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PREFACE n

A pioneer in the field of Dynamic Memory Management since 1981, AMD offers a
complete solution for the design of today's sophisticated, high-speed memory
systems—a family of CMOS DRAM Management building blocks comprising the
following:

+ Dynamic Memory Controllers

« Error Detection and Correction (EDC) Circuits

* Multiple Bus Exchange (MBE)

+ DRAM Drivers
These versatile memory management circuits can ease the design task precipitated by
new and faster microprocessors, including RISC microprocessors, the increased
demands for more system memory, and the requirements arising when designing

DRAMs into smaller systems. They also offer design flexibility for expanding the basic
16-bit system to 32- or 64-bit word widths, and beyond.

This handbook/databook provides descriptions of the memory management circuits
including specifications and gives specific examples of how to design dynamic memory
systems, using these high-speed CMOS building blocks. All necessary functions are
available to the system designer so that he can obtain the best cost/performance ratio
to satisfy his memory-system design.

A Product Selector Guide appears on page viii following the Table of Contents.
Chapter 1 gives an overview of the three principle memory management building blocks.

Chapter 2 contains a collection of material to aid the user in designing his memory
subsystem. It includes

+ A discussion of DRAM types, special access modes and refresh types,

» Two chapters from Clearpoint Research Corporation's "Designer's Guide to
Add-on Memory,"

« Error detection and correction system architectures and capabililties,

« And finally, a brief overview of system buses.

Chapter 3 presents four application notes describing different interface designs using
the Am29C688 4M Configurable Dynamic Memory Controller/Driver(CDMC).

Chapter 4 comprises two application notes demonstrating the capabilities of the
Am29C660 32-bit Error Detection and Correction (EDC) Circuit and the Am29C668
CDMC when used with the IBM PC-AT and PS/2 bus architectures.

Chapter 5 is a collection of article reprints: two detailing the 29C668 CDMC circuit,
another presenting a clock-generator circuit using the Am2971A Programmable
Event Generator (PEG), and one describing a demonstration board using the
Am95C71 Video Data Compression/Expansion Processor (VCEP) and the
Am29C668 CDMC.

Chapter 6 contains memory management data sheets as listed in the table of contents.
Chapter 7 shows packaging and physical dimensions.

The Appendix is a brief discussion of the behavioral simulation models from Logic
Automation, Inc.
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PRODUCT SELECTOR GUIDE

DRAM Controllers

Am29C668 4M Configurable Dynamic Memory Controller/Driver, 33 ns
Am29C668-1 4M Configurable Dynamic Memory Controlier/Driver, 29 ns
Am29368 1M Dynamic Memory Controller/Driver

AmM2968A 256K Dynamic Memory Controller/Driver

Am2964B 64K Dynamic Memory Controller

673104A 1M Dynamic RAM Controller/Driver

SN745409 256K Dynamic RAM Controller/Driver

SN745409-2 256K Dynamic RAM Controller/Driver, High Speed

Error Detéction and Correction Circuits

Am29C660 32-Bit CMOS Cascadable EDC (36 ns Error Detect)
Am29C660A 32-Bit CMOS Cascadable EDC (30 ns Error Detect)
Am29C660B 32-Bit CMOS Cascadable EDC (25 ns Error Detect)
Am29C660C 32-Bit CMOS Cascadable EDC (16 ns Error Detect)
Am29C660D 32-Bit CMOS Cascadable EDC (12 ns Error Detect)
Am29C660E* 32-Bit CMOS Cascadable EDC

Am29C60 16-Bit CMOS Cascadable EDC (32 ns Error Detect)
Am29C60-1 16-Bit CMOS Cascadable EDC (25 ns Error Detect)
Am29C60A 16-Bit CMOS Cascadable EDC (20 ns Error Detect)
Am2960 16-Bit Cascadable EDC (32 ns Error Detect)
Am2960-1 16-Bit Cascadable EDC (25 ns Error Detect)
Am2960A 16-Bit Cascadable EDC (18 ns Error Detect)

Multiple Bus Exchanges

Am29C983 9-Bit x 4-Port MBE

Am29C983A* 9-Bit x 4-Port MBE, High Speed

Am29C985* 9-Bit x 4-Port MBE with Parity Checker/Generater

DRAM Drivers

Am2976 11-Bit DRAM Driver
Am2966 8-Bit DRAM Driver, Non-inverting
Am2965 8-Bit DRAM Driver, Inverting

Am29C827A 10-Bit CMOS Bus Buffer, Non-inverting
Am29C828A 10-Bit CMOS Bus Buffer, Inverting

Programmable Clock
Am2971A 100-MHz Enhanced Programmable Event Generator (PEG™)
Am2925A 60-MHz Microcycle Length Programmable Clock Generator

* in development
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DYNAMIC MEMORY DESIGN OVERVIEW zl

AMD’s SYSTEM DESIGN METHODOLOGY

AMD’s new CMOS Dynamic Memory Management family, featuring maximum per-
formance and flexibility, offers a complete system solution for memory-system design.
This family contains functions that are generally applicable for a wide range of memory
requirements over the entire computing spectrum, from powerful desktop PCs and
workstations through superminis, mainframes and telecommunication applications. In
each system area, the AMD solution achieves maximum performance and reliability at
minimum cost and with minimum device count.

All necessary functions are available to the system designer so that he can tailor the
memory subsystem to his specific requirements:

+ Complete address-path and refresh control,

Controlled edge-rate drive for DRAM inputs,
» Programmable timing generation,

 Error Detection and Correction (EDC),

+ System data-bus interface.

The AMD DRAM Management building blocks offer design flexibility in a variety of
applications—expansion from the basic 16-bit system to 32- or 64-bit systems, and
beyond, with or without EDC protection.

Today’s high-performance “burst” microprocessors running at speeds above 16 MHz are
fully supported. Read/write features include full support of byte writing, selectable
access-timing options, burst-mode access support, page-mode-access support, static-
column-access suppon, true bank interleaving, and selectable output-drive configura-
tions. Using AMD’s proprietary cache-access mode, designers can take full advantage
of the performance benefits of page-mode DRAMs by continually comparing bank and
row addresses during subsequent accesses.

Selectable refresh options include standard row refresh and CAS-before-RAS refresh,
which is supported by some DRAMs. In a system employing EDC logic for memory-
system integrity, refresh with scrubbing that prevents accumulation of soft errors is fully
supported. Configurable row, column, and bank refresh counters and timing logic provide
for a built-in EDC initialization mode, during which a known value is written to every
memory location before starting normal operation.

Every member of the Dynamic Memory Management family is processed using AMD’s
advanced submicron CMOS technology. Full qualification and reliability data is available
upon request.

The driving force behind this application handbook/databook is the determination to
provide immediate answers to most common memory design and application questions.
Full application support is vital throughout the complete design cycle from conception,
through working prototypes, to production.

DYNAMIC MEMORY DESIGN OVERVIEW 1-3



FAMILY OVERVIEW

Dynamic Memory Control

AMD’s newest and most sophisticated DRAM controller is the Am29C668 4M
Configurable Dynamic Memory Controller/Driver. This device provides the logic
necessary to access and refresh 64K, 256K, 1M and 4M x n DRAMs. New features of
the Am29C668 include support for burst-mode microprocessor accessing, automatic
access timing, support for page-mode DRAMs, and selectable output-drive
configurations. The Am29C668 can directly drive two banks of 39 DRAMs (32-bit word
plus seven check bits) or four banks of 22 DRAMs (16-bit word plus six check bits) with
its proprietary low-ground-bounce, low-undershoot outputs.

Other DRAM controllers offered by AMD include the Am29368 and 673104A 1M DRAM
Controller/Drivers, the Am2968A and SN74S409 for 256K DRAMSs, and the Am2964B for
64K DRAMs, the first monolithic DRAM controller offered from any manufacturer.

Error Detection and Correction (EDC)

AMD’s newest EDC circuit is the CMOS Cascadable 32-bit Am29C660 that uses an
industry-standard modified Hamming code to generate check bits and detect and correct
hard and soft errors. The Am29C660 may be used with any memory technology includ-
ing DRAM, SRAM, EPROM, EEPROM, Flash, and other types that exhibit increased soft
error rates due to very small cell geometries.

The Am29C660 is currently the world's fastest and lowest power 32-bit EDC circuit. It is
currently available in five speed grades; the fastest detects errors in 12 ns and corrects
them in 18 ns maximum under worst-case operating conditions. The device is available
in industry-standard 68-pin PLCC and ceramic PGA packaging in both commercial and
military versions.

A full range of both bipolar and CMOS 16-bit EDC circuits is also available. These are
the industry standard Am29C60 and Am2960 EDC families. The Am29C60A detects
errors in 20 ns and corrects them in 25 ns maximum. It requires the lowest power in the
industry.

Multiple Bus Exchange (MBE)

These devices are general-purpose, high-speed, digital cross-point switches, designed
to improve interbus communications. The Am29C983 and Am29C983A are 9-bit x 4-port
MBEs with input and output latches on all TTL compatible I/O ports. Any port may serve
as either a source or destination. Differing sets of 1/Os may communicate concurrently
with one another. All outputs have 48-mA drive capability for efficiently driving high
capacitive and inductive buses. The Am29C985 9-bit x 4-port MBE incorporates parity-
check and generation capabilities. More detailed application information on the MBE
may be obtained from the Multiple Bus Exchange Handbook/Databook.

DRAM Drivers

All of these devices offer proprietary edge-rate-controlied outputs to reduce output
undershoots, overshoots and ground bounce. Skew times between outputs are also
minimized. The Am29C827A and 29C828A are 48 mA bus buffers that may also be
used to drive DRAM address and control inputs. These 10-bit wide devices are well
suited for driving 1-Mbit x 1 and 1Mbit x 4 DRAMs. The 11-bit Am2976 helps minimize
skews on the address lines on 4-Mbit x 1 DRAMS. The Am2965 and Am2966 are 8-bit
DRAM drivers with industry-standard pinouts.
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Chapter 2

MEMORY SYSTEM ARCHITECTURES a

INTRODUCTION

Dynamic memory systems differ extensively; they use different types and densities of
DRAMs with varying access modes, timing requirements, refresh options, and archi-
tectural organizations. The DRAMs are organized in different word lengths, and may
support parity or error detection and correction (EDC) with additional memory overhead.
Different board layouts, control circuitry, packaging, and bus protocols are also used.

The memory-subsystem design is directly related to the price/performance of the entire
computer system. Low-end machines generally have the main memory located on the
motherboard. They provide for add-on memory that is accessed by a local memory bus
or the system backplane. High-end systems often have separate memory boards that

may be added in large quantities depending upon the required configuration.

This chapter contains a collection of material intended to give the new memory
designer, as well as the seasoned professional, information to help make memory-
subsystem design easier. There is a section on DRAM basics including discussions
of special DRAM types, special access modes, and refresh types.

Two sections are chapters selected from The Designer’s Guide to Add-on Memory from
Clearpoint Inc. “Understanding Memory Design” covers the fundamentals of how data is
accessed and stored, the different system and component technologies available to
accomplish this now and in the future, and a general overview of system integrity.
“Designing for Reliability” explains the different options available for detecting and
correcting hard and soft memory errors.

Three related industry trends strongly support the case for increased EDC capability in
today’s high-performance systems, from desktop machines through mainframes. The
first trend arises from the need to support sophisticated operating systems and appli-
cations software. The result is a requirement for more dynamic memory. With each
additional bank of memory, there is an increased probability of soft errors, which
increases the need for system protection.

The second trend is driven more by the business aspects of computer design. To
remain competitive in today's marketplace, data-processing systems require higher
density DRAMs to provide more data storage capacity in the same or less amount of
real estate, at reasonable prices. As memory-feature sizes are decreased to meet
higher density requirements, the probability of both hard and soft errors increases;
smaller capacitive cells are more susceptible to bit complementing due to alpha-particle
bombardment and electrical noise.

The third and last trend emanates from the user’s desire to have a reliable system: one
that crashes only rarely, if at all. Today’s computer-literate consumers are demanding
the security provided by EDC to prevent the microprocessor from attempting to execute
or transfer erroneous instructions or data.

MEMORY SYSTEM ARCHITECTURES 2-3



DRAM BASICS

DRAMs store data in 1-bit cells. One or more cells may be accessed in one data
transfer, depending on the organization of the DRAM. Cells are arranged in square
grids, with each cell having a specific row/column grid position identified by a bit
address consisting of a row address and a column address.

DRAM row/column addresses are multiplexed on one set of address pins. Row
addresses are latched on the falling edge of a Row Address Strobe RAS and column
addresses are latched on the falling edge of a Column Address Strobe CAS. A Write
Enable WE signal is used to indicate whether a cycle is Read or Write: Low during Write
cycles, High during Read cycles.

DRAM cells are capacitors while static RAMs store bits in transistor cells, where volt-
ages change only during Write cycles. Thus, voltages are static, hence the term static
RAM. On the other hand, voltage levels “leak away” over time from DRAM capacitor
cells, which therefore require refreshing at regular intervals to maintain adequate volt-
age levels. The term dynamic RAM comes from this constantly changing cell voltage.

Although static RAM access times are faster and interfaces are easier to design,
DRAMS offer the clear advantages of small cell size, small package size, and lower
cost.

DRAM Types and Accesses

There are a number of special-access DRAMs available that help reduce memory
access time when used in a particular access mode. The special-access mode is a
feature available to the user in addition to the normal RAS/MSEL/CAS fundamental
accesses. The Multiplexer Select MSEL is a dual-function input to a DRAM controller,
used to determine whether the address to the DRAM is a row or column address.

Special-access DRAMs normally command a premium price. However, they can more
than compensate for this by appreciably reducing the memory cycle time and enhanc-
ing the system performance. The basic choice is dictated by the system configuration
and its application, the main objective being enhancement of the overall system
performance at a given cost.

The following special-access DRAMs are discussed here.
» Page Mode
» Enhanced Page Mode or Fast Page Mode
 Static Column Mode
» Nibble or Ripple Mode

Page-Mode Access—performed with regular DRAMs

Page-mode access provides for fast random access of locations within a page, i.e.,
DRAM row, by saving the RAS precharge time for every access within the page. It starts
as a normal access with a RAS time for the initial access on the page. All subsequent
accesses on the same page require only the assertion of the CAS input. At the end of
the initial access, CAS is deactivated while RAS is held active. For subsequent
accesses within the page, a new column address is placed on the address inputs of the
DRAM and CAS is asserted, thus initiating the page-mode access. The access time is
calculated from the active edge of CAS. A RAS precharge delay is only incurred for
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accesses on pages other than the current one, i.e., whenever RAS is deactivated.
Page-mode accesses may be non-sequential; i.e., as long as the row address is
unchanged, any column address may be selected in any order.

RowX Col 1 X Col 2 X Col 3 X Col 4 x
RASh \

DATA

ADDRESS

11580-001A

Page-Mode Access

Enhanced Page-Mode Access—requires page mode DRAMs

Enhanced page-mode access is similar to page-mode access, in that it provides fast
random accesses to locations within a page by eliminating the RAS precharge time for
page accesses after the initial access. However, it is faster than a standard page-mode
access because the next access is started as soon as a new column is placed on the
DRAM address lines, rather than starting from the CAS active time. CAS still latches the
column data and acts as an output enable, but the page access starts from the column
address change, rather from the active edge of CAS.

RowX Col 1 XCOIZ Xicoltr)( Col 4 x

ADDRESS

RAS,,

CAS,

DATA

Enhanced Page-Mode Access

Static Column Mode Access—requires static-column DRAMs
Static-column-mode access is also similar to page-mode access, in that it provides fast
random accesses to locations within a previously accessed page. It is even faster than
enhanced page-mode access; since CAS is not toggled during Read accesses, CAS
precharge time is eliminated. The column access is started as soon as a new address
is placed on the DRAM address inputs. The column address is not latched, but must be
valid for the duration of the access. Chip Select CS acts as an output enable only; it
does not latch the column address.

As in page-mode access, the RAS access delay is incurred only on the first access on a
page. Subsequent accesses on the same page require access time from the column-
access change. A RAS precharge de_y_ns incurred when an access is to a page other
than the current one, i.e., whenever RAS is deactivated.
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Static Column Mode Access

Nibble-Mode Access—requires nibble-mode DRAMs

The nibble-mode access provides for fast random access of four locations in modulo-4
order, i.e, 2,3,4,1 or 4,1,2,3, etc., with only one address from the system. The remain-
ing addresses are generated internally by the DRAM. This frees up the address bus
while the memory is being accessed. The falling edge of CAS initiates the next access.

As in the page-mode access, the RAS access delay is incurred only on the first access
of the the nibble; the subsequent three accesses require only CAS access time. A
RAS precharge delay is incurred between nibble accesses, i.e., whenever RAS is
deactivated.

ADDRESS

RAS,,

cas,

DATA

11580-004A

Nibble Mode Access

DRAM Refresh Types

To maintain data integrity, i.e., prevent bits from changing state, all DRAMs must be
refreshed within a fixed time, usually 4 ms. Hence, all rows need to be accessed at
least once in 4 ms. Refreshing a DRAM row refreshes all the locations in that row.

Interleaved and Burst Refreshes

DRAM refreshes may be interleaved between memory accesses every so often to meet
the above condition. This is called interleaved refresh. Another option, called burst
refresh, is to refresh all the locations in a continuous burst before the maximum time
between refreshes.

An intermix of the above operations may also be performed, in which case a fixed
number of burst refresh cycles may be performed between fixed intervals of time.
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RAS-Only Refresh

The simplest type of refresh operation, called RAS-only refresh, is performed by placing
the row address on the address input lines and activating RAS. It can be performed on
all types of DRAMs. All the banks of the DRAM array can be refreshed simultaneously
using this method.

When operating on more than one bank of DRAMs, the RAS inputs of all the banks
can be staggered by a clock cycle. This type of refresh timing is called staggered
refresh timing. Staggered refresh helps reduce ground bounce and overshoot/under-
shoot generation associated with driving high-capacitive and inductive DRAM loads.
It requires less power than refreshing all banks at once.

CAS-Before-RAS Refresh

Using CAS-before-RAS refresh, the row-refresh address is generated internally by the
DRAM rather than generated by an external DRAM controller. The active edge of CAS
increments the on-chip refresh counter; RAS then initiates the actual refresh operation.
This type of a refresh operation can be performed only by DRAMs supporting this
feature.

Hidden Refresh L

A third type of refresh is called a hidden refresh. The CAS signal holds the data active
from a memory access while a row-refresh address is placed on the address inputs and
a RAS signal is activated to perform a refresh. Hidden refresh has minimum system
impact, since all or most of the refresh cycle is overlapped with an access to another
memory or I/O device. This type of a refresh operation can be performed only by
DRAMSs supporting this feature.

Refresh with Scrubbing

A fourth type of refresh, called refresh with scrubbing is performed on DRAM arrays in
systems using error detection and correction. In this type of operation, an error
detection and correction operation is performed during a refresh cycle. If the memory
array has four banks of DRAMs, a RAS-only refresh is performed on the corresponding
rows of three banks; simultaneously, a Read/Modify/Write R/M/W cycle is performed in
the other bank. The location undergoing error detection and correction is systematically
cycled through the entire memory so all locations are checked for errors.

The refresh with scrubbing operation detects and corrects all single-bit soft errors. This
reduces the probability of accumulating single-bit soft errors that result in multiple-bit
errors, which are uncorrectable. (See further discussion on page 2-25)
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Understanding Memory Design

The performance of memory is a function of many things,
some related to the memory board design and some not.
The purpose of this section is to identify the system
design elements that affect the performance of memory.
While providing a brief overview of how systems operate
with memory, this section will also focus on the broad
category of bus efficiency. This explanation of the basic
elements of memory will include a description of major
designissues such as the width of the data bus, the clock
speed, bus protocols, array vs. on-board memory
control, and ECL (emitter coupled logic) vs. TTL
(transistor-transistor logic).

FOR THE MEMORY NOVICE:
AN OVERVIEW

In simple terms, the bus on a computer system s a set of
electrical connectors or wires attached to the computer
backplane (printed circuit board, generally in the back of
the computer cabinet). The bus connects to the various
elements of the computer system (Central Processing
Unit, system memory, disk storage, printers, terminals,
etc.) to allowthe transfer of electrical signals between the
different parts of the system. Typicaltransactionsinclude
the transfer of instructions from the CPU to read data
frommemory (find it for processing by CPU); to write data
(take processed data from CPU back to memory) or to
enter data from a terminal or transfer it to disk storage.

The term “bus” is often used broadly, to mean both the
hardware (the physical connectors and cable on the
computer’s backplane) as well as any resulting design
constraints (the size of the data bus or the bus protocol).
The bus hardware is usually made up of electrical “paths”
— designated pins on the connectors — dedicated to
transferring data, addresses and/or clock signals along
these “paths.”

The signal is transmitted according to one of two major
timing methods, or protocols: synchronous or asynchro-
nous. The choice of bus protocol determines which
timing method is used by the CPU in recognizing electri-
cal signal changes on the bus, thereby coordinating
when the various parts of the computer “communicate.”

Depending onthe bus width and clock cycle time, data is
transferred atvaryingrates. The total configuration of bus
width, cycle time and protocol is the major determinant of
bus performance.

This chapter explains these elements and how they
impact memory performance.

Width of the Bus

The width of the bus is simply the number of signals on
the bus that are dedicated to transferring information. It
is usually expressed in bit transfer capability, i.e., 8-bit,
16-bit or 32-bit wide bus. Ideally, the width of the bus
should equal the width of the internal processor data
word. Otherwise, buffering or multiplexing is necessary
to compensate forthe different data word size. With most
of the new high-performance processors like the 68030,
the 80386 and the MicroVAX offering a 32-bit word size
on the processor, it is much more common to see 32-bit
wide buses. One of the many differences between the
MicroVAX | and Il is the width of the bus going from the
16-bit wide Q-bus to a 32-bit wide local memory bus.

Clock Speed

Many computers have a system-wide clock that sends
out high-frequency “ticks” (or cycles) by which allinternal
system events are coordinated, including transactions
occurring on the bus. The clock frequency is expressed
in megaHenz (MHz), each frequency unit defining one
clock signal cycle. Clock speed is also dependent onthe
physical length of the bus, because of noise and trans-
mission line requirements. Typical clock speeds range
from an IBM PC’s slow 4.7 MHz (or 4.7 million cycles/
second) to 33 MHz in a VAX 8650.

Many system designers specify their system clocks to
run well beyond the capabilities of current hardware to
facilitate future growth and upward compatibility. In asyn-
chronous bus machines (see next section for explana-
tion), clocks may run at different speeds in different parts

System
Clock
l/e}
E(C PU System Storage
Memory Memory ﬁ

System Bus—16 Bits Wide

Reprinted with permission from Clearpoint, “The Designer’s Guide to Add-In Memory”, Third Edition.
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of the machine. This technique allows individual hard-
ware devices to benefit from faster speeds as their
individual design requirements permit. However, the
limitations of other slower hardware may prevent the
speed improvement from being fully reflected in the
overall system performance. '

Designing a bus for extremely fast clock rates takes
attention to details such as signal transmission theory
and adequate signal termination. If a bus is well
designed, it should be able to improve as fast as the
processors can. Many upgraded systems, such as the
VAX 8650 upgrade from the 8600, amount to little more
than running at a faster clock speed. If allthe devices and
the bus are capable of running with a faster clock, this is
no problem. In some low-end systems, such as the PDP
11/73 and 11/83, customers simply changed the crystal
on their systems to achieve substantial improvements in
performance.

Bus Bandwidth

Bus bandwidth refers to a bus’s maximum capacity for
transmitting data. In simple terms, it is analogous to
determining the volume of water through a pipe if you
know the speed of the water and the pipe’s diameter. Bus
bandwidth is determined by its data transfer cycle time
(x bytes/nanosecond) and its width (16 bits or 32 bits),
and it is expressed as total data transferred per second
(i.e., 1/2 kilobyte/second). The significance of a bus’s
bandwidth is that a bus with comparatively slow cycle
time butwith awide bus width (or vice versa) canstillhave
a competitive data transfer rate. For example, the
Micro-VAX |l has a wide 32-bit memory bus and a
relatively slow 400 ns memory cycle time, but still is fast
enough to keep up with the processor.

Bus Protocols

Synchronous Bus

This termrefers to a timing method for synchronizing the
transmission of data over the bus via regular signals
determined by the system clock. The clock signal deter-
mines the precise and regularly occurring moment that
the bus hardware will recognize and act on a signal level
change (see timing diagram 1 at right). In a synchronous
bus, the clock speedis perhaps the single mostimportant
determinant of bus performance.

Asynchronous Bus

In contrast, an asynchronous bus has no system-wide
clock. The bus hardware can recognize and act on a
signal state change the moment it occurs (see diagram
2). Whether a bus should be synchronous or asynchro-
nous is often hotly debated, each viewpoint with valid
points to offer. Much of the debate focuses onthe relative

merits of the Multibus Il (synchronous) vs. the VMEbus
(asynchronous); however, the arguments are relevantto
all buses.

The synchronous buses (like the Multibus I and the BI)
are generally considered to yield higher performance
than the asynchronous buses. In general, the design
criteria for a “handshaking scheme,” acknowledging that
adevice is ready to transfer data is greatly simplifiedin a
synchronous environment. On the other hand, a
disadvantage of synchronous buses is that a change in
a signal cannot be recognized until the next clock edge
(see diagram 3). A smallincrease inthe speed of another
device on the bus will have no overall system perform-
ance benefitunlessitis atleast one full clock cycle faster.

There are other pluses of a synchronous bus. One
reasonis thatitis easier to implement concurrent cycles
(several cycles taking place over the bus concurrently)
on a synchronous bus. Likewise, the greater degree of
control enforced by the timing specifications generally
results in fewer compatibility problems down the road.

1) Synchronous Bus - (a) At leading edge of each clock signal,
other signal paths are sampled for a state change (i.e. high to
low). (bLA signal change that occurs during a clock cycle
cannot be samfaled until (c) the next clock cycle. (d) The
resulting signal change (response) caused by the command
signal is implemented at the next clock cycle.

Clock Cycle

Command b /

Response

Summary: Signal levels cause state changes.

2) Asynchronous Bus - There is no system clock. (a) Upon a
change in the command signal, (b) the response signal reflects

a state change.
Command \ a a /
b/

Response \ b

Summary: Signal edges cause state changes.

3)

CPU
ClockCycle 1 1 1 1 1
CPUCycle — ]
Time 500 ns /
1 CPU Cycl "Wait
ycle State”

Memory Cycle
Time 600 ns = READ

[¢——————— 1 Memory Cycle ——————»

Summary: CPUs can incur ‘wait states” (wasted CPU time)
when the memory cycle is longer than the CPU cycle.

Synchronous and Asynchronous Protocols
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Asynchronous buses are advantageous for other
reasons. First, there is no waiting for clock edges before
signal changes are acknowlieged on the bus. As a result
itis easierto take advantage of faster memory chips. The
difference between the time when a device on the bus is
ready to respond and the time a clock cycle strobes that
response is called “clock latency.” Since asynchronous
buses do not have clock latency, there can be a real
advantage to speeding up access times. ’

Other disadvantages include the increased possibility of
design complexity resulting in performance inefficiencies
and design errors. An asynchronous protocol is only
beneficial if the designer can effectively mix different
cycle times to enhance performance. In addition, a bus
that is too complex may cause compatibility problems
down the road. Anoher disadvantage of an asynchro-
nous bus occurs when devices that plug into the system
are synchronous (i.e. processors, peripheral interfaces,
input/output devices). The bus signals must be synchro-
nized to the local device clock, resulting in an
additional time-consuming layer of activity and slowed
performance.

Memory Processing Performance

Bus efficiency and microprocessor speeds are critical to
system performance, but memory plays a significant role
also. Its design is just as critical to overall performance.

Read Access Time — The most common measure of
memory board performance is access time. Generically,
accesstime is defined as the time from when the proces-
sor or other device makes a request for data at a given
address to the time the memory board responds that it is
ready to send data. This definition is subject to a fair
amount of vendor variation. DEC, for example, defines
access time on the Q-Bus in such a way that many
vendors offer memory boards with access times faster
than 100 ns. This is despite the fact that the memory

chips used onthose boards have access times of 150 ns.

This paradox is a definitional quirk; the boards send the
response signal (TRPLY) to the processor in advance of
the data actually being ready. Since by the time the
processor or other device is really ready to receive data,
the memory board will be ready to send, this is allowable.
The statistic is meaningful for comparison purposes with
other Q-Bus memories, but is totally meaningless for
comparisons across buses. In addition, it has little to do
with performance on the Q-Bus. Almost all memories
with access times less than 150 ns perform nearly
identically on the Q-Bus.

Write access time is defined as the time from when a
device sends data to memory until the next time it can -
send data. From the memory board’s perspective, the
data must be latched and a signal sent back on the bus
indicating the data has been received. Since this is very
straightforward, most write access times are very fast
and do not vary considerably among vendors.

Cycle Time — The time from when a device makes a
request for data until the next time a request for data will
be acted upon by the memory board is defined as the
read cycle time. Frequently cycle time is a betterindicator
of actual memory board performance than access time,
especially in block transfers where the memory board is
likely to be the constraining device.

Inmany cases design engineers optimize for accesstime
and the result is a very slow cycle time. Which is more
important depends on the application: I/O-intensive
applications with lots of sequential reading and writing
need a fast cycle time, while processor intensive tasks
with highly random reads and writes depend more on
access time.

Write cycle time is similarly defined as the time from a
request to send data untilthe next time the memory board
is able to write data.

Master
Transfer
Request

Slave
Transfer
Acknowledge

NN

A B
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The timing diagram above illustrates both access time and cycle time. Access time is defined as the slave
receiving all signals at A until the slave sends back a response at B. Cycle time is from B to F including the
full time of the subsequent access from E to F. Path 1 and path 2 indicate two popular “handshaking”schemes
for master and slave devices.
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Read-Modify-Write—Thetime from aread request until
the memory board has latched the modified data and
released the bus, including the time the processor needs
to performthe operation, is defined as read-modify-write.
Since this is highly processor-dependent, it is not often
used as an indicator of memory board performance per
se. ltis a useful indicator for system-level comparisons.

MEMORY DESIGN FOR IMPROVED
SYSTEM PERFORMANCE

BUS EFFICIENCY

Over the years, techniques have evolved that increase
bus efficiency, i.e., decrease the incidence of bus trans-
actions encountering wait states. These techniques
show up over and over, in combinations or individually. it
is important to understand the principles by which they
work and interact with each other.

Multiplexing Data and Address

Multiplexing, or muxing as it is frequently abbreviated, is
the alternate use of the same bus signallines fordataand
address. The purpose is cost reduction: by sharing lines,
the total number of signal lines is reduced by the lesser
of the number of address or data bits. On the Q-bus, for
example, 22 address bits and 16 data bits are muxed on
22 signal lines. The overhead of muxing can be consid-
erable: additional signal lines are needed to enable the
coordination or handshaking to inform devices what type
ofinformationis currently on the bus. Typically, multiplex-
ing entails a performance penalty because the same
lines have to performtwo jobs. Intransferring information
the address must first be transmitted, followed by the
data. If more than one consecutive piece of data mustbe
transferred, this method quickly becomes inefficient,
although block mode transfers can compensate to some
degree. Multiplexing is now widely used on very high-
performance buses like the Multibus Il and the Bl, soiitis
not necessarily considered too slow.

Interleaving

Interleaving refers to the practice of moving sequential
words in different memory arrays so that the transfer of
subsequent words can begin immediately. Since the
overhead of access times can be overlapped, the
average transfertime in sequential accesses canbe sub-
stantially reduced. Interleaving can be performed on a
single board, where the memory banks are composed of
two autonomous halves; or across boards in a systemor
array. Many different interleaving schemes are currently
inuse, fromthe two-way interleaving onthe VAX 780 and
IBM RT PC to 8-way interleaving on some Data General
systems. However, increased interleaving does not
result in a linear increase in performance.

Transfer Methods

More efficient transfer of data and instructions can
speed up system performance significantly. Since most
transfers involve sequential addresses, methods for
moving consecutive words or blocks at one time are
particularly beneficial.

Prefetching and Pipelining

Prefetching refers to the CPU’s ability to anticipate data
accesses and start data retrieval before itis requested. A
common form of prefetching is to start two to eight
accessesinparallelsothatthe second (to the nth) access
is proceeding simultaneously with the period where the
firstaddressis valid. The first access is subject to normal
access times (150-300 ns) while subsequent accesses
appear to be 10-20 ns apart. Hence, it is possible to
transfer eight words in the time it would normally take to
transfer two.

Pipelining is similar to prefetching, but it usually
prefetches instructions rather than data.

Page and Block Mode Transfers

Both of these methods of transfer pump large bursts of
datato and from sequential addresses. Instead of saving
up a series of sequential addresses which will then be
transferred consecutively, the CPU gives one instruction
with a beginning address and the transfer takes that
address plus the following page or block of addresses
duringthe transfer. This techniqueis particularly usefulin
cases where the system is accessing the disk and
multiple consecutive disk accesses would dramatically
impair system performance.

Direct Memory Access (DMA)

DMA, an architectural feature of most buses, allows
information to be read from disk and written to memory
(or vice versa), via dedicated bus signal paths without
interrupting the CPU. Some systems also add a DMA
controller between the main memory and 1/0O devices,
i.e., disk drives. An electronic device containing data
buffers and logic circuits, the controller can control data
transfer operations in place of the CPU, permitting simul-
taneous use of I/0 devices and the system processor. In
large database operations, DMA can be especially
beneficial, particularly when used in conjunction with a
memory cache.
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Caching Memory

Caches have become one of the most widely used
techniques to improve the performance of systems in
general. Caches can be located on the processor, the
memory or the peripherals (such as a disk drive), and
serve as quickly accessible storage for interim process-
ing results, soon-to-be-executed instructions or blocks of
sequential addresses.

A cache memory on the processor is defined as a small
(usually 16 KB to 64 KB byte capacity), very high speed
(50 ns access time or less) memory that s tightly coupled
with the processor. It is usually implemented in Static
RAM or ECL to achieve faster access times. The use
algorithm, unlike main memory, is implemented in firm-
ware rather than in the operating system. The use
algorithm is selected to achieve the maximum cache hit
rate without tremendous overhead in “swapping.” The
optimal size of a cache is really an economic decision: it
is driven by the difference in cost between main memory
and cache memory. The larger the cache gets, the less
likely it is to see enough performance increase to justify
the dollar cost of additional cache memory. Hence,
caches are generally quite small.

Caches on the disk controller are currently popular, now
that a megabyte of memory can be condensed into one
or two square inches. Implemented in DRAM, they are
really just an extension of main memory with a different
use algorithm. In sequential DMA, a cached disk
controller can achieve extremely fast transfer rates.

Local Memories

Local memories are being used principally because of
multiprocessing. In multiprocessing systems, there are
often two or more processors operating concurrently
from one memory. While the multiple processors can
provide significant “number-crunching” functionality, the

performance enhancement can be diminished as the
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transfers. To mitigate this problem, most multiprocessor
architectures allow for each processor to have its own
local memory on a separate bus.

Some systems completely eliminate system memory in
favor of local memories. The difficulty in maintaining
local and system memories has to do with control of
processes, synchronjzation and concurrency. The
benefits of better performance have made the solution
of these problems a necessity for muitiprocessing
operating systems.

Dual-Ported Memories

Dual-ported memories are similar in many ways to local
memories except that they can answer on either a local
bus or the system bus. The advantage of a dual-ported
memory is that it both increases bus efficiency by taking
traffic off the system bus, and it has a faster access time
than transfers on the system bus.

Dual-ported memory is typically situated on both the
system bus and a local bus to the processor. However,
there are dual-ported memories that sit on a local bus to
a disk controller or other high-speed peripheral like an
array processor. The principle of operation is essentially
the same where ever it sits. Dual-ported memories are
generally much more expensive than standard single-
ported memory because of the considerable additional
logic required.

Array versus On-Board Memory Control

One of the most common features of today’s high per-
formance systems, from the DEC VAX 8800 down to the
IBM RT PC, is the use of separate memory controllers
and array cards. The memory controller is that portion of
a memory that performs addressing, timing, refresh

Local Local
Memory CPU cPU M Memory
< System Bus >

Local Memories Are a Necessity in Multiprocessing Situations.

| | System
| Memory

System

CPU Memory

r-| Disk l

I

)

Dual-Ported Memories Can Be Configured in Either of These Ways
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control and arbitration, and EDC or parity generation and
checking. By locating the memory controller on a sepa-
rate card fromthe memory array, or simply directly onthe
processor card, expansion and manufacture of memory
cards is greatly simplified. In addition, with the rapid
advance in memory chip density, memory controllers are
not obsoleted along with the array cards. The big advan-
tage of separating the memory controller from the array
is that the private memory bus can be greatly simplified
from the full system bus. Typically it is much shorter;
hence, the problems with noise are substantially
reduced.

The second big advantage is cost: the memory controller
accounts for one-third to one-half the cost of a memory
card (with an on-board memory controller). When large
numbers of arrays are required, eliminating the repetition
of the memory controller can amount to considerable
savings. While some recent buses still use on-board
memory controllers (such as the VAXBI), the trend in
system design is toward separating the controller from
the array. The Sun 3/1XX series, for example, uses the
high performance VMEbus for a system bus, but the
memory hangs on a private memory bus with the memory
controlleronthe processor card. Similar designs are also
usedinthe RT PC andthe VAX 8500, indicating the wide
range of system sizes that are going in this direction.

ECL vs. TTL

Emitter Coupled Logic (ECL) is not a new idea — many
RCA and CDC systems from the sixties pioneered the
use of ECL for achieving better performance. ECL elimi-
nates transistor storage time as a speed limiting charac-
teristic, permitting much higher performance than is
possible with TTL (transistor-transistor logic) circuits.
ECL is now being used by DEC in the VAX 8600, 8700
and 8800 series; this has re-ignited interest by other
manufacturers as well.

There are several problems with ECL that make it more
difficult to work with than TTL. Careful attention must be
paid to signal line lengths, due to the high speed and
impedance characteristics of an ECL gate. Since propa-
gation delays on a long signal line are a substantial part
of the timing on an ECL differential amplifier, the design
engineer must take this into account in laying out the
board.

A second problem arises due to the power requirements
of ECL. Compare the power needed for a VAX 8600 (a
4 MIPS machine) with a VAX 8300 (close to 2 MIPS), and
you will find substantially more than twice the draw. ECL
is the main reason; additional cooling is also necessary
to keep the machine operating in a tighter temperature
range.

ECL is generally only used in the busiest circuits. To
achieve high densities in the system memory, standard
dynamic RAMs are the technology of choice. ECL RAMs
are too expensive and too hot to use for the large
8-128 MB arrays that are now commonly available for
system memories. Instead, the memory controller is
designed using ECL, and ECL-to-TTL conversion and
buffering are performed on the arrays.

Memory Technologies and High
Performance

Amid the hoopla of high performance microprocessors
and “war of the buses,” the advances in memory technol-
ogy often are ignored. In fact, memory has come a long
way since the core memories of the sixties. Semiconduc-
tor technology averages a fourfold increase in density
approximately every 2-3 years. These improvements in
densities and processes often pave the way for the
microprocessors to follow. This section gives a brief
review of the memory technologies currently in use,
those in process and what that means for high-
performance computers.

What Is Memory?

Memory is that part of the computer system from which
the CPU reads and writesinformation which itusesinthe
execution of programs. Memory technologies are char-
acterized by volatility, write-ability, and semiconductor
technology. Non-volatile memory maintains its storage
after powerhas beenturned off. Write-ability is the extent
to which data can be changed, and the means used to
change data at a given location. Semiconductor technol-
ogy refers to the actual semiconductor and substrate
used for manufacturing the memory device.

Non-volatile memories are generally used for programs
or data that must remain intact through power and
system failures. Read-Only Memories (ROM), Erasable,
and Electronically Erasable Programmable ROMs
(EPROMs and EEPROMs) are sub-categories of non-
volatile memories. Bubble memories and the newer
FRAMs (Ferro-electric Random Access Memories) are
still other types that offer non-volatility.

Volatile RAMs are either static or dynamic; dynamic
(DRAMs) memories need to be “refreshed” periodically
to maintain acharge intheir cells. Every millisecond or so
the systemis put on hold while the cells are all recharged.
Static RAMs (SRAMs) are more convenient (since they
require no refreshing), however they require twice the
number of transistors as DRAMs for the same storage
capacity.
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Within volatile RAMs, the major semiconductor tech-
nologies in use include N-channel Metal Oxide Semi-
conductor (NMOS), Complementary Metal Oxide
Semiconductor (CMOS), Emitter-Coupled Logic (ECL),
and Gallium-Arsenide RAMs.

GaAs RAMs are not currently widely available, although
the military is funding considerable research in this area.
ECL SRAMs are only used in cache memories because
of their high speed and very high cost. NMOS has been
the principal DRAM technology for many years, and is
now being replaced at the high end by advances in
CMOS technology. Megabit DRAMs are now almost
exclusively CMOS.

CMOS is both faster and uses less power than NMOS.
With density and cost approaching NMOS levels, CMOS
is fast becoming the technology of choice.

The Meaning of Specifications — Most vendors quote
typical, average or maximum specifications for their
boards. “Typical” is supposed to be the speed for an
operation characteristic of normal usage. “Maximum” is
defined as the most it will ever be in any operation.
“Average” is sometimes used synonymously with
“typical” and sometimes to reflect an average of buffered
and non-buffered operations. Thisis relevantwhensome
operations willoccur out of a buffer on the memory board
rather than through the memory chips. What is truly
“average” of course depends on what a normal mix of
buffered and non-buffered accesses should be.
Maximum times are supposed to be based on the worst-
case timings of all the devices on a board. Since this
number may be impossibly long, most vendors simply
calculate a number they are confident will always be
greater than actual usage.

Changes in the specified speed of a board do not always
translate into actual improvement in system perform-
ance. This is because the memory board may not be the
bottleneck in your system. If another area of the system
is the binding constraint, speeding up the memory card
will have little additional value. It may still be worthwhile
to select the faster card, however, because over the life
of the systemitislikely thatfaster hardware willbe added.

Inanumber of cases, the advertising of faster memory is
truly misleading. The Q-Bus is a good example. Vendors
achieve very fast access times by a variety of means,
some in clear violation of the Q-Bus specifications.
(Hanging logicdirectly onthe bus without the appropriate
drivers is not permitted, for example.) Regardless of how
fastthe accesstime s, if the processor or other device is
not ready to receive data, the reduction in time is mean-
ingless. Thisis especially true if cycle time was sactrificed
to achieve these spectacularly low numbers.

Another example is the VAX 8600. Faster memory onthe
8600 is feasible by definition, but it has little to do with
actual system performance. Some vendors who adver-
tise memory faster than DEC’s “prove their case” by
asking customers to switch off the cache on the proces-
sor. Some customers are actually impressed that their
memory could perform faster if their system were
non-functional.

Ingeneral, cached processors have done alot to simplify
the world of the memory vendor. When only 20% or 30%
of the accesses are to main memory, the speed of
memory is rarely the most important attribute.

Techniques Used to Improve Performance

The simplest way to speed up access time on a memory
board is to use faster DRAMs. Most 64K and 256K
DRAMs on boards today have a 150 ns access time. For
a premium, there are good quantities of 100 and 120 ns
parts available. The megabit DRAMs are yielding even
faster parts; 100 and 120 ns access times are more
common than slower devices. As die sizes shrink, the
smaller circuits become faster and faster.

The access time of the memory chip is by far the largest
component of the access time on the memory board.
Hence the largest proportional gains in speed are
achieved at this level. To achieve a gain of 30-50 ns
through better design optimization and faster memory
controller logic is very difficult.

At the memory controller level, faster memories are
achievedthrough a variety of techniques. By focusingon
the longest chain of logical gates, the design engineer
attempts to whittle this down to the absolute minimum.
He then can try using faster logic like CMOS
(Complementary Metal Oxide Semiconductor) or ALS
(Advanced Low-power Schottky) that pare each gate to
the minimum interval. The trade-off at this level is
between more expensive, faster parts and less-
expensive, older, commodity-type logic.

Beyond this, there are various ways to “cheat” on timing,
some of which are innocuous and some of which play
with the ultimate reliability of the circuit under worst case
environmental conditions. On the Q-Bus, for example,
the bus is specified to be functional with backplanes up
to50feet long. Sincethisis ararity, to say the least, some
designers have been known to make assumptions that
the actual maximum is somewhat less than that. Also
common is ignoring DEC requirements for specific
drivers on all bus interfaces. If it works, many customers
don't particularly care.

Anotherway to save timeis by cutting marginto the bone.
All devices have worst-case and actual performance
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specifications. By skimping on worst- case timings, most
circuits can achieve considerable improvements. If the
circuit neverfails, is this imprudent? The problem comes
when the circuit only fails rarely or under adverse
environmental conditions.

To some degree the customer is dependent upon the
manufacturer for prudent design decisions. There is no
substitute for adequate testing and design verification at
the alpha and beta test stage to reveal a sound design.
Testing at elevated temperatures (55-60° C) is also a
good preventative measure, since device timings are at
their slowest at higher temperatures. High temperature
failures are the most common way to find out if an
engineer “pushed the envelope” a bit too far.

Othertechniquesthat are sometimesused onboardlevel
products are borrowed from system level techniques:
interleaving and caching. On-boardinterleavingis some-
times implemented on a single card even when it is not
specified in the system architecture. While the benefits of
interleaving are not as great over a systembus, it can still
boost performance.

Caching or bufferingis another popular approach. Digital
has implemented a two-stage cache on the MicroVAX
3X00; 1 Kbof 90 ns cycle on-chip cache, and 64 Kb of 180
nscycle on-board cache. Intelhasimplemented memory
board-based caching in their Multibus 1l product line.

Clearpoint uses a 64-bit buffer in an EDC chip set that
improves access times on sequential reads and writes.
The basic idea is to have a modest-sized buffer on the
memory card that latches consecutive addresses each
time data is accessed. Then if the subsequent operation
calls for consecutive data, no additional access to the
DRAMs is necessary. Since the buffer can usually be
accessed in one-half to one-third of the time of a DRAM
access, this considerably improves performance.
Providing a large cache on the memory in addition to a
cached processor, however, is not likely to yield
incremental results.

Density

After performance, density is the most important feature
of amemory card. Customers always want more memory
in fewer slots with less power consumption. Greater
density reduces the cost of additional memory, since the
last megabyte on a board is always a good deal less
expensive than the first. What follows is a compendium
of techniques used to increase density.

DRAM Capacity

The most basic means of increasing density is to use
DRAMSs with a higher capacity. The DRAM manufactur-
ers have obliged by coming up with denser memory chips

year after year. Currently, a new generation of memory
boards is entering the market based upon megabit
DRAMs. This will supersede the 256K DRAMs that are
now the bread and butter, just as the 256K DRAM
replaced most of the 64K DRAM product. The inevitability
of this progressis now old hat. The only issue iswhen the
Crossover occurs.

Typically sales begin on the highest density product as
soon as a product can be delivered. With the 256Kb
DRAMs this was practically instantaneous since the
device is pin-compatible with the 64Kb DRAM. The
megabit DRAM took longer since it is an 18-pin device
instead of 16-pin like the 256Kb and 64Kb DRAMs.
Demand shifts slowly, typically crossing overwhenthe 4x
density device costs 6-7 times as much. The crossover
occurs before the price has decreased to 4x because the
denser parts obviate 3 PC boards full of interface logic for
the same density. In addition they are more reliable
(because of fewer parts), use less power and free up
slots.

Curiously, demand for the less dense parts continues for
years after they are non-economic for design-ins. 64K
DRAMSs are still widely used even though they now cost
more than 1/2 as much as 256K DRAMs. Once a part
becomes more of a specialty item than a commodity, the
price begins to rise.

DRAM Packaging

DRAMSs are available in a variety of packages, each of
which allows for a different packaging density. The most
common package by far is still the Dual In-line Pinpack-
age (DIP), which looks like a standard IC with a row of
pins emanating fromeach lengthwise edge. The popular-
ity of this package is primarily the result of history — most
computer products are still designed around DIPs, on
standard printed circuit boards using through-hole tech-
nology, and soldered over a wave solder machine. DIPs
are easy to handle and insert, their height is minimal, and
they have been widely used in the past.

Surface Mount Devices (SMDs) offer much greater
packaging density than DIPs and have been growing in
popularity for this reason. Originally developed and
popularized in the Far East for applications in toys and
small appliances, SMDs require less than one-half the
surface area of a DIP for the same capacity. In addition,
the leads do not penetrate the PC board so that devices
can be mounted on both sides of a card if the system will
allow this. The leads are folded so that they lay flat either
underneath the device or to the side of it.

Manufacturing of SMD-based boards requires a whole
new set of equipment very different from that used in
conventional assembly. Because the devices are so
much smaller and the placement on the board is not
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guided by insertion into holes, automatic assembly is
preferred. The “pick-and-place” machines that are used
for this are very sophisticated, incorporating the latest in
robotics technology. SMDs are glued into place using a
solder paste; instead of being waved, the boards. are
passed through a hot vapor chamber that melts the
solder and makes the connections.

Eventually, SMDs should pass DIPs and conventional
packaging in popularity, once all the manufacturing
wrinkles are ironed out and the cost comes down. Right
now, it is still a relatively expensive package and the
assembly costs are still greater than manual assembly.
Because ofthe tighttolerances, only small PC boards are
currently used with SMD assembly. On larger cards,
such as DEC’s 16 MB 8600 memory, DEC chose to use
SMD technology on the small daughter cards rather than
attempt their use on the full-size PC board. Clearpoint
uses SMDs on boards as large as the VAXBI formfactor,
as well as on the smaller cards for the MicroVAX 2000,
Apollo DN 4000 and daughter card for the VAX 8800.

SMDs have spawned another package that has some of
the advantages of SMD without any penalty except cost:
Single In-line Pin packages or Single In-line Memory
Modules (SIPs and SIMMs). SIPs are essentially small
PC cards with a row of SMDs mounted on one or both
sides, with normal insertion pins along one edge of the
PC card. The SIPisthen mounted on edge on a standard
board with the pins penetrating the PC card just like any
other conventional IC. With SIPsiitis possible to achieve
densities up to three to four times what is possible with
DIPs; however, the heightis sometimes greaterthan any
other device on the card. In systems that allow for wide
spacing among cards, thisis not a problem. In most small
systems these days, however, it is a concern.

Another issue is cost. When SIPs were first introduced,
the military was the principal customer and prices were
several times comparable product in DIPs. Now that the
market has expanded and several of the major DRAM
vendors have entered, the price is lower, but still 50% to
75% greater than DIPs.

The latest package to hit the market is ZIPs — Zig-zag
In-line Pin Packages. ZIPs essentially take a normal DIP
package and stand it on edge, with both rows of pins
emanating fromthe same edge in a zig-zag pattern. ZIPs
have a lower profile than SIPs, but still allow for twice the
density of DIPs. The manufacturing cost is nearly identi-
cal to DIPs, however the pricing reflects the smaller
market size since it is a new product.

Mitsubishi introduced the product in 1985 to little initial
interest. The MicroVAX Il created a niche for the product
because ZIPs were the most cost-effective way to pack
8 MB of memory on a single card. Suddenly, demand

soared and now most DRAM vendors are offering the
package. As cost settles in to the DIP range, the ZIP
market should continue to expand. The only difficulty
seems to be keeping the devices in place as they pass
over the wave-solder machine.

In the long run, it is difficult to tell whether SMDs will win
or whether advances like ZIPs will extend the life of
conventionaltechnology. An often overlooked fact is that
the wafers are now becoming a much larger fraction of
the size of the package. Megabit DRAM SMDs are not
much smaller than DIPs.

NEW TECHNOLOGY

A number of other developments have made greater
densities possible. Custom and semi-custom Very Large
Scale Integration (VLSI) devices are now popping up in
many applications. VLSI has declined in cost substan-
tially over the last two to four years. CAD/CAE tools now
allow the rapid design and simulation of very large
circuits. Clearpoint, for example, has a two-chip set for
EDC control, comprised of 2400 and 5200 gates per
device. The result is that what used to take 50 - 100 ICs
toimplement in standard logic now can be done with one
or two VLSI chips. The space freed-up on the card can
now be used for even more memory chips, or some
additional functionality.

Some prognosticators are forecasting that FRAMs
(pronounced F-RAM) will obsolete DRAMs. FRAM
stands for Ferroelectric Random Access Memory. ltis a
new memory technology, based on an old discovery .
dating back to 1921. Promising significant enhance-
ments over standard DRAMs - such as non-volatility,
radiation-hardness and density — it could be the perfect
memory technology.

Theferroelectric effect specifically refers to the tendency
forcertain crystalline materials to polarize spontaneously
when an electrical field is applied, and to remain polar-
ized after the field is removed. If the electrical field is
reversed, the polarization is also reversed. The result is
that the crystalline material can act as a capacitor with
two distinct polarizations dependent on voltage levels.
Since no current is required for the ferroelectric material
to retain its polarization, it can act as a completely non-
volatile digital memory capacitor. Storing either 1’s or 0’s
in a ferroelectric element, the FRAM can be read by
sensing the interaction of an applied field with the
element’s polarization.

Recently, two companies have announced break-
throughs in materials and processing necessary for
commercially viable FRAMs: Ramtron Corp. (Colorado
Springs, CO) and Krysalis Corp. (Albuquerque, NM).
Ramtron currently produces a 256-bit non-volatile static
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RAM which has a thinfilmof lead zirconate titanate (PZT)
deposited over conventional semiconductor memory
circuitry to form ferroelectric capacitors as part of the
memory cells. The ferroelectric capacitors only come into
play inthe event of a power interruption. Krysalis likewise
uses a conventional CMOS silicon wafer over which a
thin film of ceramic ferroelectric material is deposited.
The film is delineated to form non-volatile memory cells.
In contrast to Ramtron’s process, Krysalis’ ferroelectric
cells will serve as the primary storage element.

Both companies are still in early stages of development
and promise much in years to come. Already a possible
replacement for EEPROMSs, they could eventually sup-
plant SRAMs and DRAMs if they deliver the promised
speeds and longevity. Butdon’t hold your breath. FRAMs
aren’t forecast for widespread distribution until 1992.

Another development is the widespread use of Program-
mable Logic Arrays (PLAs or PALs), PROMs and
EPROMs in situations that formerly used conventional
logic. As hardware and software expertise merges, sodo
the approaches to engineering solutions. Programmable
devices allow for very dense packaging combined with
incredible flexibility. It is not uncommon today for
EPROMs or PLAs to serve as upgrades to a board to
enable compatibility with the latest developments on a
bus. Whereas previously boards might be returned for
extensive ECOs and retesting, replacing a socketed
PROM inthefieldis a simple and inexpensive procedure.

DESIGN INTEGRITY

Engineers refer to design integrity wistfully as the “right
stuff”: the invisible glue that brings coherence and
consistency to any system or product. Most seasoned
engineers sit back and tell you it’s like a work of art, “you
know it when you see it.” For the layperson, a few
pointers would be helpful.

Is It the Solution to the Right Problem?

Any design or system is an attempt to solve a problem or
a set of problems simultaneously. It should be very
obvious when looking at a design “solution” what the
problem is. Frequently, however, a design is borrowed
from another setting and haphazardly applied to the
given problem. If it works, little attempt at modification or
optimization is made.

Examples abound in the computerworld. The Q-Buswas
originally a stop-gap inexpensive microcomputer bus in-
tended for very low-end applications like process control
and single-user systems. It is now the system bus onthe
MicroVAX 3X00. While it may be expedient for DEC to
maintain a performance gap between its high- and low-
end systems, the continued tweaking of the Q-Bus to

apply it to a high-performance environment leaves a lot
to be desired from the customer’s point of view.

Was It Designed to Grow in Predictable Ways?

A design should be dynamic; it should be adaptable to
the changing environment that is inevitable in most
computer systems. Many of these changes are predict-
able, such as the continuing increase in memory chip
densities. Does the design plan for growth? Are
constraints built in because of compromises that will
undoubtedly become bottlenecks in the future?

Are There Hints of Capabilities Well Beyond Those
Required?

Thisis a corollary to the above question. Usually a growth
path will be revealed by huge margins or extra capabili-
ties on a board that are not warranted by the current
environment. If these extras are costless or nearly so,
they hint at the forward possibilities a customer should
expect.

Other indications are the use of advanced technologies
that solve old problems in different ways than normally
done. VLSI in a unique application, a novel test process
or reliability feature, all are evidence of original thought
beyond what is called for in a design. It is also evidence
of the vendor’s capability to solve more difficult problems
as they arise in the future.

Is It a Clean Design?

There is no substitute for the “right stuff” — a well-
conceived design or an intelligently packaged system
shows the attention to detail that is necessary in today’s
market. Compare several designs and look for the
differences.

If Compromises or Trade-offs Are Made, Do They
Make Sense?

Often compromises are made to solve one problem,
creating new problems or costing too much somewhere
else. Look for the details that don’'t make sense: special
instructions where there should not be any; inconsistent
performance measurements that are optimized for
unusual environments; advertising key features of a
product with no mention of those attributes that are
known to be trade-offs of the feature. How many times,
however, have you bought something that sounded too
good to be true only to find out the “gotchas” when you
took delivery?

Designed for Reliability: Keep It Simple

One of the most common phenomena in today’s market
is a very advanced design that never seems to work. A
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good design should show evidence of addressing
reliability as a central problem. How is the system likely
to fail? Where are the design decisions that address

these failure modes? Is it easy to test and stress these .

failure potentials in the quality control process?
What Happens When You Scratch the Surface?

Usually the design represents a coalescence of many
competing concerns and constraints. In many ways, itis
an optimization problem in many dimensions. The result
is, when you scratch the surface (orformally, do sensitiv-
ity analysis on each of the variables) you expect to be
forced back to the optimization point reached by the
design engineer. Needless to say, sometimes this does
not happen. Even a layperson can ask questions that
delve into these design decisions, revealing the layers of
the problem below. If you find questions that are not
asked, and choices that seem to have been decided
randomly, you are not looking at “the right stuff.”

The High Performance Design

The result of a careful design is a product that stands the
test of time. Understanding the design decisions for high
performance put you, the buyer, in the driver’s seat, right
where you belong.
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Designing for Reliability

bm

Reliability is of paramount concern to all customers. The
lack of consistently reliable product has spawned a
growth industry within the computer market for highly
reliable systems, such as Tandem and Stratus. Since
many decisions on the system level have important
ramifications for reliability at the memory board level, this
chapter is devoted to clarifying the issue.

THE PROBABILITY OF ERRORS

There are two types of memory errors in dynamic RAMs:
soft errors due to radiation-induced bit switching, and
hard errors due to the unexpected deterioration of a
memory chip. Soft errors cause no lasting damage to the
memory board, but they do corrupt programs or data.
Hard errors demand physical repairs. The principal
cause of soft errors is alpha particle radiation from trace
levels of uranium and thoriumin the plastic packaging of
a DRAM. Other cosmic sources of high-energy radiation
also can cause soft errors. The energy necessary to
displace electrons from an individual memory cell is a
function of the size of the cell and the charge it carries.

As the cell size decreases by a factor of four, as in the
change from a 64Kb to a 256Kb DRAM, the charge per
cell only decreases slightly. The probability of a highly
energetic particle hitting the device is a function of the
size of the device. Since the 256Kb DRAM die is only
slightly larger than the 64Kb die, the soft error rate only
increases perhaps 50% with a 4X increase in density.
The result is that a 256Kb DRAM is somewhat less
reliable than a 64Kb on a per device basis, but more
reliable on a per cell basis.

Hard failures occur when devices on the memory board
fail. Memory chips have been known to fail partially or
completely; all ICs in the bus interface logic also have
some probability of failure. 1ICs in general exhibit a
“bathtub” distribution for failures over time (see chart
below), with a high initial failure rate while undetected IC
defects are uncovered, then a low failure rate for a long
time until it increases again because of wear-out.

The probability of memory errors has been estimated by
memory chip manufacturers, EDC chip set manufactur-
ers, and various users. The estimates vary, not surpris-
ingly, dependingonwhat the writeris trying to sell. Robert
McEliece, a professor at Caltech, wrote in Scientific
American (“The Reliability of Computer Memories”,
January, 1985 252:1, 88-95) about memory reliability
with no obvious predisposition. He used the figure for
expected soft failure rate of g,single memory cell of 1

every 1,000,000 years. In a 1 megabyte memory board
with 8.4 million cells, this translates into a mean time
before failure (MTBF) of 43 days.

Texas Instruments calculates the soft error rate MTBF
based on their 64Kb DRAMs somewhat more optimisti-
cally; for an 8 megabyte system the MTBF was 33.4
days. Advanced Micro Devices, Inc., (AMD) a manufac-
turer of an EDC chip, estimates that a 16 MB system
would have a MTBF of 13 days. Memory chip manufac-
turers  measure reliability in terms of FITs—expected
errors per billion device-hours. The 64Kb DRAM has a
soft error rate of approximately 500 FIT, the 256Kb about
730, and the megabit DRAMs something close to 1000.
Texas Instruments estimates hard errors to be roughly
1/5 1o 1/3 as likely as soft errors.

Memory board manufacturers buy very few lots of
memory chips in which the number of failures for 10,000
chips over a 72-hour burn-in is less than one; it is
sometimes over five. While this represents the high initial
failure of the early portion of this bathtub distribution of
failures overtime, it stillimplies a hard failure rate of about
1400 FIT (based on 1 per 10,000).

ERROR PROTECTION

System hardware reliability is achieved by including
some amount of overhead for identifying when errors
have occurred and either halting the system or providing
some measure of fault tolerance. The method by which
the system addresses error protection is usually consis-
tent throughout the hardware and software. The chainis
only as strong as the weakest link: if the hardware is
designed to identify parity errors and the software has no
provision for interrupts, the parity checking is basically
worthless.

Infant
Mortality

Wear Out
Due to Age

Without Burn-in

Failure Rate —»

Useful Life of Product

Time —»

ICs in General Exhibit a “Bathtub” Distribution of
Failure vs. Time, with a High Initial Failure Rate

Reprinted with permission from Clearpoint, “The Designer's Guide to Add-In Memory”, Third Edition.

© 1989 Clearpoint Research Corp.
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The three basic categories of error protection that are in
use today are: parity generation and checking; error
detection and correction (EDC); and complete redun-
dancy. A fourth category — none of the above — is still
seen occasionally. Parity checking is the most common
low-end measure, since the cost is quite modest, per-
formance is only mildly affected, and the software to

supportitis reasonably simple. EDC isthe mostcommon

level of protection for minicomputers and mainframes,
and seems to be migrating to both ends of the spectrum
as hardware becomes less expensive and more reliable.
Complete redundancy is the means used by “fault
tolerant” systems that need to remain operational even
when components of the systemdie. Itis more than twice
as expensive, since not only is twice as much hard-
ware needed but the system software environment is
considerably more complicated.

RUNNING BARE

The big question here is “Why?” Some OEMs still pay for
reliable hardware andthenfailtoimplement software that
will take advantage of it. There is no more dismal feeling
than having put in a week of work entering a database to
find out that the system corruptedit days ago, and you've
‘been copying bad files as back-ups. “Why didn’t | know?”
you may ask. Because your system was too cheap to put
in any error protection.

“But I spent $100,000 on this system!” There’s one born
every minute.

PARITY GENERATION AND CHECKING

Parity checking would at least eliminate the above prob-
lem. Parity checking involves storing a bit with every byte
of information that indicates the internal consistency of
that byte. Generally this is as simple as determining
whether there is an odd number of ones in the byte, and
storing a 1inthe parity bitif thereis. Then, every time that
byte is accessed, transferred, stored, etc., the parity bitis
compared with the byte to make sure it is still consistent.

- If not, a parity error is generated, and the system is
generally halted and the location of the error is backed
out.

How does the system know where the parity error was
found? Through the Control and Status Register (CSR).
The memory controller has a register that latches or
stores the address of the word currently being accessed.
When the system halts, the CSR can be interrogated
using basic machine language commands to reveal the
row and column address. If the system is restarted and
halts again at the same address, this usually means that
a memory chip has died and needs to be replaced. Byte
parity uses a parity bit for every byte of data. in a

1 megabyte memory board, there would be 128 64Kb
DRAMs used to store data and 16 used to store parity
bits. This, and some additional logic, are the principal
overhead of parity generation. Regardless of current
prices, this is a very small price to pay.

ERROR DETECTION AND CORRECTION

Error detectionand correction (EDC), also called ECC for
error checking and correction, goes one step further by
correcting single-bit errors that would otherwise halt the
system. Double- and multiple-bit errors are also detected
(unlike some multiple-bit parity errors) and treated like
parity errors by the system.

EDC is valuable since the majority of errors are single-bit.
EDC allows the continued operation of a systemwith only
an entry on an error log to indicate that an error actually
occurred. Hard errors due to memory chip failure are also
corrected by the system, since each memory chip stores
at most one bit from each word. Since hard errors are
usually permanent, when the system is operating with a
failed memory chip onboard, itis essentially offering only
parity protection for additional errors.

THE MECHANICS OF EDC

Tothe layperson, EDC seems almosttoo good to be true.
Ask a casual observer to devise an error correction
scheme, and he is likely to come up with two error-
correction bits for every bit of data: store all bits three
times; if one bit is different, go with the majority rule. This
system requires three times as much storage as no
protection, and gives incorrect information for double-bit
errors. How, then, can an EDC system work thatrequires
no more storage than parity memory (1 bit per byte),
corrects all single-bit errors, and detects all double-bit
and most multiple-bit errors?

EDC works by storing an error correction code (ECC)
with each word that both identifies where a failure has
occurred and corrects the error. The word size upon
which error correction is performed depends on the
specific memory design tradeoffs; typically, it is the word
size of the system (usually 16 or 32 bits). But, it can use
an ECC word size of 64 bits as well. Corrections can
be made on either four 16 bit or two 32 bit words
simultaneously.

Insimple terms, the number of bits required toidentify the
location of an error in a word of N bits is log(2) of N. To
understand why this is so, imagine trying to tell someone
else where the error is with yes or no answers. They
would ask “Is it in the first half?” then “Is it in the second
quarter?” etc. Each time the possible locations would be
halved.
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Check Bits 64Kb Chips Required
Required for 1MB of Memory
Word Size (bits) | EDC Parity* Word Size (bits) EDC Parity*
8 5 1 8 208 144
16 6 2 16 176 144
32 7 4 32 156 144
64 8 8 64 144 144

*Assumes one parity bit per byte.

Number of Bits Required for EDC and Parity

Additionally, two bits are required no matter how many
bits are inthe wordin orderto allow for errorsinthe check
bits and to correctly diagnose double- or multiple-bit
errors.

While not delving too deeply into the mathematics, it is
obvious that the log(2)N formula also has to include the
check bits. Using the 64-bit word as an example, assume
k check bits are required. Then k > log(2) (64+k).

Correctly diagnosing multiple-bit errors requires an
additional bit. Operation-ally, only odd combinations of
one's (1, 3, or 5) in the ECC are used to diagnose
problems; even combinations indicate that double- or
multiple-bit errors have occurred. lf only one bitis a 1, this
implies that the checkbit is in error. If 3 bits or 5 bits are
one’s, then the designated data bitisin error. If 2, 4 or 6
bits are one’s, then there has been a double-bit error (or
even multiple-bit error).

PARITY vs. EDC: A COMPARISON

The effect of EDC on reliability is substantial. Whereas
with parity a single-bit error causes aninterrupt, with EDC
ittakes two errors within aword to cause aninterrupt. The
MTBF due to two soft errorsin awordis about 600 million
years. McEliece estimates the MTBF of a one megabyte
EDC board due to soft errors to be 63 years; for a parity
memory the MTBF would be 35.7 days. There are,
of course, more probable ways of crashing an EDC
memory. Only the memory array is protected against
hard errors. The failure of any of the interface ICs is
uncorrectable. Even so, the MTBF of an EDC memory
cardis atleast an order of magnitude greaterthan a parity
memory; AMD estimates that a MTBF factor of 50 to 60
is expected.

The protection against hard errors is very dramatic: it is
possible to pull a memory chip off the board and have the
board continue to operate. This is because memory
arrays are organized in such a way that each memory
chip stores at most one data bit in a word. If one of the

memory chips dies, it can only effect a single-bit errorin
a word, and is therefore correctable. (Note: this is only
true with x1 DRAMs; 64K x 4 or 256K x 4 organizations
can store more than one bit per word in a single DRAM.)

THE IMPORTANCE OF THE ECC WORD
LENGTH

The chart above shows the number of check bits required
for EDC compared to the number of parity bits required
for byte parity checking. This corresponds directly to the
number of memory chips that are required for a given
capacity of memory. For example, an EDC 1 MB memory
using a 32-bit word would require 3 more bits than parity
on each row. Since there are 4 rows of 32 bits (using 64K
DRAMs), this amounts to 12 extra memory chips
required: 156 compared to 144 for parity.

However, the same number of memory chips are
required for parity memory and for EDC when error
correction is performed on a word of 64 bits (see chart
above). Unless EDC is implemented with 64-bit word,
EDC is more costly than parity in number of DRAMS
required to support it.

Performance is another attribute of the board that can
suffer when EDC is implemented. The logic to perform
EDC is understandably much more complicated;
additional gates require more time for execution.
However, with a 64-bit error correction scheme, the
overhead of error checking is only incurred once every
four 16-bit words or once every two 32-bit words, in
sequential accesses. Since 64 bits are latched simulta-
neously into a much fasterregister than the memory chip,
the register acts as a small cache. As a result, there is a
performance enhancement which effectively offsets the
increased time required for the additional logic.

Overall, EDC can translate into a significant im-
provement in error protection, and, as long as the EDC
is implemented with a 64-bit word, the cost and
performance tradeoff is insignificant.
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Double-bit Error Detection and Correction:
If One Is Good, Aren’t Two Better?

Recently, some IC vendors have implemented logicinan
EDC chip set that detects and corrects double-bit errors.
This seems like a substantial improvement over single-
bit correction and double-bit detection; in fact, the likeli-
hood of two soft errors in one location is incredibly small
and the benefit beset with operating negatives.

If an IC experiences a double-bit hard error, an EDC that
automatically corrects a double-bit error is probably
masking a bad IC that should be replaced. In addition,
multiple-bit errors are never logged and the data integrity
is jeopardized. For certain applications (satellites, for
instance), where continuing operation is more important
than complete data integrity, double-bit EDC will make a
significant contribution. But, many system managers
would prefer the assurance of data integrity.

EDC ON ARRAY CARDS
EDC Functionality

Most systems that implement EDC use separate
memory controllers and arrays; the controller board
implements the EDC while the arrays simply contain the
extra storage to hold the check bits. Likewise, parity
memory controllers have a CSR designed for parity.
They only latch the address of data in the case of bad
parity. Should an EDC memory card be placed in the
array, the controller CSR only provides information on
double- or multiple-bit errors that halt the system. To
monitor the error correction on the memory array, a
separate CSR is needed.

Currently, there are some separate controller/array sys-
tems that do not have EDC onthe controller, but forwhich
vendors sell EDC memory. This is now being advertised
in the MicroVAX |l marketplace. Since EDC works in a
fundamentally different way than parity, customers
should look very carefully at what they are buying. It is
possible to decrease system reliability if the controller
board does not provide adequate EDC functionality.

EDC Diagnostics

Another problem is diagnostics. If the system memory
diagnostics are designed to test parity, they willyield little
useful information on the functionality of an EDC array.
Vendors of the EDC array offer a mechanical switch to
toggle when diagnostics are being run, turning off the
EDC. The result is that there is really no way to test the
EDC array on the system; a custom tester is required to
tell if the EDC is even working as advertised.

Worse, some boards only reveal single-bit errors using
an LED, with no error logging or clearing through soft-
ware. This requires opening the system box periodically
to check for single-bit errors. If a soft error has occurred,
the system must be powered down; the switch toggled;
the cabinet closed; and the system powered up again
before it is operational as an EDC memory.

Any realist knows that the probability of crashing a
system increases by several orders of magnitude each
time it is manually altered. An EDC system that requires
agreatdeal of manualinterventionis clearly more trouble
thanitis good. For those who live by the adage “If it ain't
broke, don't fix it,” make sure you know what you are
buying.

REDUNDANCY

Redundancy is currently the ultimate error protection
available for hardware. Many major vendors now offer
systems in which all boards are “duplexed” — i.e.,
redundant — and the crash of either will not bring the
systemto a halt. Stratus Computer even has the system
automatically call up remotely to order a replacement for
a failing board. Customers only find out there was a
failure when a replacement module shows up on their
dock.

Thisis great, but curiously the systems still crash. Usually
the reasonis software: all the redundant hardware inthe
world cannot eliminate crashes due to bugs in system
software. The operating system environments for
redundant systems are necessarily more complex,
resulting in a somewhat greater vulnerability to unpleas-
ant encounters with wayward applications. Once an
environment is stable, however, the added hardware
reliability can reduce downtime to minutes a year.

Redundant systems are more thantwice as expensive as
simple EDC, because of the complexity of the operating
environment. Still, with hardware rapidly declining in
price relative to five years ago, the redundancy may be
worth the cost.

Measurement of Reliability

Many people try to quantify reliability, and make mean-
ingful comparisons based on these numbers. Because
reliability involves statistical probabilities, talkinginterms
of individual boards or systems is meaningless. It is
always important to remember that just because you can
measure something, that does not mean that it is what
you are looking for. The favorite joke on this runs:
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A woman walking down the street one night comes across
a man looking on the ground underneath a street light.

She asks him what he is up to, and he replies that he is
looking for his lost car keys.

“Where did you lose them?” she asks.

“Over nextto my car,” he answers, pointing to his carup the
street.

“So why are you looking over here?” the woman asks,
incredulously.

“Because it's too dark to see anything over there.”

Mean Time Between Failures

So goes the saga of measuring reliability. MTBFs are
easy to compute, but splitting hairs over differences is
really looking at the wrong issue. MTBFs are computed
based upon the cumulative probabilities of failure due to
wear-out of ICs and PC boards in a normal operating
environment. When the probability of an individual
component failing is very small (1 in a million years, or
thereabouts), the probability of 1,000 or 5,000 such
devices failing is approximated by the sum of the
individual probabilities. To compute an MTBF, the
manufacturer adds up the individual probabilities for all
the ICs on the board, the PC board itself (based on the
number of holes and layers), and each solder connec-
tion. This cumulative probability is the reciprocal of the
MTBF.

The cumulative probabilities are very low, as one would
expect. A memory vendor computes MTBFs from infor-
mation provided by the suppliers of the components. Not
that the suppliers have any conflict of interest, but they
like to measure their component’s reliability under
circumstances that show it “in a good light.” Usually, this
means tightly controlled temperature and environment,
complete static protection, and elimination of failures due
to “abnormal” circumstances.

The good news is that the probability of failure in these
circumstances is very low. The bad news is that
“abnormal” circumstances are the cause of 99% of the
failures. Poor static controlin handling, improper solder-
ing, conductive dust build-up, inadequate QC at the
component level, poor quality printed circuit boards,
corrosive desoldering fluids, incorrectly labelled ICs
and discretes, out-of-revision programmable devices,
improper packaging and shipping, andincorrect installa-
tion, to name a few, are all abnormal circumstances.

MEAN TIME TO REPAIR

Another index of reliability is the MTTR, since downtime
is a function of both the MTTR and the MTBF. MTTR is
simply the time it takes to repair a failure on a board. ltis
computed by estimating the probability of each failure
mode and multiplying this by the expected time for
repairing that failure. While this may be useful for the
vendor to compute his labor costs in repair, it has very
little to do with what a customer will experience.

Repair time depends primarily on whether a customer
can perform on-site repair or whether the board must be
returned to the factory. Most customers return all boards
forrepair, since thisis really the best way of guaranteeing
that it is done correctly. For customers willing to repair
failed memory chips, the only issue is whether the
memory is socketed or soldered-in. On-site repair of
soldered-in memory is never a good idea.

MTTR then becomes dependent on vendor response
time. If the vendor has implemented true 24-hour
advance replacement, this becomes the MTTR.

REFERENCES AND SITE VISITS

In reality, there is no substitute for references and first-
hand experience in determining vendor reliability. The
vendor knows what his reliability problems are, and his
larger customers will too. Vendors have been known to
use a lot of poetic license in describing their return rates,
so asking will not generally reveal the skeletons. Large
customers, however, are usually willing to share their
results. If a customer has a large sample size (200-500
boards) and a long history with the vendor you can
usually assume they have seen some dirty laundry.

THE BOTTOM LINE

Reliability is animportant factor in any system configura-
tion. But the real bottom line is understanding what can
or can't be done to ensure the maximum reliability for
your investment. How much reliability is enough? It is
probably a question that can never be answered entirely.
However, understanding the risks is half the battle. With
adequate knowledge, a reasonable decision can be
made.
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ERROR DETECTION AND CORRECTION SYSTEM
ARCHITECTURES

Once the decision to use EDC has been made, a designer must choose how this
capability will be implemented within his memory system. In general, there are two
distinct implementations of EDC, commonly referred to as Fly-By and Flow-Through
(Figure 2-1).

Fly-By

Fly-By, which is another term for a Check-Only Configuration, checks all words read
from the memory to the bus for errors. If an error is discovered, it is flagged by the EDC
and a recovery routine is initiated to complement the bit-in-error before the full data
word is presented as valid. The erroneous word is gated off the bus and the corrected
data substituted.

While this error-checking routine is being undertaken by the EDC circuit, the data words
are simultaneously sent directly to the bus. The system always assumes that no error
has occurred, a correct assumption in the majority of cases. This implementation
provides maximum speed for most memory accesses; the cycle will occur without any
delay from the EDC, since most words read from memory contain no errors.

However, if an error is detected, the CPU uses the Error or Multiple Error flags from the
EDC to either interrupt the memory cycle or stretch it by adding wait states; this causes
a significant throughput delay. At the designer’s option, the corrected data may be
written back to the memory if the EDC correction logic is enabled. In some instances,
one may not wish to write the corrected data back to memory, such as in the case of a
system employing memory “scrubbing” during refresh cycles (a more detailed explana-
tion of memory scrubbing follows). In this case, the system automatically corrects the
error later. .

Figure 2-1

“Flow-Through” “Fly-By”
EDC Implementation EDC Implementation
Data Cg?fk Data Cré?tck
Memory Memory Memory Memory
Check Check
Data Bits Bits
EDC Data » EDC
Data
System Data Bus System Data Bus 11580-005A

EDC Implementations
The Flow-Through method assumes each word is erroneous and completes a correction cycle
during every memory access. This simplifies system timing because each memory cycle is
identical. The Fly-By implementation only interrupts the memory cycle if an error is detected, and
a recovery routine is initiated. This provides maximum speed for most memory accesses, since
there is no EDC delay if an error has not occurred.
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Commonly, a penalty of one wait state is the result of a correctable error. For non-
correctable errors and instruction fetches, all high-performance processors have some
form of pipelining or prefetch buffering. Since the corrupted instruction, at best, only
gets to the decode stage of the processor before an interrupt is asserted, a recovery
routine is executed before the error is encountered. For data accesses, invalid data is
read into the processor. However, after insertion of an interrupt, the processor will not
crash due to invalid data.

Using the Fly-By implementation, data Reads proceed as fast with EDC as without.
Slowdown occurs only if there is an error. Even if the memory system has an error
every hour, this would only occur once every 3-4 billion memory cycles. So even with a
high error rate, EDC in the Fly-By configuration has essentially zero impact on memory-
system speed. Fly-By can be implemented with the 680XX and 80X86 processor
families in addition to many other CPU and system-bus configurations.

Flow-Through

A Flow-Through EDC implementation places the EDC directly between the memory and
system data bus. Using this configuration, also called “Correct Always,” all words from
memory are assumed to contain errors and are routed first through an EDC circuit
before reaching the bus. The EDC also assumes every word has an error and com-
pletes a correction cycle, which simplifies system timing. In this implementation, the
impact of a memory error is negligible, for the EDC corrects the error without having to
interrupt the system cycle. The EDC correction cycle runs at the same speed whether
or not the data contains an error. All memory access cycles are slower due to the
additional time required by the EDC. Usually, the Flow-Through configuration is used
with microprocessors that have ample memory-timing budgets, or in systems that do not
support bus-cycle restarts.

The increased speeds of today’s EDC products are continually making this EDC con-
figuration more practical for high-end systems, since error detection and correction has
become an insignificant part of the total memory-cycle time. The Am23C660D, for
example, detects and corrects an error in a 32-bit data word in a mere 18 ns. Thisis a
five times improvement in speed over circuits available several years ago.

Summary

The two different EDC implementations have specific pros and cons. A Fly-By system
requires more complicated timing, but will ultimately have the best performance. A
Flow-Through system has simpler timing, but lower performance. The Am29C660 may
be used to implement either Fly-By or Flow-Through EDC configurations.

Refresh with Scrubbing

“Memory Scrubbing” is a housekeeping operation implemented in hardware for check-
ing the DRAM memory for errors during normal refresh operations. Hidden from the
CPU, it is performed while no other memory accesses are being attempted.

On each refresh-with-scrubbing cycle, one memory word is read, checked for errors,
and corrected if necessary before being written back to memory. If several banks of
memory are refreshed simultaneously, all but one of the banks undergoes a standard
row-refresh cycle, while a single selected word is scrubbed in one bank only (Figure
2-2). Today’s sophisticated DRAM controllers, such as the Am29C668, contain scrub-
bing counters that keep track of the appropriate row, column and bank location of the
word to be scrubbed. They also include EDC initialization logic that writes a known
value to all memory locations during power-up. For a 16-Mword memory (224 locations)
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Figure 2-2
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Memory Scrubbing
During scrubbing, one location of memory is checked for errors during normal refresh cycles. In
this case, a single address location within bank #1 is scrubbed while the active row is refreshed in
all four banks. The Am29C668 contains row, column, and bank counters that scrub all memory
locations in succession via the Am29C660 EDC.

employing megabit DRAMs and one refresh every 16 us, scrubbing the entire memory
takes four and one half minutes, regardless of the word width.

When an error occurs, a Read/Modify/Write R/M/W cycle is performed. The duration of
a R/M/W cycle is longer than a normal Read or Write cycle. During refresh operations,
a row in each bank is accessed by asserting the Row Address Strobe RAS line. This
refreshes all locations in that row. If an error is detected, a Write operation is performed
within the refresh cycle; wait states may be required to extend the cycle. However,
system reliability is increased because soft errors cannot accumulate in areas of mem-
ory that are not frequently accessed.

When performing RAS-only refresh without scrubbing, all four RAS lines are activated,
but the CAS lines remain inactive. A refresh with scrubbing cycle activates all four RAS
lines and a single CAS line. Correctable errors detected during scrubbing cycles are
not reported to the CPU.
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AM29C660 CMOS CASCADABLE 32-BIT ERROR DETECTION AND
CORRECTION CIRCUIT

The Am29C660 EDC contains the logic necessary to generate check bits on a 32-bit
data field according to a modified Hamming code algorithm. It can also correct the data
word when check bits are supplied. It detects all single and double-bit errors as well as
some triple-bit errors. Error conditions are flagged on the ERROR and MULTERROR
outputs of the EDC. It can correct all single bit errors. For 32-bit words, seven check-
bits are used. Check bits are generated in the “generate mode” to correspond to the
contents of the Data Input latch. They are stored in a separate section of memory spe-
cifically set aside for them.

Each time a word is subsequently read, the EDC regenerates new check bits and
compares them to the original check bits from memory. This is accomplished by
XORing the two sets of check bits to create “syndrome” bits. If the two sets of check
bits are identical, the syndrome bits will all be zero and no error has occurred. If the two
sets differ, the EDC detects an error by generating non-zero syndrome bits.

The EDC then determines which bit has been wrongly complemented (in the “correct
mode”) and corrects the error by changing the bit back to its original value. The EDC
can detect and correct errors in the data word and the original check bit representation if
necessary. In addition, gross error conditions, such as the occurrence of all ones or all
zeroes in the data and check bits can be detected.

The Am29C660 is expandable to operate in the 64-bit mode. Two devices may be cas-
caded to generate the eight necessary check bits for a 64-bit word. In both 32 and 64-
bit modes, error syndrome bits are made available on separate outputs for error logging.
Here, the locations of errors are stored separately for diagnostic purposes, so the
locations of malfunctioning DRAMs can be determined.

The Am29C660 also includes two diagnostic modes in which diagnostic data may be
forced into portions of the chip via software to simplify device testing and to execute
system diagnostic functions. Using this feature, “dummy” data words and check-bit
representations may be loaded into their respective input latches to generate different
error detection and correction operations.
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PROGRAM TO EVALUATE AM29C660 MULTIPLE ERROR
DETECTION CAPABILITY

A program was written to evaluate the error-detection capability of the Am29C660. It
simulates all the possible combinations of bit errors. The number of possible errors for
a given number of bits in error is a combinatorial function of the number of bits in the
word and the number of bits in error. If m is the number of bits in error and n is the total
number of bits in the code word, then the total number of words is calculated as follows:

n!
m! (n-m)!
wheren!=1x2x3x...xn.

The program generates the data and check bits with the specified number of bits in
error. The program calculates the check bits for the data and the calculated check bits
are XOR-ed with the check bits generated in the previous step. If the resulting syn-
drome bits are zeros, the errors were not detected. If the syndrome bits are not zeros,
they must be compared against the syndromes for a single-bit error through a look-up
table. If the syndrome bits match a single-bit error, the word would be “miscorrected.”
The EDC thinks the error is a single-bit error and attempts to correct it. If none of the
previous conditions are satisfied, the error is detected. This process is performed for
all the possible combinations.

Table 2-1 summarizes the results of the simulation. The time needed to execute the
program limited the number of bits in error that could be simulated. From the table, it
can be seen that for any odd number of errors, all the errors are detected; but some are
miscorrected. For an even number of bits in error, none are miscorrected; but some are
not detected.

Table 2-1

Number of Number Number Number Number of
Bits in Error Detected Not Detected Miscorrected  Possible Errors
1 -39 0 0 39
2 741 0 0 741
3 3619 0 5520 9139
4 80871 1380 0 82251
5 224577 0 351180 575757
6 3212143 50480 0 3262623
7 6012217 0 9368720 15380937
8 60560888 962860 0 61523748
9 82758472 0 129156660 211915132
10 625814596 9930800 0 635745396
29 248334700 0 387410696 635745396
30 208604844 3310288 0 211915132
31 24031156 0 37492592 61523748
32 15140312 240625 0 15380937
33 1275240 0 1987383 3262623
34 566845 8912 0 575757
35 32075 0 50176 82251
36 8983 156 0 9139
37 273 0 468 74
38 39 0 0 39
39 1 0 0 1
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Two plots that extrapolate these trends were generated from the data. The first plot,
Figure 2-3, is for errors not detected and only applies to data with an even number of
errors. The percentage of errors not detected is approximately 1.6 % between 4 and 36
even-bit errors inclusive. There are no errors miscorrected for even-bit errors. The
second plot, Figure 2-4, shows the number of errors simulated and the number of errors
that were miscorrected and only applies to an odd number of errors. The percentage of
odd-bit errors that are miscorrected is approximately 61% for words with 3 to 37 errors
inclusive. For odd-bit errors, all errors are detected.

For nibble memories, assuming a single failure of one DRAM, the probability of

detecting the error is 92.5%; the probability of not detecting an error is 1.5%; and the
probability of miscorrecting an error is 6.0%. This assumes that the number of 1-, 2-,
3- and 4-bit errors are equally distributed, which should be the case for a total failure.

Figure 2-3
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MEMORY RELIABILITIES WITH AND WITHOUT THE AM29C660
EDC CIRCUIT

DRAM manufacturers express MTBF in terms of failures in time (FITs). One FIT
represents one error in one billion (10°) hours of operation. Toshiba, a major supplier of
1-Mbit DRAMS, claims a soft-error rate of 252 FITs (one failure every 3.97 x 10° hours).
Clearpoint, a manufacturer of add-in memory boards for a variety of systems and buses,
estimates the soft-error rate at approximately 1000 FITs (one failure every 10° hours).
The actual value is somewhere between these two figures. An analysis using both FIT
rates follows.

]
The MTBF in hours for each separate DRAM is —;%
s

The memory system MTBF in hours is DRAM MTBF
# of DRAMs

The following table summarizes the MTBF for different memory sizes without EDC
assuming a FIT rate of 252.

# of Memory Chips Memory Size(Mbyte) Memory MTBF(years)
32 4 141
64 8 7.1
96 12 4.7
128 16 3.5
160 20 2.8
192 24 24

The following table assumes a FIT rate of 1000 and no EDC.

# of Memory Chips Memory Size(Mbyte) Memory MTBF
32 4 3.6 yrs
64 8 1.8 yrs
96 12 1.2 yrs
128 16 326 days
160 20 260 days
192 24 217 days

With EDC, all single-bit errors are detected and corrected. The probability of a fatal
two-bit error occurring depends upon several system considerations. The Am29C668
4-Mbit Configurable DRAM controller can be used to “scrub” the memory during refresh
cycles. This insures the data integrity of seldom-accessed memory locations and
increases the MTBF. [f scrubbing is not used, the MTBF for the system depends upon
when two soft errors occur in the same word. The approximation for the occurrence of
two soft errors in the same word is given by the approximation to the birthday paradox*:

(MTBF using 39 chips without EDC) x |/ % Number of Memory words

*The birthday paradox is that, on the average, only 24 people need be asked their birthday before two
people are found to have been born on the same day of the year. This is a well known problem in
statistics.
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The Am29C660 adds an overhead of seven bits for every 32-bit word. For a 32-bit
EDC system without scrubbing, the system MTBF, assuming a FIT rate of 252, is:

# of Memory Chips Memory Size(Mbyte) Memory MTBF (Years)
39 4 14,907
78 8 10,541
117 12 8,607
156 16 7,454
195 20 6,667
234 24 6,086

The following table assumes a FIT rate of 1000 and EDC and no scrubbing.

# of Memory Chips Memory Size(Mbyte) Memory MTBF (Years)
39 4 3,757
78 8 2,656
117 12 2,168
156 16 1,878
195 20 1,680
234 24 1,534

These numbers, however, are overly optimistic because these tables disregard any hard
failures. The Am29C660 and the extra memory chips also impact the reliability of the
system, because there are more memories subject to failure. The actual increase in
MTBF is more on the order of 50 or 60, which increases the memory reliability in the
worst case from 217 days to 30 years. If scrubbing is used, the MTBF is increased
even more.

An EDC requires slightly greater overhead than a parity system, seven check bits
versus four parity bits, but the EDC offers a dramatic increase in reliability. Parity only
detects errors. EDC, therefore, is a very valuable tool in increasing system reliability.

SYSTEM BUSES

The section of this chapter, “Understanding Memory Design,” discusses system-bus
efficiency, particularly as it relates to memory, referring to examples such as Q-Bus and
Multibus I1. It is important that the designer be familiar with the various available system
buses, since he may need to design interface circuitry to meet a strict set of specifica-
tions. There are many choices: some buses are designed for specific systems from
DEC, IBM etc.; others are vendor independent and offer open standards. Choosing the
right bus is rarely easy. The designer must consider many factors: e.g., board size,
connector type, arbitration methods, protocols, available semiconductor technologies. A
brief overview of the most popular buses, by no means a complete listing, is given here.

The VMEbus

The VMEbus was developed by Motorola, in association with other companies, to
provide an open architecture. Perhaps the most popular bus among OEMs, the VME
offers 8-,16-, or 32-bit data and 16-, 24-, or 32-bit addressing and a 40 Mbyte/s band-
width. The VMEbus is rapidly becoming the choice for military applications.
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Numerous products are offered for use with the VMEbus, including almost all
processors, memories and memory boards, controllers, error-detection and correction
circuits, and other support products. The asynchronous VMEbus provides for block-
mode and unaligned transfers; it is extremely flexible with minimal compatibility
problems. Present plans include a 256-bit data path, 2-3 Gbyte/s bandwidth, 64-bit
addressing and scalability.

VERSAbus was VME's predecessor, designed primarily for 68000-based systems. It is
in limited use today.

Multibus* 1 and Il

Multibus | is one of the most popular single-board computer buses and boasts an
extremely large installed base in both the military and OEM markets. Developed by
Intel, it offers a simple architecture: 16-bit data, 24-bit addressing, asynchronous
operation and requires no multiplexing. It is still an excellent choice for 8- and 16-bit
applications; however the growth path stops here. Intel was forced to meet the
versatility demands of more sophisticated systems; the result is Multibus 1.

Multibus Il is a synchronous bus with five levels of embedded sub-buses. The main
parallel-system bus is 32 bits wide and operates at 40 Mbyte/s; the local memory bus is
even faster. Combined with a serial bus, Multibus Il architecture offers a broad range of
bandwidths in one specification. Synchronous buses are usually tightly specified to keep
compatibility problems to a minimum and to make system design easier. However, the
five levels of sub-buses, all with different clock speeds, complicate the design. To solve
this problem, Intel offers a bus-interface chip set to standardize bus communication.

Multibus [l offers a broad capability for tightly coupled, synchronous operation of many
processors and shared devices to avoid the problems of centralized arbitration.

The NuBus**

The NuBus, another bus that supports 8-,16- and 32-bit addressing, is simple, flexible
and easy to use. It is best known for its application in the Macintosh 1I***. NuBus has
only one address space, as compared to three required by both Multibus Il and
VMEDbus; only four control lines are required to define a transaction, compared to many
more for Multibus and VMEbus. NuBus supports a 37.5 Mbyte/s data-transfer rate, as
well as several types of DMA transactions.

A NuBus overhaul in 1990 may provide twice the current performance for 32-bit
systems with a transfer rate to 80 Mbyte/s and improved specifications that will enhance
its position in both the workstation and industrial markets.

AT Bus

The IBM PC, originally based on the 8088, is probably the most popular system ever
built. There have been two major enhancements, the XT and the AT. The latter is
based on the 80286 and offers a 16-bit data bus vs only an 8-bit bus on the XT and the
PC. The AT architecture is adequate for single-user machines and continues to be a
strong contender in the work-station marketplace. However, the AT bus is still only 16
bits wide, but the machine performance continues to improve with faster processors and
peripherals. Most work-station vendors now offer some degree of compatibility through
networking to provide for PC applications on larger machines.

* Multibus is a registered trademark of Intel Corporation
** NuBus is a trademark of Texas Instruments Incorporated
*** Macintosh Il is a registered trademark of Apple Computer Incorporated
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Micro Channel*

Micro Channel currently provides a low-end standard to improve upon the performance
of the AT bus. It resides only in the PS/2* Model 70 and 80 systems. (See detailed
discussion in the Application Note, “IBM PS/2 12-Mbyte Memory Board with Error
Detection and Correction”, Chapter 4). Micro Channel is an IBM-proprietary bus.

The Micro Channel architecture uses combinations of 8-, 16- and 32-bit connectors to
implement a complex bus arbitration scheme for sharing address, data, and control lines
without conflict. Bandwidth is 20 Mbyte/s.

EISA (Extended Industry Standard Architecture)

Based on the AT bus, EISA was designed by a consortium of computer vendors and is
intended to be the answer to Micro Channel. It targets single-CPU environments and
supports multiple-bus masters. EISA serves as a shared resource in a network of PCs
and segments its architecture into memory and I/O buses. Bandwidth is 33 Mbyte/s.

The Q-Bus

For many years, DEC’s Q-Bus has been the most popular OEM bus for low-end
applications, such as process control and single-user systems. Originally designed for
the LSI-11 microcomputers, it is still used extensively throughout the MicroVAX
computer family.

The asynchronous Q-Bus is inexpensive and simple to use. To save signal lines,
address and data are multiplexed. The original 16 address lines have been increased
to 22 bits to provide a 4-Mbyte address space. The data bus remains only 16 bits wide.

The Q-Bus specifies that DEC (or equivalent) line drivers be used on any bus interface.
However, some designers have found ways to hang logic directly on the bus with noill
effects. Some years ago, DEC added block-mode DMA to speed data transfer. An
on-board memory controller enables add-in vendors to offer a wide variety of memory
types that can easily be used with the Q-Bus.

MicroVAX 11

Another successful DEC bus is the MicroVAX 11, which uses the Q-Bus for I/O but has a
separate memory bus to reduce bus traffic and speed memory access. DMA is handled
over the Q-Bus to the memory controller, which is on the processor card. The data is
then transferred to the memory via the memory bus. Unlike the early MicroVAX |, the
memory bus has a full 32-bit data path.

The memory bus is synchronous with a fixed 400-ns cycle time, which means that all
memory boards perform the same; faster memories buy nothing. Parity is the standard
level of error protection, providing error detection only, no correction. To exceed the
16-Mbyte maximum configuration of the MicroVAX Il, some vendors offer RAM-disk
expansion on the Q-Bus.

MicroVAX 3000
The MicroVAX 3000 Series adds many improvements: speed, error correction and

memory addressability. DEC continues to expand its bus architectures to support the
VAX product line.

*Micro Channel and PS/2 are trademarks of IBM Corporation
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Futurebus+

The IEEE specification for Futurebus+, the bus for 64- and 128-bit, and even 256-bit,
systems, was due for completion in the fourth quarter '89. Using backplane transceiver
logic (BTL), designed specifically for driving a backplane bus, Futurebus+ solves the
transmission line problems that limit the speed for buses based on TTL. It boasts
speeds of 400 to 3200 Mbyte/s, depending on the.size of the system, 32 to 256 bits.
Futurebus+ uses an asynchronous bus-interface protocol that is completely
independent of the processor family or technology used to implement the system. The
bus contains extensive monitoring, diagnostic and error-detection facilities.

Futurebus+ also features a distributed arbitration scheme that expedites the building of
fault tolerance into a system. It is an open-architecture bus that also includes a
broadcast/broadcall facility for interacting back and forth with multiple boards. The bus
supports the implementation of a variety of caching methodologies within a single
shared-memory multiprocessing system.

There will probably be very few Futurebus-only systems appearing in the marketplace
for some time. Most people will experiment by using Futurebus to upgrade VME or
Multibus 1l systems. Bridges or links will give users a variety of /O, peripheral and low-
cost CPU cards for tasks that do not require the full power of Futurebus. Many
companies are exploring ways to bridge the gap between their buses and Futurebus.

Opinions vary on the role the VMEbus will play in the future. Most board vendors, for
the time being, will probably provide bridges as stepping stones to link VME with
Futurebus+. Intel and the Multibus Manufacturer’s Group plan to link Multibus I to
Futurebus+.

Users must be able to upgrade their installed systems by connecting them via cable to
the new high-performance system, thus preserving their investments in both hardware
and software.

REFERENCES
Electronic Engineering Times , CMP Publications, August 14 and September Il, 1989.

The Designer’s Guide to Add-In Memory , Third Edition 1989, Chapter Five, The Final
Step—An Industry Survey , Clearpoint Research Corporation, Hopkinton, MA.
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INTRODUCTION

This chapter includes application notes describing four different interface designs
utilizing the Am29C668 4M Configurable Dynamic Memory Controller/Driver (CDMC)
and four well-known microprocessors—the Am29000, the 80C286, the 80386, and the
68020. The CDMC acts as the address controlier between the microprocessor and the
dynamic memory array, providing control for 4M, 1M, 256K and 64K dynamic RAMs.

Each interface was designed to provide maximum performance at reasonable cost.
Each is as general as possible so that the user may tailor his implementation to a
specific memory system. Possible changes are discussed with associated system
requirements and implications. A block diagram, timing analysis, and logic equations
necessary to implement each design are included.
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Am29C668 Configurable Dynamic Memory Controller

e

to Am29000 Streamlined Instruction Processor Interface

by Douglas Lee, Applications Specialist

INTRODUCTION

The interface between the Am29C668 4-Mbit Configur-
able Dynamic Memory Controller (CDMC) and the
Am29000 Streamlined Instruction Processor was de-
signed for maximum performance, while using relatively
inexpensive DRAMs. This design uses 100-ns fast-
page-mode DRAMs, yet achieves single-cycle burst
accesses at 20 MHz. It also uses a minimum number of
devices to reduce the required board space. This design
is as general as possible so that users may tailor their
implementations to specific memory systems. A block
diagram, timing analyses and logic equations necessary
to implement the design are included.

Distinctive Characteristics

«  Am29C668 4-Mbit Configurable Dynamic Memory
Controller/Driver with Auto Timing

« 20-MHz Am29000 Streamlined Instruction
Processor

» 100-ns Fast-Page-Mode 1 Mbit x 1 DRAMs. Also
supports 256 Kbit x 4 Fast-Page-Mode DRAMs or
256 Kbit x 1 Fast-Page-Mode DRAMSs.

Single Am29C668 Controls Two Banks of
Interleaved Memory.

8-Mbyte Dynamic Memory per Am29C668.

Four-Cycle Initial Access on Read Cycles, Three-
Cycle Initial Access on Write Cycle, Single-Cycle
Burst Accesses for Read and Write Cycles. Three-
Cycle Initial Read Access Within a Page, Two-
Cycle Initial Write Access Within a Page.

Supports Instruction Burst Restart, Two-Cycle
Access.

Supports Byte Writes.

Supports 4-Gbyte Address Space Each for
Instruction Memory, Data Memory and 1/0.
Separate Instruction and Data Memory, With
Instruction Memory Accessible Via the Data Bus
to Load Programs.

Compatible with the Adapt29K™ In-Circuit
Diagnostic System by Decoding Option Bits
OPT[2:0].

J
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T

Address Am29000

Data
Streamlined
Instruction

Processor

32 32

32

Instruction
ROM

Instruction

N4

Instruction
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Figure 1. Am29000 System Diagram
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Am29C668 CDMC to Am29000 Streamlined Instruction Processor Interface

Am29000 Overview

When compared with static RAM (SRAM), dynamic RAM
can provide far more memory at lower cost and powerin
the available board space. The main penalty in using
DRAM is a loss of speed in the initial memory-access
time. Burst-access performance can be maintained by
using bank interleaving and fast-page-mode DRAMs.
Fortunately, the Am29000 provides features that help
compensate for a slower initial access time of system
memory.

The Am29000 has an external Harvard architecture with
separate dataandinstruction buses (Figure 1) sothatthe
processor can fetch instructions and data
simultaneously. With slower memories, it becomes
important to maintain separate instruction and data
spaces to increase the probability of instruction and data
accesses occurring simultaneouly, while decreasing the
probability of a data access preempting an instruction
burst. The Am29000 also has burst-mode loads, stores
and instruction accesses to provide maximum memory
bandwidth.

The Am29000 branch target cache (BTC) stores the first
four instructions after a successful branch. The BTC is
two-way, set associative, with 16 blocks per set and a
block size of four words; there are 512 bytes of storage
or 128 words. When a branch is taken, the first four
instructions come from the BTC if the branch target
address is in the cache. At the same time, the first
instruction following those in the cache is accessed. The
first three cycles of the initial memory access are hidden
by the execution of the instructions in the BTC.

The large register file of the Am29000 in effect provides
adata cache forthe most frequently used operands. This
significantly reduces the number of times that memory
needs to be accessed for data as compared with other
microprocessors. Also, the Am29000 load and store op-
erations may be overlapped with the execution of other
instructions, which again reduces the impact of a slower
initial-access-time memory system.

MEMORY ARCHITECTURE OVERVIEW

To obtain good memory throughput while maintaining
reasonable cost, 100-ns fast-page-mode 1-MBit DRAMs
are used. The Am29000 can accept data every cycle. If
additional cycles are needed, the memory controller
holds the appropriate ready signal (IRDY or DRDY)
inactive. The processor bus interface waits until the
ready signal is asserted. For this memory design, the
20-MHz Am29000 completes the initial access to mem-
ory in four cycles for Read accesses, three cycles for
Write accesses. If the access is to a page that has been
previously accessed, a Read access is completed in

three cycles and a Write in two cycles. During Write
accesses, the ready signal is asserted one cycle earlier
thaninthe Read access because the datais latched from
the bus. The memory still requires the same number of
cycles to complete the actual memory access, but the
system bus is freed to start another access.

There are four major types of speciality-mode DRAMs:
fast-page-mode, static-column, nibble-mode and video
DRAMs (VRAMs). Nibble-mode DRAMs can access four
bits of data in a modulo-4 fashion, but are not applicable
to this design because the length of a burst is indetermi-
nate. VRAMs are attractive, since they have an on-chip
shift register that permits concurrent data and instruction
accesses; however they have cost and availability
disadvantages. Static-column DRAMs (SCDRAMs)
have a simpler interface since only the column address
is changed to access another location in memory. How-
ever, this advantage presents a drawback. Since a fast-
page-mode DRAM latches the row and column address,
the address may change much sooner than an address
in an SCDRAM, for which the column address must
remain stable until the data is latched externally. This
means that the page-mode DRAM can effectively over-
lap the address propagation delay with the memory
access time, thereby giving better performance for
comparable-speed DRAMs. In addition, to obtain the
20 MHz throughput using 100-ns SCDRAMSs, each
bank must be controlled by one Am29C668, thereby
increasing control logic, cost and required board space.

Fast-page-mode DRAMs appear to the processor as if
they are fast cache memories during accesses withinthe
page. The page size for a 1-Mbit DRAM is 1024 bits or 1
Kbits. The memory discussed here is 32 bits wide and
two banks are interleaved; therefore the page size is 8
Kbytes. The Am29C668 detects accesses within the
same page via the on-chip cache-mode operation. When
anew addressis latched, itis compared with the previous
row and bank address; if the addresses are the same, CH
is asserted. The memory state machine immediately
begins the next access. An access outside the page, a
page miss, causes the memory controller to perform the
RAS precharge for the DRAMSs followed by a normal
memory access. Figure 2 shows the timing for an initial
access, cache hit and cache miss. The total access time
on a page miss requires seven cycles, one for decoding,
two cycles for the RAS precharge and four for the data
access. Shorter memory-access times result when using
the cache-mode method than when using normal DRAM
accesses. The actual performance of the memory sys-
tem depends upon the instruction mix of the programs
executed.

Each Am29C668 controls a memory array consisting of
two banks. Each bank contains 4 Mbytes or 1 Mword (32
bits) of memory. This gives a maximum size of 8 Mbytes
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or 2 Mwords of memory per Am29C668 controller. For
smaller memory systems, 256 Kbits x 4 or 256 Kbits x 1
DRAMs can be used as long as CAS access time
t..c = 25 ns. This results in a 2-Mbyte memory size or
512 Kwords per Am29C668. With 256 Kbits x 4 DRAMs,
four banks of memory can be supported so that the
system can be upgraded from 2 Mbytes to 4 Mbytes.

Supported Access Methods

This memory design supports simple and burst-mode
accesses of the Am29000. Pipelined accesses are not
supported. The memory is divided into instruction and
data memory. The instruction memory permits both data
Reads and data Writes and is accessible as data so that
programs can be loaded into memory via the data bus.
This is the most general implementation. Alternative
implementations forinstruction memory are discussedin
the section “Variations on This Design.”

Data accesses of instruction memory are given priority
over instruction accesses so that a store to instruction
memory, while simultaneously executing from
instruction memory, will not result in a deadlock. Data
memory supports only data accesses.

Figures 3a and 3b show the timing waveforms for an
instruction burst access. An instruction burst access is
initiated when Instruction Request IREQ, Instruction
Request Type IREQT, and the address A[31:0] are
asserted during the first half of the clock cycle. If an
exception occurs, for example a translation lookaside
buffer miss or a jump followed by a jump, the Bus Invalid
BINV is asserted during the second half of the bus cycle.
Instruction Burst Request IBREQis also asserted during
this part of the cycle. If the request is valid, the memory
system accesses the data and asserts Instruction Ready
IRDY in the cycle when the data is valid. The processor
requests burst-mode instruction accesses by asserting
IBREQ. The memory responds to an IBREQ request with
the Instruction Burst Acknowledge signal IBACK. In the
cycle after IBACK is asserted, the Am29000 can start an
access to data memory. The memory control logic cannot
assert IBACK until the address and all the necessary
control signals have been latched. During instruction
bursts, IBREQ may be temporarily deasserted when the
prefetch buffer is filled. The memory continues to assert
IBACK, indicating that it can restart the instruction burst.
If IBREQ is asserted by the processor, the instruction
burst starts in the next cycle. If a new request is initiated,
the memory deasserts IBACK.

Figure 4 shows the timing waveforms for a data access.
Data accesses are similar to instruction accesses, with a
few exceptions. The Am29000 initiates a data access by
driving Data Request DREQ, Data Request Type
DREQT[1:0], the address A[31:0] and the Option bits

OPT[2:0]. All instruction accesses are 32 bits. Data
accesses can be word (32 bits), half word (16 bits) orbyte
(8 bits). The length of the access is decoded from the
OPT[2:0] and the two least significant address bits A[1:0].
The OPT[2:0] bits also distinguish between accesses to
memory, instruction ROM (as data), cache control and
the ADAPT29K. The Data Request Type outputs
DREQT[1:0] distinguish between data memory, input/
output, and coprocessor accesses. The Data Ready
DRDY and Data Burst Acknowledge DBACK functionthe
same as the equivalent signals in the instruction control
bus. Data Burst Request DBREQ functions the same as
IBREQ, except that the Am29000 does not suspend
burst-mode data accesses; therefore, this memory de-
sign does not support data-burst restart.

Refresh Cycles

To retain data, dynamic memories must be refreshed
periodically to restore the charge on the memory-cell
storage capacitors. For 1-Mbit DRAMs, all 512 rows of
memory must be refreshed every 8 ms. There are three
different methods for performing refresh cycles: burst,
forced and hidden; each has its advantages and dis-
advantages. The best method is determined by the
instruction mix, system hardware and performance
requirements.

The burst-refresh method refreshes all 512 rows sequen-
tially and works especially well in systems with long idle
times between memory accesses. The main disadvan-
tage is that an access to memory may be delayed for
long periods during the refresh cycles, greatly impacting
system response time. This would definitely not be an
acceptable method for real-time systems.

The forced or distributed-refresh method periodically
inserts refresh cycles. If refreshes are interspersed be-
tween memory accesses, the memory-access time is not
greatly impacted, since there is a low probability of
refresh-request and memory-request contention. One
refresh request is generated every 15.6 us = 8 ms/512
rows. This method is preferable to burst refresh in most
systems.

Hidden refresh has the lowest system impact since all or
most of the refresh cycle is overlapped with an access to
anothermemory orl/Odevice. There are times, however,
whenthe system continually accesses the same memory
and does not permit hidden refreshes to be performed. If
this happens, a forced-refresh cycle mustbe used. There
are conceivable situations where hidden refresh would
not perform as well as forced refresh; however, for most
general applications, hidden refresh is the best choice.

This design utilizes forced refreshes instead of hidden
refreshes, for several reasons. Additional logicis needed
to keep track of hidden-refresh cycles. This logic must
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suppress the forced-refresh request after a hidden-
refresh cycle is performed and must force a refreshwhen
no hidden refresh is performed. This adds extra devices
and consumes more board space, money and power.
Determining when to use hidden refresh is also difficult
with the Am29000. For example, if an instruction burst is
suspended, a hidden refresh should not occur due to a
data access to another part of the system. This is be-
cause the instruction burst may have been suspended
and could restart on any subsequent cycle. If the hidden
refresh starts, the processor must wait a minimum of 11
cycles untilthe nextinstructionis read. Since instruction-
burst suspension can occur frequently, due to filling the
prefetch buffer, this situation can ave a majorimpact on
system performance. In these situations, hidden refresh
does not guarantee major savings, therefore, the extra
effort to implement it is not justified.

Arefresh cycleisidenticalto anormal access, exceptthat
the CAS outputs to the DRAMs must be suppressed. The
Am29C668 suppresses the CAS outputs in the refresh
mode. REFRESH is asserted by the Timer PAL every
9.8 us. The refresh interval is determined by maximum
CAS active time (10 ms) as explained in the Timer PAL
section. If a simple memory access is in progress, the
access is completed before the refresh cycle begins. If a
burst memory access is in progress at the time a refresh
is requested, the burst is suspended. After the refresh
access is complete, the burst restarts automatically. If
both a memory-access request and refresh request
occur during the same cycle, the refresh requestis given
priority. This is done to meet the refresh requirements of
the DRAM.

FUNCTIONAL DESCRIPTION

The main block diagram for this design, including the
control logic, buffers and memory array are shown in
Figure 5a. Figure 5bis the detailed diagram of the control
logic. Figure 5¢ shows the connections for the
Am29C983A Multiple Bus Exchange for one bank of
memory.

Am29C668 Configurable Dynamic Memory
Controller (CDMC)

The Am29C668 generates the RAS, CAS and address
signals to the DRAM array. No external drivers are
needed. Additionally, the Am29C668 generates the row
addresses during RAS-only refreshes from the internal-
refresh row-address counter.

The Am29C668 must be programmed, via an /O access,
before any memory accesses may occur. The
Am29C668 occupys a 256-Kbyte or 64-Kword address
space, that can be reduced to only 1 byte by adding an

additional decoder in parallel with the Request PAL. The
actual decoding is left up to the user since it is system
dependent. Address bits A[12:3] contain the value to be
loadedinto the configuration register. For this design, the
lower 13 address bits are 730H. The options selected
are: two banks RAS and CAS configuration, CAS byte
decoding, RAS-only refresh, 1-Mbit memory size, cache
mode and external timing. The input AC[10] must be tied
Low to place the Am29C668 in normal-mode operation,
since AC[10] is only used with 4-Mbit DRAMs.

When the Am29C668 is configured to support two banks
of memory, the RAS outputs are divided into two sets:
RASJ[1:0] and RAS[3 2]. Each set normally controls one
bank of memory to reduce the capacitive loading each
driver sees, thus minimizing the propagation delay. In
this application, however, the RAS  outputs of both
banks must be Low simultaneously to support
interleaved burst-mode accesses. This is generally not
possible using other DRAM controllers and would
normally require one controller per bank, However,with
the Am29C668 in the two-bank configuration, RAS[0]
controls bank 0 and RAS[1] controls bank 1. Both RAS[0]
and RAS[1] go Low when RASI is asserted; the SEL[1:0]
are not used and both must be tied Low to insure proper
operation. In this way, both banks can be active at the
same time and still be controlled by one Am29C668. This
unique feature saves board space, power and cost. To
control which bank is accessed, the CAS, inputs to each
bank are strobed separately; this requires an external
buffer. Since an external buffer (Am2966) is also used to
drive WE, no additional parts are required. )

The Am29C668 supports byte decoding through the
CASEN[3:0]inputs. The Optionbits OPT[2:0] and the two
least significant address bits A[1:0] are decoded to
generate four byte-enable signals BE[3:0], that are con-
nected directly to the CASEN[3:0] inputs of the
Am29C668. The CASENO output of the CAS-Enable
PAL is connected to the Am29C668 CASIEN input.
CASIEN controls whenthe CAS[3:0] outputs are enabled
and the BE[3:0] outputs control which outputs are active.
In addition, the BE[3:0] outputs are used with the state
variables STATE[2:0] to generate CASEN1[3:0] fromthe
CAS-Enable PAL. The CASEN1[3:0] outputs control the
CASinputsto bank 1. These outputs are buffered with an
Am2966 to control overshoot and undershoot. During
byte writes, the bytes that are not selected perform a
RAS-only refresh on the current row address. All Reads
are words regardless of the values of OPT[2:0] and
A[1:0]. CASENO and CASEN1[3:0] are also used during
page-mode accesses. Strobing CASENO causes the
Am29C668 CAS[3:0] outputs to pulse and access the
DRAMSs during a page-mode access (for bank 0). Simi-
larly the CASEN1[3:0] are pulsed to control the page-
mode access for bank 1. The CASEN1[3:0] outputs from

3-10
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Figure 5b. Control Logic Block Diagram
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the CAS Enable PAL are suppressed during refresh,
since the external buffer does not automatically perform
this function. The Am29C668 suppresses the CAS,
outputs in the RAS-only refresh mode.

The Multiplexer Select input MSEL controls the multi-
plexing of the addresses to the DRAMs. When MSEL is
Low, the row address is selected; when MSEL is High,
the column address is selected.

The Address-Latch-Enable signal ALE is generated by
the Request PAL. When ALE is High, the address latch
of the Am29C668 is transparent. When ALE is Low, the
address is latched.

The Register Load/Column Clock RL/CC input of the
Am29C668 is a dual-functioninput. In the initialize mode
(MC[1:0] = 11), this input is the register-load signal. On
the rising edge of RL/CC, inputs AC[10:0] are stored in
the configuration register. In the Read/Write mode
(MC[1:0] = 10), RL/CC functions as the column-clock
signal to the Am29C668. The High-to-Low edge of RL/
CCincrements the column counter. ALE must be Low for
the counter to increment. If ALE is High, the latch is
transparent and the counter does not function properly.
The counter function is used during burst-mode ac-
cesses. Since both memory banks share the same
address bus, the address cannot be incremented until
after the CAS, outputs to bank 1 are asserted. The four
CAS,, outputs to bank 1 are ORed together in the Byte-
Enable PAL to generate the RL/CC input to the
Am29C668. By using the CAS outputs, the Column-
Address-to-CAS hold time is guaranteed

The Am29C668 has on-chip comparators forimplement-
ing cache-mode operation. When properly configured,
the Am29C668 compares the previously accessed row
and bank address with the current row andbank address.
Ifthey are the same, the Cache Hit CH output is asserted.
The memory-control logic can then access the memory
in a fast-page or static-column mode. In this design,
cache-mode accesses require three cycles instead of up
to six. If the access is to a different row, the control logic
must insert a RAS precharge and then perform a normal
access. This takes six cycles to complete. SEL[1:0] must
be tied Low to insure proper comparison of the bank
address.

Request PAL

The Request PAL decodes the valid address and control
signals for the memory access. It also decodes some of
the bus control signals and the upper address bits for an
I/0 access. The following inputs are used:

IREQ Instruction Request, from Am29000

IREQT Instruction Request Type from
Am29000

DREQ Data Request, from Am29000

DREQT[1:0] Data Request Type, distinguishes
between memory, I/O and co-proces-
sor accesses, from Am29000

OPT[2:0] Option bits, from Am29000

BUSY Memory Busy, asserted when memory
is being used, from State PAL

STATE[3] State Variable 3, from the State PAL

A[31:23] Address bits, from Am29000

The following outputs are generated by the Request PAL:

PRG_DEC Program Decode, partial decoding of

program request

ALE Address Latch Enable, connected to
Am29C668
cS Chip Select, Indicates valid memory

request signals

The Request PAL’s mainfunctionis to decode a memory
access. The Chip Select CS is generated when a valid
memory request is generated by the Am239000. The
memory occupies the same address space for both data
and instruction memory. This is not required and may be
changed so that the instruction and data memory occupy
different address spaces. For instruction memory
accesses, IREQT is decoded. IREQT distinguishes
between ROM and RAM accesses. In this implementa-
tion, ROM and RAM can occupy the same address
space. The 32 address bits are decoded, which provides
for a full 4-Gbyte address space.

For data-memory accesses, DREQT[1:0] and OPT[2:0]
are decoded to determine the type of memory access
(see Tables 2a and 2b). By decoding DREQT[1:0] and
OPT[2:0], compatibility with the ADAPT29K is
maintained. Also, the memory does not falsely interpret
accessesto I/O_devices or the coprocessor as memory
accesses.The CS output does not decode the BINV
signal. The State PAL uses both CS and BINV to
determine if the memory request is valid.

Table 2a. Decoding of DREQT[1:0]

DREQT[1:0] Meaning
00 Instruction/Data-Memory Access
01 Input/Output Access
1X Coprocessor Transfer
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Table 2b. Decoding of OPT[2:0] Based on DREQT[1:0]

DREQT[1:0] OPT[2:0] Meaning

0X 000 Word Length Access

0X 001 Byte Access

oX 010 Half-Word Access

XX 011 Reserved

00 100 Instruction ROM
Access (as data)

00 101 Cache Control

00 110 ADAPT29K Accesses

XX 111 Reserved

The ALE signalfromthe Request PAL is connected to the
Am29C668 ALE input. When ALE is High, the
Am29C668 address latchis transparent. The Low-going
edge of ALE latches the value in the address latch. In
most implementations, ALE is CS inverted. However,
this is not possible in this case, since ALE must be
generated 28 ns, at most, after the rising edge of the
SYLCLK. For a 20-MHz Am29000, the control signals
require a maximum of 16 ns to be valid leavingonly 12 ns
to generate ALE. If ALE were CS inverted, it would
require two PAL delays to generate, or 15 ns minimum;
therefore, ALE cannot be CSinverted. Directly decoding
ALE is not feasible either because of the number of
address bits that must be decoded. Thus, in this design,
ALE is BUSY inverted plus an additional term to provide
for aninstruction-burst restart. BUSY is generated by the
State PAL and indicates when the memory is being
accessed. The additional termis necessary because the
memory system supports instruction-burst restart. At the
end of an instruction burst, the memory controller enters
the page-mode state and waits for the burst to restart or
for a new instruction request. ALE must be held Low in
this state to insure that the instruction burst can restart.
If a new instruction request is received, ALE must be
active in that cycle. Since BUSY is still asserted, there
must be an additional term that so that ALE can be
asserted when BUSY is asserted. STATE[3] indicates
that the memory is in the page-mode state. If IREQ is
asserted during this state, ALE is also asserted so that
the new instruction can begin without delay.

Program Decode PRG_DEC from the Request PAL
generates a partial decoding of a programming request,
because of the large number of address bits that must be
decoded. Since the configuration register occupies a
256-Kbyte block, A[31:18] must be decoded. This cannot
be done simply and efficiently in a single PAL. By using
a two-stage decoder, Request and Program PALs, the
programming requests are easily decoded.

Program PAL

The Program PAL is used to decode the lower address
bits and REFRESH signal for an /0O access to load the
Am29C668 configuration register. This PAL also
maintains the Bank-Pointer signal BANK_PTR that
determines which bank is currently active. The following
inputs are used:

SYSCLK 20-MHz System Clock

STATE[3:0]  State Variables, from State PAL

Al2] Address Bit 2, from Am29000

A[22:18] Address, from Am29000

BINV Bus Invalid, from Am29000

ALE Address Latch Enable, from Request
PAL

PRG_DEC Program Decode, from Request PAL

REFRESH Refresh Request, from Timer PAL

The following outputs are generated:

PRG_REQ Program Request, Signals Valid De-
coding of Program Request

PROGRAM Program, Connects to Am29C668
MCO Input

BANK_PTR Bank Pointer, Indicates Currently

Active Bank

The PRG_REQ signal is a combinatorial output and is
asserted when A[22:18] are the same as the addresses
of the configuration register. Currently the Am29C668
occupies 256 Kbyte of I/0 address space. This can be
reduced to only one byte by adding an address decoder
in parallel with the Request PAL. This decoder would
decode the lower 18 address bits A[17:0]. By using this
parallel decoding scheme to detect valid I/0 requests,
the full 32-bit address is decoded and all of the 4-Gbyte
1/0 address space can be used.

PROGRAM s aregistered output, assertedif PRG_REQ
and PRG_DEC are valid and BINV and REFRESH are
deasserted. Itis connected to the Am29C668 MCO input.
When MC1 and MCO are both one, the Am29C668
configuration register is loaded on the rising edge of the
register load RL/CC signal, generated by the Byte-
Enable PAL. Programming requires two clocks as shown
in Figure 6. The programming logic does not distinguish
between I/0O Reads and Writes and configures the
Am29C668 CDMC on either valid access. REFRESH
mustbe deasserted so that the State PAL does notassert
RFCYC, the MC1 input to the Am29C668.
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Figure 6. Program Cycle

The bank-pointer signal BANK_PTR indicates the cur-
rently active bank, which is initially determined by the
value of A[2] during the initial access. If A[2]is 0, bank 0
is active; if A[2]is1, bank 1is active. A[2] is used because
consecutive words must be in different banks for burst
accesses to occur with no wait states. BANK_PTR is
toggled in the access state.

Byte-Enable PAL

This PAL generates the BE and latched-Read/Write
signals used during data-memory accesses. ltgenerates
the register RL/CC signal used during programming and
burst-mode accesses. The following inputs are used:

ALE Address Latch Enable, from Request

PAL

OPT[2:0] Option, from Am29000

A[1:0] Least Significant Address Bits 1 and
0, from Am29000

CAS1[3:0] CAS Outputs to Bank 1, from CAS-
Enable PAL

I.DL Instruction Active High, Data Active
Low, from Request PAL

R_WL Read Active High, Write Active Low,
from Am29000

PROGRAM Program, from Program PAL

RESET System Reset Signal

SYSCLK 20-MHz System Clock

RL/CC Register Load/Column Clock

LAR_WL Latched Read Active High, Write
Active Low

BE[3:0] Byte Enable

The RL/CC signal is a dual-function output. During pro-
gramming cycles, it loads the Am29C668 configuration
register on its rising edge. During memory accesses, it
increments the Am29C668 column counter on its falling
edge. This function is used during burst accesses to
increment the column address.

The Byte-Enable PAL latches the Read/Write R_WL
signal generated by the Am29000. The latched signal is
LAR_WL. When ALE is High, the latch is transparent;
and when ALE is Low, the value is latched. R_WL is
undefined during instruction accesses. LAR_WL is
forced High during instruction accesses because all
instruction accesses are Read cycles.

The byte-enable outputs BE[3:0] are generated by de-
coding the option bits OPT[2:0] and the two least signifi-
cant address bits A[1:0]. See Table 3. The Am239000
supports both Big Endian and Little Endian addressing.
Big Endian numbers the bytes and half words from the
most significant bit to the least significant bit, while Little
Endian numbers from the least significant to the most
significant. This design assumes Big Endian, as does all
current 29K software. If a Little Endian implementation is
required, the variable BYTEORDER must be changed
from 0 to 1 in the PAL equations.

Table 3. Byte-Enable Decoding.

OPT[2:0]  A[1:0] BE[3:0] Access Type

000 XX 0000 Word

001 00 0111 Byte 0

001 01 1011 Byte 1

001 10 1101 Byte 2

001 11 1110 Byte 3

010 00 0011 Half Word 0
010 10 1100 Half Word 1

Note: Big Endian assumed.

CAS-Enable PAL

This PAL generates the CAS-Enable signals that control
the CAS outputs to the memory. The following inputs are
used:

SYSCLK 20-MHz SystemClock
CLOCKD Delayed SYSCLK
STATE[2:0] State Variables, from State PAL

Indicates Current Memory Cycle
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BE[3:0] Byte Enable, from the Byte-Enable
PAL

CcsS Chip Select, from Request PAL

RFCYC Refresh Cycle, from State PAL

BANK_PTR Bank Pointer, from Control PAL
Indicates Which Bank is Currently
Active

RESET System-Reset Signal

BINV Bus Invalid, from Am29000

The following outputs are generated:

CASENO CAS Enable for Bank 0

CASEN1[3:0] CAS Enable for Bank 1

CASENT Used to Determine Which Bank has
Completed its Access.

MSEL Multiplexer Select, Connected to the

Am29C668 MSEL Input.

CASENQO is the input to the Am29C668 CASIEN. When
CASENO is asserted, the CAS[3:0] outputs of the
Am29C668 are enabled. Since the auto-timing is used,
the CASIEN input is an external override for controlling
the CAS outputs.

The CASEN1[3:0] outputs are the inputs to theAm2966
external buffer and control the CAS inputs of bank 1.
Each output controls one byte. During refresh cycles, the
CASEN1[3:0] outputs are_always deasserted. The
Am29C668 deasserts the CAS outputs during refresh
cycles, but the external buffer's CAS outputs follow the
inputs. Therefore all the CASEN1[3:0] outputs are
suppressed.

CASEN1 is used to determine if CASENO or
CASEN1[3:0] is deasserted on the rising edge of
SYSCLK. This assures maximum CAS precharge time
since the CASENO and CASEN1[3:0] outputs turn off on
the rising edge of SYSCLK. If this were not done, some
of the CAS precharge time would be lost waiting for
BANK_PTR and STATE[3:0].

MSEL controls address multiplexing to the DRAMSs.
When MSEL is Low, the row address is selected, when
MSEL is High, the column address is selected.

Control PAL

The Control PAL generates the signals to enable and
disable the output drivers and control the data latches.
The following inputs are used:

SYSCLK 20-MHz System Clock
STATE[3:0] State Variables, from State PAL

I_DL Instruction or Data Cycle Indicator,
from Request PAL

LAR_WL Latched Read or Write Cycle Indica-
tor, from Byte-Enable PAL

REFRESH Refresh Request, from Timer PAL

BANK_PTR Bank Pointer, from Program PAL

The following outputs are generated:

OE_INS[1:0] Output Enable for Instruction-Bus
Buffers

OE_DOUT[1:0] Output Enable for Data-Bus Buffers

OE_DIN Output Enable Data Input

LE[1:0] Latch Enables for Data-Bus Latches

RFCYC Refresh Cycle, Connected to

Am29C668 MC1 Input and Used to
Indicate That a Refresh Cycle is in
Progress

The memory connects to two separate data and instruc-
tion buses. While the instruction bus is Read only, the
data bus is bidirectional and four Am29C983A Multiple
Bus Exchangers (MBE) are used as interface. By using
the input latches in the MBE, single-cycle Write cycles
canbe performed. The datais removed from the bus one
cycle before itis writtento memory; thus two Write cycles
can be overlapped. Since the instruction bus is Read-
only, simple 74F244 buffers are used for interfacing.

The OE_INS[1:0] outputs enable the output drivers of the
instruction bus. The instruction buffers are only turnedon
when the memory is in the access state and the bank is
active asindicated by BANK_PTR. RFCYC must also be
deasserted to insure that the buffers do not drive the bus
during refresh cycles. The buffers do not turn on until at
least two cycles after the access is initiated, providing
ample time for the previous device controlling the bus to
get off.

The OE_DOUT][1:0] outputs perform the same function
as the OE_INS[1:0] outputs. The data drivers are only
turned on when the memory is in the access state, the
bank is active asindicated by BANK_PTRand RFCYCis
deasserted. Similarly, the data buffers do not turn on until
at least two cycles after the access is initiated.

The OE_DIN input controls the outputs driving the data
to both banks of DRAMs. The drivers are turned on
as early as possible to insure the data set-up time is
guaranteed.

The LE[1:0] outputs control the input data latches. The
data fromthe Am29000 is valid 20 ns afterthe rising edge
of the systemclock andis held for 4 ns afterthe nextrising
edge of the system clock. The LE outputs of this PAL
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cannot be generated synchronously from SYSCLK
because, inthe worst case, LE would be deasserted 4 ns
after data is invalid, violating the Am29C983A setup and
hold times. If a synchronous design were used, a faster
clock signal would be needed. Since the system clock is
already 20 MHz, the logical choice is a 40-MHz clock
signal, twice the SYSCLK frequency. This design would

. be difficult because the skew between the two clock
signals must be carefully controlled. A simpler and there-
fore better design is to use a delay line to generate a
delayed clock signal CLOCKD, so that LE[1:0] are
combinatorial outputs that are valid only while CLOCKD
is High. SYSCLK is delayed long enough to insure that
BANK_PTR is valid and the LE[1:0] outputs are not
falsely asserted.

The refresh cycle output RFCYC, which is only asserted
during refresh cycles, is connected to the Am29C668
MC1 input. When RFCYC is asserted, the Am29C668
drives the current refresh row address on its Q[10:0]
outputs. The internal counter is updated at the end of
each refresh cycle to insure that all rows are refreshed.
RFCYC is asserted during the IDLE cycle to guarantee
the MC1-to-RASI set-up time. RFCYC is deasserted
during the PC1 cycle to meetthe MC1-to-RASI holdtime.

Ready PAL

This PAL generates the ready and burst acknowledge-
ment signals for both instruction and data accesses. The
following inputs are used:

I_DL Instruction or Data Indicator, from Re-
quest PAL

IREQ Instruction Request from Am29000

IBREQ Instruction Burst Request, from
Am29000

DBREQ Data Burst Request, from Am29000

STATE[2:0] State Variables, from State PAL

[ Chip Select, from Request PAL

LAR_WL Latched Read/Write Signal, from Byte
Enable PAL

RFCYC Refresh Cycle Indicator, from State PAL

BUSY Busy from State PAL, Indicates When

Memory is Accessed
The following outputs are generated:
IBACK
DBACK

Instruction Burst Acknowledge

Data Burst Acknowledge

IRDY Instruction Ready, Indicates Valid In-
struction on the Instruction bus
DRDY Data Ready, Indicates Valid Data onthe

Data Bus

The DRDY and DBACK outputs are used to inform the
processor about the status of data-memory accesses.
DRDY is asserted at the completion of data Read or Write
cycles. DBACK is asserted when the memory supports
burst-mode accesses. When DBACK is asserted, the
Am29000 is freed to start an instruction access if one is
pending. Therefore, all the address and control lines
needed by the memory in subsequent cycles must be
latched. This is insured by not asserting DBACK until
ALE is deasserted. DBACK is not deasserted as the
result of a refresh request. If a burst access is currently
in progress, it is completed. The burst is delayed by not
asserting DRDY. The refresh cycle is performed andthen
the burst is resumed. If this were not done, a refresh
request would terminate the burst access. The processor
wouldthen havetotry torestartthe burst access, causing
more contention for the address bus. DRDY is also
asserted during any cycle when PROGRAM is active.

The IRDY and IBACK outputs function the same as
DRDY and DBACK except they are used for instruction
cycles rather than data cycles. Because the memory
supports instruction burst re-start, IBACK must be as-
serted as long as the memory can restart the suspended
burst. IBACK is latched until a new cycle is started when
the Am29000 asserts IREQ. IBACK is deasserted as
soon as IREQ is asserted, preventing IBACK from being
falsely asserted.

To support multiple devices, the same control signals
from different devices are externally OR-ed together to
obtain the appropriate control signals to the Am29000. It
is difficult to implement the transfer of control by selec-
tively driving the control lines with three-state buffers as
is commonly done in slower memory systems. Wire
OR-ing with open-collector drivers is similarly
impractical. Usingan SSl gate or PAL isthe only practical
method to support multiple devices on the same bus.

Timer PAL

The Timer PAL generates the refresh requests. The
following inputs are used:

SYSCLK 20-MHz System Clock

RESET System Reset; Initializes Counter

RFCYC Refresh Request; Signals Refresh-
Memory Access

STATE[3:0]  State Variables, from State PAL
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The following outputs are used:
RCT[8:0]
REFRESH

The DRAMSs have a maximum CAS active time of 10 ms.
If CAS is active longer than 10 ms, the memory could be
corrupted; therefore, the refresh interval should be less
than 10 ms to ensure that the maximum CAS active time
is not violated. If the system can always guarantee that
CAS is not active longer than 10 ms, the refresh interval
can be extended to 15.6 ps. This reduces the refresh
overhead from 3.5 to 2.2%.

Counter

Forced Refresh Request

The Timer PAL helps implement the forced refreshes
along with the State PAL. The period for the Timer PAL
is selected by the value initialized in the counter. This
value is setto 195 resultingin arefresh request cycle time
of 9.8 us = 196 x 50 ns (an extra cycle is included since
the counter decrements to 0 before resetting). The initial
value of the countis determined by the location of INIT in
the logic equations (see the PAL Equations section).
REFRESH is asserted when the counter decrements to
zero and until the memory finishes the memory refresh.
This is indicated by RFCYC asserted and the memory in
the access state.

There are several alternate methods to implement the
refresh timer. A 555 timer could be used and would
require less board space and cost less; however, this
solution requires asynchronous arbitration. Another
alternative is to use a spare DMA channel to implement
the refresh requests similar to the PC-AT* and PS/2*
systems. This is practical only if there are spare DMA
channels available.

RASI PAL

This PAL generates the Row Address Strobe Input RASI
for the Am29C668, that causes the appropriate RAS,
output to be asserted and start the internal timing chain.
The following inputs are used:

SYSCLK 20-MHz System Clock
STATE[3:0]  State Variables, from State PAL
BUSY Busy, from State PAL

 REFRESH Refresh Request, from Timer PAL
BINV Bus Invalid, from Am29000
RESET System Reset Signal
cs Chip Select, from Request PAL
CH Cache Hit Signal, from Am29C668
IREQ Instruction Request, from Am29000

The following outputs are generated:

RASI_OFF Indicates Certain Conditions where
RASI Must be Deasserted
RASI Row Address Strobe Input, Connected

to Am29C668 RASI input.

The RASI output is connected to the Am29C668 RASI
input and is used to controlthe RAS, outputs and to start
all memory accesses, Read/Write and refresh cycles.
Once RASI is asserted, it remains asserted until
RASI_OFF is asserted. RAS_OFF is required because
there were not enough product terms to implement RASI
directly. Keeping RASI asserted provides for fast-page-
mode accesses. The RAS[0] output is the only
Am29C668 RAS output used in this design; it is
generated by inverting RASL.

State PAL

The State PAL is responsible for arbitrating between
memory accesses. It also implements the memory state
machine. The following inputs are used:

SYSCLK 20-MHz System Clock

cs Chip Select, from Request PAL

DBREQ Data Burst Request, from Am29000

IBREQ Instruction Burst Request, from
Am29000

IREQ Instruction Request, from Am29000

BINV Bus Invalid, from Am29000

LAR_WL Latched Read or Write Signals, from
Byte Enable PAL

CH Cache Hit, from Am29C668

RESET System Reset

REFRESH Refresh, from Timer PAL

The following outputs are generated:

STATE[3:0] State Variables, Indicate Current Mem-
ory State

BUSY Busy, Asserted When Memory is Being
Accessed

NOT_BUSY  NotBusy, Usedto Indicate When BUSY
Should be Deasserted

1_DL Instruction Cycle Active High, Data

Cycle Active Low

*PC-AT and PS/2 are trademarks of IBM Corporation.
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The I_DL output is used to indicate the type of memory
access currently being performed. When |_DL is High, an
instruction cycle is being performed; when it is Low, a
data cycle is performed. I_DL is also Low when an
instruction access is initiated outside of this modules
address space so that the control logic will not mistakenly
restart an instruction burst.

This PAL controls the memory. Figure 7 shows the
memory state diagram. There are seven memory states:

IDLE Idle State or Arbitration

WSH1 Wait State One

WS2 Wait State Two

ACC Memory Access

wC Write Complete

PC1 Pre-charge State One
PM Page Mode

The state machine uses four state variables STATE[3:0].
The lower three state variables STATE[2:0] can be used
by the other PALs to determine the present state of the
memory. This is possible if the PAL does not need to
distinguish between the IDLE and PM states as they
have the same lower three bits. This is possible in the
Ready PAL for instance.

The memory always starts in the IDLE state (Figure 7).
On RESET, the state machine goesto IDLE and remains
there until a refresh request or memory-access request.
When a valid memory request is generated by the
Am29000, the state machine goes from the IDLE state to
WSH1. In this state, RASI is asserted to start the internal
timing chain in the Am29C668. From WSH, the state
machine goes unconditionally to WS2. In the second half
of WS2, the appropriate CASEN1[3:0] or CASENO
signals are asserted. This guarantees the RAS-t0-CAS
timing. The memory finally goes to the ACC state, com-
pleting the initial memory access. If a burst access is
requested andthere are no pending memory accesses or
refresh accesses, the memory remains inthe ACC state.
When the burst is completed, the state machine
unconditionally goes to the PM state. In this state, RASI
is held High and the CASEN1[3:0], CASENO and
BANK_PTR outputs are not changed. Instruction bursts
can be restarted in this state in the cycle after IBREQ is
asserted. Other accesses may be initiated in only three
cycles if they are to the currently active page.

A refresh cycle requested by the timer PAL asserting
REFRESH is given priority over memory accesses. If
a refresh request is received while the memory is
accessed, the refresh request waits until the current
memory access is completed. The memorv state

machine precharges RAS by going to states PC1 and
IDLE. In both these states, RASI is held Low, thereby
precharging RAS. The RAS-only refresh cycle follows.
The refresh cycle is identical to a memory access, except
that CAS is suppressed to the DRAMs. Finally another
precharge RAS cycle occurs. If there are no outstanding
memory requests, the state machine remainsinthe IDLE
state. If the refresh request occurs during a burst access,
the burst access is suspended by the memory-control
logic and restarted after the refresh access is complete.

To prevent any possible deadlock, aninstruction burst is
the only burst access that may be interrupted by another
memory request. If a data-memory request is generated
while an instruction burst is in progress, the state
machine deasserts BUSY, thereby asserting the
Address Latch Enable ALE input. This adds one extra
cycle to the data access, which is not critical since this
situation only occurs when loading a program into the
same memory that the Am29000 is using for execution.
This occurs infrequently.

A BUSY signal indicates to the control logic that the
memory is currently being accessed. Itis asserted during
data-memory accesses and is not deasserted until
the memory access/burst is complete. BUSY is also
asserted during instruction accesses, but may be de-
asserted if a data request is pending. BUSY is always
asserted until the state machine reaches the ACC state;
the current access must always be completed. The
output NOT_BUSY is used to indicate when BUSY must
be deasserted, because it was not possible to implement
BUSY with the available product terms in a single output.

Data Buffers

Am29C983A Multiple Bus Exchanges for the data bus
are usedinthis design to minimize the number of devices
used. Since early Write cycles (WE asserted before
CAS) are always performed, the output driver of the
DRAM is always off when data is written to memory;
therefore, the input and output pins of the DRAMs canbe
tied together to reduce the number of traces. Also,
transceivers can now be used; otherwise, separate data
input and output buffers would be needed. Because only
the input latches are used, all the latch-enable outputs
are tied High making these output latches always trans-
parent. The MBEs also provide for byte swapping and for
support of byte parity via a 9-bit data path. Byte swapping
is useful in interfacing to 16- or 8-bit devices or for
translating from Big to Little Endian. Parity can be used
to enhance memory reliability by detecting single-bit
errors. Neither of these features are used in this design.

The instruction bus is separate from the data bus, there-
fore it requires its own buffer. Since the instruction bus is
a Read-only bus, 74F244 buffers can be used. By using
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RESET asserted or
RFCYC deasserted and BUSY deasserted and
(CS deasserted or BINV asserted)

RESET deasserted and
(RFCYC asserted or BUSY asserted or
CS asserted and BINV deasserted)

AWA
v U\

A

IDLE

1

REFRESH deasserted and not (CS
asserted and BINV deasserted) and not
(1I_DL High and IBREQ asserted)

Figure 7. State Diagram
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buffers on both instruction and data buses, other devices
or memories can be attached to the same bus.

Data Memory Control

The data memory is organized like the instruction mem-
ory. However, the data memory is only accessible from
the data bus; therefore, instruction buffers are not

needed. The RASI and State PALs can be combined by -

“eliminating the I_DL output and the IREQ input. The
Ready and Control PALs can also be combined by
eliminating the inputs and outputs associated with
instruction accesses. The rest of the PALs are the same,
except that the input I_DL is tied Low and IBREQ and
IREQ are tied High.

TIMING ANAI VSES

This design must meet many timing constraints. There
are two different modes of operation, simple and burst
accesses. The timing for simple accesses is discussed
first. Note: all timings in this section are in nanoseconds
unless otherwise stated.

Decoding is performed during the first cycle of an access.
This timing is constrained by the cache-mode accesses.
The following timing is required:

SYLCLK to Address 16 Am29000 Parameter 6
Address to ALE 10 PAL20L8-10 Delay

ALE to CH 16 Am29C668 Parameter 34
CH Set-up 7  PAL16R6-7t

Total ?

Therefore, the Request PAL must be a PAL20L8-10 and
the State PAL must be a PAL16R8-7, to meet the
minimum set-up time for the State PAL. ALE is valid a
minimum of 27 ns before RASI is asserted to insure that
the row address is valid before RAS is asserted.

The next three cycles are the actual memory access. The
slowest memory access occurs during data-memory
Reads because the Am29C983A is slower than the
74F244. The load on the RAS output is 32 x 7 pF =
224 pF. 250 pF is assumed to account for other capaci-
tive effects.

SYLCLK to RASI 7  PAL16R6-7 Delay

RASI to RAS 21 Am29C668 Parameter 20
DRAM (tacc) 100  DRAM Access from RAS
Buffer Delay 9  Am29C983A Delay

Data Set-up 8 Am29000 Parameter 9A
Total TE

2 SYSCLK cycles 100 Am29000 Parameter 1

SYSCLK High Max 26 Am29000 Parameter 1A

SYSCLK to CASEN 10  PAL20L8-10 Delay

CASEN to CAS, 18  Am2966 Delay

DRAM (t,,.) 25  DRAM Access from CAS

Buffer Delay 9  Am29C983A Delay

Data Set-up 8 Am29000 Parameter 9A

Total 196

SYSCLK Cycle 50 Am29000 Parameter 1

SYSCLK High Max 26 Am29000 Parameter 1A

SYSCLK to MSEL 10  PAL20L8-10 Delay

MSELto Q, 31 Am29C668 Parameter 19

DRAM (t_) 50 DRAM Access from
Column Address

Buffer Delay 9  Am29C983A Delay

Data Set-up 8 Am29000 Parameter 9A

Total 1—8:

The first timing is the access time from RAS; the second
timing is from CAS and the third is from the column
address. This provides for the simple accesses to com-
plete in four cycles, one cycle for address decode and
three cycles forthe memory access. TH® RAS precharge
time for 100-ns DRAMs is 90 ns, therefore two cycles are
more than sufficient.

The IRDY and DRDY signals require the following timing:
SYSCLK to ACC_ST 7 PAL16R6-7 Delay

ACC_ST to DRDY 0  PAL16L8-10 Delay
External NOR gate 75 PAL16L8-7 Delay
DRDY Set-up 16 Am29000 Parameter 9B
Total 40.5

For IBACK and DBACK the following timing applies:

SYSCLK to IREQ 16 Am29000 Parameter 6
TREQto IBACK 10 PAL16L8-10 Delay
External NOR gate 75 PAL16L8-7 Delay
IBACK Set-up 15 Am29000 Parameter 9B
Total 485

This means that a PAL16L8-10 is required for the Ready
PAL if the external device that generates the ready and
burst acknowledge signals to the Am29000 is a
PAL16L8-7.

Aburst access must take less thantwo cyclesto meetthe
single-cycle burst requirement. The load on the outputs
of the Am2966 is assumed to be 70 pF.
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SYSCLK High Max 26 Am29000 Parameter 1A
SYSCLK to CASENT 10 PAL20L8-10 Delay
CASENT to CAS 18 Am2966 Delay

DRAM (t_.) 25 = DRAM Access from CAS
Buffer Delay 9  Am29C983A Delay

Data Set-up 8 Am29000 Parameter 9A
Total )

During burst accesses, the column address must meet
the DRAMs setup time of 0 ns. The timing is for the
address is:

SYSCLK High Max 26 Am29000 Parameter 1A
SYSCLK to CASENT 10 PAL20L8-10 Delay
CASENT to CAS 18 2966 Delay
CAStoRL_CC 10 PAL20L8-10 Delay
RL_CCto Q, 30 Am29C668 Parameter 27
Total o4

The CAS to bank 0 requires:

One Processor Cycle Min 50 Am29000 Parameter 1

Pre-Charge Cycle 26 1/2 SYSCLK Cycle
SYSCLK to CASIENO 10 PAL20L8-10 Delay
CASIEN to CAS 12 Am29C668 Parameter 26
Total 98

Therefore, the address is valid 4 ns before CAS. This is
the difference between the siowest address to the fastest
CAS. For CAS precharge during the fast-page-mode
accesses, CAS must be deasserted for at least 15 ns for
most DRAMs. Some manufactures make DRAMs with
CAS-precharge time t_ of 10 ns. Because the
Am29C668 has symmetric outputs, the rise andfalltimes
are the same. The outputs of the PAL drivingthe CASIEN
input of the Am29C668 do not have symmetric rise and
falltimes. The teos therefore, is shorter than the minimum
clock-High time of the Am29000, 24 ns parameter 1A.
Forthe minimumtcpto be violated, the skew betweenthe
rise and fall times of the PAL would have to be greater
than 9 ns. This would never be the case; therefore the
CAS precharge can be met under worst-case conditions.

For programming cycles, the address must be decode in
one cycle:

SYSCLK to Address 16
Address to PRG_REQ 10
PROGRAM Set up 10
Total E

Am29000 Parameter 6
PAL16L8-10 Delay
PAL20R4-10 t

The delay line used to generate CASENO, CASEN1[3:0]
and LE[1:0] must delay SYSCLK long enough for

BANK_PTR and BINV to reach their final values. If this
delay is too long, the data buffers can latch the wrong
dataon Write cycles. Therefore, the Program PAL should
be a PAL20R4-10. BANK_PTR is valid 8 ns after the
rising edge of SYSCLK and BINV is valid 9 ns after the
falling edge of SYSCLK. Therefore, the delay line must
be at least 9 ns. Because most delay lines are accurate
to £2 ns, the delay line should be at least 11 ns. The
maximum delay is computed as follows:

SYSCLK 50 Am29000 Parameter 1
SYSCLK to Data Hold time 4  AM29000 Parameter 20
SYSCLK High Max -26  Am29000 Parameter 1A
CLOCKD to LE -10  PAL20L8-10t

Data Hold Time 2.5 Am29C983AParameter 14
Total 73—5_ Maximum Delay

Therefore, a nominal value of 12 ns would be best for the
delay line and the Control PAL should be a PAL16L8-10.

PARTS LIST

Part Count
PAL16L8-10 2
PAL16R4-7 1
PAL16R6-7 1
PAL20L8-10 3
PAL20R4-10 1
PAL20X10A 1
Am2966 1
Am29C668 1
74F244 8
Am29C983A 4
Memories 64
12 ns Delay Line 1
Total 88

A discrete memory controller, described in the Am29000
32-Bit Streamlined Instruction Processor Memory
Design Handbook Chapter 6, requires 113 devices
including memory devices. The design, described here,
represents a 22.1 % reduction in parts. The memory
controller in utilizing the Am29C668 requires 12 devices
while the discrete design requires 25 or 208 % more. The
Am29C668 offers a high degree of integration, which
reduces system cost, power consumption, board space
and design time. However, the discrete design has one
advantage in that it can operate in a 25-MHz system
providing up to a 25 % performance improvement. The
Am29C668 can also be used in higher speed systems,
but the control logic must be changed.
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VARIATIONS ON THIS DESIGN

One change to this design is to permit only data-Write
accesses to instruction memory. This eliminates the
output buffers on the data bus, reducing the required
number of parts. The Am29C983As could be replaced
with 74F373s to save cost.

This design is limited to 20 MHz due to the control logic.
IBREQ and DBREQ are used by the control logic and are
valid very late in the cycle. For faster versions of the
Am29000, IBREQ and DBREQ do not allow for sufficient
setup time to be registered by the PALs. However, the
Am29C668 can be used in 30-MHz systems, presently
the fastest Am29000, with a different control logic. Two
banks of SCDRAMs with one Am29C668 controlling
each bank provides maximum performance. Using 70-ns
SCDRAMs, the initial cycle requires five cycles and burst
accesses require one cycle.
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PAL Equations
The following are the logic equations for the PAL devices. They are written in PLPL.

“ March 6, 1989.

32-Bit Memory Design for the 29K. This device generates and latches the byte enable
signals. Opt[2:0] and A[1:0] are decoded to determine which bytes are

being accessed. ALE is used to latch the values.”

DEVICE BYTE_ENABLE (P20L8)

PIN ALE = 1 (INPUT COMBINATORIAL)
OPT[2:0] = 2:4 (INPUT COMBINATORIAL)
A[1:0] = 5:6 (INPUT COMBINATORIAL)
/CASN1[3:0] = 7:10 (INPUT COMBINATORIAL)
I DL = 11 (INPUT COMBINATORIAL)
R WL = 13 (INPUT COMBINATORIAL)
PROGRAM = 14 (INPUT COMBINATORIAL)
/RESET = 16 (INPUT COMBINATORIAL)
SYSCLK = 23 (INPUT COMBINATORIAL)

RL_CC = 15 (OUTPUT ACTIVE LOW COMBINATORIAL)
LAR WL = 17 (OUTPUT ACTIVE_LOW COMBINATORIAL)
/BE[3:0] = 21:18 (OUTPUT ACTIVE_LOW COMBINATORIAL) ;

DEFINE BYTEORDER = 0; “ASSUMES BIG ENDIAN”

BEGIN
ENABLE (BE[3:0],RL_CC,LAR_WL);

BE[0] = /RESET * ALE * (R_WL + /OPT[2] * /OPT[1] * /OPT[0] +
/OPT[2] * /OPT[1] * OPT[0] * /A[l] * /A[0] * BYTEORDER +
/OPT[2] * OPT[l] * /OPT[0] * /A[l] * BYTEORDER +
/OPT[2] * /OPT[1l] * OPT[0] * A[l] * A[0] * /BYTEORDER +
/OPT[2] * OPT[1l] * /OPT[0] * A[l] * /BYTEORDER) +
BE[0] * /ALE;

BE[1] = /RESET * ALE * (R WL + /OPT[2] * /OPT[1] * /OPT[0] +
/OPT[2] * /OPT[1] * OPT[0] * /A[l] * A[0] * BYTEORDER +
/OPT[2] * OPT[1] * /OPT[0] * /A[l] * BYTEORDER +
/OPT[2] * /OPT[1] * OPT[0] * A[l] * /A[0] * /BYTEORDER +
/OPT[2] * OPT[1l] * /OPT[0] * A[l] * /BYTEORDER) +
BE[1] * /ALE;

BE[2] = /RESET * ALE * (R_WL + /OPT[2] * /OPT[1l] * /OPT[0] +
/OPT[2] * /OPT[1] * OPT[0] * A[l] * /A[0] * BYTEORDER +
/OPT[2] * OPT[1] * /OPT[0] * A[l] * BYTEORDER +
/OPT[2] * /OPT[1l] * OPT[0] * /A[1l] * A[0] * /BYTEORDER +
/OPT[2] * OPT[1] * /OPT[O] * /A[l] * /BYTEORDER) +
BE[2] * /ALE;

BE[3] = /RESET * ALE * (R WL + /OPT([2] * /OPT[1] * /OPT[0] +
/OPT[2] * /OPT[1] * OPT[0] * A[1l] * A[O] * BYTEORDER +
/OPT[2] * OPT[1] * /OPT[0] * A[l]* BYTEORDER +
/OPT[2] * /OPT[1] * OPT[0] * /A[1l] * /A[0] * /BYTEORDER +
/OPT[2] * OPT[1] * /OPT[0] * /A[l]* /BYTEORDER) +
BE[3] * /ALE;

/RL_CC = /PROGRAM * /(CASN1[0] + CASN1[1] + CASN1[2] + CASN1[3]) +
PROGRAM * /SYSCLK;

/LAR_WL = ALE * (I_DL + /I_DL * R_WL) + LAR WL * /ALE;
END.
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“Marc

h 6, 1989 29K MEMORY SYSTEM.
to the external buffer and the Am29C668."”

DEVICE CAS_ENABLE (P20L8)

PIN

SYSCLK = 1 (INPUT COMBINATORIAL)
CLOCKD = 2 (INPUT COMBINATORIAL)
/STATE[2:0] = 3:5 (INPUT COMBINATORIAL)
/BE[3:0] = 6:9 (INPUT COMBINATORIAL)
/CS = 10 (INPUT COMBINATORIAL)
/RFCYC = 11 (INPUT COMBINATORIAL)
/BINV = 13 (INPUT COMBINATORIAL)
/RESET = 14 (INPUT COMBINATORIAL)
/BANK_PTR = 23 (INPUT COMBINATORIAL)
MSEL = 22 (OUTPUT ACTIVE_LOW COMBINATORIAL)
CASENO = 21 (OUTPUT ACTIVE LOW COMBINATORIAL)

/CASEN1[3:0] = 20:17 (OUTPUT ACTIVE_LOW COMBINATORIAL)

/CASEN1 = 16 (OUTPUT ACTIVE LOW COMBINATORIAL);

DEFINE IDLE = #B00O, WSl

BEGIN

PCl = #B001,
IDLE ST = /STATE[2]

WS1_ST = /STATE[2]
WS2_ST = STATE[2]
ACC_ST = STATE[2]
PC1_ST = /STATE[2]
PM ST = /STATE[2]
WC_ST = STATE[2]

*
*
*
*
*
*
*

ENABLE (CASENO,CASEN1,CASEN1[3:0]), MSEL;

MSEL
/CASE

= #B010O, WS2 = #B110,
PM = #B000, WC = #B101,
/STATE([1] * /STATE[O],
STATE[1] * /STATE[O],
STATE([1] * /STATE[O],
/STATE[1] * /STATE[O],
/STATE([1] * STATE([O],
/STATE[1] * /STATE[O],
/STATE[1] * STATE[O];

(SYSCLK * WSI_ST + MSEL * /RESET */PLI_ST);
N0 = WS2_ST * BANK PTR * /SYSCLK + ACC_ST * /SYSCLK +

CASENO * /(SYSCLK * CASEN1 + PCl_ST +
PM ST * CS * /BINV * /CLOCKD * /SYSCLK) ;

CASEN1 = /SYSCLK * BANK PTR *

(CASEN1[0] + CASEN1[1] + CASEN1[2] + CASEN1[3])

PM_ST * /CASENO * /SYSCLK + SYSCLK * CASEN1;

ACC = #B100,

* ACC_ST

CASEN1[0] = /RESET * /RFCYC * BE[0] * WS2_ST * /BANK PTR * /SYSCLK +
/RESET * /RFCYC * BE[0] * ACC_ST * /SYSCLK +
/RESET * PM ST * CASEN1[0] * /(CS * /BINV * /CLOCKD * /SYSCLK)
/RESET * CASEN1 * CASEN1[0] * ACC_ST;

CASEN1[1] = /RESET * /RFCYC * BE[1] * WS2_ST * /BANK PTR * /SYSCLK +

CASEN1([2] = /RESET * /RFCYC * BE[2] * WS2_ST * /BANK_PTR * /SYSCLK +

CASEN1[3] = /RESET * /RFCYC * BE[3] * WS2_ST * /BANK_PTR * /SYSCLK +

END.

/RESET * /RFCYC * BE[1l] * ACC_ST * /SYSCLK +
/RESET * PM_ST * CASEN1[1] * /(CS * /BINV * /CLOCKD * /SYSCLK)
/RESET * CASEN1 * BE[1] * ACC_ST;

/RESET * /RFCYC * BE[2] * ACC_ST * /SYSCLK +
/RESET * PM ST * CASEN1[2] * /(CS * /BINV * /CLOCKD * /SYSCLK)
/RESET * CASEN1 * BE[2] * ACC_ST;

/RESET * /RFCYC * BE[3] * ACC_ST * /SYSCLK +
/RESET * PM ST * CASEN1[3] * /(CS * /BINV * /CLOCKD * /SYSCLK)
/RESET * CASEN1 * BE[3] * ACC_ST;

This PAL will generate the /CAS Enable

+

+

+

signals

3-26



Am29C668 CDMC to Am29000 Streamlined Instruction Processor Interface

“March 6, 1989

Memory Design for the 29K. This PAL will generate the signals that control the
memory data and instruction buffers. It will also generate /RFCYC that indicates
when the control logic is performing a memory refresh cycle.”

DEVICE CONTROL (P16L8)

PIN CLOCKD = 1 (INPUT COMBINATORIAL)
/STATE([3:0] = 2:5 (INPUT COMBINATORIAL)
I_DL = 6 (INPUT COMBINATORIAL)
LAR WL = 7 (INPUT COMBINATORIAL)
/REFRESH = 8 (INPUT COMBINATORIAL)
/BANK_PTR = 9 (INPUT COMBINATORIAL)

/OE_DOUT[1:0] = 19:18 (OUTPUT ACTIVE_LOW COMBINATORIAL)
/OE_INS[1:0] = 17:16 (OUTPUT ACTIVE LOW COMBINATORIAL)
LE[1:0] = 15:14 (OUTPUT ACTIVE_ LOW COMBINATORIAL)

/RFCYC = 13 (OUTPUT ACTIVE LOW COMBINATORIAL)
/OE_DIN = 13 (OUTPUT ACTIVE LOW COMBINATORIAL)

DEFINE IDLE = #B0000, WS1 = #B0010, WS2 = #B0110, ACC = #B0100,
PCl = #B0001, PM = #B100O, WC = #B0101, UN1l = #BO0O11,
UN2 = #B0111, UN3 = #B1001, UN4 = #B1010, UN5 = #B1011,
UN6 = #B1100, UN7 = #B1101, UN8 = #B1110, UN9 = #B1111,
IDLE_ST = /STATE[3] * /STATE([2] * /STATE([1] * /STATE[O],

WS1 ST = /STATE([3] * /STATE[2] * STATE[1] * /STATE[0],
WS2_ST = /STATE[3] * STATE[2] * STATE[1] * /STATE[0],
ACC_ST = /STATE[3] * STATE[2] * /STATE[1] * /STATE[0],
PCl_ST = /STATE([3] * /STATE[2] * /STATE[1] * STATE[O],
PM ST = STATE[3] * /STATE[2] * /STATE[1] * /STATE[0],
WC_ST = /STATE([3] * STATE[2] * /STATE[1] * STATE[0];

BEGIN
ENABLE (OE_DOUT[1:0],0E_INS[1:0],LE[1:0]);

OE DOUT[0] = /RFCYC * /I_DL * LAR WL * BANK PTR * ACC_ST;

OE DOUT[1] = /RFCYC * /I_DL * LAR WL * /BANK_PTR * ACC_ST;

OE_INS[0] = /RFCYC * I DL * BANK PTR * ACC_ST;

OE_INS[1] = /RFCYC * I_DL * /BANK PTR * ACC_ST;

OE_DIN = /RFCYC * /I DL * /LAR WL * (WS1_ST + WS2_ST + ACC_ST + PM_ST);

/LE[0] = WS1_ST * BANK_PTR * /LAR WL +
ACC_ST * /BANK_PTR * /LAR WL * CLOCKD;
/LE[1] = WS1_ST * /BANK PTR * /LAR WL +
CLOCKD * ACC_ST * BANK PTR * /LAR WL * CLOCKD;

RFCYC = IDLE_ST * REFRESH * /RESET + RFCYC * /RESET * /PCl_ST;

END.
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“Janua

29K memory design.

ry 30,

19

89.

This PAL decodes the addresses for programming request.

It will

also keep track of which bank is currently active through the output /BANK PTR.”

DEVICE

PIN

Program (P20R4)

SYSCLK

1 (CLOCK)

/STATE[3:0] = 2:5 (INPUT COMBINATORIAL)
6 (INPUT COMBINATORIAL)
7 (INPUT COMBINATORIAL)

= 8 (INPUT COMBINATORIAL)

A[2] =
ALE =
/BINV
/REFRE
/PRG_D
A[22:1
/OE =

SH
EC
8]
13

= 11,14,21:

(CONTROL)

9 (INPUT COMBINATORIAL)
10 (INPUT COMBINATORIAL)
23 (INPUT COMBINATORIAL)

/PRG_REQ = 15 (OUTPUT ACTIVE_LOW COMBINATORIAL)
/BANK_PTR = 20 (OUTPUT ACTIVE LOW REGISTERED)
PROGRAM =

DEFINE IDLE

BEGIN

PCl =
UN2 =
UN6
IDLE_S
WS1_ST
WS2_ST
ACC_ST
PCl_ST
PM ST
WC_ST

= #
#BO
#B0
#B1
T =

19 (OUTPUT ACTIVE LOW REGISTERED) ;

B0000, WSl
001, PM =
111, UN3 =
100, UN7 =

/STATE [3]

= /STATE[3]

I

/STATE [3]
/STATE [3]
/STATE [3]
STATE [3]
/STATE[3]

= #B0010, WS2

#B1000, WC
#B1001, UN4
#B1101, UNS
* /STATE[2]
* /STATE[2]
*x STATE[2]
*  STATE[2]
* /STATE[2]
*x /STATE[2]
*  STATE[2]

*
*
*
*
*
*

*

= #B0110,

ACC = #B0100,

#B0101, UN1
#B1010, UN5S
#B1110, UN9

/STATE[1]
STATE[1]
STATE[1]

/STATE[1]

/STATE[1]

/STATE[1]

/STATE[1]

*

*
*
*
*
*
*

= ¥B0011,
= #B1011,
= $B1111,
/STATE[0],
/STATE[O0],
/STATE[O0],
/STATE[0],
STATE[0],
/STATE[O],
STATE[O0],

VALID _ADDR = A[22] * A[21] * A[20] * A[19] * A[18];

ENABLE (PRG_REQ);

PRG_REQ = VALID_ADDR;

/PROGRAM :=

PRG_REQ * /BINV * /REFRESH * PRG_DEC;

BANK PTR := ALE * /A[2] +
/ALE * BANK PTR * /(ACC_ST + WC_ST) +
(ACC_ST + WC_ST) * /BANK_PTR;

END.
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“March 6, 1989
29K Memory Design. This PAL will generate the RASI input to the Am29C668.

w

DEVICE RASI (P16R4)

PIN

SYSCLK = 1 (CLOCK)

/STATE[3:0] = 2:5 (INPUT COMBINATORIAL)
/BUSY = 6 (INPUT COMBINATORIAL)
/REFRESH = 7 (INPUT COMBINATORIAL)
/BINV = 8 (INPUT COMBINATORIAL)

/RESET = 9 (INPUT COMBINATORIAL)

/CS = 12 (INPUT COMBINATORIAL)

/CH = 13 (INPUT COMBINATORIAL)

/IREQ = 19 (INPUT COMBINATORIAL)

/OE = 11 (CONTROL)

/RASI_OFF = 18 (OUTPUT ACTIVE LOW COMBINATORIAL)
/RASI = 17 (OUTPUT ACTIVE LOW REGISTERED) ;

DEFINE IDLE = #B0000, WS1 = #B0010, WS2 = #B0110, ACC = #B0100,
PCl = #B00O1, PM = #B1000, WC = #B0101, UN1l = #B0011,
UN2 = #B0111, UN3 = #B1001, UN4 = #B1010, UN5 = #B1011,
UN6 = #B1100, UN7 = #B1101, UN8 = #B1110, UNS = #B1111,
IDLE_ST = /STATE([3] * /STATE(2] * /STATE[1] * /STATE[O],
WS1_ST = /STATE[3] * /STATE[2] * STATE[l1] * /STATE[O],
WS2_ST = /STATE[3] * STATE[2] * STATE([l] * /STATE[O],
ACC_ST = /STATE[3] * STATE[2] * /STATE[1l] * /STATE[O],
PCl_ST = /STATE[3] * /STATE[2] * /STATE[1] * STATE[O],
PM_ST = STATE[3] * /STATE[2] * /STATE[1l] * /STATE[O],
WC_ST = /STATE[3] * STATE[2] * /STATE[1l] * STATE[O];

BEGIN

ENABLE (RASI_OFF) ;

/RASI := /(ACC_ST * REFRESH +

ACC_ST * /BUSY * CS * /BINV * /CH +

PM_ST * REFRESH +

PM ST * CS * /BINV * /CH * /BUSY +

PM_ST * CS * /BINV * /CH * BUSY * IREQ +
IDLE ST * /BUSY * /REFRESH * /(CS * /BINV) +
RASI_OFF) ;

RASI_OFF = RESET + WC_ST + PCl_ST;

END.
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“March 6, 1989

32-bit Memory for the 29K. This PAL will generate the control signals back to the
Am29000. It assumes that the control signals are externally combined to obtain the
signal connected to the Am29000.”

DEVICE READY (P16L8)

PIN I DL = 1 (INPUT COMBINATORIAL)
/IBREQ = 2 (INPUT COMBINATORIAL)
/DBREQ = 3 (INPUT COMBINATORIAL)
/STATE[2:0] = 4:6 (INPUT COMBINATORIAL)
LAR WL = 7 (INPUT COMBINATORIAL)
/IREQ = 8 (INPUT COMBINATORIAL)
/RFCYC = 9 (INPUT COMBINATORIAL)

/BUSY = 11 (INPUT COMBINATORIAL)
/DRDY = 19 (OUTPUT ACTIVE LOW COMBINATORIAL)
/IRDY = 18 (OUTPUT ACTIVE_LOW COMBINATORIAL)

/DBACK = 17 (OUTPUT ACTIVE_LOW COMBINATORIAL)
/IBACK = 16 (OUTPUT ACTIVE_LOW COMBINATORIAL) ;

DEFINE IDLE = #B00O, WS1l = #B010, WS2 = #B110, ACC = #B100,
PC1l = #B001, PM = #B000, WC = #B101,
IDLE_ST = /STATE([2] * /STATE[1] * /STATE[O],
WS1_ST = /STATE[2] * STATE[1] * /STATE[O],
WS2_ST = STATE[2] * STATE[1] * /STATE[O],
ACC_ST = STATE[2] * /STATE[1l] * /STATE[O],
PCl1_ST = /STATE[2] * /STATE[1l] * STATE[O],
PM ST = /STATE[2] * /STATE[1] * /STATE[O],
WC_ST = STATE[2] * /STATE[1] * STATE([O0];
BEGIN

ENABLE (DBACK,DRDY, IRDY, IBACK) ;
IRDY = /RFCYC * I DL * ACC_ST;

IBACK = /RFCYC * I DL * IBREQ * (WS1_ST + WS2_ST) +
IBACK * /IREQ * I_DL * BUSY;

DRDY = /RFCYC * /I DL * /LAR WL * WS2_ST +
/RFCYC * /I_DL * /LAR WL * ACC_ST * BUSY +
/RFCYC * /I_DL * LAR WL * ACC_ST;

DBACK = /RFCYC * /I_DL * DBREQ * (WS1_ST + WS2_ST) +
DBACK * DBREQ * /I DL * BUSY;

END.
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“March 6, 1989
Memory System for the Am29000. This PAL decodes valid data and instruction memory
requests. It will also partially decode programming requests.”

DEVICE Request (P20L8)

PIN /IREQ = 1 (INPUT COMBINATORIAL)
IREQT = 2 (INPUT COMBINATORIAL)
/DREQ = 3 (INPUT COMBINATORIAL)
DREQT[1:0] = 4,5 (INPUT COMBINATORIAL)

OPT[2:0] = 6:8 (INPUT COMBINATORIAL)
/BUSY = 9 (INPUT COMBINATORIAL)
/STATE([3] = 10 (INPUT COMBINATORIAL)

A[31:23] = 11,13,14,16:20,23 (INPUT COMBINATORIAL)
/PRG_DEC = 22 (OUTPUT ACTIVE_LOW COMBINATORIAL)
/CS = 21 (OUTPUT ACTIVE_LOW COMBINATORIAL)
ALE = 15 (OUTPUT ACTIVE LOW COMBINATORTAL) ;
DEFINE
IOREQ = DREQ * DREQT[0] * /DREQT[11,
DATAREQ = DREQ * /DREQT[0] * /DREQT[1] * /OPT[2] *
(/OPT[1] * /OPT[0] + /OPT[1] * OPT[0] + OPT[1] * /OPT[O01),
INSREQ = IREQ * /IREQT,
MEMADDR = /A[31] * /A[30] * /A[29] * /A[28] * /A[27] * /A[26] *
/A[25]1 * /A[24] * /A[23];
BEGIN
ENABLE (PRG_DEC,ALE,CS) ;
/ALE = /BUSY + STATE[3] * INSREQ;
PRG_DEC = IOREQ;
CS = MEMADDR * (INSREQ + DATAREQ) ;

END.
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“March 20, 1989.

This is the refresh timer for the 29K design. This PAL will uses a 20 MHz clock to
generate a refresh request every 9.8 Us. Refresh will remain asserted until /RFCYC
and the memory is accessed. The initial value can be set by changing the constant
associated with INIT. If the initial value is to be a 1, then INIT * 1 should be in
the RCT[n] equation, if the initial value is to be a 0 then INIT * 1 should be in
the XOR(RCT[n]) equation. RCT[0] is initialized to 1 and RCT[4] is initialize to
0.”

DEVICE TIMER (P20X10)

PIN SYSCLK = 1 (CLOCK)
/RESET = 2 (INPUT COMBINATORIAL)
/RFCYC = 3 (INPUT COMBINATORIAL)
/STATE([3:0] = 4:7 (INPUT COMBINATORIAL)
/OE = 13 (CONTROL)

/RCT[7:0] = 22:15 (OUTPUT ACTIVE_LOW REGISTERED)
/REFRESH = 14 (OUTPUT ACTIVE_LOW REGISTERED) ;

DEFINE IDLE = #B0000, WSl = #B0010, Wws2 = #B0110, ACC = #B0100,
PCl = #B0001, PM = #B1000, WwC = #B0101, UN1 = #B0011,
UN2 = #BO011l1, UN3 = #B1001, UN4 = #B1010, UN5 = #B1011,
UN6 = #B1100, UN7 = #B1101, UN8 = #B1110, UNS = #B1111,
IDLE ST = /STATE[3] * /STATE[2] * /STATE[l] * /STATE[O],

WS1_ST = /STATE[3] * /STATE[2] * STATE([l] * /STATE([O],
WS2_ST = /STATE[3] * STATE[2] * STATE[1l] * /STATE[O],
ACC_ST = /STATE([3] * STATE[2] * /STATE[1l] * /STATE([O],
PC1_ST = /STATE[3] * /STATE[2] * /STATE[1] * STATE[O0],
PM ST = STATE[3] * /STATE[2] * /STATE([1l] * /STATE[O],
WC_ST = /STATE([3] * STATE[2] * /STATE[1l] * STATE[O],
START REFRESH = /RCT[7] * /RCT[6] * /RCT[5] * /RCT[4] *

/RCT[3] * /RCT[2] * /RCT[1] * /RCT[O],
INIT = /RCT[7] * /RCT[6] * /RCT[5] * /RCT[4] * /RCT[3] *
/RCT[2] * /RCT[1] * /RCTI[O];

BEGIN

REFRESH := START REFRESH * /RESET + REFRESH * /RESET;
XOR (REFRESH) := RFCYC * ACC_ST * /RESET;

RCT[0] := /RCT[0] + INIT * 1;
XOR(RCT[0]) := INIT * O;

RCT[1] := /RCT[0] + INIT * 1;
XOR(RCT[1]) := RCT[1l] + INIT * O;

RCT[2] := /RCT[1] * /RCT[0] + INIT * O;
XOR(RCT[2]) := RCT[2] + INIT * 1;

RCT(3] := /RCT[2] * /RCT[1] * /RCT[0] + INIT * O;
XOR(RCT[3]) := RCT[3] + INIT * 1;

RCT[4] := /RCT[3] * /RCT[2] * /RCT[1] * /RCT[0] + INIT * O;
KXOR(RCT[4]) := RCT[4] + INIT * 1;

3-32



Am29C668 CDMC to Am29000 Streamlined Instruction Processor Interface

RCT (5] := /RCT[4] * /RCT[3] * /RCT[2] * /RCT[1l] * /RCT[O] + INIT * O;
XOR(RCT[5]) := RCT[5] + INIT * 1;
RCT[6] := /RCT[5] * /RCT[4] * /RCT[3] * /RCT(2] * /RCT[1] * /RCT[O0] +
INIT * 1;
XOR(RCT([6]) := RCT[6] + INIT * O;
RCT[7] := /RCT[6] * /RCT[5] * /RCT[4] * /RCT[3] * /RCT[2] * /RCT(1] * /RCT[O]+
INIT * 1;
XOR(RCT[7]) := RCT[7] + INIT * 0;
END.

3-33



Am29C668 CDMC to Am29000 Streamlined Instruction Processor Interface

“March 6, 1989
32-Bit Memory for the 29K. This PAL implements the state machine for this design.
It will indicate what the current state of the memory is.”

DEVICE MEMORY_ STATE MACHINE (P16R6)

PIN SYSCLK = 1 (CLOCK)
/CS = 2 (INPUT COMBINATORIAL)
/DBREQ = 3 (INPUT COMBINATORIAL)
LAR WL 4 (INPUT COMBINATORIAL)
/IBREQ 5 (INPUT COMBINATORIAL)
/CH = 6 (INPUT COMBINATORIAL)
/IREQ = 7 (INPUT COMBINATORIAL)
/RESET = 8 (INPUT COMBINATORIAL)
/REFRESH = 9 (INPUT COMBINATORIAL)
/BINV = 19 (INPUT COMBINATORIAL)
/OE = 11 (CONTROL)

/STATE[3:0] = 18:15 (OUTPUT ACTIVE_LOW REGISTERED)
/I_DL = 14 (OUTPUT ACTIVE_LOW REGISTERED)
/BUSY = 13 (OUTPUT ACTIVE LOW REGISTERED)
/NOT_BUSY = 12 (OUTPUT ACTIVE_ LOW COMBINATORIAL) ;

DEFINE IDLE = #B000O, WS1l = #B0010, WS2 = #B0110, ACC = #B010O,
PCl = #B0001, PM = #B1000, WC = #B0101, UN1 = #B001l1,
UN2 = #B0111, UN3 = #B1001, UN4 = #B1010, UN5 = #B1011,
UN6 = #B1100, UN7 = #B1101, UN8 = #B1110, UN9 = #B1111,
IDLE ST = /STATE[3] * /STATE[2] * /STATE[1l] * /STATE[O0],
WSl ST = /STATE[3] * /STATE[2] * STATE[1l] * /STATE[O],
WS2_ST = /STATE[3] * STATE[2] * STATE[1l] * /STATE[O],
ACC_ST = /STATE[3] * STATE[2] * /STATE([1] * /STATE[O],
PC1_ST = /STATE[3] * /STATE[2] * /STATE[1] * STATE[O0],
PM ST = STATE([3] * /STATE([2] * /STATE[l1] * /STATE[O],
WC_ST = /STATE[3] * STATE[2] * /STATE[1l] * STATE[O0];

BEGIN

ENABLE (NOT_BUSY) ;

BUSY := /BUSY * (IDLE_ST + PM ST + ACC_ST) * CS * /BINV * /RESET +

BUSY * /NOT_BUSY;

NOT_BUSY = RESET +
WS2_ST * I DL * /LAR WL * /DBREQ +
ACC_ST * I DL * /DBREQ +
ACC_ST * /I DL * CS * /BINV +
PM ST * /I DL * CS * /BINV +
PM ST * IREQ * /CS;

I_DL := (IDLE_ST + PM ST + ACC_ST) * /BUSY * /IREQ * CS * /BINV +
(PM_ST) * BUSY * IREQ * /CS +
(IDLE_ST + ACC_ST) * /CS * /BUSY +
I_DL * (WS1_ST + WS2_ST +
ACC_ST * BUSY + PCl_ST * BUSY + IDLE ST * BUSY) +
RESET;

CASE (STATE([3:0]) BEGIN
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IDLE) BEGIN
IF (/RESET * (REFRESH + CS * /BINV + BUSY)) THEN

STATE[3:0] := WS1;
IF (/REFRESH * /BUSY * (/CS + BINV)) THEN
STATE(3:0] := IDLE;
END;
WS1l) BEGIN
IF (RESET) THEN STATE[3:0] = IDLE;
ELSE STATE[3:0] := WS2;
END;
WS2) BEGIN
IF (RESET) THEN STATE([3:0] = IDLE;
IF (/RESET) THEN STATE[3:0] := ACC;
END;
ACC) BEGIN
IF (RESET) THEN STATE[3:0] = IDLE;
IF (/RESET * REFRESH) THEN
IF (I_DL * /LAR_WL * BUSY) THEN STATE[3:0] := WC;

ELSE STATE[3:0] := PCl;
IF (/RESET * /REFRESH * BUSY *
(/I_DL * IBREQ + I_DL * DBREQ)) THEN
STATE[3:0] := ACC;
IF (/RESET * /REFRESH *
(/I_DL * /IBREQ * BUSY + I DL * /DBREQ) THEN

STATE[3:0] := PM;
IF (/RESET * /REFRESH * /BUSY * CH * CS * /BINV) THEN
STATE[3:0] := WS2;
IF (/RESET * /REFRESH * /BUSY * /CH * CS * /BINV) THEN
STATE[3:0] := PCl;
IF (/RESET * /REFRESH * /BUSY * /(CS * /BINV)) THEN
STATE[3:0] := PM;
END;
PCl) STATE[3:0] := IDLE;
PM) BEGIN .
IF (/RESET * (REFRESH + (/BUSY + IREQ) * CS * /CH * /BINV)) THEN
STATE[3:0] := PCl;
IF (/RESET * /REFRESH * (/BUSY + IREQ) * CS * CH * /BINV) THEN
STATE[3:0] := WS2;
IF (/RESET * /REFRESH * BUSY * IBREQ * /I_DL) THEN
STATE[3:0] := ACC;

IF (/RESET * /REFRESH * /(CS * /BINV * (/BUSY + IREQ) *
/(IBREQ * /I_DL * BUSY)) THEN

STATE[3:0] := PM;
IF (RESET) THEN STATE([3:0] := IDLE;
END;
WC) IF (RESET) THEN STATE[3:0] := IDLE;
ELSE STATE([3:0] := PCl;
UN1,UN2,UN3,UN4,UN5,UN6,UN7,UN8,UN9) STATE[3:0] := IDLE;
END;

END; “CASE”

END.
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Am29C668 Configurable Dynamic Memory Controller

e

to 80C286 Microprocessor Interface

by Douglas Lee, Applications Specialist

INTRODUCTION

The interface between the Am29C668 4-MBit Configur-
able Dynamic Memory Controller/Driver (CDMC) and the
AMD 80C286 microprocessor was designed to provide
maximum performance at reasonable cost. This design
is as general as possible so that the user may tailor his
implementation to a specific memory system. Possible
changes to the design are discussed with associated
system requirements and implications. A block diagram,
timing analyses and logic equations necessary to imple-
ment the design are included. This design requires a
minimum number of external devices to perform the
interface and glue functions: two PAL™ devices (one
PAL16R8, one PAL20R4), a 555 timer and an inverter.

Distinctive Characteristics

*« Am29C668 4-MBit Configurable Dynamic Memory
Controller/Driver, With Selectable Auto-Timing or
External-Timing Mode

¢ 20-MHz 80C286 Microprocessor (may be upgraded
to 25 MHz)

¢ 85-ns Fast-Page-Mode 1 Mbit x 1 DRAM

* One Wait-State Initial Accesses With Zero Wait-
State Subsequent Page-Mode Accesses

* 8-Mbyte Dynamic Memory per Am29C668
MEMORY ARCHITECTURE OVERVIEW

To obtain the maximum memory throughput but still
maintain a reasonable cost, 85-ns fast page-mode
1-MBit DRAMs are used. The 80C286 requires a mini-
mum of two processor cycles per access. If additional
cycles are needed, the external logic holds READY inac-
tive and the processor inserts wait states until READY is
asserted. For this memory design, the 20-MHz 80C286
completes the initial access to memory in one wait state
(three processor cycles total). The subsequent accesses
within the page are performed with no wait states (two
processor cycles).

The page size for a 1-Mbit DRAM is 1024 bits or 1 Kbits.
This memory is 16 bits wide, therefore the page size is
2 Kbytes. The Am29C668 detects accesses within the
same page via on-chip cache-mode operation; conse-
quently, page-mode DRAMSs appear to the processor as
if they are fast cache memories. When a new address is

latched, it is compared with the previous row and bank
address; if the addresses are to the same row and bank,
the Cache Hit signal CH is asserted. The memory state
machine immediately begins the next access. An access
outside the page, a page miss, causes the memory
controller to performthe RAS precharge for the DRAMs.
The total access time on a page miss requires five
processor-clock cycles, one for decoding, two cycles for
the RAS precharge and two for the data access. This
method of accessing memory results in shorter access
times than memories using normal DRAM accesses. For
certain systems, this memory can result in near-zero
wait-state accesses. Only static RAMs can guarantee
zero wait-state accesses. The actual performance of the
memory depends upon the instruction mix of the
programs executed.

The memory array consists of four banks. Each bank
contains 2 Mbytes or 1 Mword (16-bits) of memory that
provides a maximum memory size of 8 Mbytes or
4 Mwords per Am29C668 controller.

A 20-MHz system was selected since high performance
is achieved with 85-ns DRAMs. For a 25-MHz processor
using the same memory architecture, a single-wait-state
memory would require 60-ns DRAMSs. The State PAL
would have to be implemented using a PAL16L8-7 de-
vice to meet the faster clock rate and shorter set-up
times. This would be very expensive. For such a system,
a cache could be a more cost-effective solution than
using fast expensive DRAMs.

The 80C286 generates its internal processor clock from
an external oscillator. The external clock oscillates at
twice the speed of the 80C286 processor clock. The
external crystal also provides the clock for the memory
control logic. The oscillator signal is inverted to obtain
MCLOCK for the memory control logic. The 80C286
20-MHz clockis referredto as the processorclock or CLK
and the memory controller 40-MHz clock is called the
memory clock or MCLOCK to avoid confusion.

FUNCTIONAL DESCRIPTION

The primary data paths and functional elements are
shown in Figure 1. The following discussion describes
each subsection of the block diagram, including the
control logic, timer, buffers and memory array.

PAL is a registered trademark of Advanced Micro Devices.
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Am29C668 CDMC

The Am29C668 CDMC generates the RAS, CAS and
address signals to the DRAM array; no external drivers
are needed. Additionally, the Am29C668 generates the
row addresses during RAS-only refreshes fromiits inter-
nal row-refresh counter. The Am29C668 timing is con-
trolled externally by the State PAL and the Interface PAL.

The State PAL generates the RASI, CASI, MSEL and
ALE inputs to the Am29C668. RASI controls the
RAS outputs. When RASI is asserted, the proper RAS

outputs are enabled. CASI similarly controls the
CAS outputs. During refresh and reset, the CAS out-
puts are always suppressed by the Am29C668. MSEL
controls the multiplexing of the row and column address.
When MSEL is Low, the row address is output on the
Q[9:0] outputs of the Am29C668; when MSEL is High,
the column address is output. If the Am29C668 is in the
read/write mode, the address is taken from the address
latch; in the refresh mode, the address is taken from the
row-refresh counter.

The Interface PAL controls the Am29C668 mode of
operation: read/write, refresh or reset. The Refresh
Cycle output RFCYCis connected to the MC, input of the
Am29C668. When RFCYC is active Low, the Am29C668
performs refresh cycles. When RFCYC is not active, i.e.,
High,the Am29C668 s eitherin read/write mode or reset.
If RESET is asserted, the control logic forces the
Am29C668 into the reset mode, resetting the refresh
counters to zero and reconfiguring the CDMC to the
default mode. The memory controller initiates “wake up”
cycles to the DRAMs until RESET is deasserted. If
RESET and RFCYC are deasserted, the Am29C668isin
the read/write mode.

The CH signal from the Am29C668 is used to determine
if the current address in the input latch has the same row
and bank address as the previous memory access. If the
current access is to the same bank and row, CH is
asserted and a page-mode access is initiated. If CH is
deasserted, RAS must be precharged and a normal
access occurs.

For this application, the Am29C668 is used in the default
configuration, with external timing, 4-bank configuration,
1-Mbit DRAMs, CAS bank decoding, RAS-only refresh
and cache mode. It is possible to reconfigure the
Am29C668 to provide additional features not usedin this
application (see the Am29C668 data sheet).

Interface PAL

This PAL generates the ready signal to the 80C286,
refresh signals to the control logic, the output enable
to the buffers, and write enables to the DRAMs. The
following inputs are used:

MCLOCK Inverted 40-MHz system clock
S0 Status, from 80C286

A[0] Address bit 0, from 80C286

BHE Bus High Enable, from 80C286
RESET System Reset

REFRESH Refresh, from 555 timer

STATE[3:0]  State variables, from State PAL

ALE Address Latch Enable, from State PAL

The following outputs are generated:

READY Ready, to 80C286

RFINT Refresh Intermediate, used to synchro-
nize refresh requests

RFRQ Refresh Request, to State PAL

RFCYC Refresh Cycle, Indicates if access is a
refresh cycle

RFDONE Refresh Done

WEL Write Enable Low, to DRAM array

WEH Wirite Enable High, to DRAM array

OEB Output Enable Buffer, to Data Output

Buffers

The READY output is a three-state output and requires
an external pull-up resistor to keep it deasserted. When
READY is asserted, it signals the 80C286 thatthe current
memory access is completed.

OEB enables the outputs of the data drivers during
processor reads. The memory has separate data input
and output lines since all write cycles are late write
cycles.

WEL and WEH control the write cycles to the memory
data bytes; WEL controls the lower memory byte and
WEH controls the upper byte. WEL is asserted during
write cycles when A[0] is Low; WEH is asserted during
write cycles when BHE is Low. Since the status bit must
be decoded to determine if the access is a read or write
cycle, CAS to the DRAMs may occur before WEL or
WEH is asserted enabling the DRAMSs output drivers.
This requires that the data input and data output lines be
separate.

RFINT, RFRQ, RFCYC and RFDONE control the refresh
cycles. The 555 timer controls the refresh interval and
generates refresh requests by driving the REFRESH
input Low. This signal is asynchronous to the memory

clock, therefore it must be synchronized. Two internal
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D-flip-flops, RFINT and RFRQ, are used to synchronize
the refresh requests to avoid any metastability. RFDONE
is used to prevent REFRESH, which is active for a long
time, from generating multiple refresh cycles. Once the
refresh cycle is initiated, RFDONE is asserted and re-
mains so untii REFRESH is deasserted. RFCYC is
connected to the Am29C668 MC, input. Since RFCYC is
normally High, the Am29C668 is normally in the read/
write mode.

The systemreset, RESET, is tied directly to the MC, input
of the Am29C668. When RESET is asserted, the mem-
ory may be corrupted due to a violation of the DRAM
timing requirements. It is assumed, for this application,
that RESET indicates thatthe systemisinitializing or that
an unrecoverable failure has occurred; therefore, the
memory contents may be unreliable. If the application
requires that memory be retained during system resets,
anew signal MC must be generated by the control logic.
This signal goes active when RESET is asserted and the
state machineis in the IDLE, PC1, PC2A or PC2B state.
MC, must remain active until the state machine reaches
the page-mode PM state. When RESET goes active,
RFRQ is asserted and RFCYC is deasserted. The
memory control logic asserts RASI and holds it asserted
for four MCLOCK cycles. The falling edge of RASI, while
MC, and MC, are High, resets the Am29C668 to the
default configuration; all internal refresh counters are
initialized to zero. The memory control logic continues to
generate reset cycles until RESET is deasserted. The
reset cycles also generate the “wake up” cycles to the
DRAMs.

State PAL

The State PAL arbitrates between memory accesses
and refresh cycles, generates the control signals to the
Am29C668 and contains the state machine that controls
the memory accesses. The following inputs are used:

MCLOCK

Inverted 40 MHz system clock

S0, S1 Status, from 80C286

M_iOL Memory High, IO Low, from 80C286

A[23] Address bit 23, from 80C286

RESET System Reset signal

CH Cache Hit, from Am29C668

RFRQ Refresh request signal, from the Inter-
face PAL

RFCYC Refresh Cycle, from the Interface PAL

The following outputs are generated:

STATE[3:0]  State variables for the state machine

RASI Row Address Strobe Input, input to the
Am29C668

CASI Column Address Strobe Input, input to
the Am29C668

ALE Address Latch Enable, input to the
Am29C668

DELAY Delay Cycle, used to synchronize

memory accesses

The state variables STATE[3:0] are used to keep track of
the current status of the memory accesses. There are 16
states used, including six undefined states, as shownin
the state diagram (Figure 2). If the state machine powers
upinone ofthese six undefined states, the state machine
goes to the IDLE state on the next clock. Figure 3 shows
the timing of an initial access followed by a fast-page-
mode access and an off-page access.

When a valid memory request occurs, the state machine
begins a long initial access. RASI is asserted and the
state machine goes to the WS1 state. From the WS1
state, the controller unconditionally goes to WS2A,
WS2B, ACCA and then ACCB. In the WS2A state, the
MSEL input of the Am29C668 is asserted so that the
column address can propagate to the DRAMs. This input
is tied to the state machine output STATE[1]. In the
WS2B state, CASl is asserted. These timings insure that
the DRAM address setup and hold times are met relative
to the falling edges of RAS and CAS.

From the ACCB state, the memory controller goes to the
PM state. The controller waits here untilthere is arefresh
request or a valid memory request. If there is a memory
request, CH is used to determine if the access is to the
currently active page. If the access is to the same page,
thenthe memory controller goestothe WS2B, ACCA and
ACCB states, completing the access in just two cycles. If
the access is outside the current page, a RAS precharge
cycle must be performed followed by a long access. The
RAS precharge cycle is performed by deasserting RASI
and going from the PM state to PC1, PC2A, PC2B and
thento the IDLE state. Fromthe IDLE state, the memory
controller performs a long initial access.

Refresh cycles perform the same accesses as memory
accesses with a few exceptions. If a refresh request
occurs while the memory controller is in the IDLE state,
the refresh access waits one cycle to allow the row-
refresh address adequate setup time relative to RAS.
The refresh access goes from the IDLE state to WSH,
WS2A, WS2B states, then to the PM state. The memory
controller must then perform a RAS precharge in the
same manner it is performed during page-mode misses.

3-40



Am29C668 CDMC to 80C286 Microprocessor Interface
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WS2A Assert MSEL
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VAV

Page
Mode
Access
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A
)
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WSD if not a REFRESH
MEMREQ
I
(REFRESH or
RESET) '
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PC2B

PC2A
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REFRESH
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RESET or Page
Miss (CH not
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Figure 2. State Diagram
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Sometimes, a memory access is requested during a
refresh cycle. Since the refresh interval is controlled by
the 555 timer, the refresh is asynchronous to the 80C286
memory requests. Under certain conditions, the refresh
‘may start at the beginning of a bus cycle; all memory
requests occur at the end of the bus cycle. If the 80C286
requests a memory access during this off-cycle refresh,
the memory and the processor will be out of synchroniza-
tion. This causes the memory controllerto assert READY
and data one cycle early and to remove them one cycle
early. This situation is avoided by using the DELAY
output to re-synchronize the memory and processor. If
the memory request occurs during the wrong state,
DELAY is asserted and the state machine delays one
cycle. This re-synchronizes the state machine and the
processor. The timing for re-synchronization is shown in
Figure 4.

The ALE output from the State PAL is connected to the
ALE input of the Am29C668; this signal controls the
address latch of the CDMC. When ALE is High, the
address latch is transparent and the address is latched
on the falling edge of ALE. ALE goes Low when there is
a valid memory request, and remains Low until the
memory state machine is in the ACCA state, signalling
that the memory access is about to complete. Asserting
ALE High one cycle before the access completes pro-
vides enough time for the next address to be compared
with the current address. This insures that CH is valid
when it is evaluated by the state machine.

Refresh Cycles

To retain data, dynamic memories must be refreshed
periodically to restore the charge on their storage capaci-
tors. For 1-Mbit DRAMs, all 512 rows of memory must be
refreshed every 8 ms. There are different methods to
perform the refresh cycles: burst, forced and hidden;
each has its advantages and disadvantages. The best
method is determined by the instruction mix, system
hardware and performance requirements.

The first method is burst-refresh cycles that refresh all
512 rows in one sequence. It works well in systems
where there are long idle times between memory
accesses. The main disadvantage of this system is an
access to memory may be delayed for long periods
during the refresh cycles, greatly impacting system
throughput. This would definitely not be an acceptable
method for real-time systems.

Another method is to periodically insert refresh cycles;
thisis called forced or distributed refresh. If refreshes are
interspersed between memory accesses, the memory
throughput and access time is not greatly impacted
because there is a lower probability of refresh request
and memory request contention. One refresh request is

generated every 15.6 pus = 8 ms/512 rows. This method
is preferable to burst refresh in most systems.

It would be better if the refresh cycles occurred when the
processor was accessing other memory or I/0. This type
of refreshing is called hidden refresh since all or most of
the refresh cycle is overlapped with another access.
There are times, however, when the system continually
accesses the same memory page and prevents the
performance of hidden refreshes. If this happens, a
forced refresh cycle must be performed. Hidden refresh-
ing has the lowest systemimpact since all or most of the
refresh cycle is overlapped with an access to another
memory or I/O device. There are conceivable situations
where hidden refresh would not perform as well as forced
refresh. However, for most general applications, hidden
refreshing offers the best performance.

This design utilizes forced refreshes instead of hidden
refreshes. There are several reasons this method was
selected. Additionallogicis needed to keep track of when
hidden refresh cycles are performed. This logic must
suppress the forced refresh request after a hidden re-
fresh cycle is performed and must force a refresh when
no hidden refresh is performed. As aresult, extradevices
must be added that consume more board space, money
and power.

A refresh cycle is identical to a normal access, except
that the CAS outputs to the DRAMs are suppressed.
The Am29C668 suppresses the CAS outputs in the
refresh mode. REFRESH is asserted by the 555 timer
every 10 ps to insure that the DRAMs maximum RAS
active time is not violated. If a memory access is in
process, the access is completed before the refresh
cycle begins. If both a memory access and memory
request occur during the IDLE state, the refresh
request is given priority to insure that the refresh
requirements of the DRAM are met.

555 Timer

A 555 timeris used to generate the refresh requests. The
refresh period T is determined by the values of R1, R2
and C.

T =0.693 [R1 + (2 x R2)]C,

When R1 = 15 kQ, R2 = 4.7 kQ, and C = 470 pF,
T=79us.

This meets the required refresh interval if 5% tolerance
resistors and a 20% tolerance capacitor are used.
Therefore, the maximum refresh overhead is 3.2%.

Normally the refresh intervalfor forced refreshis 15.8 us.
In this application, the refresh timer performs two func-
tions: it generates the refresh request to maintain the
data in the DRAMs and it times the RAS Low signal to
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guarantee that the maximum RAS Low time is not ex-
ceeded. The DRAMs have two specified maximum RAS
Low times: tp,¢ (10 ps) the maximum RAS Low time
during a normal access andtp, o, (100 ps) the maximum
RAS Low time during fast- page -mode accesses. If the
system can guarantee that every initial access is always
followed by a fast-page-mode access, the refresh-timer
interval can be 15.8 us. In most systems, however, this
cannot be guaranteed. Therefore, the refresh timer must
interrupt the memory every 10 us to guarantee that the
DRAM t., ¢ is not violated.

The 555 timer could be replaced with an external counter
and logic to generate the refresh request. The counter
could be synchronized to the processor so that all refresh
requests terminate in the correct relationship to the
processor clock. Another advantage of the counter
implementation is that the exact refresh interval can be
more precisely controlled, reducing the refresh overhead
to a maximum of 2.5%. The major drawback is the
increased cost and board space of the counter and logic
over that of the 555 timer.

Data Buffers

Simple data buffers are usedto minimize the propagation
delay. Since the DRAMSs have separate inputs and out-
puts, two 74F244s are used on the data input lines and
two on the data output lines. The 74F244s on the data
inputs are permanently enabled by tying their OE inputs
Low. The OE inputs to the data output buffers are
generated by the State PAL output OEB.

Timing Analysis

There are two different DRAM parameters that must be
examined to determine the access time. The firstis RAS-
to-CAS delay t... If o is greater than the specified
tacp (Max), the access |s controlled lled by CAS access time
toac- The second parameter is RAS-to-column-address
delay tg,p- If o, is greater than t, o (max), the access
is controlled by the access time from column addresst,,

If both t, -, and t,, ; are less than their specified maxn-
mums, the access tlme is determined by RAS, toac: If
both t ., and t., are greater than their maxlmums the
one yielding the slowest access time determines the
memory access time. The hold time of the 80C286 does
not affect timing shown here because it is hidden by the
turn-off time of the data driver.

Inthis design, MSEL is asserted one memory-clock cycle
after RASI, and CASI is asserted two memory clock
cycles after RASI (see Figure 5). The capacitive load on
RAS_ is approximately

7 pF/DRAM x 16 DRAMS = 112 pF.

For margin, assume 120 pF. The delay from RASI to
RAS, is therefore,

26 ns - (350 - 120) pF x 2.5 ns/50 pF = 14.5 ns or
approximately 15 ns.

The loading and delay for CAS  are the same; therefore,
tocp is two memory-clock cycles or 50 ns. The load onthe
. outputs is

5 pF/DRAM x 16 DRAMS/bank x 4 banks = 320 pF.

Assuming 350 pF for margin, the delay from MSEL to Q
is 26 ns. Therefore,

= 1_MCLOCK cycle + MSEL-to-Q, delay -
RA%I to- RAS delay =25+26-15=236 ns.

Since tg,, (Max) = 40 ns and t, ., (Max) = 60 ns, the
access timing is determined by t The access

’ RAC’
requires:

1 MCLOCK Cycle 25ns
74ALS04 Inverter Delay 5ns
MCLOCK to RASI 8 ns
RASI to RAS | 15 ns
DRAM Access 85ns
Buffer Delay 7ns
Data Setup 3ns
Total Access Time 148 ns

With a total access time of 148 ns, the access is com-
pletedinthree processor cycles (150 ns). Therefore, the
State PAL must be a PAL16R8-10. MSEL is asserted on
the cycle after RASI; this insures that the row-address
hold time is met. CASI asserted one cycle after MSEL
guarantees that the column-address set up time is met.

Consecutive accesses within the same page are limited
by the CAS access time:

1 MCLOCK Cycle 25ns
74ALS04 Inverter 5ns
MCLOCK to CASI 8ns
CASlto CAS, 15 ns
DRAM Page Mode Access 30 ns
Buffer Delay 7ns
Data Setup 3ns
Total Access Time 93 ns
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With a total access time of 93 ns, the accessis completed =~ DRAM and processor speeds. Table 2 gives the number
in two cycles with a margin of (2 x 50 ) - 93 = 7 ns  of processor cycles required for fast-page-mode
minimum. Table 1 summarizes the number of processor  accesses for different DRAM and processor speeds.
cycles required for the initial memory access for different

| Initial Access | Page Mode Access |

e LI LT LT LI LML L L L L
weoo [ L L L L L L L L
5.5 | | [ | |
Aiross X
e | | [
A | L

MSEL |

CAS! | L L

e 155} :HAD—-—' '
ARG, | [
l lt—26—=
Qn Row Addres"s Column Address CI olumn Address
152 150} e 150
J— ~ 1
CAS,, tRCD—=] [ I [
+—tRAC —tCACH=]

]
-l
y { \
D[15:0] { ) { —

03552-005A
Figure 5. Timing Analyses

Table 1. Processor Cycles for Initial Access for Different Table 2. Processor Cycles for Page-Mode Access for
Processor and Memory Speeds Different Processor and Memory Speeds
Processor Memory Speed (ns) Processor Memory Speed (ns)*
Speed (MHz) 60 85 100 120 Speed (MHz) 60 85 100 120
16 3 3 3 3 16 2 2 2 2
20 3 3 4 4 20 2 2 2 2
25* 3 4 4 5 25** 2 2 2 2
* Assumes State PAL is PAL16R8-7. * 2-Cycle access requires zero wait state.

** Assumes State PAL is PAL16R8-7.
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PAL EQUATIONS

“Am29C668 to AMD 80C286 Interface April 10, 1989~
DEVICE INTERFACE (P20R4)

PIN MCLOCK = 1 (CLOCK)
/STATE([3:0] = 2:5 (INPUT COMBINATORIAL)
RESET = 6 (INPUT COMBINATORIAL)
/REFRESH = 7 (INPUT COMBINATORIAL)
ALE = 8 (INPUT COMBINATORIAL)
A[0]l= 9 (INPUT COMBINATORIAL)
/BHE = 10 (INPUT COMBINATORIAL)
/S0 = 11 (INPUT COMBINATORIAL)
/OE = 13 (CONTROL)

/READY = 22 (OUTPUT ACTIVE_LOW COMBINATORIAL)
/RFDONE = 21 (OUTPUT ACTIVE LOW COMBINATORIAL)
/RFINT = 20 (OUTPUT ACTIVE_LOW REGISTERED)
/RFRQ = 19 (OUTPUT ACTIVE_LOW REGISTERED)
/RFCYC = 18 (OUTPUT ACTIVE_LOW REGISTERED)
/OEB = 17 (OUTPUT ACTIVE_LOW REGISTERED)

/WEL = 16 (OUTPUT ACTIVE LOW COMBINATORIAL)
/WEH = 15 (QUTPUT ACTIVE_ LOW COMBINATORIAL) ;
DEFINE IDLE ST = STATE[3] * STATE[2] * STATE[1] * /STATE[O0],
WS1 ST = STATE[3] * STATE[2] * STATE[1] * STATE[O],
WS2A ST = STATE[3] * STATE([2] * /STATE[1l] * STATE[O],
WS2B_ST = STATE[3] * /STATE[2] * /STATE[1] * STATE[O0],
ACCA ST = STATE[3] * /STATE[2] * /STATE[1] * /STATE[O],
ACCB ST = /STATE[3] * /STATE([2] * /STATE[1] * /STATE[O0],
PM_ST = /STATE[3] * /STATE[2] * /STATE[1l] * STATE([O0],
PC1_ST = /STATE[3] * /STATE[2] * STATE[1] * STATE[O0],
PC2A ST = /STATE[3] * /STATE[2] * STATE[1] * /STATE[O],
PC2B_ST = STATE[3] * /STATE[2] * STATE[1l] * /STATE([O0],
IDLE = #b1110, WSl = #bl111, WS2A = #bl1101, WS2B = #b1001,
ACCA = #b1000, ACCB = #b0000, PM = #b0001, PCl1 = #b001l1,
PC2A = #b0010, PC2B = #bl010;
BEGIN
ENABLE (WEL,WEH, RFDONE) ;
ENABLE (READY) = (ACCA ST + ACCB_ST) * /RFCYC * /RESET;

READY = 1;
“These two signals synchronize the refresh request from the 555 timer.”

RFINT := REFRESH * /RFDONE + RESET;
RFRQ := RFINT + RFRQ * /(PM_ST * RFCYC);

RFCYC := IDLE_ST * RFRQ * /RFDONE * /RESET +
PC2B_ST * RFRQ * /RFDONE * /RESET +
RFCYC * (WS1_ST + WS2A_ST + WS2B_ST + PM_ST);
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:= RFCYC * WS1l. ST + RFDONE * REFRESH * /RESET;

RFDONE

’

/A[0] * ALE * SO0 + WEL * /ALE * /RESET
WEH = BHE * ALE * SO + WEH * /ALE * /RESET;

WEL

= /WEH * /WEL * /RFCYC * /RESET * (WS2A ST + WS2B_ST + ACCA _ST);

OEB

END.

TEST_VECTORS

MCLOCK, STATE [3: 0], RESET, REFRESH, ALE,A[0],BHE, SO, OE;

READY, RFDONE, REINT, RFRQ, RFCYC, OEB, WEL, WEH;

IN

ouT

BEGIN

ZLLLLLLL;
Z LHLLLLL;
Z LHHLLTLL;
Z LHHHLLL

C11100010001

“Refresh Cycle”

c11100110001

cC11100110001

’

cC11100110001

ZHHHHLLL;
ZHLHHLLL;
Z HLHHTLH H;
Z HLLHTLHH;
ZHLLULLHH;
ZHLLULTLHH;
Z HLLLULH H;
ZHLLLLHH
ZHLLULLHH;
Z LLLLLHBH
ZLLLLLHBH
HLLLLULHH;
HLLLLLLL;
ZLLLLLLL
ZLLLLHLL;
HLLLLHLL;
HLLLLLLL;
ZLLLLLLL;

c11110110001

c11010110001

c10010110111

“Write Cycle”

cC00010100111

c00110100111

cC00100100111

cC10100100111

c11100100111

c11110100111

c11010000111

cC10010000001

C100000010001

cC000000110001

“Read Cycle”

’

cCc00010011001

cC10010001001

cC10000001001

cC0000000000O0T1

cCc00010000001

END.
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“Am29C668 to AMD 80C286 20 MHz Interface.
APRIL 19, 1989"

DEVICE STATE (P16RS8)

PIN MCLOCK = 1 (CLOCK)
/S0 = 2 (INPUT COMBINATORIAL)
/S1 = 3 (INPUT COMBINATORIAL)
M _IOL = 4 (INPUT COMBINATORIAL)
/JCH = 5 (INPUT COMBINATORIAL)
A[23] = 6 (INPUT COMBINATORIAL)
/RFRQ = 7 (INPUT COMBINATORIAL)
/RECYC = 8 (INPUT COMBINATORIAL)
RESET = 9 (INPUT COMBINATORIAL)
/OE = 11 (CONTROL)

/STATE([3:0] =
/RASI =
CASI =

19:16 (OUTPUT ACTIVE_LOW REGISTERED)
15 (OUTPUT ACTIVE_ LOW REGISTERED)
14 (OUTPUT ACTIVE LOW REGISTERED)

/ALE = 13 (OUTPUT ACTIVE_LOW REGISTERED)

/DELAY =

DEFINE READ = /A[23] * M _IOL * 51,
WRITE = /A[23] * M_IOL * SO,
MEMREQ = READ + WRITE,

12 (OUTPUT ACTIVE_ LOW REGISTERED) ;

IDLE_ST = STATE([3] * STATE[2] * STATE[1l] * /STATE[O0],
WS1_ST = STATE[3] STATE[2] * STATE[1l] * STATE[O],
WS2A ST = STATE([3] * STATE[2] * /STATE[1] * STATE[O],
WS2B_ST = STATE([3] * /STATE[2] * /STATE[1l] * STATE[O],
ACCA ST = STATE[3] * /STATE[2] * /STATE[1] * /STATE([O],
ACCB_ST = /STATE[3] * /STATE[2] * /STATE[1l] * /STATE([O],
PM ST = /STATE[3] * /STATE[2] * /STATE[1] * STATE([O],
PC1_ST = /STATE[3] * /STATE[2] * STATE[1l] * STATE[O],
PC2A ST = /STATE[3] * /STATE[2] * STATE[1l] * /STATE([O],
PC2B_ST = STATE[3] * /STATE[2] * STATE[1l] * /STATE[O],
IDLE = #bll10, wsl = #bllll, WS2A = #bl101, WS2B = #b1001,
ACCA = #b1000, ACCB = #b0000, PM = #b0001, PCl = #b0011,
pc2a = #b0010, PC2B = #bl1010, UNUSED1 = #bl1100, UNUSED2 = #b0100,
UNUSED3 = #b0101, UNUSED4 = #b0111, UNUSED5 = #b0110, UNUSED6 = #b1011;
BEGIN
ALE := MEMREQ + ALE * /(ACCA ST * /RFCYC);
DELAY := MEMREQ * /ALE * (IDLE_ST * RFRQ * /RFCYC +

STATE[1] * STATE[0] + STATE(3] * /STATE([2]) +

DELAY * /(STATE([2] * /RFCYC):;

CASE (STATE[3:0]) BEGIN

IDLE) IF (ALE * /DELAY + MEMREQ * /RFRQ + RFCYC + RFRQ * RESET) THEN

STATE[3:0] := WS1;

ELSE STATE([3:0] := IDLE;
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WS1) STATE[3:0] := WS2a;
WS2A) STATE[3:0] = WS2B;
WS2B) IF (RFRQ) then STATE([3:0] := PM;
ELSE STATE[3:0] := ACCA;
ACCA) STATE[3:0] := ACCB;
ACCB) STATE[3:0] := PM;
PM) IF (RFCYC + RFRQ + /CH * MEMREQ) THEN STATE[3:0] := PCl;
ELSE
IF (CH * MEMREQ) THEN STATE[3:0] := WS2B;
ELSE STATE([3:0] := PM;
PC1) STATE[3:0] := PC2A;
PC2A) STATE[3:0] := PC2B;
PC2B) STATE[3:0] = IDLE;
UNUSED1, UNUSED2, UNUSED3, UNUSED4, UNUSEDS5, UNUSED6) STATE[3:0] := IDLE;

END “CASE”;

/CASI := WS2A_ST * /RFRQ + CASI * /ACCB_ST;

RASI := IDLE_ ST * /(ALE + MEMREQ * /RFRQ + RFCYC + RFRQ * RESET) +
PM_ST * (/CH * MEMREQ + RFRQ) +
/STATE[2] * STATE[1];

END.

TEST_VECTORS

IN MCLOCK,S[1:0],M IOL,A[23],RFRQ,RFCYC,RESET,CH,OE;
OUT STATE([3:0],RASI,CASI,ALE,DELAY;

BEGIN

0

L; “SYSTEM RESET"”

Qo000 0o
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COO0DO0C0O0O0OOCO0OOO0OO0OOO OO
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PR RRERRRRRRBRBRB§BB 888 2
COORKRERRHHEHRPRREPHOOOOO
CO 0000000000000 OO
COO0OOCOOOKHRHKHRPMEMEBEROOO
C OO0 O OO
e i el e = =R S S S U SR S R Ry Y
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L; “IDLE”
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“REFRESH REQUEST”

HHHLHLTLYL;
HHHHLLLIL;
HHLHLLTLL;
HLLHLLLL;
LLLHLLHH
LLHHHLHH;
LLHLHLHBH;,
HLHLHLHH,
HHHLHLHH;
HHHLLLHL;
HHHHLLHL;
HHLHLLHL;
HLLHLHHL;
HLLLLHHL;
LLLLLHLL;
LLLHLLLL

cC0000100001

“START REFRESH CYCLE”

c000011001

C0000110001

cC000011001

“MEMORY REQUEST”

cC101011001

cC101011001

C00000100O0T1

C000000O0O0CO01

“WAIT ONE CYCLE TO SYNCHRONIZE”

“MEMORY ACCESS”

C0000O0O0OOCOT1

C0000O0O0O0CO1

C0000O0O0COOT1

cC0000O0O0COO0OT1

cC0000O0O0GCOOT1

C0000000O0CT1

C00000O0O0CO1

“PAGE MODE WAIT”

’

C00000O0COO0T1

END.
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Am29C668 Configurable Dynamic Memory

u |

Controller to 80386 Microprocessor Interface

by Douglas Lee, Applications Specialist

INTRODUCTION

The interface between the Am29C668 4-Mbit Configur-
able Dynamic Memory Controller (CDMC) and the Intel
80386 microprocessor was designed for maximum per-
formance;therefore, lowering the total device countwas
a secondary concern. It is possible to interface the
Am29C668 to the 80386 with only one PAL®, but this
would make many assumptions about the systemimple-
mentation which are not generally applicable. This de-
sign is as general as possible so that the user may tailor
his implementation to a specific memory system. Possi-
ble changesto the design are discussed with associated
systemrequirements and implications. Ablock diagram,
timing analyses and logic equations necessary to imple-
ment the design are included. This design requires a
minimum number of external devices to perform the in-
terface and glue functions: three PAL devices (one
20L8, one 22V10 and one 20X10A), one 74LS240 (six
inverters) and four 74F245 bidirectional transceivers.

Distinctive Characteristics

* Am29C668 4-Mbit Configurable Dynamic Memory
Controller/Driver with Auto Timing

® 16-MHz 80386 Microprocessor
¢ 120-ns Fast Page Mode 1 Mbit x 1 DRAM

* Two Wait-State Initial Accesses With Zero Wait-
State Subsequent Page-Mode Accesses

* 4-Mbyte Dynamic Memory Expandable Up To
16 Mbyte per Am29C668

¢ Supports Up To 4 Gbytes of Physical Memory
® Supports Address Pipelining

® Performs Hidden Refresh Cycles to Maximize Mem-
ory Throughput

MEMORY ARCHITECTURE OVERVIEW

To obtain the maximum memory throughput but still
maintain a reasonable cost, 120-ns fast page-mode
DRAMs are used. The 80386 requires a minimum of two
processor cycles per access. If additional cycles are
needed, the memory controller holds RDY inactive. The
processor inserts wait states until RDY is asserted. The
16-MHz 80386 completes the initial access to memory
intwo wait states (four cycles total). The subsequent ac-
cesses within the page are performed with no wait
states (two cycles total).

Page-mode DRAMs appear to the processor as if they
are fast cache memories during page accesses. The
page size for a 1-Mbit DRAM is 1024 bits or 1 Kbits. The
memory is 32 bits wide, therefore the page size is
4 Kbytes. The Am29C668 detects accesses within the
same page via on-chip cache-mode operation. When a
new address is latched, it is compared with the previous
address; if the row and bank addresses are the same
(the upper 12 bits) then the Cache Hit signal CH is as-
serted. The memory state machine immediately begins
the next access without deasserting RAS. An access
outside the page results in a five-cycle, three-wait-state
access, two cycles for the RAS precharge and three for
the data access. The actual performance enhancement
of the memory depends upon the instruction mix of the
program executed.

The memory array consists of four banks; each bank
contains 4 Mbytes or 1 Mword (32 bits) of memory. This
gives a maximum size of 16 Mbytes or 4 Mwords of
memory.

A 16-MHz systemwas selected since high performance
may be achieved even with relatively slow DRAMs. As
processor speeds increase toward 20 and 25 MHz, the
number of wait states increases until this memory archi-
tecture becomes impractical. Faster microprocessors
demand faster DRAMs, static RAM caches, bank inter-
leaving, or a combination of three or more other exotic
architectures, implemented at considerable cost. These
topics are beyond the scope of this application note.

FUNCTIONAL DESCRIPTION

The primary data paths and functional elements are
shown in Figure 1. The following discussion describes
each subsection of the block diagram, including the con-
trol logic, buffers and memory array.

Am29C668 CDMC

The Am29C668 generates the RAS, CAS and address
signals to the DRAM array; no external drivers are
needed. Additionally, the Am29C668 generates the row
addresses during refreshes fromits internal refresh row-
address counter. The Am23C668, operating inthe auto-
timing mode, generates the RAS-to-CAS and the RAS-
to-address timing internally.

The Am29C668 must be programmed before any mem-
ory accesses canoccur. This is accomplished through a
dummy I/O access to the IO address E190H. The con-
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trol logic does not distinguish between /0 Reads and
Writes to the CDMC configuration register. The input
AC[10] must be tied Low to insure proper configuration.
The address bits A[11:2] are written into the Am29C668
configuration register. The options selected are: a
4-bankRAS and CAS configuration, CAS byte decoding,
RAS-only refresh, 1-Mbyte memory size, cache mode
and auto timing.

The AM29C668 supports byte decoding through the
CASEN[3:0] inputs. Byte-enable outputs 'BTE'[S:O] from
the 80386 are connected to these inputs and only the
selected bytes are accessed. The unselected bytes per-
form aRAS-only refresh.on the current row.

The auto-timing mode generates the RAS, CAS and
multiplexed address inputs to the DRAMs. This timing is
optimized for 100-ns DRAMs. The CASn outputs are fur-
ther qualified by the CASIEN input (auto timing with ex-
ternal override). With RASI active, CASIEN is pulsed;
this accesses the DRAM in fast-page mode. During
these fast-page-mode accesses, the DRAMs are ac-
cessed with no wait states inserted. The CH signal from
the Am29C668 is used to determine if the current ad-
dress inthe input latch has the same row as the previous
address. If the fast-page-mode accesses are to the
same bank and row, CH is asserted and a page mode
accessiis initiated. If CHis deasserted, the RAS must be
precharged and a normal access occurs.
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Decoder PAL

The Decoder PAL decodes valid memory accesses.
The following inputs are used:

A[31:24]  System address, for memory access de-
coding

A[15:13]  System address, for /O access decoding

ADS Address Status, indicates when address
and control signals are valid

M_IO Memory active High, /O active Low

wW_R Write active High, Read active Low

D_C Data active High, Control active Low

STATE[2:1] Upper two state variables
The following outputs are generated:

MEMREQ Request for memory access

RL Register load signal

PROGRAM Program cycle

TR Transmit active High, Receive active Low,
drives the 74F245

The Decoder PAL decodes the upper bit of the address
and M_TO to see if the memory is being accessed. If the
address and control signals are valid, MEMREQ is as-
serted. The lower address bits A[23:2] are used by the
Am29C668 to select the proper bank and memory word.
Bits A[11:2] are the column address and are connected
to the Am29C668 inputs AC[9:0]; A[21:12] are the row
address and are connected to the Am29C668 inputs
AR[9:0]. Input AR[10] of the Am29C668 must be tied
Low to insure the proper evaluation of CH. This input is
used only with 4-Mbit DRAMs. Bits A[23:22] determine
which bank is selected and are connected to SEL[1:0] of
the Am29C668. By decoding all the address bits, this
design supports a physical memory of up to 4 Gbytes
(4,294,967,296 bytes). If a smaller memory space is
used, fewer address bits must be decoded and the de-
coder logic could be combined in one 20-pin PAL, thus
saving board space and cost.

The Am29C668 is programmed by providing a dummy
output to an I/0 address. The upper three bits of the /O
space A[15:13] are decoded along with D_C and M_TO.
lfthe accessis valid, PROGRAM is asserted and is input
to the Control PAL and to the MCO input of the
Am239C668. The Am29C668 stores the lower 11 bits of
the address inthe configuration register. By decoding all
16 address bits during /O operations, this design sup-
ports the full 64-Kbyte I/O address space of the 80386.

The Register Load RL signal is used to load the
Am29C668 configuration register. It is asserted when
the processor executes an I/O to the configuration-reg-
ister address space. RL is asserted after PROGRAM is
asserted and ADS is deasserted to insure the correct
setup of MCO relative to RL.

The decoder T_R output signal controls the flow of data
through each of the four 74F245 bidirectional transceiv-
ers. When the signal is High, data is sent from port A to
port B; when Low, data is sent from port B to port A. This
signal is latched when the memory state machine is in
the SW2 or ACC state. In all other states, the latch is
transparent and the output is W_R inverted. During
pipelined cycles, W_Rcan change at least 27 ns before
the access is completed. If T_Rwere just W_Rinverted,
the transceiver would change the flow of data too soon
and the data would be corrupted. By latching T_R, data
remains valid until the access is completed.

State PAL

The State (Control) PAL arbitrates between accesses,
generates the bus control signals to the 80386 and con-
tains the state machine that controls the memory ac-
cesses. The following inputs are used:

CLOCK

REFRESH Refresh request signal from the Timer PAL
PROGRAM E?Lgram cycle signal from the Decoder

16-MHz system clock

MEMREQ I\Pﬁglr_nory cycle request from the Decoder

RESET

ADS Address Status; indicates when address
and control signals are valid

System reset signal

CH Cache Hit; signals access within active
page

INIT Initialize, resets RFDONE

The following outputs are generated:

OE Output enable for the RDY andNA signals

CASIEN  Column Address Strobe Input Enable

RFDONE Hidden Refresh performed

RDY Readr signal to the 80386, signals termina-
tion of valid access

NA Next Address to the 80386, enables ad-
dress pipeline

RFRQ Refresh Request, signals refresh cycles to

the Am29C668
STATE[2:0] State variables for the state machine

Figure 2 is the state diagram for the memory controller
state machine. Figure 3 gives the timing diagram for ac-
cesses to the memory.

Memory Accesses

The output enable signal OE enables the output buffers
and is asserted whenever the memory is being ac-
cessed or a program cycle is being performed. OE ac-
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tive with ADS deasserted is also used to enable the out-
puts of RDY andNA generated by the State PAL. If a re-
fresh cycle is being performed, signaled by RFRQas-
serted, OF is suppressed.

Memory accesses are initiated by asserting ADS. As a
result, the state machine goes to the first wait state
WS1and RASI is asserted. In this state, CASn is sup-
pressed by deasserting CASIEN so that the column ad-
dresses have ample time to become valid. From WSH1,
the state machine always goes to the second wait state
WS2. Here CASIEN is asserted as long as ADS is inac-
tive to insure that the write data is set up before CAS is
asserted. In this state, NA is asserted so that the next
address and bus control signals can be driven on the
bus. When ADS is deasserted, the state machine goes
to the ACC state. In this state, RDY is asserted to signal
the 80386 that the access has been completed.

If there is a pending refresh request, it is given priority.
The state machine goes to PC1 and PC2 to precharge

RAS and then executes the refresh cycle. If there is a
memory request to a different page, RAS is precharged
and a normal access performed. Accesses to the same
page, signaled by CH asserted, causes the state ma-
chine to go to PL andthen to ACC. If no accesses are
pending, signaled by MEMREQ deasserted, the state
machine enters the Tl state. It remains in this state until
arefresh request or a valid memory request is received.
On arefresh request, RAS is precharged and the refresh
cycle is performed. If an access to the same page is initi-
ated while the state machine is in Tl, the state machine
goes to PL. This is done to insure that ADS is deas-
serted, signaling that the previous cycle has completed
before the access is initiated. ADS is active for multiple
cycles,only ifNA is asserted more than one cycle before
RDY. I NA is always asserted one cycle before RDY,
the state machine can go directly to ACC and save one
access cycle. If an access is initiated to another page,
the RAS precharge occurs followed by a normal access.

3-57



Am29C668 CDMC to 80386 Microprocessor Interface
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Refresh Cycles

Dynamic memories must be refreshed periodically to re-
store the charge on the storage capacitor to retain the
data. For 1-Mbit DRAMS, all 512 rows of memory must
be refreshed every 8 ms. There are several different
methods to perform refresh cycles: burst, forced and
hidden. Each method has its advantages and disadvan-
tages. The best method is determined by the instruction
mix, system hardware and performance requirements.

The first method is burst refresh cycles that refresh all
512 rows at once. It works well in systems where there
are long idle times between memory accesses. The
main disadvantage is that an access to memory may be
delayed for long periods during the refresh cycles,
greatly impacting system throughput. This would defi-
nitely not be an acceptable method for real-time sys-
tems.

Another method is to periodically insert refresh cycles;
thisis called forced refresh. If refreshes are interspersed
between memory accesses, the memory throughput
and access time is not greatly impacted because there
is a lower probability of refresh request and memory re-
quest contention. One refresh request is generated
every 15.6 us = 8 ms/512 rows. This method is prefer-
able to burst refresh in most systems.

Even better would be for the refresh cycles to occur
when the processor is accessing other memory or I/0.
This type of refreshing is called hidden refresh since all
or most of the refresh cycle is overlapped with another
access. There are times, however, when the system
continually accesses the same memory page and pre-
vents hidden refreshes from being performed. If this
happens, a forced refresh cycle must be performed.
Hidden refreshing has the lowest system impact since
all or most of the refresh cycle is overlapped with an ac-
cess to another memory or I/O device. There are con-
ceivable situations where hidden refresh would not per-
form as well as forced refresh. However, for most gen-
eral applications, hidden refreshing offers the best per-
formance.

A refresh cycle is identical to a normal access, except
that the CASn outputs are suppressed by the
Am29C668. The control logic performs two different
types of refresh cycles, hidden and forced. A hidden re-
fresh is performed when ADS is asserted and MEM-
REQ is deasserted. RFDONE is set to indicate that a
hidden refresh has been performed. When RFDONE is
asserted, REFRESH is suppressed since no forced re-
freshis needed. RFDONE is reset by INIT, ensuring that
only one refresh cycle is performed every 15 us. To
guarantee the setup time of MC1 relative to RASI, RFRQ
is asserted one cycle before the refresh cycle begins.

*PC-AT and PS/2 are registered trademarks of IBM Corporation.

There are times, however, when the system continually
accesses the same memory and prevents hidden re-
freshes from being performed. If this happens,
REFRESH is asserted by the Timer PAL every 15 ps.
The state machine gives higher priority to refresh ac-
cesses than memory accesses. A refresh cycle is per-
formed during the next memory access.

Timer PAL
Timer PAL Inputs:

CLOCK System 16-MHz clock

RFDONE Refresh Done; asserted when hidden re-
fresh is performed

RESET System Reset; initializes counter

RFRQ Refresh Request; signals refresh memory
access

RCT[7:0] Counter

REFRESH Forced Refresh Request

INIT Initialize; resets counter and RFDONE in
State PAL

The Timer PAL helps implement the hidden and forced
refreshes along withthe State PAL. When the State PAL
detects an access outside the memory, it generates a
refresh request if one has not been performed within the
last 15 ps. RFDONE is set to indicate that a hidden re-
freshcycle has been performed. If no hidden refresh has
been performed in 15 ps, the Timer PAL generates a
forced refresh by asserting REFRESH. The State PAL
performs a memory refresh cycle on the next available
memory access. The Timer PAL asserts INIT for one
clock cycle every 15 us to reset RFDONE and reinitialize
the counter.

The timing for the Timer PAL is selected by the value in-
itialized in the counter. This value is set to 247 resulting
in a refresh request cycle time of 15.3 us. The initial
value is set by changing the terms 0 * INIT or 1 * INIT.
REFRESH is asserted 11 cycles before INIT when no
hidden refresh has been performed. This timing may be
changed by altering the value of START_REFRESH.

There are several alternate methods to implement the
refresh timer. A 555 timer could be used to save board
space and cut cost. The problem with this solution is the
need for asynchronous arbitration. This requires addi-
tional logic. Another alternative is to use a spare DMA
channelto implement the refresh requests similarto the
IBM PC-AT and PS/2* systems. Memory throughput
may not be as high as the current design because the
bus is unavailable during refresh accesses; whereas
with hidden refreshes, accesses outside the memory
spaces occur concurrently.
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Data Buffers

Simple data buffers are used to minimize the propaga-
tion delay. The OF is generated by the State PAL and
T_Ris generated by the Decoder PAL. Four 74F245s
are used in this design since 32 bits are used.

Timing Analysis

The initial access to memory requires four processor cy-
cles to complete. Each processor cycle is a minimum of
62 ns at 16 MHz. The hold time of the 80C386 does not
affect timing shown here because it is hidden by the
turn-off time of the data driver. The initial access .re-
quires:

T1 Cycle 62 ns
Clock to RASI 12ns
RASI to RASn 26 ns
DRAM Access 120 ns
Buffer Delay 7ns
Data Setup 10 ns
Total Access Time 237 ns

With a total access time of 237 ns, the access is com-
pleted in four processor cycles with a (4 x 62) - 237 =
11 ns margin. The second consecutive access requires:

2T1 Cycle Precharge 31ns
Clock Low to CASIEN 15ns
CASIEN to CASn 26 ns
DRAM Page Mode Access 30 ns
Buffer Delay 7ns
Data Setup 10 ns
Total Access Time 119 ns

With a total access time of 119 ns, the access is com-
pletedintwo cycles with a marginof (2x 62) - 119=5ns.
Non-consecutive accesses to the same page (an idle
bus state between memory accesses) resultsinanextra
wait state inserted. This wait state is necessary to insure
that ADS is deasserted, signaling a valid memory ac-

cess, before the accessis completed. IfNA is always as-
serted one cycle before RDY, the access may be com-
pleted without the wait state because ADS will always
be deasserted before the completion of the access.

The RAS precharge time for 120-ns DRAMSs is 90 ns,
therefore two processor cycles (62 x 2 = 124 ns) are
sufficient.

ALE is always valid 13 ns before the active High clock
pulse. For four banks of 32 bits with parity, 36 x 4 = 144
DRAMs, the capacitive load on the address outputs will
be 720 pF = 5 pF/DRAM x 144 DRAMs. The Am29C668
requires 45 ns to drive the address lines; therefore the
addresses are valid 32 ns after the active High clock
pulse. This is sufficient to meet the address setup time to
RAS. CASIEN is not asserted until wait state WS+, allow-
ing more than enoughtime forthe column address to be-
come valid. On consecutive accesses to the same page,
the address is active 32 ns after the rising edge of the
clock and this is more than 32 ns before the fastest
CASn.

The signal MEMREQ must meet the setup time for the
State PAL, which is 13 ns for the 22V10. Since the ad-
dress is not valid until 40 ns after the rising edge of the
clock, only 9 ns remain for the address decoding. This
means that the Decoder PAL must be a 16L8-7 and the
State PAL is a 22V10-15 in order to satisfy the system
timings.

Refresh cycles require six processor cycles: two cycles
for precharge and four cycles for the memory refresh.
Table 1 shows the number of cycles needed to access
memory for different processor and memory speeds.

Table 1. Access Cycles for Different Processor and

Memory Speeds
Memory
Speed Processor Speed-ns
(ns) 16 MHz 20 MHz 25 MHz
Cache Cache Cache
Initial Mode Initial Mode Initial Mode
120 4 2 5 3 6 3
100 4 2 5 3 5 3
85 4 2 4 3 5 3
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PAL Equations
The following are the logic equations for the three PAL devices. They are written in PLPL software.

w November 28, 1988

Am29C668 to 80386 Decoder PAL. This PAL will decode the accesses to memory and
generate the /MEMREQ and ALE signals for the 29C668. Program is used to configure
the 29C668. A[2:21] address the long words (32-bits), A[23:24] selects the bank.”

DEVICE Decoder (P20L8)

PIN A[31:24] = 1:8 (INPUT COMBINATORIAL)
A[15:12)] = 9:11 (INPUT COMBINATORIAL)
ADS = 14 (INPUT COMBINATORIAL)
M_IOL = 19 (INPUT COMBINATORIAL)
W_RL = 16 (INPUT COMBINATORIAL)
STATE([2:1] = 17:18 (INPUT COMBINATORIAL)
D_CL = 23 (INPUT COMBINATORIAL)

/MEMREQ = 22 (OUTPUT ACTIVE_LOW COMBINATORIAL)
PROGRAM = 21 (OUTPUT ACTIVE LOW COMBINATORIAL)
T RL = 20 (OUTPUT ACTIVE_LOW COMBINATORIAL)
RL = 15 (OUTPUT ACTIVE_LOW COMBINATORIAL) ;

DEFINE PROGADDR = A[15] * A[14] * A[13] * A[1l2],
MEMADDR = /A[31] * /A[30] * /A[29] * /A[28] * /A[27] * /A[26] * /A[25];

BEGIN
ENABLE (MEMREQ, PROGRAM,RL,T_ RL); ENABLE (W_RL,STATE[2:1], M IOL) = 0;

“MEMREQ AND PROGRAM CAN BE OCCUPY ANY SPACE BY CHANGING THE DECODING.”
MEMREQ = M_IOL * MEMADDR;
/PROGRAM = /M_IOL * PROGADDR * D_CL;

/RL = ADS * PROGRAM;
/T_RL = /W _RL * /(/STATE[2] * STATE([1]) + T_RL * /STATE[2] * STATE[1];

END.

TEST_VECTORS

IN A[15:13], A[31:25], ADS, M_IOL, D_CL, W RL, STATE[2:1];
OUT MEMREQ, PROGRAM, RL, T RL;

BEGIN

" M MP
AAAAAAAAAAAAIDWSS ER T
11113322222DOCRTT MGRR
543210987658 LLL21 RMLL
11110000001011000 LLLH;
11110000001111001 LLLH;
11110000000111101 HLLH;
11110000000101111 LHLL;
11110000001001111 LHHL;
01110000001001101 LLLL;
01110000001001001 LLLL;
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w November 28, 1988

Am29C668 to 80386 Decoder PAL. This PAL generates REFRESH every 15 psec if a
hidden refresh has not been performed. /INIT is generated every 15 Hsec to reset
RFDONE in the State PAL and to reinitialize the counter. The timing of this device
can be altered by changing the initial value of the counter. ”

DEVICE TIMER (20X10A)

PIN CLOCK = 1 (CLOCK)
RFDONE = 2 (INPUT COMBINATORIAL)
RESET = 3 (INPUT COMBINATORIAL)
/RFRQ = 4 (INPUT COMBINATORIAL)
OE = 13 (CONTROL)

RCT[7:0] = 23:16 (OUTPUT ACTIVE_HIGH REGISTERED)
/REFRESH = 15 (OUTPUT ACTIVE_LOW REGISTERED)
/INIT = 14 (OUTPUT ACTIVE_LOW REGISTERED) ;

DEFINE
START REFRESH=/RCT[7]*/RCT[6]*/RCT[5]*/RCT[4]*RCT[3]1*/RCT[2]1*RCT[1]1* RCT[O0];

BEGIN

INIT := /RCT[7]*/RCT[6]*/RCT[5]1*/RCT[4]*/RCT[3]*/RCT[2]*/RCT[1]1*RCT[0] + RESET;
REFRESH := /RFDONE *START REFRESH + REFRESH */RFRQ;

RCT([0] :=/RCT[0]*/INIT + 1 * INIT;

RCT[1] :=/RCT[0]*/INIT;

XOR(RCT[1]) := RCT[1]*/INIT + 1 * INIT;

RCT[2] :=/RCT[1]*/RCT[0]*/INIT;

XOR(RCT[2]) := RCT[2]*/INIT + 0 * INIT;

RCT[3] :=/RCT[2]*/RCT[1]*/RCT[0]*/INIT;

XOR(RCT[3]) := RCT[3]*/INIT + 1 * INIT;

RCT[4] :=/RCT[3]*/RCT([2]*/RCT[1]1*/RCT[0]*/INIT;

XOR(RCT[4]) := RCT[4]*/INIT + 1 * INIT;

RCT[5] :=/RCT[4]*/RCT[3]*/RCT[2]*/RCT[1]*/RCT[0]*/INIT;

XOR(RCT[5]) := RCT[5]*/INIT + 1 * INIT;

RCT[6] :=/RCT[5]*/RCT[4]*/RCT[3]*/RCT[2]*/RCT[1]*/RCT[0]*/INIT;
XOR(RCT[6]) := RCT[6]*/INIT + 1 * INIT;

RCT[7] :=/RCT[6]*/RCT[5]*/RCT[4]*/RCT[3]*/RCT[2]*/RCT[1]*/RCT[0]*/INIT;
XOR(RCT[7]) := RCT[7]*/INIT + 1 * INIT;

END.
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TEST_VECTORS

IN CLOCK,
OUT RCT[7:0],INIT,

BEGIN

RFDONE, OE, RFRQ;

RESET,

REFRESH;

RRRRRRRRRF

CCCCCCCCNR
TTTTTTTTTIS

0OSD

CENOR
KTEEQ

76543210TH

00010
c1010
co0010
co0o010
cCo0010
P0O0O0O0O

HHHHHHHHLL;
HHHHHHHLHL;
HHHHHLHHLL;
HHHHHLHLLL;
HHHHHLLHLL;
0000111111;

“RESET THE TIMER”

“INITIAL COUNT VALUE”

“DECREMENTS”

“PRELOAD VALUE TO TEST”

“THAT COUNTER DECREMENTS”

“AT BOUNDARIES”

HHHHLLLLLL;
HHHLHHHHLL;
0001111111;

00010
co0010
POO0O0O

HHHLLLLLLL;
HHLHHHHHLL;
0011111111;
HHLLLLLLULL;
HLHHHHHHLL;
0111111111;
HLLLLLLLZLL;
LHHHHHHHLL;
1111111011;
LLLLLLLHLL;
LLLLLLLLHL;
HHHHHLHHLL;
1111001111;
LLLLHHLLLL;
LLLLHLHHLL;
LLLLHLHLTLH;
LLLLHLLHLL;
1111001111;
LLLLHHLLLL;
LLLLHLHHLL;
LLLLHLHLLL;

00010
co0010
PO0OO0O0O

00010
co0010
P00O0O

00010
co0010
POO0O0O

“PRELOAD 1”

00010
cCo0010

“TEST THE INIT SIGNAL”

coo010
P0O0O0O0O

“PRELOAD 12"

00010
coo010
co0010

“TEST REFRESH SIGNAL”

coo011
POO0O0O

“PRELOAD 12”

00110
co0110

“TEST REFRESH SIGNAL”

co0110

END.
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» November 28, 1988

Am29C668 to 80386 CONTROL PAL. This PAL contains the memory state machine. It also
generates the CAS Input Enable (CASIEN), the RAS Input (RASI), Refresh Request
(/RFRQ), the Refresh Done (RFDONE) and the Ready (/RDY) and Next Address (/NA)
signals to the processor.”

DEVICE State (P22V10)

PIN CLOCK = 1 (INPUT COMBINATORIAL)
ADS = 2 (INPUT COMBINATORIAL)
/REFRESH = 3 (INPUT COMBINATORIAL)
PROGRAM = 4 (INPUT COMBINATORIAL)
CH = 5 (INPUT COMBINATORIAL)
/MEMREQ = 6 (INPUT COMBINATORIAL)
RESET = 7 (INPUT COMBINATORIAL)
INIT = 8 (INPUT COMBINATORIAL)

CASIEN = 14 (OUTPUT ACTIVE_HIGH COMBINATORIAL)
/RDY = 15 (OUTPUT ACTIVE_LOW REGISTERED)

/RFRQ = 16 (OUTPUT ACTIVE_ LOW REGISTERED)
STATE[2:0] = 17:19 (OUTPUT ACTIVE_HIGH REGISTERED)
RASI = 20 (OUTPUT ACTIVE_HIGH REGISTERED)

/NA = 21 (OUTPUT ACTIVE_LOW REGISTERED)

RFDONE = 22 (OUTPUT ACTIVE_HIGH REGISTERED)

OE = 23 (OUTPUT ACTIVE_LOW COMBINATORIAL) ;

“State machine definitions.”
DEFINE

IDLE= /STATE[2] * /STATE[1] * /STATE[O],
WS1 = /STATE([2] * /STATE([1] * STATE([O0],
WS2 = /STATE([2] * STATE([1l] * /STATE([O0],
ACC = /STATE[2] * STATE[1] * STATE([0],
PL = STATE[2] * STATE[1l] * STATE([0],
TI = STATE[2] * STATE[1] * /STATE[0],
PCl = STATE[2] * /STATE[1] * /STATE[O],
PC2 = STATE[2] * /STATE[1] * STATE[0],

IDLE_ST = #B000,
WS1_ST = #B001,
WS2_ST = #B010,
ACC_ST = #B011,
PL_ST = #Bl111,

TI_ST = #B110,

PC1_ST = #B100,
PC2_ST = #B101;

BEGIN

ENABLE (RASI,CASIEN,RFRQ,STATE([2:0],RFDONE,OE) ;
ENABLE (RDY,NA) = OE;

OE = (WSl + WS2 + ACC + PL + PROGRAM) * /RFRQ;

CASIEN = RASI * /RFRQ * (/ADS * WSl + ADS * WS2 + ACC +
PL * /CLOCK) ;

IF (RESET) THEN BEGIN “On RESET initialize all variables”
STATE([2:0] := IDLE ST;
RFRQ := 0;
RASI := 0;
RFDONE := 0;
END;
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CASE (STATE([2:0]) BEGIN

IDLE_ST) IF (RFRQ * /PROGRAM) THEN BEGIN

STATE[2:0] := WS1_ST;
RFRQ := 1;
RASI := 1;
RFDONE := RFDONE * /INIT;
END;
ELSE IF (ADS * MEMREQ * /REFRESH) THEN BEGIN
STATE([2:0] := WS1_ST;
RFDONE := RFDONE * /INIT;
RASI := 1;
END;
ELSE BEGIN
RASI := 0;
STATE[2:0] := IDLE_ST;
IF (PROGRAM * ADS * /REFRESH) THEN RDY = 1;
RFRQ := ADS * /PROGRAM * /MEMREQ * /RFDONE +
REFRESH; “TURN ON RFRQ 1 CYCLE EARLY”
RFDONE := RFDONE * /INIT;
END;
WS1_ST) BEGIN
STATE([2:0] := WSZ_ST;
RFRQ := RFRQ;
RFDONE := RFRQ * /REFRESH * /INIT;
RASI := 1;
IF (/RFRQ * ADS) THEN BEGIN
NA := 1;
END;
END;
WS2_ST) BEGIN
RASI := 1;

RFRQ := RFRQ;

RFDONE := RFDONE * /INIT;

IF (ADS) THEN BEGIN
STATE([2:0] := ACC_ST;
IF (/RFRQ) THEN BEGIN

NA := 1;
RDY := 1;
END;
END;
ELSE BEGIN
STATE[2:0] := WS2_ST;
IF (/RFRQ) THEN BEGIN
NA := 1;
END;
END;

END;
ACC_ST) BEGIN
RFRQ := RFRQ;
RFDONE := RFDONE * /INIT;
IF (RFRQ + REFRESH + ADS * CH * MEMREQ + ADS * /MEMREQ * /RFDONE)
THEN BEGIN
STATE[2:0] := PCl_ST;
RASI := 0;
END;
ELSE IF (ADS * CH * MEMREQ) THEN BEGIN
STATE[2:0] := PL_ST;
NA := 1;
RASI := 1;
RDY := 1;
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END;

ELSE IF (ADS + ADS * /MEMREQ) THEN BEGIN
STATE([2:0] := TI_ST;
RASI := 1;

END;

END;

PL_ST) BEGIN
RFRQ := RFRQ;
NA = 1;
RASI := 1;
RFDONE := RFDONE * /INIT;
IF (ADS) THEN BEGIN
STATE([2:0] := ACC_ST;
RDY = 1;
END;
ELSE BEGIN
STATE[2:0] := PL_ST;
RDY = 0;
END;
END;
TI_ST) BEGIN
RFDONE := RFDONE * /INIT;
RFRQ := RFRQ;

IF (REFRESH + ADS * MEMREQ * CH + ADS * /MEMREQ * /RFDONE)

THEN BEGIN
STATE([2:0] := PC1l_ST;
RASI := 0;

END;

ELSE IF (ADS * MEMREQ * CH) THEN BEGIN

STATE[2:0] := PL_ST;

NA : = 1;
RASI := 1;
END;
ELSE BEGIN
STATE([2:0] := TI_ST;
RASI := 1;
END;
END;
PC1_ST) BEGIN
STATE[2:0] := PC2_ST;
RASI := 0;
RFRQ := REFRESH + /MEMREQ * /RFDONE * /RFRQ;
RFDONE := RFDONE * /INIT;
END;

PC2_ST) BEGIN
RFRQ := RFRQ;
RFDONE := RFDONE * /INIT;
IF (/RFRQ * /MEMREQ) THEN BEGIN

STATE([2:0] := IDLE;
RAST := 0;

END;

ELSE BEGIN
STATE([2:0] := WS1_ST;
RASI := 1;

END;

END;

END; “CASE”

END.
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IN CLOCK,ADS,REFRESH, PROGRAM, CH, MEMREQ, RESET, INIT;

OUT RASI,CASIEN,RFRQ,RFDONE,STATE([2:0],RDY,NA,OE;

BEGIN

w

TEST_VECTORS

R

C
A
RSRF

EE
MSN

R P
CAFR

AIFDSSSR

SERNTTTDNO
INQE210YAE

LDSGCRETI

KSHMHOQTT

”

“SYSTEM RESET”
“IDLE STATE”

LLLLLLLZZL;

cC000X010
cC000X000
cC101Xx000

‘

LLLLLLLZZL

“PROGRAMMING CYCLE”

LLLLLLLULLBH;
LLLLLLLHLBH;
LLLLLLLZZL;

“ASSERT RDY TO 386"

C001X000

C000X000

HLLLLLHLLBH; “MEMORY ACCESS”

C100X100
C000X100

“ASSERT /NA TO PIPELINE ADDR.”
“INITIAL ACCESS TERMINATES”

“PIPELINED ACCESS”

HHLLLHLLHBH
HHLLLHHHHH;
HLLLHHHHHH
HHLLLHHHHH;
LLLLHLLZZL;

co0001100

11001100

“PIPELINED ACCESS TERMINATED.”

“PAGE MISS”

cC0000100

cC1000100

“PRECHARGE. REFRESH REQUEST”

LLHLHLHZZL;
“REFRESH ACCESS”

cC0101100

HLHLLLHZZL;

C010Xx100

HLHLLHLZZL;

cC010%Xx100
cC010XxXx100

HLHLLHHZZL;

“PRECHARGE."”
“PRECHARGE”

LLHLHLLZZL;

cC000Xx100

LLLLHLHZZL;

cC000Xx100

“MEMORY ACCESS”

HHLLLLHLLH;
HHLLLHLLHH;
HHLLLHHHHH
HLLLHHLZZL;

cC000X100

“ASSERT /NA TO PIPELINE ADDR.”

“ACCESS TERMINATES”

cC000Xx100

cC000X0600

“NO PENDING ACCESS.”

“TI STATE”

cC000X000
C000X000
cC1001100

HLLLHHLZZL;

“MEMORY ACCESS”

HHLLHHHLHH;
HHLLLHHHHH
HLLLHHLZZL;

“ACCESS TERMINATES”

C000Xx000

“NO PENDING ACCESS.”

“TI STATE”

cC000XxXx100

HLLLHHLZZL;

cCo000X000
cC1000100

“PRECHARGE."”

LLLLHLL2ZZL;

“PRECHARGE. "

LLLLHLHZZL;

C000Xx100

“MEMORY ACCESS”

HHLLLLHLLBH;
HHLLLHLLHBH;
HHLLLHHHHH;
HLLLHHLZZL;

cC000x100

C000X100
CO000X000

“ASSERT /NA TO PIPELINE ADDR.”

“ACCESS TERMINATES”

“NO PENDING ACCESS.”

“TI STATE”

C000X000
cCc000x000
C0101000

HLLLHHLZZL;

“PRECHARGE. REFRESH REQUEST”

LLLLHLLZZL;

LLHLHLHZZL;

cC0101000

HLHLLLHZZL; “REFRESH ACCESS”

cC010x000
C010Xx000
cC010x000
cC000XxX000

HLHLLHLZZL;

HLHLLHHZZL;
LLHLHLLZZL;

“PRECHARGE."”

“PRECHARGE. REFRESH REQUEST”

“IDLE"

’

LLLLHLHZZL

C000X000

LLLLLLLZZL;

cC000xXx000

“START REFRESH ACCESS”

LLLLLLL2ZZL;

cC000xXx000
C010Xx000
C010xXx000
C010xXx000
c010x000
C000X000
cC000x000

LLEHLLLL2ZZL;

“REFRESH ACCESS”

HLHLLLHZZL;

’

HLHLLHLZZL

HLHLLHHZZL;

“PRECHARGE."”

LLHLHLLZZL;

“PRECHARGE. REFRESH REQUEST”

“IDLE”

LLLLHLHZZL;

LLLLLLLZZL;

C000X000

“DELAYED MEMORY ACCESS”

’

HLLLLLHLLH

C100Xx100
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HLLLLHLLLH;
HLLLLHLLHH;
HLLLLHLLHH;

C100Xx100
C100x100
C100x100
co0001100

“ASSERT /NA TO PIPELINE ADDR.”
“INITIAL ACCESS TERMINATES”

“HIDDEN REFRESH”

HHLLLHHHHH;
LLLLHLLZZL;

C100Xx000

“PRECHARGE. REFRESH REQUEST”

“REFRESH ACCESS”

LLHLHLHZZL;

C100x000

HLHLLLHZZL;

cC000x100

HLHHLHLZZL;

cCo000X100

HLHHLHHZZL;

cC000xXx100

“PRECHARGE. "
“PRECHARGE"”

LLHHHLLZZL;
LLLHHLHZZL;

cCo000X100

cCo000XxXx100

LLLHLLLZZL;

cC010x000

END.
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Am29C668 Configurable Dynamic Memory

e\

Controller to 68020 Microprocessor Interface

by Douglas Lee, Applications Specialist

INTRODUCTION

The interface between the Am29C668 4 MBit Configur-
able Dynamic Memory Controller (CDMC) and the
Motorola 68020 microprocessor was designed for maxi-
mum performance; therefore, lowering the total device
count was a secondary concern. It is possible to inter-
face the Am29C668 to the 68020 with fewer PAL® de-
vices, but this would make many assumptions about the
system implementation which are not generally applica-
ble. This design is as general as possible so that the
user may tailor his implementation to a specific memory
system. Possible changes to the design are discussed
with associated system requirements and implications.
A block diagram, timing analyses and logic equations
necessary to implement the design are included. This
design requires a minimum number of external devices
to perform the interface and glue functions: three PAL
devices (one 16L8, one 22V10 and one 20X10), a de-
coder, and four 74F245 bidirectional transceivers.

Distinctive Characteristics

* Am29C668 4-Mbit Configurable Dynamic Memory
Controller/Driver with Auto Timing

¢ 20-MHz 68020 Microprocessor
® 120-ns Fast Page Mode 1 Mbit x 1 DRAMs

® Two Wait-State Initial Accesses With Zero Wait-
State Subsequent Page-Mode Accesses

® 4-Mbyte Dynamic Memory Expandable Up To
8-Mbyte per Am29C668

MEMORY ARCHITECTURE OVERVIEW

To obtain the maximum memory throughput but still
maintain a reasonable cost, 120-ns fast page-mode
1-Mbit DRAMs are used. The 68020 requires a mini-
mum of three processor cycles per access. If additional
cycles are needed, the memory controller holds
DSACK]1:0] inactive. The processor inserts wait states
untiiDSACK][1:0] are asserted. The 20 MHz 68020 com-
pletes the initial access to memory in two wait states
(five cycles total). The subsequent accesses within the
page are performed with no wait states (three cycles to-
tal).

*PAL is a registered trademark of Advanced Micro Devices, Inc.

Page-mode DRAMs appear to the processor as if they
are fast cache memories during page accesses. The
page size for a 1-Mbit DRAM is 1024 bits or 1 Kbits. The
120-ns page-mode DRAM is 32 bits wide, therefore the
page size is 4 Kbytes. The Am29C668 detects ac-
cesses within the same page via on-chip cache-mode
operation. When a new address is latched, it is com-
pared with the previous address; if the row and bank ad-
dresses are the same, the Cache Hit signal CH is as-
serted. The memory state machine immediately begins
the next access. An access outside the page, a page
miss, causes the memory controller to perform the RAS
precharge for the DRAMs. The total access time on a
page miss requires seven cycles, one for decoding, two
cycles for the RAS precharge and four for the data ac-
cess. This method of accessing memory results in
shorter access times than memories using normal
DRAM accesses. For certain systems, this memory can
result in near-zero wait-state accesses. Only static
RAMs can guarantee zero-wait-state accesses. The ac-
tual performance of the memory depends upon the in-
struction mix of the programs executed.

The memory array consists of two banks, each contain-
ing 4 Mbytes or 1 Mword (32 bits) of memory. This gives
a maximum size of 8 Mbytes or 2 Mwords of memory
per Am29C668 controller.

A 20-MHz system was selected since high performance
may be achieved even with 120-ns DRAMs. As proces-
sor speeds increase toward 25 and 30 MHz, the number
of wait states increases until this memory architecture
becomes impractical. Faster microprocessors demand
faster DRAMs, static RAM caches, bank interleaving,
specialty mode DRAMSs, or more exotic architectures,
implemented at considerable cost. These topics are be-
yond the scope of this application note.

FUNCTIONAL DESCRIPTION

The primary data paths and functional elements are
shown in Figure 1. The following discussion describes
each subsection of the block diagram, including the con-
trol logic, buffers and memory array.
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Am29C668 CDMC

The Am29C668 generates the RAS, CAS and address
signals to the DRAM array; no external drivers are
needed. Additionally, the Am29C668 generates the row
addresses during RAS-only refreshes from its internal
refresh row-address counter. The Am29C668, operat-
ing in the auto-timing mode, generates the RAS-to-CAS
and the RAS-to-address timing internally.

The Am29C668 must be programmed before any mem-
ory accesses canoccur. This is accomplished through a
dummy memory access because the 68020 memory
maps all I/O devices. The Am29C668 occupies a
4-Kbyte or 1-Kword address space. The actual decod-
ing is left up to the user since it is highly system depend-
ent. The address bits A[11:2] contain the value to be
loaded into the configuration register. For this design,
the lower 12 address bits are 198H. The options se-
lected are: two banks RAS andCAS configuration, CAS
byte decoding, RAS-only refresh, 1-Mbit DRAM size,
cache mode and auto-timing. If the part is used in only
one configuration, only a single byte of address space is
needed. The input AC[10] must be tied Low to place the
Am29C668 in normal-mode operation. AC[10] is only
used with 4-Mbit DRAMs.

When the Am29C668 is configured for two banks,
RAS][1:0] are connected to theRAS inputs of bank 0, and
RAS[3:2] are connected to bank 1 to minimize the ca-
pacitive load each output must drive. CAS[3] controls
byte 3 of both banks and similarly CAS[2] controls byte
2; CAS[1] controls byte 1 and CAS[0] controls byte 0.
This provides for byte accesses to memory.

The Am29C668 supports byte decoding through the
CASEN[3:0] inputs. The two least significant ad-
dress bits A[1:0] and the Size bits SIZ[1:0] from the
68020 are decoded to generate four byte-enable sig-
nals, BE[3:0]. These byte-enable signals are connected
to CASENI[3:0] and only the selected bytes are ac-
cessed. The bytes that are not selected perform a
RAS-only refresh on the current row address. (Note:
BE[3] enables bits 31 to 24, BE[2] enables bits 23 10 16,
BE[1] enables bits 15 to 8, BE[0] enables bits 7 to 0.)

The auto-timing mode generates the RAS, CAS and
multiplexed address inputs to the DRAMs. This timing is

optimized for 100-ns DRAMs. The CH signal from the
Am29C668 is used to determine if the current address in
the input latch has the same row and bank addresses as
the previous access. If the access is to the active row,
CH is asserted and a page-mode access is initiated. If
CH is deasserted, RAS must be precharged and a nor-
mal access occurs.

The Address Strobe signal AS from the 68020 is input
directly to the Address Latch Enable ALE of the
AmM29C668. When AS is deasserted, the address latch
of the Am29C688 is transparent. When AS is asserted,
the address is latched.

Byte Decoder PAL

The Byte Decoder PAL generates the byte-enable,
write-enable, register load and output-enable signals.
The following inputs are used:

A[1:0] System address bit 1 and 0, for byte
decoding.

SIZ[1:0]  Size from 68020, indicates the number of
bytes remaining to be transferred.

AS Address Strobe, signals valid address and
control signals.

DS Data Strobe, indicates valid data on the
bus during write cycles, or signals
memory to drive data on the bus during
read cycles.

R W Read active High, Write active Low, from
68020.

PROGRAM Program cycle, from decoder.
MEMREQ Memory Access Request, from decoder.
The following outputs are generated:

WE[1:0]
BE[3:0]

Write Enable, enables writing to DRAMs.

Byte Enable, selects active bytes during
access.

DSACKEN Data and Size Acknowledge Enable,
enables DSACK and bus drivers during
valid memory accesses and programming
cycles.

RL Register load signal, input to Am29C668.
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Table 1. Byte Enable Decoding for the 68020

A1 A0 siz1 Sizo BE3 BE2 BE1 BEO Access Type

0 ] 0 1 1 1 1 0

] 1 0 1 1 1 0 1

1 0 0 1 1 0 1 1 Byte

1 1 0 1 0 1 1 1

0 0 1 0 1 1 0 ]

0 1 1 0 1 0 0 1

1 0 1 0 0 0 1 1 Word

1 1 1 0 0 1 1 1

0 0 1 1 1 0 ] 0

0 1 1 1 0 0 ] 1

1 0 1 1 0 0 1 1 3 Bytes

1 1 1 1 0 1 1 1

0 0 ] 0 ] 0 0 0

] 1 0 0 0 0 0 1

1 0 0 0 0 0 1 1 Long Word

1 1 0 0 0 1 1 1

Note: 0isOVand 1is5 V.

The Write Enable WE[1:0] signals are input to the AS Address Strobe, indicates when address
DRAM array to control read and write accesses. When signals are valid.
active, awme: accessis performeq and‘when inactive, a b3 Data Strobe, indicates when data is valid.
read access is performed. One signal is generated per _
bank to reduce the capacitive load on the output driver. CH Cache Hit; signals access within active

All write cycles performed are “early” write cycles (WE
active before CAS) that prevent the DRAM output driver
from turning on. As a result, the Data In DIN and Data
Out DOUT pins of the DRAMs can be tied together, re-
ducing the number of routes on the PC board.

Byte Enable outputs ﬁ[S:O] are used to select the
bytes to be accessed and to control the assertion of the
CASnoutputs. They are generated from the address bits
A[1:0] and the SIZ[1:0] inputs from the 68020. Table 1
gives this decoding scheme.

The Register Load RL signal is used to load the
Am29C668 configuration register. It is asserted when
the processor performs an access to the configuration-
register address space. RL is asserted after PROGRAM
is asserted and AS is asserted to ensure the correct
setup of MCO.

State PAL

The State PAL arbitrates between memory accesses
and refresh cycles, generates the bus-control signals to
the 68020 and contains the state machine that controls
the memory accesses. The following inputs are used:

CLOCK

REFRESH Eet{esh request signal from the Timer
AL.

PROGRAM gjﬁ?ram cycle signal from the Decoder

20-MHz system clock.

MEMREQ lgl:lr_nory cycle request from the Decoder

RESET System reset signal.

page.
The following outputs are generated:

RASI Row ‘Address Strobe Input, input to the
Am29C668.
PGHIT PGHIT, signals when an access to the

same page is detected.
DSACKEN DSACK Enable, enables DSACK output.

DSACK][1:0]Data Size and Acknowledge signal to the
68020, signals termination of valid access
and size of memory port.

RFRQ Refresh Request, signals refresh cycles

to the Am29C668.
STATE[2:0] State variables for the state machine.

Data and Size Acknowledge Enable DSACKEN is out-
put to the four 74F245s and to the state PAL. This signal
enables the output drivers of the bus transceivers.
DSACKEN also enables the output DSACK. This signal
is necessary since DSACK]1:0] are asserted during
both program and memory accesses. During program
cycles, the output buffers are enabled, but the data is not
written to memory.

DSACK]1:0] are generated by the state PAL so that the
memory can drive both inputs Low to signal the proces-
sor that it is a 32-bit device and that the memory access
is complete. DSACK[1:0] are enabled by DSACKEN so
that multiple drivers can be connected to these inputs.
DSACK][1:0] must be pulled up through a resistor to
maintain the proper logic levels when not being driven.
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CASIEN is used as an external override in the auto-tim-
ing mode. This input is also used during fast-page mode
accesses. CASIEN is strobed by DS, causing the CASh
outputs to pulse, and thereby access the DRAMs. DSis
ANDed withMEMREQ to generate CASIEN. DS is used
to guarantee that the data is valid before CASnis as-
serted during Write cycles.

Figure 2 is the state diagram for the memory-controller
state machine. Figure 3 gives the timing diagram for ac-
cesses to the memory. The following s a list of the state-
machine states:

IDLE Idle State, waiting for memory request or
refresh request.

SWi1 System Wait 1, memory access in

progress.

Sw2 System Wait 2, memory access in

progress.

ACC Access cycle, data valid during this cycle.

PM Page Mode Wait, waiting for memory
request or refresh request with RASI
asserted.

PC1 Precharge cycle 1, RAS Precharge

cycle 1.

PC2 Precharge cycle 2, RAS Precharge

© cycle2.

PC12 Precharge cycle 1or 2, RAS Precharge
cycle 1 or 2 depending upon the type of
access.

Memory Accesses

Memory accesses are initiated by the 68020. The 68020
drives a valid address and a read/write signal onto the
bus. Address Strobe AS is then asserted by the 68020

to signal that a memory access has begun; it is valid a
maximum of 25 ns after the clock goes Low. Therefore,
there is no setup time for AS relative to the clock. This
means that RASI must be an asynchronous signal.
RASI is not asserted until the clock is active to ensure
that there is always one full cycle before the state ma-
chine begins. AS is connected directly to the ALE input
of the Am29C668.

Once RASI is asserted, the state machine proceeds
through states SW1, SW2 and finally ACC where the
datais valid. If arefresh access is pending, the state ma-
chine goes to state PC1 on the next cycle. The memory
performs the RAS precharge cycles, PC1 and PC2, and
then performs the refresh access. If no refresh request
is pending, the memory goes to state PM.

Inthe PM state, RAS! is still asserted, but the CASn out-
puts are disabled because the CASEN, inputs are deas-
serted. When AS is asserted, the address of the current
access is compared with the previous access. If the ac-
cessis to the same row, the Am29C668 asserts CH. The
state machine goes to state ACC and the access is com-
pleted in three cycles, no wait states inserted. If the ac-
cess is to another page, a page miss, the state machine
goes to the PC12 state. The state machine thengoes to
the IDLE state to guarantee the RAS precharge time; a
normal access is then completed.

IfREFRESH s asserted while the state machine is inthe
PM state, the state machine goesto PC12. From PC12,
it goes to the PC2 state, thus completing the RAS
precharge. The state machine then goes directly to the
SW1 state, completes a normal access and the RAS
precharge cycle. After a refresh cycle, the memory al-
ways goes to the IDLE state.
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No Request

Memory Request or
Refresh Request

PGHIT Asserted

S PGHIT Deasserted or
H-D
REFRESH Deasserted REFRESH Asserted

RFRQ Asserted

RFRQ Asserted or
Asserted

RFRQ Deasserted and
REFRESH Deasserted

CASIEN Deasserted and
RFRQ Deasserted and
REFRESH Deasserted

RFRQ Deasserted

REFRESH Asserted

Figure 2. State Diagram
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Refresh Cycles

Dynamic memories must be refreshed periodically to re-
store the charge on the storage capacitor to retain the
data. For 1-Mbit DRAMs, all 512 rows of memory must
be refreshed every 8 ms. There are several different
methods to perform refresh cycles: burst, forced and
hidden. Each method has its advantages and disadvan-
tages. The best method is determined by the instruction
mix, system hardware and performance requirements.

The first method is burst refresh cycles that refresh all
512 rows at once. It works well in systems where there
are long idle times between memory accesses. The
main disadvantage is that an access to memory may be
delayed for long periods during the refresh cycles,
greatly impacting system throughput. This would defi-
nitely not be an acceptable method for real-time sys-
tems.

Another method is to periodically insert refresh cycles;
this is called forced or distributed refresh. If refreshes
are interspersed between memory accesses, the mem-
ory throughput and access time is not greatly impacted,
because there is a lower probability of refresh request
and memory request contention. One refresh request is
generated every 15.6 us = 8 ms/512 rows. This method
is preferable to burst refresh in most systems.

Even better would be for the refresh cycles to occur
when the processor is accessing other memory or 1/0.
This type of refreshing is called hidden refresh since all
or most of the refresh cycle is overlapped with another
access. There are times, however, when the system
continually accesses the same memory page and pre-
vents hidden refreshes from being performed. If this
happens, a forced refresh cycle must be performed.

Hidden refreshing has the lowest system impact since
all or most of the refresh cycle is overlapped with an ac-
cess to another memory or I/O device. There are con-
ceivable situations where hidden refresh would not per-
form as well as forced refresh. However, for most gen-
eral applications, hidden refreshing offers the best per-
formance.

This design utilizes forced refreshes instead of hidden
refreshes. There are several reasons this method was
selected. Additional logic is needed to keep track of hid-
den refresh cycles. This logic must suppress the forced
refresh request after a hidden refresh cycle is performed
and must force a refresh when no hidden refresh is per-
formed. This method adds extra devices and consumes
more board space, money and power.

A refresh cycle is identical to a normal access, except
that the CAS outputs to the DRAMs must be sup-
pressed. The Am29C668 suppresses the CAS outputs
in the refresh mode. REFRESH is asserted by the Timer
PAL every 15.25 ps. If a memory access is in process,
the access is completed before the refresh cycle begins.
If both a memory access and memory request occur
during the idle state, the refresh request is given priority
to ensure that the DRAM refresh requirements are met.

The RFRQis asserted '/2 cycle before RASI is asserted
to insure that the MC1-to-RASI set-up time is met. If
RASI is asserted too soon, the proper row address for
the refresh cycle will not be valid when RAS is asserted
to the DRAMs.

Figure 4 shows the timing for a refresh cycle that begins
during an idle cycle. Figure 5 shows the timing for a re-
fresh cycle that begins during a page-mode cycle.
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X SWi1 X SWZX ACC X PC1 X PC2 X IDLE

Figure 4. Refresh Timing from Initial Idle State
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Figure 5. Refresh Timing from Initial Page Mode State
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Timer PAL

Timer PAL Inputs:

CLOCK  System 20 MHz clock.

RESET System Reset; initializes counter.

RFRQ Refresh Request; signals refresh memory
access.

Timer PAL Outputs:

RCT[8:0] Counter.

REFRESH Forced Refresh Request.

The Timer PAL helps implement the forced refreshes
along with the State PAL. The period for the Timer PAL
is selected by the value initialized in the counter. This
value is set to 304, resulting in a refresh request cycle
time of 15.25 ps = 305 x 50 ns (an extra cycle is included
since the counter decrements to 0 before resetting). The
initial value is determined by the location of INIT in the
logic equation. REFRESH is asserted when the counter
decrements to zero. REFRESH is asserted until the
State PAL asserts RFRQ signaling that the refresh cy-
cle has started.

There are several alternate methods to implement the
refresh timer. A 555 timer could be used to save board
space and cut cost. The problem with this solution is the
need for asynchronous arbitration. The necessary logic
could be included in the Byte Decoder PAL if it is ex-
panded to a 24-pin device to accommodate all the logic.
Another alternative is to use a spare DMA channel to im-
plement the refresh requests similar to the IBM PC-AT
and PS/2* systems.

Data Buffers

Simple data buffers are used to minimize the propaga-
tion delay. The OF input is generated by the Byte-De-
coder-PAL output DSACKEN and T_R is connected to
R_W generated by the 68020. Four 74F245s are used
in this design. Since this design is synchronous to the
processor clock, no latches are required for the data in-
put/output.

Timing Analysis
The initial access to memory requires five processor cy-

cles to complete. Each processor cycle is a minimum of
50 ns at 20 MHz. The access requires:

*PC-AT and PS/2 are registered trademarks of IBM Corporation.

S0, S1 Cycles 50 ns
Clock to RASI 15 ns
RASI to RASn 21ns
DRAM Access 120 ns
Buffer Delay 7ns
Data Setup 5ns
Total Access Time 218 ns

With a total access time of 218 ns, the access is com-
pleted in five processor cycles. The data must be valid 5
ns before the falling edge of the clock. This provides for
four and a half cycles: 4 x 50 + 20 (parameter 2 of the
68020) = 220 ns to complete the access, allowing for a
timing margin of 220 - 218 = 2 ns. Therefore, the State
PAL must be a 22V10-15. The consecutive accesses
within the same page require:

S0, S1 Cycles 50 ns
DS to CASIEN 10 ns
CASIEN to CAS» 17 ns
DRAM Page Mode Access 30ns
Buffer Delay 7ns
Data Setup 5ns
Total Access Time 119 ns

With a total access time of 119 ns, the access is com-
pleted in 2.5 cycles with a margin of (2 x50 +20) - 119 =
1 ns minimum. Since this is a worst-case timing analy-
sis, this margin is sufficient.

The Timer PAL operates at a frequency of 20 MHz. For
the Byte Decoder PAL, the important parameter is
BE[1:0], which must be valid soon enough for the CAS
outputs to guarantee the data hold time of the DRAMs.
Data Setup DS is 38 ns minimum and the data is held on
the bus for 10 ns minimum after DS is deasserted. The
data hold time required for the DRAMs is 20 ns. The
propagation delay from CASEN to CAS is 17 ns for a
load of 112 pF. This leaves 11 ns from DS to BEn (38 +
10-20-17=11). Therefore, a D-speed PAL is needed
for the Byte Decoder. Figure 6 shows the timing for the
byte-enable signals.

The RAS precharge time for 120 ns DRAMs is 90 ns,
therefore two processor cycles (50 x 2 = 100 ns) are suf-
ficient.
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Table 2 shows the number of cycles needed to access

Table 2. Access Cycles for Different Processor and

memory for different processor and memory speeds for ' Memory Speeds
this architecture. The table shows that at 25 MHz, even Memory
the fastest DRAMs, 70 ns access times, require 1 wait Speed Processor Speed-ns
state when accessed in the fast-page mode. Therefore, (ns) 16 MHz 20 MHz 25 MHz
a different memory architecture would be needed to ob- . Cache = Cache - Cache
tain higher memory and system performance at this initial Mode Initial Mode Initial Mode
processor speed. 120 5 3 5 3 6 4
100 5 3 5 3 6 4
80 4 3 5 3 5 4
70 4 3 4 3 5 4
DS
38
CASIEN
11 10
DATA < /
17 1. 20
N
CAS[3:0]

Figure 6. Byte Enable Timing Diagram
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PAL Equations

The following are the logic equations for the three PAL devices. They are written in PLPL.

“February 15, 1988

Byte Decoder PAL. This PAL generates the byte enable signals for the Am29C668.
It will also generate the Write Enable Signals to the DRAMs and the CASIEN signal

to the Am29C668.

Note: BE[0] is the same as UUD, BE[l1] = UMD, BE[2] = LMD,

notation.”
DEVICE BYTE_DECODER (P16L8)

PINA[1:0] = 1:2 (INPUT COMBINATORIAL)
S1 = 3 (INPUT COMBINATORIAL)
S0 4 (INPUT COMBINATORIAL)
/AS = 5 (INPUT COMBINATORIAL)
/DS = 6 (INPUT COMBINATORIAL)
R WL = 8 (INPUT COMBINATORIAL)
/MEMREQ = 9 (INPUT COMBINATORIAL)
PROGRAM = 11 (INPUT COMBINATORIAL)
/WE[1:0] 19:18 (OUTPUT ACTIVE_LOW COMBINATORIAL)
/BE[3:0] = 17:14 (OUTPUT ACTIVE LOW COMBINATORIAL)
RL = 13 (OUTPUT ACTIVE_LOW COMBINATORIAL)
CASIEN = 12 (OUTPUT ACTIVE_LOW COMBINATORIAL) ;

BEGIN
ENABLE (BE[3:0], RL, WE[1:0], DSACKEN);

BE[0] /A[1] * /A[0];

BE[1] = /A[1] * A[0] + /A[1] * /SO + /A[1] * S1;

BE[2] = A[1] * /A[0] + /A[1] * /S1 * /SO +
/A[1] * S1 * SO + /A[1] * A[0] * S1;

BE[3] = /S1 * /SO + A[1l] * A[O0] + A[1l] * S1 +
S1 * S0 * A[0];

/RL = PROGRAM * AS;

WE[1] = R_WL;
WE[O0] ;

|
IW
g

/CASIEN = MEMREQ * DS;

END.
TEST_VECTORS

IN A[1:0],S81,S0;
OUT BE[3:0];

BEGIN
A AS S BBBB
EEEE
1010 3210
0001 HLLL; “BYTE ACCESSES”
0101 LHLL;
1001 L LHL;
1101 L LLH; .
0010 HHLL; “WORD ACCESSES”
0110 L HHL;
1010 L L HH;

BE[3]

LLD in Motorola
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L L L H;
HHHL;
L HHH;
LLHH
L L L H;
H H H H;
L HHH

1110
0011

“3-BYTE ACCESSES”

0111

’

1011

1111

“LONG WORD ACCESSES”

00

’

L L HH;
L L L H;

1000

0

1
END.
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“December 5, 1988

Timer PAL for Am29C668 to 68020 Interface. This PAL will generate refresh request
for the DRAM controller.”

DEVICE TIMER (P20XRP10)

PIN CLOCK = 1 (CLOCK)
RESET = 2 (INPUT COMBINATORIAL)
/RFRQ = 3 (INPUT COMBINATORIAL)
/OE = 13 (CONTROL)
/RCT[8:0] = 23:15 (OUTPUT ACTIVE_LOW REGISTERED)
/REFRESH = 14 (OUTPUT ACTIVE_LOW REGISTERED) ;

DEFINE

START_REFRESH = /RCT[8] * /RCT[7] * /RCT[6] * /RCT[5] * /RCT[4] *
/RCT[3] * /RCT[2] * /RCT[1] * /RCT[O],

INIT = /RCT[8] * /RCT[7] * /RCT[6] * /RCT[5] * /RCT[4] * /RCT[3] *
/RCT[2] * /RCT[1] * /RCT[O0];

BEGIN
REFRESH := START REFRESH * /RESET + REFRESH *. /RFRQ * /RESET;

RCT[0] := /RCT[0];

XOR(RCT[0]) := INIT;

RCT (1] :=/RCT[O0];

XOR(RCT[1]) := RCT[1] + INIT;

RCT([2] :=/RCT[1] * /RCT[0];

XOR(RCT[2]) := RCT[2] + INIT;

RCT[3] :=/RCT[2] * /RCT[1] * /RCTI[O0];

XOR(RCT[3]) := RCT[3] + INIT;

RCT[4] :=/RCT[3] * /RCT[2] * /RCT[1] * /RCT[0] + INIT;
XOR(RCT[4]) := RCT[4];

RCT[5] :=/RCT[4] * /RCT[3] * /RCT[2] * /RCT[1] * /RCT[0] + INIT;

XOR(RCT[5]) := RCT[5];

RCT([6] :=/RCT[5] * /RCT[4] * /RCT[3] * /RCT[2] * /RCT[1] * /RCT[0];

XOR(RCT[6]) := RCT[6] + INIT;

RCT([7] :=/RCT[6] * /RCT[5] * /RCT[4] * /RCT[3] * /RCT[2] * /RCT[1l] * /RCT[0];

XOR(RCT[7]) := RCT[7] + INIT;

RCT[8] :=/RCT[7] * /RCT[6] * /RCT[5] * /RCT[4] * /RCT[3] * /RCT[2] * /RCT[1] *
/RCT[0];

XOR(RCT[8]) := RCT[8];

END.

TEST_VECTORS

IN CLOCK, RESET, OE, RFRQ;
OUT RCT [8:0], REFRESH;

BEGIN

"

CR R

LE R RRRRRRRRRF

0SS F ccccccccCcCRr

CEOR TTTTTTTTTS

KTEQ 876543210H
_________________________________ "

0010 LLLLLLLLULL;

cC110 HLLHHLLLLL; "“RESET THE TIMER”
cC010 HLLHLHHHHL; ”“INITIAL COUNT VALUE”
co010 HLLHLHHHLL; "“DECREMENTS”

co010 HLLHLHHLHL;

POO0O 0000000111; “PRELOAD VALUE TO TEST”
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"THAT COUNTER DECREMENTS"

HHHHHHHLTLL;
"AT BOUNDARIES"

HHHHHHLHHL;

0010

co010

"PRELOAD VALUE TO TEST"

00000O0O1111;
HHHHHHLLLL;
HHHHHLHHHL;

PO0OO0O

"THAT COUNTER DECREMENTS"

"AT BOUNDARIES"

0010
c010

"PRELOAD VALUE TO TEST"

000001111 1;
HHHHHLULLLL;
HHHHLHHHHL;

PO0OO0O

"THAT COUNTER INCREMENTS"

"AT BOUNDARIES"

0010

co010

"PRELOAD VALUE TO TEST"

0000111111;
HHHHLLLLLL;
HHHLHHHHHAL;

P0O0O

"THAT COUNTER DECREMENTS"

"AT BOUNDARIES"

0010

cC010

0001111111;
HHHLLLLULLL;
HHLHHHEHHHL;
0011111111;
HHLLLLLLLL;
HLHHHHHHHL;
0111111111;

P0O0O

0010

co1o0

PO0O0O

0010

co010

P0O0O
0010

HLLLLLLLLYL;
LHHHHHHHHL;
111111110 1;
LLLLLLLLHL
LLLLLLLLLTL;
HLLHHLLULTLH

cC010

"PRELOAD #1"

P0O0O
0010

"TEST THE INIT SIGNAL"

co010

’

co10

HLLHLHHHHL;

co11
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“February 15, 1988

State PAL for Am29C668 to 68020 Interface. This PAL contains the state machine
that controls the memory. It will arbitrate between refresh and memory accesses
and will generate the control signals for the Am29C668 and 68020 processor.”

DEVICE STATE (P22V10)

PIN CLOCK = 1 (CLOCK)
CLK = 2 (INPUT COMBINATORIAL)
/AS = 3 (INPUT COMBINATORIAL)
/DS = 4 (INPUT COMBINATORIAL)
/MEMREQ = 5 (INPUT COMBINATORIAL)
/REFRESH = 6 (INPUT COMBINATORIAL)
PROGRAM = 7 (INPUT COMBINATORIAL)
RESET = 8 (INPUT COMBINATORIAL)
/CH = 9 (INPUT COMBINATORIAL)
/DSACKEN = 23 (OUTPUT_ACTIVE LOW COMBINATORIAL)
RASI = 15 (OUTPUT ACTIVE_HIGH COMBINATORIAL)
/PGHIT = 22 (OUTPUT ACTIVE LOW COMBINATORIAL)
STATE([2:0] = 21:19 (OUTPUT ACTIVE HIGH REGISTERED)
/RFRQ = 18 (OUTPUT ACTIVE LOW REGISTERED)
/DSACK[1:0] = 17:16 (OUTPUT ACTIVE_LOW COMBINATORIAL);

DEFINE IDLE = /STATE[2] * /STATE[1] * /STATE([O],
SW1 = /STATE([2] * /STATE[1] * STATE[O],
SW2 = /STATE([2] * STATE([1] * STATE[O],
ACC = STATE([2] * STATE[1l] * STATE[O],
PM = STATE[2] * /STATE[1] * STATE[O],
PCl = STATE[2] * STATE[1l] * /STATE[O],
PCl2 = STATE[2] * /STATE[1] * /STATE[O],
PC2 = /STATE[2] * STATE[1] * /STATE[O],

IDLE_ST = #b000,
SWL_ST = #b001,

SW2_ST = #b011,
ACC_ST = #bl11,
PM ST =  #b101,

PCL_ST = #b110,
PC2_ST = #b010,
PC12_ST = #b100;

BEGIN
ENABLE (RASI, PGHIT, STATE([2:0], RFRQ, DSACKEN) ;
ENABLE (DSACK[1:0]) = DSACKEN;

RASI = IDLE * RFRQ * /CLK +
IDLE * AS * MEMREQ * CLK * /REFRESH + IDLE * RASI +
SW1 + SW2 + ACC + PM * /(/CH * AS * MEMREQ * CLK) * RASI;

DSACKEN = (MEMREQ + PROGRAM) * DS;

PGHIT = PM * AS * MEMREQ * CH * CLK * RAST +
PM * PGHIT * /CLK;

RFRQ = /RESET * REFRESH * /PROGRAM * (IDLE * /RASI + PCl + PCl2) +
RFRQ * /RESET * /PC1;

DSACK[1] = SW2 * /RFRQ * /CLK + ACC * /RFRQ + PM * /CLK * PGHIT +
PROGRAM * AS;

DSACK([0] = SW2 * /RFRQ * /CLK + ACC * /RFRQ + PM * /CLK * PGHIT +
PROGRAM * AS;
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IF (RESET) THEN BEGIN

STATE[2:0] := IDLE_ST;
RFRQ := 0;
END;

CASE (STATE(2:0]) BEGIN

IDLE ST) IF (RASI) THEN BEGIN
STATE([2:0] := SW1_ST;
END;

ELSE BEGIN
STATE[2:0] := IDLE ST;
END;

SW1_ST) BEGIN
STATE([2:0] := SW2_ST;
END;

SWZ_ST) BEGIN
STATE[2:0] := ACC_ST;

END;
ACC_ST) BEGIN
IF (REFRESH + RFRQ) THEN STATE[2:0] := PCl_ST;
ELSE STATE([2:0] := PM_ST;
END;
PM_ST) BEGIN
IF (PGHIT) THEN STATE[2:0] := ACC_ST;
ELSE IF (/RASI) THEN
STATE[2:0] := PC12_ST;
ELSE IF (REFRESH) THEN BEGIN
STATE[2:0] := PC12_ST;
END;
ELSE STATE[2:0] := PM_ST;
END;
PCl_ST) BEGIN
STATE[2:0] := PC2_ST;
END;
PCl2_ST) BEGIN
IF (REFRESH) THEN STATE[2:0] := PC2_ST;
ELSE STATE([2:0] := IDLE_ST;
END;
PC2_ST) BEGIN
IF (RFRQ) THEN STATE[2:0] := SW1l_ST;
ELSE STATE([2:0] := IDLE_ST;
END;

END; “CASE”

END.
TEST_VECTORS

IN CLK,CLOCK,AS,DS,MEMREQ, REFRESH, PROGRAM, RESET, CH, DSACKEN;

OUT RASI,PGHIT,RFRQ,STATE([2:0],DSACK([1:0];

BEGIN
N R D P DD

C MR PE S RGR S S S S S
CL RFRS K AHFTTTCC
LCADESGECE S IR K K
KKSSQHMTHN ITQ21010
cCCco000001X0 LLLLLLZZ; “IDLE STATE”
cCCcC110010Xx1 LLLLLLHH “PROGRAM CYCLE”
cCcl110010Xx1 LLLLLULHH;
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“END OF PROGRAM CYCLE”

LLLLLLZZ;
“IDLE CYCLE”

0000000O0XDO
cCCcCo000000X0DO0

LLLLLULZZ;

“START OF ACCESS”

LLLLLLLL;
HLLLLLLL;
HLLLLLLL;
HLLLLHLL;
HLLLHHLL
HLLLHHHH;
HLLHHHHH
HLLHHHHH;
HLLHHHZ Z;

00111000X1
11111000%X1
00111000X1
ccl111000%Xx1

“STATE SW1”

“STATE SW2”
“STATE SW2”

“ACCESS”

’

11111000X1
001110002X1
11111000X1
00111000%Xx1
00001000X0
cco0o01000%XxX0

’

“ACCESS TERMINATED”

“PAGE MODE STATE”

HLLHLHZZ;

“START OF ACCESS”

HLLHLHLL;
HHLHLHTLL;
HHLHLHHH;
HLLHHHHH;
HLLHHHHH;
HLLHHHZ Z;

0011100011
1111100011
0011100011
1111100011
0011100011
0000100010
ccoo01000x0

“ACCESS”

HLLHLHZ Z;

“ACCESS REQUEST”

HHLHLHLL;
HHLHLHLL;
HHLHLHHH;

11111000X1
11111100X1
00111100X1
1111110011
0000110010
cco001100%Xx0

“REFRESH REQUEST”

“ACCESS”

“ACCESS”

HLLHHHHH;
HLLHHHZ Z;

“ACCESS"”

“PCl STATE”
“PC2 STATE”
“SW1 STATE”
“SW2 STATE”
“ACC STATE”
“PC1”

“pC2”

LLLHHLZ Z;

LLHLHLZZ;

cCCcC110100Xx0

HLHLLHZ Z;

cc110100%Xx0

HLHLHHZ Z;

CCcC110000%X0
cCcC110000%x0

HLHHHHZZ;

LLHHHLZZ;

cc110000x0

LLLLHLZZ;

cCC110000%Xx0

“IDLE”

LLLLLLZZ;

CC110000Xx0
11111000X1
11111100X1
00111100%Xx1
cCC111100%X1

HLLLLULLL;
HLLLLLLL;
HLLLLLLL;
HLLLLHLL;

“STATE SW1”

“STATE SwW2”
“STATE SW2”

“ACCESS”

HLLLHHLL;

11111100X1
00111100X1
11111100X1
00111100%X1
cCcCcCo001100%Xx0

HLLLHHEHH;
HLLHHHHH;
HLLHHHHH;
LLLHHLZ 2Z;

“PCl STATE”
“PC2 STATE”
“SW1 STATE”
“SW2 STATE”
“ACC STATE”

wpCl”
wpC2”

LLHLHLZZ;

cCC001100X0

HLHLLHZZ;

cCCcCo000100XxX0

HLHLHHZ Z;
HLHHHHZZ;

cCCcCo00000O0XD

cco0000O0KXD

LLHHHLZZ;

cCcCo00000O0XD

LLLLHLZZ;

cCCcCo00000O0XO0

“IDLE”

LLLLLULZZ;

ccoo00000XO0

HLLLLLLL;
HLLLLLLL;
HLLLLLLL;
HLLLLHLL;
HLLLHHLL;
HLLLHHHH;
HLLHHHHH;
HLLHHHHH;
HLLHHHZZ;

11111000X1
11111100x1
00111100%Xx1

cc1lzu

“STATE SW1”

1100x1

“STATE SW2”

11111100x1
00111100%Xx1
11111100%X1
00111100%Xx1
0000110010

“STATE SwW2”

“REFRESH ACCESS”

wpC1l”
wpC2”

LLLHHLZZ;

cco001100%x0

LLHLHLZ Z;
HLHLLHZZ;

cCCcCo001100%X0

“SW1 STATE”
“SW2 STATE”
“ACC STATE”

CCcCo000100%Xx0

HLHLHHZZ;

cCCcCo000000X0D

HLHHHHZZ;

cCco000000XDO0
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“pCl”
wpC2”

LLHHHLZZ;

CCcCo00000O0KXDO

LLLLHLZZ;
LLLLLULZZ;

cco00000X0
CCcCo000000X0

“IDLE”

HLLLLULLIL;
HLLLLULLL;
HLLLLULTLL;
HLLLLHLIL;
HLLLHHLL;
HLLLHHHH
HLLHHHHH
HLLHHHHH
HLLHHHZZ;

11111000X1
11111100X1
00111100X1
cCC111100X1

“STATE SW1”

“STATE SW2”

11111100X1
00111100X1
11111100X1
00111100X1
0000100010
cco001000x0

“STATE SW2”
“ACCESS”

“PAGE MISS”

HLLHLHZZ;

HLLHLHLL;
LLLHLHLL;
LLLHLHLL;
LLLHLLLYL;
HLLLLLLL;
HLLLLULYLL;
HLLLLHLL;
HLLLLHLL;
HLLLHHLL;
HLLLHHHBH;
HLLHHHHH
HLLHHHHH;
HLLHHHZ Z;

0011100001
1111100001
1111100011
cCcC11100011

wpC12”

“IDLE”

11111000X1
00111000X1
11111000X1
00111000X1
11111000X1
00111000%X1
11111000X1
00111000%X1
00001000X0
cco001000X0

“STATE SW1”

“STATE SW2”

“STATE SW2”

“ACCESS”

“ACCESS TERMINATED”
“PAGE MODE STATE”
“REFRESH REQUEST,

“PC2”
“SW1”
“SW2”
“acc”
“PC1”
“PC2”

HLLHLHZZ;

PC12”

LLLHLLZZ;

cCco001100X0
cco001100%X0

LLHLHLZZ;
HLHLLHZ Z;

cco001100%X0

HLHLHHZZ;

cCCcC001000X0

HLHHHHZ Z;

cCCcCo001000X0

LLHHHLZ Z;
LLLLHLZZ;

cCCcCo001000X0
CCo001000X0

“IDLE”

LLLLLULZ Z;

cCCcC001000X0
11001000X0
11001100%X0
00111100Xx1
11111100Xx1
00111100X1
cCC1119000%X1

LLLLLDLZZ;

“REFRESH AND ACCESS”
“DURING SAME CYCLE”

“RFRQ ASSERTED”
“RASI ASSERTED”

LLLLLULZZ;

LLLLLLLL;
LLHLLULLL;
HLHLLLLL;
HLHLLHTLL;
HLHLHHTLL;
HLHHHHTLL;
LLHHHLTLL;
LLLLHLLIL;
HLLLLULLL;
HLLLLLTLL;
HLLLLHLL;
HLLLHHTLL;
HLLLHHHH;
HLLHHHHH;
HLLHLHZ Z;

cCCl111000Xx1

“RFRQ COMPLETES”
“/RAS PRECHARGE”

cCCcC111000x1
cCC111000X1

cCCl111000X1
11111000%X1
00111000X1
cCcCl111000X1

“ACCESS STARTS”

11111000X1
00111000X1
cCC111000X1
ccoo0000O0XDO

END.

“ACCESS COMPLETE”
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INTRODUCTION

The following application notes describe evaluation boards that demonstrate the
capabilities of the Am29C660C 32-bit Error Detection and Correction circuit (EDC) and
the Am29C668 4M Configurable Dynamic Memory Controller (CDMC). The first board is
IBM PC-AT compatible, the second is Micro-Channel and PS/2 compatible.

As systems require larger and larger memories, it is imperative to protect the memory
from soft errors that occur when a single bit is complemented due to noise, alpha
particles, or some other event. While single-bit errors are the most common, double-
and multiple-bit errors sometimes occur. The Am29C660 EDC detects and corrects all
single-bit errors and detects all double- and some multiple-bit errors. The Am29C668
CDMC can control large memories, up to four banks of 4-Mbit DRAMSs, and can drive the
BAS , CAS_ and address lines without external drivers or damping resistors.
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IBM PC-AT Plug-in Memory Card with

e

Error Detection and Correction (EDC)

by Douglas Lee, Applications Specialist

INTRODUCTION

This PC-AT compatible evaluation board demonstrates
the capabilities the Am29C668 Configurable Dynamic
Memory Controller (CDMC) and the Am29C660C 32-bit
Error Detection and Correction Circuit (EDC). As mem-
ory size and density increase, it becomes more impor-
tant to protect the memory from soft errors. The EDC
detects and corrects all single-bit errors and detects all
double and some triple-bit errors. When a word is
accessed, it is checked for errors and if an error is
found, the corrected data is written back to memory as
well as to the data bus. This board also performs
memory “scrubbing”, which is the detection and correc-
tion of single-bit errors during normal refresh cycles
hidden from the microprocessor to maintain the integrity
of seldom-accessed memory locations. Scrubbing the
memory prevents accumulation of single-bit errors
which, in turn, avoids most double-bit errors.

Note: an operating system that utilizes the upper
15 Mbytes in the PC-AT* address space, such as
Xenix** or OS/2**, is required to effectively utilize the
board. A simple memory test is provided.

Detailed schematics are included, beginning on
page 17.

Distinctive Characteristics

« Corrects all single-bit errors, detects all double-bit
and some triple-bit errors.
« 12 Mbyte of dynamic RAM(I M x I-bit packages).

+ Am29C668 CDMC and Am29C660C EDC pack-
aged in plastic leaded chip carriers for maximum
component density.

« Supports memory scrubbing during refresh.

« Designed for 10 MHz systems.

+ A Dynamic Memory Timing Controller imple-
mented using Programmable Array Logic (PAL™)
devices and delay lines.

+ System Data Interface consists of two
Am29C983s and one Am29C823.

« 32-bit internal data bus with 7-bit check bit and
7-bit syndrome bus.

« Syndrome latch for diagnostic and test purposes.

« Qccupies the second through the 13th megabyte
PC-AT address space memory block.

*PC-AT is a registered trademark of IBM Corporation.
**Xenix and OS/2 are trademarks of Microsoft Corporation.

DETAILED DESCRIPTION

The primary data paths and functional elements are
shown in Figure |. The following discussion describes
each section of the block diagram in detail. Compo-
nents not appearing in the block diagram but existing on
the schematic are also discussed.

Edge Card Connectors

This board can only be used in a PC-AT backplane with
the dual-connector I/O channel. Interrupt Request
IRQ3 is used by the board to signal the detection of a
multiple-bit error to the system microprocessor. Jumper
W2 can be removed to prevent IRQ3 from being driven
onto the backplane. All signals used from the edge
connector are listed on page 6.

Memory Decoder

The 20L10B, chip U6, provides memory decoding for
the board. It decodes the upper four bits, Local Ad-
dresses LA[23:20], to generate the four internal address
bits, DMCA[23:20]. Table 1 shows the address transla-
tion. This address translation was chosen since most
ATs contain 1 Mbyte of RAM on the mother board. A
gap from the first to the second megabyte is required
because the setup parameters of the host system (non-
volatile RAM) are destroyed when the PC ROM routine
BIOS detects RAM that was not properly installed by the
“setup” program.

Table 1. Address Translation for the Memory Board

LA DMCA

23 22 21 20 238 22 21 20

0 0 1 0 0 0 0 0 1st Row
o o0 1 1 0 0 0 1

0 1 0 0 0 0 1 0

0 1 0 1 0 0 1 1

o] 1 1 0 0 1 o] 0 2nd Row
0 1 1 1 0 1 0 1

1 0 0 0 0 1 1 0

1 0 0 1 0 1 1 1

1 0 1 0 1 0 0 0 3rd Row
1 0 1 1 1 0o o0 1

1 1 0 0 1 o] 1 0

1 1 0 1 1 0 1 1
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Figure 1. Block Dlagram

The PAL U6 also generates the Cycle Request
CYCREQ and Read/Write Request RWRQ signals
when a valid memory access occurs. CYCREQ re-
mains active until the processor completes its data
transfer and RWRQ remains active until the full memory
cycle is completed. CYCREQ and RWRQ are latched
on Address Bus Latch Enable BALE going Low. The
16-Bit Memory Chip Select MEMCS16 is asserted dur-
ing valid memory accesses and goes to a high-imped-
ance state at all other times. The 16-bit Enable Memory
Chip Select ENMCS16 controls the output signal of
MEMCS16.

Refresh Request RFRQ is generated during refresh
cycles initiated by the processor driving REFRESH
active. The Forced Refresh High FRH signal becomes
active when REFRESH is High and is used to detect the
falling edge of REFRESH. This is required because
REFRESH is active longer than the memory refresh
cycle.

I/0 Channel Ready IOCHRDY is used to signal the
processor that valid data is ready during Reads and to
signal completions of Writes. IOCHRDY is a 3-state
output, enabled by CYCREQ when a valid memory
access occurs. This board is designed to work in
10 MHz systems. If the board is used in faster systems
(> 12.5 MHz), a faster PAL may be necessary to assert
IOCHRDY inactive so that the processor can detect the
signal and insert wait states. This timing is machine
dependent.

I/O Decoder

The /O address decoding is provided by a combinato-
rial PAL, U7, and jumper W1. The Diagnostic Latch
Enable LEDIAG and Syndrome Output Enable SOE are
generated to select either the diagnostic latch or the
syndrome latch respectively. The base address of the
I/O ports is selectable by jumper W1 to be 320 h (Hex)
or 220 h. Table 2 details this decoding scheme.
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Table 2. /0 Decoding Scheme

System Address SA o Jumper Port
11 10 9 8 7 6 5 4 3 2 1 0 oW IOR w1 Decoded Address
o o1 o0 o0 0 1 0 O O O O 1 0 in SOE 220 h
o o 1t 1 0 0o 1 0 O O O O 1 0 out SOE 320 h
o ot o o0 o t O 0O O t o 0 1 in LEDIAG 222 h
o 0o 1 1 0 0 1 0 0 0 1 O 0 1 out LEDIAG 322h
Dynamic Memory Timing Control Table 3. Mode Control Decoding
The timing control for this board was implemented MC,  MC, Mode
using PALs and delay lines for increased flexibility. The - -
following subsections describe the signals and their 0 0 Refresh without scrubbing.
functions 0 1 Refresh with scrubbing or initialize.
’ 1 0 Read/Write mode.
1 1 Reset.

RASI, Mode Control and End of Cycle

The Row Address Strobe Input RASI, Mode Control
MC, and End of Cycle EOC signals are generated by
U8 in the Control Logic. RASI is used to initiate the
timing sequence and to signal the CDMC, Unit 1, to
generate the RASN signal to the appropriate bank of
memory. The EOC signal is generated to signify the
end of any memory cycle. This signal is used to reset
the timing-tap outputs and place the internal logic
into the initial state for the next memory access. The
timing taps Tn are registered by a 20RA10, Unit 13.
This technique provides shorter cycle times. Using a
conventional design, it would be necessary to wait for
the delay line to clear before the next cycle could start.
The DONE signal is generated by the asynchronous
PAL, U9, in the Control Logic to indicate that the re-
quired eight DRAM wake-up cycles have been com-
pleted and that the memory is ready for initialization.
The MC, and MC, inputs of the CDMC determine which
of the four operating modes will be used. Table 3 shows
the decoding.

Latched Error, Initialization and Interrupt -3 Signals

Device U9 generates the LATCHED_ERR signal to indi-
cate that an error has occurred on a Read or Read/
Modify/Write cycle. This signal is set by the EOC signal
and is sampied on the rising edge of timing tap T2 .
Every memory access is assumed to be a long cycle
unless LATCHED_ERR is false. This assures correct
and concise logic implementation. If LATCHED_ERR
were conditionally set instead of reset, much more
complicated logic would be required, since another sig-
nal is needed to indicate when LATCHED_ERR is valid.

Device U9 also latches the Initialize INIT signal, which is
generated by the rising edge of RESET. INIT remains
active until Terminal Count TC is received fiom the
CDMC indicating that all the memory locations have
been initialized. Counter[3:0] and DONE count the

wake-up cycles and indicate when eight have been
completed. Timing tap T8 indicates the end of a wake-
up cycle and causes Counter[3:0] to increment.
Counter[3:0] is initialized to 0 and, when it reaches 7, all
eight cycles have been completed. DONE is asserted
and the counting is inhibited. DONE remains active
until INIT is deactivated.

Memory-Board Interrupt INTR3 signals that a multiple
error has occurred at T4. INTR3 goes to Interrupt
Request 3 IRQ3 on the backplane via jumper W2 and is
cleared by an access to the syndrome latch (signal
SOE). This signal can be disabled by removing Jumper
W2. In systems that support bus retry registering,
INTR3 is not required.

Pulsed CASI

The Column Address Strobe Input CASI is a pulsed
CAS line, used when connecting the data-in lines to the
data-out lines on the DRAMs. The Interface Controller
PAL, U11, generates this signal from the registered
timing-tap signals received from U13, a 20RA10 PAL.
Figure 2 shows how the pulsed CASI signal is pro-
duced. This only applies during Read/Modify/Write and
Refresh with Scrubbing cycles. Note that at time A in
the diagram, the DRAM outputs are 3-stated so that the
Am29C660C can drive the data bus.

Miscellaneous Logic Functions

Miscellaneous logic functions are performed by the
PAL20L8B Interface Controller, U12. WE[2:0] writes
the data into the DRAMs. One signal per bank is
necessary to drive the large capacitive load (273 pF).
These signals have 39 Q series damping resistors to
control over- and under-shoot. Latch Enable Out/Gen-
erate LEO_GEN is a dual-purpose signal. When active
High, it enables the output latches of the Am29C660C.
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Figure 2. Idealized Timing Diagram for Pulsed CASI Signal

When active Low, it causes check bits to be generated
for the data in the input latch of the Am29C660C. The
Latch Enable Input LEI controls the latching of data into
the 29C660C. When LEI is High, the input latch is
transparent; data is latched when LEI is Low. Byte
Latch Enable LEB controls the data latch from the inter-
nal data bus to the system bus. When LEB is High, the
latch is transparent. S_AND_LEB is used to condition
the output enables from the system bus.

Delay Lines

The delay lines, U14 through U17, provide the timing
reference signals. RASI initiates the timing sequence.
See Delay-Line Tap Calculations, page 15, for the tap-
timing calculations of the timing configuration currently
installed on the board. According to the board timing
requirements, each timing signal must be reset at the
beginning of each cycle. Device U13 is used to register
the timing taps. Since it has separate clocks for each of
its 10 output registers, this PAL saves board space over
discrete logic. The outputs are reset on EOC going
active. Using the technique of registering the timing-tap
output shortens the memory cycle time.

Interface Control

PAL U10 generates the Output Enable Byte Low OEBL
and the Output Enable Byte High OEBH signals,
used by the respective 29C983 Multiple Bus Ex-
change device, Units 3 and 4, to output the proper
data word (16 bits). When address bit SA, is Low, the
lower word (16-bits) is selected; when High, the upper
word is selected. In addition, PAL. U10 generates the
Output Enable signals, OE[3:0], to the EDC and to PAL
U11 that control byte selection in byte and word writes.

SA, , and SBHE are decoded so that the selected byte
or word is written to memory.

PAL U11 generates Syndrome Latch Enable SYN_EN
and Output Byte Enable OE_BYTE[3:0]. Syndrome
Latch Enable SYN_EN is an active Low signal that
latches the syndrome bits when an error is detected.
Device U11 drives the OE_BYTE[3:0] inputs of the
29C983 latched transceivers that provide the system
data-bus interface. These signals gate the AT-bus data
lines to and from the various byte-wide data bits of the
internal data bus on the board (the D bus). Note from
the PAL equations that the gating signals are condi-
tioned by S_AND_LEB to ensure proper latching of the
data from the DRAMs. LG enables the latches.

Configurable Dynamic Memory Controller
and Buffers

The Am29C668 CDMC, U1, supplies the DRAM array
with multiplexed row and column address signals,as
well as RAS and CAS lines. Timing inputs to this
device are provided by the delay lines. The Am29C668
is used in the Am29368-compatible mode for | Mbit
DRAMs. During Initialization, the Am29C668 gener-
ates initialization cycles until the entire memory is
written with data and check bits. When the initializa-
tion is complete, TC is asserted High. RAS-only Re-
fresh is used when no memory scrubbing is selected;
jumper W3 is connected. Note: AC,, is not connected
since 1 Mbit DRAMs are used. AC,, is the most signifi-
cant bit of the column latch and would be output on Q, .
Since 1 Mbit DRAMs only use Q,,, this address bit
would be lost and the data would be written into the
wrong location. 1 Mbit DRAMs use AC_, for the column
address and AR, for the row address.
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Error Detection and Correction Circuit

Device U2, a high-speed Am29C660C EDC, generates
check bits during a write and verifies the data and check
bits during a read. Separate error (ERR) and multiple-
bit error (MERR) signals are output if one or more errors
are detected. If MERR is asserted, IRQ, is active if
enabled by jumper W2. Jumper W4 selects input signal
CODEIDO to U2. If W4 is installed, a 32-bit slice is
selected (the chip may operate in 32- or 64-bit mode); if
W2 is not installed, the chip operates in internal-control
mode. The internal-control mode provides access to
the diagnostic registers in the Am29C660 and aids in
debugging and testing the board. See the Am29C660C
data sheet for further details.

The Am29C660C internal diagnostic latch is available
from the I/0 channel. To write the diagnostic register, a
word is written from the AT microprocessor to the ad-
dress selected by the I/O decoder and associated
jumper. See I/O Decoder section.

The Output Enable Syndrome/Check Bit OESC pin on
the EDC is grounded to eliminate the T7-to-OES delay
in the PALs and the OESC-to-SC bus output-enable
delay in the Am29C660C; this results in improved per-
formance. This could not be done in an application
where the CB bus and SC bus are tied together.

The Am29C660C must initialize the memory to a known
state-on Reset so that proper check bits are present for
byte or word writes. On Reset, the data currently in the
input latch is used to initialize the memory. If a known
pattern must be written into memory, it may be done
after the initialization in software.

System Data Bus Interface

- The Am29C983s, U3 and U4, provide byte routing to
and from the AT bus and internal D bus. The control
signals for these devices are driven by the interface
controller PALs, U10, U11 and U12.

Note that in the documentation for the PAL, the equa-
tions include a MEMW term. This term was included to
prevent D-bus contention during a read without error
cycle after T2.

Syndrome Latch (Syndrome Logic)

An Am29C823 9-bit latch, U5, stores the check bits
when an error is detected by the EDC at timing tap T3.
The contents of this latch can then be read by the
microprocessor from the /0O channel in an interrupt
routine. Decoding the syndrome latch bits reveals
information about the error. Refer to the Am29C660C
product specification for details. The error signal is
qualified by MC1, RASI, and T3 so that the syndrome
latch is only updated when errors occur during a Read
or Write operation. This makes diagnostics easier and
prevents glitches on EN of U5.

DRAM Array

The DRAM array consists of three banks of two
blocks: the 32-bit data block and 7-bit check-bit block.
The array is organized as three rows of 39 bits by
1 Mbit chips, or 117 components. Total user memory is
12 Mbytes. Note that the address space occupied on
the AT bus is the 12 Mbytes immediately above the
lowest megabyte of the 16 Mbytes available. By using a
pulsed CAS signal to the chips, the data-in pins can be
tied to the data-out pins on the DRAMs. The power pin
on the 20-pin zip-pack memory chip is pin 15, the
ground pin is 4, and no-connects are 8, 9, and 10.

JUMPER AND CONFIGURATION
INFORMATION

A summary of options that can be modified by the user
is given below. See the previous text for detailed infor-
mation concerning these options.
W1: selects the board 1/O decode address

(default = in)
W2: IRQ, enable/disable to AT I/O channel

(default = in)
W3: determines the RM, input to the PAL DMTC

(default =in)
W4 determines CODEID, input to the EDC
(default = in)
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EDGE CONNECTOR PIN NAMES

Pin # Signal Name /10 Pin # Signal Name /10
A1 — — B1 GND —
A2 SD7 110 B2 RESET ]
A3 SDé6 ’ 110 B3 +5VDC —
A4 SD5 110 B4 — —
A5 SD4 110 B5 — —
A6 SD3 110 B6 —_ —
A7 SD2 110 : B7 — —
A8 SD1 110 B8 — —
A9 SDo 110 B9 — —
A10 IOCHRDY o) B10 GND —
A1 AEN I B11 — —
A12 SA19 I B12 — —
A13 SA18 | B13 IOW |
A14 SA17 | B14 IOR I
A15 SA16 | B15 — —
A16 SA15 | B16 — —
A17 SA14 1 B17 — —
A18 SA13 | B18 — —
A19 SA12 | B19 REFRESH 1
A20 SA11 | B20 — —
A21 SA10 | B21 — —
A22 SA9 | B22 — —
A23 SA8 | B23 — —
A24 SA7 | B24 —_ —
A25 SA6 | B25 IRQ3

A26 SA5 | B26 — —
A27 SA4 i B27 —_ —
A28 SA3 | B28 BALE |
A29 SA2 I B29 +5VDC —
A30 SA1 | B30 — —
A31 SA0 | B31 GND —_
c1 SBHE | D1 MEMCS16 o)
c2 LA23 ] D2 I0OCS16 (o}
C3 LA22 | D3 — —
c4 LA21 1 D4 — —
cs LA20 I D5 — —
Ccé6 — — D6 — —
c7 — — D7 — —
cs — — D8 — —
c9 MEMR | D9 — —
Cc10 MEMW | D10 — —
c11 SDs 110 D11 — —
c12 SD9 110 D12 — —
C13 SD10 110 D13 — —
c14 SD11 110 D14 — —
c15 SD12 110 D15 — —_
ci16 SD13 110 D16 +5VDC —
c17 SD14 110 D17 — —_
c18 'SD15 110 D18 GND —

Note: A1-A31 and C1-C81 are on the component side, B1-B31 and D1- D18 are on the solder side.
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PAL SOURCE CODE LISTINGS

The assembler used is PLPL. Functional test vectors are used to verify these equations, but are not listed to
conserve space.

DEVICE IO_DECODER (P20L8) “u7”

PIN SA[11:0] = 1:11, 13 (INPUT Combinatorial)
/IOW = 14 (INPUT Combinatorial)
/IOR = 23 (INPUT Combinatorial)
A320_220L = 16 (INPUT Combinatorial)
AEN = 17 (INPUT Combinatorial)

/SOE = 22 (OUTPUT Active Low Combinatorial)
/LEDIAG = 21 (OUTPUT Active_Low Combinatorial)
/I0CS16 20 (OUTPUT Active Low Combinatorial)
/ENIOCS 19 (OUTPUT Active_ Low Combinatorial) ;

I

[

BEGIN

ENABLE (SOE, LEDIAG, ENIOCS) ;
ENABLE (AEN,A320 220L) = 0;
ENABLE (IOCS16) = ENIOCS;

CASE (SA{11:0])

BEGIN

#B001000100000) BEGIN
SOE = /A320_220L * IOR * /IOW * /AEN;
I0CS16 = /A320_220L * /AEN * IOR;
ENIOCS = /A320_220L * /AEN;
END;

#B001000100010) BEGIN
LEDIAG = /A320_220L * IOW * /IOR * /AEN;
I0CS16 = /A320_220L * /AEN * IOW;
ENIOCS = /A320_220L * /AEN;
END;

#B8001100100000) BEGIN
SOE = A320_220L * IOR * /IOW * /AEN;
IOCS16 = A320_220L * /AEN * IOR;
ENIOCS = A320_220L * /AEN;
END;

#B001100100010) BEGIN
LEDIAG = A320_220L * IOW * /IOR * /AEN;

IOCS16 = A320_220L * /AEN * IOW;
ENIOCS = A320_220L * /AEN;
¢ END;
END;
END.
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DEVICE MEMORY_DECODER3 (P20L10) “ueé”

PIN LA[23:21] = 1:3 (INPUT Combinatorial)
/REFRESH = 4 (INPUT Combinatorial)
/MEMR = 5 (INPUT Combinatorial)
/MEMW = 6 (INPUT Combinatorial)
BALE = 7 (INPUT Combinatorial)
/EOC = 8 (INPUT Combinatorial)
/INIT = 9 (INPUT Combinatorial)
Tl = 10 (INPUT Combinatorial)
T4 = 11 (INPUT Combinatorial)
/LATCHED_ERR = 13 (INPUT Combinatorial)

I

IOCHRDY 23 (OUTPUT Active Low Combinatorial)

/CYCREQ = 22 (OUTPUT Active_ Low Combinatorial)
/MEMCS16 = 21 (OUTPUT Active_Low Combinatorial)
/ENMCS16 = 20 (OUTPUT Active_Low Combinatorial)

/RWRQ = 19 (OUTPUT Active_ Low Combinatorial)

/RFRQ = 18 (OUTPUT Active_ Low Combinatorial)

/FRH = 17 (OUTPUT Active_Low Combinatorial)
DMAC[23:21] = 16:14 (OUTPUT Active_Low Combinatorial);

DEFINE VALID ADDRESS = LA[22] * /LA[21] + /LA[23] * LA[21] + LA[23] * /LA[22];
BEGIN

ENABLE (DMAC[23:21],CYCREQ, IOCHRDY,ENMCS16, RWRQ, RFRQ, FRH) ;

ENABLE (MEMCS16) = ENMCS16; ENABLE (IOCHRDY) = CYCREQ;
/DMAC[21] = /LA[21]; /DMAC[22] = /LA[22] * /LA[21] + LA[22] * LA[21];
/DMAC[23] = LA[23] * LA[22] + LA[23] * LA[21];

CYCREQ = VALID_ ADDRESS * BALE * MEMW * /REFRESH * /INIT +
VALID ADDRESS * BALE * MEMR * /REFRESH * /INIT +
/BALE * CYCREQ * (MEMW + MEMR) * /INIT;

MEMCS16
ENMCS16

VALID_ADDRESS * /REFRESH;
VALID_ADDRESS * /REFRESH;

/IOCHRDY = (MEMR + MEMW) * CYCREQ *
(MEMW * T1 * /LATCHED_ERR + T4 * (LATCHED_ERR + /MEMW)) ;

RWRQ = VALID_ ADDRESS * BALE * MEMW * /REFRESH * /INIT +
VALID_ADDRESS * BALE * MEMR * /REFRESH * /INIT +
RWRQ * (/EOC + CYCREQ) * /INIT;

RFRQ = REFRESH * FRH * /RWRQ * /EOC * /INIT + RFRQ * /EOC * /INIT;

FRH = /(REFRESH * /FRH + RFRQ * T4);

END.
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DEVICE ARBITER (P16L8)

PIN T2

I

1 (INPUT Combinatorial)
T8 2 (INPUT Combinatorial)
T9 3 (INPUT Combinatorial)
T10 = 4 (INPUT Combinatorial)
/RWRQ 5 (INPUT Combinatorial)
/RFRQ = 6 (INPUT Combinatorial)

I

I

/LATCHED_ERR = 7 (INPUT Combinatorial)

/INIT = 8 (INPUT Combinatorial)
RM2 = 9 (INPUT Combinatorial)

/MEMW = 11 (INPUT Combinatorial)

Done = 13 (INPUT Combinatorial)

/EOC = 18 (OUTPUT Active Low Combinatorial)
/RASI = 17 (OUTPUT Active Low Combinatorial)
MCl1 = 16 (OUTPUT Active_ Low Combinatorial)
MCO = 15 (OUTPUT Active Low Combinatorial)
/R_WL = 14 (OUTPUT Active_Low Combinatorial);

BEGIN

ENABLE (RASI,EOC,MCO,MCI,R_WL);
ENABLE (Done) = 0;

EOC = INIT * T8 +
RFRQ * (/RM2 * T8 + RM2 * T10) +
RWRQ * /RFRQ *
(/R_ WL * T10 + R WL * /LATCHED ERR * T8 +
R_WL * LATCHED ERR * T10) +
EOC * T8;

RASI = INIT * T2 +
/INIT * /RFRQ * /RWRQ +
RFRQ * /RM2 * T2 * /MCO * /MC1l +
RFRQ * RM2 * T9 * MCO * /MCl +
RWRQ * /RFRQ * R WL * (/LATCHED ERR * T2 +
LATCHED ERR * T9) +
RWRQ * /RFRQ * /R WL * T9;

/MCO

INIT + RFRQ * RM2 * (/T9 + /RASI);

/MC1 = /(RFRQ * /RM2 * (/T2 + /RASI) +
RFRQ * RM2 * (/T9 + /RASI) + INIT * DONE);

R_WL = MEMW + R WL * /EOC;

END.
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DEVICE MISC (P20L8) wg12”
PIN T2 = 1 (INPUT Combinatorial)

T3 = 2 (INPUT Combinatorial)

T6 = 3 (INPUT Combinatorial)

T7 = 4 (INPUT Combinatorial)

T9 = 5 (INPUT Combinatorial)

/CYCREQ = 6 (INPUT Combinatorial)
/LATCHED*ERR = 7 (INPUT Combinatorial)
/INIT = 8 (INPUT Combinatorial)

RM2 = 9 (INPUT Combinatorial)

R WL = 10 (INPUT Combinatorial)

RASI = 11 (INPUT Combinatorial)

/RWRQ = 13 (INPUT Combinatorial)

/RFRQ = 23 (INPUT Combinatorial)
/LATCHED_MERR = 14 (INPUT Combinatorial)

/WE[2:0] = 22:20 (OUTPUT Active_ Low Combinatorial)
/LEO_GENL = 19 (OUTPUT Active_Low Combinatorial)

/LEI = 18 (OUTPUT Active Low Combinatorial)

LEB = 17 (OUTPUT Active Low Combinatorial)
/S_AND_NOT_LEB = 16 (OUTPUT Active_Low Combinatorial);

BEGIN
ENABLE (LEB,LEI,LEO_GENL,WE([2:0],S_AND NOT_ LEB);

/LEB = RWRQ * /RFRQ * R WL * RASI *
(/T2 * /LATCHED ERR + /T3 * LATCHED_ ERR);

LEI = INIT + /INIT * /RFRQ * /RWRQ +
RWRQ * /RASI + RWRQ * T7 * /LEO GENL * /R WL +
RWRQ * T7 * /LEO GENL * R WL * LATCHED ERR +
RWRQ * T7 * R WL * /LATCHED ERR +
RFRQ * /RM2 + RFRQ * RM2 * /RASI + RFRQ * RM2 * T7 * /LEO_GENL;

LEO_GENL = /INIT *(RFRQ * RM2 +
RWRQ * /RFRQ * (/R_WL + R WL * LATCHED_ERR)) * T3 * /T9;

WE[2] = INIT + RFRQ * RM2 * T6 * /T9 * /LATCHED_ MERR +
RWRQ * /RFRQ * (R_WL * LATCHED ERR + /R_WL) * T6 * /T9 * /LATCHED_MERR;

WE[1l] = INIT + RFRQ * RM2 * T6 * /T9 * /LATCHED MERR +
RWRQ * /RFRQ * (R WL * LATCHED ERR + /R WL) * T6 * /T9 * /LATCHED_ MERR;

WE[0] = INIT + RFRQ * RM2 * T6 * /T9 * /LATCHED_MERR +
RWRQ * /RFRQ * (R_WL * LATCHED ERR + /R _WL) * T6 * /T9 * /LATCHED_ MERR;

S_AND NOT LEB = /INIT * RASI * /T2 * (RWRQ * /RFRQ + RFRQ) +
RWRQ * /RFRQ * R WL * RASI * (/T2 * /LATCHED_ERR + /T3 * LATCHED_ERR);

END.
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DEVICE Output_Enable (P20L8) “ul10”
PIN T2 = 1 (INPUT Combinatorial)

T7 = 2 (INPUT Combinatorial)

T8 = 3 (INPUT Combinatorial)

T10 = 4 (INPUT Combinatorial)

SA0 = 5 (INPUT Combinatorial)

SA1l = 6 (INPUT Combinatorial)

/SBHE = 7 (INPUT Combinatorial)
/CYCREQ = 8 (INPUT Combinatorial)
/LATCHED_ERR = 9 (INPUT Combinatorial)
/INIT = 10 (INPUT Combinatorial)

RM2 = 11 (INPUT Combinatorial)

R WL = 13 (INPUT Combinatorial)

/RWRQ 14 (INPUT Combinatorial)

/RFRQ = 23 (INPUT Combinatorial)

/OEBH = 15 (OUTPUT Active_Low Combinatorial)
/OEBL = 16 (OUTPUT Active_ Low Combinatorial)
/OEH1 = 17 (OUTPUT Active_ Low Combinatorial)
/OEHO = 18 (OUTPUT Active_Low Combinatorial)
/OEL1= 19 (OUTPUT Active_ Low Combinatorial)

/OELO = 20 (OUTPUT Active_Low Combinatorial)
/OES = 21 (OUTPUT Active_ Low Combinatorial);

DEFINE B WL = /SBHE + SAO;
BEGIN

ENABLE (OEBH, OEBL, OEH1, OEH0, OEL1, OELO) ;

OEBH /INIT * RWRQ * /RFRQ * R WL * T7 * CYCREQ * SAl;

I

OEBL = /INIT * RWRQ * /RFRQ * R WL * T7 * CYCREQ * /SAl;
OELO = INIT + (RFRQ * RM2 * T2 * /T10) +
RWRQ * /RFRQ * /R WL * (B_WL * (SAl + SAO) + /B WL * SAl) * T2 * /T10 +
RWRQ * /RFRQ * R WL * LATCHED ERR * T2 * /T10;

OELl = INIT + (RFRQ * RM2 * T2 * /T10) +
RWRQ * /RFRQ * /R WL * (B_WL * (SAl + /SAO0) + /B WL * SAl) * T2 * /T10 +
RWRQ * /RFRQ * R WL * LATCHED ERR * T2 * /T10; '

OEHO = INIT + (RFRQ * RM2 * T2 * /T10) +
RWRQ * /RFRQ * /R WL * (B WL * (/SAl + SAO) + /B WL * /SAl) * T2 * /T10 +
RWRQ * /RFRQ * R WL * LATCHED ERR * T2 * /T10;

OEH1 = INIT + (RFRQ * RM2 * T2 * /T10) +
RWRQ * /RFRQ * /R WL * (B WL * (/SAl + /SA0) + /B WL * /SAl) * T2 * /T10 +
RWRQ * /RFRQ * R WL * LATCHED ERR * T2 * /T10;

END.
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DEVICE INTERFACE (P20L8) “uUll1”
PIN /OE0 = 1 (INPUT Combinatorial)

/OE1l = 2 (INPUT Combinatorial)

/OE2 = 3 (INPUT Combinatorial)

/OE3 = 4 (INPUT Combinatorial)

S_AND NOT LEB = 5 (INPUT Combinatorial)
/MEMW = 6 (INPUT Combinatorial)

LEO_GENL
LEDIAG =

7 (INPUT Combinatorial)
8 (INPUT Combinatorial)

T2 = 9 (INPUT Combinatorial)

CAS = 10

(INPUT Combinatorial)

TS = 11 (INPUT Combinatorial)
/ERR = 13 (INPUT Combinatorial)
RASI = 23 (INPUT Combinatorial)
MCl = 14 (INPUT Combinatorial)
T3 = 16 (INPUT Combinatorial)

LG = 22 (OUTPUT Active Low Combinatorial)

/OE_BYTE3
/OE_BYTE2
/OE_BYTE1
/OE_BYTEOQ
CASI = 17
/SYN_EN =

BEGIN

21 (OUTPUT Active Low Combinatorial)
20 (OUTPUT Active_Low Combinatorial)
19 (OUTPUT Active Low Combinatorial)
18 (OUTPUT Active Low Combinatorial)

(OUTPUT Active Low Combinatorial)
15 (OUTPUT Active Low Combinatorial);

ENABLE (OE_BYTEO,OE_BYTE1l,OE_BYTEZ2,OE_BYTE3, LG,CASI,SYN_EN) ;

ENABLE (T3) = 0;

OE_BYTE(

OE_BYTE1

(/OEQ * S_AND NOT LEB * MEMW) + LEDIAG;

(/OE1 * S_AND NOT_LEB * MEMW) + LEDIAG;

OE_BYTE2 = /OE2 * S_AND_NOT_LEB * MEMW;

OE_BYTE3

/LG = MEMW + LEDIAG;

/OE3 * S_AND NOT_LEB * MEMW;

/CASI = (/T2 * CAS) + (TS * CAS);

SYN_EN = ERR * MC1l * RASI * /T3;

END.
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DEVICE SAMPLE (P20RA10) “u9”

PIN /PRE_LOAD = 1 (CONTROL)
/ERR = 2 (INPUT Combinatorial)
INT2 = 3 (INPUT Combinatorial)
/MERR = 4 (INPUT Combinatorial)
INT4 = 5 (INPUT Combinatorial)
/SOE = 6 (INPUT Combinatorial)
TC = 7 (INPUT Combinatorial)
SYS_RESET = 8 (INPUT Combinatorial)
/EOC = 9 (INPUT Combinatorial)
T8 = 10 (INPUT Combinatorial)
/OE = 13 (CONTROL)

/LATCHED_ERR = 23 (OUTPUT Active_Low Registered)
/INTR3 = 22 (OUTPUT Active_ Low Registered)

/INIT = 21 (OUTPUT Active_Low Registered)

/Done = 20 (OUTPUT Active_Low Registered)
/Counter([0:2] = 19:17 (OUTPUT Active_ Low Registered)
/LATCHED_MERR = 16 (OUTPUT Active_Low Registered):;

BEGIN
ENABLE (LATCHED_ERR, INTR3,Done,Counter[0:2],INIT, LATCHED_ MERR) ;

LATCHED_ERR = ERR; CLOCK_PT (LATCHED_ERR) = INT2;
PRESET (LATCHED_ERR) = EOC;

INTR3 = MERR + INTR3; CLOCK_PT (INTR3) = INT4;
RESET (INTR3) = SOE;

LATCHED_MERR = MERR; CLOCK_PT (LATCHED_MERR) = INT4;
RESET (LATCHED_MERR) = EOC;

CLOCK_PT (INIT)= SYS_RESET; RESET (INIT) = TC * EOC; INIT = 1;

RESET (Counter[2:0]) = /INIT; CLOCK PT(Counter([2:0]) = T8;

IF (/Done = 1) THEN
CASE (Counter[2:0]) BEGIN
0) Counter[2:0] = 1;

1) Counter[2:0] = 2;
2) Counter[2:0] = 3;
3) Counter([2:0] = 4;
4) Counter[2:0] = 5;

5) Counter([2:0] = 6;
6) Counter[2:0] 7;
7) Counter([2:0] = 0;

END;

Done = Counter[2] * Counter[l] * Counter[0] + Done * INIT;
RESET (Done) = /INIT; CLOCK_PT (Done) = T8;
END.
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DEVICE TIMER (P20RA10) “u1i3”
PIN /PRE_LOAD = 1 (CONTROL)
INT1 = 2 (INPUT Combinatorial)
INT2 = 3 (INPUT Combinatorial)
INT3 = 4 (INPUT Combinatorial)
INT4 = 5 (INPUT Combinatorial)
INT6 = 6 (INPUT Combinatorial)
INT7 = 7 (INPUT Combinatorial)
INT8 = 8 (INPUT Combinatorial)
INT9 = 9 (INPUT Combinatorial)
INT10 = 10 (INPUT Combinatorial)
/EOC = 11 (INPUT Combinatorial)
/OE = 13 (CONTROL)
Tl = 23 (OUTPUT Active_ Low Registered)
T2 = 22 (OUTPUT Active Low Registered)
T3 = 21 (OUTPUT Active_Low Registered)
T4 = 20 (OUTPUT Active_Low Registered)
T6 = 19 (OUTPUT Active Low Registered)
T7 = 18 (OUTPUT Active Low Registered)
T8 = 17 (OUTPUT Active Low Registered)
T9 = 16 (OUTPUT Active Low Registered)
T10 = 15 (OUTPUT Active_ Low Registered);
BEGIN

ENABLE (T1,T2,T3,T4,T6,T7,T8,T9,T10);

/Tl = 1; CLOCK_PT(T1l) = INT1; PRESET (T1) = EOC;
/T2 = 1; CLOCK_PT(T2) = INT2; PRESET (T2) = EOC;
/T3 = 1; CLOCK_PT(T3) = INT3; PRESET (T3) = EOC;
/T4 = 1; CLOCK_PT(T4) = INT4; PRESET (T4) = EOC;
/T6 = 1; CLOCK_PT(T6) = INT6; PRESET (T6) = EOC;
/T7 = 1; CLOCK_PT(T7) = INT7; PRESET (T7) = EOC;
/T8 = 1; CLOCK_PT(T8) = INTS8; PRESET (T8) = EOC;
/T9 = 1; CLOCK_PT(T9) = INT9; PRESET (T9) = EOC;
/T10 = 1; CLOCK_PT(T10) = INT10; PRESET(T10) = EOC;
END.
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DELAY LINE TAP CALCULATIONS Calculated Time

(ns)
Derivation of the tap outputs is included here. The
calculated time is adjusted to the nearest tap of the  INT 1-1OCHRDY for Read without Error
delay line equal to or greater than the calculated time. t.p (RASI to RASn) 29C668 max 29.0
Calculated Time  tacc DRAM max 120.0
(ns) t,p (Data In to Data Out) 29C660C max 24.0
t.p (Data Out to System Data) 29C983 max 14.0
MSEL - RASI to MUX SELECT “ty (T1 to IOCHRDY) 20L10B min 6.0
tan, (DRAM) min 15.0 o (INT1 to T1) 20RA10 min -7.0
tew (QN to RASN) 29C668 max 6.0
Total 174.0
Total 21.0
INT 6 - Corrected Data and Check Bits (R/M/W)
CAS - RASIto CAS INT3 166.0
MSEL 21.0 SKEW (T6 to T3) 20RA10 max 05
tskew (CASN to Qn) 29C668 max 2.0 tPD (T3 to LEO GEN) 20L8B max 15.0
tisc DRAM min . 0.0 tPD (LEO GEN to SCn) 29C660C max 18.0
Total 13.0 Total 199.5
INT7 - Data Valid to 29C660C TS - Pulsed CAS
t.,, (RASI to RASn) 29C668 max 29.0 INTS 199.5
tec DRAM max _ 120.0 tap (INT6 to T6) 20RA10 max 20.0
1y, (Data In) 20C660C min 3.0 top (T6 to WE) 20L8B max 15.0
e (INT7 to T7) 20RA10 min 7.0 ., (TS to CASI) 20L8B min -6.0
Total 145.0 -top (CASI to CASn) 29C668 min -16.0
_ t,,cs DRAM )
INT2 - ERROR from 29C660C wes 0.0
t.o (RASI to RASn) 29C668 max 29.0 Total 228.5
tioc DRAM max 120.0 INT9 - End of WE, and RASI (RIM/W)
top (Data In to ERROR) 29C660C max 16.0 1 2205
tsy (ERROR) 20RA10 min 130 t,p (TS to CASI) 20L8B max 15.0
Total 178.0 t.p (CASI to CASn) 29C668 max 16.0
t,ycy (WE Pulse Width) DRAM min 25.0
INT3 - Corrected Data from 29C660C _;"°“((T9 o WE) 20:_8I3) e o
RAS PD -
t.p (RASI to RASN) 29C668 max 20.0 t,,, (INT9 to T9) 20RA10 min 70
tycc DRAM max 120.0
t., (Data In to Data Out) 29C660C max 24.0 Total 261.5
-top (INT3 to T3) 20RA10 min -7.0 INT8 - End of Read without Error
Total 166.0 INT2 178.0
N — RAM mi .
INT4 - MERR from 29C660C and IOCHRDY e min 900
for R/M/W Total 268.0
t., (RASI to RASn) 29C668 max 29.0 INT10 - End of RIMW Cycle
t,cc DRAM max 120.0 INTS 2615
top (Data Into MULT ERROR) 29C660C max 20.0 ' ’
— ) t» RAM min 90.0
t,, (MERR) 20RA10 min 13.0
Total 351.5
Total 182.0
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Signal Should Be (ns) Is(ns) Note
MSEL 21.0 30.0

CAS 22.0 300 =MSEL-8
INT7 145.0 150.0

INT2 178.0 180.0

INT3 166.0 170.0

INT4 182.0 190.0

INT1 174.0 180.0

INT6 203.5 210.0 =INT3+335
tg 239.0 240.0 =INT6+29
INT8 270.0 270.0 =INT2+90
INT9 273.0 280.0 =TS +33
INT10 370.0 370.0 =INT9+90
Notes:

1. Taps dependent or related to other taps are indicated

with a comment in the “explanation” column.

2. Timing figures are based on Am29C660C data.

TEST SOFTWARE OPERATING
INSTRUCTIONS

1.

Put the “80286 Protected Mode” diskette in drive A
and boot it. When “End RAM test” is displayed,
remove this diskette out and install the “Test Pro-
grams” diskette in drive A. Hit return to get the “#”
prompt.

Type “msbinin memrwcyc.exe t/n” and (enter).
When the display clears and the “#" prompt reap-
pears at the lower left of the screen, type ‘t” and
(enter) to run the program. Selections must be
entered exactly as they appear (capitalization is
important). Note that the backspace key may be
used to correct typing mistakes at the “#” prompt
only. (Control-alt-dei) also works. (Control-s),
(Control-q), (Control-scroll-lock) do not work.

To terminate the program, press the (Sys-req) key
(the memory test programs return a compare error
count and terminate when the space bar is hit;
infinite scope loop” programs require the (Sys-req)
key to terminate. This returns the “#” prompt to the
lower left screen. The program may be stopped
and restarted repeatedly. To clean up the display,
type “fresh” at the prompt; this also clears out some
system tables.

Other test programs may be similarly run by replac-
ing the above command line with “msbinin
program.exe t/n”.

PARTS LIST
Unit# Device

U1t Am29C668
u2 Am29C660C
us Am29C983
U4 Am29C983
us Am29C823
ue Am20L10B
u7 Am20L8B
us Am16L80
U9 AmM20RA10

ut1o Am20L8B
ut1 Am20L8B
ui12 Am20L8B
u13 AmM20RA10
ut4 Delay Line
u1s Delay Line
u1é Delay Line
u17 Delay Line

Description
CAPACITOR, 22 uF
CAPACITOR, 1.0 uF
CAPACITOR, 0.33 uF
CAPACITOR, 0.1 uF
CAPACITOR, 0.01 uF

RESISTOR PACK, 10 PIN SIP, 1 k

RESITORS, 39 Q

DRAM, ZIP PACK, 1 M x 1

AM29C660C
AM29C668
AM29C983
AM29C823
AM16L8D
AM20L8B
AM20L10B
AM20RA10-20

DELAY LINE, 10 ns, DIP-14

SOCKET, 14 PIN DIP
SOCKET, 20 PIN DIP
SOCKET, 24 PIN DIP

SOCKET, 68 PIN PGA/PLCC CONV.

SCHEMATICS

Description

Configurable Dynamic
Memory Controller

32-Bit Cascadable Error
Detection and Correction
Circuit

Multiple Bus Exchange
Multiple Bus Exchange

Syndrome Latch for
diagnostic use

Memory Decoder

1/0 Decoder

Control Logic
Asynchronous PAL
Interface Controller
Interface Controller
Interface Controller
Timing Tap Outputs
System Timing Generation
System Timing Generation
System Timing Generation
System Timing Generation

Quantity per Board
7
1
76
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IBM PS/2* 12-Mbyte Memory Board with

e

Error Detection and Correction (EDC)

by Douglas Lee, Applications Specialist

INTRODUCTION

This Micro-Channel-compatible evaluation board
demonstrates the capabilities of the Am29C668 4M
Configurable Dynamic Memory Controller (CDMC) and
the Am29C660C Error Detection and Correction Circuit
(EDC). As newer systems and software demand much
larger memories, it becomes increasingly more impor-
tant to protect the memory from soft errors, thereby
increasing system reliability. Soft errors occur when a
single bit is complemented due to noise, alpha particles
or some other event. The most common erroris a single-
bit error where one bit of a memory word s incorrect. The
Am29C660 EDC detects and corrects all single-bit errors
and detects all double and some multiple-bit errors.
When a word is accessed, it is checked for errors; if an
error is found, the corrected data is written back. This
board also performs memory “scrubbing,” which is the
detection and correction of single-bit errors during re-
fresh to maintain the integrity of seldom-accessed
memory locations. Scrubbing the memory prevents
accumulation of single-bit errors. Double-bit errors result
when two single-bit errors occurin the same word. Since
the probability of this happening is quite low, scrubbing
memory prevents most double-bit errors.

The Am29C668 CDMC is capable of controlling large
memories, up-to-four banks of 4-Mbit DRAMS, and driv-
ing the RAS CAS, and address lines without external
drivers or damping resistors. It automatically generates
the addresses needed for normal row refresh and refresh
with scrubbing. The CDMC also has many features not
utilized in this design, but appropriate for other systems,
e.g, this design does not require reconfiguration of
the CDMC through a simple 1/O interface (see CDMC
discussion, page 5).

Distinctive Characteristics

« 12Mbytes of dynamic RAM (1M x 1-bit packages). 12
DRAM modules and 9 zip packages are used for
maximum component density.

« Am29C668 4M Configurable Dynamic Memory Con-
troller/Driver.

« Am29C660C high-speed 32-bit Error Detection and
Correction Circuit corrects all single-bit errors, detects
all double and some multiple-bit errors.

« One Wait State at 16 MHz with 120-ns DRAMs. Zero
Wait States at 16 MHz with 70-ns DRAMs. One Wait
State at 20 MHz with 85-ns DRAMs. Supports both
basic transfer cycles and matched memory cycles.

» Supports memory scrubbing during refresh for
improved reliability.

« The ability to relocate memory and I/O space through
the Programmable Option Select (POS) registers. All

options are software configurable through the POS
registers.

» Dynamic Memory Timing Controller implemented
using Programmable Array Logic (PAL®) devices and
delay lines.

* Am29C688 used in Am29368-compatible mode with
logic to reconfigure the Am29C668.

= 32-bit internal data bus with 7-bit check bit and 7-bit
syndrome bus.

= Syndrome latch for diagnostic and test purposes.
» Directinterface with PS/2Model 70and80 systems.

A BRIEF OVERVIEW OF THE MICRO-
CHANNEL ARCHITECTURE

The Micro-Channel bus used in IBM PS/2 systems pro-
vides for three different add-in cards: 16-bit, 16-bit with
auxillary video extension and 32-bit. This board is de-
signed for 32-bit systems and fits only in the current IBM
PS/2 Models 70 and 80 systems. The Micro Channel
supports two types of bus accesses: Matched Memory
Cycles and Basic Transfer Cycles. The Basic Transfer
Cycle is supported by all PS/2 models. It permits at least
200-ns minimum cycle time with wait states of at least
100 ns. A card designed to support this type of access
canbeusedin any ofthe PS/2 models. Matched Memory
Cycles are only supported in 80386 machines, currently
Models 70 and 80; cycle time is dependent upon the
processor cycle time. Eachaccessis aminimumof three
processorcycles; however, additional wait states may be
added. Cards designed to support this type of access
cannot be used in all machines. This design supports
Matched Memory Accesses, because it provides for the
highest performance. Table 1 shows the number of wait
states for specific memory access times and processor
speeds for Read accesses. If only Basic Transfer Cycles
are used, all Read accesses require one wait state
(300 ns cycle time) to complete. Table 2 shows the
read-access time (Status Valid to Read Data Valid) for
different speed DRAMs.

* PS/2 is a registered trademark of IBM Corporation.
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Table 1. Number of Wait States for Processor Speed DETAILED DESCRIPTION

and Memory Access Time

The primary data paths and functional elements are

M‘";_‘:"V Access . Gpn;‘:'“ss“ c;;cnll(lﬂ shown in Figure 1. The following discussion describes
ime-ns z z each section of the block diagram in detail. Components
120 1 2 not appearing in the block diagram but existing on the
100 1 2 schematic are also discussed.
85 1 1
80 1 1 Edge Card Connectors
70 ] 1

This board can only be used in a 32-bit Micro Channel

backplane. Interrupt Request IRQ3is used by the board

Table 2. Read Access Times For Different DRAMs from to signal the detection of a multiple-bit error to the system

Status Active processor. The interrupt can be disabled by writing a
zero to bit 0 of POS Register 104. All signals used from
DRAM Access Memory Board the edge connector are listed on pages 8 and 9.
Time-ns Access Time-ns
120 188 Dynamic Memory Timing Control (DMTC)
18050 Igg The timing controller for this board was implemented
80 148 using PAL devices and delay lines forincreased flexibility
70 138 and performance. The following subsections describe

the signals and their function.

Micro-Channel
Bus-Connector

Timing S ETAY LINE ‘

PN
RASI
DMTC | 1MBIT
- WE || mveTxa2 VB!
MICRO
SR
- —| BA > | imBiTx32 | TMBIT
Am29Ce68 | RAS
SA BUS CoMC [
™| 1MBITX32 | 1MBIT
x7
L L
SD BUS DBUS
> SYSTEM
DATA |
INTERFACE cB
> AM29C660C
EDC
~ SYSTEM SC Bus
* SYNDROME [
INTERFACE
11587-001A

Figure 1. Block Diagram
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I/O Channel Ready Logic

/0 Channel Ready IOCHRDY is used to signal the
processor that valid data is ready during Reads and to
signal completions of Writes. When IOCHRDY is pulled
High, the processor inserts wait states until IOCHRDY is
asserted. This signal is very important since it must be
deasserted before Command Signal CMDis asserted by
the system. If this does not happen, the system does not
insert wait states and data is lost or corrupted.

There are two different types of extended cycles during
a basic transfer cycle: synchronous and asynchronous.
Synchronous extended cycles insert only one wait state.
IOCHRDY is asserted within 30 ns of CMD going active.
During asynchronous extended cycles, IOCHRDY is
asserted 60 ns at most, before Read data is valid. To
insert a wait state during a matched memory cycle,
IOCHRDY is asserted 45 ns, at most, before Read data
is valid. As the processor speed increases, this time
proportionally decreases, i. e., a 20-MHz machine has
33 ns before Read data is valid. For this boardto work in
faster machines, IOCHRDY is asserted when the dataiis
valid. Inthis manner, the board functions properly in any
system with only a minor speed penalty in slower
machines. For basic transfer cycles, the board uses
synchronous extended cycles to maximize the memory
bandwidth.

If acycle has not completed, a wait state must be inserted
regardless of the next type of access. The signal BBar
and Busy are used to handle this logic. When the system
initiates a memory access, signaled by CMD going
active, BBar is active. BBar remains active until the end
of the board memory cycle, signaled by End of Cycle
EOC. When the system ends its memory access by
deactivating CMD, Busy goes active and remains active
until the end of the board memory cycle. If any other
access to the board is attempted while Busy is High,
IOCHRDY is deasserted and wait statesinserted untilthe
board’s memory cycle terminates.

RASI, Mode Selection and End of Cycle

The Row Address Strobe Input RASI, Mode Control MC |
and End of Cycle EOC signals are generated by U4.
RASIis used to initiate the timing sequence and to signal
the Am29C668 to generate the RAS  signals to the
appropriate bank of memory. Two different sets of mode
signals are generated, AC[2:0]and MC[1:0]. The AC[2:0]
signals are used forinternal control withinthe DMTC. An
encoding scheme for the memory state was selected to
minimize inputs to the PAL devices. If a fully decoded
scheme were used, six signals instead of three would be
required. There is no speed penalty since the memory
state must be latched for the duration of the memory
cycle and the encoding and latching are all performed by
one PAL. Table 3 shows the decoding of AC[2:0].

Table 3. AC[2:0] Decoding

AC[2:0] Mode
000 No Operation (ldle)
001 Long Write (32-bits)
010 Write
011 Not Allowed
100 Read
101 Refresh without Scrubbing
110 Refresh with Scrubbing
111 Initialize

MC, and MC,, control the type of memory access for the
CDMC. Table 4 shows the decoding of MC, and MC,.

Table 4. MC, and MC,, Decoding

MC, MC, Mode
(o] o] Refresh without scrubbing
0 1 Refresh with scrubbing or initialize
1 0 Read/Write mode
1 1 Reset Refresh Counter

The EOC signal is generated to signify the end of any
memory cycle. This signal also resets AC[2:0]. When
ACJ[2:0] = 000, the End of Timing (EOT) becomes active
and resets the timing-tap output to ensure that there can
be no glitch on RASI. If EOC resets both AC[2:0] and the
timing taps, the timing taps may be reset before AC[2:0]
is reset. The RASI logic goes High until AC[2:0] is reset,
resulting in a glitch on RASI and consequently on RAS
to the DRAMSs.

Latched Error, Initialization and Interrupt Signals

There are two different cycle lengths: a short cycle used
by Read without Error, Refresh, Long Write (32-bits) and
Initialize and a long cycle used by Read with Error, Read/
Modify/Write and Scrubbing. All cycle lengths except
Readcycles are known atthe beginning. Because of this,
careful attention must be paid to the timing and logicused
during Read cycles. The EDC generates the ERROR
signal when a single or multiple-bit error is detected
during a Read, Read/Modify/Write or Scrubbing cycle.
LErr is used by the rest of the board to determine if a
Read cycle is long or short. PAL20RA10, U5, samples
ERROR at Timing Tap T2 and, if ERROR is false, signal
LErr is deasserted. LErr is preset by EOC. This logic
assumes that every Read cycle is a long cycle unless
ERRORisfalse at T2. This assures correct and concise
logicimplementation. If LErr were conditionally asserted
instead of deasserted, much more complicated logic
would be required, since another signal is needed to
indicate when LErr is valid.
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Device U5 also latches the Initialize INIT signal, which is
generated by the Board Enable BDENBL going active.
INIT remains active until Terminal Count TC is received
from the Am29C668 indicating that all the memory loca-
tions have been initialized. Counter{0:3] counts the
wake-up cycles. When eight wake-up cycles are com-
pleted, DONE is asserted signaling the DMTC that it can
begininitializing memory. Atthe end of a wake-up cycle,
Counter[0:3]isincremented. Counter[0:3]is initialized to
0 and when the count reaches 7, DONE is asserted and
the counter is inhibited. DONE remains active until INIT
is deactivated.

Memory-Board Interrupt INTR signals that a multiple
error has occurred at time T4. INTR goes to Interrupt
Request IRQ3 on the backplane and is cleared by an
access to the syndrome latch signal SynLE. This signal
can be disabled by writing a zero to bit 0 of POS register
104. Registering INTR3 would not be required in sys-
tems that support bus retry. The Channel Check signal
ChCk can also be generated by writing a one to bit 3 of
POS Register 104. Device U5 generates SetChCkwhen
a multiple error is detected and ChCk is enabled. This
signal is normally disabled.

Pulsed CASI, Write Enable and Miscellaneous
Logic Functions

The Column Address Strobe Input CASlis a pulsed CAS
line used when connecting the data-in lines to the data-
out lines on the DRAMs. The Interface Controller PAL
U11 generates this signal from the registered timing-tap
signals fromthe Micro Channel Interface EPB2001, U13.
Figure 2 shows how the pulsed-CASI signal is produced.
This only applies during Read/Modify/Write and Refresh-
with-Scrubbing cycles. Note that attime Ainthe diagram,
the DRAM outputs are three-stated so that the
Am29C660 can drive the data bus.

Write Enable WE is used to write the valid data into the
memory. One WE signal is used per bank to drive the
high capacitive load. The total delay must be calculated
since the load capacitance is greater than the load
specified in the data sheet (CL = 50 pF). The load
capacitance of the DRAMs is (4 x 60)+ (3 x 5) = 255 pF,
and the internal resistance of the PAL is assumed to be
4 Q during High-to-Low transitions. The maximum High-
to-Low transition time is calculated from 4.0 Vto 0.8 V.
The final output voltage is 0.5 V; therefore, the maximum
High-to-Low transition time is:

- R -t
Vour = (40 - 0.5) exp(4 T pF)+ 05

. _ 3 0.8-0.5)_

t (High to Low) = (4 ©)(255 pF)(-1) In (' 080 5) 25ns
This is added to the worst-case t_, (15 ns) to get the
worst-case delay. The minimum l-riz;h-to-Low transition
is calculated from 2.4 to 0.8 V with a final voltage of
03V:

Vour = (2.4 - 0.3) GXP(EBT)_X-_;SS_E) +0.3

t (High to Low) = (4 Q)(255 pF)(-1) In (g-%—:%g—) ~15ns

The minimum Low-to-High transition is from 0.8 V to
2.4V with afinalvoltage of 4.0 V. The internal resistance
of the PAL is approximately 50 Q:

-t
Vour = (0.8 - 4.0) exp(m)+ 4.0

. . 2.4-4.0)_
t (Low to High) = (50 Q ) (255 pF) ( 1)In(0.8_4.0) 9ns
Miscellaneous logic functions are performed by U6, a
combinatorial PAL device. Latch Enable Output or
Generate LEO_GenL is a dual-purpose signal; when
active High, it enables the output latches of the

RASI _l

L

T2 |

TS

L
L

cAsl __|
oAs, |

[ 1

L
e

A

WE,

L

11587-002A

Figure 2. Idealized Timing Diagram for Pulsed CASI Signal
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Am29C660; when it is active Low, the Am29C660
generates check bits for the data in the input latch. The
Latch Enable Input signal LE| controls the latching of data
into the Am29C660. When LEl is High, the input latch is
transparent; when LElis Low, datais latched. The Latch
Enable Bus signal LEB controls the data latch from the
internal data bus to the systembus. When LEB is High,
the latchistransparent. S_AND_| EBis usedto condition
the output enables from the system bus.

Delay Lines

Delay lines D1 through D4 provide the timing reference
signals; RASI initiates the timing sequence. See page
18-19forthe tap-timing calculations of the timing configu-
ration currently installed on the board. The board is
designed for 120-ns DRAMs. According to the board
timing requirements, each timing signal must be reset at
the beginning of each cycle. A PAL20RA10, U9, isused
to register the timing taps. Since it has separate clocks
for each of its 10 output registers, this PAL saves board
space over a discrete-logicimplementation. The outputs
are reset by EOC going active. Registering the timing
taps allows shorter cycle times, since it is not necessary
to wait for the delay line to clear.

Interface Control

PAL U7 generates Output Enable System Data
OE_SD[0:3], Output Enable EDC OE_EDC[0:3] and LG
signals. Output Enable System Data controls the gating
of data from the system bus to the memory. These
signals control the flow of data during Writes to memory
and to the EDC diagnostic register. For diagnostic
Writes, the lower word (16 bits) from the data bus is input
to the Am29C660. For Writes, the data is controlled by
the BE[0:3] signals generated by the system board.
Output Enable EDC determines which data bytes the
EDC supplies during Write and Read/Modify/Write
cycles. The EDC supplies the unaltered bytes during a
Write and provides the corrected bytes during a Read/
Modify/Write cycle. LEY controls the input data latches
of the bus transceivers. When the signal is active, the
data latch is transparent; when it is inactive, the system
data is latched.

PAL U8 generates OE_BD[0:3], Syndrome Output En-
able, Syndrome Latch Enable and Diagnostic Latch
Enable. Syndrome Output Enable SYNOE, an active-
Low signal, enables the Am29C823 to drive the datafrom
the syndrome latch onto the system data bus. Syndrome
Latch Enable SYN_LE is an active-Low signal that
latches the syndrome bits when an error is detected.
OE_BD[0:3] drives the OE_C and OE_D inputs of the
transceivers that provide the system data-bus interface.
These signals gate the data lines to and from the various
byte-wide data bits of the internal data bus on the board,
the D bus. Note from the PAL equations that the gating

signals are conditioned by S_AND_LEB to ensure
proper latching of the data from the DRAMs. LEY
enables the latches on Writes; LEB enables the latches
on Reads.

Configurable Dynamic Memory Controller

The Am29C668 Configurable Dynamic Memory Control-
ler U1 supplies the DRAM array with multiplexed ad-
dress, RAS_ and CAS_ signals. Timing inputs to this
device are provided by the delay lines registered by U9.
The Am29C668 is used in the Am29C368-compatible
mode and can be reconfigured by writing data to the
configuration registers.

During Initialization, the Am29C668 generates initializa-
tion cycles untilthe entire memory is writtenwith data and
check bits. When the initialization is complete, TC is
asserted High signalingthe DMTC that the initialization is
complete. RAS-only Refresh is used when no memory
scrubbing is selected. Note: AC10 and AR10 are not
connected since 1-Mbit DRAMs are used; 1-Mbit DRAMs
use only 20 address bits.

Error Detection and Correction Circuit

The high-speed Am29C660C EDC U2 is used in the
correct-always mode, i.e., data is always corrected be-
fore it is output to the bus. The fly-by mode, where the
processor is interrupted when errors occur, cannot be
used with PS/2 systems because the 80286/386 micro-
processors do not support bus retry. In systems that
support bus retry, datais read from the board as soon as
itis accessed from memory. This saves24nst_ Dataln
to Data Correct for the C-speed part, during memory
Reads. Memory Write times are not changed.

This device generates check bits during a Write and
verifies the data and check bits during a Read. Separate
error ERROR and multiple-bit error MULT_ERROR
signals are output. If MULT_ERROR is asserted, then
IRQ3 s active if enabled by IRQOE. Code ID generates
input signal CODE ID0 to U2. If Code ID is active, a 32-
bit slice is selected (the chip may operate in 32- or 64-bit
mode); if Code ID is not active, the chip operates in
internal-control mode. Using the internal-control mode,
the user can access the diagnostic registers in the
Am29C660C and more easily debug and test the board.
See the Am29C660 data sheet for further details.

The Am29C660 internal diagnostic latch is available
from the I/O channel. Data is written to the diagnostic
latch through an I/O address specified through the
POS registers. Bits 2 and 3 of POS Register 102 select
four different addresses for the diagnostic latch. A
16-bit data word is written to the register to configure the
part. Consult the Am29C660 data sheet for further
information.
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The OESC pin on the EDC is grounded to eliminate the
OESC-to-SC bus output-enable delay in the Am29C660
with a resulting improvement in performance. This could
not be done in an application where the CB bus and SC
bus are tied together.

The Am29C660 must initialize the memory to a known
state onreset. On BdEnbl going active, the data currently
in the input latch is used to initialize the memory. If a
known pattern must be written into memory, it may be
done after the hardware initialization in software.

System Data Bus Interface

The 74F543s,U15to U18, provide data latching between
the system bus and internal D bus. The control signals
for these devices are driven by the interface controller
PAL devices, U7 and U8. Note thatinthe documentation
for the PAL, the equations include a MemWr term,
included to prevent D-bus contention during a Read-
without-Error cycle after T2. The latches in the 74F543
are usedto latchthe Write data and free the bus. |f simple
transceivers are used, the data on the bus must be held
untilthe Write data set-uptime forthe DRAMsiis satisfied,
adding to the access time. By usingthe 74F543s, 100 ns
are saved during Read/Modify/Write cycles by latching
the data and releasing the bus after the Read access is
completed. This is not a problem on Long Write cycles
since the data can be written directly to memory.

Syndrome Register (Syndrome Logic)

An Am29C823 register U12 stores the syndrome bits
when an error is detected by the Am29C660C at timing
tap T3. The contents of this register can then be read by
the microprocessor from the I/O channel in an interrupt
routine. Decoding the syndrome register bits reveals
information about the error that occurred (see
Am29C660 data sheet). The error signal is qualified by
MemRd and MemWr so thatthe syndrome latch can only
be updated when errors occur during a Read or Write
operation. INIT is connected to the CLR of the
Am29C823 to clear the latch on power-up and system
reset.

DRAM Array

The DRAM array consists of two rows of two blocks: the
32-bitdata block and 7-bit check-bit block. ltis organized
as three rows of 39 bits by 1 Mbit devices, or 117
components. Total user memory is 12 Mbytes. By using
a pulsed CAS signal to the chips, the data-in pins canbe
tied to the data-out pins on the DRAMSs. This facilitates
routing on the PC board by minimizing the number of
traces to the DRAM array. Four 9-bit memory modules
and three zip packages are used per memory bank. The
first four bits in each module are data bits. The last bitin
each module and the three zip packages are used to

store the check bits. The ninth bit of each module has
separate data-in and data-out lines, while the rest of the
module has common data-in and data-out lines. The
check bits require separate data-in and data-out lines,
since OES is tied Low to minimize the delay from check-
bit generation to write back. This design uses 120-ns
DRAMSs to minimize cost. Using faster memories lowers
the access times and reduces the number of wait states
needed (See Tables 1 and 2).

Micro-Channel Bus Interface

Devices U13 and U14 perform most of the Micro-
Channel interface. U14 is a comparator that compares
the upper eight address bits with the eight bits setin POS
register 105. If the upper bytes match and MADE24 is
inactive, AddressValid 32is active. U13is a user-config-
urable Adapter Interface device, the EPB2001, designed
specifically for the PS/2 Micro Channel. It decodes the
lower 24 bits of the address, Address Valid 32, MIO, SO
and S1 and signal-valid memory accesses and I/O ac-
cesses. CdDS16 and CdDS32 are also generated by
this device. CdDS16 is generated during an access to
the syndrome latch, Am29C660’s diagnostic register,
Am29C668 configuration register or to memory.
CdDS32is only asserted duringmemory accesses. Both
CdDS16 and CdDS32 are generated during memory
accesses to indicate that the memory supports both 16-
and 32-bit transfers.

Unit 13 also contains all the POS registers. Bits 0to 2 of
POS register 104 are output on POS 1/0 0 to 2 and are
used to drive the DMTC inputs IRQEN, RM and CodelD.
By writing the appropriate values to these bits, the board
is configured (Figure 3). MemRd and MemWr generated
by the DMTC logic could have been generated from the
Micro-Channel Interface device, U13. Thiswas notdone
because it is faster to begin Read cycles when status
becomes valid, ratherthanwaitfor U13 to generate them.
Generating these signals viathe DMTC logic saves 55 ns
on basic transfer cycles and 82 ns on matched memory
cycles at 16 MHz.

POS CONFIGURATION INFORMATION

Figure 3 shows the mapping of control bits in the POS
registers. The use of POS registers eliminates the need
for jumpers and helps the user to easily resolve conflicts
in memory and I/O mapping. This design provides
maximum flexibility when reconfiguring the board via this
interface.

POS-register 104 is used to configure the modes of the
board. If Bit 0 is zero, interrupts from the board are
disabled; a one enables the interrupts. Bit 1 determines
the type of refresh, one for scrubbing and zero for non-
scrubbing. Bit 2 determines the mode of the
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Am29C660C. If Bit 2 is zero, the board is in normal
operating mode; if one, the board is running diagnostics
and using the values in the diagnostic register to control
the operation of the Am29C660C. Bit 4 is the fast bit for
indicating the processor speed, zero for 16-MHz systems
and one for faster systems. This bitis usedin generating
the wait states for the board.

POS-register 102 is used to determine the I/O address
space. Bits 0:2 selectone of eight address spaces forthe
CDMC, Syndrome and Diagnostic Latch. The total 1/0
space for the board is 4 Kbytes. Since an I/O-mapped
scheme is used to reconfigure the Am29C668, it occu-
piesthe lower 2 Kbytes I/0 address space. The lower 11
bits of the address, bits A 00 to A 10, are the configuration
data used by the Am29C668. The CDMC could have
been mapped to a single I/0 address with the configura-
tion data written on the data bus, but this would require a
multiplexer to select between the data and address bus,
which adds extra board space, control logic and delay to
the system. Using this I/O-mapped scheme, the Micro-
Channel interface can drive Cd DS 16 and Cd DS 32,

saving additidnal logic. The Syndrome Latch I/O address
is byte 0 and the Diagnostic Latch I/O address is byte 1
of the upper 2 Kbytes of the 1/0 space.

POS-register 106 contains the upper eight bits of the
memory board. These eight bits are compared with the
upper eight bits on the system bus to determine if the
access is the same address space as the memory.

POS-registers 100 and 101 contain the board 1D for
identifying the card during setup. POS-register 102 bit 0
is used as the board-enable signal. This bit is reset by
ChReset or by the processor writing a zero to this bit
during a card-setup cycle. While this bitis zero, the board
does not respond to any access. This bit can only be
reset by the processor during card-setup cycles and
cannot be set during normal I/O Writes to this register.
POS-register-105 bit 7 is the channel-check flag, the
state of this bit is output on the bus through the ChCk pin.
This bit is set by ChReset or by writing a one to the
location. The bit is reset by asserting SetChk or by
writing a zero to the location.

/O Address
Space

Unused

BdEnble

Register102| 7|6 I 5|4|3

[2]1]o]

JEE———

‘@
Unused ©
w

fe———

Board Enable

Selects one of eight
predefined I/O spaces

@ | ChCkOE

Register 104 [ 7 | 6 | 5 |

»

=} w
2 @
| © |RM| £ |
[2]¢]0]
L 0= Disabled
1 = Enabled
0 = No Scrubbing
1 = Scrubbing

0 = Normal Mode

1 = Diagnostic Mode
ChCk Disabled
ChCk Enabled

e

Memory Mapping High

Register106 | 7 [ 6 [ s[4 ]a]2]1]o

»
|

Upper 8 Address Bits

. 11587-003A

Figure 3. POS Registers Bit Map
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EDGE CONNECTOR PIN NAMES

Pin #
AM4
AM3
AM2
AM1
A1

A47
A48
A49
A50

Signal Name

MMC CMD
GND

MMC

CD SETUP
MADE 24
GND

A1

5V
50
S1
Mo

CD CHRDY
D00
D 02
+5V
D 05
D 06
D07
GND

REFRESH

+5V
D10
D 11

110

B21

B22
B23
B24
B25
B26
B27
B28
B29
B30
B31

B32
B33
B34
B35
B36
B37
B38
B39
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50

Signal Name
GND

MMCR

GND
GND
A23
A22
A21
GND
A 20
A19
A18
GND
A17
A16
A15
GND
A14
A13
A12
GND

1RQ 03

GND

GND
RESERVED
RESERVED
CHCK

GND

CMD

CD SFDBK
GND

D 01

D03

D 04

GND
CHRESET
RESERVED
RESERVED
GND

D 08
D 09
GND
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Pin # Signal Name /0 Pin # Signal Name 110
A51 D13 110 B51 D12 110
A52 - - B52 D14 110
A53 RESERVED - B53 D15 110
A54 - - B54 GND -
A55 Cd DS 16 (o) B55 - -
A56 +5V - B56 - -
A57 - - B57 - -
A58 - - B58 GND -
A59 RESERVED - B59 RESERVED -
A60 RESERVED - B60 RESERVED -
A61 GND - B61 RESERVED -
A62 RESERVED - B62 RESERVED -
AB3 RESERVED - B63 GND ) -
A64 RESERVED - B64 D16 110
AB5 - - B65 D17 /0
A66 D 19 110 B66 D18 110
A67 D 20 110 B67 GND -
A68 D 21 110 B68 D 22 110
AB9 +5V - B69 D23 110
A70 D24 110 B70 RESERVED -
A71 D 25 110 B71 GND -
A72 D26 /10 B72 D 27 110
A73 +5V - B73 D28 110
A74 D 30 110 B74 D 29 110
A75 D 31 o] B75 GND -
A76 RESERVED - B76 BEO |
A77 - - B77 BE 1 |
A78 BE3 ] B78 BE2 I
A79 - - B79 GND -
A80 Cd DS 32 (@) B80 - -
A81 - - B81 A24 I
A82 A 26 1 B82 A25 |
A83 A27 | B83 GND -
A84 A28 | B84 A 29 1
A85 +5V - B85 A 30 |
A86 RESERVED - B86 A 31 |
A87 RESERVED - B87 GND -
A88 RESERVED - B88 RESERVED -
A89 GND - B89 RESERVED -

Note: Side A is the component side, Side B is on the solder side.

Signal input to the board.

Signal Output from the board.

Signal Input to and Output from the board.
Not Applicable.
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PAL SOURCE CODE LISTINGS

The assembler used was PLPL. Functional test vectors were used to verify these equations, but are not listed to
conserve space.

“Douglas Lee August 9, 1988
32-Bit Error Detection and Correction Board for the Micro Channel.”

DEVICE Channel Ready (P22V10) “u3”

PIN Fast = 1 (INPUT Combinatorial)
AC[2:0] = 2:4 (INPUT Combinatorial)
LongWord = 5 (INPUT Combinatorial)
/MemReq = 6 (INPUT Combinatorial)
/Cmd = 7 (INPUT Combinatorial)
/CdDS16 = 8 (INPUT Combinatorial)
/MMCmd = 9 (INPUT Combinatorial)
/MMC = 10 (INPUT Combinatorial)
EoC = 11 (INPUT Combinatorial)
/BdEnbl = 13 (INPUT Combinatorial)
Tl = 14 (INPUT Combinatorial)

ALE = 23 (OUTPUT Active_ High Combinatorial)
/IOChRdy = 22 (OUTPUT Active_Low Combinatorial)
/MMCr = 21 (OUTPUT Active_Low Combinatorial)
/MemWr = 20 (OUTPUT Active_Low Combinatorial)
/MemRd = 19 (OUTPUT Active_Low Combinatorial)
BBar = 18 (OUTPUT Active_High Combinatorial)
Busy = 17 (OUTPUT Active High Combinatorial)
Delayed = 16 (OUTPUT Active_High Combinatorial);

DEFINE Read = /AC[0] * /AC[1] * ACI[2],
Write = /AC[0] * AC[1l] * /AC[2],
Long_Write = AC[0] * /AC[1] * /AC[2];

BEGIN
ENABLE (Busy, LongWord,BBar) ; ENABLE (T1,BdEnbl) = 0;
ENABLE (IOChRdy) = BdEnbl;

IOChrdy = CdDS16 * Delayed + Fast * /T1 +
/Fast * /Delayed * /Cmd + /Fast * /Delayed * /MMCmd + /Fast * Delayed * /T1;
Delayed = Busy * (SO + S1) + Delayed * /Eoc * MemReq;

BBar Cmd * MemReq + BBar * /EoC;
Busy = BBar * /Cmd + Busy * /EoC;

ALE = /Cmd * /MMCmd * /Busy;
MemRd = (Cmd + MMCmd) * Read;
MemWr = (Cmd + MMCmd) * (Write + Long_Write):;

MMCr = MMC * MemReq * /Delayed;

END.
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DEVICE RASI (P22V10) “u4”
PIN /Cd = 1 (INPUT Combinatorial)

LongWord = 2 (INPUT Combinatorial)
/MemReq = 3 (INPUT Combinatorial)

/SO0 = 4 (INPUT Combinatorial)
/S1 = 5 (INPUT Combinatorial)
/FR = 6 (INPUT Combinatorial)

RM = 7 (INPUT Combinatorial)

/Init = 8 (INPUT Combinatorial)

T2 = 9 (INPUT Combinatorial)

T8 10 (INPUT Combinatorial)

T9 = 11 (INPUT Combinatorial)

T10 = 13 (INPUT Combinatorial)

/Latched Err = 14 (INPUT Combinatorial)
Done = 15 (INPUT Combinatorial)

Busy = 16 (INPUT Combinatorial)

AC[0:2] = 21:23 (OUTPUT Active High Combinatorial)
MC1l = 20 (OUTPUT Active High Combinatorial)

MCO = 19 (OUTPUT Active_High Combinatorial)

RASI = 18 (OUTPUT Active_High Combinatorial)

/EoC = 17 (OUTPUT Active Low Combinatorial);
DEFINE Read = /AC[0] * /AC[1] * AC[2],

Write = /AC[0] * AC[1l] * /AC[2],

Long Write = AC[0] * /AC[1] * /AC[2];

BEGIN

ENABLE (RASI,EoC,MC0,MC1l,Eo0T,AC[0:2]);
ENABLE (Done,Busy,Latched Err) = 0;

AC[0] = (LongWord * MemWr) * /Cmd + (Refresh * /RM + Init) * /Busy + AC[0]
AC[1] = (/LongWord * MemWr) * /Cmd + (Refresh * RM + Init) * /Busy + AC[1]
AC[2] = (MemRd + Refresh + Init) * /Busy + AC[l] * /EoC;

EoC = Init * T8 + Refresh * /RM * T8 + Refresh * RM * T10 +

* /EoC;
* /EoC;

Write * T10 + Long Write * T8 + Read * (/Latched Err * T8 + Latched Err * T10)

EoC * T8;

RASI = (Init * /T2 4+ Refresh * /RM * /T2 * /MCO * /MC1l +
Refresh * RM * /T9 * MCO * /MC1l +
(MemRd + Read) * (/Latched Err * /T2 + Latched Err * /T9) +
(MemWr + Write) * /T9 + MemWr * LongWord * /T2) * /Busy;

MCO = Init + Refresh * RM * (/T9 + /RASI) + DMCSel;
MCl = /(Refresh * /RM * (/T2 + /RASI) + Refresh * RM * (/T9 + /RASI) + Init * Done);
END.
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DEVICE SAMPLE (P20RA10) “us5”

PIN /PRE_LOAD = 1 (CONTROL)
INT2 = 2 (INPUT Combinatorial)
INT4 = 3 (INPUT Combinatorial)
ChCKOE = 4 (INPUT Combinatorial)
/EoC = 5 (INPUT Combinatorial)
/SynSel = 6 (INPUT Combinatorial)
TC = 7 (INPUT Combinatorial)
/BdEnbl = 8 (INPUT Combinatorial)
/Err = 9 (INPUT Combinatorial)
/MErr = 10 (INPUT Combinatorial)
IRQOE = 11 (INPUT Combinatorial)
/OE = 13 (CONTROL)

/LErr = 23 (OUTPUT Active_ Low Registered)

/Intr = 22 (OUTPUT Active Low Registered)

/INIT = 21 (OUTPUT Active_Low Registered)

/Done = 20 (OUTPUT Active Low Registered)
/Counter[0:2] = 19:17 (OUTPUT Active_Low Registered)
/LMErr = 16 (OUTPUT Active Low Registered)

/SetChCk = 15 (OUTPUT Active_ Low Combinatorial);

[

BEGIN
ENABLE (LErr, Intr,Done,Counter[0:2], INIT, LMErr) ;

LErr = Err; CLOCK_PT(LErr) = INT2; PRESET(LErr) = EoC;

Intr = MErr + Intr; CLOCK_PT(Intr) = INT4; RESET(Intr) = SynSel;
ENABLE (Intr) = IRGOE*BdEnbl;

LMErr = MErr; CLOCK_PT(LMErr) = INT4; RESET(LMErr) = EoC;
CLOCK_PT (INIT)= BdEnbl; RESET (INIT) = TC * EoC; INIT = 1;

RESET (Counter[2:0]) = /INIT; CLOCK_PT(Counter([2:0]) = EoC;
IF (/Done = 1) THEN CASE (Counter[2:0]) BEGIN

0) Counter[2:0] = 1;

1) Counter([2:0] = 2;

2) Counter[2:0] = 3;

3) Counter([2:0] = 4;
4) Counter[2:0] = 5;
5) Counter[2:0] = 6;
6) Counter[2:0] = 7;

7) Counter([2:0] = 0;

END;
Done = Counter[2] * Counter[l] * Counter[0] + Done * INIT;
CLOCK_PT (Done) = EoC; RESET (Done) = /INIT;

SetChCk = ChCkOE * LMErr;
END.

1988
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DEVICE MISC (P22P10) “uUe6”
PIN AC[0:2] = 3:1 (INPUT Combinatorial)

RASI = 4 (INPUT Combinatorial)

T2 = 5 (INPUT Combinatorial)

T3 = 6 (INPUT Combinatorial)

T5 = 7 (INPUT Combinatorial)

T6 = 8 (INPUT Combinatorial)

T7 = 9 (INPUT Combinatorial)

T9 = 10 (INPUT Combinatorial)
CAS = 11 (INPUT Combinatorial)
TS = 13 (INPUT Combinatorial)
/LErr = 14 (INPUT Combinatorial)
/LMErr = 15 (INPUT Combinatorial)

/S_and_not_LEB = 23 (OUTPUT Active_ Low Combinatorial)
/LEQ_GenL = 22 (OUTPUT Active_Low Combinatorial)

LEI = 21 (OUTPUT Active High Combinatorial)

/LEB = 20 (OUTPUT Active_Low Combinatorial)

CASI = 19 (OUTPUT Active High Combinatorial)

/WE[0:2] = 16:18 (OUTPUT Active_Low Combinatorial);

DEFINE Read = /AC[0] * /AC[1] * AC[2],
Write = /AC[0] * AC[1l] * /AC[2],
Long Write = AC[0] * /AC[1] * /AC[2],
Refresh = AC[0] * /AC[1l] * AC[2],
Scrub = /AC[0] * AC[1] * AC[2],
Init = AC[0] * AC[1] * AC[2]:

BEGIN
ENABLE (LEB,LEI,LEO_GenL,S_and not_LEB,WE[0:2],CASI);

LEB = Read * RASI * (/T2 * /LErr + /T3 * LErr);

I

LEI = Read * RASI * /T7 + Read * LErr * /LEO_GenL * /T9 +

Write * RASI * /T7 + Write * /LEO_GenL * /T9 + Long Write * RASI * /T5 +
Scrub * RASI * /T7 + Scrub * /LEO_GenL * /T9;
LEO_GenL = (Scrub + Write + Read * LErr) * T3 * /T9 + Long Write * RASI * /T2 + Init;

S_and not_LEB = RASI * /T2 * (Read + Write + Long Write + Refresh + Scrub) +
Read * RASI * (/T2 * /LErr + /T3 * LErr);

CASI = /T2 * CAS + TS * CAS;

WE[0] Init + Long Write * T5 * /T2 + (Scrub + Read * LErr + Write) * T6 * /T9 * /LMErr;
WE[1] Init + Long _Write * T5 * /T2 + (Scrub + Read * LErr + Write) * T6 * /T9 * /LMErr;
WE[2] = Init + Long Write * T5 * /T2 + (Scrub + Read * LErr + Write) * T6 * /T9 * /LMErr;

END.
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DEVICE INTERFACE (P22P10) “u7”

PIN /BE[0:3] = 1:4 (INPUT Combinatorial)
T2 = 5 (INPUT Combinatorial)
T10 = 6 (INPUT Combinatorial)
/MemWr = 7 (INPUT Combinatorial)
S_and not_ LEB = 8 (INPUT Combinatorial)
AC[0:2] = 11:9 (INPUT Combinatorial)
/Latched Err = 13 (INPUT Combinatorial)
LEDiag = 14 (INPUT Combinatorial)

/LEY = 23 (OUTPUT Active Low Combinatorial)
/OE_SD[0:3] = 19:22 (OUTPUT Active Low Combinatorial)
/OE_EDC[0:3] = 18:15 (OUTPUT Active_Low Combinatorial);

DEFINE Read = /AC[0] * /AC[1] * AC[2],
Write = /AC[0] * AC[1l] * /AC[2],
Scrub = /AC[0] * AC[1l] * AC[2],
Init = AC[0] * AC[1l] * AC[2];

BEGIN
ENABLE (OE_SD[0:3],0E_EDC[0:3],1G) ;

OE_EDC[0] = Init + Scrub * T2 * /T10 + Write * /BE[0] * T2 * /T10 +
Read * Latched Err * T2 * /T10 + OE_EDC[0] * /T10;

OE_EDC[1] = Init + Scrub * T2 * /T10 + Write * /BE[1] * T2 * /T10 +
Read * Latched Err * T2 * /T10 + OE_EDC[1] * /T10;

OE_EDC[2] = Init + Scrub * T2 * /T10 + Write * /BE[2] * T2 * /T10 +
Read * Latched Err * T2 * /T10 + OE_EDC[2] * /T10;

OE_EDC[3] = Init + Scrub * T2 * /T10 + Write * /BE[3] * T2 * /T10 +
Read * Latched Err * T2 * /T10 + OE_EDC([3] * /T10;

OE_SD[0] = LEDiag + S_and not_LEB * (Write + Long Write) * /OE_EDC[0];

OE_SD[1] = LEDiag + S_and not_LEB * (Write + Long Write) * /OE EDC[1];

I

OE_SD[2] S_and_not_LEB * (Write + Long Write) * /OE EDC[2];

OE_SD[3] S_and not_ LEB * (Write + Long Write) * /OE_EDC[3];
LEY = MemWr + LEDiag;

END.
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DEVICE Output_Enable (P22P10) “us”

PIN /BE[0:3] = 4:1 (INPUT Combinatorial)
T7 = 5 (INPUT Combinatorial)
/MemRd = 6 (INPUT Combinatorial)
/MemWr = 7 (INPUT Combinatorial)
/Err = 8 (INPUT Combinatorial)
/SynSel = 9 (INPUT Combinatorial)
/DiagSel = 10 (INPUT Combinatorial)
/DMCSel = 11 (INPUT Combinatorial)
/IOWr = 13 (INPUT Combinatorial)
/IORdA = 14 (INPUT Combinatorial)

LEDiag = 23 (OUTPUT Active_High Combinatorial)

/SynLE 22 (OUTPUT Active Low Combinatorial)

/SynOE = 21 (OUTPUT Active_Low Combinatorial)

RL = 20 (OUTPUT Active_Low Combinatorial)

/OE_Bd[0:3] = 16:19 (OUTPUT Active_Low Combinatorial);

1

BEGIN

ENABLE (OE_Bd[0:3],SynLE, SynOE,RL,LEDiag) ;
ENABLE (IORd) = 0;

OE_Bd[0] = MemRd * T7 * BE[0];

OE_Bd[l] = MemRd * T7 * BE[1];

OE_Bd[2] MemRd * T7 * BE([2];

OE_Bd[3] MemRd * T7 * BE[3];

SynlE = (MemRd + MemWr) * Err;

SynOE IORd * SynSel;
LEDiag = IOWr * DiagSel;
RL = DMCSel * IOWr;

END.

4-39



IBM PS/2 12-Mbyte Memory Board with EDC

“Douglas Lee

August 9,
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DEVICE TIMER (P20RA10)
PIN /PRE LOAD = 1 (CONTROL)
Intlor2 2 (INPUT Combinatorial)
Int3 = 3 (INPUT Combinatorial)
Int5 = 4 (INPUT Combinatorial)
Int6 = 5 (INPUT Combinatorial)
Int7 = 6 (INPUT Combinatorial)
Int8 = 7 (INPUT Combinatorial)
Int9 = 8 (INPUT Combinatorial)
Int10 = 9 (INPUT Combinatorial)
/EoT = 10 (INPUT Combinatorial)
/OE = 13 (CONTROL)
Tl = 23 (OUTPUT Active_Low Registered)
T2 = 22 (OUTPUT Active_Low Registered)
T3 = 21 (OUTPUT Active_ Low Registered)
T5 = 20 (OUTPUT Active_Low Registered)
T6 = 19 (OUTPUT Active_Low Registered)
T7 = 18 (OUTPUT Active Low Registered)
T8 = 17 (OUTPUT Active_Low Registered)
T9 = 16 (OUTPUT Active Low Registered)
T10 = 15 (OUTPUT Active_ Low Registered);
BEGIN

ENABLE (T1, T2, T3,T6,T7,T8,T9,T10) ;

/T1
/T2
/T3
/T5
/T6
/T7
/T8
/T9
/T10

END.

]

I

1;
1;
1;
1;
1;
1;
1;
1;
1;

CLOCK_PT(T1)
CLOCK_PT (T2)
CLOCK_PT (T3)
CLOCK_PT (T5)
CLOCK_PT (T6)
CLOCK_PT (T7)
CLOCK_PT (T8)
CLOCK_PT (T9)
CLOCK_PT (T10)

= Intlor2; PRESET(T1)
Intlor2; PRESET(T2)

Int3;
Int5;
Int6;
Int7;
Int8;
Int9;

Intl0;

PRESET (T3)
PRESET (T5)
PRESET (T6)
PRESET (T7)
PRESET (T8)
PRESET (T9)
PRESET (T10)

wu9”

EoT;
EoT;
EoT;
EoT;
EoT;
EoT;
EoT;
EoT;

EoT;

1988
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DEVICE Latch (16L8) “uUls5”

PIN /BE[3:0] = 1:4 (INPUT Combinatorial)
Refresh = 5 (INPUT Combinatorial)
ALE = 6 (INPUT Combinatorial)
AC[2:0] = 7:10 (INPUT Combinatorial)

/BEI[3:0] = 19:16 (OUTPUT Active_ Low Combinatorial)
LongWord = 15 (OUTPUT Active Low Combinatorial)
/FRH = 14 (OUTPUT Active Low Combinatorial)

/FR = 13 (OUTPUT Active_Low Combinatorial);

DEFINE Refresh = AC[0] * /AC[1l] * AC[2],
Scrub = /AC[0] * AC[l] * ACI[2];

BEGIN

ENABLE (BEI[0:3],LongWord,FRH,FR);

BEI[0] = BE[0] * /Cmd + BEI[0] * Cmd;
BEI[1] = BE[1] * /Cmd + BEI[1l] * Cmd;
BEI[2] = BE[2] * /Cmd + BEI[2] * Cmd;
BEI[3] = BE[3] * /Cmd + BEI[3] * Cmd;

/LongWord = BE[3] * BE[2] * BE[1] * BE[O] + BEI[3] * BEI([2] * BEI[1] * BEI[O0];
FRH = /(Refresh * /FRH + Refresh + Scrub);
FR = Refresh * FRH;

END.
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DELAY LINE TAP CALCULATIONS

Derivation of the tap outputs is included here. The
calculated time is adjusted to the nearest tap of the delay
line (10-ns intervals) equal to or greater than the calcu-
lated time. The board is designed for 120-ns DRAMs.

120 ns 100 ns 85 ns
MSEL - RASI to MUX SELECT

taan (DRAM) min 15.0 15.0 15.0

tyew (Qnto RASN) 20C668 max 6.0 6.0 6.0

Total 21.0 210 21.0

CAS - RASI to CAS

MSEL 21.0 210 21.0

tyew (CASNto Qn) 20C668 max  -2.0 -2.0 -2.0

t,sc DRAM min 00 00 00

-t.p (CAS to CASI) 22P8B min 60 -6.0 -6.0

Total 13.0 13.0 13.0

INTS - Valid Check Bits on Long Write

t.p (RASI to LEO_Genl) 15.0 150 15.0
22P10 max

top (LEO_GenlL to SC) 180 18.0 18.0
29C660C max

oo (TS to WE) 22P10 min 70 -70 -7.0

Total 260 260 26.0

INT7 - Data Valid to 29C660C
t.p (RASI to RASNn) 29C668 max 27.0 27.0 27.0

1,0 DRAM max 1200 100.0 85.0
4, (INT7to T7) 20RA10min 7.0 -7.0 -7.0
Total 140.0 120.0 105.0

INT2 - ERROR from 29C660C
t.p (RASI to RASN) 29C668 max 27.0 27.0 27.0

t,co DRAM max 120.0 100.0 85.0

., (Data In to ERROR) 160 160 16.0
29C660C max

t, (ERROR) 20RA10 min 130 130 13.0

Total 176.0 156.0 141.0

INT3 - Corrected Data from EDC
t,, (RASI to RASn) 29C668 max 27.0 27.0 27.0

tacc DRAM max 120.0 100.0 85.0

t, (Data In-Data Out) 240 240 240
29C660C max

“top (INT3 to T3) 20RA10 min 70 70 -7.0

Total 164.0 144.0 129.0

120 ns 100 ns 85 ns

INT4 - MERR from 29C660C
and IOCHRDY for R/M/W

t.o (RASI to RASn) 20C668 max 27.0 27.0 27.0
t,cc DRAM max 120.0 100.0 85.0
1., (Data Into MULT ERROR)  20.0 20.0 20.0
29C660C max
t,, (MERR) 20RA10 min 130 13.0 13.0
Total 180.0 160.0 145.0
INT 1 - IOCHRDY for Read without Error
1., (RASI to RASN) 29C668 max 27.0 27.0 27.0
t,cc DRAM max 120.0 100.0 85.0
t,p (Data In to Data Out) 240 240 240
29C660C max
t.p (Data Out to System Data) 14.0 140 140
29C983 max
-t.p (T1 10 IOCHRDY) 20L10B min -6.0 -6.0 -6.0
.5 (INT1 to T1) 20RA10 min 70 70 -7.0
Total 172.0 152.0 137.0
INT 6 - Corrected Data and Check Bits (R/M/W)
INT3 164.0 144.0 129.0
toxew (T6 to T3) 20RA10 max 05 05 05
top (T3 10 LEO GEN) 20L8B max 15.0 15.0 15.0
t., (LEO GEN to SCn) 18.0 18.0 18.0
29C660C max
t,s DRAM min 00 0.0 00
Total 197.5 177.5 1625
TS - Pulsed CAS
INT& 197.5 177.5 1625
1., (INT6 to T6) 20RA10 max 200 20.0 200
tocw (WEN to CASI) 20L8B 30 30 30
-t.p (CASI to CASn) 29C668 min -15.0 -15.0 -15.0
t,cs DRAM 00 00 00
Total 2055 1855 170.5
INT9 - End of WEn and RASI (RIM/W)
tg 205.5 1855 170.5
to, (TS to CASI) 20L8B max 150 150 15.0
t., (CASIto CASn) 29C668 max 31.0 31.0 31.0
t,c (WE Pulse Width) DRAM min 25.0 25.0 25.0
“top (T9 to WE) 20L8B min 70 70 -7.0
“top (INT9 to T9) 20RA10 min 70 70 -7.0
Total 262.5 2425 2275
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120 ns 100 ns 85 ns
INT8 - End of Read without Error

INT2 176.0 156.0 141.0
1., RAM min 90.0 80.0 70.0
Total 266.0 236.0 211.0

INT10 - End of R/M/W Cycle

INT9 262.5 2425 227.5
tge RAM min 90.0 80.0 70.0
Total 352.5 3225 297.5
Signal Should Is (ns) Note

Be (ns)
MSEL 21.0 30.0
CAS 22.0 30.0 =MSEL -8
INTS 26.0 30.0
INT7 140.0 140.0
INT2 176.0 180.0
INT3 164.0 170.0
INT4 180.0 180.0
INT1 172.0 180.0
INT6 203.5 210.0 =INT3 +33.5
TS 2155 220.0 =INT6 + 8
INT8 270.0 270.0 =INT2 + 90
INT9 278.0 280.0 =TS +57
INT10 370.0 370.0 =INT9 + 90
Notes:

1. Table for 120 ns DRAMs

2. Tapwhich are dependent or related to othertaps are
indicated with a comment in the “explanation”
column.

3. Timing figures are based on Am29C660C data.

PARTS LIST (CONT.)
Unit # Device

U112 Am29C823

u13 EPB200I

u14 74ALS688
U15-18 74F543

Description

Syndrome Register
Micro Channel Interface
8-Bit Comparator

Octal Registered Trans-

ceiver
Description Quantity per Board
CAPACITOR, 22 uF 7
CAPACITOR, 1.0 uF 1
CAPACITOR, 0.33 uF 9
CAPACITOR, 0.1 puF 28
CAPACITOR, 0.01 uF 1
RESISTOR PACK, 10 PIN SIP, 1 kQ 1
DRAM MODULES, 1 Mx 9 12
DRAM, ZIP PACK, 1 M x 1 9
Am29C660C 1
Am29C668 1
74F543 4
Am29C823 1
Am16L8 1
AmM20RA10-20 2
Am22P10B 3
Am22V10-15 2
DELAY LINE, 10 ns, DIP-14 4
SOCKET, 14-PIN DIP 4
SOCKET, 24-PIN DIP 8
SOCKET, 68-PIN PGA/PLCC CONV. 4

SCHEMATICS

Detailed schematics follow.

PARTS LIST

Unit#  Device Description

U1 Am29C668 Configurable Dynamic
Memory Controller

U2 Am29C660C 32-Bit Error Detection and
Correction Circuit

us AmPAL16L8 Combinatorial PAL

U4 AmPAL22V10 Combinatorial PAL

U5 PAL20RA10 Asynchronous PAL

ue AmPAL22P10  Misc. Logic Functions

uz AmPAL22P10 Interface Controlier

us AmPAL22P10 Interface Controller

U9 PAL20RA10 Asynchronous PAL

u10 AmPAL16L8 Combinatorial PAL
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INTRODUCTION

This chapter contains three article reprints, two of which were originally printed in
European publications and translated for use in this handbook. These two articles
discuss the Am29C668 Configurable Dynamic Memory Controller (CDMC) in detail. The
third article is a reprint from Electronic Design describing a clock-generator circuit for
adaptive clocking using the Am2971A Programmable Event Generator (PEG) and an
AmPAL18P8 PAL device.

A special application article describes a demonstration board using the Am95C71
Video-Data Compression/Expansion Processor (VCEP) and the Am29C668 CDMC.
The board requires a dedicated memory buffer to hold compressed images, which is
designed using DRAMs controlled by the Am29C668 CDMC.
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Configurable DRAM Controller

e

Enhances System Performance

by Percy R. Aria, Senior Product Planner

INTRODUCTION

With today’s evolution of fast processors and RISC
architectures, memory speed is a major factorin system
throughput. Very fast memory in the form of static RAM
looks attractive at first glance, but as the memory size in-
creases, it becomes far less attractive due to prohibitive
cost per bit compared to dynamic RAM. DRAM requires
more complex control compared to SRAM, but cost per
bit and high densities make DRAM very attractive for a
wide range of applications.

The Am29C668 4-Mbit Configurable Dynamic Memory
Controller greatly simplifies DRAM design. Because the
Am29C668 is highly integrated as well as configurable, it
can be used with virtually any processor in any system
architecture. A block diagram of the Am29C668 is shown
in Figure 1.

OPERATING MODES

The Am29C668 has two basic modes of operation, Read/
Write and refresh; the timing diagram is shown in Figure
2. In the Read/Write mode, the Am29C668 latches the
column, row and bank addresses. It then multiplexes the
row and column addresses to the DRAMs under the

controlof eitherinternally generated timing signals (auto-
timing mode) or externally generated input signals.

The row address is latched in the DRAMs by the active
(Low-going) edge of the Row Address Strobe RAS out-
put, which follows the active (High-going) edge of the
Row Address Strobe Input RASI. The address lines are
then switched to the column address by either an inter-
nally generated signal if auto timing is selected or by
pulling the Multiplexer Select MSEL signal active High if
external timing is selected.

Read/Write Mode Optimization

The Read/Write mode of the Am29C668 may be
optimized for the shortest DRAM access time in three
different ways, depending on the system environment,
software requirements and hardware configuration.
These are Burst/Block-Mode Access, Cache-Mode
Access and Bank-Interleave Mode Access.

Burst/Block-Mode Access

In this access mode, the Am29C668 can operate with
processors that request burst accesses. Burst/block
transfer is used by a high-performance processor to fill

OE *—
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Figure 1. Am29C668 Block Diagram

Translated and Reprinted from Design & Electronik, January 1989. 5.3
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Figure 2. Read/Write and Refresh Operations

transfer is used by a high-performance processor to fill
the cache, when a cache miss is detected; itis also used
to support data pipelining.

During a burst/block access, the processor generates an
address and expects to access consecutive locations
starting at that address. The Am29C668 latches the
address from the processor for the initial access to the
DRAMs. The higher order address lines are latched as
the row address and the lower order address lines are
latched as the column address. The on-chip incrementer
in the column-address logic is then used to generate
subsequent addresses for consecutive accesses.

The Column Clock CC signal is used to increment the
column-address logic. The RASI input is held active
during the entire burst operation and only Column
Address Strobe Input / Column Address Strobe Input
Enable (CASI/CASIEN), depending on whether external
or internal timing is used, is toggled to latch the column
address for access to the DRAMs.

The column-address incrementer is designed to incre-
mentonthe High-to-Low edge ofthe CC signal and CASI/
CASIEN is an active High signal; therefore, for simple
timing, the CC and CASI/CASIEN inputs may be tied
together. As aresult, the column address increments for

the next access atthe end of the DRAM access, whenthe
CASI/CASIEN signal is deactivated. Figure 3 shows the
timing for this type of access.

Additional support for the burst/block access consists of
a programmable burst, limited only by the DRAM page
size, and DRAM page-boundary detection logic. Two
registers, the Burst Count Register and the Mask Regis-
ter are loaded with the appropriate values via the AC,
address lines. The contents of the burst-count register
are compared with the contents of the column-address
incrementer on a bit-by-bit basis; the contents of the
mask register determine which bits take part in the
comparison. When a match of the comparison occurs,
the Am29C668 asserts an End Burst/Block Mode (EBM)
signal and the processor is expected to terminate the
current burst access, generate a new address and re-
establish a subsequent burst access.

This feature also has a self-aligning property at bit
boundaries. For example, if the burst count is set at 16
and the initial access in a burst starts at 10, the first burst
consists of six accesses and all subsequent bursts will
consist of 16 accesses as shown in Figure 4. A detailed
diagram of the programmable-register logic and EBM
generation is shown in Figure 5.
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Figure 5. Programmable Register Logic and EBM Generation

Cache-Mode Access

In this mode, the Am29C668 can open a pseudo cache,
the size of the DRAM page, and make fast random
accesses to locations within the page. This access mode
eliminates the RAS precharge time and the RAS access
time from the DRAM cycle time, once the first access is
completed. The Am29C668 therefore enhances the
performance of the processor and the DRAMSs, since
these accesses appear to be normal accesses to the
processor but are actually much faster page accesses.

On-chip comparators on the Am29C668 row and bank
logic compare the row and bank addresses of consecu-
tive accesses. When a match occurs, the Cache Hit CH
signal is activated and the RAS strobe to the DRAMs is
not deactivated at the end of the access, since thereis no
change in the row address for the next access. The new
column address is latched into the DRAMs with the CAS
strobe. Figure 6 shows a timing diagram for this type of
access. The data from the DRAM is then available after
the CAS access time of the DRAMs. The CH signal
remains active as long as there is a match on the
comparison of the row and bank addresses of subse-
quent accesses. When a mismatch occurs, the CH signal
is deactivated and the external timing generator deacti-
vates the RASI signal, which in turn latches the new row
and bank addresses for future comparison. The RAS
signal to the DRAMSs is also deactivated and goes
through precharge before starting the new access.

Bank-interleave Mode Access

In this access mode, the Am29C668 can save the RAS
precharge time between consecutive accesses to differ-
ent DRAM banks, by overlapping the RAS precharge
time of the previous access with the access time of the
current access. This type of access therefore makes the
RAS precharge time between accesses transparent;
hence improves overall system performance. Typically,
100-ns access-time DRAMs have 80-ns RAS precharge
time.

To take advantage of the bank-interleave mode access,
the two LSBs of the processor address are tied to the
SEL,, lines, which indicate the bank to be selected.
Since a program flow is usually consecutive, this trans-
lates to accessing different DRAM banks for consecutive
processor addresses.

In this mode, the Am29C668 makes a comparison of the
consecutive DRAM bank addresses. When a mismatch
occurs, the Bank Interleave Bl signal goes active and the
RAS strobe, generated by an external timing generator,
to the new bank is generated right away, while the RAS
strobe to the previous bank is going through a precharge.
If, however, a match occurs, the Bl signal goes inactive.
This means that the current access is to the same bank
as the previous access, in which case the RAS strobe is
deactivated and goes through precharge before being
activated for the current access.
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Refresh Options

The Am29C668 has two refresh options for non-Error
Detecting and Correcting (EDC) systems: RAS-only

refresh and CAS-before-RAS refresh. The Am29C668
also offers a scrubbing option for EDC systems.

RAS -Only Refresh

During the RAS-only refresh, the Am29C668 generates
the appropriate refresh address and strobes the
corresponding RAS to the DRAM banks to perform
refresh. The Am29C668 refresh counter is incremented
atthe end of the refresh cycle to generate the address for
the next refresh cycle.

CAS -Before-RAS Refresh

The Am29C668 also supports CAS-before-RAS refresh,
if this feature is available on the DRAMs. A bit in the
Am29C668 Configuration Register, located within the
Programmable Register Logic, is programmed to sup-
port this feature. The Am29C668 automatically activates
the CAS and RAS strobes inthe correct sequence during
refresh. To the system timing generator, the input timing
looks the same as the RAS-only refresh timing if auto
timing is used, or like the normal access timing if external
timing is used. The Configuration Register is shown in
Figure 7.

Refresh with ‘Scrubbing’

The Am29C668 supports memory scrubbing in EDC
systems. Scrubbing is a method of performing error
detection and correction during refresh operations hid-
den from the processor. Scrubbing performs a read/
modify/write operation on one location in the memory
while refreshing the corresponding row on all the
DRAMs. The Am29C668 has row, column and bank
refresh counters, the lengths of which are automatically
adjusted depending on the DRAM size being used.

By correcting single-bit errors, scrubbing prevents
accumulation of multiple-bit soft errors, which are uncor-
rectable and cause system failure and down time. An-
other advantage to scrubbing is that during normal ac-
cesses, if an erroris found, the data can be corrected and
placed on the system bus but need not be written to the
DRAMSs. The scrubbing operation canwrite the corrected
data back to the memory during the refresh operation.
This helps improve the system performance, since the
corrected data need not be written back to the memory
when an error is found during normal accesses.
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Figure 7. Configuration Register Options
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Timing Options
Auto-Timing

In the auto-timing mode, the Am29C668 can be config-
ured to generate its own internal MSEL and CASI timing
signals for the output DRAM strobes (RAS, and CAS))
from the input RASI signal. The auto-timing is optimized
for 100-ns DRAMs.

External Timing

An external timing mode is also available so that the user
can externally generate the MSEL and CASI timing
signals for a specific application or DRAM.

Auto-Timing With External Override

A third option consists of auto-timing with an external
override. In this mode, the MSEL and CASI inputs are
defined as MSEL Enable MSELEN and CASI Enable
CASIEN, respectively, and are ANDed with their respec-
tively generated internal signals. This option can be used
effectively for nibble-mode DRAMSs, when the initial
access can be made using auto-timing. The RASI signal
is kept active and the CASIEN signal can simply be

toggled to make the remaining three accessess of the
nibble. A timing diagram of this type of an access is
shown in Figure 8. A similar method can be used in the
Burst/Block Access Mode and the Cache Access Mode.

OTHER DISTINCTIVE FEATURES
Nibble-Access Support

The incrementer on the Am29C668 can be configured to
perform a modulo-four (nibble) count. A modulo-four
burst access may be performed with a single address
from the processor. Figure 9 shows a timing diagram
for the nibble-mode access. This makes ordinary page-
mode DRAMs look like nibble-mode DRAMs to the
processor. Auto timing with external override is particu-
larly well suited for this type of operation.

Configurable Drive Capability

The Am29C668 can be configured to drive two or four
banks of DRAMs by programming a bit in the Configura-
tion Register. By configuring it for two banks the drive
capability of the RAS and CAS strobes is doubled.
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Figure 9. Nibble Mode Access with Page Mode DRAMs (Auto-Timing with External Override)

The Am29C668 has controlled outputs that limit the
overshoot and undershoot to within acceptable limits of
the DRAMs. The Am29C668 can directly drive four banks
of 16-bit data word with EDC (22 bits total) or two banks
of 32-bit data word with EDC (39 bits total). The
Am29C668 can drive up to four banks of any data word
size beyond 16 bits if used with external drivers.

Selectable CAS Decode Scheme

Two CAS decode schemes, available onthe Am29C668,
can be selected via a bit in the Configuration Register.
The CAS can be decoded by bank to perform regular
word, burst/block, cache, and bank-interleave accesses.
The CAS can also be decoded on a byte boundary to
perform byte operations (Figure 10).

When bank CAS decode is selected, CAS is decoded
internally by the Am29C668. When byte CAS decode is
selected, CASisdecoded externally andis placedonthe
four CAS Enable (CASEN, ) inputs for the four bytes of
a 32-bit data word.

CONCLUSION

The Am29C668 innovative architecture, versatility and
advanced features provide improved memory through-
put and enhanced system performance in virtually all
DRAM-control applications. The auto-timing feature and
drive capability make the Am29C668 an attractive, highly
integrated dynamic memory-control solution for a wide
range of applications.

Bank 1 elelels
Bank 2 ‘t, )tl }; );
Bank 3 erelele
Bank 4 11213]4
11902-010A

Figure 10. Bank-vs-Byte-Selective Memory Accessing
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Four-Megabit DRAM Controller Offers Burst Addressing

by Bo Molander, Senior Field Applications Engineer

The advantages of dynamic random-access memory
(DRAM) are lowest cost per bit compared to other semi-
conductor memories, and small packaging that requires
minimum board space. Conversely, the best known
drawback of DRAMs is thatthey mustbe refreshed every
second or fourth millisecond to preserve the data stored
in the array. In addition, to take advantage of the smali
package, memory row and column addresses must be
multiplexed onto theinput pins. Overthe years, a number
of different DRAM controllers have been introduced that
make these drawbacks transparent to the DRAM user.

Initially, simple building blocks were offered, each device
performing only a part of the total DRAM-control function.
In time, however, more integrated solutions were pre-
sented. Soon, two major pathways were chosen: in the
first, no timing-generation support was included in the
memory controller; in the second, timing delays for the
RAS and CAS strobes were generated withinthe control-
ler. Both DRAM-controller types found applications
dictated by system requirements. In the past, DRAM
controllers with no internal timing generation were used
extensively in systems with very fast memories requiring
the shortest possible access times. A 1-Mbit DRAM
controller, such as the Am29368, can be tailored to a
specific memory system according to the number of
memory devices, associated capacitance and the result-
ing propagation delays. For example, the Am29368
DRAM controller can be used very efficiently with 85-ns
DRAMs.

A DRAM controller with internal timing generation pro-
vides a more compact solution with fewer devices.
Unfortunately, speed and flexibility are sometimes sacri-
ficed. These older DRAM controllers are simply too slow
to keep up with today’s dynamic memories that have
access times from 60 to 100 ns. ‘

The limitations of these early memory controllers have
driven the system designer to solving memory-control
requirements with PAL® devices or to other similar pro-
grammable devices. A simple memory-control function
is easily implemented with a couple of PAL devices; but,
more sophisticated features, like block transfers and
burst addressing, increase the required number of PAL
devices. The final memory controller could simply
occupy too much board space.

The Am29C668 Configurable Dynamic Memory Control-
ler/Driver (CDMC), shownin Figure 1, gives the memory-
system designer a new alternative. Itis fabricated using
CMOS technology to provide very high speed and low
power consumption, and can directly control DRAMs up
to 4 Mbit in size. Timing generation can be provided
either internally or externally, depending on the de-
signer'srequirements. The Am29C668 offers avery high
drive capability — one device can directly drive four 16-
bit wide banks of DRAMs plus the extra bits required for
error detection and correction, or two 32-bit-wide banks
plus check bits, without external buffers (Figure 2). Asa
result, memory-control systems can now be built with a
minimum number of devices. Also, minimum access
times can be achieved through burst addressing and by
reading data from different memory banks using bank
interleaving. The four independent CAS signals of the
Am29C668 can be usedto control four separate banks of
DRAMs, or to determine the access of a certain byte
within a 32-bit word.
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———» RASI EBM |——»
——» MSEL/MSELEN BC/CHTC }——m
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Figure 1. Am29C668 Logic Symbol
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A BASIC SYSTEM

In atypical microprocessor system, the Column and Row
Address inputs AC,_,, and AR, of the Am29C668 are
connected to the address bus coming from the micropro-
cessor; the multiplexed Address outputs Q_,, of the
CDMC are connected to the memory address inputs.
Since the CDMC only generates addresses and control
signals to the memory banks, the critical data path is not
affected. The following control signals must be con-
nected to the memory banks: Address Latch Enable ALE
that latches the address from the processor, Chip Select
CS, and Output Enable OE. The OE signal can be used
to control the output drivers, i.e., to determine whether
they are to be active or in a high-impedance state. This
feature provides for building larger systems with more
than one Am29C668.

The RASI input is used to start an access cycle, inde-
pendent of the timing mode selected, internal (Auto-
Timing) or external. Selection of Auto or external timing
generation is made via the dual-function Register Load/
Column Clock RL/CC input and the Timing Mode TM bit
in the configuration register. The Mode Control pins
MC, , are used to specify one of four modes: Read/Write,
refresh with scrubbing, refresh without scrubbing, or
reset.

Programmability

The configuration register, located within the Program-
mable Registers and Logic block of the Am29C668
(Figure 3), is loaded from the column-address bus with
the input signal RL/CC. It can be programmed to select
a number of options including DRAM size: 64K, 256K,
1 Mbit or 4 Mbit. With this wide selection, the CDMC can
be used with the mass-produced DRAMs available
today, aswellas with the larger DRAMs of tomorrow. The

refresh and scrubbing counters are automatically set to
the correct count when the DRAM size is selected. The
Column Address Strobe outputs CAS, can be selected
asbankorbyte select. Also, many DRAMs support RAS-
before-CAS refresh, inwhich a refresh counterinternalto
the DRAM is used to select the next row in the memory
array to be refreshed. The Am29C668 can be pro-
grammed to support this refresh scheme. Normally, the
row address for refreshing is taken from a counter within
the CDMC. Also, burst addressing is selectable when
required for use with nibble-mode or page-mode
DRAMs. For nibble-mode DRAMSs, burst addresses are
generated for four words at a time.

Timing Generation

As mentioned earlier, internal or external timing genera-
tion can be used with the Am29C668 CDMC. Internal
timing generation (auto-timing mode) offers optimum
performance when used with 100-ns memories (500-pF
load); options exist for controlling RAS, and CAS,
through gating with external signals. The auto-timing
mode is selected via the TM bit and the memory-access
cycle starts when RASI is activated. The row address is
immediately available at the memory address inputs; at
a specific time later, the four RAS signals go active so
that the DRAM can latch this address. The row ad-
dresses presented to the DRAM change to column
addresses, controlled by the internal timing delay and
gated with the Multiplexer Select MSEL input, or in case
of external timing generation, controlled only by MSEL.
After a delay, the CAS, outputs from the Am29C668 go
active, signaling to the DRAM that the CAS_ addresses
are stable.

The CAS timing is either generated internally in the
auto-timing mode and enabled with the CASI input, or
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controlled only by the CASI input in the external-timing
mode. Optimum timing varies with the speed of the
DRAMs. Internal timing generation can be used with
100-ns memories without external drivers. The CDMC
can be used with faster memories, in the 60-t0-90 ns
range, using delay lines or PAL devices for external
timing control.

Memory-System Refresh

The Am29C668 supports three different types of refresh:
normal, CAS before RAS, and refresh with scrubbing.
During normal refresh, the MC, , inputs initiate the
refresh cycle. The internal refresh counter, automatically
adjusted for the size of the DRAM, outputs a refresh
address. Atthe sametime, allfour RAS signals go active,
signaling to the DRAM that a refresh cycle has begun.

CAS-before-RAS refreshing, used with DRAMs that
have on-chip refresh counters, is accomplished by
changing the normal order that RAS and CAS, are
presented to the memory. This refresh support is se-
lected by enabling the CAS-before-RAS bit in the con-
figuration register; the Am29C668 then outputs all four

CAS, signals, followed by the four RAS , indicating to the
DRAM that a CAS-before-RAS refresh cycle has started.

The refresh with scrubbing mode is used when an error
detection and correction (EDC) device, such as the
Am29C660, isusedinthe system. One wordis read from
the memory system during a refresh, passed through the
EDC and written back, completely transparent to the
microprocessor. Inthis way, the entire memory bank can
be automatically cleared from erroneous bits.

Burst Addressing

One of the most significant improvements in the
Am29C668 over older-generation memory controllers is
the availability of burst-addressing protocol for the
memory banks. Burst addressing is used by some very
fast RISC microprocessors, such as the Am29000, and
in most cache-memory systems. During burst address-
ing, the microprocessor, or cache controller, sends only
the first address when a consecutive block of data is
being accessed. The memory system then latches this
address and, via handshaking, sends or accepts data at
address n, address n+1, n+2, etc. All the addresses,
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except the first, must be generated outside the proces-
sor; therefore, a counter is required in the memory
system. The Am29C668 includes all the necessary
latches and counters to support burst-mode addressing,
making external logic unnecessary.

Burst addressing has two distinctive advantages over
traditional schemes. First, it reduces memory access
time because the row address normally does not change
during a burst operation when data is read sequentially.
The RAS signal, therefore, need not be deactivated and
then reactivated, saving both RAS precharge and RAS
accesstime. The second advantageis thatthe micropro-
cessor address bus is available for the other tasks during
a burst access.

A slightly different way to perform burst operations is
through block transfers. A predetermined number of
words, set by the Am29C668 on-chip counter, are trans-
ferred. This mode is used, for example, by DEC’s Q-bus.
In another version of burst addressing, used by Moto-
rola’s 68030, the microprocessor always sends one
address and expects four words (a nibble) back. This
mode, also supported by the Am29C668, can be used
with nibble-mode or standard page-mode DRAMs.

Overlapping Accesses

One method to reduce access time in a memory system
is to use two or more memory banks and overlap

accesses between banks, i.e., bank interleaving where
the Read/Write cycle to bank n+1 starts before the
access to bank nis finished. This technique saves RAS
precharge time tp which is normally in the 80-90 ns range
for 100-to-120-ns DRAMs (Figure 4). To use overlap-
ping, or bank interleaving, the two lower address bits
from the microprocessor are connected to the SEL,,
inputs of the Am29C668 and the accesses are then
distributed among all four banks.

Special DRAM Types

The Am29C668 CDMC supports other special DRAM
types — static column, ripple and page mode. Forthese
DRAM types, the RL/CC inputonthe Am29C668 is used
with the signals described above to control memory
system accesses.

CONCLUSION

The Am29C668 CDMC offers an integrated, flexible
solution to DRAM control. While the device is designed
specifically to support fast, modern 32-bit microproces-
sors, it can be used with all DRAM types due to its built-
in special functions. The combination of features, low
power consumption and high speed, makes the
Am29C668 a natural choice in any microprocessor
system.

Current RAS —————I__J————— Interleaved

Next FTA—-S1_3

Current RAS g _—_—l__——

Next RAS 1_3

L

Non-interleaved

'<—tp—->|

I | 12753-004A

Figure 4. Am29C668 Enhancement Bank-Interleave Feature
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Expand or Shrink Clock Cycles to the System’s Needs

Expand or shrink clock cycles
to the system’s needs

Rick Purvis and Jenny Yee

Advanced Micro Devices Inc., 901 Thompson PI., Sunnyvale, CA 94088; (408) 732-2400.

In a microcoded system, tailoring the length of
each microcycle to an operation makes the most of
system performance. The clock cycle should be as
short as possible and lengthened only when neces-
sary to accommodate slow paths. Controlling clock
cycle length dynamically revs up system perfor-
mance; microcoded CPUs and 1/0 processors are

examples.
Sophisticated system designs, however, can’t be
built with the frequencies and waveforms from con-
ventional clock genera-

I o jikc the Am2925A.
Choose 80. 100, or But a clock-generator
L (4

circuit (Fig. 1) consist-

An external 20-MHz crystal controls the 100-MHz
internal clock. The circuit can free run or single
step. With the run/halt switch in the run position,
the PEG state machine receives feedback trigger
(T,;) pulses to generate continuous system clocks.
When in halt, each step-switch activation directly
triggers the PEG through the Trig input to generate
one system clock cycle.

The PEG circuit can implement three indepen-
dent state machines—one for each of the selectable
cycle lengths (Fig. 2). When triggered by the falling
edge (depending on the event generator’s polarity
setting) of a Trig signal, the state machine, in accor-
dance with the cycle-length inputs A, and A, be-

120-ns system clock | . ¢.n Am2971A

CYCIes or seq‘l.ence . programmable event Trigger Again
up to twenty-six 11-bit  generator (PEG)and an L n o L
machine states on AmPALI18P8 PAL de- Ve AmPAL device
the fly by using adap- i can give the user N P
; ; much more flexibility in
tive C’OCklng' controlling both fre- ——-o.s'ep %:/:c
quency and waveforms | In
(see ““A programmable event generator,” p. 95). %“’:‘
How many times have you needed just one more Run L in
clock edge, 10 ns sooner or later? The PEG circuit Vee
can supply it. In fact this technique can also be ap- '_\_%L
plied to most general-purpose microprocessor sys- 1 Halt n
tems. What’s more, the event generator chip can Trig
serve any application that requires very small, fast (trigger) Am2971A Tt
state machines. oo Sanarator “
The PEG-based design, though similar in func- AuA, (PEG) 1 b
tion to the Am2925A, has more flexibility because 2 :': 2 A,
it has 11 independent, user-defined outputs (T,_o) FLTR
and an internal clock of 100 MHz. The result is a mi'::?bA&g:\':ry = 20[']'1 He
10-ns resolution between output edges and user-de- Ppolne 68 pF_| 68 pF_| 68 pF
finable cycle lengths such as 80, 100, or 120 ns, se- ? I‘
lected by event generator inputs Ajand A . The cir-

cuit’s PAL device supplies debounced run/halt and 1. With a clock-generator circuit consisting of
step functions, and an input multiplexer for the - an Am2971A programmable event generator
PEG trigger input (PEG) and an AmPAL18P8 PAL device, a user
R 1y, th . 00 has the flexibility for controlling both frequen-
Primarily, the event generator operates asa 100- ¢y gng waveforms. Often the designer needs
MHz synchronous state machine to produce out- just one more clock edge 10 ns sooner or lat-
put system-clocking waveforms at around 10 MHz. er; the PEG circuit can supply it.

Reprinted with permission from Electronic Design, Vol. 35, No. 28;
“Copyright Hayden Publishing Co., Inc., November 27, 1987.

5-15



Expand or Shrink Clock Cycles to the System’s Needs

DESIGN APPLICATIONS m Adaptive clocking

gins operation at the event generator’s 100-MHz internal
rate. Each current state points to the next state, in turn.
System-clock outputs from the circuit come from the
PEG outputs T .

The event generator must be in a stopped mode to be
triggerable, however. Therefore, it stops after generating
each system clock cycle, waiting for a trigger signal from

State machine 4: 80-ns system clock cycle (A1, A0 = 0)

Curnrent state: 0 1 2 3 4 5
Next state: 1 2 3 4 5 6
Outputs Ty 1 1 1 1 0 0
T, 1 1 1 o] 0 0

1 1 0 0 0 0

LR 0 0 0 0 1

T 0 1 14 1 1 0

Stop bit: 0 0 0 0 0 1
State machine 2: 100-ns system clock cycle (A1, A0 = 1)

Currentstate: 8 9 10 11 12 13 14 15

Nextstate: 9 10 11 12 13 14 15 16
Ouputs T 1 1 1 1 1 0 0 O
.1 1 1 1 0 0 0 O

I, 11 1 0 0 0 0 O
110 0 0 0 0 O

Tw 0 1 1 1 1 1 1
Stopbit 0 0 O O O O O

-|lo-

State machine 3: 120-ns system clock cycle (A1, A2 = 3)

Currentstate: 16 17 18 19 20 21 22 23 24 25
Nextstate: 17 18 19 20 21 22 23 24 25 26

Outputs T¢ 1 1 1 1 1 1 00 0 O
.1 1141100000
4111000000
17110000000
Tar 111111110

Stopbit: 0 0 0 0 0 0 O O O 1

2. The PEG circuit can implement three independent
state machines: one for each of the selectable cy-
cle lengths. In the free-running mode, sequencing
continues until the event generator encounters a
programmed stop bit.

either the T, feedback signal in the free-running mode or
the next step transition. In the free-running mode, se-
quencing continues until the event generator encounters
a programmed stop bit.

In the timing diagrams for free-running operation (Fig.
3), the internal event-generator clock is NCLK/X,,
where N is the PEG’s programmable clock multiplier.
Since the internal clock frequency can be 1, 5, 10, 5/2, or
5/4-times the input clock or crystal frequency, a 20-MHz
crystal and a Sx clock setting supplies the 100-MHz inter-
nal clocking. The contents of the output register is the
current-state entry. States with the stop bit set (such as
PEG address 5) remain in the output register until T,
triggers the event generator again.

Also, two internal PEG cycles must occur after a trig-
ger until the first state of the next state machine appears in
the output register. This two-cycle delay after triggering
results from internal event-generator pipeline delays. In
this application of the event generator, that means the last
state of a particular state machine repeats for three inter-
nal clock cycles before the PEG can trigger again. That
explains why T, shows a 50-50 duty cycle (Fig. 3 again),
though a high exists in states 0, 1, 2, 3, and low only for
states 4, 5 (Fig. 2 again).

The details of designing the clock generator (Fig. 1
again) serve as a good example of that procedure. First,
however, consider the design of a simple continuously
running 10-MHz system clock with 50-50 duty-cycle out-
put (Fig. 4). Though the 100-MHz (10-ns cycle) internal
PEG clock (labeled NCLK /X)) is not available outside
the PEG, its timing wave is a useful design construct. The
T, SYSCLK output requires 10 of these internal event
generator cycles; thus, T, is high for the first five NCLK/
X, clock cycles and low for the next five.

Arbitrarily assign all start addresses to state 8 and have
each successive state point to the next. This means that
state 8’s next state is 9, and so on until state 17. State 17’s
next state is 8 to achieve a loop back to the beginning of
the state machine.

Thus far, the display is that of a trivial divide-by-10
counter. Adding a single-step capability would enhance
the design. Each Step input would trigger a single T, sys-

NCLK/X,
PEGADDR [ 2¢ycles] 0 3
SYSCLK(T,)
Tng (Ty)
Stop bit
l<—-—— 80 ns (Ai = 0) N

120 ns (Ai = 3) —————{-—(1,30;3) see

3. In free-running operation, the internal PEG clock is NCLK/X4, where N is the programmable clock multipli-
er. Since the internal clock frequency can be 4, 5, 10, 5/2, or 5/4-times the input clock or crystal frequency, a
20-MHz crystal and a 5x setting supplies 400-MHz internal clocking.
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tem-clock cycle with the PEG stopping at the end of each
T, cycle.

Then add the halt/run switch and AmPAL18P8B.
Now, the circuit becomes a 10-MHz generator that can
operate both in free-running and single-step modes. Simi-
lar to the condition in state 5 in Fig. 2, in the 100-MHz
generator, both the Stop bit and T, are active during
state 15. The PEG stops, and its output remain in state 15
for two additional cycles before going to state 8, when
triggered by the T, feedback.

NCLK/N,
Juuiryuuyuuyuuytinguuo

PEG address
Je]ofwofri]iz1a]alisfie]r7]s] o]

SYSCLK (To)

v

4. In the timing diagram of a simple, continuously
running 10-MHz system clock with 50-50 duty cycle
output, state 8 through 17 represents one cycle.
Thus, Tg is high for the first five clock cycles.

The final embellishment adds state machines for 80
and 120 cycles. It consists of merely drawing additional
T, and T,, waveforms, adding the two stop bits, and re-
mapping the starting addresses. The result is the clock
generator of Fig. I, with the PAL device fully pro-
grammed. Outputs T, ,, are available for user-defined
clock waveforms.

Note: It’s helpful to program unused event generator
outputs to match the next state address to enable PEG
state sequencing to be observed. Otherwise, the blind de-
bugging of a state machine could prove difficult.(]

Rick Purvis is a field application engineer with Advanced
Micro Devices in Austin.

Jenny Yee, formerly with Advanced Micro Devices, is
currently a compiler library manager at VLSI Technology
Inc. in San Jose, Calif.

A programmable event generator

The Am2971A programmable event
generator (PEG) is a fast registered
PROM optimized for state-machine
and timing-generation applications.
It can serve as a digital substitute for
analog delay lines or as a general-pur-
pose programmable timing-wave-
form generator. Besides supplying 12
outputs, it can implement state ma-
chines having up to 32 states. It oper-
ates at any internal clock frequency
from dc to 100 MHz. The clock con-
trol is a programmable phase-locked
loop that can operate at up to 100
MHz from a 20-MHz source.

The PEG consists of four main
functional blocks (see the figure):
clock control; start-address genera-
tor; next-address/event generator;
and control logic. The next-address/
event generator is a PROM contain-
ing 32 words, 18 bits each: a stop bit, 5
bits of next-state information, and 12
bits for outputs T,_,,. That PROM
and the output register form a classi-
cal registered-PROM state-machine
architecture, with 5 bits of internal
next-address feedback.

The start-address generator is a
mapping PROM for the three exter-
nal inputs A, ,. One of eight start ad-
dresses may be selected to begin the
timing sequence. The procedure for
programming both event generator
PROMs is the same as for any con-
ventional PROM. The control logic
makes it all work together.

To initiate a sequence, a program-
mable positive/negative edge transi-
tion at the Trig input latches the three
inputs A, to A,, which the logic then

maps through the start-address gen-
erator to one of eight 5-bit starting ad-
dresses for the state machine. Each
successive internal clock strobes both
output data and the next address into
the output register. This operation
continues until the PEG encounters a
stop bit or the other edge of Trig (pro-
grammable option). The company
supports the event generator with de-
sign software (AmPEGPDSO0) and
programming hardware (AmPEGA-
SUS0).

Ay

A 3 Stat | g
1 Latch Decoder | address
A, — r"" enerator
LE 40 fuses) 5
Trig | Trigger *
—1 polarity
(2 fuses)
Control © Multiplexer
ont J s
Start/Stop
FLTR Decoder 5
1 Clock A~ Output
CLX/Xf control Next address register | 12
(5 fuses), genefatot o L,ﬂ-—
Xy (576 fuses) 12 Ton

CLK Out (f,)

Internal clock (fg)
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High-Speed VCEP Demonstration Board Using the

e

Am29C668 Configurable Dynamic Memory Controller

by Vineet Dujari, Applications Manager

VCEP OVERVIEW

The Am95C71 Video Data Compression/Expansion
Processor (VCEP), Figure 1, performs CCITT(T.4 and
T.6)-compatible video-data processing at very high
speeds for applications in low-cost real-time document
storage and retrieval systems.

Using patented hardware-based compression/
expansion techniques, the VCEP features throughput
averaging 60to 80 Mbit/s, i.e., over six pages per second,
for CCITT standard documents. [t has a dual-bus inter-
face for source and destination memories; however, the
VCEP caneasily be usedin low-cost single-bus systems.
A simple register-based interface, controlled by any
microprocessor, is used to program the device. A set of
six registers contain parameters such as page width,
page length, and the required coding algorithm.
Normally, these registers are written only once during
initialization; the device is controlled during normal
operation by using the command/status register.

The hardware interface for the VCEP is straightforward.
The device registers are accessed using standard chip-
select and Read/Write control signals. Two on-chip

input(source) and output(destination) FIFOs, 16 loca-
tions deep, provide for burst-mode data transfer from
external memory. Whenthe VCEP is enabled, I/0O data-
request signals indicate which data FIFO needs service
and external control logic activates the appropriate data
strobe. The FIFOs can also be accessed, using the
register interface, in a low-end system to avoid
additional control logic.

DEMONSTRATION BOARD DESCRIPTION

The VCEP demonstration board, Figure 2, plugs into a
PC-AT* slot and drives an NEC multisync video monitor.
The device operates in a dual-bus configuration in this
application; compressed-image data is fed onto the
board fromthe PC-AT bus and the expanded-image data
is retrieved via the image-data bus. Since the VCEP is
very fast, it requires no frame buffer to hold the expanded
image; it can drive the video monitor directly. It performs
image expansion in real time, 60 times a second, to
display a flicker-free image. Alternatively, the external
logic can provide a different coded image for each frame
and an animation sequence can be displayed.

—b s
Source
FIFO L
110 i [l
po1s{)] slier Ky | Cegerestion | Docode K| _suier Ky Po-ts
] Engine
Reference
i § Clock
J— Li —
INTR =——1 control/ BL:;}gr Generator CLK
RESET ——»| Status <:> Data Code
TEST —»| Register <:—_— Generator <:——J\> ROM
‘ N
Destination 1
FIFO v
— | [
Bus Interface
L N N A M R
Apo CS RW DS DACK1 DRQi DACK2 DRQ2 IDS__Image Bus 123160014
N Y] : Interface

Y
CPU Bus Interface

Figure 1. VCEP Block Diagram

* PC-AT is a registered trademark of IBM Incoporated.
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PC-AT Bus

Compressed Image
DRAMs with
Am29C668 Controller

Buffered

Data Am95C71

Buffer VCEP

K _DATA

Interrupt Request

Image Data
16 DATA

Am7201 Output | Video

FIFO/Shifter

[

To Video
Monitor

HSync

e

Video Timing &

Figure 2. VCEP Demonstration Board

Control Logic | VSync
e

12316-002A

Compressed Image Memory

This board requires a dedicated memory buffer to hold
the compressed images because the bandwidth of the
PC-AT bus is not fast enough to supply the image data at
the required rate. However, in other systems, the main
memory could be used to hold the coded-image data.

The compressed-image memory is designed using
DRAMs; the array is controlled by an Am29C668 Config-
urable Dynamic Memory Controller (CDMC). Three
types of memory cycles are performed: DRAM refresh
when the PC-AT REFRESH signal is_active, memory
Write when the PC-AT DACKS5 and IOW signals are
active, and memory Read when the VDRQ signal from
the VCEP is active and VCEP operation is enabled, i.e.
the AT control signal from the board-control register is
inactive.

The Am29C668 CDMC contains a refresh counter, auto-
timing logic, and a column-address counter for burst-
mode accesses. In this application, compressed image
data is always accessed sequentially and the column
counter is used to generate sequential memory ad-
dresses.

The compressed-image memory is accessed starting at
any page boundary, either by the PC-AT or the VCEP.
The starting page address is loaded into the page-
address register/counter (AmPAL22V10) by the CPU.
This operation also loads the starting address into the
memory-controller. The row-address latchis also loaded
fromthe page-address register/counter, and the column-
address latch is loaded with zeroes. Subsequent
memory accesses increment the CDMC internal column
counter, usingthe CASO signal fed into the Am29C668
via the column-counter control signal RL/CC. When a
page boundary is reached, the End Burst Mode EBM

signal becomes active. This causes the external page-
address register/counter to be incremented, and the
starting address of the next page is loaded into the
Am29C668 address latch.

Figure 3 shows the details of the PC-AT interface. The
memory-control PAL® device is used to generate the
RAS-Input RASI and Mode-Control signals MC, ; for
the CDMC. The MC, , specify one of four modes of op-
eration of the Am29C668. Depending on the specific
signals, the CDMC generates timing for refresh or Read/
Write cycles, and outputs the refresh row address or the
multiplexed memory-location address. Refresh and
Write cycles are initiated by the PC-AT; hence they are
guaranteedto be mutually exclusive. However, whenthe
VCEP is enabled, Read and Refresh requests can
become active simultaneously; the memory-control PAL
device arbitrates this situation.

Video/Image Data Control

The video control logic consists of a horizontal counter,
a vertical counter and a 16-bit video-data shift register.
The values fromthese counters are decoded to generate
the horizontal and vertical synchronization control
signals and the load control signal for the shift register.
The vertical control signal is also used to generate an
interrupt to the CPU (Figure 4).

Display resolution is 768 pixels per line and 496 lines per
frame. The horizontal-dot clock rate is 32 MHz. After
accounting for the blanking times, the effective VCEP
data throughput is 22.85 Mbit/s. A 512-deep FIFO,
comprising two Am7201s, is connected between the
VCEP image-data bus and video shift register to ensure
that the image data is available even when the compres-
sion ratio in some local area of the document is not too
good.
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Theimage-data control PAL device transfers aword from
the VCEP to the external FIFO when the Image Data Re-
quest IDRQ signal becomes active and FIFO-Full FF
signal is inactive. This expanded image is then loaded
into the video shift register and shifted out.

CONCLUSION

This demonstration board illustrates the high-speed
operation of the VCEP and the Am29C668 CDMC.
However, as mentioned before, the VCEP is capable of
much higher throughput: 70 to 80 Mbit/s vs 23 Mbit/s

required by the multisync monitor. Throughput rates vary
depending on image complexity and coding choice.
Running at the maximum clock rate of 20 MHz, the
Am95C7Itypically handles MMR coding at 65-75 Mbit/s,
MR coding (k = 4) at 70-80 Mbit/s, and MH coding at
75-85 Mbit/s.

The VCEP canbe designedto performhigh-speedimage
compression/expansion in document-storage and
retrieval systems. Using this device, retrieval systems
can store large amounts of compressed data that can be
quickly retrieved in real time.

PC-AT Bus
AN
REFRESH _|
p— AmPAL22V10
DACK Memory
iow o
RASI
6|  INCR MC1-ol
RL/CC Qo-8 > 256K x 16
AmPAL22V10 AR Am29C668 | RAS X
Page Register Ro-10 DRAM —20 ?A?QM
Counter AC0-10 Controller | CASg (100 r¥s)
¥ N = | EBM
|
PGWR e
:r)nage
7415245 ata
<::_D—‘_SI:> x2 <:: DATA 16 > An&%%%ﬂ 1—__S_I—J>
Transceiver —
AT
e
N Board
Control  |——» T
V'l Register -
> CS
Ag—0 R T
PGWR CTLWR 12316-008A
_AEN | AmPAL22V10 ="
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Figure 3. PC-AT Interface
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to CPU

Shift Clock
Image Data Am7201 N| Video-Data
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Figure 4. Video Interface Detail
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CHAPTER 6

Product Data Sheets

Am2925A

Am2960/-1/A
Am2964B
Am2965/66
Am2968A

Am2971A

Am2976
Am29368
Am29C60/-1/A
Am29C660/A-E

Am29C668/-1
Am29C827A/8/A

Am29C983/A
Am29C985

673104A
SN745409/-2

60-MHz Microcycle-Length Programmable

Clock Generator ........ccccceveveenerierircieneneeeseeeene 6-3
16-Bit Cascadable EDC Circuit .........cccoeevereeercenes 6-24
64K Dynamic Memory Controller.........ccccceeevvennenne 6-66
8-Bit DRAM DIVET .....coeievieericecreeeree et 6-80
256K Dynamic Memory Controller/Driver............... 6-88
100-MHz Enhanced Programmable Event

Generator (PEG™ ) .......oooivveveiercerceeneeeneeeneeens 6-112
11-Bit DRAM DIVET ...t 6-141
1M Dynamic Memory Controller/Driver .................. 6-150
16-Bit Cascadable EDC Circuit ........ccccoovrievniiinnnns 6-172
32-Bit Cascadable EDC Circuit .......c.ccoeceriinniciinnnns 6-189
4M Configurable Dynamic Memory

Controller/DrVEr ......ccovveercceirecee e 6-222
10-Bit CMOS Bus Buffer.........ccccevevcviicniecncnenne, 6-266
9-Bit x 4-Port Multiple Bus Exchange.........c.......... 6-275
9-Bit x 4-Port Multiple Bus Exchange with

Parity Checker/Generator ..........cccocceeeveevnnenennes 6-291
1M Dynamic RAM Controller/Driver ..........cccceeuuvnues 6-305
256K Dynamic RAM Controller/Driver ...........cccceeu. 6-327

DYNAMIC MEMORY DESIGN DATA BOOK/HANDBOOK
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Am2925A

Clock Generator and Microcycle Length Controller

P

Advanced

Dev
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ices

DISTINCTIVE CHARACTERISTICS

® Crystal controlled oscillator
— Stable operation from 1-50 MHz

® TTL controlled oscillator
- Stable operation from 1-60 MHz

® Four microcode controlled clock outputs
Allows clock cycle length control for 15-30% in-
crease in system throughput. Microcode selects one
of eight clock patterns from 3 to 10 oscillator cy-
cles in length.

e System controls for Run/Halt and Single Step
Switch debounced inputs provide flexible halt con-
trols

® Slim 0.3” 24-pin package
LSI complexity in minimum board area

GENERAL DESCRIPTION

The Am2925A is a single-chip general purpose clock
generator/driver. It is crystal controlled, and has micropro-
grammable clock cycle length to provide significant speed-
up over fixed clock cycle approaches and meet a variety of
system speed requirements. The Am2925A generates four
different simultaneous clock output waveforms tailored to
meet the needs of Am2900 and other bipolar and MOS
microprocessor based systems. One-of-eight cycle lengths
may be generated under microprogram control using the
Cycle Length inputs L4, Lp, and L3.

The Am2925A oscillator runs at frequencies up to 50 MHz
crystal input or 60 MHz TTL input. A buffered oscillator
output, Fo, is provided for external system timing in addition
to the four microcode controlled clock outputs Cq, Co, C3
and Cg4.

System control functions include Run, Halt, Single-Step,
Initialize and Ready/Wait controls. In addition, the FIRST/
[AST input determines where a halt occurs and the Cx
input determines the end point timing of wait cycles.
WAITACK indicates that the Am2925A is in a wait state.
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CONNECTION DIAGRAMS
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