
dJ
FUJITSU

(J)

SPARClite !J »
JJ
0 Embedded Processor -
.-+
CD User's Manual m
3
0"'
(1)
c..
c..
(1) .,'

c..
"'U,.
0
()
(1)
en
en
0,.

i C
en
(1)
~

~
en
~
!l>
:::J

L ~~
c
!l>

~ ~ ~ MB86930
MB86931

1993 MB86932
cP MB86933 FUJITSU

SPARClite User's Manual
l1li111111l1lil1li111l1li111111l1lil1lil1lil1li111

Fuiitsu Microelectronics, Inc.
Semiconductor Division

SPARClite User's Manual

CREDITS
11

Book design & illustration by Communication Graphics. This book, excluding the cover, was illustrated, and produced on
Macintosh Computers using FrameMaker® workstation publishing software.

Cover design by Gregg Robles.

TRADEMARKS
11

NICE is a trademark of Fujitsu Microelectronics, Inc.
SPARC is a registered trademark of SPARC International, Inc. based on technology developed by Sun Microsystems, Inc.
SPARClite is a trademark of SPARC International exclusively licensed to Fujitsu Microelectronics, Inc.
SPARCstation is a trademark of SPARC International, Inc. Products bearing the SPARC trademarks are based on an
architecture develped by Sun Microsystems, Inc.

Macintosh is a registered trademark of Apple Computer, Inc. FrameMaker is a registered trademark of Frame Technology
Corporation.

Copyright © 1993 FUjitsu Microelectronics, Inc., Semiconductor Division.

All rights reserved. This publication contains information considered proprietary by Fujitsu limited and Fujitsu Microelectronics, Inc. No part of this
document may be copied or reproduced in any form or by any means or transferred to any third parly Without the prior written consent 01 Fujitsu
Microelectronics, Inc.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating Iypical semiconductor applications. Consequently, complete information
sufficient for design purposes is not necessarily given.

FUjitsu limited and its subsidiaries reserve the right to change products or specifications Without notice. Fujitsu advises its customers to obtain
the latest version of device specifications to verify, before placing orders, that the information being relied upon by the
customer is current.
The information contained in this document does not convey any license under copyrights, patent rights or trademarks claimed and owned by FUjitsu
limited or its subsidiaries. Fujitsu assumes no liabilily for Fujitsu applications assistance, customer's product design,. or infringement of patents arising
from use of semiconductor devices in such systems' designs. Nor does FUjitsu warrant or represent that any patent right, copyright, or other intellectual
properly right of FUjitsu covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used.

FUjitsu Microelectronics, Inc.'s Semiconductor Division's products are not authorized for use in life support devices or systems. life support devices or
systems are device or systems which are:

1. Intended for surgical implant into the human body.

2, Designed to support or sustain life; and when properly used according to label instructions, can reasonably be expected to cause
significant injury to the user in the event of failure.

The information contained in this document has been carefully checked and is believed to be entirely accurate. However, FUjitsu limited and FUjitsu
Microelectronics, Inc. assume no respansibilily for inaccuracies.

This document is published by the marketing department 01 Fujitsu Microelectronics, Inc., Semiconductor Division, 3545 North First Street, San Jose,
California, U.S.A. 95134·1804.

Co

l1lil1li111111l1li111l1li111l1lil1lil1lil1lil1lil1li

Preface. • • • • • • • • • • • · • • • • • • • • • • • • • • . I

Section 1: MB86930 • • • • • • • • • • • • • • • • • • • 1-1

Section 2: MB86931 · · • • · · · . · · · · · · .A 1-1

Section 3: MB86932 • • • • • • • • • • • • • • • • • • • B 1-1

Section 4: MB86933 • • • • • • • • • • • • • • • • • • • C1-1

Contents

SP ARClite User's Manual

Contents

ii

e

l1li111111111111111111111l1lil1li111111111111

About This Manual

SP ARClite™ is a family of microprocessors which conform to Version 8 of the
SP ARC architecture and which have been optimized for use in embedded control.
This manual is the definitive guide for understanding this family of embedded
processors. It describes both the SPARClite architecture and the first four mem­
bers of the family - the MB86930, MB86931, MB86932, and MB86933. The intended
audience for this manual is both hardware systems designers and applications
programmers.

Organization

This manual is divided into four sections, each with its own table of contents.

• Section 1 describes the SPARClite architecture and specifically, the MB86930
microprocessor (the first member of the SPARClite family). This section can be
read by itself for an understanding of the SP ARClite architecture or the
MB86930 processor.

• Section 2 describes the MB86931 which is a superset of the MB86930. This
section describes only the additional feature set of the MB86931 and therefore
should be read after section 1.

• Section 3 describes the MB86932 which is a superset of the MB86930. This
section describes only the additional feature set of the MB86932 and therefore
should be read after section 1.

-1

SP ARClite User's Manual

-II

• Section 4 describes the MB86933 which is a subset of the MB86930. Unlike
sections 2 and 3, this section contains a complete description of the MB86933
~nd can be read independently of all other sections.

Notation

This manual uses the following notational conventions:

• Active-low signal names are preceded with a dash, as in -RESET.

• Numerals without any special prefix are in base 10. Hexadecimal numerals are
preceded by Ox, and binary numerals are preceded by Ob. Thus, 28 = OxIC =
ObI 11 00.

Related Literature

Additional information can be found in the following documents:

• MB86930 SPARClite 32-Bit RISC Embedded Processor Data Sheet-Describes
the MB86930 processor in detail, including complete physical, electrical, and
timing characteristics. Available from Fujitsu Microelectronics' Semiconductor
Division.

• MB86931 SP ARClite 32-Bit RISC Embedded Processor Data Sheet-Describes
the MB86931 processor in detail, including complete physical, electrical, and
timing characteristics. Available from Fujitsu Microelectronics' Semiconductor
Division.

• MB86932 SPARClite 32-Bit RISC Embedded Processor Data Sheet-Describes
the MB86932 processor in detail, including complete physical, electrical, and
timing characteristics. Available from Fujitsu Microelectronics' Semiconductor

-Division.

• MB86933 SPARClite 32-Bit RISC Embedded Processor Data Sheet-Describes
the MB86933 processor in detail, including complete physical, electrical, and
timing characteristics. Available from Fujitsu Microelectronics' Semiconductor
Division.

• SPARClite Application Notes - Discuss specific design issues in detail.
Available from Fujitsu Microelectronics' Semiconductor Division.

• The SPARC Architecture Manual (version 8) - This document is a more
detailed description of the version 8 SP ARC architecture on which the
SPARClite family is based. Available from SPARC International, Menlo Park,
California.

1

l1lil1lil1li11l1lil1lil1li1111l1li111111l1lil1li

MB86930

MB86930 - SP ARClite User's Manual

SP ARClite User's Manual

MB86930 - SP ARClite User's Manual

1llIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIiilliillIII

Chapter 1: Section 1: MB86930

Chapter 1: Overview
1.1 General Description ••• 1-1

1.2 Special Features •• 1-2

1.3 Programmer's Model •• 1-3
1.3.1 Program Modes .. 1-4
1.3.2 Memory Organization ... 1-4
1.3.3 Registers ... 1-6
1.3.4 Data Types ... 1-9
1.3.5 Instructions .. 1-10
1 .3.6 Data and Instruction Caches ... 1-12
1.3.7 Interrupts and Traps ... 1-13

1.4 Internal Architecture •..•..•....••.•.••.••..•.•••••.••.••.••••..•.••.•..••••••••••••••.•• 1-15
1.4.1 Integer Unit ... 1-15
1 .4.2 Data and Instruction Caches ... 1-16
1 .4.3 Bus Interface Unit .. 1-17
1 .4.4 Debug Support Unit ... 1-17

1.5 External Interface.. 1-17
1.5.1 Signals ... 1-17
1.5.2 Bus Operation ... 1-18
1 .5.3 System Support Functions ... 1-19

1.6 Development-Support Tools ••• 1-19

Contents

SPARClite User's Manual

Chapter 2: Programmer's Model
2.1 Program Modes •• 2-1

2.2 Memory- Organization ••• 2·2

2.3 Registers ...••...•......•.................•......•...•.........••..........•.....••............. 2-3
2.3.1 Register Windows .. 2-4
2.3.2 Special Uses of the r Registers ... 2-7
2.3.3 SPARC-Defined Special-Purpose Registers .. 2-7
2.3.4 Memory-Mapped Control Registers .. 2-12

2.4 Data Types •••..•......•..•....•....•.•....••....•.•.......•..•...•.•.....•.•...•....•....... 2·22

2.5 Instructions••...•....•.........•.••...•..•.••.........•.••..•...•....•...•.•.........•.. 2·22
2.5.1 Instruction Formats ... 2-24
2.5.2 logical Instructions ... 2-25
2.5.3 Arithmetic and Shift Instructions .. 2-26
2.5.4 Control Transfer Instructions ... 2-32
2.5.5 load and Store Instructions .. 2-39
2.5.6 Read and Write Control Register Instructions ... 2-42

2.6 Data and Instruction Caches •• 2-44

2.6.1 Structure ... 2-44
2.6.2 Operation ... 2-47

2.7 Interrupts and Traps •• 2-50
2.7.1 Trap Types .. 2-51
2.7.2 Trap Behavior .. 2-53
2.7.3 Reset and Error Modes , .. 2-54

2.8 Debug Support Unit ••• 2-55
2.8.1 Monitor Mode ... 2-56
2.8.2 Breakpoint Registers ... 2-57
2.8.3 Breakpoint Traps .. 2-60

2.9 SPARe Compliance •• 2-63

Contents

ii

00
FUJITSU

Chapter 3: Internal Architecture

3.1 Integer Unit •..•.•.•••.••.••..••..••••.•••••••••••••••.•••••••••••••.•••••.•••••••••••••••••••• 3-2
3.1.1 I Block .. 3-3
3.1.2 A Block .. 3-8
3.1.3 E Block ... 3-10
3.1.4 Programmer-Visible State and Processor State ... 3-15
3.1.5 IU Support for Debugging ... 3-16

3.2 Data and Instruction Caches •• 3-16

3.3 Bus Interface Unit .. 3·17
3.3.1 Buffers .. 3-17
3.3.2 Exception Handling ... 3-18
3.3.3 Effect on the Pipeline .. 3-18

Chapter 4: External Interface

4.1 Signals •• 4-1
4.1.1 Processor Control and Status ... 4-3
4.1.2 Memory Interface .. 4-4
4.1.3 Bus Arbitration .. 4-6
4.1.4 Peripheral Functions ... 4-7
4.1 .5 Emulator Bus ... 4-7
4.1.6 Test and Boundary-Scan ... 4-7

4.2 Bus Operation ••• 4-8
4.2.1 Exception Handling ... 4-9
4.2.2 Bus Cycles .. 4-10

4.3 System Support Functions ..••.•.•... 4·16
4.3.1 System-Configuration Registers .. 4-16
4.3.2 Same-Page Detection ... 4-18
4.3.3 Programmable Timer .. 4-19

Contents

iii

SPARClite User's Manual

Chapter 5: Programming Considerations
5.1 Initialization •• 5-1

5.1.1 Establishing the Processor State ... 5-2
5.1.2 Configuring the System ... 5-2
5.1.3 Initializing the On-Chip Cache ... 5-4

5.2 Trap Handling ••• 5-5

5.3 Register and Stack Management ... 5-11
5.3.1 Registers ... 5-11
5.3.2 Memory Stack ... 5-16
5.3.3 Functions Returning Aggregate Values .. 5-17
5.3.4 Leaf Procedure Optimization ... 5-18
5.3.5 Register Allocation Within a Window ... 5-22
5.3.6 Other Register and Window Usage Models .. 5-23

5.4 Cache Management ••• 5-24

5.5 Division Routines Using the DIVScc Instruction •••••••••••••••••••••••••••••• 5-25
5.5.1 Simple Divide Step Examples ... 5-25
5.5.2 Signed Division with Doubleword Dividend (divs2) .. 5-27
5.5.3 Signed Division with Word Dividend (divs 1) ... 5-30
5.5.4 Unsigned Division with Doubleword Dividend (divu2) ... 5-32
5.5.5 Unsigned Division with Word Dividend (divu1) .. 5-33
5.5.6 Divide Step In Support Of A To 0 Converter Compensation 5-34

5.6 Using the SCAN Instruction •• 5-37
5.6.1 Scan in Support of Software Floating Point .. 5-37
5.6.2 Scan in Support of Run Length Encoding ... 5-39

5.7 Multiply Routines Using the MULScc Instruction 5-41
5.7.1 Simple Multiply Step Examples .. 5-42
5.7.2 Signed Multiplication Using Multiply Step ... 5-44
5.7.3 Unsigned Multiplication Using Multiply Step .. 5-45
5.7.4 Corner Turning Buffer Using Multiply Step ... 5-46

Contents

iv

OJ
FUJITSU

Chapter 6: System Design Considerations

6.1 Clocks .•..........................•.....•.........•.•................•...•......•.•........•..... 6-2

6.2 Memory- and I/O Interfacing •••.••• 6-2
6.2.1 Interfacing SRAM .. 6-3
6.2.2 Interfacing Page-Mode DRAM ... 6-4
6.2.3 Interfacing EPROM and Other Devices with Slow T urn-off 6-6
6.2.4 Illegal Memory Accesses .. 6-7
6.2.5 I/O Interfacing Example: Ethernet Device ... 6-7

6.3 DMA and Bus Arbitration ••••••.••••••••••••••••••.•••••••••••••••••••••••••••••••••••• 6-9

6.4 MB86940 Peripheral Chip •••.•••••.••• 6-1 0
6.4.1 Interrupt Control .. 6-10
6.4.2 Counter/Timers ... 6-11
6.4.3 USARTs .. 6-11

6.5 In-Circuit Emulation ••• 6-11

6.6 Physical Design Issues•....•...............•......•.•.....•..•.... 6-12

Chapter 7: Instruction Set

7.1 Suggested Assembly Language Syntax ... 7-1
7.1.1 Register Names ... 7-2
7.1.2 Special Symbol Names .. 7-2
7.1.3 Values , .. 7-3
7.1.4 labels .. 7-3
7.1.5 Comments .. 7-3

7.2 Syntax Design•.............•..•............................•..................•....... 7-3

7.3 Synthetic Instructions ..•...•.........•......•.•.....•.••....•..••••••.•.•..•.•.•...•..•.• 7-3

7.4 Binary Opcodes ...•.............••.....••..•..•....•.•..•..••..•..•••...•••..•••.••..••••.. 7-3

7.5 Instruction Set•....•.........•..............•.•..•..••.....•. 7-16

Contents

v

SPARClite User's Manual

Chapter 8: JTAG
8. 1 Introduction •• 8-1

8.2 Test Access Ports (TAP) •• 8-2

8.2.1 TCK .. 8-2
8.2.2 TMS ... 8-2
8.2.3 TDI ... 8-3
8.2.4 TDO ... 8-3
8.2.5 -TRST ... 8-3

8.3 Test Instructions ••• 8-3

8.3.1 BYPASS .. 8-4
8.3.2 SAMPLE/PRELOAD .. 8-4
8.3.3 EXTEST ... 8-5
8.3.4 JTAG Cells .. 8-5
8.3.5 Input Cell .. 8-5
8.3.6 Output Cell ... 8-6
8.3.71/0 Cell ... 8-6
8.3.8 Output Cell with Set ... 8-6

8.4 Operation ••• 8-8

8.5 The TAP Controller ••• 8-1 0

8.5.1 TAP Controller State Diagram .. 8-1 0

8.6 MB86930 JTAG Pin List •• 8-16

Contents

vi

c R

OvervieYl

The SPARClite family is a collection of SPARC-based microprocessors optimized
for use in embedded systems. Processors in the SP ARClite, family conform to the
SP ARC version 8 architecture definition; in particular, they are fully compatible
with existing SP ARC code and existing SP ARC development environments. The
MB86930 processor is the first member of the SPARClite family. This chapter pro­
vides a quick introduction to the processor architecture and the MB86930 in par­
ticular. Subsequent chapters will review this material in more detail.

1. 1 General Description
The MB86930 is a high-performance processor suitable for use in embedded con­
trol applications such as printers, scanners, robotic machinery,telecom switches
and monitors, and I/O subsystems. It operates at clock speeds up to 50 MHz, exe­
cuting SP ARC instructions at a maximum rate of 46 MIPs, and includes 2 Kbytes
of instruction and 2 Kbytes of data cache on chip. It is available in a variety of
packages, depending on clock-speed and power-dissipation requirements.

The processor consists of a Harvard (Aiken) architecture Integer Vnit (IV) core,
instruction and data caches, a Bus Interface Vnit (BIV), and an In-Circuit
Emulator Vnit (EMV). These units are connected internally over separate
instruction and data buses, and to external memory and I/O over a unified
(instruction and data) bus which carries 32 bits of address and 32 bits of data.

Overview - General Description

1-1

SP ARClite User's Manual

The register file in the IU implements 8 register windows. An integer multiply
unit (MU) within the IU speeds applications which require integer multiplication.
The processor uses software to emulate floating-point instructions at rates up to 1
MFLOP.

The internal instruction and data caches make it possible to sustain a processing
rate close to one cycle per instruction by providing the IU at 50 MHz with a maxi­
mum aggregate data throughput of 400 Mbytes/ sec (two 32-bit words per cycle).
The maximum external data throughput is 200 Mbytes/ sec (1 word per cycle). In
many applications, the internal caches make it possible to maintain high through­
put even with slow external memory; SP ARClite is therefore a cost-effective solu­
tion in embedded control applications that require high processing throughput
but cannot tolerate the cost of large, high-speed memories.

The MB86930 is designed with Fujitsu's AS technology, a IJl and 3-level metal
process with minimum drawn transistor lengths of 0.8Jl. The design of the data
path and other arrayed blocks is fully custom to optimize die area and speed.
Random control blocks are based on standard cells. All circuits are fully static.

While it does provide a mechanism for code and data protection, the MB86930 is
optimized for embedded applications which do not require virtual-to-physical
address translation. Using an MB86930 processor in a virtual-memory system,
while possible, would require an external Memory Management Unit for address
translation.

1.2 Special Features
This section lists some of the features which give the MB86930 its superior speed,
flexibility and efficiency and make it an ideal choice for a wide variety of low cost,
high-performance embedded systems.

• Fast Instruction Execution: The instruction set is streamlined and hardwired
for fast execution, with most instructions executing in a single cycle. At 50
(40,30,20) MHz, the MB86930 executes instructions at a peak rate of 50
(40,30,20) MIPs, and can sustain performance of 46 (37,28,18) MIPs. The
Integer Unit (IU) features a 5-stage pipeline which has been designed to
handle data interlocks, has an optimized branch handler for efficient control
transfers, and a bus interface to handle single cycle bus accesses to on-chip
cache.

• Large Register Set: An internal register file consisting of 136 registers
organized into eight overlapping windows speeds interrupt response time
and context switches. The register file minimizes accesses to memory during
procedure linkages and facilitates passing of parameters and assignment of
variables, reducing code in many programs. Reduced code, in tum, can fit
more easily into the instruction cache.

Overview - Special Features

1-2

cO
FUJITSU

• On-Chip Caches: On-chip data and instruction caches decouple the processor
from external memory latency. The caches are organized as two-way set- -r'
associative for improved hit rates, as compared with direct-mapped caches. .

• Cache Locking: Both data and instruction entries can be locked into their
respective caches to ensure deterministic response and highest performance
for critical or frequently recurring routines. Maximum flexibility has been
designed into the cache to allow all or selected portions to be locked.

• Separate Instruction and Data Paths On-Chip: Separate 32-bit instruction and
data buses provide a high-bandwidth interface between the IV and on-chip
cache. These buses support single cycle instruction execution as well as single
cycle data transfers with the cache. The on-chip bus design also supports
future expansion of the MB86930.

• System Support Functions: The requirement for glue logic between the
MB86930 and the system is minimized by providing programmable chip
selects, programmable wait-state circuitry, and support for connection to fast
page-mode DRAM. Multiple bus masters are supported through a simple
handshake protocol.

• Clock Generator: To simplify clock design, a crystal can be connected directly
to the on-chip oscillator, or an external clock source can be used. A phase­
locked loop minimizes the skew between on- and off-chip clocks.

• Enhanced Instruction Set: The MB86930 incorporates a fast integer multiply
instruction which executes in a fast 5,3 or 2 cycles for 32-bit, 16-bit or 8-bit
operands. An integer divide-step instruction cuts divide times by a factor of
5 to 10 over previous SPARC implementations. A scan instruction supports a
single-cycle search for the most significant non-sign bit in a word.

• Fully Static Circuit Design: Its static design gives the MB86930 superior noise
immunity. Future members of the SPARClite family will support a low-power
mode, in which the processor clock can be slowed or stopped for arbitrary
periods of time to reduce operating current with no loss of internal state.

• Test and Do!bug Interface: The MB86930 supports production test through
industry standard JTAG boundary scan. Hardware emulation is supported
with on-chip breakpoint and single step logic. A dedicated emulator bus
provides a means to trace transactions between the integer unit and on-chip
cache.

1.3 Programmer's Model
This section briefly introduces those aspects of the SPARClite processor architec­
ture which are visible to software: the user and supervisor modes of program
execution; the organization of the address space; the processor's register set,
supported data types, and instruction set; the on-chip caches; and interrupts and
traps. Each of the topics discussed here is developed more fully in subsequent
chapters.

Overview - Programmer's Model

1-3

SP ARClite User's Manual

1.3. 1 Program Modes

The SP ARClite architecture supports protection in multitasking environments by
providing two mutually exclusive modes of program execution, user mode and
supervisor mode. Certain instructions are privileged, and can only be executed
when the processor is in supervisor mode. Any attempt to execute a privileged
instruction in user mode causes a trap.

Typically, application programs run in user mode, while operating systems run in
supervisor mode. On reset, the processor is in supervisor mode. To enter user
mode, software must clear a bit in the Processor State Register. The processor
enters supervisor mode from user mode only when a hardware reset, an inter­
rupt, or a trap occurs.

1.3.2 Memory Organization

The processor can directly address up to 1 Terabyte of memory, organized into
256 address spaces of 4 GB each. Every external access involves an 8-bit Address
Space Identifier (ASI), as well as a 32-bit address. The ASI selects one of the
address spaces, and the 32-bit address selects a location within that space.

The use of four of the address spaces are defined in the SP ARC architecture: the
User Instruction, Supervisor Instruction, User Data, and Supervisor Data spaces.
SP ARCHte defines additional address spaces, which are used for memory­
mapped control registers and for the data and instruction caches; two further
address spaces are reserved for hardware debug. The remaining spaces are
application-definable; any of them can be used for either data memory or I/O.
Alll/O is memory-mapped. The organization of the entire addressable range is
illustrated in Figure 1-1.

Overview - Programmer's Model

1-4

FF 00000000

FE 00000000
FD 00000000

10 00000000

OF 00000000

OE 00000000

OD 00000000

DC 00000000

OB 00000000

OA 00000000

09 00000000

08 00000000

04 00000000

03 00000000

02 00000000

01 OOOOOOOO

00 00000000

B-Bit 32-BIt
Address Address
Space

indicator
(ASI)

Reserved for Hardware Debug
Application-Definable

Reserved for Hardware Debug

Application-Definable (952 GB)

Supervisor Data (4 GB)"

User Data (4 GBY

Supervisor Instruction (4 GB)"

User Instruction (4 GBY

Application-Definable (16 GB)

Application-Definable (4 GB)

Memory and I/O Space
(:z40 Addressable Bytes)

.. Note: Cacheable address spaces.

..

.,

..

..

.'

..

.. ..

OJ
FUJITSU

,,,:::::::::::::: .. ·· ·· ·1 Data Cache-Data (2 KB implemented) I
,;::::::::::::::::::::"''''':::::" Data Cache-Tags (512 implemented) I
,;: '::::::""'';::::'llnotruction Cache-Data (2 KB implemented) I
":::::;::::::::::::::::::::::::::'llnotruction Cache-Tago (512 implemented) I

.................
Data Cache-Locks (512 implemented)

...........

...............
..,----------,

....... Instruction Cache-Lacko (512 implemented)

.................................. .L-________ -'

.................................. .,----------,
Control Registers (84 B)

(See Fig. 1-2. Register Set)
~--------------------~

Memory-Mapped Registers
and On-Chlp Cache

Figure 1-1. Address-Space Organization

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double
words between external memory (or I/O) and processor registers. In user mode,
only the user instruction and data spaces are accessible; accessing any of the
remaining 254 address spaces requires the processor to be in supervisor mode.

The MB86930 processor does not contain memory-management hardware; vir­
tual-address translation can be handled by software, or by an external memory­
management unit with the on-chip caches disabled.

Overview - Programmer's Model

1-5

....
I

SPARClite User's Manual

1.3.3 Registers

All registers are 32 bi~s wide. There are general-purpose registers, whose contents
have no pre-assigned meaning, and special-purpose registers, which contain control
and status information or special data values. Some of the special-purpose regis­
ters are defined in the SP ARC architecture; the rest are SP ARClite- or device­
specific. The non-SP ARC special-purpose registers are memory-mapped. The
general-purpose registers, and the special-purpose Y Register, are the only ones
which can be accessed in user mode. The register set is illustrated in Figure 1-2.

128 Windowed Registers

(See Fig. 1-3. Register Windows)

8 Global Registers

General-Purpose Registers

SPARC-Deflned Registers (Not Memory-Mapped)

Processor State Register (PSR)

Window Invalid Mask Register (WIM)

Trap Base Register (TBR)

YRegister

Program Counter (PC)"

Next Program Counter (nPC)·

Ancillary State Register (ASR) 16 (reserved)

Ancillary State Register (ASR) 17

• Not readlwritable

Mamory-Mapped Control Registers
(See Fig. 1-1. Address-Space Organization)

Cache/Bus Interface Unit Control Register

Lock Control Register

Restore Lock Control Register

Same-Page Mask Register

Address Range Specifier Registers (ARSR <5: 1 »

Address Mask Registers (AMR <5:0»

Wa~-State Specifier Registers (WSSR <2:0»

Timer Register

Timer Preload Register

System Support Control Register

Special-Purpose Regiaters

Figure 1-2. Register Set

General·Purpose Registers

In the MB86930, there are 136 general-purpose registers; 8 of these are global regis­
ters; the other 128 are divided into 8 overlapping blocks, or windows. Each

Overview - Programmer's Model

1-6

cP
FUJITSU

window contains 24 registers. Of these, 8 are local to the window, 8 are "out" reg­
isters shared with the adjacent window below, and 8 are "in" registers shared
with the adjacent window above. This organization is illustrated in Figure 1-3.

, , ,

, ,

... ---oJ'

Figure 1·3. Register Windows

, ,

,

, , , , -- ..

.' 8Qloe "'\
~ AcCeSs "La \

, ,

• all w. able to •
", 'ndows :

, ,

" "

, , ,

...... ,..
,

At any given time, 32 general-purpose registers can be accessed directly: the 8
global registers, and the 24 registers of the currently active window. The value in
the Current Window Pointer (CWP) field of the Processor State Register (PSR)
determines which window is active.

The overlap between adjacent windows makes it easy to pass parameters to a
subroutine. Values to be passed are written to the "out" registers of the current
window, which are the same as the "in" registers of the adjacent window. A
SAVE instruction can then be used to decrement the Current Window Pointer,
making the parameter values available to the subroutine without moving any
data. A RESTORE instruction can be used to increment the CWP upon return

Overview - Programmer's Model

1-7

SP ARClite User's Manual

from the subroutine. In effect, the general-purpose registers cache the top portion
of the run-time stack.

The window overlap also speeds interrupt handling, as interrupts automatically
decrement the CWP, giving the interrupt routing its own window. The SP ARC
architecture requires a free window to be available to handle these traps.

Special-Purpose Registers

The special-purpose registers include the control and status registers defined by
the SP ARC architecture, plus a collection of memory-mapped registers which
control peripheral functions.

Special instructions exist for reading and writing each of the SP ARC control and
status registers, except for the Program Counter and the Next Program Counter.
The Y Register can be read and written in user mode; the instructions that access
the other SPARC-defined registers are privileged.

The memory-mapped registers can be read and written with the alternate-space
load and alternate-space store instructions, which are also privileged.

The SP ARC-defined registers, shown in Figure 1-2 above, are:

• Processor State Register (PSR)-The primary processor control and status
register. It contains mode fields, which are set by the operating system to
configure the processor, and status fields, which are set by the processor to
indicate the effects of instruction execution.

• Window Invalid Mask Register (WIM)-Used by software to detect the
occurrence of register file underflows and overflows. It contains one mask bit
for each register window. If an operation which normally increments or
decrements the Current Window Pointer would cause the CWP to point to a
window whose corresponding WIM bit equals 1, a trap occurs.

• Trap Base Register (TBR)-Contains three fields used by the processor to
generate the address of the service routine when an interrupt or trap occurs.

• Y Register-Used in stepwise multiplication and division routines based on
the MULScc and DIVScc instructions. Also used for integer multiply
operations.

• Program Counter (PC)-Contains the word address of the instruction
currently being executed by the Integer Unit. The PC cannot be directly read
or written.

• Next Program Counter (nPC)-Contains the word address of the next
instruction to be executed, assuming that no trap occurs. The nPC cannot be
directly read or written.

• Ancillary State Registers (ASR[31:1])-The SPARC definition includes 31
Ancillary State Registers, 15 of which (ASR[15:1]) are reserved for future use.

Overview - Programmer's Model

1-8

OJ
FUJITSU

The remaining ASR's can be defined and used in any way by SP ARC
implementations. SP ARClite defines the following ASR:

ASR17- Used to enable and disable single-vector trapping. (When this fea­
ture is enabled, all traps vector to a single location.) Single vector trapping
provides a small memory alternative to the standard 1K word trap table.

The memory-mapped SPARClite-specific registers, shown in Figure 1-2, are:

• Cache/Bus Interface Unit Control Register-Controls the operation of the data
and instruction caches, and the write and prefetch buffers of the Bus Interface
Unit.

• Lock Control Register-Controls the locking of individual entries in the data
and instruction caches.

• Restore Lock Control Register-Enables or disables the restoration of the Lock
Control Register upon return from an interrupt or a hardware trap.

• Same-Page Mask Register-Controls the operation of the same-page detection
logic by specifying which bits of the current ASI and address are to be
compared with those of the previous ASI and address.

• Address Range Specifier Registers (ARSR[5:1])-Control the assertion of the
Chip-Select outputs (-CS[5:1]). -CSn is asserted when the value on the address
bus falls in the address range specified by ARSRn. -CSO is asserted on accesses
to the lowest address range in Supervisor Instruction Space.

• Address Mask Registers (AMR[5:0])-AMRn controls the comparison of the
current address with ARSRn by specifying which bits are to be compared and
which are "don't cares."

• Wait-State Specifier Registers (WSSR[2:0])-Determine, for each address
range, the number of clock cycles between the time an address in that range
appears on the address bus and the time the processor automatically generates
the -READY signal. This makes it possible for memory and I/O devices with
different access times to be connected to the processor without additional
logic.

• Timer Register-Contains the current timer count.

• Timer Pre-Load Register-Contains the value which is loaded into the timer
when the timer overflows.

• System Support Control Register-Enables or disables same-page detection,
chip-select, programmable wait-states, and the timer, independently of one
another.

1.3.4 Data Types

SPARClite instructions support the Signed Integer, Unsigned Integer, and Tagged
data formats of the SP ARC definition. The Integer types are supported in byte
(8-bit), half-word (16-bit), word (32-bit), and double-word (64-bit) widths. The

Overview - Programmer's Model

1-9

SP ARClite User's Manual

Tagged type is one word (32 bits) in width. Hardware support is not provided for
the floating-point types; these can be handled in software.

1.3.5 Instructions

SPARClite provides an upward-compatible superset of the SP ARC (version 8) \
instruction set. The additional instructions-integer divide-step, and scan for first
changed bit - are supported for the sake of higher performance in embedded
applications. Table 1-1 lists the SP ARClite instruction set. In the MB86930 proces­
sor, the floating-point and coprocessor instructions defined in the SP ARC archi­
tecture are trapped for software emulation.

Each instruction is a single 32-bit word. The instruction set can be divided into
five functional groups:

1. Logical-Bit-wise boolean operations. Each logical instruction comes in two
versions: one leaves the integer condition codes in the Processor State Register
unchanged; the other changes the condition codes as a side effect.

2. Arithmetic and Shift-Integer arithmetic, logical and arithmetic shifts. Besides
the standard arithmetic operations, SP ARC provides instructions to perform
tagged arithmetic. In tagged arithmetic, the two least-significant bits of each
operand are used to indicate the (user-defined) data type of the operand. The
tagged arithmetic instructions set a condition code if the tag of an operand is
not zero.

Besides the arithmetic instructions defined in the SP ARC architecture,
SP ARClite provides:

• A divide-step instruction, which can be used to construct efficient iterative
integer division algorithms.

• A scan instruction, which determines the first bit in a word which differs
from the most-significant bit. The scan instruction can be used to simplify
and accelerate many important operations, like normalizing numbers with
redundant sign bits.

Most of the arithmetic instructions come in two versions: one of them leaves
the integer condition codes unchanged, while the other changes the condition
codes as a side effect of execution.

3. Control Transfer-Branches, calls, jumps, returns from trap, and conditional
traps. The target address of the control transfer is computed either by adding a
specified offset to the value in the Program Counter, or by adding two source
operands. The transfer of control either occurs immediately after the control
transfer instruction, or is delayed for one further instruction.

4. Load and Store-External accesses. Load and store are the only instructions that
read and write to external devices (including memory). Bytes, half-words,
words and double words can be transferred to and from processor registers.

Overview - Programmer's Model

1-10

OJ
FUJITSU

Special instructions access alternate address spaces. Attempts at unalignedII.
accesses are trapped, and must be carried out under software control.,

5. Read and Write Control Registers-Access the Program State Register, Window­
Invalid Mask Register, Trap-Base Register, Y Register, and Ancillary State
Registers. There are also instructions for incrementing and decrementing the
Current Window Pointer. With one exception, writes to the control registers
are delayed for three instruction cycles. The three instructions following a
write, therefore, should not attempt to use or modify the values written. A
write to the Y Register, however, is not delayed: it is completed before the next
instruction is executed.

Table 1-1: Instruction Set

Group Opcode Name

Logical AND (ANDcc) And (and modify cc)
ANDN (ANDNcc) And Not (and modify icc)
OR (ORce) Inclusive-Or (and modify icc)
ORN (ORNce) Inclusive-Or Not (and modify icc)
XOR (XORcc) Exclusive-Or (and modify icc)
XNOR (XNORcc) Exclusive-Nor (and modify icc)

Arithmetic ADD (ADDcc) Add (and modify icc)
ADDX (ADDXcc) Add with Carry (and modify icc)

TADDcc (TADDccTV) Tagged Add and modify ice (and Trap on overflow)

SUB (SUBcc) Subtract (and modify icc)
SUBX (SUBXcc) Subtract with Carry (and modify icc)

TSUBce (TSUBccTV) Tagged Subtract and modify icc (and Trap on overflow)

MULScc Multiply Step and modify icc

SMUL Signed Multiply
UMUL Unsigned Multiply
SMULcc Signed Multiply (and modify icc)
UMULcc Unsigned Multiply (and modify icc)
DIVScc Divide-Step (and Modify icc)
SCAN Scan for bit different than MSB

Shift SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic

Control Bicc Branch on integer condition codes
Transfer

CALL Call
JMPL Jump and Link

RETT Return from Trap

Ticc Trap on integer condition codes

Overview - Programmer's Model

1-11

SP ARClite User's Manual

Table 1-1: Instruction Set (Continued)

Group

Load
and Store

Read and
Write

Control
Registers

Opcode Name

LDSB (LDSBA) Load Signed Byte (from Alternate space)
LDSH (LDSHA) Load Signed Halfword (from Alternate space)
LDUB (LDUBA) Load Unsigned Byte (from Alternate space)
LDUH (LDUHA Load Unsigned Halfword (from Alternate space)
LDD (LDDA) Load Doubleword (From Alternate space)

STB (STBA) Store Byte (into Alternate Space)
STH (STHA) Store Halfword (into Alternate space)
ST (STA) Store Word (into Alternate space)
STD (STDA) Store Doubleword (into Alternate space)

LDSTUB (LDSTUBA) Atomic Load-Store Unsigned Byte (in Alternate space)
SWAP (SWAPA) Swap r Register with Memory (in Alternate space)

SAVE Save caller's window
RESTORE Restore caller's window

SETHI Set High 22 bits of r register

RDY Read Y register
RDPSR Read processor State Register
RDWIM Read Window invalid Mask Register
RDTBR Read Trap Base Register
RDASR Read Ancillary State Register

WRY Write Y register
WRPSR Write processor State Register
WRWIM Write Window invalid Mask Register
WRTBR Write Trap Base Register
WRASR Write Ancillary State Register

UN IMP Unimplemented instruction

1 .3.6 Data and Instruction Caches

Each member of the SP ARClite family contains separate data and instruction
caches on-chip. In the MB86930 processor, each cache is 2 Kbytes in size, orga­
nized into two banks of sixty-four 4-word lines. Each cache line has a 22-bit
address tag, which indicates the memory location to which the line is currently
mapped. A cache line, together with its address tag and status bits, is often called
a cache entry. The organization of each cache is two-way set associative; that is, each
address in memory can be mapped to either of two locations in the cache. '

There are three modes of cache operation: normal, global locking, and local locking.
In normal mode, when the integer unit requests a read to a data or instruction
address which is not found in the appropriate cache, the memory block contain­
ing the requested address is read into the cache, replacing one of the current cache
entries. The locking modes prevent either an entire cache, or just selected entries,
from being over written in this way. The locking modes thus allow time-critical
routines to be locked into cache. Thanks to the set-associative organization, as

Overview - Programmer's Model

1-12

00
FUJITSU

much as one whole bank of a cache can be locked while the remaining bank con- ~
tinues to operate as a direct-mapped cache. ~
In normal mode, the data cache uses a write-through update policy, and allocates
a cache entry only on a load. Writes to locked data entries, however, are not writ-
ten through to main memory. In this way, a portion of the data cache can be used
as fast on-chip RAM which is not mapped to external memory.

Cache tags and data are memory-mapped, and can be directly read and written
using the alternate-space load and store instructions. These instructions are privi­
leged.

Subsequent chapters discuss the cache in greater detail: Programmer's Model dis­
cusses cache locking; Programming Considerations contains hints for using the on­
chip cache to best advantage.

1 .3.7 Interrupts and Traps

In this manual, we distinguish between interrupts-which are initiated by exter­
nal interrupt signals, asynchronously with respect to processor operations, and
traps-which are caused by instructions, and so are necessarily synchronous. Dur­
ing system operation, external interrupts are generally unavoidable; traps, how­
ever, can and should be kept to a minimum by careful software design and
testing.

Interrupt response time is critical in many embedded applications. The total
response time includes the time required for the processor to finish its current
task after recognizing an interrupt, and the time required to switch contexts (if
necessary) and begin executing the interrupt service routine. In the SP ARCHte
family, non-interruptible multi-cycle events are minimized, (i.e., Cache refills
which take multiple cycles to completely fill a cache line, are designed so they can
be interrupted after every word load). This reduces both average and maximum
interrupt latency. When an interrupt is detected, the processor switches to a new
window. In this way, the current values in the general-purpose registers don't
have to be saved before interrupt service begins. Furthermore, service routines
can be locked into the cache, making them available for immediate access.

The MB86930 processor provides direct support for 15 distinct interrupt priority
levels; each level can service multiple interrupt sources. Supervisor-mode soft­
ware can mask up to 14 of these levels; the highest level is non-maskable (if
ET=l).

An interrupt or trap (other than reset) causes control to be transferred to an
address generated by the Trap Base Register. One field in the TBR contains the
base address of the trap dispatch table. Normally, an 8-bit trap type number serves
as an offset into this table. When single-vector trapping is enabled, however, control

Overview - Programmer's Model

1-13

SP ARClite User's Manual

passes to the base address of the trap table (with tt=O), regardless of the trap type.
Reset always traps to address O.

Up to 256 trap types can be distinguished on the basis of the 8-bit trap type num­
ber. Of these, half are reserved for hardware interrupts and traps; all but one of
the others are programmer-initiated (see the discussion of the Ticc instruction in
the Programmer's Model chapter). One trap type is defined in SPARClite to support
in-circuit emulation. The various trap types are listed, in order of priority, in
Table 1-2.

Table 1-2: Trap Types and Priorities

Trap Priority tt

reset 1 -
instruction_breakpoint 1.5 255
data_breakpoint 1.5 255
instruction_access_exception 2 1
privileged_instruction 3 3
iIIegaUnstruction 4 2
fp_disabled 5 4
cp_disabled 5 36
window_overflow 6 5
window_underflow 7 6
mem_address_noCaligned 8 7
data_access_exception 10 9
tag_overflow 11 10
trap_instruction (Ticc) 12 128255

interrupUeveL 15 14 31
interrupUeveL 14 15 30
interrupUeveL 13 16 29
interrupUeveL 12 17 28
interrupUeveL 11 18 27
interrupUeveL 10 19 26
interrupUeveL9 20 25
interrupUeveL8 21 24
interrupUeveL7 22 23
interrupUeveL6 23 22
interrupUeveL5 24 21
interrupUeveL 4 25 20
interrupUeveL3 26 19
interrupUeveL2 27 18
interrupUeveL 1 28 17

The expression trapped instruction refers, in the case of a synchronous trap, to the
instruction which caused it. In the case of an interrupt, the trapped instruction is
the one which was about to execute when the interrupt occurred.

The Integer Unit supports precise traps-when an interrupt or trap occurs, the
saved state of the processor reflects the completion of all instructions prior to the
trapped instruction, but no subsequent instructions (including the trapped

Overview - Programmer's Model

1-14

OJ
FUJITSU

instruction). Hardware guarantees that upon return from the service routine, the
Program Counter points to the trapped instruction or the following instruction if
the trapped instruction was emulated.

1.4 Internal Architecture
The internal architecture of SP ARClite family processors is illustrated in
Figure 1-4. The processor core consists of an Integer Unit which implements a
superset of the SP ARC integer instruction set. Separate on-chip caches are pro­
vided for data and instructions. The Bus Interface Unit handles the interface
between the processor and the system. A Clock Generator with built-in phase­
locked loop simplifies system clock design. Finally, the Debug Support Unit pro­
vides hardware support for in-circuit emulation. Internally, the various functional
units are connected by separate instruction and data buses. For connection with
external memory and I/O, a unified address bus and a unified data bus are
extended off-chip. The main functional units are discussed briefly below, and
more fully in the Internal Architecture chapter.

CLOCK
GENERATOR

ClK_OUT
SPARe INTEGER UNIT

!: z
DATA OJ

I-a:
BUS ~ EMULATOR ADDRESS INTERFACE a.
UNIT '-DATA OJ BUS

'" ASI Cl
OJ

'-ADDR III w
CONTROL 0

DRAM SUPPORT

PWG D_DATA

CHIP_SEl
16-BITTIMER

PAGE_DET
ADDRESS

D_ADDR

REFRESH DECODE

Figure 1-4. Internal Architecture (Block Diagram)

1 .4. 1 Integer Unit

The Integer Unit (IV) is a compact, fully custom implementation of the SPARC
architecture. The IU is hard-wired for high performance. Its internal functional
units are designed around a modular architecture and can be customized to meet
different application requirements. In the MB86930, for example, this flexibility

Overview - Internal Architecture

1-15

SP ARClite User's Manual

was used to provide direct hardware support for integer multiplication, and to
extend the SP ARC instruction set by supporting divide-step and scan instruc­
tions.

The IV implements a five-stage instruction pipeline to allow a sustained execu­
tion rate of nearly one instruction per cycle. The operation of the pipeline under
ideal conditions is illustrated in Figure 1-5. The pipeline consists of the following
stages:

• Fetch (F}--One of the instruction memory spaces is addressed and returns an
instruction. (Figure 1-5 below assumes a hit in the instruction cache.)

• Decode (D)-The instruction is decoded; the register file is addressed and
returns operands.

• Execute (E)-The ALV computes a result.
• Memory (M}-External memory is addressed (for load and store instructions

only; this stage is idle for other instructions).
• Writeback (W)-The result (or loaded memory datum) is written into the

register file.

Fetch Instruction 5 6

Decode Instruction 4 5 I 6

Execute Instruction 3 4 I 5 I 6

Memory Instruction 2 3 4 I 5 I 6

Write-Back Instruction 1 2 3 4 I 5 I
Figure 1-5. Instruction Pipeline

No instructions execute out-of-order; that is, if instruction A enters the pipeline
before instruction B, then instruction A necessarily reaches the writeback stage
before instruction B does. Conditions which hold up the pipeline, and the effect of
traps on pipeline operations, are discussed in the Internal Architecture chapter.

1 .4.2 Data and Instruction Caches

The on-chip data and instruction caches allow designers to build high-perfor­
mance systems without incurring the cost of fast external memory and the
associated control logic.

In the MB86930 processor, each cache is 2 Kbytes in size, organized into two
banks of sixty-four 16-byte lines. Cache lines are refilled in 4-byte increments to
avoid the interrupt latency incurred by long, uninterruptible cache line replace­
ments.

Overview - Internal Architecture

1-16

0)

FUJITSU

The data and instruction caches are accessed independently over separate data
and instruction buses, allowing data to be loaded from and stored to cache
concurrently with instruction fetches.

1 .4.3 Bus Interface Unit

The Bus Interface Unit (BIU) contains the logic which allows the processor to
communicate with the system. The BIU receives requests for external memory
and I/O accesses from the cache control logic. When the BIU performs a read, it
returns the data to both the cache and the IU. Parallel paths make the data avail­
able to the IU in the same cycle that it is written to the cache.

The BIV has a one-word (32-bit) write buffer to hide external memory latency
from the IV. The BIU also has a one-word prefetch buffer for instruction fetches.
These buffers are enabled or disabled by bits in the Cache/Bus Interface Unit
Control Register.

1.4.4 Debug Support Unit

The Debug Support Unit supports hardware emulation with on-chip breakpoint
and single-step logic. A dedicated emulator bus is extended off-chip from the
debug unit; the emulator bus makes it possible to trace transactions between the
Integer Unit and on-chip cache.

1.5 External Interface
The processor's external interface consists of signals, bus operations, and system
support functions. This section gives an overview; details are discussed more
fully in the External Interface chapter. The System Design Considerations chapter
discusses issues that are likely to arise in the design of any SPARClite system.

1.5. 1 Signals

The processor's external signals, illustrated in Figure 1-6, can be grouped by
function:

• Processor Control and Status-Reset, error, and clock signals.

• Memory Interface-Data and address buses, ASI and byte-enables, chip­
selects, and other control signals used to access external memory and
memory-mapped devices.

• Bus Arbitration-Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

• Peripheral Functions-Interrupt-requests and timer overflow.

• Emulator Bus-Signals to support in-circuit emulation.

Overview - External Interface

1-17

..
!'

SP ARClite User's Manual

• Boundary-Scan-Test signals used for hardware verification.

Processor CLKOUT2
Control CLKIN I XTAL1

& Status
XTAL2

-ERROR
-RESET

Peripheral (IRL <3:0>
Functions _ TIMER_OVF

Bus (-BREO
ArMration -BGRNT

TOO

,~em l TCK

(Boundary Scan) TMS

-TRST

MB86930
I/O SIGNALS

D <31:0>

ADR <31:2>

ASI <7:0>

-CS<5:0>

-BE <3:0>
-MEXC
-READY

RD/-WR
-LOCK
-AS

Memory
Interface

EMU_D <3:0> Emulator

EMU SO <3:0> 1
-EMU_BRK Bus

-EMU_ENB

Figure 1-6. Input and Output Signals

1.5.2 Bus Operation

At any given time, the Bus Interface Dnit is handling requests for external mem­
ory and I/O operations, arbitrating for bus access, or idle. From the point of view
of the external system, bus transactions are handled in fairly standard ways:

• Memory and I/O Operations-Read and write transactions are initiated with
the BID asserting the -AS signal. The RD / -WR output indicates the
transaction type. The -BE[3:0] outputs indicate the transaction width. The BID
drives the address and ASI signals, and either drives (on stores) or reads (on
loads) the signals on the data bus. The transaction ends when the external
system or programmable wait-state generator asserts -READY.

An atomic load-store is executed as a load followed by a store, with no opera­
tion allowed in between. The -LOCK output is asserted to indicate that the bus
is being used for more than one consecutive memory operation.

• Arbitration-Any external device can request ownership of the bus by
asserting the -BREQ signal. The BID three-states its bus drivers and asserts
-BGRNT to indicate that it is relinquishing control of the bus. On completion
of its transaction, the external device de-asserts -BREQ; the BIU responds by
de-asserting -BGRNT in the following cycle.

Overview - External Interface

1-18

OJ
FUJITSU

The External Interface chapter gives further details concerning bus operations,
with timing diagrams, a bus state diagram, and a discussion of transactions that
are interrupted by exceptions.

1.5.3 System Support Functions
Built-in system support functions help to minimize the amount of glue logic
required in the external system. The support includes a set of system-configura­
tion registers, a timer for generating refresh requests, and same-page detection
logic.

The system-configuration registers (Address Range Specifiers, Address Masks,
and Programmable Wait-State Specifiers) allow software to define six different
address ranges. When an address driven by the processor is in one of these
ranges, the corresponding Chip-Select (-CS) pins are asserted. After a number of
clock cycles determined by the corresponding Programmable Wait-State Speci­
fier, the processor automatically generates the -READY signal. This makes it pos­
sible for memory and 110 devices with different access times to be connected to
the processor without additional logic.

The programmable timer causes the - TIMER_ OVF output signal to be asserted at
software-defined intervals. This signal can be used to initiate DRAM refresh
cycles, or to control other periodic events in the external system.

The same-page detection logic determines whether the address of the current
memory transaction is on the same page as the previous transaction. If it is, the
processor asserts the -SAME_PAGE signal. The system can then take advantage
of the fast consecutive accesses possible within the page boundaries of fast-page
mode DRAM.

1.6 Development-Support Tools
A full range of development tools are available to support the development of
your SPARClite application. The emergence of SPARC as the industry standard
engineering workstation architecture provides a fully supported and cost effec­
tive source of native development environments. Furthermore, tools targeted at
embedded systems development are available as well.

Solutions are available to meet your emulation, logic analysis, logic modeling,
architectural simulation, real-time operating system, PC environment, bench­
marking and prototyping requirements. Call the SP ARClite customer hotline for a
complete list of support solutions.

Overview - Development-Support Tools

1-19

SP ARClite User's Manual

Overview - Development-Support Tools

1-20

c R

l1li III III III IIUIl III IIIHIIII IIUIIHIII iii iii

Programmer's Model

This chapter presents the SP ARClite processor architecture as a collection of
resources available to software. It discusses the user and supervisor modes, the
organization of the address space, the processor registers, the supported data
types, the instruction set, the on-chip caches, interrupts and traps and debug sup­
port. A separate section describes the internal state of the processor after reset.

The Programming Considerations chapter contains information about how to use
these processor resources to best advantage.

2. 1 Program Modes
The SP ARC architecture provides two mutually exclusive modes of program exe­
cution, user mode and supervisor mode. The processor is in supervisor mode when
the S bit of the Processor State Register (PSR) is I, and in user mode when this bit
is O. Instructions which access either special-purpose registers or alternate mem­
ory spaces are privileged; the use of privileged instructions is restricted to supervi­
sormode.

The distinction between user and supervisor modes provides system protection
in multitasking environments. System code runs in supervisor mode and has full
access to processor resources, while application code runs in user mode and is
kept from having unwanted side effects. Embedded systems connected to a net­
work can use a protection scheme based on the distinction between user and
supervisor modes. In such a scheme, network service routines intended to have

Programmer's Model - Program Modes

2-1

-I

SP ARClite User's Manual

system-wide effects run in supervisor mode. Routines intended to have only local
effects, on the other hand, run in user mode.

In many embedded systems, however, this hierarchy is not required, and the pro­
cessor can operate exclusively in supervisor mode. In this way, application code
can directly manipulate the Current Window Pointer (in the PSR) and other pro­
cessor control fields.

On reset, the processor is in supervisor mode. To enter user mode, software must
clear the S bit in the PSR. The processor enters supervisor mode from user mode
only when a hardware reset, an interrupt, or a trap occurs. A return from trap
(RETT) instruction restores the value the S bit had before the trap was taken.

2.2 Memory Organization
The processor can directly address up to 1 Terabyte of memory, organized into
256 address spaces of 4 GB each. These address spaces mayor may not overlap in
physical memory, depending on the system design. Every external access
involves an 8-bit Address Space Identifier (ASI) as well as a 32-bit address. The
ASI selects one of the address spaces, and the address selects a word within that
space (see Table 2-1). Only the user instruction and data spaces are available in
user mode; accessing any of the other 254 address spaces requires the processor to
be in supervisor mode.

Table 2-1: AS. Address Space Map

ASI<7:0> Address Space

Ox1 Control Register
Ox2 Instruction Cache Lock
Ox3 Data Cache Lock

Ox4 - Ox7 Application Definable
Ox8 User Instruction Space
Ox9 Supervisor Instruction Space
OxA User Data Space
OxB Supervisor Data Space
OxC Instruction Cache Tag RAM
OxD Instruction Cache Data RAM
OxE Data Cache Tag RAM
OxF Data Cache Data RAM

Ox10 - OxFC, OxFE Application Definable
OxFD,OxFF Reserved for Debug Hardware

Loads and stores are the only instructions that cause external accesses. Versions of
these instructions exist for transferring bytes, half-words, words and double

Programmer's Model - Memory Organization

2-2

00
FUJITSU

words between memory (or I/O) and processor registers. Addressing conven­
tions for external accesses are "big-endian":

• Bytes-Increasing the address decreases the significance of a byte within the
word. That is, the most significant byte of a word-the "big end" of the
word-is accessed when bits [1:0] of the address are both o. The least
significant byte is accessed when address bits [1:0] are both 1.

• Halfwords-The most significant halfword of a word is accessed when bit 1 of
the address is 0, and the least significant halfword when address bit 1 is 1.

• Doublewords-The most significant word of a doubleword is accessed when bit
2 of the address is 0, and the least significant word when address bit 2 is 1.

The address of a halfword, word, or doubleword is the address of its most signifi­
cant byte. The addressing conventions are illustrated in Figure 2-1.

address <1 :0> 0
Bytes

2 3

17 01 7 01 7 01 7 01

address <1 :0> 0
Halfwords

2

115 01 15 01

address <1 :0>
Word

0 131 01

address <2:0>
Doubleword

0 I~ ~21 4

Figure 2-1. Addressing Conventions

Load and store operations require proper alignment of data in memory. An
aligned doubleword address is divisible by 8, an aligned word address is divisi­
ble by 4, and an aligned half-word address is divisible by 2. If a load or store
instruction generates an improperly aligned address, a memory _address_not_
aligned trap occurs, and the access must be performed piecemeal under software
control.

The processor does not contain memory-management hardware; virtual-address
translation can be handled by software, or by an external memory-management
unit.

2.3 Registers
There are two types of registers: the general-purpose, or r registers, whose contents
have no pre-assigned meaning, and the special-purpose registers, which contain

Programmer's Model - Registers

2-3

•

SP ARClite User's Manual

control and status information, or special-purpose data. All registers are 32 bits
wide. The register set is illustrated in Figure 1-2 of the Overview chapter.

The general-purpose (r) registers can be accessed in user mode. There are 136 r
registers; 8 of them are global registers; the other 128 are divided into 8 overlapping
blocks, called windows. The windowing system, and the special uses of certain r
registers, are discussed below.

The special-purpose registers are of two kinds: (1) registers defined by the SPARC
architecture, and (2) memory-mapped registers which control peripheral func­
tions. Special instructions exist for reading and writing each of the SP ARC regis­
ters, except for the Program Counter and the Next Program Counter. The
memory-mapped registers can be read and written with the alternate-space load
and store instructions. Except for reads and writes to the SPARC-defined Y regis­
ter, all of the instructions which access special-purpose registers are privileged.

Some of the special-purpose have reserved or undefined fields. Therefore, one
should not assume particular values for these fields when reading the registers,
and one should not assume that only non-reserved fields in the registers are read.
In general, it is good practice to write zeros to unused or reserved fields, and to
mask reserved fields after reading the registers.

2.3. 1 Register Windows
As specified by the SP ARC architecture, the general-purpose register set is orga­
nized into a set of 8 global registers, plus a collection of overlapping windows. In
the MB86930, there are 8 such windows. Each window contains 24 registers. Of
these, 8 are local to the window, 8 are "out" registers shared with the adjacent win­
dow below, and 8 are "in" registers shared with the adjacent window above. This
organization is illustrated in Figure 2-2.

At any given time, 32 general-purpose registers can be accessed directly: the 8
global registers, and the 24 registers of the currently active window. The value in
the Current Window Pointer (CWP) field of the Processor State Register (PSR)
determines which window is active. (See Section 5.3 for register addressing con­
ventions.)

Programmer's Model - Registers

2-4

, , . ,
""("::-"'~\~-, ~

, .

FUPTSU

Wr ,,;t-:.:::\
aps to Batt , ': "',

........ om of D' , I \ __ lagrarn ' I' -----_:J Wit, , : ..
8 OU'rs :) <:k>",,:7 ..

· . · . · ..
61Ns } : ...

6 lOCAls : ..

6 OUTs 'lVilldowjS \ ..

.
.~ -.. ~ .. ,

· · · · · · · · · -- ...
, ,

8GlOEl '-.
• II"",," Ala'
• all WGabie to :
", 'Odows :

....... ,,' .. ,.. -_ ...

, , , , , , , , , ,

, ,

, ,
, ,

Figure 2·2. Register Windows

Register Addressing

There are up to three address fields associated with a SP ARC instruction. In the
case of a three-address instruction, these are the rs1 field, the rs2 field, and the rd
field. Rsl and rs2 are the logical register addresses of the two source operands of the
instruction while rd is the logical register address of the destination operand.

Programmer's Model - Registers

2-5

•

SP ARCIite User's Manual

These addresses specify the location of the operands within the context of the cur­
rent window, as shown in Table 2-2.

Table 2-2: Logical Register Addressing

Addresses Registers

r[O]- r[7] global[O] - global[7]
r[8]- r[15] out[O] - out[7]
r[16]- r[23] local[O] - local[7]
r[24]- r[31] intO] - in[7]

The CWP field of the PSR register points to the current window. The combination
of a logical register address with the CWP produces a physical register address.
Physical register addresses are directly decoded by the Register File. Doubleword
operands in the register file are assumed to have even-odd alignment. The even
numbered register contains the most significant 32 bits of the doubleword.
Instructions which act on doublewords must specify even-numbered register
addresses.

Since the CWP is part of the PSR register it is possible to change the value of the
CWP with software. In particular, the WRPSR, SAVE, RESTORE, and RETT
instructions can change the CWP. See the Instructions section below for details.
Hardware also can change the CWP when a trap or interrupt occurs. See the Traps
and Interrupts section.

Performance Features

The overlap between adjacent windows makes it easy to pass parameters to a
subroutine. Values to be passed should be written to the "out" registers of the
current window, which are the same as the "in" registers of the adjacent window.
A SA VB instruction can then be used to decrement the Current Window Pointer,
making the parameter values available to the subroutine without moving any
data.

Register windows improve performance in embedded applications because they
function as local variable caches which retain either interrupt, subroutine, context
or operating system variables with no additional overhead. Since procedure calls
are efficient, optimizing compilers are not forced to replace them with inlined
macros; this reduces the size of the compiled code, saving memory space, and
making it possible to fit more complicated routines in the instruction cache.

Register windows can be dedicated to individual contexts to enable very fast
switching between contexts. When handling interrupts, the hardware immedi­
ately moves to the adjacent window to start executing the service routine. In this
way, an unused set of registers is made available in less than 3 processor cycles.

Programmer's Model - Registers

2-6

00
FUJITSU

Each register in the register file has three read-only and one write-only port. The
four-port structure allows even store instructions-which may require three oper­
ands to be read out of the register file-to be completed in a single cycle.

2.3.2 Special Uses of the r Registers

Four of the r registers have special uses defined in the SP ARC architecture:

• When global register 0 (r[O]) is addressed as a source operand, the constant
value 0 is read. When r[O] is used as a destination operand, the data written is
discarded, and no r register changes value.

• The CALL instruction writes its own address into out register 7 (r[15]).

• When a trap is taken, the current window pointer is decremented. The
program counters PC and nPC are then automatically written into local
registers 1 and 2 (r[17] and r[18]) of the new register window.

2.3.3 SPARe-Defined Special-Purpose Registers

The registers discussed in this section are defined as part of the SP ARC architec­
ture.

Processor State Register (PSR)

The Processor State Register is the primary processor control and status register.
It contains 11 mode and status fields which configure the processor and report
processor status and exception results. The mode fields, shown in upper case in
Figure 2-3, are set by the operating system to configure the processor. The status
fields, shown in lower case, are set by the processor to indicate the effects of
instruction execution.

Except for several fields described below, the PSR can be written and read
directly with the privileged instructions WRPSR and RDPSR. The PSR can also be
modified by the SAVE, RESTORE, Ticc, and RETT instructions, and by any
instruction that modifies the condition codes.

31 28 27 24 23 20 19 12 11 8 7 6 5 4 o

I impl I ver reserved PIL cWP

Figure 2·3. Processor State Register

Bits 31-28: Implementation (impl)-Identifies the implementation number of the processor. In the
MB86930 processor, it is hardwired to O. The value in this field cannot be changed by a
WRPSR instruction.

Programmer's Model - Registers

2-7

- !

SP ARClite User's Manual

Bits 27-24: Version (ver)-Identifies the processor version, and is intended for factory use. It can be
read, but not written. The Version field is hardwired to 2 in the MB86930 processor.

Bits 23-20: Integer Condition Codes (icc)-Contains the negative (n), zero (z), overflow (v), and carry
(c) integer condition-code flags. These bits are modified by the WRPSR instruction, and
by arithmetic and logical instructions whose names end with the letters cc (for example,
ANDcc). The Bicc (Branch on integer condition codes) and Ticc (Trap on integer condition
codes) instructions transfer program control based on the values of these bits. The inte­
ger condition code flags are defined as follows:

n (Bit 23) Set to 1 if the ALU result was negative for the last instruction that modified
the icc field; equal to 0 otherwise.

z (Bit 22) Set to 1 if the ALU result was zero for the last instruction that modified the icc
field; equal to 0 otherwise.

v (Bit 21) If this bit equals 1, an arithmetic overflow occurred on the last instruction that
modified the icc field; it equals 0 otherwise. Logical instructions that modify
the icc field always reset the overflow bit to O.

c (Bit 20) If this bit equals 1, either an arithmetic carry out of bit 31 occurred on the last
addition that modified the icc, or a borrow out of bit 31 occurred as the result
of the last subtraction that modified the icc. The carry bit equals 0 otherwise.
Logical instructions that modify the icc field always reset the carry bit to O.

Bits 19-12: Reserved (reserved)-This field is reserved. When you use the WRPSR instruction, this
field should always be written with Os.

Bits 11-8: Processor Interrupt Level (PIL)-Specifies the levels of interrupt which the processor will
accept. The processor accepts only interrupts with level 15 (non-maskable interrupts), or
with levels higher than the value in the PIL field (maskable interrupts). Bit 11 is the most
significant bit, and bit 8 is the least Significant.

Bit 7: Supervisor Mode (S)-Determines whether the processor is in supervisor mode (S=1) or
user mode (S=O). Since instructions that write the PSR are available only in supervisor
mode, the processor enters supervisor mode from user mode only when a reset, trap, or
interrupt occurs.

Bit 6: Prior S State (PS)-Records the value of the S bit when a trap is taken, so that the pro­
cessor can return to the proper operating mode (user or supervisor) on return from the
trap. Processor hardware changes the PS bit to the state of the S bit when entering a trap,
and changes the S bit to the state of the PS bit when returning from the trap.

Bit 5: Enable Traps (ED-Enables traps (ET =1). When ET =0, traps are disabled and all inter­
rupts are ignored.

Bits 4-0: Current Window Pointer (CWP)-Points to the register window which is currently active.
The CWP is written and read by the WRPSR and RDPSR instructions, is decremented by
traps and the SAVE instruction, and is incremented by the RESTORE and RETI instruc­
tions. The SPARClite processor implements 8 out of the 32 windows allowed in the
SPARC definition, so only the 3 least significant bits of the CWP field are used. Arithmetic
on the CWP is always performed modulo 8. Attempting to write a value to the CWP field
which points to an unimplemented window results in an "illegal instruction" error.

Programmer's Model - Registers

2-8

cP
FUJITSU

Window Invalid Masle Register (WIM)

The Window Invalid Mask Register contains 8 register-window mask bits, each of
which corresponds to an implemented register window. If an operation which
normally increments or decrements the Current Window Pointer would cause the
CWP to point to a window whose corresponding WIM bit equals I, a Window
Overflow or Window Underflow trap occurs.

The WIM can be written with the WRWIM instruction, and read with the RDWIM
instruction. Both of these instructions are privileged. Bits corresponding to unim­
plemented windows are read as Os; values written to these bits are ignored.

31 876543210

reserved

Figure 2-4. Window Invalid Mask Register

Bits 31-8: Reserved Field (reserved)-This field is reserved for potential future expansion to addi­
tional windows.

Bits 7-0: Window Masks (W7-WO)-Window mask bits, with W7 the mask bit for window 7, and so
on.

Trap Base Register (TBR)

The Trap Base Register contains three fields used by the processor to generate the
address of the service routine when an interrupt or trap occurs. (The reset trap
and breakpoint traps are the exception: They always bypass the TBR mechanism,
transferring control to address 0 and OxOOOOOFFO, respectively.) One of the three
fields in the TBR can be written using the WRTBR instruction. The whole TBR can
be read with the RDTBR instruction. Both of these instructions are privileged.

31 12 11 4 3 o

TBA It Null

Figure 2-5. Trap Base Register

Bits 31-12: Trap Base Address (TBA)-Contains the most significant 20 bits of the trap table base
address. The TBA field is written with the WRTBR instruction.

Bits 11-4: Trap Type (tt)-Contains an offset into the trap table corresponding to the last trap taken.
Each trap is identified by a unique 8-bit trap type number. The processor writes the appro­
priate trap type into the tt field when it recognizes a trap, and then uses the number as an
offset into the trap table. The tt field remains unchanged until the next trap occurs. The
WRTBR instruction does not affect the tt field. When the single vector trapping (SVT) is
enabled, the Trap Type bits are ignored. The trap vector is the address pOinted to by TBA

Programmer's Model - Registers

2-9

I

•

SP ARClite User's Manual

with all tt bits set to o. The trap handler can read the tt field to find out the origin of the cur­
rent trap.

Bits 3-0: Null (null)-This field is hardwired to 0 to force 4-word increments of the trap vector. The
WRTBR instruction does not affect this field.

YReg;sfer

The "Y Register" is composed of a number of 32-bit latches, muxes, and bus driv­
ers which reside in the data path of the Execute Block (see the Internal Architecture
chapter). It is used during the multiply step instruction (MULScc) to contain the
multiplier and the least significant bits of the partial products as they are evalu­
ated. It is used during the divide step instruction (OIVScc) to contain the most sig­
nificant 32 bits of a 64-bit dividend and the partial remainders as they are
evaluated. It is also used by the multiply unit to hold the most significant words
of the partial products and, when the multiplication is completed, the high 32 bits
of the 64-bit product.

The Y register can be read and written with the ROY and WRY instructions,
respectively. WRY is not a "delayed write" instruction: the value written into the
Y register is available to the following instruction.

31 o

Figure 2-6. Y Register

• Multiply Step Support-At the beginning of a multiplication algorithm which
uses the MULScc instruction, the 32-bit multiplier is loaded into the Y register
with a WRY instruction. When the multiplication is completed, the least
significant word of the 64-bit product will be in the Y register.

• Divide Step Support-At the beginning of a division algorithm which uses the
OIVScc instruction, the most significant word of the dividend is loaded into
the Y register with a WRY instruction. At the end of the divide routine, the
remainder will be in the Y register and can be read with a ROY instruction.

• Multiply Unit Support-The Y register is also used by the Multiply Unit (MU)
during the UMUL, UMULcc, SMUL, and SMULcc instructions. The most
significant word of the 64-bit product will be in the Y-Register when the
multiplication completes.

Programmer's Model - Registers

2-10

cP
FUJITSU

Program Counter (PC)

The Program Counter contains the word address of the instruction currently
being executed by the Integer Unit. The PC cannot be directly read or written .

31

Instruc1ion Address

Figure 2-7. Program Counter

Next Program Counter (nPC)

o

The Next Program Counter contains the word address of the next instruction to
be executed, assuming a trap does not occur. The nPC cannot be directly read or
written.

In delayed control transfers, the instruction that immediately follows the control
transfer (the delay instruction) may be executed before control is transferred to
the target. (See the Instructions section, below.) The nPC is necessary for imple­
menting this feature. Most instructions complete by copying the contents of the
nPC into the PC, then updating the nPC. The nPC is incremented by 4, unless the
instruction implies a control transfer, in which case the computed target address
is written into the nPc. The PC now points to the instruction which will be exe­
cuted next, while the nPC points to the instruction which will be executed after
that.

31 o

Instruc1ion Address

Figure 2-8. Next Program Counter

Ancillary State Registers (ASR[3 r: r])
The SP ARC definition includes 31 Ancillary State Registers, 15 of which
(ASR[15:1]) are reserved for future use. The remaining ASR's can be defined and
used in any way by SP ARC implementations. The MB86930 defines the following
ASR:

ASRI7-Used to enable and disable single-vector trapping. When this feature
is enabled, all traps (except reset and breakpoint traps) vector to a single loca­
tion, the base address of the trap table, as specified by the TBA field of the TBR

Programmer's Model - Registers

2-11

..

SP ARClite User's Manual

register (tt=O). ASR17 can be read and written with the privileged instructions
RDASR and WRASR.

31

Bits 2-1:

Bit 0:

2 1 0

~II

Figure 2-9. Ancillary State Register 17

Reserved Field (reserved)-When writing to ASR17, both of these bits must be written
with Os.

Single Vector Trapping (SVT)-Enables single vector trapping when set to 1. The SVT bit
equals 0 at reset.

2.3.4 Memory-Mapped Control Registers

In addition to the registers defined by the SP ARC architecture, the MB86930 pro­
vides a collection of memory-mapped registers which control peripheral func­
tions. Figure 2-10 shows these registers and their locations in memory. The
memory-mapped registers can be read and written with the alternate-space load
and store instructions, which are privileged.

OXOOOOOOOO ASI=Oxl CachelBus interface Unit Control Register

OXOOOOOOO4 ASI=Oxl Lock Control Register

0x00000008 ASI=Oxl Lock Control Save Register

Oxoooooooc ASI=Oxl Cache Status Register

OXOOOOO010 ASI=Oxl Restore Lock Control Register

OXOOOOOO80 ASI=Oxl System Support Control Register

Oxoooo0120 ASI=Oxl Same·Page Mask Register

OxOoooo124 ASI=Oxl Address Range Specifier Registers (ARSR <5:1»

OxOoooo140 ASI=Oxl Address Mask Register (AMR <5:0»

OxooOOOI60 ASI=Oxl Wait-State Spec~ier Registers (WSSR <2:0»

OXOOOOO174 ASI=Oxl Timer Register

OXOOOOO178 ASI=Oxl Timer Preload Register

Figure 2-10. Locations of Memory-Mapped Control Registers

Programmer's Model - Registers

2-12

cP
FUJITSU

Cache/Bus Interface Unit Control Register

The Cache/Bill Control Register controls the operation of the data and instruc­
tion caches, and the write and prefetch buffers of the Bus Interface Unit. This reg-
ister is located at address OxOOOOOOOO with an ASI of Ox1. _

31 5 4 3 2 1 °

Write Buffer Enable (Enabled=l, Disabled=O, RST =0)

Prefetch Buffer Enable (Enabled=l, Disabled=O, RST =0) ----'

Global Data Cache Lock (Lock On=l, Lock Off=O, RST =0) ------'

Data Cache Enable (Enabled=l, Disabled=O, RST=O) -------'

Global Instruction Cache Lock (Lock On=l, Lock Off=O, RST =0) --------'

Instruction Cache Enable (Enabled=1, Disabled=O, RST =0) --------'

Figure 2·11. Cache/Bus Interface Unit Control Register

Bit 5: Write Buffer Enabled-When set to 1, enables the write buffer of the BIU only if both the
instruction and data caches are enabled. At reset, this bit is O. This bit should be changed
only when the instruction and data caches are off.

Bit 4: Prefetch Buffer Enabled-When set to 1, enables the prefetch buffer of the BIU only if
both the instruction and data caches are enabled. At reset, this bit is O. This bit should be
changed only when the instruction and data caches are off.

Bit 3: Global Data Cache Lock-Locks the current entries into the on-chip data cache; with this
bit set to 1, no valid entry in the data cache will be replaced. To insure the best perfor­
mance with the cache locked, invalid words in allocated cache locations will be updated.
On write hits, with the data cache locked, the data is not written to external memory,
allowing the locked cache to be used as scratchpad RAM or a run-time stack, indepen­
dent of main memory. When the Data Cache Lock bit is 0, the cache operates normally.
At reset, this bit is O.

Bit 2: Data Cache Enable-Turns the on-chip data cache on (1) and off (0). At reset, this bit
is O.

Bit 1: Global Instruction Cache Lock-Locks the current entries into the on-chip instruction
cache; with this bit set to 1, no valid entry in the instruction cache will be replaced. To
insure the best performance with the cache locked, invalid words in allocated cache loca­
tions will be updated. When this bit is 0, the cache operates normally. Writes to the
Instruction Cache Lock bit do not affect cache operation for the following three instruc­
tions. At reset, this bit is O.

Bit 0: Instruction Cache Enable-Turns the on-chip instruction cache on (1) and off (0). Writes
to the Instruction Cache Enable bit do not affect cache operation for the following three
instructions. At reset, this bit is O.

Programmer's Model - Registers

2-13

SP ARClite User's Manual

Lock Control Register

The Lock Control Register controls the locking of individual entries in the data
and instruction caches. It is located at address Ox00000004 with an ASI of Oxl.

31 1 0

Figure 2-12. Lock Control Register

Bit 1: Data Cache Entry Auto Lock-Enables (1) and disables (0) auto-locking for entries in the
on-chip data cache. All data accessed while this bit is 1 have the lock bits in their cache
tags set to 1. Writes to this bit affect all subsequent data accesses. At reset, this bit is O.

Bit 0: Instruction Cache Entry Auto Lock-Enables (1) and disables (0) auto-locking for entries
in the on-chip instruction cache. All instructions fetched while this bit is 1 have the lock
bits in their cache tags set to 1. Writes to this bit do not affect cache operation for the fol­
lowing three instructions. At reset, this bit is O.

Lock Control Save Register

When an external interrupt or hardware trap occurs, the auto-locking of entries in
on-chip cache is disabled. The Lock Control Save Register is used to re-enable
auto-locking after the interrupt has been serviced. The register is updated with
the contents of the Lock Control Register when there is a hardware interrupt, an
exception condition (illegal instruction, memory data alignment error), or a DSU
hardware breakpoint. The updated Lock Control Save Register is then used to
restore the Lock Control Register after the interrupt or trap. This "autosave" fea­
ture allows restoration of the Lock Control Register following interrupts and
traps that cannot be anticipated by software. In other cases, the program can save
the Lock Control Register directly for later restoration.

The value of the Lock Control Register before the interrupt or trap is automati­
cally saved in the Lock Control Save Register, located at address Ox00000008 with
an ASI of Oxl. The correct auto-lock value is restored in the Lock Control Register
by setting bit <0> in the Restore Lock Control Register to 1. This causes the value
that is saved in the Lock Control Save Register to be moved to the Lock Control
Register when a RETT is executed (See Section 2.6.2).

Programmer's Model - Registers

2-14

cO
FUJITSU

The cache does not have to be enabled for the Lock Control Save Register to be
updated, and the register is both readable and writable.

31

Previous Data Cache Entry Auto Lock (On=1 , Off=O. RST =0)

Previous Instruction Cache Entry Auto Lock (On=l, Off=O, RST =0) ----'

Figure 2-13. Lock Control Save Register

Restore Lock Control Register

On return from an external interrupt or hardware trap service routine, the Lock
Control Register can have its previous value restored from the Lock Control Save
Register. The Restore Lock Control Register,located at address OxOOOOOOI0 with
an ASI of OxI, controls this feature. When bit 0 of this register is set to 1 and a
RETT instruction is executed, the value in the Lock Control Save Register is
placed into the Lock Control Register.

There should be no traps between writing a 1 to bit 0 of the Restore Lock Control
Register and the corresponding RETT instruction. This bit is cleared to 0 on reset,
and also when a return from external interrupt or hardware trap is executed.

31

Figure 2-14. Restore Lock Control Register

Cache Status Register

If an attempt is made to lock a cache entry which is already locked, bit 0 in the
Cache Status Register is set to 1. This bit can be cleared by software. The Cache
Status Register is located at address OxOOOOOOOC with an ASI of Ox1.

o

The Cache Status Register is meaningful only when auto-locking is utilized. In the
case of writing the cache tags manually to lock cache lines (either by writing the

Programmer's Model - Registers

2-15

•

SP ARClite User's Manual

Tag Lock Bit address or the Cache Tag address directly), an attempt to lock a line
which is already locked will not be indicated by the Cache Status Register.

31 o

~I
Figure 2-15. Cache Status Register

Same-Page Mask Register

The Same-Page Mask Register controls the operation of the same-page detection
logic by specifying which bits of the current ASI and address are to be compared
with those of the previous ASI and address. If the specified (i.e., unmasked) bits
all match, then the processor recognizes the two accesses as being "in the same
page," and asserts the -SAME_PAGE signal. These registers should not be writ­
ten if the bus interface unit will handle addresses that are affected by the change
in the next 3 processor cycles. The Same-Page Mask Register is located at address
Ox00000120 with an ASI of Oxl.

31 30 2322

AS) Mask <7:0>
(Care=O, Don't Care=1, RST=Undeflned)

Address Mask (ADR <31:10»
(C.",=O, Don't Care=1, RST =Undeflned)

Figure 2-16. Same-Page Mask Register

Bit 31: Reserved

1 0

Bits 30-23: ASI Mask-8pecifies which bits in the ASI of the current external access are to be com­
pared with the corresponding bits in the ASI of the previous access. Only those bits are
compared for which the mask bit is O. Mis-matches in any other bits do not prevent the
two accesses from being recognized as "on the same page." The bits of this field are
cleared to 0 on reset.

Bits 22-1: Address Mask-8pecifies which of the 22 most significant bits in the address of the cur­
rent external access are to be compared with the corresponding bits in the address of the
previous access. Only those bits are compared for which the mask bit is O. Mis-matches
in any other bits do not prevent the two accesses from being recognized as "on the same
page." The bits of this field are cleared to 0 on reset.

Bit 0: Reserved

Address Range Specifier Registers (ARSR[5:J]J

Values in the Address Range Specifier Registers define up to five different
address ranges, which are used for various system-support functions. The ARSRs

Programmer's Model - Registers

2-16

OJ
FUJITSU

are located in a contiguous block beginning at address Ox00000124 with ASI Ox1
(see Table 2-3).

The ARSRs, together with the Address Mask Registers, can be used to control the
assertion of the Chip-Select outputs (-CS[5:1]). -CSn is asserted when the value •
on the address bus falls in the address range specified by ARSRn and AMRn. See
the discussion of the Address Mask Registers, below. -CSO is asserted when the
value on the address bus, as masked by AMRO, falls into the lowest range of
Supervisor Instruction Space. The range of -CSO (as masked by AMRO) is 8K
words.

These registers should not be written if the bus interface unit will handle
addresses that are affected by the change in the next 3 processor cycles. The user
should be careful that two chip selects are never selected at the same time. A pro­
grammable wait-state generator is also associated with each address range. See
the discussion of the Wait-State Specifier Registers, below.

31 30

ASI <7:0>
(RST =Undefined)

23 22

ADR <31:10>
(RST =Undefined)

1 0

Figure 2·17. Address Range Specifier Registers

Bit 31: Reserved

Bits 30-23: ASI[7:0j-Specifies the ASI of a target address range. The value of this field is undefined
on reset.

Bits 22-1: ADR[31 :1 OJ-5pecifies the 22 most significant bits of a target address range. The value
of this field is undefined on reset.

Bit 0: Reserved

Address Mask Registers (AMR[5:0J)

AMRn works with ARSRn to define an address range. AMRn specifies which bits
of the currently driven ASI and address are to be compared with the contents of
ARSRn, and which bits are "don't cares." Except for AMRO, reset leaves the val­
ues in the AMR registers undefined (see Table 2-3). These registers should not be
written if the bus interface unit will handle addresses that are affected by the

Programmer's Model - Registers

2-17

SP ARClite User's Manual

change in the next 3 processor cycles. The AMRs are located in a contiguous block
beginning at address OxOOOOOl40 with ASI Oxl.

31 30

ASI <7:0>
(RST =Undeflned)"

• Except AMR[O]. See Table 2·3

Bit 31: Reserved

23 22

ADR <31:10>
(RST =Undefined)"

Figure 2-18. Address Mask Registers

1 0

Bits 30-1: Mask-5pecifies which bits in the ASI and address of the current extemal access are to
be compared with the corresponding bits in the address-range specifier. Only those bits
are compared for which the mask bit is O. See Table 2-3 for reset value.

Bit 0: Reserved

Wait-State Specifier Registers (WSSR[2:01J

The wait-state specifiers determine, for each of the address ranges defined by the
ARSR and AMR registers, the number of clock cycles between the time an address
in a given range appears on the address bus and the time the processor generates
an internal-READY signal. This makes it possible for memory and I/O devices
with different access times to be connected to the processor without additional
logic.

The wait-state specifiers for the six address ranges are kept in three Wait-State
Specifier Registers. These registers are located in a contiguous block beginning at
address OxOOOOOl60 with ASI Oxl (see Table 2-3). Each register contains the wait­
state specifiers for two address ranges. When the address currently being driven
by the processor matches the unmasked bits in one of the Address Range Specifi­
ers, the corresponding wait-state specifier is selected. These registers should not
be written if the bus interface unit will handle addresses that are affected by the
change in the next 3 processor cycles.

31 27 26 22 21

Count 1
(RST =Undeflned)

Count 2
(RST .Undeflned)

14 13 9 8 7 6 5

Count 1 Count 2
(RST .Undefined)· (RST .Undefined)"

Wait Enable (On=l. Off=O, RST=') _-+-+-------------'
Single Cycle (On=l, Off=O, RST=O) ---t--------------'

Override (On=l, Off-o, RST=') ---+--------------'
• See Table 2-3

Figure 2-19. Wait-State Specifier Registers

o
Reserved

Programmer's Model - Registers

2-18

rP
FUJITSU

Bits 31-19: Wait-State Specifier-When an external access falls within an address range defined by
an ARSR and AMR, the corresponding wait-state specifier determines when, and
whether, the processor generates an internal-READY signal to terminate the access.

Count1 (Bits 31-27): The number of wait-states inserted before the intemal-READY, under the fol-
lowing conditions: the Single Cycle bit equals 0 and the current access is not on
the same page as the previous access. The number of wait-states is the value
of this field + 1 (Le., 0=1 wait-state, 1 =2 wait-states, etc.) The value of Count1 is
undefined on reset.

Count2 (Bits 26-22): The number of wait-states inserted before the internal -READY, under the fol­
lowing conditions: the Single Cycle bit equals 0 and the current access is on the
same page as the previous access. The number of wait-states is the value of
this field +1 (Le., 0=1 wait-state, 1=2 wait-states, etc.) The value of Count2 is
undefined on reset.

Wait Enable (Bit 21): Enables and disables the wait-state generator for an individual address range.
If the Wait Enable bit of a wait-state specifier equals 0, the internal -READY is
not asserted when addresses in the corresponding range are accessed by the
processor. If Wait Enable is 1, the single cycle bit must be o. See Table 2-3 for
reset value.

Single Cycle (Bit 20): Specifies the timing of the internal-READY signal. If the Single Cycle bit equals
1 when an address in the appropriate range is accessed, the internal -READY
is asserted in the same cycle. If the Single Cycle bit equals 0, and the current
transaction is in the same page as the previous transaction, then Count2 is
used as the number of cycles after which -READY is asserted internally. If the
transaction is not in the same page, Count1 is used instead. If Single Cycle is
enabled, the Wait Enable bit must be o. See Table 2-3 for reset value.

Override (Bit 19): Allows the system to terminate a memory transaction before the internally spec­
ified time. If the Override bit equals 1, and external hardware asserts the exter­
nal-READY signal, then the wait-state generator will stop counting and will wait
for the next transaction. This bit is cleared to 0 on reset.

Bits 18-6: Wait-State Specifier-The wait-state specifier for a second address range. This field is
organized just like bits 31-19.

Bits 5-0: Reserved

System Support Control Register

The System Support Control Register enables or disables the various system-sup­
port features, independently of one another. However, the chip-select logic for
address range a is always enabled, regardless of the value in the System Support

Programmer's Model - Registers

2-19

•

SP ARClite User's Manual

Control Register. This register is located at address Ox00000080 with AS! Ox} (see
Table 2-3).

31

Reserved

Note: The chip select generation for Address Range
Specifier 0 is always enabled, regardless of the
value of the Chip Select Enable BIt.

Same-Page Enable (On=l, Off=O, RST =0)

Chip Select Enable (On=l, 011=0, RST =0)

Programmable Wait-State Enable (On=l, Off=O, RST =1) ___ .J

Timer On/Off (On=l, Off-O, RST =0) -----'

Reserved -------'

Figure 2·20. System Support Control Register

Bits 31-6: Reserved

Bit 5: Same-Page Enable-Enables (1) and disables (0) the same-page detection logic. When
this bit is 1, the -SAME_PAGE signal is asserted whenever the address of an external
access is on the same page as the previous access. The page size is controlled by the
Same-Page Mask Register (see above). When this bit is 0, -SAME_PAGE is never
asserted. The Same-Page Enable bit is cleared to 0 on reset.

Bit 4: Chip Select Enable-Enables (1) and disables (0) the generation of chip-select signals for
external accesses in address ranges 1 through 5. Regardless of the state of this bit, how­
ever, -CSO is always asserted when the current address lies in address range O. The
Chip Select Enable bit is cleared to 0 on reset.

Bit 3:

Bit 2:

Bits 1-0:

Note: Before enabling chip selects all chip select Address Mask and Address Range reg­
isters should be initialized so that two chip selects are never selected at the same time.

Programmable Wait-State Enable-Enables (1) and disables (0) the programmable wait­
state generators for all address ranges. The Programmable Wait-State Enable bit is set to
1 on processor reset.

Timer On/Off-Enables (1) and disables (0) the timer. This bit is cleared to 0 on reset.

Reserved

Table 2·3: System Support Register Summary

Chip Affected by Address Range Specifier Address Mask Walt-8tate Specifier
Selects Chip-Select

Enable? Address Value a1 Reset Address Value at Reset Address Value at Reset
(ASI=Ox01) (ASI=Ox01) (ASI=Ox01)

0 No NlA ASl=Ox09 OxOOOOOl40 All mask bits 0 OxOOOO 0160 Count 1,2 = 31

ADR<31:10>=0 except (low halfword) Wait Enable=1

ADR<14:10>= Single Cycle =0

1
Override=1

Programmer's Model - Registers

2-20

cP
FUJITSU

Table 2-3: System Support Register Summary

Chip
Selects

1

2

3

4

5

Affected by Address Range Specifier Address Mask Wait-Slala Specifier
Chip-Selecl

Enable? Address Value at Reset Address Value at Reset Address Value at Reset
(ASI=OxOl) (ASI=OxOl) (ASI=OxOl)

OxOOOO 0124 0x0000 0144 OxOOOO 0160
(high haifword)

OxOOOO 1280 OXOOOO 0148 OxOOOO 0164
(low halfword)

Yes OxOOOOO12C Undefined OxOOOO 014C Undefined OxOOOO 0164
Count 1,2 =

(high halfword)
Undefined

OxOOOO 0130 OxOOOO 0150 OXOOOO 0168
Wait Enable =0
Single Cycle =0

(low halfword) Override=O

OxOOOO 0134 OxOOOO 0154 OxOOOO 0168
(high halfword)

Timer Register

The Timer Register contains the current count of the internal 16-bit timer. When
the timer overflows, the processor asserts the -TIMER_OVF signal and reloads
the Timer Register with the contents of the Timer Preload Register. The Timer
Register can also be loaded directly by writing to the address Ox00000174 with
ASI Oxl. The timer is clocked at the processor clock frequency.

31 16 15

Reserved

Figure 2-21. Timer Register

Timer Preload Register

Timer Value
CRST =Undefined)

o

The Timer Preload Register contains the value which is loaded into the timer
when the timer overflows. In effect, this register specifies the number of clock
cycles between assertions of the - TIMER_ OVF signal. The Timer Preload Register
is located at address Ox00000178 with ASI Oxl.

31 16 15

Reserved Timer Pre-Load Value
CRST =Undefined)

Figure 2-22. Timer Pre-Load Register

o

Programmer's Model - Registers

2-21

..

SP ARClite User's Manual

2.4 Data Types
Direct support is provided for signed and unsigned integers of various lengths, as
illustrated in Figure 2-23. A tagged word type is supported for tagged arithmetic,
used in artificial intelligence applications. Other data types (character strings,
floating-point types, and so on) must be handled in software.

Signed Integer Byte ,.-:7,..,:-6 ___ --=-,
lsi

0

I
0

I
Signed Integer Halfword r.:15".1.:....:4 _________ ___=_,

lsi
0

I
Signed Integer Word r"3~1 -'30 _____________________ :..,

lsi
Signed Integer Double 31 30 0

so~ r.ls~I--------~~~-~~-------~ signed_integer [62:32] I
31 0

signed integer [31 :0] I SO-1 I'---________ --=:;;..:..::;=:.::..:...~'_'__ _______ __'

0

I
Unsigned Integer Byte ,-7 ____ ---,

I
0

I
Unsigned Integer Halfword 15

Ir------------------~

Unsigned Integer Word ,.:.31'---____________________ --=-,0

I I
Tagged Word ,.:.31'---___________________ -=2-.:-1--=-,0

I I tag I
Unsigned Integer Double 31 0

UO-O 1r---------un--:sig-n-ed.,-.,..-int-eg-er-::[6'""2-:::32-=-=]------------.1

~ 0
UO-l 1'---_______ --=un-=s~ign_=e~d~in_=teg~e~r[~31~:0~] _______ ~1

Figure 2-23. Data Types

2.5 Instructions
SPARClite provides an upward-compatible superset of the SP ARC integer
instruction set. Each instruction is a single 32-bit word. There are only three basic
instruction formats, and few addressing modes.

The additional MB86930 instructions-integer divide-step, and scan for first
changed bit-are implemented to achieve higher performance in embedded
applications. Table 2-4 lists the MB86930 instruction set by function, and shows
how to interpret the instruction mnemonics.

Programmer's Model - Data Types

2-22

Table 2-4: Instruction Mnemonics

Load and Store:

(j:)

FUJITSU

{
Byte

{ LoaD } { Signed } Hallword
STore Unsigned word

Double word

}{ nonnal }
Atternate

Control Transfer:

logical:

atomic SWAP word
atomic Load-Store Unsigned Byte

Branch {Integer CC } { normal }
Annul delay instr.

CALL
Trap on Integer CC
JuMP and Link
RETurn from Trap

Arithmetic and Shift:

{~~~C}{ ~~;~~ }
{~~~ } { ~~::~ed } {:;~~ }

Shift {Left } { Logical }
Right Arithmetic

Tagged {ADD } set CC { nonnal }
SUB Trap oVerflow

SCAN
DIVide Step set CC
MUltiply Step set CC
SETHI

ReadlWrite Control Registers:

{ }{ ~SR } ReaD WIM
WRtte TBR

ASR

SAVE
RESTORE

In the MB86930 processor, the floating-point and coprocessor instructions defined
in the SPARe architecture are trapped for software emulation.

Programmer's Model- Instructions

2-23

..

SP ARClite User's Manual

2.5. 1 Instruction Formats

Figure 2-24 shows the three basic instruction formats.

Format 1 (op=1): CALL
31 30 29

I op I disp30

Format 2 (op=O): SETHI & Branches (Blcc, FBfcc, CBccc)
31 30 29 28 25 24 22 21

rd op2

cond op2

Format 3 (op=2 or 3): Remaining instructions
25 24 19 18

rd op3 rs1

rd op3 rs1

rd op3 rs1

imm22

disp22

asi

opt

Figure 2·24. Instruction Formats

o

o

5 4 o
rs2

simm13

rs2

op,op2,op3 One or more of these fields appear in every format to encode the
instruction. The 2-bit op field is used in all three formats, and is
interpreted as follows:

op Encoding (All Formats)

op Format Instructions

o 2 Bicc, FBfcc, CBccc, SETHI
1 1 CALL
2 3 arithmetic, logical, shift and remaining
3 3 memory instructions

The 3-bit op2 field is used, along with the op field, to encode the
format 2 instructions, and is interpreted as follows:

op2 Encoding (Format 2)

op2 Instructions

o unimplemented
1 unimplemented
2 Bicc
3 unimplemented
4 SETHI
5 unimplemented
6 FBfcc
7 CBccc

Programmer's Model - Instructions

2-24

cP
FUJITSU

The 6-bit op3 field is used, along with the op field, to encode the
format 3 instructions. An Instruction Index by Operation Code is
given in Chapter 7 of this manual.

rd, rsl, rs2 Thesed5~bithfieGlds conI tpain regiRster.address~s, intebrpretTedhasddfi~-ld ..
cusse In t e enera - urpose eglsters section, a ove. erIe
specifies the source operand for a store, or the destination oper-
and for some other operation. The rsl and rs2 fields specify
source operands.

disp30, disp22 These 3D-bit and 22-bit fields contain word-aligned, sign­
extended, PC-relative displacements for a call or branch, respec­
tively.

a

cond

imm22

simm13

asi

opt

This bit is used in branch instructions to specify whether or not
the instruction following the branch can be annulled.

This 4-bit field selects the condition codes to test for a conditional
branch instruction.

Contains a 22-bit constant which the SETHI instruction places in
the upper end of a specified destination register.

Selects the second ALU operand for arithmetic and load/ store
instructions. If i equals I, the operand is r[rs2]. If i equals 0, the
operand is simm13, sign-extended from 13 to 32 bits.

Contains a sign-extended I3-bit immediate value used as the sec­
ond ALU operand for an arithmetic or load/ store instruction
when i equals l.

Contains the 8-bit Address Space Identifier required for the load
alternate and store alternate instructions.

Encodes a floating-point operate or coprocessor operate instruc­
tion. All such instructions are trapped for software emulation.

2.5.2 Logical Instructions

The logical instructions perform bit-wise boolean operations. As shown in
Table 2-5, each logical instruction comes in two versions: one leaves the integer
condition codes in the Processor State Register unchanged; the other changes the
condition codes as a side-effect.

Programmer's Model - Instructions

2-25

SP ARClite User's Manual

Table 2-5: Logicallnstructions

opcode operation

AND And
ANDcc And and modify icc
ANON And Not
ANDNcc And not and modify icc
OR Inclusive Or
ORcc Inclusive Or and modify icc
ORN Inclusive Or Not
ORNcc Inclusive Or Not and modify icc
XOR Exclusive Or
XORcc Exclusive Or and modify icc
XNOR Exclusive Nor
XNORcc Exclusive Nor and modify icc

The logical instructions are all format 3 instructions. When the i field is 0, they
take their arguments from two source registers (r[rsl] and r[rs2]); when the i field
is 1, they take one argument from source register r[rs1] and the other from the
simm13 field (sign-extended to 32 bits). In both cases, the result is written to the
destination register r[rd].

2.5.3 Arithmetic and Shift Instructions
The integer arithmetic instructions are generally three-register instructions which
compute a result that is a function of the two source operands, and either write
the result into the destination register r[rd], or discard it. One of the source oper­
ands is always taken from register r[rsl]; the other source depends on the i bit in
the instruction. If i equals 0, the second operand is taken from register r[rs2]; if i
equals I, the second operand is the value in the simm13 field of the instruction,
sign-extended to 32 bits. By specifying global register 0 as the destination, the
instruction effectively discards the result. (See Section 2.3.2, Special Uses of the r
Registers).

Besides the standard arithmetic operations, SP ARC provides instructions to per­
form tagged arithmetic. In tagged arithmetic, the two least-significant bits of each
operand are used to indicate the (user-defined) data type of the operand. The
tagged arithmetic instructions set a condition code if the tag of an operand is not
zero.

The shift instructions shift the contents of an r register by a constant or variable
number of bits. They do not affect the condition codes.

Programmer's Model - Instructions

2-26

FUPTSU

Besides the instructions defined in the (Version 8) SP ARC architecture, SP ARClite
provides:

• A divide-step instruction, which can be used to construct efficient iterative

• Aintsecgaenrm·dsiVtruisicOtnl·oanlgworhil~chhmdse· terml·nes the fl·rst bl·t l·n a word whl·ch dl·f£ers from •
, l'

the most-significant bit. The scan instruction can be used to simplify and
accelerate many important operations, like normalizing numbers with
redundant sign bits.

Add and Subtract

The integer addition and subtraction instructions, listed in Table 2-6, perform
two's-complement arithmetic. Each instruction comes in four versions: these
either affect integer condition codes in the Processor State Register or leave them
unchanged and either include the carry bit in the result or ignore it.

Table 2-6: Addition and Subtraction Instructions

opcode operation

ADD Add
ADDcc Add and modify icc
ADDX Add with Carry
ADDXcc Add with Carry and modify icc

SUB Subtract
SUBcc Subtract and modify icc
SUBX Subtract with Carry
SUBXcc Subtract with Carry and modify icc

The integer addition and subtraction instructions are format 3 instructions. When
the i field is 0, they take their arguments from two source registers (r[rs1] and
r[rs2]); when the i field is 1, they take one argument from a source register and the
other from the simm13 field (sign-extended to 32 bits). The result is written to the
destination register r[rd].

In subtraction, the second argument, whether register (r[rs2]) or immediate
(simm13), is always subtracted from the first (r[rs1]).

The extended addition instructions ADDX and ADDXcc also add the carry bit (c)
of the Processor Status Register; that is, they compute either "r [rs1] + r[rs2] + c" or
"r[rs1] + sign-extended(simm13) +C," and store the result in r[rd].

The extended subtraction instructions SUBX and SUBXcc also subtract the carry
bit (c); that is, they compute either "r[rs1] - r[rs2] - c" or "r[rs1] - sign-extended(­
simm13) -c," and store the result in r[rd].

Programmer's Model- Instructions

2-27

SP ARClite User's Manual

Overflow occurs on addition if both operands have the same sign and the sign of
the sum is different. Overflow occurs on subtraction if the operands have differ­
ent signs and the sign of the difference differs from the sign of r[rsl].

A special comparison instruction for integer values is not needed, since it can be
easily synthesized from the SUBcc instructions (See Chapter 7).

Tagged Add and Subtract

The tagged arithmetic instructions, listed in Table 2-7, perform two's-complement
addition or subtraction on their operands.

Table 2-7: Tagged Arithmetic Instructions

ope ode operation

TADDcc Tagged Add and modify icc
TADDccTV Tagged Add, modify icc and Trap on Overflow

TSUBcc Tagged Subtract and modify icc
TSUBccTV Tagged Subtract, modify icc and Trap on Overflow

If either of operand has a non-zero tag, or if arithmetic overflow occurs, the
overflow bit of the Processor Status Register is set to 1. The trapping versions
(TADDccTV and TSUBccTV) also cause a tag_overflow trap whenever they set
the overflow bit. Except for these special side effects, the tagged arithmetic
instructions work just like the ordinary addition and subtraction instructions,
which are described above.

T ADDcc and TSUBcc modify the integer condition codes; T ADDccTV and
TSUBccTV also modify the condition codes when they do not trap.

Multiply and Multiply-Step

The integer multiplication instructions, listed in Table 2-8, are directly supported
in hardware.

Table 2-8: Integer Multiply Instructions

opeode operation

UMUL Unsigned Integer Multiply
SMUL Signed Integer Multiply
UMULcc Unsigned Integer Multiply and modify icc
SMULcc Signed Integer Multiply and modify icc
MULScc Multiply Step and modify icc

The multiply instructions perform a signed or unsigned multiplication of a 32-bit
multiplicand (r[rsl]) and a 32-bit multiplier (either r[rs2] or simm13, sign-

Programmer's Model- Instructions

2-28

00
FUJITSU

extended to 32 bits), resulting in a 64-bit product. The low order 32 bits of the
product are placed in the destination register (r[rd]), and the upper 32 bits of the
product are placed in the Y register.

In general, the multiplication requires 5 cycles, but there are three special cases of ~
early termination. If either the multiplier or the multiplicand is zero, the execution
takes 1 cycle. If the multiplier is an 8-bit integer or less, the execution takes 2
cycles. If the multiplier is a 9-bit to 16-bit integer, the execution takes 3 cycles.

UMUL and SMUL do not affect the integer condition codes. The effect of
UMULcc and SMULcc on the condition codes is shown in Table 2-7.

Table 2-9: Effect of Integer Multiplication on Condition Codes

icc bit UMULcc SMULcc

N Set if product [31) = 1 Set if product [31) = 1
Z Set if product [31:0) = 0 Set if product [31 :0) = 0
V Zero Zero
C Zero Zero

The multiply-step instruction, MULScc, treats r[rsl] and the Y register as a single,
64-bit, right-shiftable doubleword register. The least significant bit of r[rsl] is
treated as if it were the adjacent to the most significant bit of the Y register.

Multiplication with MULScc assumes that the Y register initially contains the
multiplicand, r[rs1] contains the most significant bits of the product, and r[rs2] (or
simm13) contains the multiplier. Upon completion of the multiplication, the Y reg­
ister contains the least significant word of the product. The operation of MULScc
is described in the Programming Considerations chapter.

Divide-Step

The divide-step instruction, DIVScc, performs one bit-cycle of a non-restoring,
shift-before-add, signed or unsigned integer division algorithm. It operates on a
signed or unsigned dividend, with an unsigned divisor. It uses the integer condi­
tion code bits to carry the true sign of the remainder, and the previous quotient
bit, from one cycle to the next. Remainder and quotient are kept in correct relative
alignment because of the shift-before-add technique. Standard SP ARC instruc­
tions are therefore sufficient for initializing and terminating both signed and
unsigned division routines, eliminating the need for special divide-initialize,
divide-terminate or remainder correction instructions.

Division with DIVScc assumes that the Y register initially contains the most sig­
nificant word of the dividend, r[rsl] contains the least significant word of the div­
idend, and r[rs2] (or simm13) contains the divisor. Upon completion of the
division, the Y register contains the remainder and r[rd] contains the quotient.

Programmer's Model - Instructions

2-29

SP ARClite User's Manual

When DIVScc is used as expected, it will typically use the same register for rd and
rs1. One exception is a signed division with one word dividend, in which the ini­
tial value of r[rs1] is saved in the first divide step by using an rd different from
rs1.

DIVSccoperates as follows:

1. The true sign is formed using the negative (n) and overflow (v) integer condi­
tion codes from the Processor Status Register. True sign = n XOR v.

2. The remainder is formed by upshifting the Y register (initially the most signifi­
cant word of the dividend) one bit, and setting the least significant bit of
remainder equal to most significant bit of r[rs1] (initially the least significant
word of the dividend).

3. The divisor is r[rs2] if the i field is 0, or simm13, sign-extended to 32 bits, if the i
field is 1.

4. If true sign = 0 (+), the ALU computes remainder - divisor. If true sign =1 (-), the
ALU computes remainder + divisor.

5. Carry out from the ALU operation is noted as cO. The negative (n) condition
code is set to bit 31 of the ALU result. The zero (z) condition code is set if the
ALU result is 0 AND the true sign equals Y[31], else cleared.

6. The new true sign is formed as (true sign AND NOT Y[31]) OR (NOT cO AND
(true sign OR NOT Y[31])).

7. The overflow (v) condition code is formed·as new true sign XOR bit 31 of the
ALU result. The carry (c) condition code is set to NOT new true sign. Y is set to
the 32-bit ALU result. If rd is not 0, then r[rd] is set to r[rs1], upshifted one bit
with NOT new true sign (the new quotient bit) in the least significant bit posi­
tion.

See the Programming Considerations chapter for sample signed and unsigned divi­
sion routines based on the DIVScc instruction.

Shift

The shift instructions, listed in Table 2-10, perform logical or arithmetic shifts on
values in r registers. The shift count for these instructions is either a constant (the
least significant 5 bits of simm13) or variable (the least significant 5 bits of r[rs2]),
depending on the value in the i field: The least significant 5 bits of the 2' s comple­
ment of a shift count are the same as 32 minus the shift count. No shift occurs
when the shift count is O.

Table 2-1 0: Shift Instructions

opcode operation

SLL Shift Left Logical
SRL Shift Right Logical
SRA Shift Right Arithmetic

Programmer's Model- Instructions

2-30

OJ
FUJITSU

SLL and SRL fill vacated bit positions with 0' s. SRA fills vacated bit positions with
the most significant bit of the r[rs1] operand; that is, SRA treats its result as a
two's-complement number, and sign-extends it to 32 bits. The shift instructions
do not affect the condition codes.

An arithmetic shift left can be effected using the ADDcc instruction.

Scan

The SCAN instruction scans a register from MSB to LSB looking for either the first
changed bit, first 1 or first 0 depending on the value of the source 2 operand.
SCAN is a superset to the standard SP ARC instruction set. It is decoded in an
unused opcode and does not affect compliance with the SP ARC architecture stan­
dard.

The SCAN instruction is useful for supporting operations like floating-point nor­
malization by finding the number of sign bits in a single processor cycle. Data
compression schemes like run length encoding execute significantly faster using
SCAN as well.

SCAN works by computing the bitwise XOR of r[rs1] with a mask created by
right-shifting r[rs2] by one bit and sign-extending the result. It finds the first 1 in
the result, and writes this bit number to the destination register (r[rd]). Bit num­
bers range from 0 for the most significant bit to 31 for the least significant. If the
two operands are identical, the value 63 is written into r[rd].

Starting with the same number in r[rs1] and r[rs2], SCAN returns the number of
sign bits. Consider the first example shown in Figure 2-25. Both source registers
contain Ob00011.. .. The right-shifted, sign-extended, rs2 value is ObOOa011..., and
the result of the bitwise XOR is Ob0001 The bit-position of the first 1 in this
result (counting from zero, from the left) is 3, which is also the number of sign bits
in the rs1 value. Similarly, example 2 shows the case where the sign bits are ones.

By using global register 0, which always reads as 0, as the mask operand (rs2), the
bit position of the first 1 in rs1 can be found, as in the third example shown in
Figure 2-25. Similarly, by using the immediate value -I, which extends to alII's,
as the mask operand, the bit position of the first a in rs1 is found. (See example 4).

Programmer's Model - Instructions

2-31

-

SP ARClite User's Manual

SCAN does not affect the condition codes.

Example 1: finding the first changed bit (the first 1)

r[rs1] = ObOOO11 .. .
r[rs2] = ObOOO11 .. .
mask = ObOOO011
xor = Ob0001 0 ...
r[d] =3

(source 1)
(source 2)
(source 2 shifted)
(xor of source 1 and mask)
(bit location of first changed bit)

Example 2: finding the first changed bit (the first 0)

r[rs1] =Ob11100... (source 1)
r[rs2] = Ob11100... (source 2)
mask = Ob111100 (source 2 shifted)
xor = ObOO010... (xor of source 1 and mask)
r[d] = 3 (bit location of first changed bit)

Example 3: finding the first 1

r[rs1] =ObOOO11... (source 1)
r[rs2] = ObOOOOO... (source 2, immediate value 0 or %gO)
mask = ObOOOOOO (source 2 shifted)
xor = ObOOO10... (xor of source 1 and mask)
r[d] = 3 (bit location of first changed bit)

Example 4: finding the first 0

r[rs1] = Ob10000... (source 1)
r[rs2] = Ob11111... (source 2, immediate value -1)
mask = Ob111111 (source 2 shifted)
xor = Ob01111... (xor of source 1 and mask)
r[d] = 1 (bit location of first changed bit).

Figure 2-25. Using the SCAN Instruction

Constants

The SETHI instruction loads a 22-bit immediate constant into an r register. SETHI
zeroes the 10 least-significant bits of r[rd], and replaces its 22 high-order bits with
the value from the imm22 field of the instruction. SETHI does not affect the inte­
ger condition codes. A SETHI instruction with rd = 0 and imm22 = 0 is the SP ARC
(Version 8) definition of a NOP.

2.5.4 Control Transfer Instructions

A control transfer instruction (CTn is one which changes the value in the Next
Program Counter (nPC) register. There are five basic types of control transfer
instructions: conditional branches (Bicc), calls (CALL), jumps (JMPL), returns
from trap (RETT), and conditional traps (Ticc).

As shown in Table 2-11, the control transfer instructions can be classified accord­
ing to two criteria: how the target address is calculated, and when the control transfer
takes place, relative to the CTI.

Table 2-11 : Classification of Control Transfer Instructions

Control-Transfer Target Address Transfer Time
Instruction Calculation Relative to CTI

Bicc PC-relative conditional-delayed
CALL PC-relative delayed
JMPL, RETI register-indirect delayed
Ticc register-indirect-vectored non-delayed

Programmer's Model- Instructions

2-32

OJ
FUJITSU

Three different schemes are used for computing target addresses:

• PC-Relative-Adds an address displacement to the current PC value. The disp30
(CALL) or disp22 (Bicc) field of the instruction specifies the number of words _
to be added to the PC; this number can be positive or negative. The disp value
is sign-extended, then left-shifted by two bits to create the (byte) address
displacement.

• Register-Indirect-Adds its two source operands (r[rsl] is always one of the
operands; the other is r[rs2] when i = 0, and simm13, sign-extended to 32 bits,
when i = 1).

• Register-Indirect-Vectored-Ca1culates the target address in two stages: it first
obtains a trap type by adding 128 to the least significant 7 bits of the sum of its
two source operands. r[rsl] is always one of the operands; the other is r[rs2]
when i = 0, and simm13, sign-extended to 32 bits, when i = 1. The trap type
number is then stored in the tt field of the Trap Base Register. The resulting
value in the TBR is the target address.

Control transfer can either occur immediately after the CTI, or be delayed. The
control transfer instructions fall into three classes:

• Delayed-Transfers control to the target address after a one-instruction delay.
The delay instruction-the one whose address is in the nPC register when a
delayed CTI is executed-is executed before the transfer of control to the
target address. Special care is required when the delay instruction is itself a
CTI; see the section on Delayed-Control Transfer Couples, below.

• Non-Delayed-Transfers control to the target address immediately after the
CTI is executed.

• Conditional-Delayed-Delay occurs and the execution of the instruction in the
delay slot is conditional, depending on the value of the a (annul) bit in the
delayed control transfer instruction, and on whether or not the transfer itself is
conditional. Details are provided below, under the heading Branches.

Branches

The Bicc instructions, listed in Table 2-12, perform program branches, either
unconditionally or conditioned on the current values of the integer condition
codes (bits 23-20 of the Processor Status Register). The branch target is specified
by a PC-relative displacement.

Programmer's Model -Instructions

2-33

SP ARClite User's Manual

Table 2-12: Branch Instructions

opcode

BA
BN
BNE
BE
BG
BlE
BGE
Bl
BGU
BlEU
BCC
BCS
BPOS
BNEG
BVC
BVS

cond operation icc test

1000 Branch Always 1
0000 Branch Never 0
1001 Branch on Not Equal notZ
0001 Branch on Equal Z
1010 Branch on Greater not (Z or (N xor V»)
0010 Branch on less or Equal Z or (N xorV)
1011 Branch on Greater or Equal Not N xorV)
0011 Branch on less NxorV
1100 Branch on Greater Unsigned not (Cor Z)
0100 Branch on less or Equal Unsigned (C or Z)
1101 Branch on Carry Clear (Greater than or Equal, Unsigned) notC
0101 Branch on Carry Set (less than, Unsigned) C
1110 Branch on Positive not N
0110 Branch on Negative N
1111 Branch on Overflow Clear not V
0111 Branch on Overflow Set V

The unconditional branch BA causes a PC-relative delayed control transfer,
regardless of the integer condition code values. If the a (annul) field is 0, the delay
instruction is executed; if the a field is 1, the delay instruction is annulled (not exe­
cuted).

The unconditional branch BN does not cause a transfer of control. BN acts like a
NOP when its a (annul) field is o. When its a (annul) field is 1, the following
instruction (i.e., the delay instruction) is annulled.

The Bicc instructions other than BA and BN perform conditional branches, based
on the current values of the integer condition codes. The test condition is coded
into the eond field of the instruction, as shown in Table 2-12. If the test condition
evaluates as true, the branch is taken, otherwise, no transfer of control takes place.

If a conditional branch is taken, the delay instruction is always executed, no mat­
ter what the value of the a (annul) field. If a conditional branch is not taken, and
the a (annul) field is I, then the delay instruction is annulled.

Programmer's Model - Instructions

2-34

cP
FUJITSU

Table 2-13 summarizes the conditions under which the delay instruction is exe­
cuted, for the various types of branches.

Table 2-13:Conditions for Executing Delay Instructions

a bit type of branch
Delay instruction

executed?

a=O unconditional YES
conditional, taken YES
conditional, non taken YES

a=1 unconditional NO (annulled)
conditional, taken YES
conditional, non taken NO (annulled)

The effect of a branch instruction on the processor pipeline is shown in
Figure 2-26.

Fetch

Decode

Execute

Memory

Write-Back

Delay instruction may be annulled in
which case it is treated as a NOP

br delay

br

target

delay

br

Inst 1

target

delay

br

Inst 1

target

delay

br

Inst 1

target

delay

Inst 1

target

Figure 2-26. Pipeline Sequence: Branch

Call and Link

Ins! 1

The CALL instruction writes the contents of the PC (i.e., the address of the CALL
itself) into out register 7 (r[15]) of the current window. It then causes a delayed
control transfer to a PC-relative target address. The instruction field that specifies
the address displacement is 30 bits wide, so CALL can be used to transfer control
anywhere in the address space. The call instruction pipeline sequence is identical
to Figure 2-26, except that the delay instructions cannot be annulled.

Jump and Link

The JMPL instruction writes the contents of the PC (Le., the address of the JMPL
itself) into the destination register r[rd]. It then causes a delayed control transfer to
a register-indirect target address. If the target address is not word-aligned, a
mem_address_not_aligned trap occurs.

Programmer's Model - Instructions

2-35

-!

SP ARClite User's Manual

Forced "no operation"

Fetch jmpl delay nop target inst!

Decode jmpl delay nop target instl

Execute impl delay nop target instl

Memory impl delay nop target instl

Write-Back impl delay nop target instl

Figure 2·27. Pipeline Sequence: Jump and Link

Return lrom Trap

Unless it causes a trap, the RETT instruction does four things: it increments the
Current Word Pointer (modulo 8), causes a delayed control transfer to the regis­
ter-indirect target address, restores the processor to the operating mode (user or
supervisor) it was in before the trap was taken, and enables traps.

If traps are enabled (Le_, if the ET bit of the Processor Status Register is set to 1),
RETT will always cause a trap. A privileged_instruction trap will occur if the pro­
cessor is in user mode, and an illegaCinstruction trap will occur if the processor is
in supervisor mode_

If traps are disabled (ET = 0), RETT can cause the following traps, in decreasing
order of priority:

• Privileged_instruction, if the processor is in user mode.

• Window_underflow, if the new CWP corresponds to a set bit in the Window
Invalid Mask register.

• Mem_address_not_aligned, if the target address of the control transfer is not
word-aligned.

In these cases, the processor will write the appropriate trap type number into the
tt field of the PSR, enter the error state, and halt.

Forced "no operation"

Fetch impl rell nop target instl

Decode impl rell nop target instl

Execute impl rell nop target instl

Memory impl rell nop target instl

Write-Back impl rell nop target instl

Figure 2·28. Pipeline Sequence: RETI

Programmer's Model - Instructions

2-36

Software Traps

cO
FUJITSU

The Ticc instructions, listed in Table 2-14, generate the trap_instruction trap,
either unconditionally or conditioned on the current values of the integer condi­
tion codes (bits 23-20 of the Processor Status Register). Ticc can be used to imple­
ment breakpoints, traces, and system calls. It can also be used for run-time checks,
such as out-of-range array indexes or integer overflow.

Table 2-14:Trap Instructions

opcode

TA
TN
TNE
TE
TG
TLE
TGE
TL
TGU
TLEU
TCC
TCS
TPOS
TNEG
TVC
TVS

cond operation icc test

1000 Trap Always 1
0000 Trap Never 0
1001 Trap on Not Equal notZ
0001 Trap on Equal Z
1010 Trap on Greater not (Z or (N xor V))
0010 Trap on Less or Equal Z or (N xorV)
1011 Trap on Greater or Equal Not N xorV)
0011 Trap on Less NxorV
1100 Trap on Greater Unsigned not (Cor Z)
0100 Trap on Less or Equal Unsigned (C or Z)
1101 Trap on Carry Clear (Greater than or Equal, Unsigned) not C
0101 Trap on Carry Set (Less than, Unsigned) C
1110 Trap on Positive not N
0110 Trap on Negative N
1111 Trap on Overflow Clear not V
0111 Trap on Overflow Set V

The Ticc instructions evaluate a boolean test condition based on the current val­
ues of the integer condition codes. The test condition is coded into the cond field of
the instruction, as shown in Table 2-14. If the test condition evaluates as true, and
no higher-priority trap or interrupt request is pending, the trap_instruction trap is
generated. Otherwise, the instruction behaves like a NOP. The test condition for
T A always evaluates as true, the condition for TN evaluates as false.

When Ticc generates a trap, the trap type is written into the tt field of the Trap
Base Register. The trap type is calculated by adding 128 to the seven least signifi­
cant bits of the sum of the two instruction operands. Register r[rsl] is always one
of the operands; the other is r[rs2] when i = 0, and simm13, sign-extended to 32
bits, when i = 1. The 25 most significant bits of r[rs2], or the 6 most significant bits
of simm13, are unused and should be supplied as 0 by software.

Control is then transferred to the address in the TBR. The processor enters super­
visor mode, disables traps, decrements the CWP (modulo 8), and saves the PC
and nPC into r[17] and r[18] (local registers 1 and 2) of the new window. See the
section on Interrupts and Traps, below.

Programmer's Model - Instructions

2-37

..
I

SP ARClite User's Manual

Delayed Control-Transfer Couples

When a delayed control-transfer instruction is followed by another control-trans­
fer instruction, the pair of CTI's is called a delayed control-transfer couple (OCTI
couple). The order of execution for OCTI couples is illustrated by the examples in
Table 2-15.

Table 2-15:0rder of Execution for Delayed Control-Transfer Couples

Case 12: CTI40 16: CTI60 Order of Execution by Address

1 OCTI unconditional OCTI taken 12.16.40.60.64 ...
2 OCTI unconditional B*cc (a=O) untaken 12. 16.40.44
3 OCTI unconditional B*cc (a=1) untaken 12.16.44.48 (40 annulled)
4 OCTI unconditional B*A (a=1) 12. 16.60.64 (40 annulled)
5 BA (a=1) anyCTI 12.40.44 (16 annulled)
6 B*cctaken OCTI 12.16.40.60.64.68 ...

Note: Where the "8" bit Is not indicated above, it may be either 0 or 1. See next table for abbreviations.

Abbreviations used in Previous Table

Abbreviation Refers to Instructions

B*cc Bicc (including BN. but excluding BA)
OCTI unconditional CALL. JMPL. RETT. or BA (with a=O)
OCTI taken CALL. JMPL. RETT. BA (with a=O). or B*cc taken

In the first five cases in Table 2-15, the first instruction causes an unconditional
control transfer. Common examples of such OCTI couples are the JMPL, RETT
sequences that can be used to return from a trap handler. In Case 6, the first
instruction is a conditional branch; the order of execution is implementation­
dependent.

Changing Windows with SAVE and RESTORE

The SAVE instruction decrements the Current Window Pointer (CWP) field of the
Processor Status Register, thus saving the caller's window. The RESTORE instruc­
tion increments the CWP, restoring the caller's window. CWP arithmetic is per­
formed modulo 8, the number of implemented windows.

If the new CWP value corresponds to a bit of the Window Invalid Mask register
that is set to 1, a trap is generated: the window_overflow trap for a SAVE, and the
window_underflow trap for a RESTORE.

If a trap is not generated, then, besides modifying the CWP, both SAVE and
RESTORE act like integer addition instructions. The source operand fields rsl and
(when i = 0) rs2 are interpreted as register addresses in the old window, while
destination field rd is interpreted as a register address in the new window.

Programmer's Model- Instructions

2-38

cP
FUJITSU

The SA VE instruction can be used to allocate a new window in the register file,
and a new software stack frame in memory, in a single atomic operation. See the
Programming Considerations chapter for details.

2.5.5 Load and Store Instructions

The load and store instructions are the only ones that access memory and I/O,
allowing bytes, half-words, words and doublewords to be transferred to and from
processor registers.

Addressing modes are few and simple: the effective memory address is r[rs1] +
r[rs2] when i = 0, and r[rsl] + (simm13, sign-extended to 32 bits) when i = 1. The
destination field, rd, specifies the register that supplies the data for a store, or
receives it for a load.

The SP ARC addressing convention is big-endian: the address of a halfword,
word, or doubleword is the address of its most significant byte; increasing the
address generally decreases the significance of the unit being addressed.

Attempts at unaligned accesses are trapped. An aligned doubleword address is
divisible by 8, an aligned word address is divisible by 4, and an aligned half-word
address is divisible by 2. If a load or store instruction generates an improperly
aligned address, a memory _address_not_aligned trap occurs, and the access must
be performed piecemeal under software control.

When performing an access, the processor generates an 8-bit Address Space Iden­
tifier along with the address. The ASI assignments for SP ARClite are shown in
Figure 1-1 in the Overview chapter. For a normal load or store instruction, the IV
automatically supplies an ASI of OxOA (user data space) or OxOB (supervisor data
space), depending on the current operating mode of the processor.

Privileged instructions exist for accessing the other address spaces. These instruc­
tions supply the Address Space Indicator explicitly in their asi fields. The "register
+ immediate" addressing mode is not available for these instructions; they cause
an illegaUnstruction trap if their i field is set to 1.

Load

The load integer instructions, shown in Table 2-16, copy data from memory into
general-purpose registers. Bytes, half-words and words are copied into the desti­
nation register r[rd]. Doublewords are copied into an even-next odd r-register
pair.

Programmer's Model - Instructions

2-39

-

SP ARClite User's Manual

Table 2-16:Load Instructions

opcode operation

LDSB Load Signed Byte
LDSH Load Signed Halfword
LDUB Load Unsigned Byte
LDUH Load Unsigned Halfword
LD Load Word
LDD Load Doubleword

LDSBAt Load Signed Byte from Alternate space
LDSHAt Load Signed Halfword from Alternate space
LDUBAt Load Unsigned Byte from Alternate space
LDUHAt Load Unsigned Halfword from Alternate space
LDAt Load Word from Alternate space
LDDAt Load Doubleword from Alternate space

t. privileged instruction

Fetched bytes and halfwords are right-justified in the destination register r[rd],
and either sign-extended or zero-extended on the left, depending on whether the
load is signed or unsigned.

For a doubleword load, the effective memory address is that of the most signifi­
cant word. This word is copied into the even-numbered register r[rd]; the last bit
of the rd field is ignored, and should be supplied as O. The least significant word is
copied from the effective memory address + 4 into the following odd-numbered r
register. A successful doubleword load operates atomically.

eLK

Fetch

Decode

Execute

Memory

Write-Back

Idd Idd(d)

Idd

Stalled instructions

inst 1

Idd(d)

Idd

Inst2

inst 1 Inst2

inst 1

Figure 2-29. Pipeline Sequence: Load Double

Inst2

Programmer's Model - Instructions

2-40

OJ
. FUJITSU

Store

The store integer instructions, shown in Table 2-17, copy data from r registers into
memory. Bytes, half-words and words are copied from the register r[rd]. Double-
words are copied from an even-odd r register pair. •

Table 2-17:Store Instructions

opcode operation

STB Store Byte
STH Store Halfword
ST Store Word
STO Store Doubleword

STBAt Store Byte into Alternate space
STHAt Store Halfword into Alternate space
STAt Store Word into Alternate space
STOAt Store Doubleword into Alternate space

t. Privileged instruction.

Byte (and halfword) stores take their data from the least significant byte (or half­
word) of the register r[rd].

For a doubleword store, the effective memory address is that of the most signifi­
cant word. This word is copied from the even-numbered register r[rd]; the last bit
of the rd field is ignored, and should be supplied as O. The least significant word is
copied from the following odd-numbered r register to the effective memory
address + 4. A successful doubleword store operates atomically.

Atom;c Load-Store

The atomic load-store instructions, LDSTUB and LDSTUBA, copy a byte from
memory into r[rd], and then rewrite the addressed byte with the value OxFF. Inter­
rupts and deferred traps cannot separate the load operation from the store.

Table 2-18:Atomic Load-Store Instructions

opcode operation

LDSTUB Atomic Load-Store Unsigned Byte
LDSTUBAt Atomic Load-Store Unsigned Byte into Alternate space

t. Privileged instruction.

Programmer's Model - Instructions

2-41

SP ARClite User's Manual

Swap

The SWAP and SWAP A instructions exchange the contents of r[rd] and the
addressed memory location. Interrupts and deferred traps are not permitted to
intervene.

Table 2-19:5wap Instructions

opcode operation

SWAP SWAP r register with memory
SWAPAt SWAP r register with Alternate space memory

t. Privileged instruction.

2.5.6 Read and Write Control Register Instructions

These instructions.access the SPARC control and status registers. Except for SA VB
and RESTORE, each one reads or writes the contents of an entire register. SAVE
and RESTORE decrement and increment (respectively) the Current Word Pointer
field of the Processor State Register.

Read Control Register

Each of the instructions shown inTable 2-20 copies data from a particular SPARC
register into the destination register r[rd].

Table 2-20:Read Control Register Instructions

opcode operation

ROASRt Read Ancillary State Register
ROV Read V Register
ROPSRt Read Processor State Register
ROWIMt Read Window Invalid Mask Register
ROTBRt Read Trap Base Register

t. Privileged instruction.

The rs1 field of the RDASR instruction specifies which Ancillary State Register
(ASR) is to be read. In SPARClite, only ASR16 and ASR17 are implemented.
Attempts to read any other ASR result in an illegaUnstruction trap.

Write Control Register

Each of the instructions shown inTable 2-21 copies data into the writable fields of
a particular SPARC register. The data to be written is calculated as the bitwise
XOR of the two source operands. Register r[rs1] is always one of the sources; the
other is r[rs2] when i = 0, and simm13, sign-extended to 32 bits, when i = 1.

Programmer's Model - Instructions

2-42

cP
FUJITSU

The write control register instructions cause delayed writes. In a delayed write, the
new value of the register is not available for some number of instructions after the
write instruction. Table 2-21 shows the number of delay instructions for the
SPARClite family processors. (Note: The SPARC architecture allows the number
of delay instructions to take up to 3 cycles. If it is important to assure code com­
patibility with all implementations of SP ARC the maximum delay should be
assumed).

Table 2-21 :Write Control Register Instructions

opcode operation
write delay

(cycles)

WRASRt Write Ancillary State Register 0
WRY Write Y Register 0
WRPSRt Write Processor State Register 2
WRWIMt Write Window Invalid Mask Register 2
WRTBRt Write Trap Base Register 2

t. Privileged instruction.

Attempts to use or modify the contents of a register (except for the Y Register),
after writing to it with a write control register instruction, have the following
results:

1. Writing to any field of the same register within the write delay makes the con­
tents of that field undefined.

Exception: A second instance of the same write control register instruction,
even if it follows within three instructions of the first, will write the register as
intended.

Note that many instructions implicitly write fields (Current Word Pointer, Inte­
ger Condition Codes) of the Program Status Register: the logical and arith­
metic instructions whose mnemonics end in "cc"; SAVE and RESTORE; Ticc
(when taken); and CALL.

2. Reading any changed field of the same register within the write delay yields an
unpredictable value.

Note that many instructions implicitly read fields of the PSR: ADDX, SUBX,
MULScc, DIVScc; SA VE and RESTORE; Bicc and Ticc.

3. If any of the two instructions following a write control register instruction
causes a trap, a read control register instruction in the trap handler will get the
register's new value.

If any of the two instructions following a WRTBR causes a trap, the Trap Base
Address used will be the new value of the TBA field.

Programmer's Model- Instructions

2-43

-

SP ARClite User's Manual

If any of the two instructions following a WRPSR causes a trap, the values of
the Sand CWP fields read from the PSR while taking the trap will be the new
values.

WRPSR appears to write the ET and PIL fields immediately with respect to inter­
rupts.

If an WRPSR instruction would cause the CWP field of the Processor Status Regis­
ter (PSR) to point to an unimplemented window, it causes an illegaCinstruction
trap instead, and does not modify the PSR in any way.

The rs1 field of the WRASR instruction specifies which Ancillary State Register
(ASR) is to be written. In SPARClite, only ASR17 is implemented. Attempts to
write any other ASR result in an illegaCinstruction trap.

2.6 Data and Instruction Caches
Each member of the SP ARClite family contains separate data and instruction
caches on-chip. The caches are designed for maximum flexibility of operation.
Under software control, individual entries or entire banks can be locked. The data
cache can be decoupled from external memory and used as a fast on-chip scratch­
pad RAM. This section discusses the structure and operation of the caches, as
seen from the programmer's point of view.

2.6. 1 Structure
In the MB86930 processor, each cache is 2 Kbytes in size, divided into 128 lines of
4 words (16 bytes) each. The contents of the cache data memory and tag memory
is undefined at reset.

The cache organization, illustrated in Figure 2-30, is two-way set associative; that is,
each address in memory can be cached in either of two locations. Each cache is
divided into two banks, with 64 lines per bank. The 64 pairs of lines are called sets.

Programmer's Model- Data and Instruction Caches

2-44

cP
FUJITSU

On a cache access, the address bits ADR[9:4] are used to select a set; the corre­
sponding data or instruction values can be in either bank.

word 3 word 2 word 1 word 0 SET word 3 word 2 word 1 word 0

I I I I I

0

I I I I I
2

3

•
63

BANK 1 BANK 2

Figure 2-30. Cache Organization

Associated with each cache line is a tag, which indicates the memory location to
which the line is currently mapped, and contains status information for the
cached data or instructions. Data cache tags are located in the address space with
ASI OxE, and instruction cache tags in the address space with ASI oxe (see
Table 2-22). A cache entry consists of a cache line together with the corresponding
tag. The structure of a cache tag is illustrated in Figure 2-31.

31

Address TAG
(AST =Undefined)

10 9

Sub Block Valid (Valid=1, Invalid=O, RST =Undefined)

6 5

User/Supervisor (User=O, Supervisor=1, RST =Undefined) ____J

1 0

Least Recently Used (RST =Undefined) -----------'

Entry Lock (Locked=1, Unlocked=O, RST=Undefined) ------------'

Figure 2-31. Cache Tag

Bits 31-10: Address Tag-Contains the 22 most significant bits of the memory address of the data or
instructions cached in the corresponding line. Undefined on reset.

Bits 9-6:

BitS:

Bits 4-3:

Bit 1:

Sub-Block Valid-Contains one Valid bit for each of the 4 words in the corresponding line.
When a Valid bit is 1, it indicates that the corresponding cache word contains a current
data or instruction value for the address indicated by the tag. Undefined on reset.

User/Supervisor-Indicates whether the data or instructions cached in the corresponding
line come from user space (User/Supervisor bit = 0) or from supervisor space (User/
Supervisor bit = 0). Undefined on reset.

Reserved

Least Recently Used (Bank 1 Only)-Indicates, for a given set, which bank contains the
least recently used entry. When this bit is 1, it indicates that the entry in Bank 1 was the
least recently used. Otherwise, Bank 2 was the least recently used. The value of this bit

Programmer's Model- Data and Instruction Caches

2-45

..
I

SP ARClite User's Manual

determines which of the two entries is replaced when a new line needs to be allocated,
and both entries are valid. Undefined on reset.

Bit 0: Entry Lock-Locks the current address into the cache tag entry. An access which com­
petes with currently locked entries in both banks of the cache is treated as non-cache­
able. Undefined on reset.

A faster way to set and clear the tag entry-lock bits is to write the Tag Lock Bit
addresses as shown in Table 2-22. Writes to these locations map to the same entry
lock bits in the instruction and data cache tags described in Figure 2-31 above. The
advantage of writing the entry lock bit using these alternate memory locations is
that only the lock-bit is affected on a write, the reset of the associated tag is not
affected. The same operation using the cache tag address would require a read­
modify-write so as not to change the rest of the tag value.

31 o

Figure 2-32. Tag Lock Bit

Bit 0: Entry Lock- Locks the current address into the cache tag entry. An access which com­
petes with a currently locked entry in the cache is treated as non-cacheable. Writing this
bit has the same effect as writing the corresponding bit in the cache tags except that the
rest of the tag remains unaffected by a write to this location.

Table 2-22:Cache Tag Addresses

Bank 1 Bank 2

Cache Tag
Tag Lock Bit

Cache Tag
Tag Lock Bit

SET Address
ASI=Ox2

SET Address
ASI=Ox2

GI ASI=OxC ASI=OxC
.c u 0 Ox 0000 0000 Ox 0000 0000 0 Ox 8000 0000 Ox 8000 0000 as
0 1 Ox 0000 0010 Ox 0000 0010 1 Ox 8000 0010 Ox 8000 0010
c: 2 Ox 0000 0020 Ox 0000 0020 2 Ox 8000 0020 Ox 8000 0020 0

~ 3 Ox 00000030 Ox 0000 0030 3 Ox 8000 0030 Ox 8000 0030
::I 4 Ox 00000040 Ox 0000 0040 4 Ox 8000 0040 Ox 8000 0040 .. -I/) · · · · · • .5 • · • • • · · · · · · •

63 Ox 0000 03FO Ox 0000 03FO 63 Ox 8000 03FO Ox 8000 03FO

Programmer's Model - Data and Instruction Caches

2-46

Table 2-22:Cache Tag Addresses

Bank 1

Cache Tag
Tag Lock Bit

SET Address
ASI=OxE

ASI=Ox3

GI a Ox 0000 0000 Ox 0000 0000 s=
1 Ox 0000 0010 Ox 0000 0010 u

III
2 Ox 0000 0020 Ox 0000 0020 CJ

~ 3 Ox 0000 0030 Ox 0000 0030
c 4 Ox 0000 0040 Ox 0000 0040

· · · • · · · · •
63 Ox 0000 03FO Ox 0000 03FO

2.6.2 Operation

SET

a
1
2
3
4

· · · 63

Bank2

Cache Tag
Address
ASI=OxE

Ox 8000 0000
Ox 8000 0010
Ox 8000 0020
Ox 8000 0030
Ox 8000 0040

· · · Ox 8000 03FO

cO
FUJITSU

Tag Lock Bit
ASI=Ox3

Ox 8000 0000
Ox 8000 0010
Ox 8000 0020
Ox 8000 0030
Ox 8000 0040

· · · Ox 8000 03FO

This section discusses software initialization of the caches and the various cache
operating modes.

Initialization

On reset, both caches are turned off, and all memory requests are sent to the Bus
Interface Unit. In order to use the caches, software must initialize the Valid, Least
Recently Used and Entry Lock bits by writing O's to the appropriate alternate
address spaces. After initializing the cache, a program can write l's to the Cache
Enable bits of the Cache/BIU control register to turn the caches on. Due to the
pipeline in the IU, all writes are delayed by three instruction cycles.

Normal Operation

Accesses to the user and supervisor data spaces, and fetches from the user and
supervisor instruction spaces, are generally cacheable. Stores to the instruction
address space are not supported. Loads and stores to alternate memory spaces are
not cacheable.I/O registers and other locations that need to be prevented from
being cached should therefore be mapped to an alternate space. Atomic load/
store transactions, including the SWAP instruction, are not cacheable. If an atomic
operation references data already in cache, the entry for that data will be invali­
dated.

On any cacheable access, the address bits ADR[9:4] are used to select a set in the
appropriate cache. Address bits ADR[3:2] are used to select a word from each of
the two lines in the set; the Valid bits corresponding to those words are checked.
The address bits ADR[31:1O] are compared with the address tags. The User/
Supervisor bit is tested against the ASI indicated by the IV.

Programmer's Model- Data and Instruction Caches

2-47

•

SP ARClite User's Manual

A cache hit occurs if all of the following are true; otherwise, a cache miss occurs:

• ADR[31:10] matches the address tag in either set.

• The User /Supervisor bit corresponds to the ASI indicated by the IV.

• The Valid bit corresponding to the word being accessed is 1.

In the case of a read hit, the requested data or instruction is in the cache. The data
or instruction is returned to the IU, and the pipeline is not held up. The LRU bit is
updated. The lock bit may be updated based on the value of the Cache Entry Auto
Lock bit in the Lock Control Register (see Locking Modes, below).

A read miss freezes the IU pipeline, and sends the request on to external memory.
Though each cache line is four words long, only a single word is fetched on a
miss. Assuming neither global nor local locking is in force, the fetched word will
overwrite the appropriate word in one of the entries in the set. (Under global or
local locking, a different policy is followed; see Locking Modes, below).

Sometimes a read miss occurs only because the Valid bit for the requested word is
not set. In this case, a cache line has already been allocated for a 4-word memory
block which includes the requested address. The fetched word simply overwrites
the appropriate word in this line; the Valid bit for the word is then set.

Otherwise, a new line needs to be allocated on a read miss, and one of the two
entries in the set corresponding to the requested address must be selected for
replacement. The least recently used entry, as determined by the Least Recently
Used bit for the set, is replaced. The fetched word overwrites the appropriate
word in this line; its Valid bit is then set, and the Valid bits for the other words in
the line are cleared.

The data cache follows a write-through memory update policy. On a write hit, the
data is written both to the cache and to main memory (write-through). If there is a
write miss, the data is written only to the external memory (no write-allocate) - the
data cache and the corresponding cache tag are not updated or modified. (A dif­
ferent policy is followed if the write is to a locked location; see Locking Modes,
below.) Data cache write misses can be avoided by first reading the data memory
locations that are to be written.

Locking Modes

Without locking, read misses can cause cache lines to be re-allocated. Entire
caches, or selected entries corresponding to time-critical routines, however, can
be locked into cache. Locked entries cannot be re-allocated. Thanks to the set­
associative organization, one bank of each cache can continue to operate as a fully
functional direct-mapped cache, no matter how many entries in the other bank
are locked.

Programmer's Model - Data and Instruction Caches

2-48

OJ
FUJITSU

On a read miss, if one of the entries in the addressed set is locked, the unlocked
one is re-allocated, whether or not it was the least recently used. If both entries, or
the entire cache, are locked, then the access will be treated as non-cacheable.

Writes to locked data entries, moreover, are not written through to main memory. •
In this way, a portion of the data cache can be used as fast on-chip RAM which is
not mapped to external memory.

There are two modes of cache locking:

• Global Locking - Affects an entire cache. When a cache is locked in this way,
valid entries are not replaced; invalid words in allocated cache locations will
be updated. Bits in the cache/Bus Interface Unit Control Register enable or
disable the global locking mode independently for each cache. Enabling global
locking does not affect the Entry Lock bits of individual Cache lines; when
global locking is subsequently disabled, lines with clear Entry Lock bits are
once again subject to re-allocation.

• Local Locking - Affects individual cache lines.

Bits in the Lock Control Register enable or disable, independently for each cache,
an auto lock mode in which all subsequent cache accesses automatically set the
Entry Lock bit of the accessed entry. Software can also lock and unlock an indi­
vidual entry by writing the lock bit in that entry's tag.

With auto-locking enabled for either the instruction or data cache, any lines
accessed in that cache have their entry-lock bit set. This makes it easy to lock a
routine into the cache by setting the auto lock bit in the Lock Control Register at
the beginning of the routine and then executing the routine to lock the entries.
The auto lock bit is cleared in one of two ways. Normally, software clears the auto
lock bit at the end of the routine being locked. If a trap or interrupt occurs the auto
lock bit will be cleared by hardware. This disables the locking mechanism so that
the service routine is not locked into cache by mistake.

Two registers are provided to make it easy to re-enable the auto locking when the
processor returns from the interrupt. The value of the Lock Control Register
before the interrupt is automatically saved in the Lock Control Save Register
when an interrupt or trap occurs. To restore the correct auto-lock value on return
from the service routine, software sets a bit in the Restore Lock Control Register.

Programmer's Model- Data and Instruction Caches

2-49

SP ARClite User's Manual

This will cause the value saved in the Lock Control Save Register to be moved to
the Lock Control Register when a RETT is executed (see Figure 2-33).

or
or
sta

Code to be locked { :

%gO, Ox4, %10
%gO, Ox1, %g1
%g1, [%10]1

Lock Register Values

:======::::;:~1=0::::1 Restore Lock Control Register

! enable instruction auto-lock / 1 : X : X 1 Lock Control Save Register

~'--. ______ ...1. . ..::,0 _1'--'1 Lock Control Register

Traporlnterrupt --------------------------------

Service Routine { ~

End of Trap or Interrupt

or
rd and
wr
sta
nop
nop
nop
impl
reU

-.~-{
or
or
sta

%gO, Ox1, %g1
%pSf, %g1
%g1, OxIIdf, %g1
%g1, %go, %psr
%g1,r,l,10]1

%gO, OXO, %10
%gO, Ox1, %g1
%g1, [%10]1

I get current psr

I disable traps

1 ° 1 Restore Lock Control Register

:======::::;:1 ::;0::;1=1;::;1 Lock Control Save Register

'--_____ --'-1_0 1_0--'1 Lock Control Register

! set Restore Lock bit ~ I

----J~. ======::;::;::;1=1;::;1 Restore Lock Control Register

:======~I :::0::;1=1:::;1 Lock Control Save Register

'--_____ --'-1..::,0 1...:.0'--'1 Lock Control Register

1 ° 1 Restore Lock Control Register

:======::::;:1 :;'x:::I::;x::::1 Lock Control Save Register

'--_____ --'-1_0 1_1--'1 Lock Control Register

! disable instruction autO-IOCkUII~======~:::=::; : i ° 1 Restore Lock Control Register

:
X I X 1 Lock Control Save Register

'--_____ --'-. ..::,0--,-,0,--,1 Lock Control Register

Figure 2-33. Caches

2.7 Interrupts and Traps
An interrupt or trap (other than reset) causes a vectored transfer of control
through a trap table which contains the first four instructions of each service rou­
tine. The Trap Base Address field in the Trap Base Register contains the base
address of the table. Associated with each trap type is an 8-bit number, which
(left-shifted by 4 bits) is used as an offset into the table. From the trap table, con­
trol typically passes (via a JMPL instruction) to the appropriate trap handler. The
control transfer for traps other than reset and breakpoint traps is illustrated in

Programmer's Model- Interrupts and Traps

2-50

0)

FUJITSU

Figure 2-34. Reset always traps to address 0 and breakpoints always traps to
OxOOOOOFFO.

trap/interrupt (in)

+ initialized by kernel I
Ir-----------LI-----------,\/r----~·----~\

I Trap Base Address (high 20 bits) I II (trap type) I 0 0 0 0 I TBR

\ I

.-__ T_r...!ap_ta_b_le __ ---, __ TBA

} 11'16 (bytes)

~~----inffi-r-uc~tio-n-1--~
..............................

instruction 2

instruction 3 ---1~

instruction 4

Figure 2-34. Trap and Interrupt Vectoring

trap/interrupt (out)

Trap handler
routine

jmpl

rell

A feature called single vector trapping allows all traps to vector to a single location,
specified by the 20 high-order bits of the TBR, filled out on the right with 0' s.
After the trap is taken, the trap type can be determined by reading the tt field of
the TBR. Single vector trapping can save code space and improve the response
time of traps, since all of the trap service routines can potentially fit in cache. This
feature, disabled at reset, can be enabled by setting the SVT bit of ASR17.

The Trap Enable bit (ET) of the Processor State Register enables (ET = 1) and dis­
ables (ET = 0) interrupts and traps. When ET = 0, interrupts are ignored, and traps
cause the Integer Unit to halt and enter the error mode.

The processor provides direct support for 15 interrupt priority levels. The exter­
nal interrupt request level (on input pins IRL[3:0]) is compared with the value in
the Processor Interrupt Level field of the PSR. If the request level equals IS, or if it
exceeds the PIL value, the interrupt is taken.

2.7.1 Trap Types

Up to 256 trap types can be distinguished on the basis of the 8-bit trap type num­
ber. Of these, half are reserved for external interrupts and hardware-enforced

Programmer's Model-Interrupts and Traps

2-51

•

SP ARClite User's Manual

instruction exceptions. The various trap types are listed in order of priority, with
their causes, in Table 2-23.

Table 2-23:Traps

Trap Priority tt Cause

reset 1 - The external system asserted the -RESET input,
signalling a reset request. Alternatively, the processor
entered error mode and so generated an internal reset.

breakpoint_trap 1.5 255 Instruction or Data Breakpoint encountered or illegal
write access to the breakpoint registers.

instruction_access_exception 2 1 A blocking error exception occurred on an instruction
access (for example, an MMU indicated that the page
was invalid or read-protected).

privileged_instruction 3 3 An attempt was made to execute a privileged instruction
in user mode.

iIIegaUnstruction 4 2 An attempt was made to execute an instruction with an
unimplemented opcode, or an UNIMP instruction, or an
instruction that would result in illegal processor state (for
example, writing an illegal CWP into the PSR). Note that
unimplemented FPop and unimplemented CPop
instructions generate fp_exception and cp_exception
traps.

fp_disabled 5 4 An attempt was made to execute an FPop, FBfcc, or a
floating-point load/store instruction.

cp_disabled 5 36 An attempt was made to execute a CPop, CBccc, or a
coprocessor load/store instruction.

window_overflow 6 5 A SAVE instruction attempted to cause the CWP to pOint
to a window marked invalid in the WIM.

window_underflow 7 6 A RESTORE or RETT instruction attempted to cause the
CWP to point to a window marked invalid in the WIM.

mem_address_noCaligned 8 7 A load/store instruction would have generated a memory
address that was not properly aligned according to the
instruction, or a JMPL or RETT instruction would have
generated a non-word-aligned address.

data_access_exception 10 9 A blocking error exception occurred on a load/store data
access. (For example, an MMU indicated that the page
was invalid or write-protected).

tag_overflow 11 10 A TADDccTV or TSUBccTV instruction was executed,
and either arithmetic overflow occurred or at least one of
the tag bits of the operands was nonzero.

trap_instruction (Ticc) 12 128-255 A Ticc instruction was executed and the trap condition
evaluated to true.

Programmer's Model - Interrupts and Traps

2-52

Table 2-23:Traps (Continued)

Trap Priority tt

interrupUeveL 15 14 31
interrupUevel_14 15 30
interrupUeveL 13 16 29
interrupt_leveL 12 17 28
interrupUeveL 11 18 27
interrupUeveL 10 19 26
interrupUeveL9 20 25
interrupUeveL8 21 24
interrupUeveL7 22 23
interrupUeveL6 23 22
interrupUeveL5 24 21
interrupUeveL 4 25 20
interrupUeveL3 26 19
interrupUeveL2 27 18
interrupUevel_1 28 17

2.7.2 Trap Behavior

Cause

External Interrupt Request

cP
FUJITSU

The expression trapped instruction refers, in the case of a synchronous trap
(instruction exception), to the instruction which caused it. In the case of an inter­
rupt, the trapped instruction is the one which was about to enter the Writeback
stage of the pipeline when the interrupt occurred.

The Integer Unit supports precise traps-when an interrupt or trap occurs, the
saved state of the processor reflects the completion of all instructions prior to the
trapped instruction, but no subsequent instructions (including the trapped
instruction). Hardware guarantees that upon return from the service routine, the
Program Counter points to the trapped instruction (or its successor if the trapped
instruction was emulated).

The integer unit tests for exceptions generated by an instruction just before that
instruction enters the Writeback stage. If an exception is detected, and no higher­
priority request is pending, and traps are enabled, the processor takes a trap. If
more than one exception is detected, the processor takes the trap with the highest­
priority. When a trap is taken, the processor does the following things:

1. Writes the trap type number into the tt field of the Trap Base Register.

2. Saves the current processor mode (user or supervisor) by copying the value of
the S bit of the Processor Status Register into the PS bit.

3. Enters supervisor mode by setting the S bit of the PSR to 1.

4. Disables traps by clearing the ET bit of the PSR to o.

Programmer's Model- Interrupts and Traps

2-53

•

SP ARClite User's Manual

5. Saves the window of the interrupted routine by decrementing the Current
Window Pointer (modulo 8). The Window Invalid Mask is not checked for
window underflow or overflow.

6. Stores the current Program Counter and Next Program Counter values in r[17]
and r[18] of the new window.

7. Transfers control to the address specified by the TBR.

An instruction is said to be squashed when its execution is aborted after it has
entered the pipeline. A taken trap always squashes either 2 or 3 instructions.
Asynchronous traps and interrupts squash 3 instructions as shown in Figure 2-35.
Software traps (Ticc) only squash 2 instructions because the processor holds the
next instruction fetch when the trap instruction reaches the memory stage (in
Figure 2-35, instruction 4 is replaced by a hardware generated NOP).

Fetch Insll

Decode

Execute

Memory

Write-Back

Insl2

Insll

synchronous or asynchronous lrap

, frst Irap handler inslruclion

Insl3 Insl4/nop Insl20 Insl21 [

Insl2 Ins! 3 Ins! 4/nop Insl20 [Insl21

Ins! 1 Ins! 2 Insl21 Inst 3 Insl4lnop :

Ins! 3 '!--c--.,., _________
Insll Ins! 2

i ~ [Inst3

no result written ~ack 10 regis er 7--· '---"=-=~s-q---'uac:.:sh-'-'ed=---in-s+--lru'::"cl'-'-ion-"-sC2/
file, however PC is written back

Figure 2-35. Instructions Squashed by Trap

Insl21

Insl20

The trap handler must insure that a window is available (for taking another trap),
and then re-enable traps by setting ET to 1. The code for handling the exceptional
condition that caused the trap can then be executed. Traps must be disabled (ET
cleared to 0) before returning, via a RETT instruction, from the service routine.

Unless it causes a trap, the RETT instruction does four things: it increments the
Current Word Pointer (modulo 8), causes a delayed control transfer to a register­
indirect target address, restores the processor to the operating mode (user or
supervisor) it was in before the trap was taken, and enables traps. The trap han­
dler must ensure that a window is available so that RETT can increment the CWP
without causing a window underflow and sending the processor into error mode.

2.7.3 Reset and Error Modes

As defined in the SP ARC architecture, the SP ARClite integer unit has reset, error,
and execute modes which are states of the processor. The processor is in execute

Programmer's Model - Interrupts and Traps

2-54

OJ
FUJITSU

mode during the normal execution of instructions. The processor enters error
mode if a synchronous trap is encountered while the traps are disabled (the ET bit
is 0). The processor enters reset mode when the -RESET input is asserted, and
enters execute mode when the -RESET line is de-asserted.

Once it is in error mode, the processor must be reset in order to return to normal
operations. The external system can detect an error condition by monitoring the
-ERROR signal which is asserted for a minimum of one cycle.

Processor reset occurs whenever the -RESET input is held active for 4 cycles after
the clock stabilizes. Reset does the following:

1. Writes 0 into the Program Counter and 4 into the Next Program Counter.
When -RESET is de-asserted, the processor will begin fetching instructions at
address OxOOOOOOOO in supervisor instruction space (ASI Ox09).

2. Zeroes or sets to the appropriate NOP instruction all registers in the instruc­
tion pipeline. This insures that:

• No instructions are left half-executed in the instruction pipeline.

• No traps are taken prior to the instruction at address zero.

• No control transfer instructions are in progress.

• No interlock or bypass conditions will be detected prior to the instruction at
address zero.

• No state will be written back prior to the instruction at address zero.

3. Enters supervisor mode by setting the S bit in the PSR.

4. Disables traps by clearing the ET bit in the PSR.

2.8 Debug Support Unit
The Debug Support Unit (DSU) consists of a hardware emulator interface, debug
support registers, and on-chip breakpoint and single-step logic that support hard­
ware in-circuit emulators (ICE) and debug monitors.

The hardware emulator interface consists of a four-bit emulator data bus (EMU_
D<3:0», a four-bit multiplexed status/data bus (-EMU_SD<3:0», an emulator
break request pin (-EMU_BRK), and an emulator enable signal pin (-EMU_ENB).
The emulator interface allows in-circuit emulators and other debug and diagnos­
tic hardware to trace processor activity by monitoring transactions between the
IU and cache. These buses and pins should remain open when an in-circuit emu­
lator is not in use.

Debug monitors typically reside in ROM and do not require a dedicated interface.
The -EMU_BRK and -EMU_ENB pins, however, are used to enable the DSU for
use by debug monitors.

Programmer's Model - Debug Support Unit

2-55

•

SP ARClite User's Manual

Table 2-24:

The debug support registers consist of six Breakpoint Descriptor registers, a
Debug Control Register, and a Debug Status Register. These registers are used to
specify breakpoints, to configure the DSU for desired operation, and to read
debug status.

This section describes only DSU debug monitor support, and contains informa­
tion that is necessary for implementing debug monitors in MB86930-based sys­
tems. DSU hardware emulator support is described briefly in Section 6.5. The
documentation provided with the emulator contains detailed information for the
specific emulator in use.

2.8. 1 Monitor Mode
DSU trace and breakpoint debug monitor support operation is enabled and dis­
abled according to the states of the active-low -EMU_BRI< and -EMU_ENB pro­
cessor input pins at reset as follows:

State at Reset
Function

-EMU_ENB -EMU_BRK

0 0 Reserved

0 1 Reserved

1 0 Monitor Mode. DSU Registers are cleared at reset, and
breakpoint registers can be read and written.

1 1 Normal Mode. DSU Registers are cleared at reset, and all
breakpoints are disabled.

The state of the pins are written to bits <1 :0> in the Debug Status Register where
they can be read by the processor initialization routine to determine whether to
jump to the monitor or proceed with normal program execution. After reset, the
states of the pins can change with no effect.

The processor jumps to the monitor if in monitor mode. The DSU registers are ini­
tially cleared at reset in this mode, breakpoints are disabled, and breakpoint regis­
ters are readable and writable. In normal mode, all breakpoints are disabled, the
DSU Status Register can be read, and normal program execution proceeds with­
out breakpoints.

Monitor Mode States

There are two monitor mode states: break state and execute state.

Break state is a very high-level state in which breakpoints are disabled, the DSU
registers can be read and written, and the processor registers that are normally

Programmer's Model- Debug Support Unit

2-56

Table 2-25:

cO
FUJITSU

accessed in Supervisor mode can be accessed. The break state is entered following
reset when the monitor mode is selected with the -EMU_ENB and -EMU_BRK
signals, and when the -Break flag is cleared to 0 in the Debug Control Register in
response to a breakpoint, a software break request (Ticc255 instruction), or a DSU
register write exception. The break state allows writes to the DSU registers to
allow DSU configuration, and inhibits breakpoints to eliminate debug interrupts
while configuring the DSU.

The execute state is the normal debug mode operating state in which breakpoints
may be enabled, the DSU registers can be read but not written, and program exe­
cution proceeds pending a breakpoint. The execute state is entered from the break
state by setting the -Break flag in the Debug Control Register to 1 and executing
the JMPL/RETT pair.

2.8.2 Breakpoint Registers

The DSU contains a Debug Control Register (Figure 2-36) and a Debug Status
Register (Figure 2-37) for DSU control and debug status reporting. It also contains
six Breakpoint Descriptor Registers for specifying address and data breakpoints.

The breakpoint descriptor and control registers are memory-mapped to ASI Oxl
at the following addresses:

OxOOOOFFOO Instruction Address Descriptor Register 1

OxOOOOFF04 Instruction Address Descriptor Register 2

OxOOOOFF08 Data Address Descriptor Register 1

OxOOOOFFOC Data Address Descriptor Register 2

OxOOOOFF10 Data Value Descriptor Register 1

OxOOOOFF14 Data Value Descriptor Register 2 or Mask Register

OxOOOOFF18 Debug Control Register

OxOOOOFF1C Debug Status Register

Programmer's Model - Debug Support Unit

2-57

-,

SP ARClite User's Manual

Debug Control Register

The Debug Control Register is used to enable the breakpoints that are specified in
the Breakpoint Descriptor Registers and to qualify the breakpoints as follows:

31 24 23 16 15 14 13 10 9 8 7 6 5 4 3 2 1 a

I ASI Value for Data Address 2 I ASI Value for Data Address 1 I I I Reserved I I I I I I I (0010)

User/Supervisor Bit for Instruction Address 2 I I
I User/Supervisor Bit for Instruction Address 1

-Break

Enable Data Address 2 Match

Enable Data Address 1 Match

Enable Instruction Address 2 Match

Enable Instruction Address 1 Match

Single_Step

Data Value Transaction Type

Data Value Condition

Data Value Mask

Figure 2-36. Debug Control Register

Bit 31-24: Data Address 2 ASI: Specifies the ASI match value for Data Address 2.

Bit 23-16: Data Address 1 ASI: Specifies the ASI match value for Data Address 1.

I I I

Bit 15: Instruction Address 2 User/Supervisor Bit: Specifies either a User (when 0) or Supervisor
(when 1) Mode match for instruction address 2.

Bit 14: Instruction Address 1 User/Supervisor Bit: Specifies either a User (when 0) or Supervisor
(when 1) Mode match for instruction address 1.

Bit 13-10: Reserved, and must be written <0010> (bit 11 = 1; all other bits = 0).

Bit 9: -Break-Cleared to indicate break state following reset or a breakpoint; set by the moni­
tor to return to the execute state.

Bit 8: Enable Data Address 2 Match-Enables (1) or disables (0) the breakpoint comparison for
Data Address Descriptor 2.

Bit 7: Enable Data Address 1 Match-Enables (1) or disables (0) the breakpoint comparison for
Data Address Descriptor 1.

Bit 6: Enable Instruction Address 2 Match-Enables (1) or disables (0) the breakpoint compari­
son for Instruction Address Descriptor 2.

Bit 5: Enable Instruction Address 1 Match-Enables (1) or disables (0) the breakpoint compari­
son for Instruction Address Descriptor 1.

Bit 4: Single Step-Enables single-step operation when set. During single-step operation, a
breakpoint trap is issued on every instruction.

Programmer's Mode/- Debug Support Unit

2-58

cO
FUJITSU

Bits 3-2: Data Value Transaction Type-Determines the class of instructions (loads, stores, or
both) that can cause a Data Value breakpoint trap.

00
01
10
11

Break only on Loads
Break only on Stores
Break on Load or Store
Break Always

Bit 1: Data Value Condition-Determines whether a Data Value breakpoint trap is caused by
values inside the range specified by the Data Value Descriptor Registers, or outside this
range (assuming that the Data Value Mask bit is 0.)

Bit 0: Data Value Mask-Controls the interpretation of the Data Value Descriptors. When the
Data Value Mask bit is 1, Data Value Descriptor 2 is used as a mask for Data Value
Descriptor 1. When the Data Value Mask bit is 0, the Data Value Descriptors specify the
upper and lower bounds of a value range.

Debug Status Register

The Debug Status Register contains breakpoint status and DSU enable flags as fol­
lows:

31

OxOOOOFF1 C, ASI=Ox1

Bits 31-6: Reserved

6543210

I I I I I I I
Data Address 2 Match ~ I I
Data Address 1 Match---.J

Instruction Address 2 Match ----'

Instruction Address 1 Match ----.....

-EMU_BRK at Reset ------'

-EMU_ENBL at Reset -------'

Figure 2-37. Debug Status Register

Bit 5: Data Address 2 Match-set to (1) if address matched. Software should clear this bit after
reading it.

Bit 4: Data Address 1 Match-set to (1) if address matched. Software should clear this bit after
reading it.

Bit 3: Instruction Address 2 Match-set to (1) if address matched. Software should clear this bit
after reading it.

Bit 2: Instruction Address 1 Match-set to (1) if address matched. Software should clear this bit
after reading it.

Bit 1: -EMU_BRK Asserted at reset-Holds the state of the -EMU_BRK pin during reset. Main­
tains its value until the next reset. -EMU_ENBL and -EMU_BRK are used to configure
the DSU at reset. This bit is read only.

Programmer's Model - Debug Support Unit

2-59

-

SP ARClite User's Manual

Bit 0: -EMU_ENBL Asserted at reset-Holds the state of the -EMU_ENBL pin during reset.
Maintains its value until the next reset. -EMU_ENBL and -EMU_BRK are used to config­
ure the DSU at reset. This bit is read only.

Breakpoint Descriptor Registers

The DSU contains two instruction address, two data address, and two data value
breakpoint descriptor registers as follows:

31

OxOOOOFFOO, AS=Ox1

31

OxOOOOFF04, ASI=Ox1

31

OxOOOOFF08, ASI=Ox1

31

OxOOOOFFOC, ASI=Ox1

31

OxOOOOFF10, ASI=Ox1

31

OxOOOOFF14, ASI=Ox1

Instruction Address Descriptor Register 1

Instruction Address Descriptor Register 2

o

Data Address Descriptor Register 1

o

Data Address Descriptor Register 2

o

Data Value Descriptor Register 1

o

Data Value Descriptor Register 2 or Mask Register

The instruction addresses, data addresses, and data values in these registers spec­
ify breakpoints that force breaks when encountered during program execution
and force the DSU to the break state. However, the breakpoints must first be
enabled and qualified in the Debug Control Register.

Once a breakpoint occurs, the monitor reads the Debug Status Register to identify
the breakpoint.

2.8.3 Breakpoint Traps

A breakpoint is a trap that changes the DSU state from the execute state to the
break state, and vectors to the breakpoint trap handler at address OxOOOOOFFO. A
breakpoint can be a hardware breakpoint (breakpoint address match, breakpoint
data match, single step trace, or DSU register write exception), or a software
breakpoint.

Programmer's Model - Debug Support Unit

2-60

rP
FUJITSU

Unlike other traps, the breakpoint trap ignores the Trap Base Register (TBA) and
the Single Vector Trap (SVT). The address of the breakpoint service routine is
always OxOOOOOFFO regardless of the TBA and SVT. A software breakpoint trap
updates the Trap Type (tt) field in the Trap Base Register, but a hardware break­
point trap does not update the tt field.

The breakpoint trap handler is exited by setting the -Break flag in the Debug Con­
trol Register, then executing the JMPL/RETT instruction pair to return to normal
program execution. It is the responsibility of monitor code to restore all register
window values (with the exception of the breakpoint trap window) to their pre­
break values before returning from the trap.

Breakpoint traps have Trap Type number 255, and have a higher priority than
other traps except RESET.

Instruction Address Breakpoints

An instruction address breakpoint occurs when an instruction address in the code
being debugged matches the address in either Instruction Address Descriptor
Register 1, or Instruction Address Descriptor Register 2. Each address must be
qualified and enabled in the Debug Control Register as follows:

(1) User or Supervisor mode instruction must be specified in the appropriate
bit, <15> or <14>.

(2) The breakpoint must be enabled in the appropriate bit, <6> or <5>.

The instruction address breakpoint trap is taken after the breakpoint instruction
has completed execution.

Data Address Breakpoints

A data address breakpoint occurs when a data address in the code being
debugged matches the address in either Data Address Descriptor Register 1, or
Data Address Descriptor Register 2. Each address must be qualified and enabled
in the Debug Control Register as follows:

(1) The data address ASI must be specified in the appropriate ASI field,
<31:24> or <23:16>.

(2) The breakpoint must be enabled in the appropriate bit, <8> or <7>.

The data address breakpoint trap is taken after the breakpoint instruction has
completed execution. Loads and Stores, for example, complete execution before a
resulting breakpoint trap is taken.

Programmer's Model - Debug Support Unit

2-61

-i

SP ARClite User's Manual

Table 2-26:

Data Value Breakpoints

A data value breakpoint occurs when data that is transferred by the code being
debugged falls within the range bounded by the values in Data Value Descriptor
Registers 1 and 2, falls outside of the range bounded by the values in Data Value
Descriptor Registers 1 and 2, or matches the bits in Data Value Descriptor Register
1 that are not masked by Data Value Descriptor Register 2. The data address must
also match the descriptor in Data Address Descriptor Register 1 or 2.

The type of data value breakpoint must be selected in the Debug Control Register
as follows:

(1) The data transaction type must be selected in field <3:2>.

(2) The data value condition must be selected in bit <1>.

(3) Masking or no masking must be selected in bit <0>

The Data Value Descriptor Registers work in one of two ways. If the Data Value
Mask bit in the Debug Control Register is 1, Data Value Descriptor 2 is used as a
mask for Data Value Descriptor 1. In this mode only those bits of the Data Value
Descriptor 1 for which the corresponding bits are 0 in Data Value Descriptor 2 are
compared with the transferred data. All other bits are ignored in the breakpoint
comparison.

If the Data Value Mask bit is 0, Data Value Descriptors 1 and 2 are the lower and
upper bounds, respectively, of a comparison range. The break condition is deter­
mined by the values of the Data Value Condition bit in the Debug Control Regis­
ter. If the Data Value Condition bit is a 0, the break condition is as follows:

Data Value Descriptor 1 5 Transferred Data 5 Data Value Descriptor 2

If the Data Value Condition bit is a 1, this break condition is inverted, changing
the comparison into an "out-of-range" test.

The Data Value comparison may be conditioned by the type of transaction (load
or store) that is being performed according to the Data Value Transaction Type
selection in the Debug Control Register as follows:

00 Break only on Loads
01 Break only on Stores
10 Break on Load or Store
11 Break Always

Break Always results in breakpoints based on data address only.

Programmer's Model - Debug Support Unit

2-62

cO
FUJITSU

The matching logic automatically masks unused bytes and halfwords in the data
transfer.

Single Step Tracing

Single step tracing is initiated by setting the Single Step flag in the Debug Control
Register while in break state, then returning to normal program execution by set­
ting the -Break flag in the Debug Control Register and executing the JMPL/RETT
instruction pair.

The next instruction in the program then executes, and the following instruction
traps if ET=1. If ET=O, the breakpoint trap remains pending until ET is set to 1.

DSU Register Write Exception Breakpoint

Attempted writes to a DSU register while in the execute state of monitor mode
results in a breakpoint. This breakpoint can be used by the monitor to force a
change from the execute state to the break state. It ET =0 when the breakpoint
request occurs, the breakpoint remains pending until ET=l.

Writes to the DSU registers are ignored in normal mode.

Software Breakpoint

A software breakpoint trap (Ticc255) functions the same way as other software
traps, and has a trap priority of 12. If ET =0 when the breakpoint occurs, the break­
point trap is ignored.

2.9 SPARC Compliance
SP ARClite processors are fully compliant with the SP ARC architectural specifica­
tion.

Compatibility with existing and planned SPARC standards is a cornerstone of the
SPARClite family strategy.

Compatibility assures:

1. a wide range of silicon implementations meeting different price/performance
targets.

2. a ready availability of native development environments and tools

3. a large and growing base of application software which is object code compat­
ible

4. an established and commerically viable processor architecture which is likely
to be around well into the future.

Programmer's Model - SP ARC Compliance

2-63

-i

SP ARClite User's Manual

The SP ARC architecture was originally developed by SUN Microsystems, Inc.
and first implemented by Fujitsu. SP ARC International has since been formed to
independently promote and control the evolution of the architecture.

All SP ARC processor implementations conform to one of two architecture revi­
sion levels. The first commercially available version of the architecture is referred
to as SP ARC architecture Version 7. All existing silicon implementations and con­
sequently SUN Microsystems, Inc. SP ARCstations™ (1, 1 +,2, SLC, ELC, IPC, IPX)
and SP ARC compatible workstations conform to Version 7. A revised version of
the SPARC architecture, Version 8, became final in March 1991. Future SPARC
workstations will migrate to SPARC Version 8 processors. All as and application
code written for Version 7 processors will run without modification on SP ARC
Version 8 processors. SP ARClite series processors conform to Version 8 of the
SP ARC Architecture.

Version 8 of the SP ARC Architecture adds these primarily features to Version 7.

• multiply- integer multiply instruction

• divide- integer divide instruction

• write/read ASR- read and write Ancillary State Register instructions which
are used as additional control registers and implementation definable control
registers

The architecture does not require that all instructions and features be imple­
mented, only that the processor will trap on unimplemented features so that they
can be emulated in software. SP ARClite implements the Version 8 multiply
instruction and read and write ASR instructions. The integer divide instruction is
not directly supported in hardware.

The MB86930 implements two instructions not defined by SPARC Version 8.
These are the Scan and Divide Step instructions~ These instructions are decoded
in unused opcodes and provide a superset of SP ARC Version 8. If code developed
using these instructions is run on Version 7 or Version 8 SP ARC processors other
than SPARClite an unimplemented instruction trap will occur.

Programmer's Model - SP ARC Compliance

2-64

111ft II1II II IIlUI IIIUI IIUM iii iii II iii II!

Internal Architecture

The internal architecture of SP ARClite family processors is illustrated in
Figure 3-1. The processor consists of a Clock Generator, an Integer Unit, separate
on-chip caches for data and instructions, a Bus Interface Unit, and a Debug
Support Unit to support the use of in-circuit emulators and target monitors. Inter­
nally, the various functional units are connected by separate instruction and data
buses. For connection with external memory and I/O, a unified address bus and a
unified data bus are extended off-chip. This chapter discusses the individual
functional units in turn, giving an overview of the flow of data and control signals
through the processor.

Internal Architecture -

3-1

SP ARClite User's Manual

CLOCK
GENERATOR

CLK...OUT
SPARe INTEGER UNIT

t:: z
DATA :::>

~
BUS f? EMULATOR ADDRESS INTERFACE Il.

UNIT :::> BUS
en

ASI Cl
:::>
In w

CONTROL Cl
DRAM SUPPORT

PWG
CHIP_SEL 16-BITTIMER

PAGE_DET
ADDRESS

REFRESH DECODE

Figure 3-1. Internal Architecture (Block Diagram)

3. 1 Integer Unit
The Integer Unit (IV) is a compact, fully custom implementation of the SPARe
architecture. It is hard-wired for maximum performance; that is, it uses no micro­
code. It contains three functional units:

• Instruction Block-Contains the instruction pipeline; decodes instructions into
control signals for the other blocks.

• Address Block-Performs all instruction-address manipulations.

• Execute Block- Performs all data manipulations; generates operand addresses
for load and store instructions and effective addresses for some of the control
transfer instructions.

As shown in Figure 3-2, the IU is based on a Harvard (Aiken) architecture. There
are separate address buses for instructions and data. There are also two 32-bit
data interfaces: the instruction data bus, and the data bus. The use of these four

Internal Architecture - Integer Unit

3-2

00
FUJITSU

buses allows the IV to retrieve data and instructions simultaneously from on-chip
cache.

I DATA

I ladder~ I 1 read 1

REGISTER FILE

read 41 read 2 read 3

I ir I
1 I

t + ! +
I I

I e ir I + + +
l

.~
I A I I B I

I m_ir I + t
+ ~ / l w_ir I I pc I ALU I SHIFTER

l + I R Register I
I d_pc I -m-• • t
I e pc I I PSRlWIMIY I I Data Address I ! + L- / sLalign / / Id align /
I I m-pc

f
INSTRUCTION ADDRESS EXECUTE

BLOCK BLOCK BLOCK

I ADDRESS D ADDRESS D DATA

Figure 3-2. Integer Unit Data Path

3. 1. 1 I Block

The instruction block (I Block) contains the five-stage instruction pipeline and the
logic which decodes instructions into control signals for the rest of the IV. The
I block detects all bypass and interlock conditions.

The main interfaces to the I block are:

• Instruction data bus from the instruction cache or main memory.

• Immediate data field which goes to the A block for computing PC relative
control transfers, and to the E block to be used as immediate data.

• Control signals to the A block and E block, including the register file read and
write addresses, register enable signals, multiplexer controls, and partly or
fully decoded operation codes for the ALV /Shifter.

• Status signals back from the E block, including possible trap conditions such
as memory _address_noCaligned or tag_overflow.

Internal Architecture - Integer Unit

3-3

SP ARClite User's Manual

Instruction Pipeline

The ill implements a five-stage instruction pipeline to allow a sustained execu­
tion rate of nearly one instruction per cycle. The operation of the pipeline under
ideal conditions is illustrated in Figure 3-3. The pipeline consists of the following
stages:

1. Fetch (F)-One of the instruction memory spaces is addressed and returns an
instruction. (The figure below assumes a hit in the instruction cache.)

2. Decode (D)-The instruction is decoded; the register file is addressed and
returns operands.

3. Execute (E)-The ALU computes a result.

4. Memory (M)-External memory is addressed (for load and store instructions
only; this stage is idle for other instructions).

5. Writeback (W)-The result (or loaded memory datum) is written into the
register file.

Fetch Instruction 5 6

Decode Instruction 4 5 6

Execute Instruction 3 4 5

Memory Instruction 2 3 4

Write-Seck Instruction 1 2 3

Figure 3-3. Instruction Pipeline

No instructions execute out-of order; that is, if instruction A enters the pipeline
before instruction B, then instruction A necessarily reaches the writeback stage
before instruction B does.

The control logic for the instruction pipeline is illustrated in Figure 3-4. At each
cycle a horizontal control word is available which is wider than 32 bits and con­
trols every multiplexer, latch-enable, and unit op-code in the chip. The horizontal
control word is composed of control signals active during the decode stage of
instruction N, the execute stage of instruction N-l, the memory stage of instruc­
tion N-2 and the writeback stage of instruction N-3. Some control bits require no
decoding and are simply hardwired from the appropriate bits in the instruction
register. Because the SP ARC instruction set is not completely orthogonal (not
every instruction field has the same meaning in every instruction) most bits
require some decoding based on a single instruction in the pipeline. Some control

Internal Architecture - Integer Unit

3-4

cO
FUJITSU

bits require decoding using logic that looks at two instructions in the pipeline, as,
for example, in controlling multiplexers to select data bypass paths.

Instructions

Combinational
Logic

Horizontal
Control Word

Figure 3·4. Instruction Pipeline Control Logic

Pipeline Hold

The IV does not complete one instruction on absolutely every cycle. On a load
instruction, for example, external memory may be slow in returning the requested
data. Because the IV does not execute or complete instructions out of order, the
pipeline must be held up until the requested data is returned. Only then can the
instruction complete and only then can the subsequent instructions continue.

There are also some hazards built into the IV datapath which require interrupting
the one-cycle-per-instruction sequence of the pipeline. For example, a double­
word load cannot be performed in one cycle because there is not enough memory
or register-file bandwidth to move the data through the datapath. Another exam­
ple is a load to a register which is followed by an instruction which uses that
register. Because the operand of the second instruction is required in the decode
stage but is not available, this instruction must be delayed until the operand is
available.

Conditions which hold up the processor pipeline are handled uniformly by the
I Block control logic and are referred to as hold conditions. A complete list of possi­
ble hold conditions is given in Table 3-l.

Table 3·1: Conditions Which Cause a Pipeline Hold

Name Description Pipeline Stage Instruction Affected

ihold Processor is attempting to fetch an Fetch Any instruction
instruction that is not yet available.

dhold Data is not yet available Memory Loads and Stores

mhold Multiplication in progress Execute Integer Multiplication

Internal Architecture - Integer Unit

3-5

•

SP ARClite User's Manual

Table 3-1: Conditions Which Cause a Pipeline Hold

Name Description Pipeline Stage Instruction Affected

Interlock An instruction in the pipeline must Load/Use and CALU
wait for some prior instruction to be Use r15 Instruction
completed (through Writeback). Pairs

Multicycle An instruction which inherently Execute Load and Store
Instruction requires more than one cycle is in the Double-word, Atomic

pipeline Load/Store

The interlock conditions are:

• Load/Use Instruction Pairs-If a load instruction which has rd=N as its
destination register is followed by an instruction which uses rs=N as one of its
source operands, then the load must proceed through Writeback before the
following instruction can enter the Execute stage.

• CALL/Use %rIS Instruction Pairs-Similarly, since the CALL instruction
implicitly writes the current value of the PC into rIS, it must proceed to
Writeback before any following instruction which uses r1S can enter the
Execute stage.

Any time an interlock is detected, a NOP is inserted into the pipeline. The address
block is signaled, so that the address of the instruction which causes the interlock
is replicated in the address pipe. The NOP itself cannot cause a trap.

The multicycle instructions are LOO, LOOA, STO, STOA, LOSTUB, LOSTUBA,
SWAP, and SWAP A. When a multicycle instruction enters the Execute stage, it
and the instruction in the d_ir register are frozen for an additional cycle.
Although it is possible to detect a multicycle instruction while it is in the Decode
stage (unlike interlocks, which cannot be detected without looking at two instruc­
tions, those in the d_ir and e_ir registers), the I Block allows it to progress to the
Execute stage before a hold is generated and inserted. This simplifies control
somewhat because there are fewer points at which the pipeline must be held.

Note that the maximum number of internally generated hold cycles an instruction
can cause is two, as in the following case:

LDD [%rl+%r2l,%Or4
ADD %r5,%r5,%r6

The LOO takes two cycles, and it generates an interlock because the next instruc­
tion uses the data loaded in the second data memory cycle of the LOO instruction.

When a hold condition occurs, combinational logic generates one or more freeze
signals, which prevent latches from being updated, and hence keep the pipeline
from advancing. For some holds-dhold, for example-the entire pipeline is

Internal Architecture - Integer Unit

3-6

OJ
FUJITSU

frozen, with freeze signals being generated for all stages in the pipeline. For other
holds-interlock conditions, for example-later stages in the pipeline must
advance for the hold condition to be resolved. Thus only the earlier stages of the
pipeline are frozen.

Trap Logic

SPARClite supports precise traps; that is, when a trap occurs, the saved program- _
mer-visible state of the processor reflects the completion of all instructions prior -r
to the trapped instruction, and no subsequent instructions including the trapped
instruction. Thus, when an instruction causes a trap, one of two statements is true:

• No results from that instruction have been written into the programmer­
visible registers (the register file or the PSR, TBR, WIM, or Y registers).

• Or, if data has been written into a programmer-visible register, the data
contained in that register prior to being written by the trapped instruction is
saved by the processor and can be restored when the trap is taken.

Table 3-2 shows the pipeline stages in which the various trap conditions are
detected.

Table 3·2: Detection of Trap Conditions

Priority Trap Type Stage Detected Trap

1 reset (hardware reset)

1 - D reset
2 1 F instruction_access_exception
3 3 D priv_instruction
4 2 D iliegaUnstruction

5 4 D fp_disabled
5 36 D cp_disabled
6 5 D window_overflow
7 6 D window_underflow

8 7 E mem_address_not_aligned
10 9 M data_access_exception
11 10 E tag_overflow
12 128-254 D trap_instruction (Ticc)
13 255 F instruction_breakpoint
13 255 M data_breakpoint

14 31 interrupUeveL 15
15 30 interrupUevel_14

28 17 interrupUeveL 1

Internal Architecture - Integer Unit

3-7

SP ARClite User's Manual

As shown in Table 3-2, the latest stage in which a trap can be detected is the Mem­
ory stage (a data memory exception for a load or store). If a programmer-visible
register is updated prior to this stage, its original contents must be restored when
and if the trap is taken.

Due to the pipelined operation of the lU, a trap condition for one instruction may
actually be detected before a trap condition for a prior instruction. Thus, it is nec­
essary to align the detected trap conditions so that all trap conditions for instruc­
tion N are considered together, before considering any trap conditions resulting
from instruction N+ 1.

The trap coder is illustrated in Figure 3-5. Its purpose is to align in time the (possi­
bly multiple) trap sources for a single instruction, to determine if a trap is to be
taken or not, and if so, to determine the highest priority trap and code its trap
type.

FetCh-stage trap sources

Decode-stage trap sources

Execute-stage trap sources

Memory-stage trap sources

Memory-stage
instruction reg

t

- r-

t

I
t t

I I I
t t
Combinational Block

qualify, prioritize, encode

Figure 3-5. Trap Coder

t

I
t

I I
t

I I
t

- t-

- f.

trap? yes/no

trap type
{to A block)

When a trap is taken, the trap type field goes to the A Block where it is used
immediately as a trap target address (when concatenated with the Trap Base
Address) and is latched into the Trap Base Register.

3. 1.2 A Block
The A Block contains the address pipeline. Along with the E Block, it is responsi­
ble for all instruction-address manipulations. The A Block executes the CALL and
Bicc instructions. The A Block and E Block are used together to execute the JMPL,
Ticc, and RETT instructions; in these cases, the A Block controls the update of the
Program Counter. The A Block's main interface to the rest of the chip outside the
IV is the instruction address bus.

Internal Architecture - Integer Unit

3-8

c:P
FUJITSU

The address pipeline is illustrated in Figure 3-6. The fetch-stage program counter
(PC) is used to address instruction memory via the instruction address bus.
Because a CALL, JMPL, or trap may require that the address of an instruction be
written back to the register file, the address of every instruction tracks the instruc­
tion itself in the instruction pipeline so that it is available in the memory stage if it
needs to be written back to the register file. These address pipeline registers are
the decode, execute, and memory program counters. Each of these registers con­
tains the address from which the instruction in the corresponding instruction
register was fetched.

trap type
(from I Block) --------------I----~=i_- writable

immediate data
(30 bits) -----,

jump address
(from E Block)

,.-L-~

instruction address
(to instruction memory)

return address
(to E Block)

Figure 3-6. Address Pipeline

The PC has five possible sources:

1. +4 incrementer, for normal, sequential instruction fetch.

2. The address adder, for PC-relative control transfer (Bicc or CALL instruction).
The immediate data field contains offset information and comes from the
I Block.

Internal Architecture - Integer Unit

3-9

-!'

SP ARClite User's Manual

3. The jump address for a JMPL or RETT instruction. The jump address bus
contains jump target information, and comes from the E block by way of the
register file and ALD.

4. The TBR, concatenated with the trap type (tt) or with zeroes (when Single­
Vector Trapping is enabled), on a Ticc instruction or an interrupt or trap. The
trap type comes from the trap priority encoder, part of the I Block; when
concatenated with TBR[31:12], it gives the target address for a trap.

5. Zeroes, concatenated with the trap type, for reset.

Note that 1/+4" is used to indicate that the (byte) address is incremented by 4 to
fetch the next instruction. In reality, the two least significant bits of the address
are not implemented in hardware because they are never used. Word alignment,
for the case of a jump address coming from the E Block is verified in the E Block
(and to some extent, the I Block).

The return address bus is written back to the register file in the case of a CALL,
JMPL or Trap.

Several control signals come from the I block. These include:

• PC input-select signals which control the PC input multiplexer.

• The address adder control signal, which determines whether a 3D-bit or a 22-
bit immediate address field is added to the previous value of the PC (now
found in the decode-stage PC).

• Pipeline freeze signals which can prevent the updating of registers in the
pipeline when a hold condition is detected.

3. 1.3 E Block

The E Block is responsible for all IU data manipulations. It generates operand
addresses for load and store instructions and effective addresses for some of the
control transfer instructions.

As shown in Figure 3-7, the E Block contains the Store Align Unit (SAU), the Load
Align Unit (LAU), the Register File (RF), and the Adder, Shift, and Logic Unit
(ASLU). The E Block also contains the result bypass logic that determines which
operands are driven into the ASLU, and the store bypass logic that determines
what data is latched for stores.

Internal Architecture - Integer Unit

3-10

I read 1

REGISTER FILE

read 4 I read 2 read 3

I

1 ~ 1 I
~ t t

I A I I B I
+ j

~ ALU / SHIFTER /
t

I R Register I

t t 0-
I PSRIWIMIY I I Data Address I 1 L- / st align / / Id align /

t
EXECUTE

BLOCK

D ADDRESS D DATA

Figure 3-7. Execute Block

Adder, Shift, and Logic Unit (ASLUJ

OJ
FUJITSU

The ASLU incorporates an integer adder, a barrel shifter, a logic unit, and a scan
unit. The integer adder calculates the results of the addition, subtraction, multi­
ply-step, and divide-step instructions, and generates the carry, overflow, nega­
tive, and zero condition code values. It is used in load and store operations to
calculate effective data addresses, and in register-indirect control transfers to cal­
culate the new address to be placed in the PC register of the A Block. The integer
adder also serves the multiplication unit by adding the "sum" and "carry" vectors
during integer multiplications. The barrel shifter/logic unit executes the logic and
shift instructions. The scan unit exists solely to support the scan instruction.

Results from the integer adder, the barrel shifter, the logic unit, and the scan unit
are multiplexed into the R (Result) Register. Results from the integer adder are
also made available to the Y Register.

Register File

The register file contains 136 registers of 32 bits each. The organization of these
registers into windows is discussed in the Programmer's Model chapter. The regis­
ter file has one write port and three read ports. The write port is used for the
instruction destination register (denoted rd in instruction descriptions). Two of
the read ports are used for the two instruction source registers (rs1 and rs2). The

Internal Architecture - Integer Unit

3-11

-

SP ARClite User's Manual

remaining port is used for the data to be stored when a store or swap instruction
is executed. In this way, even store instructions can be executed in a single cycle.

The register file also contains the address decoders for all four ports. Each address
presented to the decoders consists of 8 bits derived from an instruction field and
the Current Window Pointer. These are physical addresses into the register file
memory array.

Bypass Logic

As shown in Figure 3-7, the A and B operand registers have inputs which come
from sources other than the register file or immediate data bus. These inputs are
results from previous instructions which have not yet written back to the register
file. There are two such bypass paths in the E Block:

• Result Bypass-The result of an ALU operation in the R register is written back
to the A or B operand register in the Memory stage of the following ALU
operation.

• Write Bypass-The data in the W register is written to the A or B operand
register, in the Writeback stage.

The result bypass path is selected when one instruction generates a result that can
be used by the immediately following instruction. More precisely, if an instruc­
tion in the Decode stage of the pipeline has rs1 = N and the instruction in the
Execute stage has rd = N, the rs1 operand will not come from the register file, but
directly from the R register in the ALU through the result bypass. Since an inter­
vening SAVE or RESTORE instruction may have changed the Current Word
Pointer, it is the physical addresses of the register source and destination which are
compared, not the logical addresses (which depend on the CWP).

As an example, consider the instruction sequence:

add %rl, %r2 , %r3
add %r3, %r4, %r5

rl + r2 -> r3
r3 + r4 -> r5

The second add instruction takes its A source operand not from the register file
but directly from the result of the ALU, through the result bypass.

The write bypass is selected when an instruction in the Decode stage has rs1 = N
and the instruction in the Memory stage has rd = N. In this case, the rs1 operand
will not come from the register file, but from the W register through the write
bypass. In the following instruction sequence, the third instruction uses the write
bypass as its A source operand:

Internal Architecture - Integer Unit

3-12

add %rl, %r2 , %r3
add %r4, %rS, %r6
add %r3 , %r7 , %r8

rl + r2 -> r3
r4 + rS -> r6
r3 + r7 -> r8

If both bypass conditions apply, the result bypass takes precedence.

cO
FUJITSU

There is a third bypass path, called the store bypass. It can be seen in Figure 3-7.
The register file has a dedicated store port which is used for reading the rd regis­
ter of a store instruction; this register contains the data to be stored. The store port
is read in the Execute stage of the store. When a store and the immediately pre­
ceding instruction access the same rd register, a bypass from the Writeback stage
of the preceding instruction to the Memory stage of the store is needed. In the
code sample below, the result of the first instruction becomes available to the
Memory stage of the store by means of the store bypass path.

add %rl, %r2 , %r3
st %r3, [%r4+%rS]

Branch Evaluation Logic

rl + r2 -> r3
r3 -> mem[r4 + rS]

The branch evaluation logic, which forms part of the E Block, evaluates branch
conditions based on the current values of the integer condition codes of the PSR
register. The icc bits n (negative), z (zero), c (carry) and v (overflow) form part of
the branch evaluation block. The interpretation of these bits is discussed in the
Programmer's Model chapter.

There are several ways the icc bits can be modified. First of all, they can be written
and read via the jump address bus by the instructions WRPSR and RDPSR.

Certain arithmetic instructions modify the icc bits as a side effect. When one of
these instructions is executing, the new icc values are generated in the E Block
during the Execute stage, latched at the end of this stage, and loaded into the PSR
during the Memory stage.

Another path leads to the icc bits from the Writeback-stage copy of the PSR. When
a trap occurs on an instruction which alters the icc bits, this path allows the pre­
trap icc values to be restored to the PSR.

The combinational logic which does the branch evaluation for the IV condition
codes has as inputs:

• Integer Condition Codes-Directly from the ALU, if the instruction in the
Execute stage is one of those that can modify the icc; from the multiplication
unit; or from the icc bits of the PSR, if the instruction in the Execute stage is not
one that can modify the icc.

Internal Architecture - Integer Unit

3-13

•

SP ARClite User's Manual

• The cond Field-From the branch instruction in the Execute stage. (See the
discussion of the Bicc instruction in the Programmer's Model chapter.)

• Bicc Indicator-A control signal indicating whether or not the instruction in the
Decode stage is a Bicc instruction. This signal remains valid into the Execute
stage.

The output of the combinational logic is a single signal which, when active, causes
the branch target address to be loaded into the PC during the Execute stage;
otherwise, PC+4 is loaded into the Pc.

Load Align Unit (LAU) and Store Align Unit (SAU)

The LAU and SAU align data for loads and stores, respectively. Bytes and half­
words to be loaded are right-justified in a 32-bit word, and either sign-extended
or zero-extended on the left, depending on whether the load instruction specified
signed or unsigned operation. The LAU performs the alignment and extension
during Writeback.

Byte and halfword stores take their data from the least significant byte or half­
word of the register specified in the instruction's rd field. The SAU performs the
necessary alignment for writing the data to the byte or halfword memory address
specified in the instruction.

Multiply Unit

The E Block contains hardware to perform integer multiplications. The Multiply
Unit (MU) multiplies two 32-bit signed or unsigned integers to produce a 64-bit
product. Some multiplication instructions modify the integer condition codes as a
side effect; others do not. The multiplication instructions are discussed in the
Programmer's Model chapter.

The multiply hardware implements a version of Booth's algorithm. Booth's algo­
rithm is similar to a "shift and add" multiply algorithm in that it scans the multi­
plier from the least significant to the most significant bit and, based on the bit
string encountered, iteratively adds the multiplicand to produce partial products.
It is also similar in that the resulting partial product is right shifted to ready it for
the following iteration of the algorithm. Booth's algorithm differs from a "shift
and add" algorithm in that it can also be used directly with a negative multiplier
(whereas "shift and add" requires a positive multiplier). It differs also in that the
hardware must provide for both addition and subtraction of the multiplicand. In
particular, a I-bit Booth's algorithm examines two multiplier bits per iteration,
looks for a bit transition, and either adds the multiplicand, subtracts the multipli­
cand, or adds zero to the existing partial product to produce the new partial prod­
uct. It "retires" one bit of the multiplier per iteration. For a I-bit Booth's, Table 3-3

Internal Architecture - Integer Unit

3-14

OJ
FUJITSU

shows the possible bit transitions encountered in the multiplier and the value
which is added to the multiplicand for each transition.

Table 3·3: Booth's Algorithm

Multiplier Bits

Current Previous Add to Shifted Partial Product

0 0 +0
0 1 +multiplicand
1 0 -multiplicand
1 1 +0

This technique can be extended so that more than one bit is examined during a
given iteration. In particular, the MU performs an 8-bit Booth's algorithm. It
examines 9 bits of the multiplier at a time and, based on the eight transitions of
these nine bits, determines what multiple of the multiplicand to add to the old
partial product to produce the new partial product. The addition is performed in
theALSU.

The MU produces 8 bits of the final product and "retires" 8 bits of the multiplier
per cycle, and therefore requires only 5 cycles to do a 32x32 bit multiply (produc­
ing a 64-bit result).

The execution of the instruction is controlled by a synchronous state machine
which generates control signals for the multiply hardware. Since instructions do
not execute out of order, the Integer Unit (IU) must be frozen during the multiply
instructions which take more than 1 cycle. Conceptually, the multiply instruction
goes through all the pipeline stages (F,D,E,M,W), but its Execute stage is from 1 to
5 machine cycles long. During the Fetch and Decode stages, the multiply instruc­
tion progresses like other instruction.

3. 1.4 Programmer-Visible State and Processor State

The SP ARC Architecture defines the programmer-visible state of the processor as a
collection of registers, and then specifies the effects of instructions in terms of
these registers. These definitions implicitly assume that every instruction com­
pletes before the next one begins. The SPARClite processor, however, is pipe­
lined, so that normally four subsequent instructions begin before the first one
completes. The actual processor state (excluding the register file) therefore encom­
passes more than the programmer-visible state. For most of the programmer­
visible registers, there is a corresponding register in the processor associated with
the Writeback stage of the pipeline. That is, instructions normally update the reg­
ister file and programmer-visible state registers in the Writeback stage.

Internal Architecture - Integer Unit

3-15

•

SP ARClite User's Manual

An instruction may update staged copies of the PSR before Writeback, making the
new values available to subsequent instructions sooner, but these staged copies
are not user visible. The PSR associated with the Writeback stage can never be
updated early; if an instruction traps, it will not have altered any state which can
not be restored.

3. 1.5 IU Support for Debugging
The IU supports the on-chip Debug Support Unit as well as external ICE circuitry
and software with the following features:

• A special breakpoint trap type instruction_breakpoint/ data_breakpoint: This
is a synchronous trap with trap type 255. It is analogous to the instruction_
access_exception and data_access exception traps, but has the following special
characteristics:

• Any instruction can cause a breakpoint exception (unlike the data_access_
exception, which can only occur for load/ store instructions).

• The trap vector for this taken trap is not the TBR concatenated with the trap
type, but zero concatenated with the trap type. That is, the trap target
address is OxOOOOOFFO regardless of the value in the TBR.

3.2 Data and Instruction Caches
The SP ARClite architecture provides separate data and instruction caches, allow­
ing designers to build high-performance systems without incurring the cost of
fast external memory and its associated control logic. The software-visible fea­
tures of the caches are discussed in detail in the Programmer's Model chapter,
above.

The data and instruction caches are accessed independently over separate data
and instruction buses, allowing data to be loaded from and stored to cache at
peak rates of one cycle per instruction. The instruction cache is read-only, one
word at a time. The data memory is readable and writable by bytes, halfwords,
words or doublewords.

In the MB86930 processor, each cache is 2 Kbytes in size, organized into two
banks of sixty-four 16-byte lines. Cache lines are refilled in 4-byte increments to
avoid the interrupt latency incurred by long, uninterruptible cache line replace­
ments. In a unified (instruction and data) external memory, the instruction and
data memory segments should be at aligned 4-word (line size) boundaries.

The instruction cache has four major RAM arrays. There are two arrays for
instruction memory and two arrays for tags. In addition to the tag memory, the
tag arrays also contain the logic to compare the address tag with the address that

Internal Architecture - Data and Instruction Caches

3-16

cP
FUJITSU

is being accessed. It also checks the VALID bits in the tag. The hit-detection logic
is illustrated in Figure 3-8.

881 882
~--, ,--,
j ,

ADA <31:2>

ADA <31:10>

ASI <7:0>

~ --------------- --------------------------- ---:

HIT 1 HIT 2

Figure 3-8. Cache Hit Detection Logic

The organization of the data cache is similar to the instruction cache. In addition,
the data memory has individual write control for each byte. This makes it possible
to do byte or half-word writes without using read-modify-write cycles.

3.3 Bus Interface Unit
The Bus Interface Unit (BIU) contains the logic which allows the processor to
communicate with the system. The BIU receives requests for external memory
and I/O accesses from the cache control logic. When the BIU performs a read, it
returns the data to both the cache and the ill. Parallel paths make the data avail­
able to the IV in the same cycle that it is written to the cache. The Bill also handles
external requests for control of the bus. The external signals of the Bill, and the
relative timing of events in typical bus operations, are discussed in the External
Interface chapter, below. That chapter also treats the various system-support
features of the processor in detail.

3.3. 1 BuHers

The Bill has a one-word (32-bit) write buffer to hide external memory latency
from the IU. When the BIU receives a request for a write transaction it stores the
write data and address in the write buffer and indicates the completion of the
write to the IU. It then proceeds to complete the write to external memory. This
allows the IV to continue operation from the cache. The write buffer can be

Internal Architecture - Bus Interface Unit

3-17

•

SP ARClite User's Manual

enabled by setting bit 5 of the Cache/BIV Control Register, as discussed in the
Programmer's Model chapter, above. The write buffer enable bit should be written
to, only when the instruction and data caches are off. The write buffer works only
when both instruction and data caches are on.

The BIV also has a one-word prefetch buffer for instruction fetches. After an
external instruction fetch, the prefetch buffer will initiate an access to the next
sequential address, on the next available cycle. Instructions are prefetched only
when the BIV does not have a request for a bus transaction from the IV, and no
external device is requesting use of the bus. Prefetching is suspended if the buffer
is full; this occurs if the prefetched instruction is a hit in the instruction cache or if
the prefetched instruction is not used as in the case of a branch to a different
address. The buffer restarts again after the next instruction cache miss. If an
exception occurs during an instruction prefetch, the exception is not sent to the IV
unless the instruction is actually requested by the IV. The prefetch buffer operates
only when the instruction cache is on.

3.3.2 Exception Handling

The external memory system can indicate an exception during a memory opera­
tion by asserting the -MEXC input. If -MEXC is asserted during an instruction
fetch, the BIV indicates an instruction memory exception to the cache control
logic and the Ill. If -MEXC is asserted during a data fetch, the BIV indicates a
data access exception to the cache control logic and the Ill.

As indicated above, the IV can continue to operate after putting the data and
address for a store into the write buffer. If an exception is detected while complet­
ing this buffered write then the BIV indicates a data access exception. Any system
which wants to recover from this error should store the address and data for the
write causing the exception, in a register. It should also have a status bit to indi­
cate that the exception was caused during a write operation. It will be the respon­
sibility of the data access exception service routine to determine the cause of the
exception and recover accordingly.

3.3.3 ERect on the Pipeline

The pipeline hold signals, ihold and dhold, are generated if an instruction or data
cannot be made available in the cycle that it is required by the pipeline. Normally
ihold and dhold are not asserted if the required instruction or data is already in
cache. On the other hand, if a cache miss occurs the cache controller requests that
the appropriate data or instruction be fetched from the external system. On a
cache miss, the transaction will be available on the bus in the following clock cycle
if nothing of higher priority is pending (see below). A bypass exists that allows an

Internal Architecture - Bus Interface Unit

3-18

cP
FUJITSU

instruction or data word to be made available in the same cycle that it is being
written into cache.

In general the following hierarchy rules apply to the bus interface unit:

• the bus cycle currently in progress will complete

• if the write buffer is full, the buffer will be emptied

• if there is a pending request for a load or store operation it will be serviced

• if there is a pending request for an instruction it will be fetched

• if the prefetch buffer is empty, a prefetch cycle will be initiated

This section illustrates the effect of bus operations on the instruction pipeline for
some representative cases.

Case J: Cache Hits

Figure 3-9 illustrates a sequence of hits in the instruction cache. The instruction
fetched in cycle 0 is a STORE to location OxFO. The data is written to the Write
Buffer in cycle 3, and to the bus in cycle 4. Since the write buffer is empty, the
pipeline can move at a rate of one instruction per cycle, even when handling a
STORE. LOAD instructions also do not hold up the pipeline, provided the source
of the load is in the data cache.

o 2 3 4 5 6 7 S

Ready Line

Fetch Oxoo Ox04 Oxos OxOC Oxl0 Ox14

Decode OxOO Ox04 OXOS OxOC Oxl0 Ox14

Execute OxOO Ox04 Oxos OXOC Oxl0 Ox14

Memory OxOO Ox04 Oxos Oxoc Oxl0 Ox14

Wrlte·Back

Cache Status I hit I hit I hit

Configuration: Instruction Cache: ON
Data Cache: -

OxOO Ox04 Oxos Oxoc Oxl0

I hit I hit

Pre-Fetch Buffer: Enabled
Write Buffer: Enabled

Memory Wait-State:

9

Figure 3-9. Pipeline Operation: Cache Hits

10 11 12

Internal Architecture - Bus Interface Unit

3-19

•

SP ARClite User's Manual

Case 2: Prefeteh Buffer Disabled

Figure 3-10 illustrates the operation of the pipeline on instruction cache misses
when the prefetch buffer is disabled. The address of each missed instruction is
available on the processor external bus in the cycle following the miss. Since data
becomes available to both the IV and the cache on the same cycle, the pipeline can
proceed in the cycle immediately following the cycle in which the data appears on
the external bus.

o 2 3 4 5 6 7 6 9 10 11 12

Ready Line ,

Fetch OXOO Oxoo Oxoo Ox04 0x04 OX04 Ox06 •••

Decode

I

OXOO OxOO OxOO

I

OX04 0x04 OX04

Execu1e OXOO OxOO OXOO Ox04

Memory OXOO

Write-Back

Cache Status I miss s1a1l slall I miss s181l stall I miss stall s18l1 , ;

Configuration: Instruc1ion Cache: ON Pre·Fetch Buffer: Disabled Memory Wait·S18te:
Da18 Cache: - Write Bulfer:

Figure 3-10. Pipeline Operation: Prefekh Buffer Disabled

Internal Architecture - Bus Interface Unit

3-20

Case 3: Pre/etch Buffer Enabled

OJ
FUJITSU

Figure 3-11 illustrates the operation of the pipeline on instruction cache misses
when the prefetch buffer is enabled. The address of the instruction missed on
cycle 0 is available on the system bus in cycle 1. In cycle 3, the pre-fetch buffer
logic drives the next sequential word address onto the address lines. The instruc­
tion cache miss at this location therefore causes the pipeline to be stalled for only
one cycle. Contrast this with Case 2, above. Since the prefetched instruction is .. , .'
actually used by the processor, the prefetch buffer drives the next sequential
word address in cycle 5. This saves a cycle on each access when executing sequen-
tial code not already in cache.

Fetch OxOO OxOO OXOO Ox04 Ox04 Ox08 OxOS

Decode OxOO OXOO Ox04 Ox04

Execute OxOO OxOO Ox04

Memory

Write-Back

Cache Status I miss stall stall I miss stall I miss stall I miss

Configuration: Instruction Cache: ON Pre-Fetch Buffer: Enabled Memory Wait-State:
Data Cache: - Write Buffer:

Figure 3-11. Pipeline Operation: Prefetch BuHer Enabled

Internal Architecture - Bus Interface Unit

3-21

SP ARClite User's Manual

Case 4: Data Cache Off

Figure 3-12 illustrates the operation of the pipeline on loads, with the data cache
turned off and the instruction cache turned on. The instruction fetched in cycle 0
is a LOAD from memory location OxFO. The data is fetched when this instruction
reaches the Memory stage in cycle 7. Since the data cache is off, the data must be
fetched externally; this delays the next instruction fetch until cycle 9.

Whenever a prefetch operation is held up by a load or store operation, the pre­
fetch buffer address gets updated if the instruction it is pointing to is a hit in the
instruction cache. Therefore, when prefetch starts at cycle 9 the IAOxlO instruction
address goes out on the address bus instead of OxOc which has already hit in the
cache.

o 2 3 4 5 6 7 8 9 10 11 12

Ready Line

Fetch OxOO OxOO OxOO Ox04 Ox04 Ox08 Ox08 OxOC Oxoc Oxl0 Oxl0 Oxl0 Oxl0

Decode OXOO OXOO Ox04 Ox04 Ox08 Ox08 OxOC 0x0C OXOC Oxoc

Execute OXOO OXOO Ox04 Ox04 Ox08 Ox08 Ox08 Ox08

Memory OxOO OXOO Ox04 Ox04 Ox04 Ox04

Write-Back OXOO

Cache Status I miss stall stall I miss stall I miss stall D Fetch
1M

stall I miss stall stall

Configuration: Instruction Cache: ON Pre-Fetch Buffer: Enabled Memory Wait-State: 1
Data Cache: OFF Write Buffer:

Figure 3-12. Pipeline Operation: LOAD with Data Cache Turned OH

Internal Architecture - Bus Interface Unit

3-22

Case 5: Data Cache Miss

cP
FUJITSU

Figure 3-13 illustrates the operation of the pipeline on loads, when the data access
misses in the cache. The instruction fetched in cycle 0 is a LOAD from memory
location OxFO. The data is required when this instruction reaches the Memory
stage in cycle 7. The access misses in the cache, so the data must be fetched exter­
nally. At cycle 7, the prefetch operation has already started so the external load
operation is delayed until the prefetch completes. At cycle 9, the external load
operation takes place. At cycle 11, the now empty prefetch buffer initiates the next
sequential instruction fetch at address OxlO.

o 2 3 4 5 6 7 s 9 10 11 12

Ready Line

Fetch Oxoo Oxoo Oxoo Ox04 Ox04 Ox08 OXOS OxOC Oxoc Oxoc Oxoc OxOC

Decode OxOO OxOO Ox04 OX04 OxOS OxOS OxOS OXOS OxOS OxOC

Execute OxOO OXOO Ox04 Ox04 OX04 OX04 Ox04 OxOS

Memory OxOO OxOO OxOO OxOO OxOO Ox04

Write-Back OxOO

Cache Status I miss stall stall I miss stall I miss stall !/Dmiss stall stall stall stall stall

Configuration: Instruction Cache: ON Pre·Fetch Buffer: Enabled Memory Wait·State:
Data Cache: ON Write Buffer:

Figure 3-13. Pipeline Operation: Data Cache Miss

Internal Architecture - Bus Interface Unit

3-23

• !

SP ARClite User's Manual

Internal Architecture - Bus Interface Unit

3-24

R

iii iii iii l1li iii iii iii l1li iii iii iii iii l1li iii

Externallnterface

The processor's external interface consists of signals, bus operations, and system
support functions. This chapter details the MB86930 signal set, gives the relative
timing of events in the principal types of bus operation, and describes the pro­
grammable wait-state generator, on-chip timer, and same-page detection logic.
For specific electrical and timing values, see the MB86930 Data Sheet. The System
Design Considerations chapter of this document discusses issues that are likely to
arise in the design of any SP ARClite system.

4.1 Signals
The processor's external signals are illustrated in Figure 1-6 of the Overview chap­
ter, and are listed in Table 4-1 below. A dash at the beginning of a signal name, as
in -RESET, indicates that the signal is active-low.

External Interface - Signals

4-1

•

SP ARClite User's Manual

Table 4-1: Input and Output Signals

Symbol Type Symbol Type Symbol

ADR <31:2> 0 -CSO,-CSI 0 -lOCK
S(l) -CS2,-CS3 S(l)
G(Z) -CS4,-CS5 G(I)
1(1) 1(1)

-AS 0 0<31:0> 1/0 -MEXC
S(l) S(l)
G(Z) G(Z)
1(1) I(Z)

ASI <7:0> 0 EMU_BRK I -SAME_PAGE
S(l)
G(Z)
1(1)

-BE 3-0 0 EMU_D<3:0> 1/0 RD/-WR
S(l)
G(Z)
1(0)

-BGRNT 0 -EMU_ENB I -READY
S(l)
G(O)
1(0)

-BREO I EMU_SO <3:0> 1/0 -RESET
S(l)

ClKOUTI 0 -ERROR
ClKOUT2 G(O)

1(0)

ClK_ECB I IRl <3:0>

NOTE: I ~ Input Only Pin

o ~ Output Only Pin

1/0 ~ ERher Input or Output Pin

~ Pins "must be" connected
as described

S(l) = Synchronous: Inputs must
meet setup and hold times
relative to ClKIN Outputs
are Synchronous to ClKIN

External Interface - Signals

4-2

0 TCK
S(l)
G(O)
I(Q)

I TOI
A(l)

A(l) = Asynchronous: Inputs may
be asynchronous to
ClKOUT.

G(...) = While the bus is granted to
another bus master
(-BGRNT ~asserted), the
pin is

G(I) is driven to Vee
G(O) is driven to V 58
G(Z) floats
G(Q) is a valid output

Type Symbol

0 TOO
S(l)
G(Z)
1(1)

I -TIMER_OVF
S(l)

0 TMS
S(l)
G(I)
1(1)

0 -TRST
S(l)
G(Z)
1(1)

I XTAll (ClKIN)
S(l) XTAl2

I
A(l)

I

I

1(...) = While the bus is between bus
cycles (or being reset) and is
not granted to another bus
master, the pin is

I (1) is driven to Vee
I (0) is driven to V ss
I (Z)floats
I (0) is a valid output

Type

0

0
S(l)
G(O)
1(0)

I

I

I
0

G(O)
1(0)

cO
FUJITSU

The following sections describe the signal set in detail, arranged by functional
group:

• Processor Control and Status-Reset, error, and clock signals.

• Memory Interface-Data and address buses, ASI and byte-enables, chip­
selects, and other control signals used to access external memory and
memory-mapped devices.

• Bus Arbitration-Signals used by external devices in requesting, and by the
processor in granting, control of the bus.

• Peripheral Functions-Interrupt-requests and timer overflow.

• Emulator Bus-Signals to support in-circuit emulation.

• Boundary-Scan-Test signals used for board verification, following JTAG
specifications.

4. 1 • 1 Processor Control and Status

Signal Function

ClKOUT1 CLOCK OUTPUTS (0): MB86930 bus transactions can be referenced against
ClKOUT2 these outputs. ClKOUT1 has the same frequency and phase as the internal

oscillator, or the signal applied to ClKIN. ClKOUT2 is the same as ClKOUT1,
but phase-shifted 180 degrees.

-ERROR ERROR SIGNAL (0): Asserted by the CPU to indicate that it has halted in an
error state as a result of encountering a synchronous trap while traps are
disabled. In this situation, the CPU saves the Trap Type (U) value in the Trap
Base Register, enters into an error state and asserts the -ERROR signal. The
system can monitor the -ERROR pin and initiate a reset to recover from the
error condition.

-RESET SYSTEM RESET (I): Resets the processor to a known internal state. -RESET
should be asserted for at least 4 processor cycles after the clock has
stabilized. The internal state of the processor immediately after reset is
described in the Programmer's Model chapter.

XTAl1 (ClKIN) EXTERNAL OSCILLATOR (XTAL1, XTAL2): Determines the execution rate
XTAL2 and timing of the processor. Connecting a crystal across these pins forms a

complete crystal oscillator circuit. The processor operating frequency is the
same as the crystal oscillator frequency.
The processor can also be driven by an external clock. In this case, the clock
signal is applied to XTAl1 (ClKIN); XTAL2 should be left unconnected. The
processor operating frequency is the same as the external clock frequency.

External Interface - Signals

4-3

SP ARClite User's Manual

4. 1.2 Memory Interface

Signal

ADR[31:2]

-AS

ASI[7:0]

Note:

External Interface - Signals

4-4

Function

ADDRESS BUS (O): Specifies the data or instruction address of a 32-bit word.
Reads are always one word in size while byte, half-word, or word transaction
sizes for writes are identified by separate byte-enable signals (-BE3-0). The
value on the address bus is valid for the duration of the bus transaction. See
note below.

ADDRESS STROBE (O): Asserted by the MB86930 or other bus master to
indicate the start of a new bus transaction. A bus transaction begins with the
assertion of -AS and ends with the assertion of -READY. During cycles in
which neither the processor nor another bus master is driving the bus, the bus
is idle, and -AS remains de-asserted. See Table 4-1 for signal values while
the bus is idle. The MB86930 asserts -AS for 1 clock cycle.

ADDRESS SPACE IDENTIFIERS (O): Indicates which of the 256 available
address spaces the current bus transaction is accessing. The ASI values are
defined as follows:

ASI<7:0>

Ox1
Ox2
Ox3

Ox4 - Ox7
Ox8
Ox9
OxA
OxB
OxC
OxD
OxE
OxF

Ox10 - OxFC
OxFD - OxFF

ADDRESS SPACE

Control Register
Instruction Cache Lock
Data Cache Lock
Application Definable
User Instruction Space
Supervisor Instruction Space
User Data Space
Supervisor Data Space
Instruction Cache Tag RAM
Instruction Cache Data RAM
Data Cache Tag RAM
Data Cache Data RAM
Application Definable
Reserved for Debug Hardware

The ASI values specified as "application definable" can be used by privileged
(supervisor mode) instructions such as load and store alternate. The ASI value
is available in the same cycle in which the corresponding address value is
asserted on the address bus. The values on the ASI pins are valid for the
duration of the bus transaction. Transactions with ASI values of Ox8, Ox9, OxA,
and OxB are cacheable. See note below.

Care must be taken to ensure that software written for SPARclite processors
with 32 address and 8 ASI external signals operates correctly with the
MB86933 processor, which has only 28 address bits and 4 ASI bits.
Inadvertent attempted use of unavailable address and ASI space (Le. using
bits ADR<31 :28> and ASI<7:4» can be detected by programming an
MB86933 -CS output to assert toO when the high address and ASI nibbles
are 0 (not used). External diagnostic hardware, such as a logic analyzer, can
then be used to detect when -CS is not asserted, indicating possible use of
address and ASI signals that are not available on the MB86933. The -CS
signal can be gated with all other -CS signals that are in use to determine if
the access is off-chip. If so, the access may be illegal.

Signal

-BE3-0

-CS[5-0)

D[31:0)

-LOCK

-MEXC

cP
FUJITSU

Function

BYTE ENABLES (0): Indicate whether the current load or store transaction is
a byte, half-word or word transaction. The BYTE ENABLE value is available in
the same cycle in which the corresponding address value is asserted on the
address bus. The values on the byte enable pins are valid for load and store
operations and for the duration of the bus transaction (the byte enable Signals
can be ignored during load operations).

Possible values for -BE3-0 are as follows:
31 0

Byte Writes I 1 1 1 011 1 o 111 o 1 1 10 1 1 1

Half-Word Wrtles I 1 1 0 0 I 001 1 I
Word Writes I o 0 0 0 I

CHIP SELECTS (0): One of these signals is asserted when the value on the
address bus lies in the range specified by the corresponding Address Range
Specifier Register. The -CS signals are used to decode the current address
into one of eight address ranges. Address ranges should not overlap. Each
address range has a corresponding wait-state specifier which is used to
generate an internal -READY signal after a user-defined number of processor
clock cycles. This allows a variety of memory and 1/0 devices with different
access times to be connected to the MB86930 without the need for additional
logic. CSO is enabled at reset (See Chapter 2).

DATA BUS (110): D31 corresponds to the most significant bit of Byte O. DO
corresponds to the least significant bit of byte 3. A double word is aligned on
an 8-byte boundary, a word is aligned on a 4-byte boundary, and a half-word is
aligned on a 2-byte boundary. If a load or store of any of these quantities is not
properly aligned, a mem_address_noCaligned Trap will occur in the
processor.

During write cycles, the point at which data is driven onto the bus depends on
the type of the preceding cycle. If the preceding cycle was a write, data is
driven in the cycle immediately following the cycle in which -READY was
asserted. If the preceding cycle was a read, data is driven one cycle after the
cycle in which -READY was asserted, in order to minimize bus contention
between the processor and the system.

BUS LOCK (0): Asserted by the processor to indicate that the current bus
transaction requires more than one transfer on the bus. The Atomic Load
Store instruction, for example, requires contiguous bus transactions and so
causes the BUS LOCK signal to be asserted. The bus will not be granted to
another bus master as long as -LOCK is active. -LOCK is asserted with the
assertion of -AS and remains active until -READY is asserted at the end of
the locked transaction

MEMORY EXCEPTION (I): Asserted by the memory system to indicate a
memory error on either a data or instruction access. Assertion of this signal
initiates either a Data or Instruction Access Exception trap in the IU. The
current bus access is invalidated by asserting the -MEXC in the same cycle as
the -READY signal. The IU ignores the value on the data bus in cycles where
-MEXC is asserted.

External Interface - Signals

4-5

-

SP ARClite User's Manual

Signal Function

RDI-WR READIWRITE BUS TRANSACTION (0): Specifies whether the current bus
transaction is a read or a write operation. When -AS is asserted and RDI-WR
is high, then the current transaction is a read. With -AS asserted and RDI-WR
low, the current transaction is a write. RDI-WR remains active for the duration
of the bus transaction and is de-asserted with the assertion of -READY.

-READY READY (I): Asserted by the external memory system to indicate that the
current bus transaction is being completed and that it is ready to start with the
next bus transaction in the following cycle. In case of a fetch from memory, the
processor will strobe the value on the data bus at the rising edge of CLKIN
following the assertion of -READY. In the case of a write, the memory system
will assert -READY when the appropriate access time has been met.

In most cases, no external logic is required to generate the -READY signal.
On-chip circuitry can be programmed to assert -READY internally, based on
the address of the current transaction. The external system can override the
internal ready generator to terminate the current bus cycle early. Up to 6
address ranges each with different transaction times can be programmed.
(See the System Support Functions section, below.)

-SAME_PAGE SAME-PAGE DETECT (0): Asserted when the address of the current
memory access is within the same page as the previous memory access.
-SAME_PAGE can be used to take advantage of fast consecutive accesses
within page-mode DRAM page boundaries. -SAME_PAGE is asserted with
-AS and remains active for one processor cycle. -SAME_PAGE is never
asserted in the first transaction following a transaction by another device on
the bus. The page size is specified by writing the Same-Page Mask Register.
(See the System Support Functions section, below.)

4. 1.3 Bus Arbitration

Signal Function

-BGRNT BUS GRANT (0): Asserted by the CPU in response to a request from a device
wanting ownership of the bus. The CPU grants the bus to other devices only
after all transfers for the current transaction are completed. Refer to the data
sheet for the output signal states after the assertion of the BUS GRANT signal.

-BREQ BUS REQUEST (I): Asserted by another device on the bus to indicate that it
wants ownership of the bus. The request must be answered with a bus grant
(-BGRNT) from the MB86930 before the device can proceed by driving the
bus. Once the bus has been granted, the device has ownership of the bus until
it de-asserts -BREQ. The user should ensure that devices on the bus do not
monopolize the bus to the exclusion of the CPU. The assertion of -BREQ is
recognized by the processor even when -RESET is being asserted.

External Interface - Signals

4-6

OJ
FUJITSU

4. 1.4 Peripheral Functions

Signal Function

IRL[3:0] INTERRUPT REQUEST BUS (I): The value on these pins defines the external
interrupt level. IRL[3:0]=1111 forces a non-maskable interrupt. An IRl value of
0000 indicates no pending interrupts. All other values indicate maskable
interrupts as enabled in the Processor Interrupt level field of the Processor
Status Register (PSR). Interrupts should be latched and prioritized by external
logic and should be held pending until acknowledged by the processor. An
interrupt controller is available on the MB86940 peripheral chip. IRl inputs are
sampled by the processor in cycle 1, synchronized in the following cycle, and
recognized by the processor in the third cycle.

-TIMER_OVF TIMER OVERFLOW (0): Indicates that the processor's internal 16-bit timer
has overflowed. This signal can be used to initiate a DRAM refresh cycle or a
one-cycle periodic waveform. On reset, the timer is turned off and - TIMER_
OVF is high.

4. 1.5 Emulator Bus

Signal Function

-EMU_BRK EMULATOR BREAK REQUEST LINE (I): Used to configure the debug unit
on reset. See Section 2.8. This pin should be left unconnected.

EMU_O[3:0] EMULATOR DATA BITS (0): Reserved. These pins should be left
unconnected.

-EMU_ENB EMULATOR ENABLE (I): Used to configure the debug unit on reset. See
Section 2.8. This pin should be left unconnected.

EMU_SD[3:0] EMULATOR STATUS/DATA BITS (I/O): Reserved. These pins should be left
unconnected.

4. 1.6 Test and Boundary-Scan

Signal Function

-ClK_ECB EXTERNAL CLOCK BYPASS (I): When tied high, causes the ClKIN signal to
bypass the on-chip phase-locked loop. This signal is intended primarily for
testing the chip.

TCK TEST CLOCK (I): JTAG compatible test clock input.

TOlt TEST DATA IN (I): JTAG compatible test data input.

TOOt TEST DATA OUT (0): JTAG compatible test data output.

TMSt TEST MODE (I): JTAG compatible test mode select pin.

-TRSTt TEST RESET (I): Asynchronous reset for JTAG logic. If not using JTAG, this
signal must be pulled low.

t. See appendix for more information

External Interface - Signals

4-7

I -

SP ARClite User's Manual

4.2 Bus Operation
At any given time, the Bus Interface Vnit is handling requests for external mem­
ory and I/O operations, arbitrating for bus access, or idle. From the point of view
of the external system, bus transactions are handled in fairly standard ways:

• Memory and I/O Operations-Read and write transactions are initiated with
the processor asserting the -AS signal. The RD/-WR output indicates the
transaction type. The -BE[3:0] outputs indicate the transaction width. The
processor drives the address and ASI signals, and either drives (on stores) or
reads (on loads) the signals on the data bus. The transaction ends when
-READY is asserted.

An atomic load-store is executed as a load followed by a store, with no opera­
tion allowed in between. The -LOCK output is asserted to indicate that the bus
is being used for more than one consecutive memory operation.

• Arbitration-Any external device can request ownership of the bus by
asserting the -BREQ signal. The processor three-states its bus drivers and
asserts -BGRNT to indicate that it is relinquishing control of the bus. On
completion of its transaction, the external device de-asserts -BREQ; the
processor responds by de-asserting -BGRNT in the following cycle.

The BIV receives requests for external memory operations from the Cache Con­
trol Logic. In the case of reads from external memory, it performs the read opera­
tion and returns the data to the Cache and IV. A parallel path is used to make the
data available to the IV in the same cycle that it is written to the cache.

In the case of a write to external memory, the BIV makes use of a write buffer
which can hold a one word write transaction. When the BIV receives a request for
a write transaction, it stores the write data and address in the write buffer, allow­
ing the IV to continue operating out of on-chip cache. The BIV then proceeds to
complete the write to external memory. In most cases the write buffer will hide
external memory latency from the IV. The exceptions are in cases where the write
buffer is still filled from a previous transaction or if the subsequent IV cycle
results in an instruction cache miss. In these cases, IV execution is held until the
write buffer is emptied. The write buffer operates only when the instruction and
data caches are both on.

The BIV includes a one stage prefetch buffer for instruction fetches. This buffer is
used to fetch the next sequential instruction after an instruction cache miss. The
instruction is prefetched only if the BIV does not have a request for a bus transac­
tion from the IV nor is any external device requesting use of the bus. The prefetch
buffer operation is suspended if the buffer is full. This occurs if the prefetched
instruction is a hit in the instruction cache or if a control transfer causes the
sequential instruction to be skipped. The buffer restarts after another instruction
cache miss. If an exception occurs during an instruction prefetch, the exception is

External Interface - Bus Operation

4-8

cP
FUJITSU

not sent to the IU unless the instruction is actually requested by the IV. The
prefetch buffer operates only when the instruction cache is on.

In any cycle the BIU can receive a request for accesses to either or both instruction
and/ or data memory. If it receives a request for both in the same cycle, it com­
pletes the data memory transaction first.

4.2. 1 Exception Handling

The external memory system can indicate an exception during a memory opera­
tion. The BIU signals the appropriate data or instruction exception to the IU
which will trap accordingly.

As mentioned above, the IU can continue operation after putting the data and
address for a store in the write buffer. If an exception is detected while complet­
ing this buffered write, then the BIU indicates a data access exception to the IU.

Any system which needs to recover from this error should store the address and
data of such write transactions in hardware. If the system can generate both read
and write exceptions, then the system must also provide a status bit which indi­
cates whether the exception was generated on a read or on a write transaction.
With access to this information the data access exception service routine can
determine the cause of the exception and recover accordingly.

External Interface - Bus Operation

4-9

-

SP ARClite User's Manual

4.2.2 Bus Cycles

This section presents the relative timing of events in representative bus transac­
tions.

Load
Whenever an instruction fetch or a load from data memory has a miss in the
cache, the BID performs a read from external memory.

A read transaction begins with the BIU asserting -AS, to indicate a new bus trans­
action. The -AS signal is de-asserted after one cycle. At the same time the
ADR<31:2> and ASI<7:0> bits are driven with the location to be read. The BID
drives the RD / -WR signal high to indicate a read transaction. Note that the -BE
lines indicate byte, halfword or word operations during load operations although
their use is optional. The processor loads a word regardless of the size of data
requested (byte, halfword, word).

The external memory system responds with the read data on pins D<31:0>. It also
asserts the -READY signal when the data is ready (unless internal ready genera­
tion is selected). For slow memory, the -READY signal is delayed until data is
valid.

A load double operation is treated as back-to-back reads.

, ,

elK_IN {

ADR<31:2>
ASI<7:0>

-BE<3-D>

External Interface - Bus Operation

4-10

lOAD 1
,

lOAD 2

\ 1 \
A1 A2

Figure 4-1. Load Timing

,

1
i

Load with Exception

cP
FUJITSU

If the external memory system sees a memory exception, it can terminate the cur­
rent memory transaction by asserting the -MEXC and -READY signals. The data
on the data bus is ignored by the MB86930.

Figure 4-2. Load with Exception Timing

External Interface - Bus Operation

4-11

..
I

SP ARClite User's Manual

Store

A write transaction begins with the BIU asserting -AS, to indicate a new bus
transaction. The -AS signal is de-asserted after one phase. At the same time the
ADR<31:2> and ASl<7:0> pins are driven with the location to be written while
the 0<31:0> pins has corresponding write data. The -BE3-0 pins indicate byte,
half-word or word transaction width. The BIU drives the RD/-WR signal low to
indicate a write transaction.

The external memory system responds by asserting the -READY signal when it
has stored the data. There is always one idle bus cycle between the termination of
a read cycle and the beginning of a write cycle to provide time for switching of the
data bus drivers.

A store double operation is treated as back-to-back writes.

: STORE 1 ' STORE 2 '

elK_IN { \'-------11 \~----11
'lr~ ~-----A1-----r~r-----A-2-----+-i:;,
~ I,A

-AS I'" !~ ',::
a ::, ~

RD/-WR !lIIr-----------I-',A,-'-----------+!::,

i \\'-'--_¥ii,' jrr-j---n\\
-REAOY 1 \L! !./ \I..l. _---+-

0<31:0> X 01 ~,-_____ 0_2 ____ +1

External Interface - Bus Operation

4-12

Figure 4-3. Store Timing

Store with Exception

cO
FUJITSU

If an access exception occurs on a write, the external memory system can termi­
nate the current memory transaction by asserting the -MEXC and -READY sig­
nals. The external memory system is expected to ignore the data on the data bus
in this situation.

: STORE 1 I I I

CLK_'N { \,-__ ~{r--------'\'-__ --J{'--------;\~_----'{
AOR<31:2> 0 Iv "', :: " \V:': i
~~:ig~ r A1 h ' A AN :,::,:i

~ / ',,1,::,"\, -AS i~ _ i"_
,

-"~ L l! ,

-READY l ~ II
-MEXC i ~ II~--------+----------+-i

0<31:0> i X, ~'-'-; ~~~~,"",-+<, l"'""-'~~<"'->" '~~...;-;-i
Figure 4-4. Store with Exception Timing

External Interface - Bus Operation

4-13

SP ARClite User's Manual

Atomic Load Store

An atomic load store executes as a load followed by a store with no operation
allowed in between. The -LOCK signal is asserted to indicate that the bus is being
used for more than one external memory operation.

There is one cycle between the termination of the read and the beginning of the
write to provide time for the switching of the data bus drivers.

-READY I

External Interface - Bus Operation

4-14

IdlaCycia
A

Figure 4-5. Atomic Load Store Timing

External Bus Request and Grant

cO
FUJITSU

Any external device can request ownership of the bus by asserting the -BREQ sig­
nal. The BIU asserts the -BGRNT signal to indicate that it is relinquishing control
of the bus and also three-states all of its bus drivers. In the following cycle, the
external device can complete its transaction. On completion of its transaction the
external device de-asserts the -BREQ signal. The BIU responds by de-asserting
the -BGRNT signal in the following cycle.

The MB86930 is the default owner of the bus.

Processor Bus Cycle n Complete ----...: Processor Bus Cycle n+ 1 Start ~

-BREO 0\'-'---------:----lf5f----i-, ------,-,II
-BGRNT

j~/: : : ~ '(i V1~
r--- All BUS DRIVERS THREE·STATE

Figure 4-6. External Bus Request and Grant nming

Processor Reset

The MB86930 is reset by asserting the - RESET signal for a minimum of 4 clock
cycles (see Figure). Systems using an external crystal to clock the processor
should be sure that -RESET is asserted for at least 4 cycles after the crystal has
started up and has stabilized.

If the processor is reset following a halt in Error Mode, and if power to the proces­
sor is not removed, the tt field after reset will contain the value of the Trap that
caused the processor to halt.

External Interface - Bus Operation

4-15

-

SF ARClite User's Manual

I I I t I I

JLJ\' : J\J\' : J\JV' : ClK_IN
I I I I I I
I I I I I I
I I I I I I

:"-4CYCLEMINIMUM-(~ : n :

RESET 1 i ~: i « :
I, !) I I

: : t ~3CVCLES---(~
I I I I
I I I I

ADDR

Figure 4-7. Reset Timing

4.3 System Support Functions
Built-in system support functions help to minimize the amount of glue logic
required in the external system. The support includes programmable chip select
logic, programmable wait-state generation, same-page detection logic and a timer
for generating refresh requests. For a more detailed description of the program­
ming of these registers refer to chapter 2.

The System Support Control Register turns the various system support features
on and off.

31

Reserved

Same-Page Enable (On=1, Off=O)

Chip Select Enable (On=1, Off=O)
Programmable Wait-State (On=1, Off=O) -----'

Timer On/Off (On=1, Off-O) -------'
Reserved ------'

Figure 4-8. System Support Control Register

4.3. 1 System-Configuration Registers

The system-configuration registers (Address Range Specifiers, Address Masks,
and Programmable Wait-State Specifiers) allow software to define six different
address ranges. When an address driven by the processor is in one of these
ranges, the corresponding Chip-Select (-CS) pin is asserted. After a number of
clock cycles determined by the corresponding Programmable Wait-State Speci­
fier, the processor automatically generates an internal-READY signal. This

External Interface - System Support Functions

4-16

c:P
FUJITSU

makes it possible for memory and I/O devices with different access times to be
connected to the processor without additional logic.

The contents of the Address Range Specifier Registers 1-5 (ARSR[5:0J) define five
of the six address ranges. An additional address range is available, corresponding
to -CSO. For this address range, ADR is hardwired to 0, and ASI is hardwired to
Ox9 (Supervisor Instruction Space). With Mask Register AMRa, -CSO ranges 8K
words. -CSO is enabled at reset. -CS1, -CS2, -CS3, -CS4 and -CS5 are disabled at
reset.

L311~ ___________ 23~2_2 ______________________________ 11~01 ••. _ . ASI <7:0> ADR <31:10> . .

Figure 4-9. Address Range Specifier Register Format

An Address Mask Register is associated with each address range. Any address
driven by the chip is compared with the value in all address range specifiers.
Only those bits of the register are compared for which the corresponding mask
bits are O. If the specified bits of the current address match one of the address
range specifiers, the corresponding chip-select (-CS) pins are asserted. When no
bus transaction is being performed, all the -CS pins are high (inactive). The
Address Mask Register corresponding to -CSO is initialized to compare all bits
except ADR<14:1O>.

31 ~ 23 22 1 0

I I ASI <7:0> ADR <31:10> I I

Figure 4·10. Address Mask Register Format

A Programmable Wait-State Specifier is associated with each address range.
Three registers are used to specify the wait states for the six address ranges. Each
register contains the wait-state specifiers for two address ranges.

External Interface - System Support Functions

4-17

SP ARClite User's Manual

When the address currently being driven by the processor matches the unmasked
bits in one of the Address Range Specifiers, the corresponding wait-state specifier
is selected. The format of Wait-State Specifier Registers is shown in Figure 4-11.

31 27 26 22 21 20 19 18 14 13 9 8 7 6 5

Count 1 Count 2 Count 1 Count 2

Wait Enable ·On=I, 011=0) --*--l--l-------------'
Single Cycle (On=I, 011=0) ---*--+-------------'

Override (On=I, 011-0) ---+.--------------'

Figure 4-11. Wait-State Specifier Register Format

Reserved

If the Single Cycle bit equals 1, an internal-READY signal is generated in the
same cycle. If the Single Cycle bit equals 0, and the current transaction is in the
same page as the previous transaction (see the Same-Page Detection Logic section,
below), then Count2 + 1 is used as the number of cycles after which -READY is
asserted internally. If the transaction is not in the same page, Countl +1 is used
instead. If the Wait Enable bit equals 0, the internal-READY is not asserted.

o

The Override bit allows the user to terminate a transaction earlier than the speci­
fied time. If this bit equals 1, and external hardware asserts the external-READY
signal, then the wait-state generator will stop counting and will wait for the next
transaction, which can occur as soon as the next clock cycle.

The Countl and Count2 fields of the Wait-State Specifier corresponding to -CSO
have all their bits set to 1 on reset. In this way, 32 wait-state cycles (the maximum
number) are inserted into the processor's first instruction accesses. The override
bit for -CSO is enabled as well.

4.3.2 Same-Page Detection

The same-page detection logic determines whether the address of the current
memory transaction is on the same page as the previous transaction. If it is, the
processor asserts the -SAME_PAGE signal. The system can then take advantage
of the fast consecutive accesses pOSSible within fast-page mode DRAM page
boundaries. The same-page detection logic consists of a mask register, a register
to store the address and ASI bits of the previous transaction, and a comparator.

External Interface - System Support Functions

4-18

c:P
FUJITSU

The Same-Page Mask Register specifies which bits of the current address and ASI
must be compared with the previous address and AS!. Only those bits are com­
pared for which the mask bit is O.

31 30 23 22 1 0

ASI Mask
(Card=O, Don't Care=l)

Address Mask (ADR [31 :10])
(Card.e, Don't Care.l)

Figure 4-12. Same-Page Mask Register

The -SAME_PAGE signal is never asserted for the first transaction following a
transaction by another device on the bus. When using the internal wait-state gen­
erator, DRAM control logic should issue a bus request when initiating a refresh
cycle so that the -SAME_PAGE logic is reset appropriately. The -SAME_PAGE
feature is disabled at reset.

4.3.3 Programmable Timer

The 16-bit programmable timer causes the - TIMER_ OVF output signal to be
asserted at software-defined intervals. This signal can be used to initiate DRAM
refresh cycles, or to control other periodic events in the external system.

The current timer count is kept in the Timer Register. When the timer overflows,
it is loaded with the value in the Timer Preload Register. The contents of both of
these registers are undefined on reset.

31 16 15 o

Reserved Timer Value

31 16 15 o

Reserved Timer Pre-Lead Value

Figure 4-13. Timer and Timer Preload Registers

The timer can also be loaded by writing directly to the Timer Register. The timer
can be turned off by writing a 0 to the Timer On/Off bit in the System Support
Control register. The timer is clocked at the processor clock frequency.

External Interface - System Support Functions

4-19

SP ARClite User's Manual

External Interface - System Support Functions

4-20

Programming Considerations

This chapter gives programmers information and advice about how to make the
best use of SP ARClite processors. It discusses the initialization of a SP ARClite
system, the design of trap handlers, window management, the use of on-chip
cache, and SP ARClite-specific instructions.

Because of the availability of high-performance optimizing compilers, real-time
operating systems, target monitors and application software, many programmers
will never need to program at the detail described in this chapter. However, for
those writing their own kernels or operating systems, and for those wanting to
hand optimize compiler code, sections in this chapter will prove useful.

Most of the sections in this chapter contain code fragments illustrating the points
under discussion. In some sections, complete subroutines are provided which can
be used without modification in real systems; the integer multiplication and
division routines are a good example.

To follow the discussion and examples in this chapter, you should be familiar
with the contents of Chapter 2, Programmer's Model. You should also know how to
read SPARC assembly language (see Chapter 7).

5. 1 Initialization
Processor reset occurs when the external system asserts the -RESET input. Upon
reset, the processor is in supervisor mode. It begins fetching and executing
instructions starting at address OxOOOOOOOO in Supervisor Instruction Space (ASI

Programming Considerations - Initialization

5-1

SP ARClite User's Manual

Ox9). The S bit of the PSR is set to 1; the ET bit is cleared to O. The tt field of the
Trap Base Register remains unchanged and identifies the last trap encountered if
reset occurs without removing power from the processor. This provides a way to
trace the origin of a halt to error mode (on power-up, the tt field is undefined). All
other fields of the SP ARC control and status registers (PSR, WlM, TBR, and Y) are
undefined on reset.

The Cache/BIU Control Register and System-Support Register are cleared to 0;
that is, the various features con.trolled by these registers are turned off (except for
-CSO). The contents of the on-chip cache and the various system-configuration
registers are undefined (see Chapter 2 for details).

5.1.1 Establishing the Processor State

The first task of initialization code is to establish the processor state, as in the
following code fragment:

Reset Initialization
wr %gO, OxOfa7,%psr

wr %gO, OxO, %wim
wr %gO, OxO, %tbr

Set psr: mask interrupts, mode=S, Prnode=U,
traps enabled, CWP=7
Initialize wim to window °
Initialize tbr to °

Writes to the PSR, WIM, and TBR registers are delayed by three instruction cycles;
that is, the value in the register undefined for three instructions following the
write. Accessing one of these registers, either explicitly or implicitly, within three
instructions after a write can lead to unpredictable results.

5.1.2 Configuring the System

Initialization code must also configure the system by writing appropriate values
into the system-configuration registers (Address Range Specifiers and Masks,
Wait-State Specifiers, Same-Page Mask, and the Timer Registers). Figure 5-1
shows the memory map of a simple example system.

Unused

\---------1 0x2oo0oo00

-CSt Subsystem
1----------1 OxtOOOoooo

EPROM
L-______ --' Oxoooooooo

Figure 5-1. Example System Memory Map

Programming Considerations - Initialization

5-2

cP
FUJITSU

The following code sets the various system-configuration registers to values
appropriate for the example system.

Address Range Register and Address Mask Register for -CSO and
-CS1 are set here. Only the highest nibble of the addresses
are used for mapping the different -CS signals as shown in Figure 5-1.
Note: Address range register for -CSO is preset to Ox04 SO 00 00
ASI=Ox9, addr<31:10>=OxO

sethi %hi(Oxfdf«19),
xnor %gO, %10, %10
or %gO, Ox140, %11
sta %10, [%11] 1
sethi %hi (Oxb1«19),
or %gO, Ox124, %11
sta %10, [%11] 1
sethi %hi(Oxfcf«19),
xnor %gO, %10, %10
or %gO, Ox144, %11
sta %10, [%11] 1

%10

%10

%10

Set address mask register for -CSO
ASI<l>=x, addr<27:0>=OXXXXXXXX
SI and SD ASI, addr=OxOXXXXXXX
Set address range register for -CS1:
ASI=Oxb, addr<31:2S>=Ox1

Set address mask register for -CS1
ASI<l,O>=xx, addr<27:0>=OXXXXXXXX
SI, SD, UI and UD ASI, addr=Ox1XXXXXXX

Set Wait State Specifier Registers
Note: count=WS-1, WS+1=cycles, count=cycles-2
Wait state value is for -CSO (ROM) and is set to:

count=6, wait en=l, single cyc=O, override=O
Wait state value is for -CS1 (subsystem) and is set to:

count=O, wait en=O, single cyc=O, override=O

or %gO, Ox160, %11
or %gO, Ox634, %10
sl1 %10, 6, %10
sta %10, [%11] 1

. align 4

.word Oxa3S02001

or %gO, 0, %10
sta %10, [%gOl 1

set Oxffff , %10
or %gO, Ox174 , %11
sta %10, [%11] 1

set Ox7fS00006, %11
or %gO, Ox120, %10
sta %10, [%11] 1

J -CSO and -CS1 WSS Register

Set Ancillary Register 17 bit 0
to enable single vector trapping.
Machine code is used here for assemblers

J which do not have the WR ASR intruc-
tion.

Write 0 into Cache/BIU Control Reg
disabling all caches

Set Timer Pre-Load Register
Reload value is set to Oxffff

Set Same-Page Mask Register
Page. size is set to lK for any ASI

Programming Considerations - Initialization

5-3

-: .. ,.

SP ARClite User's Manual

or %gO, Ox3c, %10
or %gO, Ox80, %11
sta %10, [%11] 1

Set System Support Control Reg:
-SAME_PAGE, -CS<5-1>, WS generator and
-TIMER_OVF are all enabled

5. 1.3 Initializing the On-Chip Cache
On reset, both caches are turned off, and all memory requests are sent to the Bus
Interface Unit. In order to use the caches, software must initialize the Valid, Least
Recently Used and Entry Lock bits by writing D's to the appropriate alternate
address spaces. After initializing the cache, a program can write l's to the Cache
Enable bits of the Cache/BIU control register to turn the caches on. The prefetch
and write buffers of the BIU can be turned on in the same operation.

The following code initializes the data and instruction caches, then enables cach­
ing and BIU buffering.

64
o

#define set_size
#define ini_tag
#define adr1
#define adr2
#define CTL_BITS

OxSOOOOOOO
Ox35 /* turn on i-cache, d-cache, pre fetch buf., write

#define icache_lock_bit Ox1
#define dcache_lock_bit Ox3
#define icache_lock OxS
#define dcache_lock Oxa
#define icache_en10ck Ox1
#define dcache_en10ck Ox2
#define lock_reg_adr Ox4
#define 10ck_save_adr OxS

.seg "text"
set set_size, %17
set adr1, %00
set adr2, %02
set ini_tag, %10

100pinit:
sta %10, [%00] Oxc
sta
sta
sta
add
subcc
bne
add

set
set
sta
nap
nop

%10, [%00] Oxe
%10, [%02] Oxc
%10, [%02] Oxe
%00, 16, %00
%17, 1, %17
loopinit
%02, 16, %02

0, %11
CTL_BITS,%i7
%i7, [%11]1

buf. * /

/* RAM size */

/* start address, set 1 */
/* start address, set 2 */

/* initial tag value */

write set 1, itag
write set 1, dtag
write set 2, itag
write set 2, dtag
inc by 4 words (each tag serves 4 words)

delay slot

! turn on caches.

! some nop's for transition

Programming Considerations - Initialization

5-4

nap
nap

5.2 Trap Handling

cP
FUJITSU

An interrupt or trap (other than reset) causes a vectored transfer of control into a
trap table. The first four instructions of each trap handler are in the trap table
itself. The Trap Base Address field in the Trap Base Register contains the base
address of the table. Associated with each trap type is an 8-bit value, which (left
shifted by 4 bits) is used as an offset into the table. From the trap table, control
typically passes (via a JMPL or BA instruction) to the appropriate trap handler. A
trap table with base address OxOOOOOOOO is shown in the following code fragment.

Note that since -CSO is selected for address range OxO-Ox3fff, the branch after reset
at address OxO must vector within this address range if the internally generated
chip select is being used. There is sufficient space after the trap handler (at label
"start" below) yet still within the CSO default range to write the CSO mask register
if required.

/*

mov OxeO, %psr
mov %gO, %tbr

/* 0 -> TBR assumes boot is from fast memory, and that only the
/* first 4 instructions of the response to reset are there. Single
/* Vector Trapping is to remain disabled.
*/
8 ba start
c mov %gO, %wim

10 T_instr_access_exception:
14
18

rd
rd
ba

%tbr, %l3
%psr, %10
iae_handler

lc nop
20 T_unimplemented_instruction: rd %tbr, %13
24 rd %psr, %10
28
2c
30 T-privileged_instructian:
34
38
3c
40 T_fp_disabled:
44
48
4c
50 T_windaw_overflaw:
54

ba illegal
nap
rd %tbr, %l3
rd %psr, %10
ba privileged
nap
rd %tbr, %l3
rd %psr, %10
ba fp_disabled
nap
rd %tbr, %l3
rd %psr, %10

Programming Considerations - Trap Handling

5-5

SP ARClite User's Manual

58
5e
60 T_window_underflow:
64
68
6e
70 T_mem_addr_not_aligned:
74
78
7e
80 T_fp_exeeption:
84
88
8e
90 T_data_aeeess_exeeption:
94
98
ge
aO T_tag_overflow:
a4
a8
ae

bO
b4
b8
be
cO
e4
e8
ee

100
104
108
10e
110 T_int_l:
114
118
11e
120 T_int_2:
124
128
12e

lfO T_int_15:
lf4

Programming Considerations - Trap Handling

5-6

ba
nop
rd
rd
ba
nop
rd
rd
ba
nop
rd
rd
ba
nop
rd
rd
ba
nop
rd
rd
ba
nop

rd
rd
ba
nop
rd
rd
ba
nop

rd
rd
ba
nop
rd
rd
ba
nop
rd
rd
ba
nop

rd
rd

win_overflow

%tbr, %l3
%psr, %10
win_underflow

%tbr, %13
%psr, %10
misaligned_addr

%tbr, %l3
%psr, %10
unimplemented_trap

%tbr, %13
%psr, %10
dae_handler

%tbr, %l3
%psr, %10
tag_overflow

%tbr, %13
%psr, %10
unimplemented_trap

%tbr, %13
%psr, %10
unimplemented_trap

%tbr, %13
%psr, %10
unimplemented_trap

%tbr, %13
%psr, %10
int_handler

%tbr, %l3
%psr, %10
int_handler

%tbr, %13
%psr, %10

OJ
FUJITSU

lf8 ba int_handler
lfc nap
200 T_rferr: rd %tbr, %13
204 rd %psr, %10
208 ba unimplemented_trap
20c nap
210 T_iaerr: rd %tbr, %13
214 rd %psr, %10
218 ba iae_hand1er
21c nap
220 rd %tbr, %13
224 rd %psr, %10
228 ba unimplemented_trap
22c nap
230 rd %tbr, %13
234 rd %psr, %10
238 ba unimplemented_trap _I
23c nap I

240 T_cp_disabled: rd %tbr, %13
244 rd %psr, %10
248 ba cp_disab1ed
24c nap
250 rd %tbr, %13
254 rd %psr, %10
258 ba unimplemented_trap
25c nap
260 rd %tbr, %13
264 rd %psr, %10
268 ba unimplemented_trap
26c nap
270 rd %tbr, %13
274 rd %psr, %10
278 ba unimplemented_trap
27c nap
280 T_cp_exceptian: rd %tbr, %13
284 rd %psr, %10
288 ba unimplemented_trap
28c nap
290 T_daerr: rd %tbr, %13
294 rd %psr, %10
298 ba dae_handler
29c nap
2aO rd %tbr, %13
2a4 rd %psr, %10
2a8 ba unimplemented_trap
2ac nap
2bO rd %tbr, %13
2b4 rd %psr, %10
2b8 ba unimplemented_trap
2bc nap

Programming Considerations - Trap Handling

5-7

SP ARClite User's Manual

800 software_traps: rd %tbr, %l3
804 rd %psr, %10
808 ba trap_instr
80c nop
810 rd %tbr, %l3
814 rd %psr, %10
818 ba trap_instr
81c nop

feO rd %tbr, %l3
fe4 rd %psr, %10
fe8 ba trap_instr
fee nop
ffO rd %tbr, %l3
ff4 rd %psr, %10
ff8 ba emu_exception
ffc nop

1000 start:

When a trap is taken, the processor writes the trap type number into the tt field of
the Trap Base Register, and disables traps by clearing the ET bit of the Processor
Status Register. The processor enters supervisor mode (S=1), saving the old state
of the S bit in the PS field of the PSR. The Current Window Pointer is
automatically decremented.

Each of the illustrated trap handlers (except for reset) begins by saving the values
of the TBR and PSR, and then jumps, by means of an unconditional branch, to the
next instruction in the service routine.

Each trap handler must then:

1. With ET cleared (ET=O) by the processor, ensure that a window is available, in
case another trap occurs. (When it takes a trap, the processor automatically
saves the window of the interrupted routine by decrementing the Current
Window Pointer.)

2. Re-enable traps by setting the ET bit of the PSR to 1.

3. Handle the exceptional condition that caused the trap.

4. Disable traps by clearing the ET bit of the PSR to o.
5. Ensure that a window is available, so that the RETT (return from trap) instruc­

tion can restore the window of the interrupted routine by incrementing the
CWP.

Programming Considerations - Trap Handling

5-8

00
FUJITSU

6. Execute a JMPL/RETT instruction pair. The address for the return is found in
r[17] (When it takes a trap, the processor loads r[17] with the value in the PC).
The RETT instruction automatically re-enables traps (ET=1).

To re-execute the trapped instruction when returning from a trap handler use the
sequence:

JMPL %r17, %gO
rett %r18

old PC
old nPC

To return to the instruction after the trapped instruction (e.g., when emulating an
instruction) use the sequence:

jmpl %18, %gO
rett %18 + 4

! old nPC
! old nPC + 4

Two example trap handlers are shown below.

DESCRIPTION
This routine is the trap handler for register window overflow trap.

Priority: Ox06
Upon entry, the cwp points to the trap window, which is 1 less than
the register window that must be saved to the stack. the stack is
organized with %i6 = %06 - (Ox40 + local stack used). the ins and
locals are saved, and the wim is adjusted for the new window.

INPUTS
- None.

INTERNAL DESCRIPTION
- Move the invalid window to the next window by rotating the %wim

register left by one slot.
- Get into the previously invalid window, the one that caused the,

trap,and save all of the registers in it.
- Get back into the previously valid window and let the trapped

routine execute the save again.

RETURNS
- %00 = 1 so execution starts at the trapped instruction.

win_overflow:

rd
wr

save

std
std

%wim, %14
%gO, 0, %wim

%10, [%sp + OxO * 4]
%12, [%sp + Ox2 * 4]

tread WIM for window handler
!clear WIM for now

!decrement into window to be saved

!save all local registers

Programming Considerations - Trap Handling

5-9

•

SP ARClite User's Manual

std
std

std
std
std
std

restore

srl
sll
or
wr

wr
nop
nop
nop
jmp
rett

FUNCTION
_win_unf

%14,
%16,

%iO,
%i2,
%i4,
%i6,

%14,
%14,
%14,
%gO,

%10,

%11
%12

DESCRIPTION

[%sp + Ox4 * 4]
[%sp + Ox6 * 4]

[%sp + Ox8 * 4]
[%sp + Oxa * 4]
[%sp + Oxc * 4]
[%sp + Oxe * 4)

1, %15
8-1, %14
%15, %14
%14, %wim

0, %psr

!save all input registers

!go back to trap window

!rotate original WIM right to obtain the
!next window (SPARClite has
!8 windows)
!install the new WIM

!restore the saved PSR
!required nops

!return from the trap
Ito re-execute SAVE

This routine is the trap handler for register window underflow trap.
Priority: Ox07
Upon entry, the cwp points to the trap window, which is 1 more than
the register window that must be restored from the stack. The stack
is organized with %i6 = %06 - (Ox40 + local stack used). The ins
and locals are restored, and the wim is adjusted for the new window.

INPUTS
- None.

INTERNAL DESCRIPTION

RETURNS

- %00 = 1 so execution starts at the trapped instruction.

win_underflow:
or %10,
wr %10,
mov %wim,
sll %14,
srl %14,
or %16,
mov %16,

Ox20, %10
%psr

%14
1, %15
NWINDOWS-1,
%15, %16
%wim

%16

enable traps

Get wim.
Next WIM

Install it.

rol(WIM, 1, NWINDOW).

Programming Considerations - Trap Handling

5-10

nop
nop
nop
restore
restore
Idd [%sp + OxO * 4),
Idd [%sp + Ox2 * 4),
Idd [%sp + Ox4 * 4),
Idd [%sp + Ox6 * 4),
Idd [%sp + Ox8 * 4),
Idd [%sp + Oxa * 4),
Idd [%sp + Oxc * 4),
Idd [%sp + Oxe * 4),
save
save

_rerun_trap_instr:
andn %10, Ox20, %10
wr %10, %psr
or %gO, Oxl, %gl
or %gO, OxlO, %10
sta %gl, [%10) 1
jmpl %11, %gO
rett %12

must delay three instructions
before using these registers, so
put nops in just to be safe
Back to user window.
Get into window to be restored.

%10 Restore all registers
%12
%14
%16
%iO
%i2
%i4
%i6

Get back to original window.

Disable traps.

Set Restore Lock bit,
in case an autolock sequence
is in effect.

Return to instruction at PC.

0)

FUJITSU

5.3 Register and Stack Management
This section describes the standard conventions for using the register file. Most
SP ARC compilers comply with this convention as this is the standard adopted on
SPARC workstations. (Compilers are available that optimize code differently for
embedded applications if required.)

This section describes standard conventions for using the register file.

5.3. 1 Registers

Register usage is typically a critical resource allocation issue for compilers. The
SPARClite architecture provides windowed integer registers (in, out, local), and

Programming Considerations - Register and Stack Management

5-11

.'

SP ARClite User's Manual

global integer registers. Figure 5-2 summarizes the SPARe register set, as seen by
a user-mode procedure.

in %i7 (%131) return address t

%i6 (%130) frame pointer t

%i5 (%r29) incoming param 6t

O/Oi4 (%r28) incoming param 5t

%i3 (%r27) incoming param 4 t

%i2 (%r26) incoming param 3t

%i1 (%r25) incoming param 2t

%iO (%r24) incoming param 11 retum value to callert

local %17 (%r23) local7t

%16 (%r22) local6t

%15 (%r21) local5t

%14 (%r20) local4t

%13 (%rI9) local3t

%12 (%rI8) local2t

%11 (%rI7) local It

%10 (%rI6) 10calOt

out %07 (%rI5) temporary value I address of CALL instruction*

%sp,%o6 (%rI4) stack pointer t

%05 (%rI3) outgoing param 6*

%04 (%rI2) outgoing param 5*

%03 (%rll) outgoing param 4*

"1002 (%rl0) outgoing param 3*

"1001 (%r9) outgoing param 2*

%00 (%r8) outgoing param 1 I return value from callee*

global %g7 (%r7) global 7 (SPARC ABI: use reserved)

%g6 (%r6) global 6 (SPARC ABI: use reserved)

%g5 (%r5) global 5 (SPARC ABI: use reserved)

%g4 (%r4) global 4 (SPARC ABI: global register variable)

%g3 (%13) global 3 (SPARC ABI: global register variable)

%g2 (%r2) global 2 (SPARC ABI: global register variable)

%g1 (%rl) temporary value*

%gO (%rO) 0

state %y Y register (used in multiplication/division)*

(icc field of %psr) Integer condition codes*

t. assumed by caller to be preserved across a procedure call
:j:. assumed by caller to be destroyed (volatile) across a procedure call.

Figure 5-2. SPARe Register Set, as Seen by a User-Mode Procedure

In and Out Registers

The in and out registers are used primarily for passing parameters to subroutines
and receiving results from them, and for keeping track of the memory stack.

Programming Considerations - Register and Stack Management

5-12

cP
FUJITSU

Certain routines can also use out registers 0 through 5 as fast temporary storage;
these include leaf routines-which contain no procedure calls-and routines
which pass parameters using only shared memory or global registers. In general,
when a procedure is called, the caller's outs become the callee's ins.

One of a procedure's out registers (%06) is used as its stack pointer, %sp.1t points
to an area in which the system can store %rl6 ... %r31 (%10 ... %i7) when the
register file overflows (window_overflow trap); it is used to address most values
located on the stack. See Figure 5-3. A trap can occur at any time, which may
precipitate a subsequent window_overflow trap, during which the contents of the
user's register window at the time of the original trap are spilled to the memory to
which its %sp points.

A procedure may store temporary values in its out registers, with the exception of
%sp, with the understanding that those values are volatile across procedure calls.
% sp cannot be used for temporary values for the reasons described in the Register .. ;
Windows and %sp section below.

Up to six parameters can be passed by placing them in out registers %00 ... %05;
additional parameters are passed in the memory stack. The stack pointer is
implicitly passed in %06, and a CALL instruction places its own address in %07.

When an argument is a data aggregate being passed by value, the caller first
makes a temporary copy of the data aggregate in its stack frame, then passes a
pointer to the copy in the argument out register (or on the stack, if it is the 7th or
later argument).

After a callee is entered and its SAVE instruction has been executed, the caller's
out registers are accessible as the callee's in registers.

The caller's stack pointer %sp (%06) automatically becomes the current
procedure's frame pointer %fp (%i6) when the SAVE instruction is executed.

The callee finds its first six parameters in %iO ... %i5, and the remainder (if any)
on the stack.

For each passed-by-value data aggregate, the callee finds a pointer to a copy of
the aggregate in its argument list. The compiler must arrange for an extra derefer­
encing operation each time such an argument is referenced in the callee. The addi­
tional code in the callee program uses the pointer to access aggregate values on
the stack.

If the callee is passed fewer than six parameters, it may store temporary values in
the unused in registers.

If a register parameter (in %iO ... %i5) has its address taken in the called proce­
dure, the callee stores that parameter's value on the memory stack. The parameter
is then accessed in that memory location for the lifetime of the pointer(s) which

Programming Considerations - Register and Stack Management

5-13

SP ARClite User's Manual

contains its address (or for the lifetime of the procedure, if the compiler doesn't
know the pointer's lifetime).

The six words available on the stack for saving the first six parameters are deliber­
ately contiguous in memory with those in which additional parameters may be
passed. This supports constructs such as C's varargs, for which the callee copies to
the stack the register parameters which must be addressable.

A function returns a scalar integer value by writing it into its ins (which are the
caller's outs), starting with %iO. Aggregate values are returned using the mecha­
nism described in the Functions Returning Aggregate Values section.

A procedure's return address, normally the address of the instruction just after
the CALL's delay-slot instruction, is simply calculated as %i7 + 8.

Local Registers

The locals are used for automatic variables-those whose lifetimes are no longer
than the lifetimes of their containing procedures-and for most temporary values.
For access efficiency, a compiler may also copy parameters (Le., those past the
sixth) from the memory stack into the locals and use them from there. Procedures
only calling several leaf routines may be more efficient if some of the procedure's
automatic variables are referenced by their address rather than have the values
passed for each leaf routine call and return. If an automatic variable's address is
taken, the variable's value must be stored in the memory stack, and be accessed
there for the lifetime of the pointer{s) which contains its address (or for the life­
time of the procedure, if the compiler doesn't know the pointer's lifetime).

If a routine creates variables that can be used by other called routines, these vari­
ables should either be stored in the memory stack and referenced by pointers, or
stored in the global registers, unless the register window does not change when
the other routines are called.

Register Windows and %sp

Some caveats about the use of %sp and the SAVE and RESTORE instructions are
appropriate. It is essential that:

• %sp always contains the correct value, so that when (and if) a register window
overflow or underflow trap occurs, the register window can be correctly
stored to or reloaded from memory.

• User (non-supervisor) code use SAVE and RESTORE instructions carefully. In
particular, "walking" the call chain through the register windows using
RESTOREs, expecting to be able to return to where one started using SAVEs
does not work as one might suppose. This fails because the "next" register
window (in the "SAVE direction") is reserved for use by trap handlers. Since

Programming Considerations - Register and Stack Management

5-14

FUPTSU

non-supervisor code cannot disable traps, a trap could write over the contents
of a user register window which has "temporarily" been RESTORE'd.

For example, if a routine at the fourth calling level returns to its caller at third
level and restores the third-level window, an intervening trap at third level
can change registers in the fourth-level window. A subsequent call and SAVE
to a routine at fourth level will not find the register contents the same as they
were on exit from the last fourth-level routine.

The safe method is to flush the register windows out to user memory (the
stack) in supervisor state using a software trap designed for that purpose.
Then, user code can safely "walk" the call chain through user memory, instead
of through the register windows.

The rule-of-thumb which will avoid such problems is to consider all memory
below %sp on the user's stack, and the contents of all register windows "below"
the current one to be volatile. Below means decreasing memory address and win­
dow pointer, corresponding to call space of subsequent routines by the current
routine. In embedded control applications complex enough to require partition­
ing the process into re-usable tasks driven by a master sequencer, this view can be
critical to ensure correct functioning in all cases.

Global Registers

Unlike the ins, locals, and outs, the globals are not part of any register window. The
globals are a set of eight registers with global scope, like the register sets of more
traditional processor architectures. The globals (except %gO) are conventionally
assumed to be volatile across procedure calls. However, if they are used on a per­
procedure basis and expected to be non-volatile across procedure calls, either the
caller or the callee has to take responsibility for saving and restoring their con­
tents.

Global register %gO has a "hardwired" value of zero. It always reads as zero, and
writes to it have no effect.

The global registers other than %gO can be used for temporaries, global variables,
or global pointers-either user variables, or values maintained as part of the pro­
gram's execution environment. For example, one could use globals in the execu­
tion environment by establishing a convention that global scalars are addressed
via offsets from a global base register. In the general case, memory accessed at an
arbitrary address requires two instructions, e.g.:

sethi %hi (address) , reg
ld [reg+%lo(address)], reg

Programming Considerations - Register and Stack Management

5-15

SP ARClite User's Manual

Use of a global base register for frequently accessed global values would provide
faster (single-instruction) access to 213 bytes of those values, e.g.,:

Id [%gn+o££setj, reg

Global register n would hold the address of the center of a block of global values.
The offset, varying from -4096 to 4095 bytes, would point to a particular value.

The current convention is that the global registers (except %gO) are assumed to be
volatile across procedure calls. The convention used by the SPARC Application
Binary Interface (AB!) is that %gl is assumed to be volatile across procedure calls,
%g2 ... %g4 are reserved for use by the application program (for example, as glo­
bal register variables), and %g5 ... %g7 are assumed to be nonvolatile and
reserved for (as-yet-undefined) use by the execution environment.

5.3.2 Memory Stack
Space on the memory stack, called a stack frame, is normally allocated for each
procedure. Under certain conditions, optimization may enable a leaf procedure to
use its caller's stack frame instead of one of its own. In that case, the leaf proce­
dure allocates no space of its own for a stack frame. The following description of
the memory stack applies to all procedures, except leaf procedures which have
been optimized as shown in 5.3.4.

The following are always allocated at compile time in every procedure's stack
frame:

• 16 words, always starting at %sp, for saving the procedure's in and local
registers, should a register window overflow occur.

The following are allocated at compile time in the stack frames of non-leaf proce­
dures:

• One word, for passing a "hidden" (implicit) parameter. This is used when the
caller is expecting the callee to return a data aggregate by value; the hidden
word contains the address of stack space allocated (if any) by the caller for that
purpose. See the section titled Functions Returning Aggregate Values.

• Six words, into which the callee may store parameters that must be
addressable.

Space is allocated as needed in the stack frame for the following at compile time:

• Outgoing parameters beyond the sixth.

• All automatic arrays, automatic data aggregates, automatic scalars which must
be addressable, and automatic scalars for which there is no room in registers.

• Compiler-generated temporary values (typically when there are too many for
the compiler to keep them all in registers).

Programming Considerations - Register and Stack Management

5-16

0)

FUJITSU

Space can be allocated dynamically (at runtime) in the stack frame for the follow­
ing:

• Memory allocated using the alloca () function of the C library

Addressable automatic variables on the stack are addressed with negative offsets
relative to %fp; dynamically allocated space is addressed with positive offsets
from the pointer returned by alloca (); everything else in the stack frame is
addressed with positive offsets relative to %sp.

The stack pointer %sp must always be doubleword-aligned. This allows window
overflow and underflow trap handlers to use the more efficient STD and LDD
instructions to store and reload register windows.

Figure 5-3 illustrates the stack frame of an active non-leaf procedure.

O/Ofp (old %sp) -
%fp - offse

aliocaO -
%sp + offse

%sp + offse

%sp + offse

1_

1_

1-

1-

%sp + offse l-

%sp + offse 1-

Space (if needed) for automatic arrays, aggregates,
and addressable scalar automatics

Space dynamically allocated via alloca (I , if any

Space (if needed) for compiler temporaries

Outgoing parameters past the sixth, if any

6 words into which callee may store register
arguments

one-word hidden parameter (address at which callee
should store aggregate return value)

16 words in which to save register window (in and
local registers)

+
Stack Growth

(decreasing memory addresses)

Figure 5-3. User Stack Frame

Previous Stack Frame

Current Stack Frame

Next Stack Frame
(not yet allocated)

5.3.3 Functions Returning Aggregate Values

Some programming languages, including C, dialects of Pascal, and Modula-2,
allow the user to define functions that return aggregate values. Examples include
a C struct orunion, or a Pascal record. Since such a value may not fit into the
registers, another value-returning protocol must be defined to return the result in
memory.

Re-entrancy and efficiency considerations require that the memory used to hold
such a return value be allocated by the function's caller. The address of this mem­
ory area is passed as the one-word hidden parameter mentioned in section 5.3.2
"Memory Stack", above. Where it is known that re-entrancy is not required, global

Programming Considerations - Register and Stack Management

5-17

SP ARClite User's Manual

or shared memory allocated by the master sequencer can be an effective alterna­
tive, especially if the amount of memory required is small enough to be held in
locked data cache.

Because of the lack of type safety in the C language, a function should not assume
that its caller is expecting an aggregate return value and has provided a valid
memory address. Thus, some additional handshaking is required.

When a procedure expecting an aggregate return value from a called function is
compiled, an UNIMP instruction is placed after the delay-slot instruction follow­
ing the CALL to the function in question. The immediate field in this UNIMP
instruction contains the low-order twelve bits of the size (in bytes) of the area allo­
cated by the caller for the aggregate value expected to be returned.

When the aggregate-returning function is about to store its value in the memory
allocated by its caller, it first tests for the presence of this UNIMP instruction in its
caller's instruction stream. If it is found, the callee assumes the hidden parameter
to be valid, stores its return value at the given address, and returns control to the
instruction following the caller's UNIMP instruction. If the UNIMP instruction is
not found, the hidden parameter is assumed not to be valid and no value is
returned.

On the other hand, if a scalar-returning function is called when an aggregate
return value is expected (which is clearly a software error), the function returns as
usual, executing the UNIMP instruction, which causes an unimplemented­
instruction trap.

5.3.4 Leaf PrQcedure Optimization

A leaf procedure is one that is a "leaf" in the program's call graph; that is, one that
does not.call (e.g. via CALL or JMPL) any other procedures.

Each procedure, including leaf procedures, normally uses a SAVE instruction to
allocate a stack frame and obtain a register window for itself, and a corresponding
RESTORE instruction to de-allocate it. The time costs associated with this are:

• Possible generation of register-window overflow/underflow traps at runtime.
This only happens occasionally, but when either underflow or overflow does
occur, it costs dozens of machine cycles to process.

• The two cycles expended by the SAVE and RESTORE instructions themselves

There are also space costs associated with this convention, the cumulative cache
effects of which may not be negligible. The space costs include:

• The space occupied on the stack by the procedure'S stack frame

• The two words occupied by the SAVE and RESTORE instructions

Of the above costs, the trap-processing cycles are typically the most significant.

Programming Considerations - Register and Stack Management

5-18

cO
FUJITSU

Some leaf procedures can be made to operate without their own register window
or stack frame, using their caller's instead. This can be done when the candidate
leaf procedure meets all of the following conditions:

• Contains no references to %sp, except in its SAVE instruction

• Contains no references to %fp

• Refers to (or can be made to refer to) no more than 8 of the 32 integer registers,
inclusive of %07 (the "return address").

Such procedures can be converted into routines which share the caller's stack
frame and register window-an optimization that saves both time and space.
When optimized, such a procedure is known as an optimized leaf procedure. It
may only safely use registers that its caller already assumes to be volatile across a
procedure call, namely, %00 ... %05, %07, and %gl.

The optimization can be performed at the assembly-language level using the fol- ~;(
lowing steps:

• Change all references to registers in the procedure to registers that the caller
assumes volatile across the call:

• Leave references to %07 unchanged.

• Leave any references to %gO ... %g7 unchanged.

• Change % iO ... % i5 to %00 ... %05, respectively. If an in register is changed
to an out register that was already referenced in the original unoptimized
version of the procedure, all original references to that out register must be
changed to refer to an unused out or global register.

• Change references to each local register into references to any register
among %00 ... %05 or %gl that remains unused.

• Delete the SA VE instruction. If it was in a delay slot, replace it with a NOP
instruction. If its destination register was not %gO or %sp, convert the SAVE
into the corresponding ADD instruction instead of deleting it.

• If the RESTORE's implicit addition operation is used for a productive purpose
(such as setting up the procedure's return value), convert the RESTORE to the
corresponding ADD instruction. Otherwise, the RESTORE is only used for
stack and register-window de-allocation; replace it with a NOP instruction (it
is probably in the delay slot of the RET, and so cannot be deleted).

• Change the RET (return) synthetic instruction to RETL (return-from-leaf­
procedure synthetic instruction).

• Perform any optimizations newly made possible, such as combining
instructions, or filling the delay slot of the RETL with a productive instruction.

After the above changes, there should be no SAVE or RESTORE instructions, and
no references to in or local registers in the procedure body. All original references
to ins are now to outs. All other register references are to either %gl, or other outs.

Programming Considerations - Register and Stack Management

5-19

SP ARClite User's Manual

Costs of optimizing leaf procedures in this way include:

• Additional intelligence in the peephole optimizer to recognize and optimize
candidate leaf procedures.

• Additional intelligence in debuggers to properly report the call chain and the
stack traceback for optimized leaf procedures.

The following code fragment shows a simple procedure call with a value
returned, and the procedure itself:

CALLER:
int i;
i ~ sum3

mov
mov
call
mov
mov

(1, 2,

1,%00
2, %01
sum3
3, %02
%00, %17

3);

/* compiler assigns "in to register %17 */

first arg to sum3 is 1
second arg to sum3 is 2
the call to sum3
last parameter to sum3 in delay slot
copy return value to %17 (variable "in)

#define SA (x) «(x) +7) & (-Ox07)) /* rounds "x" up to doubleword boundry */
#define MINFRAME «16+1+6)*4) /* minimum size frame */

CALLEE:
int sum3 (a, b, c)
int a, b, c;

return a+b+c;

sum3:
save %sp, -SA(MINFRAME) ,
add %iO, %i1, %17
add %17, %i2, %17
ret
restore % 17 , 0, %00

%sp

/* args received in %iO, %il, and %i2 */

!set up new %sp; alloc min. stack frame
cOmPute sum in local %17

(or %iO could have been used directly)
return from sum3, and ...

move result into output reg & restore

Since "sum3" does not call any other procedures (i.e., it is a "leaf" procedure), it
can be optimized to become:

sum3:
add
retl
add

%00, %01, %00

%00, %02, %00
(must use RETL, not RET,

to return from leaf procedure)

If a leaf routine is being created at the assembly level for use in an environment
such as embedded control where all the caller routines are known, then a differ­
ent approach can be taken.

Programming Considerations - Register and Stack Management

5-20

cP
FUJITSU

Form a register map which identifies all of the in and local registers which contain
information to be used by the leaf routine. Additionally, to accommodate the
most restrictive of caller routines, identify those in and local registers which must
be preserved for the caller.

Initially attempt to write the leaf routine so that it changes only out and global
registers, but uses information in the in and local registers. If the code requires
storing temporary values in memory and retrieving them later in the routine, or
regenerating a value in a register later in the routine because the register was
overwritten to hold some other value, then examine the in and local registers to
see if any of them can be changed by the leaf routine.

If so, modify the routine appropriately. If not, or if after modification there is still
temporary memory use or register value regeneration, try to relax the restrictions
of caller routines by changing code to regenerate some of the variables saved in
registers.

Usually leaf routines are associated with inner loops and are executed much more
frequently than the routines that call them. Total program performance will be
improved with the most efficient inner loops and leaf routines, even at the
expense of less efficient outer-loop and set-up routines.

The following short function code shows an example of a leaf routine written
directly at the assembly level and satisfying the requirements for safe calling by
other routines:

*Convert red, green, blue pixel planes to intensity pixel plane:

*
*
*
*
*
*
*

Y(i,j)= [a*A(i,j)+ b*B(i,j)+ c*C(i,j)]/256

since there is no distinction between the i and j indexes as
used bY this process, the arrays can be accessed linearly with
a single index that runs through the total 512 bY 512 pixel
space. i= 511 -> 0, j= 511 -> O. Each pixel is one bYte.

*Inputs:

*
base address Y
base address A
base address B
base address C

*
*
* pointer to Scalar Constant Array Base for a,b,c and other
* constants.
*Outputs: Y(i,j)

*Time:

*
3932169 + 458753W cycles,
where W is number of wait states for DRAM access of data.

Programming Considerations - Register and Stack Management

5-21

SP ARClite User's Manual

*REGISTER MAP:
*iO [Y(O,O)] 10 00 aA+bB+cC, Y(i, j) gO ° *i1 [A(O,O)] 11 01 A(i,j) gl a
*i2 [B(O, 0)] 12 02 B(i,j) g2 b
*i3 [C(O, 0)] 13 03 C(i,j) g3 c
*i4 14 04 bB, cC g4
*i5 15 05 512j+i(2 A 18-1 ->0) g5 [Y(O,O)]+l
*i6 FP 16 06 SP g6
*i7 general return 17 07 leaf return g7 SCAB

*The following instructions take one cycle unless otherwise noted.
*/

rgb_i: sethi 256,%05
sub %05,1,%05
add %iO,1,%g5

ldub
ldub
ldub

[%g7+cnsta] ,%gl
[%g7 +cnstb] , %g2
[%g7+cnstc],%g3

/*inner loop begin*/
t1: ldub [%i1+%05] ,%01

umul %ol,%gl,%oO
ldub [%i2+%05] ,%02
wnul %02,%g2,%04
add %00,%04,%00
ldub [%i3+%05] ,%03
umul %03,%g3,%04
add %00,%04,%00
sra %00,8,%00
subcc %05,1,%05
bg t1
stb %00, [%g5+%05]

/*inner loop end*/
retl
nop

!preset index to last pixel for fetch.
!start at end & work toward beginning.
!offset store base to compensate for
!fetch index being ahead one pass
!of store index
!get weighting coefficients
!l+W cycles for 1st byte - cache miss.
!l cycle each for rest - cache hit.

!fetch A. l+W cycles for 1st byte.
!1 cycle for remaining 3 bytes in word.
!2 cycles for byte multiplier
!fetch B. 1+W/4 cycles.
!2 cycles.
!update accumulator
!fetch C. 1+W/4 cycles.
!2 cycles.
!update accwnulator
!scale sum of products to form Y
!decrement & test index
!loop if index >0
!store Y using offset base since
!index has decremented.
!l+W cycles - always cache miss.

!2 cycles
!exit

5.3.5 Register Allocation Within a Window

The usual SPARe software convention is to allocate eight registers (%10-%17) for
local values. A compiler could allocate more registers for local values at the
expense of having fewer outs/ins available for argument passing.

For example, if instead of assuming that the boundary between local values and
input arguments is between r[23] and r[24] (%17 and %iO), software could by con-

Programming Considerations - Register and Stack Management

5-22

cP
FUJITSU

vention assume that the boundary is between r[25] and r[26] (%i1 and %i2). As
illustrated in Table 5-1, this would provide 10 registers for local values and 6
"in" I"out" registers.

Table 5-1: Alternative Register Allocation

Standard "10-Local" Arbitrary
Register Register Register

Model Model Model

registers for local values 8 10 n

"in"f'out" registers:
reserved for %sp/%fp 1 1 1
reserved for return address 1 1 1
available for arg passing 6 4 14-n

total "ins"f'outs" 8 6 16-n

5.3.6 Other Register and Window Usage Models

In general-purpose computers, procedure calls are assumed to be frequent rela­
tive to both context switches and User-Supervisor state transitions. A primary
goal in these applications is to minimize total overhead, which includes time
spent in both context switches and procedure calls. As more register windows are
shared among competing processes, total procedure call time decreases (due to
execution of fewer window overflow and underflow traps), while total context­
switch time may increase (the average number of register windows saved during
a context switch increases). The task is to strike a balance to minimize the sum of
these two factors.

In embedded and/ or real-time systems, the following factors are often more
important than total overhead:

• Minimal average context-switch time

• A constant (or small worst-case deterministic) context-switch time

• A constant (or small worst-case deterministic) procedure-call time

In these cases, it can be worthwhile to use a different scheme for managing the
SP ARC register windows than the standard one described so far. This section pro­
vides a few examples of modifications that can be made to the standard conven­
tions. You can then design a register-usage scheme appropriate to the specific
needs of your application.

1. Divide the register file into "supervisor mode" register windows and "user
mode" register windows. In cases where user/supervisor transitions are fre­
quent, this will reduce register-window overflow and underflow overhead.

To be effective in a workstation environment, where the coding style is charac­
terized by deep nesting of procedure calls, such a scheme would require a

Programming Considerations - Register and Stack Management

5-23

SP ARClite User's Manual

SP ARC implementation with at least 14 windows in hardware (a minimum of
7 for user code plus 7 for supervisor code). In embedded control, however, the
nesting of procedure calls is typically shallow, and windows will be used
more sparingly.

2. Use multiple l's in the Window Invalid Mask Register (WIM) to partition the
register file into groups of at least two registers each. Assign each group of
registers to an executing task. This technique can be useful in real-time pro­
cessing, where extremely fast context switches are desirable. A context switch
would consist of loading a new stack pointer, resetting the CWP to the new
task's block of register windows, and saving and restoring whatever subset of
the global registers is assumed to be nonvolatile. In particular, note that no
window registers would need to be loaded or stored during a context switch.

This technique assumes that only a few tasks are present, and, in the simplest
case, that all tasks share a single address space. The number of hardware regis­
ter windows required is a function of the number of windows reserved for the
supervisor, the number of windows reserved for each task, and the number of
tasks. Register windows could be allocated to tasks unequally, if appropriate.

3. A void the normal register-window mechanism, by not using SAVE and
RESTORE instructions. Software would effectively see 32 general-purpose
registers instead of SP ARC's usual windowed register file. In this mode,
SP ARC would operate like processors with a more traditional flat register
architecture. Procedure call times would be more deterministic (since there
would be no window overflow or underflow traps), but for most types of soft­
ware, average procedure call time would significantly increase, due to
increased memory traffic for parameter passing and saving and restoring local
variables.

A number of existing SP ARC compilers produce code using this register orga­
nization.

It would be awkward, at best, to attempt to mix (link) code using the SAVEl
RESTORE convention with code not using it in the same process. If both con­
ventions were used in the same system, two versions of each library would be
required.

It would be possible to run user code with one register-usage convention and
supervisor code with another. With sufficient intelligence in the supervisor, user
processes with different register conventions could be run simultaneously.

5.4 Cache Management
Effective cache usage is based on the following principles:

• Compactness of Code-Criticalloops should fit entirely in the cache. They can
then be locked into the cache to prevent their being displaced when other, less-

Programming Considerations - Cache Management

5-24

cP
FUJITSU

often-used routines are called. In some cases, it may be advisable to disable
compiler in-lining optimizations in order to keep your code compact.

• Program Profiling-Knowing where your program spends its time will help
you decide what instructions and data to lock into cache.

• Data and Instruction Locality-If possible, a large program or data set should be
partitioned in such a way that one portion at a time can be locked into cache
and used for a while before another portion needs to be loaded. For example,
there are numerical routines which perform as many of their required
computations as possible on one block of data before proceeding to the next
block.

5.5 Division Routines Using the DIVScc Instruction
This section shows how integer division routines can be created using the DIVScc
instruction. Signed and unsigned divisions are included for both word and dou­
bleword dividends. The divisor is always a single word. These routines can serve
as models for your own use of DIVScc, or they can be incorporated into your pro­
grams and used without modification. These sample routines do not set the inte­
ger condition codes in exactly the same way as the SP ARC Version 8 integer
division instructions.

5.5.1 Simple Divide Step Examples
In each of the following examples, a cycle by cycle view of divide step with
reduced word size (3 bits) is given

Register Use:
outO most significant half Dividendi Remainder
outl least significant half Dividendi Quotient
out2 Divisor
Note: TS, True Sign = N xor V from condition codes

I Note: adjustment of negative quotient is also
conditional on remainder. Details omitted
here. See signed division example code.

Examples of SIGNED division

7/2 = +3 & +1 rmdr; 010-> 02, 111-> 01, 000-> 00
lY 01 TS ALUin ALUout

mov %00,%y
1000 111

msh dividend -> Y reg

tst %00 initialize cc with sign dividend
1000 1111 0

divscc %01,%02,%01 0001-0010 1111 divide step 1
1111 1110 1

divscc %01,%02,%01 1111+0010 0001 divide step 2

Programming Considerations - Division Routines Using the DWScc Instruction

5-25

SP ARClite User's Manual

lOOl 1101 0
divscc %01,%02,%01 0011-0010 0001 divide step 3

lOOl 011 0
tst %00 dividend & quotient sign?

lOOl 011 0
bl,a 1f

lOOl 011
add %01,1,%01 adjust quotient if negative from

lOOl 011 l's to 2's complement form
l:mov %y,%00 lOOl -> 00 retrieve remainder

-11/3 = -3 & -2 rmdr; 011-> 02, 101-> 01, 110-> 00
lY 01 TS ALUin ALUout

mov %00,%y msh dividend -> Y reg
l110 101

tst %00 initialize cc with sign dividend
l110 1101 1

divscc %01,%02,%01 1101+0011 0000 divide step 1
lOOO 0111 0

divscc %01,%02,%01 0000-0011 1101 divide step 2

l101 1110 1
divscc %01,%02,%01 1011+0011 1110 divide step 3

l110 100 1
tst %00 dividend & quotient sign?

l110 100 1
bl,a 1f

l110 100
add %01,1,%01 100+001 101 adjust quotient if negative from

l110 101 l's to 2's complement form
l:mov %y,%00 l110 -> 00 retrieve remainder

Examples of UNSIGNED division
\

11/3 = 3 & 2 rmdr; 011-> 02, 011-> 01, 001-> 00
lY 01 TS ALUin ALUout

mov %00,%y msh dividend -> Y reg
lOOl 011

tst %gO initialize cc as non negative
lOOl 0111 0 dividend

divscc %01,%02,%01 0010-0011 1111 divide step 1
ll11 1110 1

divscc %01,%02,%01 1111+0011 0010 divide step 2
lO10 1101 0

divscc %01,%02,%01 0101-0011 0010 divide step 3
lO10 011 0 TS is last remainder sign

mov %y,%oO lO10 -> 00 retrieve remainder
!---

reg 00
lO10 011 0

bl,a 1f
lO10 011

Programming Considerations - Division Routines Using the DIVScc Instruction

5-26

add %00,%02,%00
1010 011

l:nop

33/5 = 6 & 3 rrndr; 101-> 02,
lY 01 TS

mov %00,%y
1100 001

tst %gO
1100 0101 0

divscc %01,%02,%01
1011 0111 a

divscc %01,%02,%01
1001 1111 a

divscc %01,%02,%01
!110 110 1

mov %y,%00 110 -> 00
!---

reg 00
!110 110 1

bl,a 1f
!110 110

add %00,%02,%00
! 011 110

l:nop

001-> 01, 100-> 00
ALUin ALUout

1000-0101 0011

0110-0101 0001

0011-0101 1110

110+101 011

OJ
FUJITSU

adjust remainder if negative

msh dividend -> Y reg

initialize cc as non negative
dividend

divide step 1

divide step 2

divide step 3
TS is last remainder sign
retrieve remainder

adjust remainder if negative

5.5.2 Signed Division with Doubleword Dividend (divs2)
This subroutine for signed division of a 64-bit dividend by a 32-bit divisor pro­
duces a 32-bit signed quotient and a 32-bit remainder. Special treatment is given
to borderline overflow when the absolute value of the quotient is 231, in order to
support the math operator INTEGER PART OF: Q=_231 does not overflow;
Q=+231 overflows with a special overflow code.

Remainder is zero if the division is exact; otherwise, the remainder is the same
sign as original dividend. There is a check for divide by zero and a check for over­
flow with non-zero divisor. The check for divide by zero is kept separate to sup­
port the SPARe-recommended trap for divide by zero. In applications where the
user knows the numerical ranges of the operands, or controls them, these checks
can be omitted. Division with divide by zero fault takes 6 cycles, sets the overflow
flag in the integer condition code, and leaves Oxfffff800 in register out3.

Division with non-zero divisor overflow takes 17 to 23 cycles (17 or 19 if the origi­
nal dividend is positive, 18 or 23 if the original dividend is negative); it sets the
overflow flag in the integer condition code, and leaves Ox800 in register out3.

Division leading to a quotient of absolute value 231 takes 20 cycles if the original
dividend is positive, and 23 cycles if the original dividend is negative. It leaves
the correct remainder in register outO, _231 in outl as quotient and 0 in out3. It

Programming Considerations - Division Routines Using the DWScc Instruction

5-27

SP ARClite User's Manual

clears the overflow condition code if the actual quotient is _231, and sets the over­
flow condition code if the actual quotient is +231.

Division without fault takes 49 to 60 cycles; it clears the overflow condition code,
and leaves 0 in register out3. Exact division with last partial remainder = 0 takes
49 cycles. Exact division with last partial remainder = ±divisor, as happens with
non-restoring division algorithms, takes 53 or 54 cycles. Inexact division, with
non-zero final remainder, takes 56 to 60 cycles.

!Calling convention

mov
mov
call
orcc

%10,%00
%11, %01
divs2
%gO,%12,%02

!msh dvdnd->oO
!lsh dvdnd->ol
!DIVISION SUBROUTINE CALL
!dvsr->02 & test

!Register Map

reg#
outO msh dividend/remainder
outl Ish dividend/quotient
out 2 divisor
out3 overflow indication

overflow divide by zero/Oxfffff800 and V=l
overflow divide by non-zero/Ox800 and V=l
overflow quotient =+2 A 31/0 and V=l
no overflow/O and V=O

out4 scratch for final remainder calculations
out5 absolute value of divisor
y msh dividend/successive partial remainders
call to divs2 must be made with cc indicating sign of divisor

.global divs2

divs2: bne

0:

1 :

mov
sethi
retl
addcc
bl,a
sub
mov
tst

bl

Of
%02,%05
Oxlfffff, %03

%03,%03,%03
If
%gO,%05,%05
%00,%y
%00

2f
divscc %01, %05, %01

!go on if divisor not zero
!copy divisor in 05, D
!divide by zero indicator
!exit with
!overflow set

!if divsr neg, D=-divsr
!msh dvdnd->Y
!initialize cc for first divide step
!with sign dividend for signed divide
!skip ahead for negative dividend
!divide step 1

!don't change cc except by DIVSCC until last divide step done

bl 3f !ok if different

Programming Considerations - Division Routines Using the DIVScc Instruction

5-28

mov
srl
bg
subcc
bge

sethi

tst
bg,a
addcc

9: retl
mov

8 : sethi
retl
addcc

2 : bge
mov
mov
addcc
bne
sri
sethi
or
addcc
ble

tst
bl,a
addcc

9: retl
mov

8: sethi
retl
addcc

3 : divscc
divscc

divscc
divscc

be

mov
bg
addcc
be,a
mov

%gO, %03
%01,1,%04
8f
%04,%05,%gO
8f

Ox200000,%01

%02
9f
%ol,%ol,%gO

%04,%00
Ox200001, %03

%03,%03,%03
3f
%gO,%03
%y,%00
%00,1, %gO
8f
%01,1,%04
Ox200000,%01
%01,%04,%04
%04,%05,%gO
8f

%02
9f
%ol,%ol,%gO

%04,%00
Ox200001,%03

%03,%03,%03
%01, %05, %01
%01, %05, %01

%01, %05, %01
%01, %05, %01

6f

%y, %04
4f
%04,%05,%gO
6f
%gO, %04

!clear overflow indicator
!get lsh rmdr
!if msh rmdr >0 then overflow
!if lsh rmdr <D then Q is +/-2 A 31
!& 04 is correct final rmdr
!check if overflow on Q = +2 A 31
!set -2 A 31 -> Q
!else overflow
!if original divisor >0
!which implies quotient =+2 A 31
!set ovrlfw cc with 03 = 0
!exit

cP
FUJITSU

!with correct remainder in 00
!overflow divide by non-zero indicator
!exit with
!overflow set
! ok if different
!clear overflow indicator
!get msh rmdr
lis it -1
!if <-1 then overflow
!get lsh rmdr except for leading 1
!set -2 A 31 ->Q
!insert leading 1 in lsh rmdr
!if lsh rmdr >-D then q is +/-2 A 31
!& 04 is correct final rmdr
!check if overflow on Q = +2 A 31
!else overflow
!if original divisor <0
!which implies quotient =+2 A 31
!set ovrlfw cc with 03 = 0
!exit
!with correct remainder in 00
!overflow divide by non-zero indicator
!exit with
!overflow set
!divide step 2
!divide step 3

!divide step 32

!if final remainder is zero,
!go fix quotient polarity
!final remainder from Y to 04
!skip ahead if rmdr+; continue if rmdr­
lis neg rmdr + abs divsr =0
!if so, go fix quotient polarity and
!clear rmdr. if not, don't clear

Programming Considerations - Division Routines Using the DIVScc Instruction

5-29

SPARClite User's Manual

4 :

5:

6:

7 :

tst
bl
tst
ba
add

%00
Sf
%01
Sf
%04,%05/%04

subcc %04,%05,%gO
be,a 6f
mov
tst
bge
tst
sub

%gO,%04
%00

Sf
%01
%04,%05,%04

bl,a 6f
add %01,1,%01

tst %02
bl,a 7f
sub
retl

%gO,%01,%01

mav %04,%00

!test original dvdnd
!if neg, go check neg Q
!sign Q

!if orig dvdnd pos and final rmdr neg,
!correct rmdr; then go check neg Q
!is pos rmdr - abs divsr =0
!if so, go fix quotient polarity and
!clear rmdr. if not, don't clear
!test original dvdnd
!if pos, go check neg Q
!sign Q
!if orig dvdnd neg and final rmdr pos,
!correct rmdr; then go check neg Q
!skip ahead if Q pos
!if neg Q, l's complement to
!2's complement; annul if pos Q
!check original divisor sign

!if neg divsr, negate quotient
!exit
!with correct remainder in 00

5.5.3 Signed Division with Word Dividend (divsl)

This subroutine for signed division of a 32-bit dividend by a 32-bit divisor pro­
duces a 32-bit signed quotient and a 32-bit remainder. Remainder is zero if the
division is exact; otherwise the remainder is the same sign as the original divi­
dend. There is no check for divide by zero. It is not possible to overflow with non­
zero divisor. If the calling routine knows that divide by zero cannot happen, no
test is needed. If divide by zero is possible, a simple test just after the call can
abort the division.

Division without fault takes 47 to 58 cycles. Exact division with last partial
remainder = 0 takes 47 cycles. Exact division with last partial remainder =
±divisor, as happens with non-restoring division algorithms, takes 51 or 52 cycles.
Inexact division, with non-zero final remainder, takes 54 to 58 cycles.

!Calling Convention

mav %11,%00

oree %gOI%12 / %02
call divsl
be dvbyO

!Register Map

reg#

!dvdnd->oO
!dvsr->02 & test
!DIVISION SUBROUTINE CALL
!abort division if divide by zero

Programming Considerations - Division Routines Using the DIVScc Instruction

5-30

outO
outl
out2
out4
out5
y

dividend/remainder
quotient
divisor
scratch for final remainder calculations
absolute value of divisor

cP
FUJITSU

initially sign extension of dividend/successive partial
remainders. call to divsl must be made with cc indicating
sign of divisor

. global divsl
divsl:

1 :

2:

4:

mov %gO,%y
mov %02,%05
bl,a 1f
sub %gO,%05,%05
tst %00

bl,a 2f
mov -l.%y
divscc %00, %05, %01

divscc %01, %05, %01
divscc %01, %05, %01
divscc %01, %05, %01

divscc %01, %05, %01
divscc %01, %05, %01
be 6f

mov %y, %04
bg 4f
addcc %04,%05,%gO
be,a 6f
mov %gO, %04
tst %00
bl 5f
tst %01
ba 5f
add %04,%05,%04

subcc %04,%05,%gO
be,a 6f
mov
tst
bge
tst
sub

%gO,%04
%00
5f
%01
%04,%05,%04

!O -> Y
!copy divisor in 05, D

!if divsr neg, D=-divsr
!initialize cc for first divide step with
!sign dividend for signed divide

!-1 -> Y only if dvdnd neg
!divide step 1
!leave original dividend in 00.
!do partial remainders & quotient in 01
!don't change cc except by divscc until
!last divide step is completed
!divide step 2
!divide step 3
!divide step 4

!divide step 32
!if final remainder is zero,
!go fix quotient polarity
!final remainder from Y to 04
!skip ahead if rmdr+; continue if rmdr­
lis neg rmdr + abs divsr =0
!if so, go fix quotient polarity and
!clear rmdr. if not, don't clear
!test original dvdnd
!if neg, go check neg Q
!sign Q

!if orig dvdnd pas and final rmdr neg,
!correct rmdr; then go check neg Q
lis pas rmdr - abs divsr =0
!if so, go fix quotient polarity and
!clear rmdr. if not, don't clear
!test original dvdnd
!if pos, go check neg Q
!sign Q
!if orig dvdnd neg and final rmdr pas,

Programming Considerations - Division Routines Using the DIVScc Instruction

5-31

.. ,.. I"

SP ARClite User's Manual

!correct rmdr; then go check neg Q

5: bl,a 6f !skip ahead if Q pos
add %01, 1, %01 !if neg Q, 1's complement to

12's complement; annul if pos Q

6: tst %02 !check original divisor sign
bl,a 7f
sub %gO,%01,%01 !if neg divsr, negate quotient

7: retl !exit
mov %04,%00 !with correct remainder in 00

5.5.4 Unsigned Division with Doubleword Dividend
(divu2)

This subroutine for unsigned division of a 64-bit dividend by a 32-bit divisor pro­
duces a 32-bit unsigned quotient and a 32-bit remainder. Remainder is zero if the
division is exact, and positive otherwise. There is a check for divide by zero and a
check for overflow with non-zero divisor. The check for divide by zero is kept
separate in order to support the SPARe-recommended trap for divide by zero. In
applications where the user knows the numerical ranges of the operands, or con­
trols them, these checks can be omitted.

Division with divide by zero fault takes 6 cycles; it sets the overflow flag in the
integer condition code, and leaves OxfffffSOO in register out3. Division with a non­
zero divisor overflow takes 9 cycles; it sets the overflow flag and leaves OxSOO in
register out3. Division without fault takes 42 cycles, clears the overflow flag, and
leaves 0 in register out3.

!Calling Convention

mov
mov
call
orcc

%10,%00
%11,%01
divu2
%gO,%12,%02

!msh dvdnd->oO
!lsh dvdnd->01
!DIVISION SUBROUTINE CALL
!dvsr->02 & test

!Register Map

reg#
out 0 msh dividend/remainder
out1 Ish dividend/quotient
out2 divisor
out3 overflow indication

overflow divide by zero/Oxfffff800 and V=1
overflow divide by non-zero/Ox800 and V=l
no overflow/O and v=O

y msh dividend/successive partial remainders
call to divs2 must be made with cc indicating if divisor zero

Programming Considerations - Division Routines Using the DIVScc Instruction

5-32

global divu2
divu2: bne If

1 :

mov
sethi
retl
addcc
subcc
bcs

%oO,%y
Oxlfffff, %03

%03,%03,%03
%oO,%02,%gO
2f

orcc %gO,O,%03

sethi Ox200001,%03
retl
addcc %03,%03,%03

!go on if divisor not zero
!msh dvdnd->Y
!divide by zero indicator
!exit with
!overflow set
!is msh dvdnd < dvsr
!ok if so
!initialize cc for first divide step
!with positive sign for unsigned divide
!clear overflow indicator
!overflow divide by non-zero indicator
!exit with
!overflow set

2: divscc %01, %02, %01 !divide step 1

3 :

!don't change cc except by divscc until
!last divide step is completed

divscc %01, %02, %01 !divide step 2
divscc %01, %02, %01 !divide step 3

divscc %01, %02, %01
divscc %01, %02, %01 !divide step 32

bl 3f !skip ahead if rmdr-
mov %y,%oO !final remdr from Y to 00
retl !exit
addcc %00,0,%00 !clear ovrflw cc if on
retl !exit
addcc %00,%02,%00 !correct rmdr & clear ovrflw cc if on

00
FUJITSU

5.5.5 Unsigned Division with Word Dividend (divul)
This subroutine for unsigned division of a 32-bit dividend by a 32-bit divisor pro­
duces a 32-bit unsigned quotient and a 32-bit remainder. Remainder is zero if the
division is exact, and positive otherwise. There is no check for divide by zero. It is
not possible to overflow with non zero divisor. If the calling routine knows that
divide by zero cannot happen, no test is needed. If divide by zero is possible, a
simple test just after the call can abort the division.

If not aborted, the division takes 39 cycles; it clears overflow flag and leaves 0 in
register out3. If the remainder is of no interest and only the quotient correspond­
ing to INTEGER(dvdnd/ dvsr) or FLOOR(dvdnd/ dvsr) for unsigned numbers is
wanted, then the last steps of this routine can be modified as indicated. Quotient­
only unsigned division takes 36 cycles.

!Calling Convention

Programming Considerations - Division Routines Using the DIVScc Instruction

5-33

SP ARClite User's Manual

mov
orcc
call
be

%11,%01
%gO,%12,%02
divu1
dvbyO

!Register Map

reg#
outO remainder

!dvdnd->ol
!dvsr->02 & test
!DIVISION SUBROUTINE CALL
!abort division if divide by zero

out1 dividend/quotient
out2 divisor
out3 ° if divide by non zero
y zero/successive partial remainders

!O->Y
.globa1 divu1
divu1: mov

orcc
%gO,%y
%gO,0,%03 !initia1ize cc for first divide step

!with positive sign for unsigned divide

!ALL

1:

!clear divide by zero indicator
divscc %01, %02, %01 !divide step 1

!don't change cc except by divscc until
!last divide step is completed,

divscc %01, %02, %01 !divide step 2
divscc %01, %02, %01 !divide step 3

divscc %01, %02, %01
divscc %01, %02, %01 !divide step 31
retl !exit for quotient-only divide
divscc %01, %02, %01 !divide step 32

the following steps may be omitted for quotient-only divide

bl 1f !skip ahead if rmdr-
mov %y,%oO !final rmdr from y to 00
retl !exit
addcc %00,0,%00 !clear ovrflw cc if on
retl !exit
addcc %00,%02,%00 !correct rmdr & clear ovrflw cc if on

5.5.6 Divide Step In Support Of A To D Converter
Compensation

The following code fragment shows compensation for errors in quantization
codes of an analog to digital converter that has been calibrated with the Walsh
Transform techniques developed at Schlumberger (Fairchild) Test Systems. Refer
to "A System For Converter Testing Using Walsh Transform Techniques" by E.A.

Programming Considerations - Division Routines Using the DIVScc Instruction

5-34

cO
FUJITSU

Sloane presented as paper 11.3 at the IEEE International Test Conference, October
1981.

As the paper shows, for well designed and manufactured analog to digital con­
verters, the relation between codes and actual voltage values of the mid point of
each quantization bin is as close to linear as technology and economics permit. So
the power of two order Walsh coefficients dominate over the cross terms. Conse­
quently, this example only uses the quantization bits as is and doesn't cover the
exclusive or combinations between some of the more significant bits. For each bit
of additional accuracy, only another instruction pair of add & set condition codes
and divide step is required. To do this with table lookup would require doubling
the table size, consuming data cache. Simple gain and offset corrections based on
least square linear fit don't offer as much accuracy and usually are based on static
rather than dynamic tests, which are more suited to actual use.

The operation shown in the code fragment is:

At each stage whether the next term is added or subtracted depends on whether
the corresponding bit of quantization in a register pointed to by symbol x is 0/1.

mov O,%y
addcc x,x,x

divscc %gO,A9,%gO

addcc X,X,X

divscc %gO,A8,%gO
addcc X,X,X

divscc %gO,A7,%gO
addcc X,X,X

divscc %gO,A6,%gO
addcc X,X,X

divscc %gO,A5,%gO
addcc X,X,X

divscc %gO,A4,%gO
addcc X,X,X

divscc %gO,A3,%gO
addcc X,X,X

divscc %gO,A2,%gO
addcc X,X,X

divscc %gO,Al,%gO
addcc X,X,X

!clear Yreg
!left shift code from upper bits of register x
!with msb setting N & V to force true sign
!only add or subtract immediate value to Yreg
!no other register is affected

Programming Considerations - Division Routines Using the DIVScc Instruction

5-35

SP ARClite User's Manual

divscc %gO,AO,%gO
mov %y,%gl !gl holds compensated value of quantization code

!from x scaled by a factor chosen to make most
!use of the 13 bit precision available for
!immediate values. Here with 10 bits, results
!are scaled by 2Ag relative to coefficients.

As an example, a 10 bit offset binary analog to digital converter might be set to
operate over a range of -5.12 to +5.12 volts with nominal 10 millivolt quantization
resolution. If ideal, with no errors, the coefficients for each bit expressed as milli­
volts would be:

m 9 8 7 6 5
a(m) ·2560 ·1280 -640 ·320 ·160

4

·80
3

·40

2

·20 ·10

o
·5

If the process technology is limited to ± 0.5% accuracy of the converter's resistive
ladder, then the actual coefficients for each bit in millivolts could be:

m 9 8 7 6 543 2 0

a(m) ·2572.59 ·1274.24 ·642.94 -319.97 ·159.87 ·80.34 ·39.86 ·20.02 ·10.05 4.98

These coefficients would be scaled by 29-m, corresponding to the order of entering
Yreg which gets left shifted each time, and rounded to integer.

m 9 8 7 6 5 432 0

A(m) ·2573 ·2548 ·2572 ·2560 ·2558 ·2571 ·2551 ·2563. ·2572 ·2547

Driving the analog to digital converter with a 4.000 Volts, 5 MHz sine wave, sam­
pling at 64 MHz and collecting 64 consecutive samples allows performing spec­
trum analysis with FFT to determine effective bits under the test conditions.
Because of the sine wave frequency relative to the sample frequency, the signifi­
cant distortion harmonics don't alias into the fundamental frequency analysis bin.
Number of effective bits is approximately:

O 5 I (2 power spectrum at fundamental)
. x og - x ---------------

3 sum of power spectrum at all other freqencies

log (2)

The nominal 10 bit converter with ideal coefficients at each code bit shows 9.52
effective bits under dynamic rather than static testing. The converter with ± 0.5%

Programming Considerations - Division Routines Using the DWScc Instruction

5-36

cP
FUJITSU

errors in the resistive ladder taken at nominal value without Walsh based calibra­
tion shows 7.57 effective bits. With Walsh base calibration, it shows 9.05 effective
bits. A least square straight line fit for compensation shows only 7.57 effective bits
but with reduced error in measuring peak amplitude.

This less obvious use of divide step allows fast compensation for an appropriately
calibrated analog to digital converter. Recovery for this example of about 3/4 of
the lost number of effective bits at the price of two cycles per quantization bit plus
2 cycles overhead.

5.6 Using the SCAN Instruction
The code examples in this section illustrate the use of the SCAN instruction. In the
first example, SCAN is used to simplify and speed up floating-point normaliza-
tion. .~:

5.6. 1 Scan in Support of Software Floating Point
The following code fragment shows post normalization of floating point add or
subtract for the case where the result requires calculating the difference of the
magnitudes of the numbers. The IEEE754 format, which is used in SP ARC archi­
tecture as well, is assumed. This uses sign, offset exponent, hidden leading bit
when normalized and fraction. Only the logic of normalize numbers is shown
here. Number values are in sign and magnitude form rather than two's comple­
ment.

31 30 23 22 0

I I I normalized values

L.s...L ___ e ___ L-_______________ ---I ~:~:~"127 o(1+fx2"23)

The operation is x+y=z or x-y=z. If subtract, then sign y is complemented. The
magnitudes of the numbers have to be compared and the one with the lesser
exponent right shifted to align its decimal point with the greater. If exponents are
equal, magnitudes must be compared if signs differ to see what the sign of the
result will be. This is assumed to have taken place before the code fragment
shown here, which shows the logic of handling numbers with different signs and
different exponents. Symbol x points to the larger number; y to smaller.

sethi Ox3fe. %g5

sl1 %g5.1. %g4

!mask for sign and exponent with and
lor for fraction with andn

Programming Considerations - Using the SCAN Instruction

5-37

SPARClite User's Manual

xor %g4,%g5,%g4
srI x,23,%g2
and %g2,Oxff,%g2
srI y,23,%g3
and %g3,Oxff,%g3
sub %g2,%g3,%gl
andn y,%g5,%g3
or %g3,%g4,%g3
srI %g3,%gl,%g2
sub %gO,%gl,%gl
sl1 %g3,%gl,%g3
addcc %g3,%g3,%gO

andn x,%g5,%gl
or %gl,%g4,%gl
subx %gl,%g2,%gl

!--------

scan %gl,0,%g2

subcc %g2,32,%gO
blu If
sub %g2,8,%g2

lunderflow due to loss

1: sl1 %gl,%g2,%g1
andn %gl,%g4,%gl
srI x,23,%g3
and %g3,Oxff,%g4
subcc %g4,%g2,%gO
bgu 2f
sub %g3,%g2,%g3

of

lsingle one at bit 23 for hidden bit

lx exponent

ly exponent
lalignment difference
ly fraction
ly hidden bit
ldownshift y magnitude to g2
lcomplement of shift
lupshift left over y for test
ltest left over for rounding
lnote: not IEEE754 rounding here
lx fraction
lx hidden bit
ldifference of magnitudes with
lsimple rounding

lscan difference for leading one.
lUse of 0 as the scan mask is because
lof sign magnitude arithmetic assumed
lin this example. Leading 8 bits are
19uaranteed to be zero because of
lformat. Question is, how many more
ltill the first one?
lIf two's complement arithmetic had
lbeen assumed, then there could have
lbeen leading ones or leading zeros
ldepending on sign of result. Then
linstead of 0 as mask, scan would have
lused %gl as mask as well as value.
lQuestion would have been, how many
lleading bits are the same as the sign?
ltest if all significant bits lost
luse unsigned compare for future compatibility
lremove effect of format's 8 leading O's

significant bits code would follow here

lnormalize result
lhide leading bit

lx exponent in g4
ltest exponent underflow
luse unsigned compare for future compatibility
lsubtract normalization shift from
lresult sign and exponent

lexponent underflow code would follow here

2: sl1 %g3,23,%g3 lplace sign and exponent result in
lformat position

Programming Considerations - Using the SCAN Instruction

5-38

retl
or %gl,%g3,2

!exit(2 cycles)
!combine with fraction

OJ
FUJITSU

Each instruction in this code fragment runs one cycle out of instruction cache
except for the leaf return which takes two. That's 32 cycles for this fragment.
Without scan as a hardware instruction, the function would have to be performed
as a software routine that takes 43 to 52 cycles for usual cases. The fragment
would take 74 to 83 cycles, more than double. A software substitute for scan
would consume instruction cache space. Attempts to speed up the binary tree
search in the software routine by look-up tables based on leading bits would con­
sume data cache space.

5.6.2 Scan in Support of Run Length Encoding

The following code fragment shows compression of long binary strings by look- .~
ing for runs of all ones or all zeros and coding these so that lossless reconstruction
is possible. For the example, runs less than four in length are ignored and directly
transmitted and runs greater than sixte~n are broken up for coding efficiency and
coding simplification. Best compression occurs for low information content long
binary strings such as background sections of black and white raster lines.

code value
00000 reserved
00001
00010
00011

00100 00001 ... or 11110 .. .
00101 000001 ... or 111110 .. .
00110 0000001 ... or 1111110 .. .

01111 0000 0000 0000 0001 ... or 1111 1111 1111 1110 ...
10000 0000 0000 0000 0000 1 ... or 1111 1111 1111 1111 0 ...

10001 0001. ..
10010 0010 .. .
10011 0011 .. .

11110 1110 ...

11111 toggle

Programming Considerations - Using the SCAN Instruction

5-39

SP ARClite User's Manual

The code fragment omits starting up the loop, reloading buffers with new data,
storing code and terminating the loop. Symbol x points to data segment in some
register ready for compression and symbol y points to its immediate successor.

0: scan x,x,%gl lscan for how many bits are same as msb.
Igl = 1 to 31 or >32 if all in x register.
Ix is used as both the value to be scanned(rs1)
land the mask(rs2) .

subcc %gl,4,%gO ltest if run at least length 4
bgeu 1f luse unsigned compare for future compatibility
subcc %gl,16,%gO ltest if run greater than length 16

lhandle fixed length code, gl<4

2:

3:

srI x,28,%g2
or %g2,16,%g2
sll x,3,x
addcc x,x,x
bcs 2f
addcc x,x,%gO
bcs 3f
mov
ba
mov

bcc

1,%g4
3f
0,%g4

3f
mov 1,%g4
mov 0,%g4

srI y,28,%g3
or x,%g3,x
sll y,4,y
ba 5f
subcc %g5,4,%g5

lextract leading 4 bits of x as compression code
linsert leading bit of code for fixed length
lshift rest of x in 2 steps
lcomplete x shift and test last of 4 bits outgoing
lseparate cases for 1 or °
ltest without shifting first of remalnlng bits
lif last out bit =0 and first remaining bit =1
lset new low priority toggle indicator

lotherwise clear toggle indicator
lfixed length code overwrites any pending toggle
lif last out bit =1 and first remainging bit =0
lset new low priority toggle indicator
!otherwise clear toggle indicator
!fixed length code overwrites any pending toggle
!extract leading 4 bits of y
!move them to right end of x
lshift rest of y with incomming trailing zeros

!decrement counter of how many bits of x left
!handle run length code
1: blu 4f lskip ahead if run less than 16

luse unsigned compare for future compatibility
sll %g4,1,%g4 !shift incomming toggle indicator to higher priority

!handle runs at least 16
mov 16,%g2 lset compression code to 16
sll x,16,x !ignore leading 16 bits of x and shift rest of x
srI y,16,%g3 !extract leading 16 bits of y
or x, %g3, x lmove them to right end of x
sll y,16,y !shift rest of y with incomming trailing zeros
ba 5f
subcc %g5,16,%g5 ldecrement counter of how many bits of x left

I handle runs of length 4 to 15
4: mov %gl,%g2 !set compression code to scan result

sub %gO,%gl,%gl !complement scan result

Programming Considerations - Using the SCAN Instruction

5-40

cP
FUJITSU

sll x, %g2,x
srI y,%gl,%g3
or x,%g3,x

!ignore leading g2 bits of x and shift rest of x
!extract leading 32-g1 bits of y
!move them to right end of x

sll y,%g2,y !shift rest of y with incomming trailing zeros
subcc %g5,%g2,%g5 !decrement counter of how many bits of x left
or %g4,1,%g4 !toggle following compression code too

lone compression code to go
5: bgu 6f !skip ahead if there are still bits of x left

!use unsigned compare for future compatibility
subcc %g6,1,%g6 !decrement counter of code fields left

!code for reloading y and shifting part of it into x if the old y had
!trailing zeros and resetting g5 to 32-#trailing zeros.

6: bg 7f !skip ahead if room for more codes
andcc %g4,2,%gD !test if toggle has priority

!code for storing codes and reinitializing g6

7: s11 z,5,z !make room for new code
be,a Db !if g4 bitl off then no additional code

!if g4 bitl on then insert toggle code first
or z,%g2,z !insert new data code
andn %g4,2,%g4 !clear high priority toggle indicator

!without disturbing low priority toggle indicator
ba 5b !check on how much code space left and append toggle
or z,Dxlf,z !back through 5,6,7 just once

Each instruction in this code fragment runs one cycle out of instruction cache if it
is in the active path for a particular case. Scan is in the active path for all cases.
Without hardware implementation of scan, the function would require a software
subroutine taking 43 to 52 cycles instead of 1 cycle. Additionally, that routine
would consume instruction cache space. Alternate versions that might attempt to
speed up the binary tree search with table look-up using leading bits as an index
would consume data cache space.

5.7 Multiply Routines Using the MULScc Instruction
This section shows examples of doing integer multiplication using the multiply
step instruction. With hardware implementation of multiply in SP ARClite, these
routines are not required for usual situations. However, these examples illustrate
how MULScc works and may serve as models for use in unusual situations.

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-41

" . "

SP ARClite User's Manual

These sample routines do not set the integer condition codes in exactly the same
way as SMULcc and UMULcc Version 8 integer multiplication.

5.7. 1 Simple Multiply Step Examples
In each of the following examples a cycle by cycle view of multiply step is given.

Multiply Step With Reduced Word Size (32 to 3 Bits)

Register Use:
outO Multiplier
out1 Mul t iplicand
out2 most significant half Product
out3 least significant half Product
Note: TS, True Sign = N xor V from condition codes

Examples of SIGNED multiplication

2 * 3 = 6; 010 -> 01, 011 -> 00
02 y TS ALUin ALUout

mov %00, %y multiplier -> Y reg
011

andcc %gO,0,%02 clear product accumulator & cc
!0010 0111 0

mulscc %02,%01,%02 000+010 010 active multiply step 1
!0110 0011 0

mulscc %02,%01,%02 001+010 011 active multiply step 2
!0111 0010 0

mulscc %02,%01,%02 001+000 001 active multiply step 3
!0011 1010 0

mulscc %02,0,%02 000+000 000 final double shift without
!OOO 110 0 add to align result

tst %00 multiplier sign?
!OOO 110 0

bl,a 1f
!OOO 110

sub %02,%01,%02 adjust msh product if
!OOO 110 multiplier negative

l:mov %y,%03 110 -> 03 retrieve Ish product

-2 * 3 = -6; 110 -> 01, 011 -> 00
02 Y TS ALUin ALUout

mov %00, %y multiplier -> Y reg
011

andcc %gO,0,%02 clear product accumulator & cc
!0010 0111 0

mulscc %02,%01,%02 000+110 110 active multiply step 1
!1110 0011 1

mulscc %02,%01,%02 111+110 101 active multiply step 2
!1011 0010 1

mulscc %02,%01,%02 110+000 110 active multiply step 3
!1110 1010 1

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-42

cP
FUJITSU

mulscc %02,0,%02 111+000 111 final double shift without
!111 010 1 add to align result

tst %00 multiplier sign?
!111 010

b1,a 1f
!111 010

sub %02,%01,%02 adjust msh product if
!111 010 multiplier negative

l:mov %y, %03 010 -> 03 retrieve 1sh product

3 * -2 = -6; 011 -> 01, 110 -> 00
02 y TS ALUin ALUout

mov %00, %y multiplier -> Y reg
110

andcc %gO,0,%02 clear product accumulator & cc
!0010 111O a

mulscc %02,%01,%02 000+000 000 active multiply step 1
!0010 0111 a ... mulscc %02,%01,%02 000+011 all active multiply step 2 'f ,
!0111 0011 a

mulscc %02, %01. %02 001+011 100 active multiply step 3
!1010 1010 a

mulscc %02,0,%02 010+000 010 final double shift without
!010 010 a add to align result

tst %00 multiplier sign?
!010 010 1

bl,a 1f
!010 010

sub %02,%01,%02 010-011 111 adjust msh product if
!111 010 multiplier negative

l:mov %y,%03 010 -> 03 retrieve lsh product

Examples of UNSIGNED multiplication

3 * 6 = 18; all -> 01, 110 -> 00
02 Y TS ALUin ALUout

mov %00, %y multiplier -> Y reg
110

andcc %gO,0,%02 clear product accumulator & cc
!0010 1110 a

mu1scc %02,%01,%02 000+000 000 active multiply step 1
!0010 0111 a

mulscc %02,%01,%02 000+011 011 active multiply step 2
!0111 0011 a

mulscc %02,%01,%02 001+011 100 active multiply step 3
!1010 1010 a

mulscc %02,0,%02 010+000 010 final double shift without
!010 010 a add to align result

tst %01 msb multiplicand?
!010 010 a

bl,a 1f
!010 010

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-43

SP AReHte User's Manual

add %02,%00,%02 adjust msh product if unsigned
!010 010 multiplicand treated as if

negative
l:mov %y,%03 010 -> 03 retrieve lsh product

6 ' 3 = 18; 110 -> 01, 011 -> 00
02 y TS AlDin ALUout

mov %00, %y multiplier -> Y reg
011

andcc %gO,0,%02 clear product accumulator & cc
!0010 0111 ° mulscc %02,%01,%02 000+110 110 active mUltiply step 1
!1110 0011 1

mulscc %02,%01,%02 111+110 101 active multiply step 2
!1011 0010 1

mulscc %02,%01,%02 110+000 110 active multiply step
!1110 1010 1

mulscc %02,0,%02 111+000 111 final double shift without
!111 010 1 add to align result

tst %01 msb multiplicand?
!111 010 1

bl,a 1f

!111 010
add %02,%00,%02 111+011 010 adjust msh product if unsigned

!010 010 multiplicand treated
negative

l:mov %y,%03 010 -> 03 retrieve lsh product

5.7.2 Signed Multiplication Using Multiply Step
/'
, Procedure to perform a 32-bit by 32-bit signed multiply.
, Pass the multiplier in %00, and the multiplicand in %01.
, The least significan 32 bits of the result are returned in %00,
, and the most significant in %01. Multiplies take 47 to 51 instruction cycles.

call .mul
nop ! (or set up last parameter here)

, Note that this is a leaf routine; i.e., it calls no other routines and does
, all of its work in the out registers. Thus, the usual SAVE and RESTORE
, instructions are not needed.
*/

global .mul
.mul: mov %00, %y multiplier to Y register

as if

andcc %gO, %gO, %04 zero the partial product and clear N and V conditions

mulscc %04, %01, %04
mulscc %04, %01, %04
mulscc %04, %01, %04

first iteration of 33

Programming Considerations - Multiply Routines Using the MULScc1nstruction

5-44

OJ
FUJITSU

mulscc %04, %01, %04
mulscc %04, %01, %04
mu1scc %04, %01, %04 32nd iteration
mulscc %04, %gO, %04 last iteration only shifts

if %00 (multiplier) was negative, the result is:
(%00 * %01) + %01 * (2**32)

We fix that here.

tst %00
rd %y, %00
bl,a If
sub %04, %01, %04 bit 33 and up of the product are in

%04, so we don't have to shift %01
1: ret! leaf-routine return

mov %04, $01 return high bits

5.7.3 Unsigned Multiplication Using Multiply Step
1*

* Procedure to perform a 32-bit by 32-bit unsigned multiply.
* Pass the multiplier in %00, and the multiplicand in %01.
* The least significan 32 bits of the result are returned in %00,
* and the most significant in %01. Multiplies take 46 or 58 instruction cycles.

call .umul
nop ! (or set up last parameter here)

* Note that this is a leaf routine; i.e., it calls no other routines and does
* all of its work in the out registers. Thus, the usual SAVE and RESTORE
* instructions are not needed.
*1

.global .umul
.mul: mov %00, %y

1*

andcc %gO, %gO, %04

mulscc %04, %01, %04
mulscc %04, %01, %04
mulscc %04, %01, %04

mulscc %04, %01, %04
mulscc %04, %01, %04
mulscc %04, %01, %04
mulscc %04, %gO, %04

multiplier to Y register
zero the partial product and clear N and V conditions

first iteration of 33

32nd iteration
last iteration only shifts

* Normally, with the shift and add approach, if both numbers are
* positive, you get the correct result. With 32-bit two's-complement
* numbers, -x can be represented as «2 - (xl (2**32)) mod 2) * 2**32)
* To avoid a lot of 2**32's, we just move the radix point up to be
* just to the left of the sign bit. So:

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-45

..

SPARClite User's Manual

*

x * y = (xy) mod 2
-x * y = (2 - x) mod 2 * y = (2y - xy) mod 2
x * -y = x * (2 - y) mod 2 = (2x - xy) mod 2

-x * -y = (2 - x) * (2 - y) = 4 - 2x - 2y + xy) mod 2

* For signed multiplies, we subtract (2**32) * x from the partial
* product to fix this problem for negative multipliers (see .mul in
* Section l.
* because of the way the shift into the partial product is calculated
* (N xor V), this term is automatically removed for the multiplicand,
* so we don't have to adjust

* But for unsigned multiplies, the high order bit wasn't a sign bit,
* and the correction is wrong. So for unsigned mUltiplies where the
* high order bit is one, we end up with xy - (2**32) * y. To fix it
* we add y * (2**32).
*f

1:

tst %01
bl,a If
add
rd
retl
mov

%04, %00, %04
%y, %00

%04, $01

return least sig. bits of prod
leaf-routine return
Delay slot; heturn high bits

5.7.4 Corner Turning BuHer Using Multiply Step

Multiply Step In Support Of Corner Turning Buffer For Image
Processing

The following code fragment shows implementation of an 8 by 8 bit comer turn­
ing buffer in the local register files. This supports bit plane image rotation by 90
degrees. The form of the implementation uses register files to hold and manipu­
late the lowest level of data structure and use data cache to reduce access to the
larger image plane. The multiply step is used for its ability to couple information
from one register to another in a single step in a way not expected from its main
purpose.

The total image plane is divided in 8 by 8 bit blocks. Blocks are accessed as groups
of 4 that rotate into corresponding positions on edges square to each other. These
form concentric squares.

Each byte of block loads to Yreg and controls multiply step with constant, 1 in bit
15, to make local registers 0 to 7 into comer turning buffer. The constant remains
in a fixed position but the nominal partial product keeps shifting to the right,
making room for new input. Choosing a large enough constant allows old pro­
cessed data to remain in the local registers long enough so that it can be extracted
with shift by a differing amount that depends on which processed byte is desired.
This allows overlapping of storing results with fetching new input. To accommo­
date the need for differing shift amounts, casing is used to select one and only one

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-46

cO
FUJITSU

instruction out of a block on each pass. A delayed control transfer couple is
formed with jump and link immediately followed in the delay slot by branch
always. The target address of jump and link steps backwards by one instruction
each pass. As soon as new data is removed from target destination, one byte of
rotated block is stored there.

FROM this TO that

a7 a6 as a4 a3 a2 a1 aO h7 g7 f7 e7 d7
b7 b6 bS b4 b3 b2 b1 bO h6 g6 f6 e6 d6
c7 c6 cS c4 c3 c2 c1 cO hS gS fS eS dS
d7 d6 dS d4 d3 d2 d1 dO h4 g4 f4 e4 d4
e7 e6 eS e4 e3 e2 e1 eO h3 g3 f3 e3 d3
f7 f6 fS f4 f3 f2 f1 fO h2 g2 f2 e2 d2
g7 g6 gS g4 g3 g2 gl gO h1 gl f1 e1 d1
h7 h6 hS h4 h3 h2 h1 hO hO gO fO eO dO

local a7a6aSa4a3a2a1aO input 1st byte - ldub
reg
0:0 ... Oa7 x x x x x x x x
1:0 ... Oa6 x x x x x x x x
2:0 ... 0aS x x x x x x x x
3:0 ... 0a4 x x x x x x x x
4:0 ... 0a3 x x x x x x x x
S:0 ... Oa2 x x x x x x x x
6:0 ... 0a1 x x x x x x x x
7:0 ... 0aO x x x x x x x x

local b7b6bSb4b3b2b1bO input 2nd byte - ldub
reg
0:0 ... Ob7a7 x x x x x x x x
1:0 ... Ob6a6 x x x x x x x x
2:0 ... 0bSaS x x x x x x x x
3:0 ... 0b4a4 x x x x x x x x
4:0 ... 0b3a3 x x x x x x x x
5:0 ... Ob2a2 x x x x x x x x
6:0 ... 0b1a1 x x x x x x x x
7:0 ... 0bOaO x x x x x x x x

local c7c6cSc4c3c2c1cO input 3rd byte - ldub
reg
0:0 ... Oc7b7a7 x x x x x x x x
1:0 ... Oc6b6a6 x x x x x x x x
2:0 ... 0cSbSaS x x x x x x x x
3:0 ... 0c4b4a4 x x x x x x x x
4:0 ... 0c3b3a3 x x x x x x x x
5:0 ... 0c2b2a2 x x x x x x x x
6:0 ... 0c1b1a1 x x x x x x x x
7:0 ... 0cObOaO x x x x x x x x

*

c7 b7
c6 b6
cS bS
c4 b4
c3 b3
c2 b2
c1 b1
cO bO

a7
a6
as
a4
a3
a2
a1
aO

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-47

.' ". '.

SP ARClite User's Manual

*
*

local h7h6h5h4h3h2h1hO input 8th pyte - ldub
reg
0:0 ... Oh7g7f7e7d7c7b7a7 xxxxxxxx <1
1:0 ... 0h6g6f6e6d6c6b6a6 xxxxxxxx
2:0 ... 0h5g5f5e5d5c5b5a5 xxxxxxxx
3:0 ... 0h4g4f4e4d4c4b4a4 xxxxxxxx
4:0 ... 0h3g3f3e3d3c3b3a3 xxxxxxxx
5:0 ... 0h2g2f2e2d2c2b2a2 xxxxxxxx
6:0 ... 0h1g1f1e1d1c1b1a1 xxxxxxxx
7:0 ... 0hOgOfOeOdOcObOaO xxxxxxxx

A7A6A5A4A3A2A1AO next edge pyte 1 - ldub
local h7g7f7e7d7c7b7a7 output rotated pyte 1 - 5tb <1
reg
0:0 ... OA7h7g7f7e7d7c7b7a7 x x x x x x x
1:0 ... 0A6h6g6f6e6d6c6b6a6 x x x x x x x <2
2:0 ... 0A5h5g5f5e5d5c5b5a5 x x x x x x x
3:0 ... 0A4h4g4f4e4d4c4b4a4 x x x x x x x
4:0 ... 0A3h3g3f3e3d3c3b3a3 x x x x x x x
5:0 ... 0A2h2g2f2e2d2c2b2a2 x x x x x x x
6:0 ... 0A1h1g1fleldlclb1al x x x x x x x
7:0 ... 0AOhOgOfOeOdOcObOaO x x x x x x x

B7B6B5B4B3B2BIBO next edge pyte 2 - ldub
local h6g6f6e6d6c6b6a6 output rotated pyte 2 - 5tb <2
reg
0:0 ... OB7A7h7g7f7e7d7c7b7a7 x x x x x x
1:0 ... 0B6A6h6g6f6e6d6c6b6a6 x x x x x x
2:0 ... 0B5A5h5g5f5e5d5c5b5a5 x x x x x x <3
3:0 ... 0B4A4h4g4f4e4d4c4b4a4 x x x x x x
4:0 ... 0B3A3h3g3f3e3d3c3b3a3 x x x x x x
5:0 ... 0B2A2h2g2f2e2d2c2b2a2 x x x x x x
6:0 ... 0BIAlhlg1f1e1dlc1b1a1 x x x x x x
7:0 ... 0BOAOhOgOfOeOdOcObOaO x x x x x x

local
reg

*

C7C6C5C4C3C2C1CO next edge pyte 3 - ldub
h5g5f5e5d5c5b5a5 output rotated pyte 3 - 5tb <3

*
*

0:0 ... OG7F7E7D7C7B7A7h7g7f7e7d7c7b7a7 x
1:0 ... OG6F6E6D6C6B6A6h6g6f6e6d6c6b6a6 x
2:0 ... 0G5F5E5D5C5B5A5h5g5f5e5d5c5b5a5 x
3:0 ... 0G4F4E4D4C4B4A4h4g4f4e4d4c4b4a4 x
3:0 ... 0G3F3E3D3C3B3A3h3g3f3e3d3c3b3a3 x
5:0 ... 0G2F2E2D2C2B2A2h2g2f2e2d2c2b2a2 x
6:0 .•. 0GIFIEID1C1BIAlh1g1f1e1dlclb1al x
7:0 .•. 0GOFOEODOCOBOAOhOgOfOeOdOcObOaO x <8

H7H6H5H4H3H2H1HO next edge pyte 8 - ldub
hOgOfOeOdOcObOaO output rotated pyte 8 - 5tb <8

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-48

rP
FUJITSU

*
*
*

/* INNER LOOP 0 for each square, position, edge, byte */

to: Idub [%i1+%i4] ,%01 !get input for next pass

mulscc %11,%05,%11
mulscc %10,%05,%10
sra
mov
jmpl
ba

%i4,4,%i4
%01,%y
%gl+%i4,%gO
t2

!i1 is base of fetch, controlled elsewhere
!i4 is pointer to target byte
!finish corner turning with previous input
!garbage 1st time, reg 05 = 2~15
!downshift adrs pointer for extract pointer
!new input
!for input registers i=7->0 (%i4=-i)
!select 1 extract result instruction

!only one srl %lx,z,%oO done on each pass
!use of casing keeps code compact while still avoiding self modifying code
!gl points to t1

srl %10,8,%00
srI %11,7,%00
srl %12,6,%00
srl %13,5, %00
srl %14,4,%00
srl %15,3,%00
srI %16,2,%00

t1: srI %17,1,%00
t2: s11 %i4,4,%i4

stb %00, [%iO+%i4]

mulscc %17,%05,%17
mulscc %16,%05,%16
mulscc %15,%05,%15
mulscc %14,%05,%14
mulscc %13,%05,%13
mulscc %12,%05,%12
addcc %i4,64,%i4
ble to
orcc %gO,l,%gO

*
*
*

!upshift extract pointer for adrs offset
!store 1 result
!iO is base of store, controlled elsewhere
!iO = i1 3 times out of 4
!start corner turning with new input

!dec adrs offset

!set N & V =0
!keep left input to multiply partial
!product zero

This less obvious use of multiply step and less common use of delayed control
transfer couple allow efficient implementation of a fast comer turning buffer to
support bit plane image processing.

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-49

...•.. ,

SP ARelite User's Manual

Programming Considerations - Multiply Routines Using the MULScc Instruction

5-50

System Design Considerations

The MB86930 SP ARClite microcontroller is suitable for a wide range of embedded
controller applications due to its high performance and low unit cost. In design­
ing a system, several issues and trade-offs must be considered to balance the
needs of performance, low hardware cost, low development cost, and short time
to market. This chapter provides detailed information on some specific design
considerations:

• The clock signals and type of clock source

• The sizes, types, and interface requirements of the system memory and
peripherals

• The possible need for DMA capability and bus arbitration

• The possible use of an MB86940 Peripheral Chip for interrupt control, timers,
and USARTs

• In-circuit emulation capability

• Other hardware implementation issues

System Design Considerations -

6-1

SP ARClite User's Manual

6.1 Clocks
Either of two possible clock sources can be used to drive a SP ARClite system: the
internal oscillator of the MB86930 processor, or a separate external oscillator. In
the former case, a crystal is connected across inputs XTALl and XTAL2. In the
latter case, the clock signal is connected to the XTALl input pin; XTAL2 is left
unconnected. Using the internal oscillator has a lower hardware cost, but is less
flexible than using an external oscillator.

There are two clock output signals from the processor, CLKOUTI and CLKOUT2.
CLKOUTI has the same frequency and phase as the internal oscillator or the
signal applied to XTALl. CLKOUT2 is the same as CLKOUTl, but phase-shifted
180 degrees. The rising edge of either CLKOUTI or CLKOUT2 can be used by the
external system for timing purposes.

The output clocks are controlled by a phase-locked loop implemented in the pro­
cessor. The phase-locked loop minimizes the skew between the input clock signal
and CLKOUTl, and controls the duty cycles of the output clocks. The input clock
signal applied to XT ALl can have a relatively wide range of duty cycles. (See the
data sheet for the clock timing specifications.) The duty cycle of the output clocks
is somewhat less than 50%, reflecting the fact that the processor requires its inter­
nal clock phases to have non-overlapping transitions.

The drive capability of the clock output signals is limited. Depending on the
number of inputs that must be driven and the clock speed, it may be necessary to
buffer these signals for use elsewhere in the system. To minimize clock skew for
systems that exceed the drive capability of CLKOUTI or CLKOUT2, a: buffered
external clock can be used to drive both the processor and the system.

6.2 Memory and I/O Interfacing
The SP ARClite processor minimizes the need for external logic by providing a
programmable on-chip address decoder and six independent chip-select output
signals. The address decoder compares the current address against the pro­
grammed address ranges, and automatically asserts the appropriate chip-select
signal. The on-chip address decoder is more economical than a separate external
decoder, and also operates faster.

Each programmable address range has an associated wait-state generator, which
generates a Ready signal internally at a programmed number of access cycles.
Either this internal Ready signal can be used, or the conventional-READY signal
input from the external memory controller can be used to end the transaction. The
processor can also be programmed to use the internal wait-state generator, while
allowing the -READY signal to override the internal count to end the bus cycle

System Design Considerations - Memory and I/O Interfacing

6-2

FUPTSU

sooner. The internally generated Ready signal is not visible external to the
processor.

If you use a single chip-select signal from the processor to select multiple memory
or I/O devices, all those devices will have the same number of wait states gener­
ated when they are accessed. Different chip select signals, however, can be indi­
vidually programmed to different numbers of wait states.

Any area of memory not mapped to one of the chip selects (-CS5-0) will use the
external-READY.

6.2. 1 Interfacing SRAM
The address bus, data bus, and chip select signals of the SRAM can be connected
directly to the address bus, data bus and a chip select of the processor. The output
enable signal can be generated by gating RD/-WR high and Chip select low to
produce output enable low. Write enable for the SRAMs requires more consider­
ation.

The processor data hold time for a write is specified as zero hold after rising edge _
of clock. RD / -WR hold time at the end of a write operation can be 0 after rising
edge of clock, or can be held low if the next cycle is also a write. Thus an imple-
mentation cannot use RD/-WR directly as -WE for the SRAMs.

Figure 6-1 shows a timing diagram for an example implementation using 2 cycle
access SRAM running at 40 MHz. It was implemented in a combinatorial PAL
(see Figure 6-4). Individual-WE signals are generated for each of the 4 bytes in
the data word.

CLKP1

-AS

RD/-WR

-BE

-CS

DATA

-WE

\~ {'\ \~ i
"\ '\

\ 'f'>. /

! ! "'\
\ /

\ 1
"'\ / /

:\ i'\ C \.
: : '" X : :

* \

Figure 6-1. SIAM Interfacing Example

System Design Considerations - Memory and I/O Interfacing

6-3

SP ARClite User's Manual

!clkd = !clkpl;
!soe_ =rw& !scs_;
!swe3_ = trw & !as_ & !be3_ & !clkpl

trw & !as_ & !be3_ & !clkd
trw & !scs_ & !swe3 & clkpl
trw & !scs_ & !swe3 - & clkd;

!swe2 - trw & !as_ & !be2_ & !clkpl
trw & !as_ & !be2 - & !clkd
trw & !scs_ & !swe2 - & clkpl
trw & !scs_ & !swe2 - & clkd;

!swel - trw & !as_ & !bel_ & !clkpl
trw & !as_ & !bel & !clkd -
trw & !scs - & !swel - & clkpl
trw & !scs_ & !swel - & clkd;

!sweO - trw & las - & !beO_ & !clkpl
trw & !as_ & !beO_ & !clkd
trw & !scs_ & !sweO_ & clkpl
trw & !scs - & !sweO - & clkd;

Clock low and -AS low and -BE low and RD / -WR low cause -WE to be asserted.
Clock high and -CS low and -BE low and RD/-WR low cause -WE to stay low.
When clock goes low again, -WE is negated. This way there is sufficient data hold
time.

For this implementation, CLKOUTI from the processor was used since it has
better duty cycle control than an oscillator clock.

6.2.2 Interfacing Page-Mode DRAM
Interfacing Dynamic RAM requires a DRAM controller for generating RAS and
CAS (Row Address Strobe and Column Address Strobe), and for handling
refresh. The DRAM controller is typically implemented as a state machine. The
DRAM controller and signal interfaces should be designed carefully to accommo­
date refresh operations and fast page mode access.

The programmable 16-bit timer provided in the SPARClite processor can be used
for timing the refresh interval. The timer output signal, - TIMER_ OVF (Timer
Overflow), goes low for a single clock cycle at the end of each timer interval. The
timer interval is programmed in software, the correct amount of time depending
on how the refresh operation is implemented.

System Design Considerations - Memory and I/O Interfacing

6-4

(f)

FUJITSU

There are two ways to implement the correct number of wait states: either the
processor's internal wait-state generator can be used, or the DRAM controller can
generate a -READY signal for the processor.

The processor supports fast "page mode" access to DRAM. When the current
DRAM address is within the same page as the previous DRAM access, the
-SAME_PAGE (Same-Page Detect) signal is asserted. This tells the DRAM con­
troller that DRAM can be accessed using CAS only, without selecting a new row
of the DRAM, saving time. Page-mode accesses thus provide timing advantages
comparable to the burst-mode accesses of some other processors.

To take advantage of page hits, RAS is asserted and left asserted to continuously
select a row. CAS is asserted, one access at a time, to select a memory location in
that row. Accesses need not be in consecutive locations. As long as each access is
in the same row, RAS can be left asserted and CAS asserted once to access each
memory location. RAS remains asserted between accesses.

The wait-state generator can be programmed to use a different (smaller) number
of clock cycles for a "page hit" (when the current address is within the same page
as the previous DRAM access).

When using the internal wait-state generator instead of the external-READY
signal, the processor has no way of detecting a refresh operation that occurs dur­
ing an access. One solution is to have the DRAM controller take control of the bus
during refresh using -BREQ (Bus Request), thereby preventing the processor
from requesting a memory access for the duration of the refresh operation. The
disadvantage of this solution is that the processor is forced to remain idle. An
alternative solution is to disable the internal wait-state generator and let the
DRAM controller generate the -READY signal for all DRAM accesses.

Figure 6-2 is a simplified state diagram for a DRAM memory controller. Upon
reset, the state machine starts in the RAS Precharge and Idle state, and remains in
that state until a memory access or refresh request occurs.

Note: Each state may represent
multiple clock cycles

Figure 6-2. Simplified State Diagram for DRAM Controller

System Design Considerations - Memory and I/O Interfacing

6-5

.' I

SP ARClite User's Manual

If a refresh request occurs, the state machine goes into the Refresh state. (In prac­
tice, this will actually be a number of sequential states.) When the refresh opera­
tion is complete, the state machine returns to the RAS Precharge and Idle state.

When the processor requests a DRAM memory access, the state machine enters
the RAS state, in which the RAS signal is asserted to select the row. From there it
goes to the CAS state, in which the CAS signal is asserted to select the column. At
this point, data is clocked into the appropriate part and the bus cycle ends.

From there the state machine enters the Page Wait state, in which the state
machine waits for something to happen; either another memory access or a
refresh request. In this state, RAS is asserted and CAS is negated. If there is a
memory access to the same page of DRAM (as indicated by the -SAME_PAGE
signal), the state machine goes directly to the CAS state, and CAS is asserted to
select the memory location. If there is a memory access to a different page of
DRAM, or if a refresh request occurs, the state machine goes to the RAS Precharge
and Idle state, and from there to the requested operation. Until one of these events
occurs, the state machine waits with RAS asserted.

For more information, refer to SP ARClite Application Note #1 on DRAM
interfacing.

6.2.3 Interfacing EPROM and Other Devices with Slow
Turn-oR

One characteristic of EPROM memory to consider is its relatively long tum-off
time-the delay from the negation of the Chip Select input or Output Enable
input to the three-stating of the data outputs. In high-speed systems, contention
on the data bus between different peripheral devices can occur, depending on the
organization of different memory and peripherals in the system.

When using EPROM in the system (or-other memory or I/O devices that are slow
to tum off), carefully study the timing diagrams in the External Interface chapter
of this manual and in the data sheet, and determine the worst-case access situa­
tions. If contention on the data bus can occur, consider adding fast data buffers
between the EPROM outputs and the system data bus. These data buffers will
allow the EPROM outputs to be quickly isolated from the data bus at the end of
an EPROM access cycle.

The worst-case timing situation typically involves two consecutive loads from
different devices. In back-to-back loads from different devices, there must be
sufficient time for the first device to get off the data bus before the second device
tries to drive its data. A load followed by a store is not critical since the processor
inserts a "dead cycle" in this sequence to allow the external device to fully relin­
quish the bus.

System Design Considerations - Memory and I/O Interfacing

6-6

cP
FUJITSU

6.2.4 Illegal Memory Accesses

The external memory or 1/ 0 interface circuit can detect illegal memory accesses
and prevent the processor from completing such accesses by asserting the -MEXC
(Memory Exception) and -READY signals. (See Figure 4-2, Load with Exception
Timing, and Figure 4-4, Store with Exception Timing.) The current bus access is
invalidated by the assertion of this signal, and the processor ignores the value on
the data bus in that cycle. An instruction-access or data-access exception trap is
initiated in the processor, allowing the software to handle the illegal memory
access.

The memory-exception mechanism can be used for protection, by preventing
user-mode accesses to certain regions of the processor's address space. External
logic can also be used to detect and signal out-of-range access attempts.

6.2.5 I/O Interfacing Example: Ethernet Device

As an example of an I/O device interface, consider the MB86960 Ethernet inter-
face device, also known as the NICETM chip, used on the SPARClite Evaluation .i
Board. In the evaluation board implementation, a PAL and two data transceivers
are used to handle the interface. A block diagram of the interface is shown in
Figure 6-3.

IA ~ A ~
DATA Data Transceivers N_DATA

, ~ r
DE

~ r

MB86930

r
MB86960

SPARClite Ethemet Device
Processor

N_RD

RD/-WR
PAL

N_WR

-CS NCS

READY N_READY

Figure 6-3. MB86960 Interface Block Diagram

The MB86960 NICE chip is completely asynchronous, has a non-deterministic
access time, and has a long turn-off delay for the data pins. The PAL handles the
synchronization of the control signals (Read, Write, Chip-Select, and Ready)
between the processor and the NICE chip. The two data transceivers are used to

System Design Considerations - Memory and I/O Interfacing

6-7

· SP ARClite User's Manual

isolate the output pins from the data bus when a data access is complete.
Figure 6-4 is a state diagram for the PAL.

IReseL

Figure 6-4. MB86960 Interface PAL State Diagram

Read and write operations are strobed by the assertion of the signals N_RD and
N_WR (the read and write input pins of the NICE chip). To ensure that the
address and the NICE chip Select signals are stable during strobing, the state
machine waits one clock cycle before asserting N_RD or N_ WR. When a transac­
tion is finished, the NICE chip asserts its N_READY signal. Since N_READY is
asynchronous, it is synchronized by a flip-flop in the PAL, producing a synchro­
nized ready signal, which can then be used elsewhere inside the PAL and by the
processor.

In a write operation, the synchronized Ready signal causes N_ WR to be negated
and the processor's -READY signal to be asserted. The data input setup and hold
times of the NICE chip are based on the transition of the N_ WR signal from
asserted to negated; early negation ensures that there will be enough hold time
because the processor won't stop driving the data bus until the next clock cycle.

In a read operation, the synchronized Ready signal causes the processor's
-READY signal to be asserted, and on the next cycle, the -READY signal and
N_RD are negated. Since data setup and hold times of the processor are based on
the rising edge of the clock while -READY is asserted, enough hold time is
ensured. The setup time requirement is ensured because there are almost two
clock cycles between N_READY and the processor sampling the data.

In the case of back-to-back reads of the NICE chip, a new cycle can't start until
N_READY is negated from the previous cycle.

System Design Considerations - Memory and I/O Interfacing

6-8

OJ
FUJITSU

The data transceivers are enabled by -CS asserted and -AS negated. Thus, during
the uncertain period at the beginning of a bus cycle, the transceivers are not driv­
ing the data bus.

The byte order for the NICE chip (little-endian) is opposite that of the SP ARClite
processor (big-endian). The byte order is swapped in hardware: SPARClite data
bits 8-15 connect to NICE bits 0-7, and SPARClite data bits 0-7 connect to NICE
bits 8-15. The NICE chip can operate in both 8-bit and 16-bit modes.

6.3 DMA and Bus Arbitration
Some systems require support for multiple bus masters, such as for DMA (Direct
Memory Access). An external device requests control of the bus by asserting the
-BREQ (Bus Request) signal. External bus requests take precedence over internal
requests. The processor, upon completing the current bus transaction, three-states
its bus drivers and asserts -BGRNT (Bus Grant) to indicate that it is relinquishing
control of the bus. The external device then takes control of the bus.

Upon completion of the DMA transfer or other bus operation, the external device _*,
de-asserts the -BREQ signal. The processor responds by de-asserting the -BGRNT
signal and taking control of the bus, continuing with the next processor transac-
tion.

The chip-select logic of the processor does not monitor the address bus and does
not operate during the time that the bus is granted to another bus master. There­
fore, an external address decoder should be used to generate the chip select sig­
nals for the external bus master. Also, the -CS outputs of the processor are held
high (negated), but not three-stated, while the bus is granted to the external bus
master. Therefore, for each memory device that is to be accessed by the external
bus master, an OR gate must be provided at the chip select input to accept the
signal from either the processor or the external address decoder. An alternative
method is to not use the -CS signals from the processor at all, and to use the exter­
nal address decoder all of the time (although the propagation delay for on-board
chip selects is less).

A DMA operation that writes to system memory must be designed in such a
manner that it will not modify cached data. Otherwise, the external memory data
would no longer match the data stored in the processor's cache, resulting in
errors. One way to meet this requirement is to locate the DMA-accessed memory
in an address space that is not cached. The only address spaces that are cached are
the User/Supervisor Instruction and Data spaces, corresponding to ASI (Address
Space Identifier) values Ox8, Ox9, OxA, and OxB. Locating the DMA-accessible
memory only in other address spaces (i.e., ASI values Ox10-0xFE) will ensure that
no cached data will be modified.

System Design Considerations - DMA and Bus Arbitration

6-9

SP ARClite User's Manual

Another way to handle this requirement is to use software to invalidate the data
stored in cache when the external memory is modified. The software must keep
track of what is cached and what is being modified. Each time a cached memory
space is modified, the software invalidates the corresponding data stored in
cache, in effect forcing an update to the cache whenever its contents are out-of­
date.

Alternatively, embedded control task monitor software can be used to control the
dynamic assignment of buffers between DMA inputs and outputs and processing
inputs and outputs. The software can then ensure that no DMA transfers involve
currently cached memory.

6.4 MB86940 Peripheral Chip
The MB86940 is an optional peripheral device that interfaces directly with the
MB86930 SPARClite processor, and operates at the same clock speeds. It provides
a variety of support features; a IS-level interrupt controller, a set of four counter /
timers, and a set of two USARTs. With a MB86940 Peripheral Chip in the system,
you can use any or all of these support features. The Peripheral Chip is a low­
power CMOS device in either 120-pin PQFP or 13S-pin CPGA packages.

A brief overview of the Peripheral Chip features is provided below. For detailed
information on the chip functions, interfacing, and specifications, refer to the
MB86940 User's Guide.

6.4. 1 Interrupt Control

The interrupt controller on the Peripheral Chip has IS separate interrupt-request
inputs. The trigger conditions and active signal levels are individually program­
mable. The interrupt controller arbitrates the pending requests, and based on the
SPARClite priority levels, issues an asynchronous interrupt to the processor. The
interrupt is held pending until acknowledged by the processor.

The SPARClite processor has four interrupt inputs, (IRL3-IRLO). The value on
these pins defines the level of the external interrupt. The value 0000 indicates no
pending interrupt, while 1111 forces a non-maskable interrupt. Intermediate
values indicate maskable interrupts with the corresponding priority levels.

System Design Considerations - MB86940 Peripheral Chip

6-10

6.4.2Counter/Timers

0)

FUJITSU

The Peripheral Chip has four general-purpose 16-bit counter/timers. Each timer
can be individually programmed to operate in any of several modes: time-out
interrupt mode, rate generation mode, square wave generation mode, extemal­
trigger one-shot mode, and software-trigger one-shot mode. Each timer can be
reloaded at any time. Two prescalers are provided to optionally reduce the oper­
ating frequency of the timers.

6.4.3 USARTs
Two USART (Universal Synchronous/ Asynchronous Receiver /Transmitter)
channels are provided in the Peripheral Chip. The channels are individually pro­
grammable. Each channel is capable of sending and receiving serial data at rates
up to 64K baud in synchronous mode and up to 19.2K baud in asynchronous
mode. Data can be five to eight bits per character.

6.5 In-Circuit Emulation
SP ARClite processors have ten pins used for in-circuit emulation: four emulator
status/ data bits, four emulator data bits, an emulator break request line, and an
emulator enable pin. All of these pins should be left unconnected in the design for
proper system operation.

To allow for compatibility with an in-circuit emulator, the system's reset circuit
should be designed to allow the in-circuit emulator to take control of the -RESET
signal. For example, a jumper in the -RESET input line close to the processor can
be included, allowing the normal Reset circuit to be easily disconnected from the
processor.

To simplify the task of emulating the processor especially for boards that do not
socket the processor, it is recommended that the processor's emulator pins be
connected to a standard format 20-pin connector. Access to these pins allow the
emulator to take full control of the processor as well as to trace processor activity.
If this socket is included on production boards, an emulator can be used for board
diagnostics and maintenance later in the product life cycle. For more information
contact Fujitsu Microelectronics' Advanced Products Division or your emulator
vendor.

System Design Considerations - In-Circuit Emulation

6-11

SP ARClite User's Manual

6.6 Physical Design Issues
Multiple VCC and VSS pins are provided on the SP ARClite device for power and
ground connections. The circuit board should be designed using separate power
and ground planes for power distribution. Every VCC pin must be connected to
the power plane, and every VSS pin must be connected to the ground plane. Any
pins identified in the data sheet as "NC" must be left unconnected in the system.

To minimize the effects of spikes on output transitions, a generous amount of
decoupling capacitance should be connected near the MB86930 device. It is
important to use low-inductance capacitors and interconnections, especially in
high-speed systems. Inductance can be minimized by making the board traces as
short as possible between the processor and the decoupling capacitors.

For reliable operation, alternate bus masters must drive any signals that are three­
stated by the processor when the processor grants control of the bus. Among the
signals that must be driven are -LOCK, AOR31 through AOR2, ASI7 through
ASIO, -BE3 through -BED, -AS, and RO / -WR. These pins are normally driven by
the processor during active and idle bus states, and don't require external
pullups. 031 through DO should be pulled up.

When designing the system, take into account the amount of load on the signal
lines driven by the processor. The standard load is specified in the data sheet. If
the actual load in the system is larger, the system may not be able to operate at the
speeds specified in the data sheet timing diagrams, making it necessary to use a
slower clock or to use buffers for the heavily loaded signals.

System Design Considerations - In-Circuit Emulation

6-12

••••••••••••••

Instruction Set

This chapter presents the SP ARClite processor instruction set. Sections discussing
recommended assembly language syntax, a table of instructions listed by opcode, .-
and an alphabetized instruction set reference are included. -r

7.1 Suggested Assembly Language Syntax
This section provides guidelines that describe the typical SP ARC syntax accepted
by most SP ARC assemblers. It is intended to be a guide to help in understanding
the code examples shown throughout this manual. Consult your assembler man­
ual for a compete syntax description.

Instruction Set - Suggested Assembly Language Syntax

7-1

SP ARClite User's Manual

7. 1. 1 Register Names
reg A reg is an integer register name1. It can have one of the following values:

%rO ... %r31

%gO ... %g7

%00 ... %07

%10 ... %17

%iO ... %i 7

%fp

%sp

(global registers; same as %rO ... %r7)

(out registers; same as %r8 ... %r15)

(local registers: same as %r16 ... %r23)

(in registers: same as %r24 ... %r31)

(frame pointer, conventionally same as %i6)

(stack pointer, conventionally same as %06)

Subscripts further identify the placement of the operand in the binary
instruction as one of the following:

regrsl (rs1 field)
regrs2 (rs2 field)
reg rd (rd field)

An asr Jeg is an Ancillary State Register name2. It can have one of the following
values:

%asr1 ... %asr31

Subscripts further identify the placement of the operand in the binary
instruction as one of the following:

asr Jegrsl (rs1 field)
asr Jegrd (rd field)

7. 1.2 Special Symbol Names

The symbol names and the registers or operators to which they refer are as
follows:

%psr

%wim

%tbr

%y
%hi

%10

Processor State Register
Window Invalid mask Register
Trap Base Register
Yregister
Unary operator which extracts high 22 bits of its operand
Unary operator which extracts low 10 bits of its operand

1. In actual usage, the %sp, %fp, %gn, %on, %In and %in forms are preferred over %rn
2. The MB86930 allows only %asr17.

Instruction Set -

7-2

cO
FUJITSU

7. 1.3 Values

Some instructions use operands comprising values as follows:

simm13
const22
asi

7. 1 .4 Labels

A signed immediate constant that can be represented in 13 bits
A constant that can be represented in 22 bits
An alternate address space identifier (0 to 255)

A label is a sequence of characters comprised of alphabetic letters (a-z, A-Z {upper
and lower case distinct]), underscores U, dollar signs ($), periods (.), and decimal
digits (0-9). A label may contain decimal digits, but cannot begin with one.

7. 1.5 Comments

Two types of comments are accepted by most SPARC assemblers: C-style
II /* ... * I" comments (which may span multiple lines), and "!. .. " comments, which
extend from the "!" to the end of the line.

7.2 Syntax Design
The suggested SPARC assembly language syntax is designed so that:

• The destination operand (if any) is consistently specified as the last (right­
most) operand in an assembly language statement.

• A reference to the contents of a memory location (in a Load, Store, or SWAP
instruction is always indicated by square brackets ([]). A reference to the
address of a memory location (such as in a JMPL, CALL, or SETHI) is specified
directly, without square brackets.

7.3 Synthetic Instructions
Table 7-1 describes the mapping of a set of synthetic (or "pseudo") instructions to
actual SP ARC instructions. These synthetic instructions may be provided in a
SP ARC assembler for the convenience of assembly language programmers.

Note that synthetic instructions should not be confused with "pseudo-ops",
which typically provide information to the assembler but do not generate instruc-

Instruction Set -

7-3

SP ARClite User's Manual

tions. Synthetic instructions always generate instructions; they provide more
mnemonic syntax for standard SP ARC instructions.

Table 7-1: Mapping of Synthetic Instructions to SPARe Instructions

Synthetic Instruction SPARC Instruction(s) Comment

cmp regrsl ' regrs2 subcc regrsl l regrs2' %gO compare
cmp regrsl' simm13 subcc regrsl l simm13, %gO

jmp regrs1 + regrs2 jmp1 regrs1 + regrs2 1 %gO
jmp regrsl +/- simm13 jmp1 regrsl +/- simm13,

%gO

call regrsl + regrs2 jmp1 regrsl + regrs2 1 %07
call regrsl +/- simm13 jmp1 regrsl +/- simm13,

%07

tst regrs2 orcc %gO, regrs21 %gO test

ret jmp1 %i7+8, %gO return from subroutine
ret1 jmp1 %07+8, %gO return from leaf subroutine

restore restore %gO, %gO, %gO trivial restore
save save %gO, %gO, %gO trivial save

(Warning: trivial save should only
be used in kernel code!)

set value, regrd sethi %hi (value) , regrd (when «value&Ox1fff) == 0))
or

or %gO, value, regrd (when -4096 ::;; value::;; 4095)
or

sethi %hi (value) , regrd (otherwise)
or regrd' %10 (value) ,

regrd Warning: do not use set in the
delay slot of a DCT/.

not regrsl l regrd xnor regrsl' %gO, regrd one's complement
not regrd xnor regrd' %gO, regrd one's complement

neg regrsl ' regrd sub %gO, regrs2 1 regrd two's complement
neg regrd sub %gO, regrd , regrd two's complement

inc regrd add regrd' 1, regrd increment by 1
inc simm13, regrd add regrdl simm13, regrd increment by const13
inccc regrd addcc regrd' 1, regrd increment by 1 and set icc
inccc simm13, regrd addcc regrd' simm13, regrd increment by const13 and set icc

dec regrd sub regrd' 1, regrd decrement by 1
dec simm13 , regrd sub regrd' simm13, regrd decrement by const13
deccc regrd subcc regrd' 1, regrd decrement by 1 and set icc
deccc simm13, regrd subcc regrd' simm13, regrd decrement by const13 and set icc

Instruction Set -

7-4

cP
FUJITSU

Table 7-1: Mapping of Synthetic Instructions to SPARe Instructions

_, _ •. _ Instructior:' SPARe Instru un\151 ,",
""UIIIIII"""

btst regrsl + regrs2 andee regrs1 + regrs21 %gO bit test
btst regrs1 +/- simm13 andee regrs1 +/- simm13, bit test
bset regrsl + regrs2 %gO bit set
bset regrsl +/- simm13 ar regrs1 + regrs21 %gO bit set
belr regrs1 + regrs2 ar regrs1 +/- simm13, bit clear
belr regrsl +/- simm13 %gO bit clear
btag regrsl + regrs2 andn regrs1 + regrs21 %gO bit toggle
btag regrs1 +/- simm13 andn regrs1 +/- simm13, bit toggle

%gO
xar regrsl + regrs2' %gO
xar regrs1 +/- simm13,
%gO

elr regrd ar %gO, %gO, regrd clear (zero) register
elrb [regrs1 + regrs2 1 stb %gO, [regrs1 + regrs2 J clear byte
elrb [regrs1 +/- simm131 stb %gO, [regrs1 +/- clear byte
elrh [regrsl + regrs21 simm13J clear halfword
elrh [regrs1 +/- simm131 sth %gO, [regrs1 + regrs2 J clear halfword
elr [regrs1 + regrs21 sth %gO, [regrs1 +/- clear word
elr [regrsl +/- simm131 simm131 clear word

st %gO, [regrs1 + regrs2 1
st %gO, [regrsl +/-
simm131

mav regrsl' regrd ar %gO, regrsl l regrd
mav regrs1 +/- simm13, regrd ar %gO, regrs1 +/-
mav %y, regrd simm13, regrd
mav %asrn, regrd rd %y, regrd
mav %psr, regrd rd %asrn, regrd
mav %wim, regrd rd %psr, regrd
mav tbr, regrd rd %wim, regrd
mav regrsl f %y rd tbr, regrd
mav simm13, %y wr regrs1l %y
mav regrsl' %asr_reg wr simm13, %y
mav simm13 , %asr_reg wr regrs1' %asr_reg
mav regrs1' %psr wr simm13, %asr_reg
mav simm13, %psr wr regrs11 %psr
mav regrsl l %wim wr simm13, %psr
mav simm13, %wim wr regrs1l %wim
mav regrs l 1 %tbr wr simm13 , %wim
mav simm13, %tbr wr regrs11 %tbr

wr simm13, %tbr

Instruction Set -

7-5

SP ARelite User's Manual

7.4 Binary Opcodes
The following table provides a mapping by binary opcode of the SP ARC instruc­
tions mnemonics. In the table, the 32-bits that make up an instruction are divided
into 4 fields. Field 1 for bits 31-30, field 2 for bits 24-19, field 3 for bits 29-25, and
field 4 for bits 13-5. When using the table, look first for a match in field I, then a
match in field 2, followed by fields 3 and 4 until the desired mnemonic is found.

Table 7-2: SPARe Instructions Sorted by Opcode

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5
Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

00 xxxxx OOOxxx xxxxxxxx UNIMP
x

00 xOOOO 010xxx xxxxxxxx EN
x

00 xOO01 010xxx xxxxxxxx BE
x

00 x0010 010xxx xxxxxxxx BLE
x

00 xOOll 010xxx xxxxxxxx BL
x

00 x0100 010xxx xxxxxxxx BLEU
x

00 x0101 010xxx xxxxxxxx BCS
x

00 xOll0 010xxx xxxxxxxx BNEG
x

00 xOll1 010xxx xxxxxxxx BVS
x

00 x1000 010xxx xxxxxxxx BA
x

00 x1001 010xxx xxxxxxxx ENE
x

00 x1010 010xxx xxxxxxxx BG
x

00 x1011 010xxx xxxxxxxx BGE
x

00 xll00 010xxx xxxxxxxx BGU
x

00 xll01 010xxx xxxxxxxx BCC
x

00 x1110 010xxx xxxxxxxx BPOS
x

Instruction Set -

7-6

ruPTSU
Table 7-2: SPARe Instructions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5

Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

00 x1111 010xxx xxxxxxxx BVC
x

00 xxxxx 100xxx xxxxxxxx SETHI
x

00 00000 100xxx xxxxxxxx NOP
x

00 xOOOO 110xxx xxxxxxxx FBN t

x

00 xOO01 110xxx xxxxxxxx FBNE t

x

00 x0010 110xxx xxxxxxxx FBLG t

x

00 xOO11 110xxx xxxxxxxx FBUL t

x

00 x0100 110xxx xxxxxxxx FBL t

x

00 x0101 110xxx xxxxxxxx FBUG t

x

00 x0110 110xxx xxxxxxxx FBG t

x

00 x0111 110xxx xxxxxxxx FBU t

x

00 x1000 110xxx xxxxxxxx FBA t

x

00 x1001 110xxx xxxxxxxx FBE t

x

00 x1010 110xxx xxxxxxxx FBUE t

x

00 x1011 110xxx xxxxxxxx FBGE t

x

00 x1100 110xxx xxxxxxxx FBUGE t

x

00 x1101 110xxx xxxxxxxx FBLE t

x

00 x1110 110xxx xxxxxxxx FBULE t

x

00 x1111 110xxx xxxxxxxx FBO t

x

00 xOOOO 111xxx xxxxxxxx CBN t

x

Instruction Set -

7-7

SP ARClite User's Manual

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5

Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

00 xOO01 111xxx xxxxxxxx CB123 t

x

00 x0010 111xxx xxxxxxxx CB12 t

x

00 xOO11 111xxx xxxxxxxx CB13 t

x

00 x0100 111xxx xxxxxxxx CB1 t

x

00 x0101 111xxx xxxxxxxx CB23 t

x

00 x0110 111xxx xxxxxxxx CB2 t

x

00 x0111 111xxx xxxxxxxx CB3 t

x

00 x1000 111xxx xxxxxxxx CBA t

x

00 x1001 111xxx xxxxxxxx CBO t

x

00 x1010 111xxx xxxxxxxx CB03 t

x

00 x1011 111xxx xxxxxxxx CB02 t

x

00 x1100 111xxx xxxxxxxx CB023 t

x

00 x1101 111xxx xxxxxxxx CB01 t

x

00 x1110 111xxx xxxxxxxx CB013 t

x

00 x1111 111xxx xxxxxxxx CB012 t

x

01 01xxx =xxx xxxxxxxx CALL
x

10 xxxxx 000000 xxxxxxxx ADD

x

10 xxxxx 000001 xxxxxxxx AND

x

10 xxxxx 000010 xxxxxxxx OR
x

10 xxxxx 000011 xxxxxxxx XOR
x

Instruction Set -

7-8

FUJITSU

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5

Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

10 xxxxx 000100 xxxxxxxx SUB
x

10 xxxxx 000101 xxxxxxxx ANDN
x

10 xxxxx 000110 xxxxxxxx ORN
x

10 xxxxx 000111 xxxxxxxx xNOR
x

10 xxxxx 001000 xxxxxxxx ADDx
x

10 xxxxx 001010 xxxxxxxx UMUL
x

10 xxxxx 001011 xxxxxxxx SMUL
x

10 xxxxx 001100 xxxxxxxx SUBx
x

10 xxxxx 001110 xxxxxxxx UDIV t

x

10 xxxxx 001111 xxxxxxxx SDIV t

x

10 xxxxx 010000 xxxxxxxx ADDcc
x

10 xxxxx 010001 xxxxxxxx ANDcc
x

10 xxxxx 010010 xxxxxxxx ORcc
x

10 xxxxx 010011 xxxxxxxx XORcc
x

10 xxxxx 010100 xxxxxxxx SUBcc
x

10 xxxxx 010101 xxxxxxxx ANDNcc
x

10 xxxxx 010110 xxxxxxxx ORNcc
x

10 xxxxx 010111 xxxxxxxx xNORcc
x

10 xxxxx 011000 xxxxxxxx ADDxcc
x

10 xxxxx 011010 xxxxxxxx UMULcc
x

Instruction Set -

7-9

SPARClite User's Manual

Table 7·2: SPARC Instructions Sorted by Opcocle (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5
Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

10 =xxx 011011 xxxxxxxx SMULcc
x

10 =xxx 011100 xxxxxxxx SUBxcc
x

10 =xxx 011101 xxxxxxxx DIVScc
x

10 =xxx 011110 xxxxxxxx UOIVcc t

x

10 =xxx 011111 xxxxxxxx SDIVcc t

x

10 =xxx 100000 xxxxxxxx TADDcc
x

10 =xxx 100001 xxxxxxxx TSUBcc
x

10 =xxx 100010 xxxxxxxx TADDccTV
x

10 =xxx 100011 xxxxxxxx TSUBccTV
x

10 =xxx 100100 xxxxxxxx MULScc
x

10 =xxx 100101 xxxxxxxx SLL
x

10 =xxx 100110 xxxxxxxx SRL
x

10 xxxxx 100111 xxxxxxxx SRA
x

10 00000 101000 xxxxxxxx STEAR t

x

10 xxxxx 101000 xxxxxxxx RDASR (or RDY if
x rs1=0)

10 xxxxx 101001 xxxxxxxx RDPSR
x

10 xxxxx 101010 xxxxxxxx RDWIM
x

10 xxxxx 101011 xxxxxxxx RDTBR
x

10 xxxxx 101100 xxxxxxxx SCAN
x

10 xxxxx 110000 xxxxxxxx WRASR
x

Instruction Set -

7-10

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5

Field 1 Field 3 Field 2 Field 4

10 00000 110000 xxxxxxxx WRY
x

10 xxxxx 110001 xxxxxxxx WRPSR
x

10 xxxxx 110010 xxxxxxxx WRWIM
x

10 xxxxx 110011 xxxxxxxx WRTBR
x

10 xxxxx 110100 01100011 FqTOs
1

10 xxxxx 110100 01100011 FdTOs
1

10 xxxxx 110100 01100010 FiTOs
0

10 xxxxx 110100 01100100 FiTOs
0

10 xxxxx 110100 00110100 FsMULd
1

10 xxxxx 110100 00100111 FDIVd
1

10 xxxxx 110100 01100100 FsTOd
1

10 xxxxx 110100 00110111 FsMULq
0

10 xxxxx 110100 01100110 FiTOq
0

10 xxxxx 110100 01101001 FdTOi
0

10 xxxxx 110100 01101001 FqTOi
1

10 xxxxx 110100 01101000 FsTOi
1

10 xxxxx 110100 01100111 FdTOq
0

10 xxxxx 110100 00100111 FDIVq
1

10 xxxxx 110100 01100110 FsTOq
1

10 xxxxx 110100 01100101 FqTOd
1

c:P
FUJITSU

Instruction Mnemonic

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

Instruction Set-

7-11

• I

SP ARClite User's Manual

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5
Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

10 xxxxx 110100 00000000 FMOVs t

1

10 xxxxx 110100 00100000 FADDs t

1

10 xxxxx 110100 00100001 FADDd t

0

10 xxxxx 110100 00100001 FADDq t

1

10 xxxxx 110100 00010101 FSQRTq t

1

10 xxxxx 110100 00010101 FSQRTd t

0

10 xxxxx 110100 00100110 FDIVs t

1

10 xxxxx 110100 00000100 FABSs t

1

10 xxxxx 110100 00010100 FSQRTs t

1

10 xxxxx 110100 00100010 FSUBs t

1

10 xxxxx 110100 00000010 FNEGs t

1

10 xxxxx 110100 00100101 FMULd t

0

10 xxxxx 110100 00100101 FMULq t

1

10 xxxxx 110100 00100011 FSUBd t

0

10 xxxxx 110100 00100100 FMULs t

1

10 xxxxx 110100 00100101 FMULd t

1

10 xxxxx 110100 00100100 FMULq t

1

10 xxxxx 110100 00100100 FMULs t

1

10 xxxxx 110100 00100011 FSUBq t

1

10 xxxxx 110101 00101011 FCMPEq t

1

Instruction Set -

7-12

Table 7·2: SPARC Instructions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5

Field 1 Field 3 Field 2 Field 4

10 xxxxx 110101 00101000 FCMPs
1

10 xxxxx 110101 00101001 FCMPq
1

10 xxxxx 110101 00101011 FCMPEd
0

10 xxxxx 110101 00101010 FCMPEs
1

10 xxxxx 110101 00101001 FCMPd
0

10 xxxxx 110110 xxxxxxxx CPopl
x

10 xxxxx 110111 xxxxxxxx CPop2
x

10 xxxxx 111000 xxxxxxxx JMPL
x

10 xxxxx 111001 xxxxxxxx RETT
x

10 xOOOO 111010 xxxxxxxx TN
x

10 xOOOl 111010 xxxxxxxx TE
x

10 x0010 111010 xxxxxxxx TLE
x

10 xOO11 111010 xxxxxxxx TL
x

10 x0100 111010 xxxxxxxx TLEU
x

10 x0101 111010 xxxxxxxx TCS
x

10 x0110 111010 xxxxxxxx TNEG
x

10 x0111 111010 xxxxxxxx TVS
x

10 x1000 111010 xxxxxxxx TA
x

10 x1001 111010 xxxxxxxx TNE
x

10 x1010 111010 xxxxxxxx TG
x

cO
FUJITSU

Instruction Mnemonic
t

t

t

t

t

t

t

Instruction Set -

7-13

•

SP ARClite User's Manual

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5

Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

10 x1011 111010 xxxxxxxx TGE
x

10 x1100 111010 xxxxxxxx TGU
x

10 xll01 111010 xxxxxxxx Tee
x

10 x1110 111010 xxxxxxxx TPOS
x

10 x1111 111010 xxxxxxxx TVe
x

10 xxxxx 111011 xxxxxxxx FLUSH t

x

10 xxxxx 111100 xxxxxxxx SAVE
x

10 xxxxx 111101 xxxxxxxx RESTORE
x

11 xxxxx 000000 xxxxxxxx LD
x

11 xxxxx 000001 xxxxxxxx LDUB
x

11 xxxxx 000010 xxxxxxxx LDUH
x

11 xxxxx 000011 xxxxxxxx LDD
x

11 xxxxx 000100 xxxxxxxx ST
x

11 xxxxx 000101 xxxxxxxx STB
x

11 xxxxx 000110 xxxxxxxx STH
x

11 xxxxx 000111 xxxxxxxx STD
x

11 xxxxx 001001 xxxxxxxx LDSB
x

11 xxxxx 001010 xxxxxxxx LDSH
x

11 xxxxx 001101 xxxxxxxx LDSTUB
x

11 xxxxx 001111 xxxxxxxx SWAP
x

Instruction Set -

7-14

FUPTSU

Table 7-2: SPARC Instrudions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 ... 19 13 ... 5

Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

11 xxxxx 010000 xxxxxxxx LLDA
x

11 xxxxx 010001 xxxxxxxx LDUBA
x

11 xxxxx 010010 xxxxxxxx LDUHA
x

11 xxxxx 010011 xxxxxxxx LDDA
x

11 xxxxx 010100 xxxxxxxx STA
x

11 xxxxx 010101 xxxxxxxx STBA
x

11 xxxxx 010110 xxxxxxxx STHA
x

11 xxxxx 010111 xxxxxxxx STDA
x

11 xxxxx 011001 xxxxxxxx LDSBA
x

11 xxxxx 011010 xxxxxxxx LDSHA • x

11 xxxxx 011101 xxxxxxxx LDSTUBA
x

11 xxxxx 011111 xxxxxxxx SWAPA
x

11 xxxxx 100000 xxxxxxxx LDF t

x

11 xxxxx 100001 xxxxxxxx LDFSR t

x

11 xxxxx 100011 xxxxxxxx LDDF t

x

11 xxxxx 100100 xxxxxxxx STF t

x

11 xxxxx 100101 xxxxxxxx STFSR t

x

11 xxxxx 100110 xxxxxxxx STDFQ t

x

11 xxxxx 100111 xxxxxxxx STDF t

x

11 xxxxx 110000 xxxxxxxx LDC t

x

Instruction Set -

7-15

SP ARClite User's Manual

Table 7-2: SPARC Instructions Sorted by Opcode (Continued)

Bits Bits Bits Bits
31:30 29 ... 25 24 •• ;19 13 ••• 5
Field 1 Field 3 Field 2 Field 4 Instruction Mnemonic

11 xxxxx 110001 xxxxxxxx LDCSR t

x

11 xxxxx 110011 xxxxxxxx LDDC t

x

11 xxxxx 110100 xxxxxxxx STC t

x

11 xxxxx 110101 xxxxxxxx STCSR t

x

11 xxxxx 110110 xxxxxxxx STDCQ t

x

11 xxxxx 110111 xxxxxxxx STDC t

x

t. These instructions are not implemented in hardware.

7.5 Instruction Set
This section provides a reference of all instructions supported in hardware on the
SP ARClite MB86930. For additional information on the instructions refer to
Chapter 2 "Programmer's Model" and to Chapter 5 "Programming Considerations"
for code use examples.

Instruction Set -

7-16

ADD

FUPTSU

ADD

Add

Description:

Computes either "r[rsl]+r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)"
if the i field is one, and places the result in the destination specified by the rd field.

Format:
31 30 29

I 10 1

31 30 29

1

Syntax:

add
add

10 1

Traps:

(none)

25 24 19 18
rd 1 000000 1 rs1

25 24 19 18
rd 1 000000 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

(none)

Example:

may 2, %11
may

add
4, %12
%11, %12, %13 %13= 6

14 13 12 5 4 0

1 i=O 1 unused (zero) 1 rs2 1

14 13 12 0

1 i=ll simm13 1

Instruction Set - Add

7-17

SP ARClite User's Manual

ADDcc ADDcc

Add and modify icc

Description:

Computes either "r[rsl]+r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)"
if the i field is one, and places the result in the destination specified by the rd field.

ADDcc modifies the integer condition codes.

Format:

31 30 29

I 10 1
31 30 29

1 10 1

Syntax:

addcc
addcc

Traps:

(none)

25 24 19 18
rd 1 010000 1 lSI

25 24 19 18
rd 1 010000 1 rsl

regrsl' regrs2' regrd
regrsl' immediate, regrd

14 13

11=01
14 13

11=11

Condition Code Modified:

n,z,v,c

Example:

mov
addcc

2, %11
%11, -5, %13 %13= -3

nzvc=1000

Instruction Set - Add and modify icc

7-18

12 5 4 0
unused (zero) 1 rs2 1

12 0
simm13 1

ADDX

FUPTSU

ADDX

Add with carry

Description:

Computes either "r[rsl]+r[rs2]+c" if the i field is zero, or "r[rsl] +
sign_ext(simm13)+c" if the i field is one, and places the result in the destination
specified by the rd field.

Format:

31 30 29

I 10 1

31 30 29

1

Syntax:

addx
addx

10

Traps:

(none)

1

25 24 19 18
rd 1 001000 1 rs1

25 24 19 18
rd 1 001000 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

(none)

Example:

mav
addcc
addx

-1, %11
%11, %11, %12
%gO, %gO, %13 %13= 1

14 13 12 5 4 0

1 i=ol unused (zero) 1 rs2 1

14 13 12 0

1 i=ll simm13 1

Instruction Set - Add with carry

7-19

SP ARClite User's Manual

ADDXcc ADDXcc

Add with carry and modify icc

Description:

Computes either "r[rsl]+r[rs2]+c" if the i field is zero, or "r [rsl] +
sign_ext(simm13)+c" if the i field is one, and places the result in the destination
specified by the rd field.

ADDXcc modifies the integer condition codes.

Format:
31 30 29

I 10 1

31 30 29

I 10 1

Syntax:

addxcc
addxcc

Traps:

(none)

25 24 19 18
rd 1 011000 1 1$1

25 24 19 18
rd 1 011000 1 1$1

regrsl' regrs2' regrd
regrsl' immediate, regrd

14 13

1 i=ol

14 13

1 i=ll

Condition Code Modified:

n,z,v,c

Example:

nzvc=1001

12 5
unused (zero)

12
simm13

mov
mov
addcc
addxcc

-1, %11
%11, %13
%11, %11, %12
%13,0,%l3 %l3=0, nzvc=0101

Instruction Set - Add with carry and modify icc

7-20

4 0

1 rs2 1

0

1

AND

And

Description:

cP
FUJITSU

AND

Implements a bitwise logical And to compute either "r[rsll and r[rs2]" if the i field
is zero, or "r[rsll and sign_ext(simm13)" if the i field is one, and places the result
in the destination specified by the rd field.

Format:

31 30 29 25 24 19 18

I 10 1 rd 1 000001 1 rs1

31 30 29 25 24 19 18

1 10 1 rd 1 000001 1 rs1

Syntax:

and
and

regrsl' regrs2' regrd
regrsl' immediate, regrd

Traps:

(none)

Condition Code Nlodified:

(none)

Example:

mov Ox5, %11
Ox3 %12

14

14

mov
and %11, %12, %13 %13= Ox1

13 12 5 4 0

1 i=O 1 unused (zero) 1 rs2 1

13 12 0

1 i=ll simm13 1

Instruction Set - And

7-21

SP ARClite User's Manual

AN Dec ANDcc

And and modify icc

Description:

Implements a bitwise logical And to compute either "r[rsl] and r[rs2]" if the i field
is zero, or "r[rsl] and sign_ext(simm13)" if the i field is one, and places the result
in the destination specified by the rd field.

ANDcc modifies the integer condition codes.

Format:
31 30 29

I 10 I
31 30 29

I 10 I

Syntax:

andcc
andcc

Traps:

(none)

25 24 19 18
rd I 010001 I rs1

25 24 19 18
rd I 010001 I rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

n, Z, v=O, c=O

Example:

Ox5, %11

14 13

I i=ol

14 13

I i-1 1

12 5
unused (zero)

12
simm13

mov
and %11, Oxa, %13 %13= OxO, nzvc=OlOO

4 0

I rs2 I
0

I

Instruction Set - And and modify icc

7-22

ANDN

FUPTSU

ANDN

And Nol
&tJQU£MJMM1!4iiW.MXZX &iiMl'M

Description:

Implements a bitwise logical And Not to compute either "r[rsl) andn rlrs2]" if the
i field is zero, or "r[rsl) andn sign_ext(simm13)" if the i field is one, and places the
result in the destination specified by the rd field.

Format:

31 30 29 25 24 19 18

I 10 1 rd 1 000101 1 rs1
31 30 29 25 24 19 18

1 10 1 rd 1 000101 1 rs1

Syntax:

andn
andn

regrsl' regrs2' regrd
regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

mov Ox5, %11

Ox3 %12

14

14

mov
andn %11, %12, %13 %13= Ox4

13 12 5 4 0

1 ;=01 unused (zero) 1 rs2 1
13 12 0

1;=11 simm13 1

Instruction Set - And Not

7-23

•

SP ARClite User's Manual

ANDNcc ANDNcc

And Nol moldy icc

Description:

Implements a bitwise logical And Not to compute either "r[rsl] andn r[rs2]" if the
i field is zero, or "r[rsl] andn sign_ext(simm13)" if the i field is one, and places the
result in the destination specified by the rd field.

ANDNcc modifies the integer condition codes.

Format:
31 30 29

I 10 1

31 30 29

I 10 1

Syntcuc:
andncc
andncc

Traps:

(none)

25 24 19 18
rei 1 010101 1 rs1

25 24 19 18
rei 1 010101 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

n, z, v=O, c=O,

Example:

Ox5, %11

14 13

1 i=ol
14 13

1 i=ll

12 5
unused (zero)

12
slmm13

rnov
andncc %11, Ox3, %13 %13= Ox4, nzvc=OOOO

Instruction Set - And Not modify icc

7-24

4 0

1 rs2 1
0

1

BA

FUJITSU

BA

Branch Always
Jib2 mit

Description:

BA causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", regardless of the value of the condition code bits.

If the annul field of the branch instruction is 1, the delay instruction is annulled
(not executed). If the annul field is 0, the delay instruction is executed. (Note: this
is the reverse of the case for other conditional branches)

Format:
31 30 29 28 25 24 22 21

I 00 I a I 1000 010 I

Syntax:

ba label
ba,a

Traps:

(none)

label

Condition Code Modified:

(none)

Example:

ba xyz
mov Ox4, %11

disp22

annul bit set

delay slot

Instruction Set - Branch Always

7-25

SP ARClite User's Manual

BCC BCC

Branch on Carry Clear (Branch Grealer or Equal Unsigned)

Description:

BCC causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if the carry (C) bit in the PSR is clear.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

I 00 lal 1101 I 010

Syntax:

bcc
bgeu
bcc,a
bgeu,a

Traps:

(none)

label
label
label
label

Condition Code Modified:

(none)

Example:

bcc,a xyz
mov Ox4, %11

disp22

alternate mnemonic
annul bit set

o

delay slot not executed if branch not taken

Instruction Set - Branch on Carry Clear (Branch Greater or Equal Unsigned)

7-26

BCS

FUPTSU

Branch on Carry Sel (Branch on Less Than, Unsigned)
;;;;;;:;:;;r'&QW;UZ,.lUiC J&£Zc:zsza:c:::::&... ZZ$

Description:

BCS causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if the carry (C) bit in the PSR is set.

BCS

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

I 00 I a I 0101 010 I

Syntax:

bcs
blu
bcs,a
blu,a

Traps:

(none)

label
label
label
label

Condition Code Modified:

(none)

Example:

bcs xyz
mov Ox4, %11

disp22

alternate mnemonic
annul bit set

delay slot

Instruction Set - Branch on Carry Set (Branch on Less Than, Unsigned)

7-27

SP ARClite User's Manual

BE

Branch on Equal (Branch on Zero)

Description:

BE causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if Z is set.

BE

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

I 00 I a I 0001 010 I

Syntax:

be
bz
be,a
bZ,a

Traps:

(none)

label
label
label
label

Condition Code Modified:

(none)

Example:

bz xyz
mov Ox4, %11

disp22

alternate mnemonic
annul bit set

delay slot

o

Instruction Set - Branch on Equal (Branch on Zero)

7-28

BG

FUJITSU

BG

Branch on Greater

Description:

BG causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if "not(Z or (N xor V»" is true.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

format:
31 30 29 28 25 24 22 21

I ()() I a I 1010 I 010

Syntax:

bg
bg,a

Traps:

(none)

label
label

Condition Code Modified:

(none)

Example:

bg xyz
rnov Ox4, %11

o
disp22

annul bit set

delay slot

Instruction Set - Branch on Greater

7-29

.. ~
I

SP ARClite User's Manual

BGE BGE

Branch on Greater or Equal

Description:

BGE causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if "not(N xor V)" is true.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

I 00 I a I 1011 I 010

Syntax:

bge
bge, a

Traps:

(none)

label
label

Condition Code Modified:

(none)

Example:

bge xyz

rnov Ox4, %11

disp22

armul bit set

delay slot

Instruction Set - Branch on Greater or Equal

7-30

IGU IGU

Branch on Greater, Unsigned
3&&"'"&1

Description:

BGU causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if "not(C or Z)" is true.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

I 00 I a I 1100 I 010

Syntax:

bgu
bgu,a

Traps:

(none)

label
label

Condition Code Modified:

(none)

Example:

bgu xyz

mov Ox4, %11

disp22

annul bit set

delay slot

Instruction Set - Branch on Greater, Unsigned

7-31

SP ARClite User's Manual

BL

Branch on Less

Description:

BL causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if "N xor V" is true.

BL

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21
I 00 I a I 0011 I 010

Syntax:

bl label
bl,a

Traps:

(none)

label

Condition Code Modified:

(none)

Example:

bl xyz
mov Ox4, %11

o
disp22

annul bit set

delay slot

Instruction Set - Branch on Less

7-32

BlE

FUJITSU

BlE

Branch on Less or Equal

Description:

BLE causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if "Z or (N xor V)" is true.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:

31 30 29 28 25 24 22 21

I 00 I a I 0010 010 I

Syntax:

ble
ble,a

Traps:

(none)

label
label

Condition Code Modified:

(none)

Example:

ble xyz
mov Ox4, %11

o
dlsp22

annul bit set

delay slot

Instruction Set - Branch on Less or Equal

7-33

SPARClite User's Manual

BLEU BLEU

Brach on Less or Equal, UnsigHd

Description:

BLEU causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if "C or Z" is true.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 2S 24 22 21
I 00 I a I 0100 010 I

Syntax:

bleu
bleu,a

Traps:

(none)

label
label

Condition Code Modified:

(none)

Example:

bleu xyz
IlIOV Ox4, %11

o
disp22

annul bit set

delay slot

Instruction Set - Branch on Less or Equal, Unsigned

7-34

BN

FUJITSU

BN

Branch Never -
Description:

BN acts like a "NOP" except that if the annul field is one, the delay instruction is
not executed (annulled). If the annul (a) field is zero, the delay instruction is exe­
cuted.

Format:
31 30 29 28 25 24 22 21

I 00 I a I 0000 I 010

Syntax:

bn label
bn,a

Traps:

(none)

label

Condition Code Modified:

(none)

Example:

bn xyz
rnov Ox4, %11

o
disp22

annul bit set

delay slot

Instruction Set - Branch Never

7-35

SP ARClite. User's Manual

BNE BNE

Branch on Nol Equal (Branch on Nol Zero)

Description:

BNE causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if Z is clear.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

I 00 I a I 1001 010 I

Syntax:

bne
bnz
bne, a
bnz,a

Traps:

(none)

label
label
label
label

Condition Code Modified:

(none)

Example:

bnz xyz
mov Ox4, %11

disp22

alternate mnemonic
annul bit set

delay slot

Instruction Set - Branch on Not Equal (Branch on Not Zero)

7-36

BNEG

Branch on Negative

Description:

cP
FUJITSU

BNEG

BNEG causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if N is set.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

100 lal 0110 I 010

Syntax:

bneg
bneg,a

Traps:

(none)

label
label

Condition Code Modified:

(none)

Example:

bneg xyz
mov Ox4, %11

disp22

annul bit set

delay slot

Instruction Set - Branch on Negative

7-37

•:::.
~.

:

SP ARClite User's Manual

BPOS BPOS

Branch on Positive

Description:

BPOS causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if N is clear.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

I 00 I a I 1110 I 010

Syntax:

bpos label
bpos,a

Traps:

(none)

label

Condition Code Modified:

(none)

Example:

bpos xyz
mov Ox4, %11

o
disp22

annul bit set

delay slot

Instruction Set - Branch on Positive

7-38

Bve

ruPTSU
Bve

Branch on Overflow Clear

Description:

BVC causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if V is clear.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21
I 00 lal 1111 I 010

Syntax:

bve
bve, a

Traps:

(none)

label
label

Condition Code Modified:

(none)

Example:

bve xyz
mov Ox4, %11

o
disp22

annul bit set

delay slot

Instruction Set - Branch on Overflow Clear

7-39

•

SP ARClite User's Manual

BVS BVS

Branch on Overflow Set

Description:

BVS causes a PC-relative, delayed control transfer to the address "PC + (4 x
sign_ext(disp22»", if V is set.

The annul bit only affects execution if the branch is not taken. With the annul (a)
bit set, the delay instruction is annulled (not executed). With the annul (a) bit
clear, the delay instruction is executed.

Format:
31 30 29 28 25 24 22 21

I 00 I a I 0111 010 I

Syntax:

bvs label
bvs, a

Traps:

(none)

label

Condition Code Modified:

(none)

Example:

bvs xyz
mov Ox4, %11

o
disp22

annul bit set

delay slot

Instruction Set - Branch on Overflow Set

7-40

CALL

FUJITSU

CALL

Call Instruction

Description:

The CALL instruction causes an unconditional, delayed, PC-relative control
transfer to address "PC + (4 x disp30)" . Since the word displacement field is 30
bits wide, the target address can be arbitrarily distant. The CALL instruction also
writes the value of PC, which contains the address of the CALL, into %07 (r[IS]).

Format:
31 30 29

I 01 I

Syntax:

call

Traps:

(none)

label

Condition Code Modified:

(none)

Example:

call xyz
mov Ox4, %11

o
disp30

delay slot

Instruction Set - Call Instruction

7-41

.~
!

SPARClite User's Manual

DIVSCC DIVSCC

Divide Step

Description:

The DIVScc instruction performs one bit-cycle of a non-restoring, shift-before­
add, signed or unsigned division. Initially, the most significant half of the divi­
dend is in the Y register, the least significant half is in r[rsl]. The divisor is in
r[rs2]. Subsequently, the most significant half of the partial remainder is in the Y
register, the least significant half is in r[rsl].

DIVSCC operates as follows:

1. The true sign is formed using the negative (n) and overflow (v) integer condi­
tion codes from the Processor Status Register. True sign = n XOR v.

2. The remainder is formed by upshifting the Y register (initially the most signifi­
cant word of the dividend) one bit, and setting the least significant bit of
remainder equal to most significant bit of r[rs1] (initially the least significant
word of the dividend).

3. The divisor is r[rs2] if the i field is 0, or simm13, sign-extended to 32 bits, if the i
field is 1.

4. If true sign = 0 (+), the ALU computes remainder - divisor. If true sign =1 (-), the
ALU computes remainder + divisor.

5. Carry out from the ALU operation is noted as cO. The negative (n) condition
code is set to bit 31 of the ALU result. The zero (z) condition code is set if the
ALU result is 0 AND the true sign equals Y[31], else cleared.

6. The new true sign is formed as (true sign AND NOT Y[31]) OR (NOT cO AND
(true sign OR NOT Y[31])).

7. The overflow (v) condition code is formed as new true sign XOR bit 31 of the
ALU result. The carry (c) condition code is set to NOT new true sign. Y is set to
the 32-bit ALU result. If rd is not 0, then r[rd] is set to r[rsl], upshifted one bit
with NOT new true sign (the new quotient bit) in the least significant bit
position.

Instruction Set - Divide Step

7-42

Divide Step (Continued)
i;tiJitAAlMWj(.b!$ISi.\W/i&iJli'i&£ .%ZZ

format:
31 30 29

1 10 1
31 30 29

1 10

Syntax:

divscc
divscc

Traps:

(none)

1

!Wkl!iIiiW!i%ll14\

25 24 19 18
rd 1 011101 1 r51

25 24 19 18
rd 1 011101 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

n, z, v, c,

Example:

14 13 12 5

1 i=O 1 reserved

14 13 12

1 i=11 simm13

4

1

rP
FUJITSU

0

rs2 1
0

1

See Chapter 5 "Programming Considerations" for sample signed and unsigned divi­
sion routines based on the DIVScc instruction as well as some application exam­
ples.

Instruction Set - Divide Step (Continued)

7-43

SP ARClite User's Manual

JMPL JMPL

Jump and Link

Description:

The lMPL instruction causes a register-indirect control transfer to an address
specified by either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] +
sign_ext(simm13)" if the i field is one.

The JMPL instruction writes the PC, which contains the address of the JMPL
instruction, into the destination r register specified in rd field.

If either of the low-order two bits of the jump address is nonzero, a mem_ad­
dress_noCaligned trap occurs.

Format:
31 30 29 25 24 19 18

I 10 1 rd 1 111000 1 rs1

31 30 29 25 24 19 18

1 10 1 rd 1 111000 1 rs1

Syntax:

jrnpl regrsl' regrs2' regrd
jrnpl regrsl' immediate, regrd

Traps:

mem_address_not_aligned

Condition Code Modified:

(none)

14 13 12 5 4 0

1 i=O 1 unused (zero) 1 rs2 1

14 13 12 0

1 i=11 simm13 1

Instruction Set - Jump and Link

7-44

Jump and Link (Continued)

Example:

jmpl %12+0xf8, %gO
mav Oxfe, %11 ! delay slot

cP
FUJITSU

notes:-JMPL with rd=%gO can be used to return from a subroutine.

• For a non-leaf subroutine the typical return address is "r[31]+8", if the sub­
routine was entered by a call instruction. (Note: The pseudo operation "ret"
invokes this return address). A leaf subroutine (no use of save, no call to
other subroutines) can use "r[15]+8" as the return address. (Note: Pseudo
operation "ret!" invokes this return address).

• JMPL with rd = 15 can be used as a register-indirect CALL.

• When the delay slot instruction of JMPL is RETT, the target of the JMPL is
the address space pointed to by the state of the machine after the RETT is
executed (this is important when returning from a trap (which is supervisor
space) to user address space}.

Instruction Set - Jump and Link (Continued)

7-45

SP ARClite User's Manual

LD LD

Load Word

Description:

The LD instruction moves a word from memory into the r register defined by the
rd field. The source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero,
or "r[rsl] + sign_ext(simm 13)" if the i field is one.

The address space identifier (ASI) indicates either user data (OxA) or supervisor
data (OxB) according to the S bit of the PSR.

If the LD instruction traps, the destination register (rd) remains unchanged.

Format:
31 30 29 25 24 19 18 14 13

I 11 1 rd 1 00000o 1 rs1 1 i-O 1

31 30 29 25 24 19 18 14 13

1 11 1 rd 1 000000 1 rs1 1 i=ll

Syntax:

Id
Id

[regrsl+ regrs2]' regrd
[regrsl +/- immediate], regrd

Traps:

mem_address_not_aligned
data_access_exception

Condition Code Modified:

(none)

Example:

Id
Id

[%gO + OxfeO], %14
[OxfeO], %14

12 5 4 0
unused (zero) 1 rs2 1

12 0
simm13 1

!recognized as equivalent

Instruction Set - Load Word

7-46

LDA LDA

Load Word from Alternate Space

Deseription:

The LDA instruction moves a word from memory into the r register defined by
the rd field. The source value is loaded from "r[rsl] + r[rs2]" with the ASI field
designating the ASI value.

If the LDA instruction traps, the destination register (rd) remains unchanged.
LDA is a privileged instruction which can only be executed in supervisor mode.

Format:
31 30 29 25 24 19 18 14 13 12

I 11 I rd I 010000 I rs1 1;=0 I

Syntax:

Ida

Traps:

mem_address_not_aligned
data_access _exception
privileged_instruction (if not supervisor mode)
illegaUnstruction (if i=l)

Condition Code Modified:

(none)

Example:

5 4 0
ASI I rs2 I

Ida [%11 + %12]Oxf, %14 ASI value 15 decimal

Instruction Set - Load Word from Alternate Space

7-47

•

SP ARClite User's Manual

LDD LDD

Load Doubleword

Description:

The LDD instruction moves two words from memory into an r register pair. The
most significant word at the effective memory address is moved into the even r
register. The least significant word, which is at the effective memory address + 4,
is moved into the odd r register. The least significant bit of the rd field is ignored.

The source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero, or
"r[rsl] + sign_ext(simm 13)" if the i field is one.

The address space identifier (AS!) indicates either user data (OxA) or supervisor
data (OxB) according to the S bit of the PSR.

If the LDD instruction traps while loading the second word the even destination
register (rdeven) will have been changed.

format:
31 30 29 25 24 19 18 14 13

I 11 1 rd 1 000011 1 rs1 1 ;=0 1

31 30 29 25 24 19 18 14 13

1 11 1 rd 1 000011 1 rs1 1 ;=11

Syntax:

1dd [regrsl+ regrs2]' regrd
1dd [regrsl +/- irmnediate], regrd

Traps:

mem_address-pot_aligned
data_access_exception

Condition Code Modified:

(none)

Examp'e:
1dd [%i5 + %12], %g2

12 5 4 0
unused (zero) 1 rs2 1

12 0
simm13 1

Instruction Set - Load Doubleword

7-48

LDDA

Load Doubleword from Alternate Space
WU.Al&/b ... MS ;:c .. M k ,_ 3fA9i£.M b!II 3M.%!,

Description:

cO
FUJITSU

LDDA

The LDDA instruction moves two words from memory into an r register pair.
The most significant word at the effective memory address is moved into the even
r register. The least significant word, which is at the effective memory address +
4, is moved into the odd r register. The least significant bit of the rd field is
ignored.

The source value is loaded from "r[rsl] + r[rs2]" with the ASI field designating the
ASIvalue.

If the LDD instruction traps while loading the second word the even destination
register (rdeven) will have been changed.

Format:
31 30 29 25 24 19 18 14 13 12

1 11 1 rd 1 010011 1 rs1 li=ol

Syntax:

Idda [regrsl + regrs2jASI, regrd
Idda [regrs l +/- irnmediatejASI, regrd

Traps:

mem3ddress_noCaligned
data_access_exception
privileged_instruction (if not supervisor mode)
illegaUnstruction (if i=1)

Condition Code Modified:

(none)

Example:

Idda [%g7 - 5jOxl, %04

540
ASI 1 rs2 I

Instruction Set - Load Doubleword from Alternate Space

7-49

SP ARClite User's Manual

LDSB LDSB

Load Signed Byle

Description:

The LDSB instruction moves a byte from memory into the r register defined by
the rd field. The fetched byte is right-justified in rd and is sign-extended. The
source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] +
sign_ext(simm 13)" if the i field is one.

The address space identifier (ASI) indicates either user data (OxA) or supervisor
data (OxB) according to the S bit of the PSR.

If the LD instruction traps, the destination register (rd) remains unchanged.

Format:

31 30 29 25 24 19 18 14 13 12

I 11 1 rd 1 001001 1 rs1 1 i=O 1

31 30 29 25 24 19 18 14 13 12

I 11 1 rd I 001001 1 rs1 1 i=11

Syntax:

1dsb [regrsl + regrs21, regrd
1dsb [regrsl +/- irrmediatel, regrd

Traps:

data_access_exception

Condition Code Modified:

(none)

Example:

1dsb [%gO + OxfeOl, %14

5 4 0
unused (zero) 1 rs2 I

0
simm13 I

Instruction Set - Load Signed Byte

7-50

LDSBA

Load Signed Byte from Alternate Space
4&. 00;;:1& ;afM%WA1.;u;;;mtMQ;gq;;mm MMitI. WmMnM

Description:

OJ
FUJITSU

LDSBA

The LOSB instruction moves a byte from memory into the r register defined by
the rd field. The fetched byte is right-justified in rd and is sign-extended. The
source value is loaded from "r[rsll + r[rs2]" with the ASI field designating the ASI
value.

If the LDSBA instruction traps, the destination register (rd) remains unchanged.
LOSBA is a privileged instruction which can only be executed in supervisor
mode.

Format:

31 30 29 25 24 19 18 14 13 12

1 11 1 rd 1 011001 1 rs1 li=ol

Syntax:

ldsba

Traps:

data_access_exception
privileged_instruction (if not supervisor mode)
illegal_instruction (if i=1)

Condition Code Modified:

(none)

Example:

5 4 0
ASI 1 rs2 1

ldsba [%11 + %12]Oxf, %14 ASI value 15 decimal

Instruction Set - Load Signed Byte from Alternate Space

7-51

-I

SP ARClite User's Manual

LDSH LDSH

Load Signed Halfword

Description:

The LDSH instruction moves a halfword from memory into the r register defined
by the rd field. The fetched halfword is right-justified in rd and is sign-extended.
The source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero, or
" r [rsl] + sign_ext(simm 13)" if the i field is one.

The address space identifier (AS!) indicates either user data (OxA) or supervisor
data (OxB) according to the S bit of the PSR.

If the LDSH instruction traps, the destination register (rd) remains unchanged.

Format:
31 30 29 25 24 19 18 14 13 12

I 11 1 rd 1 001010 1 rsl 1 i=ol

31 30 29 25 24 19 18 14 13 12

1 11 1 rd 1 001010 1 rsl 1 i=ll

Syntax:

1dsh [regrsl + regrs2)' regrd
1dsh [regrsl +/- immediate), regrd

Traps:

data_access_exception
mem_address_not_aligned

Condition Code Modified:

(none)

Example:

1dsh [%gO + OxfeO), %14

5 4 0
unused (zero) 1 rs2 1

0
simm13 1

Instruction Set - Load Signed Halfword

7-52

LDSHA

load Signed Halfword from Alternate Space

Description:

cO
FUJITSU

LDSHA

The LDSH instruction moves a halfword from memory into the r register defined
by the rd field. The fetched halfword is right-justified in rd and is sign-extended.
The source value is loaded from "r[rsl] + r[rs2]" with the ASI field designating the
ASI value.

If the LDSHA instruction traps, the destination register (rd) remains unchanged.
LDSHA is a privileged instruction which can only be executed in supervisor
mode.

format:
31 30 29 25 24 19 18 14 13 12

I 11 I rd I 011010 I rs1 li-ol

Syntax:

ldsha

Traps:

data_access_exception
mem_address_not_aligned
privileged_instruction (if not supervisor mode)
illegaCinstruction (if i=l)

Condition Code Modified:

(none)

Example:

5 4 0

ASI I rs2 I

ldsha [%11 + %12]Oxf, %14 ASI value 15 decimal

Instruction Set - Load Signed Halfword from Alternate Space

7-53

..
I

SPARClite User's Manual

LDSTUB LDSTUB

Alomic Load-Slore Unsigned Byle

Description:

The LDSTUB instruction moves a byte from memory into an r register identified
by the rd field and then rewrites the same byte in memory to all ones atomically
(without allowing intervening asynchronous traps). The value in the rd register is
right justified and zero-filled.

The source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero, or
"r[rsl] + sign_ext(simm 13)" if the i field is one.

The address space identifier (ASI) indicates either user data (OxA) or supervisor
data (OxB) according to the 5 bit of the PSR.

If the LDSTUB instruction traps, memory remains unchanged.

Format:
31 30 29 25 24 19 18 14 13

I 11 1 ret 1 001101 1 rsl 1 i=ol
31 30 29 25 24 19 18 14 13

1 11 1 ret 1 001101 1 rsl 1 i=11

Syntax:

Idstub
Idstub

[regrsl + regrs2]' regrd
[regrsl +/- immediate], regrd

Traps:

data_access_exception

Condition Code Modified:

(none)

Example:

Idstub [%g7 - Oxfb], %01

12 5
unused (zero)

12
simm13

4 a
1 rs2 1

a
1

Instruction Set - Atomic Load-Store Unsigned Byte

7-54

FUPTSU

LDSTUBA LDSTUBA

Alomic Load-Slore Unsigned Byle inlo Allernale Space
. .k JWi%l2tfM .. ;;;%C2 iit@!.i%WiilZZU&!2MtJC.iJ3i@ :;w;:;::;

Description:

The LDSTUBA instruction moves a byte from memory into an r register identified
by the rd field and then rewrites the same byte in memory to all ones atomically
(without allowing intervening asynchronous traps). The value in the rd register is
right justified and zero-filled.

The source value is loaded from /lr[rsl] + r[rs2]/lwith the ASI field designating the
ASI value.

If the LDSTUBA instruction traps, memory remains unchanged. LDSTUBA is a
privileged instruction which can only be executed in supervisor mode.

Format:
31 30 29 25 24 19 18 14 13 12

I 11 I rd I 011101 I rs1 I ;=0 I

Syntax:

ldstuba

Traps:

data3ccess _exception
privileged_instruction (if not supervisor mode)
illegal_instruction (if i==1)

Condition Code Modified:

(none)

Example:

5 4 0
ASI I rs2 I

ldstuba [%11 + %12]Oxf, %14 AS! value 15 decimal

Instruction Set - Atomic Load-Store Unsigned Byte into Alternate Space

7-55

--

SP ARClite User's Manual

LDUB·· LDUB

Load Unsigned Byte

Description:

The LDUB instruction moves an unsigned byte from memory into the r register
defined by the rd field. The fetched halfword is right-justified in rd and is zero­
filled. The source value is loaded from either "r[rsl] + r[rs2]" if the i field is zero,
or "r[rsl] + sign_ext(simm 13)" if the i field is one.

The address space identifier (ASI) indicates either user data (OxA) or supervisor
data (OxB) according to the 5 bit of the PSR.

If the LDUB instruction traps, the destination register (rd) remains unchanged.

Format:
31 30 29 25 24 19 18 14 13

I 11 I rd I 000001 I rsl I i=ol

31 30 29 25 24 19 18 14 13

I 11 I rd I 000001 I rsl 11=11

Syntax:

1dub [regrsl + regrs2)' regrd
1dub [regrsl +/- immediate), regrd

Traps:

data_access_exception

Condition Code Modified:

(none)

Example:

1dub [%gO + OxfeO), %14

12 5 4 0
unused (zero) I rs2 I

12 0
simm13 I

Instruction Set - Load Unsigned Byte

7-56

LDUBA

Load Unsigned Byte from Alternate Space

Description:

OJ
FUJITSU

LDUBA

The LDUBA instruction moves a byte from memory into the r register defined by
the rd field. The fetched byte is right-justified in rd and is zero-filled. The source
value is loaded from "r[rsl] + r[rs2]" with the ASI field designating the ASI value.

If the LDUBA instruction traps, the destination register (rd) remains unchanged.
LDUBA is a privileged instruction which can only be executed in supervisor
mode.

Format:
31 30 29 25 24 19 18 14 13 12

I 11 I rd I 010001 I rs1 I ;=0 I

Syntax:

lduba

Traps:

data_access_exception
privileged_instruction (if not supervisor mode)
illegaUnstruction (if i=l)

Condition Code Modified:

(none)

5 4 0
ASI I rs2 I

Example:

lduba [%11 + %12]Oxf, %14 !ASI value 15 decimal

Instruction Set - Load Unsigned Byte from Alternate Space

7-57

SP ARClite User's Manual

LDUH LDUH

Load Unsigned Hallward

Description:

The LDUH instruction moves a halfword from memory into the r register defined
by the rd field. The fetched halfword is right-justified in rd and is zero-filled. The
source value is loaded from either "r [rsl] + r[rs2]" if the i field is zero, or "r [rsl] +
sign_ext(simm 13)" if the i field is one.

The address space identifier (ASI) indicates either user data (OxA) or supervisor
data (OxB) according to the S bit of the PSR.

If the LDUH instruction traps, the destination register (rd) remains unchanged.

Format:

31 30 29 25 24 19 18 14 13

I 11 I rd I 000010 I ra1 I i=ol

31 30 29 25 24 19 18 14 13

I 11 I rd I 000010 I ra1 I i=ll

Syntax:

1duh [regrsl + regrs2' regrd
1duh [regrsl +/- irmnediatel, regrd

Traps:

data_access_exception
mem_address_not_aligned

Condition Code Modified:

(none)

Example:

1duh [%g7 - Oxfebl, %14

12 5 4 0
unused (zero) I rs2 I

12 0
simm13 I

Instruction Set - Load Unsigned Halfword

7-58

LDUHA

Load Unsigned Halfword from Alternate Space

Description:

cP
FUJITSU

LDUHA

The LDUHA instruction moves a halfword from memory into the r register
defined by the rd field. The fetched halfword is right-justified in rd and is zero­
filled. The source value is loaded from "r [rsl] + r[rs2]" with the ASI field desig­
natiIi.g the ASI value.

If the LDUHA instruction traps, the destination register (rd) remains unchanged.
LDUHA is a privileged instruction which can only be executed in supervisor
mode.

Format:

31 30 29 25 24 19 18 14 13 12

I 11 I rd I 010010 I rsl 1;=0 I

Syntax:

1duha

Traps:

data_access_exception
privileged_instruction (if not supervisor mode)
illegaCinstruction (if i=l)

Condition Code Modified:

(none)

Example:

1duha [%g7 - Oxfeb]Oxee, %13

5 4 0
ASI I rs2 I

Instruction Set - Load Unsigned Halfword from Alternate Space

7-59

•

SP ARClite User's Manual

MULScc MULScc

Multiply Step Instruction

Description:

The MULScc can be used to generate up to 64-bit products of two signed or
unsigned words. MULScc works as follows:

1. Compute the value obtained by shifting "r[rsl]" (the incoming partial prod­
uct) right by one bit and replacing its high-order bit by "N xor V" (the sign of
the previous partial product).

2. If the least significant bit of the Y register (the multiplier) is set, the value from
step (1) is added to the multiplicand. The multiplicand is "r[rs2]" if the i field
is zero or is "sign_ext(simm13)" if the i field is one. If the LSB of the Y register
is not set, then zero is added to the value from step (1).

3. The result from step (2) is written into "r[rd]" (the outgoing partial product).
The PSR's integer condition codes are updated according to the addition per­
formed in step (2).

4. The Y register (the multiplier) is shifted right by one bit and its high_order bit
is replaced by the least significant bit of "r[rsl]" (the incoming partial prod­
uct).

It should be noted that, for most applications, the UMUL/SMUL instructions are
a faster and more efficient means of multiplying integer values. However
MULScc can be used for other bit manipulations. See Chapter 5 "Programming
Considerations" for details.

Format:

31 30 29

I 10 1
31 30 29

1 10

Syntax:

mulscc
mulscc

1

25 24 19 18
rd 1 100100 1 rs1

25 24 19 18
rd 1 100100 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

14 13 12 5 4 0

1 i=O 1 reserved 1 rs2 1
14 13 12 0

1 i=11 simm13 1

Instruction Set - Multiply Step Instruction

7-60

0)

FUJITSU

Multiply Step Instruction (Continued)

Traps:

(none)

Condition Code Modified:

(none)

Example:

mulscc %04, %01, %04

Instruction Set - Multiply Step Instruction (Continued)

7-61

.. ,
I

SP ARClite User's Manual

NOP NOP

No Operation

Description:

The NOP instruction changes no program-visible state (except the PC and nPC)

Format:
31 30 29 25 24 22 21

I 00 I . 00000 100 I

Syntax:

nop

Traps:

(none)

Condition Code Modified:

(none)

Example:

bz target
nop !delay slot

Instruction Set - No Operation

7-62

o
000000000000000

OR

FUPTSU

OR

Inclusive OR

Description:

Implements a bitwise logical inclusive Or to compute either "r [rsl] or r[rs2]" if the
i field is zero, or "r[rsl] or sign_ext(simm13)" if the i field is one, and places the
result in the destination specified by the rd field.

Format:
31 30 29

I 10 I
31 30 29

I 10 I

Syntax:

or
or

Traps:

(none)

25 24 19 18

rd I 000010 I rs1

25 24 19 18
rd I 000010 I rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

(none)

Example:

14 13 12 5 4 0

I i=O I unused (zero) I rs2 I
14 13 12 0

I i=ll simm13 I

or %gO, -1, %03 mov -1, %03 equivalent

Instruction Set - Inclusive OR

7-63

SP ARClite User's Manual

ORee ORee

Inclusive OR and modify icc

Description:

Implements a bitwise logical inclusive Or to compute either "r[rsl] or r[rs2]" if the
i field is zero, or "r[rsl] or sign_ext(simm13)" if the i field is one, and places the
result in the destination specified by the rd field.

Format:
31 30 29 25 24 19 18

I 10 I rd I 010010 I rsl

31 30 29 25 24 19 18

I 10 I rd I 010010 I rsl

Syntax:

oree regrsl' regrs2' regrd
oree regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

n, z, v=O, c=O

Example:

mov -1, %03

14 13 12 5 4

I ;=0 I unused (zero) I
14 13 12

I ;=1 I s;mm13

oree %03, 0, %gO tst %03 equivalent, nzve=1000

0
rs2 I

0

I

Instruction Set - Inclusive OR and modify icc

7-64

ORN ORN

Inclusive Or Not

Description:

Implements a bitwise logical inclusive Or Not to compute either "r[rsl] orn r[rs2]"
if the i field is zero, or "r[rsl] orn sign_ext(simm13)" if the i field is one, and places
the result in the destination specified by the rd field.

Format:

31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I rd I 000110 I rs1 I i=ol unused (zero) I rs2 I
31 30 29 2524 19 18 14 13 12 0

I 10 I rd I 000110 I rs1 I i=ll simm13 I

Syntax:

om
orn

regrsl' regrs2' regrd
regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

orn %gO, 3, %01 alII's except bottom two bits to reg
01

Instruction Set - Inclusive Or Not

7-65

.. ~
1

SPARClite User's Manual

ORNcc ORNcc

Inclusive Or Not and modify icc

Description:

Implements a bitwise logical inclusive Or Not to compute either "r[rsl] om r[rs2]"
if the i field is zero, or "r[rsl] om sign_ext(simm13)" if the i field is one, and places
the result in the destination specified by the rd field.

Format:
31 30 29

I 10 I
31 30 29

I 10 I

Syntax:

orncc
orncc

Traps:

(none)

25 24 19 18
rd I 010110 I rsl

25 24 19 18
rd I 010110 I rsl

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

n, z=O, v, c=O

Example:

orncc %gO, -1, %03

14 13 12 5 4 0

I i=ol unused (zero) I rs2 I
14 13 12 0

I i=ll simm13 I

Instruction Set - Inclusive Or Not and modify icc

7-66

RDASR

Read Ancillary State Register -
Description:

cP
FUJITSU

RDASR

Reads the contents of the ancillary state register specified by the r51 field into the
destination register rd.

On the SPARClite MB86930 a valid value for r51 is 17. All other values of r51 will
generate an illegal instruction trap.

All reserved fields should be programmed as O. RDASR is a privileged
instruction.

Format:
31 30 29 25 24 19 18 14 13 12

I 10 I rd I 101000 I rs1 I reserved I

Syntax:

rd

Traps:

illegaC instruction
privileged_instruction

Condition Code Modified:

(none)

Example:

rd %asr17, %gl

reserved

Instruction Set - Read Ancillary State Register

7-67

I:

SP ARClite User's Manual

RDPSR RDPSR

Read Processor State Register

Description:

RDPSR reads the contents of the Processor State Register into the destination
register rd.

All reserved fields should be programmed as o. RDPSR is a privileged instruction.

Format:

31 30 29 25 24 19 18 14 13 12

I 10 I rd I 101001 I reserved I reserved I

Syntax:

rd %psr, regrd

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

rd %psr, %gl

o
reserved

Instruction Set - Read Processor State Register

7-68

RDTBR

Read Trap Base Register --
Description:

cO
FUJITSU

RDTBR

RDTBR reads the contents of the Trap Base Register into the destination register
rd.

All reserved fields should be programmed as o. RDTBR is a privileged
instruction.

Format:
31 30 29 25 24 19 18 14 13 12
I 10 I rd I 101011 I reserved I reserved I

Syntax:

rd %tbr, regrd

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

rd %tbr, %gl

reserved

Instruction Set - Read Trap Base Register

7-69

SP ARClite User's Manual

RDWIM RDWIM

Read Window Invalid Mask Register

Description:

RDWIM reads the contents of the Window Invalid Mask Register into the destina­
tion register rd.

All reserved fields should be programmed as o. RDWIM is a privileged
instruction.

Format:
31 30 29 25 24 19 18 14 13 12

I 10 I rd I 101010 I reserved I reserved I

Syntax:

rd %wim, regrd

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

rd %wim, %gO

reserved

Instruction Set - Read Window Invalid Mask Register

7-70

RDY

FUPTSU

Read Y Register

Description:

RDY reads the contents of the Y register into the destination register rd.

Unlike the other read state register instructions, RDY is not privileged. All
reserved fields should be programmed as O.

format:

31 30 29 25 24 19 18 14 13 12

I 10 I rd I 101000 I 00000 I reserved I

Syntax:

rd

Traps:

(none)

%y, regrd

Condition Code Modified:

(none)

Example:

rd %y, %00

o
reserved

RDY

Instruction Set - Read Y Register

7-71

SP ARClite User's Manual

RESTORE RESTORE

Restore Caller's Window

Description:

The RESTORE instruction adds one (modulo 8) to the Current Window Pointer
(CWP) of the PSR and compares this value (new _ CWP) against the Window
Invalid Mask (WIM) register. If the WIM bit corresponding to the new_CWP is 0,
the new _ CWP is written into the CWP field of the PSR. This causes the CWP+ 1
window to become the current window, thereby restoring the caller's window. If
the WIM bit corresponding to the new_CWP is 1, a window_underflow trap is
generated and the CWP is left unchanged.

If an underflow trap is not generated, RESTORE behaves like an ADD instruction
except that the source operands r[rsl] and r[rs2] are read from the old window
and the sum is written into r[rd] of the new window.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 1 rd 1 111101 1 rs1 1 i=ol unused (zero) 1 rs2 1

31 30 29 25 24 19 18 14 13 12 0

1 10 1 rd 1 111101 1 rs1 1 i=ll simm13 1

Syntax:

restore
restore

regrsl' regrs2' regrd
regrsl' immediate, regrd

Traps:

window_underflow

Condition Code Modified:

(none)

Example:

ret
restore %i5, %11, %05

return from non-leaf subroutine
add number sampled processed with this call

to running total kept in callee's reg is
and same register, caller's reg 05.

Instruction Set - Restore Caller's Window

7-72

REn

OJ
FUJITSU

REn

Return from Trap Instruction

Description:

If RETT does not cause a trap, it adds 1 to the CWP (modulo 8), causes a delayed
control transfer to the target address, restores the 5 field of the PSR from the P5
field, and sets the ET field of the P5R to 1. The target address is Jlr [rsl] + r[rs2]" if
the i field is zero, or Jlr[rsl] + sign_ext(simm13)" if the i field is one.

RETT can cause one of several traps. In order of highest to lowest priority:

• If traps are enabled (ET=1) and the processor is in user mode (5=0), a
privileged_instruction trap occurs.

• If traps are enabled (ET=l) and the processor is in supervisor mode (5=1), an
illegal_instruction trap occurs.

• If traps are disabled (ET=O) and the processor is in user mode (5=0),
privileged_instruction trap code is placed in tt (trap type) field of TBR and the
processor enters error_mode state.

• If traps are disabled (ET=O) and a window underflow condition is detected, .::
window_underflow trap is placed in tt (trap type) field of TBR and the
processor enters error_mode state.

• If traps are disabled (ET=O) and either of the low-order two bits of the target
address is nonzero, then memory _address_not_aligned code is placed in tt
(trap type) field of TBR and the processor enters error_mode state.

The instruction executed immediately before an RETT must be a JMPL instruc­
tion.

RETT is a privileged instruction.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 a
I 10 I reserved I 111001 I rs1 I i-O I reserved I ro2 I
31 30 29 25 24 19 18 14 13 12 a
I 10 I reserved I 111001 I rs1 I i-1 I simm13 I

Instruction Set - Return from Trap Instruction

7-73

SP ARClite User's Manual

Return from Trap Instruction (Continued)

Syntax:

rett regrsl' regrs2
rett regrsl' immediate

Traps:

privileged_instruction
illegal_instruction
window_underflow
mem_address_not_aligned

Condition Code Modified:

(none)

Example:

To re-execute the trapped instruction when returning from the trap handler use
the sequence:

jmpl
rett

%r17,%rO
%r18

told PC
told nPC

To return to the instruction after the trapped instruction (for example, after emu­
lating an instruction) use the sequence:

jrnpl
rett

%r18,%rO
%r18+4

told nPC
told nPC + 4

Instruction Set - Return from Trap Instruction (Continued)

7-74

SAVE

FUPTSU

SAVE

Save Caller's Window

Description:

The SAVE instruction subtracts one (modulo 8) from the Current Window Pointer
(CWP) of the PSR and compares this value (new _ CWP) against the Window
Invalid Mask (WIM) register. If the WIM bit corresponding to the new _ CWP is 0,
the new _ CWP is written into the CWP field of the PSR. This causes the CWP -1
window to become the current window, thereby saving the caller's window.
Otherwise a window_overflow trap is generated and the CWP is left unchanged.

If an overflow trap is not generated, SA VE behaves like an ADD instruction
except that the source operands r[rs1] and r[rs2] are read from the old window
and the sum is written into r[rd] of the new window.

Format:

31 30 29 25 24 19 18

I 10 I rd I 111100 I rs1

31 30 29 25 24 19 18

I 10 I rd I 111100 I rs1

Syntax:

save regrsl' regrs2' regrd
save regrsl' immediate, regrd

Traps:

window_overflow

Condition Code Modified:

(none)

Example:

14 13 12 5 4

I i=O I unused (zero) I
14 13 12

I i=1 I simm13

equivalent statements to make

0
rs2 I

0

I

save
save

%sp, -64, %sp
%06, -64, %06 room for 16 more words in call stack

Instruction Set - Save Caller's Window

7-75

SP ARClite User's Manual

SCAN SCAN

Scan for MSB

Description:

The scan instruction returns the location of the first nonsign bit or the location of
either the most significant one or most significant zero of source register r[rs1].

SCAN works as follows:

(1) The r[rsl] value is "xored" on a bit-wise basis with the value obtained by shift­
ing right by one bit and sign extending the value in r[rs2].

(2) The bit position of the first "I" in the value obtained above is returned to the
destination register r[rd]. A "I" in the MSB positions returns a value of 0, while
the first "I" in the LSB position returns a value of 31. If no bit is set, a value of 63 is
returned. For future compatibility, use unsigned compares of the SCAN value
against unsigned thresholds. Use threshold equal WORDSIZE=32 to detect if no
bit is set. See 5.6.1 "Scan in Support of Software Floating Point" and 5.6.2 "Scan in
Support of Run Length Encoding" for illustration. (See Fig. 2-25, Using the SCAN
Instruction) for additional details.

Format:

31 30 29 25 24 19 18

I 10 1 rd 1 101100 1 rsl

31 30 29 25 24 19 18

1 10 1 rd 1 101100 1 rsl

Syntax:

scan regrsl' regrs2' regrd
scan regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

14 13 12 5 4 0

11=01 unused (zero) 1 rs2 1
14 13 12 0

11=11 slmm13 1

Instruction Set - Scan for MSB

7-76

Scan for MSB (Continued)
OJ

Example:

scan %gl, 0, %g2

scan %gl, %gl, %g2

cP
FUJITSU

scan reg gl for position of first one
from the msb end and put position
number in reg g2
scan reg gl for position of first bit
that differs from msb reg gl

Instruction Set - Scan for MSB (Continued)

7-77

SPARClite User's Manual

SETHI SETHI

Sel High 22 bils

Deseription:

SETHI zeroes the least significant 10 bits of the destination register (r[rdD, and
replaces its high-order 22 bits with the value from the immediate field.

A SETHI instruction with rd=O and imm22=O is defined to be a NOP instruction.

Format:
31 30 29 25 24 22 21

I 00 I rd I 100

Syntax:

sethi
sethi

Traps:

(none)

const22, regrd
%hi(value) , regrd

Condition Code Modified:

(none)

Example:

sethi
or

%hi(label_trig_table, %17
%17, %10 (label_trig_table), %17

Instruction Set - Set High 22 bits

7-78

imm22

address pointer of
trig_table to %17

o

SLL

Shift Left Logical

Description:

0)

FUJITSU

SLL

SLL shifts the value of r[rs1] left by the count specified by the lower 5 bits of either
"r[rs2]" if the i field is zero, or "simm13" if the i field is one. The vacated positions
(least significant bits) are filled with zeroes. The shifted result is placed in the r
register specified by the rd field.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I rd I 100101 I rs1 I i=ol unused (zero) I rs2 I
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I rd I 100101 I rs1 I i=11 unused (zero) I shen1 I

Syntax:

s11
s11

regrsl' regrs2' regrd
regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

s11

sub
srI

or

%11, %gl, %01

%gO, %gl, %gl
%11, %gl, %00

%00, %01, %00

left justify least significant part of
reg11

b¥ shift count in reg gl
negate reg gl
right justify most significant part of reg

11
b¥ 32 - original shift count

join parts to complete left rotate b¥
original shift count

Instruction Set - Shift Left Logical

7-79

SP ARClite User's Manual

SMUL SMUL

Signed Integer Multiply

Description:

SMUL performs either "r[rsl] x r[rs2]" if the i field is zero, or "r[rsl] x
sign_ext(simm13)" if the i field is one. The 32 least significant bits of the product
are written to the destination register r[rd]. The most significant bits of the prod­
uct are written to the Y register.

The SMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles
to compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte
operation. To do this, the hardware tests the most significant 16,24 or 32 bits of
r[rs2] against the sign bit at run time. If the bits match, the SMUL instruction will
terminate in 3, 2 or 1 cycle respectively.

SMUL assumes a signed integer word operand and computes a signed integer
doubleword product.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I rd I 001011 I rs1 I i=O I unused (zero) I rs2 I
31 30 29 25 24 19 18 14 13 12 0

I 10 I rd I 001011 I rs1 I i-1 1 simm13 I

Syntax:

smul regrsl' regrs2' regrd
smul regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

smul
rd

%02, %03, %01
%y, %00

least significant half product to %01
most significant half product to %00

Instruction Set - Signed Integer Multiply

7-80

SMULcc

Signed Integer Multiply and Change Condition Codes

Description:

t:P
FUJITSU

SMULcc

SMULcc performs either "r[rsl] x r[rs2]" if the i field is zero, or "r [rs1] x
sign_ext(simm13)" if the i field is one. The 32 least significant bits of the product
are written to the destination register r[rd]. The most significant bits of the prod­
uct are written to the Y register.

The SMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles
to compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of
r[rs2] against the sign bit at run time. If the bits match, the SMUL instruction will
terminate in 3, 2 or 1 cycle respectively.

SMULcc assumes a signed integer word operand and computes a signed integer
doubleword product. SMULcc writes the integer condition code (see below).

Format:

31 30 29

I 10 1
31 30 29

1 10 1

Syntax:

smulcc
smulcc

25 24 19 18
rd 1 011011 1 rs1

25 24 19 18
rd 1 011011 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

14

14

13 12 5 4 0

1 i-ol unused (zero) 1 rs2 1
13 12 0

1 i=11 simm13 1

Instruction Set - Signed I1Jteger Multiply and Cfumge Condition Codes

7-81

SP ARClite User's Manual

Signed Integer Multiply and Change Condition Codes (Continued)

Table 7-3:

Traps:

(none)

Condition Code Modified:

icc bit SMULcc

N Set if product [31] = 1
Z Set if product [31 :0] = 0
V Zero
C Zero

Example:

smulcc
rd

%02, %03, %01
%y, %00

least significant half product to %01
most significant half product to %00

Instruction Set - Signed Integer Multiply and Change Condition Codes (Continued)

7-82

SRA

Shift Right Arithmetic
.&XZZW!.

Description:

cP
FUJITSU

SRA

SRA shifts the value of r[rs1] right by the count specified by the lower 5 bits of
either "r[rs2]" if the i field is zero, or "simm13" if the i field is one. The vacated
positions (most significant bits) are filled with the most significant bit of r[rsl].
The shifted result is placed in the r register specified by the rd field.

Format:

31 30 29

I 10 1
31 30 29

1 10 1

Syntax:

sra
sra

Traps:

(none)

25 24 19 18
rd 1 100111 1 rs1

25 24 19 18
rd 1 100111 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

(none)

Example:

14 13 12 5 4 0

1 ;=0 1 unused (zero) 1 rs2 1
14 13 12 5 4 0

1 ;=11 unused (zero) 1 shen! 1

sra %gl, 4, %gl right shift reg gl 4 bits and extend
sign

Instruction Set - Shift Right Arithmetic

7-83

SPARClite User's Manual

SRL SRL

Shifl Righi Logical

Description:

SRL shifts the value of r[rsll right by the count specified by the lower 5 bits of
either "r[rs2]" if the i field is zero, or "simm13" if the i field is one. The vacated
positions (most significant bits) are filled with zeroes. The shifted result is placed
in the r register specified by the rd field.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 1 rd 1 100110 1 rs1 1 ;=0 1 unused (zero) 1 rs2 1
31 30 29 25 24 19 18 14 13 12 5 4 0

1 10 1 rd 1 100110 1 rs1 1 ;=11 unused (zero) 1 shent 1

Syntax:

srI regrsl' regrs2' regrd
srI regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

s11

sub
srI

or

%11, %gl, %01

%gO, %gl, %gl
%11, %gl, %00

%00, %01, %00

left justify least significant part of
reg11

by shift count in reg gl
negate reg gl
right justify most significant part of reg

11
by 32 - original shift count

join parts to complete left rotate by

original shift count

Instruction Set - Shift Right Logical

7-84

5T

Store Word

Description:

cP
FUJITSU

5T

The ST instruction moves a word from the r register specified by the rd field into
memory. The effective memory address is either "r[rsl] + r[rs21" if the i field is
zero, or "r [rs1] + sign_ext(simm13)" if the i field is one. If the ST instruction traps,
memory remains unchanged.

The address space identifier (ASI) indicates either user data (OxA) or supervisor
data (OxB) according to the S bit of the PSR.

Format:
31 30 29 25 24 19 16 14 13

I 11 I rd I 000100 I rs1 I i=O I
31 30 29 25 24 19 18 14 13

I 11 I rd I 000100 I rs1 I i-1 I

Syntax:

st regrd' [regrsl + regrs2]

st regrd' [regrsl +/- immediate]

Traps:

mem3ddress_not_aligned
data_access_exception

Condition Code Modified:

(none)

Example:

st %14, [%gO + OxfeO]

12 5 4 0
unused (zero) I rs2 I

12 0
simm13 I

st %14, [OxfeO] ! recognized as equivalent

Instruction Set - Store Word

7-85

SP ARelite User's Manual

STA STA

Siore Word in Allernate Space

Description:

The ST A instruction moves a word from the r register specified by the rd field into
memory. The source value is stored to "r[rs1] + r[rs2]" with the ASI field designat­
ing the ASI value. If the STA instruction traps, memory remains unchanged. STA
is privileged and may only be executed in supervisor mode.

Format:
31 30 29 25 24 19 18 14 13 12

I 11 I rd I 010100 I rs1 I i=O I

Syntax:

Traps:

mem_address_not_aligned
data_access_exception
illegal_instruction (if i=l)
privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

5 4 0
ASI I rs2 I

sta %14, [%11 + %12)Oxf ASI value 15 decimal

Instruction Set - Store Word in Alternate Space

7-86

STB

Store Byte

Description:

OJ
FUJITSU

STB

The STB instruction moves the least significant byte from the r register specified
by the rd field into memory. The effective memory address is either "r[rsl] +
r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(sirnrn13)" if the i field is one. If the
STB instruction traps, memory remains unchanged.

The address space identifier (AS!) indicates either user data (OxA) or supervisor
data (OxB) according to the S bit of the PSR.

Format:
31 30 29 2S 24 19 18 14 13

I 11 1 rd 1 000101 1 rs1 1 i-O 1

31 30 29 25 24 19 18 14 13

1 11 1 rd 1 000101 1 rs1 1 i=ll

Syntax:

stb regrd' [regrsl + regrs2]

stb regrd' [regrsl +/- immediate]

Traps:

data_access_exception

Condition Code Modified:

(none)

Example:

stb %g2, [%i5 + %12]

12 5 4 0
unused (zero) 1 rs2 1

12 0
simm13 1

Instruction Set - Store Byte

7-87

_il.'
_t

i

SP ARClite User's Manual

STBA SYBA

Store Byte in Alternate Space

Description:

The STBA instruction moves the least significant byte from the r register specified
by the rd field into memory. The source value is stored to "r[rsl] + r[rs2]" with the
ASI field designating the ASI value. If the STBA instruction traps, memory
remains unchanged. STBA is privileged and may only be executed in supervisor
mode.

Format:

31 30 29 25 24 19 18 14 13 12

I 11 I rd I 010101 I rs1 I ;=0 I

Syntax:

Traps:

data_access_exception
illegaCinstruction (if i=l)
privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

stba %04, [%g7 - 5]Oxl

5 4 0
ASI I rs2 I

Instruction Set - Store Byte in Alternate Space

7-88

5TH

Store Hallward

Description:

cP
FUJITSU

5TH

The 5TH instruction moves the least significant halfword from the r register spec­
ified by the rd field into memory. The effective memory address is either "r [rsl] +
r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one. If the
5TH instruction traps, memory remains unchanged.

The address space identifier (ASI) indicates either user data (OxA) or supervisor
data (OxB) according to the 5 bit of the PSR.

Format:
31 30 29 25 24 19 18 14 13

I 11 1 rd 1 000110 1 rs1 1 i=ol

31 30 29 25 24 19 18 14 13

1 11 1 rd 1 000110 1 rs1 1 i=ll

Syntax:

8th regrd' [regrsl + regrs2]

8th regrd' [regrsl +/- immediate]

Traps:

data3ccess_exception
mem_address_not_aligned

Condition Code Modified:

(none)

Example:

8th %14, [%gO + OxfeO]

12 5 4 0
unused (zero) 1 rs2 1

12 0

simm13 1

Instruction Set - Store Halfword

7-89

SP ARClite User's Manual

STHA STHA

Store Halfword in Alternate Space

Description:

The STHA instruction moves the least significant byte from the r register specified
by the rd field into memory. The source value is stored to "r[rsl] + r[rs2]" with the
ASI field designating the ASI value. If the STHA instruction traps, memory
remains unchanged. STHA is privileged and may only be executed in supervisor
mode.

Format:

31 30 29 25 24 19 18 14 13 12

I 11 I rd I 010110 I rsl li=Ol

Syntax:

Traps:

data_access_exception
illegaUnstruction (if i=l)
mem3ddress_not_aligned
privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

stha %i4, [%12 + %13]Ox3

5 4 a
ASI I rs2 I

Instruction Set - Store Halfword in Alternate Space

7-90

STD

Store Doubleword into Alternate space

Description:

00
FUJITSU

STD

The STD instruction moves a doubleword from an even/next-odd r register pair
into memory. The even r register (which contains the most significant word) is
written into memory at the effective address and the odd r register (with the least
significant word) is written into memory at the effective address + 4. The effective
memory address is either "r [rs1] + r[rs2]" if the i field is zero, or "drsl] +
sign_ext(simm13)" if the i field is one.

The address space identifier (ASI) indicates either user data (OxA) or supervisor
data (OxB) according to the S bit of the PSR.

If the STD instruction traps while writing the first word to memory, memory
remains unchanged. If the STD instruction traps while the second word is being
written, the first word written (the most significant word at the highest address)
will have been changed.

Format:

31 30 29 25 24 19 18 14 13

I 11 1 rd 1 000111 1 rs1 1 i=O 1

31 30 29 25 24 19 18 14 13

I 11 1 rd 1 000111 1 rs1 1 i=ll

Syntax:

std regrd' [regrsl + regrs2]

std regrd' [regrsl +/- immediate]

Traps:

data_access_exception
mem_address_not_aligned

Condition Code Modified:

(none)

Example:

std %02, [%13 - 4]

12 5 4 0
unused (zero) 1 rs2 1

12 0
simm13 1

Instruction Set - Store Doubleword into Alternate space

7-91

.."
~i

I

SP ARClite User's Manual

STDA STDA

Store Doubleword in Alternate Space

Description:

The STOA instruction moves a doubleword from an even/next-odd r register pair
into memory. The even r register (which contains the most significant word) is
written into memory at the effective address and the odd r register (with the least
significant word) is written into memory at the effective address + 4. The source
value is stored to "r[rsl] + r[rs2]" with the ASI field designating the ASI value.
STOA is privileged and may only be executed in supervisor mode.

If the STO instruction traps while writing the first word to memory, memory
remains unchanged. If the SID instruction traps while the second word is being
written, the first word written (the most significant word at the highest address)
will have been changed.

Format:
31 30 29 25 24 19 18 14 13 12

I 11 I rd I 010111 I rs1 I i..Q I

Syntax:

Traps:

data_access_exception
illegaUnstruction (if i=l)
mem_address_not_aligned
privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

stda %i4, [%12 + %13]Ox3

5 4 0
ASI I rs2 I

Instruction Set - Store Doubleword in Alternate Space

7-92

SUB

Subtract
mmwa:;;4tCZsu !QtQMM.£.iW£LMli .. I4i;;gzg

Description:

OJ
FUJITSU

SUB

Computes either "r[rsl]-r[rs2]" if the i field is zero, or "r[rsl] - sign_ext(simm13)"
if the i field is one, and places the result in the destination specified by the rd field.

format:
31 30 29 25 24 19 18

I 10 1 rd 1 000100 1 rs1

31 30 29 25 24 19 18

1 10 1 rd 1 000100 1 ,s1

Syntax:

sub
sub

regrsl' regrs2' regrd
regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

mov 4, %11
mov
sub

2, %12
%11, %12, %13 %13= 2

14 13 12 5 4 0

1 i=ol unused (ze,o) 1 rs2 1
14 13 12 0

li=11 simm13 1

Instruction Set - Subtract

7-93

- I

SP ARClite User's Manual

SUBee SUBee

Subtract and modify icc

Description:

Computes either I r [rsl]-r[rs2]" if the i field is zero, or "r [rsl] - sign_ext(simm13)"
if the i field is one, and places the result in the destination specified by the rd field.

SUBcc modifies the integer condition codes. Overflow occurs on subtraction if the
operands have different signs and the sign of the difference differs from the sign
of r[rs1].

Format:
31 30 29

I 10 I
31 30 29

I 10

Syntax:

subcc
subcc

Traps:

(none)

I

25 24 19 18
rd I 010100 I rs1

25 24 19 18
rd I 010100 I rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

14 13

I i=O I
14 13

I i=ll

Condition Code Modified:

n, z, v, c

Example:

mav 4, %11
subcc %11, Ox2, %13 %13= 2

nzvc = 0000
subcc %11, Ox?, %14 %14 = -3

nzvc = 1001

12 5 4 0
unused (zero) I rs2 I

12 0
simm13 I

Instruction Set - Subtract and modify icc

7-94

SUBX

Subtract with Carry

Description:

c5)

FUJITSU

SUBX

Computes either "r[rs1]-r[rs21-c" if the i field is zero, or "r [rsl1 -
sign_ext(simm13)-c" if the i field is one, and places the result in the destination
specified by the rd field.

Format:
31 30 29 25 24 19 18 14 13 12 5

I 10 1 rd 1 001100 1 rsl 1 i=OI unused (zero) 1

31 30 29 25 24 19 18 14 13 12

1 10 1 rd 1 001100 1 rsl 1 i=ll simm13

Syntax:

subx
subx

regrsl' regrs2' regrd
regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

subcc
subx

%gO, 255, %g3
%gO, 0, %g2

reg g3 -255, nzvc = 1001
reg g2 -1, sign extended

4 0
rs2 1

0

1

Instruction Set - Subtract with Carry

7-95

•

SP ARClite User's Manual

SUBXcc SUBXcc

Subtract and modify icc

Description:

Computes either "r[rsl]-r[rs2]-c" if the i field is zero, or "r[rsl] -
sign_ext(simm13)-c" if the i field is one, and places the result in the destination
specified by the rd field.

SUBXcc modifies the integer condition codes. Overflow occurs on subtraction if
the operands have different signs and the sign of the difference differs from the
sign of r[rsl].

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I rd I 011100 I rs1 I i=O I unused (zero) I rs2 I
31 30 29 25 24 19 18 14 13 12 0

I 10 I rd I 011100 I rs1 I i-1 1 simm13 I

Syntax:

subxee regrsl' regrs2' regrd
subxee regrsl' irmnediate, regrd

Traps:

(none)

Condition Code Modified:

n, z, v, c

Example:

mov -1, %11 reg 11 = Oxffffffff
sr1 %11, 1, %12 reg 12 = Ox7fffffff
oree %gO, 0, %gO nzve = 0100
subxee %12, %11, %gl reg gl Ox80000000, nzve 1011
subxee %12, %11, %g2 reg g2 = Ox7fffffff, nzve 0001

Instruction Set - Subtract and modify icc

7-96

SWAP

SWAP Register with Memory

Description:

OJ
FUJITSU

SWAP

The SWAP instruction exchanges the contents of the r register identified by the rd
field with the contents of the addressed memory location. This is performed
atomically without allowing intervening asynchronous traps.

The effective address of the swap instruction is either "r[rsl] + r[rs2]" if the i field
is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one.

If the SWAP instruction traps, memory remains unchanged.

Format:
31 30 29 25 24 19 18 14 13

I 11 1 rd 1 001111 1 rsl 1 i-O 1

31 30 29 25 24 19 18 14 13

1 11 1 rd 1 001111 1 rsl 1 i=ll

Syntax:

swap
swap

[regrsl + regrs2]' regrd
[regrsl + immediate], regrd

Traps:

data_access_exception
mem_address_not_aligned

Condition Code Modified:

(none)

Example:

swap [%g7-23], %g6

12 5
unused (zero)

12
simm13

4 0

1 rs2 1

0

1

Instruction Set - SWAP Register with Memory

7-97

SP ARClite User's Manual

SWAPA SWAPA

SWAP Register with Alternate Space Memory

Description:

The SWAP A instruction exchanges the r register identified by the rd field with the
contents of the addressed memory location. This is performed atomically without
allowing intervening asynchronous traps.

The effective address of the swap instruction is "r[rsl] + r[rs2]" with the ASI field
designating the ASI value.

If the SWAP A instruction traps, memory remains unchanged. SWAP A is privi­
leged and may only be executed in supervisor mode.

Format:
31 30 29 25 24 19 18 14 13 12

111 I rei I 011111 I rsl 11=01

Syntax:

swapa [regrsl + regrs2l AS!, regrd

Traps:

data_access_exception
illega1...,.instruction (if i=1)
mem_address_not_aligned
privileged_instruction (if not supervisor mode)

Condition Code Modified:

(none)

Example:

swapa [%15 + 125loxf, %14

5 4 0
ASI I rs2 I

Instruction Set - SWAP Register with Alternate Space Memory

7-98

TA

FUJITSU

TA

Trap Always (Trap on Zero)

Description:

The T A instruction generates a trap_instruction trap if no higher priority traps are
pending. The trap_instruction trap causes the tt field of the Trap Base Register
(TBR) to be written with 128 plus the least significant seven bits of either "r[rsl] +
r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is one.

All bits indicated as reserved in the instruction formats should be supplied as
zero as should the most significant 25 bits of r[rs2] if the i field is o.
(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24 19 18

I 10 1 reserved 1 1000 1 111010 1
31 30 29 28 25 24 19 18

1 10 1 reserved 1 1000 1 111010 1

Syntax:

ta regrsl' regrs2

ta regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

ta %gO+35 tt=163

14 13 12 5 4 0
rsl 1 ;=0 1 reserved 1 rs2 1

14 13 12 7 6 0
rsl 1 ;=11 reserved 1 software trap # 1

Instruction Set - Trap Always (Trap on Zero)

7-99

.. ~
!

SP ARClite User's Manual

TADDcc TADDcc

Tagged Add and modify icc

Description:

The TADDcc instruction computes either "r[rsl] + r[rs2]" if the i field is zero, or
"r[rsl] + sign_ext(simm13)" if the i field is one. An overflow condition exists if bit
1 or 0 of either operand is not zero, or if the addition generates an arithmetic over­
flow.

If TADDcc causes an overflow condition, the overflow bit (v) of the PSR is set; if it
does not cause an overflow, the overflow bit is cleared. In either case, the remain­
ing integer condition codes are also updated and the result of the addition is writ­
ten into the r register specified by the rd field.

Format:

31 30 29 25 24 19 18

I 10 1 rei 1 100000 1 rsl

31 30 29 25 24 19 18

1 10 1 rei 1 100000 1 rsl

Syntax:

taddcctv regrsl' regrs2' regrd
taddcctv regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

n, z, v, c

Example:

14 13

1 i=O 1
14 13

1 i=11

taddcc %gO, 1, %gO nzvc 0010

12 5 4 0
unused (zero) 1 rs2 1

12 0
simm13 1

Instruction Set - Tagged Add and modify icc

7-100

TADDccTV

Tagged Add and modify icc and Trap on Overflow

Description:

OJ
FUJITSU

TADDccTV

The T ADDccTV instruction computes either "r [rsl] + r[rs2]" if the i field is zero,
or "r [rsl] + sign_ext(simm13" if the i field is one. An overflow condition exists if
bit 1 or 0 of either operand is not zero, or if the addition generates an arithmetic
overflow.

If TADDcCTV causes an overflow condition, a tag_overflow trap is generated and
the destination register and condition codes remain unchanged. If T ADDccTV
does not cause an overflow condition, all the integer condition codes are updated
(in particular, the overflow bit (v) is set to 0) and the result of the addition is writ­
ten into the r register specified by the rd field.

Format:
31 30 29 25 24 19 18

I 10 I rd I 100010 I rsl

31 30 29 25 24 19 18

I 10 I rd I 100010 I rsl

Syntax:

taddcctv regrsl' regrs2' regrd
taddcctv regrsl' immediate, regrd

Traps:

tag_overflow

Condition Code Modified:

n, z, v, c

Example:

14 13

I i=O I
14 13

I i=l I

taddcctv %gO, 1, %gO nzvc=0010

12 5 4 0
unused (zero) I rs2 I

12 0
simm13 I

Instruction Set - Tagged Add and modify icc and Trap on Overflow

7-101

SP ARClite User's Manual

Tee Tee
Trap on Carry Clear (Trap on Greater Than or Equal, Unsigned)

Description:

The TCC instruction causes a trap_instruction trap if (not C)=l and if no higher
priority trap is pending. The trap_instruction trap causes the tt field of the Trap
Base Register (TBR) to be written with 128 plus the least significant seven bits of
either "r[rsl] + r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(simm13)" if the i
field is one.

If (not C)=O, a trap_instruction trap does not occur and the instruction behaves
like a NOP. All bits indicated as reserved in the instruction formats should be
supplied as zero as should the most significant 25 bits of r[rs2] if the i field is O.

Note: if single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR and the tt field will
be ignored)

Format:
31 30 29 28 25 24

I 10 1 reserved 1 1101 1 111010
31 30 29 28 25 24

1 10 1 reserved 1 1101 1 111010

Syntax:

tee regrsl' regrs2

tee regrsl' immediate
tgeu
tgeu

regrsl' regrs2

regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tee %gO + 33

19 18

1 rs1
19 18

1 rs1

tt 161

14 13 12 5 4

1 ;=0 1 unused (zero) 1 rs2

14 13 12 7 6

1 ;=11 reserved 1 software trap #

!alternate mnemonic
!alternate mnemonic

0

1
0

1

Instruction Set - Trap on Carry Clear (Trap on Greater Than or Equal, Unsigned)

7-102

yes

OJ
FUJITSU

yes

Trap on Carry Set (Trap on Less Than, Unsigned)

Description:

The TCS instruction causes a trap _instruction trap if C= 1 and if no higher priority
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is
one.

If C=O, a trap_instruction trap does not occur and the instruction behaves like a
NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 25 bits of r[rs2] if the i field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30

I 10
31 30

1 10

Syntax:

tcs
tcs
tlu
tlu

29 28 25 24

1 reserved 1 0101 1 111010
29 28 25 24

1 reserved 1 0101 1 111010

regrsl' regrs2

regrsl' immediate
regrsl' regrs2

regrsl' immediate

Traps:

trap_instruction

Condition Code ModiRed:

(none)

Example:

tcs %gO + 34

19 18

1 rs1
19 18

1 rs1

tt 162

14 13 12 5 4

1 ;=0 1 reserved 1 rs2

14 13 12 7 6

1 ;=11 reserved 1 software trap #

alternate mnemonic
alternate mnemonic

0

I
0

I

Instruction Set - Trap on Carry" Set (Trap on Less Than, Unsigned)

7-103

.;
!

SP ARClite User's Manual

TE TE

Trap on Equal

Description:

The TE instruction causes a trap_instruction trap if Z=l and if no higher priority
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either
"r[rsl] + r[rs2]" if the i field is zero, or "r [rsl] + sign_ext(simm13)" if the i field is
one.

If Z=O, a trap_instruction trap does not occur and the instruction behaves like a
NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 25 bits of r[rs2] if the i field is 0.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24

I 10 1 reserved 1 0001 1 111010
31 30 29 28 25 24

1 10 1 reserved 1 0001 1 111010

Syntax:

te
te

regrsl' regrs2

regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

te %gO + 36

19 18 14 13 12 5 4 0

1 rsl 1 ;=0 1 reserved 1 rs2 1
19 18 14 13 12 7 6 0

1 rsl 1 ;=11 reserved 1 software trap # 1

tt 164

Instruction Set - Trap on Equal

7-104

TG

Trap on Greater

Description:

cP
FUJITSU

TG

The TG instruction causes a trap_instruction trap if "not(Z or (N xor V»" is true
and if no higher priority trap is pending. The trap_instruction trap causes the tt
field of the Trap Base Register (TBR) to be written with 128 plus the least signifi­
cant seven bits of either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] +
sign_ext(simm13)" if the i field is one.

If "not (Z or (N xor V»" is false, a trap_instruction trap does not occur and the
instruction behaves like a NOP. All bits indicated as reserved in the instruction
formats should be supplied as zero as should the most significant 25 bits of r[rs2]
if the i field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24

I 10 I reserved I 1010 I 111010

31 30 29 28 25 24

I 10 I reserved I 1010 I 111010

Syntax:

tg regrsl' regrs2
tg regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tg %gO+36

19 18

I
19 18

I

tt=164

14 13 12 5 4 0
191 I i=O I reserved I rs2 I

14 13 12 7 6 0
191 I i=11 reserved I software trap # I

Instruction Set - Trap on Greater

7-105

SP ARClite User's Manual

TGE TGE

Trap on Greater Than or Equal

Description:

The TGE instruction causes a trap_instruction trap if "not(N xor V)" is true and if
no higher priority trap is pending. The trap_instruction trap causes the tt field of
the Trap Base Register (TBR) to be written with 128 plus the least significant seven
bits of either "r[rsll + r[rs2]" if the i field is zero, or "r[rsl1 + sign_ext(simm13)" if
the i field is one.

If "not(N xor V)" is false, a trap_instruction trap does not occur and the instruc­
tion behaves like a NOP. All bits indicated as reserved in the instruction formats
should be supplied as zero as should the most significant 25 bits of r[rs21 if the i
field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24

I 10 1 reserved 1 1011 1 111010
31 30 29 28 25 24

1 10 1 reserved 1 1011 1 111010

Syntax:

tge regrsl' regrs2

tge regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tge %gO+37

19 18 14 13 12 5 4 0

1 rsl 1 ;=0 1 reserved 1 rs2 1
19 18 14 13 12 7 6 0

1 rsl 1 ;=11 reserved 1 software trap # 1

tt=165

Instruction Set - Trap on Greater Than or Equal

7-106

YGU

Trap on Greater Unsigned

Description:

cO
FUJITSU

YGU

The TGU instruction causes a trap_instruction trap if "not (C or Z)" is true and if
no higher priority trap is pending. The trap_instruction trap causes the tt field of
the Trap Base Register (TBR) to be written with 128 plus the least significant seven
bits of either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if
the i field is one.

If "not (C or Z)" is false, a trap_instruction trap does not occur and the instruction
behaves like a NOP. All bits indicated as reserved in the instruction formats
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i
field is o.
(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24 19 18 14 13 12

I 10 I reserved I 1100 I 111010 I rs1 1;=0 I
31 30 29 28 25 24 19 18 14 13 12

I 10 I reserved I 1100 I 111010 I rs1 1;=1 I

Syntax:

tgu regrsl' regrs2

tgu regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tgu %gO+38 tt=166

reserved

reserved

5 4 0

I rs2 I
7 6 0

I software lrap It I

Instruction Set - Trap on Greater Unsigned

7-107

-I

SP ARClite User's Manual

TL TL

Trap on Less

Description:

The TL instruction causes a trap_instruction trap if liN xor V" is true and if no
higher priority trap is pending. The trap_instruction trap causes the tt field of the
Trap Base Register (TBR) to be written with 128 plus the least significant seven
bits of either "r [rs1] + r[rs2]" if the i field is zero, or "r [rsl] + sign_ext(simm13)" if
the i field is one.

If liN xor V" is false, a trap_instruction trap does not occur and the instruction
behaves like a NOP. All bits indicated as reserved in the instruction fonnats
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i
field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24

I 10 'reserved' 0011 , 111010

31 30 29 28 25 24 ,
10 'reserved' 0011 , 111010

Syntax:

tl regrsl' regrs2

tl regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tl %gO + 40

19 18 ,
19 18 ,

tt=168

14 13 12 5 4 0
rsl ,;=0 , reserved , rs2 ,

14 13 12 7 6 0
rsl , ;=1' reserved , software trap # ,

Instruction Set - Trap on Less

7-108

TLE

OJ
FUJITSU

TLE

Trap on less Than or Equal

Description:

The TLE instruction causes a trap_instruction trap if liZ or (N xor V)" is true and if
no higher priority trap is pending. The trap_instruction trap causes the tt field of
the Trap Base Register (TBR) to be written with 128 plus the least significant seven
bits of either "r [rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if
the i field is one.

If liZ or (N xor V)" is false, a trap_instruction trap does not occur and the instruc­
tion behaves like a NOP. All bits indicated as reserved in the instruction formats
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i
field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24 19 18 14 13 12

1 10 1 reserved 1 0010 1 111010 1 rsl 1;=01
31 30 29 28 25 24 19 18 14 13 12

1 10 1 reserved 1 0010 1 111010 1 rsl 1;=11

Syntax:

tle regrsl' regrs2

tle regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tle %gO + 41 tt 169

5 4 0

reserved 1 rs2 1
7 6 0

reserved 1 software trap # 1

Instruction Set - Trap on Less Than or Equal

7-109

_I
I

SP ARClite User's Manual

TLEU TLEU

Trap on less Than or Equal Unsigned

Description:

The u instruction causes a trap_instruction trap if "C or Z" is true and if no higher
priority trap is pending. The trap_instruction trap causes the tt field of the Trap
Base Register (TBR) to be written with 128 plus the least significant seven bits of
either "r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i
field is one.

If "C or Z" is false, a trap_instruction trap does not occur and the instruction
behaves like a NOP. All bits indicated as reserved in the instruction formats
should be supplied as zero as should the most significant 25 bits of r[rs2] if the i
field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:

31 30 29 28 25 24

I 10 1 reserved 1 0100 1 111010
31 30 29 28 25 24

1 10 1 reserved 1 0100 1 111010

Syntax:

tleu regrsl' regrs2
tleu regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tleu %gO+42

19 18 14 13 12 5 4 0

1 rsl 1 ;=0 1 reserved 1 rs2 1
19 18 14 13 12 7 6 0

1 rsl 1 ;=11 reserved 1 software trap # 1

tt =170

Instruction Set - Trap on Less Than or Equal Unsigned

7-110

TN

Trap Never

Description:

The TN instruction acts like a "NOP".

OJ
FUJITSU

TN

All bits indicated as reserved in the instruction formats should be supplied as
zero as should the most significant 25 bits of r[rs2] if the i field is O.

Format:
31 30

I 10
31 30

1 10

Syntax:

tn
tn

29 28 25 24

1 reserved 1 0000 1 111010
29 28 25 24

1 reserved 1 0000 1 111010

regrsl' regrs2

regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

19 18

1
19 18

1

tn %gO + 39 nap

14 13 12 5 4 0
1'$1 1;=0 1 reserved 1 rs2 1

14 13 12 7 6 0
1'$1 1 ;=11 reserved 1 software trap # 1

Instruction Set - Trap Never

7-111

SP ARClite User's Manual

TNE TNE

Trap on Not Equal (Trap on Not Zero)

Description:

The TNE instruction causes a trap_instruction trap if Z=O and if no higher priority
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is
one.

If Z=l, a trap_instruction trap does not occur and the instruction behaves like a
NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 25 bits of r[rs2] if the i field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28

I 10 1 reserved 1 1001
31 30 29 28

1 10 1 reserved 1 1001

Syntax:

tne regrsl'
tne regrsl'
tnz regrsl'
tnz regrsl'

Traps:

trap_instruction

25 24

1 111010
25 24

1 111010

regrs2

immediate
regrs2

immediate

Condition Code Modified:

(none)

Example:

tne %gO + 43 !tt=l71

19 18 14 13 12 5 4 0

1 rs1 1 ;=0 1 reserved 1 rs2 1
19 18 14 13 12 7 6 0

1 rs1 1 ;=11 reserved 1 software trap # 1

Instruction Set - Trap on Not Equal (Trap on Not Zero)

7-112

TNEG

Trap on Negative

Description:

cO
FUJITSU

TNEG

The TNEG instruction causes a trap _instruction trap if N = 1 and if no higher prior­
ity trap is pending. The trap_instruction trap causes the tt field of the Trap Base
Register (TBR) to be written with 128 plus the least significant seven bits of either
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is
one.

If N=O, a trap_instruction trap does not occur and the instruction behaves like a
NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 25 bits of r[rs2] if the i field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24 19 18

I 10 I reserved I 0110 I 111010 I rs1

31 30 29 28 25 24 19 18

I 10 I reserved I 0110 I 111010 I rs1

Syntax:

tneg regrsl' regrs2

tneg regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tneg %gO + 44 tt 172

14 13 12 5 4 0

I ;=0 I reserved I rs2 I
14 13 12 7 6 0

I ;=1 I reserved I software trap # I

Instruction Set - Trap on Negative

7-113

•

SP ARClite User's Manual

TPOS TPOS

Trap on Positive

Description:

The TPOS instruction causes a trap_instruction trap if N=O and if no higher prior­
ity trap is pending. The trap_instruction trap causes the tt field of the Trap Base
Register (TBR) to be written with 128 plus the least significant seven bits of either
" r [rsl] + r[rs2]" if the i field is zero, or "r [rsl] + sign_ext(simm13)" if the i field is
one.

If N=l, a trap_instruction trap does not occur and the instruction behaves like a
NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 25 bits of r[rs2] if the i field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24

I 10 1 reserved 1 1110 1 111010
31 30 29 28 25 24

1 10 1 reserved 1 1110 1 111010

Syntax:

tpos regrsl' regrs2

tpos regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tpos %gO + 45

19 18

1 rs1
19 18

1 rs1

tt 173

14 13 12 5 4 0

1 ;=0 1 reserved 1 rs2 1
14 13 12 7 6 0

1 ;=11 reserved 1 software trap # 1

Instruction Set - Trap on Positive

7-114

TSUBcc

Tagged Subtract and modify condition codes

Description:

00
FUJITSU

TSUBcc

Computes either "r [rsl]-r[rs2]" if the i field is zero, or "r[rsl] - sign3xt(simm13)"
if the i field is one, and places the result in the destination specified by the rd field.

TSUBcc modifies the condition codes. The overflow bit of the PSR is set if bit 1 or
bit 0 of either operand is nonzero. The overflow bit is also set if the operands have
different signs and the sign of the difference differs from the sign of r[rsl].

Format:
31 30 29

I 10 1
31 30 29

1 10

Syntax:

tsubcc
tsubcc

Traps:

(none)

1

25 24 19 18
rd 1 100001 1 rs1

25 24 19 18
rd 1 100001 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

14 13 12 5 4 0

1 i=ol unused (zero) 1 rs2 1
14 13 12 0

1 i=11 simm13 1

Condition Code Modified:

n, z, v, c

Example:

tsubcc %gO, 2, %gO nzvc 1011

Instruction Set - Tagged Subtract and modify condition codes

7-115

-~ I

SP ARClite User's Manual

TSUBccTV TSUBccTV

Tagged Subtract, modify condition codes and Trap on Overflow

Description:

Computes either "r [rsl]-r[rs2]" if the i field is zero, or "r[rsl] - sign_ext(simm13)"
if the i field is one, and places the result in the destination specified by the rd field.

A tag_overflow occurs if bit 1 or bit 0 of either operand is nonzero, or if the sub­
traction generates an arithmetic overflow (the operands have different signs and
the sign of the difference differs from the sign of r[rs1]).

If TSUBccTV causes a tag_overflow, a tag_overflow trap is generated and the des­
tination register (rd) and condition codes remain unchanged. If a taS-0verflow
does not occur, the integer condition codes are updated (v=O).

Format:
31 30 29 25 24 19 18

I 10 1 rd 1 100011 1 rs1
31 30 29 25 24 19 18

1 10 1 rd 1 100011 1 rs1

Syntax:

tsubcctv regrsl' regrs2' regrd
tsubcctv regrsl' immediate, regrd

Traps:

tag_overflow

Condition Code Modified:

n, Z, v, C

Example:

14 13

1 i=O 1
14 13

1 i=11

tsubcctv %gO, 2, %gO nzvc 1011

12 5 4 0
unused (zero) 1 rs2 1

12 0
simm13 1

Instruction Set - Tagged Subtract, modify condition codes and Trap on Overflow

7-116

TVC

Trap on Overflow Clear

Description:

dJ
FUJITSU

TVC

The TVe instruction causes a trap_instruction trap if v=o and if no higher priority
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either
"r[rsl] + r[rs2]" if the i field is zero, or "r[rsl] + sign_ext(simm13)" if the i field is
one.

If V=1, a trap_instruction trap does not occur and the instruction behaves like a
NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 25 bits of r[rs2] if the i field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:

31 30 29 28 25 24

I 10 I reserved I 1111 I 111010

31 30 29 28 25 24

I 10 I reserved I 1111 I 111010

Syntax:

tvc regrsl' regrs2

tvc regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tvc %gO, + 146

19 18

I rs1

19 18

I rs1

tt 174

14 13 12 5 4 0

I i=O I reserved I rs2 I
14 13 12 7 6 0

I i=ll reserved I software trap # I

Instruction Set - Trap on Overflow Clear

7-117

_I
I

SP ARClite User's Manual

TVS TVS

Trap on Overflow Se'

Description:

The TVS instruction causes a trap_instruction trap if V=l and if no higher priority
trap is pending. The trap_instruction trap causes the tt field of the Trap Base Reg­
ister (TBR) to be written with 128 plus the least significant seven bits of either
"r[rsl] + r[rs2]" if the i field is zero, or "r[rs1] + sign_ext(simm13)" if the i field is
one.

If V=O, a trap_instruction trap does not occur and the instruction behaves like a
NOP. All bits indicated as reserved in the instruction formats should be supplied
as zero as should the most significant 2S bits of r[rs2] if the i field is O.

(note: If single vector trapping is enabled, the trap_instruction trap will vector to
the location pointed to by the Trap Base Address in the TBR, and the tt field will
be ignored)

Format:
31 30 29 28 25 24

I 10 1 reserved 1 0111 1 111010
31 30 29 28 25 24

1 10 1 reserved 1 0111 1 111010

Syntax:

tvs regrsl' regrs2

tvs regrsl' immediate

Traps:

trap_instruction

Condition Code Modified:

(none)

Example:

tvs %gO + 147

19 18 14 13 12 5 4 0

1 rs1 1 ;=0 1 reserved 1 rs2 1
19 18 14 13 12 7 6 0

1 rs1 1 ;=11 reserved 1 software trap # 1

tt 175

Instruction Set - Trap on Overflow Set

7-118

UMUL

Unsigned Integer Multiply
,W_ fM;.f.£%%iIChl!J3lS;¥W;wc;;:: bEl ",i!lW\Ii)\fM(%H§

Description:

cP
FUJITSU

UMUL

UMUL performs either "r[rsl] x r[rs2]" if the i field is zero, or "r[rsl] x
sign_ext(simm13)" if the i field is one. The 32 least significant bits of the product
are written to the destination register r[rd]. The most significant bits of the prod­
uct are written to the Y register.

The UMUL operation takes 5 cycles to compute a 32 bit x word operation, 3 cycles
to compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x byte
operation. To do this, the hardware tests the most significant 16, 24 or 32 bits of
r[rs2] against the sign bit at run time. If the bits match, the UMUL instruction will
terminate in 3, 2 or 1 cycle respectively.

UMUL assumes an unsigned integer word operand and computes an unsigned
integer doubleword product.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 1 rd 1 001010 1 rsl 1 i=ol unused (zero) 1 rs2 1

31 30 29 25 24 19 18 14 13 12 0

1 10 1 rd 1 001010 1 rsl 1 i=ll simm13 1

Syntax:

umul regrsl' regrs2' regrd
umul regrsl' immediate, regrd

Traps:

(none)

Condition Code Modified:

(none)

Example:

umul %02, %03, %01

rd %y, %00

least significant half product to reg
01

most significant half product to reg
00

Instruction Set - Unsigned Integer Multiply

7-119

-I

SP ARClite User's Manual

UMULcc UMULcc

Signed Integer Multiply and Change Condition Codes
tQ

Description:

UMULcc performs either "r[rsl] x r[rs2]" if the i field is zero, or "r[rsl] x
sign_ext(simm13)" if the i field is one. The 32 least significant bits of the product
are written to the destination register r[rd]. The most significant bits of the prod­
uct are written to the Y register.

The UMULcc operation takes 5 cycles to compute a 32 bit x word operation, 3
cycles to compute a 32 bit x halfword operation, and 2 cycles to compute a 32 bit x
byte operation. To do this, the hardware tests the most significant 16, 24 or 32 bits
of r[rs2] against the sign bit at run time. If the bits match, the UMULcc instruction
will terminate in 3, 2 or 1 cycle respectively.

UMULcc assumes an unsigned integer word operand and computes an unsigned
integer doubleword product. UMULcc writes the integer condition code bits (see
below)

Format:
31 30 29

I 10 I
31 30 29

I 10

Syntax:

umulcc
umulcc

I

25 24 19 18

rd I 011010 I 181

25 24 19 18

rd I 011010 I 181

reg rs l' reg rs2 ' reg rd
regrsl' immediate, regrd

14 13 12 5 4 0

I i-O I unused (zero) I rs2 I
14 13 12 0

I i=l I simm13 I

Instruction Set - Signed Integer Multiply and Change Condition Codes

7-120

Table 7-4:

Signed Integer Multiply and Change Condition Codes (Continued)
g:w:;;a:;MwmmU UiE$)l£i!Ml!J!i!i!&i!¥ii! ;;;;

Traps:

(none)

Condition Code Modified:.

icc bit UMULcc

N Set if product [31] = 1
Z Set if product [31 :0] = 0
V Zero
C Zero

Example:

00
FUJITSU

umulcc %02, %03, %01 least significant half product to reg
01

rd %y, %00 most significant half product to reg
00

Instruction Set - Signed Integer Multiply and Change Condition Codes (Continued)

7-121

SP ARClite User's Manual

WRASR WRASR

Write Ancillary State Register

Description:

WRASR writes "r [rsl] xor r[rs2]" if the i field is zero, or "r[rsl1 xor
sign_ext(simm13)" if the i field is one, to the writable fields of the ASR register
specified in rd (16-31).

On the SP ARClite MB86930 a valid rd value is 17. All other values of rd will gener­
ate an illegal instruction trap.

WRASR is a privileged instruction.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 I rd I 110000 I rs1 I i=O I unused (zero) I rs2 I
31 30 29 25 24 19 18 14 13 12

I 10 I rd I 110000 I 181 I i=l I simm13

Syntax:

wr regrsl' regrs2' asr_regrd
wr regrsl' immediate, asr_regrd

Traps:

illegaC instruction
privileged_instruction

Condition Code Modified:

(none)

Example:

wr
wr

%gO, 1, %asr17
%gO, 0, %asr17

enable single vector trapping
disable single vector trapping

Instruction Set - Write Ancillary State Register

7-122

WRPSR

Write Processor State Register
&M.l!R%01811!lMil.$::iMJE M;W4tWS:;;;;£ J&!£&i1liMiMMl4l%SZ2"

Description:

0)

FUJITSU

WRPSR

WRPSR causes a delayed write of "r[rsl] xor r[rs2]" if the i field is zero, or "r[rsl]
xor sign_ext(simm13)" if the i field is one, to the writable fields of the PSR
register.

WRPSR is a privileged instruction. See section 2.4.7 for programming consider­
ations.

Format:
31 30 29 25 24 19 18 14 13 12 5 4 0

I 10 1 reserved 1 110001 1 rs1 1 ;=0 1 unused (zero) 1 rs2 1
31 30 29 25 24 19 18 14 13 12 5 4 0

1 10 1 reserved 1 110001 1 rs1 1 ;=11 1 1

Note: reserved fields should be programmed as O.

Syntax:

wr
wr

regrsl' regrs2 ' %psr
regrsl' immediate, %psr

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

wr %gO, Oxec7, %psr e to pil, 1 to S & PS, 0 to et, 7 to cwp

Instruction Set - Write Processor State Register

7-123

..

SP ARClite User's Manual

WRTBR WRTBR

Write Trap Base Register

Description:

WRTBR causes a delayed write of "r[rsl] xor r[rs2]" if the i field is zero, or "r[rsl]
xor sign_ext(simm13)" if the i field is one, to the writable fields of the TBR
register.

WRPSR is a privileged instruction.

Format:
31 30 29 25 24 19 18 14 13 12

I 10 I reserved I 110011 I 1$1 I i=O I
31 30 29 25 24 19 18 14 13 12

I 10 I reserved I 110011 I 1$1 I i=l I

Note: reserved fields should be programmed as O.

Syntax:

wr regrsl' regrs2' %tbr
wr regrsl' immediate, %tbr

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

wr %gO, OxlOOO, %tbr

5 4 0
unused (zero) I rs2 I

0
simm13 I

Instruction Set - Write Trap Base Register

7-124

WRWIM

Write Window Invalid Mask Register

Description:

cO
FUJITSU

WRWIM

WRWIM causes a delayed write of ur[rsl] xor r[rs2]" if the i field is zero, or ur[rsll
xor sign_ext(simm13)" if the i field is one, to the writable fields of the WIM
register.

WRWIM is a privileged instruction.

Format:
31 30 29 25 24 19 18 14 13 12

1 10 1 reserved 1 110010 1 rsl 1 ;=0 1
31 30 29 25 24 19 18 14 13 12

1 10 1 reserved 1 110010 1 rsl 1 ;=11

Note: reserved fields should be programmed as O.

Syntax:

wr
wr

regrsl' regrs2' %wim
regrsl' immediate, %wim

Traps:

privileged_instruction

Condition Code Modified:

(none)

Example:

5 4
unused (zero) 1

simm13

wr %gO, -256, %wim only windows 0 to 7 valid
windows 8 and above invalid

0
rs2 1

0

1

Instruction Set - Write Window Invalid Mllsk Register

7-125

..

SF ARClite User's Manual

WRY

Write Y Register

Description:

WRY writes "r[rsl] xor r[rs2]" if the i field is zero, or "r[rsl] xor
sign_ext(simm13)" if the i field is one, to the Y register.

Unlike the other write state register instructions, WRY is not a privileged
instruction.

Format:
31 30 29 25 24 19 18 14 13 12

I 10 1 00000 1 110000 1 rs1 1 i=ol

31 30 29 25 24 19 18 14 13 12

1 10 1 00000 1 110000 1 rs1 1 i-1 1

Note: reserved fields should be programmed as O.

Syntax:

wr regrsl' regrs2' %y
wr regrsl' immediate, %y

Traps:

(none)

Condition Code Modified:

(none)

Example:

wr

Instruction Set - Write Y Register

7-126

%gO, 0, %y clear reg y

5 4
unused (zero) 1 rs2

simm13

WRY

0

1

0

1

XNOR

Exclusive NOR

Description:

cP
FUJITSU

XNOR

Implements a bitwise logical exclusive Nor to compute either "r[rs1] xnor r[rs2]"
if the i field is zero, or "r[rsl] xnor sign_ext(simm13)" if the i field is one, and
places the result in the destination specified by the rd field.

Format:

31 30 29

I 10 1

31 30 29

1

Syntax:

xnor
xnor

10 1

Traps:

(none)

25 24 19 18
rd 1 000111 1 rs1

25 24 19 18
rd 1 000111 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

(none)

Example:

14 13 12 5 4 0

1 i=O 1 unused (zero) 1 rs2 1

14 13 12 0

1 i=11 simm13 1

xnor %11, 0, %11 complement reg 11

Instruction Set - Exclusive NOR

7-127

•

SPARClite User's Manual

XNORcc XNORcc

Exclusive NOR and modH, kc

Description:

Implements a bitwise logical exclusive Nor to compute either "r[rsl] xnor r[rs2]"
if the i field is zero, or "r[rsll xnor sign_ext(simm13)" if the i field is one, and
places the result in the destination specified by the rd field.

XNORcc modifies the integer condition codes.

Format:
31 30 29

I 10 1

31 30 29

1 10 1

Syntax:

xnorcc
xnorcc

Traps:

(none)

2524 19 18
rd 1 010111 1 181

25 24 19 18
rd 1 010111 1 181

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

n, z=O, v, c=O

Example:

14 13

1 i=O 1

14 13

li=ll

12 5 4 0
unused (zero) 1 rs2 1

12 0
simm13 1

xnorcc %11, %12, %gO do any bits in reg 11 match corresponding

bne xyz

Instruction Set - Exclusive NOR and modify icc

7-128

bits
in reg 12?

skip ahead if not

XOR

Exclusive OR

Description:

OJ
FUJITSU

XOR

Implements a bitwise logical exclusive Or to compute either "r[rs1] xor r[rs2]" if
the i field is zero, or "r[rsl] xor sign_ext(simm13)" if the i field is one, and places
the result in the destination specified by the rd field.

format:
31 30 29

I 10 I
31 30 29

I

Syntax:

xor
xor

10

Traps:

(none)

I

25 24 19 18
rd I 000011 I rs1

25 24 19 18
rd I 000011 I rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

(none)

Example:

14 13 12 5 4 0

I i=O I unused (zero) I rs2 I
14 13 12 0

I i=1 I simm13 I

xor %11, -1, %11 complement reg 11

Instruction Set - Exclusive OR

7-129

-

SP Al{Clite User's Manual

XORcc XORcc

Exclusive NOR and modify icc

Description:

Implements a bitwise logical exclusive Or to compute either "r[rsl] xor r[rs2]" if
the i field is zero, or "r[rs1] xor sign_ext(simm13)" if the i field is one, and places
the result in the destination specified by the rd field.

XORcc modifies the integer condition codes.

Format:
31 30 29

I 10 1

31 30 29

1 10 1

Syntax:

xorcc
xorcc

Traps:

(none)

25 24 19 18
rd 1 010011 1 rs1

25 24 19 18
rd 1 010011 1 rs1

regrsl' regrs2' regrd
regrsl' immediate, regrd

Condition Code Modified:

n, z=O, v, c=O

Example:

14

14

13 12 5 4

1 i=O 1 unused (zero) 1 rs2

13 12

1 i=ll simm13

xorcc %11, -1, %11 complement reg 11 and test result

0

1

0

1

Instruction Set - Exclusive NOR and modify icc

7-130

- -- - --- ----

l1lil1lil1lil1lil1lil1lil1lil1lil1lil1lil1lil1lil1lil1li

JTAG

8. 1 Introduction
With the increased use of surface mount devices and the ever-increasing density
of printed circuit boards, traditional in-circuit and functional testing has become
difficult and expensive. To reduce the complexity of board testing, a boundary­
scan test technique has been adopted by the Joint Test Action Group (JTAG).

The JTAG standard requires that a boundary-scan cell be between each compo­
nent pin and the chip logic within an Ie. On SP ARClite a boundary-cell consists
of at least one shift register bit and some multiplexing. All the boundary- scan
cells within SPARClite are connected as one long shift register. This allows test
access to the component pins. Components with JT AG can be connected serially
on a board to provide test access to all the components plus access to the board
traces. For more detailed information, consult IEEE Standard 1149.1.

IT AG - Introduction

8-1

-~ ,

SPARClite User's Manual

8.2 Test Access Ports (TAP)
SPARClite has five dedicated pins for JTAG.

Name Input/Output Weak pull-up Function

TCK Input No Test Clock

TMS Input Yes Test Mode Select

TOI Input Yes Test Data Input

TOO Output No Test Data Output

-TRST Input Yes Test Reset

8.2. 1 TCK
JTAG uses a test clock independent of component-specific system clock. This is
necessary to be able to shift the serial test data through components with different
operating frequencies. An independent test clock allows shifting of test data con­
currently with the system operation of the component and without changing the
state of the on-chip system logic. Following are the JT AG requirements and clock
specifications.

1. The JTAG test logic state will remain unchanged indefinitely when TCK=O.

2. A 50% duty cycle clock is recommended.

8.2.2 TMS
The sequence of TMS inputs is used to put the JT AG test logic into a particular
test mode. The test logic must be in the correct test mode to shift-in instructions,
to do data-shifts and do other operations.

1. TMS input is sampled by the test logic at the rising edge of TCK.

2. Undriven TMS input appears as a logic "1" to the test logic. This is to ensure
that the test logic will sequence to the TesCLogic_Reset state if the TMS is held
high for at least five rising edges of TCK. The test logic will remain in the
Test_Logic_Reset state as long as TMS=1. (See "Test Logic Reset" on
page 8-10.)

JI'AG - Test Access Ports (TAP)

8-2

OJ
FUJITSU

8.2.3 TDI

The TDI pin is used to input test instructions and test data.

1. The TDI input is sampled by the test logic at the rising edge of TCK.

2. Undriven TDI input appears as a logic "I" to the test logic.

3. No logic inversion takes place when data is being shifted from TDI towards
TOO.

4. TDI input change at the falling edge of TCK is recommended.

8.2.4 TDO

TOO is the serial output for the test instructions and data from the test logic.

1. TOO output is valid after the falling edge of TCK.

2. TDO output is in the high-impedance state when data or instruction is not
scanned.

8.2.5 -TRST

- TRST is an asynchronous test logic reset pin.

1. The test logic is forced into the TesCLogic_Reset state asynchronously when a
logic "a" is applied to the - TRST pin.

2. If it is not being driven, - TRST pin appears as a logic "1" to the test logic. This
is to ensure normal test operation in the event of an unterminated - TRST.

3. - TRST does not initialize any system logic within the component. III:,:
4. To ensure deterministic operation of the test logic, the TMS input should be

held at 1 while the - TRST signal changes from a to 1.

8.3 Test Instructions
SPARClite implements the three JTAG public instructions; BYPASS, SAM­
PLE/PRELOAD and EXTEST.

SP ARClite contains a two bit JTAG instruction register which receives the instruc­
tion serially from the TDI input. The instruction bits are shifted-in at the rising
edge of TCK. For fault isolation of the board level serial test data path, a constant
binary "01" pattern is loaded into the instruction shift register at the start of the
instruction-shift cycle. Therefore, a "01" pattern will appear at the TDO output in
the beginning of the instruction-shift cycle.

When shifting the instruction into the instruction register, the least significant bit
of the instruction needs to be shifted in first, followed by the most significant bit.

IT AG - Test Instructions

8-3

SP ARClite User's Manual

8.3. 1 BYPASS
The BYPASS instruction is used to bypass a component that is connected in series
with other components. This allows more rapid movement of test data through
the components of the board, bypassing the ones that do not need to be tested.
The BYPASS operation enables the bypass register, which is a single stage shift
register, between TDI and TDO.

1. The binary code for the BYPASS instruction is 11.

2. The BYPASS instruction is forced into the instruction register output latches
during the TesCLogic_Reset state. Note the distinction between the "01" con­
tent of the instruction shift register and the "11" content of the instruction reg­
ister output latch. Therefore, at the start of the instruction-shift cycle, a "01"
pattern will be seen instead of "11".

3. The BYPASS operation does not interfere with the component operation at all.
If the TDI input trace to the component is somehow disconnected, the test
logic will see a "11" at TDI input during the instruction-shift state. Therefore,
no unwanted interference with the on-chip system logic occurs.

8.3.2 SAMPLE/PRELOAD
The SAMPLE/PRELOAD instruction is used to sample the state of the compo­
nent pins. The sampled values can be examined by shifting out the data through
TDO. This instruction can also be used to preload the boundary-scan cell output
latches with specific values. The preloaded values are then enabled to the output
pins by the EXTEST.

1. The binary code for the instruction is 01.

2. The SAMPLE/PRELOAD instruction selects the boundary-scan cells to be
connected between TDI and TDO in the Shift_DR TAP controller state (see
section 8.4).

3. The values of the component pins are sampled on the rising edge of TCK in
the Capture_DR TAP controller state.

4. The preload values shifted into the boundary-scan cells are latched into the
boundary-scan output latch at the falling edge of TCK in the Update_DR TAP
controller state.

JTAG - Test Instructions

8-4

00
FUJITSU

8.3.3 EXTEST

EXTEST instruction allows testing of off-chip circuitry and board level intercon­
nections. The PRELOAD/SAMPLE instruction is used to preload the data into the
latched parallel outputs of the boundary-scan shift register stages. Then, the
EXTEST instruction enables the preloaded values to the components output pins.

1. The binary code for the instruction is 00.

2. SPARClite outputs the preloaded data to the pins at the falling edge of TCK in
the Update_IR TAP controller state at which point the JT AG instruction regis­
ter is updated with the EXTEST.

3. The EXTEST instruction selects the boundary-scan cells to be connected
between TDI and TOO in the Shift_DR test logic controller state.

4. Once the EXTEST instruction is effective, the output pins can change at the
falling edge of TCK in the Update_DR TAP controller state.

8.3.4 JTAG Cells

SPARClite's JTAG test data scan path is composed of input cells, output cells, I/O
cells and output cells with set control. The basic structures of the cells are shown
in the accompanying figures. As the name implies, the input cell is used for input­
only pins and the output cell is used for output-only pins. The I/O cell is used for
the I/O pins and the output cell with set control is used for I/O buffer control.

With each group of I/O pins there is an I/O buffer control JTAG cell which is
used to control the direction of the I/O pins during EXTEST operation. This •
implies that within the data-scan path there are cells which do not correspond to a ••.
pin, but are used for I/O buffer control during EXTEST operation.

Note that the output cell and the I/O cell have an output latch separate from the
shift register. This allows the output to remain unchanged during a data-shift
operation during the EXTEST mode. The cell output latches are updated during
the Update_DR state (see section 8.4).

8.3.5 Input Cell

For SPARClite, an input cell structure with signal capture only capability has
been chosen to minimize the propagation delay from the input pins to the on-chip
system logic. Using the SAMPLE/PRELOAD instruction, the user can sample the
input pin and scan out the sampled value.

IT AG - Test Instructions

8-5

SPARClite User's Manual

8.3.6 Output Cell
The output cell has the capability to output a preloaded value to the output pin
during EXTEST. During EXTEST, the source of the output changes from the chip
logic to the output latch of the JT AG output cell. The output value in the cell is
preloaded using the SAMPLE/PRELOAD instruction.

8.3.7 I/O Cell
The I/O cell is actually composed of an input cell and an output cell. Therefore,
for each I/O pin there are two cells associated with the pin. Hence, when the data
is shifted out through TOO, two bits for each I/O pin will be seen. As mentioned
previously, an I/O buffer control cell is associated with each group of I/O pins.
For example, the 32-bit data bus is controlled by the data I/O buffer control cell.
The I/O buffer control cell is also in the data scan path through which the user
can control the direction of the I/O buffer for the EXTEST.

8.3.8 Output Cell with Set
This cell is used as the I/O buffer control cell. The output latch of the cell is set
during TesCLogicReset state so that if EXTEST is entered after reset, the I/O
pins are in the input mode. There is one I/O buffer control cell for each group of
1/ 0 signals.

I/O buffer control cell name I/O pins

emudiojo EMU_0<3:0>, EMU_SO<3:0>
emuenblio -EMU_ENB
dbusiojo 0<31 :0>
tstatejo Output Pins t

t. Not all output pins are three-statable

To Next Cell

From System Pin "'-~=::t~~==l----I-.TO Output Pin

ShiftDR From ClockDR
Last
Cell

Figure 8-1. Input Cell Allowing Signal Capture Only

IT AG - Test Instructions

8-6

- ~ --- ----

Mode

Data From
Internal Logic

ShiftDR To Next Cell

cP
FUJITSU

I-il-Ih~~-------------+-----+ System Pin

From Last Cell ClockDR UpdateDR

Figure 8-2. Output Cell

ShiftDR To Next Cell Mode

Output Control._it-;:;:;:==::;-______ t _____ --of:;--i From Internal
Logic

To Output
Enable

From Last Cell ClockDR UpdateDR set

Figure 8-3. Output Cell with Set

ToIFrom
Internal Logic

To Next Cell

Output Enable

Input Data

Output Data

From Last Cell

Figure 8-4. I/O Structure

H>-----1~ System Pin

IT AG - Test Instructions

8-7

SP ARClite User's Manual

8.4 Operation
The JTAG control logic, which is also referred to as the TAP controller, is imple­
mented with a synchronous finite state machine. The asynchronous reset input
(-TRST) and the TMS input control the state transition of the TAP controller. To
shift instructions into the instruction register and to do test data-scans, the TAP
controller needs to be in the appropriate state (see Figure 8-5 and Figure 8-6 for
timing relationship). A TAP state transition diagram is provided with examples
in the following pages.

The usual sequence of operations is as follows. Initially, the TAP controller is
forced into the reset state, TesCLogic_Reset, by -TRST=O. Next, TMS is set to a
"1" and the - TRST is deasserted at the falling edge of TCK. At the next rising edge
of TCK, the TMS=l value is sampled by the test logic and the TAP controller
remains in the reset state. The first thing that needs to be done is to shift in the 2
bit instruction into the JTAG instruction register.

TCK

TMS -\ U-n- lin
~ ~ ~~

~ ~ , ~
"tJ ~ C §

~ ~ ~ ~ ~ g!

~ m " - ; '" :..1: ;i<
c:. ~ ~ i; :l; :l; li :l; 3l ~ ~

I ~ ~ ~ 9.
~

Controller State

~~~~ r-' ~ ~ ~~ 

TOI I X) 
i 
I 

Data Input to IR X":,,:: " X "":':'" ' ",:'" "" " :, ,", , 

~" "i J. ",' ,c:, 
~~~~ 

IR Shift-Register

Parallel Output of IR Bypass X New Instruction

Data Input to TDR ';,,< ':C"': I::;:; ',:';,,;:,,'<:'1 :\::',',:,',:)(,:,': ,', ''''",'; : ,,',.

TDR Shift Register t'''',,-'' :",,:':>::"," I',,,.': :: ,":, :, ",,:'::,: f:,","" /, ' " ":

Parallel Output of lOR :,:?': ,::,"" ,',<,:"",::',,:', :': ,,/'Y:"< ' , "X Old Data

Register Selected .,::' ',,>X Instruction Register X. ,,"', : ' ",

TDO Enable Inactive I ActiVe)(Inactive X Active X Inactive

TOO 00
Figure 8-5. Test Logic Operation: Instruction Scan

To do so, the TAP controller needs to be transitioned to the Shift_IR state. In order
to make the state transition from TesCLogic_Reset to Shift_IR state, the correct

IT AG - Operation

8-8

-......-.....-- --- ----

00
FUJITSU

TMS sequence would have to be 0 -> 1 -> 1 -> 0 -> O. Remember that the TMS
input should change at the falling edge of TCK so that enough setup time is avail­
able with respect to the rising edge of TCK at which point the TMS input is sam­
pled. The TAP controller changes state at the rising edge of TCK. Once in the
ShifCIR state, the instruction bits at TDI will be shifted into the JT AG instruction
register at the rising edge of TCK. Suppose the instruction shifted in was a SAM­
PLE/PRELOAD. Then as soon as the instruction is shifted in, the TAP controller
must transition to the Exitl_IR state to terminate the instruction-scan. Otherwise,
more than 2 bits will be shifted into the instruction register.

For the SAMPLE/PRELOAD instruction, data shifts need to take place either to
output the sampled value of the pins or to shift in the preload value for EXTEST.
Therefore, the TAP controller needs to change state from Exitl_IR to the Shift_DR
state. This is accomplished by giving the 1 -> 0 -> 1 -> 0 -> 0 TMS sequence. Once,
in the ShifCDR state, the TOI input will be scanned into the shift register portion
of the boundary scan cells at the rising edge of TCK. Once data-scan is finished,
the TAP controller state can be transitioned to the Run_Test/Idle state for the next
JT AG instruction.

TCK

TMS __ ---'nL-__ -InL-__ -InL-_----.JILJ
r-.. r-.. ,.------. r-. r-. r-. r-.. ,.-----, r-. r-..

Controller State
r1 i n c: :D g> g> ~

~
" gl ~ [~ J ~ "ll. i I ~ ~ ~ 6 6 !]j t ip c .;, c

~ en c :D :D :D :D :D :D

~ :D :D :D

" m
ia

~~~~ ~ ~~~~~ 

TDI----~CKXJ--------CXJCXJ--------------

DatalnputtolR ________________________ _ 

IRShift-Register ________________________ _ 

Parallel Output of IR __________ I_ns_tru_c_tio_n ________ ---'x ID Code 

Data Input to TDR ____ ~XJ(~_~ _______ ~ _______ _ 

TDR Shift Register ____ ---'Y:XY:J. _____ ~'---_____ _ 
Parallel Output of TDR _______ ---'-O_ld_Da_ta _______ -'X'--__ N_ew_D_a-".ta __ _ 

Register Selected ____ -iX'-____ T_es_t D_a_ta_R....;eg,,-is_te_r ___ ...JX'--_____ ~ 

TDO Enable ___ Ina_ct_iv_e_~~ Inactive X Active X'-___ In_act_iv_e __ _ 

TDO -----CKXJ--------CXJCXJ--------------

Figure 8-6. Test Logic Operation: Data Scan 

/TAG - Operation 

8-9 



SPARClite User's Manual 

8.5 The TAP Controller 

8.5. 1 TAP Controller State Diagram 

Specifications 

Rules 

1. The state diagram for the TAP controller is shown in Figure 8-7. (Note the 
value shown adjacent to each state transition arc in this figure represents the 
signal present at TMS at the time of a rising edge at TCK.) 

2. All state transition of the TAP controller must occur based on the value of TMS 
at the time of a rising edge of TCK. 

3. Actions of the test logic occur on either the rising or the falling edge of TCK in 
each controller state. 

Description 

The behavior of the TAP controller and other test logic in each of the controller 
states is briefly described as follows. Note the term, Test Data Registers, refers to 
either the Bypass Register or the 152 JTAG cells connected as a shift register. 

Test Logic Reset 

The test logie is disabled so that normal operation of the on-chip system logie (i.e., 
in response to stimuli received through the system pins only) can continue unhin­
dered. This is achieved by initializing the instruction register with the BYPASS 
instruction. No matter what the original state of the controller may be, the con­
troller will enter Test-Logie-Reset when the TMS input is held high for at least five 
rising edges of TCK. The controller remains in this state while TMS is high. 

If the controller should leave the Test-Logie-Reset controller state as a result of an 
erroneous low signal on the TMS line at the time of a rising edge on TCK (for 
example, a glitch due to external interference), it will return to the Test-Logie­
Reset state following three rising edges of TCK with the TMS line at the intended 
high logie level. The operation of the test logie is such that no disturbance is 
caused to on-chip system logie operation as the result of such an error. On leaving 
the Test-Logie-Reset controller state, the controller moves into the Run-Test/Idle 
controller state where no action will occur because the current instruction has 
been set to select operation of the bypass register. The test logie is also inactive in 
the Select-DR-Scan and Select-IR-Scan controller states. 

Note that the TAP controller will also be forced to the Test-Logie-Reset controller 
state by applying a low logie level to the TRST* input. 

]TAG - Operation 

8-10 



........ ..- --- --- ----

Run-Test/Idle 

00 
FUJITSU 

A controller state between scan operations. In the Run-Test/Idle controller state, 
activity in selected test logie occurs only when certain instructions are present. 

For instructions which do not cause functions to execute in the Run-Test/Idle 
controller state, all test data registers selected by the current instruction must 
retain their previous state (i.e., Idle). 

The instruction does not change while TAP controller is in this state. 

Select-DR-Scan 

This is a temporary controller state in whieh all test data registers selected by the 
current instruction retain their previous state. 

If TMS is held low and a rising edge is applied to TCK when the controller is in 
this state, then the controller moves into the Capture-DR state and a scan 
sequence for the selected test data register is initiated. If TMS is held high and a 
rising edge is applied to TCK the controller moves on to the Select-IR-Scan state. 

The instruction does not change while the TAP controller is in this state. 

Select-IR-Scan 

This is a temporary controller state in which all test data registers selected by the 
current instruction retain their previous state. 

If TMS is held low and a rising edge is applied to TCK when the controller is in .',i' 
this state, then the controller moves into the Capture-IR state and a scan sequence 
for the instruction register is initiated. If TMS is held high and a rising edge is 
applied to TCK the controller returns to the Test-Logie-Reset state. 

The instruction does not change while TAP controller is in this state. 

Capture-DR 

In this controller state data may be parallel loaded into test data registers selected 
by the current instruction on the rising edge of TCK. 

The instruction does not change while TAP controller is in this state. 

Shift-DR 

In this controller state, the test data register connected between TDI and TDO as a 
result of the current instruction shifts data one stage towards its serial output on 
each rising edge of TCK. 

The instruction does not change while the TAP controller is in this state. 

rr AG - Operation 

8-11 



SPARClite User's Manual 

Exitl-DR 

This is a temporary controller state. If TMS is held high, a rising edge applied to 
TCK while in this state causes the controller to enter the Update-DR state, which 
terminates the scanning process. If TMS is held low and a rising edge is applied to 
TCK, the controller enters the Pause-DR state. 

All test data registers selected by the current instruction retain their previous state 
unchanged. 

The instruction does not change while TAP controller is in this state. 

Pause-DR 

This controller state allows shifting of the test data register in the serial path 
between TDI and TDO to be temporarily halted. All test data registers selected by 
the current instruction retain their previous state unchanged. 

The instruction does not change while TAP controller is in this state. 

Exit2-DR 

This is a temporary controller state. If TMS is held high and a rising edge is 
applied to TCK while in this state, the scanning process terminates and the TAP 
controller enters the Update-DR controller state. If TMS is held low and a rising 
edge is applied to TCK, the controller enters the Shift-DR state. 

All test data register selected by the current instruction retain their previous state 
unchanged. 

The instruction does not change while the TAP controller is in this state. 

Update-DR 

Some test data registers are provided with a latched parallel output to prevent 
changes at the parallel output while data is shifted in the associated shift-register 
path in response to certain instruction (e.g., EXTEST). Data is latched onto the 
parallel output of these test data register from the shift-register path on the falling 
edge of TCK in the Update-DR controller state. The data held at the latched paral­
lel output should not change other than in this controller state. 

All shift-register stages in test data registers selected by the current instruction 
retain their previous state unchanged. 

The instruction does not change while the TAP controller is in this state. 

IT AG - Operation 

8-12 



........ ...- ....... --- ----

Copture-IR 

0:> 
FUJITSU 

In this controller state the shift-register contained in the instruction register loads 
a pattern of fixed logic values on the rising edge of TCK. 

Test data registers selected by the current instruction retain their previous state. 
The instruction does not change while the TAP controller is in this state. 

Shift-IR 

In this controller state the shift-register contained in the instruction register is con­
nected between TDI and TDO and shifts data one stage towards its serial output 
on each rising edge of TCK. 

Test data register selected by the current instruction retain their previous state. 
This instruction does not change while the TAP controller is in this state. 

Exitl-IR 

This is a temporary controller state. If TMS is held high, a rising edge applied to 
TCK while in this state causes the controller to enter the Update-IR state, which 
terminates the scanning process. If TMS is held low and a rising edge is applied to 
TCK, the controller enters the Pause-IR state. 

Test data registers selected by the current instructions retain their previous state. 
The instruction does not change while the TAP controller is in this state and the 
instruction register retains its state. 

Pouse-IR 

This controller state allows shifting of the instruction register to be temporarily 
halted. 

Test data registers selected by the current instruction retain their previous state. 
The instruction does not change while the TAP controller is in this state and the 
instruction register retains its state. 

Exit2-IR 

This is temporary controller state. If TMS is held high and a rising edge is applied 
to TCK while in this state causes termination of the scanning process and the TAP 
controller enters the Update-IR controller state. If TMS is held low and a rising 
edge is applied to TCK the controller enters the Shift-IR state. 

Test data registers selected by the current instruction retain their previous state. 
The instruction does not change while the TAP controller is in this state and the 
instruction register retains its state. 

JTAG - Operation 

8-13 



SPARClite User's Manual 

Update-IR 

The instruction shifted into the instruction register is latched onto the parallel out­
put form the shift-register path on the falling edge of TCK in this controller state. 
Once the new instruction has been latched it becomes the current instruction. 

Test data registers selected by the current instruction retain their previous state. 

The Pause-DR and Pause-IR controller states are included so that shifting of data 
through the test data or instruction register can be temporarily halted. For exam­
ple, this might be necessary in order to allow an ATE system to reload its pin 
memory from disc during application of a long test sequence. 

IT AG - Operation 

8-14 

o 

Figure 8-7. TAP Controller State Diagram 



ADR<31> 

ADR<2> 

ASk7> 

ASkO> 

~..-....- _ ..... - ----

15 
I-

8 
I-

cO 
FUJITSU 

L--r_j---i-B-XTALl 

Chip Logic 

Figure 8-8. JTAG Cell Organization 

>-..... +--111 D<31 > 

>--+--1111 D<31> 

[TAG - Operation 

8-15 



SPARClite User's Manual 

8.6 MB86930 JTAG Pin List 
The ]TAG cells are arranged in a shift register configuration (see Figure 8-8). 
When shifting in a ]TAG pattern through TDI, the LSB should correspond to the 
JT AG cell value for - TIMER_ OVF pin whereas, the MSB of the pattern should cor­
respond to the eLK_ENB pin's JTAG cell. As far as ]TAG output through TOO is 
concerned, the first bit out corresponds to -TIMER_OVF JTAG cell value and the 
last output bit corresponds to the eLK_ENB JTAG cell value. Table 8-1 lists the 
order of all of the JT AG cells. 

Table 8-1: JTAG Pin Order 

Order 

JTAG - Operation 

8-16 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

JTAG Cell 

-TIMER_OVF 

XTAL1 

- EMU_BRK 

icediojot 

EMU_D_k3> 

EMU_D_o<3> 

EMU_D_k2> 

EMU_D_o<2> 

EMU_D_k1> 

EMU_D_o<1> 

EMU_D_kO> 

EMU_D_o<O> 

EMU_D_k3> 

EMU_D_o<3> 

EMU_D_k2> 

EMU_D_o<2> 

EM U_D_k 1 > 

EM U_D_o< 1 > 

EMU_D_kO> 

EMU_D_o<O> 

iceenbliot 

-EMU_ENB_i 

-EMU_ENB_o 

JTAG Cell 
Function 

Type 

output Timer Overflow pin 

input Crystal input 

input Emulator break input 

output EMU_D bus bidirectional control signal 
emudiojo = 1: EMU_D bus is input 
emudiojo = 0: EMU_D bus is output 

input Input bit 3 of EMU_SD<3:0> bus 

output Output bit 3 of EMU_SD<3:0> bus 

input Input bit 2 of EMU_SD<3:0> bus 

output Output bit 2 of EMU_SD<3:0> bus 

input Input bit 1 of EMU_SD<3:0> bus 

output Output bit 1 of EMU_SD<3:0> bus 

input Input bit 0 of EMU_SD<3:0> bus 

output Output bit 0 of EMU_SD<3:0> bus 

input Input bit 3 of EMU_D<3:0> bus 

output Output bit 3 of EMU_D<3:0> bus 

input Input bit 2 of EMU_D<3:0> bus 

output Output bit 2 of EMU_D<3:0> bus 

input Input bit 1 of EMU_D<3:0> bus 

output Output bit 1 of EMU_D<3:0> bus 

input Input bit 0 of EMU_D<3:0> bus 

output Output bit 0 of EMU_D<3:0> bus 

output -EMU_ENB bus bidirectional control signal 
emuenblio = 1: -EMU_ENB bus is an input 
emuenblio = 0: -EMU_ENB bus is an output 

input Input bit of -EMU_ENB pin 

output Output bit of -EMU_ENB pin 



....-...-..-- - -- - - - -

Table 8-1: JTAG Pin Order (Continued) 

Order JTAG Cell JTAGCell 
Type 

24 dbusiojot output 

25 0_k31 > input 

26 0_0<31> output 

87 O_kO> input 

88 0_0<0> output 

89 -RESET input 

90 -BREQ input 

91 -MEXC input 

92 -READY input 

93 tstatejot output 

94 -BGRNT output 

95 -ERROR output 

96 -LOCK output 

97 -ROIWR output 

98 -AS output 

99 -CS<O> output 

· · 
104 -CS<5> output 

105 -SAME_PAGE output 

106 -BE<3> output 

109 -BE<O> output 

110 ASkO> output 

· 
117 ASk7> output 

118 AOR<2> output 

147 AOR<31> output 

Function 

c:P 
FUJITSU 

0<31 :0> bus bidirectional control signal 
dbusiojo = 1: 0<31 :0> bus is an input 
dbusiojo = 0: 0<31 :0> bus is an output 

Input bit 31 of 0<31 :0> bus 

Output bit 31 of <31 :0> bus 

· · 
Input bit 0 of <31 :0> bus 

Output bit 0 of <31 :0> bus 

Chip reset pin 

Bus request input 

Memory exception input 

External memory transaction complete signal 

Three-state control signal 
If tstatejo=1 then the following pins are three-stated. 

AOR<31 :2>, ASk7:0>, -BE<3:0>, -AS, ROIWR, 
-LOCK 

Bus grant output signal 

Error output signal 

Bus lock output signal 

Memory ReadIWrite output signal 

Start of memory transaction output signal 

LSB of chip select output signal 

· · 
MSB of chip select output signal 

Same-Page output signal 

Byte 3 enable output signal 

· · 
Byte 0 enable output signal 

LSB of ASI output pins 

· · 
MSB of ASI output pins 

LSB of Address output pins 

· · 
MSB of Address output pins 

JTAG - Operation 

8-17 



SP ARClite User's Manual 

Table 8-1: JTAG Pin Order (Continued) 

Order JTAGCell 
JTAGCell 

Function 
Type 

148 IRL<3> input MSB of interrupt request pin . . . 
151 IRL<O> input LSB of address output pins 

152 CLK_ENB input PLL control pin. 
CLK_ENB=1: PLL on 
CLK_ENB=O: PLL off 

t. These are internal 1/0 control signals. Therefore. there are no corresponding external pins. 
1. The following pins are not three-statable: -SAME_PAGE. -CS<5:0>, -BGRNT, TIMER_OVF, -ERROR. 
2. The following pins have no corresponding JTAG cells: CLKOUT1, CLKOUT2, XTAL2, -TRST, TCK, TMS, TDI, TDO. 

IT AG - Operation 

8-18 



..... ,.... ~ - -- - -- .-

Se 2 

III 111111111111111111 111111111111111II1II 

MB86931 

MB86931 - SPARClite User's Manual 



SP ARClite User's Manual 

MB86931- SPARClite User's Manual 



..,-....--.....- -- ----

111111111111111111111111l1li111111111111111 

Chapter A 1: Overview of MB86931 
1.1 General Description ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A 1-1 

1.2 Programmer's Model of the MB86931 •••••••••••••••••••••••••••••••••••••••• A 1-3 

1.3 Internal Architecture of the MB86931 •••••••••••••••••••••••••••••••••••••••••• A 1-6 

Chapter A2: MB86931 Interrupt Request Controller 
2.1 IRC Registers ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A2-2 

2.1.1 Trigger Mode Registers .................................................................................... A2-3 
2.1.2 Request Sense Register ..................................................................................... A2-3 
2.1 .3 Request Clear Register ..................................................................................... A2-4 
2.1.4 Mask Register ................................................................................................. A2-4 
2.1.5 IRL Latch/Clear Register ................................................................................... A2-5 

2.2 IRC Operation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A2-5 
2.2.1 Polling ............................................................................................................ A2-5 
2.2.2 Initialization .................................................................................................... A2-6 
2.2.3 Noise Immunity ............................................................................................... A2-6 

Contents 

A-i 



SP ARClite User's Manual 

Chapter A3: MB86931 Timers 
3.1 Timer Registers •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A3-2 

3.1.1 Prescaler Register ............................................................................................ A3-3 
3.1.2 Timer Control Registers (TCR) ............................................................................ A3-4 
3.1.3 Reload Register ............................................................................................... A3-5 
3.1.4 Count Register ................................................................................................ A3-6 

3.2 Prescaler Operation •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A3-6 
3.2.1 Output Clock Duty Cycles ................................................................................ A3-6 
3.2.2 Counter Loading ............................................................................................. A3-7 

3.3 Timer Operation •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A3-7 
3.3.1 In Signal ........................................................................................................ A3-8 
3.3.2 Out Signal ..................................................................................................... A3-9 
3.3.3 Starting and Stopping the Timer. ..................................................................... A3-10 
3.3.4 Timer Operating Modes ................................................................................. A3-1 0 

Chapter A4: MB86931 Serial Data TransmiHers And Receivers 
4.1 SDTR Registers •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A4-2 

4.1 .1 Hidden Register Access ................................................................................... A4-2 
4.1 .2 SDTR Register Map ......................................................................................... A4-4 
4.1.3 Control Data Buffer Register ............................................................................ A4-4 
4.1 .4 Mode Register ................................................................................................ A4-5 
4.1 .5 Command Register .......................................................................................... A4-7 
4.1.6 Synchronizing Character Registers .................................................................... A4-8 
4.1.7 Status Register ................................................................................................ A4-8 
4.1.8 Transmit Data Register ................................................................................... A4-1 0 
4.1 .9 Receive Data Register .................................................................................... A4-1 0 

4.2 Asynchronous Mode Operation ••••••••••••••••••••••••••••••••••••••••••••••••• A4-1 0 
4.2.1 Operation Description ................................................................................... A4-11 
4.2.2 Asynchronous Mode Timing ........................................................................... M-12 

4.3 Synchronous Mode Operation ••••••••••••••••••••••••••••••••••••••••••••••••••• A4-19 
4.3.1 Operation Description ................................................................................... A4-20 
4.3.2 Synchronous Mode Timing ............................................................................. A4-21 

4.4 Status Flag Operation And Timing ••••••••••••••••••••••••••••••••••••••••••••• A4-29 

Contents 

A-ii 



...-.-..-- -- ----

Chapter AS: External Interface 

cP 
FUJITSU 

5. 1 Signals •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• AS-l 
5.1.1 Processor Signals Descriptions .......................................................................... A5-2 
5.1.2 Interrupt Request Signal Description ................................................................... A5-6 
5.1.3 Timer Signal Descriptions ................................................................................. A5-7 
5.1.4 Serial Port Signal Descriptions ........................................................................... A5-7 

Chapter A6: MB86931 JTAG 
6.1 MB86931 JTAG Pin List ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• A6-1 

Contents 

A-iii 



SP ARClite User's Manual 

Contents 

A-iv 



l1lil1li11111111111111111111111111111111 

Overvie~ of MB86931 

This section of the manual provides a functional description of the MB86931 with 
emphasis on the interrupt controller, timer, serial data transmitter/receiver, and 
signal descriptions. The core MB86930 processor is fully described in section 1 of 
this manual. 

1. 1 General Description 
The MB86931 is a member of the SPARClite family whose function is a superset of 
the MB86930. The MB86931 features the high-performance MB86930 processor 
core combined with a IS-channel interrupt request controller (IRC), four addi­
tional independent 16-bit timers, and two independent serial data transmitters/ 
receivers. 

The processor is based on the SP ARC architecture and is upward code compatible 
with previous processor implementations. On-chip data and instruction caches 
help decouple the processor from external memory latency. Separate on-chip 
instruction and data paths provide a high bandwidth interface between the IV 
and caches. 

The interrupt request controller supports 15 maskable, prioritized interrupts. The 
system processor can program each interrupt channel to trigger in response to a 
high level, a low level, a rising edge, or a falling edge. The IRC latches the inter­
rupt requests and asserts the encoded level number of the highest-priority inter-

Overview of MB86931 - General Description 

Al-l 

• I 



SP ARClite User's Manual 

rupt on the internal Interrupt Request Bus to interrupt the processor and identify 
the interrupt. 

Four general-purpose timers can generate periodic interrupts and square waves, 
and feature two watchdog modes. They can be clocked by two prescalers, by 
external clocks, or by an internal MB86931 clock. A fifth timer in the MB86930 
core generates an underflow signal, and is typically used for memory refresh tim­
ing. 

The two Serial Data Transmitter and Receiver (SDTR) units support both synchro­
nous and asynchronous modes, and are program-compatible with standard serial 
communication devices. They operate independently and can be clocked with the 
internal clock, with external clocks, or with clocks generated by the on-chip tim­
ers. Each SDTR supports the communication protocol and handshaking signals 
necessary for modem interface and control. 

The following is a summary of the MB86931 features: 

• 20 MHz (50 nsf cycle) operating frequency 
• SP ARC® high performance RISC processor 

- 2-way set associative instruction and data caches, 2 Kbytes each 
- Flexible cache data locking mechanism 
- Harvard architecture 
- 8 window, 136 word register file 
- Fast interrupt response time 
- 247 address spaces, 4 Gbyte each 
- User and supervisor modes 
- Buffered writes and instruction pre-fetching 
- Fast page-mode DRAM support 
- 16-bit DRAM refresh timer 
- Programmable address decoder and wait-state generator 
- On-chip clock generator circuit 
- IT AG test interface 
- Emulator support hardware 
- Single vector trapping 

• IS-channel Interrupt Request Controller 
- Individual interrupt masks 
- Positive and negative level and edge trigger options for each channel 

• Four independent general-purpose 16-bit timers 

- Prescalers for two timers 
- Five modes of operation for each timer 

Overview of MB86931 - General Description 

Al-2 



~- - -- ---

• Two Serial Data Transmitter and Receiver Units 

Compatible with the MB89251 
- Asynchronous and synchronous operation 
- 5 to 8 bit character length selection 
- Parity bit option 
- Internal or external synchronous mode options 

OJ 
FUJITSU 

- One (MONOSYNCH) or two (BISYNC) synchronous character options 

• 0.8 micron gate CMOS technology. 

1.2 Programmer's Model of the MB86931 
The MB86931 contains all of the registers that are defined in the MB86930 proces­
sor. The chip also contains IRC, general-purpose timer, and SDTR control and sta­
tus registers. 

All registers (except ASR registers) on the MB86931 are read with the LOAD 
ALTERNATE (LOA) instruction, and written with the STORE ALTERNATE 
(STA) instruction. Only loads and stores to word addresses are supported for the 
MB86931-specific registers. Reserved register fields are undefined when read, and 
should be written o. 
The following are listings of the MB86931 registers and their addresses. The regis­
ters are grouped according to function. All addresses are word addresses. 

CachelBIU Control and Status Registers: 

ASI: Ox01 

Address range: OxOOOOOOOO - OxOOOOOOFF 

OxOOOOOOOO ASI=Ox1 

OxOOOOO004 ASI~Ox1 

OxOOOOOOO8 ASl=Ox1 

Oxoooooooc ASI=Ox1 

Ox0000001 0 ASI~Ox1 

Ox00000080 ASI=Ox1 

Cache/BIU Con1rol Regis1er 

Lock Con1rol Regis1er 

Lock Control Save Register 

Cache Status Register 

Restore Lock Control Register 

System Support Control Register 

Overview of MB86931 - Programmer's Model of the MB86931 

Al-3 



SP ARClite User's Manual 

Peripheral control and status registers: 

ASI: Ox01 

Address range: Ox00000100 - Ox000001 FF 

OxOOOO0120 ASI=Ox1 Same Page Mask Register 

OxOOO00124 ASI=Ox1 Address Range Specifier Register 1 

OXOOOOO128 ASI=Ox1 Address Range Specifier Register 2 

OxOOO0012C ASI=Ox1 Address Range SpecHier Register 3 

OxOOO00130 ASI=Ox1 Address Range Specifier Register 4 

OxOOO00134 ASI=Ox1 Address Range Specifier Register 5 

OxOOOO0140 ASI=Ox1 Address Mask Register 0 

OxOOO00144 ASI=Ox1 Address Mask Register 1 

OXOOO00148 ASI=Ox1 Address Mask Register 2 

OxOOO0014C ASI=Ox1 Address Mask Register 3 

OxOOOO0150 ASI=Ox1 Address Mask Register 4 

OxOOO00154 ASI=Ox1 Address Mask Register 5 

OXOOOOO160 ASI=Ox1 Wait State Specifier Register 

OXOOOOO164 ASI=Ox1 Wait State SpecHier Register 

OxOOOO0168 ASI=Ox1 Wait State Specifier Register 

OxOOOOO174 ASI=Ox1 Timer Register (MB86930 cere) 

OxOOOOO178 ASI=Ox1 Timer Preload Register (MB86930 core) 

MB86931-specific control and status registers: 

ASI: Ox01 

Address range: Ox00000200 - Ox000002FF 

OxOOOOO200 ASI=Ox1 IRC Trigger Mode Register 0 

OxOOOOO204 ASI=Ox1 IRC Trigger Mode Register 1 

OxOOOOO208 ASI=Ox1 IRC Request Sense Register 

OxOOOOO20C ASI=Ox1 IRC Request Clear Register 

OxOOOOO210 ASI=Ox1 IRC Mask Register 

OxOOOOO214 ASI=Ox1 IRC IRL Latch/Clear Register 

OXOOOOO220 ASI=Ox1 STDRO Transmit/Receive Data Register 

OxOOOOO224 ASI=Ox1 STDRO ControvStatus Register 

OxOOOOO230 ASI=Ox1 STDR1 Transmit/Receive Data Register 

OxOOOOO234 ASI=Ox1 STDR1 Control/Status Register 

OxOOOOO240 ASI=Ox1 Timer 0 Prescaler Register 

OxOOOOO244 ASI=Ox1 Timer 0 Control Register 

OxOOOOO248 ASI=Ox1 Timer 0 Reload Register 

OXOOOOO24C ASI=Ox1 Timer 0 Count Register 

OXOOOOO250 ASI=Ox1 Timer 1 Prescaler Register 

OxOOOOO254 ASI=Ox1 Timer 1 Control Register 

OxOOOOO258 ASI=Ox1 Timer 1 Reload Register 

OXOOOOO25C ASI=Ox1 Timer 1 Count Register 

OxOOOOO264 ASI=Ox1 Timer 2 Control Register 

OxOOOOO268 ASI=Ox1 Timer 2 Reload Register 

0x0OOOO26C ASI=Ox1 Timer 2 Count Register 

OXOOOOO274 ASI=Ox1 Timer 3 Control Register 

OxOOOOO278 ASI=Ox1 Timer 3 Reload Register 

OxOOOOO27C ASI=Ox1 Timer 3 Count Register 

Overview of MB86931- Programmer's Model of the MB86931 

Al-4 



Emulation Registers: 

ASI: Ox01 

Address range: OxOOOOFFOO - OxOOOOFFFF 

OxOOOOOFFOO ASI=<lxl Instruc1ion Address Descriptor Register 1 

OxOOOOOFF04 ASl=Oxl Instruc1ion Address Descriptor Register 2 

OxOOOOOFF08 ASl=Oxl Date Address Descriptor Register 1 

OxOOOOOFFOC ASI=Oxl Date Address Descriptor Register 2 

OxOOOOOFF10 ASI=<lxl Date Value Descriptor Register 1 

OxOOOOOFF14 ASI=<lxl Date Value Descriptor Register 2 or Mask Register 

OxOOOOOFF18 ASI=Oxl Debug Control Register 

OxOOOOOFF1C ASI=Oxl Debug Stetus Register 

Instruction Cache Lock Registers: 

ASI: Ox02 

Address range: OxOOOOOOOO - Ox000003FO (Bank 1) 

Ox80000000 - Ox800003FO (Bank 2) 

OJ 
FUJITSU 

Note: The lock bit for each line in the instruction cache can be initialized by writing to 
evety fourth word address in this space. 

Data Cache Lock Registers: 

ASI: Ox03 

Address range: OxOOOOOOOO - Ox000003FO (Bank 1) 

Ox80000000 - Ox800003FO (Bank 2) 

Note: The lock bit for each line in the instruction cache can be initialized by writing to 
evety fourth word address in this space. 

Instruction Cache Tag RAM: 

ASI: OxOC 

Address range: OxOOOOOOOO - Ox000003FO (Bank 1) 

Ox80000000 - Ox800003FO (Bank 2 

Note: The tag for each line in the instruction cache can be initialized by writing to 
evety fourth word address in this space. 

Instruction Cache Data RAM: 

ASI: OxOD 

Address range: OxOOOOOOOO - Ox000003FF (Bank 1) 

Ox80000000 - Ox800003FF (Bank 2) 

Note: The instruction cache can be initialized by writing to word addresses in this 
space. 

Overview of MB86931 - Programmer's Model of the MB86931 

Al-5 



SP ARClite User's Manual 

Data Cache Tag RAM: 

ASI: OxOE 
Address range: OxOOOOOOOO - Ox000003FF (Bank 1) 

Ox80000000 - Ox800003FF (Bank 2) 

Note: The tag for each line in the data cache can be initialized by 
writing to every fourth word address in this space. 

Data Cache Data RAM: 

ASI: OxOF 
Address range: OxOOOOOOOO - Ox000003FF (Bank 1) 

Ox80000000 - Ox800003FF (Bank 2) 

Note: The instruction cache can be initialized by writing to word addresses 
in this space. 

1.3 Internal Architecture of the MB86931 
The MB86931 is an integration of the MB86930 SP ARClite RISC processor and the 
MB86940 SP ARClite Companion Chip. The chip consists of a processor core 
ported from the MB86930 processor and peripheral logic ported from the 
MB86940 SP ARClite Companion Chip. Figure Al-l shows a block diagram of the 
MB86931; Figure AI-2 shows a detailed block diagram of the MB86931 peripheral 
logic. 

The processor core Integer Unit supports a superset of the SPARC instruction set. 
The separate instruction and data caches maximize processor throughput. The 
Bus Interface unit interfaces the processor to the system. The Clock Generator 
with integrated phase-lock loop simplifies system clock design. The Debug Sup­
port Unit supports in-circuit emulation. 

The peripheral logic Interrupt Request Controller (IRC) generates prioritized 
interrupt levels for as many as 15 interrupts. The timers allow square-wave gener­
ation and support watchdog functions. The SDTRs (serial data transmitters/ 
receivers) allow serial communication using standard communication protocols. 

Separate internal data and instruction buses connect the functional units. A uni­
fied external data bus and a unified external address bus extend off-chip to inter­
face the functional units to memory and I/O. 

Overviw of MB86931 - Internal Architecture of the MB86931 

Al-6 



XTAL 1/CLK_IN -~~-r-----l 

DATA 

ADDRESS 

ASI 

CONTROL 

CLOCK 
GENERATOR 

& PLL 

BUS 
INTERFACE 

UNIT 

CHIP _SEL --~c---I f-,------i 
PAGE_DET __ ---I 

REFRESH ------t!:=~~~::::!J 

SCAN DIVIDE STEP 

SPARe INTEGER UNIT 

INTERRUPT 
CONTROL 

Figure A 1-1. MB86931 Block Diagram 

!::: 
z 
::::l 

Ii: 
~ 
"­
::::l 
(J) 

(!) 
::::l 
OJ 
W o 

00 
FUJITSU 

EMULATOR 
BUS 

Overview of MB86931 - Internal Architecture of the MB86931 

Al-7 



SP ARClite User's Manual 

Peripheral Logic 

· · · · IRL<3:0!RC · · IRL<0:3> · · · · · · · Peripheral Clock (PCLK) · · CLOCK · SCLK +2 

T 1 L CLOCK RESET 
I DATA DATA R/WCNTL · MB86930 · Peripheral Interface D<15:0> · Core Processor · Control Unit · · · ADDRESS ADDRESS · · PRSOEXTCK~ · · f+ CLK · · ASI ASI D<15:0> D<15:0> PRSCK Wi · · TMO : · · R/W · R/W f+ CLK PRSCK : · · ~ r-- RESET EXTCK ~ · · · r- - r-- R/W CNTL IN!---+-· SDTRO 

-DSRO. -CTSO -f-- ] MODEM 
D<15:0> 

OUTi 
-RTSO. -DTRO ---r- SClK 

TRNDTO. TEMPO --+-
] TRNS 

RESET 

TRDYO --+- R/WCONTROl ~ 
PRS1EXTCK+ - TClKO ----+--- f--: ClK 

RCVDTO. RClKO ----+---
] RECV 

D<7:0> ~ D<15:0> PRSCK 

Ji SYBRKO ---+----. 
"'~OT f+ ClK TMI PRSCK 

~ f+ RESET EXTCK -:-
~- f+ R/WCNTl IN-:-

D<15:0> 

OO'T -DSRI. -CTSI ---f--. SDTRI 

] MODEM 
-RTSI. -DTRI -:- SClK 

TRNDTI. TEMPI ---+--
] TANS 

RESET 

TRDYI ---+-- - .... ClK 
TM2 

RIWCONTROl 

-TClKI ----+- r- .... RESET EXTCK~ 
RCVDTI. RClKI --j--+ 

] RECV h 
~ f- .... R/WCNTl IN-:-

SYBRKI ---t- D<7:0> D<15:0> O~i L ClK 
TM3 

~ RESET EXTCK~ 
L-..-.. R/WCNTl INH-

D<15:0> OUT r------t-+-
-"T 

· . """ ••• """",."""""""""",."""",,,,,,,,,""""."""""""",.1 
Note: The clock to the MB86931-specific peripherals is divided by 2. 

Figure A 1·2. Peripheral Logic Block Diagram 

Overview of MB86931 - Internal Architecture of the MB86931 

Al-8 

IROI-15 

ACKO 

PRSCKO 

ClKO 

INO 

OUTO 

ACKI 

PRSCKI 

ClKI 

INI 

OUTI 

ClK2 

IN2 

OUT2 

ClK3 

IN3 

OUT3 



II! II! II! II! II! II! II! II! II! II! II! II! II! II! 

MB86931 Interrupt Request 
Controller 

R 

The Interrupt Request Controller (IRC) is a IS-channel, programmable-trigger 
interrupt controller that arbitrates pending unmasked interrupt requests, encodes 
the highest-priority interrupt, and interrupts the processor. The system processor 
responds by servicing the interrupt and clearing the latched interrupt request in 
the IRe. 

Figure A2-I shows a block diagram of the IRe. 

The Trigger Mode Control logic selects one of four trigger modes for each chan­
nel: high level, low level, rising edge, or falling edge. The processor controls the 
triggers by writing to the Trigger Mode registers. 

The IRQ Latch captures each interrupt request. The system processor reads the 
latch via the Request Sense register, and clears the latch by writing to the Request 
Clear register. 

The IRQ Mask logic allows selective masking of the interrupts. The processor con­
trols masking by writing to the Mask register. 

The Priority Encoder prioritizes the interrupt requests and encodes the highest­
priority pending interrupt that is not masked. IRQIS has the highest priority, and 
IRQI the lowest. 

The IRL Latch captures the coded interrupt level number that is generated by the 
Priority Encoder. 

MB86931 Interrupt Request Controller -

A2-1 

-



SP ARClite User's Manual 

The IRL Mask logic allows masking of all interrupt requests by forcing the inter­
rupt level asserted on IRL<3:0> to O. The processor can still poll for pending inter­
rupts by reading the Request Sense register even if the interrupt level is masked. 
The processor controls interrupt level masking by writing to the Mask register. 

2. 1 IRe Registers 

IRQl 

IRQ2 

IRQ3 

IRQ4 

IRQ5 

IRQS 

IRQ15 

< 
Table A2-1: 

The IRC features six internal registers that allow the processor to control IRC 
operation and to monitor system interrupt requests that may be pending. Register 
addressing is shown in Table A2-1. 

Trigger Mode IRQ IRQ Priority IRL IRL 
Control Latch Mask Encoder Latch Mask 

~ ~ ~ ~ ~ '~ ~ IRL<3> 

~ ~ ~ ~ ~ ~ ~ IRL<2> 

~ ~ ~ ~ ~ ~ ~ IRL<l> 

~ ~ ~ ~ ~ ~ ~ IRL<O> 

~ ~ ~ ~ A 
~ ~ ~ ~ IRL 

Mask 
Control 

~ ~ ~ ~ 

A A A 

V V D V V 0<15:0> 

> 
Figure A2-1. IRC Block Diagram 

IRC Register Map 

Address Register Access 

OxOOOOO200 Trigger Mode 0 W 

OxOOOOO204 Trigger Mode 1 W 

OxOOOOO208 Request Sense R 

OxOOOOO20C Request Clear W 

Ox00000210 Mask W 

OxOOOOO214 IRL Latch/Clear R/W 

MB86931 Interrupt Request Controller - IRC Registers 

A2-2 



2. 1 • 1 Trigger Mode Registers 

cP 
FUJITSU 

The Trigger Mode registers control the trigger mode for each interrupt channel. 
Trigger Mode Register 0 controls trigger modes for interrupt channels 8-15; Trig­
ger Mode Register 1 controls trigger modes for interrupt channels 1-7. 

31 

reserved 

Address Ox00000200 (ASI = OxOl) 

Bits 15-0: Trigger Mode Selects - Select trigger modes for channels 8-15. 

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

reserved 

Address Ox00000204 (ASI = OxOl) Trigger Mode Register 1 

Bits 15-2: Trigger Mode Selects - Select trigger modes for channels 1-7. 

Bits 1-0: Reserved. 

Two-bit fields in the registers select one of four trigger modes for each channel as 
follows: 

MDxValue* Trigger Mode 

0 High Level 

1 Low Level 

2 Rising Edge 

3 Falling Edge 

Reset clears the Trigger Mode registers, resulting in high level triggering for each 
interrupt channel. 

Note: An interrupt channel should be masked before its trigger mode is changed, or a false 
interrupt may occur. 

2. 1.2 Request Sense Register 

The processor reads the state of the IRQ Latch through the Request Sense register 
to identify pending interrupts. 

31 16 15 

reserved Request Sense 15: 1 

Address Ox00000208 (ASI = OxOl) 
Reserved ----' 

Bits 15-1: Sense IRQ Latch - Correspond to interrupt channels 15-1 and indicate, when high, that 
the corresponding interrupts are latched and pending. 

MB86931 Interrupt Request Controller - IRC Registers 

A2-3 



SPARClite User's Manual 

Bit 0: Reserved. 

Reset clears the Request Sense Register. 

2. 1.3 Request Clear Register 

The processor writes to the Request Clear register to clear the IRQ Latch. The pro­
cessor typically uses this register to clear the latch associated with an interrupt 
when it services the interrupt. 

31 16 15 

reserved Request Clear 15:1 (1=elear) 

Address Ox0000020C (ASI = Ox01) 
Reserved -----' 

Bits 15-1: Clear IRQ Latch - Correspond to interrupt channels 15-1, and writing the bits to 1 clears 
the corresponding interrupt latches. 

Bit 0 Reserved. 

Reset clears the Request Clear Register. 

Note: The processor should clear the latch associated with an interrupt following a change 
in its trigger mode, or a false interrupt may occur. 

2. 1.4 Mask Register 

The Mask register is used to mask the outputs of the IRQ Latch from the Priority 
Encoder, and the output of the IRL latch from the IRL<3:0> bus. The processor 
uses the Mask register to mask unused interrupt channels, to temporarily mask 
individual interrupt requests, and to mask all interrupt requests. 

31 16 15 

reserved Mask 15:1 (1=mask) 

Address Ox00000210 (ASI = Ox01) 
MKIRL (1 =Mask IRL Output) -----' 

Bits 15-1: Interrupt Request Mask - Correspond to interrupt channels 15-1, and writing them to 1 
masks the corresponding interrupt requests. 

Bit 0: Mask IRL - Masks the output of the IRL Latch. When MKIRL is set to 1, the IRL Latch out­
put is masked, and the IRL<3:0> bus is forced to O. When MKIRL is 0, the encoded inter­
rupt level number in the IRL latch is asserted on the IRL<3:0> bus to interrupt the 
processor. MKIRL is typically set to 1 (mask enabled) in systems that poll interrupt 
requests. 

Reset clears the Mask register. 

MB86931 Interrupt Request Controller -IRC Registers 

A2-4 



2.1.5 IRL Latch/Clear Register 

cO 
FUJITSU 

The processor uses the IRL Latch/Clear register to clear and read the IRL Latch . 

31 

reserved 

Address OxOoo00214 (ASI = OxOI) 
Clear Latch (I=Clear IRL Latch) ---' 

Interrupt Level ---------' 

Bit 4: Clear IRL Latch - Clears the IRL Latch when written to 1. 

Bits 3-0: Interrupt Level - Holds the value of the IRL Latch. The processor typically reads IRL to 
identify the highest-priority interrupt level in systems that poll the interrupts. 

Reset clears the IRL Latch/Clear Register. 

2.2 IRe Operation 
The IRC latches interrupt requests into the IRQ Latch according to the trigger 
mode option selected for each interrupt channel. The Priority Encoder prioritizes 
the unmasked interrupts and generates an encoded interrupt level number for the 
highest-priority interrupt. The IRL Latch latches the encoded interrupt level num­
ber, which is then transferred through the IRL Mask logic to the IRL<3:0> bus to 
interrupt the processor. The processor responds by servicing the interrupt identi­
fied on IRL<3:0>, clearing the latched interrupt from the IRQ Latch through the 
IRL Latch/Clear register and clearing the IRL latch. The IRC then generates a new 
level number for the highest-priority interrupt that may be latched in the IRQ 
Latch. 

The interrupt request latency is ten system clock cycles. That is, the corresponding 
interrupt level is asserted on IRL<3:0> ten clock cycles after an interrupt request is 
recognized by the IRe. 

2.2. 1 Polling 

The processor can poll interrupts by reading either the IRQ Latch via the Request 
Sense register, or the IRL Latch via the IRL Latch/Clear register. 

The processor may mask interrupts that it polls via the Request Sense register by 
masking either the IRQ Latch or the IRL Latch. The processor then periodically 
reads the IRQ Latch and clears interrupts from the latch when they are serviced. 
The IRL Latch may remain unmasked to allow interrupt-driven servicing of some 
interrupts if the polled interrupts are masked with the IRQ Latch mask. 

The processor may mask all interrupts when it polls interrupts via the IRL Latch/ 
Clear register by masking the IRL Latch. The processor then periodically reads 

MB86931 Interrupt Request Controller - IRC Operation 

A2-5 

• ! 



SP ARClite User's Manual 

the IRL Latch for the highest-level pending interrupt and clears both the IRL 
Latch and the interrupt from the IRQ Latch once the interrupt is serviced. 

2.2.2 Initialization 

All IRC registers are cleared to 0 by Reset. This results in high-level trigger mode 
for all interrupts, and all masks disabled. 

After reset, the interrupt trigger modes should be changed after the interrupts are 
masked with the IRQ mask to eliminate false interrupts. The masks can then be 
disabled. 

2.2.3 Noise Immunity 

The IRQ pins are sampled at the rising edge of the IRC internal clock. The pin 
value must be verified by three successive samples for recognition by the IRe. For 
example, a level trigger must be asserted for at least two internal clock periods 
(four system clock periods) for recognition. 

Figure A2-2 shows the IRQ pin sample timing. 

Clock 

Internal Clock 

IRQx ¢ Not Accepted ¢ Not Accepted 

IRQx ¢ Not Accepted ¢ NO 
'--__ ~----' Accepted 

IRQx AcceptedQ I -k 
(A) (8) 

(A) When in high level or rising edge mode. (6) When in low level or falling edge mode. 

Figure A2-2. -IRQ Pin Sample Timing 

MB86931 Interrupt Request Controller - IRC Operation 

A2-6 



R 

111111111111111l1lil1lil1li111111l1lil1li111111 

MB86931 Timers 

The MB86931 features four independent general-purpose 16-bit timers. Each 
timer can be independently programmed to operate in one of the following five 
modes: 

• Mode 0 - Periodic Interrupt Mode 

• Mode 1 - Timeout Interrupt Mode 

• Mode 2 - Square Wave Generator Mode 

• Mode 3 - Software Trigger Watchdog Mode 

• Mode 4 - External Trigger Watchdog Mode. 

The peripheral clock (PCLK) is an internal MB86931 clock that operates at one 
half the frequency of the processor clock. 

Timer 0 and Timer 1 have clock prescalers that can be independently clocked by 
PCLK, or by asynchronous external clocks (ACKx). The timers themselves can be 
independently clocked by PCLK, by the prescaler output clock (PRSCKx), or by 
an external asynchronous clock (CLKx). 

Timer 2 and Timer 3 have no clock prescalers but can be clocked by PCLK, or by 
external asynchronous clocks. 

Figure A3-1shows a block diagram of the timers and prescalers and their clock 
options. The external prescaler input clocks are labeled ACKx, the prescaler out­
put clocks are labeled PRSCKx, the internal clock is labeled PCLK, and the exter-

MB86931 Timers -

A3-1 

-



- -- ~-

SP ARClite User's Manual 

nal timer clocks are labeled CLKx. Note that the asynchronous external clocks are 
synchronized internally with the peripheral clock. 

3. 1 Timer Registers 
Each timer has a Timer Control register, a Reload register, and a Count register 
for timer configuration and control. Timer 0 and Timer 1 also have Prescaler reg­
isters for prescaler control. Table A3-1 shows the timer register map. 

PCLK~~ ____ ~P~en~'p~he~m~IC~loc~k __________ *-______ -* ____ ~ 

Figure A3-1. Timer Prescaler Block Diagram 

Table A3-1: Timer Register Map 

Address Functional Unit 

OxOOOOO240 PrescalerO 

OxOOOOO244 Timer 0 

OxOOOOO248 

OxOOOOO24C 

OxOOOOO250 Prescaler 1 

OxOOOOO254 Timer 1 

OxOOOOO258 

OxOOOOO25C 

OxOOOOO260 Reserved 

OxOOOOO264 Timer 2 

OxOOOOO268 

OxOOOOO26C 

MB86931 Timers - Timer Registers 

A3-2 

Register Name Access 

Prescale Register 0 RIW 

Timer Control Register 0 RIW 

Reload Value 0 RIW 

Count Value 0 R 

Prescale Register 1 RIW 

Timer Control Register 1 RIW 

Reload Value 1 RIW 

Count Value 1 R 

****** -
Timer Control Register 2 RIW 

Reload Value 2 RIW 

Count Value 2 R 

Reset State 

Ox01 

0 

0 

0 

Ox01 

0 

0 

0 

-
0 

0 

0 



cO 
FUJITSU 

Table A3·1: Timer Register Map (Continued) 

Address Functional Unit Register Name Access Reset State 

OxOOOO0270 Reserved ****** - -
OxOOOO0274 Timer 3 Timer Control Register 3 RIW 0 

OxOOOO0278 Reload Value 3 RIW 0 

OxOOOO027C Count Value 3 R 0 

3. 1 • 1 Prescaler Register 

The Prescaler register allows selection of the prescaler clock, the prescaler output, 
and the prescaler counter value. 

31 o 

reserved PCNTR 

Address OxOO000240 
OxOO000250 Test: Prescaler Test Mode (1= Test) 
(ASI = OxOl) EXT: External Clock (1 =External Clock) 

Bit 15: External Clock - Selects the prescaler clock source as follows: 

O:PCLK. 
1 : External clock. 

Bit 14: Prescaler Test Mode - Set to 1 for testing. The prescaler test mode is intended for factory 
use only, and Test should therefore remain 0 during normal operation. 

Bits 13-11: Reserved. 

Bits 10-8: Prescaler Output Select - Selects one of the eight prescaler outputs for PRSCKx, the 
prescaler clock output. Each selection is one half the frequency of the previous selection. 
A 0 in this field selects the prescaler counter output; a 1 selects one half the frequency of 
the prescaler counter output, etc. 

Bits 7-0: Prescaler Counter Value - Determines the prescaler counter output frequency. The value 
in this field is loaded into the prescaler counter when it is written, and when timeout 
occurs. The prescaler counter value must be 1 or greater; a value of 1 forces the pres­
caler output clock (PRSCKx) low. 

Reset initializes the Prescaler registers to OxOl. This initial state selects internal 
prescaler clock, the highest prescaler output clock frequency, and a Prescaler 
value of 1 (PRSCK forced low). 

The reserved fields should be written "0" for future software compatibility. 

MB86931 Timers - Timer Registers 

A3-3 

• 



SP ARClite User's Manual 

3. 1.2 Timer Control Registers (TCR) 

The TCR enables and disables the timer and allows selection and control of the 
timer In and Out signals, clock sources, and operation modes. 

31 

Address Ox00000244 
Ox00000254 
Ox00000264 
Ox00000274 
(ASI ~ OxOl) 

reserved 

16 15 14 13 12 11 10 9 8 7 6 5 

Output Signal Control 

Input Signal Level (1 ~High) 

Timer Test (1~ Test Mode) -----' 

Count Enable (I~Enable) ------' 

Output Signal Invert (l~invert) -------------' 

3 2 o 

Event 

Bit 15: Output Signal Level - A read-only status bit for reading the current Out signal level. When 
the Out signal level is high, the OUT status bit is 1. 

Bit 14: Input Signal Level - A read-only status bit for reading the current In signal level. When the 
In signal level is high, the In status bit is 1. 

Bit 13: Reserved. 

Bit 12: Timer Test Mode - Set to 1 for testing. The timer test mode is intended for factory use 
only, and should therefore remain O. 

Bit 11: Count Enable - Enables the timer when set to 1; disables the timer when cleared to O. The 
timer and its prescaler should be configured for desired operation when the timer is 
enabled. 

Bits 10-9: Clock Select - Selects the timer clock source as follows: 

CLKSEL 

0 

1 

2 

3 

Clock Source 

Internal Clock 

External Clock 

Prescaler Output Clock (Timers 0 and 1 only) 

Reserved 

The external and prescaler clocks are synchronized with the internal clock before being 
applied to the timer. 

Caution: The external clock frequency must be no higher than 1/3 of the peripheral clock (PCLK) frequency. 

Bits 8-7: Out Signal Control - Selects the state of the Out pin while the timer is stopped as follows: 

OUTCTL Out State 

0 Remains in the current state 

1 Asserted high 

2 Asserted low 

3 Reserved. 

MB86931 Timers - Timer Registers 

A3-4 



Bit 6: 

Bits 5-3: 

Mode 

0 

1 

2 

3 

4 

5-7 

Bits 2:0: 

Event 

0 

1 

2 

3 

4 

Invert - Inverts the timer Out signal when set to 1. 

Mode Select - Selects the timer mode of operation as follow: 

Timer Operating Mode 

Periodic Interrupt Mode 

Timeout Interrupt Mode 

Square Wave Generator Mode 

Software Trigger Watchdog Mode 

External Trigger Watchdog Mode 

Reserved 

Event Select - Selects the timer event gate or trigger as follow: 

Gate or Trigger Applicable Modes 

Low Level Gate 0,1,2 

High Level Gate 0,1,2 

Rising Edge Trigger 4 

Falling Edge Trigger 4 

Rising and Falling Edge Triggers 4 

The gate or trigger is the In signal. 

cO 
FUJITSU 

Reset initializes the Timer Control register to O. The reserved fields should be 
written "0" for future software compatibility. 

3. 1.3 Reload Register 

The Reload register holds the initial value of the timer counter. 

31 16 15 o 

reserved Reload Value 

Address OxOoo00248, OxOOoo0258, Ox00000268, OxOoo00278 (ASI - Ox01) 

Bits 15-0: Timer Reload Value - In Modes 0 and 2, the Timer Reload Value is automatically loaded 
into the counter when a timeout occurs. In Mode 2, the Timer Reload Value is compared 
with the Count Register value to control the Out signal. 

Reset initializes the Reload register to O. The reserved field should be written "0" 
for future software compatibility. 

MB86931 Timers - Timer Registers 

A3-S 

--



SP ARClite User's Manual 

3. 1.4 Count Register 

The Count register is a read-only register that holds the current timer counter 
value. 

31 16 15 

reserved 

Address Ox0000024C, OxOO00025C, Ox0000026C, OxOOO0027C (ASI ~ Ox01) 

Bits 15-0: Timer Count Value - The current timer count value. 

Reset initializes the Count register to O. 

CounlValue 

o 

3.2 Prescaler Operation 
Figure A3-2 shows a prescaler block diagram consisting of an 8-bit counter, cas­
caded divide-by-two flip-flops, and selector logic. 

Once the prescaler counter is loaded, the counter decrements at its clocked fre­
quency and generates an output to the cascaded flip-flops. The flip-flops succes­
sively divide by two to provide eight frequencies for selection by the selector 
logic. The selector logic selects the output of the counter or one of the divided out­
puts as the prescaler clock output according to the value in the Prescaler register 
Select field. The clock output, PRSCKx, may be used to clock the timer, and is 
available for external use at the PRSCKx package pin. 

CLOCK 

PROCK~------------------------------i 

PRseK for internal use 

Figure A3-2. Prescaler Block Diagram 

3.2. 1 Output Clock Duty Cycles 

The clocks generated by the cascaded flip-flops have 50% duty cycles when 
selected with 1-7 in the Prescaler register Select field. 

MB86931 Timers - Prescaler Operation 

A3-6 



OJ 
FUJITSU 

The clock generated directly by the prescaler counter, selected with 0 in the Pres­
caler Select field, is not a 50% duty cycle clock. The clock is asserted high until the 
counter reaches 1, and is then asserted low for one internal clock cycle. The clock 
is then asserted back to the high level while the counter reloads and counts down 
to 1 again. The clock is therefore low for one internal clock cycle during the count­
down period. 

The timer operation is independent of the prescaler clock duty cycle. 

3.2.2 Counter Loading 

The 8-bit prescaler counter is loaded with the value in the Prescaler Register 
PCNTR field in three ways as follows: 

1. When the 8-bit prescaler counter decrements to o. 
2. By writing to the PCNTR field. 

3. When the timer reload value is loaded or reloaded into the companion 
timer if the timer is clocked by the prescaler output clock, and the 
prescaler is clocked by PCLK. CLKSEL must be 2 in the companion 
timer's Timer Control register (prescaler output clock selected to clock 
the timer) and Ext must be 0 in the Prescaler register for this to occur. 

The cascaded flip-flops in the divide chain are cleared when the prescaler counter 
is loaded. 

When the prescaler is operating in the external clock mode, a new counter value 
written into the Prescaler register PCNTR field is not loaded into the Prescaler 
counter until the next rising edge of the PRSCKx prescaler clock output. The pres­
caler should therefore be changed to internal clock mode before writing the 
PCNTR field to minimize latency in loading the counter. 

3.3 Timer Operation 
Figure A3-3 shows a block diagram of a timer. Each timer is identical, but only 
Timer 0 and Timer 1 have prescaler clock sources. 

Timer 0 and Timer 1 can be clocked with the internal clock, an external clock, or a 
prescaler clock. Timer 2 and Timer 3 can be clocked with the internal clock or with 
an external clock. Timer clock selection is controlled by the CLKSEL field in the 
TCR. 

MB86931 Timers - Timer Operation 

A3-7 



SP ARClite User's Manual 

TIMER 0 
00-15 

PRSCKO ---1-+1 
MPX 

CLKO ---1-+1 

INO Input Control 

00-15 

PRSCK1 

CLK1 

IN1 

00-15 

CLK2 

IN2 

00-15 

CLK3 

IN3 

TIMER1 

TIMER2 

TIMER3 

3.3. 1 In Signal 

Figure A3-3. Timer Block Diagram 

Output 
Control 

1--1----' OUTO 

OUT1 

OUT2 

OUT3 

The In signal can be used as a gating signal (i.e. to temporarily stop the timer by 
masking the timer clock) in Modes 0, 1, 2 and 3, and as a trigger event for counter 
operation in Mode 4. 

To use the In signal as a gating signal in Modes 0,1,2 and 3, the In signal active 
level (low level or high level gate) is selected in the TCR Event Select field. The In 
signal level must be asserted at the active level during an entire clock cycle to 
mask the clock. 

Figure A3-4 shows In signal gate timing. 

When using the In signal as a triggering signal in Mode 4, the event field in the 
TCR determines the In signal event to be a rising edge, a falling edge, or both a 
rising edge and a falling edge. When the In signal triggers the timer, the Out sig­
nal is asserted (to low if the Inv bit in the TCR is 0; to high if the Inv bit in the TCR 

MB86931 Timers - Timer Operation 

A3-8 



cP 
FUJITSU 

is 1), and count down from the value in the Reload Value register begins. At time­
out, the Out signal is set if INV = 0 (and reset if INV = 1). 

Figure A3-5 shows In signal trigger timing. 

External 
Clock 

In (1) 

(1) Clock gated off; counter operation suspended. 

Figure A3-4. In Signal Gate Timing 

PCLK 

External 
Clock 

In 

Out 

Counter 2 2 1 o 

Figure A3-S. In Signal Trigger Timing (Rising Edge Trigger) 

3.3.2 Out Signal 
The Out signal is used to indicate timeout, the occurrence of an event at the In pin, 
or the half-value of the Reload Value register during countdown. The Out signal 
active level is controlled by the Out Signal Control field and the Invert control bit 
in the TCR. The Out Signal Control field controls the state of the Out signal while 
the timer is stopped. The Invert bit inverts the Out signal when set to 1. 

The Out signal is typically tied to an interrupt request controller to generate a 
processor interrupt at timeout in Modes 0, 1, 3, and 4, and is used as a square 
wave in Mode 2. 

MB86931 Timers - Timer Operation 

A3-9 

• 



SP ARClite User's Manual 

The following are the conditions for resetting and setting the Out signal level for 
the various timer modes during timer operation, with the TCR Invert bit cleared 
toO: 

Mode Out Signal Reset Out Signal Set 

0 Writing Reload Register; Reading Count Value Register Timeout 

1 Writing Reload Register; Reading Count Value Register Timeout 

2 When the half-value of the Reload Register is reached. Timeout 

3 Writing the Reload Register Timeout 

4 When a trigger event occurs at the In pin Timeout 

The Out signal is inverted when the Invert bit is set to 1. 

3.3.3 Starting and Stopping the Timer 
The timers are stopped following reset. Timer operation is initiated in all modes 
by first writing the timer mode in the TCR Mode field and setting the Count 
Enable control bit in the TCR to 1. 

Timer operation in Modes 0, 1,2, and 3 begins when the Reload register is writ­
ten. The Reload register value is transferred to the timer counter when the Reload 
register is written, and the counter begins decrementing. 

Timer operation in Mode 4 begins when a trigger event occurs at the In pin. The 
Reload register value is transferred to the timer counter when the trigger event 
occurs, and the counter begins decrementing. 

Once operating, each timer is stopped in the various operating modes as follows: 

• Modes 0: Writing the TCR or active In gate. 

• Mode 1: Writing the TCR or active In gate or timeout 

• Mode 2: Writing the TCR or active In gate. 

• Mode 3: Writing the TCR or active In gate or timeout. 

• Mode 4: Writing the TCR or timeout. 

Note that the timers can be halted in all operating modes by writing to the TCR. 

In gate timer control is described in Section 3.3.1; timer starting and halting is 
summarized in Table A3-2. 

3.3.4 Timer Operating Modes 
Each timer supports five operating modes: periodic interrupt mode (Mode 0), 
timeout interrupt mode (Mode 1), square wave generator mode (Mode 2), soft-

MB86931 Timers - Timer Operation 

A3-W 



OJ 
FUJITSU 

ware trigger watchdog mode (Mode 3), and external trigger watchdog mode 
(Mode 4). The timer operating mode is controlled by the Mode field in the TCR. 

Periodic Interrupt Mode (Mode 0) 

The Out signal is initially set to the high or low state, depending on the OUTCTL 
field in the TCR. The timer is enabled (CE=l) and the mode selected. The counter 
then begins decrementing and the Out signal is driven low when the Reload reg­
ister is written with the reload value. 

When timeout occurs (counter = 0), the timer Out signal transitions to the high 
level. The Reload register value loads into the counter at timeout, and the counter 
continues decrementing. The Out signal remains at the high level until the 
Counter register is read or the Reload register is written. 

The Out levels are inverted if Inv = 1 in the TCR. 

Timeout Interrupt Mode (Mode J) 

This mode differs from Mode 0 at timeout. In Mode I, the timer halts at timeout 
instead of reloading and decrementing the counter. 

The Out signal is initially set to the high or low state, depending on the OUTCTL 
field in the TCR. The timer is enabled (CE=l) and the mode selected. The counter 
then begins decrementing and the Out signal is driven low when the Reload reg­
ister is written with the reload value. 

When timeout occurs (counter = 0), the timer Out signal transitions to the high 
level, and the counter halts. The Out signal remains at the high level and the 
counter remains halted until the Count register is read or the Reload register is 
written. When the Count register is read or the Reload register is written, the Out 
signal is asserted low, the Reload register value loads into the timer counter, and 
the counter decrements. 

The Out levels are inverted if Inv = 1 in the TCR. 

Square Wave Generator Mode (Mode 2) 

This mode differs from Mode 0 in the transition of the Out signal. 

The Out signal is initially set to the high or low state, depending on the OUTCTL 
field in the TCR. The timer is enabled (CE=l) and the mode selected. The counter 
then begins decrementing when the Reload register is written with the reload 
value. 

When the counter decrements to half of the reload value, the Out signal is driven 
to the low level. When timeout occurs (counter = 0), the timer Out signal transi-

MB86931 Timers - Timer Operation 

A3-11 

.. 
i· 



SP ARClite User's Manual 

tions to the high level. The counter reloads at timeout, and continues decrement­
ing, repeating the Out level changes. The Out signal is therefore a square wave. 

The following are the square wave high and low times for various Reload register 
values represented by liN": 

N Period High Level Low Level 
(N+1) (N+1)/2+1 N/2 

0 - -
1 2 1 

2 3 2 1 

3 4 3 1 

4 5 3 2 

5 6 4 2 

6 7 4 3 

For N ~ 2, the period of the square wave is N+ 1, the high level width is (N+ 1)/2+ 1, 
and the low level is N12. N = 0 and N = 1 are special cases, as shown in the table. 

The Out levels are inverted if Inv = 1 in the TCR. 

Software Trigger Watchdog Mode (Mode 3) 

The Out signal is initially set to the high or low state, depending on the OUTCTL 
field in the TCR. The timer is enabled (CE=1) and the mode selected. The counter 
then begins decrementing and the Out signal is driven low when the Reload reg­
ister is written with the reload value. 

At timeout, the counter halts and the Out signal transitions to the high level. 
However, writing to the Reload register before timeout updates the counter with 
the reload value, delaying timeout and the Out signal transition to the high level. 

The timer is restarted after halting at timeout by writing to the Reload register. 
The value written to the Reload register is loaded into the timer counter by timer 
logic, restarting the watchdog operation. 

The Out levels are inverted if Inv = 1 in the TCR. 

Hardware Trigger Watchdog Mode (Mode 4) 

The Out signal is initially set to the high or low state, depending on the OUTCTL 
field in the TCR. 

The timer is enabled (CE=l) and the mode selected. The counter then begins dec­
rementing and the Out signal is driven low when a trigger event occurs at the In 
pin. 

MB86931 Timers - Timer Operation 

A3-12 



OJ 
FUJITSU 

At timeout, the counter halts and the Out signal transitions to the high level. 
However, the occurrence of another event at the In pin before timeout updates the 
counter with the reload value, delaying timeout and the Out signal transition to 
the high level. 

The timer is restarted after halting at timeout by another trigger event at the In 
pin. The In signal event is determined by the Event field in the TCR and can be a 
rising edge, falling edge, or both rising and falling edges. 

The Out levels are inverted if Inv = 1 in the TCR. 

Table A3-2 summarizes the timer operating modes. Figures A3-6 through A3-10 
show timing for the timer modes. 

Table 13·2: Timer Operating Mode Summary 

Go/Halt Initial Out Signal Control Function 
Value of "IN" 

Go Halt Loading Reset Set Signal 

ModeO Reload Reg TCR Reload Reg Reload Reg Timeout Gate 

Periodic 
Write after Write, Write, Write, Count ("H" Level) 

Interrupt 
Mode Set In Gate Timeout Reg Read ("L" Level) 
and CE=1 

Mode1 Reload Reg TCR Reload Reg Reload Reg Timeout Gate 

Timeout 
Write After Write, Write Write, Count ("H" Level) 

Interrupt 
Mode Set In Gate, Reg Read ("L" Level) 
and CE=1 Timeout 

Mode2 Reload Reg TCR Reload Reg Equality Timeout Gate 
Square Write After Write, Write, Detection ("H" Level) 
Wave Mode Set In Gate Timeout (1/2 Reload ("L" Level) 
Generator and CE=1 Value) 

Mode3 Reload Reg TCR Reload Reg Reload Reg Timeout Gate 
Software Write After Write, Write Write ("H" Level) 
Trigger Mode Set Timoout ("L" Level) 
Watchdog and CE=1 

Mode4 Input Event TCR Input Event Input Event Timeout Rise-Edge/ 
Hardware Write, Fall-Edge/ 
Trigger Timeout Both 
Watchdog 

MB86931 Timers - Timer Operation 

A3-13 



SP ARClite User's Manual 

PCLK 

Mode 
Set Reload 

RegWrite l n 1--------------------------
Strobe LJ Lf 

I 
Reg Read 

l Strobe 

Reload 
Register 

COUNT 

GOIHALT 

OUTx 

,..:s;,;;.et'-----.urs.:..:et--_,ur~.:..:et--_,L 

Figure A3-6. Periodic Interrupt Timing (Mode 0) Using the Internal Peripheral 
Clock 

MB86931 Timers - Timer Operation 

A3-14 



PCLK 

Reg Write 
Strobe 

Reg Read 
Strobe 

Mode 
Sel Reloa,d _________ --, 

cP 
FUJITSU 

___ t-_________ ---,i--___________ C.:.:.c,0unlvalue 

Reload X X 
Register ___ --J '-~ __________ _" L5 ___________ ,--__ 

COUNT 

GOIHALT HALT GO 

Sel Resel ,...:Se""I ___ --, Reset 

OUTx niL 
-------' '------' 

Figure A3-7. Timeout Interrupt Timing (Mode 1) Using the Internal Peripheral 
Clock 

MB86931 Timers - Timer Operation 

A3-15 



SP ARClite User's Manual 

PCLK 

Reg Write 
Strobe 

Reg Read 
Strobe 

Reload 
Register 

COUNT 

GOIHALT 

Load 

~ Load 
-+---; 

"1 ,..--_____ --, Reset 

OUTx J 
"1. When OUT control bit of TCR is set. 

~ Reload ~ Reload 

,..:Se:::.t:....-__ --, Reset ,..::s:::.et:....-__ --, Reset Set 

'-----II 
Figure A3·8. Square Wave Generator Timing (Mode 2) Using the Internal 

Peripheral Clock 

MB86931 Timers - Timer Operation 

A3-16 



PCLK 

Reg Write 
Strobe 

Reg Read 
Strobe 

Reload 
Register 

Mode 
Set Reload 

Load 

Reload 

.. 

cP 
FUJITSU 

~ Load ~ Reload 

COUNT +--~~,-o __________ _ 

I 

GOIHALT l HALT GO HALT 

"1 Reset ,..:s:..;..et'--________ _ 

OUTx ~'--____________ ~ 
"1. When OUT control bit is set. 

Figure A3·9. Software Trigger Watchdog Timing (Mode 3) Using the Internal 
Peripheral Clock 

MB86931 Timers - Timer Operation 

A3-17 

• 



SP ARClite User's Manual 

PCLK 

Mode 
Set Reload 

RegWrite l n 1"'-------------------------
Strobe r r 

Reg Read II 1 
Strobe 

I 
I Load 

Re!oad =p~6----------------------
RegIster . 

I Load Reload Load 

COUNT 

I 
I 
I 
I 
I 

~ 
n ~,D 

In I 
I 
I 

I GOIHALT HALT GO GO L I ... 
*1 Reset Set Reset 

OUTx J I 
*1. When OUT control bit is set. 

Figure A3-10. Hardware Trigger Watchdog Timing (Mode 4) Using the 
Internal Peripheral Clock 

MB86931 Timers - Timer Operation 

A3-18 



11111111l1li111111111111II1II111111111111 

MB86931 Serial Data 
TransmiHers And Receivers 

The MB86931 features two independent serial communication units designated 
SDTRO and SDTR1. The SDTRs support synchronous and asynchronous data 
transfer modes, and are program-compatible with existing industry-standard 
serial communication devices. 

Each SDTR supports the following synchronous mode features: 

• 5 to 8 bit data character lengths 

• Parity option 
• One (MONOSYNC) or two (BISYNC) synchronizing characters 

Each SDTR supports the following asynchronous mode features: 

• 5 to 8 bit data character lengths 

• Parity and stop bit options 

• Parity, overrun, and framing error detection 

• Divide by 16 or 64 clock options. 

• 1, 1.5, or 2 bit length option for stop bit 

• Break detection. 

The SDTR transmitters and receivers are double buffered and operate indepen­
dently to allow full-duplex operation. The transmit/receive clock can be exter-

MB86931 Serial Data Transmitters And Receivers-

A4-1 

-



SP ARClite User's Manual 

nally generated, or generated by an MB86931 timer. Each SDTR features 
handshaking signals for modem control. 

Figure A4-1 shows a block diagram of an SDTR. 

4. 1 SDTR Registers 
Each STDR has eight 8-bit registers that can be accessed by the processor. Four 
registers, the Transmit Data register, the Receive Data register, the Status register, 
and the Control Data Buffer register, are directly accessed by the processor. The 
remaining four registers, the Mode register, the Command register, and the two 
Synchronizing Character registers, are hidden registers that are indirectly 
accessed by the processor through the Control Data Buffer register. 

SDTR registers require 14 system clock cycles to initialize, 20 system clock cycles 
to update when written during asynchronous mode operation, and 40 system 
clock cycles to update when written during synchronous mode operation 

4. 1. 1 Hidden Register Access 

The Mode, Command, and Synchronous Character registers are accessed sequen­
tially by writing to the Control Data Buffer register (see flowcharts, Figure A4-2 
and Figure A4-7). 

MB86931 Serial Data Transmitters And Receivers - SDTR Registers 

A4-2 



0<7:0>* 

-DSR 

RCVDT 

RCLK 

SYBRK 

RxRDY 

SCLK --------, 

REGISTER SELECTS" =ITl 
RIW" 

-RESET 

WR Only 

Control J--

-- Data Control 
Buffer 

Register 

WROnly 

XDJNT" 
Transmitter ::r-C-..... Data Buffer 

Register 
~ 

-
L--

5:1 
Data - Status Selector 

Register r---

" -

- Sync-- ::r- -C Character -----. 
Receiver 

I-
Register -- - (Hidden) 

~Internat Signals (also see Figure AD-2) 

AD Only 

-- Status 
Data 

IL~ 
Buffer 

• Register 

RD Only 
Data 

o--..... Receiver V~~ Data Buffer 

• Register 

• 
Mode 

Register 

.--- (Hidden) 

0--..... 
Command 
Register 

.-
(Hidden) 

- ..... 
TransmiUet 

-

Figure A4-1. SDTR Block Diagram 

00 
FUJITSU 

0--

~ 

07-0" 

XSCNT" 

-RTS 

DTR 

TRNDT 

TxEMP 

TxRDY 

-TCLK 

--CTS 

After a hardware or software reset, the first byte written to the Control Data 
Buffer register is loaded into the Mode register. The data written into the Mode 
register determines whether SDTR operates in synchronous or asynchronous 
mode, and selects the number of SYNCH characters if the mode is synchronous_ 
(See Command Register for a software reset description) 

Asynchronous Mode Register Access 

In the asynchronous mode, all bytes written to the Control Data Buffer register 
after the Mode register is written are loaded into the Command register. The Syn­
chronizing Character registers are not accessed in the asynchronous mode. 

Synchronous Mode Register Access 

In the synchronous mode, the second byte written to the Control Data Buffer reg­
ister after reset is loaded into the first Synchronous Character register. 

MB86931 Serial Data Transmitters And Receivers - SDTR Registers 

A4-3 

.~ 
I 



SP ARClite User's Manual 

If one SYNCH character was specified in the Mode register, the third byte written 
to the Control Data Buffer register is loaded into the Command register, and fur­
ther writes to the Control Data Buffer register are loaded into the Command reg­
ister until a reset occurs. 

If two SYNCH characters were specified in the Mode register, the second and 
third bytes written to the Control Data Buffer register are loaded into the two 
Synchronizing Character registers, and further writes to the Control Data Buffer 
register are loaded into the Command register until a reset occurs. 

4. 1.2 SDTR Register Map 

Table AD-4 shows the STDR register map. Note that the Transmit Data register 
and the Receive Data register in each SDTR share the same address, and that the 
Control Data Buffer register and the Status register share the same address. Selec­
tion of one of the registers at each address is determined by whether the access 
operation is a read or a write. The Transmit Data register and the Control Data 
Buffer registers are write-only registers that are selected during write operations; 
the Receive Data register and the Status register are read-only registers that are 
selected during read operations. 

4. 1.3 Control Data BuRer Register 

This is a write-only register through which the processor writes to the Mode reg­
ister, the Command register, and the Synchronous Character registers. 

31 

reserved 

Address Ox00000224, Ox00000234 (ASI = OxOI) 

Table 14·1: SDTR Register Map 

Functional Unit Access Address Bits <31:8> 

SDTRO Write OxOOOOO220 OxOO (RSVD) 

Read OxOOOOO220 OxOO (RSVD) 

Write OxOOOOO224 OxOO (RSVD) 

Read OxOOOOO224 OxOO (RSVD) 

Write OxOOOOO230 OxOO (RSVD) 

Read OxOOOOO230· OxOO (RSVD) 
SDTR 1 

Write OxOOOOO234 OxOO (RSVD) 

Read OxOOOOO234 OxOO (RSVD) 

MB86931 Serial Data Transmitters And Receivers - SDTR Registers 

A4-4 

870 

I Control Data Buffer Registers I 

Bits <7:0> 

Transmit Data Register 

Receive Data Register 

Control Data Buffer Register 

Status Data Buffer Register 

Transmit Data Register 

Receive Data Register 

Control Data Buffer Register 

Status Data Buffer Register 



cP 
FUJITSU 

4. 1.4 Mode Register 

The Mode register has two formats according to the mode selected in the Mode 
field. 

In the asynchronous mode, the register controls stop bit length, parity, data char­
acter length, and data transfer clock frequency as follow: 

31 

Bits 7-6: 

Bit 7 

0 

0 

1 

1 

Bit 5: 

Bit 4: 

Bits 3-2: 

Bit 3 

0 

0 

1 

1 

Bits 1-0: 

Bit 1 

0 

0 

reserved 

876543210 

Stop Bits (Number of Stop Bits) ~ I I 
Even Odd Parity (1 =Even Parity) ------.J 
Parity Enable (l=Enable Parity) -----' 

Data Bit Length ____ ...J 

Mode/Clock Select ---------' 

Stop Bit Length - Selects the length of the stop bits as follows: 

BitS Number of Stop Bits 

0 None 

1 1 

0 1.5 

1 5 

Even Odd Parity - Selects parity as follows: 

0: Odd parity. 
1: Even parity. 

Parity Enable - Enables parity when set to 1. 

Data Bit Length - Selects the number of character bits as follows: 

Bit 2 Number of Bits 

0 5 

1 6 

0 7 

1 8 

Mode/Clock Select- -Selects the operating mode and the asynchronous mode Baud rate 
as follows: 

Bit 0 

0 

1 

Mode/Clock Selection 

Synchronous Mode 

-TCLKlRCLK Freq. 

MB86931 Serial Data Transmitters And Receivers - SDTR Registers 

A4-5 

• 



SP ARClite User's Manual 

Bit 1 Bit 0 Mode/Clock Selection 

1 0 1/16 -TCLKlRCLK Freq. 

1 1 1164 -TCLKlRCLK Freq. 

-TCLK and RCLK may have different frequencies, resulting in different transmit­
ter and receiver Baud rates. The division factor selected in the Mode register 
applies to both the transmitter clock and the receiver clock. 

Each clock option selects the asynchronous mode. 

In the synchronous mode, the Mode register controls the number of synchroniz­
ing characters, internal or external synchronous mode operation, parity, and char­
acter length as follows: 

31 

reserved 

Synchronizing Characters (1=One Synchronizing Char.) 

Internal/External Synchronization Mode (1=External) 

Even Odd Parity (1=Even Parity) -----' 

Parity Enable (1=Enable Parity) -----' 

Data Bit Length --------' 

Mode/Clock Select (00 = Synchronous Mode) ----------' 

Bit 7: Synchronizing Characters - Selects the number of synchronizing characters as follows: 

0: Two synchronizing characters. 
1: One synchronization character. 

Bit 6: Internal/External Synchronization Mode - Selects the synchronization mode as follows: 

0: Internal synchronization mode. 
1: External synchronization mode. 

Bit 5: Even Odd Parity - Selects parity as follows: 

0: Odd parity. 
1: Even parity. 

Bit 4: Parity Enable - Enables parity when set to 1 . 

Bits 3-2: Data Bit Length - Selects the number of character bits as follows: 

Bit3 Bit2 Number of Bits 

0 0 5 

0 1 6 

1 0 7 

1 1 8 

Bits 1-0: Mode/Clock Select - This field must be 0 to select synChronous mode. 

MB86931 Serial Data Transmitters And Receivers - SDTR Registers 

A4-6 



FUPTSU 

Reset forces the Mode register to Ox42. This represents asynchronous mode with 
1/16 transmit/receive clock, 5-bit characters, disabled odd parity, and one stop 
bit. 

4. 1.5 Command Register 

The Command register enables the transmitter and receiver, resets the SDTR and 
the Error Flag Reset flag in the status register, controls modem handshaking sig­
nals, and enables hunt mode as follows: 

31 876543210 

I reserved I I I I I I I I I 
Enable Hunt Mode (l=Enable) ~ 

I Internal Reset (l=SDTR Reset) 

Request to Send 

Error Flag Reset (1 = Reset Error Flags) 

Break Signal 

Receiver Enable 

Data Set Ready 

Transmitter Enable 

Bit 7: Enable Hunt Mode - Enables hunt mode in the asynchronous mode as follows: 

0: Disable hunt mode. 
1: Enable hunt mode. 

The hunt mode enables the receiver to synchronize with the character stream by compar­
ing the received characters with the synchronizing characters in the Synchronizing Char­
acter registers. (See the SYBRK signal description). 

Bit 6: Internal Reset - Resets the SDTR as follows: 

0: No effect. 
1: SDTR reset. 

During operation, the processor must reset the SDTR by setting IRST to 1 to access the 
Mode register. 

Bit 5: Request to Send - The processor asserts the RTS modem handshaking output Signal as 
follows: 

0: High level. 
1: Low level 

RTS is typically set to 1 to request the modem to establish a carrier. 

Bit 4: Error Flag Reset - Resets all error flags in the Status register as follows: 

0: No effect. 
1: Resets error flags. 

Bit 3: Break Signal - Asserts break on the TRNDT output signal as follows: 

0: No effect. 
1: The TRNDT signal is forced low. 

MB86931 Serial Data Transmitters And Receivers - SDTR Registers 

A4-7 

.. 



SP ARClite User's Manual 

Bit 2: Receiver Enable - Enables the receiver as follows: 

0: Receiver disabled. 
1: Receiver enabled. 

Bit 1: Data Terminal Ready - The processor asserts the DTR modem handshaking output sig­
nal as follows: 

0: High level. 
1: Low level 

The DTR signal can be used to prepare the modem for transmission. 

Bit 0: Transmitter Enable - Enables the transmitter as follows: 

0: Transmitter disabled. 
1: Transmitter enabled. 

Reset does not affect the Command register. 

4. 1 .6 Synchronizing Character Registers 
The Synchronizing Character registers hold the synchronizing characters that are 
used in the synchronous mode. One synchronizing character is written to the first 
Synchronizing Character register in both the MONOSYNCH and the BISYNCH 
modes; a second synchronizing character is written to the second Synchronizing 
Character register in the BISYNCH mode. 

31 8 7 

reserved Synchronizing Register 0 

31 8 7 

reserved I Synchronizing Register 1 

4. 1 .7 Status Register 
The Status register is a read-only register that contains the Data Set Ready flag, 
transmitter status and error flags, and receiver status and error flags as follows: 

0 

0 

31 876543210 

I 

I reserved I I I I I I I I I 
Address OxOOOOO224 

Data Set Ready =.J 
I 

0x00000234 
(ASI=0x01) System Break (l=Break Detected) 

Framing Error (1 =Error) 

Overrun Error (1 =Error) 

Parity Error (l=Error) 

Transmitter Empty (1 =Empty) 

Receiver Ready (1 =Ready) 

Transmitter Ready 

Bit 7: Data Set Ready (DSR) - Indicates the state of the DSR modem input signal as follows: 

MB86931 Serial Data Transmitters And Receivers - SDTR Registers 

A4-8 



0: High level. 
1: Low level. 

OJ 
FUJITSU 

The DSR signal is asserted by the modem to indicate that it is ready for data transfer. 

Bit 6: System Break (SYBRK) - Indicates Synchronizing Character detection in the synchro­
nous mode and break code detection in the asynchronous mode as follows: 

0: No detection. 
1: Detection. 

Bit 5: Framing Error (FERR) - Indicates detection of a framing error as follows: 

0: No framing error. 
1: Framing error. 

This flag is set to 1 in the asynchronous mode if the number of stop bits following a char­
acter is not correct. 

Bit 4: Overrun Error (OERR) - Indicates detection of an overrun error as follows: 

0: No overrun error. 
1: Overrun error. 

This flag is set to 1 to indicate that data was transmitted to the receiver while the receiver 
buffer was full. 

Bit 3: Parity Error (PERR) - Indicates the detection of a parity error as follows: 

0: No parity error. 
1: Parity error. 

Bit 2: Transmitter Empty (TxEMP) - Indicates whether the transmitter data buffer is empty as 
follows: 

0: Transmitter buffer not empty. 
1: Transmitter buffer empty. 

Bit 1: Receiver Ready (RxRDY) - Indicates whether the receiver is ready for more data as fol­
lows: 

0: Receiver not ready. 
1: Receiver ready. 

Bit 0: Transmitter Ready (TxRDY) - Indicates that the transmitter is ready for more data as fol­
lows: 

0: Transmitter not ready. 
1: Transmitter ready. 

Reset sets the FERR, OERR, and PERR flags to 1. All other flags are undefined. 

MB86931 Serial Data Transmitters And Receivers - SDTR Registers 

A4-9 

• 



SP ARClite User's Manual 

4.1.8 Transmit Data Register 

The processor writes data to this write-only register for transfer to the transmit 
data buffer. 

31 8 7 o 

reserved Transmit Data Register 

Address OxOOO00220, OxOOOO0230 (ASI ~ OxOl) 

Reset forces the Transmit Data register to FF. 

4. 1 .9 Receive Data Register 

The processor reads data from the receiver data buffer through this read-only reg­
ister. 

31 8 7 0 

reserved I Receive Data Register I 
Address OXOOOOO220, OxOOO00230 (ASI ~ OxOl) 

Reset leaves the Receive Data register undefined. 

4.2 Asynchronous Mode Operation 
In the Asynchronous mode, each transmitted character is preceded by a low-level 
start bit. The start bit is immediately followed by 5 to 8 character bits, an optional 
parity bit, and one or two high-level stop bits. The number of character bits, the 
number of stop bits, and type of parity is selected in the Mode register. 

The receiver uses the high-to-Iow transition of the start bit to synchronize with the 
data stream. The interval between each character is a high level due to either the 
stop bit of the preceding character, or "marking" if the line is idle. When the 
receiver detects a start bit, it samples the received bit stream at bit-wide intervals 
based on the Baud rate to identify the character bits, the parity bit, and the stop 
bit(s). The parity bit that follows the character must be correct or a parity error 
occurs, and the stop bit(s) must be correct or a framing error occurs. 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-1O 



4.2. 1 Operation Description 

cP 
FUJITSU 

Figure A4-2 shows a flowchart for asynchronous mode operation. The flowchart 
begins with power-on reset, which must be held for a least six system clock cycles 
to ensure proper reset. Reset forces the SDTR I/O signals to the following states: 

Signal Initial Level 

-DTR High 

-RTS High 

TxRDY Low 

RxRDY Low 

TRNDT High 

TxEMP High 

SYBRK Low 

The Mode and Command registers are then written to program the SDTR. The 
SDTR can then be software-reset through the Command register to access the 
Mode register, or can be used to receive and transmit data. The Command regis­
ter can be accessed at any time during transmit/receive operations. 

Note that the transmitter must be enabled in the Command register and the -CTS 
input signal must be low to transmit data, and that the receiver must be enabled 
in the Command register to receive data. 

Writes to the Mode and Command registers may not have effect for as many as 10 
-TCLK/RCLK cycles. 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-11 



SPARClite User's Manual 

Execute Program Reset 

Yes 

No 

Figure A4-2. Asynchronous Mode Operation Flowchart 

4.2.2 Asynchronous Mode Timing 

Figures A4-3 through A4-10 show timing for various SDTR asynchronous trans­
mitter and receiver operations. The operations are typical and should be under­
stood before using the SDTR. 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-12 



-RESET 

SDTR Select 

(RSO) 

Reg Write Strobe 

~Negate 
Reset 

OJ 
FUJITSU 

B-Bit Dele Input ==X~---,X,--_---,X,--_---,X,--_---,X,--__ )C 

TxRDY _~ __ \~\\~0~\ ____________________________ ~IQD' 

-CTS 

® 

Notes: 

1. <D indicates the Mode register write interval; ® indicates the Command register write interval; ® indicates the data 
transmission interval. 

2. TxRDY is asserted high at <ID' because the -CTS input is low and the transmitter was enabled in the Command 
register. 

Figure A4-3. Asynchronous Mode Transmitter Initialization 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-13 

• " 



SP ARClite User's Manual 

I t=: 1 Character .1 

TRNDT 
IJTrM TTl 1~00101102D31D41D51 p 1 "H"I"H" L 1001011 ... 1051 p l·wl"H"1 

-TCLK ... JU1Jlfl 
TxEMP 

TxRDY 

Transmit Data 
Write 

Notes: 

Shifted out at falling edge 

71'---------­
ill 1 i Transmission tL-___ ---' Data Transfer End 

t Reset 
,..---------; 

Transmit 
Data Write 

1. Start and stop bits are added by the SDTR character-by-character in the asynchronous mode. 
2. The frame format is 6 bit character length. parity. and 2 stop bits. 
3. The TRNDT pin remains high after reset until the transmit data is written to the SDTR. 

, 

4. When the CPU writes transmit data to the SDTR. the SDTR appends start. parity. and stop bits to the data 
to form a frame. The SDTR transmits the frame to an extemal unit bit-by-bit althe falling edge of the -TCLK 
transmittar clock. 

5. The TxRDY input signal must be high before the CPU writes the transmit data. The TxRDY signal 
transitions to the low level when the CPU writes the data. then transitions back to the high level when the 
SDTR transfers the data to the transmit shift register. The CPU can then write more data to the transmitter. 

6. The TxEMP signal transitions to the low level when the CPU writes the transmit data to the SDTR. then 
transitions to the high level when the SDTR has transmitted all data in its transmit data buffar. 

Figure A4-4. Asynchronous Mode Data Transmission nming 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-14 



cP 
FUJITSU 

Break Code Output 

TRNDT 

Stop Bit 

Transmission ® 
Data Empty 

Transmission 
Ready 

Data Write 
Strobe 

--------------1-----~ 

Transmission 
Data Transfer End 

Transmission 
Data Write 

Break 
Command Write 

Mark State 

H H 

Break 
Command Reset 

RSO n II _-------' '---__ ---'I ~ 

Notes: 

1. The frame format is 5-bit character length, no parity, and one stop bit. 

2. A break is forced in interval (j) by setting the Break bit to 1 in the Command register. The transmitter 
continues normal operation, but the transmitter output signal (TRNDT) is forced low. Note that the TxEMP 
output signal is asserted in interval ® to indicate that the transmitter buffer is empty even during the break 
condition. 

3. The transmitter output transitions to the high level until more data is transmitted once the break is 
terminated by clearing the Break bit to O. 

Figure A4·5. Break Timing 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-15 



SP ARClite User's Manual 

(Data 1) (Data 2) Mark State 

mNM 1~1~lpIHI Lloolml~lool~lool~I~lpIH 

TxEMP _____________________ --'1 / 
// 

TxRDY lL.. ____ ...J1 
7 

DataWrlle 
Strobe 

r-----------~(r/------------------, 
Transmtt 
Data Write 

Transmit Disable 
Command Write 

f 
Transmit Enable 
Command Write 

R~ _________ ~F9~ _________ ~~ 
Notes: 
1. The frame fonnat is 8-btt character length, parity, and 1 stop bit length. 
2. When the transmitter is disabled by clearing the TxEN btt In the Command register, the SDTR continues 

transmitting all data in the transmitter buffer, then enter the mark state. While the transmitter is disabled, 
data that the CPU writes to the transmitter is not transmitted until the transmitter is enabled. TxRDY 
remains low while the transmitter is disabled, even W the transmitter data buffer is empty. 

Figure A4-6. Asynchronous Mode Transmit Disable Timing 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-16 



FUPTSU 

-flESET ~Negate 
Reset 

SDTR I I I I 

RSO"t" 

Reg Write Strobe U~~eWrite Ucommand 
Data Write 

B-Bit Data Input ~ F5 X X 36 X X 
Q) ® 

Notes: 
1. (j) indicates the Mode register write interval. 
2. ® indicates the Command register write interval. 

Figure A4-7. Asynchronous Mode Receiver Initialization 

RCVDT 

Divided 
Receive Clock 

RCLK 

Mark State :i"' .. t-----:Start Bit----I.~ 
I 

I 

tl2Cycleof 
Sampling 

Clock 

i ~ Count Start 

Data Bit 

JU1J1Jf!\~ J1JL J1JL 
!--32CLKs 

Notes: 
1. This figure shows start bit detection when the Baud rate is 1/16 or 1/64 the 

RCLK (receiver clock) frequency. The stert b~ must be low for at least 8 RCLK 
cycles if the Baud rate is 1116 the RCLK frequency, and must be low for at least 
32 RCLK cycles if the Baud rate is 1/64 the RCLK frequency. 

Figure A4-S. Start Bit Detection Timing 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-17 

~ 



SP ARClite User's Manual 

RCVDT 

RCLK 

FERR 

SYBRK 

RxRDY 

Receive Data 
Read Strobe 

Notes: 

Start Bn Data Bits Parity Bn Stop Bit 

I , + _ Stop Bit t· -'. DOD1D2D3D4 p 

L@H 
Data 1 Data 2 

,] j 
/t Framing Error 

/ f 

----------------------~~r-----------------~~~~ 
f 1 t Break Code 

'L. ________ ---'_ Detect 

U Datal Read 

1. The frame format is S-bit character length, parity, and 1 stop bit. 

2. In this example, the receiver detects a low level in the stop bit position and reports a framing error (FERR). 
The receiver then detects a low level that lasts an entire character interval and asserts SYBRK to report a 
break. SYBRK remains asserted until the RCVDT signal returns to the high level, or the SDTR is reset. 

Figure A4-9. Break Code Detection Timing 

MB86931 Serial Data Transmitters And Receivers - Asynchronous Mode Operation 

A4-18 



00 
FUJITSU 

RCVDT 

RCLK 

Status of Receiving 
Shift Register 

RxRDY 

(Command 
Write Strobe) 

Receive Data 
Read Strobe 

Notes: 

H + I + [ '+ I J1'---1.-1 ----,--I ---,-I ----,--I 
: Operation Stops 

u 
1. The frame format is 5-brt character length, no parity, 1 stop bit. 

2. When the receiver is disabled by clearing RxEN (bit 2) in the Command register to 0, the receiver stops all 
operation, including error detection. When the receiver is enabled, the receiver begins operation. If RCVDT 
is low when the receiver is enabled, the receiver recognizes the low level as a start brt and begins sampling 
the received data. 

Figure A4-1 o. Asynchronous Mode Receiver Disable Timing 

4.3 Synchronous Mode Operation 
In the synchronous mode, the receiver maintains bit synchronization with the 
received data by phase-locking its clock with the received data or by using an 
external clock that is already synchronized with the data. This allows the receiver 
to receive an indefinite number of successive characters without start bits or stop 
bits_ 

The receiver must determine, however, when a character string, sometimes called 
a frame, begins_ It does so with either SYNCH (synchronization) characters if 
operating in the internal synchronization mode (IESM = 0 in the Mode register), 
or with an external synchronization signal at the SYBRK pin (IESM = 1 in the 
Mode register). If the data transfer is interrupted, the transmitter re-establishes 
frame synchronization by re-transmitting the SYNCH characters. 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-19 



SP ARClite User's Manual 

4.3. 1 Operation Description 

Figure A4-11 shows a flowchart for synchronous mode operation. 

The Mode register is written immediately after reset. A synchronizing character is 
then written into the Synchronizing register, and a second synchronizing charac­
ter is written into the Synchronizing register if in the BISYNCH mode. The Com­
mand register is then writt~n. 

The STDR can then be software-reset through the Command register to access the 
Mode register, or can be used to receive and transmit data. The Command regis­
ter can be accessed at any time during transmit/receive operations. 

Writes to the Mode and Command registers may not have effect for as many as 20 
-TCLK/RCLK cycles. 

Execute Program Reset 

No 

Yes 

Figure A4-11. Synchronous Mode Operation Flowchart 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-20 



4.3.2 Synchronous Mode Timing 

OJ 
FUJITSU 

Figures A4-12 through A4-20 show timing for various SDTR synchronous trans­
mitter and receiver operations. The operations are typical and should be under­
stood before using the SDTR. 

-RESET ~ Negate 
Reset 

SDTR 

1. The Mode, Synchronizing Character, and Command registers are written as shown in the figure. The 
TxROY flag is asserted in interval ® because the transmitter was enabled in the Command register in 
interval (j) and ·CTS is low. TxROY is released in interval ~because data is written to the SOTR for 
transmission. 

Figure A4-12. Synchronous Mode TransmiHer Initialization 

MB86931 Serml Data Transmitters And Receivers - Synchronous Mode Operation 

A4-21 

-I 



SPARClite User's Manual 

Beginning Data Bit+ When the transmit data register Is empty, the 
of data Parity Bit synchronous character is transmitted 

TRNDT ~S_~ __ ~_1~ __ S_~ __ 2 __ ~_D_~_m __ ~I~----~I ___ Da_m __ ~I __ s_~_~_1~ __ S_~_C_2 __ ~I_sy_n_C_l 
-TCLK -jillflJ -1Jlft~1ft---1Jl---~1Jl-~-iJl--~1Il~-iJl-

TxEMP 1 .... ________________________ _ 
TxRDY 

Transmit Dsta 
Write 

Notes: 

1. The frame format is BISYNC mode with parity. 

f 

u 
Sync 1: 1st sync-character 
Sync 2: 2nd synC>-Character 

2. The dam to be transmitted is written to the SDTR when TxRDY is high. TxRDY transitions to the low level 
when the dam is transmitted. 

3. The SDTR transmits synchronization characters while the transmitter buffer is empty (TxEMP = 1) to 
maintain s~chronization. 

Figure A4-13. Synchronous Data Transmission Timing 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-22 



OJ 
FUJITSU 

TRNDT 

TxEMP 

TxRDY 

(Data Write 
Strobe) 

(DATA 2) 

Mark 
SIBIB 

(DATA 3) 

RSO __________ ~Il~ ____________ _ 
Notes: 

1. The frame format is S-bit character length and parity. 
2. If the transmitter is disabled during transmission (TxEN = 0 in Command nagister), the SDTR transmits all 

data in Its data buller then enters the mark state. If the transmitter is disabled during transmission of the 
first SYNC character in the BISYNC mode, the SDTR transmits the second SYNC character, then enters 
the mark state. 

3. The TxEMP signal remains high and the RxRDY signal remains low while the transmitter is disabled. 

Figure A4-14. Synchronous Mode Transmitter Disable Timing 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-23 

• 



SP ARClite User's Manual 

-RESET 

Module Select 

~Negate 
Reset 

1. The Mode, Synchronizing Character, and Command registere are wrillen as shown. The receiver must be 
enabled and the -OTR and -RTS input signals must be low to receive data. 

Figure A4-15. Synchronous Mode Receiver Initialization Timing 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-24 



OJ 
FUJITSU 

-RESET 

Module Select 

RSO(high) 

Write Strobe 

Data Bus Input 

Notes: 

~Negate 
Reset 

Mode Reg. 
Data 

1st Sync 
Character 

2nd Sync 
Character 

J 

Command 
Reg. Data 

1. The Mode, Synchronizing Character, and Command registers are written as shown. The receiver must be 
enabled and the -DTR and -RTS input signals must be low to receive data. 

Figure A4-16. Synchronous Mode Receiver Initialization Timing 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-25 

-



SP ARC lite User's Manual 

Beginning Data Bit+ 
of data Parity Bit 

Syn::f:;nc2 

i 
RCVDT Data Data Sync 1 Sync 2 I Sync 1 

RCLK ---JlflflJ ·--W--JUl~ lfL-----lJl------1fl------llt--lflft---
~ j SYBRK f 

-----' l<---_---=-fL 
Sync Character 
Detect Reset 

RxRDY fl 
-------,,-------; ---t-' 

Receive t 
Read Strobe 

RSO 

Notes: 

Sync 1: 1st sync-character 
Sync 2: 2nd sync-character 

Data Ready Reset 

[-
Receive 
Data Read 

1. The frame format is BISYNC mode and parity. 

UlJ 
Status 
Read 

u 

2. The SDTR compares the received synchronizing characters with the characters in the Synchronizing 
Character register. If there is a match, the SDTR asserts the SYBRK flag in the Status register to 1 and the 
SYBRK output signal to the high level to indicate that synchronization is established. 
The SDTR then reads the data and parity bit, and asserts RxRDY to indicate to the processor that data is 
available. The SDTR will not assert RxRDY unless frame synchronization is established. 

3. The SYBRK and RxRDY signals transition to the low state and the SYBRK flag clears to 0 when the 
processor reads the data. 

Figure A4-17. Synchronous Mode Data Reception Timing 

u-
Status 

Read 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-26 



FUPTSU 

I .. 
Parity Bit 

Beginning of data ~ 

* RCVDT I DO 01 I-I On P DO 

RCLK 5 

SYBRK ~"1 or Mor: 1'--_____ _ 
Cycles 

Notes: 

1. In the external synchronization mode, a high SYBRK external signal identifies the beginning of a frame. 
Synchronization is established when SYBRK is asserted to the high level while RCLK is high, and data is 
sampled on the following low-to-high transitions of RCLK. 

2. The SYBRK synchronizing signal should be asserted for at least one RCLK cycle. 

Figure A4-18. External Synchronization Mode Timing 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-27 

.-
I 



SP ARelite User's Manual 

RCLK lJlMMflfL_JlJlfUlJlfUUl 
l 

SYBRK ~ 

RxRDY r--lL __________ _ 

Command I .f"H;;;;t" .. 
Write Stroba LJ Mode Set 

Read Stroba 

RSO 

Notes: 

U Receive 
Data Read 

__ rL 
1. The frame fonnat is S-bit character length and parity. 

tJ Status 
": Data Read 

_----'F9'--__ 

2. Hunt mode is enabled in the Command register (EHM = 1) to initiate synchronizing character seerch by the 
receiver. Data stored in the receiver when hunt mode is enabled is cleared. 

Figure A4-19. Hunt Mode Timing 

MB86931 Serial Data Transmitters And Receivers - Synchronous Mode Operation 

A4-28 



RCVDT 

RCLK 

cO 
FUJITSU 

Status of Receiving 
Shift Register H+lool+l+ $1rn 33~ $100 = 

RxRDY 

(Command 
Write Strobe) 

Receive Data 
Read Strobe 

Notes: 

____ ~Il~ ________________ __ 

u 
1. The frame format is 5-bit character length and parity. 

2. The RxRDY status flag and the RxRDY output signal are masked when the receiver is disabled in the 
Command register (RxEN = 0). The RxRDY flag and the error flags operate normally while synchronization 
is maintained and data is received. 

3. The RxRDY status flag and output signal are unmasked when the receiver is enabled. 

Figure A4-20. Synchronous Mode Receiver Disable Timing 

4.4 Status Flag Operation And Timing 
The TxRDY flag sets to 1 to indicate that the transmitter buffer can accept more 
data from the processor for transmission. The TxRDY flag sets even if the trans­
mitter is disabled. 

The TxRDY output signal transitions to the high state to indicate that the trans­
mitter can accept more data and that the transmitter is enabled. 

The TxEMP flag sets to 1 to indicate that the transmitter is empty. 

Figure A4-21 shows TxRDY flag and output signal timing. 

Figure A4-22 shows parity error timing for odd parity. The data in 
Figure A4-22(a) has proper odd parity; the data in Figure A4-22(b) has incorrect 
even parity and generates a parity error (PERR = 1). 

MB86931 Serial Data Transmitters And Receivers - Status Flag Operation And Timing 

A4-29 

-



SP ARClite User's Manual 

Figure A4-23 shows receiver overrun. Character #5 is transmitted to the receiver 
while the receiver buffer is full, causing the error (OERR = 1). 

Figure A4-24 shows a framing error. The stop bit is low rather than high, causing 
the error (FERR = 1) 

TRNDT 

TRDY 

TRDYFlag 

StaluS 01 Transmission 
ShiH Reg. and Transmit 

Char 1 Char 2 Char 3 

Data BuHer Reg. ---\-1--------1---' 

Transmit Data 
Write Strobe 

Mark Char 4 I Char 5 

-C'TS _________ ---'t, Transmit Disa~le :~L _____ _ 

Figure A4-21. TxRDY Timing 

MB86931 Serial Data Transmitters And Receivers - Status Flag Operation And Timing 

A4-30 



RCVDT 

RCVDT 

Parity Error De­
tectSignal 

Mark State Start Bit Data Bits Stop BIt 

~Ir I' I 0 I 
ParityBn + 
, ! 

0 , I 0 , I H I L I' .<'1 
(a) Normal End 

Mark State Start Bn Data Bit. Stop Bn 

~Ir I 0 I 0 I 
Parity BIt + , ! 

0 , I o I' I H I L I' .<'1 

t Parity Error 
Occurs 

--------------------------~ 
(b) Abnormal End 

Figure A4-22. Parity Error Timing 

I' 

I' 

o I 

o I 

cP 
FUJITSU 

l Error Reset 
Command Execute 

RCVDT Data 1 

RRDY 

Overrun Error 
Datect Signal 

Receive Data 
Read Strobe 

Data 1 Data 2 

Overrun Error Occurs 
(Data Lost) 

t 

Data 4 

l Error Reset 
Command Execute 

Data 5 Data 6 

Figure A4-23. Overrun Error Timing 

MB86931 Serial Data Transmitters And Receivers - Status Flag Operation And Timing 

A4-31 



SP ARClite User's Manual 

ReVDT 

Framing Error 
Detect Signal 

____ f L 
Figure A4-24. Framing Errar Timing 

MB86931 Serial Data Transmitters And Receivers - Status Flag Operation And Timing 

A4-32 



R 

•••••••••••• 111111 

External Interface 

The following tables list the MB86931 external signals. The signals are grouped 
according to MPU interface, interrupt request, timer, and SDTR functions. 

5.1 Signals 
Signals in the tables that are preceded by a hyphen (-) are active low. Dual-func­
tion signals have two names that are separated by a slash (j). 

External Interface - Signals 

AS-l 

.. 



SP ARClite User's Manual 

5.1.1 Processor Signals Descriptions 

Signal 

-RESET 

XTAl1, 
(ClK_IN) 
XTAL2 

ClKOUT1 

ClKOUT2 

-lOCK 

-BREQ 

-BGRNT 

-ERROR 

External Interface - Signals 

AS-2 

Type 

I 
A(l) 

I 
0 

G(Q) 
I (Q) 

0 
G(Q) 
I (Q) 

0 
G(Q) 
I(Q) 

0 
S(l) 
G(Z) 
I (1) 

I 
S(l) 

0 
S(l) 
G(O) 
I (Q) 

0 
A(l) 
G(Q) 
I (Q) 

Function 

SYSTEM RESET: Asserting reset for at least 4 processor cycles after 
the clock has stabilized, causes the MB86931 to be initialized. 

EXTERNAL OSCILLATOR: The crystal inputs determine execution 
rate and timing of the MB86931 processor. Connecting a crystal to 
these pins forms a complete crystal oscillator circuit. The crystal 
oscillator frequency is the same as the processor operating frequency. 
When driving the processor with an external clock, XTAl2 pin should 
be left floating. 

CLOCK OUTPUT 1: This is an output signal against which MB86931 
bus transactions can be referenced. The ClKOUT1 frequency is the 
same as the frequency applied to XT Al1 and is the same as the 
processor operating frequency. ClKOUT1 is in phase with ClK_IN. 

CLOCK OUTPUT 2: This is an output signal against which MB86931 
bus transactions can be referenced. The ClKOUT2 frequency is the 
same as the frequency applied to XT Al1 and is the same as the 
processor operating frequency. ClKOUT2 is out of phase with ClK_ 
IN. 

BUS lOCK: This is a control signal asserted by the processor to 
indicate to the system that the current bus transaction requires more 
than one transfer on the bus. The Atomic load Store instruction for 
example requires contiguous bus transactions which cause the 
assertion of the bus lock signal. The bus may not be granted to 
another bus owner as long as -lOCK is active. -lOCK is asserted 
with the assertion of -AS and remains active until -READY is asserted 
at the end of the locked transaction. 

BUS REQUEST: Asserted by another device on the bus to indicate 
that it wants ownership of the bus. The request must be answered with 
a bus grant (-BGRNT) from the MB86931 before the device can 
proceed by driving the bus. Once the bus has been granted, the device 
has ownership of the bus until it de-asserts -BREQ. The user should 
ensure that devices on the bus cannot monopolize the bus to the 
ex.::lusion of the CPU. Inputs to -BREQ while -RESET is active are 
valid and cause Bus Grant to be asserted. 

BUS GRANT: Asserted by the CPU in response to a request from a 
device wanting ownership of the bus. The CPU grants the bus to other 
devices only after all transfers for the current transaction are 
completed. All bus drivers are three-stated with the assertion of the 
bus grant signal. 

ERROR SIGNAL: Asserted by the CPU to indicate that it has halted in 
an error state as a result of encountering a synchronous trap while 
traps are disabled. In this situation the CPU saves the PC and nPC 
registers, sets the tt value in the TBR, enters into an error state and 
asserts the -ERROR signal. The system can monitor the -ERROR pin 
and initiate a reset under the error condition. This pin is high on reset. 



Signal Type 

-MEXC I 
S(L) 

-TIMER_OVF 0 
S(L) 
G(O) 
1(0) 

-SAME 0 -
PAGE S(L) 

G(1) 
I (1) 

-CSO, -CS1, 0 
-CS2,-CS3, S(L) 
-CS4, -CS5 G(1) 

I (1) 

ADR <31:2> 0 
S(L) 
G(Z) 
I (1) 

Function 

OJ 
FUJITSU 

MEMORY EXCEPTION: Asserted by the memory system to indicate a 
memory error on either a data or instruction access. Assertion of this 
signal initiates either a data or instruction access exception trap in the 
IU. The current bus access is invalidated by asserting the -MEXC in 
the same cycle as the -READY signal. Assertion in any other bus 
cycle gives indeterminate results. The IU ignores the contents of the 
data bus in cycles where -MEXC is asserted. 

TIMER UNDERFLOW: Asserted by the processor to indicate that the 
internal 16-bit timer has underflowed. This Signal can be used to 
initiate a DRAM refresh cycle or a one cycle periodic waveform. On 
reset, the timer is turned off and - TIMER_OVF is high. 

SAME-PAGE DETECT: The -SAME_PAGE is used to take advantage 
of fast consecutive accesses within Fast Page Mode DRAM page 
boundaries. This signal is an output asserted by the processor when 
the current address is within the same page as the previous memory 
access. The -SAME_PAGE signal is asserted with -AS and remains 
active for one processor cycle. -SAME_PAGE is never asserted in the 
first transaction following a transaction by another device on the bus. 
The page size is specified by writing the SAME-PAGE MASK register. 

CHIP SELECTS: These outputs are asserted when the value on the 
address bus matches the address range in one of the corresponding 
ADDRESS RANGE registers. The signals are used to decode the 
current address into one of six address ranges. Address ranges should 
not overlap. Each address range has a corresponding wait specifier 
which is used to automatically assert the -READY signal after a user 
defined number of processor clock cycles. This allows a variety of 
memory and 1/0 devices with different access times to be connected to 
the MB86931 without the need for additional logic. 

ADDRESS BUS: The 30-bit ADDRESS BUS (A31-A2) is an output 
which identifies the data or instruction address of a 32-bit word. Reads 
are always one word in size while byte, half-word, or word transaction 
sizes for writes is identified by separate byte-enable signals (-BEO-3). 
The address bus is valid for the duration of the bus transaction. 

External Interface - Signals 

AS-3 



SP ARClite User's Manual 

Signal 

ASI <7:0> 

-BE3-0 

External Interface - Signals 

AS-4 

Type 

0 
S(L) 
G(Z) 
I (1) 

0 
S(L) 
G(Z) 
1(0) 

Function 

ADDRESS SPACE IDENTIFIERS: The ADDRESS SPACE 
IDENTIFIERS are outputs which indicate to which of 256 available 
spaces the current ADDRESS BUS value corresponds. The ASI values 
are defined as follows: 

ASI <7:0> ADDRESS SPACE 

Ox1 Control Registers 
Ox2 Instruction Cache Lock 
Ox3 Data Cache Lock 

Ox4 - Ox7 Application Definable 
Ox8 User Instruction Space 
Ox9 Supervisor Instruction Space 
OxA User Data Space 
OxB Supervisor Data Space 
OxC Instruction Cache Tag RAM 
OxD Instruction Cache Data RAM 
OxE Data Cache Tag RAM 
OxF Data Cache Data RAM 

Ox10 - OxFD Application Definable 
OxFE - OxFF Reserved for Debug Hardware 

The ASI values specified as "application definable" can be used by 
supervisor mode instructions such as Load Alternate and Store 
Alternate. The ASI value is available in the same cycle in which the 
corresponding address value is asserted on the address bus. The ASI 
pins are valid for the duration of the bus transaction. ASI values Ox8, 
Ox9, OxA, and OxB are cacheable. 

BYTE ENABLES (0): Indicate whether the current load or store 
transaction is a byte, half-word or word transaction. The BYTE 
ENABLE value is available in the same cycle in which the 
corresponding address value is asserted on the address bus. The 
values on the byte enable pins are valid for load and store operations 
and for the duration of the bus transaction. Since the processor 
extracts the appropriate byte or halfword from the word being read, the 
byte enable signals can be ignored during load operations. 
Possible values for -BE3-0 are as follows: 

31 ByteO 24 23 Bytel 1615 Byte2 8 7 Byte3 0 

Byte Writes 11 1 1 011 1 0 111 o 1 110 1 1 11 
HaR-Word Writes I 1 1 0 0 I 001 1 I 

Word Writes I o 0 0 0 I 



Signal Type 

D <31:0> 1/0 
S(L) 
G(Z) 
I (Z) 

-AS 0 
S(L) 
G(Z) 
I (1) 

RD/-WR 0 
S(L) 
G(Z) 
I (1) 

-READY I 
S(L) 

CLK_ECB I 

EMU_SD 1/0 
<3:0> 

EMU_D<3:0> 1/0 

Function 

cO 
FUJITSU 

DATA BUS: The bus interface has 32 bidirectional data pins (D31-DO) 
to transfer data in thirty-two bit quantities. D(31) corresponds to the 
most significant bit of the least significant byte of the 32-bit word. A 
double word is aligned on an 8-byte boundary, a word is aligned on a 4-
byte boundary, and a half-word is aligned on a 2-byte boundary. If a load 
or store of any of these quantities is not properly aligned, a Not Aligned 
Trap will occur in the processor. 
In write bus cycles, the point at which data is driven onto the bus 
depends on the type of the preceding cycle. If the preceding cycle was 
a write, data is driven in the cycle immediately following the cycle in 
which -READY was asserted. If the preceding cycle was a read, data 
is driven one cycle after the cycle in which -READY was asserted to 
minimize bus contention between the processor and the system. All 
bits of the data bus are driven regardless of word size.The values on 
the pins not corresponding to the byte or half-word being written are 
undefined. 

ADDRESS STROBE: A control signal asserted by the MB86931 or 
other bus master to indicate the start of a new bus transaction. A bus 
transaction begins with the assertion of -AS and ends with the 
assertion of -READY. -AS remains asserted for 1 clock cycle. During 
cycles in which neither the processor nor another bus master is driving 
the bus the bus is idle, and -AS remains de-asserted. 

READ/BUS TRANSACTION: This signal specifies whether the current 
bus transaction is a read or a write operation. When -AS is asserted 
and RD/-WR is low, then the current transaction is a write. With -AS 
asserted and RD/-WR high, the current transaction is a read. RD/-WR 
remains active for the duration of the bus transaction and is de-
asserted with the assertion of -READY. 

READY: This is a control signal asserted by the external memory 
system to indicate that the current bus transaction is being completed 
and that it is ready to start with the next bus transaction in the following 
cycle. In case of a fetch from memory, the processor will strobe the 
value on the data bus at the rising edge of CLK_IN following the 
assertion of -READY. For the case of a write, the memory system will 
assert -READY when the appropriate access time has been met. 
In most cases, no additional logic is required to generate the -READY 
signal. On-chip circuitry can be programmed to assert -READY based 
on the address of the current transaction. The external system can 
override the internal ready generator to terminate the current bus cycle 
early. Up to 6 address ranges each with different transaction times can 
be programmed. 

EXTERNAL CLOCK BYPASS: Tying this signal high causes the CLK_ 
IN signal to bypass the Phases Lock Loop (PLL). This signal is used for 
testing of the chip. 

EMULATOR STATUS/DATA BITS: Bi-directional pins used by a 
hardware emulator to control and monitor MB86931 execution. These 
pins should be left unconnected. 

EMULATOR DATA BITS: Bi-directional pins used by a hardware 
emulator to control and monitor MB86931 execution. These pins 
should be left unconnected. 

External Interface - Signals 

AS-S 



SP ARClite User's Manual 

Signal Type 

EMU_BRK I 

-EMU_ENB I 

TCK I 

TMS I 

TDI I 

TDO 0 

-TRST I 

NOTE: I = Input Only Pin 
o = Output Only Pin 

Function 

EMULATOR BREAK REQUEST LINE: Input used by a hardware 
emulator to request a trap when emulation is enabled. This pin should 
be left unconnected. 

EMULATOR ENABLE: Tied low while the MB86931 is being reset to 
enable hardware emulator mode on the chip. This pin should be left 
unconnected. 

TEST CLOCK: JTAG compatible test clock input. 

TEST MODE: JTAG compatible test mode select pin. 

TEST DATA IN: JTAG compatible test data input. 

TEST DATA OUT: JTAG compatible test data output. 

TEST RESET: Asynchronous reset for JTAG logic. If not using JTAG, 
this signal must be pulled low. 

VO = Either Input or Output Pin 

G( ... ) = While the bus is granted to 
another bus master 
(-BGRNT =asserted). the 
pin is 

I ( ... ) = While the bus is between 
bus cycles (or being reset) 
and is not granted to another 
bus master, the pin is 

= Pins "must be" connected as 
described 

A(L) = Asynchronous: Inputs may 
be asynchronous to 
CLKOUT. 

SILl = Synchronous: Inputs must 
meet setup and hold times 
relative to CLK.JN Outputs 
are Synchronous to CLK..JN 

G(l) is driven to Vee 
G(O) is driven to V ss 
G(Z)floats 
G(O) is a valid output 

5. 1.2 Interrupt Request Signal Description 

Signal Type Function 

I (1) is driven to Vee 
I (0) is driven to V ss 
I (Z)floats 
I (0) Is a valid output 

IRQ<15:1> I Interrupt Request. These are prioritized system interrupt requests. 

External Interface - Signals 

AS-6 

IRQ15 has the highest priority, and IRQ1 the lowest. 
The trigger for each interrupt can be programmed for a high level, a 
low level, a rising edge, or a falling edge. The level-trigger interrupt 
request signals are sampled during three successive internal clock 
periods to minimize false interrupts. 



cP 
FUJITSU 

5. 1.3 Timer Signal Descriptions 

Signal Type Function 

CLK<3:0> I Timer external clock input. In the external clock mode, this signal is 
synchronized with the internal clock before use. These pins should be 
tied high or low when not used. 

OUT<3:0> 0 Timer output pin. According to the mode, the output wave functions as 
(1) periodic interrupt signal output; 
(2) square wave output; 
(3) one-shot pulse output. 
These pins are low during reset. 

IN<3:0> I Count control input. These inputs are used as gate signals in Modes 0 
to 3, and as external triggers in Mode 4. 

ACKO I Asynchronous clock. These are prescaler input clocks that are used 
ACK1 when selected in the Prescaler registers. The clocks are synchronized 

with the internal clock and are divided and output to the PRSCKx pin. 
When not used, they should be tied low. 

PRSCKO 0 Prescaler output. 
PRSCK1 

5.1.4 Serial Port Signal Descriptions 

Signal Type 

-DSRO I 
-DSR1 

-RTSO 0 
-RTS1 

-DTRO 0 
-DTR1 

-CTSO I 
-CTS1 

TRNDTO 0 
TRNDT1 

Function 

Modem Data Set Ready signal. The status of these pins is loaded into 
bit 7 of the corresponding SDTR status register. 

Modem Request to Send signal. When bit 5 of the command register is 
set to 1, these signals are driven low. 

Modem Data Terminal Ready or Rate Select signal. When bit 1 of the 
command register is set to 1, these signals are driven low. 

Modem Clear to Send signal. A transmitter is enabled only when its 
corresponding -CTSx signal is low. 

Serial transmit data. Parallel data written in the data register is 
converted into serial data, then transmitted through these pins. 
In the asynchronous mode, start and stop bits are added to data, and a 
parity bit can be added. If there is no data to be transmitted, the SDTR 
transmits synchronous characters in the synchronous mode, and 
enters the mark state in the asynchronous mode. The mark state also 
occurs after a transmit disable command is specified (bit 0 of the 
command register is set to 0) or when -CTS is High. Note that the 
mark state occurs during transmission after: 
(1) One byte is transmitted if a transmit disable command is specified 
during transmission; 
(2) the second ~ynchronous character is transmitted if the first 
synchronous character was transmitted (with the synchronous state 
held) in the BISYNC mode. 

External Interface - Signals 

AS-7 



SP ARClite User's Manual 

Signal Type Function 

TxEMPO 0 These signals are driven high if there is no data to be transmitted in the 
TxEMP1 SOTA. These signals are driven low at the falling edge of the write 

signal when the processor writes a byte to be transmitted. 

TxROYO 0 These signals are driven low if the transmit data buffer register 
TxROY1 becomes empty with the -CTS pin low and the transmitter is enabled. 

-TCLKO I Clock for determining the transmission baud rate. 
-TCLK1 In the synchronous mode, since the baud rate is fixed at transmit clock 

xl, the frequency of the clock to be input to the - TCLK pin is the 
transmission baud rate. 
In the asynchronous mode, the transmit clock x 1/16 and x 1/64 
frequencies will be the transmission baud rate in accordance with the 
baud rate set in the mode register. For example, if a clock of 19.2 kHz 
is input to the -TCLK pin, the transmission baud rate is 1200 bauds at 
x 1/16, and 300 bauds at x 1/64. The transmit data is synchronized 
with the falling edge of this transmit clock. 

RCVOTO I Serial receive data input. The input data is converted to parallel data in 
RCVOT1 the SOTR and can be read via the system data bus. 

RCLKO I Clock for determining the receive baud rate. In the synchronous mode, 
RCLK1 since the baud rate is fixed at receive clock xl, the frequency of the 

clock to be input to the RCLK pin is the receive baud rate. In the 
asynchronous mode, the receive clock x 1/16 and x 1/64 frequencies 
will be the receive baud rate in accordance with the baud rate set in the 
mode register. For example, if a clock of 19.2 kHz is input to the RCLK 
pin, the receive baud rate is 1200 bauds at x 1/16, and 300 bauds at x 
1/64. The receive data is sampled at the falling edge of this receive 
clock. 

SYBRKO I/O SYBRKO/SYBRK1. When the external synchronous mode is set in the 
SYBRK1 mode register, synchronous signals are output from these pins. If H-

level signals are input to these pins when RCLK is high during hunt, 
the data sampled at the rising edge of the next RCLK will be the start 
bit of the received data. When the internal synchronous mode is 
selected, these pins are used as synchronous character detection 
pins. If the received data coincides with the data loaded in the 
synchronous character register (in the BISYNC mode, data for two 
characters coincide with each other), these are driven high. Then, 
when the MPU reads data out of the status register, these pins are 
driven low at the end of the read-out signal strobe. When used in the 
asynchronous mode, these signals function as break code detection 
signals. If the received data (including start, stop, and parity bits) is all 
Os immediately after a framing error occurs, these signals are driven 
high. The signals are released when reset is executed or when 1 data 
is received. 

RxROYO 0 These pins are driven high when the serial data received at the 
RxROY1 RCVOT pin is converted to parallel data in the SOTR, allowing the 

processor to read the data. The signals are driven low when the 
processor reads the data. 

External Interface - Signals 

AS-B 



R 

•••••••••••••• 
MB86931 JTAG 

6. 1 MB86931 JTAG Pin List 
The }TAG cells are arranged in a shift register configuration (see Figure A6-8). 
When shifting in a JTAG pattern through TOI, the LSB should correspond to the 
}TAG cell value for - TIMER_ OVF pin whereas, the MSB of the pattern should cor­
respond to the CLK_ENB pin's }TAG cell. As far as JTAG output through TOO is 
concerned, the first bit out corresponds to - TIMER_ OVF JTAG cell value and the 
last output bit corresponds to the CLK_ENB }TAG cell value. Table A6-1lists the 
order of all of the JTAG cells. 

Table A6-1 :JTAG Pin Order 

Order JTAG Cell 
JTAG Function 

Cell Type 

1 -TIMER_OVF output Timer Overflow pin 

2 XTAL1 input Crystal input 

3 -EMU_BRK input Emulator break input 

4 icediojot output Bidirectional control for EMU_D/EMU_SD buses 
icediojo = 1: EMU_D and EMU_SD buses are input 
icediojo = 0: EMU_D and EMU_SD buses are output 

5 EMU_SD_i<3> input Input bit 3 of EMU_SD<3:0> bus 

6 EMU_SD_o<3> output Output bit 3 of EMU_SD<3:0> bus 

7 EMU_SD_i<2> input Input bit 2 of EMU_SD<3:0> bus 

8 EMU_SD_o<2> output Output bit 2 of EMU_SD<3:0> bus 

MB86931 IT AG - MB86931 IT AG Pin List 

A6-1 

• 



SP ARClite User's Manual 

Table A6·1:JTAG Pin Order (Continued) 

Order JTAG Cell 

9 EMU_SD_k1> 

10 EMU_SD_o<1> 

11 EMU_SD_kO> 

12 EMU_SD_o<O> 

13 EMU_D_k3> 

14 EMU_D_o<3> 

15 EMU_D_k2> 

16 EMU_D_o<2> 

17 EMU_D_k1> 

18 EMU_D_o<1> 

19 EMU_D_kO> 

20 EMU_D_o<O> 

21 iceenbliot 

22 -EMU_EN_i 

23 -EMU_EN_o 

24 dbusiojot 

25 D_k31 > 

26 D_o<31> 
. . . 

87 D_kO> 

88 D_o<O> 

89 -RESET 

90 -BREQ 

91 -MEXC 

92 -READY 

93 tstatejot 

94 -BGRNT 

95 -ERROR 

96 -LOCK 

MB86931 IT AG - MB86931 IT AG Pin List 

A6-2 

JTAG 
Cell Type 

input 

output 

input 

output 

input 

output 

input 

output 

input 

output 

input 

output 

output 

input 

output 

output 

input 

output 

. 
input 

output 

input 

input 

input 

input 

output 

output 

output 

output 

Function 

Input bit 1 of EMU_SD<3:0> bus 

Output bit 1 of EMU_SD<3:0> bus 

Input bit 0 of EMU_SD<3:0> bus 

Output bit 0 of EMU_SD<3:0> bus 

Input bit 3 of EMU_D<3:0> bus 

Output bit 3 of EMU_D<3:0> bus 

Input bit 2 of EMU_D<3:0> bus 

Output bit 2 of EMU_D<3:0> bus 

Input bit 1 of EMU_D<3:0> bus 

Output bit 1 of EMU_D<3:0> bus 

Input bit 0 of EMU_D<3:0> bus 

Output bit 0 of EMU::'D<3:0> bus 

bidirectional control signal for -EMU_ENB pin 
iceenblio = 1: -EMU_ENB pin is an input 
iceenblio = 0: -EMU_ENB pin is an output 

Input bit of -EMU_ENB pin 

Output bit of -EMU_ENB pin 

Bidirectional control signal D<31 :0> bus 
dbusiojo = 1: D<31 :0> bus is an input 
dbusiojo = 0: D<31 :0> bus is an output 

Input bit 31 of D<31 :0> bus 

Output bit 31 of <31 :0> bus . . 
Input bit 0 of <31 :0> bus 

Output bit 0 of <31 :0> bus 

Chip reset pin 

Bus request input 

Memory exception input 

External memory transaction complete signal 

Three-state control signal for ADR, ASI, -BE, -AS, 
RDIWR and -LOCK 
If tstatejo = 1: signals are three-stated. 
If tstatejo = 0: signals are outputs. 

Bus grant output signal 

Error output signal 

Bus lock output signal 



Table A6-1 :JTAG Pin Order (Continued) 

Order JTAG Cell 
JTAG 

Cell Type 

97 -RDIWR output 

98 -AS output 

99 -DSRO input 

100 -CTSO input 

101 -TClKO input 

102 -RClKO input 

103 RCVDTO input 

104 xscntoOjo output 

105 SYBRKO_i input 

106 SYBRKO_o output 

107 -RTSO output 

108 -DTRO output 

109 TRNDTO output 

110 TxEMPO output 

111 TxRDYO output 

112 RxRDYO output 

113 PRSCKO output 

114 OUTO output 

115 INO input 

116 ACKO input 

117 ClKO input 

118 ClK2 input 

119 IN2 input 

120 OUT2 output 

121 IRQ1 input 
. . . . . 

135 IRQ15 input 

136 OUT3 output 

137 IN3 input 

138 ClK3 input 

139 ClK1 input 

140 ACK1 input 

Function 

Memory ReadlWrite output signal 

OJ 
FUJITSU 

Start of memory transaction output signal 

Bidirectional control signal for SYBRKO pin 
xscnt01jo = 1: SYBRKO is an input 
xscnt01jo = 0: SYBRKO is an output 

MB86931 JTAG - MB86931 JTAG Pin List 

A6-3 

-



SP ARClite User's Manual 

Table A6·1:nAG Pin Order (Continued) 

Order JTAG Cell 

141 IN1 

142 OUT1 

143 PRSCK1 

144 RxRDY1 

145 TxRDY1 

146 TxEMP1 

147 TRNDT1 

148 -DTR1 

149 -RTS1 

150 xscnto1jo 

151 SYBRKU 

152 SYBRK1_o 

153 RCVDT1 

154 RCLK1 

155 -TCLK1 

156 -CTS1 

157 -DSR1 

158 -CS<O> 

159 -CS<1> 

160 -CS<2> 

161 -CS<3> 

162 -CS<4> 

163 -CS<5> 

164 -SAMEPAGE 

165 BE<3> 

166 BE<2> 

167 BE<1> 

168 BE<O> 

169 ASkO> 

170 ASk1> 

171 ASk2> 

172 ASk3> 

MB86931 JT AG - MB86931 JT AG Pin List 

A6-4 

JTAG 
Cell Type 

input 

output 

output 

output 

output 

output 

output 

output 

output 

output 

input 

output 

input 

input 

input 

input 

input 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

Function 

Bidirectional control signal for SYBRK1 pin 
xscntoOjo = 1: SYBRK1 is an input 
xscntoOjo = 0: SYBRK1 is an output 



Table A6-1 :JTAG Pin Order (Continued) 

Order JTAGCell 
JTAG 

Cell Type 

173 ASk4> output 

174 ASk5> output 

175 ASk6> output 

176 ASk7> output 

177 ADR<2> output 
. . 

206 ADR<31> output 

207 TEST<3> input 

208 TEST<2> input 

209 TEST<1> input 

210 TEST<O> input 

211 elK_ENS input 

Factory test pin 

Factory test pin 

Factory test pin 

Factory test pin 

Function 

OJ 
FUJITSU 

t. These are internal 1/0 control signals. Therefore, there are no corresponding external pins. 
1. The following pins are not three-statable: -SAME_PAGE, -CS<5:0>, -BGRNT, TIMER_OVF, -ERROR. 
2. The following pins have no corresponding JTAG cells: CLKOUT1, CLKOUT2, XTAL2, -TRST, TCK, TMS, TOI, TOO. 

MB86931 IT AG - MB86931 IT AG Pin List 

A6-S 

-



SPARClite User's Manual 

MB86931 IT AG - MB86931 IT AG Pin List 

A6-6 



3 

•••••••••••••• 

MB86932 

MB86932 - SP ARClite User's Manual 



SP ARClite User's Manual 

MB86932 - SP ARClite User's Manual 



c 

1111111111111111111111111111111111111 

Chapter B 1: Overview of MB86932 
1.1 General Description ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• B 1·1 

1.2 Programmer's Model of the MB86932 ••••••••••••••••••••••••••••••••••••••••• B 1-2 
1 .2.1 User-visible Registers ........................................................................................ B 1-2 

1.3 Internal Architecture of the MB86932 •••••••••••••••••••••••••••••••••••••••••• B 1-7 

Chapter B2: MB86932 Memory Management Unit 
2.1 Ov'erview •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-1 

2.1.1 Memory Management Units: A General Description ............................................ B2-2 
2.1.2 Virtual Memory ............................................................................................... B2-2 
2.1.3 Multiple Processes ........................................................................................... B2-4 
2.1.4 Memory Protection ........................................................................................... B2-4 
2.1.5 How MMU's are Constructed ............................................................................ B2-5 

Contents 

B-i 



SPARClite User's Manual 

2.2 Programmer' 5 Model •••••.•••••••••••••••••••••••••••••••••••••••••••••••••.•••••••••• 12-6 
2.2.1 Cache/Bus Interface Unit Control Register ........................................................... B2-6 
2.2.2 Context Table Pointer Register ........................................................................... B2-6 
2.2.3 Context Register ............................................................................................... B2-7 
2.2.4 TlB Exceptions ................................................................................................. B2-7 
2.2.5 Instruction Fault Status Register ........................................................................... B2-8 
2.2.6 Data Fault Status Register .................................................................................. B2-9 
2.2.7 TlB Control Register ............. , ......................................................................... B2-1 0 
2.2.8 TlB Data Fault Address Register ....................................................................... B2-11 
2.2.9 Most Recently Used Register ............................................................................ B2-12 
2.2.10 The TlB Entry ............................................................................................... B2-12 
2.2.11 The TlB CAM Entry ...................................................................................... B2-12 
2.2.12 The TlB RAM Entry ....................................................................................... B2-14 
2.2.13 ITlB Description ........................................................................................... B2-16 
2.2.14 TlB lookup .................................................................................................. B2-16 

2.3 Internal Architecture •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 12-16 
2.3.1 Details of TlB logic ........................................................................................ B2-16 
2.3.2 Address Translation: logical and Physical Steps ................................................. B2-17 
2.3.3 Basic TlB Exception Timings ............................................................................ B2-18 
2.3.4 TlB Timing Considerations .............................................................................. B2-19 
2.3.5 TlB Emulation Support logic ............................................................................ B2-20 

2.4 Programming Considerations •••••••••••••••••••••••••••••••••••••••••••••••••••• 12-21 

2.4.1 MMU Architecture Example: the SPARC Reference MMU ................................................. B2-21 
2.4.2 Virtual Address format .................................................................................... B2-23 
2.4.3 Physical Address format .................................................................................. B2-24 

2.5 Conformity to SPARC Reference MMU Architecture ..................... 82-24 

Chapter 13: MI86932 Caches 
3.1 OverY'iew of MB86932 Caches •••••••••••••••••••••••••••••••••••••••••••••••••••• 13-1 

3.2 Programmer's Model .....................•....................................•........ 13·2 
3.2.1 Operation of the Instruction Cache ..................................................................... B3-3 
3.2.2 Operation of the Data Cache ............................................................................ B3-3 

Contents 

B-ii 



cP 
FUJITSU 

3.3 Internal Architecture of MB86932 Caches •••••••••••••••••••••••••••••••••••• B3-3 
3.3.1 Instruction Cache ............................................................................................. B3-4 
3.3.2 Read Hit ......................................................................................................... B3-5 
3.3.3 Miss Processing ............................................................................................... B3-5 
3.3.4 Data Cache .................................................................................................... B3-6 
3.3.5 Read Hit ......................................................................................................... B3-8 
3.3.6 Write Hit ........................................................................................................ B3-8 
3.3.7 Miss Processing ............................................................................................... B3-8 
3.3.8 Atomic Load and Store ..................................................................................... B3-8 

Chapter B4: MB86932 Bus Interface Unit 
4.1 Overview of Bus Interface Unit •••••••••••••••••••••••••••••••••••••••••••••••••••• 84-1 

4.2 Burst Mode ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14-1 
4.2.1 Overview ....................................................................................................... B4-1 
4.2.2 Burst Mode Interface Pins .................................................................................. B4-2 
4.2.3 Burst Mode Fetch Sequence .............................................................................. B4-2 
4.2.4 Bus Mode control bits ...................................................................................... B4-3 
4.2.5 PROM Address Space ...................................................................................... B4-3 
4.2.6 Prefetch Buffer ................................................................................................. B4-3 
4.2.7 Cache Off ...................................................................................................... B4-3 
4.2.8 Bus Request .................................................................................................... B4-3 
4.2.9 Memory Exception (Instruction fetches or Data loads) ............................................. 84-4 
4.2.10 Memory Exception (DMAI .............................................................................. B4-4 
4.2.11 Non-<:acheable Accesses ................................................................................ B4-4 
4.2.12 Interface Timing ............................................................................................. B4-4 

4.3 Parity .........................................................................•............... 14-6 

4.4 Wait State Specifier Register ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14-7 
4.4.1 Purpose .......................................................................................................... B4-7 
4.4.2 Format ........................................................................................................... B4-7 
4.4.3 Same Page Mode ............................................................................................ B4-8 
4.4.4 Burst Mode ..................................................................................................... B4-8 

Contents 

B-iii 



SPARClite User's Manual 

4.5 ROM Interface ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 84-9 
4.5.1 Purpose ........ .................................................................................................. B4-9 
4.5.2 Features .. ........................................................................................................ B4-9 
4.5.3 Bus Configuration on Reset ........ ........................................................................ B4-9 
4.5.4 System Interface ............................................................................................. B4-1 0 
4.5.5 PROM Address Space .................................................................................... B4-1 0 
4.5.6 Load/Stores .................................................................................................. B4-11 
4.5.7 Burst Mode ................................................................................................... B4-12 
4.5.8 Memory Exception ......................................................................................... B4-12 
4.5.9 Bus Request ................................................................................................... B4-12 
4.5.10 Timing ........................................................................................................ B4-12 

4.6 Processor Bus Request ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 84-13 
4.6.1 Purpose ........................................................................................................ B4-13 
4.6.2 Features ........................................................................................................ B4-13 

4.7 BIU Timing •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 14-14 
4.7.1 Effect of TLB ...............•...........•.............•.•.•...•...........•.•......•..•••.....•.•..•...•.•...•.. B4-14 

4.8 BIU Priorities ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 84-15 

Chapter 85: M886932 DMA 
5.1 Overview •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 85-1 

5.2 Programmer's Model •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• B5-4 
5.2.1 DMA Priority ................................................................................................... B5-4 
5.2.2 DP /Source/Destination ASI Register ................................................................... B5-5 
5.2.3 Current Source Address Register ........................................................................ B5-5 
5.2.4 Current Destination Address Register .................................................................. B5-6 
5.2.5 Current Byte Count Register ............................................................................... B5-6 
5.2.6 Descriptor Pointer Register. ................................................................................ B5-7 
5.2.7 Channel Control Register .................................................................................. B5-7 
5.2.8 Channel Status Register .................................................................................... B5-9 
5.2.9 Channel Initialization ....................................................................................... B5-9 
5.2.10 Buffer Chaining Data Structure ....................................................................... B5-1 0 
5.2.11 DMA Initialization ........................................................................................ B5-11 
5.2.12 Basic DMA Timing ....................................................................................... B5-11 
5.2.13 Error Conditions ........................................................................................... B5-11 

5.3 External Interface •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• B5-12 
5.3.1 Transfer Protocols ........................................................................................... B5-12 

Contents 

B-iv 



Chapter B6: MB86932 DSU 

cP 
FUJITSU 

6. 1 OverY'iew •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 86-1 

6.2 Programmer's Model .••••••••••••••.••••••••••••••••••••••••••••••••••••••..•••.••.••. 16-1 
6.2.1 New Registers and Flags .................................................................................. B6-1 
6.2.2 Logic of Context Comparison ............................................................................ B6-3 

Chapter B7: MB86932 External Interface 

7.1 SIGNAL DESCRIPTIONS ••••••••••.•.••••••••••••••••••••••••••••••••••••••••••••••••••• 87-1 

Chapter B8: MB86932 JTAG 
8.1 MB86932 JTAG Pin List ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 88-16 

Contents 

B-v 



SP ARClite User's Manual 

Contents 

B-vi 



1111111111111111111111111111111111111 

OvervieYl of MB86932 

1. 1 General Description 
The MB86932 is a member of the SP ARClite family whose function set is a super­
set of that of the MB86930. It is pin-compatible with the 208-pin version of the 
MB86930 processor, and is capable of running at 40MHz. In addition to all the fea­
tures of the MB86930 processor, the MB86932 contains the following: 

• Address Translation: A 16-entry Translation Lookaside Buffer (TLB) on the 
MB86932 provides the mechanism to translate virtual to physical addresses. 
Both virtual and physical address spaces are 4GB in size. Page sizes of 4K­
bytes, 256K-bytes, and 16M-bytes are supported. Protection at the 1K-byte 
sub-page level is supported. Up to 64 independent concurrent processes 
("contexts") are supported, with protection against memory encroachment by 
any process on any other. 

• Instruction Cache: The MB86932 has an 8K-byte, 2-way set associative, 
sectored instruction cache with 8-word lines. Each line is individually 
lockable. Tags for each line contain the address tag, a supervisor I user bit, and 
8 "valid" flags, one for each word of the line. The instruction cache is a 
physical cache; that is, it is accessed with a physical, not a virtual, address. 
When code is to be removed from the cache, the cache can be invalidated in a 
single cycle; likewise, "locked" code in the cache can be unlocked in a single 
cycle. 

• Data Cache: The MB86932 has an 2K-byte, 2-way set associative, sectored 
data cache with 4-word lines. Each line is individually lockable. Tags for each 
line contain the address tag, a supervisor I user bit, and 4 "valid" flags, one for 

Overview of MB86932 - General Description 

B1-1 



SP ARClite User's Manual 

each word of the line. The data cache is a physical cache; that is, it is accessed 
with a physical, not a virtual, address. When data is to be removed from the 
cache, the cache can be invalidated in a single cycle; likewise, "locked" data in 
the cache can be unlocked in a single cycle. 

• On-Chip DMA: The MB86932 has two DMA channels. Each channel supports 
two transfer types: contiguous block and chained block transfers. The DMA 
also supports three transfer protocols: single-datum transfer, block transfer, 
and demand transfer (where data moves continue as long as an external 
device requests it). Four data types are supported: byte, halfword, word, and 
quad-word. For byte and halfword, the DMA does all the required packing/ 
unpacking. Each channel also supports either fly-by or flow-thru transfer 
modes, and each can be started by either software or external hardware 
requests. The addressing convention for accesses is "bi~endian." 

• Configurable External Data Bus: The MB86932 includes a data bus that can be 
configured at Reset as 8, 16, or 32 bits wide (when in the address space 
selected by chip select 0). This enables the MB86932 to boot from a single by-8 
or by-16 ROM. 

• Burst Mode: The MB86932 supports two data- and instruction-accessing 
modes to external memory: normal and burst. In normal mode, it accepts a 
single datum per address, driven externally. In burst mode, it accepts 4 words 
per address, driven externally. Burst mode stores are supported only as part of 
DMA requests, and no burst mode transfers are supported in 8/16 bit mode. 

1.2 Programmer's Model of the MB86932 

1 .2. 1 User-visible Registers 

All the special-purpose registers and ASR registers defined on the MB86930 exist 
also on the MB96832. 

All on-chip control/ status/ data registers which exist in alternate address spaces 
in the MB86930, with one exception, exist also on the MB86932 in backwards­
compatible format. The one exception is the Instruction Tags, whose format has 
changed. 

The increase in cache and the addition of new peripherals in the MB86932 have 
made it necessary to add new registers, accessible through alternate address 
spaces; these are described below in 3.4.1.1. All on-chip memory-mapped con­
trol/status registers for these new features are mapped into ASI=Ox01, Ox02, Ox03, 
OxOC, OxOD, OxOE, or OxOF. The BIU recognizes that these ASI's are mapped to 
internal registers rather than memory, and does not assert the external ASI pins 
(or any other pins) when doing accesses in these ASI spaces. Since the address cal­
culated by the IV for any register of this class is its physical address, no address 
translation is necessary, and the TLB is not involved 

Overview of MB86932 - Programmer's Model of the MB86932 

Bl-2 



0) 

FUJITSU 

In the lists that follow, an appended asterisk (*) = "new in MB86932"; a double 
asterisk (**) = "changed from equivalent in MB86930." 

Cache/BIU control/ status registers: 

ASI: OxOl 

Address range: OxOOOOOOOO-OxOOOOOOFF 

OxOooOooOO ASI=Ox1 Cache/BIU Control Register"" (TLB enable bit added) 

OXOOOoo004 ASI=Ox1 Lock Control Register 

OxOO000008 ASI=Ox1 Lock Control Save Register 

Oxoooooooc ASI=Ox1 Cache Status Register 

OxOooOO010 ASI=Ox1 Restore Lock Control Register 

OxOOooo020 ASI=Ox1 Bus Control Register'" 

OxOooOO080 
ASI=Ox1 

System Support Control Register" 
(DMA priority; even/odd paritybits added) 

Peripheral control/ status registers: 

ASI: OxOl 

Address range: OxOOOOO100-0x000001FF 

Oxooo00120 ASI=Ox1 

OxOoo00124 ASI=Ox1 

Oxooo00128 ASI=Ox1 

OxOOOO012C ASI=Ox1 

OxOoo00130 ASI=Ox1 

OxOoo00134 ASI=Ox1 

OxOoo00140 ASI=Ox1 

OxOoo00144 ASI=Ox1 

OxOoo00148 ASI=Ox1 

OxOOOO014C ASI=Ox1 

OxooOO0150 ASI=Ox1 

OxooOO0154 ASI=Ox1 

OxOoo00160 ASI=Ox1 

OXOOOO0164 ASI=Ox1 

OxOoo00168 ASI=Ox1 

OxooOO0174 ASI=Ox1 

OxOoo00178 ASI=Ox1 

OXooOO0180 ASI=Ox1 

OxOoo00184 ASI=Ox1 

OXOOOO0188 ASI=Ox1 

OxOoo0018C ASI=Ox1 

OxOoo00190 ASI=Ox1 

OxOooo0194 ASI=Ox1 

OxOoo00198 ASI=Ox1 

OxOooo01AO ASI=Ox1 

OxOOO001A4 ASI=Ox1 

OxOoo001A8 ASI=Ox1 

OxOooo01AC ASI=Ox1 

OxOoo001BO ASI=Ox1 

Same Page Mask Register 

Address Range Specifier Register 1 

Address Range Specifier Register 2 

Address Range Specifier Register 3 

Address Range Specifier Register 4 

Address Range Specifier Register 5 

Address Mask Register 0 

Address Mask Register 1 

Address Mask Register 2 

Address Mask Register 3 

Address Mask Register 4 

Address Mask Register 5 

Wait State Specijier Register'"" (SGL cycle/parity bit added) 

Wait State Specifier Regist!>r" (SGL cycle/parity Madded) 

Watt State Specifier Register" (SGL cycle/parity btt added) 

Timer Register 

Timer Preload Register 

SourcelDestination ASI Register (DMAO)" 

Current Source Address Register (DMAO)" 

Current Destination Address Reg (DMAO)" 

Current Byte Count Register (DMAO)" 

Descriptor Pointer (DP) Register (DMAO)" 

Channel Control Register (DMAO)" 

Channel Status Register (DMAO)" 

Source/Destination ASI Register (DMA 1)" 

Current Source Address Register (DMA 1)" 

Current Destination Address Reg (DMA 1)" 

Current Byte Count Register (DMA 1)" 

Descriptor Pointer (DP) Register (DMA 1)" 

Overview of MB86932 - Programmer's Model of the MB86932 

B1-3 

i 

~ 



SP ARClite User's Manual 

OXOOOO01 B4 ASI=<Jx1 Channel Control Register (DMA 1 )* 

Ox000001 B8 ASI=<Jx1 Channel Status Register (DMA 1)* 

ASSP Control/status registers: * 

ASI: Ox01 

Address range: Ox00000200-0x000002FF 

Note: This space is reserved for additional control/status registers for possible 
future derivatives of the SP ARClite family of products. 

TLB Entries: * 

ASI: Ox01 

Address range: Ox00000300-0x000003FF--

Note: This allows up to 32 entries in the TLB, although only 16 entries are 
used in the MB86932. The TLB can be read or written by the "Ida" or "sta" 
instructions. 

OxOOO00300 ASI=<Jx1 TLB RAM Entry 1 

OXOOOOO304 ASI=<Jx1 TLB CAM Entry 1 

"'·-other TLB entries··· 

OxOOOO0378 ASI=Ox1 TLB RAM Entry 16 

OxOOOO037C ASI=Ox1 TLB CAM Entry 16 

TLB Status/Control Registers: * 

ASI: Ox01 

Address range: Ox00000400-0x000004FF 

Note: The TLB enable bit is in the Cache/BIU Control Register. 

OxOOOO0400 ASI=Ox1 ITLB Register "RAM" Entry 

OXOOOOO404 ASI=<Jx1 ITLB Register "CAM" Entry 

OXOOOOO408 ASI=<Jx1 Context Register 

OXOOOO040C ASI=Ox1 Context Table Pointer Register 

OxOOOO0410 ASI=OX1 TLB Control Register 

OxOOOO0414 ASI=<Jx1 Data Fault Status Register 

OXOOOO0418 ASI=Ox1 Instruction Fault Status Register 

OxOOOOO41C ASI=Ox1 TLB Most Recently Used Register 

OXOOOOO420 ASI=<Jx1 TLB Data Faun Address Register 

Emulation Registers: 

ASI: Ox01 

Overview of MB86932 - Programmer's Model of the MB86932 

Bl-4 



Address range: OxOOOOFFOO-OxOOOOFFFF 

OxOOOOFFOO ASI;Oxl Instruction Address Descriptor Register 1 

OxOOOOFF04 ASI;Oxl Instruction Address Descriptor Register 2 

OxOOOOFF08 ASI;Oxl Data Address Descriptor Register 1 

OxOOOOFFOC ASI;Qxl Data Address Descriptor Register 2 

OxOOOOFF10 ASI;Oxl Data Value Descriptor Register 1 

OxOOOOFF14 ASI;Oxl Data Value Descriptor Register 2 or Mask Register 

OxOOOOFF18 ASI;Oxl Debug Control Register •• 

OxOOOOFF1C ASI;Oxl Debug Status Register 

OxOOOOFF20 ASI;Oxl Context Compare Register •• 

Instruction Cache Lock Registers: ** 

ASI: Ox02 

Address range: OxOOOOOOOO-OxOOOOOFFF (Bank 1) 

Ox80000000-0x80000FFF (Bank 2) 

cP 
FUJITSU 

Note: Writing to every eighth word address in this space can be used to initialize 
the lock bit for each line in the instruction cache. This differs from the 
MB86930, where every fourth word location is accessed. 

Data Cache Lock Registers: 

ASI: Ox03 

Address range: OxOOOOFFOO-Ox000003FF (Bank 1) 

Ox8000FFOO-Ox800003FF (Bank 2) 

Note: Writing to every fourth word address in this space can be used to 
initialize the lock bit for each line in the data cache. This is unchanged from 
theMB86930 

Instruction Cache Tag RAM: ** 

ASI: OxOC 

Address range: OxOOOOOOOO-OxOOOOOFFF (Bank 1) 

Ox80000000-0x80000FFF (Bank 2) 

Note: Writing to every eighth word address in this space can be used to initialize 
the tags for each line in the instruction cache. This differs from the 
MB86930, where every fourth word location is accessed. 

Instruction Cache Invalidate Registers: '" 

ASI: OxOC 

Overview of MB86932 - Programmer's Model of the MB86932 

Bl-5 

• 



SP ARClite User's Manual 

Note: These registers are in addition to the Instruction Cache Tags which are 
accessed using ASI OxOc. 

Ox00001000 Bank 1 Instruction Cache Invalidate (write only) 

Ox80001000 Bank 2 Instruction Cache Invalidate (write only) 

Instruction Cache Data RANI: *'" 

ASI: OxOD 

Address range: OxOOOOOOOO-OxOOOOOFFF (Bank 1) 

Ox80000000-0x80000FFF (Bank 2) 

Note: Writing to word addresses in this space can be used to initialize the values 
in the instruction cache. 

Data Cache Tag RANI: 

ASI: OxOE 

Address range: OxOOOOOOOO-Ox000003FF (Bank 1) 

Ox80000000-0x800003FF (Bank 2) 

Note: Writing to every fourth word address in this space can be used to 
initialize the tag bit for each line in the data cache. This is unchanged 
from the MB86930 

Data Cache Invalidate Registers: * 

ASI: OxOE 

Note: These registers are in addition to the Data Cache Tags which are accessed 
using ASI OxOE. 

OxOOOOlOOO Bank 1 Data Cache Invalidate (write only) 

Ox80001000 Bank 2 Data Cache Invalidate (write only) 

Data Cache Data RANI: 

ASI: OxOF 

Address range: OxOOOOOOOO-Ox000003FF (Bank 1) 

Ox80000000-0x800003FF (Bank 2) 

Note: Writing to word addresses in this space can be used to initialize the data 
RAM.This is unchanged from the MB86930 

Overview of MB86932 - Programmer's Model of the MB86932 

Bl-6 



1.3 Internal Architecture of the MB86932 

00 
FUJITSU 

Figure Bl-l, shows the general block diagram of the MBS6932. Figure Bl-2 shows 
in more detail the major units and buses connecting them. The solid lines show 
the bus connections that are used when the accesses are within the user or super­
visor data/instruction ASI spaces (ASI OS, 09, OA, and OB). The dashed lines show 
the additional connections required to access the control! status or data registers 
through the alternate ASI spaces. The major buses are: 

• Data Data Bus {DD)-A 32-bit bus used to transfer data to and from MBS6932 
functional units. In general, when a load is executed, data is transferred to the 
Integer Vnit (IV) from one of the other units, and when a store is executed, 
data is transferred from the IV to one of the other units. When loads/stores to 
user or supervisor data space are performed, the DO gives the IV access to the 
Data Cache, the BIV (if the data is not in the cache), or the DSV (if the data is to 
be accessed out of DSV memory). 

When doing Load Alternates or Store Alternates, the DO bus can access all 
units except the Instruction Cache and Instruction Tags, which can be accessed 
only through the 10 bus. In such a case, the IV can read data (load alternate) or 
write data (store alternate) to the control/status/data registers of all units. 
Since the TLB can be accessed by the IV only through alternate space, their 
connection is shown as a dashed line. 

• Virtual Data Address bus (VDA)-This 32-bit bus connects the IV, where the 
virtual address is generated, to the TLB, where the virtual address is translated 
to a 32-bit physical address. It also connects to the Debug Support Vnit. 

• Physical Data Address bus (PDA)-This 32-bit bus carries the physical 
address generated by the TLB. During loads/stores to user or supervisor data 
space, it is used both to access the Data Cache, and to compare against the 
Data Tags. The PDA bus also goes to the BIV for use when data is not cached, 
and has to be accessed from external memory. 

For load alternates and store alternates, the PDA goes to all units (except for 
the Ccache and the Ctags), so that control/status/data registers can be 
accessed. 

• Instruction Data bus (ID)-This 32-bit bus normally transfers instructions' 
from either the Instruction Cache, the Bus Interface Vnit, or the DSV (when 
code is being run out of DSV memory). 

Note: When a store alternate is being performed to the Ccache or the Ctags 
(during cache initialization, for example), the data are first transferred from 
the IV to the BIU on the DO bus. The BIU then transfers the data on the 10 bus 
to the Ccache or the Ctags. When a load alternate from the Ccache or the C 
tags to the IV occurs, the reverse operation takes place. This obviates the need 
to extend both the ID and the DO busses to the Ccache and Ctags. {In the fig-

Overview of MB86932 - Internal Architecture of the MB86932 

Bl-7 



SP ARClite User's Manual 

ure below, the connections for reading/writing the tags through alternate 
space are shown as dashed lines.) 

• Virtual Instruction Address bus (VIA)-This 30-bit wide bus carries the 30-bit 
virtual address generated by the IU to the TLB for translation into a Physical 
Instruction Address (PIA). (Since instructions must fall on word boundaries, 
their addresses need only specify a full word address, for which 30 bits 
suffices.) The VIA also goes to the Debug Unit. 

• Physical Instruction Address bus (PIA)-This carries the translated address 
from the TLB to the Ccache and Ctags, and to the BIU for use when the 
instruction is not cached, and access must be made to off-chip memory. The 
PIA can also be driven by the BIU when doing a store or load alternate to the 
Ccache or Ctags. In this case, the item to be stored is first sent to the BIU over 
the DD bus, with the address on the PDA bus. The BIU accepts this item, and 
drives it back on the ID bus, with the address on the PIA bus. This obviates the 
need to connect both the ID and DD buses to the Ccache and Ctags. 

• Alternate Space Identifier address bus (ASI)-This 8-bit bus is driven by the 
IU, and indicates which address space a load/ store is transferring data from/ 
to. Load- and Store-Alternate instructions are used to read/write status/ 
control! data registers in the various units of the MB86932. 

• DMA Data Data bus (DDD)-This 32-bit local bus goes from the DMA to the 
BIU, and is used to send/receive data to/from the BIU during a DMA 
operation. 

• DMA Data Address bus (DDA)-This 30-bit local bus goes from the DMA to 
the BIU, and is used to send the source or destination address to the BIU 
during a DMA operation. 

• DMA ASI bus (DDASI)-This 8-bit local bus goes from the DMA to the BIU, 
and is used to send the ASI value to the BIU for cases where the DMA is 
addressing an alternate address space. 

Overview of MB86932 - Internal Architecture of the MB86932 

Bl-8 



DATA 

ADDRESS 

ASI 

CONTROL 

CLOCK 
GENERATOR 

BUS 
INTERFACE 

UNIT 

CHIP _SEL .... ~---1I-____ -I 

SCAN DIVIDE STEP 

SPARe INTEGER UNIT 

cP 
FUJITSU 

EMULATOR 
BUS 

PAGE_DET::====~~~2":C~H~AN~N:E:L~~====li===ln=====~==li====nF====~ REFRESH DMA 

8K INSTRUCTION 
CACHE 

2KDATA 
CACHE 

Figure B 1-1. MB86932 Block Diagram 

Overview of MB86932 - Internal Architecture of the MB86932 

Bl-9 



SP ARClite User's Manual 

LTAGS D_TAGS 

(256) (128) 

• 

ASI . • DD 

ID 
l 

PDA 

PIA 

-'-
, , 

~ 
LCACHE D_CACHE 

IU TLB BIU ...mm... DMA 
8k 2k (peripherals) 

2-way 2-way 
8-wordline 4-word line ~ 

I VDA t t 
VIA 1 

ADR DATA 

110's 

Figure B 1-2. MB86932 Detailed Block Diagram 

Overview of MB86932 - Internal Architecture of the MB86932 

BI-I0 

, 

DEBUG 

t 

ADR DATA 

110's 



111111111111l1lil1lil1li1111111111111111111 

MB86932 Memory Management Unit 

2. 1 Overview 
The MB86932 provides hardware support for the implementation of an on-chip 
Memory Management Unit (MMU). No particular MMU architecture is deter­
mined for the MB86932. Rather, the hardware has been designed so that it can 
support a wide range of MMU architectures. In particular, it is possible to imple­
ment the SPARC Reference MMU using the hardware provided on-chip. For fur­
ther information on compatibility with the SPARC Reference MMU, please see 
See Section 2.5. 

The features provided by the MB86932 hardware are: 

• A 16-entry Translation Lookaside Buffer (TLB) 

• 32-bit virtual and physical address formats 

• Support for pages/regions of different sizes (4K,256K, 16M, 4G) 

• Support for up to 64 processes (or contexts) 

• Support for either single level or multi-level page tables, and 

• TLB-miss processing initiated by hardware traps. 

MB86932 Memory Management Unit - Overview 

B2-1 

• 



SP ARClite User's Manual 

2. 1. 1 Memory Management Units: A General 
Description 

This section provides a general description of MMU's, their function and benefits, 
for users that may be unfamiliar with them. It also defines terms that will be used 
throughout this chapter. 

Figure B2-1 shows a block diagram of how an MMU fits with the CPU, cache, and 
memory. The MMU is responsible for doing address translations of the "virtual 
address" coming from the CPU to the "physical address" going to the cache and 
main memory. The "virtual address" is the address that the running program 
generates (from a up to 232 for the SP ARC Architecture). The "physical address" 
is the address that the hardware cache and memory receives. The CPU, as it runs 
code, produces virtual addresses which are dynamically translated to the physical 
address translation provided by the MMU. The benefits of virtual to physical 
address translation provided by the MMU are the following: 

• Supports Virtual Memory 

• Supports Multiple executing processes 

• Supports Memory Protection 

2. 1.2 Virtual Memory 

"Virtual memory" is the memory space that the program can address. For exam­
ple, for the SPARC Architecture the virtual memory is 232 bytes."Physical mem­
ory" is the actual amount of memory (RAM, ROM, etc.) that is implemented in 
the system. Usually the physical memory is significantly smaller that the virtual 
memory. 

Data/Instructions 

CPU 
Cache and 

MMU 
Main Memory 

Virtual Address (TLB plus Physical Address 

System Software) 

Figure 82-1. MMU's Role in Address Translation 

Because this is true, it is necessary to dynamically allocate sections of this physical 
memory to code and data which is accessed by the program virtual address. 

This is accomplished in the following way. The virtual memory space is broken 
into segments called "pages" (4k bytes in the SPARC Reference MMU). Similarly, 
the physical address space is broken into equivalent sized segments called "page 

MB86932 Memory Management Unit - Overview 

B2-2 



cO 
FUJITSU 

frames". The complete program and data can be stored in mass storage (e.g. disk) 
until requested by the running program. When the program requests data not in 
physical memory, the required page needs to be retrieved from mass storage and 
put into an available page frame in physical memory. The MMU keeps track of 
where each page is placed in physical memory through the use of an "address 
translation table", also called a "page table". In the most general case, the address 
translation table contains, for each virtual memory page address, either a corre­
sponding physical memory page frame address or a pointer to mass storage 
where that virtual page can be found. As long as the page is in physical memory 
the MMU uses this table to translate virtual addresses to physical addresses as the 
program executes. When the page is not found in physical memory the MMU is 
responsible for retrieving pages in mass storage and placing them in physical 
memory so that they can be accessed by the program. 

Page Frame 
(4k) 

Page (4k) 

Virtual Memory 
(Ex.4G) 

Figure 82·2. Memory Mappings 

As an example, Figure B2-2 shows a physical address space of 16k bytes and a vir­
tual address space of 4G bytes. The page size and the page frame size are both 4k 
bytes. The figure shows four virtual pages residing in physical memory. Other 
parts of the program would reside in mass storage (e.g. on disk). 

Conceptually, both the virtual and physical address can be thought of as having 
two fields-the msb's making up the page number and the Isb's making up the 
offset (within the page). Effectively, the MMU's does address translation by tak­
ing the page number from the virtual address and replacing it with the corre­
sponding physical page number from the address translation table. The offset 
remains the same. 

MB86932 Memory Management Unit - Overview 

B2-3 

• 



SP ARClite User's Manual 

2. 1.3 Multiple Processes 

A process is an "executing" program. At any time a process can be "running" on 
the CPU or "waiting" (e.g., waiting for I/O). Multiple processes can be executing 
at the same time but there can be only one running process. Each process may be 
using a number of physical page frames in memory. For example, the four page 
frames in Figure B2-2 could be holding 4 pages each of which could be associated 
with a different process. 

Each executing program (or process) sees its own 232 virtual address space. To 
support multiple processes there must be a way to translate between a process's 
virtual addresses and the physical addresses of that process's pages in memory. 
To accomplish this the MMU uses a "context register" the value of which is used 
to identify the process which is currently running. Also, required is a "context 
table pointer register". The context table pointer register contains a pointer of the 
head of a table which in tum contains pointers to address translation tables for 
each process. The context register is used as an offset into this table. Thus, when a 
particular process is running the MMU must add the context to the context table 
pointer register to get the head of the address translation table for that process. 
See Figure B2-3. Once the table is found the virtual to physical address translation 
can complete as described in section 2.1.2. 

Context Table 

Address 
Translation Table 

Page Tables for 
Different Processes 

Physical Page 
Number 

Figure 12·3. Schematic of Address Translation 

2. 1.4 Memory Protection 

Memory protection can occur at two levels: the process level and the page level. 

Memory protection at the process level is supported by the context register and 
the context table pointer register. Since each process can only go through its own 
address translation table when doing a virtual to physical address translation 
(as shown in Figure B2-3) one process can be prevented from accessing another 
process's instruction and data. 

Since memory is segmented into pages, it is possible to associate with each page a 
protection field which can give permissions to the running program. These per-

MB86932 Memory Management Unit - Overview 

B2-4 



cO 
FUJITSU 

missions can include whether the page can be read, written, executed, etc. by the 
program. For each page the permissions allowed are stored in the address transla­
tion table in the entry corresponding to that page. 

2. 1.5 How MMU's are Constructed 

MMU's are constructed from a combination of hardware and software. 

Software: 

On the software side, the MMU is composed of the address translation table(s). 
There is one table for each process although this table can be either single level or 
multi-level as is defined in the SP ARC Reference MMU (see Figure B2-3). These 
address translation tables reside in physical memory. 

The MMU also is composed of the system software needed to search these tables 
to do virtual to physical address translations. When the running program gener­
ates a virtual address the MMU must conceptually translate that address by add­
ing the context table pointer register to the context register to get a pointer which 
is added to the virtual page number to finally get the physical page number. This 
physical page number replaces the virtual page number to generate the physical 
address. 

Finally, MMU software is required to move pages of instructions/ data between mass 
storage and main memory as different pages of the running program are accessed. 

Hardware: 

The price of virtual addressing is that virtual addresses must be translated into 
physical addresses on the fly, at the time they are needed during execution. If 
each translation of virtual to physical addresses required a table lookup, as 
described above, the processor would run exceedingly slowly. Fortunately, 
instruction and data accesses exhibit a property known as "locality" - that is, 
they tend to occur not at random locations, but near each other on one or more 
recently-used pages. 

To take advantage of this property, the MB86932 stores in one on-chip structure, 
the Translation Lookaside Buffer (TLB), 16 recently-used virtual page numbers, 
together with their corresponding physical page numbers. In another structure, 
the Instruction Translation Lookaside Buffer (ITLB), it stores the virtual and phys­
ical page numbers of the instruction page currently being accessed. Together 
these structures act as small cache of the most recently used virtual! physical 
address translations. Because of locality of address translations, most of the time 
the translation is done using the TLB. Only rarely does the CPU have to go to the 
address translation table to find a physical page number. Since the TLB transla-

MB86932 Memory Management Unit - Overview 

B2-S 

-" 



SP ARClite User's Manual 

tions occur in parallel with cache/memory access there is no time penalty as long 
as the translation pair is in the TLB. 

Hardware is also provided to cause a trap whenever a requested virtual address 
is not found in the TLB. The trap software can be written to use the context regis­
ter and context pointer register to find the head of the current process address 
translation table in physical memory. The virtual page number can be used as an 
offset in this table to find the physical page number. The trap software can then 
store this virtual page number/physical page number pair in the TLB for future 
use. 

2.2 Programmer's Model 
This section describes the user visible relations and their functions. Many of the 
registers depicted below are very similar to those provided in the MB86930, 
except for a few bits or fields that support the MMU in the MB86932. 

2.2. 1 Cache/Bus Interface Unit Control Register 

The cache/bus interface unit control register is identical to that on the MB86930 
except for the addition of the ''TLB Enable Bit" (TE), bit6 of the register. When 
cleared, the TLB is disabled, and translations from virtual to physical addresses 
do not occur. When set, translations are enabled, contingent on the state of the 
TLB. The TE bit is cleared on reset. 

31 

Address: OXOOOOOOOO (ASI=ox01) 

76543210 

reserved 

Bits 5-0 are aa defined for the MB86930 
Write Buffer Enable (Enabled=l, Disabled=O, RST =0) 

Prefetch Buffer Enable (Enabled=l, Disabled=O, RST =0) __ ---l 

Globs! Data Cache Lock (Lock On=l, Lock 011=0, RST =0) ------' 
Data Cache Enable (Enabled=l, Disabled=O, RST =0) -------' 

Global Instruction Cache Lock (Lock On=l, Lock 011=0, RST =0) _____ ---1 

Instruction Cache Enable (Enabled=l, Disabled=O, RST =0) --------' 

Figure B2-4. Cache/Bus Interface Unit Control Register 

2.2.2 Context Table Pointer Register 

This register holds the physical address of the base of the context table, which 
resides in main memory. When a software table walk is being done, the lower 8 

MB86932 Memory Management Unit - Programmer's Model 

B2-6 



<P 
FUJITSU 

bits of the context register can be added to the context table pointer register to cre­
ate an offset into the context table in memory. 

31 8 7 

Context Table Pointer 

Address: OxOOOO040C (ASI=OxOl) 

Figure B2-5. Context Table Pointer Register 

2.2.3 Context Register 

reserved 
(read as O's) 

o 

Bits 7 through 2 of the context register are implemented. This register has two 
functions: first, it provides protection between processes. During a TLB access, 
the context field is compared against the corresponding field in the TLB entry. If 
the two match-or if the global bit is set to show that context is irrelevant in this 
case-- a virtual-to-physical address translation occurs. Second, it can be used dur­
ing a software table walk, when the context field is used as a word offset into the 
context table in main memory. This is done by adding the context register to the 
context table pointer register, producing the physical address of the desired root 
pointer in the context table in main memory. 

31 8 7 2 1 0 

reserved 
(read as O's) 

Context 00 I 
Address: OXOOOOO408 (ASI=OxOl) 

Figure B2-6. Context Register 

2.2.4 TlB Exceptions 

There are only two kinds of faults that can be caused by a TLB access: the instruc­
tion_access_exception and the data_access_exception., resulting respectively from an 
instruction address translation fault and a data address translation fault. 

The MB86932 uses two of the existing traps defined in the SPARe (version 8) 
instruction set to support the TLB. The traps used are: 

1. Instruction_access_exception 

Version 8" Priority=5; trap type=OxOl 

(a) A TLB miss occurred on an instruction access. 

(b) A blocking error such as "protection violation" occurred on an 
instruction access. 

MB86932 Memory Management Unit - Programmer's Model 

B2-7 

• 



SP ARClite User's Manual 

(c) A first reference to the instruction page was made, and the RT bit in the 
TLB Control Register was set. 

(d) An external mexc signal occurred during an external instruction fetch. 

(e) A parity error was detected on an external instruction fetch. 

The cause of the instruction_access_exception is indicated by the Instruction Fault 
Status Register. 

2. Data_access_exception 

Version 8. Priority=13; trap type=Ox09 

(a) A TLB miss occurred on a data access. 

(b) A blocking error such as "protection violation" occurred on a data access. 

(c) A first reference or first modification to this data page was made, and the 
RT or DMT bit in the TLB Control Register was set. 

(d) An external mexc signal occurred during an external read or write. 

(e) A parity error was detected on an external data read. 

The cause of the data_access_exception is indicated by the Data Fault 
Status Register. 

Since these two exceptions can be generated by several different causes, both 
TLB- and non-TLB related, two registers, described below, have been included to 
indicate the source of the exceptions. 

2.2.5 Instruction Fault Status Register 

There can be multiple causes for the instruction_access_exception; in particular, 
the TLB can cause this exception for a number of reasons. The Instruction Fault 
Status Register exists to indicate the exact reason for the fault, whether TLB­
related or not. If the instruction_access_exception occurred, the address of the 
faulting instruction is in r[17]. 

The instruction Fault Status Register is a read-only register. The bits in this regis­
ter are set by hardware when an instruction_access_exception occurs and indicate 
the cause of the instruction_access_exception. This register is clered when either 

MB86932 Memory Management Unit - Programmer's Model 

B2-8 



00 
FUJITSU 

the Instruction Fault Status Register or the Data Fault Status Register is read by 
software. 

31 

I reserved 

Address: Ox00000418 (ASI=Ox01) 

9
1

8
1 

71 6IAT[2:0]4
1 

3
1

2
1

1 I 0 I __ 
PAR (On=l, 011=0, RST =0) ~ I I 
IBA (On=l, 011=0, RST =0) --.J 
FIR (On=l, 011=0, RST=O) --------' 
lAP (On=l, 011=0, RST=O) ---------' 

PIA (On=l, 011=0, RST=O) -----------' 
ITM (On=l, 011=0, RST=O) ------------' 

Figure B2-7. Instruction Fault Status Register 

Bits 31-9: Reserved 

Bit 8: Parity bit (PAR)-If IBA bit set, a set PAR indicates parity error; if PAR is cleared, "mexc" 
pin strobed, but no parity error detected, 

Bit 7: Instruction Bus Access exception (IBA)-Set when either external "mexc" or parity error 
occurs during external instruction fetch, 

Bits 6-4: Instruction Access Type (IAT[2:0))-This is the ACC field (from TLB) for the instruction 
causing the exception. 

Bit 3: First Instruction Reference (FIR)-Set when first reference is made to so-far "unrefer­
enced" instruction page; this causes a trap only if the "RT" bit of ''TLB Control Register" 
is set. 

Bit 2: Instruction Access Protection violation (IAP)-Set when an instruction lacks access per­
mission sought. 

Bit 1: Privileged Instruction Access violation (PIA)-Set when user-mode instruction seeks 
access to supervisor-mode area. 

Bit 0: Instruction TLB Miss (ITM)-Set when address translation not in TLB or ITLB. 

2.2.6 Data Fault Status Register 

There can be multiple causes for the data_access_exception; in particular, the TLB 
can cause this exception for a number of reasons. The Data Fault Status Register 
exists to indicate the exact reason for the fault, whether TLB-related or not. If the 
data_access_exception occurred, the address of the datum causing the fault is 
held in the Data Fault Address Register. 

The Data Fault Status Register is a read-only register. The bits in this register are 
set by hardware when a data_access_exception occurs and indicate the cause of 
the data_access_exception. This register is cleared when either the Instruction 
Fault Status Register or the Data Fault Status Register is read by software. 

MB86932 Memory Management Unit - Programmer's Model 

B2-9 



SP ARClite User's Manual 

31 

Address: OxOOOO0414 (ASI=Ox01) 

Bits 31-9: Reserved 

reserved 

10 9 8 7 

PAR (On=1, 011=0, RST =0) 

DBA (On=1, 011=0, RST =0) 

54321 0 

DPM (On=1, 011=0, RST =0) --------' 
FDR (On=1, 011=0, RST =0) ---------' 
DAP (On=1, 011=0, RST=O) ________ --1 

PDA (On=1, 011=0, RST=O) ------------' 

DTM (On=1, 011=0, RST=O) -------------' 

Figure B2-8. Data Fault Status Register 

Bit 9: Parity bit (PAR)-If IBA bit set, a set PAR indicates parity error; if PAR is cleared, "mexc" 
pin strobed, but no parity error detected, 

Bit 8: Data Bus Access exception (DBA)-Set when either external "mexc" or parity error 
occurs during external data read. 

Bits 7-5: Data Type (DAT[2:0])-This is the ACC field (from TLB) for the data causing 
the exception. 

Bit 4: Data Page Modification (DPM)-Set when first store is done to so-far unmodified data 
page; causes trap only if DMT bit in TLB Control Register is set.) 

Bit 3: First Data Reference (FDR)-Set when first reference is made to so-far un referenced 
data page; causes trap only if RT bit in TLB Control Register is set. 

Bit 2: Data Access Protection violation (DAP)-5et when data access is attempted without per­
mission for type of access sought. 

Bit 1: Privileged Data Access violation (PDA)-Set when data access sought to supervisor area 
when in user mode. 

Bit 0: Data TLB Miss (DTM)-Set when data address translation not in TLB. 

2.2.7 TLB Control Register 
One bit in this register is used to control whether a fault can occur on the first 
write to an unmodified page, and the other bit is used to control whether a fault 
can occur on the first reference to a previously "unreferenced" page. These bits 

MB86932 Memory Management Unit - Programmer's Model 

B2-1O 



OJ 
FUJITSU 

can be used to support different page-replacement schemes; they are cleared to 0 
on reset. 

31 

Address: OxOOOO0410 (ASI=Ox01) 

Bits 31-2: Reserved 

reserved 

Figure B2-9. TLB Control Register 

DMT (On=1. 011=0. RST =0) 

RT (On=1. 011=0. RST =0) 

Bit 1: Data Modify Trap (DMT)-Control bit, enables trapping on first modification of a datum in 
a so-far unmodified data page. 

Bit 0: Reference Trap (RT)-control bit, enables trapping on first reference to so-far "unrefer­
enced" page; cleared on reset. 

2.2.8 TLB Data Fault Address Register 

When a TLB fault occurs, it is necessary for the trap code to have access to the vir­
tual address of the faulting instruction or data access. This allows the trap handler 
to know what address caused the fault. In the case of a TLB miss, this address is 
needed to perform a software table walk in main memory to find the correct 
translation. The instruction address is also necessary so that the access can be 
retried once the reason for the fault has been corrected. 

In the case of a TLB fault during an instruction access, the virtual address of the 
faulting instruction is held in r[17] of the trap handler window. Thus, no special 
register is needed for this address. For data addresses the situation is different, 
sincethe effective data address is not saved during a trap; the TLB Data Fault 
Address Register is used instead to hold this address value. When a TLB fault is 
recognized during the memory stage of the pipeline, the address on the Data 
Address Bus is latched and held. This register can be read by the trap software. 
The TLB Data Fault Address Register contains the 22 most significant bits (MSB's) 
of the faulting data address, which is sufficient information for the table walk. 
The format is shown in Figure B2-10. 

MB86932 Memory Management Unit - Programmer's Model 

B2-11 

• 



SP ARClite User's Manual 

The TLB Data Fault Address Register is a read-only register. When a TLB data_ 
access_exception occurs the virtual data address is captured and held. This regis­
ter is cleared when read by software. 

31 10 9 o 

Data Fau~ Address reserved 

Address: OxOOOO0420 (ASI=Ox01) 

Figure 12-10. TLI Data Fault Address Register 

2.2.9 Most Recently Used Register 

Bits 0 through 15 of the Most Recently Used Register correspond to the 16 entries 
of the TLB. The register is updated every time a TLB match occurs: the bit corre­
sponding to the matched entry is set, and all others are cleared. On a TLB miss, 
this register can be read, and supports replacement algorithms whose policy is to 
leave the most recently used address in the TLB. 

The Most Recently Used Register is a read-only register. This register is cleared 
when read by software. 

31 

reserved 

Address: Ox0000041C (ASI=Ox01) 

16 15 

Most Recently Used 
(1 OF 16 SET) 

Figure 12-11. Most Recently Used Register 

2.2.10 The TLB Entry 

o 

The TLB has 16 fully associative entries, each of them consisting of an entry in the 
CAM (content-addressible memory) array and the corresponding RAM array. 

2.2. 11 The TLB CAM Entry 

The CAM-array entry is shown in the diagram below. Each CAM entry consists of 
a 20-bit virtual page number (VPN) that contains three index fields, a 2-bit frag­
ment index, and a 6-bit context number (process identifier) that are compared 
against the virtual page address from the Integer Unit (IU) and the content of the 
context register. In addition, a global bit (G), two level bits (1:0), and a fragment 
enable bit (FE) are included. The CAM provides simultaneous comparison of all 
16 TLB entries against the current virtual page address and context number. If a 
CAM entry matches the virtual page address, the corresponding RAM entry in 
the TLB provides a physical page number (PPN) to generate a physical address. 

MB86932 Memory Management Unit - Programmer's Model 

B2-12 



31 

Index-1 

Address: Ox00000304 to 
Ox0000037C (ASI=Ox01) 
(alternates with RAM entries 
in this range of addresses) 

24 23 18 17 12 

OJ 
FUJITSU 

Virtual Page Number 
Context Number 

Index-2 Index-3 

Fragment Index 

Level-----------' 

Fragment Enable (On=1, 011=0, RST=O) -------------' 

Global (On=1, 011=0, RST=O) --------------' 

Figure B2-12. CAM Entry Format 

Bits 31-12: Virtual Page Number (VPN)-Some page table subfields may be masked by Index-3, -2, 
and -1. Index-1, -2 and -3 support different page sizes. 

During translation, the context field in the CAM is compared against the value in 
the context register. Only when these two values match can a RAM entry be 
selected. The only exception is when the corresponding Global bit is set, indicat­
ing that context is irrelevant. The Global bit is, in effect, an enabling switch for the 
Context field; if set, it masks out that field. 

The two Level bits determine what page sizes are part of the MMU architecture. 
They work by acting as (encoded) masks, excluding from the comparison process 
one or more of the index subfields, as detailed in the following table: 

Table B2-1: Level-bits Decoding Table 

LVL[1:0] Address Mapping M3M2M1 TLB Field masked 

11 4-kbyte 0 0 0 None 

10 256-kbyte 1 0 0 Index 3 

01 16-Mbyte 1 1 0 Indexes 2 and 3 

00 4-Gbyte 1 1 1 Indexes 1, 2 and 3 

As summarized in the table, the mask bits M3, M2 and M1 are used to exclude 
from comparison index 3 (bits 17-12), index 2 (bits 23-18), and index 1 (bits 31-24), 
respectively. If M3 is set, index 3 is masked out, and a RAM entry is selected 
based on the match of indexes 1 and 2, and the context number. The 6-bit index 3 
combined with the 12-bit page offset can provide an index to a 256-Kbyte linear 
addressing region. If both M3 and M2 are set, the RAM entry is selected based on 
the match of the index 1 and the context number. The 12-bit index (bits 23-12) 
combined with the 12-bit page offset can provide an index to a 16-Mbyte address­
ing region. If all three masks are set, the RAM is selected based on the context 
number match alone, and the RAM entry provides an index to a 4-Gbyte 
addressing region. 

MB86932 Memory Management Unit - Programmer's Model 

B2-13 



SP ARClite User's Manual 

2.2. 12 The TLB RAM Entry 
The RAM-array entry is shown in the diagram below. It consists of a 20-bit (maxi­
mum) physical page number (PPN), a 3-bit access-level protection, a cacheable 
bit, a modify bit, and a valid bit. The mask bits (Ml, M2, and M3) are a decoded 
version of the L VL field in the corresponding CAM entry. 

The mask bits allow the TLB to generate a correct index into a page for different 
page sizes. The index fields that are excluded from the CAM comparison process 
are used as part of this index into the page-used as part of the offset into the 
selected page instead of part of the PPN. If all mask bits are clear, the 20-bit PPN 
drives the upper 20 bits of the physical address, and the 12-bit offset drives the 
lower 12 bits. If M3 is set, the lower 6-bits of the PPN are replaced by the bits 17-
12 of the virtual address. Therefore, the physical address contains a 18-bit 
untranslated address (page offset) and a 14-bit page number. If both M2 and M3 
are set, the lower 12 bits of the PPN are replaced by bits 23-12 of the virtual 
address. The physical address then contains a 24-bit untranslated address (page 
offset), and a 8-bit page number. If all mask bits are set, the virtual address out­
puts to the physical address. 

Associated with each virtual page are coded values that indicate what kind of 
accesses (read, write, execute, or none) may be made to this page by this program. 
When loaded into the TLB these values are stored in the ACC field [5:2], and are 
compatible with the specification given in the SPARC Reference MMU Architecture. 
Note that entries in the TLB make no explicit reference to ASI spaces; this infor­
mation is implicit in the access bits of the TLB. 

Table B2-2:Access Protection available through PTE[4:2] 

Accesses Allowed 
ACCField 

Value User Access Supervisor Access 
(ASI=Ox8 or OxA) (ASI=Ox9 or OxB) 

0 Read Only Read Only 

1 Read/Write Read/Write 

2 Read/Execute Read/Execute 

3 Read/Write/Execute Read/Write/Execute 

4 Execute Only Execute Only 

5 Read Only Read/Write 

6 No Access Read/Execute 

7 No Access Read/Write/Execute 

Note: ASI=AHemate Space Identifier; an 8·M value that indicates whether a load/store 
instruction transfers data tolfrom external units, or registers on the chip. 

MB86932 Memory Management Unit - Programmer's Model 

B2-14 



31 12 11 10 9 8 7 6 5 

PPN 

cO 
FUJITSU 

3 2 1 0 

Address: Ox00000300 to 
Ox00000378 (ASI=OxOl) 
(alternates with CAM entries 
in this range of addresses) 

Global bit (On=l, 011=0, RST =0) 

Fragment Enable (On=l, 011=0, RST =0) 

Valid (On=l, 011=0, RST =0) -----' 

Cacheable bit (On=l, 011=0, RST =0) -------' 

Modify bit (On=l, 011=0, RST =0) --------' 

Referenced bit (On=1 , 011=0, RST =0) ----------' 

Access Protection bits (On=l, 011=0, RST =0) ----------' 

Mask bits M3, M2 and Ml (On=l, 011=0, RST =0) ----------------' 

Figure 82·13. RAM Entry Format 

Bits 31-12: (Maximum) Physical Page Number (PPN)-Some page table subfields may be masked 
by M3, M2, and M1) 

Bit 11: 

Bit 10: 

Bit 9: 

Bit 8: 

Bit?: 

Bit 6: 

Bits 5-3: 

Bits 2-0: 

Global bit (G)-This bit and the fragment enable bit (FE) are duplicates of the same bits in 
the corresponding RAM entry. 

Fragment Index bit (FE)-If set, this bit asserts that the Fragment Index bits are to be 
included in the comparison. If so, the result is to establish access protection at the sub­
page 1 K level, the "fragment" level. When the FE bit is set, the Fragment Index bits are 
compared against virtual address bits 10 and 11 (which do not themselves go through 
translation). A RAM entry is then selected only when there is a VPN match and a FI match 
in the CAM entry. Since each TLB entry can set its own access level or protection, protec­
tion at the 1-Kbyte level is thus available. When the FE bit is not set, the FI bits are 
excluded from the comparison, and access protections apply only to the full 4-Kbyte 
(or larger) whole pages. 

Valid bit (V)-This bit reports the current validity of the TLB entry. The V bit of each entry 
should be cleared by software to invalidate those entries before the TLB is enabled. 

Cacheable bit (C)-This bit indicates whether the memory addressed by the TLB is 
cacheable or not. 

Modify bit (M)-This bit in the TLB is set when the memory page is modified by a 
write operation. 

Referenced bit (R)-This bit is set by the TLB when the page in question is accessed. 
This bit can be used in TLB replacement algorithms. 

Access Protection bits (ACC)-The access-level protection for the address region 
mapped by the RAM entry. Access-level protection is checked during TLB access. If a 
TLB match occurs, but access-level protection is violated, the TLB will generate a trap. 

Mask bits (M3, M2 and M1 )-A decoded version of the LVL field in the corresponding 
CAM entry. 

MB86932 Memory Management Unit - Programmer's Model 

B2-.15 

.. 



SPARClite User's Manual 

2.2. 13 ITLB Description 

Fully static implementation of a one-entry Instruction Translation Lookaside 
Buffer (ITLB) allows immediate access to the physical address of the last page 
entry stored there. The registers associated with the ITLB are in locations 
Ox00000400 ("RAM" entry) and Ox00000404 ("CAM" entry). These two registers 
are the same as the TLB RAM and CAM entries. The instruction cache hit/miss 
and access permissions are determined by the PTE in the ITLB, so there is no per­
formance penalty in using the ITLB. If an access-level violation is detected, the 
ITLB generates an instruction_access_exception trap. 

2.2. 14 TLB Lookup 

If an instruction address translation is not found in the ITLB, an ITLB hold is 
asserted, and the virtual instruction address is looked up in the TLB on the next 
(the second) cycle, preempting any data address translation. On a match in the 
TLB, the TLB entry is output to the ITLB. On the third cycle, the translation is 
retried using the ITLB, with guaranteed success. If the translation is not found in 
the TLB, an instruction_access_exception trap is asserted, and a software routine 
to access the address translation table in main memory can be executed. This is 
known as a "software table walk". Due to the locality of instructions, and the 
availability of the TLB in case of ITLB miss, the performance price of instruction 
address translation is minimal. 

For data address translation, the virtual data address is used directly to compare 
against each entry in the TLB. If a TLB match occurs, the TLB outputs the physical 
address, the cacheable bit, and the access protection bits. If the translation is not 
found in the TLB, or if an access-level violation is detected, a data_access_excep­
tion trap is asserted. If the trap occurred because of a TLB miss, a software table 
walk can be initiated. 

2.3 Internal Architecture 

2.3. 1 Details of TLB Logic 

Because of the normally sequential nature of instruction addresses, it is likely that 
the next required instruction is on the current page. Accordingly, the virtual 
instruction address is sent directly to the ITLB for translation; only if the desired 
address is not found there is it sent to the TLB. If it is found in the TLB, it is loaded 
into the ITLB, and instruction address translation proceeds. If the physical 
address is not found in the TLB either, an "instruction_access_exception" trap is 
asserted, and a software table walk can be performed. The physical address found 

MB86932 Memory Management Unit - Internal Architecture 

B2-16 



6) 

FUJITSU 

in the Page Tables is entered into the ITLB and TLB for use in later instruction 
address translations. 

Because data is more widely scattered, data address translations go directly to the 
TLB. If the desired physical address is not found in the TLB, a "data_access_ • 
exception" trap is asserted, a table walk is performed, and the physical address 
when found in the Page Tables is entered into the TLB for later data address 
translations. 

The net result for overall system performance is that few instruction or data refer­
ences in a normally structured program need be translated by accessing the Page 
Tables in memory; the great majority of the physical addresses needed are found 
on-chip in the TLB/ITLB, and two physical addresses-one data address and one 
instruction address---can be acquired simultaneously. The details of the process 
of translating a virtual into a physical address are illustrated in the diagram and 
flowchart in Figures B2-14 and B2-15: 

2.3.2 Address Translation: Logical and Physical Steps 
The diagram below illustrates the registers and fields involved in TLB-based 
translation of a virtual address into a physical address. The flowchart supple­
ments it by correlating the physical steps taken with their meaning from the user's 
point of view. 

Figure B2-14. Address Translation by TLB: Fields and Registers 

In this flowchart, the logic of each translation step is given in the left-hand box, 
and its physical realization in the corresponding right-hand one. 

MB86932 Memory Management Unit - Internal Architecture 

B2-17 



SP ARClite User's Manual 

Logical Physical 

Step 1: Is this a virtual 
Is the value on the ASI bus = address to be translated into 

a physical address? 08, 09, OA or OB? 

I I 
YES; proceed to Step 2 

NO; this is the physical address 

I I 
Step 2: Is there an entry in Do those index fields of the 

the TLB (or ITLB, for an virtual address not masked 
instruction) for a page of the by the LVL bits match the 
right size that matches the corresponding bits of a CAM 

given virtual address? entry in the TLB? 

I I 
YES; proceed to Step 3 

NO; this is a "TLB miss"; generate data or instruction exception, go to 
Address Translation Page Tables in memory to find physical address. 

I I 
Step 3: Is the matching entry Does the value in the 

in the TLB (or ITLB) in the Context Register match the 
same context as the given CAM context tag (or is the 

virtual address (or is context global bit set)? 
irrelevant)? 

I I 
YES; TLB usage successful. RAM entry corresponding to matched 

CAM entry contains the wanted physical address. 
NO; this is a "TLB miss"; generate data or instruction exception, go to 

Page Tables in memory to find physical address. 

Figure B2-15. Flowchart of TLB Address Translation 

2.3.3 Basic TLB Exception Timings 

The diagram below indicates at what stage of the pipe the various TLB exceptions 
occur, and when the processor recognizes these exceptions. Instruction-access 
TLB faults occur during the fetch stage, while data-access TLB faults occur during 
the memory stage. All of the exceptions are recognized at the end of the 
memory stage. 

MB86932 Memory Management Unit - Internal Architecture 

B2-18 



Instruction access TLB miss 
Instruction access exception 
Instruction mexc 
Instruction parity check error All occur at fetch stage 

Data access TLB miss 
Data access exception 
Datamexc 
Data parity check error 

All occur at memory stage 
All exceptions recognized at memory stage 

Figure B2-16. TLB Exception Timings 

2.3.4 TLB Timing Considerations 

O:J 
FUJITSU 

The TLB does the instruction/ data address translation in parallel with accessing 
the instruction/ data caches (see Figure B3-2 in Chapter 3 "MB86932 Caches "). 
Thus, there is no additional cycle penalty when executing with the TLB enabled if 
the virtual/physical address translation is in the TLB. There are two exceptions to 
this rule: 

1. If the virtual/physical address pair being accessed is in the TLB but not in the 
ITLB, the translation will require an additional two cycles. The first of these is 
used to access the TLB for the translation pair and load it into the ITLB; the 
second is used to retry the translation with the ITLB. 

2. If either cache is disabled and the TLB is enabled, the TLB translation requires 
an extra cycle be inserted before the address can be driven on the Address 
pins. 

Figure B2-17 shows the timing for TLB virtual-to-physical address translations. 
The "ITLB Status" indicates whether an ITLB hit or miss occurs for the address of 
the instruction in the fetch stage. The "TLB Status" normally indicates whether a 
TLB hit or miss occurs for the data address of the instruction in the memory stage. 

Four situations are indicated in Figure B2-17. Cycle 0 is an example of both an 
ITLB hit for the instruction address of INST4, and a TLB hit for the data address of 
INSTl. 

Cycles 1 through 3 show what occurs when INST5 misses in the ITLB in cycle 1. 
The INST5 instruction translation is retried using the TLB in cycle 2. If a hit 
occurs, the ITLB is updated with the value from the TLB. Finally, the instruction 
address of INST5 goes through translation using the ITLB in cycle 3. 

MB86932 Memory Management Unit - Internal Architecture 

B2-19 

• I 



SP ARClite User's Manual 

Cycles 4 and 5 indicate what happens when the instruction address translation for 
INST6 is in neither the ITLB nor the TLB. After accessing the ITLB and missing, 
the TLB is accessed with the same instruction address. When a miss is detected 
here, this causes an instruction memory exception to occur. Note that this does 
not cause a trap until this instruction reaches its memory stage in cycle 8. 

Cycle 8 shows a data address TLB miss. (The data address from the instruction in 
the memory stage always goes to the TLB except in the cases when the instruction 
address preempts it after an ITLB miss.) This data-address TLB miss causes a 
data_memory_exception which that is recognized in the same cycle in which it 
occurs. 

For the last two cases, the exceptions cause the processor to vector to the trap rou­
tine (INST20) in cycle 9. The instructions in the decode, execute, and memory 
steps are "squashed" at that time. The faulting instruction (INST6 in both cases) 
does not write back a result to the register file. Instead, the PC (virtual address) of 
the faulting instruction is written to the register file. In addition, if a data address 
translation caused the fault, the value of the faulting virtual data address is writ­
ten into the data fault address register. 

2.3.5 TLI Emulation Support Logic 
When the MB86932 chip is executing from the In-Circuit Emulation (ICE) port, all 
accesses, including those to supervisor instructions and data, should be untrans­
lated. This is required because the ICE logic has a fixed memory map, and will not 
be able to handle translated addresses. The ICE code will have the responsibility 
of doing the table walk before accessing any location. It should access everything 
using physical addresses. 

MB86932 Memory Management Unit - Internal Architecture 

B2-20 



2.4 

elK 

Fetch 

Decode 

Execute 

Memory 

Write-Back 

ITlB Status 
(Uelch stage) 

TlB Status 
(load/store or Uetch stage) 

Pipe Stall 

0 2 3 4 S 6 7 8 

Ins! 4 InstS InstS InstS Inst6 Ins! 6 Ins! 7 Inst8 Ins! 9 

Ins! 3 Inst4 Inst4 Inst4 InstS InstS Ins! 6 Inst7 Ins! 8 

Ins! 2 Inst3 Inst3 Inst3 Inst4 Inst4 Ins! S Ins! 6 Ins! 7 

Inst 1 Inst2 Inst2 Inst2 Inst3 Inst3 Ins! 4 Ins! S Ins! 6 

Ins! 0 Inst 1 Inst 1 Inst 1 Inst2 Inst2 Ins! 3 Inst4 InstS 

I Hit I Miss (I Miss) I Hit I Miss (I Miss) I Hit I Hit I Hit 

DHit DHit I Hit DHit DHit I Miss! DHit DHit DMiss2 

Note 1: I_Mern_Exception occurs tor LMiss in TLB. 
2: D_Mem_Exception occurs for D_Miss in TLB; I_Mem_Exp. + D_Mem_Exception is recognized here. 
3: No result written back into register file, but virtual PC is written back. 

9 

cP 
FUJITSU 

10 11 

Ins! 8 

I Hit 

DHit 

Figure B2-17. Sequence of Events for ITLB and TLB Misses 

Programming Considerations 

2.4. 1 MMU Architecture Example: the SPARe Reference 
MMU 

One MMU architecture that the MB86932 can support is the SP ARC Reference 
MMU. This architecture can be implemented as follows. 

The information the MMU required to perform virtual-to-physical address trans­
lation is put in a hierarchy of physically-addressed structures, the Page Tables, 
that reside in main memory. In the SPARC Reference MMU architecture, with 
three Page Tables, Page Tables 1 and 2 would contain two kinds of entries: 

• Page Table Pointers, which contain the physical address of the logically next­
lower table, and thereby link the tables together as a hierarchy (Note that PTPs 
are never found in the TLB.) 

• Page Table Entries, which contain the physical address of a page of the size 
associated with the table (along with other page-specific information). Since 
the TLB caches PTEs, the information content of PTEs in main memory should 
be compatible with that of PTEs in the TLB, although the exact format may 
differ. 

MB86932 Memory Management Unit - Programming Considerations 

B2-21 

• I 



SP ARClite User's Manual 

Page Table 3, can 'contain only Page Table Entries (PTEs), since there is no next­
lower table for it to point to. SP ARC reference compatible formats of the PTP and 
PTE are: 

31 

31 

8 7 

Physical Page Table address 

Figure B2-18. Page Table Pointer (PTP) 

PPN 

Modify (Set when page modified by write operation) ----' 
Reference (Set by TLB when page is accessed) ------' 

Access protection (See Table B2-2, "Access Allowed") --------' 

2 1 0 

Entry Type (OO=invalid, 01=PTP, 10=PTE, 11=reserved) ________ ---1 

Figure B2-19. MB86932 Page Table Entry (PTE) 

Note that the FE field is not part of the SP ARC Reference MMU Architecture, but 
is introduced by the MB86932. (The reservation of bits [11:9] is similarly an 
MB86932 feature.) 

Level 1 Table Level 2 Table 

I 
Physically Addressed 

Structures in Main Memory 

Level 3 Table 

Page Table Entry 

Figure B2-20. Pointer chaining from Page Table to Page Table 

The table walk, or search from table to table for a matching virtual address, fol­
lows a simple logic: after the root pointer locates the Level-1 table in memory, and 
index-1 of the virtual address picks out a particular entry in that table, each suc-

MB86932 Memory Management Unit - Programming Considerations 

B2-22 



00 
FUJITSU 

ceeding table (if necessary) is located by the PTP just found, and the entry in that 
new table is picked by the next index field of the virtual address. 

The reason for dividing the page pointers among three tables is to support sparse 
addressing efficiently; the root and the PTEs in the three tables point respectively 
to pages of 4 gigabytes, 16 megabytes, 256 kilobytes, and 4 kilobytes, so memory 
can be used in block sizes appropriate to an application's routines and data struc­
tures. 

2.4.2 Virtual Address format 

The format of a virtual address as generated by the Integer Unit (IV) and passed 
for translation to the TLB is as follows: the Page Offset field for the maximum 
(four page sizes) configuration is nominally 12 bits wide (bits 11-0) and specifies a 
particular byte within a 4K-byte page; the three index fields, collectively known 
as the Virtual Page Number (VPN) field, enable the TLB to identify the correct 
page. Each index field is an offset into the correspondingly-numbered page table. 

If the page whose physical address is sought is larger than 4K-bytes, a 12-bit offset 
field is insufficient to identify a specific byte within it. But the PTE of a page size 
larger than 4K will not be in table 3, and will not require that all three Page Tables 
be walked during the translation process, so one or more of the index fields 
becomes available for use in forming a bigger page offset field, exactly as 
required. In effect, then, the offset field is always as big as needed for the current 
address translation process. 

For example, if the information sought is in a 256K-byte page, the index-3 field, 
needed only when the PTE is in Table 3, is effectively made part of the Page Offset 
field for that translation, giving an Offset field of 18 bits; this supports the identi­
fication of an individual byte in a 256K-byte page. Similarly, a 16M-byte page will 
not require index fields 2 or 3, yielding the effective 24-bit Offset field that is 
needed for addressing a 4M-byte address space. 

31 24 23 18 17 12 11 1 0 
Virtual Page Number 

Index-1 Index-2 Index-3 
Page Offset 

Figure B2-21. Virtual Address Format 

MB86932 Memory Management Unit - Programming Considerations 

B2-23 

~ 
I 



SP ARClite User's Manual 

2.4.3 Physical Address format 
The MB86932 physical address format differs from that specified in the SP ARC 
Reference MMU Architecture in being 32 bits wide rather than 36. It is otherwise as 
specified in that document: Since all pages begin on 4K-byte boundaries, the low­
order 12 bits of the physical address are the same as those of the virtual address, 
and do not require translation. 

31 12 11 1 0 

Physical Page Number Page Offset 

Figure 12-22. Physical Address format 

2.5 Conformity to SPARC Reference MMU Architecture 
The MMU architecture of the MB86932 is as specified in The SP ARC Reference 
MMU Architecture (Sun Microsystems, Revision 1.4, 23 Jan 1989), with the follow­
ing exceptions: 

• The physical address format is 32 bits wide rather than the 36 bits specified in 
the Reference.Architecture. 

• As a consequence of the difference in physical address format, the Physical 
Page Number (PPN) portion of the Page Table Entry (PTE) is 20 bits wide 
rather than the 24 bits specified in the Reference.Architecture. 

• Bit 8 of the PTE, the Fragment Enable (FE) bit, has been reserved in the 932 to 
support protection down to 1K sub-page boundaries. 

• A few of the registers and bits specified in the Reference Architecture are not 
implemented, or not implemented in full. Specifically: only bits 7-2 of the 
Context Register are implemented. 

• The instruction_address_MMU_miss and the data_address_MMU_miss 
exceptions defined in the Reference are not implemented; on the occurrence of 
one of these misses, the TLB will instead vector to the instruction_access_ 
exception trap routine, or the data_access_exception trap routine, respectively. 

MB86932 Memory Management Unit - Conformity to SP ARC Reference MMU Architecture 

B2-24 



R 

l1lil1lil1lil1lil1lil1li l1li IIIH1HIII III III l1li111 

MB86932 Caches 

3. 1 Overview of MB86932 Caches 
The MB86932 offers enhanced support for cacheing: its instruction cache is 8K­
bytes in size, and has 8-word lines. (The corresponding values for the MB86930 
are 2K-bytes and 4-word lines.) The data cache of the MB86932 remains the same 
as the MB86930's at 2K-bytes and 4-word lines. The increased instruction cache 
size is reflected in a new format for the Instruction Cache Tag, which has four 
new "valid" bits to control the four new words per cache line (the other four valid 
bits remain in the same positions they occupy in the C Cache Tag in the MB86930, 
making for backward compatibility). 

Both caches are "physical" caches; that is, the cache arrays are accessed with 
physical, not virtual, addresses. The addresses stored in the tag arrays are also 
physical, not virtual, addresses. Since the caches are accessed with physical 
addresses, the reading and writing of the caches is expedited by the MB86932's 
restriction of the minimum page size to 4K-bytes. This allows the lower 12 bits of 
the physical address to be identical to the lower 12 bits of the virtual address, 
which in turn means that, given 2-way set associativity, the cache can be up to 8K 
bytes without requiring any address translation when being accessed. The 
MB86932 uses this fu1l8K-byte space in its instruction cache, while in the data 
cache only 2K-bytes (of the possible 8K-bytes) are implemented. 

MB86932 Caches - Overview of MB86932 Caches 

B3-1 

• 



SP ARelite User's Manual 

3.2 Programmer's Model 
The cache control! status registers of the MB86932 form a superset of those in the 
MB86930. The registers common to the two chips are the: 

OxOOOOOOOO ASI=Ox1 CachelBlU Control Register" (TLB enable bit added) 

OXOOOOOO04 ASI=Ox1 Lock Control Register 

OxOOOOOO08 ASI=Ox1 Lock Control Save Register 

OxOOOOOOOC ASI=Ox1 Cache Stetus Register 

OXOOOOO010 ASI=Ox1 Restore Lock Control Register 

To this set (all in the ASI=OxOl space) the MB86932 adds two Instruction_Cache_ 
Invalidate Registers, one for each bank of the instruction cache, and two Data_ 
Cache_Invalidate Registers, one for each bank of the data cache. All four are 
write-only; their format is shown below. 

Bank 1 of the instruction cache is controlled by the register at address OxOOOOlOOO, 
while bank 2 is controlled by the register at address Ox80001000 both in ASI space 
OxOc. Bank 1 of the data cache is controlled by the register at address OxOOOOlOOO, 
while bank 2 is controlled by the register at address Ox80001000, both in ASI space 
OxOE. 

Invalidating the cache, and clearing lock and lru bits, is an easy way to remove 
old code/data from the caches when a new page is brought into physical mem­
ory, or after a DMA has been made to cacheable locations in main memory. Clear­
ing only the lock and lru bits is an easy way to allow locked code to be replaced 
after use. Note that the invalidate bits are written during the M stage of the 
instruction; thus, their effect is not felt until the fourth instruction after the 
instruction that writes to these registers. 

31 

Instruction cache addresses: 
Bank 1, Address; OxOOO01000 (ASI=OxOC) 
Bank 2, Address; Ox80001ooo (ASI=OxOC) 
Data cache addresses: 
Bank 1, Address; Ox00001000 (ASI=OxOE) 
Bank 2, Address; Ox80001000 (ASI=OxOE) 

reserved 

12 (All valid bits of bank 1 of the cache are cleared=1, RST =0) 

11 (All lock and lru bits of bank 2 are cleared=1, RST =0) 

Figure 83-1. Cache Invalidate Register Format 

MB86932 Caches - Programmer's Model 

B3-2 



3.2.1 Operation of the Instruction Cache 

cP 
FUJITSU 

At reset the cache is turned off, and the valid bits, lock bits, and LRU bits are set to 
O. Initialization of the cache to particular values can be done by doing stores to an 
alternate address space OxOc. When the cache is off, all requests are sent to the 
external memory. After the cache is initialized, the user writes a 1 to the cache-on 
bit to turn on the cache. 

3.2.2 Operation of the Data Cache 

At reset, the cache is turned off, and the valid bits, lock bits, and LRU bits are set 
to O. Initialization of the cache to particular values can be done by doing writes to 
alternate address space OxOE. When the cache is off, all requests are sent to the 
external memory. After the cache is initialized, the user writes a 1 to the cache-on 
bit to enable the caches. 

Accesses to the ASI's corresponding to user and supervisor data space are cached. 
No loads or stores from any other ASI are cached. 

3.3 Internal Architecture of MB86932 Caches 
Figure 3-Cache-l, below, shows how the TLB works with the caches 
(in the example shown, the Instruction Cache): 

31 

Index-1 

Virtual Page Number 
I 

24 23 

Index-2 

V 

1817 

Index-3 

~,...l\.TL8 
~'-v' hiVmiss 

V 
Physical Page Number 

12 11 5 4 

Offset 

Uag Array 

Figure B3-2. TLB/Cache Interaction 

8k,2-way 

'-cache Array 

Bank 1 8ank2 

MB86932 Caches - Internal Architecture of MB86932 Caches 

B3-3 

-I 
! 



SP ARClite User's Manual 

3.3. 1 Instruction Cache 

The instruction cache is an 8K-byte, 2-way associative, sectored cache, with 8-
word lines. The basic operation of the cache is as follows: the IV sends the virtual 
address to the TLB, Ccache, and Ccache tags. Since the lower 12 bits of the virtual 
address are not translated, they are available immediately at the Ccache and tag 
array. Thus, the tag array can be accessed and the Ccache address can be decoded 
simultaneously with the TLB translation of the virtual page number to the physi­
cal page number. Once this is completed, the tag read from the tag array can be 
compared to bits 31-12 of the translated physical address to determine hit or miss. 

The virtual instruction address format is shown below. The virtual page number 
has three index fields that are conditionally translated by the TLB, based on the 
mapped memory region size. The address coming out of the TLB is the physical 
address, and goes to the Ccache and tags. Bits 31-12 go to the tag array for com­
parison. Bits 11-5, which do not go through translation, select two tags (one for 
each bank) out of the 256-entry tag array, and also choose two lines (one for each 
bank) out of the 8K Ccache. Bits 4-2 select a word out of the 8-word line. In each 
of the diagrams below, bits 0-11 are the untranslated part of the address. 

31 24 23 18 17 12 11 1 0 
Virtual Page Number 

Index-1 Index-2 Index-3 
Page Offset 

(from IU to ITLB) 

Figure 83-3. Virtual Instruction Address 

31 12 11 1 0 

PhYSical Page Number Page Offset 

(from ITLB to Instruction Cache) 

Figure 83-4. Physical Instruction Address 

31 12 11 5 4 2 1 0 

Compared vs Lcache Tag Line # w 

Figure 83-5. Address to I_cache and Tag Array 

The instruction cache tag format is shown below. Twenty bits make up the 
address tag. Four bits, 9-6, are Valid bits for four of the words of the 8-word line. 
These bits are in the same location as the valid bits of the MB89630 Ccache tag 
array. Four additional Valid bits have been added for the other four words of the 
8-word line. Bit 5 is used to indicate whether the line can be accessed by supervi-

MB86932 Caches - Internal Architecture of MB86932 Caches 

B3-4 



cP 
FUJITSU 

sor only. Bit 1 is the least-recently used bit, which is used when doing a line 
replacement in the Ccache. Note that because of the increase in cache size and 
line size, the tag format of the MB86932 differs from that of the MB86930. 

How the valid bits in a tag correspond to the words in the corresponding line is 
shown below: 

Word Address [4:2] 

Valid Bit Location 

31 

000 

6 

LcacheTag 

Note: Only tags for set 2 have LRU bit. 

001 

7 

010 

8 

011 

9 

unused 

New Valid bit 

100 

2 

101 

3 

Supervisor-Only bit ---------' 

110 

4 

111 

10 

Least-Recently Used bit --------------' 
Lockbit---------------' 

Figure B3-6. I_cache Tag Format 

Note that any access that competes with a currently locked entry in the cache is 
treated as non-cacheable. In addition to the lock bits in the tag array, there is a 
global cache lock bit for each of the caches. Whenever these global lock bits are 
set, all accesses that do not result in a hit in the cache are treated as non-cacheable. 

Writes to the instruction address space are not supported. The tag and instruction 
memory can be updated by doing writes to alternate address spaces OxOC and 
OxOD. 

3.3.2 Read Hit 
On an instruction fetch, the tag and the instruction are accessed in parallel, using 
the untranslated lower 12 bits of the address. If the translated bits of the address 
match one of the accessed tags, and the V /5 fields match, and the "valid" bit cor­
responding to the word being accessed is set, then the required instruction is in 
the cache. The instruction is returned to the IV, and the LRV bit is updated. The 
lock bit may be updated, based on the value of the Instruction lock bit in the "lock 
control register." 

3.3.3 Miss Processing 
If the address field in the tag does not match the translated address bits (31-12) 
coming from the TLB, or the V /5 bit does not correspond to the ASI indicated by 
the IV, or the corresponding "valid" bit is not set, the result is a cache miss. In this 

MB86932 Caches - Internal Architecture of MB86932 Caches 

B3-5 

-



SP ARClite User's Manual 

case, the "hold" signal to the IV, and the "miss" signal, are asserted. This freezes 
the IV pipeline. The request is sent to external memory via the BIV. 

If the address field in the tag matches the translated address bits (31-12), and the 
V /S bit corresponds to the ASI indicated by the IV, and at least one of the valid 
bits is set (but the valid bit for the requested word is not set), it implies that an 
entry has already been allocated for this word. There is no need to select an entry 
to be replaced. 

If the miss is due to the address field in the tag not matching the translated 
address bits (31-12), or the V/S bit does not correspond to the ASI indicated by 
the IV, or none of the valid bits is set, then an entry needs to be selected for 
replacement (or allocation). The LRV bit for this entry is checked, and the least­
recently used entry is chosen to be replaced (or allocated). 

The entry that is chosen for replacement will also depend on the "lock" bits. Con­
sider two sets, A and B. If the lock bit for a given entry in A is set, and the corre­
sponding bit of B is clear, then the entry in B will be replaced regardless of the 
value of the LRV bit. The LRV bit will be updated to show the entry in A to be the 
least-recently used. If the lock bit for both entries, or the lock bit for the whole 
cache, is set, then the access will be treated as a non-cacheable access. 

In the case of an instruction fetch, when the required instruction is accessed from 
main memory, it is returned to the IV and stored in the cache. The "hold" signal 
freezing the IV is deasserted. If a line was replaced or allocated because of the cache 
miss, the valid bit for the accessed word is set, and the other valid bits are reset. If 
the word being accessed is part of an already allocated line, then only the "valid" 
bit for the accessed word is set. All other bits remain unchanged. The lock bit may 
also be updated based on the value of the Instruction lock bit in the "lock control 
register." 

3.3.4 Data Cache 

The data cache is a 2K-byte, 2-way associative, sectored cache, with 4-word lines. 
The basic operation of the cache is as follows: the IV sends the virtual address to 
the TLB, D_cache, and D3ache tags. Since the lower 12 bits of the virtual address 
are not translated, they are available immediately at the D_cache and tag array. 
Thus, the tag array can be accessed and the D_cache address can be decoded 
simultaneously with the TLB translation of the virtual page number to the physi­
cal page number. Once this is completed, the tag read from the tag array can be 
compared to bits 31-10 of the translated physical address to determine hit or miss. 

The virtual data address format is shown below. The virtual page number has 
three index fields that are conditionally translated by the TLB, based on the 
mapped memory region size. The address coming out of the TLB is the physical 
address, and goes to the D_cache and tags. Bits 31-10 go to the tag array for com-

MB86932 Caches - Internal Architecture of MB86932 Caches 

B3-6 



0) 

FUJITSU 

parison. Bits 9-4, which do not go through translation, select two tags (one for 
each bank) out of the 128-entry tag array, and also choose two lines (one for each 
bank) out of the 2K ° _cache. Bits 3-2 select a word out of the 4-word line. In each 
of the diagrams below, bits 11-0 are the untranslated part of the address. 

31 24 23 18 17 12 11 1 0 
Virtual Page Number 

Page Offset 
Index-l Index-2 Index-3 

(from IU to TLB) 

Figure 13-7. Virtual Data Address 

31 12 11 1 0 

Physical Page Number Page Offset 

(from TLB to Data Cache) 

Figure 13-8. Physical Data Address from TLI 

31 10 9 4 3 2 1 0 

Compared vs D3ache Tag Line # 

Figure 13-9. Address to D_cache and Tag Array 

The data cache tag format is shown below. Twenty-two bits make up the address 
tag. Four bits, 9-6, are valid bits for each word of a D_cache line. Bit 5 is used to 
indicate whether the line can be accessed by supervisor only. Bit 1 is the least­
recently used bit, which is used when doing a line replacement in the D_cache. 
Finally, bit 0 is used to lock the entry into the cache. Note that this format is iden­
tical to that of the MB86930. 

31 

Note: Only tags for set 2 have LRU bit. 

Least-Recently Used bit -------' 

Lock bit --------' 

Figure 13-10. D_cache Tag Format 

The data cache follows a write-through update policy. On a write hit, the data is 
written to both the cache and main memory. If there is a write miss, the data is 
written only to the external memory. A different write policy is followed if the 
write is to a locked location. 

I 

MB86932 Caches - Internal Architecture of MB86932 Caches 

B3-7 

• 



SP ARClite User's Manual 

The. lock bit in the data cache has the effect of locking the current data in the 
cache. Any access that does not result in a hit in the cache, and maps to a location 
that is currently locked, is treated as non-cacheable. Any writes to locked data 
cache entries are not written to main memory. Only the data in the cache 
is updated. 

3.3.5 Read Hit 

On a load, the tag and the data are accessed in parallel, using the untranslated 
lower 12 bits of the address. If the translated portion of the address field coming 
from the TLB matches the tag, and the V /S bit corresponds to the ASI indicated 
by the IU, and the "valid" bit corresponding to the word being accessed is set, 
then the required data is in the cache. Since a hit is detected, the data is returned 
to the IU, and the "hold" signal to the IV is not asserted. The LRV bit is updated. 
The lock bit may be updated, based on the value of the Data lock bit in the "lock 
control register." 

3.3.6 Write Hit 

On a store(ST, STB, STH), if a hit is detected, the IU hold signal is not asserted. 
The LRV bit is updated. The lock bit may be updated, depending on the value of 
the Data lock bit in the "lock control register." If the lock bit for this entry is not 
set, or the Data lock bit in the "lock control register" does not indicate that the 
entry is to be locked, then the transaction is also sent to the BIU to be completed in 
external memory. 

3.3.7 Miss Processing 

If the address field in the tag does not match the translated address bits (31-10) 
coming from the TLB, or the V /S bit does not correspond to the ASI indicated by 
the IU, or the corresponding "valid" bit is not set, the result is a cache miss. 

In the case of a write miss, the cache is left unchanged, and the request is sent to 
the BIV to be completed in external memory. 

A read miss is processed in exactly the same way as a miss for an instruction 
fetch, except that the lock bit may be updated depending on the value of the Data 
lock bit in the "lock control register." 

3.3.8 Atomic Load and Store 
All atomic load and store transactions are treated as non-cacheable transactions. 

MB86932 Caches - Internal Architecture of MB86932 Caches 

B3-8 



c R 

MB86932 Bus Interface Unit 

4. 1 Overview of Bus Interface Unit 
The BIU on the MB86932 includes all the features of the MB86930, and in addition 
offers the following: 

• A four-word burst mode for instruction fetches and data loads, 

• Byte-based parity generation/checking for the external data bus, 

• A modified Wait State Specifier Register that supports burst mode and parity 
generation/ checking on specified address ranges, 

• A ROM/PROM interface that allows the MB86932 to boot from either 8-bit 
wide or 16-bit wide ROM/PROM, 

• A processor bus request feature that enables the MB86932 to request access to 
external address and data buses, 

• Modified timing on the external address bus when the TLB is enabled while 
caches are off. 

4.2 Burst Mode 

4.2. 1 Overview 
The Bus Interface Unit (BIU) supports the fetching of instructions and data from 
external memory to the appropriate cache in 'bursts' of four words at a time. A 
burst mode transfer is initiated either by a cache miss or by a DMA request. For a 

MB86932 Bus Interface Unit - Overview of Bus Interface Unit 

B4-1 

• 



SP ARClite User's Manual 

cache miss, burst mode is supported only for instruction fetches and data loads, 
not for stores. The IV is held until all four words are fetched. For DMA burst 
access, both data burst reads and data burst writes are supported. (Note, how­
ever, that the DMA does not support movement of data to/from cache.) 

When burst mode is triggered by a cache miss, it replaces four words in the cache 
line where the miss occurred. Such a burst-mode transfer can take place only if (a) 
the enabling bit (see "Bus Control Register," below) is set, and (b) the external 
memory supports burst mode. In the case of an i_cache miss, only half the line is 
replaced, since i_cache lines are eight words long. In the case of a d_cache miss, 
the entire four-word line is replaced by a burst-mode fetch. The four-word 
sequence fetched in burst mode starts with the word that caused the miss, fol­
lowed by three more words in a standard order. 

4.2.2 Burst Mode Interface Pins 

Two pins are dedicated to burst mode: 

-SMREQ: Output pin to inform the memory system that the current bus transaction is a burst mode. 

-SMACK: Input pin to inform the processor that the memory system can support burst mode. 

Note: When a cache miss occurs, -BMREQ will be asserted only if the correspond­
ing bit of the Bus Control Register (DBE for data, IBE for instructions) is set. How­
ever, for a DMA transaction, -BMREQ is asserted whenever a quad word transfer 
is requested, regardless of the status of the DBE bit. 

4.2.3 Burst Mode Fetch Sequence 

In burst-mode accesses, the BID automatically uses the two least significant bits 
(LSBs) of the address of the requested word, ADR[3:2], to determine the sequence 
in which the other three words will be fetched. (The sequence is optimized for a 2-
way interleaved memory.) The table below shows the four possible sequences of 
words, in terms of their address LSBs, depending on the LSBs of the word causing 
the miss. Note that the first word accessed in a burst is always the one requested 
by the ID and that during a burst access, bits ADR[3:2] do not change. 

Table B4-1: Sequence of Words Fetched in Burst Mode 

LSBs of 
Missed Word 

1st word 

00 

01 

10 

11 

MB86932 Bus Interface Unit - Burst Mode 

B4-2 

00 

01 

10 

11 

SEQUENCE OF WORDS TRANSFERRED 
(in terms of their LSBs) 

2nd word 3rdword 

01 10 

00 11 

11 00 

10 01 

4th word 

11 

10 

01 

00 



4.2.4 Bus Mode control bits 

0) 

FUJITSU 

Two bits in the Bus Control Register are used to control burst mode for instruc­
tion fetches and data loads. 

31 

Address: Oxoooo0020 (ASI=OxOl) 

Reserved 

Data Burst Enable (DBE) (Enabled=l, Disabled=O, RST =0) 

Instruction Burst Enable (IBE) (Enabled=l, Disabled=O, RST =0) 

Figure B4-1. Bus Control Register 

On reset, burst mode for both instruction and data misses is disabled. The user 
must explicitly enable one or both after reset. Bus operations already in progress 
are not affected by modification of the burst-enable bits. 

4.2.5 PROM Address Space 

Burst mode access from the PROM address space is not supported for 8- or 16-bit 
bus mode. If burst mode is enabled, and the address lies within the PROM 
address space for a non-32-bit bus mode transfer, the burst mode request output 
signal (-BMREQ) will still be asserted, but the burst acknowledge signal 
(-BMACK) should not be asserted by the external memory. If -BMACK is 
asserted under these conditions, the BID operation is undefined. 

4.2.6 Prefetch BuHer 

The prefetch buffer is not used when burst-mode instruction fetches are enabled, 
and is automatically disabled if the IBE bit is set, regardless of the state of the 
Prefetch Buffer Enable bit in the Cache/Bill Control Register. If the external 
memory system cannot handle burst mode operations, the instruction burst mode 
should be left disabled, so that the prefetch buffer can be used. 

4.2.7 Cache OH 
Instruction and data burst mode is automatically disabled if the corresponding 
cache is turned off. 

4.2.8 Bus Request 

The bus will be released to service another request only after the completion of 
the burst mode transaction. 

MB86932 Bus Interface Unit - Burst Mode 

B4-3 

-



SPARClite User's Manual 

4.2.9 Memory Exception (Instruction fetches or Data loads) 

All four word accesses of a burst mode access will be completed even if a memory 
exception occurs on any of the word accesses. During a burst access, word 
accesses that cause an external memory exception (-MEXC asserted) are not writ­
ten into the cache, while any words that do not cause a memory exception are 
written to cache. Note that the Interger Vnit will recognize a memory exception 
only when it is accessing the specific word with which the memory exception is 
associated. 

For example, if the IV requested word 00, the BIV would burst-read 00, 01, to and 
11. If an external memory exception occurred only on word 10, this word would 
not be written to the cache; the other three words, however, would be written to 
the cache. The IV would not vector to the memory_exception trap handler, since 
there was no memory exception on the specific word it requested. 

If, however, the IV ever tried to access word 10, which was not written into the 
cache because of the memory exception, a miss would occur which would cause 
the BIV to fetch that word from memory again. If a -MEXC were asserted on this 
access of word to, the processor would vector to the memory _exception trap han­
dler, since this was the word specifically requested by the IV. 

4.2.10 Memory Exception (DMA) 

When a memory exception (-MEXC strobed) occurs on any word of a DMA burst 
read, the DMA will complete all four reads. The corresponding four writes, 
needed to complete the transaction, will not occur. 

When a memory exception occurs on any word of a DMA burst write, the DMA 
will continue, completing all four writes. 

A memory exception on a DMA transfer will not cause the IU to vector to the 
data_memory _exception trap routine. 

4.2. 11 Non-cacheable Accesses 

Burst mode fetches from a non-cacheable address space are not supported. The 
burst request signal (-BMREQ) will not be asserted, and only a single-word fetch 
will be performed. 

4.2. 12 Interface Timing 

Figure 3-BIV-l below shows the timing of a burst mode transaction for an instruc­
tion fetch, data load, or DMA read. To start the transaction, the MB86932 outputs 
a burst mode request signal (-BMREQ) to the memory system. The memory sys­
tem asserts the burst mode acknowledge signal (-BMACK) to the processor when 

MB86932 Bus Interface Unit - Burst Mode 

B4-4 



00 
FUJITSU 

the first word is fetched, indicating that a burst mode request can be handled. The 
-BMACK should be asserted only in the cycle when the -RDYfor the first access is 
asserted. The memory latency involved in the first word fetch is the same as in a 
non-burst access, and subsequent fetches are usually shorter; as in the Figure, a 
single cycle. This does not mean that each fetch following the first will occur in 
one cycle; subsequent fetches can take any number of cycles, depending on the 
-RDY assertion. The -BMREQ signal is deasserted after the completion of the first 
word fetch. 

If the memory system cannot handle a burst mode transaction, -BMACK will 
remain deasserted Once the burst mode logic detects an inactive -BMACK, the 
burst mode access will terminate. The burst mode logic will not attempt to com- _ 
plete the fetch of the remaining words in the cache line. However, -BMREQ will 
be asserted again for any subsequent misses. Therefore, for a certain address seg-
ment in which the memory system cannot handle a burst mode operation, the 
-BMACK signal can remain deasserted. An example is shown in Figure B4-3. 

Figure B4-4 shows the timing for the write portion of a DMA burst operation. The 
timing is identical to that in Figure B4-2, except that the RD / -WR line is low, indi-
cating a write operation is in progress. 

Note that ADR[31:2] is the address of the first word fetched. This address remains 
constant through the burst. 

ClK 

-AS 

RD/·WR' 

-BMREQ I 

-BMACK 

ADR[31:2] , 

-RDY 

DATA f--+----+--t--{ 

Figure B4-2. Burst Mode (0 wait state) 

MB86932 Bus Interface Unit - Burst Mode 

B4-5 



SPARClite User's Manual 

ClK i 

-AS! 

-BMREQ : 

-SMACK' 

ADR[31:2) ; 

-ROY: 

DATA ~, -t___-/--t___--t___-Kx. 

Figure B4-3. Terminated Burst Mode Due to -BMACK= 1 

ClK: 

-AS; 

RD~WRr' -t___-/--t___--t___-/--t___---t____/_-t___~-t____/_-~-~ 

-SMREQ : 

-SMACK: 

ADR[31:2) , 

-ROY 

DATA ,...--t--f---t--;---t--fH 

Figure 84-4. DMA Burst Mode, Write Portion 

4.3 Parity 
The MB86932 provides parity generation/ checking for the 32-bit external data 
bus. Parity can be enabled/ disabled for specified address ranges by setting/ clear­
ing bits in the Wait-State Specifier Register (see section on that register, below). 
Parity can be set even or odd by setting bit 0 in the System Support Control Regis­
ter: set to 1, odd parity is generated/ checked; set to 0, even parity is generated/ 
checked. On reset, the value of this bit is cleared to O. 

Parity is generated/ checked for every byte of data (resulting in four parity bits). If 
parity is odd, the parity bit is set to 1 when there are an odd number of 1 's in the 
data; if parity is even, the parity bit is set to 1 when there are an even number of 
1 's in the data. When enabled, parity is generated for all writes to external mem-

MB86932 Bus Interface Unit - Parity 

B4-6 



OJ 
FUJITSU 

ory. Incoming parity is checked only for the address ranges for which the "PE" bit 
in the corresponding Wait-State Specifier Register is set to 1. If a parity error is 
detected on an instruction fetch, an instruction_memory_exception occurs, and 
bit 8 in the Instruction Fault Status Register is set (see TLB section). If a parity 
error is detected on a data fetch, a data_memory _exception occurs, and bit 9 in the 
Data Fault Status Register is set (see TLB section). The parity bits will have a 
longer setup / delay time than the other data bits. 

31 

Reserved 

Address: OxOOO00080 (ASI=OxOl) 

6543210 

I I I I I I I 
Same-Page Enable (On=l, 011=0) ---.J I I 
Chip Select Enable (On=l, 011=0) ~ 

Programmable Wait-State (On=l, 011=0) -----' 

Timer On/OIl (On=l, 011=0) -------' 

DMA priority bit (On=l, 011=0) -------' 
Parity bit (Odd Priority=l, Even Priority=O) _____ ---1 

Figure 84-5. System Support Control Register 

4.4 Wait State Specifier Register 

4.4. 1 Purpose 

The Wait-State Specifier Register (WSSR) format on the MB86932 has been 
changed from that on the MB86930 to accommodate the burst mode bus transac­
tion using internal-READY and Parity generation/ checking. 

4.4.2 Format 

31 27 26 22 21 20 19 18 14 13 9876543210 

Countl Count2 

Address: OxOOOOOl60 to 
OxOOOOOl64168 (ASI=OxOl) 

WE (On=l, 011=0, RST =0) 

SCP (On=l, 011=0, RST =0) 

Count1 Count2 

SCBl (On=l, 011=0, RST=O) 

SCBO (On=l, 011=0, RST =0) 

OVR (On=l, 011=0, RST =0) ------' PEl (On=l, 011=0, RST =0) ------' 

PEO(On=l,OII=O,RST=O)------' 

Reserved ------' 

Figure 84-6. Wait State Specifier Register 

The bits in the WSSR can have two different meanings depending on whether 
burst mode is enabled or disabled. 

MB86932 Bus Interface Unit - Wait State Specifier Register 

B4-7 

.. 



SP ARClite User's Manual 

4.4.3 Same Page Mode 
Burst mode disabled or burst mode enabled and -BMACK not asserted for this 
region. 

Count1: 

Count2: 

Count1 + 1 is the number of wait states inserted before internal -READY is asserted, 
under the following conditions: SCP=O, and current access is not in the same page as the 
previous access. 

Count2 + 1 is the number of wait states inserted before internal -READY is asserted, 
under the following conditions: SCP=O, and current access is in the same page as the 
previous access. 

WE: Wait Enable, enables or disables the internal wait state generation for the individual 
address range. IF WE is 1 SCP must be O. 

SCP: If this bit is 1 the internal -READY is generated in the same cycle when an access is 
started. All accesses to external memory in this address range will be single cycle. IF 
SCP is 1 WE must be O. 

OVR: Allows the system to terminate the memory operation before the internally specified time. 
If the OVR bit is set to 1, and the external hardware asserts external -READY signal, the 
wait state generator will stop counting and will wait for the next transaction. 

SCB: Unused; should be O. 

PE: Enable checking of Parity. PE1, PEO correspond to address ranges for WSSR[31 :19] and 
WSSR[18:16] respectively. 

4.4.4 Burst Mode 
Burst mode enabled and -BMACK is asserted. 

Count1: 

Count2: 

WE: 

SCP: 

OVR: 

SCB: 

PE: 

Count1 +1 is the number of wait states inserted before internal-READY is asserted, for 
the first access of a burst mode transfer. 

Count2 +1 is the number of wait states inserted before internal-READY is asserted, for 
the 2nd, 3rd and 4th access of a burst mode access if SCB=O. 

Wait Enable, enables or disables the internal wait state generation for the individual 
address range. If WE is 1, SCP must be o. 
If this bit is 1 , the internal -READY is generated in the same cycle when an access is 
started. All accesses to external memory in this address range will be single cycle. If SCP 
is 1, WE must be o. 
Allows the system to terminate the memory operation before the internally specified time. 
If the OVR bit is set to 1, and the external hardware asserts external -READY signal, the 
wait state generator will stop counting and will wait for the next transaction. 

If this bit is 1, in the burst mode all accesses after the first access take a single cycle. If 
this is 1, Count2 is ignored. SCB1 and SCBO correspond to address ranges for 
WSSR[31 :19] and WSSR[18:6] respectively. 

Enable checking of Parity. PE1, PEO correspond to address ranges for WSSR[31 :19] and 
WSSR[18:6] respectively. 

MB86932 Bus Interface Unit - Wait State Specifier Register 

B4-8 



Table B4-2:RESET State 

WSSR reset state 
for -CS[1] to -CS[5]: 

Count2=O 

Count1=O 

WE=O 

Scp=o 

SCB=O 

OVR=O 

PE=O 

4.5 ROM Interface 

4.5. 1 Purpose 

WSSR reset state 
for-CS[O]: 

Count2=31 

Count1=31 

WE=1 

Scp=o 

SCB=O 

OVR=1 

PE=O 

cP 
FUJITSU 

The data bus of the MB86932 can be configured upon reset to 8- and 16-bit bus 
modes as well as the standard 32-bit mode. This flexibility accommodates those 
cases in which boot code resides in PROMs organized as blocks of bytes or half­
words. 

4.5.2 Features 

Bus Configuration: the data bus configurations are fixed to specific segments of 
the bus: 

• 8-bit mode: D[7:0] 

• 16-bit mode: D[15:0] 

• 32-bit mode: D[31:0] 

4.5.3 Bus Configuration on Reset 

Two external pins, -BMODE16 and -BMODE8 are used to determine the bus con­
figuration. The two bus configuration pins have weak pull-ups, so that if uncon­
nected, the bus configuration will default to a 32-bit bus. 

(reserved): -BMODE16=O, -BMODE8=O 

8-bit mode: -BMODE16=1, -BMODE8=O 

16-bit mode: -BMODE16=O, -BMODE8=1 

32-bit mode: -BMODE16=1, -BMODE8=1 

MB86932 Bus Interface Unit - ROM Interface 

B4-9 

.. 



SP ARClite User's Manual 

4.5.4 System Interface 

In order to minimize external"glue logic" required for interfacing to the 8- or 16-
bit bus, the BE bits are encoded to reflect the two LSBs of a byte address or the 
LSB of a halfword address. Therefore, the ADR[31:2] and selected -BE bits can be 
concatenated to form a complete address for a non-32 bit bus mode. 

Table B4-3:System Interface BE Bits 

Bus Mode Byte BE[O:3] 

a-bit bus 0 

1 

2 

3 

16-bit bus 0&1 

2&3 

B·bit bus mode address= {ADR[31 :21. -BE[21. 
-BE[3]} 

0000 

0001 

0010 

0011 

0000 

0010 

16-bit bus mode address={ADR[31 :21. -BE[2]} 

-CS[O], which is enabled on reset, and the internal-READY generation logic, can 
be used to minimize any glue logic required to interface to the PROM. On reset, 
the wait state generator, corresponding to -CS[O] for internal-READY genera­
tion, is set to 32 cycles. Later on in the boot code, the wait state generator can be 
changed to a more appropriate value. 

4.5.5 PROM Address Space 

The PROM address space is defined by the -CS[O] address-range specifier. On 
reset, the -CS[O] address range defaults to 32K bytes (starting address=OxO), and 
the ASI is initialized to Ox9. The PROM address range can be changed later using 
the mask bit register associated with -CS[O]. An example of the supervisor 
address space (ASI=Ox9) memory map is shown below: 

Figure B4-7. Supervisor Address Space (ASI=Ox9) Memory Map 

Supervisor 
Code Space 

PROM 

Ox00007FFF (bytes): default value 

OxO 

MB86932 Bus Interface Unit - ROM Interface 

84-10 



cP 
FUJITSU 

Any memory access from the PROM address space, in a non-32 bit mode, will 
make the -BE bit encodings reflect the LSBs of a byte/halfword address. Further­
more, the fetched bytes/halfwords will be assembled into a 32-bit word. On the 
other hand, any access from the non-PROM address range will result in a normal, 
32-bit memory access. 

4.5.6 Load/Stores 
One of the functions of the boot code is to set the processor and system configura­
tion. This might involve loading system parameters from PROM, loading data 
from memory mapped I/O, and storing data to non-PROM address space. All 
loads from the PROM address space behave the same way as instruction fetches, • 
in that, for a non-32 bit bus mode -BE, bit encoding and word assembly are done. 
Loads from a non-PROM address space behave in the normal (32-bit) manner. In 
order to meet the -BE AC timing, the -BE bits on the MB86932 need to be all O's 
for all types of loads-word, halfword, and byte-from the non-PROM address 
space. This requires a functional change from the current specification of the 
MB86930's -BE bits, which reflect the byte information for loads. This change 
does not cause a problem, since the processor fetches a full 32-bit word on a load, 
and the IU selects the byte appropriately. As on the MB86930 -BE bits should be 
ignored for 32-bit loads. 

Since stores to the PROM will never occur, for all stores, regardless of address 
space, the -BE bits will reflect the byte information of the store. Therefore, byte 
and halfword stores to the PROM address space becomes meaningless, since the 
-BE[2] and -BE[3] bits no longer reflect the byte address. Furthermore, store word 
operations to the PROM address space will not result in a dis-assembly process 
for a non-32 bit bus mode. Since stores to PROM address space are not disabled, 
the user would have to qualify -CS[O] with the R/-W signal to use it as a PROM 
chip select signal. This will not be necessary if the user can be sure that a store to 
PROM space never occurs. 

A summary of the -BE[O:3] bit behavior for loads from the PROM address space is 
shown below. For all load instructions (byte, halfword, word), a full 32-bit fetch 
occurs. For example, in the 8-bit bus mode, four bytes will be fetched for all loads, 
and the BE bits will sequence with the proper 2 LSBs of the byte address. 

Table B4-4:Load -BE[O:3] Bit Behavior 

Bus Mode Operation 

8-bit bus Loads (all) 

16-bit bus Loads (all) 

32-bit bus Loads (all) 

BE[O:3] in PROM space 

0000=>0001=>0010=>0011 

0000=>0010 

0000 

MB86932 Bus Interface Unit - ROM Interface 

B4-11 



SPARClite User's Manual 

4.5.7 Burst Mode 

Since speed is not a critical issue when executing boot code out of PROM, and 
because there is no industry-wide standard for a burst-mode EPROM interface, 
burst-mode interface is not supported for accesses from PROM address space. 
When the system has a 8/16 bit memory being used for boot code, it should not 
assert -SMACK for any accesses to -CSO. 

4.5.8 Memory Exception 

Any memory exception that occurs during a fetch from the PROM address space 
in a non-32 bit bus mode will be held off until the entire word is fetched. 

4.5.9 Bus Request 

Any bus request happening during the non-32 bit bus mode fetch will not be rec­
ognized until the end of the complete 32-bit fetch operation. 

4.5.10 Timing 

Timing examples for the 8- and 16-bit bus modes with 1 wait-state memory are 
shown below. Note that -AS is asserted at the beginning for one cycle. 

-AS 
q 1'-r--L Ir-iL-~ v 1'-~ V 

I 

elK 

ADR[31:2] ~( 

-BE[0:3] '---Ki 000 1X{ 001 1X( o 10 1X1 . 
: V 

~ r--

V i\ V 

RD/-WR 

-RDY 

I I 
DATA l( ByteO Byte1 Byte2 

Figure B4-1. I-bit Bus Mode (1 Wait State) 

MB86932 Bus Interface Unit - ROM Interface 

B4-12 

~v-L' 

1"-
IX 

011 x= 
1\ I 

• 
,\ Byte3 



elK 1 

-AS 

AOR[31:2] 

-BE[O:3] , 

RO/-WR I 

-ROY 

FUPTSU 

Figure B4-9. 16-bit Bus Mode (1 Wait State) 

4.6 Processor Bus Request 

4.6. 1 Purpose 

When the bus is released in response to an external device's request for the bus 
(by asserting -PBREQ), the MB86932 processor cannot access the bus as long as 
the bus request signal remains asserted. An external bus arbiter may never be 
aware that the processor needs the bus back. To remedy this problem, a processor 
bus request signal is asserted whenever the external bus is required by the proces­
sor. The external bus arbiter then can release the bus to the processor requesting 
it. Also, in a bus-based multiprocessor system, a processor bus request signal is 
useful to the external bus arbiter in deciding which processor requires the bus. 

4.6.2 Features 

-PBREQ pin: An external pin is used to output the processor bus request signal, 
-PBREQ. The -PBREQ will be asserted whenever the MB86932 requires the bus 
while the bus is granted to an external device. The external device using the bus 

MB86932 Bus Interface Unit - Processor Bus Request 

B4-13 

• 



SP ARClite User's Manual 

can monitor the -PBREQ signal, and remove the -BREQ signal at an appropriate 
time. An example of the -PBREQ timing is shown in the figure below: 

11 t2 13 14 

elK '--Ir-IL rL r-IL V\-r-IL V\-r-~ V\-
-AS :-- V V ; 

, ~ " I 1\ / 
\ I I 

-PBREQ 

-ADR[31:2] 

I\.\ tv \ / I 
rr-~ 
Xol....--.J 

.~ 
I 

1\ I ~ I r-. , 

I r-... I 

-ROY 

DATA 

-BREQ 

BGRNT 

Figure 14-10. Example of -PIREQ timing 

In the example above, the bus is released at the beginning of cycle t1 in response 
to an external bus request. At t2, -PBREQ is asserted because of a pending bus 
cycle in the processor. The external bus arbiter de-asserts -BREQ, and returns the 
bus to the processor. -PBREQ remains asserted until the end of the cycle t3. At t4, 
the processor drives the bus. 

4.7 BIU Timing 

4.7. 1 ERect of TLB 
Since the TLB can be used with the cache turned off, a one-cycle delay is intro­
duced at the beginning of each memory operation to complete the TLB transla­
tion. For cache-on cases, the TLB does not introduce an additional delay since 
address translation occurs during the one-cycle already available for cache hitl 
miss detection. The first figure below shows the timing for the cache-off, TLB-off 

MB86932 Bus Interface Unit - BIU Timing 

B4-14 



(j:) 

FUJITSU 

case; the second figure shows the timing for the cache-off, TLB-on case. Note in 
the second figure the one-cycle delay for each new memory operation. 

elK 

-AS 

ADR[31:2] 

-RDY 
I 

DATA f--+---{r:::t==t:)---{r:::~=t:)---{r:::t==t:)---{r:::t=j 

Figure B4-11. Cache=oH, TLB=oH (1 wait state) 

Figure B4-12. Cache=oH, TLB=on (1 wait state) 

4.8 BIU Priorities 
In general the following hierarchical rules apply when multiple requests are 
made to the bus interface unit: 

• The bus cycle currently in progress will complete. 

• If there is a pending external bus request, the bus will be granted to the 
external requestor. 

• If there is a pending DMA request, the bus will be granted to the DMA 
controller. 

• If the write buffer is full, the buffer will be emptied. 

• If there is a pending load or store operation it will be serviced. 

• If there is a pending request for an instruction it will be fetched. 

• If the prefetch buffer is empty, a prefetch cycle will be initiated. 

Note that bitl in the System Support Control Register can be used to allow the IV 
to "steal" cycles from the DMA. When this bit is set the DMA will de-assert its 

MB86932 Bus Interface Unit - BIU Priorities 

B4-15 

• 



SP ARClite User's Manual 

request after each datum is moved. When cleared the DMA will keep the bus 
until the whole DMA transaction has completed. 

MB86932 Bus Interface Unit - BIU Priorities 

B4-16 



111l1li111111l1li111l1lil1lil1lil1lil1lil1lil1lil1li 

MB86932 DMA 

5. 1 Overview 
The Direct Memory Access Controller (DMAC) module provides high-speed 
memory-to-memory and memory-to-peripheral data transfers. The DMAC exe­
cutes independently of the CPU, making it possible for the processor to execute 
from cache while DMA transfers are taking place. The DMAC operates on physi­
cal addresses. 

The DMAC supports two independent DMA channels concurrently. It supports 
byte, half-word, word and quad-word transfers. The DMA mechanism provides 
three different methods of performing DMA transfers: Single transfer, Demand 
transfer, and Block transfer. Single transfer and Demand transfer use the DMA 
request (-DREQ) and DMA acknowledge (-DACK) signals to synchronize trans­
fers with external devices. Block transfers do not use -DREQ and -DACK, they 
are typically used to transfer data from memory to memory. 

"Fly-by" transfer mode is supported for high speed DMA transfers. In this mode, 
a single bus transaction transfers the data from source to destination. "Flow­
Thru" transfer mode is also supported. In this mode, two bus transactions, a read 
followed by a write, need to be performed to complete the transfer of data from 
source to destination. 

The DMA channels can be configured to perform a single buffer transfer, or to 
operate in the buffer-chaining mode. The buffer-chaining mode is provided to 
simplify operations such as scatter/gather. In this mode, the DMAC is configured 

MB86932 DMA - Overview 

B5-1 

• 



SPARClite User's Manual 

with a series of descriptors in memory. Each descriptor describes a single buffer 
transfer, which is part of the complete DMA transfer. 

The two figures that follow give, respectively, an overall picture of the relation­
ship of the DMAC to other major functional components of the MB86932, and a 
detailed picture of the flow within the DMAC. 

IU 
DATA 

CACHE 

DABus 

DO Bus 

DMAAddress - -DREQ 

BIU DMAC - -DACK 
DMAData - -EOP 

External Address 
~ ExtemalData 

Figure B5-1. Relation of DMAC to Other Major Components 

MB86932 DMA - Overview 

B5-2 



dread 

dwrite 

DA ASI 

Register Control 

Burst Bulfer(l) 

Burst Bulfer(2) 

Burst Bulfer(3) 

-DREQ 

-DACK 

HOLD 

Rdy 

Mexc 

-EOPITC 

Read Align 

Temp Reg 
Burst Buff.~O) 

Write Align 

0) 

FUJITSU 

Figure B5-2. DMA Block Diagram 

MB86932 DMA - Overview 

B5-3 

.. : 



SP ARClite User's Manual 

5.2 Programmer's Model 
Table B5-1:DMA Signal Descriptions 

Signal Function 

-DREQ1/-DREQO DMA REQUEST (I): This input signal indicates that an external device is 
requesting DMA transfer. It is an edge-sensitive signal for single transfer, 
and a level-sensitive signal for demand transfer. 

-DACK1/-DACKO DMA ACKNOWLEDGE (0): This output signal is sent to the external 
device to acknowledge the DMA request, and is active when the 
requesting device is accessed. 

-EOP1 /-EOPO END OF PROCESS (I/O): This pin is used as input when an external 
device wants to cause the DMA process to terminate. It functions as 
output when the byte count reaches zero. When not active, -EOP output 
will be tristated. For signalling the Terminal Count (TC) , -EOP will be 
pulled down, and then be pulled up for one cycle. A high impedance 
internal pull up is used to hold the signal high when -EOP is tristated. 
The -EOP issued by the DMAC can be used as input to the interrupt 
controller. If -EOPx is asserted by the external device, channel x will be 
disabled. Reprogramming is needed to enable a channel. 

Six pins are dedicated to the DMAC, three for each channel. In the table above, 
the pin number corresponds to the channel number. For example, the -DREQO 
pin is the request pin for channel O. 

5.2.1 DMA Priority 
The DMA Priority Bit in the System Support Control Register can be programmed 
to indicate whether the DMA is to release the bus for one clock cycle so that the IV 
can use it. When this bit is set, the DMAC will deassert the HOLD signal to the 
BIU for one clock cycle after a DMA entry has been transferred. In this way, the 
IV can steal a bus cycle when service is needed. When this bit is cleared, the DMA 
blocks the IV from using the BUS until the whole DMA transaction completes. 

31 

Reserved 

Address: OxOOOOOOBO (ASI=Ox01) 

6 5 432 1 0 

Same·Page Enable (On=l, Off=O) 

Chip Select Enable (On=l, Off=O) 

Programmable Waij-State (On=l, Off=O) -----' 

Timer On/Off (On=l, Off=O) ------' 

DMA priority bit (On=l, Off=O) -------' 

Parity bit (Odd Priority=l, Even Priority=O) -------' 

Figure B5-3. System Support Control Register 

MB86932 DMA - Programmer's Model 

B5-4 



FUPTSU 

5.2.2 DP/Source/Destination AS. Register 

31 24 23 

Descriptor Pointer ASI 

Address:OxOO000180 (DMAO) (ASI = Ox01) 
OXOOOOO1AO (DMA1) 

16 15 8 7 

Source ASI Destination ASI 

Figure 85-4. DP/Source/Destination AS. Register 

o 

reserved 

Bits 31-24: Description Pointer ASI (DP ASI)-ASI of the Descriptor Pointer, a register used in buffer­
chaining mode. It points to the next element of the linked list whose elements describe the 
source and destination of the DMA transfer. 

Bits 23-16: Source ASI-ASI of the Current Source Address Register, which is described below. 

Bits 15-8: Destination ASI (Dest ASI)-ASI of the Current Destination Address Register, which is 
described below. 

Bits 7-0: Reserved 

5.2.3 Current Source Address Register 

31 

Data Address for Quadword transfers 

Address:OxOOOO0184 (DMAO) (ASI=Ox01) 
OxOOOO01A4(DMA1) 

Data Address for all other transfers 

Figure 85-5. Current Source Address Register 

4 3 2 1 0 

RSVD 

The Current Source Address Register is used to address memory accesses in flyby 
mode, and to hold the source data address in flowthru mode. It contains one 30-
bit (31:2) word-aligned address. For byte, halfword, and word transfers, alI 30 bits 
(31:2) are used; for quadword transfers, only 28 bits (31:4) are used. Bits beyond 
the current address field are ignored. The CSA Register value is updated after a 
transfer in the read phase has been done, and points to the next location to be 
transferred. Note that in flyby mode, a DMA transfer has just one Read/Write 
phase; in flowthru mode, a DMA transfer has one read phase, one write phase, 
and an intervening idle clock cycle. 

MB86932 DMA - Programmer's Model 

B5-5 



SP ARClite User's Manual 

5.2.4 Current Destination Address Register 

31 

Destination Address for Quadword transfers 

Address:OxOOOOOl88 (DMAO) (ASI:Ox01) 
OxOOO001A8 (DMA1) 

Destination Address for all other transfers 

Figure B5-6. Current Destination Address Register 

The Current Destination Address Register is not used in flyby mode; it holds the 
destination data address in flowthru mode. It contains one 30-bit (31:2) word­
aligned address. For byte, halfword, and word transfers, all 30 bits (31:2) are used; 
for quadword transfers, only 28 bits (31:4) are used. Bits beyond the current 
address field are ignored. The CDA Register value is updated after a transfer in 
the write phase has been done. 

5.2.5 Current Byte Count Register 

31 

Address:OXOOOO018C (DMAO) (ASI=Ox01) 
OXOO0001AC (DMA1) 

Figure B5-7. Current Byte Count (CBC) Register 

o 

The CBC register indicates the number of bytes of data still left to be transmitted. 
The value of the data should be programmed to be one less than the actual num­
ber of bytes to be transmitted. For example, to transfer two words, this register 
should be loaded with the value 1/7". The value will be decremented at the begin­
ning of the DMA transfer cycle by the number of bytes involved in the transfer, 
regardless of the unit in terms of which the transfer is specified (half-word, word, 
etc.). The Byte Count Register is updated only in the Read phase, not in the Write 
phase; it is updated at the beginning of the transfer. 

MB86932 DMA - Programmer's Model 

BS-6 



cP 
FUJITSU 

5.2.6 Descriptor Pointer Register 

31 4 3 2 1 0 

Descriptor Pointer Register 

Address:OxOOOO0190 (DMAO) (ASI=ox01) 
Ox000001 BO (DMA 1) 

Figure 15-8. Descriptor Pointer (DP) Register 

Used in Chaining Mode, the DP Register points to the next element of the linked 
list. Successive elements of the list describes the source and destination of succes­
sive buffers to be transferred. 

5.2.7 Channel Control Register 

Bits 31 to 16 are reserved, ignored on a Write, and Read as zero. The entire regis­
ter is reset to zero. Note that the two channel control registers are not identical: 
the HPC and SW bits in the channel 0 register are global, while the same bits in 
the channell register are reserved, and read as undefined. 

31 

reserved 
(read as O's) 

Address:OxOOO00194 (DMAO) 
0x000001 B4 (DMA 1) 
(ASI=Ox01) 

HPC (On=l, 011=0, RST =0) 

SW (On=l, Off=O, RST =0) 
EN (On=l, Off=O, RST =0) -----' 
CM (On=l, 011=0, RST =0) ------' 

CWO (On=l, Off=O, RST =0) ------' 
COM (On=l, Off=O, RST=O) ---------' 

HM (On=l, 011=0, RST =0) 
FF (On=l, 011=0, RST =0) 

OS (On=l, Off=O, RST =0) ----' 

SS (On=l, Off=O, RST =0) ------' 
DA (On=l, Off=O, RST =0) 

SA (On=l, Off=O, RST =0) 
EG (On=l, Off=O, RST =0) -----' 

RG (On=l, 011=0, RST =0) -----' 

Figure 15-9. Channel Control Register 

The Channel Priority Switch Mode bit "SW" and the High Priority Channel bit 
"HPC" of the channel 0 Control Register determine the priority setup of the DMA 
Controller. These two global bits should be programmed only when both chan­
nels are disabled. 

Bits 31-16 Reserved 

MB86932 DMA - Programmer's Model 

BS-7 

• 



SP ARClite User's Manual 

Bit 15: High Priority Channel (HPC)-O if channel 0 has high priority; 1 if channel 1 has high pri­
ority. (The HPC should be programmed to specify the channel that has high priority at the 
outset; if SW=1, it will be updated to show the current high-priority channel as the DMA 
transfer progresses. Note that this bit exists only in the channel 0 control register; the cor­
responding bit in the channel 1 control register is reserved, and read as undefined. 

Bit 14: Channel Priority Switch Mode (SW)-O if fixed, 1 if switchable. (If 0, the HCP is fixed, and 
specifies a prechosen higher priority channel; if switchable, the HCP will be updated to 
whichever channel is not currently being serviced.) Note that this bit exists only in the 
channel 0 control register; the corresponding bit in the channel 1 control register is 
reserved, and read as undefined. 

Bit 13: Enable [Start) DMA (EN)-O if disable channel, 1 if enable. (The DMA channel can be 
enabled by writing 1 to this field, and is reset by the hardware when the channel enters 
the disabled state. In Intemal Request mode (see RG field), a 1 here means Start DMA; in 
Extemal Request mode, a 1 here means Accept External DMA request.) 

Bit 12: Chaining Mode (CM)-O if reprogramming, 1 if buffer chaining. 

Bit 11: Chaining Wait Mode (CWM)-O if Chaining Wait Function disable, 1 if enable. (Decides 
whether next chaining descriptor is to be read.) 

Bit 10: Chaining Debug Mode (CDM)-O if assert -EOP only after the whole Chaining transfer, 1 
if assert -EOP after each buffer transfer 

Bit 9: Transfer/Handshake Mode (HM)-O if Single Transfer, 1 if Demand Transfer. (Applies 
only to external request; for internal program request, DMAC supports block transfer 
mode only.) 

Bit 8: Flyby/Flowthru (FF)-O if Flyby (single address), 1 if Flowthru (Dual Address). 

Bits 7-6: Destination Size (DS)-OO if word, 01 if byte, 10 if halfword, 11 if quadword. 

Bits 5-4: Source Size (SS)-OO if word, 01 if byte, 10 if halfword, 11 if quadword. 

Bit 3: Destination Addressing (DA)-O if increment, 1 if hold. 

Bit 2: Source Addressing (SA)-O if increment, 1 if hold. 

Bit 1: External Control Option (EC)-O if source request, 1 if destination request. 

Bit 0: Request Generation (RG)-RG=O if internal request, 1 if external request. 

MB86932 DMA - Programmer's Model 

B5-8 



cP 
FUJITSU 

5.2.8 Channel Status Register 

31 
reserved 

(read as O's) 

Address:OxOOO00198 (OMAO) (ASI=Ox01) 
OxOOOOO1B8 (OMA1) 

9876543210 

DISON (On=1. Off=O. RST =0) 

CERR (On=1. 011=0. RST =0) 
DERR (On=1, 011=0, RST=O) -----' 

SERR (On=1, Off=O, RST =0) -------' 

DR (On=1, 011=0, RST =0) ------' 
CWB (On=1, 011=0, RST=O) 

CD (On=1, Off=O, RST =0) 
TC (On=1, 011=0, RST =0) -----' 

EOP (On=1, Off=O. RST =0) -------' 

Figure B5-1 o. Channel Status Register 

Bits 31-9: This register is shown as having only 9 bits because these bits are reserved, ignored on a 
Write, and Read as zero. The entire register is reset to zero. 

Bit 8: Disable Done (DISDN)-the user can disable the DMA channel by writing 0 to the Enable 
bit of the Control Register. This bit will be set when the channel has been effectively soft­
ware-disabled. 

Bit 7: Chaining Error on DMA Transfer (CERR) 

Bit 6: Destination Error on DMA Transfer (DERR) 

Bit 5: Source Error on DMA Transfer (SERR) 

Bit 4: DMA Request presented (DR)-A DMA request is pending. 

Bit 3: Chaining Wait (CWB)-If the Chaining Wait Mode in the Control Register has been set, 
this status bit will be set after each buffer has been transferred. The Chaining Descriptor 
fetch will not be executed. After the program redoes the setup for this channel, and clears 
this status bit, the DMA will proceed with the new register setup. 

Bit 2: Chaining Done (CD)-The whole chain of data buffers have been successfully trans­
ferred; set up in chaining mode. 

Bit 1: Terminal Count (TC)-A data buffer has been successfully transferred. It will be set when 
termination of transfer is reached for nonchaining mode and chaining debug mode. 

Bit 0: End of Process, external (EOP)-Channel transfer stop due to external -EOP signal. 

5.2.9 Channel Initialization 
The DMA Control has two transfer modes: 1) Single Buffer Transfer Mode, and 2) 
Buffer Chaining Mode. Each mode has its own programming requirements. 

M886932 DMA - Programmer's Model 

85-9 

"i 



SP ARClite User's Manual 

To initialize the DMA Channel for Single Buffer Transfer Mode, the user must 
program these registers: 

• ASI Register 

• Current Source Address Register 

• Current Destination Address Register 

• Current Byte Count Register 

• Channel Control Register 

After programming these registers, the user writes the start (enable) bit of the 
Channel Control Register to enable the Channel. 

To initialize the DMA Channel for Buffer Chaining Mode, the user must program 
the registers listed above for Single Buffer Mode transfers, and in addition must 
program the Descriptor Pointer (DP) Register. The DP points to the next element 
of the chaining list for the buffers to be transferred. After the channel finishes 
transferring each block, it will spend five data access cycles to set up the DP / 
Source/ Destination ASI Register, the Current Source Address Register, the Cur­
rent Destination Address Register, and the Current Byte Count Register. The last 
chaining cycle is used to get the pointer and put it in the Descriptor Pointer Regis­
ter. 

When TC happens, the DMA will load the chaining information pointed to by the 
DP, and the DMA process continues. An external-EOP will disable the channel. 

In chaining mode, whether block or demand transfers are being carried out, a 
channel that has reached TC will load the chaining block descriptor, and the 
DMA Controller will see if a request from the high priority channel is outstand­
ing. If it is, the DMAC will suspend the next transfer of the present sequence, and 
release the bus to the high priority channel. For example: assume that priority 
switching mode is in effect; channel 0, the original high priority channel, is in 
chaining mode; and channell is in reprogramming mode. If both channels get 
-DREQ asserted, channel 0 will be serviced first. WHen TC is reached, DMAC 
will load the information for the next transfer block; the outstanding request from 
channell will be noted, and-because channell is the high priority channel-its 
request will be serviced now. 

5.2.10 BuHer Chaining Data Structure 

• PSDASI (Descriptor, Source, and Destination AS!) 

• SA (Source Address) 

• DA (Destination Address) 

• BC (Byte Count) 

MB86932 DMA - Programmer's Model 

B5-10 



00 
FUJITSU 

• NPTR (Next Buffer Descriptor Pointer); a NULL pointer, 0000, indicates the 
end of the block buffer list. 

5.2. 11 DMA Initialization 

DMA operations can be initiated by either software request or hardware request. 
A software request is made by clearing the Request Generation bit and setting the 
DMA Enable bit. A hardware request is made by setting the Request Generation 
bit and the DMA Enable bit, and then causing the assertion of an external-DREQ. 

When the CPU clears the Request Generation bit and sets the DMA Enable bit, the 
software-initiated DMA starts immediately. A hardware request is started only 
when -DREQ is asserted while the DMA Enable bit is set. -DREQ is edge-sensi­
tive for Single Transfer Mode, level-sensitive for Demand Transfer Mode. For 
Demand Mode to complete a whole buffer block, -DREQ must be asserted until 
-EOP is asserted. -EOP can be asserted by the DMA Controller or an external 
device. 

5.2. 12 Basic DMA Timing 

1. For a single transfer, the DMAC will sample -DREQfor the next DMA request 
after -DACK is asserted. That is, DMAC will try to detect the edge that signals 
such a request; an edge asserted between that which caused the last transfer 
and the assertion of -DACK will be ignored. Even if an edge is detected before 
the DMAC releases the bus, the DMAC will still release the bus and then 
request it again. 

2. -DACK will toggle during the read or write cycle to enable the peripheral 
device. Ready (from BIU) will be used to deassert the -DACK. 

3. -DACK is used for handshaking with a peripheral device to deassert the 
-DREQ for single transfer mode. -EOP(TC) is used for handshaking with a 
peripheral device to deassert the -DREQ for demand transfer mode. 

4. TC will be used to enable the reloading of the address/count to the current 
registers to initialize the set up for a buffer chaining transfer. External-EOP 
will disable the DMAC channel in chaining mode, and leave the state of the 
channel as it was. 

5.2. 13 Error Conditions 

Memory Access Exceptions: 

• Source Transfer Exception 

• Destination Transfer Exception 

• Chaining Exception 

MB86932 DMA - Programmer's Model 

BS-ll 

-i 



SP ARClite User's Manual 

When an Error condition occurs, the relevant bits in the Status Register will be set 
up, and -EOP will be asserted. 

When a memory-exception occurs, -EOP will be asserted one cycle later. This 
-EOP can be used as input to the interrupt controller. The -EOP due to a memory 
exception can be deasserted by clearing the status bit of the corresponding excep­
tion. 

For quad-word transfers, if an exception occurs during the read phase, DMA will 
still finish all four reads, but will not go into the write phase. If an exception 
occurs during the write phase, DMA will complete all four writes. 

For transfers other than quad-word, the DMA will stop immediately after the 
exception occurs. 

5.3 External Interface 

5.3.1 Transfer Protocols 

Single Transfer Mode 

In the Single Transfer Mode, one data entry transfer from source to destination is 
performed by the DMAC at a time. The -DREQ input is arbitrated according to 
the channel priority decisions made by the user. The channel with the DMA 
request will signal the BIU for bus service. After a DMA data entity has been 
transferred, control of the bus will be released. Transfers continue in this manner 
until the Byte Count expires, or until external-EOP is found active. Since the 
-DREQ is edge-sensitive for single transfers, a -DREQ pulse will cause only one 
transfer, no matter what its length. The channel will request the bus for each 
DMA transfer. Bus control is released between each transfer and the next. The 
DMAC will sample the next -DREQ edge for a DMA transfer request after 
-DACK is asserted. A new request edge coming before -DACK has been asserted 
will be ignored. A timing diagram for single transfer mode is given below in 
Figure B5-11 This diagram shows two consecutive DMA transfers. A sample High 
and then Low of -DREQ constitutes an edge request for a transfer. The last block 
transfer is accompanied by -EOP. -R/W is asserted High in flyby mode for a des­
tination transfer-that is, one where data will flow from memory-and asserted 
Low for a source transfer, where data will flow to memory. In Figure B5-13 below, 
showing a quadword transfer taking four data cycles. The last DMA transfer is 
accompanied by EOP. 

MB86932 DMA - External Interface 

B5-12 



CLK 

-DREO 

-AS 

ADDR 

RJ-W 

-DACK 

-ROY 

DATA 

-EOP 

ClK 

-DREO 

-AS 

ADDR 

RJ-W 

-DACK 

-ROY 

DATA 

-EOP 

., ., ., 

~ 
~I/" LfL~ 

, \ \ / 
I 

\ / I \ / 

~( ~( 

! 
, 

\ II \ I , 

~ f-JJ 'YL-'!; 

! .~ r---' 
;< , 

I I '--

• Is the sensing edge for -DREQ 

Figure 15-11. Single Transfer, Edge-Sensitive, Flyby (R/-W high) 
., ., ., 
~ ~ V ~ ~ : i 

1\ I I \ \ 1;;;;,S;;!"i~:~'i:'Y 
! 

\ II j \ I t 

I ,{ ~( i 

I 
\ 1\ I I 
\ ! 1\ I I 

I 

:~ lr-1J 
! 

;{ [( , 
I 

I ! '--

., Is Ihe sensing edge for -DREQ 

Figure 15-12. Single Transfer, Edge-Sensitive, Flyby (R/-W low) 

MB86932 DMA - External Interface 

B5-13 

.. 



SP ARClite User's Manual 

., ., 
CLKL-~~n-r 

-OREQ I ,,; .~.".\: [,>1: .:'.'<. >/·< .. 7:" .• \/ .• y ......... {>,;;:.;.o,,>.'. .i, ,·,!,···,;;::"t;','t;;";:;:;i,'.<:",;$,(i[ 
I " 

R/-W 
i 
i -DACK i\~~--~I~~r---~ 

-ROY r--+-----+--r--+-----+--m.\\ i ",.,..-+--4--+---1 

i DATA f--+-:--t-i+-f----l--t{,·[·( I=>~ i >K_(':< _ «:::r::}1--t-~-f--1 
i -- T ' 

~OPr_-r~-4-_t-t_~-r'-r--r~-~i-i-_t-~-L--lir-t-~-~~ 
., Is tho oonslng edge for -OREa 

Figure 15-13. Single Transfer, Edge-Sensitive, Flyby, Quaclworcl (R/-W high) 
., ., 

CLK~~~f\---iI~~ 
-DREQ I ,{};;:'I:'\ : [',,';3:<::;';: "'if: ");'r:;<:::::::;;: '!::J::;(:\~":I:";': ii')": :·.iY':::i;':'>"';;;:';iL.:5> ::,:" I 

-AS ! !\ 'I I I I, 

i .. i ADDR~-t-L-~-~-t-L-~r=t==t==t==t==t==t=====D--~-t-~-t-1 I 

! i 

R/-W 'I 

-DACK 
-ROY 

I 
I 

il 
I i III I 

I 

;:{ I HI i( 

T 
DATA f-+-~+-f-+---+-KrI=> 

I I 

Figure 15-14. Single Transfer, Edge-Sensitive, Flyby, Quaclworcl (R/-W low) 

Ilocle Transfer Mode 
Block transfer is initiated by software request. In this mode, the CPU starts the 
DMA action by setting the Start bit of the control register. The transaction will 
continue until the Terminal Count (TC) happens, or until-EOP is asserted by the 
external device. 

MB86932 DMA - External Interface 

B5-14 



FUPTSU 

Block transfer mode can be used for either flowthru or flyby transactions. For 
flyby transactions, the DMAC will assert and then deassert the -DACK for each 
transferred datum. 

A timing diagram for software-initiated block transfer is shown in Figure B5-15 
below. The timing is the same as that for demand transfer mode, except that the 
request is set by software. The transfer will begin two cycles after the channel con­
trol register has been written. 

ClK 

-AS 

RJ-W 

ADDR 

-DACK 

-RDY 

DATA 

-EOP(TC) 

-EOP(Ext) 

ClK 

-AS 

RJ-W 

ADDR 

-DACK 

-RDY 

DATA 

-EOP(TC) 

-EOP(Ext) 

,. 
'-;-~ ;-~ V-~ r-"--I\-

\ / 1\ / 
I 

,( :( 

\ / \ / 
, 

'0....-1/ '0....-1/: 
I 

~( : ( , 

/ 

/ / 
,. IU asserts the DMA Start BH 

Figure B5-15. Block Transfer, Flyby (R/-W high) 
,. 

'-;-~ ;-~ V- '-----fL ;-~ , 

\ / \ / 

\ / . 

~( :< 
i 

\ 
i 

~i , 

:( , : ( 
! , 

i 
/ 

i 
/ / 

• 

,. IU asserts the DMA Start BH 

Figure B5-16. Block Transfer, Flyby (R/-W low) 

MB86932 DMA - External Interface 

B5-15 

• 



SPARClite User's Manual 

Demand Transfer Mode 

Demand Transfer Mode provides flexible handshaking procedures during the 
DMA process. A Demand Transfer is initiated by an external level-sensitive DMA 
request (-DREQ). The next request will be sampled after the preceding transfer 
request has been completed. The process continues until (a) the external device 
deasserts the -DREQ (b) the byte count (TC) expires, or (c) an external-EOP is 
encountered. A timing diagram for demand transfer is shown below in 
Figure B5-17. When a request for a demand transfer is made, the DMAC will look 
at the -DREQ to see if any request is pending . 

., 

., IU asserts Ihe DMA Start en 

Figure 15-17. Demand Transfer, Flyby (R/-W high) 

MB86932 DMA - External Interface 

B5-16 



ClK '-r-~ r-
-DREQ \ 

-AS \ 

ADDR , ( 

R/-W \ 

-DACK \ 

-ROY 

DATA 

-EOP(TC) 

-EOP(Ext) 

T IU asserts the DMA Start an 

~ 
/ \ 

\ / 

[( 

\ / 

~. 
y----' ~( 

I / / 

r-

cP 
FUJITSU 

~ 

Figure 85-18. Demand Transfer, Flyby (R/-W low) 

Transfer Addressing 

• Flyby-Flyby mode is in effect when the source and destination have the same 
width, and flyby mode is enabled. -DACK is used to acknowledge the 
external DMA request, and to access the requestor's data. One bus cycle is 
needed for a byte, half-word, or word transfer; four bus cycles are needed for a 
quad-word flyby transfer. A single address is needed for this type of bus 
operation. The R/-W will signal the direction of data flow; forR/-W="1", the 
data flow is from the memory counterpart to the requesting device, and for 
R/-W="O" it is from the requesting device to the memory counterpart. 

• Flowthru-For this bus operation, a read sequence is used to obtain the data 
from the source, and a write sequence is used to send the data to the 
destination. During read, the data will be assembled and put in a Temporary 
Register. During write, the data in the Temporary Register will be 
disassembled and sent to the destination. The DMA Controller will toggle the 
-DACK during the read or write session, depending on whether the External 
Control Option (EC) is set to Source or Destination Request. Whichever type of 
Request is specified by the EC, the other address is optional; for example, if 
EC=O (Source Request), the provision of a destination address is unnecessary. 
The programmer can use the -DACK to enable a read or write to the external 
device whether the DMA request is internal or external. 

MB86932 DMA - External Interface 

B5-17 

.. 



SP ARClite User's Manual 

Source/Destination Data Length 

The source and destination data length can be byte, half-word, word, or quad­
word. For flyby transfer, the source and destination data length mast be the same. 
For flowthru mode, if the source and destination data lengths differ, the DMAC 
will automatically assemble the data during read to the bigger of the two sizes, 
and disassemble the data to the size of the destination during write. The assem­
bly / disassembly applies only to the byte, half-word, and word sizes. 

To take advantage of the burst transfer supported by BIU, the DMAC offers quad­
word transfer. Quad-word transfer requires that both source and destination size 
be quad-word, and both source and destination addresses have to be aligned on 
quad-word boundaries. The DMAC will assert the quad-word address, and indi­
cate to the BIU that quad-word transfer is needed; BIU will then decide when to 
proceed with burst-mode transfer. 

For consistency with the memory mapping seen by the IU, address (31:2) is used 
as the byte address for byte transfers, as the halfword address for halfword trans­
fers, and as the word address for either word or quad-word transfers. 

Program/DMA Interaction 

The -EOP issued by the DMAC can be used as an input to an interrupt controller. 

A chaining wait mechanism is supported, enabling synchronization between the 
program and DMA buffer chaining. This chaining wait function provides a way 
for the user to modify the channel setup and/ or modify the chaining descriptors 
while a chained DMA activity is in progress. The user can set the chaining wait 
function bit in the Control Register to enable this function. When this bit is set, 
and a buffer block has been transferred, the chaining wait bit in the Status Regis­
ter will be set, and the corresponding DMA channel will go to chaining wait state, 
which is equivalent to the disabled state. The chaining wait bit set in the Control 
Register will block the loading of the next descriptor. The user can reprogram the 
channel, and then reset the chaining wait in the Status Register to restart the 
transfer. After the block has been transferred, -EOP will be issued as an input to 
the interrupt controller. The interrupt service routine may modify the channel 
setup registers and/ or the chaining descriptors, and then clear the chaining wait 
bit in the Status Register. After the chaining wait bit in the Status Register has 
been cleared, the DMAC will start the DMA transfer using the modified 
channel setup. 

-EOP will be asserted on these conditions: 

Single buffer mode:TC (byte count expires) 

MB86932 DMA - External Interface 

B5-18 

Error on abnormal read/write transfer. 



Chaining mode: 

cP 
FUJITSU 

If only the chaining mode bit is set, 
and the whole chain trans­
fer is completed 

Chaining wait function set in Control 
Register and the TC (byte 
count expires) 

Error on abnormal read/write transfer 

If chaining debug mode is set in the 
control register, -EOP will 
be asserted at the end of 
each transferred block. 

Note: to use chaining wait, the user must set both chaining mode (CM) and chain­
ing wait mode (CWM) in the control register. To use chaining debug, the user 
must set both CM and Chaining Debug Mode (COM) in the control register. 

-EOP can be used to interrupt the CPU, and the interrupt will be serviced based 
on the content of the Channel Status Register. 

Memory Exception 

Memory Exception (MEXC) is asserted by BIU to signal that an error condition 
was generated during transfer. The DMA channel will stop the transfer immedi­
ately, set up the relevant bit (Source/Destination/Chaining error) in the DMA 
channel Status Register, and assert the -EOP. The -EOP will be deasserted when 
the memory exception status bit is cleared by the program. For quad-word trans­
fer (intended for burst mode), the DMA will finish all four read or write cycles 
before stopping and setting up the relevant bit in the Status Register. 

MB86932 DMA - External Interface 

B5-19 

. ' I 
I 



SPARClite User's Manual 

MB86932 DMA - External Interface 

BS-20 



c R 

1111111111111111111111111111 

MB86932 DSU 

6. 1 Overview 
The MB86932 DSU offers several important features not found on the MB86930: 

• Use of virtual address bus rather than physical address bus for breakpointing. 

• "Context" is automatically taken into account in IA/DA Break Point 
comparisons. 

• Readable ICE registers. 

The MB86932 also includes an EMU pin interface that is fully compatible with the 
other members of the SPARClite family (MB86930 and MB86931). 

6.2 Programmer's Model 

6.2. 1 New Registers and Flags 

Debug Control Register (augmented) 

The Debug Control Register (see Figure 2-36) has been augmented by the addition 
of the Emulate_933 bit (DSU CR [13]). If that bit is set to 1, the MB86932 has six 
register windows, and the Implementation (impl) and Version (ver) fields of the 
Processor State Register (see Figure 2-3) identify the processor as an MB86933. If 
the Emulate_933 bit is 0, the MB86932 has eight register windows, and the impl/ 
ver fields identify the processor as an MB86932. 

MB86932 DSU - Overview 

B6-1 

• 



SP ARClite User's Manual 

This flag affects only the number of windows and the impl/ver fields in the PSR. 
The MB86932's cache and TLB can be enabled even if the flag is set to 1. Since the 
cache and TLB are disabled after Reset, the MB86932 will emulate the MB86930 
correctly as long as the program being executed does not set the bits that enable 
the cache and the TLB. 

Context Compare R.egister 

31 30 29 24 23 22 21 16 15 14 13 8 7 6 5 o 

I I I CDAD2 I I I CDADI I I I CIAD2 I I I CIADI 

Address: OxOOOOFF20 to (DASI=OxOl) 

Figure 86-1. Context Compare Register 

Bit 31: mask comparison of DASI[7:0] with dasid2[7:0] 

Bit 30: ContexLDA_Mask_2(CDAM2) 

Bits 29-24 ContexLDA_Description_2 (CDAD2) 

Bit 23: mask comparison of DASI[7:0] with dasid1 [7:0] 

Bit 22: Context_DA_Mask_1 (CDAM1) 

Bits 21-16: ContexLDA_Description_1 (CDAD1) 

Bit 15: mask comparison of ISUPER with isuperd2 

Bit 14: Context_IA_Mask_2 (CIAM2) 

Bits 13-8: Context_IA_Description_2 (CIAD2) 

Bit 7: mask comparison of ISUPER with ij>uperd1 

Bit 6: Context_IA_Mask_1 (CIAM1) 

Bits 5-0: Context_IA_Description_1 (CIAD1) 

Context IAIDA Mask Flags: 

Each of the four Context Description fields is associated with a Mask field. If a 
Mask field is set to 1, its associated Context field is not compared. These flags are 
to be set when the ICE/Monitor logic does not recognize the concept of "context"; 
in such cases, a break will be invoked whenever the IA/DA matches the break­
point address, regardless of context. Within the break routine, a check can be 
made to see if the context is the one for which the break was defined. This mask­
ing condition governs all the cases listed below. 

MB86932 DSU - Programmer's Model 

B6-2 



6.2.2 Logic of Context Comparison 

If IA on a User (Local) Page, rather than a SupefVisor (global) Page? 

YES 

~ 

If IA1,Is 1A{31:2)==iad(31:2), and ISUPER=i8Uperdl and 
CNTXT[5:0)=ciad[5:0) or -CNTXTIA or ciaml? 

YES 

~ 

If 1A2, Is 1A{31 :2]=iad2[31 :21, and ISUPER=isuperd2 and 
CNTXT[5:0)=ciad2[5:0) or -CNTXTIA or ciam2? 

YES 

~ 

Break condition mat. 

OJ 
FUJITSU 

Figure 16-2. On an Instruction Aclclress (IA) Match Break: 

If no page in the TLB matches (that is, the IA's page is not found in there), the 
value of the CNTXTIA signal is undefined. This may cause an incorrect IA break 
request, but this will do no harm; the memory exception trap invoked by the TLB 
will cancel that incorrect break request. 

MB86932 DSU - Programmer's Model 

B6-3 

.. 



SPARClite User's Manual 

If DA on a User (Local) Page, rather than a Supervisor (global) Page, 
and is DA on the same ASI (8, 9, 10 or 11)? 

YES 

~ 

If DA 1, is DA[31 :0]=dad[31 :0], and DASI[7:0l=dasid1 [7:0] and 
CNTXT[5:0]==edad1 [5:0] or -CNTXTDA or cdam1 and "Data Match"? 

YES 

~ 

If DA2, is DA[31:0]=dad2[31:0], and DASI[7:0]=dasid2[7:0] and 
CNTXT[5:0]=Cdad2[5:0] or -CNTXTDA or cdam2? 

YES 

~ 

Break condition met. 

Figure B6-3. On a Data Address (DA) and-Data Data (DD) Match Break: 

If no page in the TLB matches (that is, the DA's page is not found in there), the 
value of the CNTXTDA signal is undefined. This may cause an incorrect DA 
break request, but this will do no harm; the TLB-miss or instruction-access excep­
tion trap invoked by the TLB will cancel that incorrect break request. 

MB86932 DSU - Programmer's Model 

B64 



a IIUIlI III III liUIi III IIIHILL III III IIUIII 

MB86932 External Interface 

7.1 SIGNAL DESCRIPTIONSt 
Symbol Type 

-RESET I 

XTAl1, (ClK_IN) I/O 
XTAl2 0 

G(O) 
1(0) 

ClKOUT1 0 
G(O) 
1(0) 

ClKOUT2 0 
G(O) 
1(0) 

-lOCK 0 
S(l) 
G(Z) 
I (1) 

Description 

SYSTEM RESET: Asserting reset for at least 4 processor cycles after the clock has 
stabilized, causes the MB86932 to be initialized. 

EXTERNAL OSCILLATOR: The crystal inputs determine execution rate and timing 
of the MB86932 processor. Connecting a crystal to these pins forms a complete 
crystal oscillator circuit. The crystal oscillator frequency is the same as the processor 
operating frequency. 
When driving the processor with an external clock, XTAl2 pin should be left floating. 

CLOCK OUTPUT 1: This is an output signal against which MB86932 bus 
transactions can be referenced. The ClKOUT1 frequency is the same as the 
frequency applied to XTAl1 and is the same as the processor operating frequency. 
ClKOUT1 is in phase with ClK_IN. 

CLOCK OUTPUT 2: This is an output signal against which MB86932 bus 
transactions can be referenced. The ClKOUT2 frequency is the same as the 
frequency applied to XTAl1 and is the same as the processor operating frequency. 
ClKOUT2 is out of phase with ClK_IN. 

BUS LOCK: This is a control signal asserted by the processor to indicate to the 
system that the current bus transaction requires more than one transfer on the bus. 
The Atomic load Store instruction for example requires contiguous bus transactions 
which cause the assertion of the bus lock signal. The bus may not be granted to 
another bus owner as long as -lOCK is active. -lOCK is asserted with the assertion 
of -AS and remains active until -READY is asserted at the end of the locked 
transaction. 

MB86932 External Interface - SIGNAL DESCRIPTIONS 

87-1 

• 



SP ARClite User's Manual 

7.1 SIGNAL DESCRIPTIONSt (Continued) 
.. ('.$f~ •.... > 1··'ty1M De$criptiQll . . ... 
-BREa I BUS REQUEST: Asserted by another device on the bus to indicate that it wants 

S(L) ownership of the bus. The request must be answered with a bus grant (-BGRNT) 
from the MB86932 before the device can proceed by driving the bus. Once the bus 
has been granted, the device has ownership of the bus until it de-asserts -BREa. 
The user should ensure that devices on the bus cannot monopolize the bus to the 
exclusion of the CPU. Inputs to -BREa while -RESET is active are valid and cause 
Bus Grant to be asserted. 

-BGRNT 0 BUS GRANT: Asserted by the CPU in response to a request from a device wanting 
S(L) ownership of the bus. The CPU grants the bus to other devices only after all transfers 
G(O) for the current transaction are completed. All bus drivers are three-stated with the 
I (a) assertion of the bus grant signal. 

-ERROR 0 ERROR SIGNAL: Asserted by the CPU to indicate that it has halted in an error state 
S(L) as a result of encountering a synchronous trap while traps are disabled. In this 
G(a) situation the CPU saves the PC and nPC registers, sets the tt value in the TBR, 
I (a) enters into an error state and asserts the -ERROR signal. The system can monitor 

. the -ERROR pin and initiate a reset under the error condition. This pin is high on 
reset. 

-MEXC I MEMORY EXCEPTION: Asserted by the memory system to indicate a memory error 
S(L) on either a data or instruction access. Assertion of this signal initiates either a data or 

instruction access exception trap in the IU. The current bus access is invalidated by 
asserting the -MEXC in the same cycle as the -READY signal. The IU ignores the 
contents of the data bus in cycles where -MEXC is asserted. 

IRL<3:0> I INTERRUPT REQUEST BUS: The value on these pins defines the external interrupt 
A(L) level. IRL<3:0>=1111 forces a non-maskable interrupt. IRL value of 0000 indicates 

no pending interrupts. All other values indicate maskable interrupts as enabled in the 
PIL field of the processor status register (PSR). Interrupts should be latched and 
prioritized by external logic and should be held pending until acknowledged by the 
processor. An interrupt controller is available on the MB86940. 

-TIMER_OVF 0 TIMER UNDERFLOW: Asserted by the processor to indicate that the internal 16-bit 
S(L) timer has underflowed. This signal can be used to initiate a DRAM refresh cycle or a 
G(a) one cycle periodic waveform. On reset, the timer is turned off and - TIMER_OVF is 
I (a) high. 

-SAME_PAGE 0 SAME-PAGE DETECT: The -SAME_PAGE is used to take advantage of fast 
S(L) consecutive accesses within Fast Page Mode DRAM page boundaries. This signal is 
G(1) an output asserted by the processor when the current address is within the same 
I (1) page as the previous memory access. The -SAME_PAGE signal is asserted with 

-AS and remains active for one processor cycle. -SAME_PAGE is never asserted in 
the first transaction following a transaction by another device on the bus. The page 
size is specified by writing the SAME-PAGE MASK register. 

-eSO, -CS1, 0 CHIP SELECTS: These outputs are asserted when the value on the address bus 
-eS2,-eS3, S(L) matches the address range in one of the corresponding ADDRESS RANGE 
-CS4, -eS5 G(1) registers. The signals are used to decode the current address into one of six address 

I (1) ranges. Address ranges should not overlap. Each address range has a 
corresponding wait specifier which is used to automatically assert the -READY 
Signal after a user defined number of processor clock cycles. This allows a variety of 
memory and I/O devices with different access times to be connected to the MB86933 
without the need for additional logic. 

MB86932 External Interface - SIGNAL DESCRIPTIONS 

B7-2 



cP 
FUJITSU 

7. 1 SIGNAL DESCRIPTIONSt (Continued) 
Symbol Type 

ADR <31:2> 0 
S(L) 
G(Z) 
I (1) 

ASI <7:0> 0 
S(L) 
G(Z) 
I (1) 

-BMODE8 I 
S(L) 

-BMODE16 I 
S(L) 

Description 

ADDRESS BUS: The 30-bit ADDRESS BUS (A31-A2) is an output which identifies 
the data or instruction address of a 32-bit word. Reads are always one word in size 
while byte, half-word, or word transaction sizes for writes is identified by separate 
byte-enable signals (-BEO-3). The address bus is valid for the duration of the bus 
transaction. 

ADDRESS SPACE IDENTIFIERS: The ADDRESS SPACE IDENTIFIERS are 
outputs which indicate to which of 256 available spaces the current ADDRESS BUS 
value corresponds. The ASI values are defined as follows: 

ASI<7:0> ADDRESS SPACE 

Ox1 Control Register 
Ox2 Instruction Cache Lock 
Ox3 Data Cache Lock 

Ox4 - Ox7 Application Definable 
Ox8 User Instruction Space 
Ox9 
OxA Supervisor Instruction Space 

OxB User Data Space 

OxC Supervisor Data Space 
OxD Instruction Cache Tag RAM 
OxE Instruction Cache Data RAM 
OxF Data Cache Tag RAM 

Ox10 - OxFD Data Cache Data RAM 
OxFE - OxFF Application Definable 

Reserved for Debug Hardware 

The ASI values specified as "application definable" can be used by supervisor mode 
instructions such as Load Alternate and Store Alternate. The ASI value is available 
in the same cycle in which the corresponding address value is asserted on the 
address bus. The ASI pins are valid for the duration of the bus transaction. ASI 
values Ox8, Ox9, OxA, and OxB are cacheable. 

8-BIT BOOT MODE: This signal is sampled during reset and causes read accesses, 
memory mapped to -CSO, to assume 8-bit ROM memory. The MB86932 generates 
four sequential fetches to assemble a complete instruction or data word before 
continuing. Bytes are fetched in sequence (0,1,2,3) as encoded by -BE[2) and 
-BE[3) (00, 01, 02, 03). Writes to -CSO are unaffected by boot mode selection and if 
left unconnected, a weak pull-up on this pin (and -BMODE16 pin) causes the 
processor to default to 32-bit mode. 
Note: BMODE8 and BMODE16 should not be asserted at the same time. 

16-BIT BOOT MODE: This signal is sampled during reset and causes read 
accesses, memory mapped to -eSO, to assume 16-bit ROM memory. The MB86932 
generates two sequential fetches to assemble a complete instruction or data word 
before continuing. Half words are fetched in sequence (0,1) as encoded by -BE[2). 
Writes to -eSO are unaffected by boot mode selection. If left unconnected, a weak 
pull-up on this pin (and -BMODE8 pin) causes the processor to default to 32-bit 
mode. 
Note: BMODE8 and BMODE16 should not be asserted at the same time. 

MB86932 External Interface - SIGNAL DESCRIPTIONS 

B7-3 

• 



SP ARClite User's Manual 

7.1 SIGNAL DESCRIPTIONSt (Continued) 

-BE3-0 

0<31:0> 

-AS 

RO/-WR 

o BYTE ENABLES (0): These pins indicate whether the current store transaction is a 
S(L) byte, half-word or word transaction. -BEO-3 signals are available in the same cycle in 
G(Z) which the corresponding address value is asserted on the address bus and is valid 
I (0) for the duration of the bus transaction. This bus should be used only to qualify store 

transactions. For load transactions all sub-word requests are read (and replaced in 
the cache) as words and then the appropriate byte or half-word is extracted by the 
integer unit. 

I/O 
S(L) 
G(Z) 
I (Z) 

o 
S(L) 
G(Z) 
I (1) 

o 
S(L) 
G(Z) 
I (1) 

Possible values for -BE3-0 are as follows: 

31 Byte 0 24 23 Byte 1 16 15 Byte 2 Byte 3 
7 0 

Byte Writes t-=-...:......;-:...t..;:-::--=-~...:.....:.....,:-:,.L7-:-....:....~ 
Han-Word Writes 

r---------~~~~--------~ Word Writes 
~--------~~~--------~ 

BE<2:3> are also used in 8 and 16-bit ROM accesses as follows: 

Bus Mode Byte BE<2:3> 

S-bit 0 00 
1 01 
2 10 
3 11 

16-bit 0&1 00 
2&3 10 

DATA BUS: The bus interface has 32 bidirectional data pins (031-00) to transfer 
data in thirty-two bit quantities. 0(31) corresponds to the most significant bit of the 
least significant byte of the 32-bit word. A double word is aligned on an a-byte 
boundary, a word is aligned on a 4-byte boundary, and a half-word is aligned on a 2-
byte boundary. If a load or store of any of these quantities is not properly aligned, a 
Not Aligned Trap will occur in the processor. 
In write bus cycles, the point at which data is driven onto the bus depends on the 
type of the preceding cycle. If the preceding cycle was a write, data is driven in the 
cycle immediately following the cycle in which -READY was asserted. If the 
preceding cycle was a read, data is driven one cycle after the cycle in which 
-READY was asserted to minimize bus contention between the processor and the 
system. 
Pins 0[7:01 are used when the 8-bit boot mode is enabled and 0[15:01 are used 
when 16-bit mode is enabled. 

ADDRESS STROBE: A control Signal asserted by the MB86930 or other bus master 
to indicate the start of a new bus transaction. A bus transaction begins with the 
assertion of -AS and ends with the assertion of -READY. -AS remains asserted for 
1 clock cycle. During cycles in which neither the processor nor another bus master is 
driving the bus the bus is idle, and -AS remains de-asserted. 

READ/BUS TRANSACTION: This signal specifies whether the current bus 
transaction is a read or a write operation. When -AS is asserted and RO/-WR is low, 
then the current transaction is a write. With -AS asserted and RO/-WR high, the 
current transaction is a read. RO/-WR remains active for the duration of the bus 
transaction and is de-asserted with the assertion of -READY. 

MB86932 External Interface - SIGNAL DESCRIPTIONS 

B7-4 



cP 
FUJITSU 

7.1 SIGNAL DESCRIPTIONSt (Continued) 
Symbol Type 

-READY I 
S(l) 

-DREQO-1 A(l) 
I 

-DACKO-1 0 

-EOPO-1 I/O 

-PBREQ 0 

-BMREQ 0 

-BMACK I 

ClK_ECB I 

PARITY<3:0> I/O 

EMU_SD <3:0> I/O 

EMU_D<3:0> I/O 

EMU_BRK I 

Description 

READY: This is a control signal asserted by the external memory system to indicate 
that the current bus transaction is being completed and that it is ready to start with 
the next bus transaction in the following cycle. In case of a fetch from memory, the 
processor will strobe the value on the data bus at the rising edge of elK_IN following 
the assertion of -READY. For the case of a write, the memory system will assert 
-READY when the appropriate access time has been met. 
In most cases, no additional logic is required to generate the -READY signal. On-
chip circuitry can be programmed to assert -READY based on the address of the 
current transaction. The external system can override the internal ready generator to 
terminate the current bus cycle early. Up to 6 address ranges each with different 
transaction times can be programmed. 

DMA REQUEST: Indicates that an external device is requesting a DMA transfer. 
This signal is edge sensitive for single transfers and level sensitive for demand 
transfer. -DREQO corresponds to DMA channel 0, while -DREQ1 corresponds to 
DMA channel 1. 

DMA ACKNOWLEDGE: This signal is asserted when an external device asserts 
-DREQ and the processor accesses the external device. -DACK1 corresponds to 
DMA channel 0, while -DACK1 corresponds to DMA channel 1. 

END OF PROCESS: This signal is asserted by the external device when it wants to 
terminate a DMA transfer. Alternately, the processor drives this signal when the byte 
count reaches zero. -EO PO corresponds to DMA channel 0, while -EOP1 
corresponds to DMA channel 1. A pull-up holds -EOPO-1 high when it is not being 
driven. 

PROCESSOR BUS REQUEST: This signal is asserted by the processor to indicate 
to an external bus arbiter that it needs to regain control of the bus. This provides a 
handshake between the arbiter and the processor to allow the bus to be allocated 
based on demand. 

BURST MODE REQUEST: This signal is asserted by the processor to indicate to the 
external system that the processor's burst mode is enabled and the current 
transaction can be a burst. If the external system supports burst mode, it asserts 
-BMACK concurrently with -RDY to begin the burst mode transfer. 

BURST MODE ACKNOWLEDGE: This signal is asserted by the system to indicate 
that it can support burst mode for the address currently on the bus. The system 
asserts -BMACK in response to the processor asserting -BMREQ. 

EXTERNAL CLOCK BYPASS: Tying this signal high causes the ClK_IN signal to 
bypass the Phases lock loop (Pll). This signal is used for testing of the chip. 

PARITY: When enabled, this signal provides even or odd parity checking for data 
bus accesses. 

EMULATOR STATUSIDATA BITS: Bi-directional pins used by a hardware emulator 
to control and monitor MB86930 execution. These pins should be left unconnected. 

EMULATOR DATA BITS: Bi-directional pins used by a hardware emulator to control 
and monitor MB86930 execution. These pins should be left unconnected. 

EMULATOR BREAK REQUEST LINE: Input used by a hardware emulator to 
request a trap when emulation is enabled. This pin should be left unconnected. 

MB86932 External Interface - SIGNAL DESCRIPTIONS 

B7-5 

• 



SPARClite User's Manual 

7.1 SIGNAL DESCRIPTIONSt (Continued) 

TCK 

TMS 

TOI 

TOO o 
-TRST 

EMULATOR ENABLE: Tied low while the MB86930 is being reset to enable 
hardware emulator mode on the chip. This pin should be left unconnected. 

TEST CLOCK: JT AG compatible test clock input. 

TEST MODE: JTAG compatible test mode select pin. Test is enabled when - TMS is 
low. 

TEST DATA IN: JTAG compatible test data input. 

TEST DATA OUT: JTAG compatible test data output. 

TEST RESET: Asynchronous reset for JTAG logic. If not using JTAG, this signal 
must be pulled low. 

t. In the following descriptions, signal names preceded by a minus sign (-) Indicate an active low state. Dual function pins have two names separated by a slash (I). 

Notes: = Input Only Pin 

o = Output Only Pin 

I/O = Either Input or Output Pin 

= Pins "must bett connected as 
described 

A(L) = Asynchronous: Inputs may be 
asynchronous to ClKOUT. 

S(l) = Synchronous: Inputs must meet 
setup and hold times relative to 
ClK_IN Outputs are Synchronous 
toClK_IN 

G( ... ) = While the bus is granted to another 
bus master (-BGRNT =asserted). 
the pin is 

G(l) is driven to Vee 
G(O) Is driven to V 55 
G(Z) floats 
G(O) is a valid output 

MB86932 External Interface - SIGNAL DESCRIPTIONS 

B7-6 

1( ... ) = While the bus is between bus cycles 
(or being reset) and is not granted to 
another bus master, the pin is 

I (1) is driven to Vee 
I (0) is driven to V ss 
I (Z)lloats 
I (0) is a valid output 



R 

111111111111111111111111111111111111111111 

MB86932 JTAG 

8. 1 MB86932 JTAG Pin List 
The MB 86932 ]TAG cells are arranged in a shift register configuration (see 
Figure B8-8). When shifting in a ]TAG pattern through TDI, the LSB should corre­
spond to the ]TAG cell value for - TIMER_ OVF pin whereas, the MSB of the pat-
tern should correspond to the CLK_ENB pin's JTAG cell. As far as ]TAG output • 
through TOO is concerned, the first bit out corresponds to - TIMER_ OVF ]TAG 
cell value and the last output bit corresponds to the CLK_ENB ]TAG cell value. 
Table B8-1 lists the order of all of the ]TAG cells. 

Table B8-1 :JTAG Pin Order 

Order JTAGCell 
JTAG Function 

Cell Type 

1 -TIMER_OVF output Timer Overflow pin 

2 XTAL1 input Crystal input 

3 -TEST input Factory test pin 

4 PARITY<2> in/out 

5 PARITY<3> in/out 

6 EMU_BRK input Emulator break input 

MB86932 IT AG - MB86932 IT AG Pin List 

88-1 



SP ARClite User's Manual 

Table 8S-1:JTAG Pin Order (Continued) 

Order JTAG Cell 

7 icediojot 

8 EMU_SD_k3> 

9 EMU_SD_o<3> 

· · · 
14 EMU_SD_kO> 

15 EMU_SO_o<O> 

13 EMU_0_k3> 

14 EMU_0_o<3> 

· · · · 
22 EMU_O_kO> 

23 EMU_D_o<O> 

24 iceenbliot 

25 -EMU_EN_i 

26 -EMU_EN_o 

27 dbusiojot 

28 0_k31 > 

29 0_0<31> 

· · 
54 0_k18> 

55 0_0<18> 

56 -BMOOE16 

57 0_k17> 

58 0_0<17> 

59 0_k16> 

60 0_0<16> 

61 0_k15> 

62 0_0<15> 

63 -BMOOE8 

64 0_k14> 

MB86932 IT AG - MB86932 IT AG Pin List 

B8-2 

JTAG 
Cell Type 

output 

input 

output 

· · 
input 

output 

input 

output 

· 
input 

output 

output 

input 

output 

output 

input 

output 

· · 
input 

output 

input 

input 

output 

input 

output 

input 

output 

input 

input 

Function 

Bidirectional control for EMU_D/EMU_SD buses 
icediojo = 1: EMU_D and EMU_SD buses are input 
icediojo = 0: EMU_D and EMU_SD buses are output 

Input bit 3 of EMU_SD<3:0> bus 

Output bit 3 of EMU_SD<3:0> bus 

· · 
Input bit 0 of EMU_SD<3:0> bus 

Output bit 0 of EMU_SO<3:0> bus 

Input bit 3 of EMU_0<3:0> bus 

Output bit 3 of EMU_0<3:0> bus 

· · 
Input bit 0 of EMU_0<3:0> bus 

Output bit 0 of EMU_0<3:0> bus 

Bidirectional control signal for -EMU_ENB pin 
iceenblio = 1: -EMU_ENB pin is an input 
iceenblio = 0: -EMU_ENB pin is an output 

Input bit of -EMU_ENB pin 

Output bit of -EMU_ENB pin 

Bidirectional control signal for 0<31:0>, Parity <3:0> 
dbusiojo = 1: 0<31 :0>, Parity <3:0> are inputs 
dbusiojo = 0: 0<31 :0>, Parity <3:0> are inputs 

Input bit 31 of 0<31 :0> bus 

Output bit 31 of 0<31 :0> bus 

· · 
Input bit 18 of <31:0> bus 

Output bit 18 of 0<31:0> bus 

Input bit 17 of 0<31 :0> bus 

Output bit 17 of 0<31 :0> bus 

Input bit 16 of 0<31 :0> bus 

Output bit 16 of 0<31:0> bus 

Input bit 15 of 0<31 :0> bus 

Output bit 15 of 0<31 :0> bus 

Input bit 14 of 0<31 :0> bus 



Table B8-1:JTAG Pin Order (Continued) 

Order JTAG Cell 
JTAG 

Cell Type 

65 D_o<14> output 

· · · · . 
80 D_k6> input 

81 D_o<6> output 

82 -BMREQ output 

83 D_k5> input 

84 D_o<5> output 

· · · 
93 D_kO> input 

94 D_o<O> output 

95 -RESET input 

96 -BREQ input 

97 -MEXC input 

98 -READY input 

99 tstatejot output 

100 -BGRNT output 

101 -ERROR output 

102 -LOCK output 

103 -BMACK input 

104 -RDIWR output 

105 -AS output 

106 -PBREQ output 

107 -CS<O> output 

108 -DREQO input 

109 -CS<1> output 

110 -CS<2> output 

111 -CS<3> output 

112 -CS<4> output 

113 -DREQ1 input 

114 -CS<5> output 

115 -SAMEPAGE output 

Function 

Output bit 14 of D<31 :0> bus 

· · 
Input bit 6 of <31 :0> bus 

Output bit 6 of D<31 :0> bus 

Input bit 5 of D<31 :0> bus 

Output bit 5 of D<31 :0> bus 

· · 
Input bit 0 of <31 :0> bus 

Output bit 0 of D<31 :0> bus 

Chip reset pin 

Bus request input 

Memory exception input 

cP 
FUJITSU 

External memory transaction complete signal 

Three-state control signal for ADR, ASI, -BE, -AS, 
RDIWR and -LOCK 
If tstatejo = 1: Signals are three-stated. 
If tstatejo = 0: signals are outputs. 

Bus grant output Signal 

Error output signal 

Bus lock output signal 

Memory ReadIWrite output signal 

Start of memory transaction output signal 

MB86932 IT AG - MB86932 IT AG Pin List 

B8-3 

• 



SP ARClite User's Manual 

Table B8-1:JTAG Pin Order (Continued) 

Order JTAGCell 

116 -DACKO 

117 BE<3> 

118 BE<2> 

119 BE<1> 

120 BE<O> 

121 ASkO> 

122 ASk1> 

123 ASk2> 

124 ASk3> 

125 -DACK1 

126 ASk4> 

127 ASk5> 

128 ASk6> 

129 ASk7> 

130 ADR<2> 

131 ADR<3> 

132 ADR<4> 

133 ADR<5> 

134 eopioO 

135 ADR<6> 

136 ADR<7> 

137 -EOPO_i 

138 -EOPO_o 

139 ADR<8> 

140 ADR<9> 

141 eopio1 

142 ADR<10> 

143 -EOPU 

144 -EOP1_o 

145 ADR<11> 
. . . . 

MBB6932 JT AG - MBB6932 JT AG Pin List 

BB-4 

JTAG 
Cell Type 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

output 

input 

output 

output 

output 

output 

output 

input 

output 

output 

Function 

Bidirectional control for -EOPO pin 
eopioO = 1: -EO PO is input 
eopioO = 0: -EO PO is output 

Bidirectional control for -EOP1 pin 
eopio1 = 1: -EOPO is input 
eopio1 = 0: -EOPO is output 



FUJITSU 

Table B8-1:JTAG Pin Order (Continued) 

Order JTAGCell 
JTAG 

Function 
Cell Type 

150 ADR<16> output 

151 PARITY_kO> input 

152 PARITY _0<0> output 

153 ADR<17> output 

154 ADR<18> output 

155 ADR<19> output 

156 ADR<20> output 

157 PARITY_k1> input 

158 PARITY _0<1 > output 

159 ADR<21> output 
. . . 

169 ADR<31> output 

170 IRl<3> input 

171 IRl<2> input 

172 IRl<1> input 

173 IRl<O> input 

174 elK_ENB input 

t. These are internal 1/0 control signals. Therefore, there are no corresponding external pins. 
1. The following pins are not three-statable: -SAME_PAGE, -CS<5:0>, -BGRNT, TIMER_OVF, -ERROR. 
2. The following pins have no corresponding JTAG cells: CLKOUT1, CLKOUT2, XTAL2, -TRST, TCK, TMS, TOI, TOO. 

MB86932 IT AG - MB86932 IT AG Pin List 

B8-5 

• 



SP ARClite User's Manual 

MB86932 IT AG - MB86932 IT AG Pin List 

B8-6 



Se 4 

l1lil1lil1lil1lil1lil1lil1lil1li111l1lil1lil1lil1lil1li 

MB86933 

MB86933 - SP ARClite User's Manual 



SP ARClite User's Manual 

MB86933 - SP ARClite User's Manual 



c s 

111111111111111111111l1lil1lil1lil1li111111111 

Chapter C 1: Overview of the MB86933 
1.1 Organization and Content ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C 1·1 

1.2 General Description ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C 1-2 

1.3 Special Features •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C 1-3 

1.4 Programmer's Model •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C 1-3 

1 .4. 1 Program Modes .............................................................................................. C 1-4 
1 .4.2 Memory Organization ..................................................................................... C 1-4 
1.4.3 Registers ......................................................................................................... C 1-5 
1.4.4 Data Types ..................................................................................................... Cl-9 
1 .4.5 Instructions ...................................................................................................... C 1-9 
1 .4.6 Interrupts and Traps ......................................................................................... C 1-9 

1.5 Internal Architecture ••.••••••••.••.•••.••••••.••..••••••••••••••••••••...••.••••.••••• C 1-10 
1.5.1 Integer Unit ................................................................................................... C1-10 
1.5.2 Bus Interface Unit .......................................................................................... C1-11 

1.6 External Interface •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C 1-12 

1.6.1 Signals ......................................................................................................... Cl-12 
1.6.2 Bus Operation ............................................................................................... C1-12 
1.6.3 System Support Functions ............................................................................... Cl-13 

1.7 Development-Support Tools ••••••••••••••••••••••••••••••••••••••••••••••••••••••• C 1-14 

Contents 

C-i 



SPARClite User's Manual 

Chapter C2: Programmer' 5 Model 
2.1 Program Modes •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C2-1 

2.2 Memory- Organization ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C2-2 

2.3 Registers ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C2-4 
2.3.1 Register Windows ........................................................................................... C2-4 
2.3.2 Special Uses of the r Registers .......................................................................... C2-5 
2.3.3 SPARC-Defined Special-Purpose Registers ........................................................... C2-5 
2.3.4 Memory-Mapped Control Registers ................................................................... C2-8 

2.4 Data Types •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C2-8 

2.5 Instructions ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C2-9 

2.6 Interrupts and Traps •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C2-9 

Chapter C3: Internal Architecture 
3.1 Integer Unit ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C3-2 

3.1.1 I Block ........................................................................................................... C3-3 
3.1 .2 A Block .......................................................................................................... C3-8 
3.1.3 E Block ........................................................................................................ C3-10 
3.1.4 Programmer-Visible State and Processor State ................................................... C3-15 

3.2 Bus Interface Unit •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C3-16 
3.2.1 Exception Handling ....................................................................................... C3-16 
3.2.2 Effect on the Pipeline ..................................................................................... C3-16 

Chapter C4: External Interface 
4.1 Signals •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C4-1 

4.1 .1 Processor Control and Status ............................................................................ C4-3 
4.1.2 Memory Interface ............................................................................................ C4-4 
4.1.3 Bus Arbitration ................................................................................................ C4-7 
4.1 .4 Peripheral Functions ........................................................................................ C4-7 
4.1.5 Test and Boundary-Scan ................................................................................... C4-7 

4.2 Bus Operation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C4-8 
4.2.1 Exception Handling ......................................................................................... C4-8 
4.2.2 Bus Cycles ..................................................................................................... C4-9 

Contents 

C-ii 



FUJITSU 

4.3 System Support Functions ••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C4-15 
4.3.1 System-Configuration Registers ........................................................................ C4-15 
4.3.2 Same-Page Detection ..................................................................................... C4-18 
4.3.3 Programmable Timer ...................................................................................... C4-1 8 

4.4 ROM Interface •••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••• C4-19 
4.4. 1 Purpose ........................................................................................................ C4-19 
4.4.2 Features ....................................................................................................... C4-19 
4.4.3 Bus Configuration on Reset ............................................................................. C4-20 
4.4.4 System Interface ............................................................................................ C4-20 
4.4.5 PROM Address Space .................................................................................... C4-21 
4.4.6 Load/Stores .................................................................................................. C4-21 
4.4.7 Memory Exception ......................................................................................... C4-22 
4.4.8 Bus Request .................................................................................................. C4-22 
4.4.9 Timing .......................................................................................................... C4-23 
4.4.10 Store in 8/16 Bit ......................................................................................... C4-24 

Chapter C5: Programming Considerations 

5.1 MB86933 Programming Information ........................................... C5-1 

Chapter C6: System Design Considerations 
6.1 Interfacing SRAM •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C6-1 

6.2 Interfacing Page-Mode DRAM ••••••••••••••••••••••••••••••••••••••••••••••••••••• C6-3 

6.3 In-Circuit Emulation ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• C6·5 

Chapter C7: Instruction Set 

7.1 MB86933 Instruction Set ......................................................•...•.. C7-1 

Chapter C8: MB86933 JTAG 
8. 1 MB86933 JTAG Information •••••••••••••••••••••••••••••••••••••••••••••••••••••••• C8-1 

Contents 

C-iii 



SPARClite User's Manual 

Contents 

C-iv 



c 

Overviev# of the MB86933 

The MB86933 is functionally and architecturally similar to the MB86930 SPAR­
Clite RISC processor. The MB86933 has the same integer unit as the MB86930, 
supports the same instruction set as the MB86930, and is system bus compatible 
with the MB86930. 

Several MB86930 features and signals are not available on the MB86933, however, 
to reduce processor cost and package size. The MB86933 has no caches, no write 
buffer, no pre-fetch buffer, and has six register windows rather than eight. It has 
twenty-six Address Bus signals (ADR<27:2» rather than thirty, has four Address 
Space Identifier signals (ASI<3:0» rather than eight, and has no emulator-sup­
port signals. The MB86932 can be used for MB86933 in-circuit emulation, so 
MB86933 emulator-support signals are not necessary. 

The MB86933 does support 8- and 16-bit ROMs as well as 32-bit ROMs - a feature 
not available on the MB86930. The processor reads two external signals, 
-BMODE8 and -BMODE16, during reset to identify the ROM size. This allows use 
of the smaller ROMs to reduce board space and component cost. 

1. 1 Organization and Content 
This section is organized in the same way as section 1 of this manual which 
describes the MB86930 processor. In general, this section contains descriptions of 
the MB86933 processor that differ from the MB86930 processor. Descriptions that 
are the same for both processors are generally not repeated in this section, and the 

Overview of the MB86933 - Organization and Content 

Cl-l 

.. 



SP ARClite User's Manual 

reader is referred to the main section of the manual for these identical descrip­
tions. 

These MB86933 differences with respect to the MB86930 processor are summa­
rized as follows: 

• No instruction cache or data cache 

• No write buffer or prefetch buffer 

• Six register windows rather than eight 

• AOR<31:28> not used 

• ASI<7:4> not used 
• EMU_SO<3:0> not used 

• EMU _0<3:0> not used 

• EMU_BRKnotused 

• -EMU _ENB not used 

• No in-circuit emulation support 

• -BMOOE8 and -BMOOEI6 inputs added to support 8- andl6-bit ROMs, as 
well as 32-bit ROMs. 

1.2 General Description 
The MB86933 is a high-performance processor that is suitable for use in embed­
ded control applications such as printers, scanners, robotic machinery, telecom 
switches and monitors, and I/O subsystems. It operates at clock speeds up to 20 
MHz, executes SP ARC instructions at a maximum rate of 18 MIPs, and is avail­
able in a 160-pin QFP package. 

The processor consists of a Harvard (Aiken) architecture Integer Unit (IU) core 
and a Bus Interface Unit (BID). These units are connected internally with separate 
instruction and data buses, and to external memory and I/O with separate 26-bit 
address and 32-bit data buses. 

A register file in the ID is accessed through 6 register windows. An integer multi­
ply unit (MU) within the IU speeds applications that require integer multiplica­
tion. The processor uses software to emulate floating-point instructions. The data 
path and other arrayed blocks are full- custom designs to optimize die area and 
speed. Random control blocks are standard-cell designs. All circuits are fully 
static. 

The MB86933 provides a mechanism for code and data protection, but is opti­
mized for embedded applications that do not require virtual-to-physical address 
translation. The MB86933 processor can be designed into in a virtual-memory sys-

Overview of the MB86933 - General Description 

Cl-2 



OJ 
FUJITSU 

tern, however, by using external memory management logic for address transla­
tion. 

1.3 Special Features 
The following MB86933 features make the processor an ideal choice for a wide 
variety of low cost, high-performance embedded systems: 

• Fast Instruction Execution: The instruction set is streamlined and hardwired 
for fast execution, with most instructions executing in a single cycle. At 20 
MHz the MB86933 executes instructions at a peak rate of 20 MIPs and at a 
sustained rate of 18 MIPs. The Integer Unit (IU) features a 5-stage pipeline that 
has been designed to handle data interlocks, and an optimized branch handler 
for efficient control transfers. 

• Large Register Set: An internal register file, consisting of eight global registers 
and 96 registers organized into six overlapping windows, speeds interrupt 
response time and context switches. The register file windows minimize 
accesses to memory during procedure linkages, and facilitate passing of 
parameters and assignment of variables. 

• System Support Functions: Glue logic between the MB86933 and the system 
is minimized by programmable chip selects, programmable wait-state 
circuitry, and support for connection to fast page-mode DRAM. Multiple bus 
masters are supported through a simple handshake protocol. 

• Clock Generator: A crystal can be connected directly to the on-chip oscillator, 
or an external clock source can be used. A phase-locked loop minimizes the 
skew between on- and off-chip clocks. 

• Enhanced Instruction Set: The MB86933 incorporates a fast integer multiply 
instruction that executes in a fast 5, 3 or 2 cycles for 32-bit, 16-bit and 8-bit 
operands. An integer divide-step instruction cuts divide times by a factor of 
5 to 10 over previous SPARC implementations. A scan instruction supports a 
single-cycle search for the most significant non-sign bit in a word. 

• Fully Static Circuit Design: Its static design gives the MB86933 superior noise 
immunity. Future members of the SPARClite family will support a low-power 
mode in which the processor clock can be slowed or stopped for arbitrary 
periods of time to reduce operating current. 

• ROM Size Option Support: Two external signals allow the processor to 
identify whether 8-, 16-, or 32-bit ROMs are in use. This feature allows use of 
smaller ROMs for a reduction in cost and in board space. 

1.4 Programmer's Model 
This section briefly introduces those aspects of the MB86933 processor architec­
ture that are visible to software: the user and supervisor modes of program execu-

Overview of the MB86933 - Special Features 

Cl-3 

.. 



SP ARClite User's Manual 

tion, the organization of the address space, the register set, the supported data 
types, the instruction set, and interrupts and traps. Each of these topics are dis­
cussed in more detail in following chapters. 

1.4. 1 Program Modes 

The MB86933 architecture supports protection in multitasking environments by 
providing two mutually exclusive modes of program execution, user mode and 
supervisor mode. Certain instructions are privileged, and can only be executed 
when the processor is in supervisor mode. Any attempt to execute a privileged 
instruction in user mode causes a trap. 

Typically, application programs run in user mode, while operating systems run in 
supervisor mode. Following reset, the processor is in supervisor mode. To enter 
user mode, software must clear a bit in the Processor State Register. The processor 
enters supervisor mode from user mode only when a hardware reset, an inter­
rupt, or a trap occurs. 

1.4.2 Memory Organization 

The processor can directly address up to 4 Gigabytes of memory, organized into 
16 address spaces of 256 Megabytes each. Every external access involves an 4-bit 
Address Space Identifier (AS!), as well as a 26-bit word address. The ASI selects 
one of the address spaces, and the 26-bit address selects a 32-bit word within that 
space. 

Four of the address spaces are defined in the SPARC architecture: the User 
Instruction, Supervisor Instruction, User Data, and Supervisor Data spaces. The 
other address spaces are application-defined or reserved. The application-defined 
address spaces can be used for either data memory or for I/O. All I/O is memory­
mapped. 

The organization of the entire addressable range is illustrated in Figure C1-1. 

Loads and stores are the only instructions that cause external accesses. Versions of 
these instructions exist for transferring bytes, half-words, words and double 
words between external memory (or I/O) and processor registers. The user 
instruction and data spaces are accessible in both user and supervisor modes. The 
remaining address spaces are accessible only in supervisor mode. 

Overview of the MB86933 - Programmer's Model 

Cl-4 



OF FFFFFFFF 

OC 00000000 

OB 00000000 

OA 00000000 

09 00000000 

08 00000000 
07 00000000 

04 OOOOOOOO 

02 00000000 

01 00000000 

00 00000000 

4-Bil 32-Bil 
Address Address 
Space 

indicator 
(ASI) 

Reserved 

Supervisor Data (256 MB) 

User Data (256 MB) 

Supervisor Instruction (256 MB) 

User Instruction (256 MB) 

Application Definable (768 MB) 

Reserved 

Application-Definable (256 MB) 

Memory and I/O Space 
(232 Addressable Bytes) 

FUPTSU 

Control Registers 
(See Figure C1-2) 

Memory-Mapped Registers 

Figure C 1-1. Address Space Organization 

The MB86933 processor does not contain memory-management hardware. Vir­
tual-addresses can be translated by software, or by an external memory-manage­
mentunit. 

Note that the MB86933 has no caches, no write buffer, no pre-fetch buffer, and has 
six register windows rather than eight. It has twenty-six Address Bus signals 
(ADR<27:2» rather than thirty, four Address Space Identifier signals (ASI<3:0» 
rather than eight, no emulator-support signals, and no memory management 
unit. These and other differences between the MB86933 and other SP ARClite pro­
cessors should be considered when porting code to the MB86933 from another 
SPARClite processor, and when porting code from the MB86933 to another SP AR­
Clite processor. Documentation for other SP ARClite should be referenced to iden­
tify differences with the MB86933 that may affect ported code. 

1 .4.3 Registers 

All registers are 32 bits wide. There are general-purpose registers, whose contents 
have no pre-assigned meaning, and special-purpose registers that contain control 
and status information or special data values. Some of the special-purpose regis­
ters are defined in the SP ARC architecture; the rest are MB86933- specific regis-

Overview of the MB86933 - Programmer's Model 

Cl-5 

-



SP ARClite User's Manual 

ters. The non-SP ARC special-purpose registers are memory-mapped. The 
general-purpose registers and the special-purpose Y Register are the only regis­
ters that can be accessed in user mode. The register set is illustrated in 
Figure C1-2. 

SPARC-Defined Registers (Not Memory-Mapped) 

Processor State Register (PSR) 

Window Invalid Mask Register (WIM) 

Trap Base Register (TBR) 

Y Register 

Program Counter (PC)' 

Next Program Counter (nPC)' 

Ancillary State Register (ASR) <15:1> (reserved) 

Ancillary State Register (ASR) 17 

96 Windowed Registers 
, Not readiwritable 

(See Fig. Cl-3, Register Windows) 

Memory-Mapped Control Registers 
(See Fig. CI·l, Address Space Organization) 

Same· Page Mask Register 

Address Range Specifier Registers (ARSR <5: 1» 

Address Mask Registers (AMR <5:0» 

Wait-State Specifier Registers (WSSR <2:0» 

limer Register 

8 global registers limer Preload Register 

System Support Control Register 

General-Purpose Registers Special-Purpose Registers 

Figure C 1-2. Register Set 

General-Purpose Registers 

The MB86933 contains 104 general-purpose registers; 8 of these are global registers; 
the other 96 registers are divided into 6 overlapping blocks, or windows. Each 
window contains 24 registers. Of these, 8 are local to the window, 8 are "out" reg-

Overview of the MB86933 - Programmer's Model 

Cl-6 



cf) 

FUJITSU 

isters shared with the adjacent window below, and 8 are "in" registers shared 
with the adjacent window above. This organization is illustrated in Figure Cl-3. 

, , 

Figure C 1-3. Register Windows 

At any given time, 32 general-purpose registers can be accessed directly: the 8 
global registers, and the 24 registers of the currently active window. The value in 
the Current Window Pointer (CWP) field of the Processor State Register (PSR) 
determines which window is active. 

The overlap between adjacent windows makes it easy to pass parameters to a 
subroutine. Values to be passed are written to the "out" registers of the current 
window, which are the same as the "in" registers of the adjacent window. A 
SAVE instruction can then be used to decrement the Current Window Pointer, 
making the parameter values available to the subroutine without moving any 
data. A RESTORE instruction can be used to increment the CWP upon return 
from the subroutine. In effect, the general-purpose registers cache the top portion 
of the run-time stack. 

The window overlap also speeds interrupt handling because interrupts automati­
cally decrement the CWP, giving the interrupt routing its own window. The 
SP ARC architecture requires a free window to be available to handle these traps. 

Overview of the MB86933 - Programmer's Model 

Cl-7 

• 



SP ARClite User's Manual 

Special-Purpose Registers 

The special-purpose registers include the control and status registers defined by 
the SP ARC architecture, and a collection of memory-mapped registers that con­
trol peripheral functions. 

Special instructions exist for reading and writing each of the SP ARC control and 
status registers except the Program Counter and the Next Program Counter. The 
Y Register can be read and written in user mode; the instructions that access the 
other SP ARC-defined registers are privileged. 

The memory-mapped registers can be read and written with the alternate-space 
load and alternate-space store instructions, which are also privileged. 

The SPARC-defined registers, shown in Figure CI-2, are as follows: 

• Processor State Register (PSR)-The primary processor control and status 
register. It contains mode fields that are set by the operating system to 
configure the processor, and status fields that are set by the processor to 
indicate the effects of instruction execution. 

• Window Invalid Mask Register (WIM)-Used by software to detect the 
occurrence of register file underflows and overflows. It contains one mask bit 
for each register window. If an operation that normally increments or 
decrements the Current Window Pointer would cause the CWP to point to a 
window whose corresponding WIM bit equals I, a trap occurs. 

• Trap Base Register (TBR)-Contains three fields used by the processor to 
generate the address of the service routine when an interrupt or trap occurs. 

• Y Register-Used in stepwise multiplication and division routines based on 
the MULScc and DIVScc instructions. Also used for integer multiply 
operations. 

• Program Counter (PC)-Contains the word address of the instruction 
currently being executed by the Integer Unit. The PC cannot be directly read 
or written. 

• Next Program Counter (nPC)-Contains the word address of the next 
instruction to be executed, assuming that no trap occurs. The nPC cannot be 
directly read or written. 

• Ancillary State Registers (ASR[31 :1])-The SPARC definition includes 31 
Ancillary State Registers, 15 of which (ASR[15:1]) are reserved for future use. 
The remaining ASR's can be defined and used in any way by SP ARC 
implementations. SP ARClite defines the following ASR: 

ASRI7- Used to enable and disable single-vector trapping. (When this fea­
ture is enabled, all traps vector to a single location.) Single vector trapping 
provides a small memory alternative to the standard lK word trap table. 

Overview of the MB86933 - Programmer's Model 

C1-8 



cP 
FUJITSU 

The memory-mapped MB86933-specific registers, shown in Figure Cl-2, are as 
follows: 

• Same-Page Mask Register-Controls the operation of the same-page detection 
logic by specifying which bits of the current ASI and address are to be 
compared with those of the previous ASI and address. 

• Address Range Specifier Registers (ARSR[5:1])-Control the assertion of the 
Chip-Select outputs (-CS[5:1]). -CSn is asserted when the value on the address 
bus falls in the address range specified by ARSRn. -CSO is asserted during 
accesses to the lowest address range in Supervisor Instruction Space. 

• Address Mask Registers (AMR[5:0D-AMRn controls the comparison of the 
current address with ARSRn by specifying which bits are to be compared and 
which are "don't cares." 

• Wait-State Specifier Registers (WSSR[2:0])-Determine for each address range 
the number of clock cycles between assertion of an address in that range on the 
address bus, and assertion of -READY signal by the processor. This makes it 
possible for memory and I/O devices with different access times to be 
connected to the processor without additional logic. 

• Timer Register-Contains the current timer count. 

• Timer Pre-Load Register-Contains the value that is loaded into the timer 
when the timer overflows. 

• System Support Control Register-Allows selective enabling and disabling of 
same-page detection, chip-select, programmable wait-states, and the timer. 

1.4.4 Data Types 

The MB86933 supports the same data types as the MB86930 processor. Please 
refer to section 1.3.4 of the main section of this manual for a description of the 
data types. 

1 .4.5 Instructions 

The MB86933 supports the same instructions as the MB86930 processor. Please 
refer to section 1.3.5 of the main section of this manual for a description of the 
instructions. 

1 .4.6 Interrupts and Traps 

The MB86933 supports the same interrupts and traps as the MB86930 processor. 
Please refer to section 1.3.7 of the main section of this manual for a description of 
the interrupts and traps. 

Overview of the MB86933 - Programmer's Model 

Cl-9 

.. 



SP ARClite User's Manual 

1.5 Internal Architecture 
The internal architecture of the MB86933 is illustrated in Figure Cl-4. The proces­
sor core consists of an Integer Unit that supports a superset of the SP ARC integer 
instruction set. The Bus Interface Unit handles the interface between the processor 
and the system. A Clock Generator with built-in phase-locked loop simplifies sys­
tem clock design. 

Internally, the various functional units are connected by separate instruction and 
data buses. For connection with external memory and I/O, a unified address bus 
and a unified data bus are extended off-chip. The main functional units are dis­
cussed briefly in the following sections, and more fully in the Internal Architecture 
chapter. 

XTAL1/CLKIN -~-.r-----, 

DATA 

ADDRESS 

ASI 

c::::::J CLOCK 
GENERATOR 

BUS 
INTERFACE 

UNIT 

SCAN DIVIDE STEP 

SPARe INTEGER UNIT 

Figure C 1-4. Internal Architecture (Block Diagram) 

1.5. 1 Integer Unit 

The Integer Unit (IU) is a compact, fully custom implementation of the SP ARC 
architecture. The IU is hard-wired for high performance. Its internal functional 
units are designed around a modular architecture and can be customized to meet 
different application requirements. In the MB86933, for example, this flexibility 
was used to provide direct hardware support for integer multiplication, and to 
extend the SP ARC instruction set by supporting divide-step and scan instruc­
tions. 

Overview of the MB86933 - Internal Architecture 

Cl-l0 



0:> 
FUJITSU 

I 

The IU implements a five-stage instruction pipeline to allow a sustained execu- II 
tion rate of nearly one instruction per cycle. The operation of the pipeline under 
ideal conditions is illustrated in Figure Cl-S. 

The pipeline consists of the following stages: 

• Fetch (F)-One of the instruction memory spaces is addressed and returns an 
instruction. 

• Decode (D)-The instruction is decoded; the register file is addressed and 
returns operands. 

• Execute (E)-The ALU computes a result. 
• Memory (M)-External memory is addressed (for load and store instructions 

only; this stage is idle for other instructions). 

• Writeback (W)-The result (or loaded memory datum) is written into the 
register file. 

eLK 

Fetch Instruction 5 6 

Decode Instruction 4 5 6 

Execute Instruction 3 4 5 6 

Memory Instruction 2 3 4 5 6 

Write-Sack Instruction 1 2 3 4 5 

Figure C 1-5. Instruction Pipeline 

No instructions execute out-of-order; that is, if instruction A enters the pipeline 
before instruction B, then instruction A necessarily reaches the writeback stage 
before instruction B. Conditions that hold up the pipeline, and the effect of traps 
on pipeline operations, are discussed in the Internal Architecture chapter. 

1.5.2 Bus Interface Unit 

The Bus Interface Unit (BID) contains the logic that allows the processor to com­
municate with the system. 

Overview of the MB86933 - Internal Architecture 

Cl-11 



SPARClite User's Manual 

1.6 External Interface 
The processor's external interface consists of signals, bus operations, and system 
support functions. This section gives an overview; details are discussed more 
fully in the External Interface chapter. The System Design Considerations chapter 
discusses issues that are likely to arise in the design of MB86933-based system. 

1.6. 1 Signals 
The processor's external signals, illustrated in Figure Cl-6, can be grouped by 
function as follows: 

• Processor Control and Status-Reset, error, and clock signals. 

• Memory Interface-Data and address buses, ASI and byte-enables, chip­
selects, and other control signals used to access external memory and 
memory-mapped devices. 

• Bus Arbitration-Signals used by external devices in requesting, and by the 
processor in granting, control of the bus. 

• Peripheral Functions-Interrupt-requests and timer overflow. 

• Boundary-Scan-Test signals used for hardware verification. 

• ROM Size-Used to identify ROM size. 

1.6.2 Bus Operation 
At any given time the Bus Interface Unit is handling requests for external memory 
and I/O operations, is arbitrating for bus access, or is idle. From the point of view 
of the external system, bus transactions are handled in fairly standard ways: 

• Memory and I/O Operations-Read and write transactions are initiated with 
the BIU asserting the -AS signal. The RD / -WR output indicates the 
transaction type. The -BE[3:0] outputs indicate the transaction width. The BIU 
drives the address and ASI signals, and either drives (during stores) or reads 
(during loads) the signals on the data bus. The transaction ends when the 
external system or programmable wait-state generator asserts -READY. 

An atomic load-store is executed as a load followed immediately by a store, 
with no operation allowed between. The -LOCK output is asserted to indicate 
that the bus is being used for more than one consecutive memory operation. 

• Arbitration-Any external device can request ownership of the bus by 
asserting the -BREQ signal. The BIU three-states its bus drivers and asserts 
-BGRNT to indicate that it is relinquishing control of the bus. Upon 
completion of its transaction the external device de-asserts -BREQ and the 
BID responds by de-asserting -BGRNT during the following cycle. 

Overview of the MB86933 - Internal Architecture 

Cl-12 



OJ 
FUJITSU 

Chapter 4 of this addendum contains bus timing diagrams and a bus state dia­
gram, further describes bus operations, and describes transactions that are inter­
rupted by exceptions. 

-ClK_EXT D <31:0> 

ClKOUT1 

Processor ClKOUT2 ADR <27:2> 
Control ClKIN I XTAL1 

& Status 
XTAL2 ASI <3:0> 

-ERROR 

-RESET -CS<5:0> 
Memory 

Peripheral ( IRl <3:0> -BE <3:0> 
Interface 

Functions _ TIMER_OVF -MEXC 

MB86933 -READY 

Bus ( -BREa VOSIGNALS RD/-WR 
Arbitration -BGRNT -lOCK 

-AS 

TOO -SAME_PAGE 

'~-[ TCK 

(Boundary Scan) TMS 
-BMODEB J ROM Size TDI 
-BMODE16 

-TRST 

Figure C 1-6. Input and Output Signals 

1.6.3 System Support Functions 
MB86933 system support is the same as MB86930 system support. Please refer to 
section 1.5.3 of the main section of this manual for a description of the system 
support functions. 

Overview of the MB86933 - Internal Architecture 

Cl-13 

.. 



SP ARClite User's Manual 

1.7 Development-Support Tools 
The MB86933 development-support tools are the same as the MB86930 develop­
ment-support tools. Please refer to section 1.6 of the main section of this manual 
for a description of the development-support tools. 

Overview of the MB86933 - Internal Architecture 

Cl-14 



R 

•••••••••••••• 

Programmer's Model 

This chapter describes the MB86933 processor resources that are available to soft­
ware. It discusses the user and supervisor modes, the organization of the address 
space, the processor registers, the supported data types, the instruction set, and 
interrupts and traps. A separate section describes the internal state of the proces­
sor after reset. 

The Programming Considerations chapter contains information about how to use 
these processor resources to best advantage. 

2. 1 Program Modes 
The SP ARC architecture provides two mutually exclusive modes of program exe­
cution, user mode and supervisor mode. The processor is in supervisor mode when 
the S bit of the Processor State Register (PSR) is 1, and in user mode when this bit 
is O. Instructions which access either special-purpose registers or alternate mem­
ory spaces are privileged. The use of privileged instructions is restricted to supervi­
sormode. 

Separate user and supervisor modes provides system protection in multitasking 
environments. System code runs in supervisor mode and has full access to proces­
sor resources, while application code runs in user mode and is prevented from 
having unwanted side effects. Embedded systems connected to a network can use 
a protection scheme based on the distinction between user and supervisor modes. 
In such a scheme, network service routines intended to have system-wide effects 

Programmer's Model - Program Modes 

C2-1 

• 



SP ARClite User's Manual 

run in supervisor mode. Routines intended to have only local effects, on the other 
hand, run in user mode. 

In many embedded systems, however, this hierarchy is not required, and the pro­
cessor can operate exclusively in supervisor mode. In this way, application code 
can directly manipulate the Current Window Pointer (in the PSR) and other pro­
cessor control fields. 

On reset, the processor is in supervisor mode. To enter user mode, software must 
clear the S bit in the PSR. The processor enters supervisor mode from user mode 
only when a hardware reset, an interrupt, or a trap occurs. A return from trap 
(RETT) instruction restores the value the S bit had before the trap was taken. 

2.2 Memory Organization 
The processor can directly address up to 4 Gb of memory, organized into 16 
address spaces of 256 Mb each. These address spaces mayor may not overlap in 
physical memory, depending on the system design. Every external access 
involves a 4-bit Address Space Identifier (AS!) as well as a 26-bit word address. 
The ASI selects one of the address spaces, and the address selects a word within 
that space (see Table C2-l). 

Only the user instruction and data spaces are accessible in user mode. The other 
254 address spaces can be accessed only in supervisor mode. 

Table C2·1 :ASI Address Space Map 

ASI <3:0> Address Space 

OxO Application Definable 
Ox1 Control Registers 

Ox2 - Ox3 Reserved 
Ox4 - Ox? Application Defi'nable 

Ox8 User Instruction Space 
Ox9 Supervisor Instruction Space 
OxA User Data Space 
OxB Supervisor Data Space 

OxC - OxF Reserved 

Note that the MB86933 has no caches, no write buffer, no pre-fetch buffer, and has 
six register windows rather than eight. It has twenty-six Address Bus signals 
(ADR<27:2» rather than thirty, four Address Space Identifier signals (ASI<3:0» 
rather than eight, no emulator-support signals, and no memory management 
unit. These and other differences between the MB86933 and other SP ARClite pro­
cessors should be considered when porting code to the MB86933 from another 
SP ARClite processor, and when porting code from the MB86933 to another SPAR-

Programmer's Model - Memory Organization 

C2-2 



cP 
FUJITSU 

Clite processor. Documentation for other SPARClite should be referenced to iden­
tify differences with the MB86933 that may affect ported code. 

Loads and stores are the only instructions that cause external accesses. Versions of 
these instructions exist for transferring bytes, half-words, words and double • 
words between memory (or I/O) and processor registers. Addressing conven-
tions for external accesses are "big-endian": 

• Bytes-Increasing the address decreases the significance of a byte within the 
word. That is, the most significant byte of a word-the ''big end" of the 
word-is accessed when bits [1:0] of the address are both O. The least 
significant byte is accessed when address bits [1:0] are both 1. 

• Halfwords-The most significant halfword of a word is accessed when bit 1 of 
the address is 0, and the least significant halfword when address bit 1 is 1. 

• Doublewords-The most significant word of a doubleword is accessed when bit 
2 of the address is 0, and the least significant word is accessed when address 
bit2isl. 

The address of a halfword, word, or doubleword is the address of its most signifi­
cant byte. The addressing conventions are illustrated in Figure C2-1. 

address <1:0> 0 
Bytes 

2 3 
17 01 7 01 7 01 7 01 

address <1 :0> 0 
HBlfwords 

2 

115 01 15 01 

address <1 :0> 
Word 

0 131 01 

address <2:0> 
Doubleword 

0 I: 3:1 4 

Figure C2-1. Addressing Conventions 

Load and store operations require proper alignment of data in memory. An 
aligned doubleword address is divisible by 8, an aligned word address is divisi­
ble by 4, and an aligned half-word address is divisible by 2. If a load or store 
instruction generates an improperly aligned address, a memory _address_not_ 
aligned trap occurs, and the access must be performed piecemeal under software 
control. 

The processor does not contain memory-management hardware. Virtual-address 
translation can be handled by software or by an external memory-management 
unit. 

Programmer's Model - Memory Organization 

C2-3 



SP ARClite User's Manual 

2.3 Registers 
There are two types of registers: the general-purpose or r registers whose contents 
have no pre-assigned meaning, and the special-purpose registers that contain con­
trol and status information, or special-purpose data. All registers are 32 bits wide. 
The register set is illustrated in Figure Cl-2. 

The general-purpose (r) registers can be accessed in user mode. There are 104 r 
registers. Eight are global registers; the other 96 registers are divided into six over­
lapping blocks called windows. 

There are of two kinds of special-purpose registers: (1) registers that are defined 
by the SP ARC architecture, and (2) memory-mapped registers that control 
peripheral functions. Special instructions exist for reading and writing each 
SPARC register except the Program Counter and the Next Program Counter. The 
memory-mapped registers can be read and written with the alternate-space load 
and store instructions. All instructions that access special-purpose registers are 
privileged except reads and writes to the SPARC-defined Y register. 

2.3. 1 Register Windows 
The general-purpose register set is organized into a set of 8 global registers and a 
set of overlapping windows, as specified by the SP ARC architecture. There are 6 
windows in the MB86933. Each window contains 24 registers. Of these, 8 are local 
to the window, 8 are Hout" registers shared with the adjacent window below, and 
8 are Hin" registers shared with the adjacent window above. This organization is 
illustrated in Figure C2-2. 

Thirty-two general-purpose registers can be accessed directly at any time: the 8 
global registers, and the 24 registers of the currently active window. The value in 
the Current Window Pointer (CWP) field of the Processor State Register (PSR) 
determines which window is active. (See Section 5.3 for register addressing con­
ventions.) 

Programmer's Model - Registers 

C2-4 



, , , 

Register Addressing 

, , 

8 LOCAls : 8
INS

} : 

8 OUTs 'NindOW!S 

, 

.......... / 

Figure C2-2. Register Windows 

, , 
, , 

, 

, , , , 
, , , ..... - ..... 

00 
FUJITSU 

: 8Gloll ... 
: ACe.. "la " 
, all W8ab1e 1o , 
\, 100000S : , , 

...... r ... ..... ,~ 
, 

, , , , , , , , , , , , , , , 

, , , 

Please refer to Section 2.3.1 of the main section of this manual for a description of 
MB86933 register addressing. 

Performance Features 

Please refer to Section 2.3.1 of the main section of this manual for a description of 
the MB86933 performance features. 

2.3.2 Special Uses of the r Registers 

Please refer to Section 2.3.2 of the main section of this manual for a description of 
MB86933 r register use. 

2.3.3 SPARe-Defined Special-Purpose Registers 

The registers discussed in this section are defined as part of the SP ARC architec­
ture. 

Programmer's Model - Registers 

C2-5 

• 



SP ARClite User's Manual 

Processor State Register (PSR) 

The Processor State Register is the primary processor control and status register. 
It contains 11 mode and status fields that configure the processor and report pro­
cessor status and exception results. The mode fields, shown in upper case in 
Figure C2-3, are set by the operating system to configure the processor. The status 
fields, shown in lower case, are set by the processor to indicate the effects of 
instruction execution. 

Except for several fields described below, the PSR can be written and read 
directly with the privileged instructions WRPSR and RDPSR. The PSR can also be 
modified by the SAVE, RESTORE, Ticc, and RETT instructions, and by any 
instruction that modifies the condition codes. 

31 28 27 24 23 20 19 12 11 8 7 6 5 4 o 

ver=4 reserved PIL cWP 

Figure C2-3. Processor State Register 

Bits 31-28: Implementation (impl)-Identifies the implementation number of the processor as O. The 
value in this field cannot be changed by a WRPSR instruction. 

Bits 27-24: Version (ver)-Identifies the processor version as 4, and is intended for factory use. It can 
be read, but not written. 

Bits 23-20: Integer Condition Codes (icc)-Contains the negative (n), zero (z), overflow (v), and carry 
(c) integer condition-code flags. These bits are modified by the WRPSR instruction, and 
by arithmetic and logical instructions whose names end with the letters cc (for example, 
ANDcc). The Bicc (Branch on integer condition codes) and Ticc (Trap on integer condition 
codes) instructions transfer program control based on the values of these bits. The inte­
ger condition code flags are defined as follows: 

n (Bit 23) Set to 1 if the ALU result was negative for the last instruction that modified 
the icc field; equal to 0 otherwise. 

z (Bit 22) Set to 1 if the ALU result was zero for the last instruction that modified the icc 
field; equal to 0 otherwise. 

v (Bit 21) If this bit equals 1, an arithmetic overflow occurred on the last instruction that 
modified the icc field; it equals 0 otherwise. Logical instructions that modify 
the icc field always reset the overflow bit to O. 

c (Bit 20) If this bit equals 1, either an arithmetic carry out of bit 31 occurred on the last 
addition that modified the icc, or a borrow out of bit 31 occurred as the result 
of the last subtraction that modified the icc. The carry bit equals 0 otherwise. 
Logical instructions that modify the icc field always reset the carry bit to O. 

Bits 19-12: Reserved -This field is reserved. When using the WRPSR instruction, this field should 
always be written with Os. 

Bits 11-8: Processor Interrupt Level (PIL)-Specifies the levels of interrupt that the processor will 
accept. The processor accepts only interrupts with level 15 (non-maskable interrupts), or 

Programmer's Model - Registers 

C2-6 



Bit 7: 

Bit 6: 

BitS: 

Bits 4-0: 

cP 
FUJITSU 

with levels higher than the value in the PIL field (maskable interrupts). Bit 11 is the most 
significant bit, and bit 8 is the least significant. 

Supervisor Mode (S)-Determines whether the processor is in supervisor mode (S=1) or 
user mode (S=O). Since instructions that write the PSR are available only in supervisor 
mode, the processor enters supervisor mode from user mode only when a reset, trap, or 
interrupt occurs. 

Prior S State (PS)-Records the value of the S bit when a trap is taken, so that the pro­
cessor can return to the proper operating mode (user or supervisor) on return from the 
trap. Processor hardware changes the PS bit to the state of the S bit when entering a trap, 
and changes the S bit to the state of the PS bit when returning from the trap. 

Enable Traps (ET)-Enables traps (ET =1). When ET =0, traps are disabled and all inter­
rupts are ignored. 

Current Window Pointer (CWP)-Points to the register window that is currently active. 
The CWP is written and read with the WRPSR and RDPSR instructions, is decremented 
by traps and the SAVE instruction, and is incremented by the RESTORE and RETT 
instructions. The MB96933 processor implements 6 of the 32 windows allowed in the 
SPARC definition, so only the 3 least Significant bits of the CWP field are used. Arithmetic 
on the CWP is always performed modulo 6. Attempting to write a value to the CWP field 
that points to an unimplemented window results in an "illegal instruction" error. 

Window Invalid Mask Register (WIM) 

The Window Invalid Mask Register contains 6 register-window mask bits, each of 
which corresponds to an implemented register window. If an operation that nor­
mally increments or decrements the Current Window Pointer would cause the 
CWP to point to a window whose corresponding WIM bit equals I, a Window 
Overflow or Window Underflow trap occurs. 

The WIM can be written with the WRWIM instruction, and read with the RDWIM 
instruction. Both of these instructions are privileged. Bits corresponding to unim­
plemented windows are read as as; values written to these bits are ignored. 

31 6543210 

reserved 

Figure C2-4. Window Invalid Mask Register 

Bits 31-6: Reserved Field -This field is reserved for potential future expansion to additional win­
dows. 

Bits 5-0: Window Masks (W5-WO)-Window mask bits, with W5 the mask bit for window 5, etc. 

Trap Sase Register (TSR), Y Register, Program Counter, 

Programmer's Model - Registers 

C2-7 

• 



SPARClite User's Manual 

Next Program Counter, Ancillary State Registers, 

Please refer to Section 2.3.3 of the main section of this manual for a description of 
these registers. 

2.3.4 Memory-Mapped Control Registers 
In addition to the registers defined by the SP ARC architecture, theMB86933 pro­
vides a collection of memory-mapped registers that control peripheral functions. 
Figure 2-5 shows these registers and their locations in memory. The memory­
mapped registers can be read and written with the alternate-space load and store 
instructions, which are privileged. 

Oxooooooao ASI=Ox1 System Support Control Register 

OxOOOOO120 ASI=Ox1 Same-Page Mask Register 

OXOOOOO124 ASI=Ox1 Address Range Specifier Registers (ARSR <5:1» 

0x00000140 ASI=Ox1 Address Mask Register (AMR <5:0» 

OXOOOO0160 ASI=Ox1 Wa~-state Specffier Registers (WSSR <2:0» 

OxOOOO0174 ASI=Ox1 Timer Register 

OXOOOOO178 ASI=Ox1 Timer Preload Register 

Figure C2-5. Locations of Memory-Mapped Control Registers 

Same-Page Mask Register, Address Range Specifier Register, 
Address Mask Register, 
Wait-State Specifier Register, System Control Support Register, Timer 
Register, 
Timer Preload Register 

Please refer to Section 2.3.4 of the main section of this manual for a description of 
these registers. 

2.4 Data Types 
Please refer to Section 2.4 of the main section of this manual for a description of 
the data types. 

Programmer's Model - Data Types 

C2-8 



2.5 Instructions 

cP 
FUJITSU 

Please refer to Section 2.5 of the main section of this manual for a description of 
the instructions. Note that modulo 8 in the description becomes modulo 6 for the 
MB86933 processor. • 

2.6 Interrupts and Traps 
Please refer to Section 2.7 of the main section of this manual for a description of 
the interrupts and traps. Note that modulo 8 in the description becomes modulo 6 
for the MB86933 processor. 

Programmer's Model - Instructions 

C2-9 



SP ARClite User's Manual 

Programmer's Model - Interrupts and Traps 

C2-1O 



R 

l1lil1lil1li111l1lil1lil1lil1li111111l1li111l1li111 

Internal Architecture 

The MB86933 internal architecture is illustrated in Figure C3-1. The processor 
consists of a Clock Generator, an Integer Unit, and a Bus Interface Unit. Inter­
nally, the various functional units are connected by separate instruction and data 
buses. A unified address bus and a unified data bus extend off-chip for connect­
ing external memory and I/O. 

This chapter discusses the individual functional units and gives an overview of 
the flow of data and control signals through the processor. 

Internal Architecture -

C3-1 

• 



SP ARClite User's Manual 

XTAL1/CLKIN -~_I----' 

r:=::J CLOCK 
GENERATOR 

CLK....OUT - ........ -L ___ .J 

DATA 

ADDRESS BUS 
INTERFACE 

UNIT 

SCAN DIVIDE STEP 

SPARe INTEGER UNIT 

Figure C3-1. Internal Architecture (Block Diagram) 

3. 1 Integer Unit 
The Integer Vnit (IV) is a compact, full-custom implementation of the SP ARC 
architecture. It is hard-wired for maximum performance; that is, it uses no micro­
code. It contains three functional units: 

• Instruction Block-Contains the instruction pipeline and decodes instructions 
into control signals for the other blocks. 

• Address Block-Performs all instruction-address manipulations. 
• Execute Block- Performs all data manipulations, and generates operand 

addresses for load and store instructions and effective addresses for some of 
the control transfer instructions. 

The IV is based on a Harvard (Aiken) architecture, as shown in Figure C3-2. 
There are separate address buses for instructions and data. There are also two 32-
bit data interfaces: the instruction data bus, and the data bus. These four buses 
allows the IV to retrieve data and instructions simultaneously from on-chip 
cache. 

Internal Architecture - Integer Unit 

C3-2 



I DATA 

r 
I 

r 
I ir I I adder I 

1 

~ 
, 

I a_ir I , 
~ l m_ir J , 

I w ir I I pe I , 
I dJlC I 

J 
I epe I 

+ 
I mJlC I 

I 

INSTRUCTION ADDRESS 
Bt.OCK et.ocK 

I ADDRESS 

I read 1 

REGISTER FILE 

read 2 read 3 

I 

! • I I , t , 
I A I I B I , .. 
~ ALU I SHIFTER / , 

I R Register 

c:P 
FUJITSU 

read 4 I 

+ , -m-
I PSRIWIMIY I I Data Address I l L- / st align / / Id align! 

.f .•.•.. 
EXECUTE 

BLOCK .. 

D ADDRESS D DATA 

Figure C3-2. Integer Unit Data Path 

3. 1 • 1 I Block 
The instruction block (I Block) contains the five-stage instruction pipeline and the 
logic that decodes instructions into control signals for the rest of the IV. The I 
block detects all bypass and interlock conditions. 

The main interfaces to the I block are: 

• The Instruction data bus from main memory. 

• The Immediate data field that goes to the A block for computing PC relative 
control transfers and to the E block to be used as immediate data. 

• Control signals to the A block and E block including the register file read and 
write addresses, register enable signals, multiplexer controls, and partly or 
fully decoded operation codes for the ALV /Shifter. 

• Status signals back from the E block including possible trap conditions such as 
memory _address_not_aligned and tag_overflow. 

Instruction Pipeline 

The IV implements a five-stage instruction pipeline to allow a sustained execu­
tion rate of nearly one instruction per cycle. The operation of the pipeline under 

Internal Architecture - Integer Unit 

C3-3 

• 



SPARCliteUser's Manual 

ideal conditions is illustrated in Figure C3-3. The pipeline consists of the follow­
ing stages: 

1. Fetch (F)-One of the instruction memory spaces is addressed and returns an 
instruction. (The figure below assumes a hit in the instruction cache.) 

2. Decode (D)-The instruction is decoded; the register file is addressed and 
returns operands. 

3. Execute (E)-The ALU computes a result. 

4. Memory (M)-External memory is addressed (for load and store instructions 
only; this stage is idle for other instructions). 

5. Writeback (W)-The result (or loaded memory datum) is written into the 
register file. 

elK 

Felch Instruction 5 6 

Decode Instruction 4 5 6 

Execute Instruction 3 4 5 6 

Memory Instruction 2 3 4 5 6 

Write-Back Instruction 1 2 3 4 5 

Figure C3-3. Instruction Pipeline 

No instructions execute out-of order; that is, if instruction A enters the pipeline 
before instruction B, then instruction A necessarily reaches the writeback stage 
before instruction B. 

The control logic for the instruction pipeline is illustrated in Figure C3-4. At each 
cycle a horizontal control word is available that is wider than 32 bits and controls 
every multiplexer, latch-enable, and unit op-code in the chip. The horizontal con­
trol word is composed of control signals that are active during the decode stage of 
instruction N, the execute stage of instruction N-l, the memory stage of instruc­
tion N-2 and the writeback stage of instruction N-3. Some control bits require no 
decoding and are simply hardwired from the appropriate bits in the instruction 
register. Because the SPARC instruction set is not completely orthogonal (not 
every instruction field has the same meaning in every instruction) most bits 
require some decoding based on a single instruction in the pipeline. Some control 

Internal Architecture - Integer Unit 

C3-4 



cO 
FUJITSU 

Instructions 

Combinational 
Logic 

Horizontal 
Control Word 

Figure C3-4. Instruction Pipeline Control Logic 

bits require decoding using logic that looks at two instructions in the pipeline -
when controlling multiplexers to select data bypass paths, for example. 

Pipeline Hold 

The IU does not complete one instruction on absolutely every cycle. During a load 
instruction, for example, external memory may be slow in returning the requested 
data. Because the IU does not execute or complete instructions out of order, the 
pipeline must be stopped until the requested data is returned. Only then can the 
instruction complete, and only then can the following instructions be executed. 

There are also some hazards built into the IU data path that require interrupting 
the one-cycle-per-instruction sequence of the pipeline. For example, a double­
word load cannot be performed in one cycle because there is not enough memory 
or register-file bandwidth to move the data through the datapath. Another exam­
ple is a load to a register that is followed by an instruction that uses that register. 
Because the operand of the second instruction is required in the decode stage but 
is not available, this instruction must be delayed until the operand is available. 

Conditions that hold up the processor pipeline are handled uniformly by the 
I Block control logic and are referred to as hold conditions. A complete list of possi­
ble hold conditions is given in Table C3-1. 

The interlock conditions are: 

• Load/Use Instruction Pairs-If a load instruction that has rd=N as its 
destination register is followed by an instruction that uses rs=N as one of its 
source operands, then the load must proceed through Writeback before the 
following instruction can enter the Execute stage. 

• CALL/Use %r15 Instruction Pairs-Similarly, since the CALL instruction 
implicitly writes the current value of the PC into r15, it must proceed to 

Internal Architecture - Integer Unit 

C3-5 

.. 



SP ARClite User's Manual 

Writeback before any following instruction that uses r15 can enter the Execute 
stage. 

Any time an interlock is detected, a NOP is inserted into the pipeline. The address 
block is signaled, so that the address of the instruction that causes the interlock is 
replicated in the address pipe. The NOP itself cannot cause a trap. 

Table C3·1 : Conditions That Cause a Pipeline Hold 

Name Description Pipeline Stage Instruction Affected 

ihold Processor is attempting to fetch an Fetch Any instruction 
instruction that is not yet available. 

dhold Data is not yet available Memory Loads and Stores 

mhold Multiplication in progress Execute Integer Multiplication 

Interlock An instruction in the pipeline must Load/Use and CALU 
wait for some prior instruction to be Use r1S Instruction 
completed (through Writeback). Pairs 

Multicycle An instruction which inherently Execute Load and Store 
Instruction requires more than one cycle is in the Double-word, Atomic 

pipeline Load/Store 

The multicycle instructions are LDD, LDDA, STD, STDA, LDSTUB, LDSTUBA, 
SWAP, and SWAP A. When a multicycle instruction enters the Execute stage, it 
and the instruction in the d_ir register are frozen for an additional cycle. 
Although it is possible to detect a multicycle instruction while it is in the Decode 
stage (unlike interlocks, which cannot be detected without looking at two instruc­
tions, those in the d_ir and e_ir registers), the I Block allows it to progress to the 
Execute stage before a hold is generated and inserted. This simplifies control 
somewhat because there are fewer points at which the pipeline must be held. 

Note that the maximum number of internally generated hold cycles an instruction 
can cause is two, as in the following case: 

LDD [%rl+%r2],%Or4 
ADD %rS,%rS,%r6 

The LDD takes two cycles, and it generates an interlock because the next instruc­
tion uses the data loaded in the second data memory cycle of the LDD instruction. 

When a hold condition occurs, combinational logic generates one or more freeze 
signals that prevent latches from being updated, and hence keep the pipeline from 
advancing. For some holds-dhold, for example-the entire pipeline is frozen, 
with freeze signals being generated for all stages in the pipeline. For other 

Internal Architecture - Integer Unit 

C3-6 



cP 
FUJITSU 

holds-interlock conditions, for example-later stages in the pipeline must 
advance for the hold condition to be resolved. Thus only the earlier stages of the 
pipeline are frozen. 

Trap Logic 

The MB86933 supports precise traps. That is, when a trap occurs, the saved pro­
grammer-visible state of the processor reflects the completion of all instructions 
prior to the trapped instruction, and no following instructions including the 
trapped instruction. Thus, when an instruction causes a trap, one of two state­
ments is true: 

• No results from that instruction have been written into the programmer­
visible registers (the register file or the PSR, TBR, WIM, or Y registers). 

• Or, if data has been written into a programmer-visible register, the data 
contained in that register prior to being written by the trapped instruction is 
saved by the processor and can be restored when the trap is taken. 

Table C3-2 shows the pipeline stages in which the various trap conditions are 
detected. 

Table C3-2: Detection of Trap Conditions 

Priority Trap Type Stage Detected Trap 

1 reset (hardware reset) 

1 - D reset 
2 1 F instruction_access_exception 
3 3 D priv _instruction 
4 2 D iIIegaUnstruction 

5 4 D fp_disabled 
5 36 D cp_disabled 
6 5 D window_overflow 
7 6 D window_underflow 

8 7 E mem_address_noCaligned 
10 9 M data_access_exception 
11 10 E tag_overflow 
12 128-254 D trap_instruction (Ticc) 
13 255 F instruction_breakpoint 
13 255 M data_breakpoint 

14 31 interrupUeveL 15 
15 30 interrupUeveL 14 

28 17 interrupUeveL 1 

As shown in Table C3-2, the last stage in which a trap can be detected is the Mem­
ory stage (a data memory exception for a load or store). If a programmer-visible 

Internal Architecture - Integer Unit 

C3-7 

.. 
I 



SP ARClite User's Manual 

register is updated prior to this stage, its original contents must be restored when 
and if the trap is taken. 

Due to the pipelined operation of the IU, a trap condition for one instruction may 
actually be detected before a trap condition for a prior instruction. Thus, it is nec­
essary to align the detected trap conditions so that all trap conditions for instruc­
tion N are considered together before any trap conditions resulting from 
instruction N+ 1 are considered. 

The trap coder is illustrated in Figure C3-S. Its purpose is to align in time the (pos­
sibly several) trap sources for a single instruction to determine if a trap is to be 
taken or not and, if taken, to determine the highest priority trap and code its trap 
type. 

Fetch-stage trap sources 

Decode-stage trap sources 

Execute-stage trap sources 

Memory-stage trap sources 

Memory-stage 
instruction reg 

t 

- r+ 

t 

I 
t t 

I I I 
t t 
Combinational Block 

qualify, priornize, encode 

Figure C3-5. Trap Coder 

t 

I 
t 

I I 
t 

I I 
t 

-~ 

-~ 

trap? yes/no 

trap type 
(to A block) 

When a trap is taken, the trap type field goes to the A Block where it is used 
immediately as a trap target address (when concatenated with the Trap Base 
Address) and is latched into the Trap Base Register. 

3. 1.2 A Block 
The A Block contains the address pipeline. Along with the E Block, it is responsi­
ble for all instruction-address manipulations. The A Block executes the CALL and 
Bicc instructions. The A Block and E Block are used together to execute the JMPL, 
Ticc, and RETT instructions. In these cases, the A Block controls the update of the 
Program Counter. The A Block's main interface to the rest of the chip outside the 
IV is the instruction address bus. 

The address pipeline is illustrated in Figure C3-6. The fetch-stage program 
counter (PC) addresses instruction memory via the instruction address bus. 
Because a CALL, JMPL, or trap may require that the address of an instruction be 

Internal Architecture - Integer Unit 

C3-8 



ruPTSU 
written back to the register file, the address of every instruction tracks the instruc­
tion itself in the instruction pipeline so that it is available in the memory stage if it 
must to be written back to the register file. These address pipeline registers are the 
decode, execute, and memory program counters. Each of these registers contains 
the address from whieh the instruction in the corresponding instruction register 
was fetched. 

trap type 
(from I Block) ---------------,-----;::=:=1---- writable 

immediate data 
(30 bits) -----, 

jump address 
(from E Block) 

,-L-.L...., 

instruction address 
(to instruction memory) 

return address 
(to E Block) 

Figure C3-6. Address Pipeline 

The PC has five possible sources: 

1. +4 incrementer, for normal, sequential instruction fetch. 

2. The address adder, for PC-relative control transfer (Biec or CALL instruction). 
The immediate data field contains offset information and comes from the 
I Block. 

3. The jump address for a ]MPL or RETT instruction. The jump address bus 
contains jump target information and comes from the E block by way of the 
register file and ALD. 

4. The TBR, concatenated with the trap type (tt) or with zeroes (when Single-Vec­
tor Trapping is enabled), during a Tiec instruction execution or an interrupt or 

Internal Architecture - Integer Unit 

C3-9 

--



SPARClite User's Manual 

trap. The trap type comes from the trap priority encoder, part of the I Block; 
when concatenated with TBR[31:12], it gives the target address for a trap. 

5. Zeroes, concatenated with the trap type, for reset. 

Note that "+4" is used to indicate that the (byte) address is incremented by 4 to 
fetch the next instruction. In reality, the two least significant bits of the address 
are not implemented in hardware because they are never used. Word alignment, 
for the case of a jump address coming from the E Block is verified in the E Block 
(and to some extent, the I Block). 

The return address bus is written back to the register file in the case of a CALL, 
JMPL or Trap. 

Several control signals come from the I block. These include: 

• PC input-select signals that control the PC input multiplexer. 

• The address adder control Signal, which determines whether a 30-bit or a 22-
bit immediate address field is added to the previous value of the PC (now 
found in the decode-stage PC). 

• Pipeline freeze signals that can prevent the updating of registers in the 
pipeline when a hold condition is detected. 

3. 1.3 E Block 
The E Block is responsible for all ill data manipulations. It generates operand 
addresses for load and store instructions, and effective addresses for some of the 
control transfer instructions. 

As shown in Figure C3-7, the E Block contains the Store Align Unit (SAU), the 
Load Align Unit (LAU), the Register File (RF), and the Adder, Shift, and Logic 
Unit (ASLU). The E Block also contains the result bypass logic that determines 
which operands are driven into the ASLU, and the store bypass logic that deter­
mines what data is latched for stores. 

Internal Architecture - Integer Unit 

C3-1O 



I read 1 

REGISTER FILE 

read 4 I read 2 read 3 

I 

1 • I I 

• • • I A I I B I 

• • 
'\ ALU I SHIFTER / 

.. ~ 
I R Register I 

• + eD-
I PSRlWIMIY I I Data Address I , 

L- / sLalign / / Id align / 

t 
EXeCUTE 

BLOCK 

D ADDRESS D DATA 

Figure C3-7. Execute Block 

Adder, Shift, and Logic Unit (ASLU) 

cP 
FUJITSU 

The ASLU incorporates an integer adder, a barrel shifter, a logic unit, and a scan 
unit. The integer adder calculates the results of the addition, subtraction, multi­
ply-step, and divide-step instructions, and generates the carry, overflow, nega­
tive, and zero condition code values. It is used in load and store operations to 
calculate effective data addresses, and in register-indirect control transfers to cal­
culate the new address to be placed in the PC register of the A Block. The integer 
adder also serves the multiplication unit by adding the "sum" and "carry" vectors 
during integer multiplications. The barrel shifter flogic unit executes the logic and 
shift instructions. The scan unit exists solely to support the scan instruction. 

Results from the integer adder, the barrel shifter, the logic unit, and the scan unit 
are multiplexed into the R (Result) Register. Results from the integer adder are 
also made available to the Y Register. 

Register File 

The register file contains 104 registers of 32 bits each. The organization of these 
registers into windows is discussed in the Programmer's Model chapter. The regis­
ter file has one write port and three read ports. The write port is used for the 
instruction destination register (denoted rd in instruction descriptions). Two of 
the read ports are used for the two instruction source registers (rs1 and rs2). The 

Internal Architecture - Integer Unit 

C3-11 

-



SP ARClite User's Manual 

remaining port is used for the data to be stored when a store or swap instruction 
is executed. In this way, even store instructions can be executed in a single cycle. 

The register file also contains the address decoders for all four ports. Each address 
presented to the decoders consists of 8 bits derived from an instruction field, and 
the Current Window Pointer. These are physical addresses into the register file 
memory array. 

Bypass Logic 

As shown in Figure C3-7, the A and B operand registers have inputs that come 
from sources other than the register file or the immediate data bus. These inputs 
are results from previous instructions that have not yet written back to the regis­
ter file. There are two such bypass paths in the E Block: 

• Result Bypass-The result of an ALU operation in the R register is written back 
to the A or B operand register in the Memory stage of the following ALU 
operation. 

• Write Bypass-The data in the W register is written to the A or B operand 
register, in the Writeback stage. 

The result bypass path is selected when one instruction generates a result that can 
be used by the immediately following instruction. More precisely, if an instruc­
tion in the Decode stage of the pipeline has rs1 = N, and the instruction in the 
Execute stage has rd = N, the rs1 operand will not come from the register file, but 
directly from the R register in the ALU through the result bypass. Since an inter­
vening SAVE or RESTORE instruction may have changed the Current Word 
Pointer, it is the physical addresses of the register source and destination that are 
compared, not the logical addresses (which depend on the CWP). 

As an example, consider the instruction sequence: 

add %rl, %r2, %r3 
add %r3,%r4,%r5 

rl + r2 -> r3 
r3 + r4 -> r5 

The second add instruction takes its A source operand not from the register file, 
but directly from the result of the ALU through the result bypass. 

The write bypass is selected when an instruction in the Decode stage has rs1 = N, 
and the instruction in the Memory stage has rd = N. In this case, the rs1 operand 
will not come from the register file, but from the W register through the write 
bypass. In the following instruction sequence, the third instruction uses the write 
bypass as its A source operand: 

Internal Architecture - Integer Unit 

C3-12 



add %rl, %r2 , %r3 
add %r4, %r5, %r6 
add %r3,%r7,%rB 

rl + r2 -> r3 
r4 + r5 -> r6 
r3 + r7 -> rB 

If both bypass conditions apply, the result bypass takes precedence. 

cP 
FUJITSU 

There is a third bypass path, called the store bypass, that is shown in Figure C3-7. 
The register file has a dedicated store port that is used for reading the rd register .'.' 
of a store instruction, which contains the data to be stored. The store port is read 
in the Execute stage of the store. When a store and the immediately preceding 
instruction access the same rd register, a bypass from the Writeback stage of the 
preceding instruction to the Memory stage of the store is needed. In the code sam-
ple below, the result of the first instruction becomes available to the Memory 
stage of the store by means of the store bypass path. 

add %rl, %r2 , %r3 rl + r2 -> r3 
st %r3 [%r4 + %r5] r3 -> rnem[r4 + r5] 

Branch Evaluation Logic 

The branch evaluation logic, which forms part of the E Block, evaluates branch 
conditions based on the current values of the integer condition codes of the PSR 
register. The icc bits n (negative), z (zero), c (carry) and v (overflow) form part of 
the branch evaluation block. The interpretation of these bits is discussed in the 
Programmer's Model chapter. 

There are several ways that the icc bits can be modified. First, they can be written 
and read via the jump address bus by the instructions WRPSR and RDPSR. 

Certain arithmetic instructions modify the icc bits as a side effect. When one of 
these instructions is executing, the new icc values are generated in the E Block 
during the Execute stage, latched at the end of this stage, and loaded into the PSR 
during the Memory stage. 

Another path leads to the icc bits from the Writeback-stage copy of the PSR. When 
a trap occurs on an instruction that alters the icc bits, this path allows the pre-trap 
icc values to be restored to the PSR. 

The combinational logic that performs the branch evaluation for the IV condition 
codes has as inputs: 

• Integer Condition Codes-Directly from the ALV if the instruction in the 
Execute stage is one that can modify the icc, from the multiplication unit, or 
from the icc bits of the PSR if the instruction in the Execute stage is not one that 
can modify the icc. 

Internal Architecture - Integer Unit 

C3-13 



SP ARClite User's Manual 

• The eond Field-From the branch instruction in the Execute stage. (See the 
discussion of the Bicc instruction in the Programmer's Model chapter.) 

• Biee Indieator-A control signal that indicates whether the instruction in the 
Decode stage is a Bicc instruction. This signal remains valid into the Execute 
stage. 

The output of the combinational logic is a single signal that, when active, causes 
the branch target address to be loaded into the PC during the Execute stage. Oth­
erwise, PC +4 is loaded into the Pc. 

Load Align Unit (!AU) and Store Align Unit (SAU) 

The LAU and SAU align data for loads and stores, respectively. Bytes and half­
words to be loaded are right-justified in a 32-bit word, and either sign-extended 
or zero-extended on the left, depending on whether the load instruction specified 
signed or unsigned operation. The LAU performs the alignment and extension 
during Writeback. 

Byte and halfword stores take their data from the least significant byte or half­
word of the register specified in the instruction's rd field. The SAU performs the 
necessary alignment for writing the data to the byte or halfword memory address 
specified in the instruction. 

Multiply Unit 

The E Block contains hardware to perform integer multiplications. The Multiply 
Unit (MU) multiplies two 32-bit signed or unsigned integers to produce a 64-bit 
product. Some multiplication instructions modify the integer condition codes as a 
side effect; others do not. The multiplication instructions are discussed in the 
Programmer's Model chapter. 

The multiply hardware implements a version of Booth's algorithm. Booth's algo­
rithm is similar to a "shift and add" multiply algorithm in that it scans the multi­
plier from the least significant to the most significant bit and, based on the bit 
string encountered, iteratively adds the multiplicand to produce partial products. 
It is also similar in that the resulting partial product is right shifted to ready it for 
the following iteration of the algorithm. 

Booth's algorithm differs from a "shift and add" algorithm in that it can also be 
used directly with a negative multiplier (whereas "shift and add" requires a posi­
tive multiplier). It also differs in that the hardware must provide for both addition 
and subtraction of the multiplicand. In particular, a 1-bit Booth's algorithm exam­
ines two multiplier bits per iteration, looks for a bit transition, and either adds the 
multiplicand, subtracts the multiplicand, or adds zero to the existing partial prod­
uct to produce the new partial product. It "retires" one bit of the multiplier per 
iteration. 

Internal Architecture - Integer Unit 

C3-14 



cP 
FUJITSU 

Table C3-3 shows the possible bit transitions encountered in the multiplier for a 1-
bit Booth, and the value that is added to the multiplicand for each transition. 

Table C3-3:Booth's Algorithm 

Multiplier Bits 

Current Previous Add to Shifted Partial Product 

0 0 +0 
0 1 +multiplicand 
1 0 -multiplicand 
1 1 +0 

This technique can be extended so that more than one bit is examined during a 
given iteration. In particular, the MU performs an 8-bit Booth's algorithm. It 
examines 9 bits of the multiplier at a time and, based on the eight transitions of 
these nine bits, determines what multiple of the multiplicand to add to the old 
partial product to produce the new partial product. The addition is performed in 
theALSU. 

The MU produces 8 bits of the final product and "retires" 8 bits of the multiplier 
per cycle, and therefore requires only 5 cycles to do a 32x32 bit multiply (produc­
ing a 64-bit result). 

The execution of the instruction is controlled by a synchronous state machine that 
generates control signals for the multiply hardware. Since instructions do not exe­
cute out of order, the Integer Unit (IU) must be frozen during the multiply 
instructions that require more than 1 cycle. Conceptually, the multiply instruction 
goes through all of the pipeline stages (F,D,E,M,W), but its Execute stage is from 1 
to 5 machine cycles long. During the Fetch and Decode stages, the multiply 
instruction progresses like other instructions. 

3. 1.4 Programmer-Visible State and Processor State 

The SP ARC Architecture defines the programmer-visible state of the processor as a 
collection of registers, and specifies the effects of instructions in terms of these 
registers. These definitions implicitly assume that every instruction completes 
before the next one begins. The MB86933 processor, however, is pipelined, so that 
normally four instructions begin execution before the first one completes. The 
actual processor state (excluding the register file) therefore encompasses more than 
the programmer-visible state. For most of the programmer-visible registers, there 
is a corresponding register in the processor associated with the Writeback stage of 
the pipeline. That is, instructions normally update the register file and program­
mer-visible state registers in the Writeback stage. 

Internal Architecture - Integer Unit 

C3-15 

-



SP ARClite User's Manual 

An instruction may update staged copies of the PSR before Writeback, making the 
new values available to following instructions sooner; but these staged copies are 
not user visible. The PSR associated with the Writeback stage can never be 
updated early; if an instruction traps, it will not have altered any state that can not 
be restored. 

3.2 Bus Interface Unit 
The Bus Interface Unit (BIU) contains the logic that allows the processor to com­
municate with the system. When the BIU performs a read, it returns the data to 
theIU. 

The BIU also handles external requests for control of the bus. The external signals 
of the BIU and the relative timing of events in typical bus operations are dis­
cussed in the External Interface chapter that follows. That chapter also treats the 
various system-support features of the processor in detail. 

3.2. 1 Exception Handling 

The external memory system can indicate an exception during a memory opera­
tion by asserting the -MEXC input. If -MEXC is asserted during an instruction 
fetch, the BIU indicates an instruction memory exception to the IU. If -MEXC is 
asserted during a data fetch, the BIU indicates a data access exception to the IU. 

Any system that wants to recover from this error should store the address and 
data for the write causing the exception into a register. It should also have a status 
bit to indicate that the exception was caused during a write operation. It is the 
responsibility of the data access exception service routine to determine the cause 
of the exception, and to recover accordingly. 

3.2.2 EHect on the Pipeline 

The pipeline hold signals, ihold and dhold, are asserted if an instruction or data 
cannot be made available in the cycle that it is required by the pipeline. In general 
the following hierarchy rules apply to the bus interface unit: 

• The bus cycle currently in progress will complete 

• If there is a pending request for a load or store operation, it will be serviced 

• If there is a pending request for an instruction, it will be fetched. 

The pipeline is stalled during every external memory access if the external-Ready 
signal or the internal Ready signal is not asserted. (See the Wait-State Specifier 
Registers description in Section 2.3.4 of the main section of this manual for a 
description of the internal Ready signal). 

Internal Architecture - Bus Interface Unit 

C3-16 



c R 

l1lil1lil1lil1lil1li111111111111111111111111111 

External Interface 

The processor external interface consists of signals for bus operations and for sys­
tem control. This chapter details the MB86933 signal set, describes basic bus tim­
ing, and describes the programmable wait-state generator, on-chip timer, and 
same-page detection logic. See the MB86933 Data Sheet for specific electrical and 
timing information. 

The System Design Considerations chapter of this document discusses issues that 
are likely to arise in the design of SP ARClite systems. 

4.1 Signals 
The processor's external signals are illustrated in Figure Cl-6 of the Overview 
chapter, and are listed in Table C4-1. A dash at the beginning of a signal name, as 
in -RESET, indicates that the signal is active-low. 

External Interface - Signals 

C4-1 

.. 



SP ARClite User's Manual 

Table C4-1: Input and Output Signals 

Symbol Type Symbol 

ADR <.27:2> 0 -8MODE16 
SILl 
G(Z) 
1(1) 

-AS 0 CLKOUTl 
SILl CLKOUT2 
G(Z) 
1(1) 

ASI <3:0> 0 CLK_ECB 
SILl 
G(Z) 
1(1) 

-BE 3-0 0 -CSO,-CSl 
SILl -CS2,-CS3 
G(Z) -CS4,-CS5 
1(0) 

-BGRNT 0 0<31:0> 
SILl 
G(O) 
I(Q) 

-BREO I -ERROR 
SILl 

-8MODE8 I IRL <3:0> 

NOTE: I = Input Only Pin 

o = Output Only Pin 

VO = Either Input or Output Pin 

= Pins "must be" connected 
as described 

SILl = Synchronous: Inputs must 
meet setup and hold times 
relative to ClKIN Outputs 
are Synchronous to ClKIN 

External Interface - Signals 

C4-2 

Type Symbol 

I -lOCK 

0 -MEXC 
G(Q) 
I(Q) 

I -SAME_PAGE 

0 RD/-WR 
SILl 
G(l) 
1(1) 

1/0 -READY 
SILl 
G(Z) 
I(Z) 

0 -RESET 
SILl 
G(O) 
I(Q) 

I TCK 
A(l) 

A(L) = Asynchronous: Inputs may 
be asynchronous to 
ClKOUT. 

G( ... ) = While the bus is granted to 
another bus master 
(-BGRNT =asserted), the 
pin is 

G(l) is driven to Vee 
G(O) is driven to V 55 
G(Z) floats 
G(O) is a valid output 

Type Symbol 

0 TOI 
SILl 
G(Z) 
1(1) 

I TOO 
SILl 

0 -TIMER_OVF 
SILl 
G(l) 
1(1) 

0 TMS 
SILl 
G(Z) 
1(1) 

I -TRST 
SILl 

I XTALl (CLKIN) 
A(l) XTAL2 

I 

1( ... ) = While the bus is between bus 
cycles (or being reset) and is 
not granted to another bus 
master, the pin is 

I (1) is driven to Vee 
I (0) is driven to V ss 
I (Z)floats 
I (Q) is a valid output 

Type 

I 

0 

0 
SILl 
G(Q) 
1(0) 

I 

I 

I 
0 

G(O) 
I(Q) 



cO 
FUJITSU 

The following sections describe the signal set in detail, arranged by functional 
group as follows: 

• Processor Control and Status-Reset, error, and clock signals. 

• Memory Interface-Data and address buses, ASI and byte-enables, chip 
selects, and other control signals used to access external memory and 
memory-mapped devices. 

• Bus Arbitration-Signals used by external devices in requesting, and by the 
processor in granting, control of the bus. 

• Peripheral Functions-Interrupt-requests and timer overflow. 

• Boot ROM Size-Input signals used to identify the boot ROM size. 

• Boundary-Scan-JT AG-compatible test signals used for board verification. 

4. 1. 1 Processor Control and Status 

Signal 

ClKOUT1 
ClKOUT2 

-ERROR 

-RESET 

XTAl1 (ClKIN) 
XTAl2 

Function 

CLOCK OUTPUTS (0): MB86933 bus transactions can be referenced against 
these outputs. ClKOUT1 has the same frequency and phase as the internal 
oscillator, or the signal applied to ClKIN. ClKOUT2 is the same as ClKOUT1, 
but phase-shifted 180 degrees. 

ERROR SIGNAL (0): Asserted by the CPU to indicate that it has halted in an 
error state as a result of encountering a synchronous trap while traps are 
disabled. In this situation, the CPU saves the Trap Type (11) value in the Trap 
Base Register, enters into an error state and asserts the -ERROR signal. The 
system can monitor the -ERROR pin and initiate a reset to recover from the 
error condition. 

SYSTEM RESET (I): Resets the processor to a known internal state. -RESET 
should be asserted for at least 4 processor cycles after the clock has 
stabilized. The internal state of the processor immediately after reset is 
described in the Programmer's Model chapter. 

EXTERNAL OSCILLATOR (XTAL 1, XTAL2): Determines the execution rate 
and timing of the processor. Connecting a crystal across these pins forms a 
complete crystal oscillator circuit. The processor operating frequency is the 
same as the crystal oscillator frequency. 
The processor can also be driven by an external clock. In this case, the clock 
signal is applied to XTAl1 (ClKIN); XTAL2 should be left unconnected. The 
processor operating frequency is the same as the external clock frequency. 

External Interface - Signals 

C4-3 

• 



SP ARClite User's Manual 

4.1.2 Memory Interface 

Signal 

ADR[27:2] 

-AS 

ASI[3:0] 

External Interface - Signals 

C4-4 

Function 

ADDRESS BUS (0): Specifies the data or instruction address of a 32-bit word. 
Reads are always one word in size while byte, half-word, or word transaction 
sizes for writes are identified by separate byte-enable signals (-BE3-0). The 
value on the address bus is valid for the duration of the bus transaction. 

ADDRESS STROBE (0): Asserted by the MB86933 or other bus master to 
indicate the start of a new bus transaction. A bus transaction begins with the 
assertion of -AS and ends with the assertion of -READY. During cycles in 
which neither the processor nor another bus master is driving the bus, the bus 
is idle, and -AS remains de-asserted. See Table C4-1 for signal values while 
the bus is idle. The MB86933 asserts -AS for 1 clock cycle. 

ADDRESS SPACE IDENTIFIERS (0): Indicates which of the 16 available 
address spaces the current bus transaction is accessing. The ASI values are 
defined as follows: 

ASI<3:0> ADDRESS SPACE 

OxO Application Definable 
Ox1 Control Registers 

Ox2 - Ox3 Reserved 
Ox4 - Ox7 Application Definable 

Ox8 User Instruction Space 
Ox9 Supervisor Instruction Space 
OxA User Data Space 
OxB Supervisor Data Space 

OxC - OxF Reserved 

The ASI values specified as "application definable" can be used by privileged 
(supervisor mode) instructions such as load and store alternate. The ASI value 
is available in the same cycle in which the corresponding address value is 
asserted on the address bus. The values on the ASI pins are valid for the 
duration of the bus transaction. 



Signal 

-BE3-0 

-BMODE8 

-BMODE16 

-CS[5-0] 

Function 

cP 
FUJITSU 

BYTE ENABLES (0): These pins indicate whether the current store transaction 
is a byte, halfO-word or word transaction. -BE3-0 signals are available in the 
same cycle in which the corresponding address value is asserted on the 
address bus and is valid for the duration of the bus transaction. This bus should 
be used only to qualify store transactions. For load transactions all sub-word 
requests are read (and replaced in the cache) as words and then the 
appropriate byte or half-word is extracted by the integer unit. 

Possible values for -BE3-0 are as follows: 

31 Byte 0 24 23 Byte 1 16 15 Byte2 8 7 
Byte 3 

0 

Byte Writes 1 1 1 011 1 o 111 0 1 1 10 1 1 1 

Half-Word Writes 1 1 o 0 I o 0 1 1 
Word Writes o 0 0 0 

BE<2:3> are also used in 8 and 16-bit ROM accesses as follows: 

Bus Mode Byte BE<2:3> 

8-bit 0 00 
1 01 
2 10 
3 11 

IS-bit 0&1 00 
2&3 10 

8-BIT BOOT MODE: This signal is sampled during reset and causes read 
accesses memory mapped to -CSO to assume 8-bit ROM memory. The 
MB86933 generates four sequential fetches to assemble a complete 
instruction or data word before continuing. Bytes are fetched in sequence 
(0,1,2,3) as encoded by -BE[2] and -BE[3] (00, 01, 02, 03). Writes to -CSO 
are unaffected by boot mode selection. If left unconnected, a weak pull-up on 
this pin (and -BMODE16 pin) causes the processor to default to 32-bit mode. 

Note: At reset, -BMODE8 must not be asserted while -BMODE16 is asserted, 
or undefined operation may result. 

16-BIT BOOT MODE: This signal is sampled during reset and causes read 
accesses memory mapped to -CSO to assume 16-bit ROM memory. The 
MB86933 generates two sequential fetches to assemble a complete 
instruction or data word before continuing. Half words are fetched in sequence 
(0,1) as encoded by -BE[2]. Writes to -CSO are unaffected by boot mode 
selection. If left unconnected, a weak pull-up on this pin (and -BMODE8 pin) 
causes the processor to default to 32-bit mode. 

Note: At reset, -BMODE16 must not be asserted while -BMODE8 is asserted, 
or undefined operation may result. 

CHIP SELECTS (0): One of these signals is asserted when the value on the 
address bus lies in the range specified by the corresponding Address Range 
Specifier Register. The -CS signals are used to decode the current address 
into one of eight address ranges. Address ranges should not overlap. Each 
address range has a corresponding wait-state specifier which is used to 
generate an internal -READY signal after a user-defined number of processor 
clock cycles. This allows a variety of memory and I/O devices with different 
access times to be connected to the MB86933 without the need for additional 
logic. CSO is enabled at reset (See Chapter 2). 

External Interface - Signals 

C4-5 



SP ARClite User's Manual 

Signal 

D[31:0] 

-lOCK 

-MEXC 

RD/-WR 

-READY 

-SAME_PAGE 

External Interface - Signals 

C4-6 

Function 

DATA BUS (I/O): D31 corresponds to the most significant bit of Byte O. DO 
corresponds to the least significant bit of byte 3. A double word is aligned on 
an a-byte boundary, a word is aligned on a 4-byte boundary, and a half-word is 
aligned on a 2-byte boundary. If a load or store of any of these quantities is not 
properly aligned, a mem_address_noCaligned Trap will occur in the 
processor. 

During write cycles, the point at which data is driven onto the bus depends on 
the type of the preceding cycle. If the preceding cycle was a write, data is 
driven in the cycle immediately following the cycle in which -READY was 
asserted. If the preceding cycle was a read, data is driven one cycle after the 
cycle in which -READY was asserted, in order to minimize bus contention 
between the processor and the system. 

BUS lOCK (0): Asserted by the processor to indicate that the current bus 
transaction requires more than one transfer on the bus. The Atomic load 
Store instruction, for example, requires contiguous bus transactions and so 
causes the BUS lOCK signal to be asserted. The bus will not be granted to 
another bus master as long as -lOCK is active. -lOCK is asserted with the 
assertion of -AS and remains active until -READY is asserted at the end of 
the locked transaction 

MEMORY EXCEPTION (I): Asserted by the memory system to indicate a 
memory error on either a data or instruction access. Assertion of this signal 
initiates either a Data or Instruction Access Exception trap in the IU. The 
current bus access is invalidated by asserting the -MEXC in the same cycle as 
the -READY signal. The IU ignores the value on the data bus in cycles where 
-MEXC is asserted. 

READIWRITE BUS TRANSACTION (0): Specifies whether the current bus 
transaction is a read or a write operation. When -AS is asserted and RD/-WR 
is high, then the current transaction is a read. With -AS asserted and RD/-WR 
low, the current transaction is a write. RD/-WR remains active for the duration 
of the bus transaction and is de-asserted with the assertion of -READY. 

READY (I): Asserted by the external memory system to indicate that the 
current bus transaction is being completed and that it is ready to start with the 
next bus transaction in the following cycle. In case of a fetch from memory, the 
processor will strobe the value on the data bus at the rising edge of ClKIN 
following the assertion of -READY. In the case of a write, the memory system 
will assert -READY when the appropriate access time has been met. 

In most cases, no external logic is required to generate the -READY signal. 
On-chip circuitry can be programmed to assert -READY internally, based on 
the address of the current transaction. The external system can override the 
internal ready generator to terminate the current bus cycle early. Up to 6 
address ranges each with different transaction times can be programmed. 
(See the System Support Functions section, below.) 

SAME-PAGE DETECT (0): Asserted when the address of the current 
memory access is within the same page as the previous memory access. 
-SAME_PAGE can be used to take advantage of fast consecutive accesses 
within page-mode DRAM page boundaries. -SAME_PAGE is asserted with 
-AS and remains active for one processor cycle. -SAME_PAGE is never 
asserted in the first transaction following a transaction by another device on 
the bus. The page size is specified by writing the Same-Page Mask Register. 
(See the System Support Functions section, below.) 



cP 
FUJITSU 

4.1.3 Bus Arbitration 

Signal Function 

-BGRNT BUS GRANT (0): Asserted by the CPU in response to a request from a device 
wanting ownership of the bus. The CPU grants the bus to other devices only 
after all transfers for the current transaction are completed. All bus drivers are 
three-stated with the assertion of the BUS GRANT signal. 

-BREO BUS REQUEST (I): Asserted by another device on the bus to indicate that it 
wants ownership of the bus. The request must be answered with a bus grant 
(-BGRNT) from the MB86933 before the device can proceed by driving the 
bus. Once the bus has been granted, the device has ownership of the bus until 
it de-asserts -BREO. The user should ensure that devices on the bus do not 
monopolize the bus to the exclusion of the CPU. The assertion of -BREO is 
recognized by the processor even when -RESET is being asserted. 

4. 1.4 Peripheral Functions 

Signal Function 

IRl[3:0] INTERRUPT REQUEST BUS (I): The value on these pins defines the external 
interrupt level. IRl[3:0]=1111 forces a non-maskable interrupt. An IRl value of 
0000 indicates no pending interrupts. All other values indicate maskable 
interrupts as enabled in the Processor Interrupt level field of the Processor 
Status Register (PSR). Interrupts should be latched and prioritized by external 
logic and should be held pending until acknowledged by the processor. An 
interrupt controller is available on the MB86940 peripheral chip. IRl inputs are 
sampled by the processor in cycle 1, synchronized in the following cycle, and 
recognized by the processor in the third cycle. 

-TIMER_OVF TIMER OVERFLOW (0): Indicates that the processor's internal 16-bit timer 
has overflowed. This signal can be used to initiate a DRAM refresh cycle or a 
one-cycle periodic waveform. On reset, the timer is turned off and - TIMER_ 
OVF is high. 

4.1.5 Test and Boundary-Scan 

Signal Function 

-ClK_ECB EXTERNAL CLOCK BYPASS (I): When tied high, causes the ClKIN signal to 
bypass the on-chip phase-locked loop. This signal is intended primarily for 
testing the chip. 

TCK TEST CLOCK (I): JT AG compatible test clock input. 

TDlt TEST DATA IN (I): JTAG compatible test data input. 

TOOt TEST DATA OUT (0): JTAG compatible test data output. 

TMSt TEST MODE (I): JTAG compatible test mode select pin. 

-TRSTt TEST RESET (I): Asynchronous reset for JTAG logic. If not using JTAG, this 
signal must be pulled low. 

t. See appendix for more information 

External Interface - Signals 

C4-7 

• 



SP ARClite User's Manual 

4.2 Bus Operation 
The Bus Interface Unit handles requests for external memory and I/O operations, 
arbitrates for bus access, or is idle. Bus transactions are handled as follows: 

• Memory and I/O Operations-Read and write transactions are initiated with 
the processor asserting the -AS signal. The RD/-WR output indicates the 
transaction type. The -BE[3:0] outputs indicate the transaction width. The 
processor drives the address and ASI signals and either drives (during stores) 
or reads (during loads) the signals on the data bus. The transaction ends when 
-READY is asserted. 

An atomic load-store is a load followed immediately by a store, with no opera­
tion between. The -LOCK output is asserted during atomic operations to indi­
cate that the bus is being used for more than one consecutive memory 
operation. 

• Arbitration-Any external device can request ownership of the bus by 
asserting the -BREQ signal. The processor three-states its bus drivers and 
asserts -BGRNT to indicate that it is relinquishing control of the bus. Upon 
completion of its transaction, the external device de-asserts -BREQ, and the 
processor responds by de-asserting -BGRNT the following cycle. 

In any cycle the BIU can receive a request for accesses to instruction memory, to 
data memory, or to both. If it receives a request for both in the same cycle, it com­
pletes the data memory transaction first. 

4.2. 1 Exception Handling 
The external memory system can indicate an exception during a memory opera­
tion. The BIU signals the appropriate data or instruction exception to the IU, 
which will trap accordingly. 

Any system that must recover from this error should store the address and data of 
the write operation in hardware. If the system can generate both read and write 
exceptions, the system must also provide a status bitthat indicates whether the 
exception was generated during a read or during a write operation. With access to 
this information, the data access exception service routine can determine the 
cause of the exception and recover accordingly. 

External Interface - Bus Operation 

C4-8 



OJ 
FUJITSU 

4.2.2 Bus Cycles 
This section describes the relative timing of events in representative bus transac­
tions. 

Load 
A read transaction begins with the BIU asserting -AS to indicate a new bus trans­
action. The -AS signal is de-asserted after one cycle. At the same time, 
ADR<27:2> and ASI<3:0> bits are asserted with the location to be read. The BIU 
drives the RD/-WR signal high to indicate a read transaction. 

Note that the -BE lines indicate byte, halfword or word operations during load 
operations, although their use is optional. The processor loads a word regardless 
of the size of the data requested (byte, halfword, word). 

The external memory system responds with the read data on pins D<31:0>. It also 
asserts the -READY signal when the data is ready (unless internal ready genera­
tion is selected). For slow memory, the -READY signal is delayed until data is 
valid. 

A load double operation is treated as back-to-back reads. 

, 
, LOAD 1 ' LOAD 2 ' 

CLK.JN {r-------.\'------'1,------,\'-------'1 
ADR<27:2> ~ ~ 'ill;':, ~:lZ; r " ::~ A2 i 

-AS i ' 

RD/-WR 1..1;""-.---------~:,i>,,"""··;,.Jnr"" .. _.~-----~-----_-_-~-----'-
-READY 

0<31:0> 

Figure C4-1. Load Timing 

External Interface - Bus Operation 

C4-9 



SP ARClite User's Manual 

Load with Exception 

If the external memory system sees a memory exception, it can terminate the cur­
rent memory transaction by asserting the -MEXC and -READY signals. The data 
on the data bus is ignored by the MB86933. 

C~IN i 

ADR<27:2> 
ASI<3:0> : 

LOAD 1 

-BE<3-0> ; '-------------J( '--___ -.J '----_+ 

RD/-WR 

-READY 

-MEXC 

0<31:0> 

Figure C4-2. Load with Exception Timing 

External Interface - Bus Operation 

C4-10 



Store 

OJ 
FUJITSU 

A write transaction begins with the BIU asserting -AS, to indicate a new bus 
transaction. The -AS signal is de-asserted after one cycle. At the same time the 
ADR<27:2> and ASI<3:0> pins are driven with the location to be written, and the 
write data is asserted on D<31:0>. The -BE3-0 pins indicate byte, baH-word or 
word transaction width. The BIU drives the RD/-WR signal low to indicate a 
write transaction. 

The external memory system responds by asserting the -READY signal when it 
has stored the data. There is always one idle bus cycle between the termination of 
a read cycle and the beginning of a write cycle to provide time for switching of the ~,',' 

data bus drivers. -

A store double operation is treated as back-to-back writes . 

. 
• STORE 1 • STORE 2 • 

elK_IN { \'-___ ---'{ \'-___ ---'{ 

ADR<27:2> fv ~.'::. r-----------+-1::::: -~~:: r~----A1------rV\'-' ____ A2 _____ -+-1 

~~ fA !. 

RO/-WR ~.~. i JA 
-- l:: ! \\ i:: /rr-/-~\\ 

-READY :.! ~ Lf ~ ! u-__ +, 

V~-------\v i.'.: 

0<31:0> ~ 01 r'-_____ D_2 ____ -+-i 

Figure C4-3. Store Timing 

External Interface - Bus Operation 

C4-11 



SP ARelite User's Manual 

Store with Exception 

If an access exception occurs during a write, the external memory system can ter­
minate the current memory transaction by asserting the -MEXC and -READY sig­
nals. The external memory system is expected to ignore the data on the data bus 
in this situation. 

External Interface - Bus Operation 

C4-12 

Figure C4-4. Store with Exception Timing 



Atomic Load Store 

cO 
FUJITSU 

An atomic load store executes as a load followed by a store, with no operation 
between. The -LOCK signal is asserted to indicate that the bus is being used for 
more than one external memory operation. 

There is one cycle between the termination of the read and the beginning of the 
write to provide time for the switching of the data bus drivers. 

Idle Cycle 

" / '; STORE 1 

\ j \ ! \ r~ 
LOAD 1 

! 
: 

A1 X ~ A2 ~ A3 

j 
! 

ADR<27:2> ~: 
ASI<3:0:> : 

-BE<3-0> : ~ _____ ..J 

: 

-AS ~'--'-_____ ;,---LJ II \\ :ft 
RD/-WR Ll :\ I ~ L , 

'LJ# '\ !l 
!l 

-READY: 

~~ ku. ______ +--______ -+--______ __+_"_' 

0<31:0:> ~ ~ 02 X 
Figure C4-5. Atomic Load Store Timing 

External Interface - Bus Operation 

C4-13 

.. 



SP ARClite User's Manual 

External Bus Request and Grant 

Any external device can request ownership of the bus by asserting the -BREQ sig­
nal. The BIU asserts the -BGRNT signal to indicate that it is relinquishing control 
of the bus, and three-states all of its bus drivers. The external device can complete 
its transaction during the following cycle. Upon completion of its transaction, the 
external device de-asserts the -BREQ signal. The BIU responds by de-asserting 
the -BGRNT signal during the following cycle. 

The MB86933 is the default owner of the bus. 

Processor Bus Cycle n Complete --+: Processor Bus Cycle n+ 1 SIart r-+ 

i 

-aREa: , , 

i 

-eGRNT : 

, 

, 
, 

, , , , , , 

~,~ II ; ~----~--*ff----~--~ , 
, 

, 

; ~: f I 
j+--- ALL BUS DRiVERSTHREE-sTATE----! 

Figure C4-6. External Bus Request and Grant nming 

Processor Reset 

The MB86933 is reset by asserting the -RESET signal for a minimum of 4 clock 
cycles (see Figure 4-7). Systems using an external crystal to clock the processor 
should assert -RESET for at least 4 cycles after the crystal has stabilized. 

If the processor is reset following a halt in Error Mode and if power to the proces­
sor is not removed, after reset the tt field will contain the value of the Trap that 
caused the processor to halt. 

External Interface - Bus Operation 

C4-14 



RESET 

ADDR 

cP 
FUJITSU 

I I I I t I I 

~' J\J\' J\IV' , I I J t I I I 

I I I t I I I 
I I I I I I I 
I I I I I I I 
, I ~~ I I I I 

li+-4CYCLEtt'MUM\~ i N i : ' 
, " 

I : 1 I : : 

: : l ~3CYCLES---(~ 
I I I I I 
I I I I I 

Figure C4-7. Reset Timing 

4.3 System Support Functions 
Built-in system support functions help to minimize the amount of glue logic 
required in the external system. The support includes programmable chip select 
logic, programmable wait-state generation, same-page detection logic and a timer 
for generating refresh requests. For a more detailed description of the program­
ming of these registers refer to chapter 2. 

The System Support Control Register turns the various system support features 
on and off. 

31 

Reserved 

Same·Page Enable (On=l, Off=O) 

Chip Select Enable (On=l, Off=O) 

Programmable Wait-State (On=l, Off=O) ------' 

TImer On/Off (On=l, Off-a) -------' 
Reserved --------' 

Figure C4-8. System Support Control Register 

4.3. 1 System-Configuration Registers 
The system-configuration registers (Address Range Specifiers, Address Masks, 
and Programmable Wait-State Specifiers) allow software to define six different 
address ranges. When an address driven by the processor is in one of these 
ranges, the corresponding Chip-Select (-CS) pin is asserted. After a number of 
clock cycles determined by the corresponding Programmable Wait-State Speci­
fier, the processor automatically generates an internal-READY signal. This 

External Interface - System Support Functions 

C4-15 

• 



SF ARClite User's Manual 

makes it possible for memory and 1/ 0 devices with different access times to be 
connected to the processor without additional logic. 

The contents of the Address Range Specifier Registers 1-5 (ARSR[5:0D define five 
of the six address ranges. An additional address range is available, corresponding 
to -CSO. For this address range, ADR is hardwired to 0, and ASI is hardwired to 
Ox9 (Supervisor Instruction Spa~e). With Mask Register AMRO, -CSO ranges 8K 
words. -CSO is enabled at reset. -CS1, -CS2, -CS3, -CS4 and -CS5 are disabled at 
reset. 

Note that the MB86933 has no caches, no write buffer, no pre-fetch buffer, and has 
six register windows rather than eight. It has twenty-six Address Bus signals 
(ADR<27:2» rather than thirty, four Address Space Identifier signals (ASI<3:0» 
rather than eight, no emulator-support signals, and no memory management 
unit. These and other differences between the MB86933 and other SP ARC lite pro­
cessors should be considered when porting code to the MB86933 from another 
SPARClite processor, and when porting code from the MB86933 to another SPAR­
Clite processor. Documentation for other SP ARClite should be referenced to iden­
tify differences with the MB86933 that may affect ported code. 

31 30 23 22 1 0 

I I ASI <7:0> ADR <31:10> I I 
Figure C4·9. Address Range Specifier Register Format 

An Address Mask Register is associated with each address range. Any address 
driven by the chip is compared with the value in all address range specifiers. 
Only those bits of the register are compared for which the corresponding mask 
bits are O. If the specified bits of the current address match one of the address 
range specifiers, the corresponding chip-select (-CS) pins are asserted. When no 
bus transaction is being performed, all the -CS pins are high (inactive). The 
Address Mask Register corresponding to -CSO is initialized to compare all bits 
except ADR<14:10>. 

31 30 23 22 1 0 

I I ASI <7:0> ADR <31:10> I I 
Figure C4-1 o. Address Mask Register Format 

A Programmable Wait-State Specifier is associated with each address range. 
Three registers are used to specify the wait states for the six address ranges. Each 
register contains the wait-state specifiers for two address ranges. 

External Interface - System Support Functions 

C4-16 



cP 
FUJITSU 

When the address currently being driven by the processor matches the unmasked 
bits in one of the Address Range Specifiers, the corresponding wait-state specifier 
is selected. The format of Wait-State Specifier Registers is shown in Figure C4-ll. 

31 27 26 22 21 20 19 18 14 13 9 8 7 6 5 

Count 1 
(RST =Undefined) 

Count 2 
(RST =Undefined) 

Count 1 
(RST =Undefined)' 

Count 2 
(RST =Undefined)' 

Wait Enable (On=l, 011=0, RST=') --1-+--------------' 
Single Cycle (On=l, Off=O, RST=O) -_~+------------------' 

Override (On=l, Off-O, RST=') ---... ------------------' 

• See Table 2-3 in MB86930 Chap 2 "Programmer's Model" 

Figure C4-11. Wait-State Specifier Registers 

o 

Reserved 

Bits 31-19: Wait-State Specifier-When an external access falls within an address range defined by 
an ARSR and AMR, the corresponding wait-state specifier determines when, and 
whether, the processor generates an internal -READY signal to terminate the access_ 

Count1 (Bits 31-27): The number of wait-states inserted before the internal-READY, under the fol-
lowing conditions: the Single Cycle bit equals 0 and the current access is not on 
the same page as the previous access. The number of wait-states is the value 
of this field + 1 (i.e., 0=1 wait-state, 1=2 wait-states, etc.) The value of Count1 is 
undefined on reset. 

Count2 (Bits 26-22): The number of wait-states inserted before the internal-READY, under the fol­
lowing conditions: the Single Cycle bit equals 0 and the current access is on the 
same page as the previous access. The number of wait-states is the value of 
this field +1 (i.e., 0=1 wait-state, 1=2 wait-states, etc.) The value of Count2 is 
undefined on reset. 

Wait Enable (Bit 21): Enables and disables the wait-state generator for an individual address range. 
If the Wait Enable bit of a wait-state specifier equals 0, the internal -READY is 
not asserted when addresses in the corresponding range are accessed by the 
processor. If Wait Enable is 1, the single cycle bit must be O. See Table 2-3 
in MB86930 Chap 2 "Programmer's Model" for reset value. 

Single Cycle (Bit 20): Specifies the timing of the internal-READY signal. If the Single Cycle bit equals 
1 when an address in the appropriate range is accessed, the internal-READY 
is asserted in the same cycle. If the Single Cycle bit equals 0, and the current 
transaction is in the same page as the previous transaction, then Count2 is 
used as the number of cycles after which -READY is asserted internally. If the 
transaction is not in the same page, Count1 is used instead. If Single Cycle is 
enabled, the Wait Enable bit must be O. See Table 2-3 in MB86930 Chap 2 
"Programmer's Model" for reset value. 

Override (Bit 19): Allows the system to terminate a memory transaction before the internally spec­
ified time. If the Override bit equals 1, and external hardware asserts the exter­
nal-READY signal, then the wait-state generator will stop counting and will wait 
for the next transaction. This bit is cleared to 0 on reset. 

Bits 18-6: Wait-State Specifier-The wait-state specifier for a second address range. This field is 
organized just like bits 31-19. 

Bits 5-0: Reserved 

External Interface - System Support Functions 

C4-17 

• 



SP ARClite User's Manual 

The Countl and Count2 fields of the Wait-State Specifier corresponding to -CSO 
have all their bits set to 1 following reset. In this way, 32 wait-state cycles (the 
maximum number) are inserted into the processor's first instruction accesses. The 
override bit for -CSO is enabled as well. 

4.3.2 Same-Page Detection 
The same-page detection logic determines whether the address of the current 
memory transaction is on the same page as the previous transaction. If it is, the 
processor asserts the -SAME_PAGE signal. The system can then take advantage 
of the fast consecutive accesses possible within fast-page mode DRAM page 
boundaries. The same-page detection logic consists of a mask register, a register 
to store the address and ASI bits of the previous transaction, and a comparator. 

The Same-Page Mask Register specifies which bits of the current address and ASI 
must be compared with the previous address and AS!. Only those bits are com­
pared for which the mask bit is 1. 

31 30 

ASI Mask 
(card=O, Don~ Care=1) 

23 22 

Address Mask (ADR [31 :10]) 
(Card=O, Don't Care=!) 

Figure C4-12. Same-Page Mask Register 

1 0 

The -SAME_PAGE signal is never asserted for the first transaction following a 
transaction by another device on the bus. When using the internal wait-state gen­
erator, DRAM control logic should issue a bus request when initiating a refresh 
cycle so that the -SAME_PAGE logic is reset appropriately. The -SAME_PAGE 
feature is disabled at reset. 

4.3.3 Programmable Timer 
The 16-bit programmable timer causes the -TIMER_OVF output signal to be 
asserted at software-defined intervals. This signal can be used to initiate DRAM 
refresh cycles, or to control other periodic events in the external system. 

External Interface - System Support Functions 

C4-18 



c:P 
FUJITSU 

The current timer count is stored in the Timer Register. When the timer over­
flows, it is loaded with the value in the Timer Preload Register. The contents of 
both of these registers are undefined following reset. 

31 16 15 

Reserved Time, Value 

31 16 15 

Reserved Timer Pre-Load Value 

Figure C4-13. Timer and Timer Preload Registers 

o 

o 

The timer can also be loaded by writing directly to the Timer Register. The timer 
can be turned off by writing a 0 to the Timer On/Off bit in the System Support 
Control register. The timer is clocked at the processor clock frequency. 

4.4 ROM Interface 

4.4.1 Purpose 
The data bus of the MB86933 can be configured upon reset to 8- and 16-bit bus 
modes as well as the standard 32-bit mode. This flexibility accommodates those 
cases in which boot code resides in PROMs organized as blocks of bytes or half­
words. 

4.4.2 Features 
Bus Configuration: the data bus configurations are fixed to specific segments of 
the bus: 

• 8-bit mode: 0[7:0) 

• 16-bit mode: 0[15:0] 

• 32-bit mode: 0[31:0] 

External Interface - ROM Interface 

C4-19 



SP ARClite User's Manual 

4.4.3 Bus Configuration on Reset 

Two external pins, -BMODE16 and -BMODE8 are used to determine the bus con­
figuration. The two bus configuration pins have weak pull-ups, so that if uncon­
nected, the bus configuration will default to a 32-bit bus. 

(reserved): -BMODE16=0, -BMODE8=0 

8-bit mode: -BMODE16=1, -BMODE8=0 

16-bit mode: -BMODE16=0, -BMODE8=1 

32-bit mode: -BMODE16=1, -BMODE8=1 

4.4.4 System Interface 

In order to minimize external "glue logic" required for interfacing to the 8- or 16-
bit bus, the BE bits are encoded to reflect the two LSBs of a byte address or the 
LSB of a halfword address. Therefore, the ADR[27:2] and selected -BE bits can be 
concatenated to form a complete address for a non-32 bit bus mode. 

Table C4-2:System Interface BE Bits 

Bus Mode Byte BE[O:3] 

8-bit bus 0 

1 

2 

3 

16-bit bus 0&1 

2&3 

a-bit bus mode address= {ADR[27:2], -BE[2], 
-BE[3]} 

0000 

0001 

0010 

0011 

0000 

0010 

16-bit bus mode address={ADR[27:2], -BE[2]} 

-CS[O], which is enabled on reset, and the internal-READY generation logic, can 
be used to minimize any glue logic required to interface to the PROM. On reset, 
the wait state generator, corresponding to -CS[O] for internal-READY genera­
tion, is set to 32 cycles. Later on in the boot code, the wait state generator can be 
changed to a more appropriate value. 

External Interface - ROM Interface 

C4-20 



4.4.5 PROM Address Space 

O:J 
FUJITSU 

The PROM address space is defined by the -CS[O] address-range specifier. On 
reset, the -CS[O] address range defaults to 32K bytes (starting address=OxO), and 
the ASI is initialized to Ox9. The PROM address range can be changed later using 
the mask bit register associated with -CS[O]. An example of the supervisor 
address space (ASI=Ox9) memory map is shown below: 

Figure C4·14. Supervisor Address Space (ASI=Ox9) Memory Map 

Supervisor 
Code Space 

PROM 

Ox00007FFF (bytes): default value 

OxO 

Any memory access from the PROM address space, in a non-32 bit mode, will 
make the -BE bit encodings reflect the LSBs of a byte/halfword address. Further­
more, the fetched bytes/halfwords will be assembled into a 32-bit word. On the 
other hand, any access from the non-PROM address range will result in a normal, 
32-bit memory access. 

4.4.6 Load/Stores 
One of the functions of the boot code is to set the processor and system configura­
tion. This might involve loading system parameters from PROM, loading data 
from memory mapped I/O, and storing data to non-PROM address space. All 
loads from the PROM address space behave the same way as instruction fetches, 
in that, for a non-32 bit bus mode -BE, bit encoding and word assembly are done. 
Loads from a non-PROM address space behave in the normal (32-bit) manner. In 
order to meet the -BE AC timing, the -BE bits on the MB86933 need to be all O's 
for all types of loads-word, halfword, and byte-from the non-PROM address 
space. This requires a functional change from the current specification of the 
MB86930's -BE bits, which reflect the byte information for loads. This change 
does not cause a problem, since the processor fetches a full 32-bit word on a load, 
and the IV selects the byte appropriately. As on the MB86930 -BE bits should be 
ignored for 32-bit loads. 

Since stores to the PROM will never occur, for all stores, regardless of address 
space, the -BE bits will reflect the byte information of the store. Therefore, byte 
and halfword stores to the PROM address space becomes meaningless, since the 

External Interface - ROM Interface 

C4-21 

• 



SP ARClite User's Manual 

-BE[2] and -BE[3] bits no longer reflect the byte address. Furthermore, store word 
operations to the PROM address space will not result in a dis-assembly process 
for a non-32 bit bus mode. Since stores to PROM address space are not disabled, 
the user would have to qualify -CS[O] with the R/ -W signal to use it as a PROM 
chip select signal. This will not be necessary if the user can be sure that a store to 
PROM space never occurs. 

A summary of the -BE[O:3] bit behavior for loads from the PROM address space is 
shown below. For all load instructions (byte, halfword, word), a full 32-bit fetch 
occurs. For example, in the 8-bit bus mode, four bytes will be fetched for all loads, 
and the BE bits will sequence with the proper 2 LSBs of the byte address. 

Table C4-3:Load -BE[O:3] Bit Behavior 

Bus Mode Operation BE[O:3] in PROM space 

8-bit bus loads (all) 0000=>0001=>0010=>0011 

16-bit bus loads (all) 0000=>0010 

32-bit bus loads (all) 0000 

4.4.7 Memory Exception 

Any memory exception that occurs during a fetch from the PROM address space 
in a non-32 bit bus mode will be held off until the entire word is fetched. 

4.4.8 Bus Request 

Any bus request happening during the non-32 bit bus mode fetch will not be rec­
ognized until the end of the complete 32-bit fetch operation. 

External Interface - ROM Interface 

C4-22 



OJ 
FUJITSU 

4.4.9 Timing 
Timing examples for the 8- and 16-bit bus modes with 1 wait-state memory are 
shown below. Note that -AS is asserted at the beginning for one cycle. 

ClK IL-VI'---fl\-I~ Lfl\-I~ ~ IL ~ LFl\-II 
1--1\ 

I 

i IL 
i 

-AS 

ADR[27:2] t--K( I r 
-BE[0:3] 0c-t--K( 0000 D({ 0010 D« 0000 X{ 0010 . ~ 

i 
RD/-WR 

t--
I 

I I II \ II \ \ II -RDY 

I 
DATA ~{ !3yteO : { !3ytel ~ ( !3yte2 ~( ~yte3 

Figure C4-15. a-bit Bus Mode Read (1 Wait State) 

ClK I\.-Ir-~ IL-V-~ I\.-Ir-~ I\.-~ ~ IL-l/ 
-AS t--I\ I 1\ IL 

ADR[27:2] t--K{ D<-
-BE[0:3] t--K( 0000 D({ 0010 D« 0000 X( 0010 r 
RD/-WR 1--11 

-RDY \ V \ I V \ I \ V-
: ( HWO ;{ HWl ~( HWO 'I HWl 

I 
DATA 

Figure C4-16. 16-bit Bus Mode Read (1 Wait State) 

External Interface - ROM Interface 

C4-23 

• 



SP ARClite User's Manual 

4.4.10 Store in 8/16 Bit 
For all stores, regardless of address space, the -BE bits will reflect the byte infor­
mation of the store. The following note may be useful for system designers. 

Store Byte: All 4 bytes are the same in the whole word data (Le., D[31:24] = 
D[23:16] = D[15:8] = D[7:0]). 

Byte -BE{3:0] 

0 1110 

1 1101 

2 1011 

3 0111 

Store halfword: 2 half word are the same in the whole word data 
(Le., D[31:16] = D[15:0]). 

Half Word -BE{3:0] 

0 1100 

1 0011 

eLK 

-AS 

RO/-WR 

AOR[27:2] ;....' -r"----I----+--'-----I-''----i--!---

-BE[0:3] ;....: -r'--I--+----+,'-+--+---
-ROY 

0[31:0] --+'y--I----"-+-J'-+-+---

Figure C4-17. Store to 8/16-Bit Address Space 

External Interface - ROM Interface 

C4-24 



R 

IlII IlII IlII !lUUIIIHII! III! III! III! III! 1111l1li1 

Programming Considerations 

5. 1 MB86933 Programming Information 
Chapter 5 of the main section of this manual contains programming information 
for the SPARClite processors that applies specifically to the MB86930 processor. 

The MB86933, however, has no caches, has six register windows rather than eight, 
and differs from the MB86930 processor in other ways (see the Overview section 
of this addendum). Therefore, information given in Chapter 5 relating to features 
that are not supported by the MB86933 should be disregarded. The Chapter 
should be referenced only for programming information that is appropriate for 
the MB86933. 

Programming Considerations - MB86933 Programming Information 

C5-1 



SP ARClite User's Manual 

Programming Considerations - MB86933 Programming Information 

C5-2 



iii II! III IIIUI III iii III II1II II1II II1II lUll II1II 

System Design Considerations 

This chapter describes SRAM and page-mode DRAM interfacing to the MB86933 
processor, and MB86933 in-circuit emulation. Chapter 6 of this manual describes 
system design considerations for SP ARClite processors in more detail. 

6. 1 Interfacing SRAM 
The address bus, data bus, and chip select signals of the SRAM can be connected 
directly to the address bus, data bus, and a chip select of the processor. The out­
put enable signal can be generated by gating RD/-WR high and Chip select low 
to produce output enable low. Write enable for the SRAMs requires more consid­
eration. 

The processor data hold time for a write is specified as zero hold after the rising 
edge of the clock. RD / -WR hold time at the end of a write operation can be 0 after 
the rising edge of the clock, or can be held low if the next cycle is also a write. 
Thus an implementation cannot use RD / -WR directly as -WE for the SRAMs. 

System Design Considerations - Interfacing SRAM 

C6-1 



SP ARClite User's Manual 

Figure C6-1 shows timing for an typical system using 2 cycle access SRAM oper­
ating at 20 MHz. Individual-WE signals are generated for each of the 4 bytes in 
the data word. 

-AS 
I 

'\ {\ \ 

"\ "\ 
! \ / 

'\ 
... I .... \ 

CLKP1 

RD/-WR 

I :"'\ I 

I i 
1 \ ,... :,... I -BE 
! "\ "\ 

, 
! I \ -CS 

, i "" i 
I X i DATA , , 

-WE \ 

Figure C6-1. SIAM Interfacing Example 

The SRAM is controlled with a PAL using the following equations: 

System Design Considerations - Interfacing SRAM 

C6-2 

I 

I .. 

r-: 



1 clkd = 1 clkpl; 
lsoe_ = rw & lscs_; 
lswe3_= lrw & las_ & lbe3_ & lclkpl 

# lrw & las_ & lbe3 & lclkd 
# lrw & lscs_ & lswe3_ & clkpl 
# lrw & lscs_ & lswe3_ & clkd; 

lswe2_= lrw & las_ & lbe2_ & lclkpl 
# lrw & las_ & lbe2_ & lclkd 
# lrw & lscs_ & lswe2_ & clkpl 
# lrw & lscs_ & lswe2_ & clkd; 

lswel_= lrw & las_ & lbel_ & lclkpl 
# lrw & las_ & lbel_ & lclkd 
# lrw & lscs_ & lswel_ & clkpl 
# lrw & lscs_ & lswel_ & clkd; 

lsweO_= lrw & las_ & lbeO_ & lclkpl 
# lrw & las_ & lbeO_ & lclkd 
# lrw & lscs_ & isweo_ & clkpl 
# lrw & lscs_ & lsweO_ & clkd; 

cP 
FUJITSU 

Clock low,-AS lo,-BE low, and RD/-WR low cause -WE to be asserted. Clock 
high, -CS low, -BE low and RD / -WR low cause -WE to stay low. When clock 
goes low again, -WE is negated. This way there is sufficient data hold time. 

For this system, CLKOUTl from the processor was used because it has better 
duty cycle control than an oscillator clock. 

6.2 Interfacing Page-Mode DRAM 
Interfacing Dynamic RAM requires a DRAM controller for generating RAS and 
CAS (Row Address Strobe and Column Address Strobe), and for handling 
refresh. The DRAM controller is typically implemented as a state machine. The 
DRAM controller and signal interfaces should be designed carefully to accommo­
date refresh operations and fast page mode access. 

The programmable 16-bit timer provided in the MB86933 processor core can be 
used for timing the refresh interval. The timer output signal,-TIMER_OVF 
(Timer Overflow), goes low for a single clock cycle at the end of each timer inter­
val. The timer interval is programmed in software, with the correct time interval 
depending on how the refresh operation is implemented. 

The correct number of wait states can be generated by either the processor's inter­
nal wait-state generator, or the DRAM controller. 

System Design Considerations - Interfacing Page-Mode DRAM 

C6-3 

• 



SP ARClite User's Manual 

The processor supports fast "page mode" access to DRAM. When the current 
DRAM address is within the same page as the previous DRAM access, the 
-SAME_PAGE (Same-Page Detect) signal is asserted. This tells the DRAM con­
troller that DRAM can be accessed using CAS only without selecting a new row of 
the DRAM, saving time. Page-mode accesses thus provide timing advantages 
comparable to the burst-mode accesses of some other processors. 

To take advantage of page hits, RAS is asserted and left asserted to continuously 
select a row. CAS is asserted one access at a time to select a memory location in 
that row. Accesses need not be in consecutive locations. RAS can remain asserted 
as long as each access is in the same row, and CAS can be asserted once to access 
each memory location. RAS remains asserted between accesses. 

The wait-state generator can be programmed to use a different (smaller) number 
of clock cycles for a "page hit" (when the current address is within the same page 
as the previous DRAM access). 

When using the internal wait-state generator instead of the external-READY 
signal, the processor has no way of detecting a refresh operation that occurs dur­
ing an access. One solution is to have the DRAM controller take control of the bus 
during refresh using -BREQ (Bus Request), thereby preventing the processor 
from requesting a memory access for the duration of the refresh operation. The 
disadvantage of this solution is that the processor is forced to remain idle. An 
alternative solution is to disable the internal wait-state generator and let the 
DRAM controller generate the -READY signal for all DRAM accesses. 

Figure C6-2 is a simplified state diagram for a DRAM memory controller. Upon 
reset, the state machine starts in the RAS Precharge and Idle state, and remains in 
that state until a memory access or refresh request occurs. 

_ Each-stale may represent 

multiple clock cycles 

Figure C6-2. Simplified State Diagram for DRAM Controller 

System Design Considerations - Interfacing Page-Mode DRAM 

C6-4 



cO 
FUJITSU 

If a refresh request occurs, the state machine goes into the Refresh state. (In prac­
tice, this will actually be a number of sequential states.) When the refresh opera­
tion is complete, the state machine returns to the RAS Precharge and Idle state. 

When the processor requests a DRAM memory access, the state machine enters 
the RAS state, in which the RAS signal is asserted to select the row. From there it 
goes to the CAS state, in which the CAS signal is asserted to select the column. At 
this point, data is clocked into the appropriate part, and the bus cycle ends. 

From there the state machine enters the Page Wait state, in which the state 
machine waits for either another memory access, or a refresh request. In this state, 
RAS is asserted and CAS is negated. If there is a memory access to the same page 
of DRAM (as indicated by the -SAME_PAGE signal), the state machine goes 
directly to the CAS state, and CAS is asserted to select the memory location. If 
there is a memory access to a different page of DRAM or if a refresh request 
occurs, the state machine goes to the RAS Precharge and Idle state, then to the 
requested operation. The state machine waits with RAS asserted until one of these 
events occurs. 

For more information, refer to SPARClite Application Note #1, which describes 
DRAM interfacing. 

6.3 In-Circuit Emulation 
The MB86932 processor supports all MB86933 functions and signals, and can be 
used for in-circuit emulation of the MB86933. 

The MB86932 processor has ten pins that are used for in-circuit emulation: four 
emulator status/ data bits, four emulator data bits, an emulator break request line, 
and an emulator enable pin. 

To allow for compatibility with an in-circuit emulator, the system's reset circuit 
should be designed to allow the in-circuit emulator to take control of the -RESET 
signal. For example, a jumper in the -RESET input line close to the processor can 
be included, allowing the normal Reset circuit to be easily disconnected from the 
processor. 

To simplify the task of emulating the processor, it is recommended that the pro­
cessor's emulator pins be connected to a standard format connector. Access to 
these pins allow the emulator to take full control of the processor, as well as to 
trace processor activity. If this socket is included on production boards, an emula­
tor can be used for board diagnostics and maintenance later in the product life 
cycle. 

For more information contact Fujitsu Microelectronics Semiconductor Division or 
your emulator vendor. 

System Design Considerations - In-Circuit Emulation 

C6-5 

-



SP ARClite User's Manual 

System Design Considerations- In-Circuit Emulation 

C6-6 



iliIlllllililllllllllililllllllllillIIIlIII 

Instruction Set 

7. 1 MB86933 Instruction Set 
The MB86933 processor supports the same instruction set as the MB86930 proces­
sor. Chapter 7 of the main section of this manual therefore fully describes the 
MB86933 instruction set. 

Note that the MB86933 has six register windows rather than eight. Therefore, ref­
erences to eight register windows in the description should be changed to six reg­
ister windows for the MB86933, and modulo 8 in the description should be 
changed to modulo 6. 

Instruction Set - MB86933 Instruction Set 

C7-1 

.. 



SP ARClite User's Manual 

Instruction Set - MB86933 Instruction Set 

C7-2 



111111111111111111111111 ••• 111 •• 

MB86933 JTAG 

8. 1 MB86933 JTAG Pin List 
The MB86933 }TAG cells are arranged in a shift register configuration (see 
Figure C8-l). When shifting in a }TAG pattern through TOI, the LSB should corre­
spond to the }TAG cell value for IRL<3> pin, and the MSB of the pattern should 
correspond to the -BMOOE16 pin's }TAG cell. As far as }TAG output through • 
TOO is concerned, the first bit out corresponds to IRL<3> }TAG cell value, and 
the last output bit corresponds to the -BMOOE16 cell value. Table C8-1 lists the 
order of all of the }TAG cells. 

Table C8-1:JTAG Pin Order 

Order JTAG Cell 
JTAGCeli 

Type 

1 IRL<3> input 

· · 
4 IRL<O> input 

5 AOR<2> output 

· · 
30 AOR<27> output 

31 0_i<31 > input 

32 0_0<31> output 

Function 

MSB of Interrupt request pin 

· · 
LSB of interrupt request pin 

LSB of Address output pins 

· · 
MSB of Address output pins 

Input bit 31 of 0<31 :0> bus 

Output bit 31 of <31 :0> bus 

MB86933 JT AG - MB86933 JT AG Pin List 

C8-1 



SP ARClite User's Manual 

Table C8-1:JTAG Pin Order 

Order JTAG Cell 

· · 
93 O_kO> 

94 0_0<0> 

95 dbusiojo 

96 tstatejo 

97 -MEXC 

98 -READY 

99 -BREQ 

100 -AS 

101 -ROIWR 

102 -LOCK 

103 -BGRNT 

104 -ERROR 

105 -SAME_PAGE 

106 -CS<O> 

· · 
111 -CS<5> 

112 CLK_ENB 

113 XTAL1 

114 -TIMER_OVF 

115 -BE<O> 

· · 
118 -BE<3> 

119 ASkO> 

· 
122 ASk3> 

123 -RESET 

MB86933 IT AG - MB86933 IT AG Pin List 

C8-2 

I 

JTAGCell 
Function 

Type 

· · 
input Input bit 0 of <31 :0> bus 

output Output bit 0 of <31 :0> bus 

output 0<31 :0> bus bidirectional control signal 
dbusiojo = 1: 0<31 :0> bus is an input 
dbusiojo = 0: 0<31 :0> bus is an output 

output Three-state control signal 
If tstatejo=1 then the following pins are three-stated. 

AOR<:27:2>, ASk3:0>, -BE<3:0>, -AS, -ROIWR, 
-LOCK 

input Memory exception input 

input External memory transaction complete signal 

input Bus request input 

output Start of memory transaction output signal 

output Memory ReadIWrite output signal 

output Bus lock output signal 

output Bus grant output signal 

output Error output signal 

output Same-Page output signal 

output LSB of chip select output signal 

· · 
output MSB of chip select output signal 

input PLL control pin. 
CLK_ENB=1: PLL on 
CLK_ENB=O: PLL off 

input Crystal input 

output Timer Overflow pin 

output Byte 0 enable output signal 

· · 
output Byte 3 enable output signal 

output LSB of ASI output pins 

· · 
output MSB of ASI output pins 

input Chip reset pin 



Table C8-1:JTAG Pin Order 

Order JTAG Cell 
JTAGCell 

Type 

124 -BMODE8 input 

125 _BMODE16 input 

8-bit Boot Mode 

16-bit Boot Mode 

Function 

00 
FUJITSU 

MB86933 IT AG - MB86933 IT AG Pin List 

C8-3 

.. 



SP ARClite User's Manual 

~ 
• 

" · · · · · · · · · · · · · ......... . 

Chip Logic 

• 
dbusiojo 

tslalejo 

g 
I-

I-----H. IRL<3> 

I-----H. IRL<2> 

>---+ __ ADR<2> 

>---+ __ ADR<3> 

• 
>---+ __ ADR<27> 

• 

~ ... -+ __ 0<31> 

Figure C8-1. nAG Cell Organization 

MB86933 JT AG - MB86933 JT AG Pin List 

C8-4 



cP 
FUJITSU 

FUJITSU MICROELECTRONICS, INC. SALES OFFICES 

CALIFORNIA 
2880 Lakeside Drive, Ste 250 
Cupertino, CA 95014 
(408) 996-1600 

Century Center 
2603 Main Street, #510 
Irvine, CA 92714 
(714) 724-8n7 

ILLINOIS 
One Pierce Place, #910 
Itasca,lL 60143-2681 
(708) 250-8580 

MASSACHUSETTS 
75 Wells Avenue, #5 
Newton Center, MA 02159-3251 
(617) 964-7080 

NEW YORK 
898 Veterans Memorial Hwy. 
Building 2, Suite 310 
Hauppauge,NY 11788 
(516) 582-8700 

OREGON 
15220 N.w. Greenbrier Pkwy., 
#360 

COLORADO MINNESOTA 
Beaverton, OR 97006 
(503) 690-1909 

5445 DTC Parkway, P4 
Englewood, CO 80111 
(303) 740-8880 

GEORGIA 
3500 Parkway Lane, #210 
Norcross, GA 30092 
(404) 449-8539 

3460 Washington Drive, #209 
Eagan, MN 55122-1303 
(612) 454-0323 

TEXAS 
14785 Preston Rd., #670 
Dallas, TX 75240 
(214) 233-9394 

For further information outside the U.S., please contact: 

ASIA 

Fujitsu Microelectronics Pacific Asia Ltd. 
616-617, Tower B, New Mandarin Plaza, 
14 Science Museum Rd., Tsimshatsui East, 
Kowloon, Hong Kong 
Tel: 723-0393· Fax: 721-6555 

Fujitsu Limited 
Semiconductor Marketing 
Furukawa 5ogo Building 
6-1 Marunouchi,2-chome 
Chiyoda-ku, Tokyo 100, Japan 
Tel: 03-3216-3211 • Fax: 03-3216-9771 

EUROPE 

Fujitsu Mikroelektronik GmbH 
Immeuble Ie Trident 
3-5 voie Felix Eboue 
94024 Creteil Cedex, France 
Tel: 01-42078200· Fax: 01-42077933 

Fujitsu Mikroelektronik GmbH 
Am Siebenstein 6-10 
6072 Dreieich-Buchschlag, Germany 
Tel: 06103-6900· Fax: 06103-690122 

Fujitsu Mikroelektronik GmbH 
Carl-Zeiss-Ring 11 
8045lsmaning;Germany 
Tel: 089-9609440 • Fax: 089-96094422 

Fujitsu Mikroelektronik GmbH 
Am Joachimsberg 10-12 
7033 Herrenberg, Germany 
Tel: 07032-4085· Fax: 07032-4088 

Fujitsu Microelectronics Pacific Asia Ltd. 
1906, No. 333 Keelung Rd., Sec. 1, 
Taipei, 10548, Taiwan, R.O.C. 
Tel: 02-7576548· Fax: 02-7576571 

Fujitsu Microelectronics PTE Ltd. 
51 Bras Basah Rd. 
Plaza by the Park 
#06-04107 Singapore 0718 
Tel: 336-1600· Fax: 336-1609 

Fujitsu Microelectronics Italia, S.R.L. 
Centro Direzionale Milanofiori 
Strada 4-Palazzo Al2 
20094 Assago (Milano), Italy 
Tel: 02-8246170/176· Fax: 02-8246189 

Fujitsu Mikroelektronik GmbH 
Europalaan 26A 
5623 LJ Eindhoven, The Netherlands 
Tel: 040-447440· Fax: 040-444158 

Fujitsu MicroelectroniCS Ltd. 
Torggatan 8 
17154 Solna, Sweden 
Tel: 08-7646365·08-280345 

Fujitsu Microelectronics Ltd. 
Hargrave House 
Belmont Road 
Maidenhead 
Berkshire SL6 6NE, United Kingdom 
Tel: 0628-76100· Fax: 0628-781484 



SPARClite User's Manual 

Notes: 



FUJITSU MICROELECTRONICS, INC. 
3545 North First Street, San Jose, CA 95134-1804 


