
PGA
Data Book

Advanced
Micro

Devices

~
Advanced

PGA Databook

Micro
Devices

Since the original printing of this material, Monolithic Memories has merged with Advanced Micro Devices.
References in this handbook to either company now pertain to the new combined entity,

which markets all products under the AMO name.

1-1

This book contains information about AMO's Programmable Gate Arrays, an exciting
extension of our commitment to the field of programmable logic. The leader in
programmable logic products, AMO continues to provide you with the quality, reliability
and innovation you demand. As with every product we sell, AMO's Programmable Gate
Arrays are backed by an extensive force of knowledgeable sales personnel and fully­
trained field applications engineers. After reviewing the information in this book, you
will see how PGAs can fit into your applications. Please contact your local AMO sales
office, authorized representative or franchised distributor so that we can together, solve
your technical problems with AMO's Programmable Gate Arrays.

C,~~ -,;;LL~~ "-.,,.., Y------~
Michael J. Callahan

1·2

Senior Vice President
Programmable Products Group

Table of Contents

Introduction .. 1-1
Table of Contents .. 1-3

Section 2 2000 Series LCA Design Handbook Table of Contents ... 2-1
See Section 2

Section 3 Applications ... 3-1
Configuring the LCA Device .. 3-3
M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display 3-17
LCA Counter Applications ... 3-29
Time Division Multiplexing with LCA Device ... 3-43
Dual 32-bit Serial CRC Error Detection in a LCA Device .. 3-53
LCA Device Implements an 8-bit Format Converter in a PBX Switching Module 3-65
Reconfigurable Programmable Devices (LCA) Simplify Digital TOM Line Transcender 3-75
Building an ESDI Translator Using the M2064 Logic Cell Array ... 3-89
Using the Logic Cell™ Array to Build a Pseudo-Random-Number Generator .. 3-101
64K Deep FIFO-Dynamic RAM Controller is Implemented in the M2018 LCA Device 3-109 II
Configuring the LCA™ from the PC Bus ... 3-125

Section 4 Product Information .. 4-1
Logic Cell™ Array M2064/M2018 ... 4-3
3000 Series Family of Programmable Gate Arrays ... 4-43
LCA-MDS21

XACT Design Editor System .. .4-116
LCA-MDS22

P-SILOS Simulator .. 4-119
LCA-MDS23

Automatic Design Implementation ... 4-120
LCA-MDS24, LCA-MDS26, LCA-MDS27

XACTOR In-Circuit Emulator ... 4-121
LCA-MDS31/LCA-MDS33/LCA-MDS34/LCA-MDS35

Schematic Design Entry Interface for Futurenet, Daisy, Mentor, OrCAD .. 4-122
LCA-MDS151/LCA-MDS152

PGA Development System/PGA Design Entry System ... 4-124
LCA-MDS135

OrCAD/SDT Ill PGA Design Entry System and lnterface .. 4-134
LCA-MEK01

Logic Cell Array Evaluation Kit .. 4-141

Section 5 Sales Office Listing ... 5-1

1·3

~
Advanced

Micro
Devices

2-2

THE 2000 SERIES LOGIC CELL ARRAY

DESIGN HANDBOOK

BY

AMO, ADVANCED MICRO DEVICES

~
© 1988, Advanced Micro Devices, Inc.

901 Thompson Place

P.O. Box 3453

Sunnyvale, CA 94088

TEL: 408-732-2400

TWX: 910339-9280

TELEX: 34-6306

TOLL FREE: 800-538-8450

APPLICATIONS HOTLINE: 800-222-9323

2000 SERIES LCA DESIGN HANDBOOK

June 1988 i
2

Portions of this document have been reprinted with permission from XILINX, Inc.

Advanced Micro Devices reserves the right to make changes in specifications at any time and without
notice. The information furnished by Advanced Micro Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Advanced Micro Devices for its use, nor for any infringements
of patents or other rights of third parties resulting from its use. No license is granted under any patents
or patent rights of Advanced Micro Devices.

XACT™, XACTOR™, Logic Cell™, and LCA™ are trademarks of XILINX, Inc.
P-SILOS™ is a trademark of SimuCad™ Corporation.

2000 SERIES LCA DESIGN HANDBOOK

ii
2

June 1988

2000 SERIES LCA DESIGN HANDBOOK

PREFACE

ACKNOWLEDGEMENTS

LCA PRODUCT APPLICATION AND COMPONENTS

CHAPTER 1: INTRODUCTION TO THE LCA
CHAPTER 2: THE LCA DESIGN CYCLE
CHAPTER 3: CONFIGURABLE LOGIC BLOCKS
CHAPTER 4: INPUT/OUTPUT BLOCKS
CHAPTER 5: PLACEMENT AND ROUTING
CHAPTER 6: CONFIGURING THE LCA

LCA DATA AND SPECIFICATIONS

CHAPTER 7: METASTABILITY OF LCA FLIP-FLOPS
CHAPTER 8: TESTING AND DATA INTEGRITY
CHAPTER 9: NONHERMETIC PACKAGE RELIABILITY

LCA REFERENCES

GLOSSARY
INDEX

June 1988

2000 SERIES LCA DESIGN HANDBOOK

iii
2

2000 SERIES LCA DESIGN HANDBOOK

.!!. June 1988
2

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION TO THE LCA DEVICE 1-1
1.1 OVERVIEW ... 1-2

1 . 1 .1 SSl/MSI DEVICES ... 1-4
1 . 1 .2 PROGRAMMABLE LOGIC DEVICES .. 1-4
1.1.3 ASICS ... 1-5
1 .1 .4 LCA DEVICES ... 1-5

1 .2 ARCHITECTURE COMPARISONS ... 1-6
1 .2.1 PROGRAMMABLE LOGIC DEVICES .. 1-6
1.2.2 GATE ARRAYS ... 1-6
1 .2.3 LCA DEVICES ... 1-7

1 .3 LCA BENEFITS ... 1-9 B
1.3.1 PROCESS .. 1-9
1.3.2 QUALITY ... 1-9
1.3.3 RELIABILITY ... 1-10

1 .4 LCA DEVELOPMENT SOFTWARE .. 1-11

CHAPTER 2: THE LCA DESIGN CYCLE .. 2-1
2.1 OVERVIEW ... 2-2

2.1 .1 LCA DESIGN SYSTEM ... 2-2
2.1.2 LCA SOFTWARE AND DESIGN CYCLE .. 2-5

2.2 DESIGN ENTRY AND CONVERSION .. 2-8
2.3 LOGIC VERIFICATION ... 2-10
2 .4 AUTOMATIC PARTITIONING, AND PLACEMENT AND ROUTING 2-12
2.5 DESIGN OPTIMIZATION ... 2-14

2.5.1 ROUTING OPTIMIZATION .. 2-14
2.5.2 DELAY CALCULATION .. 2-15

2.6 TIMING VERIFICATION ... 2-16
2. 7 IN-CIRCUIT DESIGN VERIFICATION .. 2-18

2. 7 .1 DOWNLOAD CABLE ... 2-18
2.7.2 PROM PROGRAMMING ... 2-19
2.7.3 XACTOR ... 2-20

June 1988

2000 SERIES LCA DESIGN HANDBOOK

v
2

CHAPTER 3: CONFIGURABLE LOGIC BLOCKS 3-1
3 .1 OVERVIEW ... 3-2
3.2 LCA STRUCTURE ... 3-4

3.2.1 CLBS .. 3-4
3.2.2 THE INPUT/OUTPUT BLOCK ... 3-9

3.3 LOGIC DESIGN WITH CLBS ... 3-11
3.3.1 CREATE BASIC LOGIC .. 3-11
3.3.2 COMBINE OR SHARE CLBS .. 3-15

3 .4 CLB TIMING ... 3-21
3.4.1 TIMING FACTORS ... 3-21
3.4.2 LATCHES, FLIP-FLOPS, AND REGISTERS .. 3-23
3.4.3 COUNTERS .. 3-25
3.4.4 SYNCHRONOUS VERSUS .. 3-30
3.4.5 ASYNCHRONOUS INPUTS .. 3-35
3.4.6 CLOCK SKEW .. 3-37

3.5 LOGIC DESIGN WITH XACT MACROCELLS .. 3-38
3.5.1 MACRO OVERVIEW .. 3-38
3.5.2 MACRO CREATION ... 3-39
3.5.3 SAMPLE MACROS ... 3-40

CHAPTER 4: INPUT/OUTPUT BLOCKS .. 4-1
4.1 1/0 BLOCK OVERVIEW .. .4-2

4.1.1 IOB INTRODUCTION4-2
4.1.2 REGISTERED INPUTS AND METASTABILITY ... 4-5

4.2 LCA 1/0 STRUCTURES .. 4-7
4.2.1 STANDARD 1/0 STRUCTURES .. 4-8
4.2.2 OPEN-COLLECTOR STRUCTURES .. 4-11
4.2.3 SCHMITI-TRIGGER STRUCTURES .. 4-18
4.2.4 GENERAL PURPOSE OSCILLATOR STRUCTURES 4-25
4.2.5 ON-CHIP CRYSTAL OSCILLATOR STRUCTURES 4-28
4.2 .6 REGISTERS AND COUNTERS ... 4-30
4.2.7 INCREASED DRIVE-CURRENT STRUCTURES .. 4-47

CHAPTER 5: PLACEMENT AND ROUTING .. 5-1
5.1 OVERVIEW ... 5-2
5.2 INTERCONNECTION RESOURCES ; .. 5-3

vi
2

5.2.1 GENERAL-PURPOSE INTERCONNECTION ... 5-3
5.2.2 DIRECT CONNECTIONS .. 5-6
5.2.3 LONG LINES ... 5-10
5.2.4 CLOCK BUFFERS ... 5-16

2000 SERIES LCA DESIGN HANDBOOK

June 1988

5.3 PLACEMENT .. 5-19
5.3.1 PARTITION THE SYSTEM DESIGN ... 5-19
5.3.2 ANALYZE THE DATA FLOW .. 5-20
5.3.3 LOGIC BLOCK PLACEMENT ... 5-23
5.3.4 1/0 BLOCK PLACEMENT ... 5-27
5.3.5 EXAMPLES .. 5-29
5.3.6 MODIFICATION GUIDELINES ... 5-34

5.4 ROUTING .. 5-37
5.4.1 MANUAL EDITING ... 5-37
5.4.2 MANUAL PRE-ROUTING ... 5-43
5.4.3 ROUTING GUIDELINES AND FUNCTIONS .. 5-49

5.5 TIMING ANALYSIS, DELAY CALCULATOR ... 5-56
5.5.1 CLB AND IOB DELAYS .. 5-56
5.5.2 INTERCONNECTION DELAYS ... 5-56
5.5.3 CLOCKED SYSTEM DELAYS .. 5-60
5.5.4 SPEED GRADE DELAYS ... 5-61
5.5.5 SIGNAL DEGRADATION .. 5-62

5.6 SUMMARY .. 5-68

CHAPTER 6: CONFIGURING THE LCA DEVICE 6-1
6.1 LCA CONFIGURATION OVERVIEW .. 6-2

6.1.1 CONFIGURATION BIT STREAM ... 6-2
6.1.2 CONFIGURATION PROCESS .. 6-2

6.2 CONFIGURATION MODES ... 6-6
6.2.1 CONSIDERATIONS ... 6-7
6.2.2 CONFIGURATION PIN FUNCTIONS .. 6-14
6.2.3 SLAVE MODE ... 6-19
6.2.4 PERIPHERAL MODE ... 6-22
6.2.5 MASTER MODES .. 6-27

6.3 CONFIGURE MULTIPLE LCA DEVICES .. 6-34
6.3.1 DAISY-CHAIN CONFIGURATION .. 6-34
6.3.2 PARALLEL CONFIGURATION ... 6-36

6.4 ASSIGNING MULTIPLE-FUNCTION .. 6-38
6.4.1 POTENTIAL 1/0 CONFLICTS .. 6-38
6.4.2 UNUSED 1/0 PINS ... 6-40

6.5 CONFIGURATION DATA .. 6-42
6.5.1 CONFIGURATION FILE FORMAT ... 6-44
6.5.2 A SAMPLE EQUIVALENT CONFIGURATION FILE 6-46
6.5.3 CONFIGURATION LOADING .. 6-48

6.6 READ-BACK CONFIGURATION DATA : .. 6-49

June 1988

2000 SERIES LCA DESIGN HANDBOOK

vii
2

6.6.1 READ-BACK PROCESS .. 6-49
6.6.2 READ-BACK DATA CONTENTS .. 6-50

CHAPTER 7: METASTABILITY OF LCA FLIP-FLOPS 7-1
7.1 FLIP-FLOP METASTABILITY ... 7-2
7.2 LCA FLIP-FLOP ERROR PROBABILITY ... 7-6
7 .3 MINIMIZING THE ERROR PROBABILITY ... 7-1 O

7.3.1 REDUCING ERRORS ... 7-10
7.3.2 USING DIRECT CONNECTIONS ... 7-11
7.3.3 CHANGING THE SYSTEM CLOCK RATE .. 7-11
7.3.4 USING A FASTER DEVICE ... 7-12
7.3.5 SUMMARY .. : 7-13

CHAPTER 8: TESTING AND DATA INTEGRITY 8-1
8.1 LCA DEVICE TESTABILITY .. 8-2

8.1.1 TESTABILITY FEATURES ... 8-2
8.1 .2 TESTING PROCEDURES .. 8-4
8.1.3 SUMMARY .. 8-5

8.2 DATA INTEGRITY .. 8-6
8.2.1 RELIABILITY ... 8-6
8.2.2 ALPHA PARTICLE SENSITIVITY .. 8-9
8.2.3 ELECTROSTATIC DISCHARGE PROTECTION ... 8-11
8.2.4 LATCHUP PROTECTION ... 8-12
8.2.5 RADIATION HARDNESS .. 8-14
8.2.6 HIGH TEMPERATURE PERFORMANCE .. 8-14

CHAPTER 9: NONHERMETIC PACKAGE RELIABILITY 9-1
9.1 TESTING OVERVIEW .. 9-2
9.2 TEST PROCEDURES .. 9-3

9.2.2 PACKAGE INTEGRITY AND ASSEMBLY QUALIFICATION 9-4
9.3 SUMMARY .. 9-7

GLOSSARY
INDEX

viii
2

2000 SERIES LCA DESIGN HANDBOOK

June 1988

AUDIENCE

June 1988

PREFACE

This handbook introduces the Logic Cell™ Array
(LCA™) device by

comparing it with other digital logic devices
describing its three major components
providing testing and data reliability specifications.

This handbook places each title and major topic at the
top of a new page. Each chapter introduction lists the
major topics therein. Each major topic introduction
identifies the second-level topics to watch for, and so
on.

Note: Abbreviations used in this handbook that are
not explicitly defined are those deemed standard by the
IEEE.

The reader of this handbook should have a working
knowledge of the design, testing, and reliability of
digital logic devices.

2000 SERIES LCA DESIGN HANDBOOK

ix:
2

El

x
2

ACKNOWLEDGEMENTS

For information provided in this handbook, I would like
to thank the following people from Xilinx, in alphabetical
order.

Chuck Erickson
Steve Elischu
Rick Farabaugh
Dave Galli
Steve Knapp
Steve Landry

Dave Lautzenheiser
Richard Ravel
Rob Stransky
Craig Wooster
Pardner Wynn

For their great help during the preparation of this
handbook, I would like to thank the following people
from Advanced Micro Devices, in alphabetical order.

Audrey Dickey
Chris Jay
Vivian Kong
Jana McNulty
Joseph Parenteau

Ario Radcliffe
Dieter Rathjens
Gail Tiberi
JoeWalcek

2000 SERIES LCA DESIGN HANDBOOK

June 1988

CHAPTER 1

INTRODUCTION To THE LCA DEVICE

INTRODUCTION TO THE LCA DEVICE .. 1
1.1 OVERVIEW .. 2

1 .1 .1 SSl/MSI DEVICES4
1 .1 .2 PROGRAMMABLE LOGIC DEVICES .. .4
1.1.3 ASICS .. 5
1 .1 .4 LCA DEVICES .. 5

1.2 ARCHITECTURE COMPARISONS .. : 6 B
1 .2 .1 PROGRAMMABLE LOGIC DEVICES ... 6
1.2.2 GATE ARRAYS .. 6
1.2.3 LCA DEVICES .. ?

1.3 LCA BENEFITS .. 9
1.3.1 PROCESS ... 9
1.3.2 QUALITY .. 9
1.3.3 RELIABILITY .. 10

1.4 LCA DEVELOPMENT SOFTWARE ... 11

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1·i
2

1-ii
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1

June 1988

INTRODUCTION To THE LCA
DEVICE

This chapter introduces the AMO-supplied LCA family
and covers the following topics.

The overview, 1.1, introduces the Logic Cell™
Array, or LCA™ device.

The discussion on architectural comparisons, 1 .2,
explains how LCA devices compare to other semi­
conductor devices.

The discussion on LCA benefits, 1.3, compares
the benefits of using an LCA device with those of
other, more traditional semicustom devices.

The discussion on LCA development software,
1.4, describes the available LCA design and
verification software.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1.1 OVERVIEW

1·2
2

The following product features and improvements are
motivating manufacturers of electronic systems to use
high-density VLSI circuits.

Lower cost
Higher performance
Reduced power consumption
Smaller size
Increased reliability

Microprocessors and memory devices are standard
product ICs that have best exploited the advances in
VLSI technology. Density improvements in these
product types outpaced those in other digital integrated
circuits and widened the technology gap between them
and other logic devices. To achieve comparable
densities for their proprietary functions, designers of
digital equipment must consider using factory­
programmed custom and semicustom application­
specific integrated circuits (ASICs).

The advent of user-programmable gate arrays combines
the production cost-effectiveness of VLSI with all the
benefits of a standard product. The following figure
illustrates the tradeoffs of density and development
time for several digital logic device types.

The optimal solution, in the upper-left corner of the
following diagram, represents the best tradeoff of
density and complexity with design time. As illustrated,
a new digital logic technology called the Logic Cell
Array, or LCA, offers improvements over the traditional
tradeoffs in both design complexity and design time.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

June 1988

10,000

1,000

NUMBER
OF GATES

10

10 100 1,000

DESIGN TIME IN DAYS

Logic Technology Tradeoffs

Several common device classes are introduced below.

1.1.1, SSl/MSI Devices

1.1.2, Programmable Logic Devices (PLDs)
1.1.3, ASIC Devices
1.1.4, LCA Devices

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1·3
-2-

1.1.1 SSl/MSI
DEVICES

1.1.2 PROGRAM·
MABLE LOGIC
DEVICES

1-4
2

Standard SSl/MSI devices, which are well
understood by most logic designers, provide much
design flexibility and are readily available. However,
they offer less density and consume more power than
other device types. Also, they usually are manu­
factured in maturing technologies with limited
opportunity for further cost reductions.

Programmable logic devices (PLDs) include a
number of competing alternatives, all based on a
programmable AND/OR plane architecture. This
architecture is most efficient for applications requiring
up to a few hundred usable gates.

Typically, each programmable logic device replaces five
to ten SSl/MSI devices. Because PLDs are user­
programmable, designers achieve this gain in density
with only a small increase in design time and little
schedule risk. The design and device pattern for a
specific application can be developed within days.

Bipolar PLDs are programmed by opening fuse links.
CMOS PLDs are either one-time programmable, UV
erasable (EPLD), or electrically erasable (EEPLD).

PLDs are best suited for state machines and decoders.
For functions that are readily expressed as a sum-of­
products, the PLO architecture provides efficient multi­
variable decoding and high performance. Architectural
restrictions limit the application of PLDs to general logic
replacement, consolidation of miscellaneous glue logic
and control functions, or complex processing tasks.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1.1.3 ASICS

1.1.4 LCA
DEVICES

June 1988

Factory-programmable ASIC devices include
gate arrays, standard cells, and compiled silicon. ASICs
provide logic densities of up to 100,000 equivalent
logic gates, and are sufficiently flexible for most digital
logic functions. Fabricating factory programmed ASICs
typically requires two to four months after a designer
completes and verifies a design prototype.
Manufacturing the first production quantities requires a
similar period of time. Because of their high design
costs and limited production flexibility, factory­
programmed ASICs are most economical in very high
production volumes. The logistics of verifying a
workable design, testing ASIC devices, and
coordinating production demand require substantial
resources on the part of the manufacturer.

The LCA device is a user-programmable gate array
that provides the usable density of gate arrays and the
short development times and low risk of standard logic
circuits. The LCA device combines the design and
production benefits of a standard logic device with the
system benefits of increased reliability, power savings,
space savings, and lower production costs than usually
associated with ASIC device types.

The next discussion compares LCA devices to other
semiconductor devices.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1.2 ARCHITEC·
TURE
COMPARISONS

1.2.1 PROGRAM·
MABLE LOGIC
DEVICES

1.2.2 GATE
ARRAYS

1·6
2

Your benefits of the LCA device result from its flexible
array architecture. This architecture is based on a
number of technical breakthroughs that have resulted
in patent disclosures. Discussions below compare
familiar device architectures with that of the new LCA
device.

1.2.1, Programmable Logic Devices
1.2.2, Gate Arrays
1.2.3, Logic Cell Arrays

In PLO architectures, dedicated device input pins and
some user-selectable input/output (1/0) pins or
feedback paths directly drive the inputs to the AND/OR
planes. Outputs are driven directly from the sum-of­
products logic outputs, or from device flip-flops.

The primary limitations of the PLO architecture are the
rigidity of the AND/OR plane logic and its dedicated
interconnections. Flip-flops are typically driven by a
common clock and are closely associated with specific
output pins. As a result, gate use rarely exceeds 15%.
Consequently, the practical upper limit of usable gates
appears to be a few hundred, and the extension of this
basic architecture to higher densities is limited. Also,
PLO performance is fixed for each level of logic; each
path through the AND/OR plane exhibits the same
delay, typically 25 to 45 ns:

Array architectures provide more flexible resources than
PLO architectures, both for 110 functions and for logic
structures. A gate array typically implements user logic
by interconnecting two-input NANO gates into more
complex functions using mask-programmed metal
segments. Factory processing customizes each gate
array by creating the metal interconnections on
standard, partially processed arrays.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1.2.3 LCA
DEVICES

June 1988

Larger arrays can be generated through straightforward
extensions of the 1/0 blocks, logic building blocks, and
interconnection resources, much like extending the
capacity of a memory device. Gate arrays offer usable
densities of 25,000 gates or more. Usability of 80% to
90% is possible because of the architecture's flexibility
and regularity.

Gate array performance depends on the placement and
interconnection of the elements that make up each
logic function. In a gate array characterized by 2 ns gate
delays, frequently-used functions can have a total delay
of 15 ns or more, due to the number of interconnec­
tions and gating levels needed to implement them.

The LCA architecture resembles a gate array with an
interior matrix of logic blocks and a surrounding ring of
1/0 interface blocks. LCA devices also share the gate
array architecture's flexibility and ease of extension to
higher densities. However, they do not share the gate
array's need for factory programming. Instead, a
configuration bit stream stored in on-chip memory
defines and controls the function of the LCA device's
configurable logic blocks (CLBs), 1/0 blocks (IOBs), and
user-programmable interconnections. Distributed
memory cells are adjacent to the logic, 1/0, or
interconnection elements they control. The
interconnections are located in the channels between
the rows and columns of configurable logic blocks, and
between the configurable logic blocks and 1/0 blocks.

Straightforward extensions of the LCA architecture can
increase a 1200-gate array to one with more than 1800
gates. Further extensions of the LCA architecture have
increased the number of usable gates to 9000.

Like other standard IC components, LCA devices
provide a selection of low- and high-speed parts. You

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1·7
2

1·8
2

can choose the most cost-effective speed grade for
your application.

LCA performance depends on the fixed delays of the
logic and storage elements plus the interconnection
delays. During design, the LCA delay calculation
software can quickly display worst-case timing.
Typically, LCA performance is specified by the
maximum toggle rate for a logic block storage element
when it is configured as a toggle flip-flop. For typical
configurations, a 70 MHz toggle rate translates to a
system clock rate of up to 35 MHz.

Unlike conventional gate arrays, the LCA device
requires no custom factory fabrication. Each device is
identical until it is loaded with its application-specific
configuration bit stream. During normal operation, the
configuration bit stream is loaded automatically from an
EPROM or a processor, either when the LCA device is
powered up or on command while the system is
operating. You can copyright your LCA configuration
bit stream to protect your designs from unauthorized
copying under the same legal precedents that are used
effectively to protect microprocessor-based systems.

The next discussion lists and explains the main benefits
of using LCA devices as logic devices.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1.3 LCA
BENEFITS

1.3.1 PROCESS

1.3.2 QUALITY

June 1988

LCA devices have three important logic design benefits
discussed below.

1 .3.1 , Advanced process
1 .3.2, High quality
1.3.3, Proven reliability

Over the last five years, the most pronounced trend in
the semiconductor manufacturing process is the shift to
CMOS technology. This shift is especially pronounced
for ASIC devices. The advantages of advanced CMOS
processes include both high speed and low power
consumption.

LCA devices are fabricated using AMD's 1.5µ advanced
process. Two metal layers are essential for an efficient ...
array architecture; the array must propagate logic signals ~
in horizontal and vertical directions, with minimum
delays. The LCA manufacturing process is very similar
to that used for high-speed memories; it exploits the
photolithography and wafer diameter advances
achieved in memory process technology. These
advances result in ever-higher device density and
performance at ever-decreasing cost.

As quality consciousness has grown among
semiconductor users, awareness of the importance of
testing has also increased among manufacturers.

Testability is an important consideration in the design of
microprocessors, memories, and other standard
products. These devices are tested exhaustively by
AMO with carefully developed programs.

The testing of most application-specific ICs is less
comprehensive, due to limitations of design and test
program development. However, the LCA device is

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1.3.3 RELIABILITY

1-10
z

100% testable; each device is comprehensively tested
during the manufacturing process. Testing is
accomplished by AMD without involving you in the
definition of test programs or the generation of test
vectors.

The LCA manufacturing process used is based on a
process developed for high-performance CMOS static
memories. Extensive process-development work
ensures the most reliable memory devices and provides
the same benefits to the LCA device. Data collected
over millions of operating hours confirm the reliability of
the LCA design and the CMOS process.

Compared with other logic devices, the LCA device
exhibits extremely low power dissipation. This
translates to lower operating temperatures and higher
reliability. Also, packaging materials for the LCA device
are selected to match closely the thermal coefficient for
the expansion of the silicon. This match minimizes
thermal stresses and further improves reliability.

The memory cell used to store the LCA configuration bit
stream is particularly robust. Memory is written only
during device configuration and its static output
controls the logic elements in the array. Because the
two circularly linked inverters that make up the static
latch are adjacent, transients cause only minor
differences in voltages. Each inverter is a true
complementary transistor pair, so that a low impedance
path to the supply rail always exists regardless of the
state. Furthermore, tests involving bombardment with
high levels of alpha radiation verify that the storage cell
is not disturbed by alpha particles.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

1.4 LCA
DEVELOPMENT
SOFTWARE

June 1988

The development system for LCA devices is similar in
capability and usage to those for microprocessors.

Development support for the LCA device includes
complete software-based design entry, analysis, and
verification. The LCA development system offers a
complete basic configuration and several powerful
options to enhance designer productivity. LCA
development system features include the following.

A. A consistent, user-friendly, menu-driven
environment for all LCA development software

8. Schematic entry

C. Macro library support for standard AMO-supplied
and user-defined functions

D. Simulation interface support that includes netlist
extraction

E. Automatic placement and routing

F. Interactive timing calculation and design
optimization

G. In-circuit emulation for one or multiple LCA devices

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

1·11
2

1·12
-2-

The LCA development system for the 2000
series requires the following hardware.

IBM® PC-XT™, PC-AT™, or 100% compatible
computer

640 kBytes of internal RAM

A serial mouse

A system that must interface with printers and other
output devices also requires

a single parallel port
two serial ports.

A variety of schematic editors and design workstation
platforms are also available.

Chapter 2 discusses the LCA design cycle in detail.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 1

June 1988

CHAPTER 2

THE LCA DESIGN CYCLE

THE LCA DESIGN CYCLE ... 1
2.1 OVERVIEW .. 2

2.1.1 LCA DESIGN SYSTEM .. 2
2.1 .2 LCA SOFTWARE AND DESIGN CYCLE ... 5

2.2 DESIGN ENTRY AND CONVERSION ... 8
2.3 LOGIC VERIFICATION .. 1 0
2.4 AUTOMATIC PARTITIONING, AND PLACEMENT AND ROUTING 12 ...
2.5 DESIGN OPTIMIZATION .. 14 ~

2.5.1 ROUTING OPTIMIZATION ... 14
2.5.2 DELAY CALCULATION ... 15

2.6 TIMING VERIFICATION .. 16
2.7 IN-CIRCUIT DESIGN VERIFICATION ... 18

2. 7 .1 DOWNLOAD CABLE .. 1 8
2.7.2 PROM PROGRAMMING .. 19
2.7.3 XACTOR .. 20

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-i
2

2·ii
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

2

June 1988

THE LCA DESIGN CYCLE

This chapter provides an overview of the LCA design
cycle and explains each step of the cycle in detail.

The overview of the design cycle, 2.1, introduces
the LCA design process and software.

The discussion on design entry, 2.2, explains
entering an LCA design as a schematic and
converting the schematic design to netlist data.

The discussion on logic simulation, 2.3, describes
pre-route simulation.

The discussion on automatic partitioning, and
placement and routing, 2.4, explains translating
the netlist into the LCA file format as well as
automatic placement and routing.

The discussion on design optimization, 2.5,
explains routing optimization and delay calculation.

The discussion on timing verification, 2.6,
describes post-route simulation.

The discussion on in-circuit design verification,
2.7, explains three optional ways to verify an LCA
design.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2.1 OVERVIEW

2.1.1 LCA DESIGN
SYSTEM

Before you begin your LCA design, it is important for
you to understand the LCA design cycle and, in
particular, how the the design cycle relates to the LCA
environment and the available software.

Discussion 2.1.1 explains the LCA design system.

• Discussion 2.1.2 shows the relationship between
the tasks in the LCA design cycle and the software
tools you use.

The LCA design system, shown in the following
figure, consists of two independent design environ­
ments and a file format that can be used as a bridge
among the formats of these environments.

External design environment
Internal design environment

• External netlist format

In the external design environment, all software
packages deal with silicon-independent tasks such
as schematic capture and simulation. These software
packages frequently use incompatible file formats.
Also, they may be supported on hardware platforms
different from that of the internal design environment.

The internal design environment, in contrast,
supports software packages dealing with sllicon­
dependent tasks such as logic partitioning, automatic
placement and routing, and those tasks performed
under the LCA software development system. These
software packages communicate with each other
through a common file format, the LCA format, which is
proprietary. The LCA format contains silicon­
dependent information such as delay, routing, and
programming data.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

June 1988

The external netlist format, or XNF, provides the
bridge among different file formats. This bridge permits
files produced in one environment to be converted to a
format that permits designers to use them in the other
environment; it also permits conversion of files among
different formats in the external environment.

AMO integrates the LCA design system with its inter­
face software packages. These packages translate the
different file formats into the XNF format, or the XNF
format into the required file format. For example, the
schematic to XNF interface translates the schematic file
format into the XNF format; whereas the XNF to simula­
tion interface translates the XNF format into typical sim­
ulation files such as the simulator netlist and input stim­
ulus files.

After external files are translated into the XNF format,
another software package offered by AMO can be used
to convert the XNF format into the LCA format.

AMO will provide additional translation capabilities as
new software packages in the external design environ­
ment require access to the LCA design system.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

El

Simulation

Schematic
Capture

EXTERNAL n ENVIRONMENT

Future
Capabilities

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

2.1.2 LCA
SOFTWARE AND
DESIGN CYCLE

June 1988

AMO supplies software that translates a design file from
a unique schematic-capture format into the XNF format:
name2XNF. AMO also supplies software to translate the
XNF format to a simulation format, XNF2sim, and
software that translates files between the XNF and LCA
formats. These interfaces provide an environment that
lets you perform all the tasks required to produce a
consistent, integrated LCA design.

The diagram on the next page is divided into two vertical
segments that show the relationship between each task
in the LCA design cycle and the actual software you use
to perform each task.

In the figure, square boxes on the left show major
tasks in the design cycle. Although the tasks are
depicted serially, the design cycle is actually an iterative El
process in which you repeat a task or sequence of
tasks.

Rounded boxes in the LCA software cycle represent
the product used for the task connected by the shad­
ing. Ovals show the format of the input and/or output
file for each step.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-5
2

DESIGN CYCLE SOFTWARE CYCLE

*includes simulator-specific netlist and stimulus files

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

To produce an LCA design, you complete six major
design tasks.

I. Design entry using a supported schematic­
capture platform includes design conversion to
produce an external netlist format (XNF) file.

II. Logic verification includes translating the XNF
file to specific simulation file formats. You then run
a unit-delay simulation.

Ill. Automatic partitioning, and placement
and routing (APPR) reduces the design, mini­
mizes or compresses the logic, and partitions the
design into required CLBs and IOBs. You can
then place and route automatically.

IV. Design optimization includes delay analysis
and routing optimization. Any logic changes you
make here dictate that you return to task I and
repeat subsequent tasks.

V. Timing verification includes translation of the
completely routed design from its LCA format into
the XNF format, translation of the XNF format into a
simulation netlist, and simulation. You compare
the timing simulation results with those of the
previous logic simulation to ensure that there are
no logic changes.1

VI. In-circuit design verification can include any
of the following: using the download cable,
programming a PROM, and using the in-circuit
design verifier.

Unless you complete timing verification on a completely placed and routed design, you cannot be
sure the design will function under worst-case process, voltage, and temperature conditions.

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2·7
-2-

El

2.2 DESIGN
ENTRY AND
CONVERSION

2·8
2

When using a supported schematic-capture platform,
the first two steps toward completing an LCA design are
as follows.

1 . Produce a schematic using the AMO-supplied LCA
design library with a corresponding, supported
schematic-capture platform.

2. Create an external netlist of the schematic-based
design using the name2XNF interface software.

Schematic entry shortens your product development
time by letting you enter compl~x LCA designs
efficiently.

You enter the LCA design as a schematic using any
AMO-supported schematic-capture platform. Rather
than basing your design schematic on TTL or other
standard parts, you base the schematic on the available
LCA library parts.

The LCA library for each supported schematic-capture
platform includes common logic functions and standard
parts, such as gates, latches, and 7400"series parts.

While entering the schematic, you can constrain nets to
direct design placement and routing with APR software
later in the design cycle. You can also include con­
straints in a text file that APR can read. APR recognizes
the following constraints.

Critical nets that should be routed with as little
interconnection delay as possible

Nets that should be placed on long lines

Specific placement of logic blocks

• Logic block grouping

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

June 1988

Locking nets and blocks

Once the schematic is produced, you must con­
vert it to an external netlist file (XNF) format. AMO sup­
plies a software interface product, name2XNF, for each
supported schematic-capture platform. The interface
software converts the schematic-based data into a net­
list file that's needed to produce a simulation file or LCA
design file.

Note: If the a schematic contains CLB or 108 macro
symbols, which directly specify LCA elements, the XNF
file must be translated into an LCA file and then back
into an XNF file prior to logic verification. AMO supplies
this interface in the XNF/LCA software_Q_l'oduct.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-9
2

El

2.3 LOGIC
VERIFICATION

2-10
-2-

The next step toward completing your design is to
verify, during unit-delay simulation, that the logic is
correct. This is done with a gate-level XNF file: one
that does not have the physical routing paths specified
in the LCA design. At this point it is not possible to
make a realistic estimate of the timing because the
design is not yet implemented as an LCA device:

The following steps outline the procedure for verifying
the logic of an unrouted design with AMO-supplied
software. For details, refer to specific topics in the LCA
Development System manual before simulating.

1 . Translate the XNF file into the simulation netlist file
with XNF2sim.

The netlist includes logic parameters and setup
and hold times based on the selected LCA speed
grade, operating under worst-case conditions.

2. Edit the input stimulus file created by XNF2sim,
using a text editor.

You specify simulation stimuli with a set of clock
statements or with an input pattern for either pad
inputs or internal nodes.

3. Simulate the design.

Simulation results are available in tabular, plotted,
and graphic formats. This flexibility makes it easy to
correct the function and timing of the circuit.

4. Repeat design entry and logic verification until
your design simulates correctly.

After schematic entry and before automatic partitioning,
and placement and routing, you use a logic simulator to
debug the design. This pre-route simulation saves
design time because you can detect and correct logic

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

June 1988

errors before final placement and routing. Later, you
compare pre-route simulation with post-route simulation
results to detect whether or not logic changes were
introduced during optimization.

There are several software products available to assist
you with simulation at various times in the design cycle.
For each simulator there is one software interface prod­
uct, XNF2sim, that translates the XNF file into the file
format your particular simulator uses.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-11
2

2.4 AUTOMATIC
PARTITIONING,
AND PLACE·
MENT AND
ROUTING

2-12
-2-

Once the design file is in the netlist format, you use the
LCA2XNF translator to convert the schematic elements
into LCA elements. You then partition, place, and route
the LCA design. The following steps give an outline of
this procedure.

1 . Partition the design into CLBs and IOBs with the
XNF2LCA software.

This process efficiently groups as much logic as
possible into each CLB, and translates the design
into the LCA file format required by the LCA
development system software.

2. Place and route the design.

You can use automatic placement and routing
(APR) software, or you can proceed directly to the
LCA design editor, EDITLCA, and place and route
the design interactively.

The XNF2LCA software completes the following tasks.

Reduces and minimizes the logic

Partitions the design into CLBs and IOBs

Translates the design to the LCA format

Performs design checking

The partitioning that occurs during translation may not
result in the optimal placement of CLBs and IOBs. You
can improve the layout of the design by including
additional constraints to APR.

Both APR and XACT use the LCA file format. Thus, you
can optimize the placement and routing of individual
CLBs and IOBs in your design interactively with the
interconnection feature of the LCA design editor,

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

June 1988

EDITLCA. Refer to discussion 2.5 for more information
on design optimization.

You can also take advantage of APR when you develop
LCA designs incrementally. You can lock in place a
partial LCA layout while APR places and routes addi­
tions to the design.

Note: If you do not lock in place a partially placed-and­
routed design, the design is rearranged to yield a new
placement when APR places and routes an addition
to the des.!g_n.

The APR software is extremely flexible. Through direc­
tives, you optimize the placement for a particular
design. You can also specify routing resources to min­
imize clock skews and signal delays for critical paths.
This results in faster product development.

Refer to Chapter 5 of this manual for a discussion of
manual placement and routing. Refer to the LCA
Development System manual, Volume II, Section I, for
specific instructions on using APR.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2.5 DESIGN
OPTIMIZATION

2.5.1 ROUTING
OPTIMIZATION

2-14
2

After initial placement and routing, you can optimize
your design as follows.

1 . Use the LCA design editor, EDITLCA, to optimize
placement and routing.

2. Use the LCA design editor's delay calculator to
check point-to-point timing after optimization.

Whether you enter a design using schematic-entry
software or lay out a design manually, you may have to
use manual placement-and-routing and delay analysis
for design optimization. You can modify the placement
of your design by moving CLBs and re-routing the
affected interconnection.

You also can lay out a complete design manually by
using EDITLCA to configure design elements such as
CLBs, IOBs, or system macros.

In either case, individual elements are configured
directly with EDITLCA, either through Boolean equa­
tions or Karnaugh maps. A macro can be selected to
automatically configure a block or group of blocks for a
specified function.

The AMO LCA device supports a variety of routing
resources, including long lines, global clock buffers,
and direct connection.

Refer to Chapter 5 of this manual for more information
on how to manually place and route LCA devices, and
how to optimize the placement and routing of your LCA
design to improve its performance. Two good ways to
monitor the performance of your LCA design are with
the LCA design editor's delay calculator, discussed
next, and through timing verification, which is discussed
under 2.6.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

2.5.2 DELAY
CALCULATION

June 1988

You can perform timing analysis on a partially or com­
pletely routed LCA design to check its performance.
Typically, you monitor the timing on critical paths as you
complete the design. You can perform these timing
checks quickly and efficiently using the LCA design
editor's delay calculator.

The delay calculator is an interactive design tool that
calculates and displays the worst-case delays associ­
ated with CLBs, IOBs, and interconnections. It is
particularly useful for evaluating various placement-and­
routing options during design optimization. The
calculated delay represents the worst-case delay from
the source block for that signal to the destination
selected.

The delays are calculated based on the selected speed
grade for the design; you can select an alternate speed
grade to examine its impact on critical-path timing. Also,
the worst-case delay calculations are from clock-edge to
clock-edge for clocked systems.

The LCA design editor's delay calculator also flags any
paths over which the signal is significantly degraded. In
addition to displaying timing for individual networks, this
delay calculator can produce a listing showing timing for
all logic networks in a design.

Chapter 5 also contains a detailed discussion of timing
analysis with the LCA design editor's delay calculator.
See the DELAY command description in the LCA
Development System manual, Volume I, Chapter 3.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2-15
2

2.6 TIMING
VERIFICATION

2-18
-2-

At this point in the design cycle you should have an
optimized, placed, and routed layout. You are ready to
verify the timing and the logic.

Simulating a desiqn's timing can be done either before
or after the design has been verified in-circuit. You
should simulate the critical paths to ensure that the
design will function under worst-case process, voltage,
and temperature conditions. The results obtained here
should be compared with the logic simulation results to
ensure that any layout editing did not change your
design's functionality.

Timing verification lets you verify critical timing over
worst-case power supply, temperature, and process
conditions. It also helps you select the correct LCA
speed grade for your application. To do this,

1 . Use the LCA2XNF command to translate the
routed CLB-based LCA design file into a CLB­
based netlist that includes routing delays.

2. Use XNF2sim to translate the XNF netlist to an
appropriate format for your simulator.

3. Simulate, review the timing information, and
ensure no logic changes have occurred.

4. Use the LCA design editor, EDITLCA, to edit and
optimize the design's timing until it meets your
design specifications. Then repeat steps 1
through 4 above.

Once you are satisfied with the layout, you can proceed
to in-circuit design verification. However, to make
design changes, always return to the original schematic,
make the design changes at that level, and then repeat
all succeeding steps.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

2. 7 IN-CIRCUIT
DESIGN
VERIFICATION

2.7.1 DOWNLOAD
CABLE

June 1988

Once the design meets your specifications, you can
verify the design in-circuit. In-circuit design
verification is the final stage of the LCA design cycle.
You ensure that your design meets the specifications in·
the target system, the one for which it was designed.
In-circuit design verification includes the following.

1 . Use the XACT Bit-Stream Generator to automati­
cally create the LCA design's configuration bit
stream.

2. Verify your design's logic and timing in any of the
following three ways.

Use the download cable to transfer the con­
figuration bit stream to the LCA device in the
target system.

Program a PROM and use it to configure the
LCA device(s) in the target system.

Use XACTOR, the in-circuit emulator, to
emulate the LCA device(s) in the target
system.

These three methods are discussed below. Refer to
Chapter 6 in this manual for a detailed discussion of the
configuration process, which includes generating a
configuration bit-stream file from a design file in the LCA
format.

After you generate the configuration bit stream, you can
use the bit-stream generator and download cable to
program the LCA device for in-circuit verification, as
described below.

The download cable connects the LCA device in the
system under development to the parallel port on the
LCA workstation, as shown in the next figure. The bit-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2·17
2

Serial Port ----....

stream generator controls the operation of the
download cable.

Logic Cell Array

Keyboard --+------
Download Cable ----1..._ ___________ _

Target System
Under Development

Download Cable Setup

2.7.2 PROM
PROGRAMMING

2-18
-2-

To program the LCA device, you use the bit-stream
generator to transfer the configuration bit stream across
the download cable to the LCA device in the target
system.

Note: During development and debugging, you can
use this capability to save time because you do not
need to reprogram a PROM each time you modify the
configuration bit stream.

For more information on the XACT bit-stream generator,
MAKEBITS, and the download cable, refer to the LCA
Development System manual, Volume I, Chapter 7.

After creating the configuration bit stream for your LCA
design, you can use it to program a PROM and let the
PROM configure the target system LCA device(s), as
explained below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

2. 7 .3 XACTOR

June 1988

To load a PROM with the configuration bit stream for
one or more LCA device(s), first convert the configura­
tion bit stream into a PROM-format file. The LCA
PROM formatter can create files automatically in a variety
of standard PROM formats, for PROMs from 2 kB to
8 kB and larger. Each PROM file can represent one or
more LCA designs, so one PROM can configure one
LCA device or several daisy-chained LCA devices.

The LCA Development System manual, Volume I,
Chapter 6, provides a complete description of the LCA
PROM formatter, including the formatter commands.

The XACTOR in-circuit emulator provides real-time,
interactive target-system emulation of up to four LCA
devices from the host PC.

Note: In-circuit emulation enhances design simulation
by letting you verify your LCA design's functionality in
the target system in real time, while working with all
other circuits and ~tern software.

The XACTOR configuration, shown next, consists of a
microcomputer-based controller and from one to four
universal emulation pods, each with an emulation
header. One pod and header is included with the basic
LCA system. The XACTOR controller, connected to
the PC workstation through a serial port, provides the
following.

Local storage of configuration bit streams

Control of individual device configurations

Control of the isolation of the pod device(s) from
the target system

You set the state and isolation for each control signal to
provide debugging of the target system hardware.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

2·19
-2-

Monochrome
Monitor

(optional)

Flat
Ribbon

Cable ---11---------

2-20
-2-

XACTOR Configuration

Color-Graphics
Monitor

IBM Personal
Computer (AT or XT)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

June 1988

To emulate your design, the XACTOR controller pro­
grams the emulation LCA device in each of up to four
emulation pods. After programming, each emulation
pod provides the functionality of one or more LCA
devices plugged directly into the target system. You
can program the LCA devices in the target system
individually or in a daisy chain. XACTOR supports daisy
chains of up to seven LCA devices from any of the four
emulation pods. You control each device's isolation
and configuration with menu or keyboard commands.
These can be supplemented by user-defined setup
files for easy system debugging.

Using XACTOR, you can read back the device config­
uration to verify the configuration process and to
interrogate the internal states. After you perform a read­
back operation, XACTOR displays the state of all_
internal storage elements, isolation switches, and ..
control signals. XACTOR also automatically reports ~
asynchronous status changes in the target system.
Refer to the discussion on reading back the configur-
ation bit stream in Chapter 6 of this manual for more
specific information.

Due to the speed with which you can modify a design
in-circuit with XACTOR, you may find it useful to imple­
ment temporary debugging circuitry in your design
during development. For example, you could tem­
porarily connect unused 1/0 blocks to internal nodes for
viewing with a logic analyzer or an oscilloscope.

For complete information on the XACTOR in-circuit
emulator, refer to the LCA Development System
manual, Volume I, Chapter 8.

2000 SERIES LCA DESIGN HANDBOOK CH4\

/

2-22. -.- 2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2

June 1988

CHAPTER 3

CONFIGURABLE LOGIC BLOCKS

CONFIGURABLE LOGIC . BLOCKS .. 1
3.1 OVERVIEW .. 2
3.2 LCA STRUCTURE .. 4

3.2.1 CLBS ... 4
3.2.2 THE INPUT/OUTPUT BLOCK .. 9

3.3 LOGIC DESIGN WITH CLBS .. 11
3.3.1 CREATE BASIC LOGIC ... 11
3.3.2 COMBINE OR SHARE CLBS ... 15 a

3.4 CLB TIMING .. 21
3.4.1 TIMING FACTORS .. 21
3.4.2 LATCHES, FLIP-FLOPS, AND REGISTERS ... 23
3.4.3 COUNTERS ... 2.5

3.4.3.1 Johnson Counters ... 25
3.4.3.2 Binary-Weighted Sequence Counters .. 26

3.4.4 SYNCHRONOUS VERSUS ... 30
3.4.4.1 Asynchronous Ripple Counters .. 31
3.4.4.2 Synchronous Linear Feedback Shift Registers 33

3.4.5 ASYNCHRONOUS INPUTS ... 35
3.4.6 CLOCK SKEW ... 37

3.5 LOGIC DESIGN WITH XACT MACROCELLS ... 38
3.5.1 MACRO OVERVIEW ... 38
3.5.2 MACRO CREATION .. 39
3.5.3 SAMPLE MACROS .. 40

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3

June 198.8

CONFIGURABLE LOGIC
BLOCKS

This chapter introduces configurable logic blocks, the
basic design element of the Logic Cell Array (LCA).

The overview, 3.1, provides a brief introduction to
the design of LCA devices and to the LCA
development system's part in this process.

The discussion of the LCA device structure, 3.2,
explains configurable logic blocks (CLBs) and
describes their basic structure.

The discussion on CLBs, 3.3, explains how to
generate logic designs with CLBs.

The discussion on timing, 3.4, explains the timing
characteristics of CLBs.

The discussion on logic design, 3.5, discusses
LCA design using macrocells from the LCA
macrocell library.

The macrocell library mentioned in this chapter is the
LCA development system macrocell library. The AMD­
supplied LCA logic libraries that support the schematic
design-entry method are discussed in Chapter 2.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-1
2

3.1 OVERVIEW Each new technology available for digital design offers
the designer a new set of characteristics. These
characteristics include speed, power, integration level,
reliability and selection of logic functions. A good
designer makes the best use of a technology's design
characteristics by matching the design's methodology
and logic architecture to these characteristics.

The digital design and architecture for LCA devices is
similar to that of conventional TTL SSl/MSI or gate
arrays. However, the designer of LCA devices has
additional design flexibility because of the lack of typical
design limitations, which could include logic in four-bit
or eight-bit increments, a specific set of inputs and
outputs, or a combination of logic functions.

The core of the CMOS LCA integrated circuit is an array
of user-programmable logic elements called configur­
able logic blocks, or CLBs. User-programmable
interconnections of the CLBs create the required logic
networks. Individually programmable inpuVoutput
blocks, or IOBs, provide the interfaces for the LCA
device's input/output. With these resources, you are
free to tailor the LCA logic; you are not confined to
standard product devices or gate array library elements.

AMD's LCA device gives you a higher level of
integration than other standard products. The benefits
of this higher integration level include

increased performance and reliability,
reduced printed circuit board space,
lower power requirements,
shorter design time, and
smaller component inventories.

To create the logic capacity of one LCA device usually
requires 40 to 100 SSl/MSI packages. Also, the LCA
user-programmability gives you a single, fully-tested
inventory item you can use in multiple products.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

June 1988

Using the conventional gate array definition of one
gate as a 2-input NANO function, the LCA 2000 family
provides a logic capacity up to 2000 gates. Using a
single LCA device to construct part of a system design
can reduce the package pin count of the design from
hundreds of SSl/MSI pins to 48, 64, or 84 LCA pins.
These three available LCA packages provide up to 84
pins that you can program as logic input, output, or
both.

The next discussion introduces two main components
of the LCA device, the CLB and the 108.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

El

3.2 LCA
STRUCTURE

3.2.1 CLBs

This discussion details the structure of a CLB. It also
briefly discusses the 108, which is described in more
detail in Chapter 4.

The CLB is the basic logic building block in an LCA
design. Each CLB has four logic inputs and two logic
outputs. It includes a combinational-function
portion and a storage-element portion. You can
configure the combinational function to perform any
function of four variables. You can configure the
storage element as a transparent latch or an edge­
triggered flip-flop.

You enter and verify an LCA design using the LCA
development system, then generate a configuration bit
stream that defines the appropriate functions within the
CLB.

The interconnection of CLBs consists of a two-layer grid
of metal segments. These metal segments are joined at
each intersection by a switching matrix of controlled
pass transistors that creates the interconnection paths
of the CLBs and IOBs. Additional pass transistors
connect these metal interconnections to the IOBs.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

June 1988

WRITE

PROORAM
DATA

The following figure shows a single memory cell that
controls a simple two-to-one multiplexer made of two
pass transistors.

Q

PROORAM
MEMORY
CEIL

DATA 1-... ------+-------.
--• MULTIPI.EXER

DATAO-------------......
DATA

Memory Cell Multiplexer Control

Combining eight of these readable memory cells to
control an eight-to-one multiplexer tree, as shown
below, creates a circuit capable of generating any logic
function of the three-input variables A, B, and C.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

El

3-6
2

CBA = 1 0 1
READS BIT 5

A (LSB) B C (MSB)

.... ~. f (A,B,C)

~'----,,----''----v----./...________.,
EIGHT FOUR 2 TO 1 TWO 2 TO 1 2 TO 1

READABLE MUXs MUXs MUX
MEMORY

CELLS

Look-Up Function Generator

As illustrated above, the C, B, A input code 101 reads
the contents of memory cell five. The data pattern of
the readable memory cells defines the logic function.
Doubling the look-up table and multiplexer creates a
circuit that can generate any function of four variables,
which is the basis of the CLB's combinational portion.
The CLB includes programmable multiplexers for input
variables A, B, C, D, and Q, shown in the next figure,
and a selection of outputs, to create either a single
function of four variables or two functions of three
variables each.

The following figure shows the CLB's combinational
function generator. As you can see, some paths are
shorter than others.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

June 1988

~

~
>-
~

~ -" ~

MEM­
ORY
CELL

F
E
D
c
B
A
9
8

7
6
5
4
3
2
I
0

A

4
MUXs

4
MUXs

MEM­
ORY
CELL

2
MUXs

2
MUXs

MEM­
ORY
CELL

MUX

INDEPENDENT
FUNCTIONS

MUX

MIRROR COPY OF A, B, C, D, Q
AND MEMORY CELLS FROM ABOVE

Combinational Function Generation

D

B

MUX

MEM­
ORY
CELL

MUX

COMBINED
SINGLE
FUNCTION

MUX

LOGIC
FUNCTION

F

MEM-
ORY

CELL

LOGIC
FUNCTION

G

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

When a CLB generates a four-variable function, both
halves of the look-up table select either the input
variable D, or the Q of the storage element; the single
result produces both F and G outputs.

When a CLB generates two functions of three variables,
the D vs. Q selection is independent for the functions F
and G. Each function can then use any three of the five
available variables as input: A, B, C, D, or Q.

A CLB can generate a third type of function by using
the input variable B to select between the two three­
variable combinational functions. This configuration
results in a compound function that can involve some
combinations of all five variables.

The programmable features of the CLB storage
element are shown below.

A
F

SELA/F x

D Q

K
c y

RES

D

SELNG

CLB Storage Element

You can leave the storage element part of a CLB
unused, or program it as a level-transparent latch or an
edge-triggered flip-flop. The combinational function F
supplies its data input. You can also select the

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.2.2 THE
INPUT/OUTPUT
BLOCK

1/0 Block

June 1988

invertible flip-flop clock or latch enable from any of three
sources, on a CLB-by-CLB basis. Each CLB storage
element has available an active-HIGH asynchronous
SET, and a RESET. RESET is dominant over SET; the
active-LOW chip input, -RESET, clears all storage
elements.

The IOBs provide access between the CLBs and the
world external to the LCA device. As illustrated below,
IOBs can provide a direct or registered input to the chip.

TS (OUTPUT ENABLE)

our

IN

D Q

PROORAM-CONTROLLED 1/0 CLOCK
MULTIPLEXER

The positive-edge clock for the register function is
common along each die edge. The chip configuration
process, as well as the active-LOW chip reset, -RESET,
clears the storage elements.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-9
2

3-10
2

Each 108 includes an input/output buffer you can
enable continuously to create an output pin, disable
continuously to create an input or unused pin, or
enable by logic signals to create an 1/0 or bus pin.

For more information on IOBs, refer to Chapter 4 of this
manual.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.3 LOGIC
DESIGN WITH
CLBs

3.3.1 CREATE
BASIC LOGIC

June 1988

This discussion explains how to use CLBs to design
basic logic elements. It explains how to use CLBs,
partial CLBs, and multiple CLBs to generate common
functions.

To create basic logic, you can choose from several
equivalent ways of representing a CLB function, both
schematically and mathematically. The LCA design
editor, EditLCA, supports design entry through
Karnaugh maps, truth tables, and Boolean equations.
The CLB's ability to accommodate either sense of input
variables, and to generate either sense of an output,
lets you eliminate extraneous inverters. In most cases,
however, it is practical to route only active-HIGH signals,
thus avoiding the duplicate routing of both true and
complement signals. The following figure shows

A. A typical four-variable combinational function as a
logic diagram, a Boolean equation, and a Karnaugh
map.

B. Equivalent forms of the function.

C. Equivalent forms of the function.

The active-LOW inputs replace the inverters of the
conventional representation and the output symbol is
an OR. AMO-supported schematic-capture interface
software converts the logic in an LCA schematic design
into an equivalent representation and groups the
combinational gates while translating your design into
LCA design files.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3·11
-2-

A

A~~~~~~~--ol!"""\

B
B ___ ..,-""\

c ---

c

Alternate Representations of the Same Function in an LCA Device

3-12
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

June 1988

A

The ADDER shown below illustrates how to use two
combinational functions of three variables. The SUM
and CARRY functions are usually grouped in the same
CLB because of their common input variables.

A

SUM......._~

~}c .___....,
B

B -~~::E3D---c SUM = A • B • C + A • B • C

One-Bit Adder with Carry In

+A•B•C+A•B•C

CARRY =A • B +A • C + B • C

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3·13
-2-

3.14
2

A

B

Four-Input Exclusive OR

AO ___ ,_

BO __ _,,_,,

Al ___ ,_

Bl __ _,,_,,

AO ----r~
BO -.-+--tL_A--...

Dual Compare CLB

The four-input exclusive-OR gates in the following
figure are an example of a common logic function that is
not obviously four-variable. It is a modulo-2 add without
a carry.

A
Za =AE0BE0 CE0D

1 1

1 1

1 1

1 1

Zb =AE0BE0 CE0D

COMPARE, which is similar, is usually a two-input
function. The figure below shows a CLB-generated
dual compare function, which compares two bits from
each of two sources.

Z=AO E0 BO• Al$ Bl

1

1

AO--....
1

1

____..
BO

Z =(AO• BO+ AO• BO)• (Al• Bl+ AT• BT)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.3.2 COMBINE
OR SHARE CLBs

AO
Al
A2
A3

A4
A5
A6
A7

AS
A9
AlO
All

Al2
A13
A14
A15

......

~
-p

....
~
.....

...... .
....
~ _.

...
~
~

..... .

.......

You can combine several CLBs to create an expanded
function, or two different CLB functions can share a
single CLB.

By using multiple CLB levels, you can expand the basic
CLB design element of four input variables. For
example, one CLB driven by four others can produce
the sixteen-variable function shown below. If you select
the decodes to use common terms in several functions,
you can share those CLBs .

......-
A
B
c
D

A
B
c n D A

~ B c p u p

A D .
B
c

Z = f (AO-Al5)

D

A
B
c
D

A Function of 16 Variables

June 1988

You can use a related technique to encode the results
of a pair of three-input, two-output CLBs. Use one of
three output codes to indicate which of three selected
input conditions exist. Possible combinations of the
two CLB outputs can represent four conditions, namely

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

One, Two, Three, or Other. Each CLB encodes a
three-input subset of the variables. When two of these
first-level codes are input to another CLB, its result can
be a complex function of six inputs.

The next figure shows two encoded results, each
a function of three inputs. Each CLB responds
with the selected code when its inputs match its part of
the desired minterm. A HIGH output indicates that both
codes match the same selected value, yielding a sum of
three six-variable products.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

AO

Al

A2

A3

A4

AS

F
,.........,

.....--
~

G

CLBl

CLB2

F

r---'

....__..,
G

Fl

t-~

I-1 F2

G2

CLB2 CLBl

INPUT OurPUT INPUT OUfPUT
CODE CODE

A5A4~ F2G2 AzA1~ F1G1

0 0 1 0 1 0
Zl

0 1 0 1
1 0 0 0 1 1

Z2
1 0 1 0

1 0 1 1 1 0
Z3

1 1 1 1

z OTIIER OTIIER

0 0 0 0

Encoding Partial Results of Six Variables

June 1988

.....--

F 1--! r--

..__

CODE RESULT

F2G2F1G1 z

0 1 0 1 1

1 0 1 0 1

1 1 1 1 1

F2G2;tF1G1

0

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3·17
-2-

AO

Al

A2
A3

-H

... cLBLJ
_;3 _}

""!

.....
] _} 1--1

PRESELECf

If a design does not require some part of a conventional
logic function, you need not create that portion of the
function. For example, the above design of the
encoder does not use all of the decodes of a set of
input variables, so you can omit the unused decodes.

In an output-intensive function, using each CLB to
gen~rate two functions of three shared variables can be
more efficient than generating one function per CLB.
The next figure illustrates this technique. The
PRESELECT enabling gates created in this figure
are an example of a common term of a wider input
function. To improve system speed, you can use the
input variables that become stable first at the first level
of logic. Those variables can propagate, while the
design's more timing-critical inputs drive the shorter
propagation path.

ENA A3 A2 Al AO
_J CLB

,.[I
./ X=O 0 0 0

---i·

_,.,.
2' ./ Y=O 0 0 0

J_

JI! _CLB
~8) X=O 1 0 0 0 ,
_,J 9 \.
'1. ..I Y=O 0 0

i t:"'LB
-LA./ X= 0 1 0 0

I

_J B'-
l_ J Y= 0 0

Decoder with Common Term and Only Required Outputs

3-18
2

You can build wide multiplexer functions from a
tree of 2-to-1 multiplexers. This kind of structure,

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

June 1988

illustrated below, leaves the storage element and one
input variable of each CLB available for use as an
independent register function. In other cases, the
multiplexer

can be the data input to the storage element,

can share input variables, or

can use the output of the storage element.

These examples provide a natural grouping of shared
functions in a CLB.

DO --i;....----- -

SEL --i-----<>l~k--... G
l---:i--

DATA -~i----t

CLB Sharing MUX and Register Element

G = SEL • DO + SEL • D 1
F=DATA

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3·19
-2-

3·20
-2-

SELECT'

A common element in digital systems is a group of
registers with sets of enabled output buffers
bused together. The structure shown below is not
always recognized as a multiplexer; however, the
multiple sources provide the inputs, and the enables
represent the select lines. All inputs driven by the bus
are driven by the multiplexer output.

2:1 MUX
OlIT

SELECT

2:1 MUX
our

Three-State Function Creates a MUX

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4 CLB TIMING

3.4.1 TIMING
FACTORS

June 1988

This discussion explains the general timing factors in
CLB design. It then discusses the specific timing for
various CLB functions, including latches, flip-flops,
registers, and counters. It also compares the timing of
synchronous versus asynchronous design, and timing
considerations for asynchronous inputs and clock
skew.

Any Boolean function generated by a CLB has the
same timing delay as any other CLB-generated
function. The concept of levels of logic or gate delay
loses its significance with LCA devices, in which higher­
level primitives perform logic.

The primary timing factors involved in designing an LCA
device are listed below.

The propagation time of a CLB

The clock-to-block output via Q

The input setup time for the CLB flip-flop input
variables

The input and output pad buffer delays

The interconnection timing

Although other switching characteristics are specified in
the LCA data sheet, the timing factors listed above are
the most important in determining LCA performance.
Some of these factors are illustrated and discussed
below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3·21
2

3·22
-2-

CLOCK TO
OU1PUT COMBINATORIAL SEfUP

j.-TcKO .. ,.. TILO .. , .. T1cK--...j

CLB CLB CLB IOB

H--HLOGIC LOGIC

PAD

(K) (K) OUTPUT BUFFER

IOB

PAD >----1

LCA Timing Factors

'4- TCKO .. , .. Top--.f

MSI devices typically have matched internal delay paths
and low-impedance outputs that are independent of
loading. Logic delays are more sensitive to output
loading in programmable CMOS array architectures than
in bipolar devices. As with CMOS gate arrays, variations
in internal signal delays are significant in the LCA
device. Synchronous design techniques can minimize
the complexities of signal timing caused by delay
accumulations in CMOS designs. An additional
advantage of synchronous design is better control of
output timing.

The clock distribution resources of the LCA device
simplify synchronous design. When you can program
any function of the input variables, it is simple to include
such control signals as RESET, CLOCK ENABLE, and
PARALLEL ENABLE in the logic function for the data
input of flip-flops. All flip-flops can then use a common
clock. With the flexibility of the LCA device you can
generate and use individual CLB clocks, as well as

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4.2 LATCHES,
FLIP·FLOPS, AND
REGISTERS

asynchronous SET and RESET, if required by the
application.

LCA configurability lets you tailor the storage elements
of the CLBs to fit your applications. Together with
complex combinational data functions, this configur­
ability lets you construct a wider variety of latches and
flip-flops in LCA devices than is found in standard parts
or gate array cell libraries.

The level-transparent form of the storage element is the
D latch. The edge-clocked form is the D flip-flop. In
both cases, the function F supplies the data input, and
the Kor C pin or the function G supplies the clock
(LOAD ENABLE). You select the data input, the clock,
and the active sense of the signal on a block-by-block

basis. EJ
Including a RESET variable in the combinational input of
a flip-flop produces a synchronous RESET, as shown
below.

F =RESET• DATA DATA
DATA-----r~
RF.SET-----a__J

June 1988

UOCK --------

Synchronous Reset

You can use a combinational function of Q with input
variables to generate a CLOCK ENABLE, as illustrated
in the next figure.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-23
2

F = CLKENA • DATA DATA
r "

Cl.KENA
DATA

CLOCK

§%jjl + CLKENA•Q

Synchronous Clock Enable

DP.ARAILEL

PARENA --t--L...A­

D SERIAL---t._J

CLOCK------'

Synchronous Parallel Enable

3-24
-2-

As shown below, you can also create a multiplexer as
the input of a flip-flop to provide a PARALLEL
ENABLE.

F = PARENA • DP

+ PAREN\• Ds I ltl ~
PARAll.EL

PARENA

A flip-flop can have parallel data or reset inputs that do,
or do not, depend on the clock enable. As with the J-K
flip-flop, an interesting derivative of the set-reset flip­
flop is one that does not change state in the case of
simultaneous set and reset conditions. The other types
of flip-flops are set-dominant or reset-dominant. The
availability of this variety of synchronous set-reset flip­
flops provides you with alternatives for logic creation
that can help you minimize next-state control
conditions.

A group of related flip-flops with similar functions can
form a register. You can group registers into two
categories, namely data registers and shift registers. A
data register is a set of flip-flops with independent
parallel input paths and common control. A shift register
is a set of flip-flops with a serial data relationship. Both

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4.3 COUNTERS

3.4.3.1 Johnson
Counters

June 1988

data and shift registers consist of combinational
variations of signals supplying the data input of the
basic, edge-triggered D flip-flop.

Counters are a simple example of a state machine with a
regular sequence. The most familiar counters are the
Johnson or Mobius counter discussed under 3.4.3.1,
the binary weighted sequence discussed under
3.4.3.2, and the Linear Feedback Shift Register
discussed under 4.2.6. 7.

Johnson counters often offer advantages for counter
designs with a modulo of less than 1 O to 12. Also, they
are simple to place and route, and the basic
combinational functions shown below are compatible
with maximum clock frequency.

In a Johnson counter, decodes of single or consecutive
states are simple and glitch-free. Initializing the LCA
device clears all storage elements. However, due to the
presence of unused states, the Johnson counter could
enter an alternate state sequence if there are any
asynchronous control inputs. As shown in the next
figure, additional input variables from QB and QD in the
feedback function can return the count to the proper
sequence.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

El

F =(QA+ Os• 0i,)

=QAQB+~·Qo

CLB

QC QB QA

D Q-------o QH-11,__-iD Q....,.e+---iD Q~-"'""

CLOCK--------------------------
.DCBA

c;. 0000
~ 1000

1001 -..1100
0100 ~1110
1010 ~1111
1101 -..0111
0110 ~ 0011

lNVALIDf-.. O O O 1 STA1ES
1011
0101
0010

Divide-by-8 Johnson Counter

3.4.3.2 Binary·
Weighted Sequence
Counters

3-28
-2-

A

B

When creating a large-modulo CMOS binary-weighted
counter, you are presented with a number of trade-offs.
In terms of physical resources, the most effective
counter of this type is a simple ripple counter; however,
the accumulation of multiple clock-to-a flip-flop delays
can be prohibitive because the outputs ripple for
varying times.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

June 1988

A synchronous toggle flip-flop is shown below.

A

TOGGLE 0 :::::[) ~~ B1 TOGGLE I

CLOCK

B c

==[J ~'=t} TOGGLE2 T 1

CLOCK CLOCK

Toggle Flip-Flop

A. Changes state synchronously if Tis HIGH.

B. Shows the simplified symbol for the flip-flop.

C. Illustrates the AND of two inputs, which produces
the T.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-27
2

The following figure shows a fully synchronous counter
solution composed of T flip-flops. This design
generates the counter's toggle ripple carry for each bit
by adding a carry gate, which tests the previous toggle
carry and the state of its flip-flop in a daisy-chain fashion.
The counter's maximum clock rate is determined by the
total propagation time for the carry path from CLKENA
to data setup of the last bit.

Synchronous Binary Counter with Ripple Carry

The fully parallel counter shown next generates each
toggle function directly. This counter design requires
an n-wide gate for toggle control of each bit of the
counter. You can extend this design to 12 bits. The
total delay would then consist of one combinational
propagation delay between register CLBs, one clock.::
to-0 delay, one set-up time delay, and the
interconnection delay.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

c..
c
ill
I

.ali

§
~
rn
§
Bl
i5 z

I
~
~
c.>

!R
:l
0
=r
0
:l
0
c
en
OJ s·
Ill
-<
0
0 c

~
~

CLOCK DIRECI' TOGGLE GATING

LOOKAHEAD TOGGLE GATING

I

Qi Q2

When designing counters, you can use block-level
carries. The 3-bit segment size shown in the lower half
of the above figure accommodates the three stages
and a carry-in within the single-CLB 4-input limit. The
only combinational delays are those of T3' and T6'.
Without a clock enable input, the first section could be 4
bits, followed by 3-bit sections. When designing LCA
devices, you must watch for design trade-offs and not
try to fit a standard solution into all applications.

The figure below illustrates another synchronous 8-bit
counter with a single level of combinational propagation
delay. The figure shows the merging of the sequential
and combinational elements of the CLB. This counter
uses periodic look-ahead carry terms to make efficient
use of variables within the block.

Q3 Q4 Q5 Q6 Q7

G3 =Q2 •Q3 • Q4 G5=Q5•Q6

Eight-Bit Synchronous Counter Generated in CLBs

3.4.4 SYNCHRONOUS
VERSUS
ASYNCHRONOUS
DESIGN

Efficient LCA-based designs can differ from MSI
designs. MSI elements are general purpose building
blocks that exploit the strengths of a different
technology. Most MSI parts are designed to fit a set of
standard package sizes and the pin functions are
chosen to provide a useful standard product. The LCA
design goals and techniques are very different.

When designing LCA devices, your goal is to
minimize the routing and number of blocks.
In fact, you can often adapt your design's

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4.4.1 Asynch·
ronous Ripple
Counters

June 1988

logic to minimize the constraints of the
available logic and routing resources and to
optimize the LCA device's logic capacity and
performance.

The three- and four-variable capability of the CLB is a
good balance in LCA devices and gate arrays. You can
use a conventional logic diagram of your design and
group the combinational functions to give an
approximate CLB count. In a register-intensive design,
the number of flip-flops required by the design
determines the logic capacity and related combinational
functions merge with the sequential portions.

The ripple counter shown next incorporates a counter
that sets and resets output control bits at specific times
in the sequence. NANO gates that decode the desired
states drive the asynchronous set and reset inputs of EJ
the flip-flops. When the counter increments to state D,
it should asynchronously reset to 0.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3-31
-2-

CLK CLK

CT.R

QO QI Q2 Q3

ACCUMLATED
DELAY

CLOCK

QA (COUNTER)

GATE OUTPUT

QX/Y

Simple Asynchronous Ripple State Machine

s
Q x

R

s
Q y

R

ERRATIC
OPERATION

x
Sx I

I
I
I
I

Rx 0
0
0
0
0
0
0
0

y Q3Q2QIQO
0 0 0 0 0 0 0 I
0 0 0 0 I

2 0 0 I 0 8 I Sy 3 0 0 I I I 4 0 I 0 0 ~!il I 5 0 I 0 I

~~ I 6 0 I I 0 I 7 0 I I I I 8 I 0 0 0 ~ 0 Ry 9 I 0 0 I 0 A I 0 I 0 0 B I 0 I I 0 c I I 0 0
I I 0 I
I 1 I 0
I I I I

GLITCH

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4.4.2 Synch·
ronous Linear
Feedback Shift
Registers

June 1988

The above counter might operate properly if it were an
MSI device because the counter bits in such a device
are matched. To use this counter in a gate array or LCA
device, however, the decodes of the counter states
involve mismatched loading and layout of various
counter bits. As a result, the decode gates are likely to
produce output spikes, causing erratic operation of the
output control flip-flops that use these signals as
asynchronous inputs. Although the decode spikes can
be so narrow that you do not notice them during design
verification, they might produce erratic output control
changes during operation. The decode of the terminal
count also has the potential for spurious outputs. Even
with a valid terminal count decode, a mismatch in
counter bit speeds could result in some bits resetting
and terminating the reset state decode signal before all
bits of the counter are reset. This timing problem could
leave the counter in an undefined or incorrect state. A
reasonable alternative to the asynchronous ripple
counter is the synchronous linear feedback shift
register, which is discussed next.

The following figure shows a Linear Feedback Shift
Register, which is a fully synchronous alternative to the
asynchronous-reset binary counter. This class of
counters follows a less familiar sequence, but its
decodes of specific counts are predictable. Use of
OR/AND feedback for inputs on the output flip-flops
results in a synchronous SET/RESET function for the
output control bits, making them immune to decoding
spikes.

Notice that the resulting X and Y sequences are
identical, although the counter sequences differ and
the control decodes of the synchronous version
represent the state before X or Y transition. This
synchronous design revision also lets the clock control
the output timing; in the ripple counter of the previous
figure, the output timing is controlled by the

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

El

accumulation of delay from the clock .to the counter
output, then to the state decode, and finally through
the flip-flop to the output. The use of a fully
synchronous counter reset provides more reliable
counter operation, and you may be able to increase the
maximum clock rate due to the elimination of the
terminal count delay path. Generating the flip-flop
synchronous reset requires no more resources than
that of the asynchronous reset described above for the
ripple counter.

x y °"QsQcQo
I 0 0 0 0 0 0
I 0 I I 0 0 0

~ I OSy 2 I I 0 0
Rx! I 3 I I I 0

0 I 4 0 I I I
0 I 5 I 0 I I
0 I 6 I I 0 I
0 I 7 0 I I 0
0 !Ry 8 0 0 I I
0 0 9 I 0 0 I
0 0 A 0 I 0 0
0 0 B I 0 I 0

SxO 0 c 0 I 0 I
0 0 I 0
0 0 0 I
I I I I~

RESfil'---f::====:::::i:========:::i:========:::i...~~~~J

Synchronous State Machine

3.34
-2-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4.5 ASYNCH·
RONOUSINPUTS

June 1988

Another common source of design problems is the
timing of asynchronous input signals that affect more
than a single flip-flop. An example is a counter in which
an asynchronous parallel load is removed near a clock
edge. Various bits of the counter may change in
response to the clock, while others retain the previous
state. The result is an invalid value in the counter.

Another common design problem is that of an
asynchronous system reset. If the reset signal is
removed near a clock-edge, different parts of the logic
may respond differently, resulting in invalid states as the
logic tries to begin operation. Clearly, you should
always synchronize asynchronous signals at their input,
as shown in the following figure.

2000 SERIES LCA OESIGN HANDBOOK CHAPTER 3

El

3-35 .
-2-

3·36
-2-

IN

DelayB

rnJ!
I

A~

IN

Synchronization of an Asynchronous Input

You can accommodate asynchronous inputs that
require a response to their transition by using a
resynchronizer, as illustrated below. The additional
input delay this solution imposes may be undesirable in
some applications but it results in a more reliable design
when input latency is not a limiting factor. The
resynchronizer also acts as a simple noise filter.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.4.6 CLOCK
SKEW

June 1988

CLOCK

IN m1 'LU \ \\.._._\ __ n= ___
QA _____ _,,

QB

START

. TRANSITION I ____ _, , ___ ! _

Data Resynchronizer and Filter

The problem of clock skew accounts for numerous gate
array design iterations. Clock skew problems are
caused by mismatched delay paths. For example, you
could clock one flip-flop, and its new output level, lightly
loaded, could propagate to another flip-flop input,
arriving as much as one set-up time before the original
clock reaches a second flip-flop. The difference in clock
timing can occur because of clock gating or unequal
routing delays. To minimize clock skew in an LCA
device, the LCA clock buffers drive a dedicated metal
clock distribution network.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3.37
-2-

3.5 LOGIC
DESIGN WITH
XACT
MACROCELLS

3.5.1 MACRO
OVERVIEW

Macrocells, also called macros, are predefined CLB or
IOB configurations that use common logic functions.
The LCA development system includes a library of
macros that you can use to create your LCA designs.
You can also create your own macros. This discussion
provides detailed information about macros and gives
you an overview of how to create one. It also shows
some sample macros.

Using macros when you optimize your LCA design is a
quick way to specify a function. Each macro is actually a
file that contains all of the executable EditLCA
commands required to define the macro's function in
the LCA design. When you invoke a macro, you
provide the set of parameters needed to execute the
file in the required order.

The parameters you supply customize each
occurrence, or instance, of the macro in your design.
The parameters include such information as an instance
name, the names of networks providing inputs, and the
block locations for each CLB or IOB in the macro. The
instance name is used during macro execution to
compose unique block and net names that distinguish
each occurrence of a particular macro in your design.

Macros in the AMD macrocell library are stored in the
\MACROS directory. Each macro file has an assigned
name with a .MAC file extension that identifies the logic
function. You can find a list of the macros in the AMD
library and the order of their required parameters in the
Quick Reference Card and the LCA Macrocell Library
Manual. The macro documentation indicates the
required parameter order in the syntax statement for
each macro.

In addition to using the available macros, you can create
customized macros as follows.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

3.5.2 MACRO
CREATION

June 1988

EDITLCA commands and macro executions let you
create an LCA design as well as modify macros. After
editing, you may want to incorporate part of that new
design or modified macro into a new macro. For
example, you might create a new macro that is a one-bit
slice of useful logic and which may include several
CLBs. Then you can place several instances of that
macro to create a more complex logic unit, such as a
data path. Another useful user-defined macro could
describe a section of a special counter that generates a
unit of control logic.

To create a macro, you first use the keyboard or mouse
to specify the individual blocks that must be included.
The LCA development system assigns a parameter for
each network that the user has selected as a macro
input, as well as for each CLB and 108 that this macro
uses. All block names and net names sourced by the
macro blocks are included in the new macro's .MAC file,
which is created in the current directory.

When you invoke the macro, you are prompted for
parameters in the order they are needed. The first
required parameter is always the instance name.
This name differentiates one instance of a macro from
any other instance of the same macro in the design.
The instance name is added as a prefix to the macro's
original net names for all nets driven by blocks included
in the macro. The instance name is also added as a
suffix to the original block name of all blocks in the
macro to allow the first characters of the block names to
show in the editor display.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

3.5.3 SAMPLE
MACROS

3-40
-2-

Note: All block and net names must be unique.
Reserved names include A, B, C, D, K, I, 0, X, and Y,
which are already used for block pin names. Also
reserved are AA through last row/column of the LCA
design, and P1 through highest pin number of the LCA
design, as block names. Some additional reserved
names are assiJJned to config_uration and power _Q!ns.

Refer to Chapter 4 in the LCA Development System
manual Volume I for specific information on how to
create macros.

Several sample macros are illustrated below. The first
figure shows the logic diagrams for FDR, a simple D flip­
flop with synchronous reset.

Data (.b) --1--.....
Reset (.c) -~

D

Clock (.k) ---o
nameQ
(.x)

(.y)

The macro for this figure is shown below. The first two
lines in the macro are comment lines indicating the
syntax and parameter order for macro execution. The
comments in the macro are self-explanatory.

Note: % 1 through %5 represent the parameter values
OU SU I .

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

;MACRO FDR Name Clock Data Reset Location nameblock

%1 %2

Parameter NAME ? Enter instance name:
Parameter NET Clock Select Clock net:
Parameter NET Data Select Data net:

Parameter NET Reset select Reset net:

Parameter CLB ? Select % 1 block:

Nameblk %5 %1
Editblk %5
Base 3var

%3 %4 %5 NAME

I Parameter statements specify
I parameter type, the default
I names for nets, followed

Parameter
I by the Select prompts
I for the editor screen.

I Editor commands to name the
I block %5 (fifth parameter)
I with the instance name (%1)

Config X:Q Y:Q F:B:C G: Q:FF SET: RES: CLK:K
Equate F = B*-C

I Edit the block (%5) and define
I its configuration and equation.

Endblk

Addpin %2 %5.K
Addpin %3 %5.B
Addpin %4 %5.C
Addpin %1Q %5.X

I Addpin commands define the nets. The first
I parameter variable is the name (or default)
I supplied by that parameter in the installation
I statement. The % 1 Q is a Q concatenation on
I the instance name % 1.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988 3-41
~

3-42
-2-

c80 GOSC
COL

The GOSC macro in the following figure is a simple
oscillator that uses two external R-C networks, two IOBs
and one CLB that functions as a set-reset latch.

Vee

c1 Reset

T = T1 = T2= N ((R1 C1) + (R2C2))
where N = approx. 0.35 for TTL threshold

=approx. 0.75 for CMOS threshold
when each capacitor is allowed to be discharged by
the LCA during opposite timing phase. Capacitor might partially
charge due to a delayed 3-state routing.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

June 1988

The macro for this GOSC is shown below. Refer to
Chapter 4 Volume I of the LCA Development System
manual for specific information about how to use and
create macros. Also, refer to the discussion in Chapter
2 of this manual for details about the AMO-supported
logic libraries used in schematic entry of LCA designs.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

:macro GOSC Name

%1

Parameter NAME ? Enter instance name:
Parameter CLB ? Select % 1 CLB block:
Parameter IOB ? Select CQ% 1 1/0 block:
Parameter IOB ? Select CQL%1 1/0 block:

Nameblk %2 %1
Editblk %2
Base 3var

LocQ

%2

Config X:F Y:G G:A:C:B G:A Q: SET: RES: CLK:
Equate F = -B* (C+A)
EquateG=-A
Endblk

Nameblk %3 CQ%1
Editblk %3
Base IO
Config I:PAD BUF:TRI
Endblk

Nameblk %4 CQL%1
Editblk %4
Base IO
Config I:PAD BUF:TRI
Endblk

Addpin %IQ %2.X %2.A %3.0 %3.T
Addpin %1Reset %3.I %2.C
Addpin %1Set %4.I %2.C
Addpin %1QL %2.Y %4.0 %4.T

LocCQ LocCQL

%3 %4

I Parameter statements
I defining parameter type
I and screen prompt.

I Assigns the first
I parameter (%1) as
I block name to block
I specified by (%2)
I and configures it.

I Assigns the CQ prefix
I to instance name for
I the block selected as
I the third parameter
I and configures it.

I Assigns the CQL prefix
I to block name for the
I fourth parameter and
I configures it.

I Creates nets of names
I with concatenation to
I the pins .x, .a, .o, .t
I etc. of the blocks
I identified by the %2, %3,
I %4 _p_arameters.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3

June 1988

CHAPTER 4

INPUT/OUTPUT BLOCKS

INPUT/OUTPUT BLOCKS ... 1
4.1 1/0 BLOCK OVERVIEW .. 2

4.1.1 IOB INTRODUCTION ... 2
4.1 .1 .1 Input Signals ... 4
4.1 .1 .2 Output Signals .. 5
4.1.1.3 Voltage Levels .. 5

4.1.2 REGISTERED INPUTS AND METASTABILITY .. 5
4.2 LCA 1/0 STRUCTURES ... ?

4.2.1 STANDARD 1/0 STRUCTURES ... ; ... 8
4.2.2 OPEN-COLLECTOR STRUCTURES ... 11

4.2.2.1 Open-Drain Structures and Routing .. 12
4.2.2.2 Wired-AND and Wired-OR Structures .. 15
4.2.2.3 Multiplexers from Open Collector 1/0 Structures 17

4.2.3 SCHMIIT-TRIGGER STRUCTURES ... 18
4.2.4 GENERAL PURPOSE OSCILLATOR STRUCTURES 25
4.2.5 ON-CHIP CRYSTAL OSCILLATOR STRUCTURES ... 28
4.2.6 REGISTERS AND COUNTERS .. 30

4.2.6.1 IOB-Based Register Delays .. 30
4.2.6.2 Wide Storage Registers ... 31
4.2.6.3 Read/Write Registers ... 33
4.2.6.4 Shift Registers ... 35
4.2.6.5 Johnson Counters ... 37
4.2.6.6 Glitchless Johnson Decoder ... 39
4.2.6. 7 Linear Feedback Shift Registers .. .41

4.2. 7 INCREASED DRIVE-CURRENT STRUCTURES ... 4 7

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-i
2

4-11
-2-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4

June 1988

INPUT/OUTPUT BLOCKS

This chapter discusses IOBs, which comprise the LCA
1/0 structures. The chapter has the following structure.

The 1/0 block overview, 4.1, introduces IOBs and
discusses some specific 108 operating
characteristics.

The discussion on LCA 1/0 Structures, 4.2,
illustrates the wide variety of 1/0 structures
available for use in LCA designs.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4·1
2

El

4.1 1/0 BLOCK
OVERVIEW

4.1.1 108
INTRODUCTION

D

D
D
D
D
D
D
D

This discussion explains LCA Input/Output Blocks,
registered inputs, and metastability.

The IOBs in an LCA design surround the array of CLBs,
as illustrated below. Where the CLBs are the logic
building blocks in an LCA design, IOBs are the building
blocks for LCA input, output, and bidirectional 1/0
structures.

CONF1GURABl.E
LOGIC BLOCK l/OBLOCK

c;;;11:;;;i ~ Q b Q 00

0 0 0 0
0 DiO D

._INTERCONNECT AREA •

0 010 0
0 0 0 0

Logic Cell Array Structure

4·2
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

June 1988

The 2064 and 2018 108s are identical. Each 108 can

drive an output,

receive an input,

clock the input into a flip-flop, or

be both an input and an output under three-state
control.

You can configure an 108 to perform a variety of logic
functions.

The architecture of the LCA device provides great
design flexibility in using inputs and outputs. The 108s
in an LCA device are not dedicated to any fixed logic.
Therefore, you can use 108s for logic structures
beyond simple inputs or outputs. Often, designs do ...
not use all 108s available within the LCA device. You E;jjl
then can use the extra 108s to build such logic
structures as shift registers or Johnson counters.

The following figure shows the schematic of an 108.
The trapezoidal structures in the figure are data-path
selectors or multiplexers. How you program these data­
path selectors determines what function the IOB
performs. For example, you can configure the 108 to
perform as

a direct or registered input,

a direct or three-state output, or
a bidirectional data line.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-3
2

t----+--+-~ IN

D Q

I/OCLOCK --f't =PROGRAM CONTROLLED -v MULTIPLEXER

Input/Output Block (108)

4.1.1.1 Input
Signals

4-4
2

Along each edge of the LCA die, the IOBs share a
common 1/0 clock signal that drives each input register.
All internal registers are reset to a zero state after
configuration, or after the -RESET pin is asserted
LOW. Data is clocked into the input register on the
positive edge of the 1/0 clock signal.

A logic signal external to the LCA device comes in
through an 1/0 pad and non-inverting buffer, as shown
above. The logic signal is then either directly
propagated or fed into the input register, depending on
the configuration of the data-path selector.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.1.1.2 Output
Signals

4.1.1.3 Voltage
Levels

4.1.2 REGISTERED
INPUTS AND
METASTABILITY

June 1988

Similarly, output data is driven by the non-inverting
buffer shown in the previous figure. The output buffer
is forced into a high-impedance state whenever the
three-state (TS) control line is HIGH (TS = 1).
Conversely, the output buffer propagates the output
signal when the three-state control line is LOW (TS= 0).
All outputs can source and sink 4 mA under specified
worst-case conditions.

You can configure all 108s to recognize either TTL-level
'(VTH = 1.4 V) or CMOS-level (VTH = 2.2 V) input
thresholds. The selected voltage level affects overall
device power consumption; power consumption is
lower when you select CMOS input levels.

The following schematic shows a registered input within
the LCA device. LCA devices are manufactured with a
high-speed CMOS process that allows these 108 input
registers to achieve flip-flop loop delays of three to
five nanoseconds. These short loop delays provide
very good performance under asynchronous clock and
data transitions. Short loop delays also minimize the
probability of a metastable condition that can result
when the input to,the flip-flop is still in transition while
the clock is asserted.

The 108's short loop-delay characteristics make them
effective in synchronizing external signals. After the
108 synchronizes the external signals, you can use the
signals internally without further consideration of their
relative timing, except as it applies to internal logic and
routing-path delays. Chapter 7 of this manual provides
further information regarding the metastable behavior of
flip-flops and registers in an LCA device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4.5
2

1/0 TYPE: Pad Input with Storage (registered input)
MACRO NAME: PINQ
SCHEMATIC:

D Q

CONFIGURATION:
I:Q
BUF:

Input Pad with Storage Register

LCA 1/0 Structures are discussed next.

INPUT

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2 LCA 1/0
STRUCTURES

June 1988

This discussion explains some 110 and other logic
functions available by configuring IOBs in various ways.

Discussion 4.2.1 explains standard 110 structures.

Discussion 4.2.2 explains open-collector
structures.

Discussion 4.2.3 explains Schmitt-trigger
structures.

Discussion 4.2.4 explains general purpose
oscillator structures.

Discussion 4.2.5 explains on-chip crystal oscillator
structures.

Discussion 4.2.6 explains registers and counters.

Discussion 4.2.7 explains increased drive current
structures.

The structures described below use the following
conventions for input paths and output buffers.
Discussions here show each structure in schematic
form and describe its 108 configuration.

You can configure the input path as any of these
functions.

l:PAD - Direct input from the device pad
l:Q - Registered input
I: - No input

You can configure the output buffer as follows.

BUF:ON - Direct output
BUF:TRI - Three-state output
BUF: - No output

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-7
2

4.2.1 STANDARD
1/0 STRUCTURES

4·8
2

If an LCA.library macro exists for any structures
described below, the macro is listed in the schematic as
macro name.

The six standard LCA 1/0 structures are listed and
pictured below. These standard structures are the
basic input, output, and bidirectional 1/0 configurations
for an LCA device.

Input pad
Input pad with storage register
Output pad
Output pad with three-state control
Bidirectional pad
Bidirectional pad with input storage

The input pad is shown first.

I/O TYPE: Pad Input
MACRO NAME: PIN
SCHEMATIC:

CONFIGURATION:
I:PAD
BUF:

Input Pad

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

June 1988

The next two figures show the input pad with a storage
register and the output pad, respectively.

1/0 TYPE: Pad Input with Storage (registered input)
MACRO NAME: PINQ
SCHEMATIC:

D Q INPUT

....__ ____ ..._ I/0 CLOCK

CONFIGURATION:
I:Q
BUF:

Input Pad with a Storage Register

1/0 TYPE: Pad Ouput
MACRO NAME: POUT
SCHEMATIC:

CONFIGURATION:
I:
BUF:ON

Output Pad

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4.9
2

EJ

4-10
-2-

The figure below shows the output pad with three-state
control.

1/0 TYPE: Pad Ouput with Three-State Control
MACRO NAME: POU1Z
SCHEMATIC:

CONFIGURATION:
I:
BUF:TRI

Output Pad with Three-State Control

The next figure shows a bidirectional input/output pad.

1/0 TYPE: Pad lnput/Ouput (bidirectional data line)
MACRO NAME: PIO
SCHEMATIC:

CONFIGURATION:
!:PAD
BUF:TRI

Bidirectional Input/Output Pad

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.2 OPEN·
COLLECTOR
STRUCTURES

June 1988

Next, you'll see a bidirectional pad with input storage.

1/0 TYPE: Pad Input/Output with Input Storage
MACRO NAME: PIOQ
SCHEMATIC:

.--------THREE-STAIB

i-------- OUTPUT

D Q INPUT

CONFIGURATION:
I:Q
BUF: TRI

Bidirectional Pad with Input Storage

The LCA macro library contains a variety of output
functions, including wired-AND and wired-OR
structures, based on available LCA open-collector
structures. The MOS transistor has no collector;
therefore, open-drain outputs is a more accurate
term for MOS devices like the LCA device.

To build an open-drain-output structure in an LCA
device, you tie together both the output and the three­
state control lines. For an active-HIGH signal, the three­
state control engages (high impedance), and the
output signal is disabled through the output buffer.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4·11
-2-

4.2.2.1 Open-Drain
Structures and
Routing

4.12
2

The signal at the output pad is also high impedance,
which allows that particular signal line to float.
Connecting this signal line to Vee through a resistor
pulls this line up for an active-HIGH output. However,
for active-LOW signals the three-state control line is
driven LOW to turn on the output buffer and allow the
LOW signal to propagate directly to the 1/0 pad.

When designing with open-drain structures, you should
be aware of an LCA-specific phenomenon caused by
the different routing delays between the signal source
and the output and three-state control loads.

Because a routed signal may take longer to reach an
IOB's three-state control line than its output line, the
pad can be driven for a short period of time during a
LOW to HIGH transition, as shown in the next figure.
This could occur if the output line (0) starts to go HIGH
before the three-state control line does. Depending on
how much routing delay there is between the output
and three-state lines, the PAD output could start to go
HIGH and then be driven into a high-impedance state.
Excessive routing delay differences between the
output and the three-state control line may cause a brief
output glitch, as shown below. Careful design prevents
this.

The above situation is not a problem in most designs.
You can check the actual routing delay difference
between the TS and 0 terminals of an 108 using the
delay calculator in the LCA development system. See
Chapter 2 of this manual for information about the delay
calculator.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

June 1988

DELAY
TS

- 0----------· SIGNAL

OUIPUf ------z-----
THREE-STAIB ____ DELA __ Y_-_....1 1...,-__ _ z

VO PAD-----------HIGH IMPEDANCE ,,A __ _

Brief Output Glitch Caused by Three-State Routing Delay

The next three figures show the available LCA macro
library open-drain structures listed below.

Open-Collector Output Pad
Open-Collector Bidirectional Input/Output Pad
Open-Collector Output Pad with Storage

First, the open-collector output is shown, followed by
the open-collector bidirectional 1/0 pad.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-13
-2-

E

4-14
2

1/0 TYPE: Pad Output with "Open-Collector"
MACRO NAME: POUTC
SCHEMATIC:

TS
0

.--~-<: t----'l~~---~OUTPUT

CONFIGURATION
I:
BUF: TRI

Open-Collector Output Pad

1/0 TYPE: Pad Input/Output with "Open Collector"
MACRO NAME: PIOC
SCHEMATIC:

CONFIGURATION:
I:PAD
BUF:TRI

Open-Collector Bidirectional Input/Output Pad

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.2.2 Wired·AND
and Wired·OR
Structures

June 1988

1/0 TYPE: Pad Input/Output with Storage,
"Open Collector"

MACRO NAME: PIOQC
SCHEMATIC:

D Q INPUT

------- 1/0 CLOCK

CONFIGURATION:
I:Q
BUF: TRI

Open-Collector Output Pad with Storage

The open-drain capability of an 108 allows wired-AND
and wired-OR structures to become part of the LCA
macro library. The AND and OR implementations are
essentially the same; the only difference between their
forms is the type of logic each uses. You design with
wired-AND structures in positive-logic implementations
and wired-OR structures in negative-logic
implementations.

The next figure shows a typical wired-AND or wired-OR
structure. All output pads from the 108s are externally
wired together as a common signal. In a positive-logic
system, when all of the logic outputs to the 108s are
TRUE, the three-state control is enabled and the 108

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

E

4·16
-2-

output PADs are forced to high-impedance. However,
since all of the 108s are tied to Vee through a pull-up
resistor, the line is pulled up to Vee. If the logic signal to
any of the 108s is FALSE, the corresponding output
buffer is turned on and that LOW signal propagates to
the common line, pulling the entire line LOW. The
entire structure then acts as an AND function; when all
outputs are HIGH, the common line is HIGH. If any
output is LOW, then the common line is also LOW.

+5V

PULL UP
RESISTOR

'WIRED' AND or
'WIRED' OR,----1-t

;
~ INTERNAL TO LCA

I Iii

EXTERNAL TO LCA

Wired-AND or Wired-OR Function

The following equation describes the wired-AND logic.

1081 • 1082 • 1083 • ... • 108n = TRUE

A wired-OR structure is similar to the wired-AND, except
that it is implemented in negative logic. It ORs together
a number of active-LOW signals to generate a logic
function. The logic equation for a wired-OR, shown
below, is merely a DeMorgan-equivalent inversion of
the previous equation.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.2.3 Multi·
plexers from Open
Collector 1/0
Structures

June 1988

1081 + 1082 + 1083 + ... + 108n = FALSE

A typical application of a wired-OR structure is an active­
LOW common-interrupt line. An interrupt request from
any peripheral pulls the common interrupt line LOW,
which informs the processor of the request. You can
build a wired-AND or wired-OR function from any
number of open-collector outputs.

The LCA macro library also contains another structure
built using open-drain 108s: an n-bit multiplexer, as
shown below. All pad outputs are tied together outside
of the package, on a common line that becomes the
multiplexer output. Each 108 in the multiplexer is
configured as an output with three-state control using
the LCA library macro POLITZ. The output line (0) of
each 108 becomes an input for the multiplexer. Driving ~
the corresponding three-state control line LOW, T = 0, ll;i;;I
selects a signal; the selected signal propagates to the
common output line. The three-state control lines can
be driven with a CL8.

Caution: You must avoid contentions on the common
out ut line.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-17
-2-

4.2.3 SCHMITT·
TRIGGER
STRUCTURES

4-18
2

PUILUP
RESISTOR

MULTIPLEXER
FUNCTION

+5V

~
MULTIPLEXER

.-------CONTROL

---+--OUTPUT I

t------OUTPUTO

EX1ERNAL TO LCA INTERNAL TO LCA

Open-Collector Multiplexer Function

The Schmitt trigger has numerous applications in digital
designs. Two of the most common applications are
shown below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

June 1988

---l~----

rvvvvvv
I
I
I

A Noise Reduction

--IP:>----

J
B Fast Transitions of Slowly

Changing Signal

A. Schmitt-triggered inputs filter signal noise because
of the hysteresis inherent in the switching P.W
characteristics of a Schmitt trigger. ~

8. A Schmitt trigger generates a fast transition for a
slowly changing input function when that function
reaches a predetermined level. Again, this
capability is available due to the hysteresis of the
Schmitt trigger.

You can build a variety of Schmitt-triggered input
structures in an LCA device. For example, using three
IOBs, a CLB, and three resistors, you can create a
Schmitt trigger with selectable voltage hysteresis, as
shown below.

Note: If the amount of hysteresis is not critical, then
onl two resistors and two IOBs are re uired.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-19
2

4·20
-2-

1/0 TYPE: Schmitt-Triggered Input With Selectable Hysteresis
MACRO NAME: None
SCHEMATIC:

I
EXTERNAL TO LCAI INTERNAL TO LCA

I
I

I
!
i

CONFIGURATION:
IOB 1 - Input

!:PAD
BUF:

IOB 2 - Output
I:
BUF:TRI

IOB 3 - Output (inverted through CLB)
I:
BUF:TRI

Note: VIB = input threshold voltage
for CMOS inputs

VIB = 2.2 V for TTL inputs
VIB = 1.4 V ± supply tolerance

Schmitt-Triggered Input with Selectable Hysteresis

---• DIRECT INPUT

INVERTED INPUT

COMMENTS:
Resistors pairs RI :R2 and RI :R3 form two
voltage dividers that set the HIGH-going and
LOW-going input hysteresis.
Resistors RI and R2 set the HIGH-going
hysteresis (VH) according to this equation:

VH = VIB [(RI + R2)/R2] - VOL

Resistors RI and R3 set the LOW-going
hysteresis (VL) according to this

VL = VIB [(RI + R3)/R3] - Vrn

Three resistors in the above macro select the threshold
voltage and the amount of hysteresis for the Schmitt
trigger. The three resistors are separated into two-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

June 1988

resistor network pairs, R1 :R2 and R1 :R3. Each pair
forms a voltage divider to set the input-voltage level.
One voltage divider sets the HIGH-going transition level
(VH), the other sets the LOW-going transition level (VL).
The value at the input to 1081 is inverted through a
CL8, and then routed to the three-state control line
1083. The CL8 logic adds a small amount of time
hysteresis to the signal because the CL8 logic and the
routing cause delay. The logic delay can be balanced
by buffering the input before sending it to the three­
state control of 1082.

An inverting Schmitt trigger is similar to the non­
inverting one shown above, except that the sense of
the logic is inverted inside the LCA device.

Assume that the input voltage is near ground. The
output voltage of 1082 is at VoL, which pulls resistor R2
toward ground. There is then no potential difference ~
across R2. The output buffer of 1083 is high-
impedance because its three-state control pin is HIGH.
Resistor R3 is effectively removed from the circuit and
the input voltage is divided by the resistor network
formed by resistors R1 and R2. As the input voltage
continues to increase, the 1081 pad voltage eventually
reaches its switching threshold.

As soon as the threshold is crossed, 1081 goes HIGH.
This drives the output of 1082 into high-impedance
(1082 TS = 1) and enables the output buffer of 1083
(1083 TS = 0). At VoH then, 1083 pulls the input of
1081 HIGH through resistor R3. In this state, resistor R2
is effectively removed from the circuit because 1082 is
high-impedance.

The Schmitt-trigger structure remains in this state even
if the input voltage fluctuates, unless it fluctuates to the
opposite hysteresis limit. Then, the Schmitt trigger
goes to the opposite state. In other words, the Schmitt

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-22
2

trigger stays HIGH until the input to 1081 drops below
the LOW-going hysteresis limit, and vice versa.

If the hysteresis values are not critical, the Schmitt­
trigger structure requires only two 108s and two
resistors, as shown in the following figure. However,
the range of VH. and VL is very limited. This 108
configured as an output pulls the input HIGH or LOW,
depending on the transition direction.

1/0 TYPE: Schmitt-Triggered Input With
Limited Hysteresis

MACRO NAME: None

SCHEMATIC:

... iii ...
EXTERNAL TO LCA iii INTERNAL TO LCA

CONFIGURATION:
IOB I - Output

I:
BUF:ON

IOB 2-Input
I:PAD
BUF:

COMMENTS:
Hysteresis values are limited:

VL =[(RI + R2)/R2] Vm - VOH(RI/R2)
VH = [(RI + R2)/R2] VIB - VOL (RI/R2)

Schmitt-Triggered Input with Limited Hysteresis

DIRECT t------- INPUT

CLB
INVERTED
INPUT

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

June 1988

If you need a selectable Schmitt trigger only for a single
transition direction (HIGH going LOW, or LOW going
HIGH), then you can use one of the Schmitt triggers
shown in the following figure. These circuits are simpler
versions of the one above.

Note: A single CLB is required to invert the sense of
the input signal, which then enables or disables the
output buffer for 1082 (the one configured as a three­
state ou~ut.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4·23
2

4-24
2

1/0 TYPE: Unidirectional Schmitt-Triggered Input
MACRO NAME: None
SCHEMATIC:

4 ...
EXTERNAL TO LCA INTERNAL TO LCA

Rl

IOBl

R2

IOB2

COMMENTS:

VH =VTII
VL = VTII [(Rl + R2)/R2] - VCH(Rl/R2)

Unidirectional Schmitt-Triggered Input HIGH Going LOW

SCHEMATIC:

EXTERNAL TO LCA

Rl

R2

COMMENTS:

;
---t
INTERNAL TO LCA

IOBl

IOB2

VH= VTII [(Rl + R2)/R2] - VOL (Rl/R2)
VL= VTII

Unidirectional Schmitt-Triggered Input LOW Going HIGH

DIRECT INPUT

DIRECT INPUT

INVERTED INPUT

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.4 GENERAL
PURPOSE
OSCILLATOR
STRUCTURES

June 1988

The LCA macro library includes general purpose
oscillators built using two 108s and a CL8. The general
theory of operation is similar to that described for
Schmitt triggers.

In the oscillator shown and described below, the
charging and discharging of two capacitors generates
the oscillating signal. Capacitor C2 charges to a voltage
threshold, on SET, to set a latch. As soon as the
voltage across C2 exceeds the threshold, the SET line
causes the Q line to go HIGH and discharges C2 by
driving the 108 called COL. After crossing the
threshold, the RESET line, which has been held LOW,
is allowed to rise as capacitor C1 charges. When
capacitor C1 charges to its threshold, the Q output is
reset and forced LOW. Capacitor C1 is then discharged EJ
by the 108 named ca and capacitor C2 begins charging
again. This process is repeated, creating a low-
frequency resistor-capacitor oscillator.

Consider the routing delay of the three-state control
lines within the 108s, named CQ and COL in the figure.
The time period of the oscillator depends on each
capacitor being completely discharged during the
opposite timing phase. Also, timing depends on both
capacitors beginning their charge near ground. A
routing-delay difference between the output (0) of an
108 and the three-state control can prevent the
capacitors from completely discharging.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4·25
2

/

1/0 TYPE: Low-Frequency Resistor-Capacitor Oscillator
MACRO NAME: GOSC
SCHEMATIC: .._

EXTERNAL TO LCA

CONFIGURATION:
lOBl _

I:ON
BUF:TRI

10B2
I:ON
BUF:TRI

___..
IN'IERNAL TO LCA

SAMPLE ARRANGEMENT

Cl1JCK
BUFFER--+-•

CLB

/ Low-Frequency Resistor-Capacitor Oscillator

4-26
-2-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

The following figure illustrates the oscillator's low­
frequency timing characteristics.

T (time period) =Tl +T2 = N ((Rl X Cl)= (R2 X C2)) [11]
where N = approximately 0.35 for TTL threshold

=approximately 0.75 for CMOS threshold

c2~ ASSUMPTIONS:
, , • , , .. 1) Each capacitor is discharged during the opposite timing phase.

.. v .. 2)
Capacitors begin charging from GROUND.

CI 3) Effect of three-state routing delay is assumed minimal.
I

Low-Frequency Resistor-Capacitor Oscillator Timing Diagram

June 1988

You can use any number of these low-frequency
oscillators in a design. Most designs, however, require
only one or two.

Note: If the oscillator output is used throughout the
design to clock the registers in the CLBs, then you
should place the oscillator near one of the clock buffers
and use the clock buffer to route the sjg_nal.

The sample array element in the low-frequency
oscillator figure above shows the oscillator built near the
main clock buffer in the upper-left corner of the die. A
similar low-frequency oscillator could drive the auxiliary
clock buffer located in the lower-right corner of the die.

You should be aware that the low-frequency oscillator
circuit causes an error when you use the timing
calculator to examine the oscillator. The timing
calculator in the LCA development system detects
combinational loop conditions and flags them as errors.
Because the oscillator circuit depends on a
combinational loop for operation, it causes an error
message. You can safely ignore such error messages if
you detect them only in the oscillator circuit.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4·27
2

4.2.5 ON·CHIP
CRYSTAL
OSCILLATOR
STRUCTURES

4-28
2

You can configure two special 1/0 Blocks to interface to
the oscillator on-chip, located in the lower-right corner
of the die. This oscillator is associated with the auxiliary
clock buffer located near it. When you select the
interconnection to drive the auxiliary clock buffer, two
special pins interface to the internal high-speed
inverting amplifier to form the oscillator. Externally, you
should attach these pins to the crystal oscillator
components, as shown below. The best way to
configure the crystal oscillator is by using the GXTL
macro in the LCA library.

Even before you finish configuring the LCA device, the
on-chip oscillator begins operation so that its circuitry
can stabilize. However, the actual internal connection
of the oscillator to other circuitry on the chip is delayed
until the device configuration completes.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

1/0 TYPE: On-Chip Crystal Oscillator Circuit
MACRO NAME: GXIL

....._
lNIERNAL TO LCA

__..
EXTERNAL TO LCA

SCHEMATIC:

ALTERNATE
CLOCK BUFFER

XTAL2
(IN)

D

JC! Yl

D
D

RI

R2

JC2

SUGGESTED COMPONENT VALUES:

RI: 1-4 Mn
R2: 0-1 Kn

(may be required for low frequency, phase
shift and/or compensation level for crystal Q)

Cl, C2: 5-20 pF
YI: 1-10 MHz AT cut

XTALl XTAL2
48-PINDIP 33 30
68-PINPLCC 46 43
68-PINPGA JlO LIO
84-PINPLCC 56 53
84-PINPGA Kl! Lll

On-Chip Oscillator Circuit

June 1988

The feedback resistor R1, from output to input, biases
the amplifier at threshold and should be as large a value
as practical, up to 4 Mn. The inversion and delay of the
amplifier, together with the R-C networks and crystal,
produce a 360-degree phase shift, forming a Pierce
oscillator.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4.29
2

4.2.6 REGISTERS
AND COUNTERS

4.2.6.1 IOB·Based
Register Delays

4-30
-2-

Note: You can include the series resistor R2 to add to
the amplifier output impedance, when needed. This
may be needed for phase-shift control, crystal­
resistance matching, or for limiting the amplifier input
swin to control cli in at lar e am litudes.

The ratio of capacitor C2 to C1 adjusts the excess
feedback voltage. The amplifier operates in the range
of 1 MHz, up to one-half the specified CLB toggle
frequency. Using the oscillator at frequencies below
1 MHz requires individual characterization with respect
to a series resistance. Operating at frequencies above
20 MHz is also more complex because it generally
requires that the crystal operates in a third overtone
mode in which the R-C networks must suppress the
fundamental. frequency.

The previous examples in this chapter describe how to
use IOBs in conventional 1/0 applications, using the IOB
for input, output, or both. For any IOB that is not
required for input or output, you can use the storage
element within the IOB to create registers and various
types of counters. The following designs use the
output buffer (BUF:ON) fed back into the input register
(l:Q). This configuration is shown below. These IOB's
pads usually are not connected to anything externally,
although you may do this if necessary.

If you want to construct registers using IOBs, you must
understand the delays in 10-based registers. The
delays incurred through an IOB-based register depend
on the sum of two parameters: the delay through the
output buffer, and the delay back through the input
buffer to the register. While these values are defined in
the data sheet for an output load of 50 pF, they change
only slightly for no output capacitance. The delay into
an IOB-based register is shown below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.6.2 Wide
Storage Registers

June 1988

T(IOB-reg)

Where:

Top
Tpl

Top Tpl

Output to Pad output
Pad input set up to 1/0
clockjminimuml

The first type of 108-based registers is a wide storage
register. The basic 1/0 structure illustrated below
creates a wide storage register.

1/0 TYPE: Pad With Input Storage (JOB-based)
MACRO NAME: PREG
SCHEMATIC:

1-------.---OUTPUT

CONFIGURATION:
I:Q
BUF:ON

D Q INPUT

...._ ____ !!-- I/O CLOCK

Pad with Input Storage (108-Based Register)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-31
-2-

4-32
-2-

The following figure shows the construction of an n-bit­
wide storage register built from these IOBs. Wide
storage registers are ideal for IOBs because the 1/0
clock feeding an 108 is common to all IOBs along each
edge of the die.

1/0 TYPE: N-bit Storage Register (IOB-based register)
MACRO NAME: None
SCHEMATIC:

i--------- BIT 0 IN

>---t D Q l---ll--11• REG 0 OUT

,__------•CLOCK
EXPANDABLE TON BITS

CONFIGURATION:
All IOBs

I:Q
BUF:ON

COMMENTS:
The 1/0 clock into each IOB is common to all IOBs along
each edge of the die. For best resource utilization, group
the storage elements along one edge of the die.

N-Bit Storage Register (108-Based Register)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.6.3 Read/Write
Registers

June 1988

Another variation of the basic IOB-based register is a
simple read/write register. This structure allows external
devices to write data into registers within the LCA
device, and also to read the data back.

The following figure shows the structure of a read/write
register. In this example, each IOB's input and output is
connected. The three-state control line (T) controls the
direction of data flow, where T = LOW for a read
operation by the external device, and T = HIGH for a
write operation to the LCA device. Typically, the
read/write control line (three-state control) originates
outside the LCA device and comes in through an
additional 1/0 block.

The input register data from the read/write register can ..im
be read from within the LCA device but the data cannot ~
be written to the LCA device. Writing the register from
inside the LCA device would require that two network
sources be active, which is not allowed.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-33
-2-

4.34
2

1/0 TYPE: N-bit Read/Write Storage register
MACRO NAME: None
SCHEMATIC:

T
--~~~~~~~--~--DIRECTION

CONTROL

CONFIGURATION:
AlllOBs

I:Q
BUF:TRI

COMMENTS:

Q 1--1>-+--+-1• REG 0 OUT

Q 1--1--• REG 1 OUT

EXPANDABLE TON BITS

The 1/0 clock into each IOB is common to all IOBs along each
edge of the die. For best resource use, group the storage
elements along one edge of the die. Also, the three-state control
line controls the direction of data flow (T = LOW for read,
T =HIGH for write). This control line typically originates
off-chip and comes in through an additional IOB.

N-Bit Read/Write Storage Register

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.6.4 Shift
Registers

June 1988

You can easily construct shift registers with IOBs by
feeding the output of one 108 to the input of the next.
The figures below describe two shift registers: one
shifts to the left, the other shifts to the right. The shift
direction depends on the connections of each IOB's
inputs and outputs.

1/0 TYPE: Shift Left Register (!OB-based register)
MACRO NAME: None
SCHEMATIC:

---------- SHIFI'IN

>---t D Q i-++-t• SHIFI'OUT

CONFIGURATION:
All IOBs

I:Q
BUF:ON

COMMENTS:

'------+--·CLOCK

Notice that the routing of the output of a given JOB goes to the
intput of the IOB on the left (shift left).

Shift-Left Register (108-Based Register)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-35
-2-

4-36
2

The following figure shows a shift-right iOB-based
register.

1/0 TYPE: Shift Right Register (IOB-based register)
MACRO NAME: None
SCHEMATIC:

!a
~
~
Cl'.l

CONFIGURATION:
All IOBs

I:Q
BUF:ON

COMMENTS:

D Q

D Q

SHIFI'OUT

- SHIFTIN

Notice that the routing of the output of a given IOB goes to
the input of the IOB on the right (shift right).

Shift-Right Register (108-Based Register)

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.6.5 Johnson
Counters

June 1988

An n-bit Johnson counter counts to 2n states as
opposed to standard binary counters that count to 2n
possible states. Johnson counters have a variety of
uses in digital design, including low-modulo counters
and glitch-free decoders.

In an 108-based design you can think of a Johnson
counter as special shift register. Only one bit changes
during a state transition, as shown in the following table
for a three-bit Johnson counter.

Transitions of a Three-Bit
Johnson Counter

000
100
110
111
011
001

You can build a Johnson counter of unused IOBs, as
shown below; however, it requires at least one CLB to
perform an inversion. The Johnson counter is
automatically reset to an all-zeroes state upon config­
uration or on a ~RESET pulse.

Refer to the application note on counters for more
information on creating Johnson counters in LCA
devices.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-38
2

1/0 TYPE: N-bit Johnson Counter
MACRO NAME: None
SCHEMATIC:

Q

>----1 D Q 1-"'1-+----'

CLB

.__ ____,..,__~ CLOCK

EXPANDABLE TON BITS

CONFIGURATION:
All IOBs

I:Q
BUF:ON

N-Bit Johnson Counter (108-Based}

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.6.6 Glitchless
Johnson Decoder

June 1988

You can build a glitch-free decoder using IOBs and
CLBs. The decoder is glitch-free because only one bit
changes during a state transition. An n-bit Johnson
counter/decoder can decode any one of the 2n
possible states, or any number of contiguous states, by
decoding (ANDing) together just two of the appropriate
counter bits. You can also create counters of various
modulo and duty-cycle by using different Johnson
decoders. For example, the next figure shows the
schematic implementation of a Johnson counter/
decoder with various two-input decode states.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4-39
-2-

EXPANDABLE TON BITS

Johnson Counter/Decoder

4-40
2

000 DECODEO
100 DECODE!
1 1 0 DECODE2
1 1 1 DECODE3
0 1 1 DECODE4
001 DECODES

DECODEO

DECODE!

DECODE2 DECODER CLB OUIPUTS
DECODE3

DECODE4

DECODES

CLOCK

As the above figure illustrates, you can decode any
state of a Johnson counter, glitch-free, using only a
two-input logic function.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

4.2.6. 7 Linear
Feedback Shift
Registers

June 1988

Linear Feedback Shift Registers (LFSRs) are yet
another modification of a simple shift register. An LFSR
consists of a shift register that feeds back the
appropriate bits to the first bit position. An LFSR
requires some logic function in the feedback path,
usually an exclusive-OR (XOR) function.

LFSRs have numerous applications, such as imple­
menting the encryption and decryption functions in a
UART.

The next figure shows the schematic for a three-bit
LFSR that implements a modulo 5 (divide-by-five)
counter. An n-bit LFSR counter can produce a pseudo­
random sequence of up to 2n-1 unique states. By
adding logic to the feedback path, you can force the
LFSR counter to skip any number of states, from one m
to 2n-1. By forcing the counter to skip some number of
states, m, an LFSR counter can implement any modulo
as described in the following equation.

MODULO = (2n-1) - m

n = number of shift-register bits

m =number of skipped states

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

442
2

FEEDBACK

FIRST BIT ~...w-+,._,""'

>---f D Q--+--'

Q----~

Schematic for Modulo 5 LFSR Counter

The figure below shows the counting sequence for a
three-bit LFSR counter with an exclusive-NOR (XNOR)
in the feedback path. This figure also shows all possible
skip paths and the stuck state.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

June 1988

'STUCK' STATE

100

/

Three-Bit LFSR Counting Sequence Skip Path and Stuck State

In the counting sequence there are two counter states
where only the first bits differ. For example, refer to the
states 101 and 001. By forcing the feedback logic to
invert the sense of the feedback into the first bit, the
counter can be forced to skip all of the states between
the two indicated values. You can accomplish this skip
by decoding (ANDing) the state just previous to the
state to be skipped.

Using the modulo 5 counter as an example, locate the
initial value that allows the counter to skip two states,
101 for example. By decoding the state 011, which is
the state just prior to the initial skip state of 101, you can
invert the sense-of the feedback into the first bit. The
counter then skips from state 101 to state 010,
implementing a modulo 5 counter. Using this method
and the proper feedback into the register, you can build
a counter of any modulo from 1 to 2°-1 .

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

4.43
-2-

4-44
-2-

Either device configuration, or an externally driven
active-LOW RESET signal, resets all storage elements
used in the LFSR counter to zero.

Be careful to avoid the stuck state in your designs.
This is the missing state in the 2"-1 counting sequence.
If the stuck state is included, the LFSR counter has 2n
possible states. The stuck state occurs when the
feedback path forces the counter into an ever­
repeating single state.

As a simple example, assume that you build an LFSR
counter with a two-input XOR feedback path, as shown
next. Upon configuration or an external active-LOW
RESET signal, the counter begins operation in the all­
zeroes state (000) and becomes stuck in that state due
to the type of feedback used.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

June 1988

FEEDBACK

Q

Qt-----'

Simple LFSR with a STUCK State

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

445
-2-

An interesting situation occurs when all bits except the
last bit of the stuck state are decoded (ANDed together)
and included in the feedback path. Instead of counting
over a possible range of 2n-1 states, the extra decoding
causes the LFSR counter to count to all 2n states, as
shown in the following figure.

D Qt-----. CLB

Q ---+-'!-------

Qi--_______ _.

.__ _________ CLOCK

An LFSR Forced to Count to 2n Possible States

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

1/0 Block
2n-1 7 15
Modulo
Feed- 1,3 1,4
back 2,3 3,4
Options
into Bit 1

4.2. 7 INCREASED
DRIVE-CURRENT
STRUCTURES

June 1988

31

2,5
3,5

You can build longer LFSR counters with higher
possible modules and more complex feedback
mechanisms, but their discussion is well beyond the
scope of this chapter. However, the following table
presents some of the possible feedback combinations
for LFSR counters of three to ten bits.

63 127 255 511 1023

1,6 1,7 1,2,7,8 4,9 3, 10
5,6 3,7 5,9 7,10

4,7
67

LCA devices are specified to have 4 mA worst-case
source and sink capabilities at VoL = 0.32 V and VoH = IP.!W
3.68 V. However, you obtain increased drive current at ~
the cost of decreased voltage margins. For example,
the following table illustrates the effect on VoL and VoH

of increasing the drive current through a single 108.

Output Current and Output Voltage Levels
for an 108

4mA 6mA 8mA
VoH 3.86 v 3.54 v 3.22 v
VOL 0.32 v 0.48 v 0.64 v

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

An alternate method of increasing the drive current is to
parallel the output drivers of two IOBs. Paralleling two
outputs enables the IOBs to source-and-sink double
the worst-case current, with no reduction in voltage
margins. This method is diagrammed below.

.. .
EXTERNAL TO LCA IN1ERNAL TO LCA

PAD

OUIPUT

PAD

Parallel Outputs Have Increased Drive Capability

Caution: You should minimize the difference in
routing delay between the two IOBs connected in
parallel. Excessive delays can cause output
contentions.

Chapter 5 discusses placement and routing.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4

June 1988

CHAPTER 5

PLACEMENT AND ROUTING

PLACEMENT AND ROUTING ... 1
5.1 OVERVIEW .. 2
5.2 INTERCONNECTION RESOURCES .. 3

5.2.1 GENERAL-PURPOSE INTERCONNECTION .. 3
5.2.2 DIRECT CONNECTIONS ... 6
5.2.3 LONG LINES .. 10
5.2.4 CLOCK BUFFERS .. 16

5.3 PLACEMENT ... 19 B
5.3.1 PARTITION THE SYSTEM DESIGN .. 19
5.3.2 ANALYZE THE DATA FLOW ... 20
5.3.3 LOGIC BLOCK PLACEMENT .. 23

5.3.3.1 Placement Guidelines .. 24
5.3.3.2 Optimization Guidelines ... 26

5.3.4 110 BLOCK PLACEMENT .. 27
5.3.5 EXAMPLES ... -.. 29

5.3.5.1 Using Macros, Example 1 ... 31
5.3.5.2 The Long and Thin Approach, Example 2 .. 33
5.3.5.3 Trade Off Resources for Performance, Example 3 33

5.3.6 MODIFICATION GUIDELINES .. 34
5.4 ROUTING ... 37

5.4.1 MANUAL EDITING .. 37
5.4.2 MANUAL PRE-ROUTING .. 43
5.4.3 ROUTING GUIDELINES AND FUNCTIONS ... 49

June 1988

5.4.3.1 Inputs and Outputs .. 49
5.4.3.2 High Fanout Nets ... 51
5.4.3.3 Useful Routing Functions ... 52

SWAPSIG .. 52
CLEAR PIN ... 54
ROUTEPIN and ROUTE .. 55

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-i
2

5.5 TIMING ANALYSIS, DELAYCALCULATOR .. 56
5.5.1 CLB AND 108 DELAYS ... 56
5.5.2 INTERCONNECTION DELAYS .. 56
5.5.3 CLOCKED SYSTEM DELAYS ... 60
5.5.4 SPEED GRADE DELAYS .. 61
5.5.5 SIGNAL DEGRADATION ... 62

5.5.5.1 Analysis of Intermediate Timing ... 64
5.5.5.2 Examples .. 65

5.6 SUMMARY ... 68

S·ii
-2-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5

June 1988

PLACEMENT AND ROUTING

This chapter discusses placement and routing of LCA
designs. Placement and routing play an important part
in determining both the performance of your design
and how efficiently it uses the available LCA resources.

The overview, 5.1, introduces LCA placement and
routing.

The discussion on interconnection resources, 5.2,
describes different options for interconnecting the
CLBs and IOBs in an LCA design.

The discussion on placement, 5.3, explains how to
optimize placement of CLBs and IOBs in a design.

The discussion on routing, 5.4, explains how to
route, and how to edit the routing of, an LCA
design.

The discussion on timing analysis, 5.5, describes
how to use the delay calculator to analyze an LCA
design's timing.

The summary, 5.6, presents conclusions and
recommendations for placing and routing LCA
designs.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5·1
2

5.1 OVERVIEW

5·2
-2-

As with other high density ASIC devices, the LCA
device offers placement and routing alternatives that
can affect the use and the performance of your final
design. In gate arrays and other factory-programmed
solutions, you can explore these layout alternatives
only through simulation. With the LCA device,
however, you can see and modify the placement and
routing at design time using the LCA development
system.

The LCA development system includes several
powerful capabilities that let you optimize your design
for performance and use of resources. This chapter
investigates these capabilities and the operations that
you can employ to optimize your design.

If you are not familiar with LCA placement and routing,
you should read this entire chapter. If you have some
level of knowledge about the LCA device and have
completed some design work, you may want to study
only those discussions that interest you.

Note: If you intend to use the Automatic Placement
and Routing software, APR, you should still read this
ch~er.

APR helps you plan your design so that the LCA
resources are used as efficiently as possible. After
using APR to place and route your design, you may
need to optimize or complete the routing with XACT. All
of the following guidelines can help.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.2 INTER·
CONNECTION
RESOURCES

5.2.1 GENERAL·
PURPOSE INTER·
CONNECTION

June 1988

Placement and routing are closely interrelated. You
make placement decisions based on efficient use of
interconnection resources. Any changes in placement
can change the routing and routability of a design and
consequently, impact the design's performance. To
make the best possible placement and routing
decisions, you must understand the capabilities and
trade-offs of the various types of routing available in an
LCA device.

This discussion explains the following available
interconnections.

5.2.1, General-Purpose Interconnection

5.2.2, Direct Connections
5.2.3, Long Lines
5.2.4, Clock Buffers

General-purpose interconnection provides routing for
most signals on the LCA device. As shown below, it
consists of four horizontal metal segments between
adjacent rows and five vertical metal segments between
adjacent columns of the CLBs and IOBs. The vertical
segments are the same height as a CLB; the horizontal
segments are the same width. A switch matrix at each
row and column intersection controls how the
segments are interconnected.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.3
2

5.4
2

B

c
K

SWITCH -----t
MATRIX

General-Purpose Interconnection

A switch on each CLB or 108 output can connect the
output to the adjacent interconnection segments.
Configuration bits in the LCA configuration file set up
the switch connections in each matrix and on the block
outputs. Configuration bits also program the
multiplexers at the inputs of the CLBs and IOBs to
select the appropriate input connections from the
adjacent interconnection.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5-VERTICAL GENERAL INTERCONNECT

r
2

8 3

7 4

6 5
8

7

6

Interconnection Switching Matrix

June 1988

,...

2

5

~

3 3

4-HORIZONTAL
GENERAL

3 4 4
INTERCONNECT

4 2

1 = VALID CONNECTION
0 =INVALID CONNECTION

Special repowering buffers in the general-purpose
interconnection provide periodic signal isolation and
restoration for higher fanout and improved perfor­
mance. Each LCA device is divided into nine sections,
with buffers provided at the section boundaries. These
buffers are bidirectional because signals on a general
interconnection segment must be able to propagate in
both directions.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.5
2

5.2.2 DIRECT
CONNECTIONS

Direct Connection Resources

5·6
2

Note: Repowering buffers are provided only for the
general-purpose interconnection; direct connections
and lol!Q_ line interconnections do not re_g_uire them.

Each CLB and IOB can connect directly to adjacent
blocks, as shown below. A direct connection is a
signal path with virtually zero delay, which does not
use any of the general interconnection or long line
resources.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

June 1988

For maximum device performance and minimum routing
resource impact, use direct connections as much as
possible. Direct connections exist primarily in the
vertical and left-to-right directions: therefore, you
should arrange blocks that represent stages in a
process sequentially: either vertically or from left to
right. Left-edge 1/0 blocks naturally become data
inputs, while right-edge 1/0 blocks become data
outputs. Top- or bottom-edge 110 blocks can be either
direct inputs or outputs, with alternate blocks having
direct-out or direct-in paths. As an example, consider
the following circuit.

An 8-bit parallel-load shift register loads the data byte
into the shift register in parallel, then shifts it out one bit
per clock cycle. The following figure shows two
alternate implementations of this circuit.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

S-7
-2-

5-8
2

A Routing congestion

Data
Inputs

B A// direct connection used.
caused by placement choice.

8-Bit Parallel Load Shift Register

A. The eight CLBs used for the stages of the shift
register are arranged in a rectangular area in the
upper-left corner of the device, with general
interconnection providing many of the signal
paths.

8. The design uses direct connections exclusively,
which provides zero-delay paths from block to
block and allows higher performance.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

From:
Thru:
To:

From:
Thru:
To:

The general interconnection used in design A is
still available for other uses. Also, the LOAD signal
has been routed on a long line driven from a
directly-connected 1/0 block. Long lines are
discussed next.

For the design shown in B, the following table of
worst-case delays shows that the maximum load
and shift clock rate for the 33 MHz device is 31.3
MHz, and 43.5 MHz for the 50 MHz device.

Partial Delay Report for Direct Connection Placement of an
8-Bit Shift Register with Parallel Load

For -30 (33 MHz) speed device

BLKGA
NETS6
BLKHA

(CLOCK to GA.X)
(GA.X to HA.A) :
(HA.A to SETUP)

For -50 (50 MHz) speed device

BLKGA
NETS6
BLKHA

(CLOCK to GA.X)
(GA.X to HA.A) :
(HA.A to SETUP)

20 ns (20 ns)
0 ns (20 ns)

12 ns (32 ns)*

15 ns (15 ns)
O ns (15 ns)
8 ns (23 ns)*

* Total Clock-to-Clock Worst-Case Del~

June 1988

In designs that are not highly synchronous, such as
those in glue logic replacement, you usually cannot
exploit direct connections to the degree shown in the
example. However, if possible, use a direct connection
to route a signal from one block to another. Direct

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-9
-2-

5.2.3 LONG LINES

5-10
-2-

connection considerations should be a primary factor in
block placement. For each direct connection, you
release a general interconnection resource that can
then be used in some other function. Extensive use of
direct connections can boost the logic use of the LCA
device by up to 30%.

Long lines are continuous metal segments that span
the width or length of the LCA device, providing
minimum-delay and skew for long distance
signal paths. Although the automatic router uses
long lines for general signal routing when other types of
connections are not available, you should direct the use
of long lines for specific signals. Ensure that long lines
are efficiently used by considering their capabilities and
interconnection potential. The following figure
illustrates the locations of the long lines and shows the
clock buffers that work with them. Clock buffers are
described under 5.2.4.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

Global
Clock

Vertical Long Lines
(Typical per Column)

110 Clock
(1 per Edge)

0 0 0 0 0 0
o a o o o o

Horizontal
Long Line

Direct
Connect
(CLB to 110)

Alternate
Clock Buffer

Clock
Oscillator

2064 Long Lines and Clock Buffers

June 1988

Signals that can most effectively use long lines are
generally classified as data distribution, or low-skew,
control signals. Whether originating at an 1/0 block or a
CLB, data signals typically have several destinations
each of which uses the data differently. To follow the
natural data flow of the device, you should route these
signals on long lines with one bit per row or column.

An important consideration in data routing is the
direction of the data flow. In the 2064/2018 series of
LCA devices, internal signals must be unidirectional.
For systems that require bidirectional data paths, you
can use a pair of long lines in each column to carry input

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-11
-2-

EJ

BitO
-Data In

BitO
-Data Out

5·12
-2-

-GI:
-0}:
{}
~
-ID:
-OJ:
ra

-GI:
-01:
-I}
£}:
-rn:
£!:
rn
I!!]

Data BitO D1

0 n
0 0
0 0
0 0
0 0
0 0

data and output data, respectively. This bidirectional
signal routing requires that the data input/output pins
be located at the top or bottom of the device. The
following figure shows an 8-bit bidirectional data bus
with vertical routing on pairs of long lines.

D2 D3 D4 D5 D6 Dl

0 0 0 0 0 0 =ID-
=Cl-

a 0 0 {] 0 fj :I}
=CJ-

0 0 0 fl n ii
:fl}-
:CJ-
:BJ-

0 0 0 0 0 !j ra
:{Il-

5 0 d n 0 n :ID-
~

0 0 0 0 a n :ill-
:ID-
~

m
oi:i ~o o~ 00~00 CIC! ~~ ~d' a rn

Bidirectional Data Bus Using Long Lines

Control signals, such as clocks, reset/set controls, and
count or shift direction controls may have critical timing
requirements between their source and their multiple
destinations. For these signals, you must control skew
to ensure that all of the destination blocks perform the
desired function at the same time or on the same clock
edge. If possible, you should arrange destination
blocks in a single column or row and you should route
the control function onto the appropriate long line. The

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

June 1988

figures below show two different implementations of a
reset function generated in a logic block and routed to
four destination blocks. You can see the skew
reduction associated with the use of the long line from
their accompanying tables.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-13
-2-

5-14
2

Delay: bidibus8.lca, XACT 1.3

From: BLKBC (BC.X) Ons Ons)
Thru: NET RESET (BC.X to HD.B) 24ns 24ns)

To: BLKHD (HD.B) Ons 24ns)
From: BLKBC (BC.X) Ons Ons)
Thru: NET RESET (BC.X to ED.C) 14ns 14ns)

To: BLKED (ED.C) Ons 14ns)
From: BLKBC (BC.X) Ons Ons) 21nsSKEW
Thru: NET RESET (BC.X to DD.C) 12ns 12ns)

To: BLKDD (DD.C) Ons 12ns)
From: BLKBC (BC.X) Ons Ons)
Thru: NET RESET (BC.X to AD.C) 3ns 3ns)

To: BLKAD (AD.C) Ons 3ns)

DELAYS FOR GENERAL INTERCONNECT

00 00 0000 0000
Do 0 0 0

-ill: 0 0 0 0 -ID=
-ill: 0 0 0 0 0 -!Th
-ID:
-ID: 0 0 0 0 -ill:
ra 0 0 0 Ll -ID=
ii 0 0 0 0 fj -ill=
-ID= 0 0 0 0 0 -!Th
-ID= 0 0 0 0 ~
~ 00 00 ~L:i 0~00

Signal Routed Via General Interconnection

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

June 1988

Delay: bidibus8.lca, XACT 1.3

From: BLKBC (BC.X) Ons (Ons)
Thru: NET RESET (BC.X to HD.B) 5ns (5ns)

To: BLKHD (HD.) Ons (5ns)

From: BLKBC (BC.X) Ons (Ons)
Thru: NET RESET (BC.X to ED.C) 5ns (5ns)

To: BLKED (ED.C) Ons (5ns)

From: BLKBC (BC.X) Ons (Ons)
Thru: NET RESET (BC.X to DD.C) 5ns (5ns)

To: BLKDD (DD.C) Ons (5ns)

From: BLKBC (BC.X) Ons (Ons)
Thru: NET RESET (BC.X to AD.C) 5ns (5ns)

To: BLKAD (AD.C) Ons (5ns)

DELAYS FOR ROUTING VIA LONG LINE

Signal Routing Via Long Line

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5·15
-2-

5.2.4 CLOCK
BUFFERS

5·16
2

The LCA device has special-purpose on-chip buffers to
provide high-fanout, low-skew signal distribution. You
normally use these buffers for clock signals; however,
you can also use them tor any general-purpose signal
that requires high-fanout or low-skew routing to
multiple blocks. Clock buffers work with specific
long lines for routing on a column basis. The global
clock buffer, located in the upper-left corner of the LCA
device, directly drives a long line in each column. The
alternate clock buffer, located in the lower-right corner,
drives a horizontal line that can be selectively
connected to a long line in each column. The following
figure shows the butter locations.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

Global
Clock

Vertical Long Lines
(Typical per Column)

2064 Clock Buffers and Long Lines

June 1988

l!OClock
(1 per Edge)

Horizontal
Long line

Direct
Connect
(CLB to 110)

Alternate
Clock Buffer

Clock
Oscillator

In systems with a single common clock for all state
elements, you can best distribute that clock using the
global buffer. More difficult cases involve systems with
multiple clocks and other critical control signals. If a
system has two separate clocks, one clock can use the
global buffer and the other can use the alternate buffer.
This is particularly true when one clock is derived from
the other.

Note: When you use the crystal oscillator, its output
drives the alternate buffer directly; therefore, it can be
the Qrimary_ clock for the ~stem.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

S-17
-2-

El

5·18
a-

In any case, you should drive the predominantly used
clock with the global buffer.

For systems requiring more than two clocks, you should
still drive the primary clock with the global buffer. Route
other clocks onto vertical long lines and arrange their
respective CLBs in columns adjacent to the long line
that carries the appropriate clock signal. You can use
direct connections to drive these column-oriented
clocks either from an adjacent (to the left) CLB, or from
an 1/0 block on the edge at either end of the column.
When selecting the long line to be used, note that one
of the nondedicated vertical long lines can be
connected to the CLB K inputs, while the other cannot.
Since most clock signals are best routed into the K
input, you should choose the former long line.

You can also use one of the clock buffers to route a
control signal to many CLBs or IOBs. By placing the
source of the signal near the alternate buffer, you
provide a low-delay path from the source to the buffer,
and then to all the destination CLBs or IOBs. The
following figure shows a shift register that has been
placed and routed using both buffers: the global buffer
for the overall shift register clock and the alternate
buffer for a low-skew shift/hold control signal. If the
shift/hold control logic timing is not well controlled,
skews in the control signal, as seen by the blocks, could
cause a partial shift. In a partial shift, some blocks could
get the signal while others may not get it in time to hold
relative to the next clock edge.

Note: This timing skew becomes less of a factor in
choosing routing for control signals as you relax your
timiQg_ constraints.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3 PLACEMENT

5.3.1 PARTITION
THE SYSTEM
DESIGN

June 1988

Placement and routing determine how efficiently you
can use an LCA device for a particular design.
Placement of logic in an LCA design primarily
involves determining the relative locations of
the functions that most effectively use CLB,
IOB, and routing resources. Efficient use greatly
simplifies signal routing within functions and between
groups of functions.

The following discussion explains how to accomplish
efficient logic placement in your LCA designs. First, it
provides some guidelines for system-level design
partitioning to help you determine what parts of your
system to implement in an LCA design. Then, it
explains how to analyze the data flow for your LCA
design. Finally, it describes CLB and 108 placement,
and gives some examples.

This discussion has the following organization.

5.3.1, Partition the System Design
5.3.2, Analyze the Data Flow
5.3.3, Place the Logic Blocks
5.3.4, Place the 1/0 Blocks
5.3.5, Examples
5.3.6, Modification Guidelines

You must partition your system-level design before you
can implement an LCA design. Partitioning is a two-part
process. First, you separate your design into external
and internal LCA functions; then you group the internal
LCA functions into related clusters.

The following are useful guidelines for determining
what part of your design to implement in an LCA device.

Implement standard LSI or VLSI functions with
appropriate components.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5·19
2

5.3.2 ANALYZE
THE DATA FLOW

S-20
-2-.

• Use an LCA device to implement non-standard
VLSI functions if a large portion or all of the LCA
device is available for that function.

Place required portions of standard VLSI
functions inside an LCA device.

Place random SSI and MSI functions inside an
LCA device. You can implement functions or sub­
functions that require four or fewer inputs, two or
fewer outputs, and a single storage element using
a single CLB.

Group all parts of a complex function inside one
LCA device, instead of placing them at remote
locations in the circuit; this simplifies
implementation and debugging.

As a rule, use MSI components to implement a
function with a large fan-out or fan-in and with few
logic levels. Decoders and multiplexers fall into
this category.

After determining which part of your system design to
place in an LCA design, you must analyze that part of
the design to determine optimal data flow. You analyze
the data flow of your design as follows.

To make placement and routing decisions, you
evaluate the sequential nature of the logic to be created
in the LCA device. Examine the data flow to determine
the best placement of required logic blocks, and to
determine the most effective signal routes.

In general, data processing in the LCA device flows
most naturally either from left to right or vertically; flow
up and flow down are virtually identical. To minimize
interconnection, arrange structures such as
counters in nearly square rectangles. Implement

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

registers in columns of CLBs to take advantage of the
direct interconnection between adjacent CLBs and the
common clocking in columns of CLBs.

If you must implement several independent
functions, you should position the function that
requires the most CLBs so that the data flows through it
from left to right. The exceptions are counters and shift
registers, which should be arranged in columns to share
common clocking.

To illustrate data flow analysis, consider the block
diagram below.

8-BIT DATA BUS
TO RAM

PROCESSOR DATA
BUS IN1ERFACE

ENCODE ..._ __ D!~~tr

ADDRESS/DATA
CONJ'ROL ARBITER AND

4---"----1.i DECODE 1------.. CONTROL LOGIC ----

12-BIT ADDRESS
LATCH

12-BIT ADDRESS BUS
TO RAM

Serializer Block Diagram

June 1988

This diagram shows a dual-ported memory interface
used as a high-speed serializer, which is a typical
application in video pixel processing or serial

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

S-22
-2-

communications systems. In the serializer, both the
serial-data output device and the microprocessor must
have access to the memory. In analyzing the data flow,
you can see a need for an 8-bit bidirectional path
between the memory and the microprocessor, as well
as an 8-bit path from the memory to the serializer. The
serializer requires an 8-bit parallel-to-serial data flow.
The interface generates the memory addresses
internally for the serialization process; external memory
addresses are supplied by the microprocessor. The
memory addresses are always outputs to the external
memory.

The data flow paths are summarized below.

8 bits of data from microprocessor to memory

8 bits of data from memory to microprocessor

8 bits of data from memory to serializer

• 12 bits of address from address generator to
memory

12 bits of address from microprocessor to memory

Clearly, the design requires a bidirectional data path
between the memory and the microprocessor. This
same path must supply data to the serializer. You can
view the serializer as a process perpendicular to the
data flow because it serializes parallel data. The memory
address path is wider than the data paths but it is
unidirectional and has a common connection only at the
output point. The following diagram shows a flow
analysis of this design example.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3.3 LOGIC
BLOCK
PLACEMENT

June 1988

PROCESSOR DATA
DATAIN TO RAM

PROCESSOR DATA
DATA OUT FROM RAM

SERIAL
DATA OUT

CON'IROL FROM
PROCESSOR

ADDRESS FROM
PROCESSOR

ADDRESS ADDRESS
GENERATOR TO RAM

Data Flow Analysis of Serializer

Based on this flow analysis, place the 8-bit data path
vertically to take advantage of direct connection in the
up and down directions. Then place the serializer,
which could be connected in a left-to-right or vertical
orientation, perpendicular to the vertical data path and
use the direct connection left-to-right capabilities.
Route the address path between CLBs, which are near
the edge of the device, and the adjacent 1/0 blocks,
that drive the address. This can be done because the
path is unidirectional. Use direct connection as much as
possible.

You should follow the general guidelines below to
determine the block placement and the routing
alternatives within the LCA device.

One of the most critical elements in achieving an
efficient design with an LCA device is the proper
placement of CLBs and IOBs. CLB placement is more
critical than 108 placement for two reasons.

it offers more degrees of freedom

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5·23
-2-

5.3.3.1 Placement
Guidelines

.. ,.

5.24
·-2-

the final CLB placement can dictate most of the
108 placement.

You can improve both the performance and the routing
of your design by proper placement. Good placement
relieves routing problems and generally results in good
initial performance, minimizing the placement and
routing iterations.

Note: Maximizing the use of the direct connections
between blocks is an im ortant oal.

The following guidelines should help you achieve
optimum placement efficiently.

1 . Consider the various functional elements in the
design, the shapes that each can take, and their
relative interconnection.

Try the placement of these functional blocks on a
printout of a blank LCA device to see how they
might fit together. The layout in the following
figure was obtained using this basic analysis
technique.

2. Examine the internal and external inputs and
outputs for each block of logic.

Place blocks with a high number of common
interconnections near each other.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

---------------------------. Interleaved Processor/
Memory Data Buses

8-Bit Parallel Load

Secondary
i---rData Register

t--.,...-1-Ram To Processor
Data Hold Register

Write
Strobe

Chip
Select 2

Processor Control
Bus Interface Logic

Chip
Select 1

Chip
SelectO

Manchester
Encoder

Interleaved Processor! 12-Bit Binary Address/Data Arbiter 12 x 2:1
RAM Addresses Address Counter and Control Logic Address MUX

Serializer Placement Plan

June 1988

When you consider the relative placements of individual
CLBs and IOBs, remember the following.

3. Use direct connections wherever possible.

4. Arrange related groups of logic blocks in
rectangular shapes, if possible.

5. Place CLBs and IOBs with the greatest number of
interconnections next to other blocks at the
perimeter of any rectangular shapes.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-25
-2-

5.3.3.2 Optimiza·
tion Guidelines

5·26
2

6. Arrange logic blocks in a long, thin shape only
where data flow through them to some other logic
that is perpendicular to the shape's long axis.

7. Place blocks of control logic or miscellaneous
functions that have minimal external 1/0 near the
center of the device.

8. Minimize the number of different clocks in the
design where possible, particularly those clocks
generated internally. A completely synchronous
design with a single clock that uses the global
clock buffer is ideal.

Many of these recommendations are similar to those
applied to the layout of printed circuit boards using
SSl/MSI devices. The examples following the
discussion of 110 Block placement, below, should help
illustrate effective placement.

The following guidelines will help you optimize the
placement of CLB designs.

1 . Use only necessary functions. Many designs use
only a portion of a standard-logic part and disable
the unused inputs. LCA-based designs
should never include unused Inputs of
standard-logic devices.

2. Use the function, not the equivalent logic
gates. Many standard-logic designs use multiple
gate levels. LCA-based designs are not subject to
the same logic-gate restrictions; you can create
any function of three or four variables, regardless
of complexity, with one CLB.

3. Share CLBs wherever possible. Two
independent functions can share one CLB. For
example, a CLB configured as a data latch uses

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3.4 1/0 BLOCK
PLACEMENT

June 1988

one input and one output. The remaining three
inputs, the remaining output, and the output of the
latch can be used to perform another function. A
data-latching function and a function that uses the
latched data can both be incorporated in one CLB,
which effectively expands the CLB's tour inputs to
five.

4. Group common intermediate outputs into
one function. It the same sub-function is
performed tor several inputs, CLBs are wasted.
Perform the function to generate the intermediate
output and use the single result in each place
required. A common technique is to divide the
design into functional pieces and look tor
commonality.

The placement of 1/0 blocks usually is dictated by the
placement of the CLBs connected to them. However,
you must consider 108 placement constraints because
they can have a significant impact on overall placement
and routing. General guidelines tor 1/0 block placement
are listed below.

1 . Locate IOBs adjacent to the CLBs that use the
most associated signals.

It 1/0 blocks are being used as buses, note the following
considerations.

2a. Locate data buses that are to be latched on a
single device edge to allow use of the flip-flops in
the 1/0 block, and to share the single 1/0 clock on
the edge of the device.

2b. Limit address buses to the top of the device it the
pins are used during configuration as the external
EPROM/ROM address lines.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5·27
-2-

3. Make unused IOBs data or shift registers.

Note: The IOBs must have available the 1/0 clock on
that ed e of the device.

When specifying 108 usage, use the following
guideline.

4. Note which pins have special functions during
configuration. In general, you should use pins that
are inputs during configuration as user inputs
during operation, while using pins that are outputs
during configuration only as user outputs during
operation. Careful specification generally
eliminates any possible contention between
configuration use and operation use.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3.5 EXAMPLES The following examples illustrate many of the placement
and optimization guidelines discussed above. This
sample design is the data serializer used previously for
data flow analysis. Individual elements of the design are
used to illustrate each topic. The first figure below
repeats the LCA layout of the data serializer. The figure
following it shows the data serializer block diagram.

INTERLEAVED PROCESSOR/MEMORY DATA

Interleaved Processor/RAM

Serializer Placement Plan

June 1988

~ Manchester
Encoder

Write
Strobe

Chip
Select 2

Processor Control
Bus Interface Logic

Chip
Select 1

Chip
SelectO

12-Bit Binary

XTL1

12 x 2:1
AddressMUX

XTL2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.29
-2-

EJI

5-30
2

PROCESSOR DATA
BUS INTERFACE

12-BIT ADDRESS

------ LATCH

Serializer Block Diagram

8-BITDATABUS
TO RAM

FNCX>DE

12-BIT ADDRESS BUS
TO RAM

SERIAL
DATA OUT

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3.5.1 Using
Macros, Example 1

12-Bit Address Counter

June 1988

Macros are one method of implementing individual
functional blocks. The address generator portion of the
serializer is shown below. This function is a 12-bit binary
counter that addresses the external RAM holding the
data to be serialized. In generating the counter, this
example uses macros, each of which represents three
bits of the counter.

The placement of the logic blocks in the macro
illustrates the advantages of rectangular placements.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5·31
2

5-32
-2-

Placement B:

The next figure shows the 3-bit macro CBBCR
(Counter, modulo 8, Binary sequence, Clock enable
and Reset synchronous controls) placed in two ways.
Placement A is linear. Placement Buses the
recommended placement from the LCA Macrocell
Library manual.

Placement A:
Local Routing Does Not
Block Other Routes

Routing Congestion Makes Other
Vertical Routes Difficult

3-Bit Counter Macro (8BCR) Placement Alternatives

Notice that in the linear placement, all of the signals
must travel the height of the macro to reach the terminal
count (CTC name) block. This placement congests the
routing in the columns to the left and right of the column
containing the macro. The rectangular placement
shown in B makes the routing more compact and
provides additional space for routing around the
module. Also, the square structure allows easier
placement in a dense design.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.3.5.2 The Long
and Thin Approach,
Example 2

5.3.5.3 Trade Off
Resources for
Performance,
Example 3

June 1988

An example of the long and thin approach is the data
shift register at the top of the data serializer shown in
discussion 5.3.5. The data comes in from the pins at
the top and flows into the blocks of the shift register. If
these blocks are placed in a traditional rectangular
shape, some bits would have to travel long distances to
reach the appropriate shift register block. With this
long, thin arrangement, the secondary data register in
the 8-row of CLBs can receive the data as it flows from
the pins through the shift register.

The address multiplexer also uses long, thin shapes,
with emphasis on the direction of the information flow.
The next figure shows how two different bits of the
multiplexer use the direct connection paths. Direct
connection can reduce the congestion in general
interconnection and improve placement. The initial B
placement has alternate 1/0 blocks connected either to
the memory or processor address bus. After examining
the direct connection, use it by modifying the position
of the processor bus interface 1/0 relative to the
multiplexer block. This provides an input to each block.
Along the bottom, place the processor blocks to the left
of the memory block of the same bit, thus taking
advantage of direct connection for input and output
paths.

In some cases, you may need to make placements that
trade off resource use for performance. In the following
example, the primary performance-limiting element is
the speed of the address generator, in particular the 12-
bit counter. The initial serializer placement plan shown
in discussion 5.3.5 uses macros to build the counter.
Macros let you create the function quickly but may not
provide optimum resource use or performance.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

Processor
Address Bit ---1--u...-

Processor --+-++-ILJ
Address

Bit In

RAM Address
Bit Out

Use of Direct Connection in Address MUX

Each 3-bit section of the counter can operate at high
speed because only a single logic function is required
between clock edges. However, additional logic block
delays inserted between each 3-bit stage reduce the
overall performance. To obtain higher performance,
you could generate the toggle condition of each bit in
the counter in the minimum number of logic levels. This
optimization requires approximately 18 blocks and
much more care in placement and routing.

5.3.6 MODIFICA·
TION GUIDELINES

If your initial placement of logic and 1/0 blocks fails to
produce a design you can readily route, you must
modify the placement. Some guidelines for doing this
are described below.

5-34
-2-

If congestion exists in the middle of the placement,
make the following changes.

1 . Move the blocks inside the congested area to the
outside and move the outside blocks inside. This
method of turning it Inside out normally
alleviates congestion, except in cases where the
original exterior blocks have a large number of

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

June 1988

connections to resources outside the area being
examined. The next figure shows a block of logic
that has interior congestion and an alternative
placement that relieves the congestion.

Congestion

Before Block Swapping

Congestion

After Block Swapping

Block Swapping to Relieve Congestion

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5·36
-2-

2. Spread 1/0 connections out, rather than clustering
them together. This often relieves congestion
near the edge of the device. Some 1/0-intensive
applications can benefit from interleaving related
1/0 blocks, which is done in the address bus area
of the next figure.

~OtJ:dd 0
A~:,:;:s;;---~ 0 ~ 0 ~ 0 ~ jj ~ 0

Direct ~1 "ti -"~:!}"'bll~"'bh"'b! Connection --=::::t--...-- c-- c--

Processor --+--l!!t-ILJ
Address

Bit In

RAM Address
Bit Out

Use of Direct Connection in Address MUX

3. Orient the majority of signals vertically to improve
the placement for groups of logic with horizontal
routing congestion. Remember, there are
effectively 9 vertical connections in each column
(five general-purpose, three long lines, and one
direct connection to the block above and below),
and only six horizontal connections in each row.

4. Move data register functions out of the logic block
areas and have unused 1/0 blocks perform that
function. This approach is particularly effective for
function control registers written with an external
data bus. You can use pins adjacent to the data
bus input pins for direct data input connections.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

June 1988

5.4 ROUTING

5.4.1 MANUAL
EDITING

April 1988

This discussion explains manual routing and describes
how to edit and pre-route your design's interconnection
manually using the LCA development system.

The LCA routing resources consist of general purpose
interconnections, long lines and direct connections
from a block to adjacent blocks, and special buffers.
You must balance the use of routing resources with the
partitioning and placement of the logic to generate a
complete design.

With some LCA designs, you must interact with the
routing process to perform any of the following tasks.

Relieve congestion to route a signal.

Force use of selected resources to meet specific
performance or use criteria.

Modify existing routes to tune delays for a
particular requirement.

Complete the routing on a dense, partially-routed
design.

EDITNET is the XACT design editor command used to
manually route signals or nets. EDITNET selectively
enables or disables any of the programmable Inter­
connection points (PIPs) on the device with the
following operations.

1 . Select the EDITNET command, either with the
mouse and cursor or type EDITNET from the
keyboard.

2. Specify the net you wish to manipulate manually.
The net must have the source and destination
connections on block pins defined.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

EJI

5-38
-2-

3. Move the cursor over a PIP for the desired path
and press the SELECT button on the mouse to
toggle the selected connection.

If the PIP was previously connected, pressing
SELECT disconnects it.

If it was not connected, pressing SELECT
connects it.

To modify the switching matrices located where the
general interconnection segments meet, you must

4. Select a pair of magic pins, which are connected to
the switch matrix.

The table below shows the allowed connections for the
various switching matrices. You make or break con­
nections by selecting the desired pair of pins.
Selecting the second pin breaks current connections or
connects unconnected pins.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

5-VERTICAL GENERAL INTERCONNECT

I 2

8 3

7 4 3

I 2

r 6 5
8 3 4

L 7 4 ~

[7
f 6 5

FROM
I 2 3 4 5 6 7 8

10
0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

Allowed Connections Through Switching Matrices

April 1988

I

2

3

4

10

2

3

4

FR OM
I

4-HORIZONTAL
GENFRAL
INTFRCONNECT

2 3 4

I =VALID CONNECTION
0 =!NV ALID CONNECI10N

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-40
2

The following figures show the sequence of operations
for editing connections in the switch matrices.

Point to First Pin [Magic 5] and Select

Point to Second Pin [Magic 4] and Select

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

April 1988

Result - Disconnect by Point to First Pin
[Magic 4) and Select

Point to Second Pin [Magic 7) and Select

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-41
-2-

5·42
2

Result

Sequence of Operation for Connecting Through Switch Matrices

When you have made all the connections,

5. Select the DONE option. The XACT system
automatically calculates the delays associated with
the interconnections and makes them available for
display. The delay from the source of a net to its
destination is shown whenever you position the
cursor at a destination pin;

When you use EDITNET to make a connection, this
error message may appear: connection shorts pin zz. v .
This indicates that with this connection you have
assigned a signal to a block pin that has not been
assigned to the net being routed. If you must connect
that pin to the net, assign it using the ADDPIN
command.

Although you cannot directly connect certain pairs of
switch matrix pins, you can use a combination of valid
connections to accomplish the desired routing. For
example, a connection from pin 1 to pin 4 is not valid;
however, you can accomplish it by connecting pin 1 to
pin 5, and pin 5 to pin 4. This routing connection

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

5.4.2 MANUAL
PRE-ROUTING

April 1988

causes an additional switch delay, yet may be essential
for routing in a congested area.

Some additional routing guidelines are given below.

Do not route through inputs and outputs.

Do seed the routing for a net before using auto­
routing.

Do place pre-route selected nets onto long
lines.

Do route high fanout items first or last.

Pre-routing, or seeding the routing, is
explained below.

An effective technique to improve the resource use of
the XACT router is to manually pre-route or seed the
routing of particular nets prior to using the router. This
seeding can take two forms, depending on the desired
effect.

Even if you want to use a particular long line resource
for a signal path, based on delays or general placement,
the router typically does not route the signal onto that
long line if an alternate path is available. One technique
is suggested below.

!. Force a signal onto a long line to pre-route it onto
the long line before you route the signal, as
described in the stages below.

1 a. If you have already entered the net, use
UNROUTE or CLEARPIN to deconfigure the
routing for each pin on the net.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-43
-2-

5-44
2

1 b. If you have not entered the net, disable the
automatic router with the AUTOROUTE·OFF
command on the PROFILE menu and define
the net with the ADDNET command. This
avoids the delays caused by routing each pin
and the necessity to unroute them after they
are entered.

2. Use EDITNET to choose the net to route on
the long line and turn the appropriate
switches on or off to get the signal from its
source block onto the long line.

3. End the EDITNET command by selecting
DONE. A warning message indicates that
the net is not routed.

4. Select the ROUTE command from the NET
menu, and when prompted, select the net
you manually routed onto the long line. The
router then completes routing that net.

The technique above is illustrated in the two figures
below. In some cases, where the destination pins are
not directly accessible from the long line, the router still
does not use the selected long line. In these cases you
may need to use both techniques I, above, and II,
below, to force the use of the long line.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

Output DB.X Routed via General Interconnection

After UNROUTE Command; EDITNET has Forced Output onto Long Line

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

5·46
2

Result After Route of Signal, Using Long Line

In some cases, you add pins to a net throughout the
course of a design. If you enable the XACT interactive
router throughout this process, each pin is routed as
you add it. The resulting net routing can become
contorted and interwoven because each pin is routed
independently. Extreme cases can have loops in the
interconnection, or very long delays, as the source
block becomes more heavily loaded and the routing
more degenerate. Working with the automatic router
enabled can also cause severe congestion in some
areas, as the routing resources are unnecessarily
consumed by the multiple routes. To help relieve this
and similar multi-destination problems, you should use
the following guidelines.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

April 1988

II. Enter the destinations in a sequence that
progresses from the source location to the farthest
destination. Remember, the router completes the
routing from source to destinations in the order
specified.

To avoid the necessity of entering destinations in
location-specific sequence for large nets, you can do
the following.

1 . Enter the net into the design with the router
disabled, or unroute the net as described in
1 a, previously.

When you finish entering all of the destinations for the
high fanout net, do the following.

2. Use EDITNET to manually route to the
destination most distant from the source. If
the routing to this pin does not use a long
line, you can use ROUTEPIN to accomplish
the initial routing. ROUTEPIN is described
under Useful Routing Functions,
5.4.3.3.

3. Use the ROUTE command to let the router
complete routing of the other destinations in
the net.

The following figure shows the use of this
technique for a net with many destinations.
Another method to avoid entering destinations in
the location-specific sequence is to use a text
editor to modify the sequence of the destination
pin specifications.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

Routing Without Seeding

Routing After .Seeding

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

Illegal Connection Through
Input Line. Destination GD.A

Illegal Output Connection.
Destination GC.A is Not
Connected to Source HC.X is Not Connected to Source HB.X

5.4.3 ROUTING
GUIDELINES AND
FUNCTIONS

5.4.3.1 Inputs and
Outputs

April 1988

Following are some guidelines for routing inputs,
outputs, and high-fanout nets, and a description of the
XACT routing functions that are useful for design
optimization.

Although the inputs and outputs of the various blocks
are shown as lines with multiple connections on them,
you cannot use them as connections between parallel
interconnection segments. Each input or output
connection to a pin of a block is unidirectional, and only
one connection per pin is allowed.

I Tip: You should not route through inputs and outputs. I

The EDITNET command lets you turn on multiple
programmable connections to an input; however, only

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-49
-2-

5.50
-2-

the connection from the driving interconnection
segment to the input pin is valid. Any additional
connection points that are turned on do not connect to
the driving segment, although they appear to be
connected. If you execute the XACT design rule check
command, DRC, it flags nets that have been routed in
this way as unrouted and does not calculate their
attendant delays. The following figure shows an
improperly connected net routed through an input
switch path.

Illegal Connection Through
Input Line. Destination GD.A

Illegal Output Connection.
Destination GC.A is not

Connected to Source HC.X is not Connected to Source HB.X

Illegal Connections

Outputs of blocks can drive multiple interconnection
segments, although this usually is not necessary. You
can not use the output path switches to interconnect a
net that is not driven by that block. The figure above
also shows an improperly connected net using the
output path switches. In both the input and output
cases, you can only make these connections with the
EDITNET command. To avoid these improper

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

5.4.3.2 High
Fanout Nets

April 1988

connections, exercise caution when using this
command.

When you place and route a design involving high
fanout nets, you often encounter congestion problems
when entering it with the auto router enabled. In these
instances, you probably must use alternate placements
to complete a good design. You should follow this
sequence of steps to route high-fanout nets.

1 . Plan an initial placement on a blank LCA printout
using the placement guidelines discussed above.
Pay particular attention to the appropriate use of
direct connection.

2. Start entering the design with the automatic router
enabled. However, enter only the destination
pins when you enter each high fanout net. Leave B
the source undefined, even though you know
what it is. This lets XACT route more quickly, and
results in a less cluttered design.

When you finish entering all of the regular nets, perform
the following tasks.

3. Look at the congested areas. You can easily
identify them by counting the used vertical and
horizontal general interconnection segments in
each column/row. A printout of the complete
design, with the option SHOW USED enabled, can
be helpful.

4. Save the design as a backup in case subsequent
modifications fail to produce anything useful.

5. Generate a new placement by modifying the
congested areas identified above. Use
MOVEBLK and SWAPBLK to move the blocks to
new locations. The criterion for the new placement

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-51
-2-

5.4.3.3 Useful
Routing Functions

SWAPSIG

5-52
2.

should be to eliminate as much congestion as
possible.

6. Make the new placement with the automatic router
disabled.

7. Route the high fanout net or nets using
techniques 1 and 2 above. You should be able to
route the high fanout nets optimally with this
technique. View the design in either large or
medium scale so that you can see as many blocks
as necessary to find out where to locate the
routing. Also highlight the high fanout net to show
stubs at each of the required connections. This
lets you see their physical relationships better.

8. Save the intermediate results as a backup.

9. Route all the remaining nets with the ROUTE*
command, or route selected nets individually with
the ROUTE command.

This iterative technique of manually routing selected
nets should minimize routing problems and improve
device performance. It can be applied equally well to
nets with performance constraints and to those with
fanout constraints.

There are several other useful routing-related functions
you can use to optimize designs. These are SWAPSIG,
CLEARPIN, and ROUTEPIN, all of which are discussed
below.

The SWAPSIG command, located in the PIN menu, is
useful when you optimize the routing of a signal to a
specific block. The SWAPSIG command logically
interchanges the net connections of the block pins,
and simultaneously changes the block function to
match the new pin assignment of the signals.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

A. Connection From CC to CD
Should Use Direct Connect

April 1988

In many cases, signals are better routed to a specific
block pin, in spite of the general interchangeability of
the pins. The following figure shows some typical signal
routes for which you can modify the choice of block pins
to relieve routing congestion.

Note: You should always use SWAPSIG and not
SWAPPIN when working with pins on a single block,
because it modifies the internal function to match the
pin swapping.

SWAPPIN is valuable for moving a net connection from
one block to another.

A.

B. Result After SWAPSIG
of CD.A and CD.B

A net routed with a general interconnection.
SWAPSIG easily lets you interchange the pin
assignment of the destination block to use the
direct connection. This frees the general segment
for use in other routing.

You can also use the SWAPSIG command on
block outputs to swap them for direct connection,
or to drive a specific adjacent general
interconnection segment. In the case of outputs,
X and Y are completely interchangeable internally

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.53
2

CLEAR PIN

so you can select and assign them entirely on their
external connection usage.

B. Two pins that have been swapped using
SWAPSIG, to provide more efficient use of the
general interconnection. The initial connection to
pin C is from a signal running in the adjacent
horizontal channel; Pin Dis from an adjacent
vertical channel. When you swap the signals, the
vertically oriented signal routes directly to C and
the horizontal signal routes to D.

Note: The internal constraints on the input pins
to lo ic blocks can limit some uses of SWAPSIG.

These constraints are flagged when the command
is executed.

The CLEARPIN command lets you deconfigure the
interconnection for a particular pin on a net. It also
removes any spurious interconnection segments from
the net.

CLEARPIN, located in the PIN menu, is useful when
attempting to relieve congestion. It lets you return the
interconnection from a single pin on a net to the
available pool of routing resources. When you route
critical or high fanout nets, you can use the freed
interconnection for a particular route. Then you can
route the unrouted pin either manually or with the
ROUTEPIN command.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

ROUTEPIN and
ROUTE

When you manipulate the routing for part of a design,
you often leave pins unrouted. You can route these
pins with the ROUTEPIN command for the pin;
however, ROUTEPIN forces you to select all pins to be
routed. ROUTE, on the other hand, routes all pins
assigned to a selected net. The figure below shows
how ROUTE can be more efficient if you must route a
large number of pins. ROUTEPIN operates faster than
ROUTE for a single pin. ROUTE checks each pin on
the net and operates on a single net at a time.

Querynet: PNRFG25B.LCA, XACT 1.3

netl DD.X

net2 DE.X

net3 ED.X

***DE.A
*** CF.D
*** CG.D
*** CE.D
*** CF.B
*** EF.A
*** EE.B
*** EF.B
*** DG.C

This report of unrouted nets indicates 9 unrouted pins.
With ROUTEPIN this requires I command selection and 9 location selections.
With ROUTE this requires I command selection and 3 location selections.

ROUTE and ROUTEPIN Comparison

April 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.55
-2-

5.5 TIMING
ANALYSIS,
DELAY
CALCULATOR

5.5.1 CLB AND
IOB DELAYS

5.5.2 INTERCON·
NECTION DELAYS

5·56
2

After you complete the placement and routing of your
LCA design, you analyze the timing of the design
against the original design specifications. This
discussion describes how to analyze performance.

Note: You can also perform timing simulation, as
described in Cha ter 2.

The LCA development system includes a unique
interactive timing-delay calculator that shows you the
worst-case delays associated with a design without
having to translate and simulate the design. The delay
calculator is useful for selecting placement-and-routing
alternatives when tuning a design for maximum
performance. The delay calculator can extract delay
information for the CLBs, IOBs, and the interconnection
paths, as follows.

CLB and IOB delays are perceived as fixed worst-case
values based on the particular configuration of the block
by the delay calculator. These delays are characterized
from operating the devices at worst-case conditions and
are typically constant for a particular speed grade.

Interconnection delays are more complex. Each
interconnection segment used in a signal path
represents a distributed R/C delay. Inputs to each CLB
or IOB have a negligible capacitance when compared to
the capacitance of the interconnection segments.

To correctly calculate the worst-case delay for
interconnection, the delay calculator accounts for the
accumulation of the interconnection delays. Also, each
transistor switch represents a non-linear impedance that
modifies the drive characteristics as viewed by
downstream interconnection segments. Passing
through several interconnection segments and

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

CLB

DELAY:
INCREMENTAL

THEN CUMULATIVE DELAY= 3RC

Interconnection Delay Example

April 1988

switches degrades the quality of LCA signals. In the
general purpose interconnection area, the LCA device
includes bidirectional buffers that re-power the signals
after they pass through several segments. Each buffer
also represents a delay, yet the buffer restores the initial
quality. These buffer delays are accounted for in the
overall delay calculation.

The next figure summarizes these delays and the
elements included in the model for interconnection
delay calculations.

5RC 6RC 6RC+BUFFER

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.59
-2-

The delay calculator considers all of these elements
when calculating interconnection delays. In XACT,
when you position the cursor on a destination pin for a
net, the worst-case delay from the net's source to that
destination is shown on the information line, as shown
below. As you position the cursor on each destination,
the appropriate delay is shown.

Net Pin Blk Config Screen Misc Profile

09'0 9J

0
9J 9J

9J 0 0 :iI
9J 9J

:ff
9J

0 0 :ff
=II

9J 9J 9J :{I
Pin: AD.D Net: netl9 lSns

Cmd:

Delay From Source to Destination
Pointed to by Cursor

Delay Calculator Result On-Screen

The delay calculator calculates the delays on a net-by­
net basis because the complete net configuration must
be considered to determine the delay. As you define a
net, the net delay to each point is not available until you
specify the source and all of the destinations. When
you select the DONE option in the net specification
process, interconnection delays are calculated if the net
is already routed; this is typical if the automatic router is
enabled. For pins not routed, a ? is shown in the delay
field.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

April 1988

When you perform manual routing with EDITNET or
other techniques, interconnection delays are not
calculated until you select the DONE option and
connect a destination pin to the source pin. If you
subsequently modify a net by adding other pins or
interconnections, a new net delay is calculated, and the
new timing information becomes available.

You can obtain interconnection delay information
interactively, on the information line of the display. You
can also obtain delay information in text reports, either
to the screen or in printed form. The following figure
shows a sample delay report printed after selecting
REPORT DELAY and specifying the desired FROM and
TO options. You can also get delay information, on­
screen or printed, with the QUERYNET command.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.59
-2-

From: BLK CB (CB.X)
Thru: NET netl2 (CB.X
Thru: BLK BD (BD.D
Thru: NET netl5 (BD.X

To: BLK CD (CD.A

From: BLK CB (CB.X
Thru: NET netl2 (CB.X

To: BLK CD (CD.B

From: BLK CB (CB.X)
Thru: NET netl2 (CB.X

To: BLK CD (CE.A)

From: BLK BC (BC.X)
Thru: NET netl4 (BC.X)

To: BLK CE (CE.BJ

From: BLK CB (CB.X)
Thru: NET netl2 (CB.X
Thru: BLK BD (BD.D
Thru: NET netl5 (BD.S

To: BLK CE (CE.E)

From: BLK AB (AE.Y)
Thru: NET netl6 (AE.Y

To: BLK CE (CE.DJ

From: BLK AB (AE.Y)
Thru: NET net16 (AE.Y

To: BLK QI (CF.B)

From: BLK CD (CLOCK
Thru: NET netl7 (CK.S
Thru: BLK BE (BE.D
Thru: NET netl8 (BE.Y

To: BLK BF (BF.B

From: BLK CB (CB.X)
Thru: NET netl2 (CB.X
Thru: BLK BD (BD.D
Thru: NET netl5 (BD.X

To: BLK BF (BF.CJ

From: BLK cc (CC,X)
Thru: NET netl3 (CC.X

To: BLK AD (AD.C)

to BOD)
to BD.X)
to CD.A)
to SETUP)

:
to CD.B) :
to SETUP) :

:
to CE.A) :

:

:
to CE.B) :

:

:
to BOD) :
to BD.X) :
to CE.C) :

:

:
to CE.D) :

:

:
to CE.B) :

:

to CD.X) :
to BE.D) :
to BE.Y) :
to BF.B) :
to SETUP) :

:
to BOD) :
to BD.X) :
to BF.C) :

:

:
to AD.C) :

:

Ons (Ons)
20ns (20ns)
35ns (55 ns)
Ons (55 ns)

22ns (77 ns)

Ons (Ons)
18ns (18 ns)
22ns (40ns)

Ons (Ons)
22ns (22ns)
Ons (22ns)

Ons (Ons)
15ns (15ns)
Ons (15 ns)

Ons (Ons)
20ns (20ns)
35ns (55ns)
8ns (63ns)
Ons (63 ns)

Ons (Ons)
33ns (33ns)
Ons (33 ns)

Ons (Ons)
23ns (23 ns)
Ons (23 ns)

35ns (35 ns)
6ns (41 ns)

35ns (76ns)
Ons (76 ns)

22ns (98 ns)

Ons(o~
20ns (20ns)
35ns (55 ns)
llns (66ns)
Ons (66ns)

Ons (Ons)
9ns (9ns)
Ons (9ns)

~ Womt-Case
Clock-To-Clock
Path= 10 MHz Clock

Printed Output from Delay Calculator

5.5.3 CLOCKED
SYSTEM DELAYS

5-60
-2-

In a clocked system, delay calculations are made from
clock-edge to clock-edge. Because it has no
knowledge of the dynamic operation of the system, the
delay calculator can only consider the elements that are
connected logically from one clocked device, latch or
flip-flop, to the next clocked device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April1988

5.5.4 SPEED
GRADE DELAYS

April 1988

Note: You must perform timing simulation to
investigate the operational constraints of the clocked
system. However, the delay calculator does calculate
the complete clock-edge to clock-edge path, including
the clock-to-output delay and the required setup time.
With these complete delay paths, you can easily obtain
the worst-case clock frequency: worst-case frequency =
1/(clock-to-clock delay). In the figure above, the worst­
case clock-to-clock delay for Net 17 and Net 18 is
calculated as 98 ns, so you could clock this circuit at 1 O
MHz, worst-case.

The LCA family offers multiple speed grades for
different system requirements. The delay calculator can
calculate all delays for a design, given different speed
grades.

You select the speed grade with the SPEED command
from the MISC menu in XACT and the currently available
speed grades for the selected device display. You
select the appropriate one. The delay calculator then
re-computes and makes available all delays for that
speed grade of device, either for display on the screen
or in the report file available for the design.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-61
-2-

5.5.5 SIGNAL
DEGRADATION

5-62
2

Because of the nature of the pass transistors used to
interconnect the various signal-path elements, the rise­
and-fall times and general signal quality are degraded by
each switch element. When taken together over a long
signal path, the change in rise-and-fall times and in the
signal quality can significantly degrade the predictability
of the delay for a particular path. The bidirectional
buffers used to re-power the signals in the general
interconnection normally alleviate most of these
conditions, if they are on the signal path. The
combination of manual editing and the router's ability to
route signals with remaining resources can create some
paths with significant signal degradation.

The delay calculator flags signal paths with degraded
signals with a tilde(-) preceding the calculated delay.
These degenerate nets can be the result of one or
more of the following factors.

A. A general interconnection segment and its
associated signal drive a long line. Long lines have
relatively high capacitance. This affects the signal
quality, particularly when driven by a general
interconnection segment and not the direct
source of a signal.

B. A long line consists of one or more general
interconnection segments. In general, long lines
greatly decrease the drive capability of the signal
source. When driving general interconnection
segments, the combination of interconnection
switch impedance and long line becomes a
problem.

Degradation of signal quality affects the signal primarily
in differences between rise and fall times. As the delay
number increases, the difference between rising-signal
delay and falling-signal delay also increases. For

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

April 1988

example, consider a delay calculation of -so. This
indicates the following.

A. Falling signals, 1 to 0 transitions, occur more
rapidly than indicated. Here, the falling transition
can propagate in 35 to 40 ns, worst case.

B. Rising signals, Oto 1 transitions, occur in more time
than indicated. For this case, the rising transitions
can require 70 ns or more, worst-case.

The percent variation between rising and falling
transitions in the degenerate cases is difficult to predict,
but it generally is in the range of 20 to 40% below or
above the indicated value.

Caution: Be careful with degenerate nets. If these
signals are timing critical, it is highly recommended that
you reroute them to eliminate the tilde indication. In
some cases, for example, static control, the actual
del~s are not critical and _you can safe.!Y.Jg_nore the tilde.

In other cases, you can compensate for the difference
between the rise and fall by appropriate logic sense
selection. For example, a relatively common high­
fanout signal used in counter applications is a
synchronous RESET generated by a terminal count
detection. If the signal sense is defined as HIGH-true,
or reset when 1, the critical timing edge is the rising
edge.

Note: Analysis indicates that the rising edge is slower
than the falling edge, so if you redefine the signal to be
LOW-true, or reset on 0, you can take advantage of the
uicker ro a ation time for fallin si nal transitions.

This change can improve the overall capability of the
system by eliminating potential metastability or partial
counter-reset problems that might otherwise occur.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5-83
-2-

5.5.5.1 Analysis of
Intermediate
Timing

In a circuit with a long path, it is helpful to measure or
predict the intermediate delays when considering
placement and routing alternatives. One method of
seeing the delay calculator results, or measuring delay
differences along a path, is through temporary 110
block connections. The following figure shows two
110 blocks temporarily defined along the path. You can
use the delay calculator to see the delay to each block;
then use the differences to analyze the results of
routing changes or to determine timing-skew related
issues. Using the XACTOR In-Circuit Emulator you can
temporarily define these 1/0 blocks as outputs and
measure the timing differences directly.

110 Block to Allow Intermediate Delay Calculation or Measurement

Parallel
Long
Lines

Intermediate
l!OBlock

5-64
2

Parallel Long Line to Provide Higher Fanout Signal Source

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

5.5.5.2 Examples The example below shows a potential signal
degradation problem.

Net Pin Blk Contig Screen Misc

Net: net19

A Signal Route With Tilde Delay

Net Pin Blk Contig Screen Misc

Net: net19

B Signal Re-Routed to Eliminate Tilde Delay

Routing with Tilde on Delay Value

April 1988

-35ns

28ns

Delay for Degraded ...
Signal .:;.-

Corrected
Delay

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

A. An example with a potential signal degradation
problem, with tilde delay, because the net is
routed through several general interconnection
segments prior to driving a long line. The timing
delay calculator number in the lower-right corner of
the screen is -35 ns.

B. A routing modification that decreases the delay to
28 ns, and the tilde delay is no longer indicated.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

Static
Control

Input

April 1988

The following figure shows an example where you can
safely ignore the tilde indication. The net shown is a
static input used by several blocks for function
selection. In this case, the delay and signal quality are
not of concern because the signal does not change, as
might be the case for switch-type inputs or other
interface signals generated by the user. The only
concern with long delay signals of this type is that
blocks using that signal must latch correctly after the
transition.

Long Delay Can Be Ignored Because the Dynamic
Performance of the Signal is Not of Interest

Signal with Long Delay to Final Destination

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

5.6 SUMMARY

5-88
-2-

Appropriate use of the LCA development system
capabilities gives you powerful control over all aspects
of your LCA design. You can often enter simple
designs directly, without paying significant attention to
the details of placement and routing. Only when you
must implement complex designs, or designs with
stringent performance constraints, do the issues of
placement and routing require special attention. The
techniques discussed here should guide you in
implementing a complex design with minimum effort.

Future products for designing with LCA devices will
offer improved methods of design entry and increased
isolation from the implementation details of the LCA
device. Regardless of the sophistication of these
development systems, there will continue to be a
requirement for interactive design optimization, either
for performance or resource use. The LCA
development system fulfills that requirement by
combining simplicity of operation with quick and
efficient design optimization capabilities.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5

April 1988

CHAPTER 6

CONFIGURING THE LCA DEVICE

CONFIGURING THE LCA DEVICE ... 1
6.1 LCA CONFIGURATION OVERVIEW ... 2

6.1.1 CONFIGURATION BIT STREAM .. 2
6.1.2 CONFIGURATION PROCESS ... 2

6.2 CONFIGURATION MODES .. 6
6.2.1 CONSIDERATIONS .. ?

6.2.1.1 External versus Automatic Configuration Control 8 El
6.2.1.2 Configuration Time .. 13
6.2.1.3 Configuring Multiple LCA Devices ... 14

6.2.2 CONFIGURATION PIN FUNCTIONS ... 14
6.2.2.1 M2, M1, and M0 ... 15
6.2.2.2 DINandDOUT ... 16
6.2.2.3 HOC and -LDC .. 16
6.2.2.4 CCLK .. 16
6.2.2.5 -RCLK .. 17
6.2.2.6 -RESET ... 17
6.2.2.7 D/-P ... 17
6.2.2.8 -PWRDWN ... 18

6.2.3 SLAVE MODE .. 19
6.2.4 PERIPHERAL MODE .. 22
6.2.5 MASTER MODES ... 27

6.3 CONFIGURE MULTIPLE LCA DEVICES ... 34
6.3.1 DAISY-CHAIN CONFIGURATION ... 34
6.3.2 PARALLEL CONFIGURATION .. 36

6.4 ASSIGNING MULTIPLE-FUNCTION ... 38
6.4.1 POTENTIAL 1/0 CONFLICTS ... 38
6.4.2 UNUSED 110 PINS40

6.5 CONFIGURATION DATA ... 42
6.5.1 CONFIGURATION FILE FORMAT .. 44

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6.5.2 A SAMPLE EQUIVALENT CONFIGURATION FILE ... 46
6.5.3 CONFIGURATION LOADING .. .48

6.6 READ-BACK CONFIGURATION DATA ... 49

6-ii
-2-

6.6.1 READ-BACK PROCESS ... 49
6.6.2 READ-BACK DATA CONTENTS ... 50

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6

June 1988

CONFIGURING THE LCA
DEVICE

This chapter discusses considerations tor when you
configure LCA devices and read back the configuration
data. The configuration techniques covered here apply
to the 2064 48-pin and 68-pin packages, and to the
2018 48-pin, 68-pin, and 84-pin packages.

The overview, 6.1, introduces LCA configuration.

The discussion on configuration modes, 6.2,
explains design considerations, pin functions, and ...
the Slave, Peripheral, and Master modes. ~

The discussion on configuring multiple LCA
devices, 6.3, describes how to configure multiple
devices in a daisy-chain or parallel configuration.

The discussion on assigning multiple-function 1/0
pins, 6.4, explains how to handle potential 1/0
conflicts and unused pins.

The discussion on the configuration data, 6.5,
introduces the content and format of the LCA
configuration bit stream.

The discussion on reading back configuration
data, 6.6, explains how to read back an LCA
configuration bit stream for verification.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-1
--2-

6.1 LCA
CON FIGURA·
TION OVERVIEW

6.1.1 CONFIGUR·
ATION BIT STREAM

6.1.2 CONFIGUR·
ATION PROCESS

6-2
2

When designing an LCA device, you must first identify
those parts of the system-level design that can be
implemented in one or more devices. Then you
partition these elements into clusters of basic logic
functions, composed of CLBs and IOBs. Next, you
enter, place, and route the interconnection networks
for each device. Finally, for each device you compile a
configuration bit stream that defines its function.

You design the configuration using the LCA develop­
ment system design editor, EDITLCA. You use the bit­
stream generator, MAKEBITS, to convert the LCA
design into a configuration bit-stream file. Then, you
use the download cable with the MAKEBITS software to
transfer the configuration bit stream into an LCA device
in the target system.

You can verity the bit stream, described later, using the
READBACK command. The bit stream determines how
the LCA device functions. Discussion 6.5, Configura­
tion Data, details the configuration format.

You verify your LCA design(s) in any of three ways. The
first method is the only one that does not include a
configuration process.

Use a timing simulator to verify the logic and timing
of the LCA design.

Use the MAKEBITS software to generate a
configuration bit stream and use the download
cable to transfer it into the LCA device in the target
system.

Use the MAKEBITS software to generate a
configuration bit stream and use the XACTOR
software for in-circuit emulation.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

An LCA device is best described in terms of three
distinct states.

Initialization

Configuration

User-operation

After a power-up delay, the LCA device powers up in
the initialization state. In this state, its internal
configuration memory is cleared, and all internal user­
definable logic is held in a quiescent, or idle, state.
After initialization, the LCA device checks the input
logic level at the -RESET pin. When a valid logic-1 level
is detected at the pin, the device enters the configu­
ration state.

During the configuration state, the LCA device is
ready to load the configuration data. The configuration
data is a serial bit-stream format. The configuration data
loads as though the device is a shift register.

The configuration mode, which is the method used
for loading the configuration data, depends on the logic
levels of the Mode Select pins: M2, M1, and MO.
These pins and their functions are explained in
discussion 6.2.2.1. Although you can use any of the
modes to enter the configuration data, the content and
format of the bit stream are fixed for a given logic
application.

The configuration bit stream contains a preamble code
plus a bit field that indicates its length. When the LCA
device loads the preamble code followed by the correct
number of bits, as indicated by the length count, the
D/-P open-drain output pin goes HIGH to indicate that
configuration is complete.

Note: After the configuration process begins, it must
either terminate, or abort and restart. Partial configur­
ation is not_Q_ossible.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6·3
2

POWER APPLIED

-RESET

ASSERTED

After configuration, the LCA device enters the user·
operation state and performs the logic functions
specified in the design. During operation, however,
you can return to the initialization state and repeat the
configuration process. A state diagram illustrating this
sequence is shown below.

Note: You can disable the reconfiguration capability by
setting the appropriate bit in the configuration bit
stream. If you disable the reconfiguration capability, you
can change the LCA device's configuration only by
removin and rea I in ower to it.

-RESET

CP/-PLOW
TRANsmoN

(REPROGRAMMABILITY
OPTION DISABLED)

D/-PWW 1RANSmON
(REPROGRAMMABILITY OPTION ENABLE)

LCA Configuration Diagram

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

Note: During the initialization and configuration states,
all user 1/0 pins, except those used by the configuration
process, have passive internal pull-up resistors that
cause those pins to go HIGH when not externally
overdriven.

Upon entering the user-operation state, all user 1/0 pins
simultaneously become functional, according to your
specified pin definitions.

The following discussion explains the five possible
modes for loading the configuration information into the
LCA device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6.2 CONFIGUR·
ATION MODES

6-6
2

The LCA device supports five configuration modes,
including three Master modes, for loading LCA
programming information.

1 . Slave mode
2. Peripheral mode
3. Master-Serial mode
4. Master Parallel-Low mode
5. Master Parallel-High mode

You select a configuration mode by connecting the
dedicated Mode Select pins, MO and M1, and the
programmable Mode Select pin, M2, to either a logic-1
or a logic-0 signal, as indicated in the following table.

Conf!_g_uration Mode Selection
Mode Select Pins M2 M1 MO
Master-Serial mode 0 0 0
Master Parallel-Low mode 1 0 0
Master Parallel High mode 1 1 0
Peripheral mode 1 0 1
Slave mode 1 1 1

Note: The current mode selections do not use all
possible combinations of M1, M2, and M3, which leaves
room for future ex_Q_ansion of conf!g_uration o_mions.

The following discussions describe available modes.

Discussion 6.2.1 outlines considerations that
impact selecting a configuration mode.

Discussion 6.2.2 identifies the special LCA pin
functions during the configuration process.

Discussion 6.2.3 explains the Slave mode.

Discussion 6.2.4 explains Peripheral mode.

Discussion 6.2.5 explains Master modes.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6.2.1 CONSIDER·
ATIONS

June 1988

Each configuration mode has different design
considerations and variations in device pin usage
during configuration. The choice of a configuration
mode depends on your specific system application.

The following are some questions you should ask
before choosing a configuration mode.

1 . Is control of the configuration process automatic or
controlled externally?

If the configuration process is externally
controlled, that is in Slave or Peripheral
mode, is it controlled by software or OMA
hardware?

If the configuration process is automatic, that
is in Master mode, is the configuration

a. shared with the microprocessor code?
b. stored in a separate byte-wide PROM?
b. stored in a serial memory device?

2. How much time is available for configuration?

3. For an application using multiple LCA devices,
should they be configured serially as a daisy chain,
or in parallel?

4. What are the 1/0 pin requirements?

For example, are the 1/0 pins used by the target
application also involved in the configuration? If
so, can you assign pins to minimize or eliminate
external isolation?

These considerations are discussed in more detail
below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-7
-2-

6.2.1.1 External
versus Automatic
Configuration
Control

6-8
2

The externally-controlled case requires that you
use either Slave mode or Peripheral mode to load
the configuration data into the LCA device serially. You
can load the configuration data as part of the system's
bootup process or you can load it on the fly.

This externally-controlled method is more flexible than
automatic configuration because the configuration
bit stream can be read from a PROM, disk, or
any other source accessible by a processor.
However, this method may take longer to complete than
the automatic method.

Automatic configuration uses one of the three
Master modes. With Master mode configuration, the
LCA device automatically accesses (sends out to) an
external PROM for the configuration bit stream. Then
the LCA device configures itself using Master mode in
12 to 24 ms for the 2064, and 17 to 35 ms for the 2018.

The following table compares the configuration mode
characteristics.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

Com_p_arison of Conf!_g_uration Modes
Configuration Mode Slave Peripheral Master Parallel-Low Master-Serial

Mode Mode Master Parallel-High Mode
Modes

Mode Selection Code 1 :1 :1 1 :0:1 0:0:1 (Master-Low) 0:0:0
(M2:M1:MO) 0:1 :1 (Master-High)

Configuration Data Bit-serial Bit-serial Byte-parallel Bit-serial

Automatic Loading No No Yes Yes

Programming Source User Logic CPU Data External External
or Another Bus Byte wide Serial
LCA (Note 1) Memory Memory

Number of User 1/0 2 6 25 3
Pins Required

Configuration Time Source- Source- 12-24 ms (2064) 12-24 ms (2064)
dependent dependent 17-34 ms (2018) 17-34 ms (2018)
(Note 2) (Note 2) (Note 3) (Note 3)

Notes: 1. Slave mode is also used by XACTOR for In-Circuit Emulation.
2.
3.

June 1988

The minimum time in any case is approximately 12 ms for the 2064 and 17 ms for the 2018.
This parameter depends on internal timing circuits and is manufacturing-process dependent.
Therefore, it m~ v~ from device to device within the limits shown.

In all configuration modes, some user 110 pins
are temporarily assigned configuration-
related functions. The number of such pins ranges
from five in Slave mode to 25 in Master mode. Once
configuration is complete, these pins become general
purpose 1/0 pins.

However, it is your responsibility to guarantee that
no signal conflicts occur between the pin's use in the
configuration state and its use in the user-operation
state. Signal conflicts on these pins can create
undesired side effects, such as disturbing the
configuration process or other external logic. With a
little care, however, you should not experience
problems using these dual-function 1/0 pins. Although

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-10
-2-

signal conflicts may be resolved by using external
buffers for isolation, careful selection of the pinout
assignment can usually eliminate the need for isolation.
The five figures below show the LCA device's pin
usage for each configuration mode.

MICRO
COMPUTER

J,o
PORT

RESET

Slave Mode

ADDRESS DATA
BUS BUS

ADDRESS
DECODE

LOGIC

Peripheral Mode

00
DIN

WRT

+5V

MO MIPWRDN

LCA

CCLK

DOUT

M2

HOC

-{DC

LCA
DOUT

M2

cso HOC

-LDC

~{ CS!

CS2

D/-P

RESET

+5V

GENERAL
PURPOSE
USERl/O

GENERAL
PURPOSE
USERl/O

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

Vee

l OOUT CCLK

HIX
GENERAL
PURPOSE

}t~LCA
USERl/O

PINS

RESET

DIN DATA
M2 -RCLK CLK SERIAL

CE MEMORY

-LDC OE

Master-Serial Mode

+SV

Vee

t
MO Ml PWRDWN

OOUT CCLK

M2 AIS
Al4

HIX Al3 EPROM

GENERAL Al2 (2KXS

PURPOSE
-LDC All OR LARGER)

USERl/O -RCLK AIO

PINS A9

}~lCA
AS AIO
A7 A9
A6 AS
AS A7
A4 A6 D7

RESET A3 AS D6
A2 A4 DS

D7 Al A3 D4
D6 AO A2 D3
D5 Al D2
D4 AO DI
D3 OE DO
DZ CE
DI
DO

D/-P

DATA BUS

Master Parallel-Low Mode

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6·12
2

Vex

+5V

Vex

t
Ml PWRDWN

OOUT CCLK

M2 A15
A14

HDC A13 EPROM

GENERAL A12 (2KX8

PURPOSE
-LDC

All OR LARGER)

USERJ/O -RCLK AIO

PINS A9

1~
AS AIO
A? A9
A6 A8

LCA A5 A?
A4 A6 D7

RESET A3 A5 D6
A2 M D5

D7 Al A3 D4
D6 AO A2 D3
D5 Al D2
D4 AO DI
D3 OE DO
D2 CE
DI
DO

D/...P

Master Parallel-High Mode

The following table summarizes the pins used in each
mode. Individual pins are described in more detail
below, under Configuration Pin Functions, 6.2.2. Also,
refer to the example under discussion 6.4.1.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

Summary of Pins Used for Conf_!g_uration
Applicable

Pin Config. Mode(s) Function During Function During
Name s p MS MH ML Configuration User Operation

MO Mode Select 0 (I) Readback Trigger (I)
M1 Mode Select 1 (I) Readback Data Out (0)
M2 Mode Select 2 J.!l <User 1/0>
D/-P Indicates configuration (0) Initiates/Inhibits

l1_Note '!.l ...E!Ocess is done Re-confjg_uration J.!l
-RESET Abort/Restart configuration (I) Master Clear for all

li_Note 1l internal fljQ:-flo_Q_s J.!l
CCLK . . - . . Configuration Clock(Notes 1 & 2) Readback Clock (I)
DIN . . . - - Configuration Data In (I) <User 1/0> (Note 3)
DOUT Configuration Data Out (0) <User 1/0>
HOC Logic HIGH lgl <User 1/0>
-LDC Lqgjc LOW <User 1/0>
AO·A15 - - - . . Address Bus (0) <User 1/0>
DO-D7 . - - . . Data Bus 1g1 <User 1/0> (Note 3)
-RCLK - - . . . Read Clock <User 1/0>
-WAT - . - - - Write Strobe (I) <User 1/0>
-cso - . - - - Chip Select 0 (I) <User 110>
-cs1 - . - - - Chip Select 1 (I) <User 1/0>
CS2 - . - - - Ch)Q_ Select 2 J!i <User 1/0>
Abbreviations: s = Slave I = Input

p = Peripheral 0 = Output
MH = Master Parallel-High
ML = Master Parallel-Low
MS = Master-Serial

Notes: 1. The -RESET, CCLK, and 0/-P pins have multiple functions. See text for further details.
2. During Slave mode configuration, the CCLK pin is an input, while for all other modes, it is an output.
3. DIN and DO are the same ~ical_..e!ns but are associated with different con~ration modes.

6.2.1.2 Configura·
tion Time

For some applications, the time required to configure
the LCA device is an important consideration. The
minimum time required to load the LCA configuration
data is the same for all configuration modes, approxi­
mately 12 ms for the 2064 and 17 ms for the.2018. The
processor-driven configuration techniques under
software control for Slave and Peripheral mode may
take longer to complete.

June 1988

Unlike the user-driven Slave and Peripheral modes, the
internal oscillator controls the configuration loading time
for Master mode. Because the frequency of this
internal oscillator depends on the LCA fabrication

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6.2.1.3 Configur·
ing Multiple LCA
Devices

6.2.2 CONFIGUR·
ATION PIN
FUNCTIONS

6-14
2

process, configuration loading time can extend to twice
the minimum time.

In applications using multiple LCA devices, special
daisy-chaining capabilities permit you to configure all
the linked devices from a single data source. This is
described in further detail under discussion 6.3.

There are two types of LCA pins used for configuration.

Non-programmable pins are dedicated to the
control function.

User-programmable pins are available as
general purpose 1/0 pins after configuration.

There are six non-programmable pins dedicated
to control functions.

Non-Programmable
Pins
MO, M1
CCLK

-RESET

D/-P

-PWRDWN

Control
Functions
Mode Select Pins

Configuration Clock

Master Reset

Done/Program

Power-Down

In addition to the dedicated control pins, several user­
programmable 110 pins have configuration functions
assigned to them, regardless of which configuration
mode you select. These pins, as well as the dedicated
control pins, are described below. Other 1/0 pins are
used in only one specific configuration mode and are
described in the discussion of that mode.

The following are user-programmable 1/0 pins that
can be used during configuration.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

User-
Programmable Control
Pins Functions Notes
M2 Mode Select (Present
DIN/DO Configuration Data In in
OOUT Configuration Data Out all
HDC HIGH during configuration Configuration
-LDC LOW duril!Q_ conf!g_uration Modeaj_

-cso, -cs1, cs2 .~hip Selects Peripheral mode only
-WRT
-RCLK
AO-A15
DO-D7

6.2.2.1 M2, M 1,
and MO

June 1988

Write Strobe Peripheral mode only
Read Strobe Master modes only
Address Bus Master parallel modes only
l~ut Data Bus Master _E_arallel modes on.!Y_

Note: Except for HCD and -LDC, all unassigned user-
1/0 pins not used in configuration have passive internal
pull-ups to Vee, as described in discussion 6.2.2.3.
The passive internal pull-ups on all user-programmable P.m
1/0 _Qins are removed after conf_jg_uration is com_Qleted. ~

M2, M1, and MO are Mode Select input pins that select
the configuration mode the LCA device uses, as
explained under 6.2, Configuration Modes. Pins MO
and M1 are dedicated configuration pins. The M2 pin,
unlike MO and M1, becomes available as a general
purpose user-1/0 pin after configuration.

During configuration, pins M1 and M2 have internal
pull-up resistors, while pin MO does not. Except for
Master-Serial mode, you should not drive pin M2 LOW
during configuration. If left unconnected, it is pulled
HIGH.

In applications that do not use the LCA device's read­
back capability, you can tie the mode select pins directly
to ground or to Vee. Because the M1 and M2 pins are
supplied with internal pull-up resistors, you may leave
them unconnected after configuration is done.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-15
2

6.2.2.2 DIN and
DOUT

6.2.2.3 HDC and
-LDC

6.2.2.4 CCLK

6·16
2

Note: The mode select pins are sampled either at the
conclusion of the initialization state, or with the rising
edge of -RESET if used to delay configuration. Thus,
you do not need to maintain their logic levels after
config_uration be_gins.

DIN and DOUT are used as the serial data path for
configuring both a Slave mode daisy chain, and a
Master-Serial mode device. DIN and DOUT are also
used for other purposes, such as a data bus or Slave
mode without a daisy-chain.

Refer to the descriptions of the Slave and Master-Serial
modes, under 6.2.3 and 6.2.5, respectively, for more
information.

HOC and -LDC are user-programmable 1/0 pins. During
configuration, the LCA device drives HOC to constant
HIGH and the -LDC to constant LOW. You use these
two pins to control external logic during the initialization
and configuration states. For example, you can use
these pins to enable or disable various external logic
circuits, depending on whether each logic circuit is
required during or after configuration.

CCLK is a dedicated control pin serving as a clock
input during Slave mode configuration, and
conversely as a clock output in all other configuration
modes. As an input, CCLK is used during the serial
loading of a configuration bit stream. As an output,
CCLK serves as a clock source for configuring any
Slave mode LCA_ devices to be daisy-chained to the
master LCA device.

During operation, CCLK serves as a clock input for
reading configuration data from the device in
conjunction with the MO/RT and M1 /RD pins. The

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6.2.2.5 -RCLK

6.2.2.6 -RESET

6.2.2.7 D/-P

June 1988

CCLK input is subject to a minimum time it can be held
LOW. It should remain in the HIGH state when not in
use. However, the LCA device can drive the CCLK
input from a clock source that violates this limit, as long
as deassertion of -RESET enables configuration as
soon as the clock is normal. The CCLK pin has an
internal pull-up resistor that lets you disable an external
clock source when configuration is done.

The -RCLK pin performs the function of a read strobe
for dynamic memories in the Master-Parallel mode. For
the Master-Serial mode, -RCLK is an output pin that
synchronizes the supply of serial data.

The -RESET pin is an active-LOW master-reset input.
Its function depends on the LCA device's state. During
the initialization state, after power-up and prior to EJll
starting the configuration, this pin can delay the start of .
configuration. As soon as the configuration process
starts, and until it completes, asserting -RESET aborts
the configuration process and returns the LCA device
to the initialization state. Configuration restarts when
initialization completes and -RESET is HIGH. When
configuration completes, the -RESET pin changes
function and becomes a master-reset control pin that
clears all internal flip-flops and latches to the 0 state.

The D/-P (DONEi-PROGRAM) pin is both an input and
an open-drain-type output with an optional, program­
mable pull-up resistor. As an output, D/-P indicates the
current configuration status of the LCA device.

Prior to initial configuration and during subsequent
reconfigurations, the LCA device holds the D/-P pin
LOW to indicate that the device is not ready for user
operation. When D/-P goes HIGH, it indicates that
configuration is done and that the device is in the user-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-17
-2-

6.2.2.8 -PWRDWN

6·18
-2-

operation state. Consequently, you can use D/-P in
your system reset logic to ensure that the LCA device is
fully configured before the reset of the rest of the
system is terminated.

The configured output pins on the LCA device become
active one clock cycle before D/-P goes HIGH. This
allows time for any user-1/0 signals to propagate
between LCA devices. You can initiate subsequent
reconfigurations of the device by applying a logic-0
level to the D/-P pin, with an open-collector-type signal
source. You must hold the D/-P pin LOW for several
microseconds for the LCA device to recognize the
LOW level. Noise is unlikely to trigger a reconfiguration.

As soon as the LCA device recognizes the LOW, it
forces D/-P LOW until configuration is completed. The
D/-P pin must go HIGH before it can initiate
reconfiguration.

Note: By using its internal pull-up resistor option, you
can leave the D/-P pin unconnected and eliminate its
need for any external passive components.

Also: You can prevent the D/-P pin from going HIGH
after configuration as an alternate technique for
disablil}g_ the LCA reconf.!g_uration.

The -PWRDWN pin is an active-LOW input that forces
the LCA device into a low-power state. You can reduce
Vccto 2 V after -PWRDWN is active. Entering the
power-down state does not change or modify the
configuration information stored in the LCA device; it
merely reduces the device's overall power require­
ments by disabling its 1/0 pins and certain internal logic.

Power-down resets all internal storage elements, that is
CLBs and IOBs but not memory cells, and forces all 1/0
pins to become high impedance. Internally, logic nodes

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6.2.3 SLAVE
MODE

June 1988

that were driven by inputs to the LCA device prior to
power-down are electrically isolated from their pins and
forced HIGH.

You must leave the -PWRDWN pin inactive (HIGH)
during initialization and configuration; only assert it while
D/-P is HIGH. If your application does not use the
power-down feature, you should tie the -PWRDWN pin
to Vee.

Note: All other user-1/0 pins not involved in
configuration have passive internal pull-ups to Vee
during configuration. The passive internal pull-ups on
all user-programmable 1/0 pins are removed after
conf.!.9..uration is com_2Jeted.

M2:M1 :MO = 1 :1 :1 configures the LCA device in ...
Slave mode. This mode is simple and efficient because ~
it uses fewer pins than any other configuration mode. It
serially loads the configuration bit stream into the
device.

During Slave mode configuration, each bit in the stream
sequentially shifts into the DIN input on the LCA device
with the rising edge of the clock applied to the CCLK
pin, as illustrated below.

Note: In the following figure, Tos is equivalent to
T occ, which may appear in other timing diagrams in this
manual, and T DH is equivalent to T cco. which may
a ear in other timin dia rams in this manual.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6·19
-2-

6-20
-2-

CCLK

DIN BIT(N) BIT(N+l)

DOUT BIT(N-1) BIT(N)

Slave Mode Configuration Timing

Note: In Slave mode, the CCLK pin is an input, not an
out ut as in other modes.

After the configuration bit stream loads, completing the
configuration process requires three additional clock
cycles for a total of the length count plus three clocks.

Slave mode configuration is especially appropriate
in applications where a host processor configures the
LCA device through an 1/0 port. 1/0 instructions can
drive the CCLK and DIN pins, and the system easily
meets the minimum data setup and hold times.

Slave mode configuration is also useful in multiple
LCA applications, where you string together the DIN
and DOUT pins of several devices in a daisy-chain
arrangement. This arrangement permits several LCA
devices to share a common source of configuration
data.

In addition to the six non-programmable
configuration control pins, Slave mode configuration
uses five programmable pins: M2, DIN, DOUT, HOC,
and -LDC. These become available as general­
purpose user 1/0 pins after configuration is complete.
The 53 remaining programmable 1/0 pins are not used
during configuration, as shown in the figure and table
below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

+5V

Voc

MO MlPWRDN
MICRO

COMPUTER
LCA

CCLK OOlIT

M2
DI

HDC
02

],(> -llJC
PORT GENERAL

PURPOSE

~{
USERl/O

D/-P

RESET

Slave Mode Pin Usage

Slave Mode Pin Summanr_

FIXED, NON-PROGRAMMABLE PINS

Pin Pin Number
Name PLCC DIP

MO 26 18

M1 25 17

CCLK 60 42

-RESET 44 31

D/-P 45 32

-PWRDWN 10 7

USER-PROGRAMMABLE PtNS

Pin Pin Number
Name PLCC DIP

M2 27 19

DIN 58 40

DOUT 59 41

HOC 28 20

-LDC 30 21

Pin
T~e

Input

Input

Input

Input

Output

ln_Q_Ut

Pin
T_yp_e
Input

Input

Output

Output

Ou~ut

Value During
Confi_g_uration Descr~tion

HIGH Mode Select

HIGH Mode Select

<Clock> Configuration Clock

HIGH Master Reset

LOW Done/Program

HIGH Power-down

Value During
Confi_g_uration Descr~tion

HIGH Mode Select

<Data> Configuration Data In

<Data> Configuration Data Out

HIGH Constant "1" Level

LOW Constant "O" Level

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6·21
2

6.2.4 PERIPHERAL
MODE

6-22
-2-

In daisy-chained LCA applications, if the first LCA
device is configured in Slave mode with a free-running
CCLK clock source, you must synchronize the first
device with the other devices in the chain. To
accomplish this synchronization, you must ensure that
-RESET is released with the proper setup and hold
times relative to CCLK. This timing guarantees that all
LCA devices in the daisy chain become operational
simultaneously. The devices all begin configuration on
the same clock cycle. You can easily ensure this timing
by de-asserting -RESET with the falling edge of CCLK.

M2:M1 :MO = 1 :0:1 enables a host processor to load
the configuration bit stream into the LCA device via the
data bus. In this configuration mode, you can think of
the LCA device as a one-bit-wide peripheral device
because you load the configuration bit stream into it
one bit at a time. Typically, you tie data bus bit 0 to the
DIN pin of the LCA device. The processor then shifts
each successive bit of the data byte into data bus bit O
between load instructions to the LCA device.
Peripheral mode requires the next fewest LCA device
pins for configuration, as shown below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

ADDRESS
BUS

DATA/COIITROL
BUS/ BUS

DO
1----1DIN

---OIWRT CCLK

ADDRESS
DECODE

LOGIC

LCA
DOUT

M2

CSO HOC

·--------a~:~ ~ { :
D/-P

RESET

Peripheral Mode Pin Usage

+SY

GENERAL
PURPOSE
USERl/O

As in Slave mode, Peripheral mode loads the
configuration bit stream into the LCA device bit-serially.
When the correct number of bits are loaded into the
device, the D/-P pin goes HIGH to indicate that the
configuration bit stream is loaded. Completing the
configuration process requires three additional clock
cycles after the bit stream is loaded, for a total of three
clocks more than the length count.

During Peripheral mode configuration, nine of the LCA
device's programmable 1/0 pins function as
configuration control pins in addition to the six fixed,
non-programmable control pins. The next table
shows the configuration pins used in this mode.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

El

Per!P_heral Mode Pin SummaJY

FIXED, NON•PROGRAMMABLE PINS

Pin Pin Number
Name PLCC DIP
MO 26 18
M1 25 17
CCLI< 60 42
~RESET 44 31
D/NP 45 32
~PWROWN 10 7

USER•PROGRAMMABLE PINS

Pin
Name
M2
DIN

DOlJT
Ncso
~cs1

CS2
~WRT

HOC
~LDC

.. 24 -.-

Pin Number
PLCC DIP
27 19
58 40
59 41
50 35
51 36
54 37
56 38
28 20
30 21

Pin Value During Description
T...IP_e Conf!_g_uratlon
Input HIGH Mode Select
Input LOW Mode Select
Output <Clock> Configuration Clock
Input HIGH Master Reset
Output LOW Done/Program
11'.!.Q_Ut HIGH Power-down

Pin Value During Description
T...IP_e Conf!_g_uratlon
Input HIGH Mode Select
Input <Data> Configuration Data In
Output <Data> Configuration Data Out
Input LOW Chip Select (Active LOW)
Input LOW Chip Select (Active LOW)
Input HIGH Chip Select
Input <Strobed> Write Enable (Active LOW)
Output HIGH Constant "1" Level
OU!itUt LOW Constant "O" Level

The following figure shows the timing relationship
between the signals on these control pins.

Note: In the following figure, Tos is equivalent to Toe.
which may appear in other timing diagrams in this
manual, and ToH is equivalent to Teo. which may appear
in other timin_g_ di~ams in this manual.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

-CSO, -CSl XXXA AXXXX~ AXXX
CS2 'W V.XXXXY '<m

-WRT

DIN

CCLK
(0U1PUf)

DOUT x BIT(N-1) x BIT(N)

Peripheral Mode Configuration Timing

The DIN and DOUT pins function the same in Peripheral ...
mode as in Slave mode. Four other pins serve as bus m;.­
interface controls. Three of these pins, -CSO, -CS1,
and CS2, become Chip Select pins, while the fourth
pin, -WRT, becomes the Write Strobe input. The
-WRT pin serves the same function in Peripheral mode
as CCLK does in Slave mode. A pulse applied to the
-WRT pin, while the three Chip Selects are asserted,
shifts one bit of the stream into the DIN input of the LCA
device. Each write strobe to a Peripheral mode LCA
device also produces a CCLK output pulse that drives
the CCLK inputs of the cascaded devices, shown
below. The three Chip Selects (two active-LOW, one
active-HIGH) map the LCA device to a specific 1/0 or
memory address for configuration.

Note: The nine pins mentioned above are available as
general purpose, user-programmable 1/0 pins when
confjg_uration is com_Qleted.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

The other 49 programmable 110 pins are not used for
Peripheral mode configuration.

ADDRESS
BUS

DATA/CDITTROL
BUS/BUS

DO Ml PWR
OWN

--~-oWR __ T-aWRT CCLKi------..... ---1

LCA DOUTf-----4

GENERAL
PURPOSE
USERl/O

REPROGRAM
-SYSTEM RESET

Peripheral Mode LCA Device with Daisy Chain

6-26
-2-

+5V
+5V

Ml Ml PWR
OWN

CCLK CCLK
DOUT

DIN LCA
SLAVE#n

M2 M2

HDC
HDC

-WC
-WC

GENERAL GENERAL
PURPOSE PURPOSE

f USERI,IO ~{' USERl/O AIL • 01HER •

01-P a: • PINS
D/-P

RESET
RESET

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6.2.5 MASTER
MODES

June 1988

M2:M1 :MO = 0:0:0 configures the LCA device in
Master Serial mode.

M2: M 1: MO = 1 :0:0 configures the LCA device in
Master Parallel-Low mode.

M2:M1 :MO = 1:1:0 configures the LCA device in
Master Parallel-High mode.

In the Master configuration modes, the LCA device
automatically controls loading the configuration bit
stream.

In the Master-Serial mode, the LCA device uses
-RCLK to synchronize the serial input data that
provides the configuration bit stream, shown in the
figure below.

Vee

l
GENERAL
PURPOSE
USERl/O

PINS

+5V

MO Ml M2 PWRD

OOUT

HOC

}~
LCA

RESET

CCLK

DIN -----!DATA

-RCLK CLK SERIAL

CE MEMORY

-LDCt----uOE

Master-Serial Mode Pin Usage

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-27
2

In the Master Parallel-Low and Master Parallel­
High modes, the LCA device uses on-chip control
logic to address an external, byte-wide memory device.
This memory device, for example an EPROM, holds the
configuration bit stream. The following figure shows a
typical Master Parallel-Low mode configuration.

+SV

Vee

t
MO Ml PWRDWN

oour CCLK

M2 Al5

HOC Al4 EPROM

GENERAL Al3 (2Kx8

PURPOSE Al2 OR LARGER)

USERl/O
All PINS

1~ ill\
AIO AIO

A9 A9

AB AB

A7 A7 D7
RESET

A6 A6 D6
D7 AS AS D5
D6 A4 A4 D4
D5 A3 A3 D3
D4 A2 A2 D2
D3 Al Al DI
D2 AO AO DO
DI OE
DO O'P CE

DATA BUS

Master Parallel-Low Mode Pin Usage

For the byte-wide or parallel modes, 16 of the LCA
device's 1/0 pins form an address bus. Eight additional
1/0 pins form a unidirectional data bus. There are two
types of byte-wide Master modes.

• The Master Parallel-Low mode addresses
memory in ascending sequence, starting at
address zero, 0.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

The Master Parallel-High mode addresses
memory in descending sequence, starting at
hexadecimal address FFFF.

With this addressing flexibility, the configuration data
can share space in a ROM or EPROM that typically
stores a microprocessor program.

After configuration begins, memory-read cycles
continue until the correct number of bits are read. The
D/-P pin goes HIGH to indicate that the configuration bit
stream is loaded.

Note: Bytes of data read from the external byte-wide
memory are serialized on-chip, and are independent of

lQ_l}y_sical byte boundaries.

In addition to using the 16 address outputs and 8 data­
bus input pins, Master Parallel-Low and High modes
also use several other signals. One is the -RCLK
output signal, which is active LOW, yet goes HIGH while
the address bus is changing state. This allows clocked
EPROMs to store configurations. Other signals are the
CCLK and DOUT outputs, both of which drive cascaded
or daisy-chained LCA devices, as shown in the
following figure.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

+5V
+5V

+5V
+5V

CCLK DOUTI--°'"" __ _ l DOUT i-------------IDIN LCA
OOUT

LCA

M2 EPROM

GENERAL
HOC

PURPOSE -RCLK
USERl/O

PINS

A15
A14
A13
A12
AIO
A9
A8
A7 D7
A6 D6
A5 D5
A4 D4
A3 D3
A2 D2
Al DI
AO DO

CE
CE

REPROGRAM

-SYSTEM RESET

Master Mode LCA Device with Daisy Chain

SLAVE#l

D/-P
RESET

M2

HOC

..:inc

SLAVE#n
M2

HOC
..:inc

Dl-P
RESET

GENERAL
PURPOSE
USERl/O

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

The following table summarizes each pin's function in
the Master-parallel modes.

Master Low and High Modes Pin Summary

Pin Pin Number Pin
Name PLCC DIP Type

Fixed, Non-Programmable Pins:

MO 26 18 Input
M1 25 17 Input

CCLK 60 42 Output
-RESET 44 31 Input
D/-P 45 32 Output
-PWRDWN 10 7 Input

User-Programmable Pins:

M2 27 19 Input
DOUT 59 41 Output
HDC 28 20 Output
-LDC 30 21 Output
-RCLK 57 39 Output
AO-Axx

LL~·
D0-07 LLpm'

June 1988

Value During Description
Configuration

LOW Mode Select
LOW (Master-LOW Mode)
or HIGH (Master-HIGH Mode)
<Clock> Configuration Clock
HIGH Master Reset
LOW Done/Program
HIGH Power-Down

HIGH Mode Select
<Data> Configuration Data Out
HIGH Constant 1 Level
LOW Constant O Level
<Strobed> Chip Enable Output

<Address> Memory Address

A15 A11 NJ
3 5 6 4 2 1 48 47 46 45 44 43

65 67 2 4 6 8 9 7 5 3 6866 64 63 62 61

<Data> Memory Data
D7 DO
28 29 34 35 36 37 38 40
41 42 48 50 51 54 56 58

Although 16 address bits are generated in the Master
parallel modes, not all 16 bits are required to configure a
single LCA device. The extra addressing capacity of
the LCA device lets it address multiple configuration bit
streams in a single EPROM. Thus, you can configure
several daisy-chained devices from a single source.
The device illustrated above presents an example of a
Master mode LCA device tied to a daisy chain of Slave

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

~1~

"' 0
0
0
en
m
:n
iii en .-
0
)>

0
m en
15 z
I
)>
z
0
tD

8
c.... ::>\
c: 0
::J I
(I))>

...... "'ti
-I

co m
CX> :n
CX> O>

ADDRESS
BUS
(OUfPUTS)

ADDRESS (N) X ADDRESS (N+l) -x ADDRESS (N+2)

(OUTPUTS)

DATABUS

(INPUTS) BYTE(N) XXXXXXXXXIXXXXXXXXX BYTE(N+l) --.xxxxxxxxxx: BYTE(N+l)

CCLI<
(OUfPUTS)

DOUf BYTE(N-1) BYTE(N-1) BYTE(N-1) BYTE(N) BYTE(N) BYTE(N)

(OUTPUTS) BITS BIT6 BIT7 BITO BIT I BIT2

LSB

Master Mode Configuration Timing

BYTE(N)

BITS

BYTE(N)

BIT6
BYIB(N)

BIT7

MSB

BYI'E(N+l)

BITO

g. 3
CD 0
.... a.
~3° CD
-· r
::J 0 c::)>
0 a.
-. CD
.... <
:::; -·
CD 2
:s:: !"
Ill
fl) -I :::;
~ CD
0 =
0 3
::J -·
~ :l
co co
c a. a or -·co 0
::J Ill
3 3
0 O"
a. CD
CD -. ~

fl)
:::;
0
~
fl)

June 1988

The Master mode device pauses briefly when
powering-up, before it starts the configuration process.
This ensures that it successfully configures daisy­
chained LCA devices. This power-up delay, which is
substantially longer than, and unrelated to, the
initialization delay for either Slave or Peripheral mode,
allows variations in the LCA device's response to Vee
rise times. It also ensures that all Slave mode LCA
devices have time to become fully initialized and ready
for configuration data. If your system requires longer
delays to guarantee that all slave devices have been
powered, you can use -RESET to extend the power­
up delay and to hold off the start of configuration.

The next discussion describes the configuration of
multiple LCA devices in more detail.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-33
2

6.3 CONFIGURE
MULTIPLE LCA
DEVICES

6.3.1 DAISY·
CHAIN
CONFIGURATION

6-34 _2 __ _

Designs using multiple LCA devices can reduce
configuration overhead by logically concatenating
stored configuration bit streams. Using this option, you
can configure LCA devices in daisy chains or in parallel
mode, as discussed below.

If one data source supplies the configuration bit stream
for all devices in the daisy chain, then you can configure
the first LCA device in the daisy chain in any config­
uration mode. After it is configured, you load config­
uration bit streams for all remaining devices in the chain
using the pin-efficient Slave mode. When you cascade
LCA devices in this way, you configure them one at a
time in sequence, starting with the first device in the
chain. You can configure virtually any length of daisy
chained devices in this manner.

You daisy-chain LCA devices by connecting
the DOUT pin of one device to the DIN pin of
the next device. Each device in the chain supplies
data to the immediately following Slave mode device.
As soon as a given device in the daisy chain receives its
share of the configuration data, the balance of the data
simply passes through it to configure the remaining
devices in the chain. The DOUT pin is HIGH until the
length count is reached and configuration is completed.

Data passing through an LCA device from the DIN pin to
the DOUT pin is subject to a one-clock-cycle resynch­
ronization delay. When configuration completes for all
devices, both DIN and DOUT become available as
general purpose 1/0 pins. The following figure illustrates
how you can connect multiple LCA devices into a daisy
chain.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

ADDRESS
BUS

DATA
BUS

REPROGRAM

-SYSTEM RESET

Peripheral Mode LCA with Daisy Chain

+5V
+5V

l CCLK

DOUT

GENERAL
PURPOSE
USERJ/O

PINS

REPROGRAM
-SYSTEM RESET

Master Mode LCA with Daisy Chain

June 1988

+5V

+5V

MOMIPWRDN

DOUT
DIN I.CA

SLAVE#l

0/-P
RESET

M2

HDC

-LDC

+5V

+5V

CCLK DOUT

-~"---D~LA~#n
M2

HDC

-LDC

GENERAL
PURPOSE
USERJ/O

GENERAL
PURPOSE
USERl/O

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6·35
2

The following figure shows the configuration timing for
the previously discussed daisy-chained LCA device.

i--- STARTOFCONFIGURATION

I CONFIGURATION#! I CONFIG.#2

BITS1REAM t SEENBYLCA#l--PREAMB--LE-&--.-CO-NFI-G.-' - ... C_O_NFI_G __ _

LENGTH COUNT FOR LCA #I FOR LCA #2 _

CONFIGURATION COMPLE'IED :1
I CONFIG. #3 I CONFIG. #4 I

1~~~#3 ll 1 ~~A#410-
BITS1REAM

l CONFIG. l '~~#3u 1~~#410-SEEN BY LCA #2 1=~~1 FORLCA#2

BITSlREAM n----1 tr SEENBYLCA#3 1=~~1 CONFIG. CONFIG.
FORLCA#3 FORLCA#4

BITSlREAM
SEENBYLCA#4 1=~~1 u n ll 1~~#410-

NOTI!: HORIZONTAL DIMENSION (TIME) NOT DRAWN TO SCALE.

Timing for Daisy-Chained LCA Devices (Using Four Device Examples)

6.3.2 PARALLEL
CONFIGURATION

In multiple LCA applications, you have great latitude in
designing the configuration logic. The serial daisy­
chain technique described above is just one method to
program multiple LCA devices.

Another possibility, which takes advantage of the bit­
serial nature of the Slave and Peripheral configuration
modes, is simultaneous parallel configuration. You
simultaneously configure multiple LCA devices, as
shown in the Peripheral mode example below. Each
write-cycle loads one bit into each device.

Simultaneous loading reduces the total time required to
configure a group of LCA devices, to the time required
to configure a single device. You can further improve
performance by adding hardware to configure this
group via OMA transfers. For example, if a processor is
available, you can simultaneously configure up to eight

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

LCA devices in parallel, from a single disk file containing
the interleaved device configuration data.

D7 DIN LCA#8

06 DIN LCA#7

05 DIN LCA#6

~ DIN LCA#5

D3 DIN LCA#4

FROM 02 DIN LCA#3
SYSTEM

BUS DI DIN LCA#2

DO DIN LCA#l

{ -WRT
INPUTS

CO MANOS -cso
TO ALL -CS!

DEVICES
CS2

Parallel LCA Configuration Using Peripheral Mode

The following discussion explains considerations for
assigning multiple-function 1/0 pins.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-37
-2-

6.4 ASSIGNING
MULTIPLE·
FUNCTION
1/0 PINS

6.4.1 POTENTIAL
1/0 CONFLICTS

8-38
-2-

· After selecting a suitable configuration mode, you must
assign input/output functions to specific 1/0 pins.
Typically, you base the pin assignments on

• logic block placement within the LCA device
• common 1/0 clock constraints, and
• 1/0 pin usage during configuration.

You can also use user-definable 1/0 pins to configure
the LCA device, but these pins require careful design.
For applications that require many programmable 1/0
pins, you should consider techniques for making
efficient use of these dual-function pins, as discussed
below.

Good design practice dictates that no logic signal
conflicts occur during either the configuration phase or
the user-operation phase. However, these conflicts
may not be obvious. The directional nature of some 1/0
pins used for configuration changes when the LCA
device completes configuration and enters the user­
operation state. Your design should guarantee that
pins used as outputs during configuration do not
conflict with other logic sources also tied to those pins,
even when they are not used in a given application.

The DOUT pin is an example of an output pin that is
easily overlooked. During configuration, DOUT
becomes an output, regardless of whether it drives the
DIN pin of another LCA device. Other examples include
the HOC and -LDC pins, which are driven HIGH and
LOW, respectively, during configuration. A design
should be able to tolerate activity on these and other 1/0
pins used during configuration, without causing a
problem if external circuits are also tied to these pins.
You can usually prevent this problem by careful pinout
assignment or use of isolation buffers.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

The following cases describe three approaches that
minimize potential signal conflicts.

Case 1 : 1/0 pins used for configuration are
dedicated to that function and are not used during
operation. In this case, no signal conflicts occur.
However, this approach reduces the number of
available 1/0 pins.

Case 2: 1/0 pins used for configuration are also
used during operation. However, the signals are
similar in input/output sense and the system
suffers no adverse effect from transitions occurring
on those pins during configuration. Isolation
buffers are not required.

• Case 3: 1/0 pins used for configuration are also
used during operation. However, they either ...
conflict in the input/output sense or have signal ~

transitions during configuration that can adversely
affect other system logic. You can use three-state
buffers to solve this problem, perhaps with the
D/-P, -LDC, or HOC pins serving as the enable
control for the buffers.

You can eliminate, or significantly reduce, external logic
components in an LCA-based design by watching for
the above-listed cases and carefully assigning 1/0
functions to actual pins. When faced with the conflicts
described in Case 3, assign another pinout to eliminate
the conflict. Usually, isolation buffers are not necessary
because inputs and outputs are assigned without
conflicts to the 1/0 pins used during configuration.

As an illustration, assigning output functions to pins that
are already used as outputs during configuration, such
as address outputs in Master mode, might obviate the
need for buffering those signals. In general, any
sharing of similar pin functions during and after

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

8-39
-2-

6.4.2 UNUSED 1/0
PINS

6-40
-2-

configuration might eliminate the need for external
buffer logic.

The following cases illustrate how careful pinout
assignment can reduce the number of external logic
components in LCA-based applications.

Case 1 : When the LCA device is configured in
Master mode, the final application can share pins
with this mode's address and/or data buses.

Case 2: When the LCA device is configured in
Peripheral mode and interfaces to a CPU bus, the
-WRT, DIN, -cso, -cs1, and CS2 pins are driven
from this bus and, thus, can be assigned similar
functions during configuration and final
application.

Case 3: When an application uses multiple LCA
devices, and a signal passes from one device to
another, you can assign the signal to the DOUT of
the first device and to the DIN connection of the
second device.

An LCA pin programmed as an input and not connected
to any external logic is considered a floating input.
As with any CMOS device, floating inputs can provide a
low-impedance current path from Vee to ground and
result in permanent damage to the device. Thus, you
should handle an unused LCA pin in one of the
following three ways.

1 . Define it as an output, and drive it with an
internal signal, preferably a constant level O or 1.

2. Define it as an input and either
a. drive it externally with logic, or
b. tie it to an external pull-up or -down resistor, or
c. tie it to Vee or ground.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

The relative advantages of defining unused pins as
inputs or outputs depend on your specific application.
You should try to minimize the following.

Static and dynamic power dissipation
Component count
Risk of electrical damage to the device
Future circuit board modifications

3. The preferred method of treating unused
1/0 pins follows.

a. Externally leave the pin open or unconnected.

b. Internally configure the pin as an output.

c. Drive the pin internally with a constant level
signal.

Typically, you select a nearby, unused CLB output,
define it as a constant 1 or 0, and tie that signal to all
nearby unused IOBs. If internal routing congestion
precludes routing this DC signal to an 108, your next
best option is to drive the IOB's output pin with an
accessible net. In this case, a net with the lowest toggle
frequency is best because it results in less power
dissipation.

Diagnostic test-point outputs are another practical
use for unused LCA pins. These test points can be
very valuable for monitoring internal logic nodes that
would otherwise be inaccessible. Test-point-outputs
aid in circuit analysis and debugging.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6.5 CONFIGUR·
ATION DATA

This discussion explains the LCA configuration bit
stream format and loading.

The configuration data required to program the LCA
device is a string of bits. The number of bits required to
supply all the configuration information for a single
device depends on the type of device, as outlined in
the following table. For applications using multiple LCA
devices connected as a daisy chain, the bit stream
grows for each additional device.

Note: This description applies only to the bit stream
generated by the LCA development system for use in
EPROMs. The XACTOR in-circuit emulator uses a
different version of the bit stream that is longer; the data
is not_Q_acked.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

Configuration File Format Shown In Binary Equivalent
M2064LCA

1111 Dummy Bits. (4 Bits Minimum)
0010 Preamble Code
<24 Bit length count> Configuration Bit Stream Listing
1111 Dummy Bits (4 Bits Minimum)

O <Data frame #001> 111 "'\
O <Data frame #002> 111
0 <Data frame #003> 111 160 Configuration data frames "'

> (Each frame consists of
a O start bit, a 71-bit data field, Repeated once
and 2 or more dummy bits) for each LCA in

O <Data frame #159> 111 the daisy chain
O <Data frame #160> 111 .)

1111 Postamable code (4 bits) .)

M2018LCA

1111 Dummy Bits (4 Bits Minimum)
0010 Preamble Code
<24 Bit length count> Total Number of Bit Stream Bits
1111 Dummy Bits (4 Bits Minimum)

0 <Cata frame #001 > 111 "\
0 <Data frame #002> 111
O <Data frame #003> 111 196 Configuration data frames "'

> (Each frame consists of:
a O start bit, an 87-bit data field, Repeated once
and 2 or more dummy bits) > for each LCA in

O <Data frame #195> 111 the daisy chain
O <Data frame #196> 111 .)

1111 Postamable code (4 bits) .L
Notes:
1. Data bits as shown in the table are shifted into the LCA device with the left-most bit of each line

in the table being entered first. The bit field containing the length count is shifted in with the
most significant bit first. For master-mode applications, bytes of data read from the EPROM are
internally serialized so that DO is sensed first, 07 last. Therefore, the first byte of the EPROM
would read "0100 1111" in binary, or "4F" in hexadecimal notation.

2. In multiple LCA applications where a daisy chain is used for configuration, the length count
reflects the total number of clock cycles for all LCA devices configured from this one bit stream.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6.5.1 CONFIGUR·
ATION FILE
FORMAT

The configuration bit stream begins with several logic-1
level bits, termed dummy bits. These are followed by
a 0010 preamble bit pattern, left-most bit first.
Following the preamble are 24 bits that represent the
length count. The magnitude of this count must
equal or exceed a value that is two less than the total
number of clock cycles required to shift in all bits in the
bit stream, including the dummy bit. Length counts
greater than this number (up to 224_1) are valid, and
merely delay the D/-P pin from going HIGH to indicate
the completion of configuration. All data associated
with these additional clocks are ignored.

Note: Configuration bit streams for several LCA
devices connected in a daisy chain have only a single
l_Qreamble and lel}IDh count.

Within the LCA device, the length-count value is held in
the length-count register and compared to a
CCLK clock-cycle counter to determine when the
configuration process is completed. When the value of
the CCLK cycle counter equals the value in the length­
count register, and all required data frames are entered,
configuration is done and the D/-P pin is released.
Because all devices in the daisy chain start their clock
cycle counters simultaneously, all LCA devices in the
daisy chain complete configuration and become
simultaneously operational.

The value used for the length count is a function of how
many LCA devices the bit stream must configure. For
example, if there are three 2064 LCA devices
connected in a daisy chain, the configuration bit stream
is over 36,000 bits long. The length count is included
only once at the beginning of the bit stream. Several
additional cycles are required to compensate for the
resynchronization delay of the data at each DOUT pin.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

BIT STREAM
SEENBYLCA#I

BIT STREAM
SEEN BY LCA #2

BIT STREAM
SEENBYLCA#3

BIT STREAM
SEENBYLCA#4

The LCA development system computes the
precise value of the length count and automatically
enters it into the configuration file. The preamble and
length-count bits are sensed by each LCA device at its
DIN pin and immediately passed on to the next device in
the daisy chain via the DOUT pin. Afterwards, however,
each device in turn accepts its portion of the
configuration bit stream before passing any
subsequent data on to the next device. Refer to the
following timing diagram.

r STARTOFCONFIGURATION

I CONFIGURATION#! ----PREAMBLE& CONFIG.
LENGTH COUNT FOR LCA #I

l 1~~1<:1'otNT I CONFIG. CONFIG. 0-
FORLCA#2 FORLCA#4

(((0-lr=1<:1'otml
CONFIG. CONFIG.
FORLCA#3 FORLCA#4

((((~ 0-I PREAMBLE& I CONFIG.

: LENGTH COUNT : FORLCA#4

NOTE: HORIZONTAL DIMENSION (TIME) NOT DRAWN TO SCALE.

Timing for Daisy-Chained LCA Devices (Example Using Four Devices)

June 1988

Within the configuration bit stream, data are presented
in frames that begin with a start bit, 0, and end with at
least two dummy or stop bits. Between the start and
stop bits of each frame, there is a data field that defines
your design's logic functions. The last frame is followed
by a field of postamble bits.

Note: AMD reserves the right to change the format,
organization, and length of the bit stream used to
conf)g_ure the LCA device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-45
2

6.5.2 A SAMPLE
EQUIVALENT CON·
FIGURATION FILE

1111
0010
<24 BIT LENGTII COUNT>
1111

O<DATAFRAME#OOI> Ill
O<DATAFRAME#002> Ill)"
O<DATAFRAME#003> Ill

0 <DATA FRAME# 159> 111
O<DATAFRAME# 160> Ill

.J
1111

This discussion assumes that a processor configures
the LCA device in either Peripheral or Slave mode. The
connections to the device, and the timing needed to
perform the configuration, are discussed earlier in this
chapter. Regardless of the configuration method, the
bit stream data is the same. The bit stream for this
example, created by MAKEBITS, is in a PROM file,
formatted for Intel MCS86 compatibility.

The following figure summarizes the equivalent data
format of the PROM file.

Recall: The information preceding the first data field is
required to initialize the configuration logic on the LCA
device with the proper bit-stream length. Each
subsequent data field provides configuration
information for a_Q_ortion of the device.

Dummy Bits (4 Bits Minimum)
Preamble Code
Total number of Bit Stream Bits
Dummy Bits (4 Bits Minimum)

160 Configuration Data Frames

(Each Frame Consists of:
A Start Bit
A 71 - Bit Data Field
2 or More Dummy Bits)

Postamble Code (4 Bits Minimum)

-

-

Repeated for Each LCA
Device in a Daisy Chain

Typical Equivalent Configuration-Data Arrangement for the 2064

8-48
-2-

The beginning of the sample PROM-format
configuration file for a 2064 is shown next.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

June 1988

The required leading 1 s are in the low nibble, with the
preamble in the high nibble. The bits are arranged this
way to simplify the connections from an external PROM
or ROM to the LCA device in Master mode.

020000020000FC
10000000i[OOF460EFFAF3F3FFF7C5FFFF7FD39CD7
10001000A5EBBB5975F7FFFB3F7FFEFEFEB5FCFF6E
10002000DFBD59AFBDBE4FFFFBFEFEDFBFBFAF5F01
100030007F7FF7F7FF7FFFFDFDFFFBFFBFFFFFFFA8
10004000CBD7FFB7FFFFFDFFFFBF3EFFFF7FFFEFF7
10005000FFFFBDFFFFFFB7FF7BFFFFFFFFFFDFEFEE
10006000FFFDFBFFFFFFDFFFFFFFFF9D7F7FFFFE29
10007000FCFAFD7DEFEEFFFFFFFFFFFFFFFFF7FF45
10008000FFFFFFFFFFFFF7F3FFFFFFFFFFFFFFFFC0
10009000FEF9EFEFDFFFD7BFBFFFCFDFFFFFFFBFEF
1000AOOOFFFFFF77EFEFDFDFDFBFBFBFFFF3FF7FB4
1000BOOOFFCFBFDFFFFF9DFBFAB7F7F7FFFF7FEF33
1000C000FAFEFEFDFD7D7B7BFBF7FFFFFFFFFFFBE5
1000DOOOFBFB3FF3F7EFE9EFFFFFFFDBB9BD5D3B54
1000E0005BFB77F7F7CE7777EFEFAED5D7D77B9F70
1000F0009F3F3F3E373E3EDE7B67FFFEFEFEEEFF4C

• • •

Beginning of Typical Hex PROM File

Note: The first byte of the data field, underlined in line
2, is hexadecimal 4F.

Although the LCA device's internal memory always
loads serially, the Master-parallel modes read the
configuration bit stream in parallel directly from an
external memory device, such as a PROM. The data is
serialized internally for loading into the memory cells.
The PROM connections serialize the least significant bit
of the byte, DO, first. Consequently, the order of the
data bits in the PROM file is the reverse of the order in
which they are read by the LCA device. When a
processor loads the configuration data, the PROM file
data is read one byte at a time and supplied to the

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6.5.3 CONFIGUR·
ATION LOADING

M8
-2-

device one bit at a time, beginning with the least
significant bit, DO.

Consider the three bytes following the first byte, 4F, of
the data field in the PROM file above. The hexadecimal
OOF460 represents the 24-bit binary length count of
000000000010111100000110, or 12038 decimal,
which is the total number of clock cycles required to
load this bit stream. Three additional clock cycles are
required to complete the configuration and activate the
device. The fifth byte, hexadecimal EF, contains the
four pad 1 s, the start bit, and the first 3 bits of the 71-bit
data field.

Note: The LCA device inverts the incoming data, so
the data bits stored in the memory cells are the
com_.Q!ement of the i'!Q_ut data.

Data supplied to the LCA device during configuration is
shifted into a 71-bit shift register. When the shift
register is full, it is written into the internal memory cells
as a single 71-bit word. In the 2064, there are 160
words of 71 bits, comprising a total of 11,360 bits of
configuration data. Preamble data increases the total to
12,038 bits. For the 2018, there are 196 words of 87
bits, a total of 17 ,052 bits of configuration data.

The next discussion explains read-back of the
configuration bit stream.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

6.6 READ-BACK
CON FIGURA·
TION DATA

6.6.1 READ·BACK
PROCESS

MO/RT

Mtiiffi

Dummy bits

Readback Control Timing

June 1988

After you load and store the configuration bit stream,
you can read the data back to confirm the
configuration, as described below.

With the read-back process, you extract the
configuration bit stream from the LCA device. You can
use the read-back data to verify that the contents of the
memory cells have not changed since the last
programming cycle. The read-back data contain the
state of the CLB storage elements, such as flip-flops
and latches, 108 storage elements, and memory cells in
the logic blocks, as well as the state of the input
connection point on each 110 block.

The read-back process is accomplished without using
user-programmable 1/0 pins. The data is read back ~

serially by CCLK, MO, and M1. The read-back process is ~
triggered by a LOW-to-HIGH transition on the MO/RT
pin. On subsequent cycles of CCLK, internal
configuration data are supplied on the M1/RD pin. The
following figure illustrates the timing of this data read-
back process.

Frame 1, Bit 2 'O' '1' Frame 2, Bit 2

Frame 1, Bit 1 Frame 1, Bit 71 Frame 2, Bit 1

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6.6.2 READ·BACK
DATA CONTENTS

6·50
-2-

Individual data frames are read back in the same
sequence as they were supplied to the device. In the
read-back serial data stream, the individual bits are the
true sense of the internally stored data bit. Recall that
the bits in the programming stream are the
complement of those stored internally.

The initial data frame of the read-back data is preceded
by a dummy clock cycle and two dummy bits with an
unknown state. After the first data frame, there is a stop
bit, 0, and a start bit, 1, prior to the next frame. After the
last frame, there is a stop bit, 0. Even when additional
CCLK cycles are applied after the last data frame is read,
the M1/RD output is disabled. The pin is not driven
after the final stop bit.

After you read the configuration bit stream back, you
can compare the read-back bit stream with the input
data stream to determine whether the device is correctly
configured. You must remove the input data dummy
bits and start bits, and the read-back data start and stop
bits, either as part of the programming and read-back
process or after the read-back process completes.

In the configuration and read-back bit streams, some of
the memory locations do not correspond to actual
memory cells in the device. These locations may be
unused during both the configuration and the read­
back processes. They contain the storage elements
and input block values during the read-back. You can
extract and display the storage element and input block
values with the XACTOR in-circuit emulator during
debugging. To verify configuration, ignore these bit
locations, because their contents might not be the
same as the corresponding positions in the bit stream.

By using the MAKEMASK command, you generate bit
positions, which are ignored in the read-back data
stream. You can convert the bit file generated with

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

Mask PROM File

June 1988

MAKEMASK into a PROM file by using the
MAKEPROM software. The MAKEPROM software
converts the binary bit stream to hexadecimal format.
The format for the final-mask PROM is now identical to
the configuration bit-stream PROM. Each data bit in the
read-back data stream that should be ignored is
represented by a O in the mask PROM file.

The following figure shows the beginning of a mask bit­
stream file for a 2064 that was converted from binary
format into a hexadecimal PROM-format.

Note: This file has the same preamble, length count,
and pad bits for one LCA device as the standard
conf!g_uration data file.

020000020000FC
100000004FOOF4608FEDEDDD8BDBBBB78770ECEF5D
10001000DF1FDCBFBF3F9463FFFFFFE9FFFFFFB3BC
100020001DFFFFFBD7FFF7FFAFED587FDFFEFEBEE2
10003000FDFD2DC7FAFFFEFFFFFDFF7FB9E6FFF7CD
10004000BFFFEFFF7FDB35FFBFFFF77FFFFFDFEE77
10005000F1F3E7A7E7CFCFCF7EBFBC7C7979F9F288
10006000F2FAFBF575EBEBEBD6D7D7DFA7A74B4F33
100070004F979E9EFE3E3D5D7A7ABAF4F4F4D7ED3A
10008000EDDADBDBB5B7B7BD7F7FF7FEFEEEFDFD3A
10009000FDFDFFFFFFFFFFFFFFEFEFFBFBF5F7F7B6
1000A000EBEF6F7FDEDFAFBFBF5F7F7FBB7B78F89B
1000B000FOFOFOElE1ClDEEFEFDBDFDFB7BFBFFE65
1000C0007E7FFFFEFEFEFDFDF5D7F9F9F2F3F3E5C5
1000DOOOE7E7BDCECF979F9F2F3F3FEF757FBFFED6
1000E000FE7EFDFD7DEFFBFBF5F7F7EBEFEF7FFFOE
1000F000FFEFFFFFDFFFFFFFFBFFFFFFFFFFFFFF44

• • •

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

6-51
2

6·52
2

To use the mask information,

strip off the preamble and length count
information, and

extract the appropriate data bits for each data field.

Because the PROM format has the data bits arranged
with the least significant bit in the DO position, they are
reordered in the correct sequence, as shown in the
figure below. For example, you could write a simple
program to create the mask bit fields for each data field.

Note: You can verify the end of one data field, and the
beginning of the next, by detecting the dummy bits and
the start bit between each field.

FIRST BYTE SECOND BYTE

FO:i<;.~ ID71D61Ds ID41 D3 ID2ID i I Doi D'71 D'6 lD'5 lD'4 l D'3 lD'2 I D'l ID·ol ...

RE~g:~~ IDolD i ID2I D3 I D4 ,D5 ,D6 ,D7 I D'OID'l l D'21D'3 I D'4 ID'5 ID'6 ID'7 I

Data Bit Sequence

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6

June 1988

CHAPTER 7

METASTABILITY OF LCA FLIP•FLOPS

METASTABILITY OF LCA FLIP-FLOPS ... 1
7.1 FLIP-FLOP METASTABILITY .. 2
7.2 LCA FLIP-FLOP ERROR PROBABILITY .. 6
7.3 MINIMIZING THE ERROR PROBABILITY .. 10

7.3.1 REDUCING ERRORS .. 10
7.3.2 USING DIRECTCONNECTIONS .. 11
7.3.3 CHANGING THE SYSTEM CLOCK RATE ... 11 ...
7.3.4 USING A FASTER DEVICE. ... 12 mc;.-
7.3.5 SUMMARY ... 13

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7·i
2

7·ii
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

June 1988

7

June 1988

METASTABILITY OF LCA
FLIP· FLOPS

This chapter discusses flip-flop metastability in an LCA
design.

The discussion on flip-flop metastability, 7.1,
defines the topic and explains the importance of
considering it when implementing LCA-based
designs.

The discussion on LCA flip-flop error probability,
7.2, analyzes the flip-flop error probability due to
metastability.

The discussion on minimizing error probability, 7.3,
describes the flip-flop error reduction features and
provides some design techniques to minimize the
error probability.

Note: The following discussions on metastability in
LCA-based designs merely indicate some of the
considerations you should take into account during
your design cycle. They are not intended to be
exhaustive or definitive.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7.1
--2-

7 .1 FLIP·FLOP
METASTABILITY

7.2
-2-

Metastability is defined as an output state between a
valid logic HIGH and LOW for any digital device. It can
occur for registers or latches when certain parameters,
such as data setup and hold times, are violated. Data at
the input of a D-type register must be established as a
valid logic LOW or HIGH at some specified time tsu
(setup) before applying a clock input to that register.
This data must also be maintained or held at the input
for a specified time tH (hold) after the clock pulse has
been removed.

In a completely synchronous system, the clocking of
data through registers can be synchronized to a clock
edge that is generated from a local source, such as an
on-board crystal oscillator. In this case, the timing is
predictable and setup and hold times are adhered to
when all system parts are connected. In this type of
system, no metastability problems should occur. The
designer can calculate propagation-delay values from
published component data and ensure that no timing
parameter violations occur.

With two independently clocked systems, it might not
be possible to synchronize the clock frequencies or
events, so when data are passed from one system
output to the input of the next, setup and hold times
might be violated for registered inputs to flip-flops. If
the setup and hold time requirements are small relative
to the sampling clock period, the probability of violating
these parameters is not very high. It further decreases
with a decrease in the sampling clock frequency. Also,
if the setup and hold times can be reduced by using
higher performance devices, then the probability of
violating these parameters is further diminished.
However, a small probability of a metastable state would
still exist.

In digital circuits, valid data input to registers or latches
are set either LOW or HIGH. The voltage level is
dependent on the technology. If this valid condition is

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

June 1988

June 1988

set up prior to a clocking edge, the data is clocked to
the register output and no metastable condition arises.
A problem could occur if, at the time of sampling, the
input signal is in transition.

In an LCA device, the following valid conditions can
occur for TTL and CMOS circuits. In both cases
Vee= 5 V

TTL logic HIGH
TTL logic LOW
CMOS logic HIGH
CMOS logic LOW

2.0 V to 5.0 V
0.0 V to 0.8 V
3.5 V to 5.0 V
0.0 V to 1.0 V

For a TTL circuit, any input between 0.8 V and 2 V
sampled by a clock edge is neither a LOW nor a HIGH,
and represents a violation of hold and setup times. The
condition of the output can not be guaranteed to follow ...
a valid logic state because none was sampled at the ~
input.

The typical gate or inverter is essentially a high-gain
linear amplifier circuit. Logic HIGH or LOW outputs
represent saturation conditions; further input drive
does not achieve a corresponding output change.

If, during sampling, the input is transitioning between
two logic states, the register or latch could be operating
as a linear high-gain amplifier. The ability to recover from
a metastable state is then dependent upon the
characteristics of the logic device, which is not
operating in a valid mode. The gain/bandwidth product
of the device in this mode influences the device
behavior and determines the output recovery from a
metastable condition.

Attempting to characterize the metastability of LCA
devices is difficult because the timing associated with
different interconnections varies from application to
application. Setup and hold times to register and gate

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7.4
-2-

combinations depend on the routing resources used,
and these depend on the CLB/108 layout and
configuration. The best way to test for metastability is to
test the completed design, deriving metastability data
empirically.

One critical element in examining metastability is the
gain/bandwidth product, which gives rise to a loop­
delay in the system. Loop-delay is the time required
for a signal at any point in the flip-flop to propagate
through the flip-flop circuit and reinforce the signal at its
starting point. The following figure shows one type of
flip-flop with the loop delay path indicated.

CLOCK

DATA c

Q Q

LOOP DELAY= (A TO B) + (B TO C) + (C TO A)

Loop Delay in a Typical Flip-Flop Implementation

A change in the state of a node in the flip-flop, for
example, a change at the input, requires one loop delay
for the flip-flop to hold the new state. In a metastable
condition, an internal node, typically in the input stage,
attains an intermediate level because the data signal
changes while the clock is changing. This intermediate
level, neither 1 nor 0, propagates around the loop and
forces the output into a metastable state. The flip-flop
only achieves a stable (1 or 0) output when a node at
the intermediate level becomes 1 or 0, and this new
value then propagates through the loop to force the
output out of the metastable condition. Movement of
internal nodes away from the intermediate level occurs
randomly and cannot be predicted or guaranteed.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

June 1988

June 1988

Another way to illustrate flip-flop metastability is to plot
the worst-case clock to flip-flop output delay versus the
delay from stable data to the clock edge. The figure
below shows this type of plot for a typical flip-flop.

CLOCK-TO­
OUTPUT DELAY

NORMAL DELAY

< CRmCAL
TIME

l
I

CRIDCAL
TIME

>CRIDCAL
TIME

CLOCK-TO-DATA TRANSIDON TIME

Flip-Flop Output Critical Timing

As the data transition approaches the clock edge, the
stable output delay begins to increase. For any flip-flop
type, there is a finite probability that the loop delay x
at the critical data-to-clock relationship can be infinitely
long.

The next discussion explains how error probability is
determined; it also provides some sample calculations.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7.5
2

El

7 .2 LCA FLIP·
FLOP ERROR
PROBABILITY

The two critical issues in examining metastability
characteristics of flip-flops in any system are the
probability of an error based on a metastable condition,
and the methods of minimizing the error probability. For
logic implemented with LCA devices, you have some
additional control.

The probability of a flip-flop passing through a
metastable region can be calculated as follows.1

I Probability = 1 _ e(-settling time/loop delay)

The probability of a flip-flop remaining in the metastable
region is then calculated as follows.

I Probability of Error = e(-settling time/loop delay)

For the circuit shown and analyzed below, the settling
time is the difference between the worst-case delay
from a clock edge clocking the flip-flop in CLB 1 and the
output propagating to the flip-flop in CLB 2; this
includes the setup time and the delay from one clock
edge to the next. This maximum delay path produces
the lowest settling time with the highest probability of
error.

G.R. Couranz and D.F. Wann, Theoretical and Experimental Behavior of Synchronizers Operating
in the Metastable Region, IEEE Transactions on Computers, Vol c-24, No.6, June 1975.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

June 1988

DATA IN
F

COMMON
a.ocK

LCA Implementation

June 1988

CLB#l CLB#3

F

D D

CLB#2

CRITICAL
INIBRCONNECT

F

D

Examining a specific case where the 2064 has a worst­
case flip-flop loop delay of 2 ns, the critical timing
parameters required to estimate the error probability for
a metastable condition are shown below.

Flip-flop clock to output delay
Interconnection delay
Flip-flop setup time
Flip-flop loop delay
Clock Period j_1 O MHzj_

20 ns
15 ns
12 ns

2 ns
100 ns

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7.7
2

For this example, the error probability is calculated as
follows.

P [Error] = e(-(100-(20+ 15+ 12)]/2)
= e(-53/2)
= 3.1x10-12

This value represents the probability of a flip-flop
remaining in a metastable region beyond the given
settling time for a single event. For multiple
events, which represent a repetitive clock sampling of
an asynchronous signal, the time between failures
obeys the following relationship.

Failures Per
Time Period = Probability per Event

X Events _Q_er Time

The time between failures is, then, the inverse of the
failures per time-period value. For this example,

Failures per
Time Period

Time Between
Failures

= (3.1x10-12) x (1x107)
3.1x10-5

= 1I(3.1X10·5)
= 3.3X104
= 8.96 hrs

This number indicates a very short time between errors
for sampling an event at 1 O MHz. This is a worst-case
calculation because it is based on an assumption that a
potential error condition exists for each clock edge. In
a real system this is not the case. When the input clock
edge is not synchronized with the arrival of data at the
input of the same register, a violation of setup and/or
hold times can occur. A metastable condition can result
under these circumstances. The statistical probability of
these violations, however, is relatively small.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

June 1988

June 1988

The previous type of calculation indicates several ways
of improving flip-flop performance. First, the AMO LCA
devices have incorporated error reduction features.
Second, there are several design techniques you can
follow to increase the error-free performance of the flip­
flops in your LCA design. These are explained in the
next discussion.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7.3 MINIMIZING
THE ERROR
PROBABILITY

7.3.1 REDUCING
ERRORS

7·10
2

There are several features and design techniques that
can be used to minimize the error probability due to
metastability in LCA-based designs. These are
summarized in the following discussions.

7.3.1, Reducing Errors
7.3.2, Using Direct Interconnection
7.3.3, Changing the System Clock Rate
7.3.4, Using a Faster Device

7.3.5, Summary

One critical factor in flip-flop metastability is the length
of the loop delay. As shown in the previous error­
probability calculations, the longer the loop delay, the
higher the error probability.

Flip-flops in the LCA 2000 family are specifically
designed to reduce the loop delay to a minimum, thus
minimizing the probability of a metastability-induced
error.

Another critical factor in determining the metastability
characteristics of flip-flops in a device is the loading of
the flip-flop. In virtually all other technologies,
particularly gate arrays, the flip-flop outputs can be
loaded differently depending on how the user
connects the devices. This variation in loading can
significantly complicate the analysis of the flip-flop's
metastability behavior.

Note: In LCA devices, all flip-flops are immediately
followed by a buffer, and then by the possible user­
programmable connections. The buffer isolates the flip­
flop from any variations in loading that could induce
metastability. This flip-flop isolation significantly
simplifies analysis of metastability effects in the system
b standardizin the LCA fli -flo out ut loadin .

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

June 1988

7.3.2 USING
DIRECT
CONNECTIONS

7.3.3 CHANGING
THE SYSTEM
CLOCK RATE

June 1988

If you use direct connections in the critical-path area of
the above example, you can eliminate the 15 ns delay
for that interconnection. The effect on the error
probability is calculated as follows.

P [Error] eH1 oo - (20 + 12))12)

e(-68/2)

1.71x10-15

For the same 1 O MHz clock the error probability results
in a significantly reduced mean time between failures
(MTBF).

MTBF 1/(1.71x10-15) x (1x107)
5.83 x 107
675 deys

Refer to Chapter 5 of this manual for more information
on direct connections.

If you reduce the clock rate of the sampling, you can
dramatically reduce the calculated failure rate. If, for
example, you reduce the clock rate from 1 O MHz to 5
MHz, you can analyze the error probability with the
following parameters.

Clock to flip-flop output
Interconnection delay to second block
Setup time for second flip-flop
Flip-flop loop delay
Clock Period _(_5 MHzl

20 ns
15 ns
12 ns
2 ns

200 ns

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7·11
-2-

Ell

7.3.4 USING A
FASTER DEVICE

7·12
~

The error probability is calculated as follows.

P[Error] = e(-[200-(20+ 15+ 12)]!2)
= e(-153/2)
= 5.98 x 1 o-34

And for a 5 MHz clock rate, the MTBF is calculated as
follows.

MTBF = 1/(5.98 x 10-34)(5 x 106)
3.35x1026
3.87 X 1021 days, or

= approximate_!y_ 1 .1 X 1o19 _years

If you use a faster LCA device, you improve all device­
related performance parameters. Moving to the next
higher LCA speed grade results in the following critical
parameters.

Flip-flop clock to output delay
Interconnection delay
Flip-flop setup time

15.0 ns
7.0 ns
8.0 ns
1.5 ns Flip-flo_Q_ IOO_Q_ delay_

If the clock period remains the same, at 100 ns, then the
new error probability is calculated as follows.

P [Error] eH1 oo-(15+7+8)]/1.5)
= e(-46.667)
= 5.4 x 10-21

For the 1 O MHz clock rate, this error probability results in
a new MTBF, as calculated below.

MTBF 1/(5.4 X 10-21)X(1 X 107)
= 1.85X1013

2.14X108 days, or
approximate!Y_ 563 _years

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

June 1988

7.3.5 SUMMARY

June 1988

As shown by these examples, the probability of a flip­
flop failure, based both on a metastable condition and
on the subsequent system MTBF, can vary widely and
depends on several factors. When using the LCA
device to implement system-level functions, you have
significant control over some of the critical parameters
necessary to provide sufficient immunity to metastable
conditions.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 7

7-13
-2-

7-14
--;---

2000 SERIES LCA D.ESIGN HANDBOOK CHAPTER 7

June 1988

CHAPTER 8

TESTING AND DATA INTEGRITY

TESTING AND DATA INTEGRITV .. 1
8.1 LCA DEVICE TESTABILITY ... 2

8.1.1 TESTABILITY FEATURES .. 2
8.1.1.1 EPLDs .. 2
8.1.1.2 Gate Arrays .. 3
8.1.1.3 LCA Devices ... 3

8.1.2 TESTING PROCEDURES .. .4
8.1.3 SUMMARY ... 5 g

8.2 DATA INTEGRITY ... 6
8.2.1 RELIABILITY .. 6
8.2.2 ALPHA PARTICLE SENSITIVITY ... 9
8.2.3 ELECTROSTATIC DISCHARGE PROTECTION .. 11
8.2.4 LATCHUP PROTECTION .. 12
8.2.5 RADIATION HARDNESS ... 14
8.2.6 HIGH TEMPERATURE PERFORMANCE ... 14

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

8-i
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

June 1988

8

June 1988

TESTING AND DATA
INTEGRITY

This chapter discusses the testing and data integrity
features of the AMO LCA device.

The discussion on LCA testability, 8.1, explains
the built-in LCA test features.

The discussion on data integrity, 8.2, explains the
special LCA memory cell design that provides a
high level of data integrity in the LCA device.

AMD is committed to providing LCA devices of the g
highest quality and reliability for its customers. Quality is
best achieved by taking the necessary steps to achieve
zero defects.

Comprehensive testing ensures that every LCA device
is free of defects and that it conforms to data sheet
specifications. The LCA memory cell design ensures
the configuration integrity. Careful memory cell design
also minimizes the effects of alpha-particle emission and
electromagnetic radiation on the LCA device's
operation.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

8·1
2

8.1 LCA DEVICE
TESTABILITY

8.1.1 TEST·
ABILITY FEATURES

a.1.1.1 EPLDs

As quality consciousness has grown among
semiconductor users, awareness of the importance of
semiconductor testability has increased among
manufacturers. When manufacturers test standard
components, including memories and microprocessors,
they use carefully developed processes that
exhaustively test the function and performance of each
part.

For reasons explained below, most application-specific
ICs (ASICs) cannot be comprehensively tested.
Without complete testing, defective devices can
escape detection and be installed in a system. In the
best case, the failure is detected during system testing
at a high cost. In the worst case, the device failure is
detected only after shipping the system to a customer.

The AMO LCA device has intrinsic testing
advantages, which make it easy to test the
device more comprehensively than is
possible with other ASICs. The following
discussion illustrates these advantages through a
comparison with two other types of ASICs, Erasable
Programmable Logic Devices (EPLDs) and gate arrays.

To test all of the EPLD's memory cells and logic paths,
you must program it with many different patterns. This
testing requires expensive quartz-lid packages and
many lengthy program/tesVerase cycles. To save time
and reduce costs, you usually abbreviate this process
and, therefore, you do not fully test the EPLD.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

June 1988

8.1 .1 .2 Gate
Arrays

8.1.1.3 LCA
Devices

June 1988

Testing a gate array is similar to testing an EPLD.
Because each gate array is programmed with individual
metal masks, you must test the part with software
tailored to the specific design. Each new gate array
design requires new test software and test vectors.
And each time you create a new design, you must
incorporate sufficient controllability and observability for
comprehensive testing. Therefore, the design
schedule for a new gate array device must include time
to incorporate testability features, develop test vectors,
and specify test software.

Software to test a complete gate array requires
comprehensive fault simulation and test grading, and
significant amounts of expensive computer time. It
typically requires a series of time-consuming and
expensive test iterations to reach 80% fault coverage B
for a typical design; the cost of greater coverage is often
prohibitive. In production, many gate array vendors
either limit the number of test vectors you can use, or
charge for using additional ones.

When you design a gate array, you can improve your
design's testability using special, testable, storage
elements, called scan cells, in place of flip-flops and
latches. Although using scan cells can reduce the
production testing costs, it typically adds about 30%
more circuitry, decreases performance by up to 20%,
and increases design time.

LCA devices are designed for ease of
testing. The testability of an LCA device is similar to
that of other standard products, including
microprocessors and memories. LCA design and test
strategies, discussed below, make LCA devices highly
testable.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

8-3
2

8.1.2 TESTING
PROCEDURES

The LCA design strategy has the following features.

It incorporates testability because you can
configure each functional node and route it to 1/0
pads.

It permits repeated exercise of the part
without removing it from the tester, because only a
short time is required to load new configuration
data.

It produces a standard product that
guarantees that every valid configuration works.

The LCA test strategy is characterized by the following.

It reads and writes all bits in the configuration
memory, as in memory testing.

It uses an efficient parallel-testing
scheme that fully tests multiple configurable logic
blocks (CLBs) simultaneously.

It is exhaustive because all CLBs are identical.

As an LCA device user, you can better appreciate the
LCA test procedures by examining each of the testing
requirements listed below.

LCA testing exercises and verifies all configuration
memory bits using a read-back mode.

LCA testing detects all possible process-related
faults, such as short circuits. The LCA design lets
you drive and observe every metal line directly
from the 1/0 pads.

LCA testing configurations provide good
controllability and observability. The

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

June 1988

8.1.3 SUMMARY

June 1988

controllability and observability requirements are
feasible for LCA devices because all CLBs can be
connected to 1/0 pads. This LCA characteristic
makes CLBs easy to control, by testing
different input combinations, and easy to
observe, by comparing the actual outputs with
expected values.

The test features and procedures described above
indicate that the LCA device was carefully
designed to be 100% testable. This AMO test
strategy uses numerous design configurations to fully
test the LCA device. Furthermore, this strategy
reduces your design time because testability
requirements need not be considered during the
design cycle.

The AMO LCA device frees you from the burden of B
developing a test program and generating test vectors.
Also, it eliminates any questions about fault coverage
and the need for fault grading.

Testability is very important in quality-sensitive
applications. You can build significant added-value into
your design by using the higher-quality levels of an
LCA-based implementation.

The next discussion focuses on the integrity of data in
an LCA device. It explains the various aspects of
integrity, such as the robustness of the memory cells
that contain the configuration bit stream, the effect of
alpha particles, electrostatic discharge, latchup,
radiation, and high temperature on the reliability of an
LCA device.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

8·5
2

8.2 DATA
INTEGRITY

8.2.1 RELIABILITY

The high level of data integrity in the AMO LCA device is
based on the specially designed static memory cells
that store the LCA configuration data. All characteristics
that ensure reliable operation are designed into the
memory cells. These characteristics are described in
the discussions below.

8.2.1, Reliability
• 8.2.2, Alpha Particle (Soft Error) Sensitivity
• 8.2.3, Electrostatic-Discharge Protection
• 8.2.4, Latchup Protection

8.2.5, Radiation Hardness
8.2.6, High-Temperature Performance

An important aspect of the LCA device's reliability is the
robustness of the static memory cells that store the
configuration data.

The basic LCA memory cell shown below is a special,
single-ended, five-transistor memory element and not
the typical, six-transistor, memory cell. Eliminating the
sixth transistor, which usually functions as a pass
transistor for the complementary output bit, technically

. slows down the memory cell. However, using the five­
transistor, memory cell achieves a higher circuit density
with no impact on normal LCA device operation, as
explained below.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

June 1988

CONFIGURATION DATA SH!Ff REGISTER

------~------r
Vee

Q N -1- - -------IDs Q.,_. ___ -t

MEMORY CELL
CIRCUIT •

WORDN-I

MEMORY
CELL

WORD LINE
DRIVER

READ

ADDRESS

;ON-I

--------......----+----.---+--
MEMORY

CELL

BITM

Basic LCA Configuration Memory Cell

June 1988

MEMORY
CELL

BITM+I

I I
I I

During normal operation, LCA memory cell outputs are
fixed; they hold the LCA configuration. Because these
outputs do not change, the slower transition time of the
five-transistor configuration does not impact normal
operation of the LCA device at all.

The LCA memory cell outputs do change during the
configuration write and read-back operations, so using
the five-transistor cell slows down these operations.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

8-7
-2-

Ell

8-8
2

READ OR
WRITE

DATA

However, the write and read-back operations have no
impact on LCA performance during normal operation,
so the LCA user gets more functionality per unit area
with no noticeable performance impact.

The design of the basic memory cell also ensures the
LCA user of high data integrity in a noisy environment.
Consider the following three situations.

Normal operation
Write operation
Read-back operation

Q CONFIGURATION
CONTROL

Configuration Memory Cell

In normal operation, the data in the basic memory
element does not change. Because, as shown in the
above figure, the two circularly linked inverters that hold
the data are physically adjacent, supply transients result
in only small, relative, voltages differences. Each
inverter is actually a complementary pair of transistors;
so a low impedance path exists to the supply rail
whether the output is HIGH or LOW. This memory cell
configuration results in extremely high-noise immunity.
Power supply or ground transients of several volts have
no effect on the stored configuration data.

For the write operation, the transistor driving the
memory cell bit line is carefully designed so it can easily
override the output of the feedback inverter whenever

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

June 1988

8.2.2 ALPHA
PARTICLE
SENSITIVITY

June 1988

the data to be written to the memory cell is the opposite
sense of the stored data. The reliability of the write
operation is guaranteed within the manufacturing
process tolerances.

During a read-back operation, the bit line, which has
a significant amount of parasitic capacitance, is
precharged to a logic 1 . The pass transistor is then
enabled by driving the word line HIGH. If the stored
value is 0, the line is discharged to ground. Reliable
reading of the memory cell is achieved during a read­
back operation by reducing the word line HIGH level to a
level that ensures that the cell is not disturbed.

The CMOS static memory cell design is insensitive to
alpha-particle emissions. The following tests verify that
it achieves this design goal.

A 1-microCurie alpha-particle source (Americum 241)
was placed in direct contact with the top surface of a
2064 die, allowing the die to capture at least 40% of the
emissions from the radiation source. Next, the following
tests were performed.

1 . A complex pattern containing roughly 50% logic 1 s
was loaded into the 2064, at operating conditions
of 25oc and 5.0V.

2. A pause of variable duration was allowed.

3. The entire contents of the 2064 were then read
back and compared with the original data.

To ensure that the test setup would detect errors,
validation tests were performed before and after the
alpha particle tests, with the following results.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

8·9
2

8-10
2

Time Read-back Total Time
Test Duration (sec) Time (sec) Exposed (sec) Errors

1 1 0 70 80 0
2 120 70 190 0
3 300 70 370 0
4 1500 70 1570 0

Total 1920 280 2210 0
Validation Tests

The following discussion analyzes this alpha particle
testing. A 1-microCurie source emits 3. 7x1 o4 alpha
particles per second. Assuming that 40% of these are
captured by the 2064 during this experiment, this rate
corresponds to 5.3x1 o7 alpha particles per hour.

The alpha-particle-emission rate of the molding
compound used by AMO is specified to emit fewer than
0.003 alpha particles per square centimeter per hour
(alpha particles/cm2/hr). The 2064 die's surface area is
less than 0.5 cm2; thus, less than 0.0015 alpha particles
per hour are captured by the 2064 in normal operation.
Therefore, the error rate acceleration in this test equals

5.3 x 107 particles/hour
3.6 x 1010

0.0015 particles/hour

The 0.61 hours of test time without error correspond to
2.2x101 O hours, or 2.5 million years error-free
operation.

Most ceramic packages are specified to emit less than
0.01 alpha particles/cm2/hr, which is about three times
more than the plastic compound. For a 2064 in a
ceramic package, this still results in almost one million
years of error-free operation.

The highest rate of alpha particle emission comes from
the sealing glass used in cerdip packages and some
ceramic packages {frit lids). For instance, KCIM glass

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

June 1988

8.2.3 ELECTRO·
STATIC
DISCHARGE
PROTECTION

June 1988

emits about 24 alpha particles/cm2/hr. Low alpha
glasses are specified at 0.8 alpha particles/cm2/hr.

Because the glasses are used only for the package
seal, they present a relatively small emitting cross
section, less than 0.1 cm2 square, to the die.
Therefore, a low-alpha glass would cause fewer than
0.8 alpha particle hits per hour. The acceleration factor
is then 6.6x1 as, which translates to about 46,000 years
of error-free operation.

Clearly, the AMO LCA memory cell design ensures that
soft errors caused by alpha particles can be ignored.

Electrostatic discharge (ESD) protection for each LCA
pad is provided by a circuit that uses forward- and
reverse-biased distributed resistor-diodes, as shown in
the following figure.

Input Protection Circuitry

Also, the inherent capacitance integrates any current
spikes to give the diode and breakdown protections
sufficient time to provide a low-impedance path to the
power-supply rail. The LCA geometries and doping
levels are optimized to provide sufficient ESD

2000 SERIES LOA DESIGN HANDBOOK CHAPTER 8

8.2.4 LATCHUP
PROTECTION

8-12
-2-

protections for both positive and negative discharge
pulses.

Latchup is a condition in which parasitic bipolar
transistors form a positive feedback loop; this allows the
current to quickly reach levels that permanently damage
the device, as shown in the foilowing figure.

SCRModel

Latchup is caused by the formation of parasitic bipolar
transistors around two adjacent CMOS transistors. A
Semiconductor Controlled Rectifier (SCR), or thyristor,
is formed, as shown in the diagram of the SCR model.
The net effect of latchup is the static short circuit
created from VDD to Vss as the positive feedback
causes both parasitic transistors to turn on. The
phenomenon of latchup can cause permanent damage,
because the short circuit current overheats and
ultimately, destroys the CMOS gate.

AMO uses techniques based on doping levels and
circuit placement to avoid latchup. The cross section of

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

June 1988

NsussTRATE DUMMY

CMOS Input Circuit Layout

June 1988

the transistor shown below illustrates some of these
protection features.

First, reducing the gain of the parasitic transistors
protects against latchup. Because the overall loop gain
is minimized, the likelihood of positive feedback is
reduced. This is achieved by increasing the width of
the transistor bases, which lowers the parasitic
transistors' beta.

Second, the butting of contacts effectively shorts the
N+ and P+ regions of both wells, so a forward bias VaE

cannot be established to start the two parasitic
transistors' conduction.

Finally, a guard ring surrounds each well. The N+ ring
region is taken to VDD and the P+ ring region is taken to
Vss. This acts as a reversed-biased diode between the
two CMOS transistors, effectively isolating them.

COLLECTOR

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

EJ

8.2.5 RADIATION
HARDNESS

8.2.6 HIGH
TEMPERATURE
PERFORMANCE

8-14
-2-

A preliminary estimate of the circuit's hardness to
withstand ionizing radiation ranges from 10,000 to
100,000 rad SI. This estimate was reached with Sandia
National Labs and is based on the design and layout
parameters of the LCA device.

AMD guarantees parts to perform within the
specifications of the datasheet. Furthermore, AMD has
performed extensive high-temperature life testing at
12s0 c with excellent results.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8

June 1988

CHAPTER 9

NONHERMETIC PACKAGE RELIABILITY

NONHERMETIC PACKAGE RELIABILITY ... 1
9.1 TESTING OVERVIEW ... 2
9.2 TEST PROCEDURES ... 3

9.2.1.1 High-Temperature Life Test... .. .4
9.2.1.2 Biased Moisture Life Test.. .. .4

9.2.2 PACKAGE INTEGRITY AND ASSEMBLY QUALIFICATION 4
9.2.2.1 Unbiased Pressure-Pot Test .. 5
9.2.2.2 Temperature-Cycling Test .. 5
9.2.2.3 Resistance to Solvents Test.. ... 5
9.2.2.4 Solderability Test ... 5
9.2.2.5 Lead Integrity Test ... 6

9.3 SUMMARY ... ?

June 1988

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

•~i
T

El

9-ii
-2-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

June 1988

9

June 1988

NONHERMETIC PACKAGE
RELIABILITY

This chapter describes the nature and purpose of the
various reliability tests that AMO performs on finished
devices.

The overview of AMD's testing software, 9.1,
explains the applied testing standards.

The discussion on AMD's test procedures, 9.2,
describes the tests performed for die qualification,
package integrity, and assembly qualification.

The chapter summary, 9.3, shows test data from
the initial qualification tests.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

9.1 TESTING
OVERVIEW

AMO is committed to delivering the highest quality,
most reliable, programmable gate arrays possible. A
strong quality assurance and reliability regimen begins
at the initial stages of design and carries through to final
shipment. The ultimate proof of AMO's success is in the
performance of the LCA device in your applications.

AMO uses an extensive, continuing reliability-testing
process to predict the field performance of the LCA
device. These tests provide an accelerated means of
emulating long-term system operation in severe field
environments. From the performance of the devices
during these tests, AMO predicts actual field
performance.

AMO performs qualification testing of nonhermetic
devices to demonstrate the reliability, both of the
device die and of the materials and methods used in
assembling the device. AMO testing methods are
derived from, and patterned after, those specified in
MIL-ST0-883. However, AMO does not intend the MIL­
ST0-883 reference to imply that nonhermetic products
comply with those requirements.

These test methods are recognized industry-wide as
stringent tests of reliability. The tests are commonly
used for non-military-grade semiconductor devices, as
well as for fully compliant military-grade products.

The following discussion describes the various test
procedures used. The summary shows the qualification
test data for the 2064/2018 devices. Upon request,
AMD's Quality Assurance and Reliability
Department will make updated summaries available.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

June 1988

9.2 TEST
PROCEDURES

Name of Test
1. High-Temperature Life

2. Biased Moisture Life

3. Unbiased Pressure Pot

4. Temperature-Cycling

5. Resistance to Solvents

6. Solderability

7. Lead Integrity .

The following table summarizes the reliability testing
sequence for nonhermetic logic cell array device die­
package qualification.

Test Conditions
•1000 hr min. equivalent at
temperature = 1250 C

•Max, rated operating voltage
•Life test circuit equivalent to
MIL-STD-883

•1000 hr min. exposure
·T=85oc, RH=85%
•Max. rated operating voltage.
•Biased-moisture life circuit
equivalent to MIL-STD-883

•168 hr minimum exposure
•T = 1210 C, P = 2 atm H2o sat

•MIL-STD-883, Method 1010, Cond. C
·-65° c to + 1500 c
•100 cycles

MIL-STD-883, Method 2015

MIL-STD-883, Method 2003

MIL-STD-883, Method 2004

Results/Parameters
LTPD=5, S=77, C=1

Notes: Lot Tolerance Percent Defective (L TPD); Minimum Sample Size (S); Maximum Acceptable
Failures _{_CJ_

9.2.1 DIE
QUALi FICATION

June 1988

AMO performs a High-Temperature Life Test and a
Biased-Moisture Life Test to check the long-term
operating characteristics of the LCA die.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

9-3
2

9.2.1.1 High·
Temperature Life
Test

9.2.1.2 Biased
Moisture Life Test

9.2.2 PACKAGE
INTEGRITY AND
ASSEMBLY
QUALIFICATION

AMO performs the High-Temperature Life Test to
evaluate the long-term reliability and life characteristics
of the die. It is defined by the Military Standard (from
which it is derived) as a die-related test, and it is
contained in the Group C Quality Conformance Test.
Because of the time-acceleration factor induced by
higher-temperature testing, AMO can accumulate, in a
reasonable period of time, data representing a large
number of equivalent hours at a normal temperature of
7o0 c.

AMO performs the Biased-Moisture Life Test to
evaluate the reliability of the die under conditions of
long-term exposure to severe, high-moisture
environments that could cause corrosion. Although it
clearly stresses the package as well, this test is typically
grouped under the category of die-related tests. AMO
operates the device at 5.0 VDC, and exposes it to 950 C
and 85% relative humidity throughout the test.

AMO performs the following tests to check the quality
and integrity of both the package and the assembly.

Unbiased Pressure-Pot Test
Temperature Cycling Test
Resistance-to-Solvents Test
Solderability Test
Lead-Integrity Test

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

June 1988

9.2.2.1 Unbiased
Pressure-Pot Test

9.2.2.2 Tempera·
lure-Cycling Test

9.2.2.3 Resistance
to Solvents Test

9.2.2.4 Solder·
ability Test

June 1988

AMO performs the Unbiased Pressure-Pot Test at 21 o
C and two atmospheres of saturated steam to evaluate
the ability of the plastic encapsulating material to resist
water vapor. Moisture penetrating the package could
induce corrosion of the bonding wires and bonding
pads of the LCA die. Under extreme conditions,
moisture could also cause drive-in and corrosion under
the bonding pads. Although it is difficult to correlate
this test to actual field conditions, it provides a well­
established method for comparison of plastic packaging
materials and assembly and molding techniques.

AMO performs the Temperature-Cycling Test to
evaluate the long-term resistance of the package to
damage from alternate exposure to extremes of El
temperature or from intermittent operation at very low
temperature. The temperature range for the test is
-65° C to + 1500 C. The transition time is longer than
that in the Thermal Shock test but the test is conducted
for many more cycles.

AMO performs the Resistance to Solvents Test to
evaluate the integrity of the package marking during
exposure to a variety of solvents. This is an important
test because an increasing number of board-level
assemblies are subjected to the severe conditions of
automated cleaning before system assembly. AMO
performs this test according to MIL-ST0-883, Method
2015.

The Solderability Test evaluates the solderability of the
leads under conditions of low-soldering temperature
following exposure to the aging effects of water vapor.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9 ...
2

t.a.a.s L••ct
Integrity Te•t

The Lead Integrity Test is performed to evaluate
integrity of the package leads. AMO performs this test
according to MIL-STD-883, Method 2004.

A summary follows.

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

June 1988

9.3 SUMMARY

Device Type: 2064/2018

Die Attach Method : Silver Epoxy

The following test data summarizes the performance of
LCA devices during AM O's qualification tests. These
test results demonstrate the reliability and expected
long life of the AMO nonhermetic product line. This
continuing series is part of the AMO reliability testing of
nonhermetic devices.

Process/Technology: 1.5 and 2.0 Micron Double-Layer Metal CMOS

Package Type: 68 lead PLCC

Moldirig_ Comj)_ound: Sumitomo 6300K, H Date: 2Q, 1987

1. High-Temperature

Life Test T=1250 C

Combined

Sample Failures

850 4

2. Biased-Moisture

Life Test Combined

T=85°C; Sample Failures

RH=85% 486 2

3. Unbiased

Pressure-Pot Test Combined

+121oc, Sample Failures

2 atm sat. steam 488 1

4. Temperature

Cycling Test Combined

-650C+1250 C, Sample Failures

1000 cy.lmin)_ 233 1

5. Temperature Cycle

Test Combined

oo Cto + 1500 C Sample Failures

Method 1009,Cond. A 50 0

6. Resistance-to-

Solvents Test Combined

MIL-STD-883, Sample Failures

Method 2105 16 0

7. Solderability Test Combined Failures

MIL-STD-883, Sample

Method 2003 30 0

June 1988

Equivalent

Mean

hrs/Device

atT=1250C

2332

Mean hrs

per Device

1000

Mean hrs

per Device

139

Mean

Cycles

per Device

812

Mean hrs

per Device

24

Equivalent Equivalent

Equivalent Failure Rate Failure Rate

Device hrs in %/1 OOOhrs in %/1 000 hrs

atT=1250 C atT=1250C atT=700C

2033967 0.19 0.0027

Total

Device hrs

486000

Total

Mean hrs

67832

Total

Device

Cycles

189196

Total

Device hrs

1200

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

9.7
2

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9

June 1988

Active Edge

Active High

Active Low

Active Pod

Active Sense

Adder

Analysis Tool

AND

Application Specific
Integrated Circuit

APR

ASCII

June 1988

GLOSSARY

A low-to-high or high-to-low signal transition that
initiates an action.

A high-voltage active sense.

A low-voltage active sense.

The pod with setup information that is displayed on
XACTOR's screen. The LED lights to indicate it is
active.

The voltage level, either high or low, associated with the n
active state, which is a logical 1 or o.

A digital circuit that adds numbers.

Software that automatically or interactively determines
circuit characteristics.

A logic function that is true if all variables are true, false if
at least one variable is false.

ICs that are at least partially tailored for a particular
application. Includes field programmable devices such
as PALs and LCA devices, and factory programmable
devices such as gate arrays, standard cells, and
completely customized ICs.

See Automatic Placement and Routing.

The American Standard Code for Information
Interchange is an eight-bit code used for sending
information over a data line.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

ASIC

Assert

Assertions

Asynchronous Logic

Automatic Placement
and Routing

Back Annotation

Base Configuration

Bidirectional

Bit

Bit Stream

Block

See Application Specific Integrated Circuit.

To cause a signal to change from its inactive to its active
state.

In timing analysis, designer-provided information that
describes certain timing relationships between signals
in a portion of the circuit.

Logic that is not clocked by, or synchronized with, the
system clock.

A software tool that automatically positions logic blocks
and calculates wiring paths or signal interconnections
during circuit design.

The process of attributing delay times to a design.after it
has been partitioned. This is only valid if the partitioned
design is equivalent to the original schematic design.

The arrangement of logic within a CLB. The base
configuration can be either two functions of up to three
variables each, one function of up to four variables, or
two functions of up to three variables, multiplexed by
the B input.

A circuit element, or primitive, that passes signals or
data in either direction. This contrasts with the more
traditional unidirectional design elements, which only
pass input signals from input ports to output ports.

One unit of binary data. A logical 1 or 0.

The configuration data required by an LCA device to
determine the functions of CLBs, IOBs, and
interconnections.

A CLB, 108, clock buffer, or oscillator.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Block Editor

Bottom-up
Hierarchical Design

Buffer

Byte

Cerdip

Circuit

Circuit Simulation

CLB

Clear

Clock

CMOS

Combinational Logic
Gate

June 1988

Part of the LCA design editor that performs commands
to configure CLBs and IOBs. See LCA Design Editor.

A structured approach to organizing circuit design data
in which the designer begins with a definition of the
lowest primitives, or elements, then proceeds to build
higher-level functions using those elements. As the
hierarchical definition process concludes, the designer
expresses the overall circuit structure in terms of high­
level functional blocks and their interconnections.

An amplifier that increases drive capability and
temporarily stores digital data.

Eight bits.

The ceramic IC dual in-line package that uses a frit­
sealed process.

A combination of electrical and electronic components
that perform specific functions.

A software breadboard to verify design functionality and
performance. Software that logically emulates a circuit's
functions to ensure proper design.

See Configurable Logic Block.

To force to a logical 0. See Reset.

A register whose content changes at regular intervals,
generating periodic signals for synchronization and
causing one logic decision to be made for each signal
transition.

See Complimentary Metal Oxide Semiconductor.

A combination of gate networks that generates a
specific function and has no storage capability.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

G·3
2

Command File

Comparator

Complimentary Metal
Oxide
Semiconductor

Configurable Logic
Block

Configuration Data

Congestion

Control Signals

Controllability

Counter

Critical Path
Evaluation

Current Block

Current Design File

G·4
2

A text file consisting of XACT LCA Editor commands
and run by the EXECUTE command.

A digital device that compares the magnitudes of two
digital quantities and indicates their relationship.

A widely-used IC technology with low-power
consumption, high noise immunity, and moderate
speed.

An LCA sub-unit that contains configurable
combinational-logic and data-storage circuitry.

The data required by an LCA device to determine the
functions of CLBs, IOBs, and interconnections.

A high concentration of interconnections routed in one
area.

Signals that control functional elements through the
data signals in a digital circuit.

The degree to which signals in a part of a circuit can be
made to take on specific values through manipulation of
primary inputs; used in testability analysis.

A digital circuit capable of counting electronic events,
such as pulses, by progressing through a sequence of
binary states.

The identification and analysis of signal paths whose
delays could limit the speed of the circuit.

The selected CLB or IOB to which all Block Editor
commands apply until another block is selected. See
Block Editor.

The design file that was designated by the user to be
loaded when invoking an XACT program. See Design
File.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Cursor

D Flip-Flop

Daisy Chain

DBK File

De-assert

Decoder

Default Value

Delay

Design Analysis

Design Approach

June 1988

A screen symbol controlled by the mouse. Used for
selecting and positioning menu items and objects on
the screen. See Selection.

A type of bistable multivibrator in which the output
follows the state of the D input. See Flip-Flop.

Several devices connected in such a way that
configuration data move serially from one device to the
next.

A temporary file that stores all commands entered
during an (LCA Editor) editing session. After the
session, the temporary file is saved with the extension
.DBK. See Log File.

To cause a signal to change from its active to its inactive
state.

A digital circuit that converts coded information into a
recognizable form.

The value used when none is specified by the user.

The timing interval between the occurrence of an event
at one point in a circuit and the corresponding
occurrence of a related event at another point.

A set of tools and techniques used to study the
operations of a circuit to determine, among other
things, how a particular implementation compares to the
design specification.

A method used to construct a system design.
Possibilities include LCA devices, PALs, gate arrays,
standard cells, silicon compilers, full custom !Cs, and
standard products.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

G·5
2

Design Cycle

Design File

Design for
Testability

Design Methodology

Design Productivity

Design Rule Checking

Design Rules

Design Synthesis

Design Verification

Design Verification
Test Data

OFT

G-6
2

The sequence of phases through which a circuit design
evolves. During each phase, the design is further
developed by a combination of analysis, synthesis, and
verification techniques, to create a more detailed
representation of the circuit.

A file containing information about a specific LCA
configuration. Design files contain the LCA suffix in
their names.

A design process to ensure that a product can be
thoroughly tested with minimum effort, and that the test
results are reliable.

An approach or technique that solves certain circuit
design problems.

A measure of the rate at which circuit designs are
produced, usually expressed in terms of design cost.

Part of the design process that checks for conformance
to electrical rules.

Circuit development guidelines that focus upon
conformance to basic electrical engineering and logic
design principles.

A design discipline that fills in the detail of an abstract
design; for example, creating a Boolean equation.

The process of confirming or validating that the design
meets the required specifications. There are many
ways to verify a design, ranging from formal proofs or in­
circuit emulation, to informal, tailored methods. The
most common verification method is simulation.

Sequences of input stimuli applied to a design to
determine that the circuit functions as intended.

See Design for Testability.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Dice

Die

Die Size

DIP

Direct
Interconnection

OMA transfer

DRC

Dual In-line Package

Edge-Triggered
Flip-Flop

EEPROM (E2 PROM)

Electrically Erasable
and Programmable
ROM

Electrostatic
Discharge

Enable

June 1988

Multiple die. See Die.

A tiny piece of the silicon wafer that, when packaged,
becomes an IC.

The rectangular area of silicon, the measurement of
which is expressed in square microns or mils.

See Dual In-line Package.

Dedicated connection of adjacent CLBs, IOBs, and
outputs. It provides the shortest propagation delay and
uses minimal interconnection networks.

A method of accelerated loading of configuration
information into multiple LCA devices by means of
direct memory access hardware.

See Design Rule Checking.

Type of packaging widely used for IC chip assembly. It
has two parallel rows of connection pins, usually on
0.100 inch (100 mil) centers.

A flip-flop for which the input and output data appear on
the same clock edge. See Flip-Flop.

See Electrically Erasable and Programmable ROM.

Similar to an EPROM, but it stores the charge on a
floating gate. Newer EEPROMs can erase individual
data bytes.

The neutralizing action of two oppositely charged
materials.

Allows a circuit to respond to an input. For example, a
clock enable signal lets a circuit respond to its clock
input.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

G·7
2

EPLD

EPROM

Encoder

Erasable Program­
mable ROM

ESD

Exclusive-OR

Executive

Fall Time

Fanout

Fault Grading

Field Programmable
Logic

Flip-Flop

Floppy Disk

Full Adder

G·8
-2-

Erasable Programmable Logic Device, such as an
EPROM.

See Erasable Programmable ROM.

A digital circuit that converts data into coded format.

Usually refers to the UV erasable, 2764 device type.
Generally, EPROMs are erased by shining ultraviolet
light on the chip through a quartz window on the
package.

See Electrostatic Discharge.

A logic function that is true if one of the variables is true
and the other is false.

The XACT software that sets initial values for, and
invokes all other, XACT software modules.

The time interval between the 1 O percent and the 90
percent points on the negative-going edge of a pulse.

The number of equivalent gate inputs, or unit leads,
that a logic gate can drive.

The process of measuring a test vector's effectiveness
in locating defects in an IC.

Standard products that the user can configure to a
specific application, such as PALs, FPLAs, and LCA
devices.

A digital circuit used to store one bit of information,
either O or 1. Also known as a toggle.

A magnetic storage device. A flexible mylar disk.

A digital circuit that adds two binary digits and an input
carry to produce a sum and an output carry.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Function

Function Key

Functional Primitives

Gate

Gate Array

General Purpose
Interconnections

Glitch

Half Adder

Hard Macro

Hold Time

In-Circuit Emulation

Initial Value

June 1988

The specific purpose of an entity or its characteristic
action.

A programmable key on the IBM PC keyboard.
Typically, the software defines the function.

Design building blocks such as adders, shifters,
decoders, and memory. A functional primitive differs
from a gate-level primitive only in the individual
element's degree of functional complexity.

A digital logic element. The binary value of the output
depends on the values of the inputs according to some
logic rule.

A digital IC with a configuration of uncommitted
elements that are interconnected by one or more
routing layers.

Horizontal and vertical metal segments joining LCA
switching matrices.

An unwanted voltage or current spike, typically of short
duration.

A digital circuit that adds two bits to produce a sum and
an output carry. It cannot accommodate input carries.

A macro with a predetermined physical layout.

The amount of time, after the clock transisiton, that the
data input to a flip-flop must be stable for proper
operation.

A design system that uses software and hardware to
test and debug LCA devices in a target system.

The preset value for an option when the software is
invoked. After the software starts, the option's value
can be changed.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

Q.9
-2-

El

Initialize

Input Line

Input Loading

Input Stimuli

Input/Output Block

Instance Name

Interactive Simulator

Interconnection

Inverter

Invoke

108

G·10
-2-

The process of establishing an initial condition or
starting state. For example, setting logic elements in a
digital circuit, or the contents of a storage location, to
known states so that subsequent application of digital
test patterns drive the logic elements to another known
state. Initialization sets counters, switches, and
addresses to zero or other starting values at the
beginning of, or at prescribed points in, a computer
routine.

A line on the XACT screen that displays the characters
typed at the keyboard. Pressing the <Return> key
signals that the content of the input line is complete.

The number of unit loads that one output can drive.

The parameters in a software program used to test a
circuit or simulated circuit. .

An 108 is a sub-unit that can be configured to connect
the LCA device's internal circuitry to external pins.

A name assigned to each occurrence of a macro. The
instance name is used to create unique net and block
names. See Macro.

A circuit-simulation tool that lets the designer halt circuit
emulation at any point. This allows detailed investiga­
tions of localized signal relationships, changes to sim­
ulated input signals, or changes to simulator directives.

A sub-unit of an LCA device that can be configured to
connect two or more internal points.

A logic device that complements a logic variable.

To load and run software on a computer. This action
includes the setting of initial values.

See Input/Output Block.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

J-K Flip-Flop

Johnson Counter

Karnaugh Map

Large Scale
Integration

Latch

Latch up

Layout

LCA

LCA Design Editor

LCC

Leadless Chip
Carrier

June 1988

A flip-flop that operates in the set, reset, no change,
and toggle modes. See Flip-Flop.

A state machine based on shift registers using the
absolute minimum amount of feedback. The output of
the final register in the chain is inverted and fed into the
least significant register in the chain.

An arrangement of cells representing combinations of
variables in a Boolean expression. Used for a
systematic simplification of the expression.

An IC equivalent of 100 to 10,000 logic gates.

A logic device that transfers the data of its input to its
output when load enable is active; it retains its value
when load enable is inactive.

A condition in which the output of a circuit has become
fixed near one of two voltage extremes. The circuit no
longer reacts to changes in the input signal. This is a
common problem with CMOS gates.

That portion of the design cycle during which the logical
or electrical definition of the circuit is transformed, via
placement and routing, into a physical equivalent that
can be manufactured.

See Logic Cell Array.

The XACT software used to create and edit the LCA
design file.

See Leadless Chip Carrier.

A high-density IC package with J-bends suitable for
socket or surface mounting.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

G·11
-2-

Length Count

LFSR

Library

Linear Feedback
Shift Register

Load Pin

Log Fiie

Logic Cell Array

Logic Element

Logic Simulation

Logical Primitive

Long Line

G·12
2

Part of the configuration software that specifies the
number of Configuration Clock (CCLK) cycles from the
start of configuration to the start of operation.

See Linear Feedback Shift Register.

A collection of predefined elements, primitives, macros,
and larger functional blocks.

A synchronous counter. The input bit is computed by
XORing several bits of the current state.

The pin to which signals flow. See Source Pin.

A file containing all commands entered during an
editing (LCA Editor) session. Each time an LCA design
file is edited, a new log file replaces the existing one.
Log files have the extension .LOG.

A device that can be configured or programmed to
perform a range of functions. LCA devices may replace
circuits that range in size from SSI to VLSI devices.

A sub-unit of a CLB that contains combinational-logic
circuitry.

The process of building and functionally validating a
digital circuit model on a computer. A logic simulator
computes signal values as a function of time in an
arbitrary circuit, given the initial state and input
sequence to the circuit.

Building blocks such as a NANO, NOR, inverter, or
SSl/MSI TIL package.

An interconnection that routes a signal to several
destinations in an LCA device. This type of
interconnection runs the length or width of an LCA
device and is often used for clock signals.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

LSI

Macro

Macro Library

Master Mode

MB/Mb

Medium Scale
Integration

Menu

Message Line

Metastability

Micron {µ)

June 1988

See Large Scale Integration.

Explicitly identifiable portions of a design that can be
described as entities. Design elements may be
primitives, interconnections of primitives, or inter­
connections of larger elements.

A collection of macros provided by a vendor and used
as building blocks in chip design. Organized or
classified by function, macro libraries consist of files
stored in directories. See Macro.

A configuration mode in which configuration data is
transmitted in parallel, byte-wide form from an external
memory to the LCA device. The LCA device generates
read-addresses and automatically serializes the data for
internal storage.

Megabyte/megabit.

Traditional, standard, digital logic components having
approximately 10 to 100 functional logic gate
equivalents.

A list of items that appears on the display. Each item
can be input to the computer by selecting it with the
mouse. See Selection.

The display line on an active workstation through which
commands can be entered and on which status
messages or prompts appear.

Metastability is defined as an output state between a
valid logic HIGH and LOW for any digital device. It can
occur for registers or latches when certain parameters,
such as data set up-and-hold times, are violated.

One micrometer; one millionth of a meter. The basic
unit of measure for VLSI geometries.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

G·13
2

MS-DOS

MSI

Multiplex

Multiplexer

Mux

NANO

Net

Net list

Netlist Formatting

Nibble

Node

Nominal Delay

Non-Recurring
Engineering Costs

G-14
2

A common IBM-PC operating system. The LCA
development system runs under MS-DOS.

See Medium Scale Integration.

To put information from several sources onto a single
line or transmission path.

A digital circuit capable of multiplexing digital data.

Abbreviation for multiplexer.

A logic function that is true if at least one variable is false
or false if all variables are true. This is equivalent to an
inverted AND function; i.e., Not AND.

A collection of nodes that are interconnected by wires.
Also known as a signal network or signal net.

A list of circuit elements and their interconnections.

Extracting netlist data from a database and putting it into
a format that can be used by another software tool.

Four bits, or half a byte.

An identifiable point in a design that must be electrically
connected to other nodes by wires. A node can be
associated with a specific device or geographic location.

The mean time signals take to propagate through a logic
element or a wire. The effect of an input change to an
element on the output does not occur until after the
nominal delay.

Costs charged to the user for development of tooling
and other services during semicustom chip design and
production.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Non-Volatile

NOR

NAE

Observability

OR

Pad

Peripheral Mode

PGA

Physical Intercon­
nection Editor

PIE

Pin

Pin Grid Array

PIP

PLA

June 1988

Memory, such as PROMs and magnetic bubble
memorie modules that retain data even after power-off.

A logic function that is true if all variables are true, false if
at least one variable is false. This is equivalent to an
inverted OR function; that is, Not OR.

See Non-Recurring Engineering costs.

In testability analysis, a measure of the degree to which
the operation of signals in a certain part of a circuit can
be monitored.

A logic function that is true if at least one variable is true,
false if all variables are false.

An area on the chip used as a contact point by the IC's
package pins.

A configuration mode in which the LCA device acts as a
peripheral device. An external device, such as a
processor, that loads the configuration data bits serially
into the LCA device.

See Pin Grid Array. Also ascribed to programmable gate
array.

The LCA Editor that configures interconnections and
the locations of configured blocks. See LCA Editor.

See Physical Interconnect Editor.

The point on a device at which an electrical connection
can be made.

A high pin density ceramic package.

See Programmable Interconnection Point.

See Programmable Logic Array.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

El

Plastic Leader Chip
Carrier

PLCC

Power-Down State

Preamble Nibble

Primitive

Product-of-Sums

Profile

Programmable Inter­
connection Point

Programmable 1/0

Programmable Logic
Array

G·16
2

An IC package with J-bend leads suitable for socket or
surface mounting.

See Plastic Leaded Chip Carrier.

An idle current condition when the LCA device's power
supply requirement can be reduced to a minimal level.
Under this condition, circuit activity is suspended and all
configuration data are preserved.

A specific series of four data bits that signals the start of
the configuration data for LCA devices.

The basic building block of design entry. Primitives are
not expanded during design entry but are used as
single blocks. There are several levels of primitives.
Basic systems only use combinational gates and
Boolean operators. More complex systems include
sequential elements such as latches, flip-flops, delay
lines, and monostables in their primitive sets. Some
systems include higher-level functions such as
counters, shift registers, ROM and RAM as primitives.

A Boolean expression that is the ANDing of ORed
terms.

A set of commands stored in a file with a .PRO
extension to define options that configure the PC
environment.

A configurable connection between interconnection
segments.

Buffers that the user can configure as input, output, or
both.

A rectangular array of AND and OR gates used to
generate a group of control functions in sum-of­
products form. See also LCA.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Programmable
Read-Only Memory

PROM

Propagation Delay

P-SILOS

Pull-Down Menu

Race

RAM

Read

Register

Reset

Ripple Counter

Rise Time

June 1988

A ROM that can be programmed by the customer.

See Programmable Read-Only Memory.

The time difference between the change of an input
signal, or clock, and the change of the output.

A software breadboard that tests a hardware system to
verify functionality before the actual hardware is
programmed.

A menu that appears when you select its name using
the device that drives the cursor. The menu usually
overlaps other elements on the screen.

In asynchronous digital logic, the concurrent change of ...
two or more feedback lines. If the circuit's final state ~
does not depend on the order in which the variables
change, the race is noncritical; otherwise it is critical.

Random access memory.

The process of retrieving information.

A digital circuit capable of storing, or moving through,
shifting binary information. Usually used as a temporary
storage device.

The state of a flip-flop, register, or counter when only Os
are stored. Equivalent to the CLEAR function.

A digital circuit made up of a series of flip-flops in which
the contents are continuously recirculated.

The time required for the pulse's positive-going edge to
go from 1 O percent of its full value to 90 percent of its
full value.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

G·17
2

Rise/Fall Delay

ROM

Route

Routing

Scan Test

Schematic Capture

Schematic Diagram

Schmitt Trigger

Schottky TTL

G-18
-2-

A circuit simulation feature that lets different output rise
(0 to 1) and fall (1 to 0) times to be specified. This more
closely approximates the actual timing parameters of a
device, as compared to nominal delay models that
assume equal rise and fall times.

Read only memory.

To configure the interconnection between pins.

The process of configuring interconnections between
pins.

A test method whereby data is shifted into SRLs and
results are shifted out. Additional circuitry typically must
be included in the design to support this type of
testing.

The process of entering a circuit diagram into a
computer system using a CAE editor.

A circuit diagram in which components are represented
by standard, simple, easily drawn symbols.

A circuit with snap action that produces a sharp, single
transition from slowly changing inputs. Positive
feedback shifts the threshold as soon as it is first
reached. If the signal is diminished due to noise, the
output remains steady.

An improved version of TIL logic in which saturation of
the transistors is prevented and impedance of the
output circuit is reduced. Thus, 7 4S logic gates have a
maximum delay of 7 ns compared to 15 ns for TTL
without Schottky. Power dissipation, however, is about
twice that of TTL. Low-power Schottky TTL, or 7 4LS
series, has a maximum delay of 28 ns and requires 80%
less power than a normal TTL device.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Selection

Semicustom IC
Setup Information

Set

Setup Time

Shift Register

Simulation

Simulator

Slave Mode

Small Scale
Integration

Soft Error

Soft Macro

Source Pin

June 1988

The action of moving the cursor to a displayed item and
pressing the mouse button. The selected item is
received by the computer as input.

The information that configures the XACTOR
environment. Setup information may be stored in a file
for use at any time for a given XACTOR environment.

To force one or more storage elements to logical 1.

The amount of time, before the clock transition, that the
data input to a flip-flop must be stable for proper
operation.

A linear chain of storage elements that shifts the
contents of the storage elements one position for each
clock transition.

The use of computer tools that imitate a proposed
circuit design to validate its functionality. Timing and
performance considerations are ignored during
functional simulation.

A software breadboard that tests a hardware system to
verify functionality before the actual hardware is
programmed.

A configuration mode in which the LCA device receives
serial configuration data and all control signals from
another device, typically another LCA device.

Refers to traditional, standard, digital logic components
having one to approximately ten logic gate equivalents.

Refers to dropping or picking up bits in a non­
repeatable manner. Often caused by alpha particles.

A macro with no predetermined physical layout.

A pin from which a signal originates. See Load Pin.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

G-19
-2-

Specification (Spec)

Spike

SR flip-flop

SRL

SSI

Standard Cell

Standard Cell
Semicustom IC

Standby Mode

State

State Machine

Stimulus

Storage Element

A document defining the ground rules for circuit
design. It contains requirements, such as functionality,
performance, cost, temperature, and interface.

The output condition where the inputs are being
manipulated faster than the element's propagation
delay.

Set-reset flip-flop. See Flip-Flop.

Shift Register Latch. See Shift Register and Latch.

See Small Scale Integration.

A predefined mask-level design of a logic function or
simple functional element. A library of such standard
cells usually has a common height and a common power
distribution protocol. Used in the design and layout of
standard cell semicustom ICs.

Very large scale integrated circuits that are laid out using
predefined mask level definitions of standard logic
function cells. The standard cells are placed in rows or
columns so that they share power rails and have open
routing channels between adjacent row/column pairs.

Also called power-down. A mode whereby volatile
memory can retain data at a voltage level lower than
normal operation.

The condition of one flip-flop or a set of flip-flops.

A set of flip-flops for which the next state and the
outputs are functions of its current state and a set of
inputs.

Any physical or electrical input applied to a device
intended to produce a measurable response.

A sub-unit of a block that can store data.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Sum-of-Products

Switching Matrix

Switching Time

Synchronous Logic

T Flip-Flop

Tag

TOM

Test

Test Vector

Testability

Testability Analysis

June 1988

A form of Boolean expression that is the ORing of
ANDed terms.

An intersection of three or more segments of local
interconnections. Two segments are connected by
one switching-matrix connection.

A signal output's delay time from a defined HIGH to a
defined LOW, or vice versa. This delay is calculated as
the time between the specified reference points on the
voltage waveforms.

Clocked logic in which all logical signal changes are
keyed to clock transitions.

A type of flip-flop that toggles or changes state on each
clock pulse. See Flip-Flop.

A user-definable label or flag that can be applied to sub­
units of an LCA device.

See Time Division Multiplexing.

A procedure or action that determines, under real or
simulated conditions, the capabilities, limitations,
characteristics, effectiveness, reliability, or suitability of a
material, device, system, or method.

An array of inputs used to check for defects in an circuit.

A design characteristic that reliably determines in a
timely fashion the status of a system or of any of its
subsystems, i.e. operable, inoperable or degraded.
One measure of the quality of a circuit design is the
relative ease with which it may be tested.

A tool to measure the extent to which a design is
testable.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

G·21
2

Testability Measure

Three-State

Time Division
Multiplexing

Timing Analysis

Timing Verification

Toggle

Toggle rate

Top-Down
Hierarchical Design

Transistor-Transistor
Logic

TTL

Unit Delay

Attributes such as controllability and observability,
which give a quantitative measure of the extent to which
a design is testable.

A mode in which the circuit functions as an output,
input, or no connection (high impedance). Also called
Tristate.

Sending several signals during different time slots over
the same channel.

Evaluation of the behavior of a circuit design that takes
into account signal delay time but ignores logical
functionality. Timing analysis determines whether
signals arrive at their intended destinations in time.

A tool for checking that the various rules, such as clock
skews, are met and that the circuit functions at the
required speed.

To change to the opposite state.

The maximum clock frequency at which a flip-flop
storage element will toggle properly.

A design method by which increasing detail is added as
the design progresses. Top-down is typically used at
the beginning of the design cycle.

A logic family that uses multitransistor emitters to
perform logic functions. The gates have a 15 ns
maximum delay and require +5 V power of about 2 mA
per gate. Logic levels are normally +0.2 and +3.4 V,
and input threshold is nominally 1.2 V.

See Transistor-Transistor Logic.

A simulation technique used to verify functionality. In
this technique all the delays of the elements are set to
one time unit.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

Unit Delay
Simulation

Unit Load

Unknown Level

Unknown State

VDD

Verification

Very Large Scale
Integration

VLSI

Volatile

vss

Waveform Input

June 1988

A simulation that assumes equal propagation delays.

Under specific conditions, a measure of impedance
presented to an input or output. One gate input
represents a unit load to a gate output within the same
logic family.

A simulated signal value (or an electrical net) that is not a
one or a zero. This could be caused by an error or by
the node not being initialized.

Most memory elements used in sequential circuits are
bistable devices. When the power is turned on, they
are normally designed to have symmetrical configura­
tion; i.e., the initial state becomes unpredictable. Such
memory devices begin operation with internal memory ..
signal valuation designated as unknown. Unknown .:;.-
states can also be encountered during circuit operation
as the result of critical races, oscillations, or ambiguous
delays.

The most negative power supply voltage level in an
MOS circuit.

See Design Verification.

A circuit with more than 10,000 transistors.

See Very Large Scale Integration.

The attribute of losing stored information when power is
removed from a memory device.

The most positive power supply voltage level in a MOS
circuit.

The input data for a simulated circuit respresented as
waveforms.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

Wlldcard

Window

Wired-AND

Wired-OR

Wiring Congestion

Workstation

World View

Write

XACT

XACTOR

Zero Delay
Simulator

Zero/Unit Delay
Simulator

A symbol that can represent any character or characters.

A user-specified part of the LCA device that is displayed
on the LCA Editor screen and that can be manipulated.

An arrangement of logic circuits in which the gate
outputs are physically connected to form an "implied"
AND function.

Logic gates wired to implicitly create a logical OR
function.

See Congestion.

A single-user, stand-alone work aid. In the engineering
community, it consists of a microprocessor-based
system with a high-resolution screen and software to
carry out design functions. Popular workstation
vendors include OrCAD, Daisy, FutureNet, Mentor, and
Valid.

The entire LCA design that can be displayed on the
LCA Editor screen. See Window.

The process of storing information in memory.

Software that lets you specify the configuration of an
LCA device using interactive computer graphics.

A software/hardware package for performing in-circuit
emulation.

A simulator used for functional validation. The signals
have no delay.

Combination of the zero delay and unit delay simulation
concepts. A circuit is modeled with zero delay elements
and with unit delay circuits inserted into the feedback
lines and memory elements.

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY

June 1988

INDEX

A
alpha particles 8-1, 8-5,

8-9, 8-10

amplifier

input swing 4-30

linear circuit 7-3

output impedance 4-30

application-specific

integrated circuits

(see ASIC)

APR 2-12, 2-13, 5-2

constraints 2-8

ASIC 1-2, 1-5, 8-2

automatic placement and

routing (see APR)

automatic router 5-1 O

B
bit stream

generator 2-17, 6-2

loading 6-23

multiple configuration

6-31

read from PROM 6-8

block arrangement 5-7

Boolean equations 3-11

buffer

alternate 5-18

bidirectional 5-62

clock 4-27, 4-28, 5-10,

5-16

delay 5-57

following flip-flop 7-1 O

global 5-17, 5-18

non-inverting 4-4, 4-5

output 4-5, 4-11, 4-12,

4-21, 4-23

repowering 5-5, 5-6

June 1988

c
circuit density 8-6

CLB 3-1 , 4-21 , 5-26, 6-2

combinational portion 3-6

connection to 108 5-6

delays 5-56

for inversion 4-37

interconnections 3-4

layout 7-4

logic inputs and outputs

3-4

placement 5-23

programmable features

3-8

sharing 3-15

storage element 3-8, 3-9

storage element clearing

3-9

structure 3-4

timing 3-21

clock

buffer 2-14, 4-27, 4-28,

5-18

CLB3-22

common 5-21

controls 5-12

free-running CCLK 6-22

frequencies 7-2

global 2-14

input to register 7-2

lien 4-36

maximum rate for counter

3-28

metal clock distribution

network 3-37

multiple 5-17

output via Q 3-21

pulse 7-2

rate 7-11

shift register 5-18

single 5-26

skews 2-13, 3-21 , 3-37

system 5-60

transition 4-5

worst-case delay 7-5

CMOS 4-5, 8-9

array architecture 3-22

floating input 6-40

gate 8-12

PLD 1-4

processes 1-9

technology 1-9

voltage 4-5, 7-3

combinational loop 4-27

command

MAKEMASK 6-50

PROM formatter

commands 2-19

configurable logic blocks

(see CLB)

configuration

automatic control 6-8

bits 5-4

bit stream 1-8, 2-18, 6-2,

6-8

CLB 7-4

completion 6-3

configuration state 6-3

daisy chain 6-34

delay 6-16

device 4-28

disable 6-4, 6-18

DMA transfers 6-36

file 5-4

file format 6-44

initialization state 6-3

2000 SERIES LCA DESIGN HANDBOOK INDEX

1-1
2

input paths 4-7
IOB 7~4

LCA6-1

length count 6-45

Master high mode 6-6,

6-28, 6-29

Master low mode 6-21!1,

6-29

Master mode 6-6, 6-27,

6-30

Master parallel-low mode

6-6

Master parallel-low pin

usage 6-28

Master serial mode 6-6,

6-27

Master serial mode pin

usage 6-27

memory 6-3

mode 6-1, 6-3, 6-5, 6-6,

6-15

multiple LCA devices

6-14, 6-34, 6-42

parallel 6-36

partial 6-3

Peripheral mode 6-23,

6-25, 6-26

pin function 6-14

power-up delay 6-33

program 6-42

readback 6-1

Slave mode 6-6

state 6-3

techniques 6-1

time 6-8, 6-13

user-operation state 6-3,

6-4

verification 6-1

connection

1·2
2

direct 5-6, 5-7, 5-9, 5-18,

5-23, 5-24, 5-33,

7-11

editing 5-40

spreading 1/0

connections out

5-36

temporary 108 5-64

controls

clocks 5-12

count 5-12

set/reset 5-12

shift directien 5-12

controllability 8-4

control line

read/write (see

three-state control

line) 4-33

counter 5-21

binary-weighted 3-26

building counter of any

modulo 4-43

designing 3-30

Johnson 4-3, 4c37, 4-39

LFSR 4-44, 4-46, 4-47

low-modulo 4-37

Schmitt trigger 4-19, 4-21

simple ripple 3-26

states 4-43

synchronous 8-bit 3-30

various modulo and duty

cycles 4-39

D
data bus

unidirectional 6-28

data flow direction 5-11

data integrity 8-6

debugging 6-41

decoders 5-20

delay 1-8

accumulation 3-26

buffer 3-21, 5-57

calculator 2-15, 4-12,

5-42, 5-56, 5-58,

5-60, 5-62

CL8 3-21, 5-56

CMOS3-22

combinational

propagation 3-30

configuration 6-16

gates 3-21

interconnection 5-57

108 5-56

loop 4-5, 7-4, 7-5, 7-1 O
path 4-5, 7-6

power-up 6-3, 6-33

RIC 5-56

register 4-30

routing 4-12, 4-48

signal 5-62

synchronization 6-34

variations in LCA 3-22

worst-case calculations

2-15, 5-9, 5-56, 7-5

DeMorgan 4-16

density 1-2

design

analysis 1-11

configuration bit stream

2-17

controllability 8-3

data flow 5-20, 5-21, 5-22

editor (EDITLCA) 6-2

entry 1-11

flexibility 3-2

guidelines 5-19

in-circuit verification 2-17

long and thin 5-33

manual editing 5-37

2000 SERIES LCA DESIGN HANDBOOK INDEX

June 1988

modification guidelines improving performance

5-34 7-9

observability 8-3 invertible enable 3-9

optimization guidelines isolation 7-10
5-26 J-K 3-24

performance 5-1 loading 7-10

rule check (see LCA loop delay 7-4, 7-10

design rule check) metastability 7-1

strategy 8-4 output control 3-33

testability 8-3 output loading 7-10

time 8-3 register 3-24

timing optimization 2-16 settling time 7-6

tradeoffs 5-33 synchronous toggle

verification 1-11 , 6-2 3-24, 3-27

die-related test 9-4 T3-28

doping levels 8-11 worst-case delay 7-5

download cable 2-17, 6-2 function

DRC (see LCA design rule CARRY3-13

check) dual compare 3-14

SUM 3-13
E typical four-variable

electromagnetic radiation combinational 3-11
8-1, 8-5

electrostatic discharge G
(see ESD) gain/bandwidth product 7-3

emulation gate 2-8, 3-3

in-circuit 2-17, 2-19, 6-2 delay 3-21

pods 2-21 multiple levels 5-26

EPLD 8-2, 8-3 NANO 1-6, 3-31

EPROM 1-8 preselect enabling 3-18

erasable programmable gate array 1-6, 8-2, 8-3

logic device (see architectures 1 -6

EPLD) LCA device 8-3

error probability 7-12 performance 1-7

ESD 8-11 glue logic replacement 5-9

F H
flip-flop hysteresis 4-19, 4-20, 4-22

edge-triggered 3-4, 3-25 selectable 4-19

error probability 7-1 , 7-6

June 1988

I
1/0

bidirectional pad 4-1 O

input/output blocks (see

108)

interconnection

direct 5-21

general-purpose 5-3, 5-5,

5-6, 5-9, 5-62

long line 5-6

minimizing 5-20

resources 5-3

internal

states 2-21

signals 5-11

inverter 1-10

108 3-4, 3-9, 6-2

asynchronous inputs

3-35

asynchronous ripple

counters 3-31

bidirectional data line 4-3

binary-weighted

sequence counters

3-26

bus 5-27

clock line 4-36

clock skew 3-37

combinatorial function

3-4

combinatorial portion 3-6

compound function of

five variables 3-8

connection with CLB 5-6

constructing shift

registers 4-35

counters 3-25, 4-30

D flip-flop 3-23

D latch 3-23

2000 SERIES LCA DESIGN HANDBOOK INDEX

1·3
2

data-path selector 4-3, voltage range 4-22 memory cell 1-10

4-4 packaging materials 1-10

data registers 3-24 J power requirements 6-18

delays 5-56 Johnson counters 3-25 PROM formatter 2-19

eight-bit synchronous
K

reliability 1-10

counter 3-30 software cycle 2-5

four-variable function 3-8 Karnaugh maps 3-11 speed grade 1-8, 5-61

glitch-free decoder 4-39
L

testing 8-2

interconnections 3-4 user-programmable gate

interleaving 5-36 latches 2-8, 7-2 array 1-5

Johnson counters 3-25, level-transparent 3-8 LCA commands

4-3, 4-37 transparent 3-4 ADDNET5-44

layout 7-4 latch up ADDPIN 5-42

memory cell 3-5 causes 8-12 AUTOROUTE OFF 5-44

metastability 4-2 definition 8-12 CLEARPIN 5-43, 5-52,

multiplexers 4-3 LCA 3-2, 5-37, 5-68 5-54

non-inverting buffer 4-4, architecture 1 -7 DONE5-58

4-5 automatic router 5-46 EDITNET 5-37, 5-42,

open-drain outputs 4-11, benefits 1-1 0 5-44, 5"47, 5-49,

4-12, 4-13, 4-17 configurability 3-23 5-50, 5-59

oscillator 4-25 configuration program HILIGHT 5-52

placement 5-24, 5-28 1-8 MOVEBLK 5-51

placement impact 5-27 data integrity 8-5 QUERYNET 5-59

programmable design cycle 2-5 REPORT DELAY 5-59

multiplexers 3-6 design editor 2-16, 3-11 RESET 5-63

registers 4-30, 4-32, 4-33 design flexibility 3-2 ROUTE 5-47, 5-52, 5-55

routing delay 4-48 design rule check 5-50 ROUTE* 5-52

Schmitt trigger 4-19, 4-21 design strategy 8-4 ROUTEPIN 5-47, 5-52,

shift registers 3-24, 4-3, design system 2-2 5-54, 5-55

4-36 design tradeoffs 3-30 SELECT 5-38

storage element 3-4 development system SHOW USED 5-51

synchronous binary 1-11, 1-12, 3-4, 5-2, SPEED 5-61

counter 3-29 6-2, 6-42 SWAPBLK 5-51

synchronous LFSR 3-33 device 1-5, 1-6, 1-8 SWAPPIN 5-53

three-state control line extensions 1-7 SWAPSIG 5-52, 5-53,

4-33 integration level 3-2 5-54

two functions of three introduction 1-1 UNROUTE 5-43

variables 3-8 macro library 4-13, 4-15, LFSR

unused 4-37 4-17, 4-25, 4-28 applications 4-41

use of 4-30 manufacturing 1-9, 4-5 decryption function 4-41

2000 SERIES LCA DESIGN HANDBOOK INDEX

June 1988

skip paths 4-42

stuck state 4-42, 4-46

Linear Feedback Shift

Register (see LFSR)

logic

functions 2-8

glue logic replacement

5-9

levels 3-21

negative 4-15

positive 4-15

wired-AND 4-15, 4-16,

4-17

wired-OR 4-15, 4-16,

4-17

logic blocks

grouping 2-8

locking 2-9

Logic Cell Array (see LCA)

long line 5-10, 5-11, 5-18,

5-62

skew 5-13

loop delays 4-5, 7-5

definition 7-4

M
macro 4-20, 5-31, 5-33

design tradeoff 5-33

GXTL4-28

invoke a macro 3-38

POUTZ4-17

samples 3-38

syntax 3-40

Macrocells

\MACROS directory 3-38

create a macro 3-39

instance 3-38

sample macros 3-40

MAKEBITS 6-2, 6-46

memory

June 1988

byte-wide 6-29

CMOS8-9

five-transistor 8-6

six-transistor 8-6

metastability

calculating probability

7-6

defined 7-2

empirical data derivation

7-4

error probability 7-7, 7-10

IOBs 4-2

minimizing 4-5

MIL-STD-883 9-2, 9-5, 9-6

Mode Select input pins 6-15

moisture 9-3, 9-4, 9-5

monitor performance 2-14

multi-destination 5-46

multiple connections 5-49

multiplexer 3-5, 5-4, 5-20

address 5-33

tree 3-5

N
NANO 3-3

nets

high fanout 5-51

noise filter 3-36

nonhermetic devices 9-2

normal operation 8-8

0
observability 8-4

open-collector 4-7, 4-11

operation

long-term characteristics

9-3

optimize

design timing 2-16

oscillator 4-7, 4-27

crystal 4-7, 4-28, 5-17,

7-2

internal 6-13

low-frequency timing

characteristics 4-27

on-chip 4-28

Pierce 4-29

output

buffer 4-21

spikes 3-33

p
part

7400 series 2-8

partitioning 5-19

LCA elements 6-2

pass transistors 5-62

path

bidirectional 5-11 , 5-22

data-path selector 4-4

maximum delay 7-6

routing path delays 4-5

unidirectional 5-23

phase shift 4-29

pin

CCLK6-29

connections 5-38

control 6-14

CS2 6-25

D/-P 6-29, 6-44

DIN 6-20, 6-25, 6-34,

6-38, 6-45

DIN and DOUT 6-16

DOUT 6-25, 6-29, 6-34,

6-38

dual-function 1/0 6-9

floating input 6-40

general purpose 1/0 6-9

HOC 6-38

108 output 6-41

2000 SERIES LCA DESIGN HANDBOOK INDEX

1·5
2

D

magic5-38 AND/OR 1-6 storage 4-9, 4-32
mode select 6-3, 6-6 PLO 1-6 reliability 1-1 O
multiple-function 110 6-1 architecture 1-4, 1-6 RESET3-9
non-programmable 6-14, bipolar 1-4 -RESET3-9

6-23 CMOS1-4 reset function 5-13
number in Master mode preamble code 6-3 resynchronizer 3-36

6-9 programmable routing
number in Slave mode interconnection alternatives 5-23

6-9 points (see PIPs) automatic (see APR)
open-drain output 6-3 programmable logic device bidirectional signal 5-12
potential 1/0 conflicts (see PLO) congestion 5-32

6-38 guidelines 5-43, 5-49
RESET6-3 Q high-fanout 5-16, 5-51
unused 6-40 quality assurance and inputs and outputs 5-49
user-programmable 1/0 reliability regimen LCA5-37

6-5, 6-14, 6-23, 6-26 9-2 low-skew 5-16
-CSOS-25 pre-routing or seeding
-cs1 s-25 R 5-43
-LDC6-38 readback 2-21, 6-49, 8-9 routing resources
-RCLK6-29 CCLK, MO, and M1 6-49 global clock buffers 2-14
-WRTS-25 control timing 6-50 long lines 2-14

pin function data contents 6-50

-RESET4-4 MAKEPROM 6-51 s
PIPs 5-37 register (see also LFSR) scan cells 8-3

placement 7-2 schematic capture

CLBS-23 8-bit, parallel-load shift software 3-11

control logic 5-26 5-7 Schmitt-trigger

examples 5-29 constructing shift structures 4-7

guidelines 5-24 registers with 108s SCR8-12

improving 5-36 4-35 semiconductor controlled
108 5-24, 5-27, 5-28 D-type 7-2 rectifier (see SCR)
logic 5-19 data input 7-2 serializer 5-22, 5-23, 5-29,
modification 5-34 data shift 5-33 5-31, 5-33

rectangular 5-31 delay4-30 SET3-9

tradeoffs 5-33 input 4-4 shift register 5-33

placement and routing 108 4-3, 4-33, 4-36 signal
APR2-1 LFSRs4-41 degradation 5-62

LCA design editor, read/write 4-33 delay5-62

EDITLCA 2-12 shift 3-24, 5-18, 5-21, falling 5-63

plane logic 6-48

2000 SERIES LCA DESIGN HANDBOOK INDEX

June 1988

isolation and restoration packaging 9-5

5-5 predictions 9-2

minimizing conflict 6-39 procedures 8-4, 9-2

quality 5-57 solderability 9-5

rising 5-63 temperature 8-5, 8-14,

transition 5-63 9-3, 9-5

simulation 2-11 water vapor 9-5

logic 2-1, 2-1 O thermal stresses 1-1 0

results 2-16 three-state control line 4-5,

timing 2-16 4-11, 4-12, 4-15,

SSl/MSI 1-4, 3-2 4-17,4-21

standard product ICs 1-2 timing

state analysis 2-15, 5-56

initialization 6-4 between control pins

static latch 1-1 0 6-24

structures calculator 4-27

standard LCA 1/0 4-8 checks 2-15

switch CLB delays 3-21

connections 5-4 clock-to-block output via

matrices 5-3, 5-40 Q 3-21

switching threshold 4-21 CMOS delay

synchronous system 7-2 accumulations 3-22

critical path 2-15
T daisy-chained LCA

target system 2-17, 2-19, devices 6-45
6-2 delay calculation 4-12,

temperature 9-3, 9-5 5-42, 5-58, 5-60,
testability 8-1, 8-2, 8-5 delays in IOB-based

comprehensive 8-1 registers 4-30
testing design optimization 2-16

automated cleaning 9-5 excessive routing delay
configurations 8-4 4-12
corrosion 9-5 input and output pad
emulating severe buffer delays 3-21

environments 9-2 input setup time 3-21
group C conformance 9-4 interconnection delay
high-moisture 9-4 3-21, 5-57
lead integrity 9-6 loop delays 4-5
methods 9-2 low-frequency
moisture 9-3, 9-5 characteristics 4-27

June 1988

Master configuration

mode 6-32

oscillator 4-25, 4-27

Peripheral mode 6-25

propagation time of a

CLB 3-21

R/C delay 5-56

readback control 6-50

routing 4-5, 4-21

simulation 2-16, 5-56

skew 5-18

synchronization delay

6-34

tilde 5-67

verification 2-16, 2-17

worst-case delay 5-9,

5-56

transistors

parasitic 8-13

transition

clock 4-5

data 4-5

direction 4-22

translate

CLB-based LCA design

to netlist 2-16

trigger

hysteresis 4-19

Schmitt 4-18, 4-19, 4-20,

4-21

truth tables 3-11

TTL4-5

voltage 7-3

u
UART 4-41

UNROUTE 5-43

v
verification

2000 SERIES LCA DESIGN HANDBOOK INDEX

1·7
2

download cable 2-17

in-circuit 2-17

logic and timing 2-17

VLSI 1-2

voltage

CMOS 4-5, 7-3

input 4-21

108 4-22

levels 7-2

margins 4-47

output 4-21

range for IOBs 4-22

threshold 4-20

transient 8-8

transition level 4-21

TTL4-5, 7-3

w
wired-AND 4-11

wired-OR 4-11

write operation 8-8

X·Y·Z
XACT2-12

delay calculator 2-15

PROM formatter 2-19

XACTOR 2-19, 2-21, 6-2

in-circuit emulator 5-64,

6-42, 6-50

XNOR4-42

XOR 4-41

1·8
2

2000 SERIES LCA DESIGN HANDBOOK INDEX

June 1988

~
Advanced

Micro
Devices

3-2

Table of Contents Section 3
Applications

Section 3 Applications ... 3-1
Configuring LCA Device .. 3-3
M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display 3-17
LCA Counter Applications ... 3-29
Time Division Multiplexing with LCA Device ... 3-43
Dual 32-bit Serial CRC Error Detection in a LCA Device .. 3-53
LCA Device Implements an 8-bit Format Converter in a PBX Switching Module 3-65
Reconfigurable Programmable Devices (LCA) Simplify Digital TOM Line Transcoder 3-75
Building an ESDI Translator Using the M2064 Logic Cell Array ... 3-89
Using the Logic Cell™ Array to Build a Pseudo-Random-Number Generator .. 3-101
64K Deep FIFO-Dynamic RAM Controller is Implemented in the M2018 LCA Device 3-109
Configuring the LCA™ from the PC Bus ... 3-125

Logic CellN Array is a trademark of XILINX Inc.

~
Advanced

Micro
Devices

AN-182

Configuring the LCA Device
By EdValleau

El

Configuring the LCA Device
By Ed Valleau

Introduction
The Logic Cell'" Array device from Monolithic Memories is a
new revolution in programmable logic. It offers the user gate
array logic density while still providing the versatility of a
programmable logic device (PLO). Its architecture is based on
an array of static RAM cells, which must be configured when
power is initially applied to the circuit. This gives the LCA device
a high degree of flexibility since the functional logic contained in
the device may be changed during development, thus shorten­
ing prototyping cycles. To update existing equipment, logic cir­
cuits may be modified with new configuration data. It is also
possible to reconfigure the LCA device "on the fly" without the
need for hardware changes. This would prove specifically useful
in systems that need to change their protocols of operation
dynamically.

Configuration data is stored in a nonvolatile source and read by
the LCA device at "power up". The time it takes to perform a
configuration is variable, from 12 to 34 ms depending on device
type and mode of configuration. A typical storage medium for
the LCA's configuration data would be an EPROM or EEPROM,
which would be connected to the the LCA and accessed imme­
diately after "power up". When the configuration process is
complete and the device is fully functional, the EPROM or
EEPROM may be put into a three-state condition and left dese­
lected until the next configuration cycle.

There are a number of different modes of LCA device config­
uration, each mode being better suited to a particular operating
environment or application than another mode. The following
information outlines these various modes.

Overview of the Configuration Process
The LCA device is comprised of three distinct programmable
elements: Configurable Logic Blocks (CLBs), Input/Output
Blocks (IOBs) and Programmable Interconnect. Because the
device architecture is based on static RAM cells, the configura­
tion of the CLBs, IOBs and Programmable Interconnect is ran­
dom and indeterminate when power is first applied to the device.
The LCA device goes through two states prior to being function­
ally operational. The first is a general initialization state, followed
by a configuration sequence. (See Figure 1.)

The device uses a number of dedicated input/output pins to
control the loading process. Configuration sequentially pro­
grams the RAM cells, ultimately creating functionally operational
and interconnected logic blocks. The entire procedure is com­
parable to programming a PLO except that a conventional PLO

POWER
STABILIZED

POWER ON
RESET

TIME DELAY

RESET ASSERTED

RESET

RESET

D/-P
TRANSITION

(REPROG. OPTION

-RESET
,--,......--'-----. ENABLED)

r----
' L---..

USER
OPERATION

-PWRDN
LOW

POWER
DOWN

DI-PLOW
TRANSITION

(REPROG.
-PWRDN OPTION

HIGH DISABLED)

Figure 1. Configuration Sequence

is nonvolatile, and maintains its logic functionality when power
is removed from the circuit.

The smaller of the two LCA devices, the M2064, is a 64-CLB
device which requires exactly 12,040 binary bits of information
to complete the configuration process. The M2018 isa 100-CLB
device which needs 17,880 bits of information.

Table 1 shows the different modes that can be selected via the
three dedicated mode input pins MO, M1 and M2. These will
usually be hardwired to select a single mode. The LCA device
reads the dig ital code applied to the mode pins prior to configu­
ration, then enters one of five specific modes before becoming a
functional logic system. The exact number of bits for successful
configuration must be read into the LCA device, partial configu­
ration is not possible.

Configuring the LCA Device

CONFIGURATION MODE SLAVE PERIPHERAL MASTER-HIGH MODE MASTER SERIAL
MODE MODE MASTER-LOW MODE MODE

Mode Selection code 1 :1 :1 1 :0:1 0:0:1 (Master-Low) 0:0:0
(MO:M1:M2) 0:1:1 (Master-High

Configuration data Bit-serial Bit-serial Byte-parallel Bit-serial

Automatic loading No No Yes Yes

Programming source User Logic CPU Data Bus External Byte-wide External Serial
or Another Memory Memory Memory
LCA (Note2)

Number of user 1/0 2 6 25 3
pins required

Configuration time Source Source 12-24 ms (M2064) 12-24 ms (M2064)
Dependent Dependent 17-34 ms (M2018) 17-34 ms (M2018)
(Note 1) (Note 1) (Note 3) (Note3)

Notes:

1. The minimum time in any case is approximately 12 ms for the M2064 and 17 ms for the M2018.

2. Also used by Monolithic Memories' XACTOR for In-Circuit Emulation.

3. This parameter depends on internal timing circuits and is manufacturing process-dependent. Therefore it may vary from device to device within the limits shown.

Table 1. Comparison of Configuration Modes

Choice of Configuration Mode
The choice of a configuration mode is influenced by the actual
operating environment. For example, questions that might arise
are: is the LCA being used as a standalone logic unit, or with a
microprocessor? Can it be configured by a serial link? Other
considerations include whether pins used for configuration are
also used for functional operation, and whether or not these pins
should be isolated from activating external logic during configu­
ration. The designer has a choice of configuration modes for
multiple LCA designs, and can use either parallel or serial sup­
port for a master mode LCA device which in turn can configure a
slave or number of slave LCA devices.

The Configuration Pins
The pins used to configure the LCA device come in two forms:
dedicated configuration pins which are used exclusively for
configuring the LCA device, and multifunction configuration
pins which can be used as general-purpose I/Os after configura­
tion has been completed.

The Six Dedicated Configuration Pins

PIN DESCRIPTION

MO,M1 Mode Select Pins

CCLK Configuration Clock

-Reset Master Reset

D/-P Donel-Program

-PWRDN Power Down

The Multi-Function Configuration Pins

PIN DESCRIPTION USAGE

M2 Mode Select

Din Configuration Data In Present

Dou! Configuration Data Out
in all
configuration

HOC High During Configuration modes

LDC Low During Configuration

-CSO,-CS1 ,CS2 Chip Selects Peripheral

-Wrt Write Strobe Mode Only

-HCLK Read Strobe

AO-A15 Address Lines
Master Mode
Only

D0-07 input Data Lines

Pin Names and Functional Description
Done/Program Pin D/-P
The Donel-Program D/-P pin performs a dual function. It is an
open-drain output with an internal programmable pull-up resis­
tor. During configuration the pin is an output that is driven LOW
by the LCAand can be monitored by external logic to determine
whether or not the LCA is ready for functional use. When con­
figuration is completed this pin is pulled HIGH by an internal
programmable pull-up resistor of 3K!l value. In a multi-LCA
environment, the D/-P pin goes HIGH one clock cycle before
the configuration is complete allowing time for user 1/0 signals
to propagate between other LCA devices before entering the
functional mode of operation. The LCA may be reconfigured at
any time by pulling the 0/-P input LOW with an external logic
open-drain (open-collector) driver. When the internal logic rec­
ognizes a LOW input it drives the D/-P output LOW forcing a
reconfiguration cycle.

3.5

EJ

Configuring the LCA Device

There is a time delay of several microseconds before an active
LOW input is recognized, so random triggering due to short
noise bursts is highly unlikely. If the D/-P input is prevented
from going HIGH immediately after configuration, then further
reconfigurations will be suppressed and functional operation will
not commence until that input is permitted to go HIGH. In
multiple LCA designs the D/-P pins are wire-OR 'ed, so the last
LCA device to be configured will prevent other, already config­
ured devices, from functioning. When the last device is config­
ured the composite wire-OR line goes HIGH and all LCAdevices
enter a functional mode simultaneously.

-RESET
The-RESET input is active LOW and is used to start the initializa­
tion process before or during configuration, but not during
functional operation. Figure 1 shows the initialization and con­
figuration procedure as a flow diagram. Asserting the -RESET
line will put the LCA device into an initialization mode, aborting
the current cycle of configuration.

Once configuration is complete the -RESET input takes on a
different role. It may be used to reset the device as if the device
were a functional logic system. When asserted, internal registers
and/or latches are reset. The reset condition may then be
relaxed and functional operation resumed without the genera­
tion of a reconfiguration cycle.

To initiate reconfiguration the D/-P pin should be used instead
of the -RESET input. When -RESET is LOW at the initialization
cycle, its LOW-to-HIGH transition will sample the logic condition
at the mode input pins. The logic state sampled determines the
mode of configuration. Once configuration has started these
pins are not required to be held. However, it is recommended
that these pins remain unchanged until the configuration phase
is completed.

MODE CONFIGURATION INPUTS MO, M1, and M2
MO, M1 and M2 are the Configuration Mode Select Pins. They
force the LCA device into the selected configuration mode on
the rising edge of-RESET. Pins MO and M1 are dedicated mode
inputs having no general-purpose 1/0 capability. They will usu­
ally be hardwired to logic HIGH or LOW conditions. For all
modes except the master serial mode, M2 is HIGH and is pulled
HIGH internally during configuration. After configuration this
pin can be used for general 1/0 functions. M2 and MO both have
internal pull-up resistors. M1 should be tied to VCC or GND.
Table 2 lists five of the modes of operation. The only mode that
requires a logic LOW on the input to M2 is the Master Serial
Mode which is used with a dedicated serial port EPROM.

MO M1 M2 MODE SELECT

0 0 0 Master Serial Mode

0 0 1 Master LOW Mode

0 1 1 Master HIGH Mode

1 0 1 Peripheral Mode

1 1 1 Slave Mode

Table2.

PWRDWN-
The PWRDWN- input is an active LOW power-down pin that can
be used to reduce power consumption of the LCA device when it
is not being used. The LCA device is then considered off-line

3·6

because all 1/0 lines are disabled while internal configuration is
maintained. The VCC input may be reduced to 2.0 Volts and
configuration data will not be lost. With internal logic disabled
and 1/0 pins in a high impedance condition, the D/-P pin is
forced LOW and all internal storage elements become cleared. It
is essential that this pin is used only while D/-P is HIGH after
initialization and configuration. It is common to tie this input to a
valid logic HIGH if the power-down feature is not required.

Non-Dedicated Pins used in all
Configuration Modes
DIN and DOUT

DIN (configuration Data IN) is used as a serial data port into the
LCA device. Individual data bits are applied to this input and
clocked into the device by rising clock edges applied to the
CCLK input. DIN is used in both slave and peripheral modes.

DOUT (configuration Data OUT) is used to configure multiple
LCA devices in a daisy chain. The DOUT signal from the preced­
ing LCA device drives the DIN of the succeeding device and is
synchronized to rising edge of the clock pulse on the CCLK line.

CCLK
CCLK (Configuration CLocK) as described above is used to
synchronize the serial data stream into the data input DIN pin.
The CCLK can be an input pin or output pin depending on the
mode of configuration. It is an outputforevery mode of configu­
ration except for the slave mode. The CCLK reverts to an input in
the slave mode, and can be driven either by an external source or
the CCLK output of another LCA device configured in the mas­
ter mode. In the operational mode the CCLK is an input to
enable configuration data to be read back from the LCA via the
MO and M1 pins, which have the dual function of Readback
Trigger (RT) and Readback Data (RD), respectively. CCLK has
an internal pull-up resistor which allows the input to be pulled
HIGH when not in use.

RCLK
The Read CLocK is used as an output signal which goes LOW
when the LCA device expects to see valid input data, and HIGH
when the address bus contents are changing states. It can be
used to enable the external EPROM, and in the master serial
mode can be used to clock an external address counter. This pin
is used to clock the CLK input of the serial EPROM, a support
device for the LCA.

HDCand LDC
High During Configuration (HOC) and Low During Configura­
tion (LDC) are driven HIGH and LOW, respectively, for the
duration of the configuration process. They are used to control
external logic during configuration. When configuration has
been completed HOC and LDC become general-purpose inpuV
output pins. All of the other 1/0 pins not involved in the .actual
configuration process are connected to internal pull-ups to
VCC, which are removed after configuration.

CHIP SELECT iNPUTS -CSO -CS1 CS2 -WRT
-CSO, -CS1, and CS2 are the chip select pins used during the
Peripheral Configuration Mode only. The three enables can be
used to map the LCA device to a specific address. Active LOW
inputs to-CS1 and-CSO, and an active HIGH input to CS2 will
select the LCA device as if it were a memory or peripheral
location mapped into the address space of a microprocessor
system.

Configuring the LCA Device

-WRT in the Peripheral Configuration Mode is the same as
CCLK in the slave mode. A single data bit is transferred from the
data bus into the LCA device on each rising edge of -WRT.

AO·A15 and DO·D7
The address and data pins are used in the master parallel modes
only, and are converted to general-purpose input/output pins
after successful configuration. AO-A15 are the address lines
used to access the external EPROM. In the Master Low mode,
address location 0000 hei<adecimal is read first, and the addresses
increment each time a data byte is read until all of the configura­
tion data is loaded into the LCA device. The D/-P then goes
HIGH indicating that the device is loaded. The address counter
outputs convert to general-purpose 1/0, unless the D/-P pin is
held LOW by the wire-OR function of a D/-P output from a slave
device. lri that case the counters will continue to count, down­
loading the slave's configuration data. Counting will continue
for more than one slave. In the Master High Mode, address FFFF
hexadecimal is accessed first, and the address lines are decre­
mented. This allows the LCA device to share addressing space
with an EPROM or EEPROM used by the system. D0-07 are the
data lines connected to the external memory device.

APPLICABLE
PIN CONFIGURATION MODE(S)

NAME s p MH ML MS

MO • • • • •
M1 • • • • •
M2 • • • • •
D/P • • • • •
(Note 1)

RESET • • • • •
(Note 1)

CCLK • • • • -

DIN • • - - •
DOUT • • • • •
HOC • • • • •
LDC • • • • •
AO-A15 - - • • -

DO-D7 - - • • -
RCLK - - • • •
WRT - • - - -

cso - • - - -
CS1 - • - - -
CS2 - • - - -

Notes:

Slave Configuration
<MO M1 M2>:;: <1 1 1>
The Slave Configuration Mode (Figure 2a) is simple to imple­
ment requiring only three pins, two lines to perform handshake
and synchronization and one line for data transmission. Slave
configuration is used in the XACT Development System to
download data to the support hardware. In this mode data is
presented to the LCA device as a serial bit stream, which is
transferred to the device as if it were a very large shift register.
The data is presented to the DIN pin and sequentially clocked
into the device using the CCLK input. When the device is com­
pletely loaded, the D/-P pin goes HIGH to confirm that configu­
ration is complete and that the device is ready to function as a
programmed unit.

In Figure2a the LCA device is shown connected to a microcom­
puter/microprocessor port with the data line (DO) connected to
the DIN input. The rising edge of the strobe output will clock
valid data on DO into the LCA. The process continues until the
D/-P confirms that configuration is complete to the microcom­
puter via the data input (07). The microcomputer can poll 07 to

FUNCTION DURING FUNCTION DURING
CONFIGURATION USER OPERATION

Mode select O (I) Readback trigger (I)

Mode select 1 (I) Readback data out (0)

Mode select 2 (I) <Userl/O>

Indicates when configuration Initiates/Inhibits
process is done (0) Reconfiguration (I)

Abort/Restart Master clear of all
configuration (I) internal Flip-Flops (I)

Configuration clock Readback clock (I)
(See Notes 1 and 2)

Configuration data in (I) <User 1/0> (Note 3)

Configuration data out (0) <User 1/0>

Logic HIGH (0) <User 1/0>

Logic LOW (0) <User 1/0>

Address bus (0) <User 1/0>

Data bus (I) <User 1/0> (Note 3)

Read clock (0) <User 1/0>

Write strobe (I) <User 1/0>

Chip select O (I) <User 1/0>

Chip select 1 (I) <User 1/0>

Chip select 2 (I) <U1?9r 1/0>

Abbreviations:
1. The "R'ESiIT, CCLK, and DIP pins have multiple functions. See text for further detaUs. S= Slave MH = Master high

ML = Muter low
MS = Master serial

2. During Slave mode configuration, the CCLK pin is an input, while for all other modes, it is an output.

3. DIN and DO are the same physical pins but are associated with different configuration modes.

Table 3. Summary of Pins Used for Confituratlon

P = Peripheral

I= Input
o =Output

EJ

Configuring the LCA Device

determine the configuration status, or set input 07 to generate
an interrupt. Another application for the slave mode would be in
a multiple LCA design where one LCA device can serially load

subsequent slave LCA devices arranged in a daisy chain. Using
LCA devices connected as master and slave or slaves is dis­
cussed more fully in a later section.

+5V

MO M1 PWR
MICRO- OWN

COMPUTER LCA

uo CCU<

I
PORT DIN

GENERAL
PURPOSE

AU.
USERIO • OTHER

PINS

RESET DIP
RESET

Figure 2a. Slave Mode

PIN PIN NUMBER PIN VALUE DURING
NAME TYPE CONFIGURATION

DESCRIPTION
PLCC DIP

Fixed, Non-programmable Pins

MO 26 18 Input HIGH Mode Select

M1 25 17 Input HIGH Mode Select

CCLK 60 42 Input <Clock> Configuration Clock

RESET 44 31 Input HIGH Master Reset

DIP 45 32 Output LOW Done/Program

PWRDWN 10 7 Input HIGH Power-down

User-Programmable Pins

M2 27 19 Input HIGH Mode Select

DIN 58 40 Input <Data> Configuration Data In

DOUT 59 41 Output <Data> Configuration Data Out

HOC 28 20 Output HIGH Constant "1" Level

LDC 30 21 Output LOW Constant ''O" Level

Figure 2b. Slave Mode Pin Summary

CCU<

DIN

DOUT

Figure 2c. Slave Mode Configuration Timing

Configuring the LCA Device

Peripheral Mode Configuration
<MO M1 M2> = <1 0 1 >
The Peripheral Mode (Figure 3a) is similar to the Slave Mode in
that the data is presented in a bit serial form. In the Peripheral
mode, however the LCA device is configured as a microproces­
sor-compatible peripheral device. The microprocessor can
access the LCAdevice directly through its internal address bus,

ADDRESS DATA
BUS WR BUS +5V

and map it through chip select logic. Control of the write opera­
tion is direct to the LCA device. Less hardware is required to
connect the LCA to a microprocessor in this mode, and the
loading of data is serial over a single data line. Synchronization
is achieved by the falling edge of a-WRT input, while data is set
up on the DIN line and strobed by the falling edge of a micropro­
cessor-generated write signal.

+5V vcc

= I

J
ADDRESS
DECODE

LOGIC

PIN PIN NUMBER

NAME PLCC DIP

Fixed, Non-programmable Pins

MO 26 18

M1 25 17

CCLK 60 42

RESET 44 31

D/P 45 32

PWRDWN 10 7

User-Programmable Pins

M2 27 19

DIN 58 40

DOUT 59 41

cso 50 35

CS1 51 36

CS2 54 37

WRT 56 38

HOC 28 20

LDC 30 21

MO M1 PWR
DWN

DIN CCLK
WRT LCA

DOUT

M2
cso HDC GENERAL

PURPOSE
LDC USER~O

O~R {
CS1 PINS

CS2

DIP

RESET

Figure 3a. Peripheral Mode

PIN VALUE DURING
TYPE CONFIGURATION

Input HIGH

Input LOW

Output <Clock>

Input HIGH

Output LOW

Input HIGH

Input HIGH

Input <Data>

Output <Data>

Input LOW

Input LOW

Input HIGH

Input <Strobed>

Output HIGH

Output LOW

Figure 3b. Peripheral Mode Pin Summary

DESCRIPTION

Mode Select

Mode Select

Configuration Clock

Master Reset

Done/Program

Power-down

Mode Select

Configuration Data In

Configuration Data Out

Chip select (Active LOW)

Chip select (Active LOW)

Chip select

Write enable (Active LOW)

Constant "1" Level

Constant "O" Level

3.9

Configuring the LCA Device

CCU<
(OUTPUT)

-

Figure 3c. Peripheral Mode Configuration Timing

Parallel Master Mode Configuration
MASTER MODE LOW <MO M1 M2> = <O 0 1>

MASTER MODE HIGH <MO M1 M2> = <O 11>

In the Master Low Parallel mode (Figure 4a) data is loaded in
parallel at a rate determined by an on-chip timer in the LCA
device. Configuration data is stored in an EPROM or EEPROM,
and a parallel data path is connected from the memory output
data lines 00-07 to dedicated data inputs on the LCA device.
There are sixteen address outputs, AO(LSB)-A15(MSB), con­
nected to the EPROM. At the start of configuration in master
mode low the LCA device sends an incrementing address start­
ing at address 0000 hexadecimal and sequentially selects the
configuration bytes. Data is serialized when loaded into the LCA
device.

When configuration is complete the address and data lines
become general-purpose 1/0 blocks. The 0/-P pin is used to
provide external logic, an indication that the LCA is currently
functional or configuring.

The 0/-P pin can be used to select the EPROM/EEPROM dur­
ing configuration. An active LOW output applied to the memo­
ry's Chip Select input will select the device to read the configura­
tion data and deselect it when configuration is complete. The
method shown in Figure 4a is suggested for logic systems that
have no host processor available to perform the configuration. A
drawback is that address and data lines might require isolation
from external logic circuits while the LCA device is configuring.
The logic designer must determine which signals need isolation
and which do not. Using IOBs which are not address and data
lines might be a solution to avoid any conflict that might occur
when external logic is driven during configuration. Also, the
designer must avoid loading address and data lines with capaci­
tive or inductive components. For example general IOBs should

3·10

be used for circuits such as relaxation oscillators which require
capacitive loads. Loading address or data lines with capacitors
might lead to a violation of setup and hold times, causing
erroneous configuration information to be read.

VCC +SV

l~ MO M1 ~
M2 CCU<
HDC
[rJe" -1 RCl.K A15

PURPOSE A14
USER VO EPROM

PINS 2Kx8
OR LARGER

A11

A10
RESET Ni Ni
07 I.CA Jiil Jiil
D6 A7 A7
05 All /IS
D4 A5 A5
03 A4 A4
02 A3 A3
01 A2 A2 02
DO A1 A1 01

NJ NJ DO
OE

DifS CE

8

DATA BUS

Figure 4a. Master Parallel Mode

Configuring the LCA Device

In the Master Mode HIGH the initial starting address is hexade­
cimal FFFF, and the address decrements after each data byte is
read. For both Master Mode HIGH and Master Mode LOW, the
LCA device will set the D/-P pin HIGH after enough bits have
been read to configure the one master LCA device. This permits
configuration data to be stored in an EPROM that also holds
microprocessor firmware. Only 1505 (5E1 hex) bytes are required

Bytewlde Master Mode Pin Summary

PIN PIN NUMBER PIN
NAME PLCC DIP TYPE

Fixed, Non-programmable Pins

MO 26 18 Input

M1 25 17 Input

CCLK 60 42 Output

RESEi' 44 31 Input

D/P 45 32 Output

PWRDWN 10 7 Input

User-Programmable Pins

M2. 27 19 Input

DOUT 59 41 Output

HOC 28 20 Output

LDC 30 21 Output

RCLK 57 39 Output

AO-Axx - - Outputs

48DIP
68P'-'CC

D0-07 - - Inputs

48DIP
68PLCC

for an M2064 LCA device and 2235 (888 hex) bytes for the M2018,
so large EPROMs can store configuration data for a number of
LCA devices. Configuration information is concatenated in one
EPROM and read by the master device, then sent to slave LCA
devices as outlined in the section describing the configuring of
multiple LCA devices.

VALUE DURING
CONFIGURATION DESCRIPTION

LOW Mode Select

LOW (Master-low mode)
or HIGH (Master-high mode)

<Clock> Configuration Clock

HIGH Master Reset

LOW Done/Program

HIGH Power-down

HIGH Mode Select

<Data> Configuration Data Out

HIGH Constant "1" Level

LOW Constant "O" Level

<Strobed> Chip enable output

<Address> Memory address bus
A15 A11 AO

3 5 6 4 2 1 48 47 46 45 44 43
65 67 2 4 6 8 9 7 5 3 68 66 64 63 62 61

<Data> Memory data bus
07 DO
28 29 34 35 36 37 38 40
41 42 48 50 51 54 56 58

Table 4b. Master Mode Pin Summary

iiCiX
(OUTPUTS) ____ _,

DATA ----..., ,------------------,\JIJWWJWIN\N
(IN~TS) BYTE(n) BYTE(n+1) /\MAAMJtAAMf\ IYTE(n+1)

CCU<
(OUTPUTS)

OOUT
(OUTPUTS)

LS8 MSB

Figure 4c. Master Mode Configuration Timing

Configuring the LCA Device

Serial Master Mode
<MOM1 M2>=<000>
The Master Serial Mode (Figure 5) uses a Serial Data PROM
(SDPROM) which has an internal address counter and a serial
data port for the conversion of parallel data from the SD PROM to
a single data output. Figure Sa shows the schematic diagram
required forth is mode. Configuration data is stored in the PROM
section and downloaded to the LCA device in the most pin­
efficient way, avoiding large numbers of address and data inter­
connections. The SDPROM is connected to the LCA device
using only three pins. In. this mode the LCA generates a clock
signal which is used to increment the address counter built into
the SDPROM. The SDPROM then sends data to the DIN pin on
the LCA device. This mode is very similar to the Slave and
Peripheral Modes in that data input is through the DIN pin.
However, the SDPROM requires a clock input to increment its
internal address counter which is supplied by the RCLK output
of the LCA device. The configuration time is therefore deter­
mined by the LCA devices on chip counter. The D/-P input
terminates the configuration process by disabling the SDPROM.
One SDPROM can hold enough configuration data for three
M2064 or two M2018 devices, and they can be cascaded for
larger configuration arrays.

vcc

L
·-{ PURPOSE
USERl/O

PINS

MO M1

M2

DOUT

HDC
LDC

RESET

+5V

PWR
DWN

CCU<

DIN DATA

RCLK CU< SERIAL

CE MEMORY

DIP OE

The data to be loaded into an LCA device is developed using the
XACT Development Software, and is stored in one of two
modes: a serial bit stream to be used in the Peripheral and Slave
modes, or a 1500-byte PROM file for use in the Master Mode.

Figure Sa. Serial Mode

PIN PIN NUMBER PIN VALUE DURING
NAME TYPE CONFIGURATION

DESCRIPTION
PLCC DIP

Fixed, Non-programmable Pins

MO 26 18 Input LOW Mode Select

M1 25 17 Input LOW Mode Select

CCLK 60 42 Output <Clock> Configuration Clock

RESET 44 31 Input HIGH Master Reset

D/P 45 32 Output LOW Done/Program

PWRDWN 10 7 Input HIGH Power-down

User-Programmable Pins

M2 27 19 Input LOW Mode Select

DIN 58 40 Input <Data> Configuration Data In

RCLK 57 39 Output <Strobed> SDPROM Clock

HOC 28 20 Output HIGH Constant "1" Level

LDC 30 21 Output LOW Constant ''O" Level

Figure Sb. Master Serial Configuration Mode Pin Summary

RCLK

DIN BIT(n+1) BIT(n+2)

Figure Sc. Master Serial Mode Configuration Timing

3-12

Configuring the LCA Device

Configuring Multiple LCAs
Recognizing that multiple LCAs could be used in a system, the
designers added a feature which makes configuration easier by
allowing several LCAs to be connected together in a daisy
chain. In the Master mode, the first LCA reads data from the
EPROM in parallel until it has received all of its configuration
data. Atthis point its 0/-P pin would normally be pulled passive
HIGH but it is wire-ORed to the remaining LCA devices config­
ured in the slave mode and is held LOW. The first LCA, although
configured will not start to function, but continue to pass config­
uration data to the next LCA device. The data out line (DOUT)
drives the DIN line of the first slave, and the CCLK input clocks
the configuration data through until the next LCA Is configured.
The wire-OR action holds the D/-P input LOW preventing the
configured LCAs from entering a functional mode. The sequence
continues until the last LCA in the slave chain is configured and
allows the D/-P line to go HIGH. All the configured devices in
the chain start to function simultaneously because the compo­
site wired-OR function goes HIGH on all LCAs simultaneously.

Due to the current sink capability of the D/-P input being able to
handle only one pull-up load satisfactorily, only one of the LCA
devices in the daisy chain should be configured with 'pull ups'.
The first device in the chain can be configured in any of the four
modes. All other devices in the chain would use the slave mode.

The daisy chain configuration mode is the easiest and most pin
efficient, but the total configuration time increases linearly for
each LCA added to the chain. It is also possible to configure
LCAs in parallel in the slave or peripheral modes as shown in
Figure 7. The total configuration time is then reduced to the
configuration time of a single device.

Connecting parallel LCA's in the peripheral mode also allows
the use of OMA transfer techniques to decrease configuration
time.

Figure &a. Master Mode LCA with Daisy-Chain

AllDRESS llATA
M WR Bus +5V +5V

-=
MO M1 PWR

DO DWN
DIN CCLK

IOWJ'IT WF!T !)OUT

~
M2 AJ:!ORES$

DECODE C$ll MDC
LoGlc

LDC

~{ OTHJER
PINS

ea1
CS2

DIP
RESET

Confl9urln9 the LCA Device

+5V +5V

,__ _____ _, CCLK '-------1 CCLK

1--------i DIN DOUT 1--------1 DIN DOUT

1-PURPOSE . USER VO

LCA LCA
SLAVE NQ. 1 SLAVE NO. n

M2 I M2

DIP

RESET

MDC l/IDC
LDC GENERAL LlilC

PURPOSE

oiR{ : us~vo oiR {

Diii
RESET

REPROGRAM--+--+-~------------+--~---------'

SVSTEl/IRESET~--+-~----------+--~~---------'

Figure &b. Pertpheral Mode LCA with Peiay-Chaln

D3 D3

Ell! c D2

D1 D1

llO DO
CCU<. -WRT

-eSo
-CS1
CS2

M1 M1
.Ml ...,

SIAvE PeRtPHERAL

Figure 7. ParaUel Loading of LCAa in Slav• and Periphl!ral Modes

u-. tf tile "1ultlpf•JIO Pins

PURPOSE !GE~ • USER VO .. .

When designin9 with the LCA, careful consideration must be
given to which signals 11;ie conneeted to the multiple-function 1/0
pins. Conflicts c:;an atjsewhen a pin normally used as an inputto
the LC.4. suddenly becomes an output during the configuration
cycle. Similarly, outputs whic;h are normally under tight control
tiy the LCA logic can transition erratically during configuration,
c~sing adverse eff$Cts to the circuitry connected to them. .

during configurlltion, and LCA inputs to pins wl'.)ich become

By aim ply assigning LcA outputs to pins which become outputs

:J..14

· inputs !!luring configuration, the designer ~ures that conflicts
(:!!.n be held to a minimum. if au conflicts cannot be resolved
using this method, th~ external buffers may be added to elimi­
nate th• the possibility of any bus contention. The signals HOC
(High During Configuration) ilnd LDC (Low During Configura­
tion) can be useid to enable or diSl;lble the buffers at the approp­
riate times. See Figure ll.

Configuring the LCA Device

~ -RES

~ Dl-P

~ MO

M2, DIN, DOUT, MDC, LDC, AND -RCLK ~ M1

~ .M2 ALL BECOME VO PINS AFTER CONFIGURATION
AND NEED TO BE BUFFERED ACCORDINGLY. ~ -PWRDWN

28 HOC

~ LDC

~ XTAL

~ XTAL
USER INPUTS WILL CONFLICT WITH
ADDRESS LINES DURING CONFIGURATION,
AND NEED TO BE BUFFERED.

~
~
~

CCLK
DOUT

INPUTS[~i~ ---t-11--- 2A 1

~2A2
~2A3
.~2A4

f-:-!;o 1G

~2G

-RCLK
-2li A15
67 A14

1Y1t-1-8-------------,.,...

1Y2t-1-6-------------=--<
1Y3t-1~4--------------"'-<
1Y4r1-2-.--------------~
2Y1~9'-4~.------------~"-I
2Y2r7--t--t-..-----------~"-I
2Y3P~'-+-+-+-+----------"-!
2Y4r3'-t--t--t--t-..----------'-l --74LS244

2 A13
4 A12

.Ji A11
_gJ A10
_aJ A9

7 A8

1\0

11
12

13
14

15
16

17

19
20

21
22

23
w_
lz9__
~
32
33
34

36

37

38
39
40

47
49

53

55

1\0

110 PINS WHICH ARE
ONLY I/Os DO NOT
NEED ISOLATION

[
~1Y1 1A1 2

~ 1Y2 1A2 4

~1Y3 1A3 6

~1Y4 1A4 8

o~ §i§ §j;

5 A7
3 AS

68 A5
66 A4

64 A3

63 A2

62 A1

61 AO

D7 41 2~i-!!-I
D6 42 4 1A2 1Y2 r!L OUTPUTS E1 D5 1-4=8~-----...-+-+--"-<6 1A3 1Y3 ~
D4 rl_.5D_~----..-+-+-+-~8'i1A4 1Y4 i-!!-
D3 r5"-'1'-----o-+-+-+-+---'1-'-11 2A1 2Y1 f!--
D2 r5~4'----1>-+-+-+-+-+---'113 2A2 2Y2 ~
D1 ... 5_6 __ ,,_,__,__+-+-+-+-~1_,5 2Y3 ~

DO-DIN 58 17 :: 2Y4 ~
~1G
~2G~

ADRESS LINES
WHICH ARE USER
OUTPUTS MUST BE
ISOLA TED DURING
CONFIGURATION TO
PREVENT DAMAGE TO
THE USERS CIRCUITRY.

ADDRESS LINES BECOME
OUTPUTS FROM THE LCA
DURING CONFIGURATION.

M2064

27C64

~ AO

~ A1

~ A2
7 A3
6 A4
5 A5
4 AS
3 A7

25 A8
24 A9
21 A10
23

A11
2

A12
20 ce ,._ __ 2_2_, OE

VCC~PGM
VCC ---'1 VPP

00~
01~
021-1~3--~
03 15

04 16

05 17

06 18

07 19

DATA LINES BECOME
INPUTS TO THE LCA
DURING CONFIGURATION.

Figure 8. Isolation of 1/0 Pins During Master Mode Configuration

2':2c
t111< 2C -74LS244 .___.

3·15

:S..16

~
Advanced

Micro
Devices

AN-173

M2018 Provides Decoding
for Six-Digit, Seven-Segment

Liquid Crystal Display

Abstract
The Logic Cell™ Array (LCA) from Monolithic Memories is a high
density programmable device capable of supporting true VLSI
logic functions. Its unique properties can be viewed as
providing the benefits of Programmable Logic Devices (PLDs)
while approaching the high functional density of a gate array.
Combining these features makes the LCA device a product
capable of bridging the gap between PLDs and Gate Arrays.

The LCA structure differs from the conventional concept of the
PLO because it is based on a CMOS RAM cell architecture. Its
internal logic circuits, input/output (1/0) resources plus the
interconnect are all programmable. In comparison to the
traditional fuse array of a PLO which is linked to a fixed logic
structure. The efficiency of this logic structure reduces as
functional density increases.

The low-power CMOS RAM locations of the LCA device must be
initialized and configured immediately after power has been

Logic Cell™ Array and XACT™ are trademarks of XILINX Inc

IBM® is a registered trademark of International Business Machines Corporation.

Chris Jay

applied to the circuit. Once configured, functionality is main­
tained by the continued application of power to the device. To
ease configuration, the device can reside alongside a low-cost
EPROM which holds the configuration data. The LCA device
can automatically load itself and be reprogrammed any number
of times. This feature of reconfigurability can be used for
system development, modifying existing designs, or support­
ing multiple system choice, with very little actual hardware
modification. In many instances this can be achieved dynam­
ically or "on the fly."

The following applications note describes the design of a six­
digit, seven-segment decoder/driver for Liquid Crystal Dis­
plays (LCDs). Design methodology is outlined and the use of
the XACT™ software is discussed in the role of a CAD design
tool for the LCA device. The final designs are available to
readers of this applications note on request.

PC™, PC/AT™ and PC/XT7M are trademarks of International Business Machines Corporation.

P-SILOS™ is a trademark of Simucad Corp.

3·17

EJ

M2018 Provides Decoding for Six-Digit,
Seven-Segment Liquid Crystal Display
Chris Jay

Introduction
There are two types of low-voltage, seven-segment displays
available as Indicator panels of multimeters, frequency
counters, tachometers and other digital instruments: the light
emitting diode displays (LEDs), and Liquid Crystal Displays
(LCDs). The advantages of the LCD are mainly associated with
very low power consumption and ease of readability. Instru­
ments and portable equipment can benefit from low-power
CMOS technology and use these displays. The problem with
LED displays is that a much higher operating current is
required to illuminate the segments, virtually precluding their
application in portable battery-operated equipment. Also, LED
display outputs tend to "wash out• in sunlight, so they are very
unsuitable in bright daylight, or where the ambient presence of
light is high. In the display instrumentation of an automobile,
for example, an LED display panel might be ''washed out" by
high levels of reflected sunlight. LCD displays are preferable
because the visual quality is good even in brightly lit
environments.

Despite the good visual quality and low-power consumption of
the LCD display, an LED type can easily be driven from a
multiplexed bus output. The output pin requirement of a seven­
segment LED driver can be reduced considerably by a
multiplexed output arrangement. In a six-digit display, each
anode (or cathode) drive is selected in synchronism with its
multiplexed seven-segment output. A total of thirteen pins are
required, seven pins to drive the segments and six pins to

vcc

R R

The M2018 LCA device has
been programmed to accept
thr'e data byte inputs. Each
byte can be registered by the
rising edge of the clock inputs
CLKO, CLK1, CLK2. The
decoding for a six-digit LCD
display and backplane wave­
form generation is incor­
porated in the M2018 device.

,-,
I I

8YTE1

CLKO

DAO
DBO
DCO
DDO

DA1

DB1
DC1
DD1

control the anode (or cathode) of each display. If each digit is
multiplexed at high speed with a proportionally larger pulse
current per display, then the readability of the output is
unaffected. With an LCD display, multiplexing is virtually
impossible for two reasons. First, the LCD display has a slow
response time and can not be multiplexed to give a good visual
output. Second, the display backplane has to be pulsed. Any
beating of a multiplexing frequency with the backplane bias
frequency can occur, resulting in an unreadable output.

LCD displays. have drawbacks because any driver circuit will
need one pin per segment, plus a backplane driver pin for the
whole display unit. Seven segments for each digit, in a six-digit
display requires forty-two outputs pins, plus the one backplane
pin. The input pin requirement is twenty-four, four pins for each
of the six digits. The total pin count is sixty-seven. Additional
input circuitry to support register enables and oscillator inputs
would use up even more 1/0 resources and pins.

Block Function of the LCD
Decoder/Driver
Figure 1 shows a schematic block diagram of the system as
designed into the M2018 Logic Cell Array. Additional pins to
synchronize the clocking of data into the internal data
registers take three more pins. Since a backplane oscillator is
required, two pins are configured to a resistor/capacitor (RC)

M2018 SIX • DIGIT LCD DRIVER

BYTE2

CU<1

DA2
DB2
DC2

DD2

DA3
DB3

DC3
DD3

,-,
I I

CLK2

DA4

DB4
DC4
DD4

DA5

DBS
DC5
DDS

8YTE3

,-,
I I

Figure 1. Liquid Crystal Dlsplay Decoder Driver

3·18

M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display

network. The RC combination generates a square wave which
is used as a backplane bias to the display. The pin count is
seventy-two.

Binary data applied to byte 1 is registered after the rising edge
of CLKO. The registered data is decoded to illuminate the
relevant segments forming the hexadecimal display. Decoded
data is then routed to the two least significant digits of the six­
digit LCD. Byte data applied to inputs 2 and 3 are loaded by a
clock rising edge, CLK1 and CLK2, respectively. A backplane
oscillator output drives the LCD's backplane with a low­
frequency square wave, which is determined by the RC time
constants of a resistorlcapactitor network. To display a seg­
ment the decoder circuitry will drive the selected segment with
a square wave that is 180 degrees phase-shifted from the
backplane reference. If a segment is driven from an in-phase
signal, then it is blanked.

The advantage of the M2018 Logic Cell Array in this application
is that it is a CMOS device, and consumes low power at low
operational frequencies. Its power consumption is dependant
on the internal clocking frequency and also on the percent
usage of on-chip logic. There are one hundred individually
configured logic blocks in the M2018, and any logic blocks that
remain unused will consume only static substrate leakage
current. Since the M2018 contains seventy-four genera/­
purpose user 110 blocks, there is ample programmable logic
and 110 capability to perform decoding, registering and storage
of data for six seven-segment digits.

LCA Configuration
Since the LCA device is based around a programmable array of
volatile RAM cells, it must recieve configuration information at
"power up." In this application it is programmed from an EPROM
which holds the configuration data. Configuration takes place
after power has been applied to the circuit, and it has been
successfully reset. The LCA device enters a configuration
mode, sequentially reads the data from the EPROM into its
RAM cells, and becomes functionally operational in approx­
imately twenty-five milliseconds. It disables the EPROM after
configuration. The volatility of the M2018 is a distinct
advantage in many applications. In this case, different display
decode operations may be selected at "power up'. Higher order
address lines may be "hardwired" to select different
configuration patterns from separate pages in the EPROM. So
a small amount of deferred design may be added to the
system.

The M2018 has many advantages over custom VLSI circuits.
Here, designers have control over how they wish to configure
the circuit. Different display fonts can be programmed, for
special characters. Most of the 110 pins can be reconfigured to
ease printed circuit board layout.

Figure 2 shows the circuit connections of an 84-pin M2018 in a
PLCC to an 8 Kbyte-wide EPROM. Approximately 2.5 Kbytes
are required for configuration. Three configuration patterns
may be cascaded into one 8 K x 8 EPROM, but in this
application, two configuration patterns may be stored, one at
base location of OK and one at base location of 4 K. Address
line A12 may be configured to a DIP switch or hardwire link, to
select one of two configuration patterns. Two designs were
developed, one for decoding binary data to a hexadecimal
display and one for binary coded decimal. Both configuration

patterns could be programmed into the EPROM and selected at
a later time.

The configuration mode chosen for the LCA device was the
Master Low mode. Data is sequentially read from the EPROM
during the configuration cycle. After power has been applied
and the RESET input has been deasserted, the M2018 will
output a series of incrementing addresses to the memory
starting at the initial address of 0000. The DONEl-PROG (DI
-P), which is an output during configuration, is driven active
LOW. It is tied to the CS and OE inputs of the EPROM. When
configuration is finished, Dl-P is pulled passive HIGH by an
internally-configured "pull-up" resistor in the LCA device . The
EPROM is then deselected. The normal data flow into the
device is via dedicated input lines DO-D7 during configuration,
and afterwards these become general-purpose 110 lines. The
total time for configuration can vary between 17 to 34 ms.

A12 6 2 A12

vcc

8 23
All All

_E. 10 21 M2 A10 A10

Fi M1 A9 11 24
A9 2 MO A8 9 25
A8

A7 7 3
A7

A6 5 4
A6

A5 84 5
A5

A4
80 6 A4

A:J
78 7 A:J

A2
77 8

A2
M2018- 50 9 Al 2764 Al 76

CNL84 75 10 EPROM
AO AO

DO 72 11
DO

VCC 01 70 12 01
02 66 13

02

10K 03 63 15 03

54 04 62 16 04 --!---1 RESET 05 58 17 05

l 06 52 18
06

07 51 19 07

OONE/PGM 55 20 cs Gi OE

O.OlµF

Figure 2. Liquid Crystal Display Decoder Driver

Design of the Backplane Oscillator
To establish a backplane bias frequency, an RIC network is
used in conjunction with a logic block that is designed to
function as a relaxation oscillator. The Configurable Logic
Block (CLB) is connected to two Input Output Blocks (IOBs)
which in turn are connected to two external RIC networks,
R1 ,C1 and R2 and C2 as shown in Figure 3a. The calculation of
the RIC values to create a low-frequency backplane oscillation
of even mark space ratio is given below. For an even mark/
space ratio R = R1 = R2 and C = C1 = C2. The time constants
for period t are given by the following formula:

T1 = 0.35(C X R X 2) ;for TTL voltage ;thresholds.

T2 = 0.75(C X RX 2) ;for CMOS voltage ;thresholds.

The general expression for the calculation becomes:

T = N X [(R1 X C1) + (R2 X C2)] (1)

3-19

Ell

M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display

Where N is the TIL, or CMOS multiplying factor of 0.35 for TIL
or 0.75 for CMOS. The LCA device can be programmed to be
compatible with either technology.

The values of 1 Kohm and 2.2 microfarad gave a backplane
oscillation frequency of about 80 Hz.

Figure 3a shows the schematic arrangement of the backplane
oscillator as it would be configured in the LCA device. Two RIC

vcc
1Kn 1Kn

PIN66

t·2 µf I 2.2 µF

a. Logic Schematic Diagram of GOSC Macro

--~~~~--1 C ~N~

....-~-+-~~~~~ Q

B

PIP

b. ClB and IOB Placement of GOSC Macro

Figure 3. Liquid Crystal Display Decoder Driver

networks of 1 Kohm and 2.2 microfarads are connected to pins
67 and 65 respectively. The placement of the bl!)cks is shown
in Figure 3b as it would be seen on the color monitor of a PC
when the XACT Design Editor is used. Pins dedicated to
configuration functions must not be loaded with components
such as capacitors because they could prevent the LCA
device from reading valid data. Pin 66, which is associated with
data line D2 was therefore assigned to drive one of the LCD
segments.

XACT Editor and Macro Support for
Quick Design Entry
The logic design is accomplished by using the XACT Design
Editor running in an IBM® PC/AT™ or PC/XT™. This support
software allows users to edit their designs via a mouse inter­
face and a keyboard input. The CLB and IOB elements may be
configured and connected to form complete logic subsystems
through the programmable interconnect. The XACT Editor
allows the user to view a ;section of the LCA device on the
display unit of the PC, for CLB and IOB placement, and
distribution of interconnect. Supported by the zoom-in and

zoom-out facility, and a "world view" feature (this allows the
user to see the entire LCA device layout) enables a designer to
"hook" subsystems of the design together. Menus are
displayed at the head of the video display, and a designer may
move the cursor with a mouse to select options. These Include
BLOCK commands enabling CLB/IOB editing; CONFIG to
enable configuration of blocks; and NET and PIN to as&ign pins
to nets, so creating the overall interconnection. This could be
analagous to interconnections on a printed-circuit card,
making the electrical connection between pins of 74LSXX or
other types of logic devices.

The XACT editor is equipped with a support MACRO library.
This library allows widely used functions to be invoked without
redesign. The relaxation oscillator, used for the backplane
generator, is supplied as an existing design configuration in
the MACRO. The oscillator MACRO may be called by
downloading the GOSC MACRO file.

When using the XACT editor the application of already existing
MACRO support files can dramatically reduce the overall
design cycle time. The six-digit decoder display driver is basi­
cally repetition of the same six logic subsystems, one for each
digit as shown in Figure 4. The CUTMACRO feature is useful as
a support facility in avoiding repetitive design operations on
individual IOBs or CLBs. Once a CLB has been designed, it
can be stored as a MACRO, and given a user-defined name.
The designer may call that MACRO wherever the IOB or CLB
needs configuration and placement. The CUTMACRO feature
also supports multiple CLBs, IOBs and interconnects of
subsystems. A decode section identical to the one shown in
Figure 4 can be stored as a MACRO and given a user-defined
name. The design for a decoder section needs only to be
performed once. The remaining five sections may be called and
placed using the user-defined MACRO support facility.

Widely Used XACT Functions
As described.the XACT software is menu-driven and opera­
tions supported by the design editor are listed at the head of
the screen with a schematic representation of a portion of the
device shown below. A mouse interface permits the designer to
scan a cursor over the schematic, or choose a functional
operation by "clicking" on the selected option. Following are the
available options from left to right:

NET PIN BLK CONFIG SCREEN MISC PROFILE

When selected, a heading will list its menu options. The BLK
command gives nine options. The most commonly used
options are EDITBLK and ENDBLK, which allow the designer to
select a specific logic block and enter a logic description into
it. The latter command will terminate the editing process and
return the designer to a world view of the LCA schematic.
Details on editing CLBs are described in more detail in the CLB
Configuration Section. Other commonly used commands in the
BLK menu include COPYBLK, to copy a repetitive logic design
into other unconfigured blocks, DELBLK to erase unwanted
designs from the network; CLRBLK, to clear the contents of a
block but leave its input and output pins attached to the nets;
MOVBLK, move a configured block with its associated nets to
another block location; and NAMEBLK, to permit the assign­
ment of user-defined names. Each time a function is invoked,
the XACT editor prompts for a response at the bottom of the
screen. For example, EDITBLK would invoke a "SELECT

M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display

BLOCK" invitation. The user then "clicks on" the block he/she
wishes to configure.
The CONFIG command has six subcommands which relate to
the editing of a CLB. The BASE command directs which logic
arrangement is to be selected: one Boolean function of four­
input variables, or two functions of three-input variables, or
multiplexed input selecting either one choice of two three-input
variables. EQUATE is commonly used, and allows a designer
to generate a Boolean equation from keyboard input and
configure it to an ouput. Other choices include ORDER, to
establish blank truth tables for Karnaugh map entry; CLEAR, to
delete unwanted functions; and CDATA (see data), for a text
description of the block configuration.

The creation of configured blocks must have the support of
interconnections. The NET and PIN commands are invoked to
establish the connection of CLB outputs to CLB or IOB inputs.
The NET menu may be invoked to create a net onto which input
pins and one output pin is listed. The ADDNET command allows
a designer to add a net to the netlist, and ADDPIN allows the
user to add pins to a selected net. The NAMENET subcom­
mand in the NET menu allows the default value of netx (where x
is an XACT default-assigned integer) to be overruled by a user­
assigned name. This is similar to the NAMEBLK command for
BLK functions. Nets can be routed, unrouted, deleted and
merged by the ROUTE, UNROUTE, DELNET and JOINNET
commands, respectively. Manual editing of the net is invoked
by the EDITNET command. A net is established and manually
interconnected to Programmable Interconnect Points (PIPs) to
create a circuit. The other NET options include FLAGNET,
which assigns critical or non-critical status to a net; and
HIGHLIGHT/UNHIGHLIGHT commands which "bright up" or
"clear" net distribution on the "world view."

The PIN commands are: ADDPIN for adding pins to nets, and
CLEARPIN for removing them. The SWAPPIN allows pins to be
switched without switching functionality, where SWAPSIG
exchanges the logic functionality inside the CLB without
switching the pins. MOVEPIN will move a pin from one location
to another, and ROUTEPIN will establish an interconnection on
a net.

These and other menu functions are described in greater detail
in Monolithic Memories' XACT Development System manual.

Design Methodology
Figure 4 shows a block schematic of one seven-segment
decoder driver. Seven logic blocks decode the four data inputs
DA, DB, DC, and DD, where DA is the least significant data
input. Each block has the capability of storing the data in a
register inside the logic block. The backplane oscillator drives
the LCD backplane for all segments. The individual segments
are driven from an exclusive-'OR" (XOR) gate, which is
programmed to invert the backplane waveform for an
illuminated segment, and not invert for a blanked segment. The
segment decoder circuits, SAO, SBO to SGO, provide a logic
LOW output for an active segment drive. Therefore, the
backplane input to the XOR gate is inverted in a second logic
block and provides the correct phase control for the segment
driver. The configuration was repeated six times in the LCA
device to support a total of six digits.

Figure 5 shows the truth table for decoding four binary inputs
into a hexadecimal segment drive. DA is the least significant
binary input and DD is the most significant. The hexadecimal

weighting of the binary input is also shown in the table. To
illuminate a zero digit, all the segments are driven active
except for segment "g," for digit "one"; segments "b" and "c" are
active, and for digit "two" segments "a," "b," "d," "e" and "g" are
driven. The complete decode arrangement is shown at the
head of Figure 6.

The Karnaugh maps, derived from the truth table shown in
Figure 5 are given in Figure 6, and provide the decode
equations for all the segments. Logic "one" entries represent
illuminated segments and logic zeros represent extinguished
segments. A greater reduction efficiency of minterm entries
was achieved using reduction techniques applied to map
locations containing logic zeros. This required an inverted
input to the exclusive OR (XOR), polarity control gate, as
shown in Figure 4. The logic equations derived from the

BACKPLANE-------..----------~

CU<

SEGMENT"g"
DECODE AND
REGISTER

Figure 4. Liquid Crystal Display Decoder Driver

3-21

El

M2018 Provides Decoding for Six·Digit, Seven-Segment Liquid Crystal Display

BINARY ENCODED INPUT
SEGMENT LABEL

LSB MSB

HEX. DA DB DC DD a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 1 0 0 0 0 1 1 0 0 0 0

2 0 1 0 0 1 1 0 1 1 0 1

3 1 1 0 0 1 1 1 1 0 0 1

4 0 0 1 0 0 1 1 0 0 1 1

5 1 0 1 0 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 1 1 1 0 1 1 1 0 0 0 0

8 0 0 0 1 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

A 0 1 0 1 1 1 1 0 1 1 1

B 1 1 0 1 0 0 1 1 1 1 1

c 0 0 1 1 1 0 0 1 1 1 0

D 1 0 1 1 0 1 1 1 1 0 1

E 0 1 1 1 1 0 0 1 1 1 1

F 1 1 1 1 1 0 0 0 1 1 1

Figure 5. Liquid Crystal Display Decoder Driver

Kamaugh maps in Figure 6 could be used for Boolean design
entry, the active LOW equation for segment "a" is given as:

-a= -A·-s·c·-o + A*-B*-C*-D + A*B*-C*D + A*-B*C*D

where the inputs to the CLB are A, B, C and D. The tilde sign(-)
represents signal inversion, the • and + signs represent
product and sum terms, respectively. The Boolean entry also
supports the function XOR by the@ symbol, the function -A*B
+ A*-B is condensed to A@B.

The conventional logic gate configurations are shown in Figure
7. Seven "sum of product", combinational circuits were derived
from the Karnaugh maps shown in Figure 6. Logic designers
familiar with PLO designs will recognize a sum of products
architecture. Having generated Karnaugh maps and equations,
the design can be implemented in the LCA device by using the
facilities of the XACT Design Editor running in a PC/AT or PC/
XT.

Binary to Seven-Segment Decoder
The display font shows the decoding function required for a
binary to seven-segment hexadecimal display. A logic one
represents an illuminated segment, from the table shown in
Figure 5.

LCD Seven-Segment Display Driver
in LCA

D ~ • 00 01 11 10

00 0 1 3 2

01 4 5 7 6

11 c D F E

10 8 9 B A

For binary Input ABCD the
hexadecimal value of that
binary weighting Is entered
In the correct location of the
Kamaugh map.

B,A

8,A
D,C

-a= ... A*-B*C*-D + A*-8*-C*-D
+ A*B*-C*D + A"'-B•C*D

(a)

B,A
D,C D,C

-b = -A·e·c + A*B*D
+-A*C"D + A"-B"C"-D

(b)

B,A
D,C

-c = -A*C*D + e•c•o
+-A*B"-C"-D

(c)

-d = A*B*C + -A*B*-C*O -e = A*-B*-C + A*-D
+ -A*-B*C*-D + A*-B*-C*-D + -e·c·-o

(d) (e)

_, = e·-c·-D +A"-C"-D
+A'B*-D +A·-e·c-o

(f)

B,A
D,C

-g = -B*-C"-D + A'B"C*-D
+-A·-e•c-o

(g)

Figure 6. Liquid Crystal Display Decoder Driver

M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display

ABC D

Figure 7. Liquid Crystal Display Decoder Driver

The decode logic for each segment is shown in the conven­
tional sum of products form and was derived from the Karnaugh
Maps. It is possible to encode these logic configurations in to
one "CLB" for each segment. The "CLB" is capable of producing
one output that is a Boolean function of up to a maximum of
four inputs.

Editing the Design
The XACT Design Editor was used to create the design, and
generate the configuration data, suitable for programming into
an EPROM. Three programmable elements have to be
considered; the IOBs, CLBs and the interconnection of JOB
and CLB blocks.

CLB Configuration
Figure 8 shows the exploded view of a CLB that has been
configured as the segment "a" decoder. The XACT Design
Editor provides a mix of text and diagram editing supported by
a keyboard and mouse interface. The logic equation is shown
as text entry at the bottom of the diagram. The combinational
block, AA (user defined as SAO by invoking the NAMEBLOCK
feature in XACT), has been configured as the "a" segment
decoder. Each CLB can be configured as a single output
function of four Boolean input variables, or two output
functions of three-input variables each. Both configurations
were used in this design example.

The Karnaugh map reflects the equation entered from the
keyboard. An alternate way of entering configuration informa­
tion may be achieved by using the mouse to select individual
locations in the Karnaugh map. These locations may be
"clicked" on or off, to select or deselect minterm entries. The
equation relevant to the Karnaugh map entry is updated after

modification. If designers have generated Karnaugh maps
during the design cycle of the project, they could use this
visual aid to enter and check the logic integrity of the design.
Also, a truth table is available for verification purposes.

An unconfigured CLB will not display a Karnaugh map so to
generate a four-input map, the instruction:

Config(Order(F(A(B(C(D)))))

is typed to create one output F that is a function of four
Boolean inputs. A blank Karnaugh map will be displayed ready
for editing.

The top left-hand portion of Figure 8 indicates how the CLB is
configured. The Q output from the register is connected to the
X output of the CLB. To activate this path, the mouse is used
to select the Q option. The register could be bypassed if the F
output was selected. Either register or combinational config­
urations may be realized. The path from the register output to
the CLB X output is established by activating the PIP
represented by the block tying Q to X shown in Figure 8. The
alternate output, Y has the same assignment options of
registered or combinational outputs. There are two configura­
tions available to the storage element; either register or
transparent latch. The register's output will change as a result
of a transition being applied to its clock input. For a latch, the
control input is level-sensitive requiring a logic HIGH or LOW
level to distinguish between storage or a transparent mode of
operation. In the CLB the clock input polarity can be selected
by the NOT function in the CLK submenu. Two features that
were not used in this design are the asynchronous SET and EJI
RESET functions. If required, the SET option can be invoked
by selecting either the A input, or choosing a combinational
output from F, which can also perform RESET. A single input to
RESET the register or latch is the D input. To the bottom right
of the CLB configuration diagram in Figure 8, all the inputs to,
and outputs from, the CLB are listed. The net to which each
CLB input or output is associated is shown after the colon. The
A input is tied to the net DAO; B, C and D inputs are connected
to nets DBO, DCO, and ODO, respectively. The user can assign
meaningful names to nets in the design process. In this
example, net SAO, is segment "a" of the least significant digit
and is driven from the X output of the CLB. DAO-ODO are the
four binary inputs for the least significant digit. The clock input
is assigned to the K terminal of the CLB, thus, the decoded
output may be registered after a rising edge of the clock has
been applied to the net CLKO.

x !.~ Q 'Off' y !'ill!lw g F Q
Q FF ~Ii
SET I RES . Afl BLK:AA
CLK

Kum!.
K SAO

DCBA F A __.._
A:DAO

HHLH H ii B:DBO
HLHH H

:-Ill] r C:DCO
LHLL H D:DDO
LLLH H CU< K:CLKD

Q X:SAD
D ii Y:

-..--
B

F = -A*-B*C*-D+A*-B*-C*-D+A*B*-C*D+A*-B*C*D

CLB configuration for segment 'a' decoder.

Figure 8. Liquid Crystal Display Decoder Driver

3-23

M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display

:~x
g LJ rl:J BLK: AB

K SBO

A:DAO
B:DBO
C:DCO
D:DDO
K:CLKO
X:SBO
Y:

F = -A'B'C+A'B'D+-A'C"D+A'-B'C"-D

CLB configuration for segment 'b' decoder.

x
y
Q
SET
RES
CLK
DCBA

HLHL
LHLL
LLLH
XHHH CLK

Q

A:DAO
B:DBO
C:DCO
D:DDO
K:CLKO
X:SDO
Y:

F = A*B'C+-A*B*-C"D+-A'-B*C"-D+A*-B'-C"-D

BLK:DA
SDO

CLB configuration for segment 'd' decoder.

i[Jtf x

BLK:FA
K SFO

HHLH
A:DAO

H B:DBO
LLHX H C:DCO
LLXH H CU< D:DDO
Llffl H Q K:CLKO

X:SFO
Y:

F = e·-c·-D+A*B*-D+A*-B*"C'*D+A*-C*-D

CLB configuration for segment T decoder.

x
y
Q
SET
RES
CLK
DCBA

LLHL
HHHX
HHXL

A[Jtf X B F Q

g BLK:AC
K SCO

A:DAO
B:DBO
C:DCO
D:DDO
K:CLKO
X:SCO
Y:

F = -A'C"D+B'C"D+-A*B*-C*-D

CLB configuration for segment 'c' decoder.

F = A'-B'-C+A'-D+-B*C'-D

i~x
LJ rl:J BU<; EA

K SEO

A:DAO
B:DBO
C:DCO
D:DDO
K:CLKO
X:SEO
Y:

CLB configuration for segment 'e' decoder.

x

i[Jtfx
y
Q
SET BU<;AG
RES K SGO CU<
DCBA

HHLL
A:DAO
B:DBO

LHHH C:DCO
LLLX CU< D:DDO

+O K:CLKO
X:SGO
Y:

F = -A'-B'C"D+A'B*C'-D+-B'-C"-D

CLB configuration for segment 'g' decoder.

Figure 9. Liquid Crystal Display Decoder Driver

Like nets, individual blocks may be given meaningful names.
The CLB situated on a grid location "AA" of the LCA device has
been named SAO. Naming nets and blocks can help in
debugging the final design. Figure 9 shows the configuration of
the CLB elements for segments "b," "c," "d," "e," '1" and "g."

Figure 1 O shows the configuration of a CLB as a combinational
logic circuit which provides two outputs at X and Y. The
backplane waveform is fed to the A input where it is inverted.
This signal will pass through the X and Y outputs, appearing
either in phase with the backplane reference or shifted by 180
degrees from it. The control inputs come from the segment
decoder circuitry. In Figure 10, SAO and SBO are the
interconnecting nets that convey control signals from the
segment "a" and "b" decoders. The configuration used was two
Boolean outputs as functions of three-input variables, so
outputs F and G were selected.

x F 11\111!
y lllG Ill m· Q -SET

~y RES • BLK:AB
CLK - PINVOAB -CA F A

~c
A:BPIJIE

HH H B:
C:SAO

LL H D:SBO

DA G A K:
X:AO

~c
F Y:BO:: HH H G

LL H

F =-A@C
G =-A@D

Figure 1 O. Liquid Crystal Display Decoder Driver

M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display

IOB Configuration
The Input/Output blocks must be configured to drive the
segments, backplane, and to receive data for decoding. The
segment and backplane IOBs are configured as outputs.
Inputs are configured for data ports DAO-ODO, DA 1-001, up to
DAS-DDS. The IOBs are considerably less complex than the
CLBs, having interface functionality rather than Boolean logic
functionality. Each IOB is capable of being programmed as
input, output, bidirectional, with HIGH-Z output, and registered
input. Individual or composite 110 functions may be selected.
Figure 11 a shows an output buffer, the input of which is driven
from net AO . Net AO is driven from the X output of the CLB
featured in Flgure 10.The designer has some control over the
placement of IOBs around the perimeter of the LCA device,
and can use the BLKMOVE commands to optimize pad layout
for the best printed circuit design. Figure 11 b shows an IOB
that has been configured to receive data. The buffer is an input
driving net DAO_.

l I BUF

l I BUF

Jo~ a--r<1-o
BLK:P14
AO

I:
O:AO_
T:
K:

a. Liquid Crystal Display Decoder Driver

l PAD ~~ gmm Ehc>-,
BLK:P18

DAO

PAD l:DAO_
0:
T:
K:

b. Liquid Crystal Display Decoder Driver

Figure 11. Input/Output Block Configuration

The IOB has been configured as an output buffer to drive the
segment "a" of the least significant digit. The block has been
assigned the name AO. the output buffer has been turned on
and the input to that buffer has been configured to net AO_. All
the segments and the backplane of the LCD have been
assigned an output buffer.
The data path to the LCA device for binary data is via IOBs
configured as input buffers. The binary inputs DAO, DBO, DCO,
and ODO for the least significant digit and the configured IOBs
are assigned user-defined names DAO, DBO, DCO, and DDO.
The input nets are DAO_, DBO__, DCO_, and ODO_ respectively.
This is repeated for digits 1, 2, 3, 4, and S.

XACT Supports Design Rule
Checking
During the design of the LCD decoder driver circuit the Design
Rule Checker (DRC), was invoked to verify that no fundamental
design rules were being violated. Errors can easily occur,
especially for the uninitiated user. Errors such as two CLB
outputs driving one net are usually caught dynamically. Also, a
net listing of inputs that are not driven by an output would
constitute an error. A general DRC run will list all design
violations, errors and warnings. Warnings such as an assigned
CLB output that is not connected to a net. This information can
be sent to a line printer and the resulting list of Errors and
Warnings can be used for design correction. Invoking DRC will
check blocks, interconnect and nets. Also, prior to using the
MAKEBITS command (for the eventual MAKEPROM) software,
the DRC is invoked to trap any possible design violations. Of
course, the design rule checker does not screen the design for
logic function integrity. An additional software package Is
available in P-SILOS™ as a logic, and timing simulator. Inputs
may be activated by HIGH, LOW, HIGH-Z levels etc., while
output logic levels may be listed during the simulation run.

Conclusion
The design was modified for a decimal decoder display driver.
Figure 12 shows the modifications necessary to each segment
decoder. The choice of a latched version of the display driver
was developed as an alternative to the registered type. In each
registered CLB, the option was changed for a latched option.
By removing the backplane oscillator and making the net
BPLNE an input which is driven HIGH or LOW, high efficiency
LED displays of common anode or cathode may be driven. The
designs developed are as follows:

XDES01.LCA REGISTERED HEX DECODER DRIVER.

XDES02.LCA REGISTERED DEC DECODER DRIVER.

XDES03.LCA LATCHED HEX DECODER DRIVER.

XDES04.LCA LATCHED DEC DECODER DRIVER.

These designs are available as bit patterns for programming
EPROMs on request.

The Print World of the design DES01.LCA shows the placement
of CLBs, IOBs and the routing for the final design. This can be
used as a reference for wiring the device into a circuit. Pin 1 is
shown at the top center of the diagram and is the GND
connection. The pins are numbered counter-clockwise from
that reference pin. For example DB3 is connected to pin 2 and
02 connected to pin 3 etc.

3.25

El

M2018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display

LCD Seven-Segment Display Driver
in LCA Binary Coded Decimal

B,A
D,C

Display is blanked for hexidecimal
'decoded inputs.

B,A
D,C

-a= c•o + e•o + -A·-e·c·-o
+A•-e•-C"-D

-b = C*D + B*D + -A*B*C*
+A•-e•c

(a)

B,A
D,C

-.c = C*D + B*D + -A*B*-C

D,C

D,C

(c)

B,A

-e =A+ -B*C + B*D

(e)

B,A

-g = c•o + e•o + A•e•c
+-B*-C* ... O

(g)

(b)

-d = c·o + e·o +A·e·c

D,C

+ -A·-e·c + A·-e·-c·-o

(d)

B,A

-f = B*D + A*B + C*D + B*-C
+ A* .. C*-0

(f)

Karnaugh maps for binary
coded decimal drivers. A logic
zero represents an extinguish:..
ed segment.

Figure 12. Liquid Crystal Display Decoder Driver­

For Binary Coded Decimal Output

3·26

BCD to Seven-Segment Decoder
The table below shows the decoding function required for a
BCD to seven-segment hexadecimal display. A logic one
represents an illuminated segment.

BINARY ENCODED INPUT
SEGMENT LABEL

LSB MSB

HEX. DA DB DC DD a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 1 0 0 0 0 1 1 0 0 0 0

2 0 1 0 0 1 1 0 1 1 0 1

3 1 1 0 0 1 1 1 1 0 0 1

4 0 0 1 0 0 1 1 0 0 1 1

5 1 0 1 0 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 1 1 1 0 1 1 1 0 0 0 0

8 0 0 0 1 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

A 0 1 0 1 0 0 0 0 0 0 0

B 1 1 0 1 0 0 0 0 0 0 0

c 0 0 1 1 0 0 0 0 0 0 0

D 1 0 1 1 0 0 0 0 0 0 0

E 0 1 1 1 0 0 0 0 0 0 0

F 1 1 1 1 0 0 0 0 0 0 0

Figure 12. Liquid Crystal Display Decoder Driver

112018 Provides Decoding for Six-Digit, Seven-Segment Liquid Crystal Display

Print World: DESOl.LCA (2018PC84-SO), XACT 1.30, 15:12:14 JUL 1, 1987 Print World: DESOl,LCA (2018PC84-50), XACT 1.30,

Ell

Figure 12. Liquid Crystal Dlsplay Decoder Driver

3-27

3·28

~
Advanced

Micro
Devices

AN-180

LCA Counter Applications

Abstract
Counters are used in many logic systems to control and syn­
chronize events. Essentially, counters have one thing in com­
mon, they are all state machines. State machines, unlike basic
combinational functions, require registers with feedback. The
design creates an output that is a function of the previous state
of the registers in the machine, and in some cases a function of
other combinational inputs as well. Listed below are some of the
systems that would use various types of counters.

• Direct Memory Access (DMA) Controllers

• Video RAM Refresh

• Dynamic RAM Control Refresh Counters

• Event timing

• Sequence Controllers

Chris Jay and Karen Spesard

• Disc Controllers

• Status Sequencers D
The type of counter chosen will depend upon the application.
The simplest type of counter would be a free-running type as
used for refreshing DRAM or Video RAM. Counter types vary,
depending on application from the simple free-running type to
loadable binary up/down counters which would be used in
applications such as DMA control.

To design efficient counters in the LCA device, designers must
consider the desired performance while keeping in mind the
available logic and interconnection resources.

Familiarization with the different counter types and their charac­
teristics will enable designers to choose the best counter for a
specific application.

3.29

LCA Counter Applications
Chris Jay and Karen Spesard

Introduction
The LCA device has an architecture that is very well suited to the
development of some counters. Designers already familiar with
state machine applications in Programmable Logic Devices
(PLDs) will probably be familiar with how to design counters in
Programmable Array Logic (PAL®) and/or Programmable Logic
Arrays (PLA). The differences between the structure of the PLA
or PAL device and the Monolithic Memories' Logic Cell'" Array
(LCA) impose both restrictions and freedoms in certain types of
state machine design.

Ample width of the PLD "AND" gate means that counter depth
can be limited only by the number of registers in the device. This
applies especially in the PAL24X family that is specifically
designed for applications in high-performance binary counting.
In the LCA device, the maximum number of Boolean inputs to
any CLB is four. This limiting factor is compensated by the high
number of CLBs present in the device architecture. The design
philosophy used in an LCA device for developing state machines
is different from that of a PLD, but not less effective. Parallel
counter architecture, and lookahead-carry techniques can be
employed to create machines capable of medium performance.

Counters Using Shift Registers
The type of state machine well suited to an LCA device is based
on a shift register. These types may be subdivided into different
categories. In each state machine, there are "n" general registers,
and the number of states that can be reached vary with counter
type. The number of useable states are listed below with the
counter type:

1) Johnson counters, 2n, states.

2) Linear feedback shift registers, with 2n - 1 states.

3) Modified linear feedback shift register, with 2n states.

These state machines are based on shift registers using the
absolute minimum amount of feedback, and this is applied only
to the least significant register in the chain. The CLBs may be
located at close proximity in the LCA device and benefit from the
smallest propagation delays provided by local interconnection.
The disadvantage of the shift register structure is the inability to
count through the conventional binary sequence. This might or
might not be of any concern, depending on the system
application.

The Johnson Counter
All of the states of a six-bit Johnson counter are listed in Table 1.
The "D"-type register chain shown in Figure 1 illustrates the
schematic diagram of the circuit. The output from QO feeds
directly to D1, and Q1 to D2, and so on. If these registers are

configured in adjacent CLBs, direct interconnect can be used to
link each one. The output of the final register Q5 is inverted and
fed back to the DO input of the first register. If the entire structure
is configured in a column or row in the LCA device, a long line
should be used to convey the feedback signal back to the DO
input of the least significant register. Minimum propagation
delay is achieved by using long line interconnect. The advantage
gained with the small propagation delay of direct short inter­
connections between adjacent CLBs is not lost by the use of this
long feedback path.

The counter design shown in Figure 1 uses six registers and the
maximum number of states reached is 12, two times the number
of registers. A binary counter with six registers could reach
sixty-four individual states but would need combinational feed­
back to each register. Feedback propagation delay could
degrade the potential clocking speed of the counter. The John­
son counter, with its decreased number of states, should be
used whenever maximum operational performance is needed.

STATE QO Q1 Q2 03 Q4QS HEX

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 1

2 1 1 0 0 0 0 3

3 1 1 1 0 0 0 7

4 1 1 1 1 0 0 F

5 1 1 1 1 1 0 1F

6 1 1 1 1 1 1 3F

7 0 1 1 1 1 1 3E

8 0 0 1 1 1 1 3C

9 0 0 0 1 1 1 38

10 0 0 0 0 1 1 30

11 0 0 0 0 0 1 20

Table 1. Truth Table of the Johnson Counter
Counter Applications

Figure 1. Johnson Counter

PAL® is a registered trademark of Monolithic Memories.

Logic Ce11Tf• and XACT"" are trademarks of Xilinx, Inc.

P-Silos"• is a trademark of SimuCad Corporation.

IBM® is a registered trademark of International Business Machines Corporation.

PC"', PC-ATrr•, and PC-XT™ are trademarks of International Business Machines Corporation.

3·30

LCA Counter Appllcatlons

Linear Feedback Shift Register
Figure 2 shows a modification to the Johnson counter. In this
three-bit counter, six states are reached. The exclusive NOR
feedback from register outputs 01 and 02 gives a HIGH input to
DO when both are HIGH or LOW. Again the design is based on a
shift register, and this time the feedback is applied to the least
significant register in the chain. The Linear Feedback Shift Reg­
ister or LFSR shown in Figure 2 is implemented in three CLBs for
small state machine designs. CLB placement and routing could
be optimized for speed and performance. The LFSR counter
would have a "stuck" state if all of the registers were setto a logic
HIGH. The feedback input to DO would remain HIGH and the
XNOR inputs from 01 and 02 would remain stuck at a logic
HIGH. The device has 2n -1 states because in normal counting
the "stuck" state cannot be entered. Table 2a shows the sequence
and truth table of a three-register, free-running LFSR.

a.K·~"-~~~~~.4.-~~~~----'

Figure 2. Unear Feedback Shift Register (LFSR)

Modified Linear Feedback
Shift Register
The "stuck state" is included in the truth table shown in Figure 2b.
If after the count of 3, the state machine could be modified with
gating to accommodate the "stuck state" of 7, then an additional
state could be used. Shifting a HIGH rather than a LOW into the
least significant register would generate state 7, and all of the
possible states could be reached. Table 2b shows the new entry
in the truth table, and the Karnaugh map in Figure 3b shows the
state assignment entry. For example, the map location 00 = 0,
01 = 02 = 1 is the binary code 6. The State Diagram of the
counter (Figure 3a), which is derived from the truth table (Table
2b), shows the sequential flow of each state into the next. From
information in the State Diagram and State Assignment Map, a
State Excitation Map may be developed as shown in Figure 3c.
The next state, or excitation state from STA TE 6 in Figure 3a is
STATE 5. The corresponding entry of 6 in the Assignment Map
is replaced by 5 in the Excitation Map and represents the transi­
tion from 6 to 5. Figure 3c is developed into Figure 3d by
converting the entries to binary notation and placing the condi­
tion of the least significant bit into the Karnaugh map shown in
Figure 3d. Minimization gives a Boolean equation:

oo := -01 ·-02 + oo·-02 + -00·01 ·02 (1 l
Equation (1) is the functional input to the least significant regis­
ter in the chain. The other registers in the chain require only the
direct inputs from the preceding registers, so no additional
minimization is required. Figure 4 shows the final gate imple­
mentation which can be incorporated Into CLB 1 replacing the
XNOR gate.

The advantages of using every possible state in the counter
avoids the possibility of a stuck state which, if entered, will
prevent the entire design from functioning.

A very important consideration of the LFSR in CLB-intensive
designs is the ability to use IOB registers in the counter. While
the IOBs have no logic functionality they do have registers. The
LFSR is based on the shift register, so if CLB resources run out,
IOBs could be used.

COUNT QO Q1 Q2

0 0 0 0

1 1 0 0

3 1 1 0

6 D 1 1

5 1 0 1

2 D 1 D

4 0 D 1

Table 2a. Truth Table of a Linear Feedback
Shift Register

COUNT QO Q1 Q2

0 0 0 0

1 1 0 0

3 1 1 0

7 1 1 1

6 0 1 1

5 1 0 1

2 0 1 D

4 0 0 1

Table 2b. Truth Table of a Modified Linear
Feedback Shift Regl1ter

Figure 3a. State Diagram for MOdlfled
Linear Feedback Shift Register

Q1

ao{tHHHB -Q2

Figure 3b. State Assignment Map

Q1

~
ao{~ -Q2

Figure 3c. State Excitation Map

3·31

El

LCA Counter Applications

01 --
0

--02

1 oo == -01·-02 • Q0'-02 • -00'01·02 1

Figure3d.

From the state excitation map, the condition of the least signifi­
cant register QO is' entered. Minimization gives the equation
required for QO IN as a Boolean function of QO, 01 and 02. When
implemented, the modified LFSR will count through all states.

Figure 4.

If this circuit is used to replace the exclusive NOR gate in CLB1
of Figure 2 then the count shown in Table 2b will be realized
enabling a count through 2n states.

Provisions tor Deeper Counting
Deeper counters may be made from cascading 3-bit LFSRs. The
same three-bit module may be repeated any number of times but
the original circuit needs modification. When cascading coun­
ters it is essential to use an ENABLE or CARRY input to the next
stage. The Karnaugh maps, shown in Figures3b and 3c, represent
State Assignment and State Excitation, respectively. The
Assignment Map can be considered as identifying HOLD condi­
tions while the Excitation Map indicates count activity. The
Karnaugh map in Figure 5 merges the information contained in
both Figures 3b and 3c, and an additional ENable input qualify­
ing COUNT and HOLD activities. The registers will count if EN is
HIGH and HOLD when it is LOW. The Karnaugh map in Figures
was developed to derive the Boolean equation for the least
significant register in the chain. The other registered cells need
modifying to incorporate an enable input. Table 3 shows a truth
table of the current register contents On with the EN input Band
the input from the next least significant register A. The required
output On+1 is given as a HOLD condition if B = LOW, and
when HIGH, data from the A input will be clocked into the
register. For each of the three registers, an EN input will enable
count activity to allow cascading of 3-bit counter modules.

3-32

0

1

1

1

01 -0 0

0 1

1 0

1 1

0

0

0

1) -02

QO:=QO'-EN
+QO'..Q2*EN
+ -01'-02'EN

;HOLD RINC1ION.
;CCUll'
;COUNT

+ 02'01'..QO'EN ;COUNT.

Figure 5. Incorporating a Count Enable Input

on A a 0 n+1

0 0 0 0

1 0 0 1

0 1 0 0

1 1 0 1

0 0 1 0

1 0 1 0

0 1 1 1

1 1 1 1

Table 3.

a

001HJilla -A

General shift register with count enable. A= input from the next
least significant register and B = enable count. Q Is the state of
the internal register. This Karnaugh Map has been developed
from Table 3.

a:= a·-B + O'A + A'B

Figures.

LCA Counter Applications

Propagation Carry
To link counter modules together, it is necessary to pass a count
enable signal from one module output to the next input. Figure 7
shows the configuration of CLBs 1 to 3 linked to CLB 4, which is
configured as a carry generator providing an enable output to
the next modified LFSR. The next counter module will not
increment until it receives an assertion on its count enable input.
Figure 8 shows the Karnaugh map from which the lookahead­
carry output was generated. The penultimate count in the
sequence, as shown in Figure 2a is two. This count is decoded in
the CLB 4 where the registered output is passed to the next
counter module and delayed by one clock cycle. The concept of
decoding the penultimate count, and delaying it by one clock
cycle provides a fast method for propagating the lookahead
carry signal. If the ultimate count is decoded by a combinational
circuit, the next counter module will have to wait for the carry to
propagate through logic gates before the next clock pulse can
be applied. Registering the next-to-last count allows premature
carry propagation, providing the carry enable to be set up prior
to the next clock edge.

ENABLE = EN' -00'01 '-02

Figure 9 shows two identical LFSRs linked by a carry generator's
CLBs 5,6 and 7 and a propagate carry configuration in CLB 8.
The propagate carry circuit is a combinational circuit that ena­
bles the generated carry output, from CLB 4 to the ENB output,
as shown in Figure 9. A third set of modified LFSRs may be
added if a synchronous nine-bit counter is required.

Applications for a nine-bit counter might include a refresh coun­
ter for 256 KDynamicRAMs. The EN inputtoCLB 1 can be used
to hold off count increment activity. If an LFSR with 2n -1 states
were used, then one row in the DRAMS would never get
refreshed, so the modified LFSR would be the appropriate cho­
ice. Moreover, the count sequence is not important because it
does not have to be a binary code, just as long as the DRAMs are
refreshed at regular intervals for every row.

Another application might be as a counter in a video controller.
The system could count through the required states, and addi­
tional gating could be used to generate line and frame sync
pulses at certain states during the count sequence.

Figure 7.

0

0

0

0

QO --0

0

0

0

0 0

0 1

0 0

0 0 -01

Figure 8. To Enable a Second Stage as a Synchronous Counter a Carry Output Must Be Generated from the First Three Registers.
The Enable Output from CLB 4 Is Decoded from the Penultimate Count and Clocked Through the Register. When the
Ultimate Count Is Reached the Enable Input to the Next Stage Is Asserted.

3.33

LCA Counter Appllcations

.--~~~~~~~~~~-t-~~~~~~~~~~~~~~~~~ao

.--~~~~~~-.--+-~~~~~~~~~~~~~~~~~01

.--~~~rt--+-~~~~~~~~~~~~~~~~~02

.--~~~~~~~~~~-....-~~03

r-~~~~~~.......--1-~~04

.--~~-t--+--+-~~05

00 01 02 03. Q4

EN Cl.81 CLB2 CLB3 ClB4
EN

CLB5 CLB6 ENB

GENERATE ENABLE

Figure 9. Two LFSRs Are Linked by the Propagate Enable Logic Contained In CLB4. CLBS, 6 and 7 Contain the Same Logic as
CLB1, 2 and 3 lo Create a Modulo 6 Counter with Sixty-four Stales. Propagate Enable is Decoded from the Ulllmate Count
of the Second LFSR Stage. It Can Be Used as the Enable Input to a Third LFSR Stage to Make a 9-Bit Counter.

Design of a Four-Bit LFSR
if a four-bit free-running counter was required for standalone
count applications, then a design can be realized using four
CLBs. The truth table for a modulo four modified LFSR is shown
in Table 4. The state assignment map in Figure 1 O is developed
into the state excitation map shown in Figure 11. The least
significant bit of the hexadecimal data is entered into the Kar­
naugh map as shown in Figure 12. Minimization is performed to
develop the equation for the least significant register input. The
actual circuit implementation is complete in fourCLBs as shown
in Figure 13.

1

0

2

3

01 -4 c

5 D

6 E

7 F

8

9

A

B -Q2

1

0

2

3

01 -4 c

5 D

6 E

7 F

8

9

A

B --02

Figure 10. State Assignment
Map

Figure 11. State Excitation
Map

3-34

1

0

0

1!0

01 --0

1

0

1

0 0

1 1

0 0

1 1 --02

Figure 12. State Excitation Map for the
Least Significant Register

00 := 00*-03 +-Q0*01*03 +-00*02*Q3 +-01*-02*-03

REGISTER
0 0 0 0

STATE 0 1 2 3 CODE
0 0 0 0 0 0
1 1 0 0 0 1
2 1 1 0 0 3
3 1 1 1 0 7
4 1 1 1 1 F
5 0 1 1 1 E
6 1 0 1 1 D
7 0 1 0 1 A
8 1 0 1 0 5
9 1 1 0 1 B

10 0 1 1 0 6
11 0 0 1 1 c
12 1 0 0 1 9
13 0 1 0 0 2
14 0 0 1 0 4
15 0 0 0 1 8

Table4.

The Binary Counter
The number of states available in a binary counter is 2n, making
it one of the most register-efficient types of counters. The three
main categories of binary or weighted counter$ are ripple,
ripple-carry, and lookahead-carry. As the amount of "look­
ahead" logic decoded at each counter stage increases, the per­
formance of the binary counter also increases. As a result,
lookahead-carry counters are the fastest of the three categories
of binary counters. On the other hand, the more "look-ahead"
logic there is, the more decoding is needed. Increased decoding
requires extra logic and routing resources which may be disad­
vantageous if these resources become scarce.

LCA Counter Applications

Ffgure 13. Modified LFSR Modulo 4 Counter

The Ripple Counter
Ripple counters are a!iynchronous In nature and do hot generate
carry signals. When the output of each counter stage clocks the
next stage on the negative clock transition, a ripple effect is
induced (thus the name). A schematic representation of a six-bit
ripple counter is shown in Figure 14. One of the benefits of a
ripple counter is that it requires few resources. Only one CLB per
counter bit is needed to implement the counter and routing is
simple regardless of the counter length. The tradeoff for this
simplicity, however, is that ripple counters cannot be modified to
be loadable or up/down which restricts their operation to be

free-running, and they have lower performance.

The overall performance of a ripple counter degrades with each
counter bit by one CLB delay time. This can be shown by the
equation below:

Ripple Counter = N • (Clook to Output Delay) (2)
Clock Period '

where N = the number of ripple counter flip-flops

The overall counter clock period must therefore be greater than Ell
or equal to the total cumulative CLB delay. .

TElllllNAL
COUNT

Figure 14. Schematic of a 6-Blt Binary Ripple Counter. Ripple Coul)ters Ate Easy to D~slgn and •re Caleildalllle te Miarty Any
Length. They Are, Hewever, Asynch~ous and Are Not Recommended for MOst Designs.

The Rlppte-0.rry Counter
The ripple-carry counter is similar to the ripple counter. The
ripple-carry counter has carry signals, l!\owever, whereas the
standard ripple counter does hot. Each carry signal propagates
to the next counter stage to produee the counting sequence.
This cascaded connection is called ripple-carry.

The ripple-carry counter differs from the ripple counter in the
respect that it is synchronous in operation. Because of th is, the
ripple-carry counter provides rhore reliable operation and better
performance. Performance still degrades with each additional
counter stage though, due to the inclusion of combinational
logic from the previous counter stage. Like the ripple counter,
the ripple-carry counter requires only one CLB per counter bit
and is easily cascadeable.

One example of a four-bit binary ripple-carry counter is shown
in Figure 15. Here, a modulo-16 counter with count enable (CIE)

· and re8et is built with faur CLBs and three levels of ripple logic.
The same counter could be de$1gned with two levels of ripple
logic, if the two-input AND gate in CLB2 becomes a three-input
AND gate, and the signals CE and QO from CLB1 were carried
over to CLB2 and ANDed with 01.

Another four-bit counter, this time wlth parallel enable (load),
count enable, and reset, is shown in Figure 16. Here, just two
ripple levels of logic were designed ih, using two C8BCP
MACROS from Monolithic Memories' Macrocell Library. Six
CLBs, two more than the previous four-bit counter, were used in
this design because of the addition of parallel enable circuitry
and the reduction of rippl&'carry logic levels. The Kamaugh map
corresponding to the registered CLBs is·11hown in Figure 17.

LCA Counter Appllcatlons

sometimes a designer will want to carry-over a counter impl&­
mentation he or she was previously using to the LCA device.
Consider an eight-bit ripple-carry counter with reset, built with
two typical 74-series TTL devices: two 74-161 's shown in Figure
18. Notice that the data bus as well as the LD and CET pins are
not P8ing utilized. This is wasteful. Obviously, the two 74-161
macros, available from Monolithic Memories' LCA Device
Macrocell Library, requiring sixteen CLBs would also be ineffi-

cient. An equivalent counter, shown in Figure 19, requires only
ten CLBs. It is built with two CSBC-rd MACROS and one C4BC­
rd MACRO and contains three ripple-carry delay levels. It can be
seen that implementing just the counter functions desired,
instead of including additional functions not required in the
counter, allows designers more control over their design. The
designer can then better optimize the design for speed and
performance while minimizing CLB and routing resources.

CLOCK-----+--l--------+--1-------...._-+---------'
ASVNC·FIESET -------+----------+---------+----------'

Figure 15. Schematic of a 4-Blt Rlpple•Csrry Counter. Although the Ripple-carry Counter Is Synchronous, the carry Input to the
Next Stage Is Conveyed Through Comblnatlonal Logic. The Propagation Delay Due to this Logic Must be Taken Into
Accounl

Cl.81

CLOCK----..._-+-------<~+-------+-+-----~
ASYlilCRESET·------+--------+---------------~

TERMINAL
COUNT

Figure 16. Schematic of a 4-Blt Ripple-Carry Counter. With Parallel Enable, Count Enable, and Reset, this Counter Only Contains
Two Levels of Ripple-Carry Logic.

LCA Counter Applications

0

1

0

1

DI -----0

1

0

1

1 0

1 0

1 0

1 0 -­PE

} CE (11)

Figure 17. Karnaugh Map for the Registered
CLBS in Figure 16.

4

CLOCK ---+-----t---+-~
~-------+----1-o----~

TERMINAL
COUNT

4

Q0-03 Q4-Q7

Figure 18. Schematic of an 8-Bit Counter with Reset Using
Two 74-161 TTL Devices. Since All of the Available
Logic Is Not Utilized, the Counter Should Be
Designed More, Efficiently for Use In the LCA
Device.

The Lookahead-Carry Counter
When the performance of binary ripple and ripple-carry coun­
ters is not adequate, synchronous binary lookahead-carry coun­
ters can be a solution. A lookahead-carry counter incorporates
all the previous counter outputs into a single lookahead-carry
signal for each counter stage. This logic reduction minimizes the
overall delays of the design which makes the performance of
lookahead-carry counters the highest among binary counters.

With lookahead-carry counters, the complexity of the design
increases with each counter bit as the decoding inputs become
ever wider. As a result, these counters usually need more CLBs
and routing resources to implement than other binary counters.
The equations which characterize an n-bit lookahead-carry
counter with count enable and parallel enable are listed below:

00 := ((/PARENA *CE)@ 00) + (PARENA *DO)

01 := ((/PARENA *CE* QO) @01) + (PARENA * 01)

02 := ((/PARENA *CE* 01) @02) + (PARENA * 02) ...

and

On:= ((/PARENA *CE* 01 * ... * Qn-1)@ On)
+ (PARENA * Dn)

To decrease the complexity of the counter, one or more of the
control signals can be removed.

For a ten-bit lookahead-carry counter with reset, a minimum of
fourteen CLBs are needed as shown in Figure 20. The logic for
the counter was partitioned as follows:

CLB1 QO:=CE@QO

CLB2 01 := (CE * 00) @ 01

CLB3 02 := (CE* QO * 01)@ 02

CLB4 002 = 00 * 01 * 02 * CE

CLB5 03 := 002@03

CLB6 04 := (002 • 03) @ 04

CLB7 05 := (002. 03. 04)@05

CLBS 035=03*04*05

CLB9 06 := (002 • 035) @ 06

CLB10 036=03*04*05*06

CLB 11 07 := (002 • 036) @ 07

CLB 12 as := (002 • 036 • 07) @as

CLB13 Q38 = (036 • 07 • 08)

CLB14 09 := (002 • 038) @ 09

The first seven bits of the counter were decoded in a similar
fashion to the counter in Figure 19. The next three bits continue
to minimize the amount of ripple-carry logic implemented to
make it a lookahead-carry counter.

When routing a design such as this in the LCA device, it is best to
place the CLBs lengthwise. Then, if the high fan-out output
signals for 002 and 036 CLBs can be routed through "long line"
interconnects, the routing-dependent delays can be reduced
allowing the counter to perform at its maximum potential speed.'

3.37

El

LCA Counter Applications

COUNT ENABLE

CLOCK~..-+...._---+--+-+--...._---+-+---+---'
ASYNC RESET-.-+-+----+--+-+-----+-+----+-----'

CLB1 CLB2 CLB3

TERMINAL
COUNT

Figure 19. An Efficient Implementation of an 8-Bit Counter with Reset. This Alternative Performs Only the Desired Function While
Maximizing CLB and Routing Utilization. '

CLOCK--+--+-+--+--_._---1--.___,__.,__,_ _ __,
ASYNC RESET--+--+---+--_,___, ___ __,__.,__,_ ___ _,

Figure 20. Schematic of a Synchronous Counter with Reset as in Figure 19, but with Lookahead-Carry Logic. As More Counter Bits
Are Added, the Design Becomes Increasingly Complex Due to Wider Gating.

3·38

LCA Counter Applications

The Up/Down Counter
The up/down counter can be a very useful device. For instance,
status counters or address counters employed in OMA systems,
dual slope integrators, and delta modulation systems usually
use up/down counters. In operation, an up/down counter will
count UP when all previous counter bits are HIGH and will count
DOWN when all previous counter bits are LOW. Thus, in an
up/down counter, each register output in a CLB will toggle
when:

• aothrough an-1 are HIGH and the counter direction is UP, or

• ao through an-1 are LOW and the counter direction is
DOWN.

This translates to:

an:= an@ ((an-1 * an-2 * ... * a1 * ao *UP)+
(/an-1 • tan-2 • ... • 1a1 • /QO •/UP)). (3)

Design of the counter can become more complicated by adding
new features to it such as count enable, reset, or load (parallel
enable). Because of this, it is best to limit the number of control
signals which would require more complex logic. For example, a
counter which only needs to be reset during initialization will not
need additional reset capability since all registers are reset upon
initialization of the LCA device.

Simple ripple-carry binary up/down counters require 2 • N - 4
CLBs for implementation where N is the number of counter bits.
For example, eight CLBs would be needed for a six-bit up/down
counter and twenty-eight CLBs would be needed for a 16-bit
up/down counter. An example of a six-bit ripple-carry up/down
counter configured in CLBs is given in Figure 21.

The general equations used for this ripple-carry counter design
were derived from equation 3 and are as follows:

Running Total
of CLBs Equations

QO :=tao
C2X = UP • ao • a1

2 a1 := a1 @((UP* aO) + (/UP• tao))
C2Y =/UP *tao * /a1

3 a2 := a2@ (C2X + C2Y)

4 a3 := a3@ ((a2 * C2X) + (la2 * C2Y))

5

6

7

8

C3X= C2X * a2
C3Y = C2Y * /02

04 := 04@ ((03 * C3X) + (103 * C3Y))

C4X= C3X * 03
C4Y = C3Y * /03

05 := 05@ ((04 * C4X) + (104 * C4Y))

To build a simple ripple-carry 16-bit up/down counter, this algo­
rithm would be continued:

On :=On@ ((On-1 • Cn-1X) + (/On-1 • Cn-1Y))

where:

Cn-1X = Cn-2X * On-2
Cn-1 Y = Cn-2Y • /On-2
Cn-1X, Cn-1Y are> or= C2X, C2Y

and

C2X = UP * 00 * 01
C2Y =/UP* tao* /01.

The test file that was used to verify the logic of the six-bit
up/down counter in Figure 21 is shown in Figure 22. It was
generated by running the SIMGEN program included with the
XACT Development System. This file, with a .DAT extension,
was modified to include the desired input test vectors which
would be executed. Once in the P-Silos'" simulator, "IN <file­
name>.DAT" is entered. This command automatically inputs the
netlist to the simulator. Finally, a time period is entered which
informs the simulator of the length of time the simulation should
run. For instance, "SIM 0 10000" could be entered. The outputs
will be plotted in a table format and will list the signals specified.

An alternative method for designing up/down counters is to use
lookahead-carry logic, based on equation 3. This performance- El
driven method, however, is quite CLB intensive due to the wide
gating of input signals required for implementation. Thus, for a
six-bit lookahead-carry up/down counter, sixteen CLBs would
be needed, whereas for the six-bit ripple-carry up/down counter,
ten CLBs were needed. Therefore, it is advantageous to use the
lookahead-carry method when maximum performance is needed.

A design of an n-bit ripple-carry up/down counter that can
synchronously RESET and LOAD new values into the counter
also becomes more difficult. From the general expression
below, derived from state tables and Karnaugh maps, any
up/down counter can be designed.

On = (/RESET * LOAD * Dn)
@((/RESET* /LOAD* UP* On-1 * ... * 01 * 00)
+ (/RESET */LOAD */UP* /On-1 * ... * /01 * /00))

where RESET and LOAD are active HIGH.

There are many ways to design up/down counters. The look­
ahead carry method, though it consumes a great deal of resour­
ces, usually enhances performance. The best way to design the
up/down counter for systems that do not require high speed, is
to use the ripple-carry method. This method is usually the most
straightforward and requires the least number of resources.

3.39

LCA Counter Applications

r-T--;:::==l__)fC3=X"-t ___ -r-t--;:::=t_J~C~4=X-t-----,
f-J-+---L.JC3Y l'C4"-'--'-Y--+----,

Figure 21. Schematic of a 6-Bit Up/Down Counter. Only Eight CLBs are Required for Implementation.

$
$ Simulation file for design 'FIG21.LCA' type 1 2064NL68-70'
$ Created by XACT Ver. 1.30 at 14:14:31 JUL 21, 1987
$
!INPUT FIG21.sim

$ INPUTS:
GLOBALRESET- .CLK 0 so 1 Sl $ Initial pulse to reset latches
CLK .CLK 0 so 1000 Sl 2000 SO .REP 0
UP .CLK 0 so 128000 Sl 256000 SO 270000 Sl 280000 so

.MONITOR CLK UP QO Ql Q2 Q3 Q4 QS

.TABLE CLK UP QO Ql Q2 Q3 Q4 QS

Figure 22. Input File to P-Silos

Summary
Many ways exist for implementing counters in the LCA device.
The ideal counter design for a specific application depends on
the desired performance and the available logic and intercon­
nection resources. See Table 5. For example, three main types of
counters, Johnson, Linear Feedback Shift Register, and binary
counters were discussed. Each of these counters utilizes differ-

3-40

ent features of the LCA device but each can be optimized to
perform a required function. Moreover, it was seen that by
implementing only the logic necessary for a required function,
resource efficiency was increased and by implementing more
lookahead-carry logic or using LFSRs, performance was
increased.

LCA Counter Appllcatlons

COUNTING COUNTER MODULO CLB ROUTING PERFORMANCE ADVANTAGES/
METHOD TYPE EFFICIENCY EFFICIENCY DISADVANTAGES

Johnson 2n Poor Excellent Excellent with High performance,
low modulo easy routing

Glitch-free decoding
Non-binary Low-register

efficiency

Unear feedback 2n-1or2n Good Very good Very good Good performance
llhlft register or decreases with at high modulos
modified LFSR increasing modulo

Ripple 2n Excellent Excellent Poor Low resources,
easy routing
but slow and

asynchronous

Binary Ripple-carry 2n Very good Good Good Good general
binary counters

Lookahead carry 2n Good but Good but Good for Highest
decreases with decreases with high-performance performance binary

increasing increasing binary counters counter requires
modulo modulo moreCLBand

routing resources

Table 5. Summary of Counter Types and Their Characteristics

EJI

3-41

3-42

~
Advanced

Micro
Devices

AN-161

Time Division Multiplexing
with the LCA Device

Abstract
High-speed data communication lines are efficiently utilized
when low-speed signals are time division multiplexed onto high­
speed lines. Time division multiplexing requires data buffering,
rate adaption and data selection. The data selection fits into a

PAL® is a registered trademark of Monolithic Memories, Inc.

Logic Cell™, XACTTM and APR"1M are trademarks of Xilinx, Inc.

FutureNet® is a registered trademark of FutureNet Corporation.

DASHTM is a trademark of FutureNet Corporation.

P-SILOS® is a registered trademark of SimuCad Corporation.

C.B. Lee and Theresa Shafer

single CMOS Logic Cell™ Array (LCA device). The LCA device
is designed and optimized using the FutureNet® schematic
capture package, Monolithic Memories' automatic place and EJ
route software, and the XACT™ Design Editor System.

3.43

Time Division Multiplexing
with the LCA Device AN-161

Introduction
The Logic Cell Array (LCA device) implements a multiplexer and
counter used in time division multiplexing. With the device's
flexible 1/0 pins, the multiplexer and counter are implemented
into a single CMOS device. This application note covers time
division multiplexing and the design of a multiplexer and coun­
ter. Additional information on how to design with an LCA device
can be found in the LCA design methodology chapter in Mono­
lithic Memories' LCA Design and Applications Handbook. For
programming the LCA device, refer to "Configuring the LCA De­
vice", Monolithic Memories' Application Note 182.

Principles of Multiplexing
Multiplexing efficiently utilizes data communication lines by
combining multiple low-speed signals into a single, high-speed
line. The two methods of performing multiplexing are Time Divi­
sion Multiplexing (TDM) and Frequency Division Multiplexing
(FDM). TDM divides the transmission bandwidth into equal time
slots where each input signal is assigned one time slot per time
cycle. Once assigned, that time slot is not used by any other
input. Figure 1 shows a multiplexer combining three low-speed
signals into one high-speed line. Terminal A transmits during
the first time slot, B transmits during the second time slot, and
C transmits during the third time slot. This sequence is repeat­
ed every time cycle. FDM, on the other hand, divides the fre­
quency spectrum among logical channels where each channel
has full bandwidth of its assigned frequencies. Analog sys­
tems usually use FDM.

A B C A B

Figure 1. Time Division Multiplexing

There are many classes of TDMs including bit interleave, char­
acter interleave, statistical TDM, and T1 multiplexers. In bit in­
terleaved TDM, each input is assigned to one time slot. Each
time slot's length is one bit. Character interleaved TDM is simi­
lar to bit interleave, except that each time slot represents one
character. Statistical multiplexing assigns the bandwidth into
unequal slots where only the active incoming lines are as-

3-44

signed slots. The slots are of variable length, so each input is
assigned the amount of bandwidth needed. The T1 standard
specifies twenty-four 64 kbps channels multiplexed on a 1.544
Mbps high-speed link.

Data Selection/Time Slot
Assignment
To transmit data from terminal A in the first time slot as shown
in Figure 1, data buffering, rate adaption and data selection
must be performed. Data buffering and rate adaption are re­
quired since the rates of the lines to be multiplexed are slower
than the high-speed link. A serializing FIFO or shift register can
implement the required buffering. Rate adaption is performed
by a clock/shift scheme tailored to the exact application. Once
buffered, the data must be selected in the proper order. Sever­
al methods can be used for data selection; one method is a 32-
to-1 multiplexer. To implement sequential selection of input
lines, an on-board counter selects the multiplexer's output.
However, for random selection needed in statistical multiplex­
ing, more flexibility is needed. A 2-to-1 multiplexer provides
this flexibility by selecting between the counter and random·
selection inputs.

Comparison of Design Methodologies
The 32-to-1 multiplexer and counter design can be implement­
ed in several ways. Briefly, we will evaluate discrete logic, PAL
and LCA device implementations.

For this design, thirty-eight inputs, five registers, and one out­
put are required. Conventional PLD devices do not meet this
large 1/0 requirement. A single PLD device is not suited for this
specific application because flexible 1/0 and buried registers
are not supported. Instead, the design must be divided into
four sections. The counter fits in a PALC16R6Z device and the
32-to-1 multiplexer requires three PALC20L8Z devices.

Since a large 32-to-1 multiplexer is not available as a discrete
part, it must be built using smaller multiplexers. The total chip
count, using discrete logic, is five devices: two 74AS850s, two
74ALS257s and one 74AS867. A combination of PAL devices
and discrete logic devices is possible, however, it is also a
multiple chip solution.

Monolithic Memories' LCA device is a high-density programma­
ble CMOS circuit with flexible I/Os. It has forty pins which are
user-defined as either inputs, outputs, or bidirectional. The
LCA device meets the 1/0 requirement for this design. Since
the LCA circuit allows multiple logic levels, implementing the
counter does not use up output pins. Moreover an LCA device
enables the 32-to-1 multiplexer with counter to be implemented
in a single low-power device.

Time Division Multiplexing with the LCA Device

Detailed LCA Design
The M2064 LCA device in a 48-pin DIP is used in this design,
although both PLCC and PGA packages are available. Eight of
the forty-eight pins are reserved for programming, power, and
ground, and the remaining forty 1/0 pins are available to the
user. Table 1 shows the efficient use of the package pinout.

PIN DESCRIPTION TOTAL PINS

ADDR(4:0) External Address Inputs 5 inputs
CK External Clock Input 1 input
LO Counter Load Input 1 input
0(31:0) 32-to-1 Multiplexer 32 inputs

Data Inputs.
OUT Output 1 output

TOTAL 1/0 40 pins

Table 1. 32-to-1 Multiplexer Pins

Figure 2 shows the block diagram of the 32-to-1 multiplexer and
the counter. The select lines of the 32-to-1 multiplexer are ei­
ther the address lines or the output of the counter. When LD is
deasserted, the 5-bit counter sequentially selects each input.
Asserting the LD signal loads the counter with the external ad­
dresses.It also selects the external address for the 32-to-1
multiplexer's select lines. This permits random input selection
from the external address lines which supports statistical mul­
tiplexing.

LO
CK

ADDR
5

Figure 2. Block Diagram

OUT

The select signals for the 32-to-1 multiplexer are determined by
the LD signal. When LD = 0, the counter selects the multiplex­
er's output. When LD = 1, the counter is loaded and the exter­
nal address selects the output. Also, the LD asynchronously
loads the 5-bit counter. Table 2 summarizes the device opera­
tion.

INPUTS OUTPUT FUNCTION

LD ADDR(4:0) OUT

0 xxxxx D(CNT) Counter as Select
1 ADDR(4:0) D(ADDR) Address as Select

and Load Counter

Table 2. 32-to-1 Multiplexer Function Table

The design was entered with FutureNet's DASH schematic cap­
ture package using high-level macros. Then the schematic
capture file was translated into an LCA design file. The transla­
tion software, called PIN2LCA, partitions the design into CLBs
and generates the equations for the CLBs' configuration. The
translation software produces an unrouted LCA design file.
This design file requires final placement of CLBs and intercon­
nect routing which was performed using Monolithic Memories'
APR software, an automatic place and route program. After the
design is placed and routed, it was optimized with Monolithic
Memories' XACT Design Editor System. The XACT system pro­
vides a graphic interface to manually optimize the CLB logic
functions and connections.

The logic functions and interconnects of an LCA device are es­
tablished with CMOS memory cells, so the array is never physi­
cally altered, although it is physically programmed. A program­
mable LCA device can be reconfigured for the prototype. In ad­
dition, it can be reprogrammed any number of times in the tar­
get system. With reconfigurable devices such as this one, the
array can also be programmed on power-up, or whenever the
design details need to be changed. For volume production, a
hard-array version will be available.

Entering the Design with Futurenet
The schematic entered in FutureNet's DASH is comprised of
different components called from the macro library supplied by
Monolithic Memories. The MB-1 and M4-1 macros are the multi­
plexers which implement the 32-to-1 multiplexer as shown in
Figure 3. The 5-bit counter was built from INV, C16BPRD,
XOR2, and FDM macros. Since the C16BPRD macro is only a
4-bit parallel-load binary counter, the XOR2 and FDM macros
were added to form another bit which increased the length to
five bits.The GMUX macro, a 2-to-1 multiplexer, selects be­
tween the counter and the external address lines.

To translate from FutureNet to LCA, the PIN2LCA program is in­
voked. This program generates an unrouted dilename>.LCA
from the FutureNet's dilename>.PIN. The PIN2LCA software
partitions the design into CLBs and generates each CLB's con­
figuration.

The PIN2LCA performs logic reduction by eliminating unused
logic to maximize CLB utilization. With this design, for exam­
ple, C16BPRD's reset logic is not used, and PIN2LCA elimi­
nates all the reset logic in the C16BPRD macro. Another means
to maximize CLB utilization is by combining macro logic. At
times, this combined logic results in a single CLB which imple­
ments logic from two different macros. For designs not utilizing
all the CLBs, this logic redt. 'on is not required and may actu­
ally hinder placement and delay tradeolls. If it does produce
delay problems, it is possible to edit the CLBs in XACT.

3.45

El

Time Division Multiplexing with the LCA Device

At this stage in the design flow, the PIN2LCA software can
generate a P-SILOS simulation file. Since the dilename>.SIM
was generated from an unrouted LCA design file, the simulation
only has unit delays and does not have actual routing delays.
The simulation verifies the logic, but does not give any timing
information. It may be necessary to make changes in DASH™
depending on the simulation results.

Place and Route Using APR
Once the logic is finalized, the LCA design must be placed and
routed. Monolithic Memories' APR software performs the final
placement of CLBs and interconnect routing. The input to APR
is an unrouted dilename>.LCA, and a routed LCA design file
and report document are the outputs.

At first glance, the APR program seems cumbersome to apply
to every application. However, it can be used to create an effi­
cient design. While the software uses random placement, it
does allow tailoring for specific requirements.

Initially, the multiplexer and counter design did not route com­
pletely. To achieve good placement and 100% routing comple­
tion, several things were tried. Some worked well while others
did not. An overview of how 100% routing completion was
achieved is explained below.

Since this design utilizes only 53% of the LCA device, delay is
a larger concern than CLB utilization. In this case, placement
is critical to achieve an efficient design with the desired de­
lays. The ideal placement would be for the 5-bit counter and 2-
to-1 multiplexer to be placed near the ADDR(4:0), CK, and LD
signals. The four MB-1 macros should be near the 8-bit cluster
of inputs. The remaining M4-1 macro should be placed near the
OUT signal.
In FutureNet, the I/Os are assigned pin numbers so that the
signals are clustered into groups. These 1/0 assignments re­
strict the APR's placement of the signals and are found in the
dilename>.SCP. Other restrictions and options are specified
when invoking the APR software. The options, "-a", "-g", "-e",
and "-k", tailor the placement for this specific design.

The APR's "-a" option specifies the depth of CLB logic levels
which are considered connected. In this design, "-a2" was se­
lected because the C16BPRD and MB-1 macros are implement­
ed in two CLB logic levels.

The "-g" and "-e" options are related. The "-g" option specifies
the number of CLBs that should be grouped together. The "-e"
option determines the number of CLBs in a group which should
be evaluated for all possible placements. Since the C16BPRD
and MB-1 macros contain four to six CLBs, the options, "-e4"
and "-g4", were used. This particular value was selected be­
cause it was the largest possible value which maintained the
e>=Q relationship. Avoiding values where e<g insures as much
as possible that the CLBs within each group are placed in the
best possible arrangement. This maintains the groups' integrity.

3·46

The "-k" option specifies the number of shapes per group. By
trial and error, "-k6" works well for this design. With "-k6", six of
the best arrangements or shapes were saved for each group of
CLBs. Every combination of shaped group is tried with all six
other grouped shapes and evaluated for best placement. Gen­
erally, the larger values result in better placements, however,
run-time grows exponentially. While larger values of "-k" were
tried, they did not improve the placement significantly.

Running APR with these options and restrictions did not result
in a 100% routed design. Therefore, more application-specific
information was required. Noting that the APR software was not
fully utilizing the high-level macro information, placement could
still be optimized. The APR's report file shows that the CLBs
which comprise C16BPRD or the MB-1 macros were not
grouped together. Instead, the CLBs were randomly spread
over the device. In a constraint file, dilename>.CST, CLBs
from the high-level macros could be grouped together (see Ap­
pendix A). If necessary, the exact CLB placement could be
specified in the same file.

To generate the constraint file, CLBs which implement each
high-level macro were identified using the cross-reference file
generated by PIN2LCA, <filename>.CRF. The dilename>.CRF
file is organized into three cross-reference sections: macros,
CLBs, and IOBs.

The macro cross-reference section identifies and assigns a
hierarchical symbol number to each macro. The symbol num­
ber is used to generate the default CLB names.

/21-1, \MB-1.DWG

/ Path:
ASSIGNED
SYMBOL NUMBER \USER\THERESA\TDM.DWG(32)

Title: MB-1

The CLB cross-reference section of the dilename>.CRF con­
tains the CLB names. For macros with multiple CLBs, the sys­
tem assigns default names. The default CLB name consists of
two parts. The first is the macro symbol number as specified in
the macro section and the second number is the signal name.
By grouping CLBs with related symbol numbers, all the CLBs
for a given macro will be placed together.

CLB BD Name= '21-D03':

F =signal '21-D03', contains:

symbol '26-0R(2)', output signal = '21-D03'
symbol '26-AND(3)', output signal = '26-SO'
symbol '27-0R(2)', output signal = '21-001'
symbol '26-AND)1)',output signal= '26-S1 •

The IOB cross-reference section shows the IOB assignments.
For this design, the assignments are those specified in the Fu­
tureNet's schematic.

IOB P30: Name= 'D13', Symbol= 'PIN(40)'

I= signal 'D13'

Time Division Multiplexing with the LCA Device

Optimizing the Design with
Monolithic Memories' XACT
Design Editor System
Monolithic Memories' XACT Design Editor System can increase
resource utilization and performance by manually modifying
the placement and routing. The XACT system provides a
graphic interface to specify the CLB design. All CLB logic func­
tions and connections can be optimized for the designs'
needs. With XACT, the designer can partition the design and
optimize the placement of logic blocks to gain the utilization
and performance required.

The clock line routing was optimized to reduce clock skew. Us­
ing the clock buffer resources, the common clock is driven by
the global clock buffer. To optimize internal routing, "long lines"
were used for signals with large fanouts such as the select
lines for the multiplexers and the LD signal. Use of the "long
lines" minimizes the delay for these control signals. The "long
lines" were selected by manually routing the signal net through
the programmable interconnect points (PIPs).

On the device itself, implementing the 5-bit counter and 2-to-1
multiplexers requires ten CLBs; and the 32-to-1 multiplexer re­
quires twenty-four CLBs, giving a total of thirty-four CLBs. This
design utilizes 53% of the LCA device.

Summary and More Information
For time division multiplexing systems, data selection can be
implemented in a single CMOS device. FutureNet's DASH
schematic capture with Monolithic Memories' LCA macro library
was used to implement a design in an LCA device. Placement
of CLBs and signal routing were performed by Monolithic Mem­
ories' APR software. Optimization, which may be required to
improve performance, can be done using Monolithic Memories'
XACT Design Editor System. This is useful for placing and rout­
ing critical signal nets such as clock or control signals. More
information can be found in P-SILOS, FutureNet, and LCA user
guides and handbooks.

This design, developed with an LCA device, is available upon
request. The FutureNet drawing, LCA design and bit pattern
files can be provided for programming the LCA device in an EP­
ROM. Please ask for design XDES07.LCA.

Print World: THERESA.LCA (2064PD48-70)' XACT 1.30, 10:15:46 JUL 31, 1987

3.47

E1

Time Division Multiplexing with the LCA Device

PBD
-1'-,.CK..._ ~K CLOCK l ~
-v~f'INV y r;~;...__TC ~DO

P10

P11

PG

P15

P19

P21

P23

P26

P28

P30

P34

P3

P1

P47

P45

P43

P40

P38

P36

c
c

c ~ r.0~3,----------~=-L.-"xoR
D1 02 C3 FDM o~

~.--=---=02~C16BPRD 01 C1 C2

'-* I~~ CO [.___i=v
.4- LD

.i-.. P14D ~

ADDR2

ADDR3

ADDR1

ADD RO

ADDR4

DO
01

DO
SE

D1]

[DO GMUX
SE MO

DU ~I

~
GMUX

M2

D1

D1
-y P16C>- jo.,, D2

-t> :f 03
>--f.>--~---------++-µ<D2'-l MB- 1 OUTM1

D3
04

_1'. P20 _.......:: 05

_;:: P22 D ~ D6
D7

04
05
D6
D7

v

--"' DB
p25C

D-t> _I'.". D9

p21C>- ~
010 >--C>------'=-"'---------l-+-+~D~2 MB- 1 ~M2

D1

D11 D3 -v
P29D ~ 012

-t> D13

P33D
-i;.: D14

c --"' __"'.'.: D15
v

D4
D5
D6
D7

DO

~-------~D--'-'1 M4-1
D2
D3

--"' D16

~7
_1'. P2 D -t;> ~~:

D1

>--i.>-----:=o-----------+-t-+-=~"-1~ MS-1 touTM3
,........ v P48D D20

__"'.'.: D21

L..;> :;::- P46C --"' D22
__"'.'.: D23 -v

D4
D5
D6
07

P44C>- ~
D24
D25

-v
p41D ~

D26
D27

;: P39D
D28

~ D29

~ P37D
D30

__"'.'.: D31 -v

D1

>--f>---===------------o'g~~ MB· 1 OUTM4

04
D5
D6
D7

Figure 3. FutureNet Schematic

3-48

Time Division Multiplexing with the LCA Device

Appendix A> Constraint File

; CONSTRAINT FILE GROUPING MACROS IN BLOCKS

DEFINE GROUP CNT GROUP
3-T3 3-T2 CKB
C4 C2 CJ Cl CO
M3 M2;

DEFINE GROUP OUT_GROUP
CLBl 45-D23;

DEFINE GROUP Ml_GROUP
47-SO
19-SO 19-Sl
1J-D03 13-D47;

DEFINE GROUP M2_GROUP
47-Sl
15-SO 15-Sl
21-DOJ 21-D47;

DEFINE GROUP M3_GROUP
27-SO 27-Sl
23-SO 23-Sl
36-SO 36-Sl;

DEFINE GROUP M4_GROUP
OUTM4
42-SO 42-Sl
37-D47 37-D67
39-SO;

EJ

3.49

Time Division Multiplexing with the LCA Device

$
$ Simulation file for design 'TDM. s im' , type 'Z064N48-50'
$Created by PINZLCA Ver. 1. Olx at 10: 58: 00 JUL 14, 1987

$
! INPUT TDM. s im

GLOBALRESET­

CK. PAD

LD.PAD

ADDRO.PAD

+ 78000 0

ADDRl.PAD
+ 78000 1

ADDRZ.PAD

+ 78000 1

ADDR3.PAD

+ 78000 0

ADDR4.PAD

+ 78000 1
DO.PAD

Dl .PAD

DZ.PAD

D3.PAD

D4.PAD

D5.PAD

D6.PAD
D7.PAD

DB.PAD

D9.PAD

DlO.PAD

Dll .PAD

DlZ.PAD

Dl3.PAD
Dl4.PAD

Dl5.PAD

Dl6.PAD

Dl7.PAD

Dl8.PAD

Dl9.PAD

DZO.PAD

DZl.PAD

DZZ.PAD

DZ3.PAD

DZ4.PAD

DZ5.PAD

DZ6.PAD
DZ7 .PAD

DZ8.PAD

DZ9.PAD

D30.PAD

D31.PAD

. CLK 0 SO 1 Sl $ Initial pulse to reset latches

. CLK 0 0 500 1 1000 0 . REP 0

. CLK 0 0 40000 1

. CLK 0 0 40000 0 41000 1 42000 0 . REP 40000

. CLK 0 0 40000 0 4ZOOO 1 44000 0 . REP 40000

. CLK 0 0 40000 0 44000 1 48000 0 . REP 40000

. CLK 0 0 40000 0 48000 1 56000 0 . REP 40000

. CLK 0 0 40000 0 56000 1 7ZOOO 0 . REP 40000

. CLK 0 1 1000 0 40000 0 41000 1

. CLK 0 0 1000 1 zooo 0 40000 1 41000 0 4ZOOO 1

. CLK 0 0 zooo 1 3000 0 40000 l 4ZOOO 0 43000 1

. CLK 0 0 3000 1 4000 0 40000 1 43000 0 44000 1

. CLK 0 0 4000 1 5000 0 40000 1 44000 0 45000 1

. CLK 0 0 5000 1 6000 0 40000 1 45000 0 46000 1

. CLK 0 0 6000 1 7000 0 40000 1 46000 0 4 7000 1

. CLK 0 0 7000 1 8000 0 40000 1 47000 0 48000 1

. CLK 0 0 8000 1 9000 0 40000 l 48000 0 49000 1

. CLK 0 0 9000 1 10000 0 40000 l 49000 0 50000 1

. CLK 0 0 10000 1 11000 0 40000 l 50000 0 51000 l

. CLK 0 0 11000 1 lZOOO 0 40000 1 51000 0 5ZOOO 1

. CLK 0 0 lZOOO 1 13000 0 40000 1 5ZOOO 0 53000 1

. CLK 0 0 13000 1 14000 0 40000 1 53000 0 54000 1

. CLK 0 0 14000 1 15000 0 40000 1 54000 0 55000 1

. CLK 0 0 15000 1 16000 0 40000 1 55000 0 56000 l

. CLK 0 0 16000 l 17000 0 40000 1 56000 0 57000 l

. CLK 0 0 17000 l 18000 0 40000 l 57000 0 58000 l

. CLK 0 0 18000 1 19000 0 40000 l 58000 0 59000 1

. CLK 0 0 19000 l ZOOOO 0 40000 l 59000 0 60000 l

. CLK 0 0 ZOOOO 1 ZlOOO 0 40000 1 60000 0 61000 1

. CLK 0 0 ZlOOO 1 ZZOOO 0 40000 l 61000 0 6ZOOO 1

. CLK 0 0 ZZOOO 1 Z3000 0 40000 l 6ZOOO 0 63000 l 73000 0

. CLK 0 0 Z3000 1 Z4000 0 40000 l 63000 0 64000 l

. CLK 0 0 Z4000 1 Z5000 0 40000 l 64000 0 65000 1

. CLK 0 0 Z5000 1 Z6000 0 40000 1 65000 0 66000 1

. CLK 0 0 Z6000 1 Z7000 0 40000 1 66000 0 67000 1

. CLK 0 0 Z7000 1 Z8000 0 40000 l 67000 0 68000 1

. CLK 0 0 Z8000 1 Z9000 0 40000 l 68000 0 69000 1

. CLK 0 0 Z9000 1 30000 0 40000 l 69000 0 70000 l

. CLK 0 0 30000 1 31000 0 40000 1 70000 0 71000 1

. CLK 0 0 31000 l 3ZOOO 0 40000 l 71000 0 7ZOOO l

. MONITOR CK .PAD LD .PAD ; ADDR4 .PAD ADDR3. PAD ADDRZ. PAD ADDRl. PAD ADDRO. PAD ; ;

+ C4 C3 CZ Cl CO ;

+DO .PAD Dl .PAD DZ .PAD D3 .PAD D4 .PAD D5 .PAD D6 .PAD D7 .PAD ;

+ D8. PAD D9. PAD DlO. PAD Dll. PAD DlZ. PAD Dl3. PAD Dl4. PAD Dl5. PAD ;
+ Dl6. PAD Dl 7. PAD Dl8. PAD Dl9. PAD DZO. PAD DZl. PAD DZZ. PAD DZ3. PAD ;

+ DZ4. PAD DZ5. PAD DZ6. PAD DZ7. PAD DZ8. PAD DZ9. PAD D30. PAD D31. PAD ; OUT. PAD

. TABLE CK. PAD LD. PAD ; ADDR4. PAD ADDR3. PAD ADDRZ. PAD ADDRl. PAD ADDRO. PAD ;

+ C4 C3 CZ Cl CO ;

+DO .PAD Dl .PAD DZ .PAD D3 .PAD D4 .PAD D5 .PAD D6 .PAD D7 .PAD ;

+ D8. PAD D9. PAD DlO .PAD Dll. PAD DlZ. PAD Dl3. PAD Dl4. PAD Dl5. PAD ;

+ Dl6 .PAD Dl 7. PAD Dl8 .PAD Dl9. PAD DZO. PAD DZl. PAD DZZ. PAD DZ3. PAD ;

+ DZ4. PAD DZ5. PAD DZ6. PAD DZ7. PAD DZ8. PAD DZ9. PAD D30. PAD D31. PAD ; OUT. PAD

3.50

Time Division Multiplexing with the LCA Device

P - S I L 0 s lU.3 OUTPUTS 10:26:22 07-23-87

CL AMAA ccccc DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD 0
KD DDDDD 43210 01234567 89111111 11112222 22222233 u

DDDDD •• 012345 67890123 45678901 T
PP RRRRR PPP PP PPP PP •••.••
AA 43210 AAAAAAAA AAPPPPPP pppppppp PPPPPPPP p
DD DDDDDDDD DDAAAAAA AAAAAAAA AAAAMAA A

PP PPP DDDDDD DDDDDDDD DDDDDDDD D
AMAA
DDDDD

TIME
0 00 00000 00000 10000000 00000000 00000000 00000000 1

500 10 00000 00000 10000000 00000000 00000000 00000000 1
1000 00 00000 00000 01000000 00000000 00000000 00000000 1
1500 10 00000 00001 01000000 00000000 00000000 00000000 1
2000 00 00000 00001 00100000 00000000 00000000 00000000 1
2500 10 00000 00010 00100000 00000000 00000000 00000000 1
3000 00 00000 00010 0001.0000 00000000 00000000 00000000 1
3500 10 00000 00011 00010000 00000000 00000000 00000000 1
4000 00 00000 00011 00001000 00000000 00000000 00000000 1
4500 10 00000 00100 00001000 00000000 00000000 00000000 1
5000 00 00000 00100 00000100 00000000 00000000 00000000 1
5500 10 00000 00101 00000100 00000000 00000000 00000000 1
6000 00 00000 00101 00000010 00000000 00000000 00000000 1
6500 10 00000 00110 00000010 00000000 00000000 00000000 1
7000 00 00000 00110 00000001 00000000 00000000 00000000 1
7500 10 00000 00111 00000001 00000000 00000000 00000000 1
8000 00 00000 00111 00000000 10000000 00000000 00000000 1
8500 10 00000 01000 00000000 10000000 00000000 00000000 1
9000 00 00000 01000 00000000 01000000 00000000 00000000 1
9500 10 00000 01001 00000000 01000000 00000000 00000000 1

10000 00 00000 01001 00000000 00100000 00000000 00000000 1
10500 10 00000 01010 00000000 00100000 00000000 00000000 1
11000 00 00000 01010 00000000 00010000 00000000 00000000
11500 10 00000 01011 00000000 00010000 00000000 00000000
12000 00 00000 01011 00000000 00001000 00000000 00000000
12500 10 00000 01100 00000000 00001000 00000000 00000000
13000 00 00000 01100 00000000 00000100 00000000 00000000

E1 13500 10 00000 01101 00000000 00000100 00000000 00000000
14000 00 00000 01101 00000000 00000010 00000000 00000000
14500 10 00000 01110 00000000 00000010 00000000 00000000
15000 00 00000 01110 00000000 00000001 00000000 00000000
15500 10 00000 01111 00000000 00000001 00000000 00000000
16000 00 00000 01111 00000000 00000000 10000000 00000000
16500 10 00000 10000 00000000 00000000 10000000 00000000
17000 00 00000 10000 00000000 00000000 01000000 00000000
17500 10 00000 10001 00000000 00000000 01000000 00000000
18000 00 00000 10001 00000000 00000000 00100000 00000000
18500 10 00000 10010 00000000 00000000 00100000 00000000
19000 00 00000 10010 00000000 00000000 00010000 00000000
19500 10 00000 10011 00000000 00000000 00010000 00000000
20000 00 00000 10011 00000000 00000000 00001000 00000000 1
20500 00 00000 10011 00000000 00000000 00001000 00000000 1
21000 00 00000 10100 00000000 00000000 00000100 00000000 1
21500 10 00000 10101 00000000 00000000 00000100 00000000 1
22000 00 00000 10101 00000000 00000000 00000010 00000000 1
22500 10 00000 10110 00000000 00000000 00000010 00000000 1
23000 00 00000 10110 00000000 00000000 00000001 00000000 1
23500 10 00000 10111 00000000 00000000 00000001 00000000 1
24000 00 00000 10111 00000000 00000000 00000000 10000000 1
24500 10 00000 11000 00000000 00000000 00000000 10000000 l
25000 00 00000 11000 00000000 00000000 00000000 01000000 l
25500 10 00000 11001 00000000 00000000 00000000 01000000 1
26000 00 00000 11001 00000000 00000000 00000000 00100000 1
26500 10 00000 11010 00000000 00000000 00000000 00100000 l
27000 00 00000 11010 00000000 00000000 00000000 00010000 1
27500 10 00000 11011 00000000 00000000 00000000 00010000 1
28000 00 00000 11011 00000000 00000000 00000000 00001000 1
28500 10 00000 11100 00000000 00000000 00000000 00001000 1
29000 00 00000 11100 00000000 00000000 00000000 00000100 1
29oOO 10 00000 11101 00000000 00000000 00000000 00000100 1
30000 00 00000 11101 00000000 00000000 00000000 00000010 1
30500 10 00000 11110 00000000 00000000 00000000 00000010 1
31000 00 00000 11110 00000000 00000000 00000000 00000001 1
31500 10 00000 11111 00000000 00000000 00000000 00000001 1
32000 00 00000 11111 00000000 00000000 00000000 00000000 1
32500 10 00000 00000 00000000 00000000 00000000 00000000 0
33000 00 00000 00000 00000000 00000000 00000000 00000000 0
39000 00 00000 00110 00000000 00000000 00000000 00000000 o
39500 10 00000 00111 00000000 00000000 00000000 00000000 0
40000 01 00000 00111 01111111 11111111 11111111 11111111 0
40500 11 00000 01000 01111111 11111111 11111111 11111111 o
41000 01 00001 01000 10111111 11111111 11111111 11111111 0
41500 11 00001 00001 10111111 11111111 11111111 11111111 0
42000 01 00010 00001 11011111 11111111 11111111 11111111 0
42500 11 00010 00010 11011111 11111111 11111111 11111111 0

3·51

Time Division Multiplexing with the LCA Device

P - S I L 0 s lU.3 OUTPUTS 10:26:22 07-23-87

CL AAAAA CC CCC DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD 0

KD DDDDI) 43210 01234567 89111111 11112222 22222233 u
DDDDD •• 012345 67890123 45678901 T

pp RRRRR pppppppp PP
AA 43210 AAAAAAAA AAPPPPPP PPPPPPPP PPPPPPPP p

DD DDDDDDDD DDAAAAAA AAAAAAAA AAAAAAAA A
ppppp DDDDDD DDDDDDDD DDDDDDDD D
AAAAA
ODD DD

TIME
43000 01 00011 00010 11101111 11111111 11111111 11111111 0
43500 11 00011 00011 11101111 11111111 11111111 11111111 0
44000 01 00100 00011 11110111 11111111 11111111 11111111 0
44500 11 00100 DODOO 11110111 11111111 11111111 11111111 0
'15000 01 00101 00000 11111011 11111111 11111111 11111111
45500 11 00101 00101 11111011 11111111 11111111 11111111
46000 01 00110 00101 11111101 11111111 11111111 11111111
46500 11 00110 00110 11111101 11111111 11111111 11111111
47000 01 00111 00110 11111110 11111111 11111111 11111111 0
47500 11 00111 00111 11111110 11111111 11111111 11111111 0
48000 01 01000 00111 11111111 01111111 11111111 11111111 0
48500 11 01000 01100 11111111 01111111 11111111 11111111 0
49000 01 01001 01100 11111111 10111111 11111111 11111111 0
49500 11 01001 01001 11111111 10111111 11111111 11111111 0
50000 01 01010 01001 11111111 11011111 11111111 llllllll 0
50500 11 01010 01010 11111111 11011111 11111111 11111111 0
51000 01 01011 01010 11111111 11101111 11111111 11111111 0
51500 11 01011 01011 11111111 11101111 11111111 11111111 0
52000 01 01100 01011 11111111 11110111 11111111 11111111 0
52500 11 01100 01000 11111111 11110111 11111111 11111111 0
53000 01 01101 01000 11111111 11111011 11111111 11111111 0
53500 11 01101 01101 11111111 11111011 11111111 11111111 0
54000 01 01110 01101 11111111 11111101 11111111 11111111 o
54500 11 01110 01110 11111111 11111101 11111111 11111111 o
55000 01 01111 01110 11111111 11111110 11111111 11111111 0
55500 11 01111 01111 11111111 11111110 11111111 11111111 0
56000 01 10000 01111 11111111 11111111 01111111 11111111 0
56500 11 10000 10100 11111111 11111111 01111111 11111111 o
57000 01 10001 10100 11111111 11111111 10111111 11111111 0
57500 11 10001 10001 11111111 11111111 10111111 11111111 0
58000 01 10010 10001 11111111 11111111 11011111 11111111 0
58500 11 10010 10010 11111111 11111111 11011111 11111111
59000 01 10011 10010 11111111 11111111 11101111 11111111
59500 11 10011 10011 11111111 11111111 11101111 11111111
60000 01 10100 10011 11111111 11111111 11110111 11111111 0
60500 11 10100 10000 11111111 11111111 11110111 11111111 0
61000 01 10101 10000 11111111 11111111 11111011 11111111 0
61500 11 10101 10101 11111111 11111111 11111011 11111111 o
62000 01 10110 10101 11111111 11111111 11111101 11111111 0
62500 11 10110 10110 11111111 11111111 11111101 11111111 0
63000 01 10111 10110 lllllltl 11111111 11111110 11111111
63500 11 10111 10111 11111111 11111111 11111110 11111111
64000 01 11000 10111 11111111 11111111 11111111 01111111 0
64500 11 11000 11100 11111111 11111111 11111111 01111111 0
65000 01 11001 11100 11111111 11111111 11111111 10111111 0
65500 11 11001 11001 11111111 11111111 11111111 10111111 0
66000 01 11010 11001 11111111 11111111 11111111 11011111 0
66500 11 11010 11010 11111111 11111111 11111111 11011111 0
67000 01 11011 11010 11111111 11111111 11111111 11101111 0
67500 11 11011 11011 11111111 11111111 11111111 11101111 0
68000 01 11100 11011 11111111 11111111 11111111 11110111 0
68500 11 11100 11000 11111111 11111111 11111111 11110111 0
69000 01 11101 11000 11111111 11111111 11111111 11111011 0
69500 11 11101 11101 11111111 11111111 11111111 11111011 0
70000 01 11110 11101 11111111 11111111 11111111 11111101 0
70500 11 11110 11110 11111111 11111111 11111111 11111101 0
71000 01 11111 11110 11111111 11111111 11111111 11111110 0
71500 11 11111 11111 11111111 11111111 11111111 11111110 0
72000 01 00000 11111 11111111 11111111 11111111 11111111 0
72500 11 00000 00100 11111111 11111111 11111111 11111111 1
73000 01 00001 00100 11111111 11111111 11111101 11111111 1
73500 11 00001 00001 11111111 11111111 11111101 11111111 1
74000 01 00010 00001 11111111 11111111 11111101 11111111 1
74500 11 00010 00010 11111111 11111111 11111101 11111111 1
75000 01 00011 00010 11111111 11111111 11111101 11111111 1
75500 11 00011 00011 11111111 11111111 11111101 11111111 1
76000 01 00100 00011 11111111 11111111 11111101 11111111 1
76500 11 00100 00000 11111111 11111111 11111101 11111111 1
77000 01 00101 00000 11111111 11111111 11111101 11111111 1
77500 11 00101 00101 11111111 11111111 11111101 11111111 1
78000 01 10110 00101 11111111 11111111 11111101 11111111 1
78500 11 10110 10110 11111111 11111111 11111101 11111111 0
79000 01 10110 10110 11111111 11111111 11111101 11111111 0
79500 11 10110 10110 11111111 11111111 11111101 11111111 0
80000 01 101 0 10110 11111111 11111111 11111101 11111111 0

3·52

~
Advanced

Micro
Devices

AN-172

Dual 32-bit Serial CRC Error Detection
in an LCA Device

Abstract
The transmission and reception of digital data over local area
networks (LANs) is more popular than ever. To transmit reliable
information from one system to another over a LAN, an
efficient error-detection technique is necessary. The error­
detection scheme chosen by the IEEE for the Ethernet, a local
area network developed by the Xerox Corporation, uses a 32-
bit cyclic redundancy check (CRC).

A Dual 32-bit Serial CRC transmitter-receiver for the Ethernet is

PAL® is a registered trademark of Monolithic Memories.

Logic Cet1T1.1 Array and XAC"fTM are trademarks of XILINX, Inc.

IBM® is a registered trademark of International Business Machines Corporation.

PCTM, PC-AT™, and PC-XPM are trademarks of International Business Machines
Corporation.

Karen Spesard

implemented in one Logic Cell™ Array (LCA device). The LCA
device is a RAM-based CMOS circuit which is electrically
programmable. It allows the designer to make design changes
as necessary to accommodate other data communication
protocols as well as other applications. This applications note
describes the Ethernet CRC and how it is implemented in the
versatile LCA device.

3.53

El

Dual 32-bit Serial CRC Error
Detection • 1n an LCA Device
Karen Spesard

Introduction
In transferring digital information from computer to computer,
or from computer to peripheral devices, it is possible that er­
rors in transmission may be introduced. The Cyclic Redundan­
cy Check, or CRC, developed for the data communications
industry will detect most of these errors. With one LCA device,
a dual 32-bit serial CRC transmitter-receiver was implemented
for the Ethernet, one of the industry's most popular local
networks. This article describes the methodology used for
designing the Dual 32-bit Serial CRC with an LCA device.

Overview of the CRC
Central to a serial hardware CRC system is a set of n-bit linear
feedback shift registers, or LFSRs. These registers are de­
signed to represent a fixed generator polynomial G(x). The
generator polynomial is the divisor in equation 1,

D(x) R(x)
xn -- =O(x)+ -- ,(1)

G(x) G(x)

and D(x) is the data polynomial, which is transmitted and
checked for errors. The data polynomial is prescaled by xn, the
length of the generator polynomial, to insure the remainder is
always different from the data itself.

The data is shifted in the LFSR and subsequently divided by
G(x). The division generates the remainder polynomia! R(x) but
ignores the quotient polynomial Q(x). The remainder polynomial
or redundancy check-bits remain in the registers after all of the
data has been shifted in. The check-bits are then shifted out
and appended to the data-bits to produce the encoded data.
The encoded data becomes D(x) + R(x).

REGISTERS XO X1

Initialize 0 0

1st shift DO 0

2nd shift DQ$D1 DO

3rd shift DOEllD1EllD2 DQ$D1

4th shift 01EllD2EllD3 DOEllD1<llD2

5th shift DQ$D2EllD3EllD4 D1<llD2<llD3

6th shift D1<3l03EllD4<3lD5 DQ$D2EllD3EllD4

7th shift 02<3lD4<3lD5<3lD6 D1<3lD3<3lD4EllD5

8th shift 00<3l03<3l05<3l06<3l07 02<3l04<3l05<3l06

<ll:O EXOR

The encoded data is received in a similar LFSR with the same
G(x). Because addition and subtraction operations are identi­
cal in mod"ulo-2 arithmetic, equation (1) becomes:

Q(x)G(x) = xnD(x) + R(x). (2)

Since D(x) was prescaled, and appending the remainder to the
data is equivalent to adding it, the new encoded polynomial
should be exactly divisible by G(x). Thus, if the remainder of
this operation is zero, all of the original transmitted data-bits
are assumed unaltered. If the remainder is any1hing other than
zero, an error occurred and an error flag is set.

Generating CRC Bits and Checking
Data
An example of the LFSR hardware needed to generate CRC bits
serially for a three-bit G(x) is shown in Figure 1. In this
example, the output of the last register is XORed, or shift
subtracted, with the data-bit before feeding back to registers
XO and X2. The feedback term positions in the LFSR
correspond to all but the highest power of x in the generator
polynomial. In this case, the feedback positions are
determined from x2 and xO.

The redundancy check-bits can be calculated from Table 1 for
G(x) = x3 + x2 + 1 where the internal state of each register in
ths LFSR after every shift ts shown. Theiefore, if the data is
10011, the redundancy check-bits are D5 = 0, D6 = 1, and D7 =
O after the last data-bit is shifted in (5th shift). This is because
DO= 1, D1 = 1, D2 = 0, D3 = 0, and D4 = 1. (D(x) = 1 +Ox+ Ox2 +
1 x3 + 1 x4 and the least significant bit, LSB, is the first bit
transmitted.) The check-bits are shifted out from the LFSR by

X2 COMMENTS

0 If registers initialized to O

DO

DQ$D1

D1EllD2

DOEllD2<llD3

D1<ll03EllD4 Redundancy check bits

D2<llD4<llD5

DO<llD3Ell05EllD6

DOEllD1 Ell04<ll06Ell07 Zero remainder

Table 1. Calculation of Redundancy Check-Bits for G(X) = x3 + x2 + 1

3.54

Dual 32-bit Serial CRC Error Detection in an LCA Device

disabling the feedback terms of the LFSR. The check-bits can
be verified by long division as in Figure 2.

The encoded data then becomes 010 10011. To check for data
integrity, the encoded data is shifted in another LFSR with the
same G(x). This time the last bit (8th bit) is shifted in, and if the
message was unaltered, the bits residing in the registers are
zero. If the redundancy bits are not zero, an error occurred.
This can also be verified by long division as in Figure 3.

In summary, CRC modifies the data polynomial so that it is
exactly divisible by a fixed polynomial G(x). When the modified
polynomial is received, it is checked for the exact division by
G(x). If an error occurred, the RDYFLG is set.

DATA
IN

EI1 :EXOR

Figure 1. LFSR for G(X) = x3 + x2 + 1

1001

1101 I 11001000
1101

PRESCALED DATA
WITH 3 ZERO BITS

11000 REMAINDER
11010

010

Figure 2. Long Division Example - With Pure Data

1001

1101 I 11001010
1101

011010
11010

0

ENCODED DATA

NO REMAINDER

Figure 3. Long Division Example - With Encoded Data

Why Use LCA Devices in CRC?
The 32-bit serial CRC, with transmission and reception
sections, can be implemented in several ways. One way would
be to acquire standard CRC chips. These chips, however, only
exist with specific G(x) and therefore can be inflexible. Another
method would be to design the transmission and reception
sections of the CRC with traditional PLO devices. This would
require eight PLO devices for the dual 32-bit LFSRs (eight bits
in each PLO) even without additional control logic. A third
method would use an LCA device, as it would take only one to
implement the dual 32-bit CRC and with more flexibility than a
dedicated custom part.

In addition, the LCA device can provide designers with more
control after design release than the alternative solutions. For
example, the designer can change the generator polynomial or
the control logic "on-the-fly" by merely reprogramming the
configuration data from separate sections of an EPROM. A
large EPROM, 8Kx8 or 16Kx8, can typically store three and six
configuration patterns, respectively.

32-Bit CRC Design
CRC error detection is one of the best methods for checking
the validity of large frames of information. It can detect all
errors within n successive bits, all errors with an odd number of
bits in error for even G(x), and, of course, all error patterns that
are not divisible by G(x).

The IEEE-802.3/Ethernet Local Area Network Standard
defines a 32-bit CRC code. This code works with data ranges
from 46 to 1500 bytes, and is also used in the Autodin-11
Network.

The generator polynomial used for the Ethernet 32-bit CRC is
defined as:

G(x) ~ x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7

+ x5 + x4 + x2 + x + 1,

where the coefficients of the generator polynomial correspond
to the feedback positions in the LFSR.

Figure 4 shows the block diagram of the Dual 32-bit Serial CRC.
As the diagram illustrates, the transmitter portion of the CRC is
controlled separately from the receiver portion.

The standard specifies that on the transmitter end, the shift
registers are preloaded to ones with INITA, and CONTROLA is
held HIGH while the incoming data bits are shifted in to
generate the CRC. When all of the data bits have been entered,
CONTROLA is held LOW and the complemented CRC is shifted
out for transmission.

On the receiver end, the data bits and the complemented
check bits are sent. When the end of the frame is reached, the
remainder is checked. If no error occurs, the final contents of
the shift register are:

X31 XO

11000111 00000100 11011101 01111011

This remainder is not 0 because the check-bits are
complemented before being transmitted to the receiver.

CRC Logic Implementation
Figures 5 and 6 show the complete design for the 32-bit CRC
with the standard generator polynomial described above. The
generator polynomial is implemented with thirty-two registers in
each LFSR. The feedback terms (031 xor DIN) are at registers
00, 01, 02, 04, 05, 07, ... 023, and 026 and correspond to
the Ethernet generator polynomial, G(x) given above.

The registers in the LFSRs are D-type flip-flops and are
clocked synchronously. In the transmitter portion, two pins -
CONTROL and INIT - are respectively added for initializing the
registers and controlling the feedback terms. When INIT is
HIGH, all registers are initialized to HIGH. When CONTROL is
HIGH, the multiplexer shifts out data bits and generates
check-bits. When CONTROL is LOW, the feedback term is
disabled and inverted redundancy check-bits are shifted out
from the LFSR.

The five-bit synchronous ripple carry counter is enabled with
the control line LOW and reset with the control line HIGH. When
the five count bits reach all ones, the thirty-two check bits are
shifted out of the LFSR, and the RDYFLAG is set.

The receiver LFSR is essentially the same as the transmitter
LFSR. However, after data and the thirty-two check bits are
received, the data is checked for errors. If an error occurred,
the error flag is set.

3.55

3·56

Dual 32·bit Serial CRC Error Detection in an LCA Device

IN. BIT DATAl
BUFFER

SERIAL
DATA IN

CRCENABLE

CONTROL A

!NITA

CLOCK A

CLOCKB

INITB

ENCODED
SERIAL
DATA IN

SERIAL DATA
ENABLE

TRANSMIT· ENCODE .----

I Cf= MUX

LSFR ,___

'--- • j 5·BIT
~l COUNTER

RECIEVE ·DECODE

32· BIT H ERROR
LFSR DETECT

_...

j
LCA IMPLEMENTATION

Figure 4. Block Diagram of the Duel 32·Bit Serial CRC

....

_...

(

DATA AND
REDUNDANCY

CHECK BITS
ENCODED DATA)

RDYFLG

ERRFLG

SERIAL
ATAOUT D

Dual 32·bit Serial CRC Error Detection in an LCA Device

32- BIT LFSR
CONTROLA~+-~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.-~~~~~~~----,

DIN~+-~~~~~~~~~~~~~~~~~~~~~~~t-ffi--~~--~r~~~~---.

0
e
1±1

031
0 (INIT) CJ

Figure 5. Logic Implementation of Transmitter-Encoder Section

QA

MULTIPLEXER

ENCODED
SERIAL

DATA OUT

5 - BIT COUNTER

ROY
:NOT FLAG

:EXOR

:OR
:AND

=OFF W/CLOCK

3.57

El

SERIAL DATA
ENABLE

ENCODED DIN

ERROR
DETECT

Dual 32-bit Serial CRC Error Detection in an LCA Device

32 - BIT LFSR

SERIAL
~~~+-~~~~~~~~~~~~~~~;>-~~~~~-+---~-+---~~~~--<~~~+--DATA 

OUT 

Q31 

(INIT) 

Q = NOT E9 =EXOR I±] =OR G) =AND C:=J = OFF W/CLOCK 

ERR 
FLAG 

Figure 6. Logic Implementation of Receiver-Decoder Section 

3·58 



Dual 32-bit Serial CRC Error Detection in an LCA Device 

Logic Cell Array Implementation 
The Dual 32-bit Serial CRC circuit described above is 
implemented in an M2018 LCA device. It contains one hundred 
configurable logic blocks (CLBs) and seventy-four user­
configurable input/output blocks (IOBs) providing a total of 
1800 usable logic gates. The logic is partitioned and placed in a 
graphics environment on the IBM® PC-XT™ or PC-AT™ using 
the Monolithic Memories' XACT'M LCA Editor. 

The Monolithic Memories' XACT LCA Editor provides the tools 
from which the logic and interconnects (CLBs, IOBs, and 
programmable interconnect points) are constructed. The 
configuration of specified logic blocks can be made with the 
XACT "Edit Block" command. Once in the "Edit Block" menu, a 
combinational, latched, or registered equation can be selected 
with the mouse. The clock input polarity, set and reset 
functions can also be selected as required. The CLB can be 
configured as one output function of lour Boolean input 
variables, or two functions of three Boolean input variables. 
The logic equations can be input from the PC keyboard using 
Boolean algebra, or from the mouse using a Karnaugh map. For 
an IOB, the "Edit Block" menu can be used to select pad and/or 
latched inputs, buffered and/or three-state control outputs, or 
bidirectional I/Os. 

The programmable interconnect points (PIPs), are configured 
using the XACT "NET" and "PIN" menus. The features used 
from the "NET'' and "PIN" menus are summarized below. 
Command Function 

Names a Net 

Names and Adds a Net 

NameNet 

Add Net 

Add Pin Adds Net and Automatically Routes 
aNet 

EditNet 

Route Net 

Manually Routes a Net 

Routes Named Nets 
When the nets are routed, the PIPs are programmed automati­
cally. 

An example of a CLB is shown in Figure 7. Here the output of 
the CLB is combinational, and the CLB is configured as a 
multiplexer. The multiplexer selects the serial data when 
CONTROL or ENABLE are HIGH and selects 031 when 
CONTROL and ENABLE are LOW. The Karnaugh map and the 
Boolean equation in the figure illustrate the logic used to 
implement this function. The output of the multiplexer is named 
ENCDATAOUT. 

Figure 8 shows the configuration of the CLBs for the modulo-2 
addition of the feedback signal with the data, when INIT is LOW 
and CONTROL is HIGH. The output again is combinational and 
is named QA. 

·-
x :[]-101 y F 
0 
SET 

c y 

RES D BU< AC 
CLK MUX 

DCBA i3 A:Q31 
XHHX B:DATAIN 
HXHX C:CTL 
LLXH D:ENABLE 

K: 
X: 

F Y:ENCDATAOUT 
:I 

F = (O+C)xB + -Cx-Dx-A 

Figure 7. Mux for Data/Check Bit Select 

Figures 9 to 11 show the configuration used to implement the 
logic for the first few shift registers, corresponding to 
equations in Tables 2 and 3. Note that these shift registers are 
configured as registered equations. Figure 12 illustrates the 
signal configuration of the RDYFLG in the transmitter section x F 

y 

l}~x 0 g F 0 
SET 
RES BU< BA 
CU< QA 

DCBA 

;~-
A:Q31 

H L H L B:CTL 
LL H H C:INIT 

D:DATAIN 
K: 

F X:QA 
Y: 

:I 
F = -CxBxDx-A + -CxBx-DxA 

Figure 8. Modulo-2 Addition of 031 and DATAIN 

x 0 

g[J--rrYX 

y 
0 FF 
SET 

BU< AA RES 
CLK K K QO 

DC F 

"' HX H c B: 
XH H .a)o C:INIT 

D:QA 
CLK K:CLOCK 

0 X:OO 
Y: 

F= D+C 

Figure 9. The 1st Bit of the LFSR 

x 0 

A[J--rrYX 
y 

g F 0 0 FF 
SET 
RES BLK CA 
CU< K K 01 

CBA F A A:QA 
LLH H --- B:QO 
HXL H .-, lie C:INIT 
XHL H D: 

CU< K:CLOCK 

B' 0 X:01 
Y: 

F= A@(B+C) 

Figure 10. The 2nd Bit of the LFSR 

x 0 
AL}ffx 

y B 0 
0 FF 
SET 
RES BU< EA 
CU< K K 03 

BA F A:INIT 
HX H A B:Q2 
XH H ~le 

C: 
CU< D: 
0 K:CLOCK 

X:03 
Y: 

f= A+B 

Figure 11. The 4th Bit of the LFSR x 0 

T~trrx 
y 
0 FF B 0 
SET 
RES BU< CF 
CU< K K ROY 

BA F 

"' COUNTS 
HH H A B: CTR& 

~le 
CU< C: 
0 D: 

K: CLOCK 
X: ROY FLAG 
Y: 

F • AxB 

Figure 12. The ROY Flag Signal 

3.59 

EJ 



Dual 32-bit Serial CRC Error Detection in an LCA Device 

of the LFSR. It is also configured as a registered equation. The 
RDYFLAG is set when COUNTS is HIGH and CTR14 is HIGH. 
CTR14 is an AND gate of input bits 1 - 4. 

The placed and routed Dual 32-bit CRC design requires sixty­
four CLBs for the two LFSRs and two CLBs for the feedback 
controls. It also requires one CLB for the multiplexer, five for 
the counter, two for the RDYFLG and eleven for the ERRFLG. 

The design, therefore, requires eighty-five CLBs and utilizes 
85% of the LCA device. A 68-pin package, 2018NL68, was 
chosen for this implementation. This 2018NL68 has a speed 
grade of 70 MHz, the flip-flop toggle rate. A copy of the 
Monolithic Memories' XACT EDITLCA file is shown in Figure 13 
with all of the CLBs and IOBs labelled. 

Print World: 32BITCRC.LCA (2018NL68-70), XACT l.30, 16:20:22 JUN 4, 1987Print world: 32BITCRC.LCA (2018NL68-70; 

u u 

Figure 13. Monolithic Memories' XACT "EDITLCA" File for the Dual 32-Bit Serial CRC 

3-60 



Dual 32·bit Serial CRC Error Detection in an LCA Device 

EQUATIONS FOR 32-BIT SERIAL CRC 
TRANSMISSION SECTION 

QA CTL*/INIT(Q3l@DIN) ;MOD 2 ADDITION, IF CTL*/INIT 
QO := QA+INIT ;SHIFT QA OR INITIALIZE 
Ql := (QO+INIT)@QA ;SHIFT QO@QA OR INITIALIZE 
Q2 := (Ql+INIT) @QA ;SHIFT Ql@QA OR INITIALIZE 
Q3 := Q2+INIT ;SHIFT Q2 OR INITIALIZE 
Q4 := (Q3+INIT)@QA ;SHIFT Q3@QA OR INITIALIZE 
Q5 := (Q4+INIT)@QA ;SHIFT Q4@QA OR INITIALIZE 
Q6 := Q5+INIT ;SHIFT Q5 OR INITIALIZE 
Q7 := (Q6+INIT)@QA ;SHIFT Q6@QA OR INITIALIZE 
QS := (Q7+INIT)@QA ;SHIFT Q7@QA OR INITIALIZE 
Q9 := QS+INIT ;SHIFT QB OR INITIALIZE 
QlO := (Q9+INIT)@QA ;SHIFT Q9@QA OR INITIALIZE 
Qll := (QlO+INIT)@QA ;SHIFT QlO@QA OR INITIALIZE 
Ql2 := (Qll+INIT) @QA ;SHIFT Qll@QA OR INITIALIZE 
Ql3 := Ql2+INIT ;SHIFT Ql2 OR INITIALIZE 
Ql4 := Ql3+INIT ;SHIFT Ql3 OR INITIALIZE 
Ql5 := Ql4+INIT ;SHIFT Ql4 OR INITIALIZE 
Ql6 := (Ql5+INIT)@QA ;SHIFT Ql5@QA OR INITIALIZE 
Ql7 := Ql6+INIT ;SHIFT Ql6 OR INITIALIZE 
Ql8 := Ql7+INIT ;SHIFT Ql7 OR INITIALIZE 
Ql9 := Ql8+INIT ;SHIFT Ql8 OR INITIALIZE 
Q20 := Ql9+INIT ;SHIFT Ql9 OR INITIALIZE 
Q21 := Q20+INIT ;SHIFT Q20 OR INITIALIZE 
Q22 := (Q2l+INIT) @QA ;SHIFT Q2l@QA OR INITIALIZE 

El Q23 := (Q22+INIT)@QA ;SHIFT Q22@QA OR INITIALIZE 
Q24 := Q23+INIT ;SHIFT Q23 OR INITIALIZE 
Q25 := Q24+INIT ;SHIFT Q24 OR INITIALIZE 
Q26 := (Q25+INIT)@QA ;SHIFT Q25@QA OR INITIALIZE 
Q27 := Q26+INIT ;SHIFT Q26 OR INITIALIZE 
Q28 := Q27+INIT ;SHIFT Q27 OR INITIALIZE 
Q29 := Q28+INIT ;SHIFT Q28 OR INITIALIZE 
Q30 := Q29+INIT ;SHIFT Q29 OR INITIALIZE 
Q31 := Q30+INIT ;SHIFT Q30 OR INITIALIZE 

ENCDATAOUT = (ENABLE+CTL)*SERDATAIN+(/ENABLE*/CTL*Q31) 
RDYFLG := COUNT5*CTR14 

Table2. 

3·61 



Dual 32·bit Serial CRC Error Detection in an LCA Device 

EQUATIONS FOR 32-BIT SERIAL CRC 
RECEPTION SECTION 

QB /!NIT* (Q3l@DIN) ;MOD 2 ADDITION, IF /!NIT 
QCO := QB+INIT ;SHIFT QB OR INITIALIZE 
QCl := (QCO+INIT)@QB ;SHIFT QCO@QB OR INITIALIZE 
QC2 := (QCl+INIT)@QB ;SHIFT QCl@QB OR INITIALIZE 
QC3 := QC2+INIT ;SHIFT QC2 OR INITIALIZE 
QC4 := (QC3+INIT)@QB ;SHIFT QC3@QB OR INITIALIZE 
QCS := (QC4+INIT)@QB ;SHIFT QC4@QB OR INITIALIZE 
QC6 := QCS+INIT ;SHIFT QCS OR INITIALIZE 
QC7 := (QC6+INIT)@QB ;SHIFT QC6@QB OR INITIALIZE 
QCS := (QC7+INIT) @QB ;SHIFT QC7@QB OR INITIALIZE 
QC9 := QCS+INIT ;SHIFT QCS OR INITIALIZE 
QClO := (QC9+INIT)@QB ;SHIFT QC9@QB OR INITIALIZE 
QCll := (QClO+INIT)@QB ;SHIFT QClO@QB OR INITIALIZE 
QC12 := (QCll+INIT) @QB ;SHIFT QCll@QB OR INITIALIZE 
QC13 := QC12+INIT ;SHIFT QC12 OR INITIALIZE 
QC14 : :;::: QC13+INIT ;SHIFT QC13 OR INITIALIZE 
QC15 := QC14+INIT ;SHIFT QC14 OR INITIALIZE 
QC16 := (QC15+INIT)@QB ;SHIFT QC15@QB OR INITIALIZE 
QC17 := QC16+INIT ;SHIFT QC16 OR INITIALIZE 
QC18 := QC17+INIT ;SHIFT QC17 OR INITIALIZE 
QC19 := QC18+INIT ;SHIFT QC18 OR INITIALIZE 
QC20 := QC19+INIT ;SHIFT QC19 OR INITIALIZE 
QC21 := QC20+INIT ;SHIFT QC20 OR INITIALIZE 
QC22 := (QC2l+INIT) @QB ;SHIFT QC2l@QB OR INITIALIZE 
QC23 := (QC22+INIT)@QB ;SHIFT QC22@QB OR INITIALIZE 
QC24 := QC23+INIT ;SHIFT QC23 OR INITIALIZE 
QC25 := QC24+INIT ;SHIFT QC24 OR INITIALIZE 
QC26 := (QC25+INIT)@QB ;SHIFT QC25@QB OR INITIALIZE 
QC27 := QC26+INIT ;SHIFT QC26 OR INITIALIZE 
QC28 := QC27+INIT ;SHIFT QC27 OR INITIALIZE 
QC29 := QC28+INIT ;SHIFT QC28 OR INITIALIZE 
QC30 := QC29+INIT ;SHIFT QC29 OR INITIALIZE 
QC31 := QC30+INIT ;SHIFT QC30 OR INITIALIZE 

IF /OE2, SERDATAOUT := ENCDATAIN 

ERRFLG := /QO+/Ql+Q2+/Q3+/Q4+/Q5+/Q6+Q7+/Q8+Q9+/Q10+/Qll+/Ql2+Ql3 
+/Ql4+/Q15+Ql6+Ql7+/Ql8+Ql9+Q20+Q21+A22+Q23+/Q24+/Q25 
+/Q26+Q27+Q28+Q29+/Q30+Q31 

Table3. 

3·62 



Dual 32·bit Serial CRC Error Detection in an LCA Device 

Configuration 
The LCA device is manufactured with a programmable RAM­
based CMOS process and must be configured upon power-up. 
This requires the loading of a configuration program into the 
LCA device. A number of methods for doing this exist. The 
Master Mode LOW was selected in this application. 

In this mode, the LCA device is configured from an external 
EPROM containing the configuration data as shown in Figure 
14. After an initial power-up delay and with the RESET pin 
HIGH, the LCA device reads the byte-wide configuration data 
from the EPROM starting at address 0000 and loads it into pins 
DO-D7. When the DONE pin goes HIGH, configuration is 
complete and the LCA device is free to perform as designed.· 
The configuration process, lasts approximately 25 ms. 

Summary 
In this applications note, the principles of designing a Dual 32-
bit Serial CRC in a Monolithic Memories' LCA device was 
described. The device implementation has many advantages 
which include its user-configurable logic functions, 
interconnects and 110 pins. This flexibility facilitates the 
design process significantly as standards in the data 

:_:R vcc M2 

£4 M1 
6 

MO 

M2018-70 
NL68 

vcc 

10K 

~ fiESET 
0.01µF l 

communications industry continually change. Thus, the LCA 
device is a viable solution for designers who wish to gain more 
control over their designs. 

The Dual 32-bit CRC design developed tor the LCA device is 
available upon request. The bit pattern and .LCA file will be 
provided for programming the LCA device in an EPROM. 
Please ask for design XDES09.LCA. 

References 
1. Nadia Sachs, "Cyclic Redundancy Check using PAL® 

Devices." AN-105, Monolithic Memories Inc., 2175 Mission 
College Blvd., Santa Clara, CA 95054-1592 

2. Vivian Kong, "Implementation of SeriaVParallel CRC Using 
PAL Devices.• AN-125, Monolithic Memories Inc., 2175 
Mission College Blvd., Santa Clara, CA 95054-1592 

3. IEEE Std 802.3-1985 Carrier Sense Multiple Access with 
Collision Detection (CSMAICD) Access Method and 
Physical Layer Specifications, The Institute of Electrical 
and Electronics Engineers, Inc., Wiley-lnterscience, 1985 

4. Robert Swanson, "Understanding Cyclic Redundancy 
Codes,"Computer Design, Nov. 1975. 

A11 6 21 A11 

A10 
8 19 A10 

A9 
9 22 

A9 
A8 7 23 A8 

A7 5 1 
A7 

A6 3 2 A6 

A5 68 3 

66 4 A5 
A4 A4 

A3 64 5 A3 

A2 
63 6 A2 

A1 
62 7 A1 2732 

/llJ 61 8 AO EPROM 

DO 
58 9 DO 

01 56 10 01 

02 54 11 02 

03 
51 13 03 

04 50 14 04 

05 48 15 05 

06 
42 16 06 

07 
41 17 07 

DONE/PGM 
45 18 cs 
~ OE' 

Figure 14. Master Mode Low Configuration for the Dual 32-Bit Serial CRC 

3-63 

El 



3·64 



~ 
Advanced 

Micro 
Devices 

AN-178 

LCA Device Implements 
an 8-Bit Format Converter 

in a PBX Switching Module 

Abstract 
In Private Branch Exchanges, thousands of voice channels are 
multiplexed using time division multiplexing (TOM) techniques. 
Many of these voice channels may be multiplexed onto either 
serial or parallel channels. This application note describes an 
eight-bit format converter (parallel-to-serial and serial-to-parallel) 
circuit which transposes eight serial TOM highways into a single 
eight-bit parallel bus. A user-programmable Monolithic Memo-

Logic Cell''" and XACT''" are trademarks of XILINX, Inc. 
Harris 20-20 .. ' is a trademark of the Harris Corporation. 

Raj Paripatyadar and C.B. Lee 

ries' Logic Cell" Array (LCA device) implements this circuit very EJ 
efficiently using ninety-nine Configurable Logic Blocks (CLBs) 
out of one hundred CLBs available. Each CLB has a combina-
tional logic section and a storage element. The circuit operates 
at up to 18.5 MHz when implemented in a 70-MHz CMOS, LCA 
M2018 device 

3-65 



LCA Device Implements 
an 8-Bit Format Converter 
in a PBX Switching Module AN-178 

Introduction 
In a Private Branch Exchange (PBX) or Central Office (CO), 
incoming digitized voice circuits are "switched" or routed to 
their appropriate destination. The "switching" takes place while 
the data is in serial or parallel format. An eight-bit format conver­
ter circuit, widely used in a variety of PBX and CO architectures, 
translates the serial data streams into parallel data streams and 
vice-versa. 

The eight-bit format converter circuit requires a large number of 
register elements. These elements, namely serial shift registers, 
can be implemented efficiently in an LCA device due to its high 
register content and flexible structure. The LCA M2018 pro­
grammable device contains one hundred configurable register 
elements, ninety-nine of which are used in the implementation 
of the converter circuit. This circuit is capable of running at 12.5 
MHz and 18.5 MHz in a 50-MHz and 70-MHz LCA device, 
respectively. 

Powerful software tools and circuit uniformity allowed the 
design to be laid out and simulated in just two days. However, if 
different support logic becomes necessary, PBX vendors are 
able to generate a new configuration program in the LCA re­
programmable device. Since these devices are manufactured in 
a CMOS technology, a complete PBXsystem with several LCA 
devices can help keep the active power consumption down. 
(Please refer to the LCA Design and Applications Handbook­
Reference 3 for basic information regarding structure and pro­
gramming aspects.) 

MICROPROCESSOR BUS 

MAINT. 
TAPE 

NETW. CONTROL u-----1 

MEMORY 

PROC. 

Overview of a PBX 
Central Offices (CO) and Private Branch Exchanges (PBX) pro­
vide both telephone and data services. A PBX may be consi­
dered as a localized telephone exchange serving the intercon­
nection requirements of users in office environments. Outgoing 
calls are directed out of the PBX and routed through the local 
CO to the far destination. In general terms, a PBX or a CO 
consists of major blocks shown in Figure 1. Racks of peripheral 
equipment modules containing line cards provide access to 
telephone units, or to data adapter modules which provide data 
communication services. Trunk cards provide high-speed links 
to host computers, or other PBXs. Network switching modules 
interconnect calling parties to answering parties via digital mul­
tiplexed links. Control modules containing a Central Processor 
Unit (CPU), mass storage and local memory, perform the 
"setup" and "tear-down" of each circuit connection, as well as 
the monitoring of PBX activities. Central resources are modules 
of hardware and software which operate in a time-shared 
manner. The central resources include facilities such as ringing 
tone generator and message recording modules. 

CONTROL 

SYSTEM ACCESS} 
TERMINAL 

TAPE MODULES 

}
CENTRAL 
RESOURCES 

Figure 1. PBX Communication and Control Architecture 

3·66 



LCA Device Implements an 8-Bit Format Converter in a PBX Switching Module 

Hierarchy of Channel Multiplexing 
ina PBX 
The main function of switching modules is to interconnect cir­
cuits between two or more parties such as in a conference call. 
A digital telephone unit, or a line card, contains a Coder/De­
coder (CODEC) device. The CODEC device digitizes voice and 
transmits it into a Pulse Code Modulated (PCM} data stream on 
a common serial data highway at appropriate time intervals. 
which are assigned at the start of the call. 

Analog voice is sampled at 8 KHz and passes through an eight­
bit analog-to-digital converter. The digitized sample (eight-bit 
binary word} is transmitted serially to produce a serial data 
stream of (8 x 8 = } 64 Kbps. Thirty-two of these samples or 
CODECS are normally connected to a common highway operat­
ing at (32 x 64 = } 2.048 Mbps. Each CODEC is assigned "Serial 
Time Slots" of eight-bit duration, and sends its eight bits of data 
at the rate of 2.048 Mbps every 8 KHz. Another time slot is 
available on a separate highway for the receive data stream. 

Therefore, a 2.048 Mbps highway can support thirty-two chan­
nels or voice connections in one direction. However, there are 
several ways to combine serial highways for additional voice 
connections. One way is to combine four highways into one 

high-speed highway of 8.192 Mbps. Further integration is possi­
ble, but the aggregate data rate becomes high and leads to 
implementation problems including timing, signal reflection, 
and radiation, to name a few. 

Another way to integrate channels without increasing the clock 
rate is to convert eight serial data highways into a single eight-bit 
parallel bus. With this method, the serial clock rate and the 
parallel clock rate are the same, 2.048 Mbps. This means that 
data throughput on the eight serial highways of 16.384 Mbps is 
maintained in the eight-bit parallel bus operating at 2.048 Mbps. 
This works by careful alignment of the incoming parallel time 
slots to serial time slots on the serial highways. An eight-bit 
format converter scheme, sometimes called a "Corner Bender", 
is widely used in PBX or CO switching modules. Four of these 
parallel buses are combined (see Figure 2) to form a single 
parallel system bus that is thirty-two bits wide, yet still operates 
at 2.048 Mbps. The multiplexing architecture shown in Figure 2 
is used in the Harris 20-20'" Integrated Network Switch (see 
Reference 1}. 

Space switching and/or time slot switching to interconnect dif­
ferent parties is performed either in the serial highway format or 
in the parallel data stream format. 

SYSTEM PCM BUS 4MHz x 32 BITS 

T 
FOURTH 

MUX 
LEVEL 

1 
T 
THIRD 
MUX 

LEVEL 

SECOND 
MUX 

LEVEL 

FIRST 
MUX 

LEVEL 

J 
TIMING 

-----..-..,..----;i--..----.-------1- --- - ----- ------
7 OTHER 2048 

TCU BOARDS p~~;T~~E 

2MHzx8Bits 
(256 PORTS) 

CORNER BENDER 

BACKPLANE 

PERIPHERAL GROUP BUS 
2 MHz x 1 BIT (32 PORTS) __ .....,..,.. ________ _,._.p.-..... - CABLE AND 

-------...-------..... -- BACKPLANE 

--1------

3 OTHER CARDS 

ft>~<----t--} TIMING 

ON-UNIT BUS 
2 MHz (8 PORTS) 

7 OTHER CODES 

ANALOG VOICE 

TELEPHONY 
PERIPHERAL 
UNIT 

* = TRI-STATE 

Figure 2. Multiplexing Levels 

3-67 

E1 



LCA Device Implements an S·Bit Format Converter in a PBX Switching Module 

Description of the 
"Corner Bender" Circuit 
The circuit consists of eight parallel-to-serial shift registers, and 
additional shift registers which provide proportional delays to 
synchronize the outputs. The principle of operation is shown in 
Figure 3, and the circuit is shown in Figure 4. Parallel data from 
the parallel bus is loaded with each clock into one of the eight 
shift registers in a rotating pattern. The data then shifts out of the 
shift register with each subsequent clock. Alter all eight registers 
have been loaded, the first register will be empty on the next 
clock. New data is loaded into this register at the same clock 
edge as the last bit shifts out to the next stage. Thus, a continu-

PARALLEL TIME SLOTS 

123456710123 

F 

G 

ous flow of data through the registers is insured. The data out of 
the eight shift registers is skewed in relation to each other as 
shown in Figure 3b. The various space slots on the highways 
need to be aligned to keep synchronization. This is achieved by 
proportionally delaying the outputs. Channel 1 output is delayed 
by seven clocks (using a seven-bit serial shift register), channel 2 
is delayed by six clocks, etc. Channel 8 output does not go 
through any additional delay. The final outputs of the delay 
registers are aligned and data is clocked out in a synchronous 
fashion. See Figure 3c. 

Figure 3a. Parallel Bus {8 Bit), 2.048 Mbyte/sec 

3-68 

' ' 1 A B C D E F G H 1A B C D E F G H 

B~¥_1 

BYTE r 2 

BYTE r 3 

BYTEx 5 }.';' 

BYTEx 7 

I 

Figure 3b. After Parallel to Serial Conversion 

$ERIAL TIME SLOTS 
SERIAL TOM BUSES 
EACH 2.048 Mbits/sec 

;------~~b_-,::;",;1-"'•"'vre,,,..., ""'• --.t=·\.""t·k""··V-"'.1 -"'•"'vre"'. =x0-""""b"'~'k""'~ --- ii~~~= l~t~~c 
r:H • .,,... , P#f;,\' .• vre •. 1 , k'.&l 

Figure 3c. After Appropriate Time Delay to Synchronize 

Figure 3. Principles of "Corner Bending" 



LCA Device Implements an 8-Bit Format Converter in a PBX Switching Module 

Figure 4 also shows the additional circuitry needed to control 
the shift registers. A preloadable three-bit counter keeps count 
of eight clock pulses. The parallel-to-serial bus conversion can 
be "programmed" to start in any register by setting the approp­
riate binary value on the counter preload inputs and applying a 
pulse to the sync input. If the loading sequence produced by the 
counter is not required, it can be disabled by connecting the 
"clock" to "sync" input. At each positive clock edge, the register 
loaded will depend upon the data at the counter inputs on the 
previous positive clock edge. The 3-to-8 decode circuit produ-

01 D2 D3 

ces load pulses to latch parallel data into the shift registers. 
Figure 5 shows the parallel-to-serial conversion data matrix. 

The description above shows the conversion of parallel data into 
eight streams of serial data. However, the same circuit also 
performs serial-to-parallel conversion. A serial eight-bit data 
stream on one of the eight inputs appears as an eight-bit parallel 
word on the eight outputs. Successive parallel words appearing 
at the eight outputs correspond to the serial data on each of the 
eight inputs in rotation. See Figure 5. 

SYNC o/p /EN 

_i _i _i l ~ I 3-BIT Ql Al 3-T0-8 J l LOAD PULSE J I COUNTER g~ :; DECODE GENERATOR 

t: 1 I!C!L4£J6J7 111 

CU< 

J J ·- t:l A~H 

8-BIT SHIFT Q ..... 7 

A 

REGISTER L 
B 

,_ 
~H 

DELAY CIRCUITS TO 

ll SYNCHRONIZE TRANSMISSION 

8-BIT SHIFT Q ~ 1-BITSHIFTJ ..... 
REGISTER L REGISTER 

6 

- ~H ~--8-BIT SHIFT Q 

~ 2-BIT SHIFT J 
!"' REGISTER L REGISTER 

c 

- ~H Q 
8-BIT SHIFT Q 

~ 3-BIT SHIFT J .... 
REGISTER L REGISTER 

D 

4 

- ~H D 
8-BIT SHIFT Q K 4-BIT SHIFT J ..... 
REGISTER L REGISTER 

E 

-I ~H ll 
8-BIT SHIFT Q ~ 5-BIT SHIFT J ..... 
REGISTER L REGISTER 

F 

-I ~H rl 
8-BIT SHIFT Q ~ 6-BIT SHIFT QJ ];' 

REGISTER L REGISTER 

G 

- -~H "-J. 
8-BITSHIFT Q N 7-BIT SHIFT J ..... 

[ REGISTER L REGISTER 

H 

Figure 4. 8-Bit Format Converter ("Corner Bender") Circuit 

3-69 

El 



LCA Device Implements an 8·Bit Format Converter in a PBX Switching Module 

CLOCK 

DATA 
INPUTS 

DATA 
OUTPUTS 

A IAOIA1IA2IA3IA4IA5IA6IA71 

e I eol e1IB2IB3IB4lesle& IB7I 

c I col C1IC21C31C41csle&IC7I 

01001m1021001041os1oe1011 

Elml~l~lblu1s1m1~1 

F I FO I F1 I F2 I F3 I F4 I F5 lf6 JF7 I 
G IGOI G1fG2IG3IG4IG5IG6IG71 

HIHOl~1~1~1~1~1~1w1 
o I I IHOIGOJFOlmloolcoleolAOI 

l~lrul~l~l~IC1l~IMI 

2 lmlG2l~l~lml~IB2IA21 

a I l~IG31 F3IE3loolcalB3IA3I 

4 I l~IG41 F4IUID4IC4IB4IA41 

s l~IG5IF5lsloslcsleslA51 

& l~IG6l~lsloele&le&IA&I 

1 I l~l~IF1l~l01IC7IB7l~I 

PARALLEL TO SERIAL CONVERSION 
AO, BO, CO, DO, EO, FO, GO, HO " IN(l)O, IN(l)1, IN(l)2, IN(Q3, IN(1)4, IN(l)S, IN(Q&, IN(l)7 
A 1, 81, C1, 01, E1, F1, G1, H1 = IN(ll)O, IN(U)1, IN(ll)2, IN(l1)3, IN(H)4, IN(H)S, IN(H)6, IN(IQ7 

SERIAL TO PARALLEL CONVERSION 
AO,A1,A2,A3,A4,A5,A6,A7 = IN(l)O, IN(l)1, IN(l)2, IN(l)3, IN(Q4, IN(l)S, IN(l)6, IN(l)7 
BO, 81, 82, 83, 84, 85, 86, 87 = IN(ll)O, IN(ll)1, IN(ll)2, IN(H)3, IN(H)4, IN(H)S, IN(ll)6, IN(ll)7 

* IN(l)X ARE THE INPUT 8-BIT WORDS 

Comparison of Implementation 
Techniques 

Figure 5. Data Conversion 

The "Corner Bender'' circuit can be implemented in several 
ways. The efficiency of an LCA design can be compared to that 
of a design in SSl/MSI logic devices or Erasable Programmable 
Logic devices (EPLDs). Table 1 contains the comparison of 
package counts with the different alternatives. 

EQUIVALENT CIRCUIT IN SSl/MSI DEVICES 

The circuit implemented in 74LSxx devices requires nineteen 
packages. Alternatively, sixteen simple PLD devices (such as a 
PAL20R8 or a PAL20R4) are required to implement the same 
circuit. Since the circuit is register intensive and not designed for 
high speed, PLDs are not chosen for this application. 

The functionally larger EPLD devices, EP1200 and EP1800, are 
more register intensive and contain twenty-eight and fourty­
eight register elements, respectively. Nevertheless, four EP1200 
devices, or two EP1800 plus a smaller PLD device, is required to 
implement this design. 

Parallel in serial out shift Registers 74LS165 

Serial in Parallel out shift Registers 74LS164 

4-bit counter 74LS161 

3 to 8 decoder 74LS138 

Three-state buffers 74LS241 

EQUIVALENT CIRCUIT IN EPLDs 

a) EP1200 28 macro cells each 

b) EP1800 48 macro cells each 

plus PAL device e.g., 16R4 

EQUIVALENT CIRCUIT IN MMI LCA DEVICE 

LCA 2018 device 100 macro cell 

PACKAGES 

8 

7 

1 

1 

1 

4 

2 

1 

1 

The entire Corner Bender circuit fits neatly into a single LCA 
2018 device. It uses ninety-nine out of the one hundred available 
internal macrocells and demonstrates efficient implementation 
of shift registers and small counters. An LSI device from Plessey 
(Reference 2) is available to implement the same circuit. How­
ever, it is an NMOS device and limited to speeds of under 2 MHz. 

Table 1. Implementation Alternatives for the 8-Bll Formal 
Converter Circuit "Comer Bender" 

3·70 



LCA Device Implements an 8-Bit Format Converter in a PBX Switching Module 

"Corner Bender" Design in an 
LCA Device 
A count of the register elements in the circuit shows a need of 
sixty-four elements for the eight-shift registers, twenty-eight 
elements for the delay registers, three elements for the counter, 
and four elements for the 3-to-8 decode circuit. Each configura­
ble logic block (CLB) in the LCA device can produce two out­
puts. Hence, only four CLBs are required for the 3-to-8 decode 

, XACT l.JO, 10:50:36 MAY 5, 1987 

circuit. Since, each CLB contains one register element, the total 
count of CLBs is therefore ninety-nine. The LCA 2018 contains 
one hundred CLBs. Twenty-two inpuVoutput blocks (IOBs) 
were used. Figure 6 shows the layout of the design in the LCA 
device. The circuit fits into a 68-pin PLCC package. 

Print world: fc.lca (20l8PC68-70), XAC'. 

Figure 6. Layout Diagram of "Corner Bender" Circuit on LCA Device of Size 10x10 

3-71 

El 



LCA Device Implements an S·Bit Format Converter in a PBX Switching Module 

The Monolithic Memories' XACT'" Design Editor is used to 
create the design by implementing the appropriate logic func­
tions in CLBs and IOBs. An example of a CLB for one bit of the 
eight-bit shift register in this design is shown in Figure 7. Input A 
is the decoder input and it is ANDed with input B, the data to be 
shifted. To implement the eight-bit shift registers from the one­
bit shift register, eight of the one-bit shift registers were linked 
together so that the output of each register became an input to 
the next register. This is shown in Figure 8 where each CLB 
represents one bit of the eight-bit shift register. 

The three-bit counter and the 3-to-8 decoder in this design were 
implemented in CLBs as shown in Figures 9 and 10. The counter 
is a synchronous binary counter with ripple carry and parallel 
load. The decoder is a standard 3-to-8 decoder. The outputs of 
the counter become inputs to the decoder, whereas the outputs 
of the decoder are used to decode the eight 8-bit shift registers. 

With the XACT Development System, the designer can optimally 
arrange the logic blocks on the LCA device in order to minimize 
net delays between each block. With this in mind, the layout for 
the design is described below: 

Four of the eight-bit parallel-to-serial shift registers were placed 
starting from the top left-hand edge of the LCA device (see 
Figure 7). The three-bit counter (three CLBs) and the 3-to-8 
decoder (four CLBs) were then placed on the following row. The 
next four rows contained the last four parallel-to-serial shift 
registers. This allowed the shift register select lines to have 
minimal delay spread when accessing all eight shift registers. 
The seven serial-to-serial shift registers were placed in the 
remaining CLBs as uniformly as possible. 

The optimum placement and distribution of configured blocks 
in the array is influenced by the performance needs of the 
system. Blocks placed in close proximity can use local intercon­
nection resources which incur short signal propagation delays, 
whereas blocks placed further apart must use either "long lines" 
or other interconnection resources. Manual optimization using 
the delay efficient "long lines" was performed for the most criti­
cal net connections. After routing completion, the longest delay 
between two clock pulses was the delay for the counter to 
change state, the state which is decoded via the 3-to-8 decoder 
and selects the appropriate shift register to load the parallel data 
(see Figure 7). This delay was 54 ns, 79 ns, and 106 ns, respec­
tively for the 70-, 50-, and 33-MHz versions of the device. The 
delays were measured using the XACT simulation package by 
invoking the timing delay calculator. This translates to a maxi­
mum circuit operating speed of about 18.5 MHz for the 70-MHz 
version of the device, or 9.43 MHz for the 33 MHz version. 

Although fabricated in a CMOS technology, the inputs to the 
LCA device can be made either TTL or CMOS compatible. For 
high fan-out CMOS or LS TTL-compatible loads, the output 
buffers of the LCA device are capable of driving 4 mA. Moreover, 
each output buffer can be put into a HIGH-Zstate for bus-driving 
applications. This features was also used in the design of the 
eight-bit format converter. 

More information about entering a design with the XACT Devel­
opment System is included in the LCA Design and Applications 
Handbook (Reference 3). Information about configuring the 
LCA device is described in the "Configuring the LCA Device" 
applications note. 

x f'Q 

TJi~Y· 
y FQ 
Q FF l.ATCH 
SET AF 
RES OF Bl.K: AA 
CU< KCFNOT SRAL8 K 

BA F A 
HH H -

EEJ}e A: DEC8_ 
B: INA_ 
C: 
D: 
K: CLKIN 

CU< X: L8SRA-::_ 
Q Y: 

f=A•B 

Figure 7. One Bit of an 8-Bit Serial - Parallel Shift Register 

INA_ INB_ INC_ IND_ INE_ INF_ ING_ INH_ 
L8SRH_ 

CLKIN_ 

DEC8_ 

Figure 8. CLB Schematic Output for the 8-Bit Shift Register 

3·72 



LCA Device Implements an 8·Bit Format Converter in a PBX Switching Module 

x FGQ ·m y F GQ B F 

Q FF !-ATCH i~~ SET AF 
RES DF BLK: ED 
Cl.I( I< CF NOT OEC12 

c B A F A 

L L L H -
~ I I I} c ---B 

c B A G A A: Q2_ - B: Q1 
H L L H 

~ I I I} c 

c: ao::: 
0: 
K: --- F X: OEC1 

B G Y: 0Ec2::: 

F=-Ax-Bx-C 

G=-Ax-BxC 

Figure 9a. Decode Outputs 1 and 2 of 3-to-8 Decoder 

x 
y 

Q 
SET 
RES 
CLK 

c B A F 

L H L H 

C B A G 

H H L H 

F=-AxBx-C 

G=-AxBxC 

I ITJj}c 

B 

A 

11l~1c 
B 

F 
G 

A: Q2 
B: Q1-
C: Q0-
0: -
K: 
X: OEC3 
Y: OEC4::: 

BLK: EE 

OEC34 

Figure 9b. Decode Outputs 3 and 4 of 3-to-6 Decoder 

·m x FGQ B F 
y F GQ 

i~~ Q FF !-ATCH 
SET AF 

BU<: EF RES OF 
Cl.I( KCFNOT OEC56 

c B A F A 

L L H H ---
I '11i1 I I} c -B 

c B A G A A: Q2 - B: 01::: 
H L H H 

I .!. I I} c 

C: QO -
0: 
K: - F X: OEC5 

B G Y: oEcs::: 

F=Ax-Bx-C 

G=Ax-BxC 

Figure 9c. Decode Outputs 5 and 6 of 3-to-8 Decoder 

·m x FQQ. B F 
v F GQ 

i~~ Q FF WITCH 
SET AF 
RES OF. BLK: EG 
CLK ICCFNOT OEC78 

c B A F A 

L H H H 

I I ~i}c 
B 

c B A G A A: Q2_ - B: Q1 -H H H H C: QO 

I I ~}c 0: -
K: 

F X: OEC7 
B G v: oEca::: 

F=AxBx-C 

G=AxBxC 

Figure 9d. Decode Outputs 7 and 8 of 3-to-8 Decoder 

Figure 9. CLB Configuration of a 3-to-8 Decoder 

3.73 

EJ 



LCA Device Implements an 8·Bit Format Converter in a PBX Switching Module 

x 
v 
Q 
SET 
RES 
CU< 

FG a 
F G Q 

FF l.ATCH 
AF. 
OF 
KCFNOT 

Q B A F 

L H X H 
L X L H 
X H H H 

Q C G 

H H H 

F:AxB+-Ax-Q 

G=OxC 

A 

--8 

c 
A: LO 
B: DO­
C. Q1-
D: 

CLK K: CLKIN 
Q X: QO -
G V: 0100_ 

Figure 10a. 1st Bit of a 3-Blt Counter 

x 
y 

Q 
SET 
RES 
CU< 

FG Q 
f. G Q 

FF LATCH 
AF 
OF 
l<.CFN01' 

QC BA F 

H L H X H 
L H H X H 
H L XL H 

LHXL Ha{ 
X X H H H 

F:AXB+-Ax(C@Q) 

A 

--B 

x 
v 
Q 
SET 
RES 
CLK 

FG. Q 

F G O 
FF LA1t:H 
AF 
l>F 
KCFNOT 

0 CB A F 

H L H X H 
L H H X H 
H L XL H 

L H XL H o{ 
X X H H H 

F:AxB+-Ax(C@Q) 

A 

-­B 

~x 
~ r-LJ 

A: LD 
B: 01-
C: 00-
D: -

K 

CLK K: CLKIN 
Q X: Q1 -

V: 

Figure 10b. 2nd Bit of a 3-Bit Counter 

~x 
~ r-LJ 

K 

A: LD 
B: 02-
C: 0100 
D: -

CLK K: CLKIN 
Q X: 02 -

V: -

BLK: EC 
Q2 

BLK: EB 
01 

Figure 10c. 3rd Bit of a 3-Bit Counter 

Figure 10. CLB Configuration of a 3-Bit Binary Counter with Ripple Carry 

Summary 
The LCA device has achieved a good solution to the principles 
used for multiplexing digitally-encoded voice channels in both 
serial and parallel hierarchies. These hierarchies can accom­
modate thousands of voice circuits in a PBX switching module. 
The detailed design of the eight-bit (parallel-to-serial and serial­
to-parallel) format converter circuit, or Corner Bender, deve­
loped in Monolithic Memories' LCA M2018 device was shown to 
be efficiently implemented. Despite the fast development of the 
system using the XACT Design Editor, the final design was 
programmed and bench tested to verify functional integrity. 

The Corner Bender design is available from Monolithic Memo­
ries upon request. The bit pattern and .LCA file will be provided 
for programming the LCA device in an EPROM. Please ask for 
design XDES05.LCA 

3.74 

References 
1) 

2) 

3) 

"Harris 20-20 Integrated Network Switch", A. Jackson, 
IEEE SAC-3, No. 4 July 1985, p561-568. 

MJ1410, 8-bit Format Converter, Data Sheet, Plessey 
Semiconductors. 

Logic Cell Array Design and Applications Handbook, 
Monolithic Memories, 1987. 



~ 
Advanced 

Micro 
Devices 

AN-174 

Reconfigurable Programmable Devices (LCA) 
Simplify Digital TOM Line Transcoder 

Abstract 
The Logic Cell™ Array (LCA) is a high-density CMOS program­
mable integrated circuit. Its reprogrammability and reconfigura­
bility make complex design of custom LSI devices easy and 
flexible. 

This application note describes the design of a universal trans­
coder on trunk transmission lines. Any one of three different 

Logic Cell™ Array and XACT,.~ are trademarks of Xilinx, Inc. 

PAL® is a registered trademark of Monolithic Memories, Inc. 

C. B. Lee and Cindy Lee 

transcoders (BBZS, B6ZS, and HDB3) can be implemented in a 
single LCA device (M2018). Because it is reconfigurable, any 
one of these different transcoders may be selected. Other 
common communication features can be implemented simply 
by reconfiguring the Configurable Logic Blocks (CLBs), Input/ 
Output Blocks (IOBs), or interconnect. 

3.75 

El 



Reconfigurable Programmable Devices 
(LCA) Simplify Digital TDM 
Line Transcoder 
C. B. Lee and Cindy Lee 

TDM Hierarchies 
Recently, the International Telegraph and Telephone Consulta­
tive Committee (CCITT) agreed on transmission hierarchies 
based on different national standards. Two major hierarchies 
are in use today. The first hierarchy, known as the T-carrier, is 
used in North America and Japan and multiplexes twenty-four 
voice channels together using Time Division Multiplexing (TDM) 
technique. T-carrier is based on a primary rate of 1.544 Mbps 
and multiples up to 27 4.176 Mbps (see Figure1 ). 

The other hierarchy, used in Europe, Africa, and South Ameri­
ca, multiplexes thirty voice channels and two signaling chan­
nels together. This TDM hierarchy is based on a primary rate of 
2.048 Mbps and multiples up to 139.264 Mbps (see Figure 2) . 

'1ft ~~-
~ - X4 

(96) 

. 
24=sr· 

1-

: X24 . 
. 24 • 

--

CCITT recommendation G.703 defines line coding for both TDM 
hierarchies with different orders. Table 1 shows a 1.544 Mbps 
primary rate T-carrier hierarchy with four different orders. Alter­
nate Mark Inversion (AMI) or Binary 8 Zeros Substitution 
(B8ZS) is the proper line coding in the first order. In the second 
order, if the transmission medium is coaxial pair cables, then 
B8ZS is used. Otherwise, Binary 6 Zeros Substitution (B6ZS) is 
used for symmetrical pair cables. In the third order, Binary 3 
Zeros Substitution (B3ZS) is used, while polar binary NAZ is 
used in the fourth order. 
Similarly, Table 2 shows line coding based on a 2.048 Mbps pri­
mary rate with four different orders. High Density Bipolar 
(HDB3) is used in the first, second, and third orders. Finally, 
Code Mark Inversion (CMI) is used in the fourth order. 

X& 274.176 Mbps 

- (4032) --
Figure 1. TOM Hierarchy at 1.544 Mbps Primary Rate 

3·76 

X32 
• (30V) 

30-

1-

30 

,_ . 
30 

. . . 
30-

2.IJ48Mbps 

139.264 Mbps 

Figure 2. TOM Hierarchy at 2.048 Mbps Primary Rate 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

ORDER CHANNEL BANK 
NUMBER OF BIT RATE 

LINE CODING 
VOICE CHANNELS (Mbps) 

1 DS-1 24 1.544 AMI or B8ZS 

2 DS-2 96 6.312 
B8ZS-Coaxial Pair 

B6ZS-Symmetric Pair 

3 DS-3 672 44.736 B3ZS 

4 DS-4 4032 274.176 Polar Binary 

Table 1. Line Coding for TOM Hierarchy at 1.544 Mbps Primary Rate 

ORDER 
NUMBER OF BIT RATE 

LINE CODING 
VOICE CHANNELS (Mbps) 

1 30 2.048 HDB3 

2 120 8.448 HDB3 

3 480 34.368 HDB3 

4 1920 139.264 CMI (2-level NRZ) 

Table 2. Line Coding for TOM Hierarchy at 2.048 Mbps Primary Rate 

Binary Codes 
Unipolar binary codes form the information exchange in com­
puter systems from one device to another over short distan­
ces. Unipolar binary codes work well at short distances but DC 
wander and a lack of timing information make them unsuitable 
for long transmission lines. DC wander is caused from unipolar 
binary signals being transmitted via a certain media over long­
distance transmission lines. The signals will be attenuated 
after a few kilometers. 

0 0 0 

Figure 3a. Unipolar Binary Codes 

~­
-~ 

Figure 3b. Bipolar Codes 

BIPOLAR VIOLATION 

0 0 

Figure 4. Bipolar Violation 

Bipolar Codes 
Unipolar binary codes require two voltages to represent a bi­
nary state (see Figure 3a). On the other hand, bipolar binary 
codes, also known as AMI codes, need three different voltages 
(+5 V, O V, and -5 V) to represent the same binary condition: 
logic zero or logic one (see Figure 3b). By making logic one sig­
nals alternate between +5 V and -5 V, DC wander is eliminated 
on a long transmission line because the mean DC level is inte­
grated to zero volts. If, however, two continuous ones have 
the same polarity a bipolar violation occurs (see Figure 4). A 

long string of ones of bipolar codes can provide timing informa­
tion but a long string of zeros cannot. To counteract this prob­
lem, several modified bipolar codes provide timing information 
for a long string of logic zeros. 

Modified Bipolar Codes 
The B8ZS, B6ZS, and HDB3 codes are all modified bipolar 
codes. They provide timing information for a long string of 
zeros by forcing bipolar violations. 

B8ZS line coding encodes logic ones as alternating positive 
(+5 V) and negative (-5 V) signals. It substitutes any continu­
ous sequence of eight zeros with a special pattern (see Table 
3). Depending on the preceding polarity, one of two B8ZS sub­
stitution codes is generated: 000+-0-+ or 000-+0+-. The"+" in­
dicates positive voltage,"-" indicates negative voltage, and "O" 
indicates zero voltage. If the preceding polarity is positive, 
000+-0-+ is generated; otherwise, 000-+0+- is generated. The 
B8ZS substitution code forces bipolar violations in the fourth 
and the seventh bit positions. 

B6ZS is similar to BBZS. Rather than detecting eight continu­
ous zeros, B6ZS substitutes for six continuous zeros with a 
special pattern. The B6ZS substitution codes are 0+-0-+ and 0-
+0+-, depending on the preceding polarity. B6ZS substitution 
code forces the second and fifth zeros to bipolar violation (see 
Table4). 

PRECEDING POLARITY BSZS SUBSTITUTION 

+ 000+-0-+ 

- 000-+0+-

Table 3. BBZS Substitution Table 

PRECEDING POLARITY B6ZS SUBSTITUTION 

+ 0+-0-+ 

- 0-+0+-

Table 4. B6ZS Substitution Table 

3.77 

El 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

The European HDB3 line coding also uses alternating positive 
and negative signals to represent logic ones. It also substi­
tutes any four continuous zeros with a special HDB3 substitu­
tion code. This HDB3 substitution code forces the fourth bit to 
be a bipolar violation. The four possible HDB3 substitution 
codes are: +00+, 000+, -00-, and 000-. The choice of substitu­
tion code depends on the preceding polarity and the number of 
logic ones after the preceding bipolar violation. When the num­
ber of logic ones is odd, OOOV is generated. Otherwise, BOOV is 
generated. "V" indicates the bipolar violation while "B" indicates 
the bipolar signal. The polarity of V in OOOV is the same as that 
of the preceding logic one signal. If the HDB3 code is BOOV, 
the polarity of B is opposite that of the preceding logic one sig­
nal, and the polarity of Vis the same as B (see Table 5). 

NUMBER OF LOGIC ONES 
AFTER THE PREVIOUS 

PRECEDING POLARITY BIPOLAR VIOLATION 

ODD EVEN 

Positive 
000+ -00-

+ 

Negative 
000- +00+ -

Table 5. HDB3 Substitution Table 

Logic Cell Array Implementation 
The Logic Cell Array (LCA) device is a high-density CMOS inte­
grated circuit. Its user-programmable static RAM array archi­
tecture consists of Input/Output Blocks (IOBs), Configurable 
Logic Blocks (CLBs), and Interconnect. All of them are fully 
user-programmable and user-reconfigurable. High-density, 
programmability and reconfigurability of LCA devices ailow 

PIN NUMBER DESCRIPTION 

Pin 01 GND 

Pin 11 Clock 

Pin 12 Master Reset 

Pin 13 Positive input for decoder 

Pin 14 Positive output from encoder 

Pin 15 NRZ input 

Pin 17 Negative input for decoder 

Pin 18 Vee 

Pin 19 Negative output from encoder 

Pin 34 NRZ output 

Pin35 GND 

Pin 52 Vee 

Pin 56 Error* 

Pin 57 Bipolar violation error 

Pin 59 Special pattern detected 

customer-defined LSI functions to be incorporated and modi­
fied at low cost and with fast turnaround. 

Currently, two LCA devices are available, their complexity is 
based on the number of CLBs within the device. All CLBs are 
arranged in a matrix in the center of the device. The M2064 has 
sixty-four CLBs which are arranged in an 8-row by 8-column 
matrix. The M2018 has one hundred CLBs arranged as a 1 O by 
10 matrix. 

A CLB can be configured to be a storage element (registered 
or latched), a combinational logic block or a mixed combina­
tional logic block with storage element. Each CLB has four gen­
eral-purpose inputs (A, B, C, and D); and a special clock input 
(K). Also, each CLB can perform any function of up to four vari­
ables or any two functions of up to three variables. These vari­
ables can be selected from external inputs or from the internal 
register feedback path. 

Initially, an attempt was made to design the line transcoder 
with the M2064 device. However, all three line transcoder de­
signs required more than sixty-four CLBs each. Fortunately, it 
is easy to convert a design from M2064 to M2018 because the 
change is made just by selecting the M2018 part type in the 
convert command when using the XACT Design Editor. Any of 
the preceding line coding schemes can be implemented in a 
single M2018 because of its higher density (100 CLBs). Since 
the LCA device is reconfigurable, a line transcoder implement­
ed in a single LCA device (M2018),can support the North Amer­
ican T1 carrier (B8ZS line coding) or T2 carrier (B6ZS line cod­
ing), or even the European standard (HDB3 line coding). 

All three line transcoders can be configured and have the same 
pinout assignments. This offers a simple solution for support­
ing the different standards without component replacement. 
Once a design has been established, "on-the-fly" modification 
is possible through the reconfigurability of the component. For 
example, if the communication medium is changed in the T2 

BSZS B6ZS HDB3 

GND GND GND 

CLK CLK CLK 

MR MR MR 

IPB IPB IPH 

OPB OPB OPH 

INR INR INR 

INB INB INH 

Vee Vee Vee 

ONB ONB ONH 

ONR ONR ONR 

GND GND GND 

Vee Vee vee 

ERR ERR ERR 

BVP BVP BVP 

B8Z B6Z HOB 

* Means that the ERROR is asserted when both positive and negative signals are high simultaneously. 

Table 6. Cross Reference of Pin Names for Three Line Transcoders 

3.79 



Reconfigurable Programmable Devices (LCAJ Simplify Digital TDM Line Transcoder 

standard, the transcoder may be reprogrammed from B8ZS to 
B6ZS, or vice versa, without any other alterations to the hard­
ware. In total, fifteen pins are used in these designs; four pow­
er pins, two central control pins, three pins for the encoder, 
and six pins for the decoder. Table 6 cross references the pin 
names for the three different line transcoders. 

BSZS Line Coding 
A B8ZS encoder converts NAZ data to B8ZS code. The B8ZS 
encoder consists of a 3-CLB, 3-bit counter, a 5-CLB, 5-bit shift 
register, a 6-CLB sequence state machine, and a 13-CLB en­
coding state machine (see Figure 5). A 3-bit counter detects 
eight continuous zeros. A 5-bit shift register delays the NAZ in­
put data to synchronize with the 3-bit counter's outputs. The 
sequence state machine provides the sequence state (Q2, 
01, and QO) tor encoding state machine. The encoding state 
machine generates the B8ZS code. It is a pair of signals which 
interface to line driver to provide three level signals: positive 
(PB8ZS), negative (NB8ZS), and zero signals. 
A B8ZS decoder detects B8ZS code on a pair of positive and 
negative B8ZS signals (see Figure 6). When either of the fol­
lowing sequences: 000+-0-+ or 000-+0+- is detected, the de­
coder generates a string of eight zeros. Otherwise, the encod­
er converts bipolar signals to binary N RZ data. 

Figure 7 is a block diagram of the B8ZS decoder. It includes a 
19-CLB decoding state machine, an 8-CLB, 8-bit shift register, 
a 5-CLB RESET generator, and a 7-CLB bipolar violation and 
error flag generator. Four state variables (HQ3, HQ2, HQ1, and 
HQO) are generated from the decoding state machine. The 8-bit 
shift register buffers DSOUT data in order to provide eight con­
tinuous zeros when the B8ZS signal is asserted. The B8ZS sig­
nal is generated when the B8ZS substitution code is detected. 
The bipolar violation error (BVP) occurs when any two sequen­
tial signals of the same polarity are detected except the B8ZS 
substitution code. If both positive B8ZS and negative B8ZS are 
detected simultaneously, the error signal (ERROR) is generat­
ed. 

The implementation details of the B8ZS line transcoder within a 
single M2018 are shown in Figure-8. This design requires sixty­
six out of the one hundred available CLBs. 

=-... T .... T .. 
PB8ZS -001 00010001 0000 00001010 00 

NB8ZS -o 0 0 0 0 0 0 101 0 0 0 1 0 0 0 0 10001 0 0 

Figure 6. eazs Codes in Positive-B8ZS and Negative-BBZS 
Signals 

3-BIT C1 B8ZS QO B8ZS PBBZS 
NRZIN 

PBBZS - BBZS 
DECODING 

STATE 
NB8ZS - MACHINE 

COUNTER SEQUENCE Q1 ENCODING 
C2 STATE STATE 

MACHINE Q2 MACHINE 

S4 S3 S2 S1 so DSIN 

5-BIT 
SHIFT REGISTER 

Figure 5. Block Diagram of the B8ZS Encoder 

HQ3 

HQ2 eazs 
HQl RESET 

1----1---+--1 GENERATOR 
HQO 

DSOUT 

BBZS 

NBBZS 

(TO RESET 8 • BIT SHIFT REGISTER) 

ERROR 
FLAGS 

'-------o~I GENERA TOR 

ERROR 

BVP 

Figure 7. Block Diagram of the B8ZS Decoder 

3.79 



Reconfigurable Programmable Devices (LCA) Slmpllfy Digital TDM Line Transcoder 

Print World: BSZS.LCA (2018PC68-70), XACT 1.30, 10:10:45 MAY 12, 1987 

u Li 
u u 

"\fl 
.ti..._ __ __, 

U mm ~mi si~ @Im OHR e~~~ m~ ®J~ imim imi~ o 
Figure 8. B8ZS Line Transcoder LCA Design 

3-80 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

B&ZS Line Coding 
The M2018 implementation of the B6ZS line transcoder is 
shown in Figure 9. In total, sixty-seven CLBs are used to 
create the design. The single difference between a BBZS en­
coder and a B6ZS encoder is the count for continuous zeros. 
While the 3-bit counter counts eight continuous zeros for the 
BBZS encoder, it counts six for the B6ZS encoder. The BBZS 
encoder consists of a 5-CLB, six-zeros detector, a 5-CLB, 5-
bit shift register, a 6-CLB sequence state machine, and a 13-
CLB encoding state machine. 

A B6ZS decoder detects two B6ZS substitution codes: 0+-0-+ 
or 0-+0+-. When one of those two B6ZS substitution codes is 
detected, the decoder generates six continuous zeros. Other­
wise, the decoder converts bipolar signals to binary NRZ data. 
The B6ZS decoder includes a 20-CLB decoding state machine, 
a 6-CLB, 6-bit shift register, a 5-CLB RESET generator, and a 
7-CLB bipolar violation and error flag generator. The 6-bit shift 
register is needed to buffer DSOUT data in order to provide six 
continuous zeros. 

Print World: B6ZS.LCA (2018PC68-70), XACT l.JO, 10:25:09 MAY 12, 1987 

Figure 9. B6ZS Line Transcoder LCA Design 

3·81 

El 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

HDB3 Line Coding 
In Figure 1 o, the HDB3 encoder includes a 4-CLB, 4-bit shift 
register, a 5-CLB HDB3 signal generator, and three-state ma­
chines. These state machines are, a 3-CLB ODD_EVEN state 
machine, a 5-CLB DETECT_ 4_ZEROS state machine, and 23-
CLB encoding state machine. The ODD_EVEN state machine 
detects the polarity of the preceding pulse. The DE­
TECT 4 ZEROS state machine detects four continuous zeros. 
The 4-bit shift register delays NRZIN data to synchronize with 
the output of DETECT_ 4_ZEROS state machine. The encoding 
state machine provides four encoding states variables (03, 
02, 01, and QO) to generate two HDB3 signals: the positive 
HDB3 signal (PHDB) and negative HDB3 signal (NHDB). 

A HDB3 decoder detects four HDB3 substitution codes: +00+, 
000+, -00-, and 000-. When any of these four HDB3 substitu­
tion codes is detected, the decoder generates four continuous 

zeros. Otherwise, the decoder converts bipolar signals to bi­
nary NRZ data. Figure 11 is a block diagram of the HDB3 de­
coder. It includes a 23-CLB decoding state machine, a 4-CLB, 
4-bit shift register, a 3-CLB RESET generator, and a 2-CLB bi­
polar violation and error flags generator. Four state variables 
(HQ3, HQ2, HQ1, and HOO) are generated from the decoding 

state machine. The 4-bit shift register buffers DSOUT data in 
order to provide four continuous zeros when the HDB3 signal is 
asserted. The HDB3 signal is generated when the HDB3 substi­
tution code is detected. The bipolar violation error (BVP) oc­
curs when any two sequential signals of the same polarity are 
detected except the HDB3 substitution code. If both positive 
HDB3 and negative HDB3 are detected simultaneously, the er­
ror signal (ERROR) is generated. The M2018's layout of the 
HDB3 line transcoder is shown in Figure 12. This design re­
quires seventy-two out of the one hundred available CLBs. 

RESET 

1 
ODD - EVEN 

-{ ODD _ EVEN J + 
NRZIN TL~·­

L.j S3js2 ls1 lso 

S 14-ZEROS., 
GENERATE 03 

HDB3 
l .... PHDB 

3·82 

PHDB3 

I 
4-BIT 

SHIFT REGISTER 

DSIN .. 
HDB3 

CODING 
STATE 

MACHINE 

02 

01 SIGNALS 
GENERATOR 

QO 

Figure 10. Block Diagram of the HDB3 Encoder 

HQ3 

HDB3 
H02 

DECODING 
STATE HQ1 

NHDB3- MACHINE 

HDB3 
RESET 

1--....,...~r-+-I GENERATOR 
HOO 

~-___, .. , 
ERROR 
FLAGS 

GENERATOR 

(TO RESET 4 -BIT 
SHIFT REGISTER) 

ERROR 

BVP 

Figure 11. Block Diagram of the HDB3 Decoder 

~ NHDB 

NRZOUT 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

Print World: HDa3.LCA (2018PC68-70), XACT l.30, 09:36:22 MAY 12, 1987 

u u 
0 0 Ell 
u u iU 

ID 
{fl 

fil 

Figure 12. HDB3 Line Transcoder LCA Design 

3·83 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line. Tran,coder 

Logic Cell Array Design Methodology 
All three designs are composed of similar building blocks, they 
all use shift registers, combinational logic and state machine 
logic. 

Each of the three line transcoders require the use of two sets 
of shift registers. One set delays the input NAZ data, and the 
other set buffers the output NAZ data. To design a shift regis­
ter using a. CLB is simple. Two inputs (input variable, clock) are 
used to generate a single output (Figure 13); this output is then 
cascaded with additional registers to form a shift register. In 
the BBZS design, five CLBs are used to implement a 5-bit shift 
register. 

x Q 

A~X y 
Q FF 
SET 
RES D 
a.J< K K D Blk:FC 

SRO 

A F 

H H A A:NRZIN_ 
B: 
C: 

[JI RES D:MR 
a.J< K:cu<iN 

Q X:SRO_ 
Y! 

F:A 

Flgure13. Basic Element of N-bit Shift Register Configured In a 
SingleCLB 

For state machines and combinational logic, both the state ma­
chine equations and combinational logic equations must be 
carefully partitioned to fit them into CLBs and IOEls. Two forms 
of optimization can be done. One can either optimize for imple­
mentation efficiency i.e., minimize the usage of CLBs and 
IOBs, or, one can optimize for speed. To optimize for CLB us­
age, one must carefully analyze the equations and group sig­
nals which can potentially share the same CLB outputs. On the 
other hand, to optimize for speed, one must pay attention to 
the routing paths used as well as fanout from each CLB output 
and the way in which each CLB is configured. 

For example, the HDB3 encoding state machine uses four 
state variables (03, 02, 01, and QO) in order to generate fif­
teen states. First, the state equations are derived from the 
state diagram. Then, the state equation is partitioned to fit into 
CLBs. The following equation is the most significant state vari­
able (Q3) of this HDB3 encoding state machine. 

Six CLBs are used to implement this 03 $late equation. Five 
of the CLBs (031NA, 031NB, 031NC, 031ND, and 031NE) are 
configured as 4-input variable CLBs which generate a single 
output. Because these CLBs perform the preliminary logic for 
input into the block 031N, no storage element is necessary in 
these CLBs. Instead, the storage function is implemented in 
the block 031N. The design details for each CLB is shown in 
Figure 14. 

The BBZS line transcoder can be implemented using three 
PAL® devices: two 16A8 devices and one 16A6 device. All 
equations for those PAL devices are assertive low; e.g., C2 := 
C2* C1 *CO+ C2 * C1 + C2 *CO+ AST+ NRZIN. The LCAde-

3-84 

Q3 := Qii•Q1•a2 ; Gl3INA 

+ Q1 *Q2*Q3 

+ QO*Q1 *Q2*00 

+ DSIN*Q2*Q3 ; Q3lll8 

+ DSIN•Qi•Q2•Q3 

+ 00 • Q2 • Q3 •ZEROS ;Q31NC 

+ QO • Q2 * Q3 •ZEROS 

+ DSIN* QO*ZEROS 

+ DSIN* fil*ZEROS ;Q31ND 

+ DSIN* OO'ZEROS 

;Q31NE 

;Q31N 

vice can easily incorporate this assertive low equation simply 
by adding a tilde ( "-" ) in front of the output equation (see Fig­
ure 15). 
The HDB3 encoder has an ODD_EVEN state machine to check 
the number of preceding logic ones being odd number or even 
number. Its ODD_EVEN signal feeds back into the HDB3 en­
coding state machine. If these two state machines reference 
the same rising clock edge. It is possible to obtain the wrong 
result because the HDB3 encoding state machine always gets 
the ODD_EVEN signal one clock early. Using the falling clock 
edge can compensate for this timing problem. The positive and 
negative clock edges are available in each CLB. In this 
ODD_EVEN state machine, the negative clock is selected (see 
Figure 16). 

Other common functions of communication equipment can be 
easily implemented using the reconfigurability of the LCA de­
vice. For example, two duplex schemes: half duplex and full 
duplex, can be implemented easily because of the reconfigura­
blilty of the IOB. Each IOB can be configured to an input, an 
output, or a bidirectional input/output with three-state control. 
Two IOBs are used to implement the full duplex communica­
tion, this scheme allows the device to transmit and receive at 
the same time (see Figure 17a). It can be easily modified to the 
half-duplex communication simply by using one bidirectional 
IOB, the information must be transmitted or received exclu­
sively (see Figure 17b). 

In addition, loop-back feature can be implemented by reconfig­
uring LCA's interconnect. Remote loop-back is implemented by 
disconnecting the line transcoder with the input and output 
pads, but connecting the input pad to the output pad directly 
within the transcoder (see Figure 18a). Local loop-back can 
also be implemented. Connecting the output of the transmitter 
to the input of the receiver directly, but disconnecting with in­
put and output pads (see Figure 18b). 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

x 
y 
Q 

SET 
RES 
CU< 

F 

DCBA F 

LHHH H 
HHLX H 
XHLL H 

A~X 
gLJtl 

F = -A*-B*C+-B*C"D+A'B*C"-D 

Blk:HG 
Q31NA 

A:QOIN 
B:Q11N­
C:Q21N­
D:Q31N­
K: -

F X:Q31NA_ 
Y: 

Figure 14a. Q31NA's CLB Design 

x F 
y A~X Q 
SET g F Q 
RES Blk: IG 
CU< Q31NB 

DCBA F A --LLLH H ,f;l' A:DSIN 
HH XH H B:Q11N-

C:Q21N-
D:Q31N:: 
K: 

F X:Q31NB_ 
Y: ..__.. 

B 

F = A*(C"D+-B'-C'-D) 

Figure 14b. Q31NB's CLB Design 

x F 
y 

AtM-X 
Q 
SET g F Q 
RES 
CLK Blk:JG 

Q31NC 

DCBA F A --HHLH H A: QOIN_. 
HLLL H 

,Im~ 
B:ZEROS_ 
C:Q21N 
D:Q31N:: 
K: 

F X: Q31NC_ 
IW Y: --B 

F = (-A*-C"D + A*C'D)'-B 

Figure 14c. Q31NC's CLB Design 

x 
y 
Q 

SET 
RES 
CLK 

F 

DCB F 

LXHX H 
XLHX H 
XXHL H 

F = (-C+-A+-D)'B 

A~X 
g IJ-tj 

Blk:IH 
Q31ND 

A:Q11N 
B:ZEROs 
C:QOIN -
D: Q31N­
K: -

F X:Q31ND 
Y: -

Figure 14d. Q31ND's CLB Design 

x F 
y 

AWX Q 
SET g F Q 
RES 
CU< Bk:JH 

Q31NE 

DCBA F 

LXXH H A:Q31ND 

XHXX H 
B:Q31NA-

XXHX H C:Q31NB:: 

o{ 
D:DSIN_ 
K: 

F X:Q31NE_ 
Y: 

F=A*D+B+C 

Figure 14e. Q31NE's CLB Design 

x Q A ~x y B 
Q FF 
SET 
RES D 
CU< K K D Blk:HH 

Q31N 

BA F 

HX H 
A A:Q31NC 

XH H B:Q31NE:: 

B 
c: 

RES D:MR 
CU< K:CLKIN 

Q X:Q31N_ 
Y: 

F:A+B 

Figure 14f. Q31N's CLB Design 

Figure 14. The CLB's Design for the Q3 Equation 

3·85 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

x Q 

~· y 
Q Q FF 

SET 
RES D 
CU< K K D BlcAC 

x Q Us=' y G 
Q FF Q 

SET 
y 

RES D G 
CLK K NOT K D BlcAC 

OQ1 

C2 

QCBA F A 
LLHH H - A:CO_ 
HLLX H 

a{m}c 
B:C1 

HLXL H C:NRZlN_ 
RES D:MR 
CLK K:cu<iN - Q X:C2_ 

B Y: 

QCBA F 
A 

LLHH H - A:OQO_ 
HLLX H 

a{m}c 
B:POQY 

HLXL H C:RESEf_ 
RES D:MR 
CU< K:CUON 

Q X:OQ1 -- Y:OE_ 
B 

F:B'A'-C 
F = -(Q'B*A + -Q'-B + ..Q'-A + C) G:A'..Q 

Figure-15. C2 ls Represented by ~(C2) Figure 16. Negative Clock Edge In the CLB 

[ I I ON BUF 

~o 
[ I I PAD BUF 

~. 
lllk:P14 
OPB8ZS 

BlcP13 
IPB8ZS 

t 
0: PPO_ 
T: 

t PPI_ 
0: 
T: 

K: K: 

Figure 17a. Full-Duplex Communication 

NRZOUT 

NRZIN 

3·86 

l I l ON Tm BUF 

~: Blk: P13 
IOPB8ZS 

l:PPI 
O:PPO_ 
T:DIR 
K: 

Figure 17b. Half-Duplex Communication 

LINE TRANSCODER 

1_.P~13=.l'+--l'B 

TRANSMISSION 
LINES 

'"-'P~1~4.0~- OPB 

Figure 188. Remote Loop Back 

NRZOUT 

NRZIN-

LINE TRANSCODER 

P13.I 
14---+--IPB 

TRANSMISSION 
LINES 

'"°'P~1~4-~0+-.._0PB 

Figure 18b. Local Loop Back 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

Conclusion 
This design demonstrates the power versatility and benefit of 
using the LCA device in line coding by exploiting the reconfi­
gurable feature of the device. A single M2018 LCA device can 
support three different line codes, such as B8ZS, B6ZS, and 
HDB3 codes. 

The B8ZS is used at either 1.544 Mbps T1 carrier or 6.312 
Mbps T2 carrier on coaxial pairs. The B8ZS encoder uses twen­
ty-seven CLBs to convert NRZ data into two B8ZS signals, and 
the B8ZS decoder uses thirty-nine CLBs to convert two B8ZS 
signals to NRZ data. The B6ZS is used at 6.312 Mbps T2 carri­
er on symmetrical pairs. The B6ZS encoder uses twenty-nine 
CLBs to convert NRZ data into two B6ZS signals, and the B6ZS 
decoder uses thirty-eight CLBs to convert two B6ZS signals to 
NRZ data. The HDB3 is used at 2.048 Mbps or 8.448 Mbps 
transmission lines. The HDB3 encoder uses forty CLBs to con-

The detailed LCA design files are available from Monolithic 
Memories, Inc. 

The design file of B8ZS refers to XDES12.LCA. 

The design file of B6ZS refers to XDES13.LCA. 

The design file of HDB3 refers to XDES14.LCA. 

vert NRZ data into two HDB3 signals and the HDB3 decoder 
uses thirty-two CLBs to convert two HDB3 signals to NRZ data. 

The line transcoder is required when the signal is transmitted 
over transmission lines. It converts unipolar binary codes to bi­
polar codes or modified bipolar codes in order to eliminate DC 
wander and provide the timing information. 

References 
1. Theresa Shafer and Steve Patterson, "88ZS Coding," Mono­

lithic Memories Application Note AN-169. 

2. Cindy Lee, "HDB3 Line Coding using Three PAL® Devices," 
Monolithic Memories Application Note AN-176. 

3. John C. Bellamy, "Digital Telephony," John Wiley & Son, 
1982. 

4. Recommendation G.703, CCITI Red Book, Volume Ill. 

3·87 

El 



3·88 



~ 
Advanced 

Micro 
Devices 

AN-179 

Building an ESDI Translator 
Using the M2064 Logic Cell™ Array 

Abstract 
The ESDI (Enhanced Small Device Interface) Standard is a 
low-cost, high-performance Winchester disk drive interface. 
The ESDI Translator is an interface controller that is imple­
mented In an ESDl-compatible disk drive. 

Ken Won and Ken Tseng 

The ESDI Translator is implemented in one M2064 LCA device. 
The LCA device is a RAM-based high-density CMOS integrated 
circuit which is reprogrammable. This application note de­
scribes the design implementation and design considerations 
of the ESDI Translator on the LCA device. 

3·89 



Building an ESDI Translator 
Using the M2064 Logic Cell Array AN-179 

The ESDI Translator 
ESDI is a low-cost, high-performance interface standard suita­
ble for the smaller, high-performance Winchester disk drives 
currently being produced. The ESDI interface consists of a 
control cable and a data cable. The control cable allows for a 
daisy chain connection of up to seven devices (disk or optical 
drives) with only the last device being terminated. In our de­
sign, we assumed that the device is a disk drive. The data 
cable is attached in a radial configuration (See Figure 1). 

HOST 

CONTROLLER 

1----------,=1 I~ 
DATA 

....------+--1 I J2 DRIVE N0.1 

~-~· ,JI J4 ............ ...-------' 

DRIVEN0.2 

J4 

Note: Maximum number of drives = 7 

Figure 1. Connection Between the Controller and Multiple 
Drives 

MSB 

The ESDI Translator handshakes serial commands from a disk 
controller, deserializes the commands and passes the com­
mands to a microcontroller. The command data word structure 
is shown in Figure 2. 

The Command Function bits define functions to be executed by 
the disk drive. These functions are seek, recalibrate, request 
status, request configuration, select head group, control, data 
strobe offset, track offset, initiate diagnostics, set bytes per 
sector and set configuration. Some of these functions, such 
as the control function, have modifiers for more detailed func­
tional description. Other commands have parameters that con­
tain numbers. For the seek command, the parameter specifies 
the cylinder number that the drive will seek to. The request 
status and request configuration commands require data from 
the disk drive to be transferred back to the disk controller. In 
our current design, internal registers A and B in the LCA device 
represent the upper and lower bytes of the command respec­
tively. 

Figure 3 illustrates the relationships between the disk control­
ler, the ESDI Translator, and the microcontroller. The PROM is 
used to store the configuration data for the LCA device. The 
Done/Program (D/P) output is driven LOW when the device is 
being configured. Configuration data is read from the PROM 
device during configuration. After configuration is complete, 
the LCA device drives the D/P pin HIGH to deselect the PROM. 
Drive selection, write protection, command completion and 
fault detection are also handled by the ESDI Translator. 

ODD 
PARITY 

LSB 

I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 p 

CMD FUNCTION CMD MODIFIER O O O O O 0 

CMD FUNCTION CMD PARAMETER 

REGISTER A REGISTERB 

Figure 2. Command Data Word Structure 

Logic Cell'" Array and XACTT• are trademarks of XILINX, Inc. 

P-SILOS™ is a trademark of SimuCad Corp. 

3·90 

0 0 p 

p 



Building an ESDI Translator Using the M2064 Logic Cell Array 

ADDRESS 

lf=l J 
RESET 

il :1 CLOCK 

COMMAND DATA 

CONFIG/STATUS DATA DATA BUS 

TRANSFER REQUEST 

TRANSFER ACKNOWLEDGE A(1-0)/CS MICRO 

ATTENTION RD 
CONTROLLER 

DISK COMMAND COMPLETE WR 

CONTROLLER WRITE GATE IN INT 

READ GATE IN 
~ LCA 

DRIVE SELECT 0 M2064 

~~·-·-· DRIVE SELECT 1 

DRIVE SELECT 2 
~ DRIVE SWITCH 1 

DRIVE SELECTED 
~ DRIVE SWITCH 2 - j--o WRITE PROTECT 

EXT. CHANGE OF STS. 

READ GATE OUT 

WRITE GATE OUT 

Figure 3. An ESDI Translator Implemented on the LCA Device 

Why Use an LCA Device in an ESDI 
Translator 
The ESDI interface standard requires more logic functions to 
be built into the disk drive than some other interface stan­
dards, such as the ST506 standard. However, the external di­
mensions of a disk drive usually have to conform to an industri­
al standard form factor. Thus, the use of high-density semicus­
tom chips is the logical solution to increase functionality with­
out increasing the external dimensions. 

The LCA device is a high-density CMOS integrated circuit 
available from Monolithic Memories. Its high gate density al­
lows the implementation of an ESDI Translator in a single chip. 
Fifteen standard SSI and MSI chips would be necessary for the 
same application. If PLDs are used to implement the ESDI 
Translator, more than one would be necessary because a large 
amount of logic is required, thus occupying more board space. 

A major advantage in using the LCA device is that it can speed 
up the design cycle, enabling the manufacturer to have a 
shorter time-to-market. Also, many peripheral products are 
produced in relatively small quantities aiming at very special­
ized markets. The LCA device, which has no NRE cost, makes 
the production of small quantities more economical than the 
gate array. Another advantage of the LCA device over other 
semicustom chips, such as the gate array, is its reprogramma­
bility feature. The LCA device is RAM-based which can easily 
be reprogrammed by the user in the final system. This feature 
is especially important in the peripheral products market, 
where many products have short life spans. 

Design Implementation 
The ESDI Translator is responsible for all control interfaces 
between the disk controller and the disk drive. An internal 
block diagram of the ESDI Translator is shown in Figure 4. It 
consists of five major logic building blocks: 

• Drive selection 

• Read gate/write gate 

• Counter/controller 

• Shift register and parity generator/checker 

• Internal register address decoder 

Drive selection on ESDl-compatible drives involves three 
signals from the disk controller, Drive Select 0-2. These three 
drive select lines are encoded so that up to seven drives may 
be connected to the same ESDI port, as shown in Table 1. 

On the LCA device, the drive number is selected by connecting 
the drive switch pins to either VCC or GND. When the code on 
the drive select lines, DSX, equals the code on the drive switch 
pins, DSWX, where X may be 0, 1, or 2, the drive is selected 
and the Drive Selected signal, DSELD, is asserted. Once the 
drive has been selected, serial commands output by the disk 
controller will be read by the LCA device. The actual implemen­
tation is shown in Figure 5, using two CLBs and seven IOBs. 
BOSO and BDS1 are the names of the CLBs in the current de­
sign. In our design, names that begin with the letter B or P are 
used to designate a CLB or an IOB respectively. SCLK is the 
system clock. 

3.91 

EJI 



DS2/ 
DSW2 

0 

0 

0 

0 

1 

1 

1 

1 

3·92 

Building an ESDI Translator Using the M2064 Logic Cell Array 

DS1/ 
DSW1 

0 

0 

1 

1 

0 

0 

1 

1 

PARITY 
CHECKER/ 

GENERATOR 

LSB MSB 

COMMAND DATA 
16 BIT SHIFT 
REGISTER 

1--4--.,.CONFIG/STATUS DATA 

-RD 
ADDRESS 

LOGIC -wR 
-AO,A1/CS 

TRANSFER REQUEST 

TRANSFER ACKNOWLEDGE 

ATTENTION 

COMMAND COMPLETE 

1---- INT 
COUNTER/ 

CONTROLLER 

DRIVE SELECT (0-2) -- DRIVE 
DRIVE SWITCH (0-2) SELECTION 

. DRIVE SELECTED -----~ 
READ GATE IN--------•• 

WRITE GATE IN --------­

WRITE PROTECT---------

READ GATE/ 
WRITE 
GATE 
LOGIC 

Figure 4. ESDI Translator Internal Block Diagram 

DSO/ DRIVE 
DSWO 

0 

1 

0 

1 

0 

1 

0 

1 

None 

Select Drive 1 

Select Drive 2 

Select Drive 3 

Select Drive 4 

Select Drive 5 

Select Drive 6 

Select Drive 7 

DSO C:::>-11-\l­
DSWO C:::::>-1-JJL--' 

DS1C:::>-lf-\l"""'-_J 
DSW1 C::>-1~'--" 

EXT.CHANGE 
OF.STATUS 

READ GATE OUT 

WRITE GATE OUT 

SCLK 

DSELDA 

DSELD 

Table 1. Drive Selection 
Figure 5. Configuration of the BOSO and BDS1 CLBs to 

Provide the Drive Selected Signal 



Building an ESDI Translator Using the M2064 Logic Cell Array 

Figure 6 shows the configurations of the two CLBs as dis­
played on the computer screen by the XACT development soft­
ware. In Figure 6a, the CLB is configured as one function of 
four variables. The D flip-flop is not used. The logic representa­
tion, truth table, Karnaugh map, signal names, block name and 
Boolean equation are shown. 

In Figure 6b, the CLB is configured as one function of three 
variables, the output of which is connected to the D flip-flop. 
The Q output of the D flip-flop becomes the output of this CLB. 

x 
~[J1[1-y F 

Q c y 
SET 0 
RES Blk:HC 
CU< BOSO 

OCBA F A A:DS1 

H H HH H o{a)c B:DSWO 

H L H L H C:DSW1 

LHLH H 0:050 

L LL L H K: 
~ X: 
B F Y:DSELDA 

F = -(O@B+A@C) 

Figure 6a. Drive Selection Logic Implemented in a 
CLB (BOSO) 

x 
y Q ~~ Q FF 
SET 

0 y 

RES K Blk:HO 
CU< K BOS1 

OBA F A:DS2 

HHH H 
A B:DSELOA 

L H L H ll~}o C: 
O:OSW2 

CLK K:SCU< 
B X: 

Q Y:DSELO 

F= -(D@A)•B 

Figure 6b. Drive Selection Logic Implemented in a 
CLB (BDS1) 

The LCA device also performs logic functions for the Read 
Gate and Write Gate logic blocks. The Read Gate signal allows 
data to be read from the disk, and the Write Gate signal allows 
data to be written on the disk. These signals from the disk 
controller are input to the LCA device as Read Gate In and 
Write Gate In. Under normal operating conditions, Read Gate 
Out is asserted when Read Gate In is asserted and Write Gate 
Out is asserted when Write Gate In is asserted. When both 
Read Gate In and Write Gate In are asserted, a write error 
condition results and the Attention line is asserted, signalling 
the disk controller that an error has occurred. Also, the LCA 
device may be used to provide write protection to a disk drive. 
When the Write Protect signal is asserted, the Write Gate Out 
signal will not be asserted when the Write Gate In signal is 
asserted, preventing the write circuitry from being activated. 
These logic functions are implemented in two CLBs, BRWGO 
and BRWG1, as shown in Figure 7. 

OSELO --+-------1 
WRGIN --1--------+-

ROGIN--+-J::>o-_, 

WRPRT +--r:::K>-__J 

WRGOUT 

OSELO ~ 
ROGIN -+------- ROGOUT 

~ 

Figure 7. Read Gate/Write Gate Logic Implementation 

The Counter/Controller handshakes commands from the disk 
controller. It also handshakes status/configuration data to the 
disk controller. It is also responsible for generating the Inter­
rupt, Attention and Command Complete signals. Seventeen bit 
commands (one bit is parity) are transferred from the disk con­
troller to the LCA device via the Command Data line. The serial 
bit transfer is performed using a pair of handshaking signals, 
Transfer Request (TREQ) and Transfer Acknowledge (TACK). 
TREQ is asserted by the disk controller when a bit is valid on 
the Command Data line, and TACK is asserted by the LCA de-
vice when the command bit has been read. The handshaking El 
action is shown in Figure 8. 

CMO .J VALIOOATA x ____ _ 
TACK \ _______ / 

Figure 8. Command Data Transfer 

A 17-state counter counts the number of command bits shifted 
in or shifted out of the data registers. Its implementation is 
shown in Figure 9. The SHIFT signal is asserted, thus 
incrementing the counter, whenever there is a transfer request 
and the LCA device is selected. CNT_QO is the lowest bit of the 
shift register counter. This bit is inverted whenever SHIFT is 
asserted unless sixteen bits have already been shifted into the 
LCA device (CNT16 asserted, or CKCMD asserted when all 
seventeen bits have been shifted in). The DATAOUT signal is 
asserted after a Request Status command or a Request 
Configuration command has been transferred and the internal 
data registers have been loaded with data to be serially shifted 
out. Hence, when DATAOUT is asserted, CKCMD is negated 
and the counter is enabled. 

3.93 



Building an ESDI Translator Using the M2064 Logic Cell Array 

SHIFT 

CKCMD 

CNT16 +::=:::::JD>--f--l 

i-----+-CKCMD 

BCNTS 

Figure 9. 17-State Counter Implemented in six CLBs 

The logic generation of the Attention signal, ATTEN, is shown 
in Figure 10. Whenever there is a write fault, WRFL T, a parity 
error, PARERR, an interface fault, INTFL T, or an external error, 
CSTS(Change of Status), the ATTEN signal is asserted. When 
both WRGIN and RDGIN signals are asserted and the LCA 
device is selected, the WRFL T signal is asserted. The WRFL T 
signal is negated when the command transferred to the LCA 
device Register A is the Reset command defined by the ESDI 
standard, which has a Command Function of 0101 (Control) 
and a Command Modifier of 0000 (Reset Attention and 
Standard Status). The Command Function and Command 
Modifier formats are shown in Figure 2. 

Three CLBs, BPGO, BPG1, and BPG2, are responsible for 
generating the PARERR signal. BPGO is a multiplexer that 
selects the source of the input to the parity generator/checker 
(BPG1). If data is being shifted into the LCA device (parity 
checker mode), the CMDBITA input is chosen. If data is being 
shifted out of the LCA device (parity generator mode), the 
RA_Q7 output is chosen. These two signals are also shown in 

3.94 

Figure 11. BPG1 is an odd parity generator/checker. In the 
parity checker mode, whenever an odd number of ones are 
passed through this CLB, the output is one. This output signal 
is connected to BPG2, which inverts the signal and asserts or 
negates the PARERR signal accordingly. If parity is correct, an 
interrupt is asserted to the microcontroller informing the 
microcontroller that a command has been received and is 
ready to be read. In the parity generator mode, the output of 
BPG1 is the parity bit. BPG1 is clocked by the SHIFT input, 
which is asserted whenever there is a transfer request and the 
LCA device is selected. BPG1 is reset by the Reset Parity 
Generator input, RSTPGEN. This signal is asserted when ei­
ther INT is asserted or an interface fault is detected. 

The Interface Fault signal is asserted when the LCA device is 
selected and CNTR is negated before seventeen bits have 
been transferred. CNTR is asserted after the first command bit 
is shifted in and is negated after the seventeenth bit is shifted 
out. BINTFL TO is clocked by the system clock, SCLK, and 
reset by the RSTCOS signal. The 108 PCSTS is configured as 
a buffered input to signal external error conditions. 

The microcontroller is able to address four register locations in 
the LCA: two data registers, BRGA and BRGB, one error 
register, BDMX, and one command complete register, BRC7. 
Only three bits in the error register are used. They are bit 0 for 
parity error, bit 4 for interface fault and bit 7 for write fault. Only 
one bit in the command complete register is used. This is bit 0, 
which has a value of zero when the command is completed. 
The addresses and contents of the registers are shown in 
Table2. 

A1 AO 

0 0 

0 

0 

REGISTER 

REGISTER A 

REGISTERS 

ERROR 
REGISTER 
COMMAND 

COMPLETE REGISTER 

BIT NUMBER 
76543210 

Table 2. Register Addresses and Contents 

The LCA device implementation of the registers and multiplexer 
is shown in Figure 11. When the interrupt signal is asserted, 
the microcontroller reads the two data registers by setting the 
A 1 and AO address lines appropriately and asserting the RD 
signal to the LCA device. These data registers contain the 
command that is transferred from the disk controller through 
the CMDBITA input. If the command is a request data 
command, configuration or status data is written to these two 
data registers by the microcontroller. These two bytes, plus a 
parity bit that is generated by the parity generator in the LCA 
device, are serially transferred to the disk controller over the 
Config/Status Data line through RA_Q7. After all seventeen 
bits have been transferred, the Command Complete signal is 
asserted. If the command is not a request data command, the 
microcontroller executes the command and upon completion, 
writes a byte of zeros to the command complete register of the 
LCA. When the command complete register is written with all 
zeros, the Command Complete signal is asserted by the LCA 
device.The command complete register may only be written, 
not read. The status register contains error bits that are set 
when errors are detected. This register may only be read and 
not written. 



Building an ESDI Translator Using the M2064 Logic Cell Array 

PCMD 

DATAOUT -+-!----I""""'\ 

RA_QO 

RA_Q1 

RA_Q2 
RA_Q3 

RA_Q4 --r---:==:Jh}--t-----t-1 
RA_Q5 
RA_Q&--t---~ 

RA_Q7 --1--1"-n--~ 

RA_Q7 --+---~------~ 

CKCMD 

SCLK 

CNTR 

SCLK 

RSTPGEN 

SCL.K 

WRFLT 

RSTCOS 

PARE RR 

INTFLT 

SCL.K RSTCOS 

PCSTS 
CSTS 

SCL.K 

Figure 10. Generation of the Attention Signal by the Four Possible Error Conditions 

ATTEN 

El 

3.95 



3-96 

Building an ESDI Translator Using the M2064 Logic Cell Array 

RA_Q7 

RA_QO 

Figure 11. Registers A, B, Error Register, and Multiplexer 

DATA 
BUS 



Building an ESDI Translator Using the M2064 Logic Cell Array 

El 

SHIFT 

PCSB 

Figure 11. Registers A, B, Error Register, and Multiplexer (Continued} 

3.97 



Building an ESDI Translator Using the M2064 Logic Cell Array 

Design Considerations 
The circuit diagram of the programmed LCA device is shown in 
Figure 12. This design implementation uses sixty-three of the 
sixty-four CLBs within the LCA. This translates into a 98% 
usage. The rightmost column of CLBs contains the multiplexer, 
which selects between registers A, B, or the error register to 
be placed on the data bus. Registers A and B are placed on the 
third and second column from the right end, respectively. The 
registers and multiplexer are placed physically close to each 
other to simplify routing. The CLBs which execute a particular 
function are placed physically next to each other. These 
functions include the parity generator/checker, 17-state 
counter, read gate/write gate logic, drive selection logic and 
error detection logic. The read gate/write gate logic and the 
drive selection logic, which require much 1/0 activity, are 
placed in CLBs near the edges of the device. 

Another consideration in implementing an LCA design is 
routing. Long lines are available for signals that have to travel 
a long distance within the LCA device. These lines can also be 
used for signals that must have minimal skew between differ­
ent destinations. An automatic routing program is available in 
the XACT software package. 

Routing requires careful consideration when a design uses a 
high percentage of the available CLBs (above 95%). Although 
automatic routing is available, designs with high CLB usage 
may require point-to-point routing (EDITNET command in 
XACT). Some of the techniques that can be used are swapping 
input pins, swapping CLBs, and implementing buffers in 
unused sections of the CLBs. When swapping input pins, the 
designer must be careful because certain functions. such as 
the clock input to the flip-flop, may only be input on certain 
pins. Swapping CLBs is very simple because the XACT 
software provides a command for swapping CLBs, but 

3-98 

sometimes not all of the signals can be successfully rerouted. 
Passing a signal through a CLB presents a routing channel that 
is not otherwise available. However, a delay is added to the 
signal. Usually, a combination of these techniques can be 
used to successfully route a high-density design. 

The high number of IOBs in the LCA device gives the designer 
much flexibility in designing the pinout of the device. In this 
design, thirty-five of the IOBs are used. The IOBs that are not 
being used for the actual design are not left unused, but are 
configured as outputs and are connected to various signals 
within the LCA device to provide test points for the LCA device. 
This greatly increases the testability of the design once it is 
placed on the board. 

XACT is used by the designer to define the CLBs and IOBs, 
and to perform EDITNET. Alternately, the design may be input 
using the schematic capture software offered by Daisy and 
Futurenet. In these methods, an automatic place and route 
software package divides the design into blocks that may be 
implemented in CLBs and IOBs, and routes the CLBs and 
IOBs automatically. Once the design has been completed, it may 
be simulated using the software package P-SILOS. 

Conclusion 
The LCA device provides many advantages to the user. Its 
high gate count and 1/0 capability could potentially replace 
several PLDs in many applications, hence reducing board 
space. The LCA device is preferred by many customers over 
gate arrays because it is reprogrammable 'on-the-fly' and there 
are no long design cycles and initial NRE cost of a gate array. 
The current design file, XDES15.LCA, is available upon 
request. The bit pattern and the .LCA file will be provided for 
programming the LCA device in an EPROM. 



Building an ESDI Translator Using the M2064 Logic Cell Array 

El 

Figure 12. ESDI ll'anslator LCA Design 

3.99 



3·100 



~ 
Advanced 

Micro 
Devices 

AN-184 

Using the Logic Cell™Array 
to Build a 

Pseudo-Random-Number Generator 

Abstract 
The Logic Cell Array is a programmable integrated CMOS cir­
cuit that can easily be configured to perform many LSI func­
tions. This Application Note will discuss how the LCA device can 
be used in the design of an 8-bit Pseudo-Random-Number 
Generator. The design consists of three major components: the 

Mohammed Wasfi 

registers that generate the random numbers, the 1-Hz Clock, El 
and the decoding circuitry. The decoding circuitry can be used 
with two seven-segment displays to show the value of the binary 
random number in hexadecimal (00-FF) format. 

10288A 
MARCH 1888 

© 1988 Advanced Micro Devices, Inc. 

3·101 



Using the Logic Cell Array to Build a 
Pseudo-Random-Number Generator 
Mohammed Wasfi 

Introduction 
The LCA device is a high-density programmable integrated 
circuit. Due to its flexible architecture and programmability, it 
can be configured to perform many functions. In this case, the 
LCA device was configured as an 8-bit Pseudo-Random­
Number (PRN) Generator. The high density of this device made 
it possible to implement additional needed circuits such as the 
registers, clock, and the decoders for the seven-segment dis­
plays. Additional information on the LCA device can be found in 
the LCA Applications Handbook. Information on configuring 
the LCA device is discussed in Application Note 182. 

Random Number Applications 
A Pseudo-Random-Number Generator can be used in a wide 
range of applications. A common application for the PRN Gen­
erator is electronic games where a random number is used to 
create a random event. Another sophisticated application is 
signal scrambling, for securing communications, where a ran­
dom number is added to a transmitted signal for scrambling, and 
subtracted for descrambling. 

Pseudo-Random-Number (PRN) 
Generation 
There are several different methods of generating a random 
number. In this LCA device application, however, the PRN is 
generated using a shift register with feedback. To achieve a 
random output, the feedback comes from the prime number bits 
(flip-flops). 

Although the output of the shift register is a random number, the 
cycle of random numbers generated is repeated after a certain 
period. This is indicated by the term" pseudo." The length of the 
random number generation period depends on the number of 
flip-flops used. The period length is calculated as follows: 

Period = 2n-1, where n is the number of flip-flops. 

The reason for the subtraction of one state is that the state of all 
flip-flops set to zero is illegal (causes a lockout). 

The Logic Cell Array 
The LCA device is a configurable large scale integrated CMOS 
circuit. It is RAM based, so its configuration can be changed by 
simply loading it with a new configuration bit stream. The device 
architecture consists of Configurable Logic Blocks (CLBs) and 
configurable 1/0 Blocks (IOBs). Each CLB has a register and 
can implement any one function of up to four variables or any 
two functions of up to three variables. The IOB can be config­
ured as an input, registered input, output, or an output with a 
three-state function. 

Two types of LCA devices are currently available from Monoli­
thic Memories, the M2064 and the M2018. The M2064 has 64 
CLBs arranged as an 8 by 8 matrix. The M2018 has 100 CLBs 
arranged as a 10 by 10 matrix. For this design, an M2064 was 
used because only 52 CLBs were needed to implement the 
design fully (Figure 1 ). 

Figure 1. LCA World View 

3-102 



Using the Logic Cell Array to Build a Pseudo-Random-Number Generator 

Why Use an LCA Device? 
There are several reasons for choosing the LCA device to design 
a random number generator. The LCA device not only offers a 
large number of flip-flops in the CLBs, but also offers additional 
IOB flip-flops (one flip-flop per CLB/IOB, one hundred CLBs 
and seventy-four IOBs in the M2018, sixty-four CLBs and fifty­
eight IOBs in the M2064). This enables the user to generate a 
very large period during which the PRN sequence will not repeat 
itself. In addition, the large number of configurable IOBs 
available makes it easy to generate a large random number. 

One of the many features of the LCA device is its high density. 
There are approximately 1,200 gates in the M2064 and 1,800 
gates in the M2018. The high gate count allows the implementa­
tion of additional circuits, such as the clock for the registers that 
normally are added outside of the chip. 

Another feature of the LCA device is its configurability. For 
example, the ability to output a PRN of a certain size, then 
change the size to make it smaller or larger, or change other 
logic without having to use a new part is a big advantage. 

With an LCA device, one has access to a macro library in the 
XACT"' Development System, which is the software used to 
configure the LCAdevice (available from Monolithic Memories). 
These macros simplify the designs considerably. Approximately 
75% of this design used Monolithic Memories-supplied macros. 

1 Hz 
CLOCK 

INPUT SEED 

+ 
1ST8·BIT 

SHIFT REGISTER 

FEEDBACK 

8-Brr ..._ ______ RANDOM 

7SEGMENT 
DECODING 
CIRCUITRY 

Figure 2. Block Diagram 

Design Breakdown 

NUMBER 

The design of the PRN generator consists of three major com­
ponents (Figure 2). The first component is the shift register. 
Three 8-bit shift registers are used to generate the PRNs using 
D-type flip flops. Since there are 24 flip-flops, the length of the 
PRN sequence period is: 

224_ 1 = 16, 777 ,215 states, 

after which the PRN sequence repeats itself. 

The second component is the clock for the flip-flops. A low 
frequency (100-HZ) R-C Oscillator was used. This frequency is 
then divided by 100 (using two modulo-10 counters) which 
results in a 1-Hz clock that is used for the flip-flops. 

The third component is the decoding circuitry for the seven­
segment displays. Two seven-segment display decoding circuits 
are implemented in the LCA device to show the hexadecimal 
equivalent of the binary output. This makes it easier to study the 
nature of the PRNs generated. 

Design Implementation 
in the LCA Device 
The main component in this design is the shift register. The 
design of a shift register is relatively simple. A register (flip-flop) 
in a CLB uses one input, a clock, and outputs the value that was 
the state of the input delayed by one clock period (Figure 5). 
Then all twenty-four registers in the CLBs are cascaded together 
forming a 24-bit shift register. The macro, RSB, available with the 
Monolithic Memories XACT Macrocell Library, is an 8-bit shift 
register (Figure 3). Therefore, it is possible to invoke that macro 
and cascade three 8-bit shift registers (RQL, RQM and RQH) to 
get the required shift register size. 

The feedback from the shift register, in order to produce a 
random outcome, has to come from a prime number bit (regis­
ter). Therefore, the feedback from bits 11 and 23 were chosen. 
Since the PRN sequence cannot start without a logic high input 
seed from an IOB configured as an input (Figure 7b), a certain 
function (XOR_F) implementing the input seed and the two 
feedbacks was used. This function guarantees lockout will not 
occur (such as in the case of the input staying at a logic HIGH), 
and also adds to the randomness of registered outputs (Figure 
6). 

XOR_F = (B + C) @A 

B : input seed 
C : 2nd feedback (bit 23) 
A : 1st feedback (bit 11) 
@ : exclusive or function 

The 8-bit output of the third shift register (RQH) is connected to 
eight (8) IOBs configured as outputs (Figure 7a). The output of 
ROH is also connected to the two seven-segment decoders. 

The clock for the registers was chosen as 1 Hz. This frequency 
was generated using a low-frequency (100-Hz) resistor-capacitor 
oscillator. This oscillator is also available as a macro, GOSC, 
with the XACT Development System (Figure Ba). The values for 
the resistors and capacitors (R1, R2, C1, C2) used with CQ and 
CQL are 100 Kohms and 0.1 microfarads. The Boolean equa­
tions for the Clock are: 

Q =-R * (S+R) 
QL=-Q 

A modulo-100 counter was used as a" divide by" to get the 1 HZ 
clock needed. The modulo-100 is implemented using two cas­
caded 4-bit BCD (modulo-10) counters. The macro for the coun­
ters is also available with the XACT Development System (Fig­
ure 8b). The output of the modulo-100 is routed to the Global 
Clock Buffer (GCB). The output of the GCB is routed to the 
registers via long-line interconnects. 

3·103 

El 



Using the Logic Cell Array to Build a Pseudo-Random-Number Generator 

Finally, two decoders for the seven-segment displays were 
designed. The least and the mostsignificantfour bits of the PAN 
used one decoder each to decode binary 0000-1111 as hexade­
cimal 0-F (Table I). The decoder outputs were routed to IOBs 
configured as output buffers, where they were wired to a bus 

driver (74LS244), that could be used to drive the seven-segment 
display. Eight CLBs per decoder were used (Figure4). Each CLB 
was configured to control one segment in the display. including 
the Decimal Point (DP). See Table II. 

NEXTQl•DI 

%4 RQONAME %8 -
%5 R01NAIE %8 R05NAME 
%6 RQ2NAME %10 -
%7 RQ3NAME %11 R07NAME 

Figure 3. Shift Register Macro 

4-BIT INPUT (FROM PRN) HEXADECIMAL 

D c B A OUTPUT 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 2 

0 0 1 1 3 

0 1 0 0 4 

0 1 0 1 5 

0 1 1 0 6 

0 1 1 1 7 

1 0 0 0 8 

1 0 0 1 9 

1 0 1 0 A 

1 0 1 1 8 

1 1 0 0 c 
1 1 0 1 D 

1 1 1 0 E 

1 1 1 1 F 

Table I. Decoding Table 

3·104 

SEGMENTS 

A B c D E F G DP 

1 1 1 1 1 1 0 0 

0 1 1 0 0 0 0 0 

1 1 0 1 1 0 1 0 

1 1 1 1 0 0 1 0 

0 1 1 0 0 1 1 0 

1 0 1 1 0 1 1 0 

1 0 1 1 1 1 1 0 

1 1 1 0 0 0 0 0 

1 1 1 1 1 1 1 0 

1 1 1 1 0 1 1 0 

1 1 1 0 1 1 1 1 

1 1 1 1 1 1 1 1 

1 0 0 1 1 1 0 1 

1 1 1 1 1 1 0 1 

1 0 0 1 1 1 1 1 

1 0 0 0 1 1 1 1 



Using the Logic Cell Array to Build a Pseudo-Random-Number Generator 

)( F y 

B~x Q 
SET 
RES c Q 
CLK D 
DCBA F Blk: EE 
H XXX H 

A_INPUT 
XH XH H 

Bl HrnH=SZ XL XL H 
A XXH X H 

D.C 
~lHrnH=S~ 
K: 

F X:netl 
B v: 

)( F y 

B~x Q 
SET 
RES c Q 
CLK D 

Blk: FE DCBA F E_INPUT 
HHXX H 

BlHrnH=SZ 
HXHX H 
H XXL. H 

A XLXL H ~lHl~H=n XXHL 
H D.C K: 

F x:net8 
B v: 

[!': - [+~*:!!_+<.;-~ l!: - [.*:ft.+~*:!!_+ *....!!.~~+~ 

Figure 4a. A-Segment CLB Figure 4e. E-Segment CLB 

)( F y 

B~x Q 
SET 
RES c Q 
CLK D 
DCBA F Blk: EF 

B INPUT 
HXLH H 

BrnrnH=SZ 
L XH H H 
L. XL L H 

A XL XX H 

D.C 
i1HrnH=8~ 

F X:net2 
B v: 

)( F 
y 

B~x Q 
SET 
RES c Q 
CLK D 
DCBA F Blk: FF 

F INPUT 
H XXX H 

Bl HrnH=SZ 
XH L X H 
XH XL H 

A XXL L H C: HIGH_Q5 

D.C 
D:HIGH_Q4 
K: 

F x:net9 
B v: 

[!': = ~+ ::R*::.! *:!!_+ ::R_*H .... +~* "H*A 

Figure 4b. B-Segment CLB 

l!'. - *:::.!!_+~*:::.!!_+] *~+...£_ EJ 
Figure 41. F-Segment CLB 

)( F y 

B~x Q 
SET 
RES ~ Q 
CLK 
DCBA F Blk: EC 
H L XX H 

C_INPUT 
L H XX H 

BrnrnH=SZ L XL X H 
A L XX H H C: HIGH_Q5 

XXL H H 

D.C 
D:HI·GH_Q4 
K: 

FX:net4 
B v: 

)( F 
y 

B~x Q 
SET 
RES c Q 
CLK D 

Blk: FG DCBA F G_INPUT 
L H L X H 
L H XL H 

BlHrnH=SZ H L XX H 
A H XH X H C:HIGH_Q5 

XL H X H 

Dale 
D: HIGH_Q4 
K: 

F X: net10 
B v: 

[!': <*A+.,, .... + *::.!!_+ -,,-~*~ l!:. - "!!!:~-~~ ~* .:.£+ . ,, ... *::!'!. + -,,_ * ~ 

Figure 4c. C-Segment CLB Figure 4g. G-Segment CLB 

)( F 
y 

B~x Q 
SET 
RES c Q 
CLK D 
DCBA F Blk: EH 

D INPUT 
LL H X H 

BlHrnH=SZ 
H H XL H 
H L XH H 

A LLXL H C:HIGH_Q5 
LXHL 

~DBc D: HIGH_Q4 
HXLX K: XHLH F X:net7 

B v: 

)( F y 

~~)( Q 
SET 
RES D Q 
CLK 

Blk: FH DCB F DP INPUT 
H H X H 

A H XH H 
B HIGH Q6 

B c HrnH::s~ 
liiD 

D 
K 

c F )( netll y 

l!:. - * . H*A "".:!1 * :.!!._+ :.£.'!!!:* :!!_ + :.£.* ~* :!!_+~* <.;*A~ IK ~+ 

Figure 4d. D-Segment CLB Figure 4h. DP-Segment CLB 

Figure 4. Seven Segment Decoder 

3·105 



Using the Logic Cell Array to Build a Pseudo-Random-Number Generator 

T = T1 +T2 = N ((R1 C1) + (R2 C2)) 
where N = approx. 0.35 for TTL threshold 

=approx. 0.75 lor CMOS threshold 
when each capacitor Is allowed to be discharged by 

the LCA during opposite timing phase 

Capacitor might partially charge due to a delayed three-state routing. 

Q = -R • (S +Q) 
QL = -Q 

CLKENA 

Figure Sa. Clock Macro 

NAME_Q1 NAME_Q2 

SET --0 0 0 

0 0 
..__,_.,. 

RESET 

CLOCK ~--<..._~+-~~~~~~~..._~~-r-~~~~~--~~----1r--~~~~~~~ 
RESET DIR ~~~~-+-~~~~~~~~~~-+-~~~~~~~~~~~~~~~~~~~~-

Figure Sb. BCD Counter Macro 

Figure S. Register Clock Components 

3·106 

}a 



Using the Logic Cell Array to Build a Pseudo-Random-Number Generator 

x Q 
y 

AF-X 
Q FF 
SET 
RES 
CLJ< J< Blk: AC 
~ A RQJ.LOW 

cm ~~LOW_Ql!I 

liudoN 
~o 

Blk: P55 
G_7SEG 

I: 
0: ne tJ.l!I c: T: 

D: 

~ CLJ< J<:Clock 
D 

Q ~ ~ LOW_QJ. 

)(: 

I~ ; A 

Figure 5. Shift Register CLB Figure 7a. Output CLB 

x F 
y 

~~x Q 
SET 
RES c Q 
CLJ< Blk: AA CBA F XOR IN 

[I IPAD BUF 

~I 
Blk: PJ.J. 
INPUT 

LL H H A:MED Q2 H XL H 
XH L H B:net5" 

PAD I:net5 
o: 

A C:HIGH_Q6 

.ale D: 
)(: 

B F X:OUT_)(OR 
II: 

T: 
)(: 

!!: C]+J;;El!'R 

Figure 6. XOR _ F CLB EJ Figure 7b. Input CLB 

Figure 7. 1/0 CLB 

3-107 



Using the Logic Cell Array to Build a Pseudo-Random-Number Generator 

PIN NAME DESCRIPTION 

1,35 GND Ground 

52,18 vcc Power 

11 INPUT Input seed 

12,14 CQ,CQL re oscillator inputs 

13 HA_ 7seg Decoder outputs for segments in high order display (a) 

15 HB_ 7seg b segment 

16 HC_ 7seg c segment 

17 HD_ 7seg d segment 

19 HE_ 7seg e segment 

21 HF_ 7seg f segment 

23 HG_ 7seg g segment 

43 HDP _ 7seg dpsegment 

38 A_ 7seg Decoder outputs for segments in low order display (a) 

39 B_ 7seg bsegment 

40 c_ 7seg csegment 

47 o_ 7seg d segment 

49 E_ 7seg e segment 

53 F _ 7seg f segment 

55 G _ 7seg g segment 

20 DP_ 7seg dp segment 

29 LSBIT _out Least significant PRN bit 

30 BIN6_out PRN bit 

31 BIN5_out PRNbit 

32 BIN4_out PRN bit 

33 BIN3_out PRN bit 

34 BIN2_out PRN bit 

36 BIN1 _out PRN bit 

37 MSBIT _out Most significant PRN bit 

Table II. LCA Device Pins Used and Their Description 

Conclusion 
From the PRN Generator design, the advantages of using the 
LCA device in such an application were shown. The configura­
bility of the LCA device makes it very versatile. The M2064 was 
capable of replacing several parts that normally would be 
needed to implement this design. The availability of the macros 
also helped considerably in the design implementation. It is 
always possible to modify certain features in this design if 
needed, such as the clock frequency or the size of the PRN 
generated, by simply re-routing certain lines in the LCA device. 
These features make the use of the LCA device very desirable. 
This design file is available from Monolithic Memories upon 
request. Please ask for XDES16.LCA. 

3-108 

References 
1. Nadia Sachs, "Pseudo-Random-Number Generator (a Dis­

guised PAL)," Monolithic Memories Application Note 
AN-118. 

2. LCA device Macrocell Library Book, Monolithic Memories 
Inc. 

3. Edward Valleau, "Configuring the LCA Device," Monolithic 
Memories Application Note AN-182. 



~ 
Advanced 

Micro 
Devices 

AN-185 

64K Deep FIFO - Dynamic RAM Controller 
is Implemented in the M2018 LCA Device 

Abstract 
First-in, first-out (FIFO) buffers are used extensively in interface 
and communication systems where it is necessary to provide 
temporary storage between two asynchronously operating 
devices. For relatively shallow FIFOs, up to 128 locations deep, 
dedicated register-based FIFOs are the best solution. For 
medium and deep organizations, up to 64K deep, the register 
architecture would be unsuitable because of the high package 
count required for implementation. Also, with a large number of 
registered FIFO devices, power dissipation could be very high 
and lead to system reliability problems. Using the high-storage 
density of RAM and controlling it as a FIFO {in other words, a 
FIFO-RAM Controller) solves the problem of a high package 
count in medium to large FIFO arrays. 

The two types of RAM to be considered are static RAM {SRAM) 
and dynamic RAM {DRAM). SRAMs usually require more board 
space to produce large memory arrays because their packages 
are larger than DRAM packages. As a result, SRAMs may be 
used for medium-sized FIFO organizations, from 128 bytes to BK 
bytes. For large FIFO arrays, SRAM devices occupy too much 

Logic Cell'" and XACT"• are trademarks of XILINX, Inc. 

IBM® is a registered trademark of International Business Machines Corporation. 

Karen Spesard and Chris Jay 

board space. DRAMs, used as stand-alone memory cells require EJ 
the support of more components to handle multiplexing and 
refresh, whereas SRAMs can be used without that support. To 
address this issue, a low-chip .. count, low-cost DRAM solution 
{FIFO-DRAM Controller) has been developed for large FIFO 
buffers in the M2018 Logic Cell'" Array {LCA device). The LCA 
device addresses the DRAM memory chips as a FIFO array and 
provides the interface and refresh control signals to the DRAMs. 

The LCA device, a high-density programmable CMOS device, 
has been programmed to perform all of the necessary logic 
functions for a large FIFO- DRAM Controller. It can control 64K 
X 4, X 8, X 16, X 32 {and so on) DRAMs. The M2018 design 
handles the refresh, read and write functions as well as hand-
shake activity to external circuits. Status flags, such as FIFO full 
and empty, are also provided to the two asynchronous transmit-
ter and receiver circuits. In addition, since the LCA circuit is 
reconfigurable, the design can be modified as needed to meet 
specific design requirements. 

PC™, PC/AT"" and PC/Xr" are trademarks of International Business Machines Corporation. 

FutureNet® is a registered trademark of FutureNet Corporation, a Data 1/0 Company. 

OrCAD~"' is a trademark of Orcad Systems Corporation. 10255A 
FEBRUARY 1988 Mentor Graphics® is a registered trademark of Mentor Graphics Corporation. 

3-109 



64K Deep FIFO- Dynamic RAM Controller 
is Implemented in the M2018 LCA Device 
Karen Spesard and Chris Jay 

Introduction 
Data communication often requires buffering of large amounts 
of information between asynchronously operating devices along 
a data channel. For instance, in a video teleconferencing system, 
one Mbyte of data per video image (1 K x 1 K pixels) is generated. 
After compression, 32 Kbytes of each image must be passed to a 
buffer to wait for transmission along the data channel. The next 
image is then free to be processed by the system. For optimal 
performance, first-in, first-out (FIFO) buffers can be effectively 
used to hold the data in temporary storage sites between the 
transmitter and receiver nodes. The data can be stored either in a 
stack of registers organized as a FIFO, or a RAM controlled as a 
FIFO. For very large FIFO organizations, however, the use of 
inexpensive RAM devices is the only practical alternative. It 
keeps the overall system size to a minimum which will, in effect, 
reduce the overall system cost. 

Dynamic RAM (DRAM) devices, when controlled, can be used 
as a temporary buffer. Though relatively inexpensive and small 
in size, compared with static RAM (SRAM) devices, stand-alone 
DRAMs require more complex interface and refresh control 
circuitries. As a result, more components could be required in 
DRAM systems. To reduce the overall chip count, a Logic Cell 
Array (LCA device) has been programmed to perform as a 64K x 

FIFO· DRAM 
CONTROLLER 
INANM2018 
LCADEVICE 

8 

4, x 8, x 16, x 32, (and so on) FIFO-DRAM Controller. The 
Controller allows the DRAM to function as a FIFO by providing 
the control circuitry necessary for operation. 

With the design implemented in the M2018 LCA device, minor 
changes in the design can be implemented quickly and easily 
due to the device's re-programmability feature. For example, if 
the type of DRAM or any of its parameters had to be changed for 
any reason, the original LCA device can accommodate the 
necessary logic modification. 

The LCA device provides an intelligent approach to designing 
circuits in an efficient and timely manner. It can speed up the 
design process significantly (to just a few days) with low-cost 
user-friendly software tools that do not require a non-recurring 
expense (NRE), as gate arrays often do. As a result, many 
products can be introduced quickly and economically. The LCA 
device can automatically load itself and is field programmable 
and reconfigurable. Therefore, it can be used for system devel­
opment, for existing design modifications and for volume pro­
duction. This application note describes the design methodol­
ogy used for the development of the Controller in the LCA 
device. 

'-----FULL FLAG 

~---HALF FULL FLAG 
~---EMPTY FLAG 

~--- RDY READ 
~---RDYWRITE 

NEC µPD41464 
64Kx4DRAM l+----'4;.<----+--- DATA IN/OUT 

3-110 

8 
NEC µPD41464 I•---+--------' 

64Kx4 DRAM 1•---4cF-----------DATAIN/OUT 

Figure 1. A "fYplcal DRAM Interface Using the FIFO­
DRAM Controller in the M2018 LCA Device 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

RDYREAD 

CONTROL ROY WRITE fiEQiij 
CIRCUITRY WE 

WITH SYSTEM 
OE AND REFRESH 

REQWR CLOCKS RAS 
CAS 

ENABLE ACCESS (ENAC) 
WRITEG RANT 

ROW/COL 
SELECT 

READ GRANT 

16-BIT 
READ . 
CNTR . . 

.... 
ADDllO 

4P ~ 

READ/WRITE 
llUX ROW/COL . llUX . . .... 

ADDR7 

16-BIT 
WRITE . 
CNTR . . 

t--P 

16-BIT RJLLFLAG 
UP/DOWN 

HALF RJLL FLAG STATUS 
CNTR EllPTYFlAG 

Figure 2. Block Diagram of the FIFO-DRAM Controller 

The FIFO-DRAM Controller 
The FIFO- DRAM Controller in the LCAdevice, together with an 
array of two DRAMs and two DRAM drivers, comprises a FIFO 
memory. (See Figure 1.) The Controller handles the row and 
column address multiplexing by applying a RAS before CAS 
cycle for memory read and write operations. Refresh timing, 
however, is applied as a GAS before RAS cycle, which takes 
precedence over read/write ac_tivity. The DRAMs used for this 
application must have on-chip refresh counters. The µPD41464 
64K x 4 DRAMs manufactur~ NEC we~ed in this applica­
tion because they have a CAS before RAS internal address 
refresh mode. Thus, no refresh counter was needed in the 
design of the FIFO-DRAM Controller. The Controller in the LCA 
device al~o::'.!2!!.s for access and refresh timing via the control 
signals, RAS, CAS, OE, and WE, and provides for read/write 
status flags. 

The block diagram of the controller is shown in Figure 2. The 
only controller inputs are the request-to-read (REQRD) and 
request-to-write (REQWR) signals. These signals are active 
LOW and come from some external logic or a microprocessor. 
They drive the control circuitry section of the device, which 
generates the GAS and RAS signals, among others. The FIFO­
DRAM Controller in the LCA device also consists of an address 
generation section and a buffer status section. Two internal 
16-bit counters and 24 2:1 multiplexers generate the addresses 
for the DRAM array. A 16-it up/down counter generates the 
status information for the three status flags: full, empty, and 
half-full. 

3-111 

EJ 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

The Control Circuitry 
The control circuitry provides the ready-to-read (ROY READ) 
and ready-to-write (ROY WRITE) signals for the system. Other 
signals include the row/column select (ROW/COL SELECT) 
signal for multiplexing the addressed data, the enable access 
(ENAC) signal for clocking the status counter, and the read and 
write grant signals for the three 16-bit counters. It also provides 
the four active low signals which directly interface with the 
DRAM: the row address strobe (RAS), the column address 
strobe (CAS), the write enable (WE), and the output enable (OE) 
signals. 

The logic used for generating each of the control signals is 
shown in Figure 3. Much of this logic was derived from the 
published input signal specifications of the DRAM. For example, 
the RAS (A), ROW/COL SELECT (B), and CAS (C) logic was 
created from the write cycle, read cycle, and CAS before RAS 
refresh cycle timing waveforms published in the NEC µPD41464 
datasheet. Samples of these timing cycles are given in Figures4, 
5, and 6. The state diagrams were then produced from these 
waveforms as in Figure 7 A. Next, the state excitation maps or 
Karnaugh maps for each signal were constructed. Reducing the 
logic for each map and "OR"ing the enable access and enable 
refresh cycles together, produced the appropriate registered 
~ations as in Figures 78, 7C, and 70. The logic for the OE and 
WE signals were generated in a similar manner. 

To resolve simultaneous read, write, and refresh requests, arbi­
tration logic was added. This was done while creating logic for 
the other control outputs. The logic designed in the controller 
gives the refresh request highest priority and the read request 
the lowest priority. (Refresh requests should have the highest 
priority because data integrity must be maintained. Write 
requests have the next highest priority because data is typically 
held on the data bus for a specific period of time and must be 
written before being lost.) Therefore, the read grant signal will 
not go HIGH until refresh and/or write cycle requests already 
pending have been completed. Likewise, the write grant signal 
will not go HIGH until a pending refresh cycle request has been 
completed. Also, when a refresh cycle is requested, both the 
ROY READ and ROY WRITE signals will be held LOW until the 
refresh cycle has been finished. This insures that any read 
and/or write requests already in queue will be completed first. 
The timing diagram illustrating the refresh and write priority 
is shown in Figure 8. 

The request-to-read and request-to-write registers are reset 
after every read and write operation, respectively. Accordingly, 
the refresh register is also reset after every refresh operation. 
When no requests are pending, a register "sets" or holds the 
RAS, ROW/COL SELECT, and CAS signals HIGH. The signals 
are now ready for the next request. 

ir============ll[)--~·--------------------------.ROYREAD 
tt;:=========~[J~---~----------------------•RDYWRfTE 

SYSTEM CLOCK 
(GENERATEDAS----<1>+++------+---+--D 

IN FIGURE 20) 

REQUEST 
REFRESH 

(GENERATED AS 
IN FIGURE 20.) 

.--------~-~,._--t--------+-.-.cAS 

-=~----t-~r---t----r--t--t------r--t-Rfl'/COL SELECT 

ENABLE 
ACCESS 
(ENAC) 

Figure 3. Control Circuitry for the FIFO-DRAM Controller 

3·112 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

SYSTEM CLOCK 

RDY WRITE 

ROW COLUMN 

1101-WRITE 

Figure 4. Write Cycle Timing 

Flgure4. 

1. The request to write REQWR line transitions LOW to enable 
an active write cycle. An active LOW transition starts the write 
process. The ready ROY WRITE output goes LOW to indicate 
that a current write cycle is in progress and no further writes 
should be attempted until it goes HIGH again. 
2. The first active HIGH transition of the system clock sets the 
ROW address outputs from the write counter to the address 
output pins. 
3. The second clock rising edge enables the active LOW transi­
tion of the RAS output to the DRAM array. 
4. The third clock edge switches an internal address multiplexer 
which sets up a valid column address output on the input to the 
memory address lines. This signal is internally gated with the 
requestto write flag to produce an early LOW active write output 

signal to the DRAM devices. 
5. The fourth clock edge strobes the GAS output with the WE 
input LOW for a valid write. The OE input can be either a HIGH or 
LOW during this write cycle. 
6. The int~al state machine controlling RAS and GAS ac~ 
holds the WE LOW for one and a half clock cycles and the RAS 
and GAS line LOW for two clock cycles. The GAS and RAS lines 
are taken inactive simultaneously. The ready write signal, ROY 
WRITE goes HIGH to indicate that another write cycle may 
commence. 
Note: 

The frequency of the system clock is determined tiy the selection of external 
components which are confisured to an internal oscillator. Details of this are 
shown in Figure 20. 

3·113 

EJ 



64K Deep FIFO- Dynamic RAM Controller is Implemented in the M2018 LCA Device 

SYSTEM CLOCK 

RDYREAD 

ADDRESSES ~'---R_o_w __ _,X.._ ____ c_o_L_u_M_N ___ __,Xllllltllll/lll 

110; ______ Hl..;.G_H_IM..;.P_E_DA_N..;.C;..;E;._ _______ -..i( .... __ R_EA_D __ _,)r-----

Figure 5. Read Cycle Timing 

Figure 5. 

1. The request to read REQRD input transitions LOW to enable 
an active read cycle the ready to read output, ROY READ, from 
the FIFO DRAM Controller goes LOW to indicate that a read 
cycle is in progress and no further read cycles should be 
requested until the read cycle is completed. 

3·114 

The timing of row address valid, active RAS, column address 
valid and active CAS is identical to that shown in Figure 4. The 
only difference in the timing is that the WE line stays inactive 
HIGH and the OE signal is gated active LOW one clock period 
after the LOW transition of RAS. 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

HIGH IMPEDANCE 
1/0; -------------------------------

Figure 6. CAS Before RAS Refresh Cycle Timing 

Figure 6. 

1. The RFSH CLOCK is driven active LOW to initiate a GAS 
before RAS refresh cycle. Ready to Read and Ready to Write 
Controller outputs are driven LOW to allow an uninterrupted 
DRAM refresh. 
2. The GAS output goes LOW after the first clock edge. 

3. The RAS output goes LOW following the second clock edge. 
4. The RAS and GAS outputs go inactive after the third clock 
edge and ROY WRITE and ROY READ go HIGH to indicate that 
read and write operations may recommence. 

3·115 

El 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

READ OR 
WRITE CYCLE 

ENABLE ACCESS 
(ENAC) 

A B C 

REFRESH 
CYCLE 

Figure 7a. Stale Diagrams for Read and Write Access Enable 
{ENAC) and Refresh Enable {RFSH) where A = 
RAS Signal, B = ROW/COLUMN ADDRESS 
SELECT Signal, and C = CAS Signal 

READ OR WRITE CYCLE REFRESH CYCLE 

00 

0 

0 

ENAC=TRUE 
A RFSH=TRUE B 

01 11 10 c 00 01 

CD 9 0 9 GJ 
Oii 

0 0 9 9 9 

A := -A • B • -C (ENAC + RFSH) + (RFSH • C 

A:=-A * 8 *'-C+ RFSH * C 

11 

0 

(RAS:= -RAS• ROW/COL SEL • -CAS + RFSH • CAS) 

10 

9 

9 

Figure 7b. Stale Excitation Map for RAS {A) Signal and 
Corresponding Equation 

READ OR WRITE CYCLE REFRESH CYCLE 

A ENAC=TRUE RFSH=TRUE 
B c 

0 

00 01 11 10 00 01 11 10 

9 9 

0 0 9 9 

B := -C • ENAC + A • ENAC + RFSH 

B := -C • A (ENAC + RFSH) 

B:=-C"A 

(ROW/COL SELECT:= -CAS • RAS) 

Figure 7c. Stale Excitation Map for ROW/COLUMN 
ADDRESS SELECT (B) Signal and 
Corresponding Equation 

READ OR WRITE CYCLE 

9 

A ENAC=TRUE 

C B 00 01 11 10 

0 

C := - (-&• ENAC) + - (~ • RFSH) 

C := - (-B • (ENAC • RFSI!) + - (A" RFSH) 

C := - (-B +A• RFSH) 

( CAS := - (-ROW/COL SELECT+ RAS• RFSH)) 

9 

9 

Figure 7d. Stale Excitation Map for CAS (C) Signal and 
Corresponding Equation 

3·116 

Figure 7. 

1. Figure 7a shows the truth tables for the controlling state 
machine within the FIFO DRAM controller. Two tables should be 
considered, one for access, read and write activity, and one for 
DRAM refreshing. The Enable access ENAC and enable refresh 
RFSH are mutually exclusive events such that -RFSH may be 
considered as ENAC and -ENAC as RFSH. When ENAC is 
TRUE (1) an access cycle is taking place, and RFSH will be 
FALSE (0). Refreshing takes place when RFSH is TRUE and 
ENAC is FALSE. The Karnaugh map shown in Figure 7b repres­
ents the state excitation map for the RAS output during access 
and refresh cycles. A logic one entry represents an active condi­
tion and a logic zero a passive state. The Greek letter theta 
represents a "don't care" state and can be included in minimiza­
tion considerations. For the map shown in Figure 7b, minimiza­
tion yields; 

ENAC=1,A:=-A'B'-C ...............................• 1 

RFSH = 1, A:= -A'B"-C + C .•......•................•.. 2 

now, combining 1 and 2; 

A := -A'B'-C"ENAC +-A 'B'-C'RFSH + RFSH"C ......... 3 

reduces to 

A := -A ·s·-c + RFSH'C . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 4 

because 

ENAC + RFSH = 1. 

substituting the values of RAS, ROW/COL and CAS for A, Band 
C respectively we get; 

RAS:= -RAS'(ROW/COL SEL)'-CAS + RFSH'CAS 

The equations for ROW/COL SEL and CAS are derived in a 
similar way. 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

RFSHCLOCK 

REQRD 

\Y'l'---t----+-~Vl\~-t---+---t' 
l\'----1"------;"v 1\'--+--_v 

RDYWRITE ~-+--+---t~-+--+--+------t'v 

ADY READ 

WRITE GRANT /J 
---+-----'./ I 

READ GRANT 

ADDRESSES ( 'itJJJrr../ WRITE WRITE , vv NV READ READ \,fv,,., """ 
'----DON-..,.'T_CA_RE--,,.---l IWji\.,UJ ROW l\'-_c_o_Lu_M_N_./'ir\\lll"":N::J.":N::J.''iY\"'' '"'--RO_w__, ___ co_L_UM_N __ JJ/l'll~llh·'1Jt:l.•"'f:ii;''"t:J.''MJllAt:J.AI 

I I ·~I I I 
c=====~oo~N'T;CA;R;E====JJ~ID~XX~'fjfj,~u'l/j_x"fJ/J.~n~rnl\-~_j___LANi:J.~H':!::N:!.X'::N:J.(X~XXXX~XX~X.X~XXX.wXXY 

I I I I I I I 
I~ 

OE c=====~oo;N'T~c;AR;E=:===~'"*~~xx.x~~~x~xxxx~n~n71/J.x~~n~xx'flfl."f!JJ."IJ1AA~.WJJ.rJj)."l/J."rJ!i'flfi.~~J_~A&ff~xxx~r::ro::TJJJ.u~x.xx~xx~x 
I I I I I I .JrnJ I 

110; ___ _JjH!!!JIG!!.H l~MPf!Ei!!.DAN!!!QCE~-1~x~Xill~XX~M&i@.x~xmrJi,xfj~XXx~'' WRITE DATA )cxWmNxV1xxxx""mNx'llxx1..1\.-~HIG~H~IM~PE~D~AN~C~E f\.~IJ READ DATA )i--
1 I , , ',' , J~, I , 

Figure 8. Timing with Refresh and Write Priority 

The system and refresh clocks are generated internally with two 
resistor-capacitor oscillator networks each. The system clock 
can be designed to run as fast as 5 MHz. The refresh clock, 
which is the request to refresh signal, is designed to operate at 
15.6 µS or64 KHz. This is because the DRAM must be refreshed 
with 256 refresh cycles in a period of 4 ms. (The implementation 
of the oscillator network will be described in the System Clock 
and Refresh Request Clock Configurations section.) 

READ/WRITE Address Circuitry 
The FIFO-DRAM Controller in the LCA device is based on a 
FIFO architecture and consists of a read and write pointer. The 

addresses of these pointers are generated by two 16-bit coun­
ters and 24 2:1 multiplexers, as shown in Figure 9. When the 
write grant signal is activated, the first 16-bit counter is incre­
mented. The write address is then multiplexed through to the 
row/column select multiplexer. As the ROW/COL SELECT sig­
nal goes HIGH, the first eight bits of the counter (the row address 
of the DRAM array) are transferred onto the address bus, and as 
the ROW/COL SELECT signal goes LOW, the second eight bits 
of the counter (the column address of the DRAM array) are 
transferred onto the address bus. An equivalent sequence also 
occurs when a read grant signal is activated. 

3·117 

El 



64K Deep FIFO· Dynamic RAM Controller is Implemented In the M2018 LCA Device 

'1::'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-, 

IEADGRANI'~~~~~~~~~~~~~~~~~~~~~-, 

3·118 

1IMllTREAD 
COUNTER -SELECT 

Figure 9. Read/Write-Row/Column Address Generation 

ROW~ 
SELECT 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

The Status Counter 
Information aboutthe Fl FO buffer is provided by the three status 
flags: full, half-full, and empty, which are all active HIGH. The full 
and empty flags indicate overflow and underflow conditions, 
whereas the half-full flag gives an indication to a processorof the 
speed at which the buffer is being filled. It acts as a monitor 
rather than as a prevention flag. 

The flags are constructed from the status counter, a 16-bit 
up/down counter shown in Figure 10. The clock input to the 
counter is the enable access signal that "OR"s the write grant 
and read grant signals. When the write grant signal is HIGH, the 
counter is incremented, and when the write grant signal is LOW, 
the counter is decremented. For example, if the count reaches 
0000 Hex during a read operation, the FIFO buffer is empty, and 
if the count reaches FFFF Hex during a write operation, the 
buffer is full. If the count reaches 7FFF Hex, the buffer is half-full. 

Logic Cell Array Implementation 
The FIFO-DRAM Controller design was implemented in one 
chip: the M2018 Logic Cell Array, a high-density, programmable 
CMOS device. This device contains 100 Configurable Logic 
Blocks (CLBs) containing one register element each. The regis­
ter element can be configured as a D-type flip-flop or latch, or it 
can be bypassed totally, supplying a strictly combinational out­
put. The two available CLB outputs can be configured as a 
function of four Boolean input variables, or two functions of 
three input variables each. 

The M2018 also contains 7 4 configurable input/output blocks 
(IOBs). Sixty-four of these blocks can be configured to perform 
a variety of logic functions. Each has the capability to drive an 
output, receive an input, clock the input into a flip-flop, or pro­
vide both input and output capability under three-state control. 

ENABLE 
ACCESS -r------------..-l!o__J 

Together, the CLBs and the IOBs provide 1800 usable logic 
gates. These gates are configured when data is loaded into the 
LCA device for programming - usually from an EPROM or 
microprocessor. For example, the configuration data file, <file­
name>.prm, to be programmed into an EPROM, is generated 
using the program, MAKE PROM (part of Monolithic Memories' 
XACT'" Development System}, which loads the bit stream into 
PROM memory locations. The input to the MAKEPROM pro­
gram, <filename>.bit, is generated from the MAKEBITS pro­
gram which outputs the bit stream of the current design. The 
design is entered by either using one of the schematic capture­
based systems from Daisy, Mentor Graphics®, OrCAD'", and 
Futurenet® or by partitioning the required logic and inserting it 
in a graphics environment on the IBM® PC-XT/ AT® using Mono­
lithic Memories' XACT'" LCA Editor. The LCA Editor was used to 
create the LCA design of the FIFO-DRAM Controller. The design 
implementation using CLBs and IOBs is described below. 

CLB Implementation 
The RAS, ROW/COL SELECT, and CAS outputs are imple­
mented in four CLBs. The RAS output utilizes two CLBs but also 
includes the enable access signal (ENAC2), which is reset with 
part of a RAS function. Figure 11 shows the CLBs that comprise 
the RAS output. The COMRASB signal, in Figure 11A, is config­
ured from a three-input combinational function (the Y output-G 
base) and is an input to the RAS block, in Figure 11B. This signal 
is "OR"ed with two more signals. The RAS block, co~red as a El 
D-type flip-flop with a "set" function, produces the RAS output. 
The CLB configurations for the ROW/COL SELECT and CAS 
outputs are shown in Figures 12 and 13. The CLB equations 
correspond to the equations for each signal given in Figure 7. 

FULL FLAG 

EMPTY FLAG 
HALF FULL FLAG 

Figure 10. 16-Bit Up/Down Status Counter Circuitry 

3·119 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

Ip Q 

~~)( p 
D Q 

~L~ K Blk: JJ DCBIE K RAS 
H H>C H SET A:SET XXH H 

B:COMRASB 
B 1rnt1, ~D CL'li 

Iii RAS_ 

IE:= +_!c 

Figure 11a. 

~ Q 
G 

D~X ~ET FF 
RES KG CLK ~GK II Blk: IJ 
~ D COMRASB 

ell A:RAS 
~i~lf~nL 

~ A CL'li gi~~i~~SB Bmc G 
B 

fl~ ~A•B•-c 
Figure 11b. 

Figure 11. CLBs which Comprise the RAs Signal. 
The Y Output of Figure 11a, 
COMRASB, Is the B Input to 
Figure 11b. 

~· GQ A 

~~)( 
Q FF 
SET A 
RES 
CLK H C II 

Bp: p 
I ~x~ fie 

D GH 
SLR~ 

XH H SET A:SEi 
~rn=s-
D:REA~SEL 

~~ c CL a K:CLKI 
XH H llD ~i~of~fik 

If; ;; !~..:~*»> 

)( Q 

~ET p 
RES 
CLK K 

DC [F 
L H>C H 
XHL H 

lK = 

Figure 12. CLB Configuration for the 
Row/Column Select Signal 

~rrw)( D Q 
Blk: JI 

K CAS 
SET ~!Hi 

B il~rirL ~D CL'li 
~!CAS_ 

:.£+..!!..* •> 

Figure 13. CLB Configuration for the CAS Signal 

3·120 

The CLB configuration for the 16-bit read counter is shown in 
Figure 14. The first (row - read) bit, RRQO on output Y, is 
illustrated in Figure 14A. It is generated through a flip-flop and is 
clocked with the read select signal. The terminal count for the 
next bit is generated from RABITO, the X output. Figure 14B 
shows the configuration for the second bit of the read counter. 

The read/write address multiplexer is designed with four Boo­
lean input variables as in Figure 15. The RRQO signal (row-read) 
is selected iflhe read select signal is active HIGH, and the RWQO 
signal (row-write) is selected if the write select signal is active 
HIGH. This implementation is combinational and has only one 
output. 

The row/column address multiplexer is designed with a CLB 
internal multiplexer base, FGM, as in Figure 16. When the ROW/­
COL SELECT signal is HIGH, the ROW address, MAO, is 
selected, and when the ROW/COL SELECT signal is LOW, the 
COLUMN address, MBO, is selected. This last multiplexer is 
registered and outputs the address that is output to the DRAM. 

)( c 
II Q 
~ET FF ~· RES II CLH c 

~ Q 11¥~R~D 
IC A: 

B: 
CLK C:READSEL 

D: 
~ Q K: 

C X:RRBIT9 
ell Q ll:RRQ9 

I~ ;ij"'" 
Figure 14a. 

)( c 
II Q 
Q FF ~· SET 
RES II CLK c 
~F B 11¥1RR» 

H L H 
~Q tiRRBITB L H H 

CLK C:READSEL 
D: 

I~~~ B K: 
G X:RRBITJ. 

~Q Q ll:RRQJ. 

I~ - :B~ 
Figure 14b. 

Figure 14. 1Wo CLBs which Produce BitO and 
Bit1 of the Row/Read Address Bit 
Respectively 

)( F 
II 

ft~x ~ET 
RES c Q 
CLK D Blk: AH CBDA F Bl TMUXA9 
HXH X H A:RRQ9 XHXH H 

A B:READSEL 
C:WRITESEL 

c.B 
D:RWQB 
K: 

F X:MA9 D II: 

I! = J ~+..£."" 
Figure 15. CLB Configuration of the Read/Write 

Select Multiplexer 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

x Q 
B y 

Q FF 
SET 
RES 
CLJ< }( 
t--4F 

H H 

1--4c 
H H 

I~;; ~ 

A~X 
Note: 

H=F if' 
M Q M=G if' 

C G }( Blk: AJ 
A BIT9 

ell A:MA9 
~rnn~SEL 
D: 

c CLJ< J<:CLJ<I 
ell Q ~lae_ 

Figure 16. CLB Configuration of the 
Row/Column Select Multiplexer 

B=1 
B::.:9 

The up/down status counter implementation is shown in Figure 
17A. The second status counter bit is produced from the Y 
output, a registered function of input C2X, C2Y and the feedback 
Q. The flip-flop clock is ENAC, the DRAM access signal. The X 
output is a combinational function of C2X and Q. The third bit is 
produced from a registered equation as shown in Figure 17B. 

x G 
y Q 
Q FF ~-SET 
RES y CLJ< J< 

~ 
Blk: IA 

B }( U_DQ2 
L H X H li1!!5Q A: 
LXH H B:C2X c C:C2Y 

D: 

~ B CL}( J<:ENAC 
G X:C3X 

i:gQ Q Y:Q2 

I~ -G = d~~B+C> 

Figure 17a. The Third Bit of the Status Counter 

x Q 
y 
Q FF ~-SET 
RES Q 
CL}( }( Blk: IB QBCA F }( U_DQ3 
H LL X H A:C2X L H L X H 
H L XL H 

" 
B:C2'i 

L H XH H C:Q2 
HXHL ~ QliB 

D: 
L XH H CLJ< J<:ENAC 

Q X:Q3 c v: 

I!:-~+..£ ~ 

Figure 17b. The Fourth Bit of the Status Counter 

Figure 17. 1\vo CLBs which Produce the Third 
and Fourth Bits of the Status Counter 

IOB Implementation 
An example of an IOB configured to receive data and drive 
inputs is shown in Figure 1 BA for the write request (WRR) block. 
An IOB configured as an output buffer for the RAS signal is 
shown in Figure 18B. The placement of the IOBs, like the CLBs, 
was optimized for the best circuit layout. 

ll }PAD BUF 

Bt>--1. 
Blk: P36 
WRRQ 

PAD blREQWRI_ 
T: 
}(: 

Figure 18a. The Input IOB Configuration Used 
for the Write Request Signal 

l£udoN 
~o 

Blk: 
RASB 

P41 

I: 
O:RAS_ 
T: 
}(: 

Figure 1 Bb. The Ou.le!!! IOB Configuration Used 
for the RAS Signal 

Figure 18. Two IOB Configurations Used in the 
FIFO-RAM Controller Design 

3·121 

El 



64K Deep FIFO- Dynamic RAM Controller is Implemented in the M2018 LCA Device 

System Clock and Refresh Request 
Clock Configurations 
The system and refresh request clocks were designed with two 
general purpose oscillator networks. Each oscillator was built 
using two IOBs, one CLB, and two external resistor/capacitor 
networks- R1, C1, and R2, C2. The IOBs and CLBs were config­
ured by calling up the dedicated macro, GOSC, from Monolithic 
Memories' Macrocell Library, available as part of the schematic 
capture entry package or the XACT EditLCA entry package. The 
LCA implementation of the relaxation oscillator is shown in 
Figure 19. Here, the programmable routing connections of CLB 
block RFSCLK and IOB blocks CQLrfs and CQrfs are shown for 
the refresh clock, Figure 20 illustrates the logic schematic for 
both the system and refresh clocks and the correct connections 
to the resistor/capacitor network. 

The CLB and IOB configurations for the generation of the 
refresh clock are shown in Figure 21. Notice that in both the IOB 
configurations, the bidirectional three-state buffer is used. 
Notice also that in the CLB configuration, the output X, RFSQ, is 
the same as the input D. This is possible even though the 
function is not registered. 

The calculation of the resistor/capacitor values for the clocks is 
given below. For an even mark/space ratio, R = R1 = R2 and C = 
C1 = C2. Each timing phase (1 /2 of a cycle period) is given by the 
following formula: 

T1 = 0.35 (C1 • R1 • 2) for TTL voltage thresholds, and 

T2 = 0.75 (C2 • R2 • 2) for CMOS voltage thresholds. 

The general expression for the calculation becomes: 

T = N' ((R1 • C1) + (R2 • C2)) 

where N is .35 for TTL and 0.75 for CMOS. 

The resistor and capacitor values chosen for the system clock 
are R1 = R2 = 30 ohms and C1 = C2 = .01 microfarads. These 
components are connected to pins 11 and 13 and result in a 
frequency of 5 Mhz. The values chosen for the refresh request 
clock are R1 = R2 = 2.2 Kohms and C1 = C2 = .01 microfarad. 
They are connected to pins 24 and 28 and result in a frequency 
of approximately 64 KHz. The GOSC macro IOBs can be con­
nected to any pins as long as they are not connected to pins 
dedicated to configuring the LCA device. Dedicated configura­
tion pins cannot be loaded with components such as capacitors 
because they could prevent the LCA device from reading valid 
data by corrupting hold and setup times. 

3·122 

Design Considerations 
The circuit diagram of the FIFO-DRAM Controller in the LCA 
device is shown in Figure 22. This implementation used all 100 
CLBs available in the M2018 device. The three columns of CLBs, 
on the left, contain the status counter. The next seven columns of 
CLBs contain the address counters and the multiplexers, and 
the two bottom rows of CLBs contain the control circuitry. 

The placement of the blocks are positioned so that routing 
delays between the blocks can be minimized. Long line inter­
connects are used frequently for signals which would have to 
travel the length or breadth of the chip. These lines were also 
used for signals that must have minimal skew between destina­
tion points. For more information on routing, please refer to 
Chapter 9 of the LCA Design and Applications Handbook. 

Summary 
For DRAM designs, a FIFO-DRAM Controller was efficiently 
implemented in a single CMOS M2018 LCA device. The con­
troller, which enables the DRAM to function as a FIFO, allows 
large amounts of data to be held in temporary storage. The design 
can be modified quickly and easily with the LCA device because 
it is configurable and reprogrammable. Configuration of the 
LCA device is discussed in the LCA Applications Note 182. 

The FIFO-DRAM Controller design is available upon request. 
The design file and bit file will be provided for configuring the 
LCA device. Please ask for design XDES10.LCA. 

References 
NEC Electronics Inc. µPD41464 65,536 x 4-Bit Dynamic NMOS 
Ram Datasheet, January 1987 
Monolithic Memories, Inc., FIFO-RAM Controller 57/674219 
Datasheet, September 1986 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

lI JPAD BUF TRI 

c 
0 
L 

RFSCLK 

( 

Figure 19. LCA Implementation of the Relaxation Oscilaltor with 
the CL8/108 View of the External Routing Connections 

vcc 

R1 

GND 

Figure 20. GOSC Macro Logic Schematic for System and Refresh Clocks 

~I 
~ !AD BUF TRI 

~I 
BJk: P28 
CQr-f's 

Blk: P24 
CQL:rf's 

PAD I r-f'sReset 
0 r-f'sQ 
T r-f'sQ 

PAD I r>f'sSet 
0 r-f'sQL 
T r-f'sQL 

I< I< 

x F 
y c 

B~ Q 
SET CF X 
RES D Q 
CLJ< »G rv Blk: JA 
IBCD F 

D RFSCLJ< 
L H X H 
L XH H E!!!,B A: 

B:r-f'sReset c C: r-f'sSet 
D:r-f'sQ 

~ D 
I<: 

F X:r-f'sQ 
.:i C Y:r-f'sQL 

~ = ..-;~*.-C-+JYJ = 
Figure 21. CL8 and 108 Configurations for the Refresh Clock 

3-123 



64K Deep FIFO. Dynamic RAM Controller is Implemented in the M2018 LCA Device 

Print World: DRAMFIFO.LCA (2018NL68-70), XACT 1.30, 01:59:23 JAN l, l980Print World: DRAMFIFO.LCA (2018NL6S-; 

Figure 22. FIFO-DRAM Controller Circuit lmplementatlon in the LCA Device 

3·124 



~ 
Advanced 

Micro 
Devices 

Configuring the LCA™ 
f ram the PC Bus 

By Robert Botchek of Trantor Systems Ltd. and Chris Jay of AMO 

ABSTRACT 
The Logic Cell™ Array (LCA) is a high density programmable 
device based on a complex arrangement of static RAM cells. The 
device must go through an initialization and configuration cycle 
each time power is applied. This cycle must occur before the LCA 
can function as a logic unij or subsystem. The configuration time 
is small, ranging from 17 to 35 milliseconds for the M2000 series 
of devices, and when the device is fully functional no re-configu­
ration is necessary provided power to the device is maintained. 

There are a number of modes of configuration, each suited to a 
particular device application. This application note gives detailed 
information on configuring the LCA device from the IBM PC® bus, 
choosing one of the five configuration modes available. Configur­
ing the LCA device directly from the PC bus presents numerous 
advantages to the PC adapter card designer. The direct link 

Logic Cell and XACT are trademarks of Xilinx, Inc. 

IBM, IBM PC, PC/XT and PC/AT are trademarks of International Business 
Machines Corporation. 

MASM and MSMDOS are registered trademarks of Microsoft Corporation. 

BITCON, GAP, PGMLCA, and DOWNLCA are programs copyrighted by 
Tranter Systems, Ltd. 

between the PC bus and the LCA enhances debugging andD 
testing, and reduces the product's time to market. The concept of 
soft programmability (based on the LCA's SRAM design) signifi-
cantly reduces the development cycle of a PC product using the 
LCA. Once complete, the configuration software can exist in 
ROM and be called each time the system boots, so PC cards 
containing LCA devices can be configured in a manner transpar-
entto the user. The interface requires both software and hardware 
considerations. A high level language program is written to 
perform data code conversion, and assembly language programs 
supervise the actual LCA downloading and programming cycle. 
The hardware interface to the LCA is achieved with a low-cost 
PAL 16L8 device. A description of hardware and software design 
considerations is given in the following application note. 

Publication # Rev. 
10719 A 

Issue Date: May 1988 

Amendment 
10 

3·125 



Configuring the LCA 
from the PC Bus 
By Robert Botchek of Trantor Systems LTD. and Chris Jay of AMO 

INTRODUCTION 
The Logic Cell Array (LCA) is a very high density programmable 
device. The 2000 series consists of two devices, the M2064 and 
the M2018. The M2064 consists of an eight-by-eight matrix of 
programmable Configurable Logic Blocks (CLBs) with fifty-eight 
programmmable Input/Output Blocks (IOBs) to handle a variety of 
input/output functions. The M2018 has a ten-by-ten matrix of 
CLBs with seventy-four IOBs. Both devices have a complex array 
of programmable interconnect which is used to connect the logic 
blocks and input/output functions. The M3000 series was devel­
oped from the 2000 series and is suitable for even more dense 
logic architechtures. The 3020 device is a development of the 
2064 having an eight-by-eight array of more complex logic blocks. 
The IOBs and interconnect are also more complex in this new 
generation of programmable gate array circuits. This application 
note applies equally well to the configuration of 3000 series and 
2000 series devices. 

These high density devices require good software support tools 
to assist the designer in achieving a successful design with rapid 
turn-around, a benefit well known to the engineer familiar with 
Programmable Logic Devices; PLDs. Most manufacturers of 
PLDs support their products with at least one software package, 
and as complexity of programmable logic increases there is a 
need for more sophisticated computer-based tools. The LCA 
device is probably the most complex PLO on the market today, but 
fortunately there exists a wide repertoire of software support 
packages to provide the logic systems designer with rapid design 
entry and logic verification. In addition, conversion software 
provides a bridge from the finished design into raw configuration 
data which in turn is suitable for downloading and configuring the 
device. LCA device design entry is well supported in the PC 
environment with a wide range of CAE tools. The XACT™ 
software is designed to run on a PC XT/AT, for the 2000 series 
of LCA products only, and PC/AT for both 2000 and 3000 family 
of devices. Many packages for schematic entry and simulation 
also exist as software support for the LCA product, and will run in 
the PC environment. 

The route from design entry to a configuration bit stream is a 
relatively fast process. Thus, even if a number of reprogramming 
cycles are needed to prove a design, the overall process remains 
comparatively short. 

CONFIGURATION MODES 
There are five LCA configuration modes. These are listed in Table 
1 along with corresponding LCA mode select inputs MO-M2. For 
the specific application of configuring the LCA from the PC bus the 
slave mode is used. In this mode, for a single LCA device, only 
three pins take part in the configuration process. This can be the 
deciding factor in using the slave mode because some of the 
IOBs have a dual function of address and data assignment in the 
master low and high modes. During configuration these IOBs 
might need isolation from external logic. IOB intensive applica­
tions would favor the slave mode to avoid the additional time and 
space penalty of designing in additional logic buffers to perform 
this isolation. 

Of the three pins used, two are required for handshake and one 
for data transmission. The data is set up at the DIN input to the 
LCA and clocked into the device by applying a rising clock edge 
to the CCLK input. Each configuration bit is synchronously loaded 
in this manner at a rate determined by the PC interface. The 
remaining handshake pin is the Donel-Program pin, when LOW 
the LCA is in configuration mode and when HIGH the configura­
tion process has been completed and the LCA device is function­
ally operational. 

The slave mode of configuration can also be used effectively for 
chaining multiple LCA designs. The DOUT pin from a preceding 
LCA device can be fed directly to the DIN pin of a succeeding LCA 
so two or more devices can be configured. Waveforms in Figure 
3 show the timing requirements for DIN, DOUT and CCLK. 

M2018 CONFIGURATION FILE 

3·126 

1111 
0010 
<24 BIT LENGTH COUNT> 
1111 

O<DATA FRAME NUMBER 001>1111 
O<DATA FRAME NUMBER 002>1111 
O<DATA FRAME NUMBER 003>1111 

O<DATA FRAME NUMBER 195>1111 
O<DATA FRAME NUMBER 196>1111 
1111 

FOUR DUMMY BITS MINIMUM 
PREAMBLE CODE 
TOTAL NUMBER OF BITS 
FOUR DUMMY BITS MINIMUM 

196 CONFIGURATION FRAMES 
EACH FIELD CONSISTS OF A 
START ZERO FOLLOWED BY A 
71 DATA FIELD ENDING IN TWO 
OR MORE DUMMY BITS. 

MIMIMUM OF FOUR POST­
AMBLE CODE BITS. 

Figure 1. Data Stream Format 



Configuring the LCA from the PC Bus 

Mode Pin Mode 
MO M1 M2 Selected 

0 0 0 Master serial 

0 0 1 Master low 

0 1 1 Master high 

1 0 1 Peripheral 

1 1 1 Slave 

Table 1. Five Configuration Modes Truth Table 

Slave Mode of Configuration 

STROBE CCU< M1 ..., 
DATAO DIN PWRDWN 

SYSTEM BUS OR LCAM2018 
MICROCOMPUTER 

DATA7 oiP OOUT 

RESET RESET 

Figure 2. Configuration Diagram of Slave Mode 

In the slave mode configuration, the data transfer occurs over a 
single data line, data O in this case. When data is valid the clock 
rising edge synchronizes the loading of data into the LCA device. 
The done/program pin may be monitored for end of configuration. 
This circuit may be used for microcomputers, microprocessors 
and interface adapters, but in this case the PC system bus is used. 

PC CONFIGURATION HARDWARE 
The LCA Applications Handbook (1 0098A) describes a number of 
hardware arrangements whereby configuration data may be 
downloaded serially to the LCA device. It is also supported with a 
download cable which is included with the XACT development 
system. The cable permits communication from a PC to the LCA 
through a parallel port. However, this method of downloading 
configuration data is not practical for an LCA device mounted on 
a card that is plugged into the IBM PC bus. This system uses the 
bus as a medium for configuration data transmission. Although 
the option for using the download cable has not been precluded 
from the interface described here. In the early stages of develop­
ment it might be easier to use the download cable, until bus 
configuration is established. Figure 2 shows a block diagram of 
serial configuration mode while Figures 3 and 1 O show the 
waveforms associated with this mode. In slave mode configura­
tion the time to configure the LCA is determined by the loading 
source, in this case the controlling/loading program running in 
the PC. 

Slave Mode Configuration Timing Considerations 

Figure 3. Slave Mode Timing 

In the slave mode the CCLK pin is enabled as an input. Data set 
up at the DIN line is clocked into the LCA on the rising edge of the 
clock pulse. For the purposes of chaining LCA devices, data can 
be passed to the DOUT line but delayed by one clock cycle. Note 
that this data is synchronized to the falling edge of the clock. The 
configuration process is not complete until three additional clocks 
are appended to the pulse train. That is three more than the total 
number of configuration bits . 

For all speed grades of the device the data setup and hold times 
are identical. A minimum figure of zero nanoseconds for setup 
and 40 nanoseconds for hold. The worst case figure for valid data 
at the DOUT pin is 65 nanoseconds after the falling edge of the 
clock. 

Figure 7 is a schematic of the actual hardware used to drive the 
LCA device during configuration. The schematic shows PC bus 
signals involved in the process and the hardware used to decode 
them. A 74ALS520 decodes the PC address (set by SW1-SW7) 
for an 110 read/write cycle and a PAL 16L8 decodes commands 
sent by download software (described later). Alternatively, a 
74LS688 or equivalent could be used in place of the 74ALS520 
but external pull-up resistors would be required on the Q inputs. 
Wired as shown, eight consecutive addresses will match as far as 
the 74ALS520 is concerned (e.g., 320H to 327H). The first of 
these eight addresses is termed the Base Port. Figure 8 shows the 
port addressing assignment. The port interface was required to 
work in a specific application that required a large decode range 
so the interface had a dual function. The port interface configura­
tion was a biproduct of a real design. 

Although the PAL 16L8 (for which complete PAL design specifica­
tion equations may be found in Appendix 7) is not a registered 
device, its outputs may be fed back such that latching can be 
achieved. This technique is used to store control information sent 
by configuration software. The C, and C1 outputs from the 
PAL 16L8 are latched condition codes where C, and C0 store the 
data on D7 and D,, respectively, during an 1/0 write cycle to Base 
Port+ 2. DPEN enables the D/-P PAL output and is latched from 
D5 on the same 1/0 write cycle. 

A summary of the four condition codes is given in Table 2. For 
condition code 0, <C1, CO>= <0, 0>, the PAL device is in an idle 
mode. This is the mode preceding and following configuration. For 
condition code 1 the PAL asserts the the D/-P output as the 
trigger placing the LCA device in configuration mode. Condition 
code 2 directs the PAL to toggle -RESET for each subsequent 
write to Base Port + 3. This permits clearing of the LCA register 
contents. Finally, condition code 3 directs the PAL to toggle 
CCLK LOW, then HIGH, for each subsequent write to Base Port 
+ 3. It is in this mode that configuration data bits are clocked into 
the LCA device, one bit at a time. 

3-127 

EJ 



3-128 

Configuring the LCA from the PC Bus 

LCA Slave Mode Configuration. 

-START-

DRIVE DIP= LOW 

PULSE RESET LOW THEN HIGH 

RELEASE DIP PIN 

NO 

SET DATA BIT ON DIN 

PULSE CCLK LOW THEN HIGH 

NO 

PULSE THE CCLK INPUT THREE TIMES 

END OF 
CONFIGURATION 

CYCLE 

NO 

CONFIGURATION 
FAILURE CHECK 

CIRCUIT. 

Figure 4. Flow Diagram of Configuration 



Configuring the LCA from the PC Bus 

DOWNLCA 

PAL16L8 INTERFACE 

LCADEVICE 

Figure 5. Flow Diagram of Software Packages, GAP 

Condition Codes 

co C1 Code Function 

0 0 0 Releases 0/P for 
for normal OQ_eration 

1 0 1 Assert 0/P Low 

0 1 2 Toggle RESET mode 

1 1 3 Toggle CCLK mode 

Table 2. PAL Condition Codes 

After asserting D/-P (LOW) and toggling -RESET (condition 
codes 1 and 2) the software should read from Base Port + 2. 
During this read the PAL will drive the state of the D/-P onto bit 0 
of the PC data bus. This is done through the DPOUT pin which is 
enabled only during reads from the 1/0 address Base Port+ 3. An 
additional output, active LOW-LEN is also asserted at this time, 
allowing another on-board latch to drive data, such as switch 
settings, onto the bus. If the state of the D/-P pin is not 0 (LOW) 
then the LCA has failed to enterthe configuration mode. Likewise, 
after sending the entire configuration bit stream and an additional 
three dummy bits (as required by the LCA) the software reads 
from Base Port+ 2 to check that D/-P has been allowed to return 
HIGH, this indicates thatthe LCA has terminated the configuration 
process. 

Timing considerations for this procedure are shown in Figures 9 
and 10. Figure 9 shows a single 1/0 write cycle. The valid 1/0 
address is put onto the bus, and decoded by the address decoder 
circuitry shown in Figure 7. The trailing (positive) edge of-IOW is 
used to latch condition bits. Also, in condition 2, CCLK follows -
IOW during writes to Base Port+ 3. Thus, the rising edge of CCLK 
corresponds to the rising edge of-IOW. This ensures that data will 
be latched by the LCA only when it is valid (write data is not 
guaranteed to be valid at the leading edge of -IOW). 

Figure 6. PAL 16L8 Pinout Diagram 

The C, and c, outputs from the PAL 16L8 are latching outputs. 
Both C, and C, are addressed into the address baseport +2. The 
data lines D,and D6 are routed to C, and C, respectively during an 
1/0 write operation. The one of four condition codes shown in 
Table 2 reflects the current status of the PAL during its interface 
activity with the LCA device. 

As shown, SDO on the PC bus is connected directly to DIN on the 
LCA through an in-line SPST switch. This switch should normally 
be closed, and need not be present at all in a production layout. 
It was added to allow the download cable, included with XACT, to 
function properly if required. If the switch is opened and the PAL 
removed, the download cable may be connected directly to the 
D/-P, -RESET, CCLK, and DIN pins and will interface directly 
through the cable. 

BIT STREAM FORMAT AND CONVERSION 
The format of the configuration bit stream used to program the 
LCA M2018 is shown in Figure 1. The bit stream starts with four 
dummy bits (1111 ), followed by a four-bit preamble code (0010), 
a 24-bit length count and another four dummy bits. The length 
count indicates the total number of bits in the bit stream, including 
the header just described. This number will be loaded into an 
internal counter in the LCA device allowing tt to synchronize the 
loading of data during the configuration process. The actual con­
figuration process is always serial, even during parallel configu­
ration modes, internal serialization takes place in the LCA device. 

The usual design entry technique uses the XACT design editor to 
create the logic design. The XACT conversion software then 
generates a bit pattern of the design that can be loaded directly 
into the LCA device. XACT can produce the bit stream in several 
different binary and ASCII formats. In this application the need to 
produce the bit stream in a format amenable to inclusion in an 
assembly language program dictated that the RAWBITS format 
be used. The RAWBITS output, placed in a file with the extension 
".RBT," is ASCII. (Appendix 1 shows a portion of an ".RBT" file.) 
In general, one ASCII 'O' or '1' is used to represent each bit of the 
configuration data. This data is not packed so it is not an efficient 
way of generating data for storage but it is suitable for loading into 
the LCA in real time. 

3·129 

EJI 



Configuring the LCA from the PC Bus 

Assembly language modules tend to define data in terms of bytes 
or words. For this reason, a Pascal program, BITCON.PAS, was 
written (see Appendix 2 for a complete listing). BITCON filters the 
".RBT" file and produces an assembly language include file 
(given the extension ''.BLB") which defines the configuration bit 
stream in terms of define byte directives acceptable to the 
Microsoft MASM™ assembler. This has the effect of packing the 
bit stream. For the sake of discussion the packed bit stream will 
be referred to as a byte stream. Additionally, BITCON counts the 

bits in the stream and the bytes used to hold the stream and 
defines two words at the beginning of the ''.BLB" file for these 
quantities. A portion of a typical ''.BLB" file may be found in 
Appendix 3. The net result is a structure which, once assembled 
into a main program, may be manipulated easily by machine 
language modules. Further, the assembled byte stream requires 
only 1.5K to 2K depending on the device being configured. Thus, 
the byte stream and associated software may easily be placed in 
a 4Kx8 or 8Kx8 ROM. 

Hardware Configuration LCA Programming 

PC8US WRITE READ 

AEN A11 

SA9 A22 

G SW1 
2 PO 3 QO 

SA8 A23 4 P1 
SW2 

Q1 5 2 

SA7 A24 

SA6 A25 

6 P2 74 
SW3 

Q2 7 
ALS 3 
520 SW4 

8 P3 Q3 9 0--

SA5 A26 
SW5 4 

11 P4 Q4 12 

SA4 A27 

U1 5 13 PS Q5 14 

SA3 A28 15 P6 Q6 
16 6 

17 P7 Q7 
18 

7 
P=Q 

19 Figure 8. Port Assignment 

Vee 

SA2 A29 
4 8DSEL 14 

A2 C1 

SA1 A30 
3 25 

PWRDN 
A1 co 15 M1 M2 

27 

SAO A31 
2 

AO OPEN 
13 26 MO 59 

DOUT 

IOW 813 

IOR 814 

5 U2 DIP 
18 45 D/P 28 IOW 

PAL16L8 HOC 
6 12 44 U3 

IOR RESET RESET M2018NL68 LDC 

SD7 A2 9 07 CCLK 19 60 
CCLK 

SD6 A3 8 
06 LEN 16 

sos A4 
7 DPOUT 17 58 

05 DIN/DO 

11 
NC 

sw8 
SDO A9 t---------<O --n~------' 

Figure 7. Circuit Implementation of PC BUS to LCA 

3·130 



SYSTEM 
CLOCK 

Configuring the LCA from the PC Bus 

·IOW__j \.___ _ ___,/ 

AEN 

ADDR=~~ ----( ... ____ v_A_u_o_11o_A_o_o_RE_ss ______ __,)>----
DATA ________ --<( WRITE DATA \______ 
BUS '-· ___________ _,,--

Note: During bus write cycles, write data becomes valid after -
IOW has been asserted. Data can be registered on the 
rising edge of -IOW. 

Figure 9. Single WRITE Cycle. Waveform 

MO 

M1 

M2__j '--

Notes: 1. The CCLK must not remain low longer than 5 micro­
seconds or LCA timing will be violated. 

2. The D/P pin is sampled after all the configuration bits 
+ three additional bits have been sent. If the DIP pin 
is high then configuration was successful. 

Figure 1 O. Configuration Cycle. Waveform 

Ell 

3·131 



Configuring the LCA from the PC Bus 

CONFIGURATION SOFTWARE 
To perform the writing of configuration data to the LCA, the driver 
software was written in assembly language. High level languages 
such as 'C' or Pascal could be used, but assembly language was 
chosen because it is more efficient when considering the space 
constraints of a ROM. Three programs were written to interface to 
the LCA device; 

GAP.ASM Gate Array Program. See Appendix 4. 

PGMLCA.ASM Program LCA. See Appendix 5. 

DOWNLCA.ASM Download LCA. See Appendix 6. 

Figure 4 shows a flow chart of a standard configuration cycle and 
Figure 5 shows the route taken from GAP to the programmed LCA 
device. The configuration driver may be partitioned into two 
halves: one generic and one hardware specific. The first half is 
implemented in a module called PGMLCA.ASM, which se­
quences through the configuration steps and decomposes the 
byte stream into the original configuration bit stream, while the 
second module DOWNLCA.ASM controls the bit manipulation 
required by the configuration hardware. Neither module carries 
the byte stream, it is assembled as part of a parent module whose 
job it is to invoke the actual configuration process. This is the 
function of a demonstration program GAP.ASM which displays 
some messages and calls the PGMLCA module, passing a 
pointer to the byte stream. 

The byte stream is concatenated to the end of the GAP .ASM file 
as an include file. Any file that has been converted to byte stream 
".BLB" can be downloaded to the LCA device by reassembling 
and linking GAP. The programs GAP.ASM, PGMLCA.ASM and 
DOWNLCA.ASM are written for Microsoft MASM version 5.0. A 
few utility routines in the library GAPLIB.LIB must also be linked 
to GAP but are not required by PGMLCA and DOWNLCA. 

PGMLCA and DOWNLCA may just as easily be linked with a 
different parent and placed in ROM. This would be the production 
method for configuration used in the PC adapter card. The 
program in the ROM might perform a functional test at boot time 
to determine if the LCA is already programmed. If it is not, the 
PGMLCA module may be invoked by passing it a pointer to the 
byte stream. The entire process need only occur during the initial 
power on or cold boot, and takes less than a second to execute. 

Looking at the modules in more detail, DOWNLCA interfaces to 
the PAL and provides three functions to PGMLCA. These include 
placing the LCA in the program mode, sending the LCA configu­
ration bits and placing the LCA in the normal operation mode. As 
shown in the module listing, only a few port 1/0 instructions are 
used. The DOWNLCA program also checks to make surethatthe 
LCA device enters and leaves the program mode at the correct 
times and reports this status to PGMLCA. 

PGMLCA, sequences configuration by requesting program 
mode, sending configuration bits, and leaving the program mode. 
As discussed earlier, PGMLCA has the additional task of unpack­
ing the byte stream that was originally packed by BITCON. 

3-132 

This partitioning allows the replacement of the DOWNLCA mod­
ule with a different module suitable for supporting a different 
download hardware interface, without changing PGMLCA or 
BITCON. For example, the software for a download module to 
support the download cable of the development system could be 
generated. If the download cable is used, SW8 in Figure 7 must 
be switched to open. 

CONCLUSION 
Programming the LCA directly from the PC bus is a straightfor­
ward matter requiring a minimum of extra hardware. Once the 
hardware is breadboarded, the designer uses XACT to produce 
a RAWBITS file, which is converted by BITCON to an assembly 
language include file. This include file is then assembled as part 
of a parent program which is linked to the support modules 
PGMLCA and DOWNLCA. PGMLCA directs the configuration 
process through DOWNLCA which manages the specifics of the 
PAL-based interface. 

The hardware interface may be easily adjusted to suit multiple 
LCA designs and the specific needs of other PC adapter cards or 
may be modified with a minimum of effort to support other 
microcomputer architectures. Likewise, BITCON is easily modi­
fied to produce include files for different assemblers. PGMLCA 
and DOWNLCA are also small modules which may be modified 
or ported as needed. 

There are other advantages to this hardware and software 
scheme. Since the LCA configuration data is carried in software, 
which might be placed in ROM, an MS-DOS device driver, or even 
an application program, the realm of software updates is ex­
tended into the realm of hardware. At one end of the spectrum a 
vendor might supply hardware timing fixes or optimizations on 
diskette. At the other, the LCA could be designed as a generic 
logic block, whose function is dictated by the application software. 
In tact, at Trantor Systems a number of these capabilities are 
being exploited now in products incorporating such elements as 
RAM controllers and SCSI interfaces. Future LCA devices avail­
able from AMO, with even higher densities and faster speed 
grades will increase the scope of designs for which the part is 
appropriate. 

SOFTWARE AVAILABILITY 
The programs and PAL equations described in this application 
note, along with the binary library required for relinking GAP, are 
available on an MS-DOS 360K 5.25-inch diskette from: 

Trantor Systems, Lid. 
33447 Western Avenue 
Union City, CA 94587 
(415) 489-3731 

The charge per diskette is $25. Additional shipping charges may 
be necessary. 



Configuring the LCA from the PC Bus 

- APPENDIX 1 -

RAW BITS CONFIGURATION FILE. 

XACT LCA DESIGN.LCA 2018NL68 
File deslgn.rbt 
22:15:17 DEC 10, 1987 
22:15:17 DEC 10, 1987 
Source 
Version 
Produced by XACT version 1.30 
111100100000000001000101110101101111 
0111111111110100111111011111111011111111111111101111011001111111001111110011111111111111111 
0110110111111111011111110111111110011111111111111011100111011101110111111110111111111111111 

• 
• 
• 

192 LINES OF RAW BIT CONFIGURATION DATA 

• 
• 
• 

0001111101111011011110110111110010111110101111111001111111001111010011110100111101011111111 
0111011111110111011101111111111111111111111111111111111111111111111111111111111011101111111 
1111 

Appendix 1. Raw Bit Listing 

3·133 

El 



Configuring the LCA from the PC Bus 

APPENDIX 2 

BitCon.pas 

Bitcon is a bit conversion program which takes as its input the 
11 *.rbt" file produced by the makebits command in the gate array 
development system and produces an assembly language file defining 
the bit stream. 

The "*.rbt" file contains a text prolog indicating the design name 
and the time/date of creation. The file then contains a number 
of lines containing ascii 'l's and 'O's which represent the bit 
stream. The first line of this stream contains the bit stream 
prolog, 1 1111 1 , which BitCon uses to identify the bit stream. 

Bitcon packs the bit stream into bytes where the highest order 
bit in a byte corresponds to the first encountered bit in the 
bit stream and the first byte corresponds to the first eight 
bits of the bit stream, and so forth. 

The output file has the form: 

text prolog created by makebits 

dw length of bit stream in bits 
dw length=of=bit=stream=in=bytes 

db byte O,byte 1, ••• ,byte 7 
db byte=8,byte=9, .•. ,byte=15 

db ••• ,byte_n 

If the number of bits is not an even multiple of eight then then 
only the highest order bits of the last byte will be valid. 

The output file has the filetype 11 .blb" (for Bit LiBrary) and may 
be included in an assembly language program for assembly. 

history: 

12-09-87 RCB 
12-11·-87 RCB 

12-12-87 RCB 

01-04-88 RCB 
01-26-88 RCB 

first cut 
emit 1 ; 1 instead of 1 : 1 in third line of 
our portion of the prolog (l.Ob) 
place the number of bits we counted into the 
24-bit length field of the stream to ensure that 
the two are the same (1.0c) 
make release version for ap. note (1.la) 
more of mod. on 01-04-88 (1.lb) 

const 
title 'BitCon: .rbt -> .blb Filter, Version 1.lb'; 

3·134 



Configuring the LCA from the PC Bus 

copyright= 'Copyright (c) 1987, Tranter Systems, Ltd.'; 

max byte = 8191; max bytes in byte stream - 1 } 
ascii form of bit stream prolog } stream prolog = •1111 1 ; 

max_bytes_per_line = 8; max bytes defined per line in output file } 

intype = '.rbt'; 
outtype = '.blb'; 

type 
st 

var 

string [132]; 

input filetype } 
output filetype } 

byte stream: array [O •. max byte] of byte; 
bit length: integer; -
byte_length: integer; 

rbt file: text; 
blb-file: text; 
current_line: st; 

convert the byte argument to a three-digit hex number (includes leadin 
zero). also add a trailing 'h'. } 

function hex (value: byte): st; 

function nibble (value: byte): st; 
begin 

nibble:= copy ('0123456789abcdef', value+ 1, 1); 
end; 

begin 
hex:= 'O' +nibble (value div 16) +nibble (value mod 16) + 'h'; 

end; 

{ if the filename doesn't have a filetype, append the specified one. if 
there is a filetype, replace it with the specified one. } 

function fnm (filename: st; filetype: st): st; 
begin 

if pas ('.', filename) = O then 
fnm := concat (filename, filetype) 

else 
fnm := concat (copy (filename, 1, pas ('.', filename) - 1), filetype 

end; 

copy lines from the prolog of the .rbt file to the prolog of the .blb 
file until the bit stream prolog is found. leave the first line of the 
bit stream in current line. } 

3·135 

Ell 



Configuring the LCA from the PC Bus 

procedure read_prolog; 
begin 

readln (rbt file, current line); 
while (not eof (rbt file)) and 

(copy (current line, 1, length (stream_prolog)) <> stream_prolog 
writeln (blb file,-•;•, AI, current line); 
readln (rbt file, current line); -

~d; - -
writeln (blb file); 
writeln (blb-file, •;•, AI, 'Translated by:'); 
writeln (blb-file, •;•, AI, title); 
writeln (blb-file, 1; 1, AI, copyright); 
writeln (blb=file); 

end; 

read the bit stream and construct a byte stream in memory. keep a count 
of the number of bits and the number of bytes. we assume that the first 
line of the ~it stream is already in the variable current_line.} 

procedure read_bit_stream; 
var 

cur bit: byte; 
theTr_length: integer; 

procedure pack_bits; 
var 

char_index: integer; 

begin 
for char index := 1 to length (current line) do begin 

bit length := bit length + l; -
if cur bit = 7 then 

byte-stream [byte length] := O; 
byte stream [byte length] := byte stream [byte length] or 

( (ord (current Tine [char index]) - ord ( 'o •)) shl cur bit); 
if cur bit > O then - -

cur bit := cur bit - 1 
else begin -

cur bit := 7; 
byte length := byte length + l; 

end; - -
end; 

end; 

begin 
bit length := O; 
byte length := o; 
cur bit := 7; 
pack bits; 
while not eof (rbt file) do begin 

readln (rbt file~ current line); 
pack bits; - -

end; -
if cur bit <> 7 then 



Configuring the LCA from the PC Bus 

byte length := byte length + l; 
their length := byte stream [3] + (byte stream [2] shl 8); 
if their length <> bit length then begin 

writeln ('Fixing up bit stream length ... '); 
writeln ('Old length= •,their length,' bits'); 
byte stream [3] := bit length and $ff; 
byte-stream [2] := (bit length shr 8) and $ff; 

end; - -
end; 

{ write byte stream formats the byte stream just created by read bit str 
a bit-length count and byte length-count preceed the byte stream. T 

procedure write_byte_stream; 
var 

count: integer; 

begin 
writeln (blb file, AI, 'dw', AI, bit length, AI, ';#of bits in stream 
writeln (blb-file, AI, 'dw', AI, byte length, AI, ';#of bytes to hold 
for count :=-0 to byte length - 1 do begin 

if count mod max bytes per line = o then begin 
writeln (blb file); - -
write (blb file, AI, 'db', AI); 

end; -
if count mod max bytes per line <> o then 

write (blb file, •, T); - Ell 
write (blb file, hex (byte stream [count])); 

end; - -
writeln (blb file); 
writeln (blb=file); 

end; 

begin { main } 
writeln (title); 
writeln (copyright); 
if paramstr (1) =''then begin 

writeln; 
writeln ('Usage: bitcon bitfile 1 ); 

writeln; 
writeln ('Where "bitfile" is a 11 .rbt" file produced by'); 
writeln ('makebits. BitCon will produce an output file,'); 
writeln ( 111bitfile.blb, 11 which contains an assembly'); 
writeln ('language representation of the bit stream.'); 
writeln; 

end 
else begin 

writeln; 
assign (rbt file, fnm (paramstr (1), intype)); 
{ $i-} -
reset (rbt file); 
if ioresult <> o then begin 

writeln ('Unable to open file 111 ,fnm (paramstr (1), intype), '"· ') 

3·137 



halt; 
end; 

Configuring the LCA from the PC Bus 

writeln ('Reading"', fnm (paramstr (1), intype), '".'); 
assign (blb file, fnm (paramstr (1), outtype)); 
rewrite (blb file); 
if ioresult <> O then begin 

writeln ('Unable to create file "',fnm (paramstr (1), outtype), 111 

halt; 
end; 
{$i+} 
writeln ('Copying prolog .•• 1 ); 

read prolog; 
if not eof (rbt file) then begin 

writeln ('Reading bit stream ••• '); 
read bit stream; 
writeln ('Bit stream= ',bit length, •bits'); 
writeln (' =',byte length, •bytes'); 
writeln {'Writing bit stream.~.'); 
write byte stream; 

end - -
else 

writeln ('Input file ended prematurely.'); 
close (blb file); 
close (rbt-file); 
writeln ('File 111 ,fnm (paramstr (1), outtype),'" produced.'): 

end; 
end. 

3·138 



Configuring the LCA from the PC Bus 

- APPENDIX 3 -

LISTING OF FILE AFTER CONVERSION BY BITCON 

XACT LCA DESIGN.LCA 2018NL68 
File design.rbt 
22:15:17 DEC 10, 1987 
22:15:17DEC10, 1987 
Source 
Version 
Produced by XACT version 1.30 

Translated by: 
bitcon: .rbt-> .bib filter, version 1.0b 
Copyright (c) 1987, Trantor Systems, Ltd. 

dw 17876 ;#of bits in stream 
dw 2235 ;#of bytes to hold stream 

db Of2h, OOOh, 045h, Od4h, Of7h, Offh, 04fh Odfh 
db Oefh, Offh, Oefh, 067h, Of3h, Of3h,Offh, Ofeh 

• 
• 
• 

• 
• 
• 

193 LINES OF COMPRESSED CODE 

• 
• 
• 

• 
• 
• 

db Obbh, Obfh, Offh, Offh, Offh, Offh, Offh, Offh 
db Oeeh, Offh, OfOh 

Appendix 3. Listing of <file>.blb 

El 

3-139 



page 
title 

Configuring the LCA from the PC Bus 

62,132 
GAP, Gate Array Programmer 

;----------------------------------------------------------------------
APPENDIX 4 

GAP.asm 

GAP takes the byte stream generated by BitCon (which, in turn, 
took its input from MAKEBITS in the LCA development system) and 
downloads it to the gate array. GAP itself only displays signon 
messages and statistics. It then passes a pointer to a "byte 
stream" (a packed configuration bit stream) which the PGMLCA 
module decodes. 

GAP is only intended for debugging and demonstration. The gate 
array programming modules, on the other hand, are intended for 
production use. Invoke GAP with: 

A>gap 

Invoking GAP without the hardware described in the ap. note 
shouldn't have any ill effect. However, be careful that no 
other card occupies port address 328h-32fh for which this demo. 
has been "hard-wired." 

MASM 5.0 may be used to assemble this module. It must then be 
linked to the other modules. 

History: 

12-11-87 RCB 
01-26-88 RCB 

first (l.Oa) 
make mods. for ap. note release (l.la) 

Copyright (C) 1988, Tranter Systems, Ltd. 
All rights reserved. 

;-----------------------------~----------------------------------------

page 
;----------------------------------------------------------------------Externals and Defs. 
;-------------~--------------------------------------------------------

3·140 

pgm_gate_array is an entry in the pgmlca module. this routine 
sequences the programming phases. 

extrn pgm_gate_array:near 

dsp str and dsp num are utility routines to display an ASCIIZ 
string and a decimal number, respectively. 

extrn 
extrn 

dsp str:near 
dsp=num:near 



Configuring the LCA from the PC Bus 

prog title 
prog=copyright 

equ 
equ 

'GAP: Gate Array Programmer, version 1.1 
'Copyright (c) 1987, Tranter Systems, Lt 

false 
true 
er 
1f 
eof 
null 
dos 
dos_program_terminate 
combase 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

0 
not false 
Odh 
Oah 
lah 
0 
21h 
4ch 
lOOh 

ok ret code 
bad ret code 

equ 
equ 

o ;program return codes 
1 

page 
;-----------------------------------------------------------------------

COM file header and program entry 
;-----------------------------------------------------------------------
code 

start: 
signon: 

stack: 

main 

segment para public 
assume cs:code,ds:code,es:code,ss:code 

combase 
main 

org 
jmp 
db 
db 

cr,prog title,cr,lf 
prog_copyright,cr,lf,lf ,null,eof 

dw 256 dup (?) 

proc 

mov ax,cs 
mov ds,ax 
mov es,ax 
cli 
mov ss,ax 
lea sp,stack 
sti 

lea 
call 
lea 
call 

dx,signon 

lea 

dsp str 
dx,pgm msg 
dsp_str 

di,gate_array_code 

;signon 

;now programming .•. 

;di -> bit stream structure 

the bit stream structure consists of 3 fields: a word count 
of the bits in the bit stream, a word count of the bytes needed 
to store the bit stream, and an array of bytes of the length 
indicated by the previous (second) field. 

3-141 

El 



done: 

main 

mov 
call 
lea 
call 
mov 
call 
lea 
call 

call 

lea 
mov 
jnc 
lea 
mov 

call 

mov 
int 

endp 

pgm msg: 
bit-msg: 
byte_msg: 
ok pgm msg: 
bad_pgili_msg: 

page 

Configuring the LCA from the PC Bus 

ax, [di] 
dsp num 
dx,bit msg 
dsp str 
ax,[di + 2) 
dsp num 
dx,byte msg 
dsp_str-

pgm_gate_array 

dx,ok_pgm_msg 
al,ok ret code 
done - -
dx,bad_pgm_msg 
al,bad_ret_code 

dsp_str 

ah,dos program terminate 
dos - -

;show bit length 

;show byte length 

;es:di -> bit stream structure 
;cy indicates error upon return 

;show error 

;al is still the return 

db 
db 
db 
db 
db 

'Programming gate array ••• 1 ,cr,lf,null 
•bits in stream.•,cr,lf,null 
•bytes in stream.•,cr,lf,null 
'Gate array programmed.',cr,lf,null 
'Programming failure.•,cr,lf,null 

;----------------------------------------------------------------------"Byte stream" 

The "*.BLB" file containing the "byte stream" (packed 
configuration bit stream) which was produced from the "*.RBT" 
file bit BitCon is included here. 

;----------------------------------------------------------------------
gate_array_code: include dummy.blb 

code 

3·142 

ends 
end start 

end of file 



page 
title 

Configuring the LCA from the PC Bus 

62,132 
DOWNLCA, LCA download routines (using PAL) 

;----------------------------------------------------------------------
APPENDIX 5 

DOWNLCA.asm 

DOWNLCA contains the hardware specific code for downloading 
a configuration bit stream to the LCA using the Tranter 
configuration PAL interface. 

The PAL interface gives us direct control over the D/-P, 
-RESET, and CCLK pins on the LCA. 

To place the LCA in program mode we set the D/-P low and 
toggle reset. We then release the D/-P pin and check to see 
that the LCA is still driving it low, signifying that it 
entered program mode. 

The CCLK pin is normally held high and is pulsed low as 
each configuration bit is sent. Each configuration bit is 
sent on SDO (bit o of the PC's data bus). Thus, the rising 
edge of CCLK occurs at the end of the write cycle. This is 
necessary as the PC doesn't drive write data until after the 
leading edge of the write signal. 

After the configuration bit stream has been sent we check 
to see if the LCA allowed D/-P to go high, signifying the 
end of configuration. 

This module may be placed in rom if so desired. 

History: 

12-11-87 
01-26-88 
04-11-88 

RCB 
RCB 
RCB 

first 
make mods. for ap. note release 
release dp pin after toggling 
reset 

Copyright (C) 1988, Tranter Systems, Ltd. 
All rights reserved. 

;----------------------------------------------------------------------
page 

;----------------------------------------------------------------------
Publics and Defs. 

;----------------------------------------------------------------------
public program lea 
public send lea bit 

;program/normal entry 
;send bit entry 

LCA programming codes passed between caller and program_lca 
entry point. 

3·143 

EJ 



Configuring the LCA from the PC Bus 

lea func normal 
lca=func~rogram 

equ 
equ 

0 
1 

srl rsc dta 
srl=dta=port 

equ 
equ 

3 
3 

;rsc data port (bi-directional) 
;board data port (out) 

This PAL configuration interface was designed into an existing 
port mapping scheme. For demo purposes, the base port to which 
the card containing the LCA responds is defined as an equate. 
The ports which control configuration are defined as offsets 
from this base port. 

base...-Port 
config ctl_port 
config=dta_port 

equ 
equ 
equ 

328h 
base_port + 2 
base_port + 3 

Control port bit assignments. The configuration PAL latches 
cl, co, and dpen during writes to the ctl port. The config. PAL 
drives data onto SDO during reads from this port. 

ctlbit record 
statbit record 

cl:l,cO:l,dpen:l,clt unused:5 
stat_unused:7,dp:l -

mode 

Control bits cl and co set PAL modes. The function implied 
by a given mode doesn't take effect until a subsequent write 
to the config dta_port (this scheme eliminates spiking on 
the control lines). 

idle 0 ;configuration PAL idle equ 
mode=program equ mask co + mask dpen ;set pgm mode 

;toggle reset mode reset equ mask cl + mask dpen 
mode-reset only equ mask cl II II without dp ' mode-cclk - equ mask cl + mask co ;send configuration bits 

page 
;-----------------------------------------------------------------------

module entry 
;-----------------------------------------------------------------------
code segment byte public 

assume cs:code 

;-------------------------------------------------~---------------------

3·144 

program_lca 

input: al 

output: nc 
cy 

program/normal function code 

function ok 
function failed 

we support two functions: set program mode, set normal mode. 
when we go to program mode we also pulse the lea's reset. 
when going to normal mode we check to make sure that the lea 
has allowed d/-p to go high, indicating programming finished. 



Configuring the LCA from the PC Bus 

saves all registers 
-----------------------------------------------------------------------

program_lca 

push 
push 

mov 

cmp 
jz 

proc 

ax 
dx 

dx,config_ctl_port 

al,lca func normal 
go_norrnal -

Program mode 

1. set program mode 
2. toggle reset 
3. check status of d/-p 
4. go to cclk mode 

mov al,mode_program 
out dx,al 
inc dx 
out dx,al 
dee dx 
mov al,mode_ reset 
out dx,al 
inc dx 
out dx,al 
dee dx 

mov al,mode_reset_only 

out dx,al 

in al,dx 
test al,mask dp 
stc 
jnz program_done 

mov al,mode_cclk 
out dx,al 
clc 
jmp short program_done 

Normal mode 

1. set PAL to idle mode 

;dx -> srl board control port 

;go to normal operation? 

;set program mode and assert d/-

;dx -> config data port 
;any write latches program mode 

;assert d/-p and enable -reset 

;any write here toggles -reset 

;stay in reset mode but stop 
;driving d/-p 

;get status of d/-p pin 
;bit should be low if in pgm mod 

;enable cclk for configuration b 

2. check d/-p to make sure lea took it high 
3. also output a zero to base port to disable all funcs. 

go_normal: 
mov 
out 

al,mode idle 
dx,al -

;shut-down programming PAL 

3-145 

El 



Configuring the LCA from the PC Bus 

inc 
out 

dx 
dx,al 

;dx -> board dta port 
;any write shuts down PA 

We write a o to the base port to disable all board functions. 
This is necessitated by the particular board and not by the 
demands of the configuration architecture. 

mov dx,base port 
xor al,al -
out dx,al 

check the d/-p pin 

mov 
in 
test 
jnz 
stc 

dx,config ctl port 
al,dx - -
al,mask dp 
program_done 

;get board status 
;check d/-p, should be high 

program_done: 
pop 
pop 
ret 

dx 
ax 

program_lca endp 

;-----------------------------------------------------------------------
send lea bit 

input: al, bit O = bit of configuration data 

output: nc 
cy 

bit sent ok 
error 

send a bit of configuration data to the lea. 
this routine must not be called unless the lea has been placed 
in program mode by the program_lca routine. 

saves all regs. 
;-----------------------------------------------------------------------
send lea bit proc 

push 

mov 
out 

clc 

pop 
ret 

send lea bit 

code ends 
end 

dx 

dx,config dta port 
dx,al - -

dx 

endp 

end of file 

3·146 

;send the bit, the pal 
;will toggle cclk 

for now we have no handshake 
on each bit so we can't determi 
whether or not an error occurre 



Configuring the LCA from the PC Bus 

APPENDIX 6 

page 
title 

62,132 
PGMLCA: Gate array programming module 

;----------------------------------------------------------------------
PGMLCA.asm 

PGMLCA sequences the phases of LCA programming. In general 
these phases include: 

o place LCA in program mode, toggle reset 
o check that the LCA entered program mode 
o send the configuration bit stream, one 

bit at a time 
o place the LCA in normal mode 
o check that the LCA is in normal mode 

PGMLCA may be placed in ROM, a DOS device driver, or other 
program. The caller passes a far pointer to a "byte stream", 
a packed configuration bit stream. The byte stream has the 
structure: 

word 
word 
byte [O .. M-1] 

# of bits in stream (N) 
# of bytes used to store stream (M) 
M bytes holding packed bit stream 

PGMLCA uses another module, DOWNLCA, to perform hardware­
dependent functions such as sending bits and setting program/ 
normal mode. 

History: 

12-11-87 RCB 
01-26-88 RCB 

first 
make mods. for ap. note release 

Copyright (C) 1988, Tranter Systems, Ltd. 
All rights reserved. 

;----------------------------------------------------------------------
page 

Publics, Externals, and Defs. 

public pgm_gate_array ;our entry 

program lea places the LCA in program/normal mode and 
reports-the success or failure of the function. send lea bit 
sends individual bits to the LCA. 

extrn 
extrn 

program lca:near 
send_lca_bit:near 

3·147 

El 



Configuring the LCA from the PC Bus 

lea programming codes passed between us and the program_lca 
entry point. 

lea func normal 
lca=func=program 

page 

equ 
equ 

0 
1 

;----------------------------------------------------------------------
module entry (pgm_gate_array) 

input: es:di -> bit stream structure 
es:[di] =word, bit stream length in bits 
es:[di+2] =word, bytes used to hold stream 
es:[di+4] ->array of bytes holding stream 

output: nc = programming ok 
cy = unable to program lea 

saves all regs 
;----------------~-----------------------------------------------------

code segment byte public 
assume cs:code 

pgm_gate_array proc 

push ax 
push bx 
push ex 
push di 

mov 
call 
jc 

mov 
add 

pgm_byte: 
mov 
mov 

inc 
pgm_bit: 

jcxz 
dee 
rol 
push 
and 
call 
pop 
jc 
dee 
jnz 
jmp 

3-148 

al,lca func program 
program_lca­
pgm_error 

cx,word ptr es: [di] 
di,4 

bl,8 
al,byte ptr es:[di] 

di 

pgm_done 
ex 
al,1 
ax 
al,1 
send lea bit 
ax 
pgm error 
bl -
pgm bit 
pgm=byte 

;set lea to programming mode 

;ex = number of bits to send 
;es:di -> byte array 

;8 bits/byte 
;al = packed array of bits 
;bit 7 is first to be sent 

;al, bit o, is bit to send 

;mask bit 
;and send 

;couldn't send bit 



Configuring the LCA from the PC Bus 

pgm_done: 

the LCA requires that three additional bits be sent after 
the configuration bit stream in order to complete configuration. 

call 
call 
call 

mov 
call 
jnc 

pgm_error: 

send lea bit 
send-lca--bit 
send-lea-bit 

al,lca func normal 
program lca­
pgm_finished 

;set lea to normal operation 

stc ;set error return code 

pgm_finished: 
pop di 
pop ex 
pop bx 
pop ax 
ret 

pgm_gate_array endp 

code ends 
end 

end of file 

3·149 

EJI 



. , 
title 
pattern 
revision 
author 
company 
date 
chip 

Configuring the LCA from the PC Bus 

APPENDIX 7 

LCA Programming PAL 
conf ig 
B 
Robert Botchek 
Trantor Systems, Ltd 
January 26, 1988 
config pall618 

bdsel ao al a2 iow ior d5 d6 d7 gnd 
nc /reset /dpen /cl /co /len /dpout /dp /cclk vcc 

equations 

cl and co are latching outputs which are used as function selects. 
they are latched during a write to baseport+2. the meaning of the 
function selects are defined: 

cl co code function 
--------

0 0 0 releases d/-p for normal lea operation 
0 1 1 assert lea program (d/-p low) 
1 0 2 toggle -reset mode 
1 1 3 toggle cclk mode 

cl and co will glitch during latching and so should not be used 
as direct inputs to a combinatorial output. 

cl /bdsel * /a2 * al * /aO * /iow * d7 
+ bdsel * cl 
+ a2 * cl 
+ /al * cl 
+ ao * cl 
+ iow * cl 

cl.trst vcc 

co /bdsel * /a2 * al * /aO * /iow * d6 
+ bdsel * co 
+ a2 * co 
+ /al * co 
+ ao * co 
+ iow * co 

cO.trst vcc 

: dpen latches similarly to cl and co. when asserted it enables the 
: dp pin. 

dpen 

3·150 

+ 
+ 
+ 
+ 
+ 

/bdsel * /a2 * al * /aO * /iow * d5 
bdsel * dpen 
a2 * dpen 
/al * dpen 
ao * dpen 
iow * dpen 



Configuring the LCA from the PC Bus 

dpen.trst vcc 

dp drives the d/-p input on the lea. when at vcc, the lea operates 
normally (assuming it has been programmed). when at gnd, the lea 
is in a program mode. 

d/-p is latched during functions 1 and 2 of (<cl,cO> = <O,l> or 
<cl,cO> = <l,O>) and any write to baseport+3 is given. an assertion 
of d/-p also enables the d/-p output. 

dp 
+ 
+ 
+ 
+ 
+ 
+ 

/bdsel * /a2 * al * ao * /iow * /cl * co 
/bdsel * /a2 * al * ao * /iow * cl * /cO 
bdsel * dp 
a2 * dp 
/al * dp 
/aO * dp 
iow * dp 

dp.trst dpen 

; reset drives the -reset line on the lea. it is asserted only during 
; a write to baseport+3 when function code 2 is selected. 

reset 
reset.trst 

/bdsel * /a2 * al * ao * /iow * cl * /co 
vcc 

cclk is the configuration clock used by the lea to latch incoming 
configuration data. the lea latches data on the rising edge of cclk. 
we keep cclk high all the time and only lower it during a write to 
baseport+3 when function code 3 is selected. thus, at the end of 
the write cycle the data will be latched. 

note: data is written to baseport+3, not baseport+2. this simplifies 
the timing of the cclk enable and the data output. 

cclk 
cclk.trst 

/bdsel * /a2 * al * ao * /iow * cl * co 
vcc 

len enables the board status latch onto the pc's data bus, it also 
enables the dpout output (below). 

board status includes the condition of the lea's done/-program 
(d/-p) pin, etc. 

len 
len.trst 

/bdsel * /a2 * al * /aO * /ior 
vcc 

; dpout drives data onto the pc•s data bus during a read from base 
; port+2 as enabled by len. dpout indicates program mode when high. 

dpout 
dpout.trst 

/dp 
len 

3·151 

El 





l1 
Advanced 

Micro 
Devices 

4·1 



Table of Contents Section 4 
Product Information 

Section 4 Product Information .................................................................................................................. 4-1 
Logic Cell™ Array M2064/M2018 ................................................................................................................. 4-3 
3000 Series Family of Programmable Gate Arrays ..................................................................................... 4-43 
LCA-MDS21 

XACT Design Editor System ........................................................................................................... 4-116 
LCA-MDS22 

P-SILOS Simulator .......................................................................................................................... 4-119 
LCA-MDS23 

Automatic Design Implementation ................................................................................................... 4-120 
LCA-MDS24, LCA-MDS26, LCA-MDS27 

XACTOR In-Circuit Emulator ........................................................................................................... 4-121 
LCA-MDS31/LCA-MDS33/LCA-MDS34/LCA-MDS35 

Schematic Design Entry Interface for Futurenet, Daisy, Mentor, OrCAD ...................................... ..4-122 
LCA-MDS151/LCA-MDS152 

PGA Development System/PGA Design Entry System .................................................................. .4-124 
LCA-MDS135 

OrCAD/SDT Ill PGA Design Entry System and Interface ................................................................ 4-134 
LCA-MEK01 

Logic Cell Array Evaluation Kit ........................................................................................................ 4-141 



Logic Cell™ Array 
M2064/M2018 

Features/Benefits 
• CMOS programmable Logic Cell Array (LCA) for replacement 

of standard logic 

• Completely reconfigurable by the user in the final system 

• High performance equivalent to TTL SSl/MSI 

- 33 MHz flip-flop toggle rate (-33 speed grade) 

- 50 MHz flip-flop toggle rate (-50 speed grade) 

- 70 MHz flip-flop toggle rate (·70 speed grade) 

• User configurable logic functions, interconnect and 1/0 for 
maximum flexiblllty 

• 641100 user-Configurable Logic Blocks (CLBs) providing 
usable gate equivalency of up to 1200/1800 gates 

• 58174 individually-configurable 110 pins allowing any mix of 
inputs, outputs or bidirectional signals (68184-pin package) 

• User -selectable TTL or HCMOS input threshold levels 

• Multiple configuration modes for greatest flexibility and 
ease-of-use 

• Verification feature allows user to check configuration data 

• User-selectable security feature prevents read-back of 
configuration data 

• Read-back of internal register states for system debug 

• On-chip clock oscillator and clock buffer circuits provide 
flexible internal and external clocking functions 

• Master reset of all Internal register elements in addition to 
user-configurable Reset and/or Set control of Individual CLB 
storage elements 

• Complete development system support 

General Description 
The Logic Cell Array (LCA) is a high-density CMOS-integrated 
circuit available from Monolithic Memories. Its user­
programmable array architecture is made up of three types of 
configurable elements: Input/Output Blocks, Logic Blocks and 
Interconnect. The designer can define individual 1/0 blocks for 
interface to external circuitry, define logic blocks to implement 
logic functions and define interconnection network to compose 
larger scale logic functions. The XACT™ Development system 
provides interactive graphic design capture and automatic 
routing. Both logic simulation and in-circuit emulation are 
available for design verifi.cation. 

The Logic Cell Array is available in a variety of logic capacities, 
package styles, temperature ranges and speed grades. 

LOGIC CON FIG- CONFIG· 
PART CAPACITY URABLE USER URATION 

NUMBER (USABLE LOGIC I/Os PROGRAM 
GATES) BLOCKS (BITS) 

M2064 1200 64 58 12040 

M2018 1800 100 74 17880 

The Logic Cell Array's logic functions and interconnections are 
determined by data stored in inlernal static memory cells. On­
chip logic provides for automatic loading of configuration data 
at power-up. The program data can reside in an EEPROM, 
EPROM or ROM on the circuit board or on a floppy disk or hard 
disk. The program can be loaded in a number of modes to 
accommodate various system requirements. 

Package Availability 

48-PIN 
68-PIN 68-PIN 84-PIN 84·PIN 

PART PLASTIC 
'PLCC PGA PLCC PGA 

NUMBER DIP 
NL68 P68 NL84 P84 

N48 

M2064 x x x 
M2018 x x x x 

Ordering Information 

M2018-70 C NL 84 

PART NUMBER~ [NUMBER OF PINS 
2064 (1200 Gates, 58 IOB) 48 (48 Pins) 
2018 (1800 Gates, 74 IOB) 68 (68 Pins) 

84(84Pins) 
SPEED GRADE---~ 

-33 (33 MHz Toggle Rate) PACKAGE TYPE 
-50 (50 MHz Toggle Rate) NL = Pin Molded Chip 
-70 (70 MHz Toggle Rate) carrier 

P = Pin Grid Array 
N = Pin Mol~ DIP 

~---TEMPERATURE RANGE 
c = Commercial 
M = Miiitary 

XILINX™, XACT™, XACTOR™, Logic Cell™ Array and Logic Processor™ are 
trademarks of XILINX Inc. 

IBM® is a registered trademark of International Business Machines Corporation. 

PC™, PC·ATTM and PC·XTTM are trademarks of International Business Machines 
Corporation. 

P·SILOS™ is a trademark of SimuCad Corporation. 

MS·DOS™ is a trademark of Microsoft Corporation. 

Portions of this Data Sheet reproduced with the permission of XILINX Inc. 

10352A 
JANUARY 1988 

4.3 



M2064/M2018 

Pin Description 
PWRDWN 
An active low power-down input stops all internal activity to 
minimize VCC power and puts all output buffers in a high­
impedance state. Configuration is retained, however, internal 
storage elements are Reset. When the PWRDWN pin returns 
HIGH, the device returns to operation with the same sequence 
of reset, buffer enable and DONE, PROGRAM as at the 
completion of configuration. 

MO,RTRIG 
As Mode 0, this input and M1, M2 are sampled before the start 
of configuration to establish the configuration mode to be 
used. 

As a read trigger, an input transition to a HIGH, after 
configuration is complete, will initiate a readback of 
configuration and storage element data. This operation may be 
limited to a single request, or be inhibited altogether, by 
selecting the appropriate readback option when generating the 
bit stream. 

M1,RDATA 
As Mode 1, this input and MO, M2 are sampled before the start 
of configuration to establish the configuration mode to be 
used. 

As an active-low read data; after configuration is complete, 
this pin is the output of the readback data. 

M2 
As Mode 2, this input and MO, M1 are sampled before the start 
of configuration to establish the configuration, mode to be 
used. After configuration, this pin becomes a user-pro­
grammable 1/0. 

HOC 
High during configuration is held at a HIGH level by the LCA 
until after configuration. It is intended to be available as a 
control indication that configuration is not complete. After 
configuration, this pin is a user 1/0. 

LDC 
Low during configuration is held at a LOW level by the LCA until 
after configuration. It is intended to be available as a control 
indication that configuration is not completed. It is particularly 
useful in master mode as a LOW enable for an EPROM. After 
configuration, this pin is a user 1/0. If used as a LOW EPROM 
enable, it should be programmed as a HIGH after 
configuration. 

RESET 
This is an active-low input which has three functions. Prior to 
the start of configuration, a LOW input will delay the start of the 
configuration process. An internal circuit senses the 
application of power and begins a minimal time-out cycle on the 
order of 100 ms. When the time-out and RESET are complete, 
the levels of the "M" mode lines are sampled and configuration 
begins. If RESET is asserted during a configuration, the LCA is 
reinitialized and will restart the configuration at the termination 
of RESET. If RESET is asserted after configuration is 
complete, it will provide an asynchronous reset of all 108 and 
CLB storage elements of the LCA. 

4.4 

DONE,PROG 
The DONE open drain output is configurable with or without a 
pull-up resistor of about 3 KO. At the completion of con­
figuration, the circuitry of the LCA becomes active in a 
synchronous order and one configuration clock cycle later 
DONE is asserted. Once configuration is done, a HIGH-to­
LOW transition of this program pin will cause an initialization of 
the LCA and start a reconfiguration if that mode is selected in 
the current configuration. 

XTL1 
This user 1/0 pin may be configured to operate as the output of 
an amplifier usable with an external crystal and bias circuitry to 
form an oscillator. 

XTL2 
This user 1/0 pin may be configured to operate as the input of 
an amplifier usable with an external crystal and bias circuitry to 
form an oscillator. 

CCU< 
During configuration, configuration clock is an output of an 
LCA in either master or peripheral mode. LCAs in slave mode 
use it as a clock input. During a readback operation, it is an 
input clock for the configuration data being output. 

DOUT 
This user 1/0 pin is used during configuration to output serial 
configuration data out for daisy-chained slaves' data in. 

DIN 
This user 1/0 pin is used as serial data in during slave or 
peripheral configuration. This pin is DO in master configuration 
mode. 

CSO, CS1, CS2, WRT 
These four inputs represent a set of signals, three active low 
and one active high, which are used in the peripheral mode to 
control configuration data entry. The assertion of all four 
generates a LOW CCLK and shifts DOUT data. The removal of 
any assertion clocks in the DIN data present and causes a 
HIGH CCLK. In master mode, these pins become part of the 
parallel configuration byte (D4, 03, D2, D1 ). After configuration 
is complete, they are user-programmed 1/0. 

RCLK 
During master mode configuration, this pin represents a read 
clock of an external memory device. After configuration is 
complete, this pin becomes a user-programmed 1/0. 

00-07 
This set of eight pins represents the parallel configuration data 
byte for the master mode. After configuration is complete, they 
are user-programmed 1/0. 

AO-A15 
This set of sixteen pins presents an address output for an 
external configuration memory during master mode. After 
configuration is complete, they are user-programmed 1/0. A 12 
through A 15 are not available in packages with less than sixty­
eight pins. 

1/0 
A pin which may be programmed by the user to be input and/or 
output following configuration. Some of these pins present a 
high-impedance pull-up or perform other functions before 
configuration is complete. 



M2064/M2018 

Functional Description 
The general structure of a Logic Cell Array is shown in Figure 1. 
The elements of the array include three categories of user­
programmable elements: 1/0 Blocks, Configurable Logic 
Blocks and Programmable Interconnections. The 1/0 Blocks 
provide an interface between the logic array and the device 
package pins. The Configurable Logic Blocks perform user­
specified logic functions, and the interconnect resources are 

CONFIGURABLE 

programmed to form networks that carry logic signals among 
blocks. 

Configuration of the Logic Cell Array is established through a 
distributed array of memory cells. The XACT development 
system generates the program used to configure the Logic Cell 
Array. The Logic Cell Array includes logic to implement 
automatic configuration. 

LOGIC BLOCK~ 

0 0 -[} 0 0 
-[} 0 O!O 0 -[} 

INTERCONNECT AREA 

-[} 0 OlO 0 -[} 
-[} 0 0 0 0 -[} I 

Figure 1. Logic Cell Array Structure 

Configuration Memory 

The configuration of the Monolithic Memories' Logic Cell Array 
is established by programming memory cells which determine 
the logic functions and interconnections. The memory loading 
process is independent of the user logic functions. 

The static memory cell used for the configuration memory in 
the Logic Cell Array has been designed specifically for high 
reliability and noise immunity. Based on this design, integrity of 
the LCA configuration memory is assured even under adverse 
conditions. Compared with other programming alternatives, 
static memory provides the best combination of high density, 
high performance, high reliability and comprehensive 
testability. As shown in Figure 2, the basic memory cell 
consists of two CMOS inverters plus a pass transistor used for 
writing data to the cell. The cell is only written during 

configuration and only read during readback. During normal 
operation the pass transistor is "off" and does not affect the 
stability of the cell. This is quite different from the normal 
operation of conventional memory devices, in which the cells 
are continuously read and written. 

The outputs Q and Q control pass-transistor gates directly. 
The absence of sense amplifiers and the output capacitive 
load provide additional stability to the cell. Due to the structure 
of the configuration memory cells, they are not affected by 
extreme power supply excursions or very high levels of alpha 
particle radiation. In reliability testing no soft errors have been 
observed, even in the presence of very high doses of alpha 
radiation. 

4-5 

a 



M2064/M2018 

READ or WRITE 

DATA 

t---+--,~- a 
CONFIGURATION 
CONTROL 

Figure 2. Configuration Memory Cell 

Input/Output Block 

Each user-configurable 1/0 block (IOB) provides an interface 
between the external package pin of the device and the 
internal logic. Each 1/0 block includes a programmable input 
path and a programmable output buffer. It also provides input 
clamping diodes to provide protection from electrostatic 
damage, and circuits to protect the LCA from latch-up due to 
input currents. Figure 3 shows the general structure of the 1/0 
block. 

The input buffer portion of each 1/0 block provides threshold 
detection to translate external signals applied to the package 
pin to internal logic levels. The input buffer threshold of the 1/0 
blocks can be programmed to be compatible with either TTL 
(1.4 V) or CMOS (2.2 V) levels .. The buffered input signal drives 
both the data input of an edge-triggered D-type flip-flop and 
one input of a two-input multiplexer. The output of the flip-flop 

D Qt---~ 

provides the other input to the multiplexer. The user can select 
either the direct input path or the registered input, based on the 
content of the memory cell controlling the multiplexer. The 1/0 
blocks along each edge of the die share common clocks. The 
flip-flops are reset during configuration as well as by the 
active-low chip RESET input. 

Output buffers in the 1/0 blocks provide 4-mA drive for high 
fan-out CMOS or TTL-compatible signal levels. The output data 
(driving 1/0 block pin 0) is the data source for the 1/0 block 
output buffer. Each 1/0 block output buffer is controlled by the 
contents of two configuration memory cells which turn the 
buffer ON or OFF or select logical three-state buffer control. 
The user may also select the output buffer three-state control 
(1/0 block pin TS). When this 1/0 block output control signal is 
HIGH (a logic "1 ") the buffer is disabled and the package pin is 
high-impedance. 

TS (OUTPUT ENABLE) 

OUT 

IN 

l/OCLOCK 
PROGRAM-CONTROLLED 

= MULTIPLEXER 

Figure 3. 1/0 Block 

4·6 



M2064/M2018 

Configurable Logic Block 

An array of Configurable Logic Blocks (CLBs) provides the 
functional elements from which the user's logic is constructed. 
The logic blocks are arranged in a matrix in the center of the 
device. The M2064 has sixty-four such blocks arranged in an 
eight-row by eight-column matrix. The M2018 has one hundred 
logic blocks arranged in a ten by ten matrix. Each logic block 
has a combinatorial logic section, a storage element, and an 

A 
B 

COMB. INPUTS c LOGIC 
D 

ill 
>~ 
:!:<·:«•:•:.:O:•:·~:<<•'.•:«•:•:«•:.'h!.:-..._:.:-!-:•»Y.-."-:<<<<<~"! 

G 

F 

internal routing and control section. Each CLB has four 
general-purpose inputs; A, B, C and D; and a special clock 
input (K), which may be driven from the interconnect adjacent 
to the block. Each CLB also has two outputs, X and Y, which 
may drive interconnect networks. Figure 4 shows the 
resources of a Configurable Logic Block. 

x 

OUTPUTS 

y 

K 
CLOCK 

Figure 4. Configurable Logic Block 

The logic block combinatorial logic uses a table look-up 
memory to implement Boolean functions. This technique can 
generate any logic function of up to four variables with a high­
speed sixteen-bit memory. The propagation delay through the 
combinatorial network is independent of the function 

generated. Each block can perform any function of four 
variables or any two functions of three variables each. The 
variables may be selected from among the four inputs and the 
block's storage element output "Q". Figure 5 shows various 
options which may be specified for the combinatorial logic. 

B--<'----1 

C--;;;----1 

D 

Nf'f 
FUNCTION 

OF4 
VARIABLES 

OPTION! 

1 FUNCTION OF 4 
VARIABLES 

A 

B 

F C 

D 

D 

ANY 
FUNCTION 

OF3 
VARIABLES 

ANY 
FUNCTION 

OF3 
VARIABLES 

OPTION2 

2 FUNCTIONS OF 3 
VARIABLES 

G 

A-•-----t 
B-<••----1 

c-•1----; 
D 

A-''----1 

e-.. ----1 

c-.:,----1 

D 

ANY 
FUNCTION 

OF3 
VARIABLES 

ANY 
FUNCTION 

OF3 
VARIABLES 

OPTION3 

DYNAMIC SELECTION OF 
2 FUNCTIONS OF 3 

VARIABLES 

Figure 5. CLB Combinatorial Logic Options 

B 

G 



M2064/M2018 

If the single four-variable configuration is selected (Option 1 ), 
the F and G outputs are identical. If the two-function 
alternative is selected (Option 2), logic functions F and G may 
be independent functions of three variables each. The three 
variables can be selected from among the four logic block 
inputs and its storage element output Q. A third form of the 
combinatorial logic (Option 3) is a special case of the two­
function form in which the B input dynamically selects between 
the two function tables providing a single merged logic function 
output. This dynamic selection allows some five-variable 
functions to be generated from the four block inputs and 
storage element Q. Combinatorial functions are restricted in 
that one may not use both its storage element output Q and the 
input variable of the logic block pin D in the same function. 

If used, the storage element in each Configurable Logic Block 
(Figure 6) can be programmed to be either an edge-sensitive 
D-type flip-flop or a level-sensitive D latch. The clock or enable 
for each storage element can be selected from: 

• The special-purpose clock input K 

• The general-purpose input C 

• The combinatorial function G 

SET 

F --------~ D Q 

K --<''----l~ 
c--,~-----1 

RES 

Figure 6. CLB Storage Element 

The user may also select the clock active sense within each 
logic block. This programmable inversion eliminates the need 
to route both phases of a clock signal throughout the device. 

The storage element data input is supplied from the function F 
output of the combinatorial logic. Asynchronous SET and 
RESET controls are provided for each storage element. The 
user may enable these controls independently and select their 
source. They are active-high inputs and the asynchronous 
reset is dominant. The storage elements are reset by the 
active-low chip RESET pin as well as by the initialization phase 
preceding configuration. If the storage element is not used, it 
is disabled. 

4-8 

The two block outputs, X and Y, can be driven by either the 
combinatorial functions, F or G, or the storage element output 
Q (Figure 4). Selection of the outputs is completely 
interchangeable and may be made to optimize routing 
efficiencies of the networks interconnecting the logic blocks 
and 1/0 blocks. 

Programmable Interconnect 

Programmable interconeciion resources in the Logic Cell Array 
provide routing paths to connect inputs and outputs of the 1/0 
and logic blocks into desired networks. All interconnections 
are composed of metal segments, with programmable 
switching points provided to implement the necessary routing. 
Three types of resources accommodate different types of 
networks: 

• General purpose interconnect 

•Long lines 

• Direct connection 

General-Purpose Interconnect 

General-purpose interconnect, as shown in Figure ?a, is 
composed of four horizontal metal segments between the rows 
and five vertical metal segments between the columns of logic 
and 1/0 blocks. Each segment is only the "height" or "width" of 
a logic block. Where these segments would cross at the 
intersections of rows and columns, switching matrices are 
provided to allow interconnections of metal segments from the 
adjoining rows and columns. Switches in the switch matrices 
and on block outputs are specially designed transistors, each 
controlled by a configuration bit. 

B 
c 
K 

e_ 
.~--~ 

I 

_J SEE FIG. 7b 

e 

Figure 7a. General-Purpose Interconnect 



M2064/M2018 

Logic block output switches provide contacts to adjacent 
general interconnect segments and therefore to the switching 
matrix at each end of those segments. A switch matrix can 
connect an interconnect segment to other segments to form a 
network. Figure 7a shows the general interconnect used to 
route a signal from one logic block to three other logic blocks. 
As shown, combinations of closed switches in a switch matrix 
allow multiple branches for each network. The inputs of the 
logic or 1/0 blocks are multiplexers that can be programmed 
with configuration bits to select an input network from the 
adjacent interconnect segments. Since the switch 
connections to block inputs are undirectional (as are block 
outputs) they are usable only for input connections. The 
development system software provides automatic routing of 
these interconnections. Interactive routing is also available for 
design optimization. This is accomplished by selecting a 
network and then toggling the states of the interconnect points 
by selecting them with the "mouse". In this mode, the 
connections through the switch matrix may be established by 

selecting pairs of matrix pins. The switching matrix 
combinations are indicated in Figure 7b. 

Special buffers within the interconnect area provide periodic 
signal isolation and restoration for higher general interconnect 
fan-out and better performance. The repowering buffers are 
bidirectional, since signals must be able to propagate in either 
direction on a general interconnect segment. Direction controls 
are automatically established by the Logic Cell Array 
development system software. Repowering buffers are 
provided only for the general-purpose interconnect since the 
direct and long-line resources do not exhibit the same R-C 
delay accumulation. The Logic Cell Array is divided into nine 
sections with buffers automatically provided for general 
interconnect at the boundaries of these sections. These 
boundaries can be viewed with the development system. For 
routing within a section, no buffers are used. The delay 
calculator of the XACT development system automatically 
calculates and displays the block, interconnect and buffer 
delays for any selected paths. 

5-VERTICAL GENERAL INTERCONNECT 

2 

8 

7 

6 5 

3 

4 3 

2 

8 3 4 

7 4 

6 5 

TO 1 

2 

3 

4 

3 

4 

2 

FROM 
2 3 4 

1 • VALID CONNECTION 
0 ~ INVALID CONNECTION 

Figure 7b. Interconnection Switching Matrix 

4-HORIZONTAL 
GENERAL 
INTERCONNECT 

El 



M2064/M2018 

Long Lines 

Long lines, shown in Figure 8a, run both vertically and 
horizontally the height or width of the interconnect area. Each 
vertical interconnection column has two long lines; each 
horizontal row has one, with an additional long line adjacent to 
each set of 1/0 blocks. The long lines bypass the switch 
matrices and are intended primarily for signals that must travel 
a long distance or must have minimum skew among multiple 
destinations. 

B 
J SWITCH1 

MATRIX 
1 J 

:B 
J L 

SWITCH 
MATRIX 

L J 

B 
TWO VERTICAL 

LONG LINES 

A global buffer in the Logic Cell Array is available to drive a 
single signal to all B and K inputs of logic blocks. Using the 
global buffer for a clock provides a very low skew, high fan-out 
synchronized clock for use at any or all of the logic blocks. At 
each block, a configuration bit for the K input to the block can 
select this global line as the storage element clock signal. 
Alternatively, other clock sources can be used. 

B 
B 
B 

GLOBAL 
LONG LINE 

HORIZONTAL 
LONG LINE 

Figure Ba. Long Line Interconnect 

A second buffer below the bottom row of the array drives a 
horizontal long line which, in turn, can drive a vertical long line 
in each interconnection column. This alternate buffer also has 
low skew and high fan-out capability. The network formed by 
this alternate buffer's long lines can be selected to drive the B, 

4.10 

C or K inputs of the logic blocks. Alternatively, these long lines 
can be driven by a logic or 1/0 block on a column-by-column 
basis. This capability provides a common, low-skew clock or 
control line within each column of logic blocks. Interconnec­
tions of these long lines are shown in Figure 8b. 



GLOBAL 
BUFFER 

VERTICAL LONG LINES 
(2 PER COLUMN) 

u 
u 
u 
u 
u 
L1 

VO CLOCKS 
(1PEREOGE) 

u 
u 
(l 

u 
0 

El 

M2064/M2018 

u 
u 
u 
u 
Li 
u 

HORIZONTAL LONG LINES 
(1 PERROW) 

u u 
u (l 

u u 
u Li 
u 0 

Li Li 

u 
u 
u 
u 
Li 
u 

ALTERNATE 
BUFFER 

Figure Sb. M2064 Long Lines, 1/0 Clocks, 1/0 Direct Interconnect 

VO CLOCKS 
(1 PER EDGE) 

OSCILLATOR 
AMPLIFIER 

G 
w z 

i 
;!!; ... 
C) 

~ 

~ 
Si! 

El 

4·11 



M2064/M2018 

Dtn!ct Interconnect 

Direct interconnect, shown in Figure 9, provides the most 
efficient implemer·tation of networks between adjacent logic or 
110 blocks. Signals routed from block to block by means of 
direct interconnect exhibit minimum interconnect propagation 
and use minimum interconnect resources. For each CLB, the X 
output may be connected directly to the C or D inputs of the 
CLB above and to the A or B inputs of the CLB below it. The Y 

output can use direct interconnect to drive the B input of the 
block immediately to its right. Where logic blocks are adjacent 
to 1/0 blocks, direct connect is provided to the 110 block input 
(I) on the left edge of the die, the output (0) on the right edge, 
or both on 1/0 blocks at the top and bottom of the die. Direct 
interconnections of 110 blocks with CLBs are shown in Figure 
Sb. 

Figure 9. Direct Interconnect 

Crystal Osclllator 

An internal high-speed inverting amplifier is available to 
implement an on-chip crystal oscillator. It is associated with 
the auxiliary clock buffer in the lower right corner of the die. 
When configured to drive the auxiliary clock buffer, two special 
adjacent user 1/0 blocks are also configured to connect the 
oscillator amplifier with external crystal oscillator components, 
as shown in Figure 10. This circuit becomes active before 
configuration is complete in order to allow the oscillator to 
stabilize. Actual internal connection is delayed until completion 
of configuration. The feedback resistor R1 between output and 
input, biases the amplifier at threshold. It should be as large a 
value as .practical to minimize loading of the crystal. The 
inversion of the amplifier, together with the R-C networks and 
crystal, produces the 360-degree phase shift of the Pierce 
oscillator. 

4·12 

A series resistor R2 may be included to add to the amplifier 
output impedance when needed for phase-shift control or 
crystal resistance matching or to limit the amplifier input swing 
to control clipping at large amplitudes. Excess feedback 
voltage may be adjusted by the ratio of C2/C1. The amplifier is 
designed to be used over the range from 1 MHz up to one-half 
the specified CLB toggle frequency. Use at frequencies below 
1 MHz may require individual characterization with respect to a 
series resistance. Operation at frequencies above 20 MHz 
generally requires a crystal to operate in a third overtone 
mode, in which the fundamental frequency must be 
suppressed by the R-C networks. When the amplifier does not 
drive the auxiliary buffer, these 1/0 blocks and their package 
pins are available for general user 1/0. 



M2064/M2018 

ALTERNATE 
CLOCK BUFFER 

SUGGESTED COMPONENT VALUES 
R1 1-4Mn 
R2 0-1 Kn 

XTAL2 
(IN) 

(may be required for low frequency, phase 
shift and/or compensation level for crystal Q) ~ C1 

C1, C2 5-20 pf 
Y1 1-10 MHz AT cut 

ON-CHIP 

D 
D 

Figure 10. Crystal Oscillator 

Power 
Power Distribution 

EXTERNAL 

XTAL1 XTAL2 

48DIP 33 30 

68 PLCC 46 43 

68 PGA J10 L10 

84 PLCC 56 53 

84 PGA K11 L11 

Power for the LCA is distributed through a grid to achieve high 
noise immunity and isolation between logic and 1/0. For 
packages having more than tourty-eight pins, two VCC pins 
and two ground pins are provided (see Figure 11 ). Inside the 
LCA, a dedicated VCC and ground ring surrounding the logic 
array provides power to the 1/0 drivers. An independent matrix 
of VCC and ground lines supplies the interior logic of the 
device. This power distribution grid provides a stable supply 
and ground tor all internal logic, providing the external package 
power pins are appropriately decoupled. Typically a 0.1-µF 

capacitor connected between the VCC and ground pins near 
the package will provide adequate decoupling. 

Vee 

Output butters capable of driving the specified 4-mA loads 
under worst-case conditions may be capable of driving 25 to 30 a 
times that current in a best case. Noise can be reduced by -
minimizing external load capacitance and reducing 
simultaneous output transitions in the same direction. It may 
also be beneficial to locate heavily-loaded output buffers near 
the ground pads. Multiple VCC and ground pin connections are 
required for package types which provide them. 

GND 

+--+- -+--+--+--+--+--+ 
' . ' . 

+--+- -+- -+- -+- -+- -+--+ 
I a I I I I I I 
I ~ I I I I I I 

+- -+- -+- -+- -+- -+- -+--+ 
I I I I I I I 
I I B I I I I 

+--+--+--+--+--+--+--+ 
I I I I I I I I 
I I I I I I I I 

+--+--+--+--+--+--+--+ 
: : : : : I _ _.;'-tti""--. 

+--+--+--+--+-- --+--+ 
I I I I I I 
I I I I I 

+--+--+--+--+--+--+--+ 
I I I I I 
a I I I I 

+--+--+--+--+--+--+--+ 

GND 

Figure 11. LCA Power Distribution 

GROUND AND 
Vee RING FOR 
1/0 DRIVERS 

LOGIC POWER GRID 

4-13 



M2064/M2018 

Power Dissipation 

The Logic Cell Array exhibits the low power consumption 
characteristic of CMOS ICs. Only quiescent power is required 
for the LCA configured for CMOS input levels. The TTL input 
level configuration option requires additional power for level 
shifting. The power required by the static memory cells which 
hold the configuration data is very low and may be maintained 
in a power-down mode. 

Typically most of power dissipation is produced by capacitive 
loads on the output buffers, since the power per output is 25 
µW/pF/MHz. Another component of 1/0 power is the DC loading 
on each output pin. For any given system, the user can 
calculate the power requirement based on the resistive loading 
of Ifie devices driven by the Logic Cell Array. 

(mW) 

Internal power supply dissipation is a function of clock 
frequency and the number of nodes changing on each clock. In 
an LCA the fraction of nodes changing on a given clock is 
typically low (10-20%). For example, in a 16-bit binary counter, 
the average clock produces a change in slightly less than two 
of the sixteen bits. In a 4-input AND gate there will be two 
transitions in sixteen states. Typical global clock buffer power 
is about 3 mW/MHz for the M2064 and 4 mW/MHz for the 
M2018. With a "typical" load of three general interconnect 
segments, each CLB output requires about 0.4 mW/MHz of its 
output frequency. Graphs of power versus operating fre­
quency are shown in Table 1. 

100 
90 

80 
70 

60 

50 

40 

30 

20 

10 

6 

(mA) 

1-rr----z-L_..__..Ll....,L_....._. __ --1.z __ _.__..__._~ .s 
3 L~~SE~~~ ')Jf----+7-'----+--/-'+---il--+---z.__,,.+-----i--+---+-I- ~ 

EACH 3 -7! LJJZ 7 z .& 

4-14 

2 +_L_-+-~z.__-+--1---+-.1"1-v __ -1----+---1-~ .s IL' z 17 .• 
(3mWIMHz) .IJl--Ll-~'----l--/-l-17-i----~--l----l-----+--l--.l-.a 

GLOBAL CLOCK V° 
BUFFER 

1+[;7"~-+~~vl-.-c--l-+--4~~+--~-l---l---l-l-2 

(125mW/MHz) / L 
11/00UTPur 

(SOpFlo.s +---+..---+---t-.....,1-+----+---.....,1--+--+-t-
o.s 7 10 20 30 40 50 

(0.4mWiMHz) / 
FREQUENCY MHz 

1 CLBOUTPur 
3LOCAL 

INTERCONNECT 

Table 1. Typical LCA Power Consumption by Elament 



M2064/M2018 

Programming 
Configuration data to define the function and interconnection 
within a Logic Cell Array are loaded automatically at power-up 
or upon command. Several methods of automatically loading 
the required data are designed into the Logic Cell Array and are 
determined by logic levels applied to mode selection pins at 
configuration time. The form of the data may be either serial or 
parallel, depending on the configuration mode. The pro­
gramming data are independent of the configuration mode 

selected. The state diagram of Figure 12 illustrates the 
configuration process. 

POWER APPLIED 

1 
POWER-ON-RESET 

TIME DELAY 

RESET 
ASSERTED 

FIRSTCCLK 
ORWRTCYCLE 

(RESET 
UNASSERTED) 

Input thresholds for user 1/0 pins can be selected to be either 
TTL-compatible or CMOS-compatible and remain in that state 
until the LCA begins operation. If the user has selected CMOS 
compatibility, the input thresholds are changed to CMOS levels 
during configuration. 

CONFIGURATION 
DONE 

DONEIPROG LOW 
TRANSITION 
(RE PROGRAMMABILITY 
OPTION DISABLED) 

DONEIPROG LOW TRANSITION 
(REPROGRAMMABILITY OPTION ENABLED) 

Figure 12. Configuration State Diagram 

Figure 13 shows the specific data arrangement for the M2064 
device. Future products will use the same data format to 
maintain compatibility between different devices of the 
Monolithic Memories' product line, but they will have different 
sizes and numbers of data frames. For the M2064 

configuration requires 12,038 bits for each device. For the 
M2018, the configuration of each device requires 17,878 bits. 
The M2064 uses 160 configuration data frames and the M2018 
uses 197. 

1111 
0010 
< 24-BIT LENGTH COUNT> 
1111 

0 <DATA FRAME #001 > 111 
0 <DATAFRAME#002> 111 
0 <DATAFRAME#003> 111 

0 <DATAFRAME#159> 111 
0 <DATAFRAME#160> 111 

1111 

) 

DUMMY BITS (4 BITS MINIMUM) 
PREAMBLE CODE 
CONFIGURATION PROGRAM LENGTH 
DUMMY BITS (4 BITS MINIMUM) 

M2064: 160 CONFIGURATION DATA FRAMES 
M2018: 196 CONFIGURATION DATA FRAMES 

(EACH FRAME CONSISTS OF: 
A START BIT (0) 
AN 87-BIT DATA FIELD 
2 OR MORE DUMMY BITS 

POSTAMBLE CODE (4 BITS MINIMUM) 

Figure 13. M2064 Configuration Data Arrangement 

REPEATED FOR EACH LOGIC 
CELL ARRAY IN A DAISY CHAIN 

4-15 



M2064/M2018 

The configuration bit stream begins with preamble bits, a 
preamble code and a length count. The length count is loaded 
into the control logic of the Logic Cell Array and is used to 
determine the completion of the configuration process. When 
configuration is initiated, a 24-bit length counter is set to o and 
begins to count the total number of configuration clock cycles 
applied to the device. When the current length count equals 
the loaded length count, the configuration process is 
complete. Two clocks before completion, the internal logic 
becomes active and is reset. On the next clock, the inputs and 
outputs become active as configured and consideration should 
be given to avoid configuration signal contention. (Attention 
must be paid to avoid contention on pins which are used as 
inputs during configuration and become outputs in operation.) 
On the last configuration clock, the completion of configuration 
is signalled by the release of the DONE, PROG pin of the 
device as the device begins operation. This open-drain output 
can be AND-tied with multiple Logic Cell Arrays and used as an 
active-high READY or active-low, RESET, to other portions of 
the system. Hi~uring configuration (HOC) and low during 
configuration (LDC), are released one CCLK cycle before 
DONE is asserted. In master mode configurations, it is 
convenient to use LDC as an active-low EPROM chip enable. 

As each data bit is supplied to the LCA, it is internally 
assembled into a data word. As each data word is completely 
assembled, it is loaded in parallel into one word of the internal 
configuration memory array. The last word must be loaded 
before the current length count compare is true. If the 
configuration data are in error, e.g., PROM address lines 
swapped, the LCA will not be ready at the length count and the 
counter will cycle through an additonal complete count prior to 
configuration being "done". 

Figure 14 shows the selection of the configuration mode based 
on the state of the mode pins MO and M1. These package pins 
are sampled prior to the start of the c:Onfiguration process to 
determine the mode to be used. Once configuration is DONE 
and subsequent operation has begun, the mode pins may be 
used to perform data readback, as discussed later. An 
additional mode pin, M2, must be defined at the start of 
configuration. This package pin is a user-configurable 1/0 after 
configuration is complete. 

MODE PIN 
MODE SELECTED 

MO M1 M2 

0 0 0 Master serial 

0 0 1 Master LOW mode 

0 1 1 Master HIGH mode 

1 0 1 Peripheral mode 

1 1 1 Slave mode 

Master LOW addresses begin at 0000 and increment. 
Master HIGH addresses begin at FFFF and decrement. 

Figure 14. Configuration Mode Selection 

4·16 

lnltlallzation Phase 

When power is applied, an internal power-on-reset circuit is 
triggered. When VCC reaches the voltage at which the LCA 
begins to operate (2.5 to 3 Volts), the chip is initialized, 
outputs are made high-impedance and a time-out is initiated to 
allow time for power to stabilize. This time-out (15 to 35 ms) is 
determined by a counter driven by a self-generated, internal 
sampling clock that drives the configuration clock (CCLK) in 
master configuration mode. This internal sampling clock will 
vary with process, temperature and power supply over the 
range of 0.5 to 1 .5 MHz. LCAs with mode lines set for master 
mode will time-out of their initialization using a longer counter 
(60 to 140 ms) to assure that all devices, which it may be 
driving in a daisy chain, will be ready. Configuration using 
peripheral or slave modes must be delayed long enough for this 
initialization to be completed. 

The initialization phase may be extended by asserting the 
active-low external RESET. If a configuration has begun, an 
assertion of RESET will initiate an abort, including an orderly 
clearing of partially loaded configuration memory bits. After 
about three clock cycles for synchronization, initialization will 
require about 160 additional cycles of the internal sampling 
clock (197 for the M2018) to clear the internal memory before 
another configuration may begin. The same is true of a 
configured part in which the reconfigurable control bit is set. 
When a HIGH-to-LOW transition on the DONE, PROG package 
pin is detected, thereby initiating a reprogram, the 
configuration memory is cleared. This insures an orderly 
configuration in which no internal signal conflicts are generated 
during the loading process. 

Master Mode 

In master mode, the Logic Cell Array automatically loads the 
configuration program from an external memory device. Figure 
1 Sa shows an example of the master mode connections 
required. The Logic Cell Arr~vides sixteen address 
outputs and the control signals RCLK (read clock), HDC (high 
during configuration) and LDC (low during configuration) to 
execute read cycles from the external memory. Parallel eight­
bit data words are read and internally serialized. As each data 
word is read, the least significant bit of each byte, normally DO, 
is the next bit in the serial stream. 

Addresses supplied by the Logic Cell Array can be selected by 
the mode lines to begin at address O and incremented to read 
the memory (master low mode), or they can begin at address 
FFFF Hex and be decremented (master high mode). This 
capability is provided to allow the Logic Cell Array to, share 
external memory with another device, such as a 
microprocessor. For example, if the processor begins its 
execution from low memory, the Logic Cell Array can load itself 
from high memory and enable the processor t~ execution 
once configuration is completed. The DONE, PROG output pin 
can be used to hold the processor in a Reset state until the 
Logic Cell Array has completed the configuration process. 

The master serial mode uses serial configuration data, 
synchronized by the rising edge of RCLK, as in Figure 15b. 



M2064/M2018 

+SV 

-=-
Vee MO M1 PWRDWN 

L DOUT 

M2 CCLK 

HDC 

GENERAL-
RCLK A1S 

PURPOSE A14 
USER VO 

PNS A13 EPROM 

) lli 
A12 

OTHER 
OR~~JER) 

PINS A11 

LCA A10 A10 

RESET A9 A9 

07 A8 A8 

OS A7 A7 D7 

05 AS AS DS 

04 AS AS DS 

03 A4 A4 D4 

02 A3 A3 D3 

01 A2 A2 D2 

DO A1 A1 D1 

AO AO DO 

OE 

LDC CE 

DATA BUS 

A~A15--V X 
(OUTPUT) ---1~----------~ 

D~D7 ~~--BYT_E_N_+l_lQQQQQQQQ{~~~~~~ 
----1+-I• --t.·1 \_ 

(ou.fri~ \.._ ________ _.f 

CCLK 
(OUTPUT) 

DOUT 
(OUTPUT) 

Figure 15a. Master Low Address Configuration 

Peripheral Mode 

Peripheral mode provides a simplified interface through which 
the device may be loaded as a processor peripheral. Figure 16 
shows the peripheral mode connections. Processor write 
cycles are decoded from the common assertion of the active­
low write strobe {WRT), and two active-low and one active-high 
chip selects (CSO, CS1, CS2). If all these signals are not 
available, the unused inputs should be driven to their 
respective active levels. The Logic Cell Array will accept one 
bit of the configuration program on the data input (DIN) pin for 
each processor write cycle. Data is supplied in the serial 
sequence described earlier. 

Since only a single bit from the processor data bus is loaded 

voe 

l 
GENERAL­
PURPOSE 
USER 110 

PNS 

)
ALL 
OTHER 
PINS 

LCA 
RESET 

DIN 

RCLK 

DATA 

CLK 

CE 

OE 

SERIAL 
MEMORY 

RCLK~ 
(OUTPUT) ~t::::=tl~ .--

DIN =xx,.-----.x 
DOUT 

(OUTPUT) 

CCLK 
(OUTPUT) 

Figure 15b. Master Serial Mode Configuration 

per cycle, the loading process involves the processor reading 
a byte or word of data, writing a bit of the data to the Logic Cell 
Array, shifting the word and writing a bit until all bits of the word 
are written, then continuing in the same fashion with the next 
word, etc. After the configuration program has been loaded, an 
additional three clocks (a total of three more than the length 
count) must be supplied in order to complete the configuration 
process. When more than one device is being used in the 
system, each device can be assigned a different bit in the 
processor data bus, and multiple devices can be loaded on 
each processor write cycle. This "broadside" loading method 
provides a very easy and time-efficient method of loading 
several devices. 

4·17 



M2064/M2018 

ADDRESS DATA 
BUS WR BUS 

+SV +SV +SV 

MO M1 PWR 
OWN 

WAT 
DIN CCLI< cso 
WAT CSI 

LCA DOUT 

M2 CS2 
ADDRESS cso HOC 
DECODE 
LOGIC LDC GENERAL- CCLK 

PURPOSE (OUTPUT) 
USER VO 

'"l DIN OTHER 
CS1 PINS 

CS2 DOUT 

DIP 
(OUTPUT) 

RESET 

Figure 16. Peripheral Mode Configuration 

Slave Mode 

Slave mode, Figure 17, provides the simplest interface for 
loading the Logic Cell Array configuration. Data is supplied in 
conjunction with a synchronizing clock, For each LOW-to­
HIGH input transition of configuration clock (CCLK), the data 
present on the data input (DIN) pin is loaded into the internal 
shift register. Data may be supplied by a processor or by other 
special circuits. Slave mode is used for downstream devices in 

a daisy-chain configuration. The data for each slave LCA are 
supplied by the preceding LCA in the chain, and the clock is 
supplied by the lead device, which is configured in master or 
peripheral mode. After the configuration program has been 
loaded, an additional three clocks (a total of three more than 
the length count) must be supplied in order to complete the 
configuration process. 

+SV 

MO M1 PWRDWN 

MICRO LCA 
COMPUTER 

STAB CCLK OOUT 

DO DIN M2 

01 HOC 

110 02 LDc GENERAL-PORT 
03 

PURPOSE 
USER VO 

04 ~1 OTHER 
05 PINS 

06 

07 DIP 

RESET RESET 

DIN=x BITN 

~ 
BITN+1 

I· ~ CCLK '-' I m DOUT BITN-1 BITN (OUTPUT) 

Figure 17. Slave Mode Configuration 

4-18 



M2064/M2018 

Daisy Chain 

The daisy-chain programming mode is supported by Logic Cell 
Array in all programming modes. In master mode and peripheral 
mode, the LCA can act as a source of data and control for 
slave devices. For example, Figure 18 shows a single device in 
master mode. with two devices in slave mode. The master 
mode device reads the external memory and begins the 
configuration loading process for all of the devices. 

The data begin with a preamble and a length count which is 
supplied to all devices at the beginning of the configuration. 
The length count represents the total number of cycles 
required to load all of the devices in the daisy chain. After 

+5V +5V 

l MO M1 PWRDWN 

CCLK 

DOUT 

M2 

HOC 

GENERAL-
RCLK A15 A15 

PURPOSE A14 A14 
USER VO 

PNS A13 A13 
EPROM 

ALL A12 A12 
OTHER 
PINS A11 A11 

LCA A10 A10 
MASTER 

A9 A9 

07 AS AS 

06 A7 A7 07 

05 A6 AS 06 

04 A5 A5 05 

03 A4 A4 04 

02 A3 A3 03 

01 A2 A2 02 

00 A1 A1 01 

AO AO DO 

CiiC OE 

RESET oifi CE 

REPROGRAM 

SYSTEM RESET 

loading the length count, the lead device will load its 
configuration data while providing a HIGH DOUT to downstream 
devices. When the lead device has been loaded and the 
current length count has not reached the full value, memory 
access continues. Data bytes are read and serialized by the 
lead device. The data are passed through the lead device and 
appear on the data out (DOUT) pin in serial form. The lead 
device also generates the configuration clock (CCLK) to 
synchronize the serial output data. A master mode device 
generates an internal CCLK of eight times the EPROM address 
rate, while a peripheral mode device produces CCLK from the 
chip select and write strobe timing. 

+5V +5V 

MO M1 PWRDWN 

CCLK CCLK 

DIN DOUT DIN DOUT 

LCA LCA 
SLAVE#1 SLAVE#n 

M2 M2 

HOC HOC 

LDC GENERAL- LDC GENERAL-
PURPOSE PURPOSE 
USER 110 USER VO 

=( ~1 OTHER OTHER 
PINS PINS 

DIP DIP 

RESET RESET 

Figure 18. Master Mode with Daisy Chain 

Operation 

When all of the devices have been loaded and the length count 
is complete, a synchronous start-up of operation is performed. 
On the clock cycle following the end of loading, the internal 
logic begins functioning in the reset state. On the next CCLK, 
the configured output buffers become active to allow signals to 

stabilize. The next CCLK cycle produces the DONE condition. 
The length count control of operation allows a system of 
multiple Logic Cell Arrays to begin operation in a synchronized 
fashion. If the crystal oscillator is used, it will begin operation 
before configuration is complete to allow time for stabilization 
before it is connected to the internal circuitry. 

4·19 

a 



M2064/M2018 

Special Features 
In addition to the normal user logic functions and interconnect, 
the configuration data include control for several special 
functions: 

• Input thresholds 

• Readback enable 

• Reprogram enable 

• DONE pull-up resistor 

Each of these functions is controlled by a portion of the 
configuration program generated by the XACT Development 
System. 

Input Thresholds 

During configuration, all input thresholds are TTL level. During 
configuration input thresholds are established as specified, 
either TTL or CMOS. The PWRDN input threshold is an 
exception; it is always a CMOS level input. The TTL threshold 
option requires additional power for threshold shifting. 

Readback 

After a Logic Cell Array has been programmed, the con­
figuration program may be read back from the device. 
Readback may be used for verification of configuration and as 
a method of determining the state of internal logic nodes during 
debugging. In applications in which the verification is not used, 
it may be desirable to limit access to the configuration data. 
Three readback options are provided: 'on command', 'only 
once', and 'never'. If 'on-command readback' is selected, the 
device will respond to all readback requests. If 'readback once' 
is selected, the device will respond only to the first readback 
request after programming is complete. Subsequent readback 
requests will be ignored. If 'readback never' is selected, the 
device will not respond to a readback command. 

Readback is accomplished without the use of any of the user 1/0 
pins; only MO, M1, and CCLK pins are used. An initiation of 
readback is produced by a LOW-to-HIGH transition of the MO, 
RTRIG (read trigger) pin. Once the readback command has 
been given, CCLK is cycled to read back each data bit in a 
format similar to loading. After two dummy bits, the first data 
frame is shifted out, in inverted sense, on the M1, RDATA (read 
data) pin. All data frames must be read back to complete the 
process and return the mode select and CCLK pins to their 
normal functions. 

In addition to the configuration program, the readback includes 
the current state of each of the internal logic block storage 
elements, and the state of the input (I) connection pin on each 
1/0 block. This state information is used by the Logic Cell Array 
development system In-Circuit Emulator to provide visibility 
into the internal operation of the logic while the system is 
operating. To readback a uniform lime sample of all storage 
elements it may be necessary to inhibit the system clock. 

Reprogram 

The configuration memory of the Logic Cell Array may be 
rewritten while the device is in the user's system, if that option 
is selected when the LCA is configured. If another 
programmin~ is to be initiated, the dual function package 
pin DONE, PROG must be given a HIGH-to-LOW transition. 
Sensitivity to noise is reduced, by confirming the HIGH-to­
LOW transition over two to three cycles using the LCA's 

4·20 

internal sampling oscillator. When a reprogram command is 
recognized, all internal logic and connectivity definitions are 
erased and the 1/0 package pins are forced to a high 
impedance condition. The device returns to the initialization 
state. Reprogram control is often implemented with an external 
open collector driver which pulls DONE, PROG LOW. Once it 
recognizes a stable request, the Logic Cell Array will hold a 
LOW until the new configuration has been completed. Whether 
or not the reprogram request is maintained, the Logic Cell Array 
will begin operation upon completion of configuration. 

DONE Pull-up 

The DONE, PROG pin is an open drain 1/0 that indicates 
programming status. As an input, it initiates a reprogram 
operation. An optional internal pull-up resistor may be enabled. 

Battery Backup 

Because the control store of the Logic Cell Array is a CMOS 
static memory, its cells require only a very low standby current 
for data retention. In some systems, this low data retention 
current characteristic facilitates preserving configurations in 
the event of a primary power loss. The Logic Cell Array has 
built in power-down logic which, when activated, will disable 
normal operation of the device and retain only the configuration 
data. All internal operation is suspended and output buffers are 
placed in their high-impedance state. 

Power-down data retention is possible with a simple battery­
backup circuit because the power requirement is extremely 
low. For retention at 2.0 V, the required current is typically on 
the order of 0.5 mA. Screening of this parameter is available. 
To force the Logic Cell Array into the power-down state, the 
user must pull the PWRDWN pin low and continue to supply a 
retention voltage to the VCC pins of the package. When normal 
power is restored, VCC is elevated to its normal operating 
voltage and PWRDWN is returned to a HIGH. The Logic Cell 
Array resumes operation with the same internal sequence that 
occurs at the conclusion of configuration. Internal 1/0 and 
logic block storage elements will be reset, the outputs will 
become enabled and then the DONE, PROG pin will be 
released. No configuration programming is involved. 

Performance 
The high performance of the Logic Cell Array results from its 
patented architectural features and from the use of an advan­
ced high-speed CMOS manufacturing process. Performance 
may be measured in terms of minimum propagation times for 
logic elements. 

Flip-flop loop delays for the 1/0 block and logic block flip-flops 
are about 3 ns. This short delay provides very good 
performance under asynchronous clock and data conditions. 
Short loop delays minimize the probability of a metastable 
condition which can result from assertion of the clock during 
data transitions. Because of the short loop delay 
characteristic in the Logic Cell Array, the 1/0 block flip-flops 
can be used very effectively to synchronize external signals 
applied to the device. Once synchronized in the 1/0 block, the 
signals can be used internally without further consideration of 
their clock relative timing, except as it applies to the internal 
logic and routing path delays. 



M2064/M2018 

Device Performance 

The single parameter which most accurately describes the 
overall performance of the Logic Cell Array is the maximum 
toggle rate for a logic block storage element configured as a 
toggle flip-flop. The configuration for determining the toggle 
performance of the Logic Cell Array is shown in Figure 19. The 
clock for the storage element is provided by the global clock 
buffer and the flip-flop output a is fed back through the 
combinatorial logic to form the data input for the next clock 
edge. Using this arrangement, flip-flops in the Logic Cell Array 
can be toggled at clock rates from 33-70 MHz, depending on 
the speed grade used. 

Actual Logic Cell Array performance is determined by the 
critical path speed, including both the speed of the logic and 
storage elements in that path, and the speed of the particular 
network routing. Figure 20 shows a typical system logic 
configuration of two flip-flops with an extra combinatorial level 
between them. Depending on speed grade, system clock rates 
to 35 MHz are practical for this logic. To allow the user to make 
the best use of the capabilities of the device. the delay 

SOURCECLB 

INPUTS F 

calculator in the XACT Development System determines worst­
case path delays using actual impedance and loading 
information. 

D Q I-_.>--'~-• 

Figure 19. Logic Block Configuration for Toggle Rate 
Measurement 

COMBINATORIAL CLB 

DESTINATION CLB 

X,Y 

INTERCONNECT 

GLOBAL 
CLOCK 

Figure 20. Typical Logic Path 

4·21 



M2064/M2018 

Logic Block Performance 

Logic Block propagation times are measured from the 
interconnect point at the input of the combinatorial logic to the 
output of the block in the interconnect area. Combinatorial 
performance is independent of logic function because of the 
table look-up based implementation. Timing is different when 
the combinatorial logic is used in conjunction with the storage 
element. For the combinatorial logic function driving the data 

1.3 

1.2 

El 1.1 
w 
N 1.0 ::J 
<C 
::;: 

0.9 0: 
0 
b 

~ 
0.8 

w 
0.7 0 

0.6 

0.5 
-55 --40 0 30 70 85 125 

TEMPERATURE (•C) 

NOTE: NORMALIZED FOR FOUR TEMPERATURES 

Figure 21. Delay vs. Temperature 

Interconnect Performance 

Interconnect performance depends on the routing resource 
used to implement the signal path. As discussed earlier, direct 
interconnect from block to block provides a minimum delay 
path for a signal. 

The single metal segment used for long lines exhibits low 
resistance from end to end, but relatively high capacitance. 
Signals driven through a programmable switch will have the 
additional impedance of the switch added to their normal drive 
impedance. 

General-purpose interconnect performance depends on the 
number of switches and segments used, the presence of the 
bidirectional repowering buffers and the overall loading on the 
signal path at all points along the path. In calculating the worst­
case delay for a general interconnect path, the delay 
calculator portion of the XACT development system accounts 

4-22 

input of the storage element, the critical timing is data set-up 
relative to the clock edge provided to the storage element. The 
delay from the clock source to the output of the logic block is 
critical in the timing of signals produced by storage elements. 
The loading on a logic block output is limited only by the 
additional propagation delay of the interconnect network. 
Performance of the logic block is a function of supply voltage 
and temperature, as shown in Figures 21 and 22. 

1.2 

El 
1"1 w 

N 
::J 
<C 
::;: 
0: 
0 

1.0 b 

~ 
w 
0 

0.9 

4 

Figure 22. Delay vs. Power Supply 

for all of these elements. As an approximation, interconnect 
delay is proportional to the summation of totals of local metal 
segments beyond each programmable switch. In effect, the 
delay is a sum of R-C delays each approximated by an R times 
the total C it drives. The R of the switch and the C of the 
interconnect are functions of the particular device 
performance grade. For a string of three local interconnects, 
the approximate delay at the first segment, after the first 
switch resistance, would be three units; an additonal two delay 
units after the next switch plus an additional delay after the 
last switch in the chain. The interconnect R-C chain terminates 
at each repowering buffer. Nearly all of the capacitance is in 
the interconnect metal and switches; the capacitance of the 
block inputs is not significant. Figure 23 shows an estimation 
of this delay. 



M2064/M2018 

CLB 

DELAY: 

INCREMENTAL 

IF R1·R2=R3 =R AND C1=C2=C3 =C 

THEN CUMULATIVE DELAY 3RC SRC 

r--, r--, 
">-~f-+-~~~--1 1--­

L_.J 

REPOWERING 
BUFFER 

6RC 

L _ _J 

6RC+BUFFER 

Figure 23. Interconnection Delay Example 

Development System 
To support designers using the Logic Cell Array , Monolithic 
Memories provides a basic development system with several 
options for additional productivity. The XACT system provides 
the following: 

• Graphic-driven design entry 

• Schematic entry 

• Interactive timing delay calculations 

• Macrocell library support, both for standard Monolithic 
Memories supplied functions and user-defined functions 

• Design entry checking for consistency and completeness 

• Automatic design documentation generation 

• Automatic placement and routing 

• Simulation interface support, including automatic netlist 
(circuit description) and timing extraction 

• In-circuit emulation for multiple devices 

The host system on which the XACT system operates is an 
IBM™ PC-XT™ or PC-AT™ or compatible system with MS­
DOSTM 2.1 or higher. Color graphics is required as well as 640 K 
bytes of internal RAM (an Expanded Memory Specification 
(EMS) card with 256 K bytes of memory is required for the 
M2018). A complete system requires one parallel 1/0 port and 
two serial ports and a mouse. 

For more detailed information of the XACT Development 
System, please refer to Logic Cell Array Development System 
Datasheet. 

4·23 



48-PIN 68-PIN 
DIP PLCC 

1 

2 

1 3 

4 

2 5 

3 6 

4 7 

5 8 

6 9 

7 10 

8 11 

12 

9 13 

14 

10 15 

16 

11 17 

12 18 

13 19 

20 

14 21 

22 

15 23 

16 24 

17 25 

18 26 

19 27 

20 28 

29 

21 30 

31 

22 32 

33 

23 34 

4-24 

M2064/M2018 

68-PIN 
CONFIGURATION MODE: <M2: M1: MO> 

PGA SLAVE I PERIPHERAL MASTER-HIGH I MASTER-LOW 
<1:1:1> <1:0:1> <1 :1 :O> <1 :0:0> 

B6 GND 

A6 A13 (0) 

B5 A6 (0) 

A5 A12 (0) 

B4 
<HIGH> 

A7 (0) 

A4 A11 (0) 

B3 AB (0) 

A3 A10 (0) 

A2 A9 (0) 

B2 PWRDWN (I) 

B1 

C2 

C1 

02 <HIGH?> 

01 

E2 

E1 

F2 vcc 
F1 

G2 

G1 
<HIGH> 

H2 

H1 

J2 

J1 M1 (HIGH) l M1 (LOW) M1 (HIGH) 

1 
M1 (LOW) 

K1 MO (HIGH) l MO (HIGH) MO (LOW) MO(LOW) 

K2 M2 (HIGH) 

L2 HOC (HIGH) 

K3 <HIGH> 

L3 LDC (LOW) 

K4 

L4 
<HIGH> 

K5 

L5 

«:HIGH~ is high impedance with a 20 to 50-Kn internal pull-up resistor during configuration 

Table 2a. M2064 Pin Assignments 

(continued on next page) 

USER 
OPERATION 

1/0 

1/0 

1/0 

RDATA (0) 

RTRIG (I) 

1/0 



M2064/M2018 

CONFIGURATION MODE: ~M2: M1: MO> 
48-PIN 68-PIN 68-PIN USER 

DIP PLCC PGA SLAVE I PERIPHERAL MASTER-HIGH I MASTER-LOW OPERATION 
<1:1:1> <1:0:1> <1:1:0> <1:0:0> 

24 35 K6 GND 

36 L6 

25 37 K7 

3B L7 ~HIGH> 

26 39 KB 1/0 

27 40 LB 

2B 41 K9 D7 (I) 

29 42 L9 D6 (I) 

30 43 L10 XTL2 or 1/0 

31 44 K10 RESET (I) 

32 45 K11 DONE (0) PROG (I) 

33 46 J10 XTL 1 or 1/0 

47 J11 
~HIGH> 

34 48 H10 D5 (I) 

49 H11 1/0 

35 50 G10 l CSO (I) D4 (I) 

36 51 G11 CS1 (I) D3 (I) 

52 F10 vcc 
53 F11 

37 54 E10 I CS2 (I) I D2 (I) 

55 E11 ~HIGH> 

3B 56 D10 l WRT(I) D1 (I) 1/0 

39 57 D11 RCLK 

40 5B C10 DIN(I) DO (I) 

41 59 C11 DOUT (0) 

42 60 811 CCLK (I) l CCLK (0) CCLK (I) 

43 61 810 AO (0) 

44 62 A10 A1 (0) 

45 63 89 A2 (0) 

46 64 A9 
~HIGH> 

A3 (0) 1/0 
65 8B A15 (0) 

47 66 AB A4 (0) 

67 87 A14 (0) 

4B 6B A7 A5 (0) 

~HIGHP is high impedance with a 20 to 50-KO internal pull-up resistor during configuration 

Table 2a. M2064 Pin Assignments (continued) 

4·25 



M2064/M2018 

CONFIGURATION MODE: <!!;M2: M1: MO~ 
68-PIN 68-PIN 84-PIN 84-PIN 

l 
USER 

PLCC PGA PLCC PGA SLAVE PERIPHERAL MASTER-HIGH l MASTER-LOW OPERATION 
<1:1:1> <1:0:1> <1 :1 :O> <1 :O:O> 

1 86 1 C6 GND 

2 A6 2 A6 A13 (0) 

3 AS 

4 8S 

3 85 s cs A6 (0) 

4 AS 6 A4 <HIGH~ A12 (0) 
1/0 

5 84 7 84 A7 (0) 

6 A4 8 A3 A11 (0) 

7 83 9 A2 AS (0) 

8 A3 10 83 A10(0) 

9 A2 11 A1 A9 (0) 

10 82 12 82 PWRDWN (I) 

11 81 13 C2 

12 C2 14 81 

13 C1 1S C1 

14 02 16 02 

15 01 17 01 
<HIGH;;> 1/0 

18 E3 

16 E2 19 E2 

20 E1 

17 E1 21 F2 

18 F2 22 F3 vcc 
19 F1 23 G3 

24 G1 

20 G2 2S G2 

26 F1 <HIGH;;> 1/0 
21 G1 27 H1 

22 H2 28 H2 

23 H1 29 J1 

24 J2 30 K1 

25 J1 31 J2 M1 (HIGH) i M1 (LOW) M1 (HIGH) 1 M1 (LOW) RDATA (0) 

26 K1 32 L1 MO (HIGH) MO (HIGH) MO(LOW) l MO(LOW) RTRIG (I) 

27 K2 33 K2 M2 (HIGH) 

28 L2 34 K3 HDC (HIGH) 

29 K3 3S L2 <HIGH~ 

30 L3 36 L3 LDC (LOW) 

31 K4 37 K4 1/0 
32 L4 38 L4 

39 JS <HIGH~ 

33 KS 40 K5 

34 LS 41 LS 

42 K6 

<{HIGH:?> is high impedance with a 20 to SO-Kn internal pull-up resistor during configuration 

Table 2b. M2018 Pin Assignments (continued on next page) 

4·26 



M2064/M2018 

68-PIN 68-PIN 84-PIN 84-PIN 
CONFIGURATION MODE: ~M2: M1: MO~ 

USER 
PLCC PGA PLCC PGA SLAVE I PERIPHERAL MASTER-HIGH I MASTER-LOW OPERATION 

<1:1:1> <1:0:1> <1:1:0> <1:0:0> 

35 K6 43 J6 GND 

44 J7 

36 L6 45 L7 

37 K7 46 K7 

3S L7 47 L6 %HIGH~ 

4S LS 1/0 

39 KS 49 KS 

40 LS 50 L9 

41 K9 51 L10 07 (I) 

42 L9 52 K9 06(1) 

43 L10 53 L11 XT2or1/0 

44 K10 54 K10 RESET (I) 

45 K11 55 J10 DONE (0) PROG (1) 

46 J10 56 K11 XTL1or1/0 

47 J11 57 J11 

4S H10 5S H10 %HIGH~ 05 (I) 

59 H11 

49 H11 60 F10 1/0 

61 G10 

50 G10 62 G11 l CSO(I) 04 (I) 

51 G11 63 G9 CS1 (I) 03 (I) 

52 F10 64 F9 vcc 
53 F11 65 F11 

54 E10 66 E11 [ CS2(1) 02 (I) 

67 E10 

55 E11 68 E9 %HIGH~ 

69 011 110 

56 010 70 010 [ WRT(I) 01 (I) 

57 011 71 C11 RCLK 

5S C10 72 811 DIN(I) DO(I) 

59 C11 73 C10 DOUT(O) 

60 811 74 A11 CCLK(I) l CCLK (0) CCLK(I) 

61 810 75 810 AO (0) 

62 A10 76 89 A1 (0) 

63 89 77 A10 A2 (0) 

64 A9 7S A9 A3 (0) 

65 88 79 8S 
%HIGH~ 

A15 (0) 1/0 
66 A8 so AS A4 (0) 

67 87 S1 86 A14 (0) 

S2 87 

83 A7 

6S A7 S4 C7 A5 (0) 

~HIGH)> is high impedance with a 20 to 50-Kn internal pull-up resistor during configuration 

Table 2b. M2018 Pin Assignments (continued) 

4-27 



M2064/M2018 

Absolute Maximum Ratings* 
Supply voltage Vee ....................................................................................... -0.5 v to 7 V 
Power down Vee ............................................................................................. 2 V to 7 V 
Input voltage ........................................................................................ -0.5 V to Vee 0.5 v 
Voltage applied to three-state output ................................................................... -0.5 V to Vee 0.5 V 
Storage temperature range ............................................................................. -65° C to + 150° C 
Lead temperature (soldering, 10 seconds) .......................................................................... 260°C 
* Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional 

operation of the device at these or any other conditions beyond those listed under "Recommended Operating Conditions'' is not implied. Exposure to "Absolute 
Maximum Ratings" conditions for extended periods of time may affect device reliability. 

Operating Conditions 

SYMBOL PARAMETER MIN TYP MAX UNIT 

Vee Supply voltage relative to GND 4.75 5.25 v 

VIHT High level input voltage-TTL configuration 2.0 Vee v 

V1HC High level input voltage-CMOS configuration o.7Vcc Vee v 

VILT Low level input voltage-TTL configuration 0 0.8 v 

VILC Low level input voltage-CMOS configuration 0 o.2vcc v 

l1T Input leakage current-TTL configuration ±10 µA 

'ic Input leakage current-CMOS configuration ±10 µA 

'oz Three-state output off current (V cc = 5.5 V) ±10 µA 

top Operating free-air temperature 0 70 oc 

Electrical Characteristics Over Operating Conditions 

SYMBOL PARAMETER TEST CONDITION MIN TYP MAX UNIT 

VoH High level output voltage Vee= 4.75 v loH = -4.0 mA 3.86 v 

Vol Low level output voltage Vee= 4.75 v loL = 4.0mA 0.32 v 

Quiescent operating l CMOS inputs Vee= 5.ov 5 mA 
lcco power supply currentj TTL inputs Vee= 5.ov 10 mA 

1cgo Power down supply current V_e_c = 5.0 V 0.5 mA 

Power On Timing 
The LCAs contain on-chip reset timing logic for power-up oper­
ation. To insure proper master mode system operation, VCC 
must rise from 2.0 V to minimum specification level in 10 ms or 

less. For other modes, initiation of configuration must be 
delayed for 60 ms after VCC reaches the minimum specified 
level. 

4·28 



M2064/M2018 

Switching Characteristics - General 

-33 -50 -70 
SYMBOL DESCRIPTION 

MIN MAX MIN MAX MIN MAX 

tvMRQ) Vee setup (2.0 V) 150 150 150 

tMR0 
RESET (2) 

M2, M1, MO setup 60 60 60 

tRMCD M2, M1, MO hold 60 60 60 

tMRW© Width (LOW) 150 150 150 

tpGw® DONE/ Program width (LOW) 6 6 6 

lpGI© PROG Initialization 7 7 7 

tcLH0 
CLOCK 

Clock (HIGH) 12 8 7 

1CLL® Clock (LOW) 12 8 7 

tps® Setup to Vee 0 0 0 

lpH@ PWRDWN Hold from V CC 0 0 0 

Vpo Power Down 2.0 2.0 2.0 

Notes: 1. Vee must rise from 2.0 Volts to Vee minimum in lest than 10 ms for master mode. 

2. RESET timing relative to power-on and valid mode lines (MO, M1, M2) is relevant only when RESET is used to delay configuration. 

3. Minimum CLOCK widths for the auxilliary buffer are 1.25 times the tcLH· tell· 

Vee (VALID) 

MO/M1/M2 

DONE/PROG 
(OUTPUl) 

USER VO 

CLOCK 

~(5)TPGW=1 

~~. 
--U-S-ER-ST_A_T_E--~,_-l_N_l_T-_IA-_L_l_ZA ___ T~IO~N~S~T-A-_T-E~~~~~~~~~~~~~~~~~~ 

_J=0TcLH ~ @Tm=1--

\.. ____ '--,: Vpo 

UNIT 

ns 

ns 

ns 

ns 

µS 

µS 

ns 

ns 

ns 

ns 

v 



M2064/M2018 

Switching Characteristics - CLB 

-33 -50 -70 
SYMBOL DESCRIPTION UNIT 

MIN MAX MIN MAX MIN MAX 

t1w0 Combinatorial 20 15 10 ns 

tno® Logic input Transparent latch 25 20 14 ns 
to output 

Additional for Q 
to LO through F or G to out 

13 8 6 ns 

tcKo® To output 20 15 10 ns 

t1cKQ) K Clock Logic-input setup 12 8 7 ns 

tcK1© Logic-input hold 0 0 0 ns 

tcco@ To output 25 19 13 ns 

t1cc® C Clock Logic-input setup 12 9 6 ns 

tcc1© Logic-input hold 6 0 0 ns 

tc10® To output 37 27 20 ns 

t1c10 
Logic input 

Logic-input setup 6 4 3 ns toG Clock 

tc11® Logic-input hold 9 5 4 ns 

IR10@ Input A or D to out 25 22 16 ns 

tRLO® Through For G to out 37 28 21 ns 

tMRQ Set/reset direct Master Reset pin to out 35 25 20 ns 

tRs Separation of set/reset 17 9 7 ns 

tRPW Set/reset pulse-width 12 9 7 ns 

FcLK Flip-flop toggle rate Q through F to flip-flop 33 50 70 MHz 

tcH@ Clock HIGH 12 8 7 ns 
Clock t---

!c_L® Clock LOW 12 8 7 ns 

Note: All switching characteristics apply to all valid combinations of process, temperature and supply. 

Cross Reference Guide 

XILINX MMI 
Vee FMAX 

MIN MAX MIN 

XC2064-1 4.5V 5.5V 20MHz 

M2064-20 4.75V 5.25V 20MHz 

XC2064-2 4.5V 5.5V 33MHz 

XC2064-33 M2064-33 4.75V 5.25V 33MHz 

XC2064-50 M2064-50 4.75V 5.25V 50MHz 

XC2064-70 M2064-70 4.75V 5.25V 70MHz 

XC2018-33 M2018-33 4.75V 5.25V 33MHz 

XC2018-50 M2018-50 4.75 v 5.25V 50MHz 

XC2018-70 M2018-70 4.75V 5.25V 70MHz 

4-30 



M2064/M2018 

Switching Characteristics CLB 

4·31 



M2064/M2018 

Switching Characteristics - 108 

-33 
SYMBOL DESCRIPTION 

MIN MAX MIN 

tp10 CD Pad (package pin) to input (direct) 12 

tu® 1/0 Clock to input (storage) 20 

tpL0 1/0 Clock to pad-input setup 12 8 

tLp® 1/0 Clock to pad-input hold 0 0 

1/0 Clock pulse width 12 9 
tLw© 

1/0 Clock frequency 33 50 

top© Output to pad (output enabled) 15 

tTHz® Three-state to pad begin hi-Z 25 

troN® Three-state to pad end hi-Z 25 

tR1© RESET to input (storage) 40 

tRC (J) RESET to input clock 35 

Note: Timing is measured at 0.5 Vee levels with 50 pF output load. 

PAD 
(PACKAGE PIN) 

OUTPUT SIGNAL 

INPUT 
(DIRECT) 

L 
(VO CLOCK) 

INPUT 
(REGISTERED) 

4.32 

(IN) ~(OUT) 
~ 

-50 -70 
UNIT 

MAX MIN MAX 

8 6 ns 

15 11 ns 

6 ns 

0 ns 

7 ns 

70 MHz 

12 9 ns 

20 15 ns 

20 15 ns 

30 25 ns 

25 20 ns 

VOH·O.SV 

VOL+ 0.5 V 

10 



M2064/M2018 

Switching Characteristics - Programming - Master Mode 

-33 
SYMBOL DESCRIPTION 

MIN 

tARCCD From address invalid 

tRAC0 To address valid 

toRcCD To data setup 60 
RCLK 

tRco© To data hold 0 

tRcH® RCLK HIGH 600 

tl1Q.L © RCLKLOW 4.0 

Notes: 1. CCLK and DOUT timing are the same as for slave mode. 

2. At power up, Vee must rise from 2.0 V to Vee minimum in less than 10 ms. 

D0-07 

RcLK 
(OUTPUT) 

CCLK 
(OUTPUT) 

OOUT 
(OUTPUT) 

-50 

MAX MIN 

0 

200 

60 

0 

600 

4.0 

06 

BYTE n--1 

-70 
UNIT 

MAX MIN MAX 

0 0 ns 

200 200 ns 

60 ns 

0 ns 

600 ns 

4.0 µS 

07 

4.33 



M2064/M2018 

Switching Characteristics - Programming - Slave Mode 

-33 -50 -70 
SYMBOL DESCRIPTION UNIT 

MIN MAX MIN MAX MIN MAX 

tccoCD CCLKto DOUT 65 65 65 ns 

toccCD CCLK DIN setup 0 0 0 ns 

tccD<D CCLK DIN hold 40 40 40 ns 

tccH© CCLK HIGH time 0.25 0.25 0.25 µS 

tccL© CCLK LOW time 0.25 5.0 0.25 5.0 0.25 5.0 µS 

FCQ_ CCLK frequency 2 2 2 MHz 

Note: Configuration must be delayed at least 40 ms after Vee minimum. 

DIN ~ .BITN xxx BIT N +1 

~@Toce @Tcco~ @TccL 

CCLK 

@TccH @Tcco 

OOUT BITN-1 xxx BITN (OUTPUT) 

4-34 



M2064/M2018 

Switching Characteristics - Programming - Peripheral Mode 

-33 -50 -70 
SYMBOL DESCRIPTION UNIT 

MIN MAX MIN MAX MIN MAX 

tcACD 
Active (last active input 

0.25 5.0 0.25 5.0 0.25 5.0 µS 
to first inactive) 

tc1® Controls1 
Inactive (first inactive input 

0.25 0.25 0.25 µS 

(CSO, CS1, 
to last active) 

tccc® CS2, WAT CCLK2 75 75 75 ns 

toe© DIN setup 35 35 35 ns 

tco® DIN hold 5 5 5 ns 

Notes: 1. Peripheral mode timing determined from last control signal of the logical AND of (CSO, CS1, CS2, WAT) to transition to active or inactive state. 

2. CCLK and DOUT timing are the same as for slave mode. 

3. Configuration must be delayed at least 40 ms after Vee minimum. 

CS2 

CCLK (2) 
(OUTPUT) 

DOUT(2) 
(OUTPUTl---------''------------' 

Switching Characteristics - Program Readback 

-33 -50 
SYMBOL DESCRIPTION 

MIN MAX MIN MAX 

toRT® PROG setup 300 300 
RTRIG 

tRTH® RTRIG HIGH 250 250 

tRTccCD 
CCLK 

RTRIG setup 100 100 

tccRo© RDATAdelay 100 

Notes: 1. CCLK and DOUT timing are the same as for slave mode. 

2. DONE/PROG output/input must be HIGH (device programmed) prior to a positive transition of RTRIG (MO). 

DONE/PROG 
(OUTPUT) 

RTRIG 

CCLK(1) 

RDATA 
(OUTPUT) 

+ G TccRD 

100 

-70 
UNIT 

MIN MAX 

300 ns 

250 ns 

100 ns 

100 ns 

4.35 

a 



M2064/M2018 

Switching Test Load 
vcc 

FROM OUTPUT RL S1 
TEST~OINT 

UNDER TEST (SEE NOTE 2) 

CL l (SEE NOTE 1) I 
-=- -= 

Note: CL includes probe and jig capacitance. 

Design Aids 

CL=50pF 
RL=1K 

Designing with the Logic Cell Array is similar to using 
conventional MSI elements or gate array macrocells. The first 
step is to partition the desired logic design into Logic Blocks 
and 1/0 blocks, usually based on shared input variables or 
efficient use of flip-flop and combinatorial logic. Following a 
plan for placement of the blocks, the design information may 

Recommended Sockets 

be entered using the inieractive Graphic ·Design Editor. The 
design information includes both the functional specifications 
for each block and a definition of the interconnection networks. 
A macrocell library provides a simplified entry of commonly­
used logic functions. As an alt&rnative to interactive block 
placement and configuration, a schematic may be created 
using elements from the macrocell library. Automatic place­
ment and routing is available for either method of design entry. 
After routing the interconnections, various checking stages 
and processing of that data are performed to ensure that the 
design is correct. Design changes may be implemented in 
minutes. The design file is used to generate the programming 
data which can be downloaded directly into an LCA in the target 
system and operated. The program information may be used to 
program PROM, EPROM or ROM devices, or stored in some 
other media as needed by the final system. 

Design verification may be accomplished by using the XLINX 
XACTOR™ In-Circuit Emulation System directly in the target 
system and/or the P-Silos™ logic simulator. 

The following sockets, with matching hole patterns, are available for PLCC devices. 

DESCRIPTION VENDOR PART NUMBER 

PCB solder tail, tin plate AMP 821574-1 

Surface mount, tin plate AMP 821542-1 

PCB solder tail, tin plate Burndy* QILE68P-410T 
68-pin 

* PCB solder tail, tin plate Midland-Ross 709-2000-068-4-1-1 

PCB solder tail, tin plate Methode* 213-068-001 

Surface mount, tin plate Methode* 213-068-002 

PCB solder tail, tin plate AMP 821573-1 

Surface mount, tin plate AMP 821546-1 

PCB solder tail, tin plate Burndy* QILE84P-410T 
84-pin 

Midland-Ross* 709-2000-004-4-1-1 PCB solder tail, tin plate 

PCB solder tail, tin plate Methode* 213-084-001 

Surface mount, tin plate Methode* 213-084-002 

* Sockets will plug into pin..grid array (PGA) wire-wrap sockets for breadboard use. 

4·36 



M2064/M2018 

M2064118 PLCC SOCKET PIN ASSIGNMENT 
WIRING REFERENCE. BOTTOM VIEW. 

A1 AO A2 A15 A14 GND P£ A7 AB A9 

~@@@@@0000 
CCLK@)@@®@©©©©@@PWiiiiWN 

DO/DIN @) @o~UT M A5 A13 A12 A11 A10 @ @ 

01@@RCLK @@ 

02@@ ~L~~ @@ 
vcc f52' '53\ SOCKET f,9\ l1ij\ vcc 

~i.::.:; BOTTOM ~I.::; 

04 @® 03 VIEW @@ 
os@@ @@ 

XTAL1 ® ® 06 R~~@@ 
RESEf@@@@@®@@®@@RTMO 

/@@@®@@@@®~ 
DIP XTAL2 07 GND M2 HOC 

FOR EASE OF WIRING, AND PIN IDENTIFICATION, THE 
BOTTOM VIEW OF THE PLCC IS SHOWN ALONG WITH 
KEY PIN ASSIGNMENTS, SUCH AS ADDRESS, DATA, 
MODE, POWER AND CRYSTAL OSCILLATIOR INPUTS. 

M2018 PLCC SOCKET PIN ASSIGNMENT 
WIRING REFERENCE. BOTTOM VIEW. 

A1 AO A2 A15 A14 GND P£ A7 AB A9 

~@®@@@9>0000@ 
CCLK@@@@@@©©©©@@@PWffDN 

r.;;;-, C-:\ A3 M A5 A13 
DO/DIN ~ ~ DOUT 

01@@Ra::K 

@@ 
02@@ 

vcc@@ 
®@ 
@@ 

84PIN 
PLCC 

SOCKET 
BOTTOM 

VIEW 

A12 A11 A10@@ 

®® 
@@ 
@® 
@@)vcc 
@@ 
®@ 

os@)@ @@ 
XTAL1 @® 06 ~:1@® 
RESET@®@®@®@@®@@@® RT/MO 

/@®®®®®@@®@@~ 
- XT AL2 07 GND M2 HOC 

DIP 

FOR EASE OF WIRING, AND PIN IDENTIFICATION, THE 
BOTIOM VIEW OF THE PLCC IS SHOWN ALONG WITH 
KEV PIN ASSIGNMENTS, SUCH AS ADDRESS, DATA, 
MOOE, POWER AND CRYSTAL OSCILLATIOR INPlJTS. 

4.37 



M2064/M2018 Package Outlines 

Package Drawing 
48N Molded DIP 
(9/16"x213/32") 

4-38 

PIN#1 
IDENTIFY 

-, , ... ~ 1.524 i~S:ott-;fo;:-1~" J_C ~ 110° TYP 
I I 

1J 
~ ... /~DIA \ 3.048 

- ~ '\~~.:~; 
.011 ±.002 --l 11- ,¥ 
.279 ± .051 - I L .660 ± .025 

16.764 ±.635 

Notes: 

UNLESS OTHERWISE SPECIFIED: 
ALL DIMENSIONS MIN.-MAX. IN INCHES 
ALL DIMENSIONS MIN.-l'tfAX. IN MILLIMETERS 
ALL TOLERANCES ARE ± .007 INCHES 

1. Lead material tolerances are for tin plate finish only. Solder dip finish adds 
2-1 O mils thickness to all lead tip dimensions. 

2. Both version 1 and version 2 configurations are manufactured interchangeably. 

3. Ejector pin marks on version 1 are optional. 10749A 



M2064/M2018 Package Outlines 

Package Drawing 
68NL Molded Chip Carrier 

(.950"x.950") 

~BSCTYP 
1.270 l_ 

.028 ± .002 

.711±.051 l 

10760A 

I 

'I 
~ 

I- 0.45 x 45" ~1b~~~1~i~R 
1.143 

_LL.Llil_L_l lll ·1 1 ·u 1- :lI l fl l l l l ! l l !~====:---.-
< 1 

.954 ± .001 
24.232 ± . 025 

so .990 ± .003 
25.146 ± .076 

SQ 

---- .BOO REF S0-----
20.320 

c~ -·~·-~ """ ~ 3.IUB±.127 

E Ir~ 
rr: .i 
rT;c 

UNLESS OTHERWISE SPECIFIED: 
ALL DIMENSIONS MIN.-MAX. IN INCHES 
ALL DIMENSIONS MIN.-llA/C. IN MILLIMETERS 
ALL TOLERANCES ARE± .007 INCHES 

045 11-11- : : ::~ -·-x45"...,. ..-
1.143 

/r·r)-
·r· 

I : r' 
I : i' 
~ ; ( 
[:1; 
I : I, 
I : I' 
~ 

• 1 
-• 1' 

~ 
1 

j' 

1 

1 

1 

23.388 

J]~::MIN 
.080 

2.032 

.100 ± .005 
..J1Q.. L 2.540 ± .127 

4.318 I 

4.39 

D 



M2064/M2018 Package Outlines 

Package Drawing 
84NL Plastic Leaded Chip Carrier 

(1.154" x 1.154") 

I 1.000 REFSQ-----
1-25.400 

.o18' .002 

~]_ 
0 

0 0 

10761A 

4.40 

1.154 + .004 
29.312 ± .102 

SQ 1.190 ± .005 
30.226±.127 

SQ 

.045 450 I 1.143. -

UNLESS OTHERWISE SPECIFIEO: 

1.120 
28.448 

2.032 
.100 ± .005 

2.540±.127 

_,!!Q_ 
4.318 

ALL DIMENSIONS MIN.-MAX. IN INCHES 

.OOS RMIN 

.127 

ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS 
ALL TOLERANCES ARE ± .007 INCHES 



M2064/M2018 Package Outlines 

Package Drawing 
68P Ceramic Pin Grid Array 

PINN0.1 

/-- IDENT~-IE-R----~ 
v 

I+---- 1.100 ± .020 sa----i 
27.940 ± .508 

.080 ± .008 
[ 2.032 ±.203 

II t 

IT IT IT IT IT v-IT_....._t ~4~r~ 
L~ - -+- .050 ± .005 DIA 

1.270±.127 3.302 ±.127 

UNLESS OTHERWISE SPECIFIED: 
ALL DIMENSIONS MIN.-MAX. IN INCHES 

LOCATOR PIN 

11 10 9 8 7 6 5 4 3 2 1 

1---- 2~':, esc----1 

ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS 
ALL TOLERANCES ARE± .007 INCHES 

10765A 

4-41 



Package Drawings 

84P Ceramic Pin Grid Array 

• 

PINN0.1 
IDENTIFIER 

M2064/M2018 Package Outlines 

,\'======="" 

.080±.008 

r~ 

10766A 

4-42 

UNLESS OTHERWISE SPECIFIED: 
ALL DIMENSIONS MIN.-MAX. IN INCHES 
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS 
ALL TOLERANCES ARE± .007 INCHES 



3000 SERIES FAMILY OF PROGRAMMABLE GATE ARRAYS 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

Second generation user-programmable gate • 
array 

100% factory pre-tested 
Selectable configuration modes 
100% compatibility with AMO PGA 
development tools 

Flexible array architecture 
High performance (50, 70 MHz ) 
Improved interconnection resources 
Density of up to 9000 gates 

Standard PROM file interface 
Off the shelf availability 

GENERAL DESCRIPTION 

The AM 3000 Series Logic Cell™ Array (LCA) is a 
high-performance, second generation user­
programmable gate array. The array contains 
three types of configurable elements that are 
customized in accordance with the user-defined 
system design; a perimeter of Input/Output 
Blocks (IOBs), a core array of Configurable Logic 
Blocks (CLBs), and interconnection resources. 

The final configuration of the three main 
programmable elements is determined by the 

user and easily implemented by AMD user­
programmable gate array design tools. 

AMD's development tools let users produce.a 
complete design, from schematic capture through 
device customization, on an IBM PC-AT or 
compatible computer. LCA macro libraries and 
interface software are also available to support 
schematic capture and simulation on popular CAE 
workstations. 

PRODUCT SELECTOR GUIDE 

BASIC 
ARRAY 

M3020 
M3090 

LOGIC CAPACITY 
__iUSABLE GATE!!}_ 

2000 
9000 

CONFIGURABLE 
LOGIC BLOCKS 

64 
320 

USER 
I/Os 

64 
144 

PROGRAM 
DATA jBITl!}_ 

14779 
64160 

Publication # .Bfill.. Amendment 
10642 A /0 
Issue Date: June 1988 

4.43 



BLOCK DIAGRAM 

fl ;I~. : .I~. : .I 
llOBlocks 

\;(~ 

p v-
p 

*-

Three-State Buffers with Access 
to Horizontal Long Lines 

v-/ "v-
Configurable 
Logic Blocks 

/v- \ v-

LJ 0 v- v-
0 lJ l v- v-

----lnterconnection Area 

rt l 
v-



ORDERING INFORMATION 

Further information is available from AMD franchised distributors or from the nearest AMD sales 
.representative. Part numbers are composed as follows: 

3020 
3090 

Am3020 - 70CNL84 

(2000 Gates, 58 IOBs) ~ L 
(9000 Gates, 144 IOBs) 

50 (50 MHz Toggle) ___ ___. 
70 (70 MHz Toggle) 

ARCHITECTURE 

Functional Description 

NL68 
NL84 
P84 
P175 

68Pin PLCC 
84Pin PLCC 
84Pin PGA 
175 Pin PGA 

C = Commercial 
M = Military 

The perimeter of configurable IOBs provides a programmable interface between the internal logic array 
and the device package pins. The array of CLBs performs user-specified logic functions. The 
interconnection are programmed to form networks, carrying logic signals among blocks. This is 
analogous to printed circuit board traces connecting MSl/SSI packages. 

The logic functions of these blocks are determined by programmed look-up tables. Functional options 
are performed by program-controlled multiplexers. Interconnecting networks between blocks are 
composed of metal segments joined by program-controlled pass transistors. These LCA functions are 
activated by a configuration bit stream that is loaded into an internal, distributed array of configuration 
memory cells. The configuration bit stream is loaded into the LCA device at power-up and can be 
reloaded on command. The LCA device includes logic and control signals for automatic or passive 
configuration. Configuration data can be either bit serial or byte parallel. The XACT LCA Development 
System generates the configuration bit stream used to configure the LCA device. The memory loading 
process is independent of the user logic functions. 

Configuration Memory 

The static memory cell used for the LCA's configuration memory has been designed specifically for high 
reliability and noise immunity, ensuring integrity even under adverse conditions. Static memory provides 
the best combination of high density, high performance, high reliability, and comprehensive testability. 
As shown below, the basic memory cell consists of two CMOS inverters and a pass transistor, which is 
used for writing and reading cell data. The cell is only written during configuration and only read during 
readback. During normal operation, the pass transistor is off and does not affect the stability of the cell. 
This is quite different from the operation of conventional memory devices, in which the cells are 
frequently read and re-written. 



DATA 

Q CONFIGURATION 

~-• Q CONTROL 

A static configuration memory cell is loaded with one bit of the configuration bit stream and controls one 
data selection in the LCA device. The memory cell outputs Q and NO use full Ground and Vee levels and 
provide continuous, direct control. The additional capacitive load, together with the absence of address 
decoding and sense amplifiers, gives the cell high stability. 

Due to the structure of the configuration memory cells, they are not affected by extreme power supply 
excursions or very high levels of alpha particle radiation. No soft errors have been observed in reliability 
testing, even in the presence of very high doses of alpha radiation. 

The method of loading the configuration data is selectable. Two methods use serial data, while three use 
byte-wide data. The internal configuration logic uses framing information, which is embedded in the 
configuration data by the XACT LCA Development System, to direct memory cell loading. The serial data 
framing and length count preamble provide synchronous, serial, or daisy-chained compatibility with 
various AMO programmable gate arrays. 

Input/Output Blocks 

Each user-configurable 108, shown below, provides an interface between the device's external package 
pin and the internal user logic. Each 108 includes both registered and direct input paths and each 
provides a programmable three-state output buffer that can be driven by a registered or direct output 
signal. Configuration options allow a choice of polarity on the output and three-state control signals, a 
controlled slew rate, and a high impedance pull-up. Each input circuit provides input clamping diodes for 
electrostatic protection, and circuits to inhibit latch-up produced by input currents. 



TIIREE-STATE 
(OUTPUT ENABLE ) 

OUT 

DIRECT IN 

REGISTERED IN 

.ts _.. -. 

_.. .o ...... 

.i 
~ --
~ 

.q --

CONFIGURATION MEMORY CELLS 

----- Vee ,..-- ~ ....... 

OUT TS OUTPUT SLEW PASSIVE ~ 
INVERT INVERT SELECT RATE PULL-UP 

]} )-
) L.i 

~ -~t )- DQ OUTPUT 
BUFFER 

Aip 
~ Flop 

+ 
.-- 1 Q D 

Aip TTL or 
Flop CMOS 

or INPUT 
Latch THRESHOLD ~ 

+ .rd (GLOBAL RESET) 

.ok .ik 

~ CKI 
CK2 ---y-y n- PROGRAM 

CONTROLLED 
MULTIPLEXER Q =PROGRAMMABLE INTERCONNECTION POINT (PIP) 

l/OPAD 

The input buffer portion of each IOB provides threshold detection to translate external signals applied to 
the package pin to internal logic levels. The global input-buffer threshold of the IOBs can be 
programmed for TTL or CMOS voltage levels. The buffered input signal drives the data input of a storage 
element that can be configured as a positive edge-triggered D flip-flop, or a level-transparent latch. 
Clock/load signals, IOB pin .ik, can be chosen from either of two available metal lines along each die 
edge. 1/0 storage elements are reset during configuration or by the active low chip -RESET input. Both 
direct input signals, from IOB pin.q, are available. 

For reliable operation, inputs should have transition times less than 100 ns and should not be left 
undriven, or floating. Unused CMOS input-pin circuits can be at threshold and produce oscillations. This 
produces additional power dissipation and system noise. A typical hysteresis of about 50 mV reduces 
input noise sensitivity . Each user 108 includes a programmable high impedance pull-up resistor that 

4-47 



can be selected by the bit stream and which provides a constant HIGH for undriven pins. Although the 
LCA device provides circuitry for input protection against electrostatic discharge, normal CMOS 
handling precautions should be observed. 

Loop delays for the 108 and logic block flip-flops are about 3 ns. This increases reliability, especially. for 
asynchronous clock and data conditions. Short loop delays minimize the probability of a metastable 
condition, which can result from assertion of the clock during data transitions. Because of the short loop 
delay in LCA devices, the flip-flops can be used to synchronize external signals applied to the device. 
Once synchronized in the 108, the signals can be used internally without regard to their clock-relative 
timing, except as it applies to the internal logic and routing path delays. 

Output buffers of the IOBs provide CMOS-compatible 4 mA source-or-sink drive for high fan-out CMOS 
or TIL compatible signal levels. The network driving 108 pin .o becomes the registered or direct data 
source for the output buffer. The three-state control signal, 108 pin .ts, can control output activity. An 
open-drain type output can be obtained by using the same signal for driving the output and three-state 
signal nets, so that the buffer output is enabled only for a LOW. 

The configuration memory cells, shown in the figure above, control the optional output register and 
logical signal inversion, as well as the three-state and slew rate configuration bits. A choice of two 
clocks is available on each die edge. All user inputs are programmed for TIL or CMOS thresholds. 

The 108 includes input and output storage elements and the following 1/0 options selected by 
configuration memory cells. 

Logical inversion of the output is controlled by one configuration bit per 108. 

Logical three-state control of each 108 output buffer is determined by the states of the 
configuration data bits that turn the buffer on/off or select the output buffer three-state control 
interconnection, pin .ts. When this 108 output control signal is HIGH, or logic 1, the buffer is 
disabled and the package pin is high impedance. Inversion of the buffer three-state control logic 
sense, output enable, is controlled by an additional configuration data bit. 

Direct or registered output is selectable for each 108 . The register uses a positive-edge, 
clocked flip-flop. The clock source, 108 pin .ok, can be supplied by either of two metal lines, which 
are available along each die edge. Each of these lines is driven by an invertible buffer. 

Increased output transition speed can be selected to satisfy critical nets. Slower transitions 
reduce capacitive load peak currents of non-critical outputs and minimize system noise. 

A high impedance pull-up resistor can be used to prevent floating, unused inputs. 

The following table is summarizes the 1/0 options. 

INPUTS OUTPUTS 

Direct Direct/registered 
Flip-flop/latch Inverted/true 
CMOS/TTL threshold (chip inputs) Full speed/slew limited 
Pull-LIQ_ resistor Optional three-state control 

4-48 



Configurable Logic Blocks 

CLBs are the functional elements from which the user's logic is constructed. The logic blocks are 
arranged in a matrix within the perimeter of IOBs. The 3020 has 64 such blocks arranged in eight rows 
and eight columns. The XACT LCA Development System compiles the configuration data, which defines 
the operation and interconnection of each block. Users can define CLBs and their interconnecting 
networks by automatic translation from a schematic capture logic diagram or, optionally, by installing 
library or user macros. 

Each CLB has a combinational logic section, two flip-flops, and an internal control section. As shown in 
the following figure, there are five logic inputs (.a, .b, .c, .d, and .e), a common clock input (.k), an 
asynchronous direct reset input (.rd), and a clock enable (.ec). All can be driven from the 
interconnection resources adjacent to the blocks. Each CLB also has two outputs (.x and .y) that can 
drive interconnection networks . 

.di 

LOGIC-+"""'----! COMBINATIONAL 
VARIABLES FUNCTION 

Q2 

.ec 

.k 
CLOCK-+---------__.,. 

.nl 
RESET-+-------------i 

"O" (INHIBIT)-----1 

(GLOBAL RESE'O-------' 

.x 

CLBOUTPUTS 

.y 

Data input for either flip-flop within a CLB is supplied from the F or G function outputs of the 
combinational logic, or the direct data input, .di. Both flip-flops in each CLB share the active HIGH 

4.49 



asynchronous reset (.rd), which is dominant over clocked inputs. All flip-flops are reset by the active 
LOW chip input, -RESET, or during the configuration process. The flip-flops share the clock enable 
(.ec), which, when LOW, recirculates the present states of the flip-flops and inhibits response to the 
data-in or combinational function inputs on a CLB. The user can enable these control inputs and select 
their sources. The user also can select the clock net input (.k) and its active sense in each logic block. 
This programmable inversion eliminates the need to route both phases of a clock signal throughout the 
device. Flexible routing allows use of common or individual CLB clocking. 

The combinational logic portion of the CLB uses a 32-by-1 look-up table to perform Boolean functions. 
Variables selected from the five logic inputs and two internal block flip-flops are used as table address 
inputs. The combinational propagation delay through the network is independent of the logic function 
generated and is spike free for changes in single input variables. 

This technique can generate a single function of five variables, as shown below. 

A-!-~~~~~....-~~~-, 
B --t.------lr"I 

c -~-----1.; 
0--t.---------1 

ANY FUNCTION 
OFUPT05 

VARIABLES 

E-j-~~~~~~-t-~~~__J 

F 

G 

It can also generate any two logic functions of up to four variables each. 

4-50 

5b 



It can also generate some functions of seven variables, as shown in the next figure. 

The partial functions of six or seven variables are generated by the input variable,.e, which dynamically 
selects between two functions of four different variables. For the two functions of four variables each, 
the independent results,F and G, can be used as data inputs to either flip-flop or either logic block 
output. For the single function of five variables and merged functions of six or seven variables, the F 
and G outputs are identical. Symmetry of the F and G functions and the flip-flops helps optimize the 
routing of the networks connecting the logic blocks and IOBs. 

The next figure shows a modulo 8 binary counter with parallel enable. It uses one CLB of each type. 

4·51 



r_ 

:&-i CLOCKENABL 
PARALLEL ENABL 

CLOC K~ 

DO 

D I 

D2 

..I 

DUAL FUNCTION OF 4 VARIABLES 

5~~ 
r 

....___. 

~~ tr.} 

r 
....___. 

FUNCTION OF 5 VARIABLES 

!:=I ""'-~~~ = 
;-

....___. 
FUNCTION OF 6 VARIABLES 

INTERCONNECTIONS 

Programmable Interconnections 

t-

t-

t-

TERMINAL 
COUNT 

QO 

Qi 

Q2 

Programmable interconnection resources in the LCA device provide routing paths to connect inputs and 
outputs of the 1/0 and logic blocks into logical networks. Interconnections between blocks are 
composed of two-layer grid of metal segments. Specially designed pass transistors, each controlled by 
a configuration bit, form programmable interconnect points (PIPs) and switching matrices used to 
implement the necessary connections between selected metal segments and block pins. The figure 
below provides an example of a routed net. 

4-52 



Configurable 
Logic Block 

Interconnection 
"PIPs" 

Switching 
Matrix 

t· 

0 
~-

Interconnection 
Buffer 

The XAC.T LCA Development System automatically routes these interconnections. Interactive routing 
using Editnet can also be done to optimize the design. The inputs of the logic or 108 are multiplexers 
that can be programmed to select an input network from the adjacent interconnection segments. 

Note: The switch connections to block inputs are usable only for input connection, and not for routing, 
because the are unidirectional as are block out uts . 

The following figure illustrates routing access to logic block input variables, control inputs, and block 
outputs. 

4-53 

II 



EJ 0 0 0 
t· t· 

0 
~- ~-

ec 

El el 
t· t· 

0 
~- ~-

CLB Control Inputs 

0 
~- ~- ~-

t:} 0 
t· t· t· 

0 
~- ~- ~- ~- ~-

Cl fJ 0 0 

4.54 



Three types of metal resources are available for network interconnections. 

General Purpose Interconnection 
Direct Connection 
Long Lines 

General Purpose Interconnections 

A general purpose interconnection, as shown below, consists of a grid of five horizontal and five vertical 
metal segments located between the rows and columns of logic and 1/0 Blocks. These segments can be 
connected through switch matrices to form networks for CLB and 108 inputs and outputs. 

Grid Of General Interconnection 
Metal Segments 

Switching 
Matrix 

Each segment is the height or width of a logic block. Switching matrices join the ends of these segments 
and allow programmed interconnections between the metal grid segments of adjoining rows and columns. 
The switches of an unprogrammed device are all non-conducting. The connections through the switch 
matrix can be made by automatic routing, or by using Editnet to select the desired pairs of matrix pins 
that are to be connected or disconnected. The legitimate switching matrix combinations for each pin are 
shown in the next figure. 

4.55 



~ i~ ~ I ~ I ~ II 
I 2 3 4 5 

~ ?t.~ a ~ g --
II I 

6 7 8 9 IO 

Q ~ ~ ~ e -
-

I - I -

I I 12 13 I4 IS 

~~ ~ ~ e D I 
= 

111 -, 
16 17 IS I9 20 

Special buffers in the general interconnection areas provide periodic signal isolation and restoration, 
thus improving performance of lengthy nets. The interconnection buffers can propagate. signals in either 
direction on a general interconnection segment. These bidirectional buffers are above and to the right of 
the switching matrices. The other PIPs adjacent to the matrices are gateways to and from long lines. 

The XACT LCA Development System automatically defines the buffer direction based on the location of 
the interconnection network source. The delay calculator of the XACT LCA Development System 
automatically calculates and displays the block, interconnection, and buffer delays for the selected 
paths. lt can also generate the simulation net list with a worst-case delay model. 

Direct Interconnections 

A direct interconnection, shown below, provides the most efficient implementation of networks between 
adjacent logic or IOBs. The .x and .y outputs of each CLB have single contact, direct access to inputs 
of adjacent CLBs. 

4-56 



rJ 
d 

0 
t· t· t· 

0 0 
J. 4. J. 

t· t· t· 

0 0 
J. J. J. 

a 

l:J 0 
J. J. J. 

Signals routed from block to block by direct interconnection show minimum interconnection propagation 
and use no general interconnection resources. For each CLB, the .x output can be connected directly to 
the .b input of the CLB to its right, and to the .c input of the CLB to its left. The .y output can use a direct 
interconnection to drive the .d input of the block above, and the .a input of the block below. 

Direct Interconnection should be used to maximize the speed of high performance portions of logic. 
Where logic blocks are adjacent to IOBs, a direct connection is provided alternately to the 108 inputs 
(.i) and outputs (.o) of the left, top, and bottom edges of the die. The right edge provides alternate direct 
input and output of CLBs and IOBs. Direct interconnections of IOBs and CLBs are shown in the next 
figure. 

4.57 



Global Buffer Direct Input Global Buffer Interconnection 

*Unbonded IOBs (6 Places) Auxiliary Buffer Direct Input 



Long Lines 

Long lines, which bypass the switch matrices, are intended primarily for signals that must travel a long 
distance, or that must have minimum skew among multiple destinations. Long lines, shown below, run 
the height or width of the interconnection area. Each interconnection column has three vertical long 
lines, and each interconnection row has two horizontal long lines. Two additional long lines are adjacent 
to the outer sets of switching matrices. The outermost are connectible half-length lines. 

Global 
Buffer 

On-Chip 
Three-State 

Buffers 

Pull-Up 
Resistors 

For On-Chip 
Open Drain 

Signals 

""Q 
.. 

p -

::~ 
pt· 

t· t· 

2 Horizontal Long Lines 

0 tj 
t· t· 

3 Vertical Lines 

t· t· 

J-

f5 ~ 
t· t· 

Horizontal and vertical long lines provide high fan-out, low-skew signal distribution in each row and 
column. The global buffer in the upper left die corner drives a common line throughout the LCA device. 
The programmable interconnection of long lines is provided at the edges of the routing area. Long lines 
can be driven by a CLB or 108 output on a column-by-column basis. This provides a common low skew 
control or clock line within each column of logic blocks. Interconnections of these long lines are shown 
in the following figure. Isolation buffers are provided at each input to a long line and are enabled 
automatically by the XACT LCA Development System when a connection is made. 

4.59 

El 



· Horizontal Long Line Three-State Buffers * Four Outer Long Lines Are 
Connectible Half-Length Lines 



A buffer in the upper left corner of the LCA chip drives a global net available to all .k inputs of logic 
blocks. Using the global buffer for a clock signal provides a skew free, high fan-out, synchronized clock 
for use at any, or all, of the 1/0 and logic blocks. Three-state buffers let you use horizontal long lines to 
form wired-AND and multiplexed busses. Configuration bits for the .k input to each logic block can select 
this global line or another routing resource as the clock source for its flip-flops. This net can also be 
programmed to drive the die edge clock lines for 108 use. An enhanced speed, CMOS threshold direct 
access to this buffer is available at the second pad from the top of the left die edge. 

A buffer in the lower right corner of the array drives a horizontal long line, which can drive programmed 
connections to a vertical long line in each interconnection column. This alternate buffer also is low skew 
and high fan-out. The network formed by this alternate buffer's long lines can be selected to drive the .k 
inputs of the logic blocks. The CMOS threshold, high-speed access to this buffer is at the third pad from 
the bottom of the right die edge. 

Internal Busses 

A pair of three-state buffers are located adjacent to each CLB. These let logic drive the horizontal long 
lines. Logical operation of the three-state buffer controls lets them implement wide multiplexing 
functions. Any three-state buffer input can be selected to drive the horizontal long line bus by applying a 
low logic level on its three-state control line, as shown in the next figure. 

Z = DA • A + D8 • B + De • C + 

Three-state buffers make a Multiplexer for which the selection is 
accomplished by the buffer three-state signal. 

The user must avoid contention resulting from multiple drivers with opposing logic levels. Control of the 
three-state input by the same signal that drives the buffer input creates an open drain wired-AND 
function. A logical HIGH on both buffer inputs creates a high impedance with no contention. A logical 
LOW enables the buffer to drive the long line low, as shown below. 

4-61 



Three-state buffers make a Wired-AND function. When all the 
three-state lines are HIGH (high impedance), the pull-up resistor(s) 
provide the JDGH output. The buffer inputs are driven by the control 
signals or a LOW. 

Pull-up resistors are available at each end of the long line to provide a HIGH output when all connected 
buffers are non-conducting. These buffers allow fast, wide gating, optimum speed, and efficient routing 
of high fan-out signals. The following figure shows three-state buffers, long lines, and pull-up resistors. 

4-62 



Bi-Directional (Not Showing) 

GG 

HG 

00 ~ 

Q .P 

Oscillator 
Amplifier Input 

Horizontal 
Long Line 
Pull-Up Resistor 

Horizontal 
Long Line 
(Not Showing) 

Oscillator 
Amplifier 
Output 

Direct Input of 
P47to 
Auxiliary 
Buffer 

Crystal 
Oscillator a Buffer 

Three-State 
Input 

Three-State 
Control 

Three-State 
Buffer 

Auxiliary 
Buffer 

4-63 



Crystal Oscillator 

The previous figure also shows the location of an internal high-speed inverting amplifier that can be used 
as an on-chip crystal oscillator. It is associated with the auxiliary buffer in the lower right corner of the 
die. When the oscillator is configured as a signal source, two special user IOBs are also configured to 
connect the oscillator amplifier with external crystal oscillator components, as shown below. 

When activated by selecting an output network for its buffer, the crystal oscillator inverter uses two of 
the package pins and external components to make an oscillator. An optional divide-by-two mode is 
available to ensure symmetry. 

XTAL2 
(IN) 

SUGGESTED COMPONENT VALVES 

RI l-4MQ 
R2 0-IKQ 

(may be required for low frequency. phase 
shift and/or compensation level for crystal Q) 

Cl,C2 l0-40pF 
YI I - 20 MHz AT cut series resonant 

~Cl 

68 Pin 84Pin 

PLCC PLCC PGA 
LXTALl (Out) 47 57 Jll 
[XTAL2 (In) 43 53 Lil 

Internal External 

RI 

R2 

YI 
~C2 

175 Pin 

PGA 
T14 
P15 

A divide-by-two option is available to assure symmetry. The oscillator circuit becomes active before 
configuration is complete so the oscillator can stabilize. Actual internal connection is delayed until 
completion of configuration. In the preceding figure the feedback resistor, R1, between output and input 
biases the amplifier at threshold. The value should be as large as practical to minimize loading the 

4·64 



crystal. The inversion of the amplifier, together with the R-C networks and an AT cut series resonant 
crystal, produce the 360 degree phase shift of the Pierce oscillator. A series resistor, R2, can be 
included to increase the amplifier output impedance. This may be needed for phase shift control or 
crystal resistance matching, or to limit the amplifier input swing to control clipping at large amplitudes. 

Excess feedback voltage can be corrected by the ratio of C2/C1. The amplifier can be used from 1 MHz 
to one-half the specified CLB toggle frequency. Used at frequencies below 1 MHz, the amplifier may 
require individual characterization with respect to a series resistance. Crystal oscillators operating at 
frequencies above 20 MHz usually require a crystal that operates in a third overtone mode, in which the 
fundamental frequency must be suppressed by the R-C networks. When the oscillator inverter is not 
used, these IOBs and their package pins are available for general user 1/0. 

PROGRAMMING 

Initialization 

An internal power-on reset circuit is triggered when power is applied. When Vee reaches the voltage at 
which portions of the LCA device begin to operate (2.5 to 3 V), the programmable 1/0 output buffers are 
disabled and a high impedance pull-up resistor is provided for the user 110 pins. A time-out delay is 
initiated to let the power supply voltage stabilize. During this time, the power-down mode is inhibited. 
The initialization state time-out (about 20 to 30 ms) is determined by a 14-bit counter driven by a self­
generated, internal timer. This nominal 1 MHz timer is subject to variations as a result of process, 
temperature, and power supply from 0.5 to 1.5 MHz. As shown in the following table, five configuration 
modes are available, as determined by the input levels of three mode pins MO, M1, and M2. 

MO M1 M2 CLOCK MODE DATA 
0 0 0 output Master Bit Serial 
0 0 1 output Master Byte Wide (0000 up) 
0 1 0 - - -
0 1 1 output Master Byte Wide (FFFF down) 
1 0 0 - - -
1 0 1 input Peripheral Byte Wide 
1 1 0 - - -
1 1 1 in_Q_ut Slave Bit Serial 

In master configuration modes, the LCA device becomes the source of the configuration clock (CCLK). 
The beginning of configuration of devices using peripheral or slave modes must be delayed until they are 
initialized. An LCA device with mode lines selecting a master configuration mode extends its 
initialization state using four times the delay (80 to 120 ms). This ensures that all daisy-chained slave 
devices it may be driving will be ready. The next figure shows the sequence of states. 

4·65 



USER l/O PINS W111I HIGH IMPEDENCE PULL-UP 

--~~~~~~~~~--_..,,..___---~~~~~~~~---r HDC=HIGH ----.. 
iNri'SIGNAL LOW LDC= LOW 

HIGH-TO-LOW OF DONF./PROGRAM 

Power-On Delay is 
214 Cycles for Non-Master Mode -11 to 33 ms 
216 Cycles for Master Mode - 43 to 130 ms 

Clear is 
-200 Cycles for the M3020 - 30 TO 400 µs 
-375 Cycles for the M3090 - 250 TO 750 µs 

At the end of initialization, the LCA device enters the clear state, in which it clears the configuration 
memory. The active LOW, open-drain initialization signal, RDYl-INIT, indicates completion of the 
initialization and clear states. The LCA device tests for the absence of an external active LOW -RESET 
before it makes a final sample of the mode lines and enters the configuration state. An external wired­
AND of one or more -INIT pins can be used to control configuration by the assertion of the active LOW 
-RESET of a master mode device or to signal a processor that the LCA devices are not yet initialized. 

If a configuration has begun, re-asserting -RESET for at least three internal timer cycles is recognized, 
and the LCA device will abort the program, clearing the partially loaded configuration memory words. The 
LCA device will then re-sample -RESET and the mode lines before re-entering the configuration state. 

The configuration bit stream is initiated again when a configured LCA device senses a HIGH to LOW. 
transition on the DONE/-PROG package pin. The LCA device returns to the clear state, in which the 
configuration memory is cleared and mode lines re-sampled, as for an aborted configuration. The 
complete configuration bit stream is cleared and loaded during each configuration cycle. 

Length count control lets a system of multiple LCA devices, of various sizes, begin synchronized 
operation. The configuration bit stream generated by the MakePROM software of the XACT LCA 
Development System begins with a preamble of 11110010. This is followed by a 24-bit length count 
representing the total number of configuration clocks needed to complete loading of the configuration 
program(s). The data framing is shown in the following figure. 

4-66 



1111 
0010 
<24 BIT LENGTH COUNT> 
1111 

O<DATAFRAME#OOl> 111 
0<DATAFRAME#002> 111 
0<DATAFRAME#003> 111 

O<DATAFRAME# 196> 111 
O<DATA FRAME# 197> 111 

1111 

- DUMMY BITS (4 BITS MINIMUM) 
- PREAMBLE CODE 
- CONFIGURATION PROGRAM LENGTH 
- DUMMY BITS (4 BITS MINIMUM) 

FORM3020 

197 CONFIGURATION DATA FRAMES 

(EACH FRAME CONSISTS OF: 
A START BIT (0) 
A 71-BITDATAFIELD 
2 OR MORE DUMMY BITS) 

320 
(20X 16) 

64 144 

256 928 

Bits per frame 75 172 
(w/ 1 start 3 stop) 

Frames 197 373 

Program Data = 14779 64160 
Bits • Frames + 4 
(excludes preamble) 

PROM size (bits) 14816 64200 

Power/God pin pair 2 8 

All LCA devices connected in series read and shift preamble and length count in on positive, and out on 
negative, configuration clock edges. An LCA device that has received the preamble and length count 
then presents a HIGH Data Out until it has intercepted the appropriate number of data frames. When the 
configuration memory of an LCA device is full and the length count does not compare, the LCA device 
shifts any additional data through in the same way it did for preamble and length count. 

When the LCA configuration memory is full and the length count compares, the LCA device executes a 
synchronous start-up sequence and becomes operational, as shown below. 

4-67 

II 



I 
DATAFRAME 

1 
IAST;:

1
TrLE 

I s I 24 I 4 1s I 3 4 I 

~~~-: __.I ........... I I I_ 
I PREAMBLE I LENGTII COUNT I 11 DATA I 11 ISTOtPI l 2

STtT 3! f
START LENGTII •

n_n....._1 _ ___.I HIGH

OOUTLEAD DEVICE

112 CLOCK CYCLE
DELAY FROM DATA INPIJf

* THE CONFIGURATION DATA CONSISTS OF A COMPOSITE 36-BIT
PREAMBLE/LENGTH-COUNT, FOLLOWED BY ONE OR
CONCATENATED LCA PROGRAMS, SEPARATED BY 4-BIT
POSTAMBLES. AN ADDffiONAL FINAL POST AMBLE BIT IS
ADDED FOR EACH SLAVE DEVICE AND THE RESULT ROUNDED
UP TO A BYTE BOUNDARY. THE LENGTH COUNT IS TWO LESS
THAN THE NUMBER OF RESULTING BITS.

COUNT

WEAK PULL-UP
~------<(OOACTIVE

~ jfl DONE

INTERNAL RESET ' ~ "-"---
TIMING OF THE ASSERTION OF DONE
AND TERMINATION OF THE INTERNAL
RESET MAY EACH BE PROGRAMMED TO
OCCUR ONE CYCLE BEFORE OR AFTER
THE I/O OUTPUTS BECOME ACTIVE.

Two CCLK cycles after the completion of loading configuration data, the user 1/0 pins are ena.bled as
configured. As selected in MAKEBITS, the internal user-logic reset is released either one clock cycle
before, or one clock cycle after the 1/0 pins become active. A similar timing selection is programmable
for the DONE/-PROG output signal. DONEl-PROG can also be programmed to be an open drain or to
include a pull-up resistor to accommodate wired ANDing. High During Configuration (HOC) and Low
During Configuration (LDC) are two user 1/0 pins driven active when an LCA is initializing, clearing, or
configuring. These pins and the DONEl-PROG commands provide signals for control of external logic
signals such as reset, bus enable, or PROM enable during configuration. For parallel master
configuration modes, these signals provide PROM enable control and let the data pins be shared with
user logic signals.

User 110 inputs can be programmed for either TTL or CMOS compatible thresholds. At power-up, all
inputs have TTL thresholds and can change to CMOS thresholds at the completion of configuration, if
the user has selected CMOS thresholds. The threshold of -PWRDWN and the direct clock inputs are
fixed at the CMOS level.

If the crystal oscillator is used, it will begin operation before configuration is completed; this allows time
for stabilization before the oscillator is connected to the internal circuitry.

4-68

Configuration Data

Configuration data to define the function and interconnection within an LCA device are loaded from an
external storage at power-up and, if not inhibited, on a reprogram signal. Several methods of automatic
and controlled loading of the required data are designed into the LCA device. Logic levels applied to
mode selection pins at the start of configuration determine the method to be used. See the mode
selection table above.

The format of the data can be either bit-serial or byte-parallel, depending on the configuration mode.
Various AMO programmable gate arrays will have different sizes and numbers of data frames. To
maintain compatibility between various device types of the AMO product line, the 3000 series LCA
devices use formats compatible with the 2000 series. For the 3020, configuration requires 14779 bits,
arranged in 197 data frames, for each device. An additional 36 bits are used in header, as shown in the
previous figure. The specific data format for each device is produced by the MAKEBITS command of the
XACT LCA Development System.

One or more of these files can then be combined and appended to a length count preamble and be
transformed into a PROM format file by the MAKE PROM command of the XACT LCA Development
System. An exception to the compatibility of the devices is that a 2000 series device cannot be used as
the master for a 3000 series device if their DONE or RESET are programmed to occur after their outputs
become active. The TIE option of MAKEBITS causes the unused block outputs to be defined as
constant LOW levels that are used to drive the unused routing and block resources. Resources that
might not be accessible to unused block outputs will then be added to FLAGNET, non-critical user nets.
NORESTORE will retain the results of TIE for timing analysis with QUERYNET, before RESTORE returns
the design to the untied condition. TIE can be omitted for quick breadboard iterations where a few
additional mA of Ice are acceptable.

The configuration bit stream begins with HIGH preamble bits, a four-bit preamble code, and a 24-bit a
length count. When configuration is initiated, a counter in the LCA device is set to 0 and begins to count
the total number of configuration clock cycles applied to the device. As each configuration data frame is
supplied to the LCA device, it is internally assembled into a data word. As each data word is completely
assembled, it is loaded in parallel into one word of the internal configuration memory array. The
configuration loading process is completed when the current length count equals the loaded length
count, and the required configuration bit stream data frames have been written. Internal user flip-flops
are held reset during configuration.

Two user-programmable pins are defined in the unconfigured LCA device. HOC and LDC, as well as
DONEi-PROO, can be used as external control signals during configuration. In master mode
configurations it is convenient to use LDC as an active-LOW EPROM Chip Enable. After the last
configuration data-bit is loaded and the length count compares, the user 1/0 pins become active.
Options in the MAKEBITS software allow timing choices of one clock earlier or later for the timing of the
end of the internal logic reset and the assertion of the DONE signal. The open-drain DONE/-PROG
output can be AND-tied with multiple LCA devices and used as an active HIGH READY, an active LOW
PROM enable, or a RESET to other portions of the system.

Master Mode

In master mode, the LCA device automatically loads configuration data from an external memory device.
There are three master modes that use the internal timing source to time the incoming data supplying the

4-69

configuration clock (CCLK). Serial master mode uses serial configuration data supplied to data-in (DIN)
from a synchronous serial source such as the AMD Serial Configuration PROM (Am1736) shown below.

The one-time-programmable Am1736 Serial Configuration PROM supports automatic loading of
configuration programs up to 36K bits. Multiple devices can be cascaded to support additional LCA
devices. An early DONE inhibits •'1e Am1736 data output one CCLK cycle before the LCA 1/0 becomes
active.

4-70

GENERAL­
PURPOSE
USER J/O

PINS

CCLK
(OUTPUT)

DIN

OOUT
(OUTPUT)

+5V

MO Ml PWRDWN

OOUT

M2 CCLK

HDC

LDC

INIT

LCA

DIN---t--i cd.K ___ "

*FOR OPTIONAL SLAVE MODE LCAs IN A DAISY CHAIN

$""""""" :

~ ~

CASCADED
SERIAL

MEMORY

~ i

Master LOW and master HIGH modes automatically use parallel data supplied to the DO-D? pins in
response to the 16-bit address generated by the LCA device. The next figure shows an example of the
parallel master mode connections required. The LCA HEX starting address is 0000 and increments for
master LOW mode. It is FFFF and decrements for master HIGH mode. These two modes provide
address compatibility with microprocessors beginning execution from opposite ends of memory.

For master HIGH or LOW, data bytes are read in parallel by each read clock (RCLK) and internally
serialized by the configuration clock. As each data byte is read, the least significant bit of the next byte,
DO, becomes the next bit in the internal serial configuration word. One master mode LCA device can be
used to interface the configuration program-store and pass additional concatenated configuration data
to additional LCA devices in a serial daisy-chain fashion. CCLK is provided for the slaved devices and
their serialized data is supplied from DOUT to DIN - DOUT to DIN, etc.

Configuration data are loaded automatically from an external byte wide PROM. An early DONE inhibits
the PROM outputs a CCLK before the LCA 1/0 becomes active.

4-71

4.72

1/8 CCL~
RCLK _/

(0UTPU1)

.,,.

GENERAL-
PURPOSE
USER 1/0

PINS

+SV

MO MI PWRDWN

DOUT

M2
CCLK

HDC

LDC

RLCK

!NIT

RESET

D7
D6
D5
D4
DJ
D2
DI
DO

DATA BUS

EPROM
(2Kx8

or Larger)

AIO
A9
A8
A7 D7
A6 D6
A5 D5
M D4
A3 DJ
A2 D2
Al DI
AO DO

OE

CE

<m~~·
(O~~~~

* FOR OPTIONAL SLAVE MODE LCAs IN A DAISY CHAIN

Peripheral Mode

Peripheral mode provides a simplified interface through which the device can be loaded byte-wide, as a
processor peripheral. The next figure shows the peripheral mode connections. Processor write cycles
are decoded from the common assertion of the active LOW Write Strobe (-WAT), and two active LOW
and one active HIGH Chip Selects (-CSO, -CS1, CS2). If all these signals are not available, the unused
inputs should be driven to their respective active levels. The LCA device accepts one byte of
configuration data on the D0-07 inputs for each selected processor write cycle. Each byte of data is
loaded into a buffer register.

The LCA device generates a configuration clock from the internal timing generator and serializes the
parallel input data for internal framing or for succeeding slaves on Data Out (DOUT). An output HIGH on
the READY/-BUSY pin indicates completion of loading for each byte and that the input register is ready
for a new byte. As with master modes, peripheral mode can also be used as a lead device for a daisy­
chain of slave devices.

4-73

4-74

CONTROL ADDRESS DATA
SIGNALS BUS BUS

D0-7

ADDRESS
DECODE
LOGIC

.------------..- +5V

.,,.

MO Ml PWR
DWN

D0-7 CCLK

DOUT

M2
cso

LCA LDC

CSI ·~(CS2 CITHER
WS PINS

RDYiiiUsY

!NIT

r:ir
RESET

• • •

GENERAL­
PURPOSE
USER VO
PINS

WRi' -....,.....,...._..,,.........,....,......

CSo \\\\\\\\ ~ CSi __ ._. _________ .._. ... ____ _

CS2 mmo
!Xl-D7---------.o1~~--------')(:~-----------~
CCLK

RDYiiiUsY _}
'FOR OPTIONAL SLAVE MODE LCAs IN A DAISY CHAIN

Slave Mode

Slave mode provides a simple interface for loading the LCA device configuration, as shown below. Data
are supplied in conjunction with a synchronizing input clock. Bit-serial data configuration are read at
rising edge of the CCLK. Data on DOUT are provided on the falling edge of CCLK.

Most slave mode applications are in daisy-chain configurations in which the data input are supplied by
the previous LCA's data out, while the clock is supplied by a lead device in master or peripheral mode.
Data can also be supplied by a processor or other special circuits.

Daisy-Chain

MICRO
COMPUTER

J.(l

PORT

RESET

DW=x BITN

I·
CCLK j
OO!IT

(OUTPUl)

f

+SY

MO Ml PWRDN

LCA

M2

OO!IT

HDC

LDC

riiP

M{ Other
Pins

BITN+I

" :::1
BITN-I m. BITN

•FOR OPTIONAL SLAVE MODE LCAs IN A DAISY CHAIN

........
GENERAL-
PURPOSE
USER l/O
PINS

I

The AMD XACT LCA Development System is used to create a composite configuration bit stream for
selected LCA devices. This configuration includes the following:

4.75

A preamble
A length count for the total bit stream
Multiple concatenated data programs
A postamble
An additional fill bit per device in the serial chain

After loading and passing on the preamble and length count to a possible daisy-chain, a lead device will
load its configuration data frames while providing a HIGH DOUT to possible down-stream devices as
shown below. In this figure, all are configured from the common EPROM source. The slave mode device
-INIT signals delay the master device configuration until they are initialized. A well defined termination
of SYSTEM RESET is needed when controlling multiple LCA devices.

+5V

+5V
.,,.

l
MO Ml PWRDWN

CCLK

IJOUT

M2 AI5
Al4

HDC Al3

RLcK Al2
GENERAL- All

PURPOSE LCA AIO
USER 1/0 MASIER A9

PINS A8
A7
A6
A5
M

D7 A3
D6 A2
D5 Al
D4 AO
D3
D2 LDC
DI
DO

RESET DiP

Re gram

SYs'i'EM
'RESET

+5V

CCLK

i-----~-~~--tDIN

Al5
Al4
Al3
Al2

EPROM

LCA
SLAVE#!

HDC

LDC

+5V

MOM! PWRDWN

CCLK

-~\----1 DIN DOUT
LCA

SLAVE#2
M2

HDC

LDC

All
AIO
A9
A8
A7 D7

ALL { •

~

GENERAL·
PURPOSE
USER 1/0
PINS

ALL { •

~
A6
A5
M
A3
A2
Al
AO

OE

CE

D6
D5
D4
D3
D2
DI
DO

INIT
DiP

RESET
!NIT

Loading continues until the current length count has reached the full value. The additional data are
passed through the lead device and appear on the DOUT pin in serial form. The lead device also

4·76

GENERAL­
PURPOSE
USER 1/0
PINS

generates the CCLK to synchronize the serial output data and data in of LCA devices further attached.
Data are read in on DIN of slave devices by the positive edge of CCLK and shifted out the DOUT on the
negative edge of CCLK. A parallel master mode device uses its internal timing generator to produce an
internal CCLK of eight times its EPROM address rate, while a peripheral mode device produces a burst of
eight CCLKs for each chip select and write-strobe cycle. The internal timing generator continues to
operate for general timing and synchronization of inputs in all modes.

SPECIAL CONFIGURATION FUNCTIONS

The configuration data include control over several special functions, in addition to the normal user logic
functions and interconnections.

Input thresholds
Readback enable
DONE pull-up resistor
DONE timing
RESET timing
Oscillator frequency divided-by-two

Each of these functions is controlled by configuration data bits selected as part of the normal XACT LCA
Development System bit-stream generation process.

Input Thresholds

Prior to the completion of configuration, all LCA input thresholds are TIL compatible. Upon completion of II
configuration, the input thresholds become either TIL or CMOS compatible, as programmed. The use of
the TIL threshold option requires some additional supply current for threshold shifting. The exception is
the threshold of the ~PWRDWN input and direct clocks that always have a CMOS input. Prior to the
completion of configuration, the user 1/0 pins have a high impedance pull-up. The configuration bit
stream can be used to enable the 108 pull-up resistors in the operational mode to act either as an input
load or to avoid a floating input on an otherwise unused pin.

Read back

The contents of an LCA device can be read back if it has been programmed with a bit stream in which the
Readback option has been enabled. Readback can be used for verification of configuration, as well as a
method of determining the state of internal logic nodes during debugging with the XACTOR In-Circuit
debugger. There are three options in generating the configuration bit stream.

Never inhibits the Readback capability.

One-time inhibits Readback after one Readback has been executed' to verify the configuration.

On-command permits unrestricted use of Readback.

4.77

Readback is done without the use of any of the user 1/0 pins; only MO, M1, and CCLK are used. The
initiation of readback is produced by a LOW to HIGH transition of the MO/RTRIG (Read Trigger) pin.
Once the READBACK command has been given, the input CCLK is driven by external logic to read back
each data bit in a format similar to loading. After two dummy bits, the first data frame is shifted out, in
inverted sense, on the M1/-RDATA (Read Data) pin. All data frames must be read back to complete the
process and return the mode select and CCLK pins to their normal functions.

The readback data includes the current state of each internal logic block storage element, and the state
of the .i and .ri connection pins on each 108. These data are imbedded into unused configuration bit
positions during readback. This state information is used by the XACT LCA Development System In­
Circuit Verifier to provide visibility into the internal operation of the logic while the system is operating.
To readback a uniform time-sample of all storage elements it may be necessary to inhibit the system
clock.

Reprogram

To initiate a reprogramming cycle, the dual function package pin DONE/-PROG must transition from
HIGH to LOW . To reduce noise sensitivity, the input signal is filtered for two cycles of the LCA's internal
timing generator. When reprogram begins, the user programmable 1/0 output buffers are disabled, and
high impedance pull-ups are provided for the package pins. The device returns to the clear state and
clears the configuration memory before it is initialized.

Reprogram control is often exercised using an external open collector driver that pulls DONE/-PROG
LOW. Once it recognizes a stable request, the LCA device holds a LOW until the new configuration has
been completed. Even if the reprogram request is externally held LOW beyond the configuration period,
the LCA device will begin operation upon completion of configuration.

DONE Pull-up

DONE/-PROG is an open drain 1/0 pin indicating that the LCA device is operational. An optional internal
pull-up resistor can be enabled by the user of the XACT LCA Development System when MakeBits is
executed. The DONE/-PROG pins of multiple LCA devices in a daisy-chain can be connected to
indicate all are DONE or to direct them to reprogram.

DONE Timing

By a selection in the MakeBits program, the timing of the DONE status signal can be controlled to occur
one CCLK cycle before, or one cycle after, the timing of outputs are activated. This is shown below.
This facilitates control of external functions such as a PROM enable or holding a system in a wait state.

4.79

POSTAMBLE

I DATAFRAME I LASTFRAMEI !
I s I 24 I 4 75 I 3 4 I

hJ1C~~-: ~I 111_
I PREAMBLE I LENGTHCOUNT , 11 DATA , 11 , I r 2

STtT 3St f St
START LENGTH •

llll_I _ ___.I HIGH

DOUTLEADDEVICE

1(2 CLOCK CYCLE
DELAY FROM DATA INPUT

* THE CONFIGURATION DATA CONSISTS OF A COMPOSITE 36-BIT
PREAMBLE/LENGTH-COUNT, FOLLOWED BY ONE OR
CONCATENATED LCA PROGRAMS, SEPARATED BY 4-BIT
POST AMBLES. AN ADDITIONAL FINAL POST AMBLE BIT IS
ADDED FOR EACH SLAVE DEVICE AND THE RESULT ROUNDED
UP TO A BYTE BOUNDARY. THE LENGTH COUNT IS TWO LESS
THAN THE NUMBER OF RESULTING BITS.

RESET Timing

COUNT

WEAK PULL-UP I/"
-~~~~~-"4C"-.l/OACl1VE

PRoGRAM LV DONE

INTERNALRESET \~ ,,_.__ __ _
TIMING OF THE ASSERTION OF DONE
AND TERMINATION OF THE INTERNAL
RESET MAY EACH BE PROGRAMMED TO
OCCUR ONE CYCLE BEFORE OR AFfER
THE 1/0 OUTPUTS BECOME ACTIVE.

As with DONE timing, the timing of the release of the internal RESET can be controlled by a selection in
the MakeBits program. It then occurs one CCLK cycle before, or one cycle after, the timing of outputs
are enabled, as shown above. This reset maintains all user-programmable flip-flops and latches in a zero
state during configuration.

Crystal Oscillator Division

A selection in the MakeBits software lets the user incorporate a dedicated divide-by-two flip-flop in the
crystal oscillator function. This helps ensure a symmetrical timing signal. Although the frequency
stability of crystal oscillators is high, the symmetry of the waveform can be affected by bias or feedback
drive.

4.79

PERFORMANCE

Device Performance

The high performance of the LCA device is due in part to the manufacturing process, which is similar to
that used for high-speed CMOS static memories. Performance can be measured in terms of minimum
propagation times for logic elements. The parameter that traditionally describes the overall performance
of a gate array is the toggle frequency of a flip-flop. The configuration for determining the toggle
performance of the LCA device is shown below. The flip-flop output Q is fed back through the
combinational logic as -Q to form the toggle flip-flop.

Actual LCA device performance is determined by the timing of critical paths, including both the fixed
timing for the logic and storage elements in that path, as well as the timing associated with the network
routing. Examples of internal worst-case timing are included in the performance data to let the user to
make the best use of the device's capabilities. The XACT LCA Development System timing calculator, or
LCA generated simulation models, should be used to calculate worst-case paths by using actual
impedance and loading information. The following figure shows a variety of elements used involved in
determining system performance.

4-80

CLOCK TO
OU1PUf COMBINATIONAL

14-TCKO .. I. Tn..o .. I. ~Top-..j
~~~~~.....,,.... F~~~~~~~.....,~ 

CLB CLB 

---Loo1c---L001c 

(K) 

PAD >-....... ---1 

~TPID~ 

Pad to input (direct) TpID 

Output to pad (enabled) 

1/0 clock to pad ToKPO 

FF toggle frequency FCLK 

12 
0 

-50 -70 

Max Min Max 

14 9 

12 

IO 

14 

18 

50 

8 
0 

8 

7 

IO 

13 

70 

The speed of internal elements is determined by differential measurements of package pins. The 
performance of a user's design can be predicted by the XACT LCA Development System delay 
calculator. 

Units 

ns 

ns 
ns 
ns 

ns 

ns 

ns 

MHz 

4-81 



Actual measurement of internal timing is not practical; often only the sum of component timing is 
relevant, as in the case of input to output. The relationship between input and output timing is arbitrary; 
only the total determines performance. Timing components of internal functions can be determined by 
measuring the differences at the pins of the package. A synchronous logic function with a clock-to­
block output, and a block-input to clock set-up, is capable of higher speed operation than a logic 
configuration of two synchronous blocks with an extra combinational block level between them. System 
clock rates to 60% of the toggle frequency are practical for logic in which there is an extra combinational 
level located between synchronized blocks. This permits implementation of functions of up to 25 
variables. The use of the wired-AND is also available for wide, high-speed functions. 

Logic Block Performance 

Logic block performance is expressed as the propagation time from the interconnection point at the input 
of the combinational logic, to the output of the block in the interconnection area. Combinational 
performance is independent of the specific logic function, which is based on look-up tables. 

The only parameter for all logic functions is the Logic Input to Output delay. For combinational logic used 
in conjunction with the storage element, however, there are two critical parameters. First, for the 
combinational logic function driving the data input of the storage element, the critical timing is data setup 
relative to the clock edge provided to the flip-flop. Second, for the signals then produced by the storage 
elements, the critical timing is the Clock to Output delay. These parameters are shown in the previous 
figure. 

Loading of a logic block output is limited only by the resulting propagation delay of the larger 
interconnection network. Speed performance of the logic block is a function of the supply voltage and 
the temperature, as shown in the next two figures. 



The following figure shows the change in speed performance as a function of temperature. The variation 
is normalized for 30° C, 70° C, 85° C, and 125° C. 

1.3 

1.2 

I.I 

I 1.0 

0.9 

~ 
0.8 

0.7 

0.6 

0.5 

1.2 

I 
I.I 

1.0 
~ 
>< 

~ 
0.9 

4 4.5 5.0 5.5 6.0 

Vee 

4-83 

II 



Interconnection Performance 

Interconnection performance depends on the routing resource used for the signal path. As discussed 
earlier, direct interconnection from block to block provides a fast path for a signal. The single metal 
segment used for long lines exhibits low resistance from end to end, but relatively high capacitance. 
Signals driven through a programmable switch will have the additional impedance of the switch added to 
their normal drive impedance. 

General purpose interconnection performance depends on the number of switches and segments used, 
the presence of the bidirectional re-powering buffers, and the loading at all points on the signal path. In 
calculating the worst-case timing for a general interconnection path, the timing calculator portion of the 
XACT LCA Development System takes all of these elements into account. 

As an approximation, interconnection timing is proportional to the summation of totals of local metal 
segments beyond each programmable switch. In effect, the time is a sum of R-C time, each 
approximated by an R times the total C it drives. The R of the switch and the C of the interconnection are 
functions of the particular device performance grade. 

For a string of three local interconnections, the approximate time at the first segment {after the first 
switch resistance) would be three units; after the next switch there are an additional two units; and there 
is an additional unit after the last switch in the chain. The interconnection R-C chain terminates at each 
re-powering buffer. The capacitance of the block inputs is not significant; the capacitance is in the 
interconnection metal and switches, as shown in the following figure. 

Switch Matrix 

CLB 

TIMING: INCREMENTAL 

IF RI ; Rz ; RJ ; R and c I ; C2 ; C3 ; c 

THEN CUMULATIVE TIMING 

4-84 

Tl ;3RC 
;JRC 

Repowering Buffer 

Tl ; 3RC + 2RC Tl ; 3RC + 2RC + I RC 6RC +BUFFER 
;5RC ;6RC 



POWER 

Power Distribution 

Power for the LCA device is distributed through a grid to achieve high noise immunity and isolation 
between the logic and 1/0. Inside the LCA device, a dedicated Vee and ground ring surrounding the logic 
array provide power to the 1/0 drivers, as shown below. An independent matrix of Vee and ground lines 
supplies the interior logic of the device. This power distribution grid provides a stable supply and ground 
for all internal logic; this assumes that the external package power pins are all connected and 
appropriately decoupled. Usually, a 0.1 µF capacitor connected near the Vee and ground pins of the 
package will provide adequate decoupling. 

GND 

+··+··+··+··+··+··+··+ 
I I I I I I 

' ' ' +··+··+··+··+··+··+··+ 
I I I I I I I 
I I I I I I I + .. + .. + .. + .. + .. + .. + .. + 

I I I I I I I 
I I I I I I I 

+··+··+··+··+··+··+··+ 
Vee I I I I 

I I I I 

+ .. + .. + .. +·. + .. + .. +. ·+ . . . . . . 
+··+··+··+··+··+··+··+ : : : : : :-.;..' -+-11-+-------
+· · + · · + · · + · · + · · + · · + · · + 

I I I I I I 
I I I I I I 

+··+··+··+··+··+··+··+ 

GND 

Ground and 
Vee Ring For 
110 Drivers 

Logic Power Grid 

Output buffers capable of driving the specified 4 mA loads under worst-case conditions can be capable 
of driving 25 to 30 times that current in a best case. Noise can be reduced by minimizing external load 
capacitance and reducing simultaneous output transitions in the same direction. Also, it may be 
beneficial to locate heavily loaded output buffers near the ground pads. The 108 output buffers have a 
slew-limited mode that should be used where output rise and fall times are not speed critical. A lower AC 
drive current reduces transition and supply noise without a corresponding reduction in DC drive. A 
maximum of 32 simultaneously switching outputs is allowed. 

4·85 



Power Dissipation 

The LCA device exhibits the low power consumption characteristic of CMOS ICs. For any design, the 
user can use the figure below to calculate the total power requirement based on the sum of the external 
and internal capacitive and DC loads. The total chip power is the sum of Vcc•lcco, plus internal and 
external values of capacitive charging currents and resistive loads. · 

The configuration options of TTL chip input threshold requires power for the threshold reference. The 
power required by the static memory cells holding the configuration data is very low and can be 
maintained in a power-down mode. 

4·86 



150 

100 

50 

40 

30 

(m W) 

20 

CLB 50ACTIVE 
OUTP UTS 

l~ 

20)\ ~~ •oUTP 
(3 LOCAL SBQM 

EA 
ENTSJ 
CH) 

2 

Hz)/ (3mW/M 

3020GLO 
CLOCK BUFF 

(=8LONGLI 

BAL 
ER 

NES) l 

Hz)/ (1.25 mW/M 

11/00UTP 
(50 

UT 

pF)0.5 

7 

~ 
~ 

E 
~ 

L z 
L 

lt' 

L v 

rz 
::2l 

/ L 
L ~ z [Z 

17'" 2 z [Z v L 111 
,,,,;:IA 

V" 

~ ~I v r· .......... 1 [::>. L Ld ...o!!I 
ll1 

IZ z..zs. J::J;x~ ~ L 
.L rz: _:i~ JL~ I> ..Ll 

L .. Li L. . · .......... VlJ: L 
L ........ "·l~S·/ ~ IZ 

L ,/ =::: P' EL'" 2 
V' 1. :s2l :lJ.: .:s: L.~ z 
~ ~ ~\ ~ ~· L l.-d 

~ ~·] ~ V1 L 
17 v 

~ 
~\.::.:::: ... 1 V1 v v 
f:.>· Ld v L _L_ 

z IZ L 
L ..Ll ..L 

IL L L 
17 z z z 

L ~ 

L V1 v 
~ v 

L 
/ 

0.5 1 4 5 10 20 30 40 50 

(0.4 mW/MHz)/ 

1 ACTIVE CLB OUTPUT 
(3LOCAL 

INTERCONNECTIONS) 

FREQUENCY (MHz) 

100 
90 

80 

70 

60 
50 

40 

30 

20 

10 
9 

6 
5 (mA) 

4 

2 

I 
.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 

.I 

4-87 

a 



Usually, most power dissipation is produced by external capacitive loads on the output buffers. The 
load- and frequency-dependent power is 25 µW/pF/MHz per output. Another component of 1/0 power is 
the DC loading on each output pin by LCA-driven devices. 

Internal power dissipation is a function of the number and size of the nodes, and the frequency at which 
they change. In an LCA device, the fraction of nodes changing on a given clock is typically low (10-
20%). For example, in a large binary counter, the average clock cycle produces changes equal to one 
CLB output at the clock frequency. In a 4-input AND gate, there will be two transitions in 16 states. 
Typical global clock buffer power is about 3 mW/MHz. The internal capacitive load is more a function of 
interconnection than fanout. With typical load of three general interconnection segments, each CLB 
output requires about 0.4 mW/MHz of its output frequency. 

Total power = Vee• leeo +external (DC+ capacitive)+ internal (CLB + IOB+ Long Line+ pull-up) 

Because the control storage of the LCA device is CMOS static memory, its cells require a very low 
standby current for data retention. In some systems, this characteristic can be used as a method of 
preserving configurations in the event of a primary power loss. The LCA device has built in power-down 
logic that, when activated, will disable normal operation of the device and retain only the configuration 
data. All internal operation is suspended and output buffers are placed in a high impedance state with no 
pull-ups. Power-down data retention is possible with a simple battery-backup circuit because the power 
requirement is extremely low. For retention at 2.4 V, the required current is typically on the order of 50 
nA. 

To force the LCA device into the power-down state, the user must pull the -PWRDWN pin LOW and 
continue to supply a retention voltage to the Vee pins of the package. When normal power is restored, 
Vee is increased to its normal operating voltage and -PWRDWN is returned to HIGH. The LCA device 
resumes operation with the same internal sequence that occurs at the conclusion of configuration. 
Internal 1/0 and logic block storage elements will be reset, the outputs will become enabled, and the 
DONE/-PROG pin will be released. No configuration programming is required. 

When the power supply is removed from a CMOS device, it is possible to supply some power from an 
input signal. The conventional electrostatic input protection is provided by diodes to the supply and 
ground. A positive voltage applied to an input or output will cause the positive protection diode to 
conduct and drive the power pin. This condition can produce invalid power conditions and should be 
avoided. A large series resistor can be used to limit the current, or a bi-polar buffer can be used to 
isolate the input signal. 

DEVELOPMENT SYSTEMS 

To implement your system application on the LCA device, AMO provides a wide host of software 
packages. These packages are primarily IBM-PC/AT based and allow the entire programmable gate 
array design cycle to be completed inexpensively and quickly at the system designer's desk. The 
packages provide the following capabilities. 

4-88 

Schematic capture 
PALASM™ Boolean entry 
Large number of predefined macro library elements 
Automatic logic conversion and reduction 
Logic and electrical rule checking 



Logic partitioning 
Automatic placement and routing 
Interactive timing calculator 
Logic and timing simulation interfaces 
Automatic design documentation 
Interactive design editing and optimization 
PROM programmer format output capabilities 
In-system design verification for multiple arrays 

The XACT LCA Design Editor is hosted on an IBM-PC/AT system with DOS 3.0 or higher. The system 
requires 640K bytes of internal RAM, 1.5 MBytes of extended memory, color graphics, and a mouse. 
The complete system requires one parallel 1/0 port and two serial ports for the mouse and in-system 
emulator. 

Design Entry 

Design entry can be accomplished with popular schematic editors. Popular engineering workstations 
such as Daisy or Mentor are also supported. Additionally, designs can be entered and configured 
manually with the XACT Design Editor, or through Boolean expressions via PALASM programmable logic 
language. 

The following figure shows a partial sample of a entering a design via schematic capture. 

4-89 



PIN 

Design Implementation 

Following design entry, logic designs can be automatically converted, reduced, partitioned, placed, and 
routed with the Automatic Design Implementation (ADI) software packages. For those designs that are 
not completely automatic, the XACT Design Editor can be used to manually complete or optimize the 
design. Following layout, various design and electrical rules are checked automatically by the software, 
producing a valid design file. This file contains all the programming data used to download directly into 



an LCA device in the user's target system. The programming information can be used to program PROM, 
EPROM, or ROM devices, or stored in other media, as needed by the final system. 

Design Verification 

Design verification can be accomplished by using the AMD XACTOR In-System Emulator directly in the 
target system. Also, the ADI packages provide output data that can be accepted by popular simulators 
such as P-SILOS for complete logic and timing simulation. If design changes are required, the changes 
can be implemented in minutes at the designer's desk. 

PIN DESCRIPTIONS 

-PWRDWN 

An active LOW power down input stops all internal activity to minimize Vee power and puts all output 
buffers in a high impedance state. Configuration is retained, however, internal storage elements are 
Reset. When the -PWRDWN pin returns HIGH, the device returns to operation with the same sequence 
of Reset, buffer enable, and DONEi-PROGRAM as at the completion of configuration. 

MO 

As Mode 0, this input and M1 M2 are sampled before the start of configuration to establish the 
configuration mode to be used. 

or 

RTRIG 

As a Read Trigger, after configuration is complete, an input transition to a HIGH will initiate a Readback 
of configuration and storage element data by CCLK. This operation can be limited to a single request, or 
can be inhibited altogether, by selecting the appropriate readback option when generating the bit stream. 

M1 

As Mode 1, this input, MO, and M2 are sampled before the start of configuration to establish the 
configuration mode. 

or 

4.91 



-RDATA 

As an active LOW Read Data, this pin is the output of the readback data after configuration is complete. 

M2 

As Mode 2 this input, MO, and M1 are sampled before the start of configuration to establish the 
configuration mode. After configuration, this pin becomes a user-programmable 1/0 pin. 

HDC 

High During Configuration is held at a HIGH level by the LCA device until after configuration. It is 
intended to be available as a control indication that configuration is not completed. After configuration, 
this pin is a user 1/0 pin. 

LDC 

Low During Configuration is held at a LOW level by the LCA device until after configuration. It is intended 
to be available as a control indication that configuration is not completed. It is particularly useful in 
master mode as a LOW enable for an EPROM. After configuration, this pin is a user 1/0 pin. If used as a 
LOW EPROM enable, it would need to be programmed as a HIGH after configuration . 

... INIT 

This is active LOW open collector output is held LOW during the power stabilization and internal clearing 
of the configuration memory. It can be used to indicate status to a configuring microprocessor or, as a 
wired-AND of several slave mode devices, a hold-off signal for a master mode device. After 
configuration, this pin becomes a user programmable 1/0 pin. 

-RESET 

This active LOW input has three functions. Prior to the start of configuration, a LOW input will delay the 
start of configuration. An internal circuit senses the application of power and begins a minimal time-out 
cycle. When the time-out and -RESET are complete, the levels of the M lines are sampled and 
configuration begins. If -RESET is asserted during a configuration , the LCA device is re-initialized and 
will restart the configuration at the termination of -RESET. If -RESET is asserted after configuration is 
complete, it will provide an asynchronous reset of all 108 and CLB storage elements of the LCA device. 

DONE 

The DONE output is configurable as an open drain with or without a pull-up resistor. At the completion of 
configuration, the circuitry of the LCA device becomes active in a synchronous order, and DONE can be 
programmed to occur one cycle before or after. 

4-92 



-PROG 

Once configuration is completed, a HIGH-to-LOW transition of this pin will cause an initialization of the 
LCA device and start a reconfiguration. 

XTL1 

This user 1/0 pin can be configured to operate as the output of an amplifier usable with an external 
crystal and bias circuitry. 

XTL2 

This user 110 pin can be configured to operate as the input of an amplifier usable with an external crystal 
and bias circuity. 

CCLK 

During configuration, Configuration Clock is an output of an LCA device in master mode or peripheral 
mode. LCA devices in slave mode use it as a clock input. During a Readback operation, it is an input 
clock for the configuration data being output. 

DOUT 

This user 1/0 pin is used during configuration to output serial configuration data for the Data In of daisy­
chained slaves. 

DIN 

This user 1/0 pin is used as serial Data In during slave or master serial configuration. This pin is DO in 
master or peripheral configuration mode. 

-CSO, -CS1, CS2, -WRT 

These four inputs represent a set of signals, three active LOW and one active HIGH, which are used in 
peripheral mode to control configuration data entry. The assertion of all four generates a write to the 
internal data buffer. The removal of any assertion results in the present data of DO-D7 being clocked in. 

-RCLK 

During master parallel mode configuration, this pin represents a read of an external memory device. 

RDY/-BUSY 

During peripheral parallel mode configuration, this pin indicates when the chip is ready for another byte of 
data to be written to it. After configuration is complete, this pin becomes a user-programmed 1/0 pin. 

4.93 



D0-07 

This set of eight pins represents the parallel configuration byte for the parallel master and peripheral 
modes. After configuration is complete, they are user-programmable 1/0 pins. 

AO-A 15 

This set of 16 pins presents an address output for a configuration EPROM during master parallel mode. 
After configuration is complete, they are user-programmable 1/0 pins. 

110 

A pin that, after configuration, can be programmed by the user to be an input and/or output pin. Some of 
these pins present a high impedance pull-up or perform other functions before configuration is complete. 



APPENDIX A: TABLES AND DIAGRAMS 

Table 2a. 3000 Family Configuration Pin Assignments 

CONFIGURATION MODE: <M2:Ml:MO> 68 84 84 175 USER 
PLCC PLCC PGA PGA OPERATION 

M[lllIG!filE.[ MI,ILO ill :I M(ILOWJ] :I M(IHIGi.llill: :I Mffi,Q'fil] 
MQiHIGllli! :J. MOJ!.O U! :I MOJ.li!Glfil! I MO]!.OW.Ilj MQ.il,Q'fil] 
M2 HIGH I M2.i,.LO I _l M2.i_HIGJlli! M2l11IGHJ..ill.. M2]!l!Gfillli.. 
HOC HIGH HOC <L W HOC HIGH HOC HIGH HOC HIGH 

RESE'l'...£ll.. 
DONE DONE 

DIN I DINJ!.l.. 
DOUT 0 OOUT 0 
CQ;K :I CCLK 

DONE 
DATA7 I 

[ DATAtifil: 
[ DATAf![ 
[ csQfil :r 

DATA'ifil. 
DATA3(1) 

jn_ 
DATA'.W) 
DATA ill 

DATAQ.l![ 
DOUT 
CCLK 

[ cs2Jl[ 

DONE DONE 
DATA7(1) DATA7J!l.. 

DATAlj_ffi_ DATA6 I 
DATAf![ DATA5Jl[ 

DATA'!.fil. DATA'!.fil. 
DATA:i.fil.. DATA:i.fil.. 

DATA2 I DATA2_(1)_ 
DATA ill DATA ill 

DATAQ.l![ DATAQ.l![ 
DOUT DOUT 
CCLK CCLK 

AO AO 
Al Al 
A2 A2 
A3 A3 
A15 A15 
A4 A4 
A14 A14 
A5 A5 
A13 A13 
A6 A6 
A12 A12 
A7 A7 
All All 
A8 A8 
AIO AIO 
A9 A9 

10 
25 
26 
27 
2S 
30 
34 
43 
44 
45 
46 
47 
4S 
49 
50 
51 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

D REPRESENTS A SOK TO IOOK OHM PULL-UP DURING CONFIGURATION 
• !NIT IS AN OPEN DRAIN OUTPUT DURING CONF!GURA TION 

12 
31 
32 
33 
34 
36 
42 
53 
54 
55 
56 
57 
5S 
60 
61 
62 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 
7S 
SI 
S2 
S3 
84 

4 

9 
10 
11 

B2 
J2 
Lt 
K2 
K3 
l3 
K6 
Lil 
KIO 
JIO 
Kil 
JI! 
HIO 
FIO 
GIO 
Gll 
Fll 
Ell 
EIO 
DIO 
Cl! 
Bil 
CIO 
All 
BIO 
B9 

AIO 
A9 
B6 
B7 
A7 
C7 
A6 
A5 
BS 
cs 
A3 
A2 
B3 
Al 

B2 
Bl4 
BIS 
Cl5 
E14 
D16 
H15 
P15 
Rl5 
R14 
N13 
T14 
P12 
Tl! 
RIO 
R9 
RS 
P8 
RS 
R7 
R5 
P5 
R3 
N4 
R2 
P2 
M3 
Pl 
NI 
Ml 
L2 
K2 
Kl 
H2 
HI 
F2 
El 
DI 
El 
C2 

XTLI ORJ,I(; 

CCLK I 

Note: Pin assignments of "PGA Footprint" PLCC sockets and PGA packages are not electrically identical. 

4-95 



Table 2b. 3000 Family 68-Pin PLCC Pinouts 

PLCC PLCC 

Pin Pin 

Numbers 3020 Numbers 3020 

10 -PWRON 44 -RESET 

11 IO 45 DONT--PG 

12 IO 46 07-1/0 

13 110· 47 XTL1-l/0 

14 IO 48 06-1/0" 

15 IO 49 05-1/0 

16 IO 50 -CS0-1/0 

17 IO 51 04-1/0" 

18 VCC 52 vcc 
19 vo· 53 03-1/0 

20 IO 54 -CS1-l/0 

21 110· 55 02-110· 

22 IO 56 01-1/0 

23 I IO 57 ROY/-BUSY--f!CLK-1/0 

24 IO 58 00-0IN-l/O 

25 M1--ROATA 59 OOUT-110 

26 MO-RTRIG 60 CCLK 
27 M2-llO 61 AO--WS-1/0 

28 HOC-110 62 A1-CS2-l/0 

29 IO 63 A2-l/0 

30 ·LDC-110 64 A3-l/0 

31 IO 65 A15-l/O 

32 IO 66 A4-l/O 

33 IO 67 A14-l/0 

34 ·INIT-VO 68 A5-l/0 

35 GNO 1 GO 

36 IO 2 A13-l/O 

37 IO 3 A6-l/O 

38 IO 4 A12-l/O 

39 IO 5 A7-l/O 

40 IO 6 A11-l/O 

41 IO 7 A8-l/O 

42 IO 8 A10-l/O 

43 XTL2-l/O 9 A9-l/O 

"6 Unbonded IOBS 3020 

The default configuration of IOBs is input with pull-up. This can be used to prevent an undefined pad 
level for unbonded or unused IOBs. 

4·96 



Table 2c. 3000 Family 84-Pln PLCC and PGA Plnouts 

PLCC PGA PLCC PGA 

Pin Pin Pin Pin 
Number Number 3020 3030 Number Number 3020 3030 

12 B2 -PWRON -PWRON 54 K10 -RESET -RESET 

13 C2 IO IO 55 J10 OONE--PG OONE--PG 

14 81 N/C IO 5S K11 07-110 07-110 

15 C1 IO IO 57 J11 XTL1·110 XTL1-llO 

1S 02 IO IO 58 H10 06-110 06-110 
17 01 IO IO 59 H11 1/0 1/0 
18 E3 IO IO 60 F10 05-110 05-110 

19 E2 IO IO 61 G10 -CS0-110 -CS0-110 

20 E1 IO IO 62 G11 04-110 04-1/0 

21 f2 IO IO 63 G9 1/0 1/0 

22 F3 vcc vcc 64 F9 vcc vcc 
23 G3 IO IO 65 F11 03-110 03-110 

24 G1 IO IO 66 E11 -CSH/O -CS1-l/O 

25 G2 IO IO 67 E10 02-110 02-1/0 

26 F1 IO IO 68 Ell 1/0 1/0 

27 H1 IO IO 69 011 N/C 1/0 

28 H2 IO IO 70 010 01-110 01-110 

29 J1 IO IO 71 C11 RDY/-BUSY--RCLK-1/0 fDY/-BUSY--RCLK l/O 

30 K1 IO IO 72 811 OO-OIN-110 OO-OIN-110 

31 J2 M1--ROATA M1·-ROATA 73 C10 OOUT-110 OOUT-110 

32 L1 MO--RTRIG MO--RTRIG 74 A11 CCLK CCLK 

33 K2 M2-l/O M2-l/O 75 810 AO--WS-110 AO--WS-110 

34 K3 HOC-1/0 HOC-1/0 76 89 A1-CS2·110 A1-CS2-110 

35 L2 IO IO 77 A10 A2-l/O A2-110 

36 L3 -LOC-1/0 -LDC-1/0 78 A9 A3-1/0 A3-1/0 

37 K4 IO IO 79 88 N/C 1/0 

38 L4 N/C IO 80 AS N/C 1/0 

39 J5 IO IO 81 86 A15-l/O A15-l/O 

·40 K5 IO IO 82 87 A4-1/0 A4-l/O 

41 LS N/C IO 83 A7 A14-l/O A14-l/O 

42 KS -INIT-1/0 -INIT-l!O 84 C7 AS-1/0 AS-110 

43 J6 GNO GNO 1 cs GND GND 

44 J7 IO IO 2 A6 A13-l/O A13-l/O 

4S L7 IO IO 3 AS A6-1/0 AS-110 

4S K7 IO IO 4 8S A12-l/O A12-l/O 

47 LS IO IO s cs A7-l/O A7-l/O 

48 LB IO IO 6 A4 N/C 1/0 

49 K8 IO IO 7 84 N/C 1/0 

so L9 N/C IO 8 A3 A11-llO A11-l/O 

S1 LIO N/C IO 9 A2 AS-1/0 AB-110 

S2 K9 IO IO 10 83 A10-l/O A10-1/0 

S3 L11 Xll2-l!O Xll2-l/O 11 A1 A9-l/0 A9-l/O 

The default configuration of IOBs is input with pull-up. This can be used to prevent an undefined pad level for unbonded or unused 
IOBs. 

II 



Table 2d. SC3000 Family 175-Pin PGA Pinouts 

PGA Pin PGA Pin PGA Pin PGA Pin 

Number 3090 Number 3090 Number 3090 Number 3090 

B2 -PWRDN 013 110 R14 DONE--PG R3 DO-DIN-110 

04 IO 814 M1--RDATA N13 07-110 N4 DOUT-110 

B3 IO C14 vss T14 XTAL1-llO R2 CCU< 
C4 IO 815 MO--RTRIG P13 110 P3 vcc 
B4 IO 014 vcc R13 110 N3 VSS 

A4 IO C15 M2-llO T13 110 P2 AO--WS-1/0 

05 IO E14 HDC-1/0 N12 1/0 M3 A1-CS2-l/O 

C5 IO 81S 110 P12 DS-1/0 R1 1/0 

BS IO 015 110 R12 1/0 N2 1/0 

A5 IO C1S 110 T12 1/0 P1 A2-l/O 

C6 IO D1S -LDC-1/0 P11 110 N1 A3-llO 

OS IO F14 110 N11 1/0 L3 1/0 

B6 IO E15 110 R11 1/0 M2 1/0 

A6 IO E1S 110 T11 05-1/0 M1 A15-l/O 

87 IO F15 110 R10 -CS0-1/0 L2 A4-l/O 

C7 IO F1S 1/0 P10 110 L1 1/0 

07 IO G14 1/0 N10 1/0 K3 1/0 

A7 IO G15 110 T10 1/0 K2 A14-l/O 

AS IO G1S 110 T9 1/0 K1 AS-1/0 

B8 IO H1S 110 R9 04-1/0 J1 1/0 

CB IO H15 -INIT·l/O P9 110 J2 1/0 

DB VSS H14 vcc N9 vcc J3 VSS 

09 VCC J14 vss NS VSS H3 vcc 
C9 IO J1S 110 PS 03-1/0 H2 A13·1/0 

B9 IO J1S 110 RS -CSH/0 H1 AS-1/0 

A9 IO K16 1/0 TS 110 G1 1/0 

A10 IO K15 110 T7 1/0 G2 1/0 

010 IO K14 110 N7 1/0 G3 1/0 

C10 IO L16 1/0 P7 1/0 F1 110 

810 IO L15 1/0 R7 02-1/0 F2 A12-l/O 

A11 IO M16 110 TS 1/0 E1 A7-l/O 

811 IO M1S 1/0 RS 110 E2 110 

011 IO L14 1/0 NS 1/0 F3 1/0 

C11 IO N1S 1/0 PS 1/0 01 A11-l/0 

A12 IO P16 110 TS 1/0 C1 AS-1/0 

812 IO N15 110 RS 01-1/0 02 1/0 

C12 IO R1S 1/0 PS RDY/-BUSY--RCLK-1/0 81 1/0 

012 IO M14 110 NS 1/0 E3 A10-l/0 

A13 IO P1S XTAL2-l/0 T4 110 C2 A9-l/O 

813 IO N14 vss R4 1/0 03 vcc 
C13 IO R1S -RESET P4 1/0 C3 VSS 

A14 IO P14 vcc 

The default configuration of IOBs is input with pull-up. This can be used to prevent an undefined pad level for unbonded or unused 
IOBs. Pins A2, A3, A 15, A 16, T1, T2, T3, T15 and T16 are not connected. Pin A 1 does not exist. 

4·98 



PARAMETRIC$ 

Absolute Maximum Ratings 

Vee Supply voltage relative to GND 

V1N Input voltage with respect to GND 

Vis Voltage applied to three-state output 

VsrG Storage temperature (ambient) 

TSQL Maximum soldering temperature (10 sec@ 1/16 in.) 

TJ Junction temperature plastic 

Junction tern erature ceramic 

Units 

-0.5 to 7.0 v 
-o.5 to Vee + o.5 

*Note: Stresses beyond those listed under Absolute Maximum A "· ~~/~ 
ratings only, and functional operation of the device, anti ___ rly 6'het .. 
Operating Conditions is not implied. Exposurl!.-tQ, AQsol,plf!,, ~i!)Q1J1t1 'Jilailqgs •• 

.•• ,ii,~t-da'~age to the device. These are stress 
ns beyond those listed under Recommended 
ditions for extended periods of time may affect 

""""'";"'"•· ~ \' <} \\)" '\,; .,, 

MIN MAX UNITS 

0° C to 70° C 4.75 5.25 v 

-40° C to 85° C 4.5 5.5 v 

-55° C to 125° C 4.5 5.5 v 

V1HT\, ''8igll~level'input voltage -TTL configuration 2.0 Vee v 

V1LT ·+dyi-level input voltage - TTL configuration 0 0.8 v 

V1HC High-level input voltage - CMOS configuration .7Vcc Vee v 

V1LC Low-level input voltage - CMOS configuration 0 .2vcc v 

T1N Input signal transition time 250 ns 

4.99 

ID 



,,,,''! 

ELECTRICAL CHARACTERISTICS OVER OPERATING CONDITIONS MIN ,,,~x1 UNITS 

Va-1 High-level output voltage(@ loH = -4.0 ma Vee min) Commercial 3.l!El,,,,,,,.,,, s·;;r v 
Va_ Low-level output voltage(@ loL = 4.0 ma Vee min) ,,,,,11''"'.,,1;il''n"•1,, "z 0.3~"j,,_ '\, v 
Va-1 High-level output voltage(@ loH = -4.0 ma Vccl Industrial ~3'J,!?,,,,,,1 ,q,,,,\ '" )V 

Va_ Low-level output voltage(@ loL = 4.0 ma Vee) ( :::s: \, 1(111'' \ o'!d7 v 
Va-1 High-level output voltage(@ loH = -4.0 ma Vee) Mi~!'y, 1 :.rs:: ,,,.,,,,,, 3'.'{ \ '"' v 
Va_ Low-level output voltage (@loH = 4.0 ma Vccl ,,,,, \,~ ~ 

~,,,,,,,, 

,!'""" '"\\, 'v"' 0.4 v 
ICCPD Power-down supply current (Vee= 5.o V@ 70°C) 1 ~ ,,,~\ .. ,11: 500 µA 

icco Quiescent LCA supply current in addition to le~.~~~::::·,;::·,.,,,,,,,,,,.) ,,,,,,,,. 
CMOS chip thresholds .,, 500 µA 
TTL ch.!e_ thresholds /''\. . • .,,,,., \ 10 mA 

l1L Leakage Current Commercial/lndusl!;,iahT · ,,·,,,,,...,,,..>· ' -10 +10 µA 

Leak~ Current Milit~ ¢~ C to 125'? C\ \, -20 +20 ~ 
C1N Input capacitanc11.{S'a,rifple"·Jes~) '\.~\, 

Ji 
10 pF 

IRIN Pad pull-up M~eqilill~) ~ ~,..oV;;(si:lmple tested) 0.02 0.17 mA 

IRLL Horif;ont~l IOl)!f4jm!'pµlM'ip ("Y~n.!lelected)@ logic LOW 0.4 3.4 mA 

Notes: .. .1. ~.orf a 3Q,261 ... 12c;i;0 ra:ii~ for 3090, 5.o 
''r'llh n~otilp,ut'¢,µn9nt'loads, no active input or long line pull-up resistors, all package pins at Vee or GND, and the LCA 
9<1nfiglir,~ witll'll MAKEBITS ''tie" option. See LCA power chart for addttional activity dependent operating component. 

4-100 



CLB SWITCHING CHARACTERISTIC GUIDELINES 

CLB OUTPUT (X,Y) x 
(COMBINATORIAL) --i--------------

CLB INPUT(A,B,C,D,E)-----..C:-
0 

T= ~ 1=0 T1cK---0 TcKJ::::i , _____ _ 

CLBCLOCK 

CLBINPUT 
(DIRECT JN) 

CLBINPUT 
(ENABLE CLOCK) 

---@ TcL----<---- @ Trn 

0 TDICK 0 T CKDI 

© T ECCK---<-- 0 T CKEC 

-----

-
____ 0_8 TCK~-CLBOUTPUT 

(FLIP-R.OP) 

CLBINPUT 
(RESET DIRECT) ---------

CLBOUTPUT 
(R.IP-R.OP) 

@TRPW 

4·101 



CLB SWITCHING CHARACTERISTIC GUIDELINES (Continued) 

Testing of the switching characteristic guidelines Is modeled after testing specified by MIL-M-38510/605. Devices are 100% functionally 
tested. Benchmark timing patterns are used to provide correlation to the switching characteristic guideline values. Actual worst-case 
timing is provided by the XACT Timing calculator or Simulation modeling. 

S Grade 

CLB Logic Input 
Reset direct 

CLB K Clock input 

Descri ion 
Combinatorial 
CLBoutput 
Reset Direct width* 
Master Rest pin to CLB out 

To CLB outpu1 

Additional for a returning 
through F or G to CLB out 
Logic-Input setup 
Logic-input hold 
Data In setup 
Data In hold 
Enable Clock setup 
Enable Clock hold "'""-

(\ 

-50 

s bol Min Max 

T1LO 14 

9 TRIO 15 
13 TRPW 

TM 
8 TcKO 

9 

50 

~r~ S;:.TCHING CHARACTERISTIC GUIDELINES 

Speed Grade -50 

Descrlj>tion Min Max 
Clock Buffer .. GCLK,ACLK 9 
TBUF .. Data to Output 8 

(Long line buffer) 
Three-state to Output 
Single pull-up resistor 34 
Pair of~li-ui>_ resistors 17 

Bi-directional BIOi 6 

••Timing is based on the 3020, for other devices see XACT timing calculator. 

4-102 

-70 Units 
Min Max 

9 ns 
10 

ns 
7 ns 
0 ns 
7 ns 
7 ns 
70 MHz 

-70 Units 
Min Max 

6 ns 
5 ns 

22 ns 
11 ns 
4 ns 



IOB SWITCHING CHARACTERISTIC GUIDELINES 

UOBLOCK(l)_0_T_P1Dt--t------

UOPADINPUT ~ 
----- 0 TpfCK 0 TIKPI ::i '-----

UOCLOCK 
(IK/OK) 

UO BLOCK (RI) 

UOBLOCK (0) 

1/0 PAD OUTPUT 
(DIRECT) 

VO PAD OUTPUT 
(REGISTERED) 

---@Tu------ 0 T10H 

________ _, 

--f0ToKPO 
---------------~ 

UOPADTS ~ r;:©T- 0T~~j I 
UOPADOUTPUT -------< )!--------

4-103 



IOB SWITCHING CHARACTERISTIC GUIDELINES (Continued) 
,,~ 

•'' "-•,,, l l 
Testing of the switching characteristic guidelines is modeled after testing specified by MIL-M-38510/605. ~y~ are,,,,~boo/o functionally 
tested. Benchmark timing patterns are used to provide correlation to the switching characteristic guideli9e·'il~J~s:"'f<ctul:1t~o~t-case 
timing is provided by the XACT Timing calculator or Simulation modeling. \ ('' J _l \ \ 

S edGrade 

Pad (package pin) 

l/OClock 

t--=-...._.,,....-.,,...;;---T-

Descri lion 
To input (direct CLKIN) 
To input (direct) 

To 1/0 RI input (FF) 
1/0 pad-input setup' 

110 pad-inpufl~olq \,, 

~~/ 
To pad begin hi-Z (fast) 
To pad valid (last) 

To input RI 
To output (FF) 

'\,·:·+~ 
:'Jr1KPI 
ToKP 
TOQK 

6 TQKO 
11 T10H 
12 T10L 
10 TQPF 
10 TOPS 
9 TTSHZ 
8 TT 

13 TRRI 
15 TRPO 

0 

15 
0 
9 
9 

.,,,,,_ "\\ "'i~;,_~;Ji·'l'::;;i'""",;~·"'\,,\ '\,;i'-;/· 

20 
0 

18 
10 
0 
7 
7 

14 
33 

12 
20 

45 
55 

3 
7 

7 

13 

10 
25 

8 
14 

30 
37 

ns 
ns 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

Notes: 1. Timing is measured at pin threshold, with 50 pF external capacitive loads (incl. test fixture). Typical fast mode output 
rise/fall times are 5 ns and will increase approximately 2%/pF. A maximum total external capacitive load for simultaneous 
fast mode switching in the same direction is 500 pF per power/ground pin pair. 

2. Voltage levels of unused (bonded and unbonded) pads must be valid logic levels. Each can be configured with the internal 
pull-up resistor or atternatively configured as a driven output or driven from an external source. 

4-104 



GENERAL LCA SWITCHING CHARACTERISTICS 

Vcc(VALID) 

II 
-50 -70 Units 

Min Max Min Max 
1 1 Ill 
1 1 jlS 

6 6 jlS 

6 6 jlS 

7 7 jlS 

-PWRDWN(3) PowerDownV 2.0 2.0 v 

Notes: 1. Vee must rise from 2.0 Volts to Vee minlmum in less than 1 o ms for master modes. 
2. RESET timing relative to valid mode Hnes (MO, M1 , M2) is relevant when -RESET is used to delay configuration. 
3. -PWEDWN transitions must oocur during operational Vee levels. 



MASTER SERIAL MODE SWITCHING CHARACTERISTICS 

C'C'LK 
(OUTPUT) 

GUIDELINE~,,,»; 
~ % 

,-.,,,...--..,,,".,.<:::::····, . .! I 

SERIAL DATA IN 

SERIALDOUT 

(OUTPUT) ------

-50 -70 Units 

Min Max Min Max 

60 60 ns 
O O ns 

Notestt"'i ··~~f;pp;~y;;d·IJ,l~l!t 'i\''';rom 2.0 V to Vee min, in less than 1 O ms, otherwise delay configuration using -RESET until 
var~, ",, "' 

uratian•·ean be controlled by holding -RESET low with or until after the -INIT of all daisy-chain slave mode devices is 
H. 

> ,,bster serial mode timing is based on slave mode testing. 

4·106 



MASTER PARALLEL MODE PROGRAMMING SWITCHING CHARACTERISTIC 
GUIDELINES 

DO-D7 

Ra:K 
(OUTPUT) ___ _, 

CCLK 
(OUTPUT) 

'ii;i-i· 

RCLK 
Descri lion 
To address valid 
To data setup 
To data hold 
RCLKhigh 
RCLKlow 

-50 

bol Min 

TRAC 0 
2 ToRC 60 
3 TACO 0 

TRCH 600 

TRCL 4.0 

D7 

BYTEn--1 

-70 Units 

Max Min Max 
200 0 200 ns 

60 ns 
0 ns 

600 ns 
4.0 !IS 

Notes: 1. At power-up, Vee must rise from 2.0 V to Vee min. in less than 10 ms, otherwise delay configuration using -RESET until 
Vee is valid. 

2. Configuration can be controlled by holding -RESET low with or until after the -INIT of all daisy-chain slave mode devices is 
HIGH. 

4·107 

ID 



PERIPHERAL MODE PROGRAMMING SWITCHING CHARACTERISTICS 

CsliCsi> \ I \ 
CS2 I \ I 

0TCA 

OO-D7 

CCLK 

RDYtBUsY 

-50 -70 
mbol Min Max Min Max 

TCA 0.5 0.5 
2 Toe 60 60 
3 Teo 0 0 
4 T 60 60 

ROY 5 0 0 

Notes: 1. Configuration must be delayed until the -INIT of all LCAs is HIGH. 
2 Time from end of WAT to CCLK cycle for the new byte of data depends on completion of previous byte 

processing and the phase of the internal timing generator for CCLK. 
3. CCLK and DOUT timing is tested in slave mode. 

4-108 

Units 

1111 
ns 
ns 
ns 
ns 



···""i 
SLAVE MODE PROGRAMMING SWITCHING CHARACTERISl,:JC~ \ 

<'"~:~::~ l 

,,,,:· 

DIN 

CCLI{ 

OOUT 
(OUTPUT) 

if'" ,,,,. 

\.,\~\ ",,.... Frequency 

Note: tf"!i.9uration must be delayed until the INIT of all LeAs is HIGH. 
·~,, )f1 

1 
2 
4 
5 

-50 

bol Min 

Tcco 
Toce 60 

Teeo 0 

TccH 0.5 

TeeL 0.5 

Fee 

BITN 

-70 Units 

Max Min Max 
100 100 ns 

60 ns 
0 ns 

0.5 llS 
5.0 0.5 5.0 llS 
1 MHz 

4·109 



4·110 

PROGRAM READBACK SWITCHING CHARACTERISTICS 

DONF.JP""iOO 
(OUTPUT) 

RTRIG 

CCLK(l) 

RDA TA 
(OUTPUT) 

q 

c 

______ __, 

S mbol 
1 TRTH 
2 TRT 
3 TccR 

-50 -70 
Min Max Min 

250 250 
10 10 

100 

RE 0 positive transition) shall not be done until after one clock following active 1/0 pins. 
Readback should not be initiated until configuration is complete. 

Max 

100 

Units 

ns 
µs 
ns 



SOCKET INFORMATION 

The following sockets, with matching hole patterns, are available for PLCC devices. 

DESCRIPTION 
68 PIN 

PCB solder tail, tin plate 
Surface mount, tin plate 
PCB solder tail, tin plate* 
PCB solder tail, tin plate* 
PCB solder tail, tin plate* 
Surface mount, tin plate 

VENDOR 

AMP 
AMP 
Burndy 
Midland-Ross 
Meth ode 
Meth ode 

PART NUMBER 

821574-1 
821542-1 
QILE68P-410T 
709-2000-068-4-1-1 
213-068-001 
213-068-002 

*Sockets will plug into pin-grid array wire-wrap sockets for breadboard use. However, the physical 
translation of pins in a PLCC socket does not result in electrical equivalence to the pin locations of a 
PGA package. 

4·111 



.990 .954 

4·112 

Pin No. 1 Identifier 

PIN SPACING 
.050 TYPICAL 

Seatjng Plane 

LEAD CO-PLANARITY± 0.002 IN 

ALL OTHER DIMENSIONS ARE 
IN INCHES± 0.005 

68-Pln PLCC Package 



.. 
1
• _____ l.IOO sot.012. ____ """"'·I 

INDEX 

DIMENSIONS ARE IN INCHES 

81A = 35-<10°ctw 

..,.......@ 

L 

K 

H 

G 

F 

E 

D 

c 

B 

.J.. A 
T 

1.000 ±.012 

I- .IOOTYP 

, ,, 
v " t' 

H ~ Ir 
v _l'I 

:~ ~ 7 .., 
I~ rE Ir 7 ,,, 

' 
' ' INDEX PIN 

TYP .o70 DIA , 
, ,,\ :~ ~ ~ " ,,. 

~ ' " 

' 
4 5 6 7 9 10 II 

NOTE: INDEX PIN MAY OR MAY NOT BE 
ELECTRICALLY CONNECTED TO PIN C2 

84-Pln PGA Package 

.100 
TYP 

1 

1.000 
±.012 

4·113 



4·114 

Pin No. 1 Identifier 

--------1.190 --------1~ 
0JA = 35-40°CJW PIN SPACING 

.050 TYPICAL 

84-Pln PLCC Package 

Seating Plane 



INDEX 

---+--- ---1+---+- 0JA = 25-30 °C{W 

0Jc = 0.5--1.0 °C{W 

WEIOMETALIC HEAT SINK 
ELECTR.ICALL Y CONNECTED TO VCC 

PIN KOVAR 

.006R. TYP. 

.025 REF. 

0000 
00GH~ 
0000 
0000 

r 
.180 

TYP .. 070DIA 
±.006 

.845 ±.009 1.660 SOl:.016 _ ___,_0_0_0 0 
l.SOO ±.015 

0000 
0000 
0000 

TRPNMLKJHGFEDCBA 

~695±007 ~ ~.!OOTYP 

DIELECI1UC COAT 

175-Pin PGA Package 

4-115 



LCA·MDS21 XACT Design 
Editor System 
Features 
• Runs on an IBM® PC-Xf'M or compatible computer 

• Complete basic system for designing with Logic Cell Arrays 

• Interactive graphical design editor 

• Slmplifted definition, placement and Interconnection 
capability for logic design and Implementation 

• Macro library of 113 standard logic family equivalents 

• Utility for user-defined macros 

• Boolean equation or Kamaugh map alternatives to specify 
logic functions 

• Point-to-point timing calculations for critical path analysis 

• Automatic design consistancy checking for connectivity and 
design violations 

• Docurnenlation support with hardcopy output of logic and 
physical configuraUon Information 

• Download cable to transfer configuration programs from 
personal computer to LCA in target system 

• Compatible hardware and software options to enhance 
design productivity 

• File formatter for EPROM programmer 

General 
The XACT Design Editor provides users with a complete design 
and developmen) system for specification and implementation 
of designs using Monolithic Memories' Logic Cell Arrays. Func­
tional definition of Configurable Logic Blocks (CLBs), Input/ 
Output Blocks (IOBs) and interconnection is performed with a 
menu-driven interactive graphics editor. An automatic router 
greatly reduces the effort to interconnect logic. 

Designs are captured with a graphics-based design editor 
using either a mouse for menu-driven entry, or a keyboard for 
command-driven entry. Functions are specified by CLB and 
IOB definitions plus their interconnections. The macro library 
and user-defined macros enable the user to easily implement 
complex functions. 

The check for logic connectivity and design rule violation is 
easily performed. All unused internal nodes are automatically 
configured to minimize power dissipation. 

Interactive point-to-point timing delay calculation is provided 
for timing analysis and critical path determination. This ability 
enables the user to quickly identify and correct timing prob­
lems while the design is in progress. 

Automatic generation of similar input netlist files with liming 
parameters simplifies the use of P-SILOS for logic and timing 
simulation. 

The XACT Design Editor includes hardcopy generation to docu­
ment a design and automatically track design changes. Logic 
Cell Array configuration programs can be automatically trans­
lated into standard EPROM programming bit pattern formats. 

4-116 

A download cable included with XACT is useful for transferring 
configuration programs serially from the PC workstation to a 
Logic Cell Array installed in a system. During product develop­
ment and debug this capability can be used to save the time re­
quired to write a modified configuration program into an EPROM. 

Monolithic Memories provides ongoing support for XACT users. 
For the first year, software updates are included. After that the 
user may purchase the LCA-MSC21 Annual Support Agree­
ment to continue to receive the latest software releases. XACT 
users also receive Monolithic Memories' technical information, 
which includes information about Logic Cell Arrays and PAL® 
devices, as well as software updates and application notes for 
designers. In addition, Monolithic Memories provides compre­
hensive field and factory support. 

System Requirements 
Minimum System Configuration 

IBM PC-XT, PC-AT or compatible computer with: 

• MS-DOS™ 2.1 or higher 

• 1 M Bytes RAM 

• 1 Diskette Drive 

• 10-MB Hard Disk 

• IBM compatible Color Graphic Adapter and Display 

• 1 Serial Interface Port 

• 1 Parallel Interface Port 

• Mouse System™, Microsoft® or compatible mouse 

Design Editor with Routed Design 

Publication# 
10853 

Issue Date: Jan 

Rev. Amendment 
A 10 

1988 



XACT Macro Library 

General CLBs FDCR D Flip-Flop with ClkEna, Reset 
FDCS D Flip-Flop with ClkEna, Set 

GADD Adder FDM D Flip-Flop 2-lnput Data Mux 
GCOMP Compare FDMR D Flip-Flop 2-lnput Data Mux, Reset 
GEQGT Equal or Greater FDMS D Flip-Flop 2-lnput Data Mux, Set 
GMAJ Majority FDM-rd D Flip-Flop 2-lnput Data Mux, ResetDir 
GMux 2-to-1 Mux FDM-sd D Flip-Flop 2-lnput Data Mux, SetDir 
GPAR Parity FSA Set-Reset Flip-Flop with Set Dominate 
GXOR Exclusive-OR FAS Set-Reset Flip-Flop with Reset Dominate 
GXOR2 Dual Exclusive-OR FJK J-K Flip Flop 
GXTL Crystal Oscillator O+ 2108 FJKS J-K Flip Flop with Synchronous Set 
Gose Low Frequency 1+2108 FJK-rd J-K (Set-Reset) Flip Flop with ResetDir 

Resistor-Capacitor Oscilator FJK-sd J-K (Set-Reset) Flip Flop with SetDir 
FJK-srd J-K (Set-Reset) Flip Flop with SetDir, 

Pads IOBs ResetDir 
FTO Self Toggle Flip-Flop 

PIN Input Pad FTOR Self Toggle Flip-Flop with Reset 

PINQ Input Pad with Storage FT Toggle Flip-Flop 

PIO lnpuVOutput Pad FTP Toggle Flip-Flop with ParEna 

PIOQ lnpuVOutput Pad with Input Storage FTP-rd Toggle Flip-Flop with ParEna, ResetDir 

PIOC lnpuVOutput Pad with 'Open Collector' FTR Toggle Flip-Flop with Reset 

PIOQC lnpuVOutput Pad with Input Storage, FTS Toggle Flip-Flop with Set 

'Open Collector' FT2 2-lnput Toggle Flip-Flop 

POUT Output Pad FT2R 2-lnput Toggle Flip-Flop with Reset 

POU TC Output Pad with 'Open Collector' 
PO UTZ Output Pad with 3-State Control Decoders CLBsa 
PREG Output Pad with Input Storage 

D2-4 1-of-4 Decoder 2 

Latches CLBs D2-4E 1-of-4 Decoder, with Ena 2 
74-139 1-of-4 Single Decoder with Low Output, Ena 4 

LD Data Latch D3-8 1-of-8 Decoder 5 

LC-rd Data Latch with Reset Dir D3-8E 1-of-8 Decoder with Ena 6 

LC-sd Data Latch with SetDir 74-138 1-of-8 Decoder with Enables, Low Output 7 

LD-srd Data Latch with SetDir, ResetDir 74-42 1-of-10 Decoder with Low Output 8 

LDM Data Latch with 2-lnput Data Mux 
LDM-rd Data Latch with 2-lnput Data Mux, ResetDir Multiplexers CLBs 
LDM-sd Data Latch with 2-lnput Data Mux, SetDir 

M3-1 3-to-1 Mux 2 

Flip-Flops CLBs M3-1E 3-to-1 Mux with Ena 2 
M4-1 4-to-1 Mux 3 

FD D Flip-Flop M4-1E 4-to-1 Mux with Ena 3 

FDR D Flip-Flop with Reset 74-352 4-to-1 Mux with Low Output, Ena 3 

FDS D Flip-Flop with Set M8-1 8-to-1 Mux 7 

FD-rd D Flip-Flop with ResetDir M8-1E 8-to-1 Mux with Ena 7 

FD-sd D Flip-Flop with SetDir 74-151 8-to-1 Mux with Ena 7 

FD-srd D Flip-Flop with SetDir, ResetDir Complementary Outputs 

FDC D Flip-Flop with ClkEna 74-152 8-to-1 Mux with Low Output 7 

4-117 



XACT Macro Library 

Registers CLBs Modulo& 

Data Regiaters CBBCP 3-Bit Binary Counters with ClkEna, ParEria 5 
CBBCR 3-Bit Binary Counters with ClkEna, Reset 4 

RD4 4-Bit Data Register 4 CB BC-rd 3-Bit Binary Counters with ClkEna, ResetDir 4 
ROB 8-Bit Data Register 8 CBJCR 3-Bit Johnson Counters with ClkEna, Reset 4 
REBCR 8-Bit Data Register with ClkEna, Reset 8 

Modulo 10 
Serial to Parallel 

C10BC-rd 4-Bit BCD Counter with ClkEna, ResetDir 4 
RS4 4-Bit Shift Register 4 C10BCP-rd 4-Bit BCD Counter with ClkEna, ParEna, 7 
74-195 4-Bit Serial to Parallel 5 ResetDir 

Shift Register with ParEna, Reset 74-160 4-Bit BCD Counter with ClkEna, ParEna, 8 
74-194 4-Bit Bidirectional Shift Register 12 ResetDir 

with ClkEna, ParEna, ResetDir C10BP-rd 4-Bit BCD Counter with ParEna, ResetDir 6 
RSB 8-Bit Shift Register 8 C10JCR 5-Bit Johnson Counter with ClkEna, Reset 5 
RSBCR 8-Bit Shift Register with ClkEna, Reset 8 
RSBPR 8-Bit Shift Register with ParEna, Reset 8 Modulo 12 

RSBR 8-Bit Shift Register with Reset 8 
74-164 8-Bit Serial to Parallel Shift Register 8 C12JCR 6-Bit Johnson Counter with ClkEna, Reset 6 

with ResetDir 
Modulo16 

Counters CLBs C16BA-rd 4-Bit Binary Ripple Counter with ResetDir 4 
C16BC-rd 4-Bit Binary Counter with ClkEna, ResetDir 4 

Modulo2 C16BCPR 4-Bit Binary Counter with ClkEna, ParEna, 10 
Reset 

C2BCR 1-Bit Binary Counters with ClkEna, Reset C16BCP-rd 4-Bit Binary Counter with ClkEna, ParEna, 6 
C2BC-rd 1-Bit Binary Counters with ClkEna, ResetDir ResetDir 
C2BP 1-Bit Binary Counters with ParEna 74-161 4-Bit Binary Counter with ResetDir 8 
C2BR 1-Bit Binary Counters with Reset C16BP-rd 4-Bit Binary Counter with ParEna, ResetDir 5 
C28-rd 1-Bit Binary Counters with ResetDir C16BUD-rd 4-Bit Binary Up-Down Counter with ParEna, 8 

ResetDir 
Modulo4 C16JCR 8-Bit Johnson Counter with ClkEna, Reset 8 

C4BCP 2-Bit Binary Counters with ClkEna, ParEna 3 l!lodulo256 
C4BCR 2-Bit Binary Counters with ClkEna, Reset 2 
C4BC-rd 2-Bit Binary Counters with ClkEna, ResetDir 2 C256FC-rd 8-Bit Modulo 256 Feedback Shift Register 9 
C4JCR 2-Bit Johnson Counters with ClkEna, Reset 2 with ClkEna, ResetDir 

Modulo& 

C6JCR 3-Bit Johnson Counter with ClkEna, Reset 3 

4-118 



LCA·MDS22 P·SILOS Simulator 
Features 
• Event-driven logic and timing simulator 

• Logic network input automatically generated by XACT 
Design Editor 

• Control and observation of any physical circuit node 

• MuHiple file Input for vectors and commands 

• Interactive or batch mode operation 

• Output available in printed or tabular formats 

• Runs on an IBM PC-XT, PC-AT c:ir compatible personal 
computer 

General 
P-SILOS is a powerful PC-based simulator that provides event­
driven logic and timing simulation of Logic Cell Array designs. 
Simulation is particularly useful for testing logic or logic seg­
ments as well as for verifying critical timing over worst case 
power supply, temperature and process conditions. 

Simulation is useful in several stages of the design cycle. After 
design entry, simulation may be used to debug logic in an 
unplaced and unrouted design. This saves design time 
because logic errors can be detected and corrected prior to 
final placement and routing. After a circuit has been placed, 
routed, and then fully debugged using in-circuit emulation, 
worst case timing may be verified. This enables the user to 
select the correct Logic Cell Array speed for a particular appli-
cation. · 

Network inputs for Logic Cell Array designs are automatically 
created by the Simgen utility in the XACT system. The network 
includes logic and routing delay parameters and setup and hold 
times based upon the selected speed grade operating under 
worst case conditions. Simulation stimuli are created with a set 
of clock statements or with an input pattern for either pad 

inputs or internal nodes. Simulation results are available in 
tabular, plotted, and graphic formats. This flexibility makes 
debugging easy for both the circuit function and timing. 

System Requirements 
Minimum System Configuration 

IBM PC-XT, PC-AT or compatible computer with: 

• MS-DOS 2.1 or higher 

• 640 K Bytes RAM 

• 1 Diskette Drive 

• 10-MB Hard Disk 

• 1 Parallel Interface Port 

Refer to the MDS21 XACT Design Editor Product Datasheet for 
additional equipment required for systems which will also run 
the XACT Design Editor. 

P-SILOS Waveform Output 

Publication # Rev. Amendment 
10854 A /0 

Issue Date: Januaiy 1988 

4-119 



LCA·MDS23 

Automatic Design Implementation 

Distinctive Characteristics 

Automatic elimination of disabled and unused 
logic 

Automatic partitioning of the schematic into 
LCA resources. 

Automatic placement and routing of logic to 
minimize design cycle time 

User control over placement of logic blocks 

User specification of critical paths 

May be used in conjunction with schematic 
capture or with the XACT Design Editor 

Runs on an IBM PC/AT or compatible personal 
computer 

General Description 

The automatic logic reduction and partitioning 
software included with in the Automatic Design 
Implementation package eliminates unused and 
redundant logic, then partitions the schematic into 
LCA physical resources, logic and 1/0 blocks. 
Automated reduction and partitioning allows 
designers to immediately determine the 
programmable gate array size required, during 
design definition and entry. 

The Automatic Design Implementation package 
enhances the productivity of designers using 
Programmable Gate Arrays by reducing design 
placement and routing time, whether the design 
logic is entered from a schematic capture package 
or from the XACT Design Editor. 

4-120 

Designs that are development incrementally can also 
take advantage of automatic placement and routing. 
Partial LCA layouts can be locked in place while 
additions to the design are automatically placed and 
routed, or the design can be completely rearranged to 
yield a new placement. 

The automatic placement and routing program is 
extremely flexible. Through placement directives, the 
user can control the placement process to achieve 
the best placement for a particular design. Routing 
resources can be specified to minimize clock skews 
and signal delays for critical paths. The result is 
faster product development. 

Publication# Rev. Amendment 
10851 A /0 

Issue date: June 1988 



LCA·MDS24, LCA·MDS26, LCA·MDS27 
XACTOR In-Circuit Emulator 
Features 
• Real-time In-circuit emulation in user's target system 

• Concurrent emulation of up to four devices 

• Readback and display of Logic Cell Array internal storage 
element states 

• Device status display with automatic update of 
asynchronous events 

• Control and 110 pin isolation from target system 

• Support for daisy chain programming of up to seven devices 
in a daisy chain 

• On-chip crystal oscillator support during emulation 

• Support for multiple device and package types 

• Runs on an IBM PC-XT, PC-AT or compatible personal 
computer 

General 
The XACTOR real-time in-circuit emulator provides interactive 
target-system emulation of up to four Logic Ceil Arrays from 
the host PC system. In-circuit emulation provides a powerful 
productivity enhancement to simulation, providing capabilities 
to verify functionality in the target system at full speed with ail 
other circuits and system software. 

The emulation system is composed of a microcomputer-based 
controller (LCA-MDS24), and from one to four universal emula­
tion pods (LCA-MDS26), each with a package-specific emula­
tion header (LCA-MDS27). One universal emulation pod is 
included with the system. The controller is connected to the 
host PC through a serial port and provides local storage of con­
figuration programs, control of individual device configurations 
and control of the isolation of the pod device(s) from the target 
system. The user can set the state and isolation for each of 
the control signals to provide debugging of target hardware. 
Four general 110 pins are available to provide test points which 
may also be isolated from the target system. 

Target Logic Ceil Arrays can be programmed individually or in a 
daisy chain. Daisy chains of up to seven devices may be sup­
ported from any of the four pods. Individual device isolation 
and configuration is controlled with mouse or keyboard com­
mands and may be supplemented with user-defined setup files 
for easy system debugging. 

Readback of device configuration may be performed on com­
mand for verification of the configuration process and interro­
gation of the internal states. The state of ail internal storage 
elements is displayed after readback has been performed. 
Status displays showing the state of ail isolation switches and 
control signal states are provided. The status display includes 
automatic reporting of asynchronous status changes in the 
target system. 

Universal In-Circuit Emulator Pod 
(LCA·MDS26) 
Additional pods may be connected to the XACTOR in-circuit 
emulator controller, up to a maximum of four pods per control-

10855A/O 
JUNE 1988 

ler. Pod headers (LCA-MDS27) are interchangeable for differ­
ent device and package types. Each pod provides a direct 
in-socket connection for a minimum disruption of the target 
system. Test points are provided to allow connection of a logic 
analyzer or other test equipment to aid in the system 
debugging. 

System Requirements 
Minimum System Configuration 

IBM PC-XT, PC-AT or compatible computer as configured for 
MDS21 XACT Design Editor, plus second serial interface port. 

NOTE: 

MONOCHROME 
MONITOR 

(OPTIONAL) 

COLOR-GRAPHICS 
MONITOR 

0 
0 

IBM PERSONAL II 
COMPUTER 
(ATOR XT) • 

SERIAL PORT 

1=0==0=1 1 

MOUSE 

KEYBOARD 

XACTOR 
CONTROLLER 

XACTOR Hardware 

POWER 

FLAT 
RIBBON 
CABLE 

4-121 



LCA-M DS31 /LCA-M DS33/LCA-MDS34/LCA-M DS35 

Schematic Design Entry Interface for FutureNet, Daisy, Mentor, OrCAD 

Distinctive Characteristics 

Use of familiar design entry methodology 
through the choice of schematic entry 
package. 

Macro library of over 100 TTL and standard 
logic family equivalents. 

User-control of flagging critical paths for later use 
of Automatic Design Implementation (LCA­
MDS23) 

Output compatibility with other parts of the PGA 
Development System software. 

General Description 

The Schematic Design Entry Interfaces are 
software packages specifically designed to enable 
users of FutureNet, Daisy, Mentor and OrCAD 
workstations to create Logic Cell Array designs 
using the design entry editors supplied with their 
schematic capture software. 

The user creates a design file on the workstation with 
the LCA symbol library. A conversion routine 
automatically eliminates unused and disabled logic 
and converts the design file into a format that can be 
read by other PGA Development System tools. 

Product Selector Guide 

Product Number Product Name 
LCA-MDS31 FutureNet DASH Schematic Entry Interface and LCA Library 
LCA-MDS33 Daisy Schematic Entry Interface and LCA Library 
LCA-MDS34 Mentor Schematic Entry Interface and LCA Library 
LCA-MDS35 OrCAD Schematic Entry Interface and LCA Library 

Publication# Rev. Amendment 
10849 A 10 

Issue date: June 1988 

4-122 



PGA Design Cycle 

The PGA Development System tools includes software for all phases of the PGA design cycle. The diagram 
below indicates the design tasks needed to complete a PGA design and the corresponding software 
products used to complete the tasks. 

QESIGNTASK 

DESIGN ENTRY 

t 
LOGIC 

VERIFICATION 
(optional) 

t 
AUTOMATIC 

PARTITION, PLACE 
AND ROUTE 

I 
DESIGN 

OPTIMIZATION 

I 
TIMING 

VERIFICATION 
(optional) 

-.-
IN-CIRCUIT 

DESIGN 
VERIFICATION 

SOEJWABE PACKAGE 

OrCAD (LCA-MDS-35), 
MENTOR (LCA-MDS34) 
DAISY (LCA-MDS33), 
FUlURENET (LCA-MDS31) 
SCHEMATIC INTERFACES 

PC-SILOS (LCA-MDS22) 

AUTOMATIC DESIGN 
IMPLEMENTATION 
(LCA-MDS23) 

XACT DESIGN EDITOR, 
DELAY CALCULATOR 
(LCA-MDS21) 

PC-SILOS (LCA-MDS22) 

XACT PROM FORMATTER, 
DOWNLOAD CABLE 
(LCA-MDS21) 
XACTOR IN-CIRCUIT 
EMULATOR 
(LCA-MDS28) 

4-123 

II 



LCA-MDS151/LCA-MDS152 
PGA Development Systern/PGA Design Entry System 

Distinctive Characteristics 

Complete systems for entry and 
implementation of Programmable Gate Array 
designs. 

Includes OrCAD Schematic Design Tools and 
Schematic Design Interface (LCA-MDS135) 
and Automatic Design Implementation (LCA­
MDS23). LCA-MDS151 also includes XACT 
PGA Design Editor (LCA-MDS21 ). 

Schematic editor provides hierarchical PGA 
design capability. 

LCA macro library of over 100 TIL and 
standard family equivalents. 

Automatic logic reduction and partitioning 
removes unused and disable.cl logic. 

Automatic placement and routing minimizes 
design cycle time. 

PGA Design Editor provides interactive physical 
editing, timing calculator and design consistency 
checking. 

Download cable transfers configuration 
bitstreams directly from the PC to the PGA during 
design debugging. 

Runs on an IBM PC-AT or compatible computer. 

General Description 

The PGA Development System offers complete 
capabilities for schematic entry and 
implementation of Programmable Gate Array 
design. Packaged together are the OrCAD SDT Ill 
Schematic Design Entry software, Automatic 
Design Implementation and the PGA Design 
Editor. The general purpose OrCAD schematic 
editor provides powerful design entry and 
documentation capabilities. An extensive macro 
library of TIL and standard logic equivalents is 
included. Designers can implement their own 
macro functions as desired. Designs can be 
entered in a true hierarchical structure to manage 
the complexity of large designs. In additon, 
designers can flag critical timing paths to ensure 
critical signals are routed with minimum delay. 

The Automatic Design Implementation software 
eliminates unused and redundant logic, then 
partitions the schematic into LCA resources, logic 
and 1/0 blocks. 

Automated reduction and partitioning allows 
designers to immediately determine the programmable 
gate array size required, during design definition and 
entry. Automatic placement and routing can be used 
to arrange logic blocks and calculate routes. 

Designers can interactively document, design-check 
and edit the resulting physical design with the 
graphics-based XACT Design Editor. A built-in timing 
calculator permits point-to-point timing calculations 
for critical path analysis. 

When a design is ready for debugging or production, 
the design is compiled in to an LCA configuration 
program using the XACT Design Editor. During design 
debug, designers can save time by using the 
download cable to transfer the configuration program 
from the PC directly into an LCA under development in 
a system. 

Product Selector Guide 

PRODUCT NUMBER 

4-124 

LCA-MDS151 

LCA-MDS152 

PRODUCT NAME 
Programmable Gate Array Development System 
(Includes LCA-MDS21, LCA-MDS23, LCA-MDS135) 
Programmable Gate Array Design Entry System 
J!ncludes LCA-MDS23, LCA-MDS13~ 

Publication # Rev. Amendment 
10850 A /0 

Issue date: June 1988 



PGA Design Cycle 

The PGA Development System tools includes software for all phases of the PGA design cycle. The diagram 
below indicates the design tasks needed to complete a PGA design and the corresponding software 
products used to complete the tasks. 

QESIGNTASK 

DESIGN ENTRY 

l 
LOGIC 

VERIFICATION 
(optional) 

T 
AUTOMATIC 

PARTITION, PLACE 
AND ROUTE 

+ 
DESIGN 

OPTIMIZATION 

I 
TIMING 

VERIFICATION 
(optional) 

_l 
IN-CIRCUIT 

DESIGN 
VERIFICATION 

SOEJWABE PACKAGE 

OrCAD (LCA-MDS-35), 
MENTOR (LCA-MDS34) 
DAISY (LCA-MDS33), 
FUlURENET (LCA-MDS31) 
SCHEMA TIC INTERFACES 

PC-SILOS (LCA-MDS22) 

AUTOMATIC DESIGN 
IMPLEMENTATION 
(LCA-MDS23) 

XACT DESIGN EDITOR, 
DELAY CALCULATOR 
(LCA-MDS21) 

PC-SILOS (LCA-MDS22) 

XACT PROM FORMATTER, 
DOWNLOAD CABLE 
(LCA-MDS21) 
XACTOR IN-CIRCUIT 
EMULATOR 
(LCA-MDS28) 

4-125 



Symbol Library 

Each schematic interface package includes the LCA library, which must be used when entering designs to 
be implemented in an AMO Programmable Gate Array. The library contains both combinatorial logic 
primitives and macros. Primitives represent the lowest level of logic symbols. Macros are logic functions 
implemented by the use of primitives and/or other macros. The following table lists the functions that are 
available in the four interface libraries. An X denotes that the function is available in the LCA library for that 
interface. If the function is available under a different macro name, that name appears in the column instead 
of an X. 

NAME DESCRIPTION fUTURENET DAISY MENTOR OR CAD 

Buffers: 
ACLK Alternate clock buffer x x x x 
GCLK Global clock buffer x x x x 
BUF1 Buffer x x x x 
INV1 Inverter x x x x 

AND Gates: 
AND2 2-input AND gate x x x x 
AND2B 2-input AND gate; all inputs inverted AND20 x x x 
AND2B1 2-input AND gate; 1 input inverted AND201 x x x 
AND3 3-input AND gate x x x x 
AND3B 3-input AND gate; all inputs inverted AND30 x x x 
AND3B1 3-input AND gate; 1 input inverted AND301 x x x 
AND3B2 3-input AND gate; 2 inputs inverted AND302 x x x 
AND4 4-input AND gate x x x x 
AND4B 4-input AND gate; all inputs inverted AND40 x x x 
AND4B1 4-input AND gate; 1 input inverted AND401 x x x 
AND4B2 4-input AND gate; 2 inputs inverted AND402 x x x 
AND4B3 4-input AND gate; 3 inputs inverted AND403 x x x 
ANDS 5-input AND gate x 
ANDSB 5-input AND gate, all inputs inverted x 
AND5B1 5-input AND gate; 1 input inverted x 
AND5B2 5-input AND gate; 2 inputs inverted x 
AND5B3 5-input AND gate; 3 inputs inverted x 
AND5B4 5-input AND gate; 4 inputs inverted x 
NANO Gates: 
NAND2 2-input NANO gate x x x x 
NAND2B 2-input NANO gate; all inputs inverted NAND20 x x x 
NAND2B1 2-input NANO gate; 1 input inverted NAND201 x x x 
NAND3 3-input NANO gate x x x x 
NAND3B 3-input NANO gate; all inputs inverted NAND30 x x x 
NAND3B1 3-input NANO gate; 1 input inverted NAND301 x x x 
NAN03B2 3-input NANO gate; 2 inputs inverted NAND302 x x x 

4·126 



NAME DESCRIPTION FUTURENET DAISY MENTOR ORCAD 

NANO Gates (con 't.): 
NAND4 4-input NANO gate x x x x 
NAND4B 4-input NANO gate; all inputs inverted NAND40 x x x 
NAND4B1 4-input NANO gate; 1 input inverted NAND401 x x x 
NAND4B2 4-input NANO gate; 2 inputs inverted NAND402 x x x 
NAND483 4-input NANO gate; 3 inputs inverted NAND403 x x x 
NAN05 5-input NANO gate x 
NAN05B 5-input NANO gate; all inputs inverted x 
NAN0581 5-input NANO gate; 1 input inverted x 
NAN0582 5-input NANO gate; 2 inputs inverted x 
NAN0583 5-input NANO gate; 3 inputs inverted x 
NAN0584 5-input NANO gate; 4 inputs inverted x 
NOR Gates: 
NOR2 2-input NOR gate x x x x 
NOR2B 2-input NOR gate; all inputs inverted NOR20 x x x 
NOR281 2-input NOR gate; 1 input inverted NOR201 x x x 
NOR3 3-input NOR gate x x x x 
NOR3B 3-input NOR gate; all Inputs inverted NOR30 x x x 
NOR3B1 3-input NOR gate; 1 input inverted NOR301 x x x 
NOR3B2 3-input NOR gate; 2 inputs inverted NOR302 x x x 
NOR4 4-input NOR gate x x x x 
NOR48 4-input NOR gate; all inputs inverted NOR40 x x x 
NOR4B1 4-input NOR gate; 1 input inverted NOR401 x x x 
NOR4B2 4-input NOR gate; 2 inputs inverted NOR402 x x x 

II NOR483 4-input NOR gate; 3 inputs inverted NOR403 x x x 
NOR5 5-input NOR gate x 
NOR5B 5-input NOR gate; all inputs inverted x 
NOR5B1 5-input NOR gate; 1 input inverted x 
NOR5B2 5-input NOR gate; 2 inputs inverted x 
NOR583 5-input NOR gate; 3 inputs inverted x 
NOR584 5-input NOR gate; 4 inputs inverted x 
OR Gates: 
OR2 2-input OR gate x x x x 
OR2B 2-input OR gate; all inputs inverted OR20 x x x 
OR281 2-input OR gate; 1 input inverted OR201 x x x 
OR3 3-input OR gate x x x x 
OR3B 3-input OR gate; all inputs inverted OR30 x x x 
OR3B1 3-input OR gate; 1 input inverted OR301 x x x 
OR3B2 3-input OR gate; 2 inputs inverted OR302 x x x 
OR4 4-input OR gate x x x x 
OR4B 4-input OR gate; all inputs inverted OR40 x x x 
OR4B1 4-input OR gate; 1 input inverted OR401 x x x 
OR4B2 4-input OR gate; 2 inputs inverted OR402 x x x 
OR483 4-input OR gate; 3 inputs inverted OR403 x x x 
ORS 5-input OR gate x 
OR58 5-input OR gate; all inputs inverted x 
OR581 5-input OR gate; 1 input inverted x 

4-127 



NAME DESCRIPTION FUTURENET DAISY MENTOR OR CAD 

OR Gates (con't.): 
OR5B2 5-input OR gate; 2 inputs inverted x 
OR5B3 5-input OR gate; 3 inputs inverted x 
OR5B4 5-input OR gate; 4 inputs inverted x 

Exclusive OR/NOR Gates: 
XOR2 2-input XOR gate x x x x 
XOR3 3-input XOR gate x x x x 
XOR4 4-input XOR gate x x x x 
XOR5 5-input XOR gate x 
XNOR2 2-input XNOR gate x x x x 
XNOR3 3-input XNOR gate x x x x 
XNOR4 4-input XNOR gate x x x x 
XNOR5 5-input XNOR gate x 

General: 
GADD Adder x x x x 
GCOMP Compare x x x x 
GEQGT Equal or greater-than comparator x x x x 
GMAJ 4-to-1 majority gate x x x x 
GMUX 2-to-1 mux x x x x 
GXTL Crystal oscillator x x x x 
GLTGT Less-than and greater-than comparator x 
GPAR Parity x x 
GXOR Exclusive-or x x 

Input/Output buffers and Pads: 
IBUF Input buffer x x x 
OBUF Output buffer x x x 
OBUFZ Output buffer with 3-state control x x x 
INFF IOB configured as a flip-flop x x x 
osc Oscillator x x x 
INLAT IOB configured as an input latch x 
BPAD Bi-directional pad x 
IPAD Input pad x 
UPAD Unbonded pad x 
OPAD Output pad x 
OU1FF Output flip-flop x 
OU1FFZ Output flip-flop with 3-state control x 
lBUF Internal 3-state driver x 

Latches: 
LO Data latch with load input x x x x 
LORD Data latch with load input and reset direct x x x x 
LOSO Data latch with load input and set direct x x x x 
LOSRD Data latch with load input, reset and set direct x x x x 
LOM Data latch with 2-input data multiplexer x x x x 
LDMRD Data latch with 2-input data multiplexer and x x x x 

reset direct 

4·128 



NAME DESCRIPTION FUTURENET DAISY MENTOR ORCAD 

Latches: (con't.) 
LDMSD Data latch with 2-input data multiplexer and x x x x 

sat direct 
DLAT Data latch with sat direct and resat direct x x x 
LRS Data latch with sat and resat x 
Flip-Flops: 
OFF Positive edga-tiggared D flip-flop x 
FD D flip-flop with one data line x x x x 
FDR D flip-flop with resat x x x x 
FDS D flip-flop with sat x x x x 
FDRD D flip-flop with resat direct x x x x 
FDSD D flip-flop with sat direct x x x x 
FDSRD D flip-flop with sat and resat direct x x x x 
POFF D flip-flop with positive edge clock x x 
l'l)ff' D flip-flop with negative edge clock x x 
FDC D flip-flop with clock enable x x x x 
FOOR D flip-flop with clock enable and resat x x x x 
FDCS D flip-flop with clock enable and sat x x x x 
FDM D flip-flop with 2-input data multiplexer x x x x 
FDMR D flip-flop with 2-input data multiplexer x x x x 

and resat 
FDMS D flip-flop with 2-input data multiplexer and sat x x x x 
R».ff) D flip-flop with 2-input data multiplexer and x x x x a reset direct 
FDMSD D flip-flop with 2-input data multiplexer and x x x x 

set direct 
FDCRD D flip-flop with clock enable and resat direct x 
DFF1 D flip-flop with sat direct and reset direct x x 
FSR Set and reset flip-flop with sat dominant over x x x x 

reset 
FRS Sat and resat flip-flop with reset dominance x x x x 

over set 
FJK J-K flip-flop x x x x 
FJKS J-K flip-flop with synchronous sat x x x x 
FJKRD J-K flip-flop with resat direct x x x x 
FJKSD J-K flip-flop with sat direct x x x x 
FJKSRD J-K flip-flop with sat and reset direct x x x x 
FTO Self-toggle flip-flop x x x x 
FTCA Self-toggle flip-flop with reset x x x x 
FnR> 2-input toggle flip-flop with reset direct x 
FT Toggle flip-flop x x x x 
RP Toggle flip-flop with parity enable x x x x 
FTPRD Toggle flip-flop with parity enable and x x x x 

reset direct 
RR Toggle flip-flop with resat x x x x 
RRD 2-input toggle flip-flop x x x 
FTS Toggle flip-flop with sat x x x x 

4-129 



NAME DESCRIPTION FUTURENET DAISY MENTOR OR CAD 

Flip-flops (con't.) 
FT2 2-input toggle flip-flop x x x x 
FT2R 2-input toggle flip-flop with reset x x x x 

Decoders: 
02 4 1-of-4 decoder x x x x 
D2-4E 1-of-4 decoder with enable x x x x 
74-139 1-of-4 single decoder with low output and enable x x $74_139 x 
03-8 1-of-8 decoder x x x x 
03-8E 1-of-8 decoder with enable x x x x 
74=138 1-of-8 decoder with enables and low output x x $74_138 x 
74_42 1-of-1 O decoder with low output x x $74_42 x 

Multiplexers: 
M3 1 3-to-1 multiplexer x x x x 
M3-1E 3-to-1 multiplexer with enable x x x 
M4-1 4-to-1 multiplexer x x x x 
M4-1E 4-to-1 multiplexer with enable x x x x 
74-352 4-to-1 multiplexer with low output and enable x x $74_352 x 
M.f 2 4-to-2 multiplexer x 
M8-1 8-to-1 multiplexer x x x x 
M8-1E 8-to-1 multiplexer with enable x x x x 
74_J51 8-to-1 multiplexer with enable and x x $74_151 x 

complementary outputs 
74_152 8-to-1 multiplexer with low output x x $74 152 x 

Registers: 
RD4 4-bit data register with clock x x x x 
RDS 8-bit data register with clock x x x x 
RD8CR 8-bit data register with clock enable and reset x x x x 
RS4 4-bit shift register with clock x x x x 
RS8 8-bit shift register x x x x 
RSSCR 8-bit shift register with clock enable and reset x x x x 
74_194 4-bit bidirectional shift register with clock, x x $74_194 x 
74_195 

parity enable and reset direct 
4-bit serial-to-parallel shift register with clock, x x $74_195 x 

RS8PR 
parity enable and reset direct 
8-bit shift register with clock, parity enable, x x x x 
and reset 

RSSR 8-bit shift register with clock and reset x x x x 
74_164 8-bit serial-to-parallet shift register with clock x x $74_164 x 

and reset direct 
RD4RD 4-bit data register with clock and reset direct x 
RDSRD 8-bit data register with clock and reset direct x 
RS4C 4-bit shift register with clock enable x 
RS4CR 4-bit shift register with clock enable and reset x 
RS4CRD 4-bit shift register with clock enable and x 

reset direct 
RS4RD 4-bit shift register with reset direct x 

4·130 



NAME DESCRIPTION fUTURENET DAISY MENTOR OR CAD 

Registers (con't.) 
RSSC 8-bit shift register with clock enable x 
RS8CRD 8-bit shift register with clock enable and x 

reset direct 
RSSRD 8-bit shift register with reset direct x 

Counters: 
C2BCR 1-bit binary counter with clock and reset x x x x 
C2BCRD 1-bit binary counter with clock and reset direct x x x x 
C2BP 1-bit binary counter with clock and parity enable x x x x 

C2BR 1-bit binary counter with clock and reset x x x x 
C2BRD 1-bit binary counter with reset direct x x x x 

C2BCP 1-bit binary counter with clock and parity enable x 
C2BCPRD 1-bit binary counter with clock, parity enable and x 

reset direct 
C4BCP 2-bit binary counter with clock and parity enable x x x x 
C4BCR 2-bit binary counter with clock enable and reset x x x x 
C4BCRD 2-bit binary counter with clock enable and x x x x 

reset direct 
C4JCR 2-bit Johnson counter with clock enable and reset x x x x 
C4BCPRD 2-bit binary counter with clock enable and x 

reset direct 
C4JX 2-bit shift expandable Johnson counter x D C4JXC 2-bit expandable Johnson counter with x 

clock enable 
C4JXCR 2-bit expandable Johnson counter with clock x 

enable and reset 
C4JXCRD 2-bit expandable Johnson counter with clock x 

enable and reset direct 
C4JXRD 2-bit expandable Johnson counter with reset direct x 
C6JCR 3-bit Johnson counter with clock enable and reset x x x x 
CSBCP 3-bit binary counter with clock and parity enable x x x x 
C8BCR 3-bit binary counter with clock enable and reset x x x x 
CSBCRD 3-bit binary counter with clock enable and x x x x 

reset direct 
CSJCR 4-bit Johnson counter with clock enable and reset x x x x 
CSBCPRD 8-bit binary counter with clock, parity enable x 

and reset direct 
C10BCRD 4-bit BCD counter with clock enable and x x x x 

reset direct 
C10BCPRD 4-bit BCD counter with clock, parity enable, and x x x x 

reset direct 
74_160 4-bit BCD counter with clock, parity enable, and x x $74_160 x 

reset direct 
C10BPRD 4-bit BCD counter with clock, parity enable, and x x x x 

reset direct 
C10JCR 5-bit Johnson counter with clock enable and reset x x x x 

4·131 



NAME DESCRIPTION fUTURENET DAISY MENTOR OR CAD 

Counters (con't.) 
C12JCR 6-bit Johnson counter with clock enable and reset x x x x 
C16BARD 4-bit binary ripple counter with clock and x x x x 

reset direct 
C16BCRD 4-bit binary counter with clock enable and x x x x 

reset direct 
C16BCPR 4-bit binary counter with clock, parity enable, x x x x 

and reset 
C16BCPRD 4-bit binary counter with clock, parity enable, x x x x 

and reset direct 
C16BCP 4-bit binary counter with clock, parity enable x 
74_161 4-bit binary counter with clock and reset direct x x $74_161 x 
74 162 4-bit binary counter with reset x 
74-163 4-bit binary counter with reset x 
C1SBPRD 4-bit binary up counter with clock, parity enable, x x x x 

and reset direct 
C16BUDRD 4-bint binary up-down counter with clock, x x x x 

parity enable, and reset direct 
C16JCR 8-bit Johnson counter with clock enable and reset x x x x 
C256FCRD 8-bit modulo 256 feedback shift register with x x x x 

clock enable and reset direct 
C256BCP 8-bit binary counter with clock, parity enable x 
C256BCPR 8-bit binary counter with clock, parity enable, and x 

reset direct 
C256BCR 8-bit binary counter with clock enable and reset x 
C256BCRD 8-bit binary counter with clock enable and x 

reset direct 

Flags: 
c Critical signal flag x x 
L Longline signal flag x x 
N Non-critical signal flag x x 
x Explicit signal flag x x 
D External debug net signal flag x 
K K pin for clock x x 
G G pin for clock x x 
I Input (C) pin for clock x x 

CLB 
CLB CLB primitive x x 
108 Primitives: 
108 108 primitive x 
PIN Input pad x 
POUT Output pad x 
POUlZ Output pad with 3-state control x 
PBUF Buffered input x 
PINO Input pad with storage x 
PIO Input/output pad x 

4-132 



NAME DESCRIPTION FUTURENET DAISY MENTOR ORCAD 

IOB Primitives (con't.) 
PREG Outpu pad with input storage x 

x 
x 

PIOQ Input/output pad with input storage 
IOFF IOB configured as a flip-flop 

Resistors: 
Pullup Pullup resistor 

PART NUMBER 
LCA-MDS21 
LCA-MDS22 
LCA-MDS23 
LCA-MDS24 
LCA-MDS26 
LCA-MDS27 
LCA-MDS31 
LCA-MDS33 
LCA-MDS34 
LCA-MDS35 
LCA-MDS135 

LCA-MDS151 

LCA-MDS152 

Programmable Gate Array Software 

PRODUCT DESCRIPTION 
XACT LCA Development System 
P-Silos Simulator 
Automatic Design Implementation 
XACTOR In-Circuit Emulator 
XACTOR Universal POD 
XACTOR POD Header 
FutureNet Schematic Interface and LCA Library 
Daisy Schematic Interface and LCA Library 
Mentor Schematic Interface and LCA Library 
OrCAD Schematic Interface and LCA Library 
OrCAD Schematic Entry Software, Interface and LCA Library 
(Includes LCA-MDS35) 
LCA Bundled Development System 
(Includes LCA-MDS21, LCA-MDS23, and LCA-MDS135) 
LCA Bundled Design Entry Package 
J!ncludes LCA-MDS23 and LCA-MDS135l 

x 

4-133 



LCA-MDS135 

OrCAD/SDT Ill PGA Design Entry System and Interface 

Distinctive Characteristics 

PGA design entry via the OrCADJSDT Ill 
Schematic Editor 

Easy schematic creation using simple 
keyboard or mouse commands 

Fast graphical editing 

Extensive SSl/MSI library contains over 3600 
components 

LCA library of over 1 00 macros, with TTL and 
standard family equivalents 

Pop-up menus 

Powerful keyboard macros simplify schematic • 
capture 

User control for flagging critical paths for the 
LCA-MDS23 Automatic Design Implementation 
program 

More than 200 hierarchical levels help manage 
design complexity 

Compatible with both 2000 and 3000 series 
LCAs 

Includes OrCAD/SDT Ill Schematic Editor and 
LCA libraries and interface. 

Runs on an IBM PC/AT or compatible personal 
computer 

General Description 

Schematic entry and automatic partitioning of 
Programmable Gate Array designs shortens logic 
reduction and product development times. 
Complex designs can be specified schematically 
and quickly implemented for in-circuit design 
verification. 

Developed specifically to run on IBM personal 
computers and compatibles, OrCAD/SDT supports 
most of the popular graphics boards and printers. 
This gives you the flexibility to use standard 
equipment rather than special proprietary 
hardware. OrCAD/SDT also includes an array of 
sophisticated utility programs, including 

4-134 

schematic output, net list, design check and bill of 
materials. Other helpful features include 
runbberbanding of wires and buses, on-line part 
browsing, auto panning of worksheet, string 
searching, visible grids 

The AMO version of ORCAD/SDT Ill includes a 
complete library of gates and macros that designers 
can use to enter their LCA schematics. The AMO 
library provides the logic, 1/0, and macro symbols to 
be used in the schematic. An AMO conversion utility, 
part of the Automatic Design Implementation package 
(LCA-MDS 23), automatically eliminates unused and 
disabled logic, then partitions the schematic into a 
Logic Cell Array design. 

Publication# Rev. Amendment 
10852 A /0 

Issue date: June 1988 



Symbol Library 

The OrCAD schematic interface package includes the LCA library, which must be used when entering 
designs to be implemented in an AMO Programmable Gate Array. The library contains both combinatorial 
logic primitives and macros. Primitives represent the lowest level of logic symbols. Macros are logic 
functions implemented by the use of primitives and/or other macros. The following table lists the functions 
that are available in the OrCAD interface library. Note that some functions are available for the 3000 family 
only. 

NAME 

Buffers: 
ACLK 
GCLK 
BUF1 
INV1 

AND Gates: 
AND2 
AND2B 
AND2B1 
AND3 
AND3B 
AND3B1 
AND3B2 
AND4 
AND4B 
AND4B1 
AND4B2 
AND483 
ANDS 
AND5B 
AND5B1 
AND5B2 
AND583 
AND584 

NANO Gates: 
NAND2 
NAND2B 
NAND2B1 
NAND3 
NAND3B 
NAND3B1 
NAND3B2 
NAND4 
NAND4B 
NAND4B1 
NAND4B2 

DESCRIPTION 

Alternate clock buffer 
Global clock buffer 
Buffer 
Inverter 

2-input AND gate 
2-input AND gate; all inputs inverted 
2-input AND gate; 1 input inverted 
3-input AND gate 
3-input AND gate; all inputs inverted 
3-input AND gate; 1 input inverted 
3-input AND gate; 2 inputs inverted 
4-input AND gate 
4-input AND gate; all inputs inverted 
4-input AND gate; 1 input inverted 
4-input AND gate; 2 inputs inverted 
4-input AND gate; 3 inputs inverted 
5-input AND gate 
5-input AND gate, all inputs inverted 
5-input AND gate; 1 input inverted 
5-input AND gate; 2 inputs inverted 
5-input AND gate; 3 inputs inverted 
5-input AND gate; 4 inputs inverted 

2-input NANO gate 
2-input NANO gate; all inputs inverted 
2-input NANO gate; 1 input inverted 
3-input NANO gate 
3-input NANO gate; all inputs inverted 
3-input NANO gate; 1 input inverted 
3-input NANO gate; 2 inputs inverted 
4-input NANO gate 
4-input NANO gate; all inputs inverted 
4-input NANO gate; 1 input inverted 
4-input NANO gate; 2 inputs inverted 

4-135 



NAME DESCRIPTION 

NANO Gates (con 't.): 
NAND483 4-input NANO gate; 3 inputs inverted 
NAND5 5-lnput NANO gate 
NAND58 5-input NANO gate; all inputs inverted 
NAN0581 5-input NANO gate; 1 input inverted 
NAND582 5-input NANO gate; 2 inputs inverted 
NAND583 5-input NANO gate; 3 inputs inverted 
NAND584 5-input NANO gate; 4 inputs inverted 

NOR Gates: 
NOR2 
NOR2B 
NOR281 
NOR3 
NOR38 
NOR381 
NOR382 
NOR4 
NOR48 
NOR481 
NOR482 
NOR483 
NOR5 
NOR58 
NOR581 
NOR582 
NOR583 
NOR584 

OR Gates: 
OR2 
OR2B 
OR281 
OR3 
OR3B 
OR381 
OR382 
OR4 
OR4B 
OR481 
OR482 
OR483 
OR5 
OR58 
OR581 
OR582 
OR583 
OR584 

4·136 

2-input NOR gate 
2-input NOR gate; all inputs inverted 
2-input NOR gate; 1 input inverted 
3-input NOR gate 
3-input NOR gate; all inputs inverted 
3-input NOR gate; 1 input inverted 
3-input NOR gate; 2 inputs inverted 
4-input NOR gate · 
4-input NOR gate; all inputs inverted 
4-input NOR gate; 1 input inverted 
4-input NOR gate; 2 inputs inverted 
4-input NOR gate; 3 inputs inverted 
5-input NOR gate 
5-input NOR gate; all inputs inverted 
5-input NOR gate; 1 input inverted 
5-input NOR gate; 2 inputs inverted 
5-input NOR gate; 3 inputs inverted 
5-input NOR gate; 4 inputs inverted 

2-input OR gate 
2-input OR gate; all inputs inverted 
2-input OR gate; 1 input inverted 
3-input OR gate 
3-input OR gate; all inputs inverted 
3-input OR gate; 1 input inverted 
3-input OR gate; 2 inputs inverted 
4-input OR gate 
4-input OR gate; all inputs Inverted 
4-input OR gate; 1 input inverted 
4-input OR gate; 2 Inputs inverted 
4-input OR gate; 3 inputs inverted 
5-input OR gate 
5-input OR gate; all inputs inverted 
5-input OR gate; 1 input inverted 
5-input OR gate; 2 inputs inverted 
5-input OR gate; 3 inputs inverted 
5-input OR gate; 4 inputs inverted 



NAME DESCRIPTION 

Exclusive OR/NOR Gates: 
XOR2 2-input XOR gate 
XOR3 3-input XOR gate 
XOR4 4-input XOR gate 
XORS 5-input XOR gate 
XNOR2 2-input XNOR gate 
XNOR3 3-input XNOR gate 
XNOR4 4-input XNOR gate 
XNORS 5-input XNOR gate 

General: 
GADD 
GCOMP 
GEQGT 
GMAJ 
GMUX 
GXll 
GLTGT 

Adder 
Compare 
Equal or greater-than comparator 
4-to-1 majority gate 
2-to-1 mux 
Crystal oscillator 
Less-than and greater-than comparator 

Input/Output buffers and Pads: 
IBUF Input buffer 
OBUF Output buffer 
OBUFZ Output buffer with 3-state control 
INFF 108 configured as a flip-flop 
OSC Oscillator 
INLAT 108 configured as an input latch 
BPAD Bi-directional pad 
IPAD Input pad 
UPAD Unbonded pad 
OPAD Output pad 
OUTFF Output flip-flop 
OU1FFZ Output flip-flop with 3-state control 
TBUF Internal 3-state driver 

Latches: 
LO 
LORD 
LOSO 
LOSRD 
LDM 
LOMRD 
LOMSD 
DLAT 
LRS 

Flip-Flops: 
OFF 
FD 
FDR 

Data latch with load input 
Data latch with load input and reset direct 
Data latch with load input and set direct 
Data latch with load input, reset and set direct 
Data latch with 2-input data multiplexer 
Data latch with 2-input data multiplexer and reset direct 
Data latch with 2-input data multiplexer and set direct 
Data latch with set direct and reset direct 
Data latch with set and reset 

Positive edge-tiggered D flip-flop 
D flip-flop with one data line 
D flip-flop with reset 

4-137 



NAME DESCRIPTION 

Flip-flops: (con't.) 
FDS D flip-flop with set 
FORD D flip-flop with reset direct 
FDSD D flip-flop with set direct 
FDSRD D flip-flop with set and reset direct 
FDC D flip-flop with clock enable 
FDCR D flip-flop with clock enable and reset 
FDCS D flip-flop with clock enable and set 
FDM D flip-flop with 2-input data multiplexer 
FDMR D flip-flop with 2-input data multiplexer and reset 
FDMS D flip-flop with 2-input data multiplexer and set 
FD~ D flip-flop with 2-input data multiplexer and reset direct 
FDMSD D flip-flop with 2-input data multiplexer and set direct 
FDCRD D flip-flop with clock enable and reset direct 
FSR Set and reset flip-flop with set dominant over reset 
FRS Set and reset flip-flop with reset dominance over set 
FJK J-K flip-flop 
FJKS J-K flip-flop with synchronous set 
FJKRD J-K flip-flop with reset direct 
FJKSD J-K flip-flop with set direct 
FJKSRD J-K flip-flop with set and reset direct 
FTO Self-toggle flip-flop 
FTOR Sett-toggle flip-flop with reset 
FTORD 2-input toggle flip-flop with reset direct 
FT Toggle flip-flop 
FTP Toggle flip-flop with parity enable 
FTPRD Toggle flip-flop with parity enable and reset direct 
FTR Toggle flip-flop with reset 
FTRD 2-input toggle flip-flop 
FTS Toggle flip-flop with set 
FT2 2-input toggle flip-flop 
FT2R 2-input toggle flip-flop with reset 

Decoders: 
02 4 
02::::4E 
74 139 
03-8 
D3-8E 
74-138 
7~42 

Multiplexers: 
M3 1 
M3-1E 
M4-1 
M4-1E 
74-352 
M(..2 

4·138 

1-of-4 decoder 
1-of-4 decoder with enable 
1-of-4 single decoder with low output and enable 
1-of-8 decoder 
1-of-8 decoder with enable 
1-of-8 decoder with enables and low output 
1-of-10 decoder with low output 

3-to-1 multiplexer 
3-to-1 multiplexer with enable 
4-to-1 multiplexer 
4-to-1 multiplexer with enable 
4-to-1 multiplexer with low output and enable 
4-to-2 multiplexer 



NAME DESCRIPTION 

Multiplexers: (con't.) 
M8_1 8-to-1 multiplexer 
M8_1 E 8-to-1 multiplexer with enable 
74_151 8-to-1 multiplexer with enable and complementary outputs 
74_152 8-to-1 multiplexer with low output 

Registers: 
RD4 
RDS 
ROSCA 
RS4 
RS8 
RSBCR 
74 194 
74-195 
RSSPR 
RSBR 
74 164 
RD4RD 
RD8RD 
RS4C 
RS4CR 
RS4CRD 
RS4RD 
RSBC 
RSSCRD 
RSBRD 

Counters: 
C2BCR 
C2BCRD 
C2BP 
C2BR 
C2BRD 
C2BCP 
C2BCPRD 
C4BCP 
C4BCR 
C4BCRD 
C4JCR 
C4BCPRD 
C4JX 
C4JXC 
C4JXCR 
C4JXCRD 
C4JXRD 
C6JCR 
CSBCP 
CSBCR 

4-bit data register with clock 
8-bit data register with clock 
8-bit data register with clock enable and reset 
4-bit shift register with clock 
8-bit shift register 
8-bit shift register with clock enable and reset 
4-bit bidirectional shift register with clock, parity enable and reset direct 
4-bit serial-to-parallel shift register with clock, parity enable and reset direct 
8-bit shift register with clock, parity enable, and reset 
8-bit shift register with clock and reset 
8-bit serial-to-parallet shift register with clock and reset direct 
4-bit data register with clock and reset direct 
8-bit data register with clock and reset direct 
4-bit shift register with clock enable 
4-bit shift register with clock enable and reset 
4-bit shift register with clock enable and reset direct 
4-bit shift register with reset direct 
8-bit shift register with clock enable 
8-bit shift register with clock enable and reset direct 
8-bit shift register with reset direct 

1-bit binary counter with clock and reset 
1-bit binary counter with clock and reset direct 
1-bit binary counter with clock and parity enable 
1-bit binary counter with clock and reset 
1-bit binary counter with reset direct 
1-bit binary counter with clock and parity enable 
1-bit binary counter with clock, parity enable and reset direct 
2-bit binary counter with clock and parity enable 
2-bit binary counter with clock enable and reset 
2-bit binary counter with clock enable and reset direct 
2-bit Johnson counter with clock enable and reset 
2-bit binary counter with clock enable and reset direct 
2-bit shift expandable Johnson counter 
2-bit expandable Johnson counter with clock enable 
2-bit expandable Johnson counter with clock enable and reset 
2-bit expandable Johnson counter with clock enable and reset direct 
2-bit expandable Johnson counter with reset direct 
3-bit Johnson counter with clock enable and reset 
3-bit binary counter with clock and parity enable 
3-bit binary counter with clock enable and reset 

Ill 

4-139 



NAME DESCRIPTION 

Counters (can't.) 
CSBCRD 3-bit binary counter with clock enable and reset direct 
CBJCR 4-bit Johnson counter with clock enable and reset 
C8BCPRD 8-bit binary counter with clock, parity enable and reset direct 
C10BCRD 4-bit BCD counter with clock enable and reset direct 
C10BCPRD 4-bit BCD counter with clock, parity enable, and reset direct 
74_160 4-bit BCD counter with clock, parity enable, and reset direct 
C1 OBPRD 4-bit BCD counter with clock, parity enable, and reset direct 
C10JCR 5-bit Johnson counter with clock enable and reset 
C12JCR 6-bit Johnson counter with clock enable and reset 
C16BARD 4-bit binary ripple counter with clock and reset direct 
C16BCRD 4-bit binary counter with clock enable and reset direct 
C16BCPR 4-bit binary counter with clock, parity enable, and reset 
C16BCPRD 4-bit binary counter with clock, parity enable, and reset direct 
C16BCP 4-bit binary counter with clock, parity enable 
74_161 4-bit binary counter with clock and reset direct 
74_162 4-bit binary counter with reset 
74_163 4-bit binary counter with reset 
C16BPRD 4-bit binary up counter with clock, parity enable, and reset direct 
C16BUDRD 4-bit binary up-down counter with clock, parity enable, and reset direct 
C16JCR 8-bit Johnson counter with clock enable and reset 
C256FCRD 8-bit modulo 256 feedback shift register with clock enable and reset direct 
C256BCP 8-bit binary counter with clock, parity enable 
C2568CPR 8-bit binary counter with clock, parity enable, and reset direct 
C256BCR 8-bit binary counter with clock enable and reset 
C256BCRD 8-bit binary counter with clock enable and reset direct 

Flags: 
c 
L 
N 
x 
K 
G 
I 

CLB: 
CLB 

IOB: 
IOB 

Resistors: 
Pull up 

4·140 

Critical signal flag 
Longline signal flag 
Non-critical signal flag 
Explicit signal flag 
K pin for clock 
G pin for clock 
Input (C) pin for clock 

CLB primitive 

IOB primitive 

Pullup resistor 



LCA-MEK01 Logic Cell Array 
Evaluation Kit 
The Monolithic Memories Logic Cell Array is a high-perfor­
mance CMOS user-programmable gate array. The Monolithic 
Memories' Logic Cell Array Evaluation Kit is a software pack­
age that provides the capability to evaluate the Logic Cell 
Array for new applications. 

Features 
• Design software package for IBM PC-XT, PC-AT or 

compatible computer 

• Interactive graphics-oriented designer interface 

• Simplified definition, placement and connection capability for 
implementation of complex logic 

• Boolean equation or Kamaugh map attematives to specify 
logic functions 

• Macro library of 113 standard logic equivalents plus support 
for user-defined macros 

• Point-to-point timing calculations for critical path analysis 

• Automatic checking for connectivity and design 
consistency 

• Hardcopy output of logical and physical configuration 
information 

General 
The Evaluation Kit can be used to enter complete designs 
using a subset of the XACT design editor, including the use of 
the Monolithic Memories macro library. Critical timing for the 
design can be evaluated with the timing delay calculator to 
evaluate the applicability of the Logic Cell Array technology to 
a particular design. 

Functional definition of Configurable Logic Blocks (CLBs), and 
their internal routing,1/0 Block (IOB) definitions, and intercon­
nection are all done within an integrated graphics-oriented 
system. Interactive placement and automatic routing of logic 
and 1/0 elements are accomplished quickly and easily via an 
easy-to-learn user interface. 

Designs are captured with a graphics-oriented design editor, 
using either a mouse or keyboard entry, driven from command 
or files. User functions are specified in terms of CLB definitions 
and interconnections. Standard logic functions from the macro 
library or user-defined macro capabilities can be utilized to 
quickly implement complex logic functions. Placement and 
routing can be edited easily to modify or optimize a design. 

Checking of logical connectivity is performed automatically. All 
unused internal nodes are automatically configured to minimize 
power dissipation. 

Interactive point-to-point timing delay calculation is provided to 
simplify timing analysis and critical path determination. 

The Evaluation Kit includes hardcopy generation to document 
a design and automatically track design changes. 

System Requirements 
Minimum System Configuration 

IBM PC-XT, PC-AT or compatible computer with: 

• MS-DOS 2.1 or higher 

• 640K Bytes RAM 

• 1 Diskette Drive 

• 10-MB Hard Disk 

• IBM or compatible Color Graphic Adapter and Display 

• 1 Serial Interface Port 

• Mouse Systems, Microsoft or compatible mouse 

Evaluation Kit 

Publication# Rev. Amendment 
1osss A 10 

Issue Date: January 1988 

4·141 



4·142 



~ 
Advanced 

Micro 
Devices 

5·1 



5·2 

Table of Contents Section 5 
Sales Office Listing 

Section 5 Sales Office Listing ................................................................................................................... 5-1 



ADVANCED MICRO DEVICES' NORTH AMERICAN SALES OFFICES 

ALABAMA. (205) 882-9122 MARYLAND 

13
01

1
796-9310 

ARIZONA .. ............. (602) 242-4400 MASSACHUSEITS 617 273-3970 
CALIFORNIA, MINNESOTA 612 938-0001 

~~~~~;~eacti · : · (213) 645-1524 MISSOURI ..... . . . . . . . . . . . . . . 913 451-3115 
(714) 752-6262 NEW JERSEY. 201) 299-0002

San Diego . !619) 560-7030 NEW YORK,
San Jose ... 408) 452-0500 Liverpool (315 457-5400
Woodland Hills (818) 992-4155 Poughkeepsie 914 471-8180

CANADA, Ontario, Woodbury 516 364-8020
Kanata ... (613) 592-0060 NORTH CAROLINA . 919 878-8111
Willowdale (416) 224-5193 OHIO 614 891-6455

COLORADO !303) 741-2900 Columbus 614 891-6455
CONNECTICUT 203) 264-7800 o~~~g~ :: . 513 439-0470
FLORIDA, 503 245-0080

Clearwater .. (813) 530-9971 PENNSYLVANIA,
Ft Lauderdale !305) 776-2001 Allentown !215! 398-8006
Melbourne 305! 729-0496 Willow Grove . 609 662-2900
Orlando (305 859-0831 TEXAS,

GEORGIA (404 449-7920 Austin r 12l 346-7830
ILLINOIS, Dallas .. 214 934-9099

Chicago. !312) 773-4422 Houston 713) 785-9001

IN~~~ille 312) 505-9517 WASHINGTON 206) 455-3600
. (317! 244-7207 WISCONSIN (414) 792-0590

KANSAS. (913 451-3115

ADVANCED MICRO DEVICES' INTERNATIONAL SALES OFFICES

BELGIUM,
Bruxelles

FRANCE,
Paris

WEST GERMANY,

..... TEL (02) 771 91 42
FAX (02) 762 37 12
TLX 61028

. TEL (1) 49-75-10-10
FAX (1) 49-75-10-13
TLX 263282

Hannover area TEL . . . (0511) 736085
FAX (0511) 721254
TLX 922850

MOnchen TEL . . (089) 41 14-0
FAX . . (089) 406490
TLX 523883

Stuttgart . . TEL (0711) 62 33 77
FAX . (0711) 625187

HONGKONG

ITALY, Milano

JAPAN,
Kanagawa ..

Tokyo .

Osaka

TLX 721882

. . . TEL 852-5-8654525
FAX 852-5-8654335
TLX ... 67955AMDAPHX

. TEL102! 3390541
02 3533241

FAX 02 3498000
TLX 315286

. TEL 462-47-2911
FAX 462-47-1729

.... TEL (03) 345-8241
FAX (03) 342-5196
TLX . . . J24064AMDTKOJ
TEL 06-243-3250
FAX 06-243-3253

KOREA, Seoul TEL 82-2-784-7598
FAX . . . 82-2-784-8014

LATIN AMERICA,
Ft. Lauderdale TEL (305) 484-8600

FAX (305) 485-9736
TLX . . 5109554261 AMDFTL

NORWAY,
Hovik. TEL (02) 537810

FAX (02) 591959
TLX. . . 79079

SINGAPORE TEL 65-2257544
FAX 65-22461t3
TLX RS55650 MMI RS

SWEDEN, Stockholm TEL (08) 733 03 50
. . (OB) 733 22 85

. 11602

TAIWAN

UNITED KINGDOM,
Manchester area

London area ...

FAX
TLX.

TLX . . 886-2-7122066
FAX.. . 886-2-71220t7

. . TEL (0925) 828008
FAX (0925) 827693
TLX . 628524
TEL . . (04862) 22121
FAX .. (0483) 756196
TLX 859103

NORTH AMERICAN REPRESENTATIVES

CALIFORNIA KENTUCKY
12 INC OEM (408) 988-3400 ELECTRONIC MARKETING

DIST! (408) 498-6868 CONSULTANTS, INC. (317) 253-1668
CANADA MICHIGAN

Buo~~M~MARKETING SAi MARKETING CORP (313) 750-1922
(604) 430-3680 MISSOURI

CaJIA~f'J~e~'),,RKETING LORENZ SALES .. (314) 997-4558
(604) 430-3680 NEBRASKA

Kanata, Ontario LORENZ SALES . (402) 475-4660
VITEL ELECTRONICS (613) 592-0090 NEW MEXICO

Mi~~~'l!i."E8f'~~~ICS THORSON DESERT STATES (505) 293-8555
(416) 676-9720 NEW YORK

Quebec NYCOM, INC. (315) 437-8343
VITEL ELECTRONICS (514) 636-5951 OHIO

IDAHO Centerville
INTERMOUNTAIN TECH MKGT .. (208) 888-6071 DOLFUSS ROOT & CO (513) 433-6776

IN DIANA Columbus
ELECTRONIC MARKETING DOLFUSS ROOT & CO (614) 885-4844
CONSULTANTS, INC. (317) 253-1668 St'8o~~v~~s ROOT & co IOWA (216) 238-0300
LORENZ SALES . (319) 377-4666 PENNSYLVANIA

KANSAS DOLFUSS ROOT & CO (412) 221-4420
LORENZ SALES . . . (913) 384-6556 UTAH

R2 MARKETING ... (801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance
characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and
other practices common to the industry. For specific testing details, contact your local AMO sales representative. The company
assumes no responsibility for the use of any circuits described herein.

"" ADVANCED MICRO DEVICES 901 Thompson Pl., P.O. Box 3453, Sunnyvale, CA 94088, USA
.. 11111111.TEL: (408) 732·2400 •TWX; 910-339·9280 •TELEX: 34·6306 •TOLL FREE: (800) 538-8450

APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323 o (408) 749-5703

© 1988 Advanced Micro Devices, Inc.

A&W-B- 50M-6/88-0 5.3

NOTES

NOTES

NOTES

I.

