Am29PL141 Handbook
Fuse Programmable Controller

5
<
z
o
z
3
o
)
<
m




-

Advanced Micro Devices

Am29PL141
Fuse Programmable Controller

Handbook

© 1986 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics.

This manual neither states nor implies any warranty of any kind, including but not
limited to implied warranties of merchantability or fitness for a particular application.
AMD assumes no responsibility for the use of any circuitry other than the circuitry
embodied in an AMD product.

The information in this publication is believed to be accurate in all respects at the
time of publication, but is subject to change without notice. AMD assumes no
responsibility for any errors or omissions, and disclaims responsibility for any
consequences resulting from the use of the information included herein. Additionally,
AMD assumes no responsibility for the functioning of undescribed features or
parameters.

06591A



Contributors to the Am29PL141 Fuse Programmable Controller Handbook:

Rajesh Tanna, Headquarters Applications, Sunnyvale, CA (Chapters 1 and 4) MS 151
Om Agrawal, Product Planning (Chapters 1, 2, and 3)

William Chen, Product Planning (Chapters 2 and 3)

Arthur Khu, Product Planning (Chapter 1)

Rick Purvis, FAE, Austin, TX (Chapters 5 and 6)

David Stoenner, FAE, Newport Beach, CA (Chapters 7 and 8)
Robert O'Hara, FAE, Dorsey, MD (Chapter 9)

Stephen L. Belechak-Becraft, former AMD FAE (Chapter 9)
Dan Overman, Dibec, Inc. (Chapter 9)

Frank Hudziak, Jr., FAE, ltasca, Il (Chapter 10)

Philip Freiden, Product Planning Manager

Technical Writer:

Erland Kyllonen, Senior Technical Writer, Headquarters, MS71

Copyright Notices

DEC, PDP, Q-Bus, and Unibus are trademarks of the Digital Equipment Company.

IBM PC is a trademark of IBM

SSR is a trademark of Advanced Micro Devices

PAL is a registered Trademark of and used under license from Monolithic Memories, INC.




TABLE OF CONTENTS

Fuse Programmable Controller Overview

11
1.2

1.3

14

15

Design Choices

Am29PL141 Architecture Ovemew

1.2.1 Address Sequencer .

1.2.2 Branch Control/Condition Code Loglc
1.2.3 Instruction Decode Logic ...

1.2.4 Microprogram Memory and Plpehne Reglster::

Microcode
1.3.1 Microinstruction Format
1.3.2 Microinstructions

Looping

Conditional

Unconditional
1.3.3 SSR Diagnostics
Am29PL141 Software Support ...
1.4.1 Am29PL141 Assembler
1.4.2 Am29PL141 Test Vector Generator
1.4.3 Am29PL141 Simulator
An Overview of this Technical Manual

Am29PL141 Assembler

241

2.2

23

24

Introduction to the Am29PL141 Assembler
2.1.1 Assembler Features
2.1.2 Error Detection and Diagnosis
2.1.3 System Requirements
2.1.4 Making Backups
User’s Guide
2.2.1 Notation
2.2.2 Running the Assembler
2.2.3 Assembler Cutput
JEDEC Standard Fuse Map
PROM Bit Pattern
Language Reference
2.3.1 Language Elements
Keywords
Identifiers
2.3.2 Assembler Program Structure
DEVICE Section
SSR Section
DEFAULT Section
DEFINE Section .
DEFAULT_OUTPUT Secnon
TEST_CONDITION
Main Body
2.3.3 Statement Elements
Labels
Control Output
Logic Operators
2.3.4 Statement Format
2.3.5 Statements Available for the Am29PL141
2.3.6 QUICK Reference Guide .
Design Example

o1 4441
ABERADPDRARAPRLONN—

1] 1] []
Soroahdh

K
-:L—L

r o 1Y 1Y
Imm—L—l

o
NN

2-4
2-4
2-4
25
25
25
25
2-6

2-6
2-7
2-7
2-7




5-3 Microword Organization

5-4 Unibus Controller Source Program Llstmg
5-5 FPC PROM Contents

5-6 BR Timing Diagram

5-7 NPR Timing Diagram

5-8 NPR DATI and DATO Timing Dragram
5-9 DATI and DATO (Slave) Timing Diagram

6-1 Q-Bus Controller Block Diagram

6-2 Q-Bus Controller Microword Format

6-3 Q-Bus Controller Source Program Listing
6-4 FPC PROM Program Listing

7-1 Starlan DMA Controller Block Diagram...
7-2 Starlan Controller Circuitry

7-3 Starlan Address and Data Circuitry

7-4 Miscellaneous Control Circuits

7-5 Starlan Controller Program Flow Dlagram
7-6 Starlan Controller Source Program Listing

8-1 SSR Controller Block Diagram

8-2 SSR Controller Circuitry

8-3 User Equipment Interface Circuitry

8-4 SSR Controller Program Flow Diagram
8-5 SSR Controller Source Program Listing

QIC-02 Interface

Am29PL141 QIC-02 and SCSI Controller Crrcunry
Condition Code MUX PAL Device Description ...
9-6 Addressable Latch PAL Device -

9-7 QIC-02 Controller Program Flow Diagram

9-8 Am29PL141 Valid Command Routines

9-9 QIC-02 Controller Source Program Listing

9-10 SCSI Advanced Features Upgrade

9-11 Node Address Comparator PAL Device Equallon
9-12 SCSI and QIC-02 Controller Parts List

9-1
9-2
9-3 SCSI/QIC-02 Driver Example
9-4
9-5

10-1 DMA Channel Interface

10-2 Format of User Qutput Portion of Am29PL141 Mlcrocode

10-3 DMA Controller Program Flow Diagram
10-4 DMA Controller Source Program Listing

C-1 QIC-02 Interface

C-2 QIC-02 Read Status Command T|m|ng Dlagram
C-3 QIC-02 Write Data Command Timing Diagram ..

C-4 QIC-02 Read Data Command Timing Dlagram

C-5 Possible Bus Configurations

C-6 SCS| Command Phase Timing

C-7 SCSI Data Read (from disk) Timing

C-8 SCSI Data Write (to disk) Timing

TABLES

2-1 POL Values for Various Types of Tests
2-2 Am29PL141 Microprogram Instruction Set

Am29PL141 QIC-02 and SCSI Controller Block Dlagram:::

2-7
2-8




CHAPTER 1

FUSE PROGRAMMABLE CONTROLLER OVERVIEW

1.1 DESIGN CHOICES

Sequential state machine design is normally
approached using one of two general methods:
the traditional random logic and flip-flop approach,
or microprogramming. Until recently, traditional
methods were used for state machines with
relatively few states (e.g. dynamic memory
controllers), while microprogramming was used for
applications with many states (e.g. CPUs). The
area in between was handled with a hodge-podge
of techniques ranging from ad-hoc use of counters
and shift registers to PROM-based sequencers.
Now, Advanced Micro Devices has introduced the
Am29PL141 Fuse Programmable Controller (FPC)
to allow cost effective application of microprogram-
ming techniques to fairly small state machines.

Traditional design methodology generally uses
state diagrams to define machine behavior, follow-
ed by derivation of appropriate J-K flip-flop excita-
tion equations. This approach typically results in
very high speed state machine implementations
which are highly optimized for a particular task.
Unfortunately, this technique is at best tedious,
and can be essentially unusable for large state
machines.

The microprogramming approach to state machine
design consists of storing machine cycle control
sequences in memory locations. These instruc-
tions are fetched and executed sequentially.
Microprogramming is similar to assembly language
programming of other processors. It is typically
register oriented, with subroutines, loops, and
structured programming constructs.

1.2 Am29PL141 ARCHITECTURE OVERVIEW

The Advanced Micro Devices Am29PL141 is a
single-chip Fuse Programmable Controller (FPC).
It combines, in one chip, powerful address sequen-
cer logic and a memory to store a microprogram
based on an instructions set of 29 microin-
structions including a repertoire of jumps, multiple
branches, and subroutine calls. These instruc-
tions can be-executed conditionally depending on
the level of one of seven external input lines or
one internal condition. A Serial Shadow Register
(SSR) helps designers diagnose system troubles
at the individual IC component level. A pipeline
register permits fetching the next instruction at the

same time that the current instruction is being
executed. This Chapter provides a general
description of the FPC. For a detailed description,
refer to Appendix F, the data sheet.

The Am29PL141 consists of four major archi-
tectural blocks:

Address sequencer control logic

Branch control/condition code select logic
Instruction decode logic

64 x 32-bit microprogram memory with a Pipeline
Register and Serial Shadow Register

1.2.1 Address Sequencer

* As shown in Figure 1-1, FPC control sequences,

stored in the 64 word by 32 bit on-chip
programmable memory, are fetched under control
of the address sequencer and clocked into the
pipeline register. Figure 1-2 shows a more detailed
block diagram of the Am29PL141.

The address sequencer inputs consist of seven
external condition code inputs and sixteen bits of

CONDITION
TESTS

s

MICROPROGRAM —
ADDRESSSEQUENCER [ ZERO

i

64 x 32
MICROPROGRAM
MEMORY

N SERIAL SHADOW REGISTER

== |——"" !
: ||—> out
1 IN
i l—— MODE
j¢e—bcik
PIPELINEREGISTER |——-

[¢———— CLK
16 16|
P{15:0]
06591A 1-1

Figure 1-1. Am29PL141 Block Diagram




the 32 bit instruction currently in the pipeline
register. These 16 bits are wrapped around inter-
nally in the chip. (The remaining 16 bits go off chip
to control the remainder of the state machine.)
The test field in the 16-bit microcode input to the
address sequencer tells the sequencer which
condition code input to test. The results of the
condition code test determines whether the
sequencer will process the next instruction in the
sequence or fetch an instruction from the address
specified in the data field of the 16-bit input, from
one of the two stack registers, or from the external
world via the test inputs.

Within the address sequencer control logic, a 6-bit
wide, four-to-one address multiplexer supplies the
next state address (refer to Figure 1-2). This next
state address can be one of the following:

« Current address (for repeat or hold instructions)

« Incremented PC state (for sequential and
continue instructions)

« Subroutine register (SREG) value (for nesting
and repeat loops)

» Output of the GO-TO branch control logic

The Program Counter contains the address of the
current state (the current instruction being
executed). Allowing the address multiplexer to
select the current state as the next state allows
execution of loops and wait-until-condition-true
type instructions. The PLC can thus simply insert
wait states until a particular event becomes true.
This function of intelligent state machines is
needed to interface with various microprocessors
and peripherals.

The incremented Program Counter address is the
normal next address when no jumps, branches, or
subroutine calls are active.

In addition to the Program Multiplexer and Program
Counter, the address sequencer contains a
dedicated subroutine block and a counter block.
The subroutine block has a 6-bit subroutine
register (SREG) and a three-to-one multiplexer as
the source for the SREG. When a microprogram
calls a subroutine, the subroutine register (SREG)
supplies the return address.

The counter block is used for timing. It has a 6-bit
register (CREG) and a four-to-one multiplexer as
the source for the CREG. To perform iterative
loops, the controller first loads CREG with the
value of the number of iterations required. Every
iteration of the loop decrements the count. When
the count reaches zero, iterations stop. The zero
condition is detected by the zero detect logic on
the chip.

The two internal registers, SREG and CREG, are
used respectively as a 1 address stack and 6-bit
counter. In addition, they can be used together as
either a two deep stack, or as nested counters.
The ZERO" output indicates that the internal
CREG value is zero. The RESET* input initializes
the FPC to address 63. An additional operating
mode allows use of Serial Shadow Register (SSR)
diagnostic techniques.

1.2.2 Branch Control/Condition Code Select

The branch control logic provides the address for
multiple branching and for conditional statements
such as IF-THEN-ELSE. The condition code
select logic selects the condition to be tested
which the user can specify for each microprogram
instruction. This allows monitoring of both external
(7) and internal (1) events.

The user-defined microcode can set the polarity
control to test on either true or false conditions
without the need for external hardware invertors.

The branch control logic accepts six bits of external
test inputs and six bits of branch address from the
microinstruction to be used as either an address
value or a counter value. It also receives six mask
bits from the microinstruction to mask some of the
test inputs or the branch address. The resulting
masked value specifies the branch address. This
provides easy multibranching based on external
inputs. i

A flexible next address instruction set provides
powerful conditional branch, multibranching, sub-
routine, and loop structures. These instructions
are listed below, and explained in the data sheet.
Branch — CONT, WAIT, GOTOPL, GOTOPLZ,
GOTOTM, FORK

Call - CALPL, CALPLN, CALTM, CALTMN
Push - PSH, PSHN, PSHPL, PSHTM
Return — RET, RETN, RETPL, RETPLN

Loop - LPPL,LPPLN

Load - LDPL,LDPLN,LDTM, LDTMN

misc. - DECPL, DECGOPL, DECTM, DEC,

CMP
1.2.3 Instruction Decode Logic

The instruction decoder decodes 15 of the upper
16 bits of the microinstruction. These include the
5-bit opcode field, the polarity bit, the 3-bit test
field, and the 6-bit data field. The test field
specifies the condition code input that determines
if a branch is to be taken. For conditional
branches, if the condition is true (or false if the
polarity bit is set to 1), a branch is taken to the

1-2




el

CONDITIONAL —————\]
3 MASK LOOPCOUNTEROR
TEST INPUTS — 2ND LEVEL STACK
EQUAL N 1STLEVEL STACK
7 COMPARATOR ORLOOP COUNTER

GOTOBRANCH INST.

Nz

LOOPS

A

6

—_> INSTR
DECODER =
39
06591A 1-2

PROGRAM
COUNTER

SEQUENTIAL INST.

REPEATINST.

6 6

6

Z_ N7 N7

ADDRESSMULTIPLEXER

64 WORD x 32BIT
PROM

PIPELINEREGISTER

Figure 1-2. Am29PL141 Detailed Block Diagram

OE




branch address specified in the data field. The
16th bit is an output enable line that enables the
16 output lines of the FPC.

1.2.4 Microprogram Memory and
Pipeline Register

Conceptually, each memory location can be
thought of as defining a particular state of the state
machine, with each address corresponding to the
number of this state. Seven external test inputs
(TO, T1, T2, T3, T4, T5, and CC) and one internal
test (EQ) are included to allow conditional state
transitions based on external inputs. Typical
microcode consists of testing one of the test
inputs and branching if the condition tested is true.

The 64 by 32-bit fuse-programmable memory
stores the microprogram of up to 64 microinstruc-
tions. It stores all state transitions. Each micro-
instruction specifies the state of each of the 16
output lines used to control peripherals and other
devices. The remaining fields in the micro-instruc-
tion have been described above. The internal
PROM is programmed using commercially available
PROM programmers.

The pipeline register associated with the memory
is 32 bits wide and contains the microinstruction cu-
rrently being executed. It allows concurrent execu-
tion of the current micro-instruction and fetching of
the next instruction. Its upper 16 bits form the
state sequencing and internal control logic. The
low order 16 bits are used as general purpose,
user definable control outputs. Of these user-
controlled bits, the upper eight bits can be tristated
by output enable bit (OE) in the microinstruction. If
more than 16 output control bits are needed,
Am29PL141s can be cascaded quite simply.

The FPC operates in two modes: normal and
diagnostic. In the normal mode, a microinstruction
is executed for every clock cycle. Whenthe FPC is
programmed to use the diagnostics feature, a 32-
bit Serial Shift Register (SSR) is activated. This
provides a simple, straightforward method of in-
system testing to isolate problems to the individual
IC level.

A 32-bit Serial Shadow Register (SSR) simplifies
device and system-level diagnostics. To test a
chip, an instruction is shifted serially into the SSR
and then loaded in parallel into the pipeline. As a
result, the instruction is executed and its results
are transferred back from the pipeline into the
SSR. From there, it may be shifted out for
diagnosis.

1.3 MICROCODE

Microinstructions are 32 bits long. Up to 64
microinstructions can be stored in the 64 by 32-bit
FPC memory. This Section discusses the micro-
instruction formats, the instructions, and the SSR
diagnostic option. For more detailed information,
refer to the data sheet.

1.3.1 Mlicroinstruction Format

Each microinstruction is partitioned into fields.
There are two microinstruction formats: the general
microinstruction format and the Compare micro-
instruction format. The low order 16 bits in each
format contain 16 user-controlled output signals
that appear on FPC outputs P[15:0].

In the general microinstruction format, the upper
16 bits are assigned as follows:

Bits Description

16-21 Data (A conditional branch address, test
input mask, or counter value)

22-24  Test (specifies which one of eight input
signals to use for the condition code)

25 Polarity (specifies whether to test input
for true or false)

26-30  Opcode (identifies microinstruction to
execute)

31 Output Enable (when set to 0, it 3-states

output lines P[15:8]

In the Compare microinstruction format, the upper
16 bits are assigned as follows:

Bits Description

16-21  Data (A 6-bit mask for masking the T[5:0]
inputs)

22-27  Constant (specifies a 6-bit constant for
comparison with T*M for the condition
code)

28-30  Opcode (identifies microinstruction to
execute)

31 Output Enable (when set to 0, it 3-states

output lines P[15:8]

1.3.2 Milicroinstructions

The FPC microinstruction set consists of 29
instructions. These opcodes can be grouped into
three groups:




Looping
Conditional
Unconditional

Looping. The four looping instructions use the
counter CREG to execute loops. CREG is loaded
prior to entering the loop. When CREG is not zero,
CREG Is decremented on each pass through the
loop and a branch is performed to the beginning of
the loop as specified in the data field. When CREG
becomes zero, program execution continues at
the next instruction following the loop.

One variation of the loop instruction loads the
CREG with the value specified in the data field or
the test inputs when CREG is zero. Another loop
instruction tests both CREG and a test condition
and branches to a specified location when either
CREG becomes zero or the condition is true.

High-level language constructs such as REPEAT-
UNTIL, WHILE-DO, and FOR are used to apply
structured programming techniques to improve
code readability and documentation. These same
benefits can be realized in the FPC by imple-
menting these constructs in microcode as follows:

REPEAT-UNTIL (condition) can be performed
using one of the loop or branch instructions as the
UNTIL condition test. WHILE-DO is implemented
similarly except that the microcoded condition test
is performed at the beginning of the loop instead
of at the end.

An equivalent FOR construct uses a loop
instruction to load CREG and then test for zero
status. |If it is zero, execution continues with the
next instruction following the loop. If CREG is not
zero, it is decremented by one and a branch is
performed to the top of the loop. As with the other
constructs, the designer can choose to do the
CREG test at the top or at the end of the loop.

Conditional. Conditional instructions depend on
the results of a test. If the test condition is not true,
the action such as branch, push, load, or decre-
ment is not performed.

The branch opcodes use the data field in the micro-
instruction to specify a branch address or sub-
routine location. In addition, multi-way branches or
subroutine calls can be implemented by using the
GOTO T*M or CALL T*M opcodes. In these
instructions, the address is specified by the test (T)
inputs masked by a mask value (M) in the data field.
This allows a branch through the test inputs to a
vector which can be used for interrupt servicing.

Other conditional instructions are pushing the pro-
gram counter value onto the stack, loading CREG

with a value, or decrementing CREG.  Each of
these conditional instructions is performed only if a
test condition is true (or false if the Polarity bit is 1).

Unconditional. The two unconditional instructions
are: CONTINUE and COMPARE. CONTINUE is
used to generate the output bit and proceed to
the next instruction. COMPARE unconditionally
compares the test inputs with a user-defined
constant and sets an internal equal bit (EQ)
accordingly. This instruction is useful in searching
for a character.

1.3.3 SSR Diagnostics

In the diagnostics mode, four of the device pins
are redefined. These include one input and three
output pins. The CC input is redefined as Serial
Data In (SDI). The three output pins are redefined
as Diagnostics Clock (DCLK), MODE, and Serial
Data Out (SDO).

The shadow register can be serially loaded from
the SDI pin under contro!l of DCLK with MODE
LOW. It can be parallel-loaded from the pipeline
register with MODE HIGH, SDI LOW. The pipeline
register is loaded from the microprogram memory
during normal operation. During diagnostics, the
pipeline register is loaded from the shadow
register when MODE is High on the LOW to HIGH
transition of CLK.

To run the diagnostics, a test pattern is serially load-
ed into the shadow register. From there, it is trans-
ferred to the pipeline register in parallel causing it
to be executed. The results can then be clocked
into the pipeline register, transterred to the sha-
dow register, and serially shifted out for diagnosis.

1.4 Am29PL141 SOFTWARE SUPPORT

Designing complex state machines and intelligent
controllers requires good software support.

The Am29PL141 software package simplifies the
complete design process. Three major software
modules—the Assembler, the Test Vector Genera-
tor, and the Simulator—are available. The Assem-
bler is used to permit specifying the design in a
symbolic language. The Test Vector Generator
and the Simulator are used to simulate and verify
the design.

1.4.1 Am29PL141 Assembler

The Am29PL141 Assembler converts design
specifications written in a symbolic language into a
JEDEC fuse map which can be used by other
modules such as the Simulator.




The assembler allows data to be defined as bytes
or words, permits forward label references, and
allows assignment of values to bits in binary, octal,
decimal, and hexadecimal format.

High level language constructs such as IF-THEN-
ELSE and WHILE are directly supported by the
assembler providing program structure and clear
documentation for the designer.

The Assembler is described in detail in Chapter 2.
1.4.2 Am29PL141 Test Vector Generator

The Am29PL141 Test Vector Generator takes the
test vector file (function table) generated by the
designer and generates a JEDEC standard format
test vector file. This output is used as an input by
the Simulator.

1.4.3 Am29PL141 Simulator

Device simulation is based on a test vector file,
generated by a Test Vector Generator from the
test vectors specified by the designer. The
Am29PL141 Simulator uses the JEDEC fuse map
file (generated by the Am29PL141 Assembler)
and the test vector file as its inputs. The Simulator
generates computed output signals. These are
compared with expected output values as speci-
fied in the test vector file. A printout of the output
shows the differences if any.

The Simulator also provides an interactive mode
allowing the designer to interactively preload or
change any or all of the Am29PL141's internal reg-
isters. Single-step and breakpoints provide further
control. For details, refer to Chapter 3.

1.5 AN OVERVIEW OF THIS TECHNICAL
MANUAL

Chapter 2 describes the Am29PL141 Assembler.
The assembler lets the user write microcode in a
higher level language using mnemonics for
addresses and using several number bases to
represent numbers.

Chapter 3 describes in detail an Am29PL141 Fuse
Programmable Controller Simulator. The simulator
makes it possible to check out the logic of the
microprogram before it is entered into the
Am29PL141 chip memory.

Chapter 4 provides a simple, tutorial example of an
Am29PL141 application. It is a coffee machine

controller. This example shows not only the hard-
ware but also the microprogram required.

Chapter 5 describes the realistic use of an
Am29PL141 as an interface for the DEC PDP-11
Unibus. The complexity of Unibus handshaking is
such that- microprogramming is a reasonable
design technique, but use of a separate sequen-
cer, control memory, and pipeline register is not
economical. Since the FPC contains a sequencer,
memory, and pipeline, an interface for the DEC
PDP-11 Unibus can be readily designed using the
Am29PL141 FPC. It fits this class of problem
rather well. The PDP-11 was chosen for this ex-
ample because it has a well documented protocol
which is familiar to many engineers.

Chapter 6 describes the use of an Am29PL141 as
a controller for the DEC Q-Bus. The problem
addressed is to design an interface between the Q-
Bus and a generic device to allow the following
operations:

DATI/DATO with device as slave
Device interrupt request (single level)
Device Direct Memory Access request
DATI/DATO with device as master

The control logic is implemented using the
Am29PL141 FPC. Its microprogram implements a
state machine to contro! both device and Q-Bus
handshaking.

Chapter 7 describes the use of the Am29PL141
as a dual port memory arbitrator in a Starlan system.
The Am29PL141 controls the DMA transfers to
and from the relatively slow speed communication
lines freeing the CPU to perform other tasks.

Chapter 8 describes the use of an IBM/PC to run
diagnostic tests on a device containing a Serial
Shadow Register (SSR). The Am29PL141 con-
trols the flow of data to and from the SSR.

Chapter 9 describes an Am28PL141-QIC-02 and
SCSlinterface. This interface links tape drives with
a CPU. It permits the backup of large hard disk
drives on quarter-inch magnetic tape.

Chapter 10 Describes a high speed DMA controller
using the Am29PL141.

The appendixes include the JEDEC Standard
Number 3; an alphabetical listing of the Assembler
Error Messages; the QIC-02 and SCSI timing
diagrams; References; Glossary; Am29PL141 data
sheet; and an Index.

1-6




CHAPTER 2

Am29PL141 ASSEMBLER

21 INTRODUCTION TO THE
Am29PL141 ASSEMBLER

This section discusses the Am29PL141 assem-
bler. It describes the features, the installation pro-
cedures, the assembler execution statements, the
system requirements, and the assembler language
elements.

2.1.1 ASSEMBLER FEATURES

The Am29PL141 Assembler provides higher level
support for developing microprograms for the
Am29PL141. This assembler accepts data defin-
ed as either bytes or words, allows forward referen-
ces, and assigns values to bits in different formats
(binary, octal, decimal or hexadecimal).

With the inclusion of high level language
constructs such as IF-THEN-ELSE and WHILE, the
microprogrammer's task is greatly simplified since
the microcode is written in a logical and more
natural flowing syntax. In addition, documentation
of code is significantly enhanced since the micro-
code is expressed in a more readable and easy to
follow format.

The assembler features include:

o High level language constructs
* IF-THEN-ELSE
* WHILE

¢ Binary, octal, decimal, and hexadecimal numbers
are recognized

¢ Jump/branch to labels

¢ Logic equations for control outputs

« Error detection and diagnosis

» Default test condition

o JEDEC standard fuse map output

¢ Symbol table output

2.1.2 ERROR DETECTION AND DIAGNOSIS

Much effort has been made to provide relevant
syntax error detection and diagnosis messages in
order to facilitate debugging of errors occurring in
the microcode. Note that one error may cause
spurious errors to propagate through the assem-
bler source file because the compiler logic is based

on the expected sequence of symbols. The
compiler does not understand the micro-code's
intent or purpose. Correcting the first error and
other meaningful errors (ex: variable name not
defined in DEFINE section) will erase the spurious
errors (ex: *,' symbol not defined).

The programmer can choose a default test
condition to reduce the amount of microcoding
since any conditional statement should refer to the
default test condition as the condition. (Refer to
Section 2.3)

The assembler will check the input file to deter-
mine that no conflicts exist in the use of input pins
which double as SSR diagnostic pins.

2.1.3 SYSTEM REQUIREMENTS

The following hardware and software are required
to use the assembler:

Hardware:

« An IBM PC/XT or other PC-compatible with at
least 256K bytes of RAM memory

» Two double-sided, double-density floppy dlSk
drives

» RS232 serial port and a cable to connect to a
logic device programmer

Software:

« PC-DOS Version 2.0 or higher or

MS-DOS 2.11 or higher
« A word processor to create the assembler
source file. Any word processor which produces
standard ASCII output files is acceptable.
Example: Wordstar operating in Non-document
mode.
The following files are on the Am29PL141
Assembler disk:

FILENAME DESCRIPTION
ASM141.EXE Am29PL141 assembler
PL141 Database file for Am29PL141
COFFEE.EXP Source file for coffee machine

example
Batch file for making copies
and backups

MAKE_CPY.BAT

2-1




2.1.4 MAKING BACKUPS

Before using the Am29PL141 assembler, make a
backup copy of the distribution disk using the
following procedure.

For two drive systems:

Put master diskette in drive A and a formatted
blank diskette in drive B and type “MAKE_CPY B”

All the files in the distribution disk will be copied to
the diskette indrive b.

For Hard disk systems :

1. Turn on the computer and boot up with DOS
2. Put the master/distribution disk in drive A
3. Setthe system prompt to drive A by typing

C>A: <CR>

4. Type “MAKE_CPY C” and press return.

Check that a directory “FPC" does not exist.
“MAKE_CPY C" will create a directory called “FPC”
and all the files on the distribution disk will be
copied on to the hard disk in this directory. This
batch file may be modified if the files are to be
copied to a directory other than “FPC".

Store the distribution disk in a safe place. The
copy just created is the working copy.

The recommended procedure is to make a backup
of the program disk and use the backup copy as
‘the working copy. In the event something hap-
pens to the working copy, a new working copy can
be created by repeating the above procedure.

2.2 USER’S GUIDE
2,21 NOTATION

The Backus-Naur format (BNF) is used to describe
the syntax of an action expression used in a
statement. BNF is a short-hand notation with the
following rules:

means “is defined as”

** literals must be enclosed in single quotes.
High-lighted characters and characters in
single quotes are literals and are required.

<> angle brackets enclose identifiers

[1 square brackets enclose optional items

|| items separated by vertical bars indicate a
choice between the items

2.2.2 RUNNING THE ASSEMBLER

The assembler takes an input source file written in
the AM29PL141 syntax (described in Section 2.3)
and produces a JEDEC fuse map which can be
sent to a programmer.

Two system files are required to run the assembler:

The executable file ASM141.EXE and the data-
base file PL141.

After a source file is created, it is assembled using
the following command:

A> ASM141 -l <assembiler file> [ -O <fuse map
file>] [ -B <PROM bit file>] [ -E <error message
file>] [-T <symbol table file>] [-S]

where:
-1 <filename> specifies an input file

-O <filename> specifies a destination file for
the fuse map generated by
the assembler

-E <filename> specifies a file to hold the
assembler's error messages

-B <filename> displays and stores the PROM
bit pattern into a file

-T <filename> displays a symbol table file
-S removes the SSR fuse from the
JEDEC fuse map

Options O, E, B, T, and S are optional. The error
messages and fuse map will always be displayed
on the screen. The options do not have to be
capitalized.

Examples :

A> ASM141 -1 MYINPUT
ASM141 will process the input file named
MYINPUT

ASM141 - MYINPUT -O MAPOUT

ASM141 will process the input file MYINPUT
and output the fusemap to the file named
MAPOUT

A>

A> ASM141-| MYINPUT -B PROMBIT

2-2




ASM141 will process the input file named
MYINPUT and store the PROM bit pattern into
the output file named PROMBIT
A> ASM141 -i COFFEE.EXP -0 COFFEE.JED -b
COFFEE.BIT
ASM141 will process the assembler file
named COFFEE.EXP and output a JEDEC
fuse map file named COFFEE.JED and output
a PROM bit pattern file named COFFEE.BIT.

2.2.3 ASSEMBLER OUTPUT
JEDEC Standard Fuse Map

ASM141 produces a fuse map file which follows
the standards set forth by the Joint Electronic
Device Engineering Council (JEDEC) for program-
mable devices. The fuse map file can be sentto a
programmer via a communications program. Pro-
grammers from different manufacturers may have
varying setup and communications parameters and
procedures. Consult the programmer manual for
more details. Information regarding the fields in
the JEDEC fuse map file is detailed in Appendix A.

PROM Bit Pattern

When the ‘B’ option is specified, ASM141 displays
the bit pattern for every word in the PROM that is
translated into the JEDEC format.

Each word in the PROM is preceded by its decimal
PROM address. Words are displayed from the
lowest location to the highest (maximum of 63 for
the Am29PL141).

The fields (e.g. DATA, OPCODE, TEST
CONDITION) in the bit pattern are marked. This
allows the microprogrammer to quickly check the
contents of a field in a particular word.

2.3 LANGUAGE REFERENCE

The Am29PL141 Assembler language is used to
program the Fuse-Programmable Controller
Am29PL141. Logic designs and state-machines
are described in this high-level language and trans-
lated into a format that can be loaded into a pro-
grammable logic device programmer. The device
programmer then programs the Am29PL141 with
this information.

This section describes the elements and structure
of the assembler language. It is arranged as
follows

2.3.1 Language Elements
Describes the elements used in the
language.

2.3.2 Assembler Program Structure
Explains how the language elements are

put together to describe a logic design.

2.3.3 Statement Format
Describes the general assembler statement
format

2.3.4 Statements Available for the Am29PL141
Lists the statement forms which
correspond to data sheet opcodes of
the Am29PL141

2.3.5 Quick Reference Guide
Shows the flowcharts for the different

statements and opcodes.
23.1 LANGUAGE ELEMENTS

The language consists of keywords and user-
defined identifiers which are put together to form
statements describing a logic design/state
machine. These statements correspond to
Am29PL141 machine level opcodes used to
implement the state machine.

A source file must conform to the following rules
and restrictions:

1. Comments are allowed in the assembler file for
readability. Comments are enclosed between
double quotes and can span more than one
line. Comments cannot be nested.

. Keywords and identifiers are separated by at
least one space.

. Keywords and identifiers can be in upper or
lower case. No distinctions are made between
the two alphabetic cases.

. Aline in the source file must not be more than
80 characters long. This is the normal width of
the screen on a computer monitor.

Keywords

The following words are assembler keywords and
cannot be used as variables:

DEVICE T2 PUSH CONTINUE
DEFAULT T3 RET OE

DEFINE T4 DEC oD
TEST_CONDITION TS WAIT PL

SSR cc Loop ™

BEGIN EQ TO SREG

END GOTO NESTED CREG

TO CALL NEST DEFAULT_OUTPUT
Tl LOAD CMP .ORG

Note: TO to T5, CC and EQ are test conditions.

2-3




ldentifiers

Identifiers are user-defined names identifying
control output pattems, test pins, and labels.

The following rules apply to names and numbers
used in the language:

+ Variables, labels and constant names are limited
to 29 characters in length. The first character
should be an alphabetic character (‘A’to ‘Z’' or ‘@’
to ‘z’) and the remainder can be alphanumeric
characters or the underscore sign * .

« Numbers should be terminated with a ‘#n’ where
n is either B (binary), O (octal), D (decimal), or H
(hexadecimal). If ‘#n'is left out, then the number
is assumed to be decimal.

2.3.2 ASSEMBLER PROGRAM

STRUCTURE

An assembler program source file describing a
logic design or state machine contains seven
sections which must appear in the following order:

(1) DEVICE

(2) SSR

(3) DEFAULT

(4) DEFINE

(5) DEFAULT_OUTPUT
(6) TEST_CONDITION
(7) Main body

DEVICE Section

This section must be specified for each file. It
consists of the keyword DEVICE (need not be in
uppercase) followed by the part name to be
programmed in parenthesis.

Example:
DEVICE ( PL141 )
SSR Section

This is is an optional section which instructs the as-
sembler to check for test conditions made unavail-
able during SSR diagnostics mode. The
messages generated by the assembler will indicate
which test condition pins have to be left solely for
SSR diagnostics. This option will set the SSR fuse
in the JEDEC fuse map. Default is SSR = 0 or no
diagnostics.

Example:

SSR = 1; "a semicolon is necessary"

Note: Some device programmers may require the
designer to blow the-SSR fuse externally; i.e, SSR
cannot be specified in the fuse map. In this case,
use the “-S” option to remove the SSR fuse from
the JEDEC fuse map.

The control output pins P[7] and P[6] are also
used for SSR diagnostics. Because these are out-
put pins to the user in normal mode, they are not
flagged as errors if the user assigns a control
output value using these two pins. If the SSR
option is chosen, P[7] and P[6] will have
undefined values.

DEFAULT Section

If a DEFAULT = 0 is specified, unspecified fuses
will be blown, thus programming unspecified
microcode words and fields at a logic level 0. If no
DEFAULT statement is used or if a DEFAULT= 1 is
specified, unspecified fuses will remain unblown,
thus leaving unspecified microcode words and
fields at a logic level 1.

DEFINE Section

Any variable name specified in this section can be
assigned to a defined test condition or to a number
by using the ‘=’ sign. The last definition should
end with a semicolon. This optional section is not
needed if user defined names are not created.

Example :

DEFINE first = 1 "assign first the
decimal value 1"

second = 2
third = 3
test to

"assign test to be
tol'

"condition TO"

outputl = 45#H

last_one 0101001111#b;

DEFAULT_OUTPUT Section

This section is used to specify a default control
output. This default output value is used if no
control output expression is specified for an
assembler statement.

Example:

DEFAULT_OUTPUT = FFOF#h;

Begin

"linel" , if ( test = 0 ) then

goto pl (stateN)

’




"line2" FF#h , if ( cond = 1 ) then

load pl(value)

’

end.

In the above example, the statement at line 1 uses
the default control output. Statement 2 will use
‘FF#h' as its control output.

TEST_CONDITION

A default test condition can be specified if only
one test condition is being tested by the device.
This reduces the number of ‘IF <cond> THEN'
strings because if a default test condition is
specified, the aforementioned string is
automatically concatenated with the action (ex.
GOTO, CALL, LOAD).

The test condition works with assembler
statements that use the form: IF (cond) THEN
<action>' where condition is one of the eight test
conditions T0 to T5, CC, or EQ..

Example:

TEST_CONDITION = t0; "specify the
default test
condition as
T 0 "

Begin

output_patternl, ret;

output_pattern2, if ( cond = 1 ) then

goto pl
(a_defined label);
End .

In the statement prefaced by output_patterni, this
statement becomes OUTPUT_PATTERNT, IF (t0)
THEN RET; after default test condition
replacement.

The default test condition can also be overridden
in the same file by typing out the IF-THEN string
with a different test condition (see line prefaced by
output_pattern2).

Note that the default test conditions are limited to
the name only; no comparisons or complements
(<>, = or NOT) are allowed.

MAIN BODY

The main body must be enclosed by a single
BEGIN-END block. Any number of statements as
described in Section 2.3 can be inside this BEGIN-
END block as long as the number does not exceed
the total PROM size of the part being used (for the
Am29PL141 the maximum number of statements
is 64).

Example:

Begin

LABELl: outputl, if ( t0 = 0 ) then
load pl{(data);
output2, while ( creg <> 0 )
loop to pl(LABEL1);

End . "terminate the block with a

2.3.3 STATEMENT ELEMENTS

A statement consists of the following elements:

= an optional label
* anoutput value
« a statement form

Example:

LABELl: output, IF ( cond = 0 ) THEN
GOTO PL({data);

Both the colon separating the label from the rest of
the statement and the comma separating the
output part from the statement are necessary to
distinguish the elements from each other.

All statements are terminated by a ‘;’ symbol.

SPECIFYING ADDRESSES

The assembler defaults to starting assembly at
location 0. Successive statements go into succes-
sive locations. The pseudo operation .ORG
followed by an address value can be used to
change this. See the examples in the following
section on Labels.

LABELS

Labels are names followed by a colon. Labels are
permitted in the body of the program. This allows

2-5




Table 2-2, Am29PL141 Microprogram Instruction Set

Opcode  Mnemonics Assembler statement
(1) 19 GOTOPL IF ( cond ) THEN GOTO PL(data)
(2) OF GOTOTM IF ( cond ) THEN GOTO TM(data)
(3) 0B GOTOPLZ IF ( CREG = O )THEN GOTO PL(data)
(4) 18 FORK IF ( cond ) THEN GOTO PL{data) ELSE GOTO (SREG)
(5) 1c CALPL IF ( cond ) THEN CALL PL{data)
(6) 1D CALPLN IF ( cond ) THEN CALL PL({(data),NESTED
(7) 1E CALTM IF ( cond ) THEN CALL TM({data)
(8) 1F CALTMN IF ( cond ) THEN CALL TM(data),NESTED
(9) 04 LDPL IF ( cond ) THEN LOAD PL(data)
(10) 05 LDPLN IF ( cond ) THEN LOAD PL(data),NESTED
(11) 06 LDTM IF ( cond )} THEN LOAD TM(data)
(12) 07 LDTMN ‘IF {( cond ) THEN LOAD TM(data),NESTED
(13) 15 PSH IF ( cond ) THEN PUSH
(14) 17 PSHN IF ( cond ) THEN PUSH,NESTED
(15) 14 PSHPL IF ( cond ) THEN PUSH,LOAD PL(data)
(16) 16 PSHTM IF ( cond ) THEN PUSH,LOAD TM(data)
(17) 02 RET IF ( cond ) THEN RET R
(18) 03 RETN IF ( cond ) THEN RET,NESTED
(19) 00 RETPL IF ( cond ) THEN RET,LOAD PL(data)
(20) 01 RETPLN IF { cond ) THEN RET NESTED,LOAD PL(data)
(21) 09 DEC IF ( cond ) THEN DEC
(22) oc DECPL WHILE ( CREG <> 0 ) WAIT ELSE LOAD PL(data)
(23) OE DECTM WHILE ( CREG <> 0 ) WAIT ELSE LOAD TM(data)
(24) 1B DECGOPL IF ( cond )} THEN GOTO PL(data) ELSE WHILE ( CREG <> 0 ) WAIT
(25) 1A WAIT IF ( cond ) THEN GOTO PL(data) ELSE WAIT
(26) 08 LPPL WHILE ( CREG <> 0 ) LOOP TO PL(data)
(27) oa LPPLN WHILE ( CREG <> 0 ) LOOP TO PL(data) ELSE NEST
(28) oD CONT CONTINUE
(29) 10 - 13 CMP CMP TM(data) TO PL(data)

2-8




CHAPTER 3

Am29PL141 SIMULATOR and TEST VECTOR GENERATOR

3.1 OVERVIEW

The Am29PL141 Simulator, Test Vector
Generator, and the Am29PL141 Assembler
provide complete high level software support for
the Am29PL141 device. Both the simulator and
the test vector generator are designed specifically
for the Am29PL141.

3.1.1 SIMULATOR FEATURES

The Am29PL141 simulator provides high level
interactive  simulation  capability for the
Am29PL141 microprograms.  Along with the
Assembler and Test Vector Generator, it helps to
verify Am29PL141 designs completely before a
device is programmed. The simulator supports
functional simulation only. It does not provide any
timing simulation.

The Am29PL141 simulator uses the Jedec fuse

map file (generated by the Am29PL141
Assembler) and the test vector file (generated by
the Am29PL141 Test Vector Generator) as its
inputs (Figure 3-1). Based upon the contents of
the Jedec fuse map and the test vector file, it
generates “computed output signals” and
compares these against expected output values
as specified in the test vector file or interactively by
the user. If any differences are detected, it flags
the errors by displaying a “?” under the unmatched
output signals. For any outputs in the test vector
for which the computed results or contents of the
Jedec fuse map file (omitting the output signals)
are desired, “X" or “N” must be specified.

3.1.2 Am29PL141 SIMULATOR DISTINCTIVE
CHARACTERISTICS

« Allows the user to preload or change all internal
registers (interactively)
+ Displays complete status information including

DATABASE

USER

I

SYSTEM
EDITOR

-

}

Am29PL141 TESTVECTOR
ASSEMBLER GENERATOR
ERROR PROMBIT
FILE PATTERN JEDECFUSE

:

b

PROM
PROGRAMMER

SIMULATOR

06541A 3-1

Figure 3-1. Simulator/Test Vector Environment

31




all input pin signals, computed and expected
output signals, contents of all internal registers
Break point capability

Single step capability

Simulates SSR diagnostic mode

Default values for test vectors

Interactive mode of operation

Jedec fuse map file used as simulated micro
program memory

Another program can be executed during
simulation .

3.1.3 SIMULATOR REQUIREMENTS

The following steps are required to run the
simulator:

A. Write and Assemble a microprogram source file

Write a micro-program using the Am29PL141
Assembler language. Then use the Am29PL141
Assembler to assemble the program. The
Assembler will generate the corresponding Jedec
- fuse map file to be used by the simulator. Refer to
Chapter 2 for details about writing and assembling
a micro-program.

B. Create Test Vectors File

The source test vectors file can be written in a
symbolic format. This test vector source file is
transformed into the Jedec standard, structured
functional test information format by the
Am29PL141 test vector generator. The output of
the Am29PL141 test vector generator is called the
Test Vector file. (Please refer to the Am29PL141
Test vector generator description in Section 3.2
for details. ,

Keeping micro program source and test vector files
separate allows one simulation model to have a set
of different test vector files.

C. Execute simulation

After the source program is assembled and the
test vectors file has been generated, the simulator
is ready to run.  The details of running the
simulator are presented in Section 3.3.

The simulator model is designed to reflect the
Am29PL141 device as much as possible. Initially
applying a software asserted RESET signal to the
simulator is the same as applying a RESET to the
Am29PL141 device. On the next rising clock
edge after a RESET, a value of 63 is loaded into
the microprogram counter; the microinstruction at
location 63 is loaded into the pipeline register and
the EQ flag is cleared. However, if the RESET

signal is not asserted in the beginning, the
simulator assumes its stage right after a RESET.

Please note, that Am29PL141 simulator provides
functional simulation only—no timing simulation.
The simulator assumes 0 propagation delay.
However, the clock pulse must be specified as one
of the inputs in the test vectors to get register
transfers and to compute outputs.

3.2 Am29PL141 TEST VECTOR GENERATOR
3.2.1 INTRODUCTION

This section describes the test vector generator
program, TEST41, and the syntax of the function
table. The source test vector file is defined as the
function table created by the user (using a text
editor). The function table is written in a symbolic
format which the Am29PL141 Test Vector
Generator (TEST41) can transform into JEDEC
standard test vector format. The syntax of the
function table is quite similar to that of PLPL. The
output of TEST41 is in the JEDEC standard
format. It can be used as the input file to the
Am29PL141 simulator or sent to the device
programmer.

The function table enables the user to easily

specify his own set of test vectors to verify his

microprogram design.

3.2.2 FUNCTION TABLE SYNTAX

The function table has the following format:
[Table heading]

(PIN)

Pin declaration

(VECTORS)

(IN) Input pin names ;
(OUT) Output pin names ;

(BEGIN)
Test vectors
(END.)

Keywords are enclosed in parentheses. The

optional fields are enclosed in brackets.

Table Heading: The heading comprises the first

3-2




arbitrary number of lines before the keyword “PIN”.
The table heading is provided as design
documentation.

Pin Declaration: The purpose of pin declarations is
to let users specify symbolic names for device
pins, so that user-defined identifiers can be
equated to physical device pins. The first five
character of the specified name are displayed
vertically on the simulator screen. Note, the pin

(Programmable Logic Programming Language)
and Am29PL141 software supporting package
TEST41 is that TEST41 can not support vector-
type pin declaration. Thus, the foilowing pin
assignment is illegal in TEST41 environment:

T[5:0] = 20:25

The correct form is:

names in Figure 3-2 and the resulting simulation T5=20
screen display. T4=21

T3=22
The pin declaration begins with the keyword “PIN” T2=23
and is terminated with a semicolon. Ali the pin T1=24
assignments appear within the keyword PIN and T0=25

the semicolon.

The syntax for a single pin assignment is as
follows:

pin_name = pin_number
Example : CLK = 27

The difference in pin declarations between PLPL

Vector Table Body: The vector table body begins
with the keyword “VECTORS”. A list of signal
declarations follows the keyword VECTORS. This
list specifies that all signals in test vector body be
identified in the same sequence as they appear in
this list. TEST41 will identify and display the
vectors according to the order in the names are
given in the list.

HEADER (Am29PL141)
Test for Instr PSH

clk = 27
/reset = 19
t5

PIN

[

VECTORS

IN
ouT

clk /reset t5 t4 t3 t2 tl
p4 pS p6 p7 pl5 MEMRQ pl3

BEGIN
"

" M
E

M

t0 cc ;
pl2 pll IORD IOWR p8 p3 p2 pl p0 /zero ;

II
oo

ttttttc pppp 1R11 1RWp pppp
543210c 4567 5Q32 1DR8 3210
" n

" TEST INSTR FOR FAIL CONDITION "
" "
1 1000000 LHHL LHHL LLHH LLHH
011100X HHLL LLHH LIHL LLHL
1001100 HHLL LIHH LLHH
000101X HHLL LLHH HLLL
1001000 HHLL.LHEHH HHHH
1XXXXXX HHLL LLHH LHHL

r0oo+a
LR IR
onrnoN

HLLL
HLLH
LHHL

Hooswn
[eXeNeReNeXel
HHEHHPO
moam KX

Figure 3-2. TEST41 Input File (Function Table) Example

3-3




There are two fields in this signal declaration
list—IN, and OUT. The IN field contains the input
signals to the device. The OUT field contains the
output signals of the device. The signals are
displayed in the simulation screen display in the
order in which they are listed in the IN and OUT
fields. Figure 3-2 shows the IN and OUT
declarations. Refer to Figure 3-3 for the resulting
simulation display.

Test Vector Format: The test vectors are
embodied between the keyword “BEGIN” and
“END.”. Each test vector starts with a vector
number and ends with a semicolon. The vector
number can be any decimal integer with 4 or fewer
digits. The test vectors in the TEST41 output file
are in JEDEC standard format and have the same
vector numbers specified in the source function
table by the user. This makes cross reference
easier. ‘

The test vectors must contain only valid JEDEC
test conditions:

0 — drive input low
1 — drive input high

C — drive input low, high, low

N - power pins and outputs not tested
L — test output low

H — test output high

Z —test output for high impedance

X —don't care

There is a direct one to one correspondence
between each entry in a test vector and the pin
signal within the test vector table. For example, in
Figure 3-2, the first signal ‘C’ in the test vector table
body corresponds to the CLOCK input signal while
the second test signal bit corresponds to the
RESET signal. The simulator maps test signals to
their corresponding pre-defined pin locations.
The test vector signals must be in the same order
as the listing of the pins in the “IN” and “OUT” list.

The signals not included in the “IN" and “OUT" list
are treated as don't cares(i.e. ‘X’) in the JEDEC
format. There is a direct one to one
correspondence between each test signal and the
“IN” and “OUT" list.

Regardless of the order in which the vector signals
are displayed, the output vector in the pipeline is

Vo000l INPUT | OUTPUT
/ | M
R | E I I
Pin cC E | P M PP P O O
Name : L § T T T T T T ¢ [ PPPPl1 R 1 1 1 R W P PPP
K E 5 4 3 2 1 0 C |45675 @ 3 2 1 D R 8 321
|
Pin # : 27 19 20 21 22 23 24 25 26 | 6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
Vector: ¢ 0 1 0 0 0 0 0 0 | LHHLL H H L L L H H LLH
Computed : | LHHLL H H L L L H H LLH
CREG = 0 , SREG = 0 , PC = 63, EQ =0
#x00 #X00 #X3F
Pipeline : OE OPCODE POL TEST DATA QUTPUTS
1 #XOF 1 6 63 #B0110001101100011
#X3F #X6363
OPCODE MNEMONICS : GOTOTM
Current PL Contents loaded from ROM address 63
vooo2 INPUT | OUTPUT
/ | M
R | E I I
Pin C E | P M P P P OO
Name : L § T T T T T T C | PPPPl R 1 1 1 R W P PPP
K E 5 4 3 2 1 0 C {45675 Q 3 2 1 DR 8 321
o
Pin # : 27 19 20 21 22 23 24 25 26 | 6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
Vecter: ¢ 1 0 1 1 1 0 0 X |HHLLL L H H L L HK L LLH
Computed : | HEHLLL L H H L L H L LLH
CREG =0 , SREG = 0 , PC = 32, EQ = 0
#X00 #x00 #X20
Pipeline : OE OPCODE CONSTANT  DATA OUTPUTS
1 #B100 28 63 #B0011001000110010
#X1c #X3F #X3232
OPCODE MNEMONICS : CMP

Current PL Contents loaded from ROM address 32

Figure 3-3. Simulator Output File Example

3-4




Vo003 INPUT | OUTPUT
/ | M
R | E Iz
Pin Cc E | P M P P P O O
Name : L 8 T T T T T T € | PPPP1l R 1 1 1 R W P PPP
K E 5 4 3 2 1 0 C |45675 Q 3 2 1 DR 8 321
|
Pin # : 27 19 20 21 22 23 24 25 26 | 6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
Vector: ¢ 1 1 0 0 1 1 0 0 |HHLLL L H H L L H H LLH
Computed : | HHLLL L H H L L H H LLH
CREG = 0 , SREG = 0 , PC = 33, EQ=1
X00 #X21
Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 #XOF 1 6 63 #B0011001100110011
#X3F #X3333
OPCODE MNEMONICS : GOTOTM
Current PL Contents loaded from ROM address 33
V0004 INPUT | QUTPUT
/ | M
R | E I I
Pin C E | P M P P P O O
Name : L S T T T T T T C¢C | PPPP1 R 1 1 1 R W P PPP
K E 5 4 3 2 1 0 C |45675 Q 3 2 1 DR 8 321
|
Pin#:271920212223242526|67891817161513121110543
Vector: ¢ 1 0 0 0 1 0 1 X |HHLLL L H H H L L L HLL
Computed : | HHLLL L H H H L L L HLL
CREG = 0 , SREG = 0 , PC = 38, EQ = 1
#X00 #X00 #X26
Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 #X16 0 7 63 #B0011100000111000
#X3F #X3838
OPCODE MNEMONICS : PSHTM
Current PL Contents loaded from ROM address 38
V0005 INPUT | OUTPUT
/ | M
R | E I I
Pin c E | P M PP P O O
Name : L § T T T T T T €C |PPPP1 R 1 1 1 R W P PPP
K E 5 4 3 2 1 0 C {45675 Q 3 2 1 DR 8 321
|
Pin # : 27 19 20 21 22 23 24 25 26 | 6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
Vector: ¢ 1 2 0 0 1 0 0 0 |HHLLL H H H H HHH HLL
Computed : | HHLLL L H H H L L H HLL
Unmatched : | ? ? 2
CREG = 5 , SREG = 39, PC = 39, EQ =1
#X27 #X27
Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 #XOF 1 6 63 #B0011100100111001
#X3F #X3939
OPCODE MNEMONICS : GOTOTM
Current PL Contents loaded from ROM address 39
V0006 INPUT | OUTPUT
/ | M
R | E I I
Pin Cc E | P M P P P O O
Namwe : L S T T T T T T C | PPPP1l1L R 1 1 1 R W P PPP
KE543210C|45675>0321DR8321
|
Pin # @ 27 19 20 21 22 23 24 25 26 | 6 7 8 9 18 17 16 15 13 12 11 10 5 4 3
Vector: € 1 1 X X X X X X |HHLLL L H H L H H L LHH
Computed : [ HHLLL L H H L H H L LHH
CREG = 5 , SREG = 39, PC = 36, EQ =1
#X05 #X27 #X24
Pipeline : OE OPCODE POL TEST DATA OUTPUTS
1 #X15 1 5 0 #B0011011000110110
#X00 #X3636
OPCODE MNEMONICS : PSH
Current PL Contents loaded from ROM address 36
Simulation Completed 3 sinmulation error(s) found

Figure 3-4. Function Table Example 2

3-5




given in ascending order from right to left by pin
number.
3.2.3 RUNNING TEST41

Format: TEST41 [-e] [-o OUTFILE] INFILE

Meaning:
-e Suppress the output to the CRT
-0 OUTFILE Write the test vector generator
output to the file named “OUTFILE”
INFILE The test vector source file

(Function Table) Refer to Figure
3-2.

3.3 EXECUTING SIMULATIONS
3.3.1 INVOCATION COMMAND OPTIONS
AVAILABLE

This section describes the options which can be
supplied to the simulator in the invocation
command. Option flags are prefaced with a minus
“~" character. Options can be specified in upper
case or lower case characters. Some options
require a parameter. The parameter following the
option flag must be typed. The order of
appearance of options is not significant as long as
they are situated between the command name and
the JEDEC fuse map file name.

The invocation command line format is:

sim4l [-edsr] [-b adr] [-x val] [-o
out] [-p val] -t tstvec -ntstin
jedfile

Where:

-e Suppress the output to the CRT.

-d Simulate in the SSR diagnostic mode.

-s Suppress single step mode. Without this
option, simulator pauses after each test
vector is simulated until the user gives a
command (carriage return) to let it continue.
During the pause, users can enter
commands interactively. Refer to Section
3.3.5 for details.

-r Suppress displaying the contents of all
internal registers.

-b adr Set break point at microprogram memory
address adr. When the microinstruction at
address adr is loaded into pipeline register
and executed, the simulator pauses and
waits for commands from users. The
address adr must be a decimal integer from
0to 63.

-x val Set default value for “X” in test vectors. Val
is either 1 or 0. Without this option, the
default value of “X" is 0.

-o out Write the simulator output to the file name
“out”.

-p val Preload internal registers. Which internal
register is preloaded depends on the first
character of “val” as follows:

First Character Register Preloaded

P PC
c CREG
S SREG
E EQ

The next character following E is the
decimal integer 0 or 1. For all other
registers, the first character is a value
from O to 63.

-t tstvec Specifies the test vector file, the output
file of test vector generator program
TEST41. ltis required.

-ntstin Specifies the input source file also used

in the test vector generator program

TEST41. ltis required.

jedfile  The last command line argument is not

optional. It is the Jedec fuse map file

name.

Some examples of simulation command lines
which demonstrate correct invocation syntax are:

sim4l =-sr -t cntr.tl -n cnta
cntr.jed

sim4l -t cntr.t2 -n cnta cntr.jed

sim4l -es -o tmpfile -x 0 -r -t
cntr.t3 -n cnta cntr.jed

sim4l -esr -t tmpfile 0 -n cnt
cntr. jed

sim4l -p p2l1l -o tmpfile -n cnt
cntr.jed

sim4l -p p0 -p ¢c63 -p s0 -t cntr.tl

-n cnt cntr.jed

3-6




The files cntr.t1, cntrt2, and cntr.t3 are TEST41
output vector files. The files cnta and cnt are
TEST41 input files. Both the source name and the
output file name are required. The file cntr.jed
contains the JEDEC fuse map.

3.3.2 SIMULATOR OUTPUT

After each test vector is simulated, the simulator
outputs a snapshot.  The output snapshot
contains the result of the simulation for the test
vector, the test vector input with pin number and
pin name, and a vector number of the vector last
fetched. Each vector number with an initial
character of “V” is a vector fetched from the test
vector file.

The contents of internal registers are also
displayed. If the single step mode is not
suppressed, the simulator will prompt the user for
commands by displaying “I". The user can either
enter commands or press <CR> to continue the
simulation. Among the commands is a help
command *“H” which, when invoked, shows all
available commands to the user. An example of
simulation output is shown in Figure 3-3.

The test vector number “V0001” appears on the
upper left corner of Figure 3-3. This means that
the test vector “V0001” in the test vector file was
used as the input. The vector numbers preceded
by a ‘V' are the same as the vector numbers
fetched by the simulator from the test vectors file.

The first line displays the vector file number and
the “INPUT” and “OUTPUT" column titles. The
next five lines give the pin names displayed
vertically. Shown below the pin names are pin
numbers. The pin names and numbers appear in
the order they are specified in the TEST41 source
file in the “IN” and “OUT" list. Refer to Section 3.2.
Below the pin numbers are the test vectors given
to the simulator. Below the test vectors are the
output signals computed by the simulator. If the
user specifies expected output signals (‘H’ or ‘L),
the simulator compares the expected output
signals with the computed output signals and
shows any unmatched signals by displaying ‘?*
under them.

Unless users apply “r’ option when invoking the
simulator, the simulator displays the contents of all
internal registers, OPCODE mnemonics of the
current OPCODE field in the pipeline register, and
the source of the contents of pipeline register. For
CREG, SREG, PC, and DATA field of pipeline
register, both decimal and hexadecimal values are
displayed. The hexadecimal values are displayed
below their decimal values. For the number

representations, please see Section 3.3.6.

The simulator output file shown in Figure 3-3 is the
result of running the file shown in Figure 3-2 along
with a related Jedec map. In the first test (V0001),
the CC input (pin 26) is tested for a low signal and
since itis a Zero, a branch is taken tothe address in
T[5:0] which is decimal 32 or hex 20. In the next
step, the value 32 is in the PC. The opcode calls
for a compare with the constant value 28. Since
the T[5:0] input is 011100 which is hex 1C or
decimal 28, the compare is true and the EQ flag is
set as seen in the next display (V0003).

The PC is incremented to 33. The value of the test
input of vector V0003 is 38. The condition to be
tested is test 6 (CC) for LOW or false. Since bit 26
is zero, the branch is taken to address 38.

The next display (V0004) shows that the EQ bit is
still set to ONE and the PC is at address 38. The
EQ is not reset to Zero unless EQ is the condition
in a branch or a reset is executed. In this step, the
EQ bit is tested for true as indicated by the test
number (7) with the polarity bit set at Zero. As a
result, the address PC + 1 (39) is pushed into the
SREG. The CREG is loaded from the T[5:0] field
masked by the data field (#X3F) placing the value 5
into the CREG. V0005 shows these register
values. The EQ bit remains at “1” because it was
the condition in a PUSH instruction, not a branch
instruction.

The pipeline is loaded from address 39 for V0005.
The condition to be tested for false is test 6 (CC).
Since CC (pin 26) is Zero, the branch is taken to
the address specified by the input T[5:0] masked
by the data field giving an address of 36 decimal or
24 hexadecimal.

There are three errors in the V005 output vector as
shown by the three question marks in the
“unmatched” line. This did not affect the
simulation results but would affect the application
control signals.

The last test vector shown in this example (V0006)
tests the T5 input. Since it is a ONE and the
polarity bit is set to One (test for false), no branch is
taken. This test vector is not the last vector in the
application being simulated but it is the last vector
in this simulator run. Therefore, a summary of the
number of errors found is displayed following this
vector.

3.3.3 TERMINATING THE SIMULATION

When not in the single-step mode, the simulation
is terminated when the simulator has read all of the

37




lines in the test vector file. When in the single-step
mode, the user terminates the simulation by
entering the command EX. After the simulation is
terminated, the simulator tells the user how many

unmatched output signals were detected by -

displaying the total number of such errors as seen
in Figure 3-2.

3.3.4 SSR DIAGNOSTICS SIMULATION

To choose th SSR diagnostics option, one must
specify the “-d” option in the simulator invocation
command. In addition, MODE, DCLK, and SDI
input signals must be specified in test vectors file.
The simulated internal registers include the
Shadow Register on this option.

3.3.5 INTERACTIVE COMMAND SET

To use interactive commands, one must be in the
single-step mode. Single-step mode is specified
in the invocation command by not specifying the -
S option which suppresses the single-step mode.
An interactive command is defined to be the
contents of a single text line. Only one command
is allowed on a single text line. The simulator
prompts for commands with the prompt “I". There
is no difference between the upper and the lower
case characters.

Each command line begins with the name of the
command. Some commands require arguments. |f
the user does not enter the argument in the
command line, the simulator will prompt for the
argument. The argument for interactive
commands may be a binary, octal, decimal, or
hexadecimal number. Usually, the argument
specifies the contents of a register or a PROM
address. The argument should not exceed the
range of values that a register can hold. If a user
specifies an argument beyond the range, the
argument will not be -accepted. Al invalid
arguments leave the contents of the internal
register intact. Note: the simulator refers to
interactive commands as subcommands to
distinguish them from the invocation command.

The space between commands and arguments is
optional.

The following commands are currently available:

LP[arg]  Load argument into Program Counter
(PC).
LC[arg] Load argument into Count Register

(CREG).

LS [arg] Load argument into Subroutine
Register (SREG)

LL Load pipeline register. The simulator
will prompt for each field's contents.

SQ Set EQ flag.

RQ Reset EQ flag.

SS Set single step mode. It is used to
resume after reaching a breakpoint in
single step mode.

CS Cancel single step mode.

SB[arg,..] Set break point at PROM address
specified by argument.

CB[arg,..] Cancel break point at PROM address
specified by argument. If the break
point is not set yet, this command has
no effect.

CBA Cancel all break points.

DB Display break points currently set.

RUN [prog] Run another program. The full device
and pathname for COMMAND.COM
must be given by an entry in the
environment, with “COMSPEC”. This
may be checked by using the DOS
command “SET" at the system
command level (not at the interactive
command level).

EX Terminate simulation and exit to OS

when entering interactive commands

from the keyboard in the single-step
mode.

Command Examples:

Shown below are some examples of the usage of
interactive commands. The underlined characters
are entered by the user. The other characters are
prompts by the simulator.

!lp 10

!
PC

10
! 1c#b0000000

! lc
CREG = #Xla

! rup dir

3-8




! run type myfile
! sb 1.2,3.4

! cb
Break Point

2.3

! db
Break point(s) : 1,4
! cba

! db
Break point (s)

3.3.6 NUMBERS

Much of the information passed between the
simulator and the user is expressed in numeric
form. Input numbers are typed by the user, and
accepted by the simulator. OQutput numbers are
generated by the simulator, and viewed by the
user. Each number is in one of four bases: 2, 8,
10, or 16.

On input, the user must specify the intended
number base. This is done by either an explicit
number prefix, or by following the prompt of the
simulator.

The simulator output format is fixed. The user can
neither change the format nor the number base.
However, if the internal form of an output data has
a bit width more than or equal to 6, the simulator
displays the data (with the exception of opcodes)

in both decimal and hexadecimal form. Opcodes
are only displayed in hexadecimal form. The
output field of the pipeline register is displayed in
both binary and hexadecimal forms.

Uppercase characters do not differ from lowercase
characters in number representation.

Binary Numbers: Input and output binary numbers
are represented as a string of ‘0’ and ‘1’ digits
prefaced with the string “#B”.

Octal Numbers: Input and output octal numbers
are represented as a string of the digits ‘0’ through
‘7" prefaced with the string “#0”.

Decimal Numbers: Input and output decimal
numbers are represented as a string of the digits
‘0’ through ‘9'. Decimal numbers may optionally be
prefaced with the string “#D".

Hexadecimal Numbers: Input and output
hexadecimal numbers are represented as a string
of the digits ‘0’ through ‘9’ and the letters ‘A’
through ‘F’ prefaced with the string “#X".

Number Examples:
#d123  (decimal)
123 {decimal)
#B0110 (binary)
#b101  (binary)
#0077  (octal)
#xal (hex)
—#b100 (invalid, the simulator does not

accept negative numbers)

3-9







CHAPTER 4 .
COFFEE MACHINE CONTROLLER USING Am29PL141

This section is a tutorial to show designers how to
go from a design requirement to Am29PL141
microcode. The coffee machine application was
chosen because it is easy to understand.
Obviously, the Am29PL141 will never be used for
such a slow application.

The following example describes the hardware and
the programming required. A flow diagram of the
program is included. The assembler program for
the coffee vending machine example is called
COFFEE.EXP. The Am29PL141 assembler
produces two outputs, the JEDEC fuse map
output file (COFFEE.JED) and the PROM bit
pattern output file (COFFEE.BIT. First, the
problem is defined.

The coffee machine controller waits for a coin
before dispensing the beverage selected by the
customer. The choices are indicated as
combinations of buttons.

Design requirement:

Design a coffee machine controller that works as
follows:

Do nothing until a coin is detected.
On coin detection turn on busy light and wait
for selection:

N -

i. coffee

ii. chocolate
iii. soup
iv. coinreturn

If coin return is detected, return coin, turn off
busy light and wait for next coin.

If coffee, chocolate or soup is detected, drop
acup.

The cup has 1.5 seconds to get into place.
Turn on water for 1 second prior to release of
powders.

Water will remain on continuously for a total of
10 seconds.

Busy light will remain on unti end of
sequence.

Depending on selection, either coffee, soup
or chocolate will be dispensed:

© ® N oo » ®

coffee 2.5 seconds
soup 2.0 seconds
chocolate 3.5 seconds

10. If coffee was selected, check to see if cream
and/or sugar are selected. If yes, cream 2.0
seconds, sugar 1.5 seconds.

After water has completed filling the cup, allow
3.5 seconds for cup removal before testing for
presence of next coin. .

12. Clock rate is 10 Hz.

1.

As can be seen, there are six possible beverages:

i. coffee black
ii.  coffee with sugar
iii.  coffee with cream
iv.  coffee with cream and sugar
v. chocolate
vi. soup

The conditions that need to be tested are:

i. coindrop
i. coffee
iii. cream
iv. sugar
v. chocolate
vi. soup
vii.  return (coin return)

Control signals that need to be generated from the
controller are:

i.  busy light on (busy)
ii. cupdrop (cup)
ii.  wateron (water)

iv.  coffee on (coffee)
v. cream on (cream)
vi.  sugar on (sugar)
vii.  chocolate on (choclat)
viii.  soup on (soup)
ix.  coin return (coin_return)
x.  clearinputs (clr_inp)

Figure 4-1 represents the hardware required for
the controller. The inputs need to be synchro-
nized and latched hence the PAL device (16R8).
Once latched, the clr_inp signal from the
Am29PL141 clears the external registers within
the Pal at the end of each sequence. The
Am29PL141 has seven external test inputs.
These are used to test the seven conditions.
Since all but one of the Am29PL141 instructions
are conditional, unconditional jumps must be
implemented by a ‘forced pass’. The ‘EQ’ flag
internal to the Am29PL141 is a test condition not




being used in this design. It can therefore be used
to allow ‘unconditional’ instructions. The state of
the ‘EQ’ flag is always known since it is unused for
any other purpose. (The ‘EQ’ flag is cleared on
reset).

Figure 4-2 is the flow diagram for the program. It
describes the logical flow of events required by the
design. The rectangular boxes in the flow diagram
show the value of the control field for that state.
The diamond shaped boxes imply a conditional
test to decide the next state. A pair of rectangular
and diamond shaped boxes indicate a conditional
microcode line. A rectangular box not followed by
a diamond shaped box implies that the instruction
is a continue or an unconditional branch. ’

The Am29PL141 is used to develop the micro-

code. Figure 4-3 is a listing of the Assembler
source code used. It is assumed that the reader is
familiar with the Am29PL141 assembler (described
in Chapter 2) supplied by Advanced Micro
Devices. Note that all timing is in 0.5 second
increments. At 10 Hz, 0.5 second corresponds to
5 clocks.

Each box in the flow diagram can be directly
translated into one or more lines of microcode.
One important convention needs to be
remembered. Each microcode line specifies the
state of the control outputs and the branch
address for the NEXT instruction. Hence in the
flow diagram, the decision box follows the output
field box. The flow. diagram indicates the
microcode line numbers corresponding to each
box. i

10Hz
CLK  po (—»Busy
Coln__'-)> o a Il coin To
Drop |
P1 |—>Cup
CLR
-
Soup-
S°UP—|—_D ; @ Test | V1 P2 |+ Water
CLR
l
] P3 |—»Coffee
Choc-
Chocolata__LD b a | Teosg T2
P
) CLR P4 |—»Cream
1
Cream__LD D a l c-'i-?sT T3
D P5 |—Sugar
CLR
]
$ugar_b b a l S;_Jg;r- T4 P6 |—#Chocolate
—D
CLR
[ 1 o P7 |—Soup
Coﬁee__l_):> 5 aj-Collee y5
8 Coln
CLR P8 —*Ratum
1)
. 1 Coin
D Q cC
Retum__LD Return -p9 |——Clear
-+ Inputs
CLR
16R8 Am29PL141

Figure 4-1. Coffee Machine Hardware

06591A 4-1

4-2




Sub

4451

Busy
1.5sec

46,47 l

Busy,Water
1sec

48 l

Busy
Return

!

06591A 4-2

Coffee\ YES
?

Busy

YES
(B

Busy

YES
LC D

6

Busy,
CoinRet
Clr-inputs

Figure 4-2. Coffee Machine Program Flow Diagram (Sheet 1 of 2)

43




8 28 33
Cupdrop,Busy Cupdrop,Busy Cupdrop,Busy
CallSub CallSub CaliSub
9,10 l 29, 30 l 34, 35 l
Busy,Water, Busy,Water, Busy,Water,
Coffee 2.5sec Choc.3.5sec Soup 2sec
36, 37 l
Busy,Water,
Y 6sec
Busy,Water
1"
Busy,Water,
SU'?ar Sugar 1.5sec
No 15,16,17 202
$ YES Busy,Water,
Cream Cream 2.0sec
Busy,Water ?
12 24,25 NO
YES|  Busy,water, v
Cre?am Cream 2.0 sec
NO
1 A

13,14,18,19,22,23, & 26,27,31,32,38,39,40

Busy,Water,
Total 10sec

41,42,43 |

Busy 3.5sec
Clearinputs

06591A 4-2b

Figure 4-2. Cotfee Machine Program Flow Diagram (Sheet 2 of 2)




Special care needs to be taken to ensure that
water is on continuously for 10 seconds. Six
possible paths lead to the microcode line labeled
“last”. At the end of each of these paths, the
CREG is loaded with a value equal to 10 seconds
minus the time in seconds for which water has
already been on. Note that the value loaded into
the CREG is one less than the expected value.
This is because the value 0 in the CREG needs to
be accounted for as the Am29PL141 checks the
CREG and then decrements.

For example, coffee needs to be turned on for 2.5
seconds if selected. At 10 Hz., this translates into
25 clock periods. Coffee is on for one clock period
during the instruction when the counter (CREG) is
loaded with a countdown value (line 9 of the
microcode). The counter therefore needs to be
loaded with a countdown value of 23 which
corresponds to coffee being on for 24 clock
periods before the counter counts down to zero.
The total time for which coffee is on is therefore 24
+ 1 =25 clock periods or 2.5 seconds.

On reset, the ‘EQ’ flag is cleared. For a ‘pass’ to
occeur, the flag must, therefore, be tested for a ‘0",
Hence the ‘not fail' in each of the unconditional
microcode lines instead of the more obvious
‘pass’. Also on reset, the Am29PL141 executes
the instruction on line 63. In this example, this line
is an unconditional branch to line 1 of microcode.
This is a wasted microcode line. If efficient coding
is required to preserve microcode lines, the coin
test on line 1 of the microcode could be placed on
line 63 thus saving one line of microcode.

To assemble this file, type:

A> ASM141 -i COFFEE.EXP -0 COFFEE.JED -b
COFFEE.BIT

When the file COFFEE.EXP is assembled, two
output files are created, COFFEE.JED and
COFFEE.BIT. The JEDEC fuse map output is sent
to the file COFFEE.JED (Figure 4-4). The PROM
bit pattern is sent to the file COFFEE.BIT. See
Figure 4-5 for a listiing of this file.

DEVICE (PL141l)

DEFAULT = 1 ;

DEFINE "test inputs are given name assignments"

coin = toO
soup_test = t1
choc_test = t2

cream_test = t3
sugar_test = t4
coffee_test = t5

coin_ret = cc
fail = eq

"output/control bits are given name assignments"

off = 04h
busy = 0l#h
cup = 02¢4h

water = 04#h
coffee = 08#h
cream = 10%#h
sugar = 20%h
choclat = 40#h
soup = 80#h
cn_ret = 100#h
clr_inp = 200#h;

BEGIN

"wait for a coin to drop and check selection after coin detect"

n" zero:off,

if (not coin) then goto pl(zero);

nan clr_inp, continue;

n3n test:busy, if (coffee_test) then goto pl(cofe);
nan busy, if (choc_test) then goto pl(choc):;
ngn busy, if (soup_test) then goto pl(sup);

nen busy, if (not coin_ret) then goto pl(test):;
nwn busy + cn_ret + clr_inp,if (not fail) then goto pl(zero);

Figure 4-3. Coffee Machine Source Program Listing (Sheet 1 of 2)

45




hex <dec> OE OPCODE POL TEST DATA OUTPUT
000 < 0> {1} 11001 | 1 | 000 | 000000 | 0000000000000000 }
001 < 1> [ 1| 01101 | 1 | 111 | 111111 | 0000001000000000 ]
002 < 2> [ 1] 11001 | 0 | 101 | 000111 | 0000000000000001 ]
003 < 3> [ 1] 11001 | O | 010 | 011011 | 0000000000000001 ]
004 < 4> [ 1] 11001 | O | 001 | 100000 | 0000000000000001 )
005 < 5> [ 1] 11001 | 1 | 110 | 000010 | 0000000000000001 ]
006 < 6> {1 ] 11001 | 1 | 111 | 000000 | 0000001100000001 ]
007 < 7> {1} 11100 | 1 | 111 | 101011 | 0000000000000011 )
008 < 8> [ 1| 00100 | 1 | 111 | 010111 | 0000000000001101 ]
009 < 9> {1 01000 | 1 | 111 | 001001 | 0000000000001101 ]
00A < 10> [ 1 | 11001 | 0 | 100 | 001110 | 0000000000000101 ]
00B < 11> [ 1 | 11001 | O | .01l | 010111 | 0000000000000101 j
00C < 12> [ 1} 00100 1 | 111 | 111100 | 0000000000000101 ]
00D < 13> {1} 21001 |{ 1 | 111 | 10011l | 0000000000000101 ]
00E < 14> { 1] 00100 | 1 | 111 | 001100 | 0000000000100101 ]
00F < 15> { 1] 01000 | 1 | 111 | 001111 | 0000000000100101 ]
010 < 16> [ 1 | 11001 | 0 | 011 | 010011 | 0000000000100101 ]
011 < 17> (1] 00100 | 1 | 111 | 101110 | 0000000000000101 }
012 < 18> f 1] 11001 | 1 | 111 | 10011l | 0000000000000101 ]
013 < 19> (1] 00100 | 1 | 111 | 010010 | 0000000000010101 }
0l4 < 20> (1| 01000 | 1 | 111 | 010100 | 0000000000010101 ]
015 < 21> [ 1) 00100 { 1 | 111 | 011010 | 0000000000000101 )
016 < 22> {1 ] 11001 }{ 1 | 111 | 100111 | 0000000000000101 ]
017 < 23> [ 1| 00200 { 1 | 111 | 010010 | 0000000000010101 ]
018 < 24> [ 1] 01000 | 1 | 111 | 011000 | 0000000000010101 ]
019 < 25> [ 1 | 00100 | 1 | 111 | 101000 | 0000000000000101 ]
0lA < 26> { 1] 11001 [ 1 | 111 | 10011l | 0000000000000101 ]
01B < 27> (1] 11100 | 1 | 111 | 101011 | 0000000000000011 ]
0lCc < 28> [ 1 | 00100 | 1 | 111 | 100001 | 0000000001000101 ]
01D < 29> [ 1| 01000 | 1 | 111 | 011101 | 0000000001000101 ]
0lE < 30> [ 1] 00100 { 1 | 111 | 110100 | 0000000000000101 ]
0lF < 31> [ 1] 11001 | 1 j 111 | 10011l | 0000000000000101 )
020 < 32> [ 1) 11100 | 1 | 111 | 101011 | 0000000000000011 }
021 < 33> [ 1| 00100 |1 | 111 | 010010 | 0000000010000101 ]
022 < 34> [ 1] 01000 | 1 | 111 | 100010 | 0000000010000101 ]
023 < 35> [ 1| 00100 | 1 | 111 | 111010 | 0000000000000101 ]
024 < 36> [ 1| 01000 | 1 | 111 | 100100 | 0000000000000101 }
025 < 37> [ 1] 00100 | 1 | 111 | 000111 | 0000000000000101 }
026 < 38> [ 1 | 11001 | 1 | 111 | 100111 | 0000000000000101 ]
027 < 39> [ 1] 01000 | 1 | 111 | 100111 | 0000000000000101 ]
028 < 40> [ 1 | 00100 | 1 | 111 | 100000 | 0000000000000001 J
029 < 41> [ 1] 01000 | 1 | 111 | 10100l | 0000000000000001 J
02A < 42> [ 1] 11001 | 1 | 111 | 000000 | 0000001000000001 ]
02B < 43> {1 00100 | 1 | 111 | 001101 | 0000000000000001 )}
02C < 44> [ 1| 01000 | 1 | 111 | 101100 | 0000000000000001 ]
02D < 45> [ 1| 00100 | 1 | 111 | 000111 | 0000000000000101 ]
02E < 46> { 1] 01000 1 | 111 | 101110 | 0000000000000101 ]
02F < 47> [ 1] 00010 | 1 | 111 | 111111 | 0000000000000101 ]
03F < 63> [ 1] 11001 | 1 | 111 | 000000 | 0000001000000000 ]
Where:
Oe _ = Synchronous output enable for P[15:8]
OPCODE = Five-bit field for selecting one of the 29
microinstructions
POL = Test condition polarity select field
0 = Test for true (HIGH) condition
1 = Test for false (LOW) condition
TEST = Binary value of input line to be tested
Value Input condition Value Input Condition
000 TO 100 T4
001 Tl 101 TS
olo0 T2 110 cc
0ll T3 111 EQ
DATA = 6-bit conditional branch microaddress, test input mask,

or counter value field designated as PL in
microinstruction mnemonics (P(21:16])

Output = 16-bit user output control signals (P[15:0])

Figure 4-5. PROM File for Coffee Machine Application

4-8




CHAPTER &

DEC PDP-11 UNIBUS CONTROLLER

5.1 THE DESIGN PROBLEM

This paper discusses the use of the Am29PL141
Fuse Programmable Controller (FPC) as a DEC
PDP-11 Unibus* interface controller.

Designing an interface for the Unibus is typical of
the problems which can be readily solved using
the Am2SPL141 FPC. The complexity of Unibus
handshaking is such that microprogramming is a
reasonable design technique, but use of a
separate sequencer, control memory, and pipeline
register is not economical. Since the FPC contains
a sequencer, memory, and pipeline; it fits this class
of problem rather well. The PDP-11 was chosen for
this example because it has a well documented
protocol which is familiar to many engineers. An
Overview of the Unibus is included.

The problem this application note solves is to:

Design an interface between the Unibus and a
generic /0 device to allow the following
operations:

Interface to handle all Unibus protocol for
DATI/DATO with device as slave

Device BR (interrupt)

Device NPR (direct memory access)
DATI/DATO with device as master

Interface to handle synchronous parallel
transfers with device

5.2 DEC UNIBUS OVERVIEW

The DEC PDP-11 Unibus is an asynchronous bus
which supports programmed /O, prioritized
interrupts, and Direct Memory Access (DMA) in a
memory mapped I/O environment. All bus transfers
are between a bus master and bus slave, and are
controlled by the master. A bus arbitrator grants
bus mastership to requesting devices.

The six basic types of transfers allowed are:

DATO - word data transfer from master to
slave

DATOB - byte data transfer from master to
slave

DATI - word data transfer from slave to
master i

DATIP - word data transfer slave to master,
inhibit restore cycle

NPR  — Non Processor Request.
DMA device wants to become bus
master.

BRi — Bus Request. Interrupt request at

level i (4,5,6,0r 7).

The following control signals are used during
transfers:

MSYN  master sync—timing control
SSYN  slave sync—timing control

C0, C1  data transfer type

BRi interrupt bus request level i

BGi interrupt bus grant level i {note 1)
INTR interrupt vector strobe

NPR DMA bus request

NPG DMA bus grant (note 1)

SACK  select acknowledge

BBSY  bus busy

Note 1: These signals are daisy chained to form

a physical priority level at each separate
logical priority level (npg, bg4, bg5, bg6,
bg7).

5.3 INTERFACE HARDWARE DESIGN

As shown in Figure 5-1, the architecture chosen
for this interface consists of three main sections—
Unibus signal buffering, address decoding, and
control logic. Data, address, and control signal
buffers provide proper Unibus levels and are
implemented using DS8641 Quad Unified Bus
Transceivers. The address decoder detects
whether the device is addressed as a slave or
master during Unibus DATI and DATO transfers,
and is best implemented using Am29806
decoders. The control logic is a microprogrammed
state machine which handles both Unibus and
device handshaking.

The heart of the control logic is the Am29PL141
Fuse Programmable Controller. Its user-defined
microprogram implements a state machine which
handles both device and Unibus handshaking.
Test inputs are synchronized with the FPC clock
using an AM29821A 10-bit register. Five of these
inputs go directly to the FPC, while the other five
go through a multiplexer which expands the FPC
conditional test capability from seven to fourteen
signals. Two D flip-flops and OR gates are used to




DEVICE INTERFACE UNIBUS
{4) DS8641
TRANSCEIVER
EDATN 18, N
VECTOR . . BUsp—————® _ paTa
DATA -4 :1 ouT
ENA
FROM DATA OUT
18,
ADDRESS ,
(5) DSB641
TRANSCEIVER
Am29806/9 N "
. DECODER Bushb———— <1 o AppRess
ENABLES [~————pl——pd £ A [¢———qd oUT
R — ENA
DATXREQ AE
ENA T
FROM ADDROUT
WRITE a, (3) DSBE41
INTREQ = TRANSCEIVER
DMAREQ MSYNY | MSYN
SSYN ouTt 10
BBSY Bus p———212 ! conTROLSIGNALS
L o82{ L MSYN
14 N'% A B A SSYN
ENA éI;ESY
1
D D . 10}/ SACK
Am29821A  ENA % TR
CP(15MHz) Dok RecistER  _ B
oF n
NPGOUT gge
Y Y BGOUT
R o
INTREQ 1’5 15 74F32
WRITE
D » T4F74
> C 74F251A 7 D @
—{ A NPG,EG S
— B MSYN CP —
MUX s
4
45V &
| [2]
cC 15 T[4:0] s
. DRO
RESET —»d RESET DATAOUT  ADDROUT
Am29PL141  ZERO |— NC.
CP(15MHz) > cLk
P{159]
DATAIN 34’ ny 2,!’
CMPLT
ERROR a, s, 8y 5
7 7
NPRBR
06591A 5-1

Flg'ure 5-1. Unibus Interface Block Diagram

5-2




implement the Unibus request/grant handshaking.
Because the clock period must be at least 64.5 ns,
a clock frequency of 15 MHz is appropriate (66.6
ns). A detailed control logic timing analysis is
shown in Figure 5-2.

54 MICROWORD FORMAT

The microword organization for this application of
the FPC is shown in Figure 5-3. The 32-bit
microword is subdivided into fields of various sizes
and functions. The 16 most significant bits are
used during next address generation within the
FPC, while the lower 16 bits are tailored to the
application.

OE is a synchronous output enable for output bits
15 through 8. The 5-bit OPCODE field contains
the FPC next address instruction.

POL controls polarity of the test condition selected

by the 3-bit TEST field.

DATA is a 6-bit address, test mask, or counter
value; depending on the OPCODE used.

ERROR is an interface timeout indication to the
peripheral device.

AUX TEST is a 3-bit field which controls the
external multiplexer for additional test inputs. The
TEST field must have a value of 5 to use the test
selected by AUX TEST.

The 12 COMMAND outputs are single bit control
signals. ADDROUT and DATAOQUT enable Unibus
address and data buffers. DATAIN clocks Unibus
data into peripheral device registers. COMPLT
indicates to the device that an interrupt or DMA
operation has been completed. The remaining
outputs are Unibus control signals described in
Section 5.2.

&

Am29PL141 Am29821A
CLK-OUTPUT CLK=-OUTPUT
15 105
74F251A 74F251A Am29PL141
C,B,A-Y -Y MIN.CLK
9.5 8 50
(T5 STABLE)
Am29PL141
TEST SETUP
40

S

MINIMUM CLOCK PERIOD = 15 +9.5 +40=64.5ns

06591A 5-2

Figure 5-2. Control Logic Timing




Microword Format:

: 31 : 30 -26 : 25

. . .
HE S A I A S A

t 24,23,22 ¢ 21 - 16 : 15 : 14,13,12 : 11 -0 :

1 oe @ opcode : pol : test : data : error : aux tst : command

oe: output enable

(31)
opcode: 29PL141 command
(30-26) 00 -~ RETPL 08 - LPPL 10 - CMP 18 - FORK
01 - RETPLN 09 - DEC 11 - CMP 19 - GOTOPL
02 - RET OA - LPPLN 12 - CMP 1A - WAIT
03 - RETN OB - GOTOPLZ 13 - CMP 1B - DECGO/C
04 - LDPL 0C - DECAL 14 - PSHPL 1C - CALPL
05 - LDPLN 0D - CONT 15 - PSH 1D - CALPLN
06 - LDTM OE - DECTM 16 - PSHTM 1E - CALTM
07 - LDTMN OF - GOTOTM 17 - PSHN 1F - CALTMN
pol: test polarity ( 1 = negate )
(25)
test: conditional test input select
(24,23,22) 0 - msyn 4 - npg
1 - ssyn 5 - aux tests
2 - bbsy 6 — pass
3 - bg 7 - equal flag
data: branch address, test input mask, or counter load value
(21-16)
error: timeout error indication to device
(15)
aux test: ‘additional test inputs when test = 5
(14,13,12) 0 - datxreq 4 -~ cl
1 - dmareq 5 - spare
2 - intreq 6 - spare
3 - write 7 - spare
command:
(11-0)

11 ¢+ 10 9 : 8 ¢ 7 6 : 5: 4 : 3 2 1 : 0 H
: addr : data : data : com : ¢l : intr : br : npr : sack : bbsy : ssyn :
: out : out : in ¢ plt H : : H : : :

e se ae w

06591A 5-3
Figure 5-3. Microword Organization

5-4




5.5 UNIBUS CONTROLLER MICROCODE

Two things always happen during execution of a
microinstruction—the address of the next
microinstruction is determined using the
OPCODE, POLARITY, TEST, and DATA fields;
while concurrently, the Unibus and device
interfaces are controlled by signals from the
COMMAND field.

The microcode which controls the FPC was written
using the Am29PI141 assembler available from
AMD. The mnemonics used in the source code are
shown in Figure 5-4. Note that these definitions
are consistent with the microword definition of
Figure 5-3. Figure 5-4 also contains the source
code for the FPC. Figure 5-5 shows the FPC
PROM contents. Note that one line of source
generates one PROM word. The general source
format is:

<label>: <outputs>, <FPC
instruction>; "comment"

Outputs may be either mnemonic or constants,
and may be logically “ANDed” or “ORed" together.
The FPC assembler instructions are included in
Chapter 2. The following paragraphs describe the
code written for this FPC application. It is helpful to
refer to the microcode source program listing
(Figure 5-4) and the timing diagrams (Figures 5-6,
5-7, 5-8, and 5-9).

After reset to address 63, the program branches to
address 0 (label TOP) and loops until one of the
external conditons DATXREQ, DMAREQ, or
INTREQ is asserted. For example, at TOP, if
auxiliary test condition DATXREQ is asserted, the
subroutine DATX is called. Otherwise, the next
sequential instruction is executed.

DATXREQ true indicates that a Unibus master has
initiated a DATO or DATI transfer with the interface
and causes a branch to the subroutine at label
DATX, with the return address being saved in the
FPC SREG. Unibus signal C1 is tested to deter-
mine direction, and then a DATO or DATI slave
sequence is completed beginning at label DATO
or DATI. At DATI, Unibus signal SSYN is asserted
and data gated onto the Unibus using DATAOUT,
until test MSYN is negated. The next instruction
has no control signals asserted (OFF), and returns
from the subroutine by branching to the address
saved in SREG. DATO processing is similar.

DMAREQ indicates that the device is requesting a
Direct Memory Access cycle, which causes a
branch to label NPRX. The program waits at NPRX
until NPG is de-asserted. NPR is then asserted and
the program loops at NPR1 unti NPG is
reasserted. SACK is asserted, and the program
loops at NPR2 until the three signals NPG, BBSY,
and SSYN are unasserted. Note how the compare
instruction masks the test inputs with the constant
NPG_BBSY_SSYN and compares the result to 0.
This allows concurrent testing of three inputs in
only two microcycles. BBSY is asserted, making
the interface bus master, and WRITE is tested to
determine DMA direction. If a DATI cycle is to
occur, we fall through to NPRDATI.

Front-end 150 ns de-skewing is done at NPRDATI
and WAIT1, concurrent with loading the FPC
CREG with 31 hex for a 15 microsecond slave
timeout. WAIT2 is the top of the timeout loop. If the
slave Unibus device asserts SSYN within 15
microseconds, the program branches to pass1 for
tail-end 75 ns de-skew. Otherwise it falls through
to the error exit at ERROR1. DATO processing is
similar to DATI, and begins at NPRDATO.

INTREQ is asserted when the device wants to
interrupt the Unibus CPU, causing execution to
continue at INTRO. Interrupt request/grant
processing occurs at INTRO and INTR1. SACK is
then asserted and the program loops at INTR2 until
BG, BBSY, and SSYN are unasserted. The device
supplied interrupt vector is gated onto the Unibus
data lines at INTR3, and the interrupt handshake is
finished at WAITO.

5.6 CONCLUSION

One of the advantages of microprogrammed
design is that it is relatively easy to change. In this
application, Unibus DATOB and DATIP transfers
were not differentiated from DATO and DATI trans-
fers. This could be easily accommodated by modi-
fying the DATX microcode to test Unibus signal C1
by adding a few words of additional code. Another
change to be considered is to change the device
interface to a less rudimentary protocol. Additional
control signals could be provided by adding a
decoder at the FPC output, and encoding eight
signals using only 3 microword bits. Spare
multiplexer inputs could be used for additional
device status lines. Additional control signals can
also be provided by adding another FPC.

5-5




" Unibus Controller microcode using Am29PL141 assembler "
" 'Version 1.2 R. Purvis, 19 December 85 "

device (PL141l)
default = 1 ;

define

" kkkkkkk*k*  DEFINITION OF TEST INPUTS kkkkkhdkksn o
tmsyn = t0 : " test Unibus signal MSYN "
tssyn = tl " SSYN "
tbbsy = t2 " BBSY "
tbg = t3 " BG "
tnpg = t4 " NPG "
aux = t5 " auxiliary test conditions "
pass = cc " unconditional pass "
bg_bbsy _ssyn = Oe#h " test mask "
npg_bbsy_ssyn = 16#h " test mask "

" *kkkhkkkk* DEFINITION OF OUTPUTS kkkkdkdkhhkkkhhhk 1

" AUXILIARY TEST CONDITIONS "
datxreq = 0000#h " Unibus DATI or DATO request "
dmareq = 1000#h " device DMA request "
intreq = 2000#h " device Interrupt request "
write = 3000%#h " device write request "
tcl = 4000#h " Unibus signal cl "

" aux tests 5 - 7 are unused "

" CONTROL . SIGNALS "

off = 0000#h " no signals active "
error = 8000#h " error flag to device "
addr = 0800#h " gate address onto Unibus "
dataout = 0400#h " gate data onto Unibus "
datain = 0200#h " strobe data in from Unibus "
complt = 0100#h " complete flag to device "
cl = 0080#h " assert Unibus signal C1 "
intr = 0040#h " INTR "
br = 0020#h L BR "
npr = 0010#h " NPR "
sack = 0008#h " SACK "
bbsy = 0004#h o BBSY "
ssyn = 0002#h " SSYN "
msyn = 0001#h ; " MSYN "
test_condition = cc; " default test condition "
begin " de e ve e e de e de ok ok de sk ok Source Code ddekkdhhkdddehkhhhk "
" Unibus Controller V1.2 . "
" o Je e Je Je o e % g g ok ok e e e e e e ok vk ok ok vk e ok ok ke ok ke ok e ke ok o e ok ke ok e o vk ok ok e ok ok e ek ok e ok ke ok "

" * MAIN LOOP - Loop at TOP until external condition "

" * DATXREQ, DMAREQ, or INTREQ is true. "
" L T L L e S L e LS R L S S a2 2L "

top: datxreq, if (aux) call pl(datx):
dmareq, if (aux) call pl(nprx);
intreq, if (not aux) goto pl(top):

" dhkkddhdkkhhhhhdhhhhhkhhhdkddhhhhhkhhdhhhkhhhdhdikhrhhidhkhrh "

" * INTERRUPT SERVICE ROUTINE -~ Device interrupt service "
" * request. Perform Unibus interrupt handshake. "
" hhhkhkkhkhkhkhhhkhkhhkhkhkhhhkhkhkhkhhkhkhkhhkhkhkhkhkhhkhkdhhkhkhhkhhhhhhhhdhhhhhdrk "

Figure 5-4. Unibus Controller Source Program Listing (Sheet 1 of 2)

5-6




intro: off, if (tbg) goto pl (intro):; " request/grant handshake "

intri: br, if (not tbg) goto pl(intrl):;
br + sack, continue;
intr2: br + sack, cmp tm(bg _bbsy ssyn) to pl(0);
br + sack, if (not eq) goto pl(intr2):;
intr3: sack + bbsy + intr + dataout, continue:; " interrupt vector "
waito: bbsy + intr + dataout, if (not tssyn) goto pl(waito):

complt, goto pl(top):

" . e e o e e Je e e o e e e de e de e dk ke ke vk ke e e e ok ok ok e ok e kv o sk e e e ok e ke ok ok e e ok ok e e e e ok de e e "

" * PROGRAMMED I/O ROUTINE - Unibus master accessing "
" * device. Perform Unibus DATO/DATI handshake. "
" v de o v Je e ok Je e de e Je de e e de o e e de e de g e de d K de e e e e de de e e e ek e e Sk de de e ok g e gk ok ek o e e e e "
datx: tecl, if (aux) goto pl(dato):
dati: ssyn + dataout, if (tmsyn) goto pl(dati): " unibus slave DATI "
off, ret;
dato: ssyn + datain, if (tmsyn) goto pl(dato):; " unibus slave DATO "
off, ret: :
" e e e e e e vk e d de ke d A e ke I e ok o o ok ok o ok ke e ok de ek vk Ik sk e ke e de ok e de e e K v e d ok ok e dk ok vk e e ok e "
" * DMA SERVICE ROUTINE =~ Device DMA service request. "
" * Perform Unibus DMA handshake. "
" % Je Je ok o e de d J e Je e de vk s Je de de de de gk Ik A ok Sk kg ok e e e vk e vk e e e ok e ok ek e e ok ok e e e ke ke ok Rk ok ok ek ok "
nprx: off, if (tnpg) goto pl(nprx): " request/grant handshake "
nprl: npr, if (not tnpg) goto pl(nprl):
npr + sack, continue;
npr2: npr + sack, cmp tm(npg_bbsy_ ssyn) to pl(0):
npr + sack, if (not eq) goto pl(npr2);
bbsy + write, if (aux) goto pl(nprdato): " bus master now "

" DMA READ ROUTINE (unibus master DATI) "

nprdati: bbsy + addr, load pl(31#h):

waitl: bbsy + addr, if (tssyn) goto pl(waitl);

wait2: bbsy + addr + msyn, if (tssyn) goto pl(passl):; " 15 us "
bbsy + addr + msyn, if (tssyn) goto pl(passl); " timeout "
bbsy + addr + msyn, if (tssyn) goto pl(passl);
bbsy + addr + msyn, while (creg<>0) loop to pl(wait2);

errorl: bbsy + addr + error, ret; "  timeout error "

passl: bbsy + addr + complt + datain, ret; " normal exit "

" DMA WRITE ROUTINE (unibus master DATO) "

nprdato: bbsy + addr + cl + dataout, locad pl(31#h):;
wait3: bbsy + addr + ¢l + dataout, if (tssyn) goto pl (wait3);
wait4: bbsy + addr + cl + dataout + msyn, if (tssyn) goto pl(pass2);
bbsy + addr + cl + dataout + msyn, if (tssyn) goto pl(pass2);
bbsy + addr + cl + dataout + msyn, if (tssyn) goto pl(pass2);
bbsy + addr + cl + dataout + msyn, while(creg<>0)loop to pl(wait4);
error2: bbsy + addr + cl + error, ret; "  timeout error "
pass2: bbsy + addr + cl + complt, ret; " normal exit "
.org 63#d
off, goto pl(0):; " hardware reset here. "

end.

Figure 5-4. Unibus Controller Source Program Listing (Sheet 2 of 2)

5-7




PROM Contents are :

hex
000
001
002
003
004
005

006
007
[o)e:}
009
00A
00B
ooc
00D
00E
00F
010
01l
012

013
014
015
016
017
018
019
0lA
01B
0lcC
01D
0lE
O01lF
020
021
022
023
024
025
03F

<dec>
0>
1>
2>
3>
4>
5>

AANAAANANA

6>
7>
8>
9>
10>
11>
12>
13>
14>
15>
16>
17>
18>

AANAAAAANAAANAAAANAA

19>
20>
21>
22>
23>
24>
25>
26>
27>
28>
29>
30>
31>
32>
33>
34>
35>
36>
37>
63>

AAAAAANAAANAAANAAANAAANANAAAAN

—e e e

P Lo Lan Lan Lo L L Lo Lo Tan Yam Yan Lan Fan T ot PEo P

HHEHHMRHEHEREPFRRRRFRPHRERRE RERRRRRRRERRRE HEHERRREO

=1

OPCODE POL TEST DATA
| 11100 | 0 | 101 | 001011
| 11100 | 0 | 101 | 010000
| 11001 | 1 | 101 | 000000
| 11001 | O | 011 | 000011
| 11001 | 1 | 011 | 000100
] 01101 | 1 | 111 | 111111
OPCODE CONSTANT DATA
| 100 | 000000 | 0Ol11l0
| 11001 | 1 | 111 | 000110
| 01101 | 1 | 111 | 111111
| 11001 | 1 | 001 | 001001
] 11001 | ©0 | 110 | 000000
| 11001 | 0 | 101 | oOlllo
] 11001 | 0 | 000 | 001100
| 00010 | O | 110 | 111111
| 11001 | 0 | 000 | OOlll0
| 00010 | 0 | 110 } 111111
| 11001 | 0 | 100 | 010000
| 11001 | 1 | 100 | 010001
| 01101 | 1 | 111 | 111111
"OPCODE ~ CONSTANT  DATA
| 100 | 000000 010110
11001 | 1 | 111 010011
11001 | 0 | 101 011110
00100 0 | 1llo0 110001
11001 0 | 001 010111
11001 0 | 001 011101
11001 0 | 001 011101
11001 | 0 | 001 011101
01000 | 0 | 110 | 011000
00010 0 | 110 | 111111
00010 0 | 110 | 111111
00100 0 | 110 110001
| 11001 0 | 001 011111
| 11001 0 | 001 100101
| 11001 0 | 001 100101
| 211001 | O | 001 | 100101
| 01000 | O | 110 | 100000
| 00010 0 | 110 | 111111
| 00010 0 | 110 | 111111
| 11001 | 0 | 110 | 000000
Flgure 5-5. FPC PROM Contents

OUTPUT
0000000000000000
0001000000000000
0010000000000000
0000000000000000
0000000000100000
0000000000101000

0000000000101000
0000000000101000
0000010001001100
0000010001000100
0000000100000000
0100000000000000
0000010000000010
0000000000000000
0000001000000010
0000000000000000
0000000000000000
0000000000020000
0000000000011000

0000000000011000
0000000000011000
0011000000000100
0000100000000100
0000100000000100
0000100000000101
0000100000000101
0000100000000101
0000100000000101
1000100000000100
0000101100000100
0000110010000100
0000110010000100
0000110010000101
0000110010000101
0000110010000101
0000110010000101
1000100010000100
0000100110000100
0000000000000000

e e e e e e e e e e e e eI e e L e e e e eI Il L e L LIt L s




6-G

ClK

LABEL

ADDR

ITREQ (1)

BR(O)

BG (l)

SACK (0)

BBSY (1)

BBSY (0)

INTR (0)

DATA (0)

SSYN (I)

COMPLT (0)

06591A 5-6

S [ I B B A

I

|

INTRO INTR 1 INTR1 INTR2

INTR3

L. LI 1

WAITO

e

LA AVVRRRARVVVRRRNAAVRRRRAAARAARRRRARAAARRRNRRAAARRNAAA

Figure 5-6. BR Timing Diagram




weibe|q Bujwy UdN "Z-S einbid 15 V16590

[DETTEINS

(IINASS

K2

(0)Asag

() Asas

(o)yovs

Qa// : (N 9dN
\A|\ (O)HdN

(1) o3”vna
6 _ 81 _ m _ 0 _ 9 _ 1 _ Haav
ZHAN LHAN LHAN XHdN 18V

I I Y I B

5-10




CLK

LABEL
ADDR

BBSY(0)

DATA (0)

ADDR (0)

MYSN (O)

SSYN(1)

COMPLT (0)

CLK

ADDR

BBSY (0)

ADDR (0)

MYSN (0)

SSYN(I)

COMPLT (0)

DATAIN (0)

06591A 58

NPRDATO TIMING

S [ S G B

NPRDATO

30

WAIT3 WAIT 4

I 31 | 32 | 33 | 34 |

A -

NPRDATITIMING
NPRDAT! WAIT1 WAIT2 :
22

| 23 | 24 | 25 | 2 I

|
—
—

Figure 5-8. NPR DATI and DATO Timing Diagram

5-11




CLK

LABEL

ADDR

DATXREQ (1)

c1()

DATAIN (0)

SSYN(0)

MSYN (1)

CLK

LABEL

ADDR

DATXREQ(I)

c1(

DATA IN (0)

SSYN(0)

MSYN (1)

DATO TIMING {SLAVE)

(HIGH)

- —
AN

S [ s I S B I B

ATX DATI DATI
l [}

1 |

_[___J

| 12 l 13 I

— %

(Low)

ul

—
—\

AN

Figure 5-9. DATI and DATO (Slave) Timing Diagram

06591A 5-9




_ CHAPTER 6
Am29PL141 BASED DEC Q-BUS CONTROLLER

6.1 THE DESIGN PROBLEM

Designing an interface for the DEC Q-Bus has
been approached using many techniques. One
technique, microprogramming, has in the past
been economically unattractive because it
required use of a separate sequencer, control
store, and pipeline registers. Now that Advanced
Micro Devices has introduced the single chip
Am29PI141 Fuse Programmable Controller (see
Section 1), engineers can economically apply
powerful microprogramming techniques to the
design of medium complexity state machines like
that required to control the Q-Bus.

The problem is to design an interface between the
Q-Bus and a generic device to allow the following
operations:

« DATI/DATO with device as slave

« Device interrupt request

« Device Direct Memory Access request
» DATI/DATO with device as master

The DEC Q-Bus is an asynchronous bus which
supports Programmed I/O, prioritized Intertupts,
and Direct Memory Access (DMA) operations. All
bus transfers are between a bus master and bus
slave, and are controlled by the master. An arbi-
{rator grants bus mastership to requesting devices.

The nine basic types of transfers allowed are:

DATlI - Word data transfer from slave to
master

DATO - Word data transfer from master to
slave

DATOB - Byte data transfer from master to slave

DATIO - Read-modify-write word transfer

DATIOB - Read-modify-write byte transfer

DATBI - Block data transfer from slave to
master

DATBO - Block data transfer from master to
slave

DMR - Direct Memory Access request to
become bus master.

IRQi - Interrupt request at level i (4,5,6,0r 7).

The following control signals are used during
transfers:

SNYC sync
DOUT data out

- master timing control
- indicates master write

DIN datain  -indicates master read
RPLY reply — slave acknowledge
WTBT write/byte — byte write cycle

BS7 1/O page select

IRQi interrupt request level i

IAK  interrupt grant

DMR DMA request

DMG DMA grant

SACK select acknowledge

6.2 Q-BUS CONTROLLER HARDWARE DESIGN

A block diagram of this interface is shown in Figure
6-1. It consists of three sections—Q-Bus
buffering, address decoding, and control logic.
The address decoder detects addressing of the
device as a slave during DATI and DATO transfers.

The control logic is based on the Am29PL141
Fuse Programmable Controller (FPC). Its
microprogram implements a state machine to
control both device and Q-Bus handshaking. Test
inputs are synchronized with the FPC clock using
an AM29821A 10-bit register and a D flip-flop.
Note the use of a multiplexer to expand the FPC
test capability. The additional D flip-flop and AND
gates are used to implement the interrupt and
DMA request/grant handshaking.

6.3 MICROWORD FORMAT

The microword organization for this application of
the FPC is shown in Figure 6-2. The 32-bit micro-
word is subdivided into fields of various sizes and
functions. The 16 most significant bits are used
during next address generation within the FPC,
while the lower 16 bits are application interface
signals.

6.4 MICROCODE

The microcode of Figure 6-3 was written using the
Am29PL141 assembler available from AMD (refer
to Chapter 2). Mnemonic definitions are shown,
followed by code to control the interface. Figure 6-
4 shows the FPC PROM contents. A brief
description of the code follows.

After reset to address 63, the program branches to
label TOP and loops until one of the external




conditions DATXREQ, DMAREQ, or INTREQ is
asserted.

DATXREQ true indicates a Q-Bus DATO or DATI
operation addressing the device and causes a
subroutine call to DATX. Q-Bus signal WTBT is
tested, and DATO or DATI handshaking is
completed beginning at label DATO or DATI.

INTREQ is asserted when the device wants to
interrupt the CPU, causing execution to continue
at INTRO. Interrupt request/grant processing
occurs and then the vector is read by the CPU.

6.5 CONCLUSION

The problem statement for this interface does not

require block, byte, or read-modify-write master
handshaking. These features can be imple-
mented by adding extra device request lines and
microcoding the additional handshake algorithms.
Another possible change is to implement the Q-
Bus four-leve!l interrupt configuration. These
changes are left as an exercise for the interested
reader!

References:

Microsystems Handbook, Digital
Corporation, 1985.

Equipment

Am29PL141 FPC Data Sheet, Advanced Micro
Devices, 1985.




DEVICE

ENABLES

CP(15MHz)

CP(15MHz)

RESET
CP(15 MHz)
COMPLT

ERROR
DATAIN

Q-BUS

b} ADDRESS/
DATA

06531A 6-1

<+ INTERFACE
BUFFER
N
BUS
out
ENA
4 Am29806/9 Am29823 -
—A<——4dE REGISTER
Z — | DECODER
DATXREG | — A Q D
—d AE
. CL
| q f 3 RPLY
b1 SYNC BUFFER
—»t> 74F74 L A ouT
2 7
at
T SYNC IN
3/ RPLY ENA
7 DMGI L
110
K DMGO
1AKO
D
DMGI 072"73
DATXREQ | 2
P —CLK
74F251A
= k.
A 1AKI
+5V 51/DMG|
]
| cC
 RESET
Am29PL141 ZERO |— NC.
D CLK
fbs DATAOUT
fs M
o ADDROUT
5 z
IRQ, DMR

Figure 6-1. Q-Bus Controller Block Diagram

co

]
<|
=

T

6-3

o
=
]
[4]
b4
E
7]




:+ 31 : 30 - 26 25 : 24,23,22 21 - 16 15 14,13,12 11 -0
: oe : opcode : pol : test data : error : aux tst command
oe: output enable
(31)
opcode: 29PL141 command
(30-26) 00 - RETPL 08 - LPPL 10 -~ CMP 18 - 'FORK
01 - RETPLN 09 - DEC 11 - CMP 19 - GOTOPL
02 - RET O0A - LPPLN 12 - cMP 1A - WAIT
03 - RETN 0B - GOTOPLZ 13 - CMP 1B - DECGO/C
04 - LDPL 0C - DECAL 14 - PSHPL 1C - CALPL
05 - LDPLN 0D - CONT 15 - PSH 1D - CALPLN
06 - LDTM OE - CTTM 16 - PSHTM 1E - CALTM
07 - LDTMN OF -~ GOTOTM 17 - PSHN 1F - CALTMN
pol: test polarity ( 1 = negate )
(25)
test: conditional test input select
(24,23,22) 0 - sync 4 - iak
1 - rply 5 - aux tests
2 - din 6 — pass
3 - dmg 7 - equal flag
data: branch address, test input mask, or counter load value
(21-16)
error: timeout error indication to device
(15)
aux test: additional test inputs when test =5
(14,13,12) 0 - datxreq 4 - dout
1 - dmareq 5 - wtbt
2 - intreq 6 — spare
3 - write 7 - spare
command :
(11-0)
11 10 9 8 7 6 5 4 3 2 1 0
com : data : data : addr rply : irq : dmr sack dout din sync : wtbt
plt ¢ in : out*

out* : :

o
:
. . . .
D A I I I - R A L I I A S B A

* -~ indicates active low microcode bits

Figure 6-2. Q-Bus Controller Microword Format

6-4




" Q-Bus Controller microcode using Am29PL141l assembler

" Version 1.1

device (pll4l)

default = 1
define
" Rokdekkhkhhdk
tsync = t0
trply = tl1
tdin = t2
tdmgl = t3
tiaki = t4
aux = t5
pass = cc
sync_rply = 03#h
" Kekdkkdkdokkok
" AUXILIARY
datxreq = 0300#h
dmareq = 1300#h
intreq = 2300#h
write = 3300%#h
tdout = 4300¢h
twtbt = 53004#h
it CONTROL SIGNALS
off = 0300#h
error = 8300#h
complt = 0BOO#h
datain = 0700%#h
dataout = FDFF#h
~addrout = FEFF#h
rply = 0380#h
irg = 0340#h
dmr = 0320%#h
sack = 0310#h
dout = 03084#h
din = 0304%#h
sync = 03024h
wtbt = 0301#h

test_condition

R. Purvis, 3 January 86

DEFINITION OF TEST INPUTS ##&kkiiix 0

" test Q-Bus signal SYNC "

n RPLY "

" DIN "

" DMGI "

" IAKI "

" auxiliary test conditions "
" unconditional pass "

" test mask "

DEFINITION OF OUTPUTS h*dkkkkkkkkkkk

TEST CONDITIONS

Q-Bus DATI or DATO request
device DMA request

device Interrupt request
device write request

Q-Bus signal DOUT

Q-Bus signal WTBT

aux tests 6 and 7 are spares

no signals active

error flag to device
complete flag to device
strobe data in from Q-Bus
gate data onto Q-Bus

gate address onto Q-Bus

assert Q-Bus signal RPLY
IRQ
DMR
SACK
DOUT
DIN
SYNC
WTBT

cc; " default test condition "

Figure 6-3. Q-Bus Controller Source Program Listing (Sheet 1 of 3)




N okkkkk

intro:
intrl:
intr2:
intr3:
intr4:

datx:
dati:
waité:

dato:
waits:

assumptions ddekokok ok "

no I/0 page DMA "
single xfer DMA (not block mode) "
single level interrupts "
no byte operations "
no parity "

" hhkhhkhkkhhkdkhhkhkd Source Code ded de ek de e de ke ek
" Q-Bus Controller V1.0

o e Je e Je de e e K o K ke o ok ok e e ok e e de ok K ok ode ke vk ke ok e ok ok Tk e e e de e o e e e J e e ok ke ok ke ke ok ok o e e ke ok
* MAIN LOOP =~ Loop at TOP until external condition

* DATXREQ, DMAREQ, or INTREQ is true.
dkddkhkhkhkdhhkdkhhkdkhhdkhhkhhhhhhhhhhhhhhhhhhhkhhkhhkhdhkdhhkkhdd

datxreq, if (aux) call pl(datx):
dmareq, if (aux) call pl(dmax):;
intreq, if (not aux) goto pl(top):

hdkhkkhhhhkhkhkhhkhhhhhhkhhkhkhhkhkkhkhhkhhhkkhkhhhhkhhkhkhdhkdkhhhdhhkdih

* INTERRUPT SERVICE ROUTINE - Device interrupt service
* request., Perform Q-Bus interrupt handshake.
**************************************f*********************

off, if (tdin) goto pl(intro): " request/grant handshake
irg, if (not tdin) goto pl(intrl);

irg, if (not tiaki) goto pl(intr2):

rply * dataout, if (tdin) goto pl(1ntr3), " output vector
rply * dataout, if (tiaki) goto pl(intr4),

complt, goto pl(top):

************************************************************

* PROGRAMMED I/O ROUTINE =~ Q-Bus master accessing
* device. Perform Q-Bus DATO/DATI handshake.
. dedekkhdekdkhhkdhkhdhhhkhhhkkhhkkhhkkhkhhkhhhhkhkdkhkhhkkhkkdhhkhkdkhkkrhhkkkk

twtbt, if (aux) goto pl(dato);

. off, if (not tdin) goto pl(dati): " slave DATI "
rply * dataout, if (tdin) goto pl(waite):
off, ret;
tdout, if (not aux) goto pl(dato): " slave DATO "

rply + datain + tdout, if (aux) goto pl(wait5);
off, ret;

Figure 6-3. Q-Bus Controller Source Program Listing (Sheet 2 of 3)

6-6




dmax:
dmal:
dma2:

dmadati:

waitl:
errorl:
passl:

wait2:

dmadato:

wait3:

errorz2:

pass2:

wait4:

end.

hdkkhddkhkhhhkhhdhhkkkhkkhhkhdkhkhdkkhhhhhhkhhkhhhhkkhdhddhhdhhhkhhhkhikk

DMA SERVICE ROUTINE -
Perform Q-Bus DMA handshake.
hkkkhkhkhhhhhkhkhkkhhhkhkhkhhrkhhhhhkhkkhhhkhhhdhhdhdhhkdhkkhkhhkhkkh

*
* .

off, if (tdmgi) goto pl(dmax):
dmr, if (not tdmgi) goto pl(dmal);
dmr, cmp tm(sync_rply) to pl(0):;

dmr, if (not eq) goto pl(dma2):

Device DMA service request.

" request/grant handshake

sack + write, if (aux) goto pl(dmadato); " . bus master now "

DMA READ ROUTINE

sack
sack
- (sack
(sack
sack
sack
sack
sack
sack
sack
sack

t+++ o

complt, ret;

DMA WRITE ROUTINE

(sack
(sack
(sack
(sack
(sack
(sack
(sack

sack

(sack

(sack
(sack
(sack

sack

+

R R R Tt

(Q-Bus master DATI) "

addrout, continue; ¥ addr setup "
addrout, continue;

sync) * addrout, continue; " addr hold "
'sync) * addrout, load pl(2B#h); " 10 us timeout "
sync + din, if (trply) goto pl(passl);

sync + din, if (trply) goto pl(passl);

sync + din, while (creg<>0) loop to pl(waitl);

sync + error, ret; " timeout exit v
sync + din, continue; " data deskew "
sync + din, continue;

sync, if (trply) goto pl(wait2); " clock data in "

(Q-Bus master DATO) "

wtbt) * addrout, continue; " addr setup "
wtbt) * addrout, continue; .

wtbt + sync) * addrout, continue; " addr hold "
wtbt + sync) * addrout, load pl(2b#h);

sync .+ dout) * dataout, if (trply) goto pl(pass2):;

sync + dout) * dataout, if (trply) goto pl(pass2):

sync + dout) * dataout, while(creg<>0)loop to pl(wait3);
sync + error, ret; " timeout exit "
sync + dout) * dataout, continue; " data deskew "
sync + dout) * dataout, continue;

sync) * dataout, continue; " data hold "
sync) * dataout, continue;

sync, if(trply) goto pl(waitd4);

complt, ret;
.org 63#d
off, goto pl(0);

" hardware reset here.

Figure 6-3. Q-Bus Controller Source Program Listing (Sheet 3 of 3)

6-7




PALDEVICE
égagigg CONTROL Am29PL141
Az1e 51 So6a1 —— LOGIC CONTROLLER
i &,%‘,2, {U16,17,18)
IOWR
I0RD T
MEMWR
MEMRD
CONTROL
ADDRESSAND
DATABUFFERS A b—o
cPU LLSSZ:?Sa (U9,10) U13) (U18,20,23)
(U11,12)
BUS
[
I, y
137 1.
Agis ADDRESSAND 7 MEM
DATABUFFERS 13 oY
LS245 (U5,6) V1415
Dous L' + LS244 (U7.8) S~ g
. 16
06591A 7-1

Figure 7-1. Starlan DMA Controller Block Diagram




€L

16L8 (U3) S174 (U17) Am29PL141 (U16)
IOWR IOWR
IORD 1ORD
MEMWR MEMWR iORQ oRQ -—of TO 7990CS PO
MEMRD MEMRD MFMRQ MEMRG |—| T HOLDA Pt u24
iOCOMP DEN |——> U56,7.8 HOLD — T2 MEMOK P2 > U20 -
MEMCOMP EDIR |—— Us6 —— DAS — 13 7990EN P3 Ug, U10
7930EN  READYEN U24 r TCLK T4 7990WE P4 |—
25152521 79G0WE  MEMOE U415 % CLK T5 MEMCYLCLR P5 u2o
BA, . 4—4 (U WR DAL [ g CLK  MEMWE Ps
=) MEMWE WE g ggsn
T 2
CPU
BUS 25182521
BA 10 (u2)
=+
!
| 8 || ww
1504 (U22 TORD 7930DBEN > U11,12
Ls125(U24) OWR  7990DBDIR u,12
L+ FOLDA DAS
DAL WA AM7930 (U13)
L] IORQ  7990READY '—»f HOLDA HOLD
BNBHE ' yiscELL- — DALO WE 7930CS ALE us, Uto
BDOF— ANOUS U o WERB }— uts RESET  7990READY }——
BRESET |—| (FIGURE 7-4) 7990EN WELB |— u14 DAS 7990BHE
BREADY Je—] (U21.22,24) o 75a08HE WA DALI L
u24 BBHE DALO

Figure 7-2. Starlan Controller Circuitry

06591A 7-2




VL

BDg ,

BDl—15

CPU
BUS

BAg s

(U16) 7990EN

Figure 7-3. Starlan Address and Data Circuitry

LS373 (U9) Am7990 (U13) Am7960 (U23)
— DAL, LA, RXD RXD
G E RXCLK ‘_o<} RXC  TXLO V|
15245 (U5) t RENA -
5 . q ™D 1000
DAL TXCLK TXC
E DR DALy TENA l|> ATS
8-15 100pFT
R l —] Cs XL ’
L8373 (U10)
{10 — cLsN ALE AEseT FXLO f— l
DAL 45lAq 45 RXL1
LS245 (U6) G E
IDg 5 I b
E DIR (u13) 16MCLK (U18)
,__? I +5V
o S74
L Q
LS244 (U7) LS245 (U11) 99C88 (U14) ; @
- LA — DALy, IDg, o7 v e
0-7 LAI-IJ ¢
1,19 DIR E —— —
RW CS OE
— — | T
— > (U17)
WELB — ¢
L5244 (U8) ©
B _ LS245 (U12) 99088 (U15)
11g Pets DALs-15D15 De-ts
- DIR E — W
) T 06531A 7-3
(U4) 7990DBDIR —I i RAW TS GE
(U4) 7980DBEN —————¢ T 1 MEMOE (U3)
—— EADEN (U3) (U4) WEHB
EDIR (U3)




u2

DECODER
(/0 ADDRESS COMPARE &
CPUTEST OF HOLDA ACTIVE)

4 LS32
W MEMCOMP (U3)

BA2(BUS) D" (U21)
(U22) BNIORD LS32
(u21)
LS32
HOLDA (U16) BDO (BUS)
(U24)
RESET CIRCUIT
LS125
BNBHE(BUS) BBHE (U4)
(U24)
LS04 LS04
BRESET (BUS) l'> RESET (U13)
(u22) (U22)
RESET (U16,U23)
READY CIRCUIT
+5V +5V
l Lst12
J Q
(U3) IORQ {u19)
x & RDY LS08 L8125
] READY: BREADY(BUS)
‘(Ute)  7es0CS LS32 MEMRDY 2o (u24)
== READYEN (U3)
Ly .70 u21
READY
+5V +5V
| CLOCK CIRCUIT
J a
+5V
(3) MEMRQ (Lsu}é,z l
K a —
5V 8CLK D a 8 CLK (U16,17)
14 37”'
(U16)  MEMOK Lso8 wa)
16 MHz K @ 8CLK
(U16) MEMCYLCLR u20 B ‘[
= +5V
16 MCLK (U23)

06591A 7-4

Figure 7-4. Miscellaneous Control Circuits

7-5




PAL Devices to control the memory access. See
Figure 7-2 for the routing of its signals. -

The Am29PL141 can accept seven (7) different
test inputs and control 16 different events. .This
application uses six (6) input lines and eight (8)
output lines to accomplish the handshaking and
control.

U17 (S174) is used to provide metastability
hardening of the Am29PL141.

In the following discussion, refer to Figure 7-3 for
the address and data circuity blocks: U5, 6,7, 8,9,
10, 11, 12, 13, 14, 15, 18,, and 23.

U5 and U6 (LS245) provide the Data Bus
buffering.

U7and U8 (LS244) provide the address bus
buffering.

U9 and U10 (LS373s) serve as address latches to
demultiplex the 7990’s DAL bus.

U11 and U12 (LS245s) are data buffers to isolate
the 7990 for the dual porting.

U13 is the Am7990. It uses U23 (Am7960) as the
Manchester encoder/decoder and media interface
to the TXD and RXD lines. This circuitry is shownin
Figure 7-3.

U14 and U15 (99C88) are the memories
themselves. These may also be expanded very
easily if required. The address and data lines are
shown in Figure 7-3.

U19 (LS112), U20 (LS08), U21 (LS32), and U24
(LS125) provide the Ready line conditions
appropriate to the Bus timing of valid data to the
main CPU. This circuitry is shown in Figure 7-4.
The clock circuit is also shown in Figure 7-4. The
16 MHz clock is a crystal oscilator. Its fundamental
is used to drive the Am7960 (U23) directly. The
oscillator frequency is divided by two to drive the
prelatch (U17) and the Am29PL141 (U16). Figure
7-4 also shows the RESET circuitry which sends a
CPU bus
Am7990, and the Am7960.

This design may also be used to not only provide
isolation to the DMA but also to provide a bus
translation service for an 8 bit CPU. The 16 bit /O
transfer needed by the Am7990 write and read can
be accomplished if, on the data bus side, the D8-
15 LS245s are replaced with LS373. In memory

reset signal to the Am29PL141,

operation, the LS373s are made transparent but in
I/0, the high byte is written first and then as the low
byte is written, both are enabled into the 7990. On
a read, the full 16 bit transfer takes place and the
low byte is read immediately. The next operation
reads location I/O + 2 for the D8-15 value.

In this application, memory is treated as memory
and the 7990 is treated as I/O space. The 2 port
memory is used by the CPU to set up ring
descriptors as well as the rings themselves.
Packet buffers can be assembled and
disassembled in this area under the operating
system at low level drivers. 16K space is enough
for 8-512 byte transmit rings and 8-512 byte
receive rings. At 1 MHz data rate, that is probably
more than enough. However, a 10 MHz design
may require 64K DRAM to provide sufficient high
speed memory bandwidth.

7.3 MICROPROGRAM

The Am29PL141 controller's major function is to
process a HOLD request by the Am7990. When
the Am7990 is not active, it processes normal CPU
memory read/write and normal /O read/write
(Figure 7-5 shows the microprogram flow diagram).

When the Am29PL141 receives a HOLD request,
it sends a HOLDA signal to the Am7990 to activate
the Am7990. The HOLDA signal also goes to the
BDO pin of the CPU so that the CPU can check to
see if the Am7990 is using the DMA. Only in the
HOLDA path (main path) is another task allowed
besides the normal path. In the HOLDA path, the
CPU is allowed access until T5 of the Am7930
state machine. At that point, the memory is
diverted and remains until the completion of the
7990 DMA. The Am7990 dropping Hold Request
(HOLD) is what finally clears the HOLDA cycle and
returns control to the Am29PL141. Branch #1 is
just a normal CPU I/O read/write and branch #2 is a
normal CPU memory read/write when the HOLDA
is not active. Figure 7-6 is the actual microcode of
the 29PL141.

Note: The 7990 cannot be slave-accessed with
HOLDA valid. Therefore, any /O request is
blocked in the controller during a DMA transfer. In
order to prevent a possible 48 microsecond
Ready/Wait signal, HOLDA can be sampled by the
CPU at the data /O pin BDO and when logically
false, the /O request can then be made at /0
address of 7990 + 4.




7.4 PAL DEVICE EQUATIONS

PAL Device #1 (U3): CPU Bus Control

(AnPAL16L8)
PIN
/IORD =1 /MEMWE = 11
/IOWR =2 /WE = 12
/MEMRD = 3 /DALI =13
/MEMWR = 4 /MEMOE = 14
/MEMCOMP = 5 /READYEN = 15
/IOCOMP = 6 /EDIR = 16
/7990EN = 7 /EADEN = 17
/7990WE = 8 /IORQ = 18
/WR =9 /MEMRQ = 19
BEGIN.

MEMRQ = MEMRD * MEMCOMP + MEMWR *

+ IOWR *

MEMCOMP ;

IORQ = IORD * IOCOMP
IOCOMP ;

EADEN = MEMRQ * /7990EN + IORQ *
/7990EN ;

EDIR = MEMRD + IORD ;

READYEN = MEMRQ + IORQ ;

WE = 7990WE * WR + MEMWE * MEMWR +

/7990EN * MEMRQ * MEMWR ;

MEMOE = /7990EN * MEMRD + 7990EN *

DALI ;

END.

PAL Device #2 (U4): 7996 control

PIN

equations

/IORD =1 /BBHE =11
/IOWR =2 /WELB = 12
/HOLDA = 3 /WEHB = 13
/DALI =4 /WE = 14
/IORQ =5 /7990READY = 15
/DALO =6 /WR = 16
/LAO =17 /DAS = 17
/7990EN = 8 /7990DBDIR = 18
/7990BHE = 9 /7990JDBEB = 19
BEGIN.

- IF ( /HOLDA ) THE ENABLE (DAS , WR,
7990READY ) ;

DAS = OWWR + IORD ;
WR = IOWR ;

7990READY = HOLDA;

7990DBEN /HOLDA * IORQ + HOLDA *
7990EN * ( DALI + DALO ) ;

7990DBIR = /HOLDA * IORQ + HOLDA *
DALI ;

WELB = /LAQ * WE ;

WEHB = WE *7990EN * 7990BHE + WE *
/7990EN * BBHE ;

END.

7.5 SUMMARY

In summary, the design solves the system
requirements of double buffering and DMA
isolation using a minimum of pars yet retaining
memory at bus bandwidth without a large number
of wait states added. The 7990 is allowed full
access as needed without ever seeing a slow
down and the basic design has a large amount of
frequency latitude for the LAN Speed.




RESET

S|
GoToLOCO

SETNHOLDATOO
THRUALL
INSTRUCTIONS

OUTPUT«FFFF

BRANCH #1 (LOC1)

Figure 7-5. Starlan Controller Program Flow Diagram

BRANCH #2 (LOC?2)

SET
N7990CS

INST NO.

CLEAR
N7990CS

OE=1

INST=19
POL=0
TEST=010
DATA=00H
OUTPUT=FFFF

(Loci2)

SET
7990EN

}

SET 7990WE
FOR 2 CLKS
THEN CLEAR

YES

CLEAR
7990EN

*2s(0)
YES (LOC4)
SET
NMEMOK

OUTPUTAFFFE '

YES

CLEAR
NMEMOK

MEMRT

0

SET
NMEMWE

!

SETNMEMWE
SETNMEMCYL
CLEAR

RETURN

'

(Locte)

OEwi
INST=00
OUTPUT=FFBO

OE=1

INST=02

OUTPUT=FF90

06591A 7-5




DEVICE ( PL1l41l )

DEFAULT =

DEFINE

1l

NIORQ = TO
NMEMRQ = T1
NHOLD = T2

NDAS = T3

TCLK = T4

vece = cC

N7990CS = FFFE#H
NHOLDA = FFFD#H
NMEMOK = FFFB#H
N7990EN = FFF7#H
N7990WE = FFEF#H
NMEMCYLCLR = FFDF#H
NMEMWE = FFBF#H
NEXEC = FF7F#H;

DEFAULT_OUTPUT = FFFF#H;

BEGIN

EXEC @

MEMRQ :
IORQ :
HOLDA :

HOLDALl

HOLDA2

MEM :

END.

NEXEC , IF ( NOT NHOLD ) THEN GOTO PL ( HOLDA ) ;
NEXEC , IF ( NOT NIORQ )THEN GOTO PL ( IORQ ) ;
NEXEC , IF ( NOT NMEMRQ ) THEN GOTO PL ( MEMRQ ) :
NEXEC , IF ( VCC ) THEN GOTO PL ( EXEC ) ;

NMEMOK , IF ( NMEMRQ ) THEN GOTO PL (EXEC) ELSE WAIT;

N7990CS , IF ( NIORQ ) THEN GOTO PL (EXEC) ELSE WAIT:;

NHOLDA , IF ( NOT NMEMRQ ) THEN CALL PL ( MEM ) ;
NHOLDA , IF ( NHOLD ) THEN GOTO PL ( EXEC ) ;

NHOLDA , IF ( NDAS ) THEN GOTO PL ( HOLDA ) ;

NHOLDA , IF ( NOT MEMRQ ) THEN CALL PL ( MEM ) ;
NHOLDA , IF ( NOT TCLK ) THEN GOTO PL ( HOLDAl ) ELSE
NHOLDA , IF ( NOT NMEMRQ ) THEN CALL PL ( MEM ) ;
NHOLDA , IF ( TCLK ) THEN GOTO PL (HOLDA2) ELSE WAIT;
FFF5#H , CONTINUE ;

FFES#H , CONTINUE ;

FFES#H , CONTINUE ;

FFF5#H , IF ( NDAS ) THEN GOTO PL (HOLDA) ELSE WAIT;

FFBB#H , CONTINUE ;
FF9B#H , CONTINUE ;

NHOLDA , IF (VCC ) THEN RET ;

.ORG 63#D

EXEC , IF ( VCC ) THEN GOTO PL ( EXEC ) ;

Figure 7-6. Starlan Controller Source Program Listing

WAIT

"

.
’







CHAPTER 8
IBM PC-SSR INTERFACE USING an Am29PL141 CONTROLLER

8.1 THE DESIGN PROBLEM

This application note describes the use of an
Am29PL141 controller and an IBM PC or other
computer to run diagnostics tests on a device
containing a Serial Shadow Register (SSR). The
SSR is a special serial in, serial out register built
into devices to facilitate diagnostic testing.

To test a complex state machine or a microcoded
CPU engine in a manufacturing environment is a
complex task. The conventional method has.been
to use a “Bed of Nails” consisting of probes making
contact to the printed circuit board (PCB) in
specially assigned places. A master program in the
tester provides a stimulus and then checks the
response. These Bed of Nails test fixtures are com-
plex and costly and worst of all, are mechanically
interlinked in such a manner that a simple
movement of an [C on the PCB may cause a whole
fixture to be scrapped or at least reworked. Each
fixture may cost up to $10,000 and requires an
expensive tester to control it.

8.2 SSR FUNCTIONAL DESCRIPTION

AMD in conjunction with MMI pioneered a concept
called Serial Shadow Register (SSR). Typically in
state machines or microcoded CPUs, data is
latched into a register on one clock to drive the
logic and on the next clock, the result is latched
into a destination register. The SSR is an addi-
tional diagnostic register linked to the main device
register. It can load new information into the
device register and capture the response of the
device. Various test inputs are entered into the
SSR serially from a computer with the assistance of
a controller (FPC). The device executes the input
and returns the result into the SSR. The controller
serially extracts the result from the SSR and
transfers it to the computer. The computer then
checks the response with the known correct
response. Using serial input and output to the
SSR keeps the pin count down.

SSRs can be used in all phases of the product
testing because they are a part of the device and
therefore available at all times. They can be used
in engineering to debug the design, in manufac-
turing to test each device for compliance, and, in
field service, to diagnose faulty operation either at

the customer site or at the repair depot.

The controller’s task is to convert the parallel IBM
PC bus, or equivalent, to a serial data stream to be
shifted into the SSRs. The SSR is driven from a
relatively inexpensive Personal Computer (PC)
that has a file of many stimulus patterns and the
corresponding response patterns. In operation,
the PC writes the first byte of the stimulus pattern
to the SSR controller, in parallel (See Figure 8-1).
The controller then shifts the pattern out to the
SSR (stimulus chain, N1 bits long, in the device to
be tested) and informs the PC through the
“DONE” flag that it can accept more parallel data.
This interchange goes on until the stimulus chain
in the device being tested is full (N1 bits shifted).

Then the PC changes the state from “SHIFT OUT"
to “EXECUTE” and the controller generates the
necessary clocks to compute the response. The
FPC then loads the first byte from the SSR
response chain into the PC read register and
informs the PC. The PC now examines, on a bit
for bit basis, the response pattern just read with
the known good response pattern in its file. Any
errors can be flagged and output to the printer or
displayed on the CRT screen, thereby helping
pinpoint the exact area of fault. This byte compare
goes on until the entire response chain of N2 bits
has been examined. This whole sequence can be
done as many times as necessary to fully check out
the PCB at the bit level.

8.3 ARCHITECTURE

The heart of the operation is the AMD
Am29PL141, Fuse Programmable Controller. |t
takes care of controlling the D clock, P clock, and
Mode of the serial chain. It shifts the 8 bits out and
then specifies “DONE”". It monitors the “SHIFT
OUT" and “Go" control bits for status change.
Figure 8-2 gives pin level detail of the blocks or
units shown in the the block diagram. Figure 8-3
shows the user interface circuitry.

U1 serves as an address decode PAL Device
whose equations are given later. U2 is just a data
bus buffer to keep the loading to 1 LS TTL load.

U3 and U4 form the handshake flip flops for the
Am29PL141 controller to the PC interface. U3

8-1




-8

1BM PC
INTERFACE

IOWR
IORD

As
A7

As
As
A3
Az
At
Ao

IORD
RESET
477 MHz CLK

+5V

P (U10,U11)

len p Lsi74 g Am29PL141 {u) 3 . WODE w2
(U2)BDI —4D Q MODE  SHIFTOUT To  Po|— MODE ——l LS38
1 1978 45 [, STATUSWR c @ Go —T  Pi—DC £ue)-2-+ ook ui2)
2 1gplOUNTLD «3) BORROWJ 1, pol—poik ———‘_ Ls38
3 up2AN |—sv READ DATA T P —DONE —e PC(U2) FOIR (U12)
4 16 p-RATAOUT e —  NEWDATA Ti  Puf— RGO Ls38
DBGN sv pntian) _
YR S5 L E— LN P w10 ‘I_ Ts  Psp—CIAN —— B V) ST
6 14 c a T O CC  Pef— CLROUT — Ls33
7 ‘”f” (PC) CLKC ok  Ps| Exec
8 (PC) RESET RESET
+5V {U11)
9
+5V
1" 1574
12 D Q
13 DATA OUT, c a
(Ut) {U4)
[ sou12)
+5V
STATUSAD w
1578
DONE (Ut1) D a
DATA IN c a
{U4) 13 q
) L5193 LS165 251523
18245 [o—s 500 t b4 _’ISV Lab12 16 —> BO7(U2)
> BD1 (U2)BD3 — 9 5 (u2)Bo7T — 11" 4| 806
le— BD2 go2—10. 14 _J_ BD6 —{ 12 w 15 [—> BDS
le—» BD3 801 — 1 —  BOS—{13 b—o 5|—» 804
e D4 800 —# 15 804 —| 14 L11g(s1) 14— 803
le— BDS (us) BD3—*3 10 _L— 1(s0) 6f—>BD2
11
—» BDS BD2—* 4 5%7 13 f—> 81
_ [+—>BO7 r BO1—5 = (U7) 7t—>B00
oR E COUNTLD 00— ) 2 3
| 1
DATA IN. ?
) GATAGUT.

Figure 8-2. SSR Controller Circultry

06591A 8-2




150 S240
Sii : TO SHIFT IN INPUT OF
1STSSRREGISTER
+5V
150 240
— TO DCLK INPUT OF
+5V
150 5240 .
— TO MODE CONTROL
MODE3 2 °D OF ALLSSR
5240
4 FROM SO OUT OFLAST
REGISTERIN SSRCHAIN
5>
+5V
5240
Wi w2
—_— TOPIPELINE CLK ONALL
PCLK 6 O~ REGISTERSANDCHIPS
wa
i FROM INTERNAL
CLOCKSOURCE

JUMPER W2-W3 FOR NORMAL OPERATION
W1-W2 FOR DIAGNOSTIC MODE

06591A 8-3

Figure 8-3. User Equipment Interface Circuitry

8-5




< RESET )
(LOC 63)
of EXEC1 ),

(LOC 00)

NO MODE YES

SHIFT OUT
W

DECREMENT DCLK=1
CREG DCLK=0

STIMULUS
ROUTINE

RESPONSE | YES
GETTER

NCLRGO =1
MODE =1

NCLRIN=0

SSRTO CREG#7
PIPELINE
RESULT: |
PIPELINE
TOSSR RESP3 NCLRIN= 1

NBORROW
=0?

¥ YES

DECREMENT LOOP PL
CREG INSTR.

NCLROUT=0

CREG<-7
NCLROUT =1

EXECH EXEG!
NOTE: [:::3 = OUTPUT SIGNALS OCCURRING
INONE INSTRUGTION CYCLE

06591A 8-4

Figure 8-4. SSR Controller Program Flow Diagram




DEVICE ( PL141 )
DEFAULT = 1 ;

DEFINE
MODE_SHIFTOUT = TO
GO = Tl
NBORROW = T2
READDATA = T3
NEWDATA = T4

vee = c¢

MODE = 0071#H
DCLK = 0072#H
PCLK = 0074#H
DONE = 0078#H

NCLRGO = 0060#H
NCLRIN = 0050#H
NCLROUT = 0030#H
EXEC = OOFO#H ;

DEFAULT _OUTPUT = 0070#H ;

BEGIN
EXECl : EXEC + DONE , IF ( MODE_SHIFTOUT ) THEN GOTO PL ( EXEC2 )
EXEC + DONE , IF ( GO ) THEN GOTO PL ( RESP ) ;
EXEC + DONE , IF ( VCC ) THEN GOTO PL ( EXECl ) ;
EXEC2 : EXEC + DONE ,IF ( NOT NEWDATA ) THEN GOTO PL ( EXECL ) ;
STIM : NCLRIN , IF ( VCC ) THEN LOAD PL ( O7#H ) ;
STIM1 : DCLK , CONTINUE ;
, CONTINUE ;
, IF ( NOT NBORROW ) THEN GOTO PL ( STIM2 ) ;
, WHILE ( CREG < > O ) LOOP TO PL ( STIMl ) ;
STIM2 : EXEC + DONE , IF ( VCC ) THEN GOTO PL ( EXEC1 ) ;
RESP : NCLRGO + MODE , CONTINUE ;
MODE + PCLK , CONTINUE ;
MODE , CONTINUE ;
MODE + PCLK , CONTINUE ;
MODE + DCLK , CONTINUE ;
RESP1 : NCLROUT , IF ( VCC ) THEN LOAD PL ( O7#H ) ;
RESP2 : DCLK , CONTINUE ;
, CONTINUE ;
, WHILE ( CREG < > 0 ) LOOP TO PL ( RESP2 ) ;
RESP3 : , IF ( READDATA ) THEN GOTO PL ( RESPl ) ;
, IF ( NOT MODE_SHIFTOUT ) THEN GOTO PL ( RESP3 ) :
DONE + EXEC , IF ( VCC ) THEN GOTO PL ( EXECL ) ;
.ORG 634D
DONE + EXEC , IF ( VCC ) THEN GOTO PL ( EXECl ) ;

END.

Figure 8-5. SSR Controller Source Program Listing

.
’







CHAPTER 9

QUARTER-INCH TAPE CARTRIDGE and SMALL COMPUTER SYSTEM
INTERFACE CONTROLLER USING Am29PL141

9.1 OVERVIEW

This application note describes the use of the
Am29PL141 Fuse Programmable Controller
(FPC), to control both the Quarter Inch Tape
Cartridges via the QIC-02 industry standard and
the Small Computer Systems Interface (SCS}), also
an industry standard as defined by ANSI X3T9.2
subcommittee. This controller functions as the
“Host” to the QIC-02 interface and as an “Initiator”
to a SCSI system. This design provides the
capability to transfer data in both directions,
between the SCSI bus and QIC-02.

A practical use is to back up data on a hard disk
(SCSI) via Tape (QIC-02). The FPC functions as a
high performance (50 ns instruction cycle time) /O
Controller which is slave to the system CPU (host).
It supports the maximum data rates of both
interfaces (1.5 Mbyte/Sec. asynchronous mode
for SCSI). This design uses the 80188
microprocessor, but any host microprocessor
could be interfaced to the FPC in a similar fashion.
The QIC-02 standard interface is fully supported
and the single initiator multiple target mode is
supported for SCSI. Although this application
does not include using all advanced features of
SCSI, the section on “Advanced Features of
SCSI” does provide insight into upgrading this
design.

In the following discussions, it is assumed that the
reader is somewhat familiar with the 80188, FPC,
QIC-02, and SCSI. Anoverview of the QIC- 02 and
SCSil is given below. A discussion of the QIC-02
and SCSI, including timing diagrams, has been
included as an Appendix.

9.1.1 QIC-02 Overview

QIC-02 is an industry standard which defines the
interface between a host system and Quarter Inch
Cartridge Tape Drives. Read/write commands,
status and, of course, data are transmitted over this
interface, as depicted in Figure 9-1. The bus and
control signals between QIC-02 and host are all
standard TTL levels. Timing diagrams for this
interface are given in Appendix C. This interface
handshake timing is duplicated for the host side by
the FPC and two AmPAL22V10s.

The interface lines are used as follows:

ACKNOWLEDGE (ACK) is used with Transfer to
transfer data across the interface.

READY (RDY) indicates that the tape drive can
accept a command. It is used to handshake the
command across the interface. In the write mode,
READY indicates that the drive's internal buffer is
empty and ready to receive new data. In the read
mode, READY indicates the drive buffer can now
be accessed by the host.

EXCEPTION (EXP) alerts the host that the
execution of a command has been terminated.
This may be a normal completion or an interrupt
due to a fault (hard errors, write protected, etc.).
The response by the host must be READ
STATUS.

DIRECTION (DIRC) indicates direction of data flow.
This signal is used to enable/disable the data bus
transceievers in the HOST.

ON-LINE signal is deasserted at the beginning of a
read (from tape) or write (to tape) operation.

ACKNOWLEDGE

READY

EXCEPTION

DIRECTION

HOST
SYSTEM

| 1_seroatanus |

ONLINE

RESET

REQUEST

TRANSFER

06591A 9-1
Figure 9-1. QIC-02 Interface




RESET initializes the tape drive.
repositions the heads to track zero.

The drive

REQUEST indicates that a command is on the data
bus. :

TRANSFER is used with ACKNOWLEDGE to
handshake data over the bus, see timing diagram.

9.1.2 SCSI Overview

Small Computer Systems Interface (SCSI) is a disk
controller standard developed by the ANSI X3T9.2
subcommittee. - SCSI defines an 8-bit parallel bi-
directional data bus with parity, plus nine control
lines. The SCSI protocol allows single or multiple
host computers (initiators) to share multiple
peripherals (targets, i.e. hard disk, floppy disks,
etc.). Up to eight daisy chained devices can
reside on the SCSI bus, with data transfer rates of
4 Mbytes/sec. synchronous and 1.5 Mbyte/sec.
asynchronous. The timing diagrams are given in
Appendix C.

The following is a summary of the interface signals:

I/O is driven by a target to control the direction of
data movement. True indicates input to the
initiator.

MSG is driven by a ta}gel to indicate “Message
Phase”. When MSG is asserted, REQ (Request) is
also asserted by the target for transfer of data byte

indicating the end of the operational phase
(“Message”).

REQ is asserted by target to indicate that a data
byte is to be transferred on the data bus. Data byte
is transferred via handshake with ACK
(Acknowledge).

ATN (Attention) is driven by an initiator to indicate
to target an “attention” condition.

An initiator uses SEL along with asserting the
appropriate data (address) bits (0-7) to select a
target. Select line is deasserted after the target
asserts BSY to acknowledge selection.

RST (Reset) is a pulse asserted by the initiator to
stop the target's present operation and retum
same to idle condition.

Data bus and control signals require open collector
drivers capable of sinking 48 mA each to support
SCSI mode of multiple initiators with multiple
targets. SCSI provides for either single ended (6
meter max. cable length) transmission or
differential (up to 25 meters).

9.2 FUNCTIONAL DESCRIPTION

Figure 9-2 shows the block diagram of the
Am239PL141 (FPC) QIC-02 and SCSI Controller.
This controller functions as a “Host” to the QIC-02

ADDRESS/DATA PROGRAM ‘
K N MEMORY —N

V| “ProM v SCS|

INTERRUPT DATABUS
ANDSTATUS
MAIN
MEMORY
80188 RAM
MICRO- N

PROCESSOR DATABUS Qic-02
/| DATABUS

scst
——N Am29PL141 . _ PR

DUALCHANNEL LINES

BUS CONTROLLER AmPAL22V10
DMAREQ/ INT/ ARDY |

Qic-02
# CONTROL

LINES

AmPAL22V10
Figure 9-2. AmPL141 QIC-02 and SCSI Controller Block Diagram 06591A 9-2




interface and as an “Initiator” to a SCSI system.
This design is composed of three main functional
blocks: Microprocessing Unit, Dual Channel Bus
Controller, /O Bus Interface.

The Microprocessing Unit is a straightforward
design centered around the 80188 micro-
processor which provides system level control to
the FPC through commands issued over its 8-bit
data bus and with feedback from the FPC via DMA
requests, interrupt, wait state insertion asynch-
ronous ready (ARDY), Interrupt Register, and a
Status Register.

The heart of the Dual Channel Bus Controller is the
Fuse Programmable Controller (Am29PL141)
which generates and monitors interface control
signals for both I/O bus interfaces (QIC-02 and
SCSl). The FPC is slave to the 80188, and
controls the transfers of commands, status, and
data to/from both /O interfaces via single byte
DMA transfers to/from Main Memory. Interleaved
single byte transfer to/from both 1/O devices is
provided. This approach supports maximum rates
for both I/O channels.

The /O Bus Interface provides single-ended drive
for both /O channels (48 mA per line). Open
collector drivers are required for all SCSI generated
control signals; however, standard (Am29800
family) buffers and transceivers are satisfactory for
the QIC-02 and SCSI data bus.

Each of these functional blocks are now described
in detail.

9.2.1 80188 Microprocessing Unit

The Microprocessing Unit in this design performs
all of the high level system control and application
functions required when interfacing to tape and
disk. These functions include system and
application programs, direct memory access (DMA)
controllers, timers, interrupt controllers and chip
select decoders. The 80188 High Integration
Microprocessor was chosen for this design
because all of the above functions except the
programs and associated memory are contained in
a single chip. The 80188 provides two DMA
channels, three programmable timers, a
programmable interrupt controller and a
programmable chip select decoder. In this design,
both DMA channels, one timer, one external
interrupt and four peripheral chip selects (PCS1-4)
are dedicated to the SCSI and QIC-02 interfaces.

In order to configure the 80188 for this application,
certain operations must be performed prior to
executing any instructions which will access the
SCSI or QIC-02 interfaces. After reset, only the

Upper Memory Chip Select (UMCS) is active in
order to allow the 80188 to begin execution at
location FFFOH. At this time, UMCS is pro-
grammed for a block size of 1K bytes. To allow full
use of the Am27512, 64KX8 EPROM, the UMCS
register should be programmed with the value
FO3DH. This sets UCMS for a 64K byte block size,
inserts one automatic wait state and ignores
external RDY in the range FOOOOH to FFFFFH.
Likewise, the Lower Memory Chip Select (LMCS)
must be programmed via the LMCS register.

Programming this register with the value O1FCH
selects an 8K byte block size, zero automatic wait
states and ignores external RDY in order to take full
advantage of the Am33C88-70, 70ns 8KX8 CMOS
Static RAM. Finally, the Peripheral Chip Selects
(PCSM) must be configured. Four of these PCSM
are used to select the SCSI and QIC-02 interfaces.
The PCSM are configured via MPCS and PACS
control registers. The MPCS register is
programmed with the value, 84B8H, which places
the PCSM in I/0 address space, enables all seven
PCS lines, inserts no automatic wait state, and
uses external RDY. This value also configures the
Mid-Range Memory Selects (MCSM) for 8 Kbyte
block size The PACS register is programmed with
the value 0078H. This places the PCS block at /0
address OOOOQH, inserts no automatic wait states,
and uses external RDY.

With the hardware now configured, the 80188 is
prepared to run applications utilizing the SCSI and
QIC-02 interfaces. An example of a simple
application is shown in Figure 9-3. This application
selects DISKO on the SCSI and reads 2000 bytes
into a data buffer. It then rewinds the tape on the
QIC-02 and writes the data buffer onto the tape.
As can be seen in Figure 9-3, there are several
support routines which perform the actual
communication with the SCSI/QIC-02 interface.

SOFTWARE SUPPORT ROUTINES:

"FPC Control. This procedure outputs a function

and a code to the FPC command register. It also
reinitializes the watchdog timer via another
procedure (WD.Init) not described here. The
watchdog timer is used to reset the Am29PL141 in
the event that a device on either the SCSI or QIC-
02 fails to complete the proper handshake and
locks up the bus of 80188.

SCSI-Init. This procedure uses the FPC Control
routine to assert and deassert the SCSI RST signal
in order to initialize the SCSI interface.

QIC2-Init. This procedure asserts and deasserts
the QIC-02 RESET signal to initialize the interface.

9-3




PROGRAM MAIN;

/* THIS PROGRAM IS AN EXAMPLE-OF THE ROUTINES NECESSARY TO
UTILIZE THE SCSI/QIC-62 INTERFACE. EACH ROUTINE IS DESCRIBED IN
THE ACCOMPANYING TEXT. THE MAIN PROGRAM PERFORMS THE SIMPLE
OPERATIONS OF READING A MULTI-SECTOR BUFFER, REWINDING THE TAPE
AND WRITING THAT BUFFER TO THE TAPE. */

CONST :
DISK@# = 1; /* DISK ADDRESS ON THE SCSI BUS */

DATN
DRST
INT1

 DTREQ
TPONL
TRINT
TPRST
DACK =

nwoanon

SET =
RESET = @; /* CONTROL CODE FOR RESET OPERATION */

FPC_COMMAND = @; /* FPC COMMAND REGISTER ADDRESS */
SCSI = 128; /* SCSI DATA PORT ADDRESS */

TAPE = 256; /* QIC-02 DATA PORT ADDRESS */

ISR = 384; /* INTERRUPT STATUS REGISTER ADDRESS */
STAT = 512; /* STATUS BUFFER ADDRESS */

READ_COMMAND = BYTE [ 8, /* READ COMMAND CODE */
) ' @, /* LUN @0, HEAD @ , TRACK 0,
SECTOR @ */

4, /* FOUR BLOCKS OF 512 TO BE READ */ .
@] /* ENABLE RETRIES AND ERROR CORRECTION */

CHANO
CHAN1

@; /* DMA CHANNEL INDICATORS */
1;

EOI = 34 + 65280; /* EOI REGISTER OFFSET PLUS CONTROL
BLOCK BASE ADDRESS */

INT1_IS = 13; /* INTERRUPT 1 IDENTIFIER TO RESET
IN-SERVICE BIT IN EOI REGISTER */
DMAQ_IS = 1@; /* DMA CHANNEL @ IDENTIFIER TO RESET
. IN-SERVICE BIT IN EOI REGISTER */
DMAl_IS = 11; /* DITTO FOR DMA CHANNEL 1 */

VAR
SCSI_FLAG, TAPE_FLAG, COUNT, I : INTEGER;
DATA BUFFER (2000] : BYTE;
STATUS_BUFFER [2] : BYTE;

PROCEDURE FPC_CONTROL (FUNC, CODE);
CONST CMDMASK = BYTE 8;
VAR CMDACK : BYTE;

BEGIN .
WD_INIT; /* INITIALIZE WATCHDOG TIMER */
CMDACK := 8;
DO WHILE CMDACK <> 0O

CMDACK := CMDMASK AND INPUT (ISR);
OUTPUT (FUNC*8+CODE, FPC_COMMAND) ;
END;

Figure 9-3. SCSI/QIC-02 Driver Example (Sheet 1 of 3)

9-4




PROCEDURE SCSI_INIT;
BEGIN
FPC_CONTROL (SET, DRST); /* ASSERT SCSI RST */
DELAY (100@); /* WAIT 106 USECS */
FPC_CONTROL (RESET, DRST); /* DEASSERT SCSI RST */
END;

PROCEDURE QIC2_INIT;
BEGIN
FPC_CONTROL (SET, TPRST); /* ASSERT QIC-0@2 RESET */
DELAY (1€0@); /* WAIT 100 USECS */
FPC_CONTROL (RESET, TPRST); /* DEASSERT RESET */
END;

PROCEDURE D_SELECT (IDENT);
BEGIN
WD_INIT; /* INITIALIZE WATCHDOG TIMER */
OUTPUT (IDENT, SCSI); /* OUTPUT THE IDENTIFIER TO THE
SCSI PORT */
END;

PROCEDURE T_CMD (COMMAND) ;
BEGIN
WD_INIT;
OUTPUT (COMMAND, TAPE);
END;

PROCEDURE D_XFER (FUNC, BUFFER, COUNT);
BEGIN
If FUNC = READ THEN
DMA_SETUP (SCSI, BUFFER, COUNT, CHANG);
ELSE
DMA_SETUP (BUFFER, SCSI, COUNT, CHANG);
WD_INIT;
DMA_START (CHAN®);
END;

PROCEDURE T_READ (BUFFER, COUNT);
BEGIN
DMA_SETUP (TAPE, BUFFER, COUNT, CHANL1);
WD_INIT;
DMA_START (CHANL1);
END;

PROCEDURE T_WRITE (BUFFER, COUNT);
BEGIN
DMA_SETUP (BUFFER, TAPE, COUNT, CHANL);
WD_INIT;
DMA_START (CHANL) ;
END;

PROCEDURE FPC_ISR;
VAR INTSTAT : BYTE;
BEGIN i
INTSTAT := INPUT (ISR); /* GET THE INTERRUPT STATUS */
IF INTSTAT AND TRDY_MASK THEN
BEGIN
FPC_CONTROL (RESET, TRINT);
TAPE_FLAG := 0;
END;
IF INTSTAT AND SCSI_ERROR_MASK THEN
SCSI_INIT;
IF INTSTAT AND TAPE ERROR MASK THEN
QIC2_INIT; - -
FPC_CONTROL (RESET, INTL1);
OUTPUT (INT1 IS, EOI);
END; -

Figure 9-3. SCSI/QIC-02 Driver Example (Sheet 2 of 3)

9-5




PROCEDURE DMA@_ISR;
BEGIN
SCSI_FLAG = =;
OUTPUT (DMAG_IS, EOI);

END;
PROCEDURE DMALl_ISR;
BEGIN
TAPE FLAG := 0;

OUTPUT (DMAl_IS, EOI);
END;

BEGIN /* MAIN PROGRAM BODY */
SCSI_INIT;
TAPE_INIT;
D _DELECT (DISK®);

SESI_FLAG := 1; /* SHOW SCSI OPERATION IN PROGRESS */
D_XFER (WRITE, READ_COMMAND, 6); /* SEND READ COMMAND TO DISK */

DO WHILE SCSI_FLAG 1

I:= I+l; /* WASTE TIME WAITING FOR COMPLETION */

SCSI_FLAG
D_XFER (READ,

1;
DATA_BUFFER,

/* SHOW A NEW SCSI OPERATION IN PROGRESS */
2000) ;

/* READ 2000 BYTES */

/* START AN OPERATION ON THE QIC-02 SIDE OF THE INTERFACE
TO RUN IN PARALLEL WITH THE SCSI OPERATION */

TAPE_FLAG := 1;

/* SHOW QIC-02 OPERATION IN PROGRESS */

T_CMB (REWIND); /* REWIND THE TAPE */
FPC_CONTROL (SET, TRINT); /* ENABLE INTERRUPT ON TAPE RDY */

DO WHILE TAPE FLAG

OR SCSI_FLAG

1

I := I+1; /* WAIT FOR THE OPERATIONS TO COMPLETE */

/* BOTH OPERATIONS ARE NOW COMPLETE */

SCSI_FLAG

:= 1;

D_XFER (READ, STATUS_BUFFER, 2); /* GET DISK STATUS */

DO WHILE SCSI_FLAG = 1
I := I+1;
IF STATUS_BUFFER (1]
BEGIN
TAPE_FLAG := 1;
T_CMD (WRITE);

GOOD_STATUS THEN

/* PUT TAPE IN WRITE MODE */

T_WRITE (DATA_BUFFER, 2000); /* SEND OUT THE DATA */

DO WHILE TAPE_FLAG = 1
I 1= I+1;
END;
END;
END.
Figure 9-3. $CSIQIC-02 Driver Example (Sheet 3 of 3)
D-Select. This procedure outputs an eight bit  T-Write. This procedure writes data from a

select code to the SCSI interface. This process is
intercepted by the Am29PL141 which performs
the SELECT handshake.

T-CMD. This procedure outputs an eight bit
command to the QIC-02 interface. This process is
intercepted by the Am29PL141 which performs
the COMMAND handshake.

D-XFER. This procedure performs all data,
command and status transfers to and from the
SCSl interface.

T-Read. This procedure reads data from the QIC-
02 and places it in a memory data buffer.

memory buffer to the QIC-02.

FPC~SR. This procedure is the interrupt service
routine for the Am29PL141. Upon entry it obtains
the interrupt status from the FPC Interrupt Status
Register (ISR). This status is examined to detect
the occurrence of any errors. If any are detected,
the offending interface is reinitialized. This is a
very rudimentary form of error handling and is used
only far purposes of this example. More elaborate
error handling is possible in actual applications.
Prior to exiting this procedure, the interrupt source
is reset and the in-service bit in the interrupt
controller is cleared.




L6

TRINT PARITY
l*— ERROR
scsl
ucs PCR-ST;- amzgss [P
RESET AOORESS BUS ITERRUPT [ BSYIN ——l_"} A":::f“ K—> Sfhous
ADo-A07 ﬁ:_r\ PROGEAM CZ BURFER  pe—TROY TRANSCEIVER
e PROM l— DMSG Im LK
e vemD P% OER {4 PARITY
vo OET
CLR
PECLR 1
RD
N Amessss alc-o2
MAIN A cco C:> DATABUS
- MENORY Am2958 _ " |TRansceiver
Pk PS4t sTATUS | piac pese DTACH ot
cs . B :D'E BUFFER DEN
\A/ e EXP OER2
- Am2947 fe— TACK m OET1
DTRI—4 TR cD le— TRDY OET2
B
80188 NTRO
pu (T | — DATABUS RESET2  20MCLR ] SosI CONTRL
u. " " le—vo
MSG
ARDY | ) [
je—CD
— Am29828A
DREQ
xb—pu. fAESET CLK 2oER "aurren [— REQ
|A  Amzosoa CPs % } .
—» DEN COMMAND Am29PL141 o CONTROL
REGISTER 5 19 . TACK L acx
I :_—.—‘> FUSE
PCSO P CPa T PROGRMMABLE JROY le— ROV A
CONTROLLER
? EXP e Exe
PCS1[—+PCS1 DIRC DATN
pos2 |— Pcs2 Fig [—* VeMD [
PCs3 |—> Pes3 BS r—o PECLR Am22V10 DTACK
U N41SEL
vost I pose OE,sCLRR OEgg P(12) P11)P(10) P(S) P(3-8) PR)P(1) P(©) wggg?" o DDACK ®or
i % L Mux "_ OTREG QIC-02 CONTROL
PU. CMDACK Ae fe— ONE =
141SEL
bRGo DDREQ — TRINT L ONLINE
bRGT DTREQ L le— omsa Am20627A |y RESET
o o [ 0 VeMD BUFFER |, pequest
YouTy | TPONL S [~ XFER
TMROUTH1 RESET2
'I_—D‘ | TPRST ] L. 20MCLK
Y
X1__ | RESETH Am22V10 DACK AR 141TREQ %
ADDRESSABLE
20MCLK —> DATN
LATCH o 141XFER SCS CONTROL
—d
—— oo BsYOuT! 743
GENERATOR CLK L- BUF&R BSY
20MCLK ——

Figure 9-4. Am29PL141 QIC-02 and SCSI Controller Circuitry

SCSICONTROL

7438
oc.
BUFFER

—* ACK
[— ATN
—> SEL
f—> RST

06591A 9-4



DMAO-ISR, DMA1-ISR. These procedures signal
the completion of data transfers to other modules
by clearing the appropriate in-process flag (SCS! -
FLAG, TAPE - FLAG).

9.2.2 Dual Channel Bus Controller Architecture
Refer to the complete schematic (Figure 9-4) for

the Am29PL141 QIC-02 and SCSI Controller and
two AmPAL22V10s. These three programmable

devices provide the intelligence to control SCSI
and QIC-02 interfaces, and required additional MSI
control logic off-loading these tasks from the
80188 (any host CPU). In this application, the FPC
can be thought of as a high speed microprocessor-
like controller with twenty-nine fixed instructions,
and sixteen programmable output control lines
(thiteen of which are used in this application).
Each instruction is executed during a single clock
cycle of 50 ns. Although it can operate as a stand-

DEVICE condition_code_mux

(AMPAL22V1@) ;

"This device selects one of many input conditions to be tested
by the Am29PL141l and registers it in order to meet the CC setup

time requirement.

It also collects two pieces of miscellaneous

logic necessary to produce the ARDY and DMSG signals."

PIN
clk =1 vemd = 2 trint = 3
dtreq = 4 ddack = 5 dtack = 6
exp = 7 trdy = 8 tack = 9
bsyin = 10 dreq = 11 c_d_bar = 13
msg = 14 dmsg = 15 ardy = 16
cc = 17 spare = 18 ardy_in = 19
cc_mux_sel 3 = 20 cc_mux_sel 2 = 21
cc_mux_sel 1 = 22 cc_mux_sel 0 = 23 ;
BEGIN
ardy = ardy_in + /ddack * /ardy_in ;
dmsg = c_d_bar * msg ;
CASE (cc_mux_sel_3,cc_mux_sel_2,cc_mux_sel_l,cc_mux_sel 0)
BEGIN
@) cc := vcmd
1) cc := ddack ;
2) cc := dreq ;
-+ 3) cc := tack ;
4) cc := dtack * dtreq ;
5) cc := dtack * /dtreq ;
6) cc = msg * c_d_bar + trint * trdy ;
7) cc = exp
8) cc := bsyin ;
9) cc =1 ;
10) cc := dtack ;
11) cc := dreq * ddack ;
12) cc 3= trdy
END;
END.

Test_vectors

IN

clk cc_mux_sel_ 3 cc_mux_sel 2 cc_mux_sel_ 1l cc_mux_sel_ 0
vemd ddack dreq tack dtack dtreq
msg c_d_bar trint trdy exp ardy_in bsyin ;

Q

cc dmsg ardy ;

Figure 9-5. Condition Code MUX PAL Device Description (Sheet 1 of 2)

9-8




BEGIN

ccece
ccce
mmmm
uuuu c a
XXXX _ r
d dd d t db
ssss vddt tt _ rt ys d a
c eeee cara armb ire _Y mr
1 1111 mcec cesa ndx ii ¢ s d
k 3210 dkgk kqgr typ nn ¢ g Yy
"
g XXXX XXXX XXXX XXX 1X X X H; "ardy"
g XXXX X1XX XXXX XXX 08X X X L;
g XXXX XO@XX XXXX XXX 0X X X H;
g XXXX XXXX XX1l XXX XX X H X; "dmsg"
g XXXX XXXX XX10 XXX XX X L X;
g XXXX XXXX XX01 XXX XX X L X;
0 XXXX XXXX XX00 XXX XX X L X;
C 0000 XXX XXXX XXX XX L X X; "cc = vcmd"
C 0009 1XXX XXXX XXX XX H X X;
C 0001 X@XX XXXX XXX XX L X X; "cc = ddack"
C 0001 X1XX XXXX XXX XX H X X;
C 0010 XXOX XXXX XXX XX L X X; "cc = dreq"
C 0010 XX1X XXXX XXX XX H X X;
C 0011 XXX0 XXXX XXX XX L X X; "cc = tack"
C 9011 XXX1 XXXX XXX XX H X X;
C 0100 XXXX 1l1XX XXX XX H X X; "cc = dtack * dtreq"
C 0100 XXXX O1XX XXX XX L X X;
C 0100 XXXX 10XX XXX XX L X X;
C 0100 XXXX 08XX XXX XX L X X;
C Gl0l XXXX 11XX XXX XX L X X; "cc = dtack * /dtreq"
C 0101 XXXX 1l0XX XXX XX H X X;
C 0101 XXXX O1XX XXX XX L X X;
C 0101 XXXX @0XX XXX XX L X X;
C 0110 XXXX XX11 00X XX H X X; "cc = msg * c_d_bar + trint * trdy"
C 0110 XXXX XX00 11X XX H X X;
C Q110 XXXX XX0@¢ 00X XX L X X;
C Ol1l XXXX XXXX XX0 XX L X X; "cc = exp"
C 111 XXXX XXXX XX1 XX H X X;
C 1000 XXXX XXXX XXX X0 L X X; "cc = bsyin"
C 1000 XXXX XXXX XXX X1 H X X;
C 1001 XXXX XXXX XXX XX H X X; "cc = 1"
C 1010 XXXX OXXX XXX XX L X X; "cc = dtack"
C 1010 XXXX 1XXX XXX XX H X X;
C 1011 X11X XXXX XXX XX H X X; "cc = dreq * ddack"
C 1011 X@g1lX XXXX XXX XX L X X;
C 1011 X10X XXXX XXX XX L X X;
C 1100 XXXX XXXX X@X XX L X X; "cc = trdy"
C 1100 XXXX XXXX X1X XX H X X;
END.

Figure 9-5. Condition Code MUX PAL Device Description (Sheet 2 of 2)

g-9




alone controller, the FPC has been made a slave to
the 80188 uP, through the FPC test inputs (TO-
T5) and the Command Register (Am2950A).

The processor (80188) writes to the Command
Register which contains valid system commands (6
bits) to the FPC. During the IDLE loop of the FPC
software, the FPC selects VCMD (by setting
output lines P3-P6) as its CC (condition code)
input through the condition code mux. If CC
(VCMD) is a “pass” condition (asserted) meaning
the Command Register has been updated, then
the FPC branches to the instruction whose
address is given by input TO-T5 (from command
register). After the command has been proces-
sed, the FPC deasserts the VCMD bit (in the Com-
mand Register) and returns to the IDLE loop to
check for either another command from the proces-
sor or a function required by either SCSI or QIC-02.

Checking for a VCMD and then branching to the
processor's command address enables the FPC to
operate asynchronous to the processor, whose
bus T states (100 ns) are at one-half the FPC's
clock rate and skewed in time. The seventh bit in
the command register is used for the parity error
latch in the SCSI transceiver, Am29834A, (upper
right corner of schematic, Figure 9-4).

The Condition Code Mux (CCM) selects the
appropriate input to “CC” of the FPC as defined by
the FPC's output lines P3-P6. This multiplexing is
not always a straight selection but does include
logical combinations of input signals in some cases
(see Figure 9-5, Condition Code Mux PAL
Definition File).

The CCM provides two other outputs. ARDY
(asynchronous ready) to the processor is asserted
when instructed by the FPC and is used to
lengthen the processor's bus cycle time (amount
of time data remains valid on the 80188 bus) when
QIC-02 or SCSI data transfer timing requires it.

The remaining output from the CCM is DMSG (Disk
Message) which is an input to the Interrupt Status
Buffer. This is asserted when SCSI asserts both
MSG and C/D. Under this condition, the FPC
generates an interrupt (INT1), through the
Addressable Latch (AmPAL22V10), to the
processor indicating that the Disk (SCSI) is
requesting “Command” Data. The processor then
reads the Interrupt Status Buffer to determine this
condition (DMSG asserted). The following inputs
are available to the CCM: VCMD, DTACK, and
DDACK signals (generated by the processor);
MSG, C/D, DREQ, and BSYIN (generated by the
SCSI control bus); TACK, TRDY, and EXP
(generated by the QIC-02 control bus) and TRINT
from the Addressable Latch.

Since the outputs from the FPC are subject to
change on an instruction by instruction basis (each
clock cycle), certain signals must be latched. The
AmPAL22V10 serves as an addressable latch,
addressed by the FPC output lines P3-P8
(LADDR). Note that output lines P4-P6 are over-
laid with the 3-bit field for the CCM. This technique
frees up three spare output lines at the expense of
instruction lines in the FPC. Lines P4-P6 select
which of the eight latches is selected. P8 enables
all latches. P7 determines set or clear of the latch,
and P3 (ARESET) provides an asynchronous

- reset to all latches. The eight outputs from LADDR

are: INT1 and DTREG to the processor; TPONL
and TPRST to the QIC-02 control bus; DACK,
DATN and DRST (control signals to SCSI); and
TRINT (a feedback signal to the CCM). Figure 9-6
describes this PAL (LADDR).

9.2.3 Am29PL141 Microprogram

The Am29PL141 is a single-chip Fuse Program-
mable Controller. It is used in this application as a
complex controller by programming the appro-
priate sequence of instructions. The available in-
struction set is quite rich. It includes jumps, loops,
waits, and subroutine calls, which can be condi-
tionally executed based on the test inputs (T0-T5)
or CC input (all of these are used in this appli-
cation). The FPC flowcharts provide the details of
the FPC microprogramming used in this design.

As shown in Figure 9-7, the IDLE LOOP flow
diagram, the FPC continually cycles through this
loop from initial power-on reset (RESET2), and
jumps to one of nine routines depending on the
task at hand. After completion of the task, control
returns to the idle loop. RESET2 initializes the
FPC to start at address sixty-three. RESET2 is
generated on system power-up and when the
processor's watchdog timer times out (TMROUT1).
This timer is programmed to time out if the disk or
tape accesses fail to complete the proper
handshake in a reasonable time or the FPC locks
up the bus of the 80188 because of some error
condition.

The first instruction (at address 63) is a NOOP. ltis
used to assert ARESET (output line) to LADDR for
deasserting of latches and to deassert all other
output lines. The next instruction is the
return/entry point into the idle loop. It selects the
CCM to enable path for VCMD to CC input of FPC.

The next state is the first condition test. If CCis a
PASS condition, there is a valid command (VCMD
asserted). The FPC branches to the address
given in Command Register (T0-T5). If VCMD is
not asserted (CC = FALSE), it selects DDACK as
an input for CC and continues to next incremental

9-10




DEVICE addressable_latch (AmPAL22V10);
"This device is the addressable latch used by the Am29PL141 to expand
its I/0 capabilities."

PIN
clk =1 enable =2 a0 =3
al = 4 a2 =5 function = 6
reset = 7 spare(0:4] = 8:11,13 /datn = 14
/drst = 15 intl = 16 dtreq =17
/tponl = 18 /trint = 19 /tprst = 20
/dack = 21 spare_out(0:1] = 22:23 ;
DEFINE
set = function
BEGIN
IF (reset) THEN ARESET() ;
case (A2,Al,A0)
BEGIN
0) datn := datn * /enable + set * enable ;
1) drst := drst * /enable + set * enable ;
2) intl := intl * /enable + set * enable ;
3) dtreq := dtreq * /enable + set * enable ;
4) tponl := tponl * /enable + set * enable ;
5) trint := trint * /enable + set * enable ;
6) tprst := tprst * /enable + set * enable ;
7) dack := dack * /enable + set * enable ;
END:
END.
Test_vectors
IN
clk enable a2 al a0 function reset ;
I_0;
ouT
/datn /drst intl dtreq /tponl /trint /tprst /dack;
BEGIN
£
u
e n /17
n cr // 4 ttt/
a te ddit prpd
cb is arnr oira
l1aaaoe tste nnsc
ke210nt ntlg lttk
"
X X XXX X 1 BHLL HHHH;
C 0 XXX X 0 HHLL HHHH;
C 100010 LHLL HHHH;
C 100000 HHLL HHHH;
C 100110 HLLL HHHH;
CcCl100100 HHLL HHHH;
cCl01010 HHHL HHHH;
cl01000 HHLL HHHH;
cl01110 HHLH HHHH;
cC1l1011 00 HHLL HHHH;
cC1l1l0010 HHLL LHHH;
C1l1l0000 HHLL HHHH;
cl10110 HHLL HLHH;
cl1l0100 HHLL HHHH;
c1l1li010 HHLL HHLH;
c1l1l1i000 HHLL HHHH;
c1l1l1ir1 10 HHLL HHHL;
cl1li11 00 HHLL HHHH;

Figure 9-6. Addressable Latch PAL Device

9-11




SEL

SETARDY
CC«-BSYIN

BRANCHTO
ADDR.Tp-Ts
SEEFIGURE 9.8
DMAXFER
g CALL*SEL*
2 SETODREQ
§ CC <~ DDACK
[+
o
MO« co-pasS?
\
CLEARDDREQ

CC4-TACK

SETARDY
LADDR«-DDACK
CC<-DREQ

No CC=PASS?

YES

CLEARLADDR
CLEARARDY

06591A 9-7
Figure 9-7. QIC-02 Controller Program Flow Diagram (Sheet 1 of 2)

9-12




RDXFER

WRXFER

CC=DTACK-DTREQ

CC=DDACK

!

SET141XFER
CLRDTREQ

oB
[1=1]
L35
35
T
S

CLR 141XFER
CLRADRY
CC=TACK

j

YES  calL

CALL
[+ »
*SELL
g
2
g N SET DTREQ
o
& CC=DTACK.DTREQ
s )
YES CMDXFER
CC=PASS? l
NO SETARDY
—~ SET 141TPREQ
CC=MSG+CD' CC=DREQ+*DDACK
+ TRINT « TRDY
: CC=TRDY :
NO CC=PASS?
YES
CLR 141TPREQ
CLRARDY
CC=TRDY
4
NO CC=PASS?
YES
06591A 9-7

SETDTREQ
(LADDR QUTPUT)
SETADRY
CC=DTACK

YES

CLEARDTREQ
CLEARARDY
CCaDTACK

SET141XFER
SETADRY
CC=TACK

CLEAR 141XFER
CLEARARDY

Figure 9-7. QIC-02 Controller Program Flow Diagram (Sheet 2 of 2)

9-13




D

SETLADDR=DTREQ
CLRCMDACK

GOTOIDLE

2

SETLADDR =TPONL
CLR CMDACK

;

GOTOIDLE

9

SETLADDR = TRINT
CLRCMDACK

GOTOIDLE

, |

CLR CMDACK
SETLADDR=DATN

GOTOIDLE

®

SETLADDR=DRST
CLRCMDACK

GOTOIDLE

CLEAR
DTREQ

CLRLADDR=DTREQ
CLRCMDACK

GOTOIDLE

®

CLRLADDR = TPONL
CLRCMDACK

!

GOTOIDLE

®

CLRLADDR = TRINT
CLRCMDACK

GOTOIDLE

Q

CLRCMDACK
CLRLADDR = DATN

GO TOIDLE

2

CLRLADDR =DRST
CLRCMDACK

GOTOIDLE

Figure 9-8. Am29PL141 Valid Command Routines

CLRLADDR =INT{
CLRCMDACK

GOTOIDLE

SETLADDR=TPRST
CLRCMDACK

GOTOIDLE

SETLADDR=TPRST
CLRCMDACK

GOTOIDLE

06591A 9-8




device (pll4l)
"Am29PL141 QIC-02 and SCSI controller”
default = 1;
define
def = 1000#h
vemd = 1000#h "condition code mux select lines”
ddack = 1010#h
dreq = 1020#h
tack = 1030#h
dtareq = 1040#h
dtanreq = 1050#h
mctirdy = 1060#h
exp = 1070#h
bsyin = 1080#h
one = 1090#h
dtack = 10aO#h
drack = 10bO#h
trdy = 10cO#h

datn = 1000#h "addressable latch lines"
drst = 1010#h
intl = 1020#h
dtreq = 1030#h
tponl = 1040#h
trint = 1050#h
tprst = 1060#h

dack = 1070#h

cmdack = 0111#h "other output lines”
ddreg = 1800#h

sel = 1400#h

bsyout = 1200#h

lsrccms = 1080#h

len = 1100#h

ccmardy = 1001#h

xfer = 1002#h

tpreg = 1004#h

lareset = 1008#h;

test_condition = cc;

begin
idle: vemd, continue;
vemd, goto tm(3f#h);
ddack, if (cc) then call pl(nsel);
dreq, goto pl(dmaxfer);
tack, goto pl(rdxfer);
dtareq, goto pl(wrxfer);
ddack, if (cc) then call pl(nsel);
dtanreq, goto pl(cmdxfer);
mctirdy, goto pl(dint);
exp, goto pl(tint);
one, goto pl(idle);
nsel: ccmardy+bsyin, if (cc) then goto pl(next) else wait;

next: one, goto pl(idle});

dmaxfer:ddreq+ddreq, if (cc) then goto pl(nextl) else wait;
nextl: ccmardy+dack+lsrccms+len, continue;

dreq, if (cc) then goto pl(next2) else wait;
next2: dack+len, goto pl(idle);

rdxfer: ccmardy+dtreg+lsrccms+len, continue;
ccmardy+dtack, if (cc) then goto pl(next3) else wait;
next3: dtreq + len, continue;
dtack, if (not cc) then goto pl(next4) else wait;
next4: xfer+ccmardy+tack, if (not cc) then goto pl(next5) else wait;

Figure 9-9. QIC-02 Controller Source Program Listing (Sheet 1 of 2)

9-15




next5:

one, goto pl(idle);

wrxfer: xfer+dtreg+len,continue;
tack+xfer, if (cc) then goto pl(next6) else wait;

next6:
next7:

tack, if (not cc) then goto pl(next7) else wait;
dtreg+len+lsrccms,
one,goto pl(idle);

continue;

cmdxfer: ccmardy+tpreg+drack, if (cc) then call pl(nsel);

trdy, if (cc) then goto pl(next8) else wait;
next8: trdy, if (not cc) then goto pl(idle) else wait;
dint: intl+len+lsrccms, continue;

one, goto pl(idle);
tint: intl+len+lsrccms, continue;

dtreg+len+lsrccms, continue;

one, goto pl(idle);

setatn: datn+len+lsrccms, continue;

one,

clratn: datn+len,
one,

goto pl(idle);

continue;
goto pl(idle);

setdrst: drst+len+lsrccms, continue;

one,

clrdrst: drst+len,

intl+len,
one,

clrint:

sdtreq:
one,
cdtreq: dtreg+len,
stponl:
one,
ctponl: tponl+len,
strint:
one,
ctrint: trint+len,

stprst:

goto pl(idle);

continue;
goto pl(idle);

continue;
one, goto pl(idle);

dtreg+len+lsrccms, continue;
goto pl(idle);

continue;
one, goto pl(idle);
tponl+len+lsrccms, continue;
goto pl(idle);
continue;
one, goto pl(idle);
trint+len+lsrccms,
goto pl(idle);
continue;
one, goto pl(idle);
tprst+len+lsrccms, continue;
one, goto pl(idle);

continue;

ctprst: tprst+len, continue;

one, goto pl(idle);

.ORG 63#d
lareset,continue;
end.

Figure 9-9. QIC-02 Controller Source Program Listing (Sheet 2 of 2)

address (PC+1). The IDLE loop continues in this
fashion to select and test CCM input conditions
and branch accordingly.

Figure 9-8 shows the Valid Command (VCMD)
routines. Each command, from the processor will
branch to one of these thirteen valid routines. All
of these routines are single instructions which set
(assert) or clear (deassert) output control lines,
which always includes resetting the VCMD signal in
the Command Register and returning to idle.

Figure 9-9 is the FPC Microprogram source code
listing.

SCSil Interface: The second conditional test in the
idle loop is based on DDACK (disk DMA
acknowledge). This subroutine is called after the
FPC has generated DDREQ (Disk DMA Request)
and the processor responded appropriately. The
DDACK signa! also enables the SCSI bus
transceivers for transfer of data. Figure 9-7 shows
this call routine (SEL). The FPC asserts ARDY

9-16




output, to insure processor bus is open long
enough for transfer of SCSI data to main memory,
and selects BSYIN as CC test input. The FPC waits
for SCSI to assert BSYIN before proceeding.
BSYIN indicates that the disk is using the SCSI
bus. At this time, ARDY can be deasserted, since
the data byte is in main memory, and FPC can
retumn to idle at point of exit.

The IDLE Loop then conditionally tests the signal
DREQ. If DREQ is asserted, then a jump to the
DMAXFER routine takes place. DREQ stands for
disk request for data. This signal is generated by
SCSI during data transfer, write to or read from
disk, as the handshake with acknowledge (ACK)
from the FPC. Detecting DREQ being asserted
causes the FPC to begin single byte DMA transfer
to/from main memory.

First, the FPC asserts DDREQ (disk DMA request)
on DMA Request Channel 0 (DRQO) as an input to
Processor (80188). The processor acknowledges
this DMA request by asserting DDACK (disk DMA

#1) from the processor. PCS1 is qualified (gated)
with DEN, also from the processor, to enable the
SCSI transceiver onto the internal 8-bit data bus.
Direction of this transceiver is controlled by the
signal “//O" from the SCSI control bus.

After detecting DDACK asserted, FPC then
deasserts DDREQ output, asserts output ARDY
(to extend 80188 DMA bus cycle) and sets output
to LADDR (addressable latch) which asserts DACK
(disk acknowledge). DACK is asserted to SCSI
(through LADDR) to continue the data byte
transfer handshake (refer to SCSI timing diagram
Figures in Appendix C). The CCM is selected for
DREQ input. After DREQ is again asserted by
SCS8l, the transfer is complete. DACK and ARDY
are deasserted by the FPC and flow returns to idle
loop. This DMA transfer routine is used for both
writes to and reads from SCSI since the only
difference in timing signals is the I/O directional
signal which is controlled by SCSI.

QIC-02 Interface. The next conditional jump

acknowledge) which is an input to the CCM. instruction tests TACK (tape  QIC-02
DDACK is the PCS1 (programmable chip select  acknowledge). TACK from QIC-02 is the
80188 DATA BUS
Am29845A Am29845A Am29845A | NODEADDRESS
REGISTER
INTDTA (0:7) "
As
NODEADDRESS
COMPARATOR
‘ N 168 e 8
%
A4 l 4l 14 ARB
EQU 1 f
Am29834A
7438 7438

i

SCSIDATABUS

06591A 9-10

Figure 9-10. SCSI Advanced Features Upgrade

9-17




handshake signal used with XFER from FPC to
transfer data (see QIC-02 timing diagrams in
Appendix C). With TACK asserted, a jump to
RDXFER (read transfer from tape) takes place. All
of the QIC-02 processing flow is shown in sheet 2

of Figure 9-7. In a similar fashion to SCSI data

transfer, QIC-02 data is a DMA to/ffrom main
memory using DMA Request Channel 1 (DREQ1)
of the processor. DTREQ is asserted by the FPC
(through LADDR) and ARDY is asserted to the
processor through CCM. Next is a conditional wait
until the processor acknowledges this DMA REQ
via DTACK (input to CCM and QIC- 02 Data Bus
Transceiver enable). After CC = PASS (i.e.
DTACK condition asserted), DTREQ and ARDY
outputs are deasserted and the QIC-02 read timing
handshake continues with a return to the idle loop.

The next conditional test in the idle loop is for a
tape write cycle, indicated by both DTACK. and
DTREQ being asserted. The WRXFER routine
shown in Figure 9-7 matches QIC-02 timing
requirements as discussed in Appendix C. The
flowcharts for FPC routines include the tape
transfer commands and processor interrupts on
tape exception conditions.

QIC-02 requires different timing during tape write,
read, command, and for tape rewind, which has
been divided into separate FPC routines which are
interactive with the processor. It begins a tape
access by issuing “set on line” (TPONL) valid
command and ends tape access with “clear on
line” (TPONL). The microprocessing unit section
above discusses this interaction.

-EQU = INTDTAO0 * DEVADRO
+ INTDTA1 * DEVADRI
+ INTDTA2 * DEVADR2
+ INTDTA3 * DEVADR3
+ INTDTA4 * DEVADR4
+ INTDTAS5 * DEVADRS
+ INTDTA6 * DEVADRG6

+ INTDTA7 * DEVADR7

Figure 9-11. Node Address Comparator PAL Device
Equation

9.3 ADVANCED FEATURES OF SCSI

This design can be upgraded to include SCSI bus
arbitration, initiator reselection and operation as
target as well as initiator. These features are
required in a multiple initiator, multiple target
environment.

The logic shown in Figure 9-10, when added to
the original design, accomplishes the above. It
also provides the means for transferring
commands, status, messages, and target selection
information via 80188 programmed 1/O transfers.
For support of target mode operation, it is
necessary to provide SCSI bus drivers and
addressable latches for the following SCSI signals:
REQ, C/D, I/O, MSG, and SEL (not shown).

SCSI bus node addresses are one bit in length.
That is, each node is assigned one of eight
possible addresses corresponding to one of the
eight SCSI bus data lines. During the SELECT
phase of bus operation, a node must only test one
bit of the data bus to determine if it is being
selected. Similarly, during the ARBITRATION
phase, the node that is asserting the highest bit on
the data bus “wins” control of the bus.

Before allowing SELECTION or ARBITRATION,
the 80188 must first load the SCSI “Node Address
Register”. This register is used as a mask register
to determine which bit of the SCS! data bus will be
tested during SELECT/RESELECT and which bit
will be asserted by this node during the
ARBITRATION phase.

9.3.1 Selection (Target reselecting Initiator /
selection as Target)

The SCSI bus SEL must now be tested in the
Am29PL141's idle loop. If asserted, the
Am29PL141 tests the SCSI bus “address
compare bit - EQU” (16L8 shown in Figure 9-11)
and the SCSI bus BSY signal. If this SCSI node is
being addressed and BSY is not asserted; then,
the Am29PL141 branches to a routine that will
monitor SCSI BSY; else, it returns to its idle loop.
To monitor BSY, the Am29PL141 uses one of its
internal counters to “time out” a 400 nsec bus free
period and then retests SCSI BSY. If the bus is still
free, this node is being SELECTED/
RESELECTED and the Am29PL141 will interrupt
the 80188 which would then take the necessary
action. If the bus is not free, the Am29PL141
returns to its idle loop. The 80188 interrupt
handler should test the status of SEL and the
“address compare bit” to determine that this is a
SELECT/RESELECT interrupt.




9.3.2 Arbitration

To initate the ARBITRATION cycle, the 80188
issues a command to the Am29PL141 to set an
“arbitration request flip-flop ARBRQ". This is
another addressable latch bit controlled by the
Am29PL141 and subsequently monitored in the
Am29PL141's idle loop. If the ARBRQ bit is set,
the Am29PL141 will then test SCSI BSY, and if
asserted, the Am29PL141 returns to its idle loop.
If ARBRQ is asserted and the SCSI bus is not
busy, the Am29PL141 will interrupt the 80188,
assert the address for this node onto the SCSI
bus, assert BSY and begin monitoring SCSI SEL.
The address for this node is asserted onto the
SCS! bus via the 7438s and a new control bit
“ARB". (See Figure 9-10.)

The Am29PL141 will now continuously monitor
SCSI SEL and the ARBRQ signal. The asserting
of SEL during the arbitration process indicates that
another SCSI device has assumed control of the
bus and this node should abort the arbitration
process. The assertion of SEL causes an
“arbitration failed flip-flop” to be set by the
Am29PL141. This bit would be added to the
status bits readable by the 80188. Also, the
deassertion of ARBRQ indicates that the 80188
has terminated the arbitration process. In either
case, the Am29PL 141 will deassert BSY, remove
this node's address from the bus, and return to its
idle loop.

The 80188 interrupt processing routine is
responsible for reading the SCSI data bus and
determining whether this node is the highest
currently requesting the bus. If this node has lost
the arbitration process, ARBRQ should be
deasserted to allow the Am29PL141 to return to
its idle loop and then reasserted to begin the
process again. If this node appears to have won
the arbitration process, the interrupt handler
should first check the “arbitration failed flip-flop”
before entering the SELECTION phase. This final
check is required to insure no other device issued
a SEL while the 80188 was responding to the
interrupt.

9.4 SUMMARY

This design solves the problem of interfacing older
generation tape drives (QIC-02) to modem
computer peripherals on the SCS| bus.

The use of the Fuse Programmable Controller and
two programmable array logic devices
(AmPAL22V10s), allows the implementation of
this complex. controller with minimum component
count, off the shelf standard parts, (see Figure 9-
12) and is reconfigurable/upgradable through
reprogramming. This design should also give
insight into the versatility of the FPC and ease of
using this device for new designs.

PARTS LIST
DEVICE DESCRIPTION QUANTITY
Am29PL141  Fuse Programmable Controller 1
80188-1 10MHz, 8-bit Microprocessor 1
Am2947 Octal Bidirectional Transceiver 1
Am29843A 9-bit Latch, Non-Inverting 2
Am2958 Octal Buffer, Inverting 2
AmPAL22V10 24-pin Programmable 2
Array Logic
Am2950A 8-bit /O Port with Flags 1
Am29834A Parity Bus Transceiver, 1
Inverting
Am29864 9-bit Transceiver, Inverting 1
Am29828A 10-bit Butfer/Driver, Inverting 1
7438 Open-Collector Drive 2
Am29827A 10-bit Buffer/Drive,
Non-Inverting 1
Am27512DC  512K-bit UV EPROM (250 ns) 1
*AmPAL16L8A 20-pin Programmable 1
Array Logic

*Use for the five 2-input “OR” gates and for the
one 2-input “AND” gate.

Figure 9-12. SCSI and QIC-02 Controller Parts Llist

9-19







CHAPTER 10

HIGH SPEED DMA CONTROLLER USING Am29PL141

10.1 SYSTEM OVERVIEW

In this application, the Am29PL141 Fuse Program-
mable Controller (FPC) is used to control two hard-
ware blocks that are sequenced at a rate greater
than 10 MHz. This application illustrates the power
and flexibility of the Am29PL141 in distributed
control applications.

The subsystem controlled by the FPC is just a
small part of a large computer system. From the
viewpoint of the main central processing unit
(CPU), this subsystem is -an asynchronous
peripheral. The peripheral’s function is to control a
direct memory access {DMA) channel. This chan-
nel links the main CPU’s memory to a digital signal
processor’s (DSP) memory. Figure10-1 shows the
various hardware blocks which comprise the DMA
channel interface.  All operations are initiated by
the main CPU. Once a command is passed to the
subsystem, the main CPU is free to do other tasks.
The DMA interface signals the completion of a task
by generating an interrupt in the main CPU. A
typical command consists of transferring data
(totally under the control of the Am29PL141)
and/or processing data (controlled by the DSP
engine and the Am29PL141).

The overall system can be viewed as a digital signal
processor (DSP). It performs high speed data

acquisition, digitizing several incoming analog-

channels. The processor utilizes DSP techniques
to modify and/or extract information from this data,
and outputs results which are converted back to
analog signals.

By their nature, many DSP algorithms operate on
blocks of Data. In this particular application, the
incoming channels consist of various speech sig-
nals. After digitalization, the speech bandwidth is
compressed using linear predictive coding (LPC)
techniques. A 64 kbit/sec channel is compressed
to a 2.4 kbit/sec data stream using LPC. Six com-
pressed input channels are multiplexed over one
serial link. Simultaneously, the processor receives
a multiplexed LPC data stream. It demultiplexes
this data and expands the compressed data
resulting in analog speech output channels.

Real time constraints mandate a high speed DMA
controller to orchestrate the filling and emptying of
the LPC data RAM. Incoming channels of raw

speech data are stored in this RAM. Once avail-
able, the processor invokes an analysis routine
that extracts the LPC parameters. This parametric
information is multiplexed and transmitted over
one serial link. In the other direction, received LPC
parameters are demultiplexed. A synthesis routine
is then invoked which reconstructs the speech
signals.  These reconstructed speech waveforms
are stored in'the data RAM. The Am29PL141 not
only controls the DMA channel, but also performs a
sequencing function assisting the subsystem’s
DSP engine.

The following sections describe the CPU-FPC
interface, the FPC output lines, the use of 27518
and Am2940 for address generation, and finally
the microprogram for this application. A more
complete discussion of the Am29PL141 FPC is
given in Chapter 1 and Appendix F. Chapter 2
gives more detail about writing the microprogram
source code.

10.2 CPU-FPCINTERFACE

Whenever the CPU desires service from the DSP
subsystem, it issues a command by placing it in a 5-
bit instruction register. This register's outputs are
available to the FPC as T[4:0]. The CPU sets the
valid instruction flip flop to indicate the presence of
a new command. The flip flop output is connected
to the FPC's CC test input. While idle, the FPC
interrogates this flip flop. When a new command is
detected, the FPC commences execution of the
instruction. Upon completion, the valid instruction
flip flop is cleared (using P[11]), and a status bit is
output to the CPU. Data passes between the
main CPU data bus and the DSP data bus via a
specialized 16 bit bi-directional I/O port. In
addition to buffering data during transfers, the 1/O
port is used to initialize the DSP data RAM.

There are actually 14 different instructions
represented in bits T[3:0]. T[4] is used to tell the
DSP engine to perform calculations with the DMA
interface generating the addresses.

Three groups of CPU commands are defined:
1. Data Transfer In (to the DSP memory) ~ 6

2. Data Transfer Out (from the DSP memory) —7
3. Data Memory Initialize — 1

101




The number following each group name denotes
the number of instructions within that group.

Any instruction in the Data Transfer In group can
additionally have T[4] as a qualifier. When T[4] is
negated, the DMA interface only transfers data in
to the DSP memory. When T[4] is asserted, the
DMA interface serves as the address generator for
the DSP engine for a particular task after the data
transfer is complete. By reexamining the CPU com-
mand, the FPC determines how many addresses it
needs to generate for the task.

Instruction decoding is a simple task in the
Am29PL141 using its multiway branch instruction.
In this application T[3:0] are masked and a branch
to one of sixteen locations is taken as determined
by the pattern present on T[3:0]. Subsequent
paths taken are derived from this multiway branch.

10.3 Am29PL141 CONTROLLER
At the heart of the DMA interface is the

Am29PL141. Once the CPU passes a command,
the FPC takes over. All data transfer operations

are under its control. When a new instruction is
detected, the 29PL141 decodes it by reading it in
on its TO-T4 test inputs. The DONE output of the
Am2940 is connected to the FPC T5 test input for
signaling the completion of an address sequence.
When an input instruction is decoded, control
branches to the appropriate control sequence.

A 64 x 32 bit PROM resides on the Am29PL141.
The upper 16 bits of each word are used to control
the on-board sequencer. The functions of these
bits are defined by AMD and are not alterable by
the user. The lower 16 bits of each word are
brought out through a pipeline register as output
lines and are user-defined (P15-P0). Appendix F,
the Data Sheet, defines the microinstruction word
in detail.

The control data that appears at the outputs
(P[00:15]) of the FPC depends on the type of
instruction. Five bits (P[00:04}) are used as an
address to a 32 x 8 lookup PROM. Four bits
(P[06:09]) provide instructions and control to an
Am2940 high speed DMA address generator.
Two bits (P[10], P[12]) control the specialized
bidirectional /O port between the two ‘processor

" INSTRUCTION DATABUS
FROMMAIN PROCESSOR STATUS
l l ) Y 'y
INSTRUGTION| | o VALDINSTRUGTION . CLOCK A
REGISTER 7 CNTRL
A5
cc P11
T0-T4 P15
75 P13, P14
‘ MEM INIT
P12 BUF'ng*
Al
P10 BUSENABLE oy
-
PO3 wal A6
L. 1012
P06-P0O8 7 >
DSP
Am20PL141 DATA
L RAM
P00-PO4 AO-A4 Am2940 —
5 16 16
D v Do-D7
27518
@
DONE
06591A 10-1

Figure 10-1. DMA Channel Interface

10-2




data buses. Finally, two bits (P[13], P[14]) are
used to control the clock source to the Am2940
address generator. P[15] signals the main CPU
when the execution of a command is complete.

Figure 10-2 illustrates the assignment of the 16
Am29PL141 output lines. These output lines are
controlled by the FPC microprogram instructions.
One-half of each microinstruction word is used to
specify these outputs. All but one of these lines
are used in this application. These 16 output lines
are grouped into eight fields of varying widths.
The specifics of each field, the field width, and the
type of micro-operations performed, are as follows:

Prom Address Control

The 5 bit field formed by P[4:0] is named A[4:0].
After a CPU command is decoded, the FPC
determines which block of data RAM is to be
accessed and its length. The starting address of
each block and its length are stored in the look-up
PROMs. A[4:0] provide the addresses to the
lookup PROMs for each new DMA operation.

DMA Address Generator Control

P[8:6] form a 3 bit field named [[2:0]. These bits
are the instructions for the Am2940 address gen-
erator. Operations performed by the field include
reading and writing various data and control
registers on the Am2940.

DMA Count Control

P[9] is a one bit field named CNT wired to the ACI
and WCI inputs of the Am2940. The signal
enables the counting operation of the address
generator. This effectively provides clock control
in addition to the external clock circuitry.

Data Bus Interface Control

Bits P[10] and P[12] form two one-bit fields for this
function. P[10] is named BEN and controls data

transfers between the two CPU data buses. When
it is asserted, transfers are allowed. P[12] is named
ZEN (Zero Enable). When asserted, it overrides
BEN for transfers into the DSP data memory and
instead places zeroes on the data bus. This
feature is useful for initialization in certain tasks. By
having the DMA controller provide this function,
the DSP is offloaded and subsequently has more
time for performing calculations.

Instruction Status

P{11] and P[15] form two one-bit fields used in
conjunction with the CPU instruction interface.
P[11] is named CLR. This bit serves as the clear
signal to the valid instruction flip flop. This flip flop
can only be set by the main CPU and reset by the
DMA controller. When an instruction is completed
by the DMA controller, it resets this flip flop. The
FPC idles until the main CPU sets this flip flop
indicating the presence of a new instruction in the
instruction register.

P[15] is named DNE and is sent back to the main
CPU. When asserted by the FPC it indicates that
the DMA subsystem has completed the execution
of a command and is awaiting a new one.

Clock Control

P[14:13] form a two bit field named CK[1:0].
These bits control the source of the clock to the
Am2940s. Three selections are possible: 1) Sys-
tem clock; 2) System clock shifted by 180°; and 3)
clock inhibit.

10.4 ADDRESS GENERATION

Several channels of data are stored in the DSP
data RAM. For each channel, the DMA controller
must input to and/or output from the proper sec-
tion of the memory. Generation of the appropriate
addresses is handled by two Am27S18SA PROMs
and two Am2940 address generators.

P15 P14 P13 P12 P11 P10 P09 P08 P07 P06 P05 P04 P03 P02 PO1 POO
DNE| CK1| CKO| ZEN| CLRIBEN|CNT| 12 | I 10 A4 ] A3 | A2 | A1 | AO
o e S N N S S ~ - ~ ~ ’
INST MEM BUS 2940 PROMADDRESS
STATUS INIT ENABLE INSTRUCTION CONTROL
ENABLE CONTROL
CLOCK INST 2940
SELECT ACK COUNT
CLR CNTRL

06591A 10-2

Figure 10-2. Format of User Output Portion of Am29PL141 Microcode

10-3




The FPC determines a starting address and a block
length from a decoded instruction. The actual
values of this data are stored in the Am27S18SA
lookup PROMs. Two five-bit addresses, represen-
ting the starting address and block length are
presented to the PROMs. The data outputs of the
PROM are routed to the Am2940s on their data
inputs (D0-D7) and loaded into the appropriate
registers. Once initialized with these “seed” val-
ues, the Am2940s provide sequential addresses
to the DSP data RAM until the word count expires.
The DONE signal from the Am2940s alerts the
FPC to this condition.

In addition to providing DMA addresses, this
section of the hardware generates addresses for
the DSP for certain processing steps that are time
critical. Some sections of the LPC algorithm

sequentially step through the memory block
repeatedly. For these tasks, the FPC keeps track
of how many passes are required and issues con-
trol data to the address generators. Basically it
performs dummy DMA cycles where addresses are
generated but no data passes through the data
bus interface.

10.5 FPC MICROCODE

Figure 10-3 is the flowchart of the code
implemented for this application. A total of 45
words are used. This leaves ample room for future
modifications to the interface. Of the 45 locations
used, 30 are used for instruction decoding. How-
ever, while the FPC is decoding an instruction, its
control outputs are simultaneously loading values

INSTRUCTION DECODE
WITH
MULTIWAY BRANCH

:

LOADSTARTADDRESS
&WORD COUNT
IN Am2940

:

i CLEARCC I

NO

LOADCREG WITH
WAIT STATES

LOAD 18T
WC IN 2940

LOAD 2ND
WC IN2940

LOAD 3RD
WC IN 2940

I WAIT WITHCREG |
3

ENABLE BUS & COUNT

ENABLE

DECCREG

06591A 10-3

Figure 10-3. DMA Controller Program Flow Diagram

10-4




into the Am2940s. This parallel operation allows
the data transfers to take place with a minimum of
overhead. By the time the instruction is decoded,
the Am2940 data and control registers are loaded
and ready to start the transfer operation.

After some wait states are executed the data
transfer commences. When finished, T[4] is
tested. If asserted the FPC goes back and looks at
T[3:0] to determine how many passes it must make
through the data for the DSP engine. It then
commands the Am2940s to start the dummy DMA
cycles and runs until its pass count expires. A pass
count is easily implemented using the C Register
on board the Am29PL141. Between each pass
the Am2940s are reinitialized to point at the start of

a data block. When all passes are complete, the
CPU is notified, and the FPC waits for the next
instruction.

Figure 10-4 is a listing of the microcode described
above. It is written using an assembler written
specifically for the Am29PL141 by AMD. This
software runs on an IBM PC/XT and is available
gratis to any designer using the Am239PL141.
Most of the code in this application was debugged
using a companion simulator also available from
AMD. Only real time timing aspects could not be
evaluated. Having this software available makes
the design engineer's job easier by minimizing the
amount of time is spent translating concept to
PROM data for the FPC.

" ~ A HIGH SPEED DMA CONTROLLER "

device (pll4l)
default =1 ;
define

" The following mnemonics are the names assigned to the micro
operations in the eight different fields defined for P(15:0)

FIELD NAME = DNE

DONE
NDONE

0000#H
8000#H

" FIELD NAME = CS(2:0)

CLK1 = 0000#H
CLK2 = 2000#H
NOCLK = 6000#H

" FIELD NAME = ZEN

IMEM = 0000#H
NOIMEM = 1000#H

" FIELD NAME = ICR

CLRINST = 0000#H
NOCLR = 0800#H

" FIELD NAME = BEN

BUSON
BUSOFF

0000#4H
04004H

nu

" FIELD NAME = CNT

CNTON
CNTOFF

0000#H
0200#H

" FIELD NAME = I(2:0)

WRCR = 0000#H
REIN = 01l00#H
LDAD = 0140%#H
LDWC = 0180#H
ENCT = 01CO#H

\

Figure 10-4. DMA Controller Source Program Listing (Sheet 1 of 4)

10-5




" FIELD NAME = A(4:0)

begin

ADDO = 0000#H
ADD1 = Q001#H
ADD2 = 0002#H
ADD3 = 0003#H
ADD4 = 0004#H
ADDS = 0005#H
ADD6 = 0006#H
WwCo = 0008#H
WCl = 0009#H
wc2 = 000A#H
We3 = 000B#H
WwC4 = 000C#H
WC5 = 000D#H
wce = O0OOE#H
we7 = OOOF#H;

" The first 16 locations form the branch table for decoding the
instruction bits present on T(3:0)

ZERO:

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDO,
IF (CC) THEN GOTO PL(DTI1);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD1,
IF (CC) THEN GOTO PL(DTI2):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD2,
IF (CC) THEN GOTO PL(DTI3);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD3,
IF (CC) THEN GOTO PL(DTI2);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD4 ,
IF (CC) THEN GOTO PL(DTI3);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDS ,
IF (CC) THEN GOTO PL(DTI4);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDO,
IF (CC) THEN GOTO PL(DTO1) :
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD1,
IF (CC) THEN GOTO PL(DTO2) ;
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD2,
IF (CC) THEN GOTO PL(DTO3):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD3,
IF (CC) THEN GOTO PL(DTO4):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD4 ,
IF (CC) THEN GOTO PL(DTOl):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDS ,
IF (CC) THEN GOTO PL(DTO2):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD1 ,
IF (CC) THEN GOTO PL(DTO3);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+00L1F#H,
IF (CC) THEN GOTO PL(RESET);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+001F#H,
IF (CC) THEN GOTO PL(RESET):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+001F#H,
IF (CC) THEN GOTO PL(MEMINIT):

Figure 10-4. DMA Controller Source Program Listing (Sheet 2 of 4)

10-6




" The next 4 instructions have identical internal control but different
outputs on P(15:0). They are used for instructions in the DATA TRANS-
FER IN (DTI) group. They are also part of the instruction decoding."

DTIl: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCO,
IF (CC) THEN GOTO PL(DTIWAIT);

DTI2: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC1,
IF (CC) THEN GOTO PL(DTIWAIT);

DTI3: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWG+WC2,
IF (CC) THEN GOTO PL(DTIWAIT);

DTI4: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC3,

IF (CC) THEN GOTO PL(DTIWAIT):;

" The next 4 instructions have identical internal control but different
outputs on P(15:0). They are used for instructions in the DATA TRANS-
FER IN (DTI) group. They are also part of the instruction decoding."

DTOL: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC4,
IF (CC) THEN GOTO PL(DTOWAIT):

DTO2: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC5,
IF (CC) THEN GOTO PL(DTOWAIT):

DTO3: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCE,
IF (CC) THEN GOTO PL(DTOWAIT);

DTO4: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC7,

IF (CC) THEN GOTO PL(DTOWAIT);
" This instruction is executed for the DATA MEMORY INITIALIZE (DMI) group"

MEMINIT: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC7,
IF (CC) THEN GOTO PL(ZWAIT);

" Program FPC for DTI wait states using the CREG "

DTIWAIT: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN LOAD PL(4):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN GOTO PL(WAIT1):;

" Program FPC for DTO wait states using the CREG "
DTOWAIT: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN LOAD PL(6):
WAIT1: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
WHILE (CREG <> 0) LOOP TO PL (WAIT1):
NDONE+CLK1+NOIMEM+NOCLR+BUSON+CNTON+ENCT+001F#H,
IF (T5) THEN GOTO PL(CLEARCC) ELSE WAIT;
" Program FPC for MEMORY INITIALIZE function "

ZWAIT: NDONE+CLK1+IMEM+NOCLR+BUSOFF+CNTON+ENCT+001F#H,
IF (T5) THEN GOTO PL(CLEARCC) ELSE WAIT;

" Clear VALID INSTRUCTION flip flop (CC input to FPC) "

Figure 10-4. DMA Controller Source Program Listing (Sheet 3 of 4)

10-7




CLEARCC: DONE+CLK1+NOIMEM+CLRINST+BUSOFF+CNTOFF+ENCT+001F#H,
CONTINUE; :

" check for CC indicating the presence of an instruction to crack "

DONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN GOTO PL(GENADD) ELSE WAIT;

" check for T4 active. If so, additional processing is required."

GENADD: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+001F#H,
IF (NOT T4) THEN GOTO PL(624D);

" If T4 is asserted, then the DMA controller assists the DSP engine by
generating sequential addresses without passing data through the
data bus interface. Different pass counts are loaded depending on
Tl and TO values. "

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDS,
IF (T1) THEN GOTO PL(LPC1);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (NOT TO) THEN GOTO PL(LPC2);
LEBC3: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC4,
IF (CC) THEN LOAD PL(12);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN GOTO PL(WAIT2):
LBC1: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCO,
IF (CC) THEN LOAD PL(10):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN GOTO PL(WAIT2);
LPC2: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC2,
IF (CC) THEN LOAD PL(8):
WAIT2:  NDONE+CLK2+NOIMEM+NOCLR+BUSOFF+CNTON+ENCT+001F#H,
IF (T5) THEN GOTO PL(NXTPASS) ELSE WAIT:

" Decrement pass count ' ! "
NXTPASS: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,

WHILE (CREG <> 0) LOOP TO PL(WAIT2):
" When all passes are finished, clear ¢C and wait for next inst."

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+001F#H,
IF (CC) THEN GOTO PL(CLEARCC):

" This multiway branch is the first step of instruction cracking "
.ORG 624D

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN GOTO TM(001111#B);
RESET: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+WRCR+001F#H,
IF (CC) THEN GOTO PL(62#D):

END.

Figure 10-4. DMA Controller Source Program Listing (Sheet 4 of 4)

10-8




APPENDIX A
JEDEC STANDARD No.3

The fuse map generated by the Am29PL141
Assembler adheres to the JEDEC standard No. 3
(October 1983) which is a standard data transfer for-
mat between a data preparation system and a
programmable logic device programmer.

The information to be sent to the device program-
mer is divided into the following categories:

The design specification identifier
The device to be programmed
Fuse links that must be blown to
implement the design

Information to perform a structured
functional test

Other information (e.g.,sumcheck)

> L

5.

A transmission must consist of the following legal
characters. Any other characters present in the
transmission file may result in invalid operation.

STX 02 hex start of text
ETX 03 hex end of text

LF 0A hex line feed

CR 0D hex carriage return
all printable

characters 20 hex to 7E hex inclusive

The Assembler forms the transmission file by
putting the STX character at the beginning of the
file, followed by the fuse link information, the fuse
checksum, the ETX character, and the trans-
mission sumcheck. An example Assembler trans-
mission (fuse map) file is:

<STX>F1*

1.0000 0100101111 111111 1111111111111000 *
CO2EF*

<ETX>0A94

Fuse Link Information

Each device fuse link is assigned a decimal
number. Each numbered fuse can have two
possible states: a Zero specifying a low-resistance
(unblown) link and a One specifying a high-
resistance (blown) link.

Fuse information is presented in three fields: F, L
and C.

F: This field specifies the state of the unspecified
fuses in the logic device. This field corre-

sponds to the DEFAULT section in the
program source file. The default for this field is
‘F0’, all unspecified fuses unblown.

: Bach numbered link is addressed by the ‘L’
field. The L is immediately followed by a
variable length decimal number indicating
address of the first link in the following string of
data. The string of data can be any convenient
length terminated by an *'. In the Assembler
each string is 32 characters long.

: This is the checksum field for the link
information. It is computed by performing a 16-
bit unsigned addition of 8-bit words formed
from all the fuse link states specified in the file.

The 8-bit words are formed as in the following
diagram:

Example: Checksum Computation
<STX>F1*

L0000 010010 1 111 111111 1111111111111000 *
CO2EF*

<ETX>0A94

link 7 0
11010010 — D2 hex
1111 1111 F F hex
1111 1111 FF hex
0001 1111 1F hex

02EF hex =checksum

Note:

If the number of fuse links is not a multiple
of 8, then the last word will be formed by
setting Zeroes for all the bit locations more
significant than the last link. The 16-bit
checksum is specified as a C followed by 4
hex characters and an *".

OTHER INFORMATION

The transmission format is ended by an ETX
character followed by the sumcheck. The
sumcheck is the 16-bit unsigned addition of the
ASCll values of all the characters in the
transmission file between and including STX and
ETX. The parity bit is excluded in this calculation.

A1







APPENDIX B

ASSEMBLER ERROR MESSAGES

This appendix lists the Am29PL141 Assembler
diagnostic error messages alphabetically. Each
message is also numbered as a part of the mes-
sage. Each message is followed by an explanation
of the message and suggested actions to remove
the error from subsequent runs of the assembler.

Errors generated during assembly are prefaced by
the error number and the source line where the
error occurred.

The symbol *** is used to indicate a keyword or
user-defined string which varies depending on the
context of the error message.

There are two error types: warning and fatal.
Warnings are displayed and assembly continues.
Fatal errors terminate assembly.

When errors occur in sequential lines, it normally
indicates a punctuation error on the line preceding
the error. Punctuation should always be examined
near the error that was detected.

ERR 1 29PL141 Assembler : cannot open ***
Fatal: The assembler cannot open the filename
specified in the command line.

User Action: Make sure the file exists or that there
is enough room on the disk

ERR 2 *** database file is incorrect

Fatal: The device database file *** may have been
accidentally modified, or cannot be found on the
same disk drive as the Assembler

User Action: Put the device database file on the
same working disk

ERR 3 *** in line *** has not been defined
Warning: The label *** is not defined
User Action: Define the label

ERR 4 *** is not supported by this Assembler
Fatal: The device *** does not have a database file
on the same drive as the Assembler

User Action: Put the database file on the same
disk as the assembler

ERR 5 Assembler : illegal option ***

Fatal: Unrecognized option

User Action: Use recognized options such as -0’
for specifying an output file

ERR 6 assembler needs a valid device name
Fatal: This assembler recognizes only
‘Am29PL141’

User Action: Specify the part name Am29PL141

ERR 7 assembler needs an opcode

Warning:  Specify one of the opcodes or
commands listed in Section 2.3.5 Statement
Formats

User Action: Check for proper statement syntax

ERR 8 assign a humber/name with the ‘=’ sign
Warning: Use the ‘=’ sign to separate identifiers
and their values

User Action: Put a ‘=" sign

ERR 9 beyond addressing range of device
Warning: A memory reference has been made
beyond the range of the device

User Action: Check statement label value

ERR 10 beyond the range of the machine
Warning: The number specified is too large
User Action: Check the value being used

ERR 11 cannot open the database

Fatal: The database file Am29PL141 is missing
User Action: Put the database file on the same
disk with the assembler

ERR 12 check condition field

Warning:  Check the condition field of the
statement

User Action: Use a valid condition test expression

ERR 13 Check the database

Fatal: The database has been modified or is not in
the correct format

User Action: Copy database file from master
diskette

ERR 14 close the data field with ‘)’

Warning: Mismatched parentheses

User Action: Match the opening ‘(" with )" in
PL(data) or TM(data)

ERR 15 compare CREG with 0 only
Warning: CREG is compared with the value 0 only
User Action: Check CREG test condition

B-1




ERR 16 compare test condition with a binary
number

Warning: Test conditions are compared with ‘0’ or
41’ only

User Action: Check test condition

ERR 17 compare TM to PL

Warning: TM must follow CMP in a compare
statement

User Action: Check format of compare statement

ERR 18 default fuse map values should only be
binary numbers

Warning: DEFAULT should be equated with a
binary value of ‘0’ or ‘1’ only

User Action: Specify only ‘0’ or 1’

ERR 19 default output value exceeds control
output limits

Warning:  The default output value defined
exceeds device limits

User Action: Check the value of the default output

ERR 20 enclose the data field in ‘("

Warning: Use the opening parenthesis ‘(" as in
PL(data) or TM(data)

User Action: Puta ‘('

ERR 21 enclose the device name in parenthesis
Warning: The device name must be enclosed in
parenthesis

User Action: Use ‘(' and ¥’

ERR 22 error in cleaning the STACK list
Warning: Invalid control output expression

User Action: Use ‘(, ¥, '+ and ' for logical
expressions

ERR 23 error in cleaning the OPERATOR list
Warning: Invalid control output expression

User Action: Check that the logical operators ‘+'
and ' have operands

ERR 24 error in STACK PUSH

Warning: Will not accept this character as a logical
operator

User Action: Check format of logical expression

ERR 25 error in STK_EVAL function
Warning: Invalid control output expression
User Action: Check format of logical expression

ERR 26 field limits exceeded for DATA field
Warning: The number specified is too large; it
must be in the range of 0 to 63 decimal for the
Am29PL141

User Action: Check value in DATA field

ERR 27 field limits exceeded for OUTPUT field
Warning: The number is too large; it must be in the
range 0 to 216 for the Am29PL141

User Action: Check value in OUTPUT field

ERR 28 field limits have been exceeded for TEST
field

Warning: The test condition specified does not
exist; only 8 test conditions exist for the
Am29PL141

User Action: Check the numerical value of the test
condition

ERR 29 looking for ‘=’ sigh

Warning: Use a ‘=' in defining constants in the
DEFINE section and in setting up test conditions
User Action: Puta ‘=’

ERR 30 looking for *;’

Warning: End each program section (e.g.,
DEFAULT or SSR) or statement witha *;

User Action: Put a ‘;’ to terminate this program
section

ERR 31 looking for ‘)
Warning: Mismatched parentheses

User Action: Put a ‘)’ to close the test condition or
data field

ERR 32 looking for a ‘)’ to close the condition
Warning:: Mismatched parentheses
User Action: Put a )’ to close the test condition

ERR 33 looking for a binary number

Warning: Specify a binary number for this section
or test condition by putting the base ‘#b’ after the
number )

User Action: Use the binary radix symbol ‘#b’

ERR 34 looking for a constant or number after
OE/OD

Warning: OE or OD must be followed by a
constant defined in the DEFINE section or a valid
number

User Action: Put a predefined name or number
after OE or OD

ERR 35 looking for TM

Warning: CMP must be followed by TM

User Action: Check format of CMP statement in
your file

ERR 36 looking for the keyword BEGIN
Warning: The BEGIN-END block follows the
DEFINE, DEFAULT_OUTPUT or
TEST_CONDITION section

User Action: Use the keyword BEGIN

B-2




ERR 37 looking for the keyword END

Warning: Unexpected end of file

User Action: Put an ‘END.’ to terminate the
program

ERR 38 looking for the keyword DEVICE
Warning: The first keyword must be the DEVICE
User Action: Start the source file with the keyword
DEVICE

ERR 39 missing input filename

Fatal: The option ‘-I' must be followed by an input
filename that already exists

User Action: Create an assembler source file

ERR 40 missing fusemap filename

Warning: The ‘-O’ option needs a valid DOS
filename after it to hold the fuse map file generated
by the Assembler

User Action: Specify an output file

ERR 41 need a binary number
Warning: Put a binary number here
User Action: Specify the base ‘#b’

ERR 42 need a binary humber ( compare CREG
with Oonly )

Warning: CREG must be compared with a binary
number only

User Action: Check format of test condition

ERR 43 need a label, predefined constant,
number or OE/ OD

Warning: Incorrect statement format

User Action: Begin a statement with a label,
constant, number or the output enable controls
OE orOD

ERR 44 need a number or constant to enable
Warning: A variable or constant must follow OE or
oD

User Action: Put a predefined name or number
after OE or OD

ERR 45 need an opcode here

Warning: Put one of the opcodes or commands
specified in Section 2.3.5

User Action: Check statement format

ERR 46 no default condition available

Warning: A default test condition was not
specified in TEST_CONDITION

User Action: Specify a test condition

ERR 47 no error filename given

Warning: The option -E’' needs a valid DOS
filename to contain the Assembler errors
generated

User Action: Specify a valid DOS filename

ERR 48 no such command available for this part
Warning: The statement combination formed does
not correspond to a valid opcode mnemonic in this
device

User Action: Check the available statement forms

ERR 49 no such condition

Warning: Use existing test conditions for this
device

User Action: Use one of the valid test conditions

ERR 50 not equal sign is ‘<>’

Warning: unknown operator

User Action: Use the ‘<>’ as the ‘not equal’ sign for
the CREG tests

ERR 51 Note : this input is used for diagnostics
Warning: This test condition is being used for SSR
diagnostics

User Action: Use a different test condition

ERR 52 OPCODE field limits exceeded

Warning: The opcode specified is not valid for this
device

User Action: Check the device database

ERR 53 OUTPUT field can accommodate 16 bits
max

Warning: Only 186-bit numbers can be used for
control outputs

User Action: Use only 16-bit numbers

ERR 54 OUTPUT field is 16 bits long only
Warning: Only 16-bit numbers can be used for
control outputs

User Action: Use only 16-bit numbers

ERR 55 OUTPUT field limits exceeded

Warning: Only 16-bit numbers can be used for
control outputs

User Action: Use only 16-bit numbers

ERR 56 OUTPUT limits exceeded

Warning: Only 16-bit numbers can be used for
control outputs

User Action: Use only 16-bit numbers

ERR 57 PROM not large enough to hold
microprogram

Warning: Too many statements have been
defined

User Action: Check and remove redundant states

ERR 58 put a binary number for test comparisons
Warning: Only binary numbers allowed
User Action: Use the binary radix ‘#b’

B-3




ERR 59 put a number or a defined name here
Warning: Syntax error

User Action: Put a valid number or predefined
name here

ERR 60 put a constant or a number here
Warning: Syntax error

User Action: Put a valid number or predefined
constant here

ERR 61 put a “.’ after END to terminate the
assembler file

Warning: Unexpected end of file

User Action: Include a ‘.’ after the keyword END

ERR 62 put a *:’ for labels or ‘,’ for output
Warning: The punctuation symbols ‘’ or *’ are
necessary to separate sections in each statement
User Action: Use " or*,’

ERR 63 put a *,” to separate the output section
Warning: The *,’ symbol is required here
User Action: Puta*,

ERR 64 put a‘;’ here

Warning: The *; symbol is necessary to separate
program sections or statements

User Action: Put a ;' as a statement separator

ERR 65 put a name here

Warning: A valid predefined constant is necessary
here

User Action: put a predefined name here

ERR 66 put a ‘TO’ here : loop TO PL

Warning: LOOP must be followed by the keyword
‘TOI

User Action: put the keyword “TO"

ERR 67 put an operand bétwgen logical operators

Warning: Logical expression is incorrect
User Action: Put an operand between “*’ and ‘+'

ERR 68 put an operand between nested
operands

Warning: Logical expression is incorrect
User Action: Put an operand after the (’

ERR 69 put an operand here

Warning: Syntax error

User Action: Match an operand with this logical
operator

ERR 70 put an operand or ‘)’ to complete the
expression
Warning:
operand
User Action: Check logical expression

Unmatched parenthesis or missing

ERR 71 put an operator between operands
Warning: Logical operators *’ and '+’ cannot follow
each other
User Action: Check the logical expression/
equation

ERR 72 put PL, TM, or SREG here

Warning: Incorrect statement syntax

User Action: Put GOTO PL, GOTO TM or GOTO
(SREG)

ERR 73 redefinition of label
Warning: Label has been redefined
User Action: Check label names

ERR 74 separate the output section witha *,’
Warning: Syntax error
User Action: Put the necessary *," here

ERR 75 Severe warning : redefinition of PROM
location *** See source line ***

Warning: PROM location specified more than
once

User Action: Check the flow of your microprogram;
some statements may have overlapped due to the
use of numbers as labels

ERR 76 SOFTWARE error ... see WRITE WORD
module

Warning: The program cannot form the PROM
word properly

User Action: None

ERR 77 specify the pipeline data field
Warning: Syntax error
User Action: Specify a data field in PL(data)

ERR 78 Statement *** not supported in ***
Warning: This statement combination does not
correspond to any device mnemonic

User Action: Check the list of available statements

ERR 79 this condition has not been defined
Warning: Undefined test condition

User Action: Pair this identifier with a test condition
in the DEFINE section

ERR 80 this is a keyword
Warning: Cannot use this keyword in this context
User Action: Use a different variable name

ERR 81 this is not a binary humber
Warning: Not a binary number
User Action: use '#b’

ERR 82 this is not a decimal humber
Warning: Not a decimal number
User Action: Use ‘d’

B-4




ERR 83 this is nhot a defined output value
Warning: Output value undefined
User Action: Check the DEFINE section

ERR 84 this is not a hexadecimal nhumber
Warning: Not a hexadecimal number
User Action: Use ‘#h’

ERR 85 this is not an octal number
Warning: Not an octal number
User Action: use ‘#0’

ERR 86 this is not a valid test condition
Warning: Undefined test condition
User Action: Check the DEFINE section

ERR 87 this name has not been previously
defined

Warning: Undefined constant

User Action: Define this name in the DEFINE
section

ERR 88 this name is too long, more than 29
characters

Warning: |dentifiers and constant can only be 29
characters long

User Action: limit the size of the variables

ERR 89 this variable name has not been defined
Warning: Undefined name

User Action: Define this name in the DEFINE
section

ERR 90 too many operators

Warning: The logical equation contains too many
operators
User Action:
expression

Check the control output logical

ERR 91 Unexpected end of file
Warning: Unexpected end of file
User Action: ‘END.’ was not encountered

ERR 92 Unexpected end of file (close comments
in line ***)

Warning: Unexpected end of file

User Action: Check to make sure that all the
comments have

matching

ERR 93 unmatched parenthesis or missing
operand

Warning: Unmatched parenthesis

User Action: Match each parenthesis with its pair

ERR 94 use ‘;’ to separate statements

Warning: No statement separator

User Action: Check the source file for ‘;' between
different statements

ERR 95 use ‘)’ to enclose SREG
Warning: Syntax error
User Action: Close SREG with ‘)’

ERR 96 use only predefined names or numbers
Warning: Undefined name

User Action: Check that the constant has been
defined in the DEFINE section or that a valid
number is being used

ERR 97 Warning : NOT has no effect on CREG
condition Refer to source line ***

Warning: Any test condition using CREG is not
affected by NOT

User Action: Modify the CREG test condition

B-5







APPENDIX C

QIC-02 AND SCSI INTERFACE SIGNALS AND TIMING DIAGRAMS

QIC-02 INTERFACE

QIC-02 is an industry standard which defines the
interface between a host system and Quarter Inch
Cartridge Tape Drives. Read/write commands,
status and, of course, data are transmitted over this
interface, as depicted in Figure C-1. The bus and
control signals between QIC-02 and host are all
standard TTL levels. Timing diagrams for this
interface are shown in Figures C-2 through C-4.
This interface handshake timing is duplicated for
the host side by the FPC and two AmPAL22V10s.

ACKNOWLEDGE (ACK) is used with Transfer
to transfer data across the interface.

READY (RDY) indicates that the tape drive can
accept a command. It is used to handshake the
command across the interface. In the write mode,
READY indicates that the drive's internal buffer is
empty and ready to receive new data. In the read
mode, READY indicates the drive buffer can now
be accessed by the host.

EXCEPTION (EXP) alerts the host that the
execution of a command has been terminated.
This may be a normal completion or an interrupt
due to a fault (hard errors, write protected, etc.).
The response by host must be READ STATUS.

DIRECTION (DIRC) indicates direction of data
flow. Signalis used to enable/disable the data bus

transceivers in the HOST.

ON-LINE signal is deasserted at the beginning of a
read (from tape) or write (to tape) operation.

RESET initializes the tape drive. The drive recali-
brates the heads to track zero.

REQUEST indicates that a command is on the
data bus.

TRANSFER is used with ACKNOWLEDGE to
handshake data over the bus, see timing diagram.

SCSI INTERFACE

Small Computer Systems Interface (SCSI) evolved
from the disk controller standard developed by
Shugart Associates (SASI) in the late 1970s. The
SCS! standard was developed by ANSI X3T9.2
subcommittee starting in 1982. ‘SCSI defines an 8-
bit parallel bi-directional data bus with parity, plus
nine control lines. SCSI protocol allows single or
multiple host computers (initiators) to share multi-
ple (expensive) peripherals (targets, i.e. hard disk,
floppy disks, etc.), as depicted in Figure C-5. Up to
eight Daisy Chained devices can reside on the
SCSI bus, with data transfer rates of 4 Mbytes/sec.
Synchronous and 1.5 Mbyte/sec. asynchronous.
The timing diagrams for the interface are shown in
Figures C-6 through C-8.

ACKNOWLEDGE

READY

EXCEPTION

DIRECTION

HOST
SYSTEM

K 8 BIT DATA BUS 3

ONLINE

QIC-02
TAPE
DRIVE

RESET

REQUEST

TRANSFER

06591A C-1

Figure C-1. QIC-02 Interface

C-1




The interface signals are:

/0 is driven by a target to control the direction of
data movement. True indicates input to the
initiator.

MSG is drive by a target to indicate "Message
Phase". When MSG is asserted, REQ (Request) is
also asserted by the target for transfer of data byte
indicating the end of the operational phase
("Message").

REQ asserted by target indicates that a data byte
is to be transferred on the data bus. Data byte is
transferred via  handshake  with  ACK
(Acknowledge).

ATN (Attention) is driven by an initiator to indicate

to target an "attention" condition.

An initiator uses SEL along with appropriate data
(address) bits (0-7) being asserted to select a
target. Select line is deasserted after the target
asserts BSY to acknowledge selection.

RST (Reset) is a pulse asserted by the initiator to
stop target's present operation and return same to
idle condition.

Data bus and control signals require open collector
drivers capable of sinking 48 mA each to support
SCSI mode of multiple initiators with muitiple
targets. SCSI provides for either single ended (6
meter Max. Cable Length) transmission or differ-
ential (if a distance up to 25 meters is required).

C-2




€0

ONLINE

X
REQUEST _% Ts

SEND
REMAINING
STATUS

pan

\

T21

BYTES
READY
T4
3
e — ™
EXCEPTION
T 764 T9 T13 T15
DATA BUS >< COMMAND )( ) 1ST STATUS BYTE >< BYTE
READ STATUS LAST STATUS
XFER
ACK
DIRC YB
RESET
ACTIVITY CRITICAL TIMING T11 -HOST SETS REQUEST
Ti2- gomngryu.sa RESETS READY
T1 — HOST COMMAND TO BUS NA T13-BUS DATA INVALI
T2 — HOST SETS REQUEST TI-T2>0 us }1 4- t"%STT SF;‘ES’EJSSBRY%%UEST
T3 — CONTROLLER RESETS EXCEPTION T3-T4>10 us IR Al TOBUS
T4 — CONTROLLER SETS READY 20<T2-T4<500 ps * -3 T1°
T5 — HOST RESETS REQUEST T4-T550 ps Ti7 sAME ﬁg T“
76 — BUS DATA INVALID T4-T6>0 s Hg - smE s n2
T7 - CONTROLLER RESETS READY 20<T5-T7<100 ps 13

T8 — CONTROLLER CHANGES BUS DIRECTION wA

T9 — 1STSTATUSBYTE TOB
T10— CONTROLLER SETS READY

A
T7-T10>20 p s

*NOTE: THIS MAY BE > 500 pts UNDER SOME CONDITIONS

T20-SAME AST14
T21-CONTROLLER CHANGES BUS DIRECTION
T22-CONTROLLER SETS R

X -DONTCARE

Figure C-2. QIC-02 Read Status Command Timing Diagram

NA
T11-T12<1 ps
T11-T13>0 us
TH-Ti4>20ps

N/

SAME AS T10
SAME AS T11
SAME AS T12
SAME AS T13
SAME AS T14
NA

T20-T2150 ps
T21-T2250 usN/A
T11-T12<1 ps

06591A C-2




¥-O

ONUNE T

CONTROLLER WILL AUTOMATICALLY WRITE FILE
MARK AND REWIND TO BOT (MECHANICAL DELAY)

T38 /" enp OF
WRITE DATA
READY FOR ; EADY\OR
2ND BLOCK NEXT BLOCK
T23

C e

EXCEPTION

DATA BUS

XFER

——

w0 {

512TH DATABYTE

1ST DATABYTE \

512TH BYTE
( :X LAST BLOCK
lj(m T3t T35
T32 T34
—— T3 T36

DAC

RESET

068591A C-3

ACTIVITY

T1 —HOST COMMAND TO BUS
T2 ~HOSTSETSO LlN

T3 —HOST SETS REQUI

T4 - CONTROLLER RESEI'S READY
15 — CONTROLLER SETS READY
T6 —HOST RESETS REQUEST

T7 — BUS DATA INVALID

T8 — CONTROLLER RESETS READY
T9 — CONTROLLER SETS READY
T10- HOST DATA TO BUS

T11- HOST SETS XFER

T12- CONTROLLER RESETS READY
T13— CONTROLLER SETS ACK
T14— HOST RESETS XFER

CRITICAL TIMING

20<T6-T8<100 ps
T8-T9>20 s

NA
T10-T11>-40 ns
T11-T12<1

us
0.5<T11-T13<100 ps
T13-T140 ps

ACTIVITY

T15- BUS DATA INVALID

T16- OONTROLLER RESEI’S ACK
T17- HOST DATA

T18- SAME AS TH

T19- SAMEAST13

T20 SAMEASTI4

6
T23- CONTROLLER SETS READY
T24- HOST DATATOBUS
T25- HOST SETS XFER
T26 - CONTROLLER RESETS READY
T27 - CONTROLLER SETS ACK

CRITICAL TIMING

T13-T150ps
0<1‘1 4-T16<3 s

SAME ASTI1
SAME AST13
SAME AS T14
SAME AS T15
SAME AS T16
T22-T23>100 us
NA

SAME AS T11
SAME AS T12
SAMEAS T13

ACTIVITY

T28 — HOST RESETS XFER

T29 - BUS DATA INVALID

T30 - CONTROLLER RESETS ACK
T31—-HOST DATA TO BUS
T32-HOST SETS XFER

T33 - CONTROLLER SETS ACK
T34 - HOST RESETS XFER

T35 - BUS DATA INVALID

736 - CONTROLLER RESETS ACK
37 - CONTROLLER SETS READY
T38 - HOST RESETS ONLINE

T39 - CONTROLLER RESETS READY
T40 - CONTROLLER SETS READY

*NOTE: THIS TIME MAY BE > 500 s
UNDER SOME CONDITIONS

Figure C-3. QIC-02 Write Data Command Timing Diagram

CRITICAL TIMING

SAMEAST14
SAMEAS T15
SAME AST16

SAME ASTI8
SAME AS T18
SAAME AST20

N/,

SAME AS T2
SAME AS T23
NA
NA
NA




$-0

ONLINE

Figure C-4. QIC-02 Read Data Command Timing Diagram

REQUEST
124 T28
TIO  Ti4
READY
EXCEPTION
1 ket | T11
DATA BUS READ COMMAND 1STBYTE
[ T16
XFER READ
1ST DATA 3
BLOCK Ti7
slrren
ACK T2 TS
DAC T
— N\ —
RESET
ACTIVITY CRITICAL TIMING ACTIVITY CRITICAL TIMING ACTIVITY CRITICAL TIMING
T1 - HOST COMMAND TO BUS NA T14- CONTROLLER RESETS READY  T13-T14<1ps T27 - HOST SETS XFER SAME AS T18
T2 - HOST SETS ONLINE NA T15~- CONTROLLER RESETS ACK 0.5<T13-T15<3 < is 728 ~CONTROLLER RESETS READY ~ SAME AS T14
T3 - HOST SETS REQUEST T2-T3>0 T16- BUS DATA INVALID T13-T16>0 s T29 — CONTROLLER RESETS ACK SAME AS T15
T4 - CONTROLLER RESETS READY  T3-Té<i s T17- HOST RESETS XFER Ti5-Ti7>0ps T30 - BUS DATA INVALID SAME AS T16
T5 - CONTROLLER SETS READY 20<T4-T5<500 ps T18- BUS DATA VALID T31 —HOST RESETS XFER SAME AS T17
T6 - HOST RESETS REQUEST T5-T650p8 NA 732 - LAST BYTE TOBUS NA
T7 - BUS DATA INVAL 5-T7>0ps T19- CONCTROLLER SETS ACK SAME AS T12 T33 - CONTROLLER SETS ACK SAME AS T12
T8 — CONTROLLER RESETS READY ~ 20<T6-T8<100 ps T20- HOST SETS XFER SAME AS T13 T34 - HOST STES XFER SAME AS T13
T9 - CONTROLLERCHANGESDIRC ~ N/A T21- CONTROLLER RESETS ACK SAME AS T15 T35 - CONTROLLER RESETS ACK SAME AS T15
T10- 1ST DATA BYTE TO BUS NA T22- BUS DATA INVALID SAME AS T16 T36 - BUS DATA INVALID EAS T16
T11~ CONTROLLER SETS READY NA T23- HOST RESETS XFER SAME AS T17 T37 - HOST RESETS XFER SAME AS T17
T12- CONTROLLER SETS ACK T11-T12>70 ns Toa- OONTROLLER ss‘rs READY N/A T38 ~ CONTROLLER SETS EXCEPTION N/A
T13- HOST SETS XFER T12-T12-0ps T25- 1ST BYTE 70 BUS N/A T39 - CHANGE BUS DIRECTION NA
T26- CONTROLLER SETS ACK SAME AS T12
*NOTE: THIS TIME MAY BE > 500 s
UNDER SOME CONDITIONS
06591A C-4

TAPE
MOTION
STOPS

HOST
SENDS

READ
STATUS
COMMAN

D




HOST
COMPUTER | ,HOST CONTROLLER

SINGLE INITIATOR, SINGLE TARGET

HOST
COMPUTER ADAPTER SCSIBUS CONTROLLER

CONTROLLER
S—

SINGLE INITIATOR, MULTI TARGET

HOST
COMPUTER ADAPTER SCSIBUS CONTROLLER

compuTer | ,HOST

ADAPTER CONTROLLER

CONTROLLER

CONTROLLER

Lll@iij

HOST
COMPUTER ADAPTER CONTROLLER

sisislsl gl ¢

MUILTI INITIATOR, MULTI TARGET

06591A C-5

Figure C-5. Possible Bus Configurations

C-6




) LOGIC ONE

MSG LOGIC ONE

o\ . /

mo O\ / \, /T
oenre X XBm XX X XBRX X

06591A C-6
C-6 SCSI Command Phase Timing
MSG LOGIC ONE
cid \_
SN\
s T\
ACK
mom X Xam X X, X XZEX X
06591A C-7 -
C-7 SCSI Data Read (from disk) Timing
10 LOGIC ONE
MsG LOGIC ONE
cb /
-FTE‘—(: \ l \ 31 }
e X XamX X, X XBEX X
06591A C-8 N

C-8 SCSI Data Write (to disk) Timing

Cc-7




APPENDIX D
REFERENCES

® N o g

10.
11.

Advanced Micro Devices Bipolar Microprocessor Logic and Interface Data Book, 1985.
Advanced Micro Devices Programmable Array Logic Handbook,1983.

Advanced Micro Devices Bus Interface Product Specifications, October 1985.

Advanced Micro Devices Am29PL 141 Data Sheet, December 1985.

Advanced Micro Devices Am29PL141 Assembler, 1985.

Advanced Micro Devices Am29PL 141 User's Manual, 1985.

Advanced Micro Devices 80188 Data Sheet, October 1985.

Small Computer Systems Interface (SCSI) Specification as defined by ANSI X3T9.2 Committee.
IQuarter Inch Cartridge (Tape Interface) (QIC-02) Specification.

PDP-11 Bus Handbook, Digital Equipment Corporation, 1979.

Microsystems Handbook, Digital Equipment Corporation, 1985.

D-1




APPENDIX E
GLOSSARY OF ABBREVIATIONS/MNEMONICS

141SEL
141TPREQ

141XFER

ACK
ARDY
ARESET
ATN

BSYIN

c/D

cc
CCMUX
CMDXFER
CREG C

DACK
DATN
DCLK
DDACK

DDREQ
DIRC
DMA
DMAXFER
DMSG

DREQ
DRST
DSP
DTACK

DTREQ

EXP
FPC
e

INT1
ISR

Am29PL141 Selection (SCSI)
Am29PL141 Tape Request
(QIC-02) Signal

Am29PL141 Transfer
(QIC-02) Signal

Acknowledge
Asynchronous Ready Line
Asynchronous Reset
Attention

Busy Input (SCS! to FPC)

Control or Data, SCSI Interface Signal
Condition Code (Input to FPC)
Condition Code MUX to Am29PL141
Command Transfer Routine

Register in Am239PL141

(Count Register)

Disk Acknowledge (SCSI)

Disk Attention (SCSI)

Diagnostics Clock

Disk (SCSIl) DMA Acknowledge

(to Am29PL141 from 80188)

Disk DMA Request

Direction (QIC-02)

Direct Memory Access

DMA Transfer Routine

Disk (SCS!) Message = MSG C/D (to
Int. Status Buffer from Am2SPL141)
Disk (Data Transfer) Request

(to Am2SPL141 from SCSI)

Disk Reset (SCSI)

Digital Signa! Processor

DMA Tape Acknowledge

(to Am29PL141 from 80188)

DMA Tape Request

(to 80188 from Addressable Latch)

Exception, QIC-02 Interface Signal
Fuse Programmable Controller
Input or Output

Interrupt Number One
Interrupt Status Register

JEDEC

LADDR
LAN
LMCS
LPC

MCSM
MSG

MSI
NPR

PCS
PL
POL

RDXFER
RDY
RST

SCSi
SDI
SDO
Sic-02
SSR

TACK
TEST41
TOUT
TPONL
TPRST
TRDY
TRINT
UMCS

VCMD

WRXFER

Joint Electronic Device Engineering
Council ,

Addressable Latch

Local Area Network

Lower Memory Chip Select
Linear Predictive Coding

Mid-range Chip Select
Message SCSI Interface Signal
(to Am29PL141 from SCSI)
Medium Scale Integration

Non-processor Request

Peripheral Chip Select
Pipeline
Polarity

Read Transfer Routine
Ready
Reset

Small Computer System Interface
Serial Data In

Serial Data Out

Quarter-inch Tape Cartridge Interface
Serial Shadow Register

Tape Acknowledge

(to Am29PL141 from QIC-02)
Am29PL141 Test Vector Generator
Program

Time Out

Tape On Line (QIC-02)

Tape Reset (QIC-02)

Tape Ready (QIC-02)

Tape Ready Interrupt (Addressable
Latch to Condition Code MUX)

Upper memory Chip Select

Valid Command (to Am29PL141
from 80188)

Wirite Transfer Routine




APPENDIX F
Am29PL141 Data Sheet

For your reference, the first five pages of the 20PL141 data sheet are reprinted in this section. A
complete copy of this 31 page document is available from the AMD sales offices listed on the last page.
Copies are also available from authorized representatives.




Am29PL141

Fuse Programmable Controller (FPC)

DISTINCTIVE CHARACTERISTICS

® Implements complex fuse programmable state ma-
chines

® 7 conditional inputs, 16 outputs

64 words of 32-bit-wide microprogram memory

® Serial Shadow Register (SSR M) diagnostics on chip
(programmable option)

® 29 high-level microinstructions
- Conditional branching
- Conditional looping
- Conditional subroutine call
- Multiway branch
® 20 MHz clock rate, 28-pin DIP

GENERAL

The Am29PL141 is a single-chip Fuse Programmable
Controller (FPC) which allows implementation of complex
state machines and controllers by programming the appro-
priate sequence of microinstructions. A repertoire of jumps,
loops, and subroutine calls, which can be conditionally
executed based on the test inputs, provides the designer
with powerful control flow primitives.

The Am29PL141 FPC also allows distribution of intelligent
control throughout the system. it off-loads the central
controller by distributing FPCs as the control for various

DESCRIPTION

self-contained functional units, such as register file/ALU,
170, interrupt, diagnostic, and bus control units.

A microprogram address sequencer is the heart of the FPC.
It provides the microprogram address to an internal 64-
word by 32-bit PROM. The fuse programming algorithm is
almost identical to that used for AMD's Programmable
Array Logic family.

As an option, the Am29PL141 may be programmed to have
on chip SSR diagnostics capability. Microinstructions can
be serially shifted in, executed, and the results shifted out
to facilitate system diagnostics.

BLOCK DIAGRAM
‘CONDITION
TESTS
SO
MCROPROGRAM =%
ADDRESS SEQUENCER
MCROPROGRAM
MEMORY
2| seraL saow reaisTER
1 F———
our
' = wooe
PIPELINE REGISTER __I-—oeu(
[—— ax
L Js| s
P(15:0]
BDR02340

RELATED PRODUCTS

Part No.

Description

Am2914

Vectored Priority Interrupt Controller

Am29100

Controller Family Products

SSR is a trademark of Advanced Micro Devices, inc.

Bublication # Rev. Amendment
04179 70

E
Issue Date: October 1986

$22IA2( OJDIW P2OURAPY



CONNECTION DIAGRAMS

Top View

s00/786 [ +* ~ ] vee

plo)[] 2 7 [Jex

LOfm K 2 [TJcoysol

Loim 25 7] 1{0)

(o[ 211

L O 2z

0] . g 2[]7s)
sope/ple) [] 8 ] v(q) MOCE/P(8]
ocux/p[7] ] 0- 20 [ 7[s)

pls] [0 19 [ meser pewrm

plo)[In 18 [ p[15)

p[10} 12 R4l

P[1) n 113 ;} p[13)

GND " sE]p12)

CDR04480

Note: Pin 1 is marked for orientation.

CD009110

LOGIC SYMBOLS

T[0] P{O] }——a —{ T[0] P0) e
p— R o — P e
—_— T[2] Pl2] o —{ T[2) Pl2) }—
—] T[S} P[3] —{ T[3] P[3} =
p— g | Pl4) {—+o —{ T(4] Pl4] b—s
—] TS5} Pl5) }u — T[5) P[5] b
-—s{ CC P[6] f ———»{ CC/SDI
PN }—
plg) p—s- Pe) —
—| RESET PF;‘IS} — ———»{ RESET Pl9] —
P P[10) —
—— ok Pl12) | o P[] f—
() [ I P12} F—
! P4l L P[13] |—
P[15) P[14) [—=
P[15) [—
——{ DCLK
2ERD ~——{ MODE
SDO t—
LS002131 LS002140
Normal Configuration SSR™ Diagnostics Configuration

METALLIZATION AND PAD LAYOUT

Phiz)
N
prip
ool

SDO/ZERD

Die Size: 0.211" x 0.202"
Gate Count: 600 Equivalent Gates and 2K of PROM




ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of: A. Device Number

B. Speed Option (if applicable)

C. Package Type

D. Temperature Range

E. Optional Processing

AM29PL141 _ D c B

L

OPTIONAL PROCESSING
Blank = Standard processing
B = Burn-in

D. TEMPERATURE RANGE
C = Commercial (0 to +70°C)

C. PACKAGE TYPE
D = 28-Pin Ceramic DIP (CD 028)
L = 28-Pin Ceramic Leadlsss Chip Carrier (CL 028)
X = Dice

B. SPEED OPTION
Not applicable

A. DEVICE NUMBER/DESCRIPTION
Am29PL141
Fuse Programmable Controller (FPC)

Valid Combinations

Valid Combinations list cnfigurations planned to be supported
Valld Combinations in volume for this device. Consult the local AMD sales office
AM29PL141 Eg )!()gs. to confirm availability of specific valid combinations, to check

on newly released valid combinations, and to obtain additional
data on AMD's standard military grade products.




ORDERING INFORMATION
APL and CPL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL
(Approved Products List) products are fully compliant with MIL-STD-883C requirements. CPL (Controlled Products List)
products are processed in accordance with MIL-STD-883C, but are inherently non-compliant because of package,
solderability, or surface treatment exceptions to those specifications. The order number (Valid Combination) is formed
by a combination of:

APL Products: A. Device Number CPL Products: A.Device Number
B. Speed Option (if applicable) B. Speed Option (if applicable)
C. Device Class C. Package Type
D. Package Type ‘ D. Temperature Range
E. Lead Finish E. CPL Status

APL Products

L—E. LEAD FINISH

A = Hot Solder DIP

AM29PL141 —- i

o
>

D. PACKAGE TYPE (per 09-000)
X = 28-Pin (Ceramic DIP (CD 028)

C. DEVICE CLASS
/B=Class B

B. SPEED OPTION
Not applicable

A. DEVICE NUMBER/DESCRIPTION (include revision letter)
Am29PL141
Fuse Programmable Controller (FPC)

CPL Products

AM20PL141 - LL M .|¢:
E. CPL STATUS

C = CPL Certified

D. TEMPERATURE RANGE
M = Military (-55 to +125°C)

C. PACKAGE TYPE(per Prod. Nomenclature/16-038)
/L =28-Pin Ceramic Leadless Chip Carrier (CL 028)

B. SPEED OPTION
Not applicable

A. DEVICE NUMBER/DESCRIPTION (include revision letter)
Am29PL141
Fuse programmable Controller (FPC)

Valid Combinations

Valid Combinations Valid Combinations list configurations planned to be
APL | Am29PL141 /BXA supported in volume for this device. Consult the local AMD
CPL_ | Am2oPL141 7LMC sales office to confirm availability of specific valid
combinations or to check for newly released valid

combinations.

Group A Tests

Group A tests consists of Subgroups:
1,2, 3,7,8,9, 10, 11




PIN DESCRIPTION

CC[SDI] Condition Code ((TEST) Input)
When the TEST (P[24:22]) field of the executing
microinstruction is set to 6 (binary 110), CC is selected to be
the conditional input. (Note: In SSR diagnostic configuration,
CC is also the Serial Data Input SDL.)

CLK Ciock (Input)
The rising edge clocks the microprogram counter, count
register, subroutine register, pipeline register, and EQ flag.

P[15:8] (Outputs)
Upper eight, general-purpose microprogram control outputs.
They are enabled by the OE signal from the microprogram
pipeline register. When OE is HIGH, P[15:8] are enabled,
and when LOW, P[15:8] are three-stated.

P[7:0] [DLCK, MODE] (Outputs)
Lower
Lower eight, general-purpose microprogram control outputs.
They are permanently enabled. (Note: in the SSR diagnostic
configuration, P[7] becomes the diagnostic clock input
DCLK and P[6] becomes the diagnostic control input
MODE.)

RESET

Synchronous reset input. When it is low, the output of the
PC MUX is forced to the uppermost microprogram address
(63). On the next rising clock edge, this address (63) is
loaded into the microprogram counter, the microinstruction
at location 63 is loaded into the pipeline register and the EQ
flag is cleared. The CREG and SREG values are
indeterminate on reset.

T[5:0]
Test inputs. In conditional microinstructions, the inputs can
be used as individual condition codes selected by the TEST
field in the pipeline register. The T[5:0] inputs can also be
used as a branch address when performing a microprogram
branch, or as a count value.

ZERO [SDO]
Zero output. A Low state indicates that the CREG value is
zero. (Note: In the SSR diagnostic configuration, ZERO
becomes the Serial Data output SDO. This change is only
on the output pin; internally, the zero detect functions is
unchanged.)




ADVANCED MICRO DEVICES
U.S. SALES OFFICES

ALABAMA ... ... (205) 882-9122 MASSACHUSETTS
ARIZONA, . MINNESOTA .....
TOMPE o oeetetneenenrenrnencanenrnns 602) 242-4400 MISSOURI .......
TUCSON &+ vv et eeeienennreneensnnnss 602) 792-1200 NEW JERSEY ....
CALIFORNIA, NEW YORK,
ElSegundo ..........ccveiviiiininnnn 213) 640-3210 Liverpool .......
Newport Beach ...............ocoveei 714) 752-6262 Poughkeepsie ..
SanDiego ....iiiiiiiiiiiiiiiiiiee 619) 560-7030 Woodbury ......
Sunnyvale ...o.eeiiii e 408) 720-8811 NORTH CAROLINA
Woodand Hills .................oouiut 818) 992-4155 OREGON ........
COLORADO ....vvvviiriiinninienennnns 303) 741-2300 OHIO,
CONNECTICUT ...... Cererrsaeraesenens 203) 264-7800 Columbus ... ...
FLORIDA, PENNSYLVANIA,
Clearwater ...........cccovvveinninnnn. 813§ 530-9971 Allentown ......
Ft Lauderdale ........................ 305) 484-8600 Willow Grove ...
Melbourne ...........o.vviivinnnn .. (305) 729-0496 TEXAS,
orando ......cooviiiiiiiiiiien .. (305) 859-0831 Austin .........
GEORGIA ........cicevvniinnnnts .. (404) 449-7920 Dallas ..

273-3970
938-0001
275-4415
...................... 299-0002

...................... 315) 457-5400
...................... 914) 471-8180
e, 516) 364-8020

..................... 919) 847-8471
...................... 503) 245-0080

...................... (614) 891-6455

...................... 215) 398-8006
215) 657-3101

. ... (512) 346-7830
. (214) 934-9099

ILLINOIS ...oviiiiiiiiiinen .. (312) 773-4422 Houston ..... 713) 785-9001
INDIANA . .. (317) 244-7207 WASHINGTON . (206) 455-3600
KANSAS ... .. (913) 451-3115 WISCONSIN ... oiiiiiiiiiiiii i 414) 782-7748
MARYLAND ...vviiiiieeiiinnnnesenenens 301) 796-9310
INTERNATIONAL SALES OFFICES
BELGIUM,
Bruxelles ..........coiviiininns TEL: . (02) 771 99 93 HONG KONG,
: FAX: .. (02) 762-3716 Kowloon ................ TEL: oooeninat, -695377
TLX: covnenenn 61028  FAX:....oeeee. 1234276
CANADA, Ontario, T e 042
Kanata ..........ccoviieiiennn, TEL: . (613) 592-0090 ITALY, Milano .............. TEL: oooovnn... §02; 3390541
Willowdale ..................... TEL: . (416) 224-5193 FAX:.......... 02) 3498000
FAX: . (416) 224-0056 TLX: oviivnininnn 315286
FRANCE, JAPAN, Tokyo ............. TEL: ......... (03) 345 8241
Pars «.vvviiiiieieinerieraneans TEL: (01) 4560 00 55 FAX: ooiivninn.s
FAX: (01) 46 86 21 85 TLX: ..... J24064AMDTKOJ
TLX: ....... 53F LATIN AMERICA,
GERMANY, Ft. Lauderdale ........... TEL: ........ 305; 484-8600
Hannoverarea ................. TEL: 05143) 50 55 FAX: ........ 305) 485-9736
FAX: 05143) 55 53 TLX: .. 5109554261 AMDFTL
TLX: ..., 925287 SWEDEN, Stockholm ...... TEL: ........ 08) 733 03 50
Minchen ..........covveenninns TEL: (089) 41 14-0 FAX: ........ 08) 733 22 85
FAX: ... (089)406490 TXi .. 11602
TLX: o..es 523883 UNITED KINGDOM,
Stuttgart .............0ciiiiinnn TEL: Manchester area .. ....... TEL: ........ }0925 828008
(0711) 62 33 77 FAX ......... 0925 827693

FAX: .. (0711) 625187
TLX: ...l 721882 London area ...

................. 04862 221 21
........ 04862) 22179
............... 859103

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and
other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company

assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA
TEL: (408) 732-2400 ® TWX: 910-339-9280 @ TELEX: 34-6306 ® TOLL FREE: (800) 5388450

© 1986 Advanced Micro Devices, Inc.
Printed in U.S.A. CBM-B-10M-7/86-1







Order # 06591A

L

ADVANCED
MICRO

DEVICES, INC.

901 Thompson Place
RO. Box 3453
Sunnyvale,
California 94088
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL FREE

(800) 538-8450

IH-MU-5M-11/86-0



