-7

Index

AMD~
ROM Chip Selects, Banks 3-0 signals. See

ROMCS3-ROMCSO signals

ROM Configuration Register, description, 8-2-8-3

ROM Control Register, description, 8-1-8-2

ROM controller
See a/so ROM accesses
address mapping, 8-4
initialization, 8-3-8-4
overview, 8-1
programmable registers

ROM Configuration Register, 8-2-8-3
ROM Control Register, 8-1-8-2

signals
BOOTW,7-3
BURST,7-3
ROMCS3-ROMCSO, 7-3
ROMOE,7-3
RSWE,7-3

ROM Output Enable signal. See ROMOE signal

ROMCS3-ROMCSO Signals, definition, 7-3

ROMOE Signal, definition, 7-3

round mode, 2-14

Row Address Strobe, Banks 3-0 signals. See
RAS3-RASO signals

RS bit (Floating-Point Reserved Operand Sticky),
2-19

RSIE bit (Receive Status Interrupt Enable), Serial Port
Control Register, 14-2

rsize value, 4-8

rsp. See register stack pointer (rsp)

RSWE Signal, definition, 7-3

AT bit (Floating-Point Reserved Operand Trap), 2-19

run-time checking, 2-24

run-time organization, register usage conventions,
4-13-4-14

run-time stack
activation records, 4-1
allocation of storage locations, 4-2
definition, 4-1~-6
local registers as a stack cache, 4~-5
management, 4-1~-2
memory stack, 4-~-7
Register Stack, 4-3
stack cache, 4~-6
stack overflow, 4-6

RW bit (ReadlWrite), 11-3, 11-7

RXO Signal, definition, 7-6

RXOI bit (Serial Port Receive Data Interrupt), 16-24

RXSI bit (Serial Port Receive Status Interrupt), 16-24

1-19

~ AMD

s
SAMPLE instruCtion, 17-7

SB bit (Set Byte Pointer/Sign Bit), 3-8

SC bit (Static-Column DRAM), 9-2

SOIR bit (Shift Direction), 15-2

serial port
clock specification, 14-5
initialization, 14-5
internal OMA transfers, 11-1, 11-8-11-12, 14-2, 14-3
overview, 14-1
programmable registers

Baud Rate Divisor Register, 14-5
Serial Port Control Register, 14-1-14-3
Serial Port Receive Buffer Register, 14-4-14-5
Serial Port Status Register, 14-3-14-4
Serial Port Transmit Holding Register, 14-4

signals
OSR,7-6
OTR,7-6
RXO, 7-6
TXO, 7-6
UCLK,7-6

Serial Port Control Register, description, 14-1-14-3

Serial Port Receive Buffer Register, description,
14-4-14-5

Serial Port Status Register, description, 14-3-14-4

Serial Port Transmit Holding Register, description,
14-4

serializer/deserializer. See video interface

SETIP (Set Indirect POinters) instruction, description,
18-105

shift instructions
EXTRACT (Extract Word, Bit-Aligned), 18-64
overview, 2-4
SLL (Shift Left Logical), 18-106
SRA (Shift Right Arithmetic), 18-108
SRL (Shift Right Logical), 18-109
table, 2-4

Side Margin Register, description, 15-3

signal description, 7-1-7-7

signals
A23-AO, 7-1
access priority, 7-7-7-8
BOOTW, 7-3
BURST, 7-3
CAS3-CASO, 7-4
DACK1-DACKO, 7-4-7-5
ORE01-0REOO, 7-4
DSR,7-6
DTR,7-6
GACK,7-5
GREQ,7-5

1031-100, 7-1
INCLK,7-1
INTR3-INTRO, 7-2
LSYNC, 7-6
MEMCLK,7-1
PACK,7-5
PAUTOFO, 7-5
PBUSY, 7-5
PIACS3-PIACSO,7-4
PIAOE,7-4
PIAWE,7-4
PI015-PIOO, 7-5
POE,7-5
PSTROBE, 7-5
PSYNC, 7-6
PWE,7-5
RIW, 7-2
RAS3-RASO, 7-3
RESET, 7-2
ROMCS3-'"R""O'"'M;?<C""SO, 7-3
ROMOE,7-3
RSWE,7-3
RXO, 7-6
STAT2-5TATO, 7-2
TCK,7-6
TOI,7-6
TOMA,7-5
TOO, 7-7
TMS, 7-6
TRlOE,7-4
TRAP1-TRAPO, 7-3
TRIST,7-2
TRST,7-7
TXO, 7-6
UCLK,7-6
VCLK,7-6
VOAT,7-6
WAIT,7-1
WAITITRIST, 7-2
WARN,7-2
WE,7-4

size value, 4-8

SLL (Shift Left Logical) instruction, description, 18-106

sip. See static link pointer (sip)

SM bit (Supervisor Mode), 16-3

special-purpose registers. See registers

special-purpose registers
organization, 2-12
overview, 2-11-2-12

spill handler, 4-10

SORT (Floating-Point Square Root) instruction,
description, 18-107

SRA (Shift Right Arithmetic) instruction, description,
18-108

1-20 Index

SRL (Shift Right Logical) instruction, description,
18-109

ST bit (Set), 16-19

stack. See run-time stack

stack cache
definition, 4-2
relationship to Register Stack (figure), 4-4

stack overflow, 4-5

Stack Pointer
allocating activation records, 4-4
definition, 2-11
delayed effects of registers, 5-5
protection, 2-25

stack underflow, 4-5

STAT2-8TATO Signals
boundary-scan cells, 17-5
definition, 7-2
Halt mode, 17-11-17-12
ICTEST1 scan path, 17-10
ICTEST2 scan path, 17-10-17-11
Load Test Instruction mode, 17-13-17-14
processor status outputs, 17-2-17-3
Step mode,'17-12-17-13

static link pointer (sip)
description, 4-12-4-13
register conventions, 4-13

static parent, 4-12-4-13

STB bit (PSTROBE Level), 13-3

Step mode, 17-12-17-13

STORE (Store) instruction, description, 18-110

store instructions. See load and store instructions

STOREL (Store and Lock) instruction, description,
18-111

STOREM (Store Multiple) instruction
description, 18-112
multiple data accesses, 3-9-3-11

STP bit (Stop Bits), 14-2

SUB (Subtract) instruction, description, 18-113

SUBC (Subtract with Carry) instruction, description,
18-114

SUBCS (Subtract with Carry, Signed) instruction,
description, 18-115

SUBCU (Subtract with Carry, Unsigned) instruction,
description, 18-116

SUBR (Subtract Reverse) instruction, description,
18-117

SUBRC (Subtract Reverse with Carry) instruction,
description, 18-118

AMD~
SUBRCS (Subtract Reverse with Carry, Signed)

instruction, description, 18-119

SUBRCU (Subtract Reverse with Carry, Unsigned)
instruction, description, 18-120

SUBRS (Subtract Reverse, Signed) instruction,
description, 18-121

SUBRU (Subtract Reverse, Unsigned) instruction,
description, 18-122

SUBS (Subtract, Signed) instruction, description,
18-123

subtraction instructions
DSUB (Floating-Point Subtract, Double-Precision),

18-59
FSUB (Floating-Point Subtract, Single-Precision),

18-72
SUB (Subtract), 18-113
SUBC (Subtract with Carry), 18-114
SUBCS (Subtract with Carry, Signed), 18-115
SUBCU (Subtract with Carry, Unsigned), 18-116
SUBR (Subtract Reverse), 18-117
SUBRC (Subtract Reverse with Carry), 18-118
SUBRCS (Subtract Reverse with Carry, Signed),

18-119
SUBRCU (Subtract Reverse with Carry, Unsigned),

18-120
SUBRS (Subtract Reverse, Signed), 18-121
SUBRU (Subtract Reverse, Unsigned), 18-122
SUBS (Subtract, Signed), 18-123
SUBU (Subtract, Unsigned), 18-124

SUBU (Subtract, Unsigned) instruction, description,
18-124

Supervisor mode, overview, 6-1

support. See product support

system address partition, 7-8

system overview
access priority, 7-7-7-8
internal peripheral address assignments, 7-8--7-10
internal peripherals and controllers, 7-8--7-9
pin changes, 7-7
signal description, 7-1-7-7

clocks,7-1
DMA controller, 7-4--7-5
DRAM interface, 7-3-7-4
1/0 port, 7-5
JTAG 1149.1 boundary scan interface, 7-6--7-7
parallel port, 7-5
Peripheral Interface Adapter (PIA), 7-4
processor Signals, 7-1-7-3
ROM interface, 7-3
serial port, 7-6
video interface, 7-6

system address partition, 7-8

system protection
general-purpose registers, 6-1-6-3

Index 1-21

~AMD
overview, 6-1
special-purpose registers, 2-11

T
tav. See trap handler argument (tav)

TCKsignal
definition, 7-6
required setting, A-1

TCV field (Timer Count Value), 16-22-16-23

TD bit (Timer Disable), 16-2

TDATA field (Transmit Data), 14-4

TDELAY field (Transfer Delay), 13-2

TDELAYV field (TDELAY Counter Value), 13-3

TDI signal
definition, 7-6
required setting, A-1

TDMAsignal
definition, 7-5
DMA transfer count, 11-5
processor interrupt, 11-3, 11-7
terminating external DMA transfers, 11-3, 11-7

TOO signal, definition, 7-7

TE bit (Trace Enable)
control of tracing, 17-1-17-2
Current Processor Status Register, 16-2

TEMT bit (Transmitter Empty), 14-3

Terminate DMA signal. See TDMA signal

Test Access Port, 17-4-17-11
boundary-scan cells, 17-4-17-5
BYPASS instruction, 17-8
EXT EST instruction, 17-6
ICTEST1 instruction, 17-7
ICTEST2 instruction, 17-7
implemented instructions, 17-6-17-8
instruction register, 17-6-17-8
INTEST instruction, 17-6-17-7
SAMPLE instruction, 17-7
scan paths, 17-8-17-11

Test Clock Input signal. See TCK signal

Test Data Input signal. See TDI signal

Test Data Output signal. See TDO signal

Test Mode Select signal. See TMS signal

Test Reset Input signal. See TRST signal

THRE bit (Transmit Holding Register Empty), 14-3

Three-State Control signal. See WAITfTRIST signal

Timer Counter Register, description, 16-22-16-23

Timer Facility
disabling Timer interrupts, 16-2

1-22 Index

initialization, 16-21
operation, 16-21
overview, 16-21
Timer Counter Register, 16-22-16-23
Timer Reload Register, description, 16-23
uses, 16-22

Timer interrupt, 16-22

Timer Reload Register, description, 16-23

TMODE field (Transmit Mode)
Serial Port Control Register, 14-2
serial port initialization, 14-5

TMSsignal
definition, 7-6
required setting, A-1

Top Margin Register, description, 15-3

TOPCNT field (Top Margin Count), 15-3

TP bit (Trace Pending)
control of tracing, 17-1-17-2
Current Processor Status Register, 16-2

tpc. See trap handler return address (tpc)

TR field (Target Register), 16-19

TR/OE Signal, definition, 7-4

TRA bit (Transfer Active), 13-2

Trace FaCility, 17-1-17-2

trace-back tags, 4-15-4-17

Transmit Data signal. See TXD signal

trap handler argument (tav)
description, 4-10
register conventions, 4-13

trap handler retum address (tpc)
description, 4-10
register conventions, 4-13

Trap Requests 1-0 signals. SeeTRAP1-TRAPO
signals

trap status bits, Floating-Point Exception trap,
2-18-2-19

TRAP1-TRAPO signals
definition, 7-3
traps, 16-4

traps
See also interrupts and traps; specific trap names
EMULATE (Trap to Software Emulation Routine),

18-60
enabling and disabling, 16-4
external traps, 16-4
Floating-Point Exception trap, 16-20
Illegal Opcode trap, 16-4, 17-2
Out-of-Range trap, 16-16, 16-19-16-20
priority table, 16-15
Protection Violation trap, 6-1
TRAP1-TRAPO Signals, 16-4

trapping Arithmetic instructions, 2-26
Unaligned Access trap, 3-13, 16-2
WARN trap, 16-13-16-14

TRSTsignal
definition, 7-7
required setting, A-1

TRV field (Timer Reload Value), 16-23

. TTE bit (TDMA Terminate Enable), 11-3, 11-7

TTl bit (TDMA Terminate Interrupt), 11-3, 11-7

TU bit (Trap Unaligned Access), 16-2

TXD signal, definition, 7-6

TXDI bit (Serial Port Transmit Data Interrupt), 16-24

u
UART Clock signal. See UCLK signal

UCLKsignal
definition, 7-6
required setting, A-1
serial clock divisor, 14-5

UD bit (Transfer Up/Down), 11-3, 11-6-11-7

UM bit (Floating-Point Underflow Mask), 2-15

Unaligned Access trap, 16-2
OPT field values, 3-13

underflow. See fill handlers

Universal Debug Interface (UDI), 1-7

UNIX common object file format (COFF), extensions,
1-7

US bit (Floating-Point Underflow Sticky), 2-19

User mode, overview, 6-1--6-2

UT bit (Floating-Point Underflow Trap), 2-19

v
V bit (Overflow)

ALU Status Register, 2-16
arithmetic operation status results, 2-17

VAS field (Vector Area Base), 16-5

VALID bit (Valid Mapping), 9-3

VCLKsignal
definition, 7-6
video clock divisor, 15-1

VDAT Signal, definition, 7-6

VDATA field (Video Data), 15-4

VDI bit (Video Interrupt), 16-24

Vector Area Base Address Register, description, 16-5

vector numbers

AMDt1

assignments (table), 16-7-16-9
specifying, 2-24

Video Clock signal. See VCLK signal

Video Control Register, description, 15-1-15-3

Video Data Holding Register, description, 15-3-15-4

Video Data signal. See VDAT signal

Video DRAM Transfer/Output Enable signal. See
TRICE signal

video DRAM transfers, 9-12

video interface
clock specification, 15-4-15-5
initialization, 15-4-15-5
internal DMA transfers, 11-1, 11-8-11-12, 15-2
operation, 15-4-15-7
overview, 15-1
programmable registers

Side Margin Register, 15-3
Top Margin Register, 15-3
Video Control Register, 15-1-15-3
Video Data Holding Register, 15-3-15-4

receiving data, 15-6-15-7
signals

LSYNC,7-6
PSYNC, 7-6
VCLK,7-6
VDAT,7-6

transmitting data, 15-5-15-6

VIDI bit (Video Invert), 15-3

VIRTBASE field (Virtual Base Address), 9-3

VM bit (Floating-Point Overflow Mask), 2-15

VS bit (Floating-Point Overflow Sticky), 2-19

VT bit (Floating-Point Overflow Trap), 2-19

w
Wait mode, 16-4-16-5

WAIT signal
definition, 7-1
extending PIA I/O cycles, 10-3-10-4

figures, 10-5
extending ROM cycles, 8-8

figures, 8-11
external DMA transfers, 11-9-11-11

WAITITRIST signal
See a/so WAIT signal
definition, 7-2
required setting, A-1

WARN signal
definition, 7-2
description, 16-14

WARN trap, 16-13-16-14

Index 1-23

~AMD
WE signal, definition, 7-4

WLGN field (Word Length), 14-2

WM bit (Wait Mode), 16-3

Write Enable signal. See WE signal

WSO field (Wait States, Bank 0), 8-2

WS1 field (Wait States, Bank 1), 8-2

WS2 field (Wait States, Bank 2), 8-2

WS3 field (Wait States, Bank 3), 8-2

x
XM bit (Floating-Point Inexact Result Mask), 2-15

XNOR (Exclusive-NOR Logical) instruction,
description, 18-125

XOR (Exclusive-OR Logical) instruction, description,
18-126

XS bit (Floating-Point Inexact Result Sticky), 2-19

XT bit (Floating-Point Inexact Result Trap), 2-19

z
Z bit (Zero)

ALU Status Register, 2-16
arithmetic operation status results, 2-17
logical operation status results, 2-17-2-18

1-24 Index

North American ________ _
ALABAMA ... (205) 882·9122
ARIZONA .. (602) 242·4400
CALIFORNIA,

Culver City ... (31 0) 645·1524
Newport Beach ... (714) 752·6262
Sacramento(Roseville) (916) 786·6700
San Diego .. (619) 560·7030
San Jose .. (408) 922·0500
Woodland Hills .. (818) 878·9988

CANADA, Ontario,
Kanata .. (613) 592·0060
Willowdale ... (416) 222·7800

COLORADO ... (303) 741·2900
CONNECTICUT ... (203) 264·7800
FLORIDA,

Clearwater ... (813) 530·9971
Boca Raton .. (407) 361·0050
Orlando (Longwood) ... (407) 862·9292

GEORGIA ... (404) 449·7920
IDAHO ... (208) 377·0393
ILLINOIS,

Chicago (Itasca) ... (708) 773·4422
Naperville ... (708) 505·9517

MARyLAND .. (301) 381·3790
MASSACHUSETTS ... (617) 273·3970
MINNESOTA .. (612) 938·0001
NEW JERSEY,

Cherry Hill .. (609) 662·2900
Parsippany ... (201) 299·0002

NEW YORK,
Brewstar ... (914) 279·8323
Rochester .. (716) 425·8050

NORTH -CAROLINA
Charlotte ... (704) 875· 3091
Aeleigh .. (919) 878· 8111

OHIO,
Columbus (Westerville) (614) 891·6455
Dayton .. (513) 439·0268

OREGON .. (503) 245·0080
PENNSyLVANIA .. (215) 398·8006
TEXAS,

Austin ... (512) 346·7830
Dallas ... (214) 934·9099
Houston .. (713) 376·8084

Internatlonal _________ _
BELGIUM, Antwerpen TEL.. (03) 248 4300

FAX (03) 248 46 42
FRANCE, Paris TEL (l) 49·75·10·10

FAX (l) 49·75·10·13
GERMANY,

Bad Homburg TEL.. (06172)·24061
FAX (06172)·23195

MOnchen TEL (089) 45053·0
FAX (089) 406490

HONG KONG, TEL (852) 865·4525
Wanchai FAX (852) 865·4335

ITALY, Milano TEL (02) 3390541
FAX (02) 38103458

JAPAN,
Atsugi TEL.. (0462) 29·8460

FAX (0462) 29·8458
Kanagawa TEL. (O462) 47·2911

FAX (0462) 47·1729
Tokyo TEL (03) 3346·7550

FAX (03) 3342·5196
Osaka TEL (06) 243·3250

FAX (06) 243·3253

International (Continued) ________ _

KOREA, Seoul TEL (82) 2· 784·0030
FAX (82) 2·784·8014

LATIN AMERICA,
Flo Lauderdale TEL (305) 484·8600

FAX (305) 485·9736
SINGAPORE TEL (65) 3481188

FAX (65) 3480161
SWEDEN,

Stockholm area TEL.. (08) 986180
(Bromma) FAX : (08) 980906

TAIWAN, Taipei TEL (886) 2·7153536
FAX (886) 2·7122183

UNITED KINGDOM,
Manchester area TEL (0925) 830380
(Warrington) FAX (0925) 830204
London area TEL (0483) 740440
(Woking) FAX (0483) 756196

North American Representatives __
CANADA
Burnaby, B.C. - DAVETEK MARKETlNG (604) 430·3680
Kanata, Ontario - VITEL ELECTRONICS (613) 592·0060
Mississauga, Ontario - VITEL ELECTRONICS. (905) 564·9720
Lachine, Quebec -: VITEL ELECTRONICS (514) 636·5951
ILLINOIS

Skokie - INDUSlRlAL
REPRESENTATIVES,INC (708) 967·8430

IOWA
LORENZ SALES ... (319) 377·4666

KANSAS
Merriam - LORENZ SALES (913) 469·1312
Wichita - LORENZ SALES (316) 721·0500

MEXICO
Chula Vista (CA) - SONIKA ELECTRONICA (619) 498·8340
Guadalajara - SONIKA ELECTRONICA (523) 647·4250
Mexico - SONIKA ELECTRONICA (523) 754·6480
Monterey - SONIKA ELECTRONICA (523) 358·9280
MICHIGAN

Holland - COM·TEK SALES, INC (616) 335·8418
Brighton - COM·TEK SALES, INC (313) 227·0007

MINNESOTA
Mel Foster Tech. Sales, Inc (612) 941·9790

MISSOURI
LORENZ SALES ... (314) 997·4558

NEBRASKA
LORENZ SALES ... (402) 475·4660

NEW MEXICO
THORSON DESERT STATES (505) 883·4343

NEW YORK
East Syracuse - NYCOM, INC (315) 437·8343
Hauppauge - COMPONENT
CONSULTANTS, INC (516) 273·5050

OHIO
Centerville - DOLFUSS ROOT & CO (513) 433·6776
Columbus - DOLFUSS ROOT & CO (614) 885·4844
Westlake - DOLFUSS ROOT & CO (216) 899·9370

PENNSYLVANIA
RUSSELL F. CLARK CO.,INC (412) 242·9500

PUERTO RICO
COMP REP ASSOC, INC (809) 746·6550

UTAH
FRONT RANGE MARKETING (801) 288·2500

WASHINGTON
ELECTRA TECHNICAL SALES (206) 821·7442

WISCONSIN
Brookfield - INDUSlRlAL
REPRESENTATIVES, INC (414) 574·9393

_ Micro Devi_ tho right to make chans" in its produd withoUt notice in ardor to ~o design or performanco clwactoristico. Tho poofarnanco
ot.r.-n.tiallilted inthis document are guaranteed by spec:ifictats. guard banding. _ign and otherpractioee oonwnon to the industry. For specific ._ing d ... ill, contact
your 100II AMD aalee rep,..entative. The co~ny assumes no resporIIibility for the llee ~ any circuits Hscrt.d t.ein.

~
RECYCLED •
RECYCLABLE

~ Adnnced Micro o.vII:es, Inc. 901 Thompson Piece, P.O. Box 3453, Sunnyvale, CA 94088, USA
Tel: (408) 732·2400 • TWX: 910-339-9280 • TELEX: 34·6308 • TOLL FREE: (800) 538-6450
APPLICATIONS HOTLINE" LITERATURE ORDERING • TOLL FREE: (800) 222·9323 • (408) 749-5703

e 1994 Advanced Micro Devices, Inc.
t6382C "129193
B • .,.'5.5M·'194-0 Printed in USA

ADVANCED
MICRO

DEVICES, INC.
901 Thompson Place

Po. Box 3453
Sunnyvale.

California 94088-3453
(408) 732-2400
(800) 538-8450

TWX: 910-339-9280
TELEX: 34-6306

APPLICATIONS HOTLINE &
LITERATURE ORDERING

USA (408) 749-5703
JAPAN 3346-7550

UK & EUROPE 44-(0)256-811101
TOLL FREE

USA (800) 222-9323
FRANCE 0590-8621

GERMANY 0130-813875
ITALY 1678-77224

EMBEDDED PROCESSOR DIVISION (EPD)
TECHNICAL SUPPORT HOTLINE

USA (512) 602-4118
TOLL FREE

USA (800) 2929-AMD
JAPAN 0031-11-1163

UK 0-800-89-1455

RECYCLED &
RECYCLABLE

Printed in USA

Ban-15.5M-1,94-0

16362C

	e5_00001
	e5_00002_page0001
	e5_00002_page0002
	e5_00002_page0003
	e5_00002_page0005
	e5_00002_page0006
	e5_00002_page0007
	e5_00002_page0008
	e5_00002_page0009
	e5_00002_page0010
	e5_00002_page0011
	e5_00002_page0012
	e5_00002_page0013
	e5_00002_page0014
	e5_00003_page0001
	e5_00003_page0002
	e5_00003_page0003
	e5_00003_page0004
	e5_00003_page0005
	e5_00003_page0006
	e5_00003_page0007
	e5_00003_page0008
	e5_00003_page0009
	e5_00003_page0010
	e5_00003_page0011
	e5_00003_page0012
	e5_00003_page0013
	e5_00003_page0014
	e5_00003_page0015
	e5_00003_page0016
	e5_00004_page0001
	e5_00004_page0002
	e5_00004_page0003
	e5_00004_page0004
	e5_00004_page0005
	e5_00004_page0006
	e5_00004_page0007
	e5_00004_page0008
	e5_00004_page0009
	e5_00004_page0010
	e5_00004_page0011
	e5_00004_page0012
	e5_00004_page0013
	e5_00004_page0014
	e5_00004_page0015
	e5_00005_page0002
	e5_00005_page0003
	e5_00005_page0004
	e5_00005_page0005
	e5_00005_page0006
	e5_00005_page0007
	e5_00005_page0008
	e5_00005_page0009
	e5_00005_page0010
	e5_00005_page0011
	e5_00005_page0012
	e5_00005_page0013
	e5_00005_page0014
	e5_00005_page0015
	e5_00005_page0016
	e5_00005_page0017
	e5_00005_page0018
	e5_00005_page0019
	e5_00005_page0020
	e5_00005_page0021
	e5_00005_page0022
	e5_00005_page0023
	e5_00005_page0024
	e5_00005_page0025
	e5_00005_page0026
	e5_00005_page0027
	e5_00006_page0001
	e5_00006_page0002
	e5_00006_page0003
	e5_00006_page0004
	e5_00006_page0005
	e5_00006_page0006
	e5_00006_page0007
	e5_00006_page0008
	e5_00006_page0009
	e5_00006_page0010
	e5_00006_page0011
	e5_00006_page0012
	e5_00006_page0013
	e5_00006_page0014
	e5_00006_page0015
	e5_00006_page0017
	e5_00006_page0018
	e5_00006_page0019
	e5_00006_page0020
	e5_00006_page0021
	e5_00007_page0001
	e5_00007_page0002
	e5_00007_page0003
	e5_00008_page0001
	e5_00008_page0002
	e5_00008_page0003
	e5_00008_page0004
	e5_00008_page0005
	e5_00008_page0006
	e5_00008_page0007
	e5_00008_page0008
	e5_00008_page0009
	e5_00008_page0010
	e5_00008_page0011
	e5_00008_page0012
	e5_00008_page0013
	e5_00008_page0014
	e5_00008_page0015
	e5_00008_page0016
	e5_00008_page0017
	e5_00008_page0018
	e5_00008_page0019
	e5_00008_page0020
	e5_00008_page0021
	e5_00009_page0001
	e5_00009_page0002
	e5_00009_page0003
	e5_00009_page0004
	e5_00009_page0005
	e5_00009_page0006
	e5_00009_page0007
	e5_00009_page0008
	e5_00009_page0009
	e5_00009_page0010
	e5_00009_page0011
	e5_00009_page0012
	e5_00009_page0013
	e5_00009_page0014
	e5_00009_page0015
	e5_00009_page0016
	e5_00009_page0017
	e5_00010_page0001
	e5_00010_page0002
	e5_00010_page0003
	e5_00010_page0004
	e5_00010_page0005
	e5_00010_page0006
	e5_00010_page0007
	e5_00010_page0008
	e5_00010_page0009
	e5_00010_page0010
	e5_00010_page0011
	e5_00010_page0012
	e5_00010_page0013
	e5_00010_page0014
	e5_00010_page0015
	e5_00011_page0001
	e5_00011_page0002
	e5_00011_page0003
	e5_00012_page0001
	e5_00012_page0002
	e5_00012_page0003
	e5_00012_page0004
	e5_00012_page0005
	e5_00012_page0006
	e5_00012_page0007
	e5_00012_page0008
	e5_00012_page0009
	e5_00012_page0010
	e5_00012_page0011
	e5_00012_page0012
	e5_00012_page0013
	e5_00012_page0014
	e5_00012_page0015
	e5_00013_page0001
	e5_00013_page0002
	e5_00013_page0003
	e5_00013_page0004
	e5_00013_page0005
	e5_00013_page0006
	e5_00013_page0007
	e5_00014_page0001
	e5_00014_page0002
	e5_00014_page0003
	e5_00014_page0004
	e5_00014_page0005
	e5_00014_page0006
	e5_00014_page0007
	e5_00014_page0008
	e5_00014_page0009
	e5_00014_page0010
	e5_00014_page0011
	e5_00014_page0012
	e5_00014_page0013
	e5_00014_page0014
	e5_00014_page0015
	e5_00014_page0016
	e5_00014_page0017
	e5_00014_page0018
	e5_00014_page0019
	e5_00014_page0020
	e5_00014_page0021
	e5_00014_page0022
	e5_00014_page0023
	e5_00014_page0024
	e5_00014_page0025
	e5_00015_page0001
	e5_00015_page0002
	e5_00015_page0003
	e5_00015_page0004
	e5_00015_page0005
	e5_00015_page0006
	e5_00015_page0007
	e5_00015_page0008
	e5_00015_page0009
	e5_00015_page0010
	e5_00015_page0011
	e5_00015_page0012
	e5_00015_page0013
	e5_00015_page0014
	e5_00015_page0015
	e5_00015_page0016
	e5_00015_page0017
	e5_00015_page0018
	e5_00016_page0001
	e5_00016_page0002
	e5_00016_page0003
	e5_00016_page0004
	e5_00016_page0005
	e5_00016_page0006
	e5_00016_page0007
	e5_00016_page0008
	e5_00016_page0009
	e5_00016_page0010
	e5_00016_page0011
	e5_00016_page0012
	e5_00016_page0013
	e5_00016_page0014
	e5_00016_page0015
	e5_00016_page0016
	e5_00016_page0017
	e5_00016_page0018
	e5_00016_page0019
	e5_00016_page0020
	e5_00016_page0021
	e5_00016_page0022
	e5_00016_page0023
	e5_00016_page0024
	e5_00016_page0025
	e5_00016_page0026
	e5_00016_page0027
	e5_00016_page0028
	e5_00016_page0029
	e5_00016_page0030
	e5_00016_page0031
	e5_00016_page0032
	e5_00016_page0033
	e5_00016_page0034
	e5_00016_page0035
	e5_00016_page0036
	e5_00016_page0037
	e5_00016_page0038
	e5_00016_page0039
	e5_00016_page0040
	e5_00016_page0041
	e5_00016_page0042
	e5_00016_page0043
	e5_00016_page0044
	e5_00016_page0045
	e5_00016_page0046
	e5_00016_page0047
	e5_00016_page0048
	e5_00017_page0001
	e5_00017_page0002
	e5_00017_page0003
	e5_00017_page0004
	e5_00017_page0005
	e5_00017_page0006
	e5_00017_page0007
	e5_00017_page0008
	e5_00017_page0009
	e5_00017_page0010
	e5_00018_page0001
	e5_00018_page0002
	e5_00018_page0003
	e5_00018_page0004
	e5_00018_page0005
	e5_00018_page0006
	e5_00018_page0007
	e5_00018_page0008
	e5_00018_page0009
	e5_00018_page0010
	e5_00018_page0011
	e5_00018_page0012
	e5_00018_page0013
	e5_00018_page0014
	e5_00018_page0015
	e5_00018_page0016
	e5_00018_page0017
	e5_00018_page0018
	e5_00018_page0019
	e5_00018_page0020
	e5_00018_page0021
	e5_00018_page0022
	e5_00018_page0023
	e5_00018_page0024
	e5_00018_page0025
	e5_00018_page0026
	e5_00018_page0027
	e5_00018_page0028
	e5_00018_page0029
	e5_00018_page0030
	e5_00018_page0031
	e5_00018_page0032
	e5_00018_page0033
	e5_00018_page0034
	e5_00018_page0035
	e5_00018_page0036
	e5_00018_page0037
	e5_00018_page0038
	e5_00018_page0039
	e5_00018_page0040
	e5_00018_page0041
	e5_00018_page0042
	e5_00018_page0043
	e5_00018_page0044
	e5_00018_page0045
	e5_00018_page0046
	e5_00018_page0047
	e5_00018_page0048
	e5_00019_page0001
	e5_00019_page0002
	e5_00019_page0003
	e5_00019_page0004
	e5_00019_page0005
	e5_00019_page0006
	e5_00019_page0007
	e5_00019_page0008
	e5_00019_page0009
	e5_00019_page0010
	e5_00019_page0011
	e5_00019_page0012
	e5_00019_page0013
	e5_00019_page0014
	e5_00019_page0015
	e5_00019_page0016
	e5_00019_page0017
	e5_00019_page0018
	e5_00019_page0019
	e5_00019_page0020
	e5_00019_page0021
	e5_00019_page0022
	e5_00019_page0023
	e5_00020
	e5_00021_page0001
	e5_00021_page0002
	e5_00021_page0003
	e5_00021_page0004
	e5_00021_page0005
	e5_00021_page0006
	e5_00021_page0007
	e5_00021_page0008
	e5_00021_page0009
	e5_00022_page0001
	e5_00022_page0002
	e5_00022_page0003
	e5_00022_page0004
	e5_00022_page0005
	e5_00022_page0006
	e5_00022_page0007
	e5_00022_page0008
	e5_00022_page0009
	e5_00022_page0010
	e5_00022_page0011
	e5_00022_page0012
	e5_00022_page0013
	e5_00022_page0014
	e5_00022_page0015
	e5_00022_page0016
	e5_00022_page0017
	e5_00022_page0018
	e5_00022_page0019
	e5_00022_page0020
	e5_00022_page0021
	e5_00022_page0022
	e5_00022_page0023
	e5_00022_page0024
	e5_00022_page0025
	e5_00022_page0026
	e5_00022_page0027
	e5_00022_page0028
	e5_00022_page0029
	e5_00022_page0030
	e5_00022_page0031
	e5_00022_page0032
	e5_00022_page0033
	e5_00022_page0034
	e5_00023
	e5_00024

