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This book contains information about AMO's Programmable Gate Arrays, an exciting 
extension of our commitment to the field of programmable logic. The leader in 
programmable logic products, AMO continues to provide you with the quality, reliability 
and innovation you demand. As with every product we sell, AMO's Programmable Gate 
Arrays are backed by an extensive force of knowledgeable sales personnel and fully­
trained field applications engineers. After reviewing the information in this book, you 
will see how PGAs can fit into your applications. Please contact your local AMO sales 
office, authorized representative or franchised distributor so that we can together, solve 
your technical problems with AMO's Programmable Gate Arrays. 

C,~~ -,;;LL~~ "-.,,.., .......... Y------~ 
Michael J. Callahan 
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Senior Vice President 
Programmable Products Group 
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PREFACE 

This handbook introduces the Logic Cell™ Array 
(LCA™) device by 

comparing it with other digital logic devices 
describing its three major components 
providing testing and data reliability specifications. 

This handbook places each title and major topic at the 
top of a new page. Each chapter introduction lists the 
major topics therein. Each major topic introduction 
identifies the second-level topics to watch for, and so 
on. 

Note: Abbreviations used in this handbook that are 
not explicitly defined are those deemed standard by the 
IEEE. 

The reader of this handbook should have a working 
knowledge of the design, testing, and reliability of 
digital logic devices. 
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INTRODUCTION To THE LCA 
DEVICE 

This chapter introduces the AMO-supplied LCA family 
and covers the following topics. 

The overview, 1.1, introduces the Logic Cell™ 
Array, or LCA™ device. 

The discussion on architectural comparisons, 1 .2, 
explains how LCA devices compare to other semi­
conductor devices. 

The discussion on LCA benefits, 1.3, compares 
the benefits of using an LCA device with those of 
other, more traditional semicustom devices. 

The discussion on LCA development software, 
1.4, describes the available LCA design and 
verification software. 
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The following product features and improvements are 
motivating manufacturers of electronic systems to use 
high-density VLSI circuits. 

Lower cost 
Higher performance 
Reduced power consumption 
Smaller size 
Increased reliability 

Microprocessors and memory devices are standard 
product ICs that have best exploited the advances in 
VLSI technology. Density improvements in these 
product types outpaced those in other digital integrated 
circuits and widened the technology gap between them 
and other logic devices. To achieve comparable 
densities for their proprietary functions, designers of 
digital equipment must consider using factory­
programmed custom and semicustom application­
specific integrated circuits (ASICs). 

The advent of user-programmable gate arrays combines 
the production cost-effectiveness of VLSI with all the 
benefits of a standard product. The following figure 
illustrates the tradeoffs of density and development 
time for several digital logic device types. 

The optimal solution, in the upper-left corner of the 
following diagram, represents the best tradeoff of 
density and complexity with design time. As illustrated, 
a new digital logic technology called the Logic Cell 
Array, or LCA, offers improvements over the traditional 
tradeoffs in both design complexity and design time. 
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Logic Technology Tradeoffs 

Several common device classes are introduced below. 

1.1.1, SSl/MSI Devices 

1.1.2, Programmable Logic Devices (PLDs) 
1.1.3, ASIC Devices 
1.1.4, LCA Devices 
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Standard SSl/MSI devices, which are well 
understood by most logic designers, provide much 
design flexibility and are readily available. However, 
they offer less density and consume more power than 
other device types. Also, they usually are manu­
factured in maturing technologies with limited 
opportunity for further cost reductions. 

Programmable logic devices (PLDs) include a 
number of competing alternatives, all based on a 
programmable AND/OR plane architecture. This 
architecture is most efficient for applications requiring 
up to a few hundred usable gates. 

Typically, each programmable logic device replaces five 
to ten SSl/MSI devices. Because PLDs are user­
programmable, designers achieve this gain in density 
with only a small increase in design time and little 
schedule risk. The design and device pattern for a 
specific application can be developed within days. 

Bipolar PLDs are programmed by opening fuse links. 
CMOS PLDs are either one-time programmable, UV 
erasable (EPLD), or electrically erasable (EEPLD). 

PLDs are best suited for state machines and decoders. 
For functions that are readily expressed as a sum-of­
products, the PLO architecture provides efficient multi­
variable decoding and high performance. Architectural 
restrictions limit the application of PLDs to general logic 
replacement, consolidation of miscellaneous glue logic 
and control functions, or complex processing tasks. 
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Factory-programmable ASIC devices include 
gate arrays, standard cells, and compiled silicon. ASICs 
provide logic densities of up to 100,000 equivalent 
logic gates, and are sufficiently flexible for most digital 
logic functions. Fabricating factory programmed ASICs 
typically requires two to four months after a designer 
completes and verifies a design prototype. 
Manufacturing the first production quantities requires a 
similar period of time. Because of their high design 
costs and limited production flexibility, factory­
programmed ASICs are most economical in very high 
production volumes. The logistics of verifying a 
workable design, testing ASIC devices, and 
coordinating production demand require substantial 
resources on the part of the manufacturer. 

The LCA device is a user-programmable gate array 
that provides the usable density of gate arrays and the 
short development times and low risk of standard logic 
circuits. The LCA device combines the design and 
production benefits of a standard logic device with the 
system benefits of increased reliability, power savings, 
space savings, and lower production costs than usually 
associated with ASIC device types. 

The next discussion compares LCA devices to other 
semiconductor devices. 
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Your benefits of the LCA device result from its flexible 
array architecture. This architecture is based on a 
number of technical breakthroughs that have resulted 
in patent disclosures. Discussions below compare 
familiar device architectures with that of the new LCA 
device. 

1.2.1, Programmable Logic Devices 
1.2.2, Gate Arrays 
1.2.3, Logic Cell Arrays 

In PLO architectures, dedicated device input pins and 
some user-selectable input/output (1/0) pins or 
feedback paths directly drive the inputs to the AND/OR 
planes. Outputs are driven directly from the sum-of­
products logic outputs, or from device flip-flops. 

The primary limitations of the PLO architecture are the 
rigidity of the AND/OR plane logic and its dedicated 
interconnections. Flip-flops are typically driven by a 
common clock and are closely associated with specific 
output pins. As a result, gate use rarely exceeds 15%. 
Consequently, the practical upper limit of usable gates 
appears to be a few hundred, and the extension of this 
basic architecture to higher densities is limited. Also, 
PLO performance is fixed for each level of logic; each 
path through the AND/OR plane exhibits the same 
delay, typically 25 to 45 ns: 

Array architectures provide more flexible resources than 
PLO architectures, both for 110 functions and for logic 
structures. A gate array typically implements user logic 
by interconnecting two-input NANO gates into more 
complex functions using mask-programmed metal 
segments. Factory processing customizes each gate 
array by creating the metal interconnections on 
standard, partially processed arrays. 
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Larger arrays can be generated through straightforward 
extensions of the 1/0 blocks, logic building blocks, and 
interconnection resources, much like extending the 
capacity of a memory device. Gate arrays offer usable 
densities of 25,000 gates or more. Usability of 80% to 
90% is possible because of the architecture's flexibility 
and regularity. 

Gate array performance depends on the placement and 
interconnection of the elements that make up each 
logic function. In a gate array characterized by 2 ns gate 
delays, frequently-used functions can have a total delay 
of 15 ns or more, due to the number of interconnec­
tions and gating levels needed to implement them. 

The LCA architecture resembles a gate array with an 
interior matrix of logic blocks and a surrounding ring of 
1/0 interface blocks. LCA devices also share the gate 
array architecture's flexibility and ease of extension to 
higher densities. However, they do not share the gate 
array's need for factory programming. Instead, a 
configuration bit stream stored in on-chip memory 
defines and controls the function of the LCA device's 
configurable logic blocks (CLBs), 1/0 blocks (IOBs), and 
user-programmable interconnections. Distributed 
memory cells are adjacent to the logic, 1/0, or 
interconnection elements they control. The 
interconnections are located in the channels between 
the rows and columns of configurable logic blocks, and 
between the configurable logic blocks and 1/0 blocks. 

Straightforward extensions of the LCA architecture can 
increase a 1200-gate array to one with more than 1800 
gates. Further extensions of the LCA architecture have 
increased the number of usable gates to 9000. 

Like other standard IC components, LCA devices 
provide a selection of low- and high-speed parts. You 
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can choose the most cost-effective speed grade for 
your application. 

LCA performance depends on the fixed delays of the 
logic and storage elements plus the interconnection 
delays. During design, the LCA delay calculation 
software can quickly display worst-case timing. 
Typically, LCA performance is specified by the 
maximum toggle rate for a logic block storage element 
when it is configured as a toggle flip-flop. For typical 
configurations, a 70 MHz toggle rate translates to a 
system clock rate of up to 35 MHz. 

Unlike conventional gate arrays, the LCA device 
requires no custom factory fabrication. Each device is 
identical until it is loaded with its application-specific 
configuration bit stream. During normal operation, the 
configuration bit stream is loaded automatically from an 
EPROM or a processor, either when the LCA device is 
powered up or on command while the system is 
operating. You can copyright your LCA configuration 
bit stream to protect your designs from unauthorized 
copying under the same legal precedents that are used 
effectively to protect microprocessor-based systems. 

The next discussion lists and explains the main benefits 
of using LCA devices as logic devices. 
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LCA devices have three important logic design benefits 
discussed below. 

1 .3.1 , Advanced process 
1 .3.2, High quality 
1.3.3, Proven reliability 

Over the last five years, the most pronounced trend in 
the semiconductor manufacturing process is the shift to 
CMOS technology. This shift is especially pronounced 
for ASIC devices. The advantages of advanced CMOS 
processes include both high speed and low power 
consumption. 

LCA devices are fabricated using AMD's 1.5µ advanced 
process. Two metal layers are essential for an efficient ... 
array architecture; the array must propagate logic signals ~ 
in horizontal and vertical directions, with minimum 
delays. The LCA manufacturing process is very similar 
to that used for high-speed memories; it exploits the 
photolithography and wafer diameter advances 
achieved in memory process technology. These 
advances result in ever-higher device density and 
performance at ever-decreasing cost. 

As quality consciousness has grown among 
semiconductor users, awareness of the importance of 
testing has also increased among manufacturers. 

Testability is an important consideration in the design of 
microprocessors, memories, and other standard 
products. These devices are tested exhaustively by 
AMO with carefully developed programs. 

The testing of most application-specific ICs is less 
comprehensive, due to limitations of design and test 
program development. However, the LCA device is 
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100% testable; each device is comprehensively tested 
during the manufacturing process. Testing is 
accomplished by AMD without involving you in the 
definition of test programs or the generation of test 
vectors. 

The LCA manufacturing process used is based on a 
process developed for high-performance CMOS static 
memories. Extensive process-development work 
ensures the most reliable memory devices and provides 
the same benefits to the LCA device. Data collected 
over millions of operating hours confirm the reliability of 
the LCA design and the CMOS process. 

Compared with other logic devices, the LCA device 
exhibits extremely low power dissipation. This 
translates to lower operating temperatures and higher 
reliability. Also, packaging materials for the LCA device 
are selected to match closely the thermal coefficient for 
the expansion of the silicon. This match minimizes 
thermal stresses and further improves reliability. 

The memory cell used to store the LCA configuration bit 
stream is particularly robust. Memory is written only 
during device configuration and its static output 
controls the logic elements in the array. Because the 
two circularly linked inverters that make up the static 
latch are adjacent, transients cause only minor 
differences in voltages. Each inverter is a true 
complementary transistor pair, so that a low impedance 
path to the supply rail always exists regardless of the 
state. Furthermore, tests involving bombardment with 
high levels of alpha radiation verify that the storage cell 
is not disturbed by alpha particles. 
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The development system for LCA devices is similar in 
capability and usage to those for microprocessors. 

Development support for the LCA device includes 
complete software-based design entry, analysis, and 
verification. The LCA development system offers a 
complete basic configuration and several powerful 
options to enhance designer productivity. LCA 
development system features include the following. 

A. A consistent, user-friendly, menu-driven 
environment for all LCA development software 

8. Schematic entry 

C. Macro library support for standard AMO-supplied 
and user-defined functions 

D. Simulation interface support that includes netlist 
extraction 

E. Automatic placement and routing 

F. Interactive timing calculation and design 
optimization 

G. In-circuit emulation for one or multiple LCA devices 
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The LCA development system for the 2000 
series requires the following hardware. 

IBM® PC-XT™, PC-AT™, or 100% compatible 
computer 

640 kBytes of internal RAM 

A serial mouse 

A system that must interface with printers and other 
output devices also requires 

a single parallel port 
two serial ports. 

A variety of schematic editors and design workstation 
platforms are also available. 

Chapter 2 discusses the LCA design cycle in detail. 
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THE LCA DESIGN CYCLE 

This chapter provides an overview of the LCA design 
cycle and explains each step of the cycle in detail. 

The overview of the design cycle, 2.1, introduces 
the LCA design process and software. 

The discussion on design entry, 2.2, explains 
entering an LCA design as a schematic and 
converting the schematic design to netlist data. 

The discussion on logic simulation, 2.3, describes 
pre-route simulation. 

The discussion on automatic partitioning, and 
placement and routing, 2.4, explains translating 
the netlist into the LCA file format as well as 
automatic placement and routing. 

The discussion on design optimization, 2.5, 
explains routing optimization and delay calculation. 

The discussion on timing verification, 2.6, 
describes post-route simulation. 

The discussion on in-circuit design verification, 
2.7, explains three optional ways to verify an LCA 
design. 
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2.1 OVERVIEW 

2.1.1 LCA DESIGN 
SYSTEM 

Before you begin your LCA design, it is important for 
you to understand the LCA design cycle and, in 
particular, how the the design cycle relates to the LCA 
environment and the available software. 

Discussion 2.1.1 explains the LCA design system. 

• Discussion 2.1.2 shows the relationship between 
the tasks in the LCA design cycle and the software 
tools you use. 

The LCA design system, shown in the following 
figure, consists of two independent design environ­
ments and a file format that can be used as a bridge 
among the formats of these environments. 

External design environment 
Internal design environment 

• External netlist format 

In the external design environment, all software 
packages deal with silicon-independent tasks such 
as schematic capture and simulation. These software 
packages frequently use incompatible file formats. 
Also, they may be supported on hardware platforms 
different from that of the internal design environment. 

The internal design environment, in contrast, 
supports software packages dealing with sllicon­
dependent tasks such as logic partitioning, automatic 
placement and routing, and those tasks performed 
under the LCA software development system. These 
software packages communicate with each other 
through a common file format, the LCA format, which is 
proprietary. The LCA format contains silicon­
dependent information such as delay, routing, and 
programming data. 
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The external netlist format, or XNF, provides the 
bridge among different file formats. This bridge permits 
files produced in one environment to be converted to a 
format that permits designers to use them in the other 
environment; it also permits conversion of files among 
different formats in the external environment. 

AMO integrates the LCA design system with its inter­
face software packages. These packages translate the 
different file formats into the XNF format, or the XNF 
format into the required file format. For example, the 
schematic to XNF interface translates the schematic file 
format into the XNF format; whereas the XNF to simula­
tion interface translates the XNF format into typical sim­
ulation files such as the simulator netlist and input stim­
ulus files. 

After external files are translated into the XNF format, 
another software package offered by AMO can be used 
to convert the XNF format into the LCA format. 

AMO will provide additional translation capabilities as 
new software packages in the external design environ­
ment require access to the LCA design system. 
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AMO supplies software that translates a design file from 
a unique schematic-capture format into the XNF format: 
name2XNF. AMO also supplies software to translate the 
XNF format to a simulation format, XNF2sim, and 
software that translates files between the XNF and LCA 
formats. These interfaces provide an environment that 
lets you perform all the tasks required to produce a 
consistent, integrated LCA design. 

The diagram on the next page is divided into two vertical 
segments that show the relationship between each task 
in the LCA design cycle and the actual software you use 
to perform each task. 

In the figure, square boxes on the left show major 
tasks in the design cycle. Although the tasks are 
depicted serially, the design cycle is actually an iterative El 
process in which you repeat a task or sequence of 
tasks. 

Rounded boxes in the LCA software cycle represent 
the product used for the task connected by the shad­
ing. Ovals show the format of the input and/or output 
file for each step. 
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To produce an LCA design, you complete six major 
design tasks. 

I. Design entry using a supported schematic­
capture platform includes design conversion to 
produce an external netlist format (XNF) file. 

II. Logic verification includes translating the XNF 
file to specific simulation file formats. You then run 
a unit-delay simulation. 

Ill. Automatic partitioning, and placement 
and routing (APPR) reduces the design, mini­
mizes or compresses the logic, and partitions the 
design into required CLBs and IOBs. You can 
then place and route automatically. 

IV. Design optimization includes delay analysis 
and routing optimization. Any logic changes you 
make here dictate that you return to task I and 
repeat subsequent tasks. 

V. Timing verification includes translation of the 
completely routed design from its LCA format into 
the XNF format, translation of the XNF format into a 
simulation netlist, and simulation. You compare 
the timing simulation results with those of the 
previous logic simulation to ensure that there are 
no logic changes.1 

VI. In-circuit design verification can include any 
of the following: using the download cable, 
programming a PROM, and using the in-circuit 
design verifier. 

Unless you complete timing verification on a completely placed and routed design, you cannot be 
sure the design will function under worst-case process, voltage, and temperature conditions. 

June 1988 
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When using a supported schematic-capture platform, 
the first two steps toward completing an LCA design are 
as follows. 

1 . Produce a schematic using the AMO-supplied LCA 
design library with a corresponding, supported 
schematic-capture platform. 

2. Create an external netlist of the schematic-based 
design using the name2XNF interface software. 

Schematic entry shortens your product development 
time by letting you enter compl~x LCA designs 
efficiently. 

You enter the LCA design as a schematic using any 
AMO-supported schematic-capture platform. Rather 
than basing your design schematic on TTL or other 
standard parts, you base the schematic on the available 
LCA library parts. 

The LCA library for each supported schematic-capture 
platform includes common logic functions and standard 
parts, such as gates, latches, and 7400"series parts. 

While entering the schematic, you can constrain nets to 
direct design placement and routing with APR software 
later in the design cycle. You can also include con­
straints in a text file that APR can read. APR recognizes 
the following constraints. 

Critical nets that should be routed with as little 
interconnection delay as possible 

Nets that should be placed on long lines 

Specific placement of logic blocks 

• Logic block grouping 
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Locking nets and blocks 

Once the schematic is produced, you must con­
vert it to an external netlist file (XNF) format. AMO sup­
plies a software interface product, name2XNF, for each 
supported schematic-capture platform. The interface 
software converts the schematic-based data into a net­
list file that's needed to produce a simulation file or LCA 
design file. 

Note: If the a schematic contains CLB or 108 macro 
symbols, which directly specify LCA elements, the XNF 
file must be translated into an LCA file and then back 
into an XNF file prior to logic verification. AMO supplies 
this interface in the XNF/LCA software_Q_l'oduct. 
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The next step toward completing your design is to 
verify, during unit-delay simulation, that the logic is 
correct. This is done with a gate-level XNF file: one 
that does not have the physical routing paths specified 
in the LCA design. At this point it is not possible to 
make a realistic estimate of the timing because the 
design is not yet implemented as an LCA device: 

The following steps outline the procedure for verifying 
the logic of an unrouted design with AMO-supplied 
software. For details, refer to specific topics in the LCA 
Development System manual before simulating. 

1 . Translate the XNF file into the simulation netlist file 
with XNF2sim. 

The netlist includes logic parameters and setup 
and hold times based on the selected LCA speed 
grade, operating under worst-case conditions. 

2. Edit the input stimulus file created by XNF2sim, 
using a text editor. 

You specify simulation stimuli with a set of clock 
statements or with an input pattern for either pad 
inputs or internal nodes. 

3. Simulate the design. 

Simulation results are available in tabular, plotted, 
and graphic formats. This flexibility makes it easy to 
correct the function and timing of the circuit. 

4. Repeat design entry and logic verification until 
your design simulates correctly. 

After schematic entry and before automatic partitioning, 
and placement and routing, you use a logic simulator to 
debug the design. This pre-route simulation saves 
design time because you can detect and correct logic 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2 

June 1988 



June 1988 

errors before final placement and routing. Later, you 
compare pre-route simulation with post-route simulation 
results to detect whether or not logic changes were 
introduced during optimization. 

There are several software products available to assist 
you with simulation at various times in the design cycle. 
For each simulator there is one software interface prod­
uct, XNF2sim, that translates the XNF file into the file 
format your particular simulator uses. 
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Once the design file is in the netlist format, you use the 
LCA2XNF translator to convert the schematic elements 
into LCA elements. You then partition, place, and route 
the LCA design. The following steps give an outline of 
this procedure. 

1 . Partition the design into CLBs and IOBs with the 
XNF2LCA software. 

This process efficiently groups as much logic as 
possible into each CLB, and translates the design 
into the LCA file format required by the LCA 
development system software. 

2. Place and route the design. 

You can use automatic placement and routing 
(APR) software, or you can proceed directly to the 
LCA design editor, EDITLCA, and place and route 
the design interactively. 

The XNF2LCA software completes the following tasks. 

Reduces and minimizes the logic 

Partitions the design into CLBs and IOBs 

Translates the design to the LCA format 

Performs design checking 

The partitioning that occurs during translation may not 
result in the optimal placement of CLBs and IOBs. You 
can improve the layout of the design by including 
additional constraints to APR. 

Both APR and XACT use the LCA file format. Thus, you 
can optimize the placement and routing of individual 
CLBs and IOBs in your design interactively with the 
interconnection feature of the LCA design editor, 
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EDITLCA. Refer to discussion 2.5 for more information 
on design optimization. 

You can also take advantage of APR when you develop 
LCA designs incrementally. You can lock in place a 
partial LCA layout while APR places and routes addi­
tions to the design. 

Note: If you do not lock in place a partially placed-and­
routed design, the design is rearranged to yield a new 
placement when APR places and routes an addition 
to the des.!g_n. 

The APR software is extremely flexible. Through direc­
tives, you optimize the placement for a particular 
design. You can also specify routing resources to min­
imize clock skews and signal delays for critical paths. 
This results in faster product development. 

Refer to Chapter 5 of this manual for a discussion of 
manual placement and routing. Refer to the LCA 
Development System manual, Volume II, Section I, for 
specific instructions on using APR. 
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After initial placement and routing, you can optimize 
your design as follows. 

1 . Use the LCA design editor, EDITLCA, to optimize 
placement and routing. 

2. Use the LCA design editor's delay calculator to 
check point-to-point timing after optimization. 

Whether you enter a design using schematic-entry 
software or lay out a design manually, you may have to 
use manual placement-and-routing and delay analysis 
for design optimization. You can modify the placement 
of your design by moving CLBs and re-routing the 
affected interconnection. 

You also can lay out a complete design manually by 
using EDITLCA to configure design elements such as 
CLBs, IOBs, or system macros. 

In either case, individual elements are configured 
directly with EDITLCA, either through Boolean equa­
tions or Karnaugh maps. A macro can be selected to 
automatically configure a block or group of blocks for a 
specified function. 

The AMO LCA device supports a variety of routing 
resources, including long lines, global clock buffers, 
and direct connection. 

Refer to Chapter 5 of this manual for more information 
on how to manually place and route LCA devices, and 
how to optimize the placement and routing of your LCA 
design to improve its performance. Two good ways to 
monitor the performance of your LCA design are with 
the LCA design editor's delay calculator, discussed 
next, and through timing verification, which is discussed 
under 2.6. 
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You can perform timing analysis on a partially or com­
pletely routed LCA design to check its performance. 
Typically, you monitor the timing on critical paths as you 
complete the design. You can perform these timing 
checks quickly and efficiently using the LCA design 
editor's delay calculator. 

The delay calculator is an interactive design tool that 
calculates and displays the worst-case delays associ­
ated with CLBs, IOBs, and interconnections. It is 
particularly useful for evaluating various placement-and­
routing options during design optimization. The 
calculated delay represents the worst-case delay from 
the source block for that signal to the destination 
selected. 

The delays are calculated based on the selected speed 
grade for the design; you can select an alternate speed 
grade to examine its impact on critical-path timing. Also, 
the worst-case delay calculations are from clock-edge to 
clock-edge for clocked systems. 

The LCA design editor's delay calculator also flags any 
paths over which the signal is significantly degraded. In 
addition to displaying timing for individual networks, this 
delay calculator can produce a listing showing timing for 
all logic networks in a design. 

Chapter 5 also contains a detailed discussion of timing 
analysis with the LCA design editor's delay calculator. 
See the DELAY command description in the LCA 
Development System manual, Volume I, Chapter 3. 
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At this point in the design cycle you should have an 
optimized, placed, and routed layout. You are ready to 
verify the timing and the logic. 

Simulating a desiqn's timing can be done either before 
or after the design has been verified in-circuit. You 
should simulate the critical paths to ensure that the 
design will function under worst-case process, voltage, 
and temperature conditions. The results obtained here 
should be compared with the logic simulation results to 
ensure that any layout editing did not change your 
design's functionality. 

Timing verification lets you verify critical timing over 
worst-case power supply, temperature, and process 
conditions. It also helps you select the correct LCA 
speed grade for your application. To do this, 

1 . Use the LCA2XNF command to translate the 
routed CLB-based LCA design file into a CLB­
based netlist that includes routing delays. 

2. Use XNF2sim to translate the XNF netlist to an 
appropriate format for your simulator. 

3. Simulate, review the timing information, and 
ensure no logic changes have occurred. 

4. Use the LCA design editor, EDITLCA, to edit and 
optimize the design's timing until it meets your 
design specifications. Then repeat steps 1 
through 4 above. 

Once you are satisfied with the layout, you can proceed 
to in-circuit design verification. However, to make 
design changes, always return to the original schematic, 
make the design changes at that level, and then repeat 
all succeeding steps. 
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Once the design meets your specifications, you can 
verify the design in-circuit. In-circuit design 
verification is the final stage of the LCA design cycle. 
You ensure that your design meets the specifications in· 
the target system, the one for which it was designed. 
In-circuit design verification includes the following. 

1 . Use the XACT Bit-Stream Generator to automati­
cally create the LCA design's configuration bit 
stream. 

2. Verify your design's logic and timing in any of the 
following three ways. 

Use the download cable to transfer the con­
figuration bit stream to the LCA device in the 
target system. 

Program a PROM and use it to configure the 
LCA device(s) in the target system. 

Use XACTOR, the in-circuit emulator, to 
emulate the LCA device(s) in the target 
system. 

These three methods are discussed below. Refer to 
Chapter 6 in this manual for a detailed discussion of the 
configuration process, which includes generating a 
configuration bit-stream file from a design file in the LCA 
format. 

After you generate the configuration bit stream, you can 
use the bit-stream generator and download cable to 
program the LCA device for in-circuit verification, as 
described below. 

The download cable connects the LCA device in the 
system under development to the parallel port on the 
LCA workstation, as shown in the next figure. The bit-
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To program the LCA device, you use the bit-stream 
generator to transfer the configuration bit stream across 
the download cable to the LCA device in the target 
system. 

Note: During development and debugging, you can 
use this capability to save time because you do not 
need to reprogram a PROM each time you modify the 
configuration bit stream. 

For more information on the XACT bit-stream generator, 
MAKEBITS, and the download cable, refer to the LCA 
Development System manual, Volume I, Chapter 7. 

After creating the configuration bit stream for your LCA 
design, you can use it to program a PROM and let the 
PROM configure the target system LCA device(s), as 
explained below. 
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To load a PROM with the configuration bit stream for 
one or more LCA device(s), first convert the configura­
tion bit stream into a PROM-format file. The LCA 
PROM formatter can create files automatically in a variety 
of standard PROM formats, for PROMs from 2 kB to 
8 kB and larger. Each PROM file can represent one or 
more LCA designs, so one PROM can configure one 
LCA device or several daisy-chained LCA devices. 

The LCA Development System manual, Volume I, 
Chapter 6, provides a complete description of the LCA 
PROM formatter, including the formatter commands. 

The XACTOR in-circuit emulator provides real-time, 
interactive target-system emulation of up to four LCA 
devices from the host PC. 

Note: In-circuit emulation enhances design simulation 
by letting you verify your LCA design's functionality in 
the target system in real time, while working with all 
other circuits and ~tern software. 

The XACTOR configuration, shown next, consists of a 
microcomputer-based controller and from one to four 
universal emulation pods, each with an emulation 
header. One pod and header is included with the basic 
LCA system. The XACTOR controller, connected to 
the PC workstation through a serial port, provides the 
following. 

Local storage of configuration bit streams 

Control of individual device configurations 

Control of the isolation of the pod device(s) from 
the target system 

You set the state and isolation for each control signal to 
provide debugging of the target system hardware. 
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XACTOR Configuration 
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IBM Personal 
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To emulate your design, the XACTOR controller pro­
grams the emulation LCA device in each of up to four 
emulation pods. After programming, each emulation 
pod provides the functionality of one or more LCA 
devices plugged directly into the target system. You 
can program the LCA devices in the target system 
individually or in a daisy chain. XACTOR supports daisy 
chains of up to seven LCA devices from any of the four 
emulation pods. You control each device's isolation 
and configuration with menu or keyboard commands. 
These can be supplemented by user-defined setup 
files for easy system debugging. 

Using XACTOR, you can read back the device config­
uration to verify the configuration process and to 
interrogate the internal states. After you perform a read­
back operation, XACTOR displays the state of all_ 
internal storage elements, isolation switches, and .. 
control signals. XACTOR also automatically reports ~ 
asynchronous status changes in the target system. 
Refer to the discussion on reading back the configur-
ation bit stream in Chapter 6 of this manual for more 
specific information. 

Due to the speed with which you can modify a design 
in-circuit with XACTOR, you may find it useful to imple­
ment temporary debugging circuitry in your design 
during development. For example, you could tem­
porarily connect unused 1/0 blocks to internal nodes for 
viewing with a logic analyzer or an oscilloscope. 

For complete information on the XACTOR in-circuit 
emulator, refer to the LCA Development System 
manual, Volume I, Chapter 8. 

2000 SERIES LCA DESIGN HANDBOOK CH4\ 

/ 



2-22. -.- 2000 SERIES LCA DESIGN HANDBOOK CHAPTER 2 

June 1988 



CHAPTER 3 

CONFIGURABLE LOGIC BLOCKS 

CONFIGURABLE LOGIC . BLOCKS .......................................................... 1 
3.1 OVERVIEW ................................................................................................................ 2 
3.2 LCA STRUCTURE ...................................................................................................... 4 

3.2.1 CLBS ............................................................................................................. 4 
3.2.2 THE INPUT/OUTPUT BLOCK .......................................................................... 9 

3.3 LOGIC DESIGN WITH CLBS ...................................................................................... 11 
3.3.1 CREATE BASIC LOGIC ................................................................................. 11 
3.3.2 COMBINE OR SHARE CLBS ......................................................................... 15 a 

3.4 CLB TIMING .............................................................................................................. 21 
3.4.1 TIMING FACTORS ........................................................................................ 21 
3.4.2 LATCHES, FLIP-FLOPS, AND REGISTERS ................................................... 23 
3.4.3 COUNTERS ................................................................................................. 2.5 

3.4.3.1 Johnson Counters ......................................................................... 25 
3.4.3.2 Binary-Weighted Sequence Counters ............................................ 26 

3.4.4 SYNCHRONOUS VERSUS ........................................................................... 30 
3.4.4.1 Asynchronous Ripple Counters ...................................................... 31 
3.4.4.2 Synchronous Linear Feedback Shift Registers ................................ 33 

3.4.5 ASYNCHRONOUS INPUTS ........................................................................... 35 
3.4.6 CLOCK SKEW ............................................................................................. 37 

3.5 LOGIC DESIGN WITH XACT MACROCELLS ............................................................... 38 
3.5.1 MACRO OVERVIEW ..................................................................................... 38 
3.5.2 MACRO CREATION ...................................................................................... 39 
3.5.3 SAMPLE MACROS ...................................................................................... 40 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3 

June 1988 



2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3 

June 1988 



3 

June 198.8 

CONFIGURABLE LOGIC 
BLOCKS 

This chapter introduces configurable logic blocks, the 
basic design element of the Logic Cell Array (LCA). 

The overview, 3.1, provides a brief introduction to 
the design of LCA devices and to the LCA 
development system's part in this process. 

The discussion of the LCA device structure, 3.2, 
explains configurable logic blocks (CLBs) and 
describes their basic structure. 

The discussion on CLBs, 3.3, explains how to 
generate logic designs with CLBs. 

The discussion on timing, 3.4, explains the timing 
characteristics of CLBs. 

The discussion on logic design, 3.5, discusses 
LCA design using macrocells from the LCA 
macrocell library. 

The macrocell library mentioned in this chapter is the 
LCA development system macrocell library. The AMD­
supplied LCA logic libraries that support the schematic 
design-entry method are discussed in Chapter 2. 
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3.1 OVERVIEW Each new technology available for digital design offers 
the designer a new set of characteristics. These 
characteristics include speed, power, integration level, 
reliability and selection of logic functions. A good 
designer makes the best use of a technology's design 
characteristics by matching the design's methodology 
and logic architecture to these characteristics. 

The digital design and architecture for LCA devices is 
similar to that of conventional TTL SSl/MSI or gate 
arrays. However, the designer of LCA devices has 
additional design flexibility because of the lack of typical 
design limitations, which could include logic in four-bit 
or eight-bit increments, a specific set of inputs and 
outputs, or a combination of logic functions. 

The core of the CMOS LCA integrated circuit is an array 
of user-programmable logic elements called configur­
able logic blocks, or CLBs. User-programmable 
interconnections of the CLBs create the required logic 
networks. Individually programmable inpuVoutput 
blocks, or IOBs, provide the interfaces for the LCA 
device's input/output. With these resources, you are 
free to tailor the LCA logic; you are not confined to 
standard product devices or gate array library elements. 

AMD's LCA device gives you a higher level of 
integration than other standard products. The benefits 
of this higher integration level include 

increased performance and reliability, 
reduced printed circuit board space, 
lower power requirements, 
shorter design time, and 
smaller component inventories. 

To create the logic capacity of one LCA device usually 
requires 40 to 100 SSl/MSI packages. Also, the LCA 
user-programmability gives you a single, fully-tested 
inventory item you can use in multiple products. 
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Using the conventional gate array definition of one 
gate as a 2-input NANO function, the LCA 2000 family 
provides a logic capacity up to 2000 gates. Using a 
single LCA device to construct part of a system design 
can reduce the package pin count of the design from 
hundreds of SSl/MSI pins to 48, 64, or 84 LCA pins. 
These three available LCA packages provide up to 84 
pins that you can program as logic input, output, or 
both. 

The next discussion introduces two main components 
of the LCA device, the CLB and the 108. 
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3.2 LCA 
STRUCTURE 

3.2.1 CLBs 

This discussion details the structure of a CLB. It also 
briefly discusses the 108, which is described in more 
detail in Chapter 4. 

The CLB is the basic logic building block in an LCA 
design. Each CLB has four logic inputs and two logic 
outputs. It includes a combinational-function 
portion and a storage-element portion. You can 
configure the combinational function to perform any 
function of four variables. You can configure the 
storage element as a transparent latch or an edge­
triggered flip-flop. 

You enter and verify an LCA design using the LCA 
development system, then generate a configuration bit 
stream that defines the appropriate functions within the 
CLB. 

The interconnection of CLBs consists of a two-layer grid 
of metal segments. These metal segments are joined at 
each intersection by a switching matrix of controlled 
pass transistors that creates the interconnection paths 
of the CLBs and IOBs. Additional pass transistors 
connect these metal interconnections to the IOBs. 
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WRITE 

PROORAM 
DATA 

The following figure shows a single memory cell that 
controls a simple two-to-one multiplexer made of two 
pass transistors. 

Q 

PROORAM 
MEMORY 
CEIL 

DATA 1-... ------+-------. 
--• MULTIPI.EXER 

DATAO-------------...... 
DATA 

Memory Cell Multiplexer Control 

Combining eight of these readable memory cells to 
control an eight-to-one multiplexer tree, as shown 
below, creates a circuit capable of generating any logic 
function of the three-input variables A, B, and C. 
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CBA = 1 0 1 
READS BIT 5 

A (LSB) B C (MSB) 

.... ~. f (A,B,C) 

~'----,,----''----v----./...________., 
EIGHT FOUR 2 TO 1 TWO 2 TO 1 2 TO 1 

READABLE MUXs MUXs MUX 
MEMORY 

CELLS 

Look-Up Function Generator 

As illustrated above, the C, B, A input code 101 reads 
the contents of memory cell five. The data pattern of 
the readable memory cells defines the logic function. 
Doubling the look-up table and multiplexer creates a 
circuit that can generate any function of four variables, 
which is the basis of the CLB's combinational portion. 
The CLB includes programmable multiplexers for input 
variables A, B, C, D, and Q, shown in the next figure, 
and a selection of outputs, to create either a single 
function of four variables or two functions of three 
variables each. 

The following figure shows the CLB's combinational 
function generator. As you can see, some paths are 
shorter than others. 
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When a CLB generates a four-variable function, both 
halves of the look-up table select either the input 
variable D, or the Q of the storage element; the single 
result produces both F and G outputs. 

When a CLB generates two functions of three variables, 
the D vs. Q selection is independent for the functions F 
and G. Each function can then use any three of the five 
available variables as input: A, B, C, D, or Q. 

A CLB can generate a third type of function by using 
the input variable B to select between the two three­
variable combinational functions. This configuration 
results in a compound function that can involve some 
combinations of all five variables. 

The programmable features of the CLB storage 
element are shown below. 

A 
F 

SELA/F x 

D Q 

K 
c y 

RES 

D 

SELNG 

CLB Storage Element 

You can leave the storage element part of a CLB 
unused, or program it as a level-transparent latch or an 
edge-triggered flip-flop. The combinational function F 
supplies its data input. You can also select the 
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3.2.2 THE 
INPUT/OUTPUT 
BLOCK 

1/0 Block 

June 1988 

invertible flip-flop clock or latch enable from any of three 
sources, on a CLB-by-CLB basis. Each CLB storage 
element has available an active-HIGH asynchronous 
SET, and a RESET. RESET is dominant over SET; the 
active-LOW chip input, -RESET, clears all storage 
elements. 

The IOBs provide access between the CLBs and the 
world external to the LCA device. As illustrated below, 
IOBs can provide a direct or registered input to the chip. 

TS (OUTPUT ENABLE) 

our 

IN 

D Q 

PROORAM-CONTROLLED 1/0 CLOCK 
MULTIPLEXER 

The positive-edge clock for the register function is 
common along each die edge. The chip configuration 
process, as well as the active-LOW chip reset, -RESET, 
clears the storage elements. 
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Each 108 includes an input/output buffer you can 
enable continuously to create an output pin, disable 
continuously to create an input or unused pin, or 
enable by logic signals to create an 1/0 or bus pin. 

For more information on IOBs, refer to Chapter 4 of this 
manual. 
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3.3 LOGIC 
DESIGN WITH 
CLBs 

3.3.1 CREATE 
BASIC LOGIC 

June 1988 

This discussion explains how to use CLBs to design 
basic logic elements. It explains how to use CLBs, 
partial CLBs, and multiple CLBs to generate common 
functions. 

To create basic logic, you can choose from several 
equivalent ways of representing a CLB function, both 
schematically and mathematically. The LCA design 
editor, EditLCA, supports design entry through 
Karnaugh maps, truth tables, and Boolean equations. 
The CLB's ability to accommodate either sense of input 
variables, and to generate either sense of an output, 
lets you eliminate extraneous inverters. In most cases, 
however, it is practical to route only active-HIGH signals, 
thus avoiding the duplicate routing of both true and 
complement signals. The following figure shows 

A. A typical four-variable combinational function as a 
logic diagram, a Boolean equation, and a Karnaugh 
map. 

B. Equivalent forms of the function. 

C. Equivalent forms of the function. 

The active-LOW inputs replace the inverters of the 
conventional representation and the output symbol is 
an OR. AMO-supported schematic-capture interface 
software converts the logic in an LCA schematic design 
into an equivalent representation and groups the 
combinational gates while translating your design into 
LCA design files. 
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Alternate Representations of the Same Function in an LCA Device 

3-12 
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A 

The ADDER shown below illustrates how to use two 
combinational functions of three variables. The SUM 
and CARRY functions are usually grouped in the same 
CLB because of their common input variables. 

A 

SUM......._~ 

~}c .___...., 
B 

B -~~::E3D---c SUM = A • B • C + A • B • C 

One-Bit Adder with Carry In 

+A•B•C+A•B•C 

CARRY =A • B +A • C + B • C 
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A 

B 

Four-Input Exclusive OR 

AO ___ ,_ 

BO __ _,,_,, 

Al ___ ,_ 

Bl __ _,,_,, 

AO ----r~ 
BO -.-+--tL_A--... 

Dual Compare CLB 

The four-input exclusive-OR gates in the following 
figure are an example of a common logic function that is 
not obviously four-variable. It is a modulo-2 add without 
a carry. 

A 
Za =AE0BE0 CE0D 

1 1 

1 1 

1 1 

1 1 

Zb =AE0BE0 CE0D 

COMPARE, which is similar, is usually a two-input 
function. The figure below shows a CLB-generated 
dual compare function, which compares two bits from 
each of two sources. 

Z=AO E0 BO• Al$ Bl 

1 

1 

AO ......--.... 
1 

1 

____.. 
BO 

Z =(AO• BO+ AO• BO)• (Al• Bl+ AT• BT) 
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3.3.2 COMBINE 
OR SHARE CLBs 

AO 
Al 
A2 
A3 

A4 
A5 
A6 
A7 

AS 
A9 
AlO 
All 

Al2 
A13 
A14 
A15 

...... 

~ .... 
-p 

.... 
~ .... 
..... 

...... . 
.... 
~ _. 

... 
~ ..... 
~ 

..... . 

....... 

You can combine several CLBs to create an expanded 
function, or two different CLB functions can share a 
single CLB. 

By using multiple CLB levels, you can expand the basic 
CLB design element of four input variables. For 
example, one CLB driven by four others can produce 
the sixteen-variable function shown below. If you select 
the decodes to use common terms in several functions, 
you can share those CLBs . 

......-
A 
B 
c 
D 

A 
B 
c n D ...... A 

~ B .... .... c p u p 

A ..... D . 
B 
c 

Z = f (AO-Al5) 

D 

A 
B 
c 
D 

A Function of 16 Variables 

June 1988 

You can use a related technique to encode the results 
of a pair of three-input, two-output CLBs. Use one of 
three output codes to indicate which of three selected 
input conditions exist. Possible combinations of the 
two CLB outputs can represent four conditions, namely 
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One, Two, Three, or Other. Each CLB encodes a 
three-input subset of the variables. When two of these 
first-level codes are input to another CLB, its result can 
be a complex function of six inputs. 

The next figure shows two encoded results, each 
a function of three inputs. Each CLB responds 
with the selected code when its inputs match its part of 
the desired minterm. A HIGH output indicates that both 
codes match the same selected value, yielding a sum of 
three six-variable products. 
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I-1 F2 

G2 

CLB2 CLBl 
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0 1 0 1 
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1 0 1 0 
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Encoding Partial Results of Six Variables 
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.....--

F 1--! r--

..__ 

CODE RESULT 

F2G2F1G1 z 

0 1 0 1 1 

1 0 1 0 1 

1 1 1 1 1 

F2G2;tF1G1 

0 
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AO 

Al 

A2 
A3 

-H 

... cLBLJ 
_;3 _} 

""! 
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] _} 1--1 

PRESELECf 

If a design does not require some part of a conventional 
logic function, you need not create that portion of the 
function. For example, the above design of the 
encoder does not use all of the decodes of a set of 
input variables, so you can omit the unused decodes. 

In an output-intensive function, using each CLB to 
gen~rate two functions of three shared variables can be 
more efficient than generating one function per CLB. 
The next figure illustrates this technique. The 
PRESELECT enabling gates created in this figure 
are an example of a common term of a wider input 
function. To improve system speed, you can use the 
input variables that become stable first at the first level 
of logic. Those variables can propagate, while the 
design's more timing-critical inputs drive the shorter 
propagation path. 

ENA A3 A2 Al AO 
_J CLB 

_,.[I\_ 
./ X=O 0 0 0 

---i· 

_,.,. 
2' ./ Y=O 0 0 0 

J_ 

JI! _CLB 
~8) X=O 1 0 0 0 , 
_,J 9 \. 
'1. ..I Y=O 0 0 

i t:"'LB 
-LA./ X= 0 1 0 0 

I 

_J B'-
l_ J Y= 0 0 

Decoder with Common Term and Only Required Outputs 

3-18 
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You can build wide multiplexer functions from a 
tree of 2-to-1 multiplexers. This kind of structure, 
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illustrated below, leaves the storage element and one 
input variable of each CLB available for use as an 
independent register function. In other cases, the 
multiplexer 

can be the data input to the storage element, 

can share input variables, or 

can use the output of the storage element. 

These examples provide a natural grouping of shared 
functions in a CLB. 

DO --i;....----- -

SEL --i-----<>l~k--... G 
l---:i--

DATA -~i----t 

CLB Sharing MUX and Register Element 

G = SEL • DO + SEL • D 1 
F=DATA 
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SELECT' 

A common element in digital systems is a group of 
registers with sets of enabled output buffers 
bused together. The structure shown below is not 
always recognized as a multiplexer; however, the 
multiple sources provide the inputs, and the enables 
represent the select lines. All inputs driven by the bus 
are driven by the multiplexer output. 

2:1 MUX 
OlIT 

SELECT 

2:1 MUX 
our 

Three-State Function Creates a MUX 
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3.4 CLB TIMING 

3.4.1 TIMING 
FACTORS 

June 1988 

This discussion explains the general timing factors in 
CLB design. It then discusses the specific timing for 
various CLB functions, including latches, flip-flops, 
registers, and counters. It also compares the timing of 
synchronous versus asynchronous design, and timing 
considerations for asynchronous inputs and clock 
skew. 

Any Boolean function generated by a CLB has the 
same timing delay as any other CLB-generated 
function. The concept of levels of logic or gate delay 
loses its significance with LCA devices, in which higher­
level primitives perform logic. 

The primary timing factors involved in designing an LCA 
device are listed below. 

The propagation time of a CLB 

The clock-to-block output via Q 

The input setup time for the CLB flip-flop input 
variables 

The input and output pad buffer delays 

The interconnection timing 

Although other switching characteristics are specified in 
the LCA data sheet, the timing factors listed above are 
the most important in determining LCA performance. 
Some of these factors are illustrated and discussed 
below. 
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CLOCK TO 
OU1PUT COMBINATORIAL SEfUP 

j.-TcKO .. ,.. TILO .. , .. T1cK--...j 

CLB CLB CLB IOB 

H--HLOGIC LOGIC 

PAD 

(K) (K) OUTPUT BUFFER 

IOB 

PAD >----1 

LCA Timing Factors 

'4- TCKO .. , .. Top--.f 

MSI devices typically have matched internal delay paths 
and low-impedance outputs that are independent of 
loading. Logic delays are more sensitive to output 
loading in programmable CMOS array architectures than 
in bipolar devices. As with CMOS gate arrays, variations 
in internal signal delays are significant in the LCA 
device. Synchronous design techniques can minimize 
the complexities of signal timing caused by delay 
accumulations in CMOS designs. An additional 
advantage of synchronous design is better control of 
output timing. 

The clock distribution resources of the LCA device 
simplify synchronous design. When you can program 
any function of the input variables, it is simple to include 
such control signals as RESET, CLOCK ENABLE, and 
PARALLEL ENABLE in the logic function for the data 
input of flip-flops. All flip-flops can then use a common 
clock. With the flexibility of the LCA device you can 
generate and use individual CLB clocks, as well as 
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3.4.2 LATCHES, 
FLIP·FLOPS, AND 
REGISTERS 

asynchronous SET and RESET, if required by the 
application. 

LCA configurability lets you tailor the storage elements 
of the CLBs to fit your applications. Together with 
complex combinational data functions, this configur­
ability lets you construct a wider variety of latches and 
flip-flops in LCA devices than is found in standard parts 
or gate array cell libraries. 

The level-transparent form of the storage element is the 
D latch. The edge-clocked form is the D flip-flop. In 
both cases, the function F supplies the data input, and 
the Kor C pin or the function G supplies the clock 
(LOAD ENABLE). You select the data input, the clock, 
and the active sense of the signal on a block-by-block 

basis. EJ 
Including a RESET variable in the combinational input of 
a flip-flop produces a synchronous RESET, as shown 
below. 

F =RESET• DATA DATA 
DATA-----r~ 
RF.SET-----a__J 

June 1988 

UOCK --------

Synchronous Reset 

You can use a combinational function of Q with input 
variables to generate a CLOCK ENABLE, as illustrated 
in the next figure. 
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F = CLKENA • DATA DATA 
r " 

Cl.KENA 
DATA 

CLOCK 

§%jjl + CLKENA•Q 

Synchronous Clock Enable 

DP.ARAILEL 

PARENA --t--L...A­

D SERIAL---t._J 

CLOCK------' 

Synchronous Parallel Enable 

3-24 
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As shown below, you can also create a multiplexer as 
the input of a flip-flop to provide a PARALLEL 
ENABLE. 

F = PARENA • DP 

+ PAREN\• Ds I ltl ~ 
PARAll.EL 

PARENA 

A flip-flop can have parallel data or reset inputs that do, 
or do not, depend on the clock enable. As with the J-K 
flip-flop, an interesting derivative of the set-reset flip­
flop is one that does not change state in the case of 
simultaneous set and reset conditions. The other types 
of flip-flops are set-dominant or reset-dominant. The 
availability of this variety of synchronous set-reset flip­
flops provides you with alternatives for logic creation 
that can help you minimize next-state control 
conditions. 

A group of related flip-flops with similar functions can 
form a register. You can group registers into two 
categories, namely data registers and shift registers. A 
data register is a set of flip-flops with independent 
parallel input paths and common control. A shift register 
is a set of flip-flops with a serial data relationship. Both 
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3.4.3 COUNTERS 

3.4.3.1 Johnson 
Counters 

June 1988 

data and shift registers consist of combinational 
variations of signals supplying the data input of the 
basic, edge-triggered D flip-flop. 

Counters are a simple example of a state machine with a 
regular sequence. The most familiar counters are the 
Johnson or Mobius counter discussed under 3.4.3.1, 
the binary weighted sequence discussed under 
3.4.3.2, and the Linear Feedback Shift Register 
discussed under 4.2.6. 7. 

Johnson counters often offer advantages for counter 
designs with a modulo of less than 1 O to 12. Also, they 
are simple to place and route, and the basic 
combinational functions shown below are compatible 
with maximum clock frequency. 

In a Johnson counter, decodes of single or consecutive 
states are simple and glitch-free. Initializing the LCA 
device clears all storage elements. However, due to the 
presence of unused states, the Johnson counter could 
enter an alternate state sequence if there are any 
asynchronous control inputs. As shown in the next 
figure, additional input variables from QB and QD in the 
feedback function can return the count to the proper 
sequence. 
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F =(QA+ Os• 0i,) 

=QAQB+~·Qo 

CLB 

QC QB QA 

D Q-------o QH-11,__-iD Q....,.e+---iD Q~-"'"" 

CLOCK--------------------------
.DCBA 

c;. 0000 
~ 1000 

1001 -..1100 
0100 ~1110 
1010 ~1111 
1101 -..0111 
0110 .... ~ 0011 

lNVALIDf-.. O O O 1 STA1ES 
1011 
0101 
0010 

Divide-by-8 Johnson Counter 

3.4.3.2 Binary· 
Weighted Sequence 
Counters 

3-28 
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A 

B 

When creating a large-modulo CMOS binary-weighted 
counter, you are presented with a number of trade-offs. 
In terms of physical resources, the most effective 
counter of this type is a simple ripple counter; however, 
the accumulation of multiple clock-to-a flip-flop delays 
can be prohibitive because the outputs ripple for 
varying times. 
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A synchronous toggle flip-flop is shown below. 

A 

TOGGLE 0 :::::[) ~~ B1 TOGGLE I 

CLOCK 

B c 

==[J ~'=t} TOGGLE2 T 1 

CLOCK CLOCK 

Toggle Flip-Flop 

A. Changes state synchronously if Tis HIGH. 

B. Shows the simplified symbol for the flip-flop. 

C. Illustrates the AND of two inputs, which produces 
the T. 
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The following figure shows a fully synchronous counter 
solution composed of T flip-flops. This design 
generates the counter's toggle ripple carry for each bit 
by adding a carry gate, which tests the previous toggle 
carry and the state of its flip-flop in a daisy-chain fashion. 
The counter's maximum clock rate is determined by the 
total propagation time for the carry path from CLKENA 
to data setup of the last bit. 

Synchronous Binary Counter with Ripple Carry 

The fully parallel counter shown next generates each 
toggle function directly. This counter design requires 
an n-wide gate for toggle control of each bit of the 
counter. You can extend this design to 12 bits. The 
total delay would then consist of one combinational 
propagation delay between register CLBs, one clock.:: 
to-0 delay, one set-up time delay, and the 
interconnection delay. 
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Qi Q2 

When designing counters, you can use block-level 
carries. The 3-bit segment size shown in the lower half 
of the above figure accommodates the three stages 
and a carry-in within the single-CLB 4-input limit. The 
only combinational delays are those of T3' and T6'. 
Without a clock enable input, the first section could be 4 
bits, followed by 3-bit sections. When designing LCA 
devices, you must watch for design trade-offs and not 
try to fit a standard solution into all applications. 

The figure below illustrates another synchronous 8-bit 
counter with a single level of combinational propagation 
delay. The figure shows the merging of the sequential 
and combinational elements of the CLB. This counter 
uses periodic look-ahead carry terms to make efficient 
use of variables within the block. 

Q3 Q4 Q5 Q6 Q7 

G3 =Q2 •Q3 • Q4 G5=Q5•Q6 

Eight-Bit Synchronous Counter Generated in CLBs 

3.4.4 SYNCHRONOUS 
VERSUS 
ASYNCHRONOUS 
DESIGN 

Efficient LCA-based designs can differ from MSI 
designs. MSI elements are general purpose building 
blocks that exploit the strengths of a different 
technology. Most MSI parts are designed to fit a set of 
standard package sizes and the pin functions are 
chosen to provide a useful standard product. The LCA 
design goals and techniques are very different. 

When designing LCA devices, your goal is to 
minimize the routing and number of blocks. 
In fact, you can often adapt your design's 
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3.4.4.1 Asynch· 
ronous Ripple 
Counters 

June 1988 

logic to minimize the constraints of the 
available logic and routing resources and to 
optimize the LCA device's logic capacity and 
performance. 

The three- and four-variable capability of the CLB is a 
good balance in LCA devices and gate arrays. You can 
use a conventional logic diagram of your design and 
group the combinational functions to give an 
approximate CLB count. In a register-intensive design, 
the number of flip-flops required by the design 
determines the logic capacity and related combinational 
functions merge with the sequential portions. 

The ripple counter shown next incorporates a counter 
that sets and resets output control bits at specific times 
in the sequence. NANO gates that decode the desired 
states drive the asynchronous set and reset inputs of EJ 
the flip-flops. When the counter increments to state D, 
it should asynchronously reset to 0. 
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Simple Asynchronous Ripple State Machine 
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The above counter might operate properly if it were an 
MSI device because the counter bits in such a device 
are matched. To use this counter in a gate array or LCA 
device, however, the decodes of the counter states 
involve mismatched loading and layout of various 
counter bits. As a result, the decode gates are likely to 
produce output spikes, causing erratic operation of the 
output control flip-flops that use these signals as 
asynchronous inputs. Although the decode spikes can 
be so narrow that you do not notice them during design 
verification, they might produce erratic output control 
changes during operation. The decode of the terminal 
count also has the potential for spurious outputs. Even 
with a valid terminal count decode, a mismatch in 
counter bit speeds could result in some bits resetting 
and terminating the reset state decode signal before all 
bits of the counter are reset. This timing problem could 
leave the counter in an undefined or incorrect state. A 
reasonable alternative to the asynchronous ripple 
counter is the synchronous linear feedback shift 
register, which is discussed next. 

The following figure shows a Linear Feedback Shift 
Register, which is a fully synchronous alternative to the 
asynchronous-reset binary counter. This class of 
counters follows a less familiar sequence, but its 
decodes of specific counts are predictable. Use of 
OR/AND feedback for inputs on the output flip-flops 
results in a synchronous SET/RESET function for the 
output control bits, making them immune to decoding 
spikes. 

Notice that the resulting X and Y sequences are 
identical, although the counter sequences differ and 
the control decodes of the synchronous version 
represent the state before X or Y transition. This 
synchronous design revision also lets the clock control 
the output timing; in the ripple counter of the previous 
figure, the output timing is controlled by the 
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accumulation of delay from the clock .to the counter 
output, then to the state decode, and finally through 
the flip-flop to the output. The use of a fully 
synchronous counter reset provides more reliable 
counter operation, and you may be able to increase the 
maximum clock rate due to the elimination of the 
terminal count delay path. Generating the flip-flop 
synchronous reset requires no more resources than 
that of the asynchronous reset described above for the 
ripple counter. 

x y °"QsQcQo 
I 0 0 0 0 0 0 
I 0 I I 0 0 0 

~ I OSy 2 I I 0 0 
Rx! I 3 I I I 0 

0 I 4 0 I I I 
0 I 5 I 0 I I 
0 I 6 I I 0 I 
0 I 7 0 I I 0 
0 !Ry 8 0 0 I I 
0 0 9 I 0 0 I 
0 0 A 0 I 0 0 
0 0 B I 0 I 0 

SxO 0 c 0 I 0 I 
0 0 I 0 
0 0 0 I 
I I I I~ 

RESfil'---f::====:::::i:========:::i:========:::i...~~~~J 

Synchronous State Machine 

3.34 
-2-
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Another common source of design problems is the 
timing of asynchronous input signals that affect more 
than a single flip-flop. An example is a counter in which 
an asynchronous parallel load is removed near a clock 
edge. Various bits of the counter may change in 
response to the clock, while others retain the previous 
state. The result is an invalid value in the counter. 

Another common design problem is that of an 
asynchronous system reset. If the reset signal is 
removed near a clock-edge, different parts of the logic 
may respond differently, resulting in invalid states as the 
logic tries to begin operation. Clearly, you should 
always synchronize asynchronous signals at their input, 
as shown in the following figure. 
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IN 

DelayB 

rnJ! 
I 

A~ 

IN 

Synchronization of an Asynchronous Input 

You can accommodate asynchronous inputs that 
require a response to their transition by using a 
resynchronizer, as illustrated below. The additional 
input delay this solution imposes may be undesirable in 
some applications but it results in a more reliable design 
when input latency is not a limiting factor. The 
resynchronizer also acts as a simple noise filter. 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 3 

June 1988 



3.4.6 CLOCK 
SKEW 

June 1988 

CLOCK 

IN m1 'LU \ ...... \\.._.\\_\ __ n= ___ 
QA _____ _,, 

QB 

START 

. TRANSITION I ____ _, , ___ ! \_ 

Data Resynchronizer and Filter 

The problem of clock skew accounts for numerous gate 
array design iterations. Clock skew problems are 
caused by mismatched delay paths. For example, you 
could clock one flip-flop, and its new output level, lightly 
loaded, could propagate to another flip-flop input, 
arriving as much as one set-up time before the original 
clock reaches a second flip-flop. The difference in clock 
timing can occur because of clock gating or unequal 
routing delays. To minimize clock skew in an LCA 
device, the LCA clock buffers drive a dedicated metal 
clock distribution network. 
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3.5 LOGIC 
DESIGN WITH 
XACT 
MACROCELLS 

3.5.1 MACRO 
OVERVIEW 

Macrocells, also called macros, are predefined CLB or 
IOB configurations that use common logic functions. 
The LCA development system includes a library of 
macros that you can use to create your LCA designs. 
You can also create your own macros. This discussion 
provides detailed information about macros and gives 
you an overview of how to create one. It also shows 
some sample macros. 

Using macros when you optimize your LCA design is a 
quick way to specify a function. Each macro is actually a 
file that contains all of the executable EditLCA 
commands required to define the macro's function in 
the LCA design. When you invoke a macro, you 
provide the set of parameters needed to execute the 
file in the required order. 

The parameters you supply customize each 
occurrence, or instance, of the macro in your design. 
The parameters include such information as an instance 
name, the names of networks providing inputs, and the 
block locations for each CLB or IOB in the macro. The 
instance name is used during macro execution to 
compose unique block and net names that distinguish 
each occurrence of a particular macro in your design. 

Macros in the AMD macrocell library are stored in the 
\MACROS directory. Each macro file has an assigned 
name with a .MAC file extension that identifies the logic 
function. You can find a list of the macros in the AMD 
library and the order of their required parameters in the 
Quick Reference Card and the LCA Macrocell Library 
Manual. The macro documentation indicates the 
required parameter order in the syntax statement for 
each macro. 

In addition to using the available macros, you can create 
customized macros as follows. 
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EDITLCA commands and macro executions let you 
create an LCA design as well as modify macros. After 
editing, you may want to incorporate part of that new 
design or modified macro into a new macro. For 
example, you might create a new macro that is a one-bit 
slice of useful logic and which may include several 
CLBs. Then you can place several instances of that 
macro to create a more complex logic unit, such as a 
data path. Another useful user-defined macro could 
describe a section of a special counter that generates a 
unit of control logic. 

To create a macro, you first use the keyboard or mouse 
to specify the individual blocks that must be included. 
The LCA development system assigns a parameter for 
each network that the user has selected as a macro 
input, as well as for each CLB and 108 that this macro 
uses. All block names and net names sourced by the 
macro blocks are included in the new macro's .MAC file, 
which is created in the current directory. 

When you invoke the macro, you are prompted for 
parameters in the order they are needed. The first 
required parameter is always the instance name. 
This name differentiates one instance of a macro from 
any other instance of the same macro in the design. 
The instance name is added as a prefix to the macro's 
original net names for all nets driven by blocks included 
in the macro. The instance name is also added as a 
suffix to the original block name of all blocks in the 
macro to allow the first characters of the block names to 
show in the editor display. 
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Note: All block and net names must be unique. 
Reserved names include A, B, C, D, K, I, 0, X, and Y, 
which are already used for block pin names. Also 
reserved are AA through last row/column of the LCA 
design, and P1 through highest pin number of the LCA 
design, as block names. Some additional reserved 
names are assiJJned to config_uration and power _Q!ns. 

Refer to Chapter 4 in the LCA Development System 
manual Volume I for specific information on how to 
create macros. 

Several sample macros are illustrated below. The first 
figure shows the logic diagrams for FDR, a simple D flip­
flop with synchronous reset. 

Data (.b) --1--..... 
Reset (.c) -~ 

D 

Clock (.k) ---o 
nameQ 
(.x) 

(.y) 

The macro for this figure is shown below. The first two 
lines in the macro are comment lines indicating the 
syntax and parameter order for macro execution. The 
comments in the macro are self-explanatory. 

Note: % 1 through %5 represent the parameter values 
OU SU I . 
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;MACRO FDR Name Clock Data Reset Location nameblock 

%1 %2 

Parameter NAME ? Enter instance name: 
Parameter NET Clock Select Clock net: 
Parameter NET Data Select Data net: 

Parameter NET Reset select Reset net: 

Parameter CLB ? Select % 1 block: 

Nameblk %5 %1 
Editblk %5 
Base 3var 

%3 %4 %5 NAME 

I Parameter statements specify 
I parameter type, the default 
I names for nets, followed 

Parameter 
I by the Select prompts 
I for the editor screen. 

I Editor commands to name the 
I block %5 (fifth parameter) 
I with the instance name (%1) 

Config X:Q Y:Q F:B:C G: Q:FF SET: RES: CLK:K 
Equate F = B*-C 

I Edit the block (%5) and define 
I its configuration and equation. 

Endblk 

Addpin %2 %5.K 
Addpin %3 %5.B 
Addpin %4 %5.C 
Addpin %1Q %5.X 

I Addpin commands define the nets. The first 
I parameter variable is the name (or default) 
I supplied by that parameter in the installation 
I statement. The % 1 Q is a Q concatenation on 
I the instance name % 1. 
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c80 GOSC 
COL 

The GOSC macro in the following figure is a simple 
oscillator that uses two external R-C networks, two IOBs 
and one CLB that functions as a set-reset latch. 

Vee 

c1 Reset 

T = T1 = T2= N ((R1 C1) + (R2C2)) 
where N = approx. 0.35 for TTL threshold 

=approx. 0.75 for CMOS threshold 
when each capacitor is allowed to be discharged by 
the LCA during opposite timing phase. Capacitor might partially 
charge due to a delayed 3-state routing. 
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The macro for this GOSC is shown below. Refer to 
Chapter 4 Volume I of the LCA Development System 
manual for specific information about how to use and 
create macros. Also, refer to the discussion in Chapter 
2 of this manual for details about the AMO-supported 
logic libraries used in schematic entry of LCA designs. 
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:macro GOSC Name 

%1 

Parameter NAME ? Enter instance name: 
Parameter CLB ? Select % 1 CLB block: 
Parameter IOB ? Select CQ% 1 1/0 block: 
Parameter IOB ? Select CQL%1 1/0 block: 

Nameblk %2 %1 
Editblk %2 
Base 3var 

LocQ 

%2 

Config X:F Y:G G:A:C:B G:A Q: SET: RES: CLK: 
Equate F = -B* (C+A) 
EquateG=-A 
Endblk 

Nameblk %3 CQ%1 
Editblk %3 
Base IO 
Config I:PAD BUF:TRI 
Endblk 

Nameblk %4 CQL%1 
Editblk %4 
Base IO 
Config I:PAD BUF:TRI 
Endblk 

Addpin %IQ %2.X %2.A %3.0 %3.T 
Addpin %1Reset %3.I %2.C 
Addpin %1Set %4.I %2.C 
Addpin %1QL %2.Y %4.0 %4.T 

LocCQ LocCQL 

%3 %4 

I Parameter statements 
I defining parameter type 
I and screen prompt. 

I Assigns the first 
I parameter (%1) as 
I block name to block 
I specified by (%2) 
I and configures it. 

I Assigns the CQ prefix 
I to instance name for 
I the block selected as 
I the third parameter 
I and configures it. 

I Assigns the CQL prefix 
I to block name for the 
I fourth parameter and 
I configures it. 

I Creates nets of names 
I with concatenation to 
I the pins .x, .a, .o, .t 
I etc. of the blocks 
I identified by the %2, %3, 
I %4 _p_arameters. 
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INPUT/OUTPUT BLOCKS 

This chapter discusses IOBs, which comprise the LCA 
1/0 structures. The chapter has the following structure. 

The 1/0 block overview, 4.1, introduces IOBs and 
discusses some specific 108 operating 
characteristics. 

The discussion on LCA 1/0 Structures, 4.2, 
illustrates the wide variety of 1/0 structures 
available for use in LCA designs. 
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4.1 1/0 BLOCK 
OVERVIEW 

4.1.1 108 
INTRODUCTION 

D 

D 
D 
D 
D 
D 
D 
D 

This discussion explains LCA Input/Output Blocks, 
registered inputs, and metastability. 

The IOBs in an LCA design surround the array of CLBs, 
as illustrated below. Where the CLBs are the logic 
building blocks in an LCA design, IOBs are the building 
blocks for LCA input, output, and bidirectional 1/0 
structures. 

CONF1GURABl.E 
LOGIC BLOCK l/OBLOCK 

c;;;11:;;;i ~ Q b Q 00 

0 0 0 0 
0 DiO D 

._INTERCONNECT AREA • 

0 010 0 
0 0 0 0 

Logic Cell Array Structure 

4·2 
2 
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The 2064 and 2018 108s are identical. Each 108 can 

drive an output, 

receive an input, 

clock the input into a flip-flop, or 

be both an input and an output under three-state 
control. 

You can configure an 108 to perform a variety of logic 
functions. 

The architecture of the LCA device provides great 
design flexibility in using inputs and outputs. The 108s 
in an LCA device are not dedicated to any fixed logic. 
Therefore, you can use 108s for logic structures 
beyond simple inputs or outputs. Often, designs do ... 
not use all 108s available within the LCA device. You E;jjl 
then can use the extra 108s to build such logic 
structures as shift registers or Johnson counters. 

The following figure shows the schematic of an 108. 
The trapezoidal structures in the figure are data-path 
selectors or multiplexers. How you program these data­
path selectors determines what function the IOB 
performs. For example, you can configure the 108 to 
perform as 

a direct or registered input, 

a direct or three-state output, or 
a bidirectional data line. 
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t----+--+-~ IN 

D Q 

I/OCLOCK --f't =PROGRAM CONTROLLED -v MULTIPLEXER 

Input/Output Block (108) 

4.1.1.1 Input 
Signals 

4-4 
2 

Along each edge of the LCA die, the IOBs share a 
common 1/0 clock signal that drives each input register. 
All internal registers are reset to a zero state after 
configuration, or after the -RESET pin is asserted 
LOW. Data is clocked into the input register on the 
positive edge of the 1/0 clock signal. 

A logic signal external to the LCA device comes in 
through an 1/0 pad and non-inverting buffer, as shown 
above. The logic signal is then either directly 
propagated or fed into the input register, depending on 
the configuration of the data-path selector. 
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4.1.1.2 Output 
Signals 

4.1.1.3 Voltage 
Levels 

4.1.2 REGISTERED 
INPUTS AND 
METASTABILITY 

June 1988 

Similarly, output data is driven by the non-inverting 
buffer shown in the previous figure. The output buffer 
is forced into a high-impedance state whenever the 
three-state (TS) control line is HIGH (TS = 1 ). 
Conversely, the output buffer propagates the output 
signal when the three-state control line is LOW (TS= 0). 
All outputs can source and sink 4 mA under specified 
worst-case conditions. 

You can configure all 108s to recognize either TTL-level 
'(VTH = 1.4 V) or CMOS-level (VTH = 2.2 V) input 
thresholds. The selected voltage level affects overall 
device power consumption; power consumption is 
lower when you select CMOS input levels. 

The following schematic shows a registered input within 
the LCA device. LCA devices are manufactured with a 
high-speed CMOS process that allows these 108 input 
registers to achieve flip-flop loop delays of three to 
five nanoseconds. These short loop delays provide 
very good performance under asynchronous clock and 
data transitions. Short loop delays also minimize the 
probability of a metastable condition that can result 
when the input to,the flip-flop is still in transition while 
the clock is asserted. 

The 108's short loop-delay characteristics make them 
effective in synchronizing external signals. After the 
108 synchronizes the external signals, you can use the 
signals internally without further consideration of their 
relative timing, except as it applies to internal logic and 
routing-path delays. Chapter 7 of this manual provides 
further information regarding the metastable behavior of 
flip-flops and registers in an LCA device. 
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1/0 TYPE: Pad Input with Storage (registered input) 
MACRO NAME: PINQ 
SCHEMATIC: 

D Q 

CONFIGURATION: 
I:Q 
BUF: 

Input Pad with Storage Register 

LCA 1/0 Structures are discussed next. 

INPUT 
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STRUCTURES 

June 1988 

This discussion explains some 110 and other logic 
functions available by configuring IOBs in various ways. 

Discussion 4.2.1 explains standard 110 structures. 

Discussion 4.2.2 explains open-collector 
structures. 

Discussion 4.2.3 explains Schmitt-trigger 
structures. 

Discussion 4.2.4 explains general purpose 
oscillator structures. 

Discussion 4.2.5 explains on-chip crystal oscillator 
structures. 

Discussion 4.2.6 explains registers and counters. 

Discussion 4.2.7 explains increased drive current 
structures. 

The structures described below use the following 
conventions for input paths and output buffers. 
Discussions here show each structure in schematic 
form and describe its 108 configuration. 

You can configure the input path as any of these 
functions. 

l:PAD - Direct input from the device pad 
l:Q - Registered input 
I: - No input 

You can configure the output buffer as follows. 

BUF:ON - Direct output 
BUF:TRI - Three-state output 
BUF: - No output 
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4.2.1 STANDARD 
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If an LCA.library macro exists for any structures 
described below, the macro is listed in the schematic as 
macro name. 

The six standard LCA 1/0 structures are listed and 
pictured below. These standard structures are the 
basic input, output, and bidirectional 1/0 configurations 
for an LCA device. 

Input pad 
Input pad with storage register 
Output pad 
Output pad with three-state control 
Bidirectional pad 
Bidirectional pad with input storage 

The input pad is shown first. 

I/O TYPE: Pad Input 
MACRO NAME: PIN 
SCHEMATIC: 

CONFIGURATION: 
I:PAD 
BUF: 

Input Pad 
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The next two figures show the input pad with a storage 
register and the output pad, respectively. 

1/0 TYPE: Pad Input with Storage (registered input) 
MACRO NAME: PINQ 
SCHEMATIC: 

D Q INPUT 

....__ ____ ..._ I/0 CLOCK 

CONFIGURATION: 
I:Q 
BUF: 

Input Pad with a Storage Register 

1/0 TYPE: Pad Ouput 
MACRO NAME: POUT 
SCHEMATIC: 

CONFIGURATION: 
I: 
BUF:ON 

Output Pad 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4 

4.9 
2 

EJ 



4-10 
-2-

The figure below shows the output pad with three-state 
control. 

1/0 TYPE: Pad Ouput with Three-State Control 
MACRO NAME: POU1Z 
SCHEMATIC: 

CONFIGURATION: 
I: 
BUF:TRI 

Output Pad with Three-State Control 

The next figure shows a bidirectional input/output pad. 

1/0 TYPE: Pad lnput/Ouput (bidirectional data line) 
MACRO NAME: PIO 
SCHEMATIC: 

CONFIGURATION: 
!:PAD 
BUF:TRI 

Bidirectional Input/Output Pad 
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Next, you'll see a bidirectional pad with input storage. 

1/0 TYPE: Pad Input/Output with Input Storage 
MACRO NAME: PIOQ 
SCHEMATIC: 

.--------THREE-STAIB 

i-------- OUTPUT 

D Q INPUT 

CONFIGURATION: 
I:Q 
BUF: TRI 

Bidirectional Pad with Input Storage 

The LCA macro library contains a variety of output 
functions, including wired-AND and wired-OR 
structures, based on available LCA open-collector 
structures. The MOS transistor has no collector; 
therefore, open-drain outputs is a more accurate 
term for MOS devices like the LCA device. 

To build an open-drain-output structure in an LCA 
device, you tie together both the output and the three­
state control lines. For an active-HIGH signal, the three­
state control engages (high impedance), and the 
output signal is disabled through the output buffer. 
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4.2.2.1 Open-Drain 
Structures and 
Routing 

4.12 
2 

The signal at the output pad is also high impedance, 
which allows that particular signal line to float. 
Connecting this signal line to Vee through a resistor 
pulls this line up for an active-HIGH output. However, 
for active-LOW signals the three-state control line is 
driven LOW to turn on the output buffer and allow the 
LOW signal to propagate directly to the 1/0 pad. 

When designing with open-drain structures, you should 
be aware of an LCA-specific phenomenon caused by 
the different routing delays between the signal source 
and the output and three-state control loads. 

Because a routed signal may take longer to reach an 
IOB's three-state control line than its output line, the 
pad can be driven for a short period of time during a 
LOW to HIGH transition, as shown in the next figure. 
This could occur if the output line (0) starts to go HIGH 
before the three-state control line does. Depending on 
how much routing delay there is between the output 
and three-state lines, the PAD output could start to go 
HIGH and then be driven into a high-impedance state. 
Excessive routing delay differences between the 
output and the three-state control line may cause a brief 
output glitch, as shown below. Careful design prevents 
this. 

The above situation is not a problem in most designs. 
You can check the actual routing delay difference 
between the TS and 0 terminals of an 108 using the 
delay calculator in the LCA development system. See 
Chapter 2 of this manual for information about the delay 
calculator. 
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DELAY 
TS 

- 0----------· SIGNAL 

OUIPUf ------z-----
THREE-STAIB ____ DELA __ Y_-_....1 .... 1...,-__ _ z 

VO PAD-----------HIGH IMPEDANCE ,,A __ _ 

Brief Output Glitch Caused by Three-State Routing Delay 

The next three figures show the available LCA macro 
library open-drain structures listed below. 

Open-Collector Output Pad 
Open-Collector Bidirectional Input/Output Pad 
Open-Collector Output Pad with Storage 

First, the open-collector output is shown, followed by 
the open-collector bidirectional 1/0 pad. 
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1/0 TYPE: Pad Output with "Open-Collector" 
MACRO NAME: POUTC 
SCHEMATIC: 

TS 
0 

.--~-<: t----'l~~---~OUTPUT 

CONFIGURATION 
I: 
BUF: TRI 

Open-Collector Output Pad 

1/0 TYPE: Pad Input/Output with "Open Collector" 
MACRO NAME: PIOC 
SCHEMATIC: 

CONFIGURATION: 
I:PAD 
BUF:TRI 

Open-Collector Bidirectional Input/Output Pad 
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4.2.2.2 Wired·AND 
and Wired·OR 
Structures 

June 1988 

1/0 TYPE: Pad Input/Output with Storage, 
"Open Collector" 

MACRO NAME: PIOQC 
SCHEMATIC: 

D Q INPUT 

------- 1/0 CLOCK 

CONFIGURATION: 
I:Q 
BUF: TRI 

Open-Collector Output Pad with Storage 

The open-drain capability of an 108 allows wired-AND 
and wired-OR structures to become part of the LCA 
macro library. The AND and OR implementations are 
essentially the same; the only difference between their 
forms is the type of logic each uses. You design with 
wired-AND structures in positive-logic implementations 
and wired-OR structures in negative-logic 
implementations. 

The next figure shows a typical wired-AND or wired-OR 
structure. All output pads from the 108s are externally 
wired together as a common signal. In a positive-logic 
system, when all of the logic outputs to the 108s are 
TRUE, the three-state control is enabled and the 108 
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output PADs are forced to high-impedance. However, 
since all of the 108s are tied to Vee through a pull-up 
resistor, the line is pulled up to Vee. If the logic signal to 
any of the 108s is FALSE, the corresponding output 
buffer is turned on and that LOW signal propagates to 
the common line, pulling the entire line LOW. The 
entire structure then acts as an AND function; when all 
outputs are HIGH, the common line is HIGH. If any 
output is LOW, then the common line is also LOW. 

+5V 

PULL UP 
RESISTOR 

'WIRED' AND or 
'WIRED' OR,----1-t 

; 
~ INTERNAL TO LCA 

I Iii 

EXTERNAL TO LCA 

Wired-AND or Wired-OR Function 

The following equation describes the wired-AND logic. 

1081 • 1082 • 1083 • ... • 108n = TRUE 

A wired-OR structure is similar to the wired-AND, except 
that it is implemented in negative logic. It ORs together 
a number of active-LOW signals to generate a logic 
function. The logic equation for a wired-OR, shown 
below, is merely a DeMorgan-equivalent inversion of 
the previous equation. 
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4.2.2.3 Multi· 
plexers from Open 
Collector 1/0 
Structures 

June 1988 

1081 + 1082 + 1083 + ... + 108n = FALSE 

A typical application of a wired-OR structure is an active­
LOW common-interrupt line. An interrupt request from 
any peripheral pulls the common interrupt line LOW, 
which informs the processor of the request. You can 
build a wired-AND or wired-OR function from any 
number of open-collector outputs. 

The LCA macro library also contains another structure 
built using open-drain 108s: an n-bit multiplexer, as 
shown below. All pad outputs are tied together outside 
of the package, on a common line that becomes the 
multiplexer output. Each 108 in the multiplexer is 
configured as an output with three-state control using 
the LCA library macro POLITZ. The output line (0) of 
each 108 becomes an input for the multiplexer. Driving ~ 
the corresponding three-state control line LOW, T = 0, ll;i;;I 
selects a signal; the selected signal propagates to the 
common output line. The three-state control lines can 
be driven with a CL8. 

Caution: You must avoid contentions on the common 
out ut line. 
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4.2.3 SCHMITT· 
TRIGGER 
STRUCTURES 

4-18 
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PUILUP 
RESISTOR 

MULTIPLEXER 
FUNCTION 

+5V 

~ 
MULTIPLEXER 

.-------CONTROL 

---+--OUTPUT I 

t------OUTPUTO 

EX1ERNAL TO LCA INTERNAL TO LCA 

Open-Collector Multiplexer Function 

The Schmitt trigger has numerous applications in digital 
designs. Two of the most common applications are 
shown below. 
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---l~----

rvvvvvv 
I 
I 
I 

A Noise Reduction 

--IP:>----

J 
B Fast Transitions of Slowly 

Changing Signal 

A. Schmitt-triggered inputs filter signal noise because 
of the hysteresis inherent in the switching P.W 
characteristics of a Schmitt trigger. ~ 

8. A Schmitt trigger generates a fast transition for a 
slowly changing input function when that function 
reaches a predetermined level. Again, this 
capability is available due to the hysteresis of the 
Schmitt trigger. 

You can build a variety of Schmitt-triggered input 
structures in an LCA device. For example, using three 
IOBs, a CLB, and three resistors, you can create a 
Schmitt trigger with selectable voltage hysteresis, as 
shown below. 

Note: If the amount of hysteresis is not critical, then 
onl two resistors and two IOBs are re uired. 
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1/0 TYPE: Schmitt-Triggered Input With Selectable Hysteresis 
MACRO NAME: None 
SCHEMATIC: 

I 
EXTERNAL TO LCAI INTERNAL TO LCA 

I 
I 

I 
! 
i 

CONFIGURATION: 
IOB 1 - Input 

!:PAD 
BUF: 

IOB 2 - Output 
I: 
BUF:TRI 

IOB 3 - Output (inverted through CLB) 
I: 
BUF:TRI 

Note: VIB = input threshold voltage 
for CMOS inputs 

VIB = 2.2 V for TTL inputs 
VIB = 1.4 V ± supply tolerance 

Schmitt-Triggered Input with Selectable Hysteresis 

---• DIRECT INPUT 

INVERTED INPUT 

COMMENTS: 
Resistors pairs RI :R2 and RI :R3 form two 
voltage dividers that set the HIGH-going and 
LOW-going input hysteresis. 
Resistors RI and R2 set the HIGH-going 
hysteresis (VH) according to this equation: 

VH = VIB [(RI + R2)/R2] - VOL 

Resistors RI and R3 set the LOW-going 
hysteresis (VL) according to this 

VL = VIB [(RI + R3)/R3] - Vrn 

Three resistors in the above macro select the threshold 
voltage and the amount of hysteresis for the Schmitt 
trigger. The three resistors are separated into two-
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resistor network pairs, R1 :R2 and R1 :R3. Each pair 
forms a voltage divider to set the input-voltage level. 
One voltage divider sets the HIGH-going transition level 
(VH), the other sets the LOW-going transition level (VL). 
The value at the input to 1081 is inverted through a 
CL8, and then routed to the three-state control line 
1083. The CL8 logic adds a small amount of time 
hysteresis to the signal because the CL8 logic and the 
routing cause delay. The logic delay can be balanced 
by buffering the input before sending it to the three­
state control of 1082. 

An inverting Schmitt trigger is similar to the non­
inverting one shown above, except that the sense of 
the logic is inverted inside the LCA device. 

Assume that the input voltage is near ground. The 
output voltage of 1082 is at VoL, which pulls resistor R2 .... 
toward ground. There is then no potential difference ~ 
across R2. The output buffer of 1083 is high-
impedance because its three-state control pin is HIGH. 
Resistor R3 is effectively removed from the circuit and 
the input voltage is divided by the resistor network 
formed by resistors R1 and R2. As the input voltage 
continues to increase, the 1081 pad voltage eventually 
reaches its switching threshold. 

As soon as the threshold is crossed, 1081 goes HIGH. 
This drives the output of 1082 into high-impedance 
(1082 TS = 1) and enables the output buffer of 1083 
(1083 TS = 0). At VoH then, 1083 pulls the input of 
1081 HIGH through resistor R3. In this state, resistor R2 
is effectively removed from the circuit because 1082 is 
high-impedance. 

The Schmitt-trigger structure remains in this state even 
if the input voltage fluctuates, unless it fluctuates to the 
opposite hysteresis limit. Then, the Schmitt trigger 
goes to the opposite state. In other words, the Schmitt 
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trigger stays HIGH until the input to 1081 drops below 
the LOW-going hysteresis limit, and vice versa. 

If the hysteresis values are not critical, the Schmitt­
trigger structure requires only two 108s and two 
resistors, as shown in the following figure. However, 
the range of VH. and VL is very limited. This 108 
configured as an output pulls the input HIGH or LOW, 
depending on the transition direction. 

1/0 TYPE: Schmitt-Triggered Input With 
Limited Hysteresis 

MACRO NAME: None 

SCHEMATIC: 

... iii ... 
EXTERNAL TO LCA iii INTERNAL TO LCA 

CONFIGURATION: 
IOB I - Output 

I: 
BUF:ON 

IOB 2-Input 
I:PAD 
BUF: 

COMMENTS: 
Hysteresis values are limited: 

VL =[(RI + R2)/R2] Vm - VOH(RI/R2) 
VH = [(RI + R2)/R2] VIB - VOL (RI/R2) 

Schmitt-Triggered Input with Limited Hysteresis 

DIRECT t------- INPUT 

CLB 
INVERTED 
INPUT 
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If you need a selectable Schmitt trigger only for a single 
transition direction (HIGH going LOW, or LOW going 
HIGH), then you can use one of the Schmitt triggers 
shown in the following figure. These circuits are simpler 
versions of the one above. 

Note: A single CLB is required to invert the sense of 
the input signal, which then enables or disables the 
output buffer for 1082 (the one configured as a three­
state ou~ut. 
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1/0 TYPE: Unidirectional Schmitt-Triggered Input 
MACRO NAME: None 
SCHEMATIC: 

4 ... 
EXTERNAL TO LCA INTERNAL TO LCA 

Rl 

IOBl 

R2 

IOB2 

COMMENTS: 

VH =VTII 
VL = VTII [(Rl + R2)/R2] - VCH(Rl/R2) 

Unidirectional Schmitt-Triggered Input HIGH Going LOW 

SCHEMATIC: 

EXTERNAL TO LCA 

Rl 

R2 

COMMENTS: 

; 
---t ..... 
INTERNAL TO LCA 

IOBl 

IOB2 

VH= VTII [(Rl + R2)/R2] - VOL (Rl/R2) 
VL= VTII 

Unidirectional Schmitt-Triggered Input LOW Going HIGH 

DIRECT INPUT 

DIRECT INPUT 

INVERTED INPUT 
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4.2.4 GENERAL 
PURPOSE 
OSCILLATOR 
STRUCTURES 

June 1988 

The LCA macro library includes general purpose 
oscillators built using two 108s and a CL8. The general 
theory of operation is similar to that described for 
Schmitt triggers. 

In the oscillator shown and described below, the 
charging and discharging of two capacitors generates 
the oscillating signal. Capacitor C2 charges to a voltage 
threshold, on SET, to set a latch. As soon as the 
voltage across C2 exceeds the threshold, the SET line 
causes the Q line to go HIGH and discharges C2 by 
driving the 108 called COL. After crossing the 
threshold, the RESET line, which has been held LOW, 
is allowed to rise as capacitor C1 charges. When 
capacitor C1 charges to its threshold, the Q output is 
reset and forced LOW. Capacitor C1 is then discharged EJ 
by the 108 named ca and capacitor C2 begins charging 
again. This process is repeated, creating a low-
frequency resistor-capacitor oscillator. 

Consider the routing delay of the three-state control 
lines within the 108s, named CQ and COL in the figure. 
The time period of the oscillator depends on each 
capacitor being completely discharged during the 
opposite timing phase. Also, timing depends on both 
capacitors beginning their charge near ground. A 
routing-delay difference between the output (0) of an 
108 and the three-state control can prevent the 
capacitors from completely discharging. 
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1/0 TYPE: Low-Frequency Resistor-Capacitor Oscillator 
MACRO NAME: GOSC 
SCHEMATIC: .._ 

EXTERNAL TO LCA 

CONFIGURATION: 
lOBl _ 

I:ON 
BUF:TRI 

10B2 
I:ON 
BUF:TRI 

___.. 
IN'IERNAL TO LCA 

SAMPLE ARRANGEMENT 

Cl1JCK 
BUFFER--+-• 

CLB 

/ Low-Frequency Resistor-Capacitor Oscillator 

4-26 
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The following figure illustrates the oscillator's low­
frequency timing characteristics. 

T (time period) =Tl +T2 = N ((Rl X Cl)= (R2 X C2)) [11] 
where N = approximately 0.35 for TTL threshold 

=approximately 0.75 for CMOS threshold 

c2~ ASSUMPTIONS: 
, , • , , .. 1) Each capacitor is discharged during the opposite timing phase. 

.. v .. 2) 
Capacitors begin charging from GROUND. 

CI 3) Effect of three-state routing delay is assumed minimal. 
I 

Low-Frequency Resistor-Capacitor Oscillator Timing Diagram 

June 1988 

You can use any number of these low-frequency 
oscillators in a design. Most designs, however, require 
only one or two. 

Note: If the oscillator output is used throughout the 
design to clock the registers in the CLBs, then you 
should place the oscillator near one of the clock buffers 
and use the clock buffer to route the sjg_nal. 

The sample array element in the low-frequency 
oscillator figure above shows the oscillator built near the 
main clock buffer in the upper-left corner of the die. A 
similar low-frequency oscillator could drive the auxiliary 
clock buffer located in the lower-right corner of the die. 

You should be aware that the low-frequency oscillator 
circuit causes an error when you use the timing 
calculator to examine the oscillator. The timing 
calculator in the LCA development system detects 
combinational loop conditions and flags them as errors. 
Because the oscillator circuit depends on a 
combinational loop for operation, it causes an error 
message. You can safely ignore such error messages if 
you detect them only in the oscillator circuit. 
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4.2.5 ON·CHIP 
CRYSTAL 
OSCILLATOR 
STRUCTURES 

4-28 
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You can configure two special 1/0 Blocks to interface to 
the oscillator on-chip, located in the lower-right corner 
of the die. This oscillator is associated with the auxiliary 
clock buffer located near it. When you select the 
interconnection to drive the auxiliary clock buffer, two 
special pins interface to the internal high-speed 
inverting amplifier to form the oscillator. Externally, you 
should attach these pins to the crystal oscillator 
components, as shown below. The best way to 
configure the crystal oscillator is by using the GXTL 
macro in the LCA library. 

Even before you finish configuring the LCA device, the 
on-chip oscillator begins operation so that its circuitry 
can stabilize. However, the actual internal connection 
of the oscillator to other circuitry on the chip is delayed 
until the device configuration completes. 
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1/0 TYPE: On-Chip Crystal Oscillator Circuit 
MACRO NAME: GXIL 

....._ 
lNIERNAL TO LCA 

__.. 
EXTERNAL TO LCA 

SCHEMATIC: 

ALTERNATE 
CLOCK BUFFER 

XTAL2 
(IN) 

D 

JC! Yl 

D 
D 

RI 

R2 

JC2 

SUGGESTED COMPONENT VALUES: 

RI: 1-4 Mn 
R2: 0-1 Kn 

(may be required for low frequency, phase 
shift and/or compensation level for crystal Q) 

Cl, C2: 5-20 pF 
YI: 1-10 MHz AT cut 

XTALl XTAL2 
48-PINDIP 33 30 
68-PINPLCC 46 43 
68-PINPGA JlO LIO 
84-PINPLCC 56 53 
84-PINPGA Kl! Lll 

On-Chip Oscillator Circuit 

June 1988 

The feedback resistor R1, from output to input, biases 
the amplifier at threshold and should be as large a value 
as practical, up to 4 Mn. The inversion and delay of the 
amplifier, together with the R-C networks and crystal, 
produce a 360-degree phase shift, forming a Pierce 
oscillator. 
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4.2.6 REGISTERS 
AND COUNTERS 

4.2.6.1 IOB·Based 
Register Delays 

4-30 
-2-

Note: You can include the series resistor R2 to add to 
the amplifier output impedance, when needed. This 
may be needed for phase-shift control, crystal­
resistance matching, or for limiting the amplifier input 
swin to control cli in at lar e am litudes. 

The ratio of capacitor C2 to C1 adjusts the excess 
feedback voltage. The amplifier operates in the range 
of 1 MHz, up to one-half the specified CLB toggle 
frequency. Using the oscillator at frequencies below 
1 MHz requires individual characterization with respect 
to a series resistance. Operating at frequencies above 
20 MHz is also more complex because it generally 
requires that the crystal operates in a third overtone 
mode in which the R-C networks must suppress the 
fundamental. frequency. 

The previous examples in this chapter describe how to 
use IOBs in conventional 1/0 applications, using the IOB 
for input, output, or both. For any IOB that is not 
required for input or output, you can use the storage 
element within the IOB to create registers and various 
types of counters. The following designs use the 
output buffer (BUF:ON) fed back into the input register 
(l:Q). This configuration is shown below. These IOB's 
pads usually are not connected to anything externally, 
although you may do this if necessary. 

If you want to construct registers using IOBs, you must 
understand the delays in 10-based registers. The 
delays incurred through an IOB-based register depend 
on the sum of two parameters: the delay through the 
output buffer, and the delay back through the input 
buffer to the register. While these values are defined in 
the data sheet for an output load of 50 pF, they change 
only slightly for no output capacitance. The delay into 
an IOB-based register is shown below. 
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4.2.6.2 Wide 
Storage Registers 
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T(IOB-reg) 

Where: 

Top 
Tpl 

Top Tpl 

Output to Pad output 
Pad input set up to 1/0 
clockjminimuml 

The first type of 108-based registers is a wide storage 
register. The basic 1/0 structure illustrated below 
creates a wide storage register. 

1/0 TYPE: Pad With Input Storage (JOB-based) 
MACRO NAME: PREG 
SCHEMATIC: 

1-------.---OUTPUT 

CONFIGURATION: 
I:Q 
BUF:ON 

D Q INPUT 

...._ ____ !!-- I/O CLOCK 

Pad with Input Storage (108-Based Register) 
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The following figure shows the construction of an n-bit­
wide storage register built from these IOBs. Wide 
storage registers are ideal for IOBs because the 1/0 
clock feeding an 108 is common to all IOBs along each 
edge of the die. 

1/0 TYPE: N-bit Storage Register (IOB-based register) 
MACRO NAME: None 
SCHEMATIC: 

i--------- BIT 0 IN 

>---t D Q l---ll--11• REG 0 OUT 

,__------•CLOCK 
EXPANDABLE TON BITS 

CONFIGURATION: 
All IOBs 

I:Q 
BUF:ON 

COMMENTS: 
The 1/0 clock into each IOB is common to all IOBs along 
each edge of the die. For best resource utilization, group 
the storage elements along one edge of the die. 

N-Bit Storage Register (108-Based Register) 
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4.2.6.3 Read/Write 
Registers 

June 1988 

Another variation of the basic IOB-based register is a 
simple read/write register. This structure allows external 
devices to write data into registers within the LCA 
device, and also to read the data back. 

The following figure shows the structure of a read/write 
register. In this example, each IOB's input and output is 
connected. The three-state control line (T) controls the 
direction of data flow, where T = LOW for a read 
operation by the external device, and T = HIGH for a 
write operation to the LCA device. Typically, the 
read/write control line (three-state control) originates 
outside the LCA device and comes in through an 
additional 1/0 block. 

The input register data from the read/write register can ..im 
be read from within the LCA device but the data cannot ~ 
be written to the LCA device. Writing the register from 
inside the LCA device would require that two network 
sources be active, which is not allowed. 
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1/0 TYPE: N-bit Read/Write Storage register 
MACRO NAME: None 
SCHEMATIC: 

T 
--~~~~~~~--~--DIRECTION 

CONTROL 

CONFIGURATION: 
AlllOBs 

I:Q 
BUF:TRI 

COMMENTS: 

Q 1--1>-+--+-1• REG 0 OUT 

Q 1--1--• REG 1 OUT 

EXPANDABLE TON BITS 

The 1/0 clock into each IOB is common to all IOBs along each 
edge of the die. For best resource use, group the storage 
elements along one edge of the die. Also, the three-state control 
line controls the direction of data flow (T = LOW for read, 
T =HIGH for write). This control line typically originates 
off-chip and comes in through an additional IOB. 

N-Bit Read/Write Storage Register 
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4.2.6.4 Shift 
Registers 

June 1988 

You can easily construct shift registers with IOBs by 
feeding the output of one 108 to the input of the next. 
The figures below describe two shift registers: one 
shifts to the left, the other shifts to the right. The shift 
direction depends on the connections of each IOB's 
inputs and outputs. 

1/0 TYPE: Shift Left Register (!OB-based register) 
MACRO NAME: None 
SCHEMATIC: 

---------- SHIFI'IN 

>---t D Q i-++-t• SHIFI'OUT 

CONFIGURATION: 
All IOBs 

I:Q 
BUF:ON 

COMMENTS: 

'------+--·CLOCK 

Notice that the routing of the output of a given JOB goes to the 
intput of the IOB on the left (shift left). 

Shift-Left Register (108-Based Register) 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4 

4-35 
-2-



4-36 
2 

The following figure shows a shift-right iOB-based 
register. 

1/0 TYPE: Shift Right Register (IOB-based register) 
MACRO NAME: None 
SCHEMATIC: 

!a 
~ 
~ 
Cl'.l 

CONFIGURATION: 
All IOBs 

I:Q 
BUF:ON 

COMMENTS: 

D Q 

D Q 

SHIFI'OUT 

- SHIFTIN 

Notice that the routing of the output of a given IOB goes to 
the input of the IOB on the right (shift right). 

Shift-Right Register (108-Based Register) 
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4.2.6.5 Johnson 
Counters 
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An n-bit Johnson counter counts to 2n states as 
opposed to standard binary counters that count to 2n 
possible states. Johnson counters have a variety of 
uses in digital design, including low-modulo counters 
and glitch-free decoders. 

In an 108-based design you can think of a Johnson 
counter as special shift register. Only one bit changes 
during a state transition, as shown in the following table 
for a three-bit Johnson counter. 

Transitions of a Three-Bit 
Johnson Counter 

000 
100 
110 
111 
011 
001 

You can build a Johnson counter of unused IOBs, as 
shown below; however, it requires at least one CLB to 
perform an inversion. The Johnson counter is 
automatically reset to an all-zeroes state upon config­
uration or on a ~RESET pulse. 

Refer to the application note on counters for more 
information on creating Johnson counters in LCA 
devices. 
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1/0 TYPE: N-bit Johnson Counter 
MACRO NAME: None 
SCHEMATIC: 

Q 

>----1 D Q 1-"'1-+----' 

CLB 

.__ ____ .....,..,__~ CLOCK 

EXPANDABLE TON BITS 

CONFIGURATION: 
All IOBs 

I:Q 
BUF:ON 

N-Bit Johnson Counter (108-Based} 
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4.2.6.6 Glitchless 
Johnson Decoder 

June 1988 

You can build a glitch-free decoder using IOBs and 
CLBs. The decoder is glitch-free because only one bit 
changes during a state transition. An n-bit Johnson 
counter/decoder can decode any one of the 2n 
possible states, or any number of contiguous states, by 
decoding (ANDing) together just two of the appropriate 
counter bits. You can also create counters of various 
modulo and duty-cycle by using different Johnson 
decoders. For example, the next figure shows the 
schematic implementation of a Johnson counter/ 
decoder with various two-input decode states. 
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EXPANDABLE TON BITS 

Johnson Counter/Decoder 

4-40 
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000 DECODEO 
100 DECODE! 
1 1 0 DECODE2 
1 1 1 DECODE3 
0 1 1 DECODE4 
001 DECODES 

DECODEO 

DECODE! 

DECODE2 DECODER CLB OUIPUTS 
DECODE3 

DECODE4 

DECODES 

CLOCK 

As the above figure illustrates, you can decode any 
state of a Johnson counter, glitch-free, using only a 
two-input logic function. 
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4.2.6. 7 Linear 
Feedback Shift 
Registers 

June 1988 

Linear Feedback Shift Registers (LFSRs) are yet 
another modification of a simple shift register. An LFSR 
consists of a shift register that feeds back the 
appropriate bits to the first bit position. An LFSR 
requires some logic function in the feedback path, 
usually an exclusive-OR (XOR) function. 

LFSRs have numerous applications, such as imple­
menting the encryption and decryption functions in a 
UART. 

The next figure shows the schematic for a three-bit 
LFSR that implements a modulo 5 (divide-by-five) 
counter. An n-bit LFSR counter can produce a pseudo­
random sequence of up to 2n-1 unique states. By 
adding logic to the feedback path, you can force the 
LFSR counter to skip any number of states, from one m 
to 2n-1. By forcing the counter to skip some number of 
states, m, an LFSR counter can implement any modulo 
as described in the following equation. 

MODULO = (2n-1) - m 

n = number of shift-register bits 

m =number of skipped states 
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Schematic for Modulo 5 LFSR Counter 

The figure below shows the counting sequence for a 
three-bit LFSR counter with an exclusive-NOR (XNOR) 
in the feedback path. This figure also shows all possible 
skip paths and the stuck state. 
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'STUCK' STATE 

100 

/ 

Three-Bit LFSR Counting Sequence Skip Path and Stuck State 

In the counting sequence there are two counter states 
where only the first bits differ. For example, refer to the 
states 101 and 001. By forcing the feedback logic to 
invert the sense of the feedback into the first bit, the 
counter can be forced to skip all of the states between 
the two indicated values. You can accomplish this skip 
by decoding (ANDing) the state just previous to the 
state to be skipped. 

Using the modulo 5 counter as an example, locate the 
initial value that allows the counter to skip two states, 
101 for example. By decoding the state 011, which is 
the state just prior to the initial skip state of 101, you can 
invert the sense-of the feedback into the first bit. The 
counter then skips from state 101 to state 010, 
implementing a modulo 5 counter. Using this method 
and the proper feedback into the register, you can build 
a counter of any modulo from 1 to 2°-1 . 
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Either device configuration, or an externally driven 
active-LOW RESET signal, resets all storage elements 
used in the LFSR counter to zero. 

Be careful to avoid the stuck state in your designs. 
This is the missing state in the 2"-1 counting sequence. 
If the stuck state is included, the LFSR counter has 2n 
possible states. The stuck state occurs when the 
feedback path forces the counter into an ever­
repeating single state. 

As a simple example, assume that you build an LFSR 
counter with a two-input XOR feedback path, as shown 
next. Upon configuration or an external active-LOW 
RESET signal, the counter begins operation in the all­
zeroes state (000) and becomes stuck in that state due 
to the type of feedback used. 
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Simple LFSR with a STUCK State 
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An interesting situation occurs when all bits except the 
last bit of the stuck state are decoded (ANDed together) 
and included in the feedback path. Instead of counting 
over a possible range of 2n-1 states, the extra decoding 
causes the LFSR counter to count to all 2n states, as 
shown in the following figure. 

D Qt-----. CLB 

Q ---+-'!-------

Qi--_______ _. 

.__ _________ CLOCK 

An LFSR Forced to Count to 2n Possible States 
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4.2. 7 INCREASED 
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STRUCTURES 
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31 

2,5 
3,5 

You can build longer LFSR counters with higher 
possible modules and more complex feedback 
mechanisms, but their discussion is well beyond the 
scope of this chapter. However, the following table 
presents some of the possible feedback combinations 
for LFSR counters of three to ten bits. 

63 127 255 511 1023 

1,6 1,7 1,2,7,8 4,9 3, 10 
5,6 3,7 5,9 7,10 

4,7 
67 

LCA devices are specified to have 4 mA worst-case 
source and sink capabilities at VoL = 0.32 V and VoH = IP.!W 
3.68 V. However, you obtain increased drive current at ~ 
the cost of decreased voltage margins. For example, 
the following table illustrates the effect on VoL and VoH 

of increasing the drive current through a single 108. 

Output Current and Output Voltage Levels 
for an 108 

4mA 6mA 8mA 
VoH 3.86 v 3.54 v 3.22 v 
VOL 0.32 v 0.48 v 0.64 v 
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An alternate method of increasing the drive current is to 
parallel the output drivers of two IOBs. Paralleling two 
outputs enables the IOBs to source-and-sink double 
the worst-case current, with no reduction in voltage 
margins. This method is diagrammed below. 

.. . 
EXTERNAL TO LCA IN1ERNAL TO LCA 

PAD 

OUIPUT 

PAD 

Parallel Outputs Have Increased Drive Capability 

Caution: You should minimize the difference in 
routing delay between the two IOBs connected in 
parallel. Excessive delays can cause output 
contentions. 

Chapter 5 discusses placement and routing. 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 4 

June 1988 



CHAPTER 5 

PLACEMENT AND ROUTING 

PLACEMENT AND ROUTING ................................................................. 1 
5.1 OVERVIEW ................................................................................................................ 2 
5.2 INTERCONNECTION RESOURCES ............................................................................ 3 

5.2.1 GENERAL-PURPOSE INTERCONNECTION .................................................... 3 
5.2.2 DIRECT CONNECTIONS ................................................................................. 6 
5.2.3 LONG LINES ................................................................................................ 10 
5.2.4 CLOCK BUFFERS ........................................................................................ 16 

5.3 PLACEMENT ........................................................................................................... 19 B 
5.3.1 PARTITION THE SYSTEM DESIGN ................................................................ 19 
5.3.2 ANALYZE THE DATA FLOW ......................................................................... 20 
5.3.3 LOGIC BLOCK PLACEMENT ........................................................................ 23 

5.3.3.1 Placement Guidelines .................................................................... 24 
5.3.3.2 Optimization Guidelines ................................................................. 26 

5.3.4 110 BLOCK PLACEMENT .............................................................................. 27 
5.3.5 EXAMPLES ............................................................................................... -.. 29 

5.3.5.1 Using Macros, Example 1 ............................................................... 31 
5.3.5.2 The Long and Thin Approach, Example 2 ........................................ 33 
5.3.5.3 Trade Off Resources for Performance, Example 3 ............................ 33 

5.3.6 MODIFICATION GUIDELINES ........................................................................ 34 
5.4 ROUTING ................................................................................................................. 37 

5.4.1 MANUAL EDITING ........................................................................................ 37 
5.4.2 MANUAL PRE-ROUTING .............................................................................. 43 
5.4.3 ROUTING GUIDELINES AND FUNCTIONS ..................................................... 49 

June 1988 

5.4.3.1 Inputs and Outputs ........................................................................ 49 
5.4.3.2 High Fanout Nets ........................................................................... 51 
5.4.3.3 Useful Routing Functions ............................................................... 52 

SWAPSIG .................................................................................. 52 
CLEAR PIN ................................................................................. 54 
ROUTEPIN and ROUTE .............................................................. 55 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5 

5-i 
2 



5.5 TIMING ANALYSIS, DELAYCALCULATOR ................................................................ 56 
5.5.1 CLB AND 108 DELAYS ................................................................................. 56 
5.5.2 INTERCONNECTION DELAYS ...................................................................... 56 
5.5.3 CLOCKED SYSTEM DELAYS ....................................................................... 60 
5.5.4 SPEED GRADE DELAYS .............................................................................. 61 
5.5.5 SIGNAL DEGRADATION ............................................................................... 62 

5.5.5.1 Analysis of Intermediate Timing ....................................................... 64 
5.5.5.2 Examples ...................................................................................... 65 

5.6 SUMMARY ............................................................................................................... 68 

S·ii 
-2-

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5 

June 1988 



5 

June 1988 

PLACEMENT AND ROUTING 

This chapter discusses placement and routing of LCA 
designs. Placement and routing play an important part 
in determining both the performance of your design 
and how efficiently it uses the available LCA resources. 

The overview, 5.1, introduces LCA placement and 
routing. 

The discussion on interconnection resources, 5.2, 
describes different options for interconnecting the 
CLBs and IOBs in an LCA design. 

The discussion on placement, 5.3, explains how to 
optimize placement of CLBs and IOBs in a design. 

The discussion on routing, 5.4, explains how to 
route, and how to edit the routing of, an LCA 
design. 

The discussion on timing analysis, 5.5, describes 
how to use the delay calculator to analyze an LCA 
design's timing. 

The summary, 5.6, presents conclusions and 
recommendations for placing and routing LCA 
designs. 
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As with other high density ASIC devices, the LCA 
device offers placement and routing alternatives that 
can affect the use and the performance of your final 
design. In gate arrays and other factory-programmed 
solutions, you can explore these layout alternatives 
only through simulation. With the LCA device, 
however, you can see and modify the placement and 
routing at design time using the LCA development 
system. 

The LCA development system includes several 
powerful capabilities that let you optimize your design 
for performance and use of resources. This chapter 
investigates these capabilities and the operations that 
you can employ to optimize your design. 

If you are not familiar with LCA placement and routing, 
you should read this entire chapter. If you have some 
level of knowledge about the LCA device and have 
completed some design work, you may want to study 
only those discussions that interest you. 

Note: If you intend to use the Automatic Placement 
and Routing software, APR, you should still read this 
ch~er. 

APR helps you plan your design so that the LCA 
resources are used as efficiently as possible. After 
using APR to place and route your design, you may 
need to optimize or complete the routing with XACT. All 
of the following guidelines can help. 
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Placement and routing are closely interrelated. You 
make placement decisions based on efficient use of 
interconnection resources. Any changes in placement 
can change the routing and routability of a design and 
consequently, impact the design's performance. To 
make the best possible placement and routing 
decisions, you must understand the capabilities and 
trade-offs of the various types of routing available in an 
LCA device. 

This discussion explains the following available 
interconnections. 

5.2.1, General-Purpose Interconnection 

5.2.2, Direct Connections 
5.2.3, Long Lines 
5.2.4, Clock Buffers 

General-purpose interconnection provides routing for 
most signals on the LCA device. As shown below, it 
consists of four horizontal metal segments between 
adjacent rows and five vertical metal segments between 
adjacent columns of the CLBs and IOBs. The vertical 
segments are the same height as a CLB; the horizontal 
segments are the same width. A switch matrix at each 
row and column intersection controls how the 
segments are interconnected. 
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B 

c 
K 

SWITCH -----t 
MATRIX 

General-Purpose Interconnection 

A switch on each CLB or 108 output can connect the 
output to the adjacent interconnection segments. 
Configuration bits in the LCA configuration file set up 
the switch connections in each matrix and on the block 
outputs. Configuration bits also program the 
multiplexers at the inputs of the CLBs and IOBs to 
select the appropriate input connections from the 
adjacent interconnection. 
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Interconnection Switching Matrix 
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_,..._ 

2 

5 

~ 

3 3 

4-HORIZONTAL 
GENERAL 

3 4 4 
INTERCONNECT 

4 2 

1 = VALID CONNECTION 
0 =INVALID CONNECTION 

Special repowering buffers in the general-purpose 
interconnection provide periodic signal isolation and 
restoration for higher fanout and improved perfor­
mance. Each LCA device is divided into nine sections, 
with buffers provided at the section boundaries. These 
buffers are bidirectional because signals on a general 
interconnection segment must be able to propagate in 
both directions. 
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5.2.2 DIRECT 
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Direct Connection Resources 
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Note: Repowering buffers are provided only for the 
general-purpose interconnection; direct connections 
and lol!Q_ line interconnections do not re_g_uire them. 

Each CLB and IOB can connect directly to adjacent 
blocks, as shown below. A direct connection is a 
signal path with virtually zero delay, which does not 
use any of the general interconnection or long line 
resources. 
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For maximum device performance and minimum routing 
resource impact, use direct connections as much as 
possible. Direct connections exist primarily in the 
vertical and left-to-right directions: therefore, you 
should arrange blocks that represent stages in a 
process sequentially: either vertically or from left to 
right. Left-edge 1/0 blocks naturally become data 
inputs, while right-edge 1/0 blocks become data 
outputs. Top- or bottom-edge 110 blocks can be either 
direct inputs or outputs, with alternate blocks having 
direct-out or direct-in paths. As an example, consider 
the following circuit. 

An 8-bit parallel-load shift register loads the data byte 
into the shift register in parallel, then shifts it out one bit 
per clock cycle. The following figure shows two 
alternate implementations of this circuit. 
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A Routing congestion 

Data 
Inputs 

B A// direct connection used. 
caused by placement choice. 

8-Bit Parallel Load Shift Register 

A. The eight CLBs used for the stages of the shift 
register are arranged in a rectangular area in the 
upper-left corner of the device, with general 
interconnection providing many of the signal 
paths. 

8. The design uses direct connections exclusively, 
which provides zero-delay paths from block to 
block and allows higher performance. 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5 

June 1988 



From: 
Thru: 
To: 

From: 
Thru: 
To: 

The general interconnection used in design A is 
still available for other uses. Also, the LOAD signal 
has been routed on a long line driven from a 
directly-connected 1/0 block. Long lines are 
discussed next. 

For the design shown in B, the following table of 
worst-case delays shows that the maximum load 
and shift clock rate for the 33 MHz device is 31.3 
MHz, and 43.5 MHz for the 50 MHz device. 

Partial Delay Report for Direct Connection Placement of an 
8-Bit Shift Register with Parallel Load 

For -30 (33 MHz) speed device 

BLKGA 
NETS6 
BLKHA 

(CLOCK to GA.X) 
(GA.X to HA.A) : 
(HA.A to SETUP) 

For -50 (50 MHz) speed device 

BLKGA 
NETS6 
BLKHA 

(CLOCK to GA.X) 
(GA.X to HA.A) : 
(HA.A to SETUP) 

20 ns ( 20 ns) 
0 ns ( 20 ns) 

12 ns ( 32 ns)* 

15 ns ( 15 ns) 
O ns ( 15 ns) 
8 ns ( 23 ns)* 

* Total Clock-to-Clock Worst-Case Del~ 
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In designs that are not highly synchronous, such as 
those in glue logic replacement, you usually cannot 
exploit direct connections to the degree shown in the 
example. However, if possible, use a direct connection 
to route a signal from one block to another. Direct 
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connection considerations should be a primary factor in 
block placement. For each direct connection, you 
release a general interconnection resource that can 
then be used in some other function. Extensive use of 
direct connections can boost the logic use of the LCA 
device by up to 30%. 

Long lines are continuous metal segments that span 
the width or length of the LCA device, providing 
minimum-delay and skew for long distance 
signal paths. Although the automatic router uses 
long lines for general signal routing when other types of 
connections are not available, you should direct the use 
of long lines for specific signals. Ensure that long lines 
are efficiently used by considering their capabilities and 
interconnection potential. The following figure 
illustrates the locations of the long lines and shows the 
clock buffers that work with them. Clock buffers are 
described under 5.2.4. 
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2064 Long Lines and Clock Buffers 
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Signals that can most effectively use long lines are 
generally classified as data distribution, or low-skew, 
control signals. Whether originating at an 1/0 block or a 
CLB, data signals typically have several destinations 
each of which uses the data differently. To follow the 
natural data flow of the device, you should route these 
signals on long lines with one bit per row or column. 

An important consideration in data routing is the 
direction of the data flow. In the 2064/2018 series of 
LCA devices, internal signals must be unidirectional. 
For systems that require bidirectional data paths, you 
can use a pair of long lines in each column to carry input 
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-GI: 
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ra 
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-01: 
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£}: 
-rn: 
£!: 
rn 
I!!] 

Data BitO D1 

0 n 
0 0 
0 0 
0 0 
0 0 
0 0 

data and output data, respectively. This bidirectional 
signal routing requires that the data input/output pins 
be located at the top or bottom of the device. The 
following figure shows an 8-bit bidirectional data bus 
with vertical routing on pairs of long lines. 

D2 D3 D4 D5 D6 Dl 

0 0 0 0 0 0 =ID-
=Cl-

a 0 0 {] 0 fj :I} 
=CJ-

0 0 0 fl n ii 
:fl}-
:CJ-
:BJ-

0 0 0 0 0 !j ra 
:{Il-

5 0 d n 0 n :ID-
~ 

0 0 0 0 a n :ill-
:ID-
~ 

m 
oi:i ~o o~ 00~00 CIC! ~~ ~d' a rn 

Bidirectional Data Bus Using Long Lines 

Control signals, such as clocks, reset/set controls, and 
count or shift direction controls may have critical timing 
requirements between their source and their multiple 
destinations. For these signals, you must control skew 
to ensure that all of the destination blocks perform the 
desired function at the same time or on the same clock 
edge. If possible, you should arrange destination 
blocks in a single column or row and you should route 
the control function onto the appropriate long line. The 
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figures below show two different implementations of a 
reset function generated in a logic block and routed to 
four destination blocks. You can see the skew 
reduction associated with the use of the long line from 
their accompanying tables. 
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2 

Delay: bidibus8.lca, XACT 1.3 

From: BLKBC (BC.X) Ons Ons) 
Thru: NET RESET (BC.X to HD.B ) 24ns 24ns) 

To: BLKHD (HD.B) Ons 24ns) 
From: BLKBC (BC.X) Ons Ons) 
Thru: NET RESET (BC.X to ED.C ) 14ns 14ns) 

To: BLKED (ED.C) Ons 14ns) 
From: BLKBC (BC.X) Ons Ons) 21nsSKEW 
Thru: NET RESET (BC.X to DD.C ) 12ns 12ns) 

To: BLKDD (DD.C) Ons 12ns) 
From: BLKBC (BC.X) Ons Ons) 
Thru: NET RESET (BC.X to AD.C ) 3ns 3ns) 

To: BLKAD (AD.C) Ons 3ns) 

DELAYS FOR GENERAL INTERCONNECT 

00 00 0000 0000 
Do 0 0 0 

-ill: 0 0 0 0 -ID= 
-ill: 0 0 0 0 0 -!Th 
-ID: 
-ID: 0 0 0 0 -ill: 
ra 0 0 0 Ll -ID= 
ii 0 0 0 0 fj -ill= 
-ID= 0 0 0 0 0 -!Th 
-ID= 0 0 0 0 ~ 
~ 00 00 ~L:i 0~00 

Signal Routed Via General Interconnection 
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Delay: bidibus8.lca, XACT 1.3 

From: BLKBC (BC.X) Ons ( Ons) 
Thru: NET RESET (BC.X to HD.B ) 5ns ( 5ns) 

To: BLKHD (HD.) Ons ( 5ns) 

From: BLKBC (BC.X) Ons ( Ons) 
Thru: NET RESET (BC.X to ED.C ) 5ns ( 5ns) 

To: BLKED (ED.C) Ons ( 5ns) 

From: BLKBC (BC.X) Ons ( Ons) 
Thru: NET RESET (BC.X to DD.C ) 5ns ( 5ns) 

To: BLKDD (DD.C) Ons ( 5ns) 

From: BLKBC (BC.X) Ons ( Ons) 
Thru: NET RESET (BC.X to AD.C ) 5ns ( 5ns) 

To: BLKAD (AD.C) Ons ( 5ns) 

DELAYS FOR ROUTING VIA LONG LINE 

Signal Routing Via Long Line 
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The LCA device has special-purpose on-chip buffers to 
provide high-fanout, low-skew signal distribution. You 
normally use these buffers for clock signals; however, 
you can also use them tor any general-purpose signal 
that requires high-fanout or low-skew routing to 
multiple blocks. Clock buffers work with specific 
long lines for routing on a column basis. The global 
clock buffer, located in the upper-left corner of the LCA 
device, directly drives a long line in each column. The 
alternate clock buffer, located in the lower-right corner, 
drives a horizontal line that can be selectively 
connected to a long line in each column. The following 
figure shows the butter locations. 
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l!OClock 
(1 per Edge) 

Horizontal 
Long line 

Direct 
Connect 
(CLB to 110) 

Alternate 
Clock Buffer 

Clock 
Oscillator 

In systems with a single common clock for all state 
elements, you can best distribute that clock using the 
global buffer. More difficult cases involve systems with 
multiple clocks and other critical control signals. If a 
system has two separate clocks, one clock can use the 
global buffer and the other can use the alternate buffer. 
This is particularly true when one clock is derived from 
the other. 

Note: When you use the crystal oscillator, its output 
drives the alternate buffer directly; therefore, it can be 
the Qrimary_ clock for the ~stem. 
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In any case, you should drive the predominantly used 
clock with the global buffer. 

For systems requiring more than two clocks, you should 
still drive the primary clock with the global buffer. Route 
other clocks onto vertical long lines and arrange their 
respective CLBs in columns adjacent to the long line 
that carries the appropriate clock signal. You can use 
direct connections to drive these column-oriented 
clocks either from an adjacent (to the left) CLB, or from 
an 1/0 block on the edge at either end of the column. 
When selecting the long line to be used, note that one 
of the nondedicated vertical long lines can be 
connected to the CLB K inputs, while the other cannot. 
Since most clock signals are best routed into the K 
input, you should choose the former long line. 

You can also use one of the clock buffers to route a 
control signal to many CLBs or IOBs. By placing the 
source of the signal near the alternate buffer, you 
provide a low-delay path from the source to the buffer, 
and then to all the destination CLBs or IOBs. The 
following figure shows a shift register that has been 
placed and routed using both buffers: the global buffer 
for the overall shift register clock and the alternate 
buffer for a low-skew shift/hold control signal. If the 
shift/hold control logic timing is not well controlled, 
skews in the control signal, as seen by the blocks, could 
cause a partial shift. In a partial shift, some blocks could 
get the signal while others may not get it in time to hold 
relative to the next clock edge. 

Note: This timing skew becomes less of a factor in 
choosing routing for control signals as you relax your 
timiQg_ constraints. 
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5.3.1 PARTITION 
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Placement and routing determine how efficiently you 
can use an LCA device for a particular design. 
Placement of logic in an LCA design primarily 
involves determining the relative locations of 
the functions that most effectively use CLB, 
IOB, and routing resources. Efficient use greatly 
simplifies signal routing within functions and between 
groups of functions. 

The following discussion explains how to accomplish 
efficient logic placement in your LCA designs. First, it 
provides some guidelines for system-level design 
partitioning to help you determine what parts of your 
system to implement in an LCA design. Then, it 
explains how to analyze the data flow for your LCA 
design. Finally, it describes CLB and 108 placement, 
and gives some examples. 

This discussion has the following organization. 

5.3.1, Partition the System Design 
5.3.2, Analyze the Data Flow 
5.3.3, Place the Logic Blocks 
5.3.4, Place the 1/0 Blocks 
5.3.5, Examples 
5.3.6, Modification Guidelines 

You must partition your system-level design before you 
can implement an LCA design. Partitioning is a two-part 
process. First, you separate your design into external 
and internal LCA functions; then you group the internal 
LCA functions into related clusters. 

The following are useful guidelines for determining 
what part of your design to implement in an LCA device. 

Implement standard LSI or VLSI functions with 
appropriate components. 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5 

5·19 
2 



5.3.2 ANALYZE 
THE DATA FLOW 

S-20 
-2-. 

• Use an LCA device to implement non-standard 
VLSI functions if a large portion or all of the LCA 
device is available for that function. 

Place required portions of standard VLSI 
functions inside an LCA device. 

Place random SSI and MSI functions inside an 
LCA device. You can implement functions or sub­
functions that require four or fewer inputs, two or 
fewer outputs, and a single storage element using 
a single CLB. 

Group all parts of a complex function inside one 
LCA device, instead of placing them at remote 
locations in the circuit; this simplifies 
implementation and debugging. 

As a rule, use MSI components to implement a 
function with a large fan-out or fan-in and with few 
logic levels. Decoders and multiplexers fall into 
this category. 

After determining which part of your system design to 
place in an LCA design, you must analyze that part of 
the design to determine optimal data flow. You analyze 
the data flow of your design as follows. 

To make placement and routing decisions, you 
evaluate the sequential nature of the logic to be created 
in the LCA device. Examine the data flow to determine 
the best placement of required logic blocks, and to 
determine the most effective signal routes. 

In general, data processing in the LCA device flows 
most naturally either from left to right or vertically; flow 
up and flow down are virtually identical. To minimize 
interconnection, arrange structures such as 
counters in nearly square rectangles. Implement 
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registers in columns of CLBs to take advantage of the 
direct interconnection between adjacent CLBs and the 
common clocking in columns of CLBs. 

If you must implement several independent 
functions, you should position the function that 
requires the most CLBs so that the data flows through it 
from left to right. The exceptions are counters and shift 
registers, which should be arranged in columns to share 
common clocking. 

To illustrate data flow analysis, consider the block 
diagram below. 

8-BIT DATA BUS 
TO RAM 

PROCESSOR DATA 
BUS IN1ERFACE 

ENCODE ..._ __ D!~~tr 

ADDRESS/DATA 
CONJ'ROL ARBITER AND 

4---"----1.i DECODE 1------.. CONTROL LOGIC ----

12-BIT ADDRESS 
LATCH 

12-BIT ADDRESS BUS 
TO RAM 

Serializer Block Diagram 

June 1988 

This diagram shows a dual-ported memory interface 
used as a high-speed serializer, which is a typical 
application in video pixel processing or serial 
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communications systems. In the serializer, both the 
serial-data output device and the microprocessor must 
have access to the memory. In analyzing the data flow, 
you can see a need for an 8-bit bidirectional path 
between the memory and the microprocessor, as well 
as an 8-bit path from the memory to the serializer. The 
serializer requires an 8-bit parallel-to-serial data flow. 
The interface generates the memory addresses 
internally for the serialization process; external memory 
addresses are supplied by the microprocessor. The 
memory addresses are always outputs to the external 
memory. 

The data flow paths are summarized below. 

8 bits of data from microprocessor to memory 

8 bits of data from memory to microprocessor 

8 bits of data from memory to serializer 

• 12 bits of address from address generator to 
memory 

12 bits of address from microprocessor to memory 

Clearly, the design requires a bidirectional data path 
between the memory and the microprocessor. This 
same path must supply data to the serializer. You can 
view the serializer as a process perpendicular to the 
data flow because it serializes parallel data. The memory 
address path is wider than the data paths but it is 
unidirectional and has a common connection only at the 
output point. The following diagram shows a flow 
analysis of this design example. 
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5.3.3 LOGIC 
BLOCK 
PLACEMENT 

June 1988 

PROCESSOR DATA 
DATAIN TO RAM 

PROCESSOR DATA 
DATA OUT FROM RAM 

SERIAL 
DATA OUT 

CON'IROL FROM 
PROCESSOR 

ADDRESS FROM 
PROCESSOR 

ADDRESS ADDRESS 
GENERATOR TO RAM 

Data Flow Analysis of Serializer 

Based on this flow analysis, place the 8-bit data path 
vertically to take advantage of direct connection in the 
up and down directions. Then place the serializer, 
which could be connected in a left-to-right or vertical 
orientation, perpendicular to the vertical data path and 
use the direct connection left-to-right capabilities. 
Route the address path between CLBs, which are near 
the edge of the device, and the adjacent 1/0 blocks, 
that drive the address. This can be done because the 
path is unidirectional. Use direct connection as much as 
possible. 

You should follow the general guidelines below to 
determine the block placement and the routing 
alternatives within the LCA device. 

One of the most critical elements in achieving an 
efficient design with an LCA device is the proper 
placement of CLBs and IOBs. CLB placement is more 
critical than 108 placement for two reasons. 

it offers more degrees of freedom 
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5.3.3.1 Placement 
Guidelines 

.. ,. 

5.24 
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the final CLB placement can dictate most of the 
108 placement. 

You can improve both the performance and the routing 
of your design by proper placement. Good placement 
relieves routing problems and generally results in good 
initial performance, minimizing the placement and 
routing iterations. 

Note: Maximizing the use of the direct connections 
between blocks is an im ortant oal. 

The following guidelines should help you achieve 
optimum placement efficiently. 

1 . Consider the various functional elements in the 
design, the shapes that each can take, and their 
relative interconnection. 

Try the placement of these functional blocks on a 
printout of a blank LCA device to see how they 
might fit together. The layout in the following 
figure was obtained using this basic analysis 
technique. 

2. Examine the internal and external inputs and 
outputs for each block of logic. 

Place blocks with a high number of common 
interconnections near each other. 
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---------------------------. Interleaved Processor/ 
Memory Data Buses 

8-Bit Parallel Load 

Secondary 
i---rData Register 

t--.,...-1-Ram To Processor 
Data Hold Register 

Write 
Strobe 

Chip 
Select 2 

Processor Control 
Bus Interface Logic 

Chip 
Select 1 

Chip 
SelectO 

Manchester 
Encoder 

Interleaved Processor! 12-Bit Binary Address/Data Arbiter 12 x 2:1 
RAM Addresses Address Counter and Control Logic Address MUX 

Serializer Placement Plan 

June 1988 

When you consider the relative placements of individual 
CLBs and IOBs, remember the following. 

3. Use direct connections wherever possible. 

4. Arrange related groups of logic blocks in 
rectangular shapes, if possible. 

5. Place CLBs and IOBs with the greatest number of 
interconnections next to other blocks at the 
perimeter of any rectangular shapes. 
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5.3.3.2 Optimiza· 
tion Guidelines 

5·26 
2 

6. Arrange logic blocks in a long, thin shape only 
where data flow through them to some other logic 
that is perpendicular to the shape's long axis. 

7. Place blocks of control logic or miscellaneous 
functions that have minimal external 1/0 near the 
center of the device. 

8. Minimize the number of different clocks in the 
design where possible, particularly those clocks 
generated internally. A completely synchronous 
design with a single clock that uses the global 
clock buffer is ideal. 

Many of these recommendations are similar to those 
applied to the layout of printed circuit boards using 
SSl/MSI devices. The examples following the 
discussion of 110 Block placement, below, should help 
illustrate effective placement. 

The following guidelines will help you optimize the 
placement of CLB designs. 

1 . Use only necessary functions. Many designs use 
only a portion of a standard-logic part and disable 
the unused inputs. LCA-based designs 
should never include unused Inputs of 
standard-logic devices. 

2. Use the function, not the equivalent logic 
gates. Many standard-logic designs use multiple 
gate levels. LCA-based designs are not subject to 
the same logic-gate restrictions; you can create 
any function of three or four variables, regardless 
of complexity, with one CLB. 

3. Share CLBs wherever possible. Two 
independent functions can share one CLB. For 
example, a CLB configured as a data latch uses 
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5.3.4 1/0 BLOCK 
PLACEMENT 

June 1988 

one input and one output. The remaining three 
inputs, the remaining output, and the output of the 
latch can be used to perform another function. A 
data-latching function and a function that uses the 
latched data can both be incorporated in one CLB, 
which effectively expands the CLB's tour inputs to 
five. 

4. Group common intermediate outputs into 
one function. It the same sub-function is 
performed tor several inputs, CLBs are wasted. 
Perform the function to generate the intermediate 
output and use the single result in each place 
required. A common technique is to divide the 
design into functional pieces and look tor 
commonality. 

The placement of 1/0 blocks usually is dictated by the 
placement of the CLBs connected to them. However, 
you must consider 108 placement constraints because 
they can have a significant impact on overall placement 
and routing. General guidelines tor 1/0 block placement 
are listed below. 

1 . Locate IOBs adjacent to the CLBs that use the 
most associated signals. 

It 1/0 blocks are being used as buses, note the following 
considerations. 

2a. Locate data buses that are to be latched on a 
single device edge to allow use of the flip-flops in 
the 1/0 block, and to share the single 1/0 clock on 
the edge of the device. 

2b. Limit address buses to the top of the device it the 
pins are used during configuration as the external 
EPROM/ROM address lines. 
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3. Make unused IOBs data or shift registers. 

Note: The IOBs must have available the 1/0 clock on 
that ed e of the device. 

When specifying 108 usage, use the following 
guideline. 

4. Note which pins have special functions during 
configuration. In general, you should use pins that 
are inputs during configuration as user inputs 
during operation, while using pins that are outputs 
during configuration only as user outputs during 
operation. Careful specification generally 
eliminates any possible contention between 
configuration use and operation use. 
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5.3.5 EXAMPLES The following examples illustrate many of the placement 
and optimization guidelines discussed above. This 
sample design is the data serializer used previously for 
data flow analysis. Individual elements of the design are 
used to illustrate each topic. The first figure below 
repeats the LCA layout of the data serializer. The figure 
following it shows the data serializer block diagram. 

INTERLEAVED PROCESSOR/MEMORY DATA 

Interleaved Processor/RAM 

Serializer Placement Plan 

June 1988 

~ Manchester 
Encoder 

Write 
Strobe 

Chip 
Select 2 

Processor Control 
Bus Interface Logic 

Chip 
Select 1 

Chip 
SelectO 

12-Bit Binary 

XTL1 

12 x 2:1 
AddressMUX 

XTL2 
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PROCESSOR DATA 
BUS INTERFACE 

12-BIT ADDRESS 

------ LATCH 

Serializer Block Diagram 

8-BITDATABUS 
TO RAM 

FNCX>DE 

12-BIT ADDRESS BUS 
TO RAM 

SERIAL 
DATA OUT 
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5.3.5.1 Using 
Macros, Example 1 

12-Bit Address Counter 

June 1988 

Macros are one method of implementing individual 
functional blocks. The address generator portion of the 
serializer is shown below. This function is a 12-bit binary 
counter that addresses the external RAM holding the 
data to be serialized. In generating the counter, this 
example uses macros, each of which represents three 
bits of the counter. 

The placement of the logic blocks in the macro 
illustrates the advantages of rectangular placements. 
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Placement B: 

The next figure shows the 3-bit macro CBBCR 
(Counter, modulo 8, Binary sequence, Clock enable 
and Reset synchronous controls) placed in two ways. 
Placement A is linear. Placement Buses the 
recommended placement from the LCA Macrocell 
Library manual. 

Placement A: 
Local Routing Does Not 
Block Other Routes 

Routing Congestion Makes Other 
Vertical Routes Difficult 

3-Bit Counter Macro (8BCR) Placement Alternatives 

Notice that in the linear placement, all of the signals 
must travel the height of the macro to reach the terminal 
count (CTC name) block. This placement congests the 
routing in the columns to the left and right of the column 
containing the macro. The rectangular placement 
shown in B makes the routing more compact and 
provides additional space for routing around the 
module. Also, the square structure allows easier 
placement in a dense design. 
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5.3.5.2 The Long 
and Thin Approach, 
Example 2 

5.3.5.3 Trade Off 
Resources for 
Performance, 
Example 3 

June 1988 

An example of the long and thin approach is the data 
shift register at the top of the data serializer shown in 
discussion 5.3.5. The data comes in from the pins at 
the top and flows into the blocks of the shift register. If 
these blocks are placed in a traditional rectangular 
shape, some bits would have to travel long distances to 
reach the appropriate shift register block. With this 
long, thin arrangement, the secondary data register in 
the 8-row of CLBs can receive the data as it flows from 
the pins through the shift register. 

The address multiplexer also uses long, thin shapes, 
with emphasis on the direction of the information flow. 
The next figure shows how two different bits of the 
multiplexer use the direct connection paths. Direct 
connection can reduce the congestion in general 
interconnection and improve placement. The initial B 
placement has alternate 1/0 blocks connected either to 
the memory or processor address bus. After examining 
the direct connection, use it by modifying the position 
of the processor bus interface 1/0 relative to the 
multiplexer block. This provides an input to each block. 
Along the bottom, place the processor blocks to the left 
of the memory block of the same bit, thus taking 
advantage of direct connection for input and output 
paths. 

In some cases, you may need to make placements that 
trade off resource use for performance. In the following 
example, the primary performance-limiting element is 
the speed of the address generator, in particular the 12-
bit counter. The initial serializer placement plan shown 
in discussion 5.3.5 uses macros to build the counter. 
Macros let you create the function quickly but may not 
provide optimum resource use or performance. 
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Processor 
Address Bit ---1--u...-

Processor --+-++-ILJ 
Address 

Bit In 

RAM Address 
Bit Out 

Use of Direct Connection in Address MUX 

Each 3-bit section of the counter can operate at high 
speed because only a single logic function is required 
between clock edges. However, additional logic block 
delays inserted between each 3-bit stage reduce the 
overall performance. To obtain higher performance, 
you could generate the toggle condition of each bit in 
the counter in the minimum number of logic levels. This 
optimization requires approximately 18 blocks and 
much more care in placement and routing. 

5.3.6 MODIFICA· 
TION GUIDELINES 

If your initial placement of logic and 1/0 blocks fails to 
produce a design you can readily route, you must 
modify the placement. Some guidelines for doing this 
are described below. 

5-34 
-2-

If congestion exists in the middle of the placement, 
make the following changes. 

1 . Move the blocks inside the congested area to the 
outside and move the outside blocks inside. This 
method of turning it Inside out normally 
alleviates congestion, except in cases where the 
original exterior blocks have a large number of 
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connections to resources outside the area being 
examined. The next figure shows a block of logic 
that has interior congestion and an alternative 
placement that relieves the congestion. 

Congestion 

Before Block Swapping 

Congestion 

After Block Swapping 

Block Swapping to Relieve Congestion 
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2. Spread 1/0 connections out, rather than clustering 
them together. This often relieves congestion 
near the edge of the device. Some 1/0-intensive 
applications can benefit from interleaving related 
1/0 blocks, which is done in the address bus area 
of the next figure. 

~OtJ:dd 0 
A~:,:;:s;;---~ 0 ~ 0 ~ 0 ~ jj ~ 0 

Direct ~1 "ti -"~:!}"'bll~"'bh"'b! Connection --=::::t--...-- c-- c--

Processor --+--l!!t-ILJ 
Address 

Bit In 

RAM Address 
Bit Out 

Use of Direct Connection in Address MUX 

3. Orient the majority of signals vertically to improve 
the placement for groups of logic with horizontal 
routing congestion. Remember, there are 
effectively 9 vertical connections in each column 
(five general-purpose, three long lines, and one 
direct connection to the block above and below), 
and only six horizontal connections in each row. 

4. Move data register functions out of the logic block 
areas and have unused 1/0 blocks perform that 
function. This approach is particularly effective for 
function control registers written with an external 
data bus. You can use pins adjacent to the data 
bus input pins for direct data input connections. 
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5.4 ROUTING 

5.4.1 MANUAL 
EDITING 

April 1988 

This discussion explains manual routing and describes 
how to edit and pre-route your design's interconnection 
manually using the LCA development system. 

The LCA routing resources consist of general purpose 
interconnections, long lines and direct connections 
from a block to adjacent blocks, and special buffers. 
You must balance the use of routing resources with the 
partitioning and placement of the logic to generate a 
complete design. 

With some LCA designs, you must interact with the 
routing process to perform any of the following tasks. 

Relieve congestion to route a signal. 

Force use of selected resources to meet specific 
performance or use criteria. 

Modify existing routes to tune delays for a 
particular requirement. 

Complete the routing on a dense, partially-routed 
design. 

EDITNET is the XACT design editor command used to 
manually route signals or nets. EDITNET selectively 
enables or disables any of the programmable Inter­
connection points (PIPs) on the device with the 
following operations. 

1 . Select the EDITNET command, either with the 
mouse and cursor or type EDITNET from the 
keyboard. 

2. Specify the net you wish to manipulate manually. 
The net must have the source and destination 
connections on block pins defined. 
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3. Move the cursor over a PIP for the desired path 
and press the SELECT button on the mouse to 
toggle the selected connection. 

If the PIP was previously connected, pressing 
SELECT disconnects it. 

If it was not connected, pressing SELECT 
connects it. 

To modify the switching matrices located where the 
general interconnection segments meet, you must 

4. Select a pair of magic pins, which are connected to 
the switch matrix. 

The table below shows the allowed connections for the 
various switching matrices. You make or break con­
nections by selecting the desired pair of pins. 
Selecting the second pin breaks current connections or 
connects unconnected pins. 
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I 2 

8 3 

7 4 3 

I 2 
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7 0 

8 0 

Allowed Connections Through Switching Matrices 

April 1988 

I 

2 

3 

4 

10 

2 

3 

4 
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I 
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GENFRAL 
INTFRCONNECT 

2 3 4 

I =VALID CONNECTION 
0 =!NV ALID CONNECI10N 
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The following figures show the sequence of operations 
for editing connections in the switch matrices. 

Point to First Pin [Magic 5] and Select 

Point to Second Pin [Magic 4] and Select 
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Result - Disconnect by Point to First Pin 
[Magic 4) and Select 

Point to Second Pin [Magic 7) and Select 
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Result 

Sequence of Operation for Connecting Through Switch Matrices 

When you have made all the connections, 

5. Select the DONE option. The XACT system 
automatically calculates the delays associated with 
the interconnections and makes them available for 
display. The delay from the source of a net to its 
destination is shown whenever you position the 
cursor at a destination pin; 

When you use EDITNET to make a connection, this 
error message may appear: connection shorts pin zz. v . 
This indicates that with this connection you have 
assigned a signal to a block pin that has not been 
assigned to the net being routed. If you must connect 
that pin to the net, assign it using the ADDPIN 
command. 

Although you cannot directly connect certain pairs of 
switch matrix pins, you can use a combination of valid 
connections to accomplish the desired routing. For 
example, a connection from pin 1 to pin 4 is not valid; 
however, you can accomplish it by connecting pin 1 to 
pin 5, and pin 5 to pin 4. This routing connection 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5 

April 1988 



5.4.2 MANUAL 
PRE-ROUTING 

April 1988 

causes an additional switch delay, yet may be essential 
for routing in a congested area. 

Some additional routing guidelines are given below. 

Do not route through inputs and outputs. 

Do seed the routing for a net before using auto­
routing. 

Do place pre-route selected nets onto long 
lines. 

Do route high fanout items first or last. 

Pre-routing, or seeding the routing, is 
explained below. 

An effective technique to improve the resource use of 
the XACT router is to manually pre-route or seed the 
routing of particular nets prior to using the router. This 
seeding can take two forms, depending on the desired 
effect. 

Even if you want to use a particular long line resource 
for a signal path, based on delays or general placement, 
the router typically does not route the signal onto that 
long line if an alternate path is available. One technique 
is suggested below. 

!. Force a signal onto a long line to pre-route it onto 
the long line before you route the signal, as 
described in the stages below. 

1 a. If you have already entered the net, use 
UNROUTE or CLEARPIN to deconfigure the 
routing for each pin on the net. 
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1 b. If you have not entered the net, disable the 
automatic router with the AUTOROUTE·OFF 
command on the PROFILE menu and define 
the net with the ADDNET command. This 
avoids the delays caused by routing each pin 
and the necessity to unroute them after they 
are entered. 

2. Use EDITNET to choose the net to route on 
the long line and turn the appropriate 
switches on or off to get the signal from its 
source block onto the long line. 

3. End the EDITNET command by selecting 
DONE. A warning message indicates that 
the net is not routed. 

4. Select the ROUTE command from the NET 
menu, and when prompted, select the net 
you manually routed onto the long line. The 
router then completes routing that net. 

The technique above is illustrated in the two figures 
below. In some cases, where the destination pins are 
not directly accessible from the long line, the router still 
does not use the selected long line. In these cases you 
may need to use both techniques I, above, and II, 
below, to force the use of the long line. 
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Output DB.X Routed via General Interconnection 

After UNROUTE Command; EDITNET has Forced Output onto Long Line 
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Result After Route of Signal, Using Long Line 

In some cases, you add pins to a net throughout the 
course of a design. If you enable the XACT interactive 
router throughout this process, each pin is routed as 
you add it. The resulting net routing can become 
contorted and interwoven because each pin is routed 
independently. Extreme cases can have loops in the 
interconnection, or very long delays, as the source 
block becomes more heavily loaded and the routing 
more degenerate. Working with the automatic router 
enabled can also cause severe congestion in some 
areas, as the routing resources are unnecessarily 
consumed by the multiple routes. To help relieve this 
and similar multi-destination problems, you should use 
the following guidelines. 
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II. Enter the destinations in a sequence that 
progresses from the source location to the farthest 
destination. Remember, the router completes the 
routing from source to destinations in the order 
specified. 

To avoid the necessity of entering destinations in 
location-specific sequence for large nets, you can do 
the following. 

1 . Enter the net into the design with the router 
disabled, or unroute the net as described in 
1 a, previously. 

When you finish entering all of the destinations for the 
high fanout net, do the following. 

2. Use EDITNET to manually route to the 
destination most distant from the source. If 
the routing to this pin does not use a long 
line, you can use ROUTEPIN to accomplish 
the initial routing. ROUTEPIN is described 
under Useful Routing Functions, 
5.4.3.3. 

3. Use the ROUTE command to let the router 
complete routing of the other destinations in 
the net. 

The following figure shows the use of this 
technique for a net with many destinations. 
Another method to avoid entering destinations in 
the location-specific sequence is to use a text 
editor to modify the sequence of the destination 
pin specifications. 
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Routing After .Seeding 
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Illegal Connection Through 
Input Line. Destination GD.A 

Illegal Output Connection. 
Destination GC.A is Not 
Connected to Source HC.X is Not Connected to Source HB.X 

5.4.3 ROUTING 
GUIDELINES AND 
FUNCTIONS 

5.4.3.1 Inputs and 
Outputs 

April 1988 

Following are some guidelines for routing inputs, 
outputs, and high-fanout nets, and a description of the 
XACT routing functions that are useful for design 
optimization. 

Although the inputs and outputs of the various blocks 
are shown as lines with multiple connections on them, 
you cannot use them as connections between parallel 
interconnection segments. Each input or output 
connection to a pin of a block is unidirectional, and only 
one connection per pin is allowed. 

I Tip: You should not route through inputs and outputs. I 

The EDITNET command lets you turn on multiple 
programmable connections to an input; however, only 
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the connection from the driving interconnection 
segment to the input pin is valid. Any additional 
connection points that are turned on do not connect to 
the driving segment, although they appear to be 
connected. If you execute the XACT design rule check 
command, DRC, it flags nets that have been routed in 
this way as unrouted and does not calculate their 
attendant delays. The following figure shows an 
improperly connected net routed through an input 
switch path. 

Illegal Connection Through 
Input Line. Destination GD.A 

Illegal Output Connection. 
Destination GC.A is not 

Connected to Source HC.X is not Connected to Source HB.X 

Illegal Connections 

Outputs of blocks can drive multiple interconnection 
segments, although this usually is not necessary. You 
can not use the output path switches to interconnect a 
net that is not driven by that block. The figure above 
also shows an improperly connected net using the 
output path switches. In both the input and output 
cases, you can only make these connections with the 
EDITNET command. To avoid these improper 
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5.4.3.2 High 
Fanout Nets 

April 1988 

connections, exercise caution when using this 
command. 

When you place and route a design involving high 
fanout nets, you often encounter congestion problems 
when entering it with the auto router enabled. In these 
instances, you probably must use alternate placements 
to complete a good design. You should follow this 
sequence of steps to route high-fanout nets. 

1 . Plan an initial placement on a blank LCA printout 
using the placement guidelines discussed above. 
Pay particular attention to the appropriate use of 
direct connection. 

2. Start entering the design with the automatic router 
enabled. However, enter only the destination 
pins when you enter each high fanout net. Leave B 
the source undefined, even though you know 
what it is. This lets XACT route more quickly, and 
results in a less cluttered design. 

When you finish entering all of the regular nets, perform 
the following tasks. 

3. Look at the congested areas. You can easily 
identify them by counting the used vertical and 
horizontal general interconnection segments in 
each column/row. A printout of the complete 
design, with the option SHOW USED enabled, can 
be helpful. 

4. Save the design as a backup in case subsequent 
modifications fail to produce anything useful. 

5. Generate a new placement by modifying the 
congested areas identified above. Use 
MOVEBLK and SWAPBLK to move the blocks to 
new locations. The criterion for the new placement 
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5.4.3.3 Useful 
Routing Functions 

SWAPSIG 

5-52 
2. 

should be to eliminate as much congestion as 
possible. 

6. Make the new placement with the automatic router 
disabled. 

7. Route the high fanout net or nets using 
techniques 1 and 2 above. You should be able to 
route the high fanout nets optimally with this 
technique. View the design in either large or 
medium scale so that you can see as many blocks 
as necessary to find out where to locate the 
routing. Also highlight the high fanout net to show 
stubs at each of the required connections. This 
lets you see their physical relationships better. 

8. Save the intermediate results as a backup. 

9. Route all the remaining nets with the ROUTE* 
command, or route selected nets individually with 
the ROUTE command. 

This iterative technique of manually routing selected 
nets should minimize routing problems and improve 
device performance. It can be applied equally well to 
nets with performance constraints and to those with 
fanout constraints. 

There are several other useful routing-related functions 
you can use to optimize designs. These are SWAPSIG, 
CLEARPIN, and ROUTEPIN, all of which are discussed 
below. 

The SWAPSIG command, located in the PIN menu, is 
useful when you optimize the routing of a signal to a 
specific block. The SWAPSIG command logically 
interchanges the net connections of the block pins, 
and simultaneously changes the block function to 
match the new pin assignment of the signals. 
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A. Connection From CC to CD 
Should Use Direct Connect 

April 1988 

In many cases, signals are better routed to a specific 
block pin, in spite of the general interchangeability of 
the pins. The following figure shows some typical signal 
routes for which you can modify the choice of block pins 
to relieve routing congestion. 

Note: You should always use SWAPSIG and not 
SWAPPIN when working with pins on a single block, 
because it modifies the internal function to match the 
pin swapping. 

SWAPPIN is valuable for moving a net connection from 
one block to another. 

A. 

B. Result After SWAPSIG 
of CD.A and CD.B 

A net routed with a general interconnection. 
SWAPSIG easily lets you interchange the pin 
assignment of the destination block to use the 
direct connection. This frees the general segment 
for use in other routing. 

You can also use the SWAPSIG command on 
block outputs to swap them for direct connection, 
or to drive a specific adjacent general 
interconnection segment. In the case of outputs, 
X and Y are completely interchangeable internally 
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CLEAR PIN 

so you can select and assign them entirely on their 
external connection usage. 

B. Two pins that have been swapped using 
SWAPSIG, to provide more efficient use of the 
general interconnection. The initial connection to 
pin C is from a signal running in the adjacent 
horizontal channel; Pin Dis from an adjacent 
vertical channel. When you swap the signals, the 
vertically oriented signal routes directly to C and 
the horizontal signal routes to D. 

Note: The internal constraints on the input pins 
to lo ic blocks can limit some uses of SWAPSIG. 

These constraints are flagged when the command 
is executed. 

The CLEARPIN command lets you deconfigure the 
interconnection for a particular pin on a net. It also 
removes any spurious interconnection segments from 
the net. 

CLEARPIN, located in the PIN menu, is useful when 
attempting to relieve congestion. It lets you return the 
interconnection from a single pin on a net to the 
available pool of routing resources. When you route 
critical or high fanout nets, you can use the freed 
interconnection for a particular route. Then you can 
route the unrouted pin either manually or with the 
ROUTEPIN command. 
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ROUTEPIN and 
ROUTE 

When you manipulate the routing for part of a design, 
you often leave pins unrouted. You can route these 
pins with the ROUTEPIN command for the pin; 
however, ROUTEPIN forces you to select all pins to be 
routed. ROUTE, on the other hand, routes all pins 
assigned to a selected net. The figure below shows 
how ROUTE can be more efficient if you must route a 
large number of pins. ROUTEPIN operates faster than 
ROUTE for a single pin. ROUTE checks each pin on 
the net and operates on a single net at a time. 

Querynet: PNRFG25B.LCA, XACT 1.3 

netl . . . . . . . DD.X ...... . 

net2 DE.X 

net3 ED.X 

***DE.A 
*** CF.D 
*** CG.D 
*** CE.D 
*** CF.B 
*** EF.A 
*** EE.B 
*** EF.B 
*** DG.C 

This report of unrouted nets indicates 9 unrouted pins. 
With ROUTEPIN this requires I command selection and 9 location selections. 
With ROUTE this requires I command selection and 3 location selections. 

ROUTE and ROUTEPIN Comparison 

April 1988 
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5.5 TIMING 
ANALYSIS, 
DELAY 
CALCULATOR 

5.5.1 CLB AND 
IOB DELAYS 

5.5.2 INTERCON· 
NECTION DELAYS 
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After you complete the placement and routing of your 
LCA design, you analyze the timing of the design 
against the original design specifications. This 
discussion describes how to analyze performance. 

Note: You can also perform timing simulation, as 
described in Cha ter 2. 

The LCA development system includes a unique 
interactive timing-delay calculator that shows you the 
worst-case delays associated with a design without 
having to translate and simulate the design. The delay 
calculator is useful for selecting placement-and-routing 
alternatives when tuning a design for maximum 
performance. The delay calculator can extract delay 
information for the CLBs, IOBs, and the interconnection 
paths, as follows. 

CLB and IOB delays are perceived as fixed worst-case 
values based on the particular configuration of the block 
by the delay calculator. These delays are characterized 
from operating the devices at worst-case conditions and 
are typically constant for a particular speed grade. 

Interconnection delays are more complex. Each 
interconnection segment used in a signal path 
represents a distributed R/C delay. Inputs to each CLB 
or IOB have a negligible capacitance when compared to 
the capacitance of the interconnection segments. 

To correctly calculate the worst-case delay for 
interconnection, the delay calculator accounts for the 
accumulation of the interconnection delays. Also, each 
transistor switch represents a non-linear impedance that 
modifies the drive characteristics as viewed by 
downstream interconnection segments. Passing 
through several interconnection segments and 
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CLB 

DELAY: 
INCREMENTAL 

THEN CUMULATIVE DELAY= 3RC 

Interconnection Delay Example 

April 1988 

switches degrades the quality of LCA signals. In the 
general purpose interconnection area, the LCA device 
includes bidirectional buffers that re-power the signals 
after they pass through several segments. Each buffer 
also represents a delay, yet the buffer restores the initial 
quality. These buffer delays are accounted for in the 
overall delay calculation. 

The next figure summarizes these delays and the 
elements included in the model for interconnection 
delay calculations. 

5RC 6RC 6RC+BUFFER 
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The delay calculator considers all of these elements 
when calculating interconnection delays. In XACT, 
when you position the cursor on a destination pin for a 
net, the worst-case delay from the net's source to that 
destination is shown on the information line, as shown 
below. As you position the cursor on each destination, 
the appropriate delay is shown. 

Net Pin Blk Config Screen Misc Profile 

09'0 9J 

0 
9J 9J 

9J 0 0 :iI 
9J 9J 

:ff 
9J 

0 0 :ff 
=II 

9J 9J 9J :{I 
Pin: AD.D Net: netl9 lSns 

Cmd: 

Delay From Source to Destination 
Pointed to by Cursor 

Delay Calculator Result On-Screen 

The delay calculator calculates the delays on a net-by­
net basis because the complete net configuration must 
be considered to determine the delay. As you define a 
net, the net delay to each point is not available until you 
specify the source and all of the destinations. When 
you select the DONE option in the net specification 
process, interconnection delays are calculated if the net 
is already routed; this is typical if the automatic router is 
enabled. For pins not routed, a ? is shown in the delay 
field. 
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When you perform manual routing with EDITNET or 
other techniques, interconnection delays are not 
calculated until you select the DONE option and 
connect a destination pin to the source pin. If you 
subsequently modify a net by adding other pins or 
interconnections, a new net delay is calculated, and the 
new timing information becomes available. 

You can obtain interconnection delay information 
interactively, on the information line of the display. You 
can also obtain delay information in text reports, either 
to the screen or in printed form. The following figure 
shows a sample delay report printed after selecting 
REPORT DELAY and specifying the desired FROM and 
TO options. You can also get delay information, on­
screen or printed, with the QUERYNET command. 
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From: BLK CB (CB.X) 
Thru: NET netl2 (CB.X 
Thru: BLK BD (BD.D 
Thru: NET netl5 (BD.X 

To: BLK CD (CD.A 

From: BLK CB (CB.X 
Thru: NET netl2 (CB.X 

To: BLK CD (CD.B 

From: BLK CB (CB.X) 
Thru: NET netl2 (CB.X 

To: BLK CD (CE.A) 

From: BLK BC (BC.X) 
Thru: NET netl4 (BC.X) 

To: BLK CE (CE.BJ 

From: BLK CB (CB.X) 
Thru: NET netl2 (CB.X 
Thru: BLK BD (BD.D 
Thru: NET netl5 (BD.S 

To: BLK CE (CE.E) 

From: BLK AB (AE.Y) 
Thru: NET netl6 (AE.Y 

To: BLK CE (CE.DJ 

From: BLK AB (AE.Y) 
Thru: NET net16 (AE.Y 

To: BLK QI (CF.B) 

From: BLK CD (CLOCK 
Thru: NET netl7 (CK.S 
Thru: BLK BE (BE.D 
Thru: NET netl8 (BE.Y 

To: BLK BF (BF.B 

From: BLK CB (CB.X) 
Thru: NET netl2 (CB.X 
Thru: BLK BD (BD.D 
Thru: NET netl5 (BD.X 

To: BLK BF (BF.CJ 

From: BLK cc (CC,X) 
Thru: NET netl3 (CC.X 

To: BLK AD (AD.C) 

to BOD ) 
to BD.X ) 
to CD.A ) 
to SETUP) 

: 
to CD.B ) : 
to SETUP ) : 

: 
to CE.A ) : 

: 

: 
to CE.B ) : 

: 

: 
to BOD ) : 
to BD.X ) : 
to CE.C ) : 

: 

: 
to CE.D ) : 

: 

: 
to CE.B ) : 

: 

to CD.X ) : 
to BE.D ) : 
to BE.Y ) : 
to BF.B ) : 
to SETUP) : 

: 
to BOD ) : 
to BD.X ) : 
to BF.C ) : 

: 

: 
to AD.C ) : 

: 

Ons ( Ons) 
20ns ( 20ns) 
35ns ( 55 ns) 
Ons ( 55 ns) 

22ns ( 77 ns) 

Ons ( Ons) 
18ns ( 18 ns) 
22ns ( 40ns) 

Ons ( Ons) 
22ns ( 22ns) 
Ons ( 22ns) 

Ons ( Ons) 
15ns ( 15ns) 
Ons ( 15 ns) 

Ons ( Ons) 
20ns ( 20ns) 
35ns ( 55ns) 
8ns ( 63ns) 
Ons ( 63 ns) 

Ons ( Ons) 
33ns ( 33ns) 
Ons ( 33 ns) 

Ons ( Ons) 
23ns ( 23 ns) 
Ons ( 23 ns) 

35ns ( 35 ns) 
6ns ( 41 ns) 

35ns ( 76ns) 
Ons ( 76 ns) 

22ns ( 98 ns) 

Ons( o~ 
20ns ( 20ns) 
35ns ( 55 ns) 
llns ( 66ns) 
Ons ( 66ns) 

Ons ( Ons) 
9ns ( 9ns) 
Ons ( 9ns) 

~ Womt-Case 
Clock-To-Clock 
Path= 10 MHz Clock 

Printed Output from Delay Calculator 

5.5.3 CLOCKED 
SYSTEM DELAYS 
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In a clocked system, delay calculations are made from 
clock-edge to clock-edge. Because it has no 
knowledge of the dynamic operation of the system, the 
delay calculator can only consider the elements that are 
connected logically from one clocked device, latch or 
flip-flop, to the next clocked device. 
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5.5.4 SPEED 
GRADE DELAYS 

April 1988 

Note: You must perform timing simulation to 
investigate the operational constraints of the clocked 
system. However, the delay calculator does calculate 
the complete clock-edge to clock-edge path, including 
the clock-to-output delay and the required setup time. 
With these complete delay paths, you can easily obtain 
the worst-case clock frequency: worst-case frequency = 
1/(clock-to-clock delay). In the figure above, the worst­
case clock-to-clock delay for Net 17 and Net 18 is 
calculated as 98 ns, so you could clock this circuit at 1 O 
MHz, worst-case. 

The LCA family offers multiple speed grades for 
different system requirements. The delay calculator can 
calculate all delays for a design, given different speed 
grades. 

You select the speed grade with the SPEED command 
from the MISC menu in XACT and the currently available 
speed grades for the selected device display. You 
select the appropriate one. The delay calculator then 
re-computes and makes available all delays for that 
speed grade of device, either for display on the screen 
or in the report file available for the design. 
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5.5.5 SIGNAL 
DEGRADATION 

5-62 
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Because of the nature of the pass transistors used to 
interconnect the various signal-path elements, the rise­
and-fall times and general signal quality are degraded by 
each switch element. When taken together over a long 
signal path, the change in rise-and-fall times and in the 
signal quality can significantly degrade the predictability 
of the delay for a particular path. The bidirectional 
buffers used to re-power the signals in the general 
interconnection normally alleviate most of these 
conditions, if they are on the signal path. The 
combination of manual editing and the router's ability to 
route signals with remaining resources can create some 
paths with significant signal degradation. 

The delay calculator flags signal paths with degraded 
signals with a tilde(-) preceding the calculated delay. 
These degenerate nets can be the result of one or 
more of the following factors. 

A. A general interconnection segment and its 
associated signal drive a long line. Long lines have 
relatively high capacitance. This affects the signal 
quality, particularly when driven by a general 
interconnection segment and not the direct 
source of a signal. 

B. A long line consists of one or more general 
interconnection segments. In general, long lines 
greatly decrease the drive capability of the signal 
source. When driving general interconnection 
segments, the combination of interconnection 
switch impedance and long line becomes a 
problem. 

Degradation of signal quality affects the signal primarily 
in differences between rise and fall times. As the delay 
number increases, the difference between rising-signal 
delay and falling-signal delay also increases. For 
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example, consider a delay calculation of -so. This 
indicates the following. 

A. Falling signals, 1 to 0 transitions, occur more 
rapidly than indicated. Here, the falling transition 
can propagate in 35 to 40 ns, worst case. 

B. Rising signals, Oto 1 transitions, occur in more time 
than indicated. For this case, the rising transitions 
can require 70 ns or more, worst-case. 

The percent variation between rising and falling 
transitions in the degenerate cases is difficult to predict, 
but it generally is in the range of 20 to 40% below or 
above the indicated value. 

Caution: Be careful with degenerate nets. If these 
signals are timing critical, it is highly recommended that 
you reroute them to eliminate the tilde indication. In 
some cases, for example, static control, the actual 
del~s are not critical and _you can safe.!Y.Jg_nore the tilde. 

In other cases, you can compensate for the difference 
between the rise and fall by appropriate logic sense 
selection. For example, a relatively common high­
fanout signal used in counter applications is a 
synchronous RESET generated by a terminal count 
detection. If the signal sense is defined as HIGH-true, 
or reset when 1, the critical timing edge is the rising 
edge. 

Note: Analysis indicates that the rising edge is slower 
than the falling edge, so if you redefine the signal to be 
LOW-true, or reset on 0, you can take advantage of the 
uicker ro a ation time for fallin si nal transitions. 

This change can improve the overall capability of the 
system by eliminating potential metastability or partial 
counter-reset problems that might otherwise occur. 
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5.5.5.1 Analysis of 
Intermediate 
Timing 

In a circuit with a long path, it is helpful to measure or 
predict the intermediate delays when considering 
placement and routing alternatives. One method of 
seeing the delay calculator results, or measuring delay 
differences along a path, is through temporary 110 
block connections. The following figure shows two 
110 blocks temporarily defined along the path. You can 
use the delay calculator to see the delay to each block; 
then use the differences to analyze the results of 
routing changes or to determine timing-skew related 
issues. Using the XACTOR In-Circuit Emulator you can 
temporarily define these 1/0 blocks as outputs and 
measure the timing differences directly. 

110 Block to Allow Intermediate Delay Calculation or Measurement 

Parallel 
Long 
Lines 

Intermediate 
l!OBlock 

5-64 
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Parallel Long Line to Provide Higher Fanout Signal Source 
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5.5.5.2 Examples The example below shows a potential signal 
degradation problem. 

Net Pin Blk Contig Screen Misc 

Net: net19 

A Signal Route With Tilde Delay 

Net Pin Blk Contig Screen Misc 

Net: net19 

B Signal Re-Routed to Eliminate Tilde Delay 

Routing with Tilde on Delay Value 

April 1988 

-35ns 

28ns 

Delay for Degraded ... 
Signal .:;.-

Corrected 
Delay 
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A. An example with a potential signal degradation 
problem, with tilde delay, because the net is 
routed through several general interconnection 
segments prior to driving a long line. The timing 
delay calculator number in the lower-right corner of 
the screen is -35 ns. 

B. A routing modification that decreases the delay to 
28 ns, and the tilde delay is no longer indicated. 
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Static 
Control 

Input 

April 1988 

The following figure shows an example where you can 
safely ignore the tilde indication. The net shown is a 
static input used by several blocks for function 
selection. In this case, the delay and signal quality are 
not of concern because the signal does not change, as 
might be the case for switch-type inputs or other 
interface signals generated by the user. The only 
concern with long delay signals of this type is that 
blocks using that signal must latch correctly after the 
transition. 

Long Delay Can Be Ignored Because the Dynamic 
Performance of the Signal is Not of Interest 

Signal with Long Delay to Final Destination 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 5 



5.6 SUMMARY 

5-88 
-2-

Appropriate use of the LCA development system 
capabilities gives you powerful control over all aspects 
of your LCA design. You can often enter simple 
designs directly, without paying significant attention to 
the details of placement and routing. Only when you 
must implement complex designs, or designs with 
stringent performance constraints, do the issues of 
placement and routing require special attention. The 
techniques discussed here should guide you in 
implementing a complex design with minimum effort. 

Future products for designing with LCA devices will 
offer improved methods of design entry and increased 
isolation from the implementation details of the LCA 
device. Regardless of the sophistication of these 
development systems, there will continue to be a 
requirement for interactive design optimization, either 
for performance or resource use. The LCA 
development system fulfills that requirement by 
combining simplicity of operation with quick and 
efficient design optimization capabilities. 
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CONFIGURING THE LCA 
DEVICE 

This chapter discusses considerations tor when you 
configure LCA devices and read back the configuration 
data. The configuration techniques covered here apply 
to the 2064 48-pin and 68-pin packages, and to the 
2018 48-pin, 68-pin, and 84-pin packages. 

The overview, 6.1, introduces LCA configuration. 

The discussion on configuration modes, 6.2, 
explains design considerations, pin functions, and ... 
the Slave, Peripheral, and Master modes. ~ 

The discussion on configuring multiple LCA 
devices, 6.3, describes how to configure multiple 
devices in a daisy-chain or parallel configuration. 

The discussion on assigning multiple-function 1/0 
pins, 6.4, explains how to handle potential 1/0 
conflicts and unused pins. 

The discussion on the configuration data, 6.5, 
introduces the content and format of the LCA 
configuration bit stream. 

The discussion on reading back configuration 
data, 6.6, explains how to read back an LCA 
configuration bit stream for verification. 
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6.1 LCA 
CON FIGURA· 
TION OVERVIEW 

6.1.1 CONFIGUR· 
ATION BIT STREAM 

6.1.2 CONFIGUR· 
ATION PROCESS 
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When designing an LCA device, you must first identify 
those parts of the system-level design that can be 
implemented in one or more devices. Then you 
partition these elements into clusters of basic logic 
functions, composed of CLBs and IOBs. Next, you 
enter, place, and route the interconnection networks 
for each device. Finally, for each device you compile a 
configuration bit stream that defines its function. 

You design the configuration using the LCA develop­
ment system design editor, EDITLCA. You use the bit­
stream generator, MAKEBITS, to convert the LCA 
design into a configuration bit-stream file. Then, you 
use the download cable with the MAKEBITS software to 
transfer the configuration bit stream into an LCA device 
in the target system. 

You can verity the bit stream, described later, using the 
READBACK command. The bit stream determines how 
the LCA device functions. Discussion 6.5, Configura­
tion Data, details the configuration format. 

You verify your LCA design(s) in any of three ways. The 
first method is the only one that does not include a 
configuration process. 

Use a timing simulator to verify the logic and timing 
of the LCA design. 

Use the MAKEBITS software to generate a 
configuration bit stream and use the download 
cable to transfer it into the LCA device in the target 
system. 

Use the MAKEBITS software to generate a 
configuration bit stream and use the XACTOR 
software for in-circuit emulation. 
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An LCA device is best described in terms of three 
distinct states. 

Initialization 

Configuration 

User-operation 

After a power-up delay, the LCA device powers up in 
the initialization state. In this state, its internal 
configuration memory is cleared, and all internal user­
definable logic is held in a quiescent, or idle, state. 
After initialization, the LCA device checks the input 
logic level at the -RESET pin. When a valid logic-1 level 
is detected at the pin, the device enters the configu­
ration state. 

During the configuration state, the LCA device is 
ready to load the configuration data. The configuration 
data is a serial bit-stream format. The configuration data 
loads as though the device is a shift register. 

The configuration mode, which is the method used 
for loading the configuration data, depends on the logic 
levels of the Mode Select pins: M2, M1, and MO. 
These pins and their functions are explained in 
discussion 6.2.2.1. Although you can use any of the 
modes to enter the configuration data, the content and 
format of the bit stream are fixed for a given logic 
application. 

The configuration bit stream contains a preamble code 
plus a bit field that indicates its length. When the LCA 
device loads the preamble code followed by the correct 
number of bits, as indicated by the length count, the 
D/-P open-drain output pin goes HIGH to indicate that 
configuration is complete. 

Note: After the configuration process begins, it must 
either terminate, or abort and restart. Partial configur­
ation is not_Q_ossible. 
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POWER APPLIED 

-RESET 

ASSERTED 

After configuration, the LCA device enters the user· 
operation state and performs the logic functions 
specified in the design. During operation, however, 
you can return to the initialization state and repeat the 
configuration process. A state diagram illustrating this 
sequence is shown below. 

Note: You can disable the reconfiguration capability by 
setting the appropriate bit in the configuration bit 
stream. If you disable the reconfiguration capability, you 
can change the LCA device's configuration only by 
removin and rea I in ower to it. 

-RESET 

CP/-PLOW 
TRANsmoN 

(REPROGRAMMABILITY 
OPTION DISABLED) 

D/-PWW 1RANSmON 
(REPROGRAMMABILITY OPTION ENABLE) 

LCA Configuration Diagram 
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Note: During the initialization and configuration states, 
all user 1/0 pins, except those used by the configuration 
process, have passive internal pull-up resistors that 
cause those pins to go HIGH when not externally 
overdriven. 

Upon entering the user-operation state, all user 1/0 pins 
simultaneously become functional, according to your 
specified pin definitions. 

The following discussion explains the five possible 
modes for loading the configuration information into the 
LCA device. 
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ATION MODES 
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The LCA device supports five configuration modes, 
including three Master modes, for loading LCA 
programming information. 

1 . Slave mode 
2. Peripheral mode 
3. Master-Serial mode 
4. Master Parallel-Low mode 
5. Master Parallel-High mode 

You select a configuration mode by connecting the 
dedicated Mode Select pins, MO and M1, and the 
programmable Mode Select pin, M2, to either a logic-1 
or a logic-0 signal, as indicated in the following table. 

Conf!_g_uration Mode Selection 
Mode Select Pins M2 M1 MO 
Master-Serial mode 0 0 0 
Master Parallel-Low mode 1 0 0 
Master Parallel High mode 1 1 0 
Peripheral mode 1 0 1 
Slave mode 1 1 1 

Note: The current mode selections do not use all 
possible combinations of M1, M2, and M3, which leaves 
room for future ex_Q_ansion of conf!g_uration o_mions. 

The following discussions describe available modes. 

Discussion 6.2.1 outlines considerations that 
impact selecting a configuration mode. 

Discussion 6.2.2 identifies the special LCA pin 
functions during the configuration process. 

Discussion 6.2.3 explains the Slave mode. 

Discussion 6.2.4 explains Peripheral mode. 

Discussion 6.2.5 explains Master modes. 
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Each configuration mode has different design 
considerations and variations in device pin usage 
during configuration. The choice of a configuration 
mode depends on your specific system application. 

The following are some questions you should ask 
before choosing a configuration mode. 

1 . Is control of the configuration process automatic or 
controlled externally? 

If the configuration process is externally 
controlled, that is in Slave or Peripheral 
mode, is it controlled by software or OMA 
hardware? 

If the configuration process is automatic, that 
is in Master mode, is the configuration 

a. shared with the microprocessor code? 
b. stored in a separate byte-wide PROM? 
b. stored in a serial memory device? 

2. How much time is available for configuration? 

3. For an application using multiple LCA devices, 
should they be configured serially as a daisy chain, 
or in parallel? 

4. What are the 1/0 pin requirements? 

For example, are the 1/0 pins used by the target 
application also involved in the configuration? If 
so, can you assign pins to minimize or eliminate 
external isolation? 

These considerations are discussed in more detail 
below. 
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The externally-controlled case requires that you 
use either Slave mode or Peripheral mode to load 
the configuration data into the LCA device serially. You 
can load the configuration data as part of the system's 
bootup process or you can load it on the fly. 

This externally-controlled method is more flexible than 
automatic configuration because the configuration 
bit stream can be read from a PROM, disk, or 
any other source accessible by a processor. 
However, this method may take longer to complete than 
the automatic method. 

Automatic configuration uses one of the three 
Master modes. With Master mode configuration, the 
LCA device automatically accesses (sends out to) an 
external PROM for the configuration bit stream. Then 
the LCA device configures itself using Master mode in 
12 to 24 ms for the 2064, and 17 to 35 ms for the 2018. 

The following table compares the configuration mode 
characteristics. 
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Com_p_arison of Conf!_g_uration Modes 
Configuration Mode Slave Peripheral Master Parallel-Low Master-Serial 

Mode Mode Master Parallel-High Mode 
Modes 

Mode Selection Code 1 :1 :1 1 :0:1 0:0:1 (Master-Low) 0:0:0 
(M2:M1:MO) 0:1 :1 (Master-High) 

Configuration Data Bit-serial Bit-serial Byte-parallel Bit-serial 

Automatic Loading No No Yes Yes 

Programming Source User Logic CPU Data External External 
or Another Bus Byte wide Serial 
LCA (Note 1) Memory Memory 

Number of User 1/0 2 6 25 3 
Pins Required 

Configuration Time Source- Source- 12-24 ms (2064) 12-24 ms (2064) 
dependent dependent 17-34 ms (2018) 17-34 ms (2018) 
(Note 2) (Note 2) (Note 3) (Note 3) 

Notes: 1. Slave mode is also used by XACTOR for In-Circuit Emulation. 
2. 
3. 

June 1988 

The minimum time in any case is approximately 12 ms for the 2064 and 17 ms for the 2018. 
This parameter depends on internal timing circuits and is manufacturing-process dependent. 
Therefore, it m~ v~ from device to device within the limits shown. 

In all configuration modes, some user 110 pins 
are temporarily assigned configuration-
related functions. The number of such pins ranges 
from five in Slave mode to 25 in Master mode. Once 
configuration is complete, these pins become general 
purpose 1/0 pins. 

However, it is your responsibility to guarantee that 
no signal conflicts occur between the pin's use in the 
configuration state and its use in the user-operation 
state. Signal conflicts on these pins can create 
undesired side effects, such as disturbing the 
configuration process or other external logic. With a 
little care, however, you should not experience 
problems using these dual-function 1/0 pins. Although 
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signal conflicts may be resolved by using external 
buffers for isolation, careful selection of the pinout 
assignment can usually eliminate the need for isolation. 
The five figures below show the LCA device's pin 
usage for each configuration mode. 

MICRO 
COMPUTER 

J,o 
PORT 

RESET 

Slave Mode 

ADDRESS DATA 
BUS BUS 

ADDRESS 
DECODE 

LOGIC 

Peripheral Mode 

00 
DIN 

WRT 

+5V 

MO MIPWRDN 

LCA 

CCLK 

DOUT 

M2 

HOC 

-{DC 

LCA 
DOUT 

M2 

cso HOC 

-LDC 

~{ CS! 

CS2 

D/-P 

RESET 

+5V 

GENERAL 
PURPOSE 
USERl/O 

GENERAL 
PURPOSE 
USERl/O 
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Vee 

l OOUT CCLK 

HIX 
GENERAL 
PURPOSE 

}t~LCA 
USERl/O 

PINS 

RESET 

DIN DATA 
M2 -RCLK CLK SERIAL 

CE MEMORY 

-LDC OE 

Master-Serial Mode 

+SV 

Vee 

t 
MO Ml PWRDWN 

OOUT CCLK 

M2 AIS 
Al4 

HIX Al3 EPROM 

GENERAL Al2 (2KXS 

PURPOSE 
-LDC All OR LARGER) 

USERl/O -RCLK AIO 

PINS A9 

}~lCA 
AS AIO 
A7 A9 
A6 AS 
AS A7 
A4 A6 D7 

RESET A3 AS D6 
A2 A4 DS 

D7 Al A3 D4 
D6 AO A2 D3 
D5 Al D2 
D4 AO DI 
D3 OE DO 
DZ CE 
DI 
DO 

D/-P 

DATA BUS 

Master Parallel-Low Mode 
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Vex 

+5V 

Vex 

t 
Ml PWRDWN 

OOUT CCLK 

M2 A15 
A14 

HDC A13 EPROM 

GENERAL A12 (2KX8 

PURPOSE 
-LDC 

All OR LARGER) 

USERJ/O -RCLK AIO 

PINS A9 

1~ 
AS AIO 
A? A9 
A6 A8 

LCA A5 A? 
A4 A6 D7 

RESET A3 A5 D6 
A2 M D5 

D7 Al A3 D4 
D6 AO A2 D3 
D5 Al D2 
D4 AO DI 
D3 OE DO 
D2 CE 
DI 
DO 

D/...P 

Master Parallel-High Mode 

The following table summarizes the pins used in each 
mode. Individual pins are described in more detail 
below, under Configuration Pin Functions, 6.2.2. Also, 
refer to the example under discussion 6.4.1. 
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Summary of Pins Used for Conf_!g_uration 
Applicable 

Pin Config. Mode(s) Function During Function During 
Name s p MS MH ML Configuration User Operation 

MO . . . . . Mode Select 0 (I) Readback Trigger (I) 
M1 . . . . . Mode Select 1 (I) Readback Data Out (0) 
M2 . . . . . Mode Select 2 J.!l <User 1/0> 
D/-P . . . . . Indicates configuration (0) Initiates/Inhibits 

l1_Note '!.l ...E!Ocess is done Re-confjg_uration J.!l 
-RESET . . . . . Abort/Restart configuration (I) Master Clear for all 

li_Note 1l internal fljQ:-flo_Q_s J.!l 
CCLK . . - . . Configuration Clock(Notes 1 & 2) Readback Clock (I) 
DIN . . . - - Configuration Data In (I) <User 1/0> (Note 3) 
DOUT . . . . . Configuration Data Out (0) <User 1/0> 
HOC . . . . . Logic HIGH lgl <User 1/0> 
-LDC . . . . . Lqgjc LOW <User 1/0> 
AO·A15 - - - . . Address Bus (0) <User 1/0> 
DO-D7 . - - . . Data Bus 1g1 <User 1/0> (Note 3) 
-RCLK - - . . . Read Clock <User 1/0> 
-WAT - . - - - Write Strobe (I) <User 1/0> 
-cso - . - - - Chip Select 0 (I) <User 110> 
-cs1 - . - - - Chip Select 1 (I) <User 1/0> 
CS2 - . - - - Ch)Q_ Select 2 J!i <User 1/0> 
Abbreviations: s = Slave I = Input 

p = Peripheral 0 = Output 
MH = Master Parallel-High 
ML = Master Parallel-Low 
MS = Master-Serial 

Notes: 1. The -RESET, CCLK, and 0/-P pins have multiple functions. See text for further details. 
2. During Slave mode configuration, the CCLK pin is an input, while for all other modes, it is an output. 
3. DIN and DO are the same ~ical_..e!ns but are associated with different con~ration modes. 

6.2.1.2 Configura· 
tion Time 

For some applications, the time required to configure 
the LCA device is an important consideration. The 
minimum time required to load the LCA configuration 
data is the same for all configuration modes, approxi­
mately 12 ms for the 2064 and 17 ms for the.2018. The 
processor-driven configuration techniques under 
software control for Slave and Peripheral mode may 
take longer to complete. 

June 1988 

Unlike the user-driven Slave and Peripheral modes, the 
internal oscillator controls the configuration loading time 
for Master mode. Because the frequency of this 
internal oscillator depends on the LCA fabrication 
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6.2.2 CONFIGUR· 
ATION PIN 
FUNCTIONS 
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process, configuration loading time can extend to twice 
the minimum time. 

In applications using multiple LCA devices, special 
daisy-chaining capabilities permit you to configure all 
the linked devices from a single data source. This is 
described in further detail under discussion 6.3. 

There are two types of LCA pins used for configuration. 

Non-programmable pins are dedicated to the 
control function. 

User-programmable pins are available as 
general purpose 1/0 pins after configuration. 

There are six non-programmable pins dedicated 
to control functions. 

Non-Programmable 
Pins 
MO, M1 
CCLK 

-RESET 

D/-P 

-PWRDWN 

Control 
Functions 
Mode Select Pins 

Configuration Clock 

Master Reset 

Done/Program 

Power-Down 

In addition to the dedicated control pins, several user­
programmable 110 pins have configuration functions 
assigned to them, regardless of which configuration 
mode you select. These pins, as well as the dedicated 
control pins, are described below. Other 1/0 pins are 
used in only one specific configuration mode and are 
described in the discussion of that mode. 

The following are user-programmable 1/0 pins that 
can be used during configuration. 
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User-
Programmable Control 
Pins Functions Notes 
M2 Mode Select (Present 
DIN/DO Configuration Data In in 
OOUT Configuration Data Out all 
HDC HIGH during configuration Configuration 
-LDC LOW duril!Q_ conf!g_uration Modeaj_ 

-cso, -cs1, cs2 .~hip Selects Peripheral mode only 
-WRT 
-RCLK 
AO-A15 
DO-D7 

6.2.2.1 M2, M 1, 
and MO 

June 1988 

Write Strobe Peripheral mode only 
Read Strobe Master modes only 
Address Bus Master parallel modes only 
l~ut Data Bus Master _E_arallel modes on.!Y_ 

Note: Except for HCD and -LDC, all unassigned user-
1/0 pins not used in configuration have passive internal 
pull-ups to Vee, as described in discussion 6.2.2.3. 
The passive internal pull-ups on all user-programmable P.m 
1/0 _Qins are removed after conf_jg_uration is com_Qleted. ~ 

M2, M1, and MO are Mode Select input pins that select 
the configuration mode the LCA device uses, as 
explained under 6.2, Configuration Modes. Pins MO 
and M1 are dedicated configuration pins. The M2 pin, 
unlike MO and M1, becomes available as a general 
purpose user-1/0 pin after configuration. 

During configuration, pins M1 and M2 have internal 
pull-up resistors, while pin MO does not. Except for 
Master-Serial mode, you should not drive pin M2 LOW 
during configuration. If left unconnected, it is pulled 
HIGH. 

In applications that do not use the LCA device's read­
back capability, you can tie the mode select pins directly 
to ground or to Vee. Because the M1 and M2 pins are 
supplied with internal pull-up resistors, you may leave 
them unconnected after configuration is done. 
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6.2.2.2 DIN and 
DOUT 

6.2.2.3 HDC and 
-LDC 

6.2.2.4 CCLK 
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Note: The mode select pins are sampled either at the 
conclusion of the initialization state, or with the rising 
edge of -RESET if used to delay configuration. Thus, 
you do not need to maintain their logic levels after 
config_uration be_gins. 

DIN and DOUT are used as the serial data path for 
configuring both a Slave mode daisy chain, and a 
Master-Serial mode device. DIN and DOUT are also 
used for other purposes, such as a data bus or Slave 
mode without a daisy-chain. 

Refer to the descriptions of the Slave and Master-Serial 
modes, under 6.2.3 and 6.2.5, respectively, for more 
information. 

HOC and -LDC are user-programmable 1/0 pins. During 
configuration, the LCA device drives HOC to constant 
HIGH and the -LDC to constant LOW. You use these 
two pins to control external logic during the initialization 
and configuration states. For example, you can use 
these pins to enable or disable various external logic 
circuits, depending on whether each logic circuit is 
required during or after configuration. 

CCLK is a dedicated control pin serving as a clock 
input during Slave mode configuration, and 
conversely as a clock output in all other configuration 
modes. As an input, CCLK is used during the serial 
loading of a configuration bit stream. As an output, 
CCLK serves as a clock source for configuring any 
Slave mode LCA_ devices to be daisy-chained to the 
master LCA device. 

During operation, CCLK serves as a clock input for 
reading configuration data from the device in 
conjunction with the MO/RT and M1 /RD pins. The 
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6.2.2.5 -RCLK 

6.2.2.6 -RESET 

6.2.2.7 D/-P 
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CCLK input is subject to a minimum time it can be held 
LOW. It should remain in the HIGH state when not in 
use. However, the LCA device can drive the CCLK 
input from a clock source that violates this limit, as long 
as deassertion of -RESET enables configuration as 
soon as the clock is normal. The CCLK pin has an 
internal pull-up resistor that lets you disable an external 
clock source when configuration is done. 

The -RCLK pin performs the function of a read strobe 
for dynamic memories in the Master-Parallel mode. For 
the Master-Serial mode, -RCLK is an output pin that 
synchronizes the supply of serial data. 

The -RESET pin is an active-LOW master-reset input. 
Its function depends on the LCA device's state. During 
the initialization state, after power-up and prior to EJll 
starting the configuration, this pin can delay the start of . 
configuration. As soon as the configuration process 
starts, and until it completes, asserting -RESET aborts 
the configuration process and returns the LCA device 
to the initialization state. Configuration restarts when 
initialization completes and -RESET is HIGH. When 
configuration completes, the -RESET pin changes 
function and becomes a master-reset control pin that 
clears all internal flip-flops and latches to the 0 state. 

The D/-P (DONEi-PROGRAM) pin is both an input and 
an open-drain-type output with an optional, program­
mable pull-up resistor. As an output, D/-P indicates the 
current configuration status of the LCA device. 

Prior to initial configuration and during subsequent 
reconfigurations, the LCA device holds the D/-P pin 
LOW to indicate that the device is not ready for user 
operation. When D/-P goes HIGH, it indicates that 
configuration is done and that the device is in the user-
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operation state. Consequently, you can use D/-P in 
your system reset logic to ensure that the LCA device is 
fully configured before the reset of the rest of the 
system is terminated. 

The configured output pins on the LCA device become 
active one clock cycle before D/-P goes HIGH. This 
allows time for any user-1/0 signals to propagate 
between LCA devices. You can initiate subsequent 
reconfigurations of the device by applying a logic-0 
level to the D/-P pin, with an open-collector-type signal 
source. You must hold the D/-P pin LOW for several 
microseconds for the LCA device to recognize the 
LOW level. Noise is unlikely to trigger a reconfiguration. 

As soon as the LCA device recognizes the LOW, it 
forces D/-P LOW until configuration is completed. The 
D/-P pin must go HIGH before it can initiate 
reconfiguration. 

Note: By using its internal pull-up resistor option, you 
can leave the D/-P pin unconnected and eliminate its 
need for any external passive components. 

Also: You can prevent the D/-P pin from going HIGH 
after configuration as an alternate technique for 
disablil}g_ the LCA reconf.!g_uration. 

The -PWRDWN pin is an active-LOW input that forces 
the LCA device into a low-power state. You can reduce 
Vccto 2 V after -PWRDWN is active. Entering the 
power-down state does not change or modify the 
configuration information stored in the LCA device; it 
merely reduces the device's overall power require­
ments by disabling its 1/0 pins and certain internal logic. 

Power-down resets all internal storage elements, that is 
CLBs and IOBs but not memory cells, and forces all 1/0 
pins to become high impedance. Internally, logic nodes 
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6.2.3 SLAVE 
MODE 
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that were driven by inputs to the LCA device prior to 
power-down are electrically isolated from their pins and 
forced HIGH. 

You must leave the -PWRDWN pin inactive (HIGH) 
during initialization and configuration; only assert it while 
D/-P is HIGH. If your application does not use the 
power-down feature, you should tie the -PWRDWN pin 
to Vee. 

Note: All other user-1/0 pins not involved in 
configuration have passive internal pull-ups to Vee 
during configuration. The passive internal pull-ups on 
all user-programmable 1/0 pins are removed after 
conf.!.9..uration is com_2Jeted. 

M2:M1 :MO = 1 :1 :1 configures the LCA device in ... 
Slave mode. This mode is simple and efficient because ~ 
it uses fewer pins than any other configuration mode. It 
serially loads the configuration bit stream into the 
device. 

During Slave mode configuration, each bit in the stream 
sequentially shifts into the DIN input on the LCA device 
with the rising edge of the clock applied to the CCLK 
pin, as illustrated below. 

Note: In the following figure, Tos is equivalent to 
T occ, which may appear in other timing diagrams in this 
manual, and T DH is equivalent to T cco. which may 
a ear in other timin dia rams in this manual. 
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CCLK 

DIN BIT(N) BIT(N+l) 

DOUT BIT(N-1) BIT(N) 

Slave Mode Configuration Timing 

Note: In Slave mode, the CCLK pin is an input, not an 
out ut as in other modes. 

After the configuration bit stream loads, completing the 
configuration process requires three additional clock 
cycles for a total of the length count plus three clocks. 

Slave mode configuration is especially appropriate 
in applications where a host processor configures the 
LCA device through an 1/0 port. 1/0 instructions can 
drive the CCLK and DIN pins, and the system easily 
meets the minimum data setup and hold times. 

Slave mode configuration is also useful in multiple 
LCA applications, where you string together the DIN 
and DOUT pins of several devices in a daisy-chain 
arrangement. This arrangement permits several LCA 
devices to share a common source of configuration 
data. 

In addition to the six non-programmable 
configuration control pins, Slave mode configuration 
uses five programmable pins: M2, DIN, DOUT, HOC, 
and -LDC. These become available as general­
purpose user 1/0 pins after configuration is complete. 
The 53 remaining programmable 1/0 pins are not used 
during configuration, as shown in the figure and table 
below. 
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+5V 

Voc 

MO MlPWRDN 
MICRO 

COMPUTER 
LCA 

CCLK OOlIT 

M2 
DI 

HDC 
02 

],(> -llJC 
PORT GENERAL 

PURPOSE 

~{ 
USERl/O 

D/-P 

RESET 

Slave Mode Pin Usage 

Slave Mode Pin Summanr_ 

FIXED, NON-PROGRAMMABLE PINS 

Pin Pin Number 
Name PLCC DIP 

MO 26 18 

M1 25 17 

CCLK 60 42 

-RESET 44 31 

D/-P 45 32 

-PWRDWN 10 7 

USER-PROGRAMMABLE PtNS 

Pin Pin Number 
Name PLCC DIP 

M2 27 19 

DIN 58 40 

DOUT 59 41 

HOC 28 20 

-LDC 30 21 

Pin 
T~e 

Input 

Input 

Input 

Input 

Output 

ln_Q_Ut 

Pin 
T_yp_e 
Input 

Input 

Output 

Output 

Ou~ut 

Value During 
Confi_g_uration Descr~tion 

HIGH Mode Select 

HIGH Mode Select 

<Clock> Configuration Clock 

HIGH Master Reset 

LOW Done/Program 

HIGH Power-down 

Value During 
Confi_g_uration Descr~tion 

HIGH Mode Select 

<Data> Configuration Data In 

<Data> Configuration Data Out 

HIGH Constant "1" Level 

LOW Constant "O" Level 
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6.2.4 PERIPHERAL 
MODE 
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In daisy-chained LCA applications, if the first LCA 
device is configured in Slave mode with a free-running 
CCLK clock source, you must synchronize the first 
device with the other devices in the chain. To 
accomplish this synchronization, you must ensure that 
-RESET is released with the proper setup and hold 
times relative to CCLK. This timing guarantees that all 
LCA devices in the daisy chain become operational 
simultaneously. The devices all begin configuration on 
the same clock cycle. You can easily ensure this timing 
by de-asserting -RESET with the falling edge of CCLK. 

M2:M1 :MO = 1 :0:1 enables a host processor to load 
the configuration bit stream into the LCA device via the 
data bus. In this configuration mode, you can think of 
the LCA device as a one-bit-wide peripheral device 
because you load the configuration bit stream into it 
one bit at a time. Typically, you tie data bus bit 0 to the 
DIN pin of the LCA device. The processor then shifts 
each successive bit of the data byte into data bus bit O 
between load instructions to the LCA device. 
Peripheral mode requires the next fewest LCA device 
pins for configuration, as shown below. 
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ADDRESS 
BUS 

DATA/COIITROL 
BUS/ BUS 

DO 
1----1DIN 

---OIWRT CCLK 

ADDRESS 
DECODE 

LOGIC 

LCA 
DOUT 

M2 

CSO HOC 

·--------a~:~ ~ { : 
D/-P 

RESET 

Peripheral Mode Pin Usage 

+SY 

GENERAL 
PURPOSE 
USERl/O 

As in Slave mode, Peripheral mode loads the 
configuration bit stream into the LCA device bit-serially. 
When the correct number of bits are loaded into the 
device, the D/-P pin goes HIGH to indicate that the 
configuration bit stream is loaded. Completing the 
configuration process requires three additional clock 
cycles after the bit stream is loaded, for a total of three 
clocks more than the length count. 

During Peripheral mode configuration, nine of the LCA 
device's programmable 1/0 pins function as 
configuration control pins in addition to the six fixed, 
non-programmable control pins. The next table 
shows the configuration pins used in this mode. 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6 

El 



Per!P_heral Mode Pin SummaJY 

FIXED, NON•PROGRAMMABLE PINS 

Pin Pin Number 
Name PLCC DIP 
MO 26 18 
M1 25 17 
CCLI< 60 42 
~RESET 44 31 
D/NP 45 32 
~PWROWN 10 7 

USER•PROGRAMMABLE PINS 

Pin 
Name 
M2 
DIN 

DOlJT 
Ncso 
~cs1 

CS2 
~WRT 

HOC 
~LDC 

.. 24 -.-

Pin Number 
PLCC DIP 
27 19 
58 40 
59 41 
50 35 
51 36 
54 37 
56 38 
28 20 
30 21 

Pin Value During Description 
T...IP_e Conf!_g_uratlon 
Input HIGH Mode Select 
Input LOW Mode Select 
Output <Clock> Configuration Clock 
Input HIGH Master Reset 
Output LOW Done/Program 
11'.!.Q_Ut HIGH Power-down 

Pin Value During Description 
T...IP_e Conf!_g_uratlon 
Input HIGH Mode Select 
Input <Data> Configuration Data In 
Output <Data> Configuration Data Out 
Input LOW Chip Select (Active LOW) 
Input LOW Chip Select (Active LOW) 
Input HIGH Chip Select 
Input <Strobed> Write Enable (Active LOW) 
Output HIGH Constant "1" Level 
OU!itUt LOW Constant "O" Level 

The following figure shows the timing relationship 
between the signals on these control pins. 

Note: In the following figure, Tos is equivalent to Toe. 
which may appear in other timing diagrams in this 
manual, and ToH is equivalent to Teo. which may appear 
in other timin_g_ di~ams in this manual. 
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-CSO, -CSl XXXA AXXXX~ AXXX 
CS2 'W V.XXXXY '<m 

-WRT 

DIN 

CCLK 
(0U1PUf) 

DOUT x BIT(N-1) x BIT(N) 

Peripheral Mode Configuration Timing 

The DIN and DOUT pins function the same in Peripheral ... 
mode as in Slave mode. Four other pins serve as bus m;.­
interface controls. Three of these pins, -CSO, -CS1, 
and CS2, become Chip Select pins, while the fourth 
pin, -WRT, becomes the Write Strobe input. The 
-WRT pin serves the same function in Peripheral mode 
as CCLK does in Slave mode. A pulse applied to the 
-WRT pin, while the three Chip Selects are asserted, 
shifts one bit of the stream into the DIN input of the LCA 
device. Each write strobe to a Peripheral mode LCA 
device also produces a CCLK output pulse that drives 
the CCLK inputs of the cascaded devices, shown 
below. The three Chip Selects (two active-LOW, one 
active-HIGH) map the LCA device to a specific 1/0 or 
memory address for configuration. 

Note: The nine pins mentioned above are available as 
general purpose, user-programmable 1/0 pins when 
confjg_uration is com_Qleted. 
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The other 49 programmable 110 pins are not used for 
Peripheral mode configuration. 
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6.2.5 MASTER 
MODES 

June 1988 

M2:M1 :MO = 0:0:0 configures the LCA device in 
Master Serial mode. 

M2: M 1: MO = 1 :0:0 configures the LCA device in 
Master Parallel-Low mode. 

M2:M1 :MO = 1:1:0 configures the LCA device in 
Master Parallel-High mode. 

In the Master configuration modes, the LCA device 
automatically controls loading the configuration bit 
stream. 

In the Master-Serial mode, the LCA device uses 
-RCLK to synchronize the serial input data that 
provides the configuration bit stream, shown in the 
figure below. 

Vee 

l 
GENERAL 
PURPOSE 
USERl/O 

PINS 

+5V 

MO Ml M2 PWRD 

OOUT 

HOC 

}~ 
LCA 

RESET 

CCLK 

DIN -----!DATA 

-RCLK CLK SERIAL 

CE MEMORY 

-LDCt----uOE 

Master-Serial Mode Pin Usage 
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In the Master Parallel-Low and Master Parallel­
High modes, the LCA device uses on-chip control 
logic to address an external, byte-wide memory device. 
This memory device, for example an EPROM, holds the 
configuration bit stream. The following figure shows a 
typical Master Parallel-Low mode configuration. 

+SV 

Vee 

t 
MO Ml PWRDWN 

oour CCLK 

M2 Al5 

HOC Al4 EPROM 

GENERAL Al3 (2Kx8 

PURPOSE Al2 OR LARGER) 

USERl/O 
All PINS 

1~ ill\ 
AIO AIO 

A9 A9 

AB AB 

A7 A7 D7 
RESET 

A6 A6 D6 
D7 AS AS D5 
D6 A4 A4 D4 
D5 A3 A3 D3 
D4 A2 A2 D2 
D3 Al Al DI 
D2 AO AO DO 
DI OE 
DO O'P CE 

DATA BUS 

Master Parallel-Low Mode Pin Usage 

For the byte-wide or parallel modes, 16 of the LCA 
device's 1/0 pins form an address bus. Eight additional 
1/0 pins form a unidirectional data bus. There are two 
types of byte-wide Master modes. 

• The Master Parallel-Low mode addresses 
memory in ascending sequence, starting at 
address zero, 0. 
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The Master Parallel-High mode addresses 
memory in descending sequence, starting at 
hexadecimal address FFFF. 

With this addressing flexibility, the configuration data 
can share space in a ROM or EPROM that typically 
stores a microprocessor program. 

After configuration begins, memory-read cycles 
continue until the correct number of bits are read. The 
D/-P pin goes HIGH to indicate that the configuration bit 
stream is loaded. 

Note: Bytes of data read from the external byte-wide 
memory are serialized on-chip, and are independent of 

lQ_l}y_sical byte boundaries. 

In addition to using the 16 address outputs and 8 data­
bus input pins, Master Parallel-Low and High modes 
also use several other signals. One is the -RCLK 
output signal, which is active LOW, yet goes HIGH while 
the address bus is changing state. This allows clocked 
EPROMs to store configurations. Other signals are the 
CCLK and DOUT outputs, both of which drive cascaded 
or daisy-chained LCA devices, as shown in the 
following figure. 
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The following table summarizes each pin's function in 
the Master-parallel modes. 

Master Low and High Modes Pin Summary 

Pin Pin Number Pin 
Name PLCC DIP Type 

Fixed, Non-Programmable Pins: 

MO 26 18 Input 
M1 25 17 Input 

CCLK 60 42 Output 
-RESET 44 31 Input 
D/-P 45 32 Output 
-PWRDWN 10 7 Input 

User-Programmable Pins: 

M2 27 19 Input 
DOUT 59 41 Output 
HDC 28 20 Output 
-LDC 30 21 Output 
-RCLK 57 39 Output 
AO-Axx 

LL~· 
D0-07 LLpm' 

June 1988 

Value During Description 
Configuration 

LOW Mode Select 
LOW (Master-LOW Mode) 
or HIGH (Master-HIGH Mode) 
<Clock> Configuration Clock 
HIGH Master Reset 
LOW Done/Program 
HIGH Power-Down 

HIGH Mode Select 
<Data> Configuration Data Out 
HIGH Constant 1 Level 
LOW Constant O Level 
<Strobed> Chip Enable Output 

<Address> Memory Address 

A15 A11 NJ 
3 5 6 4 2 1 48 47 46 45 44 43 

65 67 2 4 6 8 9 7 5 3 6866 64 63 62 61 

<Data> Memory Data 
D7 DO 
28 29 34 35 36 37 38 40 
41 42 48 50 51 54 56 58 

Although 16 address bits are generated in the Master 
parallel modes, not all 16 bits are required to configure a 
single LCA device. The extra addressing capacity of 
the LCA device lets it address multiple configuration bit 
streams in a single EPROM. Thus, you can configure 
several daisy-chained devices from a single source. 
The device illustrated above presents an example of a 
Master mode LCA device tied to a daisy chain of Slave 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 6 



~1~ 

"' 0 
0 
0 
en 
m 
:n 
iii en .-
0 
)> 

0 
m en 
15 z 
I 
)> 
z 
0 
tD 

8 
c.... ::>\ 
c: 0 
::J I 
(I) )> 

...... "'ti 
-I 

co m 
CX> :n 
CX> O> 

ADDRESS 
BUS 
(OUfPUTS) 

ADDRESS (N) X ADDRESS (N+l) -x ADDRESS (N+2) 

(OUTPUTS) 

DATABUS 

(INPUTS) BYTE(N) XXXXXXXXXIXXXXXXXXX BYTE(N+l) --.xxxxxxxxxx: BYTE(N+l) 

CCLI< 
(OUfPUTS) 

DOUf BYTE(N-1) BYTE(N-1) BYTE(N-1) BYTE(N) BYTE(N) BYTE(N) 

(OUTPUTS) BITS BIT6 BIT7 BITO BIT I BIT2 

LSB 

Master Mode Configuration Timing 

BYTE(N) 

BITS 

BYTE(N) 

BIT6 
BYIB(N) 

BIT7 

MSB 

BYI'E(N+l) 

BITO 

g. 3 
CD 0 
.... a. 
~3° CD 
-· r 
::J 0 c:: )> 
0 a. 
-. CD 
.... < 
:::; -· 
CD 2 
:s:: !" 
Ill 
fl) -I .... :::; 
~ CD 
0 = 
0 3 
::J -· 
~ :l 
co co 
c a. a or -·co 0 ..... 
::J Ill 
3 3 
0 O" 
a. CD 
CD -. ~ 

fl) 
:::; 
0 
~ 
fl) 



June 1988 

The Master mode device pauses briefly when 
powering-up, before it starts the configuration process. 
This ensures that it successfully configures daisy­
chained LCA devices. This power-up delay, which is 
substantially longer than, and unrelated to, the 
initialization delay for either Slave or Peripheral mode, 
allows variations in the LCA device's response to Vee 
rise times. It also ensures that all Slave mode LCA 
devices have time to become fully initialized and ready 
for configuration data. If your system requires longer 
delays to guarantee that all slave devices have been 
powered, you can use -RESET to extend the power­
up delay and to hold off the start of configuration. 

The next discussion describes the configuration of 
multiple LCA devices in more detail. 
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6.3 CONFIGURE 
MULTIPLE LCA 
DEVICES 

6.3.1 DAISY· 
CHAIN 
CONFIGURATION 

6-34 _2 __ _ 

Designs using multiple LCA devices can reduce 
configuration overhead by logically concatenating 
stored configuration bit streams. Using this option, you 
can configure LCA devices in daisy chains or in parallel 
mode, as discussed below. 

If one data source supplies the configuration bit stream 
for all devices in the daisy chain, then you can configure 
the first LCA device in the daisy chain in any config­
uration mode. After it is configured, you load config­
uration bit streams for all remaining devices in the chain 
using the pin-efficient Slave mode. When you cascade 
LCA devices in this way, you configure them one at a 
time in sequence, starting with the first device in the 
chain. You can configure virtually any length of daisy 
chained devices in this manner. 

You daisy-chain LCA devices by connecting 
the DOUT pin of one device to the DIN pin of 
the next device. Each device in the chain supplies 
data to the immediately following Slave mode device. 
As soon as a given device in the daisy chain receives its 
share of the configuration data, the balance of the data 
simply passes through it to configure the remaining 
devices in the chain. The DOUT pin is HIGH until the 
length count is reached and configuration is completed. 

Data passing through an LCA device from the DIN pin to 
the DOUT pin is subject to a one-clock-cycle resynch­
ronization delay. When configuration completes for all 
devices, both DIN and DOUT become available as 
general purpose 1/0 pins. The following figure illustrates 
how you can connect multiple LCA devices into a daisy 
chain. 
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The following figure shows the configuration timing for 
the previously discussed daisy-chained LCA device. 

i--- STARTOFCONFIGURATION 

I CONFIGURATION#! I CONFIG.#2 

BITS1REAM t SEENBYLCA#l--PREAMB--LE-&--.-CO-NFI-G.-' - ... C_O_NFI_G __ _ 

LENGTH COUNT FOR LCA #I FOR LCA #2 _ 

CONFIGURATION COMPLE'IED :1 
I CONFIG. #3 I CONFIG. #4 I 

1~~~#3 ll 1 ~~A#410-
BITS1REAM 

l CONFIG. l '~~#3u 1~~#410-SEEN BY LCA #2 1=~~1 FORLCA#2 

BITSlREAM n----1 tr SEENBYLCA#3 1=~~1 CONFIG. CONFIG. 
FORLCA#3 FORLCA#4 

BITSlREAM 
SEENBYLCA#4 1=~~1 u n ll 1~~#410-

NOTI!: HORIZONTAL DIMENSION (TIME) NOT DRAWN TO SCALE. 

Timing for Daisy-Chained LCA Devices (Using Four Device Examples) 

6.3.2 PARALLEL 
CONFIGURATION 

In multiple LCA applications, you have great latitude in 
designing the configuration logic. The serial daisy­
chain technique described above is just one method to 
program multiple LCA devices. 

Another possibility, which takes advantage of the bit­
serial nature of the Slave and Peripheral configuration 
modes, is simultaneous parallel configuration. You 
simultaneously configure multiple LCA devices, as 
shown in the Peripheral mode example below. Each 
write-cycle loads one bit into each device. 

Simultaneous loading reduces the total time required to 
configure a group of LCA devices, to the time required 
to configure a single device. You can further improve 
performance by adding hardware to configure this 
group via OMA transfers. For example, if a processor is 
available, you can simultaneously configure up to eight 
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LCA devices in parallel, from a single disk file containing 
the interleaved device configuration data. 

D7 DIN LCA#8 

06 DIN LCA#7 

05 DIN LCA#6 

~ DIN LCA#5 

D3 DIN LCA#4 

FROM 02 DIN LCA#3 
SYSTEM 

BUS DI DIN LCA#2 

DO DIN LCA#l 

{ -WRT 
INPUTS 

CO MANOS -cso 
TO ALL -CS! 

DEVICES 
CS2 

Parallel LCA Configuration Using Peripheral Mode 

The following discussion explains considerations for 
assigning multiple-function 1/0 pins. 
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6.4 ASSIGNING 
MULTIPLE· 
FUNCTION 
1/0 PINS 

6.4.1 POTENTIAL 
1/0 CONFLICTS 

8-38 
-2-

· After selecting a suitable configuration mode, you must 
assign input/output functions to specific 1/0 pins. 
Typically, you base the pin assignments on 

• logic block placement within the LCA device 
• common 1/0 clock constraints, and 
• 1/0 pin usage during configuration. 

You can also use user-definable 1/0 pins to configure 
the LCA device, but these pins require careful design. 
For applications that require many programmable 1/0 
pins, you should consider techniques for making 
efficient use of these dual-function pins, as discussed 
below. 

Good design practice dictates that no logic signal 
conflicts occur during either the configuration phase or 
the user-operation phase. However, these conflicts 
may not be obvious. The directional nature of some 1/0 
pins used for configuration changes when the LCA 
device completes configuration and enters the user­
operation state. Your design should guarantee that 
pins used as outputs during configuration do not 
conflict with other logic sources also tied to those pins, 
even when they are not used in a given application. 

The DOUT pin is an example of an output pin that is 
easily overlooked. During configuration, DOUT 
becomes an output, regardless of whether it drives the 
DIN pin of another LCA device. Other examples include 
the HOC and -LDC pins, which are driven HIGH and 
LOW, respectively, during configuration. A design 
should be able to tolerate activity on these and other 1/0 
pins used during configuration, without causing a 
problem if external circuits are also tied to these pins. 
You can usually prevent this problem by careful pinout 
assignment or use of isolation buffers. 
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The following cases describe three approaches that 
minimize potential signal conflicts. 

Case 1 : 1/0 pins used for configuration are 
dedicated to that function and are not used during 
operation. In this case, no signal conflicts occur. 
However, this approach reduces the number of 
available 1/0 pins. 

Case 2: 1/0 pins used for configuration are also 
used during operation. However, the signals are 
similar in input/output sense and the system 
suffers no adverse effect from transitions occurring 
on those pins during configuration. Isolation 
buffers are not required. 

• Case 3: 1/0 pins used for configuration are also 
used during operation. However, they either ... 
conflict in the input/output sense or have signal ~ 

transitions during configuration that can adversely 
affect other system logic. You can use three-state 
buffers to solve this problem, perhaps with the 
D/-P, -LDC, or HOC pins serving as the enable 
control for the buffers. 

You can eliminate, or significantly reduce, external logic 
components in an LCA-based design by watching for 
the above-listed cases and carefully assigning 1/0 
functions to actual pins. When faced with the conflicts 
described in Case 3, assign another pinout to eliminate 
the conflict. Usually, isolation buffers are not necessary 
because inputs and outputs are assigned without 
conflicts to the 1/0 pins used during configuration. 

As an illustration, assigning output functions to pins that 
are already used as outputs during configuration, such 
as address outputs in Master mode, might obviate the 
need for buffering those signals. In general, any 
sharing of similar pin functions during and after 
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6.4.2 UNUSED 1/0 
PINS 

6-40 
-2-

configuration might eliminate the need for external 
buffer logic. 

The following cases illustrate how careful pinout 
assignment can reduce the number of external logic 
components in LCA-based applications. 

Case 1 : When the LCA device is configured in 
Master mode, the final application can share pins 
with this mode's address and/or data buses. 

Case 2: When the LCA device is configured in 
Peripheral mode and interfaces to a CPU bus, the 
-WRT, DIN, -cso, -cs1, and CS2 pins are driven 
from this bus and, thus, can be assigned similar 
functions during configuration and final 
application. 

Case 3: When an application uses multiple LCA 
devices, and a signal passes from one device to 
another, you can assign the signal to the DOUT of 
the first device and to the DIN connection of the 
second device. 

An LCA pin programmed as an input and not connected 
to any external logic is considered a floating input. 
As with any CMOS device, floating inputs can provide a 
low-impedance current path from Vee to ground and 
result in permanent damage to the device. Thus, you 
should handle an unused LCA pin in one of the 
following three ways. 

1 . Define it as an output, and drive it with an 
internal signal, preferably a constant level O or 1. 

2. Define it as an input and either 
a. drive it externally with logic, or 
b. tie it to an external pull-up or -down resistor, or 
c. tie it to Vee or ground. 
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The relative advantages of defining unused pins as 
inputs or outputs depend on your specific application. 
You should try to minimize the following. 

Static and dynamic power dissipation 
Component count 
Risk of electrical damage to the device 
Future circuit board modifications 

3. The preferred method of treating unused 
1/0 pins follows. 

a. Externally leave the pin open or unconnected. 

b. Internally configure the pin as an output. 

c. Drive the pin internally with a constant level 
signal. 

Typically, you select a nearby, unused CLB output, 
define it as a constant 1 or 0, and tie that signal to all 
nearby unused IOBs. If internal routing congestion 
precludes routing this DC signal to an 108, your next 
best option is to drive the IOB's output pin with an 
accessible net. In this case, a net with the lowest toggle 
frequency is best because it results in less power 
dissipation. 

Diagnostic test-point outputs are another practical 
use for unused LCA pins. These test points can be 
very valuable for monitoring internal logic nodes that 
would otherwise be inaccessible. Test-point-outputs 
aid in circuit analysis and debugging. 
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6.5 CONFIGUR· 
ATION DATA 

This discussion explains the LCA configuration bit 
stream format and loading. 

The configuration data required to program the LCA 
device is a string of bits. The number of bits required to 
supply all the configuration information for a single 
device depends on the type of device, as outlined in 
the following table. For applications using multiple LCA 
devices connected as a daisy chain, the bit stream 
grows for each additional device. 

Note: This description applies only to the bit stream 
generated by the LCA development system for use in 
EPROMs. The XACTOR in-circuit emulator uses a 
different version of the bit stream that is longer; the data 
is not_Q_acked. 
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Configuration File Format Shown In Binary Equivalent 
M2064LCA 

1111 Dummy Bits. (4 Bits Minimum) 
0010 Preamble Code 
<24 Bit length count> Configuration Bit Stream Listing 
1111 Dummy Bits (4 Bits Minimum) 

O <Data frame #001> 111 "'\ 
O <Data frame #002> 111 
0 <Data frame #003> 111 160 Configuration data frames "' 

> (Each frame consists of 
a O start bit, a 71-bit data field, Repeated once 
and 2 or more dummy bits) for each LCA in 

O <Data frame #159> 111 the daisy chain 
O <Data frame #160> 111 .) 

1111 Postamable code (4 bits) .) 

M2018LCA 

1111 Dummy Bits (4 Bits Minimum) 
0010 Preamble Code 
<24 Bit length count> Total Number of Bit Stream Bits 
1111 Dummy Bits (4 Bits Minimum) 

0 <Cata frame #001 > 111 "\ 
0 <Data frame #002> 111 
O <Data frame #003> 111 196 Configuration data frames "' 

> (Each frame consists of: 
a O start bit, an 87-bit data field, Repeated once 
and 2 or more dummy bits) > for each LCA in 

O <Data frame #195> 111 the daisy chain 
O <Data frame #196> 111 .) 

1111 Postamable code (4 bits) .L 
Notes: 
1. Data bits as shown in the table are shifted into the LCA device with the left-most bit of each line 

in the table being entered first. The bit field containing the length count is shifted in with the 
most significant bit first. For master-mode applications, bytes of data read from the EPROM are 
internally serialized so that DO is sensed first, 07 last. Therefore, the first byte of the EPROM 
would read "0100 1111" in binary, or "4F" in hexadecimal notation. 

2. In multiple LCA applications where a daisy chain is used for configuration, the length count 
reflects the total number of clock cycles for all LCA devices configured from this one bit stream. 
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6.5.1 CONFIGUR· 
ATION FILE 
FORMAT 

The configuration bit stream begins with several logic-1 
level bits, termed dummy bits. These are followed by 
a 0010 preamble bit pattern, left-most bit first. 
Following the preamble are 24 bits that represent the 
length count. The magnitude of this count must 
equal or exceed a value that is two less than the total 
number of clock cycles required to shift in all bits in the 
bit stream, including the dummy bit. Length counts 
greater than this number (up to 224_1) are valid, and 
merely delay the D/-P pin from going HIGH to indicate 
the completion of configuration. All data associated 
with these additional clocks are ignored. 

Note: Configuration bit streams for several LCA 
devices connected in a daisy chain have only a single 
l_Qreamble and lel}IDh count. 

Within the LCA device, the length-count value is held in 
the length-count register and compared to a 
CCLK clock-cycle counter to determine when the 
configuration process is completed. When the value of 
the CCLK cycle counter equals the value in the length­
count register, and all required data frames are entered, 
configuration is done and the D/-P pin is released. 
Because all devices in the daisy chain start their clock 
cycle counters simultaneously, all LCA devices in the 
daisy chain complete configuration and become 
simultaneously operational. 

The value used for the length count is a function of how 
many LCA devices the bit stream must configure. For 
example, if there are three 2064 LCA devices 
connected in a daisy chain, the configuration bit stream 
is over 36,000 bits long. The length count is included 
only once at the beginning of the bit stream. Several 
additional cycles are required to compensate for the 
resynchronization delay of the data at each DOUT pin. 
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BIT STREAM 
SEENBYLCA#I 

BIT STREAM 
SEEN BY LCA #2 

BIT STREAM 
SEENBYLCA#3 

BIT STREAM 
SEENBYLCA#4 

The LCA development system computes the 
precise value of the length count and automatically 
enters it into the configuration file. The preamble and 
length-count bits are sensed by each LCA device at its 
DIN pin and immediately passed on to the next device in 
the daisy chain via the DOUT pin. Afterwards, however, 
each device in turn accepts its portion of the 
configuration bit stream before passing any 
subsequent data on to the next device. Refer to the 
following timing diagram. 

r STARTOFCONFIGURATION 

I CONFIGURATION#! ----PREAMBLE& CONFIG. 
LENGTH COUNT FOR LCA #I 

l 1~~1<:1'otNT I CONFIG. CONFIG. 0-
FORLCA#2 FORLCA#4 

((( 0-lr=1<:1'otml 
CONFIG. CONFIG. 
FORLCA#3 FORLCA#4 

(((( ~ 0-I PREAMBLE& I CONFIG. 

: LENGTH COUNT : FORLCA#4 

NOTE: HORIZONTAL DIMENSION (TIME) NOT DRAWN TO SCALE. 

Timing for Daisy-Chained LCA Devices (Example Using Four Devices) 

June 1988 

Within the configuration bit stream, data are presented 
in frames that begin with a start bit, 0, and end with at 
least two dummy or stop bits. Between the start and 
stop bits of each frame, there is a data field that defines 
your design's logic functions. The last frame is followed 
by a field of postamble bits. 

Note: AMD reserves the right to change the format, 
organization, and length of the bit stream used to 
conf)g_ure the LCA device. 
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6.5.2 A SAMPLE 
EQUIVALENT CON· 
FIGURATION FILE 

1111 
0010 
<24 BIT LENGTII COUNT> 
1111 

O<DATAFRAME#OOI> Ill 
O<DATAFRAME#002> Ill )" 
O<DATAFRAME#003> Ill 

0 <DATA FRAME# 159> 111 
O<DATAFRAME# 160> Ill 

.J 
1111 

This discussion assumes that a processor configures 
the LCA device in either Peripheral or Slave mode. The 
connections to the device, and the timing needed to 
perform the configuration, are discussed earlier in this 
chapter. Regardless of the configuration method, the 
bit stream data is the same. The bit stream for this 
example, created by MAKEBITS, is in a PROM file, 
formatted for Intel MCS86 compatibility. 

The following figure summarizes the equivalent data 
format of the PROM file. 

Recall: The information preceding the first data field is 
required to initialize the configuration logic on the LCA 
device with the proper bit-stream length. Each 
subsequent data field provides configuration 
information for a_Q_ortion of the device. 

Dummy Bits (4 Bits Minimum) 
Preamble Code 
Total number of Bit Stream Bits 
Dummy Bits (4 Bits Minimum) 

160 Configuration Data Frames 

(Each Frame Consists of: 
A Start Bit 
A 71 - Bit Data Field 
2 or More Dummy Bits) 

Postamble Code (4 Bits Minimum) 

-

-

Repeated for Each LCA 
Device in a Daisy Chain 

Typical Equivalent Configuration-Data Arrangement for the 2064 

8-48 
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The beginning of the sample PROM-format 
configuration file for a 2064 is shown next. 
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The required leading 1 s are in the low nibble, with the 
preamble in the high nibble. The bits are arranged this 
way to simplify the connections from an external PROM 
or ROM to the LCA device in Master mode. 

020000020000FC 
10000000i[OOF460EFFAF3F3FFF7C5FFFF7FD39CD7 
10001000A5EBBB5975F7FFFB3F7FFEFEFEB5FCFF6E 
10002000DFBD59AFBDBE4FFFFBFEFEDFBFBFAF5F01 
100030007F7FF7F7FF7FFFFDFDFFFBFFBFFFFFFFA8 
10004000CBD7FFB7FFFFFDFFFFBF3EFFFF7FFFEFF7 
10005000FFFFBDFFFFFFB7FF7BFFFFFFFFFFDFEFEE 
10006000FFFDFBFFFFFFDFFFFFFFFF9D7F7FFFFE29 
10007000FCFAFD7DEFEEFFFFFFFFFFFFFFFFF7FF45 
10008000FFFFFFFFFFFFF7F3FFFFFFFFFFFFFFFFC0 
10009000FEF9EFEFDFFFD7BFBFFFCFDFFFFFFFBFEF 
1000AOOOFFFFFF77EFEFDFDFDFBFBFBFFFF3FF7FB4 
1000BOOOFFCFBFDFFFFF9DFBFAB7F7F7FFFF7FEF33 
1000C000FAFEFEFDFD7D7B7BFBF7FFFFFFFFFFFBE5 
1000DOOOFBFB3FF3F7EFE9EFFFFFFFDBB9BD5D3B54 
1000E0005BFB77F7F7CE7777EFEFAED5D7D77B9F70 
1000F0009F3F3F3E373E3EDE7B67FFFEFEFEEEFF4C 

• • • 

Beginning of Typical Hex PROM File 

Note: The first byte of the data field, underlined in line 
2, is hexadecimal 4F. 

Although the LCA device's internal memory always 
loads serially, the Master-parallel modes read the 
configuration bit stream in parallel directly from an 
external memory device, such as a PROM. The data is 
serialized internally for loading into the memory cells. 
The PROM connections serialize the least significant bit 
of the byte, DO, first. Consequently, the order of the 
data bits in the PROM file is the reverse of the order in 
which they are read by the LCA device. When a 
processor loads the configuration data, the PROM file 
data is read one byte at a time and supplied to the 
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device one bit at a time, beginning with the least 
significant bit, DO. 

Consider the three bytes following the first byte, 4F, of 
the data field in the PROM file above. The hexadecimal 
OOF460 represents the 24-bit binary length count of 
000000000010111100000110, or 12038 decimal, 
which is the total number of clock cycles required to 
load this bit stream. Three additional clock cycles are 
required to complete the configuration and activate the 
device. The fifth byte, hexadecimal EF, contains the 
four pad 1 s, the start bit, and the first 3 bits of the 71-bit 
data field. 

Note: The LCA device inverts the incoming data, so 
the data bits stored in the memory cells are the 
com_.Q!ement of the i'!Q_ut data. 

Data supplied to the LCA device during configuration is 
shifted into a 71-bit shift register. When the shift 
register is full, it is written into the internal memory cells 
as a single 71-bit word. In the 2064, there are 160 
words of 71 bits, comprising a total of 11,360 bits of 
configuration data. Preamble data increases the total to 
12,038 bits. For the 2018, there are 196 words of 87 
bits, a total of 17 ,052 bits of configuration data. 

The next discussion explains read-back of the 
configuration bit stream. 
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Dummy bits 

Readback Control Timing 
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After you load and store the configuration bit stream, 
you can read the data back to confirm the 
configuration, as described below. 

With the read-back process, you extract the 
configuration bit stream from the LCA device. You can 
use the read-back data to verify that the contents of the 
memory cells have not changed since the last 
programming cycle. The read-back data contain the 
state of the CLB storage elements, such as flip-flops 
and latches, 108 storage elements, and memory cells in 
the logic blocks, as well as the state of the input 
connection point on each 110 block. 

The read-back process is accomplished without using 
user-programmable 1/0 pins. The data is read back ~ 

serially by CCLK, MO, and M1. The read-back process is ~ 
triggered by a LOW-to-HIGH transition on the MO/RT 
pin. On subsequent cycles of CCLK, internal 
configuration data are supplied on the M1/RD pin. The 
following figure illustrates the timing of this data read-
back process. 

Frame 1, Bit 2 'O' '1' Frame 2, Bit 2 

Frame 1, Bit 1 Frame 1, Bit 71 Frame 2, Bit 1 
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Individual data frames are read back in the same 
sequence as they were supplied to the device. In the 
read-back serial data stream, the individual bits are the 
true sense of the internally stored data bit. Recall that 
the bits in the programming stream are the 
complement of those stored internally. 

The initial data frame of the read-back data is preceded 
by a dummy clock cycle and two dummy bits with an 
unknown state. After the first data frame, there is a stop 
bit, 0, and a start bit, 1, prior to the next frame. After the 
last frame, there is a stop bit, 0. Even when additional 
CCLK cycles are applied after the last data frame is read, 
the M1/RD output is disabled. The pin is not driven 
after the final stop bit. 

After you read the configuration bit stream back, you 
can compare the read-back bit stream with the input 
data stream to determine whether the device is correctly 
configured. You must remove the input data dummy 
bits and start bits, and the read-back data start and stop 
bits, either as part of the programming and read-back 
process or after the read-back process completes. 

In the configuration and read-back bit streams, some of 
the memory locations do not correspond to actual 
memory cells in the device. These locations may be 
unused during both the configuration and the read­
back processes. They contain the storage elements 
and input block values during the read-back. You can 
extract and display the storage element and input block 
values with the XACTOR in-circuit emulator during 
debugging. To verify configuration, ignore these bit 
locations, because their contents might not be the 
same as the corresponding positions in the bit stream. 

By using the MAKEMASK command, you generate bit 
positions, which are ignored in the read-back data 
stream. You can convert the bit file generated with 
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MAKEMASK into a PROM file by using the 
MAKEPROM software. The MAKEPROM software 
converts the binary bit stream to hexadecimal format. 
The format for the final-mask PROM is now identical to 
the configuration bit-stream PROM. Each data bit in the 
read-back data stream that should be ignored is 
represented by a O in the mask PROM file. 

The following figure shows the beginning of a mask bit­
stream file for a 2064 that was converted from binary 
format into a hexadecimal PROM-format. 

Note: This file has the same preamble, length count, 
and pad bits for one LCA device as the standard 
conf!g_uration data file. 

020000020000FC 
100000004FOOF4608FEDEDDD8BDBBBB78770ECEF5D 
10001000DF1FDCBFBF3F9463FFFFFFE9FFFFFFB3BC 
100020001DFFFFFBD7FFF7FFAFED587FDFFEFEBEE2 
10003000FDFD2DC7FAFFFEFFFFFDFF7FB9E6FFF7CD 
10004000BFFFEFFF7FDB35FFBFFFF77FFFFFDFEE77 
10005000F1F3E7A7E7CFCFCF7EBFBC7C7979F9F288 
10006000F2FAFBF575EBEBEBD6D7D7DFA7A74B4F33 
100070004F979E9EFE3E3D5D7A7ABAF4F4F4D7ED3A 
10008000EDDADBDBB5B7B7BD7F7FF7FEFEEEFDFD3A 
10009000FDFDFFFFFFFFFFFFFFEFEFFBFBF5F7F7B6 
1000A000EBEF6F7FDEDFAFBFBF5F7F7FBB7B78F89B 
1000B000FOFOFOElE1ClDEEFEFDBDFDFB7BFBFFE65 
1000C0007E7FFFFEFEFEFDFDF5D7F9F9F2F3F3E5C5 
1000DOOOE7E7BDCECF979F9F2F3F3FEF757FBFFED6 
1000E000FE7EFDFD7DEFFBFBF5F7F7EBEFEF7FFFOE 
1000F000FFEFFFFFDFFFFFFFFBFFFFFFFFFFFFFF44 

• • • 
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To use the mask information, 

strip off the preamble and length count 
information, and 

extract the appropriate data bits for each data field. 

Because the PROM format has the data bits arranged 
with the least significant bit in the DO position, they are 
reordered in the correct sequence, as shown in the 
figure below. For example, you could write a simple 
program to create the mask bit fields for each data field. 

Note: You can verify the end of one data field, and the 
beginning of the next, by detecting the dummy bits and 
the start bit between each field. 

FIRST BYTE SECOND BYTE 

FO:i<;.~ ID71D61Ds ID41 D3 ID2ID i I Doi D'71 D'6 lD'5 lD'4 l D'3 lD'2 I D'l ID·ol ... 

RE~g:~~ IDolD i ID2I D3 I D4 ,D5 ,D6 ,D7 I D'OID'l l D'21D'3 I D'4 ID'5 ID'6 ID'7 I 

Data Bit Sequence 
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METASTABILITY OF LCA 
FLIP· FLOPS 

This chapter discusses flip-flop metastability in an LCA 
design. 

The discussion on flip-flop metastability, 7.1, 
defines the topic and explains the importance of 
considering it when implementing LCA-based 
designs. 

The discussion on LCA flip-flop error probability, 
7.2, analyzes the flip-flop error probability due to 
metastability. 

The discussion on minimizing error probability, 7.3, 
describes the flip-flop error reduction features and 
provides some design techniques to minimize the 
error probability. 

Note: The following discussions on metastability in 
LCA-based designs merely indicate some of the 
considerations you should take into account during 
your design cycle. They are not intended to be 
exhaustive or definitive. 
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Metastability is defined as an output state between a 
valid logic HIGH and LOW for any digital device. It can 
occur for registers or latches when certain parameters, 
such as data setup and hold times, are violated. Data at 
the input of a D-type register must be established as a 
valid logic LOW or HIGH at some specified time tsu 
(setup) before applying a clock input to that register. 
This data must also be maintained or held at the input 
for a specified time tH (hold) after the clock pulse has 
been removed. 

In a completely synchronous system, the clocking of 
data through registers can be synchronized to a clock 
edge that is generated from a local source, such as an 
on-board crystal oscillator. In this case, the timing is 
predictable and setup and hold times are adhered to 
when all system parts are connected. In this type of 
system, no metastability problems should occur. The 
designer can calculate propagation-delay values from 
published component data and ensure that no timing 
parameter violations occur. 

With two independently clocked systems, it might not 
be possible to synchronize the clock frequencies or 
events, so when data are passed from one system 
output to the input of the next, setup and hold times 
might be violated for registered inputs to flip-flops. If 
the setup and hold time requirements are small relative 
to the sampling clock period, the probability of violating 
these parameters is not very high. It further decreases 
with a decrease in the sampling clock frequency. Also, 
if the setup and hold times can be reduced by using 
higher performance devices, then the probability of 
violating these parameters is further diminished. 
However, a small probability of a metastable state would 
still exist. 

In digital circuits, valid data input to registers or latches 
are set either LOW or HIGH. The voltage level is 
dependent on the technology. If this valid condition is 
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set up prior to a clocking edge, the data is clocked to 
the register output and no metastable condition arises. 
A problem could occur if, at the time of sampling, the 
input signal is in transition. 

In an LCA device, the following valid conditions can 
occur for TTL and CMOS circuits. In both cases 
Vee= 5 V 

TTL logic HIGH 
TTL logic LOW 
CMOS logic HIGH 
CMOS logic LOW 

2.0 V to 5.0 V 
0.0 V to 0.8 V 
3.5 V to 5.0 V 
0.0 V to 1.0 V 

For a TTL circuit, any input between 0.8 V and 2 V 
sampled by a clock edge is neither a LOW nor a HIGH, 
and represents a violation of hold and setup times. The 
condition of the output can not be guaranteed to follow ... 
a valid logic state because none was sampled at the ~ 
input. 

The typical gate or inverter is essentially a high-gain 
linear amplifier circuit. Logic HIGH or LOW outputs 
represent saturation conditions; further input drive 
does not achieve a corresponding output change. 

If, during sampling, the input is transitioning between 
two logic states, the register or latch could be operating 
as a linear high-gain amplifier. The ability to recover from 
a metastable state is then dependent upon the 
characteristics of the logic device, which is not 
operating in a valid mode. The gain/bandwidth product 
of the device in this mode influences the device 
behavior and determines the output recovery from a 
metastable condition. 

Attempting to characterize the metastability of LCA 
devices is difficult because the timing associated with 
different interconnections varies from application to 
application. Setup and hold times to register and gate 
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combinations depend on the routing resources used, 
and these depend on the CLB/108 layout and 
configuration. The best way to test for metastability is to 
test the completed design, deriving metastability data 
empirically. 

One critical element in examining metastability is the 
gain/bandwidth product, which gives rise to a loop­
delay in the system. Loop-delay is the time required 
for a signal at any point in the flip-flop to propagate 
through the flip-flop circuit and reinforce the signal at its 
starting point. The following figure shows one type of 
flip-flop with the loop delay path indicated. 

CLOCK 

DATA c 

Q Q 

LOOP DELAY= (A TO B) + (B TO C) + (C TO A) 

Loop Delay in a Typical Flip-Flop Implementation 

A change in the state of a node in the flip-flop, for 
example, a change at the input, requires one loop delay 
for the flip-flop to hold the new state. In a metastable 
condition, an internal node, typically in the input stage, 
attains an intermediate level because the data signal 
changes while the clock is changing. This intermediate 
level, neither 1 nor 0, propagates around the loop and 
forces the output into a metastable state. The flip-flop 
only achieves a stable (1 or 0) output when a node at 
the intermediate level becomes 1 or 0, and this new 
value then propagates through the loop to force the 
output out of the metastable condition. Movement of 
internal nodes away from the intermediate level occurs 
randomly and cannot be predicted or guaranteed. 
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Another way to illustrate flip-flop metastability is to plot 
the worst-case clock to flip-flop output delay versus the 
delay from stable data to the clock edge. The figure 
below shows this type of plot for a typical flip-flop. 

CLOCK-TO­
OUTPUT DELAY 

NORMAL DELAY 

< CRmCAL 
TIME 

l 
I 

CRIDCAL 
TIME 

>CRIDCAL 
TIME 

CLOCK-TO-DATA TRANSIDON TIME 

Flip-Flop Output Critical Timing 

As the data transition approaches the clock edge, the 
stable output delay begins to increase. For any flip-flop 
type, there is a finite probability that the loop delay x 
at the critical data-to-clock relationship can be infinitely 
long. 

The next discussion explains how error probability is 
determined; it also provides some sample calculations. 
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7 .2 LCA FLIP· 
FLOP ERROR 
PROBABILITY 

The two critical issues in examining metastability 
characteristics of flip-flops in any system are the 
probability of an error based on a metastable condition, 
and the methods of minimizing the error probability. For 
logic implemented with LCA devices, you have some 
additional control. 

The probability of a flip-flop passing through a 
metastable region can be calculated as follows.1 

I Probability = 1 _ e(-settling time/loop delay) 

The probability of a flip-flop remaining in the metastable 
region is then calculated as follows. 

I Probability of Error = e(-settling time/loop delay) 

For the circuit shown and analyzed below, the settling 
time is the difference between the worst-case delay 
from a clock edge clocking the flip-flop in CLB 1 and the 
output propagating to the flip-flop in CLB 2; this 
includes the setup time and the delay from one clock 
edge to the next. This maximum delay path produces 
the lowest settling time with the highest probability of 
error. 

G.R. Couranz and D.F. Wann, Theoretical and Experimental Behavior of Synchronizers Operating 
in the Metastable Region, IEEE Transactions on Computers, Vol c-24, No.6, June 1975. 
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CLB#l CLB#3 

F 

D D 

CLB#2 

CRITICAL 
INIBRCONNECT 

F 

D 

Examining a specific case where the 2064 has a worst­
case flip-flop loop delay of 2 ns, the critical timing 
parameters required to estimate the error probability for 
a metastable condition are shown below. 

Flip-flop clock to output delay 
Interconnection delay 
Flip-flop setup time 
Flip-flop loop delay 
Clock Period j_1 O MHzj_ 

20 ns 
15 ns 
12 ns 

2 ns 
100 ns 
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For this example, the error probability is calculated as 
follows. 

P [Error] = e(-(100-(20+ 15+ 12)]/2) 
= e(-53/2) 
= 3.1x10-12 

This value represents the probability of a flip-flop 
remaining in a metastable region beyond the given 
settling time for a single event. For multiple 
events, which represent a repetitive clock sampling of 
an asynchronous signal, the time between failures 
obeys the following relationship. 

Failures Per 
Time Period = Probability per Event 

X Events _Q_er Time 

The time between failures is, then, the inverse of the 
failures per time-period value. For this example, 

Failures per 
Time Period 

Time Between 
Failures 

= (3.1x10-12) x (1x107) 
3.1x10-5 

= 1I(3.1X10·5) 
= 3.3X104 
= 8.96 hrs 

This number indicates a very short time between errors 
for sampling an event at 1 O MHz. This is a worst-case 
calculation because it is based on an assumption that a 
potential error condition exists for each clock edge. In 
a real system this is not the case. When the input clock 
edge is not synchronized with the arrival of data at the 
input of the same register, a violation of setup and/or 
hold times can occur. A metastable condition can result 
under these circumstances. The statistical probability of 
these violations, however, is relatively small. 
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The previous type of calculation indicates several ways 
of improving flip-flop performance. First, the AMO LCA 
devices have incorporated error reduction features. 
Second, there are several design techniques you can 
follow to increase the error-free performance of the flip­
flops in your LCA design. These are explained in the 
next discussion. 
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There are several features and design techniques that 
can be used to minimize the error probability due to 
metastability in LCA-based designs. These are 
summarized in the following discussions. 

7.3.1, Reducing Errors 
7.3.2, Using Direct Interconnection 
7.3.3, Changing the System Clock Rate 
7.3.4, Using a Faster Device 

7.3.5, Summary 

One critical factor in flip-flop metastability is the length 
of the loop delay. As shown in the previous error­
probability calculations, the longer the loop delay, the 
higher the error probability. 

Flip-flops in the LCA 2000 family are specifically 
designed to reduce the loop delay to a minimum, thus 
minimizing the probability of a metastability-induced 
error. 

Another critical factor in determining the metastability 
characteristics of flip-flops in a device is the loading of 
the flip-flop. In virtually all other technologies, 
particularly gate arrays, the flip-flop outputs can be 
loaded differently depending on how the user 
connects the devices. This variation in loading can 
significantly complicate the analysis of the flip-flop's 
metastability behavior. 

Note: In LCA devices, all flip-flops are immediately 
followed by a buffer, and then by the possible user­
programmable connections. The buffer isolates the flip­
flop from any variations in loading that could induce 
metastability. This flip-flop isolation significantly 
simplifies analysis of metastability effects in the system 
b standardizin the LCA fli -flo out ut loadin . 
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If you use direct connections in the critical-path area of 
the above example, you can eliminate the 15 ns delay 
for that interconnection. The effect on the error 
probability is calculated as follows. 

P [Error] eH1 oo - (20 + 12))12) 

e(-68/2) 

1.71x10-15 

For the same 1 O MHz clock the error probability results 
in a significantly reduced mean time between failures 
(MTBF). 

MTBF 1/(1.71x10-15) x (1x107) 
5.83 x 107 
675 deys 

Refer to Chapter 5 of this manual for more information 
on direct connections. 

If you reduce the clock rate of the sampling, you can 
dramatically reduce the calculated failure rate. If, for 
example, you reduce the clock rate from 1 O MHz to 5 
MHz, you can analyze the error probability with the 
following parameters. 

Clock to flip-flop output 
Interconnection delay to second block 
Setup time for second flip-flop 
Flip-flop loop delay 
Clock Period _(_5 MHzl 

20 ns 
15 ns 
12 ns 
2 ns 

200 ns 
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The error probability is calculated as follows. 

P[Error] = e(-[200-(20+ 15+ 12)]!2) 
= e(-153/2) 
= 5.98 x 1 o-34 

And for a 5 MHz clock rate, the MTBF is calculated as 
follows. 

MTBF = 1/(5.98 x 10-34)(5 x 106) 
3.35x1026 
3.87 X 1021 days, or 

= approximate_!y_ 1 .1 X 1o19 _years 

If you use a faster LCA device, you improve all device­
related performance parameters. Moving to the next 
higher LCA speed grade results in the following critical 
parameters. 

Flip-flop clock to output delay 
Interconnection delay 
Flip-flop setup time 

15.0 ns 
7.0 ns 
8.0 ns 
1.5 ns Flip-flo_Q_ IOO_Q_ delay_ 

If the clock period remains the same, at 100 ns, then the 
new error probability is calculated as follows. 

P [Error] eH1 oo-(15+7+8)]/1.5) 
= e(-46.667) 
= 5.4 x 10-21 

For the 1 O MHz clock rate, this error probability results in 
a new MTBF, as calculated below. 

MTBF 1/(5.4 X 10-21)X(1 X 107) 
= 1.85X1013 

2.14X108 days, or 
approximate!Y_ 563 _years 
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As shown by these examples, the probability of a flip­
flop failure, based both on a metastable condition and 
on the subsequent system MTBF, can vary widely and 
depends on several factors. When using the LCA 
device to implement system-level functions, you have 
significant control over some of the critical parameters 
necessary to provide sufficient immunity to metastable 
conditions. 
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TESTING AND DATA 
INTEGRITY 

This chapter discusses the testing and data integrity 
features of the AMO LCA device. 

The discussion on LCA testability, 8.1, explains 
the built-in LCA test features. 

The discussion on data integrity, 8.2, explains the 
special LCA memory cell design that provides a 
high level of data integrity in the LCA device. 

AMD is committed to providing LCA devices of the g 
highest quality and reliability for its customers. Quality is 
best achieved by taking the necessary steps to achieve 
zero defects. 

Comprehensive testing ensures that every LCA device 
is free of defects and that it conforms to data sheet 
specifications. The LCA memory cell design ensures 
the configuration integrity. Careful memory cell design 
also minimizes the effects of alpha-particle emission and 
electromagnetic radiation on the LCA device's 
operation. 
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8.1 LCA DEVICE 
TESTABILITY 

8.1.1 TEST· 
ABILITY FEATURES 

a.1.1.1 EPLDs 

As quality consciousness has grown among 
semiconductor users, awareness of the importance of 
semiconductor testability has increased among 
manufacturers. When manufacturers test standard 
components, including memories and microprocessors, 
they use carefully developed processes that 
exhaustively test the function and performance of each 
part. 

For reasons explained below, most application-specific 
ICs (ASICs) cannot be comprehensively tested. 
Without complete testing, defective devices can 
escape detection and be installed in a system. In the 
best case, the failure is detected during system testing 
at a high cost. In the worst case, the device failure is 
detected only after shipping the system to a customer. 

The AMO LCA device has intrinsic testing 
advantages, which make it easy to test the 
device more comprehensively than is 
possible with other ASICs. The following 
discussion illustrates these advantages through a 
comparison with two other types of ASICs, Erasable 
Programmable Logic Devices (EPLDs) and gate arrays. 

To test all of the EPLD's memory cells and logic paths, 
you must program it with many different patterns. This 
testing requires expensive quartz-lid packages and 
many lengthy program/tesVerase cycles. To save time 
and reduce costs, you usually abbreviate this process 
and, therefore, you do not fully test the EPLD. 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 8 

June 1988 



8.1 .1 .2 Gate 
Arrays 

8.1.1.3 LCA 
Devices 
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Testing a gate array is similar to testing an EPLD. 
Because each gate array is programmed with individual 
metal masks, you must test the part with software 
tailored to the specific design. Each new gate array 
design requires new test software and test vectors. 
And each time you create a new design, you must 
incorporate sufficient controllability and observability for 
comprehensive testing. Therefore, the design 
schedule for a new gate array device must include time 
to incorporate testability features, develop test vectors, 
and specify test software. 

Software to test a complete gate array requires 
comprehensive fault simulation and test grading, and 
significant amounts of expensive computer time. It 
typically requires a series of time-consuming and 
expensive test iterations to reach 80% fault coverage B 
for a typical design; the cost of greater coverage is often 
prohibitive. In production, many gate array vendors 
either limit the number of test vectors you can use, or 
charge for using additional ones. 

When you design a gate array, you can improve your 
design's testability using special, testable, storage 
elements, called scan cells, in place of flip-flops and 
latches. Although using scan cells can reduce the 
production testing costs, it typically adds about 30% 
more circuitry, decreases performance by up to 20%, 
and increases design time. 

LCA devices are designed for ease of 
testing. The testability of an LCA device is similar to 
that of other standard products, including 
microprocessors and memories. LCA design and test 
strategies, discussed below, make LCA devices highly 
testable. 
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8.1.2 TESTING 
PROCEDURES 

The LCA design strategy has the following features. 

It incorporates testability because you can 
configure each functional node and route it to 1/0 
pads. 

It permits repeated exercise of the part 
without removing it from the tester, because only a 
short time is required to load new configuration 
data. 

It produces a standard product that 
guarantees that every valid configuration works. 

The LCA test strategy is characterized by the following. 

It reads and writes all bits in the configuration 
memory, as in memory testing. 

It uses an efficient parallel-testing 
scheme that fully tests multiple configurable logic 
blocks (CLBs) simultaneously. 

It is exhaustive because all CLBs are identical. 

As an LCA device user, you can better appreciate the 
LCA test procedures by examining each of the testing 
requirements listed below. 

LCA testing exercises and verifies all configuration 
memory bits using a read-back mode. 

LCA testing detects all possible process-related 
faults, such as short circuits. The LCA design lets 
you drive and observe every metal line directly 
from the 1/0 pads. 

LCA testing configurations provide good 
controllability and observability. The 
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controllability and observability requirements are 
feasible for LCA devices because all CLBs can be 
connected to 1/0 pads. This LCA characteristic 
makes CLBs easy to control, by testing 
different input combinations, and easy to 
observe, by comparing the actual outputs with 
expected values. 

The test features and procedures described above 
indicate that the LCA device was carefully 
designed to be 100% testable. This AMO test 
strategy uses numerous design configurations to fully 
test the LCA device. Furthermore, this strategy 
reduces your design time because testability 
requirements need not be considered during the 
design cycle. 

The AMO LCA device frees you from the burden of B 
developing a test program and generating test vectors. 
Also, it eliminates any questions about fault coverage 
and the need for fault grading. 

Testability is very important in quality-sensitive 
applications. You can build significant added-value into 
your design by using the higher-quality levels of an 
LCA-based implementation. 

The next discussion focuses on the integrity of data in 
an LCA device. It explains the various aspects of 
integrity, such as the robustness of the memory cells 
that contain the configuration bit stream, the effect of 
alpha particles, electrostatic discharge, latchup, 
radiation, and high temperature on the reliability of an 
LCA device. 
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8.2 DATA 
INTEGRITY 

8.2.1 RELIABILITY 

The high level of data integrity in the AMO LCA device is 
based on the specially designed static memory cells 
that store the LCA configuration data. All characteristics 
that ensure reliable operation are designed into the 
memory cells. These characteristics are described in 
the discussions below. 

8.2.1, Reliability 
• 8.2.2, Alpha Particle (Soft Error) Sensitivity 
• 8.2.3, Electrostatic-Discharge Protection 
• 8.2.4, Latchup Protection 

8.2.5, Radiation Hardness 
8.2.6, High-Temperature Performance 

An important aspect of the LCA device's reliability is the 
robustness of the static memory cells that store the 
configuration data. 

The basic LCA memory cell shown below is a special, 
single-ended, five-transistor memory element and not 
the typical, six-transistor, memory cell. Eliminating the 
sixth transistor, which usually functions as a pass 
transistor for the complementary output bit, technically 

. slows down the memory cell. However, using the five­
transistor, memory cell achieves a higher circuit density 
with no impact on normal LCA device operation, as 
explained below. 
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During normal operation, LCA memory cell outputs are 
fixed; they hold the LCA configuration. Because these 
outputs do not change, the slower transition time of the 
five-transistor configuration does not impact normal 
operation of the LCA device at all. 

The LCA memory cell outputs do change during the 
configuration write and read-back operations, so using 
the five-transistor cell slows down these operations. 
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READ OR 
WRITE 

DATA 

However, the write and read-back operations have no 
impact on LCA performance during normal operation, 
so the LCA user gets more functionality per unit area 
with no noticeable performance impact. 

The design of the basic memory cell also ensures the 
LCA user of high data integrity in a noisy environment. 
Consider the following three situations. 

Normal operation 
Write operation 
Read-back operation 

Q CONFIGURATION 
CONTROL 

Configuration Memory Cell 

In normal operation, the data in the basic memory 
element does not change. Because, as shown in the 
above figure, the two circularly linked inverters that hold 
the data are physically adjacent, supply transients result 
in only small, relative, voltages differences. Each 
inverter is actually a complementary pair of transistors; 
so a low impedance path exists to the supply rail 
whether the output is HIGH or LOW. This memory cell 
configuration results in extremely high-noise immunity. 
Power supply or ground transients of several volts have 
no effect on the stored configuration data. 

For the write operation, the transistor driving the 
memory cell bit line is carefully designed so it can easily 
override the output of the feedback inverter whenever 
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the data to be written to the memory cell is the opposite 
sense of the stored data. The reliability of the write 
operation is guaranteed within the manufacturing 
process tolerances. 

During a read-back operation, the bit line, which has 
a significant amount of parasitic capacitance, is 
precharged to a logic 1 . The pass transistor is then 
enabled by driving the word line HIGH. If the stored 
value is 0, the line is discharged to ground. Reliable 
reading of the memory cell is achieved during a read­
back operation by reducing the word line HIGH level to a 
level that ensures that the cell is not disturbed. 

The CMOS static memory cell design is insensitive to 
alpha-particle emissions. The following tests verify that 
it achieves this design goal. 

A 1-microCurie alpha-particle source (Americum 241) 
was placed in direct contact with the top surface of a 
2064 die, allowing the die to capture at least 40% of the 
emissions from the radiation source. Next, the following 
tests were performed. 

1 . A complex pattern containing roughly 50% logic 1 s 
was loaded into the 2064, at operating conditions 
of 25oc and 5.0V. 

2. A pause of variable duration was allowed. 

3. The entire contents of the 2064 were then read 
back and compared with the original data. 

To ensure that the test setup would detect errors, 
validation tests were performed before and after the 
alpha particle tests, with the following results. 
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Time Read-back Total Time 
Test Duration (sec) Time (sec) Exposed (sec) Errors 

1 1 0 70 80 0 
2 120 70 190 0 
3 300 70 370 0 
4 1500 70 1570 0 

Total 1920 280 2210 0 
Validation Tests 

The following discussion analyzes this alpha particle 
testing. A 1-microCurie source emits 3. 7x1 o4 alpha 
particles per second. Assuming that 40% of these are 
captured by the 2064 during this experiment, this rate 
corresponds to 5.3x1 o7 alpha particles per hour. 

The alpha-particle-emission rate of the molding 
compound used by AMO is specified to emit fewer than 
0.003 alpha particles per square centimeter per hour 
(alpha particles/cm2/hr). The 2064 die's surface area is 
less than 0.5 cm2; thus, less than 0.0015 alpha particles 
per hour are captured by the 2064 in normal operation. 
Therefore, the error rate acceleration in this test equals 

5.3 x 107 particles/hour 
3.6 x 1010 

0.0015 particles/hour 

The 0.61 hours of test time without error correspond to 
2.2x101 O hours, or 2.5 million years error-free 
operation. 

Most ceramic packages are specified to emit less than 
0.01 alpha particles/cm2/hr, which is about three times 
more than the plastic compound. For a 2064 in a 
ceramic package, this still results in almost one million 
years of error-free operation. 

The highest rate of alpha particle emission comes from 
the sealing glass used in cerdip packages and some 
ceramic packages {frit lids). For instance, KCIM glass 
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emits about 24 alpha particles/cm2/hr. Low alpha 
glasses are specified at 0.8 alpha particles/cm2/hr. 

Because the glasses are used only for the package 
seal, they present a relatively small emitting cross 
section, less than 0.1 cm2 square, to the die. 
Therefore, a low-alpha glass would cause fewer than 
0.8 alpha particle hits per hour. The acceleration factor 
is then 6.6x1 as, which translates to about 46,000 years 
of error-free operation. 

Clearly, the AMO LCA memory cell design ensures that 
soft errors caused by alpha particles can be ignored. 

Electrostatic discharge (ESD) protection for each LCA 
pad is provided by a circuit that uses forward- and 
reverse-biased distributed resistor-diodes, as shown in 
the following figure. 

Input Protection Circuitry 

Also, the inherent capacitance integrates any current 
spikes to give the diode and breakdown protections 
sufficient time to provide a low-impedance path to the 
power-supply rail. The LCA geometries and doping 
levels are optimized to provide sufficient ESD 
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8.2.4 LATCHUP 
PROTECTION 

8-12 
-2-

protections for both positive and negative discharge 
pulses. 

Latchup is a condition in which parasitic bipolar 
transistors form a positive feedback loop; this allows the 
current to quickly reach levels that permanently damage 
the device, as shown in the foilowing figure. 

SCRModel 

Latchup is caused by the formation of parasitic bipolar 
transistors around two adjacent CMOS transistors. A 
Semiconductor Controlled Rectifier (SCR), or thyristor, 
is formed, as shown in the diagram of the SCR model. 
The net effect of latchup is the static short circuit 
created from VDD to Vss as the positive feedback 
causes both parasitic transistors to turn on. The 
phenomenon of latchup can cause permanent damage, 
because the short circuit current overheats and 
ultimately, destroys the CMOS gate. 

AMO uses techniques based on doping levels and 
circuit placement to avoid latchup. The cross section of 
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CMOS Input Circuit Layout 
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the transistor shown below illustrates some of these 
protection features. 

First, reducing the gain of the parasitic transistors 
protects against latchup. Because the overall loop gain 
is minimized, the likelihood of positive feedback is 
reduced. This is achieved by increasing the width of 
the transistor bases, which lowers the parasitic 
transistors' beta. 

Second, the butting of contacts effectively shorts the 
N+ and P+ regions of both wells, so a forward bias VaE 

cannot be established to start the two parasitic 
transistors' conduction. 

Finally, a guard ring surrounds each well. The N+ ring 
region is taken to VDD and the P+ ring region is taken to 
Vss. This acts as a reversed-biased diode between the 
two CMOS transistors, effectively isolating them. 

COLLECTOR 
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A preliminary estimate of the circuit's hardness to 
withstand ionizing radiation ranges from 10,000 to 
100,000 rad SI. This estimate was reached with Sandia 
National Labs and is based on the design and layout 
parameters of the LCA device. 

AMD guarantees parts to perform within the 
specifications of the datasheet. Furthermore, AMD has 
performed extensive high-temperature life testing at 
12s0 c with excellent results. 
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NONHERMETIC PACKAGE 
RELIABILITY 

This chapter describes the nature and purpose of the 
various reliability tests that AMO performs on finished 
devices. 

The overview of AMD's testing software, 9.1, 
explains the applied testing standards. 

The discussion on AMD's test procedures, 9.2, 
describes the tests performed for die qualification, 
package integrity, and assembly qualification. 

The chapter summary, 9.3, shows test data from 
the initial qualification tests. 
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9.1 TESTING 
OVERVIEW 

AMO is committed to delivering the highest quality, 
most reliable, programmable gate arrays possible. A 
strong quality assurance and reliability regimen begins 
at the initial stages of design and carries through to final 
shipment. The ultimate proof of AMO's success is in the 
performance of the LCA device in your applications. 

AMO uses an extensive, continuing reliability-testing 
process to predict the field performance of the LCA 
device. These tests provide an accelerated means of 
emulating long-term system operation in severe field 
environments. From the performance of the devices 
during these tests, AMO predicts actual field 
performance. 

AMO performs qualification testing of nonhermetic 
devices to demonstrate the reliability, both of the 
device die and of the materials and methods used in 
assembling the device. AMO testing methods are 
derived from, and patterned after, those specified in 
MIL-ST0-883. However, AMO does not intend the MIL­
ST0-883 reference to imply that nonhermetic products 
comply with those requirements. 

These test methods are recognized industry-wide as 
stringent tests of reliability. The tests are commonly 
used for non-military-grade semiconductor devices, as 
well as for fully compliant military-grade products. 

The following discussion describes the various test 
procedures used. The summary shows the qualification 
test data for the 2064/2018 devices. Upon request, 
AMD's Quality Assurance and Reliability 
Department will make updated summaries available. 
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9.2 TEST 
PROCEDURES 

Name of Test 
1. High-Temperature Life 

2. Biased Moisture Life 

3. Unbiased Pressure Pot 

4. Temperature-Cycling 

5. Resistance to Solvents 

6. Solderability 

7. Lead Integrity . 

The following table summarizes the reliability testing 
sequence for nonhermetic logic cell array device die­
package qualification. 

Test Conditions 
•1000 hr min. equivalent at 
temperature = 1250 C 

•Max, rated operating voltage 
•Life test circuit equivalent to 
MIL-STD-883 

•1000 hr min. exposure 
·T=85oc, RH=85% 
•Max. rated operating voltage. 
•Biased-moisture life circuit 
equivalent to MIL-STD-883 

•168 hr minimum exposure 
•T = 1210 C, P = 2 atm H2o sat 

•MIL-STD-883, Method 1010, Cond. C 
·-65° c to + 1500 c 
•100 cycles 

MIL-STD-883, Method 2015 

MIL-STD-883, Method 2003 

MIL-STD-883, Method 2004 

Results/Parameters 
LTPD=5, S=77, C=1 

Notes: Lot Tolerance Percent Defective (L TPD); Minimum Sample Size (S); Maximum Acceptable 
Failures _{_CJ_ 

9.2.1 DIE 
QUALi FICATION 

June 1988 

AMO performs a High-Temperature Life Test and a 
Biased-Moisture Life Test to check the long-term 
operating characteristics of the LCA die. 
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9.2.1.1 High· 
Temperature Life 
Test 

9.2.1.2 Biased 
Moisture Life Test 

9.2.2 PACKAGE 
INTEGRITY AND 
ASSEMBLY 
QUALIFICATION 

AMO performs the High-Temperature Life Test to 
evaluate the long-term reliability and life characteristics 
of the die. It is defined by the Military Standard (from 
which it is derived) as a die-related test, and it is 
contained in the Group C Quality Conformance Test. 
Because of the time-acceleration factor induced by 
higher-temperature testing, AMO can accumulate, in a 
reasonable period of time, data representing a large 
number of equivalent hours at a normal temperature of 
7o0 c. 

AMO performs the Biased-Moisture Life Test to 
evaluate the reliability of the die under conditions of 
long-term exposure to severe, high-moisture 
environments that could cause corrosion. Although it 
clearly stresses the package as well, this test is typically 
grouped under the category of die-related tests. AMO 
operates the device at 5.0 VDC, and exposes it to 950 C 
and 85% relative humidity throughout the test. 

AMO performs the following tests to check the quality 
and integrity of both the package and the assembly. 

Unbiased Pressure-Pot Test 
Temperature Cycling Test 
Resistance-to-Solvents Test 
Solderability Test 
Lead-Integrity Test 
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9.2.2.1 Unbiased 
Pressure-Pot Test 

9.2.2.2 Tempera· 
lure-Cycling Test 

9.2.2.3 Resistance 
to Solvents Test 

9.2.2.4 Solder· 
ability Test 
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AMO performs the Unbiased Pressure-Pot Test at 21 o 
C and two atmospheres of saturated steam to evaluate 
the ability of the plastic encapsulating material to resist 
water vapor. Moisture penetrating the package could 
induce corrosion of the bonding wires and bonding 
pads of the LCA die. Under extreme conditions, 
moisture could also cause drive-in and corrosion under 
the bonding pads. Although it is difficult to correlate 
this test to actual field conditions, it provides a well­
established method for comparison of plastic packaging 
materials and assembly and molding techniques. 

AMO performs the Temperature-Cycling Test to 
evaluate the long-term resistance of the package to 
damage from alternate exposure to extremes of El 
temperature or from intermittent operation at very low 
temperature. The temperature range for the test is 
-65° C to + 1500 C. The transition time is longer than 
that in the Thermal Shock test but the test is conducted 
for many more cycles. 

AMO performs the Resistance to Solvents Test to 
evaluate the integrity of the package marking during 
exposure to a variety of solvents. This is an important 
test because an increasing number of board-level 
assemblies are subjected to the severe conditions of 
automated cleaning before system assembly. AMO 
performs this test according to MIL-ST0-883, Method 
2015. 

The Solderability Test evaluates the solderability of the 
leads under conditions of low-soldering temperature 
following exposure to the aging effects of water vapor. 
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The Lead Integrity Test is performed to evaluate 
integrity of the package leads. AMO performs this test 
according to MIL-STD-883, Method 2004. 

A summary follows. 

2000 SERIES LCA DESIGN HANDBOOK CHAPTER 9 

June 1988 



9.3 SUMMARY 

Device Type: 2064/2018 

Die Attach Method : Silver Epoxy 

The following test data summarizes the performance of 
LCA devices during AM O's qualification tests. These 
test results demonstrate the reliability and expected 
long life of the AMO nonhermetic product line. This 
continuing series is part of the AMO reliability testing of 
nonhermetic devices. 

Process/Technology: 1.5 and 2.0 Micron Double-Layer Metal CMOS 

Package Type: 68 lead PLCC 

Moldirig_ Comj)_ound: Sumitomo 6300K, H Date: 2Q, 1987 

1. High-Temperature 

Life Test T=1250 C 

Combined 

Sample Failures 

850 4 

2. Biased-Moisture 

Life Test Combined 

T=85°C; Sample Failures 

RH=85% 486 2 

3. Unbiased 

Pressure-Pot Test Combined 

+121oc, Sample Failures 

2 atm sat. steam 488 1 

4. Temperature 

Cycling Test Combined 

-650C+1250 C, Sample Failures 

1000 cy.lmin)_ 233 1 

5. Temperature Cycle 

Test Combined 

oo Cto + 1500 C Sample Failures 

Method 1009,Cond. A 50 0 

6. Resistance-to-

Solvents Test Combined 

MIL-STD-883, Sample Failures 

Method 2105 16 0 

7. Solderability Test Combined Failures 

MIL-STD-883, Sample 

Method 2003 30 0 

June 1988 

Equivalent 

Mean 

hrs/Device 

atT=1250C 

2332 

Mean hrs 

per Device 

1000 

Mean hrs 

per Device 

139 

Mean 

Cycles 

per Device 

812 

Mean hrs 

per Device 

24 

Equivalent Equivalent 

Equivalent Failure Rate Failure Rate 

Device hrs in %/1 OOOhrs in %/1 000 hrs 

atT=1250 C atT=1250C atT=700C 

2033967 0.19 0.0027 

Total 

Device hrs 

486000 

Total 

Mean hrs 

67832 

Total 

Device 

Cycles 

189196 

Total 

Device hrs 

1200 
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Active High 

Active Low 

Active Pod 

Active Sense 

Adder 

Analysis Tool 

AND 

Application Specific 
Integrated Circuit 

APR 

ASCII 
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GLOSSARY 

A low-to-high or high-to-low signal transition that 
initiates an action. 

A high-voltage active sense. 

A low-voltage active sense. 

The pod with setup information that is displayed on 
XACTOR's screen. The LED lights to indicate it is 
active. 

The voltage level, either high or low, associated with the n 
active state, which is a logical 1 or o. 

A digital circuit that adds numbers. 

Software that automatically or interactively determines 
circuit characteristics. 

A logic function that is true if all variables are true, false if 
at least one variable is false. 

ICs that are at least partially tailored for a particular 
application. Includes field programmable devices such 
as PALs and LCA devices, and factory programmable 
devices such as gate arrays, standard cells, and 
completely customized ICs. 

See Automatic Placement and Routing. 

The American Standard Code for Information 
Interchange is an eight-bit code used for sending 
information over a data line. 
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ASIC 

Assert 

Assertions 

Asynchronous Logic 

Automatic Placement 
and Routing 

Back Annotation 

Base Configuration 

Bidirectional 

Bit 

Bit Stream 

Block 

See Application Specific Integrated Circuit. 

To cause a signal to change from its inactive to its active 
state. 

In timing analysis, designer-provided information that 
describes certain timing relationships between signals 
in a portion of the circuit. 

Logic that is not clocked by, or synchronized with, the 
system clock. 

A software tool that automatically positions logic blocks 
and calculates wiring paths or signal interconnections 
during circuit design. 

The process of attributing delay times to a design.after it 
has been partitioned. This is only valid if the partitioned 
design is equivalent to the original schematic design. 

The arrangement of logic within a CLB. The base 
configuration can be either two functions of up to three 
variables each, one function of up to four variables, or 
two functions of up to three variables, multiplexed by 
the B input. 

A circuit element, or primitive, that passes signals or 
data in either direction. This contrasts with the more 
traditional unidirectional design elements, which only 
pass input signals from input ports to output ports. 

One unit of binary data. A logical 1 or 0. 

The configuration data required by an LCA device to 
determine the functions of CLBs, IOBs, and 
interconnections. 

A CLB, 108, clock buffer, or oscillator. 

2000 SERIES LCA DESIGN HANDBOOK GLOSSARY 

June 1988 



Block Editor 

Bottom-up 
Hierarchical Design 

Buffer 

Byte 

Cerdip 

Circuit 

Circuit Simulation 

CLB 

Clear 

Clock 

CMOS 

Combinational Logic 
Gate 
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Part of the LCA design editor that performs commands 
to configure CLBs and IOBs. See LCA Design Editor. 

A structured approach to organizing circuit design data 
in which the designer begins with a definition of the 
lowest primitives, or elements, then proceeds to build 
higher-level functions using those elements. As the 
hierarchical definition process concludes, the designer 
expresses the overall circuit structure in terms of high­
level functional blocks and their interconnections. 

An amplifier that increases drive capability and 
temporarily stores digital data. 

Eight bits. 

The ceramic IC dual in-line package that uses a frit­
sealed process. 

A combination of electrical and electronic components 
that perform specific functions. 

A software breadboard to verify design functionality and 
performance. Software that logically emulates a circuit's 
functions to ensure proper design. 

See Configurable Logic Block. 

To force to a logical 0. See Reset. 

A register whose content changes at regular intervals, 
generating periodic signals for synchronization and 
causing one logic decision to be made for each signal 
transition. 

See Complimentary Metal Oxide Semiconductor. 

A combination of gate networks that generates a 
specific function and has no storage capability. 
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A text file consisting of XACT LCA Editor commands 
and run by the EXECUTE command. 

A digital device that compares the magnitudes of two 
digital quantities and indicates their relationship. 

A widely-used IC technology with low-power 
consumption, high noise immunity, and moderate 
speed. 

An LCA sub-unit that contains configurable 
combinational-logic and data-storage circuitry. 

The data required by an LCA device to determine the 
functions of CLBs, IOBs, and interconnections. 

A high concentration of interconnections routed in one 
area. 

Signals that control functional elements through the 
data signals in a digital circuit. 

The degree to which signals in a part of a circuit can be 
made to take on specific values through manipulation of 
primary inputs; used in testability analysis. 

A digital circuit capable of counting electronic events, 
such as pulses, by progressing through a sequence of 
binary states. 

The identification and analysis of signal paths whose 
delays could limit the speed of the circuit. 

The selected CLB or IOB to which all Block Editor 
commands apply until another block is selected. See 
Block Editor. 

The design file that was designated by the user to be 
loaded when invoking an XACT program. See Design 
File. 
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D Flip-Flop 

Daisy Chain 

DBK File 

De-assert 

Decoder 

Default Value 

Delay 

Design Analysis 

Design Approach 
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A screen symbol controlled by the mouse. Used for 
selecting and positioning menu items and objects on 
the screen. See Selection. 

A type of bistable multivibrator in which the output 
follows the state of the D input. See Flip-Flop. 

Several devices connected in such a way that 
configuration data move serially from one device to the 
next. 

A temporary file that stores all commands entered 
during an (LCA Editor) editing session. After the 
session, the temporary file is saved with the extension 
.DBK. See Log File. 

To cause a signal to change from its active to its inactive 
state. 

A digital circuit that converts coded information into a 
recognizable form. 

The value used when none is specified by the user. 

The timing interval between the occurrence of an event 
at one point in a circuit and the corresponding 
occurrence of a related event at another point. 

A set of tools and techniques used to study the 
operations of a circuit to determine, among other 
things, how a particular implementation compares to the 
design specification. 

A method used to construct a system design. 
Possibilities include LCA devices, PALs, gate arrays, 
standard cells, silicon compilers, full custom !Cs, and 
standard products. 
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Design Cycle 

Design File 

Design for 
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Design Productivity 
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Design Rules 

Design Synthesis 

Design Verification 

Design Verification 
Test Data 

OFT 
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The sequence of phases through which a circuit design 
evolves. During each phase, the design is further 
developed by a combination of analysis, synthesis, and 
verification techniques, to create a more detailed 
representation of the circuit. 

A file containing information about a specific LCA 
configuration. Design files contain the LCA suffix in 
their names. 

A design process to ensure that a product can be 
thoroughly tested with minimum effort, and that the test 
results are reliable. 

An approach or technique that solves certain circuit 
design problems. 

A measure of the rate at which circuit designs are 
produced, usually expressed in terms of design cost. 

Part of the design process that checks for conformance 
to electrical rules. 

Circuit development guidelines that focus upon 
conformance to basic electrical engineering and logic 
design principles. 

A design discipline that fills in the detail of an abstract 
design; for example, creating a Boolean equation. 

The process of confirming or validating that the design 
meets the required specifications. There are many 
ways to verify a design, ranging from formal proofs or in­
circuit emulation, to informal, tailored methods. The 
most common verification method is simulation. 

Sequences of input stimuli applied to a design to 
determine that the circuit functions as intended. 

See Design for Testability. 
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Die 

Die Size 

DIP 

Direct 
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Multiple die. See Die. 

A tiny piece of the silicon wafer that, when packaged, 
becomes an IC. 

The rectangular area of silicon, the measurement of 
which is expressed in square microns or mils. 

See Dual In-line Package. 

Dedicated connection of adjacent CLBs, IOBs, and 
outputs. It provides the shortest propagation delay and 
uses minimal interconnection networks. 

A method of accelerated loading of configuration 
information into multiple LCA devices by means of 
direct memory access hardware. 

See Design Rule Checking. 

Type of packaging widely used for IC chip assembly. It 
has two parallel rows of connection pins, usually on 
0.100 inch (100 mil) centers. 

A flip-flop for which the input and output data appear on 
the same clock edge. See Flip-Flop. 

See Electrically Erasable and Programmable ROM. 

Similar to an EPROM, but it stores the charge on a 
floating gate. Newer EEPROMs can erase individual 
data bytes. 

The neutralizing action of two oppositely charged 
materials. 

Allows a circuit to respond to an input. For example, a 
clock enable signal lets a circuit respond to its clock 
input. 
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EPLD 

EPROM 

Encoder 

Erasable Program­
mable ROM 

ESD 
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Field Programmable 
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Flip-Flop 

Floppy Disk 

Full Adder 
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Erasable Programmable Logic Device, such as an 
EPROM. 

See Erasable Programmable ROM. 

A digital circuit that converts data into coded format. 

Usually refers to the UV erasable, 2764 device type. 
Generally, EPROMs are erased by shining ultraviolet 
light on the chip through a quartz window on the 
package. 

See Electrostatic Discharge. 

A logic function that is true if one of the variables is true 
and the other is false. 

The XACT software that sets initial values for, and 
invokes all other, XACT software modules. 

The time interval between the 1 O percent and the 90 
percent points on the negative-going edge of a pulse. 

The number of equivalent gate inputs, or unit leads, 
that a logic gate can drive. 

The process of measuring a test vector's effectiveness 
in locating defects in an IC. 

Standard products that the user can configure to a 
specific application, such as PALs, FPLAs, and LCA 
devices. 

A digital circuit used to store one bit of information, 
either O or 1. Also known as a toggle. 

A magnetic storage device. A flexible mylar disk. 

A digital circuit that adds two binary digits and an input 
carry to produce a sum and an output carry. 
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Function Key 

Functional Primitives 

Gate 

Gate Array 

General Purpose 
Interconnections 

Glitch 

Half Adder 

Hard Macro 

Hold Time 

In-Circuit Emulation 

Initial Value 
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The specific purpose of an entity or its characteristic 
action. 

A programmable key on the IBM PC keyboard. 
Typically, the software defines the function. 

Design building blocks such as adders, shifters, 
decoders, and memory. A functional primitive differs 
from a gate-level primitive only in the individual 
element's degree of functional complexity. 

A digital logic element. The binary value of the output 
depends on the values of the inputs according to some 
logic rule. 

A digital IC with a configuration of uncommitted 
elements that are interconnected by one or more 
routing layers. 

Horizontal and vertical metal segments joining LCA 
switching matrices. 

An unwanted voltage or current spike, typically of short 
duration. 

A digital circuit that adds two bits to produce a sum and 
an output carry. It cannot accommodate input carries. 

A macro with a predetermined physical layout. 

The amount of time, after the clock transisiton, that the 
data input to a flip-flop must be stable for proper 
operation. 

A design system that uses software and hardware to 
test and debug LCA devices in a target system. 

The preset value for an option when the software is 
invoked. After the software starts, the option's value 
can be changed. 
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Initialize 

Input Line 

Input Loading 

Input Stimuli 

Input/Output Block 

Instance Name 

Interactive Simulator 

Interconnection 

Inverter 

Invoke 

108 
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The process of establishing an initial condition or 
starting state. For example, setting logic elements in a 
digital circuit, or the contents of a storage location, to 
known states so that subsequent application of digital 
test patterns drive the logic elements to another known 
state. Initialization sets counters, switches, and 
addresses to zero or other starting values at the 
beginning of, or at prescribed points in, a computer 
routine. 

A line on the XACT screen that displays the characters 
typed at the keyboard. Pressing the <Return> key 
signals that the content of the input line is complete. 

The number of unit loads that one output can drive. 

The parameters in a software program used to test a 
circuit or simulated circuit. . 

An 108 is a sub-unit that can be configured to connect 
the LCA device's internal circuitry to external pins. 

A name assigned to each occurrence of a macro. The 
instance name is used to create unique net and block 
names. See Macro. 

A circuit-simulation tool that lets the designer halt circuit 
emulation at any point. This allows detailed investiga­
tions of localized signal relationships, changes to sim­
ulated input signals, or changes to simulator directives. 

A sub-unit of an LCA device that can be configured to 
connect two or more internal points. 

A logic device that complements a logic variable. 

To load and run software on a computer. This action 
includes the setting of initial values. 

See Input/Output Block. 
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A flip-flop that operates in the set, reset, no change, 
and toggle modes. See Flip-Flop. 

A state machine based on shift registers using the 
absolute minimum amount of feedback. The output of 
the final register in the chain is inverted and fed into the 
least significant register in the chain. 

An arrangement of cells representing combinations of 
variables in a Boolean expression. Used for a 
systematic simplification of the expression. 

An IC equivalent of 100 to 10,000 logic gates. 

A logic device that transfers the data of its input to its 
output when load enable is active; it retains its value 
when load enable is inactive. 

A condition in which the output of a circuit has become 
fixed near one of two voltage extremes. The circuit no 
longer reacts to changes in the input signal. This is a 
common problem with CMOS gates. 

That portion of the design cycle during which the logical 
or electrical definition of the circuit is transformed, via 
placement and routing, into a physical equivalent that 
can be manufactured. 

See Logic Cell Array. 

The XACT software used to create and edit the LCA 
design file. 

See Leadless Chip Carrier. 

A high-density IC package with J-bends suitable for 
socket or surface mounting. 
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Library 
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Log Fiie 

Logic Cell Array 

Logic Element 

Logic Simulation 

Logical Primitive 

Long Line 
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Part of the configuration software that specifies the 
number of Configuration Clock (CCLK) cycles from the 
start of configuration to the start of operation. 

See Linear Feedback Shift Register. 

A collection of predefined elements, primitives, macros, 
and larger functional blocks. 

A synchronous counter. The input bit is computed by 
XORing several bits of the current state. 

The pin to which signals flow. See Source Pin. 

A file containing all commands entered during an 
editing (LCA Editor) session. Each time an LCA design 
file is edited, a new log file replaces the existing one. 
Log files have the extension .LOG. 

A device that can be configured or programmed to 
perform a range of functions. LCA devices may replace 
circuits that range in size from SSI to VLSI devices. 

A sub-unit of a CLB that contains combinational-logic 
circuitry. 

The process of building and functionally validating a 
digital circuit model on a computer. A logic simulator 
computes signal values as a function of time in an 
arbitrary circuit, given the initial state and input 
sequence to the circuit. 

Building blocks such as a NANO, NOR, inverter, or 
SSl/MSI TIL package. 

An interconnection that routes a signal to several 
destinations in an LCA device. This type of 
interconnection runs the length or width of an LCA 
device and is often used for clock signals. 
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Macro 

Macro Library 

Master Mode 

MB/Mb 
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Metastability 
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See Large Scale Integration. 

Explicitly identifiable portions of a design that can be 
described as entities. Design elements may be 
primitives, interconnections of primitives, or inter­
connections of larger elements. 

A collection of macros provided by a vendor and used 
as building blocks in chip design. Organized or 
classified by function, macro libraries consist of files 
stored in directories. See Macro. 

A configuration mode in which configuration data is 
transmitted in parallel, byte-wide form from an external 
memory to the LCA device. The LCA device generates 
read-addresses and automatically serializes the data for 
internal storage. 

Megabyte/megabit. 

Traditional, standard, digital logic components having 
approximately 10 to 100 functional logic gate 
equivalents. 

A list of items that appears on the display. Each item 
can be input to the computer by selecting it with the 
mouse. See Selection. 

The display line on an active workstation through which 
commands can be entered and on which status 
messages or prompts appear. 

Metastability is defined as an output state between a 
valid logic HIGH and LOW for any digital device. It can 
occur for registers or latches when certain parameters, 
such as data set up-and-hold times, are violated. 

One micrometer; one millionth of a meter. The basic 
unit of measure for VLSI geometries. 
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MS-DOS 

MSI 

Multiplex 

Multiplexer 

Mux 
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Net 

Net list 

Netlist Formatting 

Nibble 

Node 

Nominal Delay 

Non-Recurring 
Engineering Costs 
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A common IBM-PC operating system. The LCA 
development system runs under MS-DOS. 

See Medium Scale Integration. 

To put information from several sources onto a single 
line or transmission path. 

A digital circuit capable of multiplexing digital data. 

Abbreviation for multiplexer. 

A logic function that is true if at least one variable is false 
or false if all variables are true. This is equivalent to an 
inverted AND function; i.e., Not AND. 

A collection of nodes that are interconnected by wires. 
Also known as a signal network or signal net. 

A list of circuit elements and their interconnections. 

Extracting netlist data from a database and putting it into 
a format that can be used by another software tool. 

Four bits, or half a byte. 

An identifiable point in a design that must be electrically 
connected to other nodes by wires. A node can be 
associated with a specific device or geographic location. 

The mean time signals take to propagate through a logic 
element or a wire. The effect of an input change to an 
element on the output does not occur until after the 
nominal delay. 

Costs charged to the user for development of tooling 
and other services during semicustom chip design and 
production. 
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NOR 
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Observability 

OR 

Pad 

Peripheral Mode 

PGA 

Physical Intercon­
nection Editor 

PIE 

Pin 

Pin Grid Array 

PIP 
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Memory, such as PROMs and magnetic bubble 
memorie modules that retain data even after power-off. 

A logic function that is true if all variables are true, false if 
at least one variable is false. This is equivalent to an 
inverted OR function; that is, Not OR. 

See Non-Recurring Engineering costs. 

In testability analysis, a measure of the degree to which 
the operation of signals in a certain part of a circuit can 
be monitored. 

A logic function that is true if at least one variable is true, 
false if all variables are false. 

An area on the chip used as a contact point by the IC's 
package pins. 

A configuration mode in which the LCA device acts as a 
peripheral device. An external device, such as a 
processor, that loads the configuration data bits serially 
into the LCA device. 

See Pin Grid Array. Also ascribed to programmable gate 
array. 

The LCA Editor that configures interconnections and 
the locations of configured blocks. See LCA Editor. 

See Physical Interconnect Editor. 

The point on a device at which an electrical connection 
can be made. 

A high pin density ceramic package. 

See Programmable Interconnection Point. 

See Programmable Logic Array. 
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An IC package with J-bend leads suitable for socket or 
surface mounting. 

See Plastic Leaded Chip Carrier. 

An idle current condition when the LCA device's power 
supply requirement can be reduced to a minimal level. 
Under this condition, circuit activity is suspended and all 
configuration data are preserved. 

A specific series of four data bits that signals the start of 
the configuration data for LCA devices. 

The basic building block of design entry. Primitives are 
not expanded during design entry but are used as 
single blocks. There are several levels of primitives. 
Basic systems only use combinational gates and 
Boolean operators. More complex systems include 
sequential elements such as latches, flip-flops, delay 
lines, and monostables in their primitive sets. Some 
systems include higher-level functions such as 
counters, shift registers, ROM and RAM as primitives. 

A Boolean expression that is the ANDing of ORed 
terms. 

A set of commands stored in a file with a .PRO 
extension to define options that configure the PC 
environment. 

A configurable connection between interconnection 
segments. 

Buffers that the user can configure as input, output, or 
both. 

A rectangular array of AND and OR gates used to 
generate a group of control functions in sum-of­
products form. See also LCA. 
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A ROM that can be programmed by the customer. 

See Programmable Read-Only Memory. 

The time difference between the change of an input 
signal, or clock, and the change of the output. 

A software breadboard that tests a hardware system to 
verify functionality before the actual hardware is 
programmed. 

A menu that appears when you select its name using 
the device that drives the cursor. The menu usually 
overlaps other elements on the screen. 

In asynchronous digital logic, the concurrent change of ... 
two or more feedback lines. If the circuit's final state ~ 
does not depend on the order in which the variables 
change, the race is noncritical; otherwise it is critical. 

Random access memory. 

The process of retrieving information. 

A digital circuit capable of storing, or moving through, 
shifting binary information. Usually used as a temporary 
storage device. 

The state of a flip-flop, register, or counter when only Os 
are stored. Equivalent to the CLEAR function. 

A digital circuit made up of a series of flip-flops in which 
the contents are continuously recirculated. 

The time required for the pulse's positive-going edge to 
go from 1 O percent of its full value to 90 percent of its 
full value. 
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Route 

Routing 
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Schematic Capture 
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Schottky TTL 
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A circuit simulation feature that lets different output rise 
(0 to 1) and fall (1 to 0) times to be specified. This more 
closely approximates the actual timing parameters of a 
device, as compared to nominal delay models that 
assume equal rise and fall times. 

Read only memory. 

To configure the interconnection between pins. 

The process of configuring interconnections between 
pins. 

A test method whereby data is shifted into SRLs and 
results are shifted out. Additional circuitry typically must 
be included in the design to support this type of 
testing. 

The process of entering a circuit diagram into a 
computer system using a CAE editor. 

A circuit diagram in which components are represented 
by standard, simple, easily drawn symbols. 

A circuit with snap action that produces a sharp, single 
transition from slowly changing inputs. Positive 
feedback shifts the threshold as soon as it is first 
reached. If the signal is diminished due to noise, the 
output remains steady. 

An improved version of TIL logic in which saturation of 
the transistors is prevented and impedance of the 
output circuit is reduced. Thus, 7 4S logic gates have a 
maximum delay of 7 ns compared to 15 ns for TTL 
without Schottky. Power dissipation, however, is about 
twice that of TTL. Low-power Schottky TTL, or 7 4LS 
series, has a maximum delay of 28 ns and requires 80% 
less power than a normal TTL device. 
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The action of moving the cursor to a displayed item and 
pressing the mouse button. The selected item is 
received by the computer as input. 

The information that configures the XACTOR 
environment. Setup information may be stored in a file 
for use at any time for a given XACTOR environment. 

To force one or more storage elements to logical 1. 

The amount of time, before the clock transition, that the 
data input to a flip-flop must be stable for proper 
operation. 

A linear chain of storage elements that shifts the 
contents of the storage elements one position for each 
clock transition. 

The use of computer tools that imitate a proposed 
circuit design to validate its functionality. Timing and 
performance considerations are ignored during 
functional simulation. 

A software breadboard that tests a hardware system to 
verify functionality before the actual hardware is 
programmed. 

A configuration mode in which the LCA device receives 
serial configuration data and all control signals from 
another device, typically another LCA device. 

Refers to traditional, standard, digital logic components 
having one to approximately ten logic gate equivalents. 

Refers to dropping or picking up bits in a non­
repeatable manner. Often caused by alpha particles. 

A macro with no predetermined physical layout. 

A pin from which a signal originates. See Load Pin. 
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Specification (Spec) 

Spike 

SR flip-flop 

SRL 

SSI 

Standard Cell 

Standard Cell 
Semicustom IC 

Standby Mode 

State 

State Machine 

Stimulus 

Storage Element 

A document defining the ground rules for circuit 
design. It contains requirements, such as functionality, 
performance, cost, temperature, and interface. 

The output condition where the inputs are being 
manipulated faster than the element's propagation 
delay. 

Set-reset flip-flop. See Flip-Flop. 

Shift Register Latch. See Shift Register and Latch. 

See Small Scale Integration. 

A predefined mask-level design of a logic function or 
simple functional element. A library of such standard 
cells usually has a common height and a common power 
distribution protocol. Used in the design and layout of 
standard cell semicustom ICs. 

Very large scale integrated circuits that are laid out using 
predefined mask level definitions of standard logic 
function cells. The standard cells are placed in rows or 
columns so that they share power rails and have open 
routing channels between adjacent row/column pairs. 

Also called power-down. A mode whereby volatile 
memory can retain data at a voltage level lower than 
normal operation. 

The condition of one flip-flop or a set of flip-flops. 

A set of flip-flops for which the next state and the 
outputs are functions of its current state and a set of 
inputs. 

Any physical or electrical input applied to a device 
intended to produce a measurable response. 

A sub-unit of a block that can store data. 
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Synchronous Logic 
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Test 
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Testability 

Testability Analysis 
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A form of Boolean expression that is the ORing of 
ANDed terms. 

An intersection of three or more segments of local 
interconnections. Two segments are connected by 
one switching-matrix connection. 

A signal output's delay time from a defined HIGH to a 
defined LOW, or vice versa. This delay is calculated as 
the time between the specified reference points on the 
voltage waveforms. 

Clocked logic in which all logical signal changes are 
keyed to clock transitions. 

A type of flip-flop that toggles or changes state on each 
clock pulse. See Flip-Flop. 

A user-definable label or flag that can be applied to sub­
units of an LCA device. 

See Time Division Multiplexing. 

A procedure or action that determines, under real or 
simulated conditions, the capabilities, limitations, 
characteristics, effectiveness, reliability, or suitability of a 
material, device, system, or method. 

An array of inputs used to check for defects in an circuit. 

A design characteristic that reliably determines in a 
timely fashion the status of a system or of any of its 
subsystems, i.e. operable, inoperable or degraded. 
One measure of the quality of a circuit design is the 
relative ease with which it may be tested. 

A tool to measure the extent to which a design is 
testable. 
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Testability Measure 

Three-State 

Time Division 
Multiplexing 

Timing Analysis 

Timing Verification 

Toggle 

Toggle rate 

Top-Down 
Hierarchical Design 

Transistor-Transistor 
Logic 

TTL 

Unit Delay 

Attributes such as controllability and observability, 
which give a quantitative measure of the extent to which 
a design is testable. 

A mode in which the circuit functions as an output, 
input, or no connection (high impedance). Also called 
Tristate. 

Sending several signals during different time slots over 
the same channel. 

Evaluation of the behavior of a circuit design that takes 
into account signal delay time but ignores logical 
functionality. Timing analysis determines whether 
signals arrive at their intended destinations in time. 

A tool for checking that the various rules, such as clock 
skews, are met and that the circuit functions at the 
required speed. 

To change to the opposite state. 

The maximum clock frequency at which a flip-flop 
storage element will toggle properly. 

A design method by which increasing detail is added as 
the design progresses. Top-down is typically used at 
the beginning of the design cycle. 

A logic family that uses multitransistor emitters to 
perform logic functions. The gates have a 15 ns 
maximum delay and require +5 V power of about 2 mA 
per gate. Logic levels are normally +0.2 and +3.4 V, 
and input threshold is nominally 1.2 V. 

See Transistor-Transistor Logic. 

A simulation technique used to verify functionality. In 
this technique all the delays of the elements are set to 
one time unit. 
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Unit Delay 
Simulation 

Unit Load 

Unknown Level 

Unknown State 

VDD 

Verification 
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VLSI 

Volatile 
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Waveform Input 
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A simulation that assumes equal propagation delays. 

Under specific conditions, a measure of impedance 
presented to an input or output. One gate input 
represents a unit load to a gate output within the same 
logic family. 

A simulated signal value (or an electrical net) that is not a 
one or a zero. This could be caused by an error or by 
the node not being initialized. 

Most memory elements used in sequential circuits are 
bistable devices. When the power is turned on, they 
are normally designed to have symmetrical configura­
tion; i.e., the initial state becomes unpredictable. Such 
memory devices begin operation with internal memory .. 
signal valuation designated as unknown. Unknown .:;.-
states can also be encountered during circuit operation 
as the result of critical races, oscillations, or ambiguous 
delays. 

The most negative power supply voltage level in an 
MOS circuit. 

See Design Verification. 

A circuit with more than 10,000 transistors. 

See Very Large Scale Integration. 

The attribute of losing stored information when power is 
removed from a memory device. 

The most positive power supply voltage level in a MOS 
circuit. 

The input data for a simulated circuit respresented as 
waveforms. 
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Wlldcard 

Window 

Wired-AND 

Wired-OR 

Wiring Congestion 

Workstation 

World View 

Write 

XACT 

XACTOR 

Zero Delay 
Simulator 

Zero/Unit Delay 
Simulator 

A symbol that can represent any character or characters. 

A user-specified part of the LCA device that is displayed 
on the LCA Editor screen and that can be manipulated. 

An arrangement of logic circuits in which the gate 
outputs are physically connected to form an "implied" 
AND function. 

Logic gates wired to implicitly create a logical OR 
function. 

See Congestion. 

A single-user, stand-alone work aid. In the engineering 
community, it consists of a microprocessor-based 
system with a high-resolution screen and software to 
carry out design functions. Popular workstation 
vendors include OrCAD, Daisy, FutureNet, Mentor, and 
Valid. 

The entire LCA design that can be displayed on the 
LCA Editor screen. See Window. 

The process of storing information in memory. 

Software that lets you specify the configuration of an 
LCA device using interactive computer graphics. 

A software/hardware package for performing in-circuit 
emulation. 

A simulator used for functional validation. The signals 
have no delay. 

Combination of the zero delay and unit delay simulation 
concepts. A circuit is modeled with zero delay elements 
and with unit delay circuits inserted into the feedback 
lines and memory elements. 
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A 
alpha particles 8-1, 8-5, 

8-9, 8-10 

amplifier 

input swing 4-30 

linear circuit 7-3 

output impedance 4-30 

application-specific 

integrated circuits 

(see ASIC) 

APR 2-12, 2-13, 5-2 

constraints 2-8 

ASIC 1-2, 1-5, 8-2 

automatic placement and 

routing (see APR) 

automatic router 5-1 O 

B 
bit stream 

generator 2-17, 6-2 

loading 6-23 

multiple configuration 

6-31 

read from PROM 6-8 

block arrangement 5-7 

Boolean equations 3-11 

buffer 

alternate 5-18 

bidirectional 5-62 

clock 4-27, 4-28, 5-10, 

5-16 

delay 5-57 

following flip-flop 7-1 O 

global 5-17, 5-18 

non-inverting 4-4, 4-5 

output 4-5, 4-11, 4-12, 

4-21, 4-23 

repowering 5-5, 5-6 
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c 
circuit density 8-6 

CLB 3-1 , 4-21 , 5-26, 6-2 

combinational portion 3-6 

connection to 108 5-6 

delays 5-56 

for inversion 4-37 

interconnections 3-4 

layout 7-4 

logic inputs and outputs 

3-4 

placement 5-23 

programmable features 

3-8 

sharing 3-15 

storage element 3-8, 3-9 

storage element clearing 

3-9 

structure 3-4 

timing 3-21 

clock 

buffer 2-14, 4-27, 4-28, 

5-18 

CLB3-22 

common 5-21 

controls 5-12 

free-running CCLK 6-22 

frequencies 7-2 

global 2-14 

input to register 7-2 

lien 4-36 

maximum rate for counter 

3-28 

metal clock distribution 

network 3-37 

multiple 5-17 

output via Q 3-21 

pulse 7-2 

rate 7-11 

shift register 5-18 

single 5-26 

skews 2-13, 3-21 , 3-37 

system 5-60 

transition 4-5 

worst-case delay 7-5 

CMOS 4-5, 8-9 

array architecture 3-22 

floating input 6-40 

gate 8-12 

PLD 1-4 

processes 1-9 

technology 1-9 

voltage 4-5, 7-3 

combinational loop 4-27 

command 

MAKEMASK 6-50 

PROM formatter 

commands 2-19 

configurable logic blocks 

(see CLB) 

configuration 

automatic control 6-8 

bits 5-4 

bit stream 1-8, 2-18, 6-2, 

6-8 

CLB 7-4 

completion 6-3 

configuration state 6-3 

daisy chain 6-34 

delay 6-16 

device 4-28 

disable 6-4, 6-18 

DMA transfers 6-36 

file 5-4 

file format 6-44 

initialization state 6-3 
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input paths 4-7 
IOB 7~4 

LCA6-1 

length count 6-45 

Master high mode 6-6, 

6-28, 6-29 

Master low mode 6-21!1, 

6-29 

Master mode 6-6, 6-27, 

6-30 

Master parallel-low mode 

6-6 

Master parallel-low pin 

usage 6-28 

Master serial mode 6-6, 

6-27 

Master serial mode pin 

usage 6-27 

memory 6-3 

mode 6-1, 6-3, 6-5, 6-6, 

6-15 

multiple LCA devices 

6-14, 6-34, 6-42 

parallel 6-36 

partial 6-3 

Peripheral mode 6-23, 

6-25, 6-26 

pin function 6-14 

power-up delay 6-33 

program 6-42 

readback 6-1 

Slave mode 6-6 

state 6-3 

techniques 6-1 

time 6-8, 6-13 

user-operation state 6-3, 

6-4 

verification 6-1 

connection 

1·2 
2 

direct 5-6, 5-7, 5-9, 5-18, 

5-23, 5-24, 5-33, 

7-11 

editing 5-40 

spreading 1/0 

connections out 

5-36 

temporary 108 5-64 

controls 

clocks 5-12 

count 5-12 

set/reset 5-12 

shift directien 5-12 

controllability 8-4 

control line 

read/write (see 

three-state control 

line) 4-33 

counter 5-21 

binary-weighted 3-26 

building counter of any 

modulo 4-43 

designing 3-30 

Johnson 4-3, 4c37, 4-39 

LFSR 4-44, 4-46, 4-47 

low-modulo 4-37 

Schmitt trigger 4-19, 4-21 

simple ripple 3-26 

states 4-43 

synchronous 8-bit 3-30 

various modulo and duty 

cycles 4-39 

D 
data bus 

unidirectional 6-28 

data flow direction 5-11 

data integrity 8-6 

debugging 6-41 

decoders 5-20 

delay 1-8 

accumulation 3-26 

buffer 3-21, 5-57 

calculator 2-15, 4-12, 

5-42, 5-56, 5-58, 

5-60, 5-62 

CL8 3-21, 5-56 

CMOS3-22 

combinational 

propagation 3-30 

configuration 6-16 

gates 3-21 

interconnection 5-57 

108 5-56 

loop 4-5, 7-4, 7-5, 7-1 O 
path 4-5, 7-6 

power-up 6-3, 6-33 

RIC 5-56 

register 4-30 

routing 4-12, 4-48 

signal 5-62 

synchronization 6-34 

variations in LCA 3-22 

worst-case calculations 

2-15, 5-9, 5-56, 7-5 

DeMorgan 4-16 

density 1-2 

design 

analysis 1-11 

configuration bit stream 

2-17 

controllability 8-3 

data flow 5-20, 5-21, 5-22 

editor (EDITLCA) 6-2 

entry 1-11 

flexibility 3-2 

guidelines 5-19 

in-circuit verification 2-17 

long and thin 5-33 

manual editing 5-37 
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modification guidelines improving performance 

5-34 7-9 

observability 8-3 invertible enable 3-9 

optimization guidelines isolation 7-10 
5-26 J-K 3-24 

performance 5-1 loading 7-10 

rule check (see LCA loop delay 7-4, 7-10 

design rule check) metastability 7-1 

strategy 8-4 output control 3-33 

testability 8-3 output loading 7-10 

time 8-3 register 3-24 

timing optimization 2-16 settling time 7-6 

tradeoffs 5-33 synchronous toggle 

verification 1-11 , 6-2 3-24, 3-27 

die-related test 9-4 T3-28 

doping levels 8-11 worst-case delay 7-5 

download cable 2-17, 6-2 function 

DRC (see LCA design rule CARRY3-13 

check) dual compare 3-14 

SUM 3-13 
E typical four-variable 

electromagnetic radiation combinational 3-11 
8-1, 8-5 

electrostatic discharge G 
(see ESD) gain/bandwidth product 7-3 

emulation gate 2-8, 3-3 

in-circuit 2-17, 2-19, 6-2 delay 3-21 

pods 2-21 multiple levels 5-26 

EPLD 8-2, 8-3 NANO 1-6, 3-31 

EPROM 1-8 preselect enabling 3-18 

erasable programmable gate array 1-6, 8-2, 8-3 

logic device (see architectures 1 -6 

EPLD) LCA device 8-3 

error probability 7-12 performance 1-7 

ESD 8-11 glue logic replacement 5-9 

F H 
flip-flop hysteresis 4-19, 4-20, 4-22 

edge-triggered 3-4, 3-25 selectable 4-19 

error probability 7-1 , 7-6 
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I 
1/0 

bidirectional pad 4-1 O 

input/output blocks (see 

108) 

interconnection 

direct 5-21 

general-purpose 5-3, 5-5, 

5-6, 5-9, 5-62 

long line 5-6 

minimizing 5-20 

resources 5-3 

internal 

states 2-21 

signals 5-11 

inverter 1-10 

108 3-4, 3-9, 6-2 

asynchronous inputs 

3-35 

asynchronous ripple 

counters 3-31 

bidirectional data line 4-3 

binary-weighted 

sequence counters 

3-26 

bus 5-27 

clock line 4-36 

clock skew 3-37 

combinatorial function 

3-4 

combinatorial portion 3-6 

compound function of 

five variables 3-8 

connection with CLB 5-6 

constructing shift 

registers 4-35 

counters 3-25, 4-30 

D flip-flop 3-23 

D latch 3-23 
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data-path selector 4-3, voltage range 4-22 memory cell 1-10 

4-4 packaging materials 1-10 

data registers 3-24 J power requirements 6-18 

delays 5-56 Johnson counters 3-25 PROM formatter 2-19 

eight-bit synchronous 
K 

reliability 1-10 

counter 3-30 software cycle 2-5 

four-variable function 3-8 Karnaugh maps 3-11 speed grade 1-8, 5-61 

glitch-free decoder 4-39 
L 

testing 8-2 

interconnections 3-4 user-programmable gate 

interleaving 5-36 latches 2-8, 7-2 array 1-5 

Johnson counters 3-25, level-transparent 3-8 LCA commands 

4-3, 4-37 transparent 3-4 ADDNET5-44 

layout 7-4 latch up ADDPIN 5-42 

memory cell 3-5 causes 8-12 AUTOROUTE OFF 5-44 

metastability 4-2 definition 8-12 CLEARPIN 5-43, 5-52, 

multiplexers 4-3 LCA 3-2, 5-37, 5-68 5-54 

non-inverting buffer 4-4, architecture 1 -7 DONE5-58 

4-5 automatic router 5-46 EDITNET 5-37, 5-42, 

open-drain outputs 4-11, benefits 1-1 0 5-44, 5"47, 5-49, 

4-12, 4-13, 4-17 configurability 3-23 5-50, 5-59 

oscillator 4-25 configuration program HILIGHT 5-52 

placement 5-24, 5-28 1-8 MOVEBLK 5-51 

placement impact 5-27 data integrity 8-5 QUERYNET 5-59 

programmable design cycle 2-5 REPORT DELAY 5-59 

multiplexers 3-6 design editor 2-16, 3-11 RESET 5-63 

registers 4-30, 4-32, 4-33 design flexibility 3-2 ROUTE 5-47, 5-52, 5-55 

routing delay 4-48 design rule check 5-50 ROUTE* 5-52 

Schmitt trigger 4-19, 4-21 design strategy 8-4 ROUTEPIN 5-47, 5-52, 

shift registers 3-24, 4-3, design system 2-2 5-54, 5-55 

4-36 design tradeoffs 3-30 SELECT 5-38 

storage element 3-4 development system SHOW USED 5-51 

synchronous binary 1-11, 1-12, 3-4, 5-2, SPEED 5-61 

counter 3-29 6-2, 6-42 SWAPBLK 5-51 

synchronous LFSR 3-33 device 1-5, 1-6, 1-8 SWAPPIN 5-53 

three-state control line extensions 1-7 SWAPSIG 5-52, 5-53, 

4-33 integration level 3-2 5-54 

two functions of three introduction 1-1 UNROUTE 5-43 

variables 3-8 macro library 4-13, 4-15, LFSR 

unused 4-37 4-17, 4-25, 4-28 applications 4-41 

use of 4-30 manufacturing 1-9, 4-5 decryption function 4-41 
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skip paths 4-42 

stuck state 4-42, 4-46 

Linear Feedback Shift 

Register (see LFSR) 

logic 

functions 2-8 

glue logic replacement 

5-9 

levels 3-21 

negative 4-15 

positive 4-15 

wired-AND 4-15, 4-16, 

4-17 

wired-OR 4-15, 4-16, 

4-17 

logic blocks 

grouping 2-8 

locking 2-9 

Logic Cell Array (see LCA) 

long line 5-10, 5-11, 5-18, 

5-62 

skew 5-13 

loop delays 4-5, 7-5 

definition 7-4 

M 
macro 4-20, 5-31, 5-33 

design tradeoff 5-33 

GXTL4-28 

invoke a macro 3-38 

POUTZ4-17 

samples 3-38 

syntax 3-40 

Macrocells 

\MACROS directory 3-38 

create a macro 3-39 

instance 3-38 

sample macros 3-40 

MAKEBITS 6-2, 6-46 

memory 
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byte-wide 6-29 

CMOS8-9 

five-transistor 8-6 

six-transistor 8-6 

metastability 

calculating probability 

7-6 

defined 7-2 

empirical data derivation 

7-4 

error probability 7-7, 7-10 

IOBs 4-2 

minimizing 4-5 

MIL-STD-883 9-2, 9-5, 9-6 

Mode Select input pins 6-15 

moisture 9-3, 9-4, 9-5 

monitor performance 2-14 

multi-destination 5-46 

multiple connections 5-49 

multiplexer 3-5, 5-4, 5-20 

address 5-33 

tree 3-5 

N 
NANO 3-3 

nets 

high fanout 5-51 

noise filter 3-36 

nonhermetic devices 9-2 

normal operation 8-8 

0 
observability 8-4 

open-collector 4-7, 4-11 

operation 

long-term characteristics 

9-3 

optimize 

design timing 2-16 

oscillator 4-7, 4-27 

crystal 4-7, 4-28, 5-17, 

7-2 

internal 6-13 

low-frequency timing 

characteristics 4-27 

on-chip 4-28 

Pierce 4-29 

output 

buffer 4-21 

spikes 3-33 

p 
part 

7400 series 2-8 

partitioning 5-19 

LCA elements 6-2 

pass transistors 5-62 

path 

bidirectional 5-11 , 5-22 

data-path selector 4-4 

maximum delay 7-6 

routing path delays 4-5 

unidirectional 5-23 

phase shift 4-29 

pin 

CCLK6-29 

connections 5-38 

control 6-14 

CS2 6-25 

D/-P 6-29, 6-44 

DIN 6-20, 6-25, 6-34, 

6-38, 6-45 

DIN and DOUT 6-16 

DOUT 6-25, 6-29, 6-34, 

6-38 

dual-function 1/0 6-9 

floating input 6-40 

general purpose 1/0 6-9 

HOC 6-38 

108 output 6-41 
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magic5-38 AND/OR 1-6 storage 4-9, 4-32 
mode select 6-3, 6-6 PLO 1-6 reliability 1-1 O 
multiple-function 110 6-1 architecture 1-4, 1-6 RESET3-9 
non-programmable 6-14, bipolar 1-4 -RESET3-9 

6-23 CMOS1-4 reset function 5-13 
number in Master mode preamble code 6-3 resynchronizer 3-36 

6-9 programmable routing 
number in Slave mode interconnection alternatives 5-23 

6-9 points (see PIPs) automatic (see APR) 
open-drain output 6-3 programmable logic device bidirectional signal 5-12 
potential 1/0 conflicts (see PLO) congestion 5-32 

6-38 guidelines 5-43, 5-49 
RESET6-3 Q high-fanout 5-16, 5-51 
unused 6-40 quality assurance and inputs and outputs 5-49 
user-programmable 1/0 reliability regimen LCA5-37 

6-5, 6-14, 6-23, 6-26 9-2 low-skew 5-16 
-CSOS-25 pre-routing or seeding 
-cs1 s-25 R 5-43 
-LDC6-38 readback 2-21, 6-49, 8-9 routing resources 
-RCLK6-29 CCLK, MO, and M1 6-49 global clock buffers 2-14 
-WRTS-25 control timing 6-50 long lines 2-14 

pin function data contents 6-50 

-RESET4-4 MAKEPROM 6-51 s 
PIPs 5-37 register (see also LFSR) scan cells 8-3 

placement 7-2 schematic capture 

CLBS-23 8-bit, parallel-load shift software 3-11 

control logic 5-26 5-7 Schmitt-trigger 

examples 5-29 constructing shift structures 4-7 

guidelines 5-24 registers with 108s SCR8-12 

improving 5-36 4-35 semiconductor controlled 
108 5-24, 5-27, 5-28 D-type 7-2 rectifier (see SCR) 
logic 5-19 data input 7-2 serializer 5-22, 5-23, 5-29, 
modification 5-34 data shift 5-33 5-31, 5-33 

rectangular 5-31 delay4-30 SET3-9 

tradeoffs 5-33 input 4-4 shift register 5-33 

placement and routing 108 4-3, 4-33, 4-36 signal 
APR2-1 LFSRs4-41 degradation 5-62 

LCA design editor, read/write 4-33 delay5-62 

EDITLCA 2-12 shift 3-24, 5-18, 5-21, falling 5-63 

plane logic 6-48 
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minimizing conflict 6-39 procedures 8-4, 9-2 
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rising 5-63 temperature 8-5, 8-14, 

transition 5-63 9-3, 9-5 

simulation 2-11 water vapor 9-5 

logic 2-1, 2-1 O thermal stresses 1-1 0 

results 2-16 three-state control line 4-5, 

timing 2-16 4-11, 4-12, 4-15, 

SSl/MSI 1-4, 3-2 4-17,4-21 

standard product ICs 1-2 timing 

state analysis 2-15, 5-56 

initialization 6-4 between control pins 

static latch 1-1 0 6-24 

structures calculator 4-27 

standard LCA 1/0 4-8 checks 2-15 

switch CLB delays 3-21 

connections 5-4 clock-to-block output via 

matrices 5-3, 5-40 Q 3-21 

switching threshold 4-21 CMOS delay 

synchronous system 7-2 accumulations 3-22 

critical path 2-15 
T daisy-chained LCA 

target system 2-17, 2-19, devices 6-45 
6-2 delay calculation 4-12, 

temperature 9-3, 9-5 5-42, 5-58, 5-60, 
testability 8-1, 8-2, 8-5 delays in IOB-based 

comprehensive 8-1 registers 4-30 
testing design optimization 2-16 

automated cleaning 9-5 excessive routing delay 
configurations 8-4 4-12 
corrosion 9-5 input and output pad 
emulating severe buffer delays 3-21 

environments 9-2 input setup time 3-21 
group C conformance 9-4 interconnection delay 
high-moisture 9-4 3-21, 5-57 
lead integrity 9-6 loop delays 4-5 
methods 9-2 low-frequency 
moisture 9-3, 9-5 characteristics 4-27 
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Master configuration 

mode 6-32 

oscillator 4-25, 4-27 

Peripheral mode 6-25 

propagation time of a 

CLB 3-21 

R/C delay 5-56 

readback control 6-50 

routing 4-5, 4-21 

simulation 2-16, 5-56 

skew 5-18 

synchronization delay 

6-34 

tilde 5-67 

verification 2-16, 2-17 

worst-case delay 5-9, 

5-56 

transistors 

parasitic 8-13 

transition 

clock 4-5 

data 4-5 

direction 4-22 

translate 

CLB-based LCA design 

to netlist 2-16 

trigger 

hysteresis 4-19 

Schmitt 4-18, 4-19, 4-20, 

4-21 

truth tables 3-11 

TTL4-5 

voltage 7-3 

u 
UART 4-41 

UNROUTE 5-43 

v 
verification 
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download cable 2-17 

in-circuit 2-17 

logic and timing 2-17 

VLSI 1-2 

voltage 

CMOS 4-5, 7-3 

input 4-21 

108 4-22 

levels 7-2 

margins 4-47 

output 4-21 

range for IOBs 4-22 

threshold 4-20 

transient 8-8 

transition level 4-21 

TTL4-5, 7-3 

w 
wired-AND 4-11 

wired-OR 4-11 

write operation 8-8 

X·Y·Z 
XACT2-12 

delay calculator 2-15 

PROM formatter 2-19 

XACTOR 2-19, 2-21, 6-2 

in-circuit emulator 5-64, 

6-42, 6-50 

XNOR4-42 

XOR 4-41 
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Configuring the LCA Device 
By Ed Valleau 

Introduction 
The Logic Cell'" Array device from Monolithic Memories is a 
new revolution in programmable logic. It offers the user gate 
array logic density while still providing the versatility of a 
programmable logic device (PLO). Its architecture is based on 
an array of static RAM cells, which must be configured when 
power is initially applied to the circuit. This gives the LCA device 
a high degree of flexibility since the functional logic contained in 
the device may be changed during development, thus shorten­
ing prototyping cycles. To update existing equipment, logic cir­
cuits may be modified with new configuration data. It is also 
possible to reconfigure the LCA device "on the fly" without the 
need for hardware changes. This would prove specifically useful 
in systems that need to change their protocols of operation 
dynamically. 

Configuration data is stored in a nonvolatile source and read by 
the LCA device at "power up". The time it takes to perform a 
configuration is variable, from 12 to 34 ms depending on device 
type and mode of configuration. A typical storage medium for 
the LCA's configuration data would be an EPROM or EEPROM, 
which would be connected to the the LCA and accessed imme­
diately after "power up". When the configuration process is 
complete and the device is fully functional, the EPROM or 
EEPROM may be put into a three-state condition and left dese­
lected until the next configuration cycle. 

There are a number of different modes of LCA device config­
uration, each mode being better suited to a particular operating 
environment or application than another mode. The following 
information outlines these various modes. 

Overview of the Configuration Process 
The LCA device is comprised of three distinct programmable 
elements: Configurable Logic Blocks (CLBs), Input/Output 
Blocks (IOBs) and Programmable Interconnect. Because the 
device architecture is based on static RAM cells, the configura­
tion of the CLBs, IOBs and Programmable Interconnect is ran­
dom and indeterminate when power is first applied to the device. 
The LCA device goes through two states prior to being function­
ally operational. The first is a general initialization state, followed 
by a configuration sequence. (See Figure 1.) 

The device uses a number of dedicated input/output pins to 
control the loading process. Configuration sequentially pro­
grams the RAM cells, ultimately creating functionally operational 
and interconnected logic blocks. The entire procedure is com­
parable to programming a PLO except that a conventional PLO 

POWER 
STABILIZED 

POWER ON 
RESET 

TIME DELAY 

RESET ASSERTED 

RESET 

RESET 

D/-P 
TRANSITION 

(REPROG. OPTION 

-RESET 
,--,......--'-----. ENABLED) 

r----
' L---.. 

USER 
OPERATION 

-PWRDN 
LOW 

POWER 
DOWN 

DI-PLOW 
TRANSITION 

(REPROG. 
-PWRDN OPTION 

HIGH DISABLED) 

Figure 1. Configuration Sequence 

is nonvolatile, and maintains its logic functionality when power 
is removed from the circuit. 

The smaller of the two LCA devices, the M2064, is a 64-CLB 
device which requires exactly 12,040 binary bits of information 
to complete the configuration process. The M2018 isa 100-CLB 
device which needs 17,880 bits of information. 

Table 1 shows the different modes that can be selected via the 
three dedicated mode input pins MO, M1 and M2. These will 
usually be hardwired to select a single mode. The LCA device 
reads the dig ital code applied to the mode pins prior to configu­
ration, then enters one of five specific modes before becoming a 
functional logic system. The exact number of bits for successful 
configuration must be read into the LCA device, partial configu­
ration is not possible. 
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CONFIGURATION MODE SLAVE PERIPHERAL MASTER-HIGH MODE MASTER SERIAL 
MODE MODE MASTER-LOW MODE MODE 

Mode Selection code 1 :1 :1 1 :0:1 0:0:1 (Master-Low) 0:0:0 
(MO:M1:M2) 0:1:1 (Master-High 

Configuration data Bit-serial Bit-serial Byte-parallel Bit-serial 

Automatic loading No No Yes Yes 

Programming source User Logic CPU Data Bus External Byte-wide External Serial 
or Another Memory Memory Memory 
LCA (Note2) 

Number of user 1/0 2 6 25 3 
pins required 

Configuration time Source Source 12-24 ms (M2064) 12-24 ms (M2064) 
Dependent Dependent 17-34 ms (M2018) 17-34 ms (M2018) 
(Note 1) (Note 1) (Note 3) (Note3) 

Notes: 

1. The minimum time in any case is approximately 12 ms for the M2064 and 17 ms for the M2018. 

2. Also used by Monolithic Memories' XACTOR for In-Circuit Emulation. 

3. This parameter depends on internal timing circuits and is manufacturing process-dependent. Therefore it may vary from device to device within the limits shown. 

Table 1. Comparison of Configuration Modes 

Choice of Configuration Mode 
The choice of a configuration mode is influenced by the actual 
operating environment. For example, questions that might arise 
are: is the LCA being used as a standalone logic unit, or with a 
microprocessor? Can it be configured by a serial link? Other 
considerations include whether pins used for configuration are 
also used for functional operation, and whether or not these pins 
should be isolated from activating external logic during configu­
ration. The designer has a choice of configuration modes for 
multiple LCA designs, and can use either parallel or serial sup­
port for a master mode LCA device which in turn can configure a 
slave or number of slave LCA devices. 

The Configuration Pins 
The pins used to configure the LCA device come in two forms: 
dedicated configuration pins which are used exclusively for 
configuring the LCA device, and multifunction configuration 
pins which can be used as general-purpose I/Os after configura­
tion has been completed. 

The Six Dedicated Configuration Pins 

PIN DESCRIPTION 

MO,M1 Mode Select Pins 

CCLK Configuration Clock 

-Reset Master Reset 

D/-P Donel-Program 

-PWRDN Power Down 

The Multi-Function Configuration Pins 

PIN DESCRIPTION USAGE 

M2 Mode Select 

Din Configuration Data In Present 

Dou! Configuration Data Out 
in all 
configuration 

HOC High During Configuration modes 

LDC Low During Configuration 

-CSO,-CS1 ,CS2 Chip Selects Peripheral 

-Wrt Write Strobe Mode Only 

-HCLK Read Strobe 

AO-A15 Address Lines 
Master Mode 
Only 

D0-07 input Data Lines 

Pin Names and Functional Description 
Done/Program Pin D/-P 
The Donel-Program D/-P pin performs a dual function. It is an 
open-drain output with an internal programmable pull-up resis­
tor. During configuration the pin is an output that is driven LOW 
by the LCAand can be monitored by external logic to determine 
whether or not the LCA is ready for functional use. When con­
figuration is completed this pin is pulled HIGH by an internal 
programmable pull-up resistor of 3K!l value. In a multi-LCA 
environment, the D/-P pin goes HIGH one clock cycle before 
the configuration is complete allowing time for user 1/0 signals 
to propagate between other LCA devices before entering the 
functional mode of operation. The LCA may be reconfigured at 
any time by pulling the 0/-P input LOW with an external logic 
open-drain (open-collector) driver. When the internal logic rec­
ognizes a LOW input it drives the D/-P output LOW forcing a 
reconfiguration cycle. 

3.5 

EJ 



Configuring the LCA Device 

There is a time delay of several microseconds before an active 
LOW input is recognized, so random triggering due to short 
noise bursts is highly unlikely. If the D/-P input is prevented 
from going HIGH immediately after configuration, then further 
reconfigurations will be suppressed and functional operation will 
not commence until that input is permitted to go HIGH. In 
multiple LCA designs the D/-P pins are wire-OR 'ed, so the last 
LCA device to be configured will prevent other, already config­
ured devices, from functioning. When the last device is config­
ured the composite wire-OR line goes HIGH and all LCAdevices 
enter a functional mode simultaneously. 

-RESET 
The-RESET input is active LOW and is used to start the initializa­
tion process before or during configuration, but not during 
functional operation. Figure 1 shows the initialization and con­
figuration procedure as a flow diagram. Asserting the -RESET 
line will put the LCA device into an initialization mode, aborting 
the current cycle of configuration. 

Once configuration is complete the -RESET input takes on a 
different role. It may be used to reset the device as if the device 
were a functional logic system. When asserted, internal registers 
and/or latches are reset. The reset condition may then be 
relaxed and functional operation resumed without the genera­
tion of a reconfiguration cycle. 

To initiate reconfiguration the D/-P pin should be used instead 
of the -RESET input. When -RESET is LOW at the initialization 
cycle, its LOW-to-HIGH transition will sample the logic condition 
at the mode input pins. The logic state sampled determines the 
mode of configuration. Once configuration has started these 
pins are not required to be held. However, it is recommended 
that these pins remain unchanged until the configuration phase 
is completed. 

MODE CONFIGURATION INPUTS MO, M1, and M2 
MO, M1 and M2 are the Configuration Mode Select Pins. They 
force the LCA device into the selected configuration mode on 
the rising edge of-RESET. Pins MO and M1 are dedicated mode 
inputs having no general-purpose 1/0 capability. They will usu­
ally be hardwired to logic HIGH or LOW conditions. For all 
modes except the master serial mode, M2 is HIGH and is pulled 
HIGH internally during configuration. After configuration this 
pin can be used for general 1/0 functions. M2 and MO both have 
internal pull-up resistors. M1 should be tied to VCC or GND. 
Table 2 lists five of the modes of operation. The only mode that 
requires a logic LOW on the input to M2 is the Master Serial 
Mode which is used with a dedicated serial port EPROM. 

MO M1 M2 MODE SELECT 

0 0 0 Master Serial Mode 

0 0 1 Master LOW Mode 

0 1 1 Master HIGH Mode 

1 0 1 Peripheral Mode 

1 1 1 Slave Mode 

Table2. 

PWRDWN-
The PWRDWN- input is an active LOW power-down pin that can 
be used to reduce power consumption of the LCA device when it 
is not being used. The LCA device is then considered off-line 
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because all 1/0 lines are disabled while internal configuration is 
maintained. The VCC input may be reduced to 2.0 Volts and 
configuration data will not be lost. With internal logic disabled 
and 1/0 pins in a high impedance condition, the D/-P pin is 
forced LOW and all internal storage elements become cleared. It 
is essential that this pin is used only while D/-P is HIGH after 
initialization and configuration. It is common to tie this input to a 
valid logic HIGH if the power-down feature is not required. 

Non-Dedicated Pins used in all 
Configuration Modes 
DIN and DOUT 

DIN (configuration Data IN) is used as a serial data port into the 
LCA device. Individual data bits are applied to this input and 
clocked into the device by rising clock edges applied to the 
CCLK input. DIN is used in both slave and peripheral modes. 

DOUT (configuration Data OUT) is used to configure multiple 
LCA devices in a daisy chain. The DOUT signal from the preced­
ing LCA device drives the DIN of the succeeding device and is 
synchronized to rising edge of the clock pulse on the CCLK line. 

CCLK 
CCLK (Configuration CLocK) as described above is used to 
synchronize the serial data stream into the data input DIN pin. 
The CCLK can be an input pin or output pin depending on the 
mode of configuration. It is an outputforevery mode of configu­
ration except for the slave mode. The CCLK reverts to an input in 
the slave mode, and can be driven either by an external source or 
the CCLK output of another LCA device configured in the mas­
ter mode. In the operational mode the CCLK is an input to 
enable configuration data to be read back from the LCA via the 
MO and M1 pins, which have the dual function of Readback 
Trigger (RT) and Readback Data (RD), respectively. CCLK has 
an internal pull-up resistor which allows the input to be pulled 
HIGH when not in use. 

RCLK 
The Read CLocK is used as an output signal which goes LOW 
when the LCA device expects to see valid input data, and HIGH 
when the address bus contents are changing states. It can be 
used to enable the external EPROM, and in the master serial 
mode can be used to clock an external address counter. This pin 
is used to clock the CLK input of the serial EPROM, a support 
device for the LCA. 

HDCand LDC 
High During Configuration (HOC) and Low During Configura­
tion (LDC) are driven HIGH and LOW, respectively, for the 
duration of the configuration process. They are used to control 
external logic during configuration. When configuration has 
been completed HOC and LDC become general-purpose inpuV 
output pins. All of the other 1/0 pins not involved in the .actual 
configuration process are connected to internal pull-ups to 
VCC, which are removed after configuration. 

CHIP SELECT iNPUTS -CSO -CS1 CS2 -WRT 
-CSO, -CS1, and CS2 are the chip select pins used during the 
Peripheral Configuration Mode only. The three enables can be 
used to map the LCA device to a specific address. Active LOW 
inputs to-CS1 and-CSO, and an active HIGH input to CS2 will 
select the LCA device as if it were a memory or peripheral 
location mapped into the address space of a microprocessor 
system. 
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-WRT in the Peripheral Configuration Mode is the same as 
CCLK in the slave mode. A single data bit is transferred from the 
data bus into the LCA device on each rising edge of -WRT. 

AO·A15 and DO·D7 
The address and data pins are used in the master parallel modes 
only, and are converted to general-purpose input/output pins 
after successful configuration. AO-A15 are the address lines 
used to access the external EPROM. In the Master Low mode, 
address location 0000 hei<adecimal is read first, and the addresses 
increment each time a data byte is read until all of the configura­
tion data is loaded into the LCA device. The D/-P then goes 
HIGH indicating that the device is loaded. The address counter 
outputs convert to general-purpose 1/0, unless the D/-P pin is 
held LOW by the wire-OR function of a D/-P output from a slave 
device. lri that case the counters will continue to count, down­
loading the slave's configuration data. Counting will continue 
for more than one slave. In the Master High Mode, address FFFF 
hexadecimal is accessed first, and the address lines are decre­
mented. This allows the LCA device to share addressing space 
with an EPROM or EEPROM used by the system. D0-07 are the 
data lines connected to the external memory device. 

APPLICABLE 
PIN CONFIGURATION MODE(S) 

NAME s p MH ML MS 

MO • • • • • 
M1 • • • • • 
M2 • • • • • 
D/P • • • • • 
(Note 1) 

RESET • • • • • 
(Note 1) 

CCLK • • • • -

DIN • • - - • 
DOUT • • • • • 
HOC • • • • • 
LDC • • • • • 
AO-A15 - - • • -

DO-D7 - - • • -
RCLK - - • • • 
WRT - • - - -

cso - • - - -
CS1 - • - - -
CS2 - • - - -

Notes: 

Slave Configuration 
<MO M1 M2>:;: <1 1 1> 
The Slave Configuration Mode (Figure 2a) is simple to imple­
ment requiring only three pins, two lines to perform handshake 
and synchronization and one line for data transmission. Slave 
configuration is used in the XACT Development System to 
download data to the support hardware. In this mode data is 
presented to the LCA device as a serial bit stream, which is 
transferred to the device as if it were a very large shift register. 
The data is presented to the DIN pin and sequentially clocked 
into the device using the CCLK input. When the device is com­
pletely loaded, the D/-P pin goes HIGH to confirm that configu­
ration is complete and that the device is ready to function as a 
programmed unit. 

In Figure2a the LCA device is shown connected to a microcom­
puter/microprocessor port with the data line (DO) connected to 
the DIN input. The rising edge of the strobe output will clock 
valid data on DO into the LCA. The process continues until the 
D/-P confirms that configuration is complete to the microcom­
puter via the data input (07). The microcomputer can poll 07 to 

FUNCTION DURING FUNCTION DURING 
CONFIGURATION USER OPERATION 

Mode select O (I) Readback trigger (I) 

Mode select 1 (I) Readback data out (0) 

Mode select 2 (I) <Userl/O> 

Indicates when configuration Initiates/Inhibits 
process is done (0) Reconfiguration (I) 

Abort/Restart Master clear of all 
configuration (I) internal Flip-Flops (I) 

Configuration clock Readback clock (I) 
(See Notes 1 and 2) 

Configuration data in (I) <User 1/0> (Note 3) 

Configuration data out (0) <User 1/0> 

Logic HIGH (0) <User 1/0> 

Logic LOW (0) <User 1/0> 

Address bus (0) <User 1/0> 

Data bus (I) <User 1/0> (Note 3) 

Read clock (0) <User 1/0> 

Write strobe (I) <User 1/0> 

Chip select O (I) <User 1/0> 

Chip select 1 (I) <User 1/0> 

Chip select 2 (I) <U1?9r 1/0> 

Abbreviations: 
1. The "R'ESiIT, CCLK, and DIP pins have multiple functions. See text for further detaUs. S= Slave MH = Master high 

ML = Muter low 
MS = Master serial 

2. During Slave mode configuration, the CCLK pin is an input, while for all other modes, it is an output. 

3. DIN and DO are the same physical pins but are associated with different configuration modes. 

Table 3. Summary of Pins Used for Confituratlon 

P = Peripheral 

I= Input 
o =Output 

EJ 
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determine the configuration status, or set input 07 to generate 
an interrupt. Another application for the slave mode would be in 
a multiple LCA design where one LCA device can serially load 

subsequent slave LCA devices arranged in a daisy chain. Using 
LCA devices connected as master and slave or slaves is dis­
cussed more fully in a later section. 

+5V 

MO M1 PWR 
MICRO- OWN 

COMPUTER LCA 

uo CCU< 

I 
PORT DIN 

GENERAL 
PURPOSE 

AU. 
USERIO • OTHER 

PINS 

RESET DIP 
RESET 

Figure 2a. Slave Mode 

PIN PIN NUMBER PIN VALUE DURING 
NAME TYPE CONFIGURATION 

DESCRIPTION 
PLCC DIP 

Fixed, Non-programmable Pins 

MO 26 18 Input HIGH Mode Select 

M1 25 17 Input HIGH Mode Select 

CCLK 60 42 Input <Clock> Configuration Clock 

RESET 44 31 Input HIGH Master Reset 

DIP 45 32 Output LOW Done/Program 

PWRDWN 10 7 Input HIGH Power-down 

User-Programmable Pins 

M2 27 19 Input HIGH Mode Select 

DIN 58 40 Input <Data> Configuration Data In 

DOUT 59 41 Output <Data> Configuration Data Out 

HOC 28 20 Output HIGH Constant "1" Level 

LDC 30 21 Output LOW Constant ''O" Level 

Figure 2b. Slave Mode Pin Summary 

CCU< 

DIN 

DOUT 

Figure 2c. Slave Mode Configuration Timing 
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Peripheral Mode Configuration 
<MO M1 M2> = <1 0 1 > 
The Peripheral Mode (Figure 3a) is similar to the Slave Mode in 
that the data is presented in a bit serial form. In the Peripheral 
mode, however the LCA device is configured as a microproces­
sor-compatible peripheral device. The microprocessor can 
access the LCAdevice directly through its internal address bus, 

ADDRESS DATA 
BUS WR BUS +5V 

and map it through chip select logic. Control of the write opera­
tion is direct to the LCA device. Less hardware is required to 
connect the LCA to a microprocessor in this mode, and the 
loading of data is serial over a single data line. Synchronization 
is achieved by the falling edge of a-WRT input, while data is set 
up on the DIN line and strobed by the falling edge of a micropro­
cessor-generated write signal. 

+5V vcc 

= I 

J 
ADDRESS 
DECODE 

LOGIC 

PIN PIN NUMBER 

NAME PLCC DIP 

Fixed, Non-programmable Pins 

MO 26 18 

M1 25 17 

CCLK 60 42 

RESET 44 31 

D/P 45 32 

PWRDWN 10 7 

User-Programmable Pins 

M2 27 19 

DIN 58 40 

DOUT 59 41 

cso 50 35 

CS1 51 36 

CS2 54 37 

WRT 56 38 

HOC 28 20 

LDC 30 21 

MO M1 PWR 
DWN 

DIN CCLK 
WRT LCA 

DOUT 

M2 
cso HDC GENERAL 

PURPOSE 
LDC USER~O 

O~R { 
CS1 PINS 

CS2 

DIP 

RESET 

Figure 3a. Peripheral Mode 

PIN VALUE DURING 
TYPE CONFIGURATION 

Input HIGH 

Input LOW 

Output <Clock> 

Input HIGH 

Output LOW 

Input HIGH 

Input HIGH 

Input <Data> 

Output <Data> 

Input LOW 

Input LOW 

Input HIGH 

Input <Strobed> 

Output HIGH 

Output LOW 

Figure 3b. Peripheral Mode Pin Summary 

DESCRIPTION 

Mode Select 

Mode Select 

Configuration Clock 

Master Reset 

Done/Program 

Power-down 

Mode Select 

Configuration Data In 

Configuration Data Out 

Chip select (Active LOW) 

Chip select (Active LOW) 

Chip select 

Write enable (Active LOW) 

Constant "1" Level 

Constant "O" Level 
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CCU< 
(OUTPUT) 

-

Figure 3c. Peripheral Mode Configuration Timing 

Parallel Master Mode Configuration 
MASTER MODE LOW <MO M1 M2> = <O 0 1> 

MASTER MODE HIGH <MO M1 M2> = <O 11> 

In the Master Low Parallel mode (Figure 4a) data is loaded in 
parallel at a rate determined by an on-chip timer in the LCA 
device. Configuration data is stored in an EPROM or EEPROM, 
and a parallel data path is connected from the memory output 
data lines 00-07 to dedicated data inputs on the LCA device. 
There are sixteen address outputs, AO(LSB)-A15(MSB), con­
nected to the EPROM. At the start of configuration in master 
mode low the LCA device sends an incrementing address start­
ing at address 0000 hexadecimal and sequentially selects the 
configuration bytes. Data is serialized when loaded into the LCA 
device. 

When configuration is complete the address and data lines 
become general-purpose 1/0 blocks. The 0/-P pin is used to 
provide external logic, an indication that the LCA is currently 
functional or configuring. 

The 0/-P pin can be used to select the EPROM/EEPROM dur­
ing configuration. An active LOW output applied to the memo­
ry's Chip Select input will select the device to read the configura­
tion data and deselect it when configuration is complete. The 
method shown in Figure 4a is suggested for logic systems that 
have no host processor available to perform the configuration. A 
drawback is that address and data lines might require isolation 
from external logic circuits while the LCA device is configuring. 
The logic designer must determine which signals need isolation 
and which do not. Using IOBs which are not address and data 
lines might be a solution to avoid any conflict that might occur 
when external logic is driven during configuration. Also, the 
designer must avoid loading address and data lines with capaci­
tive or inductive components. For example general IOBs should 
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be used for circuits such as relaxation oscillators which require 
capacitive loads. Loading address or data lines with capacitors 
might lead to a violation of setup and hold times, causing 
erroneous configuration information to be read. 

VCC +SV 

l~ MO M1 ~ 
M2 CCU< 
HDC 
[rJe" -1 RCl.K A15 

PURPOSE A14 
USER VO EPROM 

PINS 2Kx8 
OR LARGER 

A11 

A10 
RESET Ni Ni 
07 I.CA Jiil Jiil 
D6 A7 A7 
05 All /IS 
D4 A5 A5 
03 A4 A4 
02 A3 A3 
01 A2 A2 02 
DO A1 A1 01 

NJ NJ DO 
OE 

DifS CE 

8 

DATA BUS 

Figure 4a. Master Parallel Mode 
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In the Master Mode HIGH the initial starting address is hexade­
cimal FFFF, and the address decrements after each data byte is 
read. For both Master Mode HIGH and Master Mode LOW, the 
LCA device will set the D/-P pin HIGH after enough bits have 
been read to configure the one master LCA device. This permits 
configuration data to be stored in an EPROM that also holds 
microprocessor firmware. Only 1505 (5E1 hex) bytes are required 

Bytewlde Master Mode Pin Summary 

PIN PIN NUMBER PIN 
NAME PLCC DIP TYPE 

Fixed, Non-programmable Pins 

MO 26 18 Input 

M1 25 17 Input 

CCLK 60 42 Output 

RESEi' 44 31 Input 

D/P 45 32 Output 

PWRDWN 10 7 Input 

User-Programmable Pins 

M2. 27 19 Input 

DOUT 59 41 Output 

HOC 28 20 Output 

LDC 30 21 Output 

RCLK 57 39 Output 

AO-Axx - - Outputs 

48DIP 
68P'-'CC 

D0-07 - - Inputs 

48DIP 
68PLCC 

for an M2064 LCA device and 2235 (888 hex) bytes for the M2018, 
so large EPROMs can store configuration data for a number of 
LCA devices. Configuration information is concatenated in one 
EPROM and read by the master device, then sent to slave LCA 
devices as outlined in the section describing the configuring of 
multiple LCA devices. 

VALUE DURING 
CONFIGURATION DESCRIPTION 

LOW Mode Select 

LOW (Master-low mode) 
or HIGH (Master-high mode) 

<Clock> Configuration Clock 

HIGH Master Reset 

LOW Done/Program 

HIGH Power-down 

HIGH Mode Select 

<Data> Configuration Data Out 

HIGH Constant "1" Level 

LOW Constant "O" Level 

<Strobed> Chip enable output 

<Address> Memory address bus 
A15 A11 AO 

3 5 6 4 2 1 48 47 46 45 44 43 
65 67 2 4 6 8 9 7 5 3 68 66 64 63 62 61 

<Data> Memory data bus 
07 DO 
28 29 34 35 36 37 38 40 
41 42 48 50 51 54 56 58 

Table 4b. Master Mode Pin Summary 

iiCiX 
(OUTPUTS) ____ _, 

DATA ----..., ,------------------,\JIJWWJWIN\N 
(IN~TS) BYTE(n) BYTE(n+1) /\MAAMJtAAMf\ IYTE(n+1) 

CCU< 
(OUTPUTS) 

OOUT 
(OUTPUTS) 

LS8 MSB 

Figure 4c. Master Mode Configuration Timing 
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Serial Master Mode 
<MOM1 M2>=<000> 
The Master Serial Mode (Figure 5) uses a Serial Data PROM 
(SDPROM) which has an internal address counter and a serial 
data port for the conversion of parallel data from the SD PROM to 
a single data output. Figure Sa shows the schematic diagram 
required forth is mode. Configuration data is stored in the PROM 
section and downloaded to the LCA device in the most pin­
efficient way, avoiding large numbers of address and data inter­
connections. The SDPROM is connected to the LCA device 
using only three pins. In. this mode the LCA generates a clock 
signal which is used to increment the address counter built into 
the SDPROM. The SDPROM then sends data to the DIN pin on 
the LCA device. This mode is very similar to the Slave and 
Peripheral Modes in that data input is through the DIN pin. 
However, the SDPROM requires a clock input to increment its 
internal address counter which is supplied by the RCLK output 
of the LCA device. The configuration time is therefore deter­
mined by the LCA devices on chip counter. The D/-P input 
terminates the configuration process by disabling the SDPROM. 
One SDPROM can hold enough configuration data for three 
M2064 or two M2018 devices, and they can be cascaded for 
larger configuration arrays. 

vcc 

L 
·-{ PURPOSE 
USERl/O 

PINS 

MO M1 

M2 

DOUT 

HDC 
LDC 

RESET 

+5V 

PWR 
DWN 

CCU< 

DIN DATA 

RCLK CU< SERIAL 

CE MEMORY 

DIP OE 

The data to be loaded into an LCA device is developed using the 
XACT Development Software, and is stored in one of two 
modes: a serial bit stream to be used in the Peripheral and Slave 
modes, or a 1500-byte PROM file for use in the Master Mode. 

Figure Sa. Serial Mode 

PIN PIN NUMBER PIN VALUE DURING 
NAME TYPE CONFIGURATION 

DESCRIPTION 
PLCC DIP 

Fixed, Non-programmable Pins 

MO 26 18 Input LOW Mode Select 

M1 25 17 Input LOW Mode Select 

CCLK 60 42 Output <Clock> Configuration Clock 

RESET 44 31 Input HIGH Master Reset 

D/P 45 32 Output LOW Done/Program 

PWRDWN 10 7 Input HIGH Power-down 

User-Programmable Pins 

M2 27 19 Input LOW Mode Select 

DIN 58 40 Input <Data> Configuration Data In 

RCLK 57 39 Output <Strobed> SDPROM Clock 

HOC 28 20 Output HIGH Constant "1" Level 

LDC 30 21 Output LOW Constant ''O" Level 

Figure Sb. Master Serial Configuration Mode Pin Summary 

RCLK 

DIN BIT(n+1) BIT(n+2) 

Figure Sc. Master Serial Mode Configuration Timing 
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Configuring Multiple LCAs 
Recognizing that multiple LCAs could be used in a system, the 
designers added a feature which makes configuration easier by 
allowing several LCAs to be connected together in a daisy 
chain. In the Master mode, the first LCA reads data from the 
EPROM in parallel until it has received all of its configuration 
data. Atthis point its 0/-P pin would normally be pulled passive 
HIGH but it is wire-ORed to the remaining LCA devices config­
ured in the slave mode and is held LOW. The first LCA, although 
configured will not start to function, but continue to pass config­
uration data to the next LCA device. The data out line (DOUT) 
drives the DIN line of the first slave, and the CCLK input clocks 
the configuration data through until the next LCA Is configured. 
The wire-OR action holds the D/-P input LOW preventing the 
configured LCAs from entering a functional mode. The sequence 
continues until the last LCA in the slave chain is configured and 
allows the D/-P line to go HIGH. All the configured devices in 
the chain start to function simultaneously because the compo­
site wired-OR function goes HIGH on all LCAs simultaneously. 

Due to the current sink capability of the D/-P input being able to 
handle only one pull-up load satisfactorily, only one of the LCA 
devices in the daisy chain should be configured with 'pull ups'. 
The first device in the chain can be configured in any of the four 
modes. All other devices in the chain would use the slave mode. 

The daisy chain configuration mode is the easiest and most pin 
efficient, but the total configuration time increases linearly for 
each LCA added to the chain. It is also possible to configure 
LCAs in parallel in the slave or peripheral modes as shown in 
Figure 7. The total configuration time is then reduced to the 
configuration time of a single device. 

Connecting parallel LCA's in the peripheral mode also allows 
the use of OMA transfer techniques to decrease configuration 
time. 

Figure &a. Master Mode LCA with Daisy-Chain 
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Liquid Crystal Display 

Abstract 
The Logic Cell™ Array (LCA) from Monolithic Memories is a high 
density programmable device capable of supporting true VLSI 
logic functions. Its unique properties can be viewed as 
providing the benefits of Programmable Logic Devices (PLDs) 
while approaching the high functional density of a gate array. 
Combining these features makes the LCA device a product 
capable of bridging the gap between PLDs and Gate Arrays. 

The LCA structure differs from the conventional concept of the 
PLO because it is based on a CMOS RAM cell architecture. Its 
internal logic circuits, input/output (1/0) resources plus the 
interconnect are all programmable. In comparison to the 
traditional fuse array of a PLO which is linked to a fixed logic 
structure. The efficiency of this logic structure reduces as 
functional density increases. 

The low-power CMOS RAM locations of the LCA device must be 
initialized and configured immediately after power has been 

Logic Cell™ Array and XACT™ are trademarks of XILINX Inc 

IBM® is a registered trademark of International Business Machines Corporation. 

Chris Jay 

applied to the circuit. Once configured, functionality is main­
tained by the continued application of power to the device. To 
ease configuration, the device can reside alongside a low-cost 
EPROM which holds the configuration data. The LCA device 
can automatically load itself and be reprogrammed any number 
of times. This feature of reconfigurability can be used for 
system development, modifying existing designs, or support­
ing multiple system choice, with very little actual hardware 
modification. In many instances this can be achieved dynam­
ically or "on the fly." 

The following applications note describes the design of a six­
digit, seven-segment decoder/driver for Liquid Crystal Dis­
plays (LCDs). Design methodology is outlined and the use of 
the XACT™ software is discussed in the role of a CAD design 
tool for the LCA device. The final designs are available to 
readers of this applications note on request. 

PC™, PC/AT™ and PC/XT7M are trademarks of International Business Machines Corporation. 

P-SILOS™ is a trademark of Simucad Corp. 
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M2018 Provides Decoding for Six-Digit, 
Seven-Segment Liquid Crystal Display 
Chris Jay 

Introduction 
There are two types of low-voltage, seven-segment displays 
available as Indicator panels of multimeters, frequency 
counters, tachometers and other digital instruments: the light 
emitting diode displays (LEDs), and Liquid Crystal Displays 
(LCDs). The advantages of the LCD are mainly associated with 
very low power consumption and ease of readability. Instru­
ments and portable equipment can benefit from low-power 
CMOS technology and use these displays. The problem with 
LED displays is that a much higher operating current is 
required to illuminate the segments, virtually precluding their 
application in portable battery-operated equipment. Also, LED 
display outputs tend to "wash out• in sunlight, so they are very 
unsuitable in bright daylight, or where the ambient presence of 
light is high. In the display instrumentation of an automobile, 
for example, an LED display panel might be ''washed out" by 
high levels of reflected sunlight. LCD displays are preferable 
because the visual quality is good even in brightly lit 
environments. 

Despite the good visual quality and low-power consumption of 
the LCD display, an LED type can easily be driven from a 
multiplexed bus output. The output pin requirement of a seven­
segment LED driver can be reduced considerably by a 
multiplexed output arrangement. In a six-digit display, each 
anode (or cathode) drive is selected in synchronism with its 
multiplexed seven-segment output. A total of thirteen pins are 
required, seven pins to drive the segments and six pins to 

vcc 

R R 

The M2018 LCA device has 
been programmed to accept 
thr'e data byte inputs. Each 
byte can be registered by the 
rising edge of the clock inputs 
CLKO, CLK1, CLK2. The 
decoding for a six-digit LCD 
display and backplane wave­
form generation is incor­
porated in the M2018 device. 

,-, 
I I 

8YTE1 

CLKO 

DAO 
DBO 
DCO 
DDO 

DA1 

DB1 
DC1 
DD1 

control the anode (or cathode) of each display. If each digit is 
multiplexed at high speed with a proportionally larger pulse 
current per display, then the readability of the output is 
unaffected. With an LCD display, multiplexing is virtually 
impossible for two reasons. First, the LCD display has a slow 
response time and can not be multiplexed to give a good visual 
output. Second, the display backplane has to be pulsed. Any 
beating of a multiplexing frequency with the backplane bias 
frequency can occur, resulting in an unreadable output. 

LCD displays. have drawbacks because any driver circuit will 
need one pin per segment, plus a backplane driver pin for the 
whole display unit. Seven segments for each digit, in a six-digit 
display requires forty-two outputs pins, plus the one backplane 
pin. The input pin requirement is twenty-four, four pins for each 
of the six digits. The total pin count is sixty-seven. Additional 
input circuitry to support register enables and oscillator inputs 
would use up even more 1/0 resources and pins. 

Block Function of the LCD 
Decoder/Driver 
Figure 1 shows a schematic block diagram of the system as 
designed into the M2018 Logic Cell Array. Additional pins to 
synchronize the clocking of data into the internal data 
registers take three more pins. Since a backplane oscillator is 
required, two pins are configured to a resistor/capacitor (RC) 

M2018 SIX • DIGIT LCD DRIVER 

BYTE2 

CU<1 

DA2 
DB2 
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DD2 

DA3 
DB3 
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DD3 
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DC5 
DDS 

8YTE3 
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Figure 1. Liquid Crystal Dlsplay Decoder Driver 
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network. The RC combination generates a square wave which 
is used as a backplane bias to the display. The pin count is 
seventy-two. 

Binary data applied to byte 1 is registered after the rising edge 
of CLKO. The registered data is decoded to illuminate the 
relevant segments forming the hexadecimal display. Decoded 
data is then routed to the two least significant digits of the six­
digit LCD. Byte data applied to inputs 2 and 3 are loaded by a 
clock rising edge, CLK1 and CLK2, respectively. A backplane 
oscillator output drives the LCD's backplane with a low­
frequency square wave, which is determined by the RC time 
constants of a resistorlcapactitor network. To display a seg­
ment the decoder circuitry will drive the selected segment with 
a square wave that is 180 degrees phase-shifted from the 
backplane reference. If a segment is driven from an in-phase 
signal, then it is blanked. 

The advantage of the M2018 Logic Cell Array in this application 
is that it is a CMOS device, and consumes low power at low 
operational frequencies. Its power consumption is dependant 
on the internal clocking frequency and also on the percent 
usage of on-chip logic. There are one hundred individually 
configured logic blocks in the M2018, and any logic blocks that 
remain unused will consume only static substrate leakage 
current. Since the M2018 contains seventy-four genera/­
purpose user 110 blocks, there is ample programmable logic 
and 110 capability to perform decoding, registering and storage 
of data for six seven-segment digits. 

LCA Configuration 
Since the LCA device is based around a programmable array of 
volatile RAM cells, it must recieve configuration information at 
"power up." In this application it is programmed from an EPROM 
which holds the configuration data. Configuration takes place 
after power has been applied to the circuit, and it has been 
successfully reset. The LCA device enters a configuration 
mode, sequentially reads the data from the EPROM into its 
RAM cells, and becomes functionally operational in approx­
imately twenty-five milliseconds. It disables the EPROM after 
configuration. The volatility of the M2018 is a distinct 
advantage in many applications. In this case, different display 
decode operations may be selected at "power up'. Higher order 
address lines may be "hardwired" to select different 
configuration patterns from separate pages in the EPROM. So 
a small amount of deferred design may be added to the 
system. 

The M2018 has many advantages over custom VLSI circuits. 
Here, designers have control over how they wish to configure 
the circuit. Different display fonts can be programmed, for 
special characters. Most of the 110 pins can be reconfigured to 
ease printed circuit board layout. 

Figure 2 shows the circuit connections of an 84-pin M2018 in a 
PLCC to an 8 Kbyte-wide EPROM. Approximately 2.5 Kbytes 
are required for configuration. Three configuration patterns 
may be cascaded into one 8 K x 8 EPROM, but in this 
application, two configuration patterns may be stored, one at 
base location of OK and one at base location of 4 K. Address 
line A12 may be configured to a DIP switch or hardwire link, to 
select one of two configuration patterns. Two designs were 
developed, one for decoding binary data to a hexadecimal 
display and one for binary coded decimal. Both configuration 

patterns could be programmed into the EPROM and selected at 
a later time. 

The configuration mode chosen for the LCA device was the 
Master Low mode. Data is sequentially read from the EPROM 
during the configuration cycle. After power has been applied 
and the RESET input has been deasserted, the M2018 will 
output a series of incrementing addresses to the memory 
starting at the initial address of 0000. The DONEl-PROG (DI 
-P), which is an output during configuration, is driven active 
LOW. It is tied to the CS and OE inputs of the EPROM. When 
configuration is finished, Dl-P is pulled passive HIGH by an 
internally-configured "pull-up" resistor in the LCA device . The 
EPROM is then deselected. The normal data flow into the 
device is via dedicated input lines DO-D7 during configuration, 
and afterwards these become general-purpose 110 lines. The 
total time for configuration can vary between 17 to 34 ms. 
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Figure 2. Liquid Crystal Display Decoder Driver 

Design of the Backplane Oscillator 
To establish a backplane bias frequency, an RIC network is 
used in conjunction with a logic block that is designed to 
function as a relaxation oscillator. The Configurable Logic 
Block (CLB) is connected to two Input Output Blocks (IOBs) 
which in turn are connected to two external RIC networks, 
R1 ,C1 and R2 and C2 as shown in Figure 3a. The calculation of 
the RIC values to create a low-frequency backplane oscillation 
of even mark space ratio is given below. For an even mark/ 
space ratio R = R1 = R2 and C = C1 = C2. The time constants 
for period t are given by the following formula: 

T1 = 0.35(C X R X 2) ;for TTL voltage ;thresholds. 

T2 = 0.75(C X RX 2) ;for CMOS voltage ;thresholds. 

The general expression for the calculation becomes: 

T = N X [(R1 X C1) + (R2 X C2)] ...... (1) 
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Where N is the TIL, or CMOS multiplying factor of 0.35 for TIL 
or 0.75 for CMOS. The LCA device can be programmed to be 
compatible with either technology. 

The values of 1 Kohm and 2.2 microfarad gave a backplane 
oscillation frequency of about 80 Hz. 

Figure 3a shows the schematic arrangement of the backplane 
oscillator as it would be configured in the LCA device. Two RIC 
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b. ClB and IOB Placement of GOSC Macro 

Figure 3. Liquid Crystal Display Decoder Driver 

networks of 1 Kohm and 2.2 microfarads are connected to pins 
67 and 65 respectively. The placement of the bl!)cks is shown 
in Figure 3b as it would be seen on the color monitor of a PC 
when the XACT Design Editor is used. Pins dedicated to 
configuration functions must not be loaded with components 
such as capacitors because they could prevent the LCA 
device from reading valid data. Pin 66, which is associated with 
data line D2 was therefore assigned to drive one of the LCD 
segments. 

XACT Editor and Macro Support for 
Quick Design Entry 
The logic design is accomplished by using the XACT Design 
Editor running in an IBM® PC/AT™ or PC/XT™. This support 
software allows users to edit their designs via a mouse inter­
face and a keyboard input. The CLB and IOB elements may be 
configured and connected to form complete logic subsystems 
through the programmable interconnect. The XACT Editor 
allows the user to view a ;section of the LCA device on the 
display unit of the PC, for CLB and IOB placement, and 
distribution of interconnect. Supported by the zoom-in and 

zoom-out facility, and a "world view" feature (this allows the 
user to see the entire LCA device layout) enables a designer to 
"hook" subsystems of the design together. Menus are 
displayed at the head of the video display, and a designer may 
move the cursor with a mouse to select options. These Include 
BLOCK commands enabling CLB/IOB editing; CONFIG to 
enable configuration of blocks; and NET and PIN to as&ign pins 
to nets, so creating the overall interconnection. This could be 
analagous to interconnections on a printed-circuit card, 
making the electrical connection between pins of 74LSXX or 
other types of logic devices. 

The XACT editor is equipped with a support MACRO library. 
This library allows widely used functions to be invoked without 
redesign. The relaxation oscillator, used for the backplane 
generator, is supplied as an existing design configuration in 
the MACRO. The oscillator MACRO may be called by 
downloading the GOSC MACRO file. 

When using the XACT editor the application of already existing 
MACRO support files can dramatically reduce the overall 
design cycle time. The six-digit decoder display driver is basi­
cally repetition of the same six logic subsystems, one for each 
digit as shown in Figure 4. The CUTMACRO feature is useful as 
a support facility in avoiding repetitive design operations on 
individual IOBs or CLBs. Once a CLB has been designed, it 
can be stored as a MACRO, and given a user-defined name. 
The designer may call that MACRO wherever the IOB or CLB 
needs configuration and placement. The CUTMACRO feature 
also supports multiple CLBs, IOBs and interconnects of 
subsystems. A decode section identical to the one shown in 
Figure 4 can be stored as a MACRO and given a user-defined 
name. The design for a decoder section needs only to be 
performed once. The remaining five sections may be called and 
placed using the user-defined MACRO support facility. 

Widely Used XACT Functions 
As described.the XACT software is menu-driven and opera­
tions supported by the design editor are listed at the head of 
the screen with a schematic representation of a portion of the 
device shown below. A mouse interface permits the designer to 
scan a cursor over the schematic, or choose a functional 
operation by "clicking" on the selected option. Following are the 
available options from left to right: 

NET PIN BLK CONFIG SCREEN MISC PROFILE 

When selected, a heading will list its menu options. The BLK 
command gives nine options. The most commonly used 
options are EDITBLK and ENDBLK, which allow the designer to 
select a specific logic block and enter a logic description into 
it. The latter command will terminate the editing process and 
return the designer to a world view of the LCA schematic. 
Details on editing CLBs are described in more detail in the CLB 
Configuration Section. Other commonly used commands in the 
BLK menu include COPYBLK, to copy a repetitive logic design 
into other unconfigured blocks, DELBLK to erase unwanted 
designs from the network; CLRBLK, to clear the contents of a 
block but leave its input and output pins attached to the nets; 
MOVBLK, move a configured block with its associated nets to 
another block location; and NAMEBLK, to permit the assign­
ment of user-defined names. Each time a function is invoked, 
the XACT editor prompts for a response at the bottom of the 
screen. For example, EDITBLK would invoke a "SELECT 
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BLOCK" invitation. The user then "clicks on" the block he/she 
wishes to configure. 
The CONFIG command has six subcommands which relate to 
the editing of a CLB. The BASE command directs which logic 
arrangement is to be selected: one Boolean function of four­
input variables, or two functions of three-input variables, or 
multiplexed input selecting either one choice of two three-input 
variables. EQUATE is commonly used, and allows a designer 
to generate a Boolean equation from keyboard input and 
configure it to an ouput. Other choices include ORDER, to 
establish blank truth tables for Karnaugh map entry; CLEAR, to 
delete unwanted functions; and CDATA (see data), for a text 
description of the block configuration. 

The creation of configured blocks must have the support of 
interconnections. The NET and PIN commands are invoked to 
establish the connection of CLB outputs to CLB or IOB inputs. 
The NET menu may be invoked to create a net onto which input 
pins and one output pin is listed. The ADDNET command allows 
a designer to add a net to the netlist, and ADDPIN allows the 
user to add pins to a selected net. The NAMENET subcom­
mand in the NET menu allows the default value of netx (where x 
is an XACT default-assigned integer) to be overruled by a user­
assigned name. This is similar to the NAMEBLK command for 
BLK functions. Nets can be routed, unrouted, deleted and 
merged by the ROUTE, UNROUTE, DELNET and JOINNET 
commands, respectively. Manual editing of the net is invoked 
by the EDITNET command. A net is established and manually 
interconnected to Programmable Interconnect Points (PIPs) to 
create a circuit. The other NET options include FLAGNET, 
which assigns critical or non-critical status to a net; and 
HIGHLIGHT/UNHIGHLIGHT commands which "bright up" or 
"clear" net distribution on the "world view." 

The PIN commands are: ADDPIN for adding pins to nets, and 
CLEARPIN for removing them. The SWAPPIN allows pins to be 
switched without switching functionality, where SWAPSIG 
exchanges the logic functionality inside the CLB without 
switching the pins. MOVEPIN will move a pin from one location 
to another, and ROUTEPIN will establish an interconnection on 
a net. 

These and other menu functions are described in greater detail 
in Monolithic Memories' XACT Development System manual. 

Design Methodology 
Figure 4 shows a block schematic of one seven-segment 
decoder driver. Seven logic blocks decode the four data inputs 
DA, DB, DC, and DD, where DA is the least significant data 
input. Each block has the capability of storing the data in a 
register inside the logic block. The backplane oscillator drives 
the LCD backplane for all segments. The individual segments 
are driven from an exclusive-'OR" (XOR) gate, which is 
programmed to invert the backplane waveform for an 
illuminated segment, and not invert for a blanked segment. The 
segment decoder circuits, SAO, SBO to SGO, provide a logic 
LOW output for an active segment drive. Therefore, the 
backplane input to the XOR gate is inverted in a second logic 
block and provides the correct phase control for the segment 
driver. The configuration was repeated six times in the LCA 
device to support a total of six digits. 

Figure 5 shows the truth table for decoding four binary inputs 
into a hexadecimal segment drive. DA is the least significant 
binary input and DD is the most significant. The hexadecimal 

weighting of the binary input is also shown in the table. To 
illuminate a zero digit, all the segments are driven active 
except for segment "g," for digit "one"; segments "b" and "c" are 
active, and for digit "two" segments "a," "b," "d," "e" and "g" are 
driven. The complete decode arrangement is shown at the 
head of Figure 6. 

The Karnaugh maps, derived from the truth table shown in 
Figure 5 are given in Figure 6, and provide the decode 
equations for all the segments. Logic "one" entries represent 
illuminated segments and logic zeros represent extinguished 
segments. A greater reduction efficiency of minterm entries 
was achieved using reduction techniques applied to map 
locations containing logic zeros. This required an inverted 
input to the exclusive OR (XOR), polarity control gate, as 
shown in Figure 4. The logic equations derived from the 
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Figure 4. Liquid Crystal Display Decoder Driver 
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BINARY ENCODED INPUT 
SEGMENT LABEL 

LSB MSB 

HEX. DA DB DC DD a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 

1 1 0 0 0 0 1 1 0 0 0 0 

2 0 1 0 0 1 1 0 1 1 0 1 

3 1 1 0 0 1 1 1 1 0 0 1 

4 0 0 1 0 0 1 1 0 0 1 1 

5 1 0 1 0 1 0 1 1 0 1 1 

6 0 1 1 0 1 0 1 1 1 1 1 

7 1 1 1 0 1 1 1 0 0 0 0 

8 0 0 0 1 1 1 1 1 1 1 1 

9 1 0 0 1 1 1 1 1 0 1 1 

A 0 1 0 1 1 1 1 0 1 1 1 

B 1 1 0 1 0 0 1 1 1 1 1 

c 0 0 1 1 1 0 0 1 1 1 0 

D 1 0 1 1 0 1 1 1 1 0 1 

E 0 1 1 1 1 0 0 1 1 1 1 

F 1 1 1 1 1 0 0 0 1 1 1 

Figure 5. Liquid Crystal Display Decoder Driver 

Kamaugh maps in Figure 6 could be used for Boolean design 
entry, the active LOW equation for segment "a" is given as: 

-a= -A·-s·c·-o + A*-B*-C*-D + A*B*-C*D + A*-B*C*D 

where the inputs to the CLB are A, B, C and D. The tilde sign(-) 
represents signal inversion, the • and + signs represent 
product and sum terms, respectively. The Boolean entry also 
supports the function XOR by the@ symbol, the function -A*B 
+ A*-B is condensed to A@B. 

The conventional logic gate configurations are shown in Figure 
7. Seven "sum of product", combinational circuits were derived 
from the Karnaugh maps shown in Figure 6. Logic designers 
familiar with PLO designs will recognize a sum of products 
architecture. Having generated Karnaugh maps and equations, 
the design can be implemented in the LCA device by using the 
facilities of the XACT Design Editor running in a PC/AT or PC/ 
XT. 

Binary to Seven-Segment Decoder 
The display font shows the decoding function required for a 
binary to seven-segment hexadecimal display. A logic one 
represents an illuminated segment, from the table shown in 
Figure 5. 

LCD Seven-Segment Display Driver 
in LCA 

D ~ • 00 01 11 10 

00 0 1 3 2 

01 4 5 7 6 

11 c D F E 

10 8 9 B A 

For binary Input ABCD the 
hexadecimal value of that 
binary weighting Is entered 
In the correct location of the 
Kamaugh map. 

B,A 

8,A 
D,C 

-a= ... A*-B*C*-D + A*-8*-C*-D 
+ A*B*-C*D + A"'-B•C*D 

(a) 

B,A 
D,C D,C 

-b = -A·e·c + A*B*D 
+-A*C"D + A"-B"C"-D 

(b) 

B,A 
D,C 

-c = -A*C*D + e•c•o 
+-A*B"-C"-D 

(c) 

-d = A*B*C + -A*B*-C*O -e = A*-B*-C + A*-D 
+ -A*-B*C*-D + A*-B*-C*-D + -e·c·-o 

(d) (e) 

_, = e·-c·-D +A"-C"-D 
+A'B*-D +A·-e·c-o 

(f) 

B,A 
D,C 

-g = -B*-C"-D + A'B"C*-D 
+-A·-e•c-o 

(g) 

Figure 6. Liquid Crystal Display Decoder Driver 
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ABC D 

Figure 7. Liquid Crystal Display Decoder Driver 

The decode logic for each segment is shown in the conven­
tional sum of products form and was derived from the Karnaugh 
Maps. It is possible to encode these logic configurations in to 
one "CLB" for each segment. The "CLB" is capable of producing 
one output that is a Boolean function of up to a maximum of 
four inputs. 

Editing the Design 
The XACT Design Editor was used to create the design, and 
generate the configuration data, suitable for programming into 
an EPROM. Three programmable elements have to be 
considered; the IOBs, CLBs and the interconnection of JOB 
and CLB blocks. 

CLB Configuration 
Figure 8 shows the exploded view of a CLB that has been 
configured as the segment "a" decoder. The XACT Design 
Editor provides a mix of text and diagram editing supported by 
a keyboard and mouse interface. The logic equation is shown 
as text entry at the bottom of the diagram. The combinational 
block, AA (user defined as SAO by invoking the NAMEBLOCK 
feature in XACT), has been configured as the "a" segment 
decoder. Each CLB can be configured as a single output 
function of four Boolean input variables, or two output 
functions of three-input variables each. Both configurations 
were used in this design example. 

The Karnaugh map reflects the equation entered from the 
keyboard. An alternate way of entering configuration informa­
tion may be achieved by using the mouse to select individual 
locations in the Karnaugh map. These locations may be 
"clicked" on or off, to select or deselect minterm entries. The 
equation relevant to the Karnaugh map entry is updated after 

modification. If designers have generated Karnaugh maps 
during the design cycle of the project, they could use this 
visual aid to enter and check the logic integrity of the design. 
Also, a truth table is available for verification purposes. 

An unconfigured CLB will not display a Karnaugh map so to 
generate a four-input map, the instruction: 

Config(Order(F(A(B(C(D))))) 

is typed to create one output F that is a function of four 
Boolean inputs. A blank Karnaugh map will be displayed ready 
for editing. 

The top left-hand portion of Figure 8 indicates how the CLB is 
configured. The Q output from the register is connected to the 
X output of the CLB. To activate this path, the mouse is used 
to select the Q option. The register could be bypassed if the F 
output was selected. Either register or combinational config­
urations may be realized. The path from the register output to 
the CLB X output is established by activating the PIP 
represented by the block tying Q to X shown in Figure 8. The 
alternate output, Y has the same assignment options of 
registered or combinational outputs. There are two configura­
tions available to the storage element; either register or 
transparent latch. The register's output will change as a result 
of a transition being applied to its clock input. For a latch, the 
control input is level-sensitive requiring a logic HIGH or LOW 
level to distinguish between storage or a transparent mode of 
operation. In the CLB the clock input polarity can be selected 
by the NOT function in the CLK submenu. Two features that 
were not used in this design are the asynchronous SET and EJI 
RESET functions. If required, the SET option can be invoked 
by selecting either the A input, or choosing a combinational 
output from F, which can also perform RESET. A single input to 
RESET the register or latch is the D input. To the bottom right 
of the CLB configuration diagram in Figure 8, all the inputs to, 
and outputs from, the CLB are listed. The net to which each 
CLB input or output is associated is shown after the colon. The 
A input is tied to the net DAO; B, C and D inputs are connected 
to nets DBO, DCO, and ODO, respectively. The user can assign 
meaningful names to nets in the design process. In this 
example, net SAO, is segment "a" of the least significant digit 
and is driven from the X output of the CLB. DAO-ODO are the 
four binary inputs for the least significant digit. The clock input 
is assigned to the K terminal of the CLB, thus, the decoded 
output may be registered after a rising edge of the clock has 
been applied to the net CLKO. 

x !.~ Q 'Off' y !'ill!lw g F Q 
Q FF ~Ii 
SET I RES . Afl BLK:AA 
CLK 

Kum!. 
K SAO 

DCBA F A __.._ 
A:DAO 

HHLH H ii B:DBO 
HLHH H 

:-Ill] r C:DCO 
LHLL H D:DDO 
LLLH H CU< K:CLKD 

Q X:SAD 
D ii Y: 

-..--
B 

F = -A*-B*C*-D+A*-B*-C*-D+A*B*-C*D+A*-B*C*D 

CLB configuration for segment 'a' decoder. 

Figure 8. Liquid Crystal Display Decoder Driver 
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:~x 
g LJ rl:J BLK: AB 

K SBO 

A:DAO 
B:DBO 
C:DCO 
D:DDO 
K:CLKO 
X:SBO 
Y: 

F = -A'B'C+A'B'D+-A'C"D+A'-B'C"-D 

CLB configuration for segment 'b' decoder. 

x 
y 
Q 
SET 
RES 
CLK 
DCBA 

HLHL 
LHLL 
LLLH 
XHHH CLK 

Q 

A:DAO 
B:DBO 
C:DCO 
D:DDO 
K:CLKO 
X:SDO 
Y: 

F = A*B'C+-A*B*-C"D+-A'-B*C"-D+A*-B'-C"-D 

BLK:DA 
SDO 

CLB configuration for segment 'd' decoder. 

i[Jtf x 

BLK:FA 
K SFO 

HHLH 
A:DAO 

H B:DBO 
LLHX H C:DCO 
LLXH H CU< D:DDO 
Llffl H Q K:CLKO 

X:SFO 
Y: 

F = e·-c·-D+A*B*-D+A*-B*"C'*D+A*-C*-D 

CLB configuration for segment T decoder. 

x 
y 
Q 
SET 
RES 
CLK 
DCBA 

LLHL 
HHHX 
HHXL 

A[Jtf X B F Q 

g BLK:AC 
K SCO 

A:DAO 
B:DBO 
C:DCO 
D:DDO 
K:CLKO 
X:SCO 
Y: 

F = -A'C"D+B'C"D+-A*B*-C*-D 

CLB configuration for segment 'c' decoder. 

F = A'-B'-C+A'-D+-B*C'-D 

i~x 
LJ rl:J BU<; EA 

K SEO 

A:DAO 
B:DBO 
C:DCO 
D:DDO 
K:CLKO 
X:SEO 
Y: 

CLB configuration for segment 'e' decoder. 

x 

i[Jtfx 
y 
Q 
SET BU<;AG 
RES K SGO CU< 
DCBA 

HHLL 
A:DAO 
B:DBO 

LHHH C:DCO 
LLLX CU< D:DDO 

+O K:CLKO 
X:SGO 
Y: 

F = -A'-B'C"D+A'B*C'-D+-B'-C"-D 

CLB configuration for segment 'g' decoder. 

Figure 9. Liquid Crystal Display Decoder Driver 

Like nets, individual blocks may be given meaningful names. 
The CLB situated on a grid location "AA" of the LCA device has 
been named SAO. Naming nets and blocks can help in 
debugging the final design. Figure 9 shows the configuration of 
the CLB elements for segments "b," "c," "d," "e," '1" and "g." 

Figure 1 O shows the configuration of a CLB as a combinational 
logic circuit which provides two outputs at X and Y. The 
backplane waveform is fed to the A input where it is inverted. 
This signal will pass through the X and Y outputs, appearing 
either in phase with the backplane reference or shifted by 180 
degrees from it. The control inputs come from the segment 
decoder circuitry. In Figure 10, SAO and SBO are the 
interconnecting nets that convey control signals from the 
segment "a" and "b" decoders. The configuration used was two 
Boolean outputs as functions of three-input variables, so 
outputs F and G were selected. 

x F 11\111! 
y lllG Ill m· Q -SET 

~y RES • BLK:AB 
CLK - PINVOAB -CA F A 

~c 
A:BPIJIE 

HH H B: 
C:SAO 

LL H D:SBO 

DA G A K: 
X:AO 

~c 
F Y:BO:: HH H G 

LL H 

F =-A@C 
G =-A@D 

Figure 1 O. Liquid Crystal Display Decoder Driver 
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IOB Configuration 
The Input/Output blocks must be configured to drive the 
segments, backplane, and to receive data for decoding. The 
segment and backplane IOBs are configured as outputs. 
Inputs are configured for data ports DAO-ODO, DA 1-001, up to 
DAS-DDS. The IOBs are considerably less complex than the 
CLBs, having interface functionality rather than Boolean logic 
functionality. Each IOB is capable of being programmed as 
input, output, bidirectional, with HIGH-Z output, and registered 
input. Individual or composite 110 functions may be selected. 
Figure 11 a shows an output buffer, the input of which is driven 
from net AO . Net AO is driven from the X output of the CLB 
featured in Flgure 10.The designer has some control over the 
placement of IOBs around the perimeter of the LCA device, 
and can use the BLKMOVE commands to optimize pad layout 
for the best printed circuit design. Figure 11 b shows an IOB 
that has been configured to receive data. The buffer is an input 
driving net DAO_. 

l I BUF 

l I BUF 

Jo~ a--r<1-o 
BLK:P14 
AO 

I: 
O:AO_ 
T: 
K: 

a. Liquid Crystal Display Decoder Driver 

l PAD ~~ gmm Ehc>-, 
BLK:P18 

DAO 

PAD l:DAO_ 
0: 
T: 
K: 

b. Liquid Crystal Display Decoder Driver 

Figure 11. Input/Output Block Configuration 

The IOB has been configured as an output buffer to drive the 
segment "a" of the least significant digit. The block has been 
assigned the name AO. the output buffer has been turned on 
and the input to that buffer has been configured to net AO_. All 
the segments and the backplane of the LCD have been 
assigned an output buffer. 
The data path to the LCA device for binary data is via IOBs 
configured as input buffers. The binary inputs DAO, DBO, DCO, 
and ODO for the least significant digit and the configured IOBs 
are assigned user-defined names DAO, DBO, DCO, and DDO. 
The input nets are DAO_, DBO__, DCO_, and ODO_ respectively. 
This is repeated for digits 1, 2, 3, 4, and S. 

XACT Supports Design Rule 
Checking 
During the design of the LCD decoder driver circuit the Design 
Rule Checker (DRC), was invoked to verify that no fundamental 
design rules were being violated. Errors can easily occur, 
especially for the uninitiated user. Errors such as two CLB 
outputs driving one net are usually caught dynamically. Also, a 
net listing of inputs that are not driven by an output would 
constitute an error. A general DRC run will list all design 
violations, errors and warnings. Warnings such as an assigned 
CLB output that is not connected to a net. This information can 
be sent to a line printer and the resulting list of Errors and 
Warnings can be used for design correction. Invoking DRC will 
check blocks, interconnect and nets. Also, prior to using the 
MAKEBITS command (for the eventual MAKEPROM) software, 
the DRC is invoked to trap any possible design violations. Of 
course, the design rule checker does not screen the design for 
logic function integrity. An additional software package Is 
available in P-SILOS™ as a logic, and timing simulator. Inputs 
may be activated by HIGH, LOW, HIGH-Z levels etc., while 
output logic levels may be listed during the simulation run. 

Conclusion 
The design was modified for a decimal decoder display driver. 
Figure 12 shows the modifications necessary to each segment 
decoder. The choice of a latched version of the display driver 
was developed as an alternative to the registered type. In each 
registered CLB, the option was changed for a latched option. 
By removing the backplane oscillator and making the net 
BPLNE an input which is driven HIGH or LOW, high efficiency 
LED displays of common anode or cathode may be driven. The 
designs developed are as follows: 

XDES01.LCA REGISTERED HEX DECODER DRIVER. 

XDES02.LCA REGISTERED DEC DECODER DRIVER. 

XDES03.LCA LATCHED HEX DECODER DRIVER. 

XDES04.LCA LATCHED DEC DECODER DRIVER. 

These designs are available as bit patterns for programming 
EPROMs on request. 

The Print World of the design DES01.LCA shows the placement 
of CLBs, IOBs and the routing for the final design. This can be 
used as a reference for wiring the device into a circuit. Pin 1 is 
shown at the top center of the diagram and is the GND 
connection. The pins are numbered counter-clockwise from 
that reference pin. For example DB3 is connected to pin 2 and 
02 connected to pin 3 etc. 
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LCD Seven-Segment Display Driver 
in LCA Binary Coded Decimal 

B,A 
D,C 

Display is blanked for hexidecimal 
'decoded inputs. 

B,A 
D,C 

-a= c•o + e•o + -A·-e·c·-o 
+A•-e•-C"-D 

-b = C*D + B*D + -A*B*C* 
+A•-e•c 

(a) 

B,A 
D,C 

-.c = C*D + B*D + -A*B*-C 

D,C 

D,C 

(c) 

B,A 

-e =A+ -B*C + B*D 

(e) 

B,A 

-g = c•o + e•o + A•e•c 
+-B*-C* ... O 

(g) 

(b) 

-d = c·o + e·o +A·e·c 

D,C 

+ -A·-e·c + A·-e·-c·-o 

(d) 

B,A 

-f = B*D + A*B + C*D + B*-C 
+ A* .. C*-0 

(f) 

Karnaugh maps for binary 
coded decimal drivers. A logic 
zero represents an extinguish:.. 
ed segment. 

Figure 12. Liquid Crystal Display Decoder Driver­

For Binary Coded Decimal Output 
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BCD to Seven-Segment Decoder 
The table below shows the decoding function required for a 
BCD to seven-segment hexadecimal display. A logic one 
represents an illuminated segment. 

BINARY ENCODED INPUT 
SEGMENT LABEL 

LSB MSB 

HEX. DA DB DC DD a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 

1 1 0 0 0 0 1 1 0 0 0 0 

2 0 1 0 0 1 1 0 1 1 0 1 

3 1 1 0 0 1 1 1 1 0 0 1 

4 0 0 1 0 0 1 1 0 0 1 1 

5 1 0 1 0 1 0 1 1 0 1 1 

6 0 1 1 0 1 0 1 1 1 1 1 

7 1 1 1 0 1 1 1 0 0 0 0 

8 0 0 0 1 1 1 1 1 1 1 1 

9 1 0 0 1 1 1 1 1 0 1 1 

A 0 1 0 1 0 0 0 0 0 0 0 

B 1 1 0 1 0 0 0 0 0 0 0 

c 0 0 1 1 0 0 0 0 0 0 0 

D 1 0 1 1 0 0 0 0 0 0 0 

E 0 1 1 1 0 0 0 0 0 0 0 

F 1 1 1 1 0 0 0 0 0 0 0 

Figure 12. Liquid Crystal Display Decoder Driver 
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Print World: DESOl.LCA (2018PC84-SO), XACT 1.30, 15:12:14 JUL 1, 1987 Print World: DESOl,LCA (2018PC84-50), XACT 1.30, 

Ell 

Figure 12. Liquid Crystal Dlsplay Decoder Driver 
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LCA Counter Applications 

Abstract 
Counters are used in many logic systems to control and syn­
chronize events. Essentially, counters have one thing in com­
mon, they are all state machines. State machines, unlike basic 
combinational functions, require registers with feedback. The 
design creates an output that is a function of the previous state 
of the registers in the machine, and in some cases a function of 
other combinational inputs as well. Listed below are some of the 
systems that would use various types of counters. 

• Direct Memory Access (DMA) Controllers 

• Video RAM Refresh 

• Dynamic RAM Control Refresh Counters 

• Event timing 

• Sequence Controllers 

Chris Jay and Karen Spesard 

• Disc Controllers 

• Status Sequencers D 
The type of counter chosen will depend upon the application. 
The simplest type of counter would be a free-running type as 
used for refreshing DRAM or Video RAM. Counter types vary, 
depending on application from the simple free-running type to 
loadable binary up/down counters which would be used in 
applications such as DMA control. 

To design efficient counters in the LCA device, designers must 
consider the desired performance while keeping in mind the 
available logic and interconnection resources. 

Familiarization with the different counter types and their charac­
teristics will enable designers to choose the best counter for a 
specific application. 
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LCA Counter Applications 
Chris Jay and Karen Spesard 

Introduction 
The LCA device has an architecture that is very well suited to the 
development of some counters. Designers already familiar with 
state machine applications in Programmable Logic Devices 
(PLDs) will probably be familiar with how to design counters in 
Programmable Array Logic (PAL®) and/or Programmable Logic 
Arrays (PLA). The differences between the structure of the PLA 
or PAL device and the Monolithic Memories' Logic Cell'" Array 
(LCA) impose both restrictions and freedoms in certain types of 
state machine design. 

Ample width of the PLD "AND" gate means that counter depth 
can be limited only by the number of registers in the device. This 
applies especially in the PAL24X family that is specifically 
designed for applications in high-performance binary counting. 
In the LCA device, the maximum number of Boolean inputs to 
any CLB is four. This limiting factor is compensated by the high 
number of CLBs present in the device architecture. The design 
philosophy used in an LCA device for developing state machines 
is different from that of a PLD, but not less effective. Parallel 
counter architecture, and lookahead-carry techniques can be 
employed to create machines capable of medium performance. 

Counters Using Shift Registers 
The type of state machine well suited to an LCA device is based 
on a shift register. These types may be subdivided into different 
categories. In each state machine, there are "n" general registers, 
and the number of states that can be reached vary with counter 
type. The number of useable states are listed below with the 
counter type: 

1) Johnson counters, 2n, states. 

2) Linear feedback shift registers, with 2n - 1 states. 

3) Modified linear feedback shift register, with 2n states. 

These state machines are based on shift registers using the 
absolute minimum amount of feedback, and this is applied only 
to the least significant register in the chain. The CLBs may be 
located at close proximity in the LCA device and benefit from the 
smallest propagation delays provided by local interconnection. 
The disadvantage of the shift register structure is the inability to 
count through the conventional binary sequence. This might or 
might not be of any concern, depending on the system 
application. 

The Johnson Counter 
All of the states of a six-bit Johnson counter are listed in Table 1. 
The "D"-type register chain shown in Figure 1 illustrates the 
schematic diagram of the circuit. The output from QO feeds 
directly to D1, and Q1 to D2, and so on. If these registers are 

configured in adjacent CLBs, direct interconnect can be used to 
link each one. The output of the final register Q5 is inverted and 
fed back to the DO input of the first register. If the entire structure 
is configured in a column or row in the LCA device, a long line 
should be used to convey the feedback signal back to the DO 
input of the least significant register. Minimum propagation 
delay is achieved by using long line interconnect. The advantage 
gained with the small propagation delay of direct short inter­
connections between adjacent CLBs is not lost by the use of this 
long feedback path. 

The counter design shown in Figure 1 uses six registers and the 
maximum number of states reached is 12, two times the number 
of registers. A binary counter with six registers could reach 
sixty-four individual states but would need combinational feed­
back to each register. Feedback propagation delay could 
degrade the potential clocking speed of the counter. The John­
son counter, with its decreased number of states, should be 
used whenever maximum operational performance is needed. 

STATE QO Q1 Q2 03 Q4QS HEX 

0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 1 

2 1 1 0 0 0 0 3 

3 1 1 1 0 0 0 7 

4 1 1 1 1 0 0 F 

5 1 1 1 1 1 0 1F 

6 1 1 1 1 1 1 3F 

7 0 1 1 1 1 1 3E 

8 0 0 1 1 1 1 3C 

9 0 0 0 1 1 1 38 

10 0 0 0 0 1 1 30 

11 0 0 0 0 0 1 20 

Table 1. Truth Table of the Johnson Counter 
Counter Applications 

Figure 1. Johnson Counter 

PAL® is a registered trademark of Monolithic Memories. 

Logic Ce11Tf• and XACT"" are trademarks of Xilinx, Inc. 

P-Silos"• is a trademark of SimuCad Corporation. 

IBM® is a registered trademark of International Business Machines Corporation. 

PC"', PC-ATrr•, and PC-XT™ are trademarks of International Business Machines Corporation. 
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Linear Feedback Shift Register 
Figure 2 shows a modification to the Johnson counter. In this 
three-bit counter, six states are reached. The exclusive NOR 
feedback from register outputs 01 and 02 gives a HIGH input to 
DO when both are HIGH or LOW. Again the design is based on a 
shift register, and this time the feedback is applied to the least 
significant register in the chain. The Linear Feedback Shift Reg­
ister or LFSR shown in Figure 2 is implemented in three CLBs for 
small state machine designs. CLB placement and routing could 
be optimized for speed and performance. The LFSR counter 
would have a "stuck" state if all of the registers were setto a logic 
HIGH. The feedback input to DO would remain HIGH and the 
XNOR inputs from 01 and 02 would remain stuck at a logic 
HIGH. The device has 2n -1 states because in normal counting 
the "stuck" state cannot be entered. Table 2a shows the sequence 
and truth table of a three-register, free-running LFSR. 

a.K·~"-~~~~~.4.-~~~~----' 

Figure 2. Unear Feedback Shift Register (LFSR) 

Modified Linear Feedback 
Shift Register 
The "stuck state" is included in the truth table shown in Figure 2b. 
If after the count of 3, the state machine could be modified with 
gating to accommodate the "stuck state" of 7, then an additional 
state could be used. Shifting a HIGH rather than a LOW into the 
least significant register would generate state 7, and all of the 
possible states could be reached. Table 2b shows the new entry 
in the truth table, and the Karnaugh map in Figure 3b shows the 
state assignment entry. For example, the map location 00 = 0, 
01 = 02 = 1 is the binary code 6. The State Diagram of the 
counter (Figure 3a), which is derived from the truth table (Table 
2b), shows the sequential flow of each state into the next. From 
information in the State Diagram and State Assignment Map, a 
State Excitation Map may be developed as shown in Figure 3c. 
The next state, or excitation state from STA TE 6 in Figure 3a is 
STATE 5. The corresponding entry of 6 in the Assignment Map 
is replaced by 5 in the Excitation Map and represents the transi­
tion from 6 to 5. Figure 3c is developed into Figure 3d by 
converting the entries to binary notation and placing the condi­
tion of the least significant bit into the Karnaugh map shown in 
Figure 3d. Minimization gives a Boolean equation: 

oo := -01 ·-02 + oo·-02 + -00·01 ·02 (1 l 
Equation (1) is the functional input to the least significant regis­
ter in the chain. The other registers in the chain require only the 
direct inputs from the preceding registers, so no additional 
minimization is required. Figure 4 shows the final gate imple­
mentation which can be incorporated Into CLB 1 replacing the 
XNOR gate. 

The advantages of using every possible state in the counter 
avoids the possibility of a stuck state which, if entered, will 
prevent the entire design from functioning. 

A very important consideration of the LFSR in CLB-intensive 
designs is the ability to use IOB registers in the counter. While 
the IOBs have no logic functionality they do have registers. The 
LFSR is based on the shift register, so if CLB resources run out, 
IOBs could be used. 

COUNT QO Q1 Q2 

0 0 0 0 

1 1 0 0 

3 1 1 0 

6 D 1 1 

5 1 0 1 

2 D 1 D 

4 0 D 1 

Table 2a. Truth Table of a Linear Feedback 
Shift Register 

COUNT QO Q1 Q2 

0 0 0 0 

1 1 0 0 

3 1 1 0 

7 1 1 1 

6 0 1 1 

5 1 0 1 

2 0 1 D 

4 0 0 1 

Table 2b. Truth Table of a Modified Linear 
Feedback Shift Regl1ter 

Figure 3a. State Diagram for MOdlfled 
Linear Feedback Shift Register 

Q1 

ao{tHHHB -Q2 

Figure 3b. State Assignment Map 

Q1 

~ 
ao{~ -Q2 

Figure 3c. State Excitation Map 

3·31 

El 



LCA Counter Applications 

01 --
0 

--02 

1 oo == -01·-02 • Q0'-02 • -00'01·02 1 

Figure3d. 

From the state excitation map, the condition of the least signifi­
cant register QO is' entered. Minimization gives the equation 
required for QO IN as a Boolean function of QO, 01 and 02. When 
implemented, the modified LFSR will count through all states. 

Figure 4. 

If this circuit is used to replace the exclusive NOR gate in CLB1 
of Figure 2 then the count shown in Table 2b will be realized 
enabling a count through 2n states. 

Provisions tor Deeper Counting 
Deeper counters may be made from cascading 3-bit LFSRs. The 
same three-bit module may be repeated any number of times but 
the original circuit needs modification. When cascading coun­
ters it is essential to use an ENABLE or CARRY input to the next 
stage. The Karnaugh maps, shown in Figures3b and 3c, represent 
State Assignment and State Excitation, respectively. The 
Assignment Map can be considered as identifying HOLD condi­
tions while the Excitation Map indicates count activity. The 
Karnaugh map in Figure 5 merges the information contained in 
both Figures 3b and 3c, and an additional ENable input qualify­
ing COUNT and HOLD activities. The registers will count if EN is 
HIGH and HOLD when it is LOW. The Karnaugh map in Figures 
was developed to derive the Boolean equation for the least 
significant register in the chain. The other registered cells need 
modifying to incorporate an enable input. Table 3 shows a truth 
table of the current register contents On with the EN input Band 
the input from the next least significant register A. The required 
output On+1 is given as a HOLD condition if B = LOW, and 
when HIGH, data from the A input will be clocked into the 
register. For each of the three registers, an EN input will enable 
count activity to allow cascading of 3-bit counter modules. 
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0 

1 

1 

1 

01 -0 0 

0 1 

1 0 

1 1 

0 

0 

0 

1) -02 

QO:=QO'-EN 
+QO'..Q2*EN 
+ -01'-02'EN 

;HOLD RINC1ION. 
;CCUll' 
;COUNT 

+ 02'01'..QO'EN ;COUNT. 

Figure 5. Incorporating a Count Enable Input 

on A a 0 n+1 

0 0 0 0 

1 0 0 1 

0 1 0 0 

1 1 0 1 

0 0 1 0 

1 0 1 0 

0 1 1 1 

1 1 1 1 

Table 3. 

a 

001HJilla -A 

General shift register with count enable. A= input from the next 
least significant register and B = enable count. Q Is the state of 
the internal register. This Karnaugh Map has been developed 
from Table 3. 

a:= a·-B + O'A + A'B 

Figures. 
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Propagation Carry 
To link counter modules together, it is necessary to pass a count 
enable signal from one module output to the next input. Figure 7 
shows the configuration of CLBs 1 to 3 linked to CLB 4, which is 
configured as a carry generator providing an enable output to 
the next modified LFSR. The next counter module will not 
increment until it receives an assertion on its count enable input. 
Figure 8 shows the Karnaugh map from which the lookahead­
carry output was generated. The penultimate count in the 
sequence, as shown in Figure 2a is two. This count is decoded in 
the CLB 4 where the registered output is passed to the next 
counter module and delayed by one clock cycle. The concept of 
decoding the penultimate count, and delaying it by one clock 
cycle provides a fast method for propagating the lookahead 
carry signal. If the ultimate count is decoded by a combinational 
circuit, the next counter module will have to wait for the carry to 
propagate through logic gates before the next clock pulse can 
be applied. Registering the next-to-last count allows premature 
carry propagation, providing the carry enable to be set up prior 
to the next clock edge. 

ENABLE = EN' -00'01 '-02 

Figure 9 shows two identical LFSRs linked by a carry generator's 
CLBs 5,6 and 7 and a propagate carry configuration in CLB 8. 
The propagate carry circuit is a combinational circuit that ena­
bles the generated carry output, from CLB 4 to the ENB output, 
as shown in Figure 9. A third set of modified LFSRs may be 
added if a synchronous nine-bit counter is required. 

Applications for a nine-bit counter might include a refresh coun­
ter for 256 KDynamicRAMs. The EN inputtoCLB 1 can be used 
to hold off count increment activity. If an LFSR with 2n -1 states 
were used, then one row in the DRAMS would never get 
refreshed, so the modified LFSR would be the appropriate cho­
ice. Moreover, the count sequence is not important because it 
does not have to be a binary code, just as long as the DRAMs are 
refreshed at regular intervals for every row. 

Another application might be as a counter in a video controller. 
The system could count through the required states, and addi­
tional gating could be used to generate line and frame sync 
pulses at certain states during the count sequence. 

Figure 7. 

0 

0 

0 

0 

QO --0 

0 

0 

0 

0 0 

0 1 

0 0 

0 0 -01 

Figure 8. To Enable a Second Stage as a Synchronous Counter a Carry Output Must Be Generated from the First Three Registers. 
The Enable Output from CLB 4 Is Decoded from the Penultimate Count and Clocked Through the Register. When the 
Ultimate Count Is Reached the Enable Input to the Next Stage Is Asserted. 
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.--~~~~~~~~~~-t-~~~~~~~~~~~~~~~~~ao 

.--~~~~~~-.--+-~~~~~~~~~~~~~~~~~01 

.--~~~rt--+-~~~~~~~~~~~~~~~~~02 

.--~~~~~~~~~~-....-~~03 

r-~~~~~~.......--1-~~04 

.--~~-t--+--+-~~05 

00 01 02 03. Q4 

EN Cl.81 CLB2 CLB3 ClB4 
EN 

CLB5 CLB6 ENB 

GENERATE ENABLE 

Figure 9. Two LFSRs Are Linked by the Propagate Enable Logic Contained In CLB4. CLBS, 6 and 7 Contain the Same Logic as 
CLB1, 2 and 3 lo Create a Modulo 6 Counter with Sixty-four Stales. Propagate Enable is Decoded from the Ulllmate Count 
of the Second LFSR Stage. It Can Be Used as the Enable Input to a Third LFSR Stage to Make a 9-Bit Counter. 

Design of a Four-Bit LFSR 
if a four-bit free-running counter was required for standalone 
count applications, then a design can be realized using four 
CLBs. The truth table for a modulo four modified LFSR is shown 
in Table 4. The state assignment map in Figure 1 O is developed 
into the state excitation map shown in Figure 11. The least 
significant bit of the hexadecimal data is entered into the Kar­
naugh map as shown in Figure 12. Minimization is performed to 
develop the equation for the least significant register input. The 
actual circuit implementation is complete in fourCLBs as shown 
in Figure 13. 

1 

0 

2 

3 

01 -4 c 

5 D 

6 E 

7 F 

8 

9 

A 

B -Q2 

1 

0 

2 

3 

01 -4 c 

5 D 

6 E 

7 F 

8 

9 

A 

B --02 

Figure 10. State Assignment 
Map 

Figure 11. State Excitation 
Map 
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1 

0 

0 

1!0 

01 --0 

1 

0 

1 

0 0 

1 1 

0 0 

1 1 --02 

Figure 12. State Excitation Map for the 
Least Significant Register 

00 := 00*-03 +-Q0*01*03 +-00*02*Q3 +-01*-02*-03 

REGISTER 
0 0 0 0 

STATE 0 1 2 3 CODE 
0 0 0 0 0 0 
1 1 0 0 0 1 
2 1 1 0 0 3 
3 1 1 1 0 7 
4 1 1 1 1 F 
5 0 1 1 1 E 
6 1 0 1 1 D 
7 0 1 0 1 A 
8 1 0 1 0 5 
9 1 1 0 1 B 

10 0 1 1 0 6 
11 0 0 1 1 c 
12 1 0 0 1 9 
13 0 1 0 0 2 
14 0 0 1 0 4 
15 0 0 0 1 8 

Table4. 

The Binary Counter 
The number of states available in a binary counter is 2n, making 
it one of the most register-efficient types of counters. The three 
main categories of binary or weighted counter$ are ripple, 
ripple-carry, and lookahead-carry. As the amount of "look­
ahead" logic decoded at each counter stage increases, the per­
formance of the binary counter also increases. As a result, 
lookahead-carry counters are the fastest of the three categories 
of binary counters. On the other hand, the more "look-ahead" 
logic there is, the more decoding is needed. Increased decoding 
requires extra logic and routing resources which may be disad­
vantageous if these resources become scarce. 
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Ffgure 13. Modified LFSR Modulo 4 Counter 

The Ripple Counter 
Ripple counters are a!iynchronous In nature and do hot generate 
carry signals. When the output of each counter stage clocks the 
next stage on the negative clock transition, a ripple effect is 
induced (thus the name). A schematic representation of a six-bit 
ripple counter is shown in Figure 14. One of the benefits of a 
ripple counter is that it requires few resources. Only one CLB per 
counter bit is needed to implement the counter and routing is 
simple regardless of the counter length. The tradeoff for this 
simplicity, however, is that ripple counters cannot be modified to 
be loadable or up/down which restricts their operation to be 

free-running, and they have lower performance. 

The overall performance of a ripple counter degrades with each 
counter bit by one CLB delay time. This can be shown by the 
equation below: 

Ripple Counter = N • (Clook to Output Delay) (2) 
Clock Period ' 

where N = the number of ripple counter flip-flops 

The overall counter clock period must therefore be greater than Ell 
or equal to the total cumulative CLB delay. . 

TElllllNAL 
COUNT 

Figure 14. Schematic of a 6-Blt Binary Ripple Counter. Ripple Coul)ters Ate Easy to D~slgn and •re Caleildalllle te Miarty Any 
Length. They Are, Hewever, Asynch~ous and Are Not Recommended for MOst Designs. 

The Rlppte-0.rry Counter 
The ripple-carry counter is similar to the ripple counter. The 
ripple-carry counter has carry signals, l!\owever, whereas the 
standard ripple counter does hot. Each carry signal propagates 
to the next counter stage to produee the counting sequence. 
This cascaded connection is called ripple-carry. 

The ripple-carry counter differs from the ripple counter in the 
respect that it is synchronous in operation. Because of th is, the 
ripple-carry counter provides rhore reliable operation and better 
performance. Performance still degrades with each additional 
counter stage though, due to the inclusion of combinational 
logic from the previous counter stage. Like the ripple counter, 
the ripple-carry counter requires only one CLB per counter bit 
and is easily cascadeable. 

One example of a four-bit binary ripple-carry counter is shown 
in Figure 15. Here, a modulo-16 counter with count enable (CIE) 

· and re8et is built with faur CLBs and three levels of ripple logic. 
The same counter could be de$1gned with two levels of ripple 
logic, if the two-input AND gate in CLB2 becomes a three-input 
AND gate, and the signals CE and QO from CLB1 were carried 
over to CLB2 and ANDed with 01. 

Another four-bit counter, this time wlth parallel enable (load), 
count enable, and reset, is shown in Figure 16. Here, just two 
ripple levels of logic were designed ih, using two C8BCP 
MACROS from Monolithic Memories' Macrocell Library. Six 
CLBs, two more than the previous four-bit counter, were used in 
this design because of the addition of parallel enable circuitry 
and the reduction of rippl&'carry logic levels. The Kamaugh map 
corresponding to the registered CLBs is·11hown in Figure 17. 
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sometimes a designer will want to carry-over a counter impl&­
mentation he or she was previously using to the LCA device. 
Consider an eight-bit ripple-carry counter with reset, built with 
two typical 74-series TTL devices: two 74-161 's shown in Figure 
18. Notice that the data bus as well as the LD and CET pins are 
not P8ing utilized. This is wasteful. Obviously, the two 74-161 
macros, available from Monolithic Memories' LCA Device 
Macrocell Library, requiring sixteen CLBs would also be ineffi-

cient. An equivalent counter, shown in Figure 19, requires only 
ten CLBs. It is built with two CSBC-rd MACROS and one C4BC­
rd MACRO and contains three ripple-carry delay levels. It can be 
seen that implementing just the counter functions desired, 
instead of including additional functions not required in the 
counter, allows designers more control over their design. The 
designer can then better optimize the design for speed and 
performance while minimizing CLB and routing resources. 

CLOCK-----+--l--------+--1-------...._-+---------' 
ASVNC·FIESET -------+----------+---------+----------' 

Figure 15. Schematic of a 4-Blt Rlpple•Csrry Counter. Although the Ripple-carry Counter Is Synchronous, the carry Input to the 
Next Stage Is Conveyed Through Comblnatlonal Logic. The Propagation Delay Due to this Logic Must be Taken Into 
Accounl 

Cl.81 

CLOCK----..._-+-------<~+-------+-+-----~ 
ASYlilCRESET·------+--------+---------------~ 

TERMINAL 
COUNT 

Figure 16. Schematic of a 4-Blt Ripple-Carry Counter. With Parallel Enable, Count Enable, and Reset, this Counter Only Contains 
Two Levels of Ripple-Carry Logic. 
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1 

0 

1 

DI -----0 

1 

0 

1 

1 0 

1 0 

1 0 

1 0 -­PE 

} CE (11) 

Figure 17. Karnaugh Map for the Registered 
CLBS in Figure 16. 

4 

CLOCK ---+-----t---+-~ 
~-------+----1-o----~ 

TERMINAL 
COUNT 

4 

Q0-03 Q4-Q7 

Figure 18. Schematic of an 8-Bit Counter with Reset Using 
Two 74-161 TTL Devices. Since All of the Available 
Logic Is Not Utilized, the Counter Should Be 
Designed More, Efficiently for Use In the LCA 
Device. 

The Lookahead-Carry Counter 
When the performance of binary ripple and ripple-carry coun­
ters is not adequate, synchronous binary lookahead-carry coun­
ters can be a solution. A lookahead-carry counter incorporates 
all the previous counter outputs into a single lookahead-carry 
signal for each counter stage. This logic reduction minimizes the 
overall delays of the design which makes the performance of 
lookahead-carry counters the highest among binary counters. 

With lookahead-carry counters, the complexity of the design 
increases with each counter bit as the decoding inputs become 
ever wider. As a result, these counters usually need more CLBs 
and routing resources to implement than other binary counters. 
The equations which characterize an n-bit lookahead-carry 
counter with count enable and parallel enable are listed below: 

00 := ((/PARENA *CE)@ 00) + (PARENA *DO) 

01 := ((/PARENA *CE* QO) @01) + (PARENA * 01) 

02 := ((/PARENA *CE* 01) @02) + (PARENA * 02) ... 

and 

On:= ((/PARENA *CE* 01 * ... * Qn-1)@ On) 
+ (PARENA * Dn) 

To decrease the complexity of the counter, one or more of the 
control signals can be removed. 

For a ten-bit lookahead-carry counter with reset, a minimum of 
fourteen CLBs are needed as shown in Figure 20. The logic for 
the counter was partitioned as follows: 

CLB1 QO:=CE@QO 

CLB2 01 := (CE * 00) @ 01 

CLB3 02 := (CE* QO * 01)@ 02 

CLB4 002 = 00 * 01 * 02 * CE 

CLB5 03 := 002@03 

CLB6 04 := (002 • 03) @ 04 

CLB7 05 := (002. 03. 04)@05 

CLBS 035=03*04*05 

CLB9 06 := (002 • 035) @ 06 

CLB10 036=03*04*05*06 

CLB 11 07 := (002 • 036) @ 07 

CLB 12 as := (002 • 036 • 07) @as 

CLB13 Q38 = (036 • 07 • 08) 

CLB14 09 := (002 • 038) @ 09 

The first seven bits of the counter were decoded in a similar 
fashion to the counter in Figure 19. The next three bits continue 
to minimize the amount of ripple-carry logic implemented to 
make it a lookahead-carry counter. 

When routing a design such as this in the LCA device, it is best to 
place the CLBs lengthwise. Then, if the high fan-out output 
signals for 002 and 036 CLBs can be routed through "long line" 
interconnects, the routing-dependent delays can be reduced 
allowing the counter to perform at its maximum potential speed.' 
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COUNT ENABLE 

CLOCK~..-+...._---+--+-+--...._---+-+---+---' 
ASYNC RESET-.-+-+----+--+-+-----+-+----+-----' 

CLB1 CLB2 CLB3 

TERMINAL 
COUNT 

Figure 19. An Efficient Implementation of an 8-Bit Counter with Reset. This Alternative Performs Only the Desired Function While 
Maximizing CLB and Routing Utilization. ' 

CLOCK--+--+-+--+--_._---1--.___,__.,__,_ _ __, 
ASYNC RESET--+--+---+--_,___, ___ __,__.,__,_ ___ _, 

Figure 20. Schematic of a Synchronous Counter with Reset as in Figure 19, but with Lookahead-Carry Logic. As More Counter Bits 
Are Added, the Design Becomes Increasingly Complex Due to Wider Gating. 
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The Up/Down Counter 
The up/down counter can be a very useful device. For instance, 
status counters or address counters employed in OMA systems, 
dual slope integrators, and delta modulation systems usually 
use up/down counters. In operation, an up/down counter will 
count UP when all previous counter bits are HIGH and will count 
DOWN when all previous counter bits are LOW. Thus, in an 
up/down counter, each register output in a CLB will toggle 
when: 

• aothrough an-1 are HIGH and the counter direction is UP, or 

• ao through an-1 are LOW and the counter direction is 
DOWN. 

This translates to: 

an:= an@ ((an-1 * an-2 * ... * a1 * ao *UP)+ 
(/an-1 • tan-2 • ... • 1a1 • /QO •/UP)). (3) 

Design of the counter can become more complicated by adding 
new features to it such as count enable, reset, or load (parallel 
enable). Because of this, it is best to limit the number of control 
signals which would require more complex logic. For example, a 
counter which only needs to be reset during initialization will not 
need additional reset capability since all registers are reset upon 
initialization of the LCA device. 

Simple ripple-carry binary up/down counters require 2 • N - 4 
CLBs for implementation where N is the number of counter bits. 
For example, eight CLBs would be needed for a six-bit up/down 
counter and twenty-eight CLBs would be needed for a 16-bit 
up/down counter. An example of a six-bit ripple-carry up/down 
counter configured in CLBs is given in Figure 21. 

The general equations used for this ripple-carry counter design 
were derived from equation 3 and are as follows: 

Running Total 
of CLBs Equations 

QO :=tao 
C2X = UP • ao • a1 

2 a1 := a1 @((UP* aO) + (/UP• tao)) 
C2Y =/UP *tao * /a1 

3 a2 := a2@ (C2X + C2Y) 

4 a3 := a3@ ((a2 * C2X) + (la2 * C2Y)) 

5 

6 

7 

8 

C3X= C2X * a2 
C3Y = C2Y * /02 

04 := 04@ ((03 * C3X) + (103 * C3Y)) 

C4X= C3X * 03 
C4Y = C3Y * /03 

05 := 05@ ((04 * C4X) + (104 * C4Y)) 

To build a simple ripple-carry 16-bit up/down counter, this algo­
rithm would be continued: 

On :=On@ ((On-1 • Cn-1X) + (/On-1 • Cn-1Y)) 

where: 

Cn-1X = Cn-2X * On-2 
Cn-1 Y = Cn-2Y • /On-2 
Cn-1X, Cn-1Y are> or= C2X, C2Y 

and 

C2X = UP * 00 * 01 
C2Y =/UP* tao* /01. 

The test file that was used to verify the logic of the six-bit 
up/down counter in Figure 21 is shown in Figure 22. It was 
generated by running the SIMGEN program included with the 
XACT Development System. This file, with a .DAT extension, 
was modified to include the desired input test vectors which 
would be executed. Once in the P-Silos'" simulator, "IN <file­
name>.DAT" is entered. This command automatically inputs the 
netlist to the simulator. Finally, a time period is entered which 
informs the simulator of the length of time the simulation should 
run. For instance, "SIM 0 10000" could be entered. The outputs 
will be plotted in a table format and will list the signals specified. 

An alternative method for designing up/down counters is to use 
lookahead-carry logic, based on equation 3. This performance- El 
driven method, however, is quite CLB intensive due to the wide 
gating of input signals required for implementation. Thus, for a 
six-bit lookahead-carry up/down counter, sixteen CLBs would 
be needed, whereas for the six-bit ripple-carry up/down counter, 
ten CLBs were needed. Therefore, it is advantageous to use the 
lookahead-carry method when maximum performance is needed. 

A design of an n-bit ripple-carry up/down counter that can 
synchronously RESET and LOAD new values into the counter 
also becomes more difficult. From the general expression 
below, derived from state tables and Karnaugh maps, any 
up/down counter can be designed. 

On = (/RESET * LOAD * Dn) 
@((/RESET* /LOAD* UP* On-1 * ... * 01 * 00) 
+ (/RESET */LOAD */UP* /On-1 * ... * /01 * /00)) 

where RESET and LOAD are active HIGH. 

There are many ways to design up/down counters. The look­
ahead carry method, though it consumes a great deal of resour­
ces, usually enhances performance. The best way to design the 
up/down counter for systems that do not require high speed, is 
to use the ripple-carry method. This method is usually the most 
straightforward and requires the least number of resources. 
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r-T--;:::==l__)fC3=X"-t ___ -r-t--;:::=t_J~C~4=X-t-----, 
f-J-+---L.JC3Y l'C4"-'--'-Y--+----, 

Figure 21. Schematic of a 6-Bit Up/Down Counter. Only Eight CLBs are Required for Implementation. 

$ 
$ Simulation file for design 'FIG21.LCA' type 1 2064NL68-70' 
$ Created by XACT Ver. 1.30 at 14:14:31 JUL 21, 1987 
$ 
!INPUT FIG21.sim 

$ INPUTS: 
GLOBALRESET- .CLK 0 so 1 Sl $ Initial pulse to reset latches 
CLK .CLK 0 so 1000 Sl 2000 SO .REP 0 
UP .CLK 0 so 128000 Sl 256000 SO 270000 Sl 280000 so 

.MONITOR CLK UP QO Ql Q2 Q3 Q4 QS 

.TABLE CLK UP QO Ql Q2 Q3 Q4 QS 

Figure 22. Input File to P-Silos 

Summary 
Many ways exist for implementing counters in the LCA device. 
The ideal counter design for a specific application depends on 
the desired performance and the available logic and intercon­
nection resources. See Table 5. For example, three main types of 
counters, Johnson, Linear Feedback Shift Register, and binary 
counters were discussed. Each of these counters utilizes differ-

3-40 

ent features of the LCA device but each can be optimized to 
perform a required function. Moreover, it was seen that by 
implementing only the logic necessary for a required function, 
resource efficiency was increased and by implementing more 
lookahead-carry logic or using LFSRs, performance was 
increased. 
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COUNTING COUNTER MODULO CLB ROUTING PERFORMANCE ADVANTAGES/ 
METHOD TYPE EFFICIENCY EFFICIENCY DISADVANTAGES 

Johnson 2n Poor Excellent Excellent with High performance, 
low modulo easy routing 

Glitch-free decoding 
Non-binary Low-register 

efficiency 

Unear feedback 2n-1or2n Good Very good Very good Good performance 
llhlft register or decreases with at high modulos 
modified LFSR increasing modulo 

Ripple 2n Excellent Excellent Poor Low resources, 
easy routing 
but slow and 

asynchronous 

Binary Ripple-carry 2n Very good Good Good Good general 
binary counters 

Lookahead carry 2n Good but Good but Good for Highest 
decreases with decreases with high-performance performance binary 

increasing increasing binary counters counter requires 
modulo modulo moreCLBand 

routing resources 

Table 5. Summary of Counter Types and Their Characteristics 

EJI 
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Time Division Multiplexing 
with the LCA Device 

Abstract 
High-speed data communication lines are efficiently utilized 
when low-speed signals are time division multiplexed onto high­
speed lines. Time division multiplexing requires data buffering, 
rate adaption and data selection. The data selection fits into a 

PAL® is a registered trademark of Monolithic Memories, Inc. 

Logic Cell™, XACTTM and APR"1M are trademarks of Xilinx, Inc. 

FutureNet® is a registered trademark of FutureNet Corporation. 

DASHTM is a trademark of FutureNet Corporation. 

P-SILOS® is a registered trademark of SimuCad Corporation. 

C.B. Lee and Theresa Shafer 

single CMOS Logic Cell™ Array (LCA device). The LCA device 
is designed and optimized using the FutureNet® schematic 
capture package, Monolithic Memories' automatic place and EJ 
route software, and the XACT™ Design Editor System. 
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Time Division Multiplexing 
with the LCA Device AN-161 

Introduction 
The Logic Cell Array (LCA device) implements a multiplexer and 
counter used in time division multiplexing. With the device's 
flexible 1/0 pins, the multiplexer and counter are implemented 
into a single CMOS device. This application note covers time 
division multiplexing and the design of a multiplexer and coun­
ter. Additional information on how to design with an LCA device 
can be found in the LCA design methodology chapter in Mono­
lithic Memories' LCA Design and Applications Handbook. For 
programming the LCA device, refer to "Configuring the LCA De­
vice", Monolithic Memories' Application Note 182. 

Principles of Multiplexing 
Multiplexing efficiently utilizes data communication lines by 
combining multiple low-speed signals into a single, high-speed 
line. The two methods of performing multiplexing are Time Divi­
sion Multiplexing (TDM) and Frequency Division Multiplexing 
(FDM). TDM divides the transmission bandwidth into equal time 
slots where each input signal is assigned one time slot per time 
cycle. Once assigned, that time slot is not used by any other 
input. Figure 1 shows a multiplexer combining three low-speed 
signals into one high-speed line. Terminal A transmits during 
the first time slot, B transmits during the second time slot, and 
C transmits during the third time slot. This sequence is repeat­
ed every time cycle. FDM, on the other hand, divides the fre­
quency spectrum among logical channels where each channel 
has full bandwidth of its assigned frequencies. Analog sys­
tems usually use FDM. 

A B C A B 

Figure 1. Time Division Multiplexing 

There are many classes of TDMs including bit interleave, char­
acter interleave, statistical TDM, and T1 multiplexers. In bit in­
terleaved TDM, each input is assigned to one time slot. Each 
time slot's length is one bit. Character interleaved TDM is simi­
lar to bit interleave, except that each time slot represents one 
character. Statistical multiplexing assigns the bandwidth into 
unequal slots where only the active incoming lines are as-
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signed slots. The slots are of variable length, so each input is 
assigned the amount of bandwidth needed. The T1 standard 
specifies twenty-four 64 kbps channels multiplexed on a 1.544 
Mbps high-speed link. 

Data Selection/Time Slot 
Assignment 
To transmit data from terminal A in the first time slot as shown 
in Figure 1, data buffering, rate adaption and data selection 
must be performed. Data buffering and rate adaption are re­
quired since the rates of the lines to be multiplexed are slower 
than the high-speed link. A serializing FIFO or shift register can 
implement the required buffering. Rate adaption is performed 
by a clock/shift scheme tailored to the exact application. Once 
buffered, the data must be selected in the proper order. Sever­
al methods can be used for data selection; one method is a 32-
to-1 multiplexer. To implement sequential selection of input 
lines, an on-board counter selects the multiplexer's output. 
However, for random selection needed in statistical multiplex­
ing, more flexibility is needed. A 2-to-1 multiplexer provides 
this flexibility by selecting between the counter and random· 
selection inputs. 

Comparison of Design Methodologies 
The 32-to-1 multiplexer and counter design can be implement­
ed in several ways. Briefly, we will evaluate discrete logic, PAL 
and LCA device implementations. 

For this design, thirty-eight inputs, five registers, and one out­
put are required. Conventional PLD devices do not meet this 
large 1/0 requirement. A single PLD device is not suited for this 
specific application because flexible 1/0 and buried registers 
are not supported. Instead, the design must be divided into 
four sections. The counter fits in a PALC16R6Z device and the 
32-to-1 multiplexer requires three PALC20L8Z devices. 

Since a large 32-to-1 multiplexer is not available as a discrete 
part, it must be built using smaller multiplexers. The total chip 
count, using discrete logic, is five devices: two 74AS850s, two 
74ALS257s and one 74AS867. A combination of PAL devices 
and discrete logic devices is possible, however, it is also a 
multiple chip solution. 

Monolithic Memories' LCA device is a high-density programma­
ble CMOS circuit with flexible I/Os. It has forty pins which are 
user-defined as either inputs, outputs, or bidirectional. The 
LCA device meets the 1/0 requirement for this design. Since 
the LCA circuit allows multiple logic levels, implementing the 
counter does not use up output pins. Moreover an LCA device 
enables the 32-to-1 multiplexer with counter to be implemented 
in a single low-power device. 
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Detailed LCA Design 
The M2064 LCA device in a 48-pin DIP is used in this design, 
although both PLCC and PGA packages are available. Eight of 
the forty-eight pins are reserved for programming, power, and 
ground, and the remaining forty 1/0 pins are available to the 
user. Table 1 shows the efficient use of the package pinout. 

PIN DESCRIPTION TOTAL PINS 

ADDR(4:0) External Address Inputs 5 inputs 
CK External Clock Input 1 input 
LO Counter Load Input 1 input 
0(31:0) 32-to-1 Multiplexer 32 inputs 

Data Inputs. 
OUT Output 1 output 

TOTAL 1/0 40 pins 

Table 1. 32-to-1 Multiplexer Pins 

Figure 2 shows the block diagram of the 32-to-1 multiplexer and 
the counter. The select lines of the 32-to-1 multiplexer are ei­
ther the address lines or the output of the counter. When LD is 
deasserted, the 5-bit counter sequentially selects each input. 
Asserting the LD signal loads the counter with the external ad­
dresses.It also selects the external address for the 32-to-1 
multiplexer's select lines. This permits random input selection 
from the external address lines which supports statistical mul­
tiplexing. 

LO 
CK 

ADDR 
5 

Figure 2. Block Diagram 

OUT 

The select signals for the 32-to-1 multiplexer are determined by 
the LD signal. When LD = 0, the counter selects the multiplex­
er's output. When LD = 1, the counter is loaded and the exter­
nal address selects the output. Also, the LD asynchronously 
loads the 5-bit counter. Table 2 summarizes the device opera­
tion. 

INPUTS OUTPUT FUNCTION 

LD ADDR(4:0) OUT 

0 xxxxx D(CNT) Counter as Select 
1 ADDR(4:0) D(ADDR) Address as Select 

and Load Counter 

Table 2. 32-to-1 Multiplexer Function Table 

The design was entered with FutureNet's DASH schematic cap­
ture package using high-level macros. Then the schematic 
capture file was translated into an LCA design file. The transla­
tion software, called PIN2LCA, partitions the design into CLBs 
and generates the equations for the CLBs' configuration. The 
translation software produces an unrouted LCA design file. 
This design file requires final placement of CLBs and intercon­
nect routing which was performed using Monolithic Memories' 
APR software, an automatic place and route program. After the 
design is placed and routed, it was optimized with Monolithic 
Memories' XACT Design Editor System. The XACT system pro­
vides a graphic interface to manually optimize the CLB logic 
functions and connections. 

The logic functions and interconnects of an LCA device are es­
tablished with CMOS memory cells, so the array is never physi­
cally altered, although it is physically programmed. A program­
mable LCA device can be reconfigured for the prototype. In ad­
dition, it can be reprogrammed any number of times in the tar­
get system. With reconfigurable devices such as this one, the 
array can also be programmed on power-up, or whenever the 
design details need to be changed. For volume production, a 
hard-array version will be available. 

Entering the Design with Futurenet 
The schematic entered in FutureNet's DASH is comprised of 
different components called from the macro library supplied by 
Monolithic Memories. The MB-1 and M4-1 macros are the multi­
plexers which implement the 32-to-1 multiplexer as shown in 
Figure 3. The 5-bit counter was built from INV, C16BPRD, 
XOR2, and FDM macros. Since the C16BPRD macro is only a 
4-bit parallel-load binary counter, the XOR2 and FDM macros 
were added to form another bit which increased the length to 
five bits.The GMUX macro, a 2-to-1 multiplexer, selects be­
tween the counter and the external address lines. 

To translate from FutureNet to LCA, the PIN2LCA program is in­
voked. This program generates an unrouted dilename>.LCA 
from the FutureNet's dilename>.PIN. The PIN2LCA software 
partitions the design into CLBs and generates each CLB's con­
figuration. 

The PIN2LCA performs logic reduction by eliminating unused 
logic to maximize CLB utilization. With this design, for exam­
ple, C16BPRD's reset logic is not used, and PIN2LCA elimi­
nates all the reset logic in the C16BPRD macro. Another means 
to maximize CLB utilization is by combining macro logic. At 
times, this combined logic results in a single CLB which imple­
ments logic from two different macros. For designs not utilizing 
all the CLBs, this logic redt. 'on is not required and may actu­
ally hinder placement and delay tradeolls. If it does produce 
delay problems, it is possible to edit the CLBs in XACT. 
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At this stage in the design flow, the PIN2LCA software can 
generate a P-SILOS simulation file. Since the dilename>.SIM 
was generated from an unrouted LCA design file, the simulation 
only has unit delays and does not have actual routing delays. 
The simulation verifies the logic, but does not give any timing 
information. It may be necessary to make changes in DASH™ 
depending on the simulation results. 

Place and Route Using APR 
Once the logic is finalized, the LCA design must be placed and 
routed. Monolithic Memories' APR software performs the final 
placement of CLBs and interconnect routing. The input to APR 
is an unrouted dilename>.LCA, and a routed LCA design file 
and report document are the outputs. 

At first glance, the APR program seems cumbersome to apply 
to every application. However, it can be used to create an effi­
cient design. While the software uses random placement, it 
does allow tailoring for specific requirements. 

Initially, the multiplexer and counter design did not route com­
pletely. To achieve good placement and 100% routing comple­
tion, several things were tried. Some worked well while others 
did not. An overview of how 100% routing completion was 
achieved is explained below. 

Since this design utilizes only 53% of the LCA device, delay is 
a larger concern than CLB utilization. In this case, placement 
is critical to achieve an efficient design with the desired de­
lays. The ideal placement would be for the 5-bit counter and 2-
to-1 multiplexer to be placed near the ADDR(4:0), CK, and LD 
signals. The four MB-1 macros should be near the 8-bit cluster 
of inputs. The remaining M4-1 macro should be placed near the 
OUT signal. 
In FutureNet, the I/Os are assigned pin numbers so that the 
signals are clustered into groups. These 1/0 assignments re­
strict the APR's placement of the signals and are found in the 
dilename>.SCP. Other restrictions and options are specified 
when invoking the APR software. The options, "-a", "-g", "-e", 
and "-k", tailor the placement for this specific design. 

The APR's "-a" option specifies the depth of CLB logic levels 
which are considered connected. In this design, "-a2" was se­
lected because the C16BPRD and MB-1 macros are implement­
ed in two CLB logic levels. 

The "-g" and "-e" options are related. The "-g" option specifies 
the number of CLBs that should be grouped together. The "-e" 
option determines the number of CLBs in a group which should 
be evaluated for all possible placements. Since the C16BPRD 
and MB-1 macros contain four to six CLBs, the options, "-e4" 
and "-g4", were used. This particular value was selected be­
cause it was the largest possible value which maintained the 
e>=Q relationship. Avoiding values where e<g insures as much 
as possible that the CLBs within each group are placed in the 
best possible arrangement. This maintains the groups' integrity. 
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The "-k" option specifies the number of shapes per group. By 
trial and error, "-k6" works well for this design. With "-k6", six of 
the best arrangements or shapes were saved for each group of 
CLBs. Every combination of shaped group is tried with all six 
other grouped shapes and evaluated for best placement. Gen­
erally, the larger values result in better placements, however, 
run-time grows exponentially. While larger values of "-k" were 
tried, they did not improve the placement significantly. 

Running APR with these options and restrictions did not result 
in a 100% routed design. Therefore, more application-specific 
information was required. Noting that the APR software was not 
fully utilizing the high-level macro information, placement could 
still be optimized. The APR's report file shows that the CLBs 
which comprise C16BPRD or the MB-1 macros were not 
grouped together. Instead, the CLBs were randomly spread 
over the device. In a constraint file, dilename>.CST, CLBs 
from the high-level macros could be grouped together (see Ap­
pendix A). If necessary, the exact CLB placement could be 
specified in the same file. 

To generate the constraint file, CLBs which implement each 
high-level macro were identified using the cross-reference file 
generated by PIN2LCA, <filename>.CRF. The dilename>.CRF 
file is organized into three cross-reference sections: macros, 
CLBs, and IOBs. 

The macro cross-reference section identifies and assigns a 
hierarchical symbol number to each macro. The symbol num­
ber is used to generate the default CLB names. 

/21-1, \MB-1.DWG 

/ Path: 
ASSIGNED 
SYMBOL NUMBER \USER\THERESA\TDM.DWG(32) 

Title: MB-1 

The CLB cross-reference section of the dilename>.CRF con­
tains the CLB names. For macros with multiple CLBs, the sys­
tem assigns default names. The default CLB name consists of 
two parts. The first is the macro symbol number as specified in 
the macro section and the second number is the signal name. 
By grouping CLBs with related symbol numbers, all the CLBs 
for a given macro will be placed together. 

CLB BD Name= '21-D03': 

F =signal '21-D03', contains: 

symbol '26-0R(2)', output signal = '21-D03' 
symbol '26-AND(3)', output signal = '26-SO' 
symbol '27-0R(2)', output signal = '21-001' 
symbol '26-AND)1 )',output signal= '26-S1 • 

The IOB cross-reference section shows the IOB assignments. 
For this design, the assignments are those specified in the Fu­
tureNet's schematic. 

IOB P30: Name= 'D13', Symbol= 'PIN(40)' 

I= signal 'D13' 
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Optimizing the Design with 
Monolithic Memories' XACT 
Design Editor System 
Monolithic Memories' XACT Design Editor System can increase 
resource utilization and performance by manually modifying 
the placement and routing. The XACT system provides a 
graphic interface to specify the CLB design. All CLB logic func­
tions and connections can be optimized for the designs' 
needs. With XACT, the designer can partition the design and 
optimize the placement of logic blocks to gain the utilization 
and performance required. 

The clock line routing was optimized to reduce clock skew. Us­
ing the clock buffer resources, the common clock is driven by 
the global clock buffer. To optimize internal routing, "long lines" 
were used for signals with large fanouts such as the select 
lines for the multiplexers and the LD signal. Use of the "long 
lines" minimizes the delay for these control signals. The "long 
lines" were selected by manually routing the signal net through 
the programmable interconnect points (PIPs). 

On the device itself, implementing the 5-bit counter and 2-to-1 
multiplexers requires ten CLBs; and the 32-to-1 multiplexer re­
quires twenty-four CLBs, giving a total of thirty-four CLBs. This 
design utilizes 53% of the LCA device. 

Summary and More Information 
For time division multiplexing systems, data selection can be 
implemented in a single CMOS device. FutureNet's DASH 
schematic capture with Monolithic Memories' LCA macro library 
was used to implement a design in an LCA device. Placement 
of CLBs and signal routing were performed by Monolithic Mem­
ories' APR software. Optimization, which may be required to 
improve performance, can be done using Monolithic Memories' 
XACT Design Editor System. This is useful for placing and rout­
ing critical signal nets such as clock or control signals. More 
information can be found in P-SILOS, FutureNet, and LCA user 
guides and handbooks. 

This design, developed with an LCA device, is available upon 
request. The FutureNet drawing, LCA design and bit pattern 
files can be provided for programming the LCA device in an EP­
ROM. Please ask for design XDES07.LCA. 

Print World: THERESA.LCA (2064PD48-70)' XACT 1.30, 10:15:46 JUL 31, 1987 
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Appendix A> Constraint File 

; CONSTRAINT FILE GROUPING MACROS IN BLOCKS 

DEFINE GROUP CNT GROUP 
3-T3 3-T2 CKB 
C4 C2 CJ Cl CO 
M3 M2; 

DEFINE GROUP OUT_GROUP 
CLBl 45-D23; 

DEFINE GROUP Ml_GROUP 
47-SO 
19-SO 19-Sl 
1J-D03 13-D47; 

DEFINE GROUP M2_GROUP 
47-Sl 
15-SO 15-Sl 
21-DOJ 21-D47; 

DEFINE GROUP M3_GROUP 
27-SO 27-Sl 
23-SO 23-Sl 
36-SO 36-Sl; 

DEFINE GROUP M4_GROUP 
OUTM4 
42-SO 42-Sl 
37-D47 37-D67 
39-SO; 

EJ 
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$ 
$ Simulation file for design 'TDM. s im' , type 'Z064N48-50' 
$Created by PINZLCA Ver. 1. Olx at 10: 58: 00 JUL 14, 1987 

$ 
! INPUT TDM. s im 

GLOBALRESET­

CK. PAD 

LD.PAD 

ADDRO.PAD 

+ 78000 0 

ADDRl.PAD 
+ 78000 1 

ADDRZ.PAD 

+ 78000 1 

ADDR3.PAD 

+ 78000 0 

ADDR4.PAD 

+ 78000 1 
DO.PAD 

Dl .PAD 

DZ.PAD 

D3.PAD 

D4.PAD 

D5.PAD 

D6.PAD 
D7.PAD 

DB.PAD 

D9.PAD 

DlO.PAD 

Dll .PAD 

DlZ.PAD 

Dl3.PAD 
Dl4.PAD 

Dl5.PAD 

Dl6.PAD 

Dl7.PAD 

Dl8.PAD 

Dl9.PAD 

DZO.PAD 

DZl.PAD 

DZZ.PAD 

DZ3.PAD 

DZ4.PAD 

DZ5.PAD 

DZ6.PAD 
DZ7 .PAD 

DZ8.PAD 

DZ9.PAD 

D30.PAD 

D31.PAD 

. CLK 0 SO 1 Sl $ Initial pulse to reset latches 

. CLK 0 0 500 1 1000 0 . REP 0 

. CLK 0 0 40000 1 

. CLK 0 0 40000 0 41000 1 42000 0 . REP 40000 

. CLK 0 0 40000 0 4ZOOO 1 44000 0 . REP 40000 

. CLK 0 0 40000 0 44000 1 48000 0 . REP 40000 

. CLK 0 0 40000 0 48000 1 56000 0 . REP 40000 

. CLK 0 0 40000 0 56000 1 7ZOOO 0 . REP 40000 

. CLK 0 1 1000 0 40000 0 41000 1 

. CLK 0 0 1000 1 zooo 0 40000 1 41000 0 4ZOOO 1 

. CLK 0 0 zooo 1 3000 0 40000 l 4ZOOO 0 43000 1 

. CLK 0 0 3000 1 4000 0 40000 1 43000 0 44000 1 

. CLK 0 0 4000 1 5000 0 40000 1 44000 0 45000 1 

. CLK 0 0 5000 1 6000 0 40000 1 45000 0 46000 1 

. CLK 0 0 6000 1 7000 0 40000 1 46000 0 4 7000 1 

. CLK 0 0 7000 1 8000 0 40000 1 47000 0 48000 1 

. CLK 0 0 8000 1 9000 0 40000 l 48000 0 49000 1 

. CLK 0 0 9000 1 10000 0 40000 l 49000 0 50000 1 

. CLK 0 0 10000 1 11000 0 40000 l 50000 0 51000 l 

. CLK 0 0 11000 1 lZOOO 0 40000 1 51000 0 5ZOOO 1 

. CLK 0 0 lZOOO 1 13000 0 40000 1 5ZOOO 0 53000 1 

. CLK 0 0 13000 1 14000 0 40000 1 53000 0 54000 1 

. CLK 0 0 14000 1 15000 0 40000 1 54000 0 55000 1 

. CLK 0 0 15000 1 16000 0 40000 1 55000 0 56000 l 

. CLK 0 0 16000 l 17000 0 40000 1 56000 0 57000 l 

. CLK 0 0 17000 l 18000 0 40000 l 57000 0 58000 l 

. CLK 0 0 18000 1 19000 0 40000 l 58000 0 59000 1 

. CLK 0 0 19000 l ZOOOO 0 40000 l 59000 0 60000 l 

. CLK 0 0 ZOOOO 1 ZlOOO 0 40000 1 60000 0 61000 1 

. CLK 0 0 ZlOOO 1 ZZOOO 0 40000 l 61000 0 6ZOOO 1 

. CLK 0 0 ZZOOO 1 Z3000 0 40000 l 6ZOOO 0 63000 l 73000 0 

. CLK 0 0 Z3000 1 Z4000 0 40000 l 63000 0 64000 l 

. CLK 0 0 Z4000 1 Z5000 0 40000 l 64000 0 65000 1 

. CLK 0 0 Z5000 1 Z6000 0 40000 1 65000 0 66000 1 

. CLK 0 0 Z6000 1 Z7000 0 40000 1 66000 0 67000 1 

. CLK 0 0 Z7000 1 Z8000 0 40000 l 67000 0 68000 1 

. CLK 0 0 Z8000 1 Z9000 0 40000 l 68000 0 69000 1 

. CLK 0 0 Z9000 1 30000 0 40000 l 69000 0 70000 l 

. CLK 0 0 30000 1 31000 0 40000 1 70000 0 71000 1 

. CLK 0 0 31000 l 3ZOOO 0 40000 l 71000 0 7ZOOO l 

. MONITOR CK .PAD LD .PAD ; ADDR4 .PAD ADDR3. PAD ADDRZ. PAD ADDRl. PAD ADDRO. PAD ; ; 

+ C4 C3 CZ Cl CO ; 

+DO .PAD Dl .PAD DZ .PAD D3 .PAD D4 .PAD D5 .PAD D6 .PAD D7 .PAD ; 

+ D8. PAD D9. PAD DlO. PAD Dll. PAD DlZ. PAD Dl3. PAD Dl4. PAD Dl5. PAD ; 
+ Dl6. PAD Dl 7. PAD Dl8. PAD Dl9. PAD DZO. PAD DZl. PAD DZZ. PAD DZ3. PAD ; 

+ DZ4. PAD DZ5. PAD DZ6. PAD DZ7. PAD DZ8. PAD DZ9. PAD D30. PAD D31. PAD ; OUT. PAD 

. TABLE CK. PAD LD. PAD ; ADDR4. PAD ADDR3. PAD ADDRZ. PAD ADDRl. PAD ADDRO. PAD ; 

+ C4 C3 CZ Cl CO ; 

+DO .PAD Dl .PAD DZ .PAD D3 .PAD D4 .PAD D5 .PAD D6 .PAD D7 .PAD ; 

+ D8. PAD D9. PAD DlO .PAD Dll. PAD DlZ. PAD Dl3. PAD Dl4. PAD Dl5. PAD ; 

+ Dl6 .PAD Dl 7. PAD Dl8 .PAD Dl9. PAD DZO. PAD DZl. PAD DZZ. PAD DZ3. PAD ; 

+ DZ4. PAD DZ5. PAD DZ6. PAD DZ7. PAD DZ8. PAD DZ9. PAD D30. PAD D31. PAD ; OUT. PAD 
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P - S I L 0 s lU.3 OUTPUTS 10:26:22 07-23-87 

CL AMAA ccccc DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD 0 
KD DDDDD 43210 01234567 89111111 11112222 22222233 u 

DDDDD •• 012345 67890123 45678901 T 
PP RRRRR PPP PP PPP PP •••.•• 
AA 43210 AAAAAAAA AAPPPPPP pppppppp PPPPPPPP p 
DD DDDDDDDD DDAAAAAA AAAAAAAA AAAAMAA A 

PP PPP DDDDDD DDDDDDDD DDDDDDDD D 
AMAA 
DDDDD 

TIME 
0 00 00000 00000 10000000 00000000 00000000 00000000 1 

500 10 00000 00000 10000000 00000000 00000000 00000000 1 
1000 00 00000 00000 01000000 00000000 00000000 00000000 1 
1500 10 00000 00001 01000000 00000000 00000000 00000000 1 
2000 00 00000 00001 00100000 00000000 00000000 00000000 1 
2500 10 00000 00010 00100000 00000000 00000000 00000000 1 
3000 00 00000 00010 0001.0000 00000000 00000000 00000000 1 
3500 10 00000 00011 00010000 00000000 00000000 00000000 1 
4000 00 00000 00011 00001000 00000000 00000000 00000000 1 
4500 10 00000 00100 00001000 00000000 00000000 00000000 1 
5000 00 00000 00100 00000100 00000000 00000000 00000000 1 
5500 10 00000 00101 00000100 00000000 00000000 00000000 1 
6000 00 00000 00101 00000010 00000000 00000000 00000000 1 
6500 10 00000 00110 00000010 00000000 00000000 00000000 1 
7000 00 00000 00110 00000001 00000000 00000000 00000000 1 
7500 10 00000 00111 00000001 00000000 00000000 00000000 1 
8000 00 00000 00111 00000000 10000000 00000000 00000000 1 
8500 10 00000 01000 00000000 10000000 00000000 00000000 1 
9000 00 00000 01000 00000000 01000000 00000000 00000000 1 
9500 10 00000 01001 00000000 01000000 00000000 00000000 1 

10000 00 00000 01001 00000000 00100000 00000000 00000000 1 
10500 10 00000 01010 00000000 00100000 00000000 00000000 1 
11000 00 00000 01010 00000000 00010000 00000000 00000000 
11500 10 00000 01011 00000000 00010000 00000000 00000000 
12000 00 00000 01011 00000000 00001000 00000000 00000000 
12500 10 00000 01100 00000000 00001000 00000000 00000000 
13000 00 00000 01100 00000000 00000100 00000000 00000000 

E1 13500 10 00000 01101 00000000 00000100 00000000 00000000 
14000 00 00000 01101 00000000 00000010 00000000 00000000 
14500 10 00000 01110 00000000 00000010 00000000 00000000 
15000 00 00000 01110 00000000 00000001 00000000 00000000 
15500 10 00000 01111 00000000 00000001 00000000 00000000 
16000 00 00000 01111 00000000 00000000 10000000 00000000 
16500 10 00000 10000 00000000 00000000 10000000 00000000 
17000 00 00000 10000 00000000 00000000 01000000 00000000 
17500 10 00000 10001 00000000 00000000 01000000 00000000 
18000 00 00000 10001 00000000 00000000 00100000 00000000 
18500 10 00000 10010 00000000 00000000 00100000 00000000 
19000 00 00000 10010 00000000 00000000 00010000 00000000 
19500 10 00000 10011 00000000 00000000 00010000 00000000 
20000 00 00000 10011 00000000 00000000 00001000 00000000 1 
20500 00 00000 10011 00000000 00000000 00001000 00000000 1 
21000 00 00000 10100 00000000 00000000 00000100 00000000 1 
21500 10 00000 10101 00000000 00000000 00000100 00000000 1 
22000 00 00000 10101 00000000 00000000 00000010 00000000 1 
22500 10 00000 10110 00000000 00000000 00000010 00000000 1 
23000 00 00000 10110 00000000 00000000 00000001 00000000 1 
23500 10 00000 10111 00000000 00000000 00000001 00000000 1 
24000 00 00000 10111 00000000 00000000 00000000 10000000 1 
24500 10 00000 11000 00000000 00000000 00000000 10000000 l 
25000 00 00000 11000 00000000 00000000 00000000 01000000 l 
25500 10 00000 11001 00000000 00000000 00000000 01000000 1 
26000 00 00000 11001 00000000 00000000 00000000 00100000 1 
26500 10 00000 11010 00000000 00000000 00000000 00100000 l 
27000 00 00000 11010 00000000 00000000 00000000 00010000 1 
27500 10 00000 11011 00000000 00000000 00000000 00010000 1 
28000 00 00000 11011 00000000 00000000 00000000 00001000 1 
28500 10 00000 11100 00000000 00000000 00000000 00001000 1 
29000 00 00000 11100 00000000 00000000 00000000 00000100 1 
29oOO 10 00000 11101 00000000 00000000 00000000 00000100 1 
30000 00 00000 11101 00000000 00000000 00000000 00000010 1 
30500 10 00000 11110 00000000 00000000 00000000 00000010 1 
31000 00 00000 11110 00000000 00000000 00000000 00000001 1 
31500 10 00000 11111 00000000 00000000 00000000 00000001 1 
32000 00 00000 11111 00000000 00000000 00000000 00000000 1 
32500 10 00000 00000 00000000 00000000 00000000 00000000 0 
33000 00 00000 00000 00000000 00000000 00000000 00000000 0 
39000 00 00000 00110 00000000 00000000 00000000 00000000 o 
39500 10 00000 00111 00000000 00000000 00000000 00000000 0 
40000 01 00000 00111 01111111 11111111 11111111 11111111 0 
40500 11 00000 01000 01111111 11111111 11111111 11111111 o 
41000 01 00001 01000 10111111 11111111 11111111 11111111 0 
41500 11 00001 00001 10111111 11111111 11111111 11111111 0 
42000 01 00010 00001 11011111 11111111 11111111 11111111 0 
42500 11 00010 00010 11011111 11111111 11111111 11111111 0 
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P - S I L 0 s lU.3 OUTPUTS 10:26:22 07-23-87 

CL AAAAA CC CCC DDDDDDDD DDDDDDDD DDDDDDDD DDDDDDDD 0 

KD DDDDI) 43210 01234567 89111111 11112222 22222233 u 
DDDDD •• 012345 67890123 45678901 T 

pp RRRRR pppppppp PP ...... 
AA 43210 AAAAAAAA AAPPPPPP PPPPPPPP PPPPPPPP p 

DD DDDDDDDD DDAAAAAA AAAAAAAA AAAAAAAA A 
ppppp DDDDDD DDDDDDDD DDDDDDDD D 
AAAAA 
ODD DD 

TIME 
43000 01 00011 00010 11101111 11111111 11111111 11111111 0 
43500 11 00011 00011 11101111 11111111 11111111 11111111 0 
44000 01 00100 00011 11110111 11111111 11111111 11111111 0 
44500 11 00100 DODOO 11110111 11111111 11111111 11111111 0 
'15000 01 00101 00000 11111011 11111111 11111111 11111111 
45500 11 00101 00101 11111011 11111111 11111111 11111111 
46000 01 00110 00101 11111101 11111111 11111111 11111111 
46500 11 00110 00110 11111101 11111111 11111111 11111111 
47000 01 00111 00110 11111110 11111111 11111111 11111111 0 
47500 11 00111 00111 11111110 11111111 11111111 11111111 0 
48000 01 01000 00111 11111111 01111111 11111111 11111111 0 
48500 11 01000 01100 11111111 01111111 11111111 11111111 0 
49000 01 01001 01100 11111111 10111111 11111111 11111111 0 
49500 11 01001 01001 11111111 10111111 11111111 11111111 0 
50000 01 01010 01001 11111111 11011111 11111111 llllllll 0 
50500 11 01010 01010 11111111 11011111 11111111 11111111 0 
51000 01 01011 01010 11111111 11101111 11111111 11111111 0 
51500 11 01011 01011 11111111 11101111 11111111 11111111 0 
52000 01 01100 01011 11111111 11110111 11111111 11111111 0 
52500 11 01100 01000 11111111 11110111 11111111 11111111 0 
53000 01 01101 01000 11111111 11111011 11111111 11111111 0 
53500 11 01101 01101 11111111 11111011 11111111 11111111 0 
54000 01 01110 01101 11111111 11111101 11111111 11111111 o 
54500 11 01110 01110 11111111 11111101 11111111 11111111 o 
55000 01 01111 01110 11111111 11111110 11111111 11111111 0 
55500 11 01111 01111 11111111 11111110 11111111 11111111 0 
56000 01 10000 01111 11111111 11111111 01111111 11111111 0 
56500 11 10000 10100 11111111 11111111 01111111 11111111 o 
57000 01 10001 10100 11111111 11111111 10111111 11111111 0 
57500 11 10001 10001 11111111 11111111 10111111 11111111 0 
58000 01 10010 10001 11111111 11111111 11011111 11111111 0 
58500 11 10010 10010 11111111 11111111 11011111 11111111 
59000 01 10011 10010 11111111 11111111 11101111 11111111 
59500 11 10011 10011 11111111 11111111 11101111 11111111 
60000 01 10100 10011 11111111 11111111 11110111 11111111 0 
60500 11 10100 10000 11111111 11111111 11110111 11111111 0 
61000 01 10101 10000 11111111 11111111 11111011 11111111 0 
61500 11 10101 10101 11111111 11111111 11111011 11111111 o 
62000 01 10110 10101 11111111 11111111 11111101 11111111 0 
62500 11 10110 10110 11111111 11111111 11111101 11111111 0 
63000 01 10111 10110 lllllltl 11111111 11111110 11111111 
63500 11 10111 10111 11111111 11111111 11111110 11111111 
64000 01 11000 10111 11111111 11111111 11111111 01111111 0 
64500 11 11000 11100 11111111 11111111 11111111 01111111 0 
65000 01 11001 11100 11111111 11111111 11111111 10111111 0 
65500 11 11001 11001 11111111 11111111 11111111 10111111 0 
66000 01 11010 11001 11111111 11111111 11111111 11011111 0 
66500 11 11010 11010 11111111 11111111 11111111 11011111 0 
67000 01 11011 11010 11111111 11111111 11111111 11101111 0 
67500 11 11011 11011 11111111 11111111 11111111 11101111 0 
68000 01 11100 11011 11111111 11111111 11111111 11110111 0 
68500 11 11100 11000 11111111 11111111 11111111 11110111 0 
69000 01 11101 11000 11111111 11111111 11111111 11111011 0 
69500 11 11101 11101 11111111 11111111 11111111 11111011 0 
70000 01 11110 11101 11111111 11111111 11111111 11111101 0 
70500 11 11110 11110 11111111 11111111 11111111 11111101 0 
71000 01 11111 11110 11111111 11111111 11111111 11111110 0 
71500 11 11111 11111 11111111 11111111 11111111 11111110 0 
72000 01 00000 11111 11111111 11111111 11111111 11111111 0 
72500 11 00000 00100 11111111 11111111 11111111 11111111 1 
73000 01 00001 00100 11111111 11111111 11111101 11111111 1 
73500 11 00001 00001 11111111 11111111 11111101 11111111 1 
74000 01 00010 00001 11111111 11111111 11111101 11111111 1 
74500 11 00010 00010 11111111 11111111 11111101 11111111 1 
75000 01 00011 00010 11111111 11111111 11111101 11111111 1 
75500 11 00011 00011 11111111 11111111 11111101 11111111 1 
76000 01 00100 00011 11111111 11111111 11111101 11111111 1 
76500 11 00100 00000 11111111 11111111 11111101 11111111 1 
77000 01 00101 00000 11111111 11111111 11111101 11111111 1 
77500 11 00101 00101 11111111 11111111 11111101 11111111 1 
78000 01 10110 00101 11111111 11111111 11111101 11111111 1 
78500 11 10110 10110 11111111 11111111 11111101 11111111 0 
79000 01 10110 10110 11111111 11111111 11111101 11111111 0 
79500 11 10110 10110 11111111 11111111 11111101 11111111 0 
80000 01 101 0 10110 11111111 11111111 11111101 11111111 0 
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Abstract 
The transmission and reception of digital data over local area 
networks (LANs) is more popular than ever. To transmit reliable 
information from one system to another over a LAN, an 
efficient error-detection technique is necessary. The error­
detection scheme chosen by the IEEE for the Ethernet, a local 
area network developed by the Xerox Corporation, uses a 32-
bit cyclic redundancy check (CRC). 

A Dual 32-bit Serial CRC transmitter-receiver for the Ethernet is 
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Logic Cet1T1.1 Array and XAC"fTM are trademarks of XILINX, Inc. 
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Karen Spesard 

implemented in one Logic Cell™ Array (LCA device). The LCA 
device is a RAM-based CMOS circuit which is electrically 
programmable. It allows the designer to make design changes 
as necessary to accommodate other data communication 
protocols as well as other applications. This applications note 
describes the Ethernet CRC and how it is implemented in the 
versatile LCA device. 
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Dual 32-bit Serial CRC Error 
Detection • 1n an LCA Device 
Karen Spesard 

Introduction 
In transferring digital information from computer to computer, 
or from computer to peripheral devices, it is possible that er­
rors in transmission may be introduced. The Cyclic Redundan­
cy Check, or CRC, developed for the data communications 
industry will detect most of these errors. With one LCA device, 
a dual 32-bit serial CRC transmitter-receiver was implemented 
for the Ethernet, one of the industry's most popular local 
networks. This article describes the methodology used for 
designing the Dual 32-bit Serial CRC with an LCA device. 

Overview of the CRC 
Central to a serial hardware CRC system is a set of n-bit linear 
feedback shift registers, or LFSRs. These registers are de­
signed to represent a fixed generator polynomial G(x). The 
generator polynomial is the divisor in equation 1, 

D(x) R(x) 
xn -- =O(x)+ -- ,(1) 

G(x) G(x) 

and D(x) is the data polynomial, which is transmitted and 
checked for errors. The data polynomial is prescaled by xn, the 
length of the generator polynomial, to insure the remainder is 
always different from the data itself. 

The data is shifted in the LFSR and subsequently divided by 
G(x). The division generates the remainder polynomia! R(x) but 
ignores the quotient polynomial Q(x). The remainder polynomial 
or redundancy check-bits remain in the registers after all of the 
data has been shifted in. The check-bits are then shifted out 
and appended to the data-bits to produce the encoded data. 
The encoded data becomes D(x) + R(x). 

REGISTERS XO X1 

Initialize 0 0 

1st shift DO 0 

2nd shift DQ$D1 DO 

3rd shift DOEllD1EllD2 DQ$D1 

4th shift 01EllD2EllD3 DOEllD1<llD2 

5th shift DQ$D2EllD3EllD4 D1<llD2<llD3 

6th shift D1<3l03EllD4<3lD5 DQ$D2EllD3EllD4 

7th shift 02<3lD4<3lD5<3lD6 D1<3lD3<3lD4EllD5 

8th shift 00<3l03<3l05<3l06<3l07 02<3l04<3l05<3l06 

<ll:O EXOR 

The encoded data is received in a similar LFSR with the same 
G(x). Because addition and subtraction operations are identi­
cal in mod"ulo-2 arithmetic, equation (1) becomes: 

Q(x)G(x) = xnD(x) + R(x). (2) 

Since D(x) was prescaled, and appending the remainder to the 
data is equivalent to adding it, the new encoded polynomial 
should be exactly divisible by G(x). Thus, if the remainder of 
this operation is zero, all of the original transmitted data-bits 
are assumed unaltered. If the remainder is any1hing other than 
zero, an error occurred and an error flag is set. 

Generating CRC Bits and Checking 
Data 
An example of the LFSR hardware needed to generate CRC bits 
serially for a three-bit G(x) is shown in Figure 1. In this 
example, the output of the last register is XORed, or shift 
subtracted, with the data-bit before feeding back to registers 
XO and X2. The feedback term positions in the LFSR 
correspond to all but the highest power of x in the generator 
polynomial. In this case, the feedback positions are 
determined from x2 and xO. 

The redundancy check-bits can be calculated from Table 1 for 
G(x) = x3 + x2 + 1 where the internal state of each register in 
ths LFSR after every shift ts shown. Theiefore, if the data is 
10011, the redundancy check-bits are D5 = 0, D6 = 1, and D7 = 
O after the last data-bit is shifted in (5th shift). This is because 
DO= 1, D1 = 1, D2 = 0, D3 = 0, and D4 = 1. (D(x) = 1 +Ox+ Ox2 + 
1 x3 + 1 x4 and the least significant bit, LSB, is the first bit 
transmitted.) The check-bits are shifted out from the LFSR by 

X2 COMMENTS 

0 If registers initialized to O 

DO 

DQ$D1 

D1EllD2 

DOEllD2<llD3 

D1<ll03EllD4 Redundancy check bits 

D2<llD4<llD5 

DO<llD3Ell05EllD6 

DOEllD1 Ell04<ll06Ell07 Zero remainder 

Table 1. Calculation of Redundancy Check-Bits for G(X) = x3 + x2 + 1 
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disabling the feedback terms of the LFSR. The check-bits can 
be verified by long division as in Figure 2. 

The encoded data then becomes 010 10011. To check for data 
integrity, the encoded data is shifted in another LFSR with the 
same G(x). This time the last bit (8th bit) is shifted in, and if the 
message was unaltered, the bits residing in the registers are 
zero. If the redundancy bits are not zero, an error occurred. 
This can also be verified by long division as in Figure 3. 

In summary, CRC modifies the data polynomial so that it is 
exactly divisible by a fixed polynomial G(x). When the modified 
polynomial is received, it is checked for the exact division by 
G(x). If an error occurred, the RDYFLG is set. 

DATA 
IN 

EI1 :EXOR 

Figure 1. LFSR for G(X) = x3 + x2 + 1 

1001 

1101 I 11001000 
1101 

PRESCALED DATA 
WITH 3 ZERO BITS 

11000 REMAINDER 
11010 

010 

Figure 2. Long Division Example - With Pure Data 

1001 

1101 I 11001010 
1101 

011010 
11010 

0 

ENCODED DATA 

NO REMAINDER 

Figure 3. Long Division Example - With Encoded Data 

Why Use LCA Devices in CRC? 
The 32-bit serial CRC, with transmission and reception 
sections, can be implemented in several ways. One way would 
be to acquire standard CRC chips. These chips, however, only 
exist with specific G(x) and therefore can be inflexible. Another 
method would be to design the transmission and reception 
sections of the CRC with traditional PLO devices. This would 
require eight PLO devices for the dual 32-bit LFSRs (eight bits 
in each PLO) even without additional control logic. A third 
method would use an LCA device, as it would take only one to 
implement the dual 32-bit CRC and with more flexibility than a 
dedicated custom part. 

In addition, the LCA device can provide designers with more 
control after design release than the alternative solutions. For 
example, the designer can change the generator polynomial or 
the control logic "on-the-fly" by merely reprogramming the 
configuration data from separate sections of an EPROM. A 
large EPROM, 8Kx8 or 16Kx8, can typically store three and six 
configuration patterns, respectively. 

32-Bit CRC Design 
CRC error detection is one of the best methods for checking 
the validity of large frames of information. It can detect all 
errors within n successive bits, all errors with an odd number of 
bits in error for even G(x), and, of course, all error patterns that 
are not divisible by G(x). 

The IEEE-802.3/Ethernet Local Area Network Standard 
defines a 32-bit CRC code. This code works with data ranges 
from 46 to 1500 bytes, and is also used in the Autodin-11 
Network. 

The generator polynomial used for the Ethernet 32-bit CRC is 
defined as: 

G(x) ~ x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 

+ x5 + x4 + x2 + x + 1, 

where the coefficients of the generator polynomial correspond 
to the feedback positions in the LFSR. 

Figure 4 shows the block diagram of the Dual 32-bit Serial CRC. 
As the diagram illustrates, the transmitter portion of the CRC is 
controlled separately from the receiver portion. 

The standard specifies that on the transmitter end, the shift 
registers are preloaded to ones with INITA, and CONTROLA is 
held HIGH while the incoming data bits are shifted in to 
generate the CRC. When all of the data bits have been entered, 
CONTROLA is held LOW and the complemented CRC is shifted 
out for transmission. 

On the receiver end, the data bits and the complemented 
check bits are sent. When the end of the frame is reached, the 
remainder is checked. If no error occurs, the final contents of 
the shift register are: 

X31 XO 

11000111 00000100 11011101 01111011 

This remainder is not 0 because the check-bits are 
complemented before being transmitted to the receiver. 

CRC Logic Implementation 
Figures 5 and 6 show the complete design for the 32-bit CRC 
with the standard generator polynomial described above. The 
generator polynomial is implemented with thirty-two registers in 
each LFSR. The feedback terms (031 xor DIN) are at registers 
00, 01, 02, 04, 05, 07, ... 023, and 026 and correspond to 
the Ethernet generator polynomial, G(x) given above. 

The registers in the LFSRs are D-type flip-flops and are 
clocked synchronously. In the transmitter portion, two pins -
CONTROL and INIT - are respectively added for initializing the 
registers and controlling the feedback terms. When INIT is 
HIGH, all registers are initialized to HIGH. When CONTROL is 
HIGH, the multiplexer shifts out data bits and generates 
check-bits. When CONTROL is LOW, the feedback term is 
disabled and inverted redundancy check-bits are shifted out 
from the LFSR. 

The five-bit synchronous ripple carry counter is enabled with 
the control line LOW and reset with the control line HIGH. When 
the five count bits reach all ones, the thirty-two check bits are 
shifted out of the LFSR, and the RDYFLAG is set. 

The receiver LFSR is essentially the same as the transmitter 
LFSR. However, after data and the thirty-two check bits are 
received, the data is checked for errors. If an error occurred, 
the error flag is set. 
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IN. BIT DATAl 
BUFFER 

SERIAL 
DATA IN 

CRCENABLE 

CONTROL A 

!NITA 

CLOCK A 

CLOCKB 

INITB 

ENCODED 
SERIAL 
DATA IN 

SERIAL DATA 
ENABLE 

TRANSMIT· ENCODE .----

I Cf= MUX 

LSFR ,___ 

'--- • j 5·BIT 
~l COUNTER 

RECIEVE ·DECODE 

32· BIT H ERROR 
LFSR DETECT 

_... 

j 
LCA IMPLEMENTATION 

Figure 4. Block Diagram of the Duel 32·Bit Serial CRC 

.... 

_... 

( 

DATA AND 
REDUNDANCY 

CHECK BITS 
ENCODED DATA) 

RDYFLG 

ERRFLG 

SERIAL 
ATAOUT D 



Dual 32·bit Serial CRC Error Detection in an LCA Device 

32- BIT LFSR 
CONTROLA~+-~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.-~~~~~~~----, 

DIN~+-~~~~~~~~~~~~~~~~~~~~~~~t-ffi--~~--~r~~~~---. 

0 
e 
1±1 

031 
0 (INIT) CJ 

Figure 5. Logic Implementation of Transmitter-Encoder Section 

QA 

MULTIPLEXER 

ENCODED 
SERIAL 

DATA OUT 

5 - BIT COUNTER 

ROY 
:NOT FLAG 

:EXOR 

:OR 
:AND 

=OFF W/CLOCK 
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SERIAL DATA 
ENABLE 
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ERROR 
DETECT 
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32 - BIT LFSR 

SERIAL 
~~~+-~~~~~~~~~~~~~~~;>-~~~~~-+---~-+---~~~~--<~~~+--DATA 

OUT 

Q31 

(INIT) 

Q = NOT E9 =EXOR I±] =OR G) =AND C:=J = OFF W/CLOCK 

ERR 
FLAG 

Figure 6. Logic Implementation of Receiver-Decoder Section 
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Logic Cell Array Implementation 
The Dual 32-bit Serial CRC circuit described above is 
implemented in an M2018 LCA device. It contains one hundred 
configurable logic blocks (CLBs) and seventy-four user­
configurable input/output blocks (IOBs) providing a total of 
1800 usable logic gates. The logic is partitioned and placed in a 
graphics environment on the IBM® PC-XT™ or PC-AT™ using 
the Monolithic Memories' XACT'M LCA Editor. 

The Monolithic Memories' XACT LCA Editor provides the tools 
from which the logic and interconnects (CLBs, IOBs, and 
programmable interconnect points) are constructed. The 
configuration of specified logic blocks can be made with the 
XACT "Edit Block" command. Once in the "Edit Block" menu, a 
combinational, latched, or registered equation can be selected 
with the mouse. The clock input polarity, set and reset 
functions can also be selected as required. The CLB can be 
configured as one output function of lour Boolean input 
variables, or two functions of three Boolean input variables. 
The logic equations can be input from the PC keyboard using 
Boolean algebra, or from the mouse using a Karnaugh map. For 
an IOB, the "Edit Block" menu can be used to select pad and/or 
latched inputs, buffered and/or three-state control outputs, or 
bidirectional I/Os. 

The programmable interconnect points (PIPs), are configured 
using the XACT "NET" and "PIN" menus. The features used 
from the "NET'' and "PIN" menus are summarized below. 
Command Function 

Names a Net 

Names and Adds a Net 

NameNet 

Add Net 

Add Pin Adds Net and Automatically Routes 
aNet 

EditNet 

Route Net 

Manually Routes a Net 

Routes Named Nets 
When the nets are routed, the PIPs are programmed automati­
cally. 

An example of a CLB is shown in Figure 7. Here the output of 
the CLB is combinational, and the CLB is configured as a 
multiplexer. The multiplexer selects the serial data when 
CONTROL or ENABLE are HIGH and selects 031 when 
CONTROL and ENABLE are LOW. The Karnaugh map and the 
Boolean equation in the figure illustrate the logic used to 
implement this function. The output of the multiplexer is named 
ENCDATAOUT. 

Figure 8 shows the configuration of the CLBs for the modulo-2 
addition of the feedback signal with the data, when INIT is LOW 
and CONTROL is HIGH. The output again is combinational and 
is named QA. 

·-
x :[]-101 y F 
0 
SET 

c y 

RES D BU< AC 
CLK MUX 

DCBA i3 A:Q31 
XHHX B:DATAIN 
HXHX C:CTL 
LLXH D:ENABLE 

K: 
X: 

F Y:ENCDATAOUT 
:I 

F = (O+C)xB + -Cx-Dx-A 

Figure 7. Mux for Data/Check Bit Select 

Figures 9 to 11 show the configuration used to implement the 
logic for the first few shift registers, corresponding to 
equations in Tables 2 and 3. Note that these shift registers are 
configured as registered equations. Figure 12 illustrates the 
signal configuration of the RDYFLG in the transmitter section x F 

y 

l}~x 0 g F 0 
SET 
RES BU< BA 
CU< QA 

DCBA 

;~-
A:Q31 

H L H L B:CTL 
LL H H C:INIT 

D:DATAIN 
K: 

F X:QA 
Y: 

:I 
F = -CxBxDx-A + -CxBx-DxA 

Figure 8. Modulo-2 Addition of 031 and DATAIN 

x 0 

g[J--rrYX 

y 
0 FF 
SET 

BU< AA RES 
CLK K K QO 

DC F 

"' HX H c B: 
XH H .a)o C:INIT 

D:QA 
CLK K:CLOCK 

0 X:OO 
Y: 

F= D+C 

Figure 9. The 1st Bit of the LFSR 

x 0 

A[J--rrYX 
y 

g F 0 0 FF 
SET 
RES BLK CA 
CU< K K 01 

CBA F A A:QA 
LLH H --- B:QO 
HXL H .-, lie C:INIT 
XHL H D: 

CU< K:CLOCK 

B' 0 X:01 
Y: 

F= A@(B+C) 

Figure 10. The 2nd Bit of the LFSR 

x 0 
AL}ffx 

y B 0 
0 FF 
SET 
RES BU< EA 
CU< K K 03 

BA F A:INIT 
HX H A B:Q2 
XH H ~le 

C: 
CU< D: 
0 K:CLOCK 

X:03 
Y: 

f= A+B 

Figure 11. The 4th Bit of the LFSR x 0 

T~trrx 
y 
0 FF B 0 
SET 
RES BU< CF 
CU< K K ROY 

BA F 

"' COUNTS 
HH H A B: CTR& 

~le 
CU< C: 
0 D: 

K: CLOCK 
X: ROY FLAG 
Y: 

F • AxB 

Figure 12. The ROY Flag Signal 
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of the LFSR. It is also configured as a registered equation. The 
RDYFLAG is set when COUNTS is HIGH and CTR14 is HIGH. 
CTR14 is an AND gate of input bits 1 - 4. 

The placed and routed Dual 32-bit CRC design requires sixty­
four CLBs for the two LFSRs and two CLBs for the feedback 
controls. It also requires one CLB for the multiplexer, five for 
the counter, two for the RDYFLG and eleven for the ERRFLG. 

The design, therefore, requires eighty-five CLBs and utilizes 
85% of the LCA device. A 68-pin package, 2018NL68, was 
chosen for this implementation. This 2018NL68 has a speed 
grade of 70 MHz, the flip-flop toggle rate. A copy of the 
Monolithic Memories' XACT EDITLCA file is shown in Figure 13 
with all of the CLBs and IOBs labelled. 

Print World: 32BITCRC.LCA (2018NL68-70), XACT l.30, 16:20:22 JUN 4, 1987Print world: 32BITCRC.LCA (2018NL68-70; 

u u 

Figure 13. Monolithic Memories' XACT "EDITLCA" File for the Dual 32-Bit Serial CRC 
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EQUATIONS FOR 32-BIT SERIAL CRC 
TRANSMISSION SECTION 

QA CTL*/INIT(Q3l@DIN) ;MOD 2 ADDITION, IF CTL*/INIT 
QO := QA+INIT ;SHIFT QA OR INITIALIZE 
Ql := (QO+INIT)@QA ;SHIFT QO@QA OR INITIALIZE 
Q2 := (Ql+INIT) @QA ;SHIFT Ql@QA OR INITIALIZE 
Q3 := Q2+INIT ;SHIFT Q2 OR INITIALIZE 
Q4 := (Q3+INIT)@QA ;SHIFT Q3@QA OR INITIALIZE 
Q5 := (Q4+INIT)@QA ;SHIFT Q4@QA OR INITIALIZE 
Q6 := Q5+INIT ;SHIFT Q5 OR INITIALIZE 
Q7 := (Q6+INIT)@QA ;SHIFT Q6@QA OR INITIALIZE 
QS := (Q7+INIT)@QA ;SHIFT Q7@QA OR INITIALIZE 
Q9 := QS+INIT ;SHIFT QB OR INITIALIZE 
QlO := (Q9+INIT)@QA ;SHIFT Q9@QA OR INITIALIZE 
Qll := (QlO+INIT)@QA ;SHIFT QlO@QA OR INITIALIZE 
Ql2 := (Qll+INIT) @QA ;SHIFT Qll@QA OR INITIALIZE 
Ql3 := Ql2+INIT ;SHIFT Ql2 OR INITIALIZE 
Ql4 := Ql3+INIT ;SHIFT Ql3 OR INITIALIZE 
Ql5 := Ql4+INIT ;SHIFT Ql4 OR INITIALIZE 
Ql6 := (Ql5+INIT)@QA ;SHIFT Ql5@QA OR INITIALIZE 
Ql7 := Ql6+INIT ;SHIFT Ql6 OR INITIALIZE 
Ql8 := Ql7+INIT ;SHIFT Ql7 OR INITIALIZE 
Ql9 := Ql8+INIT ;SHIFT Ql8 OR INITIALIZE 
Q20 := Ql9+INIT ;SHIFT Ql9 OR INITIALIZE 
Q21 := Q20+INIT ;SHIFT Q20 OR INITIALIZE 
Q22 := (Q2l+INIT) @QA ;SHIFT Q2l@QA OR INITIALIZE 

El Q23 := (Q22+INIT)@QA ;SHIFT Q22@QA OR INITIALIZE 
Q24 := Q23+INIT ;SHIFT Q23 OR INITIALIZE 
Q25 := Q24+INIT ;SHIFT Q24 OR INITIALIZE 
Q26 := (Q25+INIT)@QA ;SHIFT Q25@QA OR INITIALIZE 
Q27 := Q26+INIT ;SHIFT Q26 OR INITIALIZE 
Q28 := Q27+INIT ;SHIFT Q27 OR INITIALIZE 
Q29 := Q28+INIT ;SHIFT Q28 OR INITIALIZE 
Q30 := Q29+INIT ;SHIFT Q29 OR INITIALIZE 
Q31 := Q30+INIT ;SHIFT Q30 OR INITIALIZE 

ENCDATAOUT = (ENABLE+CTL)*SERDATAIN+(/ENABLE*/CTL*Q31) 
RDYFLG := COUNT5*CTR14 

Table2. 
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EQUATIONS FOR 32-BIT SERIAL CRC 
RECEPTION SECTION 

QB /!NIT* (Q3l@DIN) ;MOD 2 ADDITION, IF /!NIT 
QCO := QB+INIT ;SHIFT QB OR INITIALIZE 
QCl := (QCO+INIT)@QB ;SHIFT QCO@QB OR INITIALIZE 
QC2 := (QCl+INIT)@QB ;SHIFT QCl@QB OR INITIALIZE 
QC3 := QC2+INIT ;SHIFT QC2 OR INITIALIZE 
QC4 := (QC3+INIT)@QB ;SHIFT QC3@QB OR INITIALIZE 
QCS := (QC4+INIT)@QB ;SHIFT QC4@QB OR INITIALIZE 
QC6 := QCS+INIT ;SHIFT QCS OR INITIALIZE 
QC7 := (QC6+INIT)@QB ;SHIFT QC6@QB OR INITIALIZE 
QCS := (QC7+INIT) @QB ;SHIFT QC7@QB OR INITIALIZE 
QC9 := QCS+INIT ;SHIFT QCS OR INITIALIZE 
QClO := (QC9+INIT)@QB ;SHIFT QC9@QB OR INITIALIZE 
QCll := (QClO+INIT)@QB ;SHIFT QClO@QB OR INITIALIZE 
QC12 := (QCll+INIT) @QB ;SHIFT QCll@QB OR INITIALIZE 
QC13 := QC12+INIT ;SHIFT QC12 OR INITIALIZE 
QC14 : :;::: QC13+INIT ;SHIFT QC13 OR INITIALIZE 
QC15 := QC14+INIT ;SHIFT QC14 OR INITIALIZE 
QC16 := (QC15+INIT)@QB ;SHIFT QC15@QB OR INITIALIZE 
QC17 := QC16+INIT ;SHIFT QC16 OR INITIALIZE 
QC18 := QC17+INIT ;SHIFT QC17 OR INITIALIZE 
QC19 := QC18+INIT ;SHIFT QC18 OR INITIALIZE 
QC20 := QC19+INIT ;SHIFT QC19 OR INITIALIZE 
QC21 := QC20+INIT ;SHIFT QC20 OR INITIALIZE 
QC22 := (QC2l+INIT) @QB ;SHIFT QC2l@QB OR INITIALIZE 
QC23 := (QC22+INIT)@QB ;SHIFT QC22@QB OR INITIALIZE 
QC24 := QC23+INIT ;SHIFT QC23 OR INITIALIZE 
QC25 := QC24+INIT ;SHIFT QC24 OR INITIALIZE 
QC26 := (QC25+INIT)@QB ;SHIFT QC25@QB OR INITIALIZE 
QC27 := QC26+INIT ;SHIFT QC26 OR INITIALIZE 
QC28 := QC27+INIT ;SHIFT QC27 OR INITIALIZE 
QC29 := QC28+INIT ;SHIFT QC28 OR INITIALIZE 
QC30 := QC29+INIT ;SHIFT QC29 OR INITIALIZE 
QC31 := QC30+INIT ;SHIFT QC30 OR INITIALIZE 

IF /OE2, SERDATAOUT := ENCDATAIN 

ERRFLG := /QO+/Ql+Q2+/Q3+/Q4+/Q5+/Q6+Q7+/Q8+Q9+/Q10+/Qll+/Ql2+Ql3 
+/Ql4+/Q15+Ql6+Ql7+/Ql8+Ql9+Q20+Q21+A22+Q23+/Q24+/Q25 
+/Q26+Q27+Q28+Q29+/Q30+Q31 

Table3. 
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Configuration 
The LCA device is manufactured with a programmable RAM­
based CMOS process and must be configured upon power-up. 
This requires the loading of a configuration program into the 
LCA device. A number of methods for doing this exist. The 
Master Mode LOW was selected in this application. 

In this mode, the LCA device is configured from an external 
EPROM containing the configuration data as shown in Figure 
14. After an initial power-up delay and with the RESET pin 
HIGH, the LCA device reads the byte-wide configuration data 
from the EPROM starting at address 0000 and loads it into pins 
DO-D7. When the DONE pin goes HIGH, configuration is 
complete and the LCA device is free to perform as designed.· 
The configuration process, lasts approximately 25 ms. 

Summary 
In this applications note, the principles of designing a Dual 32-
bit Serial CRC in a Monolithic Memories' LCA device was 
described. The device implementation has many advantages 
which include its user-configurable logic functions, 
interconnects and 110 pins. This flexibility facilitates the 
design process significantly as standards in the data 

:_:R vcc M2 

£4 M1 
6 

MO 

M2018-70 
NL68 

vcc 

10K 

~ fiESET 
0.01µF l 

communications industry continually change. Thus, the LCA 
device is a viable solution for designers who wish to gain more 
control over their designs. 

The Dual 32-bit CRC design developed tor the LCA device is 
available upon request. The bit pattern and .LCA file will be 
provided for programming the LCA device in an EPROM. 
Please ask for design XDES09.LCA. 

References 
1. Nadia Sachs, "Cyclic Redundancy Check using PAL® 

Devices." AN-105, Monolithic Memories Inc., 2175 Mission 
College Blvd., Santa Clara, CA 95054-1592 

2. Vivian Kong, "Implementation of SeriaVParallel CRC Using 
PAL Devices.• AN-125, Monolithic Memories Inc., 2175 
Mission College Blvd., Santa Clara, CA 95054-1592 

3. IEEE Std 802.3-1985 Carrier Sense Multiple Access with 
Collision Detection (CSMAICD) Access Method and 
Physical Layer Specifications, The Institute of Electrical 
and Electronics Engineers, Inc., Wiley-lnterscience, 1985 

4. Robert Swanson, "Understanding Cyclic Redundancy 
Codes,"Computer Design, Nov. 1975. 

A11 6 21 A11 

A10 
8 19 A10 

A9 
9 22 

A9 
A8 7 23 A8 

A7 5 1 
A7 

A6 3 2 A6 

A5 68 3 

66 4 A5 
A4 A4 

A3 64 5 A3 

A2 
63 6 A2 

A1 
62 7 A1 2732 

/llJ 61 8 AO EPROM 

DO 
58 9 DO 

01 56 10 01 

02 54 11 02 

03 
51 13 03 

04 50 14 04 

05 48 15 05 

06 
42 16 06 

07 
41 17 07 

DONE/PGM 
45 18 cs 
~ OE' 

Figure 14. Master Mode Low Configuration for the Dual 32-Bit Serial CRC 
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LCA Device Implements 
an 8-Bit Format Converter 

in a PBX Switching Module 

Abstract 
In Private Branch Exchanges, thousands of voice channels are 
multiplexed using time division multiplexing (TOM) techniques. 
Many of these voice channels may be multiplexed onto either 
serial or parallel channels. This application note describes an 
eight-bit format converter (parallel-to-serial and serial-to-parallel) 
circuit which transposes eight serial TOM highways into a single 
eight-bit parallel bus. A user-programmable Monolithic Memo-

Logic Cell''" and XACT''" are trademarks of XILINX, Inc. 
Harris 20-20 .. ' is a trademark of the Harris Corporation. 

Raj Paripatyadar and C.B. Lee 

ries' Logic Cell" Array (LCA device) implements this circuit very EJ 
efficiently using ninety-nine Configurable Logic Blocks (CLBs) 
out of one hundred CLBs available. Each CLB has a combina-
tional logic section and a storage element. The circuit operates 
at up to 18.5 MHz when implemented in a 70-MHz CMOS, LCA 
M2018 device 
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Introduction 
In a Private Branch Exchange (PBX) or Central Office (CO), 
incoming digitized voice circuits are "switched" or routed to 
their appropriate destination. The "switching" takes place while 
the data is in serial or parallel format. An eight-bit format conver­
ter circuit, widely used in a variety of PBX and CO architectures, 
translates the serial data streams into parallel data streams and 
vice-versa. 

The eight-bit format converter circuit requires a large number of 
register elements. These elements, namely serial shift registers, 
can be implemented efficiently in an LCA device due to its high 
register content and flexible structure. The LCA M2018 pro­
grammable device contains one hundred configurable register 
elements, ninety-nine of which are used in the implementation 
of the converter circuit. This circuit is capable of running at 12.5 
MHz and 18.5 MHz in a 50-MHz and 70-MHz LCA device, 
respectively. 

Powerful software tools and circuit uniformity allowed the 
design to be laid out and simulated in just two days. However, if 
different support logic becomes necessary, PBX vendors are 
able to generate a new configuration program in the LCA re­
programmable device. Since these devices are manufactured in 
a CMOS technology, a complete PBXsystem with several LCA 
devices can help keep the active power consumption down. 
(Please refer to the LCA Design and Applications Handbook­
Reference 3 for basic information regarding structure and pro­
gramming aspects.) 

MICROPROCESSOR BUS 

MAINT. 
TAPE 

NETW. CONTROL u-----1 

MEMORY 

PROC. 

Overview of a PBX 
Central Offices (CO) and Private Branch Exchanges (PBX) pro­
vide both telephone and data services. A PBX may be consi­
dered as a localized telephone exchange serving the intercon­
nection requirements of users in office environments. Outgoing 
calls are directed out of the PBX and routed through the local 
CO to the far destination. In general terms, a PBX or a CO 
consists of major blocks shown in Figure 1. Racks of peripheral 
equipment modules containing line cards provide access to 
telephone units, or to data adapter modules which provide data 
communication services. Trunk cards provide high-speed links 
to host computers, or other PBXs. Network switching modules 
interconnect calling parties to answering parties via digital mul­
tiplexed links. Control modules containing a Central Processor 
Unit (CPU), mass storage and local memory, perform the 
"setup" and "tear-down" of each circuit connection, as well as 
the monitoring of PBX activities. Central resources are modules 
of hardware and software which operate in a time-shared 
manner. The central resources include facilities such as ringing 
tone generator and message recording modules. 

CONTROL 

SYSTEM ACCESS} 
TERMINAL 

TAPE MODULES 

}
CENTRAL 
RESOURCES 

Figure 1. PBX Communication and Control Architecture 
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Hierarchy of Channel Multiplexing 
ina PBX 
The main function of switching modules is to interconnect cir­
cuits between two or more parties such as in a conference call. 
A digital telephone unit, or a line card, contains a Coder/De­
coder (CODEC) device. The CODEC device digitizes voice and 
transmits it into a Pulse Code Modulated (PCM} data stream on 
a common serial data highway at appropriate time intervals. 
which are assigned at the start of the call. 

Analog voice is sampled at 8 KHz and passes through an eight­
bit analog-to-digital converter. The digitized sample (eight-bit 
binary word} is transmitted serially to produce a serial data 
stream of (8 x 8 = } 64 Kbps. Thirty-two of these samples or 
CODECS are normally connected to a common highway operat­
ing at (32 x 64 = } 2.048 Mbps. Each CODEC is assigned "Serial 
Time Slots" of eight-bit duration, and sends its eight bits of data 
at the rate of 2.048 Mbps every 8 KHz. Another time slot is 
available on a separate highway for the receive data stream. 

Therefore, a 2.048 Mbps highway can support thirty-two chan­
nels or voice connections in one direction. However, there are 
several ways to combine serial highways for additional voice 
connections. One way is to combine four highways into one 

high-speed highway of 8.192 Mbps. Further integration is possi­
ble, but the aggregate data rate becomes high and leads to 
implementation problems including timing, signal reflection, 
and radiation, to name a few. 

Another way to integrate channels without increasing the clock 
rate is to convert eight serial data highways into a single eight-bit 
parallel bus. With this method, the serial clock rate and the 
parallel clock rate are the same, 2.048 Mbps. This means that 
data throughput on the eight serial highways of 16.384 Mbps is 
maintained in the eight-bit parallel bus operating at 2.048 Mbps. 
This works by careful alignment of the incoming parallel time 
slots to serial time slots on the serial highways. An eight-bit 
format converter scheme, sometimes called a "Corner Bender", 
is widely used in PBX or CO switching modules. Four of these 
parallel buses are combined (see Figure 2) to form a single 
parallel system bus that is thirty-two bits wide, yet still operates 
at 2.048 Mbps. The multiplexing architecture shown in Figure 2 
is used in the Harris 20-20'" Integrated Network Switch (see 
Reference 1}. 

Space switching and/or time slot switching to interconnect dif­
ferent parties is performed either in the serial highway format or 
in the parallel data stream format. 
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Figure 2. Multiplexing Levels 

3-67 

E1 



LCA Device Implements an S·Bit Format Converter in a PBX Switching Module 

Description of the 
"Corner Bender" Circuit 
The circuit consists of eight parallel-to-serial shift registers, and 
additional shift registers which provide proportional delays to 
synchronize the outputs. The principle of operation is shown in 
Figure 3, and the circuit is shown in Figure 4. Parallel data from 
the parallel bus is loaded with each clock into one of the eight 
shift registers in a rotating pattern. The data then shifts out of the 
shift register with each subsequent clock. Alter all eight registers 
have been loaded, the first register will be empty on the next 
clock. New data is loaded into this register at the same clock 
edge as the last bit shifts out to the next stage. Thus, a continu-

PARALLEL TIME SLOTS 

123456710123 

F 

G 

ous flow of data through the registers is insured. The data out of 
the eight shift registers is skewed in relation to each other as 
shown in Figure 3b. The various space slots on the highways 
need to be aligned to keep synchronization. This is achieved by 
proportionally delaying the outputs. Channel 1 output is delayed 
by seven clocks (using a seven-bit serial shift register), channel 2 
is delayed by six clocks, etc. Channel 8 output does not go 
through any additional delay. The final outputs of the delay 
registers are aligned and data is clocked out in a synchronous 
fashion. See Figure 3c. 

Figure 3a. Parallel Bus {8 Bit), 2.048 Mbyte/sec 
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Figure 3b. After Parallel to Serial Conversion 
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Figure 3c. After Appropriate Time Delay to Synchronize 

Figure 3. Principles of "Corner Bending" 
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Figure 4 also shows the additional circuitry needed to control 
the shift registers. A preloadable three-bit counter keeps count 
of eight clock pulses. The parallel-to-serial bus conversion can 
be "programmed" to start in any register by setting the approp­
riate binary value on the counter preload inputs and applying a 
pulse to the sync input. If the loading sequence produced by the 
counter is not required, it can be disabled by connecting the 
"clock" to "sync" input. At each positive clock edge, the register 
loaded will depend upon the data at the counter inputs on the 
previous positive clock edge. The 3-to-8 decode circuit produ-

01 D2 D3 

ces load pulses to latch parallel data into the shift registers. 
Figure 5 shows the parallel-to-serial conversion data matrix. 

The description above shows the conversion of parallel data into 
eight streams of serial data. However, the same circuit also 
performs serial-to-parallel conversion. A serial eight-bit data 
stream on one of the eight inputs appears as an eight-bit parallel 
word on the eight outputs. Successive parallel words appearing 
at the eight outputs correspond to the serial data on each of the 
eight inputs in rotation. See Figure 5. 
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Figure 4. 8-Bit Format Converter ("Corner Bender") Circuit 
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Comparison of Implementation 
Techniques 

Figure 5. Data Conversion 

The "Corner Bender'' circuit can be implemented in several 
ways. The efficiency of an LCA design can be compared to that 
of a design in SSl/MSI logic devices or Erasable Programmable 
Logic devices (EPLDs). Table 1 contains the comparison of 
package counts with the different alternatives. 

EQUIVALENT CIRCUIT IN SSl/MSI DEVICES 

The circuit implemented in 74LSxx devices requires nineteen 
packages. Alternatively, sixteen simple PLD devices (such as a 
PAL20R8 or a PAL20R4) are required to implement the same 
circuit. Since the circuit is register intensive and not designed for 
high speed, PLDs are not chosen for this application. 

The functionally larger EPLD devices, EP1200 and EP1800, are 
more register intensive and contain twenty-eight and fourty­
eight register elements, respectively. Nevertheless, four EP1200 
devices, or two EP1800 plus a smaller PLD device, is required to 
implement this design. 

Parallel in serial out shift Registers 74LS165 

Serial in Parallel out shift Registers 74LS164 

4-bit counter 74LS161 

3 to 8 decoder 74LS138 

Three-state buffers 74LS241 

EQUIVALENT CIRCUIT IN EPLDs 

a) EP1200 28 macro cells each 

b) EP1800 48 macro cells each 

plus PAL device e.g., 16R4 

EQUIVALENT CIRCUIT IN MMI LCA DEVICE 

LCA 2018 device 100 macro cell 

PACKAGES 

8 

7 

1 

1 

1 

4 

2 

1 

1 

The entire Corner Bender circuit fits neatly into a single LCA 
2018 device. It uses ninety-nine out of the one hundred available 
internal macrocells and demonstrates efficient implementation 
of shift registers and small counters. An LSI device from Plessey 
(Reference 2) is available to implement the same circuit. How­
ever, it is an NMOS device and limited to speeds of under 2 MHz. 

Table 1. Implementation Alternatives for the 8-Bll Formal 
Converter Circuit "Comer Bender" 
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"Corner Bender" Design in an 
LCA Device 
A count of the register elements in the circuit shows a need of 
sixty-four elements for the eight-shift registers, twenty-eight 
elements for the delay registers, three elements for the counter, 
and four elements for the 3-to-8 decode circuit. Each configura­
ble logic block (CLB) in the LCA device can produce two out­
puts. Hence, only four CLBs are required for the 3-to-8 decode 

, XACT l.JO, 10:50:36 MAY 5, 1987 

circuit. Since, each CLB contains one register element, the total 
count of CLBs is therefore ninety-nine. The LCA 2018 contains 
one hundred CLBs. Twenty-two inpuVoutput blocks (IOBs) 
were used. Figure 6 shows the layout of the design in the LCA 
device. The circuit fits into a 68-pin PLCC package. 

Print world: fc.lca (20l8PC68-70), XAC'. 

Figure 6. Layout Diagram of "Corner Bender" Circuit on LCA Device of Size 10x10 
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The Monolithic Memories' XACT'" Design Editor is used to 
create the design by implementing the appropriate logic func­
tions in CLBs and IOBs. An example of a CLB for one bit of the 
eight-bit shift register in this design is shown in Figure 7. Input A 
is the decoder input and it is ANDed with input B, the data to be 
shifted. To implement the eight-bit shift registers from the one­
bit shift register, eight of the one-bit shift registers were linked 
together so that the output of each register became an input to 
the next register. This is shown in Figure 8 where each CLB 
represents one bit of the eight-bit shift register. 

The three-bit counter and the 3-to-8 decoder in this design were 
implemented in CLBs as shown in Figures 9 and 10. The counter 
is a synchronous binary counter with ripple carry and parallel 
load. The decoder is a standard 3-to-8 decoder. The outputs of 
the counter become inputs to the decoder, whereas the outputs 
of the decoder are used to decode the eight 8-bit shift registers. 

With the XACT Development System, the designer can optimally 
arrange the logic blocks on the LCA device in order to minimize 
net delays between each block. With this in mind, the layout for 
the design is described below: 

Four of the eight-bit parallel-to-serial shift registers were placed 
starting from the top left-hand edge of the LCA device (see 
Figure 7). The three-bit counter (three CLBs) and the 3-to-8 
decoder (four CLBs) were then placed on the following row. The 
next four rows contained the last four parallel-to-serial shift 
registers. This allowed the shift register select lines to have 
minimal delay spread when accessing all eight shift registers. 
The seven serial-to-serial shift registers were placed in the 
remaining CLBs as uniformly as possible. 

The optimum placement and distribution of configured blocks 
in the array is influenced by the performance needs of the 
system. Blocks placed in close proximity can use local intercon­
nection resources which incur short signal propagation delays, 
whereas blocks placed further apart must use either "long lines" 
or other interconnection resources. Manual optimization using 
the delay efficient "long lines" was performed for the most criti­
cal net connections. After routing completion, the longest delay 
between two clock pulses was the delay for the counter to 
change state, the state which is decoded via the 3-to-8 decoder 
and selects the appropriate shift register to load the parallel data 
(see Figure 7). This delay was 54 ns, 79 ns, and 106 ns, respec­
tively for the 70-, 50-, and 33-MHz versions of the device. The 
delays were measured using the XACT simulation package by 
invoking the timing delay calculator. This translates to a maxi­
mum circuit operating speed of about 18.5 MHz for the 70-MHz 
version of the device, or 9.43 MHz for the 33 MHz version. 

Although fabricated in a CMOS technology, the inputs to the 
LCA device can be made either TTL or CMOS compatible. For 
high fan-out CMOS or LS TTL-compatible loads, the output 
buffers of the LCA device are capable of driving 4 mA. Moreover, 
each output buffer can be put into a HIGH-Zstate for bus-driving 
applications. This features was also used in the design of the 
eight-bit format converter. 

More information about entering a design with the XACT Devel­
opment System is included in the LCA Design and Applications 
Handbook (Reference 3). Information about configuring the 
LCA device is described in the "Configuring the LCA Device" 
applications note. 
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Figure 9b. Decode Outputs 3 and 4 of 3-to-6 Decoder 
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Figure 9. CLB Configuration of a 3-to-8 Decoder 
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Figure 10. CLB Configuration of a 3-Bit Binary Counter with Ripple Carry 

Summary 
The LCA device has achieved a good solution to the principles 
used for multiplexing digitally-encoded voice channels in both 
serial and parallel hierarchies. These hierarchies can accom­
modate thousands of voice circuits in a PBX switching module. 
The detailed design of the eight-bit (parallel-to-serial and serial­
to-parallel) format converter circuit, or Corner Bender, deve­
loped in Monolithic Memories' LCA M2018 device was shown to 
be efficiently implemented. Despite the fast development of the 
system using the XACT Design Editor, the final design was 
programmed and bench tested to verify functional integrity. 

The Corner Bender design is available from Monolithic Memo­
ries upon request. The bit pattern and .LCA file will be provided 
for programming the LCA device in an EPROM. Please ask for 
design XDES05.LCA 
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Reconfigurable Programmable Devices (LCA) 
Simplify Digital TOM Line Transcoder 

Abstract 
The Logic Cell™ Array (LCA) is a high-density CMOS program­
mable integrated circuit. Its reprogrammability and reconfigura­
bility make complex design of custom LSI devices easy and 
flexible. 

This application note describes the design of a universal trans­
coder on trunk transmission lines. Any one of three different 

Logic Cell™ Array and XACT,.~ are trademarks of Xilinx, Inc. 

PAL® is a registered trademark of Monolithic Memories, Inc. 

C. B. Lee and Cindy Lee 

transcoders (BBZS, B6ZS, and HDB3) can be implemented in a 
single LCA device (M2018). Because it is reconfigurable, any 
one of these different transcoders may be selected. Other 
common communication features can be implemented simply 
by reconfiguring the Configurable Logic Blocks (CLBs), Input/ 
Output Blocks (IOBs), or interconnect. 
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Reconfigurable Programmable Devices 
(LCA) Simplify Digital TDM 
Line Transcoder 
C. B. Lee and Cindy Lee 

TDM Hierarchies 
Recently, the International Telegraph and Telephone Consulta­
tive Committee (CCITT) agreed on transmission hierarchies 
based on different national standards. Two major hierarchies 
are in use today. The first hierarchy, known as the T-carrier, is 
used in North America and Japan and multiplexes twenty-four 
voice channels together using Time Division Multiplexing (TDM) 
technique. T-carrier is based on a primary rate of 1.544 Mbps 
and multiples up to 27 4.176 Mbps (see Figure1 ). 

The other hierarchy, used in Europe, Africa, and South Ameri­
ca, multiplexes thirty voice channels and two signaling chan­
nels together. This TDM hierarchy is based on a primary rate of 
2.048 Mbps and multiples up to 139.264 Mbps (see Figure 2) . 

'1ft ~~-
~ - X4 

(96) 

. 
24=sr· 

1-

: X24 . 
. 24 • 

--

CCITT recommendation G.703 defines line coding for both TDM 
hierarchies with different orders. Table 1 shows a 1.544 Mbps 
primary rate T-carrier hierarchy with four different orders. Alter­
nate Mark Inversion (AMI) or Binary 8 Zeros Substitution 
(B8ZS) is the proper line coding in the first order. In the second 
order, if the transmission medium is coaxial pair cables, then 
B8ZS is used. Otherwise, Binary 6 Zeros Substitution (B6ZS) is 
used for symmetrical pair cables. In the third order, Binary 3 
Zeros Substitution (B3ZS) is used, while polar binary NAZ is 
used in the fourth order. 
Similarly, Table 2 shows line coding based on a 2.048 Mbps pri­
mary rate with four different orders. High Density Bipolar 
(HDB3) is used in the first, second, and third orders. Finally, 
Code Mark Inversion (CMI) is used in the fourth order. 

X& 274.176 Mbps 

- (4032) --
Figure 1. TOM Hierarchy at 1.544 Mbps Primary Rate 

3·76 

X32 
• (30V) 

30-

1-

30 

,_ . 
30 

. . . 
30-

2.IJ48Mbps 

139.264 Mbps 

Figure 2. TOM Hierarchy at 2.048 Mbps Primary Rate 



Reconfigurable Programmable Devices (LCA) Simplify Digital TDM Line Transcoder 

ORDER CHANNEL BANK 
NUMBER OF BIT RATE 

LINE CODING 
VOICE CHANNELS (Mbps) 

1 DS-1 24 1.544 AMI or B8ZS 

2 DS-2 96 6.312 
B8ZS-Coaxial Pair 

B6ZS-Symmetric Pair 

3 DS-3 672 44.736 B3ZS 

4 DS-4 4032 274.176 Polar Binary 

Table 1. Line Coding for TOM Hierarchy at 1.544 Mbps Primary Rate 

ORDER 
NUMBER OF BIT RATE 

LINE CODING 
VOICE CHANNELS (Mbps) 

1 30 2.048 HDB3 

2 120 8.448 HDB3 

3 480 34.368 HDB3 

4 1920 139.264 CMI (2-level NRZ) 

Table 2. Line Coding for TOM Hierarchy at 2.048 Mbps Primary Rate 

Binary Codes 
Unipolar binary codes form the information exchange in com­
puter systems from one device to another over short distan­
ces. Unipolar binary codes work well at short distances but DC 
wander and a lack of timing information make them unsuitable 
for long transmission lines. DC wander is caused from unipolar 
binary signals being transmitted via a certain media over long­
distance transmission lines. The signals will be attenuated 
after a few kilometers. 

0 0 0 

Figure 3a. Unipolar Binary Codes 

~­
-~ 

Figure 3b. Bipolar Codes 

BIPOLAR VIOLATION 

0 0 

Figure 4. Bipolar Violation 

Bipolar Codes 
Unipolar binary codes require two voltages to represent a bi­
nary state (see Figure 3a). On the other hand, bipolar binary 
codes, also known as AMI codes, need three different voltages 
(+5 V, O V, and -5 V) to represent the same binary condition: 
logic zero or logic one (see Figure 3b). By making logic one sig­
nals alternate between +5 V and -5 V, DC wander is eliminated 
on a long transmission line because the mean DC level is inte­
grated to zero volts. If, however, two continuous ones have 
the same polarity a bipolar violation occurs (see Figure 4). A 

long string of ones of bipolar codes can provide timing informa­
tion but a long string of zeros cannot. To counteract this prob­
lem, several modified bipolar codes provide timing information 
for a long string of logic zeros. 

Modified Bipolar Codes 
The B8ZS, B6ZS, and HDB3 codes are all modified bipolar 
codes. They provide timing information for a long string of 
zeros by forcing bipolar violations. 

B8ZS line coding encodes logic ones as alternating positive 
(+5 V) and negative (-5 V) signals. It substitutes any continu­
ous sequence of eight zeros with a special pattern (see Table 
3). Depending on the preceding polarity, one of two B8ZS sub­
stitution codes is generated: 000+-0-+ or 000-+0+-. The"+" in­
dicates positive voltage,"-" indicates negative voltage, and "O" 
indicates zero voltage. If the preceding polarity is positive, 
000+-0-+ is generated; otherwise, 000-+0+- is generated. The 
B8ZS substitution code forces bipolar violations in the fourth 
and the seventh bit positions. 

B6ZS is similar to BBZS. Rather than detecting eight continu­
ous zeros, B6ZS substitutes for six continuous zeros with a 
special pattern. The B6ZS substitution codes are 0+-0-+ and 0-
+0+-, depending on the preceding polarity. B6ZS substitution 
code forces the second and fifth zeros to bipolar violation (see 
Table4). 

PRECEDING POLARITY BSZS SUBSTITUTION 

+ 000+-0-+ 

- 000-+0+-

Table 3. BBZS Substitution Table 

PRECEDING POLARITY B6ZS SUBSTITUTION 

+ 0+-0-+ 

- 0-+0+-

Table 4. B6ZS Substitution Table 
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The European HDB3 line coding also uses alternating positive 
and negative signals to represent logic ones. It also substi­
tutes any four continuous zeros with a special HDB3 substitu­
tion code. This HDB3 substitution code forces the fourth bit to 
be a bipolar violation. The four possible HDB3 substitution 
codes are: +00+, 000+, -00-, and 000-. The choice of substitu­
tion code depends on the preceding polarity and the number of 
logic ones after the preceding bipolar violation. When the num­
ber of logic ones is odd, OOOV is generated. Otherwise, BOOV is 
generated. "V" indicates the bipolar violation while "B" indicates 
the bipolar signal. The polarity of V in OOOV is the same as that 
of the preceding logic one signal. If the HDB3 code is BOOV, 
the polarity of B is opposite that of the preceding logic one sig­
nal, and the polarity of Vis the same as B (see Table 5). 

NUMBER OF LOGIC ONES 
AFTER THE PREVIOUS 

PRECEDING POLARITY BIPOLAR VIOLATION 

ODD EVEN 

Positive 
000+ -00-

+ 

Negative 
000- +00+ -

Table 5. HDB3 Substitution Table 

Logic Cell Array Implementation 
The Logic Cell Array (LCA) device is a high-density CMOS inte­
grated circuit. Its user-programmable static RAM array archi­
tecture consists of Input/Output Blocks (IOBs), Configurable 
Logic Blocks (CLBs), and Interconnect. All of them are fully 
user-programmable and user-reconfigurable. High-density, 
programmability and reconfigurability of LCA devices ailow 

PIN NUMBER DESCRIPTION 

Pin 01 GND 

Pin 11 Clock 

Pin 12 Master Reset 

Pin 13 Positive input for decoder 

Pin 14 Positive output from encoder 

Pin 15 NRZ input 

Pin 17 Negative input for decoder 

Pin 18 Vee 

Pin 19 Negative output from encoder 

Pin 34 NRZ output 

Pin35 GND 

Pin 52 Vee 

Pin 56 Error* 

Pin 57 Bipolar violation error 

Pin 59 Special pattern detected 

customer-defined LSI functions to be incorporated and modi­
fied at low cost and with fast turnaround. 

Currently, two LCA devices are available, their complexity is 
based on the number of CLBs within the device. All CLBs are 
arranged in a matrix in the center of the device. The M2064 has 
sixty-four CLBs which are arranged in an 8-row by 8-column 
matrix. The M2018 has one hundred CLBs arranged as a 1 O by 
10 matrix. 

A CLB can be configured to be a storage element (registered 
or latched), a combinational logic block or a mixed combina­
tional logic block with storage element. Each CLB has four gen­
eral-purpose inputs (A, B, C, and D); and a special clock input 
(K). Also, each CLB can perform any function of up to four vari­
ables or any two functions of up to three variables. These vari­
ables can be selected from external inputs or from the internal 
register feedback path. 

Initially, an attempt was made to design the line transcoder 
with the M2064 device. However, all three line transcoder de­
signs required more than sixty-four CLBs each. Fortunately, it 
is easy to convert a design from M2064 to M2018 because the 
change is made just by selecting the M2018 part type in the 
convert command when using the XACT Design Editor. Any of 
the preceding line coding schemes can be implemented in a 
single M2018 because of its higher density (100 CLBs). Since 
the LCA device is reconfigurable, a line transcoder implement­
ed in a single LCA device (M2018),can support the North Amer­
ican T1 carrier (B8ZS line coding) or T2 carrier (B6ZS line cod­
ing), or even the European standard (HDB3 line coding). 

All three line transcoders can be configured and have the same 
pinout assignments. This offers a simple solution for support­
ing the different standards without component replacement. 
Once a design has been established, "on-the-fly" modification 
is possible through the reconfigurability of the component. For 
example, if the communication medium is changed in the T2 

BSZS B6ZS HDB3 

GND GND GND 

CLK CLK CLK 

MR MR MR 

IPB IPB IPH 

OPB OPB OPH 

INR INR INR 

INB INB INH 

Vee Vee Vee 

ONB ONB ONH 

ONR ONR ONR 

GND GND GND 

Vee Vee vee 

ERR ERR ERR 

BVP BVP BVP 

B8Z B6Z HOB 

* Means that the ERROR is asserted when both positive and negative signals are high simultaneously. 

Table 6. Cross Reference of Pin Names for Three Line Transcoders 
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standard, the transcoder may be reprogrammed from B8ZS to 
B6ZS, or vice versa, without any other alterations to the hard­
ware. In total, fifteen pins are used in these designs; four pow­
er pins, two central control pins, three pins for the encoder, 
and six pins for the decoder. Table 6 cross references the pin 
names for the three different line transcoders. 

BSZS Line Coding 
A B8ZS encoder converts NAZ data to B8ZS code. The B8ZS 
encoder consists of a 3-CLB, 3-bit counter, a 5-CLB, 5-bit shift 
register, a 6-CLB sequence state machine, and a 13-CLB en­
coding state machine (see Figure 5). A 3-bit counter detects 
eight continuous zeros. A 5-bit shift register delays the NAZ in­
put data to synchronize with the 3-bit counter's outputs. The 
sequence state machine provides the sequence state (Q2, 
01, and QO) tor encoding state machine. The encoding state 
machine generates the B8ZS code. It is a pair of signals which 
interface to line driver to provide three level signals: positive 
(PB8ZS), negative (NB8ZS), and zero signals. 
A B8ZS decoder detects B8ZS code on a pair of positive and 
negative B8ZS signals (see Figure 6). When either of the fol­
lowing sequences: 000+-0-+ or 000-+0+- is detected, the de­
coder generates a string of eight zeros. Otherwise, the encod­
er converts bipolar signals to binary N RZ data. 

Figure 7 is a block diagram of the B8ZS decoder. It includes a 
19-CLB decoding state machine, an 8-CLB, 8-bit shift register, 
a 5-CLB RESET generator, and a 7-CLB bipolar violation and 
error flag generator. Four state variables (HQ3, HQ2, HQ1, and 
HQO) are generated from the decoding state machine. The 8-bit 
shift register buffers DSOUT data in order to provide eight con­
tinuous zeros when the B8ZS signal is asserted. The B8ZS sig­
nal is generated when the B8ZS substitution code is detected. 
The bipolar violation error (BVP) occurs when any two sequen­
tial signals of the same polarity are detected except the B8ZS 
substitution code. If both positive B8ZS and negative B8ZS are 
detected simultaneously, the error signal (ERROR) is generat­
ed. 

The implementation details of the B8ZS line transcoder within a 
single M2018 are shown in Figure-8. This design requires sixty­
six out of the one hundred available CLBs. 

=-... T .... T .. 
PB8ZS -001 00010001 0000 00001010 00 

NB8ZS -o 0 0 0 0 0 0 101 0 0 0 1 0 0 0 0 10001 0 0 

Figure 6. eazs Codes in Positive-B8ZS and Negative-BBZS 
Signals 

3-BIT C1 B8ZS QO B8ZS PBBZS 
NRZIN 

PBBZS - BBZS 
DECODING 

STATE 
NB8ZS - MACHINE 

COUNTER SEQUENCE Q1 ENCODING 
C2 STATE STATE 

MACHINE Q2 MACHINE 

S4 S3 S2 S1 so DSIN 

5-BIT 
SHIFT REGISTER 

Figure 5. Block Diagram of the B8ZS Encoder 

HQ3 

HQ2 eazs 
HQl RESET 

1----1---+--1 GENERATOR 
HQO 

DSOUT 

BBZS 

NBBZS 

(TO RESET 8 • BIT SHIFT REGISTER) 

ERROR 
FLAGS 

'-------o~I GENERA TOR 

ERROR 

BVP 

Figure 7. Block Diagram of the B8ZS Decoder 
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Print World: BSZS.LCA (2018PC68-70), XACT 1.30, 10:10:45 MAY 12, 1987 

u Li 
u u 

"\fl 
.ti..._ __ __, 

U mm ~mi si~ @Im OHR e~~~ m~ ®J~ imim imi~ o 
Figure 8. B8ZS Line Transcoder LCA Design 
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B&ZS Line Coding 
The M2018 implementation of the B6ZS line transcoder is 
shown in Figure 9. In total, sixty-seven CLBs are used to 
create the design. The single difference between a BBZS en­
coder and a B6ZS encoder is the count for continuous zeros. 
While the 3-bit counter counts eight continuous zeros for the 
BBZS encoder, it counts six for the B6ZS encoder. The BBZS 
encoder consists of a 5-CLB, six-zeros detector, a 5-CLB, 5-
bit shift register, a 6-CLB sequence state machine, and a 13-
CLB encoding state machine. 

A B6ZS decoder detects two B6ZS substitution codes: 0+-0-+ 
or 0-+0+-. When one of those two B6ZS substitution codes is 
detected, the decoder generates six continuous zeros. Other­
wise, the decoder converts bipolar signals to binary NRZ data. 
The B6ZS decoder includes a 20-CLB decoding state machine, 
a 6-CLB, 6-bit shift register, a 5-CLB RESET generator, and a 
7-CLB bipolar violation and error flag generator. The 6-bit shift 
register is needed to buffer DSOUT data in order to provide six 
continuous zeros. 

Print World: B6ZS.LCA (2018PC68-70), XACT l.JO, 10:25:09 MAY 12, 1987 

Figure 9. B6ZS Line Transcoder LCA Design 
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HDB3 Line Coding 
In Figure 1 o, the HDB3 encoder includes a 4-CLB, 4-bit shift 
register, a 5-CLB HDB3 signal generator, and three-state ma­
chines. These state machines are, a 3-CLB ODD_EVEN state 
machine, a 5-CLB DETECT_ 4_ZEROS state machine, and 23-
CLB encoding state machine. The ODD_EVEN state machine 
detects the polarity of the preceding pulse. The DE­
TECT 4 ZEROS state machine detects four continuous zeros. 
The 4-bit shift register delays NRZIN data to synchronize with 
the output of DETECT_ 4_ZEROS state machine. The encoding 
state machine provides four encoding states variables (03, 
02, 01, and QO) to generate two HDB3 signals: the positive 
HDB3 signal (PHDB) and negative HDB3 signal (NHDB). 

A HDB3 decoder detects four HDB3 substitution codes: +00+, 
000+, -00-, and 000-. When any of these four HDB3 substitu­
tion codes is detected, the decoder generates four continuous 

zeros. Otherwise, the decoder converts bipolar signals to bi­
nary NRZ data. Figure 11 is a block diagram of the HDB3 de­
coder. It includes a 23-CLB decoding state machine, a 4-CLB, 
4-bit shift register, a 3-CLB RESET generator, and a 2-CLB bi­
polar violation and error flags generator. Four state variables 
(HQ3, HQ2, HQ1, and HOO) are generated from the decoding 

state machine. The 4-bit shift register buffers DSOUT data in 
order to provide four continuous zeros when the HDB3 signal is 
asserted. The HDB3 signal is generated when the HDB3 substi­
tution code is detected. The bipolar violation error (BVP) oc­
curs when any two sequential signals of the same polarity are 
detected except the HDB3 substitution code. If both positive 
HDB3 and negative HDB3 are detected simultaneously, the er­
ror signal (ERROR) is generated. The M2018's layout of the 
HDB3 line transcoder is shown in Figure 12. This design re­
quires seventy-two out of the one hundred available CLBs. 

RESET 

1 
ODD - EVEN 

-{ ODD _ EVEN J + 
NRZIN TL~·­

L.j S3js2 ls1 lso 

S 14-ZEROS., 
GENERATE 03 

HDB3 
l .... PHDB 
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Figure 10. Block Diagram of the HDB3 Encoder 
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Print World: HDa3.LCA (2018PC68-70), XACT l.30, 09:36:22 MAY 12, 1987 
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Figure 12. HDB3 Line Transcoder LCA Design 
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Logic Cell Array Design Methodology 
All three designs are composed of similar building blocks, they 
all use shift registers, combinational logic and state machine 
logic. 

Each of the three line transcoders require the use of two sets 
of shift registers. One set delays the input NAZ data, and the 
other set buffers the output NAZ data. To design a shift regis­
ter using a. CLB is simple. Two inputs (input variable, clock) are 
used to generate a single output (Figure 13); this output is then 
cascaded with additional registers to form a shift register. In 
the BBZS design, five CLBs are used to implement a 5-bit shift 
register. 

x Q 

A~X y 
Q FF 
SET 
RES D 
a.J< K K D Blk:FC 

SRO 

A F 

H H A A:NRZIN_ 
B: 
C: 

[JI RES D:MR 
a.J< K:cu<iN 

Q X:SRO_ 
Y! 

F:A 

Flgure13. Basic Element of N-bit Shift Register Configured In a 
SingleCLB 

For state machines and combinational logic, both the state ma­
chine equations and combinational logic equations must be 
carefully partitioned to fit them into CLBs and IOEls. Two forms 
of optimization can be done. One can either optimize for imple­
mentation efficiency i.e., minimize the usage of CLBs and 
IOBs, or, one can optimize for speed. To optimize for CLB us­
age, one must carefully analyze the equations and group sig­
nals which can potentially share the same CLB outputs. On the 
other hand, to optimize for speed, one must pay attention to 
the routing paths used as well as fanout from each CLB output 
and the way in which each CLB is configured. 

For example, the HDB3 encoding state machine uses four 
state variables (03, 02, 01, and QO) in order to generate fif­
teen states. First, the state equations are derived from the 
state diagram. Then, the state equation is partitioned to fit into 
CLBs. The following equation is the most significant state vari­
able (Q3) of this HDB3 encoding state machine. 

Six CLBs are used to implement this 03 $late equation. Five 
of the CLBs (031NA, 031NB, 031NC, 031ND, and 031NE) are 
configured as 4-input variable CLBs which generate a single 
output. Because these CLBs perform the preliminary logic for 
input into the block 031N, no storage element is necessary in 
these CLBs. Instead, the storage function is implemented in 
the block 031N. The design details for each CLB is shown in 
Figure 14. 

The BBZS line transcoder can be implemented using three 
PAL® devices: two 16A8 devices and one 16A6 device. All 
equations for those PAL devices are assertive low; e.g., C2 := 
C2* C1 *CO+ C2 * C1 + C2 *CO+ AST+ NRZIN. The LCAde-
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Q3 := Qii•Q1•a2 ; Gl3INA 

+ Q1 *Q2*Q3 

+ QO*Q1 *Q2*00 

+ DSIN*Q2*Q3 ; Q3lll8 

+ DSIN•Qi•Q2•Q3 

+ 00 • Q2 • Q3 •ZEROS ;Q31NC 

+ QO • Q2 * Q3 •ZEROS 

+ DSIN* QO*ZEROS 

+ DSIN* fil*ZEROS ;Q31ND 

+ DSIN* OO'ZEROS 

;Q31NE 

;Q31N 

vice can easily incorporate this assertive low equation simply 
by adding a tilde ( "-" ) in front of the output equation (see Fig­
ure 15). 
The HDB3 encoder has an ODD_EVEN state machine to check 
the number of preceding logic ones being odd number or even 
number. Its ODD_EVEN signal feeds back into the HDB3 en­
coding state machine. If these two state machines reference 
the same rising clock edge. It is possible to obtain the wrong 
result because the HDB3 encoding state machine always gets 
the ODD_EVEN signal one clock early. Using the falling clock 
edge can compensate for this timing problem. The positive and 
negative clock edges are available in each CLB. In this 
ODD_EVEN state machine, the negative clock is selected (see 
Figure 16). 

Other common functions of communication equipment can be 
easily implemented using the reconfigurability of the LCA de­
vice. For example, two duplex schemes: half duplex and full 
duplex, can be implemented easily because of the reconfigura­
blilty of the IOB. Each IOB can be configured to an input, an 
output, or a bidirectional input/output with three-state control. 
Two IOBs are used to implement the full duplex communica­
tion, this scheme allows the device to transmit and receive at 
the same time (see Figure 17a). It can be easily modified to the 
half-duplex communication simply by using one bidirectional 
IOB, the information must be transmitted or received exclu­
sively (see Figure 17b). 

In addition, loop-back feature can be implemented by reconfig­
uring LCA's interconnect. Remote loop-back is implemented by 
disconnecting the line transcoder with the input and output 
pads, but connecting the input pad to the output pad directly 
within the transcoder (see Figure 18a). Local loop-back can 
also be implemented. Connecting the output of the transmitter 
to the input of the receiver directly, but disconnecting with in­
put and output pads (see Figure 18b). 
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Figure 14. The CLB's Design for the Q3 Equation 
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Conclusion 
This design demonstrates the power versatility and benefit of 
using the LCA device in line coding by exploiting the reconfi­
gurable feature of the device. A single M2018 LCA device can 
support three different line codes, such as B8ZS, B6ZS, and 
HDB3 codes. 

The B8ZS is used at either 1.544 Mbps T1 carrier or 6.312 
Mbps T2 carrier on coaxial pairs. The B8ZS encoder uses twen­
ty-seven CLBs to convert NRZ data into two B8ZS signals, and 
the B8ZS decoder uses thirty-nine CLBs to convert two B8ZS 
signals to NRZ data. The B6ZS is used at 6.312 Mbps T2 carri­
er on symmetrical pairs. The B6ZS encoder uses twenty-nine 
CLBs to convert NRZ data into two B6ZS signals, and the B6ZS 
decoder uses thirty-eight CLBs to convert two B6ZS signals to 
NRZ data. The HDB3 is used at 2.048 Mbps or 8.448 Mbps 
transmission lines. The HDB3 encoder uses forty CLBs to con-

The detailed LCA design files are available from Monolithic 
Memories, Inc. 

The design file of B8ZS refers to XDES12.LCA. 

The design file of B6ZS refers to XDES13.LCA. 

The design file of HDB3 refers to XDES14.LCA. 

vert NRZ data into two HDB3 signals and the HDB3 decoder 
uses thirty-two CLBs to convert two HDB3 signals to NRZ data. 

The line transcoder is required when the signal is transmitted 
over transmission lines. It converts unipolar binary codes to bi­
polar codes or modified bipolar codes in order to eliminate DC 
wander and provide the timing information. 
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Abstract 
The ESDI (Enhanced Small Device Interface) Standard is a 
low-cost, high-performance Winchester disk drive interface. 
The ESDI Translator is an interface controller that is imple­
mented In an ESDl-compatible disk drive. 

Ken Won and Ken Tseng 

The ESDI Translator is implemented in one M2064 LCA device. 
The LCA device is a RAM-based high-density CMOS integrated 
circuit which is reprogrammable. This application note de­
scribes the design implementation and design considerations 
of the ESDI Translator on the LCA device. 
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The ESDI Translator 
ESDI is a low-cost, high-performance interface standard suita­
ble for the smaller, high-performance Winchester disk drives 
currently being produced. The ESDI interface consists of a 
control cable and a data cable. The control cable allows for a 
daisy chain connection of up to seven devices (disk or optical 
drives) with only the last device being terminated. In our de­
sign, we assumed that the device is a disk drive. The data 
cable is attached in a radial configuration (See Figure 1). 

HOST 

CONTROLLER 

1----------,=1 I~ 
DATA 

....------+--1 I J2 DRIVE N0.1 

~-~· ,JI J4 ............ ...-------' 

DRIVEN0.2 

J4 

Note: Maximum number of drives = 7 

Figure 1. Connection Between the Controller and Multiple 
Drives 

MSB 

The ESDI Translator handshakes serial commands from a disk 
controller, deserializes the commands and passes the com­
mands to a microcontroller. The command data word structure 
is shown in Figure 2. 

The Command Function bits define functions to be executed by 
the disk drive. These functions are seek, recalibrate, request 
status, request configuration, select head group, control, data 
strobe offset, track offset, initiate diagnostics, set bytes per 
sector and set configuration. Some of these functions, such 
as the control function, have modifiers for more detailed func­
tional description. Other commands have parameters that con­
tain numbers. For the seek command, the parameter specifies 
the cylinder number that the drive will seek to. The request 
status and request configuration commands require data from 
the disk drive to be transferred back to the disk controller. In 
our current design, internal registers A and B in the LCA device 
represent the upper and lower bytes of the command respec­
tively. 

Figure 3 illustrates the relationships between the disk control­
ler, the ESDI Translator, and the microcontroller. The PROM is 
used to store the configuration data for the LCA device. The 
Done/Program (D/P) output is driven LOW when the device is 
being configured. Configuration data is read from the PROM 
device during configuration. After configuration is complete, 
the LCA device drives the D/P pin HIGH to deselect the PROM. 
Drive selection, write protection, command completion and 
fault detection are also handled by the ESDI Translator. 

ODD 
PARITY 

LSB 

I I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 p 

CMD FUNCTION CMD MODIFIER O O O O O 0 

CMD FUNCTION CMD PARAMETER 

REGISTER A REGISTERB 

Figure 2. Command Data Word Structure 

Logic Cell'" Array and XACTT• are trademarks of XILINX, Inc. 

P-SILOS™ is a trademark of SimuCad Corp. 
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ADDRESS 
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READ GATE OUT 

WRITE GATE OUT 

Figure 3. An ESDI Translator Implemented on the LCA Device 

Why Use an LCA Device in an ESDI 
Translator 
The ESDI interface standard requires more logic functions to 
be built into the disk drive than some other interface stan­
dards, such as the ST506 standard. However, the external di­
mensions of a disk drive usually have to conform to an industri­
al standard form factor. Thus, the use of high-density semicus­
tom chips is the logical solution to increase functionality with­
out increasing the external dimensions. 

The LCA device is a high-density CMOS integrated circuit 
available from Monolithic Memories. Its high gate density al­
lows the implementation of an ESDI Translator in a single chip. 
Fifteen standard SSI and MSI chips would be necessary for the 
same application. If PLDs are used to implement the ESDI 
Translator, more than one would be necessary because a large 
amount of logic is required, thus occupying more board space. 

A major advantage in using the LCA device is that it can speed 
up the design cycle, enabling the manufacturer to have a 
shorter time-to-market. Also, many peripheral products are 
produced in relatively small quantities aiming at very special­
ized markets. The LCA device, which has no NRE cost, makes 
the production of small quantities more economical than the 
gate array. Another advantage of the LCA device over other 
semicustom chips, such as the gate array, is its reprogramma­
bility feature. The LCA device is RAM-based which can easily 
be reprogrammed by the user in the final system. This feature 
is especially important in the peripheral products market, 
where many products have short life spans. 

Design Implementation 
The ESDI Translator is responsible for all control interfaces 
between the disk controller and the disk drive. An internal 
block diagram of the ESDI Translator is shown in Figure 4. It 
consists of five major logic building blocks: 

• Drive selection 

• Read gate/write gate 

• Counter/controller 

• Shift register and parity generator/checker 

• Internal register address decoder 

Drive selection on ESDl-compatible drives involves three 
signals from the disk controller, Drive Select 0-2. These three 
drive select lines are encoded so that up to seven drives may 
be connected to the same ESDI port, as shown in Table 1. 

On the LCA device, the drive number is selected by connecting 
the drive switch pins to either VCC or GND. When the code on 
the drive select lines, DSX, equals the code on the drive switch 
pins, DSWX, where X may be 0, 1, or 2, the drive is selected 
and the Drive Selected signal, DSELD, is asserted. Once the 
drive has been selected, serial commands output by the disk 
controller will be read by the LCA device. The actual implemen­
tation is shown in Figure 5, using two CLBs and seven IOBs. 
BOSO and BDS1 are the names of the CLBs in the current de­
sign. In our design, names that begin with the letter B or P are 
used to designate a CLB or an IOB respectively. SCLK is the 
system clock. 
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Figure 4. ESDI Translator Internal Block Diagram 
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Figure 6 shows the configurations of the two CLBs as dis­
played on the computer screen by the XACT development soft­
ware. In Figure 6a, the CLB is configured as one function of 
four variables. The D flip-flop is not used. The logic representa­
tion, truth table, Karnaugh map, signal names, block name and 
Boolean equation are shown. 

In Figure 6b, the CLB is configured as one function of three 
variables, the output of which is connected to the D flip-flop. 
The Q output of the D flip-flop becomes the output of this CLB. 

x 
~[J1[1-y F 

Q c y 
SET 0 
RES Blk:HC 
CU< BOSO 

OCBA F A A:DS1 

H H HH H o{a)c B:DSWO 

H L H L H C:DSW1 

LHLH H 0:050 

L LL L H K: 
~ X: 
B F Y:DSELDA 

F = -(O@B+A@C) 

Figure 6a. Drive Selection Logic Implemented in a 
CLB (BOSO) 
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HHH H 
A B:DSELOA 

L H L H ll~}o C: 
O:OSW2 

CLK K:SCU< 
B X: 

Q Y:DSELO 

F= -(D@A)•B 

Figure 6b. Drive Selection Logic Implemented in a 
CLB (BDS1) 

The LCA device also performs logic functions for the Read 
Gate and Write Gate logic blocks. The Read Gate signal allows 
data to be read from the disk, and the Write Gate signal allows 
data to be written on the disk. These signals from the disk 
controller are input to the LCA device as Read Gate In and 
Write Gate In. Under normal operating conditions, Read Gate 
Out is asserted when Read Gate In is asserted and Write Gate 
Out is asserted when Write Gate In is asserted. When both 
Read Gate In and Write Gate In are asserted, a write error 
condition results and the Attention line is asserted, signalling 
the disk controller that an error has occurred. Also, the LCA 
device may be used to provide write protection to a disk drive. 
When the Write Protect signal is asserted, the Write Gate Out 
signal will not be asserted when the Write Gate In signal is 
asserted, preventing the write circuitry from being activated. 
These logic functions are implemented in two CLBs, BRWGO 
and BRWG1, as shown in Figure 7. 

OSELO --+-------1 
WRGIN --1--------+-

ROGIN--+-J::>o-_, 

WRPRT +--r:::K>-__J 

WRGOUT 

OSELO ~ 
ROGIN -+------- ROGOUT 

~ 

Figure 7. Read Gate/Write Gate Logic Implementation 

The Counter/Controller handshakes commands from the disk 
controller. It also handshakes status/configuration data to the 
disk controller. It is also responsible for generating the Inter­
rupt, Attention and Command Complete signals. Seventeen bit 
commands (one bit is parity) are transferred from the disk con­
troller to the LCA device via the Command Data line. The serial 
bit transfer is performed using a pair of handshaking signals, 
Transfer Request (TREQ) and Transfer Acknowledge (TACK). 
TREQ is asserted by the disk controller when a bit is valid on 
the Command Data line, and TACK is asserted by the LCA de-
vice when the command bit has been read. The handshaking El 
action is shown in Figure 8. 

CMO .J VALIOOATA x ____ _ 
TACK \ _______ / 

Figure 8. Command Data Transfer 

A 17-state counter counts the number of command bits shifted 
in or shifted out of the data registers. Its implementation is 
shown in Figure 9. The SHIFT signal is asserted, thus 
incrementing the counter, whenever there is a transfer request 
and the LCA device is selected. CNT_QO is the lowest bit of the 
shift register counter. This bit is inverted whenever SHIFT is 
asserted unless sixteen bits have already been shifted into the 
LCA device (CNT16 asserted, or CKCMD asserted when all 
seventeen bits have been shifted in). The DATAOUT signal is 
asserted after a Request Status command or a Request 
Configuration command has been transferred and the internal 
data registers have been loaded with data to be serially shifted 
out. Hence, when DATAOUT is asserted, CKCMD is negated 
and the counter is enabled. 
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SHIFT 

CKCMD 

CNT16 +::=:::::JD>--f--l 

i-----+-CKCMD 

BCNTS 

Figure 9. 17-State Counter Implemented in six CLBs 

The logic generation of the Attention signal, ATTEN, is shown 
in Figure 10. Whenever there is a write fault, WRFL T, a parity 
error, PARERR, an interface fault, INTFL T, or an external error, 
CSTS(Change of Status), the ATTEN signal is asserted. When 
both WRGIN and RDGIN signals are asserted and the LCA 
device is selected, the WRFL T signal is asserted. The WRFL T 
signal is negated when the command transferred to the LCA 
device Register A is the Reset command defined by the ESDI 
standard, which has a Command Function of 0101 (Control) 
and a Command Modifier of 0000 (Reset Attention and 
Standard Status). The Command Function and Command 
Modifier formats are shown in Figure 2. 

Three CLBs, BPGO, BPG1, and BPG2, are responsible for 
generating the PARERR signal. BPGO is a multiplexer that 
selects the source of the input to the parity generator/checker 
(BPG1). If data is being shifted into the LCA device (parity 
checker mode), the CMDBITA input is chosen. If data is being 
shifted out of the LCA device (parity generator mode), the 
RA_Q7 output is chosen. These two signals are also shown in 
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Figure 11. BPG1 is an odd parity generator/checker. In the 
parity checker mode, whenever an odd number of ones are 
passed through this CLB, the output is one. This output signal 
is connected to BPG2, which inverts the signal and asserts or 
negates the PARERR signal accordingly. If parity is correct, an 
interrupt is asserted to the microcontroller informing the 
microcontroller that a command has been received and is 
ready to be read. In the parity generator mode, the output of 
BPG1 is the parity bit. BPG1 is clocked by the SHIFT input, 
which is asserted whenever there is a transfer request and the 
LCA device is selected. BPG1 is reset by the Reset Parity 
Generator input, RSTPGEN. This signal is asserted when ei­
ther INT is asserted or an interface fault is detected. 

The Interface Fault signal is asserted when the LCA device is 
selected and CNTR is negated before seventeen bits have 
been transferred. CNTR is asserted after the first command bit 
is shifted in and is negated after the seventeenth bit is shifted 
out. BINTFL TO is clocked by the system clock, SCLK, and 
reset by the RSTCOS signal. The 108 PCSTS is configured as 
a buffered input to signal external error conditions. 

The microcontroller is able to address four register locations in 
the LCA: two data registers, BRGA and BRGB, one error 
register, BDMX, and one command complete register, BRC7. 
Only three bits in the error register are used. They are bit 0 for 
parity error, bit 4 for interface fault and bit 7 for write fault. Only 
one bit in the command complete register is used. This is bit 0, 
which has a value of zero when the command is completed. 
The addresses and contents of the registers are shown in 
Table2. 

A1 AO 

0 0 

0 

0 

REGISTER 

REGISTER A 

REGISTERS 

ERROR 
REGISTER 
COMMAND 

COMPLETE REGISTER 

BIT NUMBER 
76543210 

Table 2. Register Addresses and Contents 

The LCA device implementation of the registers and multiplexer 
is shown in Figure 11. When the interrupt signal is asserted, 
the microcontroller reads the two data registers by setting the 
A 1 and AO address lines appropriately and asserting the RD 
signal to the LCA device. These data registers contain the 
command that is transferred from the disk controller through 
the CMDBITA input. If the command is a request data 
command, configuration or status data is written to these two 
data registers by the microcontroller. These two bytes, plus a 
parity bit that is generated by the parity generator in the LCA 
device, are serially transferred to the disk controller over the 
Config/Status Data line through RA_Q7. After all seventeen 
bits have been transferred, the Command Complete signal is 
asserted. If the command is not a request data command, the 
microcontroller executes the command and upon completion, 
writes a byte of zeros to the command complete register of the 
LCA. When the command complete register is written with all 
zeros, the Command Complete signal is asserted by the LCA 
device.The command complete register may only be written, 
not read. The status register contains error bits that are set 
when errors are detected. This register may only be read and 
not written. 
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Figure 10. Generation of the Attention Signal by the Four Possible Error Conditions 
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RA_Q7 

RA_QO 

Figure 11. Registers A, B, Error Register, and Multiplexer 
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BUS 
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El 

SHIFT 

PCSB 

Figure 11. Registers A, B, Error Register, and Multiplexer (Continued} 
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Design Considerations 
The circuit diagram of the programmed LCA device is shown in 
Figure 12. This design implementation uses sixty-three of the 
sixty-four CLBs within the LCA. This translates into a 98% 
usage. The rightmost column of CLBs contains the multiplexer, 
which selects between registers A, B, or the error register to 
be placed on the data bus. Registers A and B are placed on the 
third and second column from the right end, respectively. The 
registers and multiplexer are placed physically close to each 
other to simplify routing. The CLBs which execute a particular 
function are placed physically next to each other. These 
functions include the parity generator/checker, 17-state 
counter, read gate/write gate logic, drive selection logic and 
error detection logic. The read gate/write gate logic and the 
drive selection logic, which require much 1/0 activity, are 
placed in CLBs near the edges of the device. 

Another consideration in implementing an LCA design is 
routing. Long lines are available for signals that have to travel 
a long distance within the LCA device. These lines can also be 
used for signals that must have minimal skew between differ­
ent destinations. An automatic routing program is available in 
the XACT software package. 

Routing requires careful consideration when a design uses a 
high percentage of the available CLBs (above 95%). Although 
automatic routing is available, designs with high CLB usage 
may require point-to-point routing (EDITNET command in 
XACT). Some of the techniques that can be used are swapping 
input pins, swapping CLBs, and implementing buffers in 
unused sections of the CLBs. When swapping input pins, the 
designer must be careful because certain functions. such as 
the clock input to the flip-flop, may only be input on certain 
pins. Swapping CLBs is very simple because the XACT 
software provides a command for swapping CLBs, but 
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sometimes not all of the signals can be successfully rerouted. 
Passing a signal through a CLB presents a routing channel that 
is not otherwise available. However, a delay is added to the 
signal. Usually, a combination of these techniques can be 
used to successfully route a high-density design. 

The high number of IOBs in the LCA device gives the designer 
much flexibility in designing the pinout of the device. In this 
design, thirty-five of the IOBs are used. The IOBs that are not 
being used for the actual design are not left unused, but are 
configured as outputs and are connected to various signals 
within the LCA device to provide test points for the LCA device. 
This greatly increases the testability of the design once it is 
placed on the board. 

XACT is used by the designer to define the CLBs and IOBs, 
and to perform EDITNET. Alternately, the design may be input 
using the schematic capture software offered by Daisy and 
Futurenet. In these methods, an automatic place and route 
software package divides the design into blocks that may be 
implemented in CLBs and IOBs, and routes the CLBs and 
IOBs automatically. Once the design has been completed, it may 
be simulated using the software package P-SILOS. 

Conclusion 
The LCA device provides many advantages to the user. Its 
high gate count and 1/0 capability could potentially replace 
several PLDs in many applications, hence reducing board 
space. The LCA device is preferred by many customers over 
gate arrays because it is reprogrammable 'on-the-fly' and there 
are no long design cycles and initial NRE cost of a gate array. 
The current design file, XDES15.LCA, is available upon 
request. The bit pattern and the .LCA file will be provided for 
programming the LCA device in an EPROM. 
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Figure 12. ESDI ll'anslator LCA Design 
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Abstract 
The Logic Cell Array is a programmable integrated CMOS cir­
cuit that can easily be configured to perform many LSI func­
tions. This Application Note will discuss how the LCA device can 
be used in the design of an 8-bit Pseudo-Random-Number 
Generator. The design consists of three major components: the 

Mohammed Wasfi 

registers that generate the random numbers, the 1-Hz Clock, El 
and the decoding circuitry. The decoding circuitry can be used 
with two seven-segment displays to show the value of the binary 
random number in hexadecimal (00-FF) format. 
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Using the Logic Cell Array to Build a 
Pseudo-Random-Number Generator 
Mohammed Wasfi 

Introduction 
The LCA device is a high-density programmable integrated 
circuit. Due to its flexible architecture and programmability, it 
can be configured to perform many functions. In this case, the 
LCA device was configured as an 8-bit Pseudo-Random­
Number (PRN) Generator. The high density of this device made 
it possible to implement additional needed circuits such as the 
registers, clock, and the decoders for the seven-segment dis­
plays. Additional information on the LCA device can be found in 
the LCA Applications Handbook. Information on configuring 
the LCA device is discussed in Application Note 182. 

Random Number Applications 
A Pseudo-Random-Number Generator can be used in a wide 
range of applications. A common application for the PRN Gen­
erator is electronic games where a random number is used to 
create a random event. Another sophisticated application is 
signal scrambling, for securing communications, where a ran­
dom number is added to a transmitted signal for scrambling, and 
subtracted for descrambling. 

Pseudo-Random-Number (PRN) 
Generation 
There are several different methods of generating a random 
number. In this LCA device application, however, the PRN is 
generated using a shift register with feedback. To achieve a 
random output, the feedback comes from the prime number bits 
(flip-flops). 

Although the output of the shift register is a random number, the 
cycle of random numbers generated is repeated after a certain 
period. This is indicated by the term" pseudo." The length of the 
random number generation period depends on the number of 
flip-flops used. The period length is calculated as follows: 

Period = 2n-1, where n is the number of flip-flops. 

The reason for the subtraction of one state is that the state of all 
flip-flops set to zero is illegal (causes a lockout). 

The Logic Cell Array 
The LCA device is a configurable large scale integrated CMOS 
circuit. It is RAM based, so its configuration can be changed by 
simply loading it with a new configuration bit stream. The device 
architecture consists of Configurable Logic Blocks (CLBs) and 
configurable 1/0 Blocks (IOBs). Each CLB has a register and 
can implement any one function of up to four variables or any 
two functions of up to three variables. The IOB can be config­
ured as an input, registered input, output, or an output with a 
three-state function. 

Two types of LCA devices are currently available from Monoli­
thic Memories, the M2064 and the M2018. The M2064 has 64 
CLBs arranged as an 8 by 8 matrix. The M2018 has 100 CLBs 
arranged as a 10 by 10 matrix. For this design, an M2064 was 
used because only 52 CLBs were needed to implement the 
design fully (Figure 1 ). 

Figure 1. LCA World View 
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Why Use an LCA Device? 
There are several reasons for choosing the LCA device to design 
a random number generator. The LCA device not only offers a 
large number of flip-flops in the CLBs, but also offers additional 
IOB flip-flops (one flip-flop per CLB/IOB, one hundred CLBs 
and seventy-four IOBs in the M2018, sixty-four CLBs and fifty­
eight IOBs in the M2064). This enables the user to generate a 
very large period during which the PRN sequence will not repeat 
itself. In addition, the large number of configurable IOBs 
available makes it easy to generate a large random number. 

One of the many features of the LCA device is its high density. 
There are approximately 1,200 gates in the M2064 and 1,800 
gates in the M2018. The high gate count allows the implementa­
tion of additional circuits, such as the clock for the registers that 
normally are added outside of the chip. 

Another feature of the LCA device is its configurability. For 
example, the ability to output a PRN of a certain size, then 
change the size to make it smaller or larger, or change other 
logic without having to use a new part is a big advantage. 

With an LCA device, one has access to a macro library in the 
XACT"' Development System, which is the software used to 
configure the LCAdevice (available from Monolithic Memories). 
These macros simplify the designs considerably. Approximately 
75% of this design used Monolithic Memories-supplied macros. 

1 Hz 
CLOCK 

INPUT SEED 

+ 
1ST8·BIT 

SHIFT REGISTER 

FEEDBACK 

8-Brr ..._ ______ RANDOM 

7SEGMENT 
DECODING 
CIRCUITRY 

Figure 2. Block Diagram 

Design Breakdown 

NUMBER 

The design of the PRN generator consists of three major com­
ponents (Figure 2). The first component is the shift register. 
Three 8-bit shift registers are used to generate the PRNs using 
D-type flip flops. Since there are 24 flip-flops, the length of the 
PRN sequence period is: 

224_ 1 = 16, 777 ,215 states, 

after which the PRN sequence repeats itself. 

The second component is the clock for the flip-flops. A low 
frequency (100-HZ) R-C Oscillator was used. This frequency is 
then divided by 100 (using two modulo-10 counters) which 
results in a 1-Hz clock that is used for the flip-flops. 

The third component is the decoding circuitry for the seven­
segment displays. Two seven-segment display decoding circuits 
are implemented in the LCA device to show the hexadecimal 
equivalent of the binary output. This makes it easier to study the 
nature of the PRNs generated. 

Design Implementation 
in the LCA Device 
The main component in this design is the shift register. The 
design of a shift register is relatively simple. A register (flip-flop) 
in a CLB uses one input, a clock, and outputs the value that was 
the state of the input delayed by one clock period (Figure 5). 
Then all twenty-four registers in the CLBs are cascaded together 
forming a 24-bit shift register. The macro, RSB, available with the 
Monolithic Memories XACT Macrocell Library, is an 8-bit shift 
register (Figure 3). Therefore, it is possible to invoke that macro 
and cascade three 8-bit shift registers (RQL, RQM and RQH) to 
get the required shift register size. 

The feedback from the shift register, in order to produce a 
random outcome, has to come from a prime number bit (regis­
ter). Therefore, the feedback from bits 11 and 23 were chosen. 
Since the PRN sequence cannot start without a logic high input 
seed from an IOB configured as an input (Figure 7b), a certain 
function (XOR_F) implementing the input seed and the two 
feedbacks was used. This function guarantees lockout will not 
occur (such as in the case of the input staying at a logic HIGH), 
and also adds to the randomness of registered outputs (Figure 
6). 

XOR_F = (B + C) @A 

B : input seed 
C : 2nd feedback (bit 23) 
A : 1st feedback (bit 11) 
@ : exclusive or function 

The 8-bit output of the third shift register (RQH) is connected to 
eight (8) IOBs configured as outputs (Figure 7a). The output of 
ROH is also connected to the two seven-segment decoders. 

The clock for the registers was chosen as 1 Hz. This frequency 
was generated using a low-frequency (100-Hz) resistor-capacitor 
oscillator. This oscillator is also available as a macro, GOSC, 
with the XACT Development System (Figure Ba). The values for 
the resistors and capacitors (R1, R2, C1, C2) used with CQ and 
CQL are 100 Kohms and 0.1 microfarads. The Boolean equa­
tions for the Clock are: 

Q =-R * (S+R) 
QL=-Q 

A modulo-100 counter was used as a" divide by" to get the 1 HZ 
clock needed. The modulo-100 is implemented using two cas­
caded 4-bit BCD (modulo-10) counters. The macro for the coun­
ters is also available with the XACT Development System (Fig­
ure 8b). The output of the modulo-100 is routed to the Global 
Clock Buffer (GCB). The output of the GCB is routed to the 
registers via long-line interconnects. 
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Finally, two decoders for the seven-segment displays were 
designed. The least and the mostsignificantfour bits of the PAN 
used one decoder each to decode binary 0000-1111 as hexade­
cimal 0-F (Table I). The decoder outputs were routed to IOBs 
configured as output buffers, where they were wired to a bus 

driver (74LS244), that could be used to drive the seven-segment 
display. Eight CLBs per decoder were used (Figure4). Each CLB 
was configured to control one segment in the display. including 
the Decimal Point (DP). See Table II. 

NEXTQl•DI 

%4 RQONAME %8 -
%5 R01NAIE %8 R05NAME 
%6 RQ2NAME %10 -
%7 RQ3NAME %11 R07NAME 

Figure 3. Shift Register Macro 

4-BIT INPUT (FROM PRN) HEXADECIMAL 

D c B A OUTPUT 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 2 

0 0 1 1 3 

0 1 0 0 4 

0 1 0 1 5 

0 1 1 0 6 

0 1 1 1 7 

1 0 0 0 8 

1 0 0 1 9 

1 0 1 0 A 

1 0 1 1 8 

1 1 0 0 c 
1 1 0 1 D 

1 1 1 0 E 

1 1 1 1 F 

Table I. Decoding Table 

3·104 

SEGMENTS 

A B c D E F G DP 

1 1 1 1 1 1 0 0 

0 1 1 0 0 0 0 0 

1 1 0 1 1 0 1 0 

1 1 1 1 0 0 1 0 

0 1 1 0 0 1 1 0 

1 0 1 1 0 1 1 0 

1 0 1 1 1 1 1 0 

1 1 1 0 0 0 0 0 

1 1 1 1 1 1 1 0 

1 1 1 1 0 1 1 0 

1 1 1 0 1 1 1 1 

1 1 1 1 1 1 1 1 

1 0 0 1 1 1 0 1 

1 1 1 1 1 1 0 1 

1 0 0 1 1 1 1 1 

1 0 0 0 1 1 1 1 
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Figure 4. Seven Segment Decoder 
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T = T1 +T2 = N ((R1 C1) + (R2 C2)) 
where N = approx. 0.35 for TTL threshold 

=approx. 0.75 lor CMOS threshold 
when each capacitor Is allowed to be discharged by 

the LCA during opposite timing phase 

Capacitor might partially charge due to a delayed three-state routing. 

Q = -R • (S +Q) 
QL = -Q 

CLKENA 

Figure Sa. Clock Macro 

NAME_Q1 NAME_Q2 

SET --0 0 0 

0 0 
..__,_.,. 

RESET 

CLOCK ~--<..._~+-~~~~~~~..._~~-r-~~~~~--~~----1r--~~~~~~~ 
RESET DIR ~~~~-+-~~~~~~~~~~-+-~~~~~~~~~~~~~~~~~~~~-

Figure Sb. BCD Counter Macro 

Figure S. Register Clock Components 
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PIN NAME DESCRIPTION 

1,35 GND Ground 

52,18 vcc Power 

11 INPUT Input seed 

12,14 CQ,CQL re oscillator inputs 

13 HA_ 7seg Decoder outputs for segments in high order display (a) 

15 HB_ 7seg b segment 

16 HC_ 7seg c segment 

17 HD_ 7seg d segment 

19 HE_ 7seg e segment 

21 HF_ 7seg f segment 

23 HG_ 7seg g segment 

43 HDP _ 7seg dpsegment 

38 A_ 7seg Decoder outputs for segments in low order display (a) 

39 B_ 7seg bsegment 

40 c_ 7seg csegment 

47 o_ 7seg d segment 

49 E_ 7seg e segment 

53 F _ 7seg f segment 

55 G _ 7seg g segment 

20 DP_ 7seg dp segment 

29 LSBIT _out Least significant PRN bit 

30 BIN6_out PRN bit 

31 BIN5_out PRNbit 

32 BIN4_out PRN bit 

33 BIN3_out PRN bit 

34 BIN2_out PRN bit 

36 BIN1 _out PRN bit 

37 MSBIT _out Most significant PRN bit 

Table II. LCA Device Pins Used and Their Description 

Conclusion 
From the PRN Generator design, the advantages of using the 
LCA device in such an application were shown. The configura­
bility of the LCA device makes it very versatile. The M2064 was 
capable of replacing several parts that normally would be 
needed to implement this design. The availability of the macros 
also helped considerably in the design implementation. It is 
always possible to modify certain features in this design if 
needed, such as the clock frequency or the size of the PRN 
generated, by simply re-routing certain lines in the LCA device. 
These features make the use of the LCA device very desirable. 
This design file is available from Monolithic Memories upon 
request. Please ask for XDES16.LCA. 
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64K Deep FIFO - Dynamic RAM Controller 
is Implemented in the M2018 LCA Device 

Abstract 
First-in, first-out (FIFO) buffers are used extensively in interface 
and communication systems where it is necessary to provide 
temporary storage between two asynchronously operating 
devices. For relatively shallow FIFOs, up to 128 locations deep, 
dedicated register-based FIFOs are the best solution. For 
medium and deep organizations, up to 64K deep, the register 
architecture would be unsuitable because of the high package 
count required for implementation. Also, with a large number of 
registered FIFO devices, power dissipation could be very high 
and lead to system reliability problems. Using the high-storage 
density of RAM and controlling it as a FIFO {in other words, a 
FIFO-RAM Controller) solves the problem of a high package 
count in medium to large FIFO arrays. 

The two types of RAM to be considered are static RAM {SRAM) 
and dynamic RAM {DRAM). SRAMs usually require more board 
space to produce large memory arrays because their packages 
are larger than DRAM packages. As a result, SRAMs may be 
used for medium-sized FIFO organizations, from 128 bytes to BK 
bytes. For large FIFO arrays, SRAM devices occupy too much 

Logic Cell'" and XACT"• are trademarks of XILINX, Inc. 

IBM® is a registered trademark of International Business Machines Corporation. 

Karen Spesard and Chris Jay 

board space. DRAMs, used as stand-alone memory cells require EJ 
the support of more components to handle multiplexing and 
refresh, whereas SRAMs can be used without that support. To 
address this issue, a low-chip .. count, low-cost DRAM solution 
{FIFO-DRAM Controller) has been developed for large FIFO 
buffers in the M2018 Logic Cell'" Array {LCA device). The LCA 
device addresses the DRAM memory chips as a FIFO array and 
provides the interface and refresh control signals to the DRAMs. 

The LCA device, a high-density programmable CMOS device, 
has been programmed to perform all of the necessary logic 
functions for a large FIFO- DRAM Controller. It can control 64K 
X 4, X 8, X 16, X 32 {and so on) DRAMs. The M2018 design 
handles the refresh, read and write functions as well as hand-
shake activity to external circuits. Status flags, such as FIFO full 
and empty, are also provided to the two asynchronous transmit-
ter and receiver circuits. In addition, since the LCA circuit is 
reconfigurable, the design can be modified as needed to meet 
specific design requirements. 

PC™, PC/AT"" and PC/Xr" are trademarks of International Business Machines Corporation. 

FutureNet® is a registered trademark of FutureNet Corporation, a Data 1/0 Company. 

OrCAD~"' is a trademark of Orcad Systems Corporation. 10255A 
FEBRUARY 1988 Mentor Graphics® is a registered trademark of Mentor Graphics Corporation. 
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64K Deep FIFO- Dynamic RAM Controller 
is Implemented in the M2018 LCA Device 
Karen Spesard and Chris Jay 

Introduction 
Data communication often requires buffering of large amounts 
of information between asynchronously operating devices along 
a data channel. For instance, in a video teleconferencing system, 
one Mbyte of data per video image (1 K x 1 K pixels) is generated. 
After compression, 32 Kbytes of each image must be passed to a 
buffer to wait for transmission along the data channel. The next 
image is then free to be processed by the system. For optimal 
performance, first-in, first-out (FIFO) buffers can be effectively 
used to hold the data in temporary storage sites between the 
transmitter and receiver nodes. The data can be stored either in a 
stack of registers organized as a FIFO, or a RAM controlled as a 
FIFO. For very large FIFO organizations, however, the use of 
inexpensive RAM devices is the only practical alternative. It 
keeps the overall system size to a minimum which will, in effect, 
reduce the overall system cost. 

Dynamic RAM (DRAM) devices, when controlled, can be used 
as a temporary buffer. Though relatively inexpensive and small 
in size, compared with static RAM (SRAM) devices, stand-alone 
DRAMs require more complex interface and refresh control 
circuitries. As a result, more components could be required in 
DRAM systems. To reduce the overall chip count, a Logic Cell 
Array (LCA device) has been programmed to perform as a 64K x 

FIFO· DRAM 
CONTROLLER 
INANM2018 
LCADEVICE 

8 

4, x 8, x 16, x 32, (and so on) FIFO-DRAM Controller. The 
Controller allows the DRAM to function as a FIFO by providing 
the control circuitry necessary for operation. 

With the design implemented in the M2018 LCA device, minor 
changes in the design can be implemented quickly and easily 
due to the device's re-programmability feature. For example, if 
the type of DRAM or any of its parameters had to be changed for 
any reason, the original LCA device can accommodate the 
necessary logic modification. 

The LCA device provides an intelligent approach to designing 
circuits in an efficient and timely manner. It can speed up the 
design process significantly (to just a few days) with low-cost 
user-friendly software tools that do not require a non-recurring 
expense (NRE), as gate arrays often do. As a result, many 
products can be introduced quickly and economically. The LCA 
device can automatically load itself and is field programmable 
and reconfigurable. Therefore, it can be used for system devel­
opment, for existing design modifications and for volume pro­
duction. This application note describes the design methodol­
ogy used for the development of the Controller in the LCA 
device. 

'-----FULL FLAG 

~---HALF FULL FLAG 
~---EMPTY FLAG 

~--- RDY READ 
~---RDYWRITE 

NEC µPD41464 
64Kx4DRAM l+----'4;.<----+--- DATA IN/OUT 
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NEC µPD41464 I•---+--------' 

64Kx4 DRAM 1•---4cF-----------DATAIN/OUT 

Figure 1. A "fYplcal DRAM Interface Using the FIFO­
DRAM Controller in the M2018 LCA Device 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 
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Figure 2. Block Diagram of the FIFO-DRAM Controller 

The FIFO-DRAM Controller 
The FIFO- DRAM Controller in the LCAdevice, together with an 
array of two DRAMs and two DRAM drivers, comprises a FIFO 
memory. (See Figure 1.) The Controller handles the row and 
column address multiplexing by applying a RAS before CAS 
cycle for memory read and write operations. Refresh timing, 
however, is applied as a GAS before RAS cycle, which takes 
precedence over read/write ac_tivity. The DRAMs used for this 
application must have on-chip refresh counters. The µPD41464 
64K x 4 DRAMs manufactur~ NEC we~ed in this applica­
tion because they have a CAS before RAS internal address 
refresh mode. Thus, no refresh counter was needed in the 
design of the FIFO-DRAM Controller. The Controller in the LCA 
device al~o::'.!2!!.s for access and refresh timing via the control 
signals, RAS, CAS, OE, and WE, and provides for read/write 
status flags. 

The block diagram of the controller is shown in Figure 2. The 
only controller inputs are the request-to-read (REQRD) and 
request-to-write (REQWR) signals. These signals are active 
LOW and come from some external logic or a microprocessor. 
They drive the control circuitry section of the device, which 
generates the GAS and RAS signals, among others. The FIFO­
DRAM Controller in the LCA device also consists of an address 
generation section and a buffer status section. Two internal 
16-bit counters and 24 2:1 multiplexers generate the addresses 
for the DRAM array. A 16-it up/down counter generates the 
status information for the three status flags: full, empty, and 
half-full. 

3-111 

EJ 



64K Deep FIFO· Dynamic RAM Controller is Implemented in the M2018 LCA Device 

The Control Circuitry 
The control circuitry provides the ready-to-read (ROY READ) 
and ready-to-write (ROY WRITE) signals for the system. Other 
signals include the row/column select (ROW/COL SELECT) 
signal for multiplexing the addressed data, the enable access 
(ENAC) signal for clocking the status counter, and the read and 
write grant signals for the three 16-bit counters. It also provides 
the four active low signals which directly interface with the 
DRAM: the row address strobe (RAS), the column address 
strobe (CAS), the write enable (WE), and the output enable (OE) 
signals. 

The logic used for generating each of the control signals is 
shown in Figure 3. Much of this logic was derived from the 
published input signal specifications of the DRAM. For example, 
the RAS (A), ROW/COL SELECT (B), and CAS (C) logic was 
created from the write cycle, read cycle, and CAS before RAS 
refresh cycle timing waveforms published in the NEC µPD41464 
datasheet. Samples of these timing cycles are given in Figures4, 
5, and 6. The state diagrams were then produced from these 
waveforms as in Figure 7 A. Next, the state excitation maps or 
Karnaugh maps for each signal were constructed. Reducing the 
logic for each map and "OR"ing the enable access and enable 
refresh cycles together, produced the appropriate registered 
~ations as in Figures 78, 7C, and 70. The logic for the OE and 
WE signals were generated in a similar manner. 

To resolve simultaneous read, write, and refresh requests, arbi­
tration logic was added. This was done while creating logic for 
the other control outputs. The logic designed in the controller 
gives the refresh request highest priority and the read request 
the lowest priority. (Refresh requests should have the highest 
priority because data integrity must be maintained. Write 
requests have the next highest priority because data is typically 
held on the data bus for a specific period of time and must be 
written before being lost.) Therefore, the read grant signal will 
not go HIGH until refresh and/or write cycle requests already 
pending have been completed. Likewise, the write grant signal 
will not go HIGH until a pending refresh cycle request has been 
completed. Also, when a refresh cycle is requested, both the 
ROY READ and ROY WRITE signals will be held LOW until the 
refresh cycle has been finished. This insures that any read 
and/or write requests already in queue will be completed first. 
The timing diagram illustrating the refresh and write priority 
is shown in Figure 8. 

The request-to-read and request-to-write registers are reset 
after every read and write operation, respectively. Accordingly, 
the refresh register is also reset after every refresh operation. 
When no requests are pending, a register "sets" or holds the 
RAS, ROW/COL SELECT, and CAS signals HIGH. The signals 
are now ready for the next request. 

ir============ll[)--~·--------------------------.ROYREAD 
tt;:=========~[J~---~----------------------•RDYWRfTE 

SYSTEM CLOCK 
(GENERATEDAS----<1>+++------+---+--D 

IN FIGURE 20) 

REQUEST 
REFRESH 

(GENERATED AS 
IN FIGURE 20.) 

.--------~-~,._--t--------+-.-.cAS 

-=~----t-~r---t----r--t--t------r--t-Rfl'/COL SELECT 

ENABLE 
ACCESS 
(ENAC) 

Figure 3. Control Circuitry for the FIFO-DRAM Controller 
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SYSTEM CLOCK 

RDY WRITE 

ROW COLUMN 

1101-WRITE 

Figure 4. Write Cycle Timing 

Flgure4. 

1. The request to write REQWR line transitions LOW to enable 
an active write cycle. An active LOW transition starts the write 
process. The ready ROY WRITE output goes LOW to indicate 
that a current write cycle is in progress and no further writes 
should be attempted until it goes HIGH again. 
2. The first active HIGH transition of the system clock sets the 
ROW address outputs from the write counter to the address 
output pins. 
3. The second clock rising edge enables the active LOW transi­
tion of the RAS output to the DRAM array. 
4. The third clock edge switches an internal address multiplexer 
which sets up a valid column address output on the input to the 
memory address lines. This signal is internally gated with the 
requestto write flag to produce an early LOW active write output 

signal to the DRAM devices. 
5. The fourth clock edge strobes the GAS output with the WE 
input LOW for a valid write. The OE input can be either a HIGH or 
LOW during this write cycle. 
6. The int~al state machine controlling RAS and GAS ac~ 
holds the WE LOW for one and a half clock cycles and the RAS 
and GAS line LOW for two clock cycles. The GAS and RAS lines 
are taken inactive simultaneously. The ready write signal, ROY 
WRITE goes HIGH to indicate that another write cycle may 
commence. 
Note: 

The frequency of the system clock is determined tiy the selection of external 
components which are confisured to an internal oscillator. Details of this are 
shown in Figure 20. 
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Figure 5. Read Cycle Timing 

Figure 5. 

1. The request to read REQRD input transitions LOW to enable 
an active read cycle the ready to read output, ROY READ, from 
the FIFO DRAM Controller goes LOW to indicate that a read 
cycle is in progress and no further read cycles should be 
requested until the read cycle is completed. 
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The timing of row address valid, active RAS, column address 
valid and active CAS is identical to that shown in Figure 4. The 
only difference in the timing is that the WE line stays inactive 
HIGH and the OE signal is gated active LOW one clock period 
after the LOW transition of RAS. 
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HIGH IMPEDANCE 
1/0; -------------------------------

Figure 6. CAS Before RAS Refresh Cycle Timing 

Figure 6. 

1. The RFSH CLOCK is driven active LOW to initiate a GAS 
before RAS refresh cycle. Ready to Read and Ready to Write 
Controller outputs are driven LOW to allow an uninterrupted 
DRAM refresh. 
2. The GAS output goes LOW after the first clock edge. 

3. The RAS output goes LOW following the second clock edge. 
4. The RAS and GAS outputs go inactive after the third clock 
edge and ROY WRITE and ROY READ go HIGH to indicate that 
read and write operations may recommence. 
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READ OR 
WRITE CYCLE 

ENABLE ACCESS 
(ENAC) 

A B C 

REFRESH 
CYCLE 

Figure 7a. Stale Diagrams for Read and Write Access Enable 
{ENAC) and Refresh Enable {RFSH) where A = 
RAS Signal, B = ROW/COLUMN ADDRESS 
SELECT Signal, and C = CAS Signal 

READ OR WRITE CYCLE REFRESH CYCLE 

00 

0 

0 

ENAC=TRUE 
A RFSH=TRUE B 

01 11 10 c 00 01 

CD 9 0 9 GJ 
Oii 

0 0 9 9 9 

A := -A • B • -C (ENAC + RFSH) + (RFSH • C 

A:=-A * 8 *'-C+ RFSH * C 

11 

0 

(RAS:= -RAS• ROW/COL SEL • -CAS + RFSH • CAS) 

10 

9 

9 

Figure 7b. Stale Excitation Map for RAS {A) Signal and 
Corresponding Equation 
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Figure 7c. Stale Excitation Map for ROW/COLUMN 
ADDRESS SELECT (B) Signal and 
Corresponding Equation 
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Figure 7d. Stale Excitation Map for CAS (C) Signal and 
Corresponding Equation 
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Figure 7. 

1. Figure 7a shows the truth tables for the controlling state 
machine within the FIFO DRAM controller. Two tables should be 
considered, one for access, read and write activity, and one for 
DRAM refreshing. The Enable access ENAC and enable refresh 
RFSH are mutually exclusive events such that -RFSH may be 
considered as ENAC and -ENAC as RFSH. When ENAC is 
TRUE (1) an access cycle is taking place, and RFSH will be 
FALSE (0). Refreshing takes place when RFSH is TRUE and 
ENAC is FALSE. The Karnaugh map shown in Figure 7b repres­
ents the state excitation map for the RAS output during access 
and refresh cycles. A logic one entry represents an active condi­
tion and a logic zero a passive state. The Greek letter theta 
represents a "don't care" state and can be included in minimiza­
tion considerations. For the map shown in Figure 7b, minimiza­
tion yields; 

ENAC=1,A:=-A'B'-C ...............................• 1 

RFSH = 1, A:= -A'B"-C + C .•......•................•.. 2 

now, combining 1 and 2; 

A := -A'B'-C"ENAC +-A 'B'-C'RFSH + RFSH"C ......... 3 

reduces to 

A := -A ·s·-c + RFSH'C . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . 4 

because 

ENAC + RFSH = 1. 

substituting the values of RAS, ROW/COL and CAS for A, Band 
C respectively we get; 

RAS:= -RAS'(ROW/COL SEL)'-CAS + RFSH'CAS 

The equations for ROW/COL SEL and CAS are derived in a 
similar way. 
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Figure 8. Timing with Refresh and Write Priority 

The system and refresh clocks are generated internally with two 
resistor-capacitor oscillator networks each. The system clock 
can be designed to run as fast as 5 MHz. The refresh clock, 
which is the request to refresh signal, is designed to operate at 
15.6 µS or64 KHz. This is because the DRAM must be refreshed 
with 256 refresh cycles in a period of 4 ms. (The implementation 
of the oscillator network will be described in the System Clock 
and Refresh Request Clock Configurations section.) 

READ/WRITE Address Circuitry 
The FIFO-DRAM Controller in the LCA device is based on a 
FIFO architecture and consists of a read and write pointer. The 

addresses of these pointers are generated by two 16-bit coun­
ters and 24 2:1 multiplexers, as shown in Figure 9. When the 
write grant signal is activated, the first 16-bit counter is incre­
mented. The write address is then multiplexed through to the 
row/column select multiplexer. As the ROW/COL SELECT sig­
nal goes HIGH, the first eight bits of the counter (the row address 
of the DRAM array) are transferred onto the address bus, and as 
the ROW/COL SELECT signal goes LOW, the second eight bits 
of the counter (the column address of the DRAM array) are 
transferred onto the address bus. An equivalent sequence also 
occurs when a read grant signal is activated. 
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The Status Counter 
Information aboutthe Fl FO buffer is provided by the three status 
flags: full, half-full, and empty, which are all active HIGH. The full 
and empty flags indicate overflow and underflow conditions, 
whereas the half-full flag gives an indication to a processorof the 
speed at which the buffer is being filled. It acts as a monitor 
rather than as a prevention flag. 

The flags are constructed from the status counter, a 16-bit 
up/down counter shown in Figure 10. The clock input to the 
counter is the enable access signal that "OR"s the write grant 
and read grant signals. When the write grant signal is HIGH, the 
counter is incremented, and when the write grant signal is LOW, 
the counter is decremented. For example, if the count reaches 
0000 Hex during a read operation, the FIFO buffer is empty, and 
if the count reaches FFFF Hex during a write operation, the 
buffer is full. If the count reaches 7FFF Hex, the buffer is half-full. 

Logic Cell Array Implementation 
The FIFO-DRAM Controller design was implemented in one 
chip: the M2018 Logic Cell Array, a high-density, programmable 
CMOS device. This device contains 100 Configurable Logic 
Blocks (CLBs) containing one register element each. The regis­
ter element can be configured as a D-type flip-flop or latch, or it 
can be bypassed totally, supplying a strictly combinational out­
put. The two available CLB outputs can be configured as a 
function of four Boolean input variables, or two functions of 
three input variables each. 

The M2018 also contains 7 4 configurable input/output blocks 
(IOBs). Sixty-four of these blocks can be configured to perform 
a variety of logic functions. Each has the capability to drive an 
output, receive an input, clock the input into a flip-flop, or pro­
vide both input and output capability under three-state control. 

ENABLE 
ACCESS -r------------..-l!o__J 

Together, the CLBs and the IOBs provide 1800 usable logic 
gates. These gates are configured when data is loaded into the 
LCA device for programming - usually from an EPROM or 
microprocessor. For example, the configuration data file, <file­
name>.prm, to be programmed into an EPROM, is generated 
using the program, MAKE PROM (part of Monolithic Memories' 
XACT'" Development System}, which loads the bit stream into 
PROM memory locations. The input to the MAKEPROM pro­
gram, <filename>.bit, is generated from the MAKEBITS pro­
gram which outputs the bit stream of the current design. The 
design is entered by either using one of the schematic capture­
based systems from Daisy, Mentor Graphics®, OrCAD'", and 
Futurenet® or by partitioning the required logic and inserting it 
in a graphics environment on the IBM® PC-XT/ AT® using Mono­
lithic Memories' XACT'" LCA Editor. The LCA Editor was used to 
create the LCA design of the FIFO-DRAM Controller. The design 
implementation using CLBs and IOBs is described below. 

CLB Implementation 
The RAS, ROW/COL SELECT, and CAS outputs are imple­
mented in four CLBs. The RAS output utilizes two CLBs but also 
includes the enable access signal (ENAC2), which is reset with 
part of a RAS function. Figure 11 shows the CLBs that comprise 
the RAS output. The COMRASB signal, in Figure 11A, is config­
ured from a three-input combinational function (the Y output-G 
base) and is an input to the RAS block, in Figure 11B. This signal 
is "OR"ed with two more signals. The RAS block, co~red as a El 
D-type flip-flop with a "set" function, produces the RAS output. 
The CLB configurations for the ROW/COL SELECT and CAS 
outputs are shown in Figures 12 and 13. The CLB equations 
correspond to the equations for each signal given in Figure 7. 

FULL FLAG 

EMPTY FLAG 
HALF FULL FLAG 

Figure 10. 16-Bit Up/Down Status Counter Circuitry 
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Figure 13. CLB Configuration for the CAS Signal 
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The CLB configuration for the 16-bit read counter is shown in 
Figure 14. The first (row - read) bit, RRQO on output Y, is 
illustrated in Figure 14A. It is generated through a flip-flop and is 
clocked with the read select signal. The terminal count for the 
next bit is generated from RABITO, the X output. Figure 14B 
shows the configuration for the second bit of the read counter. 

The read/write address multiplexer is designed with four Boo­
lean input variables as in Figure 15. The RRQO signal (row-read) 
is selected iflhe read select signal is active HIGH, and the RWQO 
signal (row-write) is selected if the write select signal is active 
HIGH. This implementation is combinational and has only one 
output. 

The row/column address multiplexer is designed with a CLB 
internal multiplexer base, FGM, as in Figure 16. When the ROW/­
COL SELECT signal is HIGH, the ROW address, MAO, is 
selected, and when the ROW/COL SELECT signal is LOW, the 
COLUMN address, MBO, is selected. This last multiplexer is 
registered and outputs the address that is output to the DRAM. 
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Figure 14. 1Wo CLBs which Produce BitO and 
Bit1 of the Row/Read Address Bit 
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Figure 16. CLB Configuration of the 
Row/Column Select Multiplexer 
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The up/down status counter implementation is shown in Figure 
17A. The second status counter bit is produced from the Y 
output, a registered function of input C2X, C2Y and the feedback 
Q. The flip-flop clock is ENAC, the DRAM access signal. The X 
output is a combinational function of C2X and Q. The third bit is 
produced from a registered equation as shown in Figure 17B. 

x G 
y Q 
Q FF ~-SET 
RES y CLJ< J< 

~ 
Blk: IA 

B }( U_DQ2 
L H X H li1!!5Q A: 
LXH H B:C2X c C:C2Y 

D: 

~ B CL}( J<:ENAC 
G X:C3X 

i:gQ Q Y:Q2 

I~ -G = d~~B+C> 

Figure 17a. The Third Bit of the Status Counter 
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Figure 17b. The Fourth Bit of the Status Counter 

Figure 17. 1\vo CLBs which Produce the Third 
and Fourth Bits of the Status Counter 

IOB Implementation 
An example of an IOB configured to receive data and drive 
inputs is shown in Figure 1 BA for the write request (WRR) block. 
An IOB configured as an output buffer for the RAS signal is 
shown in Figure 18B. The placement of the IOBs, like the CLBs, 
was optimized for the best circuit layout. 
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Figure 18a. The Input IOB Configuration Used 
for the Write Request Signal 
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Figure 1 Bb. The Ou.le!!! IOB Configuration Used 
for the RAS Signal 

Figure 18. Two IOB Configurations Used in the 
FIFO-RAM Controller Design 
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System Clock and Refresh Request 
Clock Configurations 
The system and refresh request clocks were designed with two 
general purpose oscillator networks. Each oscillator was built 
using two IOBs, one CLB, and two external resistor/capacitor 
networks- R1, C1, and R2, C2. The IOBs and CLBs were config­
ured by calling up the dedicated macro, GOSC, from Monolithic 
Memories' Macrocell Library, available as part of the schematic 
capture entry package or the XACT EditLCA entry package. The 
LCA implementation of the relaxation oscillator is shown in 
Figure 19. Here, the programmable routing connections of CLB 
block RFSCLK and IOB blocks CQLrfs and CQrfs are shown for 
the refresh clock, Figure 20 illustrates the logic schematic for 
both the system and refresh clocks and the correct connections 
to the resistor/capacitor network. 

The CLB and IOB configurations for the generation of the 
refresh clock are shown in Figure 21. Notice that in both the IOB 
configurations, the bidirectional three-state buffer is used. 
Notice also that in the CLB configuration, the output X, RFSQ, is 
the same as the input D. This is possible even though the 
function is not registered. 

The calculation of the resistor/capacitor values for the clocks is 
given below. For an even mark/space ratio, R = R1 = R2 and C = 
C1 = C2. Each timing phase (1 /2 of a cycle period) is given by the 
following formula: 

T1 = 0.35 (C1 • R1 • 2) for TTL voltage thresholds, and 

T2 = 0.75 (C2 • R2 • 2) for CMOS voltage thresholds. 

The general expression for the calculation becomes: 

T = N' ((R1 • C1) + (R2 • C2)) 

where N is .35 for TTL and 0.75 for CMOS. 

The resistor and capacitor values chosen for the system clock 
are R1 = R2 = 30 ohms and C1 = C2 = .01 microfarads. These 
components are connected to pins 11 and 13 and result in a 
frequency of 5 Mhz. The values chosen for the refresh request 
clock are R1 = R2 = 2.2 Kohms and C1 = C2 = .01 microfarad. 
They are connected to pins 24 and 28 and result in a frequency 
of approximately 64 KHz. The GOSC macro IOBs can be con­
nected to any pins as long as they are not connected to pins 
dedicated to configuring the LCA device. Dedicated configura­
tion pins cannot be loaded with components such as capacitors 
because they could prevent the LCA device from reading valid 
data by corrupting hold and setup times. 
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Design Considerations 
The circuit diagram of the FIFO-DRAM Controller in the LCA 
device is shown in Figure 22. This implementation used all 100 
CLBs available in the M2018 device. The three columns of CLBs, 
on the left, contain the status counter. The next seven columns of 
CLBs contain the address counters and the multiplexers, and 
the two bottom rows of CLBs contain the control circuitry. 

The placement of the blocks are positioned so that routing 
delays between the blocks can be minimized. Long line inter­
connects are used frequently for signals which would have to 
travel the length or breadth of the chip. These lines were also 
used for signals that must have minimal skew between destina­
tion points. For more information on routing, please refer to 
Chapter 9 of the LCA Design and Applications Handbook. 

Summary 
For DRAM designs, a FIFO-DRAM Controller was efficiently 
implemented in a single CMOS M2018 LCA device. The con­
troller, which enables the DRAM to function as a FIFO, allows 
large amounts of data to be held in temporary storage. The design 
can be modified quickly and easily with the LCA device because 
it is configurable and reprogrammable. Configuration of the 
LCA device is discussed in the LCA Applications Note 182. 

The FIFO-DRAM Controller design is available upon request. 
The design file and bit file will be provided for configuring the 
LCA device. Please ask for design XDES10.LCA. 
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Figure 22. FIFO-DRAM Controller Circuit lmplementatlon in the LCA Device 
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f ram the PC Bus 

By Robert Botchek of Trantor Systems Ltd. and Chris Jay of AMO 

ABSTRACT 
The Logic Cell™ Array (LCA) is a high density programmable 
device based on a complex arrangement of static RAM cells. The 
device must go through an initialization and configuration cycle 
each time power is applied. This cycle must occur before the LCA 
can function as a logic unij or subsystem. The configuration time 
is small, ranging from 17 to 35 milliseconds for the M2000 series 
of devices, and when the device is fully functional no re-configu­
ration is necessary provided power to the device is maintained. 

There are a number of modes of configuration, each suited to a 
particular device application. This application note gives detailed 
information on configuring the LCA device from the IBM PC® bus, 
choosing one of the five configuration modes available. Configur­
ing the LCA device directly from the PC bus presents numerous 
advantages to the PC adapter card designer. The direct link 

Logic Cell and XACT are trademarks of Xilinx, Inc. 

IBM, IBM PC, PC/XT and PC/AT are trademarks of International Business 
Machines Corporation. 

MASM and MSMDOS are registered trademarks of Microsoft Corporation. 

BITCON, GAP, PGMLCA, and DOWNLCA are programs copyrighted by 
Tranter Systems, Ltd. 

between the PC bus and the LCA enhances debugging andD 
testing, and reduces the product's time to market. The concept of 
soft programmability (based on the LCA's SRAM design) signifi-
cantly reduces the development cycle of a PC product using the 
LCA. Once complete, the configuration software can exist in 
ROM and be called each time the system boots, so PC cards 
containing LCA devices can be configured in a manner transpar-
entto the user. The interface requires both software and hardware 
considerations. A high level language program is written to 
perform data code conversion, and assembly language programs 
supervise the actual LCA downloading and programming cycle. 
The hardware interface to the LCA is achieved with a low-cost 
PAL 16L8 device. A description of hardware and software design 
considerations is given in the following application note. 
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Configuring the LCA 
from the PC Bus 
By Robert Botchek of Trantor Systems LTD. and Chris Jay of AMO 

INTRODUCTION 
The Logic Cell Array (LCA) is a very high density programmable 
device. The 2000 series consists of two devices, the M2064 and 
the M2018. The M2064 consists of an eight-by-eight matrix of 
programmable Configurable Logic Blocks (CLBs) with fifty-eight 
programmmable Input/Output Blocks (IOBs) to handle a variety of 
input/output functions. The M2018 has a ten-by-ten matrix of 
CLBs with seventy-four IOBs. Both devices have a complex array 
of programmable interconnect which is used to connect the logic 
blocks and input/output functions. The M3000 series was devel­
oped from the 2000 series and is suitable for even more dense 
logic architechtures. The 3020 device is a development of the 
2064 having an eight-by-eight array of more complex logic blocks. 
The IOBs and interconnect are also more complex in this new 
generation of programmable gate array circuits. This application 
note applies equally well to the configuration of 3000 series and 
2000 series devices. 

These high density devices require good software support tools 
to assist the designer in achieving a successful design with rapid 
turn-around, a benefit well known to the engineer familiar with 
Programmable Logic Devices; PLDs. Most manufacturers of 
PLDs support their products with at least one software package, 
and as complexity of programmable logic increases there is a 
need for more sophisticated computer-based tools. The LCA 
device is probably the most complex PLO on the market today, but 
fortunately there exists a wide repertoire of software support 
packages to provide the logic systems designer with rapid design 
entry and logic verification. In addition, conversion software 
provides a bridge from the finished design into raw configuration 
data which in turn is suitable for downloading and configuring the 
device. LCA device design entry is well supported in the PC 
environment with a wide range of CAE tools. The XACT™ 
software is designed to run on a PC XT/AT, for the 2000 series 
of LCA products only, and PC/AT for both 2000 and 3000 family 
of devices. Many packages for schematic entry and simulation 
also exist as software support for the LCA product, and will run in 
the PC environment. 

The route from design entry to a configuration bit stream is a 
relatively fast process. Thus, even if a number of reprogramming 
cycles are needed to prove a design, the overall process remains 
comparatively short. 

CONFIGURATION MODES 
There are five LCA configuration modes. These are listed in Table 
1 along with corresponding LCA mode select inputs MO-M2. For 
the specific application of configuring the LCA from the PC bus the 
slave mode is used. In this mode, for a single LCA device, only 
three pins take part in the configuration process. This can be the 
deciding factor in using the slave mode because some of the 
IOBs have a dual function of address and data assignment in the 
master low and high modes. During configuration these IOBs 
might need isolation from external logic. IOB intensive applica­
tions would favor the slave mode to avoid the additional time and 
space penalty of designing in additional logic buffers to perform 
this isolation. 

Of the three pins used, two are required for handshake and one 
for data transmission. The data is set up at the DIN input to the 
LCA and clocked into the device by applying a rising clock edge 
to the CCLK input. Each configuration bit is synchronously loaded 
in this manner at a rate determined by the PC interface. The 
remaining handshake pin is the Donel-Program pin, when LOW 
the LCA is in configuration mode and when HIGH the configura­
tion process has been completed and the LCA device is function­
ally operational. 

The slave mode of configuration can also be used effectively for 
chaining multiple LCA designs. The DOUT pin from a preceding 
LCA device can be fed directly to the DIN pin of a succeeding LCA 
so two or more devices can be configured. Waveforms in Figure 
3 show the timing requirements for DIN, DOUT and CCLK. 

M2018 CONFIGURATION FILE 
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1111 
0010 
<24 BIT LENGTH COUNT> 
1111 

O<DATA FRAME NUMBER 001>1111 
O<DATA FRAME NUMBER 002>1111 
O<DATA FRAME NUMBER 003>1111 

O<DATA FRAME NUMBER 195>1111 
O<DATA FRAME NUMBER 196>1111 
1111 

FOUR DUMMY BITS MINIMUM 
PREAMBLE CODE 
TOTAL NUMBER OF BITS 
FOUR DUMMY BITS MINIMUM 

196 CONFIGURATION FRAMES 
EACH FIELD CONSISTS OF A 
START ZERO FOLLOWED BY A 
71 DATA FIELD ENDING IN TWO 
OR MORE DUMMY BITS. 

MIMIMUM OF FOUR POST­
AMBLE CODE BITS. 

Figure 1. Data Stream Format 
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Mode Pin Mode 
MO M1 M2 Selected 

0 0 0 Master serial 

0 0 1 Master low 

0 1 1 Master high 

1 0 1 Peripheral 

1 1 1 Slave 

Table 1. Five Configuration Modes Truth Table 

Slave Mode of Configuration 

STROBE CCU< M1 ..., 
DATAO DIN PWRDWN 

SYSTEM BUS OR LCAM2018 
MICROCOMPUTER 

DATA7 oiP OOUT 

RESET RESET 

Figure 2. Configuration Diagram of Slave Mode 

In the slave mode configuration, the data transfer occurs over a 
single data line, data O in this case. When data is valid the clock 
rising edge synchronizes the loading of data into the LCA device. 
The done/program pin may be monitored for end of configuration. 
This circuit may be used for microcomputers, microprocessors 
and interface adapters, but in this case the PC system bus is used. 

PC CONFIGURATION HARDWARE 
The LCA Applications Handbook (1 0098A) describes a number of 
hardware arrangements whereby configuration data may be 
downloaded serially to the LCA device. It is also supported with a 
download cable which is included with the XACT development 
system. The cable permits communication from a PC to the LCA 
through a parallel port. However, this method of downloading 
configuration data is not practical for an LCA device mounted on 
a card that is plugged into the IBM PC bus. This system uses the 
bus as a medium for configuration data transmission. Although 
the option for using the download cable has not been precluded 
from the interface described here. In the early stages of develop­
ment it might be easier to use the download cable, until bus 
configuration is established. Figure 2 shows a block diagram of 
serial configuration mode while Figures 3 and 1 O show the 
waveforms associated with this mode. In slave mode configura­
tion the time to configure the LCA is determined by the loading 
source, in this case the controlling/loading program running in 
the PC. 

Slave Mode Configuration Timing Considerations 

Figure 3. Slave Mode Timing 

In the slave mode the CCLK pin is enabled as an input. Data set 
up at the DIN line is clocked into the LCA on the rising edge of the 
clock pulse. For the purposes of chaining LCA devices, data can 
be passed to the DOUT line but delayed by one clock cycle. Note 
that this data is synchronized to the falling edge of the clock. The 
configuration process is not complete until three additional clocks 
are appended to the pulse train. That is three more than the total 
number of configuration bits . 

For all speed grades of the device the data setup and hold times 
are identical. A minimum figure of zero nanoseconds for setup 
and 40 nanoseconds for hold. The worst case figure for valid data 
at the DOUT pin is 65 nanoseconds after the falling edge of the 
clock. 

Figure 7 is a schematic of the actual hardware used to drive the 
LCA device during configuration. The schematic shows PC bus 
signals involved in the process and the hardware used to decode 
them. A 74ALS520 decodes the PC address (set by SW1-SW7) 
for an 110 read/write cycle and a PAL 16L8 decodes commands 
sent by download software (described later). Alternatively, a 
74LS688 or equivalent could be used in place of the 74ALS520 
but external pull-up resistors would be required on the Q inputs. 
Wired as shown, eight consecutive addresses will match as far as 
the 74ALS520 is concerned (e.g., 320H to 327H). The first of 
these eight addresses is termed the Base Port. Figure 8 shows the 
port addressing assignment. The port interface was required to 
work in a specific application that required a large decode range 
so the interface had a dual function. The port interface configura­
tion was a biproduct of a real design. 

Although the PAL 16L8 (for which complete PAL design specifica­
tion equations may be found in Appendix 7) is not a registered 
device, its outputs may be fed back such that latching can be 
achieved. This technique is used to store control information sent 
by configuration software. The C, and C1 outputs from the 
PAL 16L8 are latched condition codes where C, and C0 store the 
data on D7 and D,, respectively, during an 1/0 write cycle to Base 
Port+ 2. DPEN enables the D/-P PAL output and is latched from 
D5 on the same 1/0 write cycle. 

A summary of the four condition codes is given in Table 2. For 
condition code 0, <C1, CO>= <0, 0>, the PAL device is in an idle 
mode. This is the mode preceding and following configuration. For 
condition code 1 the PAL asserts the the D/-P output as the 
trigger placing the LCA device in configuration mode. Condition 
code 2 directs the PAL to toggle -RESET for each subsequent 
write to Base Port + 3. This permits clearing of the LCA register 
contents. Finally, condition code 3 directs the PAL to toggle 
CCLK LOW, then HIGH, for each subsequent write to Base Port 
+ 3. It is in this mode that configuration data bits are clocked into 
the LCA device, one bit at a time. 
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LCA Slave Mode Configuration. 

-START-

DRIVE DIP= LOW 

PULSE RESET LOW THEN HIGH 

RELEASE DIP PIN 

NO 

SET DATA BIT ON DIN 

PULSE CCLK LOW THEN HIGH 

NO 

PULSE THE CCLK INPUT THREE TIMES 

END OF 
CONFIGURATION 

CYCLE 

NO 

CONFIGURATION 
FAILURE CHECK 

CIRCUIT. 

Figure 4. Flow Diagram of Configuration 
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DOWNLCA 

PAL16L8 INTERFACE 

LCADEVICE 

Figure 5. Flow Diagram of Software Packages, GAP 

Condition Codes 

co C1 Code Function 

0 0 0 Releases 0/P for 
for normal OQ_eration 

1 0 1 Assert 0/P Low 

0 1 2 Toggle RESET mode 

1 1 3 Toggle CCLK mode 

Table 2. PAL Condition Codes 

After asserting D/-P (LOW) and toggling -RESET (condition 
codes 1 and 2) the software should read from Base Port + 2. 
During this read the PAL will drive the state of the D/-P onto bit 0 
of the PC data bus. This is done through the DPOUT pin which is 
enabled only during reads from the 1/0 address Base Port+ 3. An 
additional output, active LOW-LEN is also asserted at this time, 
allowing another on-board latch to drive data, such as switch 
settings, onto the bus. If the state of the D/-P pin is not 0 (LOW) 
then the LCA has failed to enterthe configuration mode. Likewise, 
after sending the entire configuration bit stream and an additional 
three dummy bits (as required by the LCA) the software reads 
from Base Port+ 2 to check that D/-P has been allowed to return 
HIGH, this indicates thatthe LCA has terminated the configuration 
process. 

Timing considerations for this procedure are shown in Figures 9 
and 10. Figure 9 shows a single 1/0 write cycle. The valid 1/0 
address is put onto the bus, and decoded by the address decoder 
circuitry shown in Figure 7. The trailing (positive) edge of-IOW is 
used to latch condition bits. Also, in condition 2, CCLK follows -
IOW during writes to Base Port+ 3. Thus, the rising edge of CCLK 
corresponds to the rising edge of-IOW. This ensures that data will 
be latched by the LCA only when it is valid (write data is not 
guaranteed to be valid at the leading edge of -IOW). 

Figure 6. PAL 16L8 Pinout Diagram 

The C, and c, outputs from the PAL 16L8 are latching outputs. 
Both C, and C, are addressed into the address baseport +2. The 
data lines D,and D6 are routed to C, and C, respectively during an 
1/0 write operation. The one of four condition codes shown in 
Table 2 reflects the current status of the PAL during its interface 
activity with the LCA device. 

As shown, SDO on the PC bus is connected directly to DIN on the 
LCA through an in-line SPST switch. This switch should normally 
be closed, and need not be present at all in a production layout. 
It was added to allow the download cable, included with XACT, to 
function properly if required. If the switch is opened and the PAL 
removed, the download cable may be connected directly to the 
D/-P, -RESET, CCLK, and DIN pins and will interface directly 
through the cable. 

BIT STREAM FORMAT AND CONVERSION 
The format of the configuration bit stream used to program the 
LCA M2018 is shown in Figure 1. The bit stream starts with four 
dummy bits (1111 ), followed by a four-bit preamble code (0010), 
a 24-bit length count and another four dummy bits. The length 
count indicates the total number of bits in the bit stream, including 
the header just described. This number will be loaded into an 
internal counter in the LCA device allowing tt to synchronize the 
loading of data during the configuration process. The actual con­
figuration process is always serial, even during parallel configu­
ration modes, internal serialization takes place in the LCA device. 

The usual design entry technique uses the XACT design editor to 
create the logic design. The XACT conversion software then 
generates a bit pattern of the design that can be loaded directly 
into the LCA device. XACT can produce the bit stream in several 
different binary and ASCII formats. In this application the need to 
produce the bit stream in a format amenable to inclusion in an 
assembly language program dictated that the RAWBITS format 
be used. The RAWBITS output, placed in a file with the extension 
".RBT," is ASCII. (Appendix 1 shows a portion of an ".RBT" file.) 
In general, one ASCII 'O' or '1' is used to represent each bit of the 
configuration data. This data is not packed so it is not an efficient 
way of generating data for storage but it is suitable for loading into 
the LCA in real time. 

3·129 

EJI 



Configuring the LCA from the PC Bus 

Assembly language modules tend to define data in terms of bytes 
or words. For this reason, a Pascal program, BITCON.PAS, was 
written (see Appendix 2 for a complete listing). BITCON filters the 
".RBT" file and produces an assembly language include file 
(given the extension ''.BLB") which defines the configuration bit 
stream in terms of define byte directives acceptable to the 
Microsoft MASM™ assembler. This has the effect of packing the 
bit stream. For the sake of discussion the packed bit stream will 
be referred to as a byte stream. Additionally, BITCON counts the 

bits in the stream and the bytes used to hold the stream and 
defines two words at the beginning of the ''.BLB" file for these 
quantities. A portion of a typical ''.BLB" file may be found in 
Appendix 3. The net result is a structure which, once assembled 
into a main program, may be manipulated easily by machine 
language modules. Further, the assembled byte stream requires 
only 1.5K to 2K depending on the device being configured. Thus, 
the byte stream and associated software may easily be placed in 
a 4Kx8 or 8Kx8 ROM. 

Hardware Configuration LCA Programming 

PC8US WRITE READ 

AEN A11 

SA9 A22 

G SW1 
2 PO 3 QO 

SA8 A23 4 P1 
SW2 

Q1 5 2 

SA7 A24 

SA6 A25 

6 P2 74 
SW3 

Q2 7 
ALS 3 
520 SW4 

8 P3 Q3 9 0--

SA5 A26 
SW5 4 

11 P4 Q4 12 

SA4 A27 

U1 5 13 PS Q5 14 

SA3 A28 15 P6 Q6 
16 6 

17 P7 Q7 
18 

7 
P=Q 

19 Figure 8. Port Assignment 

Vee 

SA2 A29 
4 8DSEL 14 

A2 C1 

SA1 A30 
3 25 

PWRDN 
A1 co 15 M1 M2 

27 

SAO A31 
2 

AO OPEN 
13 26 MO 59 

DOUT 

IOW 813 

IOR 814 

5 U2 DIP 
18 45 D/P 28 IOW 

PAL16L8 HOC 
6 12 44 U3 

IOR RESET RESET M2018NL68 LDC 

SD7 A2 9 07 CCLK 19 60 
CCLK 

SD6 A3 8 
06 LEN 16 

sos A4 
7 DPOUT 17 58 

05 DIN/DO 

11 
NC 

sw8 
SDO A9 t---------<O --n~------' 

Figure 7. Circuit Implementation of PC BUS to LCA 
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SYSTEM 
CLOCK 
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·IOW__j \.___ _ ___,/ 

AEN 

ADDR=~~ ----( ... ____ v_A_u_o_11o_A_o_o_RE_ss ______ __,)>----
DATA ________ --<( WRITE DATA \______ 
BUS '-· ___________ _,,--

Note: During bus write cycles, write data becomes valid after -
IOW has been asserted. Data can be registered on the 
rising edge of -IOW. 

Figure 9. Single WRITE Cycle. Waveform 

MO 

M1 

M2__j '--

Notes: 1. The CCLK must not remain low longer than 5 micro­
seconds or LCA timing will be violated. 

2. The D/P pin is sampled after all the configuration bits 
+ three additional bits have been sent. If the DIP pin 
is high then configuration was successful. 

Figure 1 O. Configuration Cycle. Waveform 

Ell 
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CONFIGURATION SOFTWARE 
To perform the writing of configuration data to the LCA, the driver 
software was written in assembly language. High level languages 
such as 'C' or Pascal could be used, but assembly language was 
chosen because it is more efficient when considering the space 
constraints of a ROM. Three programs were written to interface to 
the LCA device; 

GAP.ASM Gate Array Program. See Appendix 4. 

PGMLCA.ASM Program LCA. See Appendix 5. 

DOWNLCA.ASM Download LCA. See Appendix 6. 

Figure 4 shows a flow chart of a standard configuration cycle and 
Figure 5 shows the route taken from GAP to the programmed LCA 
device. The configuration driver may be partitioned into two 
halves: one generic and one hardware specific. The first half is 
implemented in a module called PGMLCA.ASM, which se­
quences through the configuration steps and decomposes the 
byte stream into the original configuration bit stream, while the 
second module DOWNLCA.ASM controls the bit manipulation 
required by the configuration hardware. Neither module carries 
the byte stream, it is assembled as part of a parent module whose 
job it is to invoke the actual configuration process. This is the 
function of a demonstration program GAP.ASM which displays 
some messages and calls the PGMLCA module, passing a 
pointer to the byte stream. 

The byte stream is concatenated to the end of the GAP .ASM file 
as an include file. Any file that has been converted to byte stream 
".BLB" can be downloaded to the LCA device by reassembling 
and linking GAP. The programs GAP.ASM, PGMLCA.ASM and 
DOWNLCA.ASM are written for Microsoft MASM version 5.0. A 
few utility routines in the library GAPLIB.LIB must also be linked 
to GAP but are not required by PGMLCA and DOWNLCA. 

PGMLCA and DOWNLCA may just as easily be linked with a 
different parent and placed in ROM. This would be the production 
method for configuration used in the PC adapter card. The 
program in the ROM might perform a functional test at boot time 
to determine if the LCA is already programmed. If it is not, the 
PGMLCA module may be invoked by passing it a pointer to the 
byte stream. The entire process need only occur during the initial 
power on or cold boot, and takes less than a second to execute. 

Looking at the modules in more detail, DOWNLCA interfaces to 
the PAL and provides three functions to PGMLCA. These include 
placing the LCA in the program mode, sending the LCA configu­
ration bits and placing the LCA in the normal operation mode. As 
shown in the module listing, only a few port 1/0 instructions are 
used. The DOWNLCA program also checks to make surethatthe 
LCA device enters and leaves the program mode at the correct 
times and reports this status to PGMLCA. 

PGMLCA, sequences configuration by requesting program 
mode, sending configuration bits, and leaving the program mode. 
As discussed earlier, PGMLCA has the additional task of unpack­
ing the byte stream that was originally packed by BITCON. 
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This partitioning allows the replacement of the DOWNLCA mod­
ule with a different module suitable for supporting a different 
download hardware interface, without changing PGMLCA or 
BITCON. For example, the software for a download module to 
support the download cable of the development system could be 
generated. If the download cable is used, SW8 in Figure 7 must 
be switched to open. 

CONCLUSION 
Programming the LCA directly from the PC bus is a straightfor­
ward matter requiring a minimum of extra hardware. Once the 
hardware is breadboarded, the designer uses XACT to produce 
a RAWBITS file, which is converted by BITCON to an assembly 
language include file. This include file is then assembled as part 
of a parent program which is linked to the support modules 
PGMLCA and DOWNLCA. PGMLCA directs the configuration 
process through DOWNLCA which manages the specifics of the 
PAL-based interface. 

The hardware interface may be easily adjusted to suit multiple 
LCA designs and the specific needs of other PC adapter cards or 
may be modified with a minimum of effort to support other 
microcomputer architectures. Likewise, BITCON is easily modi­
fied to produce include files for different assemblers. PGMLCA 
and DOWNLCA are also small modules which may be modified 
or ported as needed. 

There are other advantages to this hardware and software 
scheme. Since the LCA configuration data is carried in software, 
which might be placed in ROM, an MS-DOS device driver, or even 
an application program, the realm of software updates is ex­
tended into the realm of hardware. At one end of the spectrum a 
vendor might supply hardware timing fixes or optimizations on 
diskette. At the other, the LCA could be designed as a generic 
logic block, whose function is dictated by the application software. 
In tact, at Trantor Systems a number of these capabilities are 
being exploited now in products incorporating such elements as 
RAM controllers and SCSI interfaces. Future LCA devices avail­
able from AMO, with even higher densities and faster speed 
grades will increase the scope of designs for which the part is 
appropriate. 

SOFTWARE AVAILABILITY 
The programs and PAL equations described in this application 
note, along with the binary library required for relinking GAP, are 
available on an MS-DOS 360K 5.25-inch diskette from: 

Trantor Systems, Lid. 
33447 Western Avenue 
Union City, CA 94587 
(415) 489-3731 

The charge per diskette is $25. Additional shipping charges may 
be necessary. 
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- APPENDIX 1 -

RAW BITS CONFIGURATION FILE. 

XACT LCA DESIGN.LCA 2018NL68 
File deslgn.rbt 
22:15:17 DEC 10, 1987 
22:15:17 DEC 10, 1987 
Source 
Version 
Produced by XACT version 1.30 
111100100000000001000101110101101111 
0111111111110100111111011111111011111111111111101111011001111111001111110011111111111111111 
0110110111111111011111110111111110011111111111111011100111011101110111111110111111111111111 

• 
• 
• 

192 LINES OF RAW BIT CONFIGURATION DATA 

• 
• 
• 

0001111101111011011110110111110010111110101111111001111111001111010011110100111101011111111 
0111011111110111011101111111111111111111111111111111111111111111111111111111111011101111111 
1111 

Appendix 1. Raw Bit Listing 
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APPENDIX 2 

BitCon.pas 

Bitcon is a bit conversion program which takes as its input the 
11 *.rbt" file produced by the makebits command in the gate array 
development system and produces an assembly language file defining 
the bit stream. 

The "*.rbt" file contains a text prolog indicating the design name 
and the time/date of creation. The file then contains a number 
of lines containing ascii 'l's and 'O's which represent the bit 
stream. The first line of this stream contains the bit stream 
prolog, 1 1111 1 , which BitCon uses to identify the bit stream. 

Bitcon packs the bit stream into bytes where the highest order 
bit in a byte corresponds to the first encountered bit in the 
bit stream and the first byte corresponds to the first eight 
bits of the bit stream, and so forth. 

The output file has the form: 

text prolog created by makebits 

dw length of bit stream in bits 
dw length=of=bit=stream=in=bytes 

db byte O,byte 1, ••• ,byte 7 
db byte=8,byte=9, .•. ,byte=15 

db ••• ,byte_n 

If the number of bits is not an even multiple of eight then then 
only the highest order bits of the last byte will be valid. 

The output file has the filetype 11 .blb" (for Bit LiBrary) and may 
be included in an assembly language program for assembly. 

history: 

12-09-87 RCB 
12-11·-87 RCB 

12-12-87 RCB 

01-04-88 RCB 
01-26-88 RCB 

first cut 
emit 1 ; 1 instead of 1 : 1 in third line of 
our portion of the prolog (l.Ob) 
place the number of bits we counted into the 
24-bit length field of the stream to ensure that 
the two are the same (1.0c) 
make release version for ap. note (1.la) 
more of mod. on 01-04-88 (1.lb) 

const 
title 'BitCon: .rbt -> .blb Filter, Version 1.lb'; 
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copyright= 'Copyright (c) 1987, Tranter Systems, Ltd.'; 

max byte = 8191; max bytes in byte stream - 1 } 
ascii form of bit stream prolog } stream prolog = •1111 1 ; 

max_bytes_per_line = 8; max bytes defined per line in output file } 

intype = '.rbt'; 
outtype = '.blb'; 

type 
st 

var 

string [132]; 

input filetype } 
output filetype } 

byte stream: array [O •. max byte] of byte; 
bit length: integer; -
byte_length: integer; 

rbt file: text; 
blb-file: text; 
current_line: st; 

convert the byte argument to a three-digit hex number (includes leadin 
zero). also add a trailing 'h'. } 

function hex (value: byte): st; 

function nibble (value: byte): st; 
begin 

nibble:= copy ('0123456789abcdef', value+ 1, 1); 
end; 

begin 
hex:= 'O' +nibble (value div 16) +nibble (value mod 16) + 'h'; 

end; 

{ if the filename doesn't have a filetype, append the specified one. if 
there is a filetype, replace it with the specified one. } 

function fnm (filename: st; filetype: st): st; 
begin 

if pas ('.', filename) = O then 
fnm := concat (filename, filetype) 

else 
fnm := concat (copy (filename, 1, pas ('.', filename) - 1), filetype 

end; 

copy lines from the prolog of the .rbt file to the prolog of the .blb 
file until the bit stream prolog is found. leave the first line of the 
bit stream in current line. } 
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procedure read_prolog; 
begin 

readln (rbt file, current line); 
while (not eof (rbt file)) and 

(copy (current line, 1, length (stream_prolog)) <> stream_prolog 
writeln (blb file,-•;•, AI, current line); 
readln (rbt file, current line); -

~d; - -
writeln (blb file); 
writeln (blb-file, •;•, AI, 'Translated by:'); 
writeln (blb-file, •;•, AI, title); 
writeln (blb-file, 1; 1, AI, copyright); 
writeln (blb=file); 

end; 

read the bit stream and construct a byte stream in memory. keep a count 
of the number of bits and the number of bytes. we assume that the first 
line of the ~it stream is already in the variable current_line.} 

procedure read_bit_stream; 
var 

cur bit: byte; 
theTr_length: integer; 

procedure pack_bits; 
var 

char_index: integer; 

begin 
for char index := 1 to length (current line) do begin 

bit length := bit length + l; -
if cur bit = 7 then 

byte-stream [byte length] := O; 
byte stream [byte length] := byte stream [byte length] or 

( (ord (current Tine [char index]) - ord ( 'o •)) shl cur bit); 
if cur bit > O then - -

cur bit := cur bit - 1 
else begin -

cur bit := 7; 
byte length := byte length + l; 

end; - -
end; 

end; 

begin 
bit length := O; 
byte length := o; 
cur bit := 7; 
pack bits; 
while not eof (rbt file) do begin 

readln (rbt file~ current line); 
pack bits; - -

end; -
if cur bit <> 7 then 



Configuring the LCA from the PC Bus 

byte length := byte length + l; 
their length := byte stream [3] + (byte stream [2] shl 8); 
if their length <> bit length then begin 

writeln ('Fixing up bit stream length ... '); 
writeln ('Old length= •,their length,' bits'); 
byte stream [3] := bit length and $ff; 
byte-stream [2] := (bit length shr 8) and $ff; 

end; - -
end; 

{ write byte stream formats the byte stream just created by read bit str 
a bit-length count and byte length-count preceed the byte stream. T 

procedure write_byte_stream; 
var 

count: integer; 

begin 
writeln (blb file, AI, 'dw', AI, bit length, AI, ';#of bits in stream 
writeln (blb-file, AI, 'dw', AI, byte length, AI, ';#of bytes to hold 
for count :=-0 to byte length - 1 do begin 

if count mod max bytes per line = o then begin 
writeln (blb file); - -
write (blb file, AI, 'db', AI); 

end; -
if count mod max bytes per line <> o then 

write (blb file, •, T); - Ell 
write (blb file, hex (byte stream [count])); 

end; - -
writeln (blb file); 
writeln (blb=file); 

end; 

begin { main } 
writeln (title); 
writeln (copyright); 
if paramstr (1) =''then begin 

writeln; 
writeln ('Usage: bitcon bitfile 1 ); 

writeln; 
writeln ('Where "bitfile" is a 11 .rbt" file produced by'); 
writeln ('makebits. BitCon will produce an output file,'); 
writeln ( 111bitfile.blb, 11 which contains an assembly'); 
writeln ('language representation of the bit stream.'); 
writeln; 

end 
else begin 

writeln; 
assign (rbt file, fnm (paramstr (1), intype)); 
{ $i-} -
reset (rbt file); 
if ioresult <> o then begin 

writeln ('Unable to open file 111 ,fnm (paramstr (1), intype), '"· ') 
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halt; 
end; 
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writeln ('Reading"', fnm (paramstr (1), intype), '".'); 
assign (blb file, fnm (paramstr (1), outtype)); 
rewrite (blb file); 
if ioresult <> O then begin 

writeln ('Unable to create file "',fnm (paramstr (1), outtype), 111 

halt; 
end; 
{$i+} 
writeln ('Copying prolog .•• 1 ); 

read prolog; 
if not eof (rbt file) then begin 

writeln ('Reading bit stream ••• '); 
read bit stream; 
writeln ('Bit stream= ',bit length, •bits'); 
writeln (' =',byte length, •bytes'); 
writeln {'Writing bit stream.~.'); 
write byte stream; 

end - -
else 

writeln ('Input file ended prematurely.'); 
close (blb file); 
close (rbt-file); 
writeln ('File 111 ,fnm (paramstr (1), outtype),'" produced.'): 

end; 
end. 
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- APPENDIX 3 -

LISTING OF FILE AFTER CONVERSION BY BITCON 

XACT LCA DESIGN.LCA 2018NL68 
File design.rbt 
22:15:17 DEC 10, 1987 
22:15:17DEC10, 1987 
Source 
Version 
Produced by XACT version 1.30 

Translated by: 
bitcon: .rbt-> .bib filter, version 1.0b 
Copyright (c) 1987, Trantor Systems, Ltd. 

dw 17876 ;#of bits in stream 
dw 2235 ;#of bytes to hold stream 

db Of2h, OOOh, 045h, Od4h, Of7h, Offh, 04fh Odfh 
db Oefh, Offh, Oefh, 067h, Of3h, Of3h,Offh, Ofeh 

• 
• 
• 

• 
• 
• 

193 LINES OF COMPRESSED CODE 

• 
• 
• 

• 
• 
• 

db Obbh, Obfh, Offh, Offh, Offh, Offh, Offh, Offh 
db Oeeh, Offh, OfOh 

Appendix 3. Listing of <file>.blb 

El 
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page 
title 
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62,132 
GAP, Gate Array Programmer 

;----------------------------------------------------------------------
APPENDIX 4 

GAP.asm 

GAP takes the byte stream generated by BitCon (which, in turn, 
took its input from MAKEBITS in the LCA development system) and 
downloads it to the gate array. GAP itself only displays signon 
messages and statistics. It then passes a pointer to a "byte 
stream" (a packed configuration bit stream) which the PGMLCA 
module decodes. 

GAP is only intended for debugging and demonstration. The gate 
array programming modules, on the other hand, are intended for 
production use. Invoke GAP with: 

A>gap 

Invoking GAP without the hardware described in the ap. note 
shouldn't have any ill effect. However, be careful that no 
other card occupies port address 328h-32fh for which this demo. 
has been "hard-wired." 

MASM 5.0 may be used to assemble this module. It must then be 
linked to the other modules. 

History: 

12-11-87 RCB 
01-26-88 RCB 

first (l.Oa) 
make mods. for ap. note release (l.la) 

Copyright (C) 1988, Tranter Systems, Ltd. 
All rights reserved. 

;-----------------------------~----------------------------------------

page 
;----------------------------------------------------------------------Externals and Defs. 
;-------------~--------------------------------------------------------
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pgm_gate_array is an entry in the pgmlca module. this routine 
sequences the programming phases. 

extrn pgm_gate_array:near 

dsp str and dsp num are utility routines to display an ASCIIZ 
string and a decimal number, respectively. 

extrn 
extrn 

dsp str:near 
dsp=num:near 
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prog title 
prog=copyright 

equ 
equ 

'GAP: Gate Array Programmer, version 1.1 
'Copyright (c) 1987, Tranter Systems, Lt 

false 
true 
er 
1f 
eof 
null 
dos 
dos_program_terminate 
combase 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

0 
not false 
Odh 
Oah 
lah 
0 
21h 
4ch 
lOOh 

ok ret code 
bad ret code 

equ 
equ 

o ;program return codes 
1 

page 
;-----------------------------------------------------------------------

COM file header and program entry 
;-----------------------------------------------------------------------
code 

start: 
signon: 

stack: 

main 

segment para public 
assume cs:code,ds:code,es:code,ss:code 

combase 
main 

org 
jmp 
db 
db 

cr,prog title,cr,lf 
prog_copyright,cr,lf,lf ,null,eof 

dw 256 dup (?) 

proc 

mov ax,cs 
mov ds,ax 
mov es,ax 
cli 
mov ss,ax 
lea sp,stack 
sti 

lea 
call 
lea 
call 

dx,signon 

lea 

dsp str 
dx,pgm msg 
dsp_str 

di,gate_array_code 

;signon 

;now programming .•. 

;di -> bit stream structure 

the bit stream structure consists of 3 fields: a word count 
of the bits in the bit stream, a word count of the bytes needed 
to store the bit stream, and an array of bytes of the length 
indicated by the previous (second) field. 
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done: 

main 

mov 
call 
lea 
call 
mov 
call 
lea 
call 

call 

lea 
mov 
jnc 
lea 
mov 

call 

mov 
int 

endp 

pgm msg: 
bit-msg: 
byte_msg: 
ok pgm msg: 
bad_pgili_msg: 

page 
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ax, [di] 
dsp num 
dx,bit msg 
dsp str 
ax,[di + 2) 
dsp num 
dx,byte msg 
dsp_str-

pgm_gate_array 

dx,ok_pgm_msg 
al,ok ret code 
done - -
dx,bad_pgm_msg 
al,bad_ret_code 

dsp_str 

ah,dos program terminate 
dos - -

;show bit length 

;show byte length 

;es:di -> bit stream structure 
;cy indicates error upon return 

;show error 

;al is still the return 

db 
db 
db 
db 
db 

'Programming gate array ••• 1 ,cr,lf,null 
•bits in stream.•,cr,lf,null 
•bytes in stream.•,cr,lf,null 
'Gate array programmed.',cr,lf,null 
'Programming failure.•,cr,lf,null 

;----------------------------------------------------------------------"Byte stream" 

The "*.BLB" file containing the "byte stream" (packed 
configuration bit stream) which was produced from the "*.RBT" 
file bit BitCon is included here. 

;----------------------------------------------------------------------
gate_array_code: include dummy.blb 

code 
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end of file 
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62,132 
DOWNLCA, LCA download routines (using PAL) 

;----------------------------------------------------------------------
APPENDIX 5 

DOWNLCA.asm 

DOWNLCA contains the hardware specific code for downloading 
a configuration bit stream to the LCA using the Tranter 
configuration PAL interface. 

The PAL interface gives us direct control over the D/-P, 
-RESET, and CCLK pins on the LCA. 

To place the LCA in program mode we set the D/-P low and 
toggle reset. We then release the D/-P pin and check to see 
that the LCA is still driving it low, signifying that it 
entered program mode. 

The CCLK pin is normally held high and is pulsed low as 
each configuration bit is sent. Each configuration bit is 
sent on SDO (bit o of the PC's data bus). Thus, the rising 
edge of CCLK occurs at the end of the write cycle. This is 
necessary as the PC doesn't drive write data until after the 
leading edge of the write signal. 

After the configuration bit stream has been sent we check 
to see if the LCA allowed D/-P to go high, signifying the 
end of configuration. 

This module may be placed in rom if so desired. 

History: 

12-11-87 
01-26-88 
04-11-88 

RCB 
RCB 
RCB 

first 
make mods. for ap. note release 
release dp pin after toggling 
reset 

Copyright (C) 1988, Tranter Systems, Ltd. 
All rights reserved. 

;----------------------------------------------------------------------
page 

;----------------------------------------------------------------------
Publics and Defs. 

;----------------------------------------------------------------------
public program lea 
public send lea bit 

;program/normal entry 
;send bit entry 

LCA programming codes passed between caller and program_lca 
entry point. 
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lea func normal 
lca=func~rogram 

equ 
equ 

0 
1 

srl rsc dta 
srl=dta=port 

equ 
equ 

3 
3 

;rsc data port (bi-directional) 
;board data port (out) 

This PAL configuration interface was designed into an existing 
port mapping scheme. For demo purposes, the base port to which 
the card containing the LCA responds is defined as an equate. 
The ports which control configuration are defined as offsets 
from this base port. 

base...-Port 
config ctl_port 
config=dta_port 

equ 
equ 
equ 

328h 
base_port + 2 
base_port + 3 

Control port bit assignments. The configuration PAL latches 
cl, co, and dpen during writes to the ctl port. The config. PAL 
drives data onto SDO during reads from this port. 

ctlbit record 
statbit record 

cl:l,cO:l,dpen:l,clt unused:5 
stat_unused:7,dp:l -

mode 

Control bits cl and co set PAL modes. The function implied 
by a given mode doesn't take effect until a subsequent write 
to the config dta_port (this scheme eliminates spiking on 
the control lines). 

idle 0 ;configuration PAL idle equ 
mode=program equ mask co + mask dpen ;set pgm mode 

;toggle reset mode reset equ mask cl + mask dpen 
mode-reset only equ mask cl II II without dp ' mode-cclk - equ mask cl + mask co ;send configuration bits 

page 
;-----------------------------------------------------------------------

module entry 
;-----------------------------------------------------------------------
code segment byte public 

assume cs:code 

;-------------------------------------------------~---------------------

3·144 

program_lca 

input: al 

output: nc 
cy 

program/normal function code 

function ok 
function failed 

we support two functions: set program mode, set normal mode. 
when we go to program mode we also pulse the lea's reset. 
when going to normal mode we check to make sure that the lea 
has allowed d/-p to go high, indicating programming finished. 
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saves all registers 
-----------------------------------------------------------------------

program_lca 

push 
push 

mov 

cmp 
jz 

proc 

ax 
dx 

dx,config_ctl_port 

al,lca func normal 
go_norrnal -

Program mode 

1. set program mode 
2. toggle reset 
3. check status of d/-p 
4. go to cclk mode 

mov al,mode_program 
out dx,al 
inc dx 
out dx,al 
dee dx 
mov al,mode_ reset 
out dx,al 
inc dx 
out dx,al 
dee dx 

mov al,mode_reset_only 

out dx,al 

in al,dx 
test al,mask dp 
stc 
jnz program_done 

mov al,mode_cclk 
out dx,al 
clc 
jmp short program_done 

Normal mode 

1. set PAL to idle mode 

;dx -> srl board control port 

;go to normal operation? 

;set program mode and assert d/-

;dx -> config data port 
;any write latches program mode 

;assert d/-p and enable -reset 

;any write here toggles -reset 

;stay in reset mode but stop 
;driving d/-p 

;get status of d/-p pin 
;bit should be low if in pgm mod 

;enable cclk for configuration b 

2. check d/-p to make sure lea took it high 
3. also output a zero to base port to disable all funcs. 

go_normal: 
mov 
out 

al,mode idle 
dx,al -

;shut-down programming PAL 
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inc 
out 

dx 
dx,al 

;dx -> board dta port 
;any write shuts down PA 

We write a o to the base port to disable all board functions. 
This is necessitated by the particular board and not by the 
demands of the configuration architecture. 

mov dx,base port 
xor al,al -
out dx,al 

check the d/-p pin 

mov 
in 
test 
jnz 
stc 

dx,config ctl port 
al,dx - -
al,mask dp 
program_done 

;get board status 
;check d/-p, should be high 

program_done: 
pop 
pop 
ret 

dx 
ax 

program_lca endp 

;-----------------------------------------------------------------------
send lea bit 

input: al, bit O = bit of configuration data 

output: nc 
cy 

bit sent ok 
error 

send a bit of configuration data to the lea. 
this routine must not be called unless the lea has been placed 
in program mode by the program_lca routine. 

saves all regs. 
;-----------------------------------------------------------------------
send lea bit proc 

push 

mov 
out 

clc 

pop 
ret 

send lea bit 

code ends 
end 

dx 

dx,config dta port 
dx,al - -

dx 

endp 

end of file 
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;send the bit, the pal 
;will toggle cclk 

for now we have no handshake 
on each bit so we can't determi 
whether or not an error occurre 
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APPENDIX 6 

page 
title 

62,132 
PGMLCA: Gate array programming module 

;----------------------------------------------------------------------
PGMLCA.asm 

PGMLCA sequences the phases of LCA programming. In general 
these phases include: 

o place LCA in program mode, toggle reset 
o check that the LCA entered program mode 
o send the configuration bit stream, one 

bit at a time 
o place the LCA in normal mode 
o check that the LCA is in normal mode 

PGMLCA may be placed in ROM, a DOS device driver, or other 
program. The caller passes a far pointer to a "byte stream", 
a packed configuration bit stream. The byte stream has the 
structure: 

word 
word 
byte [O .. M-1] 

# of bits in stream (N) 
# of bytes used to store stream (M) 
M bytes holding packed bit stream 

PGMLCA uses another module, DOWNLCA, to perform hardware­
dependent functions such as sending bits and setting program/ 
normal mode. 

History: 

12-11-87 RCB 
01-26-88 RCB 

first 
make mods. for ap. note release 

Copyright (C) 1988, Tranter Systems, Ltd. 
All rights reserved. 

;----------------------------------------------------------------------
page 

Publics, Externals, and Defs. 

public pgm_gate_array ;our entry 

program lea places the LCA in program/normal mode and 
reports-the success or failure of the function. send lea bit 
sends individual bits to the LCA. 

extrn 
extrn 

program lca:near 
send_lca_bit:near 
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lea programming codes passed between us and the program_lca 
entry point. 

lea func normal 
lca=func=program 

page 

equ 
equ 

0 
1 

;----------------------------------------------------------------------
module entry (pgm_gate_array) 

input: es:di -> bit stream structure 
es:[di] =word, bit stream length in bits 
es:[di+2] =word, bytes used to hold stream 
es:[di+4] ->array of bytes holding stream 

output: nc = programming ok 
cy = unable to program lea 

saves all regs 
;----------------~-----------------------------------------------------

code segment byte public 
assume cs:code 

pgm_gate_array proc 

push ax 
push bx 
push ex 
push di 

mov 
call 
jc 

mov 
add 

pgm_byte: 
mov 
mov 

inc 
pgm_bit: 

jcxz 
dee 
rol 
push 
and 
call 
pop 
jc 
dee 
jnz 
jmp 
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al,lca func program 
program_lca­
pgm_error 

cx,word ptr es: [di] 
di,4 

bl,8 
al,byte ptr es:[di] 

di 

pgm_done 
ex 
al,1 
ax 
al,1 
send lea bit 
ax 
pgm error 
bl -
pgm bit 
pgm=byte 

;set lea to programming mode 

;ex = number of bits to send 
;es:di -> byte array 

;8 bits/byte 
;al = packed array of bits 
;bit 7 is first to be sent 

;al, bit o, is bit to send 

;mask bit 
;and send 

;couldn't send bit 
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pgm_done: 

the LCA requires that three additional bits be sent after 
the configuration bit stream in order to complete configuration. 

call 
call 
call 

mov 
call 
jnc 

pgm_error: 

send lea bit 
send-lca--bit 
send-lea-bit 

al,lca func normal 
program lca­
pgm_finished 

;set lea to normal operation 

stc ;set error return code 

pgm_finished: 
pop di 
pop ex 
pop bx 
pop ax 
ret 

pgm_gate_array endp 

code ends 
end 

end of file 
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APPENDIX 7 

LCA Programming PAL 
conf ig 
B 
Robert Botchek 
Trantor Systems, Ltd 
January 26, 1988 
config pall618 

bdsel ao al a2 iow ior d5 d6 d7 gnd 
nc /reset /dpen /cl /co /len /dpout /dp /cclk vcc 

equations 

cl and co are latching outputs which are used as function selects. 
they are latched during a write to baseport+2. the meaning of the 
function selects are defined: 

cl co code function 
--------

0 0 0 releases d/-p for normal lea operation 
0 1 1 assert lea program (d/-p low) 
1 0 2 toggle -reset mode 
1 1 3 toggle cclk mode 

cl and co will glitch during latching and so should not be used 
as direct inputs to a combinatorial output. 

cl /bdsel * /a2 * al * /aO * /iow * d7 
+ bdsel * cl 
+ a2 * cl 
+ /al * cl 
+ ao * cl 
+ iow * cl 

cl.trst vcc 

co /bdsel * /a2 * al * /aO * /iow * d6 
+ bdsel * co 
+ a2 * co 
+ /al * co 
+ ao * co 
+ iow * co 

cO.trst vcc 

: dpen latches similarly to cl and co. when asserted it enables the 
: dp pin. 

dpen 
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+ 
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/bdsel * /a2 * al * /aO * /iow * d5 
bdsel * dpen 
a2 * dpen 
/al * dpen 
ao * dpen 
iow * dpen 
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dpen.trst vcc 

dp drives the d/-p input on the lea. when at vcc, the lea operates 
normally (assuming it has been programmed). when at gnd, the lea 
is in a program mode. 

d/-p is latched during functions 1 and 2 of (<cl,cO> = <O,l> or 
<cl,cO> = <l,O>) and any write to baseport+3 is given. an assertion 
of d/-p also enables the d/-p output. 

dp 
+ 
+ 
+ 
+ 
+ 
+ 

/bdsel * /a2 * al * ao * /iow * /cl * co 
/bdsel * /a2 * al * ao * /iow * cl * /cO 
bdsel * dp 
a2 * dp 
/al * dp 
/aO * dp 
iow * dp 

dp.trst dpen 

; reset drives the -reset line on the lea. it is asserted only during 
; a write to baseport+3 when function code 2 is selected. 

reset 
reset.trst 

/bdsel * /a2 * al * ao * /iow * cl * /co 
vcc 

cclk is the configuration clock used by the lea to latch incoming 
configuration data. the lea latches data on the rising edge of cclk. 
we keep cclk high all the time and only lower it during a write to 
baseport+3 when function code 3 is selected. thus, at the end of 
the write cycle the data will be latched. 

note: data is written to baseport+3, not baseport+2. this simplifies 
the timing of the cclk enable and the data output. 

cclk 
cclk.trst 

/bdsel * /a2 * al * ao * /iow * cl * co 
vcc 

len enables the board status latch onto the pc's data bus, it also 
enables the dpout output (below). 

board status includes the condition of the lea's done/-program 
(d/-p) pin, etc. 

len 
len.trst 

/bdsel * /a2 * al * /aO * /ior 
vcc 

; dpout drives data onto the pc•s data bus during a read from base 
; port+2 as enabled by len. dpout indicates program mode when high. 

dpout 
dpout.trst 

/dp 
len 
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Logic Cell™ Array 
M2064/M2018 

Features/Benefits 
• CMOS programmable Logic Cell Array (LCA) for replacement 

of standard logic 

• Completely reconfigurable by the user in the final system 

• High performance equivalent to TTL SSl/MSI 

- 33 MHz flip-flop toggle rate (-33 speed grade) 

- 50 MHz flip-flop toggle rate (-50 speed grade) 

- 70 MHz flip-flop toggle rate (·70 speed grade) 

• User configurable logic functions, interconnect and 1/0 for 
maximum flexiblllty 

• 641100 user-Configurable Logic Blocks (CLBs) providing 
usable gate equivalency of up to 1200/1800 gates 

• 58174 individually-configurable 110 pins allowing any mix of 
inputs, outputs or bidirectional signals (68184-pin package) 

• User -selectable TTL or HCMOS input threshold levels 

• Multiple configuration modes for greatest flexibility and 
ease-of-use 

• Verification feature allows user to check configuration data 

• User-selectable security feature prevents read-back of 
configuration data 

• Read-back of internal register states for system debug 

• On-chip clock oscillator and clock buffer circuits provide 
flexible internal and external clocking functions 

• Master reset of all Internal register elements in addition to 
user-configurable Reset and/or Set control of Individual CLB 
storage elements 

• Complete development system support 

General Description 
The Logic Cell Array (LCA) is a high-density CMOS-integrated 
circuit available from Monolithic Memories. Its user­
programmable array architecture is made up of three types of 
configurable elements: Input/Output Blocks, Logic Blocks and 
Interconnect. The designer can define individual 1/0 blocks for 
interface to external circuitry, define logic blocks to implement 
logic functions and define interconnection network to compose 
larger scale logic functions. The XACT™ Development system 
provides interactive graphic design capture and automatic 
routing. Both logic simulation and in-circuit emulation are 
available for design verifi.cation. 

The Logic Cell Array is available in a variety of logic capacities, 
package styles, temperature ranges and speed grades. 

LOGIC CON FIG- CONFIG· 
PART CAPACITY URABLE USER URATION 

NUMBER (USABLE LOGIC I/Os PROGRAM 
GATES) BLOCKS (BITS) 

M2064 1200 64 58 12040 

M2018 1800 100 74 17880 

The Logic Cell Array's logic functions and interconnections are 
determined by data stored in inlernal static memory cells. On­
chip logic provides for automatic loading of configuration data 
at power-up. The program data can reside in an EEPROM, 
EPROM or ROM on the circuit board or on a floppy disk or hard 
disk. The program can be loaded in a number of modes to 
accommodate various system requirements. 

Package Availability 

48-PIN 
68-PIN 68-PIN 84-PIN 84·PIN 

PART PLASTIC 
'PLCC PGA PLCC PGA 

NUMBER DIP 
NL68 P68 NL84 P84 

N48 

M2064 x x x 
M2018 x x x x 

Ordering Information 

M2018-70 C NL 84 

PART NUMBER~ [NUMBER OF PINS 
2064 (1200 Gates, 58 IOB) 48 (48 Pins) 
2018 (1800 Gates, 74 IOB) 68 (68 Pins) 

84(84Pins) 
SPEED GRADE---~ 

-33 (33 MHz Toggle Rate) PACKAGE TYPE 
-50 (50 MHz Toggle Rate) NL = Pin Molded Chip 
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Pin Description 
PWRDWN 
An active low power-down input stops all internal activity to 
minimize VCC power and puts all output buffers in a high­
impedance state. Configuration is retained, however, internal 
storage elements are Reset. When the PWRDWN pin returns 
HIGH, the device returns to operation with the same sequence 
of reset, buffer enable and DONE, PROGRAM as at the 
completion of configuration. 

MO,RTRIG 
As Mode 0, this input and M1, M2 are sampled before the start 
of configuration to establish the configuration mode to be 
used. 

As a read trigger, an input transition to a HIGH, after 
configuration is complete, will initiate a readback of 
configuration and storage element data. This operation may be 
limited to a single request, or be inhibited altogether, by 
selecting the appropriate readback option when generating the 
bit stream. 

M1,RDATA 
As Mode 1, this input and MO, M2 are sampled before the start 
of configuration to establish the configuration mode to be 
used. 

As an active-low read data; after configuration is complete, 
this pin is the output of the readback data. 

M2 
As Mode 2, this input and MO, M1 are sampled before the start 
of configuration to establish the configuration, mode to be 
used. After configuration, this pin becomes a user-pro­
grammable 1/0. 

HOC 
High during configuration is held at a HIGH level by the LCA 
until after configuration. It is intended to be available as a 
control indication that configuration is not complete. After 
configuration, this pin is a user 1/0. 

LDC 
Low during configuration is held at a LOW level by the LCA until 
after configuration. It is intended to be available as a control 
indication that configuration is not completed. It is particularly 
useful in master mode as a LOW enable for an EPROM. After 
configuration, this pin is a user 1/0. If used as a LOW EPROM 
enable, it should be programmed as a HIGH after 
configuration. 

RESET 
This is an active-low input which has three functions. Prior to 
the start of configuration, a LOW input will delay the start of the 
configuration process. An internal circuit senses the 
application of power and begins a minimal time-out cycle on the 
order of 100 ms. When the time-out and RESET are complete, 
the levels of the "M" mode lines are sampled and configuration 
begins. If RESET is asserted during a configuration, the LCA is 
reinitialized and will restart the configuration at the termination 
of RESET. If RESET is asserted after configuration is 
complete, it will provide an asynchronous reset of all 108 and 
CLB storage elements of the LCA. 
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DONE,PROG 
The DONE open drain output is configurable with or without a 
pull-up resistor of about 3 KO. At the completion of con­
figuration, the circuitry of the LCA becomes active in a 
synchronous order and one configuration clock cycle later 
DONE is asserted. Once configuration is done, a HIGH-to­
LOW transition of this program pin will cause an initialization of 
the LCA and start a reconfiguration if that mode is selected in 
the current configuration. 

XTL1 
This user 1/0 pin may be configured to operate as the output of 
an amplifier usable with an external crystal and bias circuitry to 
form an oscillator. 

XTL2 
This user 1/0 pin may be configured to operate as the input of 
an amplifier usable with an external crystal and bias circuitry to 
form an oscillator. 

CCU< 
During configuration, configuration clock is an output of an 
LCA in either master or peripheral mode. LCAs in slave mode 
use it as a clock input. During a readback operation, it is an 
input clock for the configuration data being output. 

DOUT 
This user 1/0 pin is used during configuration to output serial 
configuration data out for daisy-chained slaves' data in. 

DIN 
This user 1/0 pin is used as serial data in during slave or 
peripheral configuration. This pin is DO in master configuration 
mode. 

CSO, CS1, CS2, WRT 
These four inputs represent a set of signals, three active low 
and one active high, which are used in the peripheral mode to 
control configuration data entry. The assertion of all four 
generates a LOW CCLK and shifts DOUT data. The removal of 
any assertion clocks in the DIN data present and causes a 
HIGH CCLK. In master mode, these pins become part of the 
parallel configuration byte (D4, 03, D2, D1 ). After configuration 
is complete, they are user-programmed 1/0. 

RCLK 
During master mode configuration, this pin represents a read 
clock of an external memory device. After configuration is 
complete, this pin becomes a user-programmed 1/0. 

00-07 
This set of eight pins represents the parallel configuration data 
byte for the master mode. After configuration is complete, they 
are user-programmed 1/0. 

AO-A15 
This set of sixteen pins presents an address output for an 
external configuration memory during master mode. After 
configuration is complete, they are user-programmed 1/0. A 12 
through A 15 are not available in packages with less than sixty­
eight pins. 

1/0 
A pin which may be programmed by the user to be input and/or 
output following configuration. Some of these pins present a 
high-impedance pull-up or perform other functions before 
configuration is complete. 
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Functional Description 
The general structure of a Logic Cell Array is shown in Figure 1. 
The elements of the array include three categories of user­
programmable elements: 1/0 Blocks, Configurable Logic 
Blocks and Programmable Interconnections. The 1/0 Blocks 
provide an interface between the logic array and the device 
package pins. The Configurable Logic Blocks perform user­
specified logic functions, and the interconnect resources are 

CONFIGURABLE 

programmed to form networks that carry logic signals among 
blocks. 

Configuration of the Logic Cell Array is established through a 
distributed array of memory cells. The XACT development 
system generates the program used to configure the Logic Cell 
Array. The Logic Cell Array includes logic to implement 
automatic configuration. 

LOGIC BLOCK~ 

0 0 -[} 0 0 
-[} 0 O!O 0 -[} 

INTERCONNECT AREA 

-[} 0 OlO 0 -[} 
-[} 0 0 0 0 -[} I 

Figure 1. Logic Cell Array Structure 

Configuration Memory 

The configuration of the Monolithic Memories' Logic Cell Array 
is established by programming memory cells which determine 
the logic functions and interconnections. The memory loading 
process is independent of the user logic functions. 

The static memory cell used for the configuration memory in 
the Logic Cell Array has been designed specifically for high 
reliability and noise immunity. Based on this design, integrity of 
the LCA configuration memory is assured even under adverse 
conditions. Compared with other programming alternatives, 
static memory provides the best combination of high density, 
high performance, high reliability and comprehensive 
testability. As shown in Figure 2, the basic memory cell 
consists of two CMOS inverters plus a pass transistor used for 
writing data to the cell. The cell is only written during 

configuration and only read during readback. During normal 
operation the pass transistor is "off" and does not affect the 
stability of the cell. This is quite different from the normal 
operation of conventional memory devices, in which the cells 
are continuously read and written. 

The outputs Q and Q control pass-transistor gates directly. 
The absence of sense amplifiers and the output capacitive 
load provide additional stability to the cell. Due to the structure 
of the configuration memory cells, they are not affected by 
extreme power supply excursions or very high levels of alpha 
particle radiation. In reliability testing no soft errors have been 
observed, even in the presence of very high doses of alpha 
radiation. 
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READ or WRITE 

DATA 

t---+--,~- a 
CONFIGURATION 
CONTROL 

Figure 2. Configuration Memory Cell 

Input/Output Block 

Each user-configurable 1/0 block (IOB) provides an interface 
between the external package pin of the device and the 
internal logic. Each 1/0 block includes a programmable input 
path and a programmable output buffer. It also provides input 
clamping diodes to provide protection from electrostatic 
damage, and circuits to protect the LCA from latch-up due to 
input currents. Figure 3 shows the general structure of the 1/0 
block. 

The input buffer portion of each 1/0 block provides threshold 
detection to translate external signals applied to the package 
pin to internal logic levels. The input buffer threshold of the 1/0 
blocks can be programmed to be compatible with either TTL 
(1.4 V) or CMOS (2.2 V) levels .. The buffered input signal drives 
both the data input of an edge-triggered D-type flip-flop and 
one input of a two-input multiplexer. The output of the flip-flop 

D Qt---~ 

provides the other input to the multiplexer. The user can select 
either the direct input path or the registered input, based on the 
content of the memory cell controlling the multiplexer. The 1/0 
blocks along each edge of the die share common clocks. The 
flip-flops are reset during configuration as well as by the 
active-low chip RESET input. 

Output buffers in the 1/0 blocks provide 4-mA drive for high 
fan-out CMOS or TTL-compatible signal levels. The output data 
(driving 1/0 block pin 0) is the data source for the 1/0 block 
output buffer. Each 1/0 block output buffer is controlled by the 
contents of two configuration memory cells which turn the 
buffer ON or OFF or select logical three-state buffer control. 
The user may also select the output buffer three-state control 
(1/0 block pin TS). When this 1/0 block output control signal is 
HIGH (a logic "1 ") the buffer is disabled and the package pin is 
high-impedance. 

TS (OUTPUT ENABLE) 

OUT 

IN 

l/OCLOCK 
PROGRAM-CONTROLLED 

= MULTIPLEXER 

Figure 3. 1/0 Block 
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Configurable Logic Block 

An array of Configurable Logic Blocks (CLBs) provides the 
functional elements from which the user's logic is constructed. 
The logic blocks are arranged in a matrix in the center of the 
device. The M2064 has sixty-four such blocks arranged in an 
eight-row by eight-column matrix. The M2018 has one hundred 
logic blocks arranged in a ten by ten matrix. Each logic block 
has a combinatorial logic section, a storage element, and an 

A 
B 

COMB. INPUTS c LOGIC 
D 

ill 
>~ 
:!:<·:«•:•:.:O:•:·~:<<•'.•:«•:•:«•:.'h!.:-..._:.:-!-:•»Y.-."-:<<<<<~"! 

G 

F 

internal routing and control section. Each CLB has four 
general-purpose inputs; A, B, C and D; and a special clock 
input (K), which may be driven from the interconnect adjacent 
to the block. Each CLB also has two outputs, X and Y, which 
may drive interconnect networks. Figure 4 shows the 
resources of a Configurable Logic Block. 

x 

OUTPUTS 

y 

K 
CLOCK 

Figure 4. Configurable Logic Block 

The logic block combinatorial logic uses a table look-up 
memory to implement Boolean functions. This technique can 
generate any logic function of up to four variables with a high­
speed sixteen-bit memory. The propagation delay through the 
combinatorial network is independent of the function 

generated. Each block can perform any function of four 
variables or any two functions of three variables each. The 
variables may be selected from among the four inputs and the 
block's storage element output "Q". Figure 5 shows various 
options which may be specified for the combinatorial logic. 

B--<'----1 

C--;;;----1 

D 

Nf'f 
FUNCTION 

OF4 
VARIABLES 

OPTION! 

1 FUNCTION OF 4 
VARIABLES 

A 

B 

F C 

D 

D 

ANY 
FUNCTION 

OF3 
VARIABLES 

ANY 
FUNCTION 

OF3 
VARIABLES 

OPTION2 

2 FUNCTIONS OF 3 
VARIABLES 

G 

A-•-----t 
B-<••----1 

c-•1----; 
D 

A-''----1 

e-.. ----1 

c-.:,----1 

D 

ANY 
FUNCTION 

OF3 
VARIABLES 

ANY 
FUNCTION 

OF3 
VARIABLES 

OPTION3 

DYNAMIC SELECTION OF 
2 FUNCTIONS OF 3 

VARIABLES 

Figure 5. CLB Combinatorial Logic Options 

B 
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If the single four-variable configuration is selected (Option 1 ), 
the F and G outputs are identical. If the two-function 
alternative is selected (Option 2), logic functions F and G may 
be independent functions of three variables each. The three 
variables can be selected from among the four logic block 
inputs and its storage element output Q. A third form of the 
combinatorial logic (Option 3) is a special case of the two­
function form in which the B input dynamically selects between 
the two function tables providing a single merged logic function 
output. This dynamic selection allows some five-variable 
functions to be generated from the four block inputs and 
storage element Q. Combinatorial functions are restricted in 
that one may not use both its storage element output Q and the 
input variable of the logic block pin D in the same function. 

If used, the storage element in each Configurable Logic Block 
(Figure 6) can be programmed to be either an edge-sensitive 
D-type flip-flop or a level-sensitive D latch. The clock or enable 
for each storage element can be selected from: 

• The special-purpose clock input K 

• The general-purpose input C 

• The combinatorial function G 

SET 

F --------~ D Q 

K --<''----l~ 
c--,~-----1 

RES 

Figure 6. CLB Storage Element 

The user may also select the clock active sense within each 
logic block. This programmable inversion eliminates the need 
to route both phases of a clock signal throughout the device. 

The storage element data input is supplied from the function F 
output of the combinatorial logic. Asynchronous SET and 
RESET controls are provided for each storage element. The 
user may enable these controls independently and select their 
source. They are active-high inputs and the asynchronous 
reset is dominant. The storage elements are reset by the 
active-low chip RESET pin as well as by the initialization phase 
preceding configuration. If the storage element is not used, it 
is disabled. 
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The two block outputs, X and Y, can be driven by either the 
combinatorial functions, F or G, or the storage element output 
Q (Figure 4). Selection of the outputs is completely 
interchangeable and may be made to optimize routing 
efficiencies of the networks interconnecting the logic blocks 
and 1/0 blocks. 

Programmable Interconnect 

Programmable interconeciion resources in the Logic Cell Array 
provide routing paths to connect inputs and outputs of the 1/0 
and logic blocks into desired networks. All interconnections 
are composed of metal segments, with programmable 
switching points provided to implement the necessary routing. 
Three types of resources accommodate different types of 
networks: 

• General purpose interconnect 

•Long lines 

• Direct connection 

General-Purpose Interconnect 

General-purpose interconnect, as shown in Figure ?a, is 
composed of four horizontal metal segments between the rows 
and five vertical metal segments between the columns of logic 
and 1/0 blocks. Each segment is only the "height" or "width" of 
a logic block. Where these segments would cross at the 
intersections of rows and columns, switching matrices are 
provided to allow interconnections of metal segments from the 
adjoining rows and columns. Switches in the switch matrices 
and on block outputs are specially designed transistors, each 
controlled by a configuration bit. 

B 
c 
K 

e_ 
.~--~ 

I 

_J SEE FIG. 7b 

e 

Figure 7a. General-Purpose Interconnect 
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Logic block output switches provide contacts to adjacent 
general interconnect segments and therefore to the switching 
matrix at each end of those segments. A switch matrix can 
connect an interconnect segment to other segments to form a 
network. Figure 7a shows the general interconnect used to 
route a signal from one logic block to three other logic blocks. 
As shown, combinations of closed switches in a switch matrix 
allow multiple branches for each network. The inputs of the 
logic or 1/0 blocks are multiplexers that can be programmed 
with configuration bits to select an input network from the 
adjacent interconnect segments. Since the switch 
connections to block inputs are undirectional (as are block 
outputs) they are usable only for input connections. The 
development system software provides automatic routing of 
these interconnections. Interactive routing is also available for 
design optimization. This is accomplished by selecting a 
network and then toggling the states of the interconnect points 
by selecting them with the "mouse". In this mode, the 
connections through the switch matrix may be established by 

selecting pairs of matrix pins. The switching matrix 
combinations are indicated in Figure 7b. 

Special buffers within the interconnect area provide periodic 
signal isolation and restoration for higher general interconnect 
fan-out and better performance. The repowering buffers are 
bidirectional, since signals must be able to propagate in either 
direction on a general interconnect segment. Direction controls 
are automatically established by the Logic Cell Array 
development system software. Repowering buffers are 
provided only for the general-purpose interconnect since the 
direct and long-line resources do not exhibit the same R-C 
delay accumulation. The Logic Cell Array is divided into nine 
sections with buffers automatically provided for general 
interconnect at the boundaries of these sections. These 
boundaries can be viewed with the development system. For 
routing within a section, no buffers are used. The delay 
calculator of the XACT development system automatically 
calculates and displays the block, interconnect and buffer 
delays for any selected paths. 

5-VERTICAL GENERAL INTERCONNECT 

2 

8 

7 

6 5 

3 

4 3 

2 

8 3 4 

7 4 

6 5 

TO 1 

2 

3 

4 

3 

4 

2 

FROM 
2 3 4 

1 • VALID CONNECTION 
0 ~ INVALID CONNECTION 

Figure 7b. Interconnection Switching Matrix 
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Long Lines 

Long lines, shown in Figure 8a, run both vertically and 
horizontally the height or width of the interconnect area. Each 
vertical interconnection column has two long lines; each 
horizontal row has one, with an additional long line adjacent to 
each set of 1/0 blocks. The long lines bypass the switch 
matrices and are intended primarily for signals that must travel 
a long distance or must have minimum skew among multiple 
destinations. 

B 
J SWITCH1 

MATRIX 
1 J 

:B 
J L 

SWITCH 
MATRIX 

L J 

B 
TWO VERTICAL 

LONG LINES 

A global buffer in the Logic Cell Array is available to drive a 
single signal to all B and K inputs of logic blocks. Using the 
global buffer for a clock provides a very low skew, high fan-out 
synchronized clock for use at any or all of the logic blocks. At 
each block, a configuration bit for the K input to the block can 
select this global line as the storage element clock signal. 
Alternatively, other clock sources can be used. 

B 
B 
B 

GLOBAL 
LONG LINE 

HORIZONTAL 
LONG LINE 

Figure Ba. Long Line Interconnect 

A second buffer below the bottom row of the array drives a 
horizontal long line which, in turn, can drive a vertical long line 
in each interconnection column. This alternate buffer also has 
low skew and high fan-out capability. The network formed by 
this alternate buffer's long lines can be selected to drive the B, 
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C or K inputs of the logic blocks. Alternatively, these long lines 
can be driven by a logic or 1/0 block on a column-by-column 
basis. This capability provides a common, low-skew clock or 
control line within each column of logic blocks. Interconnec­
tions of these long lines are shown in Figure 8b. 
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Figure Sb. M2064 Long Lines, 1/0 Clocks, 1/0 Direct Interconnect 
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Dtn!ct Interconnect 

Direct interconnect, shown in Figure 9, provides the most 
efficient implemer·tation of networks between adjacent logic or 
110 blocks. Signals routed from block to block by means of 
direct interconnect exhibit minimum interconnect propagation 
and use minimum interconnect resources. For each CLB, the X 
output may be connected directly to the C or D inputs of the 
CLB above and to the A or B inputs of the CLB below it. The Y 

output can use direct interconnect to drive the B input of the 
block immediately to its right. Where logic blocks are adjacent 
to 1/0 blocks, direct connect is provided to the 110 block input 
(I) on the left edge of the die, the output (0) on the right edge, 
or both on 1/0 blocks at the top and bottom of the die. Direct 
interconnections of 110 blocks with CLBs are shown in Figure 
Sb. 

Figure 9. Direct Interconnect 

Crystal Osclllator 

An internal high-speed inverting amplifier is available to 
implement an on-chip crystal oscillator. It is associated with 
the auxiliary clock buffer in the lower right corner of the die. 
When configured to drive the auxiliary clock buffer, two special 
adjacent user 1/0 blocks are also configured to connect the 
oscillator amplifier with external crystal oscillator components, 
as shown in Figure 10. This circuit becomes active before 
configuration is complete in order to allow the oscillator to 
stabilize. Actual internal connection is delayed until completion 
of configuration. The feedback resistor R1 between output and 
input, biases the amplifier at threshold. It should be as large a 
value as .practical to minimize loading of the crystal. The 
inversion of the amplifier, together with the R-C networks and 
crystal, produces the 360-degree phase shift of the Pierce 
oscillator. 
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A series resistor R2 may be included to add to the amplifier 
output impedance when needed for phase-shift control or 
crystal resistance matching or to limit the amplifier input swing 
to control clipping at large amplitudes. Excess feedback 
voltage may be adjusted by the ratio of C2/C1. The amplifier is 
designed to be used over the range from 1 MHz up to one-half 
the specified CLB toggle frequency. Use at frequencies below 
1 MHz may require individual characterization with respect to a 
series resistance. Operation at frequencies above 20 MHz 
generally requires a crystal to operate in a third overtone 
mode, in which the fundamental frequency must be 
suppressed by the R-C networks. When the amplifier does not 
drive the auxiliary buffer, these 1/0 blocks and their package 
pins are available for general user 1/0. 
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ALTERNATE 
CLOCK BUFFER 

SUGGESTED COMPONENT VALUES 
R1 1-4Mn 
R2 0-1 Kn 

XTAL2 
(IN) 

(may be required for low frequency, phase 
shift and/or compensation level for crystal Q) ~ C1 

C1, C2 5-20 pf 
Y1 1-10 MHz AT cut 

ON-CHIP 

D 
D 

Figure 10. Crystal Oscillator 

Power 
Power Distribution 

EXTERNAL 

XTAL1 XTAL2 

48DIP 33 30 

68 PLCC 46 43 

68 PGA J10 L10 

84 PLCC 56 53 

84 PGA K11 L11 

Power for the LCA is distributed through a grid to achieve high 
noise immunity and isolation between logic and 1/0. For 
packages having more than tourty-eight pins, two VCC pins 
and two ground pins are provided (see Figure 11 ). Inside the 
LCA, a dedicated VCC and ground ring surrounding the logic 
array provides power to the 1/0 drivers. An independent matrix 
of VCC and ground lines supplies the interior logic of the 
device. This power distribution grid provides a stable supply 
and ground tor all internal logic, providing the external package 
power pins are appropriately decoupled. Typically a 0.1-µF 

capacitor connected between the VCC and ground pins near 
the package will provide adequate decoupling. 

Vee 

Output butters capable of driving the specified 4-mA loads 
under worst-case conditions may be capable of driving 25 to 30 a 
times that current in a best case. Noise can be reduced by -
minimizing external load capacitance and reducing 
simultaneous output transitions in the same direction. It may 
also be beneficial to locate heavily-loaded output buffers near 
the ground pads. Multiple VCC and ground pin connections are 
required for package types which provide them. 

GND 
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Figure 11. LCA Power Distribution 
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Power Dissipation 

The Logic Cell Array exhibits the low power consumption 
characteristic of CMOS ICs. Only quiescent power is required 
for the LCA configured for CMOS input levels. The TTL input 
level configuration option requires additional power for level 
shifting. The power required by the static memory cells which 
hold the configuration data is very low and may be maintained 
in a power-down mode. 

Typically most of power dissipation is produced by capacitive 
loads on the output buffers, since the power per output is 25 
µW/pF/MHz. Another component of 1/0 power is the DC loading 
on each output pin. For any given system, the user can 
calculate the power requirement based on the resistive loading 
of Ifie devices driven by the Logic Cell Array. 

(mW) 

Internal power supply dissipation is a function of clock 
frequency and the number of nodes changing on each clock. In 
an LCA the fraction of nodes changing on a given clock is 
typically low (10-20%). For example, in a 16-bit binary counter, 
the average clock produces a change in slightly less than two 
of the sixteen bits. In a 4-input AND gate there will be two 
transitions in sixteen states. Typical global clock buffer power 
is about 3 mW/MHz for the M2064 and 4 mW/MHz for the 
M2018. With a "typical" load of three general interconnect 
segments, each CLB output requires about 0.4 mW/MHz of its 
output frequency. Graphs of power versus operating fre­
quency are shown in Table 1. 
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2 +_L_-+-~z.__-+--1---+-.1"1-v __ -1----+---1-~ .s IL' z 17 .• 
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Table 1. Typical LCA Power Consumption by Elament 
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Programming 
Configuration data to define the function and interconnection 
within a Logic Cell Array are loaded automatically at power-up 
or upon command. Several methods of automatically loading 
the required data are designed into the Logic Cell Array and are 
determined by logic levels applied to mode selection pins at 
configuration time. The form of the data may be either serial or 
parallel, depending on the configuration mode. The pro­
gramming data are independent of the configuration mode 

selected. The state diagram of Figure 12 illustrates the 
configuration process. 

POWER APPLIED 

1 
POWER-ON-RESET 

TIME DELAY 

RESET 
ASSERTED 

FIRSTCCLK 
ORWRTCYCLE 

(RESET 
UNASSERTED) 

Input thresholds for user 1/0 pins can be selected to be either 
TTL-compatible or CMOS-compatible and remain in that state 
until the LCA begins operation. If the user has selected CMOS 
compatibility, the input thresholds are changed to CMOS levels 
during configuration. 

CONFIGURATION 
DONE 

DONEIPROG LOW 
TRANSITION 
(RE PROGRAMMABILITY 
OPTION DISABLED) 

DONEIPROG LOW TRANSITION 
(REPROGRAMMABILITY OPTION ENABLED) 

Figure 12. Configuration State Diagram 

Figure 13 shows the specific data arrangement for the M2064 
device. Future products will use the same data format to 
maintain compatibility between different devices of the 
Monolithic Memories' product line, but they will have different 
sizes and numbers of data frames. For the M2064 

configuration requires 12,038 bits for each device. For the 
M2018, the configuration of each device requires 17,878 bits. 
The M2064 uses 160 configuration data frames and the M2018 
uses 197. 

1111 
0010 
< 24-BIT LENGTH COUNT> 
1111 

0 <DATA FRAME #001 > 111 
0 <DATAFRAME#002> 111 
0 <DATAFRAME#003> 111 

0 <DATAFRAME#159> 111 
0 <DATAFRAME#160> 111 

1111 

) 

DUMMY BITS (4 BITS MINIMUM) 
PREAMBLE CODE 
CONFIGURATION PROGRAM LENGTH 
DUMMY BITS (4 BITS MINIMUM) 

M2064: 160 CONFIGURATION DATA FRAMES 
M2018: 196 CONFIGURATION DATA FRAMES 

(EACH FRAME CONSISTS OF: 
A START BIT (0) 
AN 87-BIT DATA FIELD 
2 OR MORE DUMMY BITS 

POSTAMBLE CODE (4 BITS MINIMUM) 

Figure 13. M2064 Configuration Data Arrangement 

REPEATED FOR EACH LOGIC 
CELL ARRAY IN A DAISY CHAIN 
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The configuration bit stream begins with preamble bits, a 
preamble code and a length count. The length count is loaded 
into the control logic of the Logic Cell Array and is used to 
determine the completion of the configuration process. When 
configuration is initiated, a 24-bit length counter is set to o and 
begins to count the total number of configuration clock cycles 
applied to the device. When the current length count equals 
the loaded length count, the configuration process is 
complete. Two clocks before completion, the internal logic 
becomes active and is reset. On the next clock, the inputs and 
outputs become active as configured and consideration should 
be given to avoid configuration signal contention. (Attention 
must be paid to avoid contention on pins which are used as 
inputs during configuration and become outputs in operation.) 
On the last configuration clock, the completion of configuration 
is signalled by the release of the DONE, PROG pin of the 
device as the device begins operation. This open-drain output 
can be AND-tied with multiple Logic Cell Arrays and used as an 
active-high READY or active-low, RESET, to other portions of 
the system. Hi~uring configuration (HOC) and low during 
configuration (LDC), are released one CCLK cycle before 
DONE is asserted. In master mode configurations, it is 
convenient to use LDC as an active-low EPROM chip enable. 

As each data bit is supplied to the LCA, it is internally 
assembled into a data word. As each data word is completely 
assembled, it is loaded in parallel into one word of the internal 
configuration memory array. The last word must be loaded 
before the current length count compare is true. If the 
configuration data are in error, e.g., PROM address lines 
swapped, the LCA will not be ready at the length count and the 
counter will cycle through an additonal complete count prior to 
configuration being "done". 

Figure 14 shows the selection of the configuration mode based 
on the state of the mode pins MO and M1. These package pins 
are sampled prior to the start of the c:Onfiguration process to 
determine the mode to be used. Once configuration is DONE 
and subsequent operation has begun, the mode pins may be 
used to perform data readback, as discussed later. An 
additional mode pin, M2, must be defined at the start of 
configuration. This package pin is a user-configurable 1/0 after 
configuration is complete. 

MODE PIN 
MODE SELECTED 

MO M1 M2 

0 0 0 Master serial 

0 0 1 Master LOW mode 

0 1 1 Master HIGH mode 

1 0 1 Peripheral mode 

1 1 1 Slave mode 

Master LOW addresses begin at 0000 and increment. 
Master HIGH addresses begin at FFFF and decrement. 

Figure 14. Configuration Mode Selection 
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lnltlallzation Phase 

When power is applied, an internal power-on-reset circuit is 
triggered. When VCC reaches the voltage at which the LCA 
begins to operate (2.5 to 3 Volts), the chip is initialized, 
outputs are made high-impedance and a time-out is initiated to 
allow time for power to stabilize. This time-out (15 to 35 ms) is 
determined by a counter driven by a self-generated, internal 
sampling clock that drives the configuration clock (CCLK) in 
master configuration mode. This internal sampling clock will 
vary with process, temperature and power supply over the 
range of 0.5 to 1 .5 MHz. LCAs with mode lines set for master 
mode will time-out of their initialization using a longer counter 
(60 to 140 ms) to assure that all devices, which it may be 
driving in a daisy chain, will be ready. Configuration using 
peripheral or slave modes must be delayed long enough for this 
initialization to be completed. 

The initialization phase may be extended by asserting the 
active-low external RESET. If a configuration has begun, an 
assertion of RESET will initiate an abort, including an orderly 
clearing of partially loaded configuration memory bits. After 
about three clock cycles for synchronization, initialization will 
require about 160 additional cycles of the internal sampling 
clock (197 for the M2018) to clear the internal memory before 
another configuration may begin. The same is true of a 
configured part in which the reconfigurable control bit is set. 
When a HIGH-to-LOW transition on the DONE, PROG package 
pin is detected, thereby initiating a reprogram, the 
configuration memory is cleared. This insures an orderly 
configuration in which no internal signal conflicts are generated 
during the loading process. 

Master Mode 

In master mode, the Logic Cell Array automatically loads the 
configuration program from an external memory device. Figure 
1 Sa shows an example of the master mode connections 
required. The Logic Cell Arr~vides sixteen address 
outputs and the control signals RCLK (read clock), HDC (high 
during configuration) and LDC (low during configuration) to 
execute read cycles from the external memory. Parallel eight­
bit data words are read and internally serialized. As each data 
word is read, the least significant bit of each byte, normally DO, 
is the next bit in the serial stream. 

Addresses supplied by the Logic Cell Array can be selected by 
the mode lines to begin at address O and incremented to read 
the memory (master low mode), or they can begin at address 
FFFF Hex and be decremented (master high mode). This 
capability is provided to allow the Logic Cell Array to, share 
external memory with another device, such as a 
microprocessor. For example, if the processor begins its 
execution from low memory, the Logic Cell Array can load itself 
from high memory and enable the processor t~ execution 
once configuration is completed. The DONE, PROG output pin 
can be used to hold the processor in a Reset state until the 
Logic Cell Array has completed the configuration process. 

The master serial mode uses serial configuration data, 
synchronized by the rising edge of RCLK, as in Figure 15b. 
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Figure 15a. Master Low Address Configuration 

Peripheral Mode 

Peripheral mode provides a simplified interface through which 
the device may be loaded as a processor peripheral. Figure 16 
shows the peripheral mode connections. Processor write 
cycles are decoded from the common assertion of the active­
low write strobe {WRT), and two active-low and one active-high 
chip selects (CSO, CS1, CS2). If all these signals are not 
available, the unused inputs should be driven to their 
respective active levels. The Logic Cell Array will accept one 
bit of the configuration program on the data input (DIN) pin for 
each processor write cycle. Data is supplied in the serial 
sequence described earlier. 

Since only a single bit from the processor data bus is loaded 

voe 

l 
GENERAL­
PURPOSE 
USER 110 

PNS 

)
ALL 
OTHER 
PINS 

LCA 
RESET 

DIN 

RCLK 

DATA 

CLK 

CE 

OE 

SERIAL 
MEMORY 

RCLK~ 
(OUTPUT) ~t::::=tl~ .--

DIN =xx,.-----.x 
DOUT 

(OUTPUT) 

CCLK 
(OUTPUT) 

Figure 15b. Master Serial Mode Configuration 

per cycle, the loading process involves the processor reading 
a byte or word of data, writing a bit of the data to the Logic Cell 
Array, shifting the word and writing a bit until all bits of the word 
are written, then continuing in the same fashion with the next 
word, etc. After the configuration program has been loaded, an 
additional three clocks (a total of three more than the length 
count) must be supplied in order to complete the configuration 
process. When more than one device is being used in the 
system, each device can be assigned a different bit in the 
processor data bus, and multiple devices can be loaded on 
each processor write cycle. This "broadside" loading method 
provides a very easy and time-efficient method of loading 
several devices. 
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ADDRESS DATA 
BUS WR BUS 

+SV +SV +SV 

MO M1 PWR 
OWN 

WAT 
DIN CCLI< cso 
WAT CSI 

LCA DOUT 

M2 CS2 
ADDRESS cso HOC 
DECODE 
LOGIC LDC GENERAL- CCLK 

PURPOSE (OUTPUT) 
USER VO 

'"l DIN OTHER 
CS1 PINS 

CS2 DOUT 

DIP 
(OUTPUT) 

RESET 

Figure 16. Peripheral Mode Configuration 

Slave Mode 

Slave mode, Figure 17, provides the simplest interface for 
loading the Logic Cell Array configuration. Data is supplied in 
conjunction with a synchronizing clock, For each LOW-to­
HIGH input transition of configuration clock (CCLK), the data 
present on the data input (DIN) pin is loaded into the internal 
shift register. Data may be supplied by a processor or by other 
special circuits. Slave mode is used for downstream devices in 

a daisy-chain configuration. The data for each slave LCA are 
supplied by the preceding LCA in the chain, and the clock is 
supplied by the lead device, which is configured in master or 
peripheral mode. After the configuration program has been 
loaded, an additional three clocks (a total of three more than 
the length count) must be supplied in order to complete the 
configuration process. 

+SV 

MO M1 PWRDWN 

MICRO LCA 
COMPUTER 

STAB CCLK OOUT 

DO DIN M2 

01 HOC 

110 02 LDc GENERAL-PORT 
03 

PURPOSE 
USER VO 

04 ~1 OTHER 
05 PINS 

06 

07 DIP 

RESET RESET 

DIN=x BITN 

~ 
BITN+1 

I· ~ CCLK '-' I m DOUT BITN-1 BITN (OUTPUT) 

Figure 17. Slave Mode Configuration 
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Daisy Chain 

The daisy-chain programming mode is supported by Logic Cell 
Array in all programming modes. In master mode and peripheral 
mode, the LCA can act as a source of data and control for 
slave devices. For example, Figure 18 shows a single device in 
master mode. with two devices in slave mode. The master 
mode device reads the external memory and begins the 
configuration loading process for all of the devices. 

The data begin with a preamble and a length count which is 
supplied to all devices at the beginning of the configuration. 
The length count represents the total number of cycles 
required to load all of the devices in the daisy chain. After 

+5V +5V 

l MO M1 PWRDWN 

CCLK 

DOUT 

M2 

HOC 

GENERAL-
RCLK A15 A15 

PURPOSE A14 A14 
USER VO 

PNS A13 A13 
EPROM 

ALL A12 A12 
OTHER 
PINS A11 A11 

LCA A10 A10 
MASTER 

A9 A9 

07 AS AS 

06 A7 A7 07 

05 A6 AS 06 

04 A5 A5 05 

03 A4 A4 04 

02 A3 A3 03 

01 A2 A2 02 

00 A1 A1 01 

AO AO DO 

CiiC OE 

RESET oifi CE 

REPROGRAM 

SYSTEM RESET 

loading the length count, the lead device will load its 
configuration data while providing a HIGH DOUT to downstream 
devices. When the lead device has been loaded and the 
current length count has not reached the full value, memory 
access continues. Data bytes are read and serialized by the 
lead device. The data are passed through the lead device and 
appear on the data out (DOUT) pin in serial form. The lead 
device also generates the configuration clock (CCLK) to 
synchronize the serial output data. A master mode device 
generates an internal CCLK of eight times the EPROM address 
rate, while a peripheral mode device produces CCLK from the 
chip select and write strobe timing. 

+5V +5V 

MO M1 PWRDWN 

CCLK CCLK 

DIN DOUT DIN DOUT 

LCA LCA 
SLAVE#1 SLAVE#n 

M2 M2 

HOC HOC 

LDC GENERAL- LDC GENERAL-
PURPOSE PURPOSE 
USER 110 USER VO 

=( ~1 OTHER OTHER 
PINS PINS 

DIP DIP 

RESET RESET 

Figure 18. Master Mode with Daisy Chain 

Operation 

When all of the devices have been loaded and the length count 
is complete, a synchronous start-up of operation is performed. 
On the clock cycle following the end of loading, the internal 
logic begins functioning in the reset state. On the next CCLK, 
the configured output buffers become active to allow signals to 

stabilize. The next CCLK cycle produces the DONE condition. 
The length count control of operation allows a system of 
multiple Logic Cell Arrays to begin operation in a synchronized 
fashion. If the crystal oscillator is used, it will begin operation 
before configuration is complete to allow time for stabilization 
before it is connected to the internal circuitry. 
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Special Features 
In addition to the normal user logic functions and interconnect, 
the configuration data include control for several special 
functions: 

• Input thresholds 

• Readback enable 

• Reprogram enable 

• DONE pull-up resistor 

Each of these functions is controlled by a portion of the 
configuration program generated by the XACT Development 
System. 

Input Thresholds 

During configuration, all input thresholds are TTL level. During 
configuration input thresholds are established as specified, 
either TTL or CMOS. The PWRDN input threshold is an 
exception; it is always a CMOS level input. The TTL threshold 
option requires additional power for threshold shifting. 

Readback 

After a Logic Cell Array has been programmed, the con­
figuration program may be read back from the device. 
Readback may be used for verification of configuration and as 
a method of determining the state of internal logic nodes during 
debugging. In applications in which the verification is not used, 
it may be desirable to limit access to the configuration data. 
Three readback options are provided: 'on command', 'only 
once', and 'never'. If 'on-command readback' is selected, the 
device will respond to all readback requests. If 'readback once' 
is selected, the device will respond only to the first readback 
request after programming is complete. Subsequent readback 
requests will be ignored. If 'readback never' is selected, the 
device will not respond to a readback command. 

Readback is accomplished without the use of any of the user 1/0 
pins; only MO, M1, and CCLK pins are used. An initiation of 
readback is produced by a LOW-to-HIGH transition of the MO, 
RTRIG (read trigger) pin. Once the readback command has 
been given, CCLK is cycled to read back each data bit in a 
format similar to loading. After two dummy bits, the first data 
frame is shifted out, in inverted sense, on the M1, RDATA (read 
data) pin. All data frames must be read back to complete the 
process and return the mode select and CCLK pins to their 
normal functions. 

In addition to the configuration program, the readback includes 
the current state of each of the internal logic block storage 
elements, and the state of the input (I) connection pin on each 
1/0 block. This state information is used by the Logic Cell Array 
development system In-Circuit Emulator to provide visibility 
into the internal operation of the logic while the system is 
operating. To readback a uniform lime sample of all storage 
elements it may be necessary to inhibit the system clock. 

Reprogram 

The configuration memory of the Logic Cell Array may be 
rewritten while the device is in the user's system, if that option 
is selected when the LCA is configured. If another 
programmin~ is to be initiated, the dual function package 
pin DONE, PROG must be given a HIGH-to-LOW transition. 
Sensitivity to noise is reduced, by confirming the HIGH-to­
LOW transition over two to three cycles using the LCA's 
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internal sampling oscillator. When a reprogram command is 
recognized, all internal logic and connectivity definitions are 
erased and the 1/0 package pins are forced to a high 
impedance condition. The device returns to the initialization 
state. Reprogram control is often implemented with an external 
open collector driver which pulls DONE, PROG LOW. Once it 
recognizes a stable request, the Logic Cell Array will hold a 
LOW until the new configuration has been completed. Whether 
or not the reprogram request is maintained, the Logic Cell Array 
will begin operation upon completion of configuration. 

DONE Pull-up 

The DONE, PROG pin is an open drain 1/0 that indicates 
programming status. As an input, it initiates a reprogram 
operation. An optional internal pull-up resistor may be enabled. 

Battery Backup 

Because the control store of the Logic Cell Array is a CMOS 
static memory, its cells require only a very low standby current 
for data retention. In some systems, this low data retention 
current characteristic facilitates preserving configurations in 
the event of a primary power loss. The Logic Cell Array has 
built in power-down logic which, when activated, will disable 
normal operation of the device and retain only the configuration 
data. All internal operation is suspended and output buffers are 
placed in their high-impedance state. 

Power-down data retention is possible with a simple battery­
backup circuit because the power requirement is extremely 
low. For retention at 2.0 V, the required current is typically on 
the order of 0.5 mA. Screening of this parameter is available. 
To force the Logic Cell Array into the power-down state, the 
user must pull the PWRDWN pin low and continue to supply a 
retention voltage to the VCC pins of the package. When normal 
power is restored, VCC is elevated to its normal operating 
voltage and PWRDWN is returned to a HIGH. The Logic Cell 
Array resumes operation with the same internal sequence that 
occurs at the conclusion of configuration. Internal 1/0 and 
logic block storage elements will be reset, the outputs will 
become enabled and then the DONE, PROG pin will be 
released. No configuration programming is involved. 

Performance 
The high performance of the Logic Cell Array results from its 
patented architectural features and from the use of an advan­
ced high-speed CMOS manufacturing process. Performance 
may be measured in terms of minimum propagation times for 
logic elements. 

Flip-flop loop delays for the 1/0 block and logic block flip-flops 
are about 3 ns. This short delay provides very good 
performance under asynchronous clock and data conditions. 
Short loop delays minimize the probability of a metastable 
condition which can result from assertion of the clock during 
data transitions. Because of the short loop delay 
characteristic in the Logic Cell Array, the 1/0 block flip-flops 
can be used very effectively to synchronize external signals 
applied to the device. Once synchronized in the 1/0 block, the 
signals can be used internally without further consideration of 
their clock relative timing, except as it applies to the internal 
logic and routing path delays. 
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Device Performance 

The single parameter which most accurately describes the 
overall performance of the Logic Cell Array is the maximum 
toggle rate for a logic block storage element configured as a 
toggle flip-flop. The configuration for determining the toggle 
performance of the Logic Cell Array is shown in Figure 19. The 
clock for the storage element is provided by the global clock 
buffer and the flip-flop output a is fed back through the 
combinatorial logic to form the data input for the next clock 
edge. Using this arrangement, flip-flops in the Logic Cell Array 
can be toggled at clock rates from 33-70 MHz, depending on 
the speed grade used. 

Actual Logic Cell Array performance is determined by the 
critical path speed, including both the speed of the logic and 
storage elements in that path, and the speed of the particular 
network routing. Figure 20 shows a typical system logic 
configuration of two flip-flops with an extra combinatorial level 
between them. Depending on speed grade, system clock rates 
to 35 MHz are practical for this logic. To allow the user to make 
the best use of the capabilities of the device. the delay 

SOURCECLB 

INPUTS F 

calculator in the XACT Development System determines worst­
case path delays using actual impedance and loading 
information. 

D Q I-_.>--'~-• 

Figure 19. Logic Block Configuration for Toggle Rate 
Measurement 

COMBINATORIAL CLB 

DESTINATION CLB 

X,Y 

INTERCONNECT 

GLOBAL 
CLOCK 

Figure 20. Typical Logic Path 
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Logic Block Performance 

Logic Block propagation times are measured from the 
interconnect point at the input of the combinatorial logic to the 
output of the block in the interconnect area. Combinatorial 
performance is independent of logic function because of the 
table look-up based implementation. Timing is different when 
the combinatorial logic is used in conjunction with the storage 
element. For the combinatorial logic function driving the data 
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Figure 21. Delay vs. Temperature 

Interconnect Performance 

Interconnect performance depends on the routing resource 
used to implement the signal path. As discussed earlier, direct 
interconnect from block to block provides a minimum delay 
path for a signal. 

The single metal segment used for long lines exhibits low 
resistance from end to end, but relatively high capacitance. 
Signals driven through a programmable switch will have the 
additional impedance of the switch added to their normal drive 
impedance. 

General-purpose interconnect performance depends on the 
number of switches and segments used, the presence of the 
bidirectional repowering buffers and the overall loading on the 
signal path at all points along the path. In calculating the worst­
case delay for a general interconnect path, the delay 
calculator portion of the XACT development system accounts 
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input of the storage element, the critical timing is data set-up 
relative to the clock edge provided to the storage element. The 
delay from the clock source to the output of the logic block is 
critical in the timing of signals produced by storage elements. 
The loading on a logic block output is limited only by the 
additional propagation delay of the interconnect network. 
Performance of the logic block is a function of supply voltage 
and temperature, as shown in Figures 21 and 22. 
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4 

Figure 22. Delay vs. Power Supply 

for all of these elements. As an approximation, interconnect 
delay is proportional to the summation of totals of local metal 
segments beyond each programmable switch. In effect, the 
delay is a sum of R-C delays each approximated by an R times 
the total C it drives. The R of the switch and the C of the 
interconnect are functions of the particular device 
performance grade. For a string of three local interconnects, 
the approximate delay at the first segment, after the first 
switch resistance, would be three units; an additonal two delay 
units after the next switch plus an additional delay after the 
last switch in the chain. The interconnect R-C chain terminates 
at each repowering buffer. Nearly all of the capacitance is in 
the interconnect metal and switches; the capacitance of the 
block inputs is not significant. Figure 23 shows an estimation 
of this delay. 



M2064/M2018 

CLB 

DELAY: 

INCREMENTAL 

IF R1·R2=R3 =R AND C1=C2=C3 =C 

THEN CUMULATIVE DELAY 3RC SRC 

r--, r--, 
">-~f-+-~~~--1 1--­

L_.J 

REPOWERING 
BUFFER 

6RC 

L _ _J 

6RC+BUFFER 

Figure 23. Interconnection Delay Example 

Development System 
To support designers using the Logic Cell Array , Monolithic 
Memories provides a basic development system with several 
options for additional productivity. The XACT system provides 
the following: 

• Graphic-driven design entry 

• Schematic entry 

• Interactive timing delay calculations 

• Macrocell library support, both for standard Monolithic 
Memories supplied functions and user-defined functions 

• Design entry checking for consistency and completeness 

• Automatic design documentation generation 

• Automatic placement and routing 

• Simulation interface support, including automatic netlist 
(circuit description) and timing extraction 

• In-circuit emulation for multiple devices 

The host system on which the XACT system operates is an 
IBM™ PC-XT™ or PC-AT™ or compatible system with MS­
DOSTM 2.1 or higher. Color graphics is required as well as 640 K 
bytes of internal RAM (an Expanded Memory Specification 
(EMS) card with 256 K bytes of memory is required for the 
M2018). A complete system requires one parallel 1/0 port and 
two serial ports and a mouse. 

For more detailed information of the XACT Development 
System, please refer to Logic Cell Array Development System 
Datasheet. 
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68-PIN 
CONFIGURATION MODE: <M2: M1: MO> 

PGA SLAVE I PERIPHERAL MASTER-HIGH I MASTER-LOW 
<1:1:1> <1:0:1> <1 :1 :O> <1 :0:0> 

B6 GND 

A6 A13 (0) 

B5 A6 (0) 

A5 A12 (0) 

B4 
<HIGH> 

A7 (0) 

A4 A11 (0) 

B3 AB (0) 

A3 A10 (0) 

A2 A9 (0) 

B2 PWRDWN (I) 

B1 

C2 

C1 

02 <HIGH?> 

01 

E2 

E1 

F2 vcc 
F1 

G2 

G1 
<HIGH> 

H2 

H1 

J2 

J1 M1 (HIGH) l M1 (LOW) M1 (HIGH) 

1 
M1 (LOW) 

K1 MO (HIGH) l MO (HIGH) MO (LOW) MO(LOW) 

K2 M2 (HIGH) 

L2 HOC (HIGH) 

K3 <HIGH> 

L3 LDC (LOW) 

K4 

L4 
<HIGH> 

K5 

L5 

«:HIGH~ is high impedance with a 20 to 50-Kn internal pull-up resistor during configuration 

Table 2a. M2064 Pin Assignments 

(continued on next page) 

USER 
OPERATION 

1/0 

1/0 

1/0 

RDATA (0) 

RTRIG (I) 

1/0 
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CONFIGURATION MODE: ~M2: M1: MO> 
48-PIN 68-PIN 68-PIN USER 

DIP PLCC PGA SLAVE I PERIPHERAL MASTER-HIGH I MASTER-LOW OPERATION 
<1:1:1> <1:0:1> <1:1:0> <1:0:0> 

24 35 K6 GND 

36 L6 

25 37 K7 

3B L7 ~HIGH> 

26 39 KB 1/0 

27 40 LB 

2B 41 K9 D7 (I) 

29 42 L9 D6 (I) 

30 43 L10 XTL2 or 1/0 

31 44 K10 RESET (I) 

32 45 K11 DONE (0) PROG (I) 

33 46 J10 XTL 1 or 1/0 

47 J11 
~HIGH> 

34 48 H10 D5 (I) 

49 H11 1/0 

35 50 G10 l CSO (I) D4 (I) 

36 51 G11 CS1 (I) D3 (I) 

52 F10 vcc 
53 F11 

37 54 E10 I CS2 (I) I D2 (I) 

55 E11 ~HIGH> 

3B 56 D10 l WRT(I) D1 (I) 1/0 

39 57 D11 RCLK 

40 5B C10 DIN(I) DO (I) 

41 59 C11 DOUT (0) 

42 60 811 CCLK (I) l CCLK (0) CCLK (I) 

43 61 810 AO (0) 

44 62 A10 A1 (0) 

45 63 89 A2 (0) 

46 64 A9 
~HIGH> 

A3 (0) 1/0 
65 8B A15 (0) 

47 66 AB A4 (0) 

67 87 A14 (0) 

4B 6B A7 A5 (0) 

~HIGHP is high impedance with a 20 to 50-KO internal pull-up resistor during configuration 

Table 2a. M2064 Pin Assignments (continued) 
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CONFIGURATION MODE: <!!;M2: M1: MO~ 
68-PIN 68-PIN 84-PIN 84-PIN 

l 
USER 

PLCC PGA PLCC PGA SLAVE PERIPHERAL MASTER-HIGH l MASTER-LOW OPERATION 
<1:1:1> <1:0:1> <1 :1 :O> <1 :O:O> 

1 86 1 C6 GND 

2 A6 2 A6 A13 (0) 

3 AS 

4 8S 

3 85 s cs A6 (0) 

4 AS 6 A4 <HIGH~ A12 (0) 
1/0 

5 84 7 84 A7 (0) 

6 A4 8 A3 A11 (0) 

7 83 9 A2 AS (0) 

8 A3 10 83 A10(0) 

9 A2 11 A1 A9 (0) 

10 82 12 82 PWRDWN (I) 

11 81 13 C2 

12 C2 14 81 

13 C1 1S C1 

14 02 16 02 

15 01 17 01 
<HIGH;;> 1/0 

18 E3 

16 E2 19 E2 

20 E1 

17 E1 21 F2 

18 F2 22 F3 vcc 
19 F1 23 G3 

24 G1 

20 G2 2S G2 

26 F1 <HIGH;;> 1/0 
21 G1 27 H1 

22 H2 28 H2 

23 H1 29 J1 

24 J2 30 K1 

25 J1 31 J2 M1 (HIGH) i M1 (LOW) M1 (HIGH) 1 M1 (LOW) RDATA (0) 

26 K1 32 L1 MO (HIGH) MO (HIGH) MO(LOW) l MO(LOW) RTRIG (I) 

27 K2 33 K2 M2 (HIGH) 

28 L2 34 K3 HDC (HIGH) 

29 K3 3S L2 <HIGH~ 

30 L3 36 L3 LDC (LOW) 

31 K4 37 K4 1/0 
32 L4 38 L4 

39 JS <HIGH~ 

33 KS 40 K5 

34 LS 41 LS 

42 K6 

<{HIGH:?> is high impedance with a 20 to SO-Kn internal pull-up resistor during configuration 

Table 2b. M2018 Pin Assignments (continued on next page) 

4·26 



M2064/M2018 

68-PIN 68-PIN 84-PIN 84-PIN 
CONFIGURATION MODE: ~M2: M1: MO~ 

USER 
PLCC PGA PLCC PGA SLAVE I PERIPHERAL MASTER-HIGH I MASTER-LOW OPERATION 

<1:1:1> <1:0:1> <1:1:0> <1:0:0> 

35 K6 43 J6 GND 

44 J7 

36 L6 45 L7 

37 K7 46 K7 

3S L7 47 L6 %HIGH~ 

4S LS 1/0 

39 KS 49 KS 

40 LS 50 L9 

41 K9 51 L10 07 (I) 

42 L9 52 K9 06(1) 

43 L10 53 L11 XT2or1/0 

44 K10 54 K10 RESET (I) 

45 K11 55 J10 DONE (0) PROG (1) 

46 J10 56 K11 XTL1or1/0 

47 J11 57 J11 

4S H10 5S H10 %HIGH~ 05 (I) 

59 H11 

49 H11 60 F10 1/0 

61 G10 

50 G10 62 G11 l CSO(I) 04 (I) 

51 G11 63 G9 CS1 (I) 03 (I) 

52 F10 64 F9 vcc 
53 F11 65 F11 

54 E10 66 E11 [ CS2(1) 02 (I) 

67 E10 

55 E11 68 E9 %HIGH~ 

69 011 110 

56 010 70 010 [ WRT(I) 01 (I) 

57 011 71 C11 RCLK 

5S C10 72 811 DIN(I) DO(I) 

59 C11 73 C10 DOUT(O) 

60 811 74 A11 CCLK(I) l CCLK (0) CCLK(I) 

61 810 75 810 AO (0) 

62 A10 76 89 A1 (0) 

63 89 77 A10 A2 (0) 

64 A9 7S A9 A3 (0) 

65 88 79 8S 
%HIGH~ 

A15 (0) 1/0 
66 A8 so AS A4 (0) 

67 87 S1 86 A14 (0) 

S2 87 

83 A7 

6S A7 S4 C7 A5 (0) 

~HIGH)> is high impedance with a 20 to 50-Kn internal pull-up resistor during configuration 

Table 2b. M2018 Pin Assignments (continued) 
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Absolute Maximum Ratings* 
Supply voltage Vee ....................................................................................... -0.5 v to 7 V 
Power down Vee ............................................................................................. 2 V to 7 V 
Input voltage ........................................................................................ -0.5 V to Vee 0.5 v 
Voltage applied to three-state output ................................................................... -0.5 V to Vee 0.5 V 
Storage temperature range ............................................................................. -65° C to + 150° C 
Lead temperature (soldering, 10 seconds) .......................................................................... 260°C 
* Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional 

operation of the device at these or any other conditions beyond those listed under "Recommended Operating Conditions'' is not implied. Exposure to "Absolute 
Maximum Ratings" conditions for extended periods of time may affect device reliability. 

Operating Conditions 

SYMBOL PARAMETER MIN TYP MAX UNIT 

Vee Supply voltage relative to GND 4.75 5.25 v 

VIHT High level input voltage-TTL configuration 2.0 Vee v 

V1HC High level input voltage-CMOS configuration o.7Vcc Vee v 

VILT Low level input voltage-TTL configuration 0 0.8 v 

VILC Low level input voltage-CMOS configuration 0 o.2vcc v 

l1T Input leakage current-TTL configuration ±10 µA 

'ic Input leakage current-CMOS configuration ±10 µA 

'oz Three-state output off current (V cc = 5.5 V) ±10 µA 

top Operating free-air temperature 0 70 oc 

Electrical Characteristics Over Operating Conditions 

SYMBOL PARAMETER TEST CONDITION MIN TYP MAX UNIT 

VoH High level output voltage Vee= 4.75 v loH = -4.0 mA 3.86 v 

Vol Low level output voltage Vee= 4.75 v loL = 4.0mA 0.32 v 

Quiescent operating l CMOS inputs Vee= 5.ov 5 mA 
lcco power supply currentj TTL inputs Vee= 5.ov 10 mA 

1cgo Power down supply current V_e_c = 5.0 V 0.5 mA 

Power On Timing 
The LCAs contain on-chip reset timing logic for power-up oper­
ation. To insure proper master mode system operation, VCC 
must rise from 2.0 V to minimum specification level in 10 ms or 

less. For other modes, initiation of configuration must be 
delayed for 60 ms after VCC reaches the minimum specified 
level. 
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Switching Characteristics - General 

-33 -50 -70 
SYMBOL DESCRIPTION 

MIN MAX MIN MAX MIN MAX 

tvMRQ) Vee setup (2.0 V) 150 150 150 

tMR0 
RESET (2) 

M2, M1, MO setup 60 60 60 

tRMCD M2, M1, MO hold 60 60 60 

tMRW© Width (LOW) 150 150 150 

tpGw® DONE/ Program width (LOW) 6 6 6 

lpGI© PROG Initialization 7 7 7 

tcLH0 
CLOCK 

Clock (HIGH) 12 8 7 

1CLL® Clock (LOW) 12 8 7 

tps® Setup to Vee 0 0 0 

lpH@ PWRDWN Hold from V CC 0 0 0 

Vpo Power Down 2.0 2.0 2.0 

Notes: 1. Vee must rise from 2.0 Volts to Vee minimum in lest than 10 ms for master mode. 

2. RESET timing relative to power-on and valid mode lines (MO, M1, M2) is relevant only when RESET is used to delay configuration. 

3. Minimum CLOCK widths for the auxilliary buffer are 1.25 times the tcLH· tell· 

Vee (VALID) 

MO/M1/M2 

DONE/PROG 
(OUTPUl) 

USER VO 

CLOCK 

~(5)TPGW=1 

~~. 
--U-S-ER-ST_A_T_E--~,_-l_N_l_T-_IA-_L_l_ZA ___ T~IO~N~S~T-A-_T-E~~~~~~~~~~~~~~~~~~ 

_J=0TcLH ~ @Tm=1--

\.. ____ '--,: Vpo 

UNIT 

ns 

ns 

ns 

ns 

µS 

µS 

ns 

ns 

ns 

ns 

v 
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Switching Characteristics - CLB 

-33 -50 -70 
SYMBOL DESCRIPTION UNIT 

MIN MAX MIN MAX MIN MAX 

t1w0 Combinatorial 20 15 10 ns 

tno® Logic input Transparent latch 25 20 14 ns 
to output 

Additional for Q 
to LO through F or G to out 

13 8 6 ns 

tcKo® To output 20 15 10 ns 

t1cKQ) K Clock Logic-input setup 12 8 7 ns 

tcK1© Logic-input hold 0 0 0 ns 

tcco@ To output 25 19 13 ns 

t1cc® C Clock Logic-input setup 12 9 6 ns 

tcc1© Logic-input hold 6 0 0 ns 

tc10® To output 37 27 20 ns 

t1c10 
Logic input 

Logic-input setup 6 4 3 ns toG Clock 

tc11® Logic-input hold 9 5 4 ns 

IR10@ Input A or D to out 25 22 16 ns 

tRLO® Through For G to out 37 28 21 ns 

tMRQ Set/reset direct Master Reset pin to out 35 25 20 ns 

tRs Separation of set/reset 17 9 7 ns 

tRPW Set/reset pulse-width 12 9 7 ns 

FcLK Flip-flop toggle rate Q through F to flip-flop 33 50 70 MHz 

tcH@ Clock HIGH 12 8 7 ns 
Clock t---

!c_L® Clock LOW 12 8 7 ns 

Note: All switching characteristics apply to all valid combinations of process, temperature and supply. 

Cross Reference Guide 

XILINX MMI 
Vee FMAX 

MIN MAX MIN 

XC2064-1 4.5V 5.5V 20MHz 

M2064-20 4.75V 5.25V 20MHz 

XC2064-2 4.5V 5.5V 33MHz 

XC2064-33 M2064-33 4.75V 5.25V 33MHz 

XC2064-50 M2064-50 4.75V 5.25V 50MHz 

XC2064-70 M2064-70 4.75V 5.25V 70MHz 

XC2018-33 M2018-33 4.75V 5.25V 33MHz 

XC2018-50 M2018-50 4.75 v 5.25V 50MHz 

XC2018-70 M2018-70 4.75V 5.25V 70MHz 
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Switching Characteristics CLB 
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Switching Characteristics - 108 

-33 
SYMBOL DESCRIPTION 

MIN MAX MIN 

tp10 CD Pad (package pin) to input (direct) 12 

tu® 1/0 Clock to input (storage) 20 

tpL0 1/0 Clock to pad-input setup 12 8 

tLp® 1/0 Clock to pad-input hold 0 0 

1/0 Clock pulse width 12 9 
tLw© 

1/0 Clock frequency 33 50 

top© Output to pad (output enabled) 15 

tTHz® Three-state to pad begin hi-Z 25 

troN® Three-state to pad end hi-Z 25 

tR1© RESET to input (storage) 40 

tRC (J) RESET to input clock 35 

Note: Timing is measured at 0.5 Vee levels with 50 pF output load. 

PAD 
(PACKAGE PIN) 

OUTPUT SIGNAL 

INPUT 
(DIRECT) 

L 
(VO CLOCK) 

INPUT 
(REGISTERED) 

4.32 

(IN) ~(OUT) 
~ 

-50 -70 
UNIT 

MAX MIN MAX 

8 6 ns 

15 11 ns 

6 ns 

0 ns 

7 ns 

70 MHz 

12 9 ns 

20 15 ns 

20 15 ns 

30 25 ns 

25 20 ns 

VOH·O.SV 

VOL+ 0.5 V 

10 
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Switching Characteristics - Programming - Master Mode 

-33 
SYMBOL DESCRIPTION 

MIN 

tARCCD From address invalid 

tRAC0 To address valid 

toRcCD To data setup 60 
RCLK 

tRco© To data hold 0 

tRcH® RCLK HIGH 600 

tl1Q.L © RCLKLOW 4.0 

Notes: 1. CCLK and DOUT timing are the same as for slave mode. 

2. At power up, Vee must rise from 2.0 V to Vee minimum in less than 10 ms. 

D0-07 

RcLK 
(OUTPUT) 

CCLK 
(OUTPUT) 

OOUT 
(OUTPUT) 

-50 

MAX MIN 

0 

200 

60 

0 

600 

4.0 

06 

BYTE n--1 

-70 
UNIT 

MAX MIN MAX 

0 0 ns 

200 200 ns 

60 ns 

0 ns 

600 ns 

4.0 µS 

07 
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Switching Characteristics - Programming - Slave Mode 

-33 -50 -70 
SYMBOL DESCRIPTION UNIT 

MIN MAX MIN MAX MIN MAX 

tccoCD CCLKto DOUT 65 65 65 ns 

toccCD CCLK DIN setup 0 0 0 ns 

tccD<D CCLK DIN hold 40 40 40 ns 

tccH© CCLK HIGH time 0.25 0.25 0.25 µS 

tccL© CCLK LOW time 0.25 5.0 0.25 5.0 0.25 5.0 µS 

FCQ_ CCLK frequency 2 2 2 MHz 

Note: Configuration must be delayed at least 40 ms after Vee minimum. 

DIN ~ .BITN xxx BIT N +1 

~@Toce @Tcco~ @TccL 

CCLK 

@TccH @Tcco 

OOUT BITN-1 xxx BITN (OUTPUT) 
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Switching Characteristics - Programming - Peripheral Mode 

-33 -50 -70 
SYMBOL DESCRIPTION UNIT 

MIN MAX MIN MAX MIN MAX 

tcACD 
Active (last active input 

0.25 5.0 0.25 5.0 0.25 5.0 µS 
to first inactive) 

tc1® Controls1 
Inactive (first inactive input 

0.25 0.25 0.25 µS 

(CSO, CS1, 
to last active) 

tccc® CS2, WAT CCLK2 75 75 75 ns 

toe© DIN setup 35 35 35 ns 

tco® DIN hold 5 5 5 ns 

Notes: 1. Peripheral mode timing determined from last control signal of the logical AND of (CSO, CS1, CS2, WAT) to transition to active or inactive state. 

2. CCLK and DOUT timing are the same as for slave mode. 

3. Configuration must be delayed at least 40 ms after Vee minimum. 

CS2 

CCLK (2) 
(OUTPUT) 

DOUT(2) 
(OUTPUTl---------''------------' 

Switching Characteristics - Program Readback 

-33 -50 
SYMBOL DESCRIPTION 

MIN MAX MIN MAX 

toRT® PROG setup 300 300 
RTRIG 

tRTH® RTRIG HIGH 250 250 

tRTccCD 
CCLK 

RTRIG setup 100 100 

tccRo© RDATAdelay 100 

Notes: 1. CCLK and DOUT timing are the same as for slave mode. 

2. DONE/PROG output/input must be HIGH (device programmed) prior to a positive transition of RTRIG (MO). 

DONE/PROG 
(OUTPUT) 

RTRIG 

CCLK(1) 

RDATA 
(OUTPUT) 

+ G TccRD 

100 

-70 
UNIT 

MIN MAX 

300 ns 

250 ns 

100 ns 

100 ns 
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Switching Test Load 
vcc 

FROM OUTPUT RL S1 
TEST~OINT 

UNDER TEST (SEE NOTE 2) 

CL l (SEE NOTE 1) I 
-=- -= 

Note: CL includes probe and jig capacitance. 

Design Aids 

CL=50pF 
RL=1K 

Designing with the Logic Cell Array is similar to using 
conventional MSI elements or gate array macrocells. The first 
step is to partition the desired logic design into Logic Blocks 
and 1/0 blocks, usually based on shared input variables or 
efficient use of flip-flop and combinatorial logic. Following a 
plan for placement of the blocks, the design information may 

Recommended Sockets 

be entered using the inieractive Graphic ·Design Editor. The 
design information includes both the functional specifications 
for each block and a definition of the interconnection networks. 
A macrocell library provides a simplified entry of commonly­
used logic functions. As an alt&rnative to interactive block 
placement and configuration, a schematic may be created 
using elements from the macrocell library. Automatic place­
ment and routing is available for either method of design entry. 
After routing the interconnections, various checking stages 
and processing of that data are performed to ensure that the 
design is correct. Design changes may be implemented in 
minutes. The design file is used to generate the programming 
data which can be downloaded directly into an LCA in the target 
system and operated. The program information may be used to 
program PROM, EPROM or ROM devices, or stored in some 
other media as needed by the final system. 

Design verification may be accomplished by using the XLINX 
XACTOR™ In-Circuit Emulation System directly in the target 
system and/or the P-Silos™ logic simulator. 

The following sockets, with matching hole patterns, are available for PLCC devices. 

DESCRIPTION VENDOR PART NUMBER 

PCB solder tail, tin plate AMP 821574-1 

Surface mount, tin plate AMP 821542-1 

PCB solder tail, tin plate Burndy* QILE68P-410T 
68-pin 

* PCB solder tail, tin plate Midland-Ross 709-2000-068-4-1-1 

PCB solder tail, tin plate Methode* 213-068-001 

Surface mount, tin plate Methode* 213-068-002 

PCB solder tail, tin plate AMP 821573-1 

Surface mount, tin plate AMP 821546-1 

PCB solder tail, tin plate Burndy* QILE84P-410T 
84-pin 

Midland-Ross* 709-2000-004-4-1-1 PCB solder tail, tin plate 

PCB solder tail, tin plate Methode* 213-084-001 

Surface mount, tin plate Methode* 213-084-002 

* Sockets will plug into pin..grid array (PGA) wire-wrap sockets for breadboard use. 
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M2064118 PLCC SOCKET PIN ASSIGNMENT 
WIRING REFERENCE. BOTTOM VIEW. 

A1 AO A2 A15 A14 GND P£ A7 AB A9 

~@@@@@0000 
CCLK@)@@®@©©©©@@PWiiiiWN 

DO/DIN @) @o~UT M A5 A13 A12 A11 A10 @ @ 

01@@RCLK @@ 

02@@ ~L~~ @@ 
vcc f52' '53\ SOCKET f,9\ l1ij\ vcc 

~i.::.:; BOTTOM ~I.::; 

04 @® 03 VIEW @@ 
os@@ @@ 

XTAL1 ® ® 06 R~~@@ 
RESEf@@@@@®@@®@@RTMO 

/@@@®@@@@®~ 
DIP XTAL2 07 GND M2 HOC 

FOR EASE OF WIRING, AND PIN IDENTIFICATION, THE 
BOTTOM VIEW OF THE PLCC IS SHOWN ALONG WITH 
KEY PIN ASSIGNMENTS, SUCH AS ADDRESS, DATA, 
MODE, POWER AND CRYSTAL OSCILLATIOR INPUTS. 

M2018 PLCC SOCKET PIN ASSIGNMENT 
WIRING REFERENCE. BOTTOM VIEW. 

A1 AO A2 A15 A14 GND P£ A7 AB A9 

~@®@@@9>0000@ 
CCLK@@@@@@©©©©@@@PWffDN 

r.;;;-, C-:\ A3 M A5 A13 
DO/DIN ~ ~ DOUT 

01@@Ra::K 

@@ 
02@@ 

vcc@@ 
®@ 
@@ 

84PIN 
PLCC 

SOCKET 
BOTTOM 

VIEW 

A12 A11 A10@@ 

®® 
@@ 
@® 
@@)vcc 
@@ 
®@ 

os@)@ @@ 
XTAL1 @® 06 ~:1@® 
RESET@®@®@®@@®@@@® RT/MO 

/@®®®®®@@®@@~ 
- XT AL2 07 GND M2 HOC 

DIP 

FOR EASE OF WIRING, AND PIN IDENTIFICATION, THE 
BOTIOM VIEW OF THE PLCC IS SHOWN ALONG WITH 
KEV PIN ASSIGNMENTS, SUCH AS ADDRESS, DATA, 
MOOE, POWER AND CRYSTAL OSCILLATIOR INPlJTS. 
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M2064/M2018 Package Outlines 

Package Drawing 
48N Molded DIP 
(9/16"x213/32") 

4-38 

PIN#1 
IDENTIFY 

-, , ... ~ 1.524 i~S:ott-;fo;:-1~" J_C ~ 110° TYP 
I I 

1J 
~ ... /~DIA \ 3.048 

- ~ '\~~.:~; 
.011 ±.002 --l 11- ,¥ 
.279 ± .051 - I L .660 ± .025 

16.764 ±.635 

Notes: 

UNLESS OTHERWISE SPECIFIED: 
ALL DIMENSIONS MIN.-MAX. IN INCHES 
ALL DIMENSIONS MIN.-l'tfAX. IN MILLIMETERS 
ALL TOLERANCES ARE ± .007 INCHES 

1. Lead material tolerances are for tin plate finish only. Solder dip finish adds 
2-1 O mils thickness to all lead tip dimensions. 

2. Both version 1 and version 2 configurations are manufactured interchangeably. 

3. Ejector pin marks on version 1 are optional. 10749A 



M2064/M2018 Package Outlines 

Package Drawing 
68NL Molded Chip Carrier 

(.950"x.950") 

~BSCTYP 
1.270 l_ 

.028 ± .002 

.711±.051 l 

10760A 

I 

'I 
~ 

I- 0.45 x 45" ~1b~~~1~i~R 
1.143 

_LL.Llil_L_l lll ·1 1 ·u 1- :lI l fl l l l l ! l l !~====:---.-
< 1 

.954 ± .001 
24.232 ± . 025 

so .990 ± .003 
25.146 ± .076 

SQ 

---- .BOO REF S0-----
20.320 

c~ -·~·-~ """ ~ 3.IUB±.127 

E Ir~ 
rr: .i 
rT;c 

UNLESS OTHERWISE SPECIFIED: 
ALL DIMENSIONS MIN.-MAX. IN INCHES 
ALL DIMENSIONS MIN.-llA/C. IN MILLIMETERS 
ALL TOLERANCES ARE± .007 INCHES 

045 11-11- : : ::~ -·-x45"...,. ..-
1.143 

/r·r)-
·r· 

I : r' 
I : i' 
~ ; ( 
[:1; 
I : I, 
I : I' 
~ 

• 1 
-• 1' 

~ 
1 

j' 

1 

1 

1 

23.388 

J]~::MIN 
.080 

2.032 

.100 ± .005 
..J1Q.. L 2.540 ± .127 

4.318 I 

4.39 

D 



M2064/M2018 Package Outlines 

Package Drawing 
84NL Plastic Leaded Chip Carrier 

(1.154" x 1.154") 

I 1.000 REFSQ-----
1-25.400 

.o18' .002 

~]_ 
0 

0 0 

10761A 

4.40 

1.154 + .004 
29.312 ± .102 

SQ 1.190 ± .005 
30.226±.127 

SQ 

.045 450 I 1.143. -

UNLESS OTHERWISE SPECIFIEO: 

1.120 
28.448 

2.032 
.100 ± .005 

2.540±.127 

_,!!Q_ 
4.318 

ALL DIMENSIONS MIN.-MAX. IN INCHES 

.OOS RMIN 

.127 

ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS 
ALL TOLERANCES ARE ± .007 INCHES 



M2064/M2018 Package Outlines 

Package Drawing 
68P Ceramic Pin Grid Array 

PINN0.1 

/-- IDENT~-IE-R----~ 
v 

I+---- 1.100 ± .020 sa----i 
27.940 ± .508 

.080 ± .008 
[ 2.032 ±.203 

II t 

IT IT IT IT IT v-IT_....._t ~4~r~ 
L~ - -+- .050 ± .005 DIA 

1.270±.127 3.302 ±.127 

UNLESS OTHERWISE SPECIFIED: 
ALL DIMENSIONS MIN.-MAX. IN INCHES 

LOCATOR PIN 

11 10 9 8 7 6 5 4 3 2 1 

1---- 2~':, esc----1 

ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS 
ALL TOLERANCES ARE± .007 INCHES 

10765A 
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Package Drawings 

84P Ceramic Pin Grid Array 

• 

PINN0.1 
IDENTIFIER 

M2064/M2018 Package Outlines 

,\'======="" 

.080±.008 

r~ 

10766A 

4-42 

UNLESS OTHERWISE SPECIFIED: 
ALL DIMENSIONS MIN.-MAX. IN INCHES 
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS 
ALL TOLERANCES ARE± .007 INCHES 



3000 SERIES FAMILY OF PROGRAMMABLE GATE ARRAYS 

PRELIMINARY 

DISTINCTIVE CHARACTERISTICS 

Second generation user-programmable gate • 
array 

100% factory pre-tested 
Selectable configuration modes 
100% compatibility with AMO PGA 
development tools 

Flexible array architecture 
High performance (50, 70 MHz ) 
Improved interconnection resources 
Density of up to 9000 gates 

Standard PROM file interface 
Off the shelf availability 

GENERAL DESCRIPTION 

The AM 3000 Series Logic Cell™ Array (LCA) is a 
high-performance, second generation user­
programmable gate array. The array contains 
three types of configurable elements that are 
customized in accordance with the user-defined 
system design; a perimeter of Input/Output 
Blocks (IOBs), a core array of Configurable Logic 
Blocks (CLBs), and interconnection resources. 

The final configuration of the three main 
programmable elements is determined by the 

user and easily implemented by AMD user­
programmable gate array design tools. 

AMD's development tools let users produce.a 
complete design, from schematic capture through 
device customization, on an IBM PC-AT or 
compatible computer. LCA macro libraries and 
interface software are also available to support 
schematic capture and simulation on popular CAE 
workstations. 

PRODUCT SELECTOR GUIDE 

BASIC 
ARRAY 

M3020 
M3090 

LOGIC CAPACITY 
__iUSABLE GATE!!}_ 

2000 
9000 

CONFIGURABLE 
LOGIC BLOCKS 

64 
320 

USER 
I/Os 

64 
144 

PROGRAM 
DATA jBITl!}_ 

14779 
64160 

Publication # .Bfill.. Amendment 
10642 A /0 
Issue Date: June 1988 
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ORDERING INFORMATION 

Further information is available from AMD franchised distributors or from the nearest AMD sales 
.representative. Part numbers are composed as follows: 

3020 
3090 

Am3020 - 70CNL84 

(2000 Gates, 58 IOBs) ~ L 
(9000 Gates, 144 IOBs) 

50 (50 MHz Toggle) ___ ___. 
70 (70 MHz Toggle) 

ARCHITECTURE 

Functional Description 

NL68 
NL84 
P84 
P175 

68Pin PLCC 
84Pin PLCC 
84Pin PGA 
175 Pin PGA 

C = Commercial 
M = Military 

The perimeter of configurable IOBs provides a programmable interface between the internal logic array 
and the device package pins. The array of CLBs performs user-specified logic functions. The 
interconnection are programmed to form networks, carrying logic signals among blocks. This is 
analogous to printed circuit board traces connecting MSl/SSI packages. 

The logic functions of these blocks are determined by programmed look-up tables. Functional options 
are performed by program-controlled multiplexers. Interconnecting networks between blocks are 
composed of metal segments joined by program-controlled pass transistors. These LCA functions are 
activated by a configuration bit stream that is loaded into an internal, distributed array of configuration 
memory cells. The configuration bit stream is loaded into the LCA device at power-up and can be 
reloaded on command. The LCA device includes logic and control signals for automatic or passive 
configuration. Configuration data can be either bit serial or byte parallel. The XACT LCA Development 
System generates the configuration bit stream used to configure the LCA device. The memory loading 
process is independent of the user logic functions. 

Configuration Memory 

The static memory cell used for the LCA's configuration memory has been designed specifically for high 
reliability and noise immunity, ensuring integrity even under adverse conditions. Static memory provides 
the best combination of high density, high performance, high reliability, and comprehensive testability. 
As shown below, the basic memory cell consists of two CMOS inverters and a pass transistor, which is 
used for writing and reading cell data. The cell is only written during configuration and only read during 
readback. During normal operation, the pass transistor is off and does not affect the stability of the cell. 
This is quite different from the operation of conventional memory devices, in which the cells are 
frequently read and re-written. 



DATA 

Q CONFIGURATION 

~-• Q CONTROL 

A static configuration memory cell is loaded with one bit of the configuration bit stream and controls one 
data selection in the LCA device. The memory cell outputs Q and NO use full Ground and Vee levels and 
provide continuous, direct control. The additional capacitive load, together with the absence of address 
decoding and sense amplifiers, gives the cell high stability. 

Due to the structure of the configuration memory cells, they are not affected by extreme power supply 
excursions or very high levels of alpha particle radiation. No soft errors have been observed in reliability 
testing, even in the presence of very high doses of alpha radiation. 

The method of loading the configuration data is selectable. Two methods use serial data, while three use 
byte-wide data. The internal configuration logic uses framing information, which is embedded in the 
configuration data by the XACT LCA Development System, to direct memory cell loading. The serial data 
framing and length count preamble provide synchronous, serial, or daisy-chained compatibility with 
various AMO programmable gate arrays. 

Input/Output Blocks 

Each user-configurable 108, shown below, provides an interface between the device's external package 
pin and the internal user logic. Each 108 includes both registered and direct input paths and each 
provides a programmable three-state output buffer that can be driven by a registered or direct output 
signal. Configuration options allow a choice of polarity on the output and three-state control signals, a 
controlled slew rate, and a high impedance pull-up. Each input circuit provides input clamping diodes for 
electrostatic protection, and circuits to inhibit latch-up produced by input currents. 
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The input buffer portion of each IOB provides threshold detection to translate external signals applied to 
the package pin to internal logic levels. The global input-buffer threshold of the IOBs can be 
programmed for TTL or CMOS voltage levels. The buffered input signal drives the data input of a storage 
element that can be configured as a positive edge-triggered D flip-flop, or a level-transparent latch. 
Clock/load signals, IOB pin .ik, can be chosen from either of two available metal lines along each die 
edge. 1/0 storage elements are reset during configuration or by the active low chip -RESET input. Both 
direct input signals, from IOB pin.q, are available. 

For reliable operation, inputs should have transition times less than 100 ns and should not be left 
undriven, or floating. Unused CMOS input-pin circuits can be at threshold and produce oscillations. This 
produces additional power dissipation and system noise. A typical hysteresis of about 50 mV reduces 
input noise sensitivity . Each user 108 includes a programmable high impedance pull-up resistor that 
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can be selected by the bit stream and which provides a constant HIGH for undriven pins. Although the 
LCA device provides circuitry for input protection against electrostatic discharge, normal CMOS 
handling precautions should be observed. 

Loop delays for the 108 and logic block flip-flops are about 3 ns. This increases reliability, especially. for 
asynchronous clock and data conditions. Short loop delays minimize the probability of a metastable 
condition, which can result from assertion of the clock during data transitions. Because of the short loop 
delay in LCA devices, the flip-flops can be used to synchronize external signals applied to the device. 
Once synchronized in the 108, the signals can be used internally without regard to their clock-relative 
timing, except as it applies to the internal logic and routing path delays. 

Output buffers of the IOBs provide CMOS-compatible 4 mA source-or-sink drive for high fan-out CMOS 
or TIL compatible signal levels. The network driving 108 pin .o becomes the registered or direct data 
source for the output buffer. The three-state control signal, 108 pin .ts, can control output activity. An 
open-drain type output can be obtained by using the same signal for driving the output and three-state 
signal nets, so that the buffer output is enabled only for a LOW. 

The configuration memory cells, shown in the figure above, control the optional output register and 
logical signal inversion, as well as the three-state and slew rate configuration bits. A choice of two 
clocks is available on each die edge. All user inputs are programmed for TIL or CMOS thresholds. 

The 108 includes input and output storage elements and the following 1/0 options selected by 
configuration memory cells. 

Logical inversion of the output is controlled by one configuration bit per 108. 

Logical three-state control of each 108 output buffer is determined by the states of the 
configuration data bits that turn the buffer on/off or select the output buffer three-state control 
interconnection, pin .ts. When this 108 output control signal is HIGH, or logic 1, the buffer is 
disabled and the package pin is high impedance. Inversion of the buffer three-state control logic 
sense, output enable, is controlled by an additional configuration data bit. 

Direct or registered output is selectable for each 108 . The register uses a positive-edge, 
clocked flip-flop. The clock source, 108 pin .ok, can be supplied by either of two metal lines, which 
are available along each die edge. Each of these lines is driven by an invertible buffer. 

Increased output transition speed can be selected to satisfy critical nets. Slower transitions 
reduce capacitive load peak currents of non-critical outputs and minimize system noise. 

A high impedance pull-up resistor can be used to prevent floating, unused inputs. 

The following table is summarizes the 1/0 options. 

INPUTS OUTPUTS 

Direct Direct/registered 
Flip-flop/latch Inverted/true 
CMOS/TTL threshold (chip inputs) Full speed/slew limited 
Pull-LIQ_ resistor Optional three-state control 
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Configurable Logic Blocks 

CLBs are the functional elements from which the user's logic is constructed. The logic blocks are 
arranged in a matrix within the perimeter of IOBs. The 3020 has 64 such blocks arranged in eight rows 
and eight columns. The XACT LCA Development System compiles the configuration data, which defines 
the operation and interconnection of each block. Users can define CLBs and their interconnecting 
networks by automatic translation from a schematic capture logic diagram or, optionally, by installing 
library or user macros. 

Each CLB has a combinational logic section, two flip-flops, and an internal control section. As shown in 
the following figure, there are five logic inputs (.a, .b, .c, .d, and .e), a common clock input (.k), an 
asynchronous direct reset input (.rd), and a clock enable (.ec). All can be driven from the 
interconnection resources adjacent to the blocks. Each CLB also has two outputs (.x and .y) that can 
drive interconnection networks . 

.di 

LOGIC-+"""'----! COMBINATIONAL 
VARIABLES FUNCTION 

Q2 

.ec 

.k 
CLOCK-+---------__.,. 

.nl 
RESET-+-------------i 

"O" (INHIBIT)-----1 

(GLOBAL RESE'O-------' 

.x 

CLBOUTPUTS 

.y 

Data input for either flip-flop within a CLB is supplied from the F or G function outputs of the 
combinational logic, or the direct data input, .di. Both flip-flops in each CLB share the active HIGH 
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asynchronous reset (.rd), which is dominant over clocked inputs. All flip-flops are reset by the active 
LOW chip input, -RESET, or during the configuration process. The flip-flops share the clock enable 
(.ec), which, when LOW, recirculates the present states of the flip-flops and inhibits response to the 
data-in or combinational function inputs on a CLB. The user can enable these control inputs and select 
their sources. The user also can select the clock net input (.k) and its active sense in each logic block. 
This programmable inversion eliminates the need to route both phases of a clock signal throughout the 
device. Flexible routing allows use of common or individual CLB clocking. 

The combinational logic portion of the CLB uses a 32-by-1 look-up table to perform Boolean functions. 
Variables selected from the five logic inputs and two internal block flip-flops are used as table address 
inputs. The combinational propagation delay through the network is independent of the logic function 
generated and is spike free for changes in single input variables. 

This technique can generate a single function of five variables, as shown below. 

A-!-~~~~~....-~~~-, 
B --t.------lr"I 

c -~-----1.; 
0--t.---------1 

ANY FUNCTION 
OFUPT05 

VARIABLES 

E-j-~~~~~~-t-~~~__J 

F 

G 

It can also generate any two logic functions of up to four variables each. 
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It can also generate some functions of seven variables, as shown in the next figure. 

The partial functions of six or seven variables are generated by the input variable,.e, which dynamically 
selects between two functions of four different variables. For the two functions of four variables each, 
the independent results,F and G, can be used as data inputs to either flip-flop or either logic block 
output. For the single function of five variables and merged functions of six or seven variables, the F 
and G outputs are identical. Symmetry of the F and G functions and the flip-flops helps optimize the 
routing of the networks connecting the logic blocks and IOBs. 

The next figure shows a modulo 8 binary counter with parallel enable. It uses one CLB of each type. 
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Programmable interconnection resources in the LCA device provide routing paths to connect inputs and 
outputs of the 1/0 and logic blocks into logical networks. Interconnections between blocks are 
composed of two-layer grid of metal segments. Specially designed pass transistors, each controlled by 
a configuration bit, form programmable interconnect points (PIPs) and switching matrices used to 
implement the necessary connections between selected metal segments and block pins. The figure 
below provides an example of a routed net. 
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The XAC.T LCA Development System automatically routes these interconnections. Interactive routing 
using Editnet can also be done to optimize the design. The inputs of the logic or 108 are multiplexers 
that can be programmed to select an input network from the adjacent interconnection segments. 

Note: The switch connections to block inputs are usable only for input connection, and not for routing, 
because the are unidirectional as are block out uts . 

The following figure illustrates routing access to logic block input variables, control inputs, and block 
outputs. 
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Three types of metal resources are available for network interconnections. 

General Purpose Interconnection 
Direct Connection 
Long Lines 

General Purpose Interconnections 

A general purpose interconnection, as shown below, consists of a grid of five horizontal and five vertical 
metal segments located between the rows and columns of logic and 1/0 Blocks. These segments can be 
connected through switch matrices to form networks for CLB and 108 inputs and outputs. 

Grid Of General Interconnection 
Metal Segments 

Switching 
Matrix 

Each segment is the height or width of a logic block. Switching matrices join the ends of these segments 
and allow programmed interconnections between the metal grid segments of adjoining rows and columns. 
The switches of an unprogrammed device are all non-conducting. The connections through the switch 
matrix can be made by automatic routing, or by using Editnet to select the desired pairs of matrix pins 
that are to be connected or disconnected. The legitimate switching matrix combinations for each pin are 
shown in the next figure. 
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Special buffers in the general interconnection areas provide periodic signal isolation and restoration, 
thus improving performance of lengthy nets. The interconnection buffers can propagate. signals in either 
direction on a general interconnection segment. These bidirectional buffers are above and to the right of 
the switching matrices. The other PIPs adjacent to the matrices are gateways to and from long lines. 

The XACT LCA Development System automatically defines the buffer direction based on the location of 
the interconnection network source. The delay calculator of the XACT LCA Development System 
automatically calculates and displays the block, interconnection, and buffer delays for the selected 
paths. lt can also generate the simulation net list with a worst-case delay model. 

Direct Interconnections 

A direct interconnection, shown below, provides the most efficient implementation of networks between 
adjacent logic or IOBs. The .x and .y outputs of each CLB have single contact, direct access to inputs 
of adjacent CLBs. 
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Signals routed from block to block by direct interconnection show minimum interconnection propagation 
and use no general interconnection resources. For each CLB, the .x output can be connected directly to 
the .b input of the CLB to its right, and to the .c input of the CLB to its left. The .y output can use a direct 
interconnection to drive the .d input of the block above, and the .a input of the block below. 

Direct Interconnection should be used to maximize the speed of high performance portions of logic. 
Where logic blocks are adjacent to IOBs, a direct connection is provided alternately to the 108 inputs 
(.i) and outputs (.o) of the left, top, and bottom edges of the die. The right edge provides alternate direct 
input and output of CLBs and IOBs. Direct interconnections of IOBs and CLBs are shown in the next 
figure. 
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Long Lines 

Long lines, which bypass the switch matrices, are intended primarily for signals that must travel a long 
distance, or that must have minimum skew among multiple destinations. Long lines, shown below, run 
the height or width of the interconnection area. Each interconnection column has three vertical long 
lines, and each interconnection row has two horizontal long lines. Two additional long lines are adjacent 
to the outer sets of switching matrices. The outermost are connectible half-length lines. 
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Horizontal and vertical long lines provide high fan-out, low-skew signal distribution in each row and 
column. The global buffer in the upper left die corner drives a common line throughout the LCA device. 
The programmable interconnection of long lines is provided at the edges of the routing area. Long lines 
can be driven by a CLB or 108 output on a column-by-column basis. This provides a common low skew 
control or clock line within each column of logic blocks. Interconnections of these long lines are shown 
in the following figure. Isolation buffers are provided at each input to a long line and are enabled 
automatically by the XACT LCA Development System when a connection is made. 
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A buffer in the upper left corner of the LCA chip drives a global net available to all .k inputs of logic 
blocks. Using the global buffer for a clock signal provides a skew free, high fan-out, synchronized clock 
for use at any, or all, of the 1/0 and logic blocks. Three-state buffers let you use horizontal long lines to 
form wired-AND and multiplexed busses. Configuration bits for the .k input to each logic block can select 
this global line or another routing resource as the clock source for its flip-flops. This net can also be 
programmed to drive the die edge clock lines for 108 use. An enhanced speed, CMOS threshold direct 
access to this buffer is available at the second pad from the top of the left die edge. 

A buffer in the lower right corner of the array drives a horizontal long line, which can drive programmed 
connections to a vertical long line in each interconnection column. This alternate buffer also is low skew 
and high fan-out. The network formed by this alternate buffer's long lines can be selected to drive the .k 
inputs of the logic blocks. The CMOS threshold, high-speed access to this buffer is at the third pad from 
the bottom of the right die edge. 

Internal Busses 

A pair of three-state buffers are located adjacent to each CLB. These let logic drive the horizontal long 
lines. Logical operation of the three-state buffer controls lets them implement wide multiplexing 
functions. Any three-state buffer input can be selected to drive the horizontal long line bus by applying a 
low logic level on its three-state control line, as shown in the next figure. 

Z = DA • A + D8 • B + De • C + 

Three-state buffers make a Multiplexer for which the selection is 
accomplished by the buffer three-state signal. 

The user must avoid contention resulting from multiple drivers with opposing logic levels. Control of the 
three-state input by the same signal that drives the buffer input creates an open drain wired-AND 
function. A logical HIGH on both buffer inputs creates a high impedance with no contention. A logical 
LOW enables the buffer to drive the long line low, as shown below. 
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Three-state buffers make a Wired-AND function. When all the 
three-state lines are HIGH (high impedance), the pull-up resistor(s) 
provide the JDGH output. The buffer inputs are driven by the control 
signals or a LOW. 

Pull-up resistors are available at each end of the long line to provide a HIGH output when all connected 
buffers are non-conducting. These buffers allow fast, wide gating, optimum speed, and efficient routing 
of high fan-out signals. The following figure shows three-state buffers, long lines, and pull-up resistors. 
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Crystal Oscillator 

The previous figure also shows the location of an internal high-speed inverting amplifier that can be used 
as an on-chip crystal oscillator. It is associated with the auxiliary buffer in the lower right corner of the 
die. When the oscillator is configured as a signal source, two special user IOBs are also configured to 
connect the oscillator amplifier with external crystal oscillator components, as shown below. 

When activated by selecting an output network for its buffer, the crystal oscillator inverter uses two of 
the package pins and external components to make an oscillator. An optional divide-by-two mode is 
available to ensure symmetry. 

XTAL2 
(IN) 

SUGGESTED COMPONENT VALVES 

RI l-4MQ 
R2 0-IKQ 

(may be required for low frequency. phase 
shift and/or compensation level for crystal Q) 

Cl,C2 l0-40pF 
YI I - 20 MHz AT cut series resonant 

~Cl 

68 Pin 84Pin 

PLCC PLCC PGA 
LXTALl (Out) 47 57 Jll 
[XTAL2 (In) 43 53 Lil 

Internal External 

RI 

R2 

YI 
~C2 

175 Pin 

PGA 
T14 
P15 

A divide-by-two option is available to assure symmetry. The oscillator circuit becomes active before 
configuration is complete so the oscillator can stabilize. Actual internal connection is delayed until 
completion of configuration. In the preceding figure the feedback resistor, R1, between output and input 
biases the amplifier at threshold. The value should be as large as practical to minimize loading the 
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crystal. The inversion of the amplifier, together with the R-C networks and an AT cut series resonant 
crystal, produce the 360 degree phase shift of the Pierce oscillator. A series resistor, R2, can be 
included to increase the amplifier output impedance. This may be needed for phase shift control or 
crystal resistance matching, or to limit the amplifier input swing to control clipping at large amplitudes. 

Excess feedback voltage can be corrected by the ratio of C2/C1. The amplifier can be used from 1 MHz 
to one-half the specified CLB toggle frequency. Used at frequencies below 1 MHz, the amplifier may 
require individual characterization with respect to a series resistance. Crystal oscillators operating at 
frequencies above 20 MHz usually require a crystal that operates in a third overtone mode, in which the 
fundamental frequency must be suppressed by the R-C networks. When the oscillator inverter is not 
used, these IOBs and their package pins are available for general user 1/0. 

PROGRAMMING 

Initialization 

An internal power-on reset circuit is triggered when power is applied. When Vee reaches the voltage at 
which portions of the LCA device begin to operate (2.5 to 3 V), the programmable 1/0 output buffers are 
disabled and a high impedance pull-up resistor is provided for the user 110 pins. A time-out delay is 
initiated to let the power supply voltage stabilize. During this time, the power-down mode is inhibited. 
The initialization state time-out (about 20 to 30 ms) is determined by a 14-bit counter driven by a self­
generated, internal timer. This nominal 1 MHz timer is subject to variations as a result of process, 
temperature, and power supply from 0.5 to 1.5 MHz. As shown in the following table, five configuration 
modes are available, as determined by the input levels of three mode pins MO, M1, and M2. 

MO M1 M2 CLOCK MODE DATA 
0 0 0 output Master Bit Serial 
0 0 1 output Master Byte Wide (0000 up) 
0 1 0 - - -
0 1 1 output Master Byte Wide (FFFF down) 
1 0 0 - - -
1 0 1 input Peripheral Byte Wide 
1 1 0 - - -
1 1 1 in_Q_ut Slave Bit Serial 

In master configuration modes, the LCA device becomes the source of the configuration clock (CCLK). 
The beginning of configuration of devices using peripheral or slave modes must be delayed until they are 
initialized. An LCA device with mode lines selecting a master configuration mode extends its 
initialization state using four times the delay (80 to 120 ms). This ensures that all daisy-chained slave 
devices it may be driving will be ready. The next figure shows the sequence of states. 

4·65 



USER l/O PINS W111I HIGH IMPEDENCE PULL-UP 

--~~~~~~~~~--_..,,..___---~~~~~~~~---r HDC=HIGH ----.. 
iNri'SIGNAL LOW LDC= LOW 

HIGH-TO-LOW OF DONF./PROGRAM 

Power-On Delay is 
214 Cycles for Non-Master Mode -11 to 33 ms 
216 Cycles for Master Mode - 43 to 130 ms 

Clear is 
-200 Cycles for the M3020 - 30 TO 400 µs 
-375 Cycles for the M3090 - 250 TO 750 µs 

At the end of initialization, the LCA device enters the clear state, in which it clears the configuration 
memory. The active LOW, open-drain initialization signal, RDYl-INIT, indicates completion of the 
initialization and clear states. The LCA device tests for the absence of an external active LOW -RESET 
before it makes a final sample of the mode lines and enters the configuration state. An external wired­
AND of one or more -INIT pins can be used to control configuration by the assertion of the active LOW 
-RESET of a master mode device or to signal a processor that the LCA devices are not yet initialized. 

If a configuration has begun, re-asserting -RESET for at least three internal timer cycles is recognized, 
and the LCA device will abort the program, clearing the partially loaded configuration memory words. The 
LCA device will then re-sample -RESET and the mode lines before re-entering the configuration state. 

The configuration bit stream is initiated again when a configured LCA device senses a HIGH to LOW. 
transition on the DONE/-PROG package pin. The LCA device returns to the clear state, in which the 
configuration memory is cleared and mode lines re-sampled, as for an aborted configuration. The 
complete configuration bit stream is cleared and loaded during each configuration cycle. 

Length count control lets a system of multiple LCA devices, of various sizes, begin synchronized 
operation. The configuration bit stream generated by the MakePROM software of the XACT LCA 
Development System begins with a preamble of 11110010. This is followed by a 24-bit length count 
representing the total number of configuration clocks needed to complete loading of the configuration 
program(s). The data framing is shown in the following figure. 
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1111 
0010 
<24 BIT LENGTH COUNT> 
1111 

O<DATAFRAME#OOl> 111 
0<DATAFRAME#002> 111 
0<DATAFRAME#003> 111 

O<DATAFRAME# 196> 111 
O<DATA FRAME# 197> 111 

1111 

- DUMMY BITS (4 BITS MINIMUM) 
- PREAMBLE CODE 
- CONFIGURATION PROGRAM LENGTH 
- DUMMY BITS (4 BITS MINIMUM) 

FORM3020 

197 CONFIGURATION DATA FRAMES 

(EACH FRAME CONSISTS OF: 
A START BIT (0) 
A 71-BITDATAFIELD 
2 OR MORE DUMMY BITS) 

320 
(20X 16) 

64 144 

256 928 

Bits per frame 75 172 
(w/ 1 start 3 stop) 

Frames 197 373 

Program Data = 14779 64160 
Bits • Frames + 4 
(excludes preamble) 

PROM size (bits) 14816 64200 

Power/God pin pair 2 8 

All LCA devices connected in series read and shift preamble and length count in on positive, and out on 
negative, configuration clock edges. An LCA device that has received the preamble and length count 
then presents a HIGH Data Out until it has intercepted the appropriate number of data frames. When the 
configuration memory of an LCA device is full and the length count does not compare, the LCA device 
shifts any additional data through in the same way it did for preamble and length count. 

When the LCA configuration memory is full and the length count compares, the LCA device executes a 
synchronous start-up sequence and becomes operational, as shown below. 
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Two CCLK cycles after the completion of loading configuration data, the user 1/0 pins are ena.bled as 
configured. As selected in MAKEBITS, the internal user-logic reset is released either one clock cycle 
before, or one clock cycle after the 1/0 pins become active. A similar timing selection is programmable 
for the DONE/-PROG output signal. DONEl-PROG can also be programmed to be an open drain or to 
include a pull-up resistor to accommodate wired ANDing. High During Configuration (HOC) and Low 
During Configuration (LDC) are two user 1/0 pins driven active when an LCA is initializing, clearing, or 
configuring. These pins and the DONEl-PROG commands provide signals for control of external logic 
signals such as reset, bus enable, or PROM enable during configuration. For parallel master 
configuration modes, these signals provide PROM enable control and let the data pins be shared with 
user logic signals. 

User 110 inputs can be programmed for either TTL or CMOS compatible thresholds. At power-up, all 
inputs have TTL thresholds and can change to CMOS thresholds at the completion of configuration, if 
the user has selected CMOS thresholds. The threshold of -PWRDWN and the direct clock inputs are 
fixed at the CMOS level. 

If the crystal oscillator is used, it will begin operation before configuration is completed; this allows time 
for stabilization before the oscillator is connected to the internal circuitry. 
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Configuration Data 

Configuration data to define the function and interconnection within an LCA device are loaded from an 
external storage at power-up and, if not inhibited, on a reprogram signal. Several methods of automatic 
and controlled loading of the required data are designed into the LCA device. Logic levels applied to 
mode selection pins at the start of configuration determine the method to be used. See the mode 
selection table above. 

The format of the data can be either bit-serial or byte-parallel, depending on the configuration mode. 
Various AMO programmable gate arrays will have different sizes and numbers of data frames. To 
maintain compatibility between various device types of the AMO product line, the 3000 series LCA 
devices use formats compatible with the 2000 series. For the 3020, configuration requires 14779 bits, 
arranged in 197 data frames, for each device. An additional 36 bits are used in header, as shown in the 
previous figure. The specific data format for each device is produced by the MAKEBITS command of the 
XACT LCA Development System. 

One or more of these files can then be combined and appended to a length count preamble and be 
transformed into a PROM format file by the MAKE PROM command of the XACT LCA Development 
System. An exception to the compatibility of the devices is that a 2000 series device cannot be used as 
the master for a 3000 series device if their DONE or RESET are programmed to occur after their outputs 
become active. The TIE option of MAKEBITS causes the unused block outputs to be defined as 
constant LOW levels that are used to drive the unused routing and block resources. Resources that 
might not be accessible to unused block outputs will then be added to FLAGNET, non-critical user nets. 
NORESTORE will retain the results of TIE for timing analysis with QUERYNET, before RESTORE returns 
the design to the untied condition. TIE can be omitted for quick breadboard iterations where a few 
additional mA of Ice are acceptable. 

The configuration bit stream begins with HIGH preamble bits, a four-bit preamble code, and a 24-bit a 
length count. When configuration is initiated, a counter in the LCA device is set to 0 and begins to count 
the total number of configuration clock cycles applied to the device. As each configuration data frame is 
supplied to the LCA device, it is internally assembled into a data word. As each data word is completely 
assembled, it is loaded in parallel into one word of the internal configuration memory array. The 
configuration loading process is completed when the current length count equals the loaded length 
count, and the required configuration bit stream data frames have been written. Internal user flip-flops 
are held reset during configuration. 

Two user-programmable pins are defined in the unconfigured LCA device. HOC and LDC, as well as 
DONEi-PROO, can be used as external control signals during configuration. In master mode 
configurations it is convenient to use LDC as an active-LOW EPROM Chip Enable. After the last 
configuration data-bit is loaded and the length count compares, the user 1/0 pins become active. 
Options in the MAKEBITS software allow timing choices of one clock earlier or later for the timing of the 
end of the internal logic reset and the assertion of the DONE signal. The open-drain DONE/-PROG 
output can be AND-tied with multiple LCA devices and used as an active HIGH READY, an active LOW 
PROM enable, or a RESET to other portions of the system. 

Master Mode 

In master mode, the LCA device automatically loads configuration data from an external memory device. 
There are three master modes that use the internal timing source to time the incoming data supplying the 
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configuration clock (CCLK). Serial master mode uses serial configuration data supplied to data-in (DIN) 
from a synchronous serial source such as the AMD Serial Configuration PROM (Am1736) shown below. 

The one-time-programmable Am1736 Serial Configuration PROM supports automatic loading of 
configuration programs up to 36K bits. Multiple devices can be cascaded to support additional LCA 
devices. An early DONE inhibits •'1e Am1736 data output one CCLK cycle before the LCA 1/0 becomes 
active. 
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Master LOW and master HIGH modes automatically use parallel data supplied to the DO-D? pins in 
response to the 16-bit address generated by the LCA device. The next figure shows an example of the 
parallel master mode connections required. The LCA HEX starting address is 0000 and increments for 
master LOW mode. It is FFFF and decrements for master HIGH mode. These two modes provide 
address compatibility with microprocessors beginning execution from opposite ends of memory. 

For master HIGH or LOW, data bytes are read in parallel by each read clock (RCLK) and internally 
serialized by the configuration clock. As each data byte is read, the least significant bit of the next byte, 
DO, becomes the next bit in the internal serial configuration word. One master mode LCA device can be 
used to interface the configuration program-store and pass additional concatenated configuration data 
to additional LCA devices in a serial daisy-chain fashion. CCLK is provided for the slaved devices and 
their serialized data is supplied from DOUT to DIN - DOUT to DIN, etc. 

Configuration data are loaded automatically from an external byte wide PROM. An early DONE inhibits 
the PROM outputs a CCLK before the LCA 1/0 becomes active. 
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Peripheral Mode 

Peripheral mode provides a simplified interface through which the device can be loaded byte-wide, as a 
processor peripheral. The next figure shows the peripheral mode connections. Processor write cycles 
are decoded from the common assertion of the active LOW Write Strobe (-WAT), and two active LOW 
and one active HIGH Chip Selects (-CSO, -CS1, CS2). If all these signals are not available, the unused 
inputs should be driven to their respective active levels. The LCA device accepts one byte of 
configuration data on the D0-07 inputs for each selected processor write cycle. Each byte of data is 
loaded into a buffer register. 

The LCA device generates a configuration clock from the internal timing generator and serializes the 
parallel input data for internal framing or for succeeding slaves on Data Out (DOUT). An output HIGH on 
the READY/-BUSY pin indicates completion of loading for each byte and that the input register is ready 
for a new byte. As with master modes, peripheral mode can also be used as a lead device for a daisy­
chain of slave devices. 
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Slave Mode 

Slave mode provides a simple interface for loading the LCA device configuration, as shown below. Data 
are supplied in conjunction with a synchronizing input clock. Bit-serial data configuration are read at 
rising edge of the CCLK. Data on DOUT are provided on the falling edge of CCLK. 

Most slave mode applications are in daisy-chain configurations in which the data input are supplied by 
the previous LCA's data out, while the clock is supplied by a lead device in master or peripheral mode. 
Data can also be supplied by a processor or other special circuits. 
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The AMD XACT LCA Development System is used to create a composite configuration bit stream for 
selected LCA devices. This configuration includes the following: 
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A preamble 
A length count for the total bit stream 
Multiple concatenated data programs 
A postamble 
An additional fill bit per device in the serial chain 

After loading and passing on the preamble and length count to a possible daisy-chain, a lead device will 
load its configuration data frames while providing a HIGH DOUT to possible down-stream devices as 
shown below. In this figure, all are configured from the common EPROM source. The slave mode device 
-INIT signals delay the master device configuration until they are initialized. A well defined termination 
of SYSTEM RESET is needed when controlling multiple LCA devices. 
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Loading continues until the current length count has reached the full value. The additional data are 
passed through the lead device and appear on the DOUT pin in serial form. The lead device also 
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generates the CCLK to synchronize the serial output data and data in of LCA devices further attached. 
Data are read in on DIN of slave devices by the positive edge of CCLK and shifted out the DOUT on the 
negative edge of CCLK. A parallel master mode device uses its internal timing generator to produce an 
internal CCLK of eight times its EPROM address rate, while a peripheral mode device produces a burst of 
eight CCLKs for each chip select and write-strobe cycle. The internal timing generator continues to 
operate for general timing and synchronization of inputs in all modes. 

SPECIAL CONFIGURATION FUNCTIONS 

The configuration data include control over several special functions, in addition to the normal user logic 
functions and interconnections. 

Input thresholds 
Readback enable 
DONE pull-up resistor 
DONE timing 
RESET timing 
Oscillator frequency divided-by-two 

Each of these functions is controlled by configuration data bits selected as part of the normal XACT LCA 
Development System bit-stream generation process. 

Input Thresholds 

Prior to the completion of configuration, all LCA input thresholds are TIL compatible. Upon completion of II 
configuration, the input thresholds become either TIL or CMOS compatible, as programmed. The use of 
the TIL threshold option requires some additional supply current for threshold shifting. The exception is 
the threshold of the ~PWRDWN input and direct clocks that always have a CMOS input. Prior to the 
completion of configuration, the user 1/0 pins have a high impedance pull-up. The configuration bit 
stream can be used to enable the 108 pull-up resistors in the operational mode to act either as an input 
load or to avoid a floating input on an otherwise unused pin. 

Read back 

The contents of an LCA device can be read back if it has been programmed with a bit stream in which the 
Readback option has been enabled. Readback can be used for verification of configuration, as well as a 
method of determining the state of internal logic nodes during debugging with the XACTOR In-Circuit 
debugger. There are three options in generating the configuration bit stream. 

Never inhibits the Readback capability. 

One-time inhibits Readback after one Readback has been executed' to verify the configuration. 

On-command permits unrestricted use of Readback. 
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Readback is done without the use of any of the user 1/0 pins; only MO, M1, and CCLK are used. The 
initiation of readback is produced by a LOW to HIGH transition of the MO/RTRIG (Read Trigger) pin. 
Once the READBACK command has been given, the input CCLK is driven by external logic to read back 
each data bit in a format similar to loading. After two dummy bits, the first data frame is shifted out, in 
inverted sense, on the M1/-RDATA (Read Data) pin. All data frames must be read back to complete the 
process and return the mode select and CCLK pins to their normal functions. 

The readback data includes the current state of each internal logic block storage element, and the state 
of the .i and .ri connection pins on each 108. These data are imbedded into unused configuration bit 
positions during readback. This state information is used by the XACT LCA Development System In­
Circuit Verifier to provide visibility into the internal operation of the logic while the system is operating. 
To readback a uniform time-sample of all storage elements it may be necessary to inhibit the system 
clock. 

Reprogram 

To initiate a reprogramming cycle, the dual function package pin DONE/-PROG must transition from 
HIGH to LOW . To reduce noise sensitivity, the input signal is filtered for two cycles of the LCA's internal 
timing generator. When reprogram begins, the user programmable 1/0 output buffers are disabled, and 
high impedance pull-ups are provided for the package pins. The device returns to the clear state and 
clears the configuration memory before it is initialized. 

Reprogram control is often exercised using an external open collector driver that pulls DONE/-PROG 
LOW. Once it recognizes a stable request, the LCA device holds a LOW until the new configuration has 
been completed. Even if the reprogram request is externally held LOW beyond the configuration period, 
the LCA device will begin operation upon completion of configuration. 

DONE Pull-up 

DONE/-PROG is an open drain 1/0 pin indicating that the LCA device is operational. An optional internal 
pull-up resistor can be enabled by the user of the XACT LCA Development System when MakeBits is 
executed. The DONE/-PROG pins of multiple LCA devices in a daisy-chain can be connected to 
indicate all are DONE or to direct them to reprogram. 

DONE Timing 

By a selection in the MakeBits program, the timing of the DONE status signal can be controlled to occur 
one CCLK cycle before, or one cycle after, the timing of outputs are activated. This is shown below. 
This facilitates control of external functions such as a PROM enable or holding a system in a wait state. 
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As with DONE timing, the timing of the release of the internal RESET can be controlled by a selection in 
the MakeBits program. It then occurs one CCLK cycle before, or one cycle after, the timing of outputs 
are enabled, as shown above. This reset maintains all user-programmable flip-flops and latches in a zero 
state during configuration. 

Crystal Oscillator Division 

A selection in the MakeBits software lets the user incorporate a dedicated divide-by-two flip-flop in the 
crystal oscillator function. This helps ensure a symmetrical timing signal. Although the frequency 
stability of crystal oscillators is high, the symmetry of the waveform can be affected by bias or feedback 
drive. 
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PERFORMANCE 

Device Performance 

The high performance of the LCA device is due in part to the manufacturing process, which is similar to 
that used for high-speed CMOS static memories. Performance can be measured in terms of minimum 
propagation times for logic elements. The parameter that traditionally describes the overall performance 
of a gate array is the toggle frequency of a flip-flop. The configuration for determining the toggle 
performance of the LCA device is shown below. The flip-flop output Q is fed back through the 
combinational logic as -Q to form the toggle flip-flop. 

Actual LCA device performance is determined by the timing of critical paths, including both the fixed 
timing for the logic and storage elements in that path, as well as the timing associated with the network 
routing. Examples of internal worst-case timing are included in the performance data to let the user to 
make the best use of the device's capabilities. The XACT LCA Development System timing calculator, or 
LCA generated simulation models, should be used to calculate worst-case paths by using actual 
impedance and loading information. The following figure shows a variety of elements used involved in 
determining system performance. 
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Actual measurement of internal timing is not practical; often only the sum of component timing is 
relevant, as in the case of input to output. The relationship between input and output timing is arbitrary; 
only the total determines performance. Timing components of internal functions can be determined by 
measuring the differences at the pins of the package. A synchronous logic function with a clock-to­
block output, and a block-input to clock set-up, is capable of higher speed operation than a logic 
configuration of two synchronous blocks with an extra combinational block level between them. System 
clock rates to 60% of the toggle frequency are practical for logic in which there is an extra combinational 
level located between synchronized blocks. This permits implementation of functions of up to 25 
variables. The use of the wired-AND is also available for wide, high-speed functions. 

Logic Block Performance 

Logic block performance is expressed as the propagation time from the interconnection point at the input 
of the combinational logic, to the output of the block in the interconnection area. Combinational 
performance is independent of the specific logic function, which is based on look-up tables. 

The only parameter for all logic functions is the Logic Input to Output delay. For combinational logic used 
in conjunction with the storage element, however, there are two critical parameters. First, for the 
combinational logic function driving the data input of the storage element, the critical timing is data setup 
relative to the clock edge provided to the flip-flop. Second, for the signals then produced by the storage 
elements, the critical timing is the Clock to Output delay. These parameters are shown in the previous 
figure. 

Loading of a logic block output is limited only by the resulting propagation delay of the larger 
interconnection network. Speed performance of the logic block is a function of the supply voltage and 
the temperature, as shown in the next two figures. 



The following figure shows the change in speed performance as a function of temperature. The variation 
is normalized for 30° C, 70° C, 85° C, and 125° C. 
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Interconnection Performance 

Interconnection performance depends on the routing resource used for the signal path. As discussed 
earlier, direct interconnection from block to block provides a fast path for a signal. The single metal 
segment used for long lines exhibits low resistance from end to end, but relatively high capacitance. 
Signals driven through a programmable switch will have the additional impedance of the switch added to 
their normal drive impedance. 

General purpose interconnection performance depends on the number of switches and segments used, 
the presence of the bidirectional re-powering buffers, and the loading at all points on the signal path. In 
calculating the worst-case timing for a general interconnection path, the timing calculator portion of the 
XACT LCA Development System takes all of these elements into account. 

As an approximation, interconnection timing is proportional to the summation of totals of local metal 
segments beyond each programmable switch. In effect, the time is a sum of R-C time, each 
approximated by an R times the total C it drives. The R of the switch and the C of the interconnection are 
functions of the particular device performance grade. 

For a string of three local interconnections, the approximate time at the first segment {after the first 
switch resistance) would be three units; after the next switch there are an additional two units; and there 
is an additional unit after the last switch in the chain. The interconnection R-C chain terminates at each 
re-powering buffer. The capacitance of the block inputs is not significant; the capacitance is in the 
interconnection metal and switches, as shown in the following figure. 
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POWER 

Power Distribution 

Power for the LCA device is distributed through a grid to achieve high noise immunity and isolation 
between the logic and 1/0. Inside the LCA device, a dedicated Vee and ground ring surrounding the logic 
array provide power to the 1/0 drivers, as shown below. An independent matrix of Vee and ground lines 
supplies the interior logic of the device. This power distribution grid provides a stable supply and ground 
for all internal logic; this assumes that the external package power pins are all connected and 
appropriately decoupled. Usually, a 0.1 µF capacitor connected near the Vee and ground pins of the 
package will provide adequate decoupling. 
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Output buffers capable of driving the specified 4 mA loads under worst-case conditions can be capable 
of driving 25 to 30 times that current in a best case. Noise can be reduced by minimizing external load 
capacitance and reducing simultaneous output transitions in the same direction. Also, it may be 
beneficial to locate heavily loaded output buffers near the ground pads. The 108 output buffers have a 
slew-limited mode that should be used where output rise and fall times are not speed critical. A lower AC 
drive current reduces transition and supply noise without a corresponding reduction in DC drive. A 
maximum of 32 simultaneously switching outputs is allowed. 

4·85 



Power Dissipation 

The LCA device exhibits the low power consumption characteristic of CMOS ICs. For any design, the 
user can use the figure below to calculate the total power requirement based on the sum of the external 
and internal capacitive and DC loads. The total chip power is the sum of Vcc•lcco, plus internal and 
external values of capacitive charging currents and resistive loads. · 

The configuration options of TTL chip input threshold requires power for the threshold reference. The 
power required by the static memory cells holding the configuration data is very low and can be 
maintained in a power-down mode. 
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Usually, most power dissipation is produced by external capacitive loads on the output buffers. The 
load- and frequency-dependent power is 25 µW/pF/MHz per output. Another component of 1/0 power is 
the DC loading on each output pin by LCA-driven devices. 

Internal power dissipation is a function of the number and size of the nodes, and the frequency at which 
they change. In an LCA device, the fraction of nodes changing on a given clock is typically low (10-
20%). For example, in a large binary counter, the average clock cycle produces changes equal to one 
CLB output at the clock frequency. In a 4-input AND gate, there will be two transitions in 16 states. 
Typical global clock buffer power is about 3 mW/MHz. The internal capacitive load is more a function of 
interconnection than fanout. With typical load of three general interconnection segments, each CLB 
output requires about 0.4 mW/MHz of its output frequency. 

Total power = Vee• leeo +external (DC+ capacitive)+ internal (CLB + IOB+ Long Line+ pull-up) 

Because the control storage of the LCA device is CMOS static memory, its cells require a very low 
standby current for data retention. In some systems, this characteristic can be used as a method of 
preserving configurations in the event of a primary power loss. The LCA device has built in power-down 
logic that, when activated, will disable normal operation of the device and retain only the configuration 
data. All internal operation is suspended and output buffers are placed in a high impedance state with no 
pull-ups. Power-down data retention is possible with a simple battery-backup circuit because the power 
requirement is extremely low. For retention at 2.4 V, the required current is typically on the order of 50 
nA. 

To force the LCA device into the power-down state, the user must pull the -PWRDWN pin LOW and 
continue to supply a retention voltage to the Vee pins of the package. When normal power is restored, 
Vee is increased to its normal operating voltage and -PWRDWN is returned to HIGH. The LCA device 
resumes operation with the same internal sequence that occurs at the conclusion of configuration. 
Internal 1/0 and logic block storage elements will be reset, the outputs will become enabled, and the 
DONE/-PROG pin will be released. No configuration programming is required. 

When the power supply is removed from a CMOS device, it is possible to supply some power from an 
input signal. The conventional electrostatic input protection is provided by diodes to the supply and 
ground. A positive voltage applied to an input or output will cause the positive protection diode to 
conduct and drive the power pin. This condition can produce invalid power conditions and should be 
avoided. A large series resistor can be used to limit the current, or a bi-polar buffer can be used to 
isolate the input signal. 

DEVELOPMENT SYSTEMS 

To implement your system application on the LCA device, AMO provides a wide host of software 
packages. These packages are primarily IBM-PC/AT based and allow the entire programmable gate 
array design cycle to be completed inexpensively and quickly at the system designer's desk. The 
packages provide the following capabilities. 
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Schematic capture 
PALASM™ Boolean entry 
Large number of predefined macro library elements 
Automatic logic conversion and reduction 
Logic and electrical rule checking 



Logic partitioning 
Automatic placement and routing 
Interactive timing calculator 
Logic and timing simulation interfaces 
Automatic design documentation 
Interactive design editing and optimization 
PROM programmer format output capabilities 
In-system design verification for multiple arrays 

The XACT LCA Design Editor is hosted on an IBM-PC/AT system with DOS 3.0 or higher. The system 
requires 640K bytes of internal RAM, 1.5 MBytes of extended memory, color graphics, and a mouse. 
The complete system requires one parallel 1/0 port and two serial ports for the mouse and in-system 
emulator. 

Design Entry 

Design entry can be accomplished with popular schematic editors. Popular engineering workstations 
such as Daisy or Mentor are also supported. Additionally, designs can be entered and configured 
manually with the XACT Design Editor, or through Boolean expressions via PALASM programmable logic 
language. 

The following figure shows a partial sample of a entering a design via schematic capture. 
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PIN 

Design Implementation 

Following design entry, logic designs can be automatically converted, reduced, partitioned, placed, and 
routed with the Automatic Design Implementation (ADI) software packages. For those designs that are 
not completely automatic, the XACT Design Editor can be used to manually complete or optimize the 
design. Following layout, various design and electrical rules are checked automatically by the software, 
producing a valid design file. This file contains all the programming data used to download directly into 



an LCA device in the user's target system. The programming information can be used to program PROM, 
EPROM, or ROM devices, or stored in other media, as needed by the final system. 

Design Verification 

Design verification can be accomplished by using the AMD XACTOR In-System Emulator directly in the 
target system. Also, the ADI packages provide output data that can be accepted by popular simulators 
such as P-SILOS for complete logic and timing simulation. If design changes are required, the changes 
can be implemented in minutes at the designer's desk. 

PIN DESCRIPTIONS 

-PWRDWN 

An active LOW power down input stops all internal activity to minimize Vee power and puts all output 
buffers in a high impedance state. Configuration is retained, however, internal storage elements are 
Reset. When the -PWRDWN pin returns HIGH, the device returns to operation with the same sequence 
of Reset, buffer enable, and DONEi-PROGRAM as at the completion of configuration. 

MO 

As Mode 0, this input and M1 M2 are sampled before the start of configuration to establish the 
configuration mode to be used. 

or 

RTRIG 

As a Read Trigger, after configuration is complete, an input transition to a HIGH will initiate a Readback 
of configuration and storage element data by CCLK. This operation can be limited to a single request, or 
can be inhibited altogether, by selecting the appropriate readback option when generating the bit stream. 

M1 

As Mode 1, this input, MO, and M2 are sampled before the start of configuration to establish the 
configuration mode. 

or 
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-RDATA 

As an active LOW Read Data, this pin is the output of the readback data after configuration is complete. 

M2 

As Mode 2 this input, MO, and M1 are sampled before the start of configuration to establish the 
configuration mode. After configuration, this pin becomes a user-programmable 1/0 pin. 

HDC 

High During Configuration is held at a HIGH level by the LCA device until after configuration. It is 
intended to be available as a control indication that configuration is not completed. After configuration, 
this pin is a user 1/0 pin. 

LDC 

Low During Configuration is held at a LOW level by the LCA device until after configuration. It is intended 
to be available as a control indication that configuration is not completed. It is particularly useful in 
master mode as a LOW enable for an EPROM. After configuration, this pin is a user 1/0 pin. If used as a 
LOW EPROM enable, it would need to be programmed as a HIGH after configuration . 

... INIT 

This is active LOW open collector output is held LOW during the power stabilization and internal clearing 
of the configuration memory. It can be used to indicate status to a configuring microprocessor or, as a 
wired-AND of several slave mode devices, a hold-off signal for a master mode device. After 
configuration, this pin becomes a user programmable 1/0 pin. 

-RESET 

This active LOW input has three functions. Prior to the start of configuration, a LOW input will delay the 
start of configuration. An internal circuit senses the application of power and begins a minimal time-out 
cycle. When the time-out and -RESET are complete, the levels of the M lines are sampled and 
configuration begins. If -RESET is asserted during a configuration , the LCA device is re-initialized and 
will restart the configuration at the termination of -RESET. If -RESET is asserted after configuration is 
complete, it will provide an asynchronous reset of all 108 and CLB storage elements of the LCA device. 

DONE 

The DONE output is configurable as an open drain with or without a pull-up resistor. At the completion of 
configuration, the circuitry of the LCA device becomes active in a synchronous order, and DONE can be 
programmed to occur one cycle before or after. 
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-PROG 

Once configuration is completed, a HIGH-to-LOW transition of this pin will cause an initialization of the 
LCA device and start a reconfiguration. 

XTL1 

This user 1/0 pin can be configured to operate as the output of an amplifier usable with an external 
crystal and bias circuitry. 

XTL2 

This user 110 pin can be configured to operate as the input of an amplifier usable with an external crystal 
and bias circuity. 

CCLK 

During configuration, Configuration Clock is an output of an LCA device in master mode or peripheral 
mode. LCA devices in slave mode use it as a clock input. During a Readback operation, it is an input 
clock for the configuration data being output. 

DOUT 

This user 1/0 pin is used during configuration to output serial configuration data for the Data In of daisy­
chained slaves. 

DIN 

This user 1/0 pin is used as serial Data In during slave or master serial configuration. This pin is DO in 
master or peripheral configuration mode. 

-CSO, -CS1, CS2, -WRT 

These four inputs represent a set of signals, three active LOW and one active HIGH, which are used in 
peripheral mode to control configuration data entry. The assertion of all four generates a write to the 
internal data buffer. The removal of any assertion results in the present data of DO-D7 being clocked in. 

-RCLK 

During master parallel mode configuration, this pin represents a read of an external memory device. 

RDY/-BUSY 

During peripheral parallel mode configuration, this pin indicates when the chip is ready for another byte of 
data to be written to it. After configuration is complete, this pin becomes a user-programmed 1/0 pin. 
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D0-07 

This set of eight pins represents the parallel configuration byte for the parallel master and peripheral 
modes. After configuration is complete, they are user-programmable 1/0 pins. 

AO-A 15 

This set of 16 pins presents an address output for a configuration EPROM during master parallel mode. 
After configuration is complete, they are user-programmable 1/0 pins. 

110 

A pin that, after configuration, can be programmed by the user to be an input and/or output pin. Some of 
these pins present a high impedance pull-up or perform other functions before configuration is complete. 



APPENDIX A: TABLES AND DIAGRAMS 

Table 2a. 3000 Family Configuration Pin Assignments 

CONFIGURATION MODE: <M2:Ml:MO> 68 84 84 175 USER 
PLCC PLCC PGA PGA OPERATION 

M[lllIG!filE.[ MI,ILO ill :I M(ILOWJ] :I M(IHIGi.llill: :I Mffi,Q'fil] 
MQiHIGllli! :J. MOJ!.O U! :I MOJ.li!Glfil! I MO]!.OW.Ilj MQ.il,Q'fil] 
M2 HIGH I M2.i,.LO I _l M2.i_HIGJlli! M2l11IGHJ..ill.. M2]!l!Gfillli.. 
HOC HIGH HOC <L W HOC HIGH HOC HIGH HOC HIGH 

RESE'l'...£ll.. 
DONE DONE 

DIN I DINJ!.l.. 
DOUT 0 OOUT 0 
CQ;K :I CCLK 

DONE 
DATA7 I 

[ DATAtifil: 
[ DATAf![ 
[ csQfil :r 

DATA'ifil. 
DATA3(1) 

jn_ 
DATA'.W) 
DATA ill 

DATAQ.l![ 
DOUT 
CCLK 

[ cs2Jl[ 

DONE DONE 
DATA7(1) DATA7J!l.. 

DATAlj_ffi_ DATA6 I 
DATAf![ DATA5Jl[ 

DATA'!.fil. DATA'!.fil. 
DATA:i.fil.. DATA:i.fil.. 

DATA2 I DATA2_(1)_ 
DATA ill DATA ill 

DATAQ.l![ DATAQ.l![ 
DOUT DOUT 
CCLK CCLK 

AO AO 
Al Al 
A2 A2 
A3 A3 
A15 A15 
A4 A4 
A14 A14 
A5 A5 
A13 A13 
A6 A6 
A12 A12 
A7 A7 
All All 
A8 A8 
AIO AIO 
A9 A9 

10 
25 
26 
27 
2S 
30 
34 
43 
44 
45 
46 
47 
4S 
49 
50 
51 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 

D REPRESENTS A SOK TO IOOK OHM PULL-UP DURING CONFIGURATION 
• !NIT IS AN OPEN DRAIN OUTPUT DURING CONF!GURA TION 

12 
31 
32 
33 
34 
36 
42 
53 
54 
55 
56 
57 
5S 
60 
61 
62 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 
7S 
SI 
S2 
S3 
84 

4 

9 
10 
11 

B2 
J2 
Lt 
K2 
K3 
l3 
K6 
Lil 
KIO 
JIO 
Kil 
JI! 
HIO 
FIO 
GIO 
Gll 
Fll 
Ell 
EIO 
DIO 
Cl! 
Bil 
CIO 
All 
BIO 
B9 

AIO 
A9 
B6 
B7 
A7 
C7 
A6 
A5 
BS 
cs 
A3 
A2 
B3 
Al 

B2 
Bl4 
BIS 
Cl5 
E14 
D16 
H15 
P15 
Rl5 
R14 
N13 
T14 
P12 
Tl! 
RIO 
R9 
RS 
P8 
RS 
R7 
R5 
P5 
R3 
N4 
R2 
P2 
M3 
Pl 
NI 
Ml 
L2 
K2 
Kl 
H2 
HI 
F2 
El 
DI 
El 
C2 

XTLI ORJ,I(; 

CCLK I 

Note: Pin assignments of "PGA Footprint" PLCC sockets and PGA packages are not electrically identical. 
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Table 2b. 3000 Family 68-Pin PLCC Pinouts 

PLCC PLCC 

Pin Pin 

Numbers 3020 Numbers 3020 

10 -PWRON 44 -RESET 

11 IO 45 DONT--PG 

12 IO 46 07-1/0 

13 110· 47 XTL1-l/0 

14 IO 48 06-1/0" 

15 IO 49 05-1/0 

16 IO 50 -CS0-1/0 

17 IO 51 04-1/0" 

18 VCC 52 vcc 
19 vo· 53 03-1/0 

20 IO 54 -CS1-l/0 

21 110· 55 02-110· 

22 IO 56 01-1/0 

23 I IO 57 ROY/-BUSY--f!CLK-1/0 

24 IO 58 00-0IN-l/O 

25 M1--ROATA 59 OOUT-110 

26 MO-RTRIG 60 CCLK 
27 M2-llO 61 AO--WS-1/0 

28 HOC-110 62 A1-CS2-l/0 

29 IO 63 A2-l/0 

30 ·LDC-110 64 A3-l/0 

31 IO 65 A15-l/O 

32 IO 66 A4-l/O 

33 IO 67 A14-l/0 

34 ·INIT-VO 68 A5-l/0 

35 GNO 1 GO 

36 IO 2 A13-l/O 

37 IO 3 A6-l/O 

38 IO 4 A12-l/O 

39 IO 5 A7-l/O 

40 IO 6 A11-l/O 

41 IO 7 A8-l/O 

42 IO 8 A10-l/O 

43 XTL2-l/O 9 A9-l/O 

"6 Unbonded IOBS 3020 

The default configuration of IOBs is input with pull-up. This can be used to prevent an undefined pad 
level for unbonded or unused IOBs. 
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Table 2c. 3000 Family 84-Pln PLCC and PGA Plnouts 

PLCC PGA PLCC PGA 

Pin Pin Pin Pin 
Number Number 3020 3030 Number Number 3020 3030 

12 B2 -PWRON -PWRON 54 K10 -RESET -RESET 

13 C2 IO IO 55 J10 OONE--PG OONE--PG 

14 81 N/C IO 5S K11 07-110 07-110 

15 C1 IO IO 57 J11 XTL1·110 XTL1-llO 

1S 02 IO IO 58 H10 06-110 06-110 
17 01 IO IO 59 H11 1/0 1/0 
18 E3 IO IO 60 F10 05-110 05-110 

19 E2 IO IO 61 G10 -CS0-110 -CS0-110 

20 E1 IO IO 62 G11 04-110 04-1/0 

21 f2 IO IO 63 G9 1/0 1/0 

22 F3 vcc vcc 64 F9 vcc vcc 
23 G3 IO IO 65 F11 03-110 03-110 

24 G1 IO IO 66 E11 -CSH/O -CS1-l/O 

25 G2 IO IO 67 E10 02-110 02-1/0 

26 F1 IO IO 68 Ell 1/0 1/0 

27 H1 IO IO 69 011 N/C 1/0 

28 H2 IO IO 70 010 01-110 01-110 

29 J1 IO IO 71 C11 RDY/-BUSY--RCLK-1/0 fDY/-BUSY--RCLK l/O 

30 K1 IO IO 72 811 OO-OIN-110 OO-OIN-110 

31 J2 M1--ROATA M1·-ROATA 73 C10 OOUT-110 OOUT-110 

32 L1 MO--RTRIG MO--RTRIG 74 A11 CCLK CCLK 

33 K2 M2-l/O M2-l/O 75 810 AO--WS-110 AO--WS-110 

34 K3 HOC-1/0 HOC-1/0 76 89 A1-CS2·110 A1-CS2-110 

35 L2 IO IO 77 A10 A2-l/O A2-110 

36 L3 -LOC-1/0 -LDC-1/0 78 A9 A3-1/0 A3-1/0 

37 K4 IO IO 79 88 N/C 1/0 

38 L4 N/C IO 80 AS N/C 1/0 

39 J5 IO IO 81 86 A15-l/O A15-l/O 

·40 K5 IO IO 82 87 A4-1/0 A4-l/O 

41 LS N/C IO 83 A7 A14-l/O A14-l/O 

42 KS -INIT-1/0 -INIT-l!O 84 C7 AS-1/0 AS-110 

43 J6 GNO GNO 1 cs GND GND 

44 J7 IO IO 2 A6 A13-l/O A13-l/O 

4S L7 IO IO 3 AS A6-1/0 AS-110 

4S K7 IO IO 4 8S A12-l/O A12-l/O 

47 LS IO IO s cs A7-l/O A7-l/O 

48 LB IO IO 6 A4 N/C 1/0 

49 K8 IO IO 7 84 N/C 1/0 

so L9 N/C IO 8 A3 A11-llO A11-l/O 

S1 LIO N/C IO 9 A2 AS-1/0 AB-110 

S2 K9 IO IO 10 83 A10-l/O A10-1/0 

S3 L11 Xll2-l!O Xll2-l/O 11 A1 A9-l/0 A9-l/O 

The default configuration of IOBs is input with pull-up. This can be used to prevent an undefined pad level for unbonded or unused 
IOBs. 
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Table 2d. SC3000 Family 175-Pin PGA Pinouts 

PGA Pin PGA Pin PGA Pin PGA Pin 

Number 3090 Number 3090 Number 3090 Number 3090 

B2 -PWRDN 013 110 R14 DONE--PG R3 DO-DIN-110 

04 IO 814 M1--RDATA N13 07-110 N4 DOUT-110 

B3 IO C14 vss T14 XTAL1-llO R2 CCU< 
C4 IO 815 MO--RTRIG P13 110 P3 vcc 
B4 IO 014 vcc R13 110 N3 VSS 

A4 IO C15 M2-llO T13 110 P2 AO--WS-1/0 

05 IO E14 HDC-1/0 N12 1/0 M3 A1-CS2-l/O 

C5 IO 81S 110 P12 DS-1/0 R1 1/0 

BS IO 015 110 R12 1/0 N2 1/0 

A5 IO C1S 110 T12 1/0 P1 A2-l/O 

C6 IO D1S -LDC-1/0 P11 110 N1 A3-llO 

OS IO F14 110 N11 1/0 L3 1/0 

B6 IO E15 110 R11 1/0 M2 1/0 

A6 IO E1S 110 T11 05-1/0 M1 A15-l/O 

87 IO F15 110 R10 -CS0-1/0 L2 A4-l/O 

C7 IO F1S 1/0 P10 110 L1 1/0 

07 IO G14 1/0 N10 1/0 K3 1/0 

A7 IO G15 110 T10 1/0 K2 A14-l/O 

AS IO G1S 110 T9 1/0 K1 AS-1/0 

B8 IO H1S 110 R9 04-1/0 J1 1/0 

CB IO H15 -INIT·l/O P9 110 J2 1/0 

DB VSS H14 vcc N9 vcc J3 VSS 

09 VCC J14 vss NS VSS H3 vcc 
C9 IO J1S 110 PS 03-1/0 H2 A13·1/0 

B9 IO J1S 110 RS -CSH/0 H1 AS-1/0 

A9 IO K16 1/0 TS 110 G1 1/0 

A10 IO K15 110 T7 1/0 G2 1/0 

010 IO K14 110 N7 1/0 G3 1/0 

C10 IO L16 1/0 P7 1/0 F1 110 

810 IO L15 1/0 R7 02-1/0 F2 A12-l/O 

A11 IO M16 110 TS 1/0 E1 A7-l/O 

811 IO M1S 1/0 RS 110 E2 110 

011 IO L14 1/0 NS 1/0 F3 1/0 

C11 IO N1S 1/0 PS 1/0 01 A11-l/0 

A12 IO P16 110 TS 1/0 C1 AS-1/0 

812 IO N15 110 RS 01-1/0 02 1/0 

C12 IO R1S 1/0 PS RDY/-BUSY--RCLK-1/0 81 1/0 

012 IO M14 110 NS 1/0 E3 A10-l/0 

A13 IO P1S XTAL2-l/0 T4 110 C2 A9-l/O 

813 IO N14 vss R4 1/0 03 vcc 
C13 IO R1S -RESET P4 1/0 C3 VSS 

A14 IO P14 vcc 

The default configuration of IOBs is input with pull-up. This can be used to prevent an undefined pad level for unbonded or unused 
IOBs. Pins A2, A3, A 15, A 16, T1, T2, T3, T15 and T16 are not connected. Pin A 1 does not exist. 
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PARAMETRIC$ 

Absolute Maximum Ratings 

Vee Supply voltage relative to GND 

V1N Input voltage with respect to GND 

Vis Voltage applied to three-state output 

VsrG Storage temperature (ambient) 

TSQL Maximum soldering temperature (10 sec@ 1/16 in.) 

TJ Junction temperature plastic 

Junction tern erature ceramic 

Units 

-0.5 to 7.0 v 
-o.5 to Vee + o.5 

*Note: Stresses beyond those listed under Absolute Maximum A "· ~~/~ 
ratings only, and functional operation of the device, anti ___ rly 6'het .. 
Operating Conditions is not implied. Exposurl!.-tQ, AQsol,plf!,, ~i!)Q1J1t1 'Jilailqgs •• 

.•• ,ii,~t-da'~age to the device. These are stress 
ns beyond those listed under Recommended 
ditions for extended periods of time may affect 

""""'";"'"•· ~ \' <} \\)" '\,; .,, 

MIN MAX UNITS 

0° C to 70° C 4.75 5.25 v 

-40° C to 85° C 4.5 5.5 v 

-55° C to 125° C 4.5 5.5 v 

V1HT\, ''8igll~level'input voltage -TTL configuration 2.0 Vee v 

V1LT ·+dyi-level input voltage - TTL configuration 0 0.8 v 

V1HC High-level input voltage - CMOS configuration .7Vcc Vee v 

V1LC Low-level input voltage - CMOS configuration 0 .2vcc v 

T1N Input signal transition time 250 ns 

4.99 

ID 



,,,,''! 

ELECTRICAL CHARACTERISTICS OVER OPERATING CONDITIONS MIN ,,,~x1 UNITS 

Va-1 High-level output voltage(@ loH = -4.0 ma Vee min) Commercial 3.l!El,,,,,,,.,,, s·;;r v 
Va_ Low-level output voltage(@ loL = 4.0 ma Vee min) ,,,,,11''"'.,,1;il''n"•1,, "z 0.3~"j,,_ '\, v 
Va-1 High-level output voltage(@ loH = -4.0 ma Vccl Industrial ~3'J,!?,,,,,,1 ,q,,,,\ '" )V 

Va_ Low-level output voltage(@ loL = 4.0 ma Vee) ( :::s: \, 1(111'' \ o'!d7 v 
Va-1 High-level output voltage(@ loH = -4.0 ma Vee) Mi~!'y, 1 :.rs:: ,,,.,,,,,, 3'.'{ \ '"' v 
Va_ Low-level output voltage (@loH = 4.0 ma Vccl ,,,,, \,~ ~ 

~,,,,,,,, 

,!'""" '"\\, 'v"' 0.4 v 
ICCPD Power-down supply current (Vee= 5.o V@ 70°C) 1 ~ ,,,~\ .. ,11: 500 µA 

icco Quiescent LCA supply current in addition to le~.~~~::::·,;::·,.,,,,,,,,,,.) ,,,,,,,,. 
CMOS chip thresholds .,, 500 µA 
TTL ch.!e_ thresholds /''\. . • .,,,,., \ 10 mA 

l1L Leakage Current Commercial/lndusl!;,iahT · ,,·,,,,,...,,,..>· ' -10 +10 µA 

Leak~ Current Milit~ ¢~ C to 125'? C\ \, -20 +20 ~ 
C1N Input capacitanc11.{S'a,rifple"·Jes~) '\.~\, 

Ji 
10 pF 

IRIN Pad pull-up M~eqilill~) ~ ~,..oV;;(si:lmple tested) 0.02 0.17 mA 

IRLL Horif;ont~l IOl)!f4jm!'pµlM'ip ("Y~n.!lelected)@ logic LOW 0.4 3.4 mA 

Notes: .. .1. ~.orf a 3Q,261 ... 12c;i;0 ra:ii~ for 3090, 5.o 
''r'llh n~otilp,ut'¢,µn9nt'loads, no active input or long line pull-up resistors, all package pins at Vee or GND, and the LCA 
9<1nfiglir,~ witll'll MAKEBITS ''tie" option. See LCA power chart for addttional activity dependent operating component. 
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CLB SWITCHING CHARACTERISTIC GUIDELINES 

CLB OUTPUT (X,Y) x 
(COMBINATORIAL) --i--------------

CLB INPUT(A,B,C,D,E)-----..C:-
0 

T= ~ 1=0 T1cK---0 TcKJ::::i , _____ _ 

CLBCLOCK 

CLBINPUT 
(DIRECT JN) 

CLBINPUT 
(ENABLE CLOCK) 

---@ TcL----<---- @ Trn 

0 TDICK 0 T CKDI 

© T ECCK---<-- 0 T CKEC 

-----

-
____ 0_8 TCK~-CLBOUTPUT 

(FLIP-R.OP) 

CLBINPUT 
(RESET DIRECT) ---------

CLBOUTPUT 
(R.IP-R.OP) 

@TRPW 
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CLB SWITCHING CHARACTERISTIC GUIDELINES (Continued) 

Testing of the switching characteristic guidelines Is modeled after testing specified by MIL-M-38510/605. Devices are 100% functionally 
tested. Benchmark timing patterns are used to provide correlation to the switching characteristic guideline values. Actual worst-case 
timing is provided by the XACT Timing calculator or Simulation modeling. 

S Grade 

CLB Logic Input 
Reset direct 

CLB K Clock input 

Descri ion 
Combinatorial 
CLBoutput 
Reset Direct width* 
Master Rest pin to CLB out 

To CLB outpu1 

Additional for a returning 
through F or G to CLB out 
Logic-Input setup 
Logic-input hold 
Data In setup 
Data In hold 
Enable Clock setup 
Enable Clock hold "'""-

(\ 

-50 

s bol Min Max 

T1LO 14 

9 TRIO 15 
13 TRPW 

TM 
8 TcKO 

9 

50 

~r~ S;:.TCHING CHARACTERISTIC GUIDELINES 

Speed Grade -50 

Descrlj>tion Min Max 
Clock Buffer .. GCLK,ACLK 9 
TBUF .. Data to Output 8 

(Long line buffer) 
Three-state to Output 
Single pull-up resistor 34 
Pair of~li-ui>_ resistors 17 

Bi-directional BIOi 6 

••Timing is based on the 3020, for other devices see XACT timing calculator. 
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-70 Units 
Min Max 

9 ns 
10 

ns 
7 ns 
0 ns 
7 ns 
7 ns 
70 MHz 

-70 Units 
Min Max 

6 ns 
5 ns 

22 ns 
11 ns 
4 ns 



IOB SWITCHING CHARACTERISTIC GUIDELINES 

UOBLOCK(l)_0_T_P1Dt--t------

UOPADINPUT ~ 
----- 0 TpfCK 0 TIKPI ::i '-----

UOCLOCK 
(IK/OK) 

UO BLOCK (RI) 

UOBLOCK (0) 

1/0 PAD OUTPUT 
(DIRECT) 

VO PAD OUTPUT 
(REGISTERED) 

---@Tu------ 0 T10H 

________ _, 

--f0ToKPO 
---------------~ 

UOPADTS ~ r;:©T- 0T~~j I 
UOPADOUTPUT -------< )!--------
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IOB SWITCHING CHARACTERISTIC GUIDELINES (Continued) 
,,~ 

•'' "-•,,, l l 
Testing of the switching characteristic guidelines is modeled after testing specified by MIL-M-38510/605. ~y~ are,,,,~boo/o functionally 
tested. Benchmark timing patterns are used to provide correlation to the switching characteristic guideli9e·'il~J~s:"'f<ctul:1t~o~t-case 
timing is provided by the XACT Timing calculator or Simulation modeling. \ ('' J _l \ \ 

S edGrade 

Pad (package pin) 

l/OClock 

t--=-...._.,,....-.,,...;;---T-

Descri lion 
To input (direct CLKIN) 
To input (direct) 

To 1/0 RI input (FF) 
1/0 pad-input setup' 

110 pad-inpufl~olq \,, 

~~/ 
To pad begin hi-Z (fast) 
To pad valid (last) 

To input RI 
To output (FF) 

'\,·:·+~ 
:'Jr1KPI 
ToKP 
TOQK 

6 TQKO 
11 T10H 
12 T10L 
10 TQPF 
10 TOPS 
9 TTSHZ 
8 TT 

13 TRRI 
15 TRPO 

0 

15 
0 
9 
9 

.,,,,,_ "\\ "'i~;,_~;Ji·'l'::;;i'""",;~·"'\,,\ '\,;i'-;/· 

20 
0 

18 
10 
0 
7 
7 

14 
33 

12 
20 

45 
55 

3 
7 

7 

13 

10 
25 

8 
14 

30 
37 

ns 
ns 

ns 
ns 
ns 
ns 
ns 
ns 
ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

Notes: 1. Timing is measured at pin threshold, with 50 pF external capacitive loads (incl. test fixture). Typical fast mode output 
rise/fall times are 5 ns and will increase approximately 2%/pF. A maximum total external capacitive load for simultaneous 
fast mode switching in the same direction is 500 pF per power/ground pin pair. 

2. Voltage levels of unused (bonded and unbonded) pads must be valid logic levels. Each can be configured with the internal 
pull-up resistor or atternatively configured as a driven output or driven from an external source. 
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GENERAL LCA SWITCHING CHARACTERISTICS 

Vcc(VALID) 

II 
-50 -70 Units 

Min Max Min Max 
1 1 Ill 
1 1 jlS 

6 6 jlS 

6 6 jlS 

7 7 jlS 

-PWRDWN(3) PowerDownV 2.0 2.0 v 

Notes: 1. Vee must rise from 2.0 Volts to Vee minlmum in less than 1 o ms for master modes. 
2. RESET timing relative to valid mode Hnes (MO, M1 , M2) is relevant when -RESET is used to delay configuration. 
3. -PWEDWN transitions must oocur during operational Vee levels. 



MASTER SERIAL MODE SWITCHING CHARACTERISTICS 

C'C'LK 
(OUTPUT) 

GUIDELINE~,,,»; 
~ % 

,-.,,,...--..,,,".,.<:::::····, . .! I 

SERIAL DATA IN 

SERIALDOUT 

(OUTPUT) ------

-50 -70 Units 

Min Max Min Max 

60 60 ns 
O O ns 

Notestt"'i ··~~f;pp;~y;;d·IJ,l~l!t 'i\''';rom 2.0 V to Vee min, in less than 1 O ms, otherwise delay configuration using -RESET until 
var~, ",, "' 

uratian•·ean be controlled by holding -RESET low with or until after the -INIT of all daisy-chain slave mode devices is 
H. 

> ,,bster serial mode timing is based on slave mode testing. 
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MASTER PARALLEL MODE PROGRAMMING SWITCHING CHARACTERISTIC 
GUIDELINES 

DO-D7 

Ra:K 
(OUTPUT) ___ _, 

CCLK 
(OUTPUT) 

'ii;i-i· 

RCLK 
Descri lion 
To address valid 
To data setup 
To data hold 
RCLKhigh 
RCLKlow 

-50 

bol Min 

TRAC 0 
2 ToRC 60 
3 TACO 0 

TRCH 600 

TRCL 4.0 

D7 

BYTEn--1 

-70 Units 

Max Min Max 
200 0 200 ns 

60 ns 
0 ns 

600 ns 
4.0 !IS 

Notes: 1. At power-up, Vee must rise from 2.0 V to Vee min. in less than 10 ms, otherwise delay configuration using -RESET until 
Vee is valid. 

2. Configuration can be controlled by holding -RESET low with or until after the -INIT of all daisy-chain slave mode devices is 
HIGH. 
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PERIPHERAL MODE PROGRAMMING SWITCHING CHARACTERISTICS 

CsliCsi> \ I \ 
CS2 I \ I 

0TCA 

OO-D7 

CCLK 

RDYtBUsY 

-50 -70 
mbol Min Max Min Max 

TCA 0.5 0.5 
2 Toe 60 60 
3 Teo 0 0 
4 T 60 60 

ROY 5 0 0 

Notes: 1. Configuration must be delayed until the -INIT of all LCAs is HIGH. 
2 Time from end of WAT to CCLK cycle for the new byte of data depends on completion of previous byte 

processing and the phase of the internal timing generator for CCLK. 
3. CCLK and DOUT timing is tested in slave mode. 
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Units 

1111 
ns 
ns 
ns 
ns 



···""i 
SLAVE MODE PROGRAMMING SWITCHING CHARACTERISl,:JC~ \ 

<'"~:~::~ l 

,,,,:· 

DIN 

CCLI{ 

OOUT 
(OUTPUT) 

if'" ,,,,. 

\.,\~\ ",,.... Frequency 

Note: tf"!i.9uration must be delayed until the INIT of all LeAs is HIGH. 
·~,, )f1 

1 
2 
4 
5 

-50 

bol Min 

Tcco 
Toce 60 

Teeo 0 

TccH 0.5 

TeeL 0.5 

Fee 

BITN 

-70 Units 

Max Min Max 
100 100 ns 

60 ns 
0 ns 

0.5 llS 
5.0 0.5 5.0 llS 
1 MHz 
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4·110 

PROGRAM READBACK SWITCHING CHARACTERISTICS 

DONF.JP""iOO 
(OUTPUT) 

RTRIG 

CCLK(l) 

RDA TA 
(OUTPUT) 

q 

c 

______ __, 

S mbol 
1 TRTH 
2 TRT 
3 TccR 

-50 -70 
Min Max Min 

250 250 
10 10 

100 

RE 0 positive transition) shall not be done until after one clock following active 1/0 pins. 
Readback should not be initiated until configuration is complete. 

Max 

100 

Units 

ns 
µs 
ns 



SOCKET INFORMATION 

The following sockets, with matching hole patterns, are available for PLCC devices. 

DESCRIPTION 
68 PIN 

PCB solder tail, tin plate 
Surface mount, tin plate 
PCB solder tail, tin plate* 
PCB solder tail, tin plate* 
PCB solder tail, tin plate* 
Surface mount, tin plate 

VENDOR 

AMP 
AMP 
Burndy 
Midland-Ross 
Meth ode 
Meth ode 

PART NUMBER 

821574-1 
821542-1 
QILE68P-410T 
709-2000-068-4-1-1 
213-068-001 
213-068-002 

*Sockets will plug into pin-grid array wire-wrap sockets for breadboard use. However, the physical 
translation of pins in a PLCC socket does not result in electrical equivalence to the pin locations of a 
PGA package. 
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Pin No. 1 Identifier 

PIN SPACING 
.050 TYPICAL 

Seatjng Plane 

LEAD CO-PLANARITY± 0.002 IN 

ALL OTHER DIMENSIONS ARE 
IN INCHES± 0.005 

68-Pln PLCC Package 



.. 
1
• _____ l.IOO sot.012. ____ """"'·I 

INDEX 

DIMENSIONS ARE IN INCHES 

81A = 35-<10°ctw 

..,.......@ 

L 

K 

H 

G 

F 

E 

D 

c 

B 

.J.. A 
T 

1.000 ±.012 

I- .IOOTYP 

, ,, 
v " t' 

H ~ Ir 
v _l'I 

:~ ~ 7 .., 
I~ rE Ir 7 ,,, 

' 
' ' INDEX PIN 

TYP .o70 DIA , 
, ,,\ :~ ~ ~ " ,,. 

~ ' " 

' 
4 5 6 7 9 10 II 

NOTE: INDEX PIN MAY OR MAY NOT BE 
ELECTRICALLY CONNECTED TO PIN C2 

84-Pln PGA Package 

.100 
TYP 

1 

1.000 
±.012 
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Pin No. 1 Identifier 

--------1.190 --------1~ 
0JA = 35-40°CJW PIN SPACING 

.050 TYPICAL 

84-Pln PLCC Package 

Seating Plane 



INDEX 

---+--- ---1+---+- 0JA = 25-30 °C{W 

0Jc = 0.5--1.0 °C{W 

WEIOMETALIC HEAT SINK 
ELECTR.ICALL Y CONNECTED TO VCC 

PIN KOVAR 

.006R. TYP. 

.025 REF. 

0000 
00GH~ 
0000 
0000 

r 
.180 

TYP .. 070DIA 
±.006 

.845 ±.009 1.660 SOl:.016 _ ___,_0_0_0 0 
l.SOO ±.015 

0000 
0000 
0000 

TRPNMLKJHGFEDCBA 

~695±007 ~ ~.!OOTYP 

DIELECI1UC COAT 

175-Pin PGA Package 
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LCA·MDS21 XACT Design 
Editor System 
Features 
• Runs on an IBM® PC-Xf'M or compatible computer 

• Complete basic system for designing with Logic Cell Arrays 

• Interactive graphical design editor 

• Slmplifted definition, placement and Interconnection 
capability for logic design and Implementation 

• Macro library of 113 standard logic family equivalents 

• Utility for user-defined macros 

• Boolean equation or Kamaugh map alternatives to specify 
logic functions 

• Point-to-point timing calculations for critical path analysis 

• Automatic design consistancy checking for connectivity and 
design violations 

• Docurnenlation support with hardcopy output of logic and 
physical configuraUon Information 

• Download cable to transfer configuration programs from 
personal computer to LCA in target system 

• Compatible hardware and software options to enhance 
design productivity 

• File formatter for EPROM programmer 

General 
The XACT Design Editor provides users with a complete design 
and developmen) system for specification and implementation 
of designs using Monolithic Memories' Logic Cell Arrays. Func­
tional definition of Configurable Logic Blocks (CLBs), Input/ 
Output Blocks (IOBs) and interconnection is performed with a 
menu-driven interactive graphics editor. An automatic router 
greatly reduces the effort to interconnect logic. 

Designs are captured with a graphics-based design editor 
using either a mouse for menu-driven entry, or a keyboard for 
command-driven entry. Functions are specified by CLB and 
IOB definitions plus their interconnections. The macro library 
and user-defined macros enable the user to easily implement 
complex functions. 

The check for logic connectivity and design rule violation is 
easily performed. All unused internal nodes are automatically 
configured to minimize power dissipation. 

Interactive point-to-point timing delay calculation is provided 
for timing analysis and critical path determination. This ability 
enables the user to quickly identify and correct timing prob­
lems while the design is in progress. 

Automatic generation of similar input netlist files with liming 
parameters simplifies the use of P-SILOS for logic and timing 
simulation. 

The XACT Design Editor includes hardcopy generation to docu­
ment a design and automatically track design changes. Logic 
Cell Array configuration programs can be automatically trans­
lated into standard EPROM programming bit pattern formats. 
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A download cable included with XACT is useful for transferring 
configuration programs serially from the PC workstation to a 
Logic Cell Array installed in a system. During product develop­
ment and debug this capability can be used to save the time re­
quired to write a modified configuration program into an EPROM. 

Monolithic Memories provides ongoing support for XACT users. 
For the first year, software updates are included. After that the 
user may purchase the LCA-MSC21 Annual Support Agree­
ment to continue to receive the latest software releases. XACT 
users also receive Monolithic Memories' technical information, 
which includes information about Logic Cell Arrays and PAL® 
devices, as well as software updates and application notes for 
designers. In addition, Monolithic Memories provides compre­
hensive field and factory support. 

System Requirements 
Minimum System Configuration 

IBM PC-XT, PC-AT or compatible computer with: 

• MS-DOS™ 2.1 or higher 

• 1 M Bytes RAM 

• 1 Diskette Drive 

• 10-MB Hard Disk 

• IBM compatible Color Graphic Adapter and Display 

• 1 Serial Interface Port 

• 1 Parallel Interface Port 

• Mouse System™, Microsoft® or compatible mouse 

Design Editor with Routed Design 

Publication# 
10853 

Issue Date: Jan 

Rev. Amendment 
A 10 

1988 



XACT Macro Library 

General CLBs FDCR D Flip-Flop with ClkEna, Reset 
FDCS D Flip-Flop with ClkEna, Set 

GADD Adder FDM D Flip-Flop 2-lnput Data Mux 
GCOMP Compare FDMR D Flip-Flop 2-lnput Data Mux, Reset 
GEQGT Equal or Greater FDMS D Flip-Flop 2-lnput Data Mux, Set 
GMAJ Majority FDM-rd D Flip-Flop 2-lnput Data Mux, ResetDir 
GMux 2-to-1 Mux FDM-sd D Flip-Flop 2-lnput Data Mux, SetDir 
GPAR Parity FSA Set-Reset Flip-Flop with Set Dominate 
GXOR Exclusive-OR FAS Set-Reset Flip-Flop with Reset Dominate 
GXOR2 Dual Exclusive-OR FJK J-K Flip Flop 
GXTL Crystal Oscillator O+ 2108 FJKS J-K Flip Flop with Synchronous Set 
Gose Low Frequency 1+2108 FJK-rd J-K (Set-Reset) Flip Flop with ResetDir 

Resistor-Capacitor Oscilator FJK-sd J-K (Set-Reset) Flip Flop with SetDir 
FJK-srd J-K (Set-Reset) Flip Flop with SetDir, 

Pads IOBs ResetDir 
FTO Self Toggle Flip-Flop 

PIN Input Pad FTOR Self Toggle Flip-Flop with Reset 

PINQ Input Pad with Storage FT Toggle Flip-Flop 

PIO lnpuVOutput Pad FTP Toggle Flip-Flop with ParEna 

PIOQ lnpuVOutput Pad with Input Storage FTP-rd Toggle Flip-Flop with ParEna, ResetDir 

PIOC lnpuVOutput Pad with 'Open Collector' FTR Toggle Flip-Flop with Reset 

PIOQC lnpuVOutput Pad with Input Storage, FTS Toggle Flip-Flop with Set 

'Open Collector' FT2 2-lnput Toggle Flip-Flop 

POUT Output Pad FT2R 2-lnput Toggle Flip-Flop with Reset 

POU TC Output Pad with 'Open Collector' 
PO UTZ Output Pad with 3-State Control Decoders CLBsa 
PREG Output Pad with Input Storage 

D2-4 1-of-4 Decoder 2 

Latches CLBs D2-4E 1-of-4 Decoder, with Ena 2 
74-139 1-of-4 Single Decoder with Low Output, Ena 4 

LD Data Latch D3-8 1-of-8 Decoder 5 

LC-rd Data Latch with Reset Dir D3-8E 1-of-8 Decoder with Ena 6 

LC-sd Data Latch with SetDir 74-138 1-of-8 Decoder with Enables, Low Output 7 

LD-srd Data Latch with SetDir, ResetDir 74-42 1-of-10 Decoder with Low Output 8 

LDM Data Latch with 2-lnput Data Mux 
LDM-rd Data Latch with 2-lnput Data Mux, ResetDir Multiplexers CLBs 
LDM-sd Data Latch with 2-lnput Data Mux, SetDir 

M3-1 3-to-1 Mux 2 

Flip-Flops CLBs M3-1E 3-to-1 Mux with Ena 2 
M4-1 4-to-1 Mux 3 

FD D Flip-Flop M4-1E 4-to-1 Mux with Ena 3 

FDR D Flip-Flop with Reset 74-352 4-to-1 Mux with Low Output, Ena 3 

FDS D Flip-Flop with Set M8-1 8-to-1 Mux 7 

FD-rd D Flip-Flop with ResetDir M8-1E 8-to-1 Mux with Ena 7 

FD-sd D Flip-Flop with SetDir 74-151 8-to-1 Mux with Ena 7 

FD-srd D Flip-Flop with SetDir, ResetDir Complementary Outputs 

FDC D Flip-Flop with ClkEna 74-152 8-to-1 Mux with Low Output 7 
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XACT Macro Library 

Registers CLBs Modulo& 

Data Regiaters CBBCP 3-Bit Binary Counters with ClkEna, ParEria 5 
CBBCR 3-Bit Binary Counters with ClkEna, Reset 4 

RD4 4-Bit Data Register 4 CB BC-rd 3-Bit Binary Counters with ClkEna, ResetDir 4 
ROB 8-Bit Data Register 8 CBJCR 3-Bit Johnson Counters with ClkEna, Reset 4 
REBCR 8-Bit Data Register with ClkEna, Reset 8 

Modulo 10 
Serial to Parallel 

C10BC-rd 4-Bit BCD Counter with ClkEna, ResetDir 4 
RS4 4-Bit Shift Register 4 C10BCP-rd 4-Bit BCD Counter with ClkEna, ParEna, 7 
74-195 4-Bit Serial to Parallel 5 ResetDir 

Shift Register with ParEna, Reset 74-160 4-Bit BCD Counter with ClkEna, ParEna, 8 
74-194 4-Bit Bidirectional Shift Register 12 ResetDir 

with ClkEna, ParEna, ResetDir C10BP-rd 4-Bit BCD Counter with ParEna, ResetDir 6 
RSB 8-Bit Shift Register 8 C10JCR 5-Bit Johnson Counter with ClkEna, Reset 5 
RSBCR 8-Bit Shift Register with ClkEna, Reset 8 
RSBPR 8-Bit Shift Register with ParEna, Reset 8 Modulo 12 

RSBR 8-Bit Shift Register with Reset 8 
74-164 8-Bit Serial to Parallel Shift Register 8 C12JCR 6-Bit Johnson Counter with ClkEna, Reset 6 

with ResetDir 
Modulo16 

Counters CLBs C16BA-rd 4-Bit Binary Ripple Counter with ResetDir 4 
C16BC-rd 4-Bit Binary Counter with ClkEna, ResetDir 4 

Modulo2 C16BCPR 4-Bit Binary Counter with ClkEna, ParEna, 10 
Reset 

C2BCR 1-Bit Binary Counters with ClkEna, Reset C16BCP-rd 4-Bit Binary Counter with ClkEna, ParEna, 6 
C2BC-rd 1-Bit Binary Counters with ClkEna, ResetDir ResetDir 
C2BP 1-Bit Binary Counters with ParEna 74-161 4-Bit Binary Counter with ResetDir 8 
C2BR 1-Bit Binary Counters with Reset C16BP-rd 4-Bit Binary Counter with ParEna, ResetDir 5 
C28-rd 1-Bit Binary Counters with ResetDir C16BUD-rd 4-Bit Binary Up-Down Counter with ParEna, 8 

ResetDir 
Modulo4 C16JCR 8-Bit Johnson Counter with ClkEna, Reset 8 

C4BCP 2-Bit Binary Counters with ClkEna, ParEna 3 l!lodulo256 
C4BCR 2-Bit Binary Counters with ClkEna, Reset 2 
C4BC-rd 2-Bit Binary Counters with ClkEna, ResetDir 2 C256FC-rd 8-Bit Modulo 256 Feedback Shift Register 9 
C4JCR 2-Bit Johnson Counters with ClkEna, Reset 2 with ClkEna, ResetDir 

Modulo& 

C6JCR 3-Bit Johnson Counter with ClkEna, Reset 3 
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LCA·MDS22 P·SILOS Simulator 
Features 
• Event-driven logic and timing simulator 

• Logic network input automatically generated by XACT 
Design Editor 

• Control and observation of any physical circuit node 

• MuHiple file Input for vectors and commands 

• Interactive or batch mode operation 

• Output available in printed or tabular formats 

• Runs on an IBM PC-XT, PC-AT c:ir compatible personal 
computer 

General 
P-SILOS is a powerful PC-based simulator that provides event­
driven logic and timing simulation of Logic Cell Array designs. 
Simulation is particularly useful for testing logic or logic seg­
ments as well as for verifying critical timing over worst case 
power supply, temperature and process conditions. 

Simulation is useful in several stages of the design cycle. After 
design entry, simulation may be used to debug logic in an 
unplaced and unrouted design. This saves design time 
because logic errors can be detected and corrected prior to 
final placement and routing. After a circuit has been placed, 
routed, and then fully debugged using in-circuit emulation, 
worst case timing may be verified. This enables the user to 
select the correct Logic Cell Array speed for a particular appli-
cation. · 

Network inputs for Logic Cell Array designs are automatically 
created by the Simgen utility in the XACT system. The network 
includes logic and routing delay parameters and setup and hold 
times based upon the selected speed grade operating under 
worst case conditions. Simulation stimuli are created with a set 
of clock statements or with an input pattern for either pad 

inputs or internal nodes. Simulation results are available in 
tabular, plotted, and graphic formats. This flexibility makes 
debugging easy for both the circuit function and timing. 

System Requirements 
Minimum System Configuration 

IBM PC-XT, PC-AT or compatible computer with: 

• MS-DOS 2.1 or higher 

• 640 K Bytes RAM 

• 1 Diskette Drive 

• 10-MB Hard Disk 

• 1 Parallel Interface Port 

Refer to the MDS21 XACT Design Editor Product Datasheet for 
additional equipment required for systems which will also run 
the XACT Design Editor. 

P-SILOS Waveform Output 

Publication # Rev. Amendment 
10854 A /0 

Issue Date: Januaiy 1988 
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LCA·MDS23 

Automatic Design Implementation 

Distinctive Characteristics 

Automatic elimination of disabled and unused 
logic 

Automatic partitioning of the schematic into 
LCA resources. 

Automatic placement and routing of logic to 
minimize design cycle time 

User control over placement of logic blocks 

User specification of critical paths 

May be used in conjunction with schematic 
capture or with the XACT Design Editor 

Runs on an IBM PC/AT or compatible personal 
computer 

General Description 

The automatic logic reduction and partitioning 
software included with in the Automatic Design 
Implementation package eliminates unused and 
redundant logic, then partitions the schematic into 
LCA physical resources, logic and 1/0 blocks. 
Automated reduction and partitioning allows 
designers to immediately determine the 
programmable gate array size required, during 
design definition and entry. 

The Automatic Design Implementation package 
enhances the productivity of designers using 
Programmable Gate Arrays by reducing design 
placement and routing time, whether the design 
logic is entered from a schematic capture package 
or from the XACT Design Editor. 
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Designs that are development incrementally can also 
take advantage of automatic placement and routing. 
Partial LCA layouts can be locked in place while 
additions to the design are automatically placed and 
routed, or the design can be completely rearranged to 
yield a new placement. 

The automatic placement and routing program is 
extremely flexible. Through placement directives, the 
user can control the placement process to achieve 
the best placement for a particular design. Routing 
resources can be specified to minimize clock skews 
and signal delays for critical paths. The result is 
faster product development. 

Publication# Rev. Amendment 
10851 A /0 

Issue date: June 1988 



LCA·MDS24, LCA·MDS26, LCA·MDS27 
XACTOR In-Circuit Emulator 
Features 
• Real-time In-circuit emulation in user's target system 

• Concurrent emulation of up to four devices 

• Readback and display of Logic Cell Array internal storage 
element states 

• Device status display with automatic update of 
asynchronous events 

• Control and 110 pin isolation from target system 

• Support for daisy chain programming of up to seven devices 
in a daisy chain 

• On-chip crystal oscillator support during emulation 

• Support for multiple device and package types 

• Runs on an IBM PC-XT, PC-AT or compatible personal 
computer 

General 
The XACTOR real-time in-circuit emulator provides interactive 
target-system emulation of up to four Logic Ceil Arrays from 
the host PC system. In-circuit emulation provides a powerful 
productivity enhancement to simulation, providing capabilities 
to verify functionality in the target system at full speed with ail 
other circuits and system software. 

The emulation system is composed of a microcomputer-based 
controller (LCA-MDS24), and from one to four universal emula­
tion pods (LCA-MDS26), each with a package-specific emula­
tion header (LCA-MDS27). One universal emulation pod is 
included with the system. The controller is connected to the 
host PC through a serial port and provides local storage of con­
figuration programs, control of individual device configurations 
and control of the isolation of the pod device(s) from the target 
system. The user can set the state and isolation for each of 
the control signals to provide debugging of target hardware. 
Four general 110 pins are available to provide test points which 
may also be isolated from the target system. 

Target Logic Ceil Arrays can be programmed individually or in a 
daisy chain. Daisy chains of up to seven devices may be sup­
ported from any of the four pods. Individual device isolation 
and configuration is controlled with mouse or keyboard com­
mands and may be supplemented with user-defined setup files 
for easy system debugging. 

Readback of device configuration may be performed on com­
mand for verification of the configuration process and interro­
gation of the internal states. The state of ail internal storage 
elements is displayed after readback has been performed. 
Status displays showing the state of ail isolation switches and 
control signal states are provided. The status display includes 
automatic reporting of asynchronous status changes in the 
target system. 

Universal In-Circuit Emulator Pod 
(LCA·MDS26) 
Additional pods may be connected to the XACTOR in-circuit 
emulator controller, up to a maximum of four pods per control-

10855A/O 
JUNE 1988 

ler. Pod headers (LCA-MDS27) are interchangeable for differ­
ent device and package types. Each pod provides a direct 
in-socket connection for a minimum disruption of the target 
system. Test points are provided to allow connection of a logic 
analyzer or other test equipment to aid in the system 
debugging. 

System Requirements 
Minimum System Configuration 

IBM PC-XT, PC-AT or compatible computer as configured for 
MDS21 XACT Design Editor, plus second serial interface port. 

NOTE: 

MONOCHROME 
MONITOR 

(OPTIONAL) 

COLOR-GRAPHICS 
MONITOR 

0 
0 

IBM PERSONAL II 
COMPUTER 
(ATOR XT) • 

SERIAL PORT 

1=0==0=1 1 

MOUSE 

KEYBOARD 

XACTOR 
CONTROLLER 

XACTOR Hardware 

POWER 

FLAT 
RIBBON 
CABLE 
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LCA-M DS31 /LCA-M DS33/LCA-MDS34/LCA-M DS35 

Schematic Design Entry Interface for FutureNet, Daisy, Mentor, OrCAD 

Distinctive Characteristics 

Use of familiar design entry methodology 
through the choice of schematic entry 
package. 

Macro library of over 100 TTL and standard 
logic family equivalents. 

User-control of flagging critical paths for later use 
of Automatic Design Implementation (LCA­
MDS23) 

Output compatibility with other parts of the PGA 
Development System software. 

General Description 

The Schematic Design Entry Interfaces are 
software packages specifically designed to enable 
users of FutureNet, Daisy, Mentor and OrCAD 
workstations to create Logic Cell Array designs 
using the design entry editors supplied with their 
schematic capture software. 

The user creates a design file on the workstation with 
the LCA symbol library. A conversion routine 
automatically eliminates unused and disabled logic 
and converts the design file into a format that can be 
read by other PGA Development System tools. 

Product Selector Guide 

Product Number Product Name 
LCA-MDS31 FutureNet DASH Schematic Entry Interface and LCA Library 
LCA-MDS33 Daisy Schematic Entry Interface and LCA Library 
LCA-MDS34 Mentor Schematic Entry Interface and LCA Library 
LCA-MDS35 OrCAD Schematic Entry Interface and LCA Library 

Publication# Rev. Amendment 
10849 A 10 

Issue date: June 1988 
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PGA Design Cycle 

The PGA Development System tools includes software for all phases of the PGA design cycle. The diagram 
below indicates the design tasks needed to complete a PGA design and the corresponding software 
products used to complete the tasks. 

QESIGNTASK 

DESIGN ENTRY 

t 
LOGIC 

VERIFICATION 
(optional) 

t 
AUTOMATIC 

PARTITION, PLACE 
AND ROUTE 

I 
DESIGN 

OPTIMIZATION 

I 
TIMING 

VERIFICATION 
(optional) 

-.-
IN-CIRCUIT 

DESIGN 
VERIFICATION 

SOEJWABE PACKAGE 

OrCAD (LCA-MDS-35), 
MENTOR (LCA-MDS34) 
DAISY (LCA-MDS33), 
FUlURENET (LCA-MDS31) 
SCHEMATIC INTERFACES 

PC-SILOS (LCA-MDS22) 

AUTOMATIC DESIGN 
IMPLEMENTATION 
(LCA-MDS23) 

XACT DESIGN EDITOR, 
DELAY CALCULATOR 
(LCA-MDS21) 

PC-SILOS (LCA-MDS22) 

XACT PROM FORMATTER, 
DOWNLOAD CABLE 
(LCA-MDS21) 
XACTOR IN-CIRCUIT 
EMULATOR 
(LCA-MDS28) 
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LCA-MDS151/LCA-MDS152 
PGA Development Systern/PGA Design Entry System 

Distinctive Characteristics 

Complete systems for entry and 
implementation of Programmable Gate Array 
designs. 

Includes OrCAD Schematic Design Tools and 
Schematic Design Interface (LCA-MDS135) 
and Automatic Design Implementation (LCA­
MDS23). LCA-MDS151 also includes XACT 
PGA Design Editor (LCA-MDS21 ). 

Schematic editor provides hierarchical PGA 
design capability. 

LCA macro library of over 100 TIL and 
standard family equivalents. 

Automatic logic reduction and partitioning 
removes unused and disable.cl logic. 

Automatic placement and routing minimizes 
design cycle time. 

PGA Design Editor provides interactive physical 
editing, timing calculator and design consistency 
checking. 

Download cable transfers configuration 
bitstreams directly from the PC to the PGA during 
design debugging. 

Runs on an IBM PC-AT or compatible computer. 

General Description 

The PGA Development System offers complete 
capabilities for schematic entry and 
implementation of Programmable Gate Array 
design. Packaged together are the OrCAD SDT Ill 
Schematic Design Entry software, Automatic 
Design Implementation and the PGA Design 
Editor. The general purpose OrCAD schematic 
editor provides powerful design entry and 
documentation capabilities. An extensive macro 
library of TIL and standard logic equivalents is 
included. Designers can implement their own 
macro functions as desired. Designs can be 
entered in a true hierarchical structure to manage 
the complexity of large designs. In additon, 
designers can flag critical timing paths to ensure 
critical signals are routed with minimum delay. 

The Automatic Design Implementation software 
eliminates unused and redundant logic, then 
partitions the schematic into LCA resources, logic 
and 1/0 blocks. 

Automated reduction and partitioning allows 
designers to immediately determine the programmable 
gate array size required, during design definition and 
entry. Automatic placement and routing can be used 
to arrange logic blocks and calculate routes. 

Designers can interactively document, design-check 
and edit the resulting physical design with the 
graphics-based XACT Design Editor. A built-in timing 
calculator permits point-to-point timing calculations 
for critical path analysis. 

When a design is ready for debugging or production, 
the design is compiled in to an LCA configuration 
program using the XACT Design Editor. During design 
debug, designers can save time by using the 
download cable to transfer the configuration program 
from the PC directly into an LCA under development in 
a system. 

Product Selector Guide 

PRODUCT NUMBER 
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LCA-MDS151 

LCA-MDS152 

PRODUCT NAME 
Programmable Gate Array Development System 
(Includes LCA-MDS21, LCA-MDS23, LCA-MDS135) 
Programmable Gate Array Design Entry System 
J!ncludes LCA-MDS23, LCA-MDS13~ 

Publication # Rev. Amendment 
10850 A /0 

Issue date: June 1988 



PGA Design Cycle 

The PGA Development System tools includes software for all phases of the PGA design cycle. The diagram 
below indicates the design tasks needed to complete a PGA design and the corresponding software 
products used to complete the tasks. 

QESIGNTASK 

DESIGN ENTRY 

l 
LOGIC 

VERIFICATION 
(optional) 

T 
AUTOMATIC 

PARTITION, PLACE 
AND ROUTE 

+ 
DESIGN 

OPTIMIZATION 

I 
TIMING 

VERIFICATION 
(optional) 

_l 
IN-CIRCUIT 

DESIGN 
VERIFICATION 

SOEJWABE PACKAGE 

OrCAD (LCA-MDS-35), 
MENTOR (LCA-MDS34) 
DAISY (LCA-MDS33), 
FUlURENET (LCA-MDS31) 
SCHEMA TIC INTERFACES 

PC-SILOS (LCA-MDS22) 

AUTOMATIC DESIGN 
IMPLEMENTATION 
(LCA-MDS23) 

XACT DESIGN EDITOR, 
DELAY CALCULATOR 
(LCA-MDS21) 

PC-SILOS (LCA-MDS22) 

XACT PROM FORMATTER, 
DOWNLOAD CABLE 
(LCA-MDS21) 
XACTOR IN-CIRCUIT 
EMULATOR 
(LCA-MDS28) 
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Symbol Library 

Each schematic interface package includes the LCA library, which must be used when entering designs to 
be implemented in an AMO Programmable Gate Array. The library contains both combinatorial logic 
primitives and macros. Primitives represent the lowest level of logic symbols. Macros are logic functions 
implemented by the use of primitives and/or other macros. The following table lists the functions that are 
available in the four interface libraries. An X denotes that the function is available in the LCA library for that 
interface. If the function is available under a different macro name, that name appears in the column instead 
of an X. 

NAME DESCRIPTION fUTURENET DAISY MENTOR OR CAD 

Buffers: 
ACLK Alternate clock buffer x x x x 
GCLK Global clock buffer x x x x 
BUF1 Buffer x x x x 
INV1 Inverter x x x x 

AND Gates: 
AND2 2-input AND gate x x x x 
AND2B 2-input AND gate; all inputs inverted AND20 x x x 
AND2B1 2-input AND gate; 1 input inverted AND201 x x x 
AND3 3-input AND gate x x x x 
AND3B 3-input AND gate; all inputs inverted AND30 x x x 
AND3B1 3-input AND gate; 1 input inverted AND301 x x x 
AND3B2 3-input AND gate; 2 inputs inverted AND302 x x x 
AND4 4-input AND gate x x x x 
AND4B 4-input AND gate; all inputs inverted AND40 x x x 
AND4B1 4-input AND gate; 1 input inverted AND401 x x x 
AND4B2 4-input AND gate; 2 inputs inverted AND402 x x x 
AND4B3 4-input AND gate; 3 inputs inverted AND403 x x x 
ANDS 5-input AND gate x 
ANDSB 5-input AND gate, all inputs inverted x 
AND5B1 5-input AND gate; 1 input inverted x 
AND5B2 5-input AND gate; 2 inputs inverted x 
AND5B3 5-input AND gate; 3 inputs inverted x 
AND5B4 5-input AND gate; 4 inputs inverted x 
NANO Gates: 
NAND2 2-input NANO gate x x x x 
NAND2B 2-input NANO gate; all inputs inverted NAND20 x x x 
NAND2B1 2-input NANO gate; 1 input inverted NAND201 x x x 
NAND3 3-input NANO gate x x x x 
NAND3B 3-input NANO gate; all inputs inverted NAND30 x x x 
NAND3B1 3-input NANO gate; 1 input inverted NAND301 x x x 
NAN03B2 3-input NANO gate; 2 inputs inverted NAND302 x x x 
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NAME DESCRIPTION FUTURENET DAISY MENTOR ORCAD 

NANO Gates (con 't.): 
NAND4 4-input NANO gate x x x x 
NAND4B 4-input NANO gate; all inputs inverted NAND40 x x x 
NAND4B1 4-input NANO gate; 1 input inverted NAND401 x x x 
NAND4B2 4-input NANO gate; 2 inputs inverted NAND402 x x x 
NAND483 4-input NANO gate; 3 inputs inverted NAND403 x x x 
NAN05 5-input NANO gate x 
NAN05B 5-input NANO gate; all inputs inverted x 
NAN0581 5-input NANO gate; 1 input inverted x 
NAN0582 5-input NANO gate; 2 inputs inverted x 
NAN0583 5-input NANO gate; 3 inputs inverted x 
NAN0584 5-input NANO gate; 4 inputs inverted x 
NOR Gates: 
NOR2 2-input NOR gate x x x x 
NOR2B 2-input NOR gate; all inputs inverted NOR20 x x x 
NOR281 2-input NOR gate; 1 input inverted NOR201 x x x 
NOR3 3-input NOR gate x x x x 
NOR3B 3-input NOR gate; all Inputs inverted NOR30 x x x 
NOR3B1 3-input NOR gate; 1 input inverted NOR301 x x x 
NOR3B2 3-input NOR gate; 2 inputs inverted NOR302 x x x 
NOR4 4-input NOR gate x x x x 
NOR48 4-input NOR gate; all inputs inverted NOR40 x x x 
NOR4B1 4-input NOR gate; 1 input inverted NOR401 x x x 
NOR4B2 4-input NOR gate; 2 inputs inverted NOR402 x x x 

II NOR483 4-input NOR gate; 3 inputs inverted NOR403 x x x 
NOR5 5-input NOR gate x 
NOR5B 5-input NOR gate; all inputs inverted x 
NOR5B1 5-input NOR gate; 1 input inverted x 
NOR5B2 5-input NOR gate; 2 inputs inverted x 
NOR583 5-input NOR gate; 3 inputs inverted x 
NOR584 5-input NOR gate; 4 inputs inverted x 
OR Gates: 
OR2 2-input OR gate x x x x 
OR2B 2-input OR gate; all inputs inverted OR20 x x x 
OR281 2-input OR gate; 1 input inverted OR201 x x x 
OR3 3-input OR gate x x x x 
OR3B 3-input OR gate; all inputs inverted OR30 x x x 
OR3B1 3-input OR gate; 1 input inverted OR301 x x x 
OR3B2 3-input OR gate; 2 inputs inverted OR302 x x x 
OR4 4-input OR gate x x x x 
OR4B 4-input OR gate; all inputs inverted OR40 x x x 
OR4B1 4-input OR gate; 1 input inverted OR401 x x x 
OR4B2 4-input OR gate; 2 inputs inverted OR402 x x x 
OR483 4-input OR gate; 3 inputs inverted OR403 x x x 
ORS 5-input OR gate x 
OR58 5-input OR gate; all inputs inverted x 
OR581 5-input OR gate; 1 input inverted x 
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NAME DESCRIPTION FUTURENET DAISY MENTOR OR CAD 

OR Gates (con't.): 
OR5B2 5-input OR gate; 2 inputs inverted x 
OR5B3 5-input OR gate; 3 inputs inverted x 
OR5B4 5-input OR gate; 4 inputs inverted x 

Exclusive OR/NOR Gates: 
XOR2 2-input XOR gate x x x x 
XOR3 3-input XOR gate x x x x 
XOR4 4-input XOR gate x x x x 
XOR5 5-input XOR gate x 
XNOR2 2-input XNOR gate x x x x 
XNOR3 3-input XNOR gate x x x x 
XNOR4 4-input XNOR gate x x x x 
XNOR5 5-input XNOR gate x 

General: 
GADD Adder x x x x 
GCOMP Compare x x x x 
GEQGT Equal or greater-than comparator x x x x 
GMAJ 4-to-1 majority gate x x x x 
GMUX 2-to-1 mux x x x x 
GXTL Crystal oscillator x x x x 
GLTGT Less-than and greater-than comparator x 
GPAR Parity x x 
GXOR Exclusive-or x x 

Input/Output buffers and Pads: 
IBUF Input buffer x x x 
OBUF Output buffer x x x 
OBUFZ Output buffer with 3-state control x x x 
INFF IOB configured as a flip-flop x x x 
osc Oscillator x x x 
INLAT IOB configured as an input latch x 
BPAD Bi-directional pad x 
IPAD Input pad x 
UPAD Unbonded pad x 
OPAD Output pad x 
OU1FF Output flip-flop x 
OU1FFZ Output flip-flop with 3-state control x 
lBUF Internal 3-state driver x 

Latches: 
LO Data latch with load input x x x x 
LORD Data latch with load input and reset direct x x x x 
LOSO Data latch with load input and set direct x x x x 
LOSRD Data latch with load input, reset and set direct x x x x 
LOM Data latch with 2-input data multiplexer x x x x 
LDMRD Data latch with 2-input data multiplexer and x x x x 

reset direct 
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NAME DESCRIPTION FUTURENET DAISY MENTOR ORCAD 

Latches: (con't.) 
LDMSD Data latch with 2-input data multiplexer and x x x x 

sat direct 
DLAT Data latch with sat direct and resat direct x x x 
LRS Data latch with sat and resat x 
Flip-Flops: 
OFF Positive edga-tiggared D flip-flop x 
FD D flip-flop with one data line x x x x 
FDR D flip-flop with resat x x x x 
FDS D flip-flop with sat x x x x 
FDRD D flip-flop with resat direct x x x x 
FDSD D flip-flop with sat direct x x x x 
FDSRD D flip-flop with sat and resat direct x x x x 
POFF D flip-flop with positive edge clock x x 
l'l)ff' D flip-flop with negative edge clock x x 
FDC D flip-flop with clock enable x x x x 
FOOR D flip-flop with clock enable and resat x x x x 
FDCS D flip-flop with clock enable and sat x x x x 
FDM D flip-flop with 2-input data multiplexer x x x x 
FDMR D flip-flop with 2-input data multiplexer x x x x 

and resat 
FDMS D flip-flop with 2-input data multiplexer and sat x x x x 
R».ff) D flip-flop with 2-input data multiplexer and x x x x a reset direct 
FDMSD D flip-flop with 2-input data multiplexer and x x x x 

set direct 
FDCRD D flip-flop with clock enable and resat direct x 
DFF1 D flip-flop with sat direct and reset direct x x 
FSR Set and reset flip-flop with sat dominant over x x x x 

reset 
FRS Sat and resat flip-flop with reset dominance x x x x 

over set 
FJK J-K flip-flop x x x x 
FJKS J-K flip-flop with synchronous sat x x x x 
FJKRD J-K flip-flop with resat direct x x x x 
FJKSD J-K flip-flop with sat direct x x x x 
FJKSRD J-K flip-flop with sat and reset direct x x x x 
FTO Self-toggle flip-flop x x x x 
FTCA Self-toggle flip-flop with reset x x x x 
FnR> 2-input toggle flip-flop with reset direct x 
FT Toggle flip-flop x x x x 
RP Toggle flip-flop with parity enable x x x x 
FTPRD Toggle flip-flop with parity enable and x x x x 

reset direct 
RR Toggle flip-flop with resat x x x x 
RRD 2-input toggle flip-flop x x x 
FTS Toggle flip-flop with sat x x x x 
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NAME DESCRIPTION FUTURENET DAISY MENTOR OR CAD 

Flip-flops (con't.) 
FT2 2-input toggle flip-flop x x x x 
FT2R 2-input toggle flip-flop with reset x x x x 

Decoders: 
02 4 1-of-4 decoder x x x x 
D2-4E 1-of-4 decoder with enable x x x x 
74-139 1-of-4 single decoder with low output and enable x x $74_139 x 
03-8 1-of-8 decoder x x x x 
03-8E 1-of-8 decoder with enable x x x x 
74=138 1-of-8 decoder with enables and low output x x $74_138 x 
74_42 1-of-1 O decoder with low output x x $74_42 x 

Multiplexers: 
M3 1 3-to-1 multiplexer x x x x 
M3-1E 3-to-1 multiplexer with enable x x x 
M4-1 4-to-1 multiplexer x x x x 
M4-1E 4-to-1 multiplexer with enable x x x x 
74-352 4-to-1 multiplexer with low output and enable x x $74_352 x 
M.f 2 4-to-2 multiplexer x 
M8-1 8-to-1 multiplexer x x x x 
M8-1E 8-to-1 multiplexer with enable x x x x 
74_J51 8-to-1 multiplexer with enable and x x $74_151 x 

complementary outputs 
74_152 8-to-1 multiplexer with low output x x $74 152 x 

Registers: 
RD4 4-bit data register with clock x x x x 
RDS 8-bit data register with clock x x x x 
RD8CR 8-bit data register with clock enable and reset x x x x 
RS4 4-bit shift register with clock x x x x 
RS8 8-bit shift register x x x x 
RSSCR 8-bit shift register with clock enable and reset x x x x 
74_194 4-bit bidirectional shift register with clock, x x $74_194 x 
74_195 

parity enable and reset direct 
4-bit serial-to-parallel shift register with clock, x x $74_195 x 

RS8PR 
parity enable and reset direct 
8-bit shift register with clock, parity enable, x x x x 
and reset 

RSSR 8-bit shift register with clock and reset x x x x 
74_164 8-bit serial-to-parallet shift register with clock x x $74_164 x 

and reset direct 
RD4RD 4-bit data register with clock and reset direct x 
RDSRD 8-bit data register with clock and reset direct x 
RS4C 4-bit shift register with clock enable x 
RS4CR 4-bit shift register with clock enable and reset x 
RS4CRD 4-bit shift register with clock enable and x 

reset direct 
RS4RD 4-bit shift register with reset direct x 
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NAME DESCRIPTION fUTURENET DAISY MENTOR OR CAD 

Registers (con't.) 
RSSC 8-bit shift register with clock enable x 
RS8CRD 8-bit shift register with clock enable and x 

reset direct 
RSSRD 8-bit shift register with reset direct x 

Counters: 
C2BCR 1-bit binary counter with clock and reset x x x x 
C2BCRD 1-bit binary counter with clock and reset direct x x x x 
C2BP 1-bit binary counter with clock and parity enable x x x x 

C2BR 1-bit binary counter with clock and reset x x x x 
C2BRD 1-bit binary counter with reset direct x x x x 

C2BCP 1-bit binary counter with clock and parity enable x 
C2BCPRD 1-bit binary counter with clock, parity enable and x 

reset direct 
C4BCP 2-bit binary counter with clock and parity enable x x x x 
C4BCR 2-bit binary counter with clock enable and reset x x x x 
C4BCRD 2-bit binary counter with clock enable and x x x x 

reset direct 
C4JCR 2-bit Johnson counter with clock enable and reset x x x x 
C4BCPRD 2-bit binary counter with clock enable and x 

reset direct 
C4JX 2-bit shift expandable Johnson counter x D C4JXC 2-bit expandable Johnson counter with x 

clock enable 
C4JXCR 2-bit expandable Johnson counter with clock x 

enable and reset 
C4JXCRD 2-bit expandable Johnson counter with clock x 

enable and reset direct 
C4JXRD 2-bit expandable Johnson counter with reset direct x 
C6JCR 3-bit Johnson counter with clock enable and reset x x x x 
CSBCP 3-bit binary counter with clock and parity enable x x x x 
C8BCR 3-bit binary counter with clock enable and reset x x x x 
CSBCRD 3-bit binary counter with clock enable and x x x x 

reset direct 
CSJCR 4-bit Johnson counter with clock enable and reset x x x x 
CSBCPRD 8-bit binary counter with clock, parity enable x 

and reset direct 
C10BCRD 4-bit BCD counter with clock enable and x x x x 

reset direct 
C10BCPRD 4-bit BCD counter with clock, parity enable, and x x x x 

reset direct 
74_160 4-bit BCD counter with clock, parity enable, and x x $74_160 x 

reset direct 
C10BPRD 4-bit BCD counter with clock, parity enable, and x x x x 

reset direct 
C10JCR 5-bit Johnson counter with clock enable and reset x x x x 
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NAME DESCRIPTION fUTURENET DAISY MENTOR OR CAD 

Counters (con't.) 
C12JCR 6-bit Johnson counter with clock enable and reset x x x x 
C16BARD 4-bit binary ripple counter with clock and x x x x 

reset direct 
C16BCRD 4-bit binary counter with clock enable and x x x x 

reset direct 
C16BCPR 4-bit binary counter with clock, parity enable, x x x x 

and reset 
C16BCPRD 4-bit binary counter with clock, parity enable, x x x x 

and reset direct 
C16BCP 4-bit binary counter with clock, parity enable x 
74_161 4-bit binary counter with clock and reset direct x x $74_161 x 
74 162 4-bit binary counter with reset x 
74-163 4-bit binary counter with reset x 
C1SBPRD 4-bit binary up counter with clock, parity enable, x x x x 

and reset direct 
C16BUDRD 4-bint binary up-down counter with clock, x x x x 

parity enable, and reset direct 
C16JCR 8-bit Johnson counter with clock enable and reset x x x x 
C256FCRD 8-bit modulo 256 feedback shift register with x x x x 

clock enable and reset direct 
C256BCP 8-bit binary counter with clock, parity enable x 
C256BCPR 8-bit binary counter with clock, parity enable, and x 

reset direct 
C256BCR 8-bit binary counter with clock enable and reset x 
C256BCRD 8-bit binary counter with clock enable and x 

reset direct 

Flags: 
c Critical signal flag x x 
L Longline signal flag x x 
N Non-critical signal flag x x 
x Explicit signal flag x x 
D External debug net signal flag x 
K K pin for clock x x 
G G pin for clock x x 
I Input (C) pin for clock x x 

CLB 
CLB CLB primitive x x 
108 Primitives: 
108 108 primitive x 
PIN Input pad x 
POUT Output pad x 
POUlZ Output pad with 3-state control x 
PBUF Buffered input x 
PINO Input pad with storage x 
PIO Input/output pad x 
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NAME DESCRIPTION FUTURENET DAISY MENTOR ORCAD 

IOB Primitives (con't.) 
PREG Outpu pad with input storage x 

x 
x 

PIOQ Input/output pad with input storage 
IOFF IOB configured as a flip-flop 

Resistors: 
Pullup Pullup resistor 

PART NUMBER 
LCA-MDS21 
LCA-MDS22 
LCA-MDS23 
LCA-MDS24 
LCA-MDS26 
LCA-MDS27 
LCA-MDS31 
LCA-MDS33 
LCA-MDS34 
LCA-MDS35 
LCA-MDS135 

LCA-MDS151 

LCA-MDS152 

Programmable Gate Array Software 

PRODUCT DESCRIPTION 
XACT LCA Development System 
P-Silos Simulator 
Automatic Design Implementation 
XACTOR In-Circuit Emulator 
XACTOR Universal POD 
XACTOR POD Header 
FutureNet Schematic Interface and LCA Library 
Daisy Schematic Interface and LCA Library 
Mentor Schematic Interface and LCA Library 
OrCAD Schematic Interface and LCA Library 
OrCAD Schematic Entry Software, Interface and LCA Library 
(Includes LCA-MDS35) 
LCA Bundled Development System 
(Includes LCA-MDS21, LCA-MDS23, and LCA-MDS135) 
LCA Bundled Design Entry Package 
J!ncludes LCA-MDS23 and LCA-MDS135l 

x 
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LCA-MDS135 

OrCAD/SDT Ill PGA Design Entry System and Interface 

Distinctive Characteristics 

PGA design entry via the OrCADJSDT Ill 
Schematic Editor 

Easy schematic creation using simple 
keyboard or mouse commands 

Fast graphical editing 

Extensive SSl/MSI library contains over 3600 
components 

LCA library of over 1 00 macros, with TTL and 
standard family equivalents 

Pop-up menus 

Powerful keyboard macros simplify schematic • 
capture 

User control for flagging critical paths for the 
LCA-MDS23 Automatic Design Implementation 
program 

More than 200 hierarchical levels help manage 
design complexity 

Compatible with both 2000 and 3000 series 
LCAs 

Includes OrCAD/SDT Ill Schematic Editor and 
LCA libraries and interface. 

Runs on an IBM PC/AT or compatible personal 
computer 

General Description 

Schematic entry and automatic partitioning of 
Programmable Gate Array designs shortens logic 
reduction and product development times. 
Complex designs can be specified schematically 
and quickly implemented for in-circuit design 
verification. 

Developed specifically to run on IBM personal 
computers and compatibles, OrCAD/SDT supports 
most of the popular graphics boards and printers. 
This gives you the flexibility to use standard 
equipment rather than special proprietary 
hardware. OrCAD/SDT also includes an array of 
sophisticated utility programs, including 
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schematic output, net list, design check and bill of 
materials. Other helpful features include 
runbberbanding of wires and buses, on-line part 
browsing, auto panning of worksheet, string 
searching, visible grids 

The AMO version of ORCAD/SDT Ill includes a 
complete library of gates and macros that designers 
can use to enter their LCA schematics. The AMO 
library provides the logic, 1/0, and macro symbols to 
be used in the schematic. An AMO conversion utility, 
part of the Automatic Design Implementation package 
(LCA-MDS 23), automatically eliminates unused and 
disabled logic, then partitions the schematic into a 
Logic Cell Array design. 

Publication# Rev. Amendment 
10852 A /0 

Issue date: June 1988 



Symbol Library 

The OrCAD schematic interface package includes the LCA library, which must be used when entering 
designs to be implemented in an AMO Programmable Gate Array. The library contains both combinatorial 
logic primitives and macros. Primitives represent the lowest level of logic symbols. Macros are logic 
functions implemented by the use of primitives and/or other macros. The following table lists the functions 
that are available in the OrCAD interface library. Note that some functions are available for the 3000 family 
only. 

NAME 

Buffers: 
ACLK 
GCLK 
BUF1 
INV1 

AND Gates: 
AND2 
AND2B 
AND2B1 
AND3 
AND3B 
AND3B1 
AND3B2 
AND4 
AND4B 
AND4B1 
AND4B2 
AND483 
ANDS 
AND5B 
AND5B1 
AND5B2 
AND583 
AND584 

NANO Gates: 
NAND2 
NAND2B 
NAND2B1 
NAND3 
NAND3B 
NAND3B1 
NAND3B2 
NAND4 
NAND4B 
NAND4B1 
NAND4B2 

DESCRIPTION 

Alternate clock buffer 
Global clock buffer 
Buffer 
Inverter 

2-input AND gate 
2-input AND gate; all inputs inverted 
2-input AND gate; 1 input inverted 
3-input AND gate 
3-input AND gate; all inputs inverted 
3-input AND gate; 1 input inverted 
3-input AND gate; 2 inputs inverted 
4-input AND gate 
4-input AND gate; all inputs inverted 
4-input AND gate; 1 input inverted 
4-input AND gate; 2 inputs inverted 
4-input AND gate; 3 inputs inverted 
5-input AND gate 
5-input AND gate, all inputs inverted 
5-input AND gate; 1 input inverted 
5-input AND gate; 2 inputs inverted 
5-input AND gate; 3 inputs inverted 
5-input AND gate; 4 inputs inverted 

2-input NANO gate 
2-input NANO gate; all inputs inverted 
2-input NANO gate; 1 input inverted 
3-input NANO gate 
3-input NANO gate; all inputs inverted 
3-input NANO gate; 1 input inverted 
3-input NANO gate; 2 inputs inverted 
4-input NANO gate 
4-input NANO gate; all inputs inverted 
4-input NANO gate; 1 input inverted 
4-input NANO gate; 2 inputs inverted 
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NANO Gates (con 't.): 
NAND483 4-input NANO gate; 3 inputs inverted 
NAND5 5-lnput NANO gate 
NAND58 5-input NANO gate; all inputs inverted 
NAN0581 5-input NANO gate; 1 input inverted 
NAND582 5-input NANO gate; 2 inputs inverted 
NAND583 5-input NANO gate; 3 inputs inverted 
NAND584 5-input NANO gate; 4 inputs inverted 

NOR Gates: 
NOR2 
NOR2B 
NOR281 
NOR3 
NOR38 
NOR381 
NOR382 
NOR4 
NOR48 
NOR481 
NOR482 
NOR483 
NOR5 
NOR58 
NOR581 
NOR582 
NOR583 
NOR584 

OR Gates: 
OR2 
OR2B 
OR281 
OR3 
OR3B 
OR381 
OR382 
OR4 
OR4B 
OR481 
OR482 
OR483 
OR5 
OR58 
OR581 
OR582 
OR583 
OR584 
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2-input NOR gate 
2-input NOR gate; all inputs inverted 
2-input NOR gate; 1 input inverted 
3-input NOR gate 
3-input NOR gate; all inputs inverted 
3-input NOR gate; 1 input inverted 
3-input NOR gate; 2 inputs inverted 
4-input NOR gate · 
4-input NOR gate; all inputs inverted 
4-input NOR gate; 1 input inverted 
4-input NOR gate; 2 inputs inverted 
4-input NOR gate; 3 inputs inverted 
5-input NOR gate 
5-input NOR gate; all inputs inverted 
5-input NOR gate; 1 input inverted 
5-input NOR gate; 2 inputs inverted 
5-input NOR gate; 3 inputs inverted 
5-input NOR gate; 4 inputs inverted 

2-input OR gate 
2-input OR gate; all inputs inverted 
2-input OR gate; 1 input inverted 
3-input OR gate 
3-input OR gate; all inputs inverted 
3-input OR gate; 1 input inverted 
3-input OR gate; 2 inputs inverted 
4-input OR gate 
4-input OR gate; all inputs Inverted 
4-input OR gate; 1 input inverted 
4-input OR gate; 2 Inputs inverted 
4-input OR gate; 3 inputs inverted 
5-input OR gate 
5-input OR gate; all inputs inverted 
5-input OR gate; 1 input inverted 
5-input OR gate; 2 inputs inverted 
5-input OR gate; 3 inputs inverted 
5-input OR gate; 4 inputs inverted 
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Exclusive OR/NOR Gates: 
XOR2 2-input XOR gate 
XOR3 3-input XOR gate 
XOR4 4-input XOR gate 
XORS 5-input XOR gate 
XNOR2 2-input XNOR gate 
XNOR3 3-input XNOR gate 
XNOR4 4-input XNOR gate 
XNORS 5-input XNOR gate 

General: 
GADD 
GCOMP 
GEQGT 
GMAJ 
GMUX 
GXll 
GLTGT 

Adder 
Compare 
Equal or greater-than comparator 
4-to-1 majority gate 
2-to-1 mux 
Crystal oscillator 
Less-than and greater-than comparator 

Input/Output buffers and Pads: 
IBUF Input buffer 
OBUF Output buffer 
OBUFZ Output buffer with 3-state control 
INFF 108 configured as a flip-flop 
OSC Oscillator 
INLAT 108 configured as an input latch 
BPAD Bi-directional pad 
IPAD Input pad 
UPAD Unbonded pad 
OPAD Output pad 
OUTFF Output flip-flop 
OU1FFZ Output flip-flop with 3-state control 
TBUF Internal 3-state driver 

Latches: 
LO 
LORD 
LOSO 
LOSRD 
LDM 
LOMRD 
LOMSD 
DLAT 
LRS 

Flip-Flops: 
OFF 
FD 
FDR 

Data latch with load input 
Data latch with load input and reset direct 
Data latch with load input and set direct 
Data latch with load input, reset and set direct 
Data latch with 2-input data multiplexer 
Data latch with 2-input data multiplexer and reset direct 
Data latch with 2-input data multiplexer and set direct 
Data latch with set direct and reset direct 
Data latch with set and reset 

Positive edge-tiggered D flip-flop 
D flip-flop with one data line 
D flip-flop with reset 
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Flip-flops: (con't.) 
FDS D flip-flop with set 
FORD D flip-flop with reset direct 
FDSD D flip-flop with set direct 
FDSRD D flip-flop with set and reset direct 
FDC D flip-flop with clock enable 
FDCR D flip-flop with clock enable and reset 
FDCS D flip-flop with clock enable and set 
FDM D flip-flop with 2-input data multiplexer 
FDMR D flip-flop with 2-input data multiplexer and reset 
FDMS D flip-flop with 2-input data multiplexer and set 
FD~ D flip-flop with 2-input data multiplexer and reset direct 
FDMSD D flip-flop with 2-input data multiplexer and set direct 
FDCRD D flip-flop with clock enable and reset direct 
FSR Set and reset flip-flop with set dominant over reset 
FRS Set and reset flip-flop with reset dominance over set 
FJK J-K flip-flop 
FJKS J-K flip-flop with synchronous set 
FJKRD J-K flip-flop with reset direct 
FJKSD J-K flip-flop with set direct 
FJKSRD J-K flip-flop with set and reset direct 
FTO Self-toggle flip-flop 
FTOR Sett-toggle flip-flop with reset 
FTORD 2-input toggle flip-flop with reset direct 
FT Toggle flip-flop 
FTP Toggle flip-flop with parity enable 
FTPRD Toggle flip-flop with parity enable and reset direct 
FTR Toggle flip-flop with reset 
FTRD 2-input toggle flip-flop 
FTS Toggle flip-flop with set 
FT2 2-input toggle flip-flop 
FT2R 2-input toggle flip-flop with reset 

Decoders: 
02 4 
02::::4E 
74 139 
03-8 
D3-8E 
74-138 
7~42 

Multiplexers: 
M3 1 
M3-1E 
M4-1 
M4-1E 
74-352 
M(..2 
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1-of-4 decoder 
1-of-4 decoder with enable 
1-of-4 single decoder with low output and enable 
1-of-8 decoder 
1-of-8 decoder with enable 
1-of-8 decoder with enables and low output 
1-of-10 decoder with low output 

3-to-1 multiplexer 
3-to-1 multiplexer with enable 
4-to-1 multiplexer 
4-to-1 multiplexer with enable 
4-to-1 multiplexer with low output and enable 
4-to-2 multiplexer 
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Multiplexers: (con't.) 
M8_1 8-to-1 multiplexer 
M8_1 E 8-to-1 multiplexer with enable 
74_151 8-to-1 multiplexer with enable and complementary outputs 
74_152 8-to-1 multiplexer with low output 

Registers: 
RD4 
RDS 
ROSCA 
RS4 
RS8 
RSBCR 
74 194 
74-195 
RSSPR 
RSBR 
74 164 
RD4RD 
RD8RD 
RS4C 
RS4CR 
RS4CRD 
RS4RD 
RSBC 
RSSCRD 
RSBRD 

Counters: 
C2BCR 
C2BCRD 
C2BP 
C2BR 
C2BRD 
C2BCP 
C2BCPRD 
C4BCP 
C4BCR 
C4BCRD 
C4JCR 
C4BCPRD 
C4JX 
C4JXC 
C4JXCR 
C4JXCRD 
C4JXRD 
C6JCR 
CSBCP 
CSBCR 

4-bit data register with clock 
8-bit data register with clock 
8-bit data register with clock enable and reset 
4-bit shift register with clock 
8-bit shift register 
8-bit shift register with clock enable and reset 
4-bit bidirectional shift register with clock, parity enable and reset direct 
4-bit serial-to-parallel shift register with clock, parity enable and reset direct 
8-bit shift register with clock, parity enable, and reset 
8-bit shift register with clock and reset 
8-bit serial-to-parallet shift register with clock and reset direct 
4-bit data register with clock and reset direct 
8-bit data register with clock and reset direct 
4-bit shift register with clock enable 
4-bit shift register with clock enable and reset 
4-bit shift register with clock enable and reset direct 
4-bit shift register with reset direct 
8-bit shift register with clock enable 
8-bit shift register with clock enable and reset direct 
8-bit shift register with reset direct 

1-bit binary counter with clock and reset 
1-bit binary counter with clock and reset direct 
1-bit binary counter with clock and parity enable 
1-bit binary counter with clock and reset 
1-bit binary counter with reset direct 
1-bit binary counter with clock and parity enable 
1-bit binary counter with clock, parity enable and reset direct 
2-bit binary counter with clock and parity enable 
2-bit binary counter with clock enable and reset 
2-bit binary counter with clock enable and reset direct 
2-bit Johnson counter with clock enable and reset 
2-bit binary counter with clock enable and reset direct 
2-bit shift expandable Johnson counter 
2-bit expandable Johnson counter with clock enable 
2-bit expandable Johnson counter with clock enable and reset 
2-bit expandable Johnson counter with clock enable and reset direct 
2-bit expandable Johnson counter with reset direct 
3-bit Johnson counter with clock enable and reset 
3-bit binary counter with clock and parity enable 
3-bit binary counter with clock enable and reset 

Ill 
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Counters (can't.) 
CSBCRD 3-bit binary counter with clock enable and reset direct 
CBJCR 4-bit Johnson counter with clock enable and reset 
C8BCPRD 8-bit binary counter with clock, parity enable and reset direct 
C10BCRD 4-bit BCD counter with clock enable and reset direct 
C10BCPRD 4-bit BCD counter with clock, parity enable, and reset direct 
74_160 4-bit BCD counter with clock, parity enable, and reset direct 
C1 OBPRD 4-bit BCD counter with clock, parity enable, and reset direct 
C10JCR 5-bit Johnson counter with clock enable and reset 
C12JCR 6-bit Johnson counter with clock enable and reset 
C16BARD 4-bit binary ripple counter with clock and reset direct 
C16BCRD 4-bit binary counter with clock enable and reset direct 
C16BCPR 4-bit binary counter with clock, parity enable, and reset 
C16BCPRD 4-bit binary counter with clock, parity enable, and reset direct 
C16BCP 4-bit binary counter with clock, parity enable 
74_161 4-bit binary counter with clock and reset direct 
74_162 4-bit binary counter with reset 
74_163 4-bit binary counter with reset 
C16BPRD 4-bit binary up counter with clock, parity enable, and reset direct 
C16BUDRD 4-bit binary up-down counter with clock, parity enable, and reset direct 
C16JCR 8-bit Johnson counter with clock enable and reset 
C256FCRD 8-bit modulo 256 feedback shift register with clock enable and reset direct 
C256BCP 8-bit binary counter with clock, parity enable 
C2568CPR 8-bit binary counter with clock, parity enable, and reset direct 
C256BCR 8-bit binary counter with clock enable and reset 
C256BCRD 8-bit binary counter with clock enable and reset direct 

Flags: 
c 
L 
N 
x 
K 
G 
I 

CLB: 
CLB 

IOB: 
IOB 

Resistors: 
Pull up 
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Critical signal flag 
Longline signal flag 
Non-critical signal flag 
Explicit signal flag 
K pin for clock 
G pin for clock 
Input (C) pin for clock 

CLB primitive 

IOB primitive 

Pullup resistor 



LCA-MEK01 Logic Cell Array 
Evaluation Kit 
The Monolithic Memories Logic Cell Array is a high-perfor­
mance CMOS user-programmable gate array. The Monolithic 
Memories' Logic Cell Array Evaluation Kit is a software pack­
age that provides the capability to evaluate the Logic Cell 
Array for new applications. 

Features 
• Design software package for IBM PC-XT, PC-AT or 

compatible computer 

• Interactive graphics-oriented designer interface 

• Simplified definition, placement and connection capability for 
implementation of complex logic 

• Boolean equation or Kamaugh map attematives to specify 
logic functions 

• Macro library of 113 standard logic equivalents plus support 
for user-defined macros 

• Point-to-point timing calculations for critical path analysis 

• Automatic checking for connectivity and design 
consistency 

• Hardcopy output of logical and physical configuration 
information 

General 
The Evaluation Kit can be used to enter complete designs 
using a subset of the XACT design editor, including the use of 
the Monolithic Memories macro library. Critical timing for the 
design can be evaluated with the timing delay calculator to 
evaluate the applicability of the Logic Cell Array technology to 
a particular design. 

Functional definition of Configurable Logic Blocks (CLBs), and 
their internal routing,1/0 Block (IOB) definitions, and intercon­
nection are all done within an integrated graphics-oriented 
system. Interactive placement and automatic routing of logic 
and 1/0 elements are accomplished quickly and easily via an 
easy-to-learn user interface. 

Designs are captured with a graphics-oriented design editor, 
using either a mouse or keyboard entry, driven from command 
or files. User functions are specified in terms of CLB definitions 
and interconnections. Standard logic functions from the macro 
library or user-defined macro capabilities can be utilized to 
quickly implement complex logic functions. Placement and 
routing can be edited easily to modify or optimize a design. 

Checking of logical connectivity is performed automatically. All 
unused internal nodes are automatically configured to minimize 
power dissipation. 

Interactive point-to-point timing delay calculation is provided to 
simplify timing analysis and critical path determination. 

The Evaluation Kit includes hardcopy generation to document 
a design and automatically track design changes. 

System Requirements 
Minimum System Configuration 

IBM PC-XT, PC-AT or compatible computer with: 

• MS-DOS 2.1 or higher 

• 640K Bytes RAM 

• 1 Diskette Drive 

• 10-MB Hard Disk 

• IBM or compatible Color Graphic Adapter and Display 

• 1 Serial Interface Port 

• Mouse Systems, Microsoft or compatible mouse 

Evaluation Kit 

Publication# Rev. Amendment 
1osss A 10 

Issue Date: January 1988 
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