s’

yoog ejeq
8861

joog ejeq vod

L

Advanced
Micro
Devices

Pn

Advanced
Micro
Devices

PGA Databook

Introduction n

Since the original printing of this material, Monolithic Memories has merged with Advanced Micro Devices.
References in this handbook to either company now pertain to the new combined entity,
which markets all products under the AMD name.

11

This book contains information about AMD's Programmable Gate Arrays, an exciting
extension of our commitment to the field of programmable logic. The leader in
programmable logic products, AMD continues to provide you with the quality, reliability
and innovation you demand. As with every product we sell, AMD's Programmable Gate
Arrays are backed by an extensive force of knowledgeable sales personnel and fully-
trained field applications engineers. After reviewing the information in this book, you
will see how PGAs can fit into your applications. Please contact your local AMD sales
office, authorized representative or franchised distributor so that we can together, solve
your technical problems with AMD's Programmable Gate Arrays.

Michael J. Callahan
Senior Vice President
Programmable Products Group

il

Table of Contents

Introduction
Table of Contents ...

Section 2 2000 Series LCA Design Handbook Table of Contents ... 2-1
See Section 2

Section 3 Applications
Configuring the LCA Device ..
M2018 Provides Decoding for Six-Digi
LCA Counter Applications
Time Division Multiplexing with LCA Device
Dual 32-bit Serial CRC Error Detection in a LCA Device
LCA Device Implements an 8-bit Format Converter in a PBX Switching Module
Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcender
Building an ESDI Translator Using the M2064 Logic Cell Arraycccoccovineuennnn.
Using the Logic Cell™ Array to Build a Pseudo-Random-Number Generator
64K Deep FIFO-Dynamic RAM Controller is Implemented in the M2018 LCA Device
Configuring the LCA™ from the PC Busccccovivinvienniniinnne

Section 4 Product INfOrMAation ..ottt sttt 4-1
Logic Cell™ Array M2064/M2018ccccoevenrrineirniencenencnenns s 4-3
3000 Series Family of Programmable Gate Arrays ... 4-43
LCA-MDS21

XACT Design Editor System OO PP 4-116
LCA-MDS22

P-SILOS SIMUIALOTcoeverreereirieeereienreserereieiesmssssses i ssssssssssss e s sansas s s ssasssas 4-119
LCA-MDS23

Automatic Design Implementation4-120
LCA-MDS24, LCA-MDS26, LCA-MDS27

XACTOR In-Circuit EMUIAtOrccooiiviniiiiinieceeteecnin ettt 4-121
LCA-MDS31/LCA-MDS33/LCA-MDS34/LCA-MDS35

Schematic Design Entry Interface for Futurenet, Daisy, Mentor, OrCADccccvemneeniiiininins 4-122
LCA-MDS151/LCA-MDS152

PGA Development System/PGA Design Entry Systemccccevurneieneieenececnciennnns 4-124
LCA-MDS135

OrCAD/SDT Ill PGA Design Entry System and Interfacecooeeiiniinnniininiee 4-134
LCA-MEKO1

Logic Cell Array Evaluation Kit ..ot st 4-141
Section 5 Sales Office Listingcccccoeviiniinii e .5-1

14

e

Advanced
Micro
Devices

2000 Series LCA Design Handbook E

2-1

THE 2000 SERIES LoGic CELL ARRAY

DESIGN HANDBOOK

BY

AMD, ADVANCED MICRO DEVICES

e

© 1988, Advanced Micro Devices, Inc. TEL.: 408-732-2400

901 Thompson Place TWX: 910339-9280

P.O. Box 3453 TELEX: 34-6306
Sunnyvale, CA 94088 TOLL FREE: 800-538-8450

APPLICATIONS HOTLINE: 800-222-9323

2000 SERIES LCA DESIGN HANDBOOK

June 1988

- I

Portions of this document have been reprinted with permission from XILINX; Inc.

Advanced Micro Devices reserves the right to make changes in specifications at any time and without
notice. The information furnished by Advanced Micro Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Advanced Micro Devices for its use, nor for any infringements
of patents or other rights of third parties resulting from its use. No license is granted under any patents
or patent rights of Advanced Micro Devices.

XACT™, XACTOR™, Logic Cell™, and LCA™ are trademarks of XILINX, Inc.
P-SILOS™ is a trademark of SimuCad™ Corporation.

2000 SERIES LCA DESIGN HANDBOOK

June 1988

o=

2000 SERIES LCA DESIGN HANDBOOK

PREFACE
ACKNOWLEDGEMENTS
LCA PRODUCT APPLICATION AND COMPONENTS

CHAPTER 1: INTRODUCTION TO THE LCA
CHAPTER 2: THE LCA DESIGN CYCLE
CHAPTER 3: CONFIGURABLE LOGIC BLOCKS
CHAPTER 4: INPUT/OUTPUT BLOCKS
CHAPTER 5: PLACEMENT AND ROUTING
CHAPTER 6: CONFIGURING THE LCA

LCA DATA AND SPECIFICATIONS

CHAPTER 7: METASTABILITY OF LCA FLIP-FLOPS
CHAPTER 8: TESTING AND DATA INTEGRITY
CHAPTER 9: NONHERMETIC PACKAGE RELIABILITY

LCA REFERENCES

GLOSSARY
INDEX

2000 SERIES LCA DESIGN HANDBOOK

June 1988

2000 SERIES LCA DESIGN HANDBOOK

l‘L _ June 1988

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION TO THE LCA DEVICEccciiiiiiiiiiinicaianen 1-1
1.1 OVERVIEW. ..ot ettt e e et ee e e et e e e e e e are e e e s e eeaans 1-2
1.1.1 SSIMSIDEVICES ..ot e e et e e e eeeeean 1-4
1.1.2 PROGRAMMABLE LOGIC DEVICES.........ccoiieeeeeeeeeeecie e 1-4
L IO T] [01 T PSPPSR 1-5
1.1.4 LCA DEVICESttt ettt e e e e e e eaaean 1-5
1.2 ARCHITECTURE COMPARISONSouiiiiiieiiicee ettt e e e e e e 1-6
1.2.1 PROGRAMMABLE LOGIC DEVICES......ccoi e, 1-6
1.2.2 GATE ARRAY S ...t ae e e e e e e e e e e ean 1-6
1.2.3 LCA DEVICES
1.3 LCA BENEFITS ..o et e e e e e e e e e ear e eesn e e rannas
1.3.1 PROCESS ...ttt e e e e e aaas
LI T~ @ U 7 Y IR i I U PRU
I T T o 1 7Y = 1 2N
1.4 LCA DEVELOPMENT SOFTWAREcootiiiiiiiiieeiecee et aanns 1-11
CHAPTER 2: THE LCA DESIGN CYCLE......cciiiiiiiiiiiiiiiciiiiiincaninsinsnssnes 2-1
2.1 OVERVIEW. ...ttt et e e e e e e e e et e e e e e e e e e et e e aeeennnanas 2-2
2.1.1 LCA DESIGN SYSTEM.......iiiieiiieieeee e eees e et s earnrae e e e e s e eaeaaaaeeens 2-2
2.1.2 LCA SOFTWARE AND DESIGN CYCLEccocviiiiiiiie e 2-5
2.2 DESIGN ENTRY AND CONVERSION........coottiiiiieiiiieeeeeiee et eee e e e eeeaaeens 2-8
2.3 LOGIC VERIFICATION ..ottt eeeeetee e ettt e e et et eae e e s e ee s e e et s e e eaeeanan 2-10
2.4 AUTOMATIC PARTITIONING, AND PLACEMENT AND ROUTING...........cueevmmeemmrnnnnn. 2-12
2.5 DESIGN OPTIMIZATION.ooeiitieit ettt s e e e e e e e e e s ee et aeeseeseaeeereesesaanaeaaaes 2-14
2.5.1 ROUTING OPTIMIZATIONccoiiiiiiiiiie ettt e e e e ea e e e e 2-14
2.5.2 DELAY CALCULATION. ...uui et eissers e e e ee e e e e e e e e e e e e asenaeenaeeaaaaees 2-15
2.6 TIMING VERIFICATION......ccooi ittt s e e e e e e e e e e e e b s 2-16
2.7 IN-CIRCUIT DESIGN VERIFICATION.coiiiii ettt eeeee e e eeeees 2-18
2.7.1 DOWNLOAD CABLE.......coe e 2-18
2.7.2 PROMPROGRAMMINGcootiiiiiiier e e e e eaaes 2-19
P T ¢\ O 1 O = S PRSP 2-20
2000 SERIES LCA DESIGN HANDBOOK
June 1988 v

CHAPTER 3: CONFIGURABLE LOGIC BLOCKS.........ociiviiniinnninnienninnans 3-1

3.1 OVERVIEW......oiiiiii ittt st e 3-2
3.2 LCASTRUCTURE ...ttt et P
3.2.1 CLBS . s 3-4
3.2.2 THE INPUT/OUTPUT BLOCK........coiiiriiiniiiniticie e 3-9

3.3 LOGIC DESIGNWITHCLBScoooiiiiiiiiiniiincin it 3-11
3.3.1 CREATE BASIC LOGIC......cccertitiirtiicinteitetee e 3-11
3.3.2 COMBINE OR SHARE CLBS..........coooiie 3-15

3.4 CLB TIMING......ooiiiicieiicreet bbb s 3-21
3.4.1 TIMING FACTORS.c.cooctiiiiriineii e s 3-21

3.4.2 LATCHES, FLIP-FLOPS, AND REGISTERS..........cccoeoviiniiieinecieie 3-23
3.4.3 COUNTERS.......cooiiiirircirct et 3-25
3.4.4 SYNCHRONOUS VERSUS........cccoviiiiiiiriineecnrc e 3-30

3.4.5 ASYNCHRONOUS INPUTS.......cccctiiimiitincnn i 3-35
3.4.6 CLOCK SKEWooiiiitiiiiieteinrieicrcce ettt 3-37

3.5 LOGIC DESIGN WITH XACT MACROCELLS..........ccooeiimeiiiriceeeaeas 3-38
3.5.1 MACRO OVERVIEW........ccoiniiiiiiniiec e e 3-38
3.5.2 MACRO CREATION.........ciiiii s 3-39
3.5.3 SAMPLE MACROSoooiiiiiiii e 3-40
CHAPTER 4: INPUT/OUTPUT BLOCKS........ccciiiiiiininnn i 4-1
4.1 O BLOCK OVERVIEWcooiiiiiiiriiiieen et 4-2

4.1.1 10B INTRODUCTION......cceiiiiiiiiiiiicine ettt 4-2

4.1.2 REGISTERED INPUTS AND METASTABILITY......ccocoimiiiitcecee, ..4-5

4.2 LCA I/0 STRUCTURES........ccooiirririiictcncstcr e 4-7
4.2.1 STANDARD I/O STRUCTURES.........c.coiririririiecceeien e 4-8
4.2.2 OPEN-COLLECTOR STRUCTURES.........cocvimriiiriiiniicree e 4-11
4.2.3 SCHMITT-TRIGGER STRUCTURES.........c.ccoiiiieees 4-18
4.2.4 GENERAL PURPOSE OSCILLATOR STRUCTURES............cccoevivviiniienre 4-25
4.2.5 ON-CHIP CRYSTAL OSCILLATOR STRUCTURES.............cccoomnirrinrinnnne 4-28
4.2.6 REGISTERS AND COUNTERS.........cccoiiiiciciiiiiie e 4-30
4.2.7 INCREASED DRIVE-CURRENT STRUCTURES.ccccovviminiiiiieiniee 4-47
CHAPTER 5: PLACEMENT AND ROUTING........ccoiiiiiiiiaiiiiiatniennaeiannenns 5-1
5.1 OVERVIEW......oiiiii e SOV 5-2
5.2 INTERCONNECTION RESOURCES........ccccocviiiiiiiniiin i 5-3
5.2.1 GENERAL-PURPOSE INTERCONNECTION........cccccooumvmirrmreniiinitniennn 5-3
5.2.2 DIRECT CONNECTIONS.........coeiiiiiniiecei e 5-6
5.2.3 LONGLINES ..ottt e 5-10
5.2.4 CLOCK BUFFERS........ccccciiiiinn s 5-16
2000 SERIES LCA DESIGN HANDBOOK
i June 1988

e

5.3 PLACEMENT ..ottt ettt ettt e et et e e et eseen et ee e eeee et eeeeeseeserteseeeeeestseeeneeeanennes
5.3.1 PARTITION THE SYSTEM DESIGN.......oueieeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeeeens
5.3.2 ANALYZE THE DATA FLOW.....oiiiiiiieeieeeeeeee et eeee e eeeen e eseeenne e
5.3.3 LOGIC BLOCK PLACEMENTovireeeeee ettt eee et eeeeeee e eeeeee e e eneneees
5.3.4 1/O BLOCK PLACEMENT ...ttt eeeeeeee et eeeeteeeee et e e eneeeseseeeeseeneeeneens
5.3.5 EXAMPLES ...ttt ettt ettt e e es e et eeeeeeeaeen e e eenneen et aneans
5.3.6 MODIFICATION GUIDELINEScovieeeeieeeieeeeeeeeeeeeeeeeeseee e s st e e e

5.4 ROUTING......oouieeieeteeeeeeee e et et e e e e e et e e s e eueeeeae e eeseseeeeeseeeeeeeeaesaasmseeeneseeneens
5.4.1 MANUAL EDITING ...ocveieeeee oottt eeee et eeee et ee e e eeee e eeseaeeeesemnee e enesaeens
5.4.2 MANUAL PRE-ROUTINGovteeeeeeeee et eeeeeeeeeeeeee e e eeeeeeeeseeeeeeesesneeeenneas
5.4.3 ROUTING GUIDELINES AND FUNCTIONS

5.5 TIMING ANALYSIS, DELAY CALCULATORccucueeeeieeeeeeeeeeeeee e eeeeeeeeeeree e
5.5.1 CLBAND IOB DELAYSoeiieeeeeeeeeeeeeeeeeeeeeeeeseseeeeeeeareseeeeeesseneeseeanestene
5.5.2 INTERCONNECTION DELAYS .. .cmiiuieteeeeeeeeeeseeeeeeeseseseeeeessasseeeeneees
5.5.3 CLOCKED SYSTEM DELAYSooiuieiiieieeeeeeeeeeeeeeeeereeeevsenesees e e eaeenene
5.5.4 SPEED GRADE DELAYS......ccoccovviveevennn. ettt ettt enns
5.5.5 SIGNAL DEGRADATIONooouiireeieeeeeeeeeeeeeeeeeeeeeeeeeseereseeeeeesaneareesenes

5.6 SUMMARY ...ooeeeieieee et et e et et e e et et eeeeeaeeee et eeee st et eaeeseeseeeeesesseseeeeeeaeseeseseeneeneenenes

CHAPTER 6: CONFIGURING THE LCA DEVICE

6.1 LCA CONFIGURATION OVERVIEW......ccoooiiitiiciiici e
6.1.1 CONFIGURATION BIT STREAMcoiiiiiiiiiiceceee e
6.1.2 CONFIGURATION PROCESScceiiiiiiiiiintie e

6.2 CONFIGURATION MODES........ccooiiiticcir ittt
6.2.1 CONSIDERATIONS.......ooiiiii e s
6.2.2 CONFIGURATION PIN FUNCTIONS..........cocciniiiiiii et
6.2.3 SLAVE MODE........cociiiiiiiiiie e
6.2.4 PERIPHERAL MODE........cccooiiiiiiiiiieecn et s
6.2.5 MASTER MODES........coo ot s

6.3 CONFIGURE MULTIPLE LCA DEVICES........cccooiiiiiiiicriiccnicive
6.3.1 DAISY-CHAIN CONFIGURATIONccoiiiiiiiiiiiii i
6.3.2 PARALLEL CONFIGURATIONcocciiiiiiiiiiciceie et

6.4 ASSIGNING MULTIPLE-FUNCTIONoooiiiiiieiiiieite et
6.4.1 POTENTIAL 1/O CONFLICTS.....ccociiiriiiicrcic s
6.4.2 UNUSED OPINSocoiiiiiiiiiiiiicr e

6.5 CONFIGURATION DATAot e e a e b b e '
6.5.1 CONFIGURATION FILE FORMATcooiiiiiiiieree e
6.5.2 A SAMPLE EQUIVALENT CONFIGURATIONFILEcccocoiiiiiiiiiiiiii 6-46
6.5.3 CONFIGURATION LOADING.................... et et 6-48

6.6 READ-BACK CONFIGURATION DATA......... e ST 6-49

2000 SERIES LCA DESIGN HANDBOOK

June 1988 vii
2

6.6.2 READ-BACK DATA CONTENTS ..o 6-50
CHAPTER 7: METASTABILITY OF LCA FLIP-FLOPS.......ccccormimmuiirrerennnnns 7-1
7.1 FLIP-FLOP METASTABILITY ...ttt sttt ettt 7-2
7.2 LCA FLIP-FLOP ERROR PROBABILITYcoooiiiiiiiiin e 7-6
7.3 MINIMIZING THE ERROR PROBABILITYooiiiiiiiiiiececeiie e e 7-10

7.3.1 REDUCING ERRORS.........ccoiiiii it 7-10

7.3.2 USING DIRECT CONNECTIONS.......cooiiiiiiiiiie et e 7-11

7.3.3 CHANGING THE SYSTEM CLOCK RATEcceoiiiiiiiircieie e 7-11

7.3.4 USING A FASTER DEVICE........ccooiiiieenecr e 7-12

7.3.5 SUMMARY ...t 7-13
CHAPTER 8: TESTING AND DATA INTEGRITY ..c..ociiiiiiiiiiiiiiieiinnaeene 8-1
8.1 LCA DEVICE TESTABILITY ...coiiiiiii et 8-2

8.1.1 "TESTABILITY FEATURESooiiiiiiii et s 8-2

8.1.2 TESTING PROCEDURESccoeiiiiiiiiii ettt 8-4

8.1.3 SUMMARY ...t e e 8-5
8.2 DATAINTEGRITY ..ottt et sbe e anee s 8-6

8.2.1 RELIABILITY .ttt e e e e e 8-6

8.2.2 ALPHA PARTICLE SENSITIVITY ..ot 8-9

8.2.3 ELECTROSTATIC DISCHARGE PROTECTION........ccceciviiniencece 8-11

8.2.4 LATCHUP PROTECTION.....oeiiiii it 8-12

8.2.5 RADIATION HARDNESS........ccceoitrrierniiriierrieiniseesese et sessss s ssssssensesenns 8-14

8.2.6 HIGH TEMPERATURE PERFORMANCEccooiiiiic e, 8-14
CHAPTER 9: NONHERMETIC PACKAGE RELIABILITYcovvviviiiiiniinnnsns 9-1
9.1 TESTING OVERVIEW........coiiiiiiiiii ettt 9-2
9.2 TEST PROCEDURES.........ccoi ittt e e 9-3

9.2.2 PACKAGE INTEGRITY AND ASSEMBLY QUALIFICATION.........cccceeriemrmnens 9-4
9.3 SUMMARY ...ttt ettt e e et e ettt she et as 9-7
GLOSSARY
INDEX

2000 SERIES LCA DESIGN HANDBOOK

viii June 1988

PREFACE

AUDIENCE

—————

This handbook introduces the Logic Cell™ Array
(LCA™) device by

» comparing it with other digital logic devices
» describing its three major components
* providing testing and data reliability specifications.

This handbook places each title and major topic at the
top of a new page. Each chapter introduction lists the
major topics therein. Each major topic introduction
identifies the second-level topics to watch for, and so
on.

Note: Abbreviations used in this handbook that are
not explicitly defined are those deemed standard by the
IEEE.

The reader of this handbook should have a working
knowledge of the design, testing, and reliability of
digital logic devices.

2000 SERIES LCA DESIGN HANDBOOK

June 1988

ix

2

ACKNOWLEDGEMENTS

n|x

For information provided in this handbook, | would like
to thank the following people from Xilinx, in alphabetical
order.

Chuck Erickson Dave Lautzenheiser
Steve Elischu Richard Ravel
Rick Farabaugh Rob Stransky
Dave Galli Craig Wooster
Steve Knapp Pardner Wynn

Steve Landry

For their great help during the preparation of this
handbook, | would like to thank the following people
from Advanced Micro Devices, in alphabetical order.

Audrey Dickey Arlo Radcliffe
Chris Jay Dieter Rathjens
Vivian Kong Gail Tiberi

Jana McNulty Joe Walcek

Joseph Parenteau

2000 SERIES LCA DESIGN HANDBOOK

—— —————

June 1988

CHAPTER 1

INTRODUCTION TO THE LCA DEVICE

INTRODUCTION TO THE LCA DEVICE.......coiiiiiiiiiiiiiiiiiiieiinii s nnnaas 1
1.1 OVERVIEW.....o it e 2
1.1.1 SSIMSIDEVICES ... 4
1.1.2 PROGRAMMABLE LOGIC DEVICES...........cociiiiiiiiiiieec e, 4
1.1.3 ASICS .. 5
1.1.4 LCA DEVICES.......o e
1.2 ARCHITECTURE COMPARISONSccciiiiiiiiiin i D
1.2.1 PROGRAMMABLE LOGIC DEVICES
1.2.2 GATEARRAYS ... 6
1.2.3 LCA DEVICES.......oc e 7
1.3 LCABENEFITS..............coee PO URPROPRON: 9
1.3.1 PROCESS........ e 9
1.3.2 QUALITY oo 9
1.3.3 RELIABILITY .o s 10
1.4 LCA DEVELOPMENT SOFTWARE ... 11

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988 14

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1 INTRODUCTION TO THE LCA
DEVICE

This chapter introduces the AMD-supplied LCA family
and covers the following topics.

* The overview, 1.1, introduces the Logic Cell™
Array, or LCA™ device.

« The discussion on architectural comparisons, 1.2,
explains how LCA devices compare to other semi-
conductor devices.

* The discussion on LCA benefits, 1.3, compares E
the benefits of using an LCA device with those of
other, more traditional semicustom devices.

« The discussion on LCA development software,

1.4, describes the available LCA design and
verification software.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988 1.1

1.1 OVERVIEW The following product features and improvements are
motivating manufacturers of electronic systems to use
high-density VLSI circuits.

« Lower cost

« Higher performance

* Reduced power consumption
* Smaller size

* Increased reliability

Microprocessors and memory devices are standard
product ICs that have best exploited the advances in
VLSI technology. Density improvements in these
product types outpaced those in other digital integrated
circuits and widened the technology gap between them
and other logic devices. To achieve comparable
densities for their proprietary functions, designers of
digital equipment must consider using factory-
programmed custom and semicustom application-
specific integrated circuits (ASICs).

The advent of user-programmable gate arrays combines
the production cost-effectiveness of VLSI with all the
benefits of a standard product. The following figure
illustrates the tradeoffs of density and development
time for several digital logic device types.

The optimal solution, in the upper-left corner of the
following diagram, represents the best tradeoff of
density and complexity with design time. As illustrated,
a new digital logic technology called the Logic Cell
Array, or LCA, offers improvements over the traditional
tradeoffs in both design complexity and design time.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1-2 June 1988

100,000
OPTIMAL
SOLUTION
STAN-
DARD
10,000 CHL
GATE
ARRAYS
1,000
NUMBER
OF GATES
100
10
SSUMSI
1
1 10 100 1,000
DESIGN TIME IN DAYS

Logic Technology Tradeoffs
Several common device classes are introduced below.

e 1.1.1, SSI/MSI Devices

. 1.1.2, Programmable Logic Devices (PLDs)
. 1.1.3, ASIC Devices

. 1.1.4, LCA Devices

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1
m
June 1988 1-3

1.1.1 SSI/MSI
DEVICES

1.1.2 PROGRAM-
MABLE LOGIC

Standard SSI/MSI devices, which are well
understood by most logic designers, provide much
design flexibility and are readily available. However,
they offer less density and consume more power than
other device types. Also, they usually are manu-
factured in maturing technologies with limited
opportunity for further cost reductions.

Programmable logic devices (PLDs) include a
number of competing alternatives, all based on a

architecture is most efficient for applications requiring

Typically, each programmable logic device replaces five
programmable, designers achieve this gain in density

schedule risk. The design and device pattern for a
specific application can be developed within days.

Bipolar PLDs are programmed by opening fuse links.
CMOS PLDs are either one-time programmable, UV
erasable (EPLD), or electrically erasable (EEPLD).

PLDs are best suited for state machines and decoders.
For functions that are readily expressed as a sum-of-

products, the PLD architecture provides efficient multi-
variable decoding and high performance. Architectural
restrictions limit the application of PLDs to general logic
replacement, consolidation of miscellaneous glue logic
and control functions, or complex processing tasks.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

DEVICES programmable AND/OR plane architecture. This
up to a few hundred usable gates.
to ten SSI/MSI devices. Because PLDs are user-
with only a small increase in design time and little
1-4

June 1988

1.1.3 ASICs Factory-programmable ASIC devices include
gate arrays, standard cells, and compiled silicon. ASICs
provide logic densities of up to 100,000 equivalent
logic gates, and are sufficiently flexible for most digital
logic functions. Fabricating factory programmed ASICs
typically requires two to four months after a designer
completes and verifies a design prototype.
Manufacturing the first production quantities requires a
similar period of time. Because of their high design
costs and limited production flexibility, factory-
programmed ASICs are most economical in very high
production volumes. The logistics of verifying a
workable design, testing ASIC devices, and
coordinating production demand require substantial
resources on the part of the manufacturer.

1.1.4 LCA The LCA device is a user-programmable gate array

DEVICES that provides the usable density of gate arrays and the
short development times and low risk of standard logic
circuits. The LCA device combines the design and
production benefits of a standard logic device with the
system benefits of increased reliability, power savings,
space savings, and lower production costs than usually
associated with ASIC device types.

The next discussion compares LCA devices to other
semiconductor devices.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988 1-5

1.2 ARCHITEC-
TURE
COMPARISONS

1.2.1 PROGRAM-
MABLE LOGIC
DEVICES

1.2.2 GATE
ARRAYS

Your benefits of the LCA device result from its flexible
array architecture. This architecture is based on a
number of technical breakthroughs that have resulted
in patent disclosures. Discussions below compare
familiar device architectures with that of the new LCA
device.

* 1.2.1, Programmable Logic Devices
. 1.2.2, Gate Arrays
* 1.2.3, Logic Cell Arrays

In PLD architectures, dedicated device input pins and
some user-selectable input/output (1/0) pins or
feedback paths directly drive the inputs to the AND/OR
planes. Outputs are driven directly from the sum-of-
products logic outputs, or from device flip-flops.

The primary limitations of the PLD architecture are the
rigidity of the AND/OR plane logic and its dedicated
interconnections. Flip-flops are typically driven by a
common clock and are closely associated with specific
output pins. As a result, gate use rarely exceeds 15%.
Consequently, the practical upper limit of usable gates
appears to be a few hundred, and the extension of this
basic architecture to higher densities is limited. Also,
PLD performance is fixed for each level of logic; each
path through the AND/OR plane exhibits the same
delay, typically 25 to 45 ns.

Array architectures provide more flexible resources than
PLD architectures, both for I/O functions and for logic
structures. A gate array typically implements user logic
by interconnecting two-input NAND gates into more
complex functions using mask-programmed metal
segments. Factory processing customizes each gate
array by creating the metal interconnections on
standard, partially processed arrays.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1.2.3 LCA
DEVICES

Larger arrays can be generated through straightforward
extensions of the /O blocks, logic building blocks, and
interconnection resources, much like extending the
capacity of a memory device. Gate arrays offer usable
densities of 25,000 gates or more. Usability of 80% to
90% is possible because of the architecture's flexibility
and regularity.

Gate array performance depends on the placement and
interconnection of the elements that make up each
logic function. In a gate array characterized by 2 ns gate
delays, frequently-used functions can have a total delay
of 15 ns or more, due to the number of interconnec-
tions and gating levels needed to implement them.

The LCA architecture resembles a gate array with an
interior matrix of logic blocks and a surrounding ring of
I/O interface blocks. LCA devices also share the gate
array architecture's flexibility and ease of extension to
higher densities. However, they do not share the gate
array's need for factory programming. Instead, a
configuration bit stream stored in on-chip memory
defines and controls the function of the LCA device's
configurable logic blocks (CLBs), I/0 blocks (IOBs), and
user-programmable interconnections. Distributed
memory cells are adjacent to the logic, I/O, or
interconnection elements they control. The
interconnections are located in the channels between
the rows and columns of configurable logic blocks, and
between the configurable logic blocks and 1/O blocks.

Straightforward extensions of the LCA architecture can
increase a 1200-gate array to one with more than 1800

gates. Further extensions of the LCA architecture have
increased the number of usable gates to 9000.

Like other standard IC components, LCA devices
provide a selection of low- and high-speed parts. You

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1-7

can choose the most cost-effective speed grade for
your application.

LCA performance depends on the fixed delays of the
logic and storage elements plus the interconnection
delays. During design, the LCA delay calculation
software can quickly display worst-case timing.
Typically, LCA performance is specified by the
maximum toggle rate for a logic block storage element
when it is configured as a toggle flip-flop. For typical
configurations, a 70 MHz toggle rate translates to a
system clock rate of up to 35 MHz.

Unlike conventional gate arrays, the LCA device
requires no custom factory fabrication. Each device is
identical until it is loaded with its application-specific
configuration bit stream. During normal operation, the
configuration bit stream is loaded automatically from an
EPROM or a processor, either when the LCA device is
powered up or on command while the system is
operating. You can copyright your LCA configuration
bit stream to protect your designs from unauthorized
copying under the same legal precedents that are used
effectively to protect microprocessor-based systems.

The next discussion lists and explains the main benefits
of using LCA devices as logic devices.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1.3 LCA LCA devices have three important logic design benefits
BENEFITS discussed below.

. 1.3.1, Advanced process
. 1.3.2, High quality
. 1.3.3, Proven reliability

1.3.1 PROCESS Over the last five years, the most pronounced trend in
the semiconductor manufacturing process is the shift to
CMOS technology. This shift is especially pronounced
for ASIC devices. The advantages of advanced CMOS
processes include both high speed and low power
consumption.

LCA devices are fabricated using AMD's 1.5u advanced

process. Two metal layers are essential for an efficient

array architecture; the array must propagate logic signals E
in horizontal and vertical directions, with minimum

delays. The LCA manufacturing process is very similar

to that used for high-speed memories; it exploits the
photolithography and wafer diameter advances

achieved in memory process technology. These

advances result in ever-higher device density and

performance at ever-decreasing cost.

1.3.2 QUALITY As quality consciousness has grown among
semiconductor users, awareness of the importance of
testing has also increased among manufacturers.

Testability is an important consideration in the design of
microprocessors, memories, and other standard
products. These devices are tested exhaustively by
AMD with carefully developed programs.

The testing of most application-specific ICs is less

comprehensive, due to limitations of design and test
program development. However, the LCA device is

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988 419

—_—

100% testable; each device is comprehensively tested
during the manufacturing process. Testing is
accomplished by AMD without involving you in the
definition of test programs or the generation of test
vectors.

1.3.3 RELIABILITY The LCA manufacturing process used is based on a
process developed for high-performance CMOS static
memories. Extensive process-development work
ensures the most reliable memory devices and provides
the same benefits to the LCA device. Data collected
over millions of operating hours confirm the reliability of
the LCA design and the CMOS process.

Compared with other logic devices, the LCA device
exhibits extremely low power dissipation. This
translates to lower operating temperatures and higher
reliability. Also, packaging materials for the LCA device
are selected to match closely the thermal coefficient for
the expansion of the silicon. This match minimizes
thermal stresses and further improves reliability.

The memory cell used to store the LCA configuration bit
stream is particularly robust. Memory is written only
during device configuration and its static output
controls the logic elements in the array. Because the
two circularly linked inverters that make up the static
latch are adjacent, transients cause only minor
differences in voltages. Each inverter is a true
complementary transistor pair, so that a low impedance
path to the supply rail always exists regardiess of the
state. Furthermore, tests involving bombardment with
high levels of alpha radiation verify that the storage cell
is not disturbed by alpha particles.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1-10 June 1988

14 LCA The development system for LCA devices is similar in
DEVELOPMENT capability and usage to those for microprocessors.
SOFTWARE

Development support for the LCA device includes
complete software-based design entry, analysis, and
verification. The LCA development system offers a
complete basic configuration and several powerful
options to enhance designer productivity. LCA
development system features include the following.

A. A consistent, user-friendly, menu-driven
environment for all LCA development software

B. Schematic entry

C. Macro library support for standard AMD-supplied
and user-defined functions

D. Simulation interface support that includes netlist E
extraction

E. Automatic placement and routing

F. Interactive timing calculation and design
optimization

G. In-circuit emulation for one or multiple LCA devices

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988 1-11

The LCA development system for the 2000
series requires the following hardware.

. IBM® PC-XT™, PC-AT™, or 100% compatible
computer

* 640 kBytes of internal RAM
* Aserial mouse

A system that must interface with printers and other
output devices also requires

+ asingle parallel port
* two serial ports.

A variety of schematic editors and design workstation
platforms are also available.

Chapter 2 discusses the LCA design cycle in detail.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

CHAPTER 2

THE LCA DESIGN CYCLE

THE LCA DESIGN CYCLE.... ..ottt ss s rr s s e n e 1
2.1 OVERVIEW. . ..o 2
2.1.1 LCA DESIGN SYSTEM.......cciiiiiiiiiiiiii it 2
2.1.2 LCA SOFTWARE AND DESIGN CYCLE.........cccciiiiiiiiiiiiice 5
2.2 DESIGN ENTRY AND CONVERSION...........ccoiiiiiiiiiiiiiic s 8
2.3 LOGIC VERIFICATIONccoiiiiiiiiiiiiiiiiie i 10
2.4 AUTOMATIC PARTITIONING, AND PLACEMENT AND ROUTINGccceccvviiiiinennns 12
2.5 DESIGN OPTIMIZATION......cooiiiiiiiiiiii i s 14
2.5.1 ROUTING OPTIMIZATIONcooiiiiiiiiiiiiiiie i 14
2.5.2 DELAY CALCULATION......cciiiiiiiiin it 15
2.6 TIMING VERIFICATION.......ooooiiiiiiii i 16
2.7 IN-CIRCUIT DESIGN VERIFICATION........cccooeiiiiitiiiiicie e 18
2.7.1 DOWNLOAD CABLE..........cooiiiiiiiiiic e 18
2.7.2 PROMPROGRAMMING..........ccooiiiiiiiiiiii i 19
2.7.3 XACTOR ... e 20

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988 24

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

—————————

June 1988

2 THE LCA DESIGN CYCLE

This chapter provides an overview of the LCA design
cycle and explains each step of the cycle in detail.

+ The overview of the design cycle, 2.1, introduces
the LCA design process and software.

. The discussion on design entry, 2.2, explains
entering an LCA design as a schematic and
converting the schematic design to netlist data.

» The discussion on logic simulation, 2.3, describes
pre-route simulation.

« The discussion on automatic partitioning, and
placement and routing, 2.4, explains translating
the netlist into the LCA file format as well as
automatic placement and routing.

» The discussion on design optimization, 2.5,
explains routing optimization and delay calculation.

« The discussion on timing verification, 2.6,
describes post-route simulation.

« The discussion on in-circuit design verification,
2.7, explains three optional ways to verify an LCA
design.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

e mmeeerreemesem——————————————————————— pe— — — — —— —— ———— —

June 1988 2-1

2.1 OVERVIEW Before you begin your LCA design, it is important for
you to understand the LCA design cycle and, in
particular, how the the design cycle relates to the LCA
environment and the available software.

« Discussion 2.1.1 explains the LCA design system.

» Discussion 2.1.2 shows the relationship between
the tasks in the LCA design cycle and the software
tools you use.

2.1.1 LCA DESIGN The LCA design system, shown in the following

SYSTEM figure, consists of two independent design environ-
ments and a file format that can be used as a bridge
among the formats of these environments.

. External design environment
* Internal design environment
+ External netlist format

in the external design environment, all software
packages deal with silicon-independent tasks such
as schematic capture and simulation. These software
packages frequently use incompatible file formats.
Also, they may be supported on hardware platforms
different from that of the internal design environment.

The internal design environment, in contrast,
supports software packages dealing with silicon-
dependent tasks such as logic partitioning, automatic
placement and routing, and those tasks performed
under the LCA software development system. These
software packages communicate with each other
through a common file format, the LCA format, which is
proprietary. The LCA format contains silicon-
dependent information such as delay, routing, and
programming data.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

22 June 1988

The external netlist format, or XNF, provides the
bridge among different file formats. This bridge permits
files produced in one environment to be converted to a
format that permits designers to use them in the other
environment; it also permits conversion of files among
different formats in the external environment.

AMD integrates the LCA design system with its inter-
face software packages. These packages translate the
different file formats into the XNF format, or the XNF
format into the required file format. For example, the
schematic to XNF interface translates the schematic file
format into the XNF format; whereas the XNF to simula-
tion interface translates the XNF format into typical sim-
ulation files such as the simulator netlist and input stim-
ulus files.

After external files are translated into the XNF format,
another software package offered by AMD can be used
to convert the XNF format into the LCA format.

AMD will provide additional translation capabilities as
new software packages in the external design environ-
ment require access to the LCA design system.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988 2-3
2

Schematic
Capture

EXTERNAL ENVIRONMENT

Automatic Partitioning
Placement and Routing

Delay Analysis and In-Circuit Design
Routing Optimization Verification

Simulation Future
Capabilities
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2
2-4 June 1988

AMD supplies software that translates a design file from
a unigue schematic-capture format into the XNF format:
name2XNF. AMD also supplies software to translate the
XNF format to a simulation format, XNF2sim, and
software that translates files between the XNF and LCA
formats. These interfaces provide an environment that
lets you perform all the tasks required to produce a
consistent, integrated LCA design.

2.1.2 LCA The diagram on the next page is divided into two vertical
SOFTWARE AND segments that show the relationship between each task
DESIGN CYCLE in the LCA design cycle and the actual software you use

to perform each task.

In the figure, square boxes on the left show major
tasks in the design cycle. Although the tasks are
depicted serially, the design cycle is actually an iterative
process in which you repeat a task or sequence of
tasks.

Rounded boxes in the LCA software cycle represent
the product used for the task connected by the shad-
ing. Ovals show the format of the input and/or output
file for each step.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988 25

DESIGN CYCLE

DESIGN
ENTRY

LOGIC
VERIFICATION

DESIGN
OPTIMIZATION

SCHEMATIC
CAPTURE

TIMING
VERIFICATION

IN-CIRCUIT
DESIGN
VERIFICATION

»
XACT or
, XACTOR

SOFTWARE CYCLE

internal
file

simulator
files*

LCA
with routing
LCA

with routing

XNF
with delay

simulator
files*

LCA2XNF

XNF2sim

*includes simulator-specific netlist and stimulus files

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

To produce an LCA design, you complete six major
design tasks.

. Design entry using a supported schematic-
capture platform includes design conversion to
produce an external netlist format (XNF) file.

Il. Logic verification includes translating the XNF
file to specific simulation file formats. You then run
a unit-delay simulation.

ll. Automatic partitioning, and placement
and routing (APPR) reduces the design, mini-
mizes or compresses the logic, and partitions the
design into required CLBs and IOBs. You can
then place and route automatically.

IV. Design optimization includes delay analysis
and routing optimization. Any logic changes you E
make here dictate that you return to task | and
repeat subsequent tasks.

V. Timing verification includes translation of the
completely routed design from its LCA format into
the XNF format, translation of the XNF format into a
simulation netlist, and simulation. You compare
the timing simulation results with those of the
previous logic simulation to ensure that there are
no logic changes.!

VI. In-circuit design verification can include any
of the following: using the download cable,
programming a PROM, and using the in-circuit
design verifier.

1 Unless you complete timing verification on a completely placed and routed design, you cannot be
sure the design will function under worst-case process, voltage, and temperature conditions.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

27

2.2 DESIGN
ENTRY AND
CONVERSION

o[

When using a supported schematic-capture platform,
the first two steps toward completing an LCA design are
as follows.

1.

Produce a schematic using the AMD-supplied LCA
design library with a corresponding, supported
schematic-capture platform.

Create an external netlist of the schematic-based
design using the name2XNF interface software.

Schematic entry shortens your product development
time by letting you enter complex LCA designs
efficiently.

You enter the LCA design as a schematic using any
AMD-supported schematic-capture platform. Rather
than basing your design schematic on TTL or other
standard parts, you base the schematic on the available
LCA library parts.

The LCA library for each supported schematic-capture
platform includes common logic functions and standard
parts, such as gates, latches, and 7400-series parts.

While entering the schematic, you can constrain nets to
direct design placement and routing with APR software
later in the design cycle. You can also include con-
straints in a text file that APR can read. APR recognizes
the following constraints.

Critical nets that should be routed with as little
interconnection delay as possible

Nets that should be placed on long lines
Specific placement of logic blocks

Logic block grouping

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

* Locking nets and blocks

Once the schematic is produced, you must con-
vert it to an external netlist file (XNF) format. AMD sup-
plies a software interface product, name2XNF, for each
supported schematic-capture platform. The interface
software converts the schematic-based data into a net-
list file that's needed to produce a simulation file or LCA
design file.

Note: If the a schematic contains CLB or IOB macro
symbols, which directly specify LCA elements, the XNF
file must be translated into an LCA file and then back
into an XNF file prior to logic verification. AMD supplies
this interface in the XNF/LCA software product.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988 2-9
2

23 LOGIC
VERIFICATION

The next step toward completing your design is to
verify, during unit-delay simulation, that the logic is
correct. This is done with a gate-level XNF file: one
that does not have the physical routing paths specified
in the LCA design. At this point it is not possible to
make a realistic estimate of the timing because the
design is not yet implemented as an LCA device.

The following steps outline the procedure for verifying
the logic of an unrouted design with AMD-supplied
software. For details, refer to specific topics in the LCA
Development System manual before simulating.

1.

Translate the XNF file into the simulation netlist file
with XNF2sim.

The netlist includes logic parameters and setup
and hold times based on the selected LCA speed
grade, operating under worst-case conditions.

Edit the input stimulus file created by XNF2sim,
using a text editor.

You specify simulation stimuli with a set of clock
statements or with an input pattern for either pad
inputs or internal nodes.

Simulate the design.
Simulation results are available in tabular, plotted,
and graphic formats. This flexibility makes it easy to

correct the function and timing of the circuit.

Repeat design entry and logic verification until
your design simulates correctly.

After schematic entry and before automatic partitioning,
and placement and routing, you use a logic simulator to
debug the design. This pre-route simulation saves
design time because you can detect and correct logic

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-10

June 1988

errors before final placement and routing. Later, you
compare pre-route simulation with post-route simulation
results to detect whether or not logic changes were
introduced during optimization.

There are several software products available to assist
you with simulation at various times in the design cycle.
For each simulator there is one software interface prod-
uct, XNF2sim, that translates the XNF file into the file
format your particular simulator uses.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988 . ' 2-11
2

2.4 AUTOMATIC Once the design file is in the netlist format, you use the

PARTITIONING, LCA2XNF translator to convert the schematic elements
AND PLACE- into LCA elements. You then partition, place, and route
MENT AND the LCA design. The following steps give an outline of
ROUTING this procedure.

1. Partition the design into CLBs and IOBs with the
XNF2LCA software.

This process efficiently groups as much logic as
possible into each CLB, and translates the design
into the LCA file format required by the LCA
development system software.

2. Place and route the design.
You can use automatic placement and routing
(APR) software, or you can proceed directly to the
LCA design editor, EDITLCA, and place and route
the design interactively.

The XNF2LCA software completes the following tasks.

* Reduces and minimizes the logic

» Partitions the design into CLBs and IOBs

* Translates the design to the LCA format

» Performs design checking

The partitioning that occurs during translation may not

result in the optimal placement of CLBs and IOBs. You

can improve the layout of the design by including

additional constraints to APR.

Both APR and XACT use the LCA file format. Thus, you

can optimize the placement and routing of individual

CLBs and IOBs in your design interactively with the
interconnection feature of the LCA design editor,

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-12 June 1988

EDITLCA. Refer to discussion 2.5 for more information
on design optimization.

You can also take advantage of APR when you develop
LCA designs incrementally. You can lock in place a
partial LCA layout while APR places and routes addi-
tions to the design.

Note: If you do not lock in place a partially placed-and-
routed design, the design is rearranged to yield a new
placement when APR places and routes an addition

to the design.

The APR software is extremely flexible. Through direc-

tives, you optimize the placement for a particular

design. You can also specify routing resources to min-

imize clock skews and signal delays for critical paths.

This results in faster product development. E

Refer to Chapter 5 of this manual for a discussion of
manual placement and routing. Refer to the LCA
Development System manual, Volume Il, Section |, for
specific instructions on using APR.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988 2-13
2

2.5 DESIGN
OPTIMIZATION

2.5.1 ROUTING
OPTIMIZATION

After initial placement and routing, you can optimize
your design as follows.

1. Use the LCA design editor, EDITLCA, to optimize
placement and routing.

2. Use the LCA design editor's delay calculator to
check point-to-point timing after optimization.

Whether you enter a design using schematic-entry
software or lay out a design manually, you may have to
use manual placement-and-routing and delay analysis
for design optimization. You can modify the placement
of your design by moving CLBs and re-routing the
affected interconnection.

You also can lay out a complete design manually by
using EDITLCA to configure design elements such as
CLBs, I0Bs, or system macros.

In either case, individual elements are configured
directly with EDITLCA, either through Boolean equa-
tions or Karnaugh maps. A macro can be selected to
automatically configure a block or group of blocks for a
specified function.

The AMD LCA device supports a variety of routing
resources, including long lines, global clock buffers,
and direct connection.

Refer to Chapter 5 of this manual for more information
on how to manually place and route LCA devices, and
how to optimize the placement and routing of your LCA
design to improve its performance. Two good ways to
monitor the performance of your LCA design are with
the LCA design editor's delay calculator, discussed
next, and through timing verification, which is discussed
under 2.6.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-14

June 1988

2.5.2 DELAY
CALCULATION

June 1988

You can perform timing analysis on a partially or com-
pletely routed LCA design to check its performance.
Typically, you monitor the timing on critical paths as you
complete the design. You can perform these timing
checks quickly and efficiently using the LCA design
editor's delay calculator.

The delay calculator is an interactive design tool that
calculates and displays the worst-case delays associ-
ated with CLBs, IOBs, and interconnections. It is
particularly useful for evaluating various placement-and-
routing options during design optimization. The
calculated delay represents the worst-case delay from
the source block for that signal to the destination
selected.

The delays are calculated based on the selected speed
grade for the design; you can select an alternate speed
grade to examine its impact on critical-path timing. Also,
the worst-case delay calculations are from clock-edge to
clock-edge for clocked systems.

The LCA design editor's delay calculator also flags any
paths over which the signal is significantly degraded. In
addition to displaying timing for individual networks, this
delay calculator can produce a listing showing timing for
all logic networks in a design.

Chapter 5 also contains a detailed discussion of timing
analysis with the LCA design editor's delay calculator.
See the DELAY command description in the LCA
Development System manual, Volume |, Chapter 3.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-15
2

2.6 TIMING
VERIFICATION

At this point in the design cycle you should have an
optimized, placed, and routed layout. You are ready to
verify the timing and the logic.

Simulating a design's timing can be done either before
or after the design has been verified in-circuit. You
should simulate the critical paths to ensure that the
design will function under worst-case process, voltage,
and temperature conditions. The results obtained here
should be compared with the logic simulation results to
ensure that any layout editing did not change your
design's functionality.

Timing verification lets you verify critical timing over
worst-case power supply, temperature, and process
conditions. It also helps you select the correct LCA
speed grade for your application. To do this,

1. Use the LCA2XNF command to translate the
routed CLB-based LCA design file into a CLB-
based netlist that includes routing delays.

2. Use XNF2sim to translate the XNF netlist to an
appropriate format for your simulator.

3. Simulate, review the timing information, and
ensure no logic changes have occurred.

4. Use the LCA design editor, EDITLCA, to edit and
optimize the design's timing until it meets your
design specifications. Then repeat steps 1
through 4 above.

Once you are satisfied with the layout, you can proceed
to in-circuit design verification. However, to make
design changes, always return to the original schematic,
make the design changes at that level, and then repeat
all succeeding steps.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

2.7 IN-CIRCUIT Once the design meets your specifications, you can

DESIGN verify the design in-circuit. In-circuit design

VERIFICATION verification is the final stage of the LCA design cycle.
You ensure that your design meets the specifications in
the target system, the one for which it was designed.
In-circuit design verification includes the following.

1. Use the XACT Bit-Stream Generator to automati-
cally create the LCA design's configuration bit
stream.

2. Verify your design's logic and timing in any of the
following three ways.

. Use the download cable to transfer the con-
figuration bit stream to the LCA device in the
target system.

. Program a PROM and use it to configure the E
LCA device(s) in the target system.

. Use XACTOR, the in-circuit emulator, to
emulate the LCA device(s) in the target
system.

These three methods are discussed below. Refer to
Chapter 6 in this manual for a detailed discussion of the
configuration process, which includes generating a
configuration bit-stream file from a design file in the LCA

format.
2.7.1 DOWNLOAD After you generate the configuration bit stream, you can
CABLE use the bit-stream generator and download cable to

program the LCA device for in-circuit verification, as
described below.

The download cable connects the LCA device in the

system under development to the parallel port on the
LCA workstation, as shown in the next figure. The bit-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988 ' 2.47
2

stream generator controls the operation of the
download cable.

Serial Port

Color Graphics Monitor
\\ - IBM Personal Computer (AT or XT)

/Paral/el Port

Logic Cell Array

Mouse /
Keyboard /
Download Cable

Download Cable Setup

Target System
Under Development

To program the LCA device, you use the bit-stream
generator to transfer the configuration bit stream across
the download cable to the LCA device in the target
system.

Note: During development and debugging, you can
use this capability to save time because you do not
need to reprogram a PROM each time you modify the
configuration bit stream. v

For more information on the XACT bit-stream generator,
MAKEBITS, and the download cable, refer to the LCA
Development System manual, Volume |, Chapter 7.

2.7.2 PROM After creating the configuration bit stream for your LCA

PROGRAMMING design, you can use it to program a PROM and let the
PROM configure the target system LCA device(s), as
explained below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-18 June 1988

To load a PROM with the configuration bit stream for
one or more LCA device(s), first convert the configura-
tion bit stream into a PROM-format file. The LCA
PROM formatter can create files automatically in a variety
of standard PROM formats, for PROMs from 2 kB to

8 kB and larger. Each PROM file can represent one or
more LCA designs, so one PROM can configure one
LCA device or several daisy-chained LCA devices.

The LCA Development System manual, Volume I,
Chapter 6, provides a complete description of the LCA
PROM formatter, including the formatter commands.

2.7.3 XACTOR The XACTOR in-circuit emulator provides real-time,
interactive target-system emulation of up to four LCA
devices from the host PC.

Note: In-circuit emulation enhances design simulation
by letting you verify your LCA design's functionality in
the target system in real time, while working with all
other circuits and system software.

The XACTOR configuration, shown next, consists of a
microcomputer-based controller and from one to four
universal emulation pods, each with an emulation
header. One pod and header is included with the basic
LCA system. The XACTOR controller, connected to
the PC workstation through a serial port, provides the
following.

. Local storage of configuration bit streams
» Control of individual device configurations

» Control of the isolation of the pod device(s) from
the target system

You set the state and isolation for each control signal to
provide debugging of the target system hardware.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988 2.19
2

Color-Graphics
Monitor

IBM Personal
Computer (AT or XT)

Monochrome Serial Port
Monitor p— /
(optional)

Flat
Ribbon
Cable
XACTOR Configuration
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2
2-20 : June 1988

To emulate your design, the XACTOR controller pro-
grams the emulation LCA device in each of up to four
emulation pods. After programming, each emulation
pod provides the functionality of one or more LCA
devices plugged directly into the target system. You
can program the LCA devices in the target system
individually or in a daisy chain. XACTOR supports daisy
chains of up to seven LCA devices from any of the four
emulation pods. You control each device's isolation
and configuration with menu or keyboard commands.
These can be supplemented by user-defined setup
files for easy system debugging.

Using XACTOR, you can read back the device config-

uration to verify the configuration process and to

interrogate the internal states. After you perform a read-

back operation, XACTOR displays the state of all

internal storage elements, isolation switches, and

control signals. XACTOR also automatically reports E
asynchronous status changes in the target system.

Refer to the discussion on reading back the configur-

ation bit stream in Chapter 6 of this manual for more

specific information.

Due to the speed with which you can modify a design
in-circuit with XACTOR, you may find it useful to imple-
ment temporary debugging circuitry in your design
during development. For example, you could tem-
porarily connect unused I/O blocks to internal nodes for
viewing with a logic analyzer or an oscilloscope.

For complete information on the XACTOR in-circuit
emulator, refer to the LCA Development System
manual, Volume I, Chapter 8.

//*\
2000 SERIES LCA DESIGN HANDBOOK CHA/PTFR \

\

June 1988 2.21 p
=

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

222 June 1988

CHAPTER 3

CONFIGURABLE LoGic BLOCKS

CONFIGURABLE LOGIC BLOCKS.....cciiiiiiiiiiiiiiiiiiiisienserssissiisnsenanssnnens 1
3.1 OVERVIEW. ...ttt ettt e et ee e e e s e et e e e e e s e sae eeeaeessennnneen 2
3.2 LCASTRUCTURE ...ttt ettt e e e e eer e e s e e s anreees e e s e s s nnrenes 4
B.2.1 GBS et e e e s e e e e e 4
3.2.2 THE INPUT/OQUTPUT BLOCK........coiiiieiiiecirceite et e 9
3.3 LOGICDESIGN WITHCLBSooiiiiiiiiiiieee et e e e
3.3.1 CREATE BASIC LOGIC......ccciiiiiiriieee ettt sie e
3.3.2 COMBINE OR SHARE CLBS
3.4 CLB TIMING ...ttt e s s esne e s me e e s s e s e e s nne e e ennas
3.4.1 TIMING FACTORSooiiiiiiiiiicetee et e et et e e s ssee s e s e s sre e e s e nees
3.4.2 LATCHES, FLIP-FLOPS, AND REGISTERS........cccccerierieeinreneeeerieneene 23
3.4.3 COUNTERS.ottt e e e et e e e e ee e e este e e e s anee e enaneeaeeannnns 25
3.4.3.1 JOhNSON COUNLEIS......coiiiuiiiiiiiiieieeeee et e e e e 25
3.4.3.2 Binary-Weighted Sequence Countersccccceveveeirivicciiiireeeenenn, 26
3.4.4 SYNCHRONOUS VERSUS.......ccoitiiieiieee et s ane e e e 30
3.4.4.1 Asynchronous Ripple Counters.........ccccorrmeerieniririiereeieeee e 31
3.4.4.2 Synchronous Linear Feedback Shift Registers.............cccuverrereneeee. 33
3.4.5 ASYNCHRONOUS INPUTS.... oottt ettt et in e s sae e s 35
3.4.6 CLOCK SKEWcooiiiiiiiiiieeeetieee et ee e s erre e e s saer e e s s saeeee e e sneaeasnaneesesnas 37
3.5 LOGIC DESIGN WITH XACT MACROCELLS...........oociiiieeerteeeeseee e 38
3.5.1 MACRO OVERVIEW..... .ottt e 38
3.5.2 MACRO CREATION......ooiiie ettt et s e e e e 39
3.5.3 SAMPLE MACROScoo ottt e et e s e e e s st s e nanae e s e e 40
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3
June 1988 3-i

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-ii June 1988
2

3 CONFIGURABLE LoGIC
BLOCKS

This chapter introduces configurable logic blocks, the
basic design element of the Logic Cell Array (LCA).

» The overview, 3.1, provides a brief introduction to
the design of LCA devices and to the LCA
development system's part in this process.

. The discussion of the LCA device structure, 3.2,
explains configurable logic blocks (CLBs) and
describes their basic structure. E

e The discussion on CLBs, 3.3, explains how to
generate logic designs with CLBs.

» The discussion on timing, 3.4, explains the timing
characteristics of CLBs.

* The discussion on logic design, 3.5, discusses
LCA design using macrocells from the LCA
macrocell library.

The macrocell library mentioned in this chapter is the
LCA development system macrocell library. The AMD-
supplied LCA logic libraries that support the schematic
design-entry method are discussed in Chapter 2.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-1
2

- 3.1 OVERVIEW

Each new technology available for digital design offers
the designer a new set of characteristics. These
characteristics include speed, power, integration level,
reliability and selection of logic functions. A good
designer makes the best use of a technology's design
characteristics by matching the design's methodology
and logic architecture to these characteristics.

The digital design and architecture for LCA devices is
similar to that of conventional TTL SSI/MSI or gate
arrays. However, the designer of LCA devices has |
additional design flexibility because of the lack of typical
design limitations, which could include logic in four-bit
or eight-bit increments, a specific set of inputs and
outputs, or a combination of logic functions.

The core of the CMOS LCA integrated circuit is an array
of user-programmable logic elements called configur-
able logic blocks, or CLBs. User-programmable
interconnections of the CLBs create the required logic
networks. Individually programmable input/output
blocks, or I0Bs, provide the interfaces for the LCA
device's input/output. With these resources, you are
free to tailor the LCA logic; you are not confined to
standard product devices or gate array library elements.

AMD's LCA device gives you a higher level of
integration than other standard products. The benefits
of this higher integration level include

* increased performance and reliability,
« reduced printed circuit board space,
« lower power requirements,

» shorter design time, and

+ smaller component inventories.

To create the logic capacity of one LCA device usually
requires 40 to 100 SSI/MSI packages. Also, the LCA
user-programmability gives you a single, fully-tested
inventory item you can use in multiple products.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

Using the conventional gate array definition of one
gate as a 2-input NAND function, the LCA 2000 family
provides a logic capacity up to 2000 gates. Using a
single LCA device to construct part of a system design
can reduce the package pin count of the design from
hundreds of SSI/MSI pins to 48, 64, or 84 LCA pins.
These three available LCA packages provide up to 84
pins that you can program as logic input, output, or
both.

The next discussion introduces two main components
of the LCA device, the CLB and the 10B.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-3
2

3.2 LCA This discussion details the structure of a CLB. It also
STRUCTURE briefly discusses the IOB, which is described in more
detail in Chapter 4.

3.2.1 CLBs The CLB is the basic logic building block in an LCA
design. Each CLB has four logic inputs and two logic
outputs. It includes a combinational-function
portion and a storage-element portion. You can
configure the combinational function to perform any
function of four variables. You can configure the
storage element as a transparent latch or an edge-
triggered flip-flop.

You enter and verify an LCA design using the LCA
development system, then generate a configuration bit.
stream that defines the appropriate functions within the
CLB.

The interconnection of CLBs consists of a two-layer grid
of metal segments. These metal segments are joined at
each intersection by a switching matrix of controlled
pass transistors that creates the interconnection paths
of the CLBs and IOBs. Additional pass transistors
connect these metal interconnections to the I0Bs.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

o

The following figure shows a single memory cell that
controls a simple two-to-one multiplexer made of two
pass transistors.

PROGRAM | | PROGRAM
DATA — D% D° ' MEMORY

3

DATA'1

\

) MULTIPLEXER
- DATA

DATAO >

Memory Cell Multiplexer Control

Combining eight of these readable memory cells to
control an eight-to-one multiplexer tree, as shown
below, creates a circuit capable of generating any logic
function of the three-input variables A, B, and C.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-5

CBA = B C,(MSB)
READS Y
~
0j113}2 I
clafslile
——
B 1
—z> f (AB,C)
= A
1
_J\ J
gl v
EIGHT FOUR2TO1 TWO2TO 1 2TO 1
READABLE MUXs MUX
MEMORY
CELLS

Look-Up Function Generator

As illustrated above, the C, B, A input code 101 reads
the contents of memory cell five. The data pattern of
the readable memory cells defines the logic function.
Doubling the look-up table and multiplexer creates a
circuit that can generate any function of four variables,
which is the basis of the CLB's combinational portion.
The CLB includes programmable multiplexers for input
variables A, B, C, D, and Q, shown in the next figure,
and a selection of outputs, to create either a single
function of four variables or two functions of three
variables each.

The following figure shows the CLB's combinational

function generator. As you can see, some paths are
shorter than others.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-6

June 1988

MEM- MEM- MEM- | | | I MEM-
ORY ORY ORY |—d ORY I,
CELL CELL CELL CELL
F
E
D
c
B
A
9 .) LOGIC
8 MUX > FUNCTION
MUXs MUXs MUX [— F
B
5
s
= MEM-
& INDEPENDENT | COMBINED | npy
g FuNcTions | MUX [] SINGLE CELL
g] FUNCTION
oo 7
>< 6
= 5
4
3 LOGIC
> FUNCTION
1 4 MUX —» G
0 MUXs 2 MUX
MUXs
MIRROR COPY OF A, B, C, D, Q
AND MEMORY CELLS FROM ABOVE

Combinational Function Generation

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-7

When a CLB generates a four-variable function, both
halves of the look-up table select either the input
variable D, or the Q of the storage element; the single
result produces both F and G outputs.

When a CLB generates two functions of three variables,
the D vs. Q selection is independent for the functions F
and G. Each function can then use any three of the five
available variables as input: A, B, C, D, or Q.

A CLB can generate a third type of function by using
the input variable B to select between the two three-
variable combinational functions. This configuration
results in a compound function that can involve some
combinations of all five variables.

The programmable features of the CLB storage
element are shown below.

A
F ?
SEL AJF
SET X
F D Q
K
Y
c 5 g U D
RES
SEL A/C/G
Do SEL INV/~INV
U
G
SEL A/G

CLB Storage Element

You can leave the storage element part of a CLB
unused, or program it as a level-transparent latch or an
edge-triggered flip-flop. The combinational function F
supplies its data input. You can also select the

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

—

June 1988

invertible flip-flop clock or latch enable from any of three
sources, on a CLB-by-CLB basis. Each CLB storage
element has available an active-HIGH asynchronous
SET, and a RESET. RESET is dominant over SET; the
active-LOW chip input, ~RESET, clears all storage
elements.

3.2.2 THE The 10Bs provide access between the CLBs and the
INPUT/OUTPUT world external to the LCA device. As illustrated below,
BLOCK IOBs can provide a direct or registered input to the chip.

@}— TS (OUTPUT ENABLE)

PIN

AJOF
v
< <4— OuT
N
vV —[_D_—__b IN
L {p o]

<«

_ PROGRAM-CONTROLLED 1/0 CLOCK
~ MULTIPLEXER

1/0 Block

The positive-edge clock for the register function is
common along each die edge. The chip configuration
process, as well as the active-LOW chip reset, ~RESET,
clears the storage elements.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

—— —————————— ——— . ——————— N— R

June 1988 3-9
2

3-10

Each 0B includes an input/output buffer you can
enable continuously to create an output pin, disable
continuously to create an input or unused pin, or
enable by logic signals to create an I/O or bus pin.

For more information on IOBs, refer to Chapter 4 of this
manual.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.3 LOGIC This discussion explains how to use CLBs to design

DESIGN WITH basic logic elements. It explains how to use CLBs,

CLBs partial CLBs, and multiple CLBs to generate common
functions.

3.3.1 CREATE To create basic logic, you can choose from several

BASIC LOGIC equivalent ways of representing a CLB function, both

schematically and mathematically. The LCA design

editor, EditLCA, supports design entry through

Karnaugh maps, truth tables, and Boolean equations.

The CLB's ability to accommodate either sense of input
variables, and to generate either sense of an output,

lets you eliminate extraneous inverters. In most cases,

however, it is practical to route only active-HIGH signals,

thus avoiding the duplicate routing of both true and

complement signals. The following figure shows E

A. Atypical four-variable combinational function as a
logic diagram, a Boolean equation, and a Karnaugh

map.
B. Equivalent forms of the function.
C. Equivalent forms of the function.

The active-LOW inputs replace the inverters of the
conventional representation and the output symbol is
an OR. AMD-supported schematic-capture interface
software converts the logic in an LCA schematic design
into an equivalent representation and groups the
combinational gates while translating your design into
LCA design files.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-11
2

(@12

aw >

w >

D

—|

A
e e,
1 1
4 - o
1 111
D
— 1 1
ZI=ZZ=A'(B'C)+B'C'D ——
B.
ZZ
Z,=2,=2,

Z,=A+B+C)+A+C+D

Alternate Representations of the Same Function in an LCA Device

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

The ADDER shown below illustrates how to use two
combinational functions of three variables. The SUM
and CARRY functions are usually grouped in the same
CLB because of their common input variables.

1 1 }c
[——
B
A—
B - - = - =
c —I y SUM=A+B+C+A+B+C

+A+BeC+A+B-C

I > CcARRY=A:B+A-C+B-C

One-Bit Adder with Carry In

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-13
2

The four-input exclusive-OR gates in the following
figure are an example of a common logic function that is
not obviously four-variable. It is a modulo-2 add without

acarry.
v/ A
A Z, =A®B® CO&D N ——
B—]
A D 1 1
D 1 1
A C
B :j b 1 1
B C E 1 1
D ——
7, =A®B® CAD B

Four-Input Exclusive OR

COMPARE, which is similar, is usually a two-input
function. The figure below shows a CLB-generated
dual compare function, which compares two bits from
each of two sources.

80 —)
S —

A0 ——y
BO

Al —,
Bl E}_ Z=(A0+B0 + A0+ B0) + (Al + Bl + AL « BT)

Z=A0® B0+ Al ® Bl

Al
{ 1 1
Bl

BO

Dual Compare CLB

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-14

June 1988

3.3.2 COMBINE You can combine several CLBs to create an expanded
OR SHARE CLBs function, or two different CLB functions can share a
single CLB.

By using multiple CLB levels, you can expand the basic
CLB design element of four input variables. For
example, one CLB driven by four others can produce
the sixteen-variable function shown below. If you select
the decodes to use common terms in several functions,
you can share those CLBs.

A0 e p]
Al ———p
A2 —
A3 ———p

oOQw»

Ad ——
A5 ————
A6 ———p
ATl —————p

gawy

—— 7 = f (A0-A15)

oaQw»

A8 ———
A9 ——>
A10 ——
All ——

gQw»

Al2——pf
Al3——p
Al4——p
AlS5 —————p

gnw»

A Function of 16 Variables

You can use a related technique to encode the results
of a pair of three-input, two-output CLBs. Use one of
three output codes to indicate which of three selected
input conditions exist. Possible combinations of the
two CLB outputs can represent four conditions, namely

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-15
2

One, Two, Three, or Other. Each CLB encodes a
three-input subset of the variables. When two of these
first-level codes are input to another CLB, its result can
be a complex function of six inputs.

The next figure shows two encoded results, each
a function of three inputs. Each CLB responds
with the selected code when its inputs match its part of
the desired minterm. A HIGH output indicates that both
codes match the same selected value, yielding a sum of
three six-variable products.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3
e eeee————————————

3-16 June 1988
2

Z=2+Zy+Z, =0THER

F F1
A0
Al G Gl
A2
CLBI
F
CLB2
A3
A4 F F2
AS
G
G2
CLB2 CLBI
INPUT | OUTPUT |INPUT | OUTPUT| CODE |RESULT
CODE CODE
AS A4A3 F2 G2 A2 Al AO FlGl FZGZFIGI z
001 010
21 01 01 |lo1o01 1
100 011
22 10 101010 !
101 110
73
11 11 (1111 1
_ | OTHER OTHER F,G,#F,G,
7
00 00 0

Encoding Partial Results of Six Variables

S—————

—

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3-17
2

If a design does not require some part of a conventional
logic function, you need not create that portion of the
function. For example, the above design of the
encoder does not use all of the decodes of a set of
input variables, so you can omit the unused decodes.

In an output-intensive function, using each CLB to
generate two functions of three shared variables can be
more efficient than generating one function per CLB.
The next figure illustrates this technique. The
PRESELECT enabling gates created in this figure
are an example of a common term of a wider input
function. To improve system speed, you can use the
input variables that become stable first at the first level
of logic. Those variables can propagate, while the
design's more timing-critical inputs drive the shorter
propagation path.

A0
Al

A2

A3

ENA

ENA A3 A2 Al A0
CLB
1) X=0 0 0 0 1
, CLB
)
Y=0 0 0 1 0
9 CLB!
a— dq8) =0 1 0 0 0
PRESELECT
o 9 =0 1 0 0 1
O CLB
[A) =0 1 0 1 0
B Y=0 1 0 1 1

Decoder with Common Term and Only Required Outputs

You can build wide multiplexer functions from a
tree of 2-to-1 multiplexers. This kind of structure,

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-18

June 1988

illustrated below, leaves the storage element and one
input variable of each CLB available for use as an
independent register function. In other cases, the
multiplexer

+ can be the data input to the storage element,
« can share input variables, or
+ can use the output of the storage element.

These examples provide a natural grouping of shared
functions in a CLB.

DO —
D1 —

DATA—-——D—D Q

G=SEL+ DO +SEL+ D1
F=DATA

F

CLB Sharing MUX and Register Element

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

——

June 1988

3-19

3-20

A common element in digital systems is a group of
registers with sets of enabled output buffers
bused together. The structure shown below is not
always recognized as a multiplexer; however, the
multiple sources provide the inputs, and the enables
represent the select lines. All inputs driven by the bus
are driven by the multiplexer output.

—Ip Q_t_

SELECT

—D Q
21MUX P 2:1 MUX
ouT ouTr
— Q
D
SELECT

Three-State Function Creates a MUX

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4 CLB TIMING This discussion explains the general timing factors in
CLB design. It then discusses the specific timing for
various CLB functions, including latches, flip-flops,
registers, and counters. It also compares the timing of
synchronous versus asynchronous design, and timing
considerations for asynchronous inputs and clock

skew.
3.4.1 TIMING Any Boolean function generated by a CLB has the
FACTORS same timing delay as any other CLB-generated

function. The concept of levels of logic or gate delay
loses its significance with LCA devices, in which higher-
level primitives perform logic.

The primary timing factors involved in designing an LCA
device are listed below.

» The propagation time of a CLB E
» The clock-to-block output via Q

* The input setup time for the CLB flip-flop input
variables

* The input and output pad buffer delays
+ The interconnection timing

Although other switching characteristics are specified in
the LCA data sheet, the timing factors listed above are
the most important in determining LCA performance.
Some of these factors are illustrated and discussed
below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-21
2

" CLOCK TO
OUTPUT COMBINATORIAL SETUP

fe—Tcxo —wle—Ti .o —dle— Tick —)|

CLB

CLB CLB I0OB

K)

N -
LOGIC LOGIC 1> >
D PAD

X OUTPUT BUFFER

PAD)

I0B
N

V

L——Tpm —

I‘f Tego—dje—— Top—|

LCA Timing Factors

MSI devices typically have matched internal delay paths
and low-impedance outputs that are independent of
loading. Logic delays are more sensitive to output
loading in programmable CMOS array architectures than
in bipolar devices. As with CMOS gate arrays, variations
in internal signal delays are significant in the LCA
device. Synchronous design techniques can minimize
the complexities of signal timing caused by delay
accumulations in CMOS designs. An additional
advantage of synchronous design is better control of
output timing.

The clock distribution resources of the LCA device
simplify synchronous design. When you can program
any function of the input variables, it is simple to include
such control signals as RESET, CLOCK ENABLE, and
PARALLEL ENABLE in the logic function for the data
input of flip-flops. All flip-flops can then use a common .
clock. With the flexibility of the LCA device you can
generate and use individual CLB clocks, as well as

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4.2 LATCHES,
FLIP-FLOPS, AND
REGISTERS

asynchronous SET and RESET, if required by the
application.

LCA configurability lets you tailor the storage elements
of the CLBs to fit your applications. Together with
complex combinational data functions, this configur-
ability lets you construct a wider variety of latches and
flip-flops in LCA devices than is found in standard parts
or gate array cell libraries.

The level-transparent form of the storage element is the
D latch. The edge-clocked form is the D flip-flop. In
both cases, the function F supplies the data input, and
the K or C pin or the function G supplies the clock
(LOAD ENABLE). You select the data input, the clock,
and the active sense of the signal on a block-by-block
basis.

Including a RESET variable in the combinational input of
a flip-flop produces a synchronous RESET, as shown
below.

CLOCK

DATA
REBSET ————o —1{P o}— "

F=RESET. DATA DATA

— } RESET

Synchronous Reset

You can use a combinational function of Q with input
variables to generate a CLOCK ENABLE, as illustrated
in the next figure.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3-23
2

F =CLKENA « DATA DATA
—

+ CLKENA «Q
1
F
CLKENA D Q 1|11 }Q
DATA 3
CLOCK I CLKENA
Synchronous Clock Enable
As shown below, you can also create a multiplexer as
the input of a flip-flop to provide a PARALLEL
ENABLE.
D PARALLEL F = PARENA« D, ri__\ERIAL
+ PAREMA « D
PARENA 1]1
D Q}——
D SERIAL 1|1 |} PARENA
'_> [——
CLOCK PARALLEL

Synchronous Parallel Enable

A flip-flop can have parallel data or reset inputs that do,
or do not, depend on the clock enable. As with the J-K
flip-flop, an interesting derivative of the set-reset flip-
flop is one that does not change state in the case of
simultaneous set and reset conditions. The other types
of flip-flops are set-dominant or reset-dominant. The
availability of this variety of synchronous set-reset flip-
flops provides you with alternatives for logic creation
that can help you minimize next-state control
conditions.

A group of related flip-flops with similar functions can
form a register. You can group registers into two
categories, namely data registers and shift registers. A
data register is a set of flip-flops with independent
parallel input paths and common control. A shift register
is a set of flip-flops with a serial data relationship. Both

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-24

June 1988

data and shift registers consist of combinational
variations of signals supplying the data input of the
basic, edge-triggered D flip-flop.

3.4.3 COUNTERS Counters are a simple example of a state machine with a
regular sequence. The most familiar counters are the
Johnson or Mobius counter discussed under 3.4.3.1,
the binary weighted sequence discussed under
3.4.3.2, and the Linear Feedback Shift Register
discussed under 4.2.6.7.

3.4.3.1 Johnson Johnson counters often offer advantages for counter

Counters designs with a modulo of less than 10 to 12. Also, they
are simple to place and route, and the basic
combinational functions shown below are compatible

with maximum clock frequency. E

In a Johnson counter, decodes of single or consecutive
states are simple and glitch-free. Initializing the LCA
device clears all storage elements. However, due to the
presence of unused states, the Johnson counter could
enter an alternate state sequence if there are any
asynchronous control inputs. As shown in the next
figure, additional input variables from QB and QD in the
feedback function can return the count to the proper
sequence.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3.25
2

F:(QA+QB'QD)
CLB
D Q D Q D Q D Q
N —D —P —P
CLOCK
DCBA A
GOOOO ——
1000
1001 21100 O
0100 Glllo 000000010011H\
1010 qllll /
1101 Foii o oy
OIIO—DC;OOII 1100 11111110 c
INVALID 0001 D C AN '
STATES 1000 \
1011
0101 ——
0010 B

Divide-by-8 Johnson Counter

3-4-3-2 Bil\al'v-
Weighted Sequence
Counters

When creating a large-modulo CMOS binary-weighted
counter, you are presented with a number of trade-offs.
In terms of physical resources, the most effective
counter of this type is a simple ripple counter; however,
the accumulation of multiple clock-to-Q flip-flop delays
can be prohibitive because the outputs ripple for

varying times.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-26

June 1988

A synchronous toggle flip-flop is shown below.

TOGGLE 0 D Q
TOGGLE 1 :13"__31:) >

CLOCK —D

TOGGLE —- T

C
Q TOGGLE 1 —]T,
| TocGLE2 — T,
CLOCK —>

Toggle Flip-Flop

A. Changes state synchronously if T is HIGH.

B. Shows the simplified symbol for the flip-flop.

C. lllustrates the AND of two inputs, which produces

the T.

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-27
2

The following figure shows a fully synchronous counter
solution composed of T flip-flops. This design
generates the counter's toggle ripple carry for each bit
by adding a carry gate, which tests the previous toggle
carry and the state of its flip-flop in a daisy-chain fashion.
The counter's maximum clock rate is determined by the
total propagation time for the carry path from CLKENA
to data setup of the last bit.

CLKENA T Q

gl

s

—) L L L

7} B

l-» |—->

Synchronous Binary Counter with Ripple Carry

The fully parallel counter shown next generates each
toggle function directly. This counter design requires
an n-wide gate for toggle control of each bit of the
counter. You can extend this design to 12 bits. The
total delay would then consist of one combinational
propagation delay between register CLBs, one clock-
to-Q delay, one set-up time delay, and the
interconnection delay. '

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

bed T6 Qs
T q
|—>
Té'
:FET
T7
T Q

&
T
! T
TS
T Q- T Q
Qs

LOOK AHEAD TOGGLE GATING

T4
DIRECT TOGGLE GATING

T4'
e
3’

=

5
-

-

Q

L

T1

4T Q
p

CLKENA

Synchronous Binary Counter

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3
June 1988 3-29
2

When designing counters, you can use block-level
carries. The 3-bit segment size shown in the lower half
of the above figure accommodates the three stages
and a carry-in within the single-CLB 4-input limit. The
only combinational delays are those of T3' and T6'.
Without a clock enable input, the first section could be 4
bits, followed by 3-bit sections. When designing LCA
devices, you must watch for design trade-offs and not
try to fit a standard solution into all applications.

The figure below illustrates another synchronous 8-bit
counter with a single level of combinational propagation
delay. The figure shows the merging of the sequential
and combinational elements of the CLB. This counter
uses periodic look-ahead carry terms to make efficient
use of variables within the block.

Q1 Q2 [0x] o] Q5 Q6 [o7)
T T T T T T -
| - - [Q . - -
CLOCK
I_,—\G‘ IE T3 L) 7
CLKENA —) T
G1=CE+Q0+Ql G3=Q2-Q3+Q4 G5=Q5+Q6

Eight-Bit Synchronous Counter Generated in CLBs

3.4.4 SYNCHRONOUS
VERSUS
ASYNCHRONOUS
DESIGN

Efficient LCA-based designs can differ from MSI
designs. MSI elements are general purpose building
blocks that exploit the strengths of a different
technology. Most MSI parts are designed to fit a set of
standard package sizes and the pin functions are
chosen to provide a useful standard product. The LCA
design goals and techniques are very different.

When designing LCA devices, your goal is to
minimize the routing and number of blocks.
In fact, you can often adapt your design's

¢

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-30
2

June 1988

logic to minimize the constraints of the
available logic and routing resources and to
optimize the LCA device's logic capacity and
performance.

The three- and four-variable capability of the CLB is a
good balance in LCA devices and gate arrays. You can
use a conventional logic diagram of your design and
group the combinational functions to give an
approximate CLB count. In a register-intensive design,
the number of flip-flops required by the design
determines the logic capacity and related combinational
functions merge with the sequential portions.

3.4.4.1 Asynch- The ripple counter shown next incorporates a counter
ronous Ripple that sets and resets output control bits at specific times
Counters in the sequence. NAND gates that decode the desired

states drive the asynchronous set and reset inputs of
the flip-flops. When the counter increments to state D,
it should asynchronously reset to 0.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-31
2

X Y 2;9Q,2,Q,
Sx 1 .0 0 000 0 @
o 1 000 1
CLK 1 0 2 »
L 2 0010 2
CLR Sy 00 1 1 e}
11 4 0100 F
Q0 Q1 Q2 Q3 R, 0 1 5 o 1 0 1 %E
g . s 0110)
001 1 1 &
0 1 8 1 00 0)
o 0 0 g9 100 1 =
0 0 "a 1010
g g B 101 1
C 1100
110 1 —M
1 1.1 0
111 1
CLOCK
Q, (COUNTER)
Qp (COUNTER)
GATE OUTPUT GLITCH
o _A
ERRATIC
AccuMLATED oreRATioN
Simple Asynchronous Ripple State Machine
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3
— R — E— R —

3-32
2

June 1988

The above counter might operate properly if it were an
MSI device because the counter bits in such a device
are matched. To use this counter in a gate array or LCA
device, however, the decodes of the counter states
involve mismatched loading and layout of various
counter bits. As a result, the decode gates are likely to
produce output spikes, causing erratic operation of the
output control flip-flops that use these signals as
asynchronous inputs. Although the decode spikes can
be so narrow that you do not notice them during design
verification, they might produce erratic output control
changes during operation. The decode of the terminal
count also has the potential for spurious outputs. Even
with a valid terminal count decode, a mismatch in
counter bit speeds could result in some bits resetting
and terminating the reset state decode signal before all
bits of the counter are reset. This timing problem could
leave the counter in an undefined or incorrect state. A
reasonable alternative to the asynchronous ripple E
counter is the synchronous linear feedback shift
register, which is discussed next.

3.4.4.2 Synch- The following figure shows a Linear Feedback Shift
ronous Linear Register, which is a fully synchronous alternative to the
Feedback Shift asynchronous-reset binary counter. This class of
Registers counters follows a less familiar sequence, but its

decodes of specific counts are predictable. Use of
OR/AND feedback for inputs on the output flip-flops
results in a synchronous SET/RESET function for the
output control bits, making them immune to decoding
spikes.

Notice that the resulting X and Y sequences are
identical, although the counter sequences differ and
the control decodes of the synchronous version
represent the state before X or Y transition. This
synchronous design revision also lets the clock control
the output timing; in the ripple counter of the previous
figure, the output timing is controlled by the

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-33
2

accumulation of delay from the clock to the counter
output, then to the state decode, and finally through
the flip-flop to the output. The use of a fully
synchronous counter reset provides more reliable
counter operation, and you may be able to increase the
maximum clock rate due to the elimination of the
terminal count delay path. Generating the flip-flop
synchronous reset requires no more resources than
that of the asynchronous reset described above for the
ripple counter.

X Y QQBQcQp
10 0 00 0 0w
10 1 100 0w |
1 0Sy 2 1100
Rx1 1 3 1110 g
0 1 4 0111
0 1 5 1011
01 6 1101
— 01 7 0110
o 0 1Ry 8 0011
QA QB QC QD 00 9 1001
—TO o > o] > o o4 o0 B 1010
] | | Sx0 0 C 010 1=
b P p D 0010
‘ . 000 1=
CLK d 111 1D

0101 _J
SET X
1110
:—\‘ JRESET X
1100 J
d D o
SET Y
0011

:"D RESET Y

Synchronous State Machine

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-34 June 1988
2 .

3.4.5 ASYNCH-
RONOUS INPUTS

June 1988

Another common source of design problems is the
timing of asynchronous input signals that affect more
than a single flip-flop. An example is a counter in which
an asynchronous parallel load is removed near a clock
edge. Various bits of the counter may change in
response to the clock, while others retain the previous
state. The result is an invalid value in the counter.

Another common design problem is that of an
asynchronous system reset. If the reset signal is
removed near a clock-edge, different parts of the logic
may respond differently, resulting in invalid states as the
logic tries to begin operation. Clearly, you should
always synchronize asynchronous signals at their input,
as shown in the following figure.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

335
2

Delay A

—
L O—p o
IN > —b
Delay B
CLOCK _I_‘_ "
1 D Qf—

D Qp—
IN—D——D Q
g au
D
CLOCK - D

Synchronization of an Asynchronous Input

You can accommodate asynchronous inputs that
require a response to their transition by using a
resynchronizer, as illustrated below. The additional
input delay this solution imposes may be undesirable in
some applications but it results in a more reliable design
when input latency is not a limiting factor. The
resynchronizer also acts as a simple noise filter.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-36
2

June 1988

DATA b o b ol '@—-START

START / \
TRANSITION / \ / \

Data Resynchronizer and Filter

3.4.6 CLOCK The problem of clock skew accounts for numerous gate

SKEW array design iterations. Clock skew problems are
caused by mismatched delay paths. For example, you
could clock one flip-flop, and its new output level, lightly
loaded, could propagate to another flip-flop input,
arriving as much as one set-up time before the original
clock reaches a second flip-flop. The difference in clock
timing can occur because of clock gating or unequal
routing delays. To minimize clock skew in an LCA
device, the LCA clock buffers drive a dedicated metal
clock distribution network.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3
e

June 1988 3.37
2

3.5 LOGIC
DESIGN WITH
XACT
MACROCELLS

3.5.1 MACRO
OVERVIEW

Macrocells, also called macros, are predefined CLB or
IOB configurations that use common logic functions.
The LCA development system includes a library of
macros that you can use to create your LCA designs.
You can also create your own macros. This discussion
provides detailed information about macros and gives
you an overview of how to create one. It also shows
some sample macros.

Using macros when you optimize your LCA design is a
quick way to specify a function. Each macro is actually a
file that contains all of the executable EditLCA
commands required to define the macro's function in
the LCA design. When you invoke a macro, you
provide the set of parameters needed to execute the
file in the required order.

The parameters you supply customize each
occurrence, or instance, of the macro in your design.
The parameters include such information as an instance
name, the names of networks providing inputs, and the
block locations for each CLB or IOB in the macro. The
instance name is used during macro execution to
compose unique block and net names that distinguish
each occurrence of a particular macro in your design.

Macros in the AMD macrocell library are stored in the
\MACROS directory. Each macro file has an assigned
name with a .MAC file extension that identifies the logic
function. You can find a list of the macros in the AMD
library and the order of their required parameters in the
Quick Reference Card and the LCA Macrocell Library
Manual. The macro documentation indicates the
required parameter order in the syntax statement for
each macro.

In addition to using the available macros, you can create
customized macros as follows.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-38
2

June 1988

3.5.2 MACRO EDITLCA commands and macro executions let you

CREATION create an LCA design as well as modify macros. After

. editing, you may want to incorporate part of that new
design or modified macro into a new macro. For
example, you might create a new macro that is a one-bit
slice of useful logic and which may include several
CLBs. Then you can place several instances of that
macro to create a more complex logic unit, such as a
data path. Another useful user-defined macro could
describe a section of a special counter that generates a
unit of control logic.

To create a macro, you first use the keyboard or mouse
to specify the individual blocks that must be included.
The LCA development system assigns a parameter for
each network that the user has selected as a macro
input, as well as for each CLB and IOB that this macro
uses. All block names and net names sourced by the
macro blocks are included in the new macro's .MAC file,
which is created in the current directory.

When you invoke the macro, you are prompted for
parameters in the order they are needed. The first
required parameter is always the instance name.
This name differentiates one instance of a macro from
any other instance of the same macro in the design.
The instance name is added as a prefix to the macro's
original net names for all nets driven by blocks included
in the macro. The instance name is also added as a
suffix to the original block name of all blocks in the
macro to allow the first characters of the block names to
show in the editor display.

} 2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3
e ——

June 1988 '3.39
2

3.5.3 SAMPLE

MACROS

Note: All block and net names must be unique.
Reserved names include A, B, C, D, K, 1, O, X, and Y,
which are already used for block pin names. Also
reserved are AA through last row/column of the LCA
design, and P1 through highest pin number of the LCA
design, as block names. Some additional reserved

names are assigned to configuration and power pins.

Refer to Chapter 4 in the LCA Development System
manual Volume | for specific information on how to
create macros.

Several sample macros are illustrated below. The first
figure shows the logic diagrams for FDR, a simple D flip-
flop with synchronous reset.

klolo

D Q
o Reset (.c) I (x)

Data (b)

Clock (k) ————D)

The macro for this figure is shown below. The first two
lines in the macro are comment lines indicating the
syntax and parameter order for macro execution. The
comments in the macro are self-explanatory.

Note: %1 through %5 represent the parameter values

you supply.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

;sMACRO FDR Name Clock Data Reset

; %1 %2 %3 %4
Parameter NAME ? Enter instance name:
Parameter NET Clock Select Clock net:

Parameter NET Data Select Data net:
Parameter NET Reset select Reset net:
Parameter CLB ? Select %1 block:

Nameblk %5 %1

Editblk %5

Base 3var

Config X:Q Y:Q F:B:C G: Q:FF SET: RES: CLK:K
Equate F = B*~C

Endblk

Addpin %2 %5.K

Location nameblock

%5 NAME

| Parameter statements specify

| parameter type, the default

| names for nets, followed
Parameter

| by the Select prompts

| for the editor screen.

| Editor commands to name the
| block %S5 (fifth parameter)

| with the instance name (%]1)
| Edit the block (%5) and define

| its configuration and equation.

| Addpin commands define the nets. The first

Addpin %3 %5.B | parameter variable is the name (or default)
Addpin %4 %5.C | supplied by that parameter in the installation
Addpin %1Q %5.X | statement. The %1Q is a Q concatenation on
| the instance name %]l.
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3
June 1988

3-41
2

The GOSC macro in the following figure is a simple
oscillator that uses two external R-C networks, two IOBs
and one CLB that functions as a set-reset latch.

cQ

caL

R1 :

GOSC

Vce 'A AA _ ca /3| narpeQ
o 15
cl : H 1 2)
1
R2 : TameSet NameReset \ /
VvV QL 4‘ nameQL

1
1
1
- : —VT
1
]]
Reset :/\ /_
C1 1
1] 1
1]
]

T=T1=T2=N((R1C1) + (R2C2))
where N = approx. 0.35 for TTL threshold
= approx. 0.75 for CMOS threshold
when each capacitor is allowed to be discharged by
the LCA during opposite timing phase. Capacitor might partially
charge due to a delayed 3-state routing.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-42
2

June 1988

The macro for this GOSC is shown below. Refer to
Chapter 4 Volume | of the LCA Development System
manual for specific information about how to use and
create macros. Also, refer to the discussion in Chapter
2 of this manual for details about the AMD-supported
logic libraries used in schematic entry of LCA designs.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-43
=

:macro GOSC Name LocQ
; %1 %2

Parameter NAME ? Enter instance name:
Parameter CLB ? Select %1 CLB block:
Parameter IOB ? Select CQ%1 1/O block:
Parameter IOB ? Select CQL%1 1/O block:

Nameblk %2 %1

Editblk %2

Base 3var

Config X:F Y:G G:A:C:B G:A Q: SET: RES: CLK:
Equate F = ~B* (C+A)

Equate G = ~A

Endblk

Nameblk %3 CQ%l1
Editblk %3

Base I0

Config I:PAD BUF:TRI
Endblk

Nameblk %4 CQL%1
Editblk %4

Base I0

Config I:PAD BUF:TRI
Endblk

Addpin %1Q %2.X %2.A %3.0 %3.T
Addpin %1Reset %3.1 %2.C

Addpin %1Set %4.1 %2.C

Addpin %1QL %2.Y %4.0 %4.T

LocCQ LocCQL
%3 %4

| Parameter statements
| defining parameter type
| and screen prompt.

| Assigns the first

| parameter (%1) as

| block name to block
| specified by (%2)

| and configures it.

| Assigns the CQ prefix
| to instance name for

| the block selected as

| the third parameter

| and configures it.

| Assigns the CQL prefix
| to block name for the

| fourth parameter and

| configures it.

| Creates nets of names

| with concatenation to

| the pins .x, .a, .0, .t

| etc. of the blocks

| identified by the %2, %3,
| %4 parameters.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

E

June 1988

CHAPTER 4

INPUT/OUTPUT BLOCKS

INPUT/OUTPUT BLOCKS.ottt i i srias s e s s sns s nnnan s snanas 1
4.1 //OBLOCK OVERVIEW ...ttt ettt ettt ettt e e e e aee e e e annns 2
4.1.1 10B INTRODUCTION. ...ttt ettt ettt ettt e e e ennea s 2
4111 INPUESIGNAIS ... e 4

4.1.1.2 Output SIgNaIScevvieiieeeiei i 5

4.1.1.3 VORage LeVEIS ...t 5

4.1.2 REGISTERED INPUTS AND METASTABILITY ...c.oooiiiiiiiiieiene et 5

4.2 LCA /O STRUCTURES.......co ettt e st eeeneee e 7
4.2.1 STANDARD I/O STRUCTURES.......ccooitiieeeeee e eee e 8
4.2.2 OPEN-COLLECTOR STRUCTURES........ccoooitiiiieeeeiiie e 11
4.2.2.1 Open-Drain Structures and Routing.............ccccevviiiiiiiieiiecieeiee, 12

4.2.2.2 Wired-AND and Wired-OR Structures...........cccoeceveeeriieeeeeiiceeneies 15

4.2.2.3 Multiplexers from Open Collector 1/0O Structures............ccceceerveeennenn. 17

4.2.3 SCHMITT-TRIGGER STRUCTURES...........cceitirenece e 18
4.2.4 GENERAL PURPOSE OSCILLATOR STRUCTURES..........ccoecoiiirieecee. 25
4.2.5 ON-CHIP CRYSTAL OSCILLATOR STRUCTURES..........cccccviimririienereeenn 28
4.2.6 REGISTERS AND COUNTERS.........oiiieieeiee et 30
4.2.6.1 10B-Based Register Delays ..o 30

4.2.6.2 Wide Storage Registersocouveeerimiieiiiiiieceieee e 31

4.2.6.3 Read/Write RegIStErS.........cceveiieiiiiiiieeececteeeieeeee e e e 33

4.2.6.4 Shift Registers.......ccoooiiiiiiiiiieeeee e 35

4.2.6.5 JohnSon COUNEIS.........oeiiiiiiiiiiiiieiiicee et ee e 37

4.2.6.6 Glitchless Johnson DeCoder..........ccuuuieiiaiiiiiiiiieiee e 39

4.2.6.7 Linear Feedback Shift Registers.........cccccooiuiiiiiieiiiiiiniiiiiiieee e 41

4.2.7 INCREASED DRIVE-CURRENT STRUCTURES.occiiiiiiiiiiee e, 47

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-ii

June 1988

INPUT/OUTPUT BLOCKS

This chapter discusses |OBs, which comprise the LCA

I/0 structures. The chapter has the following structure.

* The I/O block overview, 4.1, introduces I0Bs and
discusses some specific IOB operating
characteristics.

« The discussion on LCA /O Structures, 4.2,
illustrates the wide variety of I/O structures
available for use in LCA designs.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4-1
2

4.1 1/0 BLOCK This discussion explains LCA Input/Output Blocks,

OVERVIEW registered inputs, and metastability.
4.1.1 10B The I0Bs in an LCA design surround the array of CLBs,
INTRODUCTION as illustrated below. Where the CLBs are the logic

building blocks in an LCA design, I0Bs are the building
blocks for LCA input, output, and bidirectional I/0
structures.

CONFIGURABLE
LOGIC BLOCK /O BLOCK

0 GIC\GIG GIGD CICH
]
4
LRI

01

TN

Logic Cell Array Structure

L

TT

s e e o s
T3 {3 {3 3

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

—

4-2 June 1988

The 2064 and 2018 IOBs are identical. Each IOB can
« drive an output,

* receive an input,

« clock the input into a flip-flop, or

* be both an input and an output under three-state
control.

You can configure an 0B to perform a variety of logic
functions.

The architecture of the LCA device provides great

design flexibility in using inputs and outputs. The IOBs

in an LCA device are not dedicated to any fixed logic.

Therefore, you can use 10Bs for logic structures

beyond simple inputs or outputs. Often, designs do E
not use all IOBs available within the LCA device. You

then can use the extra I0Bs to build such logic

structures as shift registers or Johnson counters.

The following figure shows the schematic of an IOB.
The trapezoidal structures in the figure are data-path
selectors or multiplexers. How you program these data-
path selectors determines what function the IOB
performs. For example, you can configure the IOB to
perform as

« adirect or registered input,
« adirect or three-state output, or
a bidirectional data line.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-3
2

/I I OFF
TS (OUTPUT ENABLE)
. }_;l o | ,
!_—‘<‘ our
PIN |— ;
b D Q
—p
R 1/0 CLOCK
_ PROGRAM CONTROLLED
— ~ MULTIPLEXER

Input/Output Block (IOB)

4.1.1.1
Signals

s|g

Input

Along each edge of the LCA die, the IOBs share a
common I/O clock signal that drives each input register.
All internal registers are reset to a zero state after
configuration, or after the ~RESET pin is asserted
LOW. Data is clocked into the input register on the
positive edge of the I/O clock signal.

A logic signal external to the LCA device comes in
through an 1/O pad and non-inverting buffer, as shown
above. The logic signal is then either directly
propagated or fed into the input register, depending on
the configuration of the data-path selector.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.1.1.2 Output
Signals

4.1.1.3 Voltage
Levels

4.1.2 REGISTERED
INPUTS AND
METASTABILITY

Similarly, output data is driven by the non-inverting
buffer shown in the previous figure. The output buffer
is forced into a high-impedance state whenever the
three-state (TS) control line is HIGH (TS = 1).
Conversely, the output buffer propagates the output
signal when the three-state control line is LOW (TS = 0).
All outputs can source and sink 4 mA under specified
worst-case conditions.

You can configure all IOBs to recognize either TTL-level

‘(VTH = 1.4 V) or CMOS-level (VTH = 2.2 V) input

thresholds. The selected voltage level affects overall
device power consumption; power consumption is
lower when you select CMOS input levels.

The following schematic shows a registered input within
the LCA device. LCA devices are manufactured with a
high-speed CMOS process that allows these 10B input
registers to achieve flip-flop loop delays of three to
five nanoseconds. These short loop delays provide
very good performance under asynchronous clock and
data transitions. Short loop delays also minimize the
probability of a metastable condition that can result
when the input to the flip-flop is still in transition while
the clock is asserted.

The IOB's short loop-delay characteristics make them
effective in synchronizing external signals. After the
I0B synchronizes the external signals, you can use the
signals internally without further consideration of their
relative timing, except as it applies to internal logic and
routing-path delays. Chapter 7 of this manual provides
further information regarding the metastable behavior of
flip-flops and registers in an LCA device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.5
2

I/O TYPE: Pad Input with Storage (registered input)
MACRO NAME: PINQ
SCHEMATIC:
PAD
—1D Q=¥ INPUT
—>
- J/O CLOCK
CONFIGURATION:
IQ
BUF:

Input Pad with Storage Register

LCA I/O Structures are discussed next.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

E—————

4-6

June 1988

4.2 LCA 1/O This discussion explains some /0 and other logic
STRUCTURES functions available by configuring IOBs in various ways.

. Discussion 4.2.1 explains standard I/O structures.

» Discussion 4.2.2 explains open-collector
structures.

» Discussion 4.2.3 explains Schmitt-trigger
structures.

» Discussion 4.2.4 explains general purpose
oscillator structures.

+ Discussion 4.2.5 explains on-chip crystal oscillator
structures.

» Discussion 4.2.6 explains registers and counters. E

+ Discussion 4.2.7 explains increased drive current
structures.

The structures described below use the following
conventions for input paths and output buffers.
Discussions here show each structure in schematic
form and describe its I0B configuration.

You can configure the input path as any of these
functions.

« [:PAD - Direct input from the device pad
. 1:Q - Registered input
e I:- Noinput

You can configure the output buffer as follows.

* BUF:ON - Direct output
* BUF:TRI - Three-state output
* BUF: - No output

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 47
2

4.2.1 STANDARD
I/0 STRUCTURES

If an LCA library macro exists for any structures
described below, the macro is listed in the schematic as

macro name.

The six standard LCA 1/O structures are listed and
pictured below. These standard structures are the
basic input, output, and bidirectional I/O configurations

for an LCA device.

* Input pad

* Input pad with storage register

* Output pad

* Output pad with three-state control
+ Bidirectional pad
« Bidirectional pad with input storage

The input pad is shown first.

SCHEMATIC:

I/O TYPE: Pad Input
MACRO NAME: PIN

PAD

¥ INPUT

I:PAD
BUF:

CONFIGURATION:

Input Pad

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-8

June 1988

The next two figures show the input pad with a storage

register and the output pad, respectively.

MACRO NAME: PINQ
SCHEMATIC:

PAD

CONFIGURATION:
I:Q
BUF:

I/O TYPE: Pad Input with Storage (registered input)

I/0 CLOCK

Input Pad with a Storage Register

I/O TYPE: Pad Ouput
MACRO NAME: POUT
SCHEMATIC:

PAD

CONFIGURATION:
I
BUF:ON

OUPUT

Output Pad

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4-9

The figure below shows the output pad with three-state
control.

I/O TYPE: Pad Ouput with Three-State Control
MACRO NAME: POUTZ
SCHEMATIC:
— THREE-STATE
-— OUTPUT
PAD
CONFIGURATION:
I:
BUF:TRI

Output Pad with Three-State Control

The next figure shows a bidirectional input/output pad.

I/O TYPE: Pad Input/Ouput (bidirectional data line)v
MACRO NAME: PIO :
SCHEMATIC:
— THREE-STATE
OUTPUT
PAD
D> oo
CONFIGURATION:
L.PAD
BUF:TRI

Bidirectional Input/Output Pad

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

Next, you'll see a bidirectional pad with input storage.

I/0 TYPE: Pad Input/Output with Input Storage
MACRO NAME: PIOQ
SCHEMATIC:
-4 THREE-STATE
-4 OUTPUT
PAD
— D Q[—# INPUT
—
¢ /O CLOCK
CONFIGURATION:
IQ
BUF: TRI
Bidirectional Pad with Input Storage
4.2.2 OPEN- The LCA macro library contains a variety of output
COLLECTOR functions, including wired-AND and wired-OR
STRUCTURES structures, based on available LCA open-collector

structures. The MOS transistor has no collector;
therefore, open-drain outputs is a more accurate
term for MOS devices like the LCA device.

To build an open-drain-output structure in an LCA
device, you tie together both the output and the three-
state control lines. For an active-HIGH signal, the three-
state control engages (high impedance), and the
output signal is disabled through the output buffer.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-11
‘ 2

4.2.2.1 Open-Drain
Structures and
Routing

The signal at the output pad is also high impedance,
which allows that particular signal line to float.
Connecting this signal line to VCC through a resistor
pulls this line up for an active-HIGH output. However,
for active-LOW signals the three-state control line is
driven LOW to turn on the output buffer and allow the
LOW signal to propagate directly to the 1/O pad.

When designing with open-drain structures, you should
be aware of an LCA-specific phenomenon caused by
the different routing delays between the signal source
and the output and three-state control loads.

Because a routed signal may take longer to reach an
IOB's three-state control line than its output line, the
pad can be driven for a short period of time during a
LOW to HIGH transition, as shown in the next figure.
This could occur if the output line (O) starts to go HIGH
before the three-state control line does. Depending on
how much routing delay there is between the output
and three-state lines, the PAD output could start to go
HIGH and then be driven into a high-impedance state.
Excessive routing delay differences between the
output and the three-state control line may cause a brief
output glitch, as shown below. Careful design prevents
this.

The above situation is not a problem in most designs.
You can check the actual routing delay difference
between the TS and O terminals of an IOB using the
delay calculator in the LCA development system. See
Chapter 2 of this manual for information about the delay
calculator.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

——(OEA)
TS
1 O SIGNAL
PAD
OUTPUT 7
THREE-STATE DELAY — | |;
1/O PAD
HIGH IMPEDANCE /e

Brief Output Glitch Caused by Three-State Routing Delay

The next three figures show the available LCA macro
library open-drain structures listed below.

« Open-Collector Output Pad
* Open-Collector Bidirectional Input/Output Pad
* Open-Collector Output Pad with Storage

First, the open-collector output is shown, followed by
the open-collector bidirectional I/O pad.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-13
2

I/O TYPE: Pad Output with "Open-Collector"
MACRO NAME: POUTC
SCHEMATIC:

\
Ay
o
Q
3
S

PAD

CONFIGURATION
L
BUF: TRI

Open-Collector Output Pad

I/O TYPE: Pad Input/Output with "Open Collector”
MACRO NAME: PIOC

SCHEMATIC:
TS
o OUTPUT
PAD
-~ INPUT

CONFIGURATION:

I. PAD

BUF: TRI

Open-Collector Bidirectional Input/Output Pad

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.2.2 Wired-AND
and Wired-OR
Structures

I/0 TYPE: Pad Input/Output with Storage,
"Open Collector"
MACRO NAME: PIOQC
SCHEMATIC:
TS
[0}
<4 OUTPUT
PAD
—D " Q $ INPUT
—p
- /O CLOCK
CONFIGURATION:
I:Q
BUF: TRI

Open-Collector Output Pad with Storage

The open-drain capability of an IOB allows wired-AND
and wired-OR structures to become part of the LCA
macro library. The AND and OR implementations are
essentially the same; the only difference between their
forms is the type of logic each uses. You design with
wired-AND structures in positive-logic implementations
and wired-OR structures in negative-logic
implementations.

The next figure shows a typical wired-AND or wired-OR
structure. All output pads from the IOBs are externally
wired together as a common signal. In a positive-logic
system, when all of the logic outputs to the IOBs are
TRUE, the three-state control is enabled and the IOB

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

L ——

June 1988

4-15
2

output PADs are forced to high-impedance. However,
since all of the IOBs are tied to Vcc through a pull-up
resistor, the line is pulled up to Vcc. If the logic signal to
any of the IOBs is FALSE, the corresponding output
buffer is turned on and that LOW signal propagates to
the common line, pulling the entire line LOW. The
entire structure then acts as an AND function; when all
outputs are HIGH, the common line is HIGH. If any
output is LOW, then the common line is also LOW.

PULLUP
RESISTOR
TS
O L _ ourruri
S
O I ourpeur2
|l £
'WIRED' AND or |] (0]
WIRED' OX - PaD | OUTPUT3

|
EXTERNAL TO LCA § INTERNAL TOLCA

Wired-AND or Wired-OR Function

The following equation describes the wired-AND logic.
IOB1+10B2+10B3+...#10Bn = TRUE

A wired-OR structure is similar to the wired-AND, except
that it is implemented in negative logic. It ORs together
a number of active-LOW signals to generate a logic
function. The logic equation for a wired-OR, shown
below, is merely a DeMorgan-equivalent inversion of
the previous equation.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

I0OB1 +10B2 +10B3 +... +10Bn = FALSE

A typical application of a wired-OR structure is an active-
LOW common-interrupt line. An interrupt request from
any peripheral pulls the common interrupt line LOW,
which informs the processor of the request. You can
build a wired-AND or wired-OR function from any
number of open-collector outputs.

4.2.2.3 Multi- The LCA macro library also contains another structure
plexers from Open built using open-drain I0Bs: an n-bit multiplexer, as
Collector 1/0 shown below. All pad outputs are tied together outside
Structures of the package, on a common line that becomes the

multiplexer output. Each IOB in the multiplexer is

configured as an output with three-state control using

the LCA library macro POUTZ. The output line (O) of

each 10B becomes an input for the multiplexer. Driving

the corresponding three-state control line LOW, T = 0, E
selects a signal; the selected signal propagates to the

common output line. The three-state control lines can

be driven with a CLB.

Caution: You must avoid contentions on the common
output line.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 417
2

4.2.3 SCHMITT-
TRIGGER
STRUCTURES

RESISTOR

MULTIPLEXER
FUNCTION —

PAD

CONTROL
|— OUTPUT 1

MULTIPLEXER

PAD

EXTERNAL TO LCA § INTERNAL TO LCA

OUTPUT 0

Open-Collector Multiplexer Function

The Schmitt trigger has numerous applications in digital
designs. Two of the most common applications are

shown below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-18

June 1988

- -

A Noise Reduction B Fast Transitions of Slowly
Changing Signal

A. Schmitt-triggered inputs filter signal noise because
of the hysteresis inherent in the switching
characteristics of a Schmitt trigger. E

B. A Schmitt trigger generates a fast transition for a
slowly changing input function when that function
reaches a predetermined level. Again, this
capability is available due to the hysteresis of the
Schmitt trigger.

You can build a variety of Schmitt-triggered input
structures in an LCA device. For example, using three
IOBs, a CLB, and three resistors, you can create a
Schmitt trigger with selectable voltage hysteresis, as
shown below.

Note: If the amount of hysteresis is not critical, then
only two resistors and two IOBs are required.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-19
2

I/0O TYPE: Schmitt-Triggered Input With Selectable Hysteresis
MACRO NAME: None

SCHEMATIC:
— —>
EXTERNAL TOLCA; INTERNAL TO LCA
PAD
I0OB2
R2
R1 IOB1
—WA PAD {—— DIRECT INPUT
R3
VCLB
ﬁ ¢———>» INVERTED INPUT
PAD '
I10B3
CONFIGURATION: COMMENTS:
IOB 1 - Input Resistors pairs R1:R2 and R1:R3 form two
I:PAD voltage dividers that set the HIGH-going and
BUF: LOW-going input hysteresis.

IOB 2 - Output
L
BUF:TRI

IOB 3 - Output (inverted through CLB)

I:
BUF:TRI

Note: VTH = input threshold voltage

for CMOS inputs
VTH = 2.2 V for TTL inputs
VTH = 1.4 V * supply tolerance

Resistors R1 and R2 set the HIGH-going
hysteresis (VH) according to this equation:

VH = VTH [(R1 + R2)/R2] - VoL

Resistors R1 and R3 set the LOW-going
hysteresis (VL) according to this

VL = VTH [(R1 + R3)/R3] - VAH

Schmitt-Triggered Input with Selectable Hysteresis

Three resistors in the above macro select the threshold

voltage and the amount of hysteresis for the Schmitt
trigger. The three resistors are separated into two-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

resistor network pairs, R1:R2 and R1:R3. Each pair
forms a voltage divider to set the input-voltage level.
One voltage divider sets the HIGH-going transition level
(VH), the other sets the LOW-going transition level (VL).
The value at the input to IOB1 is inverted through a
CLB, and then routed to the three-state control line
I0B3. The CLB logic adds a small amount of time
hysteresis to the signal because the CLB logic and the
routing cause delay. The logic delay can be balanced
by buffering the input before sending it to the three-
state control of 10B2.

An inverting Schmitt trigger is similar to the non-
inverting one shown above, except that the sense of
the logic is inverted inside the LCA device.

Assume that the input voltage is near ground. The

output voltage of IOB2 is at Vo, which pulis resistor R2

toward ground. There is then no potential difference E
across R2. The output buffer of IOB3 is high-

impedance because its three-state control pin is HIGH.

Resistor R3 is effectively removed from the circuit and

the input voltage is divided by the resistor network

formed by resistors R1 and R2. As the input voltage

continues to increase, the IOB1 pad voltage eventually

reaches its switching threshold.

As soon as the threshold is crossed, IOB1 goes HIGH.
This drives the output of IOB2 into high-impedance
(10B2 TS = 1) and enables the output buffer of IOB3
(IOB3 TS = 0). At VoH then, IOB3 pulls the input of
10B1 HIGH through resistor R3. In this state, resistor R2
is effectively removed from the circuit because IOB2 is
high-impedance.

The Schmitt-trigger structure remains in this state even
if the input voltage fluctuates, unless it fluctuates to the
opposite hysteresis limit. Then, the Schmitt trigger

goes to the opposite state. In other words, the Schmitt

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-21
2

trigger stays HIGH until the input to IOB1 drops below
the LOW-going hysteresis limit, and vice versa.

If the hysteresis values are not critical, the Schmitt-
trigger structure requires only two IOBs and two
resistors, as shown in the following figure. However,
the range of VH.and VL is very limited. This IOB
configured as an output pulls the input HIGH or LOW,
depending on the transition direction.

SCHEMATIC:

EXTERNAL TO LCA

I/O TYPE: Schmitt-Triggered Input With
Limited Hysteresis
MACRO NAME; Nore

S

—>
INTERNAL TO LCA

iy

I0OB1

DIRECT

I10B2

IOB 1 - Output
I.

BUF.ON
IOB 2 - Input

I:PAD

BUF:

COMMENTS:

CONFIGURATION:

Hysteresis values are limited:

VL = [(R1 + R2)/R2] VTH - VOH(R1/R2)
VH = [(R1 + R2)/R2] VTH - VoL (R1/R2)

PAD
—I B
. INVERTED
[> » INPUT

Schmitt-Triggered Input with Limited Hysteresis

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-22

June 1988

If you need a selectable Schmitt trigger only for a single
transition direction (HIGH going LOW, or LOW going
HIGH), then you can use one of the Schmitt triggers
shown in the following figure. These circuits are simpler
versions of the one above.

Note: A single CLB is required to invert the sense of
the input signal, which then enables or disables the
output buffer for IOB2 (the one configured as a three-
state output.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-23
2

I/O TYPE: Unidirectional Schmitt-Triggered Input
MACRO NAME: None

SCHEMATIC:
-«— —>
EXTERNALTOLCA | INTERNALTOLCA
R1
—W\ PAD
: IOB1 _1—[> » DIRECT INPUT
R2 3 INVERTED INPUT <& coLB<
g I0B2 ”
PAD
COMMENTS:
VH = VTH

VL = VTH [(R1 + R2)/R2] - Va1 (R1/R2)
Unidirectional Schmitt-Triggered Input HIGH Going LOW

SCHEMATIC:
-«— —>
EXTERNALTOLCA | INTERNALTOLCA
RI
—WA PAD
I0BI _L-> » DIRECT INPUT
R2 3 INVERTED INPUT
> IOB2 cLB
1
PAD
COMMENTS:
VH= VIH [(R1 + R2)/R2] - VoL (R1/R2)
VL= VTH

Unidirectional Schmitt-Triggered Input LOW Going HIGH

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.4 GENERAL The LCA macro library includes general purpose

PURPOSE oscillators built using two IOBs and a CLB. The general
OSCILLATOR theory of operation is similar to that described for
STRUCTURES Schmitt triggers.

In the oscillator shown and described below, the
charging and discharging of two capacitors generates
the oscillating signal. Capacitor C2 charges to a voltage
threshold, on SET, to set a latch. As soon as the
voltage across C2 exceeds the threshold, the SET line
causes the Q line to go HIGH and discharges C2 by
driving the 10B called CQL. After crossing the
threshold, the RESET line, which has been held LOW,
is allowed to rise as capacitor C1 charges. When
capacitor C1 charges to its threshold, the Q output is
reset and forced LOW. Capacitor C1 is then discharged
by the I0OB named CQ and capacitor C2 begins charging
again. This process is repeated, creating a low-
frequency resistor-capacitor oscillator.

Consider the routing delay of the three-state control
lines within the I0OBs, named CQ and CQL in the figure.
The time period of the oscillator depends on each
capacitor being completely discharged during the
opposite timing phase. Also, timing depends on both
capacitors beginning their charge near ground. A
routing-delay difference between the output (O) of an
IOB and the three-state control can prevent the
capacitors from completely discharging.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-25
2

I/O TYPE: Low-Frequency Resistor-Capacitor Oscillator
MACRO NAME: GOSC
SCHEMATIC:

EXTERNALTOLCA

R1
Vce

M\

CONFIGURATION:
10B1

LON

BUF:TRI
10B2

L.ON

BUF:TRI

4

e

Low-Frequency Resistor-Capacitor Oscillator

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 19

88

The following figure illustrates the oscillator's low-
frequency timing characteristics.

T (time period) =T14T2=N ((R1X Cl)=([R2X C2)) [11]
[I ™ I T1 I where N = approximately 0.35 for TTL threshold
= approximately 0.75 for CMOS threshold

v ' d
) T 2) Capacitors begin charging from GROUND.
c1 RESET ' : : 3) Effect of three-state routing delay is assumed minimal.
1

Low-Frequency Resistor-Capacitor Oscillator Timing Diagram

Q

You can use any number of these low-frequency
oscillators in a design. Most designs, however, require
only one or two.

Note: If the oscillator output is used throughout the
design to clock the registers in the CLBs, then you
should place the oscillator near one of the clock buffers
and use the clock buffer to route the signal.

The sample array element in the low-frequency
oscillator figure above shows the oscillator built near the
main clock buffer in the upper-left corner of the die. A
similar low-frequency oscillator could drive the auxiliary
clock buffer located in the lower-right corner of the die.

You should be aware that the low-frequency oscillator
circuit causes an error when you use the timing
calculator to examine the oscillator. The timing
calculator in the LCA development system detects
combinational loop conditions and flags them as errors.
Because the oscillator circuit depends on a
combinational loop for operation, it causes an error
message. You can safely ignore such error messages if
you detect them only in the oscillator circuit.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-27
2

4.2.5 ON-CHIP You can configure two special I/O Blocks to interface to

CRYSTAL the oscillator on-chip, located in the lower-right corner
OSCILLATOR of the die. This oscillator is associated with the auxiliary
STRUCTURES clock buffer located near it. When you select the

interconnection to drive the auxiliary clock buffer, two
special pins interface to the internal high-speed
inverting amplifier to form the oscillator. Externally, you
should attach these pins to the crystal oscillator
components, as shown below. The best way to
configure the crystal oscillator is by-using the GXTL
macro in the LCA library.

Even before you finish configuring the LCA device, the
on-chip oscillator begins operation so that its circuitry
can stabilize. However, the actual internal connection
of the oscillator to other circuitry on the chip is delayed
until the device configuration completes.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-28 June 1988

I/O TYPE: On-Chip Crystal Oscillator Circuit 4+— —>
MACRO NAME: GXTL INTERNAL TOLCA EXTERNAL TOLCA
SCHEMATIC:
.
ALTERNATE .
CLOCK BUFFER '—'l >So——F ———
XTALI
XTAL2 O %
(IN) .
- =1
CE Rl
WA
IDI) v
18] J_ YW
— Cl1 i o)

SUGGESTED COMPONENT VALUES:

R1: 1-4 MQ
R2: 0-1KQ
(may be required for low frequency, phase
shift and/or compensation level for crystal Q)
C1,C2: 5-20pF
Y1: 1-10 MHz AT cut

XTALI [XTAL2
48 PINDIP_| 33 30
@) NPLCC| 46 43
68-PINPGA | J10_| L10
84-PIN PLCC| 56 53
84-PINPGA | K11 | LIl

On-Chip Oscillator Circuit

The feedback resistor R1, from output to input, biases
the amplifier at threshold and should be as large a value
as practical, up to 4 MQ. The inversion and delay of the
amplifier, together with the R-C networks and crystal,
produce a 360-degree phase shift, forming a Pierce
oscillator.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-29
2

Note: You can include the series resistor R2 to add to
the amplifier output impedance, when needed. This
may be needed for phase-shift control, crystal-
resistance matching, or for limiting the amplifier input
swing to control clipping at large amplitudes.

The ratio of capacitor C2 to C1 adjusts the excess
feedback voltage. The amplifier operates in the range
of 1 MHz, up to one-half the specified CLB toggle
frequency. Using the oscillator at frequencies below

1 MHz requires individual characterization with respect
to a series resistance. Operating at frequencies above
20 MHz is also more complex because it generally
requires that the crystal operates in a third overtone
mode in which the R-C networks must suppress the
fundamental frequency.

4.2.6 REGISTERS The previous examples in this chapter describe how to

AND COUNTERS use IOBs in conventional I/O applications, using the OB
for input, output, or both. For any IOB that is not
required for input or output, you can use the storage
element within the IOB to create registers and various
types of counters. The following designs use the
“output buffer (BUF:ON) fed back into the input register
(1:Q). This configuration is shown below. These IOB’s
pads usually are not connected to anything externally,
although you may do this if necessary.

4.2.6.1 10B-Based If you want to construct registers using IOBs, you must

Register Delays understand the delays in I0-based registers. The
delays incurred through an IOB-based register depend
on the sum of two parameters: the delay through the
output buffer, and the delay back through the input
buffer to the register. While these values are defined in
the data sheet for an output load of 50 pF, they change
only slightly for no output capacitance. The delay into
an IOB-based register is shown below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-30 June 1988
2

T(IOB-reg) = Top = Tpl
Where:
Top = Output to Pad output

Tpl = Pad input set up to I/0
clock (minimum)

4.2.6.2 Wide ~ The first type of IOB-based registers is a wide storage
Storage Registers register. The basic I/O structure illustrated below
creates a wide storage register.
I/O TYPE: Pad With Input Storage (IOB-based)
MACRO NAME: PREG
SCHEMATIC:
OUTPUT
PAD
D Q% INPUT
l——>
1/0 CLOCK
CONFIGURATION:
I.Q
BUF: ON

Pad with Input Storage (IOB-Based Register)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-31
2

The following figure shows the construction of an n-bit-
wide storage register built from these IOBs. Wide
storage registers are ideal for IOBs because the /0
clock feeding an IOB is common to all IOBs along each
edge of the die.

I/0 TYPE: N-bit Storage Register (IOB-based register)
MACRO NAME: None
SCHEMATIC:
-4 BIT 0 IN
PAD
D Q% REGOOUT
—p
<4 BIT1IN
PAD
D Q # REG 1 OUT
—P
-4 CLOCK
EXPANDABLE TO N BITS
CONFIGURATION:
All IOBs
I.Q
BUF:ON
COMMENTS:
The I/O clock into each IOB is common to all IOBs along
each edge of the die. For best resource utilization, group
the storage elements along one edge of the die.

N-Bit Storage Register (IOB-Based Register)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.6.3 Read/Write Another variation of the basic IOB-based register is a

Registers simple read/write register. This structure allows external
devices to write data into registers within the LCA
device, and also to read the data back.

The following figure shows the structure of a read/write
register. In this example, each I0B's input and output is
connected. The three-state control line (T) controls the
direction of data flow, where T = LOW for a read
operation by the external device, and T = HIGH for a
write operation to the LCA device. Typically, the
read/write control line (three-state control) originates
outside the LCA device and comes in through an
additional I/O block.

The input register data from the read/write register can

be read from within the LCA device but the data cannot E
be written to the LCA device. Writing the register from

inside the LCA device would require that two network

sources be active, which is not allowed.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-33
2

I/O TYPE: N-bit Read/Write Storage register
MACRO NAME: None
SCHEMATIC: T
¢ DIRECTION
CONTROL
1
PAD
D Q P REG 0OUT
—
PAD
D Q P REG 1 0UT
—P
« CLOCK
EXPANDABLE TO N BITS
CONFIGURATION:
All IOBs
I.Q
BUF:TRI
COMMENTS:
The I/O clock into each IOB is common to all IOBs along each
edge of the die. For best resource use, group the storage
elements along one edge of the die. Also, the three-state control
line controls the direction of data flow (T = LOW for read,
T = HIGH for write). This control line typically originates
off-chip and comes in through an additional IOB.

N-Bit Read/Write Storage Register

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.6.4 Shift You can easily construct shift registers with I0Bs by

Registers feeding the output of one I0B to the input of the next.
The figures below describe two shift registers: one
shifts to the left, the other shifts to the right. The shift
direction depends on the connections of each IOB's
inputs and outputs.

I/O TYPE: Shift Left Register (IOB-based register)

MACRO NAME: None

SCHEMATIC:

SHIFT IN
PAD
D Q
—pP
2
|
-
wn
PAD
D Q # SHIFT OUT
—D
v
- CLOCK
CONFIGURATION:
All IOBs
I.Q
BUF:ON

COMMENTS:

Notice that the routing of the output of a given IOB goes to the

intput of the IOB on the left (shift left).

Shift-Left Register (IOB-Based Register)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-35
2

Note: Because the I/O clock line of an IOB is common
to all I0OBs along each edge of the die, the I0B-based
shift registers are placed along one edge of the die.

The following figure shows a shift-right iOB-based

register.
I/O TYPE: Shift Right Register (IOB-based register)
MACRO NAME: None
SCHEMATIC:
A
PAD
D Q § SHIFT OUT

E | >

Q

E

2 - SHIFT IN

PAD
D Q
CLOCK
CONFIGURATION:
All IOBs
I.Q
BUF:ON

COMMENTS:
Notice that the routing of the output of a given IOB goes to
the input of the IOB on the right (shift right).

Shift-Right Register (IOB-Based Register)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-36 June 1988
2

4.2.6.5 Johnson An n-bit Johnson counter counts to 2n states as

Counters opposed to standard binary counters that count to 2"
possible states. Johnson counters have a variety of
uses in digital design, including low-modulo counters
and glitch-free decoders.

In an I0B-based design you can think of a Johnson
counter as special shift register. Only one bit changes
during a state transition, as shown in the following table
for a three-bit Johnson counter.

Transitions of a Three-Bit
Johnson Counter
000
100
110
111
011
001

You can build a Johnson counter of unused IOBs, as
shown below; however, it requires at least one CLB to
perform an inversion. The Johnson counter is
automatically reset to an all-zeroes state upon config-
uration or on a ~RESET pulse.

Refer to the application note on counters for more
information on creating Johnson counters in LCA
devices.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-37
: 2

I/O TYPE: N-bit Johnson Counter
MACRO NAME: None

SCHEMATIC:
PAD
D Q¢
—>
o A
D Q CLB
—
PAD
b Q
—D
CLOCK
EXPANDABLE TO N BITS
CONFIGURATION:
All IOBs
IQ
BUF:ON

N-Bit Johnson Counter (IOB-Based)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

e ——— ———

4-38 June 1988
2

4.2.6.6 Glitchless You can build a glitch-free decoder using I0Bs and
Johnson Decoder CLBs. The decoder is glitch-free because only one bit
' changes during a state transition. An n-bit Johnson

counter/decoder can decode any one of the 2n
possible states, or any number of contiguous states, by
decoding (ANDing) together just two of the appropriate
counter bits. You can also create counters of various
modulo and duty-cycle by using different Johnson
decoders. For example, the next figure shows the
schematic implementation of a Johnson counter/
decoder with various two-input decode states.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-39
2

001 | DECODES

000 | DECODEO

100 | DECODE 1

110 | DECODE2

PAD 111 |DECODE3
[011 | DECODE4

'——gl:')_cﬁ_ » DECODEO\
——OID——— _— DECODE 1

l f ZS CIB
_ DE 2
PAD LB oD“_ DECO! >DECODER
_ OUTPUTS
—D_ _ DECODE 3

SRS

D Q }—)" prcooes
— DECODE 5
—b —1 — y,

PAD

D Q

CLOCK

EXPANDABLE TO N BITS

Johnson Counter/Decoder

As the above figure illustrates, you can decode any
state of a Johnson counter, glitch-free, using only a
two-input logic function.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-40 June 1988

4.2.6.7 Linear Linear Feedback Shift Registers (LFSRs) are yet

Feedback Shift another modification of a simple shift register. An LFSR

Registers consists of a shift register that feeds back the
appropriate bits to the first bit position. An LFSR
requires some logic function in the feedback path,
usually an exclusive-OR (XOR) function.

LFSRs have numerous applications, such as imple-
menting the encryption and decryption functions in a
UART.

The next figure shows the schematic for a three-bit

LFSR that implements a modulo 5 (divide-by-five)

counter. An n-bit LFSR counter can produce a pseudo-

random sequence of up to 2M-1 unique states. By

adding logic to the feedback path, you can force the

LFSR counter to skip any number of states, from one E
to 2N-1. By forcing the counter to skip some number of

states, m, an LFSR counter can implement any modulo

as described in the following equation.

MODULO = (2"-1) -m

* n=number of shift-register bits
* m = number of skipped states

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 4-41
2

FEEDBACK
1
' Q
CLOCK
 / _
PAD FIRST BIT
s ol
p
1
PAD
D Q
D
1
PAD
D Q
p

Schematic for Modulo 5 LFSR Counter

The figure below shows the counting sequence for a
three-bit LFSR counter with an exclusive-NOR (XNOR)
in the feedback path. This figure also shows all possible
skip paths and the stuck state.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-42 June 1988

'STUCK' STATE

ONLY FIRST

BITS DIFFER @

Three-Bit LFSR Counting Sequence Skip Path and Stuck State

In the counting sequence there are two counter states
where only the first bits differ. For example, refer to the
states 101 and 001. By forcing the feedback logic to
invert the sense of the feedback into the first bit, the
counter can be forced to skip all of the states between
the two indicated values. You can accomplish this skip
by decoding (ANDing) the state just previous to the
state to be skipped.

Using the modulo 5 counter as an example, locate the
initial value that allows the counter to skip two states,
101 for example. By decoding the state 011, which is
the state just prior to the initial skip state of 101, you can
invert the sense-of the feedback into the first bit. The
counter then skips from state 101 to state 010,
implementing a modulo 5 counter. Using this method
and the proper feedback into the register, you can build
a counter of any modulo from 1 to 2n-1.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988 ' 4-43
2

Either device configuration, or an externally driven
active-LOW RESET signal, resets all storage elements
used in the LFSR counter to zero.

Be careful to avoid the stuck state in your designs.
This is the missing state in the 2"-1 counting sequence.
If the stuck state is included, the LFSR counter has 2"
possible states. The stuck state occurs when the
feedback path forces the counter into an ever-
repeating single state.

As a simple example, assume that you build an LFSR
counter with a two-input XOR feedback path, as shown
next. Upon configuration or an external active-LOW
RESET signal, the counter begins operation in the all-
zeroes state (000) and becomes stuck in that state due
to the type of feedback used.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

!

June 1988

PAD

PAD

PAD

Simple LFSR with a STUCK State

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

—

June 1988

4-45
2

An interesting situation occurs when all bits except the
last bit of the stuck state are decoded (ANDed together)
and included in the feedback path. Instead of counting
over a possible range of 2"-1 states, the extra decoding
causes the LFSR counter to count to all 2" states, as
shown in the following figure.

%
D_:) Q CLB é
L
_4
PAD _-D_D -
[—>
%
> a
D
_ -

An LFSR Forced to Count to 2" Possible States

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

You can build longer LFSR counters with higher
possible modulos and more complex feedback
mechanisms, but their discussion is well beyond the
scope of this chapter. However, the following table
presents some of the possible feedback combinations
for LFSR counters of three to ten bits.

1/0 Block

2n-1 7 15 31 63 127 255 511 1023
Modulo

Feed- 1,3 1,4 2,5 1,6 1,7 1,2,7,8 4,9 3,10
back 2,3 3,4 3,5 5,6 3,7 5,9 7,10
Options 4,7

into Bit 1 6,7

4.2.7 INCREASED
DRIVE-CURRENT
STRUCTURES

LCA devices are specified to have 4 mA worst-case
source and sink capabilities at VoL = 0.32 V and VoH =
3.68 V. However, you obtain increased drive current at
the cost of decreased voltage margins. For example,
the following table illustrates the effect on VoL and Vox
of increasing the drive current through a single 10B.

Output Current and Output Voltage Levels
for an I0B

4 mA 6 mA 8 mA

Vo 3.86V 354V 322V

VoL 032V 048V 0.64 V

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4-47

An alternate method of increasing the drive current is to
parallel the output drivers of two IOBs. Paralleling two
outputs enables the 10Bs to source-and-sink double
the worst-case current, with no reduction in voltage
margins. This method is diagrammed below.

< >
EXTERNALTOLCA | INTERNAL TOLCA

PAD

— OUTPUT

13

PAD

Parallel Outputs Have Increased Drive Capability

Caution: You should minimize the difference in
routing delay between the two I0Bs connected in
parallel. Excessive delays can cause output
contentions.

Chapter 5 discusses placement and routing.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

:

June 1988

CHAPTER 5

PLACEMENT AND ROUTING

PLACEMENT AND ROUTING......ccciiiiiiiiiiiiiiiiiiiiieiiiesisar i s sn s nnanenaas 1
5.1 OVERVIEW. ...ttt sate e e 2
5.2 INTERCONNECTION RESOURCES..........ccceiiiiiiiiie ittt ettt a e 3
5.2.1 GENERAL-PURPOSE INTERCONNECTION.......cccceciiirtenreneineenieeseenieeree e 3
5.2.2 DIRECT CONNECTIONS........coooiiiieiiiieneeeeee et se e ne e 6
B5.2.3 LONGLINES ...ttt sttt s a e s 10
5.2.4 CLOCK BUFFERS........cooi e e 16

5.3 PLACEMENT
5.3.1 PARTITION THE SYSTEM DESIGN
5.3.2 ANALYZE THE DATA FLOW

5.3.3 LOGIC BLOCK PLACEMENTctiiiiiiiiee ettt e e vren e e sie e e e sveae e e 23
5.3.3.1 Placement GUIeliNES..........cccormeireiiiiiieiiie et 24
5.3.3.2 Optimization GUIdeliNescccceeveiiiiiiiiriireeeeeee e 26

5.3.4 1/O BLOCK PLACEMENT ..ottt ettt st e e s saa e s 27

B5.3.5 EXAMPLESot ..29
5.3.5.1 Using Macros, Example 1c.ooeeiiiiiiiiiiceeeeer e 31
5.3.5.2 The Long and Thin Approach, Example 2.........ccccccevvviiriieenscennnnnn. 33
5.3.5.3 Trade Off Resources for Performance, Example 3...........cccccvruennen. 33

5.3.6 MODIFICATION GUIDELINES..........cccotiiiiiiieeitere s etere s eciree e snnae e s raeeeeeea 34

5.4 ROUTING ..ottt ettt ettt ettt ettt e e st e e e st e e sas b e e snes sabeeensteaseanens 37

5.4.1 MANUALEDITING ...ttt reee e e s s e e e 37

5.4.2 MANUAL PRE-ROUTINGootiiiiiiiiieriiee e eiree e e seteee e seesaee e sn e e nsrane e e ea 43

5.4.3 ROUTING GUIDELINES AND FUNCTIONScooiiiiiiieieiiiieeeerseres e ceeree e 49
5.4.3.1 Inputs and OULPULSccceeiiiiiiiiiiiiiieee et e e e e 49
5.4.3.2 High Fanout Nets.........cccccriiiiiiiiiiiecceee e eee e 51
5.4.3.3 Useful Routing FUNCLIONS.........ccoviiiiiiiiiiiiiiiie e 52

SWAPSIGo e 52
CLEARPINottt et e e e 54
ROUTEPIN and ROUTEcoiiiiiiiiee e eerreee e eieeee e 55

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 B.j
2

5.5 TIMING ANALYSIS, DELAY CALCULATORoccoiiiieieirite it sre e 56

5.5.1 CLBAND IOB DELAYS........tiieiiiiitiee ettt erter s srte e s e ssiree e e e s e e e e s ennnaeaa s 56

5.5.2 INTERCONNECTION DELAYS.......ooiiiiire et ectee s eeeee e e ente e e eenaee e 56
5.5.3 CLOCKED SYSTEM DELAYS.....cooooiiiiiieeniie ettt et e s snvessssaee e 60
5.5.4 SPEED GRADE DELAYS.......ooi ittt s sree s e s s e snane s sne 61
5.5.5 SIGNAL DEGRADATION........coiviiiiiiiieeiiiiieeeirere e ssvie s e e srrre e e s s svareeesesneneee s 62
5.5.5.1 Analysis of Intermediate Timing........c..ccccevievriiiriiiinieee e, 64

5.5.5.2 EXAMPIES..ccoiiiiiiiiiiiiiiireiiiiettiii i e e e eaaneenaeeaaa 65

5.6 SUMMARY ...t e e e et e s e e e ettt arre e s e e et e e e s e e e e eeta e earenannaaeeed 68

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5 PLACEMENT AND ROUTING

This chapter discusses placement and routing of LCA
designs. Placement and routing play an important part
in determining both the performance of your design
and how efficiently it uses the available LCA resources.

» The overview, 5.1, introduces LCA placement and
routing.

« The discussion on interconnection resources, 5.2,
describes different options for interconnecting the
CLBs and IOBs in an LCA design.

+ The discussion on placement, 5.3, explains how to E
optimize placement of CLBs and IOBs in a design.

« The discussion on routing, 5.4, explains how to
route, and how to edit the routing of, an LCA
design.

» The discussion on timing analysis, 5.5, describes
how to use the delay calculator to analyze an LCA
design's timing.

e The summary, 5.6, presents conclusions and
recommendations for placing and routing LCA
designs.

: 2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 5.1

5.1 OVERVIEW

5-2
e

As with other high density ASIC devices, the LCA
device offers placement and routing alternatives that
can affect the use and the performance of your final
design. In gate arrays and other factory-programmed
solutions, you can explore these layout alternatives
only through simulation. With the LCA device,
however, you can see and modify the placement and
routing at design time using the LCA development
system.

The LCA development system includes several
powerful capabilities that let you optimize your design
for performance and use of resources. This chapter
investigates these capabilities and the operations that
you can employ to optimize your design.

If you are not familiar with LCA placement and routing,
you should read this entire chapter. If you have some
level of knowledge about the LCA device and have
completed some design work, you may want to study
only those discussions that interest you.

Note: If you intend to use the Automatic Placement
and Routing software, APR, you should still read this
chapter.

APR helps you plan your design so that the LCA
resources are used as efficiently as possible. After
using APR to place and route your design, you may
need to optimize or complete the routing with XACT. All
of the following guidelines can help.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.2 INTER- Placement and routing are closely interrelated. You

CONNECTION make placement decisions based on efficient use of

RESOURCES interconnection resources. Any changes in placement
can change the routing and routability of a design and
consequently, impact the design's performance. To
make the best possible placement and routing
decisions, you must understand the capabilities and
trade-offs of the various types of routing available in an
LCA device.

This discussion explains the following available
interconnections.

. 5.2.1, General-Purpose Interconnection
+ 522, Direct Connections

« 523, Long Lines

» 5.2.4, Clock Buffers

5.2.1 GENERAL- General-purpose interconnection provides routing for
PURPOSE INTER- most signals on the LCA device. As shown below, it
CONNECTION consists of four horizontal metal segments between

adjacent rows and five vertical metal segments between
adjacent columns of the CLBs and I0Bs. The vertical
segments are the same height as a CLB; the horizontal
segments are the same width. A switch matrix at each
row and column intersection controls how the
segments are interconnected.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 5.3
2

l
E
I

& |

SWITCH
MATRIX
— . hann—
Al |
B = b'e —
C~— CLB - == CLB |
— - — -

K Y
SWITCH
MATRIX

| €
E
Il

General-Purpose Interconnection

A switch on each CLB or IOB output can connect the
output to the adjacent interconnection segments.
Configuration bits in the LCA configuration file set up
the switch connections in each matrix and on the block
outputs. Configuration bits also program the
multiplexers at the inputs of the CLBs and IOBs to
select the appropriate input connections from the
adjacent interconnection.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5§

5.4 June 1988

5-VERTICAL GENERAL INTERCONNECT
A —

~ —
1 2
8 3
1 2\
7 4 3 3
L 4-HORIZONTAL
—- GENERAL
’ . 5) . INTERCONNECT
/ 7 4 9) J
/ 5 15 /

FROM FROM
12345678 1234
O, WO T 17 0 ¢ W T T
2 {11t bl 2 11 gl
3 Tl 3 [1o
4 [0]1 1l R
5 11111 o0l 0
6 [T 1011 1 |1
7 ilolilitili Mo 1 = VALID CONNECTION
8 llidililol lo 0 = INVALID CONNECTION

Interconnection Switching Matrix

Special repowering buffers in the general-purpose
interconnection provide periodic signal isolation and
restoration for higher fanout and improved perfor-
mance. Each LCA device is divided into nine sections,
with buffers provided at the section boundaries. These
buffers are bidirectional because signals on a general
interconnection segment must be able to propagate in
both directions.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 5-5
2

Note: Repowering buffers are provided only for the
general-purpose interconnection; direct connections
and Iong line interconnections do not require them.

5.2.2 DIRECT Each CLB and IOB can connect directly to adjacent

CONNECTIONS blocks, as shown below. A direct connection is a
signal path with virtually zero delay, which does not
use any of the general interconnection or long line
resources.

T

E=
Eglfi{}
(B
hetr {1
L]

{1

1}

e

-
i3

n

1,
-—

-

T

T
—T

T

=

T

!EF E

Fi

—TL
-|

.7
jes!
sl

-1

G

" —

T

—

=1

o

H

Y Y Yttt

L

Bl ol o o,]

{k

S

i

[t

Direct Connection Resources

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-6 June 1988

For maximum device performance and minimum routing
resource impact, use direct connections as much as
possible. Direct connections exist primarily in the
vertical and left-to-right directions; therefore, you
should arrange blocks that represent stages in a
process sequentially: either vertically or from left to
right. Left-edge 1/O blocks naturally become data
inputs, while right-edge 1/0O blocks become data
outputs. Top- or bottom-edge 1/0 blocks can be either
direct inputs or outputs, with alternate blocks having
direct-out or direct-in paths. As an example, consider
the following circuit.

An 8-bit parallel-load shift register loads the data byte
into the shift register in parallel, then shifts it out one bit
per clock cycle. The following figure shows two
alternate implementations of this circuit.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 - 5-7
2

A Routing congestion

B Al direct connection used.

Ig:l.tl‘?s —\ Ig:f/?s
cu\n:p\\AB o ::E 3P @
- - = %ﬁioﬁf‘h :h@lh%ﬂ
iR = i
SURO[0 0 g8 8 000
%%ﬂ%$ﬂ%ﬂi3ﬂm3mﬂ$ﬁ%ﬂ
RN
%ﬂ%ﬂ%ﬂ%ﬂish“% & T
20,000 58 0 00
qzﬂ%:hﬂq,ﬂé7gz q:'hﬂ"nﬁ
ﬂ ﬁ‘ fj‘ fj‘ 7Pﬂ*ﬂeﬁ
ﬁjﬂﬂﬂﬁjﬁjﬁﬂﬂﬁlﬁi L O A oA

caused by placement choice.

8-Bit Parallel Load Shift Register

The eight CLBs used for the stages of the shift
register are arranged in a rectangular area in the
upper-left corner of the device, with general
interconnection providing many of the signal
paths.

The design uses direct connections exclusively,

which provides zero-delay paths from block to
block and allows higher performance.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

The general interconnection used in design A is
still available for other uses. Also, the LOAD signal
has been routed on a long line driven from a
directly-connected 1/O block. Long lines are
discussed next.

For the design shown in B, the following table of
worst-case delays shows that the maximum load
and shift clock rate for the 33 MHz device is 31.3
MHz, and 43.5 MHz for the 50 MHz device.

Partial Delay Report for Direct Connection Placement of an

From:
Thru:
To:

From:
Thru:
To:

* Total Clock-to-Clock Worst-Case Delay

8-Bit Shift Register with Parallel Load

For -30 (33 MHz) speed device

BLK GA (CLOCK to GA.X) : 20ns (20ns)
NET Sé (GAXto HAA) : Ons (20ns)

BLK HA (HA.A to SETUP) : 12ns (32ns)*

For -50 (50 MHz) speed device

BLK GA (CLOCK to GA.X) : 15ns (15ns)

NET S6 (GAXtoHAA) : Ons (15ns)
BLK HA (HA.A to SETUP) : 8ns (23 ns)

In designs that are not highly synchronous, such as
those in glue logic replacement, you usually cannot
exploit direct connections to the degree shown in the
example. However, if possible, use a direct connection
to route a signal from one block to another. Direct

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

59
2

connection considerations should be a primary factor in
block placement. For each direct connection, you
release a general interconnection resource that can
then be used in some other function. Extensive use of
direct connections can boost the logic use of the LCA
device by up to 30%.

5.2.3 LONG LINES Long lines are continuous metal segments that span
the width or length of the LCA device, providing
minimum-delay and skew for long distance
signal paths. Although the automatic router uses
long lines for general signal routing when other types of
connections are not available, you should direct the use
of long lines for specific signals. Ensure that long lines
are efficiently used by considering their capabilities and
interconnection potential. The following figure
illustrates the locations of the long lines and shows the
clock buffers that work with them. Clock buffers are
described under 5.2.4.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-10 June 1988

Global Vertical Long Lines /O Clock

g/OCk (Typical per Column) (1 per Edge)
uffer | \ | |
. \SE e S o B D
~—]_ Horizontal
! ; " L~ Long Line
il iz K w3 N %
g 880040)8
il el Kl El w6 Fi 2 ol Fii
01010 10 10 18 e,
dilligal] Eng Eul EW W E i °
1 2
l& ﬂ ﬂ fj ﬂ ﬂ ﬂ Alternate
i ¥ Clock Buffer
; -B_| clock
Oscillator

2064 Long Lines and Clock Buffers

Signals that can most effectively use long lines are
generally classified as data distribution, or low-skew,
control signals. Whether originating at an 1/0 block or a
CLB, data signals typically have several destinations
each of which uses the data differently. To follow the
natural data flow of the device, you should route these
signals on long lines with one bit per row or column.

An important consideration in data routing is the
direction of the data flow. In the 2064/2018 series of
LCA devices, internal signals must be unidirectional.
For systems that require bidirectional data paths, you
can use a pair of long lines in each column to carry input

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 5-11
2

data and output data, respectively. This bidirectional
signal routing requires that the data input/output pins
be located at the top or bottom of the device. The
following figure shows an 8-bit bidirectional data bus
with vertical routing on pairs of long lines.

Data IBit 0 D1 £|>2 D3 D|7
]
| | I
B, o & E'J:j]?l - | - | = g
Bit0 = 1 i
-Data In U
Bito T
-Data Out ﬂ ﬂ ﬂ ﬂ ﬂ

2}

fF 3
CcC

il i RN {1 |&

00 oo g |

cbe

oo oo 7

i}

10000 |2

£10 |0 {1 {1

i 3F

clndp g lndn o lg g 17

B oo ey g cocicicich ooy o) e 0 f§

Bidirectional Data Bus Using Long Lines
Control signals, such as clocks, reset/set controls, and
count or shift direction controls may have critical timing
requirements between their source and their multiple
destinations. For these signals, you must control skew
to ensure that all of the destination blocks perform the
desired function at the same time or on the same clock
edge. If possible, you should arrange destination
blocks in a single column or row and you should route
the control function onto the appropriate long line. The
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5
5-12 June 1988

figures below show two different implementations of a
reset function generated in a logic block and routed to
four destination blocks. You can see the skew
reduction associated with the use of the long line from
their accompanying tables.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 5-13
2

Delay: bidibus8.1ca, XACT 1.3

From: BLK BC (BC.X) : Ons (Ons)
Thru: NETRESET (BC.XtoHD.B) : 24ns (24ns)
To: BLKHD (HD.B) : Ons (24ns)
From: BLK BC (BC.X) : Ons (Ons)
Thru: NETRESET (BCXtoED.C) : 14ns (14ns)
To: BLKED (ED.C) : Ons (14ns)
From: BLKBC (BC.X) : Ons (Ons) 21ns SKEW
Thru: NETRESET (BC.XtoDD.C) : 12ns (12ns)
To: BLKDD (DD.C) : Ons (12ns) /
From: BLK BC (BC.X) : Ons (Ons)
Thru: NETRESET (BC.Xto AD.C) : 3ns (3ns) /
To: BLKAD (AD.C) : Ons (3ns)

DELAYS FOR GENERAL INTERCONNECT

“l::lE: (e e o e | e f e |

m

tr

Laitd i3 L3131 818148

g

L o i L0100

Signal Routed Via General Interconnection

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

June 1988

Sl e o o o o o o e o

From:
Thru:

To:
From:
Thru:

To:
From:
Thru:

To:
From:

Delay: bidibus8.1ca, XACT 1.3

BLK BC
NET RESET
BLK HD
BLK BC
NET RESET
BLK ED
BLK BC
NET RESET
BLK DD
BLK BC
NET RESET
: BLKAD

(BC.X)
(BC.X to HD.B)
(HD.)
(BC.X)
(BC.X to ED.C)
(ED.C)
(BC.X)
(BC.X to DD.C)
(DD.C)
(BC.X)
(BC.X to AD.C)
(AD.C)

Ons (Ons)
S5ns (Sns)
Ons (5ns)
Ons (Ons)
Sns (Sns)
Ons (Sns)
Ons (Ons)
Sns (Sns)
Ons (5ns)
Ons (Ons)
S5ns (Sns)
Ons (5ns)

DELAYS FOR ROUTING VIA LONG LINE

G LG CAC) CACICIC]

tafatatatatatata

s | o

e e N e R B B R
e e R

&£ &F o - o

d

{}
0

[] | 3]
& | & -

Bracacacatacataca

O

)

p{a{a{a{a{3{a{ia{3

/

Signal Routing Via Long Line

Ons SKEW

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-15
2

5.2.4 CLOCK The LCA device has special-purpose on-chip buffers to

BUFFERS provide high-fanout, low-skew signal distribution. You
normally use these buffers for clock signals; however,
you can also use them for any general-purpose signal
that requires high-fanout or low-skew routing to
multiple blocks. Clock buffers work with specific
long lines for routing on a column basis. The global
clock buffer, located in the upper-left corner of the LCA
device, directly drives a long line in each column. The
alternate clock buffer, located in the lower-right corner,
drives a horizontal line that can be selectively
connected to a long line in each column. The following
figure shows the buffer locations.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-16 June 1988

Global Vertical Long Lines I/O Clock

Clock (Typical per Column) (1 per Edge)
Buffer \ \ | |
\

\¢ &) '

FIry [

]

| Horizontal
L+~ Long Line

.
ealeafealealealeales

G NN Y

N Direct
N\ Connect
(CLB to I/O)

ey

ISt t CaEats

(I O e
(T N N - - ”2
I T4 N N - - -
yom: 1w ¥ 4 - o

Alternate
|1~ Clock Buffer

=N S g facaciach cach

P

| Clock
Oscillator

2064 Clock Buffers and Long Lines

In systems with a single common clock for all state
elements, you can best distribute that clock using the
global buffer. More difficult cases involve systems with
multiple clocks and other critical control signals. If a
system has two separate clocks, one clock can use the
global buffer and the other can use the alternate buffer.
This is particularly true when one clock is derived from
the other.

Note: When you use the crystal oscillator, its output
drives the alternate buffer directly; therefore, it can be
the primary clock for the system.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

—

June 1988 5.17
2

In any case, you should drive the predominantly used
clock with the global buffer.

For systems requiring more than two clocks, you should
still drive the primary clock with the global buffer. Route
other ciocks onto vertical long lines and arrange their
respective CLBs in columns adjacent to the long line
that carries the appropriate clock signal. You can use
direct connections to drive these column-oriented
clocks either from an adjacent (to the left) CLB, or from
an /0 block on the edge at either end of the column.
When selecting the long line to be used, note that one
of the nondedicated vertical long lines can be
connected to the CLB K inputs, while the other cannot.
Since most clock signals are best routed into the K
input, you should choose the former long line.

You can also use one of the clock buffers to route a
control signal to many CLBs or IOBs. By placing the
source of the signal near the alternate buffer, you
provide a low-delay path from the source to the buffer,
and then to all the destination CLBs or IOBs. The
following figure shows a shift register that has been
placed and routed using both buffers: the global buffer
for the overall shift register clock and the alternate
buffer for a low-skew shift/hold control signal. If the
shift/hold control logic timing is not well controlled,
skews in the control signal, as seen by the blocks, could
cause a partial shift. In a partial shift, some blocks could
get the signal while others may not get it in time to hold
relative to the next clock edge.

Note: This timing skew becomes less of a factor in
choosing routing for control signals as you relax your
timing constraints.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3 PLACEMENT Placement and routing determine how efficiently you
can use an LCA device for a particular design.
Placement of logic in an LCA design primarily
involves determining the relative locations of
the functions that most effectively use CLB,
10B, and routing resources. Efficient use greatly
simplifies signal routing within functions and between
groups of functions.

The following discussion explains how to accomplish
efficient logic placement in your LCA designs. First, it
provides some guidelines for system-level design
partitioning to help you determine what parts of your
system to implement in an LCA design. Then, it
explains how to analyze the data flow for your LCA
design. Finally, it describes CLB and I0B placement,
and gives some examples.

This discussion has the following organization. E

» 5.3.1, Partition the System Design
* 5.3.2, Analyze the Data Flow

+ 5.3.3, Place the Logic Blocks

* 5.3.4, Place the I/0 Blocks

+ 5.3.5, Examples

* 5.3.6, Modification Guidelines

5.3.1 PARTITION You must partition your system-level design before you
THE SYSTEM can implement an LCA design. Partitioning is a two-part
DESIGN process. First, you separate your design into external

and internal LCA functions; then you group the internal
LCA functions into related clusters.

The following are useful guidelines for determining
what part of your design to implement in an LCA device.

* Implement standard LSI or VLSI functions with
appropriate components.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 5-19
2

5.3.2 ANALYZE
THE DATA FLOW

e Use an LCA device to implement non-standard
VLSI functions if a large portion or all of the LCA
device is available for that function.

* Piace required portions of standard VLSI
functions inside an LCA device.

* Place random SS| and MSI functions inside an
LCA device. You can implement functions or sub-
functions that require four or fewer inputs, two or
fewer outputs, and a single storage element using
a single CLB.

« Group all parts of a complex function inside one
LCA device, instead of placing them at remote
locations in the circuit; this simplifies
implementation and debugging.

* Asarule, use MSI components to implement a
function with a large fan-out or fan-in and with few
logic levels. Decoders and multiplexers fall into
this category.

After determining which part of your system design to
place in an LCA design, you must analyze that part of
the design to determine optimal data flow. You analyze
the data flow of your design as follows.

To make placement and routing decisions, you
evaluate the sequential nature of the logic to be created
in the LCA device. Examine the data flow to determine
the best placement of required logic blocks, and to
determine the most effective signal routes.

In general, data processing in the LCA device flows
most naturally either from left to right or vertically; flow
up and flow down are virtually identical. To minimize
interconnection, arrange structures such as
counters in nearly square rectangles. Implement

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

registers in columns of CLBs to take advantage of the
direct interconnection between adjacent CLBs and the
common clocking in columns of CLBs.

If you must implement several independent
functions, you should position the function that
requires the most CLBs so that the data flows through it
from left to right. The exceptions are counters and shift
registers, which should be arranged in columns to share
common clocking.

To illustrate data flow analysis, consider the block
diagram below.

8-BIT DATA BUS
TORAM

!

DATA PATH
> SELECT
8-BIT DATA BUS
TO PROCESSOR
‘__74_. PROCESSOR DATA
BUS INTERFACE
8-BIT ENCODE SERIAL
SHIFT REGISTER —% pataour
CONTROL BUS | ADDRESSDATA
CONTROL ARBITER AND 12-BIT ADDRESS
"—IL—' DECODE CONTROL LOGIC GENERATOR
12-BIT PROCESSOR
ADDRESS BUS
Z 12-BIT ADDRESS
LATCH 12 x 2:1 MUX FOR
ADDRESS TO RAM
12-BIT ADDRESS BUS
TORAM

Serializer Block Diagram

This diagram shows a dual-ported memory interface
used as a high-speed serializer, which is a typical
application in video pixel processing or serial

2000 SERIES LCA DESIGN HANDBOOK CHAPTER5

June 1988 5.21
2

communications systems. In the serializer, both the
serial-data output device and the microprocessor must
have access to the memory. In analyzing the data flow,
you can see a need for an 8-bit bidirectional path
between the memory and the microprocessor, as well
as an 8-bit path from the memory to the serializer. The
serializer requires an 8-bit parallel-to-serial data flow.
The interface generates the memory addresses
internally for the serialization process; external memory
addresses are supplied by the microprocessor. The
memory addresses are always outputs to the external
memory.

The data flow paths are summarized below.
¢ 8 bits of data from microprocessor to memory
* 8 bits of data from memory to microprocessor
+ 8 bits of data from memory to serializer

* 12 bits of address from address generator to
memory

* 12 bits of address from microprocessor to memory

Clearly, the design requires a bidirectional data path
between the memory and the microprocessor. This
same path must supply data to the serializer. You can
view the serializer as a process perpendicular to the
data flow because it serializes parallel data. The memory
address path is wider than the data paths but it is
unidirectional and has a common connection only at the
output point. The following diagram shows a flow
analysis of this design example.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.22 June 1988
2

5.3.3 LOGIC

Based on this flow analysis, place the 8-bit data path

PROCESSOR

DATA

DATAIN
PROCESSOR

P ToRrRAM
DATA

GENERATOR

DATA OUT & FROM RAM
A
SERIALIZER SERIAL
&ENCODER |—— DATA OUT
CONTROL FROM CONTROL
PROCESSOR —® LOGIC
ADDRESS FROM
PROCESSOR =" CONTROL ADDRESS
ADDRESS — [0GIC —> o

Data Flow Analysis of Serializer

vertically to take advantage of direct connection in the
up and down directions. Then place the serializer,

which could be connected in a left-to-right or vertical

orientation, perpendicular to the vertical data path and
use the direct connection left-to-right capabilities.
Route the address path between CLBs, which are near

the edge of the device, and the adjacent I/0 blocks,

that drive the address. This can be done because the
path is unidirectional. Use direct connection as much as
possible.

You should follow the general guidelines below to
determine the block placement and the routing
alternatives within the LCA device.

One of the most critical elements in achieving an

BLOCK efficient design with an LCA device is the proper
PLACEMENT placement of CLBs and IOBs. CLB placement is more
critical than 10B placement for two reasons.
+ it offers more degrees of freedom
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5
June 1988

5-23
2

5.3.3.1 Placement
Guidelines

the final CLB placement can dictate most of the
I0B placement.

You can improve both the performance and the routing
of your design by proper placement. Good placement
relieves routing problems and generally results in good
initial performance, minimizing the placement and
routing iterations.

Note: Maximizing the use of the direct connections
between blocks is an important goal.

The following guidelines should help you achieve
optimum placement efficiently.

1.

Consider the various functional elements in the
design, the shapes that each can take, and their
relative interconnection.

Try the placement of these functional blocks on a
printout of a blank LCA device to see how they
might fit together. The layout in the following
figure was obtained using this basic analysis
technique.

Examine the internal and external inputs and
outputs for each block of logic.

Place blocks with a high number of common
interconnections near each other.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.24

June 1988

MoPO Mi1P1 M2P2

M3P3

M4 P4 M5P5
il O QR QD QGG G0

M6P6 M7P7—"]

L) CICF—f—

s |

taiataf{stacatais
tatatatatacaias
(AfAatat3{a{a{Al3A
Biaiais{aa{ais

Alaiaia{aiaiaia

3333 {3 i3
o= - Y- T - -

e e alte C3 caloajee

e e

ol) Ced

o o

i :::1&1\} n::n@

| Interleaved Processor/
Memory Data Buses

- 8-Bit Parallel Load

Secondary
"Data Register

| Ram To Processor
Data Hold Register

(Write
Strobe

#Chip
Select 2

|_Processor Control
Bus Interface Logic

NChip
Select 1

\Chio
Select 0

NManchester
Encoder

\

XTL1

\)
Interleaved Processor/ 12-Bit Binary ~ Address/Data Arbiter 12 x 2:1
and Control Logic

RAM Addresses

Serializer Placement Plan

Address Counter

Address MUX

XTL2

When you consider the relative placements of individual
CLBs and I0Bs, remember the following.

3. Use direct connections wherever possible.

4. Arrange related groups of logic blocks in
rectangular shapes, if possible.

5. Place CLBs and IOBs with the greatest number of
interconnections next to other blocks at the
perimeter of any rectangular shapes.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5-25
2

5-3-3-2 optiI‘I'Iiza'
tion Guidelines

Arrange logic blocks in a long, thin shape only
where data flow through them to some other logic
that is perpendicular to the shape's long axis.

Place blocks of control logic or miscellaneous
functions that have minimal external I/O near the
center of the device.

Minimize the number of different clocks in the
design where possible, particularly those clocks
generated internally. A completely synchronous
design with a single clock that uses the global
clock buffer is ideal.

Many of these recommendations are similar to those
applied to the layout of printed circuit boards using
SSI/MSI devices. The examples following the
discussion of I/0 Block placement, below, should help
illustrate effective placement.

The following guidelines will help you optimize the
placement of CLB designs.

1.

Use only necessary functions. Many designs use
only a portion of a standard-logic part and disable
the unused inputs. LCA-based designs
should never include unused inputs of
standard-logic devices.

Use the function, not the equivalent logic
gates. Many standard-logic designs use multiple
gate levels. LCA-based designs are not subject to
the same logic-gate restrictions; you can create
any function of three or four variables, regardless
of complexity, with one CLB.

Share CLBs wherever possible. Two

independent functions can share one CLB. For
example, a CLB configured as a data latch uses

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3.4 1/0 BLOCK
PLACEMENT

one input and one output. The remaining three
inputs, the remaining output, and the output of the
latch can be used to perform another function. A
data-latching function and a function that uses the
latched data can both be incorporated in one CLB,
which effectively expands the CLB's four inputs to
five.

Group common intermediate outputs into
one function. If the same sub-function is
performed for several inputs, CLBs are wasted.
Perform the function to generate the intermediate
output and use the single result in each place
required. A common technique is to divide the
design into functional pieces and look for
commonality.

The placement of I/O blocks usually is dictated by the
placement of the CLBs connected to them. However,
you must consider 0B placement constraints because
they can have a significant impact on overall placement
and routing. General guidelines for I/0 block placement
are listed below.

1.

Locate I0Bs adjacent to the CLBs that use the
most associated signals.

If 1/0 blocks are being used as buses, note the following
considerations.

2a.

2b.

Locate data buses that are to be latched on a
single device edge to allow use of the flip-flops in
the 1/O block, and to share the single 1/0 clock on
the edge of the device.

Limit address buses to the top of the device if the
pins are used during configuration as the external
EPROM/ROM address lines.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

p—— —

June 1988

5-27

3. Make unused IOBs data or shift registers.

Note: The IOBs must have available the 1/0 clock on

[that edge of the device.

When specifying IOB usage, use the following
guideline.

4. Note which pins have special functions during
configuration. In general, you should use pins that
are inputs during configuration as user inputs
during operation, while using pins that are outputs
during configuration only as user outputs during
operation. Careful specification generally
eliminates any possible contention between
configuration use and operation use.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3.5 EXAMPLES The following examples illustrate many of the placement
and optimization guidelines discussed above. This
sample design is the data serializer used previously for
data flow analysis. Individual elements of the design are
used to illustrate each topic. The first figure below
repeats the LCA layout of the data serializer. The figure
following it shows the data serializer block diagram.

INTERLEAVED PROCESSOR/MEMORY DATA
MOPO Mi Pi MeP: M3 MiP4 M6P5 M6 PG M F7

B 5 £ I corrny fc g o [

8- Bn Parallel Load Shift Fleglster Manchester
ﬂ , Encoder
Secondary Data Fleg/ster Write

Strobe
/

Chip
/ Select 2

B
Processor Control
Y Bus Interface Logic
Chip
Y Select 1

Chlp
L/ Y Select 0

f:Eﬁi‘B

Ram To Processor Data Hold

14
Address/Data
Arbiter

NN
i
3| | b £
BRIV
i
i

48
i
{

ta [t €5)
=1

3 ﬁ ﬂ L 12-Bit Binary
ﬁ ﬂ ﬂ : %/,xm
008448

01 o1 LCCTc) cic I‘.':.‘ltf.'lll'.".:ll:'ﬂ:'ﬂ

]

12x 2:1
Address MUX

mmw'mﬁammﬁ:ﬂ

tatatatats

i e i b o Bl

o
o
Ao

Interleaved Processor/RAM XTL2

Serializer Placement Plan

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 : 5.29

8-BIT DATA BUS
TORAM
DATA PATH
> SELECT
8-BIT DATA BUS
TO PROCESSOR
PROCESSOR DATA
—~—>| usiereace
8-BIT ENCODE SERIAL
SHIFT REGISTER % pATAOUT
CONTROL BUS | ADDRESSDATA
CONTROL ARBITER AND 12-BIT ADDRESS
DECODE CONTROL LOGIC GENERATOR
12-BIT PROCESSOR
ADDRESS BUS
Z 12-BIT ADDRESS
LATCH 12 x 2:1 MUX FOR
ADDRESS TO RAM
12-BIT ADDRESS BUS
TORAM

Serializer Block Diagram

2000 SERIES L.CA DESIGN HANDBOOK CHAPTER 5

5-30 June 1988

5.3.5.1 Using Macros are one method of implementing individual

Macros, Example 1 functional blocks. The address generator portion of the
serializer is shown below. This function is a 12-bit binary
counter that addresses the external RAM holding the
data to be serialized. In generating the counter, this
example uses macros, each of which represents three
bits of the counter.

E=
{}
{}
{
{}
{}
{}
{}
{}
{
{}
{1
{}
{1
{}
{}

c3

[—

F £ ol
P

F? £ P
Fd £ F F

i

f P

!

!
Lo

!

taiaiataia{atatad
" ;

o
- < < o O -
R R R R B

R o o o o o e o e R R

Latatatatatatats

EIEN GREPREEEE e

{
{
{
{
il
{
{
{3
ik

12-Bit Address Counter

The placement of the logic blocks in the macro
illustrates the advantages of rectangular placements.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

S — po— — —— —— m—— -

June 1988 5-31
2

The next figure shows the 3-bit macro C8BCR
(Counter, modulo 8, Binary sequence, Clock enable
and Reset synchronous controls) placed in two ways.
Placement A is linear. Placement B uses the
recommended placement from the LCA Macrocell
Library manual.

Placement B: Placement A:
Local Routing Does Not Routing Congestion Makes Other
Block Other Routes Vertical Routes Difficult

BAEE AR A AR

3-Bit Counter Macro (8BCR) Placement Alternatives

Notice that in the linear placement, all of the signals
must travel the height of the macro to reach the terminal
count (CTC name) block. This placement congests the
routing in the columns to the left and right of the column
containing the macro. The rectangular placement
shown in B makes the routing more compact and
provides additional space for routing around the
module. Also, the square structure allows easier
placement in a dense design.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-32 June 1988
2 .

5.3.5.2 The Long An example of the long and thin approach is the data

and Thin Approach, shift register at the top of the data serializer shown in

Example 2 discussion 5.3.5. The data comes in from the pins at
the top and flows into the blocks of the shift register. If
these blocks are placed in a traditional rectangular
shape, some bits would have to travel long distances to
reach the appropriate shift register block. With this
long, thin arrangement, the secondary data register in
the B-row of CLBs can receive the data as it flows from
the pins through the shift register.

The address multiplexer also uses long, thin shapes,
with emphasis on the direction of the information flow.
The next figure shows how two different bits of the
multiplexer use the direct connection paths. Direct
connection can reduce the congestion in general
interconnection and improve placement. The initial E
placement has alternate /O blocks connected either to
the memory or processor address bus. After examining
the direct connection, use it by modifying the position
of the processor bus interface I/O relative to the
multiplexer block. This provides an input to each block.
Along the bottom, place the processor blocks to the left
of the memory block of the same bit, thus taking
advantage of direct connection for input and output

paths.
5.3.5.3 Trade Off In some cases, you may need to make placements that
Resources for trade off resource use for performance. In the following
Performance, example, the primary performance-limiting element is
Example 3 the speed of the address generator, in particular the 12-

bit counter. The initial serializer placement plan shown
in discussion 5.3.5 uses macros to build the counter.
Macros let you create the function quickly but may not
provide optimum resource use or performance.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 5-33
2

Processor
Address Bit

Direct<

Connection

Processor
Address
Bit In

RAM Address
Bit Out

Use of Direct Connection in Address MUX

Each 3-bit section of the counter can operate at high
speed because only a single logic function is required
between clock edges. However, additional logic block
delays inserted between each 3-bit stage reduce the
overall performance. To obtain higher performance,
you could generate the toggle condition of each bit in
the counter in the minimum number of logic levels. This
optimization requires approximately 18 blocks and
much more care in placement and routing.

5.3.6 MODIFICA- If your initial placement of logic and I/O blocks falils to

TION GUIDELINES produce a design you can readily route, you must
modify the placement. Some guidelines for doing this
are described below.

If congestion exists in the middie of the placement,
make the following changes.

1. Move the blocks inside the congested area to the
outside and move the outside blocks inside. This
method of turning it inside out normally
alleviates congestion, except in cases where the
original exterior blocks have a large number of

2000 SERIES LCA DESIGN HANDBOOK CHAPTER §

5-34 June 1988

connections to resources outside the area being
examined. The next figure shows a block of logic
that has interior congestion and an alternative
placement that relieves the congestion.

LS R NS NS NS
“ ooty
% xb xe xh % :b GH l:h G
’ i
s = ; m B T
I 4°
Congestion
Before Block Swapping

Congestion

After Block Swapping

Block Swapping to Relieve Congestion

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988 5.35
2

2. Spread I/O connections out, rather than clustering
them together. This often relieves congestion
near the edge of the device. Some I/O-intensive
applications can benefit from interleaving related
I/O blocks, which is done in the address bus area
of the next figure.

Processor E ﬁ
Address Bit L %

Bl o
Direct .Ii
Connection < — .

g
e P [P
Processor % = lm
Address - |
Bit In '
RAM Address
Bit Out

Use of Direct Connection in Address MUX

3. Orient the majority of signals vertically to improve
the placement for groups of logic with horizontal
routing congestion. Remember, there are
effectively 9 vertical connections in each column
(five general-purpose, three long lines, and one
direct connection to the block above and below),
and only six horizontal connections in each row.

4. Move data register functions out of the logic block
areas and have unused I/O blocks perform that
function. This approach is particularly effective for
function control registers written with an external
data bus. You can use pins adjacent to the data
bus input pins for direct data input connections.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-36 June 1988
2

5.4 ROUTING This discussion explains marual routing and describes
how to edit and pre-route your design's interconnection
manually using the LCA development system.

The LCA routing resources consist of general purpose
interconnections, long lines and direct connections
from a block to adjacent blocks, and special buffers.
You must balance the use of routing resources with the
partitioning and placement of the logic to generate a
complete design.

5.4.1 MANUAL With some LCA designs, you must interact with the
EDITING routing process to perform any of the following tasks.

* Relieve congestion to route a signal.

* Force use of selected resources to meet specific
performance or use criteria.

* Modify existing routes to tune delays for a
particular requirement.

« Complete the routing on a dense, partially-routed
design.

EDITNET is the XACT design editor command used to
manually route signals or nets. EDITNET selectively
enables or disables any of the programmable inter-
connection points (PIPs) on the device with the
following operations.

1. Select the EDITNET command, either with the
mouse and cursor or type EDITNET from the
keyboard.

2. Specify the net you wish to manipulate manually.
The net must have the source and destination
connections on block pins defined.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 5-37
2

3. Move the cursor over a PIP for the desired path
and press the SELECT button on the mouse to
toggle the selected connection.

. If the PIP was previously connected, pressing
SELECT disconnects it.

* Ifit was not connected, pressing SELECT
connects it.

To modify the switching matrices located where the
general interconnection segments meet, you must

4. Select a pair of magic pins, which are connected to
the switch matrix.

The table below shows the allowed connections for the
various switching matrices. You make or break con-
nections by selecting the desired pair of pins.

Selecting the second pin breaks current connections or
connects unconnected pins.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-38 April 1988

5-VERTICAL GENERAL INTERCONNECT

A
'z N
1 2
8 3
1
7 4 3 3
R 4-HORIZONTAL
6 5 G
T 8 3 4 4 INTERCONNECT
/ 7 4 A >
/ I

FROM
1 2 3 4 5 6 7 8
bLo)
1 of1]Jo 11|11
210 111101
3111 0Ol1]o0 1 1
4fof1]o 11111
St 1] o|l11]o
s{:1:1ol1 10 nE 1= VALID CONNECTION
0= INVALID CONNECTION
T11fjol1|1]|1]1 0
81111]J1]of1]o

Allowed Connections Through Switching Matrices

2000 SERIES LCA DESIGN HANDBOOK CHAPTER §

N—

April 1988 5-39
2

The following figures show the sequence of operations
for editing connections in the switch matrices.

gja"ﬁ"t s B T e e B 1 1 s R £ 1
GA GB GC GD GE

)

HC HD

Z

¥
R
R
F

GB GC GD GE

=l
IL

HC HD

Point to Second Pin [Magic 4] and Select

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

~

[T Oy I s I 1 O D
GA GB GC GD GE
_'I'l' &, . '} H] - L] H
-Ir'ﬂl"Fa'u {L_%:_. :c:: “n 1:: “u
LR1 a o n.. a o B
AL eus| |[MB HC| }—u-e— | | [AD Eéi HE
| o | i i |
TH=sTH P s e
Result - Disconnect by Point tg First Pin
[Magic 4] and Select
11| Oy I e B B | B 1
GA GB GC GD GE

e
=

1
HER
15
n;r'-lltl
g

Hyl

HE

=

HC HOY . o
[eh——

b _—lé;%%,-—ﬁ%

‘ 7/
Point to Second Pin [Magic 7] and Select

I

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 - 5.41
' 2

Result

IR I e I e B3]

% GB I FGC I“_‘GD m“h‘GE
s in : - 11 = i o 1
ksl i& 25 {I[3F

e gt B Rl] B Ll | e g | eomoncd B

f ==y s e A==

Sequence of Operation for Connecting Through Switch Matrices
When you have made all the connections,

5. Select the DONE option. The XACT system
automatically calculates the delays associated with
the interconnections and makes them available for
display. The delay from the source of a net to its
destination is shown whenever you position the
cursor at a destination pin.

When you use EDITNET to make a connection, this
error message may appear: connection shorts pin zz.v .
This indicates that with this connection you have
assigned a signal to a block pin that has not been
assigned to the net being routed. If you must connect
that pin to the net, assign it using the ADDPIN
command.

Although you cannot directly connect certain pairs of
switch matrix pins, you can use a combination of valid
connections to accomplish the desired routing. For
example, a connection from pin 1 to pin 4 is not valid;
however, you can accomplish it by connecting pin 1 to
pin 5, and pin 5 to pin 4. This routing connection

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-42 April 1988
2

5.4.2 MANUAL
PRE-ROUTING

causes an additional switch delay, yet may be essential
for routing in a congested area.

Some additional routing guidelines are given below.
« Do not route through inputs and outputs.

» Do seed the routing for a net before using auto-
routing.

« Do place pre-route selected nets onto long
lines. .

» Do route high fanout items first or last.

Pre-routing, or seeding the routing, is
explained below.

An effective technique to improve the resource use of
the XACT router is to manually pre-route or seed the
routing of particular nets prior to using the router. This
seeding can take two forms, depending on the desired
effect.

Even if you want to use a particular long line resource
for a signal path, based on delays or general placement,
the router typically does not route the signal onto that
long line if an alternate path is available. One technique
is suggested below.

. Force a signal onto a long line to pre-route it onto
the long line before you route the signal, as
described in the stages below.

ﬁa. If you have already entered the net, use
UNROUTE or CLEARPIN to deconfigure the
routing for each pin on the net.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

5-43

1b. If you have not entered the net, disable the
automatic router with the AUTOROUTE OFF
command on the PROFILE menu and define
the net with the ADDNET command. This
avoids the delays caused by routing each pin
and the necessity to unroute them after they
are entered.

2. Use EDITNET to choose the net to route on
the long line and turn the appropriate
switches on or off to get the signal from its
source block onto the long line.

3. End the EDITNET command by selecting
DONE. A warning message indicates that
the net is not routed.

4. Select the ROUTE command from the NET
menu, and when prompted, select the net
you manually routed onto the long line. The
router then completes routing that net.

The technique above is illustrated in the two figures
below. In some cases, where the destination pins are
not directly accessible from the long line, the router still
does not use the selected long line. In these cases you
may need to use both techniques |, above, and I,
below, to force the use of the long line.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

:

i
i
Y
0

[
| &

CEE

Ff &F
|9
!

G- o

P

t:ELtiEL s - -
.
g

!

!

E

!

ﬁﬁﬁﬂ

| =} g | =] o
g:[a-af{ﬁ-a-a-g

!

£ PP
i
i
B B N N = B 2
Y o P P P PP

0

S

C:ll'-":J l:illffl E':H:fl [[

Output DB.X Routed via General Interconnection

0400004
0 0~ 0048
gt o404o04od48

After UNROUTE Command; EDITNET has Forced Output onto Long Line

e

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 ’ 5.45
, 2

i
i
i
i
i

S S e

s o - -

] N) o s e
e e - e

[o 2= 2]

F R e | | e

Result After Route of Signal, Using Long Line

In some cases, you add pins to a net throughout the
course of a design. If you enable the XACT interactive
router throughout this process, each pin is routed as
you add it. The resulting net routing can become
contorted and interwoven because each pin is routed
independently. Extreme cases can have loops in the
interconnection, or very long delays, as the source
block becomes more heavily loaded and the routing
more degenerate. Working with the automatic router
enabled can also cause severe congestion in some
areas, as the routing resources are unnecessarily
consumed by the multiple routes. To help relieve this
and similar multi-destination problems, you should use
the following guidelines.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-46 April 1988

Il. Enter the destinations in a sequence that
progresses from the source location to the farthest
destination. Remember, the router completes the
routing from source to destinations in the order
specified.

To avoid the necessity of entering destinations in
location-specific sequence for large nets, you can do
the following.

1. Enter the net into the design with the router
disabled, or unroute the net as described in
1a, previously.

When you finish entering all of the destinations for the
high fanout net, do the following.

2. Use EDITNET to manually route to the
destination most distant from the source. If E
the routing to this pin does not use a long
line, you can use ROUTEPIN to accomplish
the initial routing. ROUTEPIN is described
under Useful Routing Functions,
5.4.3.3.

3. Use the ROUTE command to let the router
complete routing of the other destinations in
the net.

The following figure shows the use of this
technique for a net with many destinations.
Another method to avoid entering destinations in
the location-specific sequence is to use a text
editor to modify the sequence of the destination
pin specifications.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 5-47
2

SO sl el s
fd P P P P
mﬂﬂ@ﬂﬂﬂ
._“wn_u P P P F &F
O eI ENEIEIED
._H_mn_u ! F P P
miiﬂq £

pf & g & F
mﬂiﬂﬁuﬂuﬁu
muﬂ_ £ PP

§ TIEIEIEIEIEI
gf F g F PP
g el B EY B
o %ﬂu -
DEIEIEIEIEIE]D
Of f £ £ £ &

0 EIEDEIEIEDED

P ! & & &
= et

Routing Without Seeding

oo R 53 s e o e s e e

& & & & &
EEIEES B E ED
.Dmmu & & ! &P
B EIEIEIED I ED
._.u._mnn ! ! df & &

§ 53 EIEDED ERED
pf & & P

O E}EIEIEIEYED
ﬁ_mnm_ P & o B

m .

o EIEIEIEIE]
.hw_ua & " & &

P el o e
ﬁwnn &P G o & !

EIEIEIEIEIED §

m%%

f £ £+

0EIEITIEDEIED

-

o -

= e

0.
a

&
A
g
bl
(]
«

BOOK

2000 SERIES LCA DESIGN HAND!

April 1988

0

lllegal Connection Through lllegal Output Connection.
Input Line. Destination GD.A Destination GC.A is Not
is Not Connected to Source HB.X Connected to Source HC.X

N ottt

o o 4 B .) 7 a |
e T T

_ IS ==t

Ok e e s 1
s A R =

5.4.3 ROUTING Following are some guidelines for routing inputs,

GUIDELINES AND outputs, and high-fanout nets, and a description of the

FUNCTIONS XACT routing functions that are useful for design
optimization.

5.4.3.1 Inputs and Although the inputs and outputs of the various blocks

Outputs are shown as lines with multiple connections on them,

you cannot use them as connections between parallel
interconnection segments. Each input or output
connection to a pin of a block is unidirectional, and only
one connection per pin is allowed.

fTip: You should not route through inputs and outputs.l

The EDITNET command lets you turn on multiple
programmable connections to an input; however, only

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 5-49
2

the connection from the driving interconnection
segment to the input pin is valid. Any additional
connection points that are turned on do not connect to
the driving segment, although they appear to be
connected. If you execute the XACT design rule check
command, DRC, it flags nets that have been routed in
this way as unrouted and does not calculate their
attendant delays. The following figure shows an
improperly connected net routed through an input

switch path.
Illegal Connection Through Illegal Output Connection.
Input Line. Destination GD.A Destination GC.A is not
is not Connected to Source HB.X Connected to Source HC.X

[] i a ./"‘/ L] I HH- t l
nassene) (Ll
[l | sesepes-iie |{ secedeslie u
T A . . - .
2 kst e e
i [] i ;q.-r; [] F L]
37 | E— TR] HC D)o ual |[HE
BasanERR nasssesped- sasssendus- [
- ssessssdle | sassssel—y - | essassst-ie .

i

== T

lilegal Connections

Outputs of blocks can drive multiple interconnection
segments, although this usually is not necessary. You
can not use the output path switches to interconnect a
net that is not driven by that block. The figure above
also shows an improperly connected net using the
output path switches. In both the input and output
cases, you can only make these connections with the
EDITNET command. To avoid these improper

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-50 ‘ April 1988
2

connections, exercise caution when using this

command.
5.4.3.2 High When you place and route a design involving high
Fanout Nets fanout nets, you often encounter congestion problems

when entering it with the auto router enabled. In these
instances, you probably must use alternate placements
to complete a good design. You should follow this
sequence of steps to route high-fanout nets.

1. Plan an initial placement on a blank LCA printout
using the placement guidelines discussed above.
Pay particular attention to the appropriate use of
direct connection.

2. Start entering the design with the automatic router
enabled. However, enter only the destination
pins when you enter each high fanout net. Leave E
the source undefined, even though you know
what it is. This lets XACT route more quickly, and
results in a less cluttered design.

When you finish entering all of the regular nets, perform
the following tasks.

3. Look at the congested areas. You can easily
identify them by counting the used vertical and
horizontal general interconnection segments in
each column/row. A printout of the complete
design, with the option SHOW USED enabled, can
be helpful.

4. Save the design as a backup in case subsequent
modifications fail to produce anything useful.

5. Generate a new placement by modifying the
congested areas identified above. Use
MOVEBLK and SWAPBLK to move the blocks to
new locations. The criterion for the new placement

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

— —

April 1988 5-51
2

should be to eliminate as much congestion as
possible.

6. Make the new placement with the automatic router
disabled.

7. Route the high fanout net or nets using
techniques 1 and 2 above. You should be able to
route the high fanout nets optimally with this
technique. View the design in either large or
medium scale so that you can see as many blocks
as necessary to find out where to locate the
routing. Also highlight the high fanout net to show
stubs at each of the required connections. This
lets you see their physical relationships better.

8. Save the intermediate results as a backup.

9. Route all the remaining nets with the ROUTE*
command, or route selected nets individually with
the ROUTE command.

This iterative technique of manually routing selected
nets should minimize routing problems and improve

device performance. It can be applied equally well to
nets with performance constraints and to those with

fanout constraints.

5.4.3.3 Useful ‘There are several other useful routing-related functions

Routing Functions you can use to optimize designs. These are SWAPSIG,
CLEARPIN, and ROUTEPIN, all of which are discussed
below.

SWAPSIG The SWAPSIG command, located in the PIN menu, is

useful when you optimize the routing of a signal to a
specific block. The SWAPSIG command logically
interchanges the net connections of the block pins,
and simultaneously changes the block function to
match the new pin assignment of the signals.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-52 April 1988

In many cases, signals are better routed to a specific
block pin, in spite of the general interchangeability of
the pins. The following figure shows some typical signal
routes for which you can modify the choice of block pins
to relieve routing congestion.

Note: You should always use SWAPSIG and not
SWAPPIN when working with pins on a single block,
because it modifies the internal function to match the
pin swapping.

SWAPPIN is valuable for moving a net connection from
one block to another.

RN
L SR
ﬁ%ﬁ%%ﬂ%

o
taid

Ff £ P P

A{3{313
&

%

R R
21181

N e =
F P PP
23 a s

&4
T m B lmtm % mE @ EE
A. Connection From CC to CD B. Result After SWAPSIG
Should Use Direct Connect of CD.Aand CD.B

A. A net routed with a general interconnection.
SWAPSIG easily lets you interchange the pin
assignment of the destination block to use the
direct connection. This frees the general segment
for use in other routing.

You can also use the SWAPSIG command on
block outputs to swap them for direct connection,
or to drive a specific adjacent general
interconnection segment. In the case of outputs,
X and Y are completely interchangeable internally

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 5-53
2

s0 you can select and assign them entirely on their
external connection usage.

B. Two pins that have been swapped using
SWAPSIG, to provide more efficient use of the
general interconnection. The initial connection to
pin C is from a signal running in the adjacent
horizontal channel; Pin D is from an adjacent
vertical channel. When you swap the signals, the
vertically oriented signal routes directly to C and
the horizontal signal routes to D.

Note: The internal constraints on the input pins
to logic blocks can limit some uses of SWAPSIG.

These constraints are flagged when the command
is executed.

CLEARPIN The CLEARPIN command lets you deconfigure the
interconnection for a particular pin on a net. It also
removes any spurious interconnection segments from
the net.

CLEARPIN, located in the PIN menu, is useful when
attempting to relieve congestion. It lets you return the
interconnection from a single pin on a net to the
available pool of routing resources. When you route
critical or high fanout nets, you can use the freed
interconnection for a particular route. Then you can
route the unrouted pin either manually or with the
ROUTEPIN command.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

S —————— —

5.54 April 1988

ROUTEPIN and When you manipulate the routing for part of a design,

ROUTE you often leave pins unrouted. You can route these
pins with the ROUTEPIN command for the pin;
however, ROUTEPIN forces you to select all pins to be
routed. ROUTE, on the other hand, routes all pins
assigned to a selected net. The figure below shows
how ROUTE can be more efficient if you must route a
large number of pins. ROUTEPIN operates faster than
ROUTE for a single pin. ROUTE checks each pin on
the net and operates on a single net at a time.

Querynet: PNRFG25B.LCA, XACT 1.3

netl DDX *kx DE.A
**% CF.D

net2 DEX #4% CG.D
#4k CE.D

net3 EDX *** CF.B
*¥x EF A
*%k EE.B
*%k EF. B
% DG.C

This report of unrouted nets indicates 9 unrouted pins.
With ROUTEPIN this requires 1 command selection and 9 location selections.
With ROUTE this requires 1 command selection and 3 location selections.

ROUTE and ROUTEPIN Comparison

2000 SERIES LCA DESIGN HANDBOOK CHAPTER §
April 1988 5.55
2

5.5 TIMING
ANALYSIS,
DELAY
CALCULATOR

5.5.1 CLB AND
10B DELAYS

5.5.2 INTERCON-
NECTION DELAYS

After you complete the placement and routing of your
LCA design, you analyze the timing of the design
against the original design specifications. This
discussion describes how to analyze performance.

Note: You can also perform timing simulation, as
described in Chapter 2.

The LCA development system includes a unique
interactive timing-delay calculator that shows you the
worst-case delays associated with a design without
having to translate and simulate the design. The delay
calculator is useful for selecting placement-and-routing
alternatives when tuning a design for maximum
performance. The delay calculator can extract delay
information for the CLBs, I0Bs, and the interconnection
paths, as follows.

CLB and OB delays are perceived as fixed worst-case
values based on the particular configuration of the block
by the delay calculator. These delays are characterized
from operating the devices at worst-case conditions and
are typically constant for a particular speed grade.

Interconnection delays are more complex. Each
interconnection segment used in a signal path
represents a distributed R/C delay. Inputs to each CLB
or IOB have a negligible capacitance when compared to
the capacitance of the interconnection segments.

To correctly calculate the worst-case delay for
interconnection, the delay calculator accounts for the
accumulation of the interconnection delays. Also, each
transistor switch represents a non-linear impedance that
modifies the drive characteristics as viewed by
downstream interconnection segments. Passing
through several interconnection segments and

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

switches degrades the quality of LCA signals. In the
general purpose interconnection area, the LCA device
includes bidirectional buffers that re-power the signals
after they pass through several segments. Each buffer
also represents a delay, yet the buffer restores the initial
quality. These buffer delays are accounted for in the
overall delay calculation.

The next figure summarizes these delays and the
elements included in the model for interconnection
delay calculations.

SWITCH MATRIX

DELAY:

INCREMENTAL Ry(C1+C2+C3) +Ro(Co+ G3) + RC3

IF Ry= Ro= R3= RAND Cy= Co=C3=C

THEN CUMULATIVE DELAY = 3RC 5RC 6RC 6RC + BUFFER

Interconnection Delay Example

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 5-57
2

The delay calculator considers all of these elements
when calculating interconnection delays. In XACT,
when you position the cursor on a destination pin for a
net, the worst-case delay from the net's source to that
destination is shown on the information line, as shown
below. As you position the cursor on each destination,
the appropriate delay is shown.

Net Pin Blk Config Screen Misc Profile
& 4 %
0
i
NI

!
!
!

13
!
2 R

o
f P P

3 ts

- - -

e -
rhasathe e

&4 4 ﬂ T o4
& 4 & &4 &
Pin: AD.D Net: netl9 15ns

Cmd: I

Delay From Source to Destination
Pointed to by Cursor

Delay Calculator Result On-Screen

The delay calculator calculates the delays on a net-by-
net basis because the complete net configuration must
be considered to determine the delay. As you define a
net, the net delay to each point is not available until you
specify the source and all of the destinations. When
you select the DONE option in the net specification
process, interconnection delays are calculated if the net
is already routed,; this is typical if the automatic router is
enabled. For pins not routed, a ? is shown in the delay
field.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

— —————— —

5.58 April 1988

When you perform manual routing with EDITNET or
other techniques, interconnection delays are not
calculated until you select the DONE option and
connect a destination pin to the source pin. If you
subsequently modify a net by adding other pins or
interconnections, a new net delay is calculated, and the
new timing information becomes available.

You can obtain interconnection delay information
interactively, on the information line of the display. You
can also obtain delay information in text reports, either
to the screen or in printed form. The following figure
shows a sample delay report printed after selecting
REPORT DELAY and specifying the desired FROM and
TO options. You can also get delay information, on-
screen or printed , with the QUERYNET command.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 5-59
2

From:
Thru:
Thru:
Thru:

To:

From:
Thru:
To:

From:
Thru:
To:

From:
Thru:
To:

From:
Thru:
Thru:
Thru:

To:

From:
Thru:
To:

From:
Thru:
To:

From:
Thru:
Thru:
Thru:

To:

From:
Thru:
Thru:
Thru:

To:

From:
Thru:
To:

BLK
NET
BLK
NET
BLK

BLK
NET
BLK

BLK
NET
BLK

BLK
NET
BLK

BLK
NET
BLK
NET
BLK

BLK
NET
BLK

BLK
NET
BLK

BLK
NET
BLK
NET
BLK

BLK
NET
BLK
NET
BLK

BLK
NET
BLK

netl3
AD

(CB.X) : Ons (Ons)
(CBX to BDD) : 20ns (20ns)
(BD.D to BDX) 35ns (55ns)
(BD.X to CDA) Ons (55ns)
(CD.A to SETUP) 22ns (77 ns)
(CB.X : Ons (Ons)
(CB.X to CDB) : 18ns (18ns)
(CDB to SETUP) : 22ns (40 ns)
(CB.X) : Ons (Ons)
(CB.X to CEA) : 22ns(22ns)
(CE.A) : Ons (22 ns)
(BC.X) : Ons (Ons)
(BC.X) o CEB) : 15ns (15ns)
(CE.B) : Ons (15 ns)
(CB.X) : Ons (Ons)
(CB.X to BDD) : 20ns (20 ns)
(BD.D to BDX) : 35ns (55ns)
(BD.S to CEC) : 8ns (63 ns)
(CE.E) : Ons (63 ns)
(AE.Y) : Ons (Ons)
(AE.Y o CED) : 33ns (33 ns)
(CE.D) : Ons (33 ns)
(AE.Y) : Ons(Ons)
(AE.Y o CEB) : 23ns (23 ns)
(CE.B) : Ons (23 ns)
(CLOCK to CDX) : 35ns (35ns)
(CK.S to BED) : 6ns (41 ns)
(BE.D to BEY) : 35ns (76 ns)
(BE.Y to BFB) : Ons (76 ns)
(BF.B to SETUP) : 22ns (98 ns)
(CB.X) : Ons (OA
(CB.X to BDD) : 20ns (20 ns)
(BD.D o BDX) : 35ns (55 ns) Worst-Case
(BD.X o BFC) : 11 ns (66 ns)
(BE.C) © Ons (66ns) Clock-To-Clock
Path = 10 MHz Clock
(CCX) : Ons (Ons)
(CCX o ADC) : 9ns (9ns)
(AD.C) : Ons(9ms)

Printed Output from Delay Calculator

5.5.3 CLOCKED

SYSTEM DELAYS

In a clocked system, delay calculations are made from
clock-edge to clock-edge. Because it has no
knowledge of the dynamic operation of the system, the
delay calculator can only consider the elements that are
connected logically from one clocked device, latch or
flip-flop, to the next clocked device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER §

5-60
2

April 1988

Note: You must perform timing simulation to
investigate the operational constraints of the clocked
system. However, the delay calculator does calculate
the complete clock-edge to clock-edge path, including
the clock-to-output delay and the required setup time.
With these complete delay paths, you can easily obtain
the worst-case clock frequency: worst-case frequency =
1/(clock-to-clock delay). In the figure above, the worst-
case clock-to-clock delay for Net 17 and Net 18 is
calculated as 98 ns, so you could clock this circuit at 10
MHz, worst-case.

5.5.4 SPEED The LCA family offers multiple speed grades for

GRADE DELAYS different system requirements. The delay calculator can
calculate all delays for a design, given different speed
grades.

You select the speed grade with the SPEED command
from the MISC menu in XACT and the currently available
speed grades for the selected device display. You
select the appropriate one. The delay calculator then
re-computes and makes available all delays for that
speed grade of device, either for display on the screen
or in the report file available for the design.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 5-61
2

5.5.5 SIGNAL Because of the nature of the pass transistors used to

DEGRADATION interconnect the various signal-path elements, the rise-
and-fall times and general signal quality are degraded by
each switch element. When taken together over a long
signal path, the change in rise-and-fall times and in the
signal quality can significantly degrade the predictability
of the delay for a particular path. The bidirectional
buffers used to re-power the signals in the general
interconnection normally alleviate most of these
conditions, if they are on the signal path. The
combination of manual editing and the router's ability to
route signals with remaining resources can create some
paths with significant signal degradation.

The delay calculator flags signal paths with degraded
signals with a tilde (~) preceding the calculated delay.
These degenerate nets can be the result of one or
more of the following factors.

A. A general interconnection segment and its
associated signal drive a long line. Long lines have
relatively high capacitance. This affects the signal
quality, particularly when driven by a general
interconnection segment and not the direct
source of a signal.

B. Along line consists of one or more general
interconnection segments. In general, long lines
greatly decrease the drive capability of the signal
source. When driving general interconnection
segments, the combination of interconnection
switch impedance and long line becomes a
problem.

Degradation of signal quality affects the signal primarily
in differences between rise and fall times. As the delay
number increases, the difference between rising-signal
delay and falling-signal delay also increases. For

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-62 April 1988

example, consider a delay calculation of ~50. This
indicates the following.

A. Falling signals, 1 to 0 transitions, occur more
rapidly than indicated. Here, the falling transition
can propagate in 35 to 40 ns, worst case.

B. Rising signals, 0 to 1 transitions, occur in more time
than indicated. For this case, the rising transitions
can require 70 ns or more, worst-case.

The percent variation between rising and falling
transitions in the degenerate cases is difficult to predict,
but it generally is in the range of 20 to 40% below or
above the indicated value.

Caution: Be careful with degenerate nets. If these
signals are timing critical, it is highly recommended that
you reroute them to eliminate the tilde indication. In
some cases, for example, static control, the actual
delays are not critical and you can safely ignore the tilde.

In other cases, you can compensate for the difference
between the rise and fall by appropriate logic sense
selection. For example, a relatively common high-
fanout signal used in counter applications is a
synchronous RESET generated by a terminal count
detection. If the signal sense is defined as HIGH-true,
or reset when 1, the critical timing edge is the rising
edge.

Note: Analysis indicates that the rising edge is slower
than the falling edge, so if you redefine the signal to be
LOW-true, or reset on 0, you can take advantage of the
quicker propagation time for falling signal transitions.

This change can improve the overall capability of the
system by eliminating potential metastability or partial
counter-reset problems that might otherwise occur.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5§

April 1988 5-63
2

5.5.5.1 Analysis of In a circuit with a long path, it is helpful to measure or

Intermediate predict the intermediate delays when considering

Timing placement and routing alternatives. One method of
seeing the delay calculator results, or measuring delay
differences along a path, is through temporary /0
block connections. The following figure shows two
I/0 blocks temporarily defined along the path. You can
use the delay calculator to see the delay to each block;
then use the differences to analyze the results of
routing changes or to determine timing-skew related
issues. Using the XACTOR In-Circuit Emulator you can
temporarily define these 1/0 blocks as outputs and
measure the timing differences directly.

I/O Block to Allow Intermediate Delay Calculation or Measurement |

i o [o s] o o [e
= T I -) R -

Parallel

Long |
Lines ™

/
Intermediate
I/0 Block

Parallel Long Line to Provide Higher Fanout Signal Source

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-64 April 1988

5.5.5.2 Examples

The example below shows a potential signal

degradation problem.

Net Pin Blk Config Screen Misc
ML L L) QLI 0
I - T %, &
ﬂ K3 .
'[{k 7 o B b BF)
N |
5 % % & %
ongai4
-ml;in' AD.D Net: netl9 ~35ns
Cmd: T~ [~ Dgla y for Degraded
A Signal Route With Tilde Delay Signal
Net Pin Blk Config Screen Misc
ML L) CIL) JCIC] CAC]
nﬁqathrb ':hfﬁl':b"h
B o b G * g ¥ % h &
ooaga4d
L) A el % -, &
oo ddd
Pin: AD.D Net: netl9 28ns
Cmd: \\ Corrected
B Signal Re-Routed to Eliminate Tilde Delay Delay

Routing with Tilde on Delay Value

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

5-65
2

An example with a potential signal degradation
problem, with tilde delay, because the net is
routed through several general interconnection
segments prior to driving a long line. The timing
delay calculator number in the lower-right corner of
the screen is ~35 ns.

A routing modification that decreases the delay to
28 ns, and the tilde delay is no longer indicated.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

The following figure shows an example where you can
safely ignore the tilde indication. The net shown is a
static input used by several blocks for function
selection. In this case, the delay and signal quality are
not of concern because the signal does not change, as
might be the case for switch-type inputs or other
interface signals generated by the user. The only
concern with long delay signals of this type is that
blocks using that signal must latch correctly after the

transition.
{E &
10808008 04
0.0, 0[0,0.0.8, 8¢
e 00 H 8.4 0.8 0 ¢
LpmotaTa oo 80
staﬁc//gﬁﬂq:ﬂ fl ﬂ%ﬁ mﬂ%ﬂlﬁ
o | Eo, D o f % gmﬂ%jl 5
{1 ” ,
ir o o enclinifs S o ey §

Long Delay Can Be Ignored Because the Dynamic
Performance of the Signal is Not of Interest

Signal with Long Delay to Final Destination

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988 5-67
2

5.6 SUMMARY Appropriate use of the LCA development system
capabilities gives you powerful control over all aspects
of your LCA design. You can often enter simple
designs directly, without paying significant attention to
the details of placement and routing. Only when you
must implement complex designs, or designs with
stringent performance constraints, do the issues of
placement and routing require special attention. The
techniques discussed here should guide you in
implementing a complex design with minimum effort.

Future products for designing with LCA devices will
offer improved methods of design entry and increased
isolation from the implementation details of the LCA
device. Regardless of the sophistication of these
development systems, there will continue to be a
requirement for interactive design optimization, either
for performance or resource use. The LCA
development system fulfills that requirement by
combining simplicity of operation with quick and
efficient design optimization capabilities.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.68 April 1988

CHAPTER 6

CONFIGURING THE LCA DEVICE

CONFIGURING THE LCA DEVICE.......ccciiiiiiiiiiiiiiiienennrsnisssinsssanmnsssssanas 1
6.1 LCA CONFIGURATION OVERVIEW.....c..coitiiiiiiieiteete ettt 2
6.1.1 CONFIGURATION BIT STREAMccoiiiiiriiiiine e ereee s e 2
6.1.2 CONFIGURATION PROCESScoeeiitireieeiree e eteee et te e eieeaae s 2

6.2 CONFIGURATION MODES........c.ccoooiiiiieiiieeie et st setr et s e st re s s e e snneeens 6
6.2.1 CONSIDERATIONScooii ittt et e e e st e e e s eebeereaeaa e e s s e eannnreens 7
6.2.1.1 External versus Automatic Configuration Controlccceevvvnnnnnens 8

6.2.1.2 Configuration TimMec.ccoeiiiiiimiiiiini e, 13

6.2.1.3 Configuring Multiple LCA DevViCes........cccceoeriiiinmieiineereni e 14

6.2.2 CONFIGURATION PIN FUNCTIONSootiiiiiieee et eeee e i 14
6.2.2.1 M2, M1,and MO.......oooiiiiiiii e 15

6.2.2.2 DINANdDOUTcocoiiiieiiiie et ertetr e e e aeee e e e e s sranea e s 16

6.2.2.3 HDC and ~LDC.......cccuriieiiriere e eiiee st eee e e e e 16

I S & 01 K G P PUPPPTN 16

6.2.2.5 ~RCLK ..ottt e 17

6.2.2.6 ~RESET ..o e 17

B.2.2.7 D/ P et a et a e e e e aaann 17

6.2.2.8 ~PWRDWN ...ttt et s a e 18

6.2.3 SLAVE MODE ...ttt sttt e st en e e s mte e e s aene s 19
6.2.4 PERIPHERAL MODE........coiiiii ettt e e st e e 22
6.2.5 MASTER MODES.. ..ottt et ee e e e e 27

6.3 CONFIGURE MULTIPLE LCA DEVICES........ooiiiiiee ettt s 34
6.3.1 DAISY-CHAIN CONFIGURATIONcoiiiiiiiiiiiieeee e neiriteee e rieeeee e e e s e e 34
6.3.2 PARALLEL CONFIGURATIONccooiiiiiiiiiiiiiieeee e eriirce e eiee e e e e e e e e 36

6.4 ASSIGNING MULTIPLE-FUNCTIONcuuiiiiiiiiee s ceiciiertcr e e sesiaree s e e sasenreee e reeaae s e s 38
6.4.1 POTENTIAL /O CONFLICTS.....oiiiiiiiie ettt 38
6.4.2 UNUSED VO PINSooeiiiiiieiiiie ettt e et e st e s e baa e s 40

6.5 CONFIGURATION DATAttt e e e ettt e ae s s s e e e s s nbebaeneeeeas 42
6.5.1 CONFIGURATION FILE FORMAT ...ttt ereieeeee e e e 44

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

&
2

6.6

6-ii
2

6.5.2 A SAMPLE EQUIVALENT CONFIGURATION FILEcoociiiiiieier e 46

6.5.3 CONFIGURATION LOADINGcotiitieiiiien i ettt see e see e s seae s 48
READ-BACK CONFIGURATION DATA.......ccciiiiiieinnri e e 49
6.6.1 READ-BACK PROCESS.......c.ccciiiiiiiniriiiiiici it 49
6.6.2 READ-BACK DATA CONTENTScccooiiiiiiiciic e e 50

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6 CONFIGURING THE LCA
DEVICE

This chapter discusses considerations for when you
configure LCA devices and read back the configuration
data. The configuration techniques covered here apply
to the 2064 48-pin and 68-pin packages, and to the
2018 48-pin, 68-pin, and 84-pin packages.

+ The overview, 6.1, introduces LCA configuration.

« The discussion on configuration modes, 6.2,
explains design considerations, pin functions, and
the Slave, Peripheral, and Master modes. E

» The discussion on configuring multiple LCA
devices, 6.3, describes how to configure multiple
devices in a daisy-chain or parallel configuration.

» The discussion on assigning multiple-function 1/0
pins, 6.4, explains how to handle potential I/O
conflicts and unused pins.

« The discussion on the configuration data, 6.5,
introduces the content and format of the LCA
configuration bit stream.

» The discussion on reading back configuration

data, 6.6, explains how to read back an LCA
configuration bit stream for verification.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-1

2

6.1 LCA
CONFIGURA-
TION OVERVIEW

6.1.1 CONFIGUR-
ATION BIT STREAM

ATION PROCESS

When designing an LCA device, you must first identify
those parts of the system-level design that can be
implemented in one or more devices. Then you
partition these elements into clusters of basic logic
functions, composed of CLBs and I0Bs. Next, you
enter, place, and route the interconnection networks
for each device. Finally, for each device you compile a
configuration bit stream that defines its function.

You design the configuration using the LCA develop-
ment system design editor, EDITLCA. You use the bit-
stream generator, MAKEBITS, to convert the LCA
design into a configuration bit-stream file. Then, you
use the download cable with the MAKEBITS software to
transfer the configuration bit stream into an LCA device
in the target system.

You can verify the bit stream, described later, using the
READBACK command. The bit stream determines how
the LCA device functions. Discussion 6.5, Configura-
tion Data, details the configuration format.

You verify your LCA design(s) in any of three ways. The
first method is the only one that does not include a
configuration process.

+ Use atiming simulator to verify the logic and timing
of the LCA design.

* Use the MAKEBITS software to generate a
configuration bit stream and use the download
cable to transfer it into the LCA device in the target
system.

* Use the MAKEBITS software to generate a

configuration bit stream and use the XACTOR
software for in-circuit emulation.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

An LCA device is best described in terms of three
distinct states.

. Initialization
+ Configuration
. User-operation

After a power-up delay, the LCA device powers up in
the initialization state. In this state, its internal
configuration memory is cleared, and all internal user-
definable logic is held in a quiescent, or idle, state.

After initialization, the LCA device checks the input
logic level at the ~RESET pin. When a valid logic-1 level
is detected at the pin, the device enters the configu-
ration state.

During the configuration state, the LCA device is

ready to load the configuration data. The configuration E
data is a serial bit-stream format. The configuration data

loads as though the device is a shift register.

The configuration mode, which is the method used
for loading the configuration data, depends on the logic
levels of the Mode Select pins: M2, M1, and MO.

These pins and their functions are explained in
discussion 6.2.2.1. Although you can use any of the
modes to enter the configuration data, the content and
format of the bit stream are fixed for a given logic
application.

The configuration bit stream contains a preamble code
plus a bit field that indicates its length. When the LCA
device loads the preamble code followed by the correct
number of bits, as indicated by the length count, the
D/~P open-drain output pin goes HIGH to indicate that
configuration is complete.

Note: After the configuration process begins, it must
either terminate, or abort and restart. Partial configur-
ation is not possible.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-3
2

After configuration, the LCA device enters the user-
operation state and performs the logic functions
specified in the design. During operation, however,
you can return to the initialization state and repeat the
configuration process. A state diagram illustrating this
sequence is shown below.

Note: You can disable the reconfiguration capability by
setting the appropriate bit in the configuration bit
stream. If you disable the reconfiguration capability, you
can change the LCA device's configuration only by

removing and reggglzing power to it.

POWER APPLIED

POWER-ON-RESET
TIME DELAY

~RESET

ASSERTED

FIRST CCLK CONFIGURATION CPI-PLOW
OR ~WRT CYCLE DONE TRANSITION
INITIALIZATION e CONFIGURATION USER OPERATION (REPROGRAMMABILITY
CrTIONDEARED

D/~P LOW TRANSITION
(REPROGRAMMABILITY OPTION ENABLE)

~RESET

~PWRDN
ASSERTED

~PWRDN
DEASSERTED

LCA Configuration Diagram

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

Note: During the initialization and configuration states,
all user I/O pins, except those used by the configuration
process, have passive internal pull-up resistors that
cause those pins to go HIGH when not externally
overdriven.

Upon entering the user-operation state, all user 1/0 pins
simultaneously become functional, according to your
specified pin definitions.

The following discussion explains the five possible
modes for loading the configuration information into the
LCA device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-5
2

6.2 CONFIGUR-
ATION MODES

The LCA device supports five configuration modes,
including three Master modes, for loading LCA
programming information.

Slave mode

Peripheral mode
Master-Serial mode
Master Parallel-Low mode
Master Parallel-High mode

Os0p

You select a configuration mode by connecting the
dedicated Mode Select pins, MO and M1, and the
programmable Mode Select pin, M2, to either a logic-1
or a logic-0 signal, as indicated in the following table.

Configuration Mode Selection

Mode Select Pins M2 M1

Master-Serial mode
Master Parallel-Low mode
Master Parallel High mode
Peripheral mode

Slave mode

—a-nooog

—_ A a a0
- O = O O

Note: The current mode selections do not use all
possible combinations of M1, M2, and M3, which leaves
room for future expansion of configuration options.

The following discussions describe available modes.

» Discussion 6.2.1 outlines considerations that
impact selecting a configuration mode.

« Discussion 6.2.2 identifies the special LCA pin
functions during the configuration process.

» Discussion 6.2.3 explains the Slave mode.
+ Discussion 6.2.4 explains Peripheral mode.

+ Discussion 6.2.5 explains Master modes.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6.2.1 CONSIDER- Each configuration mode has different design

ATIONS considerations and variations in device pin usage
during configuration. The choice of a configuration
mode depends on your specific system application.

The following are some questions you should ask
before choosing a configuration mode.

1. Is control of the configuration process automatic or
controlled externally?

. If the configuration process is externally
controlled, that is in Slave or Peripheral
mode, is it controlled by software or DMA
hardware?

. If the configuration process is automatic, that
is in Master mode, is the configuration

a. shared with the microprocessor code?
b. stored in a separate byte-wide PROM?
b. stored in a serial memory device?

2. How much time is available for configuration?

3. For an application using multiple LCA devices,
should they be configured serially as a daisy chain,
orin parallel?

4. What are the I/O pin requirements?

For example, are the 1/O pins used by the target
application also involved in the configuration? If
$0, can you assign pins to minimize or eliminate
external isolation?

These considerations are discussed in more detail
below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6
June 1988 6-7
2

6.2.1.1 External The externally-controlled case requires that you

versus Automatic use either Slave mode or Peripheral mode to load
Configuration the configuration data into the LCA device serially. You
Control can load the configuration data as part of the system's

bootup process or you can load it on the fly.

This externally-controlled method is more flexible than
automatic configuration because the configuration
bit stream can be read from a PROM, disk, or
any other source accessible by a processor.
However, this method may take longer to complete than
the automatic method.

Automatic configuration uses one of the three
Master modes. With Master mode configuration, the
LCA device automatically accesses (sends out to) an
external PROM for the configuration bit stream. Then
the LCA device configures itself using Master mode in
12 to 24 ms for the 2064, and 17 to 35 ms for the 2018.

The following table compares the configuration mode
characteristics.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-8 June 1988

Comparison_of Configuration Modes
Configuration Mode Slave Peripheral | Master Parallel-Low | Master-Serial
Mode Mode Master Parallel-High Mode
Modes
Mode Selection Code 1:1:1 1:0:1 0:0:1 (Master-Low) 0:0:0
(M2:M1:MO0) 0:1:1 (Master-High)
Configuration Data Bit-serial Bit-serial Byte-parallel Bit-serial
Automatic Loading No No Yes Yes
Programming Source User Logic CPU Data External External
or Another Bus Byte wide Serial
LCA (Note 1) Memory Memory
Number of User I/O 2 6 25 3
Pins Required
Configuration Time Source- Source- 12-24 ms (2064) 12-24 ms (2064)
dependent dependent 17-34 ms (2018) 17-34 ms (2018)
(Note 2) (Note 2) (Note 3) (Note 3)
Notes: 1. Slave mode is also used by XACTOR for In-Circuit Emulation.
2. The minimum time in any case is approximately 12 ms for the 2064 and 17 ms for the 2018.
3. This parameter depends on internal timing circuits and is manufacturing-process dependent.
Therefore, it may vary from device to device within the limits shown.

in all configuration modes, some user /O pins
are temporarily assigned configuration-
related functions. The number of such pins ranges
from five in Slave mode to 25 in Master mode. Once
configuration is complete, these pins become general
purpose /O pins.

However, it is your responsibility to guarantee that
no signal conflicts occur between the pin's use in the
configuration state and its use in the user-operation
state. Signal conflicts on these pins can create
undesired side effects, such as disturbing the
configuration process or other external logic. With a
little care, however, you should not experience
problems using these dual-function I/O pins. Although

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6-9
2

signal conflicts may be resolved by using external
buffers for isolation, careful selection of the pinout
assignment can usually eliminate the need for isolation.
The five figures below show the LCA device's pin
usage for each configuration mode.

+5V
13 e
MO Mi1PWRDN
MICRO
COMPUTER
LCA
STRB CCLK DOUT e\
DO DIN
D1 M2
D2
b3l HDC e
w0 D4 ~LDC b
PORT D5 |~ > GENERAL
D6 f PURPOSE
D7 __ ALL [|— USER /O
OTHER M
o Dp PINS .
) — /
RESET RESET
N,
”~
Slave Mode
+5V
ADDRESS DATA
BUS BUS
+5V +5V
MO M1 PWRDWN $
DO
DIN
JOWRT _f et COLK
LCA
N DOUT e N
N\ M2 pe o—
——| ADDRESS -
+ | DECODE [0——0] CS0
* | rLocic ~LDC fe
N GENERAL
— PURPOSE
ALL : USER J/O
t O[CS1 OTHER ¢
CS2 PINS
e D/~P -
==Of RESET s

Peripheral Mode

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

Vee +5V

£ MO0 M1 PWRDWN

(—{bour CCLK frmmmm
—_

GENERAL
PURPOSE ¢
USER I/O
PINS

Xy

PINS
\— LCA
=——Of RESET

DIN
! M2 ~RCLK

Master-Serial Mode

DATA

CLK SERIAL
CE MEMORY
OE

5
R

+V
Vee i
l MO Ml PWRDWN
f emed DOUT CCLK fe
] M 2 AlS e
Al4 —ee
weed HDC N EPROM
GENERAL - AL2 [— (@K X8
PURPOSE Al OR LARGER)
usero § — raik Al0
PINS A9 p—
—] AL A8 Al0
: OTHER A7 A9
. PINS A6 A8
— LCA A7
\ A4 A6
D7
0| RESET 232 A5 D6 L)
A4 N\
/—4 D7 Al A3 gi
(— D6 A0 A2 D3 \J
= gi :(‘) p2| N
D3 OE gé W
/|2 CE N\
ﬂ D1
DO \
/] —\
/] D/~P __Eg
< e
DATABUS 7

Master Parallel-Low Mode

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-11
2

Vee
% +5V
Vee £ L A
MO Ml PWRDWN
¢ —-‘ DOUT CCLK f
— M2 AlS5 o
Al4 —
——J HDC Al3 EPROM
GENERAL AL2 f— (@K X8
PURPOSE —q-LDC Al OR LARGER)
USER /O < amed ~RCLK A10
PINS A9 p—
-] ALL A8 Al0
. OTHER A7 A9
. PINS A6 A8
AS A7
\ — LCA A a6 7
— 0O RESET A3 As D6 L)
A2 A4 D5 [N\
D7 Al A3
D4
D6 A0 A2 D3 \
DS Al D2
D4 A0 D1
D3 OE DO \
D2 CE _\
D1
DO \
—\
< o
pATABUS 7

Master Parallel-High Mode

The following table summarizes the pins used in each
mode. Individual pins are described in more detail
below, under Configuration Pin Functions, 6.2.2. Also,
refer to the example under discussion 6.4.1.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-12

June 1988

Summary of Pins Used for Configuration
Applicable
Pin Config. Mode(s) Function During Function During
Name |S P MS MH ML Configuration User Operation

MO D) . Mode Select 0 (N Readback Trigger n
M1 L . Mode Select 1 U] Readback Data Out (0)
M2 o e e e . Mode Select 2 () <User /0>
D/~P D . Indicates configuration (O) | Initiates/Inhibits
(Note 1) process is done Re-configuration (U]
~RESET [+ ¢ =« . Abort/Restart configuration (1) Master Clear for all
(Note 1) internal flip-flops ()
CCLK o e - e . Configuration Clock(Notes 1 & 2) | Readback Clock h
DIN o o s - - Configuration Data In 0} <User I/0> (Note 3)
DOUT o e e e . Configuration Data Out (O) | <User /0>
HDC O . Logic HIGH (O) | <User /0>
~LDC o s e . Logic LOW (0) | <User I/1O>
AO-A15 - - - e . Address Bus (O) | <User /0>
D0-D7 - - . . Data Bus U] <User /0> (Note 3)
~RCLK - - e e . Read Clock (O) | <User /0>
~WRT - e - - - Write Strobe [{)) <User /0>
~CS0 - e - - - Chip Select 0 () | <Userl/O>
~C81 - e - - - Chip Select 1)] <User 1/0>
CS2 - e - - - Chip Select 2 () <User I/O>
Abbreviations: S = Slave I = Input

P = Peripheral O = Output

MH = Master Parallel-High

ML = Master Parallel-Low

MS = Master-Serial
Notes: 1. The ~RESET, CCLK, and D/~P pins have multiple functions. See text for further details.

2. During Slave mode configuration, the CCLK pin is an input, while for all other modes, it is an output.
3. DIN and DO are the same physical pins but are associated with different configuration modes.

6.2.1.2 Configura- For some applications, the time required to configure

tion Time the LCA device is an important consideration. The
minimum time required to load the LCA configuration
data is the same for all configuration modes, approxi-
mately 12 ms for the 2064 and 17 ms for the.2018. The
processor-driven configuration techniques under
software control for Slave and Peripheral mode may
take longer to complete.

Unlike the user-driven Slave and Peripheral modes, the
internal oscillator controls the configuration loading time
for Master mode. Because the frequency of this
internal oscillator depends on the LCA fabrication

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-13
2

6-2-1 -3 COI\figur'
ing Multiple LCA
Devices

6.2.2 CONFIGUR-
ATION PIN
FUNCTIONS

2
o

process, configuration loading time can extend to twice
the minimum time.

In applications using multiple LCA devices, special
daisy-chaining capabilities permit you to configure all
the linked devices from a single data source. This is
described in further detail under discussion 6.3.

There are two types of LCA pins used for configuration.

* Non-programmable pins are dedicated to the
control function.

+ User-programmable pins are available as
general purpose I/O pins after configuration.

There are six non-programmable pins dedicated
to control functions.

Non-Programmable Control

Pins Functions

MO, M1 Mode Select Pins
CCLK Configuration Clock
~RESET Master Reset

D/~P Done/Program
~PWRDWN Power-Down

In addition to the dedicated control pins, several user-
programmable 1/O pins have configuration functions
assigned to them, regardless of which configuration
mode you select. These pins, as well as the dedicated
control pins, are described below. Other I/O pins are
used in only one specific configuration mode and are
described in the discussion of that mode.

The following are user-programmable /O pins that
can be used during configuration.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

User-

Programmable Control

Pins Functions Notes

M2 Mode Select (Present

DIN/DO Configuration Data In in

DOUT Configuration Data Out all

HDC HIGH during configuration Configuration

~LDC LOW during configuration Modes)

~C80, ~CS1,CS2 Chip Selects Peripheral mode only
~WRT Write Strobe Peripheral mode only
~RCLK Read Strobe Master modes only
AO-A15 Address Bus Master parallel modes only
D0-D7 Input Data Bus Master parallel modes only

6.2.2.1 M2, M1,
and MO

Note: Except for HCD and ~LDC, all unassigned user-
I/0 pins not used in configuration have passive internal
pull-ups to Vcc, as described in discussion 6.2.2.3.
The passive internal pull-ups on all user-programmable
I/O pins are removed after configuration is completed.

M2, M1, and MO are Mode Select input pins that select
the configuration mode the LCA device uses, as
explained under 6.2, Configuration Modes. Pins MO
and M1 are dedicated configuration pins. The M2 pin,
unlike MO and M1, becomes available as a general
purpose user-1/O pin after configuration.

During configuration, pins M1 and M2 have internal
pull-up resistors, while pin MO does not. Except for
Master-Serial mode, you should not drive pin M2 LOW
during configuration. If left unconnected, it is pulled
HIGH.

In applications that do not use the LCA device's read-
back capability, you can tie the mode select pins directly
to ground or to Vcc. Because the M1 and M2 pins are
supplied with internal pull-up resistors, you may leave
them unconnected after configuration is done.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6-15
2

Note: The mode select pins are sampled either at the
conclusion of the initialization state, or with the rising
edge of ~RESET if used to delay configuration. Thus,
you do not need to maintain their logic levels after
configuration begins.

6.2.2.2 DIN and DIN and DOUT are used as the serial data path for

DOUT configuring both a Slave mode daisy chain, and a
Master-Serial mode device. DIN and DOUT are also
used for other purposes, such as a data bus or Slave
mode without a daisy-chain.

Refer to the descriptions of the Slave and Master-Serial
modes, under 6.2.3 and 6.2.5, respectively, for more

information.
6.2.2.3 HDC and HDC and ~LDC are user-programmable I/O pins. During
~LDC configuration, the LCA device drives HDC to constant

HIGH and the ~LDC to constant LOW. You use these
two pins to control external logic during the initialization
and configuration states. For example, you can use
these pins to enable or disable various external logic
circuits, depending on whether each logic circuit is
required during or after configuration.

#

6.2.2.4 CCLK CCLK is a dedicated control pin serving as a clock
input during Slave mode configuration, and
conversely as a clock output in all other configuration
modes. As an input, CCLK is used during the serial
loading of a configuration bit stream. As an output,
CCLK serves as a clock source for configuring any
Slave mode LCA devices to be daisy-chained to the
master LCA device.

During operation, CCLK serves as a clock input for
reading configuration data from the device in
conjunction with the MO/RT and M1/RD pins. The

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-16 June 1988

6.2.2.5 ~RCLK

6.2.2.6 ~RESET

6.2.2.7 D/~P

CCLK input is subject to a minimum time it can be held
LOW. It should remain in the HIGH state when not in
use. However, the LCA device can drive the CCLK
input from a clock source that violates this limit, as long
as deassertion of ~RESET enables configuration as
soon as the clock is normal. The CCLK pin has an
internal pull-up resistor that lets you disable an external
clock source when configuration is done.

The ~RCLK pin performs the function of a read strobe
for dynamic memories in the Master-Parallel mode. For
the Master-Serial mode, ~RCLK is an output pin that
synchronizes the supply of serial data.

The ~RESET pin is an active-LOW master-reset input.
Its function depends on the LCA device's state. During
the initialization state, after power-up and prior to
starting the configuration, this pin can delay the start of
configuration. As soon as the configuration process
starts, and until it completes, asserting ~RESET aborts
the configuration process and returns the LCA device
to the initialization state. Configuration restarts when
initialization completes and ~RESET is HIGH. When
configuration completes, the ~RESET pin changes
function and becomes a master-reset control pin that
clears all internal flip-flops and latches to the O state.

The D/~P (DONE/~PROGRAM) pin is both an input and
an open-drain-type output with an optional, program-
mable pull-up resistor. As an output, D/~P indicates the
current configuration status of the LCA device.

Prior to initial configuration and during subsequent
reconfigurations, the LCA device holds the D/~P pin
LOW to indicate that the device is not ready for user
operation. When D/~P goes HIGH, it indicates that
configuration is done and that the device is in the user-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

w——

June 1988

6-17
2

6.2.2.8

~PWRDWN

operation state. Consequently, you can use D/~P in
your system reset logic to ensure that the LCA device is
fully configured before the reset of the rest of the
system is terminated.

The configured output pins on the LCA device become
active one clock cycle before D/~P goes HIGH. This
allows time for any user-1/O signals to propagate
between LLCA devices. You can initiate subsequent
reconfigurations of the device by applying a logic-0
level to the D/~P pin, with an open-collector-type signal
source. You must hold the D/~P pin LOW for several
microseconds for the LCA device to recognize the
LOW level. Noise is unlikely to trigger a reconfiguration.

As soon as the LCA device recognizes the LOW, it
forces D/~P LOW until configuration is completed. The
D/~P pin must go HIGH before it can initiate
reconfiguration.

Note: By using its internal pull-up resistor option, you
can leave the D/~P pin unconnected and eliminate its
need for any external passive components.

Also: You can prevent the D/~P pin from going HIGH
after configuration as an alternate technique for

{disabling the LCA reconfiguration.

The ~PWRDWN pin is an active-LOW input that forces
the LCA device into a low-power state. You can reduce
Vccto 2 V after ~NPWRDWN is active. Entering the
power-down state does not change or modify the
configuration information stored in the LCA device; it
merely reduces the device's overall power require-
ments by disabling its I/O pins and certain internal logic.

Power-down resets all internal storage elements, that is

CLBs and I0Bs but not memory cells, and forces all I/O
pins to become high impedance. Internally, logic nodes

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

that were driven by inputs to the LCA device prior to
power-down are electrically isolated from their pins and
forced HIGH.

You must leave the ~PWRDWN pin inactive (HIGH)
during initialization and configuration; only assert it while
D/~P is HIGH. If your application does not use the
power-down feature, you should tie the ~PWRDWN pin
to Vcc.

Note: All other user-I/O pins not involved in
configuration have passive internal pull-ups to Vcc
during configuration. The passive internal pull-ups on
all user-programmable I/O pins are removed after
configuration is completed.

6.2.3 SLAVE M2:M1:M0 = 1:1:1 configures the LCA device in E
MODE Slave mode. This mode is simple and efficient because

it uses fewer pins than any other configuration mode. It

serially loads the configuration bit stream into the

device.

During Siave mode configuration, each bit in the stream
sequentially shifts into the DIN input on the LCA device
with the rising edge of the clock applied to the CCLK
pin, as illustrated below.

Note: In the following figure, Tpg is equivalent to
Tpcc, which may appear in other timing diagrams in this
manual, and TpH is equivalent to Tccp, which may
appear in other timing diagrams in this manual.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-19
2

DIN BIT (N+1)

DOUT X BIT (N-2) Y BIT (N-1) \)(BIT ()

Slave Mode Configuration Timing

Note: In Slave mode, the CCLK pin is an input, not an
output as in other modes.

After the configuration bit stream loads, completing the
configuration process requires three additional clock
cycles for a total of the length count plus three clocks.

Slave mode configuration is especially appropriate
in applications where a host processor configures the
LCA device through an I/O port. 1/O instructions can
drive the CCLK and DIN pins, and the system easily
meets the minimum data setup and hold times.

Slave mode configuration is also useful in multiple
LCA applications, where you string together the DIN
and DOUT pins of several devices in a daisy-chain
arrangement. This arrangement permits several LCA
devices to share a common source of configuration
data.

In addition to the six non-programmable
configuration control pins, Slave mode configuration
uses five programmable pins: M2, DIN, DOUT, HDC,
and ~LDC. These become available as general-
purpose user I/O pins after configuration is complete.
The 53 remaining programmable 1/O pins are not used
during configuration, as shown in the figure and table
below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

+V
13 -
MO MIPWRDN
MICRO
COMPUTER
LCA
STRB CCLK DOUT jrem
DO DIN M2 _W
D1 e D b
0 D2 jrme apC
porr| D3 f— B P GENERAL
p4 — % PURPOSE
D5 f— ALL [= USER /O
OTHER .
D6 PINS *
D7 D-P —/
RESET l——q RESET
~ J_q
Cd - B
Slave Mode Pin Usage
Slave Mode Pin Summary
Fixep, NON-PROGRAMMABLE PINS
Pin Pin Number Pin Value During
Name PLCC DIP Type Configuration Description
MO 26 18 Input HIGH Mode Select
M1 25 17 Input HIGH Mode Select
CCLK 60 42 Input <Clock> Configuration Clock
~RESET 44 31 Input HIGH Master Reset
D/~P 45 32 Output LOwW Done/Program
~PWRDWN 10 7 Input HIGH Power-down
USER-PROGRAMMABLE PINS
Pin Pin Number Pin Value During
Name PLCC DIP Type Configuration Description
M2 27 19 Input HIGH Mode Select
DIN 58 40 Input <Data> Configuration Data In
DOUT 59 41 Output <Data> Configuration Data Out
HDC 28 20 Output HIGH Constant "1" Level
~LDC 30 21 Qutput LOW Constant "0" Level
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-21
2

In daisy-chained LCA applications, if the first LCA
device is configured in Slave mode with a free-running
CCLK clock source, you must synchronize the first
device with the other devices in the chain. To
accomplish this synchronization, you must ensure that
~RESET is released with the proper setup and hold
times relative to CCLK. This timing guarantees that all
LCA devices in the daisy chain become operational
simultaneously. The devices all begin configuration on
the same clock cycle. You can easily ensure this timing
by de-asserting ~RESET with the falling edge of CCLK.

6.2.4 PERIPHERAL M2:M1:M0 = 1:0:1 enables a host processor to load

MODE the configuration bit stream into the LCA device via the
data bus. In this configuration mode, you can think of
the LCA device as a one-bit-wide peripheral device
because you load the configuration bit stream into it
one bit at a time. Typically, you tie data bus bit 0 to the
DIN pin of the LCA device. The processor then shifts
each successive bit of the data byte into data bus bit 0
between load instructions to the LCA device.
Peripheral mode requires the next fewest LCA device
pins for configuration, as shown below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-22 June 1988
2

+5V
ADDRESS DATA JCONTROL
BUS BUSJ BUS
+5V B +5V
MO MI PWRDWN $
DO
DIN
CIOWRT] et COLK e
LCA
X DOUT p— N
M2 pre —
\—:" ADDRESS 1 b—
¢ | DECODE Jo——0| €0
N____| LodIC IC— | GENERAL
|- ¢ PURPOSE
L a e USER I/O
O[CS1 OTHER ¢
\ cs2 PINS
w—med D/~P -
—Of RESET ’

Peripheral Mode Pin Usage

As in Slave mode, Peripheral mode loads the
configuration bit stream into the LCA device bit-serially.
When the correct number of bits are loaded into the
device, the D/~P pin goes HIGH to indicate that the
configuration bit stream is loaded. Completing the
configuration process requires three additional clock
cycles after the bit stream is loaded, for a total of three
clocks more than the length count.

During Peripheral mode configuration, nine of the LCA
device's programmable 1/O pins function as
configuration control pins in addition to the six fixed,
non-programmable control pins. The next table
shows the configuration pins used in this mode.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-23
2

Peripheral Mode Pin Summary

FixepD, NON-PROGRAMMABLE PINS

Pin Pin Number Pin Value During Description
Name PLCC DIP Type _Configuration

MO 26 18 Input HIGH Mode Select

M1 25 17 Input LOwW Mode Select

CCLK 60 42 Output <Clock> Configuration Clock
~RESET 44 31 Input HIGH Master Reset

D/~P 45 32 Output LOW Done/Program
~PWRDWN 10 7 Input HIGH Power-down

UsSeER-PROGRAMMABLE PINS

Pin Pin Number Pin Value During Description

Name PLCC DIP Type Configuration

M2 27 19 Input HIGH Mode Select

DIN 58 40 Input <Data> Configuration Data In
DOoUT 59 41 Output <Data> Configuration Data Out
~CS0 50 35 Input Low Chip Seiect (Active LOW)
~CS1 51 36 Input LOW Chip Select (Active LOW)
Cs2 54 37 Input HIGH Chip Select

~WRT 56 38 Input <Strobed> Write Enable (Active LOW)
HDC 28 20 Output HIGH Constant "1" Level

~LDC 30 21 Qutput LOW Constant "0" Level

The following figure shows the timing relationship
between the signals on these control pins.

Note: In the following figure, Tpg is equivalent to Tpc,

which may appear in other timing diagrams in this
manual, and TpH is equivalent to Tcp, which may appear

in other timing diagrams in this manual.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-24 June 1988

KXXX) E

K QOOOXXXKX)

~WRT

bour X BIT (N-1) X BIT (N)

Peripheral Mode Configuration Timing

The DIN and DOUT pins function the same in Peripheral
mode as in Slave mode. Four other pins serve as bus
interface controls. Three of these pins, ~CS0, ~CS1,
and CS2, become Chip Select pins, while the fourth
pin, ~\WRT, becomes the Write Strobe input. The
~WRT pin serves the same function in Peripheral mode
as CCLK does in Slave mode. A pulse applied to the
~WRT pin, while the three Chip Selects are asserted,
shifts one bit of the stream into the DIN input of the LCA
device. Each write strobe to a Peripheral mode LCA
device also produces a CCLK output pulse that drives
the CCLK inputs of the cascaded devices, shown
below. The three Chip Selects (two active-LOW, one
active-HIGH) map the LCA device to a specific I/O or
memory address for configuration.

Note: The nine pins mentioned above are available as
general purpose, user-programmable I/O pins when
configuration is completed.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-25
2

The other 49 programmable 1/O pins are not used for
Peripheral mode configuration.

1
ADDRESS ~ DATA/CONTROL ? s
BUS BUS/ BUS 45V ¥
+5V +5V
Do MO M1 PWR MO Mi PWRDN MO M1 PWR
DIN DWN DWN
~JOWRT WRT CCLK| CCLK CCLK DOUT |
LCA pout DIN LCA DOUT}f §d DIN LCA
N SLAVE #1 SLAVE #n
N\ ADDRESS M2 e M2 e M2 [
o | DECODE |5 _lcso HDCL HDC b HDC fom
e | LOGIC ~LDC LDC ~DC L
N— [[GENERAL T | ocEneraL GENERAL
— (> PURPOSE l— > PURPOSE — S.purpOSE
+ | USERIO . USER1/0 AL | |5
AL || : USER /O
\ O — 'l . AL | |s OTHERG | *
OTHER onERe |°
N\] CS2 PINS PINS PINS
D/~P | D/~P D/~P -
—O| RESET —d rESET — RESET
5 REFROGRAM I
’
C ~SYSTEMRESET e
”~ "

Peripheral Mode LCA Device with Daisy Chain

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-26

June 1988

6.2.5 MASTER M2:M1:MO0 = 0:0:0 configures the LCA device in
MODES Master Serial mode.
M2:M1:MO 1:0:0 configures the LCA device in
Master Parallel-Low mode.

M2:M1:MO0 = 1:1:0 configures the LCA device in
Master Parallel-High mode.

In the Master configuration modes, the LCA device
automatically controls loading the configuration bit
stream.

In the Master-Serial mode, the LCA device uses
~RCLK to synchronize the serial input data that
provides the configuration bit stream, shown in the

figure below.
Vee +1 v
L MO M1 M2 PWRD'
(DOUT CCLK
——HDC
GENERAL | — |
PURPOSE 4
USERIO Y — |
PINS |= ALL
. OTHER
PINS
\ LCA
~——OIRESET
DIN DATA
~RCLK CLK SERIAL
cE MEMORY
~LDC ———[-g OE

! Master-Serial Mode Pin Usage

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-27
2

In the Master Parallel-Low and Master Parallel-
High modes, the LCA device uses on-chip control
logic to address an external, byte-wide memory device.
This memory device, for example an EPROM, holds the
configuration bit stream. The following figure shows a
typical Master Parallel-Low mode configuration.

+5V
Ve L
l MO0 Ml PWRDWN
¢ —— DOUT CCLK |
— M2 AlS [
] HDC Al4 p— EPROM
GENERAL A3 fm (2K x8
PURPOSE 4 Loc AL2 fe ORLARGER)
USERI/O \ emeeed ~RCLK All
PINS —
1) aL Al0 A0
. OTHER
PINS A9 A9
A8 A8
\ — LCA
AT A7 D7~
———0| RESET A6 A6 D6 [—\]
/—1°7 A5 A5 D5
=\
L/ Pé A4 A4 D4]
/D3 A3 A3 D3 [y
Ve D4 A2 A2 D2 —\
/1 P3 Al Al D1
— D2 N
A0 A0 DO —-\
,~{ D1 OE
/| Po hid —Eg CE
< A=
paTABUS 7

Master Parallel-Low Mode Pin Usage

For the byte-wide or parallel modes, 16 of the LCA
device's I/0 pins form an address bus. Eight additional
I/O pins form a unidirectional data bus. There are two
types of byte-wide Master modes.

¢ The Master Parallel-Low mode addresses
memory in ascending sequence, starting at

address zero, 0.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

* The Master Parallel-High mode addresses
memory in descending sequence, starting at
hexadecimal address FFFF.

With this addressing flexibility, the configuration data
can share space in a ROM or EPROM that typically
stores a microprocessor program.

After configuration begins, memory-read cycles
continue until the correct number of bits are read. The
D/~P pin goes HIGH to indicate that the configuration bit
stream is loaded.

Note: Bytes of data read from the external byte-wide
memory are serialized on-chip, and are independent of
hysical byte boundaries.

In addition to using the 16 address outputs and 8 data-
bus input pins, Master Parallel-Low and High modes E
also use several other signals. One is the ~RCLK

output signal, which is active LOW, yet goes HIGH while

the address bus is changing state. This allows clocked

EPROMs to store configurations. Other signals are the

CCLK and DOUT outputs, both of which drive cascaded

or daisy-chained LCA devices, as shown in the

following figure.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-29
) 2

A
SV +5V
+V
+5V ﬁ I a
; _| JL r MO MI PWRDWN
B MO MI MO M1 PWRDWN]
””C“Dcz’g CCLK
CCLK b DN —
DOUT DIN LCA LCA
SLAVE #1 Yy SLAVE #n
M2 b= M2 p—
—{ M2 EPROM e HDC =
~LDC
o e Alt e : GENERAL | | omvEraL
PURPOSE § _J perk PURPOSE PURPOSE
~ Al3 AL | e
USER
USER /O A2 AL | 1. | USER1O orHER ¢ | 2 vo
PINS | =) ALL Al OTHER e PINS
o | § otHER PINS
o || piNs = —
— LCA
MASTER 27 b1 v Di-P D-P
D7 ;\5 RESET —Of RESET
D6 D5 r‘o .oe
Ad D4
o A3 D3
o A2 D2
D2 Al D1
Ul
D1 A A0 Do
DoO- . ®
RESET D/~-P J:g E
<l ‘8
-+ —
« REPROGRAM ‘ A\
7
-~ ‘
“ ~SYSTEM RESET \

Master Mode LCA Device with Daisy Chain

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-30 June 1988

The following table summarizes each pin's function in
the Master-parallel modes.

Master Low and High Modes Pin Summary
Pin Pin Number Pin Value During Description
Name PLCC DIP Type Configuration
Fixed, Non-Programmable Pins:
MO 26 18 Input LOW Mode Select
M1 25 17 Input LOW (Master-LOW Mode)
or HIGH (Master-HIGH Mode)
CCLK 60 42 Output <Clock> Configuration Clock
~RESET 44 31 Input HIGH Master Reset
D/~P 45 32 Output LOW Done/Program
~PWRDWN 10 7 Input HIGH Power-Down
User-Programmable Pins:
M2 27 19 Input HIGH Mode Select
DOUT 59 41 Output <Data> Configuration Data Out
HDC 28 20 Output HIGH Constant 1 Level
~LDC 30 21 Output LOW Constant 0 Level
~RCLK 57 39 Output <Strobed> Chip Enable Output
AQ - Axx Outputs <Address> Memory Address
l__’ A15 A1 A0
3 5 6 4 2 1 48 47 46 45 44 43
e 6567 2 4 6 8 9 7 5 3 68 66 64 63 62 61
Do -D7 Inputs <Data> Memory Data
D7 DO
28 29 34 35 36 37 38 40
— 41 42 48 50 51 54 56 58

Although 16 address bits are generated in the Master
parallel modes, not all 16 bits are required to configure a
single LCA device. The extra addressing capacity of
the LCA device lets it address multiple configuration bit
streams in a single EPROM. Thus, you can configure
several daisy-chained devices from a single source.
The device illustrated above presents an example of a
Master mode LCA device tied to a daisy chain of Slave

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-31
2

[4)

8861 sunp

9 H31dVHO YOOGANYH NDIS3A Y01 S3IH3S 0002

ADDRESS
BUS
(OUTPUTS)

DATABUS
(INPUTS)

CCLK
(OUTPUTS)

DOUT
(OUTPUTS)

(OUTPUTS) —/—\

ADDRESS V) X' ADDRESS (N+1) X ADDRESS (N+2)

rm XXKXXXEXXTXXXXXXXX) B XERRDRRXEX oo —

BYTE (N-1) BYTE(N-) Y BYTE(N-1) BYTE(N) BYTE(N) BYTE(N) BYTE(N) BYTE(N) BYTE(MN) BYTE(N) BYTEMN) BYTE (N+1)
BITS BIT6 BIT7 BITO BIT1 BIT2 BIT3 BIT4 BIT5 BIT6 BIT7 BITO
LSB MSB

Master Mode Configuration Timing

‘apow uoneinbiuod 1s)sepy syl 1o} Buiw} ay)

SMOYS Mmojeq weibeip Buiwiy 8y] "S8dIA8p Yy apoL

The Master mode device pauses briefly when
powering-up, before it starts the configuration process.
This ensures that it successfully configures daisy-
chained LCA devices. This power-up delay, which is
substantially longer than, and unrelated to, the
initialization delay for either Slave or Peripheral mode,
allows variations in the LCA device's response to Vcc
rise times. It also ensures that all Slave mode LCA
devices have time to become fully initialized and ready
for configuration data. If your system requires longer
delays to guarantee that all slave devices have been
powered, you can use ~RESET to extend the power-
up delay and to hold off the start of configuration.

The next discussion describes the configuration of
multiple LCA devices in more detail. E

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-33
2

6.3 CONFIGURE Designs using multiple LCA devices can reduce

MULTIPLE LCA configuration overhead by logically concatenating

DEVICES stored configuration bit streams. Using this option, you
can configure LCA devices in daisy chains or in parallel
mode, as discussed below.

6.3.1 DAISY- If one data source supplies the configuration bit stream
CHAIN for all devices in the daisy chain, then you can configure
CONFIGURATION the first LCA device in the daisy chain in any config-

uration mode. After it is configured, you load config-
uration bit streams for all remaining devices in the chain
using the pin-efficient Slave mode. When you cascade
LCA devices in this way, you configure them one at a
time in sequence, starting with the first device in the
chain. You can configure virtually any length of daisy
chained devices in this manner.

You daisy-chain LCA devices by connecting
the DOUT pin of one device to the DIN pin of
the next device. Each device in the chain supplies
data to the immediately following Slave mode device.
As soon as a given device in the daisy chain receives its
share of the configuration data, the balance of the data
simply passes through it to configure the remaining
devices in the chain. The DOUT pin is HIGH until the
length count is reached and configuration is completed.

Data passing through an LCA device from the DIN pin to
the DOUT pin is subject to a one-clock-cycle resynch-
ronization delay. When configuration completes for all
devices, both DIN and DOUT become available as
general purpose I/O pins. The following figure illustrates
how you can connect multiple LCA devices into a daisy
chain.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-34 June 1988
2

ADDRESS DATA A\ o
BUS BUS 5v
+5V +5V
p [M0 MIPWR MO M1 PWRDN M0 Mi pwR
DIN DWN DWN
ZIOWRT | wrr CCLK cCLK CCLK pourl
DOUT DIN DOUT | \\————{DIN LCA
LCA LcA SLAVE #n
N M2 SLAVE #1 2 b—
[\—JADDRESS — M2 Hhe
« | DECODE Cso0 HDC e HDC —
. L ~LDC
A\ LOGIC ~LDC gENER?é_ -DC L p — o
— ULSER'“ Ul,o — P PURPOSE > PURPOSE
: ALL . USER O ALL . USER 1/O
: : OTHER
PINS pp NS
. D/-P " —
RESET —. RESET
« REPROGRAM *
”
< ~SYSTEM RESET o
Cd w
Peripheral Mode LCA with Daisy Chain
Y\
=5V +5V
+5V
+5V
MO MIPWRDN
MO MI PWRDWN MO M1 PWRDN
CCLK CCLK CCLK DOUT f—
DOUT DIN DOUT A\ D
LCA) n§LAVE#n
—M2 SLAVE’;V[I __ M2
—HDC :}i—""—:ii Hpe L HDC f—
G] Al A — 10e -
PURPOSE RCLK AI2 A2 GENERAL || ceneraL
e { A oo, [o
PINS Al0 EPROM ALL . USER /O OTHER . vo
)AL A9 Al0 OTHER : pns 1|0
: OTHER g A9 PINS
. PINS A7 A8 - —
A6 A7
D7 AS A6 gg D/~P D/~P
Dé A4 AS D5 RESET RESET
D5 A3 A4 Dt r“l
D4 A3 b3
D3 A2 b2
D2 Al DI
D1 A0
o RESET D/-P r;
7/ 8
I 4
REPROGRAM %
”
Z-SYSTEM RESET >
Ll w
Master Mode LCA with Daisy Chain
2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6
 ———————————————— — — R—
June 1988 6-35

The following figure shows the configuration timing for
the previously discussed daisy-chained LCA device.

——START OF CONFIGURATION CONFIGURATION COMPLETED _—l
CONFIGURATION #1 1 CONFIG. #2 _| CONFIG. #3 | CONFIG. #4
BIT STREAM | 1 1
SEENBYLCA#1 " TpREAMBLE & CONFIG. CONFIG. CONFIG. CONFIG.
LENGTH COUNT |FOR LCA #1 FORLCA #2 FORLCA#3 FORLCA #4
BIT STREAM A\
SEEN BY LCA #2 PREAMBLE & CONFIG. CONFIG. CONFIG.
LENGTH COUNT FOR LCA #2 FORLCA#3 FORLCA #4
BIT STREAM 1\ 1\
SEENBY LCA #3 PREAMBLE & CONFIG. CONFIG.
LENGTH COUNT FORLCA#3 FORLCA #4
BIT STREAM A\ A\ A\ \
SEEN BY LCA #4 PREAMBLE & CONFIG.
LENGTH COUNT . FOR LCA #4
NOTE: HORIZONTAL DIMENSION (TIME) NOT DRAWN TO SCALE.

Timing for Daisy-Chained LCA Devices (Using Four Device Examples)

6.3.2 PARALLEL In multiple LCA applications, you have great latitude in

CONFIGURATION designing the configuration logic. The serial daisy-
chain technique described above is just one method to
program multiple LCA devices.

Another possibility, which takes advantage of the bit-
serial nature of the Slave and Peripheral configuration
modes, is simultaneous parallel configuration. You
simultaneously configure multiple LCA devices, as
shown in the Peripheral mode example below. Each
write-cycle loads one bit into each device.

Simultaneous loading reduces the total time required to
configure a group of LCA devices, to the time required
to configure a single device. You can further improve
performance by adding hardware to configure this
group via DMA transfers. For example, if a processor is
available, you can simultaneously configure up to eight

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-36 June 1988

LCA devices in parallel, from a single disk file containing
the interleaved device configuration data.

FROM
SYSTEM
BUS

&

Parallel LCA Configuration Using Peripheral Mode

The following discussion explains considerations for
assigning multiple-function 1/0 pins.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6-37
2

6.4 ASSIGNING
MULTIPLE-
FUNCTION

1/0 PINS

6.4.1 POTENTIAL
1/0 CONFLICTS

¢

After selecting a suitable configuration mode, you must
assign input/output functions to specific 1/0 pins.
Typically, you base the pin assignments on

* logic block placement within the LCA device
« common I/O clock constraints, and
* /O pin usage during configuration.

You can also use user-definable /O pins to configure
the LCA device, but these pins require careful design.
For applications that require many programmable /O
pins, you should consider techniques for making
efficient use of these dual-function pins, as discussed
below.

Good design practice dictates that no logic signal
conflicts occur during either the configuration phase or
the user-operation phase. However, these conflicts
may not be obvious. The directional nature of some I/O
pins used for configuration changes when the LCA
device completes configuration and enters the user-
operation state. Your design should guarantee that
pins used as outputs during configuration do not
conflict with other logic sources also tied to those pins,
even when they are not used in a given application.

The DOUT pin is an example of an output pin that is
easily overlooked. During configuration, DOUT
becomes an output, regardless of whether it drives the
DIN pin of another LCA device. Other examples include
the HDC and ~LDC pins, which are driven HIGH and
LOW, respectively, during configuration. A design
should be able to tolerate activity on these and other /O
pins used during configuration, without causinga
problem if external circuits are also tied to these pins.
You can usually prevent this problem by careful pinout
assignment or use of isolation buffers.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

The following cases describe three approaches that
minimize potential signal conflicts.

« Case 1: I/O pins used for configuration are
dedicated to that function and are not used during
operation. In this case, no signal conflicts occur.
However, this approach reduces the number of
available I/0 pins.

» Case 2: I/O pins used for configuration are also
used during operation. However, the signals are
similar in input/output sense and the system
suffers no adverse effect from transitions occurring
on those pins during configuration. Isolation
buffers are not required.

« Case 3: I/0 pins used for configuration are also
used during operation. However, they either
conflict in the input/output sense or have signal
transitions during configuration that can adversely
affect other system logic. You can use three-state
buffers to solve this problem, perhaps with the
D/~P, ~LDC, or HDC pins serving as the enable
control for the buffers.

You can eliminate, or significantly reduce, external logic
components in an LCA-based design by watching for
the above-listed cases and carefully assigning 1/0
functions to actual pins. When faced with the conflicts
described in Case 3, assign another pinout to eliminate
the conflict. Usually, isolation buffers are not necessary
because inputs and outputs are assigned without
conflicts to the I/0 pins used during configuration.

As an illustration, assigning output functions to pins that
are already used as outputs during configuration, such
as address outputs in Master mode, might obviate the
need for buffering those signals. In general, any
sharing of similar pin functions during and after

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6-39

configuration might eliminate the need for external
buffer logic.

The following cases illustrate how careful pinout
assignment can reduce the number of external logic
components in LCA-based applications.

» Case 1: When the LCA device is configured in
Master mode, the final application can share pins
with this mode's address and/or data buses.

+ Case 2: When the LCA device is configured in
Peripheral mode and interfaces to a CPU bus, the
~WRT, DIN, ~CS0, ~CS1, and CS2 pins are driven
from this bus and, thus, can be assigned similar
functions during configuration and final
application.

» Case 3: When an application uses multiple LCA
devices, and a signal passes from one device to
another, you can assign the signal to the DOUT of
the first device and to the DIN connection of the
second device.

6.4.2 UNUSED I1/0 An LCA pin programmed as an input and not connected

PINS to any external logic is considered a floating input.
As with any CMOS device, floating inputs can provide a
low-impedance current path from Vcc to ground and
result in permanent damage to the device. Thus, you
should handle an unused LCA pin in one of the
following three ways.

1. Define it as an output, and drive it with an
internal signal, preferably a constant level 0 or 1.

2. Define it as an input and either
a. drive it externally with logic, or
b. tie it to an external pull-up or -down resistor, or
c. tieitto Vcc or ground.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-40

June 1988

The relative advantages of defining unused pins as
inputs or outputs depend on your specific application.
You should try to minimize the following.

» Static and dynamic power dissipation
* Component count

» Risk of electrical damage to the device
. Future circuit board modifications

3. The preferred method of treating unused
1/0 pins follows.

a. Externally leave the pin open or unconnected.
b. Internally configure the pin as an output.

c. Drive the pin internally with a constant level
signal.

Typically, you select a nearby, unused CLB output,
define it as a constant 1 or 0, and tie that signal to all
nearby unused IOBs. If internal routing congestion
precludes routing this DC signal to an 10B, your next
best option is to drive the IOB's output pin with an
accessible net. In this case, a net with the lowest toggle
frequency is best because it results in less power
dissipation.

Diagnostic test-point outputs are another practical
use for unused LCA pins. These test points can be
very valuable for monitoring internal logic nodes that
would otherwise be inaccessible. Test-point-outputs
aid in circuit analysis and debugging.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-41
2

6.5 CONFIGUR-
ATION DATA

This discussion explains the LCA configuration bit
stream format and loading.

The configuration data required to program the LCA
device is a string of bits. The number of bits required to
supply all the configuration information for a single
device depends on the type of device, as outlined in
the following table. For applications using multiple LCA
devices connected as a daisy chain, the bit stream
grows for each additional device.

Note: This description applies only to the bit stream
generated by the LCA development system for use in
EPROMSs. The XACTOR in-circuit emulator uses a
different version of the bit stream that is longer; the data
is not packed.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

Configuration File Format Shown in Binary Equivalent

M2064LCA
111 Dummy Bits (4 Bits Minimum)
0010 Preamble Code
<24 Bit length count> Configuration Bit Stream Listing
1111 Dummy Bits (4 Bits Minimum)
0 <Data frame #001> 111
0 <Data frame #002> 111
0 <Data frame #003> 111 160 Configuration data frames]
} (Each frame consists of
a 0 start bit, a 71-bit data field, Repeated once
e and 2 or more dummy bits) } for each LCA in
0 <Data frame #159> 111 the daisy chain
0 <Data frame #160> 111)
1111 Postamable code (4 bits) - J
M2018LCA
1111 Dummy Bits (4 Bits Minimum)
0010 Preamble Code
<24 Bit length count> Total Number of Bit Stream Bits
1111 Dummy Bits (4 Bits Minimum)

0 <Cata frame #001> 111 \
0 <Data frame #002> 111

0 <Data frame #003> 111 196 Configuration data frames \
} (Each frame consists of:
a 0 start bit, an 87-bit data field, Repeated once
. and 2 or more dummy bits) for each LCA in
0 <Data frame #195> 111 the daisy chain
0 <Data frame #196> 111
1111 Postamable code (4 bits) J

Notes:

1. Data bits as shown in the table are shifted into the LCA device with the left-most bit of each line
in the table being entered first. The bit field containing the length count is shifted in with the
most significant bit first. For master-mode applications, bytes of data read from the EPROM are
internally serialized so that DO is sensed first, D7 last. Therefore, the first byte of the EPROM
would read "0100 1111" in binary, or "4F" in hexadecimal notation.

2. In multiple LCA applications where a daisy chain is used for configuration, the length count
reflects the total number of clock cycles for all LCA devices configured from this one bit stream.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-43

6.5.1 CONFIGUR-
ATION FILE
FORMAT

The configuration bit stream begins with several logic-1
level bits, termed dummy bits. These are followed by
a 0010 preamble bit pattern, left-most bit first.
Following the preamble are 24 bits that represent the
length count. The magnitude of this count must
equal or exceed a value that is two less than the total
number of clock cycles required to shift in all bits in the
bit stream, including the dummy bit. Length counts
greater than this number (up to 224-1) are valid, and
merely delay the D/~P pin from going HIGH to indicate
the completion of configuration. All data associated
with these additional clocks are ignored.

Note: Configuration bit streams for several LCA
devices connected in a daisy chain have only a single
preamble and length count.

Within the LCA device, the length-count value is held in
the length-count register and compared to a
CCLK clock-cycle counter to determine when the
configuration process is completed. When the value of
the CCLK cycle counter equals the value in the length-
count register, and all required data frames are entered,
configuration is done and the D/~P pin is released.
Because all devices in the daisy chain start their clock
cycle counters simultaneously, all LCA devices in the
daisy chain complete configuration and become
simultaneously operational.

The value used for the length count is a function of how
many LCA devices the bit stream must configure. For
example, if there are three 2064 LCA devices
connected in a daisy chain, the configuration bit stream
is over 36,000 bits long. The length count is included
only once at the beginning of the bit stream. Several
additional cycles are required to compensate for the
resynchronization delay of the data at each DOUT pin.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

The LCA development system computes the
precise value of the length count and automatically
enters it into the configuration file. The preamble and
length-count bits are sensed by each LCA device at its
DIN pin and immediately passed on to the next device in
the daisy chain via the DOUT pin. Afterwards, however,
each device in turn accepts its portion of the
configuration bit stream before passing any

subsequent data on to the next device. Refer to the
following timing diagram.

— START OF CONFIGURATION CONFIGURATION COMPLETED
CONFIGURATION #1 1 CONFIG. #2 _| CONFIG. #3 1 CONFIG. #4
BIT STREAM | | ! \
SEEN BY LCA #1 PREAMBLE & CONFIG. CONFIG. CONFIG. CONFIG.
LENGTH COUNT |FOR LCA #1 FORLCA #2 FOR LCA #3 FOR LCA #4
BIT STREAM A\ \
SEEN BY LCA #2 PREAMBLE & CONFIG. CONFIG. CONFIG.
LENGTH COUNT FORLCA #2 FOR LCA #3 FOR LCA #4
BIT STREAM A\ A\ \
SEENBY LCA #3 PREAMBLE & CONFIG. CONFIG.
LENGTH COUNT FOR LCA #3 FOR LCA #4
BIT STREAM A\ A\ 1\ \
SEEN BY LCA #4 PREAMBLE & CONFIG.
LENGTH COUNT FOR LCA #4
NOTE: HORIZONTAL DIMENSION (TIME) NOT DRAWN TO SCALE.

Timing for Daisy-Chained LCA Devices (Example Using Four Devices)

Within the configuration bit stream, data are presented
in frames that begin with a start bit, 0, and end with at
least two dummy or stop bits. Between the start and
stop bits of each frame, there is a data field that defines
your design's logic functions. The last frame is followed
by a field of postamble bits.

Note: AMD reserves the right to change the format,
organization, and length of the bit stream used to
configure the LCA device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-45
2

6.5.2 A SAMPLE This discussion assumes that a processor configures

EQUIVALENT CON- the LCA device in either Peripheral or Slave mode. The

FIGURATION FILE connections to the device, and the timing needed to
perform the configuration, are discussed earlier in this
chapter. Regardless of the configuration method, the
bit stream data is the same. The bit stream for this
example, created by MAKEBITS, is in a PROM file,
formatted for Intel MCS86 compatibility.

The following figure summarizes the equivalent data
format of the PROM file.

Recall: The information preceding the first data field is
required to initialize the configuration logic on the LCA
device with the proper bit-stream length. Each
subsequent data field provides configuration
information for a portion of the device.

1 Dummy Bits (4 Bits Minimum)
0010 Preamble Code
Total number of Bit Stream Bits
4B
ffl h IT LENGTH COUNT> Dummy Bits (4 Bits Minimum)
0 <DATA FRAME # 001> 111 —
0 <DATA FRAME # 002> 111 .
0 <DATA FRAME # 003> 111 160 Configuration Data Frames
: : : (Each Frame Cbnsists of: Rep?ate.d for E?Ch LCA
. A Start Bit Device in a Daisy Chain
. e A 71 - Bit Data Field
0 <DATA FRAME # 159> 111 2 or More Dummy Bits)
0 <DATA FRAME # 160> 111
1 Postamble Code (4 Bits Minimum)

Typical Equivalent Configuration-Data Arrangement for the 2064

The beginning of the sample PROM-format
configuration file for a 2064 is shown next.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-46 June 1988

The required leading 1s are in the low nibble, with the
preamble in the high nibble. The bits are arranged this
way to simplify the connections from an external PROM

or ROM to the LCA device in Master mode.

: 020000020000FC
H 1000OOOOQEOOF46OEFFAF3F3FFF7C5FFFF7FD39CD7
: 10001000A5EBBB5975F7FFFB3F 7TFFEFEFEBSFCEFF6E
: 10002000DFBD59AFBDBE4FFFFBFEFEDFBFBFAFS5F01
: 100030007F7FF7F7FF7FFFFDFDFFFBFFBFFFFFFFAS
: 10004000CBD7FFB7FFFFFDFFFFBF3EFFFF7FFFEFF7
: 10005000FFFFBDFFFFFFB7FF7BFFFFFFFFFFDFEFEE
: 10006000FFFDFBFFFFFFDFFFFFFFFFODTF7FFFFE29
: 10007000FCFAFD7DEFEEFFFFFFFFFFFFFFFFF7FF45
: 10008000FFFFFFFFFFFFF7F3FFFFFFFFFFFFFFFFCO
: 10009000FEFSEFEFDFFFD7BFBFFFCFDFFFFFFFBFEF
: 1000A000FFFFFF77EFEFDFDFDFBFBFBFFFF3FF7FB4
: 1000BOOOFFCFBFDFFFFFODFBFAB7F7F7FFFFT7FEF33
: 1000COO0OFAFEFEFDFD7D7B7BFBF 7FFFFFFFFFFFBES
: 1000DO0O0FBFB3FF3F7EFESEFFFFFFFDBBOBD5D3B54
: 1000EO0Q005BFB77F7F7CE7777EFEFAEDS5D7D77B9F70
1000F0009F3F3F3E373E3EDE7B67FFFEFEFEEEFF4C

Beginning of Typical Hex PROM File

2, is hexadecimal 4F.

Note: The first byte of the data field, underlined in line

Although the LCA device's internal memory always
loads serially, the Master-parallel modes read the
configuration bit stream in parallel directly from an

external memory device, such as a PROM. The data is
serialized internally for loading into the memory cells.
The PROM connections serialize the least significant bit
of the byte, DO, first. Consequently, the order of the
data bits in the PROM file is the reverse of the order in

which they are read by the LCA device. When a

processor loads the configuration data, the PROM file

data is read one byte at a time and supplied to the

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6-47
2

device one bit at a time, beginning with the least
significant bit, DO.

Consider the three bytes following the first byte, 4F, of
the data field in the PROM file-above. The hexadecimal
00F460 represents the 24-bit binary length count of
000000000010111100000110, or 12038 decimal,
which is the total number of clock cycles required to
load this bit stream. Three additional clock cycles are
required to complete the configuration and activate the
device. The fifth byte, hexadecimal EF, contains the
four pad 1s, the start bit, and the first 3 bits of the 71-bit
data field.

Note: The LCA device inverts the incoming data, so
the data bits stored in the memory cells are the
complement of the input data.

6.5.3 CONFIGUR- Data supplied to the LCA device during configuration is

ATION LOADING shifted into a 71-bit shift register. When the shift
register is full, it is written into the internal memory cells
as a single 71-bit word. In the 2064, there are 160
words of 71 bits, comprising a total of 11,360 bits of
configuration data. Preamble data increases the total to
12,038 bits. For the 2018, there are 196 words of 87
bits, a total of 17,052 bits of configuration data.

The next discussion explains read-back of the
configuration bit stream.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

i

6.6 READ-BACK After you load and store the configuration bit stream,

CONFIGURA- you can read the data back to confirm the

TION DATA configuration, as described below.

6.6.1 READ-BACK With the read-back process, you extract the
PROCESS configuration bit stream from the LCA device. You can

use the read-back data to verify that the contents of the
memory cells have not changed since the last
programming cycle. The read-back data contain the
state of the CLB storage elements, such as flip-flops
and latches, I0B storage elements, and memory cells in
the logic blocks, as well as the state of the input
connection point on each I/O block.

The read-back process is accomplished without using
user-programmable I/O pins. The data is read back

serially by CCLK, M0, and M1. The read-back process is E
triggered by a LOW-to-HIGH transition on the MO/RT

pin. On subsequent cycles of CCLK, internal

configuration data are supplied on the M1/RD pin. The

following figure illustrates the timing of this data read-

back process.

- - -

MORT : /

MI1/RD

[|

Dummy bits

| | |
Frame 1, Bit2 | ‘0 ‘1’ Frame 2, Bit2

Frame 1, Bit 1 Frame 1, Bit 71 Frame 2, Bit 1
Readback Control Timing

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6
June 1988 6-49
2

Individual data frames are read back in the same
sequence as they were supplied to the device. In the
read-back serial data stream, the individual bits are the
true sense of the internally stored data bit. Recall that
the bits in the programming stream are the
complement of those stored internally.

The initial data frame of the read-back data is preceded
by a dummy clock cycle and two dummy bits with an
unknown state. After the first data frame, there is a stop
bit, 0, and a start bit, 1, prior to the next frame. After the
last frame, there is a stop bit, 0. Even when additional
CCLK cycles are applied after the last data frame is read,
the M1/RD output is disabled. The pin is not driven
after the final stop bit.

6.6.2 READ-BACK After you read the configuration bit stream back, you

DATA CONTENTS can compare the read-back bit stream with the input
data stream to determine whether the device is correctly
configured. You must remove the input data dummy
bits and start bits, and the read-back data start and stop
bits, either as part of the programming and read-back
process or after the read-back process completes.

In the configuration and read-back bit streams, some of
the memory locations do not correspond to actual
memory cells in the device. These locations may be
unused during both the configuration and the read-
back processes. They contain the storage elements
and input block values during the read-back. You can
extract and display the storage element and input block
values with the XACTOR in-circuit emulator during
debugging. To verify configuration, ignore these bit
locations, because their contents might not be the
same as the corresponding positions in the bit stream.

By using the MAKEMASK command, you generate bit

positions, which are ignored in the read-back data
stream. You can convert the bit file generated with

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-50 June 1988

MAKEMASK into a PROM file by using the
MAKEPROM software. The MAKEPROM software
converts the binary bit stream to hexadecimal format.
The format for the final-mask PROM is now identical to
the configuration bit-stream PROM. Each data bit in the
read-back data stream that should be ignored is
represented by a 0 in the mask PROM file.

The following figure shows the beginning of a mask bit-
stream file for a 2064 that was converted from binary
format into a hexadecimal PROM-format.

Note: This file has the same preamble, length count,
and pad bits for one LCA device as the standard
configuration data file.

: 020000020000FC

: 100000004F00F4608FEDEDDD8BDBBBB78770ECEF 5D
: 10001000DF1FDCBFBF3F9463FFFFFFESFFFFFFB3BC
: 100020001DFFFFFBD7FFF7FFAFED587FDFFEFEBEE2
: 10003000FDFD2DC7FAFFFEFFFFFDFF7FB9EGFFF7CD
: 10004000BFFFEFFF7FDB35FFBFFFF77FFFFFDFEET7
: 10005000F1F3E7A7E7CFCFCF7EBFBC7C7979F9F288
: 10006000F2FAFBF575EBEBEBD6D7D7DFA7TA74B4F33
: 100070004F979E9EFE3E3D5D7A7ABAF4F4F4D7ED3A
: 10008000EDDADBDBBS5B7B7BD7F 7FF 7FEFEEEFDFD3A
: 10009000FDFDFFFFFFFFFFFFFFEFEFFBFBFSF7F7B6
: 1000A000EBEF6F7FDEDFAFBFBFS5F7F7FBB7B78F89B
: 1000BO00FOFOFOE1E1C1DEEFEFDBDFDFB7BFBFFEGS
: 1000CO0007E7FFFFEFEFEFDFDF5D7F9F9F2F3F3E5CS
: 1000DO0OE7E7BDCECF979F9F2F3F3FEF757FBFFED6
: 1000E0OOFE7EFDFD7DEFFBFBFS5F7F 7EBEFEF7FFF0OE
: 1000FOOQOFFEFFFFFDFFFFFFFFBFFFFFFFFFFFFFF44

Mask PROM File

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988 6-51
2

To use the mask information,

» strip off the preamble and length count
information, and

» extract the appropriate data bits for each data field.

Because the PROM format has the data bits arranged
with the least significant bit in the DO position, they are
reordered in the correct sequence, as shown in the
figure below. For example, you could write a simple
program to create the mask bit fields for each data field.

Note: You can verify the end of one data field, and the
beginning of the next, by detecting the dummy bits and
the start bit between each field.

FIRST BYTE SECOND BYTE

Fo“:RM%I‘f. [p7]ps|ps|p4|p3|p2|p1|D0f D7|D6|DS5| D4 D3] D2 D1 fDO| -

Rﬁggm% |pojp1p2]|p3]|p4]Ds|p6[D7 D'O]D'l]D’Z]D‘3]D’4|D'5|D'61D'7]

Data Bit Sequence

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-52 June 1988
2

CHAPTER 7

METASTABILITY OF LCA FLIP-FLOPS

METASTABILITY OF LCA FLIP-FLOPSccccciiiiiiiiiiiiiiiii i e nenaes 1
7.1 FLIP-FLOP METASTABILITY ...oooiiiiiiiiii it 2
7.2 LCAFLIP-FLOP ERROR PROBABILITYociiiiieieiiiie e e e e enence s sinneee e 6
7.3 MINIMIZING THE ERROR PROBABILITYccociiiiiiiiiiiiiin ettt 10
7.3.1 REDUCING ERRORS.........ccceootiiiiicniectsc et 10
7.3.2 USING DIRECT CONNECTIONSccooiiiiiiiiiiiiiie e, 11
7.3.3 CHANGING THE SYSTEM CLOCK RATEccciiiiiiiiiiniicccicinccnece e 11
7.3.4 USING A FASTER DEVICE.........cccooiiiiiiiiiii e 12 E
7.3.5 SUMMARY ..o 13

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

June 1988 7-i
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

740

June 1988

7 METASTABILITY OF LCA
FLip-FLOPS

This chapter discusses flip-flop metastability in an LCA
design.

* The discussion on flip-flop metastability, 7.1,
defines the topic and explains the importance of
considering it when implementing LCA-based
designs.

* The discussion on LCA flip-flop error probability,
7.2, analyzes the flip-flop error probability due to

metastability. E

* The discussion on minimizing error probability, 7.3,
describes the flip-flop error reduction features and
provides some design techniques to minimize the
error probability.

Note: The following discussions on metastability in
LCA-based designs merely indicate some of the
considerations you should take into account during
your design cycle. They are not intended to be
exhaustive or definitive.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

S —————— —— —— S——

June 1988 7-1

7.1 FLIP-FLOP Metastability is defined as an output state between a

METASTABILITY valid logic HIGH and LOW for any digital device. It can
occur for registers or latches when certain parameters,
such as data setup and hold times, are violated. Data at
the input of a D-type register must be established as a
valid logic LOW or HIGH at some specified time tsu
(setup) before applying a clock input to that register.
This data must also be maintained or held at the input
for a specified time tH (hold) after the clock pulse has
been removed.

In a completely synchronous system, the clocking of
data through registers can be synchronized to a clock
edge that is generated from a local source, such as an
on-board crystal oscillator. In this case, the timing is
predictable and setup and hold times are adhered to
when all system parts are connected. In this type of
system, no metastability problems should occur.. The
designer can calculate propagation-delay values from
published component data and ensure that no timing
parameter violations occur.

With two independently clocked systems, it might not
be possible to synchronize the clock frequencies or
events, so when data are passed from one system
output to the input of the next, setup and hold times
might be violated for registered inputs to flip-flops. If
the setup and hold time requirements are small relative
to the sampling clock period, the probability of violating
these parameters is not very high. It further decreases
with a decrease in the sampling clock frequency. Also,
if the setup and hold times can be reduced by using
higher performance devices, then the probability of
violating these parameters is further diminished.
However, a small probability of a metastable state would
still exist.

In digital circuits, valid data input to registers or latches

are set either LOW or HIGH. The voltage level is
dependent on the technology. If this valid condition is

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7-2 June 1988

set up prior to a clocking edge, the data is clocked to
the register output and no metastable condition arises.
A problem could occur if, at the time of sampling, the
input signal is in transition.

In an LCA device, the following valid conditions can
occur for TTL and CMOS circuits. In both cases

Vecc=5V
TTL logic HIGH 20Vto50V
TTL logic LOW 0.0Vto08V
CMOS logic HIGH 35Vto50V
CMOS logic LOW 00VtoiOV

For a TTL circuit, any input between 0.8 Vand 2V

sampled by a clock edge is neither a LOW nor a HIGH,

and represents a violation of hold and setup times. The

condition of the output can not be guaranteed to follow

a valid logic state because none was sampled at the E
input.

The typical gate or inverter is essentially a high-gain
linear amplifier circuit. Logic HIGH or LOW outputs

represent saturation conditions; further input drive
does not achieve a corresponding output change.

If, during sampling, the input is transitioning between
two logic states, the register or latch could be operating
as a linear high-gain amplifier. The ability to recover from
a metastable state is then dependent upon the
characteristics of the logic device, which is not
operating in a valid mode. The gain/bandwidth product
of the device in this mode influences the device
behavior and determines the output recovery from a
metastable condition.

Attempting to characterize the metastability of LCA
devices is difficult because the timing associated with
different interconnections varies from application to
application. Setup an