
PowerPC Operating Environment Architecture

Book III

Version 2.01

December 2003

Manager:
Joe Wetzel/Poughkeepsie/IBM

Technical Content:
Ed Silha/Austin/IBM Cathy May/Watson/IBM Brad Frey/Austin/IBM

The following paragraph does not apply to the United Kingdom or any country or state where such provisions are
inconsistent with local law.

The specifications in this manual are subject to change without notice. This manual is provided “AS IS”. Interna-
tional Business Machines Corp. makes no warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose.

International Business Machines Corp. does not warrant that the contents of this publication or the accompanying
source code examples, whether individually or as one or more groups, will meet your requirements or that the
publication or the accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to
the information herein; these changes will be incorporated in new editions of the publication.

Address comments to IBM Corporation, Internal Zip 9630, 11400 Burnett Road, Austin, Texas 78758-3493. IBM
may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

The following terms are trademarks of the International Business Machines Corporation in the United States
and/or other countries:

IBM PowerPC RISC/System 6000 POWER POWER2 POWER4 POWER4+ IBM System/370

Notice to U.S. Government Users—Documentation Related to Restricted Rights—Use, duplication or disclosure is
subject to restrictions set fourth in GSA ADP Schedule Contract with IBM Corporation.

 Copyright International Business Machines Corporation, 1994, 2003. All rights reserved.

ii PowerPC Operating Environment Architecture

Version 2.01

Preface

This document defines the additional instructions and
facilities, beyond those of the PowerPC User Instruc-
tion Set Architecture and PowerPC Virtual Environ-
ment Architecture, that are provided by the PowerPC
Operating Environment Architecture. It covers
instructions and facilities not available to the applica-
tion programmer, affecting storage control, interrupts,
and timing facilities.

Other related documents define the PowerPC User
Instruction Set Architecture, the PowerPC Virtual Envi-
ronment Architecture, and PowerPC Implementation
Features. Book I, PowerPC User Instruction Set
Architecture defines the base instruction set and
related facilities available to the application pro-

grammer. Book II, PowerPC Virtual Environment
Architecture defines the storage model and related
instructions and facilities available to the application
programmer, and the Time Base as seen by the appli-
cation programmer. Book IV, PowerPC Implementa-
tion Features defines the implementation-dependent
aspects of a particular implementation.

As used in this document, the term “PowerPC Archi-
tecture” refers to the instructions and facilities
described in Books I, II, and III. The description of the
instantiation of the PowerPC Architecture in a given
implementation includes also the material in Book IV
for that implementation.

Preface iii

Version 2.01

iv PowerPC Operating Environment Architecture

Version 2.01

Table of Contents

Chapter 1. Introduction 1
1.1 Overview 1
1.2 Compatibility with the POWER

Architecture 1
1.3 Document Conventions 1
1.3.1 Definitions and Notation 1
1.3.2 Reserved Fields 2
1.4 General Systems Overview 3
1.5 Exceptions 3
1.6 Synchronization 3
1.6.1 Context Synchronization 3
1.6.2 Execution Synchronization 4
1.7 Logical Partitioning (LPAR) 4

Chapter 2. Branch Processor 7
2.1 Branch Processor Overview 7
2.2 Branch Processor Registers 7
2.2.1 Machine Status Save/Restore

Register 0 7
2.2.2 Machine Status Save/Restore

Register 1 7
2.2.3 Machine State Register 8
2.3 Branch Processor Instructions . . . 10
2.3.1 System Linkage Instructions . . . 10

Chapter 3. Fixed-Point Processor . . 13
3.1 Fixed-Point Processor Overview . . 13
3.2 Special Purpose Registers 13
3.3 Fixed-Point Processor Registers . . 13
3.3.1 Data Address Register 13
3.3.2 Data Storage Interrupt Status

Register 14
3.3.3 Software-Use SPRs 14
3.3.4 Control Register 14
3.3.5 Processor Version Register . . . 15
3.3.6 Processor Identification Register 15
3.4 Fixed-Point Processor Instructions 16
3.4.1 Move To/From System Register

Instructions 16

Chapter 4. Storage Control 21
4.1 Storage Addressing 21
4.2 Storage Model 22
4.2.1 Storage Exceptions 22

4.2.2 Instruction Fetch 23
4.2.3 Data Access 23
4.2.4 Performing Operations

Out-of-Order 23
4.2.5 32-Bit Mode 25
4.2.6 Real Addressing Mode 25
4.2.7 Address Ranges Having Defined

Uses . 27
4.2.8 Invalid Real Address 27
4.3 Address Translation Overview . . . 28
4.4 Virtual Address Generation 28
4.4.1 Segment Lookaside Buffer (SLB) 29
4.4.2 SLB Search 29
4.5 Virtual to Real Translation 30
4.5.1 Page Table 31
4.5.2 Storage Description Register 1 . 32
4.5.3 Page Table Search 33
4.6 Data Address Compare 34
4.7 Data Address Breakpoint 35
4.8 Storage Control Bits 35
4.8.1 Storage Control Bit Restrictions . 36
4.8.2 Altering the Storage Control Bits 36
4.9 Reference and Change Recording 37
4.10 Storage Protection 39
4.10.1 Storage Protection, Address

Translation Enabled 39
4.10.2 Storage Protection, Address

Translation Disabled 39
4.11 Storage Control Instructions . . . 40
4.11.1 Cache Management Instructions 40
4.11.2 Synchronize Instruction 40
4.11.3 Lookaside Buffer Management . 40
4.12 Page Table Update

Synchronization Requirements 48
4.12.1 Page Table Updates 48

Chapter 5. Interrupts 51
5.1 Overview 51
5.2 Interrupt Synchronization 51
5.3 Interrupt Classes 52
5.3.1 Precise Interrupt 52
5.3.2 Imprecise Interrupt 52
5.4 Interrupt Processing 53
5.5 Interrupt Definitions 54

Table of Contents v

Version 2.01

5.5.1 System Reset Interrupt 55
5.5.2 Machine Check Interrupt 55
5.5.3 Data Storage Interrupt 55
5.5.4 Data Segment Interrupt 57
5.5.5 Instruction Storage Interrupt . . . 58
5.5.6 Instruction Segment Interrupt . . 58
5.5.7 External Interrupt 59
5.5.8 Alignment Interrupt 59
5.5.9 Program Interrupt 60
5.5.10 Floating-Point Unavailable

Interrupt 61
5.5.11 Decrementer Interrupt 61
5.5.12 Hypervisor Decrementer

Interrupt (POWER4+ only) 62
5.5.13 System Call Interrupt 62
5.5.14 Trace Interrupt 63
5.5.15 Performance Monitor Interrupt

(Optional) 63
5.6 Partially Executed Instructions . . . 63
5.7 Exception Ordering 64
5.7.1 Unordered Exceptions 64
5.7.2 Ordered Exceptions 64
5.8 Interrupt Priorities 65

Chapter 6. Timer Facilities 67
6.1 Overview 67
6.2 Time Base 67
6.2.1 Writing the Time Base 68
6.3 Decrementer 68
6.3.1 Writing and Reading the

Decrementer 69
6.4 Hypervisor Decrementer

(POWER4+ only) 69

Chapter 7. Synchronization
Requirements for Context
Alterations 71

Chapter 8. Optional Facilities and
Instructions 75

8.1 External Control 75
8.1.1 External Access Register 75
8.1.2 External Access Instructions . . . 75
8.2 Real Mode Storage Control 77
8.3 Move to Machine State Register

Instruction 78

Chapter 9. Optional Facilities and
Instructions that are being Phased
Out of the Architecture 79

9.1 Bridge to SLB Architecture 79
9.1.1 Address Space Register 79
9.1.2 Segment Register Manipulation

Instructions 80

Appendix A. Assembler Extended
Mnemonics 83

A.1 Move To/From Special Purpose
Register Mnemonics 83

Appendix B. Cross-Reference for
Changed POWER Mnemonics 85

Appendix C. New and Newly
Optional Instructions 87

Appendix D. Interpretation of the
DSISR as Set by an Alignment
Interrupt . 89

Appendix E. Example Performance
Monitors (Optional) 91

E.1 Performance Monitor for POWER4 92
E.1.1 PMM Bit of the Machine State

Register 92
E.1.2 Special Purpose Registers 93
E.1.3 Performance Monitor Interrupt . 99
E.1.4 Interaction with the Trace Facility 99
E.1.5 Synchronization Requirements for

Performance Monitor SPRs 99
E.2 Performance Monitor for

POWER4+ 100
E.2.1 PMM Bit of the Machine State

Register 100
E.2.2 Special Purpose Registers . . . 101
E.2.3 Performance Monitor Interrupt 107
E.2.4 Interaction with the Trace Facility 107

Appendix F. Example Trace
Extensions (Optional) 109

Appendix G. PowerPC Operating
Environment Instruction Set 111

Index . 113

Last Page - End of Document 119

vi PowerPC Operating Environment Architecture

Version 2.01

Figures

1. Logical view of the PowerPC processor
architecture 3

2. Save/Restore Register 0 7
3. Save/Restore Register 1 7
4. Machine State Register 8
5. Data Address Register 13
6. Data Storage Interrupt Status Register . . 14
7. Software-use SPRs 14
8. Control Register 14
9. Processor Version Register 15

10. Processor Identification Register 15
11. SPR encodings for mtspr 17
12. SPR encodings for mfspr 18
13. Address translation overview 28
14. Translation of 64-bit effective address to

80-bit virtual address 28
15. SLB Entry 29
16. Translation of 80-bit virtual address to 62-bit

real address 30
17. Page Table Entry 31
18. SDR1 . 32
19. Address Compare Control Register 34
20. Data Address Breakpoint Register 35
21. Storage control bits 36
22. Setting the Reference and Change bits . . 38
23. PP bit protection states, address translation

enabled 39
24. Protection states, address translation

disabled 39

25. GPR contents for slbmte 43
26. GPR contents for slbmfev 44
27. GPR contents for slbmfee 44
28. MSR setting due to interrupt 54
29. Effective address of interrupt vector by

interrupt type 54
30. Time Base 67
31. Decrementer 68
32. Hypervisor Decrementer 69
33. External Access Register 75
34. Address Space Register 79
35. GPR contents for mtsr, mtsrin, mfsr, and

mfsrin . 80
36. Performance Monitor SPR encodings for

mtspr and mfspr 94
37. Performance Monitor Counter registers . . 94
38. Monitor Mode Control Register 0 94
39. Monitor Mode Control Register 1 97
40. Monitor Mode Control Register A 97
41. Sampled Instruction Address Register . . . 98
42. Sampled Data Address Register 98
43. Performance Monitor SPR encodings for

mtspr and mfspr 102
44. Performance Monitor Counter registers . 102
45. Monitor Mode Control Register 0 102
46. Monitor Mode Control Register 1 105
47. Monitor Mode Control Register A 105
48. Sampled Instruction Address Register . . 106
49. Sampled Data Address Register 106

Figures vii

Version 2.01

viii PowerPC Operating Environment Architecture

Version 2.01

Chapter 1. Introduction

1.1 Overview 1
1.2 Compatibility with the POWER

Architecture 1
1.3 Document Conventions 1
1.3.1 Definitions and Notation 1
1.3.2 Reserved Fields 2

1.4 General Systems Overview 3
1.5 Exceptions 3
1.6 Synchronization 3
1.6.1 Context Synchronization 3
1.6.2 Execution Synchronization 4
1.7 Logical Partitioning (LPAR) 4

1.1 Overview

Chapter 1 of Book I, PowerPC User Instruction Set
Architecture describes computation modes, compat-
ibility with the POWER Architecture, document con-
ventions, a general systems overview, instruction
formats, and storage addressing. This chapter aug-
ments that description as necessary for the PowerPC
Operating Environment Architecture.

1.2 Compatibility with the
POWER Architecture

The PowerPC Architecture provides binary compat-
ibility for POWER application programs, except as
described in the appendix entitled “Incompatibilities
with the POWER Architecture” in Book I, PowerPC
User Instruction Set Architecture. Binary compatibility
is not necessarily provided for privileged POWER
instructions.

1.3 Document Conventions

The notation and terminology used in Book I apply to
this Book also, with the following substitutions.

■ For “system alignment error handler” substitute
“Alignment interrupt”.

■ For “system data storage error handler” substi-
tute “Data Storage interrupt”, “Data Segment
interrupt”, or “Data Storage or Data Segment
interrupt”, as appropriate.

■ For “system error handler” substitute “interrupt”.

■ For “system floating-point enabled exception
error handler” substitute “Floating-Point Enabled
Exception type Program interrupt”.

■ For “system illegal instruction error handler” sub-
stitute “Illegal Instruction type Program
Interrupt”.

■ For “system instruction storage error handler”
substitute “Instruction Storage interrupt”,
“Instruction Segment interrupt”, or “Instruction
Storage or Instruction Segment interrupt”, as
appropriate.

■ For “system privileged instruction error handler”
substitute “Privileged Instruction type Program
interrupt”.

■ For “system service program” substitute “System
Call interrupt”.

■ For “system trap handler” substitute “Trap type
Program interrupt”.

1.3.1 Definitions and Notation

The definitions and notation given in Book I, PowerPC
User Instruction Set Architecture are augmented by
the following.

■ A real page is a 4 KB unit of real storage that is
aligned at a 4 KB boundary.

■ The context of a program is the environment
(e.g., privilege and relocation) in which the
program executes. That context is controlled by
the contents of certain System Registers, such as
the MSR and SDR1, of certain lookaside buffers,
such as the SLB and TLB, and of the Page Table.

Chapter 1. Introduction 1

Version 2.01

■ An exception is an error, unusual condition, or
external signal, that may set a status bit and may
or may not cause an interrupt, depending upon
whether the corresponding interrupt is enabled.

■ An interrupt is the act of changing the machine
state in response to an exception, as described in
Chapter 5, “Interrupts” on page 51.

■ A trap interrupt is an interrupt that results from
execution of a Trap instruction.

■ Additional exceptions to the rule that the
processor obeys the sequential execution model,
beyond those described in the section entitled
“Instruction Fetching” in Book I, are the following.

— A System Reset or Machine Check interrupt
may occur. The determination of whether an
instruction is required by the sequential exe-
cution model is not affected by the potential
occurrence of a System Reset or Machine
Check interrupt. (The determination is
affected by the potential occurrence of any
other kind of interrupt.)

— A context-altering instruction is executed
(see Chapter 7, “Synchronization Require-
ments for Context Alterations” on page 71).
The context alteration need not take effect
until the required subsequent synchronizing
operation has occurred.

— A Reference or Change bit is updated by the
processor. The update need not be per-
formed with respect to that processor until
the required subsequent synchronizing oper-
ation has occurred.

■ Hardware means any combination of hard-wired
implementation, emulation assist, or interrupt for
software assistance. In the last case, the inter-
rupt may be to an architected location or to an
implementation-dependent location. Any use of
emulation assists or interrupts to implement the
architecture is described in Book IV, PowerPC
Implementation Features.

■ /, //, ///, ... denotes a field that is reserved in an
instruction, in a register, or in an architected
storage table.

1.3.2 Reserved Fields

Some fields of certain architected storage tables may
be written to automatically by the processor, e.g., Ref-
erence and Change bits in the Page Table. When the
processor writes to such a table, the following rules
are obeyed.

■ Unless otherwise stated, no defined field other
than the one(s) the processor is specifically
updating are modified.

■ Contents of reserved fields are either preserved
by the processor or written as zero.

The handling of reserved bits in System Registers
described in Book I applies here as well. The reader
should be aware that reading and writing of some of
these registers (e.g., the MSR) can occur as a side
effect of processing an interrupt and of returning from
an interrupt, as well as when requested explicitly by
the appropriate instruction (e.g., mtmsrd).

Programming Note

Software should set reserved fields in architected
storage tables (e.g., the Page Table) to zero,
because these fields may be assigned a meaning
in some future version of the architecture.

2 PowerPC Operating Environment Architecture

Version 2.01

1.4 General Systems Overview

The processor or processor unit contains the
sequencing and processing controls for instruction
fetch, instruction execution, and interrupt action.
Instructions that the processing unit can execute fall
into three classes:

■ instructions executed in the Branch Processor
■ instructions executed in the Fixed-Point Processor
■ instructions executed in the Floating-Point

Processor

Almost all instructions executed in the Branch
Processor, Fixed-Point Processor, and Floating-Point
Processor are nonprivileged and are described in
Book I, PowerPC User Instruction Set Architecture.
Book II, PowerPC Virtual Environment Architecture
may describe additional nonprivileged instructions
(e.g., Book II describes some nonprivileged
instructions for cache management). Instructions
related to the privileged state of the processor,
control of processor resources, control of the storage
hierarchy, and all other privileged instructions are
described here or in Book IV, PowerPC Implementa-
tion Features.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³ ³ ³ ³ ³
³ BRANCH ÃÄÄÄH³ FIXED- ³ ³ ³
³ ³ ³ POINT ³IÄH³ DATA ³
³ PROCESSOR ÃÄ¿ ³ PROCESSOR ³ ³ CACHE ³
³ ³ ³ ³ ³ ³ ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ³
³ ³ ³ ³ ³ ³ ³
³ INSTRUCTION ³ ³ ³ FLOATING- ³ ³ ³
³ CACHE ³ ÀÄH³ POINT ³ ³ ³
³ ³ ³ PROCESSOR ³IÄH³ ³
³ ³ ³ ³ ³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

↑ ↑
³ ↓

ÚÄÄÄÄÄÄÁÄÄÄ¿
³ ³
³ MAIN MEMORY ³
³ ³
ÀÄÄÙ

↑
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ DIRECT MEMORY ACCESS ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 1. Logical view of the PowerPC processor
architecture

1.5 Exceptions

The following augments the list, given in Book I, of
exceptions that can be caused directly by the exe-
cution of an instruction:

■ the execution of a floating-point instruction when
MSRFP= 0 (Floating-Point Unavailable interrupt)

■ an attempt to modify a hypervisor resource when
the processor is in privileged but non-hypervisor
state (see Section 1.7), or an attempt to execute
a hypervisor-only instruction (e.g., tlbie) when the
processor is in privileged but non-hypervisor
state.

■ the execution of a traced instruction (Trace inter-
rupt)

1.6 Synchronization

The synchronization described in this section refers to
the state of the processor that is performing the syn-
chronization.

1.6.1 Context Synchronization

An instruction or event is context synchronizing if it
satisfies the requirements listed below. Such
instructions and events are collectively called context
synchronizing operations. Examples of context syn-
chronizing operations include the isync, sc, and rfid
instructions, the mtmsr[d] instruction if L=0 , and
most interrupts.

1. The operation causes instruction dispatching (the
issuance of instructions by the instruction fetch
mechanism to any instruction execution mech-
anism) to be halted.

2. The operation is not initiated or, in the case of
isync, does not complete, until all instructions
already in execution have completed to a point at
which they have reported all exceptions they will
cause.

3. The operation ensures that the instructions that
precede the operation will complete execution in
the context (privilege, relocation, storage pro-
tection, etc.) in which they were initiated, except
that the operation has no effect on the context in
which the associated Reference and Change bit
updates are performed.

4. If the operation directly causes an interrupt (e.g.,
sc directly causes a System Call interrupt) or is
an interrupt, the operation is not initiated until no
exception exists having higher priority than the
exception associated with the interrupt (see
Section 5.8, “Interrupt Priorities” on page 65).

Chapter 1. Introduction 3

Version 2.01

5. The operation ensures that the instructions that
follow the operation will be fetched and executed
in the context established by the operation. (This
requirement dictates that any prefetched
instructions be discarded and that any effects and
side effects of executing them out-of-order also
be discarded, except as described in Section
4.2.4, “Performing Operations Out-of-Order” on
page 23.)

Programming Note

A context synchronizing operation is necessarily
execution synchronizing; see Section 1.6.2.

Unlike the Synchronize instruction, a context syn-
chronizing operation does not affect the order in
which storage accesses are performed.

1.6.2 Execution Synchronization

An instruction is execution synchronizing if it satisfies
items 2 on page 3 and 3 on page 3 of the definition
of context synchronization (see Section 1.6.1). sync
and ptesync are treated like isync with respect to
item 2 (i.e., the conditions described in item 2 apply to
the completion of sync and ptesync). Examples of
execution synchronizing instructions are sync,
ptesync, and mtmsrd.

Programming Note

All context synchronizing instructions are exe-
cution synchronizing.

Unlike a context synchronizing operation, an exe-
cution synchronizing instruction does not ensure
that the instructions following that instruction will
execute in the context established by that instruc-
tion. This new context becomes effective some-
time after the execution synchronizing instruction
completes and before or at a subsequent context
synchronizing operation.

1.7 Logical Partitioning (LPAR)

The Logical Partitioning (LPAR) facility permits
processors and portions of real storage to be
assigned to logical collections called partitions, such
that a program executing on a processor in one parti-
tion cannot interfere with any program executing on a
processor in a different partition. This isolation can
be provided for both problem state and privileged
state programs, by using a layer of trusted software,
called a hypervisor program (or simply a

“hypervisor”), and the resources provided by this
facility to manage system resources. (A hypervisor is
a program that runs in hypervisor state; see below.)

The number of partitions supported is implementa-
tion-dependent.

A processor is in only one partition at any given time.
Partitions can be defined without consideration of the
physical configuration of the system (e.g., shared
caches, organization of the storage hierarchy).

A processor may be removed from one partition and
assigned to a different partition while other
processors continue to execute programs in their
respective partitions. The operations necessary to
assign a processor to a different partition are imple-
mentation-dependent.

The following resources are provided to support
logical partitioning.

1. HV bit of the MSR

This bit, along with MSRPR, controls whether the
processor is in hypervisor state (see Section 2.2.3
on page 8).

2. Logical Partitioning Environment Selector (LPES)

The notation LPES/LPES1 identifies the LPES bit
implemented in the POWER4 processor and the
second of two LPES bits implemented in the
POWER4+ processor.

LPES/LPES1 controls how storage is accessed
when translation is disabled, and whether a
subset of interrupts set MSRHV to 1.

On the POWER4+ processor, LPES0 controls
whether External interrupts set MSRHV to 1 or
leave it unchanged.

See Sections 4.2.6 (including subsections) on
page 25 and Section 4.10 on page 39 for a
description of how storage accesses are affected
by the setting of LPES/LPES1. See Section 5.5 on
page 54 for a description of how the setting of
LPES affects the processing of interrupts.

On POWER4+, three of the four states of LPES
are supported. The 0b10 state is reserved.

Programming Note

LPES=0 (0b00 on POWER4+) provides an
environment in which only the hypervisor can
run with address translation disabled and in
which all interrupts invoke the hypervisor.
This value (along with MSRHV= 1) can also be
used in a system that is not partitioned, to
permit the operating system to access all
system resources.

4 PowerPC Operating Environment Architecture

Version 2.01

Programming Note

On POWER4+, LPES1 can be used to con-
figure LPAR environments similar to the envi-
ronment selected by the LPES bit on the
POWER4 processor.

3. Real mode storage access control

The Real Mode Offset Register (RMOR), Real
Mode Limit Register (RMLR), and Real Mode
Caching Inhibited bit control access to storage in
real addressing mode, as described in Section
4.2.6 on page 25 and Section 8.2 on page 77.

4. Logical Partition Identity Register (LPIDR)

This register contains a value that identifies the
partition to which the processor is assigned.

5. Hypervisor Decrementer Interrupt Conditionally
Enable (HDICE) Bit (POWER4+ only)

0 Hypervisor Decrementer interrupts are disa-
bled.

1 Hypervisor Decrementer interrupts are
enabled if permitted by MSREE, MSRHV,
MSRPR, MSRRI, HDECh, and HDIHO; see
Section 5.5.12 on page 62.

6. Hypervisor Decrementer Interrupt Holdoff
(HDIHO, POWER4+ only)

This field specifies the Hypervisor Decrementer
bit (denoted HDECh), if any, that is used in deter-
mining whether Hypervisor Decrementer inter-
rupts are enabled; see Section 5.5.12 on page 62.

0b00 No Hypervisor Decrementer bit is used.
0b01 HDEC21 is used (h=21).
0b10 HDEC17 is used (h=17).
0b11 HDEC13 is used (h=13).

With the exception of MSRHV, and the partial excep-
tion of the LPIDR as described in the next sentence,
the format and contents of these resources, the condi-
tions that must be established before they are
altered, the means provided for altering them, and
the software synchronization required in order to
make the alterations effective are implementa-
tion-dependent.

The following additional considerations apply to the
LPIDR.

■ The LPIDR is implemented as a field in an imple-
mentation-specific register (e.g., a “HID” register)
that can be read and written by software using
the mfspr and mtspr instructions. References
elsewhere in this Book to an mtspr instruction

that modifies the LPIDR refer to an mtspr instruc-
tion that modifies this implementation-specific
register.

■ Any implementation-dependent software synchro-
nization requirements for modifying this imple-
mentation-specific register are in addition to the
synchronization requirements for modifying the
LPIDR that are described elsewhere in this Book.

With the exception of MSRHV, the resources defined
above and those in the following list are hypervisor
resources.

■ All implementation-specific resources, including
implementation-specific registers (e.g., “HID” reg-
isters), that control hardware functions or affect
the results of instruction execution. Examples
include resources that disable caches, disable
hardware error detection, set breakpoints, control
power management, or significantly affect per-
formance.

■ ME bit of the MSR

■ SDR1, EAR (if implemented), SPRG0, Time Base,
PIR, and DABR

■ the large virtual page size, if a means is provided
by which software can alter it

■ Hypervisor Decrementer (HDEC, POWER4+ only)

The contents of a hypervisor resource can be modi-
fied by the execution of an instruction (e.g., mtspr)
only in hypervisor state (MSRHV PR = 0b10). Whether
an attempt to modify the contents of a given
hypervisor resource, other than MSRME, in privileged
but non-hypervisor state (MSRHV PR = 0b00) is
ignored (i.e., treated as a no-op) or causes a Privi-
leged Instruction type Program interrupt is implemen-
tation-dependent. An attempt to modify MSRME in
privileged but non-hypervisor state is ignored (i.e.,
the bit is not changed). The tlbie and tlbsync
instructions can be executed only in hypervisor state;
see the descriptions of these instructions on pages 45
and 47.

In general, if software violates a rule that is stated in
the Books using the word “must” (e.g., “this field
must be set to 0”) the results are boundedly unde-
fined. The only exception is that if hypervisor soft-
ware violates such a rule that pertains to the contents
of a hypervisor resource, to accessing storage in real
addressing mode, or to using the tlbie and tlbsync
instructions, the results are undefined, and may
include altering resources belonging to other parti-
tions, causing the system to “hang”, etc.

Chapter 1. Introduction 5

Version 2.01

Programming Note

Because the SPRs listed above are privileged for
writing, an attempt to modify the contents of any
of these SPRs in problem state (MSRPR= 1) using
mtspr causes a Privileged Instruction type
Program exception, and similarly for MSRME.

If the hypervisor sets a breakpoint for an oper-
ating system program without verifying the
requested breakpoint conditions, the breakpoint
could cause an unexpected Data Storage interrupt
when the hypervisor is executing.

6 PowerPC Operating Environment Architecture

Version 2.01

Chapter 2. Branch Processor

2.1 Branch Processor Overview 7
2.2 Branch Processor Registers 7
2.2.1 Machine Status Save/Restore

Register 0 7

2.2.2 Machine Status Save/Restore
Register 1 7

2.2.3 Machine State Register 8
2.3 Branch Processor Instructions . . . 10
2.3.1 System Linkage Instructions . . . 10

2.1 Branch Processor Overview

This chapter describes the details concerning the reg-
isters and the privileged instructions implemented in
the Branch Processor that are not covered in Book I,
PowerPC User Instruction Set Architecture.

2.2 Branch Processor Registers

2.2.1 Machine Status Save/Restore
Register 0

The Machine Status Save/Restore Register 0 (SRR0)
is a 64-bit register. This register is used to save
machine status on interrupts, and to restore machine
status when an rfid instruction is executed.

On interrupt, SRR0 is set to the current or next
instruction address. Thus if the interrupt occurs in
32-bit mode, the high-order 32 bits of SRR0 are set to
0. When rfid is executed, the contents of SRR0 are
copied to the next instruction address (NIA), except
that the high-order 32 bits of the NIA are set to 0
when returning to 32-bit mode.

SRR0 //

0 61 63

Figure 2. Save/Restore Register 0

In general, SRR0 contains either the address of the
instruction that caused the interrupt, or the address of
the instruction to return to after an interrupt is ser-
viced.

2.2.2 Machine Status Save/Restore
Register 1

The Machine Status Save/Restore Register 1 (SRR1)
is a 64-bit register. This register is used to save
machine status on interrupts, and to restore machine
status when an rfid instruction is executed.

SRR1

0 63

Figure 3. Save/Restore Register 1

In general, when an interrupt occurs, bits 33:36 and
42:47 of SRR1 are loaded with information specific to
the interrupt type, and bits 0:32, 37:41, and 48:63 of
the MSR are placed into the corresponding bit posi-
tions of SRR1.

SRR1 bits may be treated as reserved in a given
implementation if they correspond to MSR bits that
are reserved or are treated as reserved in that imple-
mentation and, for SRR1 bits in the range 33:36 and
42:47, they are specified as being set either to 0 or to
an undefined value for all interrupts that set SRR1
(including implementation-dependent setting, e.g. by
the Machine Check interrupt or by implementa-
tion-specific interrupts; see the Book IV for the imple-
mentation).

Chapter 2. Branch Processor 7

Version 2.01

2.2.3 Machine State Register

The Machine State Register (MSR) is a 64-bit register.
This register defines the state of the processor. On
interrupt, the MSR bits are altered in accordance with
Figure 28 on page 54. The MSR can also be modified
by the mtmsr[d] , sc, and rfid instructions. It can be
read by the mfmsr instruction.

MSR

0 63

Figure 4. Machine State Register

Below are shown the bit definitions for the Machine
State Register.

Bit Description

0 Sixty-Four-Bit Mode (SF)

0 The processor is in 32-bit mode.
1 The processor is in 64-bit mode.

1:2 Reserved

3 Hypervisor State (HV)

0 The processor is not in hypervisor state.
1 If MSRPR= 0 the processor is in

hypervisor state; otherwise the processor
is not in hypervisor state.

Programming Note

The privilege state of the processor is
determined by MSRHV and MSRPR, as
follows.

HV PR

0 0 privileged
0 1 problem
1 0 privileged and hypervisor
1 1 problem

MSRHV can be set to 1 only by the System
Call instruction and some interrupts. It
can be set to 0 only by the rfid instruction
and possibly by some interrupts.

4:46 Reserved

47 Interrupt Little-Endian Mode (ILE)

This bit is part of the optional Little-Endian
facility; see the section entitled “Little-Endian”
in Book I.

If the Little-Endian facility is implemented,
when an interrupt occurs this bit is copied to
MSRLE to select the Endian mode for the
context established by the interrupt.

If the Little-Endian facility is not implemented,
this bit is treated as reserved.

48 External Interrupt Enable (EE)

0 External and Decrementer interrupts are
disabled.

1 External and Decrementer interrupts are
enabled.

On POWER4+, this bit also affects whether
Hypervisor Decrementer interrupts are
enabled; see Section 5.5.12 on page 62.

49 Problem State (PR)

0 The processor is in privileged state.
1 The processor is in problem state.

Programming Note

Any instruction or event that sets MSRPR
to 1 also sets MSREE (POWER4+ only),
MSRIR, and MSRDR to 1.

50 Floating-Point Available (FP)

0 The processor cannot execute any float-
ing-point instructions, including floating-
point loads, stores, and moves.

1 The processor can execute floating-point
instructions.

51 Machine Check Interrupt Enable (ME)

0 Machine Check interrupts are disabled.
1 Machine Check interrupts are enabled.

This bit is a hypervisor resource; see Section
1.7, “Logical Partitioning (LPAR)” on page 4.

Programming Note

The only instruction that can alter MSRME
is the rfid instruction.

52 Floating-Point Exception Mode 0 (FE0)

See below.

53 Single-Step Trace Enable (SE)

0 The processor executes instructions
normally.

1 The processor generates a Single-Step
type Trace interrupt after successfully
completing the execution of the next
instruction (unless that instruction is rfid,
which is never traced). Successful com-
pletion means that the instruction caused
no other interrupt.

8 PowerPC Operating Environment Architecture

Version 2.01

54 Branch Trace Enable (BE)

0 The processor executes branch
instructions normally.

1 The processor generates a Branch type
Trace interrupt after completing the exe-
cution of a branch instruction, whether or
not the branch is taken. See Book IV,
PowerPC Implementation Features.

Branch tracing may not be present on all
implementations. If the function is not imple-
mented, this bit is treated as reserved.

55 Floating-Point Exception Mode 1 (FE1)

See below.

56:57 Reserved

58 Instruction Relocate (IR)

0 Instruction address translation is off.
1 Instruction address translation is on.

Programming Note

See the Programming Note in the defi-
nition of MSRPR.

59 Data Relocate (DR)

0 Data address translation is off.
1 Data address translation is on.

Programming Note

See the Programming Note in the defi-
nition of MSRPR.

60 Reserved

61 Performance Monitor Mark (PMM)

This bit is part of the optional Performance
Monitor facility; see Appendix E. If the Per-
formance Monitor facility is not implemented
or does not use this bit, this bit is treated as
reserved.

62 Recoverable Interrupt (RI)

0 Interrupt is not recoverable.
1 Interrupt is recoverable.

Additional information about the use of this
bit is given in Sections 5.4, “Interrupt
Processing” on page 53, 5.5.1, “System Reset
Interrupt” on page 55, and 5.5.2, “Machine
Check Interrupt” on page 55.

63 Little-Endian Mode (LE)

This bit is part of the optional Little-Endian
facility; see the section entitled “Little-Endian”
in Book I.

If the Little-Endian facility is implemented, this
bit has the following meaning.

0 The processor is in Big-Endian mode.
1 The processor is in Little-Endian mode.

If the Little-Endian facility is not implemented,
this bit is treated as reserved.

The Floating-Point Exception Mode bits FE0 and FE1
are interpreted as shown below. For further details
see Book I, PowerPC User Instruction Set
Architecture.

FE0 FE1 Mode
0 0 Ignore Exceptions
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1 1 Precise

Chapter 2. Branch Processor 9

Version 2.01

2.3 Branch Processor Instructions

2.3.1 System Linkage Instructions

These instructions provide the means by which a
program can call upon the system to perform a
service, and by which the system can return from per-
forming a service or from processing an interrupt.

The System Call instruction is described in Book I,
PowerPC User Instruction Set Architecture, but only at
the level required by an application programmer. A
complete description of this instruction appears
below.

System Call SC-form

sc LEV

[POWER mnemonic: svca]

17 /// /// // LEV // 1 /

0 6 11 16 20 27 30 31

SRR0 ←iea CIA + 4
SRR133:36 42:47 ← 0
SRR10:32 37:41 48:63 ← MSR0:32 37:41 48:63
MSR ← new_value (see below)
NIA ← 0x0000_0000_0000_0C00

The effective address of the instruction following the
System Call instruction is placed into SRR0. Bits 0:32,
37:41, and 48:63 of the MSR are placed into the corre-
sponding bits of SRR1, and bits 33:36 and 42:47 of
SRR1 are set to zero.

Then a System Call interrupt is generated. The inter-
rupt causes the MSR to be set as described in Section
5.5, “Interrupt Definitions” on page 54. The setting of
the MSR is affected by the value in the LEV field,
effectively 0 or 1; bits 0:5 are treated as a reserved
field.

The interrupt causes the next instruction to be fetched
from effective address 0x0000_0000_0000_0C00.

This instruction is context synchronizing.

Special Registers Altered:
SRR0 SRR1 MSR

Programming Note

sc serves as both a basic and an extended mne-
monic. The Assembler will recognize an sc mne-
monic with one operand as the basic form, and an
sc mnemonic with no operand as the extended
form. In the extended form the LEV operand is
omitted and assumed to be 0.

Programming Note

If LEV=1 the hypervisor is invoked.

If LPES/LPES1= 1 , executing this instruction with
LEV=1 is the only way that executing an instruc-
tion can cause hypervisor state to be entered.

Because this instruction is not privileged, it is
possible for application software to invoke the
hypervisor. However, such invocation should be
considered a programming error.

10 PowerPC Operating Environment Architecture

Version 2.01

Return From Interrupt Doubleword
XL-form

rfid

19 /// /// /// 18 /

0 6 11 16 21 31

MSR0 ← SRR10 | SRR11
MSR51 ← (MSR3 & SRR151) | ((¬MSR3) & MSR51)
MSR3 ← MSR3 & SRR13
MSR48 ← SRR148 (POWER4 only)
MSR48 ← SRR148 | SRR149 (POWER4+ only)
MSR58 ← SRR158 | SRR149
MSR59 ← SRR159 | SRR149
MSR1:2 4:32 37:41 49:50 52:57 60:63 ← SRR11:2 4:32 37:41 49:50 52:57 60:63
NIA ←iea SRR00:61 | | 0b00

The result of ORing bits 0 and 1 of SRR1 is placed
into MSR0. If MSR3= 1 then bits 3 and 51 of SRR1 are
placed into the corresponding bits of the MSR. On
POWER4, bit 48 of SRR1 is placed into MSR48. On
POWER4+, the result of ORing bits 48 and 49 of SRR1
is placed into MSR48. The result of ORing bits 58 and
49 of SRR1 is placed into MSR58. The result of ORing
bits 59 and 49 of SRR1 is placed into MSR59. Bits 1:2,
4:32, 37:41, 48:50, 52:57, and 60:63 of SRR1 are placed
into the corresponding bits of the MSR.

If the new MSR value does not enable any pending
exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address
SRR00:61 | | 0b00 (when SF=1 in the new MSR value)
or 320 | | SRR032:61 | | 0b00 (when SF=0 in the new
MSR value). If the new MSR value enables one or
more pending exceptions, the interrupt associated
with the highest priority pending exception is gener-
ated; in this case the value placed into SRR0 by the
interrupt processing mechanism (see Section 5.4,
“Interrupt Processing” on page 53) is the address of
the instruction that would have been executed next
had the interrupt not occurred.

This instruction is privileged and context synchro-
nizing.

Special Registers Altered:
MSR

Programming Note

If this instruction sets MSRPR to 1, it also sets
MSREE (POWER4+ only), MSRIR, and MSRDR to 1.

This instruction is the only instruction that can be
used to set MSRHV to 0 on all implementations.
This instruction is the only instruction that can be
used to alter MSRME. These bits can be altered
by this instruction only if it is executed in
hypervisor state.

Chapter 2. Branch Processor 11

Version 2.01

12 PowerPC Operating Environment Architecture

Version 2.01

Chapter 3. Fixed-Point Processor

3.1 Fixed-Point Processor Overview . . 13
3.2 Special Purpose Registers 13
3.3 Fixed-Point Processor Registers . . 13
3.3.1 Data Address Register 13
3.3.2 Data Storage Interrupt Status

Register 14
3.3.3 Software-Use SPRs 14

3.3.4 Control Register 14
3.3.5 Processor Version Register . . . 15
3.3.6 Processor Identification Register 15
3.4 Fixed-Point Processor Instructions 16
3.4.1 Move To/From System Register

Instructions 16

3.1 Fixed-Point Processor
Overview

This chapter describes the details concerning the reg-
isters and the privileged instructions implemented in
the Fixed-Point Processor that are not covered in
Book I, PowerPC User Instruction Set Architecture.

3.2 Special Purpose Registers

Special Purpose Registers (SPRs) are read and
written using the mfspr (page 18) and mtspr (page 17)
instructions. Most SPRs are defined in other chapters
of this book; see the index to locate those definitions.

3.3 Fixed-Point Processor
Registers

3.3.1 Data Address Register

The Data Address Register (DAR) is a 64-bit register
that is set by the Machine Check, Data Storage, Data
Segment, and Alignment interrupts; see Sections
5.5.2, 5.5.3, 5.5.4, and 5.5.8. In general, when one of
these interrupts occurs the DAR is set to an effective
address associated with the storage access that
caused the interrupt, with the high-order 32 bits of the
DAR set to 0 if the interrupt occurs in 32-bit mode.

DAR

0 63

Figure 5. Data Address Register

Chapter 3. Fixed-Point Processor 13

Version 2.01

3.3.2 Data Storage Interrupt Status
Register

The Data Storage Interrupt Status Register (DSISR) is
a 32-bit register that is set by the Machine Check,
Data Storage, Data Segment, and Alignment inter-
rupts; see Sections 5.5.2, 5.5.3, 5.5.4, and 5.5.8. In
general, when one of these interrupts occurs the
DSISR is set to indicate the cause of the interrupt.

DSISR

0 31

Figure 6. Data Storage Interrupt Status Register

DSISR bits may be treated as reserved in a given
implementation if they are specified as being set
either to 0 or to an undefined value for all interrupts
that set the DSISR (including implementa-
tion-dependent setting, e.g. by the Machine Check
interrupt or by implementation-specific interrupts; see
the Book IV for the implementation).

3.3.3 Software-Use SPRs

SPRG0 through SPRG3 are 64-bit registers provided
for use by privileged software.

SPRG0

SPRG1

SPRG2

SPRG3

0 63

Figure 7. Software-use SPRs

The following list describes the conventional uses of
SPRG0 through SPRG3.

SPRG0
Hypervisor software may keep a unique real
address in this register to identify an area of
storage reserved for use by the hypervisor first-
level interrupt handler. This area must be unique
for each processor in the system.

SPRG0 is a hypervisor resource; see Section 1.7,
“Logical Partitioning (LPAR)” on page 4.

SPRG1
This register may be used as a scratch register by
the first-level interrupt handler to save the contents
of a GPR. That GPR then can be loaded from
SPRG0 and used as a base register to save other
GPRs to storage.

SPRG2
This register may be used by the operating system
as needed.

SPRG3
This register may be used by the operating system
as needed.

It is optional whether SPRG3 can be read in
problem state. On implementations that provide
this ability, SPRG3 may be used for information,
such as a “thread-id”, that the operating system
makes available to application programs.

Programming Note

On implementations for which SPRG3 can be
read in problem state, operating systems must
ensure that no sensitive data are left in SPRG3
when a problem state program is dispatched,
and operating systems for secure systems must
ensure that SPRG3 cannot be used to imple-
ment a “covert channel” between problem
state programs. These requirements can be
satisfied by clearing SPRG3 before passing
control to a program that will run in problem
state.

On such implementations, SPRG3 can be used
“orthogonally” for both the purpose described
for it above and the purpose described for
SPRG1. If this is done, SPRG1 can be used for
some other purpose.

3.3.4 Control Register

The Control Register (CTRL) is a 32-bit register that
controls an external I/O pin. This signal may be used
for the following:

■ driving the RUN Light on a system operator panel

■ External interrupt routing

■ Performance Monitor Counter incrementing (see
Appendix E, “Example Performance Monitors
(Optional)” on page 91)

/// RUN

0 31

Bit Name Description
31 RUN Run state bit

All other fields are implementation-dependent.

Figure 8. Control Register

The CTRL RUN can be used by the operating system
to indicate when the processor is doing useful work.

The contents of the CTRL can be written by the mtspr
instruction and read by the mfspr instruction. Write
access to the CTRL is privileged. Reads can be per-
formed in privileged or problem state.

14 PowerPC Operating Environment Architecture

Version 2.01

3.3.5 Processor Version Register

The Processor Version Register (PVR) is a 32-bit read-
only register that contains a value identifying the
version and revision level of the processor. The con-
tents of the PVR can be copied to a GPR by the mfspr
instruction. Read access to the PVR is privileged;
write access is not provided.

Version Revision

0 16 31

Figure 9. Processor Version Register

The PVR distinguishes between processors that differ
in attributes that may affect software. It contains two
fields.

Version A 16-bit number that identifies the
version of the processor. Different
version numbers indicate major differ-
ences between processors, such as which
optional facilities and instructions are
supported.

Revision A 16-bit number that distinguishes
between implementations of the version.
Different revision numbers indicate minor
differences between processors having
the same version number, such as clock
rate and Engineering Change level.

Version numbers are assigned by the PowerPC Archi-
tecture process. Revision numbers are assigned by
an implementation-defined process.

3.3.6 Processor Identification
Register

The Processor Identification Register (PIR) is a 32-bit
register that contains a value that can be used to dis-
tinguish the processor from other processors in the
system. The contents of the PIR can be copied to a
GPR by the mfspr instruction. Read access to the PIR
is privileged; write access, if provided, is described in
the Book IV, PowerPC Implementation Features docu-
ment for the implementation.

PROCID

0 31

Bits Name Description
0:31 PROCID Processor ID

Figure 10. Processor Identification Register

The means by which the PIR is initialized are imple-
mentation-dependent (see Book IV).

The PIR is a hypervisor resource; see Section 1.7,
“Logical Partitioning (LPAR)” on page 4.

Chapter 3. Fixed-Point Processor 15

Version 2.01

3.4 Fixed-Point Processor Instructions

3.4.1 Move To/From System Register Instructions

The Move To Special Purpose Register and Move
From Special Purpose Register instructions are
described in Book I, PowerPC User Instruction Set
Architecture, but only at the level available to an
application programmer. For example, no mention is
made there of registers that can be accessed only in
privileged state. The descriptions of these
instructions given below extend the descriptions given
in Book I, but do not list Special Purpose Registers
that are defined in Book IV, PowerPC Implementation
Features. In the descriptions of these instructions
given below, the “defined” SPR numbers are the SPR

numbers shown in the figure for the instruction and
the SPR numbers defined in Book IV for the instruc-
tion, and similarly for “defined” registers.

Extended mnemonics

Extended mnemonics are provided for the mtspr and
mfspr instructions so that they can be coded with the
SPR name as part of the mnemonic rather than as a
numeric operand. See Appendix A, “Assembler
Extended Mnemonics” on page 83.

16 PowerPC Operating Environment Architecture

Version 2.01

Move To Special Purpose Register
XFX-form

mtspr SPR,RS

31 RS spr 467 /
0 6 11 21 31

n ← spr5:9 | | spr0:4
if length(SPREG(n)) = 64 then

SPREG(n) ← (RS)
else

SPREG(n) ← (RS)32:63

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 11. The contents of reg-
ister RS are placed into the designated Special
Purpose Register. For Special Purpose Registers that
are 32 bits long, the low-order 32 bits of RS are
placed into the SPR.

For this instruction, SPRs TBL and TBU are treated as
separate 32-bit registers; setting one leaves the other
unaltered.

spr0= 1 if and only if writing the register is privileged.
Execution of this instruction specifying a defined and
privileged register when MSRPR= 1 causes a Privi-
leged Instruction type Program interrupt. Execution of
this instruction specifying a hypervisor resource when
MSRHV PR = 0b00 either has no effect or causes a
Privileged Instruction type Program interrupt (see
Section 1.7 on page 4).

Execution of this instruction specifying an SPR
number that is not defined for the implementation
causes either an Illegal Instruction type Program
interrupt or one of the following.

■ if spr0= 0 : boundedly undefined results
■ if spr0= 1 :

— if MSRPR= 1 : Privileged Instruction type
Program interrupt

— if MSRPR= 0 and MSRHV= 0 : boundedly unde-
fined results

— if MSRPR= 0 and MSRHV= 1 : undefined
results

If the SPR field contains a value that is shown in
Figure 11 but corresponds to an optional Special
Purpose Register that is not provided by the imple-
mentation, the effect of executing this instruction is
the same as if the SPR number were not shown in the
figure.

Special Registers Altered:
See Figure 11

Compiler and Assembler Note

For the mtspr and mfspr instructions, the SPR
number coded in assembler language does not
appear directly as a 10-bit binary number in the
instruction. The number coded is split into two
5-bit halves that are reversed in the instruction,
with the high-order 5 bits appearing in bits 16:20
of the instruction and the low-order 5 bits in bits
11:15. This maintains compatibility with POWER
SPR encodings, in which these two instructions
have only a 5-bit SPR field occupying bits 11:15.

SPR1 Register Privi-
decimal spr5:9 spr0:4 Name leged

1 00000 00001 XER no
8 00000 01000 LR no
9 00000 01001 CTR no

18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes
25 00000 11001 SDR1 6 hypv
26 00000 11010 SRR0 yes
27 00000 11011 SRR1 yes
29 00000 11101 ACCR yes

152 00100 11000 CTRL yes
272 01000 10000 SPRG0 6 hypv
273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes
275 01000 10011 SPRG3 yes
280 01000 11000 ASR 3 yes
282 01000 11010 EAR 2,6 hypv
284 01000 11100 TBL 6 hypv
285 01000 11101 TBU 6 hypv
310 01001 10110 HDEC 6,7 hypv

784-799 11000 1xxxx perf_mon4 yes
1013 11111 10101 DABR 5,6 hypv

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Part of the optional External Control facility
(see Section 8.1).

3 Part of the optional “Bridge” facility
(see Section 9.1).

4 Part of the optional Performance Monitor
facility (see Appendix E).

5 Part of the Data Address Breakpoint
mechanism (see Section 4.7).

6 This register is a hypervisor resource, and
can be modified by this instruction only in
hypervisor state (see Section 1.7).

7 POWER4+ only.

All SPR numbers not shown above, or in
Figure 12, or in Book IV are reserved.

Figure 11. SPR encodings for mtspr

Programming Note

For a discussion of software synchronization
requirements when altering certain Special
Purpose Registers, see Chapter 7, “Synchroniza-
tion Requirements for Context Alterations” on
page 71.

Compatibility Note

For a discussion of POWER compatibility with
respect to SPR numbers not shown in the instruc-
tion descriptions for mtspr and mfspr, see the
appendix entitled “Incompatibilities with the
POWER Architecture” in Book I, PowerPC User
Instruction Set Architecture.

Chapter 3. Fixed-Point Processor 17

Version 2.01

Move From Special Purpose Register
XFX-form

mfspr RT,SPR

31 RT spr 339 /

0 6 11 21 31

n ← spr5:9 | | spr0:4
if length(SPREG(n)) = 64 then

RT ← SPREG(n)
else

RT ← 320 | | SPREG(n)

The SPR field denotes a Special Purpose Register,
encoded as shown in Figure 12. The contents of the
designated Special Purpose Register are placed into
register RT. For Special Purpose Registers that are
32 bits long, the low-order 32 bits of RT receive the
contents of the Special Purpose Register and the
high-order 32 bits of RT are set to zero.

spr0= 1 if and only if reading the register is privi-
leged. Execution of this instruction specifying a
defined and privileged register when MSRPR= 1
causes a Privileged Instruction type Program inter-
rupt.

Execution of this instruction specifying an SPR
number that is not defined for the implementation
causes either an Illegal Instruction type Program
interrupt or one of the following.

■ if spr0= 0 : boundedly undefined results
■ if spr0= 1 :

— if MSRPR= 1 : Privileged Instruction type
Program interrupt

— if MSRPR= 0 : boundedly undefined results

If the SPR field contains a value that is shown in
Figure 12 but corresponds to an optional Special
Purpose Register that is not provided by the imple-
mentation, the effect of executing this instruction is
the same as if the SPR number were not shown in the
figure.

Special Registers Altered:
None

Note

See the Notes that appear with mtspr.

SPR1 Register Privi-
decimal spr5:9 spr0:4 Name leged

1 00000 00001 XER no
8 00000 01000 LR no
9 00000 01001 CTR no

18 00000 10010 DSISR yes
19 00000 10011 DAR yes
22 00000 10110 DEC yes
25 00000 11001 SDR1 yes
26 00000 11010 SRR0 yes
27 00000 11011 SRR1 yes
29 00000 11101 ACCR yes

136 00100 01000 CTRL no

272 01000 10000 SPRG0 yes
273 01000 10001 SPRG1 yes
274 01000 10010 SPRG2 yes

259,275 01000 n0011 SPRG3 6,7 no,yes
280 01000 11000 ASR 3 yes
282 01000 11010 EAR 2 yes
287 01000 11111 PVR yes
310 01001 10110 HDEC 8 yes

768-799 11000 nxxxx perf_mon4,7 no,yes

1013 11111 10101 DABR 5 yes
1023 11111 11111 PIR yes

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 Part of the optional External Control facility
(see Section 8.1).

3 Part of the optional “Bridge” facility
(see Section 9.1).

4 Part of the optional Performance Monitor
facility (see Appendix E).

5 Part of the Data Address Breakpoint
mechanism (see Section 4.7).

6 The ability to read SPRG3 in problem state is
optional (see Section 3.3.3). If this ability is
not provided by the implementation, SPR
number 259 is treated as if it corresponded to
an optional SPR that is not provided by the
implementation.

7 Reading the SPR is privileged if and only if
n=1 .

8 POWER4+ only.

Moving from the Time Base (TB and TBU) is
accomplished with the mftb instruction,
described in Book II.

All SPR numbers not shown above, or in
Figure 11, or in Book IV are reserved.

Figure 12. SPR encodings for mfspr

18 PowerPC Operating Environment Architecture

Version 2.01

Move To Machine State Register
Doubleword X-form

mtmsrd RS,L

31 RS /// L /// 178 /

0 6 11 15 16 21 31

if L = 0 then
MSR0 ← (RS)0 | (RS)1
MSR48 ← (RS)48 (POWER4 only)
MSR48 ← (RS)48 | (RS)49 (POWER4+ only)
MSR58 ← (RS)58 | (RS)49
MSR59 ← (RS)59 | (RS)49
MSR1:2 4:47 49:50 52:57 60:63 ← (RS)1:2 4:47 49:50 52:57 60:63

else
MSR48 62 ← (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0 :
The result of ORing bits 0 and 1 of register RS is
placed into MSR0. On POWER4, bit 48 of register
RS is placed into MSR48. On POWER4+, the
result of ORing bits 48 and 49 of register RS is
placed into MSR48. The result of ORing bits 58
and 49 of register RS is placed into MSR58. The
result of ORing bits 59 and 49 of register RS is
placed into MSR59. Bits 1:2, 4:47, 49:50, 52:57, and
60:63 of register RS are placed into the corre-
sponding bits of the MSR.

L=1 :
Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR. The remaining bits
of the MSR are unchanged.

This instruction is privileged.

If L = 0 this instruction is context synchronizing except
with respect to alterations to the LE bit; see
Chapter 7, “Synchronization Requirements for
Context Alterations” on page 71. If L = 1 this instruc-
tion is execution synchronizing; in addition, the alter-
ations of the EE and RI bits take effect as soon as the
instruction completes. Thus if MSREE= 0 and an
External or Decrementer exception is pending, exe-
cuting an mtmsrd instruction that sets MSREE to 1 will
cause the External or Decrementer interrupt to occur
before the next instruction is executed, if no higher
priority exception exists (see Section 5.8, “Interrupt
Priorities” on page 65).

Special Registers Altered:
MSR

Except in the mtmsrd instruction description in this
section, references to “ mtmsrd” in Books I - III imply
either L value unless otherwise stated or obvious
from context (e.g., a reference to an mtmsrd instruc-

tion that modifies an MSR bit other than the EE or RI
bit implies L=0) .

Programming Note

Warning: Processors that comply with versions of
the architecture that precede Version 2.01 ignore
the L field. These processors set the MSR as if L
were 0, and perform synchronization as if L were
1. Therefore software that uses mtmsrd and will
run on such processors must obey the following
rules.

1. If L=1 , the contents of bits of register RS
other than bits 48 and 62 must be such that if
L were 0 the instruction would not alter the
contents of the corresponding MSR bits.

2. If L = 0 and the instruction alters the contents
of any of the MSR bits listed below, the
instruction must be followed by a context syn-
chronizing instruction or event in order to
ensure that the context alteration caused by
the mtmsrd instruction has taken effect on
such processors; see Chapter 7.

SF, PR, FP, FE0, FE1, SE, BE, US, IR, DR

To obtain the best performance on processors
that comply with Version 2.01 of the architec-
ture and with subsequent versions, if the
context synchronizing instruction is isync the
isync should immediately follow the mtmsrd.
(Some such processors treat an isync instruc-
tion that immediately follows an mtmsrd
instruction having L = 0 as a no-op, thereby
avoiding the performance penalty of a second
context synchronization.)

Programming Note

If this instruction sets MSRPR to 1, it also sets
MSREE (POWER4+ only), MSRIR, and MSRDR to 1.

This instruction does not alter MSRHV or MSRME.

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L = 1 should be used.

Programming Note

For a discussion of software synchronization
requirements when altering certain MSR bits, see
Chapter 7.

Programming Note

mtmsrd serves as both a basic and an extended
mnemonic. The Assembler will recognize an
mtmsrd mnemonic with two operands as the basic
form, and an mtmsrd mnemonic with one operand
as the extended form. In the extended form the L
operand is omitted and assumed to be 0.

Chapter 3. Fixed-Point Processor 19

Version 2.01

Move From Machine State Register
X-form

mfmsr RT

31 RT /// /// 83 /

0 6 11 16 21 31

RT ← MSR

The contents of the MSR are placed into register RT.

This instruction is privileged.

Special Registers Altered:
None

20 PowerPC Operating Environment Architecture

Version 2.01

Chapter 4. Storage Control

4.1 Storage Addressing 21
4.2 Storage Model 22
4.2.1 Storage Exceptions 22
4.2.2 Instruction Fetch 23
4.2.2.1 Implicit Branch 23
4.2.2.2 Address Wrapping Combined

with Changing MSR Bit SF 23
4.2.3 Data Access 23
4.2.4 Performing Operations

Out-of-Order 23
4.2.4.1 Guarded Storage 24
4.2.4.2 Out-of-Order Accesses to

Guarded Storage 24
4.2.5 32-Bit Mode 25
4.2.6 Real Addressing Mode 25
4.2.6.1 Offset Real Mode Address . . . 25
4.2.6.2 Storage Control Attributes for

Real Addressing Mode and for Implicit
Storage Accesses 26

4.2.7 Address Ranges Having Defined
Uses . 27

4.2.8 Invalid Real Address 27
4.3 Address Translation Overview . . . 28
4.4 Virtual Address Generation 28
4.4.1 Segment Lookaside Buffer (SLB) 29
4.4.2 SLB Search 29
4.5 Virtual to Real Translation 30

4.5.1 Page Table 31
4.5.2 Storage Description Register 1 . 32
4.5.3 Page Table Search 33
4.6 Data Address Compare 34
4.7 Data Address Breakpoint 35
4.8 Storage Control Bits 35
4.8.1 Storage Control Bit Restrictions . 36
4.8.2 Altering the Storage Control Bits 36
4.9 Reference and Change Recording 37
4.10 Storage Protection 39
4.10.1 Storage Protection, Address

Translation Enabled 39
4.10.2 Storage Protection, Address

Translation Disabled 39
4.11 Storage Control Instructions . . . 40
4.11.1 Cache Management Instructions 40
4.11.2 Synchronize Instruction 40
4.11.3 Lookaside Buffer Management . 40
4.11.3.1 SLB Management Instructions 41
4.11.3.2 TLB Management Instructions

(Optional) 45
4.12 Page Table Update

Synchronization Requirements 48
4.12.1 Page Table Updates 48
4.12.1.1 Adding a Page Table Entry . . 50
4.12.1.2 Modifying a Page Table Entry 50
4.12.1.3 Deleting a Page Table Entry . 50

4.1 Storage Addressing

A program references storage using the effective
address computed by the processor when it executes
a Load, Store, Branch, or Cache Management instruc-
tion, or when it fetches the next sequential instruction.
The effective address is translated to a real address
according to procedures described in Section 4.3,
“Address Translation Overview” on page 28 and fol-

lowing sections. The real address is what is pre-
sented to the storage subsystem. See Figure 13 on
page 28.

For a complete discussion of storage addressing and
effective address calculation, see the section entitled
“Storage Addressing” in Book I, PowerPC User
Instruction Set Architecture.

Chapter 4. Storage Control 21

Version 2.01

Storage Control Overview

■ Real address space size is 2m bytes, m≤ 62; see
Note 1.

■ Real page size is 212 bytes (4 KB).

■ Effective address space size is 264 bytes.

■ An effective address is translated to a virtual
address via the Segment Lookaside Buffer (SLB).

— Virtual address space size is 2n bytes,
65≤ n≤ 80; see Note 2.

— Segment size is 228 bytes (256 MB).
— Number of virtual segments is 2n− 28; see

Note 2.
— Virtual page size is 2p bytes, 12≤ p≤ 28; two

sizes are supported simultaneously, 4 KB
(p=12) and a larger size; see Note 3.

■ A virtual address is translated to a real address
via the Page Table.

Notes:

1. The value of m is implementation-dependent
(subject to the maximum given above). When
used to address storage, the high-order 62− m
bits of the “62-bit” real address must be zeros.

2. The value of n is implementation-dependent
(subject to the range given above). In references
to 80-bit virtual addresses elsewhere in this Book,
the high-order 80− n bits of the “80-bit” virtual
address are assumed to be zeros.

3. The value of p for the larger virtual page size is
implementation-dependent (subject to the range
given above).

4.2 Storage Model

The storage model provides the following features.

1. The architecture allows the storage implementa-
tions to take advantage of the performance bene-
fits of weak ordering of storage accesses between
processors or between processors and I/O
devices.

2. In general, storage accesses appear to be per-
formed in program order with respect to the

processor performing them but may be performed
in different orders with respect to other
processors and mechanisms. Exceptions to this
rule are stated in the appropriate sections.

3. The architecture provides instructions that allow
the programmer to ensure a consistent and
ordered storage state.

dcbf lwarx
dcbst stdcx.
eieio stwcx.
icbi Synchronize
isync tlbsync
ldarx

4. Storage consistency between processors, and
between a processor and an I/O device, is con-
trolled by software using the “WIM” storage
control bits (see Section 4.8). These bits allow
software to control whether a given storage
location has any of the following attributes.

■ Write Through Required (W)
■ Caching Inhibited (I)
■ Memory Coherence Required (M)

4.2.1 Storage Exceptions

A storage exception is an exception that causes an
Instruction Storage interrupt, an Instruction Segment
interrupt, a Data Storage interrupt, a Data Segment
interrupt, or an Alignment interrupt. Attempting to
fetch or execute an instruction causes a storage
exception if certain conditions apply. Such conditions
include the following.

■ The appropriate relocate bit in the MSR is set to
1 and the effective address cannot be translated
to a real address.

■ The access is not permitted by the storage pro-
tection mechanism.

■ The access causes a Data Address Compare
match or a Data Address Breakpoint match.

In certain cases a storage exception may result in the
“restart” of (re-execution of at least part of) a Load or
Store instruction. See the section entitled “Instruction
Restart” in Book II, PowerPC Virtual Environment
Architecture, and Section 5.6, “Partially Executed
Instructions” on page 63 in this Book.

22 PowerPC Operating Environment Architecture

Version 2.01

4.2.2 Instruction Fetch

Instructions are fetched under control of MSRIR.

MSR IR= 0

The effective address of the instruction is inter-
preted as described in Section 4.2.6, “Real
Addressing Mode” on page 25.

MSR IR= 1

The effective address of the instruction is trans-
lated by the Address Translation mechanism. (If it
cannot be translated, a storage exception occurs.)

4.2.2.1 Implicit Branch

Explicitly altering certain MSR bits (using mtmsr[d]),
or explicitly altering SLB entries, Page Table entries,
or certain System Registers, may have the side effect
of changing the addresses, effective or real, from
which the current instruction stream is being fetched.
This side effect is called an implicit branch. For
example, an mtmsrd instruction that changes the
value of MSRSF may change the effective addresses
from which the current instruction stream is being
fetched. The MSR bits and System Registers for
which alteration can cause an implicit branch are indi-
cated as such in Chapter 7, “Synchronization
Requirements for Context Alterations” on page 71.
Implicit branches are not supported by the PowerPC
Architecture. If an implicit branch occurs, the results
are boundedly undefined.

4.2.2.2 Address Wrapping Combined
with Changing MSR Bit SF

If an mtmsrd instruction at address 232 − 4 is exe-
cuted and changes the state of the SF bit, the effec-
tive address of the next sequential instruction is
undefined.

Programming Note

In the case described in the preceding paragraph,
if an interrupt occurs immediately after the
mtmsrd instruction is executed, the contents of
SRR0 are undefined.

4.2.3 Data Access

Data accesses are controlled by MSRDR.

MSRDR= 0

The effective address of the data is interpreted as
described in Section 4.2.6, “Real Addressing
Mode” on page 25.

MSRDR= 1

The effective address of the data is translated by
the Address Translation mechanism. (If it cannot
be translated, a storage exception occurs.)

4.2.4 Performing Operations
Out-of-Order

An operation is said to be performed “in-order” if, at
the time that it is performed, it is known to be
required by the sequential execution model. An oper-
ation is said to be performed “out-of-order” if, at the
time that it is performed, it is not known to be
required by the sequential execution model. Oper-
ations are performed out-of-order by the processor on
the expectation that the results will be needed by an
instruction that will be required by the sequential exe-
cution model. Whether the results are really needed
is contingent on everything that might divert the
control flow away from the instruction, such as
Branch, Trap, System Call, and rfid instructions, and
interrupts, and on everything that might change the
context in which the instruction is executed.

Typically, the processor performs operations out-of-
order when it has resources that would otherwise be
idle, so the operation incurs little or no cost. If subse-
quent events such as branches or interrupts indicate
that the operation would not have been performed in
the sequential execution model, the processor aban-
dons any results of the operation (except as described
below).

In the remainder of this section, including its sub-
sections, “ Load instruction” includes the Cache Man-
agement and other instructions that are stated in the
instruction descriptions to be “treated as a Load” , and
similarly for “ Store instruction”.

A data access that is performed out-of-order may cor-
respond to an arbitrary Load or Store instruction (e.g.,
a Load or Store instruction that is not in the instruc-
tion stream being executed). Similarly, an instruction
fetch that is performed out-of-order may be for an
arbitrary instruction (e.g., the aligned word at an arbi-
trary location in instruction storage).

Most operations can be performed out-of-order, as
long as the machine appears to follow the sequential
execution model. Certain out-of-order operations are
restricted, as follows.

Chapter 4. Storage Control 23

Version 2.01

■ Stores

Stores are not performed out-of-order (even if the
Store instructions that caused them were exe-
cuted out-of-order). Moreover, address trans-
lations associated with instructions preceding the
corresponding Store instruction are not per-
formed again after the store has been performed.

Programming Note

The fact that address translations associated
with preceding instructions are not performed
again after the store has been performed
permits Page Table Entries to be updated
without a preceding context synchronizing
operation; see Section 4.12, “Page Table
Update Synchronization Requirements” on
page 48. (These address translations must
have been performed before the store was
determined to be required by the sequential
execution model, because they might have
caused an exception.)

■ Accessing Guarded Storage

The restrictions for this case are given in Section
4.2.4.2.

The only permitted side effects of performing an oper-
ation out-of-order are the following.

■ A Machine Check or Checkstop that could be
caused by in-order execution may occur out-of-
order, except as described in Section 8.2 if the
optional Real Mode Storage Control facility is
implemented.

■ Reference and Change bits may be set as
described in Section 4.9, “Reference and Change
Recording” on page 37.

■ Non-Guarded storage locations that could be
fetched into a cache by in-order fetching or exe-
cution of an arbitrary instruction may be fetched
out-of-order into that cache.

4.2.4.1 Guarded Storage

Storage is said to be “well-behaved” if the corre-
sponding real storage exists and is not defective, and
if the effects of a single access to it are indistinguish-
able from the effects of multiple identical accesses to
it. Data and instructions can be fetched out-of-order
from well-behaved storage without causing undesired
side effects.

Storage is said to be Guarded if either of the following
conditions is satisfied.

■ MSR bit IR or DR is 1 for instruction fetches or
data accesses respectively, and the G bit is 1 in
the relevant Page Table Entry.

■ MSR bit IR or DR is 0 for instruction fetches or
data accesses respectively, MSRHV= 1 , and the
optional Real Mode Storage Control facility (see

Section 8.2) is not implemented. In this case all
of storage is Guarded for the corresponding
accesses.

In general, storage that is not well-behaved should be
Guarded. Because such storage may represent a
control register on an I/O device or may include
locations that do not exist, an out-of-order access to
such storage may cause an I/O device to perform
unintended operations or may result in a Machine
Check.

The following rules apply to in-order execution of
Load and Store instructions for which the first byte of
the storage operand is in storage that is both Caching
Inhibited and Guarded.

■ Load or Store instruction that causes an atomic
access

If any portion of the storage operand has been
accessed and an External, Decrementer, or
Imprecise mode Floating-Point Enabled exception
is pending, the instruction completes before the
interrupt occurs.

■ Load or Store instruction that causes an Align-
ment exception, or that causes a Data Storage
exception for reasons other than Data Address
Compare match or Data Address Breakpoint
match

The portion of the storage operand that is in
Caching Inhibited and Guarded storage is not
accessed.

(The corresponding rules for instructions that
cause a Data Address Compare match or Data
Address Breakpoint match are given in Sections
4.6 and 4.7 respectively.)

4.2.4.2 Out-of-Order Accesses to
Guarded Storage

In general, Guarded storage is not accessed out-of-
order. The only exceptions to this rule are the fol-
lowing.

Load Instruction

If a copy of any byte of the storage operand is in a
cache then that byte may be accessed in the cache or
in main storage.

Instruction Fetch

If MSRIR= 0 then an instruction may be fetched if any
of the following conditions are met.

1. The instruction is in a cache. In this case it may
be fetched from the cache or from main storage.

2. The instruction is in a real page from which an
instruction has previously been fetched, except
that if that previous fetch was based on condition
1 then the previously fetched instruction must
have been in the instruction cache.

24 PowerPC Operating Environment Architecture

Version 2.01

3. The instruction is in the same real page as an
instruction that is required by the sequential exe-
cution model, or is in the real page immediately
following such a page.

Programming Note

Software should ensure that only well-behaved
storage is copied into a cache, either by
accessing as Caching Inhibited (and Guarded) all
storage that may not be well-behaved, or by
accessing such storage as not Caching Inhibited
(but Guarded) and referring only to cache blocks
that are well-behaved.

If a real page contains instructions that will be
executed when MSRIR= 0 and MSRHV= 1 , soft-
ware should ensure that this real page and the
next real page contain only well-behaved storage
(or, if the optional Real Mode Storage Control
facility is implemented, that this real page is not
Guarded).

4.2.5 32-Bit Mode

The computation of the 64-bit effective address is
independent of whether the processor is in 32-bit
mode or 64-bit mode. In 32-bit mode (MSRSF=0) , the
high-order 32 bits of the 64-bit effective address are
treated as zeros for the purpose of addressing
storage. This applies to both data accesses and
instruction fetches. It applies independent of whether
address translation is enabled or disabled. This trun-
cation of the effective address is the only respect in
which storage accesses in 32-bit mode differ from
those in 64-bit mode.

Programming Note

Treating the high-order 32 bits of the effective
address as zeros effectively truncates the 64-bit
effective address to a 32-bit effective address
such as would have been generated on a 32-bit
implementation of the PowerPC Architecture.
Thus, for example, the ESID in 32-bit mode is the
high-order four bits of this truncated effective
address; the ESID thus lies in the range 0-15.
When address translation is enabled, these four
bits would select a Segment Register on a 32-bit
implementation of the PowerPC Architecture. The
SLB entries that translate these 16 ESIDs can be
used to emulate these Segment Registers.

4.2.6 Real Addressing Mode

A storage access is said to be performed in “real
addressing mode” if the access is an instruction fetch
and instruction address translation is disabled
(MSRIR=0) , or if the access is a data access and data
address translation is disabled (MSRDR=0) . Storage
accesses in real addressing mode are performed in a
manner that depends on the contents of MSRHV,
LPES/LPES1, and the RMLR and RMOR (see Section
1.7, “Logical Partitioning (LPAR)” on page 4), as
described below. In all cases, bits 0:1 of the effective
address are ignored and, on implementations that
support a real address size of only m bits, m< 62, bits
2:63− m of the effective address may be ignored.

■ If MSRHV= 1 , bits 2:63 of the effective address
are used as the real address for the access.

■ If MSRHV= 0 and LPES/LPES1= 0 the access
causes a storage exception as described in
Section 4.10.2, “Storage Protection, Address
Translation Disabled” on page 39.

■ If MSRHV= 0 and LPES/LPES1= 1 the Offset Real
Mode Address mechanism, described in Section
4.2.6.1, controls the access.

4.2.6.1 Offset Real Mode Address

If MSRHV= 0 and LPES/LPES1= 1 , the access is con-
trolled by the contents of the Real Mode Limit Reg-
ister and Real Mode Offset Register, as follows.

Real Mode Limit Register (RMLR)

If bits 2:63 of effective address for the access are
greater than or equal to the value (limit) represented
by the contents of the RMLR, the access causes a
storage exception (see Section 4.10.2). The RMLR
supports effective address limits that are powers of 2.
The number and values of the limits supported are
implementation-dependent.

Real Mode Offset Register (RMOR)

If the access is permitted by the RMLR, the effective
address for the access is ORed with the offset repres-
ented by the contents of the RMOR and the low-order
m bits of the result are used as the real address for
the access. The number and values of the offsets
supported are implementation-dependent.

Chapter 4. Storage Control 25

Version 2.01

Programming Note

The offset specified by the RMOR should be a
non-zero multiple of the limit specified by the
RMLR. If these registers are set thus, ORing the
effective address with the offset produces a result
that is equivalent to adding the effective address
and the offset. (The offset must not be zero,
because real page 0 contains the fixed interrupt
vectors and real pages 1 and 2 may be used for
implementation-specific purposes; see Section
4.2.7, “Address Ranges Having Defined Uses” on
page 27.)

4.2.6.2 Storage Control Attributes for
Real Addressing Mode and for Implicit
Storage Accesses

Data accesses and instruction fetches in real
addressing mode when the processor is in hypervisor
state are performed as though all of storage had the
following storage control attributes, except as modi-
fied by the optional Real Mode Storage Control facility
(see Section 8.2) if that facility is implemented. (The
storage control attributes are defined in Book II,
PowerPC Virtual Environment Architecture .)

■ not Write Through Required
■ not Caching Inhibited, for instruction fetches
■ not Caching Inhibited, for data accesses if the

Real Mode Caching Inhibited bit is set to 0;
Caching Inhibited, for data accesses if the Real
Mode Caching Inhibited bit is set to 1

■ Memory Coherence Required, for data accesses
■ Guarded

Storage accesses in real addressing mode when the
processor is not in hypervisor state are performed as
though all of storage had the following storage control
attributes. (Such accesses use the Offset Real Mode
Address mechanism.)

■ not Write Through Required
■ not Caching Inhibited
■ Memory Coherence Required, for data accesses
■ not Guarded

Implicit accesses to the Page Table by the processor
in performing address translation and in recording
reference and change information are performed as
though the storage occupied by the Page Table had
the following storage control attributes.

■ not Write Through Required
■ not Caching Inhibited
■ Memory Coherence Required
■ not Guarded

The definition of “performed” given in Book II applies
also to these implicit accesses; accesses for per-
forming address translation are considered to be
loads in this respect, and accesses for recording ref-
erence and change information are considered to be
stores. These implicit accesses are ordered by the
ptesync instruction as described in Section 4.11.2 on
page 40.

Software must ensure that any data storage location
that is accessed with the Real Mode Caching Inhibited
bit set to 1 is not in the caches.

Software must ensure that the Real Mode Caching
Inhibited bit contains 0 whenever data address trans-
lation is enabled and whenever the processor is not in
hypervisor state.

26 PowerPC Operating Environment Architecture

Version 2.01

Programming Note

Because storage accesses in real addressing
mode do not use the SLB or the Page Table,
accesses in this mode bypass all checking and
recording of information contained therein (e.g.,
storage protection checks that use information
contained therein are not performed, and refer-
ence and change information is not recorded).

Because in real addressing mode all storage is
not Caching Inhibited (unless the Real Mode
Caching Inhibited bit is 1), software should not
map a Caching Inhibited virtual page to storage
that is treated as non-Guarded in real addressing
mode. Doing so could permit storage locations in
the virtual page to be copied into the cache,
which could lead to violations of the requirement
given in Section 4.8.2 for changing the value of
the I bit. See also Section 8.2 on page 77.

The Real Mode Caching Inhibited bit can be used
to permit a control register on an I/O device to be
accessed without permitting the corresponding
storage location to be copied into the caches.
The bit should normally contain 0. Software
would set the bit to 1 just before accessing the
control register, access the control register as
needed, and then set the bit back to 0.

4.2.7 Address Ranges Having
Defined Uses

The address ranges described below have uses that
are defined by the architecture.

■ Fixed interrupt vectors

Except for the first 256 bytes, which are reserved
for software use, the real page beginning at real
address 0x0000_0000_0000_0000 is either used
for interrupt vectors or reserved for future inter-
rupt vectors.

■ Implementation-specific use

The two contiguous real pages beginning at real
address 0x0000_0000_0000_1000 are reserved for
implementation-specific purposes.

■ Offset Real Mode interrupt vectors

The real page beginning at the real address spec-
ified by the RMOR is used similarly to the page
for the fixed interrupt vectors.

■ Page Table

A contiguous sequence of real pages beginning at
the real address specified by SDR1 contains the
Page Table.

4.2.8 Invalid Real Address

A storage access (including an access that is per-
formed out-of-order; see Section 4.2.4) may cause a
Machine Check if the accessed storage location con-
tains an uncorrectable error or does not exist. In the
latter case the Checkstop state may be entered. See
Section 5.5.2, “Machine Check Interrupt” on page 55.

Programming Note

Hypervisor software must ensure that a storage
access by a program in one partition will not
cause a Checkstop or other system-wide event
that could affect the integrity of other partitions
(see Section 1.7, “Logical Partitioning (LPAR)” on
page 4). For example, such an event could occur
if a real address placed in a Page Table Entry or
made accessible to a partition using the Offset
Real Mode Address mechanism (see Section
4.2.6.1) does not exist.

Chapter 4. Storage Control 27

Version 2.01

4.3 Address Translation
Overview

The effective address (EA) is the address generated
by the processor for an instruction fetch or for a data
access. If address translation is enabled (MSRIR= 1
or MSRDR= 1 as appropriate), this address is passed
to the Address Translation mechanism, which
attempts to convert the address to a real address
which is then used to access storage.

The first step in address translation is to convert the
effective address to a virtual address (VA), as
described in Section 4.4. The second step, conversion
of the virtual address to a real address (RA), is
described in Section 4.5.

If the effective address cannot be translated, a
storage exception (see Section 4.2.1) occurs.

Figure 13 gives an overview of the address trans-
lation process.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Effective Address ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÙ

³
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Lookup in ³
³ SLB ³
³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÙ

³
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Virtual Address ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÙ

³
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³
³ Lookup in ³
³ Page Table ³
³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÙ

³
↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Real Address ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 13. Address translation overview

4.4 Virtual Address Generation

Conversion of a 64-bit effective address to a virtual
address is done by searching the Segment Lookaside
Buffer (SLB) as shown in Figure 14.

64-bit Effective Address

ÚÄÄÄÄÄÄÄÄÄ36ÄÂÄÄÄÄÄ28-pÄÂÄÄÄÄÄÄpÄÄ¿
³ ESID ³ Page ³ Byte ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÙ

0 35 36 63-p 64-p 63
ÀÄÄÄÄÄÂÄÄÄÄÙ ÀÄÄÄÄÂÄÄÄÙ ÀÄÄÄÄÄÂÄÙ

³ ³ ³
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
³ ³ ³
³ Segment Lookaside ³ ³
³ Buffer (SLB) ³ ³
↓ ³ ³

ÚÄÄÄÄÄÄÄÄÄÂÄÂÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄ¿ ³ ³
SLBE0 ³ ESID ³V³ VSID ³KsKpNLC³ ³ ³

ÃÄÄÄÄÄÄÄÄÄÅÄÅÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ́ ³ ³
³ ³ ³ ³ ³ ³ ³
³ ³ ³ ³ ³ ³ ³
= = = = = ³ ³
³ ³ ³ ³ ³ ³ ³
³ ³ ³ ³ ³ ³ ³
ÃÄÄÄÄÄÄÄÄÄÅÄÅÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄ́ ³ ³

SLBEn ³ ³ ³ ³ ³ ³ ³
ÀÄÄÄÄÄÄÄÄÄÁÄÁÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÙ ³ ³
0 35 37 88 89 93 ³ ³

ÀÄÄÄÄÄÄÂÄÄÙ ³ ³
³ ³ ³
↓ ↓ ↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄ52ÄÂÄÄÄÄÄ28-pÄÂÄÄÄÄÄÄpÄ¿
³ VSID ³ Page ³ Byte ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÙ
IÄVirtual Page Number (VPN)ÄH

80-bit Virtual Address

Figure 14. Translation of 64-bit effective address to 80-bit
virtual address

28 PowerPC Operating Environment Architecture

Version 2.01

4.4.1 Segment Lookaside Buffer
(SLB)

The Segment Lookaside Buffer (SLB) specifies the
mapping between Effective Segment IDs (ESIDs) and
Virtual Segment IDs (VSIDs). The number of SLB
entries is implementation-dependent, except that all
implementations provide at least 32 entries.

The contents of the SLB are managed by software,
using the instructions described in Section 4.11.3.1,
“SLB Management Instructions” on page 41. See
Chapter 7, “Synchronization Requirements for
Context Alterations” on page 71 for the rules that
software must follow when updating the SLB.

SLB Entry

Each SLB entry (SLBE) maps one ESID to one VSID.
Figure 15 shows the layout of an SLB entry.

ESID V VSID KsKpNLC

0 35 37 89 93

Bit(s) Name Description
0:35 ESID Effective Segment ID

36 V Entry valid (V=1) or
invalid (V=0)

37:88 VSID Virtual Segment ID
89 Ks Supervisor (privileged) state

storage key
90 Kp Problem state storage key
91 N No-execute segment if N = 1
92 L Virtual pages are large (L=1)

or 4 KB (L=0)
93 C Class

Figure 15. SLB Entry

On implementations that support a virtual address
size of only n bits, n< 80, bits 0:79− n of the VSID field
are treated as reserved bits, and software must set
them to zeros.

A No-execute segment (N=1) contains data that
should not be executed.

The L bit selects between two virtual page sizes, 4 KB
(p=12) and “large”. The large page size is an imple-
mentation-dependent value that is a power of 2 and is
in the range 8 KB : 256 MB (13≤ p≤ 28). Some imple-
mentations may provide a means by which software
can select the large page size from a set of several
implementation-dependent sizes during system initial-
ization.

If “large page” is used in reference to real storage, it
means the sequence of contiguous real (4 KB) pages
to which a large virtual page is mapped.

The Class field is used in conjunction with the slbie
instruction (see Section 4.11.3.1).

Software must ensure that the SLB contains at most
one entry that translates a given effective address
(i.e., that a given ESID is contained in no more than
one SLB entry).

Programming Note

Because the virtual page size is used both in
searching the Page Table and in forming the real
address using the matching Page Table Entry
(PTE) (see Section 4.5, “Virtual to Real
Translation” on page 30), and PTEs contain no
indication of the virtual page size, the virtual page
size must be the same for all address translations
that use a given VSID value. This has the fol-
lowing consequences, which apply collectively to
all processors that use the same Page Table.

■ The value of the L bit must be the same in all
SLB entries that contain a given VSID value.

■ Before changing the value of the L bit in an
SLB entry, software must invalidate all SLB
entries, TLB entries, and PTEs that contain
the corresponding VSID value.

4.4.2 SLB Search

When the hardware searches the SLB, all entries are
tested for a match with the EA. For a match to exist,
the following must be true:

■ SLBEV = 1
■ SLBEESID = EA0:35

If the SLB search succeeds, the virtual address (VA)
is formed by concatenating the VSID from the
matching SLB entry with bits 36:63 of the EA.

The Virtual Page Number (VPN) is bits 0:79− p of the
virtual address.

If the SLB search fails, a segment fault occurs. This is
an Instruction Segment exception or a Data Segment
exception, depending on whether the effective
address is for an instruction fetch or for a data
access.

Chapter 4. Storage Control 29

Version 2.01

4.5 Virtual to Real Translation

Conversion of an 80-bit virtual address to a real address is done by searching the Page Table as shown in
Figure 16.

ÚÄÄÄ80-pÄÂÄÄÄÄÄÄÄÄÄpÄ¿
80-bit Virtual Address ³ Virtual Page Number (VPN) ³ Byte ³

ÀÄÄÁÄÄÄÄÄÄÄÄÄÄÄÙ
0 13 51 52 79-p 80-p 79

ÀÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÂÄÄÄÄÄÄÙ ÀÄÄÄÄÂÄÄÄÄÙ
³ ³ ³
³ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿

HTABORG HTABSIZE ³ ↓ ³
ÚÄ2ÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ44ÄÂÄÄÄÄÄÄÄÄ13ÄÂÄÄÄÄÄÄÄÄÄÄÄ5Ä¿ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ11+pÄÂÄÄÄÄÄÄÄÄÄÄ28-pÄ¿ ³

SDR1 ³//³ xxx.................xx000.....00 ³ /// ³ ³ ³ ³ 0s ³ ³ ³
ÀÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
0 2 17 18 45 59 63 ³ 0 38 ³

ÀÄÄÄÄÂÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÙ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
³ ³ ³ ³ ³ ³
³ ³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
³ ³ ↓ ³ ³ ³
³ ³ ÚÄÄÄÄÄÄÄÄÄ¿ ↓ ↓ ³
³ ³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
³ ³ ³ DECODE ³ ³ ³ ³
³ ³ ³ ³ ³ Hash Function ³ ³
³ ³ ÀÄÄÄÄÂÄÄÄÄÙ ³ ³ ³
³ ³ ³ ÀÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÙ ³
³ ³ ³ ³ ³
³ ³ Mask ↓ ↓ ³
³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ28Ä¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ39Ä¿ ³
³ ³ ³ 000.....00111.....11 ³ ³ ³ ³
³ ³ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
³ ³ 0 27 0 27 28 38 ³
³ ³ ÀÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÂÄÄÄÄÄÙ ³
³ ³ ³ ³ ³ ³
³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
³ ³ ³ ³ ³ ³
³ ÀÄÄÄÄÄÄÄÄÄ¿ ↓ ↓ ³ ³
³ ³ ÚÄÄÄÄÄÄÄÄÄ¿ ³ ³
³ ³ ³ ³ ³ ³
ÀÄÄÄÄÄÄÄ¿ ³ ³ AND ³ ³ ³

³ ³ ³ ³ ³ ³
³ ³ ÀÄÄÄÄÂÄÄÄÄÙ ³ ³
³ ³ ³ ³ ³
³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ³
³ ³ ³ ³ ³
³ ³ ³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
³ ³ ³ ³ ³
³ ³ ³ ³ ³
³ ↓ ↓ ³ ³
³ ÚÄÄÄÄÄÄÄÄÄ¿ ³ Page Table ³
³ ³ ³ ³ ³
³ ³ OR ³ ³ ÄÄH| |IÄÄ 16 bytes ³
³ ³ ³ ³ / ÚÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄÂÄÄÄÄÄÄ¿ ³
³ ÀÄÄÄÄÂÄÄÄÄÙ ³ / ³ PTE0 ³ ³ ³ ³ ³ ³ ³ PTE7 ³ PTEG0 ³
³ ³ ³ / ÃÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄ´ ³
↓ ↓ ↓ / ³ ³ ³ ³ ³ ³ ³ ³ ³ ³

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ16ÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ28ÄÂÄÄÄÄÄÄÄÄÄÄ11ÄÂÄÄÄÄÄ7Ä¿ / ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
³ ³ ³ ³0000000³ = = = = = = = = = ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÙ \ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³

\ ³ ³ ³ ³ ³ ³ ³ ³ ³ ³
62-bit Real Address of Page Table Entry Group \ ÃÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄÅÄÄÄÄÄÄ´ ³

\ ³ ³ ³ ³ ³ ³ ³ ³ ³ PTEGn ³
\ ÀÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÙ ³

³
IÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 128 bytes ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄH ³

³
Page Table Entry (PTE) ³
16 bytes ³

³
ÚÄÄÄ57ÄÂÄÄÄÄÄÂÄÄÂÄÄÂÄÄ¿ÚÄÄÂÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ50ÄÂÄÄÄÄÂÄÄÂÄÄÂÄÄÂÄÄÄÄÄÄÂÄÄÂÄÄÄÄ¿ ³
³ AVPN ³ SW ³/ ³H ³V ³³ /³ /³ Real Page Number (RPN) ³ // ³AC³R ³C ³ WIMG ³N ³ PP ³ ³
ÀÄÄÁÄÄÄÄÄÁÄÄÁÄÄÁÄÄÙÀÄÄÁÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÁÄÄÁÄÄÁÄÄÁÄÄÄÄÄÄÁÄÄÁÄÄÄÄÙ ³
0 56 60 62 63 0 1 2 63Äp 52 54 55 56 57 60 61 63 ³

ÀÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³
³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³

³ ³
↓ ↓

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ62-pÄÂÄÄÄÄÄÄÄÄÄpÄ¿
62-bit Real Address ³ RPN ³ Byte ³

ÀÄÄÁÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 16. Translation of 80-bit virtual address to 62-bit real address

30 PowerPC Operating Environment Architecture

Version 2.01

4.5.1 Page Table

The Hashed Page Table (HTAB) is a variable-sized
data structure that specifies the mapping between
Virtual Page Numbers and Real Page Numbers. The
HTAB's size must be a multiple of 4 KB, its starting
address must be a multiple of its size, and it must be
located in storage having the storage control attri-
butes that are used for implicit accesses to it (see
Section 4.2.6.2).

The HTAB contains Page Table Entry Groups (PTEGs).
A PTEG contains 8 Page Table Entries (PTEs) of 16
bytes each; each PTEG is thus 128 bytes long. PTEGs
are entry points for searches of the Page Table.

See Section 4.12, “Page Table Update Synchroniza-
tion Requirements” on page 48 for the rules that soft-
ware must follow when updating the Page Table.

Programming Note

The Page Table must be treated as a hypervisor
resource (see Section 1.7, “Logical Partitioning
(LPAR)” on page 4), and therefore must be placed
in real storage to which only the hypervisor has
write access. Moreover, the contents of the Page
Table must be such that non-hypervisor software
cannot modify storage that contains hypervisor
programs or data. Finally, to protect against
incorrect use of the L bit of SLB entries by non-
hypervisor software, real storage that is mapped
by the Page Table must be allocated to partitions
in units each of which has a size that is a multiple
of 2P bytes and is aligned at a 2P byte boundary,
where 2P is the maximum large page size for any
processor in the system. (Incorrect use of the L
bit could cause the virtual address for a large
virtual page to be translated using a PTE that was
created to translate a 4 KB virtual page. If 2P

were the maximum large page size for the parti-
tion, instead of for the system, it might be neces-
sary to change a processor's large page size as
part of reassigning the processor to a different
partition.)

Page Table Entry

Each Page Table Entry (PTE) maps one VPN to one
RPN. Figure 17 shows the layout of a PTE.

0 56 60 62 63

AVPN SW / H V

/ / RPN // AC R C WIMG N PP

0 1 2 51 54 55 5657 60 61 62 63

Dword Bit(s) Name Description
0 0:56 AVPN Abbreviated Virtual Page

Number
57:60 SW Available for software use
62 H Hash function identifier
63 V Entry valid (V=1)

or invalid (V=0)
1 2:51 RPN Real Page Number

54 AC Address Compare bit
55 R Reference bit
56 C Change bit
57:60 WIMG Storage control bits
61 N No-execute page if N = 1
62:63 PP Page protection bits

All other fields are reserved.

Figure 17. Page Table Entry

If p≤ 23, the Abbreviated Virtual Page Number (AVPN)
field contains bits 0:56 of the VPN. Otherwise bits
0:79− p of the AVPN field contain bits 0:79− p of the
VPN, and bits 80− p:56 of the AVPN field must be
zeros.

Programming Note

If p≤ 23, the AVPN field omits the low-order 23− p
bits of the VPN. These bits are not needed in the
PTE, because the low-order 11 bits of the VPN are
always used in selecting the PTEGs to be
searched (see Section 4.5.3).

On implementations that support a virtual address
size of only n bits, n< 80, bits 0:79− n of the AVPN field
must be zeros.

The RPN field contains the page number of the real
page that contains the first byte of the block of real
storage to which the virtual page is mapped. If p> 12,
the low-order p− 12 bits of the RPN field (bits 64− p:51
of doubleword 1 of the PTE) must be 0. On implemen-
tations that support a real address size of only m bits,
m< 62, bits 0:61− m of the RPN field must be zeros.

Programming Note

For a large virtual page, the high-order 62− p bits
of the RPN field (bits 0:61− p) comprise the large
real page number.

Chapter 4. Storage Control 31

Version 2.01

A No-execute page (N=1) contains data that should
not be executed.

Page Table Size

The number of entries in the Page Table directly
affects performance because it influences the hit ratio
in the Page Table and thus the rate of page faults. If
the table is too small, it is possible that not all the
virtual pages that actually have real pages assigned
can be mapped via the Page Table. This can happen
if too many hash collisions occur and there are more
than 16 entries for the same primary/secondary pair
of PTEGs. While this situation cannot be guaranteed
not to occur for any size Page Table, making the Page
Table larger than the minimum size (see Section
4.5.2) will reduce the frequency of occurrence of such
collisions.

Programming Note

If large pages are not used, it is recommended
that the number of PTEGs in the Page Table be at
least half the number of real pages to be
accessed. For example, if the amount of real
storage to be accessed is 231 bytes (2 GB), then
we have 231− 12= 2 19 real pages. The minimum
recommended Page Table size would be 218

PTEGs, or 225 bytes (32 MB).

4.5.2 Storage Description Register 1

The SDR1 register is shown in Figure 18.

// HTABORG /// HTABSIZE

0 2 45 59 63

Bits Name Description
2:45 HTABORG Real address of Page Table
59:63 HTABSIZE Encoded size of Page Table

All other fields are reserved.

Figure 18. SDR1

SDR1 is a hypervisor resource; see Section 1.7,
“Logical Partitioning (LPAR)” on page 4.

The HTABORG field in SDR1 contains the high-order
44 bits of the 62-bit real address of the Page Table.
The Page Table is thus constrained to lie on a 218 byte
(256 KB) boundary at a minimum. At least 11 bits
from the hash function (see Figure 16 on page 30)
are used to index into the Page Table. The minimum
size Page Table is 256 KB (211 PTEGs of 128 bytes
each).

The Page Table can be any size 2n bytes where
18≤ n≤ 46. As the table size is increased, more bits
are used from the hash to index into the table and the
value in HTABORG must have more of its low-order
bits equal to 0.

The HTABSIZE field in SDR1 contains an integer
giving the number of bits (in addition to the minimum
of 11 bits) from the hash that are used in the Page
Table index. This number must not exceed 28.
HTABSIZE is used to generate a mask of the form
0b00...011...1, which is a string of 28 − HTABSIZE
0-bits followed by a string of HTABSIZE 1-bits. The
1-bits determine which additional bits (beyond the
minimum of 11) from the hash are used in the index
(see Figure 16 on page 30). The number of low-order
0 bits in HTABORG must be greater than or equal to
the value in HTABSIZE.

On implementations that support a real address size
of only m bits, m< 62, bits 0:61− m of the HTABORG
field are treated as reserved bits, and software must
set them to zeros.

32 PowerPC Operating Environment Architecture

Version 2.01

Programming Note

Let n equal the virtual address size (in bits) sup-
ported by the implementation. If n< 67, software
should set the HTABSIZE field to a value that
does not exceed n− 39. Because the high-order
80− n bits of the VSID are assumed to be zeros,
the hash value used in the Page Table search will
have the high-order 67− n bits either all 0s
(primary hash; see Section 4.5.3) or all 1s (sec-
ondary hash). If HTABSIZE> n− 39, some of these
hash value bits will be used to index into the Page
Table, with the result that certain PTEGs will not
be searched.

Example:

Suppose that the Page Table is 16,384 (214) 128-byte
PTEGs, for a total size of 221 bytes (2 MB). A 14-bit
index is required. Eleven bits are provided from the
hash to start with, so 3 additional bits from the hash
must be selected. Thus the value in HTABSIZE must
be 3 and the value in HTABORG must have its low-
order 3 bits (bits 43:45 of SDR1) equal to 0. This
means that the Page Table must begin on a 23 + 1 1 + 7

= 221 = 2 MB boundary.

4.5.3 Page Table Search

When the hardware searches the Page Table, the
accesses are performed as described in Section
4.2.6.2, “Storage Control Attributes for Real
Addressing Mode and for Implicit Storage Accesses”
on page 26.

An outline of the HTAB search process is shown in
Figure 16 on page 30. The detailed algorithm is as
follows.

1. Primary Hash:
A 39-bit hash value is computed by Exclusive
ORing bits 13:51 of the VPN with a 39-bit value
formed by concatenating 11+p 0-bits with the
low-order 28− p bits of the VPN. The 62-bit real
address of a PTEG is formed by concatenating the
following values:

■ Bits 2:17 of SDR1 (the high-order 16 bits of
HTABORG).

■ Bits 0:27 of the 39-bit hash value ANDed with
the mask generated from bits 59:63 of SDR1
(HTABSIZE) and then ORed with bits 18:45 of
SDR1 (the low-order 28 bits of HTABORG).

■ Bits 28:38 of the 39-bit hash value.
■ Seven 0-bits.

This operation identifies a particular PTEG, called
the “primary PTEG”, whose eight PTEs will be
tested.

2. Secondary Hash:
A 39-bit hash value is computed by taking the
one's complement of the Exclusive OR of bits
13:51 of the VPN with a 39-bit value formed by
concatenating 11+p 0-bits with the low-order
28− p bits of the VPN. The 62-bit real address of
a PTEG is formed by concatenating the following
values:

■ Bits 2:17 of SDR1 (the high-order 16 bits of
HTABORG).

■ Bits 0:27 of the 39-bit hash value ANDed with
the mask generated from bits 59:63 of SDR1
(HTABSIZE) and then ORed with bits 18:45 of
SDR1 (the low-order 28 bits of HTABORG).

■ Bits 28:38 of the 39-bit hash value.
■ Seven 0-bits.

This operation identifies the “secondary PTEG”.

3. As many as 16 PTEs in the two identified PTEGs
are tested for a match with the VPN. Let q =
minimum(5, 28− p). For a match to exist, the fol-
lowing must be true:

■ PTEH= 0 for the primary PTEG, 1 for the sec-
ondary PTEG

■ PTEV= 1
■ PTEAVPN0:51

= V A 0:51

■ if p< 28, PTEAVPN52:51+q
= V A 52:51+q

If one or more matches are found, the search is
successful; otherwise it fails. If more than one
match is found, the matching entries must be
identical in all defined fields with the exception of
SW, H, AC, R, and C. If they are, one of the
matching entries is used, for the translation, Data
Address Compare, and the setting of the R and C
bits. If they are not, the translation and Data
Address Compare are undefined, as is the setting
of the R and C bits in the matching entries, and
the remainder of this section does not apply.

If the Page Table search succeeds, the real address
(RA) is formed by concatenating bits 0:61− p of the
RPN from the matching PTE with bits 64− p:63 of the
effective address (the byte offset).

RA=RPN0:61− p | | EA64− p:63

The N (No-execute) value used for the storage access
is the result of ORing the N bit from the matching PTE
with the N bit from the SLB entry that was used to
translate the effective address.

If the Page Table search fails, a page fault occurs.
This is an Instruction Storage exception or a Data
Storage exception, depending on whether the effec-
tive address is for an instruction fetch or for a data
access.

Chapter 4. Storage Control 33

Version 2.01

Programming Note

To obtain the best performance, Page Table
Entries should be allocated beginning with the
first empty entry in the primary PTEG, or with the
first empty entry in the secondary PTEG if the
primary PTEG is full.

Translation Lookaside Buffer

Conceptually, the Page Table is searched by the
address relocation hardware to translate every refer-
ence. For performance reasons, the hardware usually
keeps a Translation Lookaside Buffer (TLB) that holds
PTEs that have recently been used. The TLB is
searched prior to searching the Page Table. As a
consequence, when software makes changes to the
Page Table it must perform the appropriate TLB inval-
idate operations to maintain the consistency of the
TLB with the Page Table (see Section 4.12).

Programming Notes

1. Page Table entries may or may not be cached
in a TLB.

2. It is possible that the hardware implements
more than one TLB, such as one for data and
one for instructions. In this case the size and
shape of the TLBs may differ, as may the
values contained therein.

3. Use the tlbie or tlbia instruction to ensure
that the TLB no longer contains a mapping for
a particular virtual page.

4.6 Data Address Compare

The Data Address Compare mechanism provides a
means of detecting load and store accesses to a
virtual page.

The Data Address Compare mechanism is controlled
by the Address Compare Control Register (ACCR),
and by a bit in each Page Table Entry (PTEAC).

/// DWDR

0 62 63

Bit Name Description
62 DW Data Write Enable
63 DR Data Read Enable

All other fields are reserved.

Figure 19. Address Compare Control Register

A Data Address Compare match occurs for a Load or
Store instruction if, for any byte accessed,

■ PTEAC= 1 for the PTE that translates the virtual
address, and

■ the instruction is a Store and ACCRDW= 1 , or the
instruction is a Load and ACCRDR= 1 .

If the above conditions are satisfied, a match also
occurs for dcbz, eciwx, and ecowx. For the purpose
of determining whether a match occurs, eciwx is
treated as a Load, and dcbz and ecowx are treated as
Stores.

If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases.

■ The instruction is Store Conditional but the store
is not performed.

■ The instruction is a Load/Store String of zero
length.

The Cache Management instructions other than dcbz
never cause a match.

A Data Address Compare match causes a Data
Storage exception (see Section 5.5.3, “Data Storage
Interrupt” on page 55). If a match occurs, some or all
of the bytes of the storage operand may have been
accessed; however, if a Store, dcbz, or ecowx instruc-
tion causes the match, the bytes of the storage
operand that are in a virtual page with PTEAC= 1 are
not altered.

Programming Note

The Data Address Compare mechanism does not
apply to instruction fetches, or to data accesses in
real addressing mode (MSRDR=0) .

If a Data Address Compare match occurs for a
Load instruction for which any byte of the storage
operand is in storage that is both Caching Inhib-
ited and Guarded, or for an eciwx instruction, it
may not be safe for software to restart the
instruction.

34 PowerPC Operating Environment Architecture

Version 2.01

4.7 Data Address Breakpoint

The Data Address Breakpoint mechanism provides a
means of detecting load and store accesses to a des-
ignated doubleword. The address comparison is done
on an effective address, and is done independent of
whether address translation is enabled or disabled.

The Data Address Breakpoint mechanism is controlled
by the Data Address Breakpoint Register (DABR).

DAB BT DWDR

0 61 63

Bit(s) Name Description
0:60 DAB Data Address Breakpoint
61 BT Breakpoint Translation Enable
62 DW Data Write Enable
63 DR Data Read Enable

Figure 20. Data Address Breakpoint Register

The DABR is a hypervisor resource; see Section 1.7,
“Logical Partitioning (LPAR)” on page 4.

A Data Address Breakpoint match occurs for a Load
or Store instruction if, for any byte accessed,

■ EA0:60=DABR DAB, and
■ MSRDR=DABR BT, and
■ the instruction is a Store and DABRDW= 1 , or the

instruction is a Load and DABRDR= 1 .

In 32-bit mode the high-order 32 bits of the EA are
treated as zeros for the purpose of detecting a match.

If the above conditions are satisfied, a match also
occurs for eciwx and ecowx. For the purpose of
determining whether a match occurs, eciwx is treated
as a Load, and ecowx is treated as a Store.

If the above conditions are satisfied, it is undefined
whether a match occurs in the following cases.

■ The instruction is Store Conditional but the store
is not performed.

■ The instruction is a Load/Store String of zero
length.

■ The instruction is dcbz. (For the purpose of
determining whether a match occurs, dcbz is
treated as a Store.)

The Cache Management instructions other than dcbz
never cause a match.

A Data Address Breakpoint match causes a Data
Storage exception (see Section 5.5.3, “Data Storage
Interrupt” on page 55). If a match occurs, some or all
of the bytes of the storage operand may have been
accessed; however, if a Store or ecowx instruction
causes the match, the storage operand is not altered
if the instruction is one of the following:

■ any Store instruction that causes an atomic
access

■ ecowx

Programming Note

The Data Address Breakpoint mechanism does
not apply to instruction fetches.

If a Data Address Breakpoint match occurs for a
Load instruction for which any byte of the storage
operand is in storage that is both Caching Inhib-
ited and Guarded, or for an eciwx instruction, it
may not be safe for software to restart the
instruction.

4.8 Storage Control Bits

When address translation is enabled, each storage
access is performed under the control of the Page
Table Entry used to translate the effective address.
Each Page Table Entry contains storage control bits
that specify the presence or absence of the corre-
sponding storage control attribute (see the section
entitled “Storage Control Attributes” in Book II,
PowerPC Virtual Environment Architecture) for all
accesses translated by the entry, as shown in
Figure 21. The bits are called W, I, M, and G.

Chapter 4. Storage Control 35

Version 2.01

Figure 21. Storage control bits

Instructions are not fetched from storage for which
the G bit in the Page Table Entry is set to 1 (see
Section 4.10, “Storage Protection” on page 39).

Programming Note

In a uniprocessor system in which only the
processor has caches, correct coherent execution
does not require the processor to access storage
as Memory Coherence Required, and accessing
storage as not Memory Coherence Required may
give better performance.

4.8.1 Storage Control Bit Restrictions

All combinations of W, I, M, and G values are sup-
ported except those for which both W and I are 1.

Programming Note

If an application program requests both the Write
Through Required and the Caching Inhibited attri-
butes for a given storage location, the operating
system should set the I bit to 1 and the W bit to 0.

The value of the I bit must be the same for all
accesses to a given real page.

The value of the W bit must be the same for all
accesses to a given real page.

4.8.2 Altering the Storage Control Bits

When changing the value of the I bit for a given real
page from 0 to 1, software must set the I bit to 1 and
then flush all copies of locations in the page from the
caches using dcbf and icbi before permitting any
other accesses to the page.

When changing the value of the W bit for a given real
page from 0 to 1, software must ensure that no
processor modifies any location in the page until after
all copies of locations in the page that are considered
to be modified in the data caches have been copied to
main storage using dcbst or dcbf.

When changing the value of the M bit for a given real
page, software must ensure that all data caches are
consistent with main storage. The actions required to
do this to are system-dependent.

Programming Note

For example, when changing the M bit in some
directory-based systems, software may be
required to execute dcbf instructions on each
processor to flush all storage locations accessed
with the old M value before permitting the
locations to be accessed with the new M value.

Additional requirements for changing the storage
control bits are given in Section 4.12, “Page Table
Update Synchronization Requirements” on page 48.

Bit Storage Control Attribute

W1 0 − not Write Through Required
1 − Write Through Required

I 0 − not Caching Inhibited
1 − Caching Inhibited

M2 0 − not Memory Coherence Required
1 − Memory Coherence Required

G 0 − not Guarded
1 − Guarded

1. Support for the 1 value of the W bit is optional.
Implementations that do not support the 1 value
treat the bit as reserved and assume its value
to be 0.

2. Support for the 0 value of the M bit is optional.
Implementations that do not support the 0 value
assume the value of the bit to be 1, and may
either preserve the value of the bit or write it as 1.

36 PowerPC Operating Environment Architecture

Version 2.01

4.9 Reference and Change
Recording

If address translation is enabled (MSRIR= 1 or
MSRDR=1) , Reference (R) and Change (C) bits are
maintained in the Page Table Entry that is used to
translate the virtual address. If the storage operand
of a Load or Store instruction crosses a virtual page
boundary, the accesses to the components of the
operand in each page are treated as separate and
independent accesses to each of the pages for the
purpose of setting the Reference and Change bits.

Reference and Change bits are set by the processor
as described below. Setting the bits need not be
atomic with respect to performing the access that
caused the bits to be updated. An attempt to access
storage may cause one or more of the bits to be set
(as described below) even if the access is not per-
formed. The bits are updated in the Page Table Entry
if the new value would otherwise be different from the
old, as determined by examining either the Page
Table Entry or any corresponding lookaside informa-
tion maintained by the processor (e.g., in a TLB).

Reference Bit

The Reference bit is set to 1 if the corresponding
access (load, store, or instruction fetch) is required
by the sequential execution model and is per-
formed. Otherwise the Reference bit may be set to
1 if the corresponding access is attempted, either
in-order or out-of-order, even if the attempt causes
an exception.

Change Bit

The Change bit is set to 1 if a Store instruction is
executed and the store is performed. Otherwise
the Change bit may be set to 1 if a Store instruction
is executed and the store is permitted by the
storage protection mechanism and, if the Store
instruction is executed out-of-order, the instruction
would be required by the sequential execution
model in the absence of the following kinds of inter-
rupts:

■ system-caused interrupts (i.e., System Reset,
Machine Check, External, and Decrementer
interrupts)

■ Floating-Point Enabled Exception type Program
interrupts when the processor is in an Impre-
cise mode

Programming Note

Even though the execution of a Store instruc-
tion causes the Change bit to be set to 1, the
store might not be performed or might be only
partially performed in cases such as the fol-
lowing.

■ A Store Conditional instruction (stwcx. or
stdcx.) is executed, but no store is per-
formed.

■ A Store String Word Indexed instruction
(stswx) is executed, but the length is zero.

■ The Store instruction causes a Data
Storage exception (for which setting the
Change bit is not prohibited).

■ The Store instruction causes an Alignment
exception.

■ The Page Table Entry that translates the
virtual address of the storage operand is
altered such that the new contents of the
Page Table Entry preclude performing the
store (e.g., the PTE is made invalid, or the
PP bits are changed).

For example, when executing a Store
instruction, the processor may search the
Page Table for the purpose of setting the
Change bit and then reexecute the instruc-
tion. When reexecuting the instruction, the
processor may search the Page Table a
second time. If the Page Table Entry has
meanwhile been altered, by a program exe-
cuting on another processor, the second
search may obtain the new contents, which
may preclude the store.

■ A system-caused interrupt occurs before
the store has been performed.

Figure 22 on page 38 summarizes the rules for
setting the Reference and Change bits. The table
applies to each atomic storage reference. It should
be read from the top down; the first line matching a
given situation applies. For example, if stwcx. fails
due to both a storage protection violation and the lack
of a reservation, the Change bit is not altered.

In the figure, the “ Load-type” instructions are the
Load instructions described in Books I and II, eciwx,
and the Cache Management instructions that are
treated as Loads. The “ Store-type” instructions are
the Store instructions described in Books I and II,
ecowx, and the Cache Management instructions that
are treated as Stores. The “ordinary” Load and Store
instructions are those described in Books I and II.
“set” means “set to 1”. When the processor
updates the Reference and Change bits in the Page
Table Entry, the accesses are performed as described
in Section 4.2.6.2, “Storage Control Attributes for Real
Addressing Mode and for Implicit Storage Accesses”

Chapter 4. Storage Control 37

Version 2.01

on page 26. The accesses may be performed using
operations equivalent to a store to a byte, halfword,
word, or doubleword, and are not necessarily per-
formed as an atomic read/modify/write of the affected
bytes.

These Reference and Change bit updates are not nec-
essarily immediately visible to software. Executing a
sync instruction ensures that all Reference and
Change bit updates associated with address trans-
lations that were performed, by the processor exe-
cuting the sync instruction, before the sync instruction
is executed will be performed with respect to that
processor before the sync instruction's memory
barrier is created. There are additional requirements
for synchronizing Reference and Change bit updates
in multiprocessor systems; see Section 4.12, “Page
Table Update Synchronization Requirements” on
page 48.

Programming Note

Because the sync instruction is execution synchro-
nizing, the set of Reference and Change bit
updates that are performed with respect to the
processor executing the sync instruction before
the memory barrier is created includes all Refer-
ence and Change bit updates associated with
instructions preceding the sync instruction.

Status of Access R C

Storage protection violation Acc1 No
Out-of-order I-fetch or Load-type insn Acc No
Out-of-order Store-type insn

Would be required by the sequential
execution model in the absence of
system-caused or imprecise
interrupts3 Acc Acc1 2

All other cases Acc No
In-order Load-type or Store-type insn,

access not performed
Load-type insn Acc No
Store-type insn Acc Acc2

Other in-order access
I-fetch Yes No
Ordinary Load, eciwx Yes No
Other ordinary Store, ecowx, dcbz Yes Yes
icbi, dcbt, dcbtst, dcbst, dcbf Acc No

“Acc” means that it is acceptable to set the bit.
1 It is preferable not to set the bit.
2 If C is set, R is also set unless it is already set.
3 For Floating-Point Enabled Exception type

Program interrupts, “imprecise” refers to the
exception mode controlled by MSRFE0 FE1.

Figure 22. Setting the Reference and Change bits

If software refers to a Page Table Entry when
MSRDR= 1 , the Reference and Change bits in the
associated Page Table Entry are set as for ordinary
loads and stores. See Section 4.12 for the rules soft-
ware must follow when updating Reference and
Change bits.

38 PowerPC Operating Environment Architecture

Version 2.01

4.10 Storage Protection

The storage protection mechanism provides a means
for selectively granting instruction fetch access,
granting read access, granting read/write access, and
prohibiting access to areas of storage based on a
number of control criteria.

The operation of the protection mechanism depends
on whether address translation is enabled (MSRIR= 1
or MSRDR= 1 , as appropriate for the access) or disa-
bled (MSRIR= 0 or MSRDR= 0 , as appropriate for the
access).

If an instruction fetch is not permitted by the pro-
tection mechanism, an Instruction Storage exception
is generated. If a data access is not permitted by the
protection mechanism, a Data Storage exception is
generated. (See Section 4.2.1, “Storage Exceptions”
on page 22.)

When address translation is enabled, a protection
domain is a range of unmapped effective addresses, a
virtual page, or a segment. When address translation
is disabled and LPES/LPES1= 1 there are two pro-
tection domains: the set of effective addresses that
are less than the value specified by the RMLR, and all
other effective addresses. When address translation
is disabled and LPES/LPES1= 0 the entire effective
address space comprises a single protection domain.
A protection boundary is a boundary between pro-
tection domains.

4.10.1 Storage Protection, Address
Translation Enabled

When address translation is enabled, the protection
mechanism is controlled by the following.

■ MSRPR, which distinguishes between supervisor
(privileged) state and problem state

■ Ks and Kp, the supervisor (privileged) state and
problem state storage key bits in the SLB entry
used to translate the effective address

■ PP, page protection bits in the Page Table Entry
used to translate the effective address

■ For instruction fetches only:
— the N (No-execute) value used for the access

(see Section 4.5.3)
— PTEG, the G (Guarded) bit in the Page Table

Entry used to translate the effective address

Using the above values, the following rules are
applied.

1. For an instruction fetch, the access is not per-
mitted if the N value is 1 or if PTEG= 1 .

2. For any access except an instruction fetch that is
not permitted by rule 1, a “Key” value is com-
puted using the following formula:

Key ← (Kp & MSRPR) | (Ks & ¬MSRPR)

Using the computed Key, Figure 23 is applied.
An instruction fetch is permitted for any entry in
the figure except “no access”. A load is per-
mitted for any entry except “no access”. A store
is permitted only for entries with “read/write”.

Key PP Access Authority

0 00 read/write
0 01 read/write
0 10 read/write
0 11 read only

1 00 no access
1 01 read only
1 10 read/write
1 11 read only

Figure 23. PP bit protection states, address trans-
lation enabled

4.10.2 Storage Protection, Address
Translation Disabled

When address translation is disabled, the protection
mechanism is controlled by the following (see Section
1.7, “Logical Partitioning (LPAR)” on page 4 and
Section 4.2.6, “Real Addressing Mode” on page 25).

■ LPES/LPES1, which distinguishes between the two
modes of using the LPAR facility

■ MSRHV, which distinguishes between hypervisor
state and other privilege states

■ RMLR, which specifies the real mode limit value

Using the above values, Figure 24 is applied. The
access is permitted for any entry in the figure except
“no access”.

Figure 24. Protection states, address translation disa-
bled

Programming Note

The comparison described in note 1 in Figure 24
ignores bits 0:1 of the effective address and may
ignore bits 2:63− m; see Section 4.2.6.

LPES/LPES1 HV Access Authority

0 0 no access
0 1 read/write
1 0 read/write or no access1

1 1 read/write

1. If the effective address for the access is less
than the value specified by the RMLR the
access authority is read/write; otherwise the
access is not permitted.

Chapter 4. Storage Control 39

Version 2.01

4.11 Storage Control Instructions

4.11.1 Cache Management
Instructions

This section describes aspects of cache management
that are relevant only to operating system program-
mers.

For a dcbz instruction that causes the target block to
be newly established in the data cache without being
fetched from main storage, the processor need not
verify that the associated real address is valid. The
existence of a data cache block that is associated with
an invalid real address (see Section 4.2.8) can cause
a delayed Machine Check interrupt or a delayed
Checkstop.

Each implementation provides an efficient means by
which software can ensure that all blocks that are
considered to be modified in the data cache have
been copied to main storage before the processor
enters any power conserving mode in which data
cache contents are not maintained. The means are
described in the Book IV, PowerPC Implementation
Features document for the implementation.

4.11.2 Synchronize Instruction

The Synchronize instruction is described in Book II,
PowerPC Virtual Environment Architecture, but only at
the level required by an application programmer
(sync with L = 0 or L=1) . This section describes prop-
erties of the instruction that are relevant only to oper-
ating system and hypervisor software programmers.
This variant of the Synchronize instruction is desig-
nated the page table entry sync and is specified by
the extended mnemonic ptesync (equivalent to sync
with L=2) .

The ptesync instruction has all of the properties of
sync with L = 0 and also the following additional prop-
erties.

■ The memory barrier created by the ptesync
instruction provides an ordering function for the
storage accesses associated with all instructions
that are executed by the processor executing the
ptesync instruction and, as elements of set A, for
all Reference and Change bit updates associated
with additional address translations that were
performed, by the processor executing the
ptesync instruction, before the ptesync instruction
is executed. The applicable pairs are all pairs
ai,bj in which bj is a data access and ai is not an
instruction fetch.

■ The ptesync instruction causes all Reference and
Change bit updates associated with address
translations that were performed, by the

processor executing the ptesync instruction,
before the ptesync instruction is executed, to be
performed with respect to that processor before
the ptesync instruction's memory barrier is
created.

■ The ptesync instruction provides an ordering
function for all stores to the Page Table caused
by Store instructions preceding the ptesync
instruction with respect to searches of the Page
Table that are performed, by the processor exe-
cuting the ptesync instruction, after the ptesync
instruction completes. Executing a ptesync
instruction ensures that all such stores will be
performed, with respect to the processor exe-
cuting the ptesync instruction, before any implicit
accesses to the affected Page Table Entries, by
such Page Table searches, are performed with
respect to that processor.

■ In conjunction with the tlbie and tlbsync
instructions, the ptesync instruction provides an
ordering function for TLB invalidations and
related storage accesses on other processors as
described in the tlbsync instruction description on
page 47.

Programming Note

For instructions following a ptesync instruc-
tion, the memory barrier need not order
implicit storage accesses for purposes of
address translation and reference and change
recording.

The functions performed by the ptesync
instruction may take a significant amount of
time to complete, so this form of the instruc-
tion should be used only if the functions listed
above are needed. Otherwise sync with L = 0
should be used (or sync with L = 1 or eieio, if
appropriate).

Section 4.12, “Page Table Update Synchroni-
zation Requirements” on page 48 gives
examples of uses of ptesync.

4.11.3 Lookaside Buffer Management

All implementations have a Segment Lookaside Buffer
(SLB), and provide the SLB Management instructions
described in Section 4.11.3.1.

For performance reasons, most implementations have
a Translation Lookaside Buffer (TLB), which is a cache
of recently used Page Table Entries (PTEs). The TLB
is not necessarily kept consistent with the Page Table
in main storage. When software alters the contents of
a PTE, it must also invalidate all corresponding TLB
entries.

Each implementation that has a TLB provides a
means by which software can do the following.

40 PowerPC Operating Environment Architecture

Version 2.01

■ Invalidate the TLB entry that translates a given
effective address

■ Invalidate all TLB entries

An implementation may provide one or more of the
TLB Management instructions described in Section
4.11.3.2 in order to satisfy requirements in the pre-
ceding list. Alternatively, an algorithm may be given
that performs one of the functions listed above (a
loop invalidating individual TLB entries may be used
to invalidate the entire TLB, for example), or different
instructions may be provided. Such algorithms or
instructions are described in Book IV, PowerPC Imple-
mentation Features. Because most implementations
have a TLB and also provide instructions similar or
identical to the TLB Management instructions
described in Section 4.11.3.2, other sections of the
Books assume that the TLB exists and that the
instructions described in Section 4.11.3.2 are pro-
vided.

An implementation that does not have a TLB treats
the corresponding instructions (tlbie, tlbia, and
tlbsync) either as no-ops or as illegal instructions.

Programming Note

Because the presence, absence, and exact
semantics of the TLB Management instructions
are implementation-dependent, it is recommended
that system software “encapsulate” uses of these
instructions into subroutines to minimize the
impact of moving from one implementation to
another.

Programming Note

The function of all the instructions described in
Sections 4.11.3.1 and 4.11.3.2 is independent of
whether address translation is enabled or disa-
bled.

For a discussion of software synchronization
requirements when invalidating SLB and TLB
entries, see Chapter 7, “Synchronization Require-
ments for Context Alterations” on page 71.

4.11.3.1 SLB Management Instructions

Programming Note

Accesses to a given SLB entry caused by the
instructions described in this section obey the
sequential execution model with respect to the
contents of the entry and with respect to data
dependencies on those contents. That is, if an
instruction sequence contains two or more of
these instructions, when the sequence has com-
pleted, the final state of the SLB entry and of
General Purpose Registers is as if the instructions
had been executed in program order.

However, software synchronization is required in
order to ensure that any alterations of the entry
take effect correctly with respect to address trans-
lation; see Chapter 7.

SLB Invalidate Entry X-form

slbie RB

31 /// /// RB 434 /

0 6 11 16 21 31

esid ← (RB)0:35
class ← (RB)36
if class = SLBEC for SLB entry that translates

or most recently translated esid
then for SLB entry (if any) that translates esid

SLBEV ← 0
all other fields of SLBE ← undefined

else translation of esid ← undefined

Let the Effective Segment ID (ESID) be (RB)0:35. Let
the class be (RB)36. The class value must be the
same as the Class value in the SLB entry that trans-
lates the ESID, or the Class value that was in the SLB
entry that most recently translated the ESID if the
translation is no longer in the SLB; if the class value
is not the same, the results of translating effective
addresses for which EA0:35=ESID are undefined, and
the next paragraph need not apply.

If the SLB contains an entry that translates the speci-
fied ESID, the V bit in that entry is set to 0, making
the entry invalid, and the remaining fields of the entry
are set to undefined values.

(RB)37:63 must be zeroes.

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros (i.e., the ESID must be in the range
0-15).

This instruction is privileged.

Chapter 4. Storage Control 41

Version 2.01

Special Registers Altered:
None

Programming Note

The only SLB entry that is invalidated is the entry
(if any) that translates the specified ESID.

slbie does not affect SLBs on other processors.

Programming Note

The reason the class value specified by slbie must
be the same as the Class value that is or was in
the relevant SLB entry is that the processor may
use these values to optimize invalidation of imple-
mentation-specific lookaside information used in
address translation. If the value specified by slbie
differs from the value that is or was in the rele-
vant SLB entry, these optimizations may produce
incorrect results. (An example of implementa-
tion-specific address translation lookaside infor-
mation is the set of recently used translations of
effective addresses to real addresses that some
processors maintain in an Effective to Real
Address Translation (ERAT) lookaside buffer.)

The recommended use of the Class field is to
classify SLB entries according to the expected
longevity of the translations they contain, or a
similar property such as whether the translations
are used by all programs or only by a single
program. If this is done and the processor invali-
dates certain implementation-specific lookaside
information based only on the specified class
value, an slbie instruction that invalidates a short-
lived translation will preserve such lookaside
information for long-lived translations.

If the optional “Bridge” facility is implemented
(see Section 9.1), the Move To Segment Register
instructions create SLB entries in which the Class
value is 0.

SLB Invalidate All X-form

slbia

31 /// /// /// 498 /

0 6 11 16 21 31

for each SLB entry except SLB entry 0
SLBEV ← 0
all other fields of SLBE ← undefined

For all SLB entries except SLB entry 0, the V bit in
the entry is set to 0, making the entry invalid, and the
remaining fields of the entry are set to undefined
values. SLB entry 0 is not altered.

This instruction is privileged.

Special Registers Altered:
None

Programming Note

slbia does not affect SLBs on other processors.

Programming Note

If slbia is executed when instruction address
translation is enabled (MSRIR=1) , software can
ensure that attempting to fetch the instruction fol-
lowing the slbia does not cause an Instruction
Segment interrupt by placing the slbia and the
subsequent instruction in the effective segment
mapped by SLB entry 0. (The preceding assumes
that no other interrupts occur between executing
the slbia and executing the subsequent instruc-
tion.)

42 PowerPC Operating Environment Architecture

Version 2.01

SLB Move To Entry X-form

slbmte RS,RB

31 RS /// RB 402 /

0 6 11 16 21 31

The SLB entry specified by bits 52:63 of register RB is
loaded from register RS and from the remainder of
register RB. The contents of these registers are
interpreted as shown in Figure 25.

RS

VSID KsKpNLC 0s

0 52 56 63

RB

ESID V 0s index

0 35 37 52 63

RS0:51 VSID
RS52 Ks
RS53 Kp
RS54 N
RS55 L
RS56 C
RS57:63 must be 0b000_0000

RB0:35 ESID
RB36 V
RB37:51 must be 0b000 | | 0x000
RB52:63 index, which selects the SLB entry

Figure 25. GPR contents for slbmte

On implementations that support a virtual address
size of only n bits, n< 80, (RS)0:79− n must be zeros.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

If this instruction is executed in 32-bit mode, (RB)0:31
must be zeros (i.e., the ESID must be in the range
0-15).

This instruction cannot be used to invalidate an SLB
entry.

This instruction is privileged.

Special Registers Altered:
None

Programming Note

The reason slbmte cannot be used to invalidate
an SLB entry is that it does not necessarily affect
implementation-specific address translation look-
aside information. slbie (or slbia) must be used
for this purpose.

Chapter 4. Storage Control 43

Version 2.01

SLB Move From Entry VSID X-form

slbmfev RT,RB

31 RT /// RB 851 /

0 6 11 16 21 31

If the SLB entry specified by bits 52:63 of register RB
is valid (V=1), the contents of the VSID, Ks, Kp, N, L,
and C fields of the entry are placed into register RT.
The contents of these registers are interpreted as
shown in Figure 26.

RT

VSID KsKpNLC 0s

0 52 56 63

RB

0s index

0 52 63

RT0:51 VSID
RT52 Ks
RT53 Kp
RT54 N
RT55 L
RT56 C
RT57:63 set to 0b000_0000

RB0:51 must be 0x0_0000_0000_0000
RB52:63 index, which selects the SLB entry

Figure 26. GPR contents for slbmfev

On implementations that support a virtual address
size of only n bits, n< 80, RT0:79− n are set to zeros.

If the SLB entry specified by bits 52:63 of register RB
is invalid (V=0), the contents of register RT are unde-
fined.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

This instruction is privileged.

Special Registers Altered:
None

SLB Move From Entry ESID X-form

slbmfee RT,RB

31 RT /// RB 915 /

0 6 11 16 21 31

If the SLB entry specified by bits 52:63 of register RB
is valid (V=1), the contents of the ESID and V fields
of the entry are placed into register RT. The contents
of these registers are interpreted as shown in Figure
27.

RT

ESID V 0s

0 35 37 63

RB

0s index

0 52 63

RT0:35 ESID
RT36 V
RT37:63 set to 0b000 | | 0x00_0000

RB0:51 must be 0x0_0000_0000_0000
RB52:63 index, which selects the SLB entry

Figure 27. GPR contents for slbmfee

If the SLB entry specified by bits 52:63 of register RB
is invalid (V=0), RT36 is set to 0 and the contents of
RT0:35 and RT37:63 are undefined.

High-order bits of (RB)52:63 that correspond to SLB
entries beyond the size of the SLB provided by the
implementation must be zeros.

This instruction is privileged.

Special Registers Altered:
None

44 PowerPC Operating Environment Architecture

Version 2.01

4.11.3.2 TLB Management Instructions (Optional)

TLB Invalidate Entry X-form

tlbie RB,L

[POWER mnemonic: tlbi]

31 /// L /// RB 306 /

0 6 10 11 16 21 31

if L = 0
then pg_size ← 4 KB
else pg_size ← large page size

p ← log_base_2(pg_size)
for each processor in the partition

for each TLB entry
if (entry_VPN32:79−p = (RB)16:63−p) &

(entry_pg_size = pg_size)
then TLB entry ← invalid

The contents of (RB)0:15 must be 0x0000. If the L field
of the instruction is 1 let the page size be large; oth-
erwise let the page size be 4 KB.

All TLB entries that have all of the following proper-
ties are made invalid on all processors that are in the
same partition as the processor executing the tlbie
instruction.

■ The entry translates a virtual address for which
VPN32:79− p is equal to (RB)16:63− p.

■ The page size of the entry matches the page size
specified by the L field of the instruction.

Additional TLB entries may also be made invalid on
any processor that is in the same partition as the
processor executing the tlbie instruction.

MSRSF must be 1 when this instruction is executed;
otherwise the results are undefined.

The operation performed by this instruction is ordered
by the eieio (or sync or ptesync) instruction with
respect to a subsequent tlbsync instruction executed
by the processor executing the tlbie instruction. The
operations caused by tlbie and tlbsync are ordered by
eieio as a third set of operations, which is inde-
pendent of the other two sets that eieio orders.

This instruction is privileged, and can be executed
only in hypervisor state. If it is executed in privileged
but non-hypervisor state either a Privileged Instruc-
tion type Program interrupt occurs or the results are
boundedly undefined.

This instruction is optional.

See Section 4.12, “Page Table Update Synchroniza-
tion Requirements” on page 48 for a description of
other requirements associated with the use of this
instruction.

Special Registers Altered:
None

Chapter 4. Storage Control 45

Version 2.01

TLB Invalidate Entry Local X-form

tlbiel RB,L

31 /// L /// RB 274 /

0 6 10 11 16 21 31

if L = 0
then pg_size ← 4 KB
else pg_size ← large page size

p ← log_base_2(pg_size)
for each TLB entry

if (entry_VPN32:79−p = (RB)16:63−p) &
(entry_pg_size = pg_size)

then TLB entry ← invalid

The contents of (RB)0:15 must be 0x0000. If the L field
of the instruction is 1 let the page size be large; oth-
erwise let the page size be 4 KB.

All TLB entries that have all of the following proper-
ties are made invalid on the processor which exe-
cutes this instruction.

■ The entry translates a virtual address for which
VPN32:79− p is equal to (RB)16:63− p.

■ The page size of the entry matches the page size
specified by the L field of the instruction.

Only TLB entries on the processor executing this
instruction are affected.

(RB)52:63 must be zero.

MSRSF must be 1 when this instruction is executed;
otherwise the results are undefined.

The operation performed by this instruction is ordered
by the eieio (or sync or ptesync) instruction with
respect to a subsequent tlbsync instruction executed
by the processor executing the tlbiel instruction. The
operations caused by tlbiel and tlbsync are ordered
by eieio as a third set of operations, which is inde-
pendent of the other two sets that eieio orders.

This instruction is privileged, and can be executed
only in hypervisor state. If it is executed in privileged
but non-hypervisor state either a Privileged Instruc-
tion type Program interrupt occurs or the results are
boundedly undefined.

This instruction is optional.

Support of large pages for tlbiel is optional. On
implementations that do not support large pages for
tlbiel, the following properties apply.

■ The syntax of the instruction is “tlbiel RB”.
■ Bit 10 of the instruction is a reserved bit.
■ In the RTL, the first three lines and the third from

last line are ignored.
■ The last list item in the paragraph that begins

“Al l TLB entries ...”, namely “The page size of the
entry matches the page size specified by the L
field of the instruction”, is ignored.

See Section 4.12, “Page Table Update Synchroniza-
tion Requirements” on page 48 for a description of
other requirements associated with the use of this
instruction.

Special Registers Altered:
None

Programming Note

The primary use of this instruction by hypervisor
state code is to invalidate TLB entries prior to
reassigning a processor to a new logical partition.

tlbiel may be executed on a given processor even
if the sequence of tlbie - sync - tlbsync - ptesync
is being concurrently executed on a different
processor. In other words, no programmatic syn-
chronization is required relative to the execution
of tlbie or tlbiel.

To synchronize the completion of this processor
local form of tlbie, only a ptesync is required
(tlbsync should not be used).

46 PowerPC Operating Environment Architecture

Version 2.01

TLB Invalidate All X-form

tlbia

31 /// /// /// 370 /

0 6 11 16 21 31

all TLB entries ← invalid

All TLB entries are made invalid on the processor
executing the tlbia instruction.

This instruction is privileged.

This instruction is optional.

Special Registers Altered:
None

Programming Note

tlbia does not affect TLBs on other processors.

TLB Synchronize X-form

tlbsync

31 /// /// /// 566 /

0 6 11 16 21 31

The tlbsync instruction provides an ordering function
for the effects of all tlbie instructions executed by the
processor executing the tlbsync instruction, with
respect to the memory barrier created by a subse-
quent ptesync instruction executed by the same
processor. Executing a tlbsync instruction ensures
that all of the following will occur.

■ All TLB invalidations caused by tlbie instructions
preceding the tlbsync instruction will have com-
pleted on any other processor before any data
accesses caused by instructions following the
ptesync instruction are performed with respect to
that processor.

■ All storage accesses by other processors for
which the address was translated using the trans-
lations being invalidated, and all Reference and
Change bit updates associated with address
translations that were performed by other
processors using the translations being invali-
dated, will have been performed with respect to
the processor executing the ptesync instruction,
to the extent required by the associated Memory
Coherence Required attributes, before the
ptesync instruction's memory barrier is created.

The operation performed by this instruction is ordered
by the eieio (or sync or ptesync) instruction with
respect to preceding tlbie instructions executed by
the processor executing the tlbsync instruction. The
operations caused by tlbie and tlbsync are ordered by
eieio as a third set of operations, which is inde-
pendent of the other two sets that eieio orders.

The tlbsync instruction may complete before oper-
ations caused by tlbie instructions preceding the
tlbsync instruction have been performed.

This instruction is privileged, and can be executed
only in hypervisor state. If it is executed in privileged
but non-hypervisor state either a Privileged Instruc-
tion type Program interrupt occurs or the results are
boundedly undefined.

This instruction is optional.

See Section 4.12, “Page Table Update Synchroniza-
tion Requirements” on page 48 for a description of
other requirements associated with the use of this
instruction.

Special Registers Altered:
None

Programming Note

tlbsync should not be used to synchronize the
completion of tlbiel.

Chapter 4. Storage Control 47

Version 2.01

4.12 Page Table Update
Synchronization Requirements

This section describes rules that software should
follow when updating the Page Table, and includes
suggested sequences of operations for some repre-
sentative cases.

In the sequences of operations shown in the following
subsections, any alteration of a Page Table Entry
(PTE) that corresponds to a single line in the
sequence is assumed to be done using a Store
instruction for which the access is atomic. Appro-
priate modifications must be made to these
sequences if this assumption is not satisfied (e.g., if a
store doubleword operation is done using two Store
Word instructions).

All of the sequences require a context synchronizing
operation after the sequence if the new contents of
the PTE are to be used for address translations asso-
ciated with subsequent instructions.

As noted in the description of the Synchronize
instruction in Book II, address translation associated
with instructions which occur in program order subse-
quent to the Synchronize (and this includes the
ptesync variant) may actually be performed prior to
the completion of the Synchronize. To ensure that
these instructions and data which may have been
speculatively fetched are discarded, a context syn-
chronizing operation is required.

Programming Note

The context synchronizing operation after the
sequence ensures that any address translations
associated with instructions following the context
synchronizing operation that were performed
using the old contents of the PTE will be dis-
carded, with the result that these address trans-
lations will be performed again using the values
stored by the sequence (or values stored subse-
quently). In many cases this context synchroniza-
tion will occur naturally; for example, if the
sequence is executed within an interrupt handler
the rfid instruction that returns from the interrupt
handler may provide the required context syn-
chronization.

No context synchronizing operation is needed
before any of the sequences, because (a) each
sequence begins with a store to the PTE, (b) no
context synchronizing operation is needed before
the corresponding Store instruction (see Note 8 of
Chapter 7 on page 71), and (c) each sequence
(except the sequence for resetting the Reference
bit) explicitly orders subsequent operations with
respect to the store. These properties ensure
that all address translations associated with
instructions preceding the sequence will be per-
formed using the old contents of the PTE.

Page Table Entries must not be changed in a manner
that causes an implicit branch.

4.12.1 Page Table Updates

TLBs are non-coherent caches of the HTAB. TLB
entries must be invalidated explicitly with one of the
TLB Invalidate instructions.

Unsynchronized lookups in the HTAB continue even
while it is being modified. Any processor, including a
processor on which software is modifying the HTAB,
may look in the HTAB at any time in an attempt to
translate a virtual address. When modifying a PTE,
software must ensure that the PTE's Valid bit is 0 if
the PTE is inconsistent (e.g., if the RPN field is not
correct for the current AVPN field).

Updates of Reference and Change bits by the
processor are not synchronized with the accesses that
cause the updates. When modifying the low-order
half of a PTE, software must take care to avoid over-
writing a processor update of these bits and to avoid
having the value written by a Store instruction over-
written by a processor update. The processor does
not alter any other fields of the PTE.

Before permitting one or more tlbie instructions to be
executed on a given processor in a given partition
software must ensure that no other processor will
execute a “conflicting instruction” until after the fol-
lowing sequence of instructions has been executed on
the given processor.

the tlbie instruction(s)
eieio
tlbsync
ptesync

The “conflicting instructions” in this case are the fol-
lowing.

■ a tlbie or tlbsync instruction, if executed on
another processor in the given partition

■ an mtspr instruction that modifies the LPIDR, if
the modification has either of the following prop-
erties.

— The old LPID value (i.e., the contents of the
LPIDR just before the mtspr instruction is
executed) is the value that identifies the
given partition

— The new LPID value (i.e., the value specified
by the mtspr instruction) is the value that
identifies the given partition

Other instructions (excluding mtspr instructions that
modify the LPIDR as described above, and excluding
tlbie instructions except as shown) may be inter-
leaved with the instruction sequence shown above,
but the instructions in the sequence must appear in
the order shown. On uniprocessor systems, the eieio
and tlbsync instructions can be omitted. Other
instructions may be interleaved with this sequence of

48 PowerPC Operating Environment Architecture

Version 2.01

instructions, but these instructions must appear in the
order shown.

Programming Note

The eieio instruction prevents the reordering of
tlbie instructions previously executed by the
processor with respect to the subsequent tlbsync
instruction. The tlbsync instruction and the subse-
quent ptesync instruction together ensure that all
storage accesses for which the address was
translated using the translations being invali-
dated, and all Reference and Change bit updates
associated with address translations that were
performed using the translations being invali-
dated, will be performed with respect to any
processor or mechanism, to the extent required
by the associated Memory Coherence Required
attributes, before any data accesses caused by
instructions following the ptesync instruction are
performed with respect to that processor or mech-
anism.

The requirements specified above for tlbie
instructions apply also to tlbsync instructions, except
that the “sequence of instructions” consists solely of
the tlbsync instruction(s) followed by a ptesync
instruction.

Before permitting an mtspr instruction that modifies
the LPIDR to be executed on a given processor, soft-
ware must ensure that no other processor will
execute a “conflicting instruction” until after the
mtspr instruction followed by a context synchronizing
instruction have been executed on the given
processor (a context synchronizing event can be used
instead of the context synchronizing instruction; see
Chapter 7).

The “conflicting instructions” in this case are the fol-
lowing.

■ a tlbie or tlbsync instruction, if executed on a
processor in either of the following partitions

— the partition identified by the old LPID value

— the partition identified by the new LPID value

Programming Note

The restrictions specified above regarding modi-
fying the LPIDR apply even on uniprocessor
systems, and even if the new LPID value is equal
to the old LPID value.

Similarly, when a tlbsync instruction has been exe-
cuted by a processor in a given partition, a ptesync
instruction must be executed by that processor before
a tlbie or tlbsync instruction is executed by another
processor in that partition.

The sequences of operations shown in the following
subsections assume a multiprocessor environment.
In a uniprocessor environment the tlbsync can be
omitted, as can the eieio that separates the tlbie from
the tlbsync. In a multiprocessor environment, when
tlbiel is used instead of tlbie in a Page Table update,
the synchronization requirements are the same as
when tlbie is used in a uniprocessor environment.

Programming Note

For all of the sequences shown in the following
subsections, if it is necessary to communicate
completion of the sequence to software running
on another processor, the ptesync instruction at
the end of the sequence should be followed by a
Store instruction that stores a chosen value to
some chosen storage location X. The memory
barrier created by the ptesync instruction ensures
that if a Load instruction executed by another
processor returns the chosen value from location
X, the sequence's stores to the Page Table have
been performed with respect to that other
processor. The Load instruction that returns the
chosen value should be followed by a context syn-
chronizing instruction in order to ensure that all
instructions following the context synchronizing
instruction will be fetched and executed using the
values stored by the sequence (or values stored
subsequently). (These instructions may have
been fetched or executed out-of-order using the
old contents of the PTE.)

This Note assumes that the Page Table and
location X are in storage that is Memory Coher-
ence Required.

Chapter 4. Storage Control 49

Version 2.01

4.12.1.1 Adding a Page Table Entry

This is the simplest Page Table case. The Valid bit of
the old entry is assumed to be 0. The following
sequence can be used to create a PTE, maintain a
consistent state, and ensure that a subsequent refer-
ence to the virtual address translated by the new
entry will use the correct real address and associated
attributes.

PTERPN,AC,R,C,WIMG,N,PP ← new values
eieio /* order 1st update before 2nd */
PTEAVPN,SW,H,V ← new values (V=1)
ptesync /* order updates before next

Page Table search and before
next data access. */

4.12.1.2 Modifying a Page Table Entry

General Case

If a valid entry is to be modified and the translation
instantiated by the entry being modified is to be inval-
idated, the following sequence can be used to modify
the PTE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the virtual address translated by the new entry will
use the correct real address and associated attri-
butes. (The sequence is equivalent to deleting the
PTE and then adding a new one; see Sections 4.12.1.3
and 4.12.1.1.)

PTEV ← 0 /* (other fields don't matter) */
ptesync /* order update before tlbie and

before next Page Table search */
tlbie(old_VPN32:79−p,old_L) /* invalidate old

translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync and 1st

update before 2nd update */
PTERPN,AC,R,C,WIMG,N,PP ← new values
eieio /* order 2nd update before 3rd */
PTEAVPN,SW,H,V ← new values (V=1)
ptesync /* order 2nd and 3rd updates before

next Page Table search and
before next data access */

Resetting the Reference Bit

If the only change being made to a valid entry is to
set the Reference bit to 0, a simpler sequence suf-
fices because the Reference bit need not be main-
tained exactly.

oldR ← PTER /* get old R */
if oldR = 1 then

PTER ← 0 /* store byte (R=0, other bits
unchanged) */

tlbie(VPN32:79−p,L) /* invalidate entry */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync, and update

before next Page Table search
and before next data access */

Modifying the Virtual Address

If the virtual address translated by a valid PTE is to
be modified and the new virtual address hashes to
the same two PTEGs as does the old virtual address,
the following sequence can be used to modify the
PTE, maintain a consistent state, ensure that the
translation instantiated by the old entry is no longer
available, and ensure that a subsequent reference to
the virtual address translated by the new entry will
use the correct real address and associated attri-
butes.

PTEAVPN,SW,H,V ← new values (V=1)
ptesync /* order update before tlbie and

before next Page Table search */
tlbie(old_VPN32:79−p,old_L) /* invalidate old

translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync, and update

before next data access */

To modify the AC, N, or PP bits without overwriting a
Reference or Change bit update being performed by
the processor or by some other processor, a
sequence similar to that shown above can be used
except that the first line would be replaced by a
ptesync instruction followed by a loop containing a
ldarx/stdcx. pair that emulates an atomic “Compare
and Swap” of the low-order doubleword of the PTE.
(See the section entitled “Atomic Update Primitives”
in Book II, PowerPC Virtual Environment Architecture
for a description of “Compare and Swap”.)

4.12.1.3 Deleting a Page Table Entry

The following sequence can be used to ensure that
the translation instantiated by an existing entry is no
longer available.

PTEV ← 0 /* (other fields don't matter) */
ptesync /* order update before tlbie and

before next Page Table search */
tlbie(old_VPN32:79−p,old_L) /* invalidate old

translation */
eieio /* order tlbie before tlbsync */
tlbsync /* order tlbie before ptesync */
ptesync /* order tlbie, tlbsync, and update

before next data access */

50 PowerPC Operating Environment Architecture

Version 2.01

Chapter 5. Interrupts

5.1 Overview 51
5.2 Interrupt Synchronization 51
5.3 Interrupt Classes 52
5.3.1 Precise Interrupt 52
5.3.2 Imprecise Interrupt 52
5.4 Interrupt Processing 53
5.5 Interrupt Definitions 54
5.5.1 System Reset Interrupt 55
5.5.2 Machine Check Interrupt 55
5.5.3 Data Storage Interrupt 55
5.5.4 Data Segment Interrupt 57
5.5.5 Instruction Storage Interrupt . . . 58
5.5.6 Instruction Segment Interrupt . . 58
5.5.7 External Interrupt 59
5.5.8 Alignment Interrupt 59

5.5.9 Program Interrupt 60
5.5.10 Floating-Point Unavailable

Interrupt 61
5.5.11 Decrementer Interrupt 61
5.5.12 Hypervisor Decrementer

Interrupt (POWER4+ only) 62
5.5.13 System Call Interrupt 62
5.5.14 Trace Interrupt 63
5.5.15 Performance Monitor Interrupt

(Optional) 63
5.6 Partially Executed Instructions . . . 63
5.7 Exception Ordering 64
5.7.1 Unordered Exceptions 64
5.7.2 Ordered Exceptions 64
5.8 Interrupt Priorities 65

5.1 Overview

The PowerPC Architecture provides an interrupt
mechanism to allow the processor to change state as
a result of external signals, errors, or unusual condi-
tions arising in the execution of instructions.

System Reset and Machine Check interrupts are not
ordered. All other interrupts are ordered such that
only one interrupt is reported, and when it is proc-
essed (taken) no program state is lost. Since
Save/Restore Registers SRR0 and SRR1 are serially
reusable resources used by most interrupts, program
state may be lost when an unordered interrupt is
taken.

5.2 Interrupt Synchronization

When an interrupt occurs, SRR0 is set to point to an
instruction such that all preceding instructions have
completed execution, no subsequent instruction has
begun execution, and the instruction addressed by
SRR0 may or may not have completed execution,
depending on the interrupt type.

With the exception of System Reset and Machine
Check interrupts, all interrupts are context synchro-
nizing as defined in Section 1.6.1, “Context
Synchronization” on page 3. System Reset and
Machine Check interrupts are context synchronizing if
they are recoverable (i.e., if bit 62 of SRR1 is set to 1
by the interrupt). If a System Reset or Machine
Check interrupt is not recoverable (i.e., if bit 62 of
SRR1 is set to 0 by the interrupt), it acts like a
context synchronizing operation with respect to sub-
sequent instructions. That is, a non-recoverable
System Reset or Machine Check interrupt need not
satisfy items 1 through 3 of Section 1.6.1, but does
satisfy items 4 and 5.

Chapter 5. Interrupts 51

Version 2.01

5.3 Interrupt Classes

Interrupts are classified by whether they are directly
caused by the execution of an instruction or are
caused by some other system exception. Those that
are “system-caused” are:

■ System Reset
■ Machine Check
■ External
■ Decrementer

External and Decrementer are maskable interrupts.
While MSREE= 0 , the interrupt mechanism ignores the
exceptions that generate these interrupts. Therefore,
software may delay the generation of these interrupts
by setting MSREE= 0 or by failing to set MSREE= 1
after processing an interrupt. When any interrupt is
taken, MSREE is set to 0 by the interrupt mechanism,
delaying the recognition of any further exceptions
causing these interrupts.

System Reset and Machine Check exceptions are not
maskable. These exceptions will be recognized
regardless of the setting of the MSR.

“Instruction-caused” interrupts are further divided
into two classes, precise and imprecise.

5.3.1 Precise Interrupt

Except for the Imprecise Mode Floating-Point Enabled
Exception type Program interrupt, all instruction-
caused interrupts are precise. When the fetching or
execution of an instruction causes a precise interrupt,
the following conditions exist at the interrupt point.

1. SRR0 addresses either the instruction causing the
exception or the immediately following instruc-
tion. Which instruction is addressed can be
determined from the interrupt type and status
bits.

2. An interrupt is generated such that all
instructions preceding the instruction causing the
exception appear to have completed with respect
to the executing processor. However, some
storage accesses associated with these preceding
instructions may not have been performed with
respect to other processors and mechanisms.

3. The instruction causing the exception may appear
not to have begun execution (except for causing
the exception), may have been partially executed,
or may have completed, depending on the inter-
rupt type.

4. Architecturally, no subsequent instruction has
begun execution.

5.3.2 Imprecise Interrupt

This architecture defines one imprecise interrupt, the
Imprecise Mode Floating-Point Enabled Exception type
Program interrupt.

When the execution of an instruction causes an impre-
cise interrupt, the following conditions exist at the
interrupt point.

1. SRR0 addresses either the instruction causing the
exception or some instruction following the
instruction causing the exception that generated
the interrupt.

2. An interrupt is generated such that all
instructions preceding the instruction addressed
by SRR0 appear to have completed with respect
to the executing processor.

3. If the imprecise interrupt is forced by the context
synchronizing mechanism, due to an instruction
that causes another interrupt (e.g., Alignment,
Data Storage), then SRR0 addresses the
interrupt-forcing instruction, and the interrupt-
forcing instruction may have been partially exe-
cuted (see Section 5.6, “Partially Executed
Instructions” on page 63).

4. If the imprecise interrupt is forced by the exe-
cution synchronizing mechanism, due to exe-
cuting an execution synchronizing instruction
other than isync, sync, or ptesync, then SRR0
addresses the interrupt-forcing instruction, and
the interrupt-forcing instruction appears not to
have begun execution (except for forcing the
imprecise interrupt). If the imprecise interrupt is
forced by an isync, sync, or ptesync instruction,
then SRR0 may address either the isync, sync, or
ptesync instruction, or the following instruction.

5. If the imprecise interrupt is not forced by either
the context synchronizing mechanism or the exe-
cution synchronizing mechanism, then the instruc-
tion addressed by SRR0 appears not to have
begun execution, if it is not the excepting instruc-
tion.

6. No instruction following the instruction addressed
by SRR0 appears to have begun execution.

All Floating-Point Enabled Exception type Program
interrupts are maskable using the MSR bits FE0 and
FE1. Although these interrupts are maskable, they
differ significantly from the other maskable interrupts
in that the masking of these interrupts is usually con-
trolled by the application program, whereas the
masking of External and Decrementer interrupts is
controlled by the operating system.

52 PowerPC Operating Environment Architecture

Version 2.01

5.4 Interrupt Processing

Associated with each kind of interrupt is an interrupt
vector, which contains the initial sequence of
instructions that is executed when the corresponding
interrupt occurs.

Interrupt processing consists of saving a small part of
the processor's state in certain registers, identifying
the cause of the interrupt in other registers, and con-
tinuing execution at the corresponding interrupt
vector location. When an exception exists that will
cause an interrupt to be generated and it has been
determined that the interrupt will occur, the following
actions are performed. The handling of Machine
Check interrupts (see Section 5.5.2) differs from the
description given below in several respects.

1. SRR0 is loaded with an instruction address that
depends on the type of interrupt; see the specific
interrupt description for details.

2. Bits 33:36 and 42:47 of SRR1 are loaded with
information specific to the interrupt type.

3. Bits 0:32, 37:41, and 48:63 of SRR1 are loaded
with a copy of the corresponding bits of the MSR.

4. The MSR is set as shown in Figure 28 on
page 54. In particular, MSR bits IR and DR are
set to 0, disabling relocation, and MSR bit SF is
set to 1, selecting 64-bit mode. The new values
take effect beginning with the first instruction
executed following the interrupt.

5. Instruction fetch and execution resumes, using
the new MSR value, at the effective address spe-
cific to the interrupt type. These effective
addresses are shown in Figure 29 on page 54.

Interrupts do not clear reservations obtained with
lwarx or ldarx.

Programming Note

In general, when an interrupt occurs, the following
instructions should be executed by the operating
system before dispatching a “new” program.

■ stwcx. or stdcx., to clear the reservation if
one is outstanding, to ensure that a lwarx or
ldarx in the interrupted program is not paired
with a stwcx. or stdcx. in the “new” program.

■ sync, to ensure that all storage accesses
caused by the interrupted program will be
performed with respect to another processor
before the program is resumed on that other
processor.

■ isync or rfid, to ensure that the instructions in
the “new” program execute in the “new”
context.

Programming Note

If a program thread modifies an instruction that it
or another thread will subsequently execute and
the execution of the instruction causes an inter-
rupt, the state of storage and the content of some
processor registers may appear to be inconsistent
to the interrupt handler program. For example,
this could be the result of one program thread
executing an instruction that causes an Illegal
Instruction type Program interrupt just before
another thread of the same program stores an
Add Immediate instruction in that storage
location. To the interrupt handler code, it would
appear that a processor generated the Program
interrupt as the result of executing a valid instruc-
tion.

Programming Note

In order to handle Machine Check and System
Reset interrupts correctly, the operating system
should manage MSRRI as follows.

■ In the Machine Check and System Reset
interrupt handlers, interpret SRR1 bit 62
(where MSRRI is placed) as:

— 0: interrupt is not recoverable
— 1: interrupt is recoverable

■ In each interrupt handler, when enough state
has been saved that a Machine Check or
System Reset interrupt can be recovered
from, set MSRRI to 1.

■ In each interrupt handler, do the following (in
order) just before returning.

1. Set MSRRI to 0.
2. Set SRR0 and SRR1 to the values to be

used by rfid. The new value of SRR1
should have bit 62 set to 1 (which will
happen naturally if SRR1 is restored to
the value saved there by the interrupt,
because the interrupt handler will not be
executing this sequence unless the inter-
rupt is recoverable).

3. Execute rfid.

MSRRI can be managed similarly to handle inter-
rupts other than Machine Check and System
Reset that occur within interrupt handlers.

This Note describes only the management of
MSRRI. It is not intended to be a full description
of the requirements for an interrupt handler.

Chapter 5. Interrupts 53

Version 2.01

5.5 Interrupt Definitions

Figure 28 shows all the types of interrupts and the
values assigned to the MSR for each. Figure 29
shows the effective address of the interrupt vector for
each interrupt type. (Section 4.2.7 on page 27 sum-
marizes all architecturally defined uses of effective
addresses, including those implied by Figure 29.)

Interrupt Type MSR Bit
IR DR FE0 FE1 EE RI ME HV

System Reset 0 0 0 0 0 0 - 1
Machine Check 0 0 0 0 0 0 0 1
Data Storage 0 0 0 0 0 0 - m
Data Segment 0 0 0 0 0 0 - m
Instruction Storage 0 0 0 0 0 0 - m
Instruction Segment 0 0 0 0 0 0 - m
External 0 0 0 0 0 0 - e
Alignment 0 0 0 0 0 0 - m
Program 0 0 0 0 0 0 - m
FP Unavailable 0 0 0 0 0 0 - m
Decrementer 0 0 0 0 0 0 - m
Hypervisor Decrem'er 0 0 0 0 0 0 - 1
System Call 0 0 0 0 0 0 - s
Trace 0 0 0 0 0 0 - m
Performance Monitor 0 0 0 0 0 0 - m

The Hypervisor Decrementer interrupt occurs only
on POWER4+.

0 bit is set to 0
1 bit is set to 1
- bit is not altered
m if LPES/LPES1= 0 , set to 1; otherwise not

altered
e On POWER4, same as code m. On

POWER4+, if LPES0= 0 , set to 1; otherwise
not altered

s if LEV=1 or LPES/LPES1= 0 , set to 1; other-
wise not altered

Settings for Other Bits

Bits BE, FP, PMM, PR, and SE are set to 0.

If the optional Little-Endian facility is implemented
(see the section entitled “Little-Endian” in Book I),
the bits associated with the facility are set as
follows. The ILE bit is not altered. The LE bit is
copied from the ILE bit.

Bit SF is set to 1.

Reserved bits are set as if written as 0.

Figure 28. MSR setting due to interrupt

Effective Interrupt Type
Address1

00..0000_0100 System Reset
00..0000_0200 Machine Check
00..0000_0300 Data Storage
00..0000_0380 Data Segment
00..0000_0400 Instruction Storage
00..0000_0480 Instruction Segment
00..0000_0500 External
00..0000_0600 Alignment
00..0000_0700 Program
00..0000_0800 Floating-Point Unavailable
00..0000_0900 Decrementer
00..0000_0980 Hypervisor Decrementer

(POWER4+ only)
00..0000_0A00 Reserved
00..0000_0B00 Reserved
00..0000_0C00 System Call
00..0000_0D00 Trace
00..0000_0E00 Reserved
00..0000_0E10 Reserved

.
00..0000_0EFF Reserved
00..0000_0F00 Performance Monitor
00..0000_0F10 Reserved

.
00..0000_0FFF Reserved

1 The values in the Effective Address column are
interpreted as follows.
■ 00..0000_nnnn means 0x0000_0000_0000_nnnn

2 Effective addresses 0x0000_0000_0000_0000
through 0x0000_0000_0000_00FF are used by
software and will not be assigned as interrupt
vectors.

Figure 29. Effective address of interrupt vector by
interrupt type

Programming Note

When address translation is disabled, use of any
of the effective addresses that are shown as
reserved in Figure 29 risks incompatibility with
future implementations.

54 PowerPC Operating Environment Architecture

Version 2.01

5.5.1 System Reset Interrupt

If a System Reset exception causes an interrupt that
is not context synchronizing, or causes the loss of a
Machine Check exception, an External exception, or a
Floating-Point Enabled Exception type Program excep-
tion, the interrupt is not recoverable.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
62 Loaded from bit 62 of the MSR if the

processor is in a recoverable state; other-
wise set to 0.

Others Loaded from the MSR.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0100.

Each implementation provides a means for software
to distinguish power-on Reset from other types of
System Reset, and describes it in the Book IV,
PowerPC Implementation Features document for the
implementation.

5.5.2 Machine Check Interrupt

The causes of Machine Check interrupts are imple-
mentation-dependent. For example, a Machine Check
interrupt may be caused by a reference to a storage
location that contains an uncorrectable error or does
not exist (see Section 4.2.8, “Invalid Real Address” on
page 27), or by an error in the storage subsystem.

Machine Check interrupts are enabled when
MSRME= 1 . If MSRME= 0 and a Machine Check
occurs, the processor enters the Checkstop state.
The Checkstop state may also be entered if an access
is attempted to a storage location that does not exist
(see Section 4.2.8).

Disabled Machine Check (Checkstop State)

When a processor is in Checkstop state, instruction
processing is suspended and generally cannot be
restarted without resetting the processor. Some
implementations may preserve some or all of the
internal state of the processor when entering
Checkstop state, so that the state can be analyzed as
an aid in problem determination.

Enabled Machine Check

If a Machine Check exception causes an interrupt that
is not context synchronizing, or causes the loss of an
External exception or a Floating-Point Enabled Excep-
tion type Program exception, the interrupt is not
recoverable.

In some systems, the operating system may attempt
to identify and log the cause of the Machine Check.

The following registers are set:

SRR0 Set on a “best effort” basis to the effective
address of some instruction that was exe-
cuting or was about to be executed when
the Machine Check exception occurred.
For further details see the Book IV,
PowerPC Implementation Features docu-
ment for the implementation.

SRR1
62 Loaded from bit 62 of the MSR if the

processor is in a recoverable state; other-
wise set to 0.

Others See the Book IV, PowerPC Implementation
Features document for the implementation.

MSR See Figure 28 on page 54.

DSISR See Book IV.

DAR See Book IV.

Execution resumes at effective address
0x0000_0000_0000_0200.

Programming Note

If a Machine Check interrupt is caused by an error
in the storage subsystem, the storage subsystem
may return incorrect data, which may be placed
into registers. This corruption of register contents
may occur even if the interrupt is recoverable.

5.5.3 Data Storage Interrupt

A Data Storage interrupt occurs when no higher pri-
ority exception exists and a data access cannot be
performed for any of the following reasons.

■ Data address translation is enabled (MSRDR= 1)
and the virtual address of any byte of the storage
location specified by a Load, Store, icbi, dcbz,
dcbst, dcbf, eciwx, or ecowx instruction cannot be
translated to a real address.

■ The effective address specified by a lwarx, ldarx,
stwcx., or stdcx. instruction refers to storage that
is Write Through Required or Caching Inhibited.

■ The access violates storage protection.
■ A Data Address Compare match or a Data

Address Breakpoint Register (DABR) match
occurs.

Chapter 5. Interrupts 55

Version 2.01

■ Execution of an eciwx or ecowx instruction is dis-
allowed because EARE= 0 .

If a stwcx. or stdcx. would not perform its store in the
absence of a Data Storage interrupt, and either (a)
the specified effective address refers to storage that
is Write Through Required or Caching Inhibited, or (b)
a non-conditional Store to the specified effective
address would cause a Data Storage interrupt, it is
implementation-dependent whether a Data Storage
interrupt occurs.

If a Move Assist instruction has a length of zero (in
the XER), a Data Storage interrupt does not occur for
reasons of address translation or storage protection,
regardless of the effective address.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

DSISR
0 Set to 0.
1 Set to 1 if MSRDR= 1 and the translation

for an attempted access is not found in the
primary PTEG or in the secondary PTEG;
otherwise set to 0.

2:3 Set to 0.
4 Set to 1 if the access is not permitted by

the storage protection mechanism; other-
wise set to 0.

Programming Note

The only cases in which DSISR4 can be
set to 1 for an access that occurs when
MSRDR= 0 are those described in
Figure 24. These cases can be distin-
guished from other causes of data
storage protection violations by exam-
ining SRR159 (the bit in which MSRDR
was saved by the interrupt).

5 Set to 1 if the access is due to a lwarx,
ldarx, stwcx., or stdcx. instruction that
addresses storage that is Write Through
Required or Caching Inhibited; otherwise
set to 0.

6 Set to 1 for a Store, dcbz, or ecowx
instruction; otherwise set to 0.

7:8 Set to 0.
9 Set to 1 if a Data Address Compare match

or a DABR match occurs; otherwise set to
0.

10 Set to 0.

11 Set to 1 if execution of an eciwx or ecowx
instruction is attempted when EARE= 0 ;
otherwise set to 0.

12:14 Set to 0.
15 Set to 1 if MSRDR= 1 , the translation for an

attempted access is found in the SLB, the
translation is not found in the primary
PTEG or in the secondary PTEG, and
SLBEL= 1 ; otherwise set to 0.

Programming Note

Warning: This setting of DSISR15 is
being phased out of the architecture.
Future versions of the architecture will
specify that the Data Storage interrupt
sets DSISR15 to an undefined value.
New software should not depend on the
setting described above, and any such
dependency in existing software should
be removed. (Implementations of
future versions of the architecture may
treat DSISR15 as reserved.)

16:31 Set to 0.

DAR Set to the effective address of a storage
element as described in the following list.
The list should be read from the top down;
the DAR is set as described by the first
item that corresponds to an exception that
is reported in the DSISR. For example, if a
Load instruction causes a storage pro-
tection violation and a DABR match (and
both are reported in the DSISR), the DAR
is set to the effective address of a byte in
the first aligned doubleword for which
access was attempted in the page that
caused the exception.
■ a Data Storage exception occurs for

reasons other than DABR match or, for
eciwx and ecowx, EARE= 0
— a byte in the block that caused the

exception, for a Cache Manage-
ment instruction

— a byte in the first aligned
doubleword for which access was
attempted in the page that caused
the exception, for a Load, Store,
eciwx, or ecowx instruction (“f irst”
refers to address order; see
Section 5.7)

■ undefined, for a DABR match, or if
eciwx or ecowx is executed when
EARE= 0

For the cases in which the DAR is specified
above to be set to a defined value, if the
interrupt occurs in 32-bit mode the high-
order 32 bits of the DAR are set to 0.

If multiple Data Storage exceptions occur for a given
effective address, any one or more of the bits corre-

56 PowerPC Operating Environment Architecture

Version 2.01

sponding to these exceptions may be set to 1 in the
DSISR.

Programming Note

More than one bit may be set to 1 in the DSISR in
the following combinations.

1, { s + }
1, 15, { s + }
4, { s + }
4, 5, {s}
5, {s}
{ s + }

In this list, “ { s } ” represents any combination of
the set of bits {6, 9} and “ { s + } ” adds bit 11 to
this set.

Execution resumes at effective address
0x0000_0000_0000_0300.

5.5.4 Data Segment Interrupt

A Data Segment interrupt occurs when no higher pri-
ority exception exists and a data access cannot be
performed because data address translation is
enabled (MSRDR= 1) and the effective address of any
byte of the storage location specified by a Load,
Store, icbi, dcbz, dcbst, dcbf, eciwx, or ecowx instruc-
tion cannot be translated to a virtual address.

If a stwcx. or stdcx. would not perform its store in the
absence of a Data Segment interrupt, and a non-
conditional Store to the specified effective address
would cause a Data Segment interrupt, it is imple-
mentation-dependent whether a Data Segment inter-
rupt occurs.

If a Move Assist instruction has a length of zero (in
the XER), a Data Segment interrupt does not occur,
regardless of the effective address.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

DSISR Set to an undefined value.

DAR Set to the effective address of a storage
element as described in the following list.
■ a byte in the block that caused the

Data Segment interrupt, for a Cache
Management instruction

■ a byte in the first aligned doubleword
for which access was attempted in the
segment that caused the Data
Segment interrupt, for a Load, Store,
eciwx, or ecowx instruction (“f irst”
refers to address order; see Section
5.7)

If the interrupt occurs in 32-bit mode, the
high-order 32 bits of the DAR are set to 0.

Execution resumes at effective address
0x0000_0000_0000_0380.

Programming Note

A Data Segment interrupt occurs if MSRDR= 1 and
the translation of the effective address of any
byte of the specified storage location is not found
in the SLB.

Chapter 5. Interrupts 57

Version 2.01

5.5.5 Instruction Storage Interrupt

An Instruction Storage interrupt occurs when no
higher priority exception exists and the next instruc-
tion to be executed cannot be fetched for any of the
following reasons.

■ Instruction address translation is enabled
(MSRIR= 1) and the virtual address cannot be
translated to a real address.

■ The fetch access violates storage protection.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present (if the interrupt
occurs on attempting to fetch a branch
target, SRR0 is set to the branch target
address).

SRR1
33 Set to 1 if MSRIR= 1 and the translation for

an attempted access is not found in the
primary PTEG or in the secondary PTEG;
otherwise set to 0.

34 Set to 0.
35 Set to 1 if the access occurs when

MSRIR= 1 and is to No-execute storage or
to Guarded storage; otherwise set to 0.

36 Set to 1 if the access is not permitted by
Figure 23 or 24, as appropriate; otherwise
set to 0.

Programming Note

The only cases in which SRR136 can be
set to 1 for an access that occurs when
MSRIR= 0 are those described in
Figure 24. These cases can be distin-
guished from other causes of instruc-
tion storage protection violations that
set SRR136 to 1 by examining SRR158
(the bit in which MSRIR was saved by
the interrupt).

42:46 Set to 0.
47 Set to 1 if MSRIR= 1 , the translation for an

attempted access is found in the SLB, the
translation is not found in the primary
PTEG or in the secondary PTEG, and
SLBEL= 1 ; otherwise set to 0.

Programming Note

Warning: This setting of SRR147 is
being phased out of the architecture.
Future versions of the architecture will
specify that the Instruction Storage
interrupt sets SRR147 to an undefined
value. New software should not
depend on the setting described above,
and any such dependency in existing
software should be removed. (In dis-
tinction from the corresponding case
for DSISR15 as set by the Data Storage
interrupt, implementations of future
versions of the architecture cannot
treat SRR147 as reserved, because
SRR147 is set to a meaningful value by
other interrupts, e.g., the Program
interrupt.)

Others Loaded from the MSR.

MSR See Figure 28 on page 54.

If multiple Instruction Storage exceptions occur due to
attempting to fetch a single instruction, any one or
more of the bits corresponding to these exceptions
may be set to 1 in SRR1.

Programming Note

More than one bit may be set to 1 in SRR1 in the
following combinations.

33, 35
33, 47
33, 35, 47
35, 36

Execution resumes at effective address
0x0000_0000_0000_0400.

5.5.6 Instruction Segment Interrupt

An Instruction Segment interrupt occurs when no
higher priority exception exists and the next instruc-
tion to be executed cannot be fetched because
instruction address translation is enabled (MSRIR= 1)
and the effective address cannot be translated to a
virtual address.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present (if the interrupt
occurs on attempting to fetch a branch
target, SRR0 is set to the branch target
address).

SRR1

58 PowerPC Operating Environment Architecture

Version 2.01

33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0480.

Programming Note

An Instruction Segment interrupt occurs if
MSRIR= 1 and the translation of the effective
address of the next instruction to be executed is
not found in the SLB.

5.5.7 External Interrupt

An External interrupt occurs when no higher priority
exception exists, an External interrupt exception is
presented to the interrupt mechanism, and MSREE= 1 .
The occurrence of the interrupt does not cancel the
request.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0500.

5.5.8 Alignment Interrupt

An Alignment interrupt occurs when no higher priority
exception exists and a data access cannot be per-
formed for any of the following reasons.

■ The operand of a floating-point Load or Store is
not word-aligned, or crosses a virtual page
boundary.

■ The operand of lmw, stmw, lwarx, ldarx, stwcx.,
stdcx., eciwx, or ecowx is not aligned.

■ The operand of a single-register Load or Store is
not aligned and the processor is in Little-Endian
mode.

■ The instruction is lmw, stmw, lswi, lswx, stswi, or
stswx, and the operand is in storage that is Write
Through Required or Caching Inhibited, or the
processor is in Little-Endian mode.

■ The operand of a Load or Store crosses a
segment boundary, or crosses a boundary
between virtual pages that have different storage
control attributes.

■ The operand of a Load or Store is not aligned and
is in storage that is Write Through Required or
Caching Inhibited.

■ The operand of dcbz, lwarx, ldarx, stwcx., or
stdcx. is in storage that is Write Through
Required or Caching Inhibited.

If a stwcx. or stdcx. would not perform its store in the
absence of an Alignment interrupt and the specified
effective address refers to storage that is Write
Through Required or Caching Inhibited, it is imple-
mentation-dependent whether an Alignment interrupt
occurs.

Setting the DSISR and DAR as described below is
optional for implementations on which Alignment
interrupts occur rarely, if ever, for cases that the
Alignment interrupt handler emulates. For such
implementations, if the DSISR and DAR are not set as
described below they are set to undefined values.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

DSISR
0:11 Set to 0.
12:13 Set to bits 30:31 of the instruction if

DS-form.
Set to 0b00 if D- or X-form.

14 Set to 0.
15:16 Set to bits 29:30 of the instruction if X-form.

Set to 0b00 if D- or DS-form.
17 Set to bit 25 of the instruction if X-form.

Set to bit 5 of the instruction if D- or
DS-form.

18:21 Set to bits 21:24 of the instruction if X-form.
Set to bits 1:4 of the instruction if D- or
DS-form.

22:26 Set to bits 6:10 of the instruction
(RT/RS/FRT/FRS), except undefined for
dcbz.

27:31 Set to bits 11:15 of the instruction (RA) for
update form instructions; set to either bits
11:15 of the instruction or to any register
number not in the range of registers to be
loaded for a valid form lmw, a valid form
lswi, or a valid form lswx for which neither

Chapter 5. Interrupts 59

Version 2.01

RA nor RB is in the range of registers to be
loaded; otherwise undefined.

DAR Set to the effective address computed by
the instruction, except that if the interrupt
occurs in 32-bit mode the high-order 32 bits
of the DAR are set to 0.

For an X-form Load or Store, it is acceptable for the
processor to set the DSISR to the same value that
would have resulted if the corresponding D- or
DS-form instruction had caused the interrupt. Simi-
larly, for a D- or DS-form Load or Store, it is accept-
able for the processor to set the DSISR to the value
that would have resulted for the corresponding X-form
instruction. For example, an unaligned lwax (that
crosses a protection boundary) would normally, fol-
lowing the description above, cause the DSISR to be
set to binary:

000000000000 00 0 01 0 0101 ttttt ?????

where “ t t t t t ” denotes the RT field, and “?????”
denotes an undefined 5-bit value. However, it is
acceptable if it causes the DSISR to be set as for lwa,
which is

000000000000 10 0 00 0 1101 ttttt ?????

If there is no corresponding alternative form instruc-
tion (e.g., for lwaux), the value described above is set
in the DSISR.

The instruction pairs that may use the same DSISR
value are:

lhz/lhzx lhzu/lhzux lha/lhax lhau/lhaux
lwz/lwzx lwzu/lwzux lwa/lwax
ld/ldx ldu/ldux
sth/sthx sthu/sthux stw/stwx stwu/stwux
std/stdx stdu/stdux
lfs/lfsx lfsu/lfsux lfd/lfdx lfdu/lfdux
stfs/stfsx stfsu/stfsux stfd/stfdx stfdu/stfdux

Execution resumes at effective address
0x0000_0000_0000_0600.

Programming Note

The architecture does not support the use of an
unaligned effective address by lwarx, ldarx,
stwcx., stdcx., eciwx, and ecowx. If an Alignment
interrupt occurs because one of these instructions
specifies an unaligned effective address, the
Alignment interrupt handler must not attempt to
simulate the instruction, but instead should treat
the instruction as a programming error.

5.5.9 Program Interrupt

A Program interrupt occurs when no higher priority
exception exists and one of the following exceptions
arises during execution of an instruction:

Floating-Point Enabled Exception

A Floating-Point Enabled Exception type Program
interrupt is generated when the expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. FPSCRFEX is set to 1 by the execution of a
floating-point instruction that causes an enabled
exception, including the case of a Move To
FPSCR instruction that causes an exception bit
and the corresponding enable bit both to be 1.

Illegal Instruction

An Illegal Instruction type Program interrupt is
generated when execution is attempted of an
illegal instruction, or of a reserved or optional
instruction that is not provided by the implemen-
tation.

An Illegal Instruction type Program interrupt may
be generated when execution is attempted of any
of the following kinds of instruction.

■ an instruction that is in invalid form

■ an lswx instruction for which RA or RB is in
the range of registers to be loaded

■ an mtspr or mfspr instruction with an SPR
field that does not contain one of the defined
values, or an mftb instruction with a TBR
field that does not contain one of the defined
values

Privileged Instruction

The following applies if the instruction is executed
when MSRPR = 1.

A Privileged Instruction type Program inter-
rupt is generated when execution is
attempted of a privileged instruction, or of an
mtspr or mfspr instruction with an SPR field
that contains one of the defined values
having spr0= 1 . It may be generated when
execution is attempted of an mtspr or mfspr
instruction with an SPR field that does not
contain one of the defined values but has
spr0= 1 , or when execution is attempted of an
mftb instruction with a TBR field that does
not contain one of the defined values but has
tbr0= 1 .

The following applies if the instruction is executed
when MSRHV PR = 0b00.

A Privileged Instruction type Program inter-
rupt may be generated when execution is
attempted of an mtspr instruction with an
SPR field that designates a hypervisor
resource, or when execution of a tlbie or
tlbsync instruction is attempted.

60 PowerPC Operating Environment Architecture

Version 2.01

Programming Note

These are the only cases in which a Privi-
leged Instruction type Program interrupt
can be generated when MSRPR= 0 . They
can be distinguished from other causes of
Privileged Instruction type Program inter-
rupts by examining SRR149 (the bit in
which MSRPR was saved by the inter-
rupt).

Trap

A Trap type Program interrupt is generated when
any of the conditions specified in a Trap instruc-
tion is met.

The following registers are set:

SRR0 For all Program interrupts except a
Floating-Point Enabled Exception when in
one of the Imprecise modes, set to the
effective address of the instruction that
caused the interrupt.

For an Imprecise Mode Floating-Point
Enabled Exception, set to the effective
address of the excepting instruction or to
the effective address of some subsequent
instruction. If SRR0 points to a subsequent
instruction, that instruction has not been
executed. If a subsequent instruction is
isync, sync, or ptesync, SRR0 will not point
more than four bytes beyond the isync,
sync, or ptesync instruction.

If FPSCRFEX= 1 but Floating-Point Enabled
Exception type Program interrupts are dis-
abled by having both MSRFE0 and MSRFE1
= 0, a Floating-Point Enabled Exception
type Program interrupt will occur prior to
or at the next context synchronizing event
after these MSR bits are altered by any
instruction that can set the MSR so that
the expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. When this occurs, SRR0 is loaded
with the address of the instruction that
would have executed next, not with the
address of the instruction that modified the
MSR causing the interrupt.

SRR1
33:36 Set to 0.
42 Set to 0.
43 Set to 1 for a Floating-Point Enabled Excep-

tion type Program interrupt; otherwise set
to 0.

44 Set to 1 for an Illegal Instruction type
Program interrupt; otherwise set to 0.

45 Set to 1 for a Privileged Instruction type
Program interrupt; otherwise set to 0.

46 Set to 1 for a Trap type Program interrupt;
otherwise set to 0.

47 Set to 0 if SRR0 contains the address of
the instruction causing the exception, and
to 1 if SRR0 contains the address of a sub-
sequent instruction.

Others Loaded from the MSR.

Only one of bits 43:46 can be set to 1.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0700.

5.5.10 Floating-Point Unavailable
Interrupt

A Floating-Point Unavailable interrupt occurs when no
higher priority exception exists, an attempt is made to
execute a floating-point instruction (including floating-
point loads, stores, and moves), and MSRFP= 0 .

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that caused the interrupt.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0800.

5.5.11 Decrementer Interrupt

A Decrementer interrupt occurs when no higher pri-
ority exception exists, a Decrementer exception
exists, and MSREE= 1 . On POWER4 (only), the occur-
rence of the interrupt cancels the request.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0900.

Chapter 5. Interrupts 61

Version 2.01

5.5.12 Hypervisor Decrementer
Interrupt (POWER4+ only)

A Hypervisor Decrementer interrupt occurs when no
higher priority exception exists, a Hypervisor
Decrementer exception exists, and the value of the
expression

(MSREE | ¬(MSRHV) | MSRPR) & HDICE
& (MSR RI | (¬(HDECh) & (HDIHO ≠ 0b00)))

is 1.

HDECh is the Hypervisor Decrementer bit selected by
the HDIHO field; see Section 1.7, “Logical Partitioning
(LPAR)” on page 4.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0980.

Programming Note

Because the value of MSREE is always 1 when the
processor is in problem state, the simpler
expression

(MSREE | ¬(MSRHV)) & HDICE
& (MSRRI | (¬(HDECh) & (HDIHO ≠ 0b00)))

is equivalent to the expression given above.

Programming Note

Provided that the hypervisor sets the Hypervisor
Decrementer to a non-negative value before dis-
patching a virtual partition (and that HDIHO ≠
0b00), the "¬(HDECh)" term in the expression
given above provides a maximum “holdoff” time
for the subsequent Hypervisor Decrementer inter-
rupt. Specifically, if MSRRI= 0 when the corre-
sponding Hypervisor Decrementer exception
occurs, and the Hypervisor Decrementer interrupt
would be enabled if MSRRI were 1, in general the
Hypervisor Decrementer interrupt will occur no
later than about 2h Hypervisor Decrementer
“t icks” after the Hypervisor Decrementer excep-
tion occurred.

The maximum holdoff time corresponding to each
value of h is as follows.

h max. holdoff time
-- -----------------
21 1 K HDEC ticks
17 16 K HDEC ticks
13 256 K HDEC ticks

5.5.13 System Call Interrupt

A System Call interrupt occurs when a System Call
instruction is executed.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion following the System Call instruction.

SRR1
33:36 Set to 0.
42:47 Set to 0.
Others Loaded from the MSR.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0C00.

Programming Note

An attempt to execute an sc instruction with
LEV=1 in problem state should be treated as a
programming error.

62 PowerPC Operating Environment Architecture

Version 2.01

5.5.14 Trace Interrupt

A Trace interrupt occurs when no higher priority
exception exists and either MSRSE= 1 and any
instruction except rfid is successfully completed, or
MSRBE= 1 and a Branch instruction is completed.
Successful completion means that the instruction
caused no other interrupt. Thus a Trace interrupt
never occurs for a System Call instruction, or for a
Trap instruction that traps. The instruction that
causes a Trace interrupt is called the “traced instruc-
tion”.

When a Trace interrupt occurs, the following registers
are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 and 42:47 See the Book IV, PowerPC Imple-

mentation Features document for the
implementation.

Others Loaded from the MSR.

MSR See Figure 28 on page 54.

Execution resumes at effective address
0x0000_0000_0000_0D00.

Extensions to the Trace facility are described in
Appendix F, “Example Trace Extensions (Optional)”
on page 109.

Programming Note

The following instructions are not traced.

■ rfid
■ sc, and Trap instructions that trap
■ other instructions that cause interrupts (other

than Trace interrupts)
■ the first instructions of any interrupt handler
■ instructions that are emulated by software

In general, interrupt handlers can achieve the
effect of tracing these instructions.

5.5.15 Performance Monitor Interrupt
(Optional)

The Performance Monitor interrupt is part of the
optional Performance Monitor facility; see
Appendix E. If the Performance Monitor facility is not
implemented or does not use this interrupt, the corre-
sponding interrupt vector (see Figure 29 on page 54)
is treated as reserved.

5.6 Partially Executed Instructions

If a system-caused, Data Storage, Data Segment, or
Alignment exception occurs while a Load or Store
instruction is executing, the instruction may be
aborted. In such cases the instruction is not com-
pleted, but may have been partially executed in the
following respects.

■ Some of the bytes of the storage operand may
have been accessed, except that if access to a
given byte of the storage operand would violate
storage protection, that byte is neither copied to
a register by a Load instruction nor modified by a
Store instruction. Also, the rules for storage
accesses given in Section 4.2.4.1, “Guarded
Storage” on page 24 and in the section entitled
“Instruction Restart” in Book II are obeyed.

■ Some registers may have been altered as
described in the Book II section cited above.

■ Reference and Change bits may have been
updated as described in Section 4.9.

■ For a stwcx. or stdcx. instruction that is executed
in-order, CR0 may have been set to an undefined
value and the reservation may have been
cleared.

The architecture does not support continuation of an
aborted instruction but intends that the aborted
instruction be re-executed if appropriate.

Chapter 5. Interrupts 63

Version 2.01

Programming Note

An exception may result in the partial execution of
a Load or Store instruction. For example, if the
Page Table Entry that translates the address of
the storage operand is altered, by a program
running on another processor, such that the new
contents of the Page Table Entry preclude per-
forming the access, the alteration could cause the
Load or Store instruction to be aborted after
having been partially executed.

As stated in the Book II section cited above, if an
instruction is partially executed the contents of
registers are preserved to the extent that the
instruction can be re-executed correctly. The con-
sequent preservation is described in the following
list. For any given instruction, zero or one item in
the list applies.

■ For a fixed-point Load instruction that is not a
multiple or string form, or for an eciwx
instruction, if RT = RA or RT = RB then the
contents of register RT are not altered.

■ For an update form Load or Store instruction,
the contents of register RA are not altered.

5.7 Exception Ordering

Since multiple exceptions can exist at the same time
and the architecture does not provide for reporting
more than one interrupt at a time, the generation of
more than one interrupt is prohibited. Also some
exceptions would be lost if they were not recognized
and handled when they occurred. For example, if an
External interrupt was generated when a Data
Storage exception existed, the Data Storage exception
would be lost. If the Data Storage exception was
caused by a Store Multiple instruction for which the
storage operand crosses a virtual page boundary and
the exception was a result of attempting to access the
second virtual page, the store could have modified
locations in the first virtual page even though it
appeared that the Store Multiple instruction was
never executed.

In addition, the architecture defines imprecise inter-
rupts that must be recoverable, cannot be lost, and
can occur at any time with respect to the executing
instruction stream. Some of the maskable and non-
maskable exceptions are persistent and can be
deferred. The following exceptions persist even
though some other interrupt is generated:

■ Floating-Point Enabled Exceptions
■ External
■ Decrementer

For the above reasons, all exceptions are prioritized
with respect to other exceptions that may exist at the
same instant to prevent the loss of any exception that

is not persistent. Some exceptions cannot exist at the
same instant as some others.

Data Storage, Data Segment, and Alignment excep-
tions occur as if the storage operand were accessed
one byte at a time in order of increasing effective
address (with the obvious caveat if the operand
includes both the maximum effective address and
effective address 0).

5.7.1 Unordered Exceptions

The exceptions listed here are unordered, meaning
that they may occur at any time regardless of the
state of the interrupt processing mechanism. These
exceptions are recognized and processed when pre-
sented.

1. System Reset
2. Machine Check

5.7.2 Ordered Exceptions

The exceptions listed here are ordered with respect to
the state of the interrupt processing mechanism.

System-Caused or Imprecise

1. Program
- Imprecise Mode Floating-Point Enabled Exception

2. External, Decrementer, and (for POWER4+)
Hypervisor Decrementer

Instruction-Caused and Precise

1. Instruction Segment
2. Instruction Storage
3. Program

- Illegal Instruction
- Privileged Instruction

4. Function-Dependent
4.a Fixed-Point and Branch

1a Program
- Trap

1b System Call
1c Data Storage, Data Segment, or Alignment
2 Trace

4.b Floating-Point
1 FP Unavailable
2a Program

- Precise Mode Floating-Point Enabled Excep'n
2b Data Storage, Data Segment, or Alignment
3 Trace

For implementations that execute multiple instructions
in parallel using pipeline or superscalar techniques, or
combinations of these, it can be difficult to understand
the ordering of exceptions. To understand this
ordering it is useful to consider a model in which each
instruction is fetched, then decoded, then executed,
all before the next instruction is fetched. In this

64 PowerPC Operating Environment Architecture

Version 2.01

model, the exceptions a single instruction would gen-
erate are in the order shown in the list of instruction-
caused exceptions. Exceptions with different numbers
have different ordering. Exceptions with the same
numbering but different lettering are mutually exclu-
sive and cannot be caused by the same instruction.
The External, Decrementer, and Hypervisor
Decrementer interrupts have equal ordering. Simi-
larly, where Data Storage, Data Segment, and Align-
ment exceptions are listed in the same item they
have equal ordering.

Even on processors that are capable of executing
several instructions simultaneously, or out of order,
instruction-caused interrupts (precise and imprecise)
occur in program order.

5.8 Interrupt Priorities

This section describes the relationship of nonmask-
able, maskable, precise, and imprecise interrupts. In
the following descriptions, the interrupt mechanism
waiting for all possible exceptions to be reported
includes only exceptions caused by previously initi-
ated instructions (e.g., it does not include waiting for
the Decrementer to step through zero). The excep-
tions are listed in order of highest to lowest priority.

1. System Reset

System Reset exception has the highest priority
of all exceptions. If this exception exists, the
interrupt mechanism ignores all other exceptions
and generates a System Reset interrupt.

Once the System Reset interrupt is generated, no
nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

2. Machine Check

Machine Check exception is the second highest
priority exception. If this exception exists and a
System Reset exception does not exist, the inter-
rupt mechanism ignores all other exceptions and
generates a Machine Check interrupt.

Once the Machine Check interrupt is generated,
no nonmaskable interrupts are generated due to
exceptions caused by instructions issued prior to
the generation of this interrupt.

3. Instruction-Dependent

This exception is the third highest priority excep-
tion. When this exception is created, the interrupt
mechanism waits for all possible Imprecise
exceptions to be reported. It then generates the
appropriate ordered interrupt if no higher priority
exception exists when the interrupt is to be gen-
erated. Within this category a particular instruc-
tion may present more than a single exception.
When this occurs, those exceptions are ordered in

priority as indicated in the following lists. Where
Data Storage, Data Segment, and Alignment
exceptions are listed in the same item they have
equal priority (i.e., the processor may generate
any one of the three interrupts for which an
exception exists).

A. Fixed-Point Loads and Stores

a. Program - Illegal Instruction
b. Data Storage, Data Segment, or Align-

ment
c. Trace

B. Floating-Point Loads and Stores

a. Program - Illegal Instruction
b. Floating-Point Unavailable
c. Data Storage, Data Segment, or Align-

ment
d. Trace

C. Other Floating-Point Instructions

a. Floating-Point Unavailable
b. Program - Precise Mode Floating-Point

Enabled Exception
c. Trace

D. rfid and mtmsr[d]

a. Program - Privileged Instruction
b. Program - Precise Mode Floating-Point

Enabled Exception
c. Trace, for mtmsr[d] only

If the MSR bits FE0 and FE1 are set such that
Precise Mode Floating-Point Enabled Excep-
tion type Program interrupts are enabled and
FPSCR bit FEX is set, a Program interrupt will
result prior to or at the next synchronizing
event.

E. Other Instructions

a. These exceptions are mutually exclusive
and have the same priority:
■ Program - Trap
■ System Call
■ Program - Privileged Instruction
■ Program - Illegal Instruction

b. Trace

F. Instruction Storage and Instruction Segment

These exceptions have the lowest priority in
this category. They are recognized only
when all instructions prior to the instruction
causing one of these exceptions appear to
have completed and that instruction is the
next instruction to be executed. The two
exceptions are mutually exclusive.

The priority of these exceptions is specified
for completeness and to ensure that they are
not given more favorable treatment. It is
acceptable for an implementation to treat

Chapter 5. Interrupts 65

Version 2.01

these exceptions as though they had a lower
priority.

4. Program - Imprecise Mode Floating-Point Enabled
Exception

This exception is the fourth highest priority
exception. When this exception is created, the
interrupt mechanism waits for all other possible
exceptions to be reported. It then generates this
interrupt if no higher priority exception exists
when the interrupt is to be generated.

5. External, Decrementer, and (for POWER4+)
Hypervisor Decrementer

These exceptions are the lowest priority excep-
tions. All have equal priority (i.e., the processor
may generate any one of these interrupts for
which an exception exists). When one of these
exceptions is created, the interrupt processing
mechanism waits for all other possible exceptions
to be reported. It then generates the corre-
sponding interrupt if no higher priority exception
exists when the interrupt is to be generated.

If a Hypervisor Decrementer exception exists and
the Hypervisor Decrementer interrupt is enabled,

and each attempt to execute an instruction
causes an exception (see the Programming Note
below), the Hypervisor Decrementer interrupt is
not delayed indefinitely.

Programming Note

An incorrect or malicious operating system
could corrupt the first instruction in the inter-
rupt vector location for an instruction-caused
interrupt such that the attempt to execute the
instruction causes the same exception that
caused the interrupt (a looping interrupt; e.g.,
illegal instruction and Program interrupt).
Similarly, the first instruction of the interrupt
vector for one instruction-caused interrupt
could cause a different instruction-caused
interrupt, and the first instruction of the inter-
rupt vector for the second instruction-caused
interrupt could cause the first instruction-
caused interrupt (e.g., Program interrupt and
Floating-Point Unavailable interrupt). The
looping caused by these and similar cases is
terminated by the occurrence of a System
Reset or Hypervisor Decrementer interrupt.

66 PowerPC Operating Environment Architecture

Version 2.01

Chapter 6. Timer Facilities

6.1 Overview 67
6.2 Time Base 67
6.2.1 Writing the Time Base 68
6.3 Decrementer 68

6.3.1 Writing and Reading the
Decrementer 69

6.4 Hypervisor Decrementer
(POWER4+ only) 69

6.1 Overview

The Time Base, Decrementer, and (on POWER4+) the
Hypervisor Decrementer provide timing functions for
the system. All are volatile resources and must be
initialized during startup. The mftb instruction is used
to read the Time Base; the mtspr and mfspr
instructions are used to write the Time Base and
Decrementer(s) and to read the Decrementer(s).

Time Base (TB)
The Time Base provides a long-period counter
driven by an implementation-dependent fre-
quency.

Decrementer (DEC)
The Decrementer, a counter that is updated at
the same rate as the Time Base, provides a
means of signaling an interrupt after a specified
amount of time has elapsed unless

■ the Decrementer is altered by software in the
interim, or

■ the Time Base update frequency changes.

Hypervisor Decrementer (HDEC, POWER4+ only)
The Hypervisor Decrementer provides a means
for the hypervisor to manage timing functions
independently of the Decrementer, which is
managed by virtual partitions. Similar to the
Decrementer, the HDEC is a counter that is
updated at the same rate as the Time Base, and
it provides a means of signaling an interrupt after
a specified amount of time has elapsed. Software
must have hypervisor privilege to update the
HDEC.

6.2 Time Base

The Time Base (TB) is a 64-bit register (see
Figure 30) containing a 64-bit unsigned integer that is
incremented periodically. Each increment adds 1 to
the low-order bit (bit 63). The frequency at which the
integer is updated is implementation-dependent.

TBU TBL

0 32 63

Field Description
TBU Upper 32 bits of Time Base
TBL Lower 32 bits of Time Base

Figure 30. Time Base

The Time Base is a hypervisor resource; see Section
1.7, “Logical Partitioning (LPAR)” on page 4.

There is no automatic initialization of the Time Base;
system software must perform this initialization.

The Time Base increments until its value becomes
0xFFFF_FFFF_FFFF_FFFF (264 − 1). At the next incre-
ment, its value becomes 0x0000_0000_0000_0000.
There is no interrupt or other indication when this
occurs.

The period of the Time Base depends on the driving
frequency. As an order of magnitude example,
suppose that the CPU clock is 1 GHz and that the
Time Base is driven by this frequency divided by 32.
Then the period of the Time Base would be

TTB = 264 × 32
1 GHz

= 5.90 × 1011 seconds

which is approximately 18,700 years.

Chapter 6. Timer Facilities 67

Version 2.01

The Time Base must be implemented such that the
following requirements are satisfied.

1. Loading a GPR from the Time Base shall have no
effect on the accuracy of the Time Base.

2. Storing a GPR to the Time Base shall replace the
value in the Time Base with the value in the GPR.

The PowerPC Architecture does not specify a relation-
ship between the frequency at which the Time Base is
updated and other frequencies, such as the CPU clock
or bus clock in a PowerPC system. The Time Base
update frequency is not required to be constant.
What is required, so that system software can keep
time of day and operate interval timers, is one of the
following.

■ The system provides an (implementa-
tion-dependent) interrupt to software whenever
the update frequency of the Time Base changes,
and a means to determine what the current
update frequency is.

■ The update frequency of the Time Base is under
the control of the system software.

Implementations must provide a means for either pre-
venting the Time Base from incrementing or pre-
venting it from being read in problem state
(MSRPR=1) . If the means is under software control, it
must be accessible only in hypervisor state
(MSRHV PR = 0b10). There must be a method for
getting all processors' Time Bases to start incre-
menting with values that are identical or almost iden-
tical in all processors.

Programming Note

If the hypervisor initializes the Time Base on
power-on to some reasonable value and the
update frequency of the Time Base is constant,
the Time Base can be used as a source of values
that increase at a constant rate, such as for time
stamps in trace entries.

Even if the update frequency is not constant,
values read from the Time Base are
monotonically increasing (except when the Time
Base wraps from 264− 1 to 0). If a trace entry is
recorded each time the update frequency
changes, the sequence of Time Base values can
be post-processed to become actual time values.

Successive readings of the Time Base may return
identical values.

See the description of the Time Base in Book II,
PowerPC Virtual Environment Architecture for
ways to compute time of day in POSIX format
from the Time Base.

6.2.1 Writing the Time Base

Writing the Time Base is privileged, and can be done
only in hypervisor state. Reading the Time Base is
not privileged; it is discussed in Book II, PowerPC
Virtual Environment Architecture.

It is not possible to write the entire 64-bit Time Base
using a single instruction. The mttbl and mttbu
extended mnemonics write the lower and upper
halves of the Time Base (TBL and TBU), respectively,
preserving the other half. These are extended mne-
monics for the mtspr instruction; see page 83.

The Time Base can be written by a sequence such as:

lwz Rx,upper # load 64-bit value for
lwz Ry,lower # TB into Rx and Ry
li Rz,0
mttbl Rz # force TBL to 0
mttbu Rx # set TBU
mttbl Ry # set TBL

Provided that no interrupts occur while the last three
instructions are being executed, loading 0 into TBL
prevents the possibility of a carry from TBL to TBU
while the Time Base is being initialized.

Programming Note

The instructions for writing the Time Base are
mode-independent. Thus code written to set the
Time Base will work correctly in either 64-bit or
32-bit mode.

6.3 Decrementer

The Decrementer (DEC) is a 32-bit decrementing
counter that provides a mechanism for causing a
Decrementer interrupt after a programmable delay.
The contents of the Decrementer are treated as a
signed integer.

DEC

0 31

Figure 31. Decrementer

The Decrementer is driven by the same frequency as
the Time Base. The period of the Decrementer will
depend on the driving frequency, but if the same
values are used as given above for the Time Base
(see Section 6.2), and if the Time Base update fre-
quency is constant, the period would be

TDEC = 232 × 32
1 GHz

= 137 seconds.

68 PowerPC Operating Environment Architecture

Version 2.01

The Decrementer counts down. On POWER4, a
Decrementer exception occurs when DEC0 changes
from 0 to 1. On POWER4+, operation is as follows.

The exception effects of the Decrementer are said to
be consistent with the contents of the Decrementer if
one of the following statements is true.

■ DEC0= 0 and a Decrementer exception does not
exist.

■ DEC0= 1 and a Decrementer exception exists.

If DEC0= 0 , a context synchronizing instruction or
event ensures that the exception effects of the
Decrementer are consistent with the contents of the
Decrementer. Otherwise, when the contents of DEC0
change, the exception effects of the Decrementer
become consistent with the new contents of the
Decrementer reasonably soon after the change.

The preceding paragraph applies regardless of
whether the change in the contents of DEC0 is the
result of decrementation of the Decrementer by the
processor or of modification of the Decrementer
caused by execution of an mtspr instruction.

On both POWER4 and POWER4+, the Decrementer
must be implemented such that requirements 1 to 3
below are satisfied. On POWER4, requirements 4 and
5 must also be satisfied.

1. The operation of the Time Base and the
Decrementer is coherent, i.e., the counters are
driven by the same fundamental time base.

2. Loading a GPR from the Decrementer shall have
no effect on the accuracy of the Decrementer.

3. Storing a GPR to the Decrementer shall replace
the value in the Decrementer with the value in
the GPR.

4. Whenever bit 0 of the Decrementer changes from
0 to 1, an interrupt request is signaled. If mul-
tiple Decrementer interrupt requests are received
before the first can be reported, only one inter-
rupt is reported. The occurrence of a
Decrementer interrupt cancels the request.

5. If the Decrementer is altered by software and the
contents of bit 0 are changed from 0 to 1, an
interrupt request is signaled.

Programming Note

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Decrementer input frequency will also change.
Software must be aware of this in order to set
interval timers.

6.3.1 Writing and Reading the
Decrementer

The contents of the Decrementer can be read or
written using the mfspr and mtspr instructions, both
of which are privileged when they refer to the
Decrementer. Using an extended mnemonic (see
page 83), the Decrementer can be written from GPR
Rx using:

mtdec Rx

Programming Note

On POWER4, if the execution of the mtdec instruc-
tion causes bit 0 of the Decrementer to change
from 0 to 1, an interrupt request is signaled.

The Decrementer can be read into GPR Rx using:

mfdec Rx

Copying the Decrementer to a GPR has no effect on
the Decrementer contents or on the interrupt mech-
anism.

6.4 Hypervisor Decrementer
(POWER4+ only)

The Hypervisor Decrementer (HDEC) is a 32-bit decre-
menting counter that provides a mechanism for
causing a Hypervisor Decrementer interrupt after a
programmable delay. The contents of the
Decrementer are treated as a signed integer.

HDEC

0 31

Figure 32. Hypervisor Decrementer

The Hypervisor Decrementer is a hypervisor
resource; see Section 1.7, “Logical Partitioning
(LPAR)” on page 4.

The Hypervisor Decrementer is driven by the same
frequency as the Time Base. The period of the
Hypervisor Decrementer will depend on the driving
frequency, but if the same values are used as given
above for the Time Base (see Section 6.2), and if the
Time Base update frequency is constant, the period
would be

TDEC = 232 × 32
1 GHz

= 137 seconds.

The exception effects of the Hypervisor Decrementer
are said to be consistent with the contents of the
Hypervisor Decrementer if one of the following state-
ments is true.

Chapter 6. Timer Facilities 69

Version 2.01

■ HDEC0= 0 and a Hypervisor Decrementer excep-
tion does not exist.

■ HDEC0= 1 and a Hypervisor Decrementer excep-
tion exists.

If HDEC0= 0 , a context synchronizing instruction or
event ensures that the exception effects of the
Hypervisor Decrementer are consistent with the con-
tents of the Hypervisor Decrementer. Otherwise,
when the contents of HDEC0 change, the exception
effects of the Hypervisor Decrementer become con-
sistent with the new contents of the Hypervisor
Decrementer reasonably soon after the change.

The preceding paragraph applies regardless of
whether the change in the contents of HDEC0 is the
result of decrementation of the Hypervisor
Decrementer by the processor or of modification of
the Hypervisor Decrementer caused by execution of
an mtspr instruction.

The Hypervisor Decrementer must be implemented
such that the following requirements are satisfied.

1. The operation of the Time Base and the
Hypervisor Decrementer is coherent, i.e., the
counters are driven by the same fundamental
time base.

2. Loading a GPR from the Hypervisor Decrementer
shall have no effect on the accuracy of the
Hypervisor Decrementer.

3. Storing a GPR to the Hypervisor Decrementer
shall replace the value in the Hypervisor
Decrementer with the value in the GPR.

Programming Note

In systems that change the Time Base update fre-
quency for purposes such as power management,
the Hypervisor Decrementer update frequency will
also change. Software must be aware of this in
order to set interval timers.

70 PowerPC Operating Environment Architecture

Version 2.01

Chapter 7. Synchronization Requirements for Context
Alterations

Changing the contents of certain System Registers
and of SLB entries and Page Table Entries, and invali-
dating SLB and TLB entries, can have the side effect
of altering the context in which data addresses and
instruction addresses are interpreted, and in which
instructions are executed and data accesses are per-
formed. For example, changing MSRIR from 0 to 1
has the side effect of enabling translation of instruc-
tion addresses. These side effects need not occur in
program order, and therefore may require explicit
synchronization by software. (Program order is
defined in Book II, PowerPC Virtual Environment
Architecture.)

An instruction that alters the context in which data
addresses or instruction addresses are interpreted, or
in which instructions are executed or data accesses
are performed, is called a context-altering instruction.
This chapter covers all the context-altering
instructions. The software synchronization required
for them is shown in Table 1 (for data access) and
Table 2 (for instruction fetch and execution).

The notation “CSI” in the tables means any context
synchronizing instruction (e.g., sc, isync, or rfid). A
context synchronizing interrupt (i.e., any interrupt
except non-recoverable System Reset or non-
recoverable Machine Check) can be used instead of a
context synchronizing instruction. If it is, phrases like
“the synchronizing instruction”, below, should be
interpreted as meaning the instruction at which the
interrupt occurs. If no software synchronization is
required before (after) a context-altering instruction,
“the synchronizing instruction before (after) the
context-altering instruction” should be interpreted as
meaning the context-altering instruction itself.

The synchronizing instruction before the context-
altering instruction ensures that all instructions up to

and including that synchronizing instruction are
fetched and executed in the context that existed
before the alteration. The synchronizing instruction
after the context-altering instruction ensures that all
instructions after that synchronizing instruction are
fetched and executed in the context established by
the alteration. Instructions after the first synchro-
nizing instruction, up to and including the second syn-
chronizing instruction, may be fetched or executed in
either context.

If a sequence of instructions contains context-altering
instructions and contains no instructions that are
affected by any of the context alterations, no software
synchronization is required within the sequence.

Programming Note

Sometimes advantage can be taken of the fact
that certain events, such as interrupts, and
certain instructions that occur naturally in the
program, such as the rfid that returns from an
interrupt handler, provide the required synchroni-
zation.

No software synchronization is required before or
after a context-altering instruction that is also context
synchronizing (e.g., rfid, mtmsr[d] with L=0) , except
perhaps when altering the LE bit (see the tables). No
software synchronization is required before most of
the other alterations shown in Table 2, because all
instructions preceding the context-altering instruction
are fetched and decoded before the context-altering
instruction is executed (the processor must determine
whether any of these preceding instructions are
context synchronizing).

Unless otherwise stated, the material in this chapter
assumes a uniprocessor environment.

Chapter 7. Synchronization Requirements for Context Alterations 71

Version 2.01

Table 1. Synchronization requirements for data
access

Notes:

Table 2. Synchronization requirements for instruction
fetch and/or execution

Instruction or
Event

Required
Before

Required
After

Notes Instruction or
Event

Required
Before

Required
After

Notes

interrupt none none interrupt none none
rfid none none rfid none none
sc none none sc none none
Trap none none Trap none none
mtmsrd (SF) none none 3 mtmsrd (SF) none none 3, 10
mtmsr[d] (ILE) none none 3 mtmsr[d] (ILE) none none 3
mtmsr[d] (PR) none none 3 mtmsr[d] (EE) none none 2, 3
mtmsr[d] (DR) none none 3 mtmsr[d] (PR) none none 3, 11
mtmsr[d] (LE) — — 1, 3 mtmsr[d] (FP) none none 3
mtsr[in] CSI CSI mtmsr[d] (FE0,FE1) none none 3
mtspr (ACCR) CSI CSI mtmsr[d] (SE, BE) none none 3
mtspr (SDR1) ptesync CSI 5, 6 mtmsr[d] (IR) none none 3, 11
mtspr (DABR) — — 4 mtmsr[d] (RI) none none 3
mtspr (EAR) CSI CSI mtmsr[d] (LE) — — 1, 3
slbie CSI CSI mtsr[in] none CSI 11
slbia CSI CSI mtspr (SDR1) ptesync CSI 5, 6
slbmte CSI CSI 13 mtspr (DEC) none none 12
tlbie CSI CSI 7, 9 mtspr (HDEC) none none 12
tlbiel CSI ptesync 7, 9 mtspr (LPIDR) CSI CSI 9, 14
tlbia CSI CSI 7 mtspr (CTRL) none none
Store(PTE) none { ptesync, CSI} 8, 9 slbie none CSI

slbia none CSI
slbmte none CSI 11, 13
tlbie none CSI 7, 9
tlbiel none CSI 7, 9
tlbia none CSI 7
Store(PTE) none { ptesync, CSI} 8, 9

1. Synchronization requirements for changing from
one Endian mode to the other using the mtmsr[d]
instruction are implementation-dependent, and
are specified in the Book IV, PowerPC Implemen-
tation Features document for the implementation.

2. The effect of changing the EE bit is immediate,
even if the mtmsr[d] instruction is not context
synchronizing (i.e., even if L=1) .

■ If an mtmsr[d] instruction sets the EE bit to
0, neither an External interrupt nor a
Decrementer interrupt occurs after the
mtmsr[d] is executed.

■ If an mtmsr[d] instruction changes the EE bit
from 0 to 1 when an External, Decrementer,
or higher priority exception exists, the corre-
sponding interrupt occurs immediately after
the mtmsr[d] is executed, and before the
next instruction is executed in the program
that set EE to 1.

3. For software that will run on processors that
comply with versions of the architecture that
precede Version 2.01, a context synchronizing
instruction is required after the mtmsr[d] instruc-
tion; see the first Programming Note in the

descriptions of these instructions on pages 19
and 78.

4. Synchronization requirements for changing the
Data Address Breakpoint Register are implemen-
tation-dependent, and are specified in the Book
IV, PowerPC Implementation Features document
for the implementation.

5. SDR1 must not be altered when MSRDR= 1 or
MSRIR= 1 ; if it is, the results are undefined.

6. A ptesync instruction is required before the mtspr
instruction because (a) SDR1 identifies the Page
Table and thereby the location of Reference and
Change bits, and (b) on some implementations,
use of SDR1 to update Reference and Change
bits may be independent of translating the virtual
address. (For example, an implementation might
identify the PTE in which to update the Reference
and Change bits in terms of its offset in the Page
Table, instead of its real address, and then add
the Page Table address from SDR1 to the offset
to determine the real address at which to update
the bits.) To ensure that Reference and Change
bits are updated in the correct Page Table, SDR1
must not be altered until all Reference and
Change bits are updated in the correct Page

72 PowerPC Operating Environment Architecture

Version 2.01

Table, SDR1 must not be altered until all Refer-
ence and Change bit updates associated with
address translations that were performed, by the
processor executing the mtspr instruction, before
the mtspr instruction is executed have been per-
formed with respect to that processor. A ptesync
instruction guarantees this synchronization of
Reference and Change bit updates, while neither
a context synchronizing operation nor the instruc-
tion fetching mechanism does so.

7. For data accesses, the context synchronizing
instruction before the tlbie, tlbiel, or tlbia instruc-
tion ensures that all preceding instructions that
access data storage have completed to a point at
which they have reported all exceptions they will
cause.

The context synchronizing instruction after the
tlbie, tlbiel, or tlbia instruction ensures that
storage accesses associated with instructions fol-
lowing the context synchronizing instruction will
not use the TLB entry(s) being invalidated.

(If it is necessary to order storage accesses asso-
ciated with preceding instructions, or Reference
and Change bit updates associated with pre-
ceding address translations, with respect to sub-
sequent data accesses, a ptesync instruction
must also be used, either before or after the tlbie,
tlbiel, or tlbia instruction. These effects of the
ptesync instruction are described in the last para-
graph of Note 8.)

8. The notation “ { ptesync,CSI}” denotes an instruc-
tion sequence. Other instructions may be inter-
leaved with this sequence, but these instructions
must appear in the order shown.

No software synchronization is required before
the Store instruction because (a) stores are not
performed out-of-order and (b) address trans-
lations associated with instructions preceding the
Store instruction are not performed again after
the store has been performed (see Section 4.2.4).
These properties ensure that all address trans-
lations associated with instructions preceding the
Store instruction will be performed using the old
contents of the PTE.

The ptesync instruction after the Store instruction
ensures that all searches of the Page Table that
are performed after the ptesync instruction com-
pletes will use the value stored (or a value stored
subsequently). The context synchronizing instruc-
tion after the ptesync instruction ensures that any
address translations associated with instructions
following the context synchronizing instruction
that were performed using the old contents of the
PTE will be discarded, with the result that these
address translations will be performed again and,
if there is no corresponding TLB entry, will use
the value stored (or a value stored subsequently).

The ptesync instruction also ensures that all
storage accesses associated with instructions
preceding the ptesync instruction, and all Refer-
ence and Change bit updates associated with
address translations that were performed, by the
processor executing the ptesync instruction,
before the ptesync instruction is executed, will be
performed with respect to any processor or
mechanism, to the extent required by the associ-
ated Memory Coherence Required attributes,
before any data accesses caused by instructions
following the ptesync instruction are performed
with respect to that processor or mechanism.

9. There are additional software synchronization
requirements for the tlbie instruction in multi-
processor environments; see Section 4.12, “Page
Table Update Synchronization Requirements” on
page 48.

Section 4.12 also gives examples of using tlbie,
Store, and related instructions to maintain the
Page Table, in both multiprocessor and
uniprocessor environments.

Programming Note

In a multiprocessor system, if software
locking is used to help ensure that the
requirements described in Section 4.12 are
satisfied, the isync instruction near the end of
the lock acquisition sequence (see the section
entitled “Acquire Lock and Import Shared
Storage” in Book II, PowerPC Virtual Environ-
ment Architecture) may naturally provide the
context synchronization that is required
before the alteration.

10. The alteration must not cause an implicit branch
in effective address space. Thus, when changing
MSRSF from 1 to 0, the mtmsrd instruction must
have an effective address that is less than
232 − 4. Furthermore, when changing MSRSF from
0 to 1, the mtmsrd instruction must not be at
effective address 232 − 4 (see Section 4.2.2.2 on
page 23).

11. The alteration must not cause an implicit branch
in real address space. Thus the real address of
the context-altering instruction and of each sub-
sequent instruction, up to and including the next
context synchronizing instruction, must be inde-
pendent of whether the alteration has taken
effect.

12. The elapsed time between the contents of the
Decrementer or Hypervisor Decrementer
becoming negative and the signaling of the corre-
sponding exception is not defined.

13. If an slbmte instruction alters the mapping, or
associated attributes, of a currently mapped
ESID, the slbmte must be preceded by an slbie
(or slbia) instruction that invalidates the existing
translation. This applies even if the corre-

Chapter 7. Synchronization Requirements for Context Alterations 73

Version 2.01

sponding entry is no longer in the SLB (the trans-
lation may still be in implementation-specific
address translation lookaside information). No
software synchronization is needed between the
slbie and the slbmte, regardless of whether the
index of the SLB entry (if any) containing the
current translation is the same as the SLB index
specified by the slbmte.

No slbie (or slbia) is needed if the slbmte instruc-
tion replaces a valid SLB entry with a mapping of
a different ESID (e.g., to satisfy an SLB miss).
However, the slbie is needed later if and when

the translation that was contained in the replaced
SLB entry is to be invalidated.

14. The context synchronizing instruction before the
mtspr instruction ensures that the LPIDR is not
altered out-of-order. (Out-of-order alteration of
the LPIDR could permit the requirements
described in Section 4.12.1 to be violated. For
the same reason, such a context synchronizing
instruction may be needed even if the new LPID
value is equal to the old LPID value.)

See also Section 1.7, “Logical Partitioning
(LPAR)” on page 4 regarding moving a processor
from one partition to another.

74 PowerPC Operating Environment Architecture

Version 2.01

Chapter 8. Optional Facilities and Instructions

8.1 External Control 75
8.1.1 External Access Register 75
8.1.2 External Access Instructions . . . 75

8.2 Real Mode Storage Control 77
8.3 Move to Machine State Register

Instruction 78

The facilities and instructions described in this
chapter are optional. An implementation may provide
all, some, or none of them.

8.1 External Control

The External Control facility permits a program to
communicate with a special-purpose device. The
facility consists of a Special Purpose Register, called
EAR, and two instructions, called External Control In
Word Indexed (eciwx) and External Control Out Word
Indexed (ecowx).

This facility must provide a means of synchronizing
the devices with the processor to prevent the use of
an address by the device when the translation that
produced that address is being invalidated.

8.1.1 External Access Register

This 32-bit Special Purpose Register controls access
to the External Control facility and, for external
control operations that are permitted, identifies the
target device.

E /// RID
0 26 31

Bit(s) Name Description
0 E Enable bit
26:31 RID Resource ID

All other fields are reserved.

Figure 33. External Access Register

The EAR is a hypervisor resource; see Section 1.7,
“Logical Partitioning (LPAR)” on page 4.

The high-order bits of the RID field that correspond to
bits of the Resource ID beyond the width of the
Resource ID supported by the implementation are
treated as reserved bits.

Programming Note

The hypervisor can use the EAR to control which
programs are allowed to execute External Access
instructions, when they are allowed to do so, and
which devices they are allowed to communicate
with using these instructions.

8.1.2 External Access Instructions

The External Access instructions, External Control In
Word Indexed (eciwx) and External Control Out Word
Indexed (ecowx), are described in Book II, PowerPC
Virtual Environment Architecture. Additional informa-
tion about them is given below.

If attempt is made to execute either of these
instructions when EARE= 0 , a Data Storage interrupt
occurs with bit 11 of the DSISR set to 1.

The instructions are supported whenever MSRDR= 1 .
If either instruction is executed when MSRDR= 0 (real
addressing mode), the results are boundedly unde-
fined.

Chapter 8. Optional Facilities and Instructions 75

Version 2.01

76 PowerPC Operating Environment Architecture

Version 2.01

8.2 Real Mode Storage Control

The Real Mode Storage Control facility provides a
means of specifying portions of real storage that are
treated as non-Guarded in hypervisor real addressing
mode (MSRHV PR=0b10, and MSRIR= 0 or MSRDR= 0 ,
as appropriate for the type of access). The remaining
portions are treated as Guarded in hypervisor real
addressing mode (as is all of storage on implementa-
tions that do not provide this means). The means is a
hypervisor resource (see Section 1.7, “Logical Parti-
tioning (LPAR)” on page 4), and may also be system-
specific.

If the Real Mode Caching Inhibited (RMI) bit is set to
1, it is undefined whether a given data access to a
storage location that is treated as non-Guarded in
hypervisor real addressing mode is treated as
Caching Inhibited or as not Caching Inhibited. If the
access is treated as Caching Inhibited and is per-
formed out-of-order, the access cannot cause a
Machine Check or Checkstop to occur out-of-order
due to violation of the requirements given in Section
4.8.2, “Altering the Storage Control Bits” on page 36
for changing the value of the effective I bit. (Recall
that software must ensure that RMI = 0 when the
processor is not in hypervisor real addressing mode;
see Section 4.2.6.2, “Storage Control Attributes for
Real Addressing Mode and for Implicit Storage
Accesses” on page 26.)

The facility does not apply to implicit accesses to the
Page Table by the processor in performing address
translation or in recording reference and change
information. These accesses are performed as
described in Section 4.2.6.2 on page 26.

Programming Note

The preceding capability can be used to improve
the performance of hypervisor software that runs
in hypervisor real addressing mode, by causing
accesses to instructions and data that occupy
well-behaved storage to be treated as non-
Guarded. See also the second paragraph of the
Programming Note in Section 4.2.6.2.

If RMI=1, the statement in Section 4.2.4, “Per-
forming Operations Out-of-Order” on page 23,
that non-Guarded storage locations may be
fetched out-of-order into a cache only if they could
be fetched into that cache by in-order execution
does not preclude the out-of-order fetching into
the data cache of storage locations that are
treated as non-Guarded in hypervisor real
addressing mode, because the effective RMI
value that could be used for an in-order data
access to such a storage location is undefined and
hence could be 0.

Chapter 8. Optional Facilities and Instructions 77

Version 2.01

8.3 Move to Machine State Register Instruction

Move To Machine State Register X-form

mtmsr RS,L

31 RS /// L /// 146 /

0 6 11 15 16 21 31

if L = 0 then
MSR48 ←(RS)48 (POWER4 only)
MSR48 ←(RS)48 | (RS)49 (POWER4+ only)
MSR58 ← (RS)58 | (RS)49
MSR59 ← (RS)59 | (RS)49
MSR32:47 49:50 52:57 60:63 ← (RS)32:47 49:50 52:57 60:63

else
MSR48 62 ← (RS)48 62

The MSR is set based on the contents of register RS
and of the L field.

L=0 :
On POWER4, bit 48 of register RS is placed into
MSR48. On POWER4+, the result of ORing bits 48
and 49 of register RS is placed into MSR48. The
result of ORing bits 58 and 49 of register RS is
placed into MSR58. The result of ORing bits 59
and 49 of register RS is placed into MSR59. Bits
32:47, 49:50, 52:57, and 60:63 of register RS are
placed into the corresponding bits of the MSR.

L=1 :
Bits 48 and 62 of register RS are placed into the
corresponding bits of the MSR. The remaining bits
of the MSR are unchanged.

This instruction is privileged.

If L = 0 this instruction is context synchronizing except
with respect to alterations to the LE bit; see
Chapter 7, “Synchronization Requirements for
Context Alterations” on page 71. If L = 1 this instruc-
tion is execution synchronizing; in addition, the alter-
ations of the EE and RI bits take effect as soon as the
instruction completes. Thus if MSREE= 0 and an
External or Decrementer exception is pending, exe-
cuting an mtmsr instruction that sets MSREE to 1 will
cause the External or Decrementer interrupt to occur
before the next instruction is executed, if no higher
priority exception exists (see Section 5.8, “Interrupt
Priorities” on page 65).

Special Registers Altered:
MSR

Except in the mtmsr instruction description in this
section, references to “ mtmsr” in Books I - III imply
either L value unless otherwise stated or obvious
from context (e.g., a reference to an mtmsr instruction
that modifies an MSR bit other than the EE or RI bit
implies L=0) .

Programming Note

Warning: The first Programming Note in the
mtmsrd instruction description applies to mtmsr
as well as to mtmsrd. Therefore software that
uses mtmsr and will run on such processors must
obey the rules given in that Programming Note.

Programming Note

If this instruction sets MSRPR to 1, it also sets
MSREE (POWER4+ only), MSRIR, and MSRDR to 1.

This instruction does not alter MSRME. (This
instruction does not alter MSRHV because it does
not alter any of the high-order 32 bits of the MSR.)

If the only MSR bits to be altered are MSREE RI, to
obtain the best performance L = 1 should be used.

Programming Note

For a discussion of software synchronization
requirements when altering certain MSR bits, see
Chapter 7.

Programming Note

mtmsr serves as both a basic and an extended
mnemonic. The Assembler will recognize an
mtmsr mnemonic with two operands as the basic
form, and an mtmsr mnemonic with one operand
as the extended form. In the extended form the L
operand is omitted and assumed to be 0.

Programming Note

There is no need for an analogous version of the
mfmsr instruction, because the existing instruction
copies the entire contents of the MSR to the
selected GPR.

78 PowerPC Operating Environment Architecture

Version 2.01

Chapter 9. Optional Facilities and Instructions that are being
Phased Out of the Architecture

9.1 Bridge to SLB Architecture 79
9.1.1 Address Space Register 79

9.1.2 Segment Register Manipulation
Instructions 80

The facilities and instructions described in this
chapter are optional. An implementation may provide
all, some, or none of them.

Warning: These facilities and instructions are being
phased out of the architecture.

The facilities and instructions described in this
chapter are generally not mentioned elsewhere in
Books I − III. Any conflict between this chapter and
other parts of the Books is deemed to be resolved in
favor of this chapter.

9.1 Bridge to SLB Architecture

The facility described in this section can be used to
ease the transition to the current PowerPC software-
managed Segment Lookaside Buffer (SLB) architec-
ture, from either the Segment Register architecture
provided by 32-bit PowerPC implementations or the
hardware-accessed Segment Table architecture pro-
vided by 64-bit PowerPC implementations and by
earlier PowerPC implementations.

The facility permits the operating system to continue
to use the 32-bit PowerPC implementation's Segment
Register Manipulation instructions, and to continue to
use the Address Space Register (ASR).

Programming Note

Warning: This facility is being phased out of the
architecture. It is likely not to be supported on
future implementations. New programs should
not use it.

9.1.1 Address Space Register

The ASR is a 64-bit Special Purpose Register pro-
vided for operating system use.

ASR

0 63

Figure 34. Address Space Register

Programming Note

The ASR can be used to point to a Segment
Table.

On earlier PowerPC implementations and on 64-bit
PowerPC implementations, bits 0:51 of the ASR
contained the high-order 52 bits of the 64-bit real
address of the Segment Table, and bit 63 of the
ASR indicated whether the specified Segment
Table should (bit 63 = 1) or should not (bit 63 =
0) be searched by the processor when doing
address translation.

Chapter 9. Optional Facilities and Instructions that are being Phased Out 79

Version 2.01

9.1.2 Segment Register Manipulation Instructions

The instructions described in this section — mtsr,
mtsrin, mfsr, and mfsrin — allow software to associate
effective segments 0 through 15 with any of virtual
segments 0 through 227− 1. SLB entries 0:15 serve as
virtual Segment Registers, with SLB entry i used to
emulate Segment Register i. The mtsr and mtsrin
instructions move 32 bits from a selected GPR to a
selected SLB entry. The mfsr and mfsrin instructions
move 32 bits from a selected SLB entry to a selected
GPR.

The contents of the GPRs used by the instructions
described in this section are shown in Figure 35.
Fields shown as zeros must be zero for the Move To
Segment Register instructions. Fields shown as
hyphens are ignored. Fields shown as periods are
ignored by the Move To Segment Register
instructions and set to zero by the Move From
Segment Register instructions. Fields shown as
colons are ignored by the Move To Segment Register
instructions and set to undefined values by the Move
From Segment Register instructions.

RS/RT

: : : . KsKpN 0 VSID25:51

0 31 33 35 37 63

RB

- - - ESID - - -

0 32 35 63

Figure 35. GPR contents for mtsr, mtsrin, mfsr, and
mfsrin

Programming Note

The “Segment Register” format used by the
instructions described in this section corresponds
to the low-order 32 bits of RS and RT shown in
the figure. This format is essentially the same as
that for the Segment Registers of 32-bit PowerPC
implementations. The only differences are the fol-
lowing.

■ Bit 36 corresponds to a reserved bit in
Segment Registers. Software must supply 0
for the bit because it corresponds to the L bit
in SLB entries, and large pages are not sup-
ported for SLB entries created by the Move
To Segment Register instructions.

■ VSID bits 25:27 correspond to reserved bits in
Segment Registers. Software can use these
extra VSID bits to create VSIDs that are
larger than those supported by the Segment
Register Manipulation instructions of 32-bit
PowerPC implementations.

Bit 32 of RS and RT corresponds to the T (direct-
store) bit of early 32-bit PowerPC implementa-
tions. No corresponding bit exists in SLB entries.

Programming Note

The Programming Note in the introduction to
Section 4.11.3.1, “SLB Management Instructions”
on page 41 applies also to the Segment Register
Manipulation instructions described in this
section, and to any combination of the instructions
described in the two sections, except as specified
below for mfsr and mfsrin.

The requirement that the SLB contain at most one
entry that translates a given effective address
(see Section 4.4.1, “Segment Lookaside Buffer
(SLB)” on page 29) applies to SLB entries created
by mtsr and mtsrin. This requirement is satisfied
naturally if only mtsr and mtsrin are used to
create SLB entries for a given ESID, because for
these instructions the association between SLB
entries and ESID values is fixed (SLB entry i is
used for ESID i). However, care must be taken if
slbmte is also used to create SLB entries for the
ESID, because for slbmte the association between
SLB entries and ESID values is specified by soft-
ware.

80 PowerPC Operating Environment Architecture

Version 2.01

Move To Segment Register X-form

mtsr SR,RS

31 RS / SR /// 210 /

0 6 11 12 16 21 31

The SLB entry specified by SR is loaded from register
RS, as follows.

SLBE Bit(s) Set to SLB Field(s)
0:31 0x0000_0000 ESID0:31
32:35 SR ESID32:35
36 0b1 V
37:61 0x00_0000| |0b0 VSID0:24
62:88 (RS)37:63 VSID25:51
89:91 (RS)33:35 KsKpN
92 (RS)36 L ((RS)36 must be 0b0)
93 0b0 C

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction is privileged.

Special Registers Altered:
None

Move To Segment Register Indirect
X-form

mtsrin RS,RB

[POWER mnemonic: mtsri]

31 RS /// RB 242 /

0 6 11 16 21 31

The SLB entry specified by (RB)32:35 is loaded from
register RS, as follows.

SLBE Bit(s) Set to SLB Field(s)
0:31 0x0000_0000 ESID0:31
32:35 (RB)32:35 ESID32:35
36 0b1 V
37:61 0x00_0000| |0b0 VSID0:24
62:88 (RS)37:63 VSID25:51
89:91 (RS)33:35 KsKpN
92 (RS)36 L ((RS)36 must be 0b0)
93 0b0 C

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction is privileged.

Special Registers Altered:
None

Chapter 9. Optional Facilities and Instructions that are being Phased Out 81

Version 2.01

Move From Segment Register X-form

mfsr RT,SR

31 RT / SR /// 595 /

0 6 11 12 16 21 31

The contents of the low-order 27 bits of the VSID field,
and the contents of the Ks, Kp, N, and L fields, of the
SLB entry specified by SR are placed into register RT,
as follows.

SLBE Bit(s) Copied to SLB Field(s)
62:88 RT37:63 VSID25:51
89:91 RT33:35 KsKpN
92 RT36 L (SLBEL must be 0b0)

RT32 is set to 0. The contents of RT0:31 are undefined.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction must be used only to read an SLB
entry that was, or could have been, created by mtsr
or mtsrin and has not subsequently been invalidated
(i.e., an SLB entry in which ESID< 16, V=1 , VSID< 227,
L=0 , and C=0). Otherwise the contents of register
RT are undefined.

This instruction is privileged.

Special Registers Altered:
None

Move From Segment Register Indirect
X-form

mfsrin RT,RB

31 RT /// RB 659 /

0 6 11 16 21 31

The contents of the low-order 27 bits of the VSID field,
and the contents of the Ks, Kp, N, and L fields, of the
SLB entry specified by (RB)32:35 are placed into reg-
ister RT, as follows.

SLBE Bit(s) Copied to SLB Field(s)
62:88 RT37:63 VSID25:51
89:91 RT33:35 KsKpN
92 RT36 L (SLBEL must be 0b0)

RT32 is set to 0. The contents of RT0:31 are undefined.

MSRSF must be 0 when this instruction is executed;
otherwise the results are boundedly undefined.

This instruction must be used only to read an SLB
entry that was, or could have been, created by mtsr
or mtsrin and has not subsequently been invalidated
(i.e., an SLB entry in which ESID< 16, V=1 , VSID< 227,
L=0 , and C=0). Otherwise the contents of register
RT are undefined.

This instruction is privileged.

Special Registers Altered:
None

82 PowerPC Operating Environment Architecture

Version 2.01

Appendix A. Assembler Extended Mnemonics

In order to make assembler language programs simpler to write and easier to understand, a set of extended
mnemonics and symbols is provided for certain instructions. This appendix defines extended mnemonics and
symbols related to instructions defined in Book III.

Assemblers should provide the extended mnemonics and symbols listed here, and may provide others.

A.1 Move To/From Special Purpose Register Mnemonics

This section defines extended mnemonics for the mtspr and mfspr instructions, including the Special Purpose Reg-
isters (SPRs) defined in Book I and certain privileged SPRs, and for the Move From Time Base instruction defined
in Book II.

The mtspr and mfspr instructions specify an SPR as a numeric operand; extended mnemonics are provided that
represent the SPR in the mnemonic rather than requiring it to be coded as an operand. Similar extended mne-
monics are provided for the Move From Time Base instruction, which specifies the portion of the Time Base as a
numeric operand.

Note: mftb serves as both a basic and an extended mnemonic. The Assembler will recognize an mftb mnemonic
with two operands as the basic form, and an mftb mnemonic with one operand as the extended form. In the
extended form the TBR operand is omitted and assumed to be 268 (the value that corresponds to TB).

Table 3 (Page 1 of 2). Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR1

Extended Equivalent to Extended Equivalent to

Fixed-Point Exception
Register

mtxer Rx mtspr 1,Rx mfxer Rx mfspr Rx,1

Link Register mtlr Rx mtspr 8,Rx mflr Rx mfspr Rx,8

Count Register mtctr Rx mtspr 9,Rx mfctr Rx mfspr Rx,9

Data Storage Interrupt
Status Register

mtdsisr Rx mtspr 18,Rx mfdsisr Rx mfspr Rx,18

Data Address Register mtdar Rx mtspr 19,Rx mfdar Rx mfspr Rx,19

Decrementer mtdec Rx mtspr 22,Rx mfdec Rx mfspr Rx,22

Storage Description
Register 1

mtsdr1 Rx mtspr 25,Rx mfsdr1 Rx mfspr Rx,25

Save/Restore Register 0 mtsrr0 Rx mtspr 26,Rx mfsrr0 Rx mfspr Rx,26

Save/Restore Register 1 mtsrr1 Rx mtspr 27,Rx mfsrr1 Rx mfspr Rx,27

ACCR mtaccr Rx mtspr 29,Rx mfaccr Rx mfspr Rx,29

CTRL mtctrl Rx mtspr 152,Rx mfctrl Rx mfspr Rx,136

Special Purpose Registers
G0 through G3

mtsprg n,Rx mtspr 272+n,Rx mfsprg Rx,n mfspr Rx,272+n

Appendix A. Assembler Extended Mnemonics 83

Version 2.01

Table 3 (Page 2 of 2). Extended mnemonics for moving to/from an SPR

Special Purpose Register
Move To SPR Move From SPR1

Extended Equivalent to Extended Equivalent to

Time Base [Lower] mttbl Rx mtspr 284,Rx mftb Rx mftb Rx,268

Time Base Upper mttbu Rx mtspr 285,Rx mftbu Rx mftb Rx,269

Processor Version Register − − mfpvr Rx mfspr Rx,287

MMCRA mtmmcra Rx mtspr 786,Rx mfmmcra Rx mfspr Rx,770

PMC1 mtpmc1 Rx mtspr 787,Rx mfpmc1 Rx mfspr Rx,771

PMC2 mtpmc2 Rx mtspr 788,Rx mfpmc2 Rx mfspr Rx,772

PMC3 mtpmc3 Rx mtspr 789,Rx mfpmc3 Rx mfspr Rx,773

PMC4 mtpmc4 Rx mtspr 790,Rx mfpmc4 Rx mfspr Rx,774

PMC5 mtpmc5 Rx mtspr 791,Rx mfpmc5 Rx mfspr Rx,775

PMC6 mtpmc6 Rx mtspr 792,Rx mfpmc6 Rx mfspr Rx,776

PMC7 mtpmc7 Rx mtspr 793,Rx mfpmc7 Rx mfspr Rx,777

PMC8 mtpmc8 Rx mtspr 794,Rx mfpmc8 Rx mfspr Rx,778

MMCR0 mtmmcr0 Rx mtspr 795,Rx mfmmcr0 Rx mfspr Rx,779

MMCR1 mtmmcr1 Rx mtspr 798,Rx mfmmcr1 Rx mfspr Rx,782

Processor Identification
Register

− − mfpir Rx mfspr Rx,1023

1Except for mftb and mftbu.

Programming Note

The extended mnemonics in Table 3 for SPRs
associated with the Performance Monitor facility
are based on the definitions in Appendix E.

Other versions of Performance Monitor facilities
used different sets of SPR numbers (all 32-bit
PowerPC processors used a different set, and
some early PowerPC processors used yet a dif-
ferent set).

84 PowerPC Operating Environment Architecture

Version 2.01

Appendix B. Cross-Reference for Changed POWER
Mnemonics

The following table lists the POWER instruction mne-
monics that have been changed in the PowerPC Oper-
ating Environment Architecture, sorted by POWER
mnemonic.

To determine the PowerPC mnemonic for one of these
POWER mnemonics, find the POWER mnemonic in the
second column of the table: the remainder of the line

gives the PowerPC mnemonic and the page on which
the instruction is described, as well as the instruction
names.

POWER mnemonics that have not changed are not
listed. POWER instruction names that are the same in
PowerPC are not repeated: i.e., for these, the last
column of the table is blank.

Page
POWER PowerPC

Mnemonic Instruction Mnemonic Instruction

81 mtsri Move To Segment Register Indirect mtsrin
10 svca Supervisor Call sc System Call
45 tlbi TLB Invalidate Entry tlbie

Appendix B. Cross-Reference for Changed POWER Mnemonics 85

Version 2.01

86 PowerPC Operating Environment Architecture

Version 2.01

Appendix C. New and Newly Optional Instructions

The following instructions in the PowerPC Operating
Environment Architecture are new; they are not in the
POWER Architecture. The tlbia, tlbsync, and mtmsr
instructions are optional. In addition, the mfsr, mfsrin,
mtsr, and mtsrin instructions may optionally be pro-
vided as part of a “bridge” facility as described in
Section 9.1, “Bridge to SLB Architecture” on page 79.

mfsrin Move From Segment Register Indirect
mtmsrd Move To Machine State Register

Doubleword
rfid Return From Interrupt Doubleword
slbia SLB Invalidate All
slbie SLB Invalidate Entry
slbmfee SLB Move From Entry ESID
slbmfev SLB Move From Entry VSID
slbmte SLB Move To Entry
tlbia TLB Invalidate All
tlbsync TLB Synchronize

Appendix C. New and Newly Optional Instructions 87

Version 2.01

88 PowerPC Operating Environment Architecture

Version 2.01

Appendix D. Interpretation of the DSISR as Set by an
Alignment Interrupt

For most causes of Alignment interrupt, the interrupt
handler will emulate the interrupting instruction. To
do this, it needs the following characteristics of the
interrupting instruction:

Load or store
Length (halfword, word, or doubleword)
String, multiple, or elementary
Fixed-point or floating-point
Update or non-update
Byte reverse or not
Is it dcbz?

The PowerPC Architecture optionally provides this
information by setting bits in the DSISR that identify
the interrupting instruction type. It is not necessary
for the interrupt handler to load the interrupting
instruction from storage. The mapping is unique
except for a few exceptions that are discussed below.
The near-uniqueness depends on the fact that many
instructions, such as the fixed- and floating-point
arithmetic instructions and the one-byte loads and
stores, cannot cause an Alignment interrupt.

See Section 5.5.8, “Alignment Interrupt” on page 59
for a description of how the opcode and extended
opcode are mapped to a DSISR value for an X-, D-, or
DS-form instruction that causes an Alignment inter-
rupt.

The table on the next page shows the inverse
mapping: how the DSISR bits identify the interrupting
instruction. The following notes are cited in the table.

(1) The instructions lwz and lwarx give the same
DSISR bits (all zero). But if lwarx causes an
Alignment interrupt, it should not be emulated. It
is adequate for the Alignment interrupt handler
simply to treat the instruction as if it were lwz.
The emulator must use the address in the DAR,
rather than compute it from RA/RB/D, because
lwz and lwarx have different instruction formats.

If opcode 0 (“Illegal or Reserved”) can cause an
Alignment interrupt, it will be indistinguishable to
the interrupt handler from lwarx and lwz.

(2) These are distinguished by DSISR bits 12:13, which
are not shown in the table.

The interrupt handler has no need to distinguish
between an X-form instruction and the corresponding
D- or DS-form instruction if one exists, and vice versa.
Therefore two such instructions may yield the same
DSISR value (all 32 bits). For example, stw and stwx
may both yield either the DSISR value shown in the
following table for stw, or that shown for stwx.

Appendix D. Interpretation of the DSISR as Set by an Alignment Interrupt 89

Version 2.01

If DSISR
15:21 is:

then it is
either
X-form
opcode:

or
D/DS-
form
opcode: so the instruction is:

If DSISR
15:21 is:

then it is
either
X-form
opcode:

or
D/DS-
form
opcode: so the instruction is:

00 0 0000 00000xxx00 x00000 lwarx, lwz, reserved
(1)

10 0 0000 00000xxx10 -
10 0 0001 00010xxx10 -

00 0 0001 00010xxx00 x00010 ldarx 10 0 0010 00100xxx10 stwcx.
00 0 0010 00100xxx00 x00100 stw 10 0 0011 00110xxx10 stdcx.
00 0 0011 00110xxx00 x00110 - 10 0 0100 01000xxx10 -
00 0 0100 01000xxx00 x01000 lhz 10 0 0101 01010xxx10 -
00 0 0101 01010xxx00 x01010 lha 10 0 0110 01100xxx10 -
00 0 0110 01100xxx00 x01100 sth 10 0 0111 01110xxx10 -
00 0 0111 01110xxx00 x01110 lmw 10 0 1000 10000xxx10 lwbrx
00 0 1000 10000xxx00 x10000 lfs 10 0 1001 10010xxx10 -
00 0 1001 10010xxx00 x10010 lfd 10 0 1010 10100xxx10 stwbrx
00 0 1010 10100xxx00 x10100 stfs 10 0 1011 10110xxx10 -
00 0 1011 10110xxx00 x10110 stfd 10 0 1100 11000xxx10 lhbrx
00 0 1100 11000xxx00 x11000 - 10 0 1101 11010xxx10 -
00 0 1101 11010xxx00 x11010 ld, ldu, lwa (2) 10 0 1110 11100xxx10 sthbrx
00 0 1110 11100xxx00 x11100 - 10 0 1111 11110xxx10 -
00 0 1111 11110xxx00 x11110 std, stdu (2) 10 1 0000 00001xxx10 -
00 1 0000 00001xxx00 x00001 lwzu 10 1 0001 00011xxx10 -
00 1 0001 00011xxx00 x00011 - 10 1 0010 00101xxx10 -
00 1 0010 00101xxx00 x00101 stwu 10 1 0011 00111xxx10 -
00 1 0011 00111xxx00 x00111 - 10 1 0100 01001xxx10 eciwx
00 1 0100 01001xxx00 x01001 lhzu 10 1 0101 01011xxx10 -
00 1 0101 01011xxx00 x01011 lhau 10 1 0110 01101xxx10 ecowx
00 1 0110 01101xxx00 x01101 sthu 10 1 0111 01111xxx10 -
00 1 0111 01111xxx00 x01111 stmw 10 1 1000 10001xxx10 -
00 1 1000 10001xxx00 x10001 lfsu 10 1 1001 10011xxx10 -
00 1 1001 10011xxx00 x10011 lfdu 10 1 1010 10101xxx10 -
00 1 1010 10101xxx00 x10101 stfsu 10 1 1011 10111xxx10 -
00 1 1011 10111xxx00 x10111 stfdu 10 1 1100 11001xxx10 -
00 1 1100 11001xxx00 x11001 - 10 1 1101 11011xxx10 -
00 1 1101 11011xxx00 x11011 - 10 1 1110 11101xxx10 -
00 1 1110 11101xxx00 x11101 - 10 1 1111 11111xxx10 dcbz
00 1 1111 11111xxx00 x11111 - 11 0 0000 00000xxx11 lwzx
01 0 0000 00000xxx01 ldx 11 0 0001 00010xxx11 -
01 0 0001 00010xxx01 - 11 0 0010 00100xxx11 stwx
01 0 0010 00100xxx01 stdx 11 0 0011 00110xxx11 -
01 0 0011 00110xxx01 - 11 0 0100 01000xxx11 lhzx
01 0 0100 01000xxx01 - 11 0 0101 01010xxx11 lhax
01 0 0101 01010xxx01 lwax 11 0 0110 01100xxx11 sthx
01 0 0110 01100xxx01 - 11 0 0111 01110xxx11 -
01 0 0111 01110xxx01 - 11 0 1000 10000xxx11 lfsx
01 0 1000 10000xxx01 lswx 11 0 1001 10010xxx11 lfdx
01 0 1001 10010xxx01 lswi 11 0 1010 10100xxx11 stfsx
01 0 1010 10100xxx01 stswx 11 0 1011 10110xxx11 stfdx
01 0 1011 10110xxx01 stswi 11 0 1100 11000xxx11 -
01 0 1100 11000xxx01 - 11 0 1101 11010xxx11 -
01 0 1101 11010xxx01 - 11 0 1110 11100xxx11 -
01 0 1110 11100xxx01 - 11 0 1111 11110xxx11 stfiwx
01 0 1111 11110xxx01 - 11 1 0000 00001xxx11 lwzux
01 1 0000 00001xxx01 ldux 11 1 0001 00011xxx11 -
01 1 0001 00011xxx01 - 11 1 0010 00101xxx11 stwux
01 1 0010 00101xxx01 stdux 11 1 0011 00111xxx11 -
01 1 0011 00111xxx01 - 11 1 0100 01001xxx11 lhzux
01 1 0100 01001xxx01 - 11 1 0101 01011xxx11 lhaux
01 1 0101 01011xxx01 lwaux 11 1 0110 01101xxx11 sthux
01 1 0110 01101xxx01 - 11 1 0111 01111xxx11 -
01 1 0111 01111xxx01 - 11 1 1000 10001xxx11 lfsux
01 1 1000 10001xxx01 - 11 1 1001 10011xxx11 lfdux
01 1 1001 10011xxx01 - 11 1 1010 10101xxx11 stfsux
01 1 1010 10101xxx01 - 11 1 1011 10111xxx11 stfdux
01 1 1011 10111xxx01 - 11 1 1100 11001xxx11 -
01 1 1100 11001xxx01 - 11 1 1101 11011xxx11 -
01 1 1101 11011xxx01 - 11 1 1110 11101xxx11 -
01 1 1110 11101xxx01 - 11 1 1111 11111xxx11 -
01 1 1111 11111xxx01 -

90 PowerPC Operating Environment Architecture

Version 2.01

Appendix E. Example Performance Monitors (Optional)

A Performance Monitor facility provides a means of
collecting information about program and system per-
formance.

The resources (e.g., SPR numbers) that a Perform-
ance Monitor facility may use are identified elsewhere
in this Book. All other aspects of any Performance
Monitor facility are implementation-dependent, and
are described in the Book IV, PowerPC Implementa-
tion Features document for the implementation.

This appendix provides two examples of Performance
Monitor facilities. They are only examples; implemen-
tations may provide all, some, or none of the features
described here, or may provide features that are
similar to those described here but differ in detail.

Programming Note

Because the features provided by a Performance
Monitor facility are implementation-dependent,
operating systems should provide services that
support the useful performance monitoring func-
tions in a generic fashion. Application programs
should use these services, and should not depend
on the features provided by a particular imple-
mentation.

The example Performance Monitor facilities consist of
the following features (described in detail in subse-
quent sections).

■ one MSR bit

— PMM (Performance Monitor Mark), which can
be used to select one or more programs for
monitoring

■ SPRs

— PMC1 − PMC8 (Performance Monitor
Counter registers 1 − 8), which count events

— MMCR0, MMCR1, and MMCRA (Monitor
Mode Control Registers 0, 1, and A), which
control the Performance Monitor facility

— SIAR and SDAR (Sampled Instruction
Address Register and Sampled Data Address
Register), which contain the address of the
“sampled instruction” and of the “sampled
data”

■ the Performance Monitor interrupt, which can be
caused by monitored conditions and events

Appendix E. Example Performance Monitors (Optional) 91

Version 2.01

E.1 Performance Monitor for POWER4

The minimal subset of the features listed on page 91
that makes the resulting Performance Monitor useful
to software consists of MSRPMM, PMC1, PMC2, PMC3,
PMC4, MMCR0, MMCR1, and MMCRA and certain bits
and fields of these three Monitor Mode Control Regis-
ters. These features support the counting of four
selected events, and are identified as the “basic” fea-
tures below. The remaining features (the remaining
SPRs, the remaining bits in the three Monitor Mode
Control Registers, and the Performance Monitor inter-
rupt) are considered “extensions”.

The events that can be counted in the PMCs are
implementation-dependent. The Book IV, PowerPC
Implementation Features document for the implemen-
tation describes the events that are available for each
PMC, and also the code that identifies each event.
The events and codes may vary between PMCs, as
well as between implementations. The event to be
counted in a given PMC is selected by specifying the
appropriate code in the MMCR “Selector” field for the
PMC. As described in Book IV, some events may
include operations that are performed out-of-order.

Many aspects of the operation of the Performance
Monitor are summarized by the following hierarchy,
which is described starting at the lowest level.

■ A “counter negative condition” occurs when the
value in a PMC is negative (i.e., when bit 0 of the
PMC is 1). A “Time Base transition event” occurs
when a selected bit of the Time Base changes
from 0 to 1 (the bit is selected by an MMCR field).
The term “condition or event” is used as an
abbreviation for “counter negative condition or
Time Base transition event”. A condition or
event can be caused implicitly by the processor
(e.g., incrementing a PMC) or explicitly by soft-
ware (mtspr).

■ A condition or event is enabled if the corre-
sponding “Enable” bit in an MMCR is 1. The
occurrence of an enabled condition or event can
have side effects within the Performance Monitor,
such as causing the PMCs to cease counting.

■ An enabled condition or event causes a Perform-
ance Monitor exception if Performance Monitor
exceptions are enabled by the corresponding
“Enable” bit in an MMCR. A single Performance
Monitor exception may reflect multiple enabled
conditions and events.

■ A Performance Monitor exception causes a Per-
formance Monitor interrupt when MSREE= 1 .

Programming Note

The Performance Monitor can be effectively disa-
bled (i.e., put into a state in which Performance
Monitor SPRs are not altered and Performance
Monitor interrupts do not occur) by setting
MMCR0 to 0x8000_0000.

E.1.1 PMM Bit of the Machine State
Register

The Performance Monitor uses MSR bit PMM, which is
defined as follows.

Bit Description

61 Performance Monitor Mark (PMM)

This bit is a basic feature.

This bit contains the Performance Monitor
“mark” (0 or 1).

92 PowerPC Operating Environment Architecture

Version 2.01

Programming Note

Software can use this bit as a process-specific
marker which, in conjunction with
MMCR0FCM0 FCM1 (see Section E.1.2.2), permits
events to be counted on a process-specific basis.
(The bit is saved by interrupts and restored by
rfid.)

Common uses of the PMM bit include the fol-
lowing.

■ Count events for a few selected processes.
This use requires the following bit settings.

— MSRPMM= 1 for the selected processes,
MSRPMM= 0 for all other processes

— MMCR0FCM0= 1
— MMCR0FCM1= 0

■ Count events for all but a few selected proc-
esses. This use requires the following bit set-
tings.

— MSRPMM= 1 for the selected processes,
MSRPMM= 0 for all other processes

— MMCR0FCM0= 0

— MMCR0FCM1= 1

Notice that for both of these uses a mark value of
1 identifies the “few” processes and a mark value
of 0 identifies the remaining “many” processes.
Because the PMM bit is set to 0 when an interrupt
occurs (see Figure 28 on page 54), interrupt han-
dlers are treated as one of the “many”. If it is
desired to treat interrupt handlers as one of the
“few”, the mark value convention just described
would be reversed.

E.1.2 Special Purpose Registers

The Performance Monitor SPRs count events, control
the operation of the Performance Monitor, and
provide associated information.

The Performance Monitor SPRs can be read and
written using the mfspr and mtspr instructions (see
Section 3.4.1, “Move To/From System Register
Instructions” on page 16). The Performance Monitor
SPR numbers are shown in Figure 36. Writing any of
the Performance Monitor SPRs is privileged. Reading
any of the Performance Monitor SPRs is not privileged
(however, the privileged SPR numbers used to write
the SPRs can also be used to read them; see the
figure).

The elapsed time between the execution of an instruc-
tion and the time at which events due to that instruc-
tion have been reflected in Performance Monitor SPRs
is not defined. No means are provided by which soft-
ware can ensure that all events due to preceding
instructions have been reflected in Performance
Monitor SPRs. Similarly, if the events being moni-
tored may be caused by operations that are per-
formed out-of-order, no means are provided by which
software can prevent such events due to subsequent
instructions from being reflected in Performance
Monitor SPRs. Thus the value obtained by reading a
Performance Monitor SPR may not be precise: it may
fail to reflect some events due to instructions that
precede the mfspr and may reflect some events due
to instructions that follow the mfspr. This lack of pre-
cision applies regardless of whether the state of the
processor is such that the SPR is subject to change
by the processor at the time the mfspr is executed.

If an mtspr instruction is executed that changes the
value of a Performance Monitor SPR other than SIAR
or SDAR, the change is not guaranteed to have taken
effect until after a subsequent context synchronizing
instruction has been executed (see Chapter 7, “Syn-
chronization Requirements for Context Alterations” on
page 71).

Programming Note

Depending on the events being monitored, the
contents of Performance Monitor SPRs may be
affected by aspects of the runtime environment
(e.g., cache contents) that are not directly attribut-
able to the programs being monitored.

Appendix E. Example Performance Monitors (Optional) 93

Version 2.01

SPR1,2 Register Privi-
decimal spr5:9 spr0:4 Name leged

770,786 11000 n0010 MMCRA no,yes
771,787 11000 n0011 PMC1 no,yes
772,788 11000 n0100 PMC2 no,yes
773,789 11000 n0101 PMC3 no,yes
774,790 11000 n0110 PMC4 no,yes
775,791 11000 n0111 PMC5 no,yes
776,792 11000 n1000 PMC6 no,yes
777,793 11000 n1001 PMC7 no,yes
778,794 11000 n1010 PMC8 no,yes
779,795 11000 n1011 MMCR0 no,yes
780,796 11000 n1100 SIAR no,yes
781,797 11000 n1101 SDAR no,yes
782,798 11000 n1110 MMCR1 no,yes

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 For mtspr, n must be 1. For mfspr, reading
the SPR is privileged if and only if n=1 .

Figure 36. Performance Monitor SPR encodings for
mtspr and mfspr

E.1.2.1 Performance Monitor Counter
Registers

The eight Performance Monitor Counter registers,
PMC1 through PMC8, are 32-bit registers that count
events.

PMC1

PMC2

PMC3

PMC4

PMC5

PMC6

PMC7

PMC8

0 31

Figure 37. Performance Monitor Counter registers

PMC1 and PMC2 are basic features.

Normally each PMC is incremented each processor
cycle by the number of times the corresponding event
occurred in that cycle. Other modes of incrementing
may also be provided (e.g., see the description of
MMCR1 bits PMC1HIST and PMCjHIST).

“PMCj” is used as an abbreviation for “PMCi, i > 1”.

Programming Note

Software can use a PMC to “pace” the collection
of Performance Monitor data. For example, if it is
desired to collect event counts every n cycles,
software can specify that a particular PMC count
cycles and set that PMC to 0x8000_0000 − n. The
events of interest would be counted in other
PMCs. The counter negative condition that will
occur after n cycles can, with the appropriate
setting of MMCR bits, cause counter values to
become frozen, cause a Performance Monitor
interrupt to occur, etc.

E.1.2.2 Monitor Mode Control Register 0

Monitor Mode Control Register 0 (MMCR0) is a 32-bit
register. This register, along with MMCR1 and
MMCRA, controls the operation of the Performance
Monitor.

MMCR0

0 31

Figure 38. Monitor Mode Control Register 0

MMCR0 is a basic feature. Within MMCR0, some of
the bits and fields are basic features and some are
extensions. The basic bits and fields are identified as
such, below.

Some bits of MMCR0 are altered by the processor
when various events occur, as described below.

The bit definitions of MMCR0 are as follows. MMCR0
bits that are not implemented are treated as
reserved.

Bit(s) Description

0 Freeze Counters (FC)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented.

The processor sets this bit to 1 when an
enabled condition or event occurs and
MMCR0FCECE= 1 .

1 Freeze Counters in Supervisor State (FCS)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPR= 0 .

94 PowerPC Operating Environment Architecture

Version 2.01

2 Freeze Counters in Problem State (FCP)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPR= 1 .

3 Freeze Counters while Mark = 1 (FCM1)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM= 1 .

4 Freeze Counters while Mark = 0 (FCM0)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM= 0 .

5 Performance Monitor Exception Enable
(PMXE)

This bit is a basic feature.

0 Performance Monitor exceptions are disa-
bled.

1 Performance Monitor exceptions are
enabled until a Performance Monitor
exception occurs, at which time:
■ MMCR0PMXE is set to 0

Programming Note

Software can set this bit to 0 to prevent
Performance Monitor interrupts.

Software can set this bit to 1 and then poll
the bit to determine whether an enabled
condition or event has occurred. This is
especially useful on an implementation
that does not provide the Performance
Monitor interrupt.

6 Freeze Counters on Enabled Condition or
Event (FCECE)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are incremented (if permitted
by other MMCR bits) until an enabled con-
dition or event occurs when
MMCR0TRIGGER= 0 , at which time:
■ MMCR0FC is set to 1

If the enabled condition or event occurs when
MMCR0TRIGGER= 1 , the FCECE bit is treated
as if it were 0.

7:8 Time Base Selector (TBSEL)

This field selects the Time Base bit that can
cause a Time Base transition event (the event
occurs when the selected bit changes from 0
to 1).

00 Time Base bit 63 is selected.
01 Time Base bit 55 is selected.
10 Time Base bit 51 is selected.
11 Time Base bit 47 is selected.

Programming Note

Time Base transition events can be used
to collect information about processor
activity, as revealed by event counts in
PMCs and by addresses in SIAR and
SDAR, at periodic intervals.

In multiprocessor systems in which the
Time Base registers are synchronized
among the processors, Time Base transi-
tion events can be used to correlate the
Performance Monitor data obtained by the
several processors. For this use, software
must specify the same TBSEL value for all
the processors in the system.

Because the frequency of the Time Base
is implementation-dependent, software
should invoke a system service program
to obtain the frequency before choosing a
value for TBSEL.

9 Time Base Event Enable (TBEE)

0 Time Base transition events are disabled.
1 Time Base transition events are enabled.

10:15 Threshold (THRESHOLD)

This field contains a “threshold value”, which
is a value such that only events that exceed
the value are counted. The events to which a
threshold value can apply are implementa-
tion-dependent, as are the dimension of the
threshold (e.g., duration in cycles) and the
granularity with which the threshold value is
interpreted. See the Book IV, PowerPC
Implementation Features document for the
implementation.

Programming Note

By varying the threshold value, software
can obtain a profile of the characteristics
of the events subject to the threshold.
For example, if PMC1 counts the number
of cache misses for which the duration
exceeds the threshold value, then soft-
ware can obtain the distribution of cache
miss durations for a given program by
monitoring the program repeatedly using
a different threshold value each time.

Appendix E. Example Performance Monitors (Optional) 95

Version 2.01

16 PMC1 Condition Enable (PMC1CE)

This bit controls whether counter negative
conditions due to a negative value in PMC1
are enabled.

0 Counter negative conditions for PMC1 are
disabled.

1 Counter negative conditions for PMC1 are
enabled.

17 PMCj Condition Enable (PMCjCE)

This bit controls whether counter negative
conditions due to a negative value in any
PMCj (i.e., in any PMC except PMC1) are
enabled.

0 Counter negative conditions for all PMCjs
are disabled.

1 Counter negative conditions for all PMCjs
are enabled.

18 Trigger (TRIGGER)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 PMC1 is incremented (if permitted by
other MMCR bits). The PMCjs are not
incremented until PMC1 is negative or an
enabled condition or event occurs, at
which time:
■ the PMCjs resume incrementing (if

permitted by other MMCR bits)
■ MMCR0TRIGGER is set to 0

See the description of the FCECE bit, above,
regarding the interaction between TRIGGER
and FCECE.

Programming Note

Uses of TRIGGER include the following.

■ Resume counting in the PMCjs when
PMC1 becomes negative, without
causing a Performance Monitor inter-
rupt. Then freeze all PMCs (and
optionally cause a Performance
Monitor interrupt) when a PMCj
becomes negative. The PMCjs then
reflect the events that occurred
between the time PMC1 became neg-
ative and the time a PMCj becomes
negative. This use requires the fol-
lowing MMCR0 bit settings.

— TRIGGER=1
— PMC1CE=0
— PMCjCE=1
— TBEE=0
— FCECE=1
— PMXE=1 (if a Performance

Monitor interrupt is desired)

■ Resume counting in the PMCjs when
PMC1 becomes negative, and cause a
Performance Monitor interrupt without
freezing any PMCs. The PMCjs then
reflect the events that occurred
between the time PMC1 became neg-
ative and the time the interrupt
handler reads them. This use
requires the following MMCR0 bit set-
tings.

— TRIGGER=1
— PMC1CE=1
— TBEE=0
— FCECE=0
— PMXE=1

19:25 PMC1 Selector (PMC1SEL)

This field is a basic feature.

This field contains a code (one of at most 128
values) that identifies the event to be counted
in PMC1; see the Book IV, PowerPC Imple-
mentation Features document for the imple-
mentation.

26:31 PMC2 Selector (PMC2SEL)

This field is a basic feature.

This field contains a code (one of at most 64
values) that identifies the event to be counted
in PMC2; see Book IV.

96 PowerPC Operating Environment Architecture

Version 2.01

E.1.2.3 Monitor Mode Control Register 1

Monitor Mode Control Register 1 (MMCR1) is a 32-bit
register. This register, along with MMCR0 and
MMCRA, controls the operation of the Performance
Monitor.

MMCR1

0 31

Figure 39. Monitor Mode Control Register 1

MMCR1 is a basic feature.

Some bits of MMCR1 are altered by the processor
when various events occur, as described below.

The bit definitions of MMCR1 are as follows. MMCR1
bits that are not implemented are treated as
reserved.

Bit(s) Description

0:4 PMC3 Selector (PMC3SEL)
5:9 PMC4 Selector (PMC4SEL)
10:14 PMC5 Selector (PMC5SEL)
15:19 PMC6 Selector (PMC6SEL)
20:24 PMC7 Selector (PMC7SEL)

Each of these fields contains a code (one of at
most 32 values) that identifies the event to be
counted in PMCs 3 through 7 respectively; see
Book IV.

25:28 PMC8 Selector (PMC8SEL)

This field contains a code (one of at most 16
values) that identifies the event to be counted
in PMC8; see Book IV.

29 Freeze Counters until IABR Match (FCUIABR)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented until a
“monitored” IABR match occurs. An IABR
match is said to be “monitored” if it
occurs when PMC incrementing is per-
mitted by MMCR00:4 and MSRPR PMM.
When a monitored IABR match occurs:
■ the PMCs resume incrementing (if

permitted by other MMCR bits)
■ MMCR1FCUIABR is set to 0

The IABR (Instruction Address Breakpoint
Register) is an implementation-specific SPR,
and the definition of “IABR match” is imple-
mentation-dependent; see the Book IV,
PowerPC Implementation Features document
for the implementation.

30 PMC1 History Mode (PMC1HIST)

This bit controls whether PMC1 is incre-
mented in the normal way, described in
Section E.1.2.1, or in “history mode”. In

history mode a PMC is shifted left by one bit
each processor cycle, and the vacated low-
order bit is set to 1 if the associated event
occurred (one or more times) in that cycle
and is set to 0 otherwise.

0 PMC1 is incremented normally (if incre-
menting is permitted by other MMCR bits).

1 PMC1 is incremented in history mode (if
incrementing is permitted by other MMCR
bits).

31 PMCj History Mode (PMCjHIST)

This bit controls whether all PMCjs are incre-
mented in the normal way, described in
Section E.1.2.1, or in “history mode”,
described under PMC1HIST above.

0 All PMCjs are incremented normally (if
incrementing is permitted by other MMCR
bits).

1 All PMCjs are incremented in history
mode (if incrementing is permitted by
other MMCR bits).

E.1.2.4 Monitor Mode Control Register A

Monitor Mode Control Register A (MMCRA) is a 32-bit
register. This register, along with MMCR0 and
MMCR1, controls the operation of the Performance
Monitor.

MMCRA

0 31

Figure 40. Monitor Mode Control Register A

MMCRA is a basic feature. Within MMCRA, some of
the bits and fields are basic features and some are
extensions. The basic bits and fields are identified as
such, below.

The bit definitions of MMCRA are as follows. MMCRA
bits that are not implemented are treated as
reserved.

Bit(s) Description

0 Multithread Count Mode (MODE)

0 Global Mode: All PMCs count all threads
(no thread active gating).
Example: If MMCR0 is programmed to
have PMC1 count instructions executed,
PMC1 will count instructions executed by
both thread 0 and 1.

1 Thread Mode: PMC1 - PMC4 count events
tor thread 0. PMC5 - PMC8 count the
same events for thread 1.
Example: If MMCR0 is programmed to
have PMC1 count instructions executed,
PMC1 will count instructions executed both
thread 0, and and PMC5 will count instruc-
tion executed by thread 1.

Appendix E. Example Performance Monitors (Optional) 97

Version 2.01

When MODE = 1, the PMC SPR addressing
changes.

■ For thread 0, PMC1 - PMC4 (Performance
Monitor Counter registers 1 - 4) are
addressed using PMC1 - PMC4 SPR
addresses from Figure 36 on page 94.
The results of mfspr or mtspr instructions
that use a PMC5 - PMC8 SPR address are
implementation-dependent.

■ For thread 1, PMC5 - PMC8 are addressed
using PMC1 - PMC4 SPR addresses from
Figure 36 on page 94. The results of
mfspr or mtspr instructions that use a
PMC5 - PMC8 SPR address are implemen-
tation-dependent.

1 Freeze Counters 1-4 (FC1-4)

0 PMC1 - PMC4 are incremented (if per-
mitted by other MMCR bits).

1 PMC1 - PMC4 are not incremented.

2 Freeze Counters 5-8 (FC5-8)

0 PMC5 - PMC8 are incremented (if per-
mitted by other MMCR bits).

1 PMC5 - PMC8 are not incremented.

3:7 Reserved

8:14 Reserved for implementation-specific use

15:23 Reserved

24:27 Reserved for implementation-specific use

28:29 Reserved

30 Freeze Counters in Wait State (FCWAIT)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
CTRL31= 0 . Software is expected to set
CTRL31= 0 when it is in a “wait state”, i.e,
when there is no process ready to run.

Only Branch Unit type of events do not incre-
ment if CTRL31= 0 . Other units continue to
count.

31 Reserved

E.1.2.5 Sampled Instruction Address
Register

The Sampled Instruction Address Register (SIAR) is a
64-bit register. It contains the address of the
“sampled instruction” when a Performance Monitor
exception occurs.

SIAR

0 63

Figure 41. Sampled Instruction Address Register

When a Performance Monitor exception occurs, SIAR
is set to the effective address of an instruction that
was executing, possibly out-of-order, at or around the
time that the Performance Monitor exception
occurred. This instruction is called the “sampled
instruction”.

The contents of SIAR may be altered by the processor
if and only if MMCR0PMXE= 1 . Thus after the Perform-
ance Monitor exception occurs, the contents of SIAR
are not altered by the processor until software sets
MMCR0PMXE to 1. After software sets MMCR0PMXE to
1, the contents of SIAR are undefined until the next
Performance Monitor exception occurs.

See Section E.1.4 regarding the effects of the Trace
facility on SIAR.

E.1.2.6 Sampled Data Address Register

The Sampled Data Address Register (SDAR) is a
64-bit register. It contains the address of the
“sampled data” when a Performance Monitor excep-
tion occurs.

SDAR

0 63

Figure 42. Sampled Data Address Register

When a Performance Monitor exception occurs, SDAR
is set to the effective address of the storage operand
of an instruction that was executing, possibly out-of-
order, at or around the time that the Performance
Monitor exception occurred. This storage operand is
called the “sampled data”. The sampled data may
be, but need not be, the storage operand (if any) of
the “sampled instruction” (see Section E.1.2.5). If the
Performance Monitor exception causes a Performance
Monitor interrupt, SRR1 indicates whether the
sampled data is in fact the storage operand of the
sampled instruction (see Section E.1.3).

The contents of SDAR may be altered by the
processor if and only if MMCR0PMXE= 1 . Thus after
the Performance Monitor exception occurs, the con-
tents of SDAR are not altered by the processor until
software sets MMCR0PMXE to 1. After software sets
MMCR0PMXE to 1, the contents of SDAR are undefined
until the next Performance Monitor exception occurs.

See Section E.1.4 regarding the effects of the Trace
facility on SDAR.

98 PowerPC Operating Environment Architecture

Version 2.01

E.1.3 Performance Monitor Interrupt

The Performance Monitor interrupt is a system-
caused interrupt (see Section 5.3, “Interrupt Classes”
on page 52). It is masked by MSREE in the same
manner that External and Decrementer interrupts are.

A Performance Monitor interrupt occurs when no
higher priority exception exists, a Performance
Monitor exception exists, and MSREE= 1 . The occur-
rence of the interrupt cancels the exception (i.e.,
causes the exception to cease to exist).

If multiple Performance Monitor exceptions occur
before the first causes a Performance Monitor inter-
rupt, the interrupt reflects the most recent Perform-
ance Monitor exception and the preceding
Performance Monitor exceptions are lost.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33 Set to 1 if the contents of SIAR and SDAR

are associated with the same instruction
(i.e., if SDAR contains the effective address
of the storage operand of the “sampled
instruction”); otherwise set to 0 (including
the case in which the “sampled
instruction” has no storage operand).

34:36 and 42:47 See the Book IV, PowerPC Imple-
mentation Features document for the
implementation.

Others Loaded from the MSR.

MSR See Figure 28 on page 54.

SIAR Set to the effective address of the
“sampled instruction” (see Section E.1.2.5).

SDAR Set to the effective address of the
“sampled data” (see Section E.1.2.6).

Execution resumes at effective address
0x0000_0000_0000_0F00.

In general, statements about External and
Decrementer interrupts elsewhere in this Book apply
also to the Performance Monitor interrupt; for
example, if a Performance Monitor exception is
pending when an mtmsr[d] instruction is executed
that changes MSREE from 0 to 1, the Performance
Monitor interrupt will occur before the next instruction
is executed (if no higher priority exception exists).

The priority of the Performance Monitor interrupt is
between that of the External interrupt and that of the
Decrementer interrupt (see Section 5.7.2, “Ordered
Exceptions” on page 64 and Section 5.8, “Interrupt
Priorities” on page 65).

E.1.4 Interaction with the Trace
Facility

If the Trace facility includes setting SIAR and SDAR
(see Appendix F, “Example Trace Extensions
(Optional)” on page 109), and tracing is active
(MSRSE= 1 or MSRBE=1) , the contents of SIAR and
SDAR as used by the Performance Monitor facility are
undefined and may change even when
MMCR0PMXE= 0 , and the contents of SRR133 when a
Performance Monitor interrupt occurs are also unde-
fined.

Programming Note

A potential combined use of the Trace and Per-
formance Monitor facilities is to trace the control
flow of a program and simultaneously count
events for that program.

E.1.5 Synchronization Requirements
for Performance Monitor SPRs

Any requirements for synchronizing the effect of
loading Performance Monitor SPRs is implementa-
tion-dependent.

Appendix E. Example Performance Monitors (Optional) 99

Version 2.01

E.2 Performance Monitor for POWER4+

The minimal subset of the features listed on page 91
that makes the resulting Performance Monitor useful
to software consists of MSRPMM, PMC1, PMC2, PMC3,
PMC4, MMCR0, MMCR1, and MMCRA and certain bits
and fields of these three Monitor Mode Control Regis-
ters, and the Performance Monitor Interrupt. These
features are identified as the “basic” features below.
The remaining features (the remaining SPRs, and the
remaining bits and fields in the three Monitor Mode
Control Registers) are considered “extensions”.

The events that can be counted in the PMCs are
implementation-dependent. The Book IV, PowerPC
Implementation Features document for the implemen-
tation describes the events that are available for each
PMC, and also the code that identifies each event.
The events and codes may vary between PMCs, as
well as between implementations. The event to be
counted in a given PMC is selected by specifying the
appropriate code in the MMCR “Selector” field for the
PMC. As described in Book IV, some events may
include operations that are performed out-of-order.

Many aspects of the operation of the Performance
Monitor are summarized by the following hierarchy,
which is described starting at the lowest level.

■ A “counter negative condition” exists when the
value in a PMC is negative (i.e., when bit 0 of the
PMC is 1). A “Time Base transition event” occurs
when a selected bit of the Time Base changes
from 0 to 1 (the bit is selected by an MMCR field).
The term “condition or event” is used as an
abbreviation for “counter negative condition or
Time Base transition event”. A condition or
event can be caused implicitly by the processor
(e.g., incrementing a PMC) or explicitly by soft-
ware (mtspr).

■ A condition or event is enabled if the corre-
sponding “Enable” bit in an MMCR is 1. The
occurrence of an enabled condition or event can
have side effects within the Performance Monitor,
such as causing the PMCs to cease counting.

■ An enabled condition or event causes a Perform-
ance Monitor alert if Performance Monitor events
are enabled by the corresponding “Enable” bit in
an MMCR. A single Performance Monitor alert
may reflect multiple enabled conditions and
events.

■ A Performance Monitor alert causes a Perform-
ance Monitor exception.

The exception effects of the Performance Monitor
are said to be consistent with the contents of
MMCR0PMAO if one of the following statements is
true. (MMCR0PMAO reflects the occurrence of
Performance Monitor events; see the definition of
that bit in Section E.2.2.2.)

— MMCR0PMAO= 0 and a Performance Monitor
exception does not exist.

— MMCR0PMAO= 1 and a Performance Monitor
exception exists.

A context synchronizing instruction or event that
occurs when MMCR0PMAO= 0 ensures that the
exception effects of the Performance Monitor are
consistent with the contents of MMCR0PMAO.

Even without software synchronization, when the
contents of MMCR0PMAO change, the exception
effects of the Performance Monitor become con-
sistent with the new contents of MMCR0PMAO suf-
ficiently soon that the Performance Monitor
facility is useful to software for its intended pur-
poses.

■ A Performance Monitor exception causes a Per-
formance Monitor interrupt when MSREE= 1 .

Programming Note

The Performance Monitor can be effectively disa-
bled (i.e., put into a state in which Performance
Monitor SPRs are not altered and Performance
Monitor interrupts do not occur) by setting
MMCR0 to 0x0000_0000_8000_0000.

E.2.1 PMM Bit of the Machine State
Register

The Performance Monitor uses MSR bit PMM, which is
defined as follows.

Bit Description

61 Performance Monitor Mark (PMM)

This bit is a basic feature.

This bit contains the Performance Monitor
“mark” (0 or 1).

100 PowerPC Operating Environment Architecture

Version 2.01

Programming Note

Software can use this bit as a process-specific
marker which, in conjunction with
MMCR0FCM0 FCM1 (see Section E.2.2.2), permits
events to be counted on a process-specific basis.
(The bit is saved by interrupts and restored by
rfid.)

Common uses of the PMM bit include the fol-
lowing.

■ Count events for a few selected processes.
This use requires the following bit settings.

— MSRPMM= 1 for the selected processes,
MSRPMM= 0 for all other processes

— MMCR0FCM0= 1
— MMCR0FCM1= 0

■ Count events for all but a few selected proc-
esses. This use requires the following bit set-
tings.

— MSRPMM= 1 for the selected processes,
MSRPMM= 0 for all other processes

— MMCR0FCM0= 0

— MMCR0FCM1= 1

Notice that for both of these uses a mark value of
1 identifies the “few” processes and a mark value
of 0 identifies the remaining “many” processes.
Because the PMM bit is set to 0 when an interrupt
occurs (see Figure 28 on page 54), interrupt han-
dlers are treated as one of the “many”. If it is
desired to treat interrupt handlers as one of the
“few”, the mark value convention just described
would be reversed.

E.2.2 Special Purpose Registers

The Performance Monitor SPRs count events, control
the operation of the Performance Monitor, and
provide associated information.

The Performance Monitor SPRs can be read and
written using the mfspr and mtspr instructions (see
Section 3.4.1, “Move To/From System Register
Instructions” on page 16). The Performance Monitor
SPR numbers are shown in Figure 43. Writing any of
the Performance Monitor SPRs is privileged. Reading
any of the Performance Monitor SPRs is not privileged
(however, the privileged SPR numbers used to write
the SPRs can also be used to read them; see the
figure).

The elapsed time between the execution of an instruc-
tion and the time at which events due to that instruc-
tion have been reflected in Performance Monitor SPRs
is not defined. No means are provided by which soft-
ware can ensure that all events due to preceding
instructions have been reflected in Performance
Monitor SPRs. Similarly, if the events being moni-
tored may be caused by operations that are per-
formed out-of-order, no means are provided by which
software can prevent such events due to subsequent
instructions from being reflected in Performance
Monitor SPRs. Thus the contents obtained by reading
a Performance Monitor SPR may not be precise: it
may fail to reflect some events due to instructions
that precede the mfspr and may reflect some events
due to instructions that follow the mfspr. This lack of
precision applies regardless of whether the state of
the processor is such that the SPR is subject to
change by the processor at the time the mfspr is exe-
cuted. Similarly, if an mtspr instruction is executed
that changes the contents of the Time Base, the
change is not guaranteed to have taken effect with
respect to causing Time Base transition events until
after a subsequent context synchronizing instruction
has been executed.

If an mtspr instruction is executed that changes the
value of a Performance Monitor SPR other than SIAR
or SDAR, the change is not guaranteed to have taken
effect until after a subsequent context synchronizing
instruction has been executed (see Chapter 7, “Syn-
chronization Requirements for Context Alterations” on
page 71).

Programming Note

Depending on the events being monitored, the
contents of Performance Monitor SPRs may be
affected by aspects of the runtime environment
(e.g., cache contents) that are not directly attribut-
able to the programs being monitored.

Appendix E. Example Performance Monitors (Optional) 101

Version 2.01

SPR1,2 Register Privi-
decimal spr5:9 spr0:4 Name leged

770,786 11000 n0010 MMCRA no,yes
771,787 11000 n0011 PMC1 no,yes
772,788 11000 n0100 PMC2 no,yes
773,789 11000 n0101 PMC3 no,yes
774,790 11000 n0110 PMC4 no,yes
775,791 11000 n0111 PMC5 no,yes
776,792 11000 n1000 PMC6 no,yes
777,793 11000 n1001 PMC7 no,yes
778,794 11000 n1010 PMC8 no,yes
779,795 11000 n1011 MMCR0 no,yes
780,796 11000 n1100 SIAR no,yes
781,797 11000 n1101 SDAR no,yes
782,798 11000 n1110 MMCR1 no,yes

1 Note that the order of the two 5-bit halves
of the SPR number is reversed.

2 For mtspr, n must be 1. For mfspr, reading
the SPR is privileged if and only if n=1 .

Figure 43. Performance Monitor SPR encodings for
mtspr and mfspr

E.2.2.1 Performance Monitor Counter
Registers

The eight Performance Monitor Counter registers,
PMC1 through PMC8, are 32-bit registers that count
events.

PMC1

PMC2

PMC3

PMC4

PMC5

PMC6

PMC7

PMC8

0 31

Figure 44. Performance Monitor Counter registers

PMC1, PMC2, PMC3, and PMC4 are basic features.

Normally each PMC is incremented each processor
cycle by the number of times the corresponding event
occurred in that cycle. Other modes of incrementing
may also be provided (e.g., see the description of
MMCR1 bits PMC1HIST and PMCjHIST).

“PMCj” is used as an abbreviation for “PMCi, i > 1”.

Programming Note

Software can use a PMC to “pace” the collection
of Performance Monitor data. For example, if it is
desired to collect event counts every n cycles,
software can specify that a particular PMC count
cycles and set that PMC to 0x8000_0000 − n. The
events of interest would be counted in other
PMCs. The counter negative condition that will
occur after n cycles can, with the appropriate
setting of MMCR bits, cause counter values to
become frozen, cause a Performance Monitor
interrupt to occur, etc.

E.2.2.2 Monitor Mode Control Register 0

Monitor Mode Control Register 0 (MMCR0) is a 64-bit
register. This register, along with MMCR1 and
MMCRA, controls the operation of the Performance
Monitor.

MMCR0

0 63

Figure 45. Monitor Mode Control Register 0

MMCR0 is a basic feature. Within MMCR0, some of
the bits and fields are basic features and some are
extensions. The basic bits and fields are identified as
such, below.

Some bits of MMCR0 are altered by the processor
when various events occur, as described below.

The bit definitions of MMCR0 are as follows. MMCR0
bits that are not implemented are treated as
reserved.

Bit(s) Description

0:31 Reserved

32 Freeze Counters (FC)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented.

The processor sets this bit to 1 when an
enabled condition or event occurs and
MMCR0FCECE= 1 .

33 Freeze Counters in Supervisor State (FCS)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRHV PR=0b00.

34 Freeze Counters in Problem State (FCP)

This bit is a basic feature.

102 PowerPC Operating Environment Architecture

Version 2.01

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPR= 1 .

35 Freeze Counters while Mark = 1 (FCM1)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM= 1 .

36 Freeze Counters while Mark = 0 (FCM0)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRPMM= 0 .

37 Performance Monitor Alert Enable (PMAE)

This bit is a basic feature.

0 Performance Monitor events are disabled.
1 Performance Monitor events are enabled

until a Performance Monitor event occurs,
at which time:
■ MMCR0PMAE is set to 0
■ MMCR0PMAO is set to 1

Programming Note

Software can set this bit and MMCR0PMAO
to 0 to prevent Performance Monitor inter-
rupts.

Software can set this bit to 1 and then poll
the bit to determine whether an enabled
condition or event has occurred. This is
especially useful for software that runs
with MSREE= 0 .

38 Freeze Counters on Enabled Condition or
Event (FCECE)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are incremented (if permitted
by other MMCR bits) until an enabled con-
dition or event occurs when
MMCR0TRIGGER= 0 , at which time:
■ MMCR0FC is set to 1

If the enabled condition or event occurs when
MMCR0TRIGGER= 1 , the FCECE bit is treated
as if it were 0.

39:40 Time Base Selector (TBSEL)

This field selects the Time Base bit that can
cause a Time Base transition event (the event
occurs when the selected bit changes from 0
to 1).

00 Time Base bit 63 is selected.
01 Time Base bit 55 is selected.

10 Time Base bit 51 is selected.
11 Time Base bit 47 is selected.

Programming Note

Time Base transition events can be used
to collect information about processor
activity, as revealed by event counts in
PMCs and by addresses in SIAR and
SDAR, at periodic intervals.

In multiprocessor systems in which the
Time Base registers are synchronized
among the processors, Time Base transi-
tion events can be used to correlate the
Performance Monitor data obtained by the
several processors. For this use, software
must specify the same TBSEL value for all
the processors in the system.

Because the frequency of the Time Base
is implementation-dependent, software
should invoke a system service program
to obtain the frequency before choosing a
value for TBSEL.

41 Time Base Event Enable (TBEE)

0 Time Base transition events are disabled.
1 Time Base transition events are enabled.

42:47 Threshold (THRESHOLD)

This field contains a “threshold value”, which
is a value such that only events that exceed
the value are counted. The events to which a
threshold value can apply are implementa-
tion-dependent, as are the dimension of the
threshold (e.g., duration in cycles) and the
granularity with which the threshold value is
interpreted. See the Book IV, PowerPC
Implementation Features document for the
implementation.

Programming Note

By varying the threshold value, software
can obtain a profile of the characteristics
of the events subject to the threshold.
For example, if PMC1 counts the number
of cache misses for which the duration
exceeds the threshold value, then soft-
ware can obtain the distribution of cache
miss durations for a given program by
monitoring the program repeatedly using
a different threshold value each time.

48 PMC1 Condition Enable (PMC1CE)

This bit controls whether counter negative
conditions due to a negative value in PMC1
are enabled.

0 Counter negative conditions for PMC1 are
disabled.

1 Counter negative conditions for PMC1 are
enabled.

Appendix E. Example Performance Monitors (Optional) 103

Version 2.01

49 PMCj Condition Enable (PMCjCE)

This bit controls whether counter negative
conditions due to a negative value in any
PMCj (i.e., in any PMC except PMC1) are
enabled.

0 Counter negative conditions for all PMCjs
are disabled.

1 Counter negative conditions for all PMCjs
are enabled.

50 Trigger (TRIGGER)

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 PMC1 is incremented (if permitted by
other MMCR bits). The PMCjs are not
incremented until PMC1 is negative or an
enabled condition or event occurs, at
which time:
■ the PMCjs resume incrementing (if

permitted by other MMCR bits)
■ MMCR0TRIGGER is set to 0

See the description of the FCECE bit, above,
regarding the interaction between TRIGGER
and FCECE.

Programming Note

Uses of TRIGGER include the following.

■ Resume counting in the PMCjs when
PMC1 becomes negative, without
causing a Performance Monitor inter-
rupt. Then freeze all PMCs (and
optionally cause a Performance
Monitor interrupt) when a PMCj
becomes negative. The PMCjs then
reflect the events that occurred
between the time PMC1 became neg-
ative and the time a PMCj becomes
negative. This use requires the fol-
lowing MMCR0 bit settings.

— TRIGGER=1
— PMC1CE=0
— PMCjCE=1
— TBEE=0
— FCECE=1
— PMAE=1 (if a Performance

Monitor interrupt is desired)

■ Resume counting in the PMCjs when
PMC1 becomes negative, and cause a
Performance Monitor interrupt without
freezing any PMCs. The PMCjs then
reflect the events that occurred
between the time PMC1 became neg-
ative and the time the interrupt
handler reads them. This use
requires the following MMCR0 bit set-
tings.

— TRIGGER=1
— PMC1CE=1
— TBEE=0
— FCECE=0
— PMAE=1

51:55 PMC1 Selector (PMC1SEL)

This field is a basic feature.

This field contains a code (one of at most 32
values) that identifies the event to be counted
in PMC1; see the Book IV, PowerPC Imple-
mentation Features document for the imple-
mentation.

56 Performance Monitor Alert Occurred (PMAO)

This bit is a basic feature.

0 A Performance Monitor event has not
occurred since the last time software set
this bit to 0.

1 A Performance Monitor event has
occurred since the last time software set
this bit to 0.

This bit is set to 1 by the processor when a
Performance Monitor event occurs. This bit
can be set to 0 only by the mtspr instruction.

Programming Note

Software can set this bit to 1 to simulate
the occurrence of a Performance Monitor
event.

Software should set this bit to 0 after han-
dling the Performance Monitor event.

This bit was first implemented in the
POWER4+ processor.

57 Reserved

58:62 PMC2 Selector (PMC2SEL)

This field is a basic feature.

This field contains a code (one of at most 32
values) that identifies the event to be counted
in PMC2; see Book IV.

63 Freeze Counters in Hypervisor State (FCH)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
MSRHV PR=0b10.

104 PowerPC Operating Environment Architecture

Version 2.01

E.2.2.3 Monitor Mode Control Register 1

Monitor Mode Control Register 1 (MMCR1) is a 64-bit
register. This register, along with MMCR0 and
MMCRA, controls the operation of the Performance
Monitor.

MMCR1

0 63

Figure 46. Monitor Mode Control Register 1

MMCR1 is a basic feature. Within MMCR1, some of
the bits and fields are basic features and some are
extensions. The basic bits and fields are identified as
such, below.

Some bits of MMCR1 are altered by the processor
when various events occur, as described below.

The bit definitions of MMCR1 are as follows. MMCR1
bits that are not implemented are treated as
reserved.

Bit(s) Description

0:31 Implementation-Dependent Use

These bits have implementation-dependent
uses (e.g., extended event selection).

32:36 PMC3 Selector (PMC3SEL)
37:41 PMC4 Selector (PMC4SEL)
42:46 PMC5 Selector (PMC5SEL)
47:51 PMC6 Selector (PMC6SEL)
52:56 PMC7 Selector (PMC7SEL)
57:61 PMC8 Selector (PMC8SEL)

Each of these fields contains a code (one of at
most 32 values) that identifies the event to be
counted in PMCs 3 through 8 respectively; see
Book IV.

PMC3SEL and PMC4SEL are basic features.

Compatibility Note

In versions of the architecture that
precede Version 2.01 the PMC8SEL field
was only four bits long, comprising
MMCR125:28, and MMCR129 was the
FCUIABR (Freeze Counters until IABR
Match) bit.

62 PMC1 History Mode (PMC1HIST)

This bit controls whether PMC1 is incre-
mented in the normal way, described in
Section E.2.2.1, or in “history mode”. In
history mode a PMC is shifted left by one bit
each processor cycle, and the vacated low-
order bit is set to 1 if the associated event
occurred (one or more times) in that cycle
and is set to 0 otherwise.

0 PMC1 is incremented normally (if incre-
menting is permitted by other MMCR bits).

1 PMC1 is incremented in history mode (if
incrementing is permitted by other MMCR
bits).

63 PMCj History Mode (PMCjHIST)

This bit controls whether all PMCjs are incre-
mented in the normal way, described in
Section E.2.2.1, or in “history mode”,
described under PMC1HIST above.

0 All PMCjs are incremented normally (if
incrementing is permitted by other MMCR
bits).

1 All PMCjs are incremented in history
mode (if incrementing is permitted by
other MMCR bits).

E.2.2.4 Monitor Mode Control Register A

Monitor Mode Control Register A (MMCRA) is a 64-bit
register. This register, along with MMCR0 and
MMCR1, controls the operation of the Performance
Monitor.

MMCRA

0 63

Figure 47. Monitor Mode Control Register A

MMCRA is a basic feature. Within MMCRA, some of
the bits and fields are basic features and some are
extensions. The basic bits and fields are identified as
such, below.

Some bits of MMCRA are altered by the processor
when various events occur, as described below.

The bit definitions of MMCRA are as follows. MMCRA
bits that are not implemented are treated as
reserved.

Bit(s) Description

0:31 Reserved

32 Contents of SIAR and SDAR Are Related (CSSR)

Set to 1 by the processor if the contents of
SIAR and SDAR are associated with the same
instruction; otherwise set to 0.

33 Freeze Counters 1-4 (FC1-4)

0 PMC1 - PMC4 are incremented (if per-
mitted by other MMCR bits).

1 PMC1 - PMC4 are not incremented.

34 Freeze Counters 5-8 (FC5-8)

0 PMC5 - PMC8 are incremented (if per-
mitted by other MMCR bits).

1 PMC5 - PMC8 are not incremented.

Appendix E. Example Performance Monitors (Optional) 105

Version 2.01

35 Sampled MSRHV (SAMPHV)

Value of MSRHV when the Performance
Monitor Alert occurred.

36 Sampled MSRPR (SAMPPR)

Value of MSRPR when the Performance
Monitor Alert occurred.

37:46 Setting is implementation-dependent

See Book IV.

47:48 Reserved

49:59 Reserved for implementation-specific use

60:61 Reserved

62 Freeze Counters in Wait State (FCWAIT)

This bit is a basic feature.

0 The PMCs are incremented (if permitted
by other MMCR bits).

1 The PMCs are not incremented if
CTRL31= 0 . Software is expected to set
CTRL31= 0 when it is in a “wait state”, i.e,
when there is no process ready to run.

Only Branch Unit type of events do not incre-
ment if CTRL31= 0 . Other units continue to
count.

63 Reserved for implementation-specific use

E.2.2.5 Sampled Instruction Address
Register

The Sampled Instruction Address Register (SIAR) is a
64-bit register. It contains the address of the
“sampled instruction” when a Performance Monitor
alert occurs.

SIAR

0 63

Figure 48. Sampled Instruction Address Register

When a Performance Monitor alert occurs, SIAR is set
to the effective address of an instruction that was
being executed, possibly out-of-order, at or around
the time that the Performance Monitor alert occurred.
This instruction is called the “sampled instruction”.

The contents of SIAR may be altered by the processor
if and only if MMCR0PMAE= 1 . Thus after the Perform-
ance Monitor alert occurs, the contents of SIAR are
not altered by the processor until software sets

MMCR0PMAE to 1. After software sets MMCR0PMAE to
1, the contents of SIAR are undefined until the next
Performance Monitor alert occurs.

See Section E.2.4 regarding the effects of the Trace
facility on SIAR.

Programming Note

If the Performance Monitor alert causes a Perform-
ance Monitor interrupt, the value of MSRHV PR that
was in effect when the sampled instruction was
being executed is reported in MMCRA.

E.2.2.6 Sampled Data Address Register

The Sampled Data Address Register (SDAR) is a
64-bit register. It contains the address of the
“sampled data” when a Performance Monitor alert
occurs.

SDAR

0 63

Figure 49. Sampled Data Address Register

When a Performance Monitor alert occurs, SDAR is
set to the effective address of the storage operand of
an instruction that was being executed, possibly out-
of-order, at or around the time that the Performance
Monitor alert occurred. This storage operand is
called the “sampled data”. The sampled data may
be, but need not be, the storage operand (if any) of
the sampled instruction (see Section E.2.2.5).

The contents of SDAR may be altered by the
processor if and only if MMCR0PMAE= 1 . Thus after
the Performance Monitor alert occurs, the contents of
SDAR are not altered by the processor until software
sets MMCR0PMAE to 1. After software sets
MMCR0PMAE to 1, the contents of SDAR are undefined
until the next Performance Monitor alert occurs.

See Section E.2.4 regarding the effects of the Trace
facility on SDAR.

Programming Note

If the Performance Monitor alert causes a Per-
formance Monitor interrupt, MMCRA indicates
whether the sampled data is the storage operand
of the sampled instruction.

106 PowerPC Operating Environment Architecture

Version 2.01

E.2.3 Performance Monitor Interrupt

The Performance Monitor interrupt is a system-
caused interrupt (see Section 5.3, “Interrupt Classes”
on page 52). It is masked by MSREE in the same
manner that External and Decrementer interrupts are.

The Performance Monitor interrupt is a basic feature.

A Performance Monitor interrupt occurs when no
higher priority exception exists, a Performance
Monitor exception exists, and MSREE= 1 .

If multiple Performance Monitor exceptions occur
before the first causes a Performance Monitor inter-
rupt, the interrupt reflects the most recent Perform-
ance Monitor exception and the preceding
Performance Monitor exceptions are lost.

The following registers are set:

SRR0 Set to the effective address of the instruc-
tion that the processor would have
attempted to execute next if no interrupt
conditions were present.

SRR1
33:36 and 42:47 See the Book IV, PowerPC Imple-

mentation Features document for the
implementation.

Others Loaded from the MSR.

MSR See Figure 28 on page 54.

SIAR Set to the effective address of the
“sampled instruction” (see Section E.2.2.5).

SDAR Set to the effective address of the
“sampled data” (see Section E.2.2.6).

Execution resumes at effective address
0x0000_0000_0000_0F00.

In general, statements about External and
Decrementer interrupts elsewhere in this Book apply
also to the Performance Monitor interrupt; for
example, if a Performance Monitor exception exists
when an mtmsrd[d] instruction is executed that
changes MSREE from 0 to 1, the Performance Monitor
interrupt will occur before the next instruction is exe-
cuted (if no higher priority exception exists).

The priority of the Performance Monitor exception is
equal to that of the External, Decrementer, and
Hypervisor Decrementer exceptions (i.e., the
processor may generate any one of the four inter-
rupts for which an exception exists) (see Section 5.7.2,
“Ordered Exceptions” on page 64 and Section 5.8,
“Interrupt Priorities” on page 65).

E.2.4 Interaction with the Trace
Facility

If the Trace facility includes setting SIAR and SDAR
(see Appendix F, “Example Trace Extensions
(Optional)” on page 109), and tracing is active
(MSRSE= 1 or MSRBE=1) , the contents of SIAR and
SDAR as used by the Performance Monitor facility are
undefined and may change even when
MMCR0PMAE= 0 .

Programming Note

A potential combined use of the Trace and Per-
formance Monitor facilities is to trace the control
flow of a program and simultaneously count
events for that program.

Appendix E. Example Performance Monitors (Optional) 107

Version 2.01

108 PowerPC Operating Environment Architecture

Version 2.01

Appendix F. Example Trace Extensions (Optional)

This appendix provides an example of extensions that
may be added to the Trace facility described in
Section 5.5.14, “Trace Interrupt” on page 63. It is
only an example; implementations may provide all,
some, or none of the features described here, or may
provide features that are similar to those described
here but differ in detail. See the Book IV, PowerPC
Implementation Features document for the implemen-
tation.

The extensions consist of the following features
(described in detail below).

■ use of MSRSE BE=0b11 to specify new causes of
Trace interrupts

■ specification of how certain SRR1 bits are set
when a Trace interrupt occurs

■ setting of SIAR and SDAR (see Appendix E) when
a Trace interrupt occurs

MSRSE BE = 0b11

If MSRSE BE=0b11, the processor generates a Trace
exception under the conditions described in Section
5.5.14 for MSRSE BE=0b01, and also after successfully
completing the execution of any instruction that would
cause at least one of SRR1 bits 33:36, 42, and 44:46 to
be set to 1 (see below) if the instruction were exe-
cuted when MSRSE BE=0b10.

This overrides the implicit statement in Section 5.5.14
that the effects of MSRSE BE=0b11 are the same as
those of MSRSE BE=0b10.

SRR1

When a Trace interrupt occurs, the SRR1 bits that are
not loaded from the MSR are set as follows instead of
as described in Section 5.5.14.

33 Set to 1 if the traced instruction is icbi; oth-
erwise set to 0.

34 Set to 1 if the traced instruction is dcbt,
dcbtst, dcbz, dcbst, or dcbf; otherwise set
to 0.

35 Set to 1 if the traced instruction is a Load
instruction or eciwx; may be set to 1 if the
traced instruction is icbi, dcbt, dcbtst,
dcbst, or dcbf; otherwise set to 0.

36 Set to 1 if the traced instruction is a Store
instruction, dcbz, or ecowx; otherwise set
to 0.

42 Set to 1 if the traced instruction is lswx or
stswx; otherwise set to 0.

43 See the Book IV, PowerPC Implementation
Features document for the implementation.

44 Set to 1 if the traced instruction is a
Branch instruction and the branch is taken;
otherwise set to 0.

45 Set to 1 if the traced instruction is eciwx or
ecowx; otherwise set to 0.

46 Set to 1 if the traced instruction is lwarx,
ldarx, stwcx., or stdcx.; otherwise set to 0.

47 See the Book IV, PowerPC Implementation
Features document for the implementation.

SIAR and SDAR

If the optional Performance Monitor facility is imple-
mented and includes SIAR and SDAR (see
Appendix E, “Example Performance Monitors
(Optional)” on page 91), the following additional reg-
isters are set when a Trace interrupt occurs:

SIAR Set to the effective address of the traced
instruction.

SDAR Set to the effective address of the storage
operand (if any) of the traced instruction;
otherwise undefined.

If the state of the Performance Monitor is such that
the Performance Monitor may be altering these regis-
ters (i.e., if MMCR0PMAE=1) , the contents of SIAR and
SDAR as used by the Trace facility are undefined and
may change even when no Trace interrupt occurs.

Appendix F. Example Trace Extensions (Optional) 109

Version 2.01

110 PowerPC Operating Environment Architecture

Version 2.01

Appendix G. PowerPC Operating Environment Instruction Set

Form
Opcode Mode

Dep.1
Priv.2 Page Mnemonic Instruction

Primary Extend

X 31 83 P 20 mfmsr Move From Machine State Register
XFX 31 339 O 18 mfspr Move From Special Purpose Register
X 31 595 32 P 82 mfsr Move From Segment Register
X 31 659 32 P 82 mfsrin Move From Segment Register Indirect
X 31 146 P 78 mtmsr Move To Machine State Register
X 31 178 P 19 mtmsrd Move To Machine State Register Doubleword
XFX 31 467 O 17 mtspr Move To Special Purpose Register
X 31 210 32 P 81 mtsr Move To Segment Register
X 31 242 32 P 81 mtsrin Move To Segment Register Indirect
XL 19 18 P 11 rfid Return From Interrupt Doubleword
SC 17 10 sc System Call
X 31 498 P 42 slbia SLB Invalidate All
X 31 434 P 41 slbie SLB Invalidate Entry
X 31 915 P 44 slbmfee SLB Move From Entry ESID
X 31 851 P 44 slbmfev SLB Move From Entry VSID
X 31 402 P 43 slbmte SLB Move To Entry
X 31 370 P 47 tlbia TLB Invalidate All
X 31 306 64 H 45 tlbie TLB Invalidate Entry
X 31 566 H 47 tlbsync TLB Synchronize

1Key to Mode Dependency Column

Except as described below and in the section entitled
“Effective Address Calculation” in Book I, all
instructions in the PowerPC Operating Environment
Architecture are independent of whether the
processor is in 32-bit or 64-bit mode.

32 The instruction must be executed only in
32-bit mode.

64 The instruction must be executed only in
64-bit mode.

2Key to Privilege Column

P denotes a privileged instruction.

O denotes an instruction that is treated as privileged
or nonprivileged (or hypervisor, for mtspr), depending
on the SPR number.

H denotes an instruction that can be executed only in
hypervisor state.

Appendix G. PowerPC Operating Environment Instruction Set 111

Version 2.01

112 PowerPC Operating Environment Architecture

Version 2.01

Index

A

ACCR 34
address

effective address 21
real 23, 25

address compare 22, 55
ACCR 34

Address Compare Control Register 17, 18, 34
Address Space Register 17, 18, 79
address translation 37

EA to VA 25
esid to vsid 25
overview 28
PTE

page table entry 31, 37
Reference bit 37
RPN

real page number 30
VA to RA 30
VPN

virtual page number 30
32-bit mode 25

address wrap 23
addresses

accessed by processor 27
implicit accesses 27
interrupt vectors 27
with defined uses 27

Alignment interrupt 59, 89
ASR 79
assembler language

extended mnemonics 83
mnemonics 83
symbols 83

B

BE
See Machine State Register

Branch Trace 63
Bridge 79

ASR 79
Segment Registers 80
SR 80

C

Caching Inhibited 22
Change bit 37
CIA

See Current Instruction Address
context

definition 1
synchronization 3

Control Register 0 14, 17, 18
CTRL

See Control Register
Current Instruction Address 7, 10

D

DABR interrupt 35
DAR

See Data Address Register
data access 23
Data Address Breakpoint Register 17, 18, 35
data address compare 55

ACCR 34
Data Address Register 13, 17, 18, 56, 57, 60
Data Segment interrupt 57
Data Storage interrupt 55
Data Storage Interrupt Status Register 14, 17, 18,

56, 59, 60, 89
Alignment interrupt 89

dcbf instruction 55
dcbst instruction 55
dcbz instruction 34, 40, 55, 59, 89
Decrementer 17, 18, 68, 69
Decrementer interrupt 19, 61, 78
DR

See Machine State Register
DSISR

See Data Storage Interrupt Status Register

E

E (Enable bit) 75
eciwx instruction 75, 55, 59, 60

Index 113

Version 2.01

ecowx instruction 75, 55, 59, 60
EE

See Machine State Register
effective address 21, 28

size 22
translation 28

eieio instruction 48
emulation assist 2
exceptions

address compare 22, 34, 55
definition 1
page fault 22, 33, 55
protection 22
segment fault 22
storage 22

execution synchronization 4
External Access Register 75, 17, 18, 55
External interrupt 19, 59, 78

F

FE0
See Machine State Register

FE1
See Machine State Register

Floating-Point Unavailable interrupt 61
FP

See Machine State Register

H

hardware
definition 2

hashed page table 31
size 32

HTAB
See hashed page table

HTABORG 32
HTABSIZE 32
hypervisor 4

page table 31
Hypervisor Decrementer interrupt 62

I

icbi instruction 55
ILE

See Machine State Register
implicit branch 23
imprecise interrupt 52
in-order operations 23
instruction fetch 23

effective address 23
implicit branch 23

Instruction Segment interrupt 58

Instruction Storage interrupt 58
instruction-caused interrupt 52
instructions

dcbf 55
dcbst 55
dcbz 34, 40, 55, 59, 89
eciwx 75, 55, 59, 60
ecowx 75, 55, 59, 60
eieio 48
icbi 55
isync 52, 53, 61
ldarx 53, 55, 59, 60
lmw 59
lookaside buffer 40
lwa 60
lwarx 53, 55, 59, 60, 89
lwaux 60
lwz 89
mfmsr 8, 20
mfspr 18
mfsr 82
mfsrin 82
mtmsr 8, 65, 78
mtmsrd 8, 19, 65

address wrap 23
mtspr 17
mtsr 81
mtsrin 81
optional

See optional instructions
ptesync 4, 48, 52, 61
rfid 8, 11, 53, 65
sc 10, 62
slbia 42
slbie 41
slbmfee 44
slbmfev 44
slbmte 43
stdcx. 53, 55, 59, 60
stmw 59
storage control 40
stw 89
stwcx. 53, 55, 59, 60
stwx 89
sync 4, 37, 52, 53, 61
tlbia 34, 47
tlbie 34, 45, 47, 50
tlbiel 46
tlbsync 47, 48

interrupt
Alignment 59, 89
DABR 35
Data Segment 57
Data Storage 55
Decrementer 19, 61, 78
definition 2
External 19, 59, 78
Floating-Point Unavailable 61
Hypervisor Decrementer 62

114 PowerPC Operating Environment Architecture

Version 2.01

interrupt (continued)
imprecise 52
Instruction Segment 58
Instruction Storage 58
instruction-caused 52
Machine Check 55
new MSR 54
overview 51
Performance Monitor 63
precise 52
priorities 65
processing 53
Program 60
recoverable 53
synchronization 51
System Call 62
System Reset 55
system-caused 52
Trace 63
vector 53, 54

IR
See Machine State Register

isync instruction 52, 53, 61

K

K bits 39
key, storage 39

L

large page 29
ldarx instruction 53, 55, 59, 60
LE

See Machine State Register
lmw instruction 59
Logical Partition Identity Register 5
Logical Partitioning 4
lookaside buffer 40
lookaside buffers 71
LPAR (see Logical Partitioning) 4
LPES bit 4
LPIDR 5
lwa instruction 60
lwarx instruction 53, 55, 59, 60, 89
lwaux instruction 60
lwz instruction 89

M

Machine Check interrupt 55
Machine State Register 8, 10, 19, 20, 52, 53, 54, 78

BE Branch Trace Enable 9
DR Data Relocate 9
EE External Interrupt Enable 8, 19, 78
FE0 FP Exception Mode 8

Machine State Register (continued)
FE1 FP Exception Mode 9
FP FP Available 8
ILE Interrupt Little-Endian Mode 8
IR Instruction Relocate 9
LE Little-Endian Mode 9
ME Machine Check Enable 8
PMM Performance Monitor Mark 9, 92, 100
PR Problem State 8
RI Recoverable Interrupt 9, 19, 78
SE Single-Step Trace Enable 8
SF Sixty Four Bit mode 8, 23

Machine Status Save Restore Register
See SRR0, SRR1

Machine Status Save Restore Register 0 7, 17, 18,
52, 53

Machine Status Save Restore Register 1 7, 17, 18,
53, 61

ME
See Machine State Register

Memory Coherence Required 22
mfmsr instruction 8, 20
mfspr instruction 18
mfsr instruction 82
mfsrin instruction 82
mnemonics

extended 83
mode change 23
MSR

See Machine State Register
mtmsr instruction 8, 65, 78
mtmsrd instruction 8, 19, 65
mtspr instruction 17
mtsr instruction 81
mtsrin instruction 81

N

Next Instruction Address 7, 10, 11
NIA

See Next Instruction Address

O

opcode 0 89
optional facilities 79
optional instructions 40, 75

slbia 42
slbie 41
tlbia 47
tlbie 45
tlbiel 46
tlbsync 47

out-of-order operations 23

Index 115

Version 2.01

P

page
size 22

page fault 22, 33, 55
page size

large page 29
page table

See also hashed page table
search 33
update 48

page table entry 31, 37
Change bit 37
PP bits 39
Reference bit 37
update 48, 50

partition 4
Performance Monitor interrupt 63
PMM

See Machine State Register
PP bits 39
PR

See Machine State Register
precise interrupt 52
priority of interrupts 65
Processor ID Register 15, 18
Processor Version Register 15, 18
Program interrupt 60
protection boundary 39, 60
protection domain 39
PTE 33

See also page table entry
PTEG 33
ptesync instruction 4, 48, 52, 61
PVR

See Processor Version Register

R

RC bits 37
real address 25, 28
Real Mode Caching Inhibited bit 5
Real Mode Limit Register 5
Real Mode Offset Register 5
real page

definition 1
real page number 31
recoverable interrupt 53
reference and change recording 37
Reference bit 37
registers

ACCR
Address Compare Control Register 17, 18

ASR
Address Space Register 17, 18

CTRL
Control Register 0 14, 17, 18

registers (continued)
DABR

Data Address Breakpoint Register 17, 18, 35
DAR

Data Address Register 13, 17, 18, 56, 57, 60
DEC

Decrementer 17, 18, 68, 69
DSISR

Data Storage Interrupt Status Register 14, 17,
18, 56, 59, 60, 89

EAR
External Access Register 75, 17, 18, 55

MSR
Machine State Register 8, 10, 19, 20, 52, 53,

54, 78
optional 75
PIR

Processor ID Register 15, 18
PVR

Processor Version Register 15, 18
SDR1

Storage Description Register 1 17, 18, 32
Segment Registers 71
SPRGn

software-use SPRs 14, 17, 18
SPRs 71
SRR0

Machine Status Save Restore Register 0 7, 17,
18, 52, 53

SRR1
Machine Status Save Restore Register 1 7, 17,

18, 53, 61
status and control 71
TB

Time Base 67
TBL

Time Base Lower 17, 67
TBU

Time Base Upper 17, 67
relocation

data 23
reserved field 2
rfid instruction 8, 11, 53, 65
RI

See Machine State Register
RID (Resource ID) 75
RMLR 5
RMOR 5

S

sc instruction 10, 62
SDR1

See Storage Description Register 1
SE

See Machine State Register
segment

size 22

116 PowerPC Operating Environment Architecture

Version 2.01

segment (continued)
type 22

Segment Lookaside Buffer
See SLB

Segment Registers 71, 80
Segment Table

bridge 79
sequential execution model

definition 2
SF

See Machine State Register
Single-Step Trace 63
SLB 29, 40

entry 29
slbia instruction 42
slbie instruction 41
slbmfee instruction 44
slbmfev instruction 44
slbmte instruction 43
software-use SPRs 14, 17, 18
speculative operations 23
SPRGn

See software use SPRs
SPRs 71
SR 80
status and control registers 71
stdcx. instruction 53, 55, 59, 60
stmw instruction 59
storage

accessed by processor 27
consistency 22
G 39
Guarded 39
implicit accesses 27
interrupt vectors 27
K 39
key 39
N 33, 39
no-execute 33, 39
ordering 22
PP 39
PR 39
protection 39

translation disabled 39
weak ordering 22
with defined uses 27

storage control
instructions 40

storage control bits 35
Storage Description Register 1 17, 18, 32
storage key 39
storage model 22
storage operations

in-order 23
out-of-order 23
speculative 23

storage protection 39
stw instruction 89

stwcx. instruction 53, 55, 59, 60
stwx instruction 89
symbols 83
sync instruction 4, 37, 52, 53, 61
synchronization 3, 48, 71

context 3
execution 4
interrupts 51

System Call interrupt 62
System Reset interrupt 55
system-caused interrupt 52

T

table update 48
Time Base 67
Time Base Lower 17, 67
Time Base Upper 17, 67
TLB 34, 40
tlbia instruction 34, 47
tlbie instruction 34, 45, 47, 50
tlbiel instruction 46
tlbsync instruction 47, 48
Trace interrupt 63
translation lookaside buffer 34
trap interrupt

definition 2

V

virtual address 28, 30
generation 28
size 22

virtual page number 31

W

Write Through Required 22

Numerics

32-bit mode 25

Index 117

Version 2.01

118 PowerPC Operating Environment Architecture

Version 2.01

Last Page - End of Document

Last Page - End of Document 119

