pa |

LB861—9861
)00g elegpiooqpueH

51507 2|qewweISoid

AJe|IW/e1242WwWo)

bl Handbook/Data Book
Programmable

Logic

PROGRAMMABLE

O\STRIBUTED

Hall-Mark Electronics Corporation

4275 W. 96TH STREET
INDIANAPOLIS, IN 46268
317/872-8875
IN 800/423-6633
KY 800/772-0112

1986-1987

5
>
iz
o
m
O
=
5
(o)
=
=
o)
h

'

Advanced Micro Devices

Programmable Logic
Handbook/Data Book

The International Standard of
Quality guarantees a 005% AQL on all
electrical parameters, AC and DC,

over the entire operati :
mwﬁ 0

© 1986 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics. The performance
characteristics listed in this document are guaranteed by specific tests, correlated

testing, guard banding, design and other practices common to the industry.
For specific testing details contact your local AMD sales representative.
The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

Prepared by the Fuse Programmable Logic (FP.

order)
Editing:

Jeri Burdick
Naushik Desai

Technical:

Om Agrawal
Peter Alfke
Matthew Bonn
Sal Cagnina
Rick Calle
William Chen
Paul Coggeshall
Naushik Desai
Vineet Dujari
Steve Grossman
Alexandra Huff
Alfred Jey
Doug Kern
Arthur Khu
Brent McKay
Teresa Ordez
John Potterbom
Mitch Richman
Kapil Shankar
Bill Sievers
Jenny Yee

- CREDITS

L) staff at Advanced Micro Devices, Inc. (listed in alphabestical

TRADEMARKS

ABEL, DASH/ABEL, FINGERPRINT, PLDtest, and PROMIink are trademarks of Data I/0 Corporation.
CUPL is a trademark of Personal CAD Systems, Inc.

IMOX-IIl is a trademark of Advanced-Micro Devices, Inc.

MULTIBUS is a trademark of Intel Corporation.

PALASAM is a registered trademark of Monolithic Memories, Inc.

Z8000 is a trademark of Zilog, Inc.

PREFACE

At Advanced Micro Devices we are committed to helping you solve design problems with innovative
products that give you maximum flexibility to meet your particular needs. In the past, you often have had to
choose between costly semi-custom products and standard devices that limit your design options. Now
there's another choice.

Programmable Array Logic (PAL) devices from AMD give you the best of two worlds: the architectural
flexibility of custom design and immediate availability, multiple-sourcing, and low cost of standard products.

PAL devices are user-programmable logic building blocks that give you the freedom to structure
components for a specific application, often using a single PAL package to create functions that once would
have required the use of hundreds of conventional TTL gates.

This handbook is your guide to AMD's growing list of PAL devices. It is intended to be both an introduction
to field programmable logic devices, as well as a resource manual for experienced designers. In the
following pages you will find data and descriptions of new, proprietary devices from AMD, as well as
information on standard products. Whether you need CMOS, ECL, or TTL, AMD offers solutions to your
design probiems that give you a choice.

Best of all, AMD offers you the industry's leading commitment to quality, reliability, innovation, and customer
satisfaction. If you have a question about any of the products described in this book or simply want to know
more about the use of programmable logic devices, call your local Advanced Micro Devices' Sales Office.

W

W.J. Sanders i
Chairman, and Chief Executive Officer

S \
- . N

TABLE OF CONTENTS

SECTION 1 — INTRODUCTION TO PROGRAMMABLE LOGIC

The Programmable Logic Design AREINAtiVE..........ouiuiiiniiiiiiiiiie et eenenes 11
An Introduction tc Programmable Logic Architecturecccovveiiiiiiiiiiiiiii e 1-8
How to Design with Programmable LogiC DevVICeSsccciuiiiiiiiiiiiiiiiiiiiinii e 1-256

SECTION 2 — SOFTWARE, PROGRAMMING, TESTING, RELIABILITY, AND

21

2.2
23

2.4
2.5

TECHNOLOGY INFORMATION

Software Support for AMD's Programmable LOgiC DEVICESceeiuiuininiiiiiiiieiieeiieeieaieeeaas 2-1
2141 Design-Aid Software for Programmable LOGICc.ovuviuiiiiiniiiiiiiiiiriee e 2-1
2,12 ABEL e 2-3
213 CUPL, AMOCUPL ..ot ettt e a e e e e e e e e e eas 2-12
204 PP e e aae 2-35
Programming HardWare ... ettt e a e et et e e aeneas 2-40
Testing INFOIMALION ...t e ettt et et e e et e e e e e e e aenenan 2-43
2.3.1 Factory Testing of PAL DEVICESociuiiiiiiiiiiiiiiiic e e e eeeaas 2-43
2.3.2 How Testability is Designed into AMD's Programmable

LOGIC DBVICES ... ittt et aas 2-43
2.3.3 Specifications for Switching-Delay MiNiMuMScoiiiiiiiiiiiiiiiiieiiei e eeeenaaaeas 2-51
AMD Programmable Array Logic Reliability............cviiiiiiiiiiiiii e 2-52
Programmable Logic TeChNOIOGYciuniuiiiiiiii ettt e e e e e eaeas 2-59
2.5.1 IMOX-1li — Advanced Bipolar Technology for PAL DeViCeScceviiuveieninirieneenennnnens 2-59
252 Advanced CMOS Technology for PAL DeVIiCeSccveuiuiuiiiiiiiiiiiiiii e eeeneans 2-61

SECTION 3 — APPLICATIONS

3.1

33

3.4

3.5

OVEIVIBW ...ttt e e et e et ettt et e e e et e e et et et e e e e e e e e s e te e e e nen e e e e e e enenenanaans 3-1
CombINALOTIAl LOGIC ... cuueuit ittt ettt et ettt e e e e e e e e e e e e e e e e e anaans 3-3
3.21 MUBEIDIEXETS . .. e ettt et e e et a e e e e ans 3-3
3.2.2 DeMUIIPIEXEIS ... e ettt ettt a e eaaa e e 3-3
3.2.3 ENCOMErs/DECOUEISueiii it e e ettt e e ettt e e e e e aaaaas 3-9
= 07041 To - L= (o £ PPN 3-22
3.25 Address Decoding and Chip Select Generation Simplified with

Combinatorial PAL DEVICESttt ettt et e e e e e e e e e e 3-25

Sequential Logic
3.3.1 Counters
3.3.2 LS 21110 N
Microprocessor interface Logic
3.4.1 The Interface Problemn

3.4.2 Interfacing to the 8086/80186/80286c.iuiuiiiinininiiiiiiiie e e e e e e eaes 3-60
3.43 Interfacing to the 68000/68020c.iuiiiiiiiiiiiiii i e te et e e aaaanas 3-81
344 Interfacing t0 the B0BB/B0T88.........c.iuiiuiiiiii e e e e e e er e aeans 3-137
3.45 Interfacing 10 the Z80/Z8000.......... ittt aaaas 3-171
Bus Interface LOGICuiuiiii i e a e 3-187
3.5.1 MULTIBUS 10 AMO516 INtEIraCEiuiiiiiiiiiie e e e e e e et e eaeenas 3-187
352 Z-Bus and 8088/8086 INtErface..........cuiuiiuiiiiiiniiiiiei e aeans 3-191
3.53 An AMD PAL MULTIBUS ArDItero et e e 3-201
3,54 VME Bus Control Simplified with PLDS ... e ens 3-211

3.6 - Miscellaneous Logic Functions eereen ereeereeerneseeanaeaeera, ereees
3.6.1 8088 to Am2968 Interfacevcoeviiiiieinineiennennes !
3.6.2 A General-Purpose Interface for the Am2968
3.6.3 MC68000 to Am2968 Interface....................,. '
3.64 General-Purpose Dual-Port Arbiter................i...o.ieeete, ervenieeens PN e
3.6.5 Customize a Flexible DRAM Controller Using Second-Generahon
PAL DBVICOSvuiiuieuiiininsinerissnsriniiniesininmaissnsssssassensiesnanns F R T S, 3-25:
3.6.6 Dynamic Memory Control State SOQUENCEN . iuivirinieiniiiiitriiiiiaesterssieeianntesaessesasinesions 3-281
3.6.7 82284 and 82288 Emulation in an IBM PC/AT Computer Using
Two AMPALTBRB DBVICESeuiviiniiiiiiiiiiiniiniririrtarneterntenrsnsessnerarassesssionsnsensnnens 3-29(
3.6.8 Interfacing the 80186 Microprocessor to the 8087 with
the AMPAL22VI0A DBVICEcivniriiiiiniiiiiiiiiiiiisieniiisisasseessiesnsscsansnssnenssassnensanens 3-30
3.69 A MULTIBUS Arbiter Design for 10 MHz Processorscccoouuuuisieininnnnnnnninnn .. 3-31!
3.7 Programmable Logic Devices — Article Reprints
3.71 ""Logical Alternatives in Supermini Design," reprinted by permission of
Computer Design, November 1983. All rights reservedc.ccveviniiinniiiiiiinnieennienns 3-32:
3.72 "PLDs as Semicustom Substitutes," reprinted by permission of VLS! Design,
June 1985. All rights reServedcovvuiiiiiiiiiiiiiiiiiiiiiir s s sresrieensenaennss 3-32
3.7.3 = '"Programmable logic chip rivals gate arrays in flexibility,”" reprinted by permission .
of Electronic Design, December 1983. All rights reservedccceeiviniiniiiiiininninnnne, 3-33
3.74 "PAL device buries state registers, brings state machines to life,'" reprinted by
permission of Electronic Design, July 1986. All rights reservedc..cccciviiiinininenninnns 3-34
3,75 "Mixing Data Paths Expands Options in System Design," reprinted by permission
of Computer Design, January 1985. All rights reservedcoccvviiienniiiniiniieiininenn, 3-34
3.7.6 "High Performance DMA for the VMEbus," reprinted by permission of Digital Design,
) November 1985. All rights reservedccocevieiiiiiiiiiiiiiiiiini e 3-35
3.7.7 "A Demultiplexed Analog Subsystem," reprinted by permission of Digital Design,
' November 1985. All rights reServedcoiviiiiiiieniiiiicrniriienrirreineeerereneenrirneranans 3-3€
3.7.8 "Advanced Programming Language for Programmable Logic Designs,"
from SOUthCON 1985 ... uuiuiiiiiiiiiiiii ittt s et re e s etrasatae st e taassssnstesnesnsnsensns 3-3¢€
3.7.9 '"Test Methods for Programmable Logic," from Southcon 1984............cccvevvviiinniinninnnn, 3-3¢
3.7.10 '"'Fuse-programmable chip takes command of distributed systems,' reprinted by
permission of Electronic Design, October 17, 1985. All rights reserved..............c.c........ 3-3¢
3.7.11 "Programmable event generator conquers timing restraints,” reprinted by permission
of Electronic Products, July 1, 1986. All rights reservedccccccviiiiiiiiiiiiciniciiinnnn, 3-3¢
3.7.12 '"PLDs implement encoder/decoder for disk drives,’ reprinted by permission of
Electronic Design News, September 18, 1986. All rights reserved.............c..cvvvuiininnnnns 3-4(
3.8 1= 11T 2= o 4 PSPPI 3-4
SECTION 4 — PRODUCT SPECIFICATIONS
4.1 Field Programmable Logic Selector Guide............cccvviuiiiiiniiniiiiiiiiiiiinnieienees P 4
4.2 GOSN ... vuiiniiite ettt ettt te st iasesaaestaataraserssataansasasienseenensentstesetessentennernenesssnenssrnees 4
43 AmPAL16XX Family 20-Pin IMOX Programmable Array Logic
(PAL) ElOMONES ...iuiiuieiiiitiiiiiiiieiiierir ittt tirsreeenesnsencnsasssatssrersssnensensnssesensansnsensenensannnns 4
4.4 AmPAL16XXD Family 20-Pin IMOX Ultra High-Speed Programmable
Array- LOgic (PAL) ElOmMENtS........vuiiiiiiiiieiiiiiiiiiiiiiininteiestinnseneirestisessnsnarnsssseessnenssnensansnns
4.5 AmPAL18P8 20-Pin IMOX Programmable Array LOGIC ...ttt s e e -
4.6 AmPAL20EGS8 IMOX-lll ECL Programmable Array LOGICcveiureninirieniiiiinnrensenrinernenrecsnsansarenes -
4.7 AmPAL20EV8 IMOX-lil ECL Programmable Array LOGICcccvvviiiriiinisiiiiiiiiiiiiiniininsiereaiennnn. -
4.8 AmPAL21VT8 24-Pin Dual-Clock Programmable Array LOGICccciviuiiniiiiiininiiiniinneiniecinniennenn, -
4.9 AmPAL22V10 24-Pin IMOX Programmable Array LOGIC (PAL)......ccvvieenieriiniinniieiennrenernesiereneennes -
4.10 AmPAL22V10B 24-Pin IMOX Programmable Array Logic (PAL) -
411 AmPAL23S8 20-Pin IMOX PAL-Based SQUENCENcieuuiirniiiniiiiriieenirrsneernnnsrensernsarsenens
4.12 AMD 24-Pin Standard PAL Familycccviuiiiiiiiiiiiiniiiiie e e eneee s eansnssaesenenassansansansd
413 AMD 24-Pin Enhanced PAL Familycoiciiiiiiiiiiiiiniiiniiniiinceressre s siun i esnssansenssssssnennes
4.14 AMD 24-Pin XOR PAL Familycciiiuiiiniiriiiiiiiinn e sern s ennsesesnesriereraseinsesnessrnesesnesenneses
4.15 AmPALHC29M16/AmPALHCT29M16 24-Pin E%-Based
CMOS Programmable Array LOGICc.ueruriurieriieiiirenieierrnsineiisrnseiereessrsisrnseessserenisenerernerseres 4-1
4.16 AmPALHC29MA16/AmPALHCT29MA16 24-Pin E2-Based CMOS Programmable Array Loglc A-2
4.17 - Bipolar PROMs as Programmable LogiC ProdUCES...........cccuviuiiiiiiiiuieuienicnsenireneeerirneesnesnsnanss 4-2

4.18 Am29PL141 Fuse Programmable Controlier (FPC) cerresensen eervetrerarreetttrraeaee s eanaarnaranns 4-256
4.19 Am2971 Programmable Event Generator (PEG)c.ccccrueene e teietececettiotaetntnentnterneerntnsanes 4-286

SECTION 5 — GENERAL INFORMATION

5.1
5.2
5.3
5.4

Cross Reference Guideccccevuiiiiiiveiinniacinnns tesassesonne e ettt e e eaans 5-1
Package Outlines
Technical Report — Package Thermal Characteristics Ceitereenrierrestarereentarererrareaaaes 5-12
AMD Sales OffiCESccuiiruriieniiiiiiine ittt e es e 5-16

SECTION 6 — INDEX

SECTION 1— INTRODUCTION TO &1
PROGRAMMABLE LOGIC

1.1 THE PROGRAMMABLE LOGIC DESIGN
ALTERNATIVE

1.2 AN INTRODUCTION TO PROGRAMMABLE LOGIC
ARCHITECTURE

1.3 HOW TO DESIGN WITH PROGRAMMABLE LOGIC
DEVICES '

1.1. THE PROGRAMMABLE LOGIC
DESIGN ALTERNATIVE

Today's logic designer can choose from a wide variety of
circuit alternatives. One way to categorize these alternatives is
by the extent to which they are customized for a specific
application. The designer's options include general-purpose
standard products, programmable logic, gate arrays, standard
cells, and full custom integrated circuits (ICs) (Figure 1-1).

Standard products are defined by the IC manufacturer for a
wide market and cannot be altered by the user. Examples of
standard products are TTL and CMOS SSI/MSI devices, fixed

instruction set MOS microprocessors, and microprogramma-
ble building blocks. Custom logic, on the other hand, is defined
by the user for a specific application. Programmable logic
devices have attributes of both standard products and custom
logic. The IC manufacturer defines an architecture that a user
can program by programming (or blowing) appropriate fuses to
fit the application. Programmable Array Logic (PAL) devices,
Programmable Logic Arrays (PLAs) and small Programmable
Read-Only Memories (PROMSs) are examples of programma-
ble logic.

DIGITAL LOGIC
FAMLLIES

STANDARD SEMICUSTOM CUSTOM
PRODUCTS PRODUCTS PRODUCTS

[|
PROGRAMABLE GATE STANDARD

DEVICES ARRAYS CELLS

PF002411

Figure 1-1. Basic Categories of Digital Logic

Each of these design alternatives offers distinct advantages
and disadvantages in terms of cost, availability, and architec-
tural flexibility. Many system designs today, such as the
controller board in Figure 1-2, incorporate each of the design

approaches to some degree. The following analysis will help
the system designer to select the best logic type for a
particular function.

‘:§

Enh el rgrzet ev iy raerp:d

Figure 1-2. A System Design Using PAL Devices

Photo courtesy of Data Systems Design, Inc.

DEDICATED GENERAL-PURPOSE
DEVICES — STANDARD PRODUCTS

There are five main advantages of standard products. They
require little IC engineering expertise by the user, provide
lowest cost for an individual device, usually have the best
application support, provide the maximum logic density per
device and are available off-the-shelf with no development
lead time.

Standard products require little IC-level engineering effort by
the user. The responsibility for design, test, and debugging is
born by the IC manufacturer. Since the IC manufacturer is
doing this on a large scale, the process is very efficient.

Standard products are very cost-effective per logic function.
They are high volume products, and this volume results in
lower manufacturing cost and thus lower price per unit. The
increased competition encouraged by alternate sourcing also
results in lower cost.

The design support available for standard products is general-
ly far greater than that for semicustom and custom devices.
Application software (assemblers, simulators), hardware (emu-
lators) and literature (manuals, books, application notes) make
them easier to use.

Since standard products reach a much larger market, the
engineering effort necessary to provide this support can be
spread over a large number of units, reducing the cost. When
a custom logic device is used, this support must be developed
by the engineer doing the design.

Standard products are optimized for high-volume production.
The density of logic functions is therefore generally much
greater than on semicustom logic. A fixed instruction set
microprocessor or microprogrammable building block duplicat-
ed with gate arrays or programmable logic devices might take
several packages compared to the single dedicated device.

The last main advantage of standard products is their off-the-
shelf availability. There is no development lead time in the use

of these devices, so system design can proceed rapidly. By

using standard products the system designer can introduce a

system to the market more quickly and exploit the value of
market leadership. :

The three potential disadvantages of standard products are
potentiaily poor fit to specific applications, higher system cost,
and the lack of competitive features and advantages. A
standard product, by the very nature of its generality, is not
ideal for anyone. It includes too much functionality for some
applications and not enough for others. The architecture is
seldom ideal for a particular application. Standard products
also offer a limited performance selection. |C manufacturers
pick a specific performance level aiming at as large a market
as possible.

Due to the general-purpose nature of standard products, it is
difficult to achieve the lowest package-count solution. Addi-
tional components are required to tailor the function to fit a
specific need.

Even though individual devices may be lower in price, more of
them must be used, raising the cost for the total system when
considering the additional PC boards, testing, power supplies,
fans, etc. ' ,

Another disadvantage of standard products is the lack of
competitive features and advantages. Anyone can buy them
so it is difficult to differentiate one system supplier's hardware
from another's. It is also very easy for a competitor to copy a
design based on standard products.

CUSTOM AND SEMICUSTOM LOGIC
DEVICES

The custom and semicustom iogic alternatives offer the
systems designer important advantages over standard prod-
ucts. Reduced package count, compared to SSI/MSI imple-
mentations, is of paramount importance. Custom and semi-
custom logic also provide the designer additional freedom in
architecture. This freedom to develop innovative solutions to
an application problem can add a significant competitive
advantage to a product.

There are four main types of custom and semicustom logic
today: fully custom logic, gate arrays, standard cell designs,
and programmable logic. Fully ""handcrafted'' custom-IC logic

designs give the user the benefits of low system IC count and
potentially low variable manufacturing cost per device, but the
cost to develop a custom IC can be very high. This alternative
makes sense only when production volumes will be very high
and the system design will be very stable. Semicustom
approaches such as programmable logic, gate arrays, and
standard cell designs reduce the IC development cost of the
full custom solution by trading off the chip-layout efficiency.

A gate-array design requires the customization of only a few
interconnection layers in the semiconductor process. Stan-
dard cell designs require completely custom fabrication, but
the design and layout are simplified by the use of a standard
building-block library. A gate array has lower engineering cost
and faster development time than a standard cell-based
device. Standard cell devices, on the other hand, allow more
logic variety and more efficient utilization of silicon than a gate
array.

Gate arrays and the other custom/semicustom alternatives
have four main disadvantages when compared to standard
products. They are increased user engineering time and effort,
higher cost per individual device, inferior high-level support
tools, and lower density.

Engineering effort for a gate array can significantly increase
the cost of a system design. Not only must the system be
designed, but the gate arrays themselves must be designed,
debugged and put into production. Both design tasks, chip as
well as system, take similar amounts of engineering resources,
possibly doubling the design effort and investment. Because
of constraints on second-sourcing alternatives, semicustom
logic devices can end up being substantially more expensive.
Only if the complete system solution can be optimized will the

total cost be reduced. Another factor to be considered is the
chance of design problems with a gate array, standard cell, or
fully custom device. If extra iterations are necessary — or
even worse, a bug is discovered after a product has been
released, correcting the problem can take several months or
longer. These potential costs are difficult to estimate and have
virtually no upper limit.

The third disadvantage of custom and semicustom logic is the
inadequacy of high-level support. Semiconductor manufactur-
ers cannot provide significant support in the form of software,
development systems, application notes, or books for a
custom logic design because each implementation is different.
The existing gate array and standard-cell design tools require
extensive training-and a large investment in time and money
for the user. The designer must document the design fully and
provide enough support for the system engineer to use the
customized device correctly.

Finally, a key disadvantage of gate arrays is the reduced
density and therefore high silicon cost compared to a dedicat-
ed general-purpose device. They are designed by repeating a
common loosely packed structure, leaving wide channels for
the metal interconnect. For a given set of design rules, a gate
array will typicaily require two to five times the silicon area for
the same gate count.

PROGRAMMABLE LOGIC DEVICES

Programmable logic devices combine the best characteristics
of standard and custom products. They offer the flexible
architecture of a custom design as well as the off-the-shelf
availability and reduced investment, both in engineering time
and device cost, of a standard product (see Table 1-1).

TABLE 1-1. IC SELECTION CRITERIA FOR DIFFERENT ARCHITECTURES

Standard Products Gate Arrays/ Programmable
Criteria

TTL SSI/MsI LSl Standard Cells Logic
Development Lead Time Immediate Immediate Weeks/Months Hours
Development Cost None None ~ $20K Low
Second Sources Many Several Few Many
Architectural Flexibility Medium Low High Medium
Logic Density Low High Medium/High Medium
IC Design
Expertise None None Some/Much None
Required

Programmable logic has the fastest design cycle time of any
form of customizable logic. Instead of months or years, as with
other semicustom or full custom designs, a programmable
logic-based design can be created in just hours. This fast
turnaround time allows a revolutionary interactive approach to
system design. The engineer can try out a new architectural
approach and evaluate it very quickly. If it does not work, a
new idea can be quickly defined, programmed and ready to
evaluate. The speed with which a new design approach can
be explored and evaluated creates a design environment that
enhances innovation.

Programmable logic devices enjoy the same high-volume
production economics as standard products. Producing identi-
cal blank elements by the millions of units per year, the

manufacturer can achieve low cost. A volume market attracts
multiple vendors and encourages price competition, as well as
provides alternate source security. The cost advantages of a
standard product are retained with programmable logic de-
vices, but since the parts are then customized, system designs
may be differentiated from the competition. In fact, truly
innovative system designs implemented using programmable
logic are even patentable, further protecting a design from the
competition.

The engineering effort and time needed to design, test, debug
and put into production a programmable logic-based system
device is larger than the effort necessary when using standard
products, but substantially less than when using custom
elements (Figure 1-3).

o
3
Gate

(3] Arrays
i d L
L T v

Weeks Months Years

Time

0P002220

Figure 1-3. Relative Development Time vs. Cost for Alternative Logic Implementations

Software tools are provided to reduce this overhead consider-
ably. These permit designs to be specified in terms of Boolean
equations, state transition equations, or gate array-like sche-
matics. The software input specification format serves as a
""data sheet" for the particular application and generates the
essential documentation information. Simulation and test vec-
tor generation programs also exist to reduce the engineering
effort associated with debugging and testing, both in prototyp-
ing and production environments.

Compared to other forms of semicustom logic, the maximum
available logic density of a programmable logic device is
smaller, and the manufacturing costs per equivalent gate of
logic are greater. Since the fixed costs associated with using
programmable logic are lower, however, this semicustom
alternative has an advantage in lower volume designs. In fact,
at the annual procurement volume of the majority of industrial
electronic systems in production today —a few thousand
systems per year — programmable logic has the lowest cost
per gate of any form of custom logic available (see Figure 1-4).

1-4

N\

Programmable
Logic

Total Cost/Gate

Gate
Arrays

Up to 10K

| I =

N

5K to 50K
E 20K}

Standard

/ Cells

l::>

1K

10

Volume

K
Per Year

100K

0OP002210

Figure 1-4. Programmable Logic Provides the Lowest Cost Per Gate of the
Three Semicustom Techniques at Volumes up to About 5K

Programmable logic devices also offer significant user benefits
over non-customizable standard product solutions. These
include design optimization, design security, improved perfor-
mance, cost reductions through board space and inventory
cost savings, and reliability improvements through reductions
in parts count and interconnections.

Flexibility

With the availability of programmabile logic the designer is not
constrained by the available selection of fixed-function TTL
SSI/MSI parts. If a desired TTL function did not exist, the
designer previously had to use several packages to generate
it. With programmable logic devices the designer can easily
create a customized part for a specific application.

Design modifications are also easier to implement in program-
mable logic-based systems. Changes may be made by repro-
gramming a device, rather than re-laying out a board. The time
required for prototyping changes can be reduced by several
weeks, and the cost can be substantially lower.

Design Security

Programmable logic devices can be used to enhance the
security of a logic design. By programming a special ''security
fuse," the user can disable the fuse verify logic circuitry. This
prevents unauthorized duplication of the device, while not
interfering with the part's logic functionality. Programmable
logic is ideal for any application where design security is
essential.

Performance

System performance can be increased through the use of
programmable logic. The designer has the freedom to opti-
mize the system architecture by tailoring programmable de-
vices to implement it precisely. Thus a design may be
implemented in the most efficient manner, frequently improv-
ing performance. In addition, when a logic function is imple-
mented in multiple SSI/MSI packages, the total delay incurred
includes the time required for several on- and off-chip buffers.
When the same function is implemented in a single program-
mable logic device the average delay per logic gate is reduced
because there is only one pair of I/O buffers.

Cost Reduction

Programmable logic devices can provide complexity equiva-
lent to hundreds of TTL gates. Implementing a design in
programmable logic can therefore significantly reduce the
board space or the number of boards necessary to implement
a given function. This results in lower system cost, or
aiternatively, the ability to provide more function in the same
enclosure.

Reliability

Compared to standard TTL SSI/MSI, programmable logic
reduces the number of packages necessary to implement a
given function. In some cases an entire PC board can be
eliminated. This reduction in parts count will result in increased
system reliability. Reducing the number of packages also
reduces the number of external connections between devices
in the system. Since these connections are often the least
reliable portions of a digital system, the use of programmable
logic can improve system reliability in this manner, too.

PROGRAMMABLE LOGIC FROM
ADVANCED MiCRO DEVICES

The remainder of this Handbook will focus on the programma-
ble logic devices offered by Advanced Micro Devices. Includ-
ed will be discussions of their architecture and features, how
to design with them, hardware and software tools, testability,
technology, reliability, applications, and detailed product spec-
ifications.

Advanced Micro Devices offers a broad family of PAL-type
programmable array logic devices. These devices feature a
programmable-AND array which feeds into a set of fixed-OR
gates. As any logic function can be expressed in an AND/OR
sum-of-products (SOP) form, these basic elements can be
programmed to satisfy a wide variety of complex custom logic
requirements.

Tables 1-2 and 1-3 show AMD's PAL product family and the
features incorporated in AMD's products: on-chip registers,
feedback paths, output enable control, user-programmable
output logic macrocells, programmable output polarity, vari-
able product term distribution, buried registers, special test

functions, etc. Today's devices range from 200 to over 1000
gates of functional complexity. Performance is high, with
propagation delays lower than 15 ns and clock rates greater
than 40 MHz. ECL PAL devices featuring 125-MHz operation

are available.

AMD is not restricting itself to just the PAL architecture. Also
available is a PROM-based fuse-programmable sequencer,
the Am29PL141. In the future, AMD will be offering program-
mable logic devices based on other architectures that may be

optimized for specific types of applications.

TABLE 1-2. INDUSTRY-STANDARD 20-PIN MEDIUM COMPLEXITY PAL FAMILY

Part Number Array Inputs Logic OE Outputs

Ten Dedicated, . . Six Bidirectional,
16L8 Six Bidirectional Eight 7-Wide AND-OR-INVERT Programmable Two Dedicated

Eight Dedicated, Four 8-Wide AND-OR Dedicated Registered Inverting
16R4 Four Feedback,

Four Bidirectional Four 7-Wide AND-OR-INVERT Programmable Bidirectional

Eight Dedicated, Six 8-Wide AND-OR Dedicated Registered Inverting
16R6 Six Feedback,

Two Bidirectional Two 7-Wide AND-OR-INVERT Programmable Bidirectional

Eight Dedicated, N N . . "
16R8 Eight Feedback Eight 8-Wide AND-OR Dedicated Registered Inverting

Ten Dedicated,) . Six Bidirectional,
16H8 Six Bidirectional Eight 7-Wide AND-OR Programmable Two Dedicated

Ten Dedicated, . . .
16LD8 Six Bidirectional Eight 8-Wide AND-OR-INVERT — Dedicated
16HD8 Ton Dedicated, Eight 8-Wide AND-OR - Dedicated

Six Bidirectional

TABLE 1-3. ADVANCED PAL DEVICES FROM ADVANCED MICRO DEVICES

Part Number Technology Propaga(a:lo)n Delay Description
PD.

18P8 Bipolar TTL 15 ns 20-Pin, 18-Input Combinatorial PAL with Programmable
Polarity

20L8 Bipolar TTL 15 ns 24-Pin PAL Family with 8 Registered/Combinatorial

20R4 Outputs

20R6

20R8

20L10 Bipolar TTL 15 ns 24-Pin, 20-Input, 10-Output Combinatorial' PAL

22P10 Bipolar TTL 15 ns 24-Pin, 22-Input, 10-Output Combinatorial PAL with
Programmable Polarity

20RP4 Bipolar TTL 15 ns 24-Pin PAL Family with 10 Registered/Combinatorial

20RP6 Outputs and Programmable Polarity

20RP8

20RP10

22XP10 Bipolar TTL 20 ns 24-Pin PAL Family with EXCLUSIVE-OR Capability, 10

20XRP4 Registered/Combinatorial Outputs, and Programmable

20XRP6 Polarity

20XRP8

20XRP10

22V10 Bipolar TTL 25 ns 24-Pin "'Family of One'" with 10 Programmable Output
Logic Macrocells (OLMs)

23S8 Bipolar TTL 20 ns 20-Pin PAL Sequencer with 4 OLMs, 4 Output Registers,
and 6 Buried State Registers

20EV8 Bipolar ECL 6 ns 24-Pin ECL PAL with 8 Registered OLMs

20EGS8 Bipolar ECL 6 ns 24-Pin ECL PAL with 8 Latched OLMs

29M16 E? CMOS 35 ns 24-Pin High Complexity CMOS
PAL with 16 OLMs and 2 Clock Inputs

29MA16 E? CMOS 35 ns 24-Pin High Complexity Asynchronous CMOS
PAL with 16 OLMs and Product-Term Driven Clocks

APPLICATIONS CONCLUSION

PAL devices are used in a broad base of applications. They
are used frequently in minicomputers, workstations, personal
computers, and peripherals. They show up in military as well
as commercial applications. They are used both as glue-logic
replacement and as building block ICs for high-level functions
in the control and data paths of computer systems. Detailed
application examples are provided in this Handbook.

Programmable logic combines the strengths of the dedicated
general purpose and the custom logic design approaches. It
offers user-customizability with immediate turn-around time.
This revolutionary design approach results in innovative, low
cost designs, maximizing the competitive advantage of the
systems in which they are used. AMD offers a broad family of
programmable logic devices. Their architecture and features
will be described in more detail in the next chapter.

1.2 AN INTRODUCTION TO
PROGRAMMABLE LOGIC
ARCHITECTURE

PAL (Programmable Array Logic), PROM (Programmable The major differences between these PLDs are in_their
Read-Only Memory), and PLA (Programmable Logic Array) programmability and their capability for supporting various

devices are the three most popular programmable logic logic features (Figure 1-6).

devices (PLDs). All three share the same basic, two-level,

internal AND-OR structure shown in Figure 1-5. The AND PROM PAL PLA
array is the first level, it accepts all the inputs (both true and X

complement), performs the desired AND functions on these AND Fixed Programmable | Programmable
inputs and drives the next level. The second-level OR array OR Programmable Fixed Programmable

combines various AND functions together producing the

desired (AND-OR) outputs. This basic AND-OR structure Figure 1-6. Variation of AND-OR Programma-
makes PLDs ideal for implementing logic equations in Boolean) bility of PLDs
sum-of-products (SOP) form.

PLD NOTATION

For ease of use and better understanding, a simple convention
has been adopted for programmable logic devices. Figures 1-

Inputs

7 and 1-8 depict these rules. Figure 1-7.a shows the logic
1st Level AND Array equivalent of a programmable AND array and Figure 1-7.b

shows the simplified conventional representation for an AND

array. Figure 1-8 shows the equivalent technique for describ-
2nd Level OR Array ing an OR array.

Outputs

Figure 1-5. Basic Programmable Logic
Device Architecture

TRUE AND
! COMPLEMENT
INPUT —%_* BUFFER
Fusss ! PROGRAMMABLE
. INPUT CONNECTIONS
. A 7 TO N-INPUT AND
: : A M
¢ A4 M X I_’
INPUT __.h INPUT —& PRODUCT TERM

LD000701
LD000710
Figure 1-7.b Programmable-AND Array Logic

Figure 1-7.a Programmable-AND Array Logic Diagram Notation

Equivalent

1-8

O

eescee

0
—D

FUSES

LD000730

Figure 1-8.a Programmable-OR Array Logic
Equivalent

PROGRAMMABLE
CONNECTIONS
TO N-INPUT OR

AND ARRAY

LD000720

Figure 1-8.b Programmable-OR Array Logic
Diagram Notation

The AND-gate inputs are represented by a single line,
commonly described as the product term. All array inputs (true
and complement of each device input) are shown connecting
to a single input AND gate. In reality each input will have both
of its true and complement routed to the AND array. Thus, an
n input device will have AND gates with 2n inputs. For
example, the AmPAL16R8 has sixteen inputs, but ali these
inputs and their complements (i.e., thirty-two lines) are routed

to each AND gate. In a programmabie-AND array, each row
and column intersection, as shown in Figure 1-9, represents a
fusible input connection to the AND gate. The fuse state,
either left intact or blown, determines the customized function
of the device. An intact fuse connects the corresponding input
to the product term, a blown fuse disconnects that input line
from the product term.

- Blown

N
row N\

column

- Intact

row

column
DF006130

Figure 1-9. Fusible Arrays — Customizable Logic Functions Determined by Fuse State

Figure 1-10.a shows the fuse implementation of the logic
AND-OR function (A +» B + C = D)*. To get the A + B function,
the fuses connecting input lines A and B to the first product
term are left intact, while the fuses connecting input lines C
and D to the 1st product term are blown. To get the C + D
function, the fuses connecting-input lines C and D to the
second product term are left intact, while the fuses connecting

input lines A and B to the second product term are blown. In
the example here, the inputs are shown in their true forms
only, without their complements. Figure 1-10.b shows the
simplified conventional representation of this function. An X at
the intersection of input line and product line represents an
intact fuse; a missing X represents a blown fuse.

*The symbol « or * represents the logical-AND function while + represents the logical-OR function.

A

i Y
\ \

R
AN

S

.

A+B+C<D
Fuse Blown)
S
.
S
-
LD000680
Figure 1-10.a Fuse Implementation of AND-OR
A D

v v

Four programmable Inputs
(product terms) to each
AND gate

A*B+C+D

X = Fuse Not Blown
LD000690

Figure 1-10.b Conventional Representation

Initially, all the AND gates of the programmable-AND array are
connected, via fuses, to both the true and complement of
every input. By selective programming of fuses, the AND gates
may be "connected” to only the true input (by blowing the
complement fuse), to only the complement input (by blowing
the true fuse), or to neither type of input (by blowing both
fuses) establishing a logical don't care.

An AND gate with all fuses blown assumes the logical-true (1)

state. When all the true and complement fuses are left intact,

an unconditional logical-false (0) results on the output of the
AND gate. An AND gate with all of its input fuses intact is
represented by an "X within the AND gate.

ANATOMY OF A PROM DEVICE

Figure 1-11 shows the basic architecture of a very simple
combinatorial PROM device using the notation-of Figure 1-7,
1-8, and 1-9. The PROM shown has four inputs (with corre-
sponding buffers), sixteen AND gates, and four OR outputs.
The most important feature of the PROM architecture is that
an array of fixed-AND gates feeds programmable-OR gates.
The PROM inputs are fully decoded by the fixed-AND array.
This means that every combination of inputs is represented by
a separate AND gate, 2n AND gates in a PROM with n inputs.
For example, the PROM of Figure 1-7 has four inputs and has
sixteen AND gates.

1-10

I3 12 l‘ l Programmable

OR Array
‘ k tJ\ VanY =¥ o
I [3 AV 3 A7
l \ Wany Fany oD FanY
l / ~ W 3 A\ =4
{ D p—D—P
I \ \L f‘} o ()
l Y o Fany o D
l J A 74 \(74 A 24
1!) S—O——
! \ D Fany D)
I / U Y A 74 A 74
‘, G
‘ \ Fa Faul VanY oD
! J A\ 2 JJ 37 A 74
LI) H—p—D—D
I \ it fk Y Vaa
| J J A & 3
!i } D <ﬂ D—
I Y () \‘\ \\ o
I \ Fany Y Fany
I 2 A A" 74 Ax g g
l N\ Fan Vs SN oY
| J O L
ll } 35 CF S—D
Fixed
AND Array
% 9% 0 9
-q;- INDICATES PROGRAMMABLE CONNECTION
—+— INDICATES FIXED CONNECTION
LD000671

Figure 1-11. PROM Array Structure

Notion of Min Terms and Product Terms

PROM devices incorporate the concept of Min term. Before
we define a Min term, let us define first a Literal.

A Literal is either a variable or its complement. A Min term of n
variables is a product of n literals containing all the variables in
either true or complement form, but not both. For n variables,
there are a maximum of 2" Min terms. For example the
variables A, B, C, have the following eight Min terms:

/A + /B
/A + /B

* /C
/A » B«
»

C
/C
/A« B C
A+ /B« /C
A+~/B+ C
Ax B+/C
B+ C

While PROMs incorporate the concept of Min terms (since all
the inputs are fully decoded), the PAL or PLA devices
incorporate the concept of product terms. A product term of n
variables is defined to be a product of 1 to n literals containing
either one, two or many variables (up to n), in either true or
complement form, but not both forms of the same variable.
For example, for three input variables such as A, B, C there
can be twenty-six different product terms:

6) A /A B, /B C,/C

(12) A*B,A+C,B+C,/A+B /A+C,/B+C
A +/B, A +/C, B +/C, /A +/B, /A +/C, /B +/C

A+B+C, /A+B+C A~/B+C,A+B+/C
/A +/B +/C, /A +/B + C, A+ /B +/C, /A +B + /C

A PROM can be used for simple logic functions. Since the OR
array is programmable, the outputs can be programmed
individually from every possible input combination. This allows
a PROM device to implement a separate and independent
logic function on each of its outputs. Thus, each PROM output
can implement any logic function limited only by the number of
inputs available.

A »

®)

Since all the PROM inputs are fully decoded, applications such
as look-up tables, character generators, code converters, and
various function generators which require every input combi-
nation to be programmable are good candidates for PROMs.

However, PROMs have a fixed number of inputs and a fixed
number of outputs. For example, a 4K x 8 PROM has twelve
inputs and eight outputs. Thus it needs 4,024 fixed-AND gates
to fully decode its twelve inputs. This fixed input/output
structure is a major limitation of a PROM device, especially for
logic functions. A logic function requiring a different mix of
inputs and outputs — even though the total number may be
less than that offered by the structure of a PROM — will not be
able to use that PROM device. Thus, a function requiring
thirteen inputs and six outputs would not fit into the previously
mentioned 4K x 8 device, even though it requires a smaller
total number of inputs and outputs (13 + 6) than the device
offers (12 + 8).

Another limitation of the PROM devices is that it is difficult to
accomodate a large number of inputs. Each additionai input,
doubles the size of fuse matrix. For example, a ten-input,
eight-output function requires a PROM with 8K fuses. Increas-
ing the inputs to eleven increases the fuse array size to 16K
fuses. Because of this, the largest PROM presently available
is limited to fourteen inputs (16K x 8).

Typical logic fuctions can easily have up to sixteen inputs
which would require a PROM with 64K locations. For four
outputs, this would require 256K locations. However, few

applications, especially for logic functions, would require all
possible input combinations. A large number of fuses would
therefore not be used. Also, typical output functions don't
always come in data granularity matching the PROM width.
For example, data path functions tend to be wider than the
path itself because of additional functions such as parity bits,
ripple carry, and serial inputs and outputs etc. Thus, these
would not be well served by fixed width PROM sizes.

Various control path functions, such as state machines, can
also quickly use up both inputs and outputs. A PROM with a
register on the outputs as a state machine would require both
logical inputs and state feedback inputs, while generating
control outputs and state feedback outputs. Note that for each
bit of state information, the feedback inputs and outputs are
tied together, using up an input and output pin (Figure 1-12).
Thus, when a large number of states are required, very few
input and output pins are left over to do something else.

LOGICAL
INPUTS

\ 4

FULLY DECODED
FIXED
AND ARRAY

STATE
FEEDBACK ¢

PROGRAMMABLE
OR ARRAY

v

REGISTER

D>

CONTROL
OUTPUTS

BDO06700
Figure 1-12. Registered PROM State Machine
ANATOMY OF A PAL DEVICE

The array architecture of a PAL device is shown in Figure 1-13.
The basic PAL structure is exactly opposite that of a PROM:
the AND array is programmable and the OR array is fixed.
Unlike PROMSs, the inputs are not fully decoded. There are six
inputs to the PAL array of Figure 1-13, but only sixteen AND
gates (not 2° gates). Since the AND array of a PAL device is
programmable, all the inputs need not be fully decoded. This
helps to remove one of the key inefficiencies of a PROM (2"
gates for n inputs), allowing PAL devices to have considerably
more inputs.

In other words: increasing the number of inputs does not result
in a dramatic increase in the number of fuses. For example,
increasing the number of inputs (from six to ten) for the
example of Figure 1-13 increases the fuse array only from
12x 16, to 20 x 16.

The fixed-OR array of a PAL device dictates to which OR gate
any particular AND gate connects. In Figure 1-13, four AND
gates are dedicated to each OR gate in the array. Since, for a
PAL device, the output provides the sum of a limited number

of AND gates, the number of AND gates required by an
equation must not exceed this number.

Besides their larger number of inputs, PAL devices contain
many additional architectural features which make them ideal

for implementing logic functions. These features include
programmable 1/O pins, registered or combinatorial outputs
with internal feedback to the array, outputs with programmable
polarities, etc. (A detailed description of further features is
provided later in this chapter)

-

[}
DD D--D—D—D—D—D i\ o
A\ 4 WI P\ wz A 240N AN~ Ju N~ 4 A
Ve\ a1
\K A 4 \{ VvV VvV V¥V ¥ \r\l 1 J
D—D—-D—-D-—D—-D—D-—D-D
N A S A " S AN~ "N 7
DD D—D—-D_D-D
AY ZZBIAN 7NN VAN AN AR VAN 7 N 7 N 4 A\
DD DD DD
A ZZ0 "N 7Y~ v \r AUZANIN 7 SN 7 G
. U
ZANASZAEAN 7 RN SRR SN A 1V A A A 4 \I Y LS
p. . N N
L A 20 20 2 A0 2 2B 2B 40 A A Y
V. N B\
4 WJ A 2 “AN SN S SN LA~ -~ aun s~ oy BV
DH—-D—-D—-D-D—D—-D—-D—D
YY" V'Y VYV VN
). \ GD Ve\
N\ \I { A4 V \V V VYV VYV
Ve . U N Ve
AX ZAEN ~ AN 4 AN 7NN AN 7 AERN Z ERN 7 GEpN F SEpN” g
Ve . .Y N N DD
VWV \V vV VY vV VYN A I
.. N N W N pa\
YV VYV V¥V ¥ r N4 A 4 4 4 .,
V. N I\
YV V¥V V VUV U V'V V¥V V¥V V V¥V V¥V | /]
DD DD D—D--D-OD p. U
VYV VYV VvV VYV v O Yv O oUW Y |/
p. N N
AY ZZIAN Z BN VN 7 N 7 # AN N TI Y ¥ w/ L/

INDICATES PROGRAMMABLE CONNECTION

'INDICATES FIXED CONNECTION

.¢.
+

O3 02 O1 0o

LD000740

Figure 1-13. PAL Array Architecture

ANATOMY OF A PLA DEVICE

The array architecture of a PLA device is shown in Figure 1-14.
The PLA architecture has both the AND array and the OR
array user-programmable. This gives additional logic capability
over PROMS and PAL devices. PLAs combine the advantages
of PAL devices over PROMs (the programmable-AND plane),
with the advantages of PROMs over PAL devices (the
programmable-OR plane). PLA devices can include the same
logic features which overcome the limitations of too few
inputs, the allocation of inputs versus outputs, registered
feedback, or output polarity, although few commercially avail-
able devices actually implement them. The programmable-OR
array allows AND gates to be tied to OR gates, as desired, by
blowing appropriate fuses. Here logic functions are limited by
the total number of AND gates allocated to all outputs, instead
of by the AND gates allocated to a particular OR gate in a PAL
device. Thus, logic functions requiring a larger number of AND
gates may be allocated to a particular OR gate appropriately.

Additionally, a PLA structure allows true sharing of AND gates
for an output; the same AND gate may drive multiple outputs.
This allows more efficient utilization of AND gates in a PLA
than in a PAL device.

The disadvantages of PLAs are not quite so obvious. Because
of the extra programmable-OR plane, a given signal has to
pass through two programmable arrays; as a result, PLAs are
inherently slower than PAL devices and PROMs. This can
make a PLA unsuitable for many high-performance applica-
tions. Also, in practice the user can seldom take advantage of
allocating a large number of AND gates to a particular OR
gate. The number of AND gates required for a particular
equation is related to the number of inputs to the equation.
Equations using a large number of AND gates, with a large
number of inputs pins, can be very cumbersome. Traditional
logic design techniques such as Karnaugh maps cannot
handle much more than five or six inputs, and computer aid for
this task is not generally available. Also, because of the added

1-13

silicon real estate required for the programmable-OR array,
most of the commercial PLAs have fewer AND gates than
comparable PAL devices.

In data-path applications such as barrel shifters, the sharing of
AND gates between outputs is almost impossible. Here
individual equations are dependent upon their individual data

line (i.e., the equation for output QO is dependent on DO; Q1 is
dependent on D1, etc). Here, PAL devices which do not have
to provide AND-gate sharing for output, tend to fit better. Since
the critical path of most systems is in the data path, PAL
devices tend to be better suited for these applications, since
they are faster than PLAs. '

3:]__

DD DD DD DD
2 A S A R R S A S L
Y Y. W. . .. \
A 4 4 A 4R 4 A4 \fjl
P . . . N Vo\
WY\ AV 7NN RN 7 SEAN ~ G N 7 SN 7 SN 7 AN
2 DD Ve\
A A A A A A A A AR A 4
e s S N S N n W o W » S« » U o W . S . . ¥
U—Y YUYy Yy WI A 2NN 7 AR N7 gy
a)r\ P, N A
A7 ZEAN ZEEANZEEa NS up S v A A AL A AL A B e a4
N A AN AN N I\ N
YOO~ po— A A~ ~ e B 4
o - y. N . NI N
AN 7NN Z BN 7 RN 7 N ” v W, A 2 Z A~ ~ auny B4 —
Ve N . N IL W . N . . 43 Pz N .\
A A A B N AN ZJNAN ZE N RuaN Z S PG~ S /g
. N aV
N 4 \1/ VWV VYV WV W YV W U Y j]
A A oA A A DA A A A A A TN A A A A
YUY YOO O oo wOTYwT|) VYV Y Y
DD U Y NN
YUY o O O O v oTOT o w—|__J p—o— Y
£ a p. N . . . N \
V™V VvV VvV VvV ovywovv | J VYV VvVVY
P N . . N A A
YV OO U UTOrYyTUYTY U | VVVY Y
oo p. . Y. . . W . U . . . - N
YY Y Y Y Y Y Y Y VY LS YYVY VY
V. N Y. . N
P— PP ZAR S Z NS A 7 ‘1’ VvV VYV ¥

-¢- INDICATES PROGRAMMABLE CONNECTION
O3 02 01 Oo
LD000660

Figure 1-14. PLA Array Architecture

SUMMARY

PAL, PROM, and PLA devices represent three programmable
logic architectures. Although very similar in basic array archi-
tecture, they differ significantly in their ability to implement
logic functions, in their applications and in their programmabili-
ty aspects.

Each device type implements an AND-OR two-level logic array
which allows implementation of logic equations in SOP form.
The PROM is the most limited of the three device types. While
it is able to implement any logic function it has very few inputs
to work with. In a PROM device, all inputs are fully decoded, all
the Min terms are generated, and each output provides the
sum of Min terms of all the input variables. The PROM has a
fixed number of inputs and outputs and does not provide any
architectural features to enhance logic design capability.

PLA devices, on the other hand, provide the most flexible
architecture of the three for implementation of logic equations
by using a programmable-AND array and a programmable-OR
array. However, in practice the added flexibility of the PLA can
seldom be effectively used. Further, the PLAs' inherent lower
speed is unacceptable in high-performance designs.

The PAL device, sits in between. It provides significant
capability to implement logic functions. Its programmable-AND
array allows equations with many inputs. Its other architectural
features such as programmable 1/0, internal register feed-
back, and choice of output polarity allow optimization of pin
allocation and logic equations.

Table 1-4 summarizes the advantages and disadvantages of
the three programmable logic architectures.

1-14

TABLE 1-4. COMPARISON OF THREE DIFFERENT PROGRAMMABLE LOGIC ARCHITECTURES

PROM PAL PLA

Full decoding of all input
variables

Partial decoding of all input

variables Partial decoding of all input variables

Generate limited number of Product
Terms

Generate limited number of Product

Generate all Min terms
Terms

Each output provides sum of Min
terms

Each output provides sum of
limited number of Product Terms

Each output can provide sum of all
the Product Terms

Limited Architecture features Additional Architecture features Additional Architecture features

Speed—Faster Speed—Fastest Speed—Slowest
Flexibility
Limited Better than PROM Maximum

Easy to understand and use Fairly easy to understand and use Hard to understand and use

DETAILED ARCHITECTURE OF PAL ® AND plane
DEVICES — CAPABILITIES ¢ OR plane
® Storage elements
Figure 1-15 shows the detailed architecture of a typical PAL ® |/0 pins
device, and its important architecture variables. Four most
important components of PAL architecture are:
OE
CLK CONTROL
] RESET/PRESET { l
110
=" proa. FIXED OUTPUT —E3
>—1{—] AND OR
PLANE PLANE CELLS
FEEDBACK
MUX
BD006690

Figure 1-15. PAL Architecture

PAL Architectural Variables

® Number of OR Outputs @ Nature of Output Cells
® Number of PTs/Output ® Nature of Feedback
@ Distribution of PTs ® Prog. Polarity
® Number of Banks
® Clock Control
® RESET/PRESET Control
® PRELOAD

® Dedicated 1/0
® Bidirectional 1/0

® Number of Inputs
© Number of AND Gates

Architecture of the AND Plane

This plane provides the interconnection of inputs (both true
and complement) to the AND gates to form both logical and
control product terms. Logical product terms are used for logic
functions and control product terms are used for control

functions such as Output-Enable control, RESET, PRESET,
PRELOAD, and observability.

The total number of inputs and product terms determine the
size of the AND plane. While the first-generation PAL devices
had up to 2K fuses and 64 product terms (each with 32 inputs),
the trend is towards larger AND planes.

1-15

Architecture of the OR Plane

This plane determines the connectivity of the "'logical ORing"
of the AND gates to the outputs, and defines three things: the
number of OR outputs, the number of product terms (PTs) per
output, and the distribution of PTs per output whether same or
variable.

In a typical PAL architecture, the outputs of the AND gates are
connected to fixed-OR gates. The limitation of the PAL
devices' AND-OR plane is the number of inputs to the AND
gates, the number of AND gates, and the number of "OR"
outputs. While first-generation devices had seven-eight logical
product terms per output and a maximum of eight OR outputs,
the trend is toward a larger number of outputs with more
product terms per output.

Architecture of Output Celis

The architecture of the output cells specifies at least the
following:

® Nature of output

® Nature of flip-flop used as storage element

® Organization of outputs

® Flexibility of feedback path

The output(s) can be configured to have‘ either sequential
(registered) or combinatorial capability, as well as polarity
control for active HIGH and active LOW.

The flip-flops used for output cells can be one of the following:
edge-triggered D-type flip-flops, J-K, S-R, or T flip-flops, or

latches. Flip-flops are good for clocked synchronous system *

designs, while latches are good for asynchronous logic
applications.

D-type flip-flops are the easiest to design with, while J-K flip-
flops are probably the most flexible. However, there is a trade-
off especially on the OR array for implementing either D or J-K
type flip-flop. A disadvantage of the J-K flip-flop is that both
the inputs have to be driven by the OR array. This increases
the OR-array size. The disadvantage of the D flip-flop is that it
requires a HOLD term to hold a particular state; J-K flip-flops
do not need HOLD terms. It is conceivable that a given logic
function could be implemented with a smaller number of
product terms with J-K rather than D flip-flops. However, this is
application dependent. For state-machine designs involving a
large number of frequent state transitions, the benefits of J-K
over D becomes less important.

Traditionally, for PAL devices, speed and architecture simplici-
ty have been the most important criteria and most PAL
devices use D-type flip-flops only. Lately even other types of
flip-flops are being offered on PAL devices.

The organization of the output cells determine whether all the
cells are organized as a single bank (with a common clock), or
configured into multiple banks with separate clocks.

The output cell structure also determines the flexibility of the
feedback path. The feedback may be from the combinatorial
output, registered output or from the 1/0 pins. The feedback
paths can be either a single or multiple lines for increased
flexibility.

Architecture of 1/0 Pins

The 1/0 pin architecture determines whether a pin may be
defined as a dedicated input pin, dedicated output pin, or a
dynamically-controllable 1/0 pin.

While the first-generation devices had a limited number of
dedicated input pins, few output pins, and few programmable
1/0 pins, the newer PAL-type devices have more programma-
ble 1/0 pins.

PAL Nomenclature

PAL devices are known in the industry by the following

nomenclature:

L oxx zz

Maximum Number of Outputs
Combinatorial or Maximum
number of Registers

Type of Outputs

R = Registered
L = Active LOW
H = Active HIGH
P = Programmable Polarity
V = Versatile Output

Macro Cells
X = Exclusive-OR output
S = Sequencer-Type device
M = Input/Output Macro Cells
A = Asynchronous outputs
G = Latched Outputs

Maxi Number of Array
Inputs

For example, the AmMPALHCT29M16 (which is a 24-pin CMOS
PAL device) has a maximum of twenty-nine inputs to its AND
array, and sixteen input/output macrocells. Since the maxi-
mum number of inputs (twenty-nine) plus the outputs (sixteen)
exceed the total number of pins in the package, it implies that
the device has feedback and/or bidirectional I/O pins.

PAL ARCHITECTURAL FEATURES AND
BENEFITS

PAL devices contain many architectural features which make

. them ideal for implementing logic functions. These features

include:

® Programmable 1/0 pins

Flexible Output-Enable control and Bidirectional 1/0
Dedicated versus programmable output structure
Programmable polarity)

Flexible clocking scheme

Buried state registers

Miscellaneous features

— Accessibility

- Controllability

- Testability

- Observability

Programmable 1/0 Pins

Programmable input/output pins are one of the most impor-
tant resources of a PAL device. They allow the PAL device to
be tailored to fit the required allocation of inputs and outputs.
PAL devices can thus implement far more complex and
different logic functions than a PROM — even one with more
pins.

Flexible Output Enable Control & Bidirectional
170

Logic diagrams for the bidirectional output structures of the
PAL devices are shown in Figures 1-16.a and 1-16.b. One
important feature of the PAL devices' bidirectional output is
the flexibility in controlling the Output Enable.

The Output Enable can be either dedicated (controlled by a
pin) or programmable (controlled by a product term from the
AND array).

The output buffer associated with the output pin may be
programmed in one of three ways: as a dedicated output, a
dedicated input, or a dynamically controllable input/output.

When programmed as a dedicated output, the output buffer is
always enabled and the logic function is fed back to the AND
array. This feedback path allows more complex logic functions

to be implemented by using two or more levels of AND-OR
gating.

When programmed as a dedicated input, the AND-OR gate
associated with that pin is unused. This ability to trade off
outputs for inputs is one of the big advantages of PAL devices
over other programmable logic devices, especially PROMs.
The designer is no longer limited to a fixed number of input
and output pins. The ratio may be programmed to fit the
intended application.

Finally, when programmed as a dynamically controllable
input/output buffer (i.e., enabled/disabled by a logical combi-
nation of one or more inputs) this pin may be used as an input,
while retaining the full logical capability of the AND-OR gate.
This is especially useful in control applications (microproces-
sor handshaking protocols) and bus-oriented data operations
(data steering and data storage/manipulation). A serial input/
output pin is a common example. When shifting left the pinis a
serial input, but when shifting right the pin is a serial output.
This mode provides maximum utilization of the PAL architec-
tural resources.

PROGRAMMABLE
OouTPUT
ENABLE
I / 7-WIDE AOI
o

D= - d
LD000640
Figure 1-16.a Active-LOW Bidirectional Output
PROGRAMMABLE
OUTPUT
ENABLE
7-WIDE AND-OR
o
| D—-l:) £ 4
LD000650

Figure 1-16.b Active-HIGH Bidirectional Output

Figures 1-17.a and 1-17.b show the active-LOW and active-
HIGH versions of PAL devices with dedicated outputs. Here
the outputs are always enabled and the AND gate previously
used for the Output-Enable function can be used for an extra
logic product term. The feedback path from output to input is

still provided, allowing for implementation of multi-level logic.
This extra AND gate makes these outputs ideal for non-bus-
oriented logic repiacement, especially complex control-signal
generation, encoding, and decoding.

8-WIDE

/ AND-OR-INVERT

o

N

LD000620

Figure 1-17.a Active-LOW Dedicated Output

117

8-WIDE
AND-OR

LD000630

Figure 1-17.b Active-HIGH Dedicated Output

Individual product-term control for each Output-Enable func-
tion gives the designer the ability to configure each output on
an individual basis. On the other hand, a common, dedicated
Output Enable (Figure 1-18) makes registered PAL devices
ideal for bus-oriented systems. The registered PAL device can

be programmed to provide data storage, operation, or steering
functions, the result of which is placed on the data bus by
enabling the output buffer. Since most PAL devices have
24 mA current sinking capability, they can drive most on-board
buses and many backplane buses.

INVERTING
8-WIDE OUTPUT
AND-OR ¢ ocK BUFFER

D-TYPE
REG
o af o
ﬂ
<H
DEDICATED
REG FEEDBACK - OUTPUT
BUFFER ENABLE
LD000610

Figure 1-18 Registered Output

Figures 1-19 and 1-20 show the output structure of second-
generation devices such as the AmPAL18P8 and the Am-
PAL22V10, where each output is controlled by a separate
Output Enable product term. Figures 1-21.a and 1-21.b show
the output structure of the AmPAL23S8. Here, besides a

separate product-term control for each output, there is a
polarity fuse. This polarity fuse allows the designer to control
the Output Enable as a combination of various signals
(DeMorganized equations) rather than a single AND term. This
is especially useful in bus-control applications.

—RE3 0

s —=-

| 10 Terms . Eight
Per * Bidirectional

Ten
Dedicated
Inputs

Output * VO Pins
8
72X 36 —E&3 o
AND Vcc p7

BD006680

Figure 1-19. Block Diagram of AmPAL18P8

0

—3

L] o

SELECT Vo,
o o - 3

Vee

%_—

MUX.
Sy

Vee

LD000411

Figure 1-20.a AmPAL22V10 Output Logic Macrocell Diagram

S, So Output Configuration
1] 0 Register/Active LOW

0 1 Register/Active HIGH

1 0 Combinatorial/Active LOW

1 1 Combinatorial/Active HIGH

0 = Unblown Fuse
1 =Blown Fuse

»
[

LDO000420
Registered/Active LOW

L.D000440
Registered/Active HIGH

LD000430

Combinatorial/Active LOW

Sg=1
8y =1

LD000450

Combinatorial/Active HIGH

Figure 1-20.b Output Configurations of AmPAL22V10

From Buried

Register Output
Common

Observability Term

«—D

Output Enable

Common
Synchronous —D—
PRESET
PO
1
: ol W —DerE,
P7 L] >
or
P9 | T
Common{ Clock AR 21 -22
to all
Async f
Outputs RESET_D
To AND
Amey o &———— Mux
L
LD000581

Figure 1-21.a AmPAL23S8 Output Logic Macrocell

1-20

From Buried

Register Output
Common

Observability Term

=,
Common E

Synchronous
PRESET

PO

P7
or
P11

Clock

Common
to all

Outputs | Async

Output Enable

MUX

{

To AND

RESET

Array

—=

LD000591

Figure 1-21.b AmPAL23S8 Output Register

Dedicated vs. Programmable Output Structure

PAL devices come with either dedicated or programmable
output structures which can be registered or combinatorial.
While the first-generation devices such as the 16LD8, 16HD8,
etc., had dedicated active-LOW/HIGH outputs and the 16R4/
16L8 devices had dedicated registered or combinatorial out-
puts, the trend is towards PAL devices with more flexible
output structures.

Figure 1-20 shows the output architecture for the Am-
PAL22V10 where each output can be defined and its architec-
ture programmed on an individual basis. Each output is user-
programmable for either registered or combinatorial operation.
This flexibility allows the designer to optimize the device
design by having only as many registers or combinatorial
outputs as needed.

One common feature of most registered PAL devices is the
registered output with feedback to the array. This registered
feedback path fits the classical state-machine design. The
register's input is driven by the AND-OR array and is used to
store the logic information. Once the data is stored in the
register, it can act either as output or present state informa-
tion. The registered PAL device can thus be used as a
synchronous state machine. The feedback acts as the "pres-
ent state'' information which, combined with the '"present
inputs" is used to generate the "next state'" information.

Programmable Polarity

Programmable polarity allows the designer to configure the
output as either active HIGH or active LOW. First-generation
devices lacked this capability. The second-generation PAL
devices such as the 18P8, 23S8, 22V10, 20EV8, 20XRP10,
and third-generation devices such as the 20M16 CMOS PAL
Family all incorporate this feature.

Programmable polarity, along with the choice between either
registered or combinatorial output, allows the designer to
operate an individual output in one of four modes: Registered/
Active LOW, Registered/Active HIGH, Combinatorial/Active
LOW, and Combinatorial/Active HIGH. Note that the associat-
ed feedback path also changes with the output mode. This
capability gives the designer more flexibility to optimize the
device for the particular application requirements.

Number of Product Terms/Output and
Distribution of Product Terms

The logic capability of a PAL device is determined by the
number of product terms per output and how they are
distributed. The larger the number of product terms per output
the more powerful is the device's logic capability. However,
there has to be a balance between logic flexibility and
utilization efficiency. Increasing the number of product terms
per output unnecessarily results in inefficient utilization of
device resources. For replacing SSI/MSI devices, a maximum
of sixteen product terms per output is considered adequate.

The other factor which determines the logic capability is the
distribution of product terms: whether product terms are
distributed equally or unequally. Variable product-term distribu-
tion allocates different numbers of logical product terms to the
individual outputs, increasing the complexity of logical func-
tions to be performed. With sixteen logical terms allocated to
an output, up to sixteen logical terms can be evaluated in a
single clock cycle, without requiring any feedback.

Flexible Clocking Scheme

Most of the registered PAL devices can be used for synchro-
nous state machines. For most of the simple synchronous
state machines, one common clock for all the registers is
adequate. However, some applications may require more than
one clock, preferably with programmable polarity, so that
registers or banks of registers can be triggered either by the
rising or trailing edge. Multiple clocks with programmable
polarity are useful for building pipelined systems — where
different elements of the system can possibly be triggered by
different edges.

In a PAL device, however, a pin is a valuable resource. A
dedicated clock pin for registered devices may be appropriate,
but PAL devices with both registered or combinatorial outputs
might not want to waste a dedicated clock pin used for
registered operation only. Hence, the pin is clock as well as
input. Glue-logic applications might want a product-term-
driven clock. This provides a separate clock for each flip-flop.

1-21

Buried State Registers

The output storage elements of the PAL device are used.

either as outputs or as state bits. Typically these output

storage elements are associated with 170 pins, and are driven -

by the AND-OR array. The number of output/state registers,
1/0 pins, and array size (product terms) are the three most
important resources of programmable logic devices. These
three resources are always in short supply. For optimum state-
machine design, system designers always strive to achieve an
optimum balance of these resources.

Traditional first-generation devices such as the 16R4/16R6/
16R8 have been used as SSI/MSI logic replacement and for
doing state-machine designs. However, because of a limited
number of registers, only simple state machines can be

designed with these devices. For more complex state-ma-
chine designs, designers have asked for dedicated buried
state registers. These registers are driven from the same
AND-OR array, but, they are not tied to the output pins.
Therefore, they are called ''buried registers.”" However, they
are accessible and controllable by the AND-OR array, just like
the output registers. These buried registers provide extra
functionality. They could be used for keeping track of various
"internal flags' for generating timing and various other inter-
nal control information, without tying up the valuable I/0 pins.

Figure 1-22 shows the architecture of the AmPAL23S8, the
industry's first bipolar PAL-based sequencer device. As seen
from the block diagram, this device offers six dedicated buried
registers in addition to eight output registers. Figure 1-23
shows the architecture of its buried registers.

Inputs
—— Common Clock { 9
Programmable AND Array g g
. - =3
6 sl g0 fof 18 sf[118 | T1of| T4of|T1e {| 1| 2] 2] 18 g%
| Ix
S R D D D D 3 ;
D D D » D > I b D D D a4
‘ r oa || [Loa] [|Lom | || om H-2!
[a :
Buried Registers Output Logic Output Registers
Macrocells
BD006670
' Figure 1-22. Block Diagram of AmPAL28S8
Common
Observability Term
Common
Synchronous
PRESET_D
PO
SP To Regfster
Ps a or Macrocell
P7: > Output
P9 I y 5
C Clock AR
O?t;tlllts ‘Async T
RESET l)
To AND
(AR DE—
) LD000571

Figure 1-23. AmPAL23S8 Buried State Register

MISCELLANEOUS FEATURES —
ACCESSIBILITY, CONTROLLABILITY,
TESTABILITY AND OBSERVABILITY

PAL- and PLA-based sequencer devices need a large number
of internal registers that are easily accessible, controllable,
testable, and observable.

Power-up RESET

Power-up RESET resets all internal registers during system
power-up. All the registered devices in the AMD PAL Family
have been designed to reset automatically during system
power-up. This feature is especially valuable in simplifying
state-machine initialization.

Due to the asynchronous operation of the power-up RESET

and the wide range of possible V¢ rise time, certain condi-

tions are necessary to insure a valid power-up reset. For

AMD's PAL devices, these conditions are:

® The V¢ rise must be monotonic

® Following reset, the clock input must not be driven from
LOW to HIGH until all applicable input and feedback setup
times are met.

RESET/PRESET

The ability to RESET and PRESET registers increases the
system functionality.

These RESET/PRESET functions can be asynchronous or
synchronous, and can be controlled either by a dedicated pin
or by a product term driven from the AND array.

If these functions are driven by product term(s), these could be
either a common product term or individual product terms.
When the synchronous product term is asserted (HIGH), the
output registers will be loaded with a HIGH on the next LOW-
TO-HIGH clock transition. When the asynchronous RESET
product term is asserted (HIGH), the output registers will be
immediately loaded with a LOW (independent of the clock).
These functions are particularly useful for applications such as
system power-on and reset.

PRELOAD

PRELOAD allows any arbitrary value to be loaded into the PAL
device's output registers. AMD's registered PAL devices are
designed with unique PRELOAD circuitry that provides an
easy method of testing registered devices for logical function-
ality.

PRELOAD is the only way to allow full logic verification of
programmed registered PAL devices and thus guarantee
correct logical functionality. Without PRELOAD, many device

failures cannot be discovered until the device is tested as a
part of the finished system.

A typical functional test sequence would be to verify all
possible state transitions for the device being tested. This
requires the ability to set the state registers into an arbitrary
"present state'' value and to set the device inputs to any
arbitrary "'present input'' value. Once this is done, the state
machine is clocked into the ''next state,”” which is then
checked to validate the transition from the present state. In
this way any state transition can be checked.

Without PRELOAD, it is difficult and in some cases impossible
to test an arbitrary present state value. This can lead to logic
verification sequences that are either incomplete or excessive-
ly long. Long test sequences result when the feedback from
the state registers '"interferes' with the inputs, forcing the
machine to go through many transitions before it can reach a
particular state value. The test sequence becomes excessive-
ly long when a state must be reentered many times to test a
wide variety of input combinations.

In addition, complete logic verification may become impossible
when states that need to be tested are never entered with
normal state transitions. ''Forbidden'' or don't-care states that
are not normally entered need to be tested to ensure that the
state machine returns to a valid state.

PRELOAD eliminates these problems by providing the capabil-
ity to go directly to any desired arbitrary state. Thus test
sequences may be greatly shortened and all possible states
can be tested, greatly reducing test time and development
costs, and guaranteeing proper system operation.

Observability of Buried State Registers

The AmPAL23S8 is the first PAL device to offer product-term
controlled, observable buried state registers. The observability
product term, driven by a common AND-OR array, allows the
system designers to observe buried registers under pin control
or product-term control (by a combination of various input
signals). The contents of the buried registers can be moni-
tored for system debugging purposes.

An observablity product term controls a set of six inverting
buffers, which serve both the six buried registers and six
output registers (four output registers and two output logic
macrocells). The observability product term causes the six
buffers to disable signal flow from the six output registers to
the 1/0 pins, and enables signal flow from the six buried
registers to the respective 1/0O pins (Figures 1-21.a and
1-21.b). This feature is especially useful for system-level
testing and debugging.

1-23

SUMMARY

Table 1-5 summarizes different architectural features and their benefits for the system designers.

TABLE 1-5. PAL ARCHITECTURAL FEATURES AND THEIR BENEFITS

Features Benefits
) e Removes limitation of fixed 1/0s

" e Offers variable number of 1/0s

Programmable 1/O Pins e Allows allocation of I/Os based on application
requirements
e Dedicated inputs
Bidirectional 1/0 Capability o Dedicated outputs
e Dynamically controllable 1/0s
Programmable Polarity e Simplifies deMorganization of equations
Registered Outputs with Feedback e Simplifies state-machine design
Combinatorial Outputs with Feedback e Allows multiple levels of logic
. e Variable number of registered/combinatorial outputs
Output Logic Macrocell e Simplifies Mealy-Moore-type state-machine design
Variable Distribution of Product Terms e Better application fit
. . e Better synchronous design
Flexible Clocking Scheme e Eases pipelined system design
. e Offers multiple clocks
Product-Term-Driveri Clocks e Good for glue-logic applications
. . e Frees up I/0 Pins

Buried State Registers e Offers more complex state-machine design capability
Asynchronous RESET/PRESET e Better system initialization
PRELOAD o Better testability
Power-Up RESET e System initialization
Observability of Buried State Registers e Simplifies system testing and debugging

1-24

1.3 HOW TO DESIGN WITH
PROGRAMMABLE LOGIC

DEVICES

INTRODUCTION

Programmable Logic Devices (PLDs) with their programmable-
AND-OR array structures are ideal for implementing Boolean
logic functions expressed in sum-of-products (SOP) form. Any
logic function can be implemented in a PAL device as long as
the number of inputs, outputs, and the number of product
terms required do not exceed what is available on the device.

The SOP form can be derived from truth/function tables, state
or timing diagrams, and Karnaugh maps. High-level software
packages are available to ease this derivation.

Logic Equations

Digital systems are based on the Boolean logic system, which
processes only two types of values: 0 and 1. These two values
are processed through electronic circuits known as gates to
produce an output. Combinations of such gates can be used
to implement a logical equation that generates outputs based
on combinations of inputs. These outputs can be interpreted
as data or used as inputs to other logic networks.

All digital logic can be expressed in terms of three fundamen-
tal logic gates: AND (+), OR (+), and NOT (/). These logic
gates or functions are manipulated using Boolean algebraic

theorems and laws to simplify and reduce complex logic
expressions.

Implementing Boolean Equations in PAL
Devices

The programmable-AND and fixed-OR structure of a PAL
device require that logic expressions be expressed in the SOP
form. In SOP form, the maximum number of logic levels is two:
an AND and an OR operation. Any NOT or invert operation is
assumed to occur before the AND plane of the PLD and
therefore does not contribute to the propagation delay through
the PLD AND-OR piane.

For example: A~ (B + C+ (D + E)) in Figure 1-24 is a four-level
logic expression. The subexpression D + E must be evaluated
before ANDing with C. This is then ORed with B before finally
ANDing with A. The logically equivalent SOP form is:
A+B + A+C+D + A+C+E.

The SOP equation maps directly into the PAL device structure:
each product term (A+ B, A+C+D, and A+C+E) is programmed
into the AND array of the output dedicated to this logic
expression. This output must have at least three product terms
to express this logic equation (Figure 1-25).

moow>»

F = A+ (B+C+ (D+E))
LD000540

CONVERT TO SOP FORM

F = A+ (B+C* (D+E))
F=A+B+ C*D + C*E)
F=A*B + A*C'D + A*'C'E

A—
5— |
F
-
D
E
- inputs go through
only two levels of
logic (AND, OR) to
generate the function F
LD000551

Figure 1-24 A Simple Combinatorial Logic Expression

CONNECTION INTACT

INPUT LINE NUMBER

NO CONNECTION

01 23 4567839
PRODUCT 0)
TERM
NUMBER ™\ l—-—|
L/
2 1)
: o1

ALL CONNECTIONS
INTACT

LD000560

Figure 1-25 Logic Expression Mapped into a PAL Device

From Concept to Implementation

Designing with programmable logic usually involves three
phases: design, programming, and testing. In the design
phase, you specify Boolean functions, i.e., logic equations for
solving the problem. In the programming phase, the logic
equations are converted into SOP expressions, which are then

translated into a device fuse map used to program the device.
The test phase ensures that the programmed logic device
performs the functions specified.

DESIGN PHASE

The design phase can be further partitioned into a number of
basic steps (Figure 1-26).

1-26

| DEFINE THE PROBLEM

CREATE A SOLUTION

Identify Requirements
- /0, PTs, Speed
Select Proper PAL

l

| GENERATE BOOLEAN EQUATIONS |

| OPTIMIZE BOOLEAN EQUATIONS |

VERIFY DESIGN

Generate Test Vectors
Simulate

e eeecssesssasasssany

~

eesesss: semsssssssssssss

BD006790

Figure 1-26. PAL Design Process

Define Problem

Defining the particular logic function to solve the problem is
the first step in the design phase. Here you identify the nature
of the problem to be solved: whether a combinatorial function
(such as address decoding, priority encoding, data multiplex-
ing/demultiplexing, or generating control signals), or a se-
quential function (such as counting, data shifting, or imple-
menting a particular state machine).

Identify Design Requirements

After you have defined the problem, choose a device based
on the design requirements: number of input/output pins,
number of product terms, registered or combinatorial outputs,
polarity, power consumption and speed.

Generate Boolean-Logic Equations

Identification of inputs, outputs, and signed polarity may be
easy. However, the number of product terms used to solve the
design problem is determined only after the necessary Bool-
ean logic equations have been generated.

Generating Boolean-logic equations for combinatorial logic is
relatively straightforward. You start with the inputs, outputs,
and the truth table. You can derive logic equations from the
truth table by grouping the "'1s" (for active-HIGH outputs) or
""0s" (active-LOW outputs). Grouping the "0s" instead of

"1s" has the effect of inverting the equations. This is a
convenient and common technique for generating inverted
logic for use in active-LOW PAL devices.

Generating logic equations for sequential circuits is more
complex. You have to define the inputs, outputs, and states.
You then draw a state diagram, specifying all the appropriate
state transitions to generate the state table. Regular digital
design methods are then used to assign states such that
redundant states are eliminated to obtain the minimal number
of states.

After the states have been determined, assign state numbers
and use logic minimization techniques to arrive at the minimum
amount of logic necessary to implement the sequential func-
tion.

The logic equations derived from truth tables, state diagrams
and Karnaugh maps are converted into the SOP form to fit into
a PAL device. You can use computer-aided design (CAD) tools
to greatly speed up the logic design process. These CAD
packages allow you to express the design solution in a high-
level syntax such as logic schematics or logic language
descriptions. They also take the truth tables, state diagrams,
flowcharts, and other high-level descriptions of the solution
and automatically generate logic equations in SOP form. The
equations can be minimized if they exceed the number of

1-27

product terms available on the device. These CAD packages
are relatively inexpensive and available from a number of
vendors including DATA 1/0 (ABEL*), Personal CAD systems
(CUPL*), and AMD (AmCUPL, and PLPL).

We will demonstrate designing with a PAL device witha simple
design example. We want to implement the following combina-
torial logic function (Figure 1-27): ;

O1=/1

02=/11+12

03=11+13

04 = /(/13+14) .

O5 = /(/13+15+16 + |7 + 18+I9)
06 = /(18+19 + /13+/17+19+110)

Figure 1-27. Logic Design Example

For this example, the optimized Boolean equations can be
written in the SOP form:

Oo1=/1
02 = /11«12
03=11+13
O4 =13+ /14
O5 = (I3 + /15 + /16)~/17+(/18 + /19)
= (13+/17 + /15+/17 + /16+/17)+(/18 + /19)
= |3w/17+/18 + /15+/17+/18 + /16+/17+/18
+13+/17+/19 + /15+/17+/19 + /16+/17+/19
06 = (/18 + /19)+(13 + |7 + /19 + /110)
= /18+13 + /I8+17 + /18+/19 + /18+/110
+ /19%13 + /19#17 + /19+/19 + /19+/110

Outputs O5 and O6 have six and eight PTs, respectively.
Using logic minimization (available with most PLD design
packages), O6 can be reduced to the following equation with
only four PTs.

06 = /19 + /18+13 + /18+17 + /18+/110

Logic minimization reduces the number of PTs necessary to
represent a function such that the logic expression can fit into
an output on a PLD. If the number of PTs after minimization
still exceeds the number of PTs for the output pin, then you will
have to use a larger PLD with more PTs per output.

Inverted Logic Expressions

In the above example, we have specified active-HIGH outputs.
However, if you wanted to use an active-LOW PLD such as the
AmPAL16L8, the equations in Figure 1-27 would have to be
converted from active HIGH to active LOW by applying
DeMorgan's theorem as follows:

/01=1

/02=11+/12

/03 =/11+/13

/04 = /13+14

/05 = /13+15+16 + 17 + 18+19
/06 = 18+19 + /13+/17+19+110

The equations are in the SOP form and can map directly into a
PLD.

Note that more advanced PLDs such as the AmPAL22V10
have output macrocells which give the user many output
options. These outputs can be programmed with HIGH or
LOW polarity. Since the output pin is' programmable, you can
choose between the active-HIGH or active-LOW implementa-
tion, whichever, gives the lowest number of PTs per output.

Verify Design

After you have generated the logic equations, you can perform
logic simulation on the resulting equations to test for correct
functionality before actually programming a part. This is an
inexpensive and fast way to catch mistakes. The simulation
procedure uses test conditions or vectors which specify the
inputs to and expected outputs from a PLD. Some CAD
systems can generate the test vectors automatically, or you
can generate them manually.

If manual test vector generation is performed, it is usually done
by the logic designer who knows the design best. The
designer creates a function table showing the inputs and
expected outputs into and from the device. A CAD package
can then convert the data in the function/truth table into a
valid test vector format acceptable by the simulator and the
PLD programmer/tester to be used.

PROGRAMMING PHASE

Once you are satisfied with the results of logic simulation, a
device map can be generated from the equations. Figure 1-28
shows the logic diagram of the AmPAL16L8 for implementing
above equations. We have arbitrarily assigned outputs O1-06
to pins 14-19, and the inputs 11-110 to pins 2-9, 11, and 13.

O1 is assigned to pin 19. To make this output the inverse of I1,
connect input line 0 to product term 1 and disconnect all the
remaining links for this product term. For fuse-based PLDs,
you have to selectively make disconnections by blowing fuses.
Connections are indicated by an X at the intersection of input
line 0 and product term 1 in Figure 1-28.

Since the other PTs for the ""O1" output OR gate are unused,
their outputs are forced to zero by connecting all the links.
When all the links are connected, both the true and comple-
ment value of an input are fed to a PT, resulting in a logic zero.
In Figure 1-28 unused PTs (with all connections intact) are
indicated by Xs in the AND gates at the OR gate inputs.

The final consideration for ''O1" -output is the output enable.
The logic diagram and logic equation for the function O1 do
not show output enable function. This means that "O1"
should be always enabled. In Figure 1-28, PT 0 controls the
Output Enable function for ''O1". PT 0 is always TRUE/HIGH
when all the links in a PT are disconnected. :

1-28

Columns: Inputs (0-31)
Rows: Product Terms (0-63)

NC

0123 4567 B9 12135 W78 20212223 2425267 BHWN

Nemnrwwao

<|_

A
e

<3

N
la -IV)

2

n

3

a7

)

I5—£)

~1
(‘

«
3

a

.

]

33

ls—'}

<+

xxx)

ho

<3

NC

 e— Is

0123 45 6 7 8 9w0mn 12 13 45 16 17 18 19 wWn222 24 25 26 27 2829 30
-—*— =Fuseintact —X— =All fuses intact + = Fuse blown
LD000530

Figure 1-28. Logic Diagram for Example of Using the AmPAL16L8

1-29

The next output /02 is the OR function of |11 and /2. The
equation /02 = 11+ /12 is represented in the PLD by leaving
input line 0 (I1) connected to PT 9 and disconnecting the rest
of the links on this PT. Then since an OR function is needed,
we move to the next PT and leave input line 5 (/12) connected
while disconnecting the other links in PT 10. Since PT 11
through 15 will be unused, we indicate this by putting an X in
the AND gates at the input of the NOR gate. Function O2 is
also always enabled, hence no X is put in the AND gate
representing the enable product term PT 8, indicating that all
the links in PT 8 have been disconnected.

Output /03 is the AND of /I1 and /13. To implement this, input
line 1 (/11) is connected to PT 17. Since we want an AND
function, input line 9 (/13) is also connected to PT 17. These
connections are represented by Xs. The other links in PT 17
are disconnected. Since the rest of the PTs are unused, an X
is placed in the AND gates for PT 18 through 23. The Output-
Enable PT for /03 is also left blank, which will always enable
the output /03.

Output /04 is similar to /03. To generate the AND function,
input line 9 (/13) and input 12 (14) are connected to PT 25,
while the rest of the links in PT 25 are disconnected. The other
PTs are unused, and the output is always enabled.

Output /05 is generated by ANDing /13, 15, and 16 on PT 33,
connecting 17 to PT 34, ANDing 18 and 19 on PT 35, and
leaving PTs 36-39 unused.

/06 is generated by ANDing 18 and 19 on PT 41 and ANDing
/18, /17,19, and 110 on PT 42. Product terms 43 through 47 are
left unused. For both outputs /05 and /06, the output enable
PTs 32 and 40 are left blank to always enable the respective
outputs.

Since pins 12 and 13 are not being used as outputs, Xs are put
in the AND gates for all these product terms.

As you can see, any function can be put into the SOP form and
then a device map generated for it. However, it is very time
consuming to generate these maps by hand. Therefore, PLD
CAD packages have been developed which automatically
generate the PLD map from the Boolean equations. The map
can then be loaded into a PLD programmer to program the
device. .

One such first-generation Assembler based CAD package,
called AMPALASM20*, was developed by AMD. It allows you
to enter Boolean equations using regular logical operators
(AND, OR) and produces a device map. Figures 1-29 and 1-30
show the example in Figure 1-27 written in AmPALASM20 and
the resulting device map.

PAL16L8

PATO01

DESIGN EXAMPLE

ADVANCED MICRO DEVICES

NC 11 12 13 14 15 16 17 18 GND

19 NC 110 06 05 04 03 02 01 VCC

/01=N

/02=11+/12

/03=/11 « /I3

/04 =/I3+14

/05 = /13+I5+16 + /17 + 18+19
/06 = 18+19 + /13+/17+19+110

Figure 1-29. Abbreviated AmMPALASM20 Input

*We have used AmPALASM20 for illustration purpose only. The trend is towards
See "Design Aid Software for Programmable Logic'' section.

1-30

Compiler-based CAD p

DESIGN EXAMPLE

NoOUEWN=O

(RS U ———)
11 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
12 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
13 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
14 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
15 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

16 ——== —mmm mmmm mmem e e e e
17 =Xem =mm= =Xom —mmm —mmm mmmm ——em ———— [11%/13
18 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
19 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
20 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
21 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
22 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
23 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

/13%14

/13%15%16
17
18#19

X-X- I8*19

Py S, SN —— SUNS S & LV) v40 CLa 1)
43 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

44 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

45 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

46 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

47 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

48 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
4G XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
50 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
51 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
52 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
53 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
54 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
55 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

56 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
57 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
58 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
59 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
60 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
61 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
62 XXXX XXXX XXXX XXXX ¥XXX XXXX XXXX XXXX
63 XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

LEGEND: X : FUSE NOT BLOWN (L,N,0) - : FUSE BLOWN (H,P,1)

NUMBER OF FUSES BLOWN = 493
TB000250

Figure 1-30. AMPALASM20 Output Fuse Map

1-31

'

TESTING PHASE

Two tests can be performed after the part is programmed.
First, the PLD programmer can verify that only the links/
connections specified in the device map have been pro-
grammed in the part. Second, the programmed part can be
tested for correct functionality; the same test vectors used for
logic simulation can be used to test that the device generates
the correct outputs for a given combination of inputs. The test
vectors in the device map will be in a JEDEC-standard format
(see Device Map).

If the device does not function as expected or differs from the
logic simulation results, then the device is malfunctioning. The
test phase can be performed on PLD programmers with
testing capability.

THE DEVICE MAP
Fuse-Based and Erasable PLDs

Fuse-based PLDs have fuses that form the links or connec-
tions in the device. Electrically-erasable PLDs or UV-erasable
PLDs have erasable cell arrays that form the connections.
Erasable PLDs can be considered as having "erasable links"
in this discussion.

Fuse-based PLDs are shipped by the manufacturer with all
fuse links intact. A function is programmed into the part by
selectively blowing or programming the fuse links that are not
needed. On the other hand, an erased PLD has no connec-
tions at all. The designer will have to selectively make
connections in order to implement a function. These fuses or
links are specified in a data file called a fuse map or a device
map.

This device map can be expressed in many formats, but one of
the most common formats is the Joint Electronic Devices
Engineering Council (JEDEC) standard which is supported by
most PLD programmers and semiconductor manufacturers.

The JEDEC Standard (No. 3-A May 1986)

The standard put forth by the JEDEC committee contains
many options which are used for transferring data between a
PLD development system and a PLD programmer/tester. A
minimum configuration JEDEC-device map file contains at
least the following fields: F, L, and C.

This is a sample JEDEC-device map file:
.FO‘
L0000 0110 0100 1000 1010*

L0032 1000 0000 0000 0000*
Co078*

Figure 1-31. Minimum Configuration Device
Map File

The device map file starts with a design-specification field
which may contain any ASCIl character (except ''*'') to
describe the design. This field is terminated by an "'*"'.

The F field specifies the default link state of any unspecified
fuses in the PLD. In Figure 1-31, "FO0" will set all unspecified
fuses in the PLD to the O state (i.e., a low resistance link
specifying a connection between two points) A '"1" would
have specified a high-resistance link or no logical connection
between two points. In fuse-based PLDs, a ''1" would have
instructed the PLD programmer to burn/blow the fuse con-
necting two points. The programmer will leave the fuse
connected when a "'0" is received.

The L field specifies the address of the fuse link that is to be
programmed. A sequence of binary numbers follows which
specifies the fuse states of the fuses starting at the address

specified by the L field. Referring to Figure 1-31, the first fuse
to be programmed is at location ''0000" decimal and the fuse
state is "0".

The binary digits following the first ''0"" refer to the fuses
following the fuse at location 0. When an "'*'" is detected, the
fuse link information field terminates unless another Lxoocx is
specified. In Figure 1-31, sixteen fuse states are transmitted
beginning at fuse location 0. More fuse information will be
transferred to the PLD programmer, but will now start at fuse
location 32 decimal because of the new L field L0032.

The C field specifies the fuse checksum that is used by the
PLD programmer to detect transmitting and receiving errors.
This checksum is for all the fuses in the PLD, not only for the
fuses specified in the file. The fuse checksum is a 4-digit
hexadecimal value representing the unsigned 16-bit sum of 8-
bit bytes formed with the fuse states. The 8-bit bytes are
formed as follows:

word 0 msb Isb
7]e|s5]a]s|2]1]o0
71lelsla TelT1Tol tuse #
word 1 msb Isb
7le|s5la|3|2 0
1511411312111 17107 o [8 | fuse #
word 4 msb Isb
7le|5lalal2]1]o0
3938371361351 3413332] fuse #
word 12 msb - Isb
7]e|s5lalal2]1]o0
x I'x I x 1 xTooloslozloel fuse #

8-bit bytes formed for a PLD with 100 fuses

Unused bits in the last byte are filled with "'0s". For the fuse
map example, the fuse checksum is calculated as follows:

Word 0
Word 8
Word 16
Word 24
Word 32
Word 40

0010 0110
0101 0001
0000 0000
0000 0000
0000 0001
0000 0000

0000 0000
0111 1000 —

Word 96
Total

0078H

A PLD data sheet will usually show the JEDEC fuse numbers
for every fuse link in the device. PLD CAD packages usually
have a JEDEC fuse-map generator which relieves the design-
er from having to individually program the fuses in a PLD to
implement a logic circuit.

TESTING THE PLD

If the PLD programmer has functional testing capability, test
vectors can be inserted into the fuse map file. These test
vectors begin with a "V'" and a decimal vector number
followed by a sequence of characters symbolizing the inputs
and expected outputs to every pin on the device. Each vector
is terminated by an ""*''. For example, the AmPAL22V10 has
twenty-four pins. If the signals A,B, and C are assigned to pins
1, 2, and 23, then the following test vectors can be used to
check that a two-input XOR function programmed into the
AmPAL22V10 is functioning properly.

Xo*
Vo1
Vo2
Vo3
Vo4

OOXXXXXXXXXNXXXXXXXXXXLN®
01 XXXXXXXXXNXXXXXXKXXXHN*
TOXXXXXXXXNX XXX XXXXXXHN*
11NN

pin 1
pin 2

pin 23

The X field defines the don't care condition in the test vectors.
The N field represents power pins and pins that are not tested.
In this case the two Ns in the four vectors represent the V¢
and ground pins.

There are many test-vector specification options available, but
this is the minimum configuration for including test vectors in a
fuse map file. This test-vector file is normally appended to the
end of the fuse-map file to improve readability and documenta-
tion, but it can actually be placed anywhere in the fuse-map
file if the test engineer so desires. These vectors were
manually generated, but some CAD packages support auto-
matic test vector generation.

PLD PROGRAMMER TRANSMISSION
PROTOCOL

The data transfer protocol used to transfer the fuse map to a
PLD programmer is simple. The transmission consists of the
start-of-text (STX) character, the fuse-map information (fuse-
link states, test-vector information, and fuse checksum), the
end-of-text (ETX) character, and the transmission checksum.
The transmission checksum is the unsigned 16-bit sum
(modulo 65,535) of all the ASCIl characters transmitted
between and including the STX and ETX.

XA XB XC XD XOR_Y (XAXB,XC,XD)

00 0 0 0
00 0 1 1
00 1 0 1
00 1 1 0
01 0 0 1
01 0 1 0
01 10 o0
001 1 1 1
100 0 1
1 00 1 0
1010 o0
1.0 1 1
1100 o0
110 1 1
111 0 1
1111 o0

Some computer operating systems do not allow users to
control what characters are sent. If this is the case with your
PLD development system, then the transmission checksum
must be disabled by always sending the dummy value "'0000".
Any PLD programmer complying with this JEDEC standard will
always accept this as a valid transmission checksum.

DESIGN EXAMPLES

We will illustrate the design examples of two combinatorial
functions and two sequential functions using PAL devices. For
the combinatorial examples we will show the implementation
of a 4-bit 'exclusive-OR generator'' and an 8:1 MUX in a PAL
device. Instead of using standard SSI/MSI devices, both
functions can be performed in the same PAL device.

Identify Device Requirements

The 4-bit XOR requires four inputs and one output pin; the 8:1
MUX requires eight data lines, three select lines, and one MUX
output. The PLD selected must therefore have at least fifteen
inputs and two outputs. In this example, we are also assuming
active-HIGH outputs. The AmPAL18P8 fits all the |1/0O require-
ments. However, the number of product terms (PTs) can only
be determined from the function table.

Figures 1-32.a and 1-32.b show the truth tabies for both these
functions. Figure 1-32.c shows logic diagrams for both 4-input
XOR and 8:1 MUX functions. The XOR and MUX functions can
be described in a high-level language-type syntax (Figure
1-33) directly from these truth tables. (For detailed discussion
of PLPL syntax, see ''Design-Aid Software for Programmable
Logic'" section).

XOR__Y (XA,XB,XC,XD) = /XA#/XB+/XC+ XD

+ /XA«/XB+ XC+/XD
+ /XA XB#+/XC+/XD
+ /XA« XB+ XC+ XD
+ XA+/XB#/XC+/XD
+ XAs/XB* XC+ XD
+ XA+ XB#/XC+ XD
+ XA+ XB+ XC+/XD

Figure 1-32.a. 4-Bit XOR Truth Table and Logic Equations

1-33

S2 81 S0 D7 D6 D5 D4 D3 D2 D1 DO MUX_Y
0 0 x x x x x x x Do Do

0 0 1 x x x x x x D1 x D1 MUX_ Y = /82'/81'/886
0 1 0 x x x x x D2 x x D2 /S2+/S1+ SO0+ D1
0 1 1 x x x x D3 x x x D3) /S2+ S1+/80+ D2
1 0 0 x x x D4 x x x x D4 /S2+ S1+ SO~ D3
1 0 1 x x D5 x x x x X D5 S2+/S1+/S0+ D4
1 1 0 x D6 x x x X x X D6 S2+/S1+ S0+ D5
1 1 1 D7 x x X X X X X D7 S2+ 81+/S0+ D6

S2« 81+ S0+ D7

Figure 1-32.b. 8:1 MUX Truth Table and Logic Equations

Based on the function table, we see that the XOR and MUX has eight PTs per output, and hence satisfies all the I/0 and
functions require eight PTs each. Figure 1-32.c shows the PT requirements.
logic diagram for both of these functions. The AmPAL18P8

XORY = /XA » /XB » /XC * XD +

o /XA + IXB » IXC * /XD + /82 ——|
ford /XA » XB * /XC * /XD + 51 ——
XA * /XB * /XC * /XD + /50—)—
XA + XB » XC + XD + 00—
x XA * /XB + XC * XD +
g‘(z XA = XB * /XC * XD + /-7 R—
/XD XA * XB * XC * /XD 151 ——
& D —
D1 ——
g
XC /gf —
o s = —
p2 ——]
/52
s st
XORY S0
D3
XA MUXY
X8 g) I
XC /gf
X0 150
D4
2
X s
/)
D5
P
/XC gf
/XD MUXY = /S2 = /St * /SO » DO + /%0
/52 « /S1+ 50 * D1 + e
/52 + 1+ /S0 * D2 +
e /52 + S1+ 50+ D3 +
XC 82 » /S1 + /S0 » D4 + s2
XD §2 +/S1+ 50+ D5+ s
S2 +S1 + /S0 * DB + ped
§2 + S+ 80 + D7
LD000520

Figure 1-32.c. Logic Diagrams for a 4-Input XOR and 8:1 MUX

1-34

"test vectors to be used for simulation*

IN S2 S1 S0 XA X8 XC XD D7 D6 D5 D4 D3 D2 D1 DO

OUT XOR_Y MUX_Y

TEST_VECTORS

DEVICE XORMUX (AMPAL18P8)

“This logic description file written in PLPL defines

.

=1

an AmPAL18P8 performing a 4-bit EXOR and an 8

multiplexing function®

BEGIN

put test"
"S2 S1 SO XA XB XC XD D7 D6 D5 D4 D3 D2 D1 DO

“XOR_Y out,

X;

XOR_Y MUX_Y"

XB=2 XC=3 X0 =11

PIN XA =1

L

X X X0 000X X X X X X X X

X X X 000

04 =8D5=9D6=1307 =14

D3 =7

D2 =6

00=4 D1 =5
S0 = 15

H X;
H X
L X
H X
L X
L X
H X

X X X X X X X X
H

1

$1 =16 82 = 17

.

0 X X X X X X X X

1

X X X 00
X X X 0 0 1

.

MUX_Y = 18 XOR_Y = 19

T XX X X X X X X

00X X X X X X X X

’

1

X XX 0101 X X X X X X X X

X X X 0

BEGIN

.

"4-bit EXOR function"

XOR_Y = XA XOR XB XOR XC XOR XD
CASE (S2,S1,S80)

’

10X X X X X X X X

X X x 01
11

X X X 0

2

X;

1T XX X X X X X X

BEGIN

000X X X X X X X X

00
0
0
1

1
1
1

1

X X X
X X X 1

= D0; "if select lines are all 0, then select DO"

1) MUX_Y = D1

0) MUX_Y

L X
L X

X X X X X X X X

1

.

2) MUX_Y = D2

:

0 X X X X X X X X
T X X X X X X X X

1
1

1
1
1
1

X X X
X X X
X X X
X X X
X X X 1

3) HUX_Y =D3

1

X

‘

4) MUX_Y = D4

L X;
H X

H
L

00 X X X X X X X X
01 X X X X X X X X

.

5) MUX_Y =D5

1

.

6) MUX_Y = D6

X;
X;

0 X X X X X X X X
1T X X X X X X X X

1
1

1

put test®

000X X X X X X X X X X X0
000 X X X X XX XXX XX 1
001 X X X X XXX XXX O0X

X X X

“MUX_Y out

.
’

7) MUX_Y = D7

“end of CASE statement”

END;
END.

L;

X
X
X
X
X

H;

L

H;
L

0 01T XX XX XX XXXX 1X

0 X X X X X X X X X 0 x X

1

0 10X X X X XX XXX 1 XX

X H;
X L;

1 X X X X XX X X 0 X X X

1
100 X X X X X X X 0 X X X X

1
1

0
0

X H;
X L;
X

X X X X X XX X 1 X X X

H;

00 X X X X X X X 1 X X X X
101 X X X X XX 0 X X X X X

1

L;

X
X
X
X
X
X

H;

X X X X XX 1 X X X X X
10X X X X X0 X X X X X X
10X X X X X 1 X X X X X X

o1

1
1
1
1
1

END.

L;

H;

L;

1T X X X X 0X X X X X X X
1T XX XX 1 XXX X X X X

1
1

H;

TB000370

Figure 1-33. Logic Description File for the XOR and MUX Functions

1-35

Test vectors can be generated (Figure 1-34) from the logic
description file (Figure 1-33) and sent to a simulator to test the
logic equations. In this example, the vectors are generated
from the test vectors specified manually. After simulation
(Figure 1-35), a device map (Figure 1-36) is generated from
these equations and the PLD programmed (Figure 1-37) with
the map.

The inputs XA, XB, XC, XD, DO through D7, and select lines SO
through S2 may be assigned to any input or 1/0 pin as shown
in the AmPAL18P8 logic diagram. The outputs XOR__Y and

MUX Y have been assigned to pins 18 and 19. Since we
have not specified any Output-Enable product term, PLPL
assumes that the outputs will always be enabled. In the
completed device map (Figure 1-37), all the connections for
the Output- Enable PTs for the two outputs XOR_Y and
MUX_Y have been disconnected which will always enable
the outputs.

The input and output signals can be reassigned to different
pins on the PLD package to fit your PC board routing
requirements.

V0001 O0O0XXXXXXNOXXXXXXXLN
V0002 O00O0XXXXXXN1XXXXXXXHN
V0003 00 1XXXXXXNOXXXXXXXHN
V0004 O0TXXXXXXN1XXXXXXXLN
V0005 010XXXXXXNOXXXXXXXHN
V0006 O10XXXXXXNTXXXXXXXLN
V0007 011XXXXXXNOXXXXXXXLN
V0008 011XXXXXXNTXXXXXXXHN
V0009 100XXXXXXNOXXXXXXXHN
V0010 100XXXXXXN 1XXXXXXXLN
V0011 101XXXXXXNOXXXXXXXLN
V0012 101XXXXXXNTXXXXXXXHN
V0013 110XXXXXXNOXXXXXXXLN
V0014 110XXXXXXNTIXXXXXXXHN
V0015 11IXXXXXXNOXXXXXXXHN
V0016 111XXXXXXNIXXXXXXXLN
V0017 XXXOXXXXXNXXXXOOOLXN
V0018 XXX 1XXXXXNXXXXOOOHXN
V0019 XXXXOXXXXNXXXX100LXN
V0020 XXXX1XXXXNXXXX100HXN
V0021 XXXXXOXXXNXXXXO1OLXN
V0022 XXXXXTXXXNXXXX010HXN
V0023 XXXXXXOXXNXXXX110LXN
V0024 XXXXXXTXXNXXXX110HXN
V0025 XXXXXXXOXNXXXXO01LXN
V0026 XXXXXXXTXNXXXX001HXN
V0027 XXXXXXXXONXXXX101LXN
V0028 XXXXXXXXINXXXX101HXN
V0029 XXXXXXXXXNXXOXO011LXN
V0030 XXXXXXXXXNXX1X011HXN
V0031 XXXXXXXXXNXXX0111LXN
V0032 XXXXXXXXXNXXX1111HXN

* % % % % % % % ¥ ¥ * % ¥ % % % % % % % ¥ ¥ % * ¥ * ¥ ¥ * % *

%

TB000360

Figure 1-34. Test Vectors for EXOR and 8:1 MUX PLD Design

1-36

le-}

V0001 INPUT OUTPUT V0008 INPUT OUTPUT V0015 INPUT OUTPUT

111N 1 1Mm 1 M1 11
Pin # @ 1234567891234567 89 Pin # : 1234567891234567 89 Pin # @ 1234567891234567 89
Expected: O00XXXXXXOXXXXXX ===> XL Expected: 011IXXXXXX1XXXXXX ===> XH Expected: 111XXXXXXOXXXXXX ===> XH
Computed: LL Computed: LH Computed: LH
V0002 INPUT OUTPUT V0009 INPUT OuTPUT V0016 INPUT OUTPUT
ARRREED] 1 1111 1 1111 1
Pin # @ 1234567891234567 89 Pin # : 1234567891234567 89 Pin # : 1234567891234567 89
Expected: O0OXXXXXXTXXXXXX ===> XH Expected: 100XXXXXXOXXXXXX ===> XH Expected: 1TIXXXXXXTXXXXXX ===> XL
Computed: LH Computed: LH Computed: L
V0003 INPUT OUTPUT V0010 INPUT ouTPUT V0017 INPUT OUTPUT
1M1 1" ARRRRRA 1" 1111111 1
Pin # : 1234567891234567 89 Pin # : 1234567891234567 89 Pin # @ 1234567891234567 89
Expected: O01XXXXXXOXXXXXX ===> XH Expected: 100XXXXXXIXXXXXX ===> XL Expected: XXXOXXXXXXXXX000 ===> LX
Computed: LH Computed: LL Computed: LL
V0004 INPUT OUTPUT Vo011 INPUT ouTPUT V0018 INPUT OUTPUT
1"”nm n 1M 1 ARRRRER] 1"
Pin # @ 1234567891234567 89 Pin # : 1234567891234567 89 Pin # : 1234567891234567 89
Expected: O0TXXXXXX1XXXXXX ===> XL Expected: 101XXXXXXOXXXXXX ===> XL Expected: XXX1XXXXXXXXX000 ===> HX
Computed: LL Computed: LL Computed: HL
V0005 INPUT OUTPUT V0012 INPUT ouUTPUT V0019 INPUT OUTPUT
11111 1 1M 1 EERRERE] 1
Pin # @ 1234567891234567 89 Pin # : 1234567891234567 89 Pin # : 1234567891234567 89
Expected: G10XXXXXXOXXXXXX ===> XH Expected: 10TXXXXXXTXXXXXX ===> XH Expected: XXXXOXXXXXXXX100 ===> LX
Computed: LH Computed: LH Computed: L
V0006 INPUT QUTPUT V0013 INPUT OUTPUT V0020 INPUT OUTPUT
1mnn 1" mim 1" 1mun 1
Pin # : 1234567891234567 89 Pin # : 1234567891234567 89 Pin # 1 1234567891234567 89
Expected: OTOXXXXXX1XXXXXX ===> XL Expected: T10XXXXXXOXXXXXX ===> XL Expected: XXXX1XXXXXXXX100 ===> HX
Computed: LL Computed: LL Computed: HL
V0007 INPUT OUTPUT V0014 INPUT OUTPUT V0021 INPUT OUTPUT
111 1 1“1 1" 111111 1
Pin # : 1234567891234567 89 Pin # : 1234567891234567 89 Pin # 1 1234567891234567 89
Expected: 011XXXXXXOXXXXXX ===> XL Expected: T10XXXXXXIXXXXXX ===> XH Expected: XXXXXOXXXXXXX010 ===> LX
Computed: LL Computed: LH Computed: LL
TB000350

Figure 1-35. Simulation Run for EXOR and MUX PLD Design

8e-1

INPUT
ARRRRRE

: 1234567891234567

XXXXX1XXXXXXX010

11M1Im
1234567891234567
XXXXXXOXXXXXX110

1nmmm
1234567891234567
XXXXXXIXXXXXX110

1mmm
1234567891234567
XXXXXXXOXXXXX001

1M
1234567891234567
XXXXXXX1XXXXX001

1mum
1234567891234567
XXXXXXXXOXXXX101

mmm
1234567891234567
XXXXXXXXTXXXX101

===>

s==>

===>

OUTPUT

Simulation completed, Errors detected = 0

INPUT

1M1
1234567891234567
XXXXXXXXXXX0X011

mnn
1234567891234567
XXXXXXXXXXX1X011

1M
1234567891234567
XXXXXXXXXXXX0111

1M
1234567891234567
XXXXXXXXXXXXT11

===>

===>

===>

===>

OUTPUT

Figure 1-35. (Cont'd.)

Listing sum-of-products equations for XORMUX

XOR_Y

MUX_Y

= /XA*XB*/XD*/XC
+ /XA*XB*XD*XC
+ [XA*/XB*XD*/XC
+ /XA®/XB*/XD*XC
+ XA*/XB*/XD*/XC
+ XA*/XB*XD*XC
+ XA*XB*XD*/XC
+ XA*XB*/XD*XC;

= /S2*/$1*/S0*D0
+ /S2*/S1*S0*D1
+ /S2*S1*/S0*D2
+ /S2*S1*S0*D3
S2*/S1*/S0*D4
$2*/S1*S0*D5
S2*$1*/S0*D6
$2*S1*S0*07;

+ + + +

TB000340

6€-4

Title: XORMUX

Part Type: PAL18P8*
DEVICE: PAL18P8*
MFG: AMD*

FO*

L0000
L0036
L0072
Lo108
L0144
L0180
L0216
L0252
L0288
10324
L0360
L0396
L0432
L0468
L0504
L0540
L0576
L0612
L0648
L0684
L0720
L0756
L0792
L0828
L0864
L0900
L0936
L0972
L1008
L1044
L1080
L1116
L1152
L1188
L1224

1M1 1111 1111 1111 111 1111 1111 1111 1>
1010 1011 1111 1111 1111 1111 1111 1101 1111*
1010 0111 1111 1111 1111 1111 1111 1110 1111*
0110 1011 1111 1111 1111 1111 1111 1110 1111*
0110 0111 1111 1111 1111 1111 1111 1101 111>
1001 1011 1111 1111 1111 1111 1111 1110 1111*
1001 0111 1111 1111 1111 1111 1111 1101 1111*
0101 1011 1111 1111 1111 1111 1111 1101 111*
0101 0111 1111 1111 1111 1111 1111 1110 111>
1111 1111 1111 1111 1111 1111 1111 1111 1111+
1111 1111 0110 1110 1110 1111 1111 1111 1111*
1111 1111 1110 0110 1101 1111 1111 1111 1111*
1111 1111 1110 1101 0110 1111 1111 1111 1111*
1111 1111 1110 1101 1101 0111 1111 1111 111>
1111 1111 1101 1110 1110 1111 0111 1111 1111*
1111 1111 1101 1110 1101 1111 1111 0111 1111*
1111 1111 1101 1101 1110 1111 1101 1111 1111*
1111 1111 1101 1101 1101 1101 1111 1111 111>
0000 0000 0000 0OCO 0000 0000 0OCO 0000 0000*
0000 0000 GOCO 0COO0 0000 0000 0000 0000 0000*
0000 00O 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0GCO (0000 0000 00CO 0000 0000*
0000 0000 0000 0000 0000 0000 00CO 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0CCO 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0COC 0000 0000*
0000 0000 0000 0000 0000 0000 0COC 0000 0000*
0000 0000 0000 0000 0000 0000 0000 GOOC 0000*
0000 0000 0000 00CO 0000 0000 0000 0000 000C*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*

L1260
L1296
L1332
L1368
L1404
L1440
L1476
L1512
L1548
L1584
L1620
L1656
L1692
L1728
L1764
L1800
L1836
L1872
L1908
L1944
L1980
L2016
L2052
L2088
L2124
L2160
L2196
L2232
L2268
L2304
L2340
L2376
L2412
L2448
L2484
L2520
L2556
L2592
C4876*
B97A

0000 0000 0000 0000 0000 0000 G000 0000 0000*
0000 0000 0000 0000 00CO 0000 0000 0000 GOOC*
0000 0000 0000 0000 0000 00CO GOGO 0000 0COO*
0000 0000 0000 GOCO GOCO 0000 0000 0000 0CO0*
0000 0000 0000 0000 00CO 0000 COCO 0000 0000*
0000 0000 0000 G000 00CO 0000 G000 00C0 0000*
0000 0000 0000 0000 00GO0 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 00O 00C0 0000*
0000 0000 0000 0000 0000 0000 0000 0C00 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0COC 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0CO0*
0000 0000 0000 0000 0000 0000 0000 0000 0G00*
0000 0000 0000 0000 0000 0000 0OCO 0000 0GOO0*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 G000 0000 0000 0C00 0000 0000 0000 0000*
0000 0000 0000 0000 0000 00CO 0000 0000 0000*
0000 0000 0000 0000 0000 0000 G000 0000 000C*
0000 0000 0000 0000 0000 0COO0 0000 0000 0000*
0000 0000 0000 00CO 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0OCO 0000 0GOC*
0000 0000 0000 0000 0000 0000 0000 G000 000C*
0000 0000 0000 0000 G000 GOGO 0000 0000 COO00*
0000 0000 0000 G000 0000 000G 0000 0000 0000
0000 0000 0000 00CO 0000 0000 0000 0000 0COO*
0000 0000 0000 0000 00CO.0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 000C*
0000 0000 0COO0 0000 0000 00CO G000 0000 000O*
0000 0000 00C0 0000 0000 0000 0000 0000 0000*
0000 0000 00CO 0000 0000 0000 0000 0000 000C*
0000 0000 0000 0000 0000 0000 0000 0000 000C*
0000 0000 000G G000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 0000 0000 0000 0000 0000 0000*
0000 0000 0000 COCO 0000 0000 COGO 0000 0000*
0000 0000 0000 00CO 0000 0000 GOOC 0000 0000*
0000 0000 0000 COCO G000 0000 0000 0000 0000*
11000000*

TB000380

Figure 1-36. Device/Fuse Map for EXOR and MUX PLD Design

PRODUCT TERMS (0-71)

XA

XxB

D4

INPUTS (0-35)

0123 4567 A90WN NPMIS WTWW 12N22) MNWWT WB2HN RVMN

>, = e
D
:
3
.
. p—19 XOR
.
r
. -
A
25 }
% 5—N
»
"
2
“
“ p—18 MUX.Y
-
-
”
3 —I‘l ~}—
| 4 ® ~
] X
.
an X
2
2 X —17 82
2 X
s X
» X L
; Py
4 5 =)
- ;
»
0
» X
i X —16 81
£] X
» X
» 3 2
N 4'
X% X
Y 1%
” X
» X
» X
“© X
“ X ——15 80
2 X
L X
“ E3 *
A
) N——
- -
“ = -
o7 X
- X
“ X
s X —14 D7
L) X
2 X
L) X x>
P —=<}—
i o——
™y X
£] X
[:4 X
L] X
» X y—13 D8
L] X
L) X
2 X *
>
X T
¥ 2
“ B
L] X
L]
(3 (X
- 3 —12
L] X
0 £
n £3 3+
» ‘-
'S ———-—ﬂ__—_
»
o1
"% p———eee— 11 XD
N
0123 46567 Q9101 RUHIE BTHN 0212223 BN WWW0N 23N
LD000042
Eighteen Array Inputs Eight 8-Wide AND-OR Structures
- 10 dedicated - Combinatorial outputs
- 8 bidirectional 1/0 - Programmable output enable for each output

- Programmable polarity on each output

Figure 1-37. AmPAL18P8 Programmed with EXOR and MUX Design

1-40

SEQUENTIAL DESIGN EXAMPLE

Next we will show implementation of a 4-bit binary up-counter
and a decade counter in a single PAL device.

Design of a Synchronous Binary Counter

Counters are one of the simplest types of sequential networks.
A synchronous counter is usually built from a number of flip-
flops which change state in a prescribed sequence when input
pulses are received. The operation of the flip-flops is synchro-
nized to a common input pulse (a common clock).

Synchronous counters are used for state sequencing, delay
timing and event counting. The key to designing a counter is
knowing when a bit should be toggled. For an up-counter, a bit
is toggled whenever every bit of lesser significance is ''1"' (see
the counting sequence of Figure 1-38).

Conversely, for a down-counter, a bit is toggled whenever
every bit of lesser significance is ''0". In both cases, the LSB
is always toggled. By ANDing all bits of lesser significance
along with the complement of the current data in the register,
the problem of when this bit is to be toggled is solved.
However, to complete the design, the bit must remain un-
changed under all other conditions. This can be accomplished
by ORing the complements of the lesser significant bits
together and then ANDing the result with the current data in
the register (Figure 1-39). The equation in Figure 1-39 can be
changed into the SOP form (Figure 1-40) for direct implemen-
tation in a PAL device. Thus, if a bit is to be toggled, the
complement of the current data will be clocked in; if not, the
data remains unchanged by clocking in the current data.

A 4-bit binary up-counter example illustrates this approach.
We will build this 4-bit binary counter using D flip-flops. The
state of the counter is determined by the state of the individual
flip-flops. For example, if flip-fiop A is in state 0, B in state 1, C
in state 1 and D in state O, the state of the counter is 0110.
Initially all the flip-flops are set to the zero state. When a clock
pulse is received, the counter will change to state 0001; when
a second clock pulse is received, the state will change to
0010, etc. The state-counting sequence is shown in Figure
1-38.

Figure 1-41 shows the state diagram for a 4-bit binary up-
counter. Typical counter functions are loading data, counting,
and "holding'* data. The function table is shown in Figure 1-42
and the logic diagram in Figure 1-43.

CURRENT NEXT
STATE STATE
0000 0001

0001 0010
0010 0011
0011 0100
0100 0101
0101 0110
0110 0111
0111 1000
1000 1001
1001 1010
1010 1011
1011 1100
1100 1101
1101 1110
1110 1111
1111 0000

Figure 1-38. Counting Sequence

/00
/a1
/Q2 Qi /TOGGLE
o]
/TOGGLE = Qie(/Q0 + /Q + /Q2 + .+ /Qi1)
LD000500

Figure 1-39. Logic for Not Toggling Bit |

/Q0
Qi

/Q1
Qi

/ TOGGLE

/Q2
Qi

/Qi-1
Qi

=
=

/TOGGLE = /Q0eQi + /Q10Qi + /Q20Qi + ... + /Qi-1eQi
LD000510

Figure 1-40. Equivalent Form of Figure 1-39

1-41

DF006140

Figure 1-41. State Diagram of a 4-Bit Binary Up-Counter (16 States)

OUTPUTS

Q2 Q1p Q0p Q3 Q2 Q4 Qo

Q3

1

Q2o Qig Q0o

Q3o

INPUTS

S

1

CLEAR
LOAD
COUNT

HOLD

TB000320

Figure 1-42. Function Table for 4-Bit Binary Up-Counter

1-42

09990008

%0

Jaunod-dn Areuig ug-v "ey-1 ainbig

lo

00

¥0070
—¢

N

A¥a

L

1-43

Expanding the number of bits in the counter is done by
expanding the function table to incorporate the additional bits.
Karnaugh maps, although not essential, can be used to find
the required equations in SOP form for a PAL-device imple-
mentation. In general, besides any fixed overhead for control
functions (CLEAR, LOAD, and HOLD in this example) bit n will
require additional n product terms. Therefore, if this example
4-bit counter is to be expanded to 5 bits, the fifth bit will require
five product terms plus three additional product terms for
clearing, loading, and counting (see Figure 1-44). Note that the
original 4-bit block is unaffected by the addition of the fifth bit.

" This basic counter is easily expandable to perform more

complex functions.

A high-level language design specification for the 4-bit binary
counter is shown in Figure 1-45. Corresponding test vectors
are shown in Figure 1-46 and are used as inputs by the
simulator to test the logic equations. Figure 1-47 shows the
PLPL Optimizer's output; Figure 1-48, the equations list; Figure
1-49, the simulation run; Figure 1-50, the device map; and
Figure 1-51, the implementation of this function in an Am-
PAL16R8 device (Note that Figures 1-46 through 1-51 also
implement a decade-counter function, the description for
which follows).

r-——="=-"=-"=-"="="=-=-- ONGINAL 48T COURTERBLOCK . T T T T T T T T T T« |

[| 5 3 5 5 |

—Is l !
R : :
} [}

- !

3 |

T N il i ! !

U Miskogsls U Jou || 0000 !

" Ty 1) :

] |

J \ [: ﬂx /!x LL ds :

> - W :
]!]] o I

T L ' !
Ly : L& :

| A AU ISR -

i i i ' 0.30006650

Figure 1-44, 5-Bit Binary Up-Counter

sv-

DEVICE BIN_DCD_CNTR (AMPAL16R8) IF (/BIN[31*/BIN[2)*/BIN[1]* BIN[0]) THEN BIN[3:0} := 2;
“An AmPAL16R8 programmed as a dual base counter: binary and decimal® IF (/BIN[31*/BIN[2]* BIN[11*/BIN[01) THEN BIN[3:0] := 3;
PINCLK=1 s1=2 §0=3 D[3:00 = 5,6,7,8 "data" IF (/BIN[31*/BIN[2]* BIN(11* BIN[O]) THEN BIN[3:0] := 4;
/BIN(3:0] = 19,18,17,16 “binary counter active LOW" IF (/BIN[3]* BIN[21*/BIN[1)*/BINIO]) THEN BIN[3:0] := 5;
/bCD(3:0) = 15,14,13,12; “decimal counter active LOW" IF (/BIN[3)* BIN[21*/BIN[1]* BIN[O]) THEN BIN[3:0] := 6;
BEGIN IF (/BIN[31* BIN[21* BIN[1]*/BIN[O]) THEN BIN[3:0] := 7;
IF (/S1*/S0) THEN “clear" IF (/BIN[3}* BIN[2)* BIN[1]* BIN[O]) THEN BIN[3:0] := 8;
BEGIN IF (BIN[31*/BIN[21*/BIN[11*/BIN[0]) THEN BIN[3:0] := 9;
BIN[3:0] := 0; "“output is active LOW" IF (BIN[31*/BIN[21*/BIN[11* BIN[O]) THEN BIN[3:0] := 10;
DCD[3:0] := 0; IF ¢ BIN[31*/BIN[21* BIN[1]1*/BIN[O]) THEN BIN[3:0] := 11;
END; IF ¢ BIN[31*/BIN[21* BIN[1]* BIN[O]) THEN BIN[3:0] := 12;
1F (/S1*S0) THEN “load" IF (BIN[3]* BIN[21*/BIN[11*/BIN[01) THEN BIN([3:0] := 13;
BEGIN IF ¢ BIN[3}* BIN[21*/BIN[1]* BIN[O]) THEN BIN[3:0] := 14;
BIN{3:0) := D[3:0); IF ¢ BIN[3]* BIN[21* BIN[1]*/BIN[0]) THEN BIN[3:0] := 15;
DCD(3:0] := D(3:0]; IF ¢ BIN[31* BIN[21* BIN[1]* BIN[0]) THEN BIN[3:0] := 0;
END; END;
IF (S1*/S0) THEN “hold" END.
BEGIN TEST_VECTORS
BIN[3:0] := BIN[3:01; “hold BIN and DCD active LOW" IN CLK,S1,50,D(3:0); I_0 BIN[3:0],DCD(3:01;
DCD(3:0] := DCD[3:0]; BEGIN
END; “CLK S1 SO DATA | BIN[3:0] DCD[3:01"
IF (S1*S0) THEN “count® c 0 10110 LHHL LHHL ; “load"
BEGIN c 1 01 LHHL LHHL ; “hold®
IF (/DCO[31*/DCD[21*/DCD[11*/DCD[0]) THEN DCD(3:0] := 1; c 0 00110 LLLL LLLL ; "clear, start count from 0%
IF (/DCO[31*/DCD[21*/DCDL11* DCD{0]) THEN DCD[3:0] := 2; c 1 10110 LLLH LLLH ; *“count"
IF (/DCD[31*/DCD[2]1* DCD{11*/DCD[01) THEN- DCD(3:0] := 3; c 1 10110 LLHL LLHL ; “count®
IF (/0CD[31*/DCD(2)* DCOL[1)* DCD[0]) THEN DCD(3:0) := 4; c 1 10110 LLHH LLHH ; “count"®
IF (/DCD[3)* DCD[2)*/DCO{11*/DCD[0)) THEN DCD[3:0] := 5; c 1 1010 LHLL LHLL ; “count®
IF (/DCO(31* DCD[2]*/DCDL11* DCDIO1) THEN DCD(3:0] := 6; c 1 1010 LHLH LHLH ; “count®
IF (/DCD3}* DCD{21* DCDL11*/DCD[0]) THEN DCD[3:0] := 7; c t 10110 LHHL LHHL ; “count"
IF (/DCO[31* DCD[2)* DCOL11* DCDL0)) THEN DCD[3:0) := 8; c 1 10110 LHHH LHHH ; “count"
IF (¢ DCD{3)*/DCD[2)*/DCD[11*/DCD(0]1) THEN DCD([3:0] := 9; c 1 10110 HLLL HLLL ; ‘“count“
IF (DCO[3]*/DCD{21*/DCD[11* DCO[0}) THEN DCD[3:0] := O; c 1 1010 HLLH HLLH ; ‘“count®
IF ¢ DCD[3)*/DCD[21* DCD{11*/DCO[01) THEN DCD(3:0] := O; c 1 10110 HLHL LLLL ; “count"®
IF ¢ DCD[31*/DCD[21* DCO{11* DCO[01) THEN DCD(3:0} := O; c 1 1010 HLHH LLLH ; *"count"
IF ¢ DCD(3)* DCD[21*/DCDL11*/DCO[0}) THEN DCD(3:0] := 0; c 1 10110 HHLL LLHL ; ‘"count®
IF (DCO[3]* DCD{21*/DCOE11* DCDIO}) THEN DCD[3:0] := O; c 1 10110 HHLH LLHH ; “count®
IF ¢ DCO[31* DCD[21* DCO[11*/DCD[0]) THEN DCD[3:0] := O; c 1 1010 HHHL LHLL ; "count"
IF (DCD(3]* DCD[21* DCOL11* DCD[0]) THEN DCD[3:0]1 := O; c 1 10110 HHHH LHLH ; “count®
c 1 10110 LLLL LHHL ; “count™
IF (/BIN[31*/BIN[21*/BIN[11*/BIN[0]) THEN BIN[3:0] := 1; END
TB0O00310

Figure 1-45. Logic Description File for the 4-Bit Binary Counter and a Decade Counter, Written in PLPL Format

V0001 COTXO110XNXHLLHHLLHN
V0002 C10X1111XNXHLLHHLLHN
V0003 COO0XO110XNXHHHHHHHHN
V0004 C11X0110XNXLHHHLHHHN
V0005 C€11X0110XNXHLHHHLHHN
V0006 C11X0110XNXLLHHLLHHN
V0007 C11X0110XNXHHLHHHLHN
V0008 C11X0110XNXLHLHLHLHN
V0009 C11X0110XNXHLLHHLLEN
V0010 C11X0110XNXLLLHLLLHN
V0011 C11X0110XNXHHHLHHHLN
V0012 C11X0110XNXLHHLLHHLN
V0013 C11X0110XNXHHHHHLHLN
V0014 €11X0110XNXLHHHLLHLN
V0015 C11X0110XNXHLHHHHLLN
V0016 C11X0110XNXLLHHLHLLN
V0017 C11X0110XNXHHLHHLLLN
V0018 C11X0110XNXLHLHLLLLN
V0019 C11X0110XNXHLLHHHHHN *

TB000300

* % % % % % * * B % F % X ¥ * * * %

Figure 1-46. Test Vectors Specification for 4-Bit Binary Counter and the Decade

Counter
BIN_DCD_CNTR 1% = 2%/14*15%13 +

PAL16R8 B B 2%/14%15%12 +
CLK 1 INPUT 12%3%6 +

§1 2 INPUT 2%/3* /14 +
S0 3 INPUT 2*3*14*15%713%/12 ;
D3] 5 INPUT 13 = 2%/13%15%12 +
DI[2) 6 INPUT 2%3*13%15%/12 +
D11 7 INPUT J2%3%7 +
D[0] 8 INPUT 2*/3*/13 ;
/DCD[0] 12 OUTPUT REGISTERED INVERTED 12 = 2%3*12%15 +

/DCD[1] 13 OUTPUT REGISTERED INVERTED 2*3*12%14*13 +
/DCD (2] 14 OUTPUT REGISTERED INVERTED 12%3%8 +
/0CD[3] 15 OUTPUT REGISTERED INVERTED 2%/3*/12 ;

/BIN[O} 16 OUTPUT REGISTERED UIVERTED
/BIN[1] 17 OUTPUT REGISTERED INVERTED
/BIN[2] 18 OUTPUT REGISTERED INVERTED
/BIN[3]. 19 OUTPUT REGISTERED INVERTED
*
19 = 2%/19*18 +
2%/19%17 +
2%/19%16 +
/2*3%5 +
2%/3%/19 +
2%3%19%/718%/17*/16 ;
18 = 2*/18*17 +
2%/18*16 +
2%3*18*/17*/16 +
J2*3%6 +
2*/34/18 ;
17 = 2%/17*16 +
2%3*17*/16 +
12%3*T +
2*/3*/17 ;
16 = 2*3%16 +
12*3*8 +
24734716 ;
15 = 2%/15%14*13%12 +
/2*3*S +
2%/3*/15 +
2%3*15%/14*/13%/12 ;

TB000290

Figure 1-47. PLPL,OptImizer Output for the 4-Bit Binary Counter and the
Decade Counter

1-46

Listing sum-of-products equations for BIN_DCD_CNTR

BIN[3] :

S1*BIN[31*/BIN[2]
S1*BIN([31*/BIN(1]
ST*BIN[31*/BIN[0]

/S1%*S0*D [3]

S1*/S0*BIN[3]
S1*S0*/BIN[3]1*BIN[21*BIN[1]1*BIN[O] ;
ST*BIN[21*/BIN[1]
S1*BIN([2]*/BIN(O]
S1*S0*/BIN[2)*BIN [13*BIN [0]
/S1*S0*D [2)

S1*/SO*BIN[2];

S1*BIN[11*/BIN(0]
S1*S0*/8IN[1]*BIN (0]

/S1*S0*D [1]

S1*/S0*BIN[1];

BIN[0) := S1*S0*/BIN([O]

/S1*S0*D [0}

S1*/SO*BIN[O] ;

S1*DCD [31*/DCD [21*/DCD {11 */DCD [0}
/S1*S0*D [3)

$1*/50*DCD (3]
$1*S0*/DCD [31*DCD [23*DCD [1)*DCD [0) ;
S1*DCD [2]*/DCD [31*/0CD 1]

S1*DCD [2]*/DCD [31*/DCD [0]
/S1*S0*D [2)

$1%/50*DCD [2]
S1*S0*/DCD [2] */DCD [31*DCD [11*DCD [0 ;
S1*DCD [11*/DCD {31*/DCD [0]
S1*S0%/DCD [11*/DCD [31*DCD [0]
/S1*S0*D [1]

S1*/S0*DCD (11 ;

S1*S0*/DCD [0]*/DCD [3)
S1*S0*/DCD [0] */DCD [21*/DCD (1)
/S1*S0*D [0]

S1*/50*DCD [0] ;

+ + + + +

BIN[2]

+ + + +

BIN[1]

.
n

+ + +

+ +

DCD (3]

+ 4+ + 00

DCD [2]

+ + + ¢+

pco 1]

+ + +

DCD [01

+ + +

TB000280

Figure 1-48. PLPL Listing of Equations for the 4-Bit Binary Counter and the
Decade Counter

av-1

V0001

Pin#
Expected:
Computed:

Pin#
Expected:
Computed:

INPUT

1
1234567891
CO1X0110xXX

1234567891
C10X1111XX

1234567891

1234567891

1234567891
C11X0110XX

1234567891
C11X0110XX

1234567891
C11X0110XX

OUTPUT
ARRRREEY]
23456789
===> HLLHHLLK
HLLHHLLH

OUTPUT
mim
23456789
===> HLLHHLLH
HLLHHLLH

oUTPUT
AARRRRRLR]
23456789
===> HHHHHHHH
HHHHHHHR

OUTPUT
1nmmm
23456789
===> LHHHLRHH
LHHHLHHH

ouTPUT
1"
23456789
===> HLHHHLHH
HULHHHLHH

OouTPUT
RRRRRRAN]
23456789
===> LLHHLLHH
LLHHLLHH

OUTPUT
ERRRRRAN]
23456789
===> HHLHHHLH
HHLHHHLR

Pin#
Expected:
Computed:

INPUT QUTPUT
1 111N
1234567891 23456789
C11X0110XX ===> LHLHLHLH
LHLHLHLH

INPUT OUTPUT
1 1
1234567891 23456789
C11X0110XX ===> HLLHHLLH
HULHHLLH

INPUT uTPUT
1 1
1234567891 23456789
C11X0110XX ===> LLLHLLLK
LLLHLLLH

INPUT ouTPUT
1 11111
1234567891 23456789
CHIXOT10XX ===> HHHLHHHL
- HHHLHHHL

INPUT OUTPUT
1 11

LHHLLHHL

INPUT OUTPUT
1 111111
1234567891 23456789
C1IX0110XX ===> HHHHHLHL
HHHHHLHL

INPUT ouTRUT
1 11111111
1234567891 23456789
C11X0110XX ===> LHHHLLHL
LHHHLLHL

Figure 1-49. Simulation Run for

1234567891 23456789
C11X0110XX ===> LHHLLHHL

INPUT

1
1234567891
C11X0110XX ===>

OUTPUT

m1m
23456789
HLHHHHLL
HLRHHHLL

Pin#

1234567891
C11X0110XX ===>

Computed: -

Pin#

Computed:

1234567891
CT1X0110XX ===>

OUTPUT

LRRRERER]
23456789
LLHHLHLL
LLHHLHLL

ouTPUT

1M
23456789
HHLHHLLL

~ HHLHHLLL

1234567891
C11X0110XX ===>

ouTPUT

LARRRERY]
23456789
LHLHLLLL
LHLHLLLL

1234567891
C11X0110XX ===>

OUTPUT

M
23456789
HLLHHHHE
HLLHHHHR

Simulation completed, Errors detected = 0

the 4-Bit Binary Counter and the Decade Counter

TB000270

Title: BIN_DCD_CNTR
Part Type: PAL16R8*
DEVICE: PAL16R8*
MFG: AMD* 1
FO*

L0000 0110 1101 1111 1111 1111 1111 1111 111>
L0032 0110 1111 1101 1111 1111 1111 1111 1111*
L0044 0110 1111 1111 1101 1111 1111 1111 111>
L0096 1011 0111 1111 0111 1111 1111 1111 1111*
L0128 0110 1011 1111 1111 1111 1111 1111 1111*
L0160 0101 0110 1110 1110 1111 1111 1111 1111*
L0256 0111 1110 1101 1111 1111 1111 1111 1111*
L0288 0111 1110 1111 1101 1111 1111 1111 1111*
L0320 0111 0101 1110 1110 1111 1111 1111 1111*
L0352 1011 0111 1111 1111 0111 1111 1111 1111*
L0384 0111 1010 1111 1111 1111 1111 1111 1111+
L0512 0111 1111 1110 1101 1111 1111 1111 111>
L0544 0111 0111 1101 1110 1111 1111 1111 111>
L0576 1011 0111 1111 1111 1111 0111 1111 1111*
L0608 0111 1011 1110 1111 1111 1111 1111 1111*
L0768 0111 0111 1111 1101 1111 1111 1111 111>
L0800 1011 0111 1111 1111 1111 1111 0111 1111*
L0832 0111 1011 1111 1110 1111 1111 1111 1111*
L1026 0111 1111 1111 1111 1110 1101 1101 1101*
L1056 1011 0111 1111 0111 1111 1111 1111 1111*
L1088 0111 1011 1111 1111 1110 1111 1111 1111+
L1120 0111 0111 1111 1111 1101 1110 1110 1110*
L1280 0111 1111 1111 1111 1101 1110 1101 1111*
L1312 0111 1111 1111 1111 1101 1110 1111 1101*
L1344 1011 0111 1111 1111 0111 1111 1111 1111*
L1376 0111 1011 1111 1111 1111 1110 1111 1111+
L1408 0111 0111 1111 1111 1101 1101 1110 1110*
L1536 0111 1111 1111 1111 1101 1111 1110 1101*
L1568 0111 0111 1111 1111 1101 1111 1101 1110*
L1600 1011 0111 1111 1111 1111 0111 1111 111>
L1632 0111 1011 1111 1111 1111 1111 1110 1111*
L1792 0111 0111 1111 1111 1101 1111 1111 1101*
L1824 0111 0111 1111 1111 1111 1101 1101 1101*
L1856 1011 0111 1111 1111 1111 1111 0111 1111*
L1888 0111 1011 1111 1111 1111 1111 1111 1110*
Cc7cco*

40F8

TB000260

Figure 1-50. Device Map for the 4-Bit Binary Counter and the Decade Counter

1-49

PRODUCT TERMS (0-63)

INPUTS (0-31
ok 1-P> ©-3m

02 “567 LR} 12U WY WD UBB BN
o
'
2
: D Q &o—ts BN [3]
: > &
7
st 2 PF—1 g:k——J
L]
A\
w0
M D o—:&ww BN [2
M b a
"
so 3P “}__.__—,
”
"»
: D Q 30‘17 BIN [1]
»
n - 6
2
N]
a1 2 <+
1 N
24
£
»
- o a 16 BN [0]
»
o — a
N A
o] s-P¥ g‘l—————]
2
3
“
% [o»—-—-ghm peD [3]
o
: —> a
o[z 6L} 4
"
o
«
“ D a g‘wu DCD [2]
s
2 S
ol P& < I
-
“
©
. D o—&—n DCD [1]
3
H i ‘j
LIONE > = -
L]
7
-
- o a——:Ewu DCD [0]
L
M = -
Px (:I——] Lq,_“
123 4567 LR R 12 13418 WITWI® 20212223 MNWHT 890N
BD002002

Figure 1-51. AmPAL16R8 Programmed with 4-Bit Binary Counter and the
Decade Counter Functions

1-50

4-Bit Decade Counter with D Flip-Fiops TABLE 1-6. FUNCTION TABLE FOR A 4-BIT

Table 1-6 shows the current and next state description of a 4- DECADE COUNTER
bit decade counter. Figure 1-52 shows the state-counting
sequence. INPUTS OUTPUTS
+ 1+ * +

A decade counter can be implemented with four flip-flops and S1|s2/AlBlC DA B (C|D
some additional logic. The four flip-flops are represented by CLEAR| 0 | 0 [x|x|x|ix}]0}]0}0}0 1
four variables A, B, C, and D. A represents the most significant é%ﬁ%.r ‘1) (1) ; (’; (’; ; %3 %2 %‘ D1°
bit and D represents the least significant bit. Note that the next 1 olololol1]olol]1 0
states are unspecified for present states 1010, 1011, 1100, 1 0 olol1lol o] o 1 1
1101, 1110 and 1111. 1 ololof1l1lof{1]lo}o
Logic for each flip-flop's output can be derived easily either 1 0 fof1folo}on o1

! 1] ojt1(o0]1 0 1 1 0
from the state table or by the Karnaugh-map method. Figure 1 olol1l1f{o]lo] 1 1 1
1-53 shows a four-variable Karnaugh-map format. A separate 1 olol1]1l1]1]lololo
Karnaugh map is required for each flip-flop. States 1010, 1 0 11olojo} 1 0|0 1
1011, 1100, 1101, 1110 and 1111 are indicated as don't-care 1 of({t1{ojoj1}j0}0joO0}oO
states by placing X in the Karnaugh maps. HOLD | 1 1 [x[xf{x]|x]Q3[{Q2|Q1|Q0

Figures 1-54, 1-55, 1-56, and 1-57 show the next state maps
for A*, B*, C* and D* as functions of A, B, C, and D. These
next state maps are easily generated from Table 1-6.

g

Examination of the next state table indicates that the first
seven transitions, states 0 to 6, do not produce a ''1'" output at
the most significant flip-flop (A). Therefore, the map entry for
this flip-flop in these states is set to ''0"' (Figure 1-54). When
current state is either 7 or 8, the next state for this flip-flop
becomes 1" and for current-state 9, the next state is ''0"'.

Karnaugh maps for B*, C*, and D* can be derived similarly.

Having created the Karnaugh maps, we can attempt to
minimize the Boolean expression for each flip-flop. Figure
1-58.a shows the unsimplified Min term expressions for each
flip-flop derived from the state table. In Karnaugh-map minimi-
zation, Min term expressions can be simplified by grouping
them with don't-care terms. Figure 1-58.b shows the Kar-
naugh-map minimization of the different functions. @

OptaAC
-9

Once the minimized SOP logic equations are generated the
translation to a corresponding PAL device is relatively straight-
forward. Figure 1-51 shows the implementation of both the
4-bit binary counter and the decade counter in a single Figure 1-52. State Diagram of a 4-Bit Decade

DF006150

AmPAL16R8 PAL device. Counter (10 States)
CD
AB
00 01 11 10
00
01
1
10

Figure 1-53. Four-Variable Karnaugh-Map Format

1-51

AB

AB

CcD

AB
00 01+ 11 10
00 0 0 0 0
01 0 0 N 0 A* =BCD + A*/D
X x | ixd | x 17
o | 1 0 X x_]
Figure 1-54. Next State Map for A*
cD
00 01 1) 10
00 0 0 1) 0
o | 1, | 1 0 1 T B* =/B*C*D+B*/C+B*/D
L Y N X Lx__ 1
10 0 0 [X X
|
Figure 1-55. Next State Map for B*
co
AB
00 01 1 10
00 0 N 0 r1
01 0 N 0 C* =C*/D + /A*/C*D
11 X X X X
10 0 0 X x|
Figure 1-56. Next State Map for C*
cD
00 01 1" 10
00 1) 0 0 |
01 1l 0 0 K D* =/D
1 X X X | X
10 1 0 X Ix |

Figure 1-57. Next State Map for D*

1-62

At
B*
c*
D*

= /A+B+C+D + A+/B+/C+/D

= /A+/B+C+D + /A+B+/C+/D + /A+B+/C+D + /A«B+C+/D
=/A+/B+/C+D + /A+/B+C+/D + /A+B+/C+/D + /A+B+C+/D
=/A+/B+/C+/D + /A+/B+Cx/D + /A+B+/C+/D + /A+B+C+/D + A */B+/C+/D

Figure 1-58.a. Reduced Equations from Function Table

A* =B+C+D + A+/D

B* =/B+C+D + B+/C + B+/D
C* =C+/D+ /A+/C+«D
D*=/D

Figure 1-58.b. Reduced Equations from Karnaugh Map

A high-level language design specification for the 4-bit decade
counter is shown in Figure 1-45. Corresponding test vectors
are shown in Figure 1-46 and are used as inputs for the
simulator to test the logic equations. Figure 1-47 shows the
PLPL Optimizer's output; Figure 1-48, the equation list; Figure
1-49, the simulation run; Figure 1-50, the device map; and
Figure 1-51, the implementation of this function in an Am-
PAL16R8 device (Note that Figures 1-45 through 1-51 also
implement a 4-bit binary counter function).

This simple example shows the advantages of using PLDs:

® User-defined functions can be programmed quickly,

® Two or more logic circuits can be integrated into a single
PLD,

® PC board space is saved and power consumption reduced.

Numerous PLD CAD packages are available that simplify the
system designer's tasks. You can express the circuit at a
higher level instead of being restricted to the early design
methodology of truth-table/Karnaugh-map/logic equation. De-
signs can now be expressed through a schematic-entry
system, or through a high-level language syntax which concur-
rently improves design documentation.

In this chapter we have shown detailed design steps neces-
sary for designing with PAL devices. A later section in this
handbook contains more examples of logic design with PAL
devices.

1-53

'SECTION 2 — SOFTWARE, bn
PROGRAMMING, TESTING,
RELIABILITY and TECHNOLOGY
INFORMATION

2.1 SOFTWARE SUPPORT FOR AMD's
PROGRAMMABLE LOGIC DEVICES

2.1.1 Design-Aid Software for Programmable Logic
2.1.2 ABEL
2.1.3 CUPL, AmCUPL
2.1.4 PLPL
2.2 PROGRAMMING HARDWARE
2.3 TESTING INFORMATION
2.3.1 Factory Testing of PAL Devices

2.3.2 How Testability is Designed into AMD's Programmable Logic
Devices

2.3.3 Specifications for Switching-Delay Minimums

2.4 AMD PROGRAMMABLE LOGIC RELIABILITY
2.5 PROGRAMMABLE LOGIC TECHNOLOGY
2.5.1 IMOX-lll — Advanced Bipolar Technology for PAL Devices

2.5.2 Advanced CMOS Technology for PAL Devices

2.1 SOFTWARE SUPPORT FOR
AMD’S PROGRAMMABLE
LOGIC DEVICES

Several design-aid software tools are available to the system
designers to assist them in designing-in programmable logic
devices (PLDs). Section 2.1.1 provides an introduction to
these tools, while Sections 2.1.2 through 2.1.4 describe in
detail the capabilities and features of some of the software
packages currently available.

2.1.1 DESIGN-AID SOFTWARE FOR
PROGRAMMABLE LOGIC
The main function of programmable logic design-aid software

is to translate a custom logic design specification into a format
which can be accepted by a programmer (Figure 2-1).

Programmable logic software is also an excellent tool for
design simulation and documentation. Simulation aids in
debugging an initial design and helps to assure that a device
will operate as intended the first time instead of requiring
multiple design iterations. Documentation capability is essen-
tial for someone other than the original designer to understand
a custom programmable logic-specification.

| CIRCUIT CONCEPT l

| YOUR COMPUTER

PROGRAMMING MATRIX PATTERNS

LOGIC (PROM)
PROGRAMMER

BLANK PLD

PROGRAMMABLE LOGIC
DESIGN SOFTWARE

PROGRAMMED

DEVICE

YOUR PRODUCT

LD000750

Figure 2-1. The Programmable Logic Development Cycle

Design Software for Programmable Logic

Available design software may be classified into two major
categories: Assemblers and Compilers.

Boolean Assemblers

These programs allow you to use symbolic names for signals
appearing on input and output pins. Equations must, however,
be written at the fuse level, creating more work for the
designer and producing a logic description which may be more
difficult to understand.

Commonly available program of this type is PALASM.
Logic Compilers

In contrast to the lower-level Boolean assemblers, the compil-
er lets the designer write logic descriptions at a higher level:

i.e., at a level that more accurately reflects the design concept.
This type of software increases productivity while producing
designs that are more thoroughly documented.

Available programs of this type are CUPL, ABEL, AmCUPL
and PLPL.

When applied to programmable logic-design software, the
term "'universal'' compiler (Figure 2-2) refers to the ability of
the compiler to support all programmable-logic device types,
all popular logic (PROM) programmers, and a large number of
popular development computers. In addition, universal compil-
ers offer a variety of input design formats such as state
machines, high-level Booleai. equations, truth tables, or logic
schematics.

| TRUTH TABLES | HIGH-LEVEL STATE I‘LOGIC SCHEMATICSl
EQUATIONS MACHINES :
UNIVERSAL
COMPLLER
PAL NEXT GENERATION | IFL DEVICES I rPF‘°MS—|

DEVICES

PROGRAMMABLE DEVICES

LD000760

Figure 2-2. The Universal Compiler

A universal compiler's syntax offers a general and easy
description of the desired configuration of the chosen pro-
grammable logic device. This means that the functionality
embodied in a particular logic description can be programmed
into the same PLD from different manufacturers without
altering the description at all.

In addition, the high-level description of the design provides
flexibility in changing the design if so desired. A designer might
use a particular type of PLD. Later, when fixes or enhance-
ments require more product terms or an architectural configu-
ration that the chosen PLD cannot support, the function can
easily be placed in an alternate device. In many cases this will
allow design modifications without altering printed circuit
boards which may have already been manufactured.

Logic Simulation

Most of the programmable-logic software design-aid tools also
offer logic-simulation capability to the designers. Logic simula-
tion is typically performed to verify the logical design (logic
equations) prior to programming an actual device. This may
save some of the time spent trouble-shooting a programmable
logic design using conventional techniques (scope and logic
analyzer).

A simulation file consists of a table of stimulus patterns
applied to inputs and response patterns expected at outputs.
The simulator compares each stimulus/response pattern (vec-
tor) with the logic equations to verify that the expected
response agrees with that produced according to the equa-
tions.

Not simulating may be of little consequence for simple
designs, but for complex designs, especially complex sequen-
tial logic, it is well worth the time.

Testing Programmable Logic

Programmable-logic software design-aid tools also assist the
designer in testing the PL\Ds after they have been pro-
grammed. S :

Before shipping a PLD, programmabilty may be verified by the
manufacturer by exercising the device's address and program-
ming circuitry on redundant test sites.

After the device has been received and programmed by the
user, the logic programmer will read the states of all the fuses
in the device and compare them with the data stored in the
programmer's memory to check the status of the program-
ming matrix in its verify cycle (Figure 2-3). If any mismatches
are detected, the device is rejected.

INPUTS
PROGRAMMING
MATRIX

1

Tested During
Programmer Verify
Cycle

OUTPUTS
FIXED LOGIC

Tested By Applying
Functional Test
Vectors

LD000770

Figure 2-3. Programmable Logic Device Testing

However, a correct fuse verify does not guarantee that the
device will work properly, since the fixed logic of the device
has not been fully tested. To ensure proper operation, the
device must be functionally tested.

Functional testing of PLDs involves applying stimulus patterns
to a device while looking for the expected response. The test
sequence consists of a table of stimulus/response patterns
similar to those used to perform a simulation. Programmable-
logic software design-aid programs offer the capability of
generating these test patterns.

These patterns (test vectors) are produced by creating a
simulation input file containing stimulus/response patterns.
After running the simulator to verify the integrity of the vectors,
they are appended to the JEDEC down-loadable file which
already contains the programming patterns for the particular
target device.

We can now see that there are two distinct benefits of logic
simulation in working with PLDs.

LOGIC SIMULATION

DESIGN VERIFICATION TEST VECTOR GENERATION

Third-Party Software

Many different programmable-logic design-aid software pro-
grams and software programs resident on programmable logic
programmers are available. Table 2-1 lists some current
suppliers of the these design tools. Contact the indicated
companies for the status of their particular product.

The next three chapters of this section describe in detail the
features of four high-level software design aids which support
AMD's programmable logic devices. These software programs
are ABEL, CUPL, AmCUPL, and PLPL.

TABLE 2-1. THIRD-PARTY SOFTWARE DESIGN-AID TOOLS

Vendor Software Hardware Platform

Data 1/0 Corp. ABEL IBM PC or compatible
10525 Willows Road N.E. DEC VAX (VMS, UNIX)
Redmond, WA 98073 Apolio (AEGIS)
(206) 881-6444 Sun Microsystems (UNIX)

DASH/CADAT IBM PC or compatible

DASH/ABEL
ISDATA LOGIC IBM PC or compatible
Haid-und-Neu-Str. 7 DEC VAX (VMS, UNIX)
D-7500 Karlsruhe Apollo (AEGIS)
West Germany
(0721) 693092
JMC PROMAC Division PALASM PROMAC P3
2999 Monterey/Salinas Highway
Monterey, CA 93940
(408) 373-3607
Personal CAD Systems Inc. CUPL IBM PC or compatible
1290 Parkmoor Avenue DEC VAX (VMS, UNIX)
San Jose, CA 95126 "
(408) 971-1300 CAE IBM PC or compatible
MMI PALASM IBM PC or compatible
(Public Domain) PC (CPM-80)

DEC VAX (VMS, UNIX)

AMD PLPL IBM PC or compatible
(Public Domain) DEC VAX (UNIX)
Valley Data Sciences PERFECT IBM PC or compatible
2426 Charleston Road VISTA
Mountain View, CA 94043
(415) 968-2900

2.1.2 ABEL

ABEL is a complete logic-design tool that lets you easily
describe and implement programmable logic designs in PAL
devices, IFLs, and PROMs. ABEL consists of a special-
purpose, high-level language that is used to describe logic
designs, and a language processor that converts logic de-
scriptions to programmer-load files. Programmer-load files
contain the information necessary to program and test pro-
grammable logic devices. Figure 2-4 shows ABEL used with
Data I/0's Model 29 Logic Programmer in programmable logic
development system.

ABEL may be used with several other Data I/0 design

development tools such as:

® PLDtest — an automatic test-vector generator that allows
100% testing of programmed logic parts

® DASH/ABEL —a schematic-diagram interface that con-
verts schematic designs to ABEL source files

® PROMIink — a program that permits control of and commu-
nication with Data I/O programmers by means of a person-
al computer

Features of the ABEL design language are:

® Universal syntax for all programmable logic types
® High-level, structured design language

o Flexible forms for describing logic:

- Boolean Equations

- Truth Tables

- State Diagrams

Test Vectors for simulation and testing
Time-Saving Macros and Directives

2-3

ABEL™ (&7
Development \\
Sof

ftware
P/T Adapter

Personal Computer

RS-232-C
Communication

Data I/O
Model 29B
Programmer

LD000780

Figure 2-4. ABEL — A Logic Design Tool

The ABEL language processor also has many powerful
features:

® Syntax checking

® Verification that a design can be implemented with a
chosen part

Logic reduction

Design simulation

Automatic design documentation

Creation of programmer-load files in JEDEC and PROM
format

Together, the ABEL design language and language processor
make it easy to design and test logic functions that are to be
implemented with programmable logic devices. For example,
you can design a three-input AND function with the inputs A,
B, and C and the output Y using a truth table like this:

truth__table ''3-input AND gate'
(AB,C] —¥)
[0,.X.,.X.] =8 ;
[X, 0,X] —9 ;
[.X..X., 0] —8 ;
[, 1,11 —;

The '".X."s in the table indicate ""don't-care'" conditions, and
the output Y is set to 1 only when all three inputs equal 1. You
also could have specified the output Y in terms of simple
Boolean operators and have achieved the same resuit. This is
done here, where "'&" is the logical AND operator:

Y=A&B&C;
Design Process with ABEL

ABEL lets you choose the type of description that is best
suited to the logic being described, or the type of description

you feel most comfortable with. And, in most cases, the same
description can be used for many different devices simply by
changing the device specification. ABEL enters the design
process in a way that reduces errors and saves time. You can
think about designs in a logical, functional way, describe them
in that fashion, and then test your design to see that it
operates as expected, all without worrying about which fuses
should be blown or left intact.

Figure 2-5 shows the logic-design process and the role ABEL
takes in it. Beginning with the design concept, the designer
creates the ABEL source file required by the language
processor in order for it to generate the programmer-load file.
The source file is written by you and contains a complete
description of your logic design. You can create the source file
manually by means of a text editor (or word processor) that
generates ASCI! files, or you can use DASH/ABEL to convert
a DASH-generated schematic of the design to an ABEL
source file.

The source file is presented to the ABEL language processor
which performs several functions to produce a programmer-
load file (in JEDEC format) and design documentation. The
first ABEL function, Parse, checks the syntax of the source file
and flags any errors. Transform converts the logic description
to an intermediate form. Reduce performs logic reduction, and
Fusemap creates the programmer-load file. The programmer-
load file can then be downloaded to the logic programmer to
program parts, or can be first transmitted to PLDtest, an
automatic test-vector generator. The Simulate function tests
the design of the part against your test vectors contained in
the source file and reports any functional failure of the design.
The Document function generates a listing of the source file, a
drawing of the logic device pin assignments, and a listing of
the programmer-load file.

2-4

(DESIGN CONCEPT

A
! DASH-2
TEXT EDITOR | DASH-ABEL
SCHEMATIC
CAPTURE
l !
ABEL
SOURCE FILE
PARSE
TRANSFORM
REDUCE
JEDEC |« FUSEMAP
FILE 3 SIMULA-
& A TION —
. & SIMULATE RESULTS
2
PLDTEST %
TEST VEC- & DESIGN
TOR & ,,,.,DOCUMENT DOCUMEN-
GENERA- X ABEL LANGUAGE TATION
TION X PROCESSOR
SRKIIIOOIKKIHKXKX,
pa
) LoGIC AmPAL22V10
PROGRAMMER

LD000790

Figure 2-5. Logic Design Steps with ABEL

More About ABEL Features
Design Checking

The language processor checks your logic design for correct
language syntax and explicitly tells you where an error occurs
and what the error is. The language processor also checks
your design to see if it can be implemented on the chosen
device. For example, if a device input pin is used as an output
in an equation, the language processor detects and reports
the error.

Logic Reduction

The language processor reduces your logic design to a near
minimal form, so that you do not have to perform the tedious
task of logic reduction by traditional methods such as Kar-
naugh maps. You may choose different levels of reduction
based on the design and the device.

Simulation of a design is performed after a logic design has
been reduced and converted to a programmer-load file. The
simulation facility uses device characteristics, a fuse map, and
test vectors to simulate the actual operation of the device. The

fuse map and test vectors used for simulation are the same as
those that will be used to program and test the real device.

Functional Device Testing

If test vectors are specified in a source file, the programmer-
load file created by the language processor contains these
vectors in a form that can be used to test a programmed
device with a logic programmer.

Standard JEDEC-Format Programmer-Load File

The standard programmer-load file created by the language
processor conforms with the JEDEC Standard, No. 3, for data
transfer to logic programmers. JEDEC-format files are used to
transfer PAL and IFL designs to the logic programmer. Other
formats for PROM programmers are supported.

System Requirements

ABEL presently runs on the following computers and operating
systems. Versions for additional systems are under develop-
ment.

® |BM/AT/XT and MS-DOS compatibles

® VAX/VMS

® VAX/Unix

® Sun
® Valid
® Apollo/Mentor

The configuration information and installation instructions for
ABEL differ for each type of system. To install ABEL in your
particular system, refer to the installation guide supplied with
your ABEL package. In addition to ABEL, you will need an
editor or word processor with which to create ABEL source
files. This may be any editor of your choice as long as as it
produces a standard ASCII file.

Note: Some word processors, such as WordStar, operate in
more than one mode, and may create non-standard ASCII files
that cannot be used with ABEL. If you are using such a word
processor, choose the mode of operation that creates print-
able ASCII files.

For downloading programmer-load files to a logic programmer,
you will need:
® An RS-232C port and a cable to connect to the programmer.

2:6

2.1.2 ABEL

DESIGN TOOLS FOR PROGRAMMABLE LOGIC

Michael Holley
Project Engineering Manager
FutureNet Corporation
10525 Willows Road N.E.
Redmond, WA 98073-9746

Programmable logic devices consist of
an array of logic gates whose
interconnections may be programmed to
implement specific logic designs.
Gate interconnections are programmed
by opening selected fuses while
leaving others intact. The logic
gates are generally arranged so that
the device inputs are connected to AND
gates which are in turn connected to
OR gates. Two common types of
structures are the PAL'™ structure,
where the AND array is programmable,
and the FPLA structure where both the
AND and OR arrays are programmable.

Figure 1 shows the fuses opened and
left intact for a basic PAL'™ in order
to provide the function expressed in
the equations. This PAL'™ application
is quite simple and the fuses to be
blown could be determined with a low-
level design tool, such as PALASM'™, or
even manually. However, many next-
generation programmable logic devices
contain complex macro cells that
require powerful design tools to
efficiently program them. In addition
to the AND and OR gate interconnect-
ions, many newer devices contain
programmable registers and
programmable feedback paths from the
outputs back to the AND gate inputs.

To program a programmable logic
device, a conceptual design must be
converted to a binary bit pattern that
is loaded into a logic programmer.
Since the gates are arranged in a sums
of products. form (AND-OR), early
design tools required that the user
transform the design to the sums-of-
products form. The next generation
programmable logic devices have multi-
level logic so you don't have convert
the design to the sum-of-products
form, just sum-of-products equations.

PERSONAL SILICON FOUNDRY

One solution to the programming of
complex programmable logic devices is
the Personal Silicon Foundry from Data
I/0 Corporation. This desk-top system
contains all the design tools and
hardware to take a design from
conception to programmed devices in
just a few hours. PSF allows the
engineer to express the design in the
form of Boolean equations, truth
tables, state diagrams, or even
schematic diagrams. Design tools
within PSF transform the design
description, after logic reduction,
into a sums of products form and then
into the required bit patterns to
program the logic device. This paper
provides a brief description of the
Personal Silicon Foundry and how it
enhances the PC engineering
workstation as a complete design
system.

PSF includes an IBM-AT or -XT and a
logic programmer, plus the following:

ABEL (Advanced Boolean Expression
Language) - a high~level logic
design language used to describe
and implement programmable logic
designs and a multi-program
language processor to process
logic descriptions (in ASCII
format) to JEDEC-format logic
programmer load files.

Programmer load files contain the
information necessary to program
and test programmable logic
devices.

DASH - a full-featured schematic

design system that provides

graphics output to
printers/plotters and design file
output to post-processes of

CAD/CAE systems.

27

2.1.2 ABEL (Cont'd.)

|
m > >
0 0
Mmoo
Q0 @0

o)
O
m

-~

%

¥ = INTACT FUSE

Figure 1. Intact PAL Fuses

DASH-ABEL - a schematic capture
interface tool that allows logic
designs to be expressed as a
schematic diagram. DASH-ABEL
also allows designs within
schematic diagrams to be
processed by ABEL.

PLDtest - a programmable logic device
fault analysis tool that insures
complete testing of devices after
they are programmed.

To proceed from design concept through
to programmed devices, several basic
steps are followed, with optional
choices to accomodate a variety of
design situations. The flowchart
presented in figure 2 shows the
general flow of the design,-
simulation, testing, and programming
operations provided by the system.

and the Logic Equations

USING ABEL

The heart of the PSF is the ABEL
Language Processor. The input to the
language processor is a source file
that contains all elements of the
design, declarations for the target
logic device, test vectors, etc. The
ABEL source file is created in either
of two ways: 1) with a text editor
that. generates an ASCII file, or 2)
with the DASH schematic editor.

If a text editor is used, the designer
keys-in the design using the desired
method, i.e., equations, truth tables,
or state diagrams (plus logic device
pin information, test vectors, etc.)
to produce a design description
similar to those shown in figures 3
and 4. The partial source file in.
figure 3 describes a seven-segment
display decoder by means of a truth
table. The partial source file in
figure 4 shows how a design (a traffic
signal controller) is expressed by
means of a state diagram.

28

2.1.2 ABEL (Cont'd.)

I DESIGN CONCEPT
y
\ DASH-2
TEXT EDITOR DASH-ABEL
SCHEMATIC
CAPTURE
Y v
ABEL
SOURCE FILE
TRANSFORM
REDUCE
JEDEC FUSEMAP
FILE SIMULA-
T TON (-
SIMULATE RESULTS
PLDTEST ¥
TEST VEC- —
TOR [DOCUMENT | DESIGN
GENERA- DOCUMEN-
TION ABEL LANGUAGE TATION
PROCESSOR
y LoGIC -
PROGRAMMER

Figure 2. Logic Design Steps with PSF

If the DASH schematic editor was used
to express the design, it would be
translated by the DASH-ABEL Schematic
Capture program to produce source file
with Boolean equations substituted for
the logic circuit. (Refer to Session
8 for more information on the
schematic capture feature of PSF.)

Reduction of Logic Terms

As indicated in figure 2, the
completed source file is input to the
ABEL Language Processor. The first
step is the Parse-Transfor process.
These programs read the source file
and convert truth table or state
diagrams to Boolean equations in a non-
minimized form.

The subsequent Reduce program applies
DeMorgan's theorem to convert the
equations to the sum-of-products form
minimize the logic description so that
fewer product terms are used in the
programmable logic device.

Fusemap and Simulation

The Fusemap program processes the
output file from the Reduce program
and creates a programmer load file.
The output of the Fusemap program is
passed either to the Simulate program
or (in JEDEC format) to the logic
programmer or to PLDtest.

module bed7rom flag “-d82-
title “BCD to seven segment display decoder
Data I/0 Corp Redmond WA 27 Feb 1986~
"
a

—-— BCD-to-seven-segment decoder

" £]l g |»
" -—= segment identification
" el a4 |c
" _—
U6 device “RAS5P8”;

p3,p2,D1,D0 pin 10,11,12,13;
a,b,c,d,e,f,g pin 1,2,3,4,5,6,7;

ena pin 15;

bed = [Dp3,D2,D1,D0];

led = [a,b,c,d,e,f,g];

ON,OFF = 0,1; " for common anode LEDs
L,H,X,Z = 0,1,.X.,.2.;

truth_table
(bed > [a, b, ¢, d, e, £, gl)
-> [ON, ON, ON, ON, ON, ON, OFF];
-> [OFF, ON, ON, OFF, OFF, OFF, OFF];
-> [ON, ON, OFF, ON, ON, OFF, ON];
-> [ON, ON, ON, ON, OFF, OFF, ON];
-> [OFF, ON, ON, OFF, OFF, ON, ON];
[ON, OFF, ON, ON, OFF, ON, ON];
[ON, OFF, ON, ON, ON, ON, ON];
-> [ON, ON, ON, OFF, OFF, OFF, OFF];
[ON, ON, ON, ON, ON, ON, ON];
[ON, ON, ON, ON, OFF, ON, ON];

VONCVMEWN—O
|
v

Figure 3. An ABEL Source File Using a
Truth Table to Describe the Design

2.1.2 ABEL (Cont'd.)

state_diagram

@page

Figure 4.

State

State
State
State

State

State

State
State

State

State
State
State

State

State

State
State

Count

14:
15:

case SenseA
!SenseA
g (SenseA
endcase;
goto 2;
goto 3;
goto 43
GreenA := Off;
YellowA := On ;
goto 5
YellowA := Off;
RedA := On ;
RedB t7 Off;
GreenB := On ;
goto 83
goto 15;
goto 15;
case !SenseA
SenseA
(SenseA
endcase;
goto 10;
goto 11;
goto 123
GreenB := Off;
YellowB := On ;
goto 133
YellowB := Off;
RedB := On ;
RedA := Off;
GreenA = On ;
goto 03
goto 15;
GreenA := On ;
YellowA := Off;
RedA = 0ff;
GreenB := Off;
- YellowB := Off;
RedB t= On ;
goto 0;

& !SenseB
& SenseB
== SenseB)

)

"Delay three clocks

"Unused states

& 8
& !SenseB : 1
== SenseB) : 9

"Delay three clocks

"Unused state = .
"Power on initilize state

Using a State Diagram to Describe a Logic Design in an ABEL Source File

2.1.2 ABEL (Cont'd.)

The Simulate program uses the design
and device information to simulate
operation of the design in a
programmable logic device. That is,
it simulates operation of the device
as if it were already programmed with
the information contained in Fusemap
output file. 1If the design fails to
operate in accordance with the test
vectors, errors are listed that
indicate any failed functions. The
flagged errors allow the design to be
corrected early in the development
stage, before any programmable logic
devices are actually programmed.

The Programmer Load File and PLDtest

After successful simulation, the JEDEC
programmer load file is passed on to
the logic programmer so that parts can
then be programmed with the logic
design. Before device programming,
the JEDEC file can be passed through
PLDtest, a fault analysis tool that
insures complete testing of
programmable logic devices. PLDtest
generates a series of test vectors
that are added to the JEDEC file so
that the logic programmer can perform
additional testing on each device
after it is programmed. This lowers
the device failure rate by identifying
marginal devices before they can be
placed in inventory or installed in
the end-product. Since programmable

logic devices cannot be adequately
tested before they are programmed with
the logic design, manufactures cannot
provide this type of testing and fault
grading before device leave the
factory.

Design Documentation

The final step of the ABEL Language
processor is that of providing design
documentation. This feature is of
real benefit to engineers take no
delight in producing thorough
documentation. The Document program
generates printed reports. Included
in the documentation is signal
name/pin informaton for the device, a
list of reduced equations that show
the design, a pinout diagram of the
device, a representation of the
fusemap, and the test vectors.

CONCIUSION

Personal Silicon Foundry is a complete
design, simulate, and testing system
for programmable logic. .It is
intended to reduce the time between
concept and programmed parts to a
matter of hours. All operating
software is tried and proven with more
than a year of service in the customer
base.

2-11

2.1.3 CUPL, AmCUPL

Designer’s Guide to:
Programmable logic—Part 1

Compiler-based
software and PLDs
improve logic design

Programmable logic devices allow you to
complete a design faster than you can using
SSI devices or custom ICs, and PLD
implementations take up less space than do
SSI-based circuits. Moreover, easy-to-use
compiler-based languages that don’t vequire
you to understand PLD architectures make
PLD:s increasingly attractive for

logic designs.

Bob Osann, Assisted Technology

Circuits that incorporate programmable logic devices
(PLDs) take up less board space than do SSI-based
implementations and require less design time than do
custom-IC or SSI-based versions. But until recently,
the PLDs’ unusual architecture and lack of software
support made designers hesitant to use the devices,
despite the advantages they offer. Compiler-based soft-
ware, however, is simplifying PLD use; this high-level
software makes it unnecessary for you to be concerned
with the PLDs’ internal details when implementing
logic functions with the devices.

This first article in this 3-part series, which is aimed
at first-time PLD users, discusses basic PLD architec-
ture and shows you how to- replace two simple logic

EDN January 10, 1985

designs with PLDs using a compiler-based PLD design
language. Part 2 will show you how to replace more
complicated combinatorial and registered-TTL designs
with PLDs. Part 3 will introduce the state-machine
concept and show youhow to implement a logic design
directly, without ever developing a gate-level descrip-
tion of the system.

Although the PLD approach lets you go from logic
function to PLD circuit without conceiving a gate-level
description, when designers decide to use PLDs, they
usually have either completed TTL designs that they
want to shrink or else gate-level descriptions of circuits
they don’t want to implement in discrete logic. There-
fore, the first two articles in this series target convert-
ing existing designs.

Why use a PLD?

 For one-of-a-kind designs, prototypes, or small pro-
duction runs, designers have traditionally taken the
discrete approach. Discrete designs are easy to modify
and inexpensive to manufacture in small quantities, and
you can complete them more quickly than you can
complete custom or semicustom designs. For produe-
tion runs over 500, designers have typically chosen the
semicustom and custom routes and sacrificed short
design cycles and ease of modification to reduce manu-
facturing costs.

PLDs bridge the gap between bulky discrete designs
and long custom-IC design cycles. On the one hand,
PLD designs are easier to modify than SSI-based ones

212

2.1.3 CUPL, AmCUPL (Cont'd.)

and use much less space. Moreover, depending on the
application, they can cost less than SSI-based imple-
mentations for even small production runs. And on the
other hand, although custom ICs can prove more eco-
nomical than PLDs for large production runs, PLD
design cycles are much shorter. So, if you need to get a
small, inexpensive design to market quickly and can’t
wait for a completed custom design, PLDs can provide
you with a quick stand-in until your custom design is
completed.

In general, the PLD architecture contains a fixed
logic array made of AND gates—whose outputs feed

A PLD approach allows designers to go
from a logic function to a PLD-based
circuit without conceiving a gate-level
description.

OR gates—and a programming matrix. The program-
ming matrix is made up of fuses that you blow with a
programming device. By blowing the appropriate
fuses, you can achieve any AND/OR product or combi-
nation. Fig 1 shows the PAL-type and FPLA-type
architectures. The total number of terms that you can
generate is limited only by the size of the matrix.
Because you can represent any logical function as the
logical sum of product terms, you can realize any logical
function using a PLD. A product term consists of any
combination of input variables or their complements
ANDed together. A logical sum is any combination of

! @

IN—t

AND
FUSE
MATRIX B —ouT,
AND |
|
|
|
@ !
__________________________ 1
(PRODUCT TERM) :
|
FUSE == !
MATRIX :
|

FUSE.
MATRIX

Fig 1—Typical PLDs use one of two general architectures to permit
implementation of a wide range of logic functions. PAL-type devices
(a) prove easier to use, but FPLAs (b) provide more flexibility by
allowing two levels of programmability.

I CONCEPTUALIZE THE LOGICAL DESIGN l

| creare tHE LoGic-DESCRIPTION Fie |

I RUN CUPL FOR TARGET PLD

EDIT SOURCE FILE

y
COMPILE ERRORS?
NO

YES

I SIMULATE FOR DESIGN VERIFICATION I

| bownLoAD AND PROGRAM TARGET PLD]

DEBUG PROTOTYPE
LOGIC DESIGN ERRORS?

NO

DESIGN COMPLETE

CREATE SIMULATION INPUT FILE
FOR TEST-VECTOR GENERATION

!

RUN SIMULATOR TO PRODUCE
JEDEC FILE (DOWNLOADABLE)
WITH TEST VECTORS

I PRODUCTION RELEASE l

Fig 2—PLDs greatly simplify logic design. After you complete the
logic-description file, the PLD software automatically compiles the
data for downloading to a programming device.

EDN January 10, 1985

2-13

2.1.3 CUPL, AmCUPL (Cont'd.)

12 'OUT

B 15 OUT,

Fig 3—When using CUPL, you can always write your logic equa-
tions in positive logic, regardless of the actual polarity of the signals
entering the device. For example, the two cases illustrated above both
yield the same logic equation: OUT=IN,&IN.,.

Fig 4—Some PLD devtcea use an mvertmy output buffer. As a
result, to ac ications that an active-high
output signal, the commler often must generate extra product terms
that might make the design too big for the target PLD.

product terms ORed together. Using De Morgan’s
theorems,

(AB)=X+§, and
(A+B)=AB.

Then, using the distributive property,

A(B+C)=A+B, and
(A+B)(C+D)=AC+AD+BC+BD.

The PLD software determines the best form of the
equation that will fit into a PLD, which uses a general
architecture to permit implementation of a wide range
of functions. The software should allow you to think in
terms of logical functions rather than gates. The better
the software, the more you can abstract from the
details of discrete design and attend to system
concerns.

Once you've decided to use a PLD approach, you'll
need to choose the software development support for
that device. You can use two basic types of software:
assembler-based software and compiler-based software
(Ref 1). Assembler-based software is supplied by the
PLD manufacturer; it typically supports only that
manufacturer’s devices. If you buy PLDs in large
quantity, you can usually get the software for well
under $100. An alternative to assembler-based soft-
ware is the compiler-based software sold by Data I/0
and Assisted Technology. Compiler-based software
supports almost all PLD devices and programmers;
typical prices range from $750 for a version that runs on
CP/M-based systems to $2695 for a version that runs on
VAX/VMS systems.

Although compiler-based software is more expen-
sive, it will make your PLD design task easier. Capabil-
ities such as symbolic signal representation and macro

EDN January 10, 1985

substitution make it easier for you to formulate and
enter your logic equations. These improvements allow
you to formulate your design at a higher conceptual
level; that is, you can think in terms of systems instead
of individual circuits.

Fig 2 illustrates the PLD design process using As-
sisted Technology’s CUPL language. (The Abel lan-
guage, developed by Data I/0, could also be used
to demonstrate the techniques involved.)

The CUPL syntax

Before you can design with CUPL, you have to learn
the syntax. CUPL’s operators, which were chosen
largely from the C programming language, are as
follows:

&=logical AND
#=logical OR
$=logical exclusive-OR
!=logical negation.

You can place comments anywhere within a CUPL
logic specification by using the symbol /* for “start
comment” and the symbol */ for “end comment.” You
can also nest parentheses to any level, as in this
example: OUT=!((A&B)&(C#(D&E))).

To facilitate clear documentation, CUPL allows you
to use symbolic names of arbitrary length (the first 31
characters must be unique). Symbolic names can repre-
sent pin variable names, internal device nodes, inter-
mediate variables, bit-field representations, and sym-
bolic constants. To further improve clarity, you can use
the underscore character—

RAM_PARITY_INT_EN.

When you're converting an existing design, CUPL
allows you to give symbolic names to internal nodes
within your design. For example, for flip-flops con-
nected to the pin PIN__VAR, you would name the node
as follows:

® D-type flip-flop—PIN__VAR.D=Expression

2-14

2.1.3 CUPL, AmCUPL (Cont'd.)

o JK-type flip-flop—PIN__VAR.J=Expression,
PIN__VAR.K=Expression
® RS-type flip-flop—PIN__VAR.R=Expression,
PIN__VAR.S=Expression.
For 3-state-device enable signals connected to a pin,
you would write:
® PIN__VAR.OE=Expression
e [PIN__VAR LIST].OE=Expression,
as in [DATAT..0].OE =Expression. If you're leaving the
3-state device enabled, you don’t have to write an
equation for it.

Handling signal polarities

One issue that often confuses first-time PLD users is
the representation of signal polarities. In CUPL, you
can always write equations in positive logic, regardless
of the polarity of the signals entering the device.
Because all signals entering the PLD are buffered, you
have access to both the true and complement versions
of the input signal for your logic equations. Fig 3
illustrates two simple cases. For each case—if you were
using the PLD as an AND gate—you would write the
same logic equation: OUT=IN,&IN..

The specification of signal polarities is complicated by
the inverting-output architecture of, for instance,
20-pin PAL devices (Fig 4). If you need an active-low
output polarity, this doesn’t create a problem. In this
case, the compiler has to implement only one P (prod-
uct) term. However, if you need an active-high output
signal, the compiler must apply De Morgan’s theorem,

PLD EQUIVALENT

Fig 5—With CUPL, you can often replace a TTL design without
understanding its functi You just mame the pins and nodes,
combine them according to gate relationships in the circuit, and the
software does the rest.

The PLD architecture contains a fixed
logic arvay made of a programming
matrix and AND gates whose
outputs feed OR gates.

Fig 6—Reduced propagation delays are one of the benefits of using
PLDs. A PLD implementation of the circuit shown here has, on the
average, half the propagation delay of the discrete implementation.

and !OUT,=!(IN,&IN;) becomes !IN,#!IN,. Note that
this equation contains two product terms. The addition-
al space the compiler requires reduces the probability
that the compiler will be able to fit the logic function
into the target PLD.

CUPL can eliminate this problem for PLD devices
that have programmable output polarities. CUPL auto-
matically chooses the output polarity that will result in
the fewest number of P terms.

Reduce keystrokes

One of CUPL’s (and Abel’s) major advantages is
macro substitution, the ability to use a single variable
name to represent a complex logical equation. For
example, if you define “INT__VAR” as “A&B#C,” the
compiler will insert A&B#C every time it encounters
INT_VAR.

Because macro substitution lets you use fewer key-
strokes to write equations, it saves time and reduces
the probability that you’ll make input errors. By using
macro substitution, you can write your logic specifica-
tion in a hierarchical fashion, breaking complex equa-
tions into more manageable and readable pieces.

The logic description

The heart of CUPL is the logic-description file
(LDF), which contains your logic equations, pin decla-
rations, intermediate variables, and documentation de-
seribing the device’s function. You must complete the
LDF to prepare your logic equations for downloading to

EDN January 10, 1985

2-15

2.1.3 CUPL, AmCUPL (Cont'd.)

a programming device. Table 1 shows the format for a
CUPL LDF that was written for a memory decoder.
The following example shows you how to complete
the logic equation, pin declaration, and intermediate
variable portions of an LDF for the design in Fig 5.
First, you write the pin declarations using the same
names and signal polarities that appear on your sche-
matic. Next, you name the output of each gate in the

TABLE 1—SOURCE
SPECIFICATION FILE FORMAT

FUNCTION DESCRIPTION

PART NO 900 16487 HEADER INFORMATION:
NAME MEMDEC IDENTIFIES THE
DATE 07/18/84 PARTICULAR LOGIC
REV : 03 NN SOURCE FILE
COMPANY ATI

ASSEMBLY PC-RAM

LOCATION 417

THIS DEVICE DEOODES ADDRESSES TITLE BLOCK:

FOR THE DYNAMIC R; DESCRIBES IN
PROVIDES THE RAS STROB PLAIN TERMS WHAT

CWAEéJ. AS A SIGNAL THAT INITIATES THIS DEVICE DOES.

ALLOWABLE TARGET DEVICE DEVICE MENU: LISTS
TYPES: PAL 16L8, 825153, ALL TARGET DEVICE TYPES

m THAT MAY BE USEI

PIN DECLARAT!ONS

N ‘A 19. . CPU ADDﬁESS BUS
PIN (7, B MEMW MEMH} MEMORY A STROBES
PIN INDICATES REFRESH CYCLE IN PROGRESS
PIN 11 = ! R RAS-ONLY H
PIN13 = ALT Toc PLACE MEMORV IN ALTERNATE RANGE
OUTPUTS:
PIN [19A AG =1 IRAS 3..00 RAM ROW ADDRESS STROBES

N 14 = ! ENABLE CAS STROBES

DECLARAT!ONS AND INTER-
MEDIATE VARIABLE DEFINITIONS:

WRITE EQUATIONS FOR
BIT-FIELD DECLARATIONS
AND INTERMEDIATE VARIABLES
WHICH WILL BE SUBSTITUTED
Usl G IACRO-

FIELD MEMADR I;JIAJQM Ea ‘R‘I

MEM REQ = ME! MEMORY REQUEST

LOGIC EQUATIONS: WRITE EQUATIONS FOR
OUTPUTS IN TERMS OF
INPUTS AND FEEDBACK AS IN:
OUTPUT = INPUT 1 & FEEDBACK 1
INPUT 2 & FEEDBACK 2
#INPUTS N & FEEDBACK N
FUNCTION DESCRIPTION
RAS 3 = MEMREO & 1} REF_AOH EN &
('ALT_LOC & ? PRIMARY RANGE
0 AL —LOC & MEMADR FCOOO FFFF) ALTERNATE RANGE
EF_ADR_EN & REF_RAS REFRESH CYCLE

AS 2 = MEMREQ & | REF_ADFL_EN &

(I ALT LOC & MEMADR: OBF PRIMARY RANGE
LT_LOC & MEMADR: FOOOO .FBFFF) ALTERNATE RANGE
EF_ADR_EN & REF__RA! REFRESH CYCLE

RAs 1 = MEMREQ & ! REF_ADH EN &
| ALT__LOC & MEMAI 04000 07FF PRIMARY RANGE
ALT_LOC & MEMADR ALTERNATE RANGE
REF_ADR_EN & EEFJA REFRESH CYCLE
RAS 0 = MEMREQ & ! REF_.ADR._EN &
(l ALT__LOC & MEMADR: [00000. . .03FFF| PRIMARY RANGE
#Al OC & ME| MADR‘ F0000. . . F3FFF ALTERNATE RANGE
REF_ADR_EN & REF_RAS REFRESH CYCLE

CAS INIT = MEMREQ & | REF_ADR_EN &
! ALT__LOC & MEMADR: [00000. . .OFFI

FFF RIMARY RANGI
ALT__LOC & MEMADR: [F0000. . . FFFFI

P E
ALTERNATE RANGE

EDN January 10, 1985

schematic. In the example, STROBE, A, and !GATE
are the intermediate variables. Using the intermediate
variable definitions, you then write an equation for the
output:

PIN 4=!IN,
PIN 5=IN,
PIN 6=IN;
PIN 15=0UT
A=!IN,
STROBE =!(!IN,)#!IN; /*!(!IN;) =IN,*1
IGATE=!(A&IN;)
OUT=STROBE&!GATE.

The following expressions show this strategy applied
to the more complicated design in Fig 6:

A=!IN,
B=!(IN,&IN.&!INj)
C=!('IN;)#!('IN,)
D=!C
E=!(C&IN;)
F=!B&'!D&'E
G=A#F
10UT=(G&INs).

The design in Fig 6 illustrates another advantage of
using PLDs instead of discrete logic. The propagation
delay in the PLD implementation is often less than that
in the discrete design. The discrete design for this
circuit requires at least three TTL packages and has
five levels of delay. The total delay time is 50 nsec (five
levels times 10 nsec/level) for LS packages and 26 nsec
(4%4 nsec+10 nsec) for a combination of LS and Schott-
ky TTL packages. In an equivalent PLD circuit, the
maximum delay is 25 nsec; typical delay is only 15 nsec.

Registered PLDs

Some of the more complicated types of PLDs use
flip-flops in their output stages to store information.
Most of these PLDs provide integral feedback paths.
The simplest registered PLDs contain D-type flip-flops,
which transfer the signal at their D input to their Q
output after one clock pulse (more specifically, after the
application of a positive-going leading edge). The equa-
tions for the flip-flop in Fig 7 are

OUTPUT.D=G&INPUT /*UPDATE WITH INPUT*/
#!G&OUTPUT; /*MAINTAIN CURRENT OUTPUT*/
/*VIA INTERNAL FEEDBACK DATA*/.

For simple registered designs, you can often model

2-16

2.1.3 CUPL, AmCUPL (Cont'd.)

Compiler-based software for PLD design
includes such features as symbolic signal
representation and macro substitution.

the circuit with a timing diagram. Using the timing
diagram, you can write your logic equations easily. In
the Fig 8 timing diagram for a D-type flip-flop, INPUT.
initiates the input pulse, and INPUT, terminates the
output pulse. The pin declarations are

PIN 3=!INPUT,

PIN 6=!INPUT:

PIN 1=CLOCK
PIN 14=0UTPUT,

and the corresponding logic equations are

OUTPUT.D=!0UTPUT&INPUT 2 /*SET FF*/
OUTPUT&!INPUT 1; /* KEEP FF SET*/
/* UNTIL INPUT 1%/
/*GOES ACTIVE*/.

These equations demonstrate one method for using

the smallest possible number of product terms to keep a
D flip-flop set for several clock cycles. Here, the
flip-flop’s output is fed back until some condition is met
that again enables the flip-flop.

If the registered PLD contained JK flip-flops, the
expressions would be

OUTPUT.J=INPUT;; /* SET FF*/
OUTPUT.K=INPUT;; /* RESET FF*/.

To handle more complicated sequential designs, you
can model your circuit as a multiple-flip-flop system
that uses a common clock. (Virtually all currently
available registered PLDs use common clocks for their
flip-flops.) For example, to convert TTL designs that
use cascaded flip-flops (in which the outputs of some
flip-flops are used to clock other flip-flops), you must -
find the originating clock in the circuit, which is usually

OUTPUT (REGISTERED)

Fig 7—Some PLDs use registered outputs to introduce storage
elements into their architecture.

S ururuur
CLOCK ed

IINPUT, -

uNPuT,-LJ

ouwur_..__j | I

Fig 8—Converting logic designs to PLDs is easy once you've
completed a timing diagram for your circuit. This one represents
operation of a D-type flip-flop.

PROGRAM SECURITY FUSE.

PERFORM NO LOGIC MINIMIZATION.

NCCOZZTZIZIDOXTNI—r>
WN - O

TABLE 2—CUPL OPTION FLAGS

PRODUCE YOUR__FILE__NAME.ABS FOR LATER USE BY CSIM.

PRODUCE YOUR__FILE__NAME.LST WITH LINE NUMBERS AND ERROR MESSAGES.
PRODUCE YOUR__FILE__NAME.HL DOWN-LOADABLE HL FORMAT FILE FOR IFL.
PRODUCE YOUR__FILE__NAME.HEX MMI PAL ASCII-HEX FORMAT FILE.

PRODUCE YOUR_FILE__NAME.DOC WITH FUSE MAP FILE.

PRODUCE YOUR__FILE__NAME.DOC WITH FULLY EXPANDED EQUATIONS.

DISABLE GLOBAL PRODUCT-TERM MERGING. (FPLA DEVICES).

PERFORM LOCAL LOGIC MINIMIZATION.

PERFORM LOGIC MINIMIZATION UNTIL EQUATIONS FIT IN TARGET DEVICE.
PERFORM FULL LOGIC MINIMIZATION.

DEACTIVATE UNUSED OR-TERMS. (INCREASES SPEED IN FPLAs).

SET ALTERNATE SEARCH PATH FOR PLD DEVICE DATABASE.

PRODUCE YOUR__FILE__NAME. JED, THE JEDEC FORMAT DOWNLOADABLE FILE
AUTOMATICALLY RUN CSIM AFTER RUNNING CUPL

EDN January 10, 1985

2-17

2.1.3 CUPL, AmCUPL (Cont'd.)

the highest-frequency source in the circuit. In most
cases, the timing skew from one flip-flop output to the
next is tolerable.

The TTL circuit in Fig 9 contains an LS161 counter
whose output is decoded in an LS138. The decoded
output sets and resets flip-flops at various points in the
timing cycle. The timing diagram in Fig 10 is based on
the assumption that the clock rate is sufficiently high
that the propagation delays from SYSCLK to OUT; and
OUT; are not significant. If you were to implement this
design in a PLD, the pinout would look like the one
shown in Fig 11. Outputs Qo and Q, were added to make
all eight time slots in the circuit’s cycle a unique
combination of the four outputs. Adding Q and Q
results in a timing sequence like the one in Fig 12.

You can now write the logic equations by noting, for
each output, each place in the timing cycle where the
output reads high (the flip-flop is set). For example,
OUT, is set during time slots 2, 3, and 4. (The equation
for the D input should include representations of time
slots 1, 2, and 3; these time slots occur immediately
before the flip-flop is set.) For time slots 1 through 3,
you can now write

OUT,.D=!0UT,&!0UT:&Q,&!Q, /*TIME SLOT 1*/
#0UT,&!0UT:&!Qé&!Q, /*TIME SLOT 2*/
#0UT,&!0UT:&Q&!Q, /*TIME SLOT 3*/.

Writing these equations is easier if you first define each
time slot in terms of the register outputs that are fed

5V

SYSCLK Qc

< << << <<=
Kbt la

LS10

‘-E)""‘[%o-{ﬁsg;
.

IRESET

420 doo

Fig 9—When converting pl q to PLDs, you
can model your circuit as a group of flip-flops driven by a common
clock.

Compiler-supported symbolic names can
represent pin variable names, internal
device nodes, intermediate variables,
bit-field representations, and

symbolic constants.

TMESLOT| 0 I 0o 11 2| 31l4l516| 710l
SYSCLK
IRESE T
our, 1

Fig 10—This timing diagram ‘is based on the assumption that the
Fig 9 circuit uses a clock rate that is not significantly affected by
propagation delays from SYSCLK to OUT, and OUT,.

PIN 1=SYSCLK
PIN 2= IRESET
PIN 13=0UT,
PIN 14=0UT,
PIN 15=Q,

PIN 16=Q,

IRESET

Fig 11—Adding outputs Q, and Q, of this PLD implementation of the
Fig 9 circuit makes each of the eight intervals in the Fig 12 timing
cycle a unique combination of the circuit’s four outputs.

back into the programmable array:

TSy=!0UT,&!0UT:&!Qu&!Q;; /*TIME SLOT 0*/
TS,=!0UT:&!0UT:&Q&!Qy; /*TIME SLOT 1*/
TS;=0UT,&!0UT:&!Q&!Q;; /*TIME SLOT 2*/
TS;=0UT,&!0UT.& Q&!Q;; /*TIME SLOT 3*/
TS,=0UT,&0UT:&!Q&!Q;; /*TIME SLOT 4*/
TS;=!0UT,&0UT:&!Q&!Q;; /*TIME SLOT 5*/
TSs=!0UT,&0UT:&Qo&!Q;; /*TIME SLOT 6*/

You can now write the equations for the four registered
outputs in terms of TS, through TS; (T'S; is not needed);
CUPL performs the following substitutions:

OUT,.D=TS,#TS,#TS;

OUT:. D=TS;#TS,#TS;
Q0. D=TS,#TS,#TS;
Q.D=TS;.

Running CUPL
Once you've completed the LDF, you're ready to
compile the LDF for downloading to the PLD program-
mer. To compile the file, you type an expression that
follows this format:
CUPL [FLAGS] TARGET_DEVICE__CODE
YOUR_FILE__NAME.

2-18

2.1.3 CUPL, AmCUPL (Cont'd.)

PLDs with an inverting-output
avchitecture complicate selection of

signal polarities.
TIMESLOTIOIOI1l2|:a|4|5|e|7|ol
SYSCLK

 RESET o]
PY; RE A
out, -
Qe 11 T
Q, I 1

Fig 12—Once you’ve rewritten the Fig 10 timing diagrams to reflect
the PLD configuration in Fig 11, you can write a set of logic
equations for implementing the PLD design.

For example, the sequence CUPL -J -A P16L.8 RAM-
CNTRL compiles the source file for a RAM controller
that is targeted for a PAL16L8. The J and A symbols
are chosen from a table of CUPL option flags (Table 2).
In this case, the compiler produces a JEDEC file and an
absolute-format file to be used later by CUPL’s simula-
tor, CSIM (Ref 1). The resulting compiled code is
downloaded to the programmer, which then blows the
appropriate fuses in the PLD.

The designs discussed thus far are simple but useful
for describing the PLD design process. The next two
articles will extend the discussion to more advanced
designs, and finally, to the state-machine approach.

EDN

Reference

Marrin, K, “Programmable logic devices gain software
support,” EDN, February 9, 1984, pg 67.

Author’s biography

Bob Osann is president and chief executive officer of
Assisted Technology Inc (Sunnyvale, CA). He received his
BSEE from Cornell University and was previously
employed at Millennium Systems Inc (Santa Clara, CA).
His hobbies include sports cars, airplanes, and music.

EDN January 10, 1985

2-19

2.1.3 CUPL, AmCUPL (Cont'd.)

Designer’s Guide to:
Programmable logic—Part 2

Use PLDs to shrink
complex, discrete

logic designs

As discrete combinatorial and sequential
logic civcuits become more complex, it
becomes move difficult to convert them to
PLD equivalents. With the help of
compiler-based software, though, yowll be
converting complicated logic designs in no
time.

Bob Osann, Assisted Technology Inc

Converting complicated discrete designs to their PLD
(programmable logic device) equivalents can be an
imposing task for the first-time PLD user or for the
engineer who’s been laboring with outmoded PLD
software tools. New compiler-based software, howev-
er, makes it easy for you to implement even complex
logic designs with PLDs.

This article, the second in a 3-part series on PLD
design, introduces a few of the more advanced features
of the compiler-based PLD design language CUPL and
shows you how to use those features to convert compli-
cated sequential and combinatorial SSI logic designs to
PLD equivalent designs. Part 1 of the series demon-
strated some elementary features of CUPL and showed
you how to apply those features in a few simple designs.
Part 3 will introduce CUPL’s state-machine syntax and

EDN January 24, 1985

show you how to move directly from logic ideas to PLD
implementations without developing a gate-level de-
seription of your system.

CUPL lets you use a systems approach

The CUPL high-level PLD support language enables
you to develop your logic designs using a systems
approach. This approach not only speeds the design
process but facilitates the generation of logic descrip-
tions that are easy to understand.

CUPL supports a systems approach with several
advanced features, which give you a self-documenting
syntax, allow you to use fewer keystrokes to develop
your systems, and let you use symbolic names that
correspond to whatever function you're trying to imple-
ment. CUPL also gives you a flexible format, which lets
you describe several similar systems in less time than it
would take to describe the systems using a more rigid
format.

One of CUPL’s advanced features is its bit-field
capability, which allows you to use a single symbolic
name to represent a group of bits (such as an address
bus or state bit field). This feature saves you key-
strokes when you're formulating your design equations
and makes the resulting equations easier to read. Once
you'’ve defined a symbolic name, you can use that name
to represent either a single hexadecimal value or a
range of hexadecimal values. For example, in an ad-
dress-decoding application, you could equate the sym-
bolic name MEMADR with [ADR7, ADR6, ADRS5,

2-20

2.1.3 CUPL, AmCUPL (Cont'd.)

PLDs are effective replacements for both
simple and complex combinatorial and
sequential discrete logic designs.

ADR4, ADR3, ADR2, ADR1, ADRO]. You could then
substitute [ADR7. .. 0] for [ADR7, ADR6, ADRS5,
ADR4, ADR3, ADR2, ADR1, ADRO]. The resulting
equation, FIELD MEMADR=[ADRT . ..] assigns
the name MEMADR to the address bus.

CUPL speeds bit-field comparisons

Another CUPL feature is its “:” operator, which can
perform bit-field comparisons and operations quickly
and efficiently. This feature is particularly useful for
describing such features as an address decoder. When
the compiler is performing a bit-field comparison, the
operator “” compares a bit field with either a hexadeci-
mal or an octal constant value or a hexadecimal or octal
list of constant values (hexadecimal is the default
value). When you're describing an address decoder, for
example, the statement MEMADR: [A000 . . . EFFF]
is true if the address MEMADR falls in the hexadecimal
range' A000 to EFFF (inclusively). Note that hexadeci-
mal constant values must contain the proper number of
nibbles' to include the most significant bit of the bit
field. In the above expression, the most significant bit
of the E in EFFF corresponds to A15 in MEMADR.

You can also use the “:” operator for bit-field opera-
tions, as in the following equation:

IOADR: & REPLACES AT&A6&A5&A4&A3&A2&A1&A0
IOADR: # REPLACES AT#AG6#A5#A4#A3#A2#A1#A0.

Another timesaving CUPL feature is the preprocess-

or, which lets you write general-purpose logic descrip-
tions that you can tailor to suit more than one applica-
tion. For example, you might write a general-purpose
decoder that you could adapt to 8-, 16-, or 32-bit
applications by changing a few symbolic names and
ranges.

The CUPL preprocessor is a program that operates
on the CUPL source file before it's compiled. The
preprocessor’s string-substitution function, for exam-
ple, can replace one symbolic name with another until
some condition is met. When it encounters the state-
ment $DEFINE ARG1 ARG, for instance, the pre-
processor replaces ARGl with ARG2 until it encoun-
ters the statement $UNDEF ARG1. You could use the
arguments in this example to represent different ver-
sions of your decoder. You could make ARG1 represent,
say, the 8-bit decoder, and you could make ARG2
represent the 16-bit decoder.

The preprocessor also allows you to delay inclusion of
a file until compile time. Again, this feature lets you
generalize your functions. For example, you could write
several files that represent several specific cases of a
general application. To implement different functions,
you'd just include different file names. In the statement
$INCLUDE FILENAME, the referenced file becomes
part of the LDF (logic description file) only at compile
time.

Conditional control structures extend even further
the ability to create generalized files. They allow you to

® PAL16RS
INPUT 2)
PLD
G 3 OUTPUT (REG/INV)
—d | Ry
CLOCK 1
®)
PAL16R8
INPUT 2[|
G 3], PLD Ry 1OUTPUT (REG/INV)
CLOCK 1
—_—

IORD
HHIOWR

— |

IBUFFEN

F > 22rrer

Fig 1—These two PLDs show two possible output configurations
for a PLD with a fized inverting output buffer. PLDs with program-
mable output polarity eliminate the confusion that fized output
devices cause.

Fig 2—Address decoders are typical targets for first-time PLD
users. A simple application like this address decoder shows how you
can benefit from software features like macro substitution, range
Sunctions, and list notation.

EDN January 24, 1985

2-21

2.1.3 CUPL, AmCUPL (Cont'd.)

TABLE 1 — MEMDEC LOGIC DESCRIPTION FILE
PARTNO 2600A00004 ;

NAME MEMDEC ;
DATE 02/14/84 ;
REV 02,

DESIGNER OSANN ;

COMPANY - ASSISTED TECHNOLOGY ;
ASSEMBLY PC-RAM ;

LOCATION U76 ;

/ /
/ THIS DEVICE DECODES ALL MEMORY ACCESSES FOR BOTH PRIMARY AND */
/* ALTERNATE LOCATIONS. IT GENERATES THE RAS SIGNALS FOR THE FOUR *
/* BANKS OF 16K DYNAMIC RAMS AS WELL AS THE SIGNAL THAT INITIATES */
/* THE CAS SIGNALS. */
/ !
'/** ALLOWABLE TARGET DEVICE TYPES: PAL16L8, 825153, PAL16P8 **
/** INPUTS **/)

PIN[1..6] = [A19..14] ;/* CPU ADDRESS BUS */

PIN[7,8] = |[MEMWMEMR] ;/* MEMORY DATA STROBES */

PIN9 = IREF_ADR_EN ;/* INDICATES REFRESH CYCLE IN PROGRESS */
PIN 11 = IREF_RAS ;/* STROBE FOR RAS-ONLY REFRESH */

PIN13 = ALT_LOC ; /" PLACE MEMORY IN ALTERNATE RANGE */

/** OUTPUTS **/ ’

PIN [19..16] = [RAS3..0] ;/* RAM ROW ADDRESS STROBES */

PIN 14 = ICAS_INIT ; /" ENABLE CAS STROBES */

/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/

FIELD MEMADR = [A19..14] ;/* MEMORY ADDRESS */
MEMREQ = MEMW # MEMR ;/* MEMORY REQUEST */
/** LOGIC EQUATIONS **/
RAS3 = MEMREQ & |REF_ADR_EN &
('ALT_LOC & MEMADR:[0C000..0FFFF] /* PRIMARY RANGE */
ALT_LOC & MEMADR:[FC000..FFFFF]) /* ALTERNATE RANGE */
REF_ADR_EN & REF_RAS ; /* REFRESH CYCLE */
RAS2 = MEMREQ & |REF_ADR_EN &
('ALT_LOC & MEMADR:{08000..0BFFF] /* PRIMARY RANGE */
ALT_LOC & MEMADR:[F8000..FBFFF]) /* ALTERNATE RANGE */
REF_ADR_EN & REF_RAS ; /* REFRESH CYCLE */
RAS1 = MEMREQ & !REF_ADR_EN &
('ALT_LOC & MEMADR:[04000..07FFF] /* PRIMARY RANGE */
ALT_LOC & MEMADR:{F4000..F7FFF]) /* ALTERNATE RANGE */
REF_ADR_EN & REF_RAS ; /* REFRESH CYCLE */
RASO = MEMREQ & |REF_ADR_EN &
('ALT_LOC & MEMADR:[00000..03FFF] /* PRIMARY RANGE */
ALT_LOC & MEMADR:[F0000..F3FFF]) /* ALTERNATE RANGE */
REF_ADR_EN & REF_RAS ; /* REFRESH CYCLE */
CAS_INIT = MEMREQ & |REF_ADR_EN &
(!ALT_LOC & MEMADR:[00000..0FFFF] ' /* PRIMARY RANGE */
ALT_LOC & MEMADR:[F0000..FFFFF]); /* ALTERNATE RANGE */

EDN January 24, 1985

2-22

2.1.3 CUPL, AmCUPL (Cont'd.)

compile particular portions of your LDF when you’ve
complied with certain conditions. When you use the
format

$IFDEF ARG

... STATEMENTS. ..
$ELSE

... STATEMENTS. ..
$ENDIF,

the statements are compiled only if the argument ARG
has been defined. When you use the format

SIFNDEF ARG

... STATEMENTS . ..
$ELSE

... STATEMENTS . . .
$ENDIF,

the statements are compiled only if the argument ARG
has not been defined.

Output programmability saves space

One CUPL feature that can save you considerable
space in your design is the language’s ability to support
a PLD with programmable output polarity. For PLDs
with this feature, the CUPL compiler chooses whichev-

By using symbolic names to vepresent bit
fields such as address buses, you can not
only save keystrokes, but you can make your
designs virtually self documenting.

er output polarity results in logic equations that use the
smallest number of product terms. Although output-
programmability support is a useful PLD option, many
widely used PLDs contain inverting output buffers that
are fixed instead of programmable. The examples that
follow demonstrate the limitations of PLDs that don’t
have programmable output polarity.

For instance, Fig 1 illustrates the architecture for a
PLD that uses a single D flip-flop and an inverter in its
output stage. Fig la shows a design that uses an
active-high output name, and Fig 1b shows one that
uses an active-low output name. The pin declarations
for Fig la are

PIN 1 = CLOCK
PIN 2 = INPUT
PIN3 =G

PIN 18 = !OUTPUT.

To see why support for output programmability is so
important, imagine that the flip-flop’s output is fed
back to keep it set. The polarity used in the output
name makes a significant difference in the number of
product (P) terms that are fed back.

A19.A14 IRAS3..0
! ..{ 4 x
MEMDEC ———LC I 16k x 8
ICAS3..
cPU !IORD, IOWR PAL16L8 ICAS_INIT @—'_
OR
JMPR 100 825153
IREF_RAS DYNAMIC
RAM
— I DELAY LINE J ADDRESS
MUX
A13.0 (4 x 1)
1BUS_AK]
| Bus_ReQ — A7.0
RFSHCNT SELA SELB
RFSH I
TIMER __PESET I paLiers
OR
IREF_REQ 825157 IRFSH_ADR_EN
CLR)
REFRESH ADDRESS COUNTER
ICLR_REF_TMR
Fig 3—Memory decoders (MEMDET) v o challenging application for PLD conversions. This decoder is a portion of a dynamic RAM

contraller

EDN January 24, 1985

2-23

2.1.3 CUPL, AmCUPL (Cont'd.)

TABLE 2 — RFSHCNT LOGIC DESCRIPTION FILE
PARTNO 2600A00005 ;
NAME RFSHCNT ;
DATE 02/19/84 ;
REV 02;
DESIGNER OSANN ;
COMPANY ASSISTED TECHNOLOGY ;
/ /
/* THIS DEVICE RESPONDS TO THE REFRESH REQUEST(REF-REQ) GENERATED */
/* BY THE REFRESH INTERVAL TIMER. IT PRODUCES THE SIGNAL WHICH i
/* GATES THE REFRESH COUNTER ADDRESS INTO THE RAM ADDRESS BUS */
/* AS WELL AS THE REFRESH RAS STROBE AND THE CLEAR PULSE FOR */
/* THE REFRESH INTERVAL TIMER. */
/ /
/** ALLOWABLE TARGET DEVICE TYPES: PAL16R6, 825157 **/
/** INPUTS **/
PIN 1 - CLK ;/* CPUCLOCK */
PIN 2 REF_REQ ; /*"REFRESH REQUEST FROM INTERVAL TIMER */
PIN 3 = IBUS_AK ,/* BUS ACKNOWLEDGE FROM CPU */
PIN 4 = RESET ,/* SYSTEM RESET */
PIN 11 = 10E ;/* TIED TO GROUND.*/
/** OUTPUTS **/
PIN 18 = IBUS_REQ ;/* BUS REQUEST TO CPU */
PIN17 = IREF_ADR_EN ; /* ENABLE REFRESH ADDRESS */
PIN 16 = IREF-RAS ;/* STROBE FOR RAS-ONLY REFRESH */
PIN 15 = IREF_RAS_DLY1 ; /* REF_RAS DELAYED 1 CLOCK */
PIN 14 = IREF-RAS_DLY2 ; /" REF-RAS DELAYED 2 CLOCKS */
PIN 13 = ICLR_.REF_-TMR ;/* PULSE TO CLEAR RFRSH INTERVAL TIMER */
/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/
FIELD ST = [BUS_REQ, /* ALL OUTPUTS ARE PART OF */
REF_ADR_EN, /* THE STATE BIT FIELD. */
REF_RAS,
REF_RAS_DLY1,
REF_RAS_DLY2,
CLR_REF-TMR] ;
/** LOGIC EQUATIONS **/
BUS_REQ.D = IRESET &
IBUS_REQ & REF_REQ / SETIT*/
BUS_REQ& (ST:20 # ST:30 /" KEEPIT SET*/
ST:38 # ST:3C /* KEEPIT SET */
ST:3E)) /* KEEP IT SET */
REF-ADR_EN.D = IRESET &
(!'REF_ADR_EN & BUS_AK & BUS. REQ " SETIT*
REF_ADR_EN & (ST:30 # ST:38 /* KEEPIT SET "/
#ST:3C#ST:3E)); /"IKEEP IT SET ¥/
REF_RAS.D = |IRESET & (ST:30 # ST:38 # ST:3C) ;
REF_RAS_DLY1.D = IRESET & (ST:38 # ST:3C # ST:3E) ;
REF_RAS_DLY2.D = IRESET & (ST:3C # ST:3E # ST:36) ;
CLR_REF_TMR.D = IRESET & ST:36 ;

EDN January 24, 1985

2-24

2.1.3 CUPL, AmCUPL (Cont'd.)

If you choose an active-high output name, the logic
equations are

OUTPUT.D = G & INPUT /* UPDATE WITH INPUT ¥/
!G & OUTPUT /* MAINTAIN CURRENT QUTPUT */
/* VIA INTERNAL FEEDBACK PATH */.

Because of the inverting output buffer, the equations
that you must program into the array are
IOUTPUT.D = G & INPUT # !G & OUTPUT)
I0UTPUT.D = !G & IOUTPUT # !INPUT & G #
IINPUT & !OUTPUT.
Notice the extra product terms that are created. If, on
the other hand, you choose an active-low output name,
the pin declarations are .
PIN 1 = CLOCK
PIN 2 = INPUT

PIN3 =G
PIN 18 = !0UTPUT,

and the final equations are

OUTPUT.D = G & INPUT /* UPDATE WITH INPUT */
!G & OUTPUT /* MAINTAIN CURRENT OUTPUT */

/* VIA INTERNAL FEEDBACK PATH */.

As you can see, when PLDs have fixed inverting
buffers, the active-low output condition requires the
fewest number of P terms.

Now that you're familiar with CUPL’s features,
you’re ready to apply them to more complicated sys-
tems. When a logic designer uses a PLD for the first
time in a new design, the designer’s target area is often
the address-decode function. Fig 2 shows a simple
1/0-decoding circuit that creates a buffer-enable signal
for 1/0 reads or writes when the decoded address falls
in the hexadecimal range 10 through 12, inclusively. If
you were to implement this address-decoding function
using assembler-based software, your equations would
look like the following ones:

BUFFEN=IORD*/AT*/A6*/A5*A4*/A3*/A2*/A1*/A0
+IORD*/A7*/A6*/A5*A4*/A3*/A2*/A1* A0
+IORD*/AT*/A6*/AB*A4*/A3*/A2* A1*/A0
+IOWR*/AT*/A6*/A5* A4*/A3*/A2*/A1*/A0
+IOWR*/AT*/A6*/AG* A4*/A3*/A2*/A1* AD
+IOWR*/AT*/A6*/A5* A4*/A3*/A2*A1*/A0.

If you were to implement the address-decoding func-
tion using CUPL, your equations would look like this:

FIELDADR = [A7. .-0};
IOREQ = IORD # IOWR;
BUFFEN = IOREQ & ADR:(10. . 12};.

To write equations using CUPL, you first define the
address bus as a bit field where ADR=[A7 . .. 0]. The

Conditional control structures tmprove
compiler flexibility. They allow the compiler
to delay decisions until cevtain predefined
conditions are met.

compiler then substitutes [AT7 . . . 0] whenever it sees
ADR. You then combine the strobe signals and give
them the arbitrary name IOREQ where IOREQ
=JORD#IOWR. Finally, you write an equation for the
output BUFFEN in terms of the intermediate variables
IOREQ and ADR so that BUFFEN=IOREQ&ADR:[10
... 12]. The list-notation and range functions, as well
as macro substitution, are all used here. The final code
takes less time to write and is much easier to read than
code written in an assembler-based language, and it's
virtually self documenting.

Fig 3 shows the CUPL design technique in a more
complicated decoder application, a dynamic RAM con-
troller. The PLD MEMDEC in Fig 3 provides the
memory decoder function. It supplies four 16kx8-bit
banks of dynamic RAM with RAS (row address strobe)
signals and generates a signal that initiates the CAS
(column address strobe). The initiating signal first
passes through a delay line and then recombines with
the RAS signals to produce the CAS.

MEMDEC decodes address bits A19 through Al4 of
a 20-bit address space and maps the 64k-byte block to
either the top or the bottom of the memory map shown
in Fig 4. The jumper-selectable input called ALT_LOC

FFFFF
FCo00 BANK3
BANK 2
F8000 ALTLOC =1
BANK 1
F4000 BANKO
F0000
MEMORY
MAP
OFFFF
G000 BANK3
08000 BANK2 ALT LOC =0
BANK1
04000 BANKO
00000

Fig 4—This memory map shows two possible locationa for address
bits A19 through Al of a 20-bit address space. MEMDEC decodes
the bits and maps the 64k-byte block to either the top or the bottom of
the memory map.

EDN January 24, 1985

2-25

2.1.3 CUPL, AmCUPL (Cont'd.)

determines whether the top or the bottom of the
memory map is used. Table 1 shows a completed LDF
for the memory decoder.

Not only does CUPL simplify combinatorial designs,
but it’s useful for implementing sequential designs as
well. Because P’L.Ds contain both the logic array and
registers in the same package, they’re particularly
powerful for implementing registered logic. The PLD
named RFSHCNT in the RAM controller shown in Fig
3 handles the sequential aspects of refresh control for
the dynamic RAM in a typical pP system.

RFSHCNT responds to a refresh signal from the
refresh internal timer (usually 14 psec) by driving the
CPU’s bus-request line high. After receiving a bus-
acknowledge signal from the CPU, RFSHCNT then
generates signals for address MUX control and RAS-
only refresh timing.

RFSHCNT also provides a signal that resets the
refresh interval timer and clocks the refresh-address
counter. Fig 5 shows the timing diagram for
RFSHCNT. Note that the registered output signals
are shown as logical true even though the actual
outputs are active low. Because the equations are based
on signals in the timing diagram, in order for the
registered outputs to be shown as logical true, the
target device must have either an inverting output

Programmable-output capability allows the
compiler to save PLD space. Thus, you’ll
need fewer PLDs when yow’re converting
your design.

buffer or programmable-output-polarity capability.

Table 2 shows the LDF for RFSHCNT. The LDF
uses the hexadecimal values that define the time slots
shown in the timing diagram. Note the use of CUPL’s
bit-field capability in the equations that specify the D
flip-flop’s state.

CUPL’s compiler-based techniques simplify the con-
version of complicated SSI circuits to their PLD equiva-
lents. Part 3 of this series will show you how to simplify
the logic design process even further by using the
state-machine approach. EDN

Author’s biography

Bob Osann is president and chief executive officer at As-
sisted Technology Inc (San Jose, CA). He received his
BSEE from Cornell University and was previously em-
ployed at Millennium Systems Inc (Santa Clara, CA). Bob
holds three patents in the areas of consumer and industrial
electronics. His interests include sports cars, airplanes,
and music.

(IN) REF_REQ J 1
(OUT) BUS_REQ | L
nBusAK T}
(OUT) REF_ADR_EN I 1 ‘
(OUT) REF_RAS 1
(OUT, NC) REF RAS_DLY1 1
(OUT, NC) REF RAS_DLY2 I__"'_—'l_____
(OUT)CLR REF_TMR I L

Fig 5—The registered output signals shown in this timing diagram for RFSHCNT are shown as logical true even though the actual outputs
are active lnw. Because the equations are based on the timing diagram, the target device must be inverting, or it must have
ble-onbout bilit

Y idatd P ¢4

EDN January 24, 198

2-26

2.1.3 CUPL, AmCUPL (Cont'd.)

Designer’s Guide to:
Programmable logic—Part 3

State-machine
approach speeds
ogic design

To exercise @ PLD’s full potential for
shortening design time and improving
documentation, use the state-muachine
approach. This approach lets you formulate
a behavioval description of your system and
implement it divectly in a PLD, without
ever developing an equation-level
vepresentation.

Bob Osann, Assisted Technology

Using the state-machine approach and a compiler-based
PLD design language like CUPL, you can bypass the
gate- and equation-level stage in logic design and move
directly from a system-level description to a PLD
implementation. Unlike assembler-based approaches,
the state-machine approach lets you document your
design in a_manner that’s understandable to future
users of your design.

Actually, few logic designers currently use the state-
machine approach in their logic designs. This isn’t
surprising: The technique seems difficult to learn at
first. But CUPL makes the state-machine approach less
formidable by handling many of the decisions you would

DN February 7, 1985

normally have to make. Furthermore, CUPL gives you
a general and simple state-machine model like the one
shown in Fig 1. The software automatically fits,the
model to your application.

Defining the state model

In general, a state machine is a logic circuit with
flip-flops. Because a flip-flop’s output can be fed back to
its own or some other flip-flop’s input, a flip-flop’s input
value may depend on both its own output and that of
other flip-flops. Consequently, the final value for a
flip-flop’s output depends on its own previous values, as
well as those of other flip-flops.

The CUPL state-machine model uses six compo-

NONREGISTERED OUTPUTS

REGISTERED
OUTPUTS

E BITS

INPUTS

Fig 1—State-machine theory can be complicated, but CUPL allows
you to abstract from the theory’s complicated details. Using this
simple model and an easy-to-learn syntax, you can quickly con-
struct staty hi dels of your syst

2-27

2.1.3 CUPL, AmCUPL (Cont'd.)

When you use the state-machine approach,
you don’t have to write a logic-equation-
level description of your system befove
implementing it in a PLD.

CLOCK ____—__J |
T,
STATE BIT hid |
REGISTERED T >
OUTPUT ad I‘ = T 4T
Iq—— co™ 'pd
NONREGISTERED OUPUT S l
(DEPENDS ONLY ON STATE)]
INPUT I
e T T"
NONREGISTERED OUTPUT » l
(DEPENDS ON STATE AND INPUT) I—-——-——
Toa =] fe—
Fig 2—This timing diagram characterizes CUPL’s simple state-machine model. The setting or resetting of the registered output depends on
the status of the state bit. Conversely, nonvegistered outputs can depend either on only the current state bit's status or on both the state bit's

status and the input's status.

nents: inputs, combinatorial logic, storage registers,
state bits, registered outputs, and nonregistered out-
puts. Fig 2 shows the timing relationships between
these components.

Inputs are signals entering the device that originate
in some other device. Combinatorial logic is any combi-
nation of logical gates (usually AND-OR) that produces
an output signal that’s valid T, (propagation delay
time) nsec after any of the signals that drive these
gates changes. Ty is the time delay between the
initiation of an input or feedback event and the occur-
rence of a nonregistered output.

State bits are storage-register outputs that are fed
back to drive the combinatorial logic. They contain the
present-state information. Storage registers are any
flip-flop elements that receive their inputs from the
state machine’s combinatorial logic. Some registers are
used for state bits, while others are used for registered
outputs. The registered output is valid T., nsec after
the clock pulse occurs. T, is the time delay between the
initiation of a clock signal and the occurrence of a valid
flip-flop output.

For the system to operate properly, you -must meet
your PLD’s requirements for setup and hold times. For
most PLDs, the setup time (T\.) usually includes both
the propagation delay of the combinatorial logic and the
actual setup time of the flip-flops. T, is the time it takes
for the result of either a feedback or an input event to
appear at the input to a flip-flop. A subsequent clock
input cannot be applied until this result becomes valid
at the flip-flop’s input: These flip-flops may be either D,

RS, or JK types (but RS and JK types are used more
often in state-machine implementations because they
require fewer product (P) terms than D types do).

Nonregistered outputs are outputs that come direct-
ly from the combinatorial logic gates. They may
be functions of the state bits and the input signals (and
have asynchronous timing), or they may be purely
dependent on the current state-bit values, in which case
they become valid T.,+Ty nsec after an active clock
edge occurs.

Registered outputs are outputs that come from the
storage registers but are not included in the actual
state-bit field (ie, a bit field composed of all the state
bits). State-machine theory requires that the setting or
resetting of these registered outputs depend on the
transition from a present state to a next state. This
allows a registered output to be either set or reset in a
given state, depending on how the machine came to be
in that state. Thus, a registered output can assume a
“don’t care” operation mode. In the “don’t care” mode,
the registered output will remain at its last value as
long as the current state transition does not specify
that registered output.

The state-machine syntax

To help you implement this state-machine model
quickly, CUPL supplies a general and simple state-
machine syntax. This syntax gives you a single, simple
format that allows you to describe any function in the
state machine. The general format for the state-ma-
chine syntax is

2-28

2.1.3 CUPL, AmCUPL (Cont'd.)

SEQUENCE state_bit_field {
PRESENT present._state
IF input_cond NEXT next_state OUT outputs ;
IF input_cond NEXT next_state OUT outputs ;
IF

PRES'E')I:IT present._state
IF input_cond NEXT next_state
IF input_cond NEXT next_state
IF. ..

PRESENT. ..

OUT outputs ;
OUT outputs ;

Each present-state block within this format de-
scribes both asynchronous (present state) and synchro-
nous (transition) activity. Using this format, you can
describe any component of the state machine. For
example, the formats for registered outputs would be

IF input_cond NEXT next_state OUT outputs
—_—
CONDITIONAL OUTPUT ASSOCIATED
TRANSITION WITH TRANSITION
or
NEXT next_state OUT outputs
—_—
UNCONDITIONAL OUTPUT ASSOCIATED
TRANSITION WITH TRANSITION,

depending on whether the transition is conditional or
not. To use these equations for describing your system,
you need to learn how to use the CUPL keywords. For
example, when you use a Next statement, you're telling
the compiler that all of the outputs in that block are
registered outputs whose values depend on transition

information (ie, information about the transition from
the present state to the next state). Using the If
statement signifies a conditional event. When you use
the If keyword in a nonregistered description, you
signify that the input and output events will have an
asynchronous dependence. The absence of a Next key-
word signifies a nonregistered event.

For nonregistered outputs, you would use the format

IF input_cond OUT outputs

INPUT CONDITION NO STATE OUTPUTS ASSOCIATED
AFFECTS OUTPUT TRANSITION WITH INPUT CONDITION
AFTER Ty AND PRESENT STATE.

or

OUT outputs

NO STATE ~ OUTPUT ASSOCIATED
TRANSITION SOLELY WITH PRESENT
STATE. VALID
T. + Ty AFTER
CLOCK.

NO INPUT
CONDITION

Much of the reason for choosing either the registered
or nonregistered format for an output depends on the
system timing. For fully synchronous systems that
require tight timing, the registered output provides
fast response—it responds within T, nsec after the
occurrence of a clock pulse. This quick response gives
the circuit time to use that registered output as an
input somewhere else in the circuit before the next
clock pulse occurs.

Conversely, you would use the nonregistered output
in asynchronous applications. You would also use the

NON__REG_OUT
INPUT EE——
REG_OUT
STATE PLD
DIAGRAM -
cLoCK S
out
! REG_OUT =
T NON__REG__OUT =INPUT
OUT REG_OUT
Fig 3—This model for a free-running 2-bit ter d trates CUPL’s state ki 17 The ter has onme input, one

nonregistered output, and one registered output.

EDN February 7, 1985

2.1.3 CUPL, AmCUPL (Cont'd.)

nonregistered output in simpler applications, such as
present-state decoders.

To better understand the state-machine model and its
syntax, consider a simple example: a free-running 2-bit
counter with one input, one registered output, and one
nonregistered output. Fig 3 shows the state-transition

diagram. The circles represent states (specific combina-
tions of the state bits), and the arrows represent the
transitions between states. Because the transitions in
this example are unconditional, the counter is free-
running. Accordingly, the logic description uses no If
keywords in statements that signify a Next state. The

The function-table approach

To design logic systems with
PLDs, you could use the func-

plements the state-machine ap-
proach. The function-table
approach is useful in applications
‘such as code converters, where
input/output relationships are
best represented in tabular
orm.

CUPL’s parallel-operation ca-
pability makes it easy for you to

=

Jrararesannaanne

them on either the right or left -
side of the equation.
The parallel operation feature

allows you to operate uniformly rroINPUTS

Fig A—In code-conversion applications,
like this dual 4-to-1 multiplexer, you can
best describe the system using a tabular
format.

tion-table spproach which com. TABLE A—GATED MUX LOGIC DESCRIPTION FILE

'PARTNO ~ PL10007;
NAME GATED MUX;
DATE Qor17/e4;

REV

DESIGNER ARO SON;

COMPANY ASSISTED ‘TECHNOLOGY:;
ASSEMBLY C_10;

LOCATION U23.

Seeseessuusuieseatiuasisatustisreatatsatsaresrsartrratrn)

/* THIS DEVICE FUNCTIONS AS A DUAL 4-TO-1 MUX WITH INVERTING i
develop these tabular epresen- 1 SagieiR PSR AR AR SN ClsCib o e
tations. Using that feature, you it Sarennerasnaesesseninenrannashey
can declare bit fields and use F ALLQWABLE TARGET DEVICE TIRES. L PALIERS 828155 . eveeverinnnnnd)

PIN 1 = CLOCK ;/* SYSTEM CLOCK °/
PIN[2.5] = [B3.0] "1 INPUT GROUP B */
PIN[6.9] = [A3.0 "1+ INPUT GROUP A °/
PIN13 = = SEL1 ' 1* SELECT
PIN19 = SELO I+ SELECT 0 -1
PIN12 = GATE 1~ GATES MUX QUTPUT INTO REGISTER */
PIN11 = IOE . © 1+ QUTPUT ENABLE */
83 2
B2 3 s /** OUTPUTS **/
o1 + | GATED MUX :
E PIN1S = 1V1 ;I REGISTER OUTPUT FROM GROUP B */
80 5 PIN16 = IYO *1* REGISTER OUTPUT FROM GROUP A */
A3 6 PAL&:RA
" 7] e /** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/
A1 8 16 1 Y0 FIELD OQUT = [Y1..0] ; /* OUTPUT BITS */
FIELD SEL = (SELT'4] : /- SELECT GONTROL BITS */
A0 9
Pye— /** LOGIC EQUATIONS **/
OUTD = IGATE & OUT [reverre e
gLock 1 # GATE & ((83,431 & SEL'S /* NOTE;) “
[B2A2] & SEL:2 1 ONE EQUATION DESCRIBES */
se1r 1] 5 OB ano :%g&ﬁa §SELY 1 BOTHQUTPUT VARIABLES '/

EDN February 7, 1985

2-30

2.1.3 CUPL, AmCUPL (Cont'd.)

nonregistered output is active on a count of two (S2)
when the input is active. The registered output is set on
the transition from S2 to S3 and reset on the transition
from S3 to SO. Table 1 gives the logic description for
the counter.

An application that incorporates hysteresis shows the

To make the state-machine approach easier
to learn, CUPL uses & model that incor-
porates both the Mealy and Moore models.
You use the same model for all cases.

importance of using transition information in addition
to present-state information. Consider, for instance, a
circuit that performs threshold detection on an analog
signal, but requires a hysteresis band both wider and
more accurate than the hysteresis band an analog
comparator could achieve. In such an application, you

TABLE B—HEXDISP LOGIC DESCRIPTION FILE 7 1A
PARTNO CT0002;
KA Ml DATAO 10 6 1B
6/5/84;
SE\éIGNER gkAHL AL veoge 12
82512
MPANY ASSISTED TECHNOLOGY INC: DATA2 12 o jatp
ngﬂ%«v 3I1$7PLAY BOAR! DATAS 13 EQUIVALENT |, ¢
/* THIS IS A HEXADECIMAL-TO-SEVEN-SEGMENT +f .
/* DECODER CAPABLE OF DRIVING COMMON-ANODE A °f ARBI 14 L..18
/* LEDS, IT INCORPORATES BOTH A RIPPLE- T *)
/* BLANKING INPUT (TO INHIBIT DISPLAYING v G * 9 RBQ
/* LEADING ZEROES) AND A RIPPLE-BLANKING ‘! : */
/* OUTPUT TO ALLOW FOR EASY CASCADING OF ' ' °f
/* DIGITS. El °/
:]
. . th B—Thouyh a PROM was uaed to
T LT TIPS TTT TN P OPP Y ¢ this simple he.
", ALLQWABLE TARGET DEVICE TYFES: 32 x 8 PROM (828123 OREQUIV)........0 segment decoder, you could use the same
! function table to impl t this state ma-
It INPUTS "%/ chine in a PLD.
PIN (10.13] = [00.3) /* DATA INPUT LINES TO DISPLAY °
PIN 14 = IRBI; °

/* RIPPLE BLANKING INPUT
1** OUTPUTS **/

PIN 57..1] = !K,B,C.D.E.F.G]; /* SEGMENT OUTPUT LINES
PIN = IRBO;

/* RIPPLE BLANKING OUTPUT
/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/

FIELD DATA = [D3..0]; /* HEXADECIMAL INPUT FIELD
FIELD SEGMENT=[A,B,C,D,E,F,G]; /* DISPLAY SEGMENT FIELD

$DEFINE ON_ 'b"1
$DEFINE OFF b0

1** LOGIC EQUATIONS **/

/* SEGMENT LIT WHEN LOGICALLY “"ON" */
{"OSFEQMENT DARK WHEN LOGICALLY

on an entire parallel data path.
y It’s easy to write a description
! in this manner, as you can see
from Fig A’s 4-to-1 multiplexer,
. which has an inverting regis-
K tered output. Table A contains
the multiplexer’s LDF.
The hexadecimal-to-7 segment
decoder in Fig B also lends itself
well to tabular representation.

” A B c b0 E F G . . e s
SEGMENT = Again, bit-field notation is con-
0" ON, ON, ON, ON. ON ON OFF] & DATA: & 'RBI . oy N
;: ; :; x oc;f gm, o%':' og;. og;. 8§F' o&i 2 g:T: 3] venient for describing the logical
5. 3 . ; ’ C?F,é: 8& gu: O%,;: 8;,;: og,:: 8” y DAR:S fl}nctlon. Incidentally, because
N \ . .) . N, N] & DATA:4 j 3 ircui is i -
"5 # [ON, OFF, ON. ON. OFF ON. OFF & DATAS it’s a SI.mple circuit, this imple
e ’ 8“' o&s. ON. ON. ON. ON. OFf] & DATAS mentation uses a PROM as the
;- g . # gN: 8N: 8N: O%N: ON. ON. 8N & DA;AE& target device (because 16 pins
©9 Y # N, N, N, F. OFF, ON, N] & DATA9 : :
A : %’:‘ o%';' 8“' OFF oN ON gn & DATAA are sufficient and bipolar PROMs
N , :) . N, N, : i i
¢ # [ON, OFF, OFF. ON. ON. ON, OFF| & DATACC are inexpensive), but you could
;; g ;I/ ' %F;. o%ﬁ' o%rg. 8“' 8”' og;, 8“ : gﬂ::g also implement these function
1E # |ON. OFF OFF, OFF, ON. ON. ON| & DATAF tables in PLDs. Table B con-

RBO = RBI & DATA:.0;

tains the decoder’s LDF.

EDN February 7, 1985

2.1.3 CUPL, AmCUPL (Cont'd.)

$DEFINE SO

FIELD COUNT =[Q1, QO;

TABLE 1—LOGIC DESCRIPTION FOR 2-BIT COUNTER

/* LET'S CALL THE STATE BIT FIELD “COUNT” */
"..u.....n.......n.....un..nn...*.."..;........n...."./

/*DEFINE SYMBOLIC NAMES FOR THE ACTUAL STATE BIT CONSTANT _ */
/* VALUES USING PREPROCESSOR COMMANDS. CONSTANTS DEFAULT */

NEXT S0 OUT !'REG_OUT ; }

M TO HEX AND REPRESENT VALUES OF “COUNT"” WITHIN THE i
“SEQUENCE” BLOCK BELOW. .

NOTE USE OF BRACES FOR ENCLOSING STATE */
SEQUENCE DESCRIPTION BLOCK. *l

0
$DEFINE S1 1
$DEFINE S2 2
$DEFINE 833 /*
R e T ST Y P
SEQUENCE COUNT { ;:
PRESENT SO
NEXT St;
PRESENT §1
NEXT S2,
PRESENT S2 IF INPUT OUT NON__REG__OUT; /*
NEXT S3 OUT REG_OUT; "
PRESENT 83

R A LRy

ASYNCHRONOUS WITHIN S2 Wi
SETS ON TRANSITION *l

" RESETS ON TRANSITION !

need transition information in order to achieve hystere-
sis. One way to solve this problem would be to con-
struct a tracking A/D converter in which the threshold
detector output (digital Schmitt-trigger output) is a
registered output of the state machine (Fig 4).

The three counter bits that feed the D/A converter
compose the state bits. To create the hysteresis, you set
the trigger output only on the transition from S5 to S6
and reset the trigger only on the transition from S2 to
S1. At all other times, you place the trigger output in a
“don’t care” state. The trigger output may have differ-
ent values in states S2 through S5 depending on how
the machine arrived at those states.

Fig 5 shows a state diagram for the system. All
states in which you can set the trigger output are shown
on top and all states in which you can reset the trigger

COMPARATOR

ANALOG_IN PLD | TRIGGER

DIRECTION

Q2

a1 DAC

Fig 4—To realize the hysteresis function in -this state-machine
model for an analog comparator with digital kysteresis, you must set
or reset the registered output by using tmnsztzon information rather
than present-state information.

oofo

sa’Hsa'H&

s6 Lf7_J<-—- TRIGGER =1
s TRIGGER=0

Fig 5—The state diagram for the analay comparator with hysteresis shows that a state’s value can be hwtory-dependent The trigger output
can have different values in states S2 through S5 depending on how the machine arrives at those states.

EDN February 7, 1985

2-32

2.1.3 CUPL, AmCUPL (Cont'd.)

The CUPL state-machine syntax allows you
to specify any state-machine component
with a single format, thus simplifying the
state-machine description.

TABLE 2—SCHMITT LOGIC DESCRIPTION FILE

PARTNO CT0001;
NAME SCHMITT;

DATE 6/30/84; 2
REVISION 01,

DESIGNER T KAH

COMPANY ASSISTED TECHNOLOGY INC;
ASSEMBLY ANALOG__INTERFACE:
LOCATION U27;

R R R R LR

/* THIS DEVICE RECEIVES A 'COUNT DIRECTION' COMMAND FROM AN ANALOG i
/* COMPARATOR AND RESPONDS BY INCREMENTING OR DECREMENTING AN *l
/* INTEGRAL UP/DOWN COUNTER. A REGISTERED OUTPUT IS CREATED AND ACTS l
/" AS A DIGITAL SCHMITT THIGGER WITH HYSTERESIS

sevenasraaenres eeessnen/

/** INPUTS **/

PIN 1 = CLOCK; /* CLOCK PIN FOR THE COUNTER */
PIN 2 = DIRECTION; /* DIRECTION OF COUNT MODE PIN */
/** OUTPUTS **/

PIN [14..16] = QO 2 /* COUNTER STATE BITS */
PIN 17 = |TRIG /* SCHMITT TRIGGER OUTPUT BIT */
" DECLARAT!ONS AND INTEHMEDIATE VARIABLE DEFINITIONS **/

UP = DIRECTI * COUNTER MODES *
DOWN = lDIFIECTION,,

FIELD COUNT = [Q2..0); /* FIELD FOR COUNTER STATES *
$DEFINE S0 0 /* COUNTER STATES DEFINED AS */
SDEFINE S1 1 /* STATES 0 THRU 7 */
$DEFINE S2 2

$DEFINE S3 3

$DEFINE S4 4

$DEFINE S5 5

SDEFINE S6 6

$DEFINE S7 7

SEQUENCE COUNT {

PRESENT S0
IF UP NEXT S1;
IF DOWN NEXT SO;
PRESENT S1
IF UP NEXT S2;
IF DOWN NEXT S0;
PRESENT S2
IF UP NEXT S3;
IF DOWN NEXT S1 OUT ITRIGGER;
PRESENT S3
; IF UP NEXT S4;
IF DOWN NEXT S2;
PRESENT S4
IF UP NEXT S5;
IF DOWN NEXT S3;
PRESENT S5
IF UP NEXT S6 OUT TRIGGER;
IF DOWN NEXT S4
PRESENT S6
IF UP NEXT S7;
IF DOWN NEXT S5;
PRESENT S7
IF UP NEXT S7:
IF DOWN NEXT S6;

EDN February 7, 1985

2-33

2.1.3 CUPL, AmMCUPL (Cont'd.)

are shown on the bottom. Note that states S2, S3, S4,
and S5 appear twice because they can have two differ-
ent values. Each state’s value depends on the system’s
previous state.

Note also that the state bits in this application supply
information to the outside world; in this case, the
information consists of inputs to a D/A converter. When
you give the PLD access to the outside world, you
deviate from the standard Mealy and Moore state-
machine models, but you can squeeze more logic into
your PLD.

Table 2 gives the state machine’s logic description
file (LDF). In the LDF, you declare the state bits as a
bit field and give them the symbolic name “Count.”
Next, you use the input Direction to define names for
the Up and Down counter modes. You then complete
the numerical state assignment for states SO through
S7 by using the $Define command from CUPL’s pre-
processor.

In defining the state machine, you use If and Next
keywords for every present-state block. When you use
Next, you indicate that the state machine’s activity is
synchronous; when you use If, you indicate that the
transitions are conditional. The transitions’ direction
depends on the direction the counter counts in, which is
in turn determined by the value of the Direction input.

Though applications like counters and comparators
with hysteresis may not seem very complicated, they
serve to show that designing with PLDs is a straight-
forward task, whether you're using the devices to
replace existing designs or using them in a state-
machine design. EDN

Author’s biography

Bob Osann is president and chief exec-
utive officer at Assisted Technology

Inc (San Jose, CA). He received his
BSEE from Cornell University and

was previously employed at Millenni-
um Systems Inc (Santa Clara, CA). ;
Bob holds three patents in the areas of
consumer and industrial electronics.
His hobbies include sports cars, air-
planes, and music.

EDN February 7, 1985

2-34

2.1.3 CUPL, AmCUPL (Cont'd.)

AmCUPL — The High-Level Software Tool for
PAL Designs

To provide a low-cost, high-level design-aid software tool for
AMD's programmable logic devices, AMD and Personal CAD
Systems have developed AmCUPL. With AmCUPL, you can
create custom-design solutions using AMD's PAL devices in a
matter of minutes. This shorter design cycle and other benefits
such as lower cost, higher performance, and higher reliability
result in a significant competitive advantage in your market-
place.

High-Level Design Support

AmCUPL has many features which make it extremely powerful
and easy to use:

® Choice of logic description formats:

- State diagrams

- High-level Boolean equations

- Truth tables

Portfolio of four different logic minimization algorithms
Automatic enhanced DeMorgan expansion capability
PALASM-to-AmCUPL translator

User-defined logic functions

User-friendly syntax

Built-in logic simulator

Full Support for AMD PAL Devices at a Very Low
Cost

AmCUPL supports all the advanced PAL devices from AMD,
including the AmPAL22V10 and AmPAL18P8. All the ad-
vanced features of these devices, including programmable
output logic macrocells, programmable output polarity, and
distributed product terms, can be effectively used with Am-
CUPL. Future releases of AmCUPL will support upcoming PAL
devices from AMD.

Yet, AmCUPL provides all this support at a very low cost. This
includes full user support from Personal CAD Systems, Inc., of
San Jose, California.

Easy Upgrade Path

When you purchase AmCUPL you have an option to upgrade
to CUPL from Personal CAD Systems within one year. The
AmCUPL cost can be credited against this upgrade. CUPL
offers the same functionality as AmCUPL but also supports
PAL devices from other vendors. The PC/MS-DOS version of
AmCUPL is distributed by AMD on IBM formatted 5-1/4'
floppy disks; a CUPL manual is included.

AmCUPL — The cost-effective, easy-to-use, and complete
design tool for your custom design inventions. For additional
information on AmCUPL or other AMD PAL devices, contact
one of AMD's sales offices, authorized reps, or distributors.

2.1.4 PLPL

Programmable Logic Programming Language (PLPL) is a new
design tool that makes it easy to design, verify, and test logic
functions that are to be implemented with programmable logic
devices. It is an integrated, top-down, hierarchical, and com-
plete design language which provides clear problem definition
in a variety of ways. This results in solutions that are self
documenting. PLPL allows multiple-input formats which means
the function of a device can be expressed in terms of a state
transition or truth table, high-level constructs, or Boolean
equations.

In a summary, PLPL is the heart of a new programmable logic
computer-aided design (CAD) environment that allows you to
take full advantage of the benefits associated with using
programmable logic devices. It aids in:

Defining the problems to be solved

Creating a solution

Verifying the solution by simulation

Generating test vectors

Optimizing/minimizing the intermediate equations
Providing an interactive- or a batch-mode of operation

Functionally, PLPL accepts a logic-description input file and
creates a JEDEC-standard fuse map downloadable to a logic
programmer. The flow of this procedure is shown in Figure 2-6.

2-35

BOOLEAN
EQUATION

STATE
MACHINE
DESCRIPTION

REGISTER
TRANSFER
DESCRIPTION

usT
EQUATION

OPTIMIZE

GENERATE

BD006711

Figure 2-6. PLPL Design Flow

PLPL Features

Major features of PLPL are:
® Employs high-level block-structured hardware-description
language optimized for programmable logic devices
® Uses C language for flexibility and portability
® Supports multiple design techniques:
-~ PALASM-like sum-of-products Boolean equations
- Extended Boolean-logic description: Parenthesized
equations, DeMorgan's laws, Macro-substitution capa-
bility, and pin vectors
- High-level constructs such as: IF THEN ELSE, FOR,
CASE, and FUNCTION CALLS
® Provides a convenient and powerful human interface:
- Both interactive or batch- mode
- Optional menu-driven capability
- Extensive error checking
~ Interactive help facility
- Direct programmer interface

® Supports current AMD PAL devices
® Permits adding new devices quickly because it is data-base
driven

Structure of the PLPL Environment

In the PLPL CAD environment, each program is governed by a
separate program module, with ail the modules tied together in
a top-down fashion. The software modules (Figure 2-7) are as
follows:

Operations Processor

PLPL Compiler

PLPL Data Base

PLPL List Equations

PLPL Optimizer

PLPL Test-Vector Generator

PLPL Simulator

JEDEC Fuse-Map Generator

PALASM-to-PLPL Translator

2-36

USER SYSTEM
EDITOR
4
PALASM-TO-PLPL OPERATIONS
TRANSLATOR ~ 7| PROCESSOR (OP) [*
PLPL DESIGN SIMULATION
SPECIFICATION SPECIFICATION
A A
PLPL
COMPILER
INTERMEDIATE EQUATIONS
4
v Y J 3 JV
PLPL JEDEC PLPL PLPL PLPL
OPTIMIZER FUSE-MAP LIST TEST-VECTOR
GENERATOR EQUATIONS GENERATOR SIMULATOR
JEDEC TRANSFER FORMAT
A
COMPILE
ERROR PROGRAM
MESSAGES TESTER

BD006721

Figure 2-7. Structure of the PLPL Environment

PLPL Operations Processor (OP)

The PLPL OP is the interface module that defines the program
structure. It is an interactive, menu-driven shell that provides
the user interface to the compiler, the JEDEC fuse-map
generator, the simulator, the test-vector generator, the opti-
mizer, and other device-specific utilities. With the operations
processor, a comprehensive help facility can be consulted or,
if required, a ''shell escape’ may be executed. Shell-escape
capability allows a temporary exit from PLPL for the execution
of certain system operations, such as editing or looking at the
contents of various other files. It should be noted, however,
that the internal state inside the shell is maintained.

PLPL Compiler

The PLPL compiler converts PLPL design specifications into
the form needed by the JEDEC fuse-map generator, and other
modules (such as the simulator, test-vector generator, and the
optimizer). In addition, it flags all syntax and device-limitation
errors. For example, a device-limitation error might indicate
that a PAL device has an insufficient number of product terms
to accommodate a particular logic equation. PLPL compiler is
designed to be device-indepedent, and obtains all of its device
data from the data base.

PLPL Data Base
The PLPL data base serves three purposes:

1) Stores all the architectural (device-dependent) information
associated with supported devices and supplies this data to
the compiler and JEDEC fuse-map generator. This arrange-
ment makes the latter modules transparent to variations in the
architecture of the devices.

2) Provides the flexibility to add new devices — making the
PLPL environment more powerful. All it takes to add a new
device is adding a description file to the PLPL data base.

3) Serves as a standard cell library, thereby automating
programmable logic design. The PLPL data base supports all
current AMD PAL devices.

PLPL List Equations

The PLPL list equations lists all the PLPL-generated Boolean
equations.

PLPL Optimizer

The PLPL-optimizer package optimizes the list of Boolean
equations generated by the PLPL compiler. By reducing all

2-37

redundant product terms, this package results in an optimum
list of equations.

PLPL Test-Vector Generator

The PLPL test-vector generator generates test vectors for a
PLPL-design specification. The test vectors can be used by
the PLPL simulator to test the device exhaustively.

PLPL Simulator

The PLPL simulator enhances the confidence that the device
will function as designed. In PLPL, simulation is performed
with user-created test-table files consisting of input and
expected output (optional) test vectors. The PLPL simulator
uses the test vectors and the outputs of the PLPL compiler
(intermediate equation) to model the device's output behavior.
The simulator's output is compared to the expected test-
vector outputs, if specified, and error messages are issued
when results do not match. A test table may be concatenated,
or linked, with the design-input specification, or it may be kept
in a separate file. Separating the test table from the device
specification provides flexibility, allowing more than one test
table to be attached to a design.

JEDEC Fuse-Map Generator

The JEDEC fuse-map generator accepts design details from
the PLPL compiler. It is employed following successful simula-
tion. It arranges the fuse pattern required for programming the
device into a JEDEC-transfer format. This format is supported
by all major suppliers of logic programmers. This module
generates a fuse map that can be down-loaded directly to a
PAL/PROM programmer.

PLPL Input Specification

Figure 2-8 shows a simple PLPL-input specification. It is an
example of an 8-bit shift register implemented with the
AmPAL22V10. The system editor is used to create the input
specification. In general, a minimum PLPL input specification
requires a HEADING, a PINLIST, and an EQUATION section.
(The example shown contains additional comment strings and
an optional macro section.)

Heading (Keyword DEVICE)

The heading identifies a title for the design along with the
device used. The heading begins with the keyword, DEVICE.
An optional title may follow the keyword. It is separated by
white space (space(s), carriage return(s), or tab(s)). The
device used is enclosed within parentheses following the title
much like a function cali in high-level software. In the example,
the title is SHFT8BIT and the programmable device used is
the AmPAL22V10.

Optional Comment String

In the example, a comment string appears between the
heading and pinlist. A comment string is initiated and terminat-
ed by the double quote symbol, and all text between double
quotes is ignored by the compiler. Comment strings may
appear anywhere in the specification, where a white space
can legally appear.

Pinlist (Keyword PIN)

The pinlist assigns symbolic names to the pins within the
device to help describe each pin's actual function. The pinlist
begins with the keyword PIN. The general format in which the
pin name and number is entered is as follows:

PIN NAME = PIN NUMBER
CLOCK =1

The pin name represents the user-specified symbolic name;
the pin number is the actual device pin; the equal sign links the

example:

two. Pin names and number may be separated from the equal
sign with white space. The pinlist may be entered in any order,
with white space as a separator between the keyword and the
first entry, and also between succeeding entries. The pinlist is
terminated by a semicolon. In addition, multiple pins may be
grouped in a single statement designated as a pin vector.
Examples from Figure 2-8 are shown below:

example: D[7:0] = 3,4,5,6,7,89,10

(same as D[7] = 3, D[6] = 4, D[5] =5, D[4]. =6, D[3] =7,
D[2] =8, D[1] =9, D[0O] = 10]

example: Q[0:7] = 15:22

The symbolic pin-vector name is concatenated with numbers

for each symbolic pin enclosed in brackets. There is a one-to-

one mapping of the symbolic pin-vector name with the

symbolic pin enclosed in brackets (i.e. D[7] = 3, D[6] = 4, etc.).

A colon is used to define a sequential series of numbers and a

comma is used to concatenate numbers. Colons and commas

can be used together for both symbolic and actual pin-number

declarations.

Optional Macro Section (Keyword DEFINE)

A macro section appears between the pinlist and equation
sections of the example. This section begins with the keyword
DEFINE followed by white space. Each macro definition is
terminated with a semicolon, and white space can be used for
formatting purposes. A macro allows function(s) with fixed
arguments to be defined with a single symbolic name and
used repeatedly throughout the equation section. Note that
LOAD, SHFTR, SHFTL, and HOLD were defined in the macro
section and used in the equation section as part of the
definition of Q[7] through Q[0].

Equations (Keyword BEGIN)

The equation section is used to define the functions assigned
to each of the output pins. The equation section begins with
the keyword BEGIN followed by white space, and is terminat-
ed with the keyword END. (The period must foliow END.) The
general Boolean format for equations used in the examples is
shown below:

PIN NAME : = EXPRESSION;

= LOAD+D[7] + SHFTR+RILO+
SHFTL+Q[6] + HOLD+Q[7];
example: RILO = Q[7];

Where the EXPRESSION is a sequence of PIN NAMES (or
their complements) separated by operators, and the PIN
NAME is the symbolic input/output (or its complement) taken
from the pinlist, the operator ':=" defines a sequential
expression and "'="' defines a combinatorial expression. The
operators used in the examples are shown below:
Operator Symbols: *: — AND (product)
. + —OR (sum) .
/ — NOT - (complement, prefix
to an expression)
; — expression terminator
1= — sequential expression
= — combinatorial expression

example: Q[7]:

PLPL Benefits

The major benefit of using PLPL is that it decreases the time
and costs associated with creating a design. This is possible
because PLPL permits a device to be developed, simulated,
and modified before it is programmed. It is also possible
because PLPL is structured, self-documenting, and easy to
employ.

PLPL has been released into the Public Domain and is
available free of charge to any user.

DEVICE

SHFT8BIT (AmPAL22V10)

"This is a simple example of an 8-bit
shift register using the AmPAL22V10."

PIN CLOCK =1 RESET = 13 SEL[1:0] =211
RILO = 23 LIRO = 14
D[7:0] = 3,456,7,89,10
Qo0:7] = 15:22

DEFINE LOAD = /SEL[O0] * /SEL[1]; "loads data'
SHFTR = SEL[O] * /SEL[1]; "'shifts right''
SHFTL = /SEL[O] * SEL[1]; "'shifts left"
HOLD = SEL[O] * SEL[1]; "holds data'’

BEGIN

IF (RESET) THEN ARESET () ;

IF (SHFTL) THEN ENABLE (RILO) ;
RILO = Ql7];
Q[7] := LOAD+D[7] + SHFTR+RILO + SHFTL:Q[6] +
Q[6] := LOAD:D[6] + SHFTR+Q[7] + SHFTL+Q[5] +
Q[5] := LOAD+D[5] + SHFTR=Q[6] + SHFTL:Q[4] +
Q4] := LOAD+D[4] + SHFTR+Q[5] + SHFTL:QI[3] +
Q[3] := LOADsD[3] + SHFTR+Q[4] + SHFTL+Q[2] +
Q2] := LOAD:D[2] + SHFTR+*Q[3] + SHFTL#1[1] +
Q[1] := LOAD+D[0] + SHFTR+«Q[1] + SHFTL+LIRO +

IF (SHFTR) THEN ENABLE (LIRO) ;

LIRO = Q[o0];
END.
Figure 2-8. Sample PLPL Input Specification

HOLD+Q[7] ;
HOLD+Q[6] ;
HOLD+Q[5] ;
HOLD+Q[4] ;
HOLD+Q[3] ;
HOLD+Q[2] ;
HOLD+«Q[O] ;

2-39

2.2 PROGRAMMING HARDWARE

AMD's programmable logic devices are manufactured using
IMOX, a high-performance, oxide-isolated process. Platinum-
silicide fuses are used for the device programming elements.
The platinum-silicide-fuse technology has a superior record of
programming yield and reliability. Programming algorithms
have been developed by AMD to achieve consistent program-
ming yields in excess of 99%. To maintain this extremely high
programming yield, AMD subjects all approved programming
equipment to a complete testing and qualification procedure.

The fusing algorithm, which is described in detail in the
reliability report, is designed to minimize tight tolerance
requirements on the programming equipment. Input pins are
used in the programming mode to gate fusing current through
the programming path from a programming voltage applied to
an output. The delivery of fusing current is therefore controlled
by the switching speed of internal circuitry, not programmer
circuitry. This minimizes the need for programmer recalibra-
tion. However, it is strongly recommended that users maintain
a log with each programmer to collect a record of the hours of
service use and the programming yield of each lot. The
programming equipment should be calibrated after every 50
hours of service or whenever AMD PAL programming yields
fall below 98%.

PROGRAMMER APPROVAL CRITERIA

Full details of the required programming parameters, wave-
forms and addressing schemes are provided on each device
data sheet.

The minimum requirements for approval of a programmer by
AMD are:

1) Must support all current AMD PAL products.
2) Must achieve at least 98% programming yield.

3) Must accept download of a JEDEC-standard PLDTF file via
an RS-232C input port.

4) Must generate a JEDEC-standard checksum.

5) Must verify at HIGH and LOW V¢ extremes after program-
ming.

6) Must program and verify the security fuse.

7) Must be capable of reading a non-AMD PAL device and
storing the pattern during any adaptor and/or setup changes
necessary for programming the pattern into an AMD device.

Although not required for AMD approval, additional desirable
features are:

1) Support of JEDEC-standard structured test vectors.

2) Support of some form of signature test scheme using the
signature of a known good part.

3) Continuity test capability.
4) Fast programming and verification.
5) Handler support.

WHY USE AN AMD-QUALIFIED
PROGRAMMER ?

Programmers qualified by AMD have been tested for all the
required features. They have been checked for accuracy of
the programming voltages, currents, and timing parameters. in
addition, a yield sample has been run to confirm that yields
meet AMD's high standards. AMD considers the qualification
procedure very important to maintaining control of the pro-
gramming conditions seen by AMD parts and thereby assuring
excellent customer programming yields. For this reason, AMD
reserves the right to disallow any returns of product pro-
grammed on an unqualified programmer.

QUALIFIED PROGRAMMING EQUIPMENT

The list of AMD-qualified PAL programmer models appears in
Table 2-2. New programming equipment and vendors are
constantly under evaluation. Contact your AMD Field Applica-
tions Engineer or the factory to determine the approval status
of any equipment not listed here.

AMD is commited to maintaining continued close working
relationships with the major programmer manufacturers so
that new programmable logic devices will be properly support-
ed in a timely manner.

2-40

TABLE 2-2. AMD-QUALIFIED PAL PROGRAMMER MODELS

AMD PAL

Programmer . Socket
Vendor Personality
Models Module Adapter

DATA 1/0 Corporation MODELS 100A, 19, LOGICPAK 303A - 004
10525 Willows Rd. N.E. 29A, 29B 303A-011A
P.O. Box 97046 303A-011B
Redmond, WA 98073-9746 ~ - -
(206) 8816444 UniSite 40 Not Required Not Required
DIGILEC, INC. 803 FAM52 DA53, DA55
1602 Lawrence Ave.
Suite 113
Ocean, NJ 07712
(210) 493-2420
KONTRON ELECTRONICS, INC. MODEL-MPP-80S Not Required SA37

1230 Charleston Road
Mountain View, CA 94039
(800) 227-8834

or EPP80

STAG MICROSYSTEMS
528-5 Weddell Drive

MODEL-PPZ

ZM2200 Not Required

Sunnyvale, CA 94086,
(408) 745-1991

ZL30A/ZL32

Not Required Not Required

STRUCTURED DESIGN, INC.
988 Bryant Way

Sunnyvale, CA 94087

(408) 737-7131

SD1040
PAL Burner

Not Required Not Required

VALLEY DATA SCIENCES
2426 Charleston Road
Mountain View, CA 94043
(415) 968-2900

VDS 160

Not Required Not Required

JMC PROMAC DIVISION
2999 Monterey Highway
Monterey, CA 93940
(408) 373-3607

PROMAC - P3

Not Required Not Required

GENERAL GUIDELINES FOR USING
PROGRAMMING HARDWARE

There are two common situations when a PAL user wants to
program’ parts:

1) The user has a master device and wants to program the
master pattern into new unprogrammed parts from the same
or from a different manufacturer.

2) The user has a file that is in JEDEC-standard Programmable
Logic Data Transfer Format (PLDTF) and wants to send the
file to a programmer and program parts.

All AMD-approved programmers can accomplish either of
these tasks. Here are some general guidelines.

Programming with the Use of a Master Device

Suppose you have a master device and you want to program
an AMD device of the same type with exactly the same
pattern. The master device can be an AMD device or another
manufacturer's functionally equivalent device. Follow these
steps:

1) Set the programmmer to read (or copy) the master device.
This may require having a hardware adaptor for the master
and entering a product code unique to the manufacturer and
device type.

2) Install the correct adaptor (if required). Enter the appropri-
ate product-code information. Then place the master device in
the correct socket and read its fuse pattern into the program-
mer memory. Use whatever button-pushing sequence is
required by the programmer for this operation.

3) The pattern is now in the programmer memory and will
remain there unless the memory is cleared or the programmer
power is turned off. Changing an adaptor or product code will
not erase the memory. Usually at the end of a copy operation
a checksum will be displayed. Make a note of this number. The
checksum is an algorithmically calculated code unique to the
pattern loaded into memory. It can be very helpful in diagnos-
ing any programming problems. If a part is to be reused
frequently as a master device, it is good practice to write the
checksum on the top of the part. Never proceed with
programming without checksum agreement after reading a
master.

Error Detection

As a matter of curiosity, take the part out of the socket once
and read an empty socket; also read a known blank part (using
the right adaptor). Checksums from these two situations will
be helpful in diagnosing two common problems when pro-
gramming from masters: A) Forgetting to lock down the socket
lever to make good contact after loading a part, and B)
Loading an unprogrammed part as a master by mistake.

4) Now prepare the programmer for the AMD device to be
programmed with the master pattern loaded into memory.
Some programmers require different adaptors for different
manufacturer's parts. If the programmer being used has this
requirement be sure to use an AMD adaptor only for AMD
parts. Using a non-AMD adaptor can cause permanent dam-
age to AMD parts. Always check for adaptor compatibility.

5) Everything's okay. You have the AMD adaptor, the right
AMD device code, and you wrote down the checksum that you

2-41

got after loading the master. Now put the programmer in the
mode used for programming from its memory and execute the
programming operation.

There is some variation in the sequence of events carried out
by different programmers during the programming cycle, but
all of them program and verify the appropriate fuses to match
the pattern in the programmer memory. Such operations as
Blank Checks, lllegal Bit Checks, Test Vector Testing, and
Security Fuse Programming can be a part of the programming
sequence. Check the Programmer Manufacturer's manual for
the availability and appropriate use of these features.

The essential part of the programming cycle is the program-
ming and verification of each fuse followed by a verification of
all fuses at both LOW and HIGH V.. At the very end of the
programming sequence you will see the checksum for the part
you have just programmed. This checksum should agree with
the master-part checksum. You now have an AMD part that is
functionally identical to the master.

Programming from a JEDEC File

A JEDEC-standard file is the output of design-software pack-
ages used to specify fuse-blowing information to a program-
mer. All programmers approved for use on AMD parts will
accept JEDEC files. A JEDEC file is normally prepared on a
computer. The unique aspect of programming from a JEDEC
file is the transfer of the file to the programmer. After the file
has been transfered into the programmer, the programming
task is identical to programming from a master with one
exception. The exception is that design software may be used
to prepare test vectors to be applied to a device immediately

following the programming cycle. These vectors will be
transmitted with the JEDEC fuse file and they have a JEDEC-
standard format of their own.

General guidelines for transfer of a JEDEC ﬁ|e and program-
ming are as follows:

1) Make sure your file is in the standard JEDEC format. This
will not be a problem if you are using software for file
preparation that adheres to this standard.

2) Connect the JEDEC file source to the programmer with an
RS-232C cable. The programmer manual will describe the
connection details.

3) Prepare the programmer for receiving a JEDEC file over a
link. This will generally involve entering the product-code
information and putting the programmer into a ready-to-
receive mode.

4) Transmit the file from the computer source using commer-
cially available communications software or operating-system
file-transfer software such as PIP.

5) After transmission a checksum should appear on the
programmer display. Part of the JEDEC-standard file is a
checksum. If the displayed checksum is the same as the
JEDEC file-generated checksum, transmission has been suc-
cessful.

6) Program an AMD PAL device now by first installing an AMD
adaptor (if needed) and then entering the programming mode.
Finally, put a part in the socket and execute the programming
operation.

2-42

2.3 TESTING INFORMATION

Section 2.3.1 and 2.3.2 describe in detail the general testing
requirements for programmable logic devices and how AMD
has designed-in special test circuitry to permit complete
testing on its programmable logic devices. Section 2.3.3
explains why it is difficult for a programmable-logic device
manufacturer to provide specifications for switching delay
minimums.

2.3.1 FACTORY TESTING OF PAL
DEVICES

Advanced Micro Devices' bipolar PAL devices include special
test circuitry to permit thorough AC and DC testing on an
unprogrammed unit. The test circuitry is used to ensure good
programming yield and to verify that devices will meet all
parametric and switching specifications after programming.

Programming circuitry testing includes tests to assure unique
addressing of all fuses. The ability of all circuitry in the
programming path to handle the large currents and voltages
necessary to blow fuses reliably is also thoroughly checked.
To accomplish this, special test pads are provided which are
accessible only during wafer probing. Using these, AMD
confirms that each fuse driver is uniquely decoded and can
deliver and sink the necessary current to blow fuses.

Each PAL device has special test fuses. These test fuses are
blown during factory testing to prove beyond reasonable doubt
that the device is capable of opening all fuses when pro-
grammed by the user.

The special probing pads and test fuses are all employed in
programmability testing. This testing coupled with AMD's
excellent process control gives industry-leading programming
yields (> 98%) for all AMD PAL devices.

Other test circuitry, enabled by high voltages on device pins,
checks functionality, AC and DC parameters under conditions
that simulate post programming operation. All of the circuitry,
levels and modes necessary to operation after programming
are checked under worst-case conditions. For example, all
input buffers are tested for functionality by switching them
through a test product term to a single output, and all product
term AND gates are switched and sensed for uniqueness and
functionality.

Because a large percentage of die area is devoted to fixed-
logic circuitry, some percentage of units can fail to function to
the desired truth table, even though all fuses are correctly
programmed. This problem will vary from manufacturer to
manufacturer. Without effective on-chip test circuitry, function-
al yield after programming is largely dependent on process
control. As a result, lot-to-lot variability of AC performance and
functionality is to be expected from manufacturers with test-
circuitry deficiencies in their products.

AMD's special test circuits and extensive factory-testing
procedures have almost entirely eliminated this problem
(> 99.9% PPFY). However, if absolute assurance is required,
functional testing with test vectors simulating actual operation

can be performed on PAL-device programmers or automatic
test equipment.

Test vectors are relatively easy to generate for combinatorial
designs using PAL devices. Sequential function testing is more
difficult. AMD's PAL devices are designed to provide the
capability of loading the output registers to any desired value
during testing. This feature, known as PRELOAD, simplifies
functional testing of sequential devices. Sequencer products
such as the AmPAL23S8 include buried registers. A feature
called OBSERVABILITY has been designed into these prod-
ucts along with PRELOAD to allow control and functional test
of the buried registers. Other features which AMD verifies with
built-in test circuitry are polarity, asynchronous RESET, syn-
chronous RESET and output macrocell functionality.

2.3.2 HOW TESTABILITY IS DESIGNED
INTO AMD'S PROGRAMMABLE LOGIC
DEVICES

Thorough testing of programmable logic devices by the
manufacturer is important to both the performance of pro-
grammable logic and its cost of use.

Field programmable logic devices are different from other
semiconductor products in that the user must complete the
manufacturing process by programming and function testing
the parts.

Programming is normally accomplished on commercially avail-
able programming equipment. Functional testing may be
performed on a programmer, on automatic-test equipment, or
at the board or system level. Figure 2-9 illustrates where
device failure detection can occur. Clearly, the cost implica-
tions of failure become more serious with each advancing
step.

As a result of assuming the responsibility of programming and
test, the user gets all the benefits of a custom function with the
cost and availability advantages of a standard product. How-
ever, the user must also deal with those parts that don't
program successfully or don't function to advertised specifica-
tions after programming.

The earliest programmable logic devices did not include test
circuitry to allow thorough testing of the AC and functional
performance prior to programming. AMD was the first manu-
facturer to add test circuitry to allow thorough device testing.

How well a manufacturer does the job of testing before
shipping can make a difference to the user in:

1) Programming vyield
2) Post programming functional yield (PPFY)
3) Uniformity of performance

This paper describes the techniques used at Advanced Micro
Devices to allow testing of these three important attributes on
every device before shipment to the user.

2-43

DESIGN
SOFTWARE
A
FUSE
PARTS PATTERN
PROGRAMMING » PROGRAMMING
REJECT
A
AC, DC OR
COMPONENT FUNCTIONAL
REJECT
A
BOARD PERFORMANCE
TEST REJECT
A
SYSTEM PERFORMANCE
TEST " REJECT
A
ON-SITE PERFORMANCE
OPERATION REJECT
BD006730

Figure 2-9. User-Processing of Programmable Devices

Programming Yield

Programming yield is the measure of success of the program-
ming operation. Large-volume users of programmable logic
keep records of the programming-yield history of their suppli-
ers' parts. Programming yield is considered by these users to
be an important element in judging the overall suitability of
different suppliers' parts.

Why do users care? After all, manufacturers offer a ''money-
back'' guarantee on all valid programming rejects. The users

can simply keep the rejects separated from the good parts and
send the bad ones back to the manufacturer for credit or a
refund.

This sounds simple, but Figure 2-10 shows what could be
involved. .

Everybody loses in this operation. The manufacturer loses in
return handling and evaluation costs; the user loses in return
handling costs and also in added purchasing and inventory
costs to compensate for programming yield losses.

2-44

USER

{

PROGRAM
AND TEST

.

v

SEPARATED
BY VENDOR

KEEP REJECTS

SALES REP
APPROVAL
TO RETURN

ORDER
MORE

PACK
AND SHIP

¢

A

CORRELATION
ISSUES

4

MANUFACTURER!

CREDIT
USER

REJECT PACK

AND SHIP

BD006740

Figure 2-10. Reject Return Processing

Post Programming Functional Yield

Experienced PROM and EPROM users are sometimes puz-
zled by the fact that not all programmable logic devices
function correctly even though they have successfully com-
pleted a programmming operation and fuse verification check.

With PROMs, a one-for-one relationship exists between ad-
dress states and programming elements’. That is, the state of
each output for each address is dependent on the condition of
only one fuse. Sensing a desired fuse state after programming
therefore practically guarantees correct functional operation
(At least at the voltage and temperature conditions of the
programming operation).

With programmable logic devices, the relationship between
programming success and post programming functionality is
not one-for-one. Except for the simplest of patterns and
devices, the relationship is highly complex. Feedback buffers
allow the creation of more than one level of logic; latches,
counters, shift registers, even oscillators can be created.
Special fuse functions such as polarity control, output enables,
register/nonregister selection, and buried registers complicate
the relationship further.

This is the power of programmable logic —but the test
challenge that results from this versatility can be substantial.
Logic states for programmable logic devices can be multiple-
fuse dependent. The fuse-verification procedure that exam-
ines each fuse uniquely is therefore not sufficient, as it is with
PROMSs, for guaranteeing functionality.

All programmable-logic-device manufacturers must create
special on-chip programming circuitry and modes to allow
programming and verification of each individual fuse. A review
of the data sheets for different manufacturers' products gives
a good idea of the special requirements for programming
programmable logic devices. The complexity of programming

may vary significantly from manufacturer to manufacturer, but
all have one thing in common — successful programming by
itself cannot guarantee functionality.

The user's job does not end then with the programming
operation. To be assured of a functional part, a comprehen-
sive set of test vectors must be designed by the user and
applied to the part. Many programmable-device programmers
accept test vectors along with fuse-blowing vectors and will
apply the test vectors to the part following the programming
operation. AMD's PRELOAD feature greatly simplifies the test
generation problem for registered parts.

Test-Vector Generation

The matter of test vector-generation is not trivial. The logic
designer can generally write a series of functional states
representing the expected operation of the part in the actual
application, but what about all of the Don't Care states?

A great deal of work is going into automatic test vector
generation for programmable logic devices. Parts manufactur-
ers, programmer manufacturers, design software manufactur-
ers and users all have efforts in progress. Some products are
on the market.

Effective test vector generators have been or will be devel-
oped, but convenience will be key to their routine application.
To be convenient to use generators must run on a wide variety
of computing equipment, but best of all, they should run on the
same equipment used to process the logic equations into fuse
blowing vectors. Efficient algorithms will be needed so that
large mainframe computers are not required to generate test
vectors for the more complex parts.

Data 1/0's Fingerprint

Another alternative for function testing is a signature-test
technique such as Data I/0O's ""Fingerprint''. This technique

* Programming elements can be fuses, floating-gate MOS devices, open-base NPN transistors, etc.

2-45

applies a pseudorandom series of test vectors to a known
good part and generates a Fingerprint value based on its
response. Each part tested thereafter must generate the same
Fingerprint to be considered a '"good'" functional part.

To our knowledge, no one has done comprehensive studies of
the effectiveness of this technique. Our limited observation
indicates that the Fingerprint test is much better than no test
at all. However, certain patterns can give unpredictable
responses when subjected to random test conditions. Parts
with these patterns cannot be Fingerprint tested reliably.
Structured vector testing with either automatically or manually
generated vectors is needed in these cases. The benefit of the
Fingerprint approach is that it requires no effort on the part of
the user, other than recognition of non-Fingerprintable pat-
terns.

Post programming functional yield (PPFY) is clearly another
distinct measure of the quality of a programmablie-logic-device
manufacturer's parts. Although the user has the same right of
return as with programming rejects, detection of bad parts can
be significantly more complex and more costly at this stage.

As shown later in this chapter, the part manufacturer can
design-in additional test circuitry that guarantees virtually
100% post programming functional yield.

Uniformity of Performance

The buyer of a programmable logic part has the right to expect
that the performance specifications appearing on the manu-
facturer's data sheet will be met for all legitimate applications
of the part. This applies to each and every logic path and
function.

A glance at the logic diagram for an unprogrammed part
shows that, with the array in its unprogrammed state, no
amount of activity of the inputs can make any output switch.
Without any fuse programming, the AND gates see both the
true and complement of all inputs.

Obviously if post-programming performance is to be guaran-
teed with confidence, test circuitry must be provided to allow
each path to be tested to data-sheet performance before
programming. Manufacturers vary in the degree to which they
provide this pre-programming testability within their parts. The
uniformity of performance of devices will reflect the degree of
testability that has been designed-in.

Approach to Designing In Testability in AMD's
PAL Devices

AMD's approach to the the design of programmable logic was
strongly influenced by the goal to provide users with the
industry's best programming yield, post programming function-
al yield and uniformity of performance.

Designing programmable ‘logic can be viewed as a three-
dimensional task involving high-performance logic design,
fuse-programming circuit design,and test circuit design.

The first dimension is the design of a high-performance logic
circuit with SSI/MSI-competitive switching speeds and very
high output drive for bus environments.

The second dimension of programmable logic design is the
programming circuit design. The emphasis of this design is to

provide circuitry that will deliver large programming currents to
individual fuses. Special decoders, demultiplexers, buffers,
and mode-select circuitry are needed. The circuits need not be
fast since programming occurs at microsecond speeds. Be-
cause the circuitry is not used after programming, it is
desirable that it only consume power during programming and
not during operation. Since large voltages are required to
generate fusing current, survival under high voltage is also a
must. All of these requirements are quite different from the
logic-circuit requirements but must be achieved within the
same part.

Testability is the third dimension of programmable logic
design. This overlay of circuitry provides the means to
exercise the part through all of the possible paths that might
be activated by programming. Another need for test circuitry is
to insure that the programming circuitry will function properly.
Testability is then important to achieving high programming
yields, post-programming functionality and performance to
data-sheet specifications through all possible paths.

The unique challenge of programmable logic design is to
integrate these three dimensions in the most efficient manner.
This is no easy task!

Testability in the Programming Circuitry

Good programming yields are in the high ninety perceﬁts.
AMD PAL programming yields are typically higher than 98%.

Three things contribute to AMD's high success rate in biowing
fuses:

1) Uniform fuse cross sections,

2) Pre-testing of the current delivery and sink capability of
column drivers and row drivers through use of wafer-sort test
pads, and

3) Sample fusing of test rows.
Uniformity of Fuse Cross Sections

The AMD IMOX process gives consistently uniform, platinum-
silicide fuse cross sections. Uniformity is monitored by mea-
suring fuse-resistance test patterns on a sample basis in every
wafer lot. The data is processed for mean and standard
deviation and trend plots are maintained. Material not meeting

" fuse-width-control limits is scrapped.

Testing for Fusing Current Delivery Capability

On every AMD PAL device there are two extra pads that are
probed at wafer sort. These extra pads are used to gain
access to the fuse array for special testing at wafer sort. The
connection of these pads to the fuse array is shown in Figure
2-11.

The programming process involves selection of individual
column and row drivers to deliver and sink programming
current through x-y selected fuses. The extra test pads allow
easy access for individually testing the source and sink
capability of each column and row driver. Also a reverse-
leakage check of all of the Schottky diodes in the array is
possible by applying bias between the pads. Without the test
pads, all of these tests would be impossible or would have to
be accomplished in a less direct and less effective manner.

2-46

TEST

TEST

PAD JZ‘
<)

© PAD

_E)—— ® lr>Jf‘
64 °
® ARRAY o 4
COLUMN |/ 642 foureuts
. :]
32 |-
ROW DRIVERS
TC003900

Figure 2-11. Extra Test Pads for Wafer-Sort Testing of the Column and Row

Drivers and the Fuse Array

Sample Programming

To further assure programmability, the AMD PAL devices
include an extra test input buffer with fuses connected to each
of the array columns.

Blowing one test-buffer fuse per column accomplishes two
important things. First, a sample fuse has been blown using
each of the column drivers. The sample fuse is exactly the
same dimension as all of the normal array fuses, and the test-
buffer drivers sinking the programming current are of identical
design to all of the normal drivers. Before shipment, then,
each AMD PAL device has had a sample of fuses blown on

the test buffer. For example, sixty-four fuses are blown on the
test word of every AmPAL16L8, one per product term.

The second purpose in blowing the sample fuses is to create a
pattern for AC and functional testing.

Testability to Guarantee Functionality After
Programming

A typical PAL device, the AmPAL16R4, is shown in Figure 2-
12. Not shown in the logic diagram are the components
located at each horizontal and vertical line intersection. For
AMD bipolar-PAL devices, a fuse and a Schottky diode reside
at each cross point as shown in Figure 2-11.

247

1

{ L1

,éy BREB33I ér

0123

891011 16171819 24252627

-

\\ \;\5:\\\ s\ R

\Kg

\

NOOSWN -0

-ttt
SrONIco®

H3

I
o

%

283!

5—ig

~

é, 28282898 é, 22802888 ;L-,

A

SREX28

8

0123

/sﬁou/ /1o/|71a}9 . 242523\27\ \

4567 12131415 20212223 28 29 30 31

Figure 2-12. AmPAL16R4 Logic Diagram

AL,

e 13

LD000800

2-48

The horizontal or ''Product Term' line is then the common
anode connection for a 32-wide diode AND gate. The user's
job is to figure out which of the thirty-two inputs should be
connected to the AND gates. The inputs not needed must be
disconnected by blowing the fuse shown in series with the
diode.

Thankfully this decision does not have to be made 2,048
(32 x 64) times by a user. Through the wonders of design-aid
software (PALASM, ABEL, CUPL, PLPL, etc.), the user simply
writes a few Boolean equations describing the desired func-
tion of the device. The software then generates fusing

instructions for a programmer and all of the undesired AND-
gate connections are blown away.

The obvious problem from a manufacturer's test standpoint is:
""How can it be guaranteed through testing that the device will
work after fuses are blown?"" If the only logic in the device was
that shown in Figure 2-12, there would be no chance. With
sixteen LOW levels and sixteen HIGH levels presented to
each AND gate, the LOWSs win. All sixty- four AND outputs are
always stuck LOW, and there is no way to get the output to
wiggle for AC- or DC-test purposes. This is the raw state of any
device before programming.

TEST ENABLE

TYPICAL

INPUT OR TRUE CONNECTED
FEEDBACK COMPLEMENT
BUFFER UNCONNECTED

o—5—

OUTPUT
ENABLE

OUTPUT
—0

FEEDBACK

BUFFER

TC003810

Figure 2-13. Testing All Input and Feedback Buffers through the Special Test

AND Gate

Necessary Testability Requirements

Something more is needed in every PAL device to assure
100% functional yield after programming. The AMD PAL
designs have an overlay of test circuitry that accomplishes the
following:

1) Each input and feedback buffer can be checked for
functionality.

2) Each of the AND gates can be switched HIGH and LOW
and uniquely sensed by an output.

Achievement of these two things is necessary to the guaran-
tee of 100% post programming functional yield.

Under normal operating conditions the test circuitry is inactive
and consumes very little power. What causes it to come alive?
Supervoltages! Supervoltages are levels substantially higher
than V¢ so that under normal operating conditions accidental
activation of a test mode cannot occur.

In this paper a double line on the input side of a logic symbol
indicates that the HIGH level must be a supervoltage to
activate it.

Checking the Input and Feedback Buffers

Functionality of the input and feedback buffers is checked with
the aid of the extra AND gate dedicated to this function. Figure
2-13 illustrates the AND gate and its associated enabling
circuitry.

The noninverting or true side of each input and feedback
buffer is connected to the special test AND gate. The AND

gate is activated by a supervoltage on one of the input pins.
The function actually takes two activating inputs to implement
since the use of one for activation prevents that pin from being
tested for functionality. Having an alternate pin to activate the
function solves this problem.

Only the non-inverting side of each buffer is hooked up to the
AND gate because each buffer is constructed from two
inverters in series. The first inverter must work for the second
one to work, so that checking the second one is sufficient to
prove that they both work.

The feedback from the output used for the test cannot be fed
to the test AND gate, such a connection would make the test
output oscillate. For this reason its feedback input is not
connected and is tested by creating another test AND gate on
a different output and routing it there.

Since the special AND gate used to test all of the buffers is
identical to those used in the normal operating path, switching
each input through this path provides the means for testing the
switching performance of each buffer.

Testing the AND Gates

The next important test requirement is to make sure that all of
the AND gates work and will switch at data-sheet speeds. This
test challenge is a littte more complex.

What is needed in this case is:

1) A means for decoding one AND gate at a time in each
output.

2-49

2) A way to force all input and feedback buffers to a HIGH
level on both true and complement outputs.

3) A special input of identical design to a normal input that can
be used to switch the decoded AND gates.

These requirements are met by the circuitry shown in Figure
2-14,

The decoder to select one AND gate at a time in each output
serves a dual purpose. It is the same decoder that provides
unique selection of product term lines for the programming
and fuse-verify operation. It responds to binary combinations
of TTL signals at three input pins and provides one of eight
active-HIGH level signals to decode the AND gates.

The special test input that is used in this mode also serves a
dual purpose. It was mentioned earlier in this paper that a
programming sample was performed on each part. This
special test input is the input that carries the test fuses. During

the sample programming operation the fuses are blown in a
pattern that allows switching of all sixty-four AND gates, one in
each output, for each of the eight decode states.

The input to the special buffer for AND-gate testing is one of
the normal input pins, but the buffer is inactive for normal
operation and must be activated by supervoltage levels
applied to two other inputs.

The supervoltage levels also provide the signal to force all of
the buffer outputs HIGH, which is one of the three necessary
requirements for AND-gate testing.

Since the design of the special buffer is identical to all of the
normal input buffers, it serves as a surrogate buffer for speed
testing all of the AND gates. In the AND-gate test mode, all
eight outputs are switched at once, since one AND gate is
selected in each output. For registered outputs, the AND-gate
switching path provides the means to test setup and hold
times.

TYPICAL
INPUT

NORMAL
b INPUT
DISABLE

AND
GATES

BUFFER

TYPICAL
OuTPUT

ENABLES

TEST
INPUT

TEST

BUFFERS

DECODER
ENABLE

TEST
INPUTS

NORMAL
INPUTS

1:8
AND
GATE
DECODER

TC003920

Figure 2-14. Testing All AND Gates through the Special Test Input Buffers

Uniformity of Performance

Only a complete test to data-sheet parameters by the manu-
facturer can assure uniformity of performance. There is no
other way. Pronouncements of ''guaranteed by design"
should be read as ''too difficult to test or no allowance for
testing'’.

This paper has shown it is possible to design-in the means to
exercise all switching paths in AMD PAL devices to data-sheet
limits and conditions before programming.

The user of AMD PAL devices, therefore can expect excellent
uniformity of performance to the data-sheet parameters after
programming.

Summary

The central idea of this paper is that design for testability prior
to programming is possible in programmable logic — and it
pays off. It pays off for the user in fewer rejects at program-
ming and at functional and AC test. For those that have no
means for functional test after programming it pays off in not
having to locate a defective part with a board- or system-level
test. For the semiconductor manufacturer it pays off in lower
returns handling cost.

All Advanced Micro Devices programmable logic devices have
designed-in testability and are achieving yields of greater than
98% for programming and better than 99.9% functional and
AC test yields after programming. Even higher goals have
been set for future products.

2-50

2.3.3 SPECIFICATIONS FOR SWITCHING-
DELAY MINIMUMS

All system designers would like non-zero minimum-delay
specifications, as well as maximum-delay specifications for all
AC parameters. With these numbers they could optimally
design system timing. Device manufacturers understand this
need and would like to meet it. Two major reasons make it
impractical to provide minimum specifications.

The first reason is that maximum specifications are based on
conditions that create a ''worst-case' environment for the
device. Maximum loading, longest delay path, multiple output
switching, and V¢ and temperature at worst-case extremes
are examples of these conditions. These conditions can be
closely duplicated in an automatic-test-system environment
and therefore can be guaranteed by test.

In contrast, minimum-delay specifications must be based on
"best-case'’ conditions for a device. It is true that in a system
both completely best-case and worst-case conditions for a
group of devices could not practically coexist. However,
anything other than the best ''best case'" cannot be assumed
when providing specifications on a data sheet.

The device manufacturer is then faced with trying to create a
""best-case'’ environment for test in order to guarantee

minimums. This requirement is inconsistent with the high-
volume test environment of handlers, high-capacitance test
heads, etc.

The second major problem with providing minimum specifica-
tions is the constant evolution and upgrade of products to
achieve better performance. Minimum specifications are an
unreasonable constraint to this effort.

Many system lifetimes are longer than the product lifetimes of
the ICs from which they are designed. This means that more
than one generation of an IC must meet the original system
needs. A common reason for IC redesign is to make products
faster. Faster products then replace the previous generation
slower products. The conflict of this trend with guaranteed
minimums is obvious.

A good example of the evolution of product performance is the
popular AmPAL16L8. Before AMD entered the PAL-device
market this product was originally offered with 35 ns speed.
AMD entered the market with 25-ns parts and speed selec-
tions of 20 ns. The next evolution was to 15 ns, and now 10-
and 7.5-ns parts are under development. Since each new
generation can substitute for the previous generation when
only maximum AC specifications are guaranteed, the progres-
sion to faster parts is not hindered unnecessarily. Minimum AC
specifications would have seriously complicated this evolution.

2.4 AMD PROGRAMMABLE ARRAY
LOGIC RELIABILITY

INTRODUCTION

Advanced Micro Devices' bipolar Programmable Array Logic
(PAL) devices are based on two key technologies with many
years of high-volume production experience behind them.

1) IMOX — The basic process technology employed is IMOX,
an advanced ion-implanted, oxide-isolated structure. IMOX
provides very high-performance devices with predictable man-
ufacturing yields. It has accumulated many millions of hours of
life-test history through its application to the Am27S Series of
PROMs and the Am2900 Family of bipolar microprocessors.

A comprehensive report on IMOX reliability titled IMOX RELI-
ABILITY REPORT (AMD Publication #03687A) is available for
those interested in a detailed presentation on this subject.

2) Platinum-silicide fuses — This fuse structure was originally
developed for use on Advanced Micro Devices' famiiies of
junction-isolated PROMSs. It quickly established a new stan-
dard of excellence for high programming yields and long-term
reliability. Several years ago it was applied to a new generation
of ultra high-performance PROMs based on the IMOX pro-
cess.

This combination of IMOX and platinum-silicide fuses has an
outstanding record of reliability which has been verified
repeatedly through in-house life testing and by high-reliability
customer-qualification testing and system use.

Advanced Micro Devices' PAL devices are fabricated with this
same combined-process technology. Not only is the technolo-
gy for building PAL devices and PROMSs the same, but also the
programming algorithm and programming circuitry used to
program the platinum-silicide fuses are the same in all
characteristics of importance. The result is that the conditions
seen by an AMD-PAL fuse are the same as those seen by an
AMD-PROM fuse.

Due to the common process technology, fuse-design and
fuse-programming circuitry design, reliability and program-
ming-yield results are expected to be the same for PAL
devices and PROMs. Data accumulated to date on PAL
devices appears to confirm this expectation.

This report describes:

1) The characteristics of the platinum-silicide fuse and pro-
gramming conditions for the fuse.

2) Reliability results accumulated to date on IMOX PAL ICs
and PROMs.

3) The dynamic and static burn-in circuits used for high-
temperature reverse-bias (HTRB) reliability testing.

4) Thermal resistance values for AMD PAL devices.

5) Equivalent gate counts for use in reliability calculations.

PLATINUM-SILICIDE FUSE
Fusing Technique

Advanced Micro Devices' PAL circuits are designed to use a
programming algorithm which minimizes the requirements on

the programmer, yet allows the circuit to fuse the platinum-
silicide links quickly and reliably.

‘The sequence of events to program a fuse are:

1) Ve power is applied to the chip.

2) The address of the fuse to be programmed is selected by
TTL/ECL levels on the appropriate address pins.

3) The outputs are disabled.
4) The programming voltage is then applied to one output.

5) A fuse enable is accomplished by raising an input to a level
above normal TTL operating voltage. This action gates the
current flow through the proper fuse, resulting in an open fuse
in a few microseconds.

6) The output programming voltage is lowered and then
removed.

7) The device is enabled and clocked if required. The output
state then indicates whether successful programming has
occurred. If programming has not occurred a sequence of
much longer pulses is applied until programming occurs.

8) The sequence of 2 through 7 is repeated for each bit which
must be programmed.

There are several advantages to this technique relative to that
used by other PAL manufacturers. First, the two high-current
power sources, Ve and the voltage applied to the output, do
not have critical timing requirements. As the fusing current is
gated through the fuse actively, there is no dependence on the
rise rate of the programming voltage. A fast application of
fusing current is desirable for optimum fusing. Since the output
programming voltage does not have to be applied rapidly,
breakdown and latchback problems attributed to fast voitage
rise times on the output are avoided.

This programming procedure has a second major advantage.
If the fuse does not open during the first programming pulse,
longer programming pulses are used. With the platinum-
silicide fuse, longer programming pulses may be safely applied
with no danger of developing a reliability problem. The
algorithm can therefore be designed to minimize the time
required to program by using a fast first pulse followed by a
longer pulse if needed to blow the occasional fuse that does
not open with the first short pulse. Most devices do program
satisfactorily with all short pulses.

Fuse Characteristics

When a fast (less than 500-ns rise time) current pulse is
applied to a fuse, the fuse voltage rises abruptly to a value
determined by the room temperature resistance. However, it
then quickly falls to a value of approximately 2 V. This value is
nearly independent of the applied current. During the period of
time the fuse is molten, the fuse current drops very abruptly to
zero indicating the separation of the platinum-silicide into two
distinct sections. Scanning Electron Microscope photographs
of the resulting fuses (Figure 2-15) indicate that the typical
case is a sharp clean separation in excess of a micron. This
separation occurs in the center of the fuse because the '"bow-
tie'" structure (Figure 2-16) concentrates the energy density in

2-52

the center away from the aluminum interconnect lines. The Melted material is then ''wicked'" from the center of the fuse to
energy density in the center of the fuse creates temperatures either side due to surface tension.
substantially greater than those required to melt the silicide.

Unprogrammed Fuse

Programmed Fuse

Figure 2-15. Scanning Electron Microscope Photos — Unprogrammed and
Programmed Fuses

\/\/‘ T~~~
ALUMINUM
ALUMINUM CURRENT DENSITY
IS 6X LEVEL IN
CONTACT AREAS
Pt-Si
CONTACT CONTACT
AREA AREA
COOLER REGIONS HERE
RESULT IN CORRECT
SURFACE TENSION FORCES
W G X FOR PULLBACK OF FUSE L~
MATERIAL FROM CENTER GAP
DF006160

Figure 2-16. Bow-Tie Fuse Design

Reliability of Fuses Programmed Under Non-
Optimal Conditions

The marginally opened fuse has been studied at AMD in detail
even though it rarely occurs in practice. Under conditions
where the fuse is purposely blown at much slower rates, it is
possible for the fuse to assume a high-impedance state which
is sensed as an open fuse by the circuit. This occurs when the
fuse cools before separation is achieved. Electrical and SEM
studies of fuses blown under these conditions indicate that a
small conductive path of silicon remains of sufficiently high
resistance to prevent the power transfer required for complete
opening on subsequent programming attempts.

Under these slow-blow conditions, sufficient time exists for the
heat flow to carry a significant amount of energy away from the
fuse preventing the normal abrupt separation.

To investigate what might happen if a fuse were subjected to
these under-blow conditions, a large number of fuses were
deliberately programmed this way at AMD. After over two
thousand hours of life testing there were no failures. It is clear
from the study that partially blown platinum-silicide fuses are

stable even though they will rarely occur in circuits which have
been programmed under normal conditions.

It should be noted that most manufacturers carefully specify
the conditions under which their devices must be programmed
in order to avoid reliability problems. Reliability data available
on these devices must be assumed to have been generated
using optimally programmed devices.

The study described here, and over forty billion fuse hours of
data from life testing many different production lots of PROMs
and PAL devices demonstrates the outstanding reliability
record of the platinum-silicide fuse under a wide variety of
conditions.

RELIABILITY TESTING DATA

Data on the reliability of PAL and PROM devices with
platinum-silicide fuses is gathered via AMD's Reliability Moni-
tor Program (RMP). The RMP is an ongoing program conduct-
ed on all device types across all product lines, and is designed
to ensure that all AMD devices meet acceptable reliability
levels. A summary of the RMP tests for hermetic- and plastic-
molded packages are shown in Tables 2-3 and 2-4.

2-54

TABLE 2-3. RELIABILITY MONITOR PROGRAM FOR DEVICES IN HERMETIC PACKAGES

Typical
Test Conditions Sample
Size
Infant 160 hours at 125°C ambient. Initial and end-point 300
Mortality electrical tests.
Operating 1000 hrs (1160 total) at 125°C ambient. 120
Life Initial and end-point electrical tests.
Temperature 1000 cycles, (-65°C to 150°C), 30 min/cycle. 50*
Cycle end-point-hermeticity and electrical test.
150°C 1000 hours at 150°C ambient. 50
Operating Initial and end-point electrical tests.
Cycle

* These units are hermetically tested prior to commencement of test.

TABLE 2-4. RELIABILITY MONITOR PROGRAM FOR DEVICES IN MOLDED PACKAGES

Typical
Test Conditions Sample
Size
Infant 160 hours at 125°C or 85°C ambient (T, < 150°C nominal). 300
Mortality Initial and end-point electrical tests.
Operating 1000 hrs (1160 total) @ 125°C or 85°C ambient 120
Life (T, < 150°C, nominal). Initial & end-point electrical tests.
Temperature 85°C/85% RH/low-power bias, 500 hours and 1000 hrs. 50
And Initial, interim, and end-point electrical tests.
Humidity
Temperature A. 1000 cycles: -65°C to 150°C, 30 minutes/cycle. High 50
Cycle temperature (75°C min) functional end-point electrical test.
Pressure 121°C, 15 psi, 160 hours, unbiased, initial end-point 50
Cooker electrical test.

Data on AMD PAL and PROM devices has been gathered over
millions of device hours and more than 40 billion fuse hours of
high-temperature operating life tests (HTOL). The life-test
circuits used in this work conform to MIL-STD-883 Method

1005, Conditions C and D, and are shown in Figure 2-17. A
summary of this data is shown in Table 2-5, which indicates a
projected unit-failure rate (at 60% confidence) of 0.0002%/
1000 hours at 70°C.

(c) 24-Pin Static Burn-in
MIL-STD-883-C Condition C

Vee
1 b
€SS < <SS S SEIGHT 444444 ¢ > ST P
$333T TS TmnessToRs $S3SSSISEM $33333332™
CLKo 1 20| 1 20)
cuxi—{]) ; o}
cike—{5 ouT 16} _—] o E—
ClKs=]6 15}] fio———
151
i
CLKg—{7 i {7 i,
'y
cLkr—{& 13— 14 3}
cLke—{9 g }—————— a 2}
10 11}
J_—-E 11} CLKs il
- €D010130
CD010140
Voo =5 V Min. Ve =5 V Min.
R, =270 § (£5%, ¥ W) Ry =270 Q (5%, % W)
CLK, = 100 kHz @ 50% duty cycle
CLK,+1=1/2 freq of CLK,
(a) 20-Pin Dynamic Burn-in (b) 20-Pin Static Burn-in
MIL-STD-883-C Condition D MIL-STD-883-C Condition C
V§c
2823222222 < TEN
] b asdd. $3333333 3 S, resistons
3 3333
CLKo j24]
CLK1 _:}
CLK2 [72}—
CLKa [z }—-]
' CLKa 20'——
D CLKs (D g
pr}———————— CLK7 i
Ds CLKs E—-———
T —
o CLKe
b— CLK1o EL
=t
= ‘ 13}—ciks
CD010150 = '
CD010160
Ve =5 V Min. Vee=5 V Min.
R, =270 Q (5%, ¥ W) o R, =270 Q (5%, s W)
LK, =100 kHz

CLK,.+y=1/2 freq of CLK,

(b) 24-Pin Dynamic Burn-in
MIL-STD-883-C Condition D

Figure 2-17. Life-Test Circuits for AMD PALs

2-56

152

TABLE 2-5. BIPOLAR PAL AND PROM RELIABILITY SUMMARY

Unit Failure Unit Failure
Total Total Rate at 60% | Rate at 60%
Unit Fuse Fuse Confidence Confidence
Production Units Hours Hours Unit Related %/1000 HRS | %/1000 HRS
Product Lots Tested | (Thousands) (Billions) Failures Failures at 125°C at 70°C
20-pin IMOX 16 2,088 2,088 5.345 0 0 0.0217 0.0002
PALs
24-pin IMOX 2 219 219 1.484 0 0 0.1250 0.0009
PALs
275191 IMOX 7 1,057 1,057 17.318 1 0 0.0922 0.0007
(16K-bit PROM)
275180/181 12 463 926 7.586 0 0 0.1100 0.0010
(8K-bit PROM)
275184/185 15 556 1112 9.109 0 0 0.0900 0.0008
IMOX
(8K-bit PROM)
27825 IMOX 5 720 720 2.950 0 0 0.0466 0.0003
(4K-bit PROM)
TOTAL 57 5,103 6,122 43.792 1 0 0.0211 0.0002

PALs & PROMs

Results of AMD's RMP are updated periodically and can be
obtained through inquiry to any of the AMD Sales Offices
listed in the back of this handbook.

THERMAL RESISTANCE

The thermal-resistance values given in Table 2-6 can be used
to calculate the junction temperatures (T,) of a given device at
a given ambient or case temperature (T, or Tg) and power
level (P). The formulas below describe the relationship be-
tween these variables:

Ty=Tc + 0,cP
Ty=Ta + O,P
TABLE 2-6. THERMAL RESISTANCE VALUES

Package Type Pins 05a Oy
Cerdip 20 60 1
Plastic DIP 20 61 30
LCC 20 61 CR
PLCC 20 CR CR
Cerdip 24 57 15
Plastic DIP 24 60 CR
LCC 28 CR CR
PLCC 28 58 CR

CR = Consult your local AMD representative.

EQUIVALENT GATE COUNT

Some methods of reliability prediction, such as those outlined
in MIL-HDBK-217, incorporate into the reliability formula a
variable to account for device complexity. This is based on the
assumption that—all other things being equal—as the
complexity of a device increases, the probability of failure also
increases.

In order for the reliability formula to account for this phenome-
na, some means of comparing device complexity must be
used. The most predominant ''measuring stick'' used today is

the equivalent gate count, the ''equivalent gate'' being a two-
input NAND gate.

Unfortunately, the only standard adopted to date is the gate
itself and not how to translate various logic configurations into
equivalent two-input NAND gates.

Take for instance, a 32-input NAND gate. From a reliability
standpoint, it is easy to see how a 32-input NAND gate is
about as complex as sixteen 2-input NAND gates. Yet from a
pure logic-conversion standpoint, it takes at least fifty-three 2-
input NAND gates to functionally replace the 32-input NAND
gate.

In addition, there are circuit configurations that do not repre-
sent any particular traditional logic block, but perform some
other functions such as sense amplifiers or input-voltage
circuitry.

Programmable Logic Devices complicate matters even more
due to the wide range of post-pogrammed configurations that
are possible, ranging from a very simple utilization using few
product terms to a more extensive utilization.

Listed in Table 2-7 are equivalent gate counts for AMD's
bipolar PAL devices. The equivalent gate count is given as a
range for each of the devices to accomodate the range of
possible post-programmed configurations and the inherent
ambiguities associated with translating the device logic into a
2-input NAND-gate equivalent. The values shown in Table 2-7
are intended to give the user an idea of device complexity
based on typical gate utilization of the programmed device.

TABLE 2-7. EQUIVALENT GATE COUNT

Device Gate Count
16XX 200 - 300
18P8 250 - 350

22V10 700 - 800

20XRP 400 - 600

20EV8 600 - 700
2388 900 - 1100

2-58

2.5 PROGRAMMABLE LOGIC

TECHNOLOGY

AMD uses both Bipolar and CMOS technologies to manufac-
ture programmable logic devices. Sections 2.5.1 and 2.5.2
provide a detailed description of these two technologies.

2.5.1 IMOX-IlI™ — Advanced Bipolar
Technology for PAL Devices

In order to meet the next-generation requirements for speed
and density in PAL devices, AMD has developed an advanced
bipolar technology called IMOX-IIi. Aithough IMOX-III repre-
sents a major breakthrough which will allow further scaling to
the sub-micron region, the technology also shares many
features in common with AMD's prior generations of
technology, IMOX-Il and IMOX-IIS.

The revolutionary breakthrough of IMOX-lll is the use of
reactive-ion-etched grooves, called slots, to isolate the tran-

sistors. These slots are 1.5 microns wide, over 6 microns
deep, and are filled with dielectric material (Figure 2-18).
Because the transistors are not isolated by junctions, space
for depletion spreading is not necessary. Also, since the slots
are etched anisotropically, thicker EPI layers can be isolated
without increasing the isolation widths. Essentially, no density
penalty is paid to achieve high breakdown voltages. Higher
breakdown voltages are needed to support the programming
voltages required to blow fuses in bipolar PAL devices.
Smaller device sizes translates into faster circuits through
smaller die sizes and reduced capacitances of active devices
and metal interconnect. Another advantage of the slot isola-

tion is reduced collector to substrate capacitance which offers

improved performance in many circuit configurations.

EXTRINSIC BASE

BASE CONTACT

INTRINSIC BASE

FIELD OXIDE

7

N* BURIED LAYER

POLYSILICON

~~— SIDEWALL OXIDE

P SUBSTRATE

\
\ /

S~ ‘M
P CHANNEL STOP

DF006070

P

Figure 2-18. Slot Isolation

NS

Overall, the IMOX-IIl process is a major step forward com-
pared to IMOX-iIS. In addition to the slot isolation, stepper
lithography, dry metal, and via etching have been imple-
mented, resulting in a dramatic reduction in design rules. The
slot isolation allows the silicon pitch to be reduced by one
third. The steppers and plasma metal etching allow the metal
pitch to be shrunk by one third also. Furthermore, the IMOX-IlI
process was designed with a 20% shrink in mind. This scaling
can be accomplished simply by shrinking the masks.

The IMOX-IlI process shares many familiar features with its
predecessor, IMOX-1IS. Oxide-walled bases and emitters are
used to reduce the size and parasitic capacitances of transis-
tors. lon-implanted emitters and bases are used to achieve the
profile control necessary for high-performance transistors. The
reliability of the transistor structure used in IMOX-lIl has been
proven over millions of hours of high-temperature tests on
AMD products that use IMOX-Il and IMOX-IIS processes.

Another key feature familiar to users of older generation AMD-
PAL devices is the fuse technology. IMOX-Ill uses platinum-
silicide fuses, identical to the fuse technology used on older-
generation IMOX PAL devices. Programming yields are the
highest of any fuse technology, and programming times are
extremely short (about 300 ns). The reliability of the platinum-
silicide fuse is unsurpassed by any other fuse technology.

The IMOX-Iil technology also features two levels of metalliza-
tion as does IMOX-II and IMOX-IIS. However, in the IMOX-IIi
technology, both layers are stepper defined and plasma
etched.

The IMOX-Ili technology is being applied to a family of high-
performance PAL devices. The first of these is a ''D-speed"
20-pin PAL IC, which will run at 10 ns. Also designed in the
IMOX-III technology are a family of high-performance ECL
PAL devices. The first of these are the 24-pin AmPAL20EV8
and AmPAL20EGS8. These parts have 3600 programmable
fuses in the AND/OR array. The high performance inherent in
the IMOX-IIl technology gives the these ECL PAL devices a
propagation delay of 6 ns and a cycle time of 8 ns (3.5-ns
clock-to-output plus 4.5-ns setup time). This enables the
AmPAL20EV8 or the AmMPAL20EGS8 to support a 125-MHz
system. Table 2-8 lists the processes that are used to
fabricate AMD's PAL devices.

IMOX-IIi technology will enable AMD to develop third and
fourth generations of PAL devices that will be significantly
faster and more complex than the current devices. It will also
reduce the cost of the new devices by significantly reducing
die sizes or allowing more features to be added without
increasing current die sizes. Faster and more complex PAL
devices will permit system designers to build advanced
computers, communications systems and instrumentation sys-
tems at a much lower cost.

TABLE 2-8. PROCESSES USED TO FABRICATE AMD'S PAL DEVICES

Maximum Propagation
Device Process Delay/Maximum Frequency
16xx Family IMOX-II 25 ns
16xxB Family IMOX-1IS 15 ns
16xxD Family IMOX-Il - 10 ns
22v10 IMOX-IIS 25 ns
22v10B IMOX-ll 15 ns
18P8 IMOX-1IS 15 ns
2358 IMOX-1IS 20 ns/40 MHz
20EV8 IMOX-Hit 6 ns/125 MHz
20EG8 IMOX-IHt 6 ns
20XRP Family IMOX-IIS 15 ns
21vT18B IMOX-IH 15 ns

2-60

2.5.2 ADVANCED CMOS TECHNOLOGY
FOR PAL DEVICES

In addition to the commonly used bipolar TTL and ECL
technologies, AMD also manufactures programmable logic
devices using an advanced CMOS EEPROM-based technolo-
gy. This technology offers several significant advantages.
Mainly it allows AMD to offer lower power parts of high
complexity. PAL devices based on this technology can also be
reprogrammed, unlike the bipolar fuse-based parts. In addi-
tion, since the EE-cells can be reprogrammed, these devices
can be 100% tested at the factory before being shipped to the
customer.

This production-tested CMOS process employs state-of-the-
art design rules. It uses stepper lithography on all critical levels
with a minimum feature size of 1.5 microns. The transistor gate
oxide thickness is approximately 300 R. This advanced
process permits volume production of EEPAL devices with
state-of-the-art speed-power performance. In addition, contin-

ued technology enhancements are in development that will
result in significantly reduced dimensions and increased
packing densities, allowing production of even faster circuits at
lower cost.

The EE-cell, which can be electrically erased and repro-
grammed, contains a floating gate transistor structure (two
layers of polysilicon) with a tunnel oxide region of less than
100 R through which electrons can 'tunnel’ to either charge
or discharge the cell (See Figure below). An additional
enhancement transistor has been added in series with the
storage cell to prevent leakage in the non-selected discharged
cells (as they have a negative threshold) during a charge
sensing cycle. This transistor also protects non-selected EE-
cells on the same word line during the charge cycle. The
tunnel oxide process developed by AMD allows easy manu-
facturing of ultra-high quality, thermally grown thin oxide
capable of withstanding the high fields associated with the
tunneling mechanism.

POLYSILICON

METAL 'DEPOSITED

BIT LINE GATE

Q

VAN

\ YSLLSSS LSS SIS,

2 I

POLYSILICON CONTROL
GATE

Lrrrtpsiiiiisissisia

W\r_

DIFFUSED DIFFUSED
DRAIN NT \ SOURCE
TUNNELING
REGION
DF006170

EE-Cell

The EEPAL process has a proven history of reliability since it
has been used to manufacture N-channel EEPROM devices
for several years at AMD. These devices have been in the field
for a long period and have gone through extensive testing at
the factory (See the Am9864 Reliability Report which can be
obtained by contacting an AMD representative).

Users of devices that are based on EE-cell technology have
two concerns about the technology: Endurance (number of
program or write cycles) and Data Retention (charge storage
from the last time the cell was updated). The endurance issue
is of little significance to EEPAL users, as opposed to
EEPROM users, since the PAL devices are usually repro-
grammed only several times, whereas EEPROMS are written
up to 10,000 times. AMD's process is capable of supporting
higher impedance levels than are specified for PAL devices.

The second concern arises over the leakage of charge from
the EE-cell over a period of time, thus potentially degrading
the device's performance. At AMD this issue is resolved by
designing the PAL circuits so that performance is guaranteed
to the factory specifications under worst-case conditions for a
minimum of 10 years. If the device is reprogrammed with the
same or a different pattern during this period, functionality is
assured for another 10 years from that time.

The CMOS PAL Family could have been implemented with
either EPROM or EEPROM technologies, both of which are in
production at AMD. AMD chose the EEPROM technology to

manufacture PAL devices because of the superior flexibility it
offered without compromising performance.

One of the major benefits of EEPROM technology is 100%
testability. The EEPAL devices can be fully and more easily
tested since they are electrically erasable. Compared to
EEPAL devices, EPAL (based on EPROM technology) devices
cannot be easily reprogrammed since they require a lengthy
amount of exposure to ultraviolet light to be erased. Also, if
EPAL devices are placed in a conventional non-windowed
package (which is easier and cheaper to produce), they
cannot be reprogrammed. EEPAL devices do not face these
problems. EPAL devices also require additional circuitry to
improve testability due to the lack of flexibility in programming.
This adds significantly to the design cycle time since additional
design and debugging time are required. Overall, EE-cell
based technology is more attractive in the long run to
manufacture PAL devices.

With both bipolar (TTL and ECL) and CMOS technology
capabilities, AMD is in an ideal position to meet customers'
needs for different programmable logic devices. AMD can
choose the proper technology to produce the PAL device that
the customer requires. Where blazing speed is needed bipolar
is the technology of choice, whereas for low-power high-
complexity devices CMOS technology is appropriate. Over the
next several years enhancements will be made to both these
technologies allowing production of even faster, lower power,
and more complex PAL devices. The flexibility to choose
technology permits AMD to better serve its customers.

2-61

SECTION 3 — APPLICATIONS

3.1 OVERVIEW
3.2 COMBINATORIAL LOGIC

3.2.1 Multiplexers

3.2.2 Demultiplexers

3.2.3 Encoders/Decoders
3.2.4 Comparators

3.2.5 Address Decoding and Chip Select Generation Simplified
with Combinatorial PAL Devices |

3.3 SEQUENTIAL LOGIC
3.3.1 Counters
3.3.2 Shifters

3.4 MICROPROCESSOR INTERFACE LOGIC
3.4.1 The Interface Problem
3.4.2 Interfacing to the 8086/80186/80286
3.4.3 Interfacing to the 68000/68020
3.4.4 Interfacing to the 8088/80188
3.4.4 Interfacing to the Z80/Z8000

3.5 BUS INTERFACE LOGIC
3.5.1 MULTIBUS to Am9516 Interface
3.5.2 Z-Bus and 8088/8086 Interface

3.5.3 An AMD PAL MULTIBUS Arbiter

(Continued)

n

3.5.4 VME Bus Control Simplified with PLDs

v

3.6 MISCELLANEOUS LOGIC FUNCTIONS

3.6.1

3.6.2

3.6.3

3.6.4

3.6.5

3.6.6

3.6.7

3.6.8

3.6.9

8088 to Am2968 Interface

A General-Purpose Interface for the Am2968
MC68000 to Am2968 Interface
General-Purpose Dual-Port Arbiter

Customized a Flexible DRAM Controller Using Second-
Generation PAL Devices

Dynamic Memory Control State Sequencer

82284 and 82288 Emulation in an IBM PC/AT Computer Using
Two AmPAL16R8B Devices

Interfacing the 80186 Microprocessor to the 8087 with the
AmPAL22V10A Device

A MULTIBUS Arbiter Design for 10 MHz Processors

3.7 PROGRAMMABLE LOGIC DEVICES — ARTICLE
REPRINTS

3.7.1

3.7.2

3.7.3

3.7.4

3.7.5

""Logical Alternatives in Supermini Design,'' reprinted by
permission of Computer Design, November 1983. All rights
reserved.

""PLDs as Semicustom Substitutes,'’ reprinted by permission of
VLSI Design, June 1985. All rights reserved.

""Programmable logic chip rivals gate arrays in flexibility,"
reprinted by permission of Electronic Design, December 1983.
All rights reserved.

""PAL device buries state registers, brings state machines to
life,'" reprinted by permission of Electronic Design, July 1986.
All rights reserved.

""Mixing Data Paths Expands Options in System Design,"
reprinted by permission of Computer Design, January 1985. All
rights reserved.

(Continued)

3.7.6 ''High Performance DMA for the VMEbus," reprinted by n
permission of Digital Design, November 1985. All rights
reserved.

3.7.7 "A Demultiplexed Analog Subsystem,' reprinted by permission
of Digital Design, November 1985. All rights reserved.

3.7.8 ''Advanced Programming Language for Programmable Logic
Devices,"' from Southcon 1985.

3.7.9 '"'Test Methods for Programmable Logic, ' from Southcon 1984.

3.7.10 ""Fuse-programmable chip takes command of distributed
systems,"' reprinted by permission of Electronic Design,
October 17, 1985. All rights reserved.

3.7.11 ""Programmable event generator conquers timing restraints,"
reprinted by permission of Electronic Products, July 1, 1986. All
rights reserved.

3.7.12 "'PLDs implement encoder/decoder for disk drives,' reprinted
by permission of Electronic Design News, September 18, 1986.
All rights reserved.

3.8 BIBLIOGRAPHY

3.1 OVERVIEW

Programmable Logic Devices (PLDs) are off-the-shelf custom
devices. Combining the flexibility of custom logic and off-the-
shelf availability of standard products, programmable logic
devices offer attractive logic design solutions. Because their
higher levels of integration and other features such as pro-
grammable /O pins, polarity controls, flexible output
structures, etc. (see Section 1 for detailed discussion), designs
based on PAL devices result in lower parts count compared
with those based on discrete SSI/MSI logic. Existing PAL
devices have been widely used to consolidate random logic
into a structured form in many digital systems. PLDs are used
in MOS microprocessors, single-chip microcomputer systems,
and in bipolar bit-slice microprocessor-based systems. Typi-
cally, domain of PLD applications includes all SSI/MSI logic.
Wherever SSI/MS| logic is used, PLDs are likely candidates for
those applications.

Applications for PAL devices can be in one of the following
categories:

SSIMSI Logic Replacement: This includes combinatorial
logic functions (such as special-purpose decoders/priority en-
coders, multiplexers/demultiplexers, comparators, ad-
ders/subtractors), synchronous or asynchronous sequential
functions (such as special-purpose counters—binary counters,
decade counters, gray-code counters, Johnson counters,
modulo counters using registered flip-flops) or logic using
latches and glue logic (for replacing many discrete flip-flops).

State-Machine Applications: These can be very simple state
machines such as counters or more complex state machines
such as bus controllers, bus arbiters, DRAM controllers, DMA
controllers, FIFO controllers, or dual-port memory controllers.

Microprocessor/Single-Chip Microcomputer Interface: In-
terface to various LSI/VLSI peripheral controller chips.

Other Miscellaneous Functions: Such as memory-refresh
generation, wait-state generation, timer/counter functions, er
ror detection/control and memory scrubbing functions. These
functions may also include various I/O interface and support
—such as intelligent 1/O ports, data-communications interface
(for protocol conversion), display or front-panel interface, key-
board scanning, disk and tape drive controls, standalone
microprocessor-based controllers (stepper-motor control, sen-
sor monitor, etc.), or support for image processing and signal
processing.

APPLICATION OF PAL DEVICES
IN DIGITAL SYSTEMS

A typical digital system can be partitioned into three general
areas: 1) data path, 2) control path, and 3) interface path (glue
area).

Data-path functions typically include data manipulation (ALUs),
data storage (register file, pipeline registers, etc.) and data-
steering/selection (multiplexing/demultiplexing). Typically, the
data-path portion of a system is the most structured portion.
This is likely to be defined relatively early in the design cycle,
and is less likely to be changed. Usually performance and
density are important for the data-path area.

Control-path functions include the timing, sequencing and
decision making segments of the digital system. These sec-
tions are normally implemented with state machines—either
with random logic, PROMs, b~RAMs. The control section is the
most complex portion of a digital system. It is likely to contain
subtle errors and requires many changes during prototyping.
Performance and design turnaround time tend to be critical for
the control path, while density considerations are less
important.

Interface or glue applications fulfill miscellaneous functions.
Typically, interface circuitry connects various LS| modules,
such as microprocessors, peripherals, memories, and gate ar-
rays. For interface applications, logic flexibility and design turn-
around time are critical.

PAL devices, because of their general-purpose nature, are
used in all of these areas.

In the data path they can be used for data steering and data
manipulation. Using PAL devices for data steering simplifies
the implementation of a multiple-bus architecture. Data
manipulation may include functions such as 16/32/64-bit cus-
tomizable bidirectional shifters, barrel shifters, constant-
generation logic, and sign-extension logic.

In control path, PAL devices are used extensively for
optimizing control functions, such as instruction predecoding,
double pipelining control, register-file control, and special in-
struction control.

Interface and glue-logic applications include interfacing various
peripherals to different microprocessors, and interfacing differ-
ent peripherals to different buses. PAL devices are ideal for
replacing SSI/MSI devices, for saving board space and provid-
ing user customizability. There are several problems associ-
ated with interfacing a general-purpose peripheral device to a
microprocessor. The system designer has to watch for various
control signals that each chip uses and its compatibilities.

One of the most common use of PAL devices for interfacing
applications is to perform chip-select decoding and address
decoding from address and status signals. PAL devices offer
the flexibility of timing generation and doing timing changes.
Timing changes can be simply implemented by adding or
changing a term in the logic equations and reprogramming the
device.

For interfacing different peripherals to microprocessors, PAL
devices can be used for generating address strobes, data
strobes, Read/Write and interrupt-acknowledge signals based
on the status information available from the microprocessor.
They can be used for generating coordinated timing signals
—such as simultaneous assertion/disassertion of various sig-
nals, automatic insertion of a variable number of wait states to
match different-speed microprocessors and peripherals.

For various bus-interface applications, the most common use
of the PAL device is for implementing bus-arbitration and bus-
control functions. Bus arbitration and bus grant control function
is done by monitoring various transfer-request signals and
deciding which request gets the bus and when it gets the bus.
In multi-master systems, some sort of arbitration scheme and
prioritization scheme needs to be incorporated. This can be
done by assigning different priorities to different bus masters.
Bus arbitration functions include request synchronization, bus
grant/access control functions and generation of various con-
trol signals.

This application section is organized into the following sub-
sections:

Section 3.2 describes simple combinatorial functions (such as
multiplexers/demultiplexers, encoders/decoders and com-
parators) implemented with PAL devices.

Section 3.3 describes some sequential applications such as
counters (Modulo counters, Johnson counter, dual 4-bit BCD
counter, and a Grey-binary counter) and shifters.

Section 3.4 describes various microprocessor interfaces to dif-
ferent peripheral chips using PAL devices.

Section 3.5 describes various bus interface and bus functions
(such as bus arbitration, bus control) using PAL devices.

Section 3.6 describes various miscellaneous functions imple-
mented with PAL devices.

Many of the examples shown are paper designs and modifi-
cations may be necessary when using them in actual
applications. AMD assumes no responsibility for the use of any
application described.

3-2

3.2 COMBINATORIAL LOGIC

3.2.1 MULTIPLEXERS

The multiplexer (also called data selector) is used to selectively
route data from several inputs to one output.

Three 4-to-1 Multiplexers (AmPAL18P8)

A simple 4-to-1 multiplexer has four data input lines and two
control lines that select which one of the four data inputs is to
be passed to the output. The function table for this device is
shown in Table 3-1.

Each AND gate has a data input and a two-input combination
of select inputs. Given one of four possible combinations of
select bits, only the AND gate corresponding to this combina-
tion is enabled, allowing the desired input data to pass to the
output. This can easily be expanded to accommodate more
data by adding more select lines and data inputs. For every n
select lines there can be 2" data inputs, each of which require
one product term.

TABLE 3-1. FUNCTION TABLE FOR 4-TO-1 MULTIPLEXER

Inputs Output
S1 SO D3 D2 D1 DO Y
0 0 X X X 0 0
0 0 X X X 1 1
0 1 X X 0 X 0
0 1 X X 1 X 1
1 0 X 0 X X 0
1 0 X 1 X X 1
1 1 0 X X X 0
1 1 1 X X X 1

Three 4-to-1 multiplexers require twelve inputs, three outputs,
and two control select pins, for a total of seventeen input/output
pins. Each output needs four product terms. These require-
ments are satisfied by a single AmPAL18P8 device. The cor-
responding PLPL specification and the sum-of-products
equations generated by the compiler are shown in Figure 3-1.

Four 3-to-1 Multiplexers (AmPAL18P8)

Four 3-to-1 multiplexers require twelve inputs, four outputs,
and two control select pins, for a total of eighteen input/output
pins. Each output needs three product terms. These require-
ments are satisfied by a single AmPAL18P8 device. The cor-
responding PLPL specification and the sum-of-products
equations generated by the compiler are shown in Figure 3-2.

16-to-1 Multiplexer (AmPAL22V10)

The 16-to-1 multiplexer requires sixteen inputs, one output,
and four control select pins, for a total of twenty-one in-
put/output pins. These requirements are satisfied by a single
AmPAL22V10 device. The corresponding PLPL specifications
and the sum-of-products equations generated by the compiler
are shown in Figure 3-3.

3.2.2 DEMULTIPLEXER

A decoder with an enable input can function as a demultiplexer.
A demuitiplexer is a circuit that receives information on a single
line and transmits this information on one of 2" possible output
lines. The selection of a specific output line is controlled by the
bit values of n selection lines.

Dual 2-to-4 Demultiplexers (AmPAL16H8)

This design implements dual 2-to-4 demultiplexers on an Am-
PAL16H8. Each demultiplexer is individually enabled but
shares the same select input lines with the other (see Table 3-2
and 3-3). The corresponding PLPL specification and the sum-
of-products equations generated by the compiler are shown in
Figure 3-4.

TABLE 3-2. FUNCTION TABLE FOR
FIRST DEMULTIPLEXER

Inputs Outputs
Enable | Select
G1 Ct B A | Y1[0] | Y1[1] | Y1[2] | Y1[3]
H X X X H H H H
X L X X H H H H
L H L L L H H H
L H L H H L H H
L H H L H H L H
L H H H H H H L
TABLE 3-3. FUNCTION TABLE FOR
SECOND DEMULTIPLEXER
Inputs Outputs
Enable | Select
G2 c2 B A | Y2[0] | Y2[1] | Y2[2] | Y2[3]
H X X X H H H H
X H X X H H H H
L L L L L H H H
L L L H H L H H
L L H L H H L H
L L H H H H H L

3-3

v-€

DEVICE THREE_4_TO_1_MULTIPLXER (PAL18P8) TEST_VECTORS

PIN DAO = 1 DA1 =2 DA2=3 DA3 =4 IN DAO DA1 DA2 DA3 DBO DB1 DB2 DB3
DBO = 5 DB1=6 DB2=7 DB3 =8 DCO DC1 DC2 DC3 SELO SEL1 ;
pcoO =9 DC1 =11 DC2 =12 DC3 =13 ouT OUTA OUTB OUTC ;
OUTA = 14
ouTB = 15 BEGIN
uTC = 16 “DA[0:3] DB[0:3] DC[0:3] SELO SEL1 OUTA OUTB OUTCY
SELO = 17 1000 0111 10000 0 H L H;
SEL1 = 18 ; 0100 1011 01000 1 H L H;
: 0010 1101 0010 1 O H L H;
DEFINE 0001 1110 0001 1 1 W L H;
SO = /SELO * /SEL1 ; 0111 1000 01110 0 L H L;
s1 = /SELO * SEL1 ; 1011 0100 10110 1 L H L;
$2 = SELO * /SEL1 ; 1101 0010 11011 0 L H L;
$3 = SELO * SELT ; 1110 0001 11101 1 L H L;
END.
BEGIN
IF (SO) THEN BEGIN
OUTA = DAO ;
0oUTB = DBO ;
oUTC = DCO ;
END ;
IF (S1) THEN BEGIN
OUTA = DA1 ;
OUTB = DB1 ;
ouTC = DC1 ;
END ;
IF (S2) THEN BEGIN
OUTA = DA2 ;
OUTB = DB2 ;
ouUTC = DC2 ;
END ;
IF (S3) THEN BEGIN
OUTA = DA3 ;
OUTB = DB3 ;
ouTC = DC3 ;
END ;
END.

Figure 3-1. AmPAL18P8 PLPL Specification—Three 4-to-1 Multiplexers

DEVICE FOUR_3_TO_1_MULTIPLXER (PAL18P8)
n
FOUR 3:1 MULTIPLEXER
"
PIN DAO=1 DA1=2 DA2=3
DBO =4 DB1 =5 DB2=6
DCO=7 DC1=8 DC2=9
DDO = 11 DD1 = 12 DD2 = 13
OUTPUTA = 14 OUTPUTB = 15
OUTPUTC = 16 OUTPUTD = 17
SELECTO = 18 SELECT1 = 19 ;
BEGIN
IF (/SELECTO) THEN BEGIN
OUTPUTA = DAO ;
OUTPUTB = DBO ;
OUTPUTC = DCO ;
OUTPUTD = DDO ;
END ;
IF (SELECTO*/SELECT1) THEN BEGIN
OUTPUTA = DA1 ;
OUTPUTB = DB ;
OUTPUTC = DC1 ;
OUTPUTD = DD1 ;
END ;
IF (SELECTO*SELECT1) THEN BEGIN
OUTPUTA = DA2 ;
OUTPUTB = DB2 ;
OUTPUTC = DC2 ;
OUTPUTD = DD2 ;
END ;
END.

TEST_VECTORS

IN DAO DA1 DA2 DBO DB1 DB2 DCO DC1 DC2 DDO DD1 DD2

SELECTO SELECT1 ;

ouT OUTPUTA OUTPUTB OUTPUTC OUTPUTD ;

BEGIN

‘DD DDD
"AAA BBB
"Ww12 012
"

"

100 011
010 101
001 110
011 100
101 010
110 001
END.

- 2000 =
- o -0 -0
© - = 200

N o

DDD
DDD
012

011
101
110
100
010
001

Figure 3-2. AmPAL18P8 PLPL Specification—Four 3-to-1 Multiplexers

\

OUTPUT OUTPUT OUTPUT OUTPUT®

A

-~ r-rrcxx=x

x = =~ -

c

~ - xTxx

D

T T x rrror

w

9-€

DEVICE _16_TO_1_MULTIPLEXER (PAL22V10)

PIN

BEGIN

END.

D0 =1 D1 =2
D4 =5 D5 =6
D8 =9 D9 = 10
D12= 14 D13= 15

OUTPUT = 18
SELO = 19
SEL2 = 21

CASE (SELO, SEL1,

BEGIN
0) OUTPUT
1) OUTPUT
2) OUTPUT
3) OUTPUT
4) OUTPUT
5) OUTPUT
6) OUTPUT
7) OUTPUT
8) OUTPUT
9) OUTPUT
10) OUTPUT
11) OUTPUT
12) OUTPUT
13) OUTPUT
14) OUTPUT
15) OUTPUT

END ;-

D2 =
D6 =
D10=
D14=

SEL1

SEL3 =

SEL2,

= D0
= D1
= D2
=D3
= D4
= D5
= Dé
=07
=D8
= D9
= D10
=01
= D12
=D13
= D14
= D15

3
7
1"
16

SEL3)

S Se Se Se oSe S we o ss s owe s

TEST_VECTORS

D3 =4 IN

D7 =8

D11= 13 ouT

D15= 17 BEGIN
“DDD
" 12

-
o - O
- O o

o o o
o o o

o O oo
o O O o

o o
o o

o o
o o

o
o

- S e @ a w@d@ e dd E e e 000 00000000000 OO
- o
- o

- e e e e e e O

1
0
1
1
1
1
1
1
1
1
1
1
1
1
1

DO D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
SELO SEL1 SEL2 S$EL3 ;

OUTPUT ;
DDDDDDDD
34567891
0
00000000
00000000
00000000
10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001
00000000
00000000
00000000
00000000
00000000
11111111
117111111
117111111
01111111
10111111
11011111
117101111
117110111
11111011
11111101
11111110
11111111
11111111
11111111
Tt1T111111
11111111

-
~n

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1

- o

- 0 maaaaaaaa s M 000 20000000000 O0OO

Figure 3-3. AmPAL22V10 PLPL Specification—16-to-1 Multiplexer

0

=}
o

o o o
o O o

=]
o

o
O = = 2@ @ amaaa a9 2 0000000000000 O0CO0

o o
o o o

=]
o o

. 2 0O e a2 00 -0 0O

0

B Y — T S — Sy Y

- o

SELO SEL1 SEL2 SEL3 OUTPUT®

B Aa h A e e N 00000 OO O M e a2 aa 00000000

== w2 0000 == - 0000 = m A a 0000 = —aaa000O0

- 2 002 2 002 200200 —==200==200==00==200

-0 OO =200 -0 -0 =0 N0 =0 =20 2020 =20=20-0

rCr-rr-r-rFc~FCcCr-cfCcCCcCFcCCFCFFEFFPFEFXXTXTXTXXETITXTIXTXTXTXTXTIXXXOT

Ne N Ss N Sk Na SE SE o Se o Se o NE e oS S5 N N5 SE o Se o wE o Se o Se SE S we s Se Se S we Ss se ..

L€

DEVICE DUAL_2_TO_4_DEMULTIPLEXER (PAL18P8)
PIN A=2 B=1
61=3 62=4
=5 ¢c2=6
Y100:31 = 19:16
Y2[0:3]1 = 15:12 ;
BEGIN
IF (G1 + /C1) THEN Y1[0:3] = #8111 ;
IF (/61 * C1) THEN BEGIN

CASE (B,A)
BEGIN
#B800) BEGIN
Y1[01 =0 ;
Y1[1:31 = #8111 ;
END ;
#801) BEGIN
Yi(11 = 0 ;
Y110,2,31 = #8111
END ;
#810) BEGIN
Yi[21 = 0 ;
Y1[0,1,3] = #8111
END ;
#811) BEGIN
Y1[31 =0 ;
Y1[0:2] = #8111 ;
END ;
END ;

END ;
IF (G2 + C2) THEN Y2[0:3]1 = #81111 ;
IF (/G2 * /C2) THEN BEGIN

CASE (B,A)
BEGIN
#800) BEGIN
Y2[01 =0 ;
Y2[1:31 = #8111 ;
END ;
#801) BEGIN
¥Y2[11 =0 ;
Y2[0,2,31 = #8111
END ;

.

_ #810) BEGIN

Y2[21 =0 ;
Y210,1,3] = #8111 ;
END ;
#811) BEGIN
Y213} =0 ;
¥2[0:2} = #8111 ;
END ;
END ;
END ;
END.
TEST_VECTORS
iN B A G1 C1 G2 C2

out Y110:3] Y2[0:3]

"B A 61 C1 G2C2 Y1[0:3) Y2[0:3]

X X 1 X 1 X HHHH HHHH
00 01 0 0 LHHH LHHH
01 01 00 HLHH HLHH
10 01 [] HHLH HHLH
11 01 00 HHHL HHHL
X X X 0 X 1 HHHH HHHH
END.

Figure 3-4. AmPAL16H8 PLPL Specification—Dual 2-to-4 Multiplexers

D T

w

Gray Code to Decimal Demultiplexer

TABLE 3-4. FUNCTION TABLE FOR GRAY-CODE-

(AmPAL22V10) TO-DECIMAL DEMULTIPLEXER
This design implements an excess-3-gray-to-decimal decoder Excess-3-Gray-Input Decimal Outputs |
(see Table 3-4). It is functionally equivalent to "44A and 'L44 No.| D | ¢ | B [A [yolytly2]ys]yalyslys]ylyslys|
MSI circuits and can be implemented in a single AmPAL22V10 0 L L H L [LIHIHIHIHIHIH][HIH]IA
device. The corresponding PLF'!. spgcification and the sum-of- 1 L H H L [HILTHTRTRTRTATR TR TR
products equations are shown in Figure 3-5. > L H r n R RIR R E R
3| L H L | H|HH/H|L|H|H[H[H|H|H
4 | L H L L [HIHH[H|L|H|H|H[H[H
5 | H|H L L |[HIH{H|H|H|L|H|H|H}H
6 | H|H L | H|HIH|H|H|H|H[L|H|H|H
7| H|H H | H [HIHHIH[H|H|H|L|H|H
8 | H|H H L |HIHH|H|H|H|H|H|L|H
9 | H L H L |HIHHHIH|H|H[H|H|L
| H | H H | H |[HHHHH|H|H|H|H|H
N | H L H | H |HHHH{H|H|H|H|H|H
VI|IH L L |H|H[H|HH|H[H|H|H|H|H
A|H L L L |HHHIH|H|H|H|H[H|H
L|L L L L |[HIHH|H|H|H|H|H[H|H
| L L L |H|HHIHH|HIH|H|H|H|H
D|L L H | H [HHHHH/H|H|H|H|H
DEVICE GRAY_CODE_TO_10_DEMULTIPLXER (PAL22V10) TEST_VECTORS
IN DCBA;

PIN A=4 B=3 C=2 D=1
Y[0:9]1 = 14:23 ;

_BEGIN

CASE (D,C,B,A)

BEGIN
#80010) Y[0:91 = #80111111111 ;
#80110) Y[0:91 = #81011111111 ;
#80111) Y[0:9] = #81101111111 ;
#80101) Y[0:91 = #81110111111 ;
#80100) Y[0:91 = #81111011111 ;
#81100) Y[0:91 = #81111101111 ;
#81101) Y[0:91 = #81111110111 ;
#81111) Y[0:9] = #81111111011 ;
#81110) Y[0:9] = #81111111101 ;
#81010) Y[0:91 = #81111111110 ;
#80000) Y[0:91 = #81111111111 ;
#80001) Y[0:91 = #81111111111 ;
#80011) Y[0:9] = #81111111111 ;
#81000) Y[0:91 = #81111111111 ;
#81001) Y[0:91 = #81111111111 ;
#81011) Y[0:9]1 = #81111111111 ;

END ; :

END.

ot Y[0:9] ;

BEGIN
"DCBA
0010
0110
11
01
00
00
01
11
110
1010
000X
100X
X011
END.

- - e 2000
- -

YO Y1

T T T T T XT T XT XT XT XT X r

TrTXrxxT T T T XTXT T X

Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9®

T XT T EXT T T T T T T MM X
T rxT T T T T T T rMC-IT T

T T T XT T T T FXT X T

T T T XT T T T FXT T X T

Figure 3-5. AmPAL22V10 PLPL Specification—Gray Code to Decimal Demultiplexer

T T T T T T MCFT T ETXTT

T T TrTXT T rFrTxTT T

H

T T T T MFTT T

T T T FrT T T T T

ae %o we e wE we W N %5 we S W we

3-8

3.2.3 ENCODERS/DECODERS

A binary code of r bits is capable of representing up to 2"
distinct elements of coded information. A decoder is a com-
binatorial circuit that converts binary information from n input
lines to a maximum of 2" unique output lines. If the n-bit
decoded information has unused or don't-care combinations,
the decoder output will have less than 2" outputs.

An encoder is a digital function that produces a reverse opera-
tion from that of a decoder. An encoder has 2" (or less) input
lines and n output lines. The output lines generate the binary
code for the 2" variables.

A priority encoder establishes an input priority to ensure that
only the highest-priority input line is encoded.

16-to-4 Priority Encoder (AmPAL22V10)

The 16-to-4 priority encoder requires sixteen inputs and four
outputs, for a total of twenty input/output pins. Each output
needs eight product terms. These requirements are satisfied
by a single AmPAL22V10 device. The function table (Table
3-5), PLPL specification and sum-of-products equations
generated by the compiler are shown in Figure 3-6.

TABLE 3-5. FUNCTION TABLE FOR 16-to-4 PRIORITY ENCODER

Inputs Outputs
10 Al 12 13 14 15 16 17 18 19 | HO | 11 | H2 | 13 | 14 | 115 | 103 | 102 | 101 | 100
X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H H
X X X X X X X X X X X X X X X 0 L L L L
X X X X X X | x X X X X X X X 0 1 L L L H
X X X X X X X X X X X X X 0 1 1 L L H L
X X X X X X X X X | X X X 0 1 1 1 L L H H
X X X X X X X X X X X 0 1 1 1 1 L H L L
X X X X X X X X X X 0 1 1 1 1 1 L H L H
X X X X X X X X X 0 1 1 1 1 1 1 L H H L
X X X X X X X X 0 1 1 1 1 1 1 1 L H H H
X X X X X X X 0 1 1 1 1 1 1 1 1 H H L L
X X X X X X 0 1 1 1 1 1 1 1 1 1 H L L H
X X X X X 0 1 1 1 1 1 1 1 1 1 1 H L H L
X X X X 0 1 1 1 1 1 1 1 1 1 1 1 H L H H
X X X 0 1 1 1 1 1 1 1 1 1 1 1 1 H H L L
X X 0 1 1 1 1 1 1 1 1 1 1 1 1 1 H H L H
X 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 H H H L

3-9

oL-€

DEVICE PRIORITY_ENCODER_16_TO_& (PAL22V10)

WENCODE 16 DATA LINES DECIMAL INTO 4 LINE BINARY"

PIN

BEGIN
IF

IF
IF

—
-

IF
IF
IF
IF
IF
IF
IF
IF

I

-

END.

M=1 12=2 13=3 14=4 1I5=5
16=6 17=7 18=8 19=9 110=10
Mm=n 112=13 NM3=14 1% =15
115 = 16 10 =23
/0[3:01 = 17:20 ;

(I1*12%I3*[4*IS*16* I 7*I8*I9*110* 1 11*112*113*114*115) THEN
0[3:01 = #80000 ;
(/115) THEN 0[3:0]1 = 15 ;
(115*%/114) THEN 0(3:0]1 = 14 ;
(115*114*/113) THEN 0[3:0] = 13 ;
(I15*114*113*/112) THEN 0(3:0] = 12 ;
(I15*114*113*112*/111) THEN 0[3:0) = 11 ;
(I15*114*113*112*111*/110) THEN 0[3:0]1 = 10 ;
CI15*114*113*112*111*110*/19) THEN 0[3:0] = 9 ;
(115*114*113*112*111*110*19*/18) THEN 0[3:0] = 8 ;
CI115*114*113*112*111*[10*19*18*/17) THEN 0[3:0] = 7 ;
(T15*114*113*112*111*[10*19*I18*17*/16) THEN 0[3:0] = 6 ;
CI1S*T14*T13*112* 1 11* [10%19*I8*I7*16*/15) THEN
0[3:01 =5 ;
CIIS*T14*113*112* 1 11*[10*19*I8* I 7*16*15*/14) THEN
0[3:0] = 4 ;
(I15*114* 1 13* 1 12* 1 11* [10*19*I8* I 7*16*I5%14*/13) THEN
0[3:01 = 3 ;
CI15*T14*113*112% 1 11*110*19* I8 I7*16*I5*14*13*/12) THEN
0[3:0] = 2 ;

C(IIS*T14*T13* 1121 11* 1 10%IQ*I8* I7T*16*I5*14*13*12*/11) THEN

0[3:01 = 1 ;

TEST_VECTORS
IN 10 11 12 13 14
out /0[3:01 ;

BEGIN
"rTIrrrrrrrtgl
"01234567891

I5 16 17 18 19 110 111 112 113 114 115 ;

rrrit oooo"
11111 3210

" 012345 "
" "
X111111111111111 HHHK
XXXXXXXXXXXXXXXO0 LLLg;
XXXXXXXXXXXXXXO01 LLLH
XXXXXXXXXXXXX011 LLHL;
XXXXXXXXXXXX0111 LLHBK
XXXXXXXXXXX01111 LHLL;
XXXXXXXXXX011111 LHLBK
XXXXXXXXX0111111 LHHL;
XXXXXXXX01111111 LHHK
XXXXXXX011111111 HLLL;
XXXXXX0111111111 HLLHK;
XXXXX01111111111 HLKWL
XXXX011111111111 HLHK;
XXX0111111111111 HHLL
XX01111111111111 HHLK
X011111111111111 HHHL
END.

Figure 3-6. AmPAL22V10 PLPL Specification—16-to-4 Encoder

GCR (4B-5B)
Encoder/Decoder

One of the more common logic functions performed on serial
data is the data encode/decode function. Usually it is desir-
able to map (encode) the logical bit stream to a physical bit
stream, adjusting for the peculiarities of the particular trans-
mission or storage media.

Noise, bandwidth, and reliability considerations may mean
that a different data format would be desirable when data is
sent along to or stored on a given media. For example, group-
coded recording (GCR) formats take a given number of data
bits and encode them with a larger number of bits. A 4B-5B

GCR code would take 4 data bits and encode them into 16
states with 5 new bits. A particular 4B-5B code is shown in Table
3-6.

This mapping allows at most two zeros to occur’in succes-
sion. Also note that data combinations with more than one
zero at the beginning and end of the word are excluded. This
is necessary to insure that when data words are serialized, no
more than two zeros occur in succession at any point in the
bit stream. Finally, the data combination 11111 is reserved as
a synchronization mark. In tape systems, this results in in-
creased bit density and eases clock synchronization.

TABLE 3-6. 4B-5B CODE

4B-5B Code
4-Bit Data 5-Bit Data
0000 11001
0001 11011
0010 10010
0011 10011
0100 11101
0101 10101
0110 10110
0111 10111
1000 11010
1001 01001
1010 01010
1011 01011
1100 11110
1101 01101
1110 01110
1111 01111

03862A-93

3-11

The system diagram in Figure 3-7 shows how the GCR En-
coder/Decoder (GCR E/D) interfaces to a tape drive and tape
controller. Parallel input data is given to the GCR E/D, con-
verted to the 5-bit format, serialized, and written to the tape.
On a read, the serial data from the tape is parallelized, con-
verted back to the 4-bit format and output to the output data bus.
Additionally, during a read, two status signals are developed.
The first signal, INV, indicates the presence of an invalid input,
ie., too many zeros in succession. The second status signal, H,
indicates the detection of the synchronization mark (11111).

The operation modes for the GCR E/D are shown in the Data-
Flow Diagrams of Figure 3-8. The control signal definition and
operation functions are indicated for each operation mode.
In particular, the data flow between each bit of the output
register is indicated schematically.

The first mode of operation of the GCR E/D is the HOLD
mode. When ENABLE is HIGH, all data operations on the out-
put register are disabled, independent of the two mode con-
trols, M and My. The output data is simply fed-back to the
register inputs. Thus the register content is retained after the
clock transition.

When the ENABLE input is LOW, the operations indicated by
the M1 and Mo mode bits are executed on the clock transition.
When M, and Mg are both LOW, the SERIAL SHIFT IN mode is
selected. In this mode the output register is configured as a
serial shift register. The serial input is consecutively shifted
into the register until all 5 bits from the tape have been stored,
MSB at Y3 and LSB at SERIAL OUT.

The CONVERT SERIAL INPUT AND LOAD operation is se-
lected when ENABLE is LOW, M1 is HIGH and Mg is LOW.
After the 5 bits of data have been serialized by the SERIAL
SHIFT IN instruction, the 5B code must be converted to a 4B
code. This is accomplished by taking the outputs of the 5
register bits and converting them to 4 bits with combinatorial
logic. On the clock transition, the result is loaded into the Y
register. On the same clock transition that loads the con-
verted data into the Y register, the serial input is loaded into
the serial output register. Because the serial data is being
read continuously, one data bit per clock transition, the con-
version must be done without missing a serial data bit.

The CONVERT PARALLEL INPUT AND LOAD operation is
selected when ENABLE is LOW, M, is HIGH and Mg is HIGH.
This mode takes the 4 input data bits and converts them to
the 5 bit representation. The result is loaded into the output
register on the clock transition. The LSB of the 5B representa-
tion is loaded into the Y3 bit of the output register and the
MSB is loaded into the serial output bit. This configuration, in
conjunction with the next instruction, allows the serial data
to be written to the tape drive one bit per clock transition.

The final operation, SERIAL SHIFT OUT, is selected when
ENABLE is LOW, M4 is LOW and Mg is HIGH. After the CON-
VERT PARALLEL INPUT AND LOAD operation is executed,
the SERIAL SHIFT OUT operation outputs the converted data
to the tape drive. A series of one convert operation followed
by 4 shift operations will transfer a sequence of 5-bits to the
tape drive, one bit per clock cycle.

A A\
(INPUT DATA BUS)
N ! ! Y
_ SERIALIN
TP [€
DRIVE SERIAL-OUT
r'y
CONTROL STATUS
v DATA
MODE . | ENCODER/DECODER
CONTROLLER }g=—INY
N o H
CLK l_ d
A u
({ OUTPUT DATA BUS
Y
03862A-94

Figure 3-7. Typical Tape Storage System

3-12

ENABLE My Mo OPERATION
1 X X HOLD
0 0 0 SERIAL
SHIFT IN
0 1 0 CONVERT
SERIAL INPUT
AND LOAD
0 1 1 CONVERT
PARALLEL INPUT
AND LOAD
0 0 1 SERIAL
SHIFT OUT

DATA-FLOW DIAGRAM
ki v v v
P> > P>
v v v v v
Y3 Y2 Y1 Yo SERIAL
OUTPUT
SERIAL
INPUT
v v v v v
> P> >
1 v v y v
Y3 Y2 Y1 Yo SERIAL
OuUTPUT
CONVERT 5B TO 4B SERIAL
INPUT
[A3 K] A2 12 At 11 Ao |
[Y { 4 l 7'y l 7'y I 1;
F > >
v v v v v
Y3 Y2 Y1 Yo SERIAL
OUTPUT
S S S
CONVERT 4B TO 5B
Bo B4 B2 B3 Bs

! v v

>
Y3 Y2 Y1 Yo SERIAL
OUTPUT
l v v v
>
v JV v v v
Y3 Y2 Y1 Yo SERIAL
OUTPUT
Figure 3-8. GCR E/D Mode Definitions 03862A.95

3-13

Design Approach (AmPAL16R6)

The PAL implementation of the GCR Encoder/Decoder takes
advantage of the multiplexer-like structure of the AND-OR ar-
ray. Each valid combination of ENABLE, M and Mg selects a
different set of AND terms. In some cases, only one term is
selected (in data steering operations for example). In other
cases, multiple AND terms are selected to implement acom-
binatorial logic function (the 5B-to-4B conversion for example).
This concept, using the control inputs to enable one or more
AND terms, allows the direct implementation of the PAL design
from the mode Data-Flow Diagrams (with a little Karnaugh map
help). The K-Maps for the 5B-to-4B conversion logic and the
4B-to-5B conversion logic for the Y3 output are shown in Figures
3-9 and 3-10. Given these maps and the flow diagrams in Figure
3-8, the Boolean equations can be constructed for the Y3 output.
The resulting equation, in PALASM format, is shown in Figure
3-11.

It is important to note that the equation in Figure 3-11 is written
for the inverse of the Y3 output (Y3). This is necessary if true
data is desired on the output pin because of the inverting
nature of the output buffer on the PAL. The inverted form of
the equation is easily implemented by selecting the negative
version of the data (Y—sin the hold operation for example) or by
grouping zeros in a combinatorial logic function (see Figures
3-9 and 3-10). Notice that the multiplexer strategy works equally
well for active-LOW or active-HIGH logic functions.

Once the transformation of the Data-Flow Diagrams and
K-Maps to Boolean equations is understood, the interested
reader should be able to construct K-Maps for the other Y out-
puts and, in conjunction with the Data-Flow Diagrams of

Y1Yo Y1Yo
YaY2 00 01 11 10 Y3Y2 000111 10
ool X | X} X|X ool XX |X|X
01 X |1 11X o1} 1]1 1 1
11 xfj1]1]x 11jfojofx]o
vl o»r roletototo
Sout =0 Sour=1
A3 =Y3*Y2 +Y3*Sout 03862A-96

Figure 3-9. 5B-to-4B Conversion K-Map for Y, Output

Y3:=EN+*Y3
EN*Mq » Mo * V2
EN * M1 * Mo * Sout
EN* M * Mo * Y3 * Sout
EN*Mq*Mo*V3+V2
EN* M1 * Mo * D3 * Do
EN* M » Mo * D1+ Do

Figure 3-8, write the PALASM equations for the resulting logic
functions. This exercise will help the reader to fully appreci-
ate the advantages of the Data-Flow Diagram/Multiplexer
method of PAL design. Consult the full PALASM listing (Figures
3-15 and 3-16) for the complete solutions.

It is important to note that the diagrams and equations in Fig-
ures 3-12, 3-13, and 3-14 specify the true output for invalid
signal (INV), rather than INV which appears in the system dia-
gram of Figure 3-7. This is necessary if the correct data is
desired on the output pin and is due to the inverting nature of the
output buffer on the PAL device.

Once the data portion of the Encoder/Decoder is completed,
only the two status outputs, H and INV, need to be imple-
mented. H indicates the synchronization mark (11111) has
been detected and is simply an AND of Y3 through Soyr. INV
indicates an invalid serial input was received.

The INV signal is registered and held until the clear INV flag
input (CIF) is brought LOW, deactivating the flag. Only during
a 5B-4B conversion operation (M =HIGH, Mg = LOW) is the
INV flag activated. Figures 3-12 and 3-13 show the INV flag
mode definitions and the intermediate INVALID logic equation
respectively.

In this case, an active-LOW output is desired so the active-
HIGH form of the INV signal is developed internally. Ones
are grouped in the intermediate combinatorial logic function
(INVALID) and the true version of the data is selected. The
complete PALASM equation for INV is given in Figure 3-14.

D1Do

D3D2 00 01 11 10
ool 1]1]1 [0
o1|1[1]1]o
1‘1‘"ﬂ ERIE
10loJf1]1 @_

Bo=D3*Do +D1*Do 03862A-97

Figure 3-10. 4B-to-5B Conversion K-Map for Y; Output

;HOLD

;SERIAL SHIFT IN
;SERIAL SHIFT OUT
;CONVERT SERIAL
sINPUT AND LOAD
;CONVERT PARALLEL
;INPUT AND LOAD

+ 4+ + 4+ o+

03862A-98

Figure 3-11. PALASM Equation for Y,

3-14

CIF M1 Mo OPERATION DATA-FLOW DIAGRAM

INV:=

0 X X CLEAR INV
FLAG

wgn

i

—

INV
0 0 HOLD INV
0 1 FLAG .
1 1 -
v
INV
1 0 SET INV Y3 Y2 Y1 Yo Sourt
FLAG

INVALID

!

INV

Figure 3-12. INV Flag Mode Definitions 03862A-99

Y1Yo Y1Yo
Ya¥2\ 00 01 11 10 Ya¥2\ 00 01 11 10
00| 1

-
-

\}1111)
1 o1] o

11)\1 11 0/
1of@lf bl 10|®
\.‘____.//

Soutr =0 Sour =1

01}/1

olofe

olele
=

oleo]e

ol@| o
=)

INVALID= Y3+ V2
Y2+ Y1+ Yo +
Yo « Sout +
Y3 * Y2+ Y1+ Yo~ Sour 03862A-100

+

Figure 3-13. PALASM Equation for INVALID

[e]

1F « INV ;HOLD INV FLAG
F«Mi«Mo*Vas V2 + ;SETINV FLAG IF INVALID IS TRUE

1F » M1 » Mo * Yo * Sout +
1F + M1 = Mo * V2 « Y1+ Yo +

1F + M1 = Mo * Y3 * Y2+ Y1 * Yo * Sout

|

go

2

|

[e]

03862A-101
Figure 3-14. PALASM Equation for INV

Y3 Y2 Y1 YO SOUT /INV /H

TABLE 3-7. FUNCTION TABLE FOR GCR (4B-5B) ENCODER/DECODER

CK /E /EN M1 MO D3 D2 D1 DO SIN /CIF

FUNCTION TABLE

< [= ofi=cfic=foniieafih] == ool ol ol o B Sl e e ol e sl el o o o e ol e ol e o e e e ol e ol e ofe o e el e nff e o= o+ n = n e n e o]
a
ge
o
N 4 [B ==~ ~ < o« =] == WRLHLHLHLHLHLHLHLHLLLLLLLHLLLLLLL
=0
~N >4 ol mmm f==1 mIHHHLHLLHHLHLHLLHHHLHLHLHHHLHLHL
(=4
N > ==Jit ~Jt o < o~ =] [RMHLLLLLLHHHLHLHLLHLHLHLLHHHHHHHL
m
N ~ joofiie=ia = o< =] =} I.-.%LHLHLHLLHLHHHHHHLLLHLHLHHLHHHHH
m
e :
B L E
[~Xe] -
5, B2
A .
z .
- [eSEel N
B ¢ a
Wuux ..FLuX MHLLLLL HH mTLHLHLHLHLHLHLHLHLHLHLHLHLHLHLHL
] - wa = m <
ZVA “X LHLLLLL m"n SMHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
[) g
] = = e
o= =] -3 [7 Jie Jin R (. U, U | 17,] mNLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

msadd D) MmO DVDVDVV O nealQ taen caDLODLDOLOLOLOLDLLOLOOOLOOLVDLDOLOLDOLOVDODLDLDLODOOLDOODOOLODOOOO

3-16

TABLE 3-7. FUNCTION TABLE FOR GCR (4B-5B) ENCODER/DECODER (Continued)

’

; SERIAL SHIFT IN TEST

C L HHHHHHHKX H HHHHL H H
C L HLHIXIXZXXX H L HHHH H H
C L HLHIXIXZXZXX H H L HHH H H
C L HLHIXIXIXIXHZX H H HLHH H H
C L HLHIXIXZXIXZX H HHHLH H H
C L HLHIXIXZXZXX H HHHHL H H
C LHLHZIXIXIXIXX H L HHHH H H
DESCRIPTION

THIS PART IMPLEMENTS A 4B 5B ENCODER/DECODER FOR TAPE DRIVES. ON

A WRITE IT ENCODES THE 4B INPUT DATA TO THE 5B FORMAT AND SERIALIZES
THE DATA. ON A READ THE 5B DATA IS SHIFTED IN, RECONVERTED TO THE
4B FORMAT, AND OUTPUT TO THE DATA BUS.

3-17

PAL16R6 PAL DESIGN SPECIFICATION
PAT003 WARREN K. MILLER 2/15/82
4B-5B ENCODER/DECODER

ADVANCED MICRO DEVICES

CKk M1 MO D3 D2 D1 DO /EN /CIF GND

/E SIN /INV YO Y1 Y2 Y3 SOUT /H VCC

/SOUT := EN%*/SOUT s HOLD
JEN%/M1%/MO%*/SIN ;SERIAL SHIFT IN
JEN*/M1%* MO*/YO $SERIAL SHIFT OUT
JEN#* M1%/MO%*/SIN ;CONVERT SERIAL INPUT AND LOAD
;gg: gi: ﬁg: gg: gé sCONVERT PARALLEL INPUT AND LOAD

+ 4+ + +

/Y0 := EN*/YO
/EN#*/M1% /MO* /SOUT
JEN*/M1%* MO*/Y1
/EN* M1*/MO%/SOUT
JEN® M1¥/MO* Y3% Y2#/Y0
/EN* M1* MO*/D3%* D1
/EN# M1¥ MO%*/D3* D2%* DO

+ ++ +F+

/Y1 := EN®*/Y1
/EN*/M1%/MO* /YO
JEN#*/M1% MO*/Y2
/EN* M1*/MO%*/Y0
/EN¥ M1¥*/MO%* Y3#* Y2
JEN* M1% MO®*/D2

+ 4+ + ++

/Y2 = EN®/Y2
JEN*/M1%/MO%*/Y1
/EN®/M1* MO*/Y3
JEN#* M1%*/MO*/Y1
/EN* M1%* MO*/D3%*/D1%/DO
/EN%* M1* MO*/D3%* D2#*/D1
/EN* M1* MO* D3*/D1* DO

/Y3 := EN*/Y3
/EN*/M1#/MO%* /Y2
/EN*/M1% MO%*/SOUT
/EN%* M1¥*/MO* Y3% SOUT
JEN® M1%/MO% Y3#/Y2
JEN* M1% MO% D3*/DO
JEN* M1#* MO* D1*/DO

+4 4+ o+

+ 4+ o+

INV := /CIF* INV + sHOLD INV FLAG
/CIF#* M1%/MO*/Y3%*/Y2 + sSET INV FLAG IF INVALID TRUE
/CIF* M1¥/MO%*/Y2%/Y1%/Y0 + :
/CIF% M1%/MO*/YO%/SOUT +
/CIF* M1¥*/MO* Y3* Y2* Y1# YO* SOUT

H = Y3% Y2% Y1¥* YO* SOUT

Figure 3-15. PALASM Listing (pg. 1 of 3)

3-18

PAL16R6 PAL DESIGN SPECIFICATION
PAT003 WARREN K. MILLER 2/15/82
4B-5B ENCODER/DECODER

ADVANCED MICRO DEVICES

*D9724

*FO%

L0000 1111 1111 1111 1111 1111 1111 1111 1111
L0032 1111 1101 1101 1101 1101 1101 1111 1111
L0256 1111 1110 1111 1111 1111 1111 1011 1111
L0288 1011 1011 1111 1111 1111 1111 0111 1110
L0320 1011 0111 1111 1111 1111 1110 011l 1111
L0352 0111 1011 1111 1111 1111 1111 0111 1110
L0384 0111 0111 0111 1111 0111 1111 0111 1111
10416 0111 0111 0111 1111 1111 0111 0111 1111
LO51Zz 1111 1111 1110 1111 1111 1111 1011 1111
L0544 1011 1011 1111 1110 1111 1111 0111 1111
L0576 1011 0110 1111 1111 1111 1111 0111 1111
L0608 0111 1001 1101 1111 1111 1111 0111 1111
L0640 0111 1011 1101 1110 1111 1111 0111 1111
L0672 0111 0111 0111 1111 1111 1011 0111 1111
L0704 0111 0111 1111 1111 0111 1011 0111 1111
L0768 1111 1111 1111 1110 1111 1111 1011 1111
L0800 1011 1011 1111 1111 1110 1111 0111 1111
10832 1011 0111 1110 1111 1111 1111 0111 1111
L0864 0111 1011 1111 1111 1110 1111 0111 1111
10896 0111 0111 1011 1111 1011 1011 0111 1111
L0928 0111 0111 1011 0111 1011 1111 0111 1111
L0960 0111 0111 0111 1111 1011 0111 0111 1111
L1024 1111 1111 1111 1111 1110 1111 1011 1111
L1056 1011 1011 1111 1111 1111 1110 0111 1111
L1088 1011 0111 1111 1110 1111 1111 0111 1111
L1120 0111 1011 1111 1111 1111 1110 0111 1111
L1152 0111 1011 1101.1101 1111 1111 0111 1111
L1184 0111 0111 1111 1011 1111 1111 0111 1111
11280 1111 1111 1111 1111 1111 1110 1011 1111
L1312 1011 1010 1111 1111 1111 1111 0111 1111
L1344 1011 0111 1111 1111 1110 1111 0111 1111
L1376 0111 1010 1111 1111 1111 1111 0111 1111
L1408 0111 1011 1101 1101 1111 1110 0111 1111
L1440 0111 0111 1011 1111 0111 1111 0111 1111
L1472 0111 0111 1011 0111 1111 0111 0111 1111
L1536 1111 1111 1111 1111 1111 1111 1110 0111
L1568 0111 1011 1110 1110 1111 1111 1111 0111
L1600 0111 1011 1111 1110 1110 1110 1111 0111
L1632 0111 1010 1111 1111 1111 1110 1111 0111
L1664 0111 1001 1101 1101 1101 1101 1111 0111
C8E23#

V0001 XXXXXXXXX01XZZZZZZX1
V0002 CXXXXXXXOOOXHXXXXXX1
V0003 C1111111100XHHHHHLH1
V0004 COOXXXX11001HLHHHHH1
V0005 COOXXXX11001HHLHHHH1
V0006 COOXXXX11001HHHLHHH1
V0007 COOXXXX11001HHHHLHH1
V0008 COOXXXX11001HHHHHHL1

s ook ok ook dk ook ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk dk ok k K Xk ok

% ok %k Kk ok ok ok Xk

Figure 3-15. PALASM Listing (pg. 2 of 3)

3-19

V0009
V0010
Voo11
V0012
Vo013
V0014
V0015
V0016
Vo017
V0018
V0019
V0020
V0021
V0022
V0023
V0024
V0025
V0026
V0027
V0028
V0029
V0030
V0031
V0032
V0033
V0034
V0035
V0036
V0037
V0038
V0039
V0040
V0041
V0042
V0043
V0044
V0045
V0046
V0047
CA76

C1100001100XHHLLHHH1
C10XXXX11000HHHLLLH1
C1100011100XHHLHHHH1
C10XXXX11000HHLLLLH1
C1100101100XHLLHLHH1
C10XXXX11000HHLLHLH1
C1100111100XHLLHHHH1
C10XXXX11000HLLLLLH1
C1101001100XHHHLHHH1
C10XXXX11000HHHHLLH1
C1101011100XHLHLHHH1
C10XXXX11000HHLHLLH1
C1101101100XHLHHLHH]
C10XXXX11000HHLHHLH1
C1101111100XHLHHHHH1
C10XXXX11000HLLHLLH1
C1110001100XHHLHLHH1
C10XXXX11000HHHLHLH1
C1110011100XHHLLHLH1
C10XXXX11000HLHLLLH1
C1110101100XHHLHLLH1
C10XXXX11000HLHLHLH1
C1110111100XHHLHHLH1
C10XXXX11000HLLLHLH1
C1111001100XHHHHLHH1
C10XXXX11000HHHHHLH1
C1111011100XHBHLHLH1
C10XXXX11000HLHHLLH1
C1111101100XHHHHLLH1
C10XXXX11000HLHHHLH1
C1111111100XHHHHHLH1
C10XXXX11000HLLHHLH1
C1111111100XHHHHHLH1
CO1XXXX1100XHHHHLHH1
CO1XXXX1100XHHHLHHH1
CO1XXXX1100XHHLHHHH1
CO1XXXX1100XHLHHHHH1
CO1XXXX1100XHHHHHLH1
CO1XXXX1100XHHHHLHH1

d sk sk ok ook sk %k ok sk ok ok ok sk %k ok ok %k ok ok ok %k sk ok Kk dk 3k ok ok %k sk %k sk ok ok %k ok %k ok %k

Figure 3-15. PALASM Listing (pg. 3 of 3)

3-20

Columns: Inputs (0-31)
Rows: Product Terms (0-63)
ck—4>
0123 4567 89101 12 13 1415 16 17 18 19 20212223 24 25 26 27 28 2930 31
0 ™)
1
2
: H
5 X
6
7 - - X
M1—-L§ [N
8
9
10
" D Q Sout
17
i X g
oD q——J‘
16
17
18
;; D Q ‘_= L"—Ya
2 _
Z % - Q
0sPE <1
24
25
%
" D Q Y2
2 -
» = @
N
D2-P¥ (1—4—_]
| N
32
33
34
o D Q Y4
ar
. —~
39 E3 »—1 o
o-P¥ 4—4
40
@
2
. D Q Yo
a5
' - a
a7 %
oo 1:1———]
48
49
s ——
s D Q INV
53
54 X - 6
55 X
EN-DE ﬂ__il
56)
57
58
“ Z SIN
81
62
63
cr e . —<}-E
01223 4567 8 91011 12 131415 1617 18 19 20212223 24 25 26 27 2829 30 31
—*—- =Fuseintact —{X— =All fuses intact + = Fuse blown 03862A-102
Figure 3-16. Logic Diagram for GCR Encodes/Decodes Using AmPAL16R6

3.2.4 COMPARATORS

The comparison of two numbers is an operation that
determines if one number is equal to the other number.

6-Bit Comparator (AmPAL18P8)

The 6-bit comparator establishes when two 6-bit data strings
(A0O-A5 and B0-B5) are equivalent {NE = L). Because the
maximum number of product terms for each output pin is eight,
we use one additional output pin (UPNE) for the comparison of
the three most significant bits (UPNE = L if the upper three bits
are equivalent). It requires twelve inputs and two outputs, for a
total of sixteen input/output pins. These requirements are

satisfied by a single AmPAL18P8 device. The corresponding
PLPL specification, and the sum-of-products equations
generated by the compiler are shown in Figure 3-17.

Octal Comparator (AmPAL22V10)

The octal comparator establishes when two 8-bit data strings
(AO-A7 and B0-B7) are equivalent (NE = L). It requires sixteen
inputs, and one output pin. The single output needs sixteen
product terms. These requirements are satisfied by one single
AmPAL22V10. The corresponding PLPL specification and
sum-of-products equations generated by the compiler are
shown in Figure 3-18.

3-22

DEVICE SIX_BIT_MAGNITUDE_COMPARATORS (PAL18P8)

PIN AS=1 Ab=2 A3=3 A2=4 A1 =5 A0
BS=7 B4=8 B3=9 B2=11 B1 =12 B0
UPNE = 14 "THE UPPER THREE BITS NOT EQUAL"

NE = 15 ;

n
o

13

BEGIN

UPNE = A5*/B5 + /A5*B5
A4* /B4 + [A4*B4

A3*/B3 + /A3*B3;

+ +

NE

UPNE

A2*/B2 + /A2*B2
A1*/B1 + /A1*B1
AO*/BO + /AO*BO ;

+ + +

END.

TEST_VECTORS
IN A5 A4 A3 A2 A1 AO B5 B4 B3 B2 B1 BO ;
ouT UPNE NE ;

BEGIN
"AAAAAA B
"543

B "
UPNE NE“

N
-
wi
»H ©
W @
N @
- W

0O O = =2 00 000000000 O =
0O = 0 -2 00000000000 =0
- 0O = =2 00000000 O0OO0O -0 0
O - O -2 000000000 -0 0O0
00 = =2 00000000 -0 0 0 O
- - 0 -2 0000000 -000O0O0
OO0 = =2 000000 -0 000 O0OOoO
O - 0 -2 00000 ~00000O0O0C
-0 - -, 0000 -0 00000 OoOOoO
0O - 0 2000 >~ 00000O0OOCOO
0O 0 = =200 -~ 00000 O0O0O0COO
- -0 =20 - 00000000 00O o
rrrrr~~--r"r"©"TNTS>x>rrrrCr-r x> xTTx
rrcTr-reCrr->ToXOXDTX>TXXXTTIT T XT XT XT X
~

END.

Figure 3-17. AmPAL18P8 PLPL Specification—6-Bit Comparator

3-23

DEVICE OCTAL_COMPARATOR (PAL22V10)

PIN A7 =1 A6=2 A5=3 Ae=4
A3=5 A2=6 A1=7 A0O=8
B7 =9 B6=10 B> =11 B4 =13

B3 =14 B2=15 Bl =16 BO = 17
NE = 18;
BEGIN
NE = A7*/B7 + /AT*B7

+ A6*/B6 + /A6*B6

+ A5*/B5 + /AS*BS

+ AG*/B4 + [A4*B4

+ A3*/B3 + /A3*B3

+ A2*/B2 + [A2*B2

+ A1*/B1 + /A1*B1

+ AO*/BO + /AO*BO ;
END.
TEST_VECTORS
IN A7 A6 A5 A4 A3 A2 A1 AO B7 B6 BS B4 B3 B2 B1 BO;
out NE;
BEGIN
"AAAAAAAA BBBBBBBB N
"76543210 76543210 E"
10000000 00000000 H;
01000000 00000000 H;
00100000 00000000 H;
00010000 00000000 H;
00001000 00000000 H;
00000100 00000000 H;
00000010 00000000 H;
00000001 00000000 H;
00000000 10000000 H;
00000000 01000000 H;
00000000 00100000 H;
00000000 00010000 H;
00000000 00001000 H;
00000000 00000100 H;
00000000 00000010 H;
00000000 00000001 H;
00000000 00000000 L;
11111111 11111111 L;
101010610 10101010 L;
010106101 01010101 L;

END.

Figure 3-18. AmPAL22V10 PLPL Specification—Octal Comparator

3-24

3.2.5 ADDRESS DECODING AND CHIP
SELECT GENERATION SIMPLIFIED
WITH COMBINATORIAL PAL DEVICES

Combinatorial PAL devices are used extensively in digital com-
puter systems for address decoding and chip-select generation
functions. For these functions, a combinatorial PAL device with
a large number of inputs/outputs and programmable polarity
for its outputs is preferable. The AmPAL18P8, a second-
generation combinatorial PAL device is ideal for these applica-
tions. Compared to the standard 20-pin combinatorial PAL
devices such as 16L8/16H8, it offers three significant advan-
tages: two extra bidirectional 1/Os, increased number of prod-
uct terms for every output, and programmable polarity for each
of its eight outputs. Its extra inputs allows it to decode a larger
number of address bits in a single device. Its programmabile
polarity allows generation of both active-LOW and active-HIGH
chip selects from the same device for different peripherals.
This obviates the need for separate PAL devices with dedi-
cated polarity (such as 16L8/16H8) and also results in faster
speed.

For chip-select functions, a system designer often has to
generate stable latched chip selects, and chip selects for
memories without OE pins; whereas address decoders, imple-
mented with PAL devices, can also be used to implement cer-
tain system-specific tricks such as boot-address generation,
and switching between Real and Virtual modes of operation.

Stable Latched Chip-Select Generation

The address decoding function often requires latching the
“decoded chip select (CS)”" line. This is needed for most
memory and peripheral devices. To generate this stable CS,
designers often have to take into account possible hazard con-
ditions. These hazard conditions can be handled easily by a
PAL device such as the AmPAL18P8.

Hazard Definitions and Brief Explanations

Hazards are timing problems and unwanted switching tran-
sients that arise due to gate and wiring delays. These un-
wanted transients may occur at the outputs of combinatorial or
asynchronous sequential networks because different paths of
the network may have different propagation delays.

A network is said to have a “STATIC 1 Hazard” if its output
momentarily goes to 0 when it should remain at constant 1, due
to some input change; and it is said to have a “STATIC 0
Hazard” if its output momentarily goes to 1 when it should
remain at constant 0. A network is said to have "DYNAMIC
Hazards” when its output oscillates a few times (from 1 —> 0
or 0 —> 1) before it returns to a stable state. In all of these
cases, the steady-state output of the network is correct, but
switching transients cause “glitches” to appear at the outputs.
Figures 3-19.a through 3-19.c show various types of hazards.

Figure 3-19.a STATIC 1 Hazard

.
——ol_l—_|_|'-|_°

Figure 3-19.b STATIC 0 Hazard

[l

Figure 3-19.c DYNAMIC Hazards

3-25

Figure 3-20 shows the example of a network with a “STATIC 1
Hazard.” Here, output Y is equal to X1 * X2 + /X2 * Y. This is a
sum-of-products equation. It can be implemented with either

NAND gates (shown in Figure 3-20), or with simple AND-OR
gates in a PAL device.

o

——

Y= X1 Xo+/X Y

Figure 3-20. NAND Implementation of Y = X1 % X2 + /X2 % Y

The logic in Figure 3-20 shows the sum-of-product form of
design. Signal X2 can be an LE signal (usually ALE or AS in
most microprocessors), Y is the feedback from the output for
generating the stable CS signal. X1 can be an AND term of a
number of address signals (e.g., X1 = A3 * A4 * A5). For
simplicity sake, we would use X1 as a single signal. Figure
3-21 shows the Karnaugh Map for this function.

01 1 10
0 0 0 m 0
o I3 | oo | Wik

X2 transitions from 1 to 0
static hazard

Figure 3-21. Karnaugh Map

As we can see in the Karnaugh Map, there is a possibility of
a hazard when signal X2 transitions.

Consider the case when initially X1 & Y = 1, and X2 is also 1.
Now let's say X2 transitions to 0. The output Y should remain a
constant 1; however, the output may momentarily go to 0 if the
gates switch in the following sequence: gate 1 switches to 0,
then Y goes to 0, then the inverter output goes to 1, gate 2
switches to 0, and finally, Y goes to 1. Note that there is pos-
sibility of this hazard only because of different gate delays.

This kind of hazard results in momentary false outputs, and
may cause serious problems if the output is used as an input

for other asynchronous networks. For example, if the signal Y
is used as the CS signal for some memory or peripheral
device, it is likely to result in erroneous behavior of the system
because of this momentary false output. These kinds of
hazards cause the network to go into wrong stable states.

Figure 3-22 shows the Karnaugh Map and its associated stable
states. If the network is in stable state 4 (represented by X1 =
1,X2 =1,and Y = 1), and if the X2 input is changed to 0, the
next stable state should be 5 and not 2. However, if Y momen-

tarily goes to 0 and is fed back before /X2 goes to 1, the output
of gate 2 will remain 1 and the output might be 0.

o | O|B®] ¢ |®
R ECE N EORIO,

X2 transitions from 1 to 0

Figure 3-22. Stable States for the Function
Y=X1*"X2+/X2*Y

Avoiding Hazard Conditions

These hazard conditions can be avoided easily with PAL
devices. The hazard condition of Figure 3-22 can be eliminated
by an extra AND gate as shown in Figure 3-23. This extra AND
gate prevents the false output for Y. Providing this extra AND
gate with a PAL device is very easy. It is simply an unused
product term.

3-26

Y= X1 Xo+/X Y
+X1Y

De——{ >

\ Extra gate used

to avoid GLITCH

Figure 3-23. Hazard Elimination with an Extra Gate

Generating Chip Selects (CS) for Memories—
With or Without Output Enable (OE)

Most of the second-generation memories have both output
enable (OE) and chip select (CS) pins. This separate and inde-
pendent OE line eliminates the bus-contention problem com-
pletely. The OE line is used by the microprocessor for getting
data “on” or “off” the system data bus, and the microproces-
sor is always in control. Without this the system is always
asynchronous with respect to the microprocessor/memory
interface.

However, some memories do not have a separate OE pin.
Generating CS for these memories could cause serious bus-
contention problems is such situations. Often this problem is
solved by gating the CS with READ or WRITE signals as
follows:

CsS= X*/R
+ X * /W (X is combination of certain address lines)
WE = /W

This approach allows usually sufficient time for other buffers on
the data bus to tristate. This works well for the read cycles in
which the memory/peripheral is expected to be the only bus
driver. However, for write cycles where usually the processor is
the data bus driver, this doesnt quite solve the problem
completely.

In the above equations, CS is generated either from the READ
or WRITE line. There is still no way to ensure that CS is
generated after the WE line to the peripheral/memory is as-
serted LOW since CS is not controlled by WE at all. This prob-
lem however can be solved by controlling the CS line from the
WE signal, by gating the /W signal with the WE signal (for CS)
as follows:

Ccs= X*/R

+ X* /W */WE

This ensures that the WE of peripheral/memory is LOW before
the CS is asserted. This, however, solves part of the problem.

On the other edge, WE should be disasserted only after CS is
disasserted. This can be accomplished by controlling /WE from
the /CS—by gating /CS along with the /WE line (as follows):

WE = /W * /CS

This ensures the assertion of /WE as long as CS is asserted
and W is LOW. As soon as the /CS is disasserted, the /WE of
the peripheral/memory will be disasserted.

These signals /CS and /WE used for controlling each other are
nothing but the feedback from the appropriate /O pins. The
AmPAL18P8 provides feedback from all of its 1/O pins to imple-
ment these functions. These feedbacks ensure logic safety,
and provide smooth functioning of the design without using any
additional components.

The PAL devices can be used also for providing flexible
address-decoding functions.

Mapping Boot Address Difficulty
Solved with a PAL Device

Usually single-board systems use one or two ROMs for imple-
menting booting software. For example, a single 1-Mbit ROM
provides 64K words (64K x 16) of memory.

In iIAPX86 microprocessor-based systems, the bootstrap ad-
dress is at the end of the address space. This can present
problems in systems with only one or two ROMs.

3-27

In such cases, a slight trick in the address decoder can usually
save one extra ROM chip to be placed at the boot location.
During initialization. the boot-strap address can be decoded to
a location in the ROM and the boot code is placed in that ROM
in addition to usual software. After booting is complete, an
external flip-flop (START) can be asserted to allow normal
addressing of the ROM address space (see Figure 3-24).

CS2= A19* A18* A17 * A16 * /START Boot Address
+/A19*/A18*/A17 */A16* START after booting’
is complete

One has to be careful and not execute the boot code again. An
extra product term of the PAL device allows use of the same
ROM for both functions.

Iy

ROM1

ROM2

Boot Address
Decode

FFFFF

4

Figure 3-24. Boot Address Decoding Scheme

Switching Between Real and Virtual
Modes of Operation

In the 80286 microprocessor, for maintaining upward-com-
patibility with the 8086/8088 Microprocessor Family, two
modes of operation are provided: Real and Virtual/Protected
mode.

The Real mode is compatible to iAPX 88/86 and has 1 Mbyte of
physical address space. The 80286 is initialized in this Real
mode with the bootstrap address of FFFFO (A0-A19) at the
bottom of this address space. Switching to the Virtual/
Protected mode of operation allows for the AO—A23 address
bits with 16 Mbytes of physical address space. In the Real
mode, the system bootstrap ROMs must respond to the
address available (with 1 Mbyte), ignoring the upper four
A20-A23 address lines. In Protected mode, these same ad-
dress lines address only the top 1 Mbyte of the available 16
Mbytes of address space. Thus, based on control signal
PROT, the address decoder decides which address bits to use
to generate CS for the same location in memory. The circuit
should allow the capability of resetting to restart the chip from
Real mode. The bootstrap-ROM CS can be generated as
follows:

CS= A19 *A18 *A17 *A16 * PROT)
+ /A23 7A22 */A21 */A20 *A19 *A18 *A17 *A16 *PROT *

PROT = /MODE + RESET * PROT

Note that MODE indicates Real mode, and /MODE indicates
Virtual mode.

During START, the signal PROT initializes as LOW, which al-
lows Real-mode address decoding. When switching to Virtual
mode, the processor explicitly changes the state of a register
mode to LOW.

MODE =H =Real mode
MODE =L = Virtual/Protected mode

This allows the PAL-based internal latch to store the state of
the Virtual mode in output PROT whose feedback is used to
address the Virtual mode address space (Note that this flexibil-
ity is again provided by a simple product term of the PAL
device).

A similar approach can be used even for the iAPX 386. The
switching between Real and Virtual/Protected mode is identical
except that in Virtual mode, the addressing needs to be based
on extra bits A20—-A32, whereas in iAPX 286, only A20-A23
need to be implemented.

3.3 SEQUENTIAL LOGIC

3.3.1 COUNTERS
Nine-Bit Up-Down Counter

An up-down counter is also known as a bidirectional counter,
and is capable of counting in either direction through a certain
sequence. For example, a 4-bit up-down binary counter can
count up through its sequence (0, 1,2, 3,4,5,6, 7, 8,9, 10, 11,
12, 13, 14, 15) and then can be reversed to count down (15,
14,13, 12,11, 10,9,8,7,6,5, 4,3, 2, 1,0).

In general, most up-down counters can be reversed at any
point in their counting sequence. For example, the 4-bit binary
up-down counter can be made to go through the following
sequence:

0,1,2,3,4,56,7,87,6,54,345,6,7,8,9, etc.
\\/—/ k—\/_/
UP DOWN up
Design Requirements
Figure 3-25 shows the block diagram of a 9-bit up-down
counter. In addition to the nine registered outputs for the
counter, there are five other inputs: one clock pin, one

UP/DOWN control, one CLEAR, one Qutput Enable and one
HOLD input.

The counter counts up, when a HIGH is asserted on the
UP/DOWN control signal and clock pulses are applied. It
counts down when a LOW is asserted on the UP/DOWN con-
trol signal and the clock pulses are applied. HOLD, when as-
serted, holds the state of the last count. CLEAR resets the
entire counter to 0. Output Enable enables the value of counter
on the output pins.

Design Approach

For the ease of implementation, the counter is partitioned into
two separate counters: one 4-bit and the other 5-bit. The 5-bit
counter is enabled every time the counter reaches the value 15
(when the counter is counting up) and value 0 (when counting
down).

To minimize product-term requirements, an external pin is
used to generate a “ONE” signal based on the least significant
4 bits of the counter value { Q[3] * Q[2] * Q[1] * Q[0]).

Table 3-8 shows the function table for the 9-bit up-down
counter. Figure 3-26 shows the PLPL specification and Figure
3-27 shows the fuse map of a 9-bit up-down counter imple-
mented with single AmPAL22V10 device.

As shown in the fuse map, a total of 106 product terms are
required to implemente this function. The most significant bit of
the counter (Q8) requires 16 product terms.

TABLE 3-8. FUNCTION TABLE FOR THE 9-BIT UP-DOWN COUNTER

CLK| OE [CLR [HLD [l 08 07 a8 o5 a4 a3 @2 a1 Qo
X 0 X X X z z z z z z Z Vi 7 OUTPUTS TRISTATED
X 1 1 X | X 0 0 0 0 0 0 0 0 0 CLEAR
1 1 0 1] x| a8 Q7 @ Q5 Q4 Q@3 Q2 Q1 QO HOLD
1 1 0 0] 1 0 0 0 0 0 0 0 0 0 | COUNT UP
1 1 0] of 1 o o o o0 0 0 0 0 1
COUNT UP
1 1 0 0 1 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 1 1 1 1 1 1 1 0 COUNT DOWN
1 1 o of o 1 1 1 1 1 1 1 0 1
COUNT DOWN
1 1 o | ol o 0o o o o0 ©0 0 0 0 0

08749A-298B

6¢-V6.v80

we.beyq ¥90jg °Se-¢ 3inbid

80 LD 90 SO VO

INO
................ VT T T T T ot azgavauy
< Alu
< ——
< —————
S11g S < Slig v —
< D S—

€0 ¢o 1D 00

X00712
30
4v3alo
Q70H
NMOaQ/dn

3-30

L€

PIN CLOCK =1 UP =2 CLEAR = 3 EN = 4 #800111) Q[8:4] :
HOLD = 5 ONE = 14 #B01000) Q(8:4] :
Q(8:01 = 19,18,17,16,15,20,21,22,23 ; #801001) Q[8:4] :
DEFINE ZERO = /Q(3] * /Q[2] * /Q[1] * /Q[0] ; #801010) Q[8:4] :
DOWN = /UP ; #801011) Q[8:41 :
" NOTE: DUE TO PRODUCT TERM LIMITATIONS, MUST GENERATE °‘ONE' #3801100) Q[8:4] :
SIGNAL ON A PIN TO FIT THE DESIGN IN THE PAL. 'ZERC' CAN #801101) Q([8:4] :
BE DETECTED WITH INTERNAL PRODUCT TERMS. * #801110) Q{8:4] :
#B801111) Q[8:4] :
BEGIN #B810000) Q[8:4] :
IF (EN) THEN ENABLE (Q[8:01) ; #B810001) Q[8:4]1 :
ONE = Q[3] * Q[2] * Q[11 * Q[0] ; #810010) Q[8:4] :
1F (CLEAR) THEN ARESET(Q(8:01) ; #810011) Q[8:4]
IF (HOLD) THEN Q[8:01 := Q[8:0]1 ; #810100) Q[8:4] :
IF (UP) THEN BEGIN #810101) Q[8:4] :
CASE (Q([3:01} #B810110) 08:4] :
BEGIN #B00C0) Q(3:01 := #B0001 ; #810111) Q(8:4] :
#80001) Q[3:01 := #80010 ; #811000) Q[8:4] :
#80010) Q[3:01 := #80011 ; #811001) Q(8:4) :
#80011) Q[3:0] := #80100 ; #811010) Q(8:4] :
#80100) Q[3:0] := #80101 ; #811011) Q[8:4]1
#80101) Q[3:0] #80110 ; #811100) Q[8:4] :
#80110) Q[3:0] := #8011 ; #311101) QI8:41 :
#80111) Q{3:0] := #810C0 ; #811110) Q{8:4]1 :
#81000) Q[3:01 := #1001 ; #811111) QI8:41 :
#81001) Q[3:0] := #81010 ; END ;
#81010) Q[3:0) := #81011 ; END ;
#81011) Q3:03 := #81100 ; ELSE Q[8:4] := Q[8:4] ;
#B81100) Q(3:01 := #81101 ; END ;
#81101) Q[3:01 := #81110 ; IF (DOWN) THEN BEGIN
#31110) Q[3:0] := #8111 ; CASE (Q[3:01) BEGIN
#B81111) Q[3:01 := #B0000 ;

.
"DEVICE NINE_BIT_UP_DOWN_COUNTER (PAL22V10)

END ;

IF (ONE) THEN BEGIN

CASE (Q[8:41)

BEGIN #800000) Q[8:4] := #B00001 :
#800001) Q[8:4) := #B00010 ;
#B800010) Q[8:41 := #B800011 ;
#800011) Q[8:4] := #B0010C ;
#800100) Q[8:4) := #800101 ;
#800101) Q[8:41 := #800110 ;

Figure 3-26. PLPL Specification for a 9-Bit Up-Down Counter (1 of 2)

#B800110) Q[8:4] :

#300111 ;
#B01000 ;
#801001 ;
#301010 ;
#801011 ;
#301100 ;
#801101 ;
#801110 ;
#801111 ;
#810000 ;
#B10001 ;
#810010 ;
#1001 ;
1= #810100 ;
#810101 ;
#810110 ;
#1011 ;
#811000 ;
#811001 ;
#311010 ;
#1101 ;
= #811100 ;
#1101 ;
#811110 ;
w1111 ;
#800000 ;

"

[

#B80000) Q[3:
#B80001) Q[3:
#80010) Q(3:
#B80011) Q(3:
#B80100) Q(3:
#380101) Q[3:

0] :
0] :
01 :
0] :

i

01

#8111
#80000
#80001
#80010
#B80011
#B80100

W

ce-e

END ;
IF (ZERO) THEN BEGIN
CASE (Q[8:41) BEGIN

#80110) Q[3:01
#80111) Q[3:01
#81000) Q[3:0]
#81001) Q[3:0]
#81010) Q[3:0]
#81011) Q[3:0]
#81100) Q[3:0]
#31101) Q(3:01
#81110) Q[3:0)
#81111) Q[3:0]

#B800000) Q8:4)
#800001) Q[8:4]
#800010) Q(8:4]
#800011) Q[8:4)
#800100) Q[8:41
#B800101) Q[8:4]
#B800110) Q[8:4]
#B800111) Q[8:4]
#801000) Q[8:4]
#801001) Q[8:4]
#801010) Q[8:4]
#801011) Q[8:4)
#3801100) Q[8:4]
#B01101) Q[8:4)
#301110) Q[8:4)
#801111) Q[8:4)
#810000) Q[8:4]
#810001) Q[8:4]
#310010) Q[8:4]
#810011) Q[8:4]
#3810100) Q[8:41
#3810101) Q[8:4]
#810110) Q[8:4]
#B810111) QI8:4]
#811000) Q[8:4)
#811001) Q[8:4]
#811010) Q[8:4)
#811011) Q[8:4]
#811100) Q[8:41

0101
0110
0111

n
I EEEREEEEEE]
8
o

Se %o ma o we s ma we s se s

-

001
1010
o
1100
1101
1110

[
pey

= #1111
:= #800000
= #B800001
#800010
#800011
#800100
= #800101
:= #800110
:= #800111
:= #B801000
:= #801001
== #801010
:= #801011
:= #801100
:= #801101
== #801110
1= #801111
:= #810000
= #810001
#810010
#310011
#810100
#810101
#810110
= #810111
:= #811000
:= #811001
:= #811010
= #1101

P

L

END ;

ELSE Q[8:41 := Q[8:4] ;

END ;

END.
TEST_VECTORS
IN CLOCK UP CLEAR EN HOLD ;
OUT ONE Q[8:0) ;
BEGIN
"cuc E
“PL N
llo E
" A

R
X X
10
10
10
X X
10
10
10
10
X0
00
00
0o
00
00
00
00
00
XX
X1
XX
10
10
10
END.

o
N
E

O ro=x
o O
~N O
o O

=

00 TOOOOOOOOO0O0O0O0O000TOOOT
e L - T i Y NN I =Y
O 00 X O X O0O0000000 - 0000 XOo0Oo0Oo X
[l Sl A i o o o i B S S o S
Ll i ol R NI Y o i
Ll o I N N L at el o R R
Ll o o S U R e i o B o S ol

(2]

Lol ol ol S NI N it al ol o S I R o o o

END ;

Ll o I VI R o e i a o R ol S I

#811101) Q[8:4]
#311110) Q[8:4)
#811111) Q[8:4]

[l ol I N S e

Frrrr T - NT-~C-CF-F-FTXTETTTXTTTCC-CCFCoF

T~~~ X F~FNXXTFFC~XTTF~FFXTXTTXTXTCC-CXTTXC M~

Figure 3-26. PLPL Specification—8-Bit Up-Down Counter (2 of 2)

rETr-rXC-CNXC-CXTC~XTFC~CTXTC~T>TTCFCTCXTT T~ TOC

11100
11101
11110

.- s o

FEE

“COUNT UP"

UPRELOAD REGS"
MCOUNT UP v

;
’
’
.
7
H
7
H

HOLD "
3MCOUNT DOWN "

;"COUNT DN/WRAP AROUND"
;"DISABLE OUTPUTS"
;"CLEAR "

;“"PRELOAD REGS"
;"COUNT UP/WRAP AROUND"

INPUT LINES

4 1] 17 1 20 24 28 32 3% 0
RESEY
(TO ALL REGISTERS)
oUTPUT
MACRO- b
L CELL Qo
"
=
N
. ouTPuT
: s 2
. CELL Q1
2—Px A
v =
oF N
outPuT
LOGIC 2
MACRO-
CELL Q2
CLEAR 3
3—Px —}—
OF N
H outPuT
: LOGIC 2
CELL Q3
EN —b
N
4 —LE o '}
oE d .
o
: OUTPUT
* 1 MACRO- 19
1 CELL Q8
¥ HOLD N —
§ [. =)
OE
. outPuT
: LOGIC —18
CELL Q7
R Jp
6—L% rq, 1
OE
! l
: outPuT
: LOGIC 7
CcEW 1}
~ —
—> r 4 —
Lo
OF N
. ouTPUT
. LOGIC 16
. WACRO-
CELL Q5
~N]
e—% .,‘: —
OE
o ouTPuT
: MACRO r—15
CcEw Q4
. L
—Px r <o r—
OE
. OUTPUT
: 2o "
12 Fceu ONE
10— 1
| % “r S
sP SYN
n—Px 4 (TOALLpeasSTERS)
v &

Figure 3-27. Fuse Map of a 9-Bit Up-Down Counter

3-33

Modulo-360 Counter

A typical n-bit binary counter has a maximum modulus equal to
2", where n is the number of stages. However, it can be
modified to have a lesser modulus, without changing the num-
ber of stages. This may be necessary for applications where a
non-power-of-two modulus is required.

Often it is necessary to introduce signal delays into logic
design to meet tight timing requirements such as to allow for
bus skew, access time or different propagation delays through
devices along two different signal paths. A typical example of
this is the introduction of wait states to allow for access times of
different memory elements. Counters or delay lines are com-
monly used to introduce the delay. Counters have the advan-
tage of programmability to generate the required delay and are
possibly easier to synchronize with the master device. A
modulo counter, implemented with a PAL device can be used
for these kind of applications.

Design Requirements

For example, if a counter with modulus of 17 is required, five
flip-flops will be required because a four-stage counter has
maximum modulus of 16. Similarly, to implement modulo-360
counter, nine flip-flops will be required.

However, to achieve a lesser modulus in an n-stage counter,
some of the “natural” states have to be skipped. For example,
a five-stage counter has a natural counting sequence from 0 to
31. If the counter is to be redefined as modulus 17 counter,

then the states 18 to 31 have to be skipped. That means the
counter circuitry has to be modified. Whenever the counter
reaches state 17 it must be reset to state 0, rather than count-
ing up to state 18.

Design Approach

Design approach for modulo-counters of any desired length is
quite similar to that of typical binary or BCD counters. in a
simple case, Boolean equations can be derived from the func-
tion table covering all possible states of the counter. However,
the size of the function table increases with the number of
states. For large counters, generating Boolean equations can
become tedious and time consuming.

Another approach for implementing the modulo-counter is to
partition the design into smaller state machines. We know that
a modulo-360 counter requires nine flip-flops. However, in-
stead of implementing this as a straight 9-bit counter from the
function table we can implement this as two counters: one 4-bit
counter (counting from 0 to 14) and another 5-bit counter
(counting from 0 to 23). Together the two counters count up to
360. The signal MOUT is asserted when the counter counts up
to 360.

Figure 3-28 shows the block diagram of a 9-bit loadable,
modulo-360 counter. It needs nine inputs, nine outputs, one
clock pin, one LOAD pin, one RESET, and one MOUT (module
output) pin. Figure 3-29 shows the PLPL specification of this
modulo-360 counter. Figure 3-30 shows the implementation of
this function in a single AmPAL22V10 device.

Q4 4 (3 & [[Q5 3 2 [19

A 4 4 4 4 4 4 4 4
L e : -

' —» M_OUT

4] 5] A 30 —44—»] 3
{oA) =——+| MODULO 24 > MODULO 15 :
ok i J12h 5 BITS N 4BiTS ;
\ AmPAL22V10

Figure 3-28. Block Diagram

3-34

§e-¢

DEVICE MODULO_360_COUNTER (PAL22Vv10) #B800110) BEGIN

Q15[3:0] := Q15[3:01;
PIN Clk =1 RST =2 Q24[4:0]1 := #B00111;
{0AD = 3 END;
A8:0] = 4:11,13 #B800111) BEGIN
Q24[4:0]1 = 18:14 Q15[3:0]1 := Q15[3:01;
Q15[3:01 = 22:19 Q24[4:0] := #801000;
M_OUT = 23; “ASSERTED WHEN COUNT BECOMES 360" END;
BEGIN #801000) BEGIN
IF (RST) THEN ARESET(); Q15[3:01 := Q15(3:01;
IF (LOAD) THEN BEGIN Q24[4:0) := #801001;
Q24[4:0] := A[8:4]1; END;
Q153:01 := A[3:0]; #801001) BEGIN
END; Q15[3:01 := @15[3:01;
ELSE BEGIN Q24[4:01 := #801010;
IF (Q24 [41*/Q24 [31*Q24 [2]*Q24 [11*Q24 [01* END;
Q15[31*Q15[21*Q15[11*/Q15[01) THEN M_OUT = 1; #801010) BEGIN
CASE (Q24[4:01) BEGIN " MODULO 24 “ Q15[3:0]1 := Q15(3:01;
#800000) BEGIN Q24[4:01 := #801011;
Q15[3:01 := Q15[3:0]1; END;
Q24 [4:01 := #B800001; #801011) BEGIN
END; Q15[3:01 := @15(3:0]1;
#800001) BEGIN Q24 [4:0) := #801100;
Q15[3:0] := Q15(3:01; END;
Q24[4:01 := #800010; #801100) BEGIN
END; Q15[3:01 := Q15(3:0];
#800010) BEGIN Q24[4:0]1 := #801101;
Q15[3:0] := Q15(3:01; END;
Q24[4:07 := #B800011; #801101) BEGIN
END; Q15(3:0) := Q15(3:0];
#B800011) BEGIN Q2414:0] := #801110;
Q15[3:0] := @15[3:01; END;
Q2414:0] := #800100; #B801110) BEGIN
END; Q15[3:0] := Q15[3:01;
#800100) BEGIN Q24[4:0] := #801111;
Q15[3:0]1 := Q15[3:01; END;
Q24[4:0] := #800101; #801111) BEGIN
END; Q15[3:0] := Q15(3:01;
#800101) BEGIN Q24[4:0] := #810000;
Q15[3:01 := Q15(3:01; END;

Q24 [4:01 := #800110;
END;

Figure 3-29. PLPL Specification for a Modulo 360 Counter (1 of 2)

w

9e-¢

#810000)

END;
#810001)

END;
#310010)

END;
#810011)

END;
#3810100)

END;
#810101)

END;
#810110)

END;
#310111)

BEGIN
Q15[3:0] := Q15(3:0];
Q24[4:0] := #810001;

BEGIN
Q15[3:01 := Q15[3:0];
Q24[4:01 := #810010;

BEGIN
Q15[3:0] := Q15[3:0];
Q24[4:01 := #810011;
BEGIN
Q15[3:0] := Q15(3:0];
Q24[4:0] := #810100;
BEGIN
Q15(3:01 := Q15(3:0];
Q24[4:01 := #810101;
BEGIN
Q15[3:0]1 := Q15[3:01;
Q24[4:0] := #810110;
BEGIN
Q15[3:01 := Q15(3:01;
Q24[4:0) := #810111;
BEGIN

Q24[4:0] := #B800000;

CASE (Q15(3:01) BEGIN
#80000) Q15(3:01
#80001) Q15[3:0]
#80010) Q15(3:0]
#80011) Q15(3:0]
#80100) Q15(3:0]
#80101) Q15(3:0]
#B0110) Q15[3:01
#B80111) Q15(3:0]
#81000) Q15[3:01
#81001) Q15(3:0]
#81010) Q15(3:01

END;
END;
END;
END;

END.
TEST_VECTORS
IN CLK RST LOAD A[8:0];
ouT Q24[4:01 Q15[3:01 M_OUT;
BEGIN
"CLK RST LOAD A[8:0]
X 1 X XXXXXXXXX
c 0 1 101011100
c o 0 XXXXXXXXX
c o 0 XXXXXXXXX
c o0 0 XXXXXXXXX
c o0 1 011111110
c o 0 XXXXXXXXX
c o 0 XXXXXXXXX
c o0 0 XXXXXXXXX
c 0 0 XXXXXXXXX
c 0 0 XXXXXXXXX
c o 0 XXXXXXXXX
c o 0 XXXXXXXXX
c o 0 XXXXXXXXX
c o 0 XXXXXXXXX

:= #B0001; c 0 0 XXXXXXXXX

1= #B0010; c 0 0 XXXXXXXXX

:= #80011; END.

:= #B0100;

1= #B80101;

:= #B80110;

:= #B80111;

:= #81000;

:= #81001;

:= #B81010;

= #81011;

#81011) Q15(3:0]
#81100) Q15(3:0]

#381101) Q15(3:0] :=

#B81110) Q15(3:0]

Q24 [4:

~rM~MFXTTXTXxTXTETXTXTF-CCXT XX

L i i o o e e T T N e o

-~ TIXTXxTTCCF~~F~FMFTXTCXXIXITC

Tr-r-rTxr-r-rxTTF-~CC-T>T X TCC~
T r-rTC-~TC-CTCXTCTC XX -

Figure 3-29. PLPL Specification for a Modulo 360 Counter (2 of 2)

Q15(3:

P

mrrr-rTTzxTxT T T T T T T~
Fr-rTTXTTTXTTTTTITET

rrrT T T T T T T TC-CC6Co6CoC
L e e e R

:= #81100;
:= #81101;

#81110;

Q
=

Lol N R o o e ol e

:= #B0000;

M_ouT®

INPUT LINES
4 L] 12 16 20 24 28 32 38 40
RESET
(TO ALL REGISTERS)
OUTPUT M (OUT)
g 2
CELL
_
N
outPuT Q15 (3)
. LOGIC i" 22
: e
RST ¢ P e
2 —1x - ,_“' —
OE o
0
. ouTPUT Q15 (2)
: Losic — 21
MACRO-
CELL
LOAD M 1
3—x %} b
OE
. ouTPUT Q15 (1)
: vl r—20
CELL
A0 w —
N "
a—x% 5.4 —
OE
o
. ouTRUT Q15 (0) 3
: hg. —19
CELL
H
g oar o b
& s—P% x} "
? OE
. ouTPUT Q24 (4)
: S | or—1e
CELL
A2 & —p>
6—1L% (: m——
OE
0
. outeuT Q24 (3)
B Logic —17
MACRO-
CELL
A3 P
77— % X S
» ~
OE o
ouvPyT Q24 (2)
. LOGIC 16
. MACRO-
CELL
A4 m —
s—Px r 4
o8
ouTpuT Q24 (1)
: ey s
* CELL
A5 P
21 % k<
P N
OE N
QUTPUT Q24 (0)
B LOGIC 1
: MACRO-
A6 D >ceu
‘lo—-l:) N
A7 8P d P (TO ALL REGISTERS)
n—_Lx £ <) 5]
A8
Figure 3-30. Fuse Map of a Modulo-360 Counter

3-37

Nine-Bit Johnson Counter

The Johnson counter is also known as a “circular-shift counter”
and produces a special counting sequence. The sequence for
a five-stage Johnson counter is shown in Table 3-9. Note that,
the five-stage sequence has a table of 10 valid states and 22
invalid states (Table 3-9). In general an n-stage (bit) Johnson
counter will produce a modulus of 2n. Figure 3-31 shows the
state diagram of a five-stage counter.

As seen from the sequence table of the five-stage counter, the
counter first fills up with 1’s from left to right and then it fills up
with 0’s again. Note from the counting sequence that unlike a
normal binary counter, Johnson counter is a unit distance
counter. Like a Gray code counter, its output changes only one
bit at a time. One major advantage of Johnson counter’s count-
ing sequence is that it can be readily decoded with two input
AND gates, and hence, is suitable for high-speed applications
where output can be decoded safely.

TABLE 3-9. FIVE-STAGE JOHNSON COUNTER SEQUENCE

Qo0 Qf Q2 Q3 Q4
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

VALID STATES

[®]
o
(]
N
wW
~

—_ e, O, L, 0O~ 0O+t 0O+~ 0+ 020 ~+~00 00

O A 4O -+ OO0 A 20O ~~00 2 -~ 00 00 — 9
PN e k== =K -N - -N-N-N-N-1 Iy

—‘ooo—*—*—“—*ooo—‘—‘—“oooo—‘—“—ﬁo
_, et A L 0000000 A A a0 000 O

INVALID STATES

3-38

08479A-31

Figure 3-31. 5-Stage Johnson Counter State Diagram

3-39

Design Considerations

The implementation of a Johnson counter is relatively straight
forward and is the same regardless of the number of stages.
Implementing this with D-type flip-flops, the Q output of each
flip-flop is connected to the D input of the following stage. The
single exception is that the Q output of the last stage is comple-
mented and connected to the D input of the first stage.

One disadvantage of this counter is the number of invalid
states. For an n-stage counter, the number of invalid states is
equal to 2™-2n. For example, a three-stage Johnson counter
has two invalid states, a four-stage counter has eight invalid
states, and a five-stage counter has 22 invalid states. The
number of invalid states increases almost exponentially with
the length of the counter (for example, a nine-stage counter
has 494 invalid states). The bigger the counter becomes, the
more are the chances of its entering an illegal state. Once the
counter enters an invalid state, it may be difficult to recover.

Care should be taken when designing Johnson counter to
prevent it from entering invalid states. Often even self-
correcting logic should be incorporated to allow the counter to
get out of illegal states.

Design Requirement

Figure 3-32 shows the block diagram of a 9-bit Johnson
counter. The counting sequence shown in Table 3-9 for 5-bit
counter can easily be expanded to 9-bits. This counter (with
load capability) requires nine input pins, nine output pins, a
LOAD pin, one RESET, and invalid status pin and one clock
pin. During power-on, the counter resets to zero state.

Figure 3-33 shows the PLPL specification for this counter. Fig-
ure 3-34 shows the fuse map for this counter implemented with
a single AmPAL22V10 instead of four SSI/MSI devices. Addi-
tionally, an error flag for invalid states is incorporated in the
design to indicate error condition.

ol

CLK

Figure 3-32. Block Diagram of a 9-Bit Johnson Counter

3-40

Ly-€

DEVICE NINE_BIT_JOHNSON_COUNTER (AmPAL22V10)

PIN

BEGIN

ClK =1
RST = 2
A[B:01 = 3:11

Q[8:0] = 14:21,23

VF = 22 "VALID STATE FLAG"

LOAD = 13 ;

IF (RST) THEN ARESET(Q(8:01) ;
1= A[8:01 ;

IF (LOAD) THEN Q[8:0]
ELSE BEGIN
CASE (Q[8:01)

BEGIN
#8000000000) Q[8:01 := #8100000000
#8100000000) Q[8:01 := #8110000000
#8110000000) Q[8:0] := #B8111000000
#B111000000) Q[8:01 := #8111100000
#B8111100000) Q[8:0] := #B111110000
#B8111110000) Q(8:01 := #B8111111000
#B8111111000) Q[8:0] := #8111117100
#B8111111100) Q[8:01 := #8111111110
#8111111110) Q[8:0]1 := #8111111111
#8111111111) Q8:01 := #8011111111
#8011111111) Q[8:01 := #8001111111
#B8001111111) Q(8:01 := #8000111111
#8000111111) Q[8:01 := #8000011111
#B8000011111) Q[8:0] := #8000001111
#8000001111) Q[8:01 := #8000000111
#8000000111) Q[8:01 := #B000000011
#B000000011) Q[8:0] := #BG00000001
#B000000001) Q[8:0] := #8000000000
END;
END;
CASE (Q[8:01)

BEGIN

#38000000000) VF
#B8100000000) VF

Figure 3-33. PLPL Specification for 9-Bit Johnson Counter

END;
END.

TEST_VECTORS
IN CLK RST

#B110000000)
#B8111000000)
#8111100000)
#38111110000)
#8111111000)
#B8111111100)
#8111111110)
#111111111)
#011111111)
#8001111111)
#B8000111111)
#8000011111)
#8000001111)
#B8000000111)
#B000000011)
#B000000001)

LOAD A[8:01;

OUT QI8:0] VF;

BEGIN
"
[
"'s
"wT

O » 0 r
o >
~N >
o

MO0 O00000600o0X
DO 0000000000 =
O - 00 200 =00 0 - X
X O X X - X X = X X X = X
X O X X = X X O X X X - X
X O X X = X X = X X X - X
X O X X = X X O X X X = X
X O X X = X X - X X X = X
X O X X = X X O X X X - X
X O X X = X X o X X X = X
X O X X = X X O X X X = X
X - X X O X X = X X X = X

2o
S

v >
s >
W >
LV 3
- >
o »

®

T xTF~-~x - xr~
FrxXx =TT~ xxC
- =T X~~~z cFxxxTC
Tz =T xr~~cCTxxxC
~r-rTxTxTC-F-T T xT X~
~r-rTxTxxTF~F-F-~xTTXT O~

[T TR TR TR

won

n

w

~ T TTC-~~xTTXT XTI
~ T xXxTxT - r-rC-xXxXxXxX~

o

~xT T T~~~ x: XXX

L;
H;
H;
H;
-
H;
H;

“RESET"
“LoAD"
HCOUNT"

“COUNT"

LD INVALID ST*
"INVALID ST"

" RECOVERY"
"LOAD"

MCOUNTH

W

PRODUCT TERMS

INPUT LINES

CLK
! o 12 L] 20 24 8 a2 38 40
AR o RESET
11 (TO ALL REGISTERS)
o i o0
S — ouTPUT
: Loge n
CELL
: —P
v rdg
OE
. ouTPUT VF
: e —22
RST CELL
—p
2—Px r) T
OE o
. ouTPUT Qt
: MACRO- —2
CELL
A8 n >
—Px <
OE.
N ouTPuT Q2
: - —20
CELL
AT n >
«—Px % .
OF -
. ouTPYT Q3
: -3 19
CELL
A6 P
0E -
: ouTPuT Q4
H LOGIC 18
MACRO-
CELL
A5 8 -~ >
s—Px =t
OE
. Qs
: oo b
CELL
0
A4 LN 9
77— =1 L—I
¢ ~
OE N
ouTPyT
: LOGIC *
. MACRO-
CELL
N T
88— r 4
= o |
OE o
ouTRuT Q7
: oz 1
CELL
A2 ¢ b—
N A
i3 —
[GuTeuT] a8
: LOGKC 1
; CELL
At r S >
10 —c:) 5% ————J
P o PRESET
Ao S P (YO ALL REGISTERS)
n—x . 4 13
i ~
LOAD

Figure 3-34. Fuse Map for a 9-Bit Johnson Counter

3-42

Gray Code Counter and Gray-to-Binary TABLE 3-10. 5-BIT GRAY CODE
Code Conversion
DECIMAL GRAY BINARY
Gray code is an important unweighted code which exhibits only 0 0 0 00 0j]O 0 0 O O
a single bit change from one code number to the next. This 1 0 000 1/0 0 o 0 1
feature is especially important in high-speed data communica-
) -) h 2 0 00 1t 1/0 00 1t 0
tion applications, where data is transmitted from one part of a
system to another and where the error susceptibility increases 3 0 001 0j0 00 1 1
with the number of bit changes between adjacent numbers in a 4 0 011 0[O0 01 0O
sequence. It is also commonly used in applications such as 5 o0 0 1 1 1]/0 0 1 0 1
real-time process control and shaft encoders where each seg- 6 0 010 1]0o o 1 1 o
ment is assigned a separate bit. 7 0 0 1 0 0lo 0o 1 1 1
Table 3-10 shows a listing of five-bit Gray code for decimal 8 0 110 0j0 1 00O
numbers 0 through 31. Note that there is only single bit change 9 o1 1 0 tj0 1 0 0 1
between any two Gray code numbers. The corresponding bi- 10 o111 1]o 1 0 1 o0
nary numbers are shown for reference. For instance, going 1 0 1 11 0lo 1 0 1 1
from decimal value 11 (Binary 01011) to 12 (Binary 01100), the
Gray code changes from 01110 to 01010. Only the third bit 12 0 1 01t 0j0 1 1060
changes; the others remain the same. 13 o1 0 1 1/0 1 1 0 1
14 01 00 t1j0 1 1 1 0
The Gray code can be extended to any number of bits. Conver- 15 0 1 0 0 0]lo0 1 1 1 1
sion from Gray to binary (or visa versa) is relatively simple. 16 T 1 00 ol1 0 0 o o
17 1t 1 0 0 1(1 0 0 O 1 3
Conversion from Gray-to-Binary Code 18 i1 0 1 1|1 0 0 1 0
)] 19 1t 1 01 0|1 0 0 1 1
To convert from Gray code to binary, the following rules apply: 20 T 111 011 010 o
® The most significant bit (the left-most) in the binary code is 21 t 111 1j1 010 1
the same as the corresponding bit in the Gray code. 22 i 11 0 1]1 01 1 0
23 11 1 0 01 0 1 1 1
® Going from left to right, add the next Gray code bit to the 24 1 010 0|1 1 00 0
previous binary bit to generate the next binary bit. Disregard
the carries (Figure 3-35). 25 1010 1]1 1001
26 1 01 1 1|1 1 0 1 0
This can be conveniently implemented with exclusive-OR 27 1 01 1 01 1 0 1 1
gates. Figure 3-36 shows the logic diagram for converting 5-bit 28 1 00.1 0/l1 11 0 o0
Gray code to binary code. 29 10 0 1 101 1 1 0o 1
30 1 0 0 0 1|1 1 1 1 0
GRAY CODE 1 1 0 0 0 31 1 00 0 Of1T 1 1 1 1
BINARY GATE
1 0 0 0 0
Figure 3-35. Gray Code to Binary Code Conversion

3-43

GREY CODE BINARY CODE
Qo \
) | BO
Q1 >
) B1
Q2 A
) B2
Q3 A\
B3
Q4 l
B4
08470A-34

Figure 3-36. Logic Diagram for Gray Code-to-Binary Conversion

Design Requirements and Approach

Implementation of a 5-bit Gray code counter requires at least
five flip- flops and some extra logic. Implementation of 5-bit
Gray-to-binary code conversion can be accomplished with

Figure 3-37 shows the PLPL specification of 5-bit Gray code

counter and 5-bit Gray-to-binary converter. Figure 3-38 shows

XOR gates or in a PAL device that has enough product terms. binary conversion.

the corresponding fuse map of this function implemented in a
single AmPAL22V10 device. As shown in the fuse map the
least significant bit requires 16 product terms for Gray-to-

3-44

DEVICE FIVE_BIT_GRAY_CODE_COUNTER (PAL22V10)

PIN

BEGIN

GRAY CODE TO BINARY CODE CONVERSION "

B[4] = Q[4] ;

ClK =1 B[3] = Q[3] XOR Q[4] ;

RST = 2 B[2] = Q[2] XOR Q[3] XOR Q[4] ;

Q[4:0] = 18:14 B[1] = Q[1] XOR Q[2] XOR Q[3] XOR Q[4] ;

B[4:0] = 23:19; B[0] = Q[0] XOR Q[1] XOR Q[2] XOR Q[3] XOR Q[4]

END.

IF (RST) THEN ARESET(Q([4:01) ; TEST_VECTORS

CASE (Q[4:01) IN CLK RST;

BEGIN 10 Q[4:01;
#800000) Q[4:0] := #B800001 ; ouT B[4:0];
#800001) Q[4:0] := #B00011 ; BEGIN
#800011) Q[4:0] := #800010 ; “CR QQQaQaQ BBBBB"
#800010) Q[4:0] := #800110 ; "Ls 43210 43210
#800110) Q[4:0]1 := #800111 ; "W "
#800111) Q[4:01 := #800101 ; c1 LLLLL LLLtLt;
#800101) Q[4:01 := #800100 ; CO LLLLH LLLLH;
#800100) Q[4:0] := #801100 ; CO LLLHH LLLHL;
#801100) Q[4:0] == #801101 ; CO0 LLLHL LLLHH;
#801101) Q[4:01 := #801111 ; CO0O LLHHKL LLHLL;
#801111) Q[4:0]1 := #801110 ; CO LLHHH LLHLH;
#801110) Q[4:01 := #801010 ; CO LLHLH LLHHL;
#801010) Q[4:01 := #801011 ; CO LLHLL LLHHH;
#B801011) Q[4:0] := #801001 ; CO0 LHHLL LHLLL;
#801001) Q[4:01 := #801000 ; PO LHLLL LHHHH;
#801000) Q[4:0] := #811000 ; CO0 HHLLL HLLLL;
#B811000) Q[4:0] := #811001 ; CO HHLLH HLLLH;
#811001) Qr4:01 := #811011 ; PO HLLLL HHHHH;
#811011) Qr4:0] := #811010 ; C0 LLLLL LLeLte;
#811010) Q[4:0] := #811110 ; CO LLLLH LLLLH;
#811110) Q[4:01 := #1111 ; END.
#811111) Qr4:01 := #811101 ;
#811101) Q[4:0] := #811100 ;
#B811100) Q[4:01 := #810100 ;
#810100) Q[4:0] := #810101 ;

"

#810101) Q[4:0]1 := #810111 ;
#810111) Q[4:0] := #810110
#810110) Q[4:0] := #810010
#B810010) Q[4:01 := #810011
#B810011) Q[4:0] := #810001
#810001) Q[4:0] := #810000 ;
#810000) Q([4:0] := #800000

END;

Figure 3-37. PLPL Specification for a 5-Bit Gray Code Counter and 5-Bit Gray-to-Binary Converter

’

3-45

PRODUCT TERMS

INPUT LINES

CLK
! 2 16 20 24 28 32 36 0
- RESET
32 o (TO ALL REGISTERS)
N [uree] B4
.
: . s 2
CELL
7 RS e D
. <
Vv N
OE
. OuTPUT B3
: o — 22
CELL
RST .o —
2—Px <
| N
. ouTPuT B2
: S o
CELL
~ P
i—x <} S
o N
. ouTPUT B1
. LOGIC
. MACRO- — 20
CELL
3 —p
N >
+—Px ;4 —
G N
. ouTPUT BO
: Lose — 19
CELL
—7p
N “
5—1X .4, —
OE o
. OUTPUT. Q4
: e —
CELL
R P
e—E =t L
OE o
. ouTPUT Q3
. LOGIC R
MACRO-
3y
—p
N oA
—Px =1 —
OE
o - ouTPuT Q2
: H Acho. —16
ceLL
s—Px | L
OE =Y
. ouTPuT Q1
: o —15
CELL
~ P
= =3 —
OE o
;] o %
. 1
. MACRO-
L_pest
10—y =} |
v N
s ALL REGISTERS)
n—x 4! @ 3

Figure 3-38. Fuse Map for a Gray Code Counter

3-46

3.3.2 SHIFTERS
Eight-Bit Arithmetic/Logic Shifter

Most commonly used logical operators are: AND, OR, XOR
and COMPLEMENT. An AND operator is used for masking or
clearing chosen bits of certain operands. An OR operator can
be used for “setting” some required bits to value 1. An XOR
operator can be used for generating check-sums or comparing
two operands. A COMPLEMENT operator can be used for
inverting logic levels.

All these four operators, together with “shift” operation can be

.used for functions such as: serial-to-parallel conversion,
scaling, normalization, or for matching bit patterns. Shift oper-
ator can also be used for doing multiplication or division. There
are four major shift operators: Logical SHIFT, Arithmetic
SHIFT, ROTATE, and ROTATE with CARRY.

Logical-SHIFT operation shifts the data either right or left. Typi-
cally it fills the shifted bit with zero, and ‘nads the CARRY bit
from the bit shifted out. In Logical-SHIFT operation, the sign-bit
is usually not preserved.

Arithmetic SHIFT is very similar to the Logical SHIFT except
that the sign is preserved. For example, for shifting right, the
sign-bit is copied into the next position. Often this is referred to
as sign extension and can be used to either normalize a num-
ber or scale a two's-complement number. For shifting left, the
sign-bit is left unchanged.

Simple ROTATE just rotates the data. The MSB and the LSB
are linked together. In ROTATE with CARRY, the CARRY bit
also acts as part of the shift register. Figure 3-39.a shows the
diagramatic representation of Arithmetic and logic shifter.

D6

D1 | DO | DATA

D7 D6 | D5

0 LOGICAL SHIFT

Do LEFT

DO 0 | D7

D1 LOGICAL SHIFT

D2 RIGHT

D6 D7 | D5

ARITHMETIC

DO | O | SHIFT LEFT

DO D7 | D7 | D6

D1 ARITHMETIC

D2 SHIFT RIGHT

1 1
CARRY SIGN
BIT BIT

Figure 3-39.a Arithmetic and Logic Shifter

3-47

Design Requirements and Approach

An 8-bit combined arithmetic/logic registered shifter shifts data
left or right both logically or arithmetically, maintaining the sign-
bit appropriately.

Such a shifter requires eight data inputs, eight data outputs, a
clock pin, a LOAD pin, an Output-Enable pin, a CARRY (CRY)
output pin, and two control pins: one control pin to signify Arith-
metic or Logical SHIFT, and one control pin to specify direction

(left or right). For ROTATE with CARRY function, it uses the
CARRY pin. Figure 3-39.b shows the block diagram of an 8-bit
registered arithmetic/logical shifter while Table 3-11 shows the
function table.

This function can be easily implemented in a single Am-
PAL22V10 device. The AmPAL22V10 can provide up to 22
inputs and 10 outputs, enough for 9 registered outputs and for
all other inputs.

D7 D6 D5 D4 D3 D2 D1

DO

CLK
LOAD ————»

0E ————P
SHIFT e
SEL ——————Pb

AmPAL 22V10

——» CRY

Q7 Q6 Q5 Q4 Q3 Q2 Q1 QO 08479A-32
Figure 3-39.b Block Diagram of 8-Bit Registers—Arithmetic Logic Shifter
TABLE 3-11. FUNCTION TABLE FOR 8-BIT ARITHMETIC LOGIC SHIFTER
EN | SEL SHIFT |LD D7 D6 D5 D4 D3 D2 D1 DO| CRY [Q7 |Q6 |Q5 |Q4 |Q3 | Q2| Q1 | Q0
0 X X XX X X X X X X X 4 Z{\zZ|zZ}|\zZ2|zZ|Z]|Z]|Z
1 X X 1 (D7 D6 D5 D4 D3 D2 D1 DO X D7 | D6 { D5 { D4 | D3 | D2 | D1 | DO
1 0 0 0o [X X X X X X X X D7 |D6|D5|D4 D3 |D2|[Dt|DO| O
1 0 1 1[X X X X X X X X DO 0 |D7 [D6 | D5 | D4 | D3 | D2 | D1
1 1 0 1/X X X X X X X X D6 |D7 |D5|{D4 |D3|D2|{D1|DO| O
1 1 1 1 X X X X X X X X Do D7 |D7 | D6 | D5 | D4 | D3 | D2 | D1

Figure 3-40 shows the PLPL specification for this function.
Figure 3-41 shows the fuse map of 8-bit registered arith-
metic/logical shifter function implemented in a single Am-
PAL22V10. As shown in the figure, each output requires only

five logical product terms: one for LOAD, one for arithmetic
shift right; one for arithmetic shift left, one for logical shift right,
and one for logical shift left.

3-48

6¥-€

DEVICE EIGHT_BIT_ARITHMETIC_LOGIC_SHIFTER (PAL22V10) END.

PIN

DEFINE

BEGIN

cK 1 TEST_VECTORS

SEL =2 " HIGH -> ARITHMETIC SHIFT, LOW -> LOGICAL SHIFT" IN CK SEL SHIFT EN LOAD D([7:0

SHIFT = 3 " HIGH -> RIGHT SHIFT, LOW -> LEFT SHIFT" OUT CRY Q[7:0] ;

EN =4 " OUTPUT ENABLE "

LOAD =5 BEGIN

D[7:0] = 6:11,13,14 "CK SEL SHIFT EN LOAD D7 D6 D5 D

CRY = 15 cC X X 0 0 X X X X

Q[7:0] = 23:16; cC X X 11 1101
c1 1 1 0 X X X X

LOGIC = /SEL ; c1 o0 1 0 X X X X

ARITH = SEL ; c1 0 1 0 X X X X

LEFT = /SHIFT ; c o 1 1 0 X X X X

RIGHT = SHIFT ; c o 1 1 0 X X X X
co o 1 0 X X X X
co o 1 0 X X X X

IF (EN) THEN ENABLE() END.

IF (LOAD) THEN Q[7:0] := D[7:0] ;
ELSE BEGIN
IF (ARITH*RIGHT) THEN BEGIN
Q[7] :=Q(7)1 ; " Q7] IS A SIGN BIT "

Q[é] := Q[71 ;
Q[5:01 := Q[6:1] ;
CRY := Q[0] ;

END ;

IF (ARITH*LEFT) THEN BEGIN
Q[7] := Q71 ;
Q[6:11 := Q5:0] ;
Q0] :=0 ;
CRY := Q[6] ;

END ;

IF (LOGIC*RIGHT) THEN BEGIN
Q[7y =0 ;
Q[6:01 := Q[7:1] ;
CRY := Q[O0] ;

END ;

IF (LOGIC*LEFT) THEN BEGIN
Q[7:1] := Q[6:0] ;
Q0] :=0 ;
CRY := Q[7] ;

END ;

Figure 3-40. PLPL Specification for an 8-Bit Arithmetic Logic Shifter
END ;

1

N~

X X X X X X X - X O

’

3

D
X
0
X
X
X
X
X
X
X

2 D1 DO CRY
X X z
11 L
X X H
X X H
X X H
X X L
X X L
X X L
X X L

2
&

T F M X XTXT TN
T rxTCFT~~XTFCNO

T -rxTxTF~cx>TXTXTN

v

:zrzz:l‘:Ng

w

rTxTxC-xTXTXTNO
= =T~ T~ XX MCFND

2

rT T FC-CTCITTNO

~N

rrTr-rr-crC-xx

1 Qo

w

INPUT LINES

J

(TOALL

[outPur) Q7
LOGIC <)
-~ CELL
4
N
. ouTeuT Q6
: Lo — 22
cew
SEL o G
N A
2 —1% &
OF ~
: outpyt Qs
: ey S—
CELL
SHIFT S
3—Px =} !
OE .
: amel L%
. MACRO- 20
o B
EN o >
+—Px =1 —
OEo 0
H ouTPuT Q3
- B
g LOAD
£ os—x = -
é OE
. ouTPuT . Q2
: . — 18
CELL
D7 s >
6—1% <" I
OE - N
: oupuT Qi
R LOGIC —17
CELL
D6 D
e « -
OE
outeyr Qo
. Loac — 16
H MACRO-
CELL
D5 n S—
s—Px F <)
L N
OE o
°
ouTRyY CRY
. LOGKC 18
: MACRO-
cELL
D4 >
—Px =t —
OE -y,
: Eoed Do
: e "
D L hoeew
‘:—1‘) “ >
L N L___J
D2 se o (TO ALL REGISTERS)
" —E 4 3
D1

Figure 3-41. Fuse Map for an 8-Bit Arithmetic Logic Shifter

3-50

Eight-Bit Registered Barrel Shifter

In most data processing systems, some form of data shifting or
rotation is necessary. This elementary function is used in such
diverse applications as floating-point arithmetic and string

manipulation. In a typical computer, the shifter is located on the
output of the ALU. This architecture allows single-cycle add
and shift, and mask and shift operations (See Figure 3-42.a for
a typical computer ALU architecture).

INPUT DATA BUS

~~

<

REGISTER
FILE

~r

hvd

ALU

SHIFT
DISTANCE —»| SHIFTER
CK ——> REGISTER

=

03862A-81

OUTPUT DATA BUS

Figure 3-42.a Typical ALU Architecture

Design Requirements

A barrel shifter takes input data and cyclically rotates it by an
arbitrary number of bit positions. This cyclic rotation implies
that the data rotated from the most significant end of the shifter
is returned to the least significant end. The name barrel shifter
is used because of the circular nature of the shift operation.

The storage register on the output of the shifter is used in this
architecture to pipeline the data operation, increasing through-
put. The three-state buffer on the register output is necessary
to interface the ALU to the output data bus.

3-51

Design Approach

An 8-bit registered barrel shifter requires at least eight data
inputs, eight registered data outputs, three control lines to
specify shift distance, a clock input, 2 Reset input and an Out-
put Enable that controls the tri-state buffer on the register
output,

Figure 3-42.b shows the block diagram for an 8-bit registered
barrel shifter while Table 3-12 shows the function table.

As seen from Figure 3-42.b, the registered barrel shifter func-
tion requires a total of 14 inputs and 8 outputs. This function
can be easily implemented in a single AmPAL22V10 device.
The AmPAL22V10 can provide up to 22 inputs and 10 outputs.
The.dynamic I/O programmability of the AmPAL22V10 permits
it to meet the 1/O requirement.

Figure 3-43 shows the PLPL specification for this function.
Figure 3-44 shows the fuse map of 8-bit registered barrel shift-
er function implemented in AmPAL22V10.

D7 D6 D5 D4

D3 D2 D1 DO

S0

S AmPAL22V10

2 ——»
CLK —————p

RST

: OE

s

Q7 Q6 Q5 Q4

!

Q3 Q2 Q1 Qo 08479A-33

Figure 3-42.b Block Diagram for an 8-Bit Registered Barrel Shifter

TABLE 3-12. FUNCTION TABLE FOR

AN 8-BIT REGISTERED BARREL SHIFTER

Input To Output Mapping
Q5 Q4 Q3 Q2 Q1 Qo

Control In
S§2 §1 S0 Q7 Q6
0 0 0 D7 D6
0 0 1 D6 D5
0 1 0 D5 D4
0 1 1 D4 D3
1 0 0 D3 D2
1 0 1 D2 D1
1 1 0 D1 DO
1 1 1 DO D7

D5 D4 D3 D2 D1 DO
D4 D3 D2 Dt Do D7
D3 D2 D1 Do D7 D6
b2 D1 DO D7 D6 D5
Dt DO D7 D6 D5 D4
Do D7 D6 D5 D4 D3
D7 D6 D5 D4 D3 D2
D6 D5 D4 D3 D2 D1

DEVICE EIGHT_BIT_BARREL_SHIFTER (AmPAL 122V10)
PIN cLk =1
D[7:0] = 2:9 /Q[7:01 = 23:16
SEL2 =13 SELT =11 SELO = 10
OE =14 RST = 15;
BEGIN
IF (RST) THEN ARESET();
IF (OE) THEN ENABLE(Q[7:01);
IF (/SEL2 * /SEL1 * /SELO) THEN Q[7:0]1 := D[7:01;
IF (/SEL2 * /SEL1 * SELO) THEN Q[7:0] := D[6:0]1, D[7];
IF (/SEL2 * SEL1 * /SELO) THEN Q[7:0] := D[5:01, D[7:6]1;
IF (/SEL2 * SEL1 * SELO) THEN Q[7:0] := D[4:01, D[7:5]1;
IF (SEL2 * /SEL1 * /SELO) THEN Q[7:01 := D[3:01, D[7:4];
IF (SEL2 * /SEL1 * SELO) THEN Q([7:01 := D[2:01, D[7:3];
IF (SEL2 * SEL1 * /SELO) THEN Q[7:0] := D[1:01, D[7:2];
IF (SEL2 * SEL1 * SELO) THEN Q[7:01 :=D[0]l, D[7:1];
END.
" FUNCTION TABLE SPECIFICATION "
TEST_VECTORS
IN CLK RST D[7:01 SEL2 SEL1 SELO;
1.0 OF;
OUT Q[7:01;
BEGIN
CLK RST D[7:0] SEL2 SEL1 SELO OE Q[7:0] "
n "
c 1 00000000 1 0 1 0 2222222%;
c o 1M11MN 0 1 0 1 HHHHHHHH;
C 1 XXXXXXXX X X X 1 LLLLLLLL;
c 0 XXXXXXXX X X X 0 2z222222Z;
c 0 00000000 0 0 0 1 LLLLLLLL;
c o 111N 0 0 0 1 HHHHHHHH;
c o o111 1 0 0 1 HHHHLHHH;
c 0o o1nMmMin 0 1 0 1 HHHHHHLH;
4 0 o111 1 1 0 1 HHLHHHHH;

END.

Figure 3-43. PLPL Specification for an 8-Bit Registered Barrel Shifter

3-53

CLK

° ” .* 20 2 2 2 * “©
&: 4: (TOALL
Cd Qo
M LOGIC =
. — MACRO-
7 — | hceu
“ -
L N
Of o
. ouTPuT Qt
: v 2
cew
Do —>
2 —|:) ﬁ<
OE -
. — ouTPuT Q2
: — 3 2
CELL
D1 n —b
3 —-1:) {:ﬁ
OE
. ouTPUT Q3
: WACRO- 20
CcELL
D2
4 —l:x ‘:ﬁ
OE
o —H
. — ouTPuT Q4
: 2% | oot 10
3 CELL
s T
W D3 s —
5 s -—I:) “:ﬁ F —
g OE o
. — ouTPUT Q5
e fvd r—18
CELL
D4 s —
e—x yrdq? L
v N
OE -
°
. ouTeuT Q6
: wAoRo. —17
CEW
D5 » t+—
% =<t —
OE o
M ——] ouTPUT Q7
: £33 — N S—
CELL
D6 4]
s—Px £ 4] S
OE
outPur ASYNC
: ACRO- —1§
: CEW
D7 —
—% = S—
| N
OF
[oureur) OE
: Looe "
SEL 0 Lo
10w—Px <t
SEL 1 SP o— SYNCHRO!
N (TO ALL REGISTERS)
n—Px r <) ! —1
L s N

3.4 MICROPROCESSOR

INTERFACE

3.41 THE INTERFACE PROBLEM

Severai problems are associated with interfacing a peripherai
device to a CPU when the two families are not designed to be
pin-to-pin compatible. One major probiem involves the various
control signals that each chip uses. What's more, the popular
MOS microprocessors differ not only in their instruction set and
internal architecture, but also in their I/O interface signals and
timing, and in the way they handle DMA and interrupts. Part of
the pin incompatibility involves genuine signal differences or
timing differences. Some pin-to-pin differences require nothing
more than name changes.

Problems to Look for When Interfacing

The following is a list of areas to watch out for when interfacing,
and are discussed in detail:

I. Timing

A. Setup and Hold Times

i. CS setup and hold to strobe.

ii. Address setup and hoid to strobe.

ii. Data setup and hold to strobe (rising or falling)
Note: Strobe may be RD, WR, or DS.

Puise Widths

i. AS or ALE pulse widths.

i. RD, WR, DS pulse widths.
Pulse widths can usually be stretched by inserting
Wait States if necessary.

Interrupts

Interrupt structures vary. Mixing interrupt structures
is the toughest because two or more different sets of
timings may need to be generated.

LOGIC

When to expect a cause of probiem and the solutions.

Metastabie Operation

ll. Bus Structures

i. MULTIBUS
ii. iLBX
iii. iSBX Muiltichannel

. Timing

Setup and Hold Times

If one remembers nothing else from this book, one should
remember the following: The most common interfacing error is
the violation of setup and hold times! More specifically, three
areas of setup and hold time relationships need close atten-
tion, and we will discuss them after a brief overview.

Setup and hold time are the minimum time the proper signal
must be on the bus before and after the strobe. Minimum setup
and hold time criterion must be met for proper interface opera-
tion. When interfacing involves direct hookup, individual
specification can be looked up and the worse case calculated
to meet timing requirements. If the interface involves additional
components, such as buffers or transceivers, the data to strobe
timing relationship may change and correction by delay
devices such as flip-flops or latches may be necessary to bring
the system circuit within timing requirements. The following are
areas that need special attention:

i) Chip select (CS) setup and hold time to strobe. (Figure
3-45).

Here we use RD as the strobe. tg is the minimum CS to
strobe setup time. t, is the minimum hold time. Com-
parisons are made in conditions where these require-
ments are not met and could lead to the wrong device
being selected (Figures 3-46 and 3-47).

CS

— tew

ty

02188A-1

Figure 3-45.

3-55

CS

ts tew —
RD
02188A-2
Figure 3-46.
tew + ts
RD
02188A-3
Figure 3-47.
Note that it is often assumed that CS and RD or CS and Address hold time will not be met if CS is, due to internal
WR are simply gated together. This is true for most periph- delay, late in_going HIGH. This can be compensated by
erals but not in all cases. Check the manufacturer's delaying the WR strobe. Failure in meeting either require-
specification. It is often possible to implement and simplify ment will result in incorrect addressing.
the design but manufacturers do not guarantee operation iii) Data setup and hold times to strobe (WHR).
in these unusual modes. (Figures 3-48 and 3-49)

ii) Address setup and hold times to strobe. The data setup and hold times are measured with respect
(Figures 3-48 and 3-49) to the rising edge of the strobe. The data is represented
The figures illustrate the relationships between strobe to here as a window. If the strobe goes HIGH too late, data
address setup and hold, and CS. Address setup time is hold time will not be met, and incorrect data may be read.
measured with respect to the leading edge of the strobe. If This may happen if the strobe is purposely delayed to meet
the strobe is not sufficiently delayed, after the address is Address setup and hold times. The data can be latched to
valid, the address setup time requirement will not be met. allow a larger window so that data hold time can be met.

3-56

apDr XY

— tan f——

cS \ |
—» tas |E&—
‘WR \ /
je——— tos ——]t f—
DATA 1
Figure 3-48. 02188A-4
abDrR YOO X
cs \ /
je— tas 3t o
‘WR a
je—— tos —! & ton
DATA A N
Figure 3-49. 02188A-5

Il. Metastable Operation

Metastable conditions occur in all flip-flops when the active
clock edge samples the input at exactly the same time the input
changes state. When this happens, the cross-coupled latch at
the output can reach a balanced, symmetrical condition in
which it will remain for some arbitrary time before returning to
its proper state. This problem is faced by designers when
interfacing asynchronous digital signals. Although most difficul-
ties can be overcome somewhat easily, there is a more funda-
mental problem that defies a perfect solution. The following is a
general overview of the metastable probiem.

Latches and flip-fiops are normally considered bi-stable
devices, since they have two unconditionally stable operating
points, either HIGH or LOW. There is, however, a third operat-
ing point when the cross-coupled arrangement is exactly bal-
anced. This operating point is stable only if there is no noise in
the system and the system is perfectly balanced. The condition
is called metastable (meta=Greek for “between”). A metas-
table condition will last only long enough for the circuit to fall
into one of the two stable operating points. This period can be
many micro-seconds, or milliseconds, for devices as fast as a
74S74 fiip-flop. If a flip-flop has reached the balanced, metas-
table condition, it may remain in this state for an undetermined
time, perhaps 1000 times longer than its normal response
speed. Previously, the designer of asynchronous system had
only one remedy for the metastable prcblem; two or more
synchronizer flip-flops could be cascaded. This can reduce the
probability of a metastable output but will also increase the
throughput delay.

3-57

When to Expect this to Cause a Problem?

In most digital systems, certain asynchronous events
(keystrokes, incoming data, interrupts) must be synchronized
to the computer clock. The textbook solution is a fast, clocked
flip-flop, like the 74S74, in which the asynchronous signal is
applied to the D input and clocked with the system clock. This
usually results in a perfectly synchronized output.

If the data sheet specified a setup time requirement (3 ns), this
means that any signal that arrives at least 3 ns before the clock
edge will achieve the intended result, i.e., a HIGH will set, a
LOW will reset the flip-flop. Great for synchronous systems!
But what happens when the asynchronous input violates this
setup time requirement and changes less than 3 ns before the
clock edge? Most of the time, nothing. The actual moment
where the flip-flop samples the D input is somewhere in the
guaranteed range, i.e., somewhere less than 3 ns before the
clock. So the flip-flop makes the decision. It either senses the
change on the asynchronous input and therefore changes the
Q output, or it ignores the change and doesn't change the Q
output. So the only thing lost is one clock cycle. Unfortunately
that's not always true. If the D input changes exactly at the
same moment that the flip-flop makes its decision, it might
transfer exactly the amount of energy to kick the output latch
into the metastable balanced condition, from which it will
recover after an unpredictable delay (measured in nanosec-
onds, microseconds or even milliseconds).

Any latch, flip-flop or register has a “moment of truth” some-
where inside the guaranteed range of setup time where it ac-
tually makes up its mind. If the input changes at that very
moment, the output is no longer synchronous. This “moment of
truth” is a very short window. For TTL flip-flops, it is of the order
of 10 ps; for MOS devices, it is more like 50 ps to 100 ps.
For purposes of this discussion, this timing window will be
called “t”.

Here are two extreme examples. In each case there is a need
to synchronize asychronous inputs that have no phase or fre-
quency relationship with the computer ciock.

* Data signal derived from a disk, roughly 6 MHz with enough
frequency modulation and jitter to make it totally asynchro-
nous to the 10-MHz computer clock.

Every time the Data Signal falls into the “window”, the probabil-

ity of hitting the window is t divided by the clock period, or even

simpler: clock frequency times t.

M = Metastable Rate = f(D).#C) .t
f(D) = Device Frequency = 6 MHz. 10 MHz .
10 ps
f(C) = Clock Frequency = 600 Hz

The synchronizer goes metastable 600 times per second.
* Keyboard entry: one keystroke per second synchronized
with a 100-kHz clock.
M = Metastable Rate = 1 Hz . 105 Hz . 10 ps = 10-6Hz
The synchronizer goes metastable with a statistical probability

of once per 108 sec., i.e., once every six weeks (assuming 5
eight-hour days/week).

“Going metastable” here means that the synchronizer output is
within a mid-level or oscillation range for an unpredictable time.
Most occurrences will last less than 50 ns, but may occasion-
ally last much longer - perhaps many microseconds. This cer
tainly can upset the timing chain.

A metastable latch or flip-flop has an unpredictable delay and
will therefore change its output at a time that differs from the
value obtained from the worst case timing analysis. In a slow
system this usually doesn't matter, but in a fast system it can
lead to a “crash”. :

Solutions

We cannot eliminate the basic problems but we can reduce the
probability in two ways:

1) Cascade two or more synchronizer flip-flops, which is the
method employed in all “metastable free” systems.

2) Use flip-flops that are less prone to metastable operation
than the popular 74S74. For example, the AMD Am29821-
26 registers are “metastable-hardened”. They show no os-
cillations and only a minimal increase in output delay when
hit right in the window.

Metastable operation is an inherent, so far incurable disease of
all asynchronous interfaces. Once understood, the problem
can be handled by reducing its probability to an acceptable
level. AMD's Am29821—26 registers vastly minimize this
problem. The Am29800 registers, while not totally immune to
this problem, are “metastable hardened” by means of a unique
circuit design that reduces both the probability and the delay of
any metastable condition. An artificially induced metastable
condition that failed to produce any output oscillation merely
increased the clock-to-output delay by 6 ns. This is an improve-
ment of many orders of magnitude over previously available
designs.

li. Bus Structures

In the course of interfacing, special attention must be applied
to the different standard bus systems. They are standard be-
cause they have the acceptance and support of the industry;
different because each evolved to satisfy a particular function.

Bus systems are developed to increase the flexibility and ex-
pandability of the mother board. They are also developed to cut
cost and hardware overheads. Since each bus structure has its
unique area of operation, each must be carefully matched for
proper interfacing.

The following are brief explanations on' different major bus
structures and areas of their involvement:

Big MULTIBUS vs. Little MULTIBUS

The big MULTIBUS architecture connects the single-board
computer with its CPU, memory and I/O to the outside world.
The so-called little MULTIBUS is the bus between the CPU and
the other components on the single-board computer.

3-58

MULTIBUS

The MULTIBUS evolved, in structure, from 8-bit to 16-bit capa-
bility; and in architecture, expansion via the iSBX bus and
Multi-channel bus, and iLBX bus. Expansions were necessary
because a single system bus structure was no longer capable
of supporting the demands of today’s high-speed, high-
performance VLSI microprocessor technology, and its increas-
ingly complex configurations.

iLBX

The iLBX bus provides users the architectural solution that
extends the high-performance benefits of a processor's on-
board local bus to off-board memory resources. Powerful iLBX
system modules can be created using the bus to connect a
single board computer and multiple memory cards. The iLBX
bus preserves the advantages in performance and architecture
of on-board memory, while allowing a wide range of memory
capabilities to match application requirements.

isBX
The iSBX bus provides users with a low cost, on-board expan-
sion solution for Multibus single board computers. The iSBX
boards allow addition in the areas of parallel 1/O, serial 1/O,
peripheral controllers, and high-speed math, without going to
the expense of additional full Multibus board. iSBX bus com-
patible boards enable users to buy exactly the capabilities they
require for their Multibus systems, which keeps both system
size and system cost at a minimum.

Multichannel

Multichannel bus provides users with a separate path for DMA
/0 block transfers. The new VLSI microprocessors that
process data at very high rates require the connection of
numerous high-speed 1/O devices to the system bus. The Mul-
tichannel bus provides for high-speed block transfers of data
over an 8/16-bit wide data path between peripherals and single
board computer resources.

Motorola has its own equivalents to these busses. The signals
and interfaces are slightly different but the functions are similar,
and the objective of higher throughput is the same.

3-59

3.4.2 INTERFACING TO THE
8086/80186/80286

Overview

The 8086 is a general-purpose 16-bit microprocessor CPU.
The CPU has a 16-bit data bus multiplexed with 16 address
outputs. There are 4 additional address lines (segment ad-
dresses which are multiplexed with STATUS) that increase the
memory range to 1 Mbyte. 8086 addresses are specified as
bytes. In a 16 bit word, the least significant byte has the lower
address and the most significant byte has the higher address.
This is compatible with 8080, 8085, Z80 and PDP11
addressing schemes but differs from the Z8000* and 68000
addressing.

The data bus is “asynchronous”, i.e., the CPU machine cycle
can be stretched without clock manipulation by inserting Wait
states between t2 and t3 of a read or write cycle to accom-
modate slower memory or peripherals. Unlike the 68000, the
8086 has separate address space for /O (64 kBytes).

The 8086 can operate in MIN. or MAX. mode. Maximum mode
offloads certain bus control functions to a peripheral device
and allows the CPU to operate efficiently in a co-processor
environment. A brief discussion on both the MIN. and MAX.
modes are as follows:

MIN. mode: I/O addressing is defined by a HIGH or the
10/M output, and activated by the RD output
for reading from memory, or I/O or activated
by the WR output for writing to memory
or /0.

DMA: The Bus is requested by activating the HOLD input to
the 8086. Bus Grant is confirmed by the HLDA output
from the 8086.

MAX. mode: 1/0O operation is controlled by two outputs

(8086 plus from the 8288.

8288) IORC: active during Read from /O
IOWC: active during Write to I/O

MRDC: active during Read from memory
MWTC: active during Write to memory

DMA: The Bus is requested and Bus Grant is acknowledged
on the same pin (RQ/GTO OR RQ/GT1) through a
pulsed handshake.

Interrupts in Min. and Max. Modes:

Interrupt is requested by activating the INTR or NMI inputs to
the 8086.

Interrupt is acknowledged by the INTA pin on a MIN. mode
8086 or by the INTA pin on the 8288 in MAX. mode.

Note: There is no RD or IORC during the interrupt-
acknowledge sequence.

8086 and Z8000 Peripherals

Z8000 peripherals may be interfaced to the 8086 in many
ways. One thing distinguishes the Z80xx peripherals from
others is that they require data to be valid prior to the falling
edge of DS during a write. The way to go about meeting this
requirement is to use a 74L.S74 to delay the falling edge of WR
and OR RD with WR. By using the asynchronous ready mode
of the 8284A and the other half of the 74L.S74, one Wait State
is inserted in both the read and write cycles, and thus stretches
DS to meet the minimum pulse width requirements. In the ex-
amples that follow, one assumes that there are other devices in
the system that require the use of the Am9519A. In another
example, the Am9519A is not needed to interface the peripher
als interrupt structure. INTA is tied HIGH since the vector will
be supplied by the Am9519A. The interrupt service routine can
read the peripheral status to determine the cause of the inter-
rupt. The service routine should also clear IP and 1US before
returning to mainline code. Note, since INTA is tied HIGH, IUS
needs not be cleared. If INTA is activated, IUS must also be
cleared.

Many of the design examples in this book use PAL devices.
PAL devices, in many cases, will be the most cost-effective
solution. The SSI examples show what is being accomplished
much clearer than by using a PAL device, which is a black box
to many. Gates are often left over from one circuit which can be
used to implement other circuits. Whether to use a PAL device
or do a discreet design is an individualistic choice and is not
always clear-cut. As a general rule, if you can replace four or
more packages, use a PAL device.

3-60

8086 and Am7990 LANCE

The LANCE, Am7990, has been designed to be interfaced
easily with the popular 16-bit microprocessors (8086/80186,
68000, Z8000, LSI-11). Most of the interface logic is embedded
inside the chip and is program selectable.

Although the LANCE itself has a multiplexed bus, it can easily
be interfaced to demultiplexed buses with a minimal amount of
effort. The following designs assume that the processor and
the LANCE reside on the same board. Address buffers and
data transceivers are set up to be shared between the proces-
sor and the LANCE. All of these designs use PALs to reduce
the parts count.

The 8086 to LANCE interface requires a different Bus Request
handshake, depending on whether the 8086 is configured in

MAX. or MIN. mode. The 8086 has a bidirectional signal for
both Bus Request and Bus Grant (RQ/GT). Both Bus Request
(RQ), and Bus Grant (GT) to/from 8086 are one CPU clock
wide, and are synchronous to the CPU clock. Figure 3-50
shows a PAL design for the conversions in MAX. mode. This
PAL device is utilized to include other external logic require-
ments for interfacing the LANCE to 8086. The interface dia-
gram is similar to the one for the 80186 to LANCE interface
except for the changes made in programming the PAL device.
Interface timing diagram is shown in Figure 3-51.

Figure 3-52 shows a block diagram on the 8086 to Am7990
interface, in MIN. mode. The interface also employs a PAL
device to minimize parts count. The PAL equations are given in
Figure 3-53.

8086 CLK ——-—--Do--——

CLK
AmPAL16R4
86/90.PAL
(8088) RG/GT | GT HOLD f<@———— HOLD (LANCE)
R2 HLDA |—— HLDA (LANCE)
(0C)
AMPAL16RY RASQUL OSKOuY
PATOO" MARCH 20, 1984

8086 RQ/GT CONVERSION TO LANCE HOLD/HLDA

ADVANCED MICRO DEV
CLK NC HOLD GT
NC NC NC HLDA
RY 3 HOLD
D2 :z RV —
R2 :3 R1°D2
HLDA :s GT*R2

NC
D

ICES

NC NC NC GND
1

NC NC
2 W2 R1 NC NC Ve

- I_\'Dz_
« HLDA®D2

This PAL converts the request and grant (RQ/GT) of 8086,
when configured in maximum mode, to the LANCE Am7990
HOLD/HLDA . Both request (input to 8086) and grant (output
from 8086) are one clock wide and are synchronous to the
CPU clock.

Figure 3-50. 8086 RG/GT, Am7990 HOLD/HLDA Conversion PAL Device

02188A-19

N A R I R I I P I O O

/ .

p—
E——

HOLD
(INPUT)

R1 (OUTPUT)

7 1
) a rga

J“ﬂ
p—
o p—]

r 77 7
{ L o4 L

s 77

|
/-

D2 (OUTPUT)
R2 (OUTPUT) DMA REQ [l DMA DONE |
\ 7/’ {]z }
4]’ I/'
RQGT (INPUT) CPU BUS
q—‘_j ACKNOWLEDGE
HLDA (OUTPUT) q {6 i
77
Figure 3-51. AmPAL16R4, 8086 (Max. Mode) LANCE Interface Timing Diagram 02188A-20
S Vee Vee
e T LA 16-19 LAl LA 0-15 @
ex R
29843.¢ £ 29843 29863 _
Tt it ar
1 [T <F 11
Iy 15 1l
1=
To System
Ved A 16-19 AD 0—%] L>lag D 0-7 Vee ‘I;L 0-13 A 16-19
Ly INTR wr B
INTA INTA IR0 % R TCLK fe—
w 8259A ALy
- Vee DALD
RD
Hpa —{ >0 7 o
v i o<}
w @ PALISLS R Vee
VR VR 85/90.PAL .. —
DEN DEN fand adl
AE AE BAs BAs
oT/R oTR READ READ
READY) v CPURDY
8284 READV[=<- READY
RESETISTL__fes l__i FROM SYSTEM
RESET

Figure 3-52. Am7990 to 8086 interface

02188A-21

3-62

PAL16LS8 KHUYNH NGUYEN
PAT

FILE: 86-90-A.PAL AUG '85

8086 MINIMUM MODE TO LANCE INTERFACE
AMD

ALE /AS DIR NC NC DEN NC /READY HLDA GND
NC /DPURDY READ /R /T /DAS /WR /RD LE VcCC

/LE = /ALE + /AS
/CPURDY = /READY

; CPU (86) IS BUS MASTER

IF (/HLDA) DAS = RD + WR
IF(/HLDA) /READ = DTR
IF(/HLDA) T = DTR
IF(/HLDA) R = /DTR * DEN

i LANCE IS BUS MASTER

IF(HLDA) RD
IF (HLDA) WR

READ * DAS
/READ * DAS

Figure 3-53. Source Listing for Example of Figure 3-52

3-63

80186 to Am7990 LANCE Interface

Similar to the 8086 to Am7990, this interface uses a PAL
device design to reduce the parts count. Figure 3-54 shows
the interface block diagram. 80186/LANCE address and data
buses can be connected directly together since they both have
multiplexed buses. It seems natural to program the LANCE for
ALE output. However, the PAL device equations or indeed a
discrete design is easier if AS (CSR3, ACON=1) is used. This

is because the LANCE tristates ALE, the 186 does not. The

INTR, READY, and HOLD signals from the LANCE are open
drain and should be pulled up. The BM1 signal from the
LANCE or BHE from the 186 along with AO can be used to
decode the data transfer type (Word/Byte). The external ad-
dress buffers and data transceivers are enabled by the LANCE
and the 186. The buffers and transceivers are enabled by
whichever device is the master. The user should program the
BCON, BSWP to 0, and ACON to 1 in CSR3.

ADDRESS DATA
BUS BUS l—l
(2
EIVCC
>
< ;’ —
T
Am29841 Am29841
LE LE 7 Am29863
e y
AD45-ADg < > DAL45-DALg
Aq9-Atg A19-Aq6
DALI
DALO
Vee
LE IT IR
ALE »1 ALE IAS AS
DT/R DTR /DAS = - »1 DAS
RD 1} /RD PAL16L8 READ »| READ
WA ol wr 186/90.PAL Vee
DEN 1 DEN
ARDY ARDY /READY fet— »{ READY
HLDA Ics
80186 \ LANCE
A Am7990
HLDA >c »{ HLDA
PCS, »] CS
SRDY Vee READY —
_% FROM SYSTEM
INTO 94 INTR
BHE BM1
%Vcc
HOLD‘<——‘°< HOLD
Vcc%‘
RES f=- oJ RESET

Figure 3-54. 80186 to

Am7990 Interface 02188422

3-64

8086 and Am9516 Universal Both interface examples accomplish two major functions. First,

DMA Controller Interface when the Am9516 is bus master, it converts RD and WR into
R/W and DS, and vice versa when the Am9516 is not the bus
Am9516 in MIN. Mode master. Secondly the buffer controls, TBEN and REBN, are

Figure 3-55 illustrates the interface of the Am9516 to the generated from DEN and DT/R .

8086 in the MIN. mode configuration. Figure 3-57 illustrates ~ The two examples show different types of latches and
the interface in MAX. mode. The interfaces could be accom- transceivers and there are many more to choose from. The
plished by using rather complex implementation of standard designer seiects those that best meet system requirements
SSI/MSI logics. Examples here replace the logic portion with a while trying to minimize the number of different parts that must
PAL device. The MIN. Mode uses the PAL device 16L8. Thisis ~ be stocked. Figure 3-56 shows the PAL equations for this
a good example of “GARBAGE COLLECTION". It reduces the example.

amount of real estate, interconnections, parts, and part types.

HOLD |« BREQ
HLDA »| BACK
Vcc Vee
8086 HjEA T 3 Am9516
DT/R »{ DT/ ITBEN TBEN
DEN —| IDEN IRBEN RBEN
ALE —! ALE P ALE D}« ALE
Ao |«
AmPAL16L8 ISEL
»| ADo BIO|¢ BIW
RD | IRD DS |« »| DS
WR »{ /WR IRW |« » RIW
WR R e RIW
M/i0 M/i0 CS |¢

T

v N Q

¢ Am25LS373 |7 Am2949 Am25L5138
LATCH »1 R TRANSCEIVER DECODER
y v v
M/i0 RD WR
02188A-29

Figure 3-55. The Am9516 UDC to 8086 CPU Interface (Minimum Mode)

3-65

AmPAL16L8 PALASM FILE

PAL16L8 .
PATO001 ;

Am9516 to 8086 min mode interface chip

Advanced Micro Devices

NC ALED ALEP HLDA BW ADO DT /DEN /SEL GND
NC /RBEN /RD ALE AO /RW /DS /WR /TBEN VCC

IF (/HLDA) DS
IF (/HLDA) RW

RD + WR
DT

wu

IF (/HLDA) TBEN = /DT * /SEL * DEN

IF (/HLDA) RBEN = DT * /SEL * DEN

IF (HLDA) RD = /RW * DS

IF (HLDA) WR = RW * DS

ALE = /ALEP * /ALED

A0 = /ADO * /BW * HLDA * ALED
ADO * BW * HLDA * ALED
/ADO * /HLDA * ALEP
A0 * /ALEP + AO * /ALED

DESCRIPTION

++ +

THIS PAL CONVERTS THE CONTROL SIGNALS TO INTERFACE THE 8086 IN

MIN MODE TO THE Am9516 DMA CONTROLLER.

THIS IS DONE IN MAX MODE.

ANOTHER EXAMPLE SHOWS HOW

Figure 3-56. Source Listing for Example of Figure 3-55.

Am9516 in MAX. Mode

This MAX. mode interface between the 8086 and Am9516
(Figure 3-57) also uses PAL devices to reduce component
count.

The example makes several assumptions which result in a
slightly more complex design than absolutely necessary. The
8086 is assumed to be in MAX. Mode, and the design has to be
compatible with a MULTIBUS or similar interface; the 16R4
and 8288 could be eliminated if this is not the case.

The 16R6 (Figure 3-57) is a PAL device that performs a
function similar to the 8288, that is, it converts the processor’s
status signals and clock into control signals. In this case, the
signals are, R/W, and Data Strobe (DS), Interrupt Acknowl-
edge (INTA) and Peripheral Acknowledge (PACK). This PAL
device, Figure 3-59, basically generates ZBUS signals for
Zilog peripherals. In the example, it connects to the Am9516
(UDC). The DMA Controller is very similar to the AmZ8016
except its bus interface has been modified to interface to non-
multiplexed buses. This was changed from the previous design
using a 16R8 to eliminate problems due to skew between OSC
and CLK.

The 16R4, Figure 3-58, has two functions. The first is con-
necting the MIN. Mode protocol of the Am9516 or similar

device to the MAX. Mode protocol for bus exchange. The
74L.S03s are used to aid in this function. The timing waveform
illustrates what happens in detail. The basic philosophy is that
arising edge on the HOLD input generates a pulse that is one
clock wide. The CPU samples this pulse and, in response,
issues a one-clock-wide pulse. The 16R4 uses this response
pulse to generate HLDA. When the Am8516 has completed the
necessary transfer, HOLD transitions HIGH to LOW. This gen-
erates another pulse to the CPU signalling that the Am9516 is
done and that the CPU may continue.

The second function of the 16R4 is the conversion of R/W,
DS and M/TO into the MULTIBUS-compatible signals
/MRDC, /MWTC, /IORC, and /IOWC, when HLLDA is HIGH. Itis
possible to collapse the 74L.S03s into the PAL device, thus
reducing the external logic required to only one open collector
inverter. The disadvantage, however, is that it adds two addi-
tional clocks for the bus exchange overhead, one during ac-
quisition of the bus and one on bus release. For block
transfers, this is not significant but it may be undesirable when
performing single transfers, or short burst, or when in Demand
Mode. To eliminate the 741803, change the equation for R2 to

/R1+/D2 + R1 + D2,

and then drive the /[RQ/GT] line with a 74L.805 from the R2
output.

3-66

CLOCK I‘ bc&m —l
74LS03
OLK D, CLX oL |- BREQ
HLDA »| BACK
AmPAL16R4
74LS03 —>| TS
IRy
RO/GT [« IRy —| PID
8086 H —{/RQGT
CPU t 10E —>| CLK
CEN ;
os 8288
] cLK AEN |« HLDA Am9516
Sz —p{ 52 MRDC IMRDC IRW & »{R/W UDC
5 »{51 MWTC IMWTC /DS |« »| DS
5 » S TORC IIORC IMIO | MO
ToeR TOWT i nowc
‘L vYw
»iLock 10 |4—
< IRDY
CIK »{ CLK IRW
L—>/s, DS
> /S, IIACK | INTACK
s, IAS}—>
AmPAL16R6

02188A-30
Figure 3-57.

AmPAL16R4 PALASM File

B> Type Am9516 PAL
PAL16R4

8086 to Am9516 inter face
Advanced Micro Devices

CLK /RQGT HOLD NC NC NC /RW /DS MIO GND
/OE /MWTC /MRDC HLDA /D2 /R2 /R1 /IOWC /IORC VCC

IF (HLDA) IORC
IF (HLDA) IOWC
IF (HLDA) MRDC
IF (HLDA) MWTC

/MIO * DS * /RW
/MIO * DS * RW
MIO * DS * /RW
MIO * DS * RW

o nn

Rl := HOLD
R2 := /Rl
D2 := Rl

/HLDA := /Rl + /D2 * /HLDA +
/RQGT * /HLDA

DESCRIPTION

THIS DEVICE CONVERTS THE MIN MODE SIGNALS HOLD AND HLDA TO THE
MAX MODE /RQGT PROTOCOL. ADDITIONALLY IT GENERATES THE 8288
EQUIVALENT CONTROL OUTPUTS /MRDC, /MWTC, /IORC, AND /IOWC. THIS
PAL WAS USED TO CONNECT THE Am9516 TO THE 8086 IN MAX MODE.

Figure 3-58. Source Listing for Example of Figure 3-57

3-67

AmPAL16R6 PAL DESIGN SPECIFICATION
PAT 005 BY JOE BRCICH 5/10/83
8086 TO 85XX PERIPHERAL INTERFACE & JAMES WILLIAMSON 7/21/83
ADVANCED MICRO DEVICES

CLOCK RESET CLK /S0 /81 /82 /LOCK NC NC GND

/OE /AS /P1 JRW /DS /PO JIACK /RDY CLKD VCC
PO := /RESET * SO * /PO * /Pl +
/RESET * S1 * /PO * /Pl +
/RESET * S2 * /PO * /Pl +
/RESET * SO * Pl +
JRESET * S1 * Pl +
/RESET * S2 * Pl
Pl := /RESET * PO * /Pl +
/RESET * Pl * SO +
/RESET * Pl * S1 +
/RESET * Pl * S2
DS := /IACK * /PO * P1 * S0 * /S1 * S2 +
/IACK * /PO * P1 * /SO * S1 * S2 +
IACK * S0 * S1 * S2 * PO * /Pl * LOCK +

DS * SO * S1 * S2
DS * SO * /S1 * S2
DS * /SO * S1 * S2

RW := SO * /S1 * S2

IACK := /RESET * SO * S1 * S2 * /PO * /Pl * /LOCK

*

/RESET * IACK * SO * S1 * S2 * PO * /Pl * /LOCK

/RESET * IACK * LOCK * /DS

JRESET * IACK * /LOCK * DS * /PO * Pl

RDY := /RESET * SO * /S1 * S2 * PO * Pl +

JRESET * /SO * S1 * S2 * PO * Pl +
JRESET * RDY * SO0 * /S1 * S2 +
JRESET * RDY * /SO * S1 * S2 +
/RESET * IACK * SO * S1 * S2 * DS +
JRESET * RDY * S0 * S1 * S2

/CLKD = CLK

= /CLKD * PO * /Pl * /IACK * CLK

DESCRIPTION

THIS PAL TRANSLATES 8086 BUS SIGNALS INTO COMPATIBLE SIGNALS

FOR THE 9516. IT IS ALSO APPLICABLE TO 85XX PERIPHERALS BY
ALTERING /RW AND /DS TO /RD AND /WR. ONE FLIP FLOP IS AVAILABLE
TO GIVE THE NECESSARY DELAY TO THE FALLING EDGE OF /WR. THE DATA
STROBE TIMING FOR A WRITE CYCLE IS DELAYED UNTIL THE FALLING EDGE
OF T2 TO MEET THE REQUIREMENTS OF THE 85XX PARTS. THIS DESIGN
ASSERTS RDY TO DEMAND ONE WAIT STATE FROM,THE 8086. THIS WAIT
STATE IS NOT LONG ENOUGH FOR DESIGNS WHICH USE AN 8 MHz 8086.
THEREFORE, WITH AN 8 MHz CPU, 85XXA PERIPHERALS SHOULD BE USED.
AS AN ALTERNATIVE, THREE WAIT STATES CAN BE USED BY ALTERING THE
RDY EQUATION. THIS PAL ALSO TRANSFORMS THE 8086 TWO CYCLE
INTERRUPT ACKNOWLEDGE INTO A SINGLE CYCLE OF THE TYPE NECESSARY
FOR 85XX PARTS. THIS IS MADE POSSIBLE BY SAMPLING THE LOCK
STATUS, PO, Pl, AND IACK SIGNALS.

NOTE; THE CLK SIGNAL MUST BE EXTERNALLY INVERTED.

Figure 3-59. Source Listing for Example of Figure 3-57.

3-68

80186 to Am9516 Universal DMA Controller

The addition of the Am9516 to an 80186 design is a natural
choice in systems requiring four channels of DMA. Figure 3-60
shows the interface between the 80186 and the Am9516 with a
PAL device. PCSs is programmed to provide a latched A,
signal.

This interface accomplishes two major control transformations.
First, it converts RD and WR into R/W and DS when the 80186
is Bus Master, and vice versa when the Am9516 is Bus Master.
Secondly, the transceiver control signals, TBEN and RBEN,
are generated from DEN and DT/R. This example shows only
one possible configuration. Other configurations can be made
as dictated by system requirements. A PAL device is used here
to reduce board space.

16 MHz
ARDY |« »ip Q WATT
74L.S74
cp
PCSs »|piD
PCSo
HOLD |« BREQ
HLDA > BA
Vec Vee BACK
\4 :E
$
80186 T Am3516
DTIR » oT ITBEN TBEN
DEN »| IDEN IRBEN RBEN
ALE »| ALE P ALED |« ALE
ISEL |« »| S
AmPAL16L8 ‘!
»| ADo BW |« BIW
D > D 10s |« »{ 55
WH > W IRW | > RW
ALE RIW
52 Mo
CLKOUT ce a » cLock
AD15-ADg 74LS74 ADs5-ADg
E D a j
v U h 4
G)
Am25L8373 T
LATCH a »| K TRANSCEIVER
" v
ARDY RD WA MG A

Figure 3-60. Am9516 to 80186 Interface

02188A-31

3-69

AmPAL16L8 PALASM File

PAL16L8

PATOO1

Am9516 to 80186 interface chip
Advanced Micro Devices

NC ALED ALEP HLDA BW ADO DT /DEN - /SEL GND
NC /RBEN /RD ALE A0 /RW /DS /WR /TBEN VCC

IF (/HLDA) DS = RD + WR

IF (/HLDA) RW = DT

IF (/HLDA) TBEN = /DT * /SEL * DEN

IF (/HLDA) RBEN = DT * /SEL * DEN

IF (HLDA) RD = /RW * DS

IF (HLDA) WR = RW * DS

ALE = /ALEP * /ALED

A0 = /ADO * /BW * HLDA * ALED +
ADO * BW * HLDA * ALED +
/ADO * /HLDA * ALEP +
A0 * /ALEP +
A0 * /ALED

DESCRIPTION
THIS PAL CONVERTS THE CONTROL SIGNALS TO INTERFACE THE 80186 TO

THE Am9516 DMA CONTROLLER. OTHER EXAMPLES SHOW HOW THIS IS DONE
FOR THE 8086 IN MIN AND MAX MODES.

Figure 3-61. Source Listing for Example of Figure 3-60

3-70

iAPX286 to Am9568 Data Ciphering
Processor Interface

This interface is designed for an 8-MHz CPU where the DCP is
synchronously operating at the maximum clock rate of 4 MHz.
Block diagram for the interface is shown in Figure 3-62. The
Am9568 requires a narrower width of address strobe than the
Am9518. This works comfortably with the 60-ns address strobe
width of an 8-MHz CPU.

The MULTIBUS Mode Select input of the Bus Controlier 82288
is tied LOW to optimize the command and control signals for
short bus cycles. The Command Delay (CMDLY) becomes
active-HIGH for one 16-MHz clock cycle whenever the DCP is
selected to delay the Read and Write strobes by 125 ns. This
satisfies the timing requirement of the minimum delay between
ALE inactive and Read or Write strobe active of the DCP. An
open-collector gate must be added to ailow other peripherals to
drive this input.

The ALE, IORC and IOWC outputs of the 82288 are wired
directly to the DCP. ALE strobes a D-Flip-Flop to store the state
of Chip Select for the entire cycle.

Q; and the latched Chip Select CSL are ANDed externally to
generate the Synchronous Ready for the 82284. The 82284
samples the line at the falling edge of the clock. The registered

output Q5 is clocked with the rising edge of the same clock,
thus satisfying the setup and hold time requirements of the
82284. Two Wait States are inserted.

Half of the PAL device operates as a bidirectional Ad-
dress/Data Muitiplexer. During the Address Latch Enable ac-
tive phase, the state of A1 and A, is transferred to the AD4 and
AD2 pin of the PAL device. The DCP latches this two bit-
address with the falling edge of ALE.

When IORC and CSL are active, the states of ADy and ADo
are passed to D1 and D2 respectively. The DCP Register can
be read. If IOWC and CSL are active, the data path is turned
around: Dy and Dy are inputs, ADy and ADy are outputs.
The Address Hold Time of the PAL device is sufficient because
the address information is passed to AD4 and ADo whenever
IORC*CSL or IOWC*CSL are not true, i e. whenever data is
not transferred between the CPU and the DCF.

The Read Data Hold Time requirement of 5 ns of the Am9568
is satisfied by the propagation delay of the PAL device.

The Read Data Hold Time requirement of 5 ns of the iAPX286
is also satisfied by the PAL device.

The Master Port Chip Select (MCS) input of the DCP is con-
nected to the unlatched address decoder output.

Figure 3-64 shows the source listing and Figure 3-65 provides
the pin descriptions.

D1,D2 AD1,AD2
Az -] A2
Ay -»| A
wio * becooer [> D a
. —>pD CLK. @ -»| CcsL fory
iAPX286 AmPAL16R4 Am9568

aboR b »| ALE Q2 CLK

»| C5

—=—] CMDLY
CLK »| cLk
82284
M oc
SRDY |« ﬂC;L_— -
SRDVEN BRC TOWE
? S y
ALE +| ALE
CMDLY ¢
82288
IORC -»| MRD
ioweC »| MWR
02188A-43

Figure 3-62. iAPX286-Am9568 Interface

The DCP Clock

The PAL device synchronizes the DCP clock to the Data
Strobes IORC and IOWC (Figure 3-63). It also divides the
16-MHz system clock (8-MHz CPU clock) down to the maxi-
mum DCP clock rate of 4 MHz. At this clock rate, the Data
Strobe Delay to the DCP clock must be 0-30 ns. The Bus
Controller is specified to generate a Data Strobe timing of 3-15
ns to the falling edge of CLK (16 MHz). Because of the higher
propagation delay of a standard PAL device, the registered
outputs are toggled at the rising edge of CLK before the Data
Strobes become inactive. This gives additional 32.5 ns for the
DCP clock signal path.

Qq to Qg are three outputs of the PAL device state machine.
The registered outputs are clocked with the rising edge of the
16-MHz 82284 clock. Whenever ALE and CS are active, Qq to
Qg are set to the initial state. Q4 to Qg are outputs of a 3-bit
down counter, with Qg as the most significant bit.

Qg is used to generate the SRDY signal for the 82284 as
mentioned above.

Q. is the DCP clock. This design must guarantee that the
minimum DCP clock HIGH or LOW time is at least 115 ns or
two 16-MHz clock cycles. This is done by toggling Q. only

during phase 2 cycles of the CPU. The CPU design guarantees
that there is always a phase 1 cycle between two phase 2
cycles.

Assuming a typical PAL device propagation delay of 25 ns,
timing parameter tCDS (Time Clock Data Strobe) is 10.5 to
22.5ns (3 + 32.5 - 25nsto 15 + 32.5 — 25 ns). This satisfies
the 0 to 30 ns requirement.

The AmPAL16R4 has active-LOW outputs. But one output, Q,,
should be active-HIGH. The equation for Q, was derived to be

Q=ALE*CSQ;*Q, Q" Q,

To compensate for the inversion in the PAL device, either de
Morgan Theorem or Karnaugh-Veitch diagrams can be used to
convert it to the form shown in PAL device Design Specifica-
tion. .

Improvements

The DCP needs two Wait States only when the Control Regis-
ters are read. Data Register read or writes and Control
Register reads can be executed with only one Wait State,
which improves the Data Ciphering speed of this interface. The
more sophisticated Wait control logic and the two external TTL
gates can be integrated into one AmPAL22V10 device.

3-72

CLK

PCLK

ALE

CMDLY

o

2

RC/IOWC

SRDY

csL

DATA (READ)

DATA (WRITE)

ADDRESS

cs

(W)

DATA VALID x

ADDRESS VALID

02188A-44

Figure 3-63. Timing Diagram

3-73

PAL16R4 PAL DESIGN SPECIFICATION
DCP043 JUERGEN STELBRINK 8-23-83
iAPX286 - Am9568 (DCP) INTERFACE DEVICE

ADVANCED MICRO DEVICES

CLK /CS CSL ALE /IORC /IOWC Al A2 NC GND

JOE D1 D2 /Ql Q2 /Q3 CMDLY AD1 AD2 VCC

Q1 = ALE*CS + /Ql

/Q2 1= Ql%/Q2%/ALE + QLl*/Q2%/CS + /Q1*Q2%/ALE + /QLl*Q2%/CS
Q3 =

ALE*CS + Q1*Q2*Q3 + /Q1*Q2*Q3 + Q1*/Q2*Q3 + /Q1*/Q2%*/Q3
JCMDLY := /ALE+/CS

IF(CSL*IORC) /D1 = /AD1

[}

IF(CSL*IORC) /D2 /AD2
IF(CSL*/IORC) /AD1 = /ALl*ALE + /D1*/ALE

IF(CSL*/IORC) /AD2 = /A2*ALE + /D2%*/ALE

FUNCTION TABLE

CLK /CS CSL ALE /IORC Al A2 D1 D2 AD1l AD2 /Ql /Q2 /Q3 CMDLY

H / C
; I M
;¢ / C A O A A / / / D
; L ¢ S L R A A D D D D Q Q Q L
; K § L E C 1 2 1 2 1 2 1 2 Y COMMENT
C L H H H L L 2 Z L L L L L H ;1 (/CS ACTIVE)
X L H H H L H 2 Z L H L L L H
X L H H H H H Z Z H H L L L H
C L H L H H L L 4 L H H L L L ; 2 (WRITE CYCLE)
X H H L L L L L H L H H L L L ; (READ CYCLE)
C H H L L H L L H L H L H L L ;3
C H H L L H L L L L L H H L L ; 4
C H H L L H L H H H H L L H L ;5
C H H L H H L H H H H H L H L ; 6
C H H L H H L L L L L L H H L ; 7
C H H L H H L H L H L H H H L 8
C H L H H X X 2z2 2 2z 2 L L L L ;1 (NO /CS)

Figure 3-64. Source Listing for the Example of Figure 3-62

3-74

DESCRIPTION:

INPUT SIGNALS:

CLK 16 MHZ SYSTEM CLOCK OF THE 82284 SYSTEM TIMING CONTROLLER.
THIS CLOCKS TRIGGERS THE D-FLIP-FLOPS OF FOUR PAL OUTPUTS

/CS ACTIVE LOW UNLATCHED CHIP SELECT OF THE ADDRESS DECODER

CSL ACTIVE HIGH LATCHED CHIP SELECT. IT HAS TO BE ACTIVE TO THE

RISING EDGE OF ALE OF THE NEXT CYCLE
ALE ADDRESS LATCH ENABLE OF THE 82288 BUS CONTROLLER

Al,A2 DEMULTIPLEXED ADDRESS INPUTS. THEY CARRY THE 2-BIT REGISTER
ADDRESS FOR THE DCP

/IORC INPUT/OUTPUT READ CONTROL OF THE 82288

/IOWC INPUT/OUTPUT WRITE CONTROL OF THE 82288

OUTPUT SIGNALS:

/Q1 INTERNAL STATE SIGNAL. IT IS DIVIDED BY TWO FROM CLK AND
SYNCHRONIZED TO ALE

/Q2 INTERNAL STATE SIGNAL. IT IS DIVIDED BY TWO FROM /Q1 AND
SYNCHRONIZED TO ALE. IT IS THE INVERTED DCP CLOCK (4MHZ).
THE RIGHT EDGE OF Q2 IS SYNCHRONOUS TO THE DATA STROBES
/IORC AND /IOWC, IF TWO WAIT STATES ARE INSERTED.

/Q3 INTERNAL STATE SIGNAL. IT IS DIVIDED BY TWO FROM /Q2 AND
SYNCHRONIZED TO ALE. IT IS USED TO GENERATE THE SYNCHRONOUS
READY (/SRDY) FOR THE 82284. EXTERNALLY IT HAS TO BE
LOGICALLY AND'ED WITH THE THE LATCHED CHIP SELECT (CSL).

CMDLY COMMAND DELAY GOES ACTIVE FOR ONE CLOCK WIDTH TO DELAY THE
DATA STROBES. THE AM9568 REQUIRES A DELAY BETWEEN ALE
INACTIVE AND DATA STROBE ACTIVE.

BIDIRECTIONAL SIGNALS:

D1,D2 DEMULTIPLEXED DATA BUS LINES TO 8086 CPU

AD1,AD2 MULTIPLEXED ADDRESS/DATA BUS LINES FOR THE DCP

Figure 3-65. Pin Description for the Example of Figure 3-62

3-75

Am8530 to 80286 Interface

The Am8530 is a high-speed, dual-channel serial communica-
tions controller that supports a variety of advance
communication protocols. It supports data rates up to
1.5M bps.

This design note shows an Am8530 to an 80286 CPU interface
when no interrupts are used (Figures 3-66 and 3-67). The
design is for a CPU running at 5 MHz with a 100-ns system
clock cycle time. This clock is used to generate the clock for the
6-MHz Am8530 SCC.

Chip select generated by the external decoder in an 80286
system that is enabled by the M/IO- line will go inactive with the
falling edge of Tc-phase 1. However, the chip enable for the

SCC should stay valid for the entire read or write cycle. The
PAL device generates the chip enable signal for the SCC using
a structure equivalent to two cross-coupled NOR gates.

The Am8530 requires a minimum pulse width of 250 ns for RD
and WR control signals. For a 100-ns cycle time 80286 with no
wait state, these controls will be active for 200 ns only. SRDY
control is generated for the 82284 bus controller to guarantee
minimum RD and WR pulse widths for the Am8530.

CMDLY is not used in this design because the address to read
or write control setup time required is only 80 ns for the
AmB530; with a 100-ns system cycle time, the time between
ALE valid and /IORC or /IOWC valid is 100 ns. Even after
accounting for the address latch delay, 80-ns timing will still
be met.

RD
— I WR
BUS
8530
CONTROLLER scec
80286
CPU »IORC »| CE
» IOWC
PIALE »| 8530CLK
AmPAL16R4

—
DECODER

M/IO- >

82284
CLOCK
GENERATOR

N

CLK

SRDY

SRDYEN -%

08749A-2

Figure 3-66. Am8530—iAPX286 Interface

3-76

LL-€

" THIS PLPL FILE IS FOR A 16R4 THAT IMPLEMENTS THE LOGIC
NECESSARY TO INTERFACE AN Am8530 (SCC) TO AN 80286 SYSTEM.

DEVICE Am8530_to_80286 (PAL16R4)

PIN
CLK =1 vcc =20
/CS =2 /CE =19
ALE =3 /INTSO = 18
JIORC =4 /el =17
/10MC =5 /Qr21 =16
NC1 =6 /Qp31 =15
NC2 =7 NC5 =14
NC3 =8 /SRDY =13
NC4 =9 NC6 =12
GND =10 NC7 =11 ;

BEGIN

" CHIP ENABLE FOR THE Am8530 IS DERIVED FROM ALE AND
THE EXTERNAL DECODER CHIP SELECT OUTPUT. "

CE = CS * ALE + INTSO ;
INTSO = /¢ IORC * IOWC) + CE ;

" SYNCHRONIZE THE COUNTER WITH ALE. "

IF (CS * ALE) THEN Q[3:11 =7 ;

" COUNT DOWN SPECIFICATION FOR THE COUNTER. "
" " Q2 OF THE COUNTER IS THE CLOCK INPUT OF THE Am8530. "

CASE (Q[3:11)

BEGIN

0) Q[3:11 :=7;
1) Q[3:11 :=0 ;
2) Q3:11 :=1 ;
3)Q[3:11 :=2 ;
4) Q[3:1]1 :=3 ;
5) Ql3:11 := 4 ;
6) Qi3:11 :=5 ;
7) Q[3:1] =6 ;
END ;

" SRDY IS GENERATED FOR WAIT STATE GENERATION, IT IS SENT
TO THE 82284 CLOCK GENERATOR. "

SRDY = /(Q[3] * CE) ;

END.

Figure 3-67. Source Listing for AmPAL16R4 for the Example of Figure 3-66

Am9518 to 80286 Interface

The Am9518 Data Ciphering Processor encrypts and decrypts
data using the National Bureau of Standards encryption al-
gorithm. The DCP can be operated in either Multiplexed-
control or the Direct-control mode. This design shows the logic
necessary to interface the Am9518 Data Ciphering Processor
to an 80286 microprocessor system with a system clock cycle
time of 100 ns. The DCP is operated in the Multiplexed-control
mode with the C/K- pin tied LOW. (A HIGH level on C/K- will
place the device in Direct-control mode. This mode is suitable
for ciphering data using a high-speed controller for high-speed
applications.)

Two PAL devices are used to interface the Am9518 DCP to the
80286. The DCP has a multiplexed address/data port. Note
that only two bits (MP2 and MP1) are used for DCP register

addressing. PAL device 1 performs the necessary ad-
dress/data multiplexing since the 80286 has non-multiplexed
address and data busses. Memory read/write and data strobe
control signals for the DCP are also generated by this device.

PAL device 2 generates the clock for the Data Ciphering Pro-
cessor by dividing the system clock that is synchronized with
ALE and CS active. It also generates CMDLY for the 82288
bus Controller to insert a delay between MAS inactive and
MRD or MWR active for the Am9518. Note that ALE cannot be
inverted and tied to the Am9518 Master Address Strobe. Mas-
ter Address Strobe requires a minimum width of 115 ns—
device 2 generates MAS to meet this width requirement. This
device also generates the SRDY signal for the 82284 Clock
Generator to insert wait states during Am9518 read and write
cycles.

> MP,MP,

L Dy-D,

AD ;AD, <_I

»| iORC
:—J> 82288 oW MRW » MRW-
BUS MDS » VDS
CONTROLLER DTR
80286 CMDLY |e— AmPAL16L3
cPU ol aE
»{As-A,
cs csL %501 :
1/0 {
DECODER f\f | =
Mic- - MCS »{MCS
P AE wAS »| MAS
AmPAL16R4 9518CLK
82284 >
m— R PAL2
GENERATOR o] cLx
< SRDY

SRDYEN ——%

08749A-1

g‘ C/K-

Figure 3-68. Am9518—iAPX286 Interface

3-78

6.-€

" THIS PLPL FILE IS FOR A 16R4 PAL DEVICE THAT IMPLEMENTS
PART OF THE LOGIC NECESSARY TO INTERFACE AN Am9518 (DCP)
TO AN 80286 SYSTEM. ANOTHER PAL DEVICE (16L8) IS NEEDED
FOR THE COMPLETE DESIGN. "

DEVICE Am9518_TO_80286_2 (PAL16R4)

PIN
CLK =1 vce =20
/€S =2 /MCS =19
ALE =3 /MAS =18
csL =4 Q. =17
NC1 5 Q1 =16
NC2 =6 /@31 =15
NC3 =7 /CMDLY = 14
NC4 8 /SRDY =13
NC5 =9 NC6 =12
GND =10 NC7 =1 ;

BEGIN

" MASTER CHIP SELECT FOR THE Am9518 IS DERIVED FROM
UNLATCHED CHIP SELECT AND INTERNAL STATE. "

MCS = Q[2] * CS ;

" MASTER ADDRESS STROBE MUST MEET THE MINIMUM PULSE
WIDTH REQUIREMENT, IT IS DERIVED FROM AN INTERNAL
STATE BECAUSE ALE IS NOT WIDE ENOUGH.

MAS = /CMDLY ;

' COMMAND DELAY TO DELAT /IORC AND /IOWC GENERATED BY
THE 82288 BUS CONTROLLER. "

CMDLY := /(Q[2] * CS) ;

" SYNCHRONIZE THE COUNTER WITH ALE. "
IF (CS * ALE) THEN Q[3:1] =7 ;

" COUNT DOWN SPECIFICATION FOR THE COUNTER. "
" Q2 OF THE COUNTER IS THE CLOCK INPUT OF THE Am9518. "

CASE (Q[3:1]1)
BEGIN

Q[3:1] := 7

Q[3:1] :=0

Q3:1] :=1

Q[3:1] := 2

Q[3:1] :=3
4
5
6

~

Q[3:11 :=
Q[3:11 :=
Q[3:11 :=
END ;

D

0
1
2
3
A
5
6
7

R v Y

"' SRDY IS GENERATED FOR WAIT STATE GENERATION, IT IS SENT
TO THE 82284 CLOCK GENERATOR. "

SRDY = /(Q[3] * CS) ;

ENC.

Figure 3-69. Source Listing for AmPAL16R4 for the Example of Figure 3-68

w

" THIS PLPL FILE IS FOR A 16L8 PAL DEVICE THAT IMPLEMENTS
PART OF THE LOGIC NECESSARY TO INTERFACE AN Am9518 (DCP)
TO AN 80286 SYSTEM. ANOTHER PAL DEVICE (16R4) 1S NEEDED
FOR THE COMPLETE DESIGN. "

DEVICE Am9518_T0_80286_1 (PAL16L8)

PIN
DTR =1 vee =20
Al =2 /MW =19
A2 3 /1 =18
JIRC =4 /02 =17
/loWC =5 JINTSO = 16
ALE =6 fesL =15
/s =7 M2 =14
NC1 =8 /01 =13
NC2 9 s =12
GND =10 N3, =11;

BEGIN

" MEMORY R-/W FOR THE An9§'18 IS DERIVED FROM DT/R-. "

MRW = /DTR ;
" MEMORY DATA STROBE POR THE Am9518 1S DERIVED FROM
IORC- AND IOWC-. ", '
,l 7
MDS = /(IORC + 10WC)';
/
w LATCHED CHIP SELECT IS DERIVED FROM ALE AND THE
EXTERNAL DECODER CHIP SELECT OUTPUT. "

CSL = CS * ALE + INTSO ;
INTSO = /(IORC * 10WC) + CSL ;

“ THE FOLLOWING SPECIFICATION 1S FOR MULTIPLEXING THE
ADDRESS AND DATA SIGNALS OF THE 80286 FOR THE MASTER
PORT OF THE Am9518. "

IF (CSL * IORC) THEN D1 = AD1 ;
IF ¢ CSL * /IORC) THEN AD1 = A1 * ALE + D1 * /ALE ;
IF (CSL * IORC) THEN D2 = AD2 ;
IF (CSL * /IORC) THEN AD2 = A2 * ALE + D2 * /ALE ;

END.

Figure 3-70. Source Listing for AmPAL16L8 for the Exampie of Figure 3-68

3-80

3.4.3 INTERFACING TO THE 68000/68020

The 68000 has an asynchronous, 16-bit, bidirectional, data
bus. Data types supported by the 68000 are: bit data, integer
data of 8, 16, or 32 bit, 32-bit addresses and binary-coded
decimal data. It can transfer and accept data in either words or
bytes. The DTACK input indicates the completion of a data
transfer. When the processor recognizes DTACK during a read
cycle, the data is latched and the bus cycle terminates. When
DTACK is recognized during a write cycle, the bus cycle also
terminates. An active transition of DTACK indicates the ter-
mination of a data transfer on the bus. All control and data lines
are sampled during the 68000’s clock HIGH time. The clock is
internally buffered, which results in some slight differences in
the sampling and recognition of various signals. The 68000
mask sets prior to CC1 and allows DTACK to be recognized as
early as S2, and all devices allow BERR or DTACK to be
recognized in S4,S6, etc., which terminates the cycle. If the
required setup time is met during S4, DTACK will be
recognized during S5 and S6, and data will be captured during
S$6. DTACK signal is internally synchronized to allow for valid
operation in an asynchronous system. if an asysnchronous
control signal does not meet the required setup time, it is possi-
ble that it may not be recognized during that cycle. Because of
this, synchronous systems must not allow DTACK to precede
data by more than 40 to 240 nanoseconds, depending on the
speed of the particular processor. I/0 is memory-mapped, i.e.,
there are no special 1/O control signals, any peripheral is
treated as a memory location.

DMA: This Bus is requested by activating the BR input of the
68000. Bus Arbitration is started by the BG output going active.
The Bus is available when AS becomes inactive. The request-

ing device must acknowledge bus mastership by activating the

BGACK input to the CPU.

The 23-bit address (Aq...Az3) is on a unidirectional, three-state
bus, and can address 8 M words (16 M bytes) of memory or
1/0. It provides the address for bus operation during all cycles,
except the interrupt cycles. During interrupt cycles, address
lines A1, A2 and A3 provide information about the level of
interrupt being serviced. Instead of Ag and BYTE/WORD,
there are two separate data strobe lines for the two bytes in a
word. A note of caution here, the 68000 treats the MSB of the
lower byte as an even byte, or word address. The same goes
with processors such as the Z8000. Processors such as the
8086 treats the lower byte as the odd byte.

Interrupt is requested by activating any combination of the in-
terrupt inputs to the 68000 (IPLO...2), indicating the encoded
priority level of the interrupt requester (inputs at or below the
current processor priority are ignored). The 68000 automati-
cally saves the status register, switches to supervisor mode,
fetches a vector number from the interrupting device, and dis-
plays the interrupt level on the address bus. For interfacing
with old 68000 peripherals, the 68000 issues an Enable signal
at one-tenth of the processor clock frequency. There are a
number of AMD proprietary third generation peripherals that
can be interfaced to the 68000 CPU, to improve system perfor-
mance. This section deals mainly with the interfacing of the
68000 and some of the AMD proprietary peripherals.

3-81

The 68000 and AmZ8530 Interface with Interrupts

This example shows how a Programmable Array Logic (PAL)
device simplifies the task of interrupt generation compared to
the MSI implementation. The block diagram for the interface
via a PAL device is shown in Figure 3-71. The timing diagram
(Figure 3-72) illustrates the Interrupt Acknowledge cycle. As in
the other designs, RD is generated during Interrupt Acknowl-
edge to place the vector on the bus.

The timing during register programming is not shown. The PAL
device allows selection of one or two Wait States by making W,
HIGH or LOW, respectively. The table below shows the appro-
priate number of Wait States as a function of CPU speed.

Part CPU Speed Wait States
85XX 4 MHz 1
85XX 6 MHz] 2
85XXA 8 MHz 2
85XXA 10 MHz 2

PAL device equations are shown in Figure 3-73.

741504

Ay
>)

Am29809

ol

Aty /
Eour
8 L
A'.n [:"-— /j A% ¢
i =)
5
Ag St Am29806 _
As So Ey CE
= e :
c DTACK ACK ANYE
o]
PLy Vee N
PLy ¢ INT E
osc
=i — <L
cLock cLock ATK
i0s ios RD AD
> WR WA
RW AW AmpaL 16R4 Vee
- g5 CBKESXX
0
FC; FC, OF
FC, FCy 37
FCo FCo iNTA INTA

Ay

o/C

D, <~______78L___f
Do /7 -

02188A-68

Figure 3-71. 68000 to AmZ8530 Connection Using a PAL

PAL16R4 PAL DESIGN SPEC

PAT 002 JOE BRCICH 9 SEPT 83
68000 TO 8500 OR 9500 PERIPHERALS

ADVANCED MICRO DEVICES

CIOCK /CS RW /LDS /WO /AS FCO FCl FC2 GND
JOE /INTA /ACK /C /B /A /DLDS /RD /WR VCC

A := A%/B + B *C + /AS

B := A%/C + /A*C +
/AS

C := /A*/B*AS + B*C*AS
DLDS := LDS

RD = LDS*DLDS*RW*/INTA + A#C*INTA*AS + A*/B*INTA*AS
WR = LDS * /RW

INTA = FCO*FCl*FC2*AS

ACK = /INTA*/A*/B*/C*/WO + /INTA*/A*/B*C*WO +
INTA*/B*A + ACK * LDS

DESCRIPTION

THIS PAL DEVICE INTERFACES 85XX TYPE PERIPHERALS TO THE
68000 MICRO PROCESSOR. IT INSERTS 1 OR 2 WAIT STATES AS
SELECTED BY /WO=0 IS ONE AND /WO=1 IS TWO WAIT STATES. FOUR
WAIT STATES ARE INSERTED DURING INTERRUPT ACKNOWLEDGE CYCLES.
ALSO THE RD OUTPUT GENERATED DURING INTA IS A FUNCTION OF THE
INTERNAL STATE MACHINE AND NOT A FUNCTION OF LDS. OE CAN BE
LEFT OPEN SINCE THE FLIP FLOP OUTPUTS ARE NOT USED DIRECTLY.
THE FALLING EDGE OF RD IS DELAYED IN ORDER TO GUARENTEE
THE CS TO RD SETUP TIME REQUIREMENTS.

Figure 3-73. Source Listing for the Example of Figure 3-71

68000 and AMD Proprietary Peripherals Interface The Am29809 Comparator and the Am29806 Com-
parator/Decoder provide high-speed address selection as well

AMD manufactures a large number of peripherals which can be as an open collector acknowledge driver. This allows
interfaced with a number of microprocessor devices. The user memories and peripherals to be conveniently wire ORed to the
is advised to verify that the appropriate microprocessor inter- processor’s DTACK pin.

face specification is met. Two of the important parameters are
setup and hold times to ensure that peripherals will work with

both fast and slow CPUs. In some cases the insertion of a wait 68000 and Am7990 LANCE Interface
state is all that is required. In the following sections, the inter
face between a number of the AMD proprietary peripheral
products with the 68000 are discussed.

The design of the LANCE has made it easier for the user to
interface the device with demultiplexed buses. The exaxmple
shown here is an interface to be compatible with an 8 MHz or
faster 68000 (Figure 3-74). The two flip-flops are needed to
adapt the LANCE bus request handshake to the 68000.

3-84

A23-A1s

Aqs5-Aq

D45-Do

DTACK
AS

68000

BGACK

3

2 &g
& 2 98

|
I

3
2
o

ADDRESS BUS DATA BUS
A A g ; Vee
@ < <
?
29827 29827 29863 &

il

il

1

| | N

—

Figure 3-74. Am7990 to 68000 Interface

29809 29843 < '\
OF LE V]
Vee
A
L DTACK FROM
SYSTEM
N B
cp) A
— Ag /AS /CS/RB/TB
- BR
/CLR2 /HOLD |
/BGACK
/DAS fe—>
PR
D a AmPAL16L8
cp 68K90.PAL
CLR
ICLR
»] /BG
»{ wuos
ILDS
BYTE RW
-
[
74LS |—
142 =
—] y Vee
—l TO SYSTEM
] 7as
] 138 |NTA

Az3-A1e

AD;5-ADg

DALO
DALI

HACK

LANCE
Am7990
HOLD

DAS

READ
BYTE

INTR

02188A-70

Autovectoring is used since the Am7990 does not return a takes two latches to demultiplex the LANCE address/data lines
vector during interrupt acknowledge cycles. The BYTE and to adapt to the 68000 address bus. The flip-flops can be
DAS signals of LANCE are used to generate the UDSandLDS replaced by an AMPAL22V10 to minimize parts count. Equa-
when LANCE is in Bus Master mode; the UDS and LDSisused tions for the AmPAL16L8 are shown in Figure 3-75.

to generate the DAS when LANCE is in Bus Slave mode. It

PAL16LS8 JOE BRCICH
PAT002 2 FEB 84
68000 TO LANCE INTERFACE

ADVANCED MICRO DEVICES

/AS RW BYTE /HOLD NC /BG A0 NC /BGACK GND
/¢S /TB /UDS /DAS /CLRl BR /CLR2 /LDS /RB VCC

IF (/BGACK) RB = CS*RW*UDS + CS*RW*LDS
IF (/BGACK) TB = CS*/RW
IF (BGACK) UDS = DAS*/AO*BYTE + /BYTE*DAS
IF (BGACK) LDS = DAS*AO*BYTE + /BYTE*DAS
IF (/BGACK) DAS = UDS*LDS
CLR1 = /AS*BG
CLR2 = BGACK ;DELAY
/BR = /HOLD
DESCRIPTION
THE GOAL OF THIS INTERFACE WAS TO BE COMPATIBLE
WITH 8 MHZ AND FASTER 68000'S WHILE MINIMIZING PARTS COUNT.
THE AM22V10 COULD BE USED TO ELIMINATE THE TWO FLIP-FLOPS
SHOWN. AUTOVECTORING IS USED SINCE THE 7990 DOES NOT RETURN

A VECTOR DURING INTERRUPT ACKNOWLEDGE CYCLES.
NOTE PROGRAM BSWP, BCON TO 1 ,AND ACON TO O IN CSR3 REG.

Figure 3-75. Source Listing for the Example of Figure 3-74

3-86

68000 to AmZ8068 Data Ciphering
Processor Interface

Figures 3-76 and 3-77 show the 68000-DCP interface and
the interface timing. This interface provides a two-chip solution
to add high-speed data ciphering to a 68000-based system.
About 500 kbyte/sec are possible in a CPU-controlled transfer.
The ciphering rate can be increased with a sophisticated DMA
controller, or with several DCPs operating in parallel. The CPU
operates at 8 MHz and the DCP operates synchronously at
4 MHz. The Interface Controller, a PAL device, generates the
Address and Data Strobes for the DCP and the Data Acknowl-
edge for the CPU. It also divides the CPU clock by two and
synchronizes it to the Data Strobes.

The main features of this interface are:
— Multiplexed Control Mode
— Demultiplexed address and data bus
— Two-Cycle Operation

— Clock Synchronization with two Low Cycles after the Data
Strobes

— About 500 kbyte/sec ciphering speed

Data transfers between the CPU and the DCP are accom-
plished by a two-cycle operation. First the address of an inter-
nal register is latched in, then the data is transferred. This
causes a small overhead in the initialization phase, but im-
proves the ciphering rate in a high-speed data ciphering ses-
sion. The rate of 500 kbyte/sec can be reached only if a
high-speed peripheral device is connected to the Slave Port
and the DCP is programmed for dual port configuration.

The PAL device is programmed to aliow only DCP transfers to
the DCP. The PAL device equations are shown in Figure 3-80.
A, must be odd to make the CPU transfer the data on the Low
byte of the data bus. A “0" on A, indicates an Address Latch
Cycle, whereas a “1" on A, indicates a Data Transfer Cycle. Ay
must be “1" in both cycles.

D7
. A Vil I\ M‘P7
< K) -
s v V] -
Do
el K 28 | MPo_
RIW |« »| MRIW
v6
RIW
Az PROM,
—-}) COMPARATOR, 2 | 14 14
: OROTHER [0—>|CS DCPCLK »| CLK
A Y| bpEecoper
2
68000 AmPAL16R4 AmZ8068
29 _ .
Ay » A wAs 22050 &S
— 16 —
S »| AS
|7 I
DS »| UDS
|8 __ 13 26) ____
ibs »| (DS DS »| MDS
Vee
J—— 10 [
DTACK |« & «;2) DTACKZ CLK; o
17— 1 I
NC — DTACKi CLk»
15 8 . T 13
CLK |« i »| CLK OE > SR
mcCs
osc
8 MHz V

02188A-73
Figure 3-76. AmZ8068 to 68000 interface

3-87

PR LT
-~ Yy (Tvao Adomess pEan

Y N

= / / |
DS, MAS 7 \ /

o N L
sepoix _ X X\ X X X X X
DTACK1, 2 vd N\

02188A-74

Figure 3-77. 68000-AmZ8068 Address Latch Cycle (A, =Low)

An address decoder generates the Chip Select for the DCP.
The Address Strobe indicates a valid address. The PAL device
is only activated if the Lower Data Strobe becomes active while
the Upper Data Strobe stays inactive. This means that data is
transferred in MOVE.B instructions with an odd peripheral
address.

The PAL device provides two Data Acknowledge outputs.
DTACK is an active Low TTL output. DTACK, has the same
timing as DTACK , but is an Open Collector output. (The
Open Collector output is realized by a three-state output which
has only two states, Low or Floating.)

Address Latch Cycle

In this cycle only a Master Port Address Strobe (MAS) is
generated. Master Port Chip Select (MCS) is tied to Low. LDS
is sent to the MAS output. The minimum pulse width of LDS is
115 ns; 80 ns are required for the AmZ8068.

DTACK is activated with the falling edge of the CPU clock after
cycle Sp. The CPU inserts no Wait states. DTACK is deac-
tivated with the first edge of CLK after AS becomes inactive.

Data Read Cycle: (Figure 3-78)

The generation of MDS in a Data Read Cycle is similar to the
Data Write Cycle. Because the CPU activates LDS one cycle
earlier, there is no need for a Wait State. The minimum pulse
width of LDS is 240 ns; the DCP requires 200 ns for a Status
Register read. DTACK is activated using the same logical con-
dition as in the Data Write cycle. Because of the earlier activa-
tion of LDS, DTACK becomes active earlier and the CPU
inserts no Wait states.

Data Write Cycle: (Figure 3-79)

A Data Write Cycle is performed with A, is HIGH, AS, CS and
DS are LOW. The minimum pulse width of LDS is not suffi-
cient for the DCP which requires at least 125 ns. One Wait
state or a slower system clock will satisfy this parameter. In this
interface, one Wait state is inserted by activating DTACK at the
end of S,.

The DCP clock is synchronized in Data Read or Write Cycles
by forcing it Low when DTACK becomes active. This guaran-
tees that the DCP clock has a falling edge just before DS
(MDS) rises. The delay of the DCP clock to CLK is typically 8
ns for a normal speed PAL device. The delay of LDS to MDS is
typically 12 ns. The delay of LDS to the system clock is 0-70 ns
for the 8 MHz version. This results in a delay of 4-74 ns of MDS
to the DCP clock. The DCP requires 0-50 ns when operating at
the maximum clock rate.

This problem is solved by stretching the clock for one cycle.
The DCP clock stays LOW for two cycle in the end of a transfer
cycle. This is done automatically by the PAL device (see
Timing Diagram).

A Sample Data Ciphering Session

The interface was built on a Motorola 68000 evaluation board.
The instructions are shown below. These instructions were
executed with the “MACSBUG 1.32” evaluation board monitor.

Address Register:

Address Latch Address (A1=0,Ap=1)
Data Transfer Address (A1=1,Ag=1)

3-88

CLK_-I]&Is‘r"zé\s\s[s.é\sllaé\s,\lso{\s‘\rsz—é\r
S e §) S G

. // 7

~

|3
/j
——
\\

Figure 3-79. 68000-AmZ8068 Data Write Cycle (A, =HIGH)

3-89

PAL16R4 PAL DESIGN SPECIFICATION
DCP044 JUERGEN STELBRINK 8-24-83
68000 - AmZ8068 (DCP) INTERFACE DEVICE :

ADVANCED MICRO DEVICES

CLK2 /CS /AS /UDS /LDS RW Al CLK NC GND
JOE /MAS /MDS DCPCLK NC NC /DTACKl '~ CLKl1 /DTACKZ VCC

JCLK1 = CLK ; INVERT CLOCK TO TRIGGER THE REGISTERED
; OUTPUTS WITH THE FALLING EDGE OF CLK
MAS =" AS*LDS*/UDS*/RW*/A1*CS
MDS = AS*LDS*/UDS*A1*CS
/DCPCLK := DCPCLK + ; DIVIDE BY TWO
/DTACKL*CS*AS*LDS*/UDS +
DTACKL*/AS*/LDS*/UDS ; TWO CLOCKS LOW IN
; THE END OF A DATA CYCLE
DTACK1 := AS*LDS*/UDS*ALl*CS + ; DATA TRANSFER CYCLE
AS*/RW*/A1*CS ; ADDRESS LATCH CYCLE

IF (DTACK1*AS*CS) DTACK2 = DTACKl

FUNCTION TABLE

CLK2 CLK CLKl /CS /AS /LDS /UDS RW Al
DCPCLK /MAS /MDS /DTACKl /DTACK2

i / /

: D D D

; c T T

i C c / / P / / A A

;L. ¢ L / / L U C MM CC

;K L K C A D D R A L A D K K

;2 K 1 8 S s S8 W 1 K s 8 1 2 COMMENT

; CLOCK INVERT
X L H X X X X X X X X X X X
X H L X X X X X X X X X X X

; DATA WRITE CYCLE
Cc X X L H HHHH X H H H 2 ; SO
Cc X X L L HH L H X H H H 2 ; S2
c X X L L L H L H L HL L L ; S4
Cc X X L L L H L H H H L L L ; SW (1 WAIT STATE)
Cc X X L L L H L H L H L L L; S6
X X X L H HH L H L HH L 2 ;87
Cc X X H HHH L X L H H H 2 ; S0
c X X H L X H X X H H H H 2 ; S2

; DATA READ CYCLE
C X X H H HHHH X H H H 2 ; S0
c X X L L L H HH L HL L L; S2

Figure 3-80. Source Listing for the Example of Figure 3-76

3-90

cC X X L L L H H H H H L L L sS4
¢C X X L L L H H H L H L L L ; S6
X X X L H H H H H L H H L Z; 87
C X X L H HH H H L H H H Z; 80
C X X X H H H H H H H H H Z ; 82
; ADDRESS LATCH CYCLE
¢c X X L L HH L L X H H L L ; S2
cC X X L L L H L L X L H L L ; s4
¢c X X L L L H L L X L H L L ; S6
X X X L H HH L L X H H L Z ; 87
C X X X HH H L L X H H H 2 ; s0
H
DESCRIPTION:

INPUT SIGNALS:

CLK2

CLK
/CS
/AS
/LDS
/UDS

Al

RW

CLOCK FOR THE REGISTERED OUTPUTS OF THE PAL. IT IS
CONNECTED TO CLK1

8 MHZ 68000 SYSTEM CLOCK

CHIP SELECT FOR DCP (A2-A23 ARE RELEVANT)

ADDRESS STROBE

LOWER DATA STROBE USED TO TIME THE MASTER PORT DATA STROBE
UPPER DATA STROBE HAS TO BE INACTIVE DURING ALL TRANSFERS

ADDRESS BIT 1 DISTINGUISHES BETWEEN ADDRESS LATCH AND
DATA TRANSFER CYCLES

Al=LOW ADDRESS LATCH
Al=HIGH DATA TRANSFER

READ/ WRITE CONTROL

OUTPUT SIGNALS:

/MAS
/MDS
CLK1

/DTACK1

/DTACK2

DCPCLK

MASTER PORT ADDRESS STROBE
MASTER PORT DATA STROBE
INVERTED CLOCK CLK

LOW ACTIVE DATA ACKNOWLEDGE FOR 68000
ONE WAIT STATE IS INSERTED IN A DATA WRITE CYCLE

LOW ACTIVE DATA ACKNOWLEDGE FOR 68000 (OPEN COLLECTOR)
4 MHZ DCP CLOCK, IT IS SYNCHRONIZED TO THE MASTER PORT

DATA STROBE. IN A DATA TRANSFER CYCLE DCPCLK STAYS TWO
CLK CYCLES LOW TO DELAY THE FIRST RISING EDGE OF THE

Figure 3-80. Source Listing for the Example of Figure 3-76 (Continued)

3-91

68000 and a Single Am9516 DMA
Controller Interface

The Am9516 Universal DMA Controler (UDC) is a high-perfor-
mance peripheral interface circuit for 8086 and 68000 CPUs.
The UDC was designed to interface with non-multiplexed ad-
dress and data bus systerns. However, because it is basically a
modified 8016, several incompatabilities remain. ALE is more
like the 8086 than the 68000. Although the timing of ALE
closely matches the AS of the 68000, it does not tristate when
the 9516 is not the bus master. The major obstacle in this
design was generating the proper Data Hold time for a slave
write; the 8-MHz and 10-MHz CPU provides 30 ns and 20 ns,
respectively, while the 9516 requires 40 ns. The newer, 8 and
10-MHz versions only require 10-ns Hold time, thus simplifying
the design.

The interface design shown here (Figure 3-81) uses an Am-
PAL16R4 to insert a Wait State and truncate DS to the 9516
early. PAL device equations are shown in Figure 3-82. In this
case the shortened DS strobes data into the 9516 while the
CPU holds data valid for aimost 1 clock cycle afterwards. This
Wait State is inserted only during slave write. This Wait State is

actually a small penalty to pay, because most of the registers
are being loaded by the UDC itself by means of a linked-list
control structure. This results in very few writes being done
directly to the UDC.

Another interface problem to be addressed is the bus ex-
change protocol. The BREQ and BACK handshake of the UDC
is converted to the three-wire handshake of the 68000 by the
PAL device and a 7403 package (open-collector NAND Gate).
This is done by a state machine internal to the PAL device. The
state assignment was done to minimize external logic. This is
very different from the discrete design in the Am9516 data
sheet because the PAL dcesn't have preset and clear on its
flip-flops.

The UDC can support the bus error function by means of its
EOP pin. If a bus error occurs during a DMA transfer, an EOP
will cause the DMA operation to stop and interrupt the CPU.
The CPU can read status, address, word count, or anything
else it may need to take corrective action. The UDC may then
be restarted or reprogrammed appropriately.

The control signals LDS and UDS are generated by the PAL
device when the UDC is the bus master. This is a straightfor-
ward combination of DS, A0, and B/W.

3-92

FC2

—»{C
Foil—»l8 7415138 jo— Ve | NTRK
FCo p—p{ A

Gy

IPL, [¢ INT

Aonggss CONNECTED TO ANY ADDRESS LINE

B
23 TO SYSTEM

E [

PG
o1
Do
68000 Am9516
Vce osc - CLOCK
DATA BUS cp
TO/FROM SYSTEM 74LS74
DYATR _ 1] a > WAIT
Vi
[a, TBICTRE Vee
BR IBR BREQ BREQ
BOACK AmPAL16R4
4<} BACK 1081 b3
] /86 0so I
xS —>{ Ias :-c—. oS
cLK -» +{CcLK 1BW 8w
1
osc /UDS /LDS /RW
8OR
10 MHz
< BACK
A
—cp
74LS74
BERR b a [oc)o EoP
RIW RIW
oos
s
Q Ups (DS RIW
TO SYSTEM 02188A-79

Figure 3-81. The Am9516 UDC to 68000 CPU Interface

Note that the address latch and data transceiver, along with the the only extra component required to make the 9516 a low-cost
address decode logic, are present in any case. The 68450 and alternative. Additionally, the 6-MHz 9516 has the same data
68440 also multiplex address and data, thus the PAL device is throughput as the 8-MHz 68450.

3-93

PAL16R4 PAL DESIGN SPECIFICATION
PATO006 JOE BRCICH 9/01/83

68000 TO Am9516 INTERFACE WITH DATA HOLD CORRECTION
ADVANCED MICRO DEVICES

CLK RW A0 BREQ /BG /DSI /AS /BW /CS GND
/OE /LDS /UDS DSO /C BACK /BR /TB /RB VCC

IF(/BACK) RB

/CS * RW * UDS +
/CS * RW * LDS
/CS * /RW

IF(/BACK) TB

IF (BACK) UDS

DSI * /A0 * /BW +

BW * DSI :
IF(BACK) LDS = DSI * AO * /BW +
BW * DSI
BR := BREQ * BG * BR * AS +
BREQ * /BG * /BACK
/BACK := /BREQ +
/BREQ * /BG +
/BREQ * AS +
/BREQ * /BACK +
/BG * /BACK +
AS * /BACK
C := UDS * /BACK +
LDS * /BACK
/DSO := BACK +

/BACK * /RW * C

DESCRIPTION ‘

IF BREQ*BACK IS TRUE THE Am9516 HAS THE BUS, OTHERWISE THE 68000
HAS THE BUS. THIS PAL CONNECTS THE Am9516 TO THE 68000 WITH ONE
WAIT STATE DURING WRITES WHILE SHORTENING /DS TO ACHIEVE PROPER
DATA HOLD TIME. IT ALSO CONVERTS THE BUS EXCHANGE PROTOCOL INTO
68000 FORMAT. THIS DESIGN ASSUMES NO OTHER BUS MASTERS IN THE
SYSTEM. /RB AND /TB CONTROL THE TRANSCEIVERS WHEN CPU IS BUS
MASTER. /CS MUST BE A FUNCTION OF ALL DEVICES CONNECTED TO THE
CPU BUS NOT JUST THE Am9516 /CS AS SHOWN HERE.

The /CS to /DS set- time of 30 ns is met in the following ways:
" 717 During a reas cycle the only effect from not meeting this
set-up time is that the data valid access time from the Am9516
‘will be delayed by a proportional amount. Since the minimum /DS
Low width from the 10-MHz 68000 (during a read) is 193 ns and the
minimum /DS Low width to the Am9516 is 150 ns, we have 43 ns
margin not counting gate delays which will further increase this
margin.

2) During a write cycle this is not an issue since the /DS
comes later and is stretched longer due to the Wait state.

Figure 3-82. Source Listing for the Example of Figure 3-81

3-94

68000 and Dual Am9516 DMA
Controllers Interface

There has been interest shown in connecting two Am9516
DMA Controllers to obtain four channels. The example here
shows that such a system can be built by incorporating one
PAL device. AMD's new 22V10 (Figure 3-83). Address and
data buses are not shown as they are straightforward and
require no explanation. The PAL device, designated 68K16D2,
converts the two DREQs into the 68000 three-wire handshake,

prioritizes the request, and converts the control signals appro-
priately. Equations for the PAL device are shown in Figure
3-84.

The key parameters are: 1) data hold with respect to the rising
edge of DS during a write, and 2) DTACK setup time. Control
for a data bus transceiver is shown because it will be required
in most systems. The PAL device provides these signals when
the CPU is bus master; the Am9516 generates these control
signals directly when it is bus master.

DYACK [« T
»lp @ WATT
cLk —{cp
29863 ose
vee Vi
TRANSCEIVER ccoxe
T R CLK |#
osc + 1 T 3
80R RBEN v
10 MHz CLK.
TBEN e
I [Am9516
cLK O— CLK T8 IRB ple]e ALE Vee
Vee
9 EOP
»{ DS
/BW [« BIW PID [¢— A1
BREQ1 |« BREQ
BACK4 »| BACK c3
RIW l
ACK |
Ics j« ANYE
68000 AmPAL22V10 Vce
68K16D2
10 Am29806
SYSTEM
I Ic + »|C
AS|e * > 1AS Ao |¢—
BIW
BG —»| IBGI ALE; |4 ALE [¢]
oc BREQ: [« BREQ
BR 4——04—— BR BACK2 $| BACK CLK f¢——CLK1g
. 1DS |4 +| 0%
— L PID j¢— A
ALLIOWS /BGACK /LDS RW /UDS WA /D 1
OTHER BUS + 4+ 4+ ¢ Vee
MASTERS Am9516
UDS
RIW RIW
03
L REEN EOP
v v A TBEN
oc ‘
1»—04— BACK: BACK+
BGACK BACK
oc 2 b 8o
—oq-— BACK: L]
02188A-80

Figure 3-83. Dual Am9516 UDCs to 68000 CPU Interface

3-95

JOE BRCICH
5 APRIL 83

PAL 22V10

PAT 001

68000 TO DUAL 9516 INTERFACE
ADVANCED MICRO DEVICES

CLK RW A0 BREQl1 BREQ2 /BG NC ALEl /BW ALE2 /BGACK
/CS /LDs /uDS /DS /C /AS /BR BACK2 BACKl1 /TB /RB

GND
vce

BR = BREQl*/BGACK + BREQl*BG +
BREQ2*/BGACK + BREQ2*BG

BACK1l = BREQ1*BG*/AS + /BG*BGACK
BACK2 = BREQ2*/BREQL*BG*%/AS + /BG*BGACK
IF (/BGACK) RB = CS*RWAUDS + CS*RW*LDS
IF (/BGASK) TB = CS*/RW
IF (/BGACK*AS) DS := AS*/C*/RW + AS*RW
IF (BGACK) AS = ALEl + ALE2
IF (BGACK) UDS = DS*/A0*%/BW + BW*DS
IF (BGACK) LDS = DS*AO%/BW + BW*DS
IF (AS) C := UDS*BGACK + LDS*BGACK

DESCRIPTION

THE GOAL IN THIS DESIGN WAS TO BE COMPATIBLE WITH
8 MHZ AND FASTER 68000'S. BECAUSE THE EQUATIONS FOR DS AND
C WOULD EXTEND INTO THE NEXT CYCLE, THE OUTPUTS WERE TRI-
STATED TO TERMINATE THESE SIGNALS EARLIER. THIS REQUIRES THAT
PULL UP RESISTORS BE PLACED ON THESE OUTPUTS. THE INVERTED
CLOCK WAS USED TO PROVIDE MORE SETUP TIME FOR DTACK IN THESE
HIGH SPEED SYSTEMS. AT 8MHZ THE EQUATIONS CAN BE MODIFIED AND
THE PULL UP RESISTORS ELIMINATED. THIS EXAMPLE IMPLEMENTS

FIXED PRIORITY WHERE BREQl IS HIGHEST. NOTE THAT /AS SHOULD
NOT BE INCLUDED IN THE ADDRESS DECODER.

Figure 3-84. Source Listing for the Example of Figure 3-83

The Am9516s are shown with independent clocks. The clocks
may be divided from the CPU clock-or may be generated inde-
pendently of the CPU. Because WAIT must meet the set-up
and hold times, DTACK may need synchronization by the use
of a flip-flop, as shown. This flip-flop may be eliminated in
synchronous systems.

The clock is inverted to the PAL device to meet DTACK set-up
time in systems of 10 MHz or faster. This inverter may be
deleted in slower systems, if appropriate changes to the PAL
device equations are made. This PAL device implements fixed
priority between the Am9516s. BREQ1 is the highest priority.
Rotating priority can be implemented by adding another PAL
device.

EOPs are pulled up separately, but could be tied together
since they affect a channel only if it is active. The bus-error
function can be supported by connecting BERR and EOP .

If a bus error occurs, EOP will stop the current transfer and
interrupt the CPU. The Interrupt Service routine can read the
status to determine if EOP caused the interrupt or if termina-
tion was normal. If EOP. caused the interrupt, the Address
Register can be read to determine where the bus error oc-
curred. After the problem is corrected, the CPU can program
the Am9516 to complete the transfer or do an alternate trans-
fer, as appropriate.

When operating the DMA in interleave mode, an external EOP
shouid be gated with DACK to prevent affecting the wrong
channel. This is unnecessary if interleave is not used, since the
UDC releases the bus.

This arbiter design supports both serial and parallel-expansion
techniques and is therefore compatible with VME bus protocol.
Bus grant out was implemented with an external gate due to a
shortage of pins. The VME/BCLR function was not imple-
mented because the Am9516 does not support preemption.

Am8500 to 68000 Interface

Modern 16-bit microprocessors, such as the 8086, 28000, and
68000, are being used to form the nucleus of powerful per-
sonal/business computers and engineering workstations.
However, support peripheral chips are virtually non-existent
for the most recently introduced 16-bit CPUs such as the
Motorola 68000. Since the modern microprocessor system
depends as much on the peripheral controllers as it does on
the CPU, it is important for a system designer to have a large
variety of peripheral chips available. The 8500 family of
peripheral chips from AMD provides users of non-multi-
plexed bus microprocessors, such as the 68000, a variety of
powerful peripheral chips that can be interfaced easily witha
single programmable array logic (AMD PAL) device.

The Am8500 Family

The Am8500 Family is a group of programmable peripheral
chips which offload a variety of system functions from the
main CPU. They support a variety of operating modes which
are specified by writing to their control registers. The current
members of the family include the Am8536 Counter/Timer
and Parallel 1/0 Unit (ClO), the Am8038 FIFO Input/Output In-
terface Unit (FIO), and the Am8530 Serial Communications
Controller (SCC). While the object of this article is not to dis-
cuss the capabilities of the Am8500 Family, a brief overview is
necessary to fully understand its interface requirements.

The Am8536 is a counter/timer chip which has available three
16-bit counters. These timer/counters have features such as
duty-cycle control (pulsed, one-shot, or square waved), retrig-
gering options, and external access control lines. The CIO
also provides up to 20 lines of programmable I/O ports. The
Am8038 FIO is an asynchronous 128-byte buffer specially
designed to be used by two CPUs or a CPU and a peripheral
device as a communication or data buffer. It supports a vari-
ety of handshake interfaces on both /O ports. Finally, the
Am8530 SCC is a dual-channel, multi-protocol data communi-
cations peripheral. The SCC functions as a serial-to-parallel,
parallel-to-serial converter/controller. It supports a wide vari-
ety of serial communications protocols and includes exten-
sive on-board hardware such as baud rate generators, digital
phase-locked-loops, and crystal oscillators to reduce the
need for external logic.

The Control and frequently used Data registers are accessed
in a different manner. These registers are accessed using a
single cycle or write. This scheme allows the CPU to interact
efficiently with the 8500 peripherals during normal use. The
slower, clumsier initialization procedure is used much less
frequently and protects the user from altering the operation
mode accidentally.

All the members of the Am8500 Family are controlled and con-
figured by software. The host CPU initializes the Am8500
operating modes by writing to the internal mode/options
registers. The internal mode registers are not directly ad-
dressable by the CPU like the Control and some data regis-
ters. Instead, a two cycle process is needed to write to them.
First, the address of the mode/options register being
modified is written to the Control register; next, the data is
written to the mode/options register via the Control register.
The Am8500 peripheral has an internal state machine to keep
track of whether address or data is being written to the Con-
trol register. Reading the value of the mode/options register
is accomplished by first, writing an address to the Control
register, and second, reading the mode/options data from the
Control register.

Design Requirements

There are several problems associated with interfacing a
general-purpose peripheral device to a CPU. One major prob-
lem involves the various control signals each chip uses.
Unless the two families are designed to be pin-for-pin com-
patible (e.g., the AMD/Intel 8086/8087/8089), there generally is
going to be minor variations between them; the same problem
exists when interfacing the 8500 peripherals to the 68000. Part
of the pin incompatibility involves genuine signal differences
while other pins only require name changes.

The data pins (Dg-D7) on the 8500 parts are connected di-
rectly to the lower 8 data lines on the 68000 bus. The register
select pins (A, A1, A/B, DIC)* can be directly connected to A4
and A; of the 68000 address bus. The RD and WRlines have to
be generated from the 68000’'s R/W and AS/UDS/LDS signals.
The 8500 clock (PCLK) is generated by dividing down the
68000 ciock.

*Note: The register select/control pins have different names on each
of the 8500 peripherals.

3-97

The Interrupt Request line (INT) can be wire-ORed together
and connected to one of the IPLy-IPL; inputs on the 68000,
giving all the peripherals a common interrupt priority level.
An aiternate method might be to give each of the peripherals
a separate priority level (which would require priority en-
coding). The interrupt acknowledge line must be generated
from the CPU status lines (FCo-FC,) by the PAL. Whenever an
interrupt acknowledge cycie is started, FCyo-FC, equal all
ones. The Interrupt daisy chain control pins (IEl and IEO on
each 8500 device) are tied together in a standard priority
daisy chain arrangement (see Figure 3-85). When implementing
the daisy chain, arbitration delay down the chain must be ac-
counted for in the PAL signal generation logic. The chip enable
pins for each of the 8500 devices must come from the system
memory mapping logic. The system designer must also provide
an 8500 PAL enable line to select the PAL controller whenever
any one of the 8500 devices has been selected. The DTACK

signal back to the CPU will be generated by the PAL logic using
an internally implemented state counter to generate the correct
timing. The output is implemented as a simulated open collector
output so that other non-Am8500 peripherals in the system can
use the DTACK line.

Another problem with interfacing general-purpose peripherals to
the 68000 is timing. Most peripherals run at speeds con-
siderably slower than the 8, 10, 12, and 16-MHz CPUs being
produced today. This means using either a slower clock or divid-
ing down the CPU clock. In the case of the 8500 family, this
generally means dividing the CPU clock in half and using a CPU
operating at less than or equal to 12 MHz. Aside from just speed
problems, system integrators frequently have to tackle subtle
timing differences between signals or from devised signal equiv-
alents, e.g., deriving the Am8500 RD, WR, and DTACK from the
68000's LDS and R/W; or guaranteeing data setup and hold
times.

HIGHEST LOWEST
PRIORITY PRIORITY
PERIPHERAL PERIPHERAL
+5V
I AN 8500/ 8500/ - 8500/ > 8500/
9500 9500 9500 i 9500
(FIRST) (MIDDLE) (MIDDLE) (LAST)
{ tsettle
INTACK \ /
RD
03862A-121
Figure 3-85.

TABLE 3-13. INTERRUPT DAISY CHAIN/PROPAGATION DELAY

Chain Position (ns)

Peripheral First Middle Last
8536 cio 350 150 100
8038 FIO 350 150 100
8530 scC 250 120 120

Note: First positiontiming is INTACK to IEO.
Middle position timing is IEI to |EO.
Last position timing is IEl to data strobe set-up.
03862A-122

3

-98

The 68000 has two ways of interfacing to peripherals such as
the 8500 family. The first uses the special VPA (Valid Peripher-
al Address) input pin on the 68000. The VPA pin can be acti-
vated by the Am8500 device select logic at the start of acycle
to tell the 68000 that a peripheral is being accessed. This in-
terface was designed to allow the slow, synchronous bus
6800 peripherals to talk to the 68000’s asynchronous bus un-
til the new 68000 peripherals could be produced. Also, the
VPA interface has a slow access rate (a minimum peripheral
access time of over 1000 ns not including recovery time)
which would slow down the CPU considerably. And, since all
the 68000 peripherals are being designed to use the asyn-
chronous method, this interface will not be discussed.

When writing data, the 68000 puts address and data onto
their respective buses and uses the DTACK line as a “got
data successfully” handshake from the selected device.
When the DTACK line is recognized, the 68000 removes ad-
dress and data one CPU clock later. This method allows the
user to take advantage of the asynchronous bus of the 68000.
The major difference between the 8500 family and the 68000
DTACK timing is the way data is strobed in and out of the 8500
chips. The 8500 devices sample the data on the falling edge
of WR. The 68000 asserts an address (when reading) onto the
bus and then uses the DTACK signal from the selected
peripheral (memory included) to indicate vaiid data and then
samples on the next falling edge of the CPU ciock. The other
method of interfacing the Am8500 family to the 68000 uses
the Data Transfer Acknowledge (DTACK) cycle.

PCLK
(=4MH2)

Design Approach

Two different methods of interfacing 8500 devices to the 68000
bus will be presented. One method allows the user to obtain
fast access to all the 8500 devices. However, some minimum
software requirements are imposed. The other interface slows
down the access rate by the CPU but guarantees all 8500
minimum timing specifications and imposes no software
overhead.

There are several timing requirements imposed by the 8500
family. The first involves read/write access to the parts. The
8500 (4 MHz) peripherals have a read/write/interrupt acknowl-
edge timing as shown in Figure 3-86. The minimum read/write
access time is 400 ns. This means the PAL interface must
guarantee a valid access cycle of greater than 400 ns (by forcing
the 68000 to execute several wait states).

The basic read or write cycle generated by the PAL interface
looks like Figure 3-88. The 68000 R/W and LDS lines have been
converted into 8500 RD and WR control signals and with a state
timing generator, produce the 68000 data valid signal DTACK.
While the 8500 peripherals latch the data internally on the falling
edge of WR, all 9500 (Intel-type) peripherals use the rising edge
of WR to strobe in data. So, the timing used is designed to
guarantee proper setup and hold time for both Am8500 and
Am9500 devices.

JEjEpEpEpENERE N

le——>0—>|
=\ /
>400
RD / READ
RO CYCLE
le——< 300———' —]._\> 0
DATA OUT -\
OF PERIPHERAL ™ VALID DATA }— J
>400 -0
e — ,
WR \ 7(
[B
DATA IN \
TO PERIPHERAL VALID DATA) J
cs A
=/
| 4
] Isettle:
M INTERRUPT
>400 ACKNOWLEDGE
4 | CYCLE
RD
~—>}-<300 -] }<_>0
| ———
DAT.‘«‘ VALID DATA
03862A-123

Figure 3-86. Am8500 Interface Timing (4 MHz)

3-99

The DTACK control logic is the only control line which
employs any sort of special timing in both of the PAL inter-
faces. In order to guarantee proper setup and hold time for
write operations to the 9500 parts, it was necessary to start
the DTACK cycle in the middle of a PCLK cycle. Hence, it was
necessary to use the CPU clock to condition the assertion of
DTACK. Using the C(PCLK) and the C4-C3 inputs only, would
have allowed a potential setup time violation during a write oper-
ation under worst case conditions for an 8 MHz 68000.

The interrupt acknowledge cycle is very similar to the
read/write cycle; only two differences exist. First, the inter-
rupt acknowledge cycle involves only a read operation (see

interrupt acknowledge timing in ‘Figure 3-88). Secondly, the
read cycle needs to be stretched out to allow time for the inter-
rupt daisy chain to resolve priority. If a parallel priority resolution
scheme is used, then only the priority decode time delay and
peripheral response time is added on to the interrupt ¢ycle. The
interrupt time delay varies, based on the number of 8500
devices in the daisy chain. The time delay is based on the
8500's position in the chain: first, somewhere in the middle, and
the last device in the daisy chain (see Table 3-13). Both of the
current PAL interfaces assume there are three 8500 peripherals
in the interrupt daisy chain.

o U/
cik [1] 20] Vee
ook [2Z] [19] BTACK
s3] 18] iINTACK
RESET [17] co
os[5] AmpALters [16] i
riw [©] [15] 2
Feo [7] [12] c3
Fc1 2] [13] WR
Fez 3] [12] RD
ano [7] o8
Figure 3-87. 03862A-124

cPU
cLocK .

READ/WRITE

/
W\ /

CYCLE

DTACK

i‘-“*ARBITRATION DELAY * ————»
INTACK \

n—o N

DTACK

INTERRUPT
ACKNOWLEDGE
/ CYCLE
_/.__._._____ J
03862A-125

*Delay time assumes three Am8500 devices in the daisy chain.
Note: RD and WR may not be asserted LOW simultaneously.

Figure 3-88. PAL-Generated Interface Signals

3-100

The PAL interfaces offered are designed to give the system
designer maximum flexibility in integrating Am8500 periph-
erals with 68000-based systems. The first version is designed
to allow maximum access to the 8500 devices (see Figure
3-89.a). It does this by delegating the read/write recovery time
into software. All 8500 peripherals have a minimum post access
recovery time; i.e., they can't be accessed for a minimum period
of time after being read or written (see Table 3-14). Generally,
this restriction manifests itself only if the CPU has to make
repeated accesses to the same peripheral part rapidly. While the
instruction fetch time of the CPU allows for some recovery time,
it doesn't guarantee enough time (since the average recovery
time is approximately 1000 ns and a 68000 instruction fetch
requires a minimum of 500 ns (- 8 MHz). Hence, the first design
requires the user to implement minimum software recovery time.

The software recovery routines in this case generally take the
form of executing 1-2 instructions (depending on execution
and fetch time) in between accessing the same 8500 device.
For most systems, these instruction executions can be used
to process the data just received. Another method of insuring
the minimum peripheral recovery time is to juggle the access-
ing of the 8500 devices in the system so the recovery time re-
quirement is not violated.

The second design (see slow PAL timing in Figure 3-89.b)
relieves the user of all software considerations when using the
Am8500 parts. The recovery time is built into the PAL design.
This is done by delaying access on the read/write and then
taking advantage of the 68000 next instruction fetch to guaran-
tee that the minimum recovery time is given. Also, a minor
change was required in the interrupt acknowledge timing; i.e.,
stretching out the INTACK timing slightly to avoid a potential
glitch on the RD line after an interrupt acknowledge cycle.

The advantage of software-independent hardware is offset
by longer read/write cycles to the peripherals, even for single
accesses. Also, the user is denied access to another 8500
peripheral until the minimum recovery time has been met for
the previous one. However, having software-independent
hardware is sometimes an important feature in a system; and
slowing down the peripheral access rate slightly is a small
price to pay for it. Note, the interrupt acknowledge cycles for
both designs are virtually the same. This occurred because
the normal interrupt processing by the 68000 guarantees that
another access to the 8500 parts cannot occur in time to
violate their access recovery times. Hence no software delay
is needed for the fast access interface.

The interrupt acknowledge delay (for the daisy-chained prior-
ity resolution scheme) in this example has been chosen by
using an assumption of three 8500 peripherals in the chain.
Larger or smaller numbers of parts in the daisy chain would
increase or decrease this result with minor changes to the
PAL logic equations. The design is flexible enough to support
the addition of at least 3 more peripherals in the daisy chain.

The PAL equations and logic diagram for both designs are shown
in Figures 3-91, 3-92, 3-93, 3-94, 3-95, and Tables 3-15 and 3-16.
The equations were derived directly from their respective timing
diagrams (Figures 3-89.a and 3-89.b). Some obvious logic
simplification was done on the initial equations to reduce the
number of terms. The integration of the Am8500 peripherals and
the PAL timing generator are shown in a sample configuration in
Figure 3-90.

Finally, the design presented was optimized for an 8-MHz 68000
system and 4-MHz 8500 parts. The timing/state counter (Co-C4)
only counts as far as it is needed. Higher performance CPUs, up
to 12 MHz, can be used with this interface, but 6-MHz 8500
parts will have to be used.

TABLE 3-14. PERIPHERAL ACCESS RECOVERY TIME

P?;;:':z;al Recovery Time

8530 SCC Greater than 6 PCLK cycles + 200 ns
8536 ClO Greater than 3 PCLK cycles or 1000 ns
8038 FIO Greater than 1000 ns

03862A-126

3-101

c0L-€

wen [L L L L L
o I 1
c3 l I

] \ /
WA \ /
DTACK _/ NoRMAL
READ/WRITE
CYCLE
m _\ _/
—
READ DATA <
WRITE DATA ______())
INTACK \ /
o \ S
INTERRUPT
DTACK \ / ACKNOWLEDGE
[0S § \ /

03862A-127

Figure 3-89.a “Fast” PAL Am8500 to MC68000

€0}-€

weewo |] L LT LT LI L1 LI L4 L
‘ 1 1 1 [
.] | 1
e I I

DTACK n____/ NORMAL
READ/WRITE
CYCLE
[; \ /
READ DATA _J____—___—_>_—
WRITE DATA 2! >'——“

INTACK \ /

INTERRUPT

N ACKNOWLEDGE
DTACK U CYCLE
05 N\ /

READ DATA) W

03862A-128

Figure 3-89.b “Slow” PAL Am8500 to MC68000

w

0t-€

(FROM 68000) +5V
A1, A2
4| AmPaLters |, _ Am8s30 _ AmB536 __ Am8038 2
cPU cn.K—t2] _ —JTE scc _—eE <o _—tE FO B
5 WR == 1m0 iNT A0 175 Nt RNk 8 |2
&5 — RD WE |- WE |- wR | _
RE_SET“—:- INTACK 2. fr— WR — m—— WR iNT
D8 ~——y] " »| INTACK ! INTACK »| INTACK
b o8 A
RIW ‘ OE] LN P LN P Llbic
FCO —— L Az _ A1
FC1 8] = —p| A/B Do-D7 —»1 Ao Do-D7 |« +5V=—d My Do-D7 |4
|9 - A — A
FC2 pTACK F2 1 o€ 2y A Inm Mo
IEl_GND IEQ IEl GND IEO A IEl GND IEO
= 10
+5V ey 1 _I-]] -I- l] 1 NEXT
1 PERIPHERAL
DTACK ¢ * . j l
< /.
Do-D7 ¢ ~
TLPo ¢
(TO 68000) 03862A-129

Figure 3-90. PAL Am8500 to MC68000 Hookup

PAL16R4 PAL DESIGN SPECIFICATION
PATO050 MARK YOUNG 1/21/83
FAST AM8500 TO MOTOROLA 68000 PAL
ADVANCED MICRO DEVICES
CLK DCLK /CS /RESET /LDS RW FCO FC1 FC2 GND
/OE /RD /WR /C3 /C2 /C1 /CO /INTACK /DTACK VCC
STATE MACHINE COUNTER CO - C3
/CO ; 8500 CLK

1| e

CO

Cl := CO%/C1*CS*LDS*/RESET
/CO*C1*CS*LDS*/RESET
C2 := CO¥Cl¥/C2*CS*/RESET
/C1*C2%CS*/RESET
/CO*C1#*C2*CS* /RESET

+ + 1

C3 := CO*C1*C2%*/C3*CS*/RESET
/C1%/C2%C3%CS* /RESET

/CO*C1#*/C2%C3%CS*/RESET

+ +

RD C1%/C2%/C3*RW*/INTACK*CS¥* /RESET
/C1%*C2%/C3*RW*/INTACK*CS*/RESET
CO*C1%*C2% /C3*INTACK*CS* /RESET

RD*INTACK*CS*/RESET

NORMAL READ
NORMAL READ
INTERRUPT ACKNOWLEDGE
INTERRUPT ACKNOWLEDGE

we we we we

+ o+ +

WR C1#*/C2%/C3% /RW*CS* / INTACK* /RESET

/C1%C2%/C3%/RW*CS*/INTACK*/RESET

WRITE OPERATION
WRITE OPERATION

: DATA ACKNOWLEDGE
IF (CS) DTACK = /DCLK*/CO%*/C1%*C2%/C3%/INTACK*/RESET
+ DTACK*RD*/RESET
+ DTACK*WR*/RESET
+ /DCLK¥*CO%/C1%/C2%C3%*INTACK* /RESET

; INTERRUPT ACKNOWLEDGE
INTACK = FCO*FC1*FC2%C1%*/C3*LDS*/RESET
+ C2¥FCO¥FC1¥FC2%/RESET
+ /CI1*C3%FCO*FC1%*#FC2%/RESET
+ /CO¥*C1*C3*FCO*FC1*FC2%*/RESET

Figure 3-91. Source Listing for the Example of Figure 3-89.a

3-105

TABLE 3-15.
PIN LEVEL (I.E. WHAT THE CHIP SEES AND PUTS OUT). THE

ONE EXCEPTION ARE THE CO - C3 PINS. THESE ARE DEFINED
AT THE REGISTER OUTPUT LEVEL (NON-INVERTED) BECAUSE
THEY WERE DIRECTLY DERIVED FROM THE TIMING DIAGRAMS
AND THIS MAKES IT EASIER TO RELATE TO- THE TIMING

NOTE: FOR THE SIMULATION, ALL THE SIGNALS USED ARE AT THE
DIAGRAM.

s
’
’
’
.
s
’
’
s
.
3y

CLK DCLK /CS /RESET /LDS RW FCO FCl FC2

FUNCTION TABLE:

NABR <O M

NHZE <O M

/OE /RD /WR CO Cl C2 C3 /INTACK /DTACK

H L X

RESET SEQUENCE
H

ZZZZZZ
T om =
[R e [P R
= a3
R B I S e |
Tomed e
js=fianiic=ji==iyaniias)

jasjasiiaaiiesiiesfiae]

L e R R [|

[R Rl i
XXXXW
PP
PP P

ol]

=

oo om

== ==l

:CLCLCL

W

WRITE OPERATION

NNNNNEDDEHD DD O S-S ENNN

jasfio=jie=ficafionfianiic nficniieniionjiesasiisnficsiiaafieciinjienfiasjies)

[B R P I I I S QS e QS [B B s I

A Ea A d A d G dammimimmE s a e

L e R L I Sl « o= = = = o W (S QS QRN (= = = = B B

HAEEAdAd DDA maammAaamim

jania=fi=i=fie=ji= =i~ =N QR L S B R R kR

ja=jie=fio=jienfiaojianjicsfanieniesiasiicnjicsianiin e Siea e s oo

L B e e B B B B e e e e I I B A R

IR R R Rl R R R R o

PGP P P DS P B B B P P D B P DY B P B B

B b B P D B B B B D B B B D D B B P

~
B e o o A A IS S S R e R R S e R == s R e o

~
D T T B B e B B B B B e B e e I i o

el ninfi=sfaniiecgesficnfiasficmfecfinficicnfecfieofe e oli< =]

jo == === =i = SN [QU (s S (PO S U, O BV (UL < o1« i« o}

fe=JEeS == e o e R = R R == I =~ = = P = = =~ |

OrHO A0 HO0O 0 A0 A0 A0 40 d0 43

~3-106

H
H
H

L
H

s INTACK CYCLE
H

C
L
C

TABLE 3-15. (Continued)

NDZDDD@D@DmDmD o m o m o m o - TN NN
e i I o B s s QSR B (e B (e [(S R S L W |« o« i« = i« o
e e I I IS [RS IS o (e j = e = e o a= e =« = Ja =« o QL IR
= = S ==fcnfieoiiaxjiajianiieniia = J I JUe RS SN B QAW 0 S
al-Tic === =S IS Yo IS Ja = e e o = =SSN P B SO [e = e s« w S
T dddmAdn TS ddmim aamimaa
je=jesiasijescsjjesasiasianjjasiasjianjiesjangiesasijcsiieniesiiasicafic]

[==i==l==l==R==li==i==ji==lis === = I I IR R P R RS B = ==l

e B e B B e B e B e B e B B e B R e e
[R==R==R=ri==Rocli==garlie=fiaoarliiiorieniienii=aeaji=sicajasiy SR SR S
EsR==l==R=sli=ofieolianfrfiaciicofianjionficsjanioniaaiiaaiiasiiesa il i ol o]
EoR==l==Rmlieolisiiesieriicsiieaficnliosiionjic s spes e fias e cfas g S i o kol
toRz=Re>f="Re=fa=ficefenfionfiaofiasfaniianfaniiafaniieoiianiieia=il i il
e B e B B B e e e R e e e B Ao RS RS RS Y R = o = o]
e=faciinnieniicesfianijanganijaniianijeaiieafiaafie=licsfiaaiisalie=fiacfionijaaiinjies}
R e B e I B e R B e M Ko I I RS R B (S e = = == o}
R R L I R N e - = R

HO O MO A0 A0 -E0O0 010 10 A0 20 4

DESCRIPTION:

THE INTERFACE

THE USER, HENCE, IS ABLE TO GET

MAXIMUM ACCESS WITH MINIMAL WAIT STATE INSERTION.

THE PAL USED IS A MEANS TO PROVIDE FOR THE FASTEST POSSIBLE
PROVIDES TOTAL SIGNAL COMPATIBILITY.

THE REQUIREMENTS FOR THIS MAXIMUM ACCESS UTILIZES IMPLE-

THE FASTZTOM PAL PROVIDES INTERFACING BETWEEN THE SINGLE CHIP 8500 TO
MENTED SOFTWARE FOR REPEATED ACCESSES.

THE 68000.
INTERFACE.

3-107

PAL16R4
PAT050
FAST AM8500 TO MOTOROLA 68000 PAL
ADVANCED MICRO DEVICES
*D9724

*FO¥

L0000
L0032
L0064
L0096
L0128
L0256
L0288
L0320
L0352
L0384
L0512
L0768
L0800
L1024
L1056
L1088
L1280
L1312
L1344
L1536
L1568
L1600
L1792
L1824
L1856
11888
L1920

1111 1011 1111 1111
1011 1101 0101 1101
1110 1111 0111 1111
1110 1111 0111 1111
1011 1110 0110 1101
1111 1111 1111 1111
1111 1111 0111 1010
1111 1111 0111 1111
1111 1111 0111 1101
1111 1111 0101 1110
1111 11111101 1111
1111 1011 0110 1001
1111 1011 0101 1010
1111 1011 0110 1110
1111 1011 0111 1101
1111 1011 0101 1110
1111 1011 0110 1110
1111 1011 0111 1101
1111 1011 o101 1110
1111 1111 1111 1111
1111 1001 0111 1110
1111 1001 0111 1101
1111 1111 1111 1111
1111 1001 0111 1110
1111 1001 0111 1101
1111 1010 0110 1110
1111 1010 0111 1111

C58C0*

V0001
V0002
V0003
V0004
V0005
V0006
V0007
V0008
V0009
Vo010
Voo11
V0012
Vo013
V0014
Vo015
V0016
Vo017
Vo018
V0019
V0020
V0021

C110XXXXXOOHHHHHLHZ1
0010XXXXXOOHHHHHLHZ1
C111XXXXXOOHHHHHHHZ1
0011XXXXXOOHHHHHHHZ1
C111XXXXXOOHHHHHLHZ1
001 1XXXXXOOHHHHHLHZ1
C111XXXXXOOHHHHHHHZ1
001 1XXXXXOOHHHHHHHZ1
C111XXXXXOOHHHHHLHZ1
0011XXXXXOOHHHHHLHZ1
C111XXXXXOOHHHHHHHZ1
000100XXXOOHHHHHHHH1
C10100XXXOOHHHHHLHH1
000100XXXOOHHHHHLHH1
C10100XXXOOHLHHLHHH1
000100XXXOOHLHHLHHH1
C10100XXXOOHLHHLLHH1
000100XXXOOHLHHLLHH1
C10100XXXOOHLHLHHHH1
000100XXXOOHLHLHHHL1
C10100XXXOOHLHLHLHL1

1111
1110
1111
1111
1101
1111
1111
1110
1111
1111
1111
1111
1111
1101
1110
1110
1110
1101
1101
1111
1001
1010
1111
0101
0110
1110
1111

sk sk sk sk ok ok ok ok %k %k %k ok k sk %k %k % %k %k %k X

1111
1101
1111
1111
1110
1111
0101
0111
0110
0110
1111
1111
1111
1111
1111
1111
1101
1110
1110
1111
1101
1101
1111
1101
1101
1101
1111

1111
1111
1111
1110
1111
1111
0111
0111
0111
0111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

PAL DESIGN SPECIFICATION
MARK YOUNG 1/21/83

1111
1111
1110
1111
1111
1111
0111
0111
0111
0111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1110 *

sk ook sk ook ¥ sk ok sk %k sk ok ok Kk %k %k %k %k %k %k %k ok k %k %k %k %k

Figure 3-92. Fuse Map and Test Vectors for the Example of Figure 3-89.a

3-108

V0022 000100XXXOOHLHLHLHL1
V0023 C10101XXXOOHHHLLHHH1
V0024 0011XXXXXOOHHHLLHHZ1
V0025 C111XXXXXOOHHHHHLHZ1
V0026 0011XXXXXOOHHHHHLHZ1
V0027 C111XXXXXOOHHHHHHHZ1
V0028 0011XXXXXOOHHHHHHHZ1
V0029 C111XXXXXOOHHHHHLHZ1
V0030 0011XXXXXOOHHHHHLHZ1
V0031 C1010111100HHHHLHLH1
V0032 00010111100HHHHLHLH1
V0033 C1010111100HHHHLLLH1
V0034 00010111100HHHHLLLH1
V0035 C1010111100HHHLHHLH1
V0036 00010111100HHHLHHLH1
V0037 C1010111100HHHLHLLH1
V0038 00010111100HHHLHLLH1
V0039 C1010111100HHHLLHLH1
V0040 00010111100HHHLLHLH1
V0041 C1010111100LHHLLLLH1
V0042 00010111100LHHLLLLH1
V0043 C1010111100LHLHHHLH1
V0044 00010111100LHLHHHLH1
V0045 C1010111100LHLHHLLH1
V0046 00010111100LHLHHLLL1
V0047 C1010111100LHLHLHLL1
V0048 00010111100LHLHLHLL1
V0049 C1010111100HHLHLLHH1
V0050 00111XXXXOOHHLHLLHZ1
V0051 C1111XXXXOOHHHHHHHZ1
V0052 00111XXXXOOHHHHHHHZ1
7BCF

% %k ok %k ok ok ok gk ok Kk ok ok ok k ok %k % ok >k Kk %k %k ok ok %k 3k %k 3k %k k Xk

Figure 3-92. (Continued)

3-109

Columns: Inputs (0-31)

CLK—D Rows: Product Terms (0-63)
0123 4 567 8 9101 12 13 1415 1617 18 19 20212223 24252627 28293031
[™)
1
2
: DTACK
s
6
7

DCLK-IVS—' <}

8
9
10

M INTACK
13 3

"
15

E3
P <+

” X

18

» D Q Bc»ﬁ

21 X

. H 6]
RESET-[¥ 33—

L g -~

24

25

26 P

:: 5 D Q ;|L°‘C1

29 X

8
»
V' 28
!

)
(_‘."

L
Ol

pod —]
FeoL¥ a'—j

a8)
a9
50

51 e
52 WR
53 X

54
55

Fe1DE 3

56
57

59
&0 RD
61
62

63
) < OF
Fe2—P¥— L 4 E
0123 4 567 8 9101 12 131415 16 17 18 19 00n22 24 25 26 27 28 29 30 31

—+— =Fuse intact —{¥— = All fuses intact + = Fuse blown
Figure 3-93. Logic Diagram for Fast Am8500 to MC68000 Using AmPAL16R4/AmPAL16R4A

03862A-130

3-110

PAL16R4 PAL DESIGN SPECIFICATION
PATO51 MARK YOUNG 1/21/83
SLOW AM8500/9500 TO MOTOROLA 68000 PAL

ADVANCED MICRO DEVICES

CLK DCLK /CS /RESET /LDS RW FCO FC1 FC2 GND

/OE /RD /WR /C3 /C2 /C1 /CO /INTACK /DTACK VCC

; STATE MACHINE COUNTER CO - -C3

I e

Co := /CO ; 8500 CLK

Cl1 CO*/C1%/C2*LDS*CS*/RESET
/CO*C1% /C2#LDS*CS* /RESET
CO*/C1*C2*LDS*CS*/RESET
/CO*C1*C2%C2% /C3*LDS*CS* /RESET

+4+ + 0

c2 CO*C1%/C2%CS*/RESET
/C1%C2¥CS* /RESET

/CO*C1#C2#/C3*CS* /RESET

+ 40

C3 := CO*C1#C2%*/C3*CS*/RESET
/C2%C3#CS*/RESET

/C1*C2%C3*CS* /RESET

+ + 1

RD C1%*/C2*C3*RW*CS*/ INTACK* /RESET ; NORMAL READ
/C1#*C2#C3#*RW*CS*/INTACK* /RESET ; NORMAL READ
CO*C1*C2%/C3%INTACK*/RESET ; INTERRUPT ACKNOWLEDGE
/C1%/C2*C3%*INTACK*/RESET s INTERRUPT ACKNOWLEDGE

/CO*C1*/C2#C3* INTACK* /RESET 3 INTERRUPT ACKNOWLEDGE

+ 4

WR C1%*/C2%C3%*/RW*CS*/INTACK*/RESET ; WRITE OPERATTON

/C1*#C2%C3% /RW*CS* /INTACK* /RESET ; WRITE OPERATION

+

; DATA ACKNOWLEDGE
IF (CS) DTACK = /DCLK*/CO*/C1#C2#C3*/INTACK*/DTACK*/RESET
+ DTACK*RD*/RESET
+ DTACK*WR*/RESET
+ /DCLK¥*CO*/C1#*/C2%C3* INTACK* /RESET

; INTERRUPT ACKNOWLEDGE

INTACK = FCO*FC1*FC2¥C1¥%/C3*LDS*CS*/RESET
+ C2%/C3*FCO*FC1¥FC2*CS*/RESET
+ /C2%C3*FCO*FC1*FC2*CS* /RESET

Figure 3-94. Source Listing for the Example of Figure 3-89.b

3-111

TABLE 3-16.

FUNCTION TABLE:

PIN LEVEL (I.E. WHAT THE CHIP SEES AND PUTS OUT). THE
ONE EXCEPTION ARE THE CO - C3 PINS. THESE ARE DEFINED

AT THE REGISTER OUTPUT LEVEL (NON-INVERTED) BECAUSE
THEY WERE DIRECTLY DERIVED FROM THE TIMING DIAGRAMS
AND THIS MAKES IT EASIER TO RELATE TO THE TIMING

NOTE: FOR THE SIMULATION, ALL THE SIGNALS USED ARE AT THE
DIAGRAM.

D L B I L T ST AT

/OE /RD /WR CO C1 C2 C3 /INTACK /DTACK

CLK DCLK /CS /RESET /LDS RW FCO FCl FC2

NABRH <O M

NHZEH <O M

AO O

O A

“n to oo se sm ee em ee

sRESET SEQUENCE

NN NN NN

o m m

B e e e

B I I R

= ed 2

== ==R N ===

o m

mmmmmm

]

R Rl Rl

sl R B

R Ra Rl

e R Ra R

e R Rl R B

IR~ I ===]
oo mom
moeAm am
OO 10 4

;WRITE OPERATION (RW=L)

.
b

ZZZZZHHHHHHHHHHHHHHHH
Dnommonmn i i iEiminm m T mmm
o B e B B I I B e e e e e I e e e e e =]
S [R [e I I S I S - - - -~~~ - - == == == A
Al d - aammimiEm e S imim i m A
HAamm - -imm S mim A mm a3 mim
=ofieoli=cfi-ofic~=~R-cl-l-~R-~l==l-~R-~R-~--f==<= R -~ i~

mommonomnimm i m i mm

[R B B e e e I I B I e e e e e e e
D D DA D DA P B P B D P DA B D P P P D
D b D B D D B D B DG B D B D B B B D B
B D B D B P B D B P DY D B D B B B B e P e
o R ool o o e B I e e I P R = A e A
e ke ool o I B e R e R e e e e e e
o i i m im mm mm
fs == o= o<~ < - P R L IR PR S e e e e e I S A
=~ < oL < o R =R =R =~ B -~ R -~ R -~ I - - =

OO MO HO KO 10 A0 10 X0 10 10

3-112

TABLE 3-16. (Continued)

mmmmEmEmETd G- EE NN NN

e R Rl == - = = = = = =}

mEmmmmD T mim mEmD mEm a2

P I B I R P = =« i~ o= = = = o TN [R R |

HAaAmmEn A3 a3

=R IE I = ol = R R = = = RS R e o = = RO

A Ad A mE

jsafeeiia=jiesfieiissiaafjasjiesijesjics janfiajanjiasjicsiies)

HAAA - A -G a a3 aa

ol Rl el Nl R

PP P B B B B B B B B B B B B

ol R RNl Sl Rl e e

e e I B e R B e e e B e ==l]

[R S S - = Wi Ry, R B pW RV . o S

[Sfisos SR oj S s spesy) s sfes s S~ j o ==

e o I R RS S (s RS RS B (s L o e ol a i« o}

A a4ndm S A0 amAaAmam 3

HO RO 40 L0 1010 -0 A0 4

’

; INTACK CYCLE

NNEmD@mEmmmmmmmmmEmm I a0 EN NN

el R B e B I e e e e B R R e e e e o =R~ == = =]

1

-

e B B B B R R B e e e e === == === == = o =« = R |

B BRI S = = = == =i = o= =« = = = = = S IS (Vs (S By RS B e . O

e~ ===l == IS P I = =l == <= = R IR QS JSL (e = = =i it = e (W

==}

= J QR Y- -~ SR P B (3N SRR . L SRR R . - S I S S

DTEONDIOmNmN O ODEE DD DD i m m

jas]

—

>

>

H

H

C

jasfanii==fianijaniiesiie=jianiieaiianiie = It R W IS QR RS B < = fla =l « =l e o}

e e i M e I B RS RS (e e RS R [e RS i IS B s |
[gliecl==fe=i=mgeslierfaajiaafiesiiaafi==jiazlioafionjasjiasRaniiealia= i SRl
[lc=li=oli==lianfisafianfenianjasiicajicsjiaciicafiajexjieniiaafie=jia=RE i il
[aR==R==R==lieoie=lis=fe=infenlis=je=ii====liafiaoli== Rl sl
[al==l==Rco=li=ogo=li=sic=Reng=mlis=faafi=sie==fien == N ===l loY
o B IS B I RS (S (S I e N (R S I = I i R R .
eafinfiesie R === Ru=isci==fia=fcficcfefioafiacliazfaajicolicaicnliuaiian]
e e B e A S B e e i e = I Qs Qi R RS = = e i o]
HE AR AaD Gd A A A dm Am A dm A

O H0 A0 40 10 10 40 HJ0 10 0 a0 A

DESCRIPTION:

THERE IS

THE SLOWZTOM PAL IS A SELF-CONTAINED 8500 TO 68000 INTERFACE.

AGAIN, THE INTERFACE PROVIDES TOTAL SIGNAL

NO USER SOFTWARE REQUIRED FOR THIS INTERFACE, BUT THERE IS A TRADE-OFF

OF SLOWER ACCESS TIME.

COMPATIBILITY.

3-113

PAL16R4

PATO51

SLOW AM8500/9500 TO MOTOROLA 68000 PAL
ADVANCED MICRO:DEVICES
*D9724

FO

L0000
10032
L0064
10096
L0128
L0256
10288
L0320
L0352
10512
L0768
10800
10832
10864
L1024
L1056
L1088
1.1280
L1312
L1344
L1536
L1568
L1600
11792
L1824
11856
L1888
L1920
L1952

1111 1011 1111 1111
1001 1101 0101 1101
1110 1111 0111 1111
1110 1111 0111 1111
1011 1110 0110 1101
1111 1111 1111 1111
1111 1011 0111 1010
1111 1011 0111 1111
1111 1011 0111 1111
1111 1111 1101 1111
1111 1011 0110 1001
1111 1011 0101 1010
1111 1011 0110 1001
1111 1011 0101 1010
1111 1011 0110 1110
1111 1011 0111 1101
1111 1011 0101 1110
1111 1011 0110 1110
1111 1011 0111 1111
1111 1011 0111 1101
1111 1111 1111 1111
1111 1001 0111 1110
1111 1001 0111 1101
1111 1111 1111 1111
1111 1001 0111 1110
1111 1001 0111 1101
1111 1110 0110 1110
1111 1110 0111 1101
1111 1110 0101 1110

C5D43%

V0001
V0002
V0003
V0004
V0005
V0006
V0007
V0008
V0009
V0010
VOoOo11
V0012
V0013
V0014
V0015
V0016
Vo017
V0018
V0019

C110XXXXXOOHHHHHLHZ1
0010XXXXXOOHHHHHLHZ1
C111XXXXXOOHHHHHHHZ1
001 1XXXXXOOHHHHHHHZ1
C111XXXXXOOHHHHHLHZ1
0011XXXXXOOHHHHHLHZ1
C111XXXXXOOHHHHHHHZ1
001 1XXXXXOOHHHHHHHZ1
C111XXXXXOOHHHHHLHZ1
001 1XXXXXOOHHHHHLHZ1
C111XXXXXOOHHHHHHHZ1
000100XXXOOHHHHHHHH1
C10100XXXOOHHHHHLHH1
000100XXXOOHHHHHLHH1
C10100XXXOOHHHHLHHH1
000100XXXOOHHHHLHHH1
C10100XXXOOHHHHLLHH1
000100XXXOOHHHHLLHH1
C10100XXXOOHHHLHHHH1

1111
1110
1111
1111
1101
1111
1111
1110
1101
1111
1101
1101
1110
1110
1101
1110
1110
1110
1101
1110
1111
1001
1010
1111
0101
0110
1110
1101
1101

% ok %k ok ok ok dk ok %k ok %k sk ok %k %k ¥ %k X %k

1111
1110
1111
1111
1110
1111
0101
0101
0110
1111
1111
1111
1111
1101
1111
1111
1101
1101
1110
1110
1111
1110
1110
1111
1110
1110
1101
1110
1110

1111
1111
1111
1110
1111
1111
0111
0111
0111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

PAL DESIGN SPECIFICATION

MARK YOUNG

1111
1111
1110
1111
1111
1111
0111
0111
0111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111
1111

s sk % ok ok ok ok %k %k ok sk sk ook sk ok 3k ok ok % 3k sk ok sk o Kk %k % k ¥k

1/21/83

Figure 3-94. Fuse Map and Test Vectors for the Example of Figure 3-89.b

3-114

V0020 000100XXXOOHHELHHHH1
V0021 C10100XXXOOHHHLHLHH1
V0022 000100XXXOOHHHLHLHH1
V0023 C10101XXXOOHHHLLHHH1
V0024 000100XXXOOHHHLLHHH1
V0025 C10100XXXOOHHHLLLHH1
V0026 000100XXXOOHHHLLLHH1
V0027 C10100XXXOOHHLHHHHH1
V0028 000100XXXOOHHLHHHHH1
V0029 C10100XXXOOHHLHHLHH1
V0030 000100XXXOOHHLHHLHH1
V0031 C10100XXXOOHLLHLHHH1
V0032 000100XXXOOHLLHLHHH1
V0033 C10100XXXOOHLLHLLHH1
V0034 000100XXXOOHLLHLLHH1
V0035 C10100XXXOOHLLLHHHH1
V0036 000100XXXOOHLLLHHHL1
V0037 C10100XXXOOHLLLHLHL1
V0038 000100XXXOOHLLLHLHL1
V0039 C10100XXXOOHHLLLHHH1
V0040 000100XXXOOHHLLLHHH1
V0041 C11111XXXOOHHHHHLHZ1
V0042 0011XXXXXOOHHHHHLHZ1
V0043 C111XXXXXOOHHHHHHHZ1
V0044 0011XXXXXOOHHHHHHHZ1
V0045 C111XXXXXOOHHHHHLHZ1
V0046 0011XXXXXOOHHHHHLHZ1
V0047 C1010111100HHHHLHLH1
V0048 00010111100HHHHLHLH1
V0049 C1010111100HHHHLLLH1
V0050 00010111100HHHHLLLH1
V0051 C1010111100HHHLHHLH1
V0052 00010111100HHHLHHLH1
V0053 C1010111100HHHLHLLH1
V0054 00010111100HHHLHLLH1
V0055 C1010111100HHHLLHLH1
V0056 00010111100HHHLLHLH1
V0057 C1010111100LHHLLLLH1
V0058 00010111100LHHLLLLH1
V0059 C1010111100LHLHHHLH1
V0060 00010111100LHLHHHLH1
V0061 C1010111100LHLHHLLH1
V0062 00010111100LHLHHLLL1
V0063 C1010111100LHLHLHLL1
V0064 00010111100LHLHLHLL1
V0065 C1010111100HHLHLLLH1
V0066 00111XXXXOOHHLHLLHZ1
V0067 C111XXXXXOOHHHHHHHZ1
V0068 0011XXXXXOOHHHHHHHZ1
F7FD

¥ %k k% Kk k %k k sk k sk ok ok ok sk %k sk sk ok ok sk %k ok ok ok ok ok dk ok ok 3k ok ok ok sk %k %k K K %k ok %k ok sk ok k ok k %

Figure 3-94. (Continued)

3-115

Columns: Inputs (0-31)
Rows: Product Terms (0-63)

oLk >

0123 4567 89101 12131415 16171819 20212223 24252627 28293031

o
:
2 e
: DTACK
:
:
7
LIS > i 3
.
“ INTACK
AL}
.
Cs —I:)3 (1__
"
. _
s D @ co
21
= @
23
RESET L% {l—————l
-
26
- x o a E‘» Ci
29 ~ =
e b a
osPx (]———j
32
33
34
= o a g“" c
. O
39
rRW-L¥ —— ‘
0)
a
o X 0 Qa c3
.
“ S
a7 E3
roo T2 Pl
a8)
a9
50
3 @[’L WA
53
54
55
Fc1-P <
56 M)
57
“
P RD
.
62
63
Fc2PE <+ —<}-oE
0123 4567 8 9101 12 131415 1617 1819 20212223 24252627 28293031

—*— =Fuse intact —X)— =All fuses intact —|— = Fuse blown 03862A-131

Figure 3-95. Logic Diagram for Slow Am8500 to MC68000 Using AmPAL16R4/AmPAL16R4A

3-116

Am7970A CEP Interface to the 68000 CPU

This design presents an example of how to use
the CEP in a 68000 system. Though the
Am7970A was designed for easy interface to the
iAPX family, it can easily be adapted to the 68000.

General Discussion

The example may be a part of a workstation
environment or an image storage application such
as an optical disk storage device. Also note that all
FAX applications (Group 3 and 4) are well served.

Figure 3-96 is the Am7970A CEP interface to the
68000 CPU. This illustration only shows how the
system interface of the CEP is embedded in such
a system. If very high throughput is desired, the
document interface of the CEP should be
connected to a large memory bank to buffer the
image data. The logic for the document buffer
interface is straightforward. Using memory
connected to the document side as a source
buffer (image data) and the system interface as the
destination buffer (coded data), a whole page of
image data with a resolution of 300 pixels per inch
can be compressed in 1-4 seconds.

The document buffer may be loaded through the
CEP system interface in transparent mode. It could
also be designed as a dual port memory which is
loaded directly by the CPU or by a DMA device. A
third approach could load the document buffer
directly by a scanner or a image processing
peripheral device. The last method reduces the
necessary data transfers to an absolute minimum
and is therefore the preferred solution for very
high performance applications.

This design assumes that the 68000 is connected
to a memory bank, either onboard or via a bus
interface. By setting the appropriate mode in the
CEP's command register, the user determines
whether this memory contains either the source or
the destination buffers for the CEP, or both.

Hardware Description

A latch and two drivers are used to demultiplex the
data from address bits A16-A23 of the CEP and to
direct the byte-oriented data stream of the CEP to
the upper and lower bytes of the data bus of the
68000. On even addresses, data is transfered
through the upper half of the bus; on odd

addresses, data passes through the lower half of
the 68000 data bus.

All register accesses into the CEP are performed
through the upper data bus because all CEP
register addresses are even. They are addressed
by the signals A0-A7.

Almost all of the conversion logic for the control
signals was combined into one PAL. This
minimizes the hardware required for customizing
the CEP to any kind of processor. The
AmPAL22V10 was chosen because it provides
more outputs than most other PALs and provides
full freedom in choice of output characteristics
(polarity, latched/unlatched function). The PAL
equations are written for the PLPL PAL assembler.
They can easily be changed for any other available
PAL Assembler. Refer to Figure 3-97 and Figure
3-98 for the Pal Device equations.

The PAL converts the RD, WR and A0 signals of
the CEP to UDS, LDS, and R/W signals of the
68000. It provides the control signals for the data
transceivers and transforms the two-wire bus
arbitration signals of the CEP (HRQ, HLDA) to the
three-wire arbitration scheme of the 68000 (BR,BG
and BGACK).

The 68000 CPU uses a memory mapped /O
address scheme. The I/O interface logic assigns a
memory area to the CEP internal registers using
standard address comparators. The CS output is
validated by AS LOW. In sophisticated operating
systems the CEP access should be reserved to
supervisor level memory accesses. Here this is
accomplished by an LS138 decoding this access
mode from the signals FC0-2. The output is used
to enable the comparators.

When designing the memory interface, care
should be taken that the setup time for the READY
input is meet. If the environment does not provide
this demand, the READY signal coming from the
memory must be synchronized with a flip-flop
register.

Operation

Interrupt Handling

The CEP notifies the CPU about an exception
condition (e.g. end of page) by driving the INTR
line HIGH. The CEP does not produce interrupt
vectors by itself. If a specific application demands a
user vector to be asserted by the peripheral, an

3-117

A1-A15

A16-A23

68000
CPU

BGACK

DTACK

VPA

PCo-2

TO MEMORY BUS

> A1-A15
| ALE
G A0
2056 LATCH K L‘:
EN
{—— .
EN
> 2946
TRANSCEIVER
DIR
" —
; DIR
2946
/| TRANSCEIVER < > AD16-AD23
ﬁ‘l Vee
1 %
INTR
< |
MEL%RY |
BUS l—— Am7970A
A 4 y 4 e
I BREN BLEN
° RW A0
uDs RD =
LDS AmPAL WR WA
22V10
CLK ALE
BE RESET RESET
BR HLDA HOLA
RS sz HRQ HRQ
. s
FROM V ‘
o= FROM RESET
GENERATOR
<} i
AB-A23 [
ADDRESS G
COMPAR- _
ATOR EOUT -
Vee
Y4 G2B
Y7 Gl 5 MHZ
J— CLOCK CLK
A-C G2A OSCILLATOR
3 138
DECODER
. =
Figure 3-96. Am7970A CEP to 68000 CPU Interface 07666A 5-1

3-118

DEVICE (AMPAL22V10)
“7970A CEP to 68000 Interface Controller

CEP68KPAL VERSION 1.0
AMD Wolfgang Kemmler 9-12-85 ”
PIN

CLK =1 vce = 24
/CS =2 /BHEN = 23
ALE =3 /BLEN = 22
/BG =4 AQ =21
HRQ =5 HLDA = 20
RESET = 6 /RD = 21
NC =17 /WR = 19
NC =8 /UDS = 18
NC =9 /LDS = 17
NC =10 /RW = 16
NC =11 NC =15
GND = 12 NC = 14
BEGIN

IF (RESET) THEN ARESET() ;

IF (HLDA) THEN ENABLE (RW) ; HLDA RW = WR ;

IF (HLDA) THEN ENABLE(UDS) ; UDS = RD * /A0 + WR * /AO ;
IF (HLDA) THEN ENABLE(LDS) ; LDS = RD * A0 + WR * AQ ;
IF (/HLDA) THEN ENABLE(RD) ; RD = /RW * UDS ;

IF (/HLDA) THEN ENABLE(WR

; WR = RW * UDS ;
IF (/HLDA) THEN ENABLE(A0); AO = UDS ;

BHEN = HLDA * /AO * RD + HLDA * /AQO * WR + CS * UDS ;
BLEN = HLDA * AO * RD + HLDA * A0 * WR + CS * LDS ;
BR := HRQ * BG * BR * AS + HRQ * /BG * /HLDA ;

/HLDA := /HRQ + /HRQ * /BG + /HRQ * AS + /HRQ * /HLDA

+ BG * /HLDA + AS * /HLDA ;
END

Figure 3-97. PLPL Specification for the Example of Figure 3-96

3-119

PAL16R4
VERSION 1.0
CEP68KB
AMD

CEP to 68000 Interface Controller

WOLFGANG KEMMLER 9-12-85

CLK /RD /WR HRQ ALE /CS /BG NC NC GND
/OE /DTACK READY /BR HLDA NC NC /AS /BGACK VCC

BR := HRQ * BG * BR * AS + HRQ * /BG * /HLDA

/HLDA

:= /HRQ + /HRQ * /BG + /HRQ * AS + /HRQ * /HLDA

+ BG * /HLDA + AS * /HLDA

IF (CS) DTACK = READY

IF (HLDA) READY = DTACK * RD + DTACK * WR

IF (HLDA) AS = ALE

BGACK = HLDA

Figure 3-98. CEP to 68000 Interface Controller

07666A 5-3

interrupt controller such as the Am9519A must be
used

To avoid an additional interrupt controller, this
design follows an easier approach to service the
interrupt request for the. CPU, using the 68000
auto vector mode. The status decoder generates
the interrupt acknowledge signal from the status
lines FO-F2. This signal is used to drive the VPA
input of the CPU. If this line instead of DTACK is
asserted during an interrupt acknowledge cycle,
the 68000 will use the internal auto vectors instead
of an externally supplied vector.

The interrupt inputs of the 68000 are directly
connected to the inverted INTR signal of the CEP
without using the usual priority encoder.
Assuming that the auto vector mode of the CPU is
used as described above, 2 more peripherals
could notify an interrupt request to the CPU by this
method. With respect to all possible combinations

of pending interrupt requests, the auto vector

table would have to look like this:

TABLE 3-17. EXCEPTION VECTOR TABLE

Vector No. Assignment
25 Auto Vector 1
26 Auto Vector 2
27 Auto Vector 2
28 Auto Vector 4
29 Auto Vector 4
30 Auto Vector4 -
31 Auto Vector 4

The vectors are selected by the 68000 _according
to the the priority of the interrupt inputs IPLO-IPL2.

This schematic shows the CEP connected to IPL2
giving it the highest priority. The CEP removes
INTR with the next access to acommand register.

68000 Acc to the Am7970A CEP
Registers (Slave Mode)

By driving CS LOW, the address decoder notifies
the CEP that the CPU wants to access the CEP
internal registers. The CEP reacts by driving
READY LOW and interrupting its internai
microprogram. The READY signal is an output of
the CEP as long it is in slave mode. Depending on
the internal status of the CEP, READY is released
after 4 - 50 CEP clock cycles.

The CEP provides a totally asynchronous slave
interface. This keeps the logic very simple. The
data hold time for a “slave write access” is 20 ns
minimum which perfectly matches the 68000 up to
a CPU clock frequency of 10 MHz.

Data transfers in slave mode are generally passed
through the upper bus driver (D8-D15) because all
registers are located at even addresses.

Am7970A CEP System Memory Access
(Master Mode)

The CEP drives HRQ HIGH to gain bus control. As
soon as HLDA goes HIGH it enables its system
interface lines and start a memory access.

In this operating mode, READY is an input to the
CEP. READY is connected to the inverted DACK
of the 68000 system. The CEP samples the

READY line before driving the RD or WR signals

3-120

LOW. These signals are used to provide the UDS
and LDS signals which normally are asserted much
earlier_in typical 68000 systems. Therefore, the
DTACK line which signals the completion of the
memory access, cannot be asserted earlier than RD
or WR. This causes an automatic wait state for each
CEP memory transfer.

The full performance of the CEP in a 68000 system
can only be reached if the memory design is opti-
mized not only for the 68000 but also for the specific
CEP timing. If UDS and LDS are only used to enable
the data driver of the memory banks and if the
memories are fast enough, and if the READY line is

driven HIGH during master access all the time
(disregarding DTACK), then the CEP can be used
without a wait state.

NOTE:

The CEP needs only 3 clock cycles for a
memory transfer while the 68000 CPU
takes 4. An additional wait cycle would
equal the access times of both devices,
assuming they are running at the same
clock frequency. A CEP running at 5 MHz
without a wait state, on the other hand,
would match the memory access time of an
8-MHz 68000. A 5-MHz CEP does not nec-
essarily reduce the performance of faster
clocked CPUs.

3-121

Am8530 to 68020 Interface

This design note shows the logic to interface a 6-MHz Am8530
Serial Communications Controller to the 68020 CPU running at
10 Mhz with a system clock cycle time of 100 ns. The Am8530
is a high-performance, dual-channel SCC that supports data
rates up to 1.5M bps and a variety of communication protocols.

The PAL device generates the /RD and /WR control signals for
the Am8530 from the 68020 /DS and R/W- control signals. It
also generates the clock for the SCC by dividing the 68020
system clock. This meets the .165-ns minimum cycle time for
the 6-MHz SCC clock.

Also, a state machine is implemented to perform the hand-
shake necessary for byte transfers on the 68020 bus. The state
machine transition diagram is shown in Figure 3-100. Normally,
DSACK]1:0] is inactive. When this device is selected, a wait
state is inserted and then data transfer is acknowledged by
asserting DSACK[1:0] for byte transfer. When the CPU
deasserts the address strobe, DSACK][1:0] is negated.
DSACK][1:0] will be driven by other devices on the 68020 sys-
tem bus. The PAL device enables DSACK[1:0] only when the
CPU performs a read or write cycle for the SCC; at other times
DSACK([1:0] lines are three-stated.

Since the Am8530 is a byte-wide peripheral, it is connected to
the upper byte of the 32-bit wide 68020 data bus.

D[24:31] < M 010:7]
A_BUS [_—__:: N o
DECODER [O > /CE
68020 8530
CPU scc
L—p{ /CS
> /AS WR
» /DS RD
RIW- >t RW
AmPAL16R4
DSACK[1] = 8530CLK
DSACK[0] le CLK

08749A-11

Figure 3-99. Am8530 to 68020 Interface

3-122

/CS

DSACK[1:0]=11

11

DSACK[1:0]

CS

=
=

Figure 3-100. 68020 Byte Port DSACK Handshake State Diagram

=10

DSACK[1:0]

08479A-12

AS

3-123

" THIS PLPL FILE IS FOR A 16R4 THAT IMPLEMENTS THE LOGIC
NECESSARY TO INTERFACE AN Am8530 (SCC) TO A 68020 SYSTEM. "

DEVICE Am8530_TO_68020 (PAL16R4)

PIN
cLK =1 vee =20
/AS =2 DSACK[1] = 19
/bS =3 DSACK[0] = 18
RW 4 STl =17
/cs =5 STI0] =16
NC1 =6 Q =15
NC2 =7 NC5 = 14
NC3 =8 WR =13
NC4 =9 RD =12
GND =10 NC6 =1 ;

BEGIN

" READ AND WRITE CONTROL SIGNALS ARE DERIVED FROM
R/W- AND DS-. ®

WR
RD

/(DS * /RW) ;
/(DS * RW) ;

" THE INCOMING CLOCK IS DIVIDED BY 2 TO GENERATE THE
CLOCK FOR THE Am8530. "

CASE (Q)
BEGIN
0)Q:=1;
1) Q := 0;
END;

THE FOLLOWING CODE IMPLEMENTS THE STATE MACHINE TO
PERFORM DSACK OPERATION. IT INSERTS WAIT STATES,
ASSERTS DSACK FOR BYTE TRANSFER AND REMOVES DSACK
WHEN AS IS NEGATED. "

IF (/CS) ENABLE (DSACK[1:01)
IF (ST[1:0] = #810)

THEN DSACK[1:01 = #B810;
ELSE DSACK[1:0]1 = #811;

CASE (ST[1:0])

BEGIN

#B800) BEGIN
IF (/CS)
THEN ST[1:0] := #800 ;
ELSE ST[1:0] := #B01;

END ;
#801) ST[1:0] := #810;
#810) BEGIN
IF (/AS)
THEN ST[1:01 := #B00 ;
ELSE ST[1:0] := #810;
END ;
END ;
END.

Figure 3-101. PLPL Specification for the 8530 to a 68020 Interface

3-124

A PAL-Based Direct Memory Access
Controller for the 68020

Introduction

Direct Memory Access operation on the 68020 system bus
provides an interesting design challenge. There are many
design issues that need to be addressed for an efficient DMA
design.

The 68020 can accomodate memory blocks and peripherals of
different widths (8, 16, and 32 bits) on the system bus. The
68020 imposes a connectivity requirement on slave devices
wherein 8-bit devices must be connected to the uppermost
byte of the data bus and 16-bit devices must be connected to
the upper word of the data bus.

Issues related to device data width are: What kinds of transfers
will be supported by the DMA device? How flexible should be
the data funneling scheme? (Data funneling refers to packing
and unpacking data when mixed width transfers—8-to-16, 8-
t0-32, etc.—are performed.) Data funneling can be further
complicated when it becomes necessary to perform upper-to-
lower and lower-to-upper byte swap (i.e., a device with a word-
wide bus may write (read) the byte on the lower byte of the data
bus, whereas the 68020 reads (writes) the byte on the upper
byte of the upper data bus).

The 68020 system bus allows a memory read (or write) opera-
tion in three clock cycles. With a 16-MHz 68020 this translates
to a memory cycle time of approximately 180 ns. In a high-
performance design, it would be desirable to have a 32-bit
wide, no-wait-state memory. Speed of the DMA operation in
such a system should be limited only by the memory speed
and not the DMA hardware itself. Incorporating an off-the-shelf
DMA controller in the 68020 system must be evaluated on this
basis.

Another aspect of Direct Memory Access operation is the block
size of the data transfer. With a 32-bit wide address bus, the
choice of block size is indeed large. Also, there should be no
unreasonable restriction on the starting address of the source
and destination transfer areas.

Design Objectives—Fast and Simple!

This design note shows one possible implementation of DMA
logic for the 68020 system using PAL devices. This is a no-frills
design for performing single-cycle, 32-bit, memory-to-memory
transfers. It is possible to incorporate other features using
more logic. These features may prove useful in some specific
applications.

The design objectives are as follows: perform 32-bit memory-
to-memory transfers without any wait states, support transfer
to and from any area in the memory with a block transfer size of
at least 64K bytes, and support preemptive DMA operation.
Implementation Detail

A block diagram of the DMA logic is shown in Figure 3-102.

Two address pointers, a counter, a data latch, and a control
register make up the DMA logic. Two PAL devices are used to
implement the DMA control logic. An AmPAL16R4 PAL device
is used to perform the control-state sequencing and some
control-signal generation, and an AmPAL16L8 device is used
to generate the remaining control signals. The state sequenc-
ing PAL device is clocked with a 32-MHz signal (2 x SYS CLK).

There are two address pointers—one for source and the other
for destination area. The pointers are 30 bits wide—the upper
word of each pointer is a segment register that is written by the
CPU before a DMA transfer is initiated; the CPU must perform
segment register maintainance (i.e., if the transfer area spans
a segment boundary, the CPU must break up the transfer into
two separate operations and update the segment register be-
tween the two DMA operations).

The lower word of the pointer is a 14-bit incrementor that is
loaded by the CPU before the DMA operation is initiated; since
the lower address word can be loaded by the CPU it can start
the transfer at any long-word boundary memory addresses.
This pointer is incremented by the DMA logic as each transfer
is performed. Address bits A1 and AQ are stuck-at-zero since
the DMA controller handies long words only.

A 32-bit data latch is used to temporarily hold the fetched data
long-word from the source. During destination writes, this
becomes the source of data.

Depending on the characteristics of the RAM devices used in
the system, it is possible to modify the control logic such that it
is not necessary to have the external 32-bit data latch tempo-
rarily hold the long-word being transferred.

Assuming DRAMSs are used in the system, here is how that
scheme will work: the controller starts a read cycle from the
source, after allowing for read access time, the address and
RAS applied to the source are taken away while maintaining
CAS to the source. This frees up the address bus for driving
the destination address while maintaining valid data on the
data bus with the source data. The write operation to the des-
tination is now initiated. The address for destination is provided
by the destination address pointer and the data comes directly
from the source DRAM. The transfer cycle is completed by
removing the RAS and CAS to the destination and the CAS to
the source.

A 14-bit decrementor that is loaded by the CPU is used to track
the number of long-words transferred in the current DMA cycle.
This counter is loaded by the CPU before a new DMA opera-
tion is initiated. The decrementor is decremented by the DMA
control logic as each transfer is performed. A count of zero
indicates the end of current DMA operation.

A command register is used to start the DMA operation by
writing the GO bit. The zero detect signal of the counter
(CTRZERO) is used to reset the GO bit.

DMA related pointers, counter and command register are
shown in Figure 3-103. These locations are mapped to the
68020 memory space. They are all written by the 68020 before
the DMA operation is initiated (by writing the GO bit of the

3-125

9el-€

ADDRESS BUS

4 A 4 'y
SRC_PTR DST_PTR
—_—] ENB—p]
ENE b 2XLS374 2X22V10 <—INC h 2XLS374 2X22V10 |—<e—INC
4
A ’ § 4
DATA BUS
F § r y 7 §
DATA CTR CMD
ENB 2XLS374 2XLS374 2X22V10
LATCH —D — —P
4 4 4
] T
INC_SRC «—— < _
ENB_SRC —e—— | @ v
INC_DST o
ENB_DST —e—— | | v
BR ZERO GO S?,
————
BG ——»| DMA CONTROLLER > R/W-
BACK <+—— 16R4 + 16L8 L S1Z[1:0]
N ¢———— DSACK[1:0]
DATA_ENB
CLK DATA_LATCH

08479A-13

Figure 3-102. PAL-Based DMA Controlier for the 68020

L21-€

SRC SEGMENT REGISTER

SRC OFFSET
REGISTER/COUNTER

31

DST SEGMENT REGISTER

DST OFFSET
REGISTER/COUNTER

]
]
L

31

BLOCK SIZE
REGISTER/COUNTER

GO

7

ALL MAPPED TO THE SYSTEM MEMORY SPACE.

ALL ARE INITIATED BY THE CPU.

SOURCE PTR

DESTINATION PTR

COUNTER

COMMAND REGISTER

COUNTERS ARE INCREMENTED/DEINCREMENTED BY THE DMA LOGIC.

Figure 3-103. DMA Pointers, Counters, and Command Register

command register). The address pointer count (lower word of
the address pointer) is incremented by the DMA controller on
every transfer cycle.

The DMA transfer cycle is a tight twelve-state sequence. It
requires the destination pointer to be incremented while the
read operation is in progress, and the source pointer to be
incremented while the write operation is in progress. This
necessitates initializing the destination pointer with a value that
is one less than the desired destination transfer area start
address.

It is possible to map the command and the counter locations to
the same long-word address; and they can be written in the
same long-word write cycle by the CPU. There should be no
timing problems when count and GO is written simultaneously
because the bus arbitration must take place before the DMA
logic can use the count value. When the CPU regains control of
the system bus, it should read the count register to determine if
the transfer is complete.

DMA preemption is implemented in.the control state machine.
Bus Grant (BG) can be negated by an external bus arbiter at
any time and the DMA controller will complete the current bus
cycle and give up the system bus by deasserting the Bus Grant
Acknowledge (BGACK) signal. Another device can now
become the bus master; however since the transfer is not com-
plete, the DMA logic will keep the Bus Request (BR) signal
active and attempt to complete the transfer whenever the other
bus master relinquishes the bus.

A state diagram for the DMA controller state machine is shown
in Figure 3-104. Note that all signals are assumed active HIGH

in this state transition diagram. The device stays in the IDLE
state until a DMA operation is started by writing the GO bit of
the command register. The controller then requests the bus
(BRQ state) and after the bus is granted (BGT state), it initiates
memory-to-memory transfers—read followed by write cycles;
note that one memory-to-memory transfer cycle is an in-
divisible operation.

The DMA preemption is performed in state WS5. When the
external arbiter signals that the bus is needed by another po-
tential bus master (by negating BG), the DMA controller gives
up the bus and enters the BRQ state and stays there until the
bus is returned to the DMA controller.

The current DMA transfer is complete when the count value
reaches zero. It causes the DMA controller to give up the sys-
tem bus (BR is negated) and forces the DMA state machine
into the idle state.

Conditions for state transitions are shown in the state transition
diagram (Figure 3-104). Figure 3-106 shows the specification
for a PAL device (AmPAL16R4) to implement this state dia-
gram. Table 3-18 shows the control outputs as a function of the
current state. This table can be used to derive the PAL
specification for the control output generation (combinatorial
only) PAL device (AmPAL16L8). It should be noted that it is
necessary to three-state some of the control signals by using
the BR and BGACK control inputs.

A timing diagram for major-signals in a memory-to-memory
transfer cycle is shown in Figure 3-105. The DMA controller
essentially generates the timings of the 68020 system bus for
memory read and write cycles.

3-128

621-€

/GO

/BG
GO
4
r BRQ
INIT
BG
/BG
/DSACK

CTR_ZERO

BG AND
/CTR_ZERO

/IDSACK

08473A-15

Figure 3-104. DMA State Machine Transition Diagram

w

oeL-e

RSO RS1 RS2 RS3 RS4 RS5 WSO WS1_WS2 WS3 WS4 WS5
CLK

ADR/SIZ :X X X
AS /—\ /-—
\ /
OGO X000 XXX
08479A6 —’i INDIVISIABLE DMA TRANSFER CYCLE l<_

Figure 3-105. DMA Transfer Major Signal Timings

N

O\
O\
_/

R/W-

DSACK[1:0]

1E1-€

" THIS IS THE STATE MACHINE SPECIFICATION FOR THE 68020 CASE (STI3:01)

DMA CONTROLLER LOGIC. - VINEET DUJARI 08/15/86 " IDLE) IF (/GO) THEN ST([3:0] := IDLE ;
ELSE ST([3:0] := BRQ ;
DEVICE 68020_DMA (PAL16R4) BRQ) IF (/BG) THEN ST[3:0] := BRQ ;
. ELSE ST[3:0] := BGT ;
PIN CLK =1 vee =20 BGT) ST[3:0] := RSO ;
/BG =2 /BR =19
GO =3 /BGACK = 18 - RSO) ST[3:0] := RST1 ;
CTR_ZERO = 4 ST[3] =17 RS1) ST[3:0] := RS2 ;
/DSACK[1] =5 ST[2] =16 RS2) ST(3:0] := RS3 ;
/DSACK[O] = & ST[1] =15 RS3) ST[3:0] := RS4 ;
INIT =7 STI0] =14 RS4) IF (DSACK[1:0]) THEN ST[3:01 := RS5 ;
NC2 =8 /AS =13 ELSE ST([3:0]1 := RS4 ;
NC3 =9 /DS =12 RS5) STI3:0] := WSO ;
GND =10 NC4 =11;
WSO) ST[3:0] := WSt ;
" STATES ARE DEFINED BELOW. " WS1) ST[3:0] := Ws2 ;
WS2) ST[3:0] := WS3 ;
DEFINE IDLE =0; BRQ =1; BGT =2; WS3) ST[3:0] := WS4 ;
RSO =3; RSt =4 ; RS2 =5; WS4) IF (DSACK[1:0]) THEN ST[3:0] := WS5 ;
RS3 =6 RS4 =7; RS5 8 ; ELSE ST(3:0] := WS4 ;
ws0 9; WSt =10 ; WS2 =1 ; WS5) BEGIN
Ws3 =12 ; WSk =13 ; WSS =14 ; IF (CTR_ZERO) THEN ST(3:0] := IDLE ;
IF ¢ /BG) THEN ST[3:0] := BRQ ;
" THE STATE TRANSITION SPECIFICATION FOLLOWS. IT IS IF (BG * /CTR_ZERGC) THEN ST[3:0] := RSO;
DERIVED FROM THE STATE TRANSITION DIAGRAM. " END;
BEGIN END;
IF ¢ INIT) THEN RESET (ST[3:01) ; END.

IF (BR * BGACK) THEN ENABLE (AS, DS) ;

Figure 3-106.a PLPL Specification for the 68020 DMA Controller Logic

w

ceL-€

" THIS IS THE PLPL SPECIFICATION FOR THE LOWER-UPPER BYTE
OF THE 68020 DMA ADDRESS POINTER.
- VINEET DUJARI 08/19/86 "'

DEVICE LOWER_UPPER_ADR_PTR (AmPAL22V10)

PIN
CLK 1 vce =24
D[8] =2 A[8] =23
DI9] =3 AL9] =22
D[101 =4 AL101 =21
DIl =5 A[11] =20
p[121 =6 AL121 =19
D[13] =7 A[13] =18
D[141 =8 A[14] =17
D[15] =9 A[151 =16
LD =10 NC1 =15
INC =1 cT =14
GND =12 ENB =13 ;

" THIS DEVICE GETS A LOAD INPUT (LD) FROM THE CPU THAT
LOADS THE VALUE FROM THE DATA BUS TO THE COUNTER
REGISTER. INCREMENT CONTROL (INC) INCREMENTS THE
COUNTER PROVIDED THE COUNT (CT) CONTROL IS ACTIVE. "

BEGIN

IF ¢ ENB) THEN ENABLE (A[15:81) ;

Al15] :=
LD * D[15]
/INC * A[15]
INC * CT * (

/JAL15] * A[14] * A[13] *

+
+

Al12] * A[11] * A[10] *

A[91 * A[8]

AT15]1 * /A[14]
A[15]1 * /A[13]
AL15] * /Al12]
A151 * /A1)

A[15] * /A[10]
AL15] * /AL9]
A[15] * /A(8]

)
INC * /CT * A[15] ;-

AL14] :=
LD * D[14]
JINC * A[14]
INC * CT * (

+ + + + + + +

+

+

" LOAD VALUE *
" RECIRCULATE VALUE "
" COUNT UP *

" RECIRCULATE VALUE "

" LOAD VALUE *
" RECIRCULATE VALUE *
" COUNT UP *

JAL14] * A[13] * A[12] *

A[11] * A[10] * A[9]
A[8]
A[14] * /AL13]
Al14] * /AL12]
AL14] * 7A[11]
A[14] * /AL10]
A[141 * /AI9]
A[14] * /AL8]
)

INC * /CT * A[14] ;

*
+
+
+
+
+
+

* RECIRCULATE VALUE *

Figure 3-106.b PLPL Specification for the 68020 DMA Controller Logic (Continued)

€el-€

A[13] :=

LD * D[13]

JINC * A[13]

INC * CT * (
/AT13]
AL10]
Al13]
AL13]

AL131

Al13]
A[13])
)

INC * /CT * A[13]

AL12] :=
LD * p[121
JINC * A[12]
INC * CT * (
/A[12]
A[91
Al12]
A[12]
Af121
Al12]
)
INC * /CT * A[12]

AL11] :=

LD * D[11]

JINC * AL11]

INC * CT * (
/AT
AL81
AN
Al
AL11]
)

INC * /CT * A[11] ;

*
*

*

*
*
*
*

~

* * % * * *

*

*

*

*

0

+n

n
AL12] * ALNT] *
A[91 * A[8] +
/AL12] +
/AT +
/A110] +
JAL9] +

/A[8]

+

"

"

+ "

n
AL11] * A[10] *
AL8] +
JAL11] +
/AL10] +
/AL9] +

/AL8]

+

"

+n

]

"
AL10] * A[9] *
+
/AL10] +
/A9 +
/A(8]

Al10] :=
LOAD VALUE " b * p[10)
RECIRCULATE VALUE " /INC * A[10]
COUNT Up INC * CT * (" COUNT
JAL10] * A[91 * A[8] +
A[10] * /A[9] +
AL10] * /A(8]
) +
INC * /CT * A[10] ;
AL9] :=
LD * D9 +
RECIRCULATE VALUE " JINC * A[9] +
INC * CT * (" COUNT
JAL91 * A(8] +
LOAD VALUE " A[91 * /A[8]
RECIRCULATE VALUE *) +
COUNT UP * INC * /CT * A[9] ;
Al8] :=
LD * DI8] +
/INC * A[8] +
INC * CT * (" COUNT
/AL8]
) +
RECIRCULATE VALUE " INC * /CT * A[8] ;
END.

LOAD VALUE "
RECIRCULATE VALUE "
COUNT up

RECIRCULATE VALUE *

Figure 3-106.b PLPL Specification for the 68020 DMA Controller Logic (Continued)

+ " LOAD VALUE "
+ " RECIRCULATE VALUE "

up "

" RECIRCULATE VALUE "

" LOAD VALUE *
" RECIRCULATE VALUE
up

" RECIRCULATE VALUE

" LOAD VALUE "
" RECIRCULATE VALUE
up v

" RECIRCULATE VALUE

w

yEL-€

" THIS IS THE PLPL SPECIFICATION FOR THE LOWER-LOWER

BYTE OF THE 68020 DMA ADDRESS

POINTER.

- VINEET DUJARI 08/19/86 "

DEVICE LOWER_LOWER_ADR_PTR (AmPAL22V10)

PIN

CLK =1 vce
DI7} =2 ANl
D[6] =3 AL6]
D[5]1 =4 A[5]
D[4] =5 AL4]
D31 =6 A[3]
D[2] =7 Af2]
NC1 8 NC3
NC2 =9 NC4
Lo =10 NC5
INC =1 cT
GND =12 ENB

" THIS DEVICE GETS A LOAD INPUT
THAT LOADS THE VALUE FROM THE

L LI I (R N N e)
P e S X)
W s UMy OO

~

(LD) FROM THE CPU
DATA BUS TO THE

COUNTER REGISTER. INCREMENT CONTROL (INC) INCREMENTS
THE COUNTER. COUNT (CT) CONTROL IS GENERATED FOR

THE UPPER BYTE. ®
BEGIN

IF (ENB) THEN ENABLE (A[7:2]

)

Al7] :=

LD * DI}

/INC * A[T]

INC * (
JAL7] * AL6] * A[5) *
A[4] * A[3] * A[2] *
AL7] * /AL6]
AL71 * /AL5)
AL71 * /A[4]
AL71 * /AL3]1
A[71 * /AL21
)

+ + + +

AL6] :=

LD * D(6] +

/INC * AL6]

INC * 4
/AL6] * AI5] * AL4]
A[3] * A[2]
AL6]1 * /A[5]
AL6] * /A[4]
AL6] * /A[3]
AL6] * /Al2]
):

+ + + 4+ »

A[5] :=

b * D[5]

JINC * A[5]

INC * [4
/AI5]) * A[4] * A[3] *
AlL2] +
A[51 * /A[4) +
A5]1 * /AL3] +
A[5] * /Al2]
)

+ " LOAD VALUE *
+ " RECIRCULATE VALUE "
" COUNT UP "

* LOAD VALUE "
+ " RECIRCULATE VALUE "
" COUNT UP *

+ " LOAD VALUE "
+ " RECIRCULATE VALUE *
" COUNT UP

Figure 3-106.c PLPL Specification for the 68020 DMA Controller Logic (Continued)

AL4] :=

LD * D[4] + " LOAD VALUE "
J/INC * A[4] + " RECIRCULATE VALUE "
INC * (¢ " COUNT up »
JAT4] * A[3] * A[2] +
AT4] * /A[3] +
Al4] * /A[2]
)
AL3] :=
LD * DI3] + " LOAD VALUE "
/INC * A[3] + " RECIRCULATE VALUE *
INC * (" COUNT UpP »
/A[3] * A[2] +
A[3] * /AL2]
)
Af2] :=
LD * D[2] + " LOAD VALUE "
/INC * A[2] + " RECIRCULATE VALUE "
INC * (" COUNT Up »
/AL2]
) ;

CT := A[7] * A[6] * A[5] * A[4] * A[3] * A[2] ;

END.

Figure 3-106.c PLPL Specification for the 68020 DMA Controller Logic (Continued)

3-135

TABLE 3-18. OUTPUT TABLE

Outputs
INC_DST | ENB_DST | DATA_ENB | DATA_LTH | CTR_DEC | Siz1 | SIZ0

INC_SRC |ENB._SRC

R/W-

BR | BGACK | AS | DS

0

State
IDLE

BRQ

BGT

RSO
RS1

RS2
RS3
RS4
RS5

WSo
WS1

WSs3

Ws4
WS5

{wWs2

3-136

3.4.4 INTERFACING TO THE 8088/80188

Overview

The 8088 CPU is an 8-bit processor designed around the 8086
internal structure. Most functions of the 8088 are identical to
the equivalent 8086. The 8088 fetches and writes 16-bit words
in two consecutive bus cycles. Both the 8086 and the 8088
handle the external bus the same way but the 8088 handles
only 8-bits at a time; and both appear identical to the software
engineer, with the exception of execution time.

The hardware interface of the 8088 contains the major differ-
ences between the two CPUs. The pin assignments are nearly
identical, however, with the following functional changes:
Ag-A1s These pins are only address outputs on the
8088. They are latched internally and remain
valid throughout a bus cycle in a manner
similar to the 8085 upper address lines.

SS0 Provides the SO status information in the mini-

mum mode. This output occurs on pin 34 in
minimum mode only.

DT/R, IOM, and SSO provide the complete bus status in
minimum mode.
10/M has been inverted to be compatible with the

MCS-85 bus structure.

ALE is delayed by one clock cycle in the minimum mode when
entering HALT, to allow the status to be latched with ALE.

The 8088 and AMD Proprietary Peripherals

The evolution of chip design has taken the 8-bit environment
into the 16-bit environment. While the new generation of pe-
ripheral devices are often 16 bits wide, the older, established
8-bit orientation of CPUs and peripherals are still significant.
Interfacing a 16-bit peripheral with an 8-bit CPU often encoun-
ters data path incompatibility and involves bus control
manipulation. This type of integration mainly involves separat-
ing the control and data paths from the new peripheral and the
system.

The ability to mix different data path widths can improve sys-
tem functionality, performance, and cost. It is less expensive to
use an 8-bit bus in a new design because the memory require-
ments are generally cheaper. A designer can use this data path
mixing to upgrade the existing system until a new system
design is warranted, or the designer can simply improve on the
existing design as new peripherals become available. AMD
makes a number of proprietary peripherals and the following
sections show users with 8-bit systems how to incorporate
those AMD products into their designs.

8088 and Am8052 CRT Controller Interface

The interface technique between the Am8052 CRT Controller
and an 8-bit microprocessor also applies to the 8088 and
Am8052 interface.

There are two fundamental issues associated with mixing
devices that communicate over different-sized buses. The first
problem is allowing the two devices to communicate on a
“common” data bus. Consider, for example, a 16-bit system
utilizing 8- and 16-bit peripherals. Overcoming the mismatched
data paths requires some form of controlled multiplex-
ing/demultiplexing of the different data paths. In addition, extra
control signals for partitioning the 16-bit word into 8-, and 16-bit
units may be required. Today, most of the 16-bit CPU based
systems that use 8-bit peripherals usually use just the lower
half of the data bus to transfer data to and from the peripheral.
However, this scheme does not work when interfacing 16-bit
peripherals to 8-bit CPUs, especially when these peripherals
have bus master capability.

Data Funnelling

When a 16-bit peripheral attempts to transfer data over an 8-bit
bus (memory write cycle or slave read cycle), the 16-bit data
bus has to be broken down into two bytes and transferred
sequentially. First, the lower 8-bits are transferred out on the
bus (Figure 3-107.a), and then in the next transfer cycle the
upper 8-bits of the 16-bit word are sent out (Figure 3-107.b).
The generalized bus timing for such an operation is shown in
Figure 3-107.c. Figures 3-108.a, 3-108.b, and 3-108.c show
the opposite case; a bus read operation from an 8-bit bus to a
16-bit peripheral. Here, the first byte read from the system
must be latched. Once the second byte has been fetched, the
16-bit peripheral reads in the assembled 16-bit (2-byte) word.
Additionally, provisions may need to be made for the case
when the 16-bit peripheral accesses single bytes.

Interruptions of the two cycle transfer must be analyzed very
carefully. Master transfers may not be interrupted by slave
accesses while being in the middle of a two-cycle transaction.
Similar, slave accesses may not be interrupted by master
transfers. While the interface funnels the data, the current bus
cycle needs to be stretched. When the peripheral is bus mas-
ter, as shown in Figures 3-107.a, 3-107.b, and 3-107.c, the
16-bit peripheral is holding its data available for what would
normally be two complete bus transfer cycles. This stretch can
be achieved by delaying the transfer acknowledge signai to the
peripheral, causing it to wait (WAIT asserted).

In slave mode, the 8-bit CPU would have to make two con-
secutive read operations to examine a 16-bit peripheral status
register. The peripheral must not become bus master in-
between the first and second read operations since this in-
validates the results of the first read operation. This function
can be handled in two different ways: if the CPU has a bus lock
instruction (for example, like the iAPX family of CPUs), then the
programmer uses one of these before the CPU accesses the
peripheral. Alternately, the CPU can disable the arbitration
logic while it is performing the critical uninterruptible slave
transfer.

3-137

[:4
w
2 8BIT
3 SYSTEM
16 BIT
a DEVICE
o
w
H
©
(=]
o«
w
H 8 BIT
x SYSTEM
16 BIT
b) DEVICE
[+ 4
w
2
o<
o
ADDRESS D
A‘S—AI

A, \ /

o sar
DATA BUS

wm . N 7

16-BIT
DATA BUS D < 15:0 > >—
MEM/IO
ACKNOWLEDGE _/ _/

02188A-45

Figure 3-107. Bus Master Write or Slave Read Operation

3-138

Developing the Control and Data Transfer Interface

Designing the control interface to allow mixing 8- and 16-bit
peripherals requires an analysis of the data and control flow.
The data flow automatically defines the data path design (see
Figures 3-107 and 3-108). The bus master operation by the
peripheral is relatively straightforward. During a write opera-
tion, the data is written out sequentially: the lower byte first and
then the upper byte (or vice-versa). During a read operation,
the data is fetched sequentially. The byte fetched first is
latched, to hold the data until the peripheral can read it. In the
second byte read cycle, the remaining byte is fetched, the
16-bit word is assembled from the two bytes, and the 16-bit

word is loaded into the peripheral. Similarly, WAIT is asserted
until the second byte read cycle can be terminated.

The slave mode of operation works almost identically to the
peripheral bus master mode. The master read cycle is similar
to the slave write cycle, and the master write cycle is similar to
the slave read cycle. In general, if the peripheral puts data on
the narrower system bus, the peripheral can keep the data
active in both sequential system bus cycles. On the other hand,
if data is loaded into the peripheral, the interface logic has to
latch the data of the first fetch cycle, whereas the data of the
second cycle can be loaded directly into the peripheral (no
latching required).

8 T
[3) 8 BIT
: % SYSTEM
-
16 BIT
a DEVICE
4
w
=
4
a
5 8 BIT
g SYSTEM
-
b) 16 BIT
DEVICE
o«
w
=
[
o
ADDRESS >—
Ays—A,
A, \ /
8-BIT DATA - -
o AT

WR, RD \ / \ /

16-BIT DATA

BUS

—{ D < 15:0 > }—

MEMIO

AC| EDG|

N/

_/

02188A-46

Figure 3-108. Bus Master Read or Slave Write Operation

3-139

When defining the interface, the designer must make a con-
scious choice of which byte (upper or lower) to latch during
peripheral read operations (or conversely, slave peripheral
write operations). Once this decision has been made, the CPU
must always access the latched data byte first (during a slave
write) and then access the non-latched byte to complete the
transfer. This restriction is a minor one with no extra software
overhead; yet it could affect the ease of the programmer’s
coding if not handled properly. For example, if the programmer
uses a compiler to generate the software for the system, extra
care may be necessary to ensure that the compiler generates
the correct addressing sequence. An alternative to this solution
would be to latch both the upper and lower data bytes. In that
case, the cost of the interface would be increased, as would
the complexity, with no gain in performance.

The state diagram (Figure 3-109) illustrates the control se-
quence implemented in the 8/16-bit bus control logic. It also
depicts how uninterrupted word transfers will occur and how
the addresses for upper and lower bytes are generated. In

addition, the specific bus timing of the peripheral and'the data
bus must be examined to quantify the state control flow and
provide information on data latching, read/write control
strobes, and addressing to and from the peripheral. The state
control flow is broken down into three parts bus master read,
slave read, and slave write operations. ‘

The three control signals that must be generated by the 8/16- .
bit control unit are: Address bit 0 (Ag), peripheral hold (WAIT),
and bus read (RD). The Ag line is generated by the control
logic to indicate which byte is to be transferred in bus master
modes only. Otherwise, the Ag generated by the system is
used to indicate which byte is being accessed. The WAIT line
holds up the peripheral during transfers. The RD line is re-
quired to indicate successive transfer cycles on the bus. The
peripheral’s control signals strobe active only once, because
the two-cycle transfer must be kept hidden from the peripheral.

The slave transfer flow is almost identical, except that the CPU
is generating the bus signals and the transfer directions are
reversed, that is, a bus write goes into the peripheral.

AS=1+
cs=1+
: MRDY=1 .

AS=0+RW=1+ MRDY=0

Q MRDY =0

MRDY =1

D MRDY =1

MRDY =0

:) MRDY =0

MRDY =1

COMMENTS

WAIT TILL PERIPHERAL TAKES BUS;
MAKE SURE MEMORY ACKNOWLEDGE IS
NOT ASSERTED.

READ IN UPPER BYTE; Ay=1;
WAIT FOR MEMORY ACKNOWLEDGE;
ISSUE RD STROBE.

WAIT FOR MEMORY ACKNOWLEDGE
TO GO AWAY.

READ IN THE LOWER BYTE; Ay=0;
WAIT FOR MEMORY ACKNOWLEDGE;
ISSUE RD STROBE.

STROBE IN DATA TO PERIPHERAL;
DEASSERT WAIT;
WAIT FOR SUCCESSFUL READ.

02188A-47

Figure 3-109. Bus Master Read State Flow-Control

3-140

The conceptual logic for the 16- to 8-bit data flow example is
shown in Figure 3-110. The data on the upper byte is latched
when data is being read (as a bus master) and read or written
(as a bus slave). Although this interface must latch data com-
ing from the 8-bit data bus into the peripheral, it also needs to
act as transceiver when the peripheral is sending data out to
the system. The ideal part to accomplish such an interface
would be one that has a three-stated output, with an 8-bit wide
latch, in one direction and a three-stated driver in the other
direction. The Am2952 8-bit bidirectional I/O port combines the
upper data bus latch and upper data driver chips into one IC. It
provides two 8-bit clocked 1/0 ports, each with three-state out-
put controls and individual clocks and clock enables. An
Am2949 bidirectional bus transceiver completes the logic re-
quired to buffer the data path.

The state flow control requires logic capable of sequentially
moving from state to state, holding in a particular state, and
being reset or initialized back to a predefined state. This design
integrates the state machine generator and the control signal
logic into the same Programmable Array Logic (PAL) device.

A considerable amount of logic is required to generate the
data-path flow logic and the bus control signals. This is espe-
cially true if the peripherals and CPUs have different signal
conventions (for example, AS, DS, and R/W versus ALE, RD,
and WR). Conversion between different signal conventions,
signal polarity changes, and extra functions (such as generat-
ing Ag) requires quite a bit of logic and design effort. If the
peripheral has bus master capability, additional information,
such as bus arbitration controls, must be fed into the next state
determination logic to decide what control sequence to follow.

STATE
-—
MACHINE cs
Bg - —| BUS - A"
_ CONTROL _
RW <«———————>] TRANSLATION [<*————> RD
LOGIC o
& —————— WR
WAIT «————————] FUNNEL LOGIC
CONTROL <«———————— MEM ACK
CONTROL
LINES
16 8
DATA
PERIPHERAL cPU
SIDE DATA BUS Feggg. DATA BUS She

02188A-48

Figure 3-110. Conceptual 16/8-Bit Conversion Logic

3-141

Figure 3-111 shows a typical 8/16-bit control interface which
combines all the individual components discussed above. The
state machine and the bus and latch controls have to be tightly
coupled in order to transfer data between the 8-bit and 16-bit
buses. The generalized machine is designed under the as-
sumption that the peripheral has bus master capability. If this is
not the case, the design can be greatly simplified.

Since the CRTC does not modify system memory, no provision
for a bus master write operation is required. This is important
because it eliminates the need to generate a system write
control signal (W). In addition, the control and display infor-
mation will always be aligned on word boundaries. This
relieves the 8/16-bit control logic from worrying about funneling
the bytes and performing odd/even byte transfers. It also saves
control inputs from the Am8052 because all transfers are
words; there is no need for upper and lower data strobes or
byte high enable inputs/outputs.

The slave accesses by the CPU are either pointer writes (to
select the desired control/status register) or 16-bit data
read/write operations. The pointer write operation is really an
8-bit operation because only the lower 8 bits of the data form
the register address. The three different transfer timings are
shown in Figures 3-112, 3-113, and 3-114.

Two special conditions have been incorporated into the state
flow diagrams whenever a transfer is fir<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>